Daily Drilling Report

Page 1 of 5

	AME														DAT	E
ELVER	R-1														02-	01-2009
API #			24 H	RS PRC	G	T	MD				TVD				REP	T NO
ОН			4.10	(m)		3,	253.00 ((m)			2,500.70 (r	n)			16	
RIG NAME				FIELD N	AME	I		AUT	H TMD	PLANNE		DOL		DFS / KO		WATER DEPT
OCEAN P	ATRIOT			ELVER						36.40 (da		15.79 (days)	13.27 (day	/s)	504.90 (m)
SPUD DA		Rig Relea	se		L SUPERVIS	OR DAVID SYMINO	STON				OIM DENNIS	GORE				PBTMD
REGION				_	TRICT				STATE / PROV					HONE NO		RIG FAX NO
AUSTRAL	.IA				SHORE				VICTORIA				1	338 5640		KIG FAX NO
AFE # 094	108EF5				AFE COSTS				DAILY C	OSTS			CUML	JLATIVE CO	STS	
DESCRIP	TION:				DHC:	38,786,601			DHC:	941,197	,		DHC:	18,491	,943	
Directiona	I Explorat	tion Well			DCC:				DCC:				DCC:			
					CWC:				CWC:				CWC:			
					Others:	38,786,601			Others:	044 407	,		Others		042	
			N		-	FETY MEETIN	G BL	оск	TOTAL:	941,197	FORMAT	ON	TOTA	L: 18,491		A HRS OF SER
WELL / 21		LLLVAIL			2/01/2009			C-P59							4.6	
LAST SUR	, ,						LAST C	SG SI	HOE TEST (EMW)	LAST	CASING		N	EXT CASING	3	
MD	3,248	3.91 (m)		47.50°	AZM	192.00°	1.60 (sę	g)		244.0	00 mm @ 3,2	43.9 m				
	OPERAT		ng 216mm	(8-1/2")	nole at 3256m	1										
24 HR FOF	CECAST.	Nin and			imm (8-1/2") h		OPE	RAT	ION SUMMA	RY						
From	То	HRS	Phase		Operation	PT/NPT	NPT C	ODES				ACTIVITY SUM	MARY			
0:00	0:30	0.50	P-DRL													
			I -DILL		DRLCMT	PP			Continued to drill		collar. Note: I	ost communica	ition witl	h Telescope	MWD	- no
0:30	2:00	1.50	P-DRL		DRLCMT	PP			Continued to drill pulse observed a Drilled out cemer 3m new formation Torque and drag observed while re	at surface. ht in shoe t n to 3252n through sl	track and floa n. Reamed th	shoe. Cleaned	l out rati k 3 time	hole to 3249 es to confirm	m and clear.	drilled
0:30 2:00	2:00								pulse observed a Drilled out cemer 3m new formation Torque and drag	at surface. In tin shoe if In to 3252r through si eaming. culate at 2. rded string	track and float n. Reamed th hoe track goo 99m³/min (790	shoe. Cleaned rough shoe trac d, but 2,758kPa Ogpm) and 27,9:	l out rati k 3 time (400psi 25kPa (⁄	hole to 3249 es to confirm i) pressure fl 4050psi) unt	m and clear. uctuat il pres:	drilled ions sure
		1.50	P-DRL		DRLCMT	PP			pulse observed a Drilled out cemer 3m new formation Torque and drag observed while re Continued to circ stabilised. Recon	at surface. In tin shoe f In to 3252r through sl eaming. culate at 2. rded string ig. to standpip und shut-in	track and floa n. Reamed th hoe track goo 99m ³ /min (79i weights: 127 be manifold ar well on MPR'	shoe. Cleaned rough shoe trad d, but 2,758kPa Ogpm) and 27,92 MT (280klbs) U nd down choke a s. Conducted F	l out rati k 3 time (400psi 25kPa (lp, 83.9f and kill l	hole to 3249 es to confirm i) pressure fl 4050psi) unt MT (185klbs ines. Confir	m and clear. uctuat il pres) Dowr med	drilled ions sure h, 99.8MT
2:00	2:30	0.50	P-DRL P-DRL		DRLCMT	PP	M	~	pulse observed a Drilled out cemer 3m new formatio Torque and drag observed while re Continued to circ stabilised. Recor (220klbs) Rotatin Lined up Dowell circulation path a	at surface. In tin shoe i In to 3252r through si earning. sulate at 2. rded string ig. to standpig and shut-in Bpsi) surface and recorded throughesho	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold at well on MPR' ce pressure - ed SCR's. Dr scope MWD - bot MWD with	shoe. Cleaned rough shoe trac d, but 2,758kPa Ogpm) and 27,93 MT (280klbs) U ad down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe	l out rat k 3 time (400psi 25kPa (- lp, 83.9f and kill I "IT with) EMW. 1/2") hol Pulled ba	hole to 3249 as to confirm i) pressure fl 4050psi) unt MT (185klbs ines. Confir 1.15SG (9.5 le from 3252 ack inside ca	m and clear. uctuat il press) Dowr med 5ppg) m to 3 asing to	drilled ions sure n, 99.8MT to 253m o 3235m
2:00 2:30	2:30 3:00	0.50	P-DRL P-DRL P-DRL		CIRC	PP PP PP	M\		pulse observed a Drilled out cemer 3m new formation Torque and drag observed while re Continued to circ stabilised. Recon (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshoo and continued to	at surface. In tin shoe 4 In to 3252r through si earning. sulate at 2. rded string ig. to standpig ind shut-in Bpsi) surface and recorded throubleshe a discussin) DP on ele up TDS an . Continue	track and float n. Reamed th hoe track goo 99m ³ /min (79f weights: 127 be manifold at well on MPR ce pressure - ed SCR's. Dr scope MWD - bot MWD with g options with evators from 3 d dry rotated of ed to POH to 2	shoe. Cleaned rough shoe trac d, but 2,758kPa Ogpm) and 27,9 MT (280klbs) U nd down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962m but of hole to 29 615m with exce	d out rati k 3 time (400psi 25kPa (10, 83.9f and kill I T with EMW. 1/2") hol Pulled ba rent par a - obser 45m wit ass drag	hole to 3249 as to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca rameters as reved 36.3MT th persistent I (friction only	m and clear. uctuat il press) Dowr med 5ppg) m to 3 asing tr per SL (80klt 13.6M y). Co	drilled ions sure n, 99.8MT to 253m o 3235m B os) T ntinued
2:00 2:30 3:00	2:30 3:00 4:00	1.50 0.50 0.50 1.00	P-DRL P-DRL P-DRL		CIRC LKOFF DRLCPA	PP PP PP PN		W	pulse observed a Drilled out cemer 3m new formatio Torque and drag observed while re Continued to circ stabilised. Recoi (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshod and continued to instructions while POH 127mm (5") overpull. Made u (30klbs) overpull.	at surface. It in shoe i n to 3252r through si earning. sulate at 2. rded string ig. to standpig and shut-in Bpsi) surface troublesho a discussin) DP on ele up TDS an . Continue 5") DP fro	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold at well on MPR' ce pressure - ed SCR's. Dr cope MWD - bot MWD with g options with evators from 3 d dry rotated of ad to POH to 2 m 2962m to B	shoe. Cleaned rough shoe trac d, but 2,758kPa Ogpm) and 27,93 MT (280klbs) U ad down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962m but of hole to 29 615m with exce HA at 346m. A	d out rati k 3 time (400psi 25kPa (lp, 83.91 and kill I T with) EMW. 1/2") hol Pulled ba rent par a - obser 45m wit ess drag ve trippi	hole to 3249 as to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca ameters as ameters as rved 36.3MT th persistent j (friction only ng speed 44	m and clear. uctuat il press) Dowr med 5ppg) m to 3 ssing tr per SL (80klt 13.6M (30klt 13.6M/r) (5m/hr	drilled ions sure n, 99.8MT to 253m o 3235m B co 3235m B co 3235m B
2:00 2:30 3:00 4:00	2:30 3:00 4:00 10:30	1.50 0.50 0.50 1.00 6.50	P-DRL P-DRL P-DRL P-DRL		CIRC LKOFF DRLCPA TRIP	PP PP PP PN	M	w	pulse observed a Drilled out cemer 3m new formation Torque and drag observed while re Continued to circ stabilised. Recon (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshod and continued to instructions while POH 127mm (5") overpull. Made u (30klbs) overpull. to POH 127mm (at surface. It in shoe i In to 3252r through si earning. sulate at 2. rded string 1g. to standpig and shut-in Bpsi) surface ind recorded throublesho e discussion) DP on elevic up TDS and . Continue (5") DP froi) HWDP an urces. Rai	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold ar well on MPR' ce pressure - ed SCR's. Dr scope MWD - bot MWD with g options with evators from 3 d dry rotated of ad to POH to 2 m 2962m to B md 171mm (6-	shoe. Cleaned rough shoe trad d, but 2,758kPa Ogpm) and 27,92 MT (280klbs) U ad down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962m but of hole to 29 2615m with exce HA at 346m. A 3/4") DC's to 36	d out rati k 3 time (400psi 25kPa (lp, 83.9f and kill I TT with) EMW. 1/2") hol Pulled ba rent par a - obser 45m wite ass drag we trippi im and r	hole to 3249 hole to 3249 ss to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca ameters as the distance of the state ack inside ca ameters as the distance of the state in persistent the friction only ing speed 44 rack same in	m and clear. uctuat il press) Dowr med 5ppg) Im to 3 asing to per SL ' (80klt 13.6M y). Co 55m/hr derric	drilled ions sure n, 99.8MT to 253m o 3235m B sos) IT ntinued k.
2:00 2:30 3:00 4:00 10:30	2:30 3:00 4:00 10:30 11:00	1.50 0.50 0.50 1.00 6.50 0.50	P-DRL P-DRL P-DRL P-DRL P-DRL P-DRL		CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC	PP PP PN PN PN	M	w w w	pulse observed a Drilled out cemer 3m new formatio Torque and drag observed while re Continued to circ stabilised. Recor (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshoo and continued to instructions while POH 127mm (5") overpull. Made u (30klbs) overpull. to POH 127mm (5") Removed RA sou	at surface. It in shoe i In to 3252r through si earning. sulate at 2. rded string 1g. to standpin and shut-in Bpsi) surface ind recorded throubleshi coubleshi coubleshi DP on ele p TDS an . Continue (5") DP fro) HWDP an urces. Rai tool. D Telescop	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold ar well on MPR' ce pressure - ed SCR's. Dr scope MWD - bot MWD with g options with evators from 3 d dry rotated 4 ed to POH to 2 m 2962m to B md 171mm (6- cked back Sou we MWD tool.	shoe. Cleaned rough shoe trad d, but 2,758kPa Ogpm) and 27,92 'MT (280klbs) U ad down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962m but of hole to 29 615m with exce HA at 346m. A 3/4") DC's to 36 nicVision and Al	d out rati k 3 time (400psi 25kPa (4 lp, 83.91 and kill I TT with) EMW. 1/2") hol Pulled ba rent par a - obser 45m wite ass drag we trippi im and r RC6. Pr	hole to 3249 hole to 3249 ss to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca ameters as the from 3252 ack inside ca ameters as the persistent the persistent the persistent of speed 44 rack same in OH and laid	m and clear. uctuat il press) Dowr med 5ppg) im to 3 assing to per SL (80klt 13.6Mo y). Co 055m/hr derric out fai	drilled ions sure h, 99.8MT to 253m o 3235m B o 3235m B oss) IT ntinued k. led
2:00 2:30 3:00 4:00 10:30 11:00	2:30 3:00 4:00 10:30 11:00 11:30	1.50 0.50 0.50 1.00 0.50 0.50 0.50 0.50	P-DRL P-DRL P-DRL P-DRL P-DRL P-DRL P-DRL		CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC	PP PP PN PN PN PN PN		w w w	pulse observed a Drilled out cemer 3m new formatio Torque and drag observed while re Continued to circ stabilised. Recor (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshod and continued to instructions while POH 127mm (5") overpull. Made u (30klbs) overpull. to POH 127mm (5") Removed RA sou Telescope MWD Made up back-up	at surface. It in shoe I In to 3252r through si earning. ulate at 2. rded string Ig. to standpig Id. stan	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold ar well on MPR' ce pressure - ed SCR's. Dr scope MWD - bot MWD with g options with evators from 3 d dry rotated of d dry rotated of d dry rotated of an 2962m to B m 2962m to B md 171mm (6- cked back Soo e MWD tool. IH to 36m.	shoe. Cleaned rough shoe trad d, but 2,758kPa Ogpm) and 27,92 'MT (280klbs) U and down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962rr but of hole to 29 615m with exce HA at 346m. A 3/4") DC's to 36 nicVision and Al Picked up Sonie	d out rati k 3 time (400psi 25kPa (4 lp, 83.91 and kill I TT with) EMW. 1/2") hol Pulled ba rent par a - obser 45m wite ass drag ve trippi im and r RC6. Pr cVision	hole to 3249 hole to 3249 ss to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca ameters as the from 3252 ack inside ca ameters as the persistent the persistent the persistent of speed 44 rack same in OH and laid	m and clear. uctuat il press) Dowr med 5ppg) im to 3 assing to per SL (80klt 13.6Mo y). Co 055m/hr derric out fai	drilled ions sure h, 99.8MT to 253m o 3235m B o 3235m B sos) IT ntinued k. led
2:00 2:30 3:00 4:00 10:30 11:00 11:30	2:30 3:00 4:00 10:30 11:00 11:30 12:00	1.50 0.50 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	P-DRL P-DRL P-DRL P-DRL P-DRL P-DRL P-DRL P-DRL		CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC	PP PP PN PN PN PN PN PN PN PN			pulse observed a Drilled out cemer 3m new formatio Torque and drag observed while re Continued to circ stabilised. Recor (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshod and continued to instructions while POH 127mm (5") overpull. Made u (30klbs) overpull. to POH 127mm (5") Removed RA sou Telescope MWD Made up back-up Installed RA sour	at surface. It in shoe I In to 3252r through si earning. uate at 2. rded string g. to standpig ind shut-in spi) surface ind recorded troubleshe a discussin) DP on ele up TDS and . Continue 5") DP froo) HWDP an urces. Rai tool. D Telescop rces and R (4") DC's a IWD/LWD	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold at well on MPR' ce pressure - ed SCR's. Dr scope MWD - bot MWD with g options with g options with evators from 3 d dry rotated 0 d dry rotated 0 ed to POH to 2 m 2962m to B md 171mm (6- cked back Son e MWD tool. th to 36m. and 127mm (5- tool string at 2	shoe. Cleaned rough shoe trad d, but 2,758kPa Ogpm) and 27,92 'MT (280klbs) U ad down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962m but of hole to 29 f615m with exce HA at 346m. A 3/4") DC's to 36 nicVision and Al Picked up Sonie ") HWDP to 94m 2.74m³/min (725	d out rati k 3 time (400psi 25kPa (4 lp, 83.91 and kill I TT with) EMW. 1/2") hol Pulled ba rent par a - obser 45m wite ass drag ve trippi im and r RC6. Pi cVision n.	hole to 3249 ss to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca ack inside ca ameters as j rved 36.3MT th persistent proved 36.3MT ing speed 44 rack same in OH and laid and GVR6 fr	m and clear. uctuat il pres:) Dowr med 5ppg) im to 3 ssing tr per SL ' (80klt 13.6M V). Co .5m/hr derric out fai	drilled ions sure h, 99.8MT to 253m o 3235m B cs) T ntinued k. led errick.
2:00 2:30 3:00 4:00 10:30 11:00 11:30	2:30 3:00 4:00 10:30 11:00 11:30 12:00 12:30	 1.50 0.50 0.50 1.00 6.50 0.50 	P-DRL		CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC	PP PP PP PN PN PN PN PN PN PN			pulse observed a Drilled out cemer 3m new formatio Torque and drag observed while re Continued to circ stabilised. Recor (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshod and continued to instructions while POH 127mm (5") overpull. Made u (30klbs) overpull. to POH 127mm (5") Removed RA sou Telescope MWD Made up back-up Installed RA sour RIH 171mm (6-3)	at surface. It in shoe I In to 3252r through si earning. uate at 2. rded string Ig. to standpig Ind shut-in Spi) surface ind recorded to und recorded to und recorded to und recorded to und recorded to und recorded to DP on ele Ig. Ton she Ig. Ton	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold ar well on MPR' ce pressure - ed SCR's. Dr scope MWD - bot MWD with g options with evators from 3 d dry rotated of d dry rotated of d dry rotated of ed to POH to 2 m 2962m to B md 171mm (6- cked back Son e MWD tool. th to 36m. and 127mm (5 tool string at 2 letect SonicVi md 171mm (6- ween GVR6 a	shoe. Cleaned rough shoe trad d, but 2,758kPa Ogpm) and 27,92 'MT (280klbs) U ad down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962m out of hole to 29 615m with exce HA at 346m. A 3/4") DC's to 36 nicVision and Al Picked up Sonie ") HWDP to 94m 2.74m³/min (725 sion or GVR6. 3/4") DC's to 36	d out rati k 3 time (400psi 25kPa (4 lp, 83.91 and kill I TT with) EMW. 1/2") hol Pulled ba rent par a - obser 45m wite ass drag ve trippi im and r RC6. Pr cVision n. igpm) an	hole to 3249 hole to 3249 ss to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca ameters as rved 36.3MT th persistent t) (friction onl- ing speed 44 rack same in OH and laid and GVR6 fr nd 10,343kP rack same in	m and clear. uctuat il press) Dowr med 5ppg) m to 3 assing tr per SL ' (80klt 13.6M y). Co 55m/hr derric out fai rom de	drilled ions sure p, 99.8MT to 253m p 3235m B 253m p 3235m k. led intinued k. led intinued k.
2:00 2:30 3:00 4:00 10:30 11:00 11:30 12:00 12:30	2:30 3:00 4:00 10:30 11:00 11:30 12:00 12:30	 1.50 0.50 0.50 1.00 6.50 0.50 	P-DRL		CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC	PP PP PP PN PN PN PN PN PN PN PN		w w w	pulse observed a Drilled out cemer 3m new formatio Torque and drag observed while re Continued to circ stabilised. Recor (220klbs) Rotatin Lined up Dowell circulation path a 11,087kPa (1608 Opened MPR's a while troubleshod and continued to instructions while POH 127mm (5") overpull. Made u (30klbs) overpull. to POH 127mm (5") Removed RA sou Telescope MWD Made up back-up Installed RA sour RIH 171mm (6-30 Shallow tested M good pulse, but u POH 127mm (5") Checked wet cor	at surface. It in shoe I In to 3252r through si earning. ulate at 2. rded string ig. to standpig ind shut-in spi) surface ind recorded to the standpig ind shut-in spi) surface troubleshe de discussin D P on ele ig. Ton the stroubleshe de discussin D P on ele ig. Ton the stroubleshe de discussin D P on ele ig. Ton the stroubleshe de discussin D P on ele ig. Ton the ig. Ton th	track and float n. Reamed th hoe track goo 99m ³ /min (790 weights: 127 be manifold ar well on MPR' ce pressure - ed SCR's. Dr scope MWD - bot MWD with g options with evators from 3 d dry rotated of d dry rotated of d dry rotated of ed to POH to 2 m 2962m to B nd 171mm (6- cked back Son e MWD tool. th to 36m. and 127mm (5 tool string at 2 letect SonicVi nd 171mm (6- ween GVR6 a 36m. Dm ³ /min (450g	shoe. Cleaned rough shoe trac d, but 2,758kPa Dgpm) and 27,92 'MT (280klbs) U ad down choke a s. Conducted F 1.6SG (13.3ppg lled 216mm (8- unsuccessful. F a range of diffe Perth Office. 235m to 2962m but of hole to 29 7615m with exce HA at 346m. A 3/4") DC's to 36 nicVision and Al Picked up Sonie ") HWDP to 94m 2.74m³/min (725 sion or GVR6. 3/4") DC's to 36 nd SonicVision	d out rati k 3 time (400psi 25kPa (4 lp, 83.91 and kill I TT with) EMW. 1/2") hol Pulled ba rent par a - obser 45m wite ess drag ve trippi im and r RC6. Pi cVision n. igpm) au im and r - OK. P	hole to 3249 hole to 3249 ss to confirm i) pressure fl 4050psi) unt MT (185klbs) ines. Confir 1.15SG (9.5 le from 3252 ack inside ca ameters as the persistent th persistent th persistent th gspeed 44 rack same in OH and laid and GVR6 fr nd 10,343kP rack same in licked up and Dpsi) - good	m and clear. uctuat il press) Dowr med 5ppg)) m to 3 asing to per SL (80klt 13.6M oy). Co 055m/hr derric out fai 'om de 'a (150 derric derric derric derric ut fai 'a (150	drilled ions sure p, 99.8MT to 253m p 3235m B 253m p 3235m k a 3235m b v v v v k. led 0psi) - k. 3 x

Daily Drilling Report

Page 2 of 5

24 HRS PROG 4.10 (m) TMD 3,253.00 (m) TVD 2,500.70 (m) REF 16 TO HRS Phase Operation PTINPT NPT CODES ACTIVITY SUMMARY 15:30 0.50 P-DRL CIRC PN MW Shallow tested MWD/LWD tool string at 2.74m*/min (725gpm) and 10,343kPa (150 OK. TO MOVE TRAINING SHALL STATE SHALL S	1 2,50.70 (m) 16 OPERATION SUMMARY 1 1 1 1 1 1 1 1 1 1 1 1 1
4.10 (m) 3.253.00 (m) 2.500.70 (m) 16 UPERATION SUMMARY 10.30 0.30 P-PRL Clinical (Clinical (Clin	3,230.0(m) 2,50.70 (m) 16 OPERATION SUMMARY Ymm Nar CODE ACTIVITY SUMMARY PN MW Shallow tested MWDL/WD tool string at 2.74m/min (725gpm) and 10.343kPa (1500psi)- 0.K. PN MW RH 171mm (6-347) DC's and 127mm (5') HWDP to 346m. PN PN MW RH 171mm (6-347) DC's and 127mm (5') DF from 346m to 577m. Are tripping speed 422m/hr. Address and the state of medium with difficer regarding dropped object awareness. PN MW RH 127mm (5') DF from 530m to 892m. Are tripping speed 362m/hr. Filled pipe and circulated at 17mm (5') DF from 530m to 892m. Are tripping speed 362m/hr. Filled pipe and circulated at 17mm (5') DF from 530m to 892m. Are tripping speed 362m/hr. Filled pipe and circulated at 17mm (5') DF from 530m to 892m. Are tripping speed 362m/hr. Filled pipe and circulated at 17mm (5') DF from 530m to 892m. Are tripping speed 362m/hr. Filled pipe and circulated at 170mm (5') DF from 530m to 892m. Are tripping and to.804kPa (1520psi) - maintained god MWD signal. PN MW RH 127mm (5') DF from 530m to 892m. Are tripping and to.844kPa (1520psi) to attempt to clear any potential blockages in Telescope. Increased from tracticated at 170m/min (450gpm) and 3,550kPa (1240ps) - no MWD pulse detected at surface. PN MW RH 127mm (5') DF from 530m to 892m. Are tripping apped 630m/hr. (1630pgm) and 16,845/hr (2700ps) to attempt to clear any potential blockages in Telescope. PN
Instrument Instrument Instrument Instrument 10 HRS Plane Operation PTINPT HPT CODES ACTIVITY SUMMARY 15:30 0.50 P-DRL CIRC PN MW Shallow tested MWDLWD tool sting at 274m*/min (725gpm) and 10.343kPa (150 CK 16:30 1.00 P-DRL TRIPBHA PN MW Shallow tested MWDLWD tool sting at 274m*/min (725gpm) and 10.343kPa (150 CK 18:30 2.00 P-DRL TRIP PN MW RH 121mm (6:341) DC's and 127mm (5') DP fom 346m to 57m. Ave tripping sping application stars and	OPERATION SUMMARY PIN. MY Shallow tested MWDL/WD tool atring at 2.74m²/min (725gpm) and 10.343kPa (1500pa) - ok. PN MW Shallow tested MWDL/WD tool atring at 2.74m²/min (725gpm) and 10.343kPa (1500pa) - ok. PN MW RH 171mm (8-34°) DC's and 127mm (5°) HWDP to 346m. PN MW RH 171mm (8-34°) DC's and 127mm (5°) HWDP to 346m. PN MW RH 127mm (8°) DF PD DBLECTNEAR MISS INCIDENT. Doly roller fell from TDS to ring flor c. Repaired 24 clory rollers and held safety meeting with drill crew regarding dropped object awareness. PN MW RH 127mm (8°) DF from 530m to 812m. Are tripping speed 482m/hr. PN MW RH 127mm (8°) DF from 530m to 812m. Are tripping speed 382m/hr. Filled pipe and circulated at 172mm (8°) DF from 530m to 812m. Are tripping speed 382m/hr. PN MW RH 127mm (8°) DF from 530m to 812m. Are tripping speed 382m/hr. PN MW RH 127mm (8°) DF from 530m to 812m. 1494m. DOWNTIME: Continued to troubleshoot leaking compenator pipework with drilling and sub-sea departments. Stainless steel filting on lock-bar supply in locke. Locket dual supply and removed chain guides. Tipthene filting and duction testeel lock-bar - OK. PN MW RH 127mm (8°) DF from 530m to 812m. 449M/min (750gpm) and 4548/Pa (7508)bit to attempt to date any potential blockages in Telescope. Increased flor relate to 246m r/min (450gpm) a
To HRS Phase Operation PTINPT NPT CODES ACTIVITY SUMMARY 15:30 0.50 P-DRL CIRC PN MW Shatov tested MWDI,WD tool sting at 2.74m*/min (725gpm) and 10.343/RP (150 OK). 18:30 1.00 P-DRL TRIPBHA PN MW RH 171mm (6-34°) DC's and 127mm (5') HWDP to 346m. 18:30 2.00 P-DRL RIGSER PN MW RH 171mm (6-34°) DC's and 127mm (5') DP toon 346m to 577m. Are tripping app diget diget awareness. 19:00 0.50 P-DRL RIGSER PN RO DOWNTINE: Unable to function took-tor on compensator opinders for maximum stroto-ontimued RH. 19:20 0.50 P-DRL RIGSER PN RO DOWNTINE: Unable to function took-tor on compensator opinders for maximum stroto-ontimued RH. 20:30 1.00 P-DRL RIGSER PN RO DOWNTINE: Continue to basims adapted strates. Continued RH. 22:30 2.00 P-DRL RIGSER PN RO DOWNTINE: Continue to basims adapted strates. Continue dRH. 2:30 2.00 P-DRL RISP	PTNPT NPT CODES ACTIVITY SUMMARY PN MW Shallow tested MVDL/WD tool string at 2.74m/fmin (725gpm) and 10,443kPa (1500psi) - OK. PN MW RHI 171mm (6-34*) DC's and 127mm (5') HWDP to 346m. PN MW RHI 171mm (6-34*) DC's and 127mm (5') PWDP to 346m. PN TD DOWNTIME: DROPPED OBLECTNEAR MISS INCIDENT. Doly order fail from TDS to rig floor. Repaired 2 x doly rolers and held safety meeting with drill crew regarding dropped object awareness. PN MW RHI 216mm (6-127) BHA on 127mm (5') DP from 346m to 577m. Ave tripping speed 482m/hr. PN RO DOWNTIME: Unable to function tock-bar on compensator. Troubleshot same - unsuccessful. Increased air pressure on compensator cylinders for maximum stroke and continued RH. PN RW RHI 127mm (5') DP from 530m to 892m. Ave tripping speed 382m/hr. Filled pipe and drouble at 1.70m/min (450ppin) and 5.06kPa (900pb) - maintained good MWD upice detected at surface. Increased flow rate to 2.46m/min (750ppin) and 5.06kPa (900pb) - maintained good MWD upice detected at surface. Cycled pumps - no signal. Decreased flow rate to 140MWD puble detected at surface. Cycled pumps - no signal. Decreased flow rate to 140MWD puble detected at 1.70m/min (450ppm) and 3.55MF4 (1240pp) - no MWD puble detected at 1.70m/min (450ppm) and 3.95MF4 (1240pp) - no MWD puble detected at 1.70m/min (450ppm) and 3.95MF4 (1240pp) - no MWD puble detected at surface. Cycled pumps - no signal. Decreased flow rate to 2.46MF4 (1380psi). In AMVD puble 1.14m/min (200pm) and 3.51MF4 (1380psi) - no MVD
15:30 0.50 P-DRL CIRC PN MW Shallow tested MWD(JWD tool string at 2.74m*min (725gpm) and 10,343kPa (15C GK, 00000000000000000000000000000000000	PN MW Shallow tested MWDL/WD tool string at 2.74m?min (725gpm) and 10.343kPa (1500psi)- Ok. PN MW RiH 17 mm (6-347) DC's and 127mm (5') HWDP to 346m. PN TD DOWNTIME: DROPPED OBLECT/NEAR MISS INCIDENT. Doly roller fall from TDS to rig floor. Repaired 2x doly rollers and hold safety meeting with dril crew regarding dropped object awareness. PN MW RiH 216mm (6-12') BHA on 127mm (5') DP from 346m to 577m. Ave tripping speed 462m/hr. PN RO DOWNTIME: Unable to function lock-bar on compensator cylinders for maximum stroke and continued RiH. PN RO DOWNTIME: Unable to function lock-bar on compensator cylinders for maximum stroke and continued RiH. PN RO DOWNTIME: Continued to troubleshotok leaking compensator pipework with drilling and sub-sea departments. Stainless steel fitting on lock-bar supply line loose. Isolated at surface. Increased flow rate to 2.48m?min (750gpm) and 1.480kPa (1520psi) - maintained good MWD signal. PN RO DOWNTIME: Continued to troubleshotok leaking compensator pipework with drilling and sub-sea departments. Stainless steel fitting on lock-bar supply line loose. Isolated at surface. Increased flow rate to 1.14m?min (700gpm) and 1.680kFa (2420psi) - maximum stroke and supply and removed to hall from rule 1438 min 178m. IEEd pipe and circulated at 1.70m?min (650gpm) and 3.558Pd (2420psi). PN MW RIH 127mn (70 pF from 82m to 1439m. Filled pipe and circulated at 1.70m?min (650gpm) and 3.558Pd (2
Instrument Instrument Instrument Instrument Instrument Instrument 16.30 1.00 P-DRL TRIPBHA PN MW RHI 171mm (6-34*) DC's and 127mm (5') HWDP to 346m. Dolwn Time: DROPED 061ECTNEAR MISS INCIDENT. Doly roller fail from Trip floor. Repaired 2 x doly rollers and held safely meeting with drill crew regarding foroped object waverness. 19:00 0.50 P-DRL TRIP PN MW RHI 216mm (6-127) BHA on 127mm (5') DP from 346m to 57m. Are tripping spe 432m/nr. 19:00 0.50 P-DRL RRIP PN RO DOWNTIME: Unable to function took-bar on compensator roundeeds taure - immunocessult. Increased dur pressure on compensator roundeeds taure. 20:30 1.00 P-DRL TRIP PN RO DOWNTIME: Unable to function took-bar on compensator pipework with drill auracessult. Increased allow rate to 2 84m/nim (700gm) and 10.460kPa (1520pa) - maintained good AdVD aignal. 22:30 2.00 P-DRL RIP RN RO DOWNTIME: Continued to roubleshoot taking compensator pipework with drill auracessult. Informant, Statings and an dicable and to antive take and tabel and transmither tabel biolocal antive and tabel and	OK OK OK PN MW RH 171mm (6-34*) DC's and 127mm (5') HWDP to 346m. PN TD DOWNTIME: DROPPED OBLECTNERA MISS INCIDENT. Doly roller fell from TDS to rig floor. Repaired 2x doly rollers and held safely meeting with drill crew regarding dropped object awareness. PN MW RHi 216mm (6-12') BHA on 127mm (5') DP from 346m to 57m. Ave tripping speed 462m/hr. PN MW RHi 216mm (6-12') BHA on 127mm (5') DP from 346m to 57m. Ave tripping speed 462m/hr. PN MW RHi 216mm (6-12') BHA on 127mm (6') DP from 346m to 57m. Ave tripping speed 362m/hr. Filled pipe and circulated at 170m/min (450gpm) and 5.20kPa (200pa)god MWD pulse delected at surface. Increased for rate to 2.4 Min/min (750gpm) and 10.480kPa (1520pa). PN MW RHI 127mm (5') DP from 530m to 582m. Ave tripping speed 362m/hr. Filled pipe and circulated at 170m/hin (450gpm) and 5.50kPa (1240pa) no MWD pulse delected at surface. Soliated air supply and removed chain guides. Tightened fitting and function tested lock-bar - OK. PN MW RHI 127mm (5') DP from 532m to 1820m. Filled pipe and circulated at 170m/min (450gpm) and 5.50kPa (1240pa) no MWD pulse detected at surface. Soliated air supply and removed chain guides. Tightened fitting and function tested lock-bar - OK. PN MW RHI 172mm (5') DP from 532m to 1820m. The Soliage air circulated at 170m/min (450gpm) and 5.50kPa (1240pa) no MWD pulse detected at surface. Cycled pumps in to clear any potential blockages in
18:30 2.00 P-DRL RIGSER PN TD DOWNTIME: DROPPED OBJECT/NEAP MISS INCIDENT, Dolly roler fell from 1/16 force. Repaired 2.4 doly rollers and held safely meeting with drift erve regarding dropped dolped ewareness. 19:00 0.50 P-DRL TRIP PN MW RH 216 mm (6-127) BH on 127mm (57) DF from 346m to 577m. Ave tripping sped 452m/mir. 19:30 0.50 P-DRL RIGSER PN RO DOWNTIME: Unable to function lock-bar on compensator rolleders for maximum strup continued RH. 20:30 1.00 P-DRL TRIP PN RW RH 127mm (57) DF from 330m to 892m. Ave tripping sped 362m/Mr. Filled pipe invalued and to anticiton add of anticiton lock-bar on compensator rolleders for maximum strup circulated at 170m ³ /mit (550gm) and 10.480kPa (1520es) - maximum 4500. 22:30 2.00 P-DRL RIGSER PN RO DOWNTIME: Confinued to trubleshoot leading compensator polymowk with drift sub-sa departments. Stainase steal fitting on tock-bar on supply into losse. Isolate supply and function taskad scale start fitting on tock-bar on supply into losse. Isolate supply and function taskad scale start fitting on tock-bar on supply into losse. Isolate supply and function taskad scale start fitting and 4.8 fitting (750gm) and 4.8 fitting (750gm) and 4.8 fitting (750gm) and 4.8 fitting (750gm) and 2.5 fitting (1300gm) and 4.8 fitting (750gm) and 2.5 fitting (1300gm) and 2.5 fitting (1300g	PN TD DOWNTIME: DROPPED OBJECT/NEAR MISS INCIDENT. Doly roler feil from TDS to ing floor. Repaired 2x doly rolers and held safety meeting with drill crew regarding droped object awareness. PN MW RH 216mr (61/27) BHA on 127mr (67) DP from 346m to 57m. Ave tripping speed 462mhz. PN RO DOWNTIME: Unable to function lock-bar on compensator. Troubleshot same - unsuccessful. Increased air pressure on compensator cylinders for maximum stroke and continued RHI. PN RO DOWNTIME: Unable to function lock-bar on compensator cylinders for maximum stroke and continued RHI. PN RM RH 127mm (51) DP from 530m to 892m. Ave tripping speed 362m/hr. Filled pipe and circulated at 170m/hmin (450gm) and 1,0480kP (1520s)) - maintained good MWD signal. PN RO DOWNTIME: Continued to trubteshoot leaking compensator pipework with drilling and sub-sea departments. Stanless steel fitting on lock-bar supply ine loose. Isolated air supply and removed chain guides. Tighthened fitting and function tested lock-bar - OK. PN MW RHI 127mm (57) DP from 822m to 1493m. Filled pipe and circulated at 170m?min (450gpm) and 1,550kPa (1240ps) - no MWD pulse. Circulated at 170m?min (450gpm) and 3,550kPa (1240ps) - no MWD pulse. Circulated at 170m?min (450gpm) and 3,550kPa (1230ps) in dregained MWD pulse. Circulated at 170m?min (450gpm) and 3,51kPa (1380ps)) - no MWD pulse. Circulated at 170m?min (450gpm) and 1,51kPa (1380ps)) - no MWD pulse. Circulated at 170m?min (450gpm) and 1,51kPa (1380ps)) - no MWD pulse. Circulated at 170m?min (450gpm) and 1,51kPa (1380ps)) - no MWD pulse. Circulated at 1
Image: Second	Image:
Instrument Instrum	Image: Second
Image: Section of the section of th	Image: Solution of the second secon
a a	Image: Circulated at 1.70m*/min (450gpm) and 6,206kPa (900psi) - good MWD pulse detected at surface. Increased flow rate to 2.84m*/min (750gpm) and 10,480kPa (1520psi) - maintained good MWD signal. PN RO DOWNTIME: Continued to troubleshoot leaking compensator pipework with drilling and sub-sea departments. Stainless steel fitting on lock-bar supply line loose. Isolated air sub-sea departments. Stainless steel fitting on function tested lock-bar - OK. PN MW RIH 127mm (5*) DP from 892m to 1499m. Filled pipe and circulated at 1.70m*/min (450gpm) and 8,550kPa (1240psi) - no MWD pulse detected at surface. Cycled pumps - to clear any potential blockages in Telescope. Increased flow rate to 2.46m*/min (650gpm) and 15,96KPa (2300spi) and regime MWD pulse. Circulated drill string volume at 2.99m*/min (790gpm) and 22,616kPa (3280psi) to flush pipe. Continued to RIH from 1499m to 1787m. Filled pipe and circulated at 1.70m*/min (450gpm) and 9,515KPa (1380psi) - no MWD pulse detected at surface. Cycled pumps and increased flow rate to 2.65m*/min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. Ave tripping speed 597m/hr. Note: Approximately 30mins total was spent troubleshooting MWD detection problems while RIH. Detected at 1.70m*/min (450gpm) and 9,515kPa (1380psi) - no MWD pulse feased flow rate to 2.65m*/min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 205m to 236m. Filled pipe and circulated at 1.70m*/min (650gpm) and 21,375kPa (1380psi) - no MWD pulse feased flow rate to 2.65m*/min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 2040 to 236m. Filled pipe and circulated at 1.70m*/min (650gpm) and 21,375kPa (1380ps
0.00 1.50 P-DRL TRIP PN MW RH 127mm (7) DP from 892m to 1490m. Filled pipe and circulated ta 1.70m*/min (450gpm) and 8,550kPa (1240psi) - no MWD pulse detected at surface. Cycled pu no signal. Decreased flow rate to 2.64m*/min (300gpm) and 4,861KPa (720psi) to look bar yabe. 0.00 1.50 P-DRL TRIP PN MW RH 127mm (7) DP from 892m to 1490m. Filled pipe and circulated at 1.70m*/min (450gpm) and 4,861KPa (720psi) to look pipe. 0.00 0.01 1.50 P-DRL TRIP PN MW RH 127mm (70) DP from 802m to 1490m. Calebra py bicescope. Increased flow rate to 2.640m*/nin (300gpm) and 2.61KPa (1380psi) to look pipe. Calebra py bicescope. Increased flow rate to 2.640m*/nin (450gpm) and 9.515kPa (1380psi) to not MVD pulse. Calebra py bicescope. Increased flow rate to 2.65m*/min (700gpm) and 18.617kPa (2270psi) to look pipe. Cantinued to RIH from 1499m to 1787m. Filled pipe and circulated at 1.70m*/min (450gpm) and 9.515kPa (1380psi) - no MWD pulse detection proble while RIH. 24.00 = Total Hours Today Eiter to 2.65m*/min (700gpm) and 9.515kPa (1380psi) - no MWD pulse detected at surface. 0.000 - 0.030ns: RIH 127mm (5') DP from 1787m to 2075m. Filled pipe and circulated at 1.70m*/min (450gpm) and 9.515kPa (1380psi) - no MWD pulse detected at surface. Outputse detected at surface. Outp	sub-sea departments. Stainless steel fitting on lock-bar supply line loose. Isolated air supply and removed chain guides. Tightened fitting and function tested lock-bar - OK. PN MW RiH 127mm (5') DP from 892m to 1499m. Filled pipe and circulated at 1.70m ³ /min (450gpm) and 5,50kPa (1240psi) - no MWD pulse detected at surface. Cycled pumps - no signal. Decreased flow rate to 1.14m ³ /min (300gpm) and 4,861kPa (705psi) to attempt to clear any potential blockages in Telescope. Increased flow rate to 2.46m ³ /min (650gpm) and 15,996kPa (2320psi) and regained MWD pulse. Circulated drill string volume at 2.99m ³ /min (790gpm) and 22,616kPa (3220psi) to flush pipe. Continued to RIH from 1499m to 1787m. Filled pipe and circulated at 1.70m ³ /min (450gpm) and 9,515kPa (1380psi) - no MWD pulse detected at surface. Cycled pumps and increased flow rate to 2.66m ³ /min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. Ave tripping speed 597m/tr. Note: Approximately 30mins total was spent troubleshooting MWD detection problems while RIH. Dec:00 UPDATE 1787m to 2075m. Filled pipe and circulated at 1.70m ³ /min (450gpm) and 9,515kPa (1380psi) - no MWD pulse detected at surface. 2075m to 2364m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 16,68kPa (2420psi) - good MWD 2866m ³ /min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 2075m to 2364m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 9,515kPa (3100psi) - weak MWD to 10.14m ³ /min (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m ³ /min pipe. 2040m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 21,375kPa (3100psi) - weak MWD to 1.14m ³ /min (300gpm)
450gpm) and 8,550kPa (1240psi) - no MWD pulse detected at surface. Cycled puno signal. Decreased flow rate to 1.14m/min (300gpm) and 4,861kPa (705psi) to loclear any potential blockages in Telescope. Increased flow rate to 2.46m/min (650gpm) and 2,2616kPa (3220psi) and regained MWD pulse. Circulated dtil strif volume at 2.99m/min (790gpm) and 2,2616kPa (3220psi) to flush pipe. Continued to RIH from 1499m to 1787m. Filled pipe and circulated at 1.70m/min (450gpm) and 9,515kPa (1380psi) - no MWD pulse detected at surface. Cycled pu and increased flow rate to 2.66m/min (700gpm) and 18,617kPa (2700psi) - good 1 pulse detected at surface. Sever tripping speed 597m/mr. Note: Approximately 30mins total was spent troubleshooting MWD detection proble while RIH. 24.00 = Total Hours Today Defense of S97m/mr. Note: Approximately 30mins total was spent troubleshooting MWD detection proble while RIH. 24.00 = Total Hours Today Detected at surface. 00:00 - 00:30hrs: RIH 127mm (5') DP from 1787m to 2075m. Filled pipe and circulated at 1.70m ³ min (450gpm) and 9,515kPa (1380psi) - no MWD pulse detected at surface. detected at surface. 0:00:00 - 0:30hrs: RIH 127mm (5') DP from 1787m to 2075m. Filled pipe and circulated at 1.70m ³ min (450gpm) and 18,66kPa (4240psi) - good MWD pulse detected at surface. detected at surface. 0:00:00 - 0:30hrs: RIH 127mm (5') DP from 2364m. Filled pipe and circulated at 2.46m ³ min (650gpm) and 21,375kPa (3100psi) - weak MVD pulse detected at surface. <t< td=""><td>(450gpm) and 8,550kPa (1240psi) - no MWD pulse detected at surface. Cycled pumps - no signal. Decreased flow rate to 1.14m^{-//min} (300gpm) and 4,861kPa (705psi) to attempt to clear any potential blockages in Telescope. Increased flow rate to 2.46m^{-//min} (650gpm) and 15,996kPa (2320psi) and regained MWD pulse. Circulated drill string volume at 2.99m^{-//min} (790gpm) and 22,616kPa (3280psi) to flush pipe. Continued to RIH from 1499m to 1787m. Filled pipe and circulated at 1.70m^{-//min} (450gpm) and 9,515kPa (1380psi) - no MWD pulse detected at surface. Cycled pumps and increased flow rate to 2.65m^{-//min} (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. Ave tripping speed 597m/hr. Note: Approximately 30mins total was spent troubleshooting MWD detection problems while RIH. 1787m to 2075m. Filled pipe and circulated at 1.70m^{-//min} (450gpm) and 9,515kPa (1380psi) - no MWD pulse fetected at surface. 2016 UPDATE 1787m to 2075m. Filled pipe and circulated at 1.70m^{-//min} (450gpm) and 9,515kPa (1380psi) - no MWD pulse fetected at surface. 2016 UPDATE 1787m to 2075m. Filled pipe and circulated at 2.46m^{-//min} (650gpm) and 18,615kPa (1380psi) - no MWD pulse fetected at surface. 2016 to 2364m. Filled pipe and circulated at 2.46m^{-//min} (650gpm) and 10,686kPa (2420psi) - good MWD 2364 to 2940m. Filled pipe and circulated at 2.46m^{-//min} (650gpm) and 21,375kPa (3100psi) - weak MWD te to 1.14m^{-//min} (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m^{-//min} pane MWD pulse. 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m</td></t<>	(450gpm) and 8,550kPa (1240psi) - no MWD pulse detected at surface. Cycled pumps - no signal. Decreased flow rate to 1.14m ^{-//min} (300gpm) and 4,861kPa (705psi) to attempt to clear any potential blockages in Telescope. Increased flow rate to 2.46m ^{-//min} (650gpm) and 15,996kPa (2320psi) and regained MWD pulse. Circulated drill string volume at 2.99m ^{-//min} (790gpm) and 22,616kPa (3280psi) to flush pipe. Continued to RIH from 1499m to 1787m. Filled pipe and circulated at 1.70m ^{-//min} (450gpm) and 9,515kPa (1380psi) - no MWD pulse detected at surface. Cycled pumps and increased flow rate to 2.65m ^{-//min} (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. Ave tripping speed 597m/hr. Note: Approximately 30mins total was spent troubleshooting MWD detection problems while RIH. 1787m to 2075m. Filled pipe and circulated at 1.70m ^{-//min} (450gpm) and 9,515kPa (1380psi) - no MWD pulse fetected at surface. 2016 UPDATE 1787m to 2075m. Filled pipe and circulated at 1.70m ^{-//min} (450gpm) and 9,515kPa (1380psi) - no MWD pulse fetected at surface. 2016 UPDATE 1787m to 2075m. Filled pipe and circulated at 2.46m ^{-//min} (650gpm) and 18,615kPa (1380psi) - no MWD pulse fetected at surface. 2016 to 2364m. Filled pipe and circulated at 2.46m ^{-//min} (650gpm) and 10,686kPa (2420psi) - good MWD 2364 to 2940m. Filled pipe and circulated at 2.46m ^{-//min} (650gpm) and 21,375kPa (3100psi) - weak MWD te to 1.14m ^{-//min} (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m ^{-//min} pane MWD pulse. 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m
O6:00 UPDATE 00:00 - 00:30hrs: RIH 127mm (5") DP from 1787m to 2075m. Filled pipe and circulated at 1.70m³/min (450gpm) and 9,515kPa (1380psi) - no MVD pulse detected at surface. 00:30 - 01:30hrs: RIH 127mm (5") DP from 2075m to 2364m. Filled pipe and circulated at 2.46m³/min (650gpm) and 16,686kPa (2420psi) - good MVD pulse detected at surface. 01:30 - 02:30hrs: RIH 127mm (5") DP from 2075m to 2364m. Filled pipe and circulated at 2.46m³/min (650gpm) and 16,686kPa (2420psi) - good MVD pulse detected at surface. 01:30 - 02:30hrs: RIH 127mm (5") DP from 2364m to 2940m. Filled pipe and circulated at 2.46m³/min (650gpm) and 21,375kPa (3100psi) - weak MWD pulse detected at surface. Reduced flow rate to 1.14m³/min (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m³/min (780gpm) and 27,373kPa (3970psi) and regained MWD pulse. 02:30 - 03:30hrs: RIH 127mm (5") DP from 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m³/min (770gpm) and 28,959kPa (4200psi). 03:30 - 06:00hrs: Drilled 216mm (8-1/2") hole from 3253m to 3256m. Ave ROP 1.2m/hr. Indications of bit balling. Drilling Parameters: WOB: 4.5 - 11.3MT (10 - 25klbs). RPM: 50 - 110. TQ (OFF): 24.4 - 29.8kN.m (18 - 22kft.lbs). TQ (OFF): 24.5 - 35.3kN.m (21 - 26kft.lbs). FLOW: 2.27 - 2.91m³/min (600 - 770gpm). SPP: 20,340 - 28,959kPa (2950 - 4200psi) String Weights: UP: 172MT (380klbs). DOWN: 109MT (240klbs).	1787m to 2075m. Filled pipe and circulated at 1.70m ³ /min (450gpm) and 9,515kPa (1380psi) - no MWD pulse reased flow rate to 2.65m ³ /min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 2075m to 2364m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 16,686kPa (2420psi) - good MWD 2364m to 2940m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 21,375kPa (3100psi) - weak MWD te to 1.14m ³ /min (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m ³ /min pained MWD pulse. 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m ³ /min ole from 3253m to 3256m. Ave ROP 1.2m/hr. Indications of bit balling. 50 - 110. SPP: 20,340 - 28,959kPa (2950 - 4200psi) 240klbs).
 00:00 - 00:30hrs: RIH 127mm (5") DP from 1787m to 2075m. Filled pipe and circulated at 1.70m³/min (450gpm) and 9,515kPa (1380psi) - no MWD pulse detected at surface. Cycled pumps and increased flow rate to 2.65m³/min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 00:30 - 01:30hrs: RIH 127mm (5") DP from 2075m to 2364m. Filled pipe and circulated at 2.46m³/min (650gpm) and 16,686kPa (2420psi) - good MWD pulse detected at surface. 01:30 - 02:30hrs: RIH 127mm (5") DP from 2364m to 2940m. Filled pipe and circulated at 2.46m³/min (650gpm) and 21,375kPa (3100psi) - weak MWD pulse detected at surface. Reduced flow rate to 1.14m³/min (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m³/min (780gpm) and 27,373kPa (3970psi) and regained MWD pulse. 02:30 - 03:30hrs: RIH 127mm (5") DP from 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m³/min (770gpm) and 28,959kPa (4200psi). 03:30 - 06:00hrs: Drilled 216mm (8-1/2") hole from 3253m to 3256m. Ave ROP 1.2m/hr. Indications of bit balling. Drilling Parameters: WOB: 4.5 - 11.3MT (10 - 25klbs). RPM: 50 - 110. TQ (ON): 2.44 - 29.8kh.Im (18 - 22kht.Ibs). TQ (OF): 2.85 - 35.3kN.M (21 - 26kht.lbs). FLOW: 2.27 - 2.91m³/min (600 - 770gpm). SPP: 20,340 - 28,959kPa (2950 - 4200psi) String Weights: UP: 172MT (380klbs). DOWN: 109MT (240klbs). 	1787m to 2075m. Filled pipe and circulated at 1.70m ³ /min (450gpm) and 9,515kPa (1380psi) - no MWD pulse reased flow rate to 2.65m ³ /min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 2075m to 2364m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 16,686kPa (2420psi) - good MWD 2364m to 2940m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 21,375kPa (3100psi) - weak MWD te to 1.14m ³ /min (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m ³ /min pained MWD pulse. 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m ³ /min ole from 3253m to 3256m. Ave ROP 1.2m/hr. Indications of bit balling. 50 - 110. SPP: 20,340 - 28,959kPa (2950 - 4200psi) 240klbs).
 detected at surface. Cycled pumps and increased flow rate to 2.65m³/min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 00:30 - 01:30hrs: RIH 127mm (5") DP from 2075m to 2364m. Filled pipe and circulated at 2.46m³/min (650gpm) and 16,686kPa (2420psi) - good MWD pulse detected at surface. 01:30 - 02:30hrs: RIH 127mm (5") DP from 2364m to 2940m. Filled pipe and circulated at 2.46m³/min (650gpm) and 21,375kPa (3100psi) - weak MWD pulse detected at surface. Reduced flow rate to 1.14m³/min (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m³/min (780gpm) and 27,373kPa (3970psi) and regained MWD pulse. 02:30 - 03:30hrs: RIH 127mm (5") DP from 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m³/min (770gpm) and 28,959kPa (4200psi). 03:30 - 06:00hrs: Drilled 216mm (8-1/2") hole from 3253m to 3256m. Ave ROP 1.2m/hr. Indications of bit balling. Drilling Parameters: WOB: 4.5 - 11.3MT (10 - 25klbs). RPM: 50 - 110. TQ (OFF): 28.5 - 35.3kN.m (21 - 26kft.lbs). FLOW: 2.27 - 2.91m³/min (600 - 770gpm). SPP: 20,340 - 28,959kPa (2950 - 4200psi) String Weights: UP: 172MT (380klbs). DOWN: 109MT (240klbs). 	reased flow rate to 2.65m ³ /min (700gpm) and 18,617kPa (2700psi) - good MWD pulse detected at surface. 2075m to 2364m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 16,686kPa (2420psi) - good MWD 2364m to 2940m. Filled pipe and circulated at 2.46m ³ /min (650gpm) and 21,375kPa (3100psi) - weak MWD te to 1.14m ³ /min (300gpm) to clear any potential blockages in Telescope. Increased flow rate to 2.95m ³ /min jained MWD pulse. 2940m to 3224m. Washed and rotated down to tag bottom at 3253m with 4.5MT (10klbs), 80rpm, 2.92m ³ /min ole from 3253m to 3256m. Ave ROP 1.2m/hr. Indications of bit balling. 50 - 110. SPP: 20,340 - 28,959kPa (2950 - 4200psi) 40klbs).
HSE: Dropped Object / Near Miss Incident. Dolly roller fell from TDS in derrick. Report pending. Total Stop cards - 61 (18 unsafe, 43 safe). JSA - 27, PTW - 9.	
HSE:	

Daily Drilling Report

Page 3 of 5

well ElVe	NAME ER-1																		рате)2-01-	200	9
API # 24 HRS PROG						TMD TVD						REPT NO									
						3,253.00 (m) 2,500.70 (m)						1	16								
									- 1	T DAT	1										
BI	T / RUN		ZE im)	M	ANUFACTU	RER		TYPE SERIAL JETS O NO			OR TFA	D	EPTHI	N / DAT	'E IN		-0-D-L-E	3-G-0	-R		
	4 / 1	21	6.0		SMITH		м	li716VW x	/EBP JY	7487	7x13		(13	3,2	248.90	/ 01-01-	2009	1-1-CT-S-X-I-NO-D			O-DTF
4	RR / 2	21	6.0	SMITH			X Mi716VWEBP X		/EBP JY	7487	7x13		(13	3,253.0		.00 / 02-01-2009					
									BIT OF	PERA	TIONS										
E	IT / RUN		WOB	R	PM	FLOW		PRESS	РВ	ΙТ	HRS	2	24 Hr PROG	24 HR	ROP	CUN	I HRS	CUM	PROG	С	UM ROP
	4/1		2/9	4(0/95	2,376.1	0	20,099	288	36	3.00		4.90	1.6	6	4	.00	5	.40		1.4
LCM:	0							MU	D PROP	ERTI	ES			1	MUE) TYPE:	KCL	/POLYI	POLYMER		
VIS (s/l)		PV/YP)/(Pa)	GELS (Pa)		WL/HTHP (ml/30 min		C/T.SO nm) / (%		OIL/WAT (%)	. 9	6 SAND/MBT (%)/(sg)	•	pH/Pm (mL)	Pf/Mf (mL)		Cl (ppm)	Ca (ppm)	H23 (%		CL om)	LGS (%)
59		15/20	5/6		6/0) (1	1/9	/8)	0/0		0/5		10.50/0.00	2.40/4.0		6,000	(ppin) 180	0		0	5
Dens	ity (sg)		1.14		ECD (sg)		0.00		PP		DAI	LΥ	COST 1	122	сим с	COST	368,800		%OIL		2
BH/	Ą	5	JAR	S/N	1760501	1			BHA / H	IOLE	CONDIT	10	NS		JAR H	IRS	4.60		BIT		4RR
BH	A WT BEI	LOW JARS		STRIN	G WT UP		S	TRING	WT DN		STRING V	NΤ	ROT	тс	RQUE	/UNITS			BHA LE	NGT	н
	(tonr	ne)		(to	onne)			(ton	ne)		(tonr	ne)			(kN-	m)			346.6	2 (m)	
		ITI	EM DESCRI	PTION	I			1	NO JTS		LENGTH		O.D		I	.D	CONN SIZE			CON	n type
		Hea	avy Weight D	rill Pip	e				26		242.35		127.0	0	79	.38					
			Hydraulic .	Jar					1		9.92		165.1	0	69	.85					
		Hea	avy Weight D	rill Pip	e				3		28.16		127.0	0	79	.38					
			Drill Colla	ar					3		28.22		171.4	5	69	.85					
		Inte	gral Blade S	tabilize	er				1		1.78		212.7	3	76	6.20					
		Lo	gging While	Drilling]				1		8.11		190.5	0	92	.08					
		Lo	gging While	Drilling]				1		3.56		212.8	5	82	.55					
		Lo	gging While	Drilling]				1		8.48		175.0	1	82	82.55					
		Lo	gging While	Drilling]				1		8.04		209.5	5	76	6.20			\neg		
			Steering T	ool					1	+	7.66		212.7	3	76	.20				7 5/	8 REG
		Polyc	rystalline Dia		Bit				1		0.34		216.0	0	76	.20					
							ł		C	ASIN	G		<u> </u>	1			1				
5	6/T		DI	ESCRI	PTION				SIZE			WE	EIGHT		G	RADE			SETTIN	IG DE	PTH
	OH SURFACE OH CONDUCTOR				340.00			178.58		78.58		X 56			1,735.93						
	н				CTOR DIATE 1				762.00 244.00			6	69.94			X 56 L-80				3.00 43.90	
		<u> </u>			JMPS/H	YDRA	ULIC	S	211100		1			I			PR	1	5,E	2.00	
				FLC		SPP: 20,	099 (kP	Pa)	T			SPM			PPSR						
#1	304.	80	40		152.40		65	4				ŀ	PUMPS	# 1	30/74/50/40		0/40	2,413/20,099/4,13			,137/3,0
#2 #3	304. 304.		40		152.40		65	4					PUMPS			0/40	4 3,999/20,099/2,344/3,				
									HP: 0.31	2 (kW/c	:m²)									2	

						N						
					ORPORATIO							Page 4 of 5
				Daily Dri	Iling Repor	ť						
WELL NAME											DATE	
ELVER-1											02-01-2	009
API #	24 HRS	PROG		TMD		TVE	D				REPT NO	
ОН	4.10 (m)		3,253.00 (m)		2,50	500.70 ((m)			16	
				PERSON	NEL DATA							
COMPANY			QTY	HRS	COMPANY					QTY	(HRS
BRANDT			1		SUBSEA 7				3	3		
ANADRILL			5		BJ TRS				1	1		
WEST ENGINEERING			2		DOWELL				2	2		
APACHE			5		KEMTECH				2	2		
DODI			60		вні				e	6		
									тс	OTAL PE	RSONNEL O	N BOARD: 87
				SUPPO	RT CRAFT							
TYPE						REMARK	KS					
HELICOPTER		JYN (Pax On	- 6, Pax Of	f - 10).								
FAR SKY		Geelong.										
SWISSCO 168		On Location.										
YARABAH		Geelong.										
FAR GRIP		On Location.										
				MATERIALS/	CONSUMPTI	ON						
ITEM	UNITS	USA	AGE	ON HAND	ITEM			UNITS	USA	GE	ON	I HAND
BARITE BULK	МТ		3	100	BENTONI	TE		MT				26
CEMENT	MT			16	DIESEL			m3				325
WATER, POTABLE	m3	2	28	332	WATER, DRII	LING		m3	1	8		619
				WE	ATHER							
TIME	н	SWELL T/DIR/PER		WAVE HT/DIR/PER	WIND SP	EED/DIR		GUST SPI	EED/DIR		TEM	P
00:00	1	/235.00/3		3.50/240.00/12	1			18.5/23	35.00			
				DE	CKLOG							
MAX VDL		CT VDL		AVG VDL	LEG PEN	I (BOW)		LEG PEN	(PORT)		LEG PEN (S	BOARD)
2560		1885		1885								
			•	SAFET	Y DRILLS		<u> </u>			•		
RAMS (kPa)	AM	NULARS (kPa)		CASING	LAST BOP DRILL	NEXT PRESS		FIRE DRILL	H2S DRI		MAN OVERBRD	ABND. DRILL
28-12-2008 / 34,475	28-12-2	008 / 34,475	27-1	12-2008 / 17,237	22-12-2008	05-01-200	009	28-12-2008				28-12-2008
			I	•				I	I			I

INCIDENT REPORT

INCIDENTS TYPE OTHER		INCIDENTS DESCRIPTION DROPPED OBJECT: Doller roll	er fell from derrick while RIH 216	imm (8-1/2") BHA.	
		ANCHOR TEI	NSION DATA		
ANCHOR NO	CURRENT TENSION	ANCHOR NO	CURRENT TENSION	ANCHOR NO	CURRENT TENSION
1	182	2	180	3	177
4	160	5	187	6	190
7	207	8	196	9	
10		11		12	

Page 5 of 5

Daily Drilling Report

WELL NAME					DATE	
ELVER-1					02-01-2009	
API #	24 HRS PRO	G	ТМО	TVD	REPT NO	
ОН	4.10 (m)		3,253.00 (m)	2,500.70 (m)	16	
	I		MUD INVENTORY	•	I	
ITE	M	UNIT	USAGE	Day Cost (\$)	ON HAND	
CIRCAI	L 1000	25.00 kg		0.00	96.00	
OMYAC	ARB 10	25.00 kg		0.00	0.00	
KWIKSE	EAL (M)	40.00 lbs		0.00	108.00	
LIM	ИЕ	25.00 kg		0.00	0.00	
SODIUM BICARBO	ONATE - NaHCO3	25.00 kg		0.00	47.00	
BENTO	ONITE	1.00 MT		0.00	24.00	
NUT F	PLUG	50.00 lbs		0.00	14.00	
SAI	PP	25.00 kg		0.00	35.00	
STAR	GLIDE	55.00 gal		0.00	4.00	
BARITE	E (bulk)	1.00 MT	4.00	1,122.44	100.00	
KLA S	STOP	55.00 gal		0.00	16.00	
SOL	TEX	50.00 lbs		0.00	202.00	
CIRC	AL Y	25.00 kg		0.00	96.00	
POLY	PLUS	25.00 kg		0.00	8.00	
CITRIC	CACID	25.00 kg		0.00	116.00	
KCL (1	.0 MT)	1.00 MT		0.00	8.00	
STAR	GLIDE	208.00 I		0.00	20.00	
SODA SOD.CARBON		25.00 kg		0.00	10.00	
DRISP	AC SL	50.00 lbs		0.00	123.00	
POLY	YSAI	25.00 kg		0.00	74.00	
KWIKSE	EAL (F)	40.00 lbs		0.00	72.00	
FLOW	VZAN	25.00 kg		0.00	205.00	
CAUSTIC SC	DDA - NaOH	25.00 kg		0.00	17.00	
DEFO	AM A	5.00 gal		0.00	13.00	
GUAR	GUM	25.00 kg		0.00	0.00	
CIRCAL	L 60/16	25.00 kg		0.00	340.00	
CALCIUM CHLC	ORIDE 74-77%	25.00 kg		0.00	69.00	
KCL BRINE	E (1.15SG)	1.00 bbl		0.00	0.00	
SAFE-	-CIDE	25.00 I		0.00	15.00	