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Introduction/Objectives

The main objective of this study was to produce 3 inverted angle stacks volumes from the 3D survey Patricia-Baleen, in Gippsland Basin.

The use of angle stacks allows us to get access to AVA (Amplitude Variation with Angle) informations in the data, and then, to estimate Poisson’s ratio and other elastic parameters. These cubes can be transformed to lithology and fluid fill cubes using empirical relationships derived from well logs.

This report describes the methodology used to produce the 3 inverted cubes and to derive elastic parameters cubes such as Vp/Vs, RhoLamda, RhoMu cubes We will not talk about the wells, the horizons and the macro model building. These points were related in details in the “3D Multichannel Stratigraphic Inversion” report.


The original data consists in 3 migrated angle stacks (near: 5 to 15, mid: 15 to 25 and far: 25 to 35 degrees) with a 6.25 m crossline by 12.5 m inline bin size, sampled every 2 ms. The impedance volumes produced are sampled every 1 ms.

1. Principle

The general assumption of AVO inversion is that wavelet does not vary with offset (neither in amplitude, phase nor bandwidth). Inaccurate pre-stack balancing can generate a significant amount of leakage between the attributes. The low-pass filter associated with NMO-corrections is another source of wavelet variation with offset. AVO attributes simply cannot be trusted when the wavelet varies with offset, which is generally the case.

This problem can be circumvented rather elegantly using elastic impedance (Connolly, 1999). The first step is to generate angle-limited stacks (two or more), that are statistically uncorrelated as long as the stacking corridors do not overlap. Each angle stack is then inverted, allowing wavelet variations with offset. The resulting elastic impedance takes the expression:
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Using Fatti’s three-term equation we have:
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The elastic parameters can then be obtained by curve fitting of the elastic impedances or equivalently, by linear regression of their logarithm. 

To constrain the inversion of the angle-limited stacks, pseudo-logs are computed by combining the existing sonic, shear and density logs according to equations (1) or (2). This raises the issue of “dimension”. Equation (1) expresses a continuum between the P-impedance (in g/cm3 m/s) and the Vp/Vs ratio (a dimensionless variable). Hence, the dimension of elastic impedance changes with incidence angle. More generally, the reflection coefficient itself represents the derivative of the logarithm of impedance. Physically, the logarithm can only be applied to dimensionless variables. What does the logarithm of an impedance value physically mean?

Equations (1) and (2) are essentially equivalent for small incidence angles, but start diverging significantly around 30 degrees. The amplitude level is not an issue as long as the same equation (either 1 or 2) is used for computing the pseudo-logs and for elastic parameter extraction (AVO curve fitting). It turns out that the elastic impedance method is no more or no less sensitive to incidence angle than AVO inversion. Except for wavelet variations, AVO inversion and elastic impedance have similar sensitivity to the various noise types.

In its simplest form, stratigraphic inversion can be equated to time integration followed by an exponentiation. Since integration is a purely linear process, it follows readily that AVO inversion and elastic impedance are exactly equivalent when the wavelet does not vary with offset. However, there are some more complex and more robust implementations of stratigraphic inversion, which result in vastly superior impedance estimates. Of particular interest does Gluck et al. (1997) develop a full 3D layer-based algorithm.

Practically, each angle stack is inverted with the appropriate pseudo-log constraints Although the layer structure can be “frozen” for all angle stacks, it is preferable to let the inversion find the best stratigraphy for each data set. Lack of conformity between the various angle stacks is a sign of inaccurate processing (possibly poor NMO-corrections or residual multiple energy). Once we are satisfied with the inverted layering, elastic parameters can be computed by linear regression on the logarithmic impedance. 

A 3D layer-based inversion provides impedance values with improved signal-to-noise ratio, as well as a means to unravel other types of noise. Wavelet variations with offset are automatically taken into account, and inaccurate NMO-corrections can be efficiently detected. The resulting elastic impedance data provide for much more reliable elastic parameter estimates. Their accuracy may still be below what we expect, but they are vastly superior to what can be obtained from AVO inversion.

The generalisation of acoustic impedance for variable incidence angles is:

[image: image1.wmf][image: image4.wmf]2

/Vp

2

Vs

K

=

[image: image5.wmf](

)

(

)

(

)

q

q

q

r

q

2

4

1

2

8

2

1

sin

sin

sin

 

s

 

 Vp

 

)

EI(

K

K

V

-

-

+

=

 
[image: image6.wmf](

)

(

)

(

)

q

q

q

r

q

2

4

1

2

8

2

1

sin

sin

tan

 

s

 

 Vp

 

)

EI(

K

K

V

-

-

+

=

[image: image7.wmf]q

q

q

q

2

tan

 

2

Csin

 

 

2

sin

 

B

 

 A 

 

)

R(

+

+

=

[image: image8.wmf](

)

(

)

Ip

ln

/

ln

2

sin

 

 

Ip

 

ln

 

 

)

EI(

 

ln

-

+

=

Vs

Vp

2

q

q

[image: image9.wmf]sin

2

(

j

)



We use Connolly equation to compute the elastic logs for the different angles.
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By using the Connolly equation expressed with logarithm, we can then compute  different elastic parameters as shear impedance, Poisson’ s ratio and Lame’ parameters as shown :
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2. Elastic logs computation

From VP, VS and density logs, we compute the reflectivity from Shuey (3 terms) and convolve it with a Ricker wavelet to obtain the Shuey traces.

If we want to use the Connolly equation, K must be constant (K= Vs²/Vp²).

To help in the determination of the best K we select a window (650-750 ms) and the incident angle we want to use according to  the seismic data (30 degrees) and we compute the histogram of real K. In this window, for the lowest to the highest K value, we compute the elastic logs , the reflectivity series and the difference between the Shuey and the Connolly reflectivity series. Then we mesure the error between these two reflectivity series (black curve on the display). The maximum of  this curve corresponds to the lowest error.
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With K constant, we output the elastic logs from 0 to 40 degrees.
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This equation is

analogous to the

classical formula
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We validate this computation by comparing the Shuey (in black) and Connolly traces (in red).
3. Elastic inversion


Two approaches were tested. 

The different steps of the first approach are outlined in this figure: 
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This equation is
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classical formula
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[image: image31.png]Optimum K for an angle of 30 degrees : 0.21809620
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Three angle-dependant wavelets were  extracted by matching the synthetic to the real angle stacks. 
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Each angle stack was inverted individually and independently. We can notice that the 3 inversions do not present the same number of layers nor the same thickness for layers interval. This could be a problem when we will cross-plot the cubes to compute elastic parameters.

      If we compare the wavelets of the 3 cubes before and after stratigraphic deconvolution, we can notice that the wavelet of the far traces after stratigraphic deconvolution is similar to the wavelets of the near and mid traces after zero phasing. This is not the case when we compare the wavelet of the near and far trace after stratigraphic deconvolution.
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Now if we superimpose the signal spectra of respectively the near and mid zerophase traces with  the one of the far traces after stratigraphic deconvolution, we observe that the 3 datasets bandwidths are not so different.
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According to these observations, we have tested a second approach. For that, , we have try to condition the data in order to have 3 input cubes with the same bandwidth and be able to use one single wavelet.



         We have computed two matching operators to be apply on the near and mid zerophase traces.










A 2ms-time shift was applied on the far traces after stratigraphic deconvolution. This shift, corresponding to one sample, is probably due to  the stratigraphic deconvolution.

Each angle stack was inverted individually and independently, but using the far traces wavelet.


For the elastic parameters computation, we have used the near and far elastic impedance cubes.



4. Elastic parameters computation


From well log data (Vp, Vs and density), we compute elastic logs : Vp/Vs ratio, Poisson log, Lame log…


Then we study the relation between these logs and the main reservoir parameters we want to investigate. For that we need to have logs describing the reservoir such as lithology, porosity, fluid content logs… For the time being, we use mainly crossplots. We can expect to use in the future clustering or neural network techniques. 

At this stage we have the  theoritical  elastic parameters at the well position.


The next step is the interpretation of the near and far inverted data in term of reservoir parameters. We use for that the Connolly equation expressed with logarithm and we only need to calculate R0 and G. Once we have extracted these values from the data for each layer interval, we can compute the elastic parameters. 

First we check the resutlts of the inversion through interpretation by comparing the theoritical and the computed elastic parameters at well location.



Then we compute compute Vp/Vs , impedance S, Rho mu, Rho lamda, Poisson cubes on the full volume. 


We display hereafter some of the sections and maps we have computed.
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OMV Patricia Baleen: 3 first  EI inversions - QC
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Blue :   Far traces after stratigraphic deconvolution


Green : Mid traces after zero-phasing                    


Red :    Near traces after zero-phasing                  








OMV Patricia Baleen: spectra before matching operator computation
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OMV Patricia Baleen: wavelets comparisons
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Blue :   Far traces after stratigraphic deconvolution


Green : Mid traces matching operator with far traces after strati.decon. applied


Red :    Near traces matching operator with far traces after strati.decon. applied








OMV Patricia Baleen: Spectra after matching operator with far traces after stratigraphic deconvolution
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Near traces after matching operator. 





Mid traces after matching operator. 





Far traces after strat. decon. 





Second EI inversions - Work flow
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