

13 JAN 1994

VIC/P31

MINERVA_1

WELL COMPLETION REPORT
BASIC DATA

PETROLEUM DIVISION

MINERVA-1

PERMIT: VIC/P31

PREDICTED v ACTUAL

LINE: OE81A-2028 SP: 2232 LAT :38°42'12.23"S LONG:142°57'12.34"E

ELEV: Rt:25m WATER DEPTH:57m SPUD :8/3/93 RIG RELEASE : 17/4/93 STATUS :Gas Well-Cased & Suspended Byford Dolphin

SP: 22			/NG . 1 12	5/ 12.34 E	WAIER DEPIR:			EASE : 17/4/93		niG	Byford D	Olphili
Depth s	T.W.T.	Tops mss		TIGRAPHY				ACTUAL STRATIGRAPHY			Thick -ness	CSG
(DVI)	msec	(TVD)	System Series	FM	LITHOLOGY	TIVES	LITHOLOGY	FM	Series	_mss (TVD)	m	mss
- 0	72 232 272 322	56 191 234 290 470	RecMioo Late Eocene Mid Eocene to	Narrawaturk Marl	Calcarenite with minor mart Mart Medium to coarse sand Medium to coarse sand with some siltstone		Seabed	Heytesbury/Nirranda Groups	Recent to Eoœne	57 525	468	30° 90m
	612	580 615_	Late Paleocene	Pember Mudstone	Argillaceous siltstone and claystone sandstone and siltstone		Silty Claystone	Pember Mudstone	Mid Eocene		107	1336
			$\sim\sim$				Medium to coarse sandstone	Pebble Point Sandstone	Late Palaeocene			525m
– 1000	944	760 1155	Maastrich- tian to Mid Santonian	Sherbrook Group	Interbedded siltstone, claystone and sandstones	2*	Dark grey claystone with minor sandstones	Sherbrook Group	Maastrich- tian to Mid Santonian	760	128	9 ₅₈ • 1165m
			to Coniacian	Group Group	minor siltstone and sandstone interbeds					1448		
2000	1230	1525	Turonian to Cenomaniar	Lower Shipweck Group	Sandstone with interbedded claystone , siltstone and minor coal	1°	Argillaceous siltstone and claystone Interbedded sandstone, conglomerate sandstone and claystone	~~~~	Mid Santonian to Coniacian	2080	632	7° 2072m
							Interbedded sandstone and silty daystone	Lower Shipwreck Group	to Cenomanian	2257	177	
	1628	2260 2400	Albian	Otway Group	Interbedded sandstone, claystone, sittstone	2°	Interbedded argillaceous claystones and coals lithic sandstones.	Otway Group	Albian	2385	128	
- 3000 - 4000												

Date: May, 1994

BHP PETROLEUM PTY LTD ACN 006 918 832

VIC/P31

MINERVA-1

WELL COMPLETION REPORT

BASIC DATA

PETROLEUM DIVISION

DECEMBER 1993

TABLE OF CONTENTS - BASIC DATA

1.	WELL	SUMMARY	SHEET

2. FINAL DRILLING REPORT

3. FORMATION SAMPLING

- 3.1 Ditch Cuttings
 - 3.1.1 Cuttings Description Summary
 - 3.1.2 Cuttings Descriptions
- 3.2 Sidewall Cores
 - 3.2.1 CST
 - 3.2.2 MSCT
- 3.3 Conventional Cores
 - 3.3.1 Core Description
- 3.4 Hydrocarbon Indications
 - 3.4.1 Cuttings Gas Summary
 - 3.4.2 Cuttings Hydrocarbon Fluorescence

4. LOGGING AND SURVEYS

- 4.1 Mudlogging
- 4.2 Wireline Logs
- 4.3 Measurement While Drilling
- 4.4 Velocity Surveys

RESERVOIR AND FLUID ANALYSIS

- 5.1 RFT
- 5.2 DST

6. APPENDICES

Appendix 1	Amdel Core Analysis Reports
Appelluly I	Ailidei Cole Aliaivsis Reboris

Appendix 2 Exlog End of Well Report (Mudlogging)

Appendix 3 Eastman Teleco End of Well Report (MWD)

Appendix 4 Micropalaeontology: Basic Data and Range

Charts

Appendix 5 Palynology: Basic Data and Range Charts

Appendix 6 Rig Positioning Report

7. ENCLOSURES

Enclosure 1 Exlog Mudlog

Enclosure 2 Teleco MWD Log

Enclosure 3 Core Photographs - UV and White Light

LIST OF FIGURES

VIC/P31	BASIC WELL COMPLETION REPORT							
	Figure 1	Location Map						
	Figure 2	RFT Sample Data Sheet - Sample 1						
	Figure 3	RFT Sample Data Sheet - Sample 2	2					
		LIST OF TABLES						
	Table 1	Ditch Cuttings Samples						
	Table 2	CST Summary						
	Table 3	Conventional Core Recovery						
	Table 4	Wireline Logs						
	Table 5	Preliminary Open Hole RFT Result	:S					

4

()

1. WELL SUMMARY SHEET

Well:

Minerva-1

Permit:

VIC/P31

District:

Otway Basin

Well Path:

Vertical

Planned Location:

Lat. 38° 42' 12.35" South

Long. 142° 51' 12.64" East

Actual Location:

38° 42' 12.23" South

Long. 142° 57' 12.34" East

East:

Lat.

669 862.50

North : 5 714 311.00

AMG Zone 54, CM 141° East

Seismic Reference:

Line OE81A-2028 Shot Point 2232

Elevation:

RT to MSL 25.3 m

Water Depth:

56.7 m (MSL to seabed)

Total Depth:

2425 mRT

Departed Last Location:

06 March 1993 03:30 hours

Spud Date:

08 March 1993 12:00 hours

Total Depth Date:

04 April 1993 12:30 hours

Days from Spud to TD:

27 days 0.5 hours

Rig Release Date:

17 April 1993 16:00 hours

Total Days on Well:

42 days 12.5 hours

Operator:

BHP Petroleum Pty Ltd

Permit Interests:

BHP Petroleum Pty Ltd

90.00%

BHP Petroleum Plaza

120 Collins Street

MELBOURNE VIC 3000

T77/7	MM 1
VII	/P41

BASIC WELL COMPLETION REPORT

MINERVA-1

10.00%

Bridge Oil Ltd

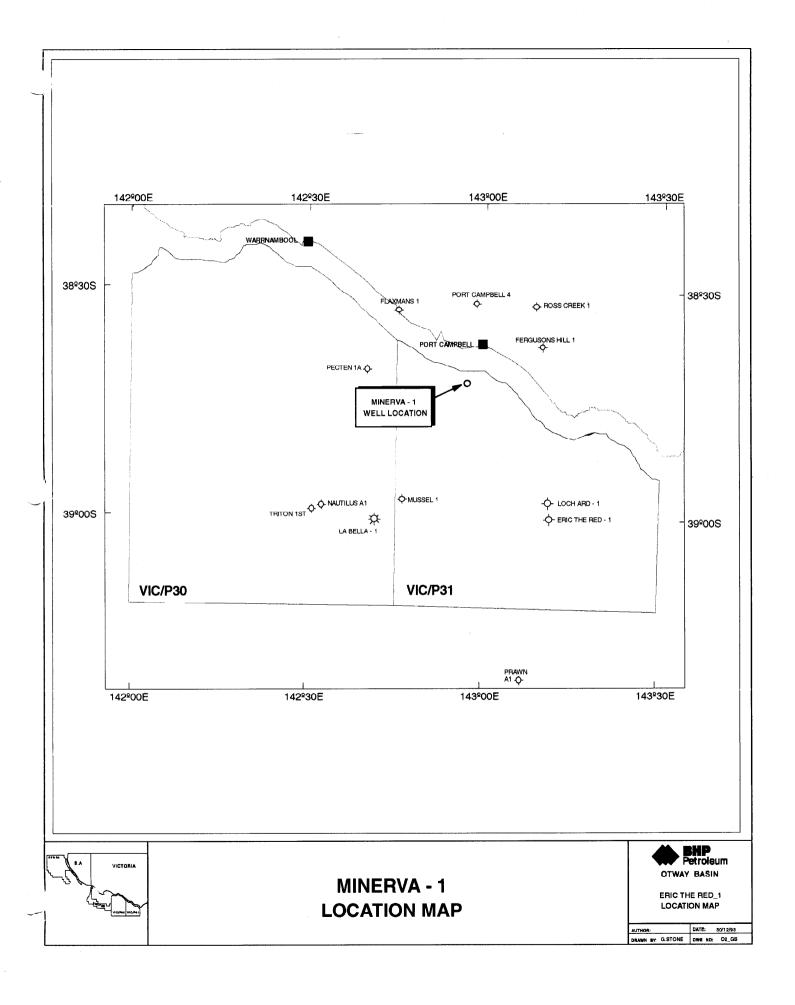
255 Elizabeth Street

SYDNEY NSW 2000

Drilling Contractor:

Dolphin Drilling

Rig:


"Byford Dolphin" Semi Submersible

Status:

Gas Well - Cased and Suspended

Cost:

\$ 6.401 M (from cost control)

BHP PETROLEUM PTY. LTD.

PERMIT: VIC-P31

MINERVA-1

AUGUST 1993

DISTRIBUTION LIST

MINERVA-1

Exploration

2 copies

(1 copy unbound for distribution to

partners and government)

Drilling - Well File

1 copy

Original

Exploration Information Centre

1 copy

CONTENTS

1.0	WELL DATA
1.1	CONTRACTORS
1.2	LOCATION MAP
1.3	WELL SCHEMATIC
1.4	TIME vs DEPTH CURVE
2.0	OPERATIONAL SUMMARY
2.1	DAILY OPERATIONS
3.0	MUD SUMMARY BY HOLE SECTION
3.1	MUD PROPERTIES RECORD
3.2	MATERIALS CONSUMPTION
4.0	BIT RECORDS
4.1	BHA SUMMARY REPORT
4.2	DEVIATION SURVEYS
5.0	CASING REPORTS
5.1	CEMENTING REPORTS
5.2	LEAK OFF TEST DIAGRAMS
6.0	WELL SUSPENSION CEMENTING REPORT
7.0	WEATHER DATA
7.1	MOORING DIAGRAM

MINERVA-1

SECTION 1

File: MIN1_HDR.DOC

Checked:

Date: 1 September 1993

1.0 WELL DATA MINERVA-1

Well : MINERVA-1

Permit : VIC/P31

Designation : EXPLORATION

Operator : BHPP PETROLEUM

Rig : BYFORD DOLPHIN

Type : SEMISUBMERSIBLE

Drilling Contractor : DOLPHIN DRILLING

Water Depth : 56.7m

RT Elevation : 25.3m

Total Depth : 2425mMD

2425mTVD

Final Surface Location : Lat S 038° 42' 12.230"

Long E 142° 57' 12.337"

Easting 669 862.5

Northing 5 714 311.0

Location Reference Datum : AGD84, AMG ZONE 54 C.M. 141°E

Commencement Date : 0330 hrs, 6 March 1993

Rig on Location : 0852 hrs, 6 March 1993

Well Spudded : 1200 hrs, 8 March 1993

TD Date : 1230 hrs, 4 April 1993

Drilling Days to TD : 27 Days, .5 hours

Rig Released : 1600 hrs, 17 April 1993

Total Well Duration : 42 Days, 12.5 hours

Status : SUSPENDED

File: MIN1_DAT Checked: Date: 04-Nov-93

1.1 **CONTRACTORS**

MINERVA-1

SERVICE

CEMENT SUPPLY

CEMENTING SERVICES

CORING SERVICES

DIRECTIONAL

DIVING/ROV

DRILLING FLUIDS

HELICOPTERS

LOGGING

MUD LOGGING

MWD

ROLLER REAMERS

SOLIDS CONTROL

STANDBY VESSEL

SUPPLY VESSEL

SUPPLY VESSEL

WEATHER

WELL TESTING

WELLHEAD

WELLHEAD SEVERANCE

CONTRACTOR

HALLIBURTON

HALLIBURTON

DIAMANT BOART

SMITH

DRILLSUPPORT

MILPARK

LLOYD HELICOPTERS

SCHLUMBERGER

EXLOG

EASTMAN TELECO

GEARHART UNITED

OILTOOLS

SWIRE: "MARLIN"

AOS: "FAR SWORD"

T.W.: "BONAVISTA"

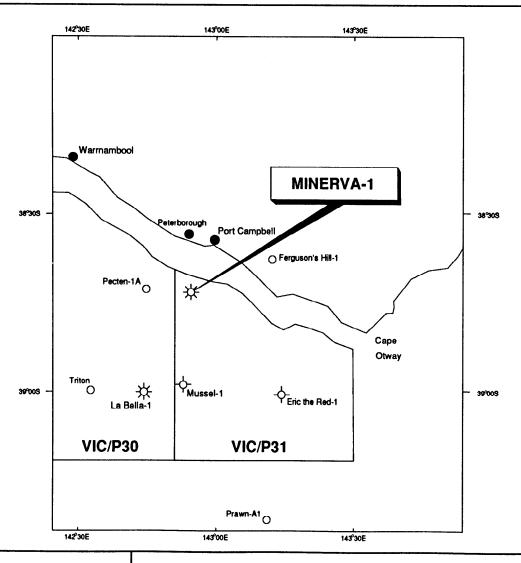
OCEAN ROUTES

HRS

VETCO

AUSTOIL

File: MIN1_CON


Checked

Date: 30-Aug-93

1.2 LOCATION MAP

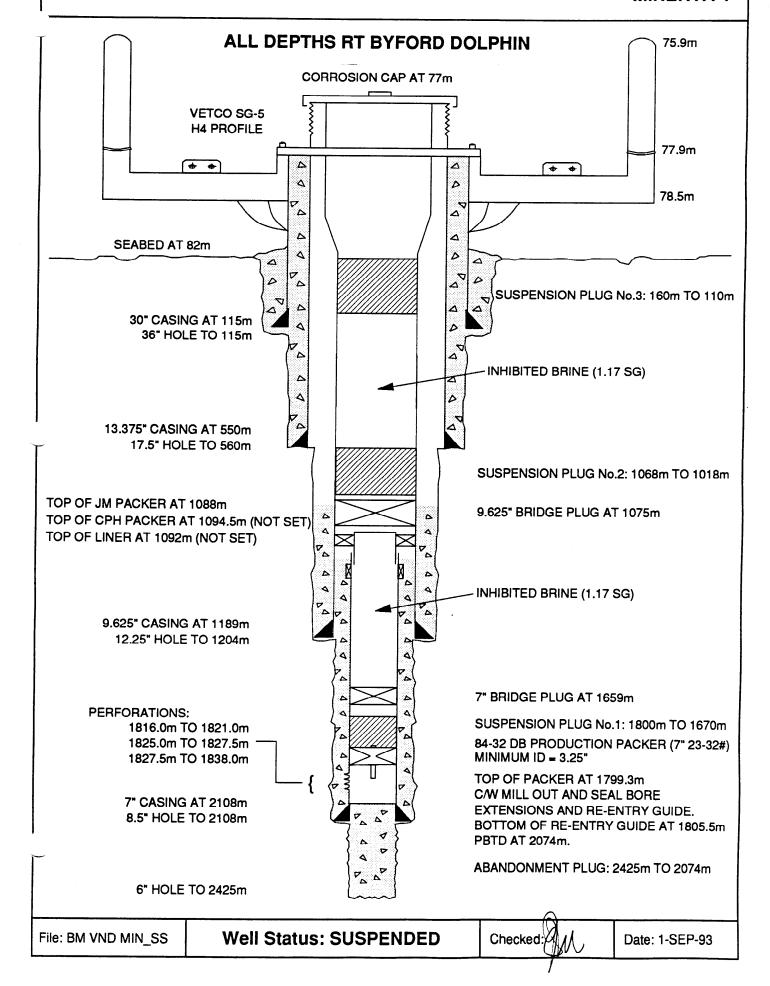
WELL: MINERVA-1

Permit No. : VIC/P31

Rig : BYFORD DOLPHIN

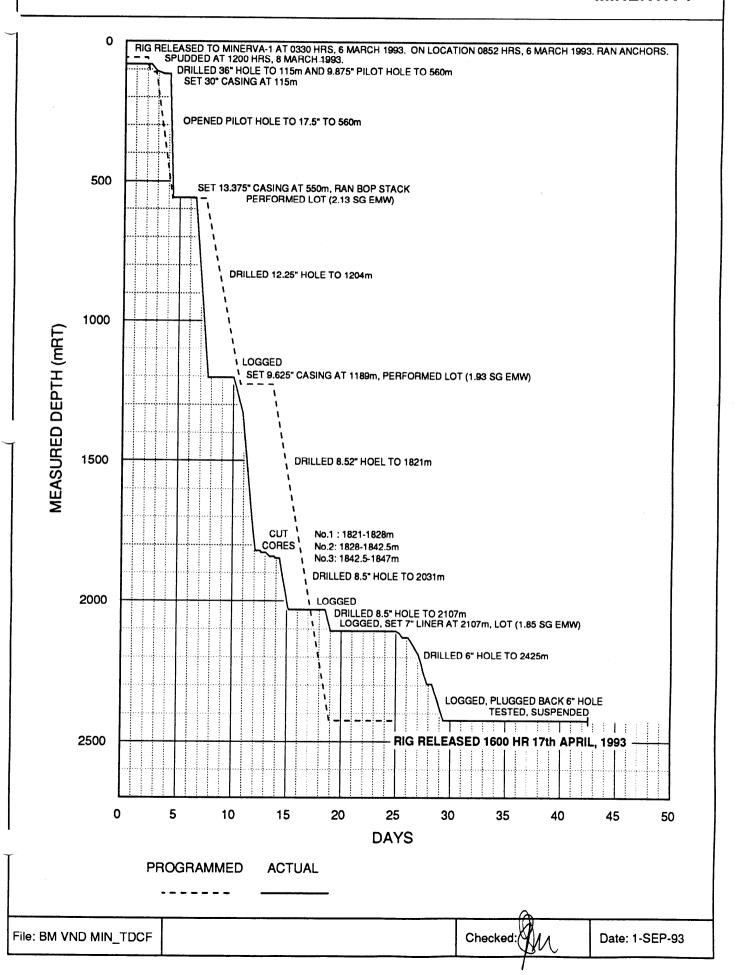
Latitude : 38 °42' 12.23" S

Longitude : 142°57' 12.34" E


File: BWM VND MIN_LOC1

Checked:

Date: 1 SEP 93



1.3 WELL SCHEMATIC

1.4 TIME vs DEPTH CURVE

MINERVA-1

SECTION 2

File: MIN1_HDR.DOC

Checked:

Date: 1 September 1993

BHP Petroleum

FINAL DRILLING REPORT

2.0 OPERATIONAL SUMMARY

MINERVA-1

The Byford Dolphin was released from Eric the Red-1 at 0330 hours, 6th March, 1993 and arrived at the Minerva-1 location at 0852 hours. Twelve anchors were run and pre-tensioned to 173t.

Minerva-1 was spudded at 1200 hours, 8th March 1993. The 36" hole was drilled from 82m to 105m and, following draw works electrical problems, the 9.875" shallow gas pilot hole was drilled to 560m during daylight hours. No shallow gas was encountered. The 9.875" pilot hole was then opened to 36" from 105 to 115m. The 30" casing was run and cemented to a depth of 115m.

The 9.875" pilot hole was opened to 17.5" to a depth of 560m. The 13.375" casing with crossover to the 18.75" wellhead was run and cemented to a depth of 550m.

The 18.75" BOP stack was run and tested. The 12.25" hole was drilled to 563m and a LOT to 2.13 SG EMW was conducted. The 12.25" hole was drilled to 1204m, with drilling fluid density increases from 1.09 to 1.13 SG due to connection gas from 1080 to 1169m. Suite No. 1 logs were run at 1204m and the 9.625" casing was run and cemented at 1189m.

The BOP stack was tested and 8.5" hole drilled to 1207m. A LOT to 1.94SG EMW was conducted at this depth. The 8.5" hole was drilled to 1821m with drilling fluid density increases from 1.12 to 1.16SG due to connection gases from a thin sand at 1648m. Three cores were cut from 1821 to 1847m with an overall recovery of 80%. Drilling in the 8.5" hole continued to 2031m at which point Suite No. 2 logs were run, including RFT's which indicated formation pressure at 1821m of 1.04 SG EMW and 1648m of 1.15 SG EMW. Drilling progressed to 2108m to obtain a suitable 7" casing seat and the logging programme was completed. A wiper trip was conducted prior to running the 7" liner. Following several unsuccessful attempts to set the liner hanger, the liner was set on bottom and cemented with the TOL at 1092m. A JM liner top packer was set and pressure tested to 3500 psi.

The BOP stack was tested and 6" hole drilled to 2111m. A LOT to 1.85 SG EMW was conducted and the 6" hole was drilled to final total depth of 2425m without problems. Suite No. 4 logs were run and the 6" hole was subsequently abandoned with a PBTD of 2074m.

Minerva-1 was displaced to brine and perforated from 1838.0 to 1825m and 1821 to 1816m. A permanent packer assembly was set at 1800m and a 3.5" test string was landed in same. Minerva-1 was opened to flow at 1515 hours, 10th April, 1993. A multi-rate test was conducted with a maximum flowrate of 28.1 MMSCF/D through a one inch choke. The test was completed 13th April, 1993 at which point the well was killed and the test string laid down.

Minerva-1 was suspended as a potential gas producer and the Byford Dolphin was rig released at 1600 hours, 17th April, 1993.

Checked

2.1 DAILY OPERATIONS

Date		Days From Spud	From	То	Hours	Daily Operations		
06/03/93	1	0	03:30	08:52	5.37	ON TOW FROM E	RIC THE RED-1.	
			08:52	00:00	15.13	ANCHORS WERE	RUN AS FOLLOWS:	
						RIG - No. ON BOT	TOM AT 0852HRS.	
						FS - No.1 ON BOT	ITOM AT 1128HRS.	
						No.9 ON BOTT	ΓOM AT 1423HRS.	
						No.2 PENNAN	T PARTED	
						No.3 ON BOTT	ΓΟΜ AT 1713HRS.	
						No.5 ON BOTT	TOM AT 1843HRS.	
						BV - No.12 ON BO	OTTOM AT 1425HRS.	
						No.11 PENNA!	NT PARTED AT 1544F	łRS.
07/03/93	2		00:00	20:21	20.35	ANCHORS WERE	RUN AS FOLLOWS:	
						BV - No.11 ON BO	TTOM AT 0545HRS.	
						No.2 ON BOTT	OM AT 1310HRS.	
						No.3 ON BOTT	OM AT 1515HRS.	
						No.1RR ON BO	TTOM AT 0125HRS.	
]	FS - No.10 ON BO	TTOM AT 0330HRS.	
						No.4 ON BOTT	OM AT 0455HRS.	
						No.7 ON BOTT	OM AT 1231HRS.	
						No.8 ON BOTT	OM AT 1530HRS.	
						No.10RR ON BO	OTTOM AT 2232HRS.	
			20:21	00:00	3.65	ANCHOR HANDLI	ING NON PRODUCTIV	/E TIME
08/03/93	3		00:00	02:30	2.50	COMPLETED AND	CHOR HANDLING AN	D PRETENSIONED
					•	TO 380kips.		
			02:30	07:30	5.00	BALLASTED DOW	N TO DRILLING DRA	AFT.
			07:30	12:00	4.50 1	PICKED UP 6 x HW	VDP AND 6 x 8" DC A	ND RACKED
					1	BACK, MADE UP 3	36" BHA AND RIH. TA	GGED SEABED
						AT 82m. WATER D	DEPTH 57m.	
			12:00	13:00	1.00 1	DRILLED 36" HOL	E FROM 82m TO 105n	n.
			13:00	13:15	0.25	SWEPT HOLE WIT	TH 50bbl HI-VIS MUD.	
			13:15	14:00	0.75 1	POH WITH 36" HO	LE OPENER AND 26"	BIT.
			14:00	14:45]	PICKED UP HWDP	AND RACKED IN DE	ERRICK.
			14:45	15:45	1.00 1	MADE UP 9.875" B	HA AND RIH.	
			15:45	00:00	8.25 1	ELECTRICAL PRO	BLEM WITH DRAW-V	WORKS. TROUBLE
					3	SHOT SAME.		
09/03/93	4	1	00:00	04:15	4.25	CONTINUED TRO	UBLE SHOOTING ELE	ECTRICAL PROBLEM
						WITH DRAW-WOF		
			04:15	05:30			TO 36" HOLE WITH R	OV
					1	ASSISTANCE. RIH	TO 105m.	
			05:30	12:15			LOT HOLE FROM 105	
					5	SWEPT 15 bbl HI-V	'IS MUD/HALF STANI	D.
			12:15	12:30	0.25 \$	SWEPT HOLE WIT	H 50 bbl HI-VIS MUD.	
			12:30			DROPPED TOTCO		
			13:00	14:30	1.50 I	POH WITH 9.875" A	ASSEMBLY.	
			14:30	15:30			IA. RIH AND TAGGEI	OAT 101m.
					4	m FILL.		
			15:30	15:45			E FROM 105m TO 115	
			15:45	16:15	0.50 F	PUMPED 100 bbl H	I-VIS MUD, SPOTTED	150 bbl
File:	MIN1	_DAY					Checked:	Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From Spu	ıd From	То	Hours	Daily Operations		
09/03/93	4	1	15:45	16:15		HI-VIS MUD ON B	оттом.	
			16:15	16:45	0.50	POH WITH 36" AS	SEMBLY.	
			16:45	17:30	0.75	RIGGED UP 30" R	UNNING TOOL AND	CEMENT HEAD.
						RACKED BACK S	AME.	
			17:30	20:30	3.00	RAN 3 JOINTS ST	-2, 30" CASING. MAD	E UP
						RUNNING TOOL	AND LANDED IN PGB	3.
			20:30	20:45	0.25	RIH TO SEALEVE	L AND FILLED CASI	NG.
			20:45	21:30	0.75	RIH TO MUD LINI	E AND STABBED INT	O 36" HOLE.
						HUNG UP AT 102n	n. WORKED THROUG	H.
			21:30	22:00	0.50	BROKE CIRCULA	TION WITH 200bbl SE	AWATER.
			22:00	22:15	0.25	ROV CHECKED B	ULLSEYE - 1/2 TO 3/4	DEG.
			22:15	23:00	0.75	MIXED AND PUM	PED 72 bbl CLASS 'G'	1.9SG
						SLURRY. (351 sx A	AND 42 bbl MIXWATE	R).
						DISPLACED WITH	I 15 bbl SEAWATER.	
				00:00	1.00	POH WITH RUNN	ING TOOL AND LAID	OUT SAME.
10/03/93	5	2	00:00					EAD. RACKED BACK
				01:45	_		NNING TOOL. LAID O	
				02:15	0.50	BROKE OUT 26" B	IT. LAID OUT 36" HO	LE OPENER.
			02:15	04:45			T TO 9.5" DRILL COL	
						ATTACHED GUID	E ROPES AND MADE	UP STRING STAB.
					-	STABBED INTO W	ELLHEAD AND RIH	TO 113m.
			04:45	05:00			MENT AND SHOE TO	
			05:00	12:30	7.50	OPENED 9.875" PI	LOT HOLE TO 17.5" F	ROM 115m
						TO 560m.		
			12:30	13:15			'H 250 bbi HI-VIS ANI	SPOTTED
						450 bbi PHG ON BO		
			13:15			DROPPED TOTCO	SURVEY.	
				14:45		POH FROM 560m.		
			14:45				JN 13.375" CASING.	
			15:15	21:30			RAN 32 JOINTS 68 lb/f	•
							JOINTS, FLOAT COL	ŕ
							3 3/4" W/H. SHOE DEF	
							ABOVE PLUGS AT S	
							O P/U 50kip OVERPUL	
			21:30				SING AT 80SPM, 350ps	
			22:00	00:00			STED LINES TO 2000	OSI.
							NG AS FOLLOWS:	
]		ASS 'G' CMT. 190bbl M	
					_		7. 0.45gps ECONOLITE	
					·		SS 'G' CMT. 60bbl MIX -	WATER.
						1.9SG SLURRY		DIN GER
							220,5bbl SEAWATER	
11/02/02	_	•	00.00	00.15			TO 1500psi FOR 5min	
11/03/93	6	3	00:00	02:15			MT HOSE, BACKED C	
							RVICED HOWCO EQU	
			02:15	กระรถ			AID OUT CEMENT HI MADE UP DOUBLE (
			02.15	01.30	J.23 I	VO TO KON BOL-	MINDE OF DOODLE	JI KISLIK,
File:	MIN1	_DAY					Checked.	Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From S _l	pud From	То	Hours Daily Operations
11/03/93	6	3	02:15	07:30	PICKED UP BOP, INSTALLED AX RING. MOVED BOP
					TO MOONPOOL SET ON BEAMS. PICKED UP LMRP,
					REMOVED TEST JOINT. CHANGED VX RING AND MOVED
					OVER BOP.
				08:30	
			08:30	12:00	3.50 EXTENDED GUIDE POSTS, INSTALLED GUIDE LINES.
					FUNCTION TESTED BOP ON BLUE/YELLOW PODS,
					INSTALLED BEACON ON BOP. ATTACHED BULLSEYE.
			12:00	19:15	
					INSTALLED C&K LINES, PICKED UP AND LATCHED TO
			10.15	20.45	TENSIONER RING, INSTALLED POD LINE SADDLES.
			19:15	20:45	
					LATCH. STROKED OUT SLIP JT. LAID DOWN
			00.45	22.00	LANDING JTS. AND MADE UP DIVERTER.
				22:00	, , , , , , , , , , , , , , , , , , , ,
			22:00	22:30	,
			22:30	00:00	
12/03/93	7	1	00:00	03.20	500/3500psi ON MPR, UPR, ANNULARS & MANIFOLD.
12/03/73	,	7	00.00	05.50	
					SAFES TO 500/3500psi, VBR & WH CONNECTOR TO 10,000psi.
			03:30	04.00	
			04:00		
			04:45		
			05:15		
			06:30		
					REAMER. ORIGINAL NOT BORED TO RIGHT SIZE FOR
					FLOAT.
			07:45	08:00	
			08:00	08:45	0.75 CONTINUED MAKING UP BHA.
			08:45		
			09:15	12:00	2.75 CONTINUED TO MAKE UP BHA AND RIH.
			12:00	13:30	1.50 TAGGED PLUG AT 522.7m. DRILLED SHOETRACK.
			13:30	14:15	0.75 DISPLACED HOLE w/KCL MUD AND CLEANED OUT RAT
					HOLE TO 560m.
			14:15	14:45	0.50 TOOK SCR AND CHOKE LINE PRESSURE DROP.
			14:45	16:30	1.75 DRILLED 12.25" HOLE FROM 560m TO 563m
			16:30	18:00	1.50 POH INTO SHOE AND CIRCULATED HOLE CLEAN FOR
					LOT. PERFORMED LOT: 825psi w/1.08SG MW. EMW
					AT SHOE: 2.13SG.
			18:00	00:00	6.00 DRILLED 12.25" HOLE FROM 563m TO 765m.
13/03/93	8	5	00:00	20:30	20.50 DRILLED 12.25" HOLE FROM 765m TO 1204m,
					WASHED EA CONNECTION DOWN ONCE, FLOW CHECKED
					DRILLING BREAKS. INCREASED MUD WEIGHT FROM
					1.09 TO 1.13 DUE TO CONNECTION GAS.
					C.G. @ 1081.5 = 0.19/0.08%
					@ 1110 = 0.68/0.025%
File: 1		DAV			
rne: r		_DAY			Checked: Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From Spud	i From	To	Hours	Daily Operations
13/03/93	8	5	00:00	20:30		@ 1139.5 = 0.24/0.2%
						@ 1168.9 = 1.43/0.2%
						HOLE TIGHT @ 1023m
			20:30	22:00	1.50	CIRCULATED AND CONDITIONED FOR LOGGING.
			22:00	23:45	1.75	POH FROM 1204m TO 1084m, HOLE DRAG UP TO
						50 kips, 2 bbl SWABBED IN. PUMPED OUT FROM
						1024m TO 967m. POH TO 909m w/o PUMPS. RIH.
			23:45	00:00	0.25	CIRCULATED BOTTOMS UP.
4/03/93	9	6		00:45		CONTINUED CIRCULATING HOLE TO CLEAN AND TO
,,						CHECK GAS.
			00:45	03:45		POH TO LOG - SLM - FLOW CHECKED AT BTM.,SHOE
			000	000		AND BEFORE PULLING INTO BOP. NO OVERPULL.
			03-45	04:00		DUMPED MWD MEMORY.
				04:15		POH.
						RIGGED UP AND RAN SUITE #1 LOGS:
			04.13	22.00		RUN #1 DLL-MSFL-AS-GR-AMS.
						RUN #2 VSP
						RUN #3 CST- 46 SHOTS RUN, 100% RECOVERY
						N.B - 43 RINGS LEFT IN HOLE.
						RIGGED DOWN.
			22:00	22:45		MADE UP WEAR BUSHING R/T, RIH AND RETRIEVED
						WEAR BUSHING. SLM FOR HANGER INDEX
						MEASUREMENT.
			22:45	00:00	1.25	MADE UP CEMENT HEAD TO STD AND RACKED IN
						DERRICK. PICKED UP 9.625" HANGER AND R/T AND
						RACKED BACK.
5/03/93	10	7	00:00	02:30	2.50	R/U AND RAN 9.625" CSG.
			02:30	03:45	1.25	REPAIRED BLOWN HYDRAULIC LINE (NO SPARE) AND
						AND REFILLED HYDRAULIC TANK.
			03:45	07:45	4.00	CONTINUED TO RUN 9.625" CSG.
			07:45	08:30	0.75	PICKED UP CASING HANGER AND RAN CSG IN ON 5"
						DP. LANDED AT 0830hrs.
			08:30	09:30	1.00	RIGGED UP CEMENT LINES AND CIRCULATED CSG AT
						70 SPM FOR 45min
			09:30	11:15	1.75	R/U TO CEMENT UNIT, PRESSURE TESTED SURFACE
						LINES TO 3500psi, MIXED/PUMPED 311sx CLASS
						"G" NEAT c/w 37bbl DRILL WATER. DISPLACED w/
						10bbl DW AND 260bbl MUD. BUMPED PLUG TO 3500
						psi AT 1111hrs.
			11:15	12:00		SET SEAL ASSY w/10 TURNS AND 20000 ft-lb.
			12:00			PRESSURE TESTED SEAL ASSEMBLY & BOP TO
			12.00	13.00		500/3500psi.
			15:00	16.00		POH W/RT AND LAID DOWN.
			16:00			TESTED SHEAR RAM/CSG TO 500/3500psi.
			16:15	18:15		MADE UP WEAR BUSHING R/T & RIH. COULD NOT
						SET, POH. WEAR BUSHING NOT ON TOOL. RIH &
						RETRIEVE RIH WITH WASH TOOL AND JET W/H. POH.
File:	MIN1	_DAY				Checked: Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From Spu	d From	То	Hours	Daily Operations		
15/03/93	10	7	16:15	18:15		RIH w/WEAR BUS	HING, UNABLE TO R	ELEASE, TOOL
						JAMMED. POH, R	EMOVE W/B FROM T	OOL.
			18:15	20:30	2.25	MADE UP TO 2ND w/RT.	TOOL AND RIH. SET	T WB AND POH
			20.20	22:15	1 75	•	LAID OUT 12.25" BHA	
				00:00		PICKED UP 8.5" B		1.
16/03/93	. 11	0						FACCED @ 1160
10/03/33	11	0		02:00 04:15			MAKE UP BHA. RIH. T	-
				06:15			RACK AND CLEANED 204m TO 1207m. WOR	
				07:00		CONDITIONED M		CRED JUNK SUB.
				08:00			0 3500psi AND PERFO	DMED I OT
			07.00	00.00			JRE - 1380psi: LOT 1.9	
			08.00	08:15			AND WORKED JUNK	
				10:45			LE FROM 1207m TO 1	
				13:30				
			10.43	15.50		POH TO CHANGE		PUMPED SLUG AND
			13.30	14:00		SERVICED TDS.	DII AND DHA.	
				14:30			AND ROLLER REAM	EDG DIIMDED MWD
			14.00	14.50		MEMORY.	AND ROLLER REAIVE	ers, down ed wwd
				14:45		MADE UP NEW B	T. SURFACE TESTED	MWD.
			14:45	19:00			IAKE UP BHA. PICKE	ED UP 30 JTS
						DP. RIH.		
			19:00	00:00			BTM FOR MWD TO 1	
						8.5" HOLE FROM	1209m TO 1329m SUR	VEYING w/
							TAND. ANGLE BUILT	
17/03/93	12	9	00:00	16:30			LE FROM 1329m TO 10	654m
						DRILLING BREAK		
				18:15			CIRCULATED BOTTO	
			18:15	00:00			E FROM 1654m TO 17	
							ALL DRILLING BREA	KS. SURVEYED
10.000.00							3rd CONNECTION.	
18/03/93	13	10	00:00				LE FROM 1747m TO 18	821m
			03:30			CIRCULATED SAN		
				08:45			ND POH FOR CORE.	
				09:00		DUMPED MWD M		
			09:00	12:00			RE BARREL, INSTALI	LED INNER
			10.00	16.00			DE UP CORE HEAD.	1 7 475 0775
			12:00	16:30		RIH WITH CORE B JARS. PICKED UP	ARREL FOR CORE NO	o.I. LAID OUT
			16:30	16:45			D FROM 1707m TO 18	21m.
			16:45			·	ROM 1821m TO 1828m	
			10.73	10.50		OFF.	1021III 10 1020III	
			18:30	21.45			POH W/CORE No.1.	
			21:45				n. LAID OUT 9m SEC	TION OF
			#1.TJ	<i></i> .00		BARREL.	2.112 001 7111 0120	
			23:00	00:00	1.00	MADE UP NEW CO	ORE HEAD TO 18m CO	ORE BARREL,
					,	CHECK CATCHER	GAP.	
File:	MIN1	_DAY					Checked:	Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From Spu	d From	То	Hours Daily Operations
19/03/93	14	11	00:00	01:30	1.50 MADE UP 18m CORE BARREL, LAID OUT TWO INNER
					BARREL- TOO SHORT PICKED UP TWO MORE AND MADE
					UP.
			01:30	04:15	2.75 RIH WITH CORE BARREL TO 1776m, HOLE GOOD.
			04:15	05:00	0.75 PRECAUTIONARY REAMED FROM 1796m TO 1828m,
					CIRC ON BOTTOM FOR 5min, DROPPED BALL.
			05:00	13:00	8.00 CUT CORE No.2 FROM 1828m TO 1842.5m. HIGH
					PRESSURE AND ZERO ROP: CORE JAMMED.
			13:00	16:15	3.25 PUMPED SLUG & POH; HOLE TIGHT AT 1660m, 70K
					O/P, FLOW CHECKED AT SHOE: STATIC.
			16:15	18:00	1.75 BROKE OFF CORE HEAD AND RECOVERED CORE:
					13.2m/14.5 RECOVERY (92%). SERVICED BARREL.
			18:00	19:00	1.00 CHECKED CORE & CONTINUED TO SERVICE BARREL.
			19:00	19:30	0.50 SERVICED TDS.
			19:30	21:00	1.50 MADE UP CORE BBL AND CORE HEAD FOR CORE No.3.
			21:00	23:30	2.50 RIH TO CUT CORE No.3
			23:30	23:45	0.25 WASHED/REAMED TO BOTTOM. CIRC, DROPPED BALL.
			23:45	00:00	CUT CORE No.3 FROM 1842.5m TO 1844m.
20/03/93	15	12	00:00	01:00	1.00 CONTINUED TO CUT CORE No.3 FROM 1844m TO
					1847m: STOPPED DRILLING.
			01:00	04:00	3.00 PUMPED SLUG. POH. HOLE GOOD.
			04:00	04:45	0.75 LAID DOWN CORE. RACKED BACK BARREL.
			04:45	05:15	0.50 MADE UP BIT AND MWD & TESTED MWD.
			05:15	07:45	2.50 RIH TO 1810m
			07:45	10:30	2.75 REAMED FOR MWD FROM 1810m TO 1847m.
			10:30	00:00	13.50 DRILLED 8.5" HOLE FROM 1847m TO 1970m. WASHED
					EACH CONNECTION AND SURVEYED.
21/03/93	16	13	00:00	08:15	8.25 DRILLED 8.5" HOLE FROM 1970m TO 2031m.
					SURVEYED AND WASHED EACH CONNECTION.
			08:15	08:30	0.25 CIRCULATED.
			08:30	13:30	•
					HOLE TIGHT FROM 1970m, BACKREAMED TO 1830m
					BRIEFLY STUCK AT 1880m, JARRED DOWN TO FREE.
			13:30	14:00	0.50 MADE UP BIT No.11 AND DUMPED MWD MEMORY.
				14:30	
			14:30	00:00	·
					RUN No.2, FMS-LDT-CNL-GR-AMS.
22/03/93	17	14	00:00		2.00 CONTINUED RUN No.2: FMS-LDT-CNT-GR-AMS.
				14:00	
					10.00 RUN No.4: RFT-GR-AMS.
23/03/93	18	15	00:00	13:30	13.50 CONTINUED RUN No.4: RFT-GR-AMS.
					RECOVERED SAMPLE. RIGGED DOWN RFT No.1:0300hr
					RIGGED UP AND RAN RFT No.2: 0415 hrs.
					RECOVERED SAMPLE. RIGGED DOWN RFT No.2:0730hr
					RIGGED UP AND RAN RFT No.3: 0830 hrs.
					RECOVERED SAMPLE. RIGGED DOWN RFT No.3:1300hr
			13:30	14:00	0.50 RIGGED DOWN SCHLUMBERGER.
File:	MIN1	_DAY			Checked: Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From		То	Hours	Daily Operations
23/03/93	18	15	14:00	14:45	0.75	RETRIEVED WEAR BUSHING.
			14:45	15:15	0.50	MADE UP TEST PLUG. RIH AND LANDED OUT.
			15:15	17:45	2.50	TESTED ALL RAMS, VALVES AND ANNULARS TO
						500/3500 psi ON THE BLUE POD.
			17:45	18:15	0.50	POH WITH TEST PLUG.
			18:15	21:30	3.25	TESTED SURFACE EQUIPMENT TO 500/3500 psi.
			21:30	22:30	1.00	RAN AND SET WEAR BUSHING.
			22:30	23:30		MADE UP BIT No. 11. CALIBRATED AND TESTED
						MWD. INSTALLED HOWCO TEMPERATURE PROBE.
			23:30	00:00	0.50	RIH.
24/03/93	19	16	00:00	00:45	0.75	CONTINUED RIH TO SHOE.
			00:45	02:15	1.50	TOOK TEMPERATURE SURVEY AT 1187 m.
						RECORDED MWD TEMPERATURE READINGS AT START
						AND FINISH OF CIRCULATION.
			02:15	03:30	1.25	CONTINUED RIH TO 2017 m. HUNG UP ON PROBABLE
						UNDERGAUGE HOLE/FILL
			03:30	04:45	1.25	TOOK TEMPERATURE SURVEY AT 2017 m.
						RECORDED MWD TEMPERATURE READINGS AT START,
						MIDWAY AND FINISH CIRCULATING.
			04:45	06:45	2.00	FLOWCHECKED, PUMPED SLUG. POH TO SHOE.
			06:45	07:15	0.50	RIGGED UP AND RECOVERED HOWCO TEMPERATURE
						PROBE ON WIRELINE.
			07:15	08:45	1.50	RIH.
			08:45	10:00	1.25	TAGGED AT 1999 m AND REAMED TO 2031m.
			10:00	19:30	9.50	DRILLED 8.5" HOLE FROM 2031m TO 2107m.
			19:30	21:15	1.75	CIRCULATED SAMPLES.
			21:15	00:00	2.75	FLOWCHECKED AND POH. WORKED THROUGH TIGHT
						HOLE FROM 2072m TO 1940m. 100 kips OVERPULL.
						BACK REAMED LEDGE AT 1946m AND CONTINUED
						POH - HOLE CONDITION GOOD.
25/03/93	20	17	00:00	00:30	0.50	CONTINUED POH TO SHOE.
			00:30	01:45	1.25	RIH.
			01:45	02:00	0.25	MADE UP TOP DRIVE AND WASHED AND REAMED FROM
						2093m TO 2107m.
			02:00	03:00	1.00	TAGGED BOTTOM AND CIRCULATED HOLE CLEAN.
			03:00	07:00	4.00	FLOWCHECKED, PUMPED SLUG AND POH. DUMPED MWD
						MEMORY AT SURFACE. BROKE OUT AND LAID DOWN
						MWD. HOLE CONDITION GOOD.
			07:00	07:30	0.50	RIGGED UP LOG SUITE No.3.
			07:30	10:45	3.25	RUN No.1: DLL-MSFL-AS-GR-AMS.
			10:45	11:15	0.50	RIGGED DOWN RUN No.1.
			11:15	11:45		RIGGED UP RUN No.2.
			11:45	14:30	2.75	RUN No.2: CST - SHOT 60, RECOVERED 57
						BULLETS.
			14:30	15:00	0.50	RIGGED DOWN SCHLUMBERGER.
			15:00			SLIPPED AND CUT 100 ft OF DRILL LINE.
				16:30		SERVICED TOP DRIVE.
File:	MIN1	DAY	T			Checked: Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From Spu	d From	То	Hours Daily Operations
25/03/93	20	17	16:30	18:00	1.50 BROKE OUT AND LAID DOWN CORE BARREL.
			18:00	22:00	4.00 MADE UP BIT No. 12 WITH JUNK SUB AND RIH TO
					2097 m - ENCOUNTERED FILL
			22:00	23:15	1.25 WASHED AND LIGHT REAMED 10m OF FILL FROM
					2097m TO 2107m - SURGED AND WORKED JUNK
					SUB. (MAXIMUM GAS: 8.34%).
			23:15	00:00	0.75 CIRCULATED BOTTOMS UP.
26/03/93	21	18	00:00	03:45	3.75 FLOWCHECKED, PUMPED SLUG AND POH. FLOWCHECKED
					AT SHOE. BROKE OUT BIT AND JUNK SUB.
			03:45	07:15	3.50 MADE UP 9.625" CASING SCRAPER WITH BIT No.
					12 RERUN 1. DRIFTED HWDP PLUS 31 JOINTS OF
					DRILLPIPE ON RIH TO 1180m.
			07:15	08:00	0.75 CIRCULATED HOLE CLEAN AND WORKED SCRAPER.
			08:00	10:15	2.25 PUMPED SLUG AND POH.
			10:15	10:30	0.25 BROKE OUT BIT AND SCRAPER - LAID OUT SCRAPER.
			10:30	10:45	SERVICED RIG.
			10:45	11:15	0.50 PICKED UP 1 SINGLE OF DRILL PIPE AND MADE UP
					TO CEMENT HEAD. LAID DOWN ON PIPE DECK.
			11:15	13:45	2.50 PICKED UP AND RIH WITH 1 STAND OF 6.5" DRILL
					COLLARS, BROKE OUT FLOAT SUB, BROKE OUT AND
					LAID DOWN EXCESS 8" AND 6.5" DRILL COLLARS.
			13:45	14:45	1.00 PICKED UP 15 x 4.75" DRILL COLLARS.
			14:45	16:00	1.25 MADE UP BIT No.2 RERUN 2 COMPLETE WITH JUNK
					SUB AND RIH.
			16:00	16:30	0.50 REPAIRED BLOWN HYDRAULIC HOSE ON No.4
					HYDRAULIC UNIT.
			16:30	16:45	0.25 CONTINUED RIH.
			16:45	18:30	1.75 REPAIRED BLOWN HYDRAULIC HOSE ON No.4
					HYDRAULIC UNIT.
			18:30	20:45	2.25 CONTINUED RIH TO 2102m - FILL
			20:45	22:15	1.50 WASHED 5m FILL TO 2107m. SURGED FOR JUNK.
			22:15	23:00	0.75 CIRCULATED BOTTOMS UP (MAXIMUM GAS: 2.7 %).
			23:00	00:00	1.00 FLOWCHECKED, PUMPED SLUG AND POH.
27/03/93	22	19	00:00	02:00	2.00 CONTINUED POH. FLOWCHECKED AT SHOE - STATIC.
			02:00	02:30	0.50 RIGGED UP TO PICK UP AND RIH WITH 7" LINER.
			02:30	14:00	11.50 PICKED UP AND RAN 84 JOINTS OF 7" LINER -
					SHOE INITIALLY AT 2102m.
			14:00	15:30	1.50 BROKE CIRCULATION. HOLE PACKED OFF - WORKED
					CLEAR. CIRCULATED 1.5 TIMES CASING VOLUME.
			15:30	16:15	0.75 TESTED LINES TO 4000 psi. DROPPED BALL AND
					ATTEMPTED TO SET HANGER - UNSUCCESSFUL.
			16:15	17:30	1.25 ATTEMPTED TO SET HANGER- UNSUCCESSFUL.
					SHEARED BALL OUT AT 2200psi.
			17:30	19:30	2.00 CIRCULATED/WORKED STRING FROM 2102m TO 2107m.
			19:30	20:45	1.25 CEMENTED 7" LINER (RECIPROCATED WHILST
					PUMPING CEMENT)
			20:45	22:00	1.25 DROPPED DART AND PUMPED 60 bbl OF MUD - NO
					(A).
File:	MIN1	_DAY			Checked Date: 31-Aug-93

2.1 DAILY OPERATIONS

Date		Days From Spuc	i From	То	Hours	Daily Operations		
27/03/93	22	19	20:45	22:00		PRESSURE INCRE	EASE NOTED TO IND	CATE PLUG HAD
						SHEARED OUT. P	UMPED A FURTHER	120 bbl OF MUD
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	WITHOUT BUMPI	NG PLUG(180 bbl TO	ΓAL).
						RECIPROCATED I	LINER DURING DISPI	LACEMENT. NO
						BACK FLOW. GOO	OD CEMENT RETURN	IS THROUGHOUT.
			22:00	22:45	0.75	SET CASING ON I	BOTTOM AT 2107m A	ND BACKED OUT
						LINER RUNNING	TOOL WITH DIFFICU	LTY (CHP
						PACKER NOT SET	T DUE TO LACK OF T	IME TO CEMENT
						SETTING).		
			22:45	23:15	0.50	PICKED UP TO 2m	ABOVE TOP OF LIN	ER AND
						REVERSE CIRCUI	LATED 2 x DRILL PIPI	E VOLUME
						(DUMPED CEMEN	T RETURNS).	
			23:15	00:00	0.75	POH.		
28/03/93	23	20		02:00			. LAID DOWN R/T AN	ID CMT HEAD.
				04:15			5RR1 AND RIH TO 10	
				04:30			OF LINER AT 1092m.	
				05:15			LE CLEAN - NO CEM	,
				06:15		PUMPED SLUG AI		ENT RECORDED.
				09:15		LAID DOWN HWI		
				10:00			CK UP 4.75" DCs AND) 3 5" 'F'
			07120	-0.00		GRADE DP.	CHOI 4.75 DOSTELL	, 5.5 <u>D</u>
			10:00	13:00			NTS 4.75" DCs. DRIFI	'En
			10.00	15.00			ED BACK IN DERRIC	
							ID JUNK SUB AND RI	
			13.00	18:00			PICKED UP 102 JOIN	
			15.00	10.00		TO 1082m.	FICKED OF 102 JOIN	13 3.3 Dr
			18.00	18:30			KE CIRCULATION A	ND WACHED
			10.00	10.50			TOP OF LINER, TAG	
						PACK-OFF SUB A		JED OFF AT
			18:30	20.00		DRILLED ON PAC		
				00:00			K-OFF SUB. SHED INSERT DPOB/	WIDED DI LIC
			20.00	00.00		FROM 1094 TO 110	·	WIFERFLOG
29/03/93	24	21	00:00	02:15	2.25	CONTINUED TO R	IH. PUSHED PACK-O	FF SUB/PLUG
						FROM 1109m TO 2	036m.	
			02:15	03:30	1.25	TAGGED CEMENT	ΓAT 2036m. DRILLED	TO 2045m -
						CEMENT IN RETU	RNS.	
			03:30	05:30	2.00	PUMPED SLUG AN	ND POH.	
			05:30	06:00	0.50	RIGGED UP 3.5" D	P GEAR WHILE SERV	ICING TDS.
			06:00	09:00	3.00	CONTINUED TO P	ОН.	
			09:00	13:30	4.50	MADE UP MILL TO	OOL AND 6 x 6.5" DC	AND 15
							2m. BROKE CIRCULA	
					,	WORKED TOOL.		
			13:30	15:00		PUMPED SLUG AN	ID POH.	
			15:00				KER AND RIH AT 3 S	TANDS/min TO
			-	-		TOL AT 1092m.		
			20:30	00:00			VITH 20 kips AND TES	TED SEALS
							WN ON PACKER WIT	
File: 1	MIN1	_DAY					Checked:	Date: 31-Aug-93

~ ~	D A 11	~	
2.1	110011	V f 1	TIONS

Date	Day No.	Days From Spu	ıd From	То	Hours	Daily Operations					
29/03/93	24	21	20:30	00:00		AND HELD FOR 1	5min. PICKED UP WI	TH OVERPULL			
						OF 10 kips TO CH	ECK SEATING. SET D	OWN WITH 40			
						kips AND TESTED PACKER TO 3500psi.					
30/03/93	25	22	00:00	05:00	5.00	CONTINUED POH	I AND LAID DOWN E	XCESS DP & BHA.			
			05:00	06:45	1.75	MADE UP WEAR	BUSHING R/T AND R	ETRIEVED SAME.			
						MADE UP AND R	IH WITH BOP TEST T	OOL.			
			06:45	09:30	2.75	TESTED BOPs TO	500/3500 psi.				
1			09:30	10:30			PLUG. PICKED UP 3.5	" DP ON			
						TEST PLUG AND	RIH. (TESTED SHEAR	R RAMS WHEN			
						OUT OF HOLE).					
			10:30	11:00	0.50	TESTED VBR ON	3.5"DP TO 500/3500ps	i.			
			11:00	12:00	1.00	POH WITH TEST I	PLUG. LAID OUT 6 x 1	HWDP.			
			12:00	14:45	2.75	RIGGED UP AND	TESTED SURFACE E	QUIPMENT.			
			14:45	15:30		RIH AND SET WE					
			15:30	23:00	7.50	MADE UP 6" BHA	. RIH AND TAGGED (CEMENT AT			
						2045m. (PICKED U	JP 6 x 4.75"DC & 27x3	.5" DP).			
			23:00	00:00	1.00	DRILLED CEMEN	T FROM 2045m TO 20)56m.			
31/03/93	26	23	00:00	01:30	1.50	DRILLED CEMEN	T FROM 2056m TO FL	OAT COLLAR.			
			01:30	02:00	0.50	TROUBLE SHOT S	SURFACE PRESURE L	OSS.			
			02:00	08:30	6.50	CONTINUED DRII	LING FLOAT COLLA	R AND SHOETRACK			
						TO 2108m. WORK	ED JUNK SUB.				
			08:30	10:15	1.75	DRILLED 6" HOLE	E FROM 2108m TO 211	l 1m.			
			10:15	11:30	1.25	CIRCULATED BO	TTOMS UP				
			11:30	12:30	1.00	POH TO SHOE & F	PERFORMED LOT TO	1.85SG EMW.			
			12:30	20:45	8.25	CONTINUED DRII	LING 6" HOLE FROM	f 2111m TO			
						2131m. FLUSHED	RISER EVERY 2HRS.	FLOW CHECKED			
						DRILLING BREAK	S.				
			20:45	21:00		WORKED JUNK B RISER.	ASKET AND CONTIN	UED TO FLUSH			
			21:00	00:00	3.00	PUMPED SLUG AN	ND POH.				
01/04/93	27	24	00:00			CONTINUE POH. I DS46HG PDC.	LAID OUT JUNK BASI	KET. MADE UP			
			02:00	05:30		RIH TO 7" SHOE A	T 2108m.				
							GHT REAMED TO BO	TTOM AT 2131m			
							FROM 2131m TO 220				
						RISER EVERY HO		, 2 0 0 0 1 2 2			
			16:15	17:15			LE CLEAN. BOOSTED	RISER			
						SIMULTANEOUSL					
			17:15	17:45			AND PUMPED SLUG				
			17:45				BHA CHANGE. LAID				
			•				O ROLLER REAMER.	·			
						SURVEY - MISRUI		· 			
			22:15	00:00			SHORT DC AND MON	EL DC. RIH.			
02/04/93	28	25	00:00				BHA. PICKED UP JAR				
	-			·- •		3/4"DC. RIH TO 21					
			03:30	04:15		·	GHT REAMED FROM	2190m TO 2209m.			
							FROM 2209m TO 229				
		***************************************			00		(h				
File:	MIN1	_DAY					Checked:	Date: 31-Aug-93			

2.1 DAILY OPERATIONS

Date		Days From Spud	From	То	Hours	Daily Operations					
02/04/93	28	25	04:15	23:15	I	RISER EVERY 3 HO	OURS.				
			23:15	00:00	0.75	S SURGED AND WORKED JUNK SUB. CIRCULATED AND					
					I	FLUSHED RISER.					
03/04/93	29	26	00:00	01:00	1.00 I	FLOW CHECKED,	PUMPED SLUG AND	POH. WIPED			
					٦	THROUGH TIGHT HOLE FROM 2237m TO 2190m (MAX.					
					3	30 kips). TIGHT HO	DLE AT 2184m - JARS	FIRED.			
					7	WASHED AND RE	AMED CLEAR. (MAX	IMUM OVERPULL 50			
					1	kips).					
			01:00	04:30	3.50	CONTINUED POH.	LAID OUT JARS ANI	D JUNK SUB.			
			04:30	05:30	1.00 1	MADE UP BIT ANI	O REDRESSED NB RC	LLER REAMER.			
			05:30	08:30		,	KED UP NEW JARS).	FILLED			
					. I	PIPE AND BROKE	CIRCULATION.				
			08:30	09:00	0.50 \$	SERVICED TDS AN	ND CHANGED SWIVE	EL PACKING.			
				10:00		CONTINUED RIH 1	ΓO 2277m.				
				10:15		WASHED FROM 22					
			10:15	00:00			FROM 2295m TO 236				
							DURS OR AS REQUIR				
04/04/93	30	27	00:00	12:30	12.50 I	DRILLED 6" HOLE	FROM 2362m TO 242	5m. BOOSTED			
						-	ED. FLOW CHECKED	BREAKS.			
				13:30		CIRCULATED BOT					
				15:15			ER TRIP TO 7" SHOE.				
				16:30			E CLEAN. PUMPED S	SLUG.			
				21:15		POH. STRAPPED P					
				21:45		RIGGED UP SUITE					
				00:00			SFL/SDT/GR/SP/CAL/				
05/04/93	31	28	00:00	15:30			E No.4 LOGS AS FOLI	LOWS:			
						RUN No.2 FMS/LD7	I/CNT/GR/AMS.				
						RUN No.3 VSP.					
							CST.(FULL RECOVE	ERY)			
				00:00		RUN No.5 - CBL/VI		_,			
06/04/93	32	29	00:00	05:00		,	PICKED UP 13 x 3.5" D	OP) TO			
						2425m.					
				06:15		CIRCULATED BOT					
			06:15	07:00			BURTON AND SET S				
							OM 2425m TO 2225m				
						•	1/10bbl SCR-100L. 13	bbl			
						MIXWATER.	2404				
				07:30		PULLED BACK TO					
				08:00		REVERSE CIRCUL	ATED AT 400psi.				
				08:15		RIH TO 2225m.	DIMMONIAND CETT C	TAGEN A			
			08:15	09:00			BURTON AND SET S				
							OM 2225m TO 2058m				
							AND 4gal/10bbl SCR-	100L.			
			00.55	00 1 =	•	11bbl MIXWATER).				
				09:15		OH TO 2047m.	ATTEN				
				09:45		REVERSE CIRCUL	ATED.				
			09:45	10:30	0.75 F	OH 10 STANDS.	A				
File:	MIN1	_DAY					Checked:	Date: 31-Aug-93			

2.1 DAILY OPERATIONS

Date		Days From Spu	ıd From	То	Hours	Daily Operations		
06/04/93	32	29	10:30	11:00	0.50	SLIPPED AND CU	T DRILLING LINE.	
			11:00	11:30		SERVICED TDS.		
			11:30	14:30	3.00	POH TO SURFACE	Ξ.	
			14:30	15:15	0.75	RIGGED UP 5" DP	AND MADE UP WEA	R BUSHING
						TOOL. RIH AND F	RETRIEVED SAME.	
			15:15	15:45	0.50	MADE UP TEST P. SEAWATER.	LUG AND RIH. FILLE	D PIPE WITH
			15:45	19:00	3.25	TESTED BOPs. UP	PER AND MIDDLE PI	PE RAMS,
							ER ANNULARS AND	
			19:00	19:45	0.75		AND TEST PLUG. RIG	GED UP AND
			19:45	20:15			LE PIPE RAMS TO 500	0/3500psi.
				21:00	0.75		UT TEST PLUG. RIGO	-
			21:00	22:00	1.00	RIGGED UP TO TE	EST SURFACE EQUIP. D LOWER IBOP AND 0/3500psi.	
			22:00	22:45	0.75	RIGGED UP WEAR	R BUSHING RUNNING	
			22:45	23:45	1.00	RIH WITH FLUTE	D HANGER AND FUN ABLE PIPE RAMS TO	CTIONED 5" PIPE
			23.45	00.00		RIGGED UP TO PI	CK 11P 4 75" DC	
07/04/93	33	30	00:00			LAID DOWN EXC		
			01:00		5.25		7" SCRAPER AND RIF	I. TAGGED
			06:15	08:00	1.75		EPT HOLE WITH 10bl	ol XCD HI-VIS
			08:00	10:00		DISPLACED WELI	TO BRINE.	
				10:30		POH TO 1840m.		
			10:30	10:45		SPOTTED HEC AN 1800 TO 1840m.	D CLAY STABILISER	ACROSS
			10:45	14:15		CONTINUE POH. F 57JTS.	RACKED BACK 28STI	OS, LAID OUT
			14:15	15:30		AND FUNCTIONE	I-VIS AT 100m. POH A D ALL RAMS TWICE. ND CIRCULATED HI-	RIH TO 113m
			17.00			BOOSTED RISER.		
			15:30			CONTINUED POH.		DENIGATION TO THE
			15:45				UMBERGER ON COM	·
			16:00				AMS AND CASING TO	-
			16:30	18:30			E RING DOWN TO 200	oom. POH.
			10.20	۸۸،۸۸		RIGGED DOWN SO		TECT TDEE AND
			18:30	UU:UU			PICKED UP SUBSEAT	j
							ER VALVE AND SUR CKED BACK SAME. P	
File:	MIN1	_DAY					Checked:	Date: 02-Sep-93

2.1 DAILY OPERATIONS

Date		Days From Spud	From	То	Hours	Daily Operations
07/04/93				00:00		RTS TUBING AND RACKED BACK.
08/04/93	34	31	00:00	02:45	2.75	CONTINUED PICKING UP 3.5" TUBING.
			02:45	04:30	1.75	POH WITH 3.5" TUBING AND RACKED BACK.
			04:30	05:00	0.50	RIGGED UP SCHLUMBERGER.
			05:00	07:30	2.50	RAN PERFORATING GUN No.1. RIH AT 0530HRS.
						FIRED AT 0700HRS. (PERFORATED FROM 1838m TO
						1827.5m) STARTED POH WITH SCHLUMBERGER -
						GAINED 7 bbl. WELL STATIC WHEN STATIONARY.
						CLOSED UPPER ANNULAR AT 0717HRS.
			07:30	10:30	3.00	PUMPED 7 bbl - ANNULAR NOT HOLDING, TRIP TANK
						GAINED SAME AMOUNT. OPENED UPPER ANNULAR AND
						CLOSED LOWER ANNULAR AT 0735HRS. ATTEMPTED TO
						BULLHEAD - PUMPED 25 bbl, TRIP TANK GAINED
						SAME AMOUNT. CLOSED BOTH ANNULARS AT 0755HRS.
						PUMPED 10 bbl, 7 bbl RETURNED. MAXIMUM
						PRESSURE OF 2900psi. MONITORED WELL, PRESSURE
						BLED BACK TO 2100psi - STATIC. OPENED CHOKE
						AT 0830HRS AND BLED BACK TO 550psi. MONITORED
						WELL - STATIC. BLED PRESSURE OFF IN 100psi
						INCREMENTS AND MONITORED OVER 30min
						INTERVALS. PRESSURE Opsi AT 1005HRS. OPENED
						CHOKE FULLY - WELL STATIC. OPENED BOTH
						ANNULARS - WELL STATIC.
			10:30	13:00	2.50	POH WITH SCHLUMBERGER AT REDUCED SPEED
						(6000'/HR MAX. IN 9.625" CASING) - WELL
						STATIC. RIGGED DOWN.
			13:00	16:30		MADE UP BIT AND BHA. RIH TO 1815m. BROKE
						CIRCULATION AT 989m.
			16:30	19:15	2.75	CIRCULATED AND WEIGHTED UP TO 1.17 SG.
						SPOTTED HI-VIS HEC 20 bbl PILL AND FLOW
			10 15	01.00		CHECKED.
			19:15			POH. HOLE TOOK CORRECT FLUID.
00/04/00	25	20	21:30			RIGGED UP AND RACKED BACK 3.5" TUBING.
09/04/93	35		00:00			CONTINUED TO MAKE UP AND RACK BACK TUBING.
			03:30			RIGGED UP SCHLUMBERGER.
			04:00	08:45		RAN PERFORATING GUN No.2 - FIRED AT 0631HRS
						(1827.5m TO 1825m AND 1821m TO 1816m). POH
			00.45	12.00		AND LAID DOWN GUNS.
			08:45	13:00		MADE UP BAKER DB PACKER ASSEMBLY. RIH AND SET
						PACKER AT 1800m. MONITORED HOLE ON TRIP OUT - LOSING AT 1 bbl/hr. LOST TOTAL OF 11 bbl
						BEFORE WELL BECAME STATIC.
			13:00	15.00		MADE UP TEST STRING AND RIH.
			15:00	_		PRESSURE TESTED HRS SURFACE EQUIPMENT AND
			13.00	10.43		TEST TOOLS TO 3500psi.
			16:45	10-00		CONTINUED RIH. MADE UP 3.5" TUBING TO 870m.
			19:00			RIGGED UP AND TESTED TUBING TO 3500psi.
			17.00	17.30	0.30	AGOLD OF AIRD FLOTED FOUNTS TO 3300psi.
File:	MIN1	_DAY				Checked: Date: 02-Sep-93

2.1 DAILY OPERATIONS

Date		Days From Sp	ud From	То	Hours	Daily Operations						
09/04/93	3 35	32	19:00	19:30		RIGGED DOWN.						
			19:30	00:00	4.50	RIH. MADE UP 3.	5" TUBING.					
10/04/93	36	33	00:00	00:15	0.25	2.25 CONTINUED TO RIH AND MAKE UP 3.5" TUBING.						
			00:15	01:00	0.75	0.75 PRESSURE TESTED TUBING, TST VALVE TO 3500psi						
			01:00	02:00	1.00	.00 PAINTED 3 LAND OUT JOINTS. CONT. RIH WITH						
						3.5" TUBING.						
			02:00	03:00	1.00	INCREASED BAC	K FLOW FRO	OM TUBI	ING STRING.			
						INSTALLED TIW	VALVE ANI	MONIT	ORED TRIP TANK -			
i						STILL LOSING.						
			03:00	05:00	2.00	RIGGED UP TO R						
						ANNULAR AT 03						
						50spm AND 850ps						
						CIRCULATING U			BALANCED TO			
			05.00	06.00		1.17 SG. OBSERV						
			05:00			CONTINUED RIH						
			06:00	06:30					ALVE AND CYCLED			
			06:30	07.00		OMNI VALVE. TE			-			
			07:00			POH FOR SPACE						
			07.00	07:30		TRIPPED 3 STANDS TO CONFIRM SPACE OUT						
			07:30	11.00		CALCULATIONS. 3.50 RAN UPPER TEST STRING.						
			11:00			0.50 KAN OPPER TEST STRING. D.50 PICKED UP EXTENDED BAILS.						
			11:30			1.00 PICKED UP EXTENDED BAILS. 1.00 PICKED UP FLOW HEAD AND RIGGED UP COFLEX HOSE						
				12.50		AND KILL LINE.						
			12:30	00:00		.50 RIGGED UP HRS ON RIG FLOOR. CLOSED UPPER TEST						
									OMNI VALVE TO			
						BLANK AND PRE			i			
						1500HRS - FUNCT						
						POSITION AND D			í			
						DEISEL AND 2 bbi	SEAWATER					
						1515HRS - FUNCT	IONED OMN	I TO WE	LL FLOW			
]	POSITION 1 AND	SHEARED PI	NS ON L	PR-N.			
						1545HRS - PRESSU	IRED ANNUI	LUS TO 1	300psi TO			
]	FUNCTION OMNI	AND OPEN I	LPR-N. W	ELL FLUIDS TO			
					(GAUGE TANKS.						
					:	1600HRS - GAS TO	STB. SIDE B	BOOM. IN	NCREASED TO			
						54/64" CHOKE.						
						1900HRS - SHUT II			· ·			
						PRESSURE. LPR-N						
						2500psi, HELD FOR			1			
440400						1935HRS - WELL S						
11/04/93	37	34	00:00			0000-0319: WELL S		_	i i			
						319-0920: OPENE		FIRST N	MULTI-RATE			
						TEST ON 20/64" C		301618==				
						920-1520: OPENE			ı			
								DELAYI	ED DUE TO ICING			
			1			OF VARIABLE CH	UKE.					
File:	MIN1_	DAY					Checked:	BM	Date: 31-Aug-93			

2.1 DAILY OPERATIONS

MINERVA-1

Date	Day	Days	Coul From	Т-		Daily Operations		And the second s
					nours			
11/04/93	3 31	34	00:00	00:00			ED WELL TO 48/64" C	HOKE FOR
					, pr	THIRD MULTI-RA		
							ED WELL TO 64/64" C	HOKE FOR
10/04/03		22				FINAL RATE.		
12/04/93	38	35		03:30			FLOW WELL THROUGH	GH 64/64" CHOKE.
Ì							Opsi ON ANNULUS.	
			03:30	00:00			N LPR-N VALVE FOR	
							ANNULUS ON TRIP	ΓANK. NO
						PRESSURE.		
13/04/93	39	36		03:30			OR FINAL BUILD UP.	
				04:15		CYCLED OMNI V	ALVE TO CIRC POSIT	ΓΙΟΝ.
			04:15	04:30	0.25	REVERSE CIRC W	//RIG PUMPS TO HRS	CHOKE,
						SEPARATOR.		
			04:30	05:00	0.50	R/U TO HALLIBU	RTON, OPEN RAMS, (OBSERVE WELL,
						PUMP 10 bbl HEC	AND 30 bbl MUD.	
			05:00	05:15	0.25	CLOSED VBRs, C	YCLED OMNI TO WE	LL TEST.
			05:15	06:00	0.75	BULL HEAD DOW	N TUBING - PUMPEI	O AWAY 12 bbl TO
						FORMATION. MA	X PRESSURE 2000psi.	
			06:00	07:00	1.00	CYCLED OMNI TO	O CIRC, PUMPED DO	WN STRING TO
						CHECK OMNI OP	EN.	
			07:00	07:15	0.25	OPENED RAMS, S	TUNG OUT OF PACK	ER.
			07:15	08:00	0.75	OBSERVED WELL	FOR FLOW.	
			08:00	10:00	2.00	CIRC GAS OUT O	F WELL, MAX GAS 1.	55%.
			10:00	11:30	1.50	R/DOWN FLOW H	EAD AND COFLEXIP	HOSE.
			11:30	13:00		POH WITH LAND	NG STRING, SERVIC	E BREAK SSSV
			13:00	16:15	3.25	POH WITH 3.5" TU	BING.	
			16:15	18:00	1.75	BROKE OUT AND	LAID DOWN LOWER	R TEST TOOLS AND
						RECOVER GAUGI	S.	
			18:00	20:15	2.25	P/U BROKE AND I	AY DOWN SST AND	FLOW HEAD.
			20:15	00:00			.5" TUBING FOR SUS	
						PLUG.		
14/04/93	40	37	00:00	00:30	0.50	RIH AND TAG TE	STED PACKER AT 180	00m. R/U CIRC
						HEAD.		
			00:30	01:45	1.25	CIRC BOTTOMS U	P, MAX GAS 0.86%	
			01:45	02:15			E AND TEST. AND PU	IMP 150m
]	BALLANCED CEM	ENT PLUG ON TOP O	OF PACKER
					•	W/100sx CLASS G.		
			02:15	03:15		•	D REVERSE CIRCUL	ATED.
			03:15	03:30			TO CLEAR TUBING I	
			03:30			POH. LAID DOWN		2.01 021/121/1.
			10:00				GER, RAN 7" BRIDGE	PLUG TAG TOP
			10.00	10.10			570m AND SET PLUG	· ·
							JG AND SET AT 1075	·
						R/DOWN SCHLUM		1 011 / 11 / 12
			16:15	16:45			OKE DOWN 5" TUBI	NG AND I AID
			10.13	10.73			ED 4.75" DCs IN DERR	
						OUT WEATHERFO		ICA. LAID
			1			JUI WEATHERFU	A LQUIFIVENT.	
File:	MIN1_	DAY				_	Checked:	Date: 02-Sep-93

2.1 DAILY OPERATIONS

MINERVA-1

Date		Days From Spu	d From	To	Hours	Daily Operations		
14/04/93	40	37	16:45	19:30			AND 5" DP AND TAC	GGED BRIDGE
						PLUG.		
			19:30	19:45	0.25	R/U HALLIBURTO	N AND TESTED LIN	ES TO 2500psi.
			19:45	20:00	PUMPED CEMENT PLUG No.2 W/ 60sx CLASS G FRO			CLASS G FROM
			1068m TO 1018m.					
			20:00	21:00	1.00	POH AND REVERS	E CIRCULATED, TH	EN PUMPED LONG
						WAY TO CLEAN O	UT PIPE.	
			21:00	00:00	3.00	POH AND LAID DO	OWN DRILL PIPE.	
15/04/93	41	38	00:00	08:00	8.00	POH LAID DOWN	3.5", 5"DP AND 4.75"	DCs.
			08:00	08:30	0.50	RIH TO 160m W/5"I	DP, R/U CIRC HEAD	
			08:30	08:45	0.25	CIRCULATED TO S	SEAWATER.	
			08:45	09:15	0.50	R/U CEMENT LINE	S AND TESTED. PU	MPED PLUG No.3
						w/60sx CLASS G Al	ND SEA WATER. DIS	SPLACED WITH
						5 bbl SEA WATER.	TOP OF CEMENT A	Γ 110m.
			09:15	09:30	0.25	POH TO 78m		
			09:30	09:45		CIRC PIPE CLEAN	AND FLUSHED STA	CK.
			09:45	10:15	0.50	POH AND LAID DO	WN PIPE.	
			10:15	10:45		RIH AND RETRIEV	ED WEAR BUSHING	.
			10:45	11:30	0.75	ATTEMPTED REMO	OVAL OF W/B FROM	1 R/T.
						UNSUCCESSFUL, L	AID DOWN W/B & T	TOOL.
			11:30	17:00	5.50	R/U TO PULL RISE	R AND BOP. PULLEI	DIVERTER.
						MU LANDING JT, P	PULLED SS CAMERA	. UNLATCHED
						STACK.		
			17:00	00:00	7.00	PULLED RISER AN	D STACK.	
16/04/93	42	39	00:00	06:00	6.00	CONTINUED TO PU	JLL RISER AND BOF	P. MOVED BOP &
						LMRP TO STUMPS	AND LAID OUT HA	NDLING GEAR.
			06:00	08:30	2.50	R/U, RAN CORROS	ION CAP ON POD LI	NE. STABBED
				AND LATCHED TO WELL HEAD W/ROV ASSISTANCE.				
						CUT TWO GUIDEL	INES, ROV CUTTER	BROKEN,
						RECOVERED ROV.	REEL IN CUT LINES	S.
			08:30	10:00	1.50	DEBALLASTED RIC	G.	
			10:00	13:45	3.75	STOPPED DEBALL	ASTING TO OFFLOA	D FARSWORD.
						LAID OUT REMAIN	IING 5" DRILL PIPE,	JUMPED ROV
						AND CUT POD LIN	E AND 3rd GUIDELII	NE, THEN
						PULLED BACK TO	SURFACE TO REPLA	ACE CUTTER
						BLADE, WITH ONE	GUIDELINE TO BE	CUT. RAN BACK
						IN W/ ROV AND CU	JT REMAINING GUI	DELINE.
			13:45	15:00	1.25	CONTINUED OFFLO	OADING FS. SURVE	YED SEABED
						w/ROV, RECOVERE	ED LOST TRANSPON	DER.
			15:00	19:15	4.25	DEBALLASTED RIC	3.	
			19:15	21:00	1.75	OFFLOADED BONA	AVISTA.	
			21:00	00:00	3.00	PULLED ANCHORS	.	
17/04/93	43	40	00:00	16:00	16.00	CONTINUED TO PU	ILL ANCHORS:	
						No.10 MB RACKE	D @ 0037	
						No.4 FS RACKED	@ 0155	
						No.9 MB PENNAN	T @ 0115, RACKED	@ 0255
						No.3 FS PENNANT	Г@ 0212, RACKED (@ 0454
		1					O _C	
File:	MIN1	_DAY					Checked: $\begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line$	Date: 31-Aug-93

2.1 DAILY OPERATIONS

MINERVA-1

Date		Days From Spu	d From	То	Hours	Daily Operations
17/04/93	43	40	00:00	16:00		No.11 MB PENNANT @ 0311, RACKED @ 0430
						No.8 MB PENNANT @ 0443, RACKED @ 0631
						No.5 FS PENNANT @ 0510, RACKED @ 0649
						No.2 FS PENNANT @ 0704, RACKED @ 0839
						No.1 FS PENNANT @ 0849, RACKED @ 1059
						No.7 MB PENNANT @ 0859, RACKED @ 1110
						1230 MB ON BRIDLE AND RIG FOR TOW
						No.12 FS PENNANT @ 1238, RACKED @ 1527
						No.6 PULLED BY RIG, RACKED @ 1600
						RIG RELEASED AT 1600hrs 17 APRIL 1993.

File: MIN1_DAY Checked: Date: 31-Aug-93

MINERVA-1

SECTION 3

File: MIN1_HDR.DOC

Checked:

Date: 1 September 1993

Petroleum

22/03/93

23/03/93

24/03/93

25/03/93

25/03/93

26/03/93

26/03/93

27/03/93

28/03/93

29/03/93

30/03/93

31/03/93

01/04/93

2031

2031

2107

2107

2107

2107

2107

2107

2107

2107

2108

2131

2208

1.15

1.15

1.15

1.15

1.16

1.15

1.16

1.15

1.16

1.16

1.15

1.15

1.16

52

45

45

44

45

45

45

43

54

43

51

42

43

46

45

45

45

14

14

17

15

18

13

18

13

13

14

14

12

15

14 3

14 3

20 4

15 3

22

12 2

22

12

12 2

14 3

14

16 3

17

4

2

20

20

14

7

10

4

10

4

4

7

7

7

6

5

5

4.6

4.8

5.8

4.8

5.2

4.8

4.8

4.8

4.8

4.8

5

MUD PROPERTIES RECORD

FINAL DRILLING REPORT

14.0

14.0

13.0

12.5

12.5

11.0

11.5

12.0

12.0

12.0

12.0

11.0

10.0

1

1

1

1

1

1

1

1

8.8

8.8

9.4

9.1

9.0

8.8

8.6

8.6

8.6

10.2

10.2

8.6

9.2

8.5

8.5

8.5

8.5

9.0

8.5

9.0

8.5

9.0

9.0

9.0

9.0

5.2

91.5

91.5

91.5

91.5

91

91

91.5

91

91

91

91

94.8

91.5

0.10

0.20

0.20

0.01

PV YP API W.L. HTHP W.L. Filter Cake MBT %Solid %H2O %Sand CI-%KCI Date Depth Temp. Density Viscosity Gels pΗ MF Ca+ (m) (degC) (S.G.) (sec/l) (Cp) (lb/100 ft²) 0 10 (lm) (ml) (1/32 in) (lb/bbl) (mg/L) (mg/L) (mg/L)1.03 08/03/93 106 100 9.0 09/03/93 560 1.03 100 10.0 100 10/03/93 560 1.03 100 10.0 2700 11/03/93 517 1.03 100 10.0 40 0.0 12/03/93 765 34 1.09 50 17 19 5 12 6 1 8.0 9.1 5.5 94.5 0.25 0.30 120 31000 32000 6.1 12/03/93 563 27 1.08 50 17 18 4 6.2 10.0 9.2 4.5 95.5 120 29000 32400 3 1 0.01 0.60 6.1 27000 13/03/93 1111 43 57 18 21 7 12 5.8 10.0 0.50 440 27000 5.2 1.09 1 9.0 5.4 94.6 0.50 13/03/93 1204 48 1.13 48 18 21 6 14 5 1 12.0 9.0 6.5 93.5 0.50 0.60 160 27000 28000 5.4 5 13/03/93 1204 48 1.12 50 18 21 14 1 12.0 9.0 93.4 0.25 0.60 160 27000 28000 5.4 6 6.6 13/03/93 58 18 22 14 5.5 10.0 200 25000 26400 5.0 1113 1.1 9.0 6.0 0.50 0.50 14/03/93 1204 1.13 52 18 21 14 5 12.0 9.0 6.5 93.5 0.50 27000 28000 5.4 0.60 160 51 5 5.5 15/03/93 1204 1.12 19 20 5 10 1 12.0 8.9 6.5 93.5 0.01 0.50 160 26000 29000 16/03/93 52 18 4.8 12.0 27000 5.5 1204 31 1.12 18 5 9 1 10.3 6.5 93.5 0.01 0.80 440 29000 16/03/93 1320 37 1.12 48 16 18 8 4.8 1 12.0 9.7 6.8 93.2 0.01 0.80 400 27000 29600 5 5.6 12 22 17/03/93 1635 46 1.14 50 20 30 5 14.0 9.2 7.4 91.6 0.01 0.45 360 26000 25400 4.8 24 17/03/93 1747 1.16 48 19 26 5 15.0 9.0 8.5 91.5 0.01 0.70 280 34000 30500 5.8 5 17/03/93 1635 46 1.15 52 20 25 10 21 1 14.0 9.2 7.6 92.4 0.01 0.45 280 25000 25000 4.8 18/03/93 1828 47 1.16 50 20 20 4 20 6 2 17.5 9.0 9.9 90.9 0.90 230 35000 30000 5.7 19/03/93 1842 46 1.15 50 15 18 15 6 18.5 9.0 9.1 90.9 0.90 200 34000 23000 4.0 20/03/93 1970 54 1.15 46 15 18 5 25 5.5 1 15.0 9.5 9.4 90.6 0.90 120 45000 37000 7.1 21/03/93 2031 1.15 46 15 18 5 25 5.5 15.0 9.5 9.4 45000 1 90.6 0.90 120 34000 6.5

File: MIN1 MUD Checked: Date: 02-Sep-93

15

50000

50000

49000

48000

46000

46000

45000

48000

43000

43000

37000

37000

37000

37000

34600

41000

49000 37000

49000 37000

48000 37000

48000 37000

48000 37000

8.3

8.3

7.1

7.1

7.1

7.1

7.0

7.0

7.0

7.0

7.0

6.6

7.8

0.90

0.90

0.70

0.70

0.70

0.60

0.70

0.70

0.70

0.60

0.60

0.60

0.50

120

120

320

320

360

160

200

150

150

50

50

100

320

MINERVA-1

Petroleum

MINERVA-1 135000 148000 135000 148000
 49000
 41200

 49000
 42000

 49000
 41000
 49000 39000 49000 36500 49000 43000 46000 36000 49000 36000 96000 94500 135000 148000 135000 148000 135000 148000 49000 41000 49000 39900 49000 36000 180 120 120 120 120 160 160 160 240 240 240 240 180 0.65 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 E 8 8 8 8 8 8 8 91.5 91.4 91.4 91.4 91.4 91.6 91.4 95.4 16 8.6 8.4 8.6 8.7 8.7 9.0 8.5 9.8 9.8 9.0 8.3 8.3 7.01 9.4 9.0 9.2 9.1 9.1 8.3 8.3 10.0 10.0 10.0 10.0 11.0 0.11 0.11 8 9 8 7 91 2222 4.8 0 15 18 91 <u>1</u> 6 2 2 17 21 15 14 14 14 15 15 2 5 5 **MUD PROPERTIES RECORD** \$ 5 5 45 4 2 6 8 4 48 26 2 2 2 2 2 2 48 1.15 1.16 1.16 1.15 1.15 1.17 1.15 4 4 6 42 45 20 4 4 48 36 47 2209 2295 2326 2295 2362 2425 2425 2074 2074 2425 2074 2047 02/04/93 02/04/93 03/04/93 04/04/93 05/04/93 06/04/93 09/04/93 03/04/93 03/04/93 07/04/93 08/04/93 11/04/93 02/04/93 12/04/93 01/04/93 01/04/93 3.1

7.8 7.8

8.9 7.8

∞.

7.6 7.5 6.9 24.0

24.0 24.0 24.0

8.9 18.0 24.0

135000 148000

160

10.4

2074

13/04/93

7.8

Checked:

02-Sep-93 Date:

File: MINI_MUD

MINERVA-1

PRODUCT	UNI	r size	QUANTITY
ALCOMER 120	25.00	KG	105
BIOZAN	50.00	LB	12
CAUSTIC SODA	25.00	KG	32
CITRIC ACID	25.00	KG	6
CLABAN	19.00	LT	6
CONQOR 303	208.00	LT	9
HEC POLYMER	50.00	LB	6
LIME	25.00	KG	23
MICA (Coarse)	15.00	KG	4
MIL-BAR (Bulk)	100.00	LB	2128
MILBIO	5.00	GAL	19
MILGEL BULK	100.00	LB	967
MILGUAR	25.00	KG	10
MILGUAR-C	2.00	LB	8
MILPAC	25.00	KG	74
NOXYGEN	25.00	KG	102
POT CHLORIDE	1.00	MT	102
POT HYDROXIDE	25.00	KG	83
SODA ASH	25.00	KG	20
SODIUM BICARB	25.00	KG	50
UNICAL	25.00	KG	7
WO 30	25.00	KG	2
WO DEFOAM	20.00	LITRE	2
XCD POLYMER	25.00	KG	59

File: MIN1_CON Checked: Date: 03-Sep-93

MINERVA-1

17.5" HOLE

PRODUCT	UNIT SIZE	QUANTITY
CAUSTIC SODA	25.00 KG	6
LIME	25.00 KG	4
MILGEL BULK	100.00 LB	30
NOXYGEN	25.00 KG	5

File: MIN1_CON Checked: Date: 03-Sep-93

MINERVA-1

12.25" HOLE

PRODUCT	UNIT SI	ZE	QUANTITY
ALCOMER 120	25.00 F	ζG	45
CAUSTIC SODA	25.00 F	G	7
LIME	25.00 K	K G	2
MIL-BAR (Bulk)	100.00 I	_B	268
MILGEL BULK	100.00 I	.B	140
MILPAC	25.00 K	G	55
NOXYGEN	25.00 K	G	9
POT CHLORIDE	1.00 N	ſΤ	18
POT HYDROXIDE	25.00 K	G	14
XCD POLYMER	25.00 K	G.	22

File: MIN1_CON

Checked:

AM

Date: 03-Sep-93

MINERVA-1

8.5" HOLE

PRODUCT	UNIT SIZE	QUANTITY
ALCOMER 120	25.00 KG	54
CITRIC ACID	25.00 KG	6
LIME	25.00 KG	13
MICA (Coarse)	15.00 KG	4
MIL-BAR (Bulk)	100.00 LB	969
MILBIO	5.00 GAL	10
MILPAC	25.00 KG	19
NOXYGEN	25.00 KG	46
POT CHLORIDE	1.00 MT	26
POT HYDROXIDE	25.00 KG	53
SODA ASH	25.00 KG	10
SODIUM BICARB	25.00 KG	35
WO 30	25.00 KG	2
WO DEFOAM	20.00 LITRE	1
XCD POLYMER	25.00 KG	34

File: MIN1_CON Checked: Date: 03-Sep-93

MINERVA-1

6" HOLE

PRODUCT	UNIT SIZE	QUANTITY
ALCOMER 120	25.00 KG	6
BIOZAN	50.00 LB	12
CAUSTIC SODA	25.00 KG	10
CLABAN	19.00 LT	6
CONQOR 303	208.00 LT	9
HEC POLYMER	50.00 LB	6
LIME	25.00 KG	4
MIL-BAR (Bulk)	100.00 LB	341
MILBIO	5.00 GAL	9
NOXYGEN	25.00 KG	42
POT CHLORIDE	1.00 MT	58
POT HYDROXIDE	25.00 KG	16
SODA ASH	25.00 KG	10
SODIUM BICARB	25.00 KG	15
WO DEFOAM	20.00 LITRE	1
XCD POLYMER	25.00 KG	3

File: MIN1_CON

Checked:

M

Date: 03-Sep-93

MINERVA-1

9.875" HOLE

PRODUCT	UNIT SIZE	QUANTITY
CAUSTIC SODA	25.00 KG	4
MILGEL BULK	100.00 LB	334

File: MIN1_CON Checked: Date: 03-Sep-93

MINERVA-1

SECTION 4

File: MIN1_HDR.DOC

Checked:

Date: 8 September 1993

MINERVA-1

36" HOLE

PRODUCT	UNIT SIZE	QUANTITY
CAUSTIC SODA	25.00 KG	5
MIL-BAR (Bulk)	100.00 LB	550
MILGEL BULK	100.00 LB	463
MILGUAR	25.00 KG	10
MILGUAR-C	2.00 LB	8
UNICAL	25.00 KG	7

File: MIN1_CON Checked: Date: 03-Sep-93

BHP Petroleum

FINAL DRILLING REPORT

4.0 BIT RECORD MINERVA-1

Bit	Run	Size	Bit Type	Jets	Depth	Total	Total	ROP	WOB	RPM	Pump	IADC Bit Grading
No	No	Make	Serial No.	TFA	In / Out	Metres	Hours	(m/hr)	(Kips)		gpm / psi	Comments
1RR	1	26	S3SJ	24 24 24	82	23.0	1.00	23.0	5.0 / 10.0	20 / 75	1000 / 1050	2.2.NO.A.E.I.NO.TD
IKK	1	SECURITY	595343	1.33	105	25.0	1.00	25.0	3.0 / 10.0	20 / /3	1000 / 1030	WITH 36" HO
2RR	2	9.875	S44GF	16 16 16	105	455.0	6.75	67.4	5.0 / 10.0	120 / 120	780 / 1780	2.2.WT.A.E.I.NO.TD
ZKK		SECURITY	530370	0.59	560	433.0	0.73	07.4	3.0 / 10.0	120 / 120	780 / 1780	PILOT HOLE
3RR1	3	26	S3SJ	24 24 24	105	10.0	0.25	40.0	5.0 / 10.0	60 / 75	1000 / 1050	2.2.NO.A.E.I.NO.TD
JAKI		SECURITY	595343	1.33	115	10.0	0.23	40.0	3.0 / 10.0	00 / 13	1000 / 1030	
3	4	17.5	S44G	18 18 18	115	445.0	7.50	59.3	5.0 / 10.0	120 / 120	1100 / 2650	1.1.NO.A.E.I.NO.TD
3	4	SECURITY	500510	0.75	560	445.0	7.30	39.3	3.0 / 10.0	120 / 120	1100 / 2630	
4	5	12.25	ATM-11HG	18 16 13	560	644.0	28.25	22.8	5.0 / 30.0	60 / 130	750 / 2900	2.3.FC.H.E.1.EC.TD
4		HUGHES	M13BD	0.57	1204	044.0	20.23	22.6	3.0 / 30.0	60 / 130	730 / 2900	
5	6	8.5	SS44G_	32 32 32	1204	5.0	4.50	1.1	25.0 / 25.0	80 / 80	480 / 2000	8.3.BC.N.1.I.BU.BHA
		SECURITY	572707	2.36	1209	3.0	4.50	1.1	23.0 23.0	80 / 80	460 / 2000	
6	7	8.5	DS61H	12 12 12 11 10 -	1209	612.0	30.75	19.9	5.0 / 10.0	130 / 180	500 / 2300	3.8.RO.N.D.I.FC.CP
	, 	HYCALOG	13495	0.5	1821	012.0	30.73	17.7	3.0 / 10.0	130 / 160	300 / 2300	
Cl	8	8.5	CD93		1821	7.0	1.75	4.0	5.0 / 30.0	50 / 130	300 / 1300	4.4.BT.S.D.I.CT.PR
		DIAM BOART	7920485	0	1828	7.0	1.73	4.0	3.0 / 30.0	30 / 130	300 / 1300	CORE: CONGLOMERATE
C2	9	8.5	CB303		1828	15.0	8.00	1.9	10.0 / 25.0	80 / 120	270 / 1500	0.8.RO.S.D.I.NO.PR
		DIAM BOART	7921166	0	1843	15.0	0.00	1.7	10.0 / 25.0	00 / 120	270 / 1500	CORE: CONGLOMERATE
C3	10	8.5	CD502	<u>- - - - - - - - - - </u>	1843	4.0	0.50	8.0	5.0 / 15.0	70 / 120	220 / 400	0.8.RO.S.E.I.CT.PR
<u></u>	10	DIAM BOART	7910476	0	1847	4.0	0.50	0.0	3.0 / 13.0	70 / 120	220 / 400	CORE: CONGLOMERATE
7	11	8.5	ATM22	12 12 12	1847	184.0	24.00	7.7	15.0 / 30.0	90 / 120	460 / 2500	4.7.WT.H.E.2.TR.PR
,	11	HUGHES	K98BL	0.33	2031	104.0	24.00	7.7	13.0 / 30.0	90 / 120	400 / 2300	
8	12	8.5	ATM 33	12 12 12	2031	76.0	9.50	8.0	25.0 / 30.0	100 / 100	462 / 2550	1.1.HC.H.E.I.NO.FM
0	12	HUGHES	F70BY	0.33	2107	70.0	9.50	0.0	23.0 / 30.0	100 / 100	402 / 2330	
9	13	8.5	H77SG	32 32 32 - - -	2107	0.0	0.00	0.0	5.0 / 5.0	70 / 70	650 / 900	0.0.NO.A.E.I.NO.CM
	13	SECURITY	560593	2.36	2107	0.0	0.00	0.0	3.0 7 3.0	10 / 10	030 / 900	CST CLEANOUT
9RR1	14	8.5	H77SG	32 32 32 - - -	1180	0.0	0.00	0.0	,	,	,	0.0.NO.A.E.I.NO.TD
JKK1	17	SECURITY	560593	2.36	1180	0.0	0.00	0.0	,		,	CASING SCRAPER RUN
9RR2	15	8.5	H77SG	32 32 32 - - -	2107	0.0	0.00	0.0	0.0 / 5.0		600 / 900	
9KK2	13	SECURITY	560593	2.36	2107	0.0	0.00	0.0	0.0 / 3.0	/	600 / 900	WIPER TRIP
5RR1	16	8.5	SS44G	12 14 32	1092	0.0	0.75	0.0	20 / 20	50 / 60	450 / 950	8.3.BC.N.1.I.BU.BHA
JKKI	10	SECURITY	572707	1.05	1092	0.0	8.75	0.0	2.0 / 3.0	50 / 60	450 / 850	CLEANOUT LINER TOP
10	17	6	J3	12 12 12	2036	9.0	1.25	7.2	2.0 / 10.0	20 / 45	200 / 2700	2.2.WT.A.1.I.NO.DP
10	17	HUGHES	95ER	0.33	2045	9.0	1.23	7.2	2.0 / 10.0	30 / 45	380 / 2700	CLEANOUT LINER

File: MIN1_BIT

Checked:

M

Date: 03-Sep-93

	Petro	BHP Petroleum			_	FINAL [FINAL DRILLING REPORT	, RE	ORT					
4.0		BIT RECORD												MINERVA-1
10001	٥	9	J3	12 12 12 - - -	2045						-		ŀ	OF OWCLATWO
INNOT	10	HUGHES	95ER	0.33	2131	86.0	10.50	8 .2	8.2 5.0 / 15.0 45 / 65	45 /		320 / 3800		S.S.WI.A.Z.Z.NO.IO
-	ç	9	DS46HG	11 11 11	2131						1		1	9 9 1 CTT D I BC DD
	13	HYCALOG	613386	0.28	2209	78.0	10.25	9.7	7.6 5.0 / 18.0 50 / 110	20 /		260 / 2700	78 18	8.6.LC.CI.D.J.BC.FR
;	ç	9	ATJ44C	12 12 12	2209								-	15 WT A ET DT IID
7.	3	HUGHES	T36PN	0.33	2295	86.0	19.00	4.5	4.5 15.0 / 20.0 85 / 85	82 /		260 / 2700	8 T	T.J.W.I.A.E.I.D.I.UN
7	7	9	F3	11 11 11	2295									AAWTAAIBTTD
CT	77	SMITH	KV1638	0.28	2425	130.0	27.50	4.7	20.0 / 25.0 70 / 70) -		260 / 1850	¥30 	4:4:W 1:A:4:1:B1:1D
13001	ç	9	F3	11 11 11	2074						-			AAWTAAIBTCM
INNCI	77	SMITH	KV1638	0.28	2074	0.0	00.0	0.0	_	`		260 / 1500	500 T	DISDI ACE TO BOINE
13002	22	9	F3	11 11 11	2074						$\frac{1}{1}$		+	A WT A 4 1 DT CM
TINGI		SMITH	KV1638	0.28	2074	0.0		0.0	_	<u> </u>		290 / 1700		NCREASE BRINE TO 1 17 SG

Checked:

Date: 03-Sep-93

File: MIN1_BIT

	A SUMMARY					NERVA-1
BHA Nan			Depth In:	0 m.	Depth Out:	116 m.
Purpose:	36" H	OLE				
Joints	BHA Item				O.D.	Lengt
1	BIT	, e - week			26.000	0.5
1	HOLE OPEN	IER			36.000	1.8
1	FLOAT SUB				9.500	1.4
3	DRILL COL	LAR 9.5"			9.500	27.4
1	CROSS OVE	ER .			8.000	1.0
3	DRILL COL				8.000	27.8
1	CROSS OVE				5.000	0.5
3	HEVI-WATI	E DRILL PIPE			5.000	26.8
			<u>:</u>	Cotal BHA Le	ength:	87.6 °
BHA Nan	ne: 2. 9.6	25" PILOT BHA	Depth In:	105 m.	Depth Out:	560 m.
Purpose:	SHAL	LOW GAS PILOT				
<u>loints</u>	BHA Item				<u>O.D.</u>	Lengt
l	BIT				9.875	0.2
	FLOAT SUB				8.000	1.2
5	DRILL COL				8.000	55.2
	CROSS OVE				5.000	0.5
3		E DRILL PIPE			5.000	116.1
			3	Cotal BHA Le	ngth:	173.3
BHA Nam	ne: 3.36"	ВНА	Depth In:	105 m.	Depth Out:	115 m.
Purpose:	36" H	OLE				
<u>loints</u>	BHA Item				O.D.	Length
l	BIT				26.000	0.56
	HOLE OPEN	ER			36.000	1.89
	FLOAT SUB				9.500	1.48
\$	DRILL COLI				9.500	27.49
	CROSS OVE				8.000	1.08
,	DRILL COLI				8.000	27.8 1
	CROSS OVE				5.000	0.55
	HEVI-WATE	DRILL PIPE			5.000	26.81
				Cotal BHA Le	ngth:	87.67
BHA Nam	ie: 4. 17.5	" BHA	Depth In:	115 m.	Depth Out:	560 m.
urpose:		PILOT HOLE				
<u>oints</u>	BHA Item				O.D.	Length
	BIT				7.500	0.44
	FLOAT SUB	. =			8.000	1.48
	DRILL COLI				9.500	18.21
	STRING STA				9.500	1.80
	DRILL COLI				9.500	9.28
	CROSS OVE				8.000	1.08
	DRILL COLI				8.000	55.22
	CROSS OVE				8.000	0.55
	HEVI-WATE	DRILL PIPE			5.000	80.35
			1	otal BHA Lei	ngth:	<u>168.41</u>
	N1_BHA		Check	\mathcal{O} .	Date: 3	1-Aug-93

BHA Nam Purpose: Joints 1 1 1 1 1 1 1 1 2	DRILL 12.25" HOLE BHA Item BIT NEAR BIT ROLLER REAMER SHOCK TOOL STRING ROLLER REAMER CROSS OVER MWD TOOL STRING STABILIZER DRILL COLLAR 8"	Depth In: 560 m.	Depth Out: O.D. 12.250 12.250 7.938	1204 m. Length 0.30 2.45
Joints 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BHA Item BIT NEAR BIT ROLLER REAMER SHOCK TOOL STRING ROLLER REAMER CROSS OVER MWD TOOL STRING STABILIZER		12.250 12.250	0.30
1 1 1 1 1 1 1 1 9	BIT NEAR BIT ROLLER REAMER SHOCK TOOL STRING ROLLER REAMER CROSS OVER MWD TOOL STRING STABILIZER		12.250 12.250	0.30
1 1 1 1 1 1 9 1	NEAR BIT ROLLER REAMER SHOCK TOOL STRING ROLLER REAMER CROSS OVER MWD TOOL STRING STABILIZER		12.250	
1 1 1 1 1 9 1	SHOCK TOOL STRING ROLLER REAMER CROSS OVER MWD TOOL STRING STABILIZER		12.250	
1 1 1 1 9 1	SHOCK TOOL STRING ROLLER REAMER CROSS OVER MWD TOOL STRING STABILIZER			2.75
1 1 1 9 1	STRING ROLLER REAMER CROSS OVER MWD TOOL STRING STABILIZER		1.750	3.44
1 1 9 1	MWD TOOL STRING STABILIZER		12.250	2.33
1 9 1 1	STRING STABILIZER		8.188	0.50
9 1 1			8.375	12.37
1 1	DRII I COI I AR R"		11.875	1.43
1	· · · · · · · · · · · · · · · · · · ·		8.000	82.69
	PONY COLLAR		8.000	2.73
2	DRILLING JAR		7.938	5.76
	DRILL COLLAR 8"		8.000	18.07
1	CROSS OVER		7.875	0.55
1	HEVI-WATE DRILL PIPE		5.000	9.05
1	DROP-IN DART SUB		5.000	0.69
11	HEVI-WATE DRILL PIPE		5.000	98.18
		Total BHA	Length:	240.54
BHA Nam	e: 6. 8.5" DRILL OUT	Depth In: 1204 m.	Depth Out:	1209 m.
Purpose:	DRILL 9.625" SHOE		•	
Joints	BHA Item		O.D.	Length
1	BIT		8.500	0.23
1	JUNK SUB		6.500	0.79
1	FLOAT SUB		6.375	0.90
15	DRILL COLLAR 6.5"		6.375	138.92
1	PONY COLLAR		6.500	3.07
1	DRILLING JAR		6.375	5.40
	DRILL COLLAR 6.5"		6.375	18.64
1	HEVI-WATE DRILL PIPE		5.000	9.05
	DROP-IN DART SUB		5.000	0.69
11	HEVI-WATE DRILL PIPE		5.000	98.18
		Total BHA	275.87	
BHA Name	: 7. 8.5" DRILL ASSY	Depth In: 1209 m.	Depth Out:	1821 m.
Purpose:	DRILL STRAIGHT HOLE	·		
<u>Joints</u>	BHA Item		O.D.	Length
	віт		8.500	0.24
	NEAR BIT ROLLER REAMER		8.500	1.84
	CROSS OVER		6.375	0.35
	MWD TOOL		6.500	12.70
	STRING STABILIZER		8.500	1.86
	DRILL COLLAR 6.5"		6.375	138.92
	PONY COLLAR		6.375	3.07
	DRILLING JAR		6.375	5.40
	DRILL COLLAR 6.5"		6.375	18.64
	HEVI-WATE DRILL PIPE		5.000	9.05
	DROP-IN DART SUB		5.000	0.69
l 1]	HEVI-WATE DRILL PIPE	pm	5.000	98.18
		Total BHA	Length :	290.94
		^		
File: MIN	1_ВНА	Checked:	Date: 3	1-Aug-93

BHP Petroleum
Petrok

4.1 BH	A SUMMARY	7				MI	NERVA-1
BHA Nar		" CORE No.1		Denth In-	1821 m.	Depth Out:	
Purpose:	COR		•	ocpui iii.	1021 111.	Depth Out.	1020 III.
Joints	BHA Item					O.D.	Length
						17.17.	Length
1	BIT	n 	ge water	*		8.500	0.30
3	CORE BARI					6.750	28.36
15	DRILL COL					6.375	138.92
1 1	DROP-IN D	E DRILL PIPE				5.000	9.05
11		E DRILL PIPE				5.000	0.69
11	IIEVI-WAII	C DRILL FIFE				5.000	98.18
				1	otal BHA L	ength:	<u>275.50</u>
BHA Nar	ne: 9. 8.5	" CORE No.2	I	Depth In:	1828 m.	Depth Out:	1842.5 m.
Purpose:	CORE	Ξ					
Joints	BHA Item					<u>O.D.</u>	Length
1	BIT					8.500	0.30
2	CORE BAR					6.750	19.21
1	CROSS OVE	ER				6.750	0.71
15	DRILL COL					6.375	138.92
1	PONY COLI					6.375	3.07
1	DRILLING J					6.500	5.20
2	DRILL COL					6.375	18.64
1		E DRILL PIPE				5.000	9.05
1	DROP-IN DA					5.000	0.69
11	HEVI-WATI	E DRILL PIPE				5.000	98.18
				1	otal BHA Le	ength:	<u> 293.97</u>
BHA Nan	ne: 10. 8.	5" CORE No.3	Γ	epth In:	1842.5 m.	Depth Out:	1847 m.
Purpose:	CORE	3					
<u>Joints</u>	BHA Item					O.D.	Length
1	BIT					8.500	0.30
2	CORE BARR	REL				6.750	19.21
1	CROSS OVE					6.750	0.71
15	DRILL COLI					6.375	138.92
1	PONY COLL					6.375	3.07
1	DRILLING J.					6.500	5.20
2	DRILL COLI					6.375	18.34
1		E DRILL PIPE				5.000	9.05
1	DROP-IN DA					5.000	0.69
11	HEVI-WATE	E DRILL PIPE				5.000	98.18
				T	otal BHA Le	ngth:	<u> 293.67</u>
BHA Nam	ne: 11.8.5	" DRILL ASSY	D	epth In:	1847 m.	Depth Out:	2031 m.
Purpose:	DRILI	L 8.5" HOLE					
Joints	BHA Item					O.D.	Length
1	BIT					8.500	0.26
1	NEAR BIT R	OLLER REAMER				8.500	1.84
1	CROSS OVE	R				6.375	0.35
1	MWD TOOL					6.500	12.70
1	STRING STA	BILIZER				8.500	1.86
15	DRILL COLL	AR 6.5"				6.375	138.92
1	PONY COLL	AR				6.500	3.07
2	DRILL COLL	LAR 6.5"				6.500	18.64
File: MI	N1_BHA			Checke	d:	Date: 02	2-Sep-93

FINAL DRILLING REPORT

HINESTED	V ///	Petroleum	FINAL DRILLING REPORT	
1	4.1 BH	A SUMMARY		MINERVA-1
HEVI-WATE DRILL PIPE			5.0	00 9.05
Total BHA Length Length Length	_			
Depth In: 2031 m. Depth Out: 2107 m.	11	HEVI-WATE DRILL PIPE	5.00	00 98.18
Drill Sit			Total BHA Length	285.56
Dinix	BHA Nar	me: 12. 8.5" DRILL ASSY	Depth In: 2031 m. Dep	oth Out: 2107 m.
BIT NEAR BIT ROLLER REAMER 8.500 1.84	Purpose:	DRILL 8.5" HOLE		
NEAR BIT ROLLER REAMER 8.500 1.84 CROSS OVER 6.375 0.35 MWD TOOL 6.500 12.70 STRING STABILIZER 8.500 1.86 DRILL COLLAR 6.5" 6.375 38.92 PONY COLLAR 6.5" 6.500 3.07 DRILL ING JAR 6.5" 6.500 18.64 HEVI-WATE DRILL PIPE 5.000 9.05 DRIDL TOOLLAR 6.5" 6.500 18.64 HEVI-WATE DRILL PIPE 5.000 9.05 DRIDL TOOLLAR 6.5" 6.500 18.64 HEVI-WATE DRILL PIPE 5.000 9.05 DRIDL TOOLLAR 6.5" 6.500 18.64 HEVI-WATE DRILL PIPE 5.000 9.05 DRIDL TOOLLAR 6.5" 6.500 0.69 HEVI-WATE DRILL PIPE 5.000 0.69 HEVI-WATE DRILL PIPE 5.000 0.69 HEVI-WATE DRILL PIPE 6.500 0.79 FLOAT SUB 6.500 0.79 FLOAT SUB 6.500 0.79 FLOAT SUB 6.500 0.79 FLOAT SUB 6.500 0.79 DRILL COLLAR 6.5" 6.500 3.07 DRILL COLLAR 6.5" 6.500 0.79 DRILL COLLAR 6.5" 6.375 18.64 HEVI-WATE DRILL PIPE 5.000 0.95 DROP-IN DART SUB 5.000 0.95 HEVI-WATE DRILL PIPE 5.000 0.95 DROP-IN DART SUB 6.500 0.79 HEVI-WATE DRILL PIPE 5.000 0.95 DROP-IN DART SUB 6.500 0.79 HEVI-WATE DRILL PIPE 5.000 0.95 DROP-IN DART SUB 6.500 0.79 HEVI-WATE DRILL PIPE 5.000 0.95 DROP-IN DART SUB 6.500 0.23 DRILL COLLAR 6.5" 6.500 0.79 FLOAT SUB 6.500 0.79 HEVI-WATE DRILL PIPE 6.500 0.95 DRILL COLLAR 6.5" 6.375 0.90 HEVI-WATE DRILL PIPE 6.500 0.90 HEVI-WATE DRILL	Joints	BHA Item	Ω .	D. Length
CROSS OVER			8.50	00 0.26
MWD TOOL				
1 STRING STABILIZER 15 DRILL COLLAR 6.5" 1 PONY COLLAR 1 DRILLING JAR 2 DRILL OLLAR 6.5" 2 DRILL COLLAR 6.5" 3 DROP-IN DART SUB 1 DROP-IN DART SUB 1 HEVI-WATE DRILL PIPE 3 DROP-IN DART SUB 1 HEVI-WATE DRILL PIPE 4 DROP-IN DART SUB 5 DRILL COLLAR 6.5" 5 DRILL COLLAR 6.5" 6 DROP-IN DART SUB 7 DROP-IN DART SUB 7 DROP-IN DART SUB 8 DROP-IN DART SUB 9 DROP-				
1				
1 PONY COLLAR 1 DRILLING JAR 2 DRILL COLLAR 6.5" 1 HEVI-WATE DRILL PIPE 3 .000 9.05 1 DROP-IN DART SUB 1 HEVI-WATE DRILL PIPE 5 .000 98.18 Total BHA Length: 290.76 BHA Name: 13.8.5 in C/O BHA 1 BIT 1 FLOAT SUB 1 PONY COLLAR 6.5" 2 DRILL COLLAR 6.5" 3 DRILL COLLAR 6.5" 4 DROP-IN DART SUB 5 DRILL PIPE 6 DRILL PIPE 7 DRILL PIPE 7 DRILL PIPE 8 DRILL PIPE 8 DRILL PIPE 8 DRILL COLLAR 6.5" 9 DRILL COLLAR 6.5" 1 DROP-IN DART SUB 1 BIT 1 BI				
DRILLING JAR				
DRILL COLLAR 6.5" 6.500 18.64				
HEVI-WATE DRILL PIPE 5.000 9.05				
1				
HEVI-WATE DRILL PIPE				
HEVI-WATE DRILL PIPE 5,000 98.18 Total BHA Length 290.76		· · · · · · · · · · · · · · · · · · ·	5.00	0.69
BHA Name: 13. 8.5 in C/O BHA Depth In: 2107 m. Depth Out: 2107 m.	11	HEVI-WATE DRILL PIPE	5.00	98.18
Purpose CLEANOUT AFTER CST'S			Total BHA Length	290.76
Doints BHA Item Do.D. Length	BHA Nan	ne: 13. 8.5in C/O BHA	Depth In: 2107 m. Dep	th Out: 2107 m.
BIT	Purpose:			
JUNK SUB	Joints	BHA Item	OI	Length
1	1	BIT	8.50	0 0.23
FLOAT SUB	1	JUNK SUB		
15 DRILL COLLAR 6.5" 6.500 138.92 1		FLOAT SUB	6.37	
PONY COLLAR	15	DRILL COLLAR 6.5"	6.50	0 138.92
1 DRILLING JAR 6.375 5.20 2 DRILL COLLAR 6.5" 6.375 18.64 1 HEVI-WATE DRILL PIPE 5.000 9.05 1 DROP-IN DART SUB 5.000 1.69 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47 BHA Name: 14.8.5" + SCRAPER Depth In: 1180 m. Depth Out: 1180 m. Purpose: SCRAPE 9.625" CSG SCRAPE 9.625" CSG Depth In: 1180 m. Depth Out: 1180 m. 1 BIT 8.500 0.23 1 CASING SCRAPER 6.500 0.79 1 FLOAT SUB 6.375 0.90 15 DRILL COLLAR 6.5" 6.500 138.92 1 PONY COLLAR 6.500 3.07 1 DRILLING JAR 6.375 5.20 2 DRILL COLLAR 6.5" 6.375 5.20 2 DRILL COLLAR 6.5" 6.375 18.64 1 HEVI-WATE DRILL PIPE 5.000 0.69 14 HEVI-WATE DRILL PIPE 5.000 0.69 <td>1</td> <td></td> <td>6.50</td> <td></td>	1		6.50	
DRILL COLLAR 6.5" 6.375 18.64 HEVI-WATE DRILL PIPE 5.000 9.05 DROP-IN DART SUB 5.000 0.69 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length : 302.47 BHA Name: 14.8.5" + SCRAPER Depth In: 1180 m. Depth Out: 1180 m. Purpose: SCRAPE 9.625" CSG Ioints BHA Item Q.D. Length BIT 8.500 0.23 CASING SCRAPER 6.500 0.79 FLOAT SUB 6.375 0.90 15 DRILL COLLAR 6.5" 6.500 138.92 1 PONY COLLAR 6.500 3.07 1 DRILLING JAR 6.375 5.20 2 DRILL COLLAR 6.5" 6.375 18.64 1 HEVI-WATE DRILL PIPE 5.000 9.05 1 DROP-IN DART SUB 5.000 0.69 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length : 302.47	1			
HEVI-WATE DRILL PIPE 5.000 9.05 DROP-IN DART SUB 5.000 0.69 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length : 302.47 BHA Name: 14.8.5" + SCRAPER Depth In: 1180 m. Depth Out: 1180 m. Purpose: SCRAPE 9.625" CSG Joints BHA Item Q.D. Length BIT 8.500 0.23 CASING SCRAPER 6.500 0.79 FLOAT SUB 6.375 0.90 15 DRILL COLLAR 6.5" 6.500 138.92 1 PONY COLLAR 6.500 3.07 1 DRILLING JAR 6.375 5.20 2 DRILL COLLAR 6.5" 6.375 18.64 1 HEVI-WATE DRILL PIPE 5.000 9.05 DROP-IN DART SUB 5.000 0.69 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length : 302.47	2	DRILL COLLAR 6.5"	6.37	5 18.64
DROP-IN DART SUB	1	HEVI-WATE DRILL PIPE		
HEVI-WATE DRILL PIPE 5.000 124.98	1			
BHA Name: 14.8.5" + SCRAPER Depth In: 1180 m. Depth Out: 1180 m.	14			
BHA Name: 14. 8.5" + SCRAPER Purpose: SCRAPE 9.625" CSG Joints BHA Item Depth In: 1180 m. Depth Out: 1180 m. O.D. Length 1 BIT 1 8.500 0.23 1 CASING SCRAPER 1 6.500 0.79 1 FLOAT SUB 1 6.375 0.90 15 DRILL COLLAR 6.5" 6.500 138.92 1 PONY COLLAR 1 DRILLING JAR 2 DRILL COLLAR 6.5" 6.375 5.20 2 DRILL COLLAR 6.5" 6.375 18.64 1 HEVI-WATE DRILL PIPE 1 5.000 9.05 1 DROP-IN DART SUB 1 DROP-IN DART SUB 1 Total BHA Length: 302.47				
Purpose: SCRAPE 9.625" CSG Joints BHA Item O.D. Length	DITA N-	14 O Ell - COD A DED		
Length Length Length Length Length			Depth In: 1180 m. Dept	in Out: 1180 m.
1 BIT	•		<u> </u>	I amadh
1 CASING SCRAPER 6.500 0.79 1 FLOAT SUB 6.375 0.90 15 DRILL COLLAR 6.5" 6.500 138.92 1 PONY COLLAR 6.500 3.07 1 DRILLING JAR 6.375 5.20 2 DRILL COLLAR 6.5" 6.375 18.64 1 HEVI-WATE DRILL PIPE 5.000 9.05 1 DROP-IN DART SUB 5.000 0.69 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47				
1 FLOAT SUB 15 DRILL COLLAR 6.5" 1 PONY COLLAR 1 PONY COLLAR 1 DRILLING JAR 2 DRILL COLLAR 6.5" 2 DRILL COLLAR 6.5" 3.07 1 HEVI-WATE DRILL PIPE 5.000 1 DROP-IN DART SUB 5.000 1 HEVI-WATE DRILL PIPE 5.000 1 Total BHA Length: Total BHA Length: 302.47				
15 DRILL COLLAR 6.5" 1 PONY COLLAR 1 DRILLING JAR 2 DRILL COLLAR 6.5" 2 DRILL COLLAR 6.5" 3.07 1 HEVI-WATE DRILL PIPE 5.000 1 DROP-IN DART SUB 5.000 14 HEVI-WATE DRILL PIPE 5.000 15 DROP-IN DART SUB 16 DROP-IN DART SUB 17 DROP-IN DART SUB 18 DROP-IN DART SUB 19 DROP-IN DART SUB 10 DROP-IN DART SUB 10 DROP-IN DART SUB 11 DROP-IN DART SUB 124.98 15 DROP-IN DART SUB 16 DROP-IN DART SUB 17 DROP-IN DART SUB 18 DROP-IN DART SUB 19 DROP-IN DART SUB 10 DROP-IN DART SUB 10 DROP-IN DART SUB 11 DROP-IN DART SUB 12 DROP-IN DART SUB 13 DROP-IN DART SUB 14 DROP-IN DART SUB 15 DROP-IN DART SUB 16 DROP-IN DART SUB 17 DROP-IN DART SUB 18 DROP-IN DART SUB 18 DROP-IN DART SUB 19 DROP-IN DART SUB 10 DROP-IN DART SUB 10 DROP-IN DART SUB 10 DROP-IN DART SUB 10 DROP-IN DART SUB 11 DROP-IN DART SUB 12 DROP-IN DART SUB 13 DROP-IN DART SUB 14 DROP-IN DART SUB 15 DROP-IN DART SUB 16 DROP-IN DART SUB 17 DROP-IN DART SUB 18 DROP-IN DART SUB 18 DROP-IN DART SUB 19 DROP-IN DART SUB 10 DROP-IN DART SUB				
1 PONY COLLAR 1 DRILLING JAR 2 DRILL COLLAR 6.5" 3.07 2 DRILL COLLAR 6.5" 6.375 1 HEVI-WATE DRILL PIPE 5.000 9.05 1 DROP-IN DART SUB 5.000 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47	_			
1 DRILLING JAR 2 DRILL COLLAR 6.5" 1 HEVI-WATE DRILL PIPE 1 DROP-IN DART SUB 1 HEVI-WATE DRILL PIPE 2 DRILL PIPE 3.000 1 DROP-IN DART SUB 3 DROP-IN DART SUB 4 DRILL PIPE 5.000 1 DROP-IN DART SUB 5				
2 DRILL COLLAR 6.5" 1 HEVI-WATE DRILL PIPE 5.000 9.05 1 DROP-IN DART SUB 5.000 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47				
1 HEVI-WATE DRILL PIPE 5.000 9.05 1 DROP-IN DART SUB 5.000 0.69 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47				
1 DROP-IN DART SUB 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47				
1 DROP-IN DART SUB 14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47				
14 HEVI-WATE DRILL PIPE 5.000 124.98 Total BHA Length: 302.47				
	14	HEVI-WATE DRILL PIPE	5.000	124.98
File: MIN1_BHA Checked: Date: 31-Aug-93			Total BHA Length	: <u>302.47</u>
File: MIN1_BHA Checked: Date: 31-Aug-93			\wedge	
	File: MI	NI_BHA	Checked:	Date: 31-Aug-93

4.1 Bi	HA SUMMAR	Y		MI	NERVA-1
BHA N	o./Description:	15. 8.5" WIPER TRIP	Depth In: 2107 m.	Depth Out:	2107 m.
	Purpose:	W/T AFTER CSG SCRAPE			
Joints	BHA Item			O.D.	Length
1	BIT	and the second of the second o		8.500	0.23
1	JUNK SUB			6.500	0.79
1	FLOAT SU	В		6.375	0.90
15	DRILL CO	· -		6.500	138.92
1	PONY COL	LAR		6.500	3.07
1	DRILLING	JAR		6.375	5.20
2	DRILL CO			6.375	18.64
1	HEVI-WAT	E DRILL PIPE		5.000	9.05
1	DROP-IN D	PART SUB		5.000	0.69
14	HEVI-WAT	E DRILL PIPE		5.000	124.98
			Total BHA	Length:	302.47
BHA No	o./Description:	16. 8.5" BHA	Depth In: 1092 m.	Depth Out:	1092 m.
	Purpose:	DRESS OFF LINER			
<u>Joints</u>	BHA Item			O.D.	Length
1	BIT			8.500	0.23
1	JUNK SUB			6.500	0.79
1	FLOAT SU	В		6.375	0.90
15	DRILL COI	LAR 6.5"		6.375	83.78
1	PONY COL	LAR		6.500	3.07
1	DRILLING	JAR		6.375	5.20
2	DRILL COI	LAR 6.5"		6.375	18.64
1	HEVI-WAT	E DRILL PIPE		5.000	9.05
1	DROP-IN D	ART SUB		5.000	0.69
14	HEVI-WAT	E DRILL PIPE		5.000	124.98
			Total BHA 1	ength:	247.33
BHA No	o./Description:	17. 6" BHA	Depth In: 1092 m.	Depth Out:	2045 m.
	Purpose:	DRILL OUT LINER			
<u>Ioints</u>	BHA Item			O.D.	Length
l	BIT			6.000	0.19
1	JUNK SUB			6.000	0.91

File: MIN1_BHA Checked: Date: 08-Sep-93

	BHP Petroleum	FINAL DRILLING REPORT	
4.1 BH	A SUMMARY		MINERVA-1
1	FLOAT SUB	6.000	0.7
12	DRILL COLLAR 4.75"	4.750	110.2
1	DRILL PIPE	3.500	9.6
1	DROP-IN DART SUB	6.000	0.6
	-	Total BHA Length:	122.3
BHA Na	me: 18. 6" BHA	Depth In: 2045 m. Depth	Out: 2131 m.
Purpose:	DRILL OUT LINER		
<u>Joints</u>	BHA Item	<u>O.D.</u>	Lengt
1	BIT	6.000	0.19
1	JUNK SUB	6.000	0.9
1	NEAR BIT ROLLER REAMER	6.000	1.8
1	DRILL COLLAR 4.75"	4.750	9.24
1	STRING STABILIZER	6.000	0.90
1	DRILL COLLAR 4.75"	4.750	8.90
1	STRING STABILIZER	6.000	0.97
16	DRILL COLLAR 4.75"	4.750	148.64
		Total BHA Length:	171.70
BHA Nar	me: 19. 6" BHA	Depth In: 2131 m. Depth (Out: 2209 m.
Purpose:	DRILL 6" HOLE	·	
<u>loints</u>	BHA Item	<u>O.D.</u>	Length
l	BIT	6.000	0.19
1	NEAR BIT ROLLER REAMER	6.000	1.83
l	DRILL COLLAR 4.75"	4.750	9.24
Į	STRING STABILIZER	6.000	0.96
[DRILL COLLAR 4.75"	4.750	8.96
[STRING STABILIZER	6.000	0.97
16	DRILL COLLAR 4.75"	4.750	148.64
	DRILL PIPE	3.500	9.62
l	DROP-IN DART SUB	4.750	0.65
		Total BHA Length:	181.06
3HA Nan	ne: 20. 6" BHA	Depth In: 2209 m. Depth C	Out: 2295 m.
Purpose:	DRILL 6" HOLE	·	
<u>loints</u>	BHA Item	<u>O.D.</u>	Length
	BIT	6.000	0.19
	JUNK SUB	4.750	0.91
	NEAR BIT ROLLER REAMER	6.000	1.83
	PONY COLLAR	4.750	2.97
	STRING ROLLER REAMER	6.000	1.73
	P/P SUB	4.750	0.61
	NON-MAG. DRILL COLLAR	4.750	9.29
_	STRING STABILIZER	6.000	0.97
7	DRILL COLLAR 4.75"	4.750	157.32
	DRILLING JAR	4.750	3.86
	DRILL COLLAR 4.75"	4.750	28.55
	DRILL PIPE	3.500	9.62
	DROP-IN DART SUB	3.500	0.65
		Total BHA Length:	218.50
File: MI	N1 BHA	Checked: Date	: 02-Sep-93

4.1 BH	A SUMMARY		N	INERVA-1
BHA Nar	ne: 21. 6" BHA	Depth In: 2295 m.	Depth Out	: 2425 m.
Purpose:	DRILL 6" HOLE			
<u>Joints</u>	BHA Item		O.D.	Length
1	BIT		6.000	0.21
1	NEAR BIT ROLLER REAMER		6.000	1.83
1	PONY COLLAR		4.750	2.97
1	STRING ROLLER REAMER		6.000	1.73
1	P/P SUB		4.750	0.61
1	NON-MAG. DRILL COLLAR		4.750	9.29
1	STRING STABILIZER		6.000	0.97
3	DRILL COLLAR 4.75"		4.750	27.25
1	DRILLING JAR		4.750	4.00
17	DRILL COLLAR 4.75"		4.750	158.62
1	DRILL PIPE		3.500	9.62
1	DROP-IN DART SUB		3.500	0.65
		Total BHA I	ength:	217.75

File: MIN1_BHA Checked Date: 31-Aug-93

4.2	DEVIA.	TION SUR	IVEYS		MINERVA-1
Depth	Angle	Azimuth	Method	Missrun	
560	1	0	Totco Punch		
572	0.6	265.8	MWD		
719	0.4	216.2	MWD		
863	0.6	202.9	MWD		,
1038	1.5	214.1	MWD		
1180	2.5	201.8	MWD		
1265	3.7	203.6	MWD		
1296	4	211	MWD		
1385	4.8	200.8	MWD		
1385	4.8	200.8	MWD		
1473	5.4	206	MWD		
1559	6	216	MWD		
1671	6.8	196.6	MWD		
1733	7.4	192.7	MWD		
1791	7.6	187.8	MWD		
1791	7.6	187.8	MWD		
1880	7.6	185.7	MWD		
1908	7.6	183.2	MWD		
1937	7.6	182.1	MWD		
1966	8.2	177.6	MWD		
1995	8.6	175.5	MWD		
2022	8.8	173	MWD		
2050	8.9	170.5	MWD		
2081	9	165.3	MWD		
2209	0	0	Totco Punch	Yes	

File: MIN1_CON

Checked:

MAR

Date: 03-Sep-93

MINERVA-1

SECTION 5

File: MIN1_HDR.DOC

Checked:

Date: 1 September 1993

5.0 CASING REPORT - 30" CASING

MINERVA-1

Hole Size	:	36	in	Total Depth	:	115	m	Casing Flange	/ We	llhead	
Weight in Slips	:	39000	lbs	Time Landed	:	20:30	hrs	Type	:	W/H	
R.T. to Wellhead	:	79	m	Casing Shoe at	:	115	m	Manufacturer	:	VETCO	
R.T. to Mudline	:	82	m	Top of Casing	:	79	m	Model	:	SG5	
Water Depth	:	57	m	Casing Cut-Off	:		m	Size	:	18.75	in
Air Gap	:	25	m	Liner Overlap	:		m	Rating	:	10000	psi

	PIPE INFORMATION													
Description Manufacturer Size Weight Grade Cnd Threads Joints Length Interval														
HOUSING	VETCO	30	450	В	1	ST-2	1	12.4	79 _ 91.4					
CASING JOINT	VETCO	30	329	В	1	ST-2	1	11.78	91.4 _ 103.18					
CASING SHOE	VETCO	30	329		1	ST-2	1	12.05	103.18 _ 115.23					

Mud Type : SEAWATER+HI-VIS Avg. Make Up Torque : ft lb Avg. Drag : kips

Density: 1.03 S.G. Movement: Max. Drag: kips

Viscosity : 100 RPM : Fluid Lost : No

PV / YP : 0 / 90 Avg. Torque Rot. : ft lb Percent Lost : %.

API W.L : Max. Torque Rot. : ft lb Volume Lost : bbl

Filled Each : 3 jts Moved until Bumped : No

Cementer : R. STRANGE

Remarks : RAN 2JT. DP STINGER BELOW R/T.

File: MIN1_CSG Checked: M Date: 03-Sep-93

5.0 CASING REPORT - 13.375" CASING

MINERVA-1

Hole Size	:	17.5	in	Total Depth	:	560	m	Casing Flange	/ We	llhead	
Weight in Slips	:	93000	lbs	Time Landed	:	21:30	hrs	Type	:	W/H	
R.T. to Wellhead	:	78	m	Casing Shoe at	:	550	m	Manufacturer	:	VETCO	
R.T. to Mudline	:	82	m	Top of Casing	:	78	m	Model	:	SG5	
Water Depth	:	57	m	Casing Cut-Off	:		m	Size	:	18.75	in
Air Gap	:	25	m	Liner Overlap	:		m	Rating	:	10000	psi

	PIPE INFORMATION														
Description	Description Manufacturer Size Weight Grade Cnd Threads Joints Length Interval														
HOUSING	VETCO	18.75	133	X-52	1	ALT-2	1	6.78	78 _ 84.78						
CASING CROSS OVER	VETCO	20	91.5	X-52	1	ALT2BTC	1	6.54	84.78 _ 91.32						
CASING JOINT	SUMITOMO	13.375	68	N-80	1	BTC	32	375.29	91.32 _ 466.61						
BAKER LOC	SUMITOMO	13.375	68	N-80	1	втс	4	46.67	466.61 _ 513.28						
FLOAT	WEATHERFORD	13.375	68	N-80	1	BTC	1	12.12	513.28 _ 525.4						
BAKER LOC	SUMITOMO	13.375	68	N-80	1	BTC	1	11.63	525.4 _ 537.03						
CASING SHOE	WEATHERFORD	13.375	68	N-80	1	BTC	1	12.28	537.03 _ 549.31						

Mud Type : SEAWATER+HI-VIS Avg. Make Up Torque : 9000 ft lb Avg. Drag : kips

Density: 1.03 S.G. Movement: Max. Drag: kips

Viscosity : 100 RPM : Fluid Lost : No

PV/YP : 0/90 Avg. Torque Rot. : ft lb Percent Lost : %.

API W.L : ft lb Volume Lost : bbl

Filled Each : 5 jts Moved until Bumped : No

Cementer : R. STRANGE

Remarks : FILLED AIR SPACE ABOVE PLUGS AT SURFACE. BUMPED PLUG.

File: MIN1_CSG Checked: M Date: 03-Sep-93

5.0 CASING REPORT - 9.625" CASING

MINERVA-1

Hole Size	:	12.25	in	Total Depth	:	1204	m	Casing Flange	/ We	llhead	
Weight in Slips	:	145000	lbs	Time Landed	:	08:30	hrs	Туре	:	W/H	
R.T. to Wellhead	1:	78.3	m	Casing Shoe at	:	1189.37	m	Manufacturer	:	VETCO	
R.T. to Mudline	:	82	m	Top of Casing	:	79.4	m	Model	:	SG5	
Water Depth	:	57	m	Casing Cut-Off	:		m	Size	:	18.75	in
Air Gap	:	25	m	Liner Overlap	:		m	Rating	:	10000	psi

	PIPE INFORMATION														
Description	Description Manufacturer Size Weight Grade Cnd Threads Joints Length Interval														
CASING SHOE	SUMITOMO	9.625	47	P110	1	NEW VAM	1	12.16	1189.4 _ 1176.2						
COLLAR JT.	SUMITOMO	9.625	47	P110	1	NEW VAM	1	12.16	1176.2 _ 1165.1						
CASING JOINT	SUMITOMO	9.625	47	N-80	1	NEW VAM	90	1080.8	1165 _ 84.28						
CASING PUP JOINT	SUMITOMO	9.625	53.5	P-110	1	NEW VAM	1	4.88	84.28 _ 79.4						

	ACCESSORIES INFORMATION												
Item	Type	Manufacturer	Number	Spacing	Interval								
BAKER LOC			7		1189.37 _ 1096.64								
CENTRALIZER	BOWSPRING CENT.	WEATHERFORD	4		1189.37 _ 1141.17								

Mud Type : KCL PHPA Avg. Make Up Torque : 16000 ft lb Avg. Drag : kips

Density : 1.13 S.G. Movement : NONE Max. Drag : kips

Viscosity : 51 RPM : Fluid Lost : No

PV / YP : 19 / 20 Avg. Torque Rot. : ft lb Percent Lost : %.

API W.L : 5 Max. Torque Rot. : ft lb Volume Lost : bbl

Filled Each : 5 jts Moved until Bumped : No

Cementer : DAVID WINN

Remarks : 1.25hrs LOST REPAIRING WEATHERFORD'S HYDRAULIC HOSE

OTHERWISE JOB WENT SMOOTHLY. AVERAGE RUN SPEED 13 JTS/HR.

File: MIN1_CSG Checked: Date: 03-Sep-93

5.0 **CASING REPORT - 7" CASING**

MINERVA-1

Hole Size	:	8.5	in	Total Depth	:		2107	m	Casing Flange	/ We	llhead	
Weight in Slips	:	80000	lbs	Time Landed	:		07:30	hrs	Type	:	W/H	
R.T. to Wellhead	:	79	m	Casing Shoe at	:		2107	m	Manufacturer	:	VETCO	
R.T. to Mudline	:	82	m	Top of Casing	:		1088	m	Model	:	SG5	
Water Depth	:	57	m	Casing Cut-Off	:			m	Size	:	18.75	in
Air Gap	:	25	m	Liner Overlap	:	98		m	Rating	:	10000	psi

	PIPE INFORMATION													
Description	Manufacturer	Size	Weight	Grade	Cnd	Threads	Joints	Length	Interval					
JM PACKER	BAKER	7	29	N-80	0		1	4	1084.8 _ 1088.8					
CPH PACKER	BAKER	7	29	N-80	0		1	3.17	1088.8 _ 1092					
LINER HANGER	BAKER	7	29	N-80	. 1	NEW VAM	1	2.05	1092 _ 1094.1					
LINER JOINT	SUMITOMO	7	29	N-80	1	NEW VAM	72	862.71	1094.1 _ 1956.8					
LINER PUP JOINT	SUMITOMO	7	29	N-80	1	NEW VAM	1	5	1956.8 _ 1961.8					
LINER JOINT	SUMITOMO	7	29	N-80	1	NEW VAM	9	109.2	1961.8 _ 2071					
LANDING COLLAR	BAKER	7	29	N-80	1	NEW VAM	1	12.01	2071 _ 2083					
BAKER LOC	SUMITOMO	7	29	N-80	1	NEW VAM	1	12.01	2083 _ 2095					
CASING SHOE	BAKER	7	29	N-80	1	NEW VAM	1	12.02	2095 _ 2107					

	ACCESSORIES INFORMATION												
Item Type Manufacturer Number Spacing Interval													
CENTRALIZER	BOWSPRING CENT.	WEATHERFORD	6	2	2107 _ 1962.84								
CENTRALIZER	BOWSPRING CENT.	WEATHERFORD	14	1	1962.84 _ 1778.67								
CENTRALIZER	TURBOLATOR RIGI	RAY OIL TOOLS	13	2	1778.67 _ 1455.6								
CENTRALIZER	TURBOLATOR RIGI	RAY OIL TOOLS	2	12	1455.6 _ 1156.18								

ł											
	Mud Type	:	KCL PHPA	Avg. Make Up Torque	:	9400	ft lb	Avg. Drag	:	10	kips
-	Density	:	1.15 S.G.	Movement	:	RECIPRO	C	Max. Drag	:	15	kips
-	Viscosity	:	43	RPM	:			Fluid Lost	:	No	
	PV / YP	:	13 / 12	Avg. Torque Rot.	:		ft lb	Percent Lost	:		%.
	API W.L	:	4.8	Max. Torque Rot.	:		ft lb	Volume Lost	:		bbl
	Filled Each	:	5 jts	Moved until Bumped	:	Yes					
I	Comenter		D WINN								

Cementer : D. WINN

Remarks : UNABLE TO SET LINER HANGER. CEMENTED ON BOTTOM. RECIPROCATED

WHILE PUMPING CEMENT. NO INDICATION OF TOP PLUG RELEASE. PLUG NOT

BUMPED.

Checked: Date: 06-Sep-93 File: MIN1_CSG

5.1 **CEMENTING REPORT - 30" CASING**

MINERVA-1

Job Type : 30" CASING

Started: 22:15 Hrs, 09/03/93 Completed: 23:00 Hrs, 09/03/93

Cementer: ROB STRANGE

CBL Log: No

Returns: Yes

Cemented

Interval: 82 - 115 m.

CET Run: No BHT Log: No

Total No. of Stages: 01

Time WOC: 0hrs, 0

		OFF INFORMATION	LEAK OFF INFORMATION						HOLE	
						DISP. EFF.	% OVER	SIZE	TO	FROM
min.	:	For	psi	:	Casing Test		50	36	115	82
in. hole	:	of New	m	:	Drilled					
SG mud	:	with	psi	:	Leak Off Test					
SG	:	Equivalent Fluid Density	m	:	at a depth of					
psi	:	Pressure at Test Depth								

			(ST	AGE IN	ORMATION					
Stage Number	:	001 of 01	Stage Type: PRI	ΜA	IRY	Planne	ed In	nterval : 82	to 115 m.		
Drill String Depth	:	112 m. To	ol Depth : m.			Drill String Press		•		:	psi.
Started Mixing	:	22:15 Hrs.	Completed	:	23:00 Hrs.	Mixing Rate	:	260 gpm.	Mixing Pressure	:	400 psi.
Break Pressure	:	psi.	Time Circ. at Btm.	:	.5 Hrs.	Circulat. Rate	:	280 gpm.	CirculatingPressure	:	150 psi.
Displaced with	:	15 bbiseawate	R Fluid Wt.	:	1.03 S.G.	Top Plug	:	No	Bottom Plug	:	No
Plug Down	:	23:00 Hrs, 09/03/	93 Bumped	:	No	Bled Off to	:	psi.			
Disp Rate Initi	ial	: 295	Final	:	295	Min	:		Max :		gpm
Disp Press Initi	ial	: 200	Final	:	230	Min	:		Max :		psi.
Lost Cir. : No		% Lost : 0	Volume : 0 bbl.		Foam Cmt		72	Start : 0	End: 0 scfn/bt	То	t: Oscf
First Preflush			u voi. Returned .		Fluid Wt.		12	•	Additives :		
Second Preflush					Fluid Wt.			_	Additives :		
Time stage S	tart	ed: T	ime stage Completed	1	•	Hours Befo	re C	pen:	Circ. Btw	n St	ages :
Time Brok	e C	ir. : 7	Time Pipe Move Star	1	:	Time Pipe M	ove	End :	Time Rele	ase l	Plug :

	COMMENTS
ADDED 2% BWOC CALCIUM CHLORIDE.	

Checked: Date: 03-Sep-93 File: MIN1_CSG

5.1 CEMENTING REPORT - 30" CASING

MINERVA-1

Ctore Number		001
Stage Number		
Fluid Number		001
Fluid Descripti	on	TAIL SLURRY
Fluid Type		LOW WATER LOSS
Fluid Class		CLASS G
Amount (sa	cks)	351
Volume ((bbl)	72
Yield (ft3	3/sx)	1.15
Excess	(%)	50
Caliper / Open	Hole	0
From / To	(m)	82 / 115
Designed Top	(m)	82
Density		1.9
Thickening Tir	ne (hrs)	3
Water Req'd	(bbl)	42
Water Used (g	gal/sack)	5
Water Source		SEAWATER
Total Vol. Mix	ed (bbl)	72
Volume Pumpe	ed (bbl)	72
Volume in Wel	ll (bbl)	72
Comp. Strengtl	h (lbs)	
Time	(hrs)	
Temp	(°C)	- Manager
Comp. Strengtl	n (lbs)	
Time	(hrs)	
Temp	(°C)	
BHST	(°C)	
внст	(°C)	
Outside Temp	(°C)	
Additives	of	
	of 2 % CA	LCIUM CHLORIDE
	of	

File: MIN1_SLR Checked: M Date: 03-Sep-93

5.1 CEMENTING REPORT - 13.375" CASING

MINERVA-1

Job Type : 13.375" CASING

Started: 22:20 Hrs, 10/03/93 Completed: 00:00 Hrs, 10/03/93

Cementer: ROB STRANGE

CBL Log: No

Returns: Yes

Cemented

CET Run: No

Total No. of Stages: 01

Interval: 82 - 560 m.

BHT Log: No

Time WOC: 0hrs, 0

	HOLE	DESC	RIPTIO	N		LEAK OFF INFORMATION						
FROM	TO	SIZE	% OVER	DISP. EFF.								
82	560	13.38	50		Casing Test	:	1500 psi.	For	:	5 min.		
					Drilled	:	3 m.	of New	:	12.25 in. hole		
					Leak Off Test	:	825 psi.	with	:	1.08 SG mud		
				1	at a depth of	:	550 m.	Equivalent Fluid Density	:	2.13 SG		
								Pressure at Test Depth	:	1662 psi.		

				S	TAGE IN	FORMATION						
Stage Number	:	001 of 01	Stage Type: P	RIM	ARY	Plann	ed Ir	nterval :	82 to 550 m.			
Drill String Depth	:	92 m. To	ool Depth : m.			Drill String Press			psi.	Final Final	;	psi.
Started Mixing	:	22:20 Hrs.	Complete	d :	23:25 Hrs.			330 gpm.	-	ng Pressure		450 psi.
Break Pressure	:	psi.	Time Circ. at Btn	ı. :	.5 Hrs.	Circulat. Rate	:	430 gpm.	Circulat	ingPressure	:	350 psi.
Displaced with	:	220.5 bbiseaw.	ATER Fluid W	L :	1.03 S.G.	Top Plug	:	Yes	B	lottom Plug	:	Yes
Plug Down	:	00:00 Hrs, 10/03	/93 Bumpe	d :	Yes	Bled Off to	:	psi.				
Disp Rate Initia	al	: 400	Fina	d :		Min	:			Max :		gpm
Disp Press Initia	al	: 340	Fina	1 :		Min	:			Max :		psi.
Lost Cir. : No		% Lost : 0 570 Flu	Volume : 0 bb		Foam Cmt	: No N2: 0	35	Start : 0) End	: 0 scfn/bt	То	t: 0 scf
First Preflush	Use	ed: 245 bbls o	of LEAD SLURRY		Fluid Wt.	: 1.5 S.G.			Additives	: 0.45 gp	s EC	CONOLIT
Second Preflush	Use	ed : bbls of			Fluid Wt.	: S.G.			Additives	:		
Time stage St	arte	ed :	Time stage Comple	ed	:	Hours Befo	re O	pen:		Circ. Btw	ı Sta	iges :
Time Broke	Ci	r. :	Time Pipe Move St	art	:	Time Pipe Me	ove :	End :		Time Relea	ise F	Plug :

CO	M	M	EI	T	S
----	---	---	----	---	---

50% EXCESS ON TAIL SLURRY VOLUME

File: MIN1_CSG Checked: Date: 03-Sep-93

5.1 CEMENTING REPORT - 13.375" CASING

MINERVA-1

Stage Number	001
Fluid Number	001
Fluid Description	TAIL SLURRY
Fluid Type	LOW WATER LOSS
Fluid Class	CLASS G
Amount (sacks)	503
Volume (bbl)	103
Yield (ft3/sx)	1.15
Excess (%)	50
Caliper / Open Hole	0
From / To (m)	400 / 550
Designed Top (m)	400
Density	1.9
Thickening Time (hrs)	3
Water Req'd (bbl)	60
Water Used (gal/sack)	5
Water Source	SEAWATER
Total Vol. Mixed (bbl)	103
Volume Pumped (bbl)	103
Volume in Well (bbl)	103
Comp. Strength (lbs)	0
Time (hrs)	
Temp (°C)	
Comp. Strength (lbs)	4.20
Time (hrs)	
Temp (°C)	
BHST (°C)	
BHCT (°C)	
Outside Temp (°C)	
Additives of	

File: MIN1_SLR Checked: Date: 03-Sep-93

5.1 **CEMENTING REPORT - 9.625" CASING**

MINERVA-1

Job Type : 9.625" CASING

Started: 09:32 Hrs, 15/03/93 Completed: 11:09 Hrs, 15/03/93

Cementer: DAVID WINN

CBL Log : No

Returns: Yes

Cemented

CET Run: No

Total No. of Stages: 01

Interval: 900 - 1189.7 m.

BHT Log : 51°C

Time WOC: 0hrs, 0

HOLE DESCRIPTION					LEAK OFF INFORMATION						
FROM	то	SIZE	% OVER	DISP. EFF.							
550	560	17.5			Casing Test:	3500 psi.	For	:	15 min.		
560	1204	12.25			Drilled:	3 m.	of New	:	8.5 in. hole		
					Leak Off Test:	1380 psi.	with	:	1.13 SG mud		
					at a depth of:	1189 m.	Equivalent Fluid Density	:	1.94 SG		
							Pressure at Test Depth	:	3272 psi.		

STAGE INFORMATION											
Stage Number :	001 of 01	Stage Type: PRI	MΑ	RY	Plann	ed I	nterval : 900) to 1187 m.			
Drill String : Depth	m. 1	Γool Depth : m.			Drill String Press		•		:	psi.	
Started Mixing :	09:32 Hrs.	Completed	:	11:09 Hrs.	Mixing Rate	:	294 gpm.	Mixing Pressur	e :	350	psi.
Break Pressure:	psi.	Time Circ. at Btm.	:	.75 Hrs.	Circulat. Rate	:	375 gpm.	CirculatingPressur	e :	2000	psi.
Displaced with:	270 bыMUD	Fluid Wt.	:	1.13 S.G.	Top Plug	:	Yes	Bottom Plu	g :	Yes	
Plug Down :	11:09 Hrs, 15/0	3/93 Bumped	:	Yes	Bled Off to	:	0 psi.				
Disp Rate Initial	: 336	Final	:	252	Min	:	252	Max	: 33	36	gpm
Disp Press Initial	: 150	Final	:	550	Min	:	150	Max	: 5	50	psi.
Lost Cir. : No	% Lost : 0	Volume : 0 bbl.	36	Foam Cmt	: No N2: 0	70	Start: 0 Slurry	End: 0 scfn/b		t: Os	cf .
First Preflush Us	ed: bbls of			Fluid Wt.	: S.G.		А	dditives :			
Second Preflush Us	ed : bbls of			Fluid Wt.	: S.G.		А	additives :			
Time stage Start	ed :	Time stage Completed	:		Hours Befo	re C)pen :	Circ. Bt	wn St	ages	:
Time Broke C	ir. :	Time Pipe Move Start	:		Time Pipe M	ove	End:	Time Rel	ease	Plug	:

File: MIN1_CSG

Checked:

Date: 03-Sep-93

5.1 CEMENTING REPORT - 9.625" CASING

MINERVA-1

Stage Number	001						
Fluid Number	001						
Fluid Description	TAIL SLURRY						
Fluid Type	NEAT						
Fluid Class	CLASS G						
Amount (sacks)	311						
Volume (bbl)	70						
Yield (ft3/sx)	1.15						
Excess (%)	20						
Caliper / Open Hole	С						
From / To (m)	900 / 1189.7						
Designed Top (m)	900						
Density	1.9						
Thickening Time (hrs)	3						
Water Req'd (bbl)	37						
Water Used (gal/sack)	5						
Water Source	FRESH						
Total Vol. Mixed (bbl)	70						
Volume Pumped (bbl)	70						
Volume in Well (bbl)	70						
Comp. Strength (lbs)							
Time (hrs)							
Temp (°C)							
Comp. Strength (lbs)							
Time (hrs)							
Temp (°C)							
BHST (°C)	58						
BHCT (°C)	38						
Outside Temp (°C)	25						
Additives of							

File: MIN1_SLR Checked: Date: 03-Sep-93

CEMENTING REPORT - 7" LINER

MINERVA-1

Job Type : 7" LINER

Started: 19:30 Hrs, 27/03/93 Completed: 22:00 Hrs, 27/03/93

Cementer: D. WINN

CBL Log: Yes

Returns: Yes

CET Run: Yes

Total No. of Stages: 01

Cemented

Interval: 1092 - 2108 m.

BHT Log: 93°C

Time WOC: Ohrs, m

	HOLE	DESC	CRIPTIO	N		LEAK OFF INFORMATION									
FROM	ТО	SIZE	% OVER	DISP. EFF.											
1189	2108	8.5	20	95	Casing Test	:	3500 psi.	For	:	15 min.					
				ĺ	Drilled	:	3 m.	of New	:	6 in. hole					
					Leak Off Test	:	2100 psi.	with	:	1.15 SG mud					
					at a depth of	:	2108 m.	Equivalent Fluid Density	:	1.85 SG					
								Pressure at Test Depth	:	5514 psi.					

STAGE INFORMATION

Stage Number : 001 of 01

Stage Type:

7" LINER

Planned Interval :

1092 to 2108 m.

Drill String Depth

Tool Depth :

Drill String Pressure Initial:

DSi.

psi.

Final : psi.

psi.

gpm

psi.

Started Mixing : 19:51 Hrs.

Completed: 20:43 Hrs.

Annular Pressure Initial: Mixing Rate: 160 gpm.

Mixing Pressure : 100 psi.

Final

Break Pressure:

Time Circ. at Btm. : 2 Hrs.

Circulat. Rate:

Bled Off to

CirculatingPressure:

Displaced with : 180 bblMUD

Plug Down : 22:00 Hrs, 27/03/93

Fluid Wt. : 1.15 S.G.

Top Plug : Yes Bottom Plug :

Disp Rate Initial : 85

Bumped:

85

Min : 85

Max : 85

Disp Press Initial: 100

Final : 100

Final

Min : 100

Max : 100

Lost Cir. : No

% Lost : 0

Volume : 0 bbl.

Foam Cmt : No N2:0 Start: 0

End: 0 scfn/bt Tot: 0 scf

Fluid Vol. Total : 271

Fluid Vol. Returned:

Slurry Vol. Total : 91

Slurry Vol. Returned:

First Preflush Used: bbls of

Fluid Wt. : S.G.

Additives : Additives :

Second Preflush Used:

Time stage Completed :

Hours Before Open :

Circ. Btwn Stages :

Time stage Started : Time Broke Cir. :

Time Pipe Move Start :

Time Pipe Move End :

Time Release Plug :

COMMENTS

Fluid Wt. : S.G.

WORKED PIPE WHILE DISPLACING. NO INDICATION OF TOP PLUG RELEASE, PLUG DID NOT BUMP. FLOATS HELD. LOG INDICATED GAS CONTAMINATION ABOVE 1600m, REASONABLE CEMENT QUALITY ACROSS ZONE OF INTEREST. CPH PACKER NOT SET. JM PACKER RUN AND SET FOLLOWING CLEANOUT-PRESSURE TESTED TO 3500psi.

Checked: Date: 06-Sep-93 File: MIN1_CSG

5.1 CEMENTING REPORT - 7" LINER

MINERVA-1

Stage Number	001
Fluid Number	001
Fluid Description	TAIL SLURRY
Fluid Type	LOW WATER LOSS
Fluid Class	CLASS G
Amount (sacks)	132
Volume (bbl)	27
Yield (ft3/sx)	1.15
Excess (%)	20
Caliper / Open Hole	С
From / To (m)	1700 / 2108
Designed Top (m)	1700
Density	1.9
Thickening Time (hrs)	20
Water Req'd (bbl)	15
Water Used (gal/sack)	5
Water Source	FRESH WATER
Total Vol. Mixed (bbl)	27
Volume Pumped (bbl)	27
Volume in Well (bbl)	27
Comp. Strength (lbs)	4937
Time (hrs)	12
Temp (°C)	93
Comp. Strength (lbs)	0
Time (hrs)	
Temp (°C)	
BHST (°C)	93
BHCT (°C)	57
Outside Temp (°C)	15
Additives 22 gal of 18	GAL/10 HALAD 322L

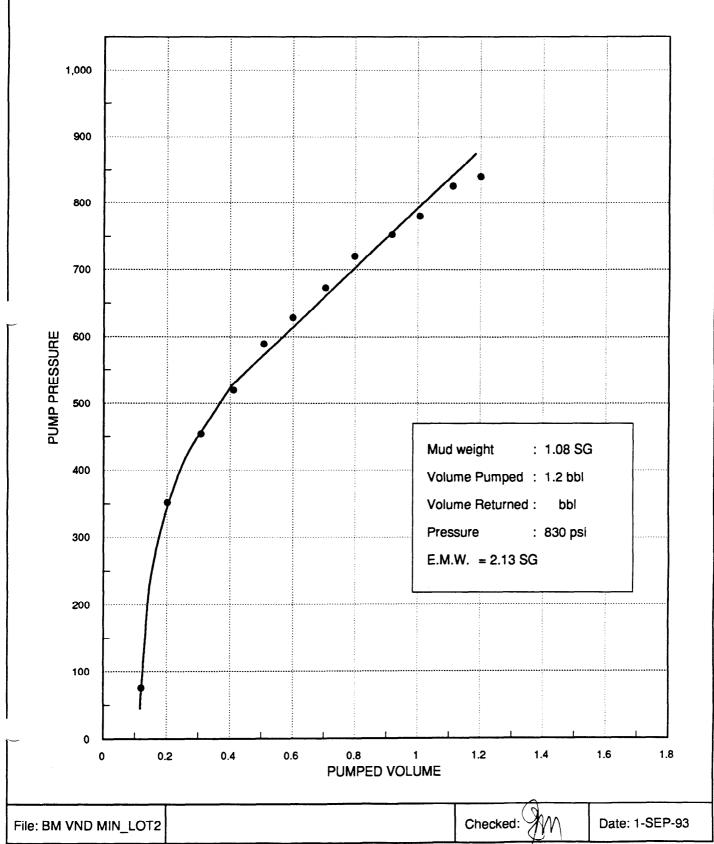
	001
	002
ion	LEAD SLURRY
	GAS BLOCK CEMENT
	CLASS G
icks)	173
(bbl)	64
3/sx)	2.08
(%)	20
Hole	С
(m)	1092 / 1700
(m)	1092
	1.58
me (hrs)	20
(bbl)	50
gal/sack)	8.5
	FRESH WATER
ed (bbl)	64
ed (bbl)	64
ll (bbl)	64
h (lbs)	1821
(hrs)	15.3
(°C)	93
h (lbs)	0
(hrs)	
(°C)	
(°C)	93
(- /	
(°C)	57
	57 15
	ion acks) (bbl) B/sx) (%) Hole (m) (m) me (hrs) (bbl) gal/sack) ded (bbl) ed (bbl) h (lbs) (hrs) (°C) h (lbs)

75 gal of 15 GAL/10 HALAD 322L 610 gal of 122 GAL/10 MICROBLOCK

File: MIN1_SLR Checked: Date: 08-Sep-93

5.2.1 LEAK OFF TEST DIAGRAM

MINERVA-1


TVD

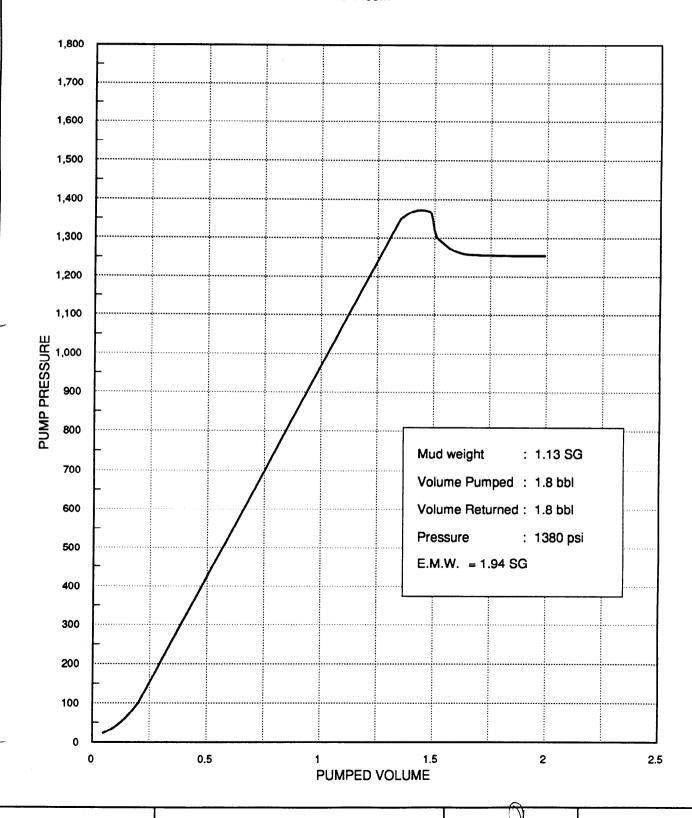
: 563m

Casing Diameter : 13.375" 68 lb/ft

Shoe TVD

: 550m

5.2.2 LEAK OFF TEST DIAGRAM


MINERVA-1

TVD : 1207m

Casing Diameter : 9.625" 47 lb/ft

Shoe TVD

: 1189m

File: BM VND MIN LOT3

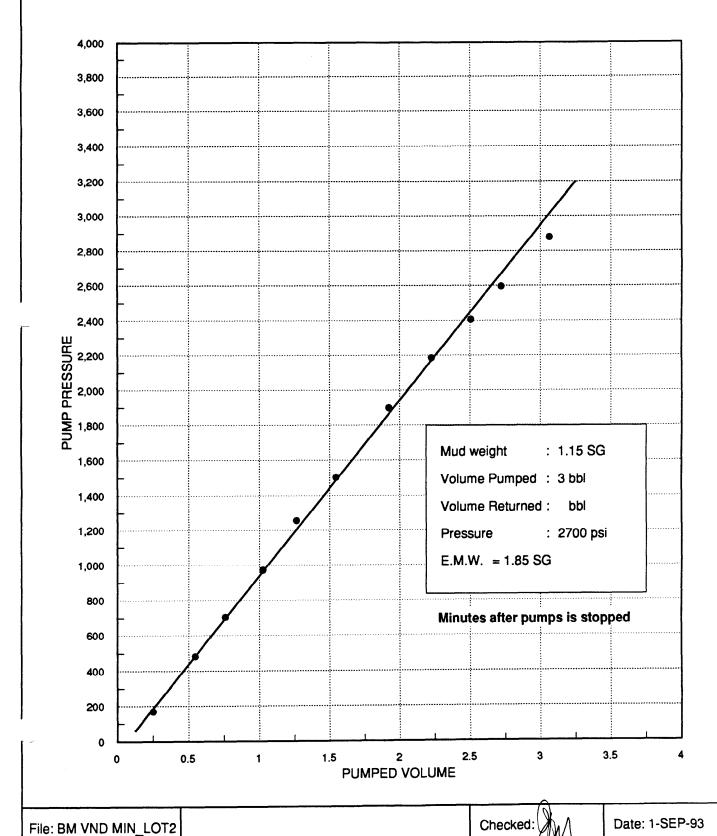
Checked:X

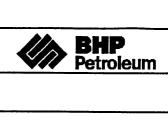
Date: 1-SEP-93

5.2.3 LEAK OFF TEST DIAGRAM

MINERVA-1

TVD


: 2106m


Casing Diameter

: 7" 29 lb/ft

Shoe TVD

: 2103m

MINERVA-1

SECTION 6

File: MIN1_HDR.DOC

Checked:

Date: 1 September 1993

6.0 ABANDONMENT/SUSPENSION CEMENTING REPORT

MINERVA-1

Job Type : SUSPENSION PLUG Started : 01:45 Hrs, 13/04/93 Completed : 02:15 Hrs, 13/04/93

Cementer: ROB STRANGE CBL L

CBL Log : No

Returns : Yes

Cemented

CET Run: No

Total No. of Stages : 01

Interval: 1650 - 1800 m.

BHT Log: No

Time WOC: 7hrs, 4

				ST	AGE IN	ORMATION						,	
Stage Number	:	001 of 01	Stage Type : SUS	PE	NSION	Plann	ed I	nterval : 16	550 to 1800 m	١.			
Drill String Depth	:	1800 m.	Tool Depth : m.			Drill String Press		-	si.	Final Final		psi psi	
Started Mixing	:	01:45 Hrs.	Completed	:	02:15 Hrs.	Mixing Rate	:	200 gpm.	Mixing	Pressui	e :	600	psi.
Break Pressure	:	psi.	Time Circ. at Btm.	:	1.25 Hrs.	Circulat. Rate	:	gpm.	Circulating	Pressur	e :	psi	
Displaced with	:	32 bbiBRINE	Fluid Wt.	:	1.17 S.G.	Top Plug	:	No	Bot	tom Plu	g :	No	
Plug Down	:	: Hrs,	Bumped	:	No	Bled Off to	:	psi.					
Disp Rate Init	ial	: 300	Final	:	250	Min	:	250		Max	: 3	300	gpm
Disp Press Init	ial	: 250	Final	:	500	Min	:	250		Max	: 9	900	psi.
Lost Cir. : No		% Lost : 0	Volume : 0 bbl.		Foam Cmt	: No N2 : 0	19	Start : 0	End:	0 scfn/t	ot T	ot : 0	scf
First Preflush	Us	ed : bbls of	•		Fluid Wt.	: S.G.			Additives :				
Second Preflush	Us	ed : bbls of	•		Fluid Wt.	: S.G.			Additives :				
Time stage S	tari	ed :	Time stage Completed	ı	:	Hours Befo	re C	Open:		Circ. Bt	wn S	Stages	:
Time Brok	e C	ir. :	Time Pipe Move Star	t	:	Time Pipe M	ove	End:	T	ime Re	lease	Plug	:

COMMENTS

Balanced plug set on top of test packer at 1800m. Tagged top of cement plug at 1670m. Set 7" bridge plug at 1659m.

File: MIN1_CSG Checked: Checked: Date: 08-Sep-93

ABANDONMENT/SUSPENSION CEMENTING REPORT

MINERVA-1

Job Type : SUSPENSION PLUG

Started: 19:30 Hrs, 14/04/93

Completed: 20:00 Hrs, 14/04/93

Cementer: ROB STRANGE

CBL Log : No CET Run: No Returns: Yes

Cemented

Total No. of Stages : 01

Interval: 1018 - 1068 m.

BHT Log:

Time WOC: hrs, mi

				S1	TAGE IN	FORMATION						
Stage Number	:	001 of 01	Stage Type: SUS	SPE	ENSION	Plann	ed I	nterval : 10	18 to 1068 m.			
Drill String Depth	:	1068 m.	Tool Depth : m.			Drill String Press		Initial : ps		:		
Started Mixing	:	19:45 Hrs.	Completed	:	20:00 Hrs.	Mixing Rate	:	210 gpm.	Mixing Pressure	: :	500 p	osi.
Break Pressure	:	psi.	Time Circ. at Btm.	:	1.25 Hrs.	Circulat. Rate	:	gpm.	Circulating Pressure	:	psi.	
Displaced with	:	32 bbiBRINE	Fluid Wt.	:	1.17 S.G.	Top Plug	:	No	Bottom Plug	:	No	
Plug Down	:	: Hrs,	Bumped	:	No	Bled Off to	:	psi.				
Disp Rate Initi	al	: 120	Final	:	160	Min	:	160	Max :	3	00	gpm
Disp Press Initi	al	: 150	Final	:	250	Min	:	150	Max :	10	000	psi.
Lost Cir. : No		% Lost : 0	Volume : 0 bbl.		Foam Cmt	: No N2 : 0		Start: 0	End: 0 scfn/bl	Т	ot: 0 sc	f
Fluid Vol. Total	:	44]	Fluid Vol. Returned:		S	lurry Vol. Total :	12	Slurry	Vol. Returned :			
First Preflush	Use	ed : bbls of			Fluid Wt.	: S.G.		A	Additives :			
Second Preflush	Use	ed : bbls of			Fluid Wt.	: S.G.		A	Additives :			
Time stage St	tarte	ed :	Time stage Completed	i	:	Hours Befo	re C	pen :	Circ. Btv	m St	ages	:
Time Broke	e Ci	г. :	Time Pipe Move Star	t	:	Time Pipe M	ove	End:	Time Rele	ase	Plug	:

COMMENTS

Balanced cement plug set on top of 9.625" bridge plug

at 1075m.

File: MIN1_CSG Checked: Date: 08-Sep-93

6.0 ABANDONMENT/SUSPENSION CEMENTING REPORT

MINERVA-1

Cementer: ROB STRANGE CI

CBL Log : No

Returns: No

Cemented

CET Run: No

Total No. of Stages : 01

Interval: 110 - 160 m.

BHT Log:

Time WOC : hrs, mi

				Si	TAGE INF	ORMATION					····
Stage Number	:	001 of 01	Stage Type: SUS	SPE	ENSION	Plann	ed I	nterval : 110) to 160 m.		
Drill String Depth	:	160 m.	Tool Depth : m.			Drill String Press		•		:	psi.
Started Mixing	;	09:00 Hrs.	Completed	:	09:05 Hrs.	Mixing Rate	:	170 gpm.	Mixing Pressure	:	200 psi.
Break Pressure	:	psi.	Time Circ. at Btm.	:	Hrs.	Circulat. Rate	:	gpm.	CirculatingPressure	:	psi.
Displaced with	:	6 bblSEAW	ATER Fluid Wt.	:	1.03 S.G.	Top Plug	:	No	Bottom Plug	:	No
Plug Down	:	: Hrs,	Bumped	:	No	Bled Off to	:	psi.			
Disp Rate Initi	ial	: 60	Final	:	40	Min	:	40	Max :	21	0 gpm
Disp Press Initi	al	: 150	Final	:	100	Min	:	100	Max :	20	00 psi.
Lost Cir. : No	,	% Lost : (Volume : 0 bbl.		Foam Cmt	: No N2 : 0		Start: 0	End: 0 scfn/bt	То	t: 0 scf
Fluid Vol. Total	١:	18	Fluid Vol. Returned :		SI	urry Vol. Total :	12	Slurry	Vol. Returned :		
First Preflush	Us	ed : bbls o	of		Fluid Wt.	: S.G.		A	additives :		
Second Preflush	Us	ed : bbls o	of		Fluid Wt.	: S.G.		A	additives :		
Time stage S	tart	ed :	Time stage Completed	i	:	Hours Befo	re C)pen :	Circ. Btwr	Sta	ages :
Time Brok	e C	ir. :	Time Pipe Move Star	t	:	Time Pipe Me	ove	End:	Time Relea	se I	Plug :

File: MIN1_CSG Checked: Date: 08-Sep-93

6.0 WELL SUSPENSION/ABANDONMENT CEMENTING REPORT

MINERVA-1

Stage Number	001
Fluid Number	001
Fluid Description	SUSPENSION PLUG
Fluid Type	RETARDED
Fluid Class	CLASS G
Amount (sacks)	89
Volume (bbl)	19
Yield (ft3/sx)	1.18
Excess (%)	20
Caliper / Open Hole	С
From / To (m)	1650 / 1800
Designed Top (m)	1650
Density	1.9
Thickening Time (hrs)	2.3
Water Req'd (bbl)	10.5
Water Used (gal/sack)	5
Water Source	FRESH
Total Vol. Mixed (bbl)	19
Volume Pumped (bbl)	19
Volume in Well (bbl)	19
Comp. Strength (lbs)	
Time (hrs)	
Temp (°C)	
Comp. Strength (lbs)	
Time (hrs)	
Temp (°C)	
BHST (°C)	
BHCT (°C)	
Outside Temp (°C)	15
Additives 5 gal of 5 G	AL/10 SCR-100L

Stage Number	001
Fluid Number	001
Fluid Description	SUSPENSION PLUG
Fluid Type	NEAT
Fluid Class	CLASS G
Amount (sacks)	60
Volume (bbl)	12
Yield (ft3/sx)	1.15
Excess (%)	20
Caliper / Open Hole	С
From / To (m)	1018 / 1068
Designed Top (m)	1018
Density	1.9
Thickening Time (hrs)	
Water Req'd (bbl)	7
Water Used (gal/sack)	5
Water Source	SEAWATER
Total Vol. Mixed (bbl)	12
Volume Pumped (bbl)	12
Volume in Well (bbl)	12
Comp. Strength (lbs)	
Time (hrs)	
Temp (°C)	
Comp. Strength (lbs)	
Time (hrs)	
Temp (°C)	
BHST (°C)	
BHCT (°C)	
Outside Temp (°C)	15
Additives of	

File: MIN1_SLR Checked: Date: 07-Sep-93

6.0 WELL SUSPENSION/ABANDONMENT CEMENTING REPORT

MINERVA-1

Stage Number	001
Fluid Number	001
Fluid Description	SUSPENSION PLUG
Fluid Type	NEAT
Fluid Class	CLASS G
Amount (sacks)	60
Volume (bbl)	12
Yield (ft3/sx)	1.15
Excess (%)	20
Caliper / Open Hole	С
From / To (m)	110 / 160
Designed Top (m)	110
Density	1.9
Thickening Time (h	rs)
Water Req'd (bl	ol) 7
Water Used (gal/sac	k) 5
Water Source	SEAWATER
Total Vol. Mixed (bl	ol) 12
Volume Pumped (bl	ol) 12
Volume in Well (bl	ol) 12
Comp. Strength (lb	os)
Time (hi	rs)
Temp (°C)
Comp. Strength (lb	os)
Time (hi	rs)
Temp (°C)
BHST (°C)
BHCT (°C)
Outside Temp (°C) 15
Additives of	

File: MIN1_SLR

of

Checked:

SM

Date: 07-Sep-93

MINERVA-1

SECTION 7

File: MIN1_HDR.DOC

Checked:

Date: 1 September 1993

7.0 WEATHER DATA **MINERVA-1**

Date	Day	Wind	Wind	Temp	Visibility	Weather State	Swell	Swell	Swell	Wave	Wave	Wave	Heave	Pitch	Roll	Bar
1		Vel	Dir	High			Height	Per	Dir	Height	Per	Dir				Pressure
		(Knots)		(degC)	(Nm)		(m)	(sec)		(m)	(sec)		(m)	(deg)	(deg)	(HPa)
06/03/93	1	12	150	22	15	FINE	1.8	9	240	0.2	3	150	1	2	1.4	1019
07/03/93	2	16	150	22	15	FINE	1.8	9	240	0.3	3	150	1	1.5	1	1013
08/03/93	3	22	140	22	15	FINE	1.8	11	240	1.2	3	140	1	0.3	1	1018
09/03/93	4	20	160	21	15	FINE	2	9	240	0.5	3	160	1	0.4	0.5	1018
10/03/93	5	15	200	22	15	FINE	2.5	10	200	0.5	3	200	1	0.5	0.3	1020
11/03/93	6	15	110	18	15	FINE	2.5	10	200	0.5	3	200	1	0.8	0.3	1026
12/03/93	7	22	140	24	15	FINE	2	9	220	0.4	3	140	1.3	0.8	0.3	1023
13/03/93	8	16	150	32	15	FINE	1.8	9	220	0.4	2	150	1	0.4	0.3	1023
14/03/93	9	22	130	21	15	FINE	1.2	9	220	0.3	2	130	0.7	0.4	0.2	1014
15/03/93	10	16	200	26	15	FINE	1.2	9	230	0.3	3	200	0.7	0.4	0.2	1018
16/03/93	11			20	15	FINE							0.8	0.4	0.3	1023
17/03/93	12	24	130	20	15	FINE	1.6	10	240	0.7	3	130	1.2	0.6	0.4	1022
18/03/93	13	10	260	23	15	FINE	1.7	10	240	0.3	3	260	0.8	0.6	0.4	1021
19/03/93	14	16	100	24	15	RAIN	1.7	11	240	0.3	3	100	0.8	0.4	0.4	1021
20/03/93	15	21	135	26	15	FINE	1.4	10	240	0.8	3	135	0.8	0.4	0.3	1020
21/03/93	16	30	30	24	20	FINE	1.5	10	250	0.6	3	30	0.8	0.7	0.9	1020
22/03/93	17	30	320	24	15	FINE	1.5	10	230	0.8	3	320	i	0.6	0.6	1012
23/03/93	18	14	60	17	12	FINE/CLEAR	0.7	10	230	0.5	3	260	0.6	0.5	0.3	1020
24/03/93	19	8	130	18	12	FINE/CLEAR	1	10	230	0.5	3	130	1	0.4	0.4	1019
25/03/93	20	8	90	16	12	FINE/CLEAR	1	10	230	0.3	3	290	0.9	0.4	0.5	1012
26/03/93	21	15	290	19	6	FINE/CLEAR	1	10	210	0.5	3	290	0.5	0.2	0.2	1008
27/03/93	22	20	310	16	12	FINE/CLEAR	1.3	10	210	0.6	3	310	0.5	0.4	0.3	1010
28/03/93	23	25	230	16	12	FINE	1.5	10	210	1.2	3	230	1.5	1	0.6	1015
29/03/93	24	20	200	26	15	FINE	2.5	10	210	1.2	3	200	1.7	0.7	0.5	1022
30/03/93	25	15	50	19	15	FINE	1.7	10	210	0.3	3	50	0.5	0.4	0.3	1017
31/03/93	26	6	310	24	15	FINE	1.5	10	210	0.3	3	310	0.4	0.3	0.2	1013
01/04/93	27	16	200	20	15	FINE	2	10	230	1	3	200	1	0.3	0.2	1020
02/04/93	28	8	50	18	15	FINE	2	10	230	0.3	3	50	0.8	0.3	0.3	1023
03/04/93	29	18	60	31	15	FINE	1.5	10	220	0.3	3	60	1	0.3	0.2	1019
04/04/93	30	15	40	24	15	FINE	1.5	9	230	0.3	2	40	0.2	0.3	0.8	1013
05/04/93	31	38	250	18	15	FINE	4	8	250	2	4	250	1.3	0.8	0.4	1011
06/04/93	32	26	320	22	15	CLOUDY	3	9	250	1.3	3	320	1.2	0.3	0.3.	1016
07/04/93	33	22	240	20	5	RAIN	4	9	240	1.3	3	240	1.7	0.8	0.2	1019

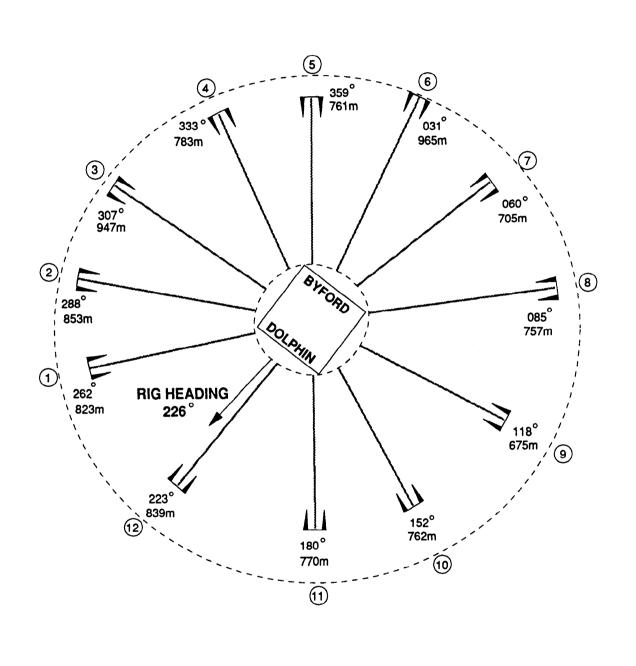
File: MINI_WTR

Checked:

Date: 03-Sep-93

VA-1	Bar	Pressure (HPa)			1						1
		E E	1028	1026	1026	1020	1016	1021	1028	1031	1032
MINERVA-1	Roll	(deg)	0.3	0.1	0.1	0.1	0.1	0.4	0.7	0.5	1.5
	Pitch	(deg)	0.4	0.4	0.2	0.1	0.2	8.0	8.0	1.2	4.5
	Heave	Ē	7	_	0.3	0.3	9.0	1.5	2	2.3	1.5
	Wave	<u></u>	240	50	20	06	350	270	250	240	30
	_	Per (sec)	3	3	3	2	3	3	4	3	3
				0.3	_	0.3	1	1.5	2	5	0.7
				-		-					240
						1					- 1
	Swe	E (E)	3.3	2	1.3	-	1.5	2	4	3.5	
	her State										
	Weal		ш	9	В	9	Э	ш	E	Е	E
	lty.		FIN	FIN	FIN	FIN	FIN	FIN	H.	FIN	FINE
	Visibili		15	15	15	15	2	2	2	2	01
	Temp	riign (degC)	28	20	28	28	28	20	22	20	20
Ā	Wind	<u> </u>	20	20	20	8	350	270	250	240	30
TER DAT	Wind	(Knots)	\$	16	20	16	24	30	24	15	20
WEATH	Day		34	35	36	37	38	39	40	41	42
					- 1	- 1		1		1	- 1
	THER DATA	Wind Temp Visibility Weather State Swell Swell Swell Wave Wave Wave Heave Pitch	Wind Temp Visibility Weather State Swell Swell Swell Wave Wave Wave Heave Pitch Dir High (Nm) (degC) (Nm) (m) (sec) (m) (sec) (m) (sec)	Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Pitch Dir High Per Dir Height Per Dir Height Per Dir (degC) (Nm) (mm) (sec) (mm) (sec) (mm) (degc) 50 2.8 1.5 FINE 2.40 1.3 3 240 2 0.4	Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Pitch Dir High Per Dir Height Per Dir Mave Wave Wave Pitch 50 18 15 FINE (m) (sec) (m) (sec) (m) (deg) 50 20 15 FINE 2 11 250 0.3 3 50 1 0.4	Wind Temp Visibility Weather State Swell First Dir Heave Wave Wave Wave Heave Pitch 50 1 1 1 240 1 3 3 3 3 3 3 3 3 4 3 3 4 3 4	Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Heave Pitch Dir High Print Print <t< td=""><td>Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Heave Pitch Dir High (m) (sec) Dir Height (m) (sec) (m) (sec) (m) (deg) 50 28 15 FINE 2 11 250 1.3 3 240 2 04 20 28 15 FINE 1.3 12 250 1 3 240 2 04 20 28 15 FINE 1.3 12 250 1 3 50 1 0 30 28 15 FINE 1.5 11 260 1 3 350 0.3 0.1 350 28 5 FINE 1.5 11 260 1 3 350 0 0</td><td>Wind Temp Visibility Weather State Swell leight (degC) Swell leight (m) Swell leight</td><td>Wind Temp Visbility Weather State Swell Swell Swell Swell Swell Swell Swell Swell Swell Wave Wave Heave Pitch Dir High Print Height Print Height Print Height Print Height Print Height Height Height Print Height Height<!--</td--><td>Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Pitch Dir High Per Dir Height Per Dir</td></td></t<>	Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Heave Pitch Dir High (m) (sec) Dir Height (m) (sec) (m) (sec) (m) (deg) 50 28 15 FINE 2 11 250 1.3 3 240 2 04 20 28 15 FINE 1.3 12 250 1 3 240 2 04 20 28 15 FINE 1.3 12 250 1 3 50 1 0 30 28 15 FINE 1.5 11 260 1 3 350 0.3 0.1 350 28 5 FINE 1.5 11 260 1 3 350 0 0	Wind Temp Visibility Weather State Swell leight (degC) Swell leight (m) Swell leight	Wind Temp Visbility Weather State Swell Swell Swell Swell Swell Swell Swell Swell Swell Wave Wave Heave Pitch Dir High Print Height Print Height Print Height Print Height Print Height Height Height Print Height Height </td <td>Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Pitch Dir High Per Dir Height Per Dir</td>	Wind Temp Visibility Weather State Swell Swell Swell Swell Swell Swell Wave Wave Wave Heave Pitch Dir High Per Dir Height Per Dir

Date: 03-Sep-93


File: MINI_WTR

7.1 MOORING DIAGRAM

File: DB VND MIN1_AL1

MINERVA-1

Checked:

Date: 1-SEP-93

MINERVA-1

Compiled By:

Technical Assistant

Date

Reviewed By:

Senjor Drilling Engineer

8 19 193

Date

Drilling Superintendent

8. 9. 93

Date

Approved By:

Manager Drilling

8-9-93

Date

3. FORMATION SAMPLING

3.1 Ditch Cuttings

Cuttings were returned to the sea floor above 560 m. The 12.25" hole was drilled from 560 m to 1204 m, the 8.5" hole from 1204 m to 2107 m and the 6.0" hole from 2107 m to 2425 m (TD). Ditch cuttings were collected from the shakers at 5 m intervals between 560 m to 1100 m, except where high ROP necessitated increasing the sample interval to 10 m and at 3 m interval from 1100 m to 2425 m (TD), except where high ROP necessitated increasing the sample interval to 6 m.

Circulation times were checked periodically with carbide-acetylene gas samples and pump stroke counters. Calculated lag times were refined accordingly.

Table 1 presents the sampling program used in the drilling of Minerva-1. Washed and dried cuttings samples were prepared in five sample splits, one each being sent to Bridge Oil and the government bodies: the Bureau of Resource Sciences, Canberra, and the Victorian Department of Energy and Minerals, Melbourne. The two remaining splits were sent to BHP Petroleum, Melbourne. Two sets of unwashed samples and one set of Petrocraft sample vials were also sent to BHP Petroleum, Melbourne.

Table 1 Ditch Cuttings Samples

Treatment	Collection Interval	Distribution	Purpose of Sample									
Washed	No samples:	BHPP (2)*	100 g split samples									
	84.3 m - 560 m	Bridge Oil (1)	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -									
	5 m samples:	Vic DEM (1)	*1 for geochemistry									
	560 m - 1100 m	BRS (1)										
	Except:											
	655, 680, 695, 710, 715, 725, 805, 815, 880, 895,											
	930.											
	3 m samples:											
	1800 m - 2735 m											
	Except:											
	1256, 1268, 1274, 1280, 1295, 1304 and 1364. The sample at											
	2069 m was not collecte											

Treatment	Collection Interval	Distribution	Purpose of Sample
Unwashed	as above	ВНРР (2)	1 for bulk storage and possible palaeontological/ palynological analysis.
			1 for possible fission-track analysis.

3.1.1 Cuttings Description Summary

All depths are referenced to the rotary table (RT) which is 25.3 m above Mean Sea Level. Depths were determined by reference to lag time, ROP and MWD data.

Depth mRT Description

82 - 560 Returns to seafloor

560 - 564 <u>INTERBEDDED PEBBLY CONGLOMERATE,</u> <u>FERRUGINOUS SANDSTONE AND SILTY CLAYSTONE</u>

<u>PEBBLY CONGLOMERATE</u>: (30%) off white to light grey to occasionally light yellow, extremely hard, medium to occasionally large pebble, subrounded to rounded (all broken by bit, and very angular), moderately sorted quartz, abundant very strong siliceous cement, trace moderately strong calcareous cement, trace to rare strong pyrite cement, rare rounded calcite pebbles, nil visual porosity.

FERRUGINOUS SANDSTONE: (30%) light brownish grey, occasionally medium brownish grey and light grey, moderately hard to hard, friable with loose grains in part, fine to coarse, dominantly medium to coarse, occasionally very fine and very coarse, dominantly subrounded, rarely subangular, very poorly sorted iron stained quartz, common medium to dark brown (chaomositic?) argillaceous matrix, trace strong pyrite and moderately weak calcareous cement, trace to rare moderately strong iron oxide/hydroxide cement, trace to occasionally common medium to coarse grained iron oxide/hydroxide pellets, trace pyrite nodules, occasionally replacing fossil fragments, trace medium grained glauconite pellets, rare foram and shell fragments, very poor visual porosity.

<u>SILTY CLAYSTONE</u>: (40%) medium to dark brown and brownish grey, soft, dispersive in part, sticky in part, abundantly silty and grading to argillaceous siltstone in part, rare medium grained glauconite pellets, rare carbonaceous flakes, non calcareous.

564 - 655 <u>SILTY CLAYSTONE WITH MINOR INTERBEDDED</u> SANDSTONE

SILTY CLAYSTONE GRADING TO ARENACEOUS

<u>CLAYSTONE</u>: (20-100%) generally as above, becoming arenaceous below 610 mRT, firm in part with abundant silt to very fine and fine quartz grains, micromicaceous, rare carbonaceous flecks, minor disseminated microcrystalline pyrite, grades to

argillaceous sandstone in part, minor pyrite nodules, minor interbeds of medium brown dolomite bands.

<u>SANDSTONE</u>: (0-80%) clear, friable with loose grains, rare aggregates, fine/medium to coarse grained, occasionally very fine and very coarse grained, subrounded to rounded and occasionally very well rounded, moderately sorted quartz grains, aggregates typically very well cemented with very hard pyrite cement, no calcite cement, ?minor inferred dark brownish grey argillaceous matrix (generally washed out), rare nodular pyrite, very good inferred porosity.

655 - 666 <u>SANDSTONE WITH INTERBEDDED CLAYSTONE AND MINOR DOLOMITE</u>

<u>SANDSTONE</u>: (70-85%) clear to opaque, light green in part, friable with loose grains, medium/coarse to very coarse grained, occasionally granule/pebble grade, subrounded to rounded, moderately well sorted quartz grains, ?minor medium brownish green argillaceous matrix (generally washed out), trace pyrite cement in part, rare glauconite, very good inferred porosity.

Note: sandstone may be bimodal, with a medium/coarse fraction and a very coarse/pebble fraction, interbedded over the sample interval.

<u>CLAYSTONE</u>: (10-20%) medium greyish brown to greyish green, soft, sticky, dispersive in part, micromicaceous, trace carbonaceous matter, trace glauconite pellets, trace to rare quartz silt and very fine sand grains.

<u>DOLOMITE</u>: (5-10%) buff with peppery appearance, very hard, blocky, rare dispersed very fine glauconite pellets and trace carbonaceous specks giving a peppery effect. Interpreted as minor interbeds.

666-749 <u>SANDSTONE</u>

SANDSTONE: (100%) dominantly orangey red grading in part to red and rust brown, becoming less red and more brown with depth, friable with loose grains, medium to very coarse grained, occasionally granule grade, subangular to subrounded, poorly to moderately sorted reddish stained quartz, common medium reddish brown dispersive argillaceous matrix (washed away), rare moderately strong siliceous cement in part, trace to rare fine to coarse dark brown iron oxide/hydroxide pellets, rare very coarse cherty and/or metamorphic lithics, rare limonitic argillaceous matrix in part, rare pyrite nodules/cement, rare mica, poor to fair

inferred/visual porosity.

749 - 771 <u>SILTY ARENACEOUS CLAYSTONE INTERBEDDED WITH</u> SANDSTONE

<u>SILTY ARENACEOUS CLAYSTONE</u>: (40-80%) medium to dark grey, soft, sticky, abundantly silty, moderately finely arenaceous, rare carbonaceous flecks, rare fine glauconite pellets, in part grading to very fine silty sandstone.

SANDSTONE: (20-60%) generally as above, becoming dominantly light to medium brown with depth, friable with loose grains, medium to very coarse grained, occasionally granule grade, subangular to subrounded, poorly to moderately sorted reddish stained quartz, common medium reddish brown dispersive argillaceous matrix (washed away), rare moderately strong siliceous cement in part, trace to rare fine to coarse dark brown iron oxide/hydroxide pellets, rare very coarse cherty and/or metamorphic lithics, rare limonitic argillaceous matrix in part, rare pyrite nodules/cement, rare mica, poor to fair inferred/visual porosity.

771 - 784 <u>CLAYSTONE</u>

<u>CLAYSTONE</u>: (100%) medium to occasionally dark brownish grey, soft, dispersive in part, sticky in part, common micromica, trace to rare silt and very fine sand grains, non calcareous, rare carbonaceous flecks, rare fine glauconite pellets, grades to silty arenaceous claystone.

784 - 852 <u>SANDSTONE INTERBEDDED WITH CLAYSTONE</u>

SANDSTONE: (50-100%) light grey to clear, occasionally very light greenish grey in part, friable with abundant loose grains, medium to granule grade, dominantly medium to coarse grained, subangular to dominantly subrounded, poorly sorted quartz, trace to common medium grey to brownish grey occasionally greenish grey dispersive argillaceous matrix, rare moderately weak siliceous cement in part, rare coarse to granule grade light yellow, grey, green and brown lithics, trace fine glauconite pellets, rare mica, trace to rare pyrite nodules, rare interbedded medium brown dolomitic bands with rare glauconite pellets, fair to occasionally good visual/inferred porosity.

<u>CLAYSTONE</u>: (0-50%) generally as above, medium to dark brownish grey, soft, dispersive in part, sticky in part, common micromica, trace to rare silt and very fine sand grains, non calcareous, rare carbonaceous flecks, rare fine glauconite pellets,

grades to silty arenaceous claystone.

852 - 903 <u>SANDSTONE INTERBEDDED WITH CLAYSTONE</u>

SANDSTONE: (10-95%) light grey to medium greyish brown, slightly hard to friable with loose grains, fine/medium grained, rarely medium grained, subrounded to subangular, well sorted quartz grains, with light grey to medium greyish brown argillaceous matrix, minor calcareous/dolomitic cement, rare siliceous cement, trace coarse, coloured lithics, poor visual porosity.

<u>CLAYSTONE</u>: (5-90%) medium greyish brown, soft, dispersive in part, sticky in part, with common silt and very fine quartz grains, micromicaceous, trace carbonaceous matter, trace glauconite.

903 - 915 **SANDSTONE**

SANDSTONE: (100%) very light grey to clear, friable with abundant loose grains, moderately hard in part, dominantly medium, occasionally coarse to very coarse, dominantly subangular to occasionally subrounded, moderately sorted quartz grains, common light grey dispersive argillaceous matrix (mostly washed out), trace to rare moderately strong pyrite cement, trace detrital coal fragments, trace pyrite nodules, fair to good visual porosity.

915 - 945 SANDSTONE INTERBEDDED WITH CLAYSTONE

SANDSTONE: (40-60%) very light grey to clear, friable with abundant loose grains, moderately hard in part, dominantly medium, occasionally coarse to very coarse, dominantly subangular to occasionally subrounded, moderately sorted quartz grains, common light grey dispersive argillaceous matrix (mostly washed out), trace to rare moderately strong pyrite cement, trace detrital coal fragments, trace pyrite nodules, fair to good visual porosity.

<u>CLAYSTONE</u>: (40-60%) medium to occasionally dark grey and brownish grey, soft to firm, occasionally moderately hard, trace micromica, trace silt, rare fine quartz grains, trace to rare carbonaceous flecks, rare microcrystalline pyrite, non calcareous.

945 - 1022 <u>SILTY CLAYSTONE INTERBEDDED WITH SANDSTONE</u>

<u>SILTY CLAYSTONE</u>: (70-100%) medium to dark grey, occasionally light to medium grey in part, dominantly soft,

abundantly silty, trace to rare carbonaceous flecks, moderately arenaceous in part, non calcareous.

SANDSTONE: (0-30%) light to medium grey to light olive green, friable with abundant loose grains, very fine to dominantly fine, occasionally moderately hard, subangular to subrounded, well sorted quartz grains, trace to occasionally abundant light to medium grey argillaceous matrix, common moderately weak to moderately strong calcareous cement, rare mica, rare pyrite, rare carbonaceous detritus, rare coarse to very coarse yellow, red and reddish brown quartz grains (possibly cavings), poor to occasionally fair visual porosity.

1022 - 1028 **SANDSTONE**

SANDSTONE: (100%) clear to light grey, hard to moderately hard, occasionally friable with common loose grains in part, medium to very coarse, dominantly coarse, dominantly subangular to occasionally subrounded, moderately sorted quartz grains, trace medium grey dispersive argillaceous matrix, common to occasionally abundant strong siliceous cement, trace strong calcareous cement, rare strong pyrite cement, trace glauconite pellets, rare carbonaceous detritus and laminae, rare pyrite nodules, very rare pyrite replacement of plant remnants, very rare dolomite band as above, very poor to poor visual porosity.

1028 - 1100 CLAYSTONE INTERBEDDED WITH MINOR SANDSTONE

<u>CLAYSTONE</u>: (80-100%) light grey to medium brownish grey, soft, dispersive in part, sticky in part, moderately silty, trace micromica, trace fine carbonaceous flecks and laminae, trace very fine quartz grains, non calcareous.

SANDSTONE: (0-20%) clear and off white to light grey, moderately hard and occasionally hard, rarely friable with loose grains, dominantly fine to occasionally medium, rarely coarse, subangular to subrounded, moderately sorted quartz grains, trace light grey dispersive argillaceous matrix, common strong siliceous cement, trace to occasionally abundant moderately strong calcareous cement, trace strong pyrite cement, rare very fine glauconite, trace grey lithics, poor to very poor but occasionally fair visual porosity.

1100 - 1123 <u>ARGILLACEOUS SILTSTONE INTERBEDDED WITH SANDSTONE</u>

ARGILLACEOUS SILTSTONE: (60-100%) light grey to medium brownish grey, soft, dispersive in part, abundantly

argillaceous, trace micromica, trace fine carbonaceous flecks and laminae, trace very fine quartz grains, non calcareous.

SANDSTONE: (0-40%) off-white to light grey, occasionally very light greenish grey, moderately hard to occasionally hard, rarely friable with trace loose grains, dominantly fine, occasionally medium in part, dominantly subrounded, well sorted quartz, trace light grey dispersive argillaceous matrix, common to occasionally abundant moderately weak to moderately strong calcareous cement, rare moderately strong siliceous cement, trace to common fine glauconite, trace mica, trace grey lithics, trace carbonaceous detritus, trace hard medium brown dolomite band, poor to very poor visual porosity.

1123 - 1148 <u>SILTY CLAYSTONE INTERBEDDED WITH SANDSTONE</u>

<u>SILTY CLAYSTONE</u>: (80-100%) medium to dark grey and brownish grey, occasionally off-white to light grey in part, soft, rarely firm, dominantly dispersive, occasionally sticky, commonly to occasionally abundantly silty, trace fine glauconite, trace carbonaceous flecks and laminae, trace micromica, non calcareous.

SANDSTONE: (0-20%) generally as above, dominantly hard, common to abundant strong calcareous and siliceous cement, very poor visual porosity.

1148 - 1204 <u>CLAYSTONE INTERBEDDED WITH SANDSTONE</u>

<u>CLAYSTONE</u>: (85-100%) medium to dark grey and brownish grey, occasionally off-white to light grey in part, soft, rarely firm, dominantly dispersive, occasionally sticky, moderately silty, trace fine glauconite, trace carbonaceous flecks and laminae, trace micromica, non calcareous.

<u>SANDSTONE</u>: (Tr-15%) clear, friable with abundant loose grains, fine to medium grained, becoming dominantly medium to coarse grained with depth, subangular, becoming dominantly subrounded with depth, poorly to moderately sorted quartz, no apparent matrix or cement at top, trace light grey argillaceous matrix at depth, good to very good inferred porosity.

1204 - 1208 <u>CLAYSTONE INTERBEDDED WITH PEBBLY</u> <u>CONGLOMERATE</u>

<u>CLAYSTONE</u>: (80%) medium to dark grey, occasionally medium to dark brownish grey, firm, moderately hard in part, blocky, rarely subfissile in part, moderately silty, rare micromica, trace to rare glauconite and carbonaceous flecks and detritus,

rarely finely arenaceous in part, non calcareous.

PEBBLY CONGLOMERATE: (20%) light grey, clear to light yellowish brown in part, very hard, medium pebbles, rounded (all broken and angular), and common coarse to very coarse, subrounded to rounded sand grains, moderately sorted quartz with light yellowish brown staining in part, rare to common grey and light brown, very coarse to granule lithics, abundant strong siliceous and calcareous cement, rare to common strong pyrite cement, trace medium brown very hard dolomite band, rare very coarse pyrite nodules, nil visual porosity.

1208 - 1300 <u>SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE</u>

SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: (100%) medium/light to dark grey, occasionally medium to dark brownish grey and greenish grey, firm to moderately hard, blocky, rarely subfissile in part, moderately silty, common glauconite, rare micromica, trace to rare carbonaceous flecks and laminae, rarely finely arenaceous in part, slightly calcareous, rare bands of medium brown moderately hard dolomite (with trace glauconite), trace fractures filled with calcareous material, grades to argillaceous siltstone, trace moderately bright yellowish white mineral fluorescence.

1300 - 1309 **SANDSTONE**

<u>SANDSTONE</u>: (100%) clear, translucent to very light grey in part, friable with common loose grains, dominantly fine to occasionally medium grained, trace very light grey to greenish grey dispersive argillaceous matrix, common medium grained glauconite, good to very good inferred porosity.

1309 - 1379 <u>SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE</u>

SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: (100%) generally as above, dominantly medium to dark brownish grey and greenish grey, firm to moderately hard, blocky, rarely subfissile in part, moderately silty, common glauconite, rare micromica, trace to rare carbonaceous flecks and laminae, rarely finely arenaceous in part, slightly calcareous, rare bands of medium brown moderately hard dolomite (with trace glauconite), trace fractures filled with calcareous material, grades to argillaceous siltstone, trace moderately bright yellowish white mineral fluorescence.

1379 - 1448 <u>SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE</u>

SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: (100%) generally as above, medium to dark grey to brownish grey, firm to moderately hard, rarely hard in part, occasionally soft in part, dominantly blocky, rarely subfissile, abundantly silty, rarely micromicaceous and carbonaceous, very slightly carbonaceous in part, occasionally finely arenaceous in part, trace fracture filling calcareous material, trace light to dominantly medium brown hard dolomite band, rare glauconite, nil to trace pyrite nodules.

1448 - 1490 <u>SILTY CLAYSTONE GRADING TO ARGILLACEOUS</u> <u>SILTSTONE INTERBEDDED WITH TRACE SANDSTONE</u>

SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: (100%) generally as above, dominantly medium grey, dark brownish grey in part, commonly light/medium greyish brown, light/medium greyish brown fraction is moderately calcareous.

SANDSTONE: (Tr) clear to light grey, friable with predominantly loose grains, medium grained, subangular, moderately sorted quartz grains, minor fairly strong silica cement, rare light grey argillaceous matrix, ?fair inferred porosity.

1490 - 1563 <u>ARGILLACEOUS SILTSTONE GRADING TO SILTY</u> <u>CLAYSTONE</u>

ARGILLACEOUS SILTSTONE GRADING TO SILTY

CLAYSTONE: (100%) generally as above, medium to medium/dark greyish brown to grey, firm to slightly hard, commonly moderately hard, subblocky to blocky, darker fraction generally blocky, occasionally subfissile, rare calcareous cement, trace ?siliceous cement, abundant medium/dark greyish brown slightly calcareous argillaceous matrix, commonly matrix supported and grading to silty claystone, rarely to commonly finely arenaceous, rare carbonaceous flecks, rare glauconite, common micromica and trace mica flakes, trace microcrystalline and fine grained cryptocrystalline pyrite, trace fossil fragments, trace medium brown moderately hard dolomite bands (with trace very fine grained glauconite, trace carbonaceous flecks).

1563 - 1649 ARGILLACEOUS SILTSTONE

ARGILLACEOUS SILTSTONE: (100%) generally as above, dominantly medium to occasionally dark grey and brownish grey,

firm to moderately hard, occasionally hard, subblocky to dominantly blocky, rarely subfissile, trace siliceous cement in part, abundantly argillaceous, rarely to commonly micromicaceous, trace to rare carbonaceous flecks, moderately finely arenaceous in part, trace pyrite and calcareous material fracture infill, trace to rare Inoceramus, nil to trace shell fragments, trace to rare glauconite, rare medium brown hard dolomite bands.

1649 - 1651 **SANDSTONE**

SANDSTONE: (100%) light grey to clear, friable with common loose grains, moderately hard in part, fine to medium grained, very occasionally coarse grained in part, subangular to dominantly subrounded, moderate to well sorted quartz grains, rare to occasionally common moderately weak to moderately strong calcareous cement, nil to trace moderately strong siliceous cement, rare to occasionally common dominantly off white to occasionally light grey argillaceous matrix, trace carbonaceous detritus, trace to rare mica, nil to trace partially altered feldspar, trace to nil lithics, fair to poor visual porosity.

1651 - 1667 <u>SILTSTONE INTERBEDDED WITH CLAYSTONE AND</u> RARE SANDSTONE

SILTSTONE: (10-100%) medium grey to occasionally medium brownish grey, firm to moderately hard, blocky, abundantly argillaceous, trace to rare moderately strong calcareous cement, trace to rare glauconite and carbonaceous flecks, trace mica, trace partially altered feldspar, commonly to abundantly finely arenaceous, grading in part to fine argillaceous sandstone, nil to very poor visual porosity.

<u>CLAYSTONE</u>: (0-80%) medium to dark grey, firm to moderately hard, subblocky to dominantly blocky, rarely to moderately silty in part, trace carbonaceous flecks, trace to rare glauconite, non calcareous.

SANDSTONE: (0-60%) two varieties: (i) clear to light grey to very light brownish grey, friable with abundant loose grains, dominantly medium to occasionally coarse, dominantly subrounded, moderately sorted quartz, trace light grey dispersive argillaceous matrix, good to very good inferred porosity. (ii) generally as above, hard to very hard, common to abundant strong calcareous siliceous and rare to common pyritic cement, nil to poor visual porosity.

1667 - 1693 <u>CLAYSTONE INTERBEDDED WITH ARGILLACEOUS SANDSTONE/SILTSTONE</u>

<u>CLAYSTONE</u>: (40-80%) medium to dark grey, firm to moderately hard, subblocky to dominantly blocky, rarely to moderately silty in part, trace carbonaceous flecks, trace to rare glauconite, non calcareous.

ARGILLACEOUS SANDSTONE GRADING TO

ARGILLACEOUS SILTSTONE: (20-60%) light to medium grey to occasionally medium brownish grey, moderately hard, rarely friable with rare to common loose sand grains, very fine to fine, silt size in part, rarely medium in part, dominantly subrounded, moderately well sorted quartz, abundant off-white to light grey argillaceous matrix, trace to rare moderately strong calcareous cement, trace to rare glauconite and carbonaceous flecks, trace mica, trace partially altered feldspar, commonly to abundantly finely arenaceous, grading in part to argillaceous siltstone, poor to very poor visual porosity.

1693 - 1745 SILTY CLAYSTONE

SILTY CLAYSTONE: (100%) medium to dark grey, occasionally medium to dark brownish grey, firm to moderately hard, dominantly blocky to occasionally subfissile, common to abundant silt in part, rarely very finely arenaceous in part, trace micromica and carbonaceous flecks, common fine to medium glauconite pellets, trace pyrite nodules, non calcareous.

1745 - 1816 <u>SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE</u>

SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: (100%) medium to dark grey, occasionally medium to dark brownish grey and greenish grey, firm to moderately hard, occasionally hard in part, dominantly blocky to occasionally subfissile, common to abundant silt in part, rarely very finely arenaceous in part, trace micromica and carbonaceous flecks, common fine to medium glauconite pellets, trace pyrite nodules, non calcareous, grading in part to argillaceous siltstone.

1816 -1821 **SANDSTONE**

SANDSTONE: (100%) clear to translucent, ?friable with abundant loose grains, moderately hard aggregates in part, medium to very coarse, dominantly coarse, subrounded to predominantly subangular (angularity due to fracturing from PDC bit cutting action) moderately sorted quartz grains, rare to occasionally common off white to light grey dispersive argillaceous matrix (washed away), rare to common moderately strong siliceous cement, trace mica, trace pyrite nodules and weak microcrystalline

pyrite cement, fair to good inferred porosity.

1821 - 1847 <u>SANDSTONE INTERBEDDED WITH ARGILLACEOUS</u> SILTSTONE AND MINOR CLAYSTONE

For description see section 3.3.1 "Core Description".

1847 - 1910 SANDSTONE INTERBEDDED WITH RARE CLAYSTONE

SANDSTONE: (60-100%) clear to light grey, moderately hard to friable with abundant loose grains in part, medium to very coarse grained, occasionally fine grained and granule grade, subangular to subrounded (angular grains broken due to bit action), poorly to moderately sorted quartz grains, trace light grey dispersive argillaceous matrix (washed away), rare to common moderately strong siliceous cement, trace moderately strong pyrite cement, trace disseminated cryptocrystalline pyrite and pyritised plant fragments, trace coaly detritus, nil to trace lithics, nil to trace structural kaolinite, fair to occasionally good visual porosity in part.

<u>CLAYSTONE</u>: (0-40%) medium to dark grey, firm to moderately hard, blocky to occasionally subfissile, slightly silty, non calcareous, rare carbonaceous flecks and micromica, trace coaly fragments.

1910 - 1944 SANDSTONE INTERBEDDED WITH RARE CLAYSTONE

SANDSTONE: (80-100%) generally as above, clear to occasionally light grey, friable with abundant loose grains to moderately hard, medium to very coarse, dominantly coarse, occasionally fine, dominantly subrounded, moderately to well sorted quartz grains, rare off white kaolinitic and light grey dispersive argillaceous matrix (washed away), rare to occasionally common moderately weak to occasionally moderately strong siliceous cement, trace moderately strong pyrite cement, fine aggregates have no cement, trace coaly detritus, structural kaolinite grains and pyrite nodules, good inferred porosity.

<u>CLAYSTONE</u>: (0-20%) medium to dark grey, occasionally medium brownish grey, firm to moderately hard, trace micromica and carbonaceous flecks, non calcareous, moderately silty, rarely finely arenaceous in part, grading in part to argillaceous siltstone.

1944 - 1948 **CLAYSTONE**

CLAYSTONE: (100%) medium to occasionally dark grey, medium brownish grey in part, firm, rarely soft and sticky,

occasionally subblocky, moderately silty, grading in part to argillaceous siltstone, non calcareous, trace carbonaceous flecks, rare coaly particles.

1948 - 1995 SANDSTONE INTERBEDDED WITH CLAYSTONE

SANDSTONE: (50-100%) clear to light grey, friable with abundant loose grains, moderately hard in part, fine to coarse dominantly medium grained, occasionally very coarse, subangular to dominantly subrounded, poorly sorted quartz grains, rare to occasionally common light grey argillaceous matrix, rare moderately strong siliceous cement, nil to trace moderately strong pyrite cement, trace coaly particles, mica and lithics, trace rock flour, fair to good inferred porosity.

<u>CLAYSTONE</u>: (0-50%) medium to occasionally dark grey, medium brownish grey in part, firm, rarely soft and sticky, occasionally subblocky, moderately silty, grading in part to argillaceous siltstone, non calcareous, trace carbonaceous flecks, rare coaly particles.

1995 - 2004 <u>CLAYSTONE INTERBEDDED WITH RARE SANDSTONE</u>

CLAYSTONE: (90-100%) two types (i) 70%: off white, soft, amorphous and dispersive in part, silty commonly finely arenaceous in part. (ii) 30%: medium to occasionally dark grey, firm to moderately hard in part, subblocky, rare micromica, trace disseminated microcrystalline pyrite, trace carbonaceous flecks, grades in part to argillaceous siltstone.

SANDSTONE: (0-10%) clear to light grey, friable with abundant loose grains to moderately hard, predominantly fine to medium grained, rare coarse, trace granule (possibly cavings), subrounded to subangular, well sorted quartz grains, trace to rare off white kaolinite and light grey argillaceous matrix, nil to rare moderately strong siliceous cement in part, trace carbonaceous flecks, trace microcrystalline pyrite, fair visual porosity.

2004 - 2018 SANDSTONE INTERBEDDED WITH RARE CLAYSTONE

SANDSTONE: (60-100%) clear to light grey, friable with abundant loose grains, moderately hard in part, fine to coarse, dominantly medium/coarse grained, occasionally very coarse, subangular to subrounded, poorly sorted quartz grains, rare off white kaolinitic and light grey argillaceous matrix, rare moderately strong siliceous cement, nil to trace moderately strong pyrite cement, trace coaly particles, mica and lithics, fair to good inferred porosity.

<u>CLAYSTONE</u>: (0-40%) medium to occasionally dark grey, medium brownish grey in part, firm and moderately hard in part, rarely soft and sticky, occasionally subblocky, moderately silty, grading in part to argillaceous siltstone, non calcareous, trace carbonaceous flecks, rare coaly particles.

2018 - 2042 <u>CLAYSTONE INTERBEDDED</u> WITH SANDSTONE

<u>CLAYSTONE</u>: (10-90%) two types, subequal (i) off white, soft to commonly firm, amorphous and dispersive in part, silty and commonly finely arenaceous in part, (ii) medium to occasionally dark grey, firm to moderately hard in part, subblocky, rare micromica, trace disseminated microcrystalline pyrite, trace to occasionally common carbonaceous flecks and grains, grades in part to argillaceous siltstone.

SANDSTONE: (10-90%) clear to light grey, friable with abundant loose grains, moderately hard in part, fine to coarse, dominantly medium/coarse grained, occasionally very coarse, subangular to subrounded, poorly sorted quartz grains, rare off white kaolinitic and light grey argillaceous matrix, rare moderately strong siliceous cement, nil to rare moderate to very strong pyrite cement, trace coaly particles, mica and lithics, fair to good inferred porosity.

2042 - 2059 SANDSTONE INTERBEDDED WITH RARE CLAYSTONE

SANDSTONE: (80-100%) clear to light grey, slightly hard to friable with loose grains, medium/coarse grained, rare fine to medium and very coarse to granule grains, subangular to occasionally subrounded, generally well sorted quartz grains, rare to minor strong siliceous cement, occasional trace calcareous cement, occasional trace strong pyrite cement, rare light grey argillaceous matrix (commonly washed away), rare medium greyish green lithics and glauconite grains, trace carbonaceous detritus rarely as laminae, trace mica flakes within laminae, trace microcrystalline pyrite, fair to good inferred porosity.

CLAYSTONE: (0-20%) two types: (i) 50-70%: medium to medium/dark brownish grey, soft and amorphous to dominantly firm to slightly hard and subblocky, silty, rare very fine glauconite grains, trace carbonaceous flecks, rare micromica, trace calcareous, trace finely arenaceous, trace microcrystalline pyrite, trace grey lithics; (ii) 30-50%: off white, subblocky, firm to slightly hard in part, silty, commonly finely arenaceous, very slightly calcareous in part, trace carbonaceous flecks.

2059 - 2066 CLAYSTONE INTERBEDDED WITH SANDSTONE

<u>CLAYSTONE</u>: (50-100%) two types, subequal: (i) medium to medium/dark brownish grey, as above; (ii) off white, subblocky, soft to firm and slightly hard in part, silty, commonly finely arenaceous, very slightly calcareous in part, trace carbonaceous flecks.

SANDSTONE: (0-50%) generally as above, predominantly fine to medium grained with abundant coarse grains and occasional very coarse/granule grade.

2066 - 2107 <u>CLAYSTONE INTERBEDDED WITH SANDSTONE</u>

CLAYSTONE: (20-100%) two types: (i) 0-40%: off white, soft to firm, amorphous to subblocky, commonly finely arenaceous, trace carbonaceous specks, trace microcrystalline pyrite and cryptocrystalline pyritic nodules, (ii) 60-100%: medium brownish grey to dominantly greyish brown, grading to medium/dark in part, soft to firm, sticky in part, subblocky, silty, rarely finely arenaceous in part, trace carbonaceous flecks, trace coaly particles, trace glauconite, non calcareous, grades to silty arenaceous sandstone. Type (ii) becomes predominant below 2080 mRT.

SANDSTONE: (0-80%) light to medium grey, friable to moderately hard, fine to medium grained, subangular to subrounded, well sorted quartz grains, rare moderately strong siliceous cement, rare to abundant off white kaolinitic and medium to dark grey to greyish brown argillaceous matrix, grades in part to arenaceous claystone, nil to rare carbonaceous material, trace lithics, trace pyrite nodules, very poor to rarely poor inferred porosity. Sandstone becomes less common and more argillaceous with depth.

2107 - 2113 **SANDSTONE**

SANDSTONE: (100%) clear to light grey, friable with loose grains to moderately hard in part, fine/medium grained, subangular, well sorted quartz grains, trace to rare moderately weak siliceous cement, no calcareous cement, trace strongly pyrite cemented aggregates in part, trace to rare off white to light grey argillaceous matrix (commonly washed away), trace carbonaceous matter, trace fine grained lithics, fair visual porosity.

2113 - 2149 SANDSTONE INTERBEDDED WITH CLAYSTONE

<u>SANDSTONE</u>: (30-80%) very light grey, clear to translucent grains, friable to moderately hard, common loose grains, fine to coarse grained, dominantly fine to medium, common coarse and occasional very coarse grains, subangular to subrounded,

occasionally angular, moderately sorted quartz, common moderately strong silica cement, trace to occasional moderately strong pyrite cement, trace very light grey argillaceous matrix, common coaly fragments, rare coaly laminae, trace amber, rare lithic grains, poor to moderate visual porosity.

<u>CLAYSTONE</u>: (20-70%) medium dark grey to dark grey, moderately hard, blocky to subfissile, trace silt, micromicaceous, rare coal fragments, rare pyrite, non calcareous.

2149 - 2167 <u>CLAYSTONE INTERBEDDED WITH SANDSTONE AND</u> RARE SILTSTONE AND COAL

<u>CLAYSTONE</u>: (70-90%) medium grey to medium dark grey, soft to firm, common silt, abundant carbonaceous flecks, trace very fine sand, micromicaceous, blocky to subfissile, non calcareous.

SANDSTONE: (10-20%) very light grey, clear to translucent grains, friable to moderately hard, abundant loose grains, very fine to medium grained, occasional coarse and rare very coarse grains, subangular to subrounded, occasionally angular, moderately well sorted quartz, common moderately strong silica cement, rare pyrite cement, trace to common very light grey argillaceous matrix, trace coal fragments, rare amber, trace to occasional lithic grains, rare feldspathic grains, poor inferred porosity, trace mineral fluorescence.

SILTSTONE: (0-10%) medium dark grey, moderately hard, micromicaceous, trace carbonaceous flecks, grading to very fine grained sandstone in part, blocky, non calcareous.

<u>COAL</u>: (Tr) greyish black to black, moderately hard, brittle, subvitreous lustre, subconchoidal fracture.

2167 - 2185 <u>CLAYSTONE INTERBEDDED WITH ARGILLACEOUS</u> <u>SANDSTONE AND TRACE SILTSTONE AND COAL</u>

<u>CLAYSTONE</u> (20-80%) medium to dark grey, brown grey in part, soft to moderately firm, micromicaceous, trace carbonaceous flecks, trace carbonaceous laminae, trace nodular pyrite.

ARGILLACEOUS SANDSTONE: (20-80%) light grey, clear to translucent grains, friable to moderately hard, fine to medium grained, occasional coarse, subangular to subrounded, moderately sorted quartz grains, trace silica cement, abundant argillaceous matrix, trace amber, poor visual porosity.

SILTSTONE: (Tr) medium dark grey, moderately hard,

micromicaceous, trace carbonaceous flecks, grading to very fine grained sandstone in part, blocky, non calcareous.

<u>COAL</u>: (Tr) greyish-black to black, subvitreous lustre, subconchoidal fracture, brittle, firm.

2185 - 2201 SANDSTONE INTERBEDDED WITH CLAYSTONE

SANDSTONE: (70-90%) two subequal types: (i): light grey to translucent, friable to moderately hard, fine to medium grained, subangular to subrounded, moderately sorted quartz grains, abundant argillaceous matrix, common moderately hard silica cement, trace lithics, trace carbonaceous material, trace amber, poor inferred porosity, (ii): light grey to translucent, hard, blocky fracture, medium to coarse grained, subangular to subrounded, moderately sorted quartz grains, hard silica cement, nil inferred porosity.

<u>CLAYSTONE</u>: (10-30%) medium dark grey, occasionally light brown grey, moderately hard, subfissile, trace silt, trace carbonaceous flecks, micromicaceous, trace pyrite nodules.

2201 - 2205 **CLAYSTONE**

<u>CLAYSTONE</u>: (100%) medium to dark grey, commonly brown, soft to firm, hard in part, common firm silica cement, trace pyrite cement, rare carbonaceous specks, micromicaceous.

2205 - 2210 **SANDSTONE**

SANDSTONE: (100%) two subequal types: (i): light grey to translucent, friable to moderately hard, fine to medium grained, subangular to subrounded, moderately sorted quartz grains, abundant argillaceous matrix, common moderately hard silica cement, trace lithics, trace carbonaceous material, trace amber, poor inferred porosity; (ii): light grey to translucent, hard, blocky fracture, medium to coarse grained, subangular to subrounded, moderately sorted quartz grains, hard silica cement, nil inferred porosity.

2210 - 2225 <u>CLAYSTONE INTERBEDDED WITH SANDSTONE & TRACE COAL</u>

<u>CLAYSTONE</u>: (40-90%) medium dark grey, common brown grey, soft to commonly hard, silty, moderate firm silica cement, moderate hard pyrite cement, rare pyrite nodules.

SANDSTONE: (10-60%) light grey to translucent, friable to hard

in part, fine to medium grained, subangular to subrounded, moderately sorted quartz grains, common argillaceous matrix, common hard silica cement, trace carbonaceous flecks, common lithics, nil to poor visual porosity.

COAL: (Tr) greyish black to black, subvitreous lustre, subconchoidal fracture, brittle, moderately firm to hard.

2225 - 2252 SANDSTONE INTERBEDDED WITH CLAYSTONE & TRACE COAL

SANDSTONE: (60-95%) light grey to translucent, friable, medium grained, occasional coarse, subangular to subrounded, moderately sorted quartz grains, trace weak calcite cement, common argillaceous matrix, trace lithics, trace amber, poor inferred porosity.

<u>CLAYSTONE</u>: (5-40%) two subequal types: (i): medium dark grey, common brown grey, soft to commonly hard, silty, trace firm silica cement, trace hard pyrite cement, trace pyrite nodules; (ii): pale yellowish brown, soft, massive, uncemented, dispersive, trace carbonaceous specks.

<u>COAL</u>: greyish black to black, subvitreous lustre, subconchoidal fracture, brittle, moderately firm to hard.

2252 - 2293 ARGILLACEOUS SANDSTONE INTERBEDDED WITH CLAYSTONE

ARGILLACEOUS SANDSTONE: (70-95%) light grey to translucent, friable to moderately hard, fine grained, common medium to coarse, subangular to subrounded, moderately sorted quartz and lithic grains, abundant argillaceous matrix, abundant firm calcite cement, abundant lithics (increasing with depth), common feldspar, common carbonaceous flecks, trace amber, nil visual porosity.

<u>CLAYSTONE</u>: (5-30%) light grey, soft to firm, common weak calcite cement, abundant fine to very fine sand grains, trace carbonaceous flecks.

2293 - 2301 ARGILLACEOUS LITHIC SANDSTONE INTERBEDDED WITH CLAYSTONE

ARGILLACEOUS LITHIC SANDSTONE: (60-90%) light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, subangular to subrounded, moderately well sorted quartz, common moderately strong

calcareous cement, trace very weak silica cement, abundant very light grey argillaceous matrix, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, rare pyrite, rare carbonaceous flecks, rare amber, poor inferred porosity.

<u>CLAYSTONE</u>: (10-40%) 2 types (i): medium light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous; (ii): medium dark grey to brownish grey, moderately hard, micromicaceous, rare carbonaceous flecks, occasional quartz and lithic grains, blocky to subblocky, non calcareous.

2301 - 2336 <u>ARGILLACEOUS LITHIC SANDSTONE INTERBEDDED</u> WITH CLAYSTONE & TRACE COAL

ARGILLACEOUS LITHIC SANDSTONE: (60-90%) light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, subangular to subrounded, moderately well sorted quartz and lithics, common moderately strong calcareous cement, trace very weak silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, trace carbonaceous flecks, trace amber, trace biotite, poor visual porosity.

<u>CLAYSTONE</u>: (10-40%) medium light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous.

<u>COAL</u>: greyish black to black, subvitreous lustre, subconchoidal fracture, brittle, moderately firm to hard.

2336 - 2358 ARGILLACEOUS LITHIC SANDSTONE INTERBEDDED WITH CLAYSTONE

ARGILLACEOUS LITHIC SANDSTONE: (80-95%) light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, subangular to subrounded, moderately well sorted quartz and lithics, common moderately strong calcareous cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, trace biotite, poor inferred porosity.

<u>CLAYSTONE</u>: (5-20%) light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous.

2358 - 2372 <u>ARGILLACEOUS LITHIC SANDSTONE INTERBEDDED</u> WITH CLAYSTONE & TRACE COAL

ARGILLACEOUS LITHIC SANDSTONE: (60-90%) light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, subangular to subrounded, moderately well sorted quartz and lithics, common moderately strong calcareous cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, trace biotite, poor inferred porosity.

<u>CLAYSTONE</u>: (10-40%) light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous.

<u>COAL</u>: (Tr) greyish black to black, subvitreous lustre, subconchoidal fracture, brittle, moderately firm to hard.

2372 - 2391 ARGILLACEOUS LITHIC SANDSTONE INTERBEDDED WITH CLAYSTONE & TRACE COAL

ARGILLACEOUS LITHIC SANDSTONE: (80-90%) light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, subangular to subrounded, moderately well sorted quartz and lithics, trace moderately strong calcareous cement, trace moderately hard silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, trace biotite, poor visual porosity.

<u>CLAYSTONE</u>: (10-20%) light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous, trace moderate silica cement.

<u>COAL</u>: (Tr) greyish black to black, subvitreous lustre, subconchoidal fracture, brittle, moderately firm to hard.

2391 - 2400 <u>ARGILLACEOUS LITHIC SANDSTONE INTERBEDDED</u> WITH CLAYSTONE & TRACE COAL

ARGILLACEOUS LITHIC SANDSTONE: (60-90%) light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, subangular to subrounded, moderately well sorted quartz and lithics, common moderately strong calcareous cement, trace moderately hard silica cement,

abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, trace biotite, poor visual porosity.

<u>CLAYSTONE</u>: (10-40%) (i): light grey to light greenish grey, occasionally medium dark grey, soft, dispersive, trace carbonaceous flecks, non calcareous; (ii): medium grey to medium dark grey, moderately firm, blocky, trace silt, trace micromica, trace carbonaceous flecks, non calcareous.

<u>COAL</u>: (Tr) greyish black to black, subvitreous lustre, subconchoidal fracture, brittle, moderately firm to hard.

2400 - 2425 <u>ARGILLACEOUS LITHIC SANDSTONE INTERBEDDED</u> <u>WITH CLAYSTONE</u>

ARGILLACEOUS LITHIC SANDSTONE: (60-80%) generally as above, light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, subangular to subrounded, moderately well sorted quartz and lithics, rare moderately weak calcareous cement, trace moderately hard silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, poor visual porosity.

CLAYSTONE: (20-40%) medium light grey to medium grey, moderately firm, occasional carbonaceous flecks and laminae, trace micro mica, subblocky, non calcareous.

3.1.2 Cuttings Descriptions

.z Cutt	8	7201.7			
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
565	30	-	-	-	PEBBLY CONGLOMERATE: Off white to light grey to occasionally light yellow, extremely hard, medium to occasionally large pebble, subrounded to rounded (all broken by bit, and very angular), moderately sorted quartz, abundant very strong siliceous cement, trace moderately strong calcareous cement, rare to trace strong pyrite cement, rare rounded calcite pebbles, nil visual porosity. No shows.
	30	-	tr	-	FERRUGINOUS SANDSTONE: Light brownish grey, occasionally medium brownish grey and light grey, moderately hard to hard, friable with loose grains in part, fine to coarse dominantly medium to coarse, occasionally very fine and very coarse, dominantly subrounded, rarely subangular, very poorly sorted iron stained quartz, common medium to dark brown (chaomositic?) argillaceous matrix, trace strong pyrite and moderately weak calcareous cement, rare to trace moderately strong iron oxide/hydroxide cement, trace to occasionally common, medium to coarse grained iron oxide/hydroxide pellets, trace pyrite nodules, occasionally replacing fossil fragments, trace medium grained glauconite pellets, rare foram and shell fragments, very poor visual porosity. No shows.
	40	-	r	r	SILTY CLAYSTONE: Medium to dark brown and brownish grey, soft, dispersive in part and sticky in part, abundantly silty and grading to argillaceous siltstone in part, rare medium grained glauconite pellets, rare carbonaceous flakes, non calcareous.
					NOTE: The Ferruginous Sandstone resembles the Slope Bottom Laterite .

					A DUD
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
570	100	-	r	r	SILTY CLAYSTONE: As above, moderately hard in part, rare hard calcareous bands, trace pyrite nodules.
575	100	-	r	r	SILTY CLAYSTONE: As above.
580	100	-	r	r	SILTY CLAYSTONE: Generally as above, dominantly soft and dispersive.
585	80	-	tr	r	SILTY CLAYSTONE: As above
	20	-	-	-	SANDSTONE: Clear, friable with loose grains, rare aggregates, fine/medium to coarse grained, occasionally very fine and very coarse grained, subrounded to rounded and occasionally very well rounded, moderately sorted quartz grains, aggregates typically very well cemented with very hard pyrite cement, no calcite cement, ?minor inferred dark brownish grey argillaceous matrix (generally washed out, see note), rare nodular pyrite, very good inferred porosity. No shows. Note: remnants of argillaceous matrix observed within crevices of some sandstone grains, implying matrix within the friable sandstone.
590	20	-	tr	r	SILTY CLAYSTONE: As above, exaggerated proportion due to cavings.
	80	-	-	-	SANDSTONE: Generally as above, predominantly medium to coarse grained.
595	70	_	tr	r	SILTY CLAYSTONE: As above.
	30	•	-	-	SANDSTONE: Generally as above, ?trace light creamy grey non calcareous argillaceous matrix, plus ?minor dark brownish grey argillaceous matrix as above. Proportion exaggerated due to cavings.

F	,		_		
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
600	100	-	tr	r	SILTY CLAYSTONE: As above.
	tr	-	<u> </u>	-	SANDSTONE: As above, cavings.
605	100	-	tr	r	SILTY CLAYSTONE: Generally as above, occasionally firm, micromicaceous.
610	100	-	tr	r	SILTY CLAYSTONE: Generally as above, becoming arenaceous with common fine quartz grains, with rare interbeds of hard dark brown dolomitic bands with trace black carbonaceous flecks.
615	90	-	tr	r	<u>SILTY CLAYSTONE</u> : Generally as above, with common interbedded dark brownish grey firm sublaminated silty claystone.
	10	-	-	-	SANDSTONE: Clear, slightly brown (iron stained) in part, friable with loose grains, medium to coarse grained, with minor fine grains and very coarse grains, moderately to well rounded, fair to moderately good sorting, rare aggregates contain very strong very hard pyrite cement, rare? dark greyish brown argillaceous matrix (commonly washed out), with minor to common coarse grained finely crystallised pyrite commonly replacing fossil fragments, good inferred porosity. No shows.
620	100	_	tr	r	ARENACEOUS CLAYSTONE: Medium to dark greyish brown, soft to firm in part, dispersive in part, sticky, with abundant silt to very fine and fine quartz grains, quartz grains generally well sorted, micromicaceous, rare carbonaceous flecks, minor disseminated microcrystalline pyrite. Grades to argillaceous sandstone in part. Minor pyrite nodules, minor interbeds of medium brown dolomite bands.
625	100	-	tr	r	ARENACEOUS CLAYSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
630	90	-	tr	r	ARENACEOUS CLAYSTONE: As above
	10	-	-	-	SILICEOUS ARGILLACEOUS SILTSTONE GRADING TO SANDSTONE: Medium to dark greyish brown, hard to very hard, subblocky, silt to very fine quartz grains, very well sorted, with abundant dark to medium greyish brown argillaceous matrix, common siliceous cement, trace to rare dolomite cement, nil visible porosity. No shows.
635	100	-	tr	r	ARENACEOUS CLAYSTONE: As above.
640	100	-	tr	r	ARENACEOUS CLAYSTONE: As above.
645	100	-	tr	r	ARENACEOUS CLAYSTONE: As above.
650	100	-	r	r	ARENACEOUS CLAYSTONE: Generally as above, with rare very fine to occasionally fine/medium glauconite pellets.
655					SAMPLE MISSED

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
660	70	-	-	_	SANDSTONE: Clear to opaque, light green in part, friable with loose grains, medium/coarse to very coarse grained, occasionally granule/pebble grade, subrounded to rounded, moderately well sorted quartz grains, ?minor medium browny green argillaceous matrix (generally washed out), trace pyrite cement in part, very good inferred porosity. No shows. Note: sandstone may be bimodal, with a medium/coarse fraction and a very coarse/pebble fraction, interbedded over the sample interval.
	20	-	tr	tr	CLAYSTONE: Medium greyish brown to grey/green, soft, sticky, dispersive in part, micromicaceous, trace carbonaceous matter, trace glauconite pellets, trace to rare quartz silt and very fine sand grains.
	10	-	r	tr	DOLOMITE: Buff with peppery appearance, very hard, blocky, with rare dispersed very fine glauconite pellets and trace carbonaceous specks giving a peppery effect.
665	85	-	r	tr	SANDSTONE: Generally as above, with common opaque to off white quartz grains. Grains commonly covered with patchy glauconite, medium/dark greyish green, and rare pyrite cement. Rare pyrite nodules.
	10	-	tr	r	<u>CLAYSTONE</u> : As above.
	5	-	tr	tr	DOLOMITE: As above.

				T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
670	100	-			SANDSTONE: Dominantly orangey red, grading in part to red and rust brown, friable with loose grains, medium to very coarse grained, occasionally granule, subangular to subrounded, poorly to moderately sorted reddish stained quartz, common medium reddish brown dispersive argillaceous matrix (washed away), rare moderately strong siliceous cement in part, rare to trace fine to coarse dark brown iron oxide/hydroxide pellets, rare pyrite nodules/cement, rare mica, poor to fair inferred/visual porosity.
675	100	-	-	-	SANDSTONE: As above.
680					SAMPLE MISSED
685	100	-	-	-	SANDSTONE: Generally as above, dominantly medium brownish grey, dominantly medium grained.
690	100	-	-	-	SANDSTONE: As above.
695					SAMPLE MISSED
700	100	-	-	-	SANDSTONE: Generally as above, becoming light brownish grey to light yellowish brown, occasionally off white to clear, dominantly medium to very coarse.
705	100	-	-	-	SANDSTONE: As above.
710					SAMPLE MISSED
715					SAMPLE MISSED
720	100	-	-	-	SANDSTONE: Generally as above, with rare granule grade quartz grains.
725					SAMPLE MISSED

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
730	100		-	-	SANDSTONE: Generally as above, medium to granule, dominantly coarse to very coarse, rare very coarse cherty and/or metamorphic lithics, rare limonitic argillaceous matrix in part, rare to trace fine off white lithics in a dark grey to dark greenish grey argillaceous matrix.
735	100	-	-	-	SANDSTONE: Generally as above, dominantly very coarse to granule.
740	100	-	-	-	SANDSTONE: Generally as above, dominantly medium to very coarse.
745	100	-	-	-	SANDSTONE: Generally as above, dominantly medium with common very coarse to granule quartz grains.
750	60	-	-	-	SANDSTONE: As above.
	40	-	r	r	SILTY ARENACEOUS CLAYSTONE: Medium to dark grey, soft, sticky, abundantly silty, moderately finely arenaceous, rare carbonaceous flecks, rare fine glauconite pellets, in part grading to very fine silty sandstone.
755	50	-	-	-	SANDSTONE: As above.
	50	-	r	r	SILTY ARENACEOUS CLAYSTONE: As above.
760	30	-	-	-	SANDSTONE: As above.
	70	-	r	r	SILTY ARENACEOUS CLAYSTONE: As above.
765	20	-	-	-	SANDSTONE: As above.
	80	-	r	r	SILTY ARENACEOUS CLAYSTONE: As above.

	T		7		
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
770	100	-	r	r	CLAYSTONE: Medium to occasionally dark brownish grey, soft, dispersive in part, sticky in part, common micromica, rare to trace silt and very fine sand grains, non calcareous, rare carbonaceous flecks, rare fine glauconite pellets.
775	100	-	r	r	CLAYSTONE: Generally as above, with common to abundant silt and very fine quartz grains.
780	100	-	С	r	CLAYSTONE: Generally as above, medium greenish grey in part, trace to common fine glauconite pellets.
785	100	-	С	С	CLAYSTONE: As above.
790	100	-	-	-	SANDSTONE: Light grey to clear, occasionally very light greenish grey in part, friable with abundant loose grains, medium to very coarse dominantly coarse grained, occasionally granule grade, subangular to dominantly subrounded, poorly sorted quartz, trace to common medium grey to brownish grey occasionally greenish grey dispersive argillaceous matrix, rare moderately weak siliceous cement in part, trace fine glauconite pellets, rare mica, rare to trace pyrite nodules, fair to occasionally good visual/inferred porosity. No shows.
795	100	_	-	-	SANDSTONE: Generally as above, occasionally moderately hard, rare moderately strong pyrite, rare moderately coarse light yellow, grey, green and brown lithics, rare medium brown dolomitic band with rare glauconite pellets, poor to fair visual porosity. No shows.
800	90	-	-	-	SANDSTONE: As above.
	10	-	С	с	<u>CLAYSTONE</u> : As above
805					SAMPLE MISSED

Depth (mRT)	Uithology (%)	- % Fluor	' Glauconite	- Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE SANDSTONE: Generally as above, fine to
					medium grained with rare coarse grained to pebble grade quartz grains, common to abundant medium grey to brownish grey argillaceous matrix.
	30	-	С	С	CLAYSTONE: Generally as above, predominantly medium/dark greyish brown.
815					SAMPLE MISSED
820	80		-	-	SANDSTONE: Generally as above, medium grained with common very coarse to granule grade quartz grains, rare to minor very strong pyrite cement.
	20	-	С	С	<u>CLAYSTONE</u> : Generally as above, commonly firm.
825	50	-			SANDSTONE: Generally as above, fine to medium grained, minor coarse to granule grade quartz grains, abundant medium grey and calcareous off white argillaceous matrix, rare pyrite cement and nodules, coloured lithics as above.
	50	-	С	С	<u>CLAYSTONE</u> : As above.
830	50	_	-	-	SANDSTONE: As above.
	50	-	С	с	CLAYSTONE: As above.
835	60	-	-	-	SANDSTONE: Generally as above, fine to medium grained, with common medium grey argillaceous matrix.
	40	-	r	r	<u>CLAYSTONE</u> : As above.

	, 		1		
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
840	70	-	-	-	SANDSTONE: Generally as above, with abundant pyrite nodules and cement.
	30_	-	r	r	CLAYSTONE: As above.
845	80	_	-	-	SANDSTONE: Generally as above, fine to medium grained with minor coarse to very coarse and granule grade quartz grains and coloured lithics.
	20		r	r	CLAYSTONE: As above.
850	50	-	_	-	SANDSTONE: As above, common pyrite cement and nodules, rare interbedded buff to medium brown dolomite bands,
	50	-	tr	tr	CLAYSTONE: As above
855	80	-	-	-	SANDSTONE: Generally as above, light grey, friable with common loose grains, medium grained with common coarse to granule grade quartz and coloured lithic grains, rare to minor light grey to greyish brown argillaceous matrix, rare siliceous cement, rare ?dolomitic cement, common very strong pyrite cement, minor pyrite nodules, poor to fair visual porosity. No shows.
	20	-	tr	tr	CLAYSTONE: As above.
860	95	-	-	-	SANDSTONE: Generally as above, subequal aggregates and loose grains, grades in part to a hard argillaceous siltstone/sandstone, light grey to medium greyish brown argillaceous matrix, trace calcareous cement, rare siliceous cement, common strong pyrite cement, as above, poor to fair visible porosity. No shows.
	5	-	r	r	CLAYSTONE: As above.

	T	T	T	T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
865	40	-	-	-	SANDSTONE: two members, subequal proportions: (i) Generally as above, medium to very coarse and granule grained. (ii) Light grey, friable, very fine to fine grained, subrounded to subangular well sorted quartz grains, common firm calcareous/dolomitic cement, trace siliceous cement, trace pyrite cement and nodules, common to abundant light grey argillaceous matrix, micromicaceous, poor visible porosity. No shows.
	60	-	tr	tr	CLAYSTONE: Two members, similar proportions: (i) Generally as above (ii) Medium greyish brown, hard and very hard in part, subblocky, with abundant silt to very fine quartz sand, comprising 30-40% microcrystalline pyrite, micromicaceous.
870	50	-	-	-	SANDSTONE: Light grey to medium greyish brown, slightly hard to friable with loose grains, fine/medium grained, rarely medium grained, subrounded to subangular well sorted quartz grains, with light grey to medium greyish brown argillaceous matrix, minor calcareous/dolomitic cement, rare siliceous cement, trace coarse, coloured lithics, poor visual porosity. No shows.
	50	-	tr	tr	CLAYSTONE: Medium greyish brown, soft, dispersive in part, sticky in part, with common silt and very fine quartz sand, micromicaceous, trace carbonaceous matter, trace glauconite.
875	50	-	-	-	SANDSTONE: As above.
	50		tr	tr	CLAYSTONE: As above.
880					SAMPLE MISSED

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
885	60	-	-	-	SANDSTONE: Generally as above, predominantly common to abundant medium greyish brown argillaceous matrix, sandstone grades in part to an arenaceous claystone.
	40	-	tr	tr	CLAYSTONE: Generally as above, with rare light brown and off white claystone (very calcareous), common to abundant fine quartz grains, grading to argillaceous sandstone.
890	10	-	-	-	SANDSTONE: Generally as above, pale green in part.
	90	-	tr	tr	CLAYSTONE: As above.
895					SAMPLE MISSED
900	20	-	-	-	SANDSTONE: Generally as above, with common medium to medium/coarse grains.
	80		tr	tr	CLAYSTONE: As above.
905	100	-	-	tr	SANDSTONE: very light grey to clear, friable with abundant loose grains, moderately hard in part, dominantly medium occasionally coarse to very coarse, dominantly subangular to occasionally subrounded, moderately sorted quartz grains, common light grey dispersive argillaceous matrix (mostly washed out), rare to trace moderately strong pyrite cement, trace detrital coal fragments, trace pyrite nodules, fair to good visual porosity. *
910	100	-	-	tr	SANDSTONE: As above *

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
915	100	-	-	tr	* Note: These samples appear to be misrepresentative of the actual formation as indicated by MWD. Instead, sample from depth 920 mRT was used as a more representative
920	100			tr	lithology. SANDSTONE: As above
925	100	-	-	-	SANDSTONE: Generally as above, becoming dominantly clear, rare moderately weak calcareous cement.
930					SAMPLE MISSED
935	40	-		r	SANDSTONE: Very light grey to occasionally clear, moderately hard to hard, occasionally friable with trace to common loose grains, fine to occasionally medium, subangular to subrounded, moderately to well sorted quartz grains, common to occasionally abundant light grey partially dispersive argillaceous matrix, common to occasionally abundant moderately strong calcareous cement, rare to trace moderately strong pyrite cement and nodules, rare to trace quartz overgrowths and very coarse grey lithics, rare carbonaceous and coaly detritus, poor to very poor visual porosity. No shows.
	40	-	-	r	<u>CLAYSTONE</u> : Medium to occasionally dark grey and brownish grey, soft to firm and occasionally moderately hard, trace micromica, trace silt, rare fine quartz grains, rare to trace carbonaceous flecks, rare microcrystalline pyrite, non calcareous.

Depth (mRT)	Dithology (%)	, %Fluor	' Glauconite	ר Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE SANDSTONE: Generally as above, dominantly
					friable with common loose grains, poor to fair inferred porosity.
	60		-	r	CLAYSTONE: As above.
945	40	-	-	r	SANDSTONE: As above.
	60	-	-	r	CLAYSTONE: As above.
950	80	-	-	r	SILTY CLAYSTONE: Generally as above, occasionally light to medium grey in part, dominantly soft, abundantly silty, rare to trace carbonaceous flecks, moderately arenaceous in part, non calcareous.
	20	-	-	r	SANDSTONE: Light to medium grey, friable with abundant loose grains, very fine to dominantly fine, occasionally moderately hard, subangular to subrounded, well sorted quartz grains, common to occasionally abundant light to medium grey argillaceous matrix, common moderately weak to moderately strong calcareous cement, rare mica, rare pyrite, rare carbonaceous detritus, poor visual porosity. No Shows.
955	80	-	-	r	SILTY CLAYSTONE: As above.
	20	-	-	r	SANDSTONE: As above.
960	90	-	-	r	SILTY CLAYSTONE: Generally as above, becoming dominantly medium to dark grey.
	10	-	-	r	SANDSTONE: As above.

		·			
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
965	90	-	tr	r	<u>SILTY CLAYSTONE</u> : Generally as above, trace glauconite.
	10	-	-	r	SANDSTONE: Generally as above, moderately hard to hard in part, common moderately strong calcareous cement, poor to very poor visual porosity. No shows.
970	70	-	tr	r	SILTY CLAYSTONE: As above.
	30	-	_	r	SANDSTONE: Generally as above, dominantly moderately hard to hard, common to abundant strong calcareous cement, rare to trace moderately strong siliceous cement, trace strong pyrite cement, very poor visual porosity. No shows.
975	100	-	tr	r	SILTY CLAYSTONE: As above.
980	70	_	tr	r	SILTY CLAYSTONE: As above.
	30	-	r	-	SANDSTONE: Generally as above, dominantly friable with common loose grains, occasionally moderately hard, trace moderately strong calcareous cement, rare strong pyrite cement, trace coarse to very coarse yellow, red and reddish brown stained quartz *, rare glauconite pellets, fair visual porosity. No shows.
985	70	-	tr	r	SILTY CLAYSTONE: As above
	30	-	r	-	SANDSTONE: Generally as above, dominantly moderately hard to hard, common to abundant strong calcareous cement, trace strong siliceous cement, trace strong pyrite cement, common coarse to very coarse yellow, red and reddish brown quartz grains *, very poor visual porosity. No Shows.

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
990	80	-	tr	r	SILTY CLAYSTONE: As above.
	20	-	r	-	SANDSTONE: Generally as above, moderately hard to hard, occasionally friable with loose grains, common strong calcareous cement, trace moderately strong siliceous cement, rare coarse to very coarse yellow, red and reddish brown quartz grains *, poor to rarely fair visual porosity. No shows. * Coarse coloured quartz grains described in these samples are most likely cavings.
995	90	_	tr	r	SILTY CLAYSTONE: As above.
	10	-	r	-	SANDSTONE: As above.
1000	90	-	tr	r	SILTY CLAYSTONE: As above.
	10	-	r	-	SANDSTONE: As above.
1005	100	_	tr	r	SILTY CLAYSTONE: As above.
1010	100	-	tr	r	SILTY CLAYSTONE: As above.
1015	80	-	tr	r	SILTY CLAYSTONE: As above.
	20	-	r	-	SANDSTONE: Light grey to light olive green, friable with abundant loose grains, fine grained, subangular to subrounded, very well sorted quartz grains, trace light to medium grey dispersive argillaceous matrix, trace mica, trace grey lithics, rare carbonaceous detritus, fair to good inferred porosity. No shows.

	T	T	1		
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1020	80	-	tr	r	SILTY CLAYSTONE: As above.
	20	-	r	-	SANDSTONE: As above.
	Tr	-	tr	-	DOLOMITE: Trace light to medium brown hard dolomite band, with trace fine grained quartz and glauconite pellets.
1025	100	-	tr	r	SANDSTONE: Clear to light grey, hard to moderately hard, occasionally friable with common loose grains in part, medium to very coarse dominantly coarse, dominantly subangular to occasionally subrounded, moderately sorted quartz grains, trace medium grey dispersive argillaceous matrix, common to occasionally abundant strong siliceous and trace strong calcareous cement, rare strong pyrite cement, trace glauconite pellets, rare carbonaceous detritus and laminae, rare pyrite nodules, very rare pyrite replacement of plant remnants, very rare dolomite band as above, very poor to poor porosity. No shows.
1030	100	-	tr	r	SANDSTONE: As above.
1035	100	-	-	tr	CLAYSTONE: Light grey to medium brownish grey, soft, dispersive in part, sticky in part, moderately silty, trace micromica, trace fine carbonaceous flecks and laminae, trace very fine quartz grains, non calcareous. *
1040	100	-	-	tr	CLAYSTONE: As above. ** Note: Lithology partly interpreted from MWD log which indicated high gamma response.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1045	90	-	-	tr	CLAYSTONE: As above.
	10	-	r	-	SANDSTONE: Clear to light grey, moderately hard occasionally hard, rarely friable with loose grains, dominantly fine to occasionally medium, rarely coarse, subangular to subrounded, moderately sorted quartz grains, trace light grey dispersive argillaceous matrix, common strong siliceous cement, trace strong calcareous cement, trace strong pyrite cement, rare very fine glauconite, poor to very poor visual porosity. No shows.
1050	90	-	-	tr	CLAYSTONE: As above.
	10	-	r	-	SANDSTONE: As above.
1055	100	-	tr	tr	<u>CLAYSTONE</u> : Generally as above, trace fine grained glauconite, becoming commonly to abundantly silty, in part grading to argillaceous siltstone.
1060	100	-	tr	tr	CLAYSTONE: Generally as above, dominantly medium brownish grey.
1065	100	_	tr	tr	CLAYSTONE: As above, with rare hard dolomite band, as above.
1070	100	-	tr	tr	CLAYSTONE: As above.
1075	100	-	tr	tr	<u>CLAYSTONE</u> : As above, trace moderately hard dolomite band, as above.
1080	80	-	tr	tr	CLAYSTONE: As above.
	20	-	r	-	SANDSTONE: Generally as above, dominantly friable with common loose grains, trace moderately strong calcareous and siliceous cement, fair visual porosity. No shows.

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1085	80	-	tr	tr	CLAYSTONE: As above.
	20	-	r	-	SANDSTONE: As above, trace moderately hard dolomite band, as above.
1090	90	-	tr	tr	CLAYSTONE: As above.
	10	-	r	-	SANDSTONE: As above.
1095	90	-	tr	tr	CLAYSTONE: As above.
	10	_	r	-	SANDSTONE: As above.
1100	90	-	tr	tr	CLAYSTONE: As above, abundantly silty.
	10	-	r		SANDSTONE: As above.
					SAMPLING INTERVAL 3 m.
1103	100	-	tr	tr	SILTY CLAYSTONE: As above, grading to argillaceous siltstone.
1106	90	-	tr	tr	ARGILLACEOUS SILTSTONE: as above.
	10	-	r	-	SANDSTONE: As above.
1109	90	-	tr	tr	ARGILLACEOUS SILTSTONE: A above.
	10	-	r	-	SANDSTONE: As above.
1112	100	-	tr	tr	ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1115	60	-	tr	tr	ARGILLACEOUS SILTSTONE: As above.
	40		С	tr	SANDSTONE: Off-white to light grey, occasionally very light greenish grey, moderately hard to occasionally hard, rarely friable with trace loose grains, dominantly fine, occasionally medium in part, dominantly subrounded, well sorted quartz, trace light grey dispersive argillaceous matrix, common to occasionally abundant moderately weak to moderately strong calcareous cement, rare moderately strong siliceous cement, trace to common fine glauconite, trace mica, trace grey lithics, trace carbonaceous detritus, trace hard medium brown dolomite band, poor to very poor visual porosity. No shows.
1118	60	-	tr	tr	ARGILLACEOUS SILTSTONE: As above.
	40	_	С	tr	SANDSTONE: As above.
1121	60	-	tr	tr	ARGILLACEOUS SILTSTONE: As above.
	40	-	С	tr	SANDSTONE: As above.
1124	100	-	tr	tr	ARGILLACEOUS SILTSTONE: As above.
1127	100	-	tr	tr	ARGILLACEOUS SILTSTONE: As above.
1130	100	-	tr	tr	ARGILLACEOUS SILTSTONE: As above, grading to silty claystone.

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1133	100	-	tr	tr	SILTY CLAYSTONE: Generally as above, medium to dark grey and brownish grey, occasionally off-white to light grey in part, soft, rarely firm, dominantly dispersive, occasionally sticky, commonly to occasionally abundantly silty, trace fine glauconite, trace carbonaceous flecks and laminae, trace micromica, non calcareous.
1136	100	-	tr	tr	SILTY CLAYSTONE: As above.
1139	100	-	tr	tr	SILTY CLAYSTONE: As above.
1142	80	-	tr	tr	SILTY CLAYSTONE: As above.
	20	-	tr	tr	SANDSTONE: As above, dominantly hard, common to abundant strong calcareous and siliceous cement, very poor visual porosity. No shows.
1145	100	-	tr	tr	SILTY CLAYSTONE: As above, dominantly medium to dark grey and brownish grey.
1148	100	-	tr	tr	SILTY CLAYSTONE: As above.
1151	100	-	tr	tr	CLAYSTONE: As above, moderately silty.
1154	100	-	-	tr	CLAYSTONE: As above.
1157	100	_	-	tr	CLAYSTONE: As above.
1160	100	-	-	tr	CLAYSTONE: As above.
1163	100	•	r	tr	<u>CLAYSTONE</u> : As above, dominantly dark grey and brownish grey, common silt, rare to trace glauconite.
1166	100	-	r	tr	CLAYSTONE: As above.

		T	T	T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1169	90	_	r	tr	CLAYSTONE: As above.
	10	-	_	_	SANDSTONE: clear, friable with abundant loose grains, fine to occasionally medium, dominantly subangular, moderately well sorted quartz, no apparent matrix or cement, good to very good inferred porosity. No shows.
1172	90	-	r	tr	CLAYSTONE: As above.
	10		-		SANDSTONE: As above.
1175	100	-	r	tr	CLAYSTONE: As above.
1178	90	-	r	tr	CLAYSTONE: As above.
	10	-	-	-	SANDSTONE: As above, occasionally coarse grained.
1181	100	-	r	tr	CLAYSTONE: As above.
1184	100	_	r	tr	CLAYSTONE: As above.
1187	85	-	r	tr	CLAYSTONE: As above.
	15	-	-	-	SANDSTONE: Clear, friable with abundant loose grains, fine to coarse, dominantly medium to coarse, dominantly subrounded, moderately sorted quartz, trace light grey argillaceous matrix, good inferred porosity. No shows.
1190	100	-	r	tr	<u>CLAYSTONE</u> : As above.
1193	100	-	r	tr	CLAYSTONE: As above, commonly silty, slightly finely arenaceous in part, trace hard dolomite band, as above.
1196	100	-	r	tr	CLAYSTONE: As above.
1199	100	-	r	tr	CLAYSTONE: As above.
	tr	-	-	-	SANDSTONE: As above, dominantly fine.

	Ī	T	T	T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1202	100	-	r	tr	CLAYSTONE: As above.
1204	100	-	r	tr	CLAYSTONE: As above, trace hard dolomite band, as above.
1208	80	-	tr	tr	PEBBLY CONGLOMERATE: Light grey, clear to light yellowish brown in part, very hard, medium pebbles, rounded (all broken and angular), and common coarse to very coarse subrounded to rounded sand grains, moderately sorted quartz with light yellowish brown staining in part, rare to common grey and light brown, very coarse to granule lithics, abundant strong siliceous and calcareous cement, rare to common strong pyrite cement, trace medium brown very hard dolomite band, rare very coarse pyrite nodules, nil visual porosity. No shows. CLAYSTONE: Medium to dark grey, occasionally medium to dark brownish grey, firm, moderately hard in part, blocky, rarely subfissile in part, moderately silty, rare micromica, rare to trace glauconite and carbonaceous flecks and detritus, rarely finely
1211	100	-	С	tr	arenaceous in part, non calcareous. CLAYSTONE: As above, becoming dominantly silty, grading in part to Silty Claystone, common glauconite.
1214	100	-	С	tr	SILTY CLAYSTONE: Generally as above, becoming abundantly silty.
1217	100	-	С	tr	SILTY CLAYSTONE: As above, grading in part to Argillaceous Siltstone.
1220	100	-	С	tr	SILTY CLAYSTONE: As above, slightly calcareous in part, trace medium brown, very hard dolomite band.
1223	100	-	С	tr	SILTY CLAYSTONE: As above, trace dolomite band as above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1226	100	-	С	tr	SILTY CLAYSTONE: Generally as above, occasionally medium greenish grey in part, slightly to occasionally moderately finely arenaceous in part, trace dolomite bands as above.
1229	100	-	С	tr	SILTY CLAYSTONE: As above, trace pyrite nodules.
1232	100	-	С	tr	SILTY CLAYSTONE: As above.
1235	100	-	С	tr	SILTY CLAYSTONE: Generally as above, medium to dark grey, medium to dark brownish grey in part, rarely medium greenish grey, dominantly firm, occasionally moderately hard, dominantly blocky, commonly to occasionally abundantly silty, slightly calcareous in part, common fine glauconite, trace fine quartz sand grains, trace carbonaceous flecks and laminae, trace medium brown moderately hard dolomitic band (with trace glauconite), trace pyrite nodules, grading to argillaceous siltstone in part.
1238	100	-	С	tr	SILTY CLAYSTONE: Generally as above, common to abundant hard dolomitic bands as above.
1241	100	_	С	tr	SILTY CLAYSTONE: Generally as above, dominantly medium grey, trace dolomite bands as above.
1244	100	-	С	tr	SILTY CLAYSTONE: As above.
1247	100	-	С	tr	SILTY CLAYSTONE: As above.
1250	100	-	r	tr	SILTY CLAYSTONE: Generally as above, light/medium to medium grey to brownish grey, dominantly firm, non calcareous, trace medium brown moderately hard dolomitic bands, trace pyrite nodules.

	 	 	T		
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1253	100	-	r	tr	SILTY CLAYSTONE: Generally as above, medium to dark grey to brownish grey, dominantly firm, hard in part, minor to common glauconite, trace carbonaceous matter, grades to arenaceous claystone in part
1256					SAMPLE MISSED
1259	100	-	С	tr	SILTY CLAYSTONE: Generally as above, common glauconite, rare medium brown moderately hard dolomite bands.
1262	100	-	r	tr	SILTY CLAYSTONE: Generally as above, dominantly medium to dark grey, minor glauconite, rare to ?minor medium brown moderately hard dolomite bands.
1265	100	-	С	tr	SILTY CLAYSTONE: As above.
1268					SAMPLE MISSED
1271	100	-	r	tr	SILTY CLAYSTONE: Generally as above, dominantly medium to dark grey to greyish brown, rare light to light/medium greyish brown, lighter fraction contains common to abundant very fine quartz grains, grades to arenaceous claystone, trace nodular pyrite, trace medium brown slightly to moderately hard dolomite bands.
1274					SAMPLE MISSED
1277	100	-	r	tr	SILTY CLAYSTONE: As above.
1280					SAMPLE MISSED
1283	100	-	r	tr	SILTY CLAYSTONE: As above, trace microfracture filled calcareous material, trace moderately bright yellowish white mineral fluorescence.

	T	7	T	T	T
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1286	100	-	r	tr	SILTY CLAYSTONE: As above, trace microfracture filled calcareous material, trace mineral fluorescence as above.
1289	90		С	tr	SILTY CLAYSTONE: As above, trace microfractured filled calcareous material, trace mineral fluorescence as above.
	10	-	-		SANDSTONE: Clear to translucent, friable with abundant loose grains, fine to medium, dominantly subrounded, moderate to well sorted quartz, no apparent matrix, very good inferred porosity. No shows.
1292	100	-	С	tr	SILTY CLAYSTONE: As above, dominantly medium to dark grey.
1295					SAMPLE MISSED
1298	90	_	С	tr	SILTY CLAYSTONE: As above, trace microfracture filled calcareous material, trace mineral fluorescence as above.
	10	-	tr	_	SANDSTONE: Clear, translucent to very light grey in part, friable with common loose grains, dominantly fine to occasionally medium grained, trace very light grey to greenish grey dispersive argillaceous matrix, common medium grained glauconite grains, good to very good inferred porosity.
1301	90	_	С	tr	SILTY CLAYSTONE: As above, microfracture filled calcareous material, trace mineral fluorescence as above.
	10	_	tr	_	SANDSTONE: As above.
1304					SAMPLE MISSED
1307	90	-	С	tr	SILTY CLAYSTONE: As above.
	10	-	tr	-	SANDSTONE: As above.

Depth (mRT)	Cithology (%)	, %Fluor	n Glauconite	म Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE SILTY CLAYSTONE: Generally as above, trace
	5	-	tr	_	moderately soft. SANDSTONE: As above.
1313	100	-	С	tr	SILTY CLAYSTONE: As above.
1316	100	-	С	tr	SILTY CLAYSTONE: As above, trace foram.
1319	100	-	С	tr	SILTY CLAYSTONE: Generally as above, dominantly medium/dark.
1322	100	-	С	tr	SILTY CLAYSTONE: Generally as above, medium to medium/dark grey.
1325	100	-	С	tr	SILTY CLAYSTONE: Generally as above, commonly grades to argillaceous sandstone, rare medium brown moderately hard arenaceous dolomite.
1328	100	-	С	tr	SILTY CLAYSTONE: As above.
1331	100	-	С	tr	SILTY CLAYSTONE: As above.
1334	100	-	r	tr	SILTY CLAYSTONE: As above.
1337	100	-	r	tr	SILTY CLAYSTONE: As above
	r	-	-	-	SANDSTONE: Clear, friable with loose grains, fine/medium grained, subangular, well sorted, good inferred porosity. No shows.
1340	100	-	r	tr	SILTY CLAYSTONE: As above
	r	-	-	-	SANDSTONE: As above.
1343	100				SILTY CLAYSTONE: As above
1346	100	-	r	tr	SILTY CLAYSTONE: Generally as above, typically medium to medium/dark grey and brownish grey, rarely light/medium grey and brownish grey, silty and moderately arenaceous.

			_	7	
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1349	100	-	r	tr	SILTY CLAYSTONE: As above, grading to argillaceous siltstone.
1352	100	-	r	tr	SILTY CLAYSTONE: As above, grading to argillaceous siltstone.
1355	100	_	r	tr	SILTY CLAYSTONE: As above, grading to argillaceous siltstone.
1358	100	-	r	tr	SILTY CLAYSTONE: Generally as above, dominantly medium brownish grey, moderately arenaceous, grades to argillaceous siltstone.
1361	100	-	r	tr	SILTY CLAYSTONE: As above, grades to argillaceous siltstone.
1364					SAMPLE MISSED
1367	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: Generally as above, medium to medium/dark brownish grey, abundantly silty, grades to argillaceous siltstone, trace clear granules (igneous?) quartz lithics,
1370	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1373	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: Generally as above, trace fossil fragments, trace coarse pyrite nodules.
1376	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1379	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1382	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: Generally as above, medium to dark grey to brownish grey, firm to moderately hard, rarely hard in part, occasionally soft in part, dominantly blocky, rarely subfissile, abundantly silty, rarely micromicaceous and carbonaceous, very slightly carbonaceous in part, occasionally finely arenaceous in part, trace fracture filling calcareous material, trace light to dominantly medium brown hard dolomite band, rare glauconite, nil to trace pyrite nodules.
1385	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1388	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1391	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1394	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1397	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1400	100	•	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1403	100	•	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1406	100	•	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1409	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1412	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.

					
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1415	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1418	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: Generally as above, with rare coarse cryptocrystalline pyrite.
1421	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1424	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above, rare dolomite bands as above.
1427	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1430	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1433	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1436	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1439	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1442	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1445	100	_	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1448	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1451	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1454	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.

	7	T	_		
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1457	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1460	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
	r	-	_	-	SANDSTONE: Clear to light grey, friable with predominantly loose grains, medium grained, subangular, moderately sorted quartz grains, minor fairly strong silica cement, rare light grey argillaceous matrix, ?fair inferred porosity, no shows.
1463	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
	r	_	-	-	SANDSTONE: As above
1466	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: Generally as above, dominantly medium grey to dark brownish grey in part, commonly light/medium greyish brown, light/medium greyish brown fraction is moderately calcareous.
	r	-	-	-	SANDSTONE: As above
1469	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: Generally as above, dominantly medium to medium/dark grey and brownish grey.
	tr	-	-	-	SANDSTONE: As above
1472	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1475	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1478	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
	r	-	tr	r	SANDSTONE: Light grey, slightly hard to hard, subblocky, fine/medium grained, subangular to subrounded, well sorted, common fairly strong calcareous cement, rare siliceous cement, rare light grey argillaceous matrix, trace glauconite, rare carbonaceous flecks, rare micromica, very poor to nil visible porosity. No shows.
1481	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1484	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above, trace fossil (?Bryozoa) fragments.
1487	100	-	r	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above, trace foram fossil.
1490	100	-	r	r	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, medium to medium/dark greyish brown to grey, firm to slightly hard, commonly moderately hard, subblocky to blocky, darker fraction generally blocky, occasionally subfissile, rare calcareous cement, trace ?siliceous cement, abundant medium/dark greyish brown slightly calcareous argillaceous matrix, commonly matrix supported and grading to silty claystone, rarely to commonly finely arenaceous, rare carbonaceous flecks, rare glauconite, common micromica and trace mica flakes, trace microcrystalline and fine grained cryptocrystalline pyrite, trace fossil fragments, trace medium brown moderately hard dolomite bands (with trace very fine grained glauconite, trace carbonaceous flecks).

	T				
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1493	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, trace calcareous material infilling fracture.
1496	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1499	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, rare nodular and fine/medium microcrystalline pyrite.
1502	100	_	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1505	100	_	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1508	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1511	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1514	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1517	100	1	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, trace clear to off white calcite veins infilling fractures.
1520	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, trace thin (<0.5 mm) microcrystalline pyrite laminae.
1523	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1526	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above, trace framboidal pyrite.

Depth (mRT)	Lithology (%)	, %Fluor	n Glauconite	다 Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE ARGILLACEOUS SILTSTONE GRADING TO
					SILTY CLAYSTONE: Generally as above, rare medium brown to medium dark brown very hard dolomite.
1532	100	_	tr	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, moderately micromicaceous, trace very fine grained glauconite, trace carbonaceous flecks, rare medium brown to medium dark brown very hard dolomite.
1535	100	-	tr	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1538	100	-	tr	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1541	100	-	tr	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, trace pyritised coaly (plant) fragments
1544	100	-	tr	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1547	100	-	tr	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, dominantly medium grey to greyish brown, rarely medium/dark grey to greyish brown, trace Inoceramus bivalve fragment (positively identified).
1550	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, dominantly medium to medium/dark grey to brownish grey, trace Inoceramus fragment.

					//A RHP
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1553	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, with rare off white to light buff, amorphous, very soft to soft and commonly dispersive ?kaolinitic claystone (possibly rock flour?), trace orangey red loose very coarse/granule grade rounded quartz grains.
1556	100	_	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above, nil off white claystone.
1559	100	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, dominantly medium/dark grey to brownish grey, trace Inoceramus fragment.
1562	100	-	r	tr	ARGILLACEOUS SILTSTONE: Generally as above, dominantly medium to occasionally dark grey and brownish grey, firm to moderately hard, occasionally hard, subblocky to dominantly blocky, rarely subfissile, trace siliceous cement in part, abundantly argillaceous, rarely to commonly micromicaceous, rare to trace carbonaceous flecks, moderately finely arenaceous in part, trace pyrite and calcareous material fracture infill, rare to trace Inoceramus, nil to trace shell fragments, rare to trace glauconite, rare medium brown hard dolomite bands.
1565	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1568	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1571	100	_	r	tr	ARGILLACEOUS SILTSTONE: As above.
1574	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1577	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1580	100	-	г	tr	ARGILLACEOUS SILTSTONE: As above.
1583	100	_	r	tr	ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1586	100	-	r	tr	ARGILLACEOUS SILTSTONE: Generally as above, dominantly medium to occasionally dark grey and brownish grey, firm to moderately hard, occasionally hard, subblocky to dominantly blocky, rarely subfissile, trace siliceous cement in part, abundantly argillaceous, rarely to commonly micromicaceous, rare to trace carbonaceous flecks, moderately finely arenaceous in part, trace pyrite and calcareous material fracture infill, rare to trace Inoceramus, nil to trace shell fragments, rare to trace glauconite, rare medium brown hard dolomite bands.
1589	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1592	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1595	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1598	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1601	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1604	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1607	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1610	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1613	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1616	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1619	100	-	r	tr	ARGILLACEOUS SILTSTONE: Generally as above, dominantly medium to occasionally dark grey and brownish grey, firm to moderately hard, occasionally hard, subblocky to dominantly blocky, rarely subfissile, trace siliceous cement in part, abundantly argillaceous, rarely to commonly micromicaceous, rare to trace carbonaceous flecks, moderately finely arenaceous in part, trace pyrite and calcareous material fracture infill, rare to trace Inoceramus, nil to trace shell fragments, rare to trace glauconite, rare medium brown hard dolomite bands.
1622	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1625	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1628	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1631	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1634	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1637	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1640	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1643	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1646	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.
1647	100	-	r	tr	ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31
1649	100	-	-	tr	Geologist(s): A. TABASSI/D. PICKAVANCE SANDSTONE: Light grey to clear, friable with
					common loose grains to moderately hard in part, fine to medium grained, very occasionally coarse grained in part, subangular to dominantly subrounded, moderate to well sorted quartz grains, rare to occasionally common moderately weak to moderately strong calcareous cement, nil to trace moderately strong siliceous cement, rare to occasionally common dominantly off white to occasionally light grey argillaceous matrix, trace carbonaceous detritus, rare to trace mica, nil to trace partially altered feldspar, trace to nil lithics, fair to poor visual porosity. No shows.
1652	10	-	-	tr	SANDSTONE: As above. No shows.
	80	-	tr	tr	<u>CLAYSTONE</u> : Medium to dark grey, firm to moderately hard, subblocky to dominantly blocky, rarely to moderately silty in part, trace carbonaceous flecks, trace to rare glauconite, non calcareous.
	10	-	tr	tr	SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: Medium grey to occasionally medium brownish grey, firm to moderately hard, blocky, abundantly argillaceous, rare to trace moderately strong calcareous cement, rare to trace glauconite and carbonaceous flecks, trace mica, trace partially altered feldspar, commonly to abundantly finely arenaceous, grading in part to fine argillaceous sandstone, nil to very poor visual porosity. No shows.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1655	100	-	tr	tr	SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: Medium grey to occasionally medium brownish grey, firm to moderately hard, blocky, abundantly argillaceous, rare to trace moderately strong calcareous cement, rare to trace glauconite and carbonaceous flecks, trace mica, trace partially altered feldspar, commonly to abundantly finely arenaceous, grading in part to fine argillaceous sandstone.
1658	30	-	tr	tr	<u>CLAYSTONE</u> : Medium to dark grey, firm to moderately hard, subblocky to dominantly blocky, rarely to moderately silty in part, trace carbonaceous flecks, trace to rare glauconite, non calcareous.
	70	-	tr	tr	SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: As above
1661	40	-	tr	tr	CLAYSTONE: As above.
	40	-	tr	tr	SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: As above.
	20	-	tr	tr	SANDSTONE: Clear to light grey, occasionally light brownish grey. friable with common loose grains, hard in part, dominantly medium, occasionally coarse grain, dominantly subrounded, moderately well sorted quartz grains, rare to occasionally common off white to light grey argillaceous matrix, rare to common moderately strong calcareous and rare to trace moderately strong siliceous cement in part, trace glauconite, pyrite nodules, mica and carbonaceous detritus and laminae, trace medium brown very hard dolomite bands, good visual porosity in friable portion, poor to nil visual porosity in cemented fraction. No shows.

	I		Ī	T T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1664	20	_	tr	tr	CLAYSTONE: As above.
	20	-	tr	tr	SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: as above.
	30	-	tr	tr	SANDSTONE: Clear to light grey to very light brownish grey, friable with abundant loose grains, dominantly medium to occasionally coarse, dominantly subrounded, moderately sorted quartz, trace light grey dispersive argillaceous matrix, good to very good inferred porosity. No shows.
	30	-	tr	tr	SANDSTONE: Generally as above, hard to very hard, common to abundant strong calcareous siliceous and rare to common pyritic cement, nil to poor visual porosity. No shows. NOTE: The porous sandstone described herein occurs at the base of this interval, below the
					more cemented sandstone variety.
1667	40	-	tr	tr	CLAYSTONE: As above.
	40	-	tr	tr	SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: as Above.
	10	-	tr	tr	SANDSTONE: Friable, as above.
	10	_	tr	tr	SANDSTONE: Hard, as above.
1670	40	-	tr	tr	CLAYSTONE: As above.
	60	-	tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: as above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1673	40	-	tr	tr	<u>CLAYSTONE</u> : Medium to dark grey, firm to moderately hard, subblocky to dominantly blocky, rarely to moderately silty in part, trace carbonaceous flecks, trace to rare glauconite, non calcareous.
	60		tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: light to medium grey to occasionally medium brownish grey, moderately hard, rarely friable with rare to common loose sand grains, very fine to fine, silt size in part, rarely medium in part, dominantly subrounded, moderately well sorted quartz, abundant off-white to light grey argillaceous matrix, rare to trace moderately strong calcareous cement, rare to trace glauconite and carbonaceous flecks, trace mica, trace partially altered feldspar, commonly to abundantly finely arenaceous, grading in part to argillaceous siltstone, poor to very poor visual porosity. No shows.
1676	40	-	tr	tr	CLAYSTONE: As above.
	60	-	tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above, rare medium grained in part.
1679	50	-	tr	tr	CLAYSTONE: As above.
	50	-	tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1682	50	-	tr	tr	<u>CLAYSTONE</u> : As above.
	50	-	tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1685	50	-	tr	tr	CLAYSTONE: As above.
	50	-	tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: As Above, dominantly very fine, dominantly silty.
1688	50	-	tr	tr	CLAYSTONE: As above.
	50	-	tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1691	70	-	tr	tr	CLAYSTONE: As above.
	30	-	tr	tr	ARGILLACEOUS SANDSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1694	80	-	tr	tr	CLAYSTONE: As above.
	20	-	tr	tr	ARGILLACEOUS SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: As above.
1697	20	-	tr	tr	CLAYSTONE: Medium to dark grey, firm to moderately hard, subblocky to dominantly blocky, rarely to moderately silty in part, trace carbonaceous flecks, trace to rare glauconite, non calcareous. ARGILLACEOUS SILTSTONE GRADING TO ARGILLACEOUS SANDSTONE: Medium grey to occasionally medium brownish grey, firm to
			i		moderately hard, blocky, abundantly argillaceous, rare to trace moderately strong calcareous cement, rare to trace glauconite and carbonaceous flecks, trace mica, trace partially altered feldspar, commonly to abundantly finely arenaceous, grading in part to fine argillaceous sandstone.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1700	100	-	С	tr	SILTY CLAYSTONE: Medium to dark grey, occasionally medium to dark brownish grey, firm to moderately hard, dominantly blocky to occasionally subfissile, common to abundantly silty in part, rarely very finely arenaceous in part, trace micromica and carbonaceous flecks, common fine to medium glauconite pellets, trace pyrite nodules, non calcareous.
1703	100	-	С	tr	SILTY CLAYSTONE: As above.
1706	100	-	С	tr	SILTY CLAYSTONE: As above.
1709	100	-	С	tr	SILTY CLAYSTONE: As above.
1712	100	-	С	tr	SILTY CLAYSTONE: As above.
1715	100	-	С	tr	SILTY CLAYSTONE: As above.
1718	100		С	tr	SILTY CLAYSTONE: As above.
1721	100	-	С	tr	SILTY CLAYSTONE: As above.
1724	100	-	С	tr	SILTY CLAYSTONE: As above.
1727	100	-	С	tr	SILTY CLAYSTONE: As above.
1730	100	-	С	tr	SILTY CLAYSTONE: As above.
1733	100	-	С	tr	SILTY CLAYSTONE: As above.
1736	100	-	С	tr	SILTY CLAYSTONE: As above.
1739	100	-	С	tr	SILTY CLAYSTONE: As above.
1742	100	-	С	tr	SILTY CLAYSTONE: As above.
1745	100	-	С	tr	SILTY CLAYSTONE: As above, commonly hard.
1748	100	-	С	tr	SILTY CLAYSTONE: As above.
1751	100	_	С	tr	SILTY CLAYSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1754	100	-	С	tr	SILTY CLAYSTONE: As above, grading in part to argillaceous siltstone, trace fine to medium quartz sand grains.
1757	100	-	С	tr	SILTY CLAYSTONE: Medium to dark grey, occasionally medium to dark brownish grey and greenish grey, firm to moderately hard, occasionally hard in part dominantly blocky to occasionally subfissile, common to abundantly silty in part, rarely very finely arenaceous in part, trace micromica and carbonaceous flecks, common fine to medium glauconite pellets, trace pyrite nodules, non calcareous, grading in part to argillaceous siltstone.
1760	100	-	С	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1763	100	_	С	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1766	100		С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1769	100	•	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1772	100	_	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1775	100		С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1778	100	-	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1781	100	-	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1784	100	-	С	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1787	100	-	С	tr	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE: As above.
1790	100	-	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1793	100	-	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1799	100	-	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1802	80	-	r	tr	ARGILLACEOUS SANDSTONE: Light/medium grey to medium grey, friable to commonly slightly hard aggregates, subblocky, fine grained, subrounded to predominantly subangular, very well sorted, rare fairly strong siliceous cement, no calcareous cement, common to abundant light grey argillaceous matrix, common silt, rare to minor off white altered ?feldspar grains, trace medium brownish grey lithics, trace micromica, trace mica flakes, trace carbonaceous material, rare to minor glauconite grains and pellets, trace microcrystalline pyrite grains and ?cement, trace pyrite nodules, grades to arenaceous argillaceous siltstone, poor to ?fair visual porosity. No shows.
	20	-	С	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, commonly finely arenaceous.

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1805	70	-	tr	tr	ARGILLACEOUS SANDSTONE: Generally as above, abundantly argillaceous, occasionally matrix supported, rare to minor glauconite grains, grades substantially to (and from) arenaceous argillaceous siltstone, very poor visual porosity. No shows.
	30	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, generally commonly to abundantly finely arenaceous, grading to argillaceous sandstone, very poor to nil visual porosity. No shows.
1808	80	-	tr	tr	ARGILLACEOUS SANDSTONE: Generally as above, trace loose coarse angular quartz grains, trace pyritised plant fragments.
	20	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: Generally as above, abundantly finely arenaceous.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D, PICKAVANCE
1811	100		_	-	SANDSTONE: Clear to translucent, ?friable with abundant loose grains, moderately hard aggregates in part, medium to very coarse, dominantly coarse, subrounded to predominantly subangular (angularity due to fracturing from PDC bit cutting action) moderately sorted quartz grains, rare to occasionally common off white to light grey dispersive argillaceous matrix (washed away), rare to common moderately strong siliceous cement, trace mica, trace pyrite nodules and weak microcrystalline pyrite cement, fair to good inferred porosity. No shows. NOTE: It is interpreted that angularity of quartz grains could be partly due to PDC bit action rather than reflecting the hardness of the
	С	-	r	tr	sandstone (and strength of cement). ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above, interpreted as cavings.
1814	90	_	-	-	SANDSTONE: As above, fair to good interpreted porosity. No shows.
	10	_	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.
1817	100	-	-	-	SANDSTONE: As above, trace Inoceramus fossil fragment, fair to good interpreted porosity. No shows.
	С	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.

Depth (mRT)	06 Lithology (%)	, %Fluor	l Glauconite	. Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE SANDSTONE: Generally as above, rare coarse to granule grade nodular and framboidal pyrite, fair to good visual porosity, no shows.			
	10	-	r	tr	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE: As above.			
Cut core # 1 from 1821-1828 mRT Cut core # 2 from 1828-1842.5 mRT Cut core # 3 from 1842.5-1847 mRT See section 3.3.1 "Core Description"								
1850	100	-	-	tr	SANDSTONE: Clear to light grey, moderately hard to occasionally friable with abundant loose grains, medium to coarse, abundantly coarse, rarely fine in part, subangular to subrounded (angular grains are due to bit action) poorly sorted quartz grains, rare light grey dispersive argillaceous matrix, rare to common moderately strong siliceous cement, trace carbonaceous detritus and mica, fair to occasionally good porosity. No shows.			
1853	100	-	-	tr	SANDSTONE: As above. No shows.			
1856	100	-	-	tr	SANDSTONE: As above. No shows.			
1859	100	-	-	tr	SANDSTONE: Dominantly as above, very coarse grained. No shows.			
1862	100	-	-	tr	SANDSTONE: As above. No shows.			
1865	100	-	-	tr	SANDSTONE: As above.			
1868	100	-	-	tr	SANDSTONE: As above.			
1871	100	-	-	tr	SANDSTONE: As above.			

			_		
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1874	70	-	-	tr	SANDSTONE: As above. No shows.
	30	-	-	tr- r	CLAYSTONE: Medium to dark grey, firm to moderately hard, blocky to occasionally subfissile, slightly silty, non calcareous, rare carbonaceous flecks and micromica, trace coaly fragments.
1877	100	-	-	tr	SANDSTONE: Generally as above, dominantly coarse. No shows.
1880	100	-	-	tr	SANDSTONE: Generally as above, trace disseminated pyrite/cement.
1883	100	-	-	tr	SANDSTONE: Generally as above, dominantly medium to coarse, with rare to common rock flour. Trace slickenside.
1886	100	-	-	tr	SANDSTONE: Clear to light grey, moderately hard to friable with abundant loose grains in part, medium to very coarse grained, occasionally fine grained and granule grade, subangular to subrounded (angular grains broken due to bit action), poorly to moderately sorted quartz, trace light grey dispersive argillaceous matrix (washed away), rare to common moderately strong siliceous cement, trace moderately strong pyrite cement, trace disseminated cryptocrystalline pyrite and pyritised plant fragments, trace coaly detritus, nil to trace lithics, nil to trace structural kaolinite, fair to occasionally good visual porosity in part. No shows.
1889	60	-	-	tr	SANDSTONE: As above.
	40	-	-	tr- r	<u>CLAYSTONE</u> : Medium to dark grey, firm to moderately hard, blocky to occasionally subfissile, slightly silty, non calcareous, rare carbonaceous flecks and micromica, trace coaly fragments.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1892	100		-	tr	SANDSTONE: As above.
1895	100	-	-	tr	SANDSTONE: Clear to occasionally light grey, friable with abundant loose grains to moderately hard, medium to very coarse, dominantly coarse, dominantly subrounded moderately to well sorted quartz grains, rare off white kaolinitic and light grey dispersive argillaceous matrix (washed away), rare to occasionally common moderately weak to occasionally moderately strong siliceous cement, trace moderately strong pyrite cement, trace coaly detritus, structural kaolinite grains and pyrite nodules, trace rock flour, good inferred visual porosity. No shows.
1898	100	-		tr	SANDSTONE: As above.
1901	100		-	tr	SANDSTONE: As above.
1094	100	-	-	tr	SANDSTONE: As above.
1907	100	-	-	tr	SANDSTONE: As above, with no direct or cut fluorescence, very weak very slow dull yellowish white crush cut, thin, dull, bluish white residual ring.
1910	80	-	-	tr	SANDSTONE: As above.
	20	-	-	tr	<u>CLAYSTONE</u> : Medium to dark grey, firm to moderately hard, trace micromica and carbonaceous flecks, non calcareous, moderately silty, rarely finely arenaceous in part, grading in part to argillaceous siltstone.
1913	80	-	-	tr	SANDSTONE: As above.
	20	-	-	tr	<u>CLAYSTONE</u> : As above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1916	20	-	-	tr	SANDSTONE: Clear to occasionally light grey, friable with abundant loose grains to moderately hard, medium to very coarse, dominantly coarse, occasionally fine, dominantly subrounded moderately to well sorted quartz grains, rare off white kaolinitic and light grey dispersive argillaceous matrix (washed away), rare to occasionally common moderately weak to occasionally moderately strong siliceous cement, trace moderately strong pyrite cement, fine aggregates have no cement, trace coaly detritus, structural kaolinite grains and pyrite nodules, good inferred visual porosity. No direct or cut fluorescence, very weak, very slow, dull yellowish white crush cut and thin, dull bluish white residual ring. CLAYSTONE: Medium to dark grey, occasionally medium brownish grey, firm to moderately hard, trace micromica and carbonaceous flecks, non calcareous, moderately silty, rarely finely arenaceous in part, grading in
1919	90				part to argillaceous siltstone.
1717		-		tr	SANDSTONE: As above.
	10	-	<u> </u>	tr	CLAYSTONE: As above.
1922	90	-	-	tr	SANDSTONE: As above.
	10	-		tr	CLAYSTONE: As above.
1925	100	-	-	tr	SANDSTONE: As above.
1928	100	-	-	tr	SANDSTONE: As above.
1931	100	-	-	tr	<u>SANDSTONE</u> : As above, dominantly medium to coarse.

	1		Ť		
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1934	80	-	-	tr	SANDSTONE: As above.
	28	-	_	tr	CLAYSTONE: As above.
1937	90	-	-	tr	SANDSTONE: As above.
	10	-	-	tr	CLAYSTONE: As above.
1940	100	-	-	tr	SANDSTONE: As above, no direct or cut fluorescence, extremely weak extremely pale bluish white crush cut, moderately wide pale light greenish yellow residual ring fluorescence.
1943	100	-	-	tr	SANDSTONE: As above, no direct or cut fluorescence, extremely weak extremely pale bluish white crush cut, moderately wide pale light greenish yellow residual ring fluorescence.
1946	40		-	tr	SANDSTONE: Clear to light grey, friable with abundant loose grains, moderately hard in part, fine to coarse dominantly medium grained, occasionally very coarse, subangular to dominantly subrounded poorly sorted quartz grains, rare to occasionally common light grey argillaceous matrix, rare moderately strong siliceous cement, nil to trace moderately strong pyrite cement, trace coaly particles, mica and lithics, trace rock flour, fair to good inferred/visual porosity, no direct or cut fluorescence, extremely weak extremely pale bluish white crush cut, moderately wide very pale light greenish yellow residual ring fluorescence. CLAYSTONE: Medium to occasionally dark grey, medium brownish grey in part, firm, rarely soft and sticky, occasionally subblocky, moderately silty, grading in art to argillaceous siltstone, non calcareous, trace carbonaceous flecks, rare coaly particles. No direct, cut or crush cut fluorescence, very thin moderately dull bluish white residual ring.

		Г	T	T	
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1949	60	-	-	tr	SANDSTONE: As above. No shows.
	40	-	-	tr	CLAYSTONE: As above.
1952	100	-	-	tr	SANDSTONE: Generally as above, dominantly coarse, good inferred/visual porosity.
1955	80	-	-	tr	SANDSTONE: As above.
	20	-	-	tr	CLAYSTONE: Generally as above, dominantly firm.
1958	100	-	-	tr	SANDSTONE: Generally as above, dominantly medium.
1961	100	-	-	tr	SANDSTONE: Generally as above, dominantly medium to coarse.
1964	100	-	-	tr	SANDSTONE: Generally as above, dominantly coarse to very coarse.
1967	100	-	-	tr	SANDSTONE: Generally as above, dominantly coarse with trace coarse lithics.
1970	60	-	-	tr	SANDSTONE: As above.
	40	-	_	tr	CLAYSTONE: Dark grey, firm to moderately hard in part, blocky to subfissile in part, moderately silty grading in part to argillaceous siltstone, rare micromica and carbonaceous flecks, non calcareous.
1973	100	-	-	tr	SANDSTONE: Generally as above, predominantly clear, medium to very coarse grained, rare granules, dominantly medium/coarse grained, good to very good inferred porosity.
1976	100	-	-	tr	SANDSTONE: As above.

		T	T	T	T
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1979	90	-	-	tr	SANDSTONE: Clear to light grey, friable with abundant loose grains, moderately hard in part, fine to coarse dominantly medium/coarse grained, occasionally very coarse, subangular to subrounded poorly sorted quartz grains, rare off white kaolinitic and light grey argillaceous matrix, rare moderately strong siliceous cement, nil to trace moderately strong pyrite cement, trace coaly particles, mica and lithics, fair to good inferred/visual porosity.
	10	-		tr	CLAYSTONE: Medium to occasionally dark grey, medium brownish grey in part, firm and moderately hard in part, rarely soft and sticky, occasionally subblocky, moderately silty, grading in art to argillaceous siltstone, non calcareous, trace carbonaceous flecks, rare coaly particles. No direct, cut or crush cut fluorescence, very thin moderately dull bluish white residual ring.
1982	100	-	-	tr	SANDSTONE: Generally as above, dominantly medium/coarse grained with rare strong pyrite cement, trace slightly hard calcareous cement in part, and trace pyrite nodules.
1985	100	-	-	tr	SANDSTONE: As above.
	С	-	-	tr	<u>CLAYSTONE</u> : As above.
1988	90	-	-	tr	SANDSTONE: Generally as above, dominantly coarse to very coarse grained, trace calcareous fossil fragments.
	10	-	-	tr	<u>CLAYSTONE</u> : As above.
1991	100	_	-	tr	SANDSTONE: Generally as above, dominantly medium/coarse, with minor granule grade quartz grains typically frosted in appearance due to rare quartz overgrowths.
	С	-	-	tr	<u>CLAYSTONE</u> : As above.

	T	T	T	T	I
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1994	90	_	-	tr	SANDSTONE: Generally as above, fine/medium to very coarse grained with common granule grade quartz grains, dominantly subangular with common subrounded, poorly sorted quartz sand grains, rare to minor off white structural kaolinite, fair inferred porosity.
	10	-	-	tr	<u>CLAYSTONE</u> : As above, trace calcareous.
1997	50	-	-	tr	SANDSTONE: Generally as above, rare light grey fine grained well sorted aggregates, rare to common off white structural kaolinite.
	50	-	-	tr	<u>CLAYSTONE</u> : Generally as above, commonly off white and kaolinitic.
2000	100	-	-	tr	CLAYSTONE: Two types (i) 70%, Off white, soft, amorphous and dispersive in part, silty commonly finely arenaceous in part. (ii) 30%, Medium to occasionally dark grey, firm to moderately hard in part, subblocky, rare micromica, trace disseminated microcrystalline pyrite, trace carbonaceous flecks, grades in part to argillaceous siltstone.
	tr	-	-	tr	SANDSTONE: Clear to light grey, friable with abundant loose grains to moderately hard, predominantly fine, to medium grained, rare coarse and occasionally trace granule (possibly cavings), subrounded to subangular well sorted quartz grains, trace to rare off white kaolinite and light grey argillaceous matrix, nil to rare moderately strong siliceous cement in part, trace carbonaceous flecks, trace microcrystalline pyrite, fair visual porosity.

Depth (mRT)	06 Lithology (%)	' %Fluor	- Glauconite	다 다 Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE CLAYSTONE: Subequal (i) and (ii) As above. SANDSTONE: Generally as above, both fine/medium and coarse grained aggregates, well sorted, fair visual porosity. No direct, cut or
2006	90	-	-	tr	crush cut fluorescence. No residual ring. SANDSTONE: Clear to light grey, friable with abundant loose grains, moderately hard in part, fine to coarse dominantly medium/coarse grained,
					occasionally very coarse, subangular to subrounded poorly sorted quartz grains, rare off white kaolinitic and light grey argillaceous matrix, rare moderately strong siliceous cement, nil to trace moderately strong pyrite cement, trace coaly particles, mica and lithics, fair to good inferred/visual porosity.
	10	-	_	tr	CLAYSTONE: Medium to occasionally dark grey, medium brownish grey in part, firm and moderately hard in part, rarely soft and sticky, occasionally subblocky, moderately silty, grading in art to argillaceous siltstone, non calcareous, trace carbonaceous flecks, rare coaly particles. No direct, cut or crush cut fluorescence, very thin moderately dull bluish white residual ring.
2009	100	-	-	tr	SANDSTONE: As above.
	с	-	-	tr	CLAYSTONE: As above.
2012	100	-	-	tr	SANDSTONE: Generally as above, quartz grains typically show frosted surfaces due to quartz overgrowths.
2015	100	_	-	tr	SANDSTONE: Generally as above, very fine/fine to very coarse grained, rare granule grained, subangular, poorly sorted quartz grains displaying common quartz overgrowths.

					BHP Petroleum
Depth (mRT)	Lithology (%)	٥٠	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET
(mk1)	Litho	%Fluor	Glauc	Carb	Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2018	60	-	-	tr	SANDSTONE: Clear to light grey, friable with abundant loose grains, moderately hard in part, fine to coarse dominantly medium/coarse grained, occasionally very coarse, subangular to subrounded poorly sorted quartz grains, rare off white kaolinitic and light grey argillaceous matrix, rare moderately strong siliceous cement, nil to rare moderately to very strong pyrite cement, trace coaly particles, mica and lithics, fair to good inferred/visual porosity.
	40	-	-	tr- c	CLAYSTONE: Two types, subequal (i) Off white, soft to commonly firm, amorphous and dispersive in part, silty and commonly finely arenaceous in part. (ii) Medium to occasionally dark grey, firm to moderately hard in part, subblocky, rare micromica, trace disseminated microcrystalline pyrite, trace to occasionally common carbonaceous flecks and grains, grades in part to argillaceous siltstone.
2021	50	-	-	tr	SANDSTONE: As above.
	50	-	-	tr	CLAYSTONE: Two types, as above.
2024	40	-	_	tr	SANDSTONE: As above.
	60	-	-	tr	CLAYSTONE: As above.
2027	40	-	-	tr	SANDSTONE: Generally as above, rare pyrite cement and nodules.
	60	-	-	tr	CLAYSTONE: As above.
2030	80	•	-	tr	SANDSTONE: Generally as above, fine/medium to coarse grained, with minor to common very coarse to granule grade quartz grains.
	20	-	-	tr	<u>CLAYSTONE</u> : Two types, as above.

	T				
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2033	90	-	r	tr	CLAYSTONE: Medium to medium/dark brownish grey, soft and amorphous to dominantly firm to slightly hard and subblocky, silty, rare very fine glauconite grains, trace carbonaceous flecks, rare micromica, very slightest trace calcareous, trace finely arenaceous, trace microcrystalline pyrite, trace grey lithics.
	10	-	tr	tr	SANDSTONE: Clear to light grey, friable with loose grains, very fine to fine grained, common coarse to very coarse grains in places, subrounded to subangular well sorted quartz grains, trace to rare moderately strong siliceous cement, trace weak calcareous cement, nil to rare light grey argillaceous matrix, trace very fine grained grey to reddish brown lithics, trace carbonaceous detritus and laminae in part, trace glauconite, trace off white altered feldspar grains, trace mica flakes, fair to good visual and inferred porosity. No shows.
2036	30	-	r	tr	CLAYSTONE: Two types: (i) 70% medium to medium/dark brownish grey as above; (ii) 30% Off white, subblocky, firm to slightly hard in part, silty, commonly finely arenaceous, very slightly calcareous in part, trace carbonaceous flecks.
	70	-	tr- r	tr	SANDSTONE: Clear to light grey, slightly hard to friable with loose grains, medium/coarse grained with rare fine to medium and very coarse to granule grains, subangular to occasionally subrounded generally well sorted quartz grains, rare to minor strong siliceous cement, no calcareous cement, rare light grey argillaceous matrix (commonly washed away), rare medium greyish green lithics and glauconite grains, trace carbonaceous detritus, trace microcrystalline pyrite, fair visual/inferred porosity. No shows.

	T	_	T	_	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2039	60	-	r	tr	<u>CLAYSTONE</u> : Two types as above, dominantly (i).
	40	-	tr	tr	SANDSTONE: Generally as above, trace pyrite cement.
2042	90	-	tr	tr	SANDSTONE: Generally as above, trace carbonaceous laminae.
	10	-	r	tr	<u>CLAYSTONE</u> : As above, subequal (i) and (ii), trace pyritised plant fragments.
2045	90	-	tr	tr	SANDSTONE: Generally as above, predominantly medium to coarse grained.
	10	-	r	tr	CLAYSTONE: Generally as above, type (i) grades from medium greyish brown to medium brownish grey, to medium/dark brownish grey.
2048	100	-	r	tr	SANDSTONE: Clear to light grey, moderately hard to friable with abundant loose grains, medium to coarse grained with minor granule grade, subangular to subrounded moderately sorted quartz grains, rare moderately strong siliceous cement, trace strong pyrite cement in part, slight trace calcareous cement, rare to trace off white kaolinitic and light grey argillaceous matrix (dominantly washed away), trace carbonaceous detritus as laminae, trace mica flakes within laminae, trace pyrite replacement of plant fragments, fair visual to good inferred porosity. No shows.
	С	-	r	r	<u>CLAYSTONE</u> : Medium to medium/dark brownish grey, firm to slightly hard, subblocky, silty, rare very fine glauconite grains, trace carbonaceous flecks, rare micromica, very slightest trace calcareous, trace finely arenaceous, trace microcrystalline pyrite, trace grey lithics.

	7				
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2051	100	-	r	r	SANDSTONE: As above.
	С	-	r	r	CLAYSTONE: As above.
2054	100	-	r	r	SANDSTONE: As above.
	С	-	r	r	CLAYSTONE: As above.
2057	80	-	tr	tr	SANDSTONE: As above.
	20	-	r	r	CLAYSTONE: Two types, subequal: (i) medium to medium/darl brownish grey, as above; (ii) 30% off white, subblocky, soft to firm and slightly hard in part, silty, commonly finely arenaceous, very slightly calcareous in part, trace carbonaceous flecks.
2060	60	-	tr	tr	SANDSTONE: As above.
	40	-	r	r	<u>CLAYSTONE</u> : As above.
2063	30	-	tr	tr	SANDSTONE: As above.
	70	-	r	r	CLAYSTONE: As above.
2066	80	-	tr	tr	SANDSTONE: Generally as above, predominantly fine to medium grained with abundant coarse grains and occasional very coarse/granule grade.
	20	-	r	r	CLAYSTONE: Two types, subequal as above.
2069					SAMPLE MISSED DUE TO SHAKER SCREEN CHANGE
2072	30	_	tr	tr	SANDSTONE: As above.
	70	-	tr	r	<u>CLAYSTONE</u> : As above, with subequal proportions type (i) and (ii).

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2075	30	tr	tr	tr	CLAYSTONE: Two types: (i) 40% Off white, soft to firm, amorphous to subblocky, commonly finely arenaceous, trace carbonaceous specks, trace microcrystalline pyrite and cryptocrystalline pyritic nodules. (ii) 60% Medium brownish grey to dominantly greyish brown, grading to medium/dark in part, fairly soft to firm, sticky in part, subblocky, silty, rarely finely arenaceous in part, trace carbonaceous flecks, trace coaly particles, trace glauconite, non calcareous. SANDSTONE: clear to very light grey, friable with loose grains, fine to medium/coarse grained, rare very coarse/granule grade, subangular fair sorted quartz grains, trace to rare moderately weak siliceous cement, slightest trace calcareous cement, trace light grey argillaceous matrix, trace carbonaceous matter, trace light grey lithics, good to very good visual and inferred porosity. No shows.
2078	50	-	tr	tr	<u>CLAYSTONE</u> : As above.
	50	-	-	tr	SANDSTONE: As above.
2081	70	-	tr	tr	CLAYSTONE: As above.
	30	-	-	tr	SANDSTONE: As above.
2084	100	-	tr	tr	CLAYSTONE: As above, dominantly (i).
	С	-	-	tr	SANDSTONE: As above.
2087	100	-	tr	tr	CLAYSTONE: Generally as above, (i) 95%, grading to silty claystone; (ii) 5%

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2090	100	_	tr	tr	CLAYSTONE: Generally type (i) as above, grading to silty arenaceous claystone, trace dark chocolate brown, trace type (ii).
	r	-	-	tr	SANDSTONE: Generally as above, predominantly fine/medium grained and very well sorted, trace very fine grained lithics, trace amber, very good visual porosity.
	tr	-	r	-	DOLOMITE: Light/medium brown, very hard, blocky, rare fine grained glauconite pellets.
2093	100	-	tr	tr	<u>CLAYSTONE</u> : Generally as above, grading to silty arenaceous claystone, rare pyrite nodules.
	r	-	-	tr	SANDSTONE: Generally as above, grades to argillaceous sandstone.
2096	100	-	tr	tr	<u>CLAYSTONE</u> : As above, grades to silty claystone.
2099	100	1	tr	tr	<u>CLAYSTONE</u> : As above, grades to silty claystone.

			I	Ī	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2102	100	-	tr	r	SILTY CLAYSTONE: Medium greyish brown to dark brownish grey, soft and firm to moderately hard, subblocky to blocky, silty, commonly to abundantly finely arenaceous, grades in part to argillaceous silty sandstone, rare carbonaceous matter, trace coaly fragments, trace glauconite pellets, rare micromica, trace pyrite nodules.
	С	-	-	r	SANDSTONE: Light to medium grey, friable to slightly hard, fine to medium grained, subangular to subrounded well sorted quartz grains, rare moderately strong siliceous cement, rare abundant off white kaolinitic and medium to dark grey to greyish brown argillaceous matrix, grades in part to arenaceous claystone, nil to rare carbonaceous material, trace lithics, trace pyrite nodules, very poor to rarely poor visual porosity. No shows.
2105	100	-	tr	r	<u>CLAYSTONE</u> : Generally as above, with rare off white, soft to firm kaolinitic claystone, commonly finely arenaceous.
	С	-	-	r	SANDSTONE: As above.
	tr	-	r	tr	<u>DOLOMITE</u> : Light/medium brown very hard, rare glauconite grains, trace carbonaceous matter.
2107	50	_	-	r	SANDSTONE: Clear to light grey, friable with loose grains to slightly hard in part, fine/medium grained, subangular, well sorted quartz grains, trace to rare moderately weak siliceous cement, no calcareous cement, trace pyrite cemented aggregates in part, trace to rare off white to light grey argillaceous matrix (commonly washed away), trace carbonaceous matter, trace fine grained lithics, fair visual porosity. No shows.
	50	-	tr	tr	<u>CLAYSTONE</u> : Generally as above, grading to argillaceous sandstone in part.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2111	100				CEMENT
2114	70	-	tr -	r	CLAYSTONE: medium dark grey to predominantly dark grey, trace silt, micromicaceous, trace glauconite pellets, sub blocky to blocky, dispersive in part, non calcareous. SANDSTONE: clear to translucent, friable with abundant loose grains, predominantly medium to occasionally coarse grained, rare very coarse to granule sized grains, sub rounded to rounded, occasionally sub angular, well sorted quartz,
					trace moderately strong silica cement, trace amber, rare coal fragments, moderate inferred porosity, no shows. Note: sample is heavily contaminated with cement and metal shavings.
2117	50	-	tr	-	CLAYSTONE: as above
	50	-	-	r	SANDSTONE: as above
					Note: sample is also cement and metal contaminated.
2120	70	-	-	r	SANDSTONE: as above
	30		tr		CLAYSTONE: as above

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2123	60	-	-	tr	SANDSTONE: very light grey, clear to translucent grains, friable to moderately hard, common loose grains, fine to coarse grained, dominantly fine to medium, common coarse and occasional very coarse grains, sub angular to sub rounded, occasionally angular, moderately sorted quartz, common moderately strong silica cement, trace to occasional moderately strong pyrite cement, trace very light grey argillaceous matrix, common coaly fragments, rare coaly laminae, trace amber, rare lithic grains, poor to moderate visual porosity, no shows.
	40	-	1	r	<u>CLAYSTONE</u> : medium dark grey to dark grey, moderately hard, blocky to sub fissile, trace silt, micromicaceous, rare coal fragments, rare pyrite, non calcareous.
2126	80	-	-	tr	SANDSTONE: as above
	20	-	-	r	CLAYSTONE: as above
2129	80	-	-	tr	SANDSTONE: as above
	20	-	-	r	<u>CLAYSTONE</u> : as above
	tr	-	-	a	<u>COAL</u> : greyish black to black, vitreous lustre, sub conchoidal fracture, brittle, moderately hard.

	T		T		
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2132	80	-	-	tr	SANDSTONE: very light grey, clear to translucent grains, friable to moderately hard, common loose grains, fine to coarse grained, dominantly fine to medium, common coarse and occasional very coarse grains, sub angular to sub rounded, occasionally angular, moderately sorted quartz, common moderately strong silica cement, trace to occasional moderately strong pyrite cement, trace very light grey argillaceous matrix, common coaly fragments, rare coaly laminae, trace amber, rare lithic grains, poor to moderate visual porosity, no shows.
	20	-	-	г	CLAYSTONE: medium dark grey to dark grey, moderately hard, blocky to sub fissile, trace silt, micromicaceous, rare coal fragments, rare pyrite, non calcareous.
2135	80	-	-	tr	SANDSTONE: very light grey, clear to translucent grains, friable to moderately hard, abundant loose grains, fine to medium grained, occasional coarse and rare very coarse grains, sub angular to sub rounded, occasionally angular, moderately well sorted quartz, common moderately strong silica cement, rare pyrite cement, trace to common very light grey argillaceous matrix, trace coal fragments, rare amber, trace to occasional lithic grains, poor visual porosity, trace mineral fluorescence, no shows.
	20	-	-	r	<u>CLAYSTONE</u> : as above
2138	70	-	-	tr	SANDSTONE: as above
	30	-	-	r	CLAYSTONE: as above
2141	70	-	-	tr	SANDSTONE: as above
	30	-	-	r	<u>CLAYSTONE</u> : as above, becoming more silty.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2144	60	-	-	tr	SANDSTONE: as above
	40	-		r	CLAYSTONE: as above
2147	70		-	a	CLAYSTONE: medium grey to medium dark grey, soft to moderately firm, common silt, abundant carbonaceous flecks, trace very fine sand, micromicaceous, blocky to sub fissile, non calcareous.
	30	-	1	tr	SANDSTONE: very light grey, clear to translucent grains, friable to moderately hard, abundant loose grains, very fine to medium grained, occasional coarse and rare very coarse grains, sub angular to sub rounded, occasionally angular, moderately well sorted quartz, common moderately strong silica cement, rare pyrite cement, trace to common very light grey argillaceous matrix, trace coal fragments, rare amber, trace to occasional lithic grains, rare feldspathic grains, poor visual porosity, trace mineral fluorescence, no shows.
2150	7 0	-	-	a	CLAYSTONE: as above
	20	-	-	tr	SANDSTONE: as above
	10	-	-	tr	SILTSTONE: medium dark grey, moderately hard, micromicaceous, trace carbonaceous flecks, grading to very fine grained sandstone in part, blocky, non calcareous.
	tr	-	-	a	COAL: greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2153	70	-	-	a	CLAYSTONE: as above
	20	-	-	tr	SANDSTONE: as above
	10	-	-	tr	SILTSTONE: as above
	tr	-	-		COAL: as above
2156	80	-	-	С	CLAYSTONE: as above
	20	-	-	tr	SANDSTONE: as above
	tr	_	-	a	COAL: as above
2159	80	-	-	С	CLAYSTONE: medium dark grey to brownish grey, soft to moderately firm, common carbonaceous flecks, occasional carbonaceous laminae, trace nodular pyrite, becoming silty in part, sub blocky to occasionally sub fissile, non calcareous
	20	1	-	tr	SANDSTONE: light grey, clear to translucent grains, friable to moderately hard, common loose grains, very fine to medium grained, occasional coarse to very coarse grains, sub angular to sub rounded, moderately sorted quartz, trace weak silica cement, occasional lithic grains, trace to common carbonaceous flecks, rare coaly laminae, rare amber, trace pyrite, poor visual porosity, no shows.
2162	90	-	-	С	CLAYSTONE: as above, trace nodular pyrite
	10	-	-	tr	SANDSTONE: as above
	tr	-	-	a	COAL: as above

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2165	90	-	-	С	CLAYSTONE: as above.
	10	-	-	tr	SANDSTONE: light grey, clear to translucent grains, friable to moderately hard, medium to coarse grained, subangular to subrounded, moderately sorted quartz, trace weak to moderate quartz cement, moderate argillaceous matrix, trace carbonaceous flecks, trace amber, poor visual porosity, no shows.
	tr	_	-	a	COAL: as above
2168	80	-	-	tr	<u>CLAYSTONE</u> : medium to dark grey, brown grey in part, soft to moderately firm, micromicaceous, trace carbonaceous flecks, trace carbonaceous laminae, trace nodular pyrite.
	20	-	-	tr	SANDSTONE: as above
	tr	-	-	а	COAL: as above
2171	50	-	-	tr	CLAYSTONE: as above, race nodular pyrite.
	50	-	-	-	ARGILLACEOUS SANDSTONE: light grey, clear to translucent grains, friable to moderately hard, fine to medium grained, occasional coarse, subangular to subrounded, moderately sorted quartz grains, trace silica cement, abundant argillaceous matrix, trace amber, poor visual porosity, no shows.
	tr	-	-	a	COAL: as above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2174	80	-	-	tr	ARGILLACEOUS SANDSTONE: light grey, clear to translucent grains, friable to moderately hard, fine to medium grained, occasional coarse, subangular to subrounded, moderately sorted quartz grains, trace moderately hard silica cement, abundant argillaceous matrix, trace lithics, trace amber, poor visual porosity, no shows.
	20	-	-	tr	<u>CLAYSTONE</u> : medium to dark grey, brown grey in part, soft to moderately firm, trace silt, micromicaceous, trace carbonaceous flecks, trace carbonaceous laminae, trace nodular pyrite.
	tr	-	-	a	COAL: greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm.
2177	90	-	-	tr	ARGILLACEOUS SANDSTONE: as above
	10	-	-	tr	CLAYSTONE: as above
	tr	-	-	a	COAL: as above
2180	90	-	-	tr	SANDSTONE: as above.
	10	-	-	tr	CLAYSTONE: as above
	tr	-	-	tr	SILTSTONE: medium dark grey, moderately hard, micromicaceous, trace carbonaceous flecks, grading to very fine grained sandstone in part, blocky, non calcareous.
2183	80	-	-	tr	SANDSTONE: as above, trace hard silica cement, trace weak calcite cement in argillaceous matrix.
	20	-	-	tr	<u>CLAYSTONE</u> : as above

Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2186	80	-	-	tr	SANDSTONE: as above
	20		-	tr	CLAYSTONE: as above
2189	90	-	-	tr	SANDSTONE: as above
	10		-	tr	CLAYSTONE: as above
2192	80	-	-	tr	SANDSTONE: two subequal types: 1. light grey to translucent, friable to moderately hard, fine to medium grained, subangular to subrounded, moderately sorted quartz grains, abundant argillaceous matrix, common moderately hard silica cement, trace lithics, trace carbonaceous material, trace amber, poor inferred porosity, no shows. 2. light grey to translucent, hard, blocky fracture, medium to coarse grained, subangular to subrounded, moderately sorted quartz grains, hard silica cement, nil inferred porosity, no shows.
	20	-	-	tr	CLAYSTONE: medium dark grey, occasionally light brown grey, moderately hard, subfissile, trace silt, trace carbonaceous flecks, micromicaceous, trace pyrite nodules.
2195	70	-	-	tr	SANDSTONE: as above.
	30	-	-	tr	CLAYSTONE: as above.
2198	70	-	-	tr	SANDSTONE: as above, trace hard pyrite cement in type 1.
	30	-	ر	tr	CLAYSTONE: as above
2201	70	-	-	tr	SANDSTONE: as above, predominantly type 2.
	30	-	-	tr	<u>CLAYSTONE</u> : as above.

		T		- T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2204	50	-	-	tr	SANDSTONE: as above, subequal types 1 and 2.
	50	-	-	tr	<u>CLAYSTONE</u> : medium to dark grey, commonly brown, soft to firm, hard in part, common firm silica cement, trace pyrite cement, rare carbonaceous specks, micromicaceous.
2207	60	-	-	tr	SANDSTONE: as above, predominantly type 2.
	40	-	-	tr	CLAYSTONE: as above.
	tr	-	-	а	COAL: greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm to hard.
2210	70	-	-	tr	SANDSTONE: as above, predominantly type 2.
	30	-	-	tr	<u>CLAYSTONE</u> : as above, trace carbonaceous laminae.
2213	80	-	-	1	CLAYSTONE: medium dark grey, common brown grey, soft to commonly hard, silty, moderate firm silica cement, moderate hard pyrite cement, rare pyrite nodules.
	20	-	-	tr	SANDSTONE: light grey to translucent, friable to hard in part, medium to fine grained, subangular to subrounded, moderately sorted quartz grains, common argillaceous matrix, common hard silica cement, trace carbonaceous flecks, common lithics, nil to poor visual porosity, no shows.
2216	90	-	-	tr	CLAYSTONE: 2 types: type 1 (30%) as above. Type 2: massive claystone (70%): pale yellowish brown, soft, uncemented, trace carbonaceous specks.
	10	-	-	-	SANDSTONE: as above, common silica cement, trace amber.

				T	
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2219	90	-	-	tr	CLAYSTONE: as above, 90% massive type 2.
	10		_	_	SANDSTONE: as above.
2222	60	_	-	tr	<u>SANDSTONE</u> : as above, fine to common fine to medium grained.
	40	-	-	tr	CLAYSTONE: as above, subequal amounts types 1 and 2.
	tr	-	-	a	COAL: greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm to hard.
2225	50	-	-	tr	SANDSTONE: as above, fine to medium grained, rare dark green weathered feldspar, trace lithics.
	50	-	-	tr	CLAYSTONE: as above, trace pyrite nodules.
2228	60	-	-	tr	SANDSTONE: as above, fine grained, common fine to medium, rare coarse, abundant argillaceous matrix in part, trace weathered feldspar.
	40	-	-	tr	CLAYSTONE: as above.
2231	95	-	-	tr	SANDSTONE: light grey to translucent, friable, fine to medium grained, subangular to subrounded, moderately sorted quartz grains, trace calcite cement, common argillaceous matrix, trace lithics, trace amber, poor inferred porosity, no shows.
	5	-	-	tr	CLAYSTONE: as above, no pyrite.
2234	95	-	-	-	SANDSTONE: as above.
	5	-	-	tr	CLAYSTONE: as above

	T	T	T	1	I
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2237	90	-	-	-	SANDSTONE: light grey to translucent, friable, medium grained, occasional coarse, subangular to subrounded, moderately sorted quartz grains, trace weak calcite cement, common argillaceous matrix, trace lithics, trace amber, poor inferred porosity, no shows.
	10	-	-	tr	CLAYSTONE: two subequal types: type 1: medium dark grey, common brown grey, soft to commonly hard, silty, trace firm silica cement, trace hard pyrite cement, trace pyrite nodules; type 2: massive claystone: pale yellowish brown, soft, uncemented, dispersive, trace carbonaceous specks.
2240	90	-	-	-	SANDSTONE: as above, common coarse grained, common lithics.
	10	_	-	tr	CLAYSTONE: as above
2243	95	-	-	-	SANDSTONE: as above, trace feldspar, common lithics.
	5	+	-	tr	CLAYSTONE: as above.
	tr	-	-	а	<u>COAL</u> : greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm to hard.
2246	95	-	-	tr	SANDSTONE: as above.
	5	-	-	tr	CLAYSTONE: as above.
	tr	-	-	a	COAL: as above.
2249	90	-	-	-	SANDSTONE: as above, fine grained, common medium to coarse, no amber.
	10	-	_	tr	CLAYSTONE: as above

				T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2252	90	-	-	-	SANDSTONE: as above, fine to medium grained, common coarse, trace amber.
	10	-	<u> </u>	tr	<u>CLAYSTONE</u> : as above.
2255	90	-	-	-	ARGILLACEOUS SANDSTONE: light grey to translucent, friable, fine to medium grained, common coarse, subangular to subrounded, moderately sorted quartz grains, minor weak calcite cement, abundant argillaceous matrix, common lithics, common dark green weathered feldspar, trace amber, poor inferred porosity, no shows.
	10	-	-	tr	CLAYSTONE: as above.
2258	90	-	-	-	ARGILLACEOUS SANDSTONE: light grey to translucent, friable, fine to medium grained, common coarse, subangular to subrounded, moderately sorted quartz grains, minor weak calcite cement, abundant argillaceous matrix, abundant lithics, common green weathered feldspar, trace amber, poor inferred porosity, no shows.
	10	-	-	tr	<u>CLAYSTONE</u> : dark grey to medium grey, firm to mod hard, common silica cement, silty, micromicaceous, trace carbonaceous flecks, trace pyrite nodules.
	tr	-	-	а	<u>COAL</u> : greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm to hard.
2261	95	-	-	-	SANDSTONE: as above.
	5	-	-	tr	<u>CLAYSTONE</u> : as above.

	T T	1		Ī	
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2264	95	-	-	-	ARGILLACEOUS LITHIC SANDSTONE: as above, increase in lithic content.
	5		-	tr	CLAYSTONE: as above.
2267	95	-	-	С	ARGILLACEOUS LITHIC SANDSTONE: light grey to translucent, friable to moderately hard, fine grained, common medium to coarse, subangular to subrounded, moderately sorted quartz and lithic grains, abundant argillaceous matrix, abundant firm calcite cement, abundant lithics, common feldspar, common carbonaceous flecks, trace amber, nil visual porosity, no shows.
	5	-	-	tr	CLAYSTONE: as above
2270	95	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above.
	5	-	-	tr	CLAYSTONE: as above.
2273	95	_	_	tr	ARGILLACEOUS LITHIC SANDSTONE: as above, coarse in part (including lithics).
	5	-	-	tr	CLAYSTONE: as above
2276	80	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above, fine to medium grained, trace calcite grains.
	20	-	-	tr	SANDY CLAYSTONE: light grey, soft to firm, common weak calcite cement, abundant fine to very fine sand grains, trace carbonaceous flecks.
2279	80	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above.
	20	-	-	tr	SANDY CLAYSTONE: as above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2282	80	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: light grey to translucent, friable to moderately hard, fine grained, common medium to coarse, subangular to subrounded, moderately sorted quartz and lithic grains, abundant argillaceous matrix, abundant firm calcite cement, abundant lithics, common feldspar, common carbonaceous flecks, trace amber, nil visual porosity, no shows.
	20	-	-	tr	SANDY CLAYSTONE: light grey, soft to firm, common weak calcite cement, abundant fine to very fine sand grains, trace carbonaceous flecks.
2285	70	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above.
	30	-	-	tr	SANDY CLAYSTONE: as above.
2288	90	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above.
	10	-	-	tr	SANDY CLAYSTONE: as above.
2291	80	_	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above.
	20	-	-	tr	SANDY CLAYSTONE: as above.
	tr	-	-	-	MASSIVE CLAYSTONE: light brown, soft, dispersive.
2294	90	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above.
	10		-	tr	SANDY CLAYSTONE: as above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2297	20		•	r	ARGILLACEOUS LITHIC SANDSTONE: light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, sub angular to sub rounded, moderately well sorted quartz, common moderately strong calcareous cement, trace very weak silica cement, abundant very light grey argillaceous matrix, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, rare pyrite, rare carbonaceous flecks, rare amber, poor visual porosity, no shows. CLAYSTONE: 2 types (1) medium light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous, (2) medium dark grey to brownish grey, moderately hard, micromicaceous, rare carbonaceous flecks, occasional quartz and lithic grains, blocky to sub blocky, non calcareous.
2300	60	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above
	40	-	-	tr	<u>CLAYSTONE</u> : as above

					
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2303	70	_	-	tr	ARGILLACEOUS LITHIC SANDSTONE: light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, sub angular to sub rounded, moderately well sorted quartz, common moderately strong calcareous cement, trace very weak silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, trace carbonaceous flecks, trace amber, poor visual porosity, no shows.
	30	-	-	r	<u>CLAYSTONE</u> : 2 types (1) medium light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous, (2) medium dark grey to brownish grey, moderately hard, micromicaceous, rare carbonaceous flecks, occasional quartz and lithic grains, blocky to sub blocky, non calcareous.
2306	60	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above
	40	-	-	tr	CLAYSTONE: as above
	tr	-	-	a	COAL: greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm to hard.
2309	60	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above
	40	-	-	r	CLAYSTONE: as above, rare carbonaceous laminae in type 2.
2312	60	-	•	tr	ARGILLACEOUS LITHIC SANDSTONE: as above, common weathered green feldspar.
	40	-	-	r	CLAYSTONE: as above

					
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2315	70	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above
	30	-	-	r	CLAYSTONE: as above
2318	80	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above
	20	-	-	r	CLAYSTONE: as above
	tr	-	-	a	COAL: as above
2321	60	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above
	40	-	-	r	CLAYSTONE: as above
	tr	-	-	a	<u>COAL</u> : as above
2324	60	-	_	r	<u>CLAYSTONE</u> : medium light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous.
	40	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, sub angular to sub rounded, moderately well sorted quartz and lithics, common moderately strong calcareous cement, trace very weak silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, trace carbonaceous flecks, trace amber, trace biotite, poor visual porosity, no shows.
2327	60	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above
	40	-	-	r	<u>CLAYSTONE</u> : as above

<u> </u>						
Depth (mRT)	Lithology (%)	% Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE	
2330	60	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above	
	40	-	-	r	CLAYSTONE: as above	
2333	70	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above	
	30	_	-	r	CLAYSTONE: two types (1) medium light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous; (2) medium dark grey to brownish grey, moderately hard, micromicaceous, rare carbonaceous flecks, occasional quartz and lithic grains, blocky to sub blocky, non calcareous.	
2336	90	-	-	tr		
	10	-	-	r	<u>CLAYSTONE</u> : as above	
2339	95	-	-	-	ARGILLACEOUS LITHIC SANDSTONE: as above	
	5			-	CLAYSTONE: as above	
2342	90	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above	
	10	-	-	r	CLAYSTONE: as above	
2345	90	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above	
	10	-	-	r	<u>CLAYSTONE</u> : as above	
2348	90	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above	
	10	-	-	r	CLAYSTONE: as above	

			7			
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE	
2351	90	-	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above	
	10	-		r	CLAYSTONE: as above	
2354	80			r	r ARGILLACEOUS LITHIC SANDSTONE: light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, sub angular to sub rounded, moderately well sorted quartz and lithics, common moderately strong calcareous cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, trace biotite, poor visual porosity, no shows.	
	20	-	-	r	<u>CLAYSTONE</u> : light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous	
2357	90	-	_	r	ARGILLACEOUS LITHIC SANDSTONE: as above	
	10	-		r	CLAYSTONE: as above	
2360	90	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above, trace coarse granitic-type lithics	
	10	-	-	r	<u>CLAYSTONE</u> : as above, trace moderate silica cement.	
	tr	-	-	a	COAL: greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm to hard.	

	I	T	T	T	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2363	80	-	_	r	ARGILLACEOUS LITHIC SANDSTONE: as above, trace moderately strong calcite cement, rare coarse granitic-type lithics
	20	-	-	r	CLAYSTONE: as above
	Tr	_	-	a	COAL: as above
2366	60	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above, trace moderately strong silica cement,
	40	-	-	r	CLAYSTONE: as above
	tr	-	-	a	COAL: as above
2369	60	_	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above,
	40	-	-	r	CLAYSTONE: as above
	tr	-	-	a	COAL: as above
2372	80	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above,
	20	-	-	r	CLAYSTONE: as above
	tr	-	-	a	COAL: as above

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2375	80			r	ARGILLACEOUS LITHIC SANDSTONE: light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, sub angular to sub rounded, moderately well sorted quartz and lithics, trace moderately strong calcareous cement, trace moderately hard silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, trace biotite, poor visual porosity, no shows.
	20	-	-	r	<u>CLAYSTONE</u> : light grey to light greenish grey, soft, dispersive, rare carbonaceous flecks, non calcareous, trace moderate silica cement.
	tr	-	_	a	COAL: greyish black to black, sub vitreous lustre, sub conchoidal fracture, brittle, moderately firm to hard.
2378	80	_	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above,
	20	-	-	r	CLAYSTONE: as above
	tr	-	-	a	COAL: as above
2381	80	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above, uncemented.
	20	-	-	r	<u>CLAYSTONE</u> : as above
	tr	-	-	a	COAL: as above

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2384	80	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above, trace moderate silica and calcite cements, rare coarse grained.
	20	-	-	r	CLAYSTONE: as above, trace dark grey, firm, weakly silica cemented
	tr	-	-	a	COAL: as above
2387	80	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above,
	20	_	-	r	CLAYSTONE: as above
	tr	-	-	a	<u>COAL</u> : as above
2390	90	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above, trace weak silica and calcite cement.
	10	-	-	r	CLAYSTONE: as above
	tr			a	COAL: as above

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2393	80		-	r	ARGILLACEOUS LITHIC SANDSTONE: light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, sub angular to sub rounded, moderately well sorted quartz and lithics, common moderately strong calcareous cement, trace moderately hard silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, trace biotite, poor visual porosity, no shows.
	20	-	-	tr	CLAYSTONE: light grey to light greenish grey, soft dispersive, trace carbonaceous flecks, non calcareous.
	tr	-	-	a	<u>COAL</u> : greyish black to black, sub vitreous to vitreous lustre, trace silt, blocky, brittle.
2396	80	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above
	20	-	-	tr	<u>CLAYSTONE</u> : light grey to medium dark grey, soft to moderately firm, dispersive in part, trace carbonaceous flecks, rare pyrite, sub blocky in part, non calcareous.
	tr		-	a	COAL: as above

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2399	60	-	-	tr CLAYSTONE: (1) light grey to light greenish grey, occasionally medium dark grey, soft, dispersive, trace carbonaceous flecks, non calcareous, (2) medium grey to medium dark grey, moderately firm, blocky, trace silt, trace micromica, trace carbonaceous flecks, non calcareous.	
	40	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above.
	tr	-	_	a	COAL: as above
2402	70	_	-	tr	ARGILLACEOUS LITHIC SANDSTONE: as above.
	30	-	-	tr	<u>CLAYSTONE</u> : as above.
2405	60	-	-	tr	CLAYSTONE: as above.
	40	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above
2408	80	-	-	tr	CLAYSTONE: as above.
	20	-	-	r	SANDSTONE: as above.

	I	<u> </u>	<u> </u>	Ī	
Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2411	70			r ARGILLACEOUS LITHIC SANDSTONE: light grey to medium light grey, friable to moderately hard, fine to medium grained, occasional coarse grains, sub angular to sub rounded, moderately well sorted quartz and lithics, rare moderately weak calcareous cement, trace moderately hard silica cement, abundant very light grey argillaceous matrix, common feldspar, abundant lithic grains, predominantly dark grey to greyish black, occasionally moderate reddish brown, trace pyrite, rare carbonaceous flecks and laminae, poor visual porosity, no shows.	
	30	-	-	tr	<u>CLAYSTONE</u> : medium light grey to medium grey, moderately firm, occasional carbonaceous flecks and laminae, trace micro mica, sub blocky, non calcareous.
2414	80	-	_	tr	CLAYSTONE: very light grey to light greenish grey, soft, dispersive, non calcareous.
	20	-	_	r	ARGILLACEOUS LITHIC SANDSTONE: as above.
2417	70	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: light grey to light greenish grey, friable to occasionally moderately hard, abundant loose grains, fine to medium grained, occasional coarse grains, sub rounded to occasionally sub angular, well sorted quartz with common to abundant lithic and feldspar grains, lithics predominantly greyish black, occasionally moderate reddish brown, common very weak calcite cement, abundant very light grey argillaceous matrix, rare pyrite, rare carbonaceous flecks and occasional laminae, poor visual porosity, no shows.
	30	-	-	r	<u>CLAYSTONE</u> : as above.

Depth (mRT)	Lithology (%)	%Fluor	Glauconite	Carb Matter	CUTTINGS DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
2420	60	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above.
	40	-	-	r	<u>CLAYSTONE</u> : as above.
2423	70	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above.
	30	-	_	r	<u>CLAYSTONE</u> : as above.
2425	80	-	-	r	ARGILLACEOUS LITHIC SANDSTONE: as above with abundant greyish blue green lithic grains.
	20	-	-	r	CLAYSTONE: as above.

3.2 Sidewall Cores

3.2.1 CST

One 46 shot CST run was performed in Minerva-1 within the 12-1/4" section of the hole between 1193 m and 563 m. One 60 shot CST run was performed in Minerva-1 within the 8-1/2" hole section between 2101 m and 1195 m. One 21 shot CST run was also performed in the 6" hole section between 2420.5 m and 2120 m. Detailed wellsite descriptions of the recovered sidewall cores appear on the following pages.

Table 2 contains a summary of the CST runs.

The remains of the sidewall cores subsequent to palynological, geochemical and petrological analysis are stored by BHP Petroleum at Kestrel Management (Australia) Pty Ltd, Unit 58, Slough Estate, 170 Forster Road, Mt Waverley, Victoria, 3149.

Table 2
Sidewall Core Summary

Ste No.		Bullets in Gun		Misfires		Bullets Empty		
1	1	46	46	-	-	-	46	1193.0 - 563.0
3	2	60	60	-	3	-	57	2101.0 - 1195.0
4	3	21	21	-	-	3	18	2420.5 - 2120.0
Tota	1	127	127	-	3	3	121	2420.5 - 563.0

3.2.2 MSCT

No MSCTs were cut in Minerva-1.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE BHP Petroleum Date: 15/3/93
1	1193.0	3.0	ARENACEOUS CLAYSTONE GRADING TO ARGILLACEOUS SANDSTONE: Medium greyish brown, rarely light grey (argillaceous sandstone component), firm but sticky when wet, massive with inhomogeneities comprising more arenaceous patches, abundant silt and very fine to fine quartz grains, quartz grains typically subrounded with fair sorting, rare very fine glauconite pellets, trace to rare carbonaceous flecks, rare micromica and trace mica flakes, trace calcareous, grades in part to argillaceous sandstone, nil visual porosity. FLUORESCENCE: Nil
2	1186.0	2.8	ARENACEOUS CLAYSTONE: Medium greyish brown, firm but dispersive when wet, massive, common to abundant silt and very fine to fine quartz grains, rare carbonaceous flecks and fragments, micromicaceous, trace microcrystalline pyrite. FLUORESCENCE: No direct, no cut, no crush cut, thin dull bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 15/3/93 Geologist(s): A. TABASSI/D. PICKAVANCE
3	1179.0	3.0	ARENACEOUS CLAYSTONE WITH LENSES OF ARGILLACEOUS SANDSTONE: Medium to medium/dark greyish brown, firm to slightly hard in parts, massive with small lenses/patches of argillaceous sandstone (see below), common to abundant silt and very fine to predominantly fine quartz grains, rare to ?minor carbonaceous flecks, micromicaeous, rare mica flakes, trace glauconite pellets, non calcareous. ARGILLACEOUS SANDSTONE: Light grey, friable, occurring as 'patches' (2 mm x 10 mm) and thin discontinuous laminae within arenaceous claystone, very fine to fine grained, subangular, well sorted quartz grains, with abundant off white to light grey argillaceous matrix, rare weak siliceous cement often giving grains a frosted appearance, no calcareous cement, trace carbonaceous fragments, trace fine grained grey lithics, trace mica, trace to rare microcrystalline pyrite, very poor visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin dull bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE BHP Petroleum Date: 15/3/93
4	1174.0		INTERBEDDED ARGILLACEOUS SANDSTONE AND ARENACEOUS CLAYSTONE: Light grey, very friable 10 mm interbeds, homogeneous, very fine to fine grained, subrounded, well sorted quartz grains, abundant light to light/medium grey argillaceous matrix (sandstone commonly matrix supported), no cement, micromicaceous, trace mica flakes, rare carbonaceous flecks, trace microcrystalline pyrite, occasionally fair to nil visual porosity. ARENACEOUS CLAYSTONE: Medium brownish grey, firm, dispersive when wet, massive, minor to common silt and very fine to fine quartz grains, trace medium quartz grains, rare dark greenish black glauconite pellets, rare microcrystalline and nodular pyrite, micromicaceous, rare mica flakes, trace carbonaceous flecks, two calcite ?bivalve fossils 2 x 6 mm in cross section. FLUORESCENCE: Nil
5	1173.0		ARENACEOUS CLAYSTONE: Medium to dark grey and brown in part, light grey to off white in part, firm to hard in part, minor to common silt and very fine quartz grains, trace to moderately calcareous, grades in part to calcareous claystone (hard, off white to medium brownish grey), trace micromica, rare carbonaceous flakes and laminae. FLUORESCENCE: No direct, no cut, no crush cut, very thin very dull bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE BHP Petroleum Date: 15/3/93
6	1170.0	2.0	ARENACEOUS CLAYSTONE: Medium to medium/dark brownish grey, grading to light grey (argillaceous sandstone), firm to soft, dispersive when wet, common silt and very fine to occasionally medium quartz grains, micromicaceous, rare carbonaceous flecks, rare to occasionally minor disseminated microcrystalline pyrite, trace dark greenish black glauconite pellets, slightly calcareous grades in patches to: ARGILLACEOUS SANDSTONE: Off white to light grey, friable, fine to medium grained, subangular to subrounded, moderately sorted, abundant light grey argillaceous matrix, common off white weak calcareous cement, trace pyrite cement, rare nodular pyrite, trace carbonaceous fragments, poor to fair visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, moderately thick dull to moderately bright bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE BHP Petroleum Date: 15/3/93
7	1166.0		ARENACEOUS CLAYSTONE: Medium greyish brown, firm, slightly dispersive in water, generally massive with patches (?intraclasts?) and rare discontinuous laminae of argillaceous sandstone, abundant silt and very fine quartz grains, micromicaceous, trace to rare mica flakes, rare to minor microcrystalline and nodular pyrite, trace fine grained pelletal glauconite, rare carbonaceous matter (flecks and grains), slightly calcareous, grades in part to: ARGILLACEOUS SANDSTONE: Light to light/medium brownish grey, friable, occurring as patches and rarely discontinuous laminae within the arenaceous claystone, very fine grained, very well sorted, abundant medium greyish brown argillaceous matrix, commonly matrix supported and grading to arenaceous claystone, rare off white calcareous cement, micromicaceous, trace mica flakes, trace to rare carbonaceous matter, rare to minor microcrystalline pyrite, poor visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin very dull bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE BHP Petroleum Date: 15/3/93
8	1149.0	2.5	SILTY CLAYSTONE
			SILTY CLAYSTONE: Medium brown and medium to medium/dark greyish brown, firm (probably fairly hard but fractured by bullet), homogeneous with two distinct layers distinguished by colour: medium brown silty claystone is slightly calcareous, contains common silt, trace micromica, trace carbonaceous flecks, trace medium greyish green glauconite; medium to medium/dark greyish brown silty claystone is non calcareous, contains common silt and rare fine to medium quartz grains, micromicaceous, with trace mica flakes, trace carbonaceous flecks, and contains a minor intraclast of the medium brown claystone, rock is fractured, with fractures filled with off white calcite veins. FLUORESCENCE: Nil.
9	1139.0	2.5	SANDSTONE
			SANDSTONE: Light grey, friable, massive and homogeneous, very fine grained, subangular, well sorted quartz grains, rare light grey argillaceous matrix, trace weak siliceous cement, no calcite cement, rare fine grained medium to dark grey lithics, trace to rare very fine grained glauconite pellets, trace mica, trace pyrite, trace altered ?feldspar grains, trace microcrystalline pyrite, good to very good visual porosity. FLUORESCENCE: Nil.

	T	 	
		y (mm)	BHP Petroleum
Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET
		*	Well: MINERVA-1 Permit: VIC/P31 Date: 15/3/93 Geologist(s): A. TABASSI/D. PICKAVANCE
10	1130.0	3.0	ARENACEOUS CLAYSTONE
			ARENACEOUS CLAYSTONE: Medium brownish grey, firm, sticky when wet, massive, common to abundant silt and very fine to fine quartz grains, micromicaceous, trace mica flakes, rare to occasionally minor carbonaceous flecks and grains, trace microcrystalline pyrite.
			FLUORESCENCE: No direct, no cut, no crush cut, very thin very dull bluish white residual ring.
11	1125.0	3.5	INTERLAMINATED ARGILLACEOUS SANDSTONE AND CLAYSTONE
			ARGILLACEOUS SANDSTONE: Light grey, friable, very fine grained, subrounded, very well sorted quartz grains, abundant light grey argillaceous matrix, trace weak siliceous cement, trace micromica and mica flakes, trace carbonaceous detritus, trace glauconite, poor to fair visual porosity, grades to arenaceous claystone.
			CLAYSTONE: Medium greyish brown, firm, dispersive when wet, interbedded on a mm scale with sandstone, with common silt and very fine quartz grains, micromicaceous, trace mica flakes, rare carbonaceous flecks, trace fine/medium grained light greyish brown lithics, trace off white altered? feldspar, grades in part to argillaceous sandstone.
			FLUORESCENCE: Nil.

		(mm) /	BHP Petroleum
Core No.	Depth (mRT)	- 1 1	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 15/3/93 Geologist(s): A. TABASSI/D. PICKAVANCE
12	1115.0	2.8	SANDSTONE: Light grey, friable, massive, fine grained, subangular to subrounded, very well sorted quartz grains, trace to rare light grey argillaceous matrix, trace weak siliceous cement, no calcite cement, trace carbonaceous matter, trace mica flakes, trace microcrystalline pyrite, trace fine grained light grey lithics, good to excellent visual porosity. FLUORESCENCE: Nil
13	1105.5	3.0	ARENACEOUS CLAYSTONE: Light/medium to medium brownish grey, mottled, firm, massive, patches of more arenaceous claystone with faint evidence of discontinuous laminations, abundant very fine to fine, subrounded, well sorted quartz grains, moderately micromicaceous, trace mica flakes, rare carbonaceous flecks, trace glauconite, trace pyrite infilling fractures, grades to very argillaceous sandstone in parts (lighter in colour). FLUORESCENCE: Nil
14	1100.0		ARGILLACEOUS SANDSTONE: Medium to medium/light brownish grey, friable, subtly interbedded from more to less argillaceous sandstone, very fine grained, subrounded, very well sorted quartz grains, abundant argillaceous matrix, occasional laminae (1 mm) matrix supported, trace very weak siliceous cement, no calcareous cement, trace mica, trace carbonaceous matter, more argillaceous laminae contain rare to minor carbonaceous detritus and trace buff and medium grey lithics, trace off white altered ?feldspar, trace fine glauconite pellets, poor to fair visual porosity. FLUORESCENCE: Nil.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE BHP Petroleum Date: 15/3/93
15	1094.0	3.0	ARGILLACEOUS SANDSTONE: Medium brownish grey, friable, massive, fine grained, subrounded, very well sorted, common to abundant medium brownish grey argillaceous matrix, trace siliceous matrix, no calcareous matrix, rare greenish black fine grained glauconite pellets, trace to rare mica flakes, fair visual porosity. FLUORESCENCE: Nil.
16	1090.0		ARGILLACEOUS SANDSTONE GRADING TO/INTERLAMINATED WITH ARENACEOUS CLAYSTONE ARGILLACEOUS SANDSTONE: Light brownish grey, friable, 10 mm layers interbedded with 5 mm arenaceous claystone laminae, very fine to fine grained, subrounded, well sorted quartz grains, abundant light/medium brownish grey argillaceous matrix, trace siliceous cement, no calcareous cement, moderately micromicaceous, trace mica flakes, rare carbonaceous detritus, grades to arenaceous claystone, fair to poor visual porosity. ARENACEOUS CLAYSTONE: Medium to medium/dark greyish brown, firm, internally microlaminated, abundant silt and very fine to fine quartz grains, rare to minor carbonaceous laminae and flakes, rare microcrystalline pyrite, moderately micromicaceous, rare mica flakes, trace yellowish grey fine grained lithics. FLUORESCENCE: Nil.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 15/3/93 Geologist(s): A. TABASSI/D. PICKAVANCE
17	1054.0	2.8	SILTY CLAYSTONE: Medium/dark greyish brown, firm, dispersive when wet, massive, common to abundant silt, rare very fine quartz grains, micromicaceous, rare mica flakes, rare carbonaceous detritus, trace fine glauconite grains. FLUORESCENCE: No direct, no cut, no crush cut, very thin dull bluish white residual ring.
18	1032.0	5.0	SANDSTONE: Very light grey, friable, very fine to dominantly fine grained, subangular to occasionally subrounded, well sorted quartz, trace light grey dispersive slightly calcareous argillaceous matrix, no cement, rare mica, trace very fine carbonaceous detritus, good visual porosity. FLUORESCENCE: Nil.
19	1028.0		SANDSTONE: Light grey (see note*), friable, fine to dominantly medium grained, subangular to subrounded, well sorted quartz grains, trace light grey to off white argillaceous matrix in part, trace mica, trace dark grey lithics, good to occasionally very good visual porosity. * Note: Sandstone is coloured light greyish brown due to mud filtrate invasion. FLUORESCENCE: Nil.

		7	
Core No.	Depth	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET
S	(mRT)	Rec	Well: MINERVA-1
			Permit: VIC/P31 Date: 15/3/93 Geologist(s): A. TABASSI/D. PICKAVANCE
20	1018.0	3.7	SILTY CLAYSTONE INTERLAMINATED WITH MINOR SANDSTONE
			SILTY CLAYSTONE: Medium grey to medium brownish grey, soft to firm, sticky in part, commonly silty, common micromica and carbonaceous flecks, rarely finely arenaceous in part, non calcareous, interlaminated with minor:
			SANDSTONE: Light to occasionally medium grey, friable to very occasionally moderately hard, fine grained, dominantly subangular, well sorted quartz grains, common light grey to occasionally medium grey argillaceous matrix, no cement, trace mica, trace dark grey lithics, trace carbonaceous detritus, trace glauconite, fair visual porosity.
			FLUORESCENCE: No direct, no cut, no crush cut, Silty Claystone has very thin dull bluish white residual ring.
21	991.0	7.0	ARENACEOUS CLAYSTONE
			ARENACEOUS CLAYSTONE: Medium to dark grey to brownish grey, firm, abundantly finely arenaceous, moderately silty, rare to common micromica and carbonaceous matter, non calcareous, grading to argillaceous sandstone.
			FLUORESCENCE: Nil.
22	954.0	7.0	INTERLAMINATED SILTY CLAYSTONE
			INTERLAMINATED SILTY CLAYSTONE: Medium to dark grey interlaminated with light grey, firm to rarely moderately hard, abundantly silty, common micromica, rare glauconite and carbonaceous flecks and laminae, trace coarse quartz sand grains, trace burrows, non calcareous.
			FLUORESCENCE: Nil.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
23	918.5	7.0	ARGILLACEOUS SANDSTONE: Light to medium grey to brownish grey, friable to rarely moderately hard, very fine to occasionally silt grade, subrounded, well sorted quartz, common to abundant light to medium grey argillaceous matrix, grading in part to arenaceous claystone, common fine mica flakes, rare to common carbonaceous laminae and flecks, rare fine glauconite, trace lithics, very poor visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin dull bluish white residual ring.
24	897.0	7.0	CLAYSTONE: Medium to occasionally dark brownish grey, moderately hard, rare micromica, rare fine carbonaceous flecks, non calcareous. FLUORESCENCE: No direct, no cut, no crush cut, very thin very dull bluish white residual ring.
25	862.5	4.0	ARGILLACEOUS SANDSTONE: Medium grey, friable, fine, dominantly subrounded, very well sorted quartz, common to abundant medium to occasionally dark grey argillaceous matrix, common very fine mica flecks, trace fine carbonaceous detritus, trace partially altered feldspar, trace lithics, fair to poor visual porosity. FLUORESCENCE: Nil.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE Date: 15/3/93
26	838.5	4.0	MASSIVE CLAYSTONE: Dark grey to black, firm, very slightly dispersive, common disseminated pyrite crystals and pyrite nodules, trace micromica, commonly carbonaceous, rare glauconite, trace medium grained quartz sand, non calcareous. FLUORESCENCE: Nil.
27	810.0		ARGILLACEOUS SANDSTONE INTERLAMINATED WITH MINOR CLAYSTONE: Light to medium grey, friable, fine grained, dominantly subrounded, very well sorted quartz grains, common to abundant light to medium grey argillaceous matrix, rare mica, trace glauconite and carbonaceous flecks, trace partially altered feldspar, fair to poor visual porosity, interlaminated with minor: CLAYSTONE: Dark grey, firm, sticky in part, common carbonaceous flecks, trace micromica, non calcareous. FLUORESCENCE: Nil.

		Ī	
	Depth (mRT)	Recovery (mm)	BHP Petroleum
Core No.		ecovery	SIDEWALL CORE DESCRIPTION SHEET
S	(mk1)	Ä	Well: MINERVA-1 Permit: VIC/P31 Date: 15/3/93 Geologist(s): A. TABASSI/D. PICKAVANCE
28	786.0	6.0	MASSIVE SANDSTONE
			MASSIVE SANDSTONE: Light yellowish brown, light grey to clear in part, friable, dominantly coarse to occasionally very coarse, rarely medium, dominantly subrounded, moderately sorted quartz, rare to occasionally common light grey to off white and occasionally light yellowish brown argillaceous matrix, trace partially altered feldspar, trace carbonaceous detritus, trace light red, medium grey and brown lithics, trace mica, trace medium pebble size quartz grains, good to fair visual porosity.
			FLUORESCENCE: Nil.
			Note: The colour of the sandstone appears to have been effected by mud filtrate.
29	783.0	5.5	CARBONACEOUS CLAYSTONE
			CARBONACEOUS CLAYSTONE: Dark grey to black, firm, slightly dispersive, rare to common micromica, common carbonaceous flecks and laminae, slightly to occasionally moderately silty, trace lithics and ?glauconite, non calcareous. FLUORESCENCE: Nil.
30	772.0	4.0	SILTY CLAYSTONE
			SILTY CLAYSTONE: Dark brownish grey to dark grey, firm, commonly to abundantly silty, rare to common micromica and medium grained mica flakes, rare to common disseminated pyrite crystals, nodules and pyritised fossil fragments, rare to trace fine dark green glauconite pellets, rare to trace carbonaceous flecks, non calcareous. FLUORESCENCE: Nil.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P 31 Date: 15-03-93 Geologist(s): AHMAD TABASSI/DAVID PICKAVANCE
31	760.0	35	ARENACEOUS CLAYSTONE: Dark brownish grey to dark grey, firm to occasionally moderately hard, abundant very fine quartz grains, commonly silty, common micromica, trace coarse mica flakes, commonly carbonaceous, non calcareous, grading in part to Argillaceous Sandstone. FLUORESCENCE: Nil.
32	700.0	70	MASSIVE SANDSTONE: Medium brownish grey to rusty brownish grey, friable, medium to very coarse, granule grade in part, dominantly coarse, subangular to rounded, dominantly rounded, moderately to poorly sorted quartz grains, dominantly brown, yellow and light-medium red stained, rare to occasionally common light to medium brown and occasionally yellowish brown argillaceous matrix, rare to common medium to very coarse, subrounded to rounded, well polished iron oxide/hydroxide pellets, poor to rarely fair visual porosity. FLUORESCENCE: Nil. Note: The iron oxide/hydroxide pellets do not appear to have been developed in situ.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P 31 Date: 15-03-93 Geologist(s): AHMAD TABASSI/DAVID PICKAVANCE
44	572.0	65	SILTY CLAYSTONE INTERLAMINATED WITH MINOR SANDSTONE SILTY CLAYSTONE: Medium grey, occasionally medium brownish grey in part, firm to moderately hard, occasionally hard in part, commonly silty, rarely finely arenaceous in part, rare to common micromica, very slightly calcareous in part, nil to trace carbonaceous flecks, interlaminated (on mm scale) with minor: SANDSTONE: Very light brownish grey to very light grey, clear in part, friable, very fine, subrounded, very well sorted quartz, trace light grey argillaceous matrix, poor to fair visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin very dull bluish white residual ring.
45	567.0	70	SILTY CLAYSTONE: Medium to dark grey to brownish grey, moderately hard to hard, commonly silty, rarely finely arenaceous in part, rare to common micromica, very slightly to moderately calcareous in part, nil to trace carbonaceous flecks. FLUORESCENCE: Nil.

Core No.	Depth (mRT)	Recovery (mm)	Well: MINERVA-1 Permit: VIC/P 31 Geologist(s): AHMAD TABASSI/DAVID PICKAVANCE
46	563.0	50	SILTY CLAYSTONE INTERLAMINATED WITH MINOR SANDSTONE SILTY CLAYSTONE: Medium to dark grey, occasionally medium brownish grey, firm to moderately hard, commonly silty, common micromica, slightly finely arenaceous in part, nil to trace carbonaceous flecks, interlaminated (on mm scale) with minor:
			SANDSTONE: Off white to light grey, friable, very fine to fine grained, subrounded, well sorted quartz grains, rare light grey argillaceous matrix, trace fine mica flecks, fair visual porosity. FLUORESCENCE: Nil.

	7	7	
Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
47	2101	2.5	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium brownish grey, firm, massive, silty, commonly to abundantly finely arenaceous, rare micromica, trace disseminated microcrystalline pyrite, rare very fine grained off white ?altered feldspar grains, trace grey lithics, trace carbonaceous material, trace fine glauconite grains, slightly calcareous, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.
48	2098		SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium brownish grey, firm, massive, silty, abundantly finely arenaceous, rare micromica and trace medium mica flakes, trace disseminated microcrystalline pyrite, rare very fine grained off white ?altered feldspar grains, trace grey lithics, trace carbonaceous material, trace fine glauconite grains, slightly calcareous, grades to argillaceous siltstone and silty argillaceous sandstone. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
49	2089	3.0	ARGILLACEOUS SANDSTONE GRADING TO ARENACEOUS CLAYSTONE: Medium grey sublaminated with medium/dark grey, friable to slightly hard in part, very fine grained, subrounded, very well sorted quartz grains, abundant to 40% medium grey non calcareous argillaceous matrix, quartz grains commonly matrix supported, grades to arenaceous claystone, trace weak siliceous cement, rare off white altered feldspar grains, rare very fine carbonaceous matter rarely as thin laminae, trace to rare mica flakes within laminae, trace microcrystalline pyrite particularly within laminae, trace lithics, nil visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.
50	2084.5	4	ARGILLACEOUS SANDSTONE: Interlaminated medium light greyish green to greenish grey, friable, very fine grained, subrounded, well sorted quartz grains, common to abundant medium/light greyish green to greenish grey chloritic argillaceous matrix, trace weak siliceous cement, rare off white altered feldspar grains, trace micromica, trace disseminated microcrystalline pyrite, trace very fine glauconite pellets in part, trace to rare light/medium greenish grey lithics, rare carbonaceous matter, repetitiously interlaminated colours give rock a semblance of 'varve' appearance, rock contains a single intraclast of claystone-coated sandstone of similar description, nil to very poor visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.

	1	T	
Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
51	2078	2.0	ARGILLACEOUS SANDSTONE: Interlaminated light grey and medium greenish grey, friable, very fine grained, subrounded, well sorted quartz grains, with common to abundant light grey to medium greyish green argillaceous matrix, trace weak siliceous cement, rare off white altered feldspar grains, rare carbonaceous matter particularly in medium greenish grey laminations, trace micromica, trace disseminated microcrystalline pyrite, trace very fine glauconite pellets in part, trace to rare light/medium greenish grey lithics, nil to very poor visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.
52	2073		SILTY SANDSTONE: Off white to translucent, friable, very fine to dominantly fine to medium grained, subrounded, poorly sorted quartz grains, rare off white kaolinitic argillaceous matrix, rare weak siliceous cement (possibly better cemented but fractured by coring process), common to abundant quartz silt, trace microcrystalline pyrite in part, fair to good visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
53	2066	2.0	INTERLAMINATED ARGILLACEOUS SILTY SANDSTONE AND SILTY CLAYSTONE: Light greyish brown, friable, very fine grained subrounded very well sorted quartz grains, abundant light/medium greyish brown non calcareous argillaceous matrix, matrix commonly supports grains and rock grades to arenaceous claystone in part, trace siliceous cement, common to abundant quartz silt, rare very fine altered feldspar grains, rare micromica, trace carbonaceous matter, trace greenish grey lithics, nil visual porosity. SILTY CLAYSTONE: Medium/dark brownish grey, firm, subfissile, silty and commonly very finely arenaceous, grades to argillaceous arenaceous siltstone, common carbonaceous detritus, rare mica flakes and micromica giving a subfissility to rock, trace to rare very fine off white altered feldspar grains, trace to rare disseminated microcrystalline pyrite. The argillaceous silty sandstone and silty claystone are laminated on a cm scale, with minor interlaminations on a mm scale within each lithology. Suggestions of current/ripple cross-laminations are evident. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.

			
Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
54	2061	2.5	SILTY CLAYSTONE WITH THIN LAMINAE OF KAOLINITIC SANDSTONE SILTY CLAYSTONE: Medium greyish brown, firm, silty, trace disseminated carbonaceous flecks and trace coaly fragments, trace to rare micromica, trace very fine off white altered feldspar, slightly calcareous. KAOLINITIC SANDSTONE: Off white, friable, medium grained, subangular to subrounded, well sorted quartz grains, rare moderately weak to slightly strong siliceous cement, trace microcrystalline pyrite cement, abundant off white kaolinite matrix, non calcareous, trace carbonaceous flecks, nil to very poor visual porosity. Kaolinitic sandstone occurs as a thin ~2 mm discontinuous laminae within the silty claystone. FLUORESCENCE: No direct, no cut, slow very pale light whitish yellow crush cut, thin pale yellowish white residual ring.
55	2046	2.0	SANDSTONE: Off white, friable, fine to fine/medium grained, subangular, well sorted quartz grains, trace to rare moderately weak siliceous cement, common off white kaolinite matrix, trace carbonaceous fragments, trace glauconite pellets, fair visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, very thin very pale bluish white residual ring.

	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
56 2	040		SANDSTONE WITH VERY THIN ARGILLACEOUS LAMINAE SANDSTONE: Off white, friable, fine grained, subrounded to subangular, well sorted quartz grains, common off white kaolinite matrix, trace siliceous cement, trace microcrystalline pyrite, trace carbonaceous silt, fair visual porosity, very thin laminae of: ARGILLACEOUS SANDSTONE: Medium grey, friable, generally as per sandstone description herein but with abundant medium grey argillaceous matrix (commonly matrix supported), common carbonaceous detritus, rare micromica and mica flakes, trace microcrystalline and nodular pyrite, nil visual porosity. Sandstone contains thin (<0.5 mm) argillaceous laminae on a 2-3 mm scale. FLUORESCENCE: No direct, no cut, slow pale bluish white crush cut, moderately wide pale bluish white residual ring.

		T	
		Recovery (mm)	BHP Petroleum
Š	Bunt	very	SIDEWALL CORE DESCRIPTION SHEET
Core No.	Depth (mRT)	Reco	Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
57	2035	2.5	INTERLAMINATED SILTY CLAYSTONE AND SANDSTONE
			SILTY CLAYSTONE: Medium brownish grey, firm, silty, common micromica and mica flakes, rare carbonaceous flecks and coaly fragments, trace off white very fine grained altered feldspar.
			SANDSTONE: Off white to light grey, friable, very fine grained, subrounded, well sorted quartz grains, abundant off white kaolinitic matrix, rare light to medium grey argillaceous matrix, trace weak siliceous cement, trace carbonaceous matter, trace micromica, trace fine grained altered feldspar grains, poor visual porosity.
			Silty claystone and sandstone are interlaminated on a mm scale, sample is dominated by claystone.
			FLUORESCENCE: No direct, no cut, moderately slow moderately pale yellowish white crush cut, moderately wide moderately pale whitish yellow residual ring.
58	2030.5	2.0	SANDSTONE
			SANDSTONE: Off white, friable, very fine to fine grained, occasional medium grained, subrounded, moderately sorted quartz grains, common to ?abundant off white kaolinite matrix, trace weak siliceous cement, trace microcrystalline pyrite, poor visual porosity.
			FLUORESCENCE: No direct, no cut, extremely pale whitish yellow crush cut, very thin very dull whitish yellow residual ring.

			AA BUD
		nm)	Petroleum
Š.		Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET
Core No.	Depth (mRT)	Reco	Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
59	2023	2.0	PYRITIC SANDSTONE AND KAOLINITIC SANDSTONE
			PYRITIC SANDSTONE: Bronze to brownish bronze, friable to slightly hard in part, very fine/fine grained, subrounded, very well sorted quartz grains, trace to rare moderately weak pyritic cement, ?rare medium grey argillaceous matrix, abundant (to 40%?) microcrystalline to very fine nodular pyrite, trace micromica, trace carbonaceous matter, poor visual porosity. KAOLINITIC SANDSTONE: Off white, friable, very fine/fine grained, subrounded well sorted quartz grains, abundant leading to matrix.
			abundant kaolinite matrix, trace weak siliceous cement (fractured by bullet impact), trace microcrystalline pyrite, trace very fine grained lithics, poor to ?fair visual porosity.
			It was not possible to determine the structural relationships between kaolinitic and pyritic sandstones within this crumbled sample.
			FLUORESCENCE: Nil.
60	2013	1.5	SANDSTONE
			SANDSTONE: Off white, friable, fine to coarse grained, subangular to subrounded, moderately poorly sorted quartz grains, common to abundant off white kaolinite matrix, ?trace weak siliceous cement (possibly stronger before fracturing by bullet), rare fine grained nodular pyrite, poor visual porosity.
			<u>FLUORESCENCE</u> : Nil.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
61	1996	2.0	KAOLINITIC SANDSTONE WITH THIN INTERLAMINATED CLAYSTONE: Off white, friable, fine/medium grained, subrounded, very well sorted quartz grains, abundant off white non calcareous kaolinite matrix, trace weak siliceous cement, trace carbonaceous flecks, poor to fair visual porosity. CLAYSTONE: Medium/dark brownish grey, firm, silty and commonly finely arenaceous, common carbonaceous detritus, rare mica flakes and micromica, non calcareous. Rock comprises mostly sandstone with one thin (2 mm) claystone lamination towards top of core. FLUORESCENCE: Nil.
62	1982	2.0	SANDSTONE: Medium to light greyish brown, friable, very fine/fine grained, subrounded, well sorted quartz grains, common medium greyish brown argillaceous matrix, no cement obvious (possibly fractured due to bullet impact), common coaly fragments, trace amber fragments, trace mica and micromica, trace disseminated microcrystalline pyrite, trace bright orange mineral fluorescence. COAL: Black, vitreous, brittle, occurs as thin (1-2 mm) laminae within the sandstone. FLUORESCENCE: No direct, no cut, no crush cut, thin moderately bright yellowish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
63	1969	2.0	SANDSTONE: Off white with medium/dark grey laminae, friable, very fine to coarse grained, predominantly fine to medium grained, subangular, moderately poorly sorted quartz grains, abundant off white kaolinite matrix, trace carbonaceous matter, poor visual porosity, with rare very fine laminae of medium/dark grey silty claystone containing common carbonaceous matter and micromica. FLUORESCENCE: Trace to rare moderately bright yellow to yellowish orange direct pinpoint ?hydrocarbon fluorescence, no cut, very pale bluish white crush cut, thin moderately bright yellowish white residual ring.
64	1961	1.5	KAOLINITIC SANDSTONE: Off white, friable, very fine grained to coarse and granule grade, subangular to subrounded, very poorly sorted quartz grains, abundant off white kaolinite matrix, trace carbonaceous flecks, very poor visual porosity. FLUORESCENCE: Nil.

	7		
Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
65	1947.5	2.5	COAL GRADING TO CARBONACEOUS CLAYSTONE
			COAL: Black, vitreous lustre in part, brittle, rare pyrite laminae and nodules, grades in part to: CARBONACEOUS CLAYSTONE: Very dark brownish grey, brittle, abundantly carbonaceous and grading to coal as above, commonly micromicaceous and micaceous, rare pyrite nodules and laminae, trace amber, trace bright orange mineral fluorescence from amber.
			Coal grades to and from carbonaceous claystone throughout the sample.
			FLUORESCENCE: No direct hydrocarbon fluorescence, slow bleeding moderately bright light yellowish white cut from coal, cut enhance on crushing, moderately wide pale whitish to brownish yellow residual ring.
66	1944.5	2.5	INTERLAMINATED KAOLINITIC SANDSTONE AND SILTY CLAYSTONE
			KAOLINITIC SANDSTONE: Off white, friable, very fine grained, subrounded, very well sorted quartz grains, abundant kaolinitic matrix, abundantly silty, commonly grading to kaolinitic siltstone, trace microcrystalline pyrite, trace carbonaceous flecks, nil to very poor visual porosity.
			SILTY CLAYSTONE: Medium/dark brownish grey, firm, silty and commonly finely arenaceous, rare carbonaceous detritus, rare micromica and mica flakes, trace kaolinite grains (altered feldspar), trace medium grey lithics.
			Kaolinitic sandstone and silty claystone interbedded on a mm scale.
		ļi	FLUORESCENCE: No direct, extremely slow weak pale bluish white cut, enhanced to pale on crushing, moderately thin pale yellowish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
67	1915	2.5	INTERLAMINATED SANDSTONE AND COALY CLAYSTONE: Off white, friable, very fine grained, subrounded, very well sorted quartz grains, abundant kaolinitic matrix, abundantly silty, commonly grading to kaolinitic siltstone, trace microcrystalline pyrite, trace carbonaceous flecks, nil to very poor visual porosity. COALY CLAYSTONE: Medium dark to dark grey and black, firm to brittle in part, silty, commonly finely arenaceous in part, very carbonaceous, abundant (to 50%) black vitreous coal layers and fragments, rare to common amber, rare to common pyrite occasionally totally replacing carbonaceous layers, trace to rare very bright yellow and yellowish orange mineral fluorescence from amber. Sandstone and coaly claystone are interbedded on a sub-mm scale. FLUORESCENCE: No direct, slow bleeding moderately bright light yellowish white cut from amber, enhanced on crushing, moderately wide moderately bright bluish white residual ring.
68	1896	1.5	SANDSTONE SANDSTONE: Off white, friable, fine to medium grained occasional coarse grains, subrounded, moderately well sorted quartz grains, abundant off white kaolinite matrix, trace carbonaceous flecks, poor visual porosity. FLUORESCENCE: No direct, no cut, very weak pale bluish white crush cut, moderately wide extremely weak bluish white residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
69	1872.5	2.5	SILTY CLAYSTONE: Medium/dark brownish grey, firm, silty, rare micromica and mica flakes, trace carbonaceous flecks and fragments, trace amber, rare microcrystalline pyrite, occasionally replacing carbonaceous matter, trace bright yellow and yellowish orange direct from amber. FLUORESCENCE: No direct, slow bleeding moderately bright yellowish white cut from amber, enhanced on crushing, wide moderately bright to bright very light yellowish white to white residual ring.
70	1861	1.5	KAOLINITIC SANDSTONE: Off white, friable, fine to medium grained, subrounded, well sorted quartz grains, abundant kaolinitic matrix, commonly silty, commonly grading to kaolinitic siltstone, trace microcrystalline pyrite, trace carbonaceous flecks, nil to very poor visual porosity. FLUORESCENCE: No direct, slow bleeding moderately bright yellowish white cut, enhanced on crushing, moderately wide very pale bluish white residual ring.
71	1814		SILTY CLAYSTONE: Medium brownish grey, firm, silty, commonly finely arenaceous, trace coarse quartz grains, rare disseminated carbonaceous fragments and microcrystalline pyrite, trace to rare off white altered feldspar grains, trace to rare mica flakes and micromica, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, very pale bluish white crush cut, moderately wide extremely faint translucent bluish white residual ring.

			
Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
72	1805	2.5	SILTY CLAYSTONE: Medium brownish grey, firm, silty, commonly finely arenaceous, trace coarse quartz grains, trace disseminated carbonaceous detritus and microcrystalline pyrite, trace to rare off white altered feldspar grains, trace to rare mica flakes and micromica, grades to argillaceous siltstone. FLUORESCENCE: Nil.
73	1785	2.5	ARGILLACEOUS SILTSTONE: Medium grey to brownish grey, firm to slightly hard, abundant medium grey to brownish grey argillaceous matter, rare disseminated carbonaceous flecks, rare to common micromica and trace mica flakes, grades to silty claystone in part. FLUORESCENCE: No direct, no cut, extremely pale bluish white crush cut, moderately wide very faint translucent bluish white to yellowish white residual ring.
74	1766		ARGILLACEOUS SILTSTONE: Medium grey to brownish grey, firm, abundant medium grey to brownish grey argillaceous matter, rare disseminated carbonaceous flecks, rare to common micromica and trace mica flakes, grades to silty claystone in part. FLUORESCENCE: No direct, no cut, no crush cut, extremely thin very dull brownish yellow residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Date: 25/3/93 Geologist(s): D. PICKAVANCE
75	1747	3.0	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium greyish green, firm, silty, rare off white kaolinite (altered feldspar) grains, rare glauconite grains, trace to rare micromica and mica flakes, trace carbonaceous detritus, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, extremely thin very dull brownish yellow residual ring.
76	1723		SILTY CLAYSTONE: Medium/dark grey, firm to slightly hard, silty, rare off white kaolinite (altered feldspar) grains, trace glauconite grains, trace to rare micromica and mica flakes, trace carbonaceous detritus, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, extremely thin very dull brownish yellow residual ring.

Core No.	Depth (mRT)	Recovery (mm)	Well: MINERVA-1 Permit: VIC/P31 Geologist(s): DAVID PICKAVANCE BHP Petroleum Date: 25-03-93
77	1690	3.0	ARGILLACEOUS SILTSTONE: Medium/dark grey, firm, abundant medium/dark grey argillaceous matter, rare disseminated carbonaceous flecks and coaly fragments, rare to common micromica and trace mica flakes. Grades to silty claystone in part. FLUORESCENCE: No direct, no cut, no crush cut, extremely thin very dull brownish yellow residual ring.
78	1670	2.5	SANDSTONE: Sublaminated to patchy medium to light grey, friable, very fine to fine grained, subrounded, well sorted quartz grains, trace to abundant medium grey argillaceous matrix in patches giving a sublaminar to patchy appearance, grades to arenaceous claystone in darker patches, rare off white kaolinite matrix in part, no cement obvious, trace to rare micromica and mica flakes, rare disseminated carbonaceous flecks, very poor to fair visual porosity. FLUORESCENCE: No direct, no cut, no crush cut, extremely thin very dull brownish yellow residual ring.
7 9	1663.5	-	BULLET LOST

		_	
0.		Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET
Core No.	Depth	Š	
Cor	(mRT)	Rec	Well: MINERVA-1 Permit: VIC/P31 Date: 25-03-93 Geologist(s): DAVID PICKAVANCE
80	1660	2.5	SANDSTONE GRADING TO ARENACEOUS CLAYSTONE
			SANDSTONE: Sublaminated to patchy, medium to light grey, friable, very fine to fine grained, subrounded, well sorted quartz grains, trace to abundant medium grey argillaceous matrix in patches giving a sublaminar to patchy appearance, grades to arenaceous claystone in darker patches, rare off white kaolinite matrix in part, no cement obvious, trace to rare micromica and mica flakes, rare disseminated carbonaceous flecks, trace microcrystalline pyrite, trace glauconite pellets, rare off white kaolinite (altered feldspar) grains, very poor to nil visual porosity.
			FLUORESCENCE: No direct, no cut, extremely weak extremely light bluish white crush cut, moderately wide dull yellowish brown to translucent bluish white residual ring.
81	1653	2.0	SANDSTONE GRADING TO ARENACEOUS CLAYSTONE
			SANDSTONE: Sublaminated to patchy medium to light grey, friable, very fine to fine grained, subrounded, well sorted quartz grains, trace to abundant medium grey slightly calcareous argillaceous matrix in patches giving a sublaminar to patchy appearance, grades to arenaceous claystone in darker patches, rare off white kaolinite matrix in part, no cement obvious, trace to rare micromica and mica flakes, rare disseminated carbonaceous flecks and occasional fragments, trace microcrystalline pyrite, trace glauconite pellets, rare off white kaolinite (altered feldspar) grains, very poor to nil visual porosity.
			FLUORESCENCE: Nil.

	T	T -	
		Recovery (mm)	BHP Petroleum
No.	D45	very	SIDEWALL CORE DESCRIPTION SHEET
Core No.	Depth (mRT)	Reco	Well: MINERVA-1 Permit: VIC/P31 Date: 25-03-93 Geologist(s): DAVID PICKAVANCE
82	1650	3.5	SANDSTONE
			SANDSTONE: Light grey (mud filtrate invasion superimposes a brownish hue), very friable, homogeneous, fine grained, subrounded to subangular, well sorted quartz grains, common strongly calcareous light grey argillaceous matrix, no cement apparent, trace carbonaceous flecks, trace microcrystalline pyrite, good to very good visual porosity. FLUORESCENCE: Trace patchy very dull orange direct, no
			cut, very slow faint bluish white crush cut, extremely thin very pale yellowish white residual ring.
83	1647	3.0	SILTY CLAYSTONE
			SILTY CLAYSTONE: Medium/dark greenish grey, firm, slightly sticky when wet, silty, rare very fine glauconite grains, trace carbonaceous flecks, trace micromica and fine mica flakes, non calcareous.
			FLUORESCENCE: No direct, no cut, no crush cut, moderately wide patchy pale yellowish white residual ring.
84	1629	3.8	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE
			ARGILLACEOUS SILTSTONE: Medium/dark grey, firm, massive, abundant medium/dark grey argillaceous matrix, rare micromica and trace mica flakes, trace to rare carbonaceous matter, grades to silty claystone.
			FLUORESCENCE: No direct, no cut, no crush cut, moderately wide patchy pale yellowish white residual ring.

	·	,	
		Recovery (mm)	BHP Petroleum
Š.	Depth (mRT)	very	SIDEWALL CORE DESCRIPTION SHEET
Core		Reco	Well: MINERVA-1 Permit: VIC/P31 Date: 25-03-93 Geologist(s): DAVID PICKAVANCE
85	1597	3.0	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE
			ARGILLACEOUS SILTSTONE: Medium/dark grey, firm, massive, abundant medium/dark grey argillaceous matrix, rare micromica and trace mica flakes, trace to rare carbonaceous matter, grades to silty claystone.
	ŧ		FLUORESCENCE: Nil.
86	1580	4.0	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE ARGILLACEOUS SILTSTONE: Medium/dark grey, firm to slightly hard in part, massive, abundant medium/dark grey
			argillaceous matrix, rare micromica and trace mica flakes, trace to rare carbonaceous matter, grades to silty claystone.
			FLUORESCENCE: Nil.
87	1562	2.5	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE
			ARGILLACEOUS SILTSTONE: Medium/dark to dark grey, firm to slightly hard in part, massive, abundant medium/dark grey argillaceous matrix, rare micromica and trace mica flakes, trace to rare carbonaceous matter, grades to silty claystone.
			FLUORESCENCE: No direct, no cut, very slow extremely faint yellowish white crush cut, moderately wide slightly patchy pale whitish yellow residual ring.

		T	
Core No.	Depth	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET
Core	(mRT)	Reco	Well: MINERVA-1 Permit: VIC/P31 Date: 25-03-93 Geologist(s): DAVID PICKAVANCE
88	1545	3.5	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE
			ARGILLACEOUS SILTSTONE: Medium/dark grey, firm to slightly hard in part, massive, abundant medium/dark grey argillaceous matrix, rare micromica and trace mica flakes, trace carbonaceous matter, slightly calcareous in part, grades to silty claystone.
			FLUORESCENCE: Nil.
89	1523	4.0	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE
			SILTY CLAYSTONE: Medium brownish grey to greyish brown, firm to slightly hard, silty, rare micromica, trace disseminated carbonaceous flecks, moderately calcareous, grades to silty claystone.
			FLUORESCENCE: Nil.
90	1502	3.0	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE
			SILTY CLAYSTONE: Medium brownish grey to greyish brown, firm to slightly hard, slightly sticky when wet, silty, rare micromica, trace disseminated carbonaceous flecks, slightly calcareous, grades to silty claystone.
			FLUORESCENCE: Nil.
91	1476	3.0	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE
			SILTY CLAYSTONE: Medium brownish grey to greyish brown, firm to slightly hard, slightly sticky when wet, silty, rare micromica, trace disseminated carbonaceous flecks, trace calcareous matter, grades to argillaceous siltstone.
			FLUORESCENCE: No direct, no cut, no crush cut, moderately thin faint whitish yellow residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): DAVID PICKAVANCE SILTY CLAYSTONE GRADING TO ARGILLACEOUS
			SILTY CLAYSTONE: Medium brownish grey to greyish brown, firm to slightly hard, slightly sticky when wet, silty, rare micromica, trace disseminated carbonaceous flecks, trace calcareous matter, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, moderately thin faint whitish yellow residual ring.
93	1430	-	BULLET LOST
94	1398	3.0	SILTY CLAYSTONE: Medium brownish grey to greyish brown, firm to slightly hard, slightly sticky when wet, massive, silty, rare micromica, trace disseminated carbonaceous flecks, trace calcareous matter, trace pyrite infill of ?burrow, single white calcareous fossil, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, moderately thin faint whitish yellow residual ring.
95	1387		SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium brownish grey, firm to slightly hard, massive, silty, rare micromica, trace disseminated carbonaceous flecks, moderately calcareous, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, thin moderately pale light whitish yellow residual ring.

	T	ī	
		Recovery (mm)	BHP Petroleum
Š.	Depth	very	SIDEWALL CORE DESCRIPTION SHEET
Core No.	(mRT)	Reco	Well: MINERVA-1 Permit: VIC/P31 Date: 25-03-93 Geologist(s): DAVID PICKAVANCE
96	1374	3.0	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE
			SILTY CLAYSTONE: Medium grey, firm to slightly hard, massive, silty, rare micromica, trace disseminated carbonaceous flecks, slightly calcareous, grades to argillaceous siltstone.
			FLUORESCENCE: No direct, no cut, no crush cut, thin moderately pale light whitish yellow residual ring.
97	1363	3.0	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE
			SILTY CLAYSTONE: Medium/dark grey, firm to slightly hard, massive, silty, rare micromica, trace disseminated carbonaceous flecks, slightly calcareous, grades to argillaceous siltstone.
			FLUORESCENCE: No direct, no cut, no crush cut, thin moderately pale light whitish yellow residual ring.
98	1351	3.5	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE
			SILTY CLAYSTONE: Medium/dark grey, firm to slightly hard, massive, silty, rare micromica, trace disseminated carbonaceous flecks, slightly calcareous, trace microcrystalline and nodular pyrite, grades to argillaceous siltstone.
			FLUORESCENCE: No direct, no cut, no crush cut, thin moderately pale light whitish yellow residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P31 Geologist(s): DAVID PICKAVANCE SH. TV. CL. A VICTONIE. CD. A DAVID. TO A DOLLAR GROUND.		
99	1341	4.5 SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium/dark grey, firm to slightly hard, massive, silty, rare micromica, trace disseminated carbonaceous flecks, very slightly calcareous, trace microcrystalline pyrite, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, thin moderately bright light whitish yellow residual ring.			
100	1331	-	BULLET LOST		
	1298		SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium/dark grey, firm to slightly hard, massive, silty, rare to common micromica, trace disseminated carbonaceous flecks, non calcareous, trace microcrystalline pyrite, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, very slow dull very light greenish white crush cut, thin moderately bright light whitish yellow residual ring.		
102	1280		SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium/dark grey, firm to slightly hard, massive, silty, common micromica, trace disseminated carbonaceous flecks, slightly calcareous, trace microcrystalline pyrite, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, thin moderately bright light whitish yellow residual ring.		

		_	
Core No.	Depth (mRT)	Recovery (mm)	Well: MINERVA-1 Permit: VIC/P31 Geologist(s): DAVID PICKAVANCE BHP Petroleum Date: 25-03-93
103	1260	4.0	SILTY CLAYSTONE GRADING TO ARGILLACEOUS SILTSTONE SILTY CLAYSTONE: Medium/dark grey, firm to slightly hard, massive, silty, common micromica, trace disseminated carbonaceous flecks, slightly calcareous, rare to common microcrystalline pyrite infilling ?burrows, grades to argillaceous siltstone. FLUORESCENCE: No direct, no cut, no crush cut, thin moderately pale light whitish yellow residual ring.
104	1240	4.5	ARGILLACEOUS ARENACEOUS SILTSTONE GRADING TO ARGILLACEOUS SILTY SANDSTONE: ARGILLACEOUS ARENACEOUS SILTSTONE: Medium/dark grey, firm to slightly hard, massive, abundant medium/dark grey argillaceous matrix, abundantly very finely arenaceous, grades in part to argillaceous silty fine grained sandstone, rare micromica, trace disseminated carbonaceous flecks and coaly fragments, slightly calcareous, trace microcrystalline pyrite. FLUORESCENCE: No direct, no cut, slow dull very light greenish white crush cut, thin moderately bright light whitish yellow residual ring.
105	1220		ARGILLACEOUS ARENACEOUS SILTSTONE: Dark grey, firm to slightly hard, massive, abundant medium/dark grey argillaceous matrix, commonly to abundantly very finely arenaceous, rare to common dispersed microcrystalline pyrite, rare to common micromica, trace disseminated carbonaceous flecks and coaly fragments, trace glauconite, slightly calcareous. FLUORESCENCE: No direct, no cut, no crush cut, thin moderately dull light whitish yellow residual ring.

Core No.	Depth (mRT)	Recovery (mm)	Well: MINERVA-1 Permit: VIC/P31 Geologist(s): DAVID PICKAVANCE BHP Petroleum Date: 25-03-93
106	1195	3.0	ARGILLACEOUS SILTSTONE GRADING TO SILTY CLAYSTONE ARGILLACEOUS SILTSTONE: Medium/dark grey, firm to slightly hard, massive, abundant medium/dark grey argillaceous matrix, rarely finely arenaceous, rare micromica, trace disseminated carbonaceous flecks and coaly fragments, slightly calcareous, trace microcrystalline pyrite, grades to silty claystone. FLUORESCENCE: No direct, no cut, no crush cut, thin moderately dull light whitish yellow residual ring.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P 31 Date: 5-04-93 Geologist(s): CLIFF MENHENNITT, JON KEALL
107	2420.5	0.9	WEATHERED ARGILLACEOUS LITHIC SANDSTONE: pale green to light grey green, friable to moderately hard, medium grained, subangular to subrounded, moderately sorted quartz and lithic grains, abundant pale green (chloritic) argillaceous matrix, trace weak calcite cement, sand composed of: quartz (25%), light grey to translucent; weathered feldspar? (25%), pale green; lithics (50%), predominantly medium brown to dark brown and dark grey, common brown red; trace carbonaceous specks, nil to poor visual porosity. FLUORESCENCE: Nil.
108	2412	1.5	ARENACEOUS CLAYSTONE: grey green to dark green, firm to moderately hard, trace weak calcite cement, common moderately strong silica cement, estimated 40% medium to coarse sand composed of quartz (40%) light grey to translucent; lithics (30%) dark grey and light brown; weathered feldspar? (30%) light green to pale grey green, friable; trace biotite, alignment of sand grains produces a "semilaminated" texture.
109	2392.5	2.0	CLAYSTONE: medium dark grey, firm to moderately hard, subfissile, micromicaceous, rare carbonaceous flecks, massive.
110	2388		WEATHERED ARGILLACEOUS LITHIC SANDSTONE: pale grey green, friable to moderately hard, medium grained, subangular to subrounded, moderately sorted quartz and lithic grains, abundant moderately strong calcite cement, abundant light grey to pale grey green argillaceous matrix, sand composed of: quartz (40%) light grey to translucent; lithics (30%) light brown and dark grey; weathered feldspar (20%) pale green grey, friable; nil to poor visual porosity. FLUORESCENCE: Nil.
111	2360		SILTY CLAYSTONE: light grey, firm, sticky, contains 20% silt to very fine grained sand, micromicaceous, trace carbonaceous flecks, massive.

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P 31 Geologist(s): CLIFF MENHENNITT, JON KEALL CLAYSTONE: light grey, slightly mottled, firm to hard in
			part, subfissile, non calcareous, micromicaceous, trace carbonaceous flecks, massive.
113	2340	1.5	ARGILLACEOUS LITHIC SANDSTONE: pale green, friable to moderately hard, sticky in part, medium grained, subangular to subrounded, moderately sorted quartz and lithic grains, abundant weak calcite cement, abundant light grey to pale grey green argillaceous matrix, sand composed of: quartz (40%) light grey to translucent; lithics (30%) light brown and dark grey; weathered feldspar (20%) pale greenish grey, friable; trace carbonaceous flecks, nil to poor visual porosity. FLUORESCENCE: Nil.
114	2321	2.5	<u>CLAYSTONE</u> : medium dark grey, slightly mottled, firm to hard in part, subfissile to subblocky, non calcareous, common moderately hard silica cement, micromicaceous, trace carbonaceous flecks and laminae, massive.
115	2319	1.5	<u>CLAYSTONE</u> : medium dark grey, moderately hard to hard, subblocky, non calcareous, common hard silica cement, contains vein of white, soft, soapy non calcareous mineral which fluoresces white, micromicaceous, trace carbonaceous flecks and laminae, massive.
116	2304		ARGILLACEOUS SANDSTONE: medium light grey, moderately hard, fine to very fine grained, subangular to subrounded, moderately sorted quartz grains, common moderately strong silica cement, trace weak calcite cement, abundant light grey argillaceous matrix, common dark grey lithics, common carbonaceous flecks and lenses, nil to poor visual porosity. FLUORESCENCE: Nil

	-					
Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P 31 Geologist(s): CLIFF MENHENNITT, JON KEALL			
117	2294	2.5	CLAYSTONE: medium dark grey, moderately firm to firm, race silt, trace micromica, rare carbonaceous wisps, ubblocky to subfissile, non calcareous. The orientation of the rare carbonaceous wisps are indicative f laminar deposition.			
118	2277	-	BULLET EMPTY.			
119	2274.5	-	BULLET EMPTY.			
120	2259	2.0	ARGILLACEOUS LITHIC SANDSTONE: light bluish grey to light greenish grey, friable to moderately hard, fine to medium grained, occasional coarse grains, angular to subangular, occasionally subrounded, moderately well sorted quartz and lithic grains, massive, common feldspathic grains, common weak calcite cement, abundant very light grey argillaceous matrix, rare pyrite, lithic grains greyish black to black and pale to moderate reddish brown, very poor visual porosity.			
121	2215	1.0	FLUORESCENCE: Nil CLAYSTONE: medium dark grey to dark grey, firm to moderately hard, massive, trace silt, trace micromica,			
122	2212.5	0.5	subblocky fracture, non calcareous. CLAYSTONE: medium grey to medium dark grey, soft to moderately firm, dispersive, trace to common silt, trace			
			micromica, rare disseminated pyrite, occasional carbonaceous flecks, subblocky to subfissile, non calcareous.			
123	2157.5		<u>COAL</u> : greyish black to black, bright, subvitreous lustre, vitreous in part, predominantly blocky fracture, subconchoidal in part, brittle.			

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P 31 Date: 5-04-93 Geologist(s): CLIFF MENHENNITT, JON KEALL	
124	2142	0.5	CLAYSTONE WITH INTERLAMINATED SANDSTONE CLAYSTONE: medium dark grey, moderately firm to firm, slightly dispersive, trace micromica, trace silt, rare carbonaceous flecks, subblocky to subfissile, non calcareous, with interlaminated: SANDSTONE: very light grey, friable to moderately hard, very fine grained, subangular to subrounded, well sorted quartz, abundant very light grey to white dispersive argillaceous matrix, occasional to common lithic grains, occasional carbonaceous fragments, rare pyrite, poor visual porosity.	
125	2129.5	1.5	CLAYSTONE: medium dark grey to dark grey, firm to very firm, dispersive, abundant amber, occasional coalified plant remnant, trace micromica, trace silt, occasional carbonaceous flecks, blocky to subfissile, non calcareous. The sample has a 5mm nodule of amber and further amber fragments throughout giving intense bluish white mineral fluorescence. The coalified plant remnants are present along horizontal bedding planes.	

Core No.	Depth (mRT)	Recovery (mm)	SIDEWALL CORE DESCRIPTION SHEET Well: MINERVA-1 Permit: VIC/P 31 Date: 5-04-93 Geologist(s): CLIFF MENHENNITT, JON KEALL
126	2123	1.5	CLAYSTONE: dark grey to occasionally greyish black, moderately firm to firm, very dispersive, trace micromica, trace very fine grained quartz, trace carbonaceous flecks, rare amber, rare pyrite nodules, subblocky to subfissile, non calcareous, with interbedded: SANDSTONE: very light grey, friable to moderately firm, very fine grained, angular to subangular, occasionally subrounded, well sorted quartz, abundant white to very light grey dispersive argillaceous matrix, common lithic grains, trace pyrite, trace coaly laminae, very poor visual porosity. FLUORESCENCE: Nil
127	2120	-	The laminae are parallel throughout the sample. The carbonaceous content of the claystone is greatest in proximity to the sandstone laminae. Traces of weak yellowish mineral fluorescence in the sample are caused by amber. BULLET EMPTY.

3.3 Conventional Cores

Three conventional cores were cut in the 8-1/2" hole section of Minerva-1 between 18 and 21 of March 1993. Details of the cored depths and recovery are given in Table 3. The fibreglass-sleeved cores were cut into 1 m lengths and marked accordingly before dispatch from the wellsite. One half of the slabbed cores are stored by BHP Petroleum at Kestrel Management (Australia) Pty Ltd, Unit 58, Slough Estate, 170 Forster Road, Mount Waverley, Victoria, 3149.

Table 3
Conventional Core Recovery

Core No.	Cored Interval (mRT)	Recovery (m)	Recovery (%)	
1	1821.00 - 1828.00	3.04	43	
2	1828.00 - 1842.50	13.30	92	
3	1842.50 - 1847.00	4.50	100	

3.3.1 Core Description

The following core descriptions sheets were prepared at the wellsite after evaluation of chip samples at 1 m intervals. Conventional core analyses were performed on the cores by ACS Laboratories Pty Ltd. The ACS report appears in this volume as Appendix 1 and the UV and white light core photographsare included in Enclosure 3.

<u> </u>	T T T T T T T T T T T T T T T T T T T
	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE #1 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1821	SANDSTONE: Clear to translucent, off white speckling, friable to moderately hard in part, massive, fine/medium to occasionally granule grade, predominantly medium to coarse grained, subangular to subrounded, poorly sorted quartz grains, rare to common moderately strong siliceous cement with rare quartz overgrowths, trace pyrite cement, no calcareous cement, trace light grey argillaceous matrix in part, common off white very soft fine/medium grained kaolinite grains (altered feldspar?), trace medium grained glauconite, trace microcrystalline pyrite, trace carbonaceous silt, good visual porosity. FLUORESCENCE: No direct, no cut, dull yellowish white crush
	cut, trace very dull whitish yellow residual ring.
1822	PYRITIC SANDSTONE: Light grey and bronze with off white speckling, hard to very hard in part, massive, fine/medium to granule grade, predominantly medium/coarse to very coarse grained, subangular to generally subrounded, granules dominantly rounded, poorly sorted quartz grains, rare to common moderately strong siliceous cement with rare quartz overgrowths, abundant pyrite cement, no calcareous cement, trace light grey argillaceous matrix in part, rare to common off white very soft fine/medium grained kaolinite grains (altered feldspar?), trace medium grained glauconite, trace carbonaceous silt, fair visual porosity.
	FLUORESCENCE: No direct, fast streaming bright whitish yellow cut and crush cut, wide moderately bright yellowish white residual ring, fades fast to dull after drying.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE #1 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1823	PEBBLY/CONGLOMERATIC SANDSTONE: Light grey (see note*) to translucent in part, slightly hard to very hard, friable in part, massive, medium to granule grade with rare pebbles up to 20 mm diameter, subrounded to subangular, coarser fractions typically rounded and occasionally well rounded, poorly sorted quartz grains, rare strong siliceous cement, trace to rare pyrite cement, trace light grey argillaceous matrix, rare off white kaolinitic matrix (similar to kaolinite above except dispersed), trace off white soft fine grained kaolinite grains (altered feldspar?), trace fine grained glauconite, trace carbonaceous flecks, fair visual porosity.
	* Note: Sandstone has a light brownish grey colour, however flushing from drilling fluid is interpreted to have contaminated true light grey colour.
	FLUORESCENCE: No direct, no cut, very dull yellowish white crush cut, trace dull yellowish white residual ring.
1823.6	SANDSTONE: Very light grey, friable, fine to medium grained, subangular to dominantly subrounded, well sorted quartz grains, trace fairly weak siliceous cement, trace weak pyritic cement, common to rare off white kaolinitic matrix and very fine grains, trace light grey argillaceous matrix in part, trace fine/medium grained glauconite, trace carbonaceous flecks and discontinuous laminae, fair to good visual porosity.
	FLUORESCENCE: No direct, moderately slow dull yellowish white cut, dull yellowish white crush cut, moderately wide moderately bright yellowish white residual ring.
1824.0	SANDSTONE: Light grey, very friable, massive, very fine to fine and occasionally medium grained, subangular to subrounded, well sorted quartz grains, trace to rare pyrite cement, common to abundant light to medium/light fairly sticky very slightly calcareous argillaceous matrix, rare off white kaolinite grains occasionally dispersed as a matrix, trace glauconite grains, trace carbonaceous flecks, poor to possibly fair visual porosity.
	FLUORESCENCE: No direct, no cut, slow dull yellowish white crush cut, very dull thin yellowish white residual ring.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1828.0	SANDSTONE: Light grey to clear, moderately hard to friable, occasionally hard, dominantly medium, occasionally coarse grained, subangular to subrounded, moderately well sorted quartz grains, rare to common light grey to off white kaolinitic (in part) argillaceous matrix, rare to occasionally common moderately strong siliceous cement in part, trace fine carbonaceous detritus, fair to good visual porosity.
	FLUORESCENCE: Nil.
1828.4	SANDSTONE: Light grey to clear, moderately hard to friable, occasionally hard, medium to coarse grained, subangular to subrounded, moderately well sorted quartz grains, rare to common light grey to off white kaolinitic (in part) argillaceous matrix, rare to occasionally common moderately strong siliceous cement in part, trace fine carbonaceous detritus, fair to good visual porosity.
	FLUORESCENCE: No direct, no cut, very slow very weak dull yellowish white crush cut.

Depth	CORE SAMPLE DESCRIPTION CORE SAMPLE DESCRIPTION
(mRT)	CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1829.3	CONGLOMERATIC SANDSTONE WITH TRACE ARGILLACEOUS CARBONACEOUS LAMINAE
	CONGLOMERATIC SANDSTONE: Light grey to off white, moderately hard to hard, rarely friable in part, coarse grained to small pebbles, subangular to dominantly subrounded, poorly sorted quartz grains, rare to common hard siliceous cement, no calcareous cement, rare to common off white to light grey kaolinitic argillaceous matrix, trace resin/amber, trace fine carbonaceous matter (trace solid oil, see comment in FLUORESCENCE), trace microcrystalline pyrite, fair visual porosity, with interbedded:
	CARBONACEOUS LAMINAE: Dark brown to dark brownish grey, firm, moderately argillaceous in part, trace silt.
	FLUORESCENCE: No direct, no cut, very slow very weak dull yellowish white crush cut, very thin dull bluish white residual ring. Trace black, vitreous, brittle to slightly rubbery ?solid oil (or ?carbonaceous matter) squeezed/migrated within pore spaces adjacent to/associated with carbonaceous/argillaceous laminae, gives brilliant orange to yellowish orange direct, moderately fast bright bluish white cut and crush cut, moderately thick, moderately dull brownish yellow residual ring.
1829.6	CLAYSTONE
	<u>CLAYSTONE</u> : Medium to dark brownish grey to grey, firm to moderately hard, rare micromica, non calcareous, common coarse coaly fragments and carbonaceous laminae, common brittle translucent brown amber nodules.
	FLUORESCENCE: (i) Amber: very bright bluish white direct, instant moderately dull to moderately bright yellowish white to bluish white cut. (ii) Claystone: No direct, no cut, very slow very weak dull yellowish brown crush cut, very thin very dull brownish yellow residual ring.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1829.9	CONGLOMERATIC SANDSTONE
	CONGLOMERATIC SANDSTONE: Light grey, clear in part, moderately hard to hard, medium grained to small to medium pebble grade, subangular to subrounded, pebbles rounded in part, rare to occasionally common light grey argillaceous matrix, common moderately strong siliceous cement, rare fine carbonaceous detritus, fair to occasionally good visual porosity.
	FLUORESCENCE: No direct, very slow dull yellowish brown cut, moderately intensified on crushing, very thin, very dull brownish yellow residual ring.
1830.3	CONGLOMERATIC SANDSTONE
	CONGLOMERATIC SANDSTONE: Light grey, clear in part, moderately hard to hard, medium grained to small to medium pebble grade, subangular to subrounded, pebbles rounded in part, rare to occasionally common light grey argillaceous matrix, common moderately strong siliceous cement, rare fine carbonaceous detritus, fair to occasionally good visual porosity.
	SHOWS: No direct, very slow dull brownish yellow cut, no residual ring, common yellowish white residual fluorescence on sample when dry.
1831.0	SANDSTONE
	SANDSTONE: Clear to light grey, moderately hard to hard, medium to very coarse, dominantly coarse, rare medium rounded pebbles, subangular to subrounded, moderately sorted quartz grains, rare to occasionally common off white to light grey (kaolinitic in part) argillaceous matrix, rare to common moderately strong siliceous cement, trace light green lithics, trace carbonaceous detritus, poor to dominantly fair visual porosity.
	FLUORESCENCE: No direct, very slow light whitish blue cut and crush cut, moderately thin dull bluish white residual ring, common yellowish white residual fluorescence on sample when dry.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1831.3	CONGLOMERATIC SANDSTONE
	CONGLOMERATIC SANDSTONE: Light grey, clear in part, moderately hard to hard, medium grained to small to medium pebble grade, subangular to subrounded, pebbles rounded in part, rare to occasionally common light grey argillaceous matrix, common moderately strong siliceous cement, rare fine carbonaceous detritus, fair to occasionally good visual porosity.
	FLUORESCENCE: No direct, slow to moderate dull greenish yellow cut, slightly intensified by crush cut, moderately thin dull bluish white residual ring, common yellowish white residual fluorescence on sample when dry.
1832.3	CONGLOMERATIC SANDSTONE
	CONGLOMERATIC SANDSTONE: Light grey, clear in part, moderately hard to hard, medium grained to small to medium pebble grade, subangular to subrounded, pebbles rounded in part, rare to occasionally common light grey argillaceous matrix, common moderately strong siliceous cement, rare fine carbonaceous detritus, minor medium to dark brownish grey to grey moderately silty claystone clasts with trace pyritised plant fragments, fair to occasionally good visual porosity.
	FLUORESCENCE: No direct, very slow very dull brownish yellow cut, very thin very dull bluish white residual ring.
1833.1	GRANULE SANDSTONE
	GRANULE SANDSTONE: Light grey to clear, moderately hard to occasionally friable in part, medium grained to granule grade, trace fine grained, subangular to subrounded, poorly sorted quartz, common off white kaolinitic argillaceous matrix, rare to common moderately strong siliceous cement, trace to rare carbonaceous and coaly fragments, laminae and streaks, trace structural kaolinite (altered feldspar), trace mica, fair to good visual porosity.
	FLUORESCENCE: No direct, very slow very dull brownish yellow cut, very thin very dull bluish white residual ring.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1833.3	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to hard, rarely friable, medium to very coarse, dominantly coarse, subangular to subrounded, moderately sorted, rare light grey and off white argillaceous matrix, rare to common moderately strong siliceous cement, trace structural kaolinite, nil to trace lithics, trace carbonaceous detritus, very good to good visual porosity.
	FLUORESCENCE: No direct, moderately slow dull yellowish white cut, slight increase in intensity in crush cut, very thin very dull bluish white residual ring.
1834.0	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to hard, medium to very coarse, dominantly medium to coarse, subangular to subrounded, moderately sorted quartz, rare to common off white kaolinitic and light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace carbonaceous detritus, nil to trace mica and lithics, fair to good visual porosity, interlaminated with minor medium grey claystone laminae.
	FLUORESCENCE: No direct, slow weak whitish to greenish yellow cut, improves slightly on crush to moderate whitish to greenish yellow, very thin very dull bluish white residual ring, common moderately bright yellowish white residual fluorescence on sample when dry.
1834.3	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to hard, medium to granule, dominantly coarse to very coarse, subangular to subrounded, moderately to poorly sorted quartz grains, rare to common light grey argillaceous matrix, common moderately strong siliceous cement, trace carbonaceous and coaly detritus, trace mica and lithics, fair to occasionally good visual porosity.
	FLUORESCENCE: No direct, moderately fast moderately bright light milky white cut, moderately thick dull yellowish white residual ring, common moderately bright yellowish white residual fluorescence on sample when dry.

<u> </u>	
	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1834.8	SANDSTONE WITH MINOR INTERBEDDED CLAYSTONE
	SANDSTONE: Light grey to clear, moderately hard to hard, medium to occasionally very coarse, dominantly medium to coarse, subangular to subrounded, moderately sorted quartz grains, trace to occasionally common light grey to off white argillaceous matrix, rare to common moderately strong siliceous cement, trace carbonaceous and coaly detritus, trace mica and lithics, trace structural kaolinite grains, fair visual porosity, interlaminated with minor:
	<u>CLAYSTONE</u> : Medium brownish grey, firm, non calcareous, rarely silty, abundantly carbonaceous, common pyritised plant/wood fragments.
	FLUORESCENCE: No direct, moderately slow weak dull bluish white cut, thin to moderately thick moderately bright yellowish white residual ring, common moderately bright yellowish white residual fluorescence on sample when dry.
1835.3	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to hard, medium grained to small rounded pebble grade, subangular to subrounded poorly sorted quartz grains, rare to common off white kaolinitic and light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace carbonaceous detritus, trace lithics, structural kaolinite, mica and cryptocrystalline pyrite, poor to good dominantly fair visual porosity.
	FLUORESCENCE: No direct, moderately slow moderately weak bluish white cut, improving in intensity when crushed, thin dull bluish white residual ring, fluorescence as above on dry samples.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1835.8	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to hard, medium to very coarse, dominantly medium to coarse, subangular to subrounded, moderately sorted quartz grains, rare to occasionally common off white kaolinitic and light grey argillaceous matrix, rare to occasionally common moderately strong siliceous cement, trace mica, lithics, structural kaolinite grains and carbonaceous detritus, fair to occasionally good visual porosity.
	FLUORESCENCE: No direct, moderately slow moderately weak bluish white cut, improving in intensity when crushed, thin dull bluish white residual ring, fluorescence of dry samples as above.
1836.1	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard, friable in part, medium to very coarse, dominantly coarse, subangular to subrounded, moderately sorted quartz grains, rare to occasionally common off white kaolinitic and light grey argillaceous matrix, rare to occasionally common moderately strong to moderately weak siliceous cement, trace lithics, mica, structural kaolinite, coaly fragments, disseminated cryptocrystalline pyrite, good visual porosity.
	FLUORESCENCE: No direct, moderately slow moderately weak bluish white cut, improving in intensity when crushed, thin dull bluish white residual ring, sample commonly has moderately bright bluish white residual fluorescence when dry.
1836.3	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to occasionally hard, rarely friable, dominantly medium to coarse grained, subangular to subrounded, well sorted quartz grains, rare off white kaolinitic argillaceous matrix, rare to occasionally common moderately strong siliceous cement, trace lithics, mica, structural kaolinite and coaly fragments, good visual porosity.
	FLUORESCENCE: No direct, slow weak dull bluish white cut, slight increase in intensity on crushing, thin moderately dull pale brownish yellow residual ring.

	T
	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1837.0	SANDSTONE
	SANDSTONE: Light to medium grey, occasionally clear, hard, medium to very coarse, dominantly coarse grained, dominantly subangular, occasionally subrounded, moderate to well sorted quartz, trace light grey to off white argillaceous matrix, common strong siliceous cement, trace coaly particles, very poor to poor visual porosity.
	FLUORESCENCE: Nil direct, cut, no crush cut, very thin dull brownish yellow residual ring.
1837.3	CLAYSTONE
	CLAYSTONE: Medium brown to medium greyish brown, moderately hard, non calcareous, common plant fragments, leaves and carbonaceous matter, rare to common translucent golden brown brittle amber globules with conchoidal fracture.
	FLUORESCENCE: (i) Amber: very bright yellowish white direct, instantaneous bright yellowish white to bluish white cut. (ii) Claystone: No direct, no cut, slow weak dull brownish white to bluish white crush cut, very thin very dull brownish yellow residual fluorescence, moderately wide pale yellow residual ring.
1838.3	CLAYSTONE
	CLAYSTONE: Medium grey to brownish grey, moderately hard, non calcareous, common plant fragments, leaves and carbonaceous matter.
	SHOWS: (i) Amber: very bright yellowish white direct, instantaneous bright yellowish white to bluish white cut. (ii) Claystone: No direct, no cut, slow weak dull brownish white to bluish white crush cut, very thin very dull brownish yellow residual fluorescence, moderately wide pale yellow residual ring.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1839.3	CLAYSTONE
	CLAYSTONE: Medium grey to medium brownish grey, moderately hard to occasionally hard, moderately silty, non calcareous, rare micromica, trace medium grained mica flecks, rare to common carbonaceous flecks and laminae, trace coaly particles.
	FLUORESCENCE: No direct, no cut, very slow weak dull bluish white crush cut, moderately wide moderately dull to moderately bright brownish white residual ring.
1839.8	INTERLAMINATED SANDSTONE AND CLAYSTONE
	SANDSTONE: Light grey, moderately hard, fine to medium grained, dominantly subrounded, well sorted quartz grains, trace to rare light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace mica and carbonaceous flecks, poor visual porosity.
	<u>CLAYSTONE</u> : Medium to dark grey to brownish grey, moderately hard, common micromica, non calcareous, trace silt, common carbonaceous flakes.
	FLUORESCENCE: Trace to rare pinpoint to medium patchy dull pale orange direct (particularly associated with more argillaceous laminae), moderately fast bleeding moderately bright pale greenish yellow cut, moderately bright greenish yellow crush cut, moderately wide moderately bright greenish yellow residual ring.
1840.3	CLAYSTONE
	<u>CLAYSTONE</u> : Medium to dark grey to brownish grey, moderately hard, common micromica, non calcareous, trace silt, common carbonaceous flakes.
	FLUORESCENCE No direct, no cut, weak pale milky white crush cut, moderately wide moderately bright greenish white residual ring.

Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 2 Well: MINERVA-1
	Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1840.8	SANDSTONE
	SANDSTONE: Light to occasionally medium grey, rarely clear, moderately hard to friable, medium grained, dominantly subrounded, well sorted quartz grains, trace to occasionally rare light grey to off white argillaceous matrix, rare to occasionally common moderately weak to moderately strong siliceous cement, trace carbonaceous and coaly detritus, trace structural kaolinite, fair to dominantly good visual porosity.
	<u>FLUORESCENCE</u> : No direct, very slow very weak pale bluish white cut, intensified to weak on crushing, very thin wispy pale greenish white residual ring.
1841.3	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to occasionally friable, medium to coarse grained, subangular to subrounded, well sorted quartz grains, trace light grey to off white argillaceous matrix, rare to common moderately strong siliceous cement, trace carbonaceous and coaly detritus, trace structural kaolinite, fair to occasionally good visual porosity.
	FLUORESCENCE: No direct, very slow moderately dull yellowish white to milky white cut, moderately dull to moderately bright yellowish white crush cut.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 3 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1842.5	SANDSTONE SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard, rarely friable in part, medium to very coarse, dominantly coarse, subangular to subrounded, poorly to moderately sorted quartz grains, rare light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace structural kaolinite and coaly detritus, fair to occasionally good visual porosity.
	FLUORESCENCE: No direct, very slow very pale greenish white to milky white cut, improves to pale on crushing, thin faint pale greenish white residual ring.
1843.5	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to occasionally friable, dominantly coarse, occasionally medium and very coarse, subangular to dominantly subrounded, moderately sorted quartz grains, trace light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace structural kaolinite, coaly particles and lithics, fair visual porosity.
	FLUORESCENCE: No direct, no cut, very pale greenish white to milky white crush cut, very thin very faint greenish white residual ring.
1844.5	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to friable in part, dominantly coarse to very coarse grained, occasionally medium grained, subangular to subrounded, moderately sorted quartz grains, trace very light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace structural kaolinite and coaly detritus, fair visual porosity.
	<u>FLUORESCENCE</u> : No direct, very slow pale greenish white to milky white cut, improves to pale to moderately bright on crushing, medium wide dull greenish white residual ring.

	BHP Petroleum
Depth (mRT)	CORE SAMPLE DESCRIPTION CORE # 3 Well: MINERVA-1 Permit: VIC/P31 Geologist(s): A. TABASSI/D. PICKAVANCE
1845.5	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to occasionally friable, medium to very coarse, dominantly coarse, occasionally fine grained and granule grade, subangular to subrounded, poorly sorted quartz, trace light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace structural kaolinite, coaly detritus and disseminated cryptocrystalline pyrite, fair to dominantly good visual porosity.
	FLUORESCENCE: No direct, very slow very pale greenish white to milky white cut, improves to pale on crushing, no residual ring.
1846.5	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to occasionally friable, medium to very coarse, dominantly coarse, subangular to subrounded, moderately sorted quartz grains, trace light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace structural kaolinite, coaly particles, fair to dominantly good visual porosity.
	<u>FLUORESCENCE</u> : No direct, very slow pale greenish white to milky white cut, improves to pale to moderately bright on crushing, thin to medium thick very dull greenish white residual ring.
1847.0	SANDSTONE
	SANDSTONE: Light grey to clear, moderately hard to occasionally friable, medium to very coarse, dominantly coarse, subangular to subrounded, moderately sorted quartz grains, trace light grey argillaceous matrix, rare to common moderately strong siliceous cement, trace structural kaolinite, coaly particles, fair to dominantly good visual porosity.
	<u>FLUORESCENCE</u> : No direct, extremely slow very pale greenish white to milky white cut, improves to pale on crushing, no residual ring.

3.4 HYDROCARBON INDICATIONS

3.4.1 Cuttings Gas Summary

GAS READIN	GAS READINGS (%):							
DEPTH mRT	TG	C ₁	C ₂	C ₃	iC ₄	nC ₄	C ₅	
Background C	Gas							
956-1204	0.040- 0.460		0.000- 0.050	0.000- 0.020	0.000- 0.000	0.000- 0.000	0.000- 0.000	
1204-1208	0.020-	0.020-	0.000-	0.000-	0.000-	0.000-	0.000-	
1208-1413	0.060- 0.230		0.000- 0.000	0.000- 0.000			0.000- 0.000	
1413-1820	0.020- 0.200		0.000- 0.020	0.000- 0.000		0.000- 0.000		
1947-2006	0.030- 0.104		0.000- 0.012	0.000- 0.000			0.000- 0.000	
2006-2029	0.010- 0.078		0.000- 0.004				0.000- 0.000	
2131-2144	0.115-	0.106-	0.000-	0.000-	0.000-	0.000-	0.000-	
2144-2170	0.230-	0.194-	0.022-	0.000-	0.000-	0.000-	0.000-	
2170-2196	0.100-	0.088-	0.011-	0.000-	0.000-	0.000-	0.000-	
2196-2209	0.083-	0.074-	0.012-	0.000-	0.000-	0.000-	0.000-	
2209-2213	0.051-	0.040-	0.010-	0.000-	0.000-	0.000-	0.000-	
2228-2255	0.059-	0.051-	0.011-	0.000-	0.000-	0.000-	0.000-	
2255-2295	0.076-	0.057-	0.011-	0.000-	0.000-	0.000-	0.000-	
2295-2300	0.057-	0.050-	0.008-	0.000-	0.000-	0.000-	0.000-	
2300-2336	0.237-	0.222-	0.018-	0.000-	0.000-	0.000-	0.000-	
2336-2366	0.353-	0.328-	0.026-	0.000-	0.000-	0.000-	0.000-	
2366-2372	0.080-	0.066-	0.007-	0.000-	0.000-	0.000-	0.000-	

DACTO	WITT	COMDI	ETTON	REPORT
BANK	WHI.	LUNIPI		REPURI

GAS	READINGS	(%):

DEPTH mRT	TG	C ₁	C ₂	C ₃	iC ₄	nC ₄	C ₅
2372-2391	0.261-	0.220-	0.026-	0.000-	0.000-	0.000-	0.000-
2391-2399	0.057-	0.056-	0.008-	0.000-	0.000-	0.000-	0.000-
2399-2425	0.302-	0.254-	0.024-	0.000-	0.000-	0.000-	0.000-
Peaks							
1171	0.846	0.677	0.047	0.025	0.000	0.000	0.000
1183	0.884	0.772	0.025	0.021	0.000	0.000	0.000
1649	2.760	2.600	0.030	0.017	0.009	0.003	0.000
1662	4.065	3.197	0.045	0.027	0.000	0.000	0.000
1802	0.470	0.460	0.005	0.003	0.000	0.000	0.000
1812	2.168	2.077	0.022	0.012	0.001	0.002	0.000
1824	0.721	0.420	0.092	0.039	0.000	0.000	0.000
1879	1.053	1.017	0.011	0.005	0.000	0.000	0.000
1890	1.197	1.143	0.012	0.008	0.002	0.000	0.000
1908	1.483	1.430	0.015	0.007	0.000	0.000	0.000
1937	0.937	0.901	0.010	0.005	0.000	0.000	0.000
2024	0.017	0.130	0.010	0.006	0.000	0.000	0.000
1171 1183 1649 1662 1802 1812 1824 1879 1890 1908	0.884 2.760 4.065 0.470 2.168 0.721 1.053 1.197 1.483 0.937	0.772 2.600 3.197 0.460 2.077 0.420 1.017 1.143 1.430 0.901	0.025 0.030 0.045 0.005 0.022 0.092 0.011 0.012 0.015 0.010	0.021 0.017 0.027 0.003 0.012 0.039 0.005 0.008 0.007 0.005	0.000 0.009 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Wiper Trip Gas

1204	1.530	n/a	n/a	n/a	n/a	n/a	n/a
2107*	7.626	7.260	0.081	0.044	0.010	0.008	0.000
2107#	2.393	2.310	0.017	0.011	0.001	0.002	0.000
2107@	3.415	3.200	0.043	0.026	0.005	0.006	0.002

	~	-
VI	• '/	PII

DACTO	WETT	COMPLETE	(A)	DEDADT
KANII	WHI.	• • • • • • • • • • • • • • • • • • •		RHPIRI

MINERVA-1

GAS READINGS (%):

DEPTH mRT TG C_1 C_2 C_3 iC_4 nC_4 C_5

(*= WTG on 25-3-93, #= WTG on 26-3-93, @= TG circulated through casing, n/a= chromatograph not operational)

Connection Gas

1168	1.000	n/a	n/a	n/a	n/a	n/a	n/a
1335.1	0.190	0.190	0.000	0.000	0.000	0.000	0.000
1363.8	0.200	0.200	0.000	0.000	0.000	0.000	0.000
1393.1	0.150	0.150	0.000	0.000	0.000	0.000	0.000

3.4.2 Cuttings Hydrocarbon Fluorescence

Depth mRT	Description
1821.0*	(sandstone) no direct, no cut, dull yellowish white crush cut, trace very dull whitish yellow residual ring.
1822.0*	(sandstone) no direct, fast streaming bright whitish yellow cut and crush cut, wide moderately bright yellowish white residual ring, fades fast to dull after drying.
1823.0*	(sandstone) no direct, no cut, very dull yellowish white crush cut, trace dull yellowish white residual ring.
1823.6*	(sandstone) no direct, moderately slow dull yellowish white cut, dull yellowish white crush cut, moderately wide moderately bright yellowish white residual ring.
1824.0*	(sandstone) no direct, no cut, dull slow yellowish white crush cut, very dull thin yellowish white residual ring.
1828.4*	(sandstone) no direct, no cut, very slow very weak dull yellowish white crush cut.
1829.3*	(sandstone) no direct, no cut, very slow very weak dull yellowish white crush cut, very thin dull bluish white residual ring. Trace black, vitreous, brittle to slightly rubbery ?solid oil (or ?carbonaceous matter) squeezed/migrated within pore spaces adjacent to/associated with carbonaceous/argillaceous laminae, gives brilliant orange to yellowish orange direct, moderately fast bright bluish white cut and crush cut, moderately thick, moderately dull brownish yellow residual ring.
1829.6*	(amber) very bright bluish white direct, moderately instant moderately dull to moderately bright yellowish white to bluish white cut.
	(claystone) no direct, no cut, very slow very weak dull yellowish brown crush cut, very thin very dull brownish yellow residual ring.
1829.9*	(sandstone) no direct, very weak very slow dull yellowish brown cut, moderately intensified on crushing, very thin, very dull brownish yellow residual ring.
1830.3*	(sandstone) no direct, very weak very slow dull brownish yellow cut, no residual ring, common yellowish white residual fluorescence on sample when dry.

1831.0* (sandstone) no direct, very slow light whitish blue cut and crush cut, moderately thin dull bluish white residual ring, common yellowish white residual fluorescence on sample when dry. 1831.3* (sandstone) no direct, slow to moderate, dull greenish yellow cut, slightly intensified by crush cut, moderately thin dull bluish white residual ring, common yellowish white residual fluorescence on sample when dry. 1832.3* (sandstone) no direct, very slow very dull brownish yellow cut. very thin very dull bluish white residual ring. 1833.1* (sandstone) no direct, very slow very dull brownish yellow cut, very thin very dull bluish white residual ring. 1833.3* (sandstone) no direct, moderately slow dull yellowish white cut, slight increase in intensity in crush cut, very thin very dull bluish white residual ring. 1834.0* (sandstone) no direct, slow weak whitish to greenish yellow cut. moderate whitish to greenish yellow crush cut, very thin very dull bluish white residual ring, common moderately bright yellowish white residual fluorescence on sample when dry. (sandstone) no direct, moderately fast moderately bright light 1834.3* milky white cut, moderately thick, dull yellowish white residual ring, common moderately bright yellowish white residual fluorescence on sample when dry. 1834.8* (sandstone) no direct, moderately slow weak dull bluish white cut. thin to moderately thick moderately bright yellowish white residual ring, common moderately bright yellowish white residual fluorescence on sample when dry. 1835.3* (sandstone) no direct, moderately slow moderately weak bluish white cut, improving in intensity when crushed, thin dull bluish white residual ring, fluorescence as above on dry samples. 1835.8* (sandstone) no direct, moderately slow moderately weak bluish white cut, improving in intensity when crushed, thin dull bluish white residual ring, fluorescence of dry samples as above. 1836.1* (sandstone) no direct, moderately slow moderately weak bluish white cut, improving in intensity when crushed, thin dull bluish white residual ring. 1836.3* (sandstone) no direct, slow weak dull bluish white cut, slight increase in intensity on crushing, thin moderately dull pale brownish yellow residual ring.

VIC/P31	BASIC WELL COMPLETION REPORT	MINERVA-1
1837.0*	(sandstone) no direct, no cut, no crush cut, very thin brownish yellow residual ring.	dull pale
1837.3 - 1838.3*	(amber) very bright yellowish white direct, instantane yellowish white to bluish white cut.	ous bright
	(claystone) no direct, no cut, slow weak dull brownish bluish white crush cut, moderately wide pale yellow r	
1839.3*	(claystone) no direct, no cut, very slow weak dull blu crush cut, moderately wide moderately dull to moderately brownish white residual ring.	
1839.8*	(sandstone) trace to rare pinpoint to medium patchy dorange direct (particularly associated with more argillal laminae), moderately fast bleeding moderately bright yellow cut, improving to moderately bright greenish yellow, moderately wide moderately bright greenish yellowing.	aceous pale greenish ellow crush
1840.3*	(claystone) no direct, no cut, weak pale milky white comoderately wide moderately bright greenish white residuely	
1840.8*	(sandstone) no direct, very slow very weak pale bluish intensified to weak on crushing, very thin wispy pale white residual ring.	•
1841.3*	(sandstone) no direct, very slow moderately dull yello milky white cut, moderately dull to moderately bright white crush cut.	
1842.5*	(sandstone) no direct, very slow very pale greenish white cut, improves to pale on crushing, thin faint pal white residual ring.	•
1843.5*	(sandstone) no direct, no cut, very pale greenish white white crush cut, very thin very faint greenish white re	•
1844.5*	(sandstone) no direct, very slow pale greenish white to cut, improves to pale to moderately bright on crushing wide dull greenish white residual ring.	•
1845.5*	(sandstone) no direct, very slow very pale greenish whether cut, improves to pale on crushing, no residual re	•
1846.5*	(sandstone) no direct, very slow pale greenish white to cut, improves to pale to moderately bright on crushing almost medium thick very dull greenish white residual	, thin to

VIC/P31	BASIC WELL COMPLETION REPORT MINERY	A -:
1847.0*	(sandstone) no direct, extremely slow very pale greenish white to milky white cut, improves to pale on crushing, no residual ring.	
1937-1946	(sandstone) no direct, no cut, extremely weak extremely pale bluish white crush cut, moderately wide light greenish yellow residual ring.	
	(claystone) no direct, no cut, no crush cut, very thin moderately dull bluish white residual ring.	
1976-1979	(claystone) no direct, no cut, no crush cut, very thin moderately dull bluish white residual ring.	

(claystone) no direct, no cut, no crush cut, very thin moderately dull bluish white residual ring.

2003-2015

^{*} Chips and cuttings from cores 1 to 3.

4. LOGGING AND SURVEYS

4.1 Mudlogging

Exlog provided conventional mudlogging services in conjunction with a computerised data logging and processing system (Drillbyte).

Gas detection equipment consisted of:

- Flame Ionisation Total Hydrocarbon Ditch Gas Detector.
- Flame Ionisation Chromatograph (continuous cycle-hydrocarbon detection C₁ through to C₅).
- Hydrogen Sulphide detector (continuous monitoring sensitive to 1 ppm).
- Infra red CO₂ detector.

The Exlog 'Drillbyte' monitoring system was utilised to measure, display and record conventional drilling data. Permanent storage of drilling data was made onto 3.5" floppy diskette. On-line and off-line plots of engineering parameters were made available when necessary.

Surveillance for potential abnormal pressure while drilling was assisted by the continuous computation of the D-Exponent and Pressure Logs.

The Exlog unit was operated continuously throughout the well. Once returns were achieved, routine analyses for fluorescence and cut in organic solvent were carried out on all ditch samples.

The Mudlog for Minerva-1 is included as Enclosure 1.

4.2 Wireline Logs

Four suites of wireline logs were run in Minerva-1. A list of the logs run in the well is included in Table 4.

Table 4
Wireline Logs

Suite No.	Run No.	Log Type	Depth Interval mRT	Date Run	
1	1	DLL-MSFL-AS-GR-SP-CAL-AMS	1204-549 (GR to seafloor	14/03/93 r)	
1	1	Zero Offset VSP	1189-150	14/03/93	
1	1	CST-GR (46 shots)	1193-563	14/03/93	
2	2	DLL-MSFL-AS-GR-SP-CAL-AMS	2024-1189	21/03/93	
2	1	LDL-CNL-GR-AMS	2024-1189	21/03/93	
2	1	FMS-GR-AMS	2024-1189	21/03/93	
2	2	Zero Offset VSP	2017-920	22/03/93	
2	1	RFTB-GR-HP-AMS	1992-1649	22/03/93	
3	3	DLL-MSFL-AS-GR-SP-CAL-AMS	2103-1800	25/03/93	
3	2	CST-GR (60 shots)	2101-1195	25/03/93	
4	4	DLL-MSFL-AS-GR-SP-CAL-AMS	2424-2109.5	04/04/93	
4	2	LDL-CNL-GR-AMS	2424-2109.5	05/04/93	
4	2	FMS-GR-AMS	2424-2109.5	05/04/93	
4	3	Zero Offset VSP	2420-1992	05/04/93	
4	3	CST-GR (21 shots)	2420.5-2120	05/04/93	
4	1	CBL-VLD-GR (7" liner)	2109-1088	05/04/93	
4	1	USIT Cement Map	2109-1088	05/04/93	
5	1	Perforating & packer Record	1838-1800	09/04/93	

VIC/P31		BASIC WELL COMPL	MINERVA-1		
		Processed	Logs		
. 2	1	MSD (wellsite)	2024-1189	21/03/93	
4	2	MSD (wellsite)	2424-2109.5	05/04/93	

4.3 Measurement While Drilling

Eastman Teleco Measurement While Drilling Services were utilised by BHP Petroleum during the drilling of Minerva-1. A dual propagation resistivity (DPR) log in both real time and recorded modes and directional surveys were provided in the 12-1/4" hole section from a bit depth of 540 m to 1204 m. Reliable DPR and directional data were provided in real time throughout this hole section and a DPR memory log was produced at the end of the hole section. One MWD tool was required for the one tool run in the 12-1/4" hole section.

A DPR log in both real time and recorded modes and directional surveys were provided in the 8-1/2" hole section from a bit depth of 1204 m to 2107 m. Reliable DPR and directional data were provided in real time throughout this hole section and a DPR memory log was produced at the end of each tool run. One MWD tool was required for the three tool runs in the 8-1/2" hole section.

The tools acquired a total of 111.5 circulating hours of data.

The Eastman Teleco logs are provided in this volume as Enclosure 2.

4.4 Velocity Surveys

Schlumberger Seaco Inc conducted a Zero Offset Vertical Seismic Profile Survey in the 12.25" hole section on Minerva-1 using a Combinable Seismic Imager (CSI). Three sleeve air guns were used as the energy source for the survey. The guns were suspended from the rig and located 7 m below mean water level and offset 47 m from the wellhead on an azimuth of 050°. The survey was acquired on 14 March 1993 and obtained VSP data from a depth of 1189 to 150 mRT. A total of 33 VSP levels were recorded at approximately 25 m shot spacing and 8 check shot levels were recorded at approximately 50 m shot spacing.

Schlumberger Seaco Inc conducted a second VSP Survey in the 8.5" hole section. Three sleeve air guns were used as the energy source for the survey. The guns were suspended from the rig and located 7 m below mean water level and offset 47 m from the wellhead on an azimuth of 050°. The survey was acquired on 22 March 1993 and obtained VSP data from a depth of 2017 to 920 mRT. A total of 42 VSP levels were recorded at approximately 20 m shot spacing.

Schlumberger Seaco Inc conducted a third VSP Survey in the 6" hole section at TD. Three sleeve air guns were used as the energy source for the survey. The guns were suspended from the rig and located 7 m below mean water level and offset 47 m from the wellhead on an azimuth of 050°. The survey was acquired on 5 April 1993 and obtained VSP data from a depth of 2420 to 1992 mRT. A total of 21 VSP levels were recorded at approximately 20 m shot spacing.

No VSP Quicklook processing was applied at the wellsite.

5. RESERVOIR AND FLUID ANALYSIS

5.1 RFT

Three RFT runs were made in Minerva-1 on 22 and 23 March 1993. Thirty two pretests were attempted (of which 27 were successful) over the interval 1992.0 m to 1650.8 mRT. Pretest data are presented below.

A total of three segregated samples were collected over this interval: Sample #1- Segregated (6 gallons and 1 gallon) was collected at 1931.0 mRT Sample #2- Segregated (6 gallons and 1 gallon) was collected at 1942.5 mRT Sample #3- Segregated (6 gallons and 1 gallon) was collected at 1649.8 mRT

The 6 gallon sample chamber of Sample #1 from 1931.0 m was opened at the wellsite and found to contain 113 SCF of gas, approximately 15 mL of condensate and 550 mL of water. The one gallon sample chamber from 1931.0 m was left sealed and sent for PVT analysis. Gas and water analyses were carried out on the fluids from the 6 gallon chamber at the wellsite and the results are reported below.

The 6 gallon sample chamber of Sample #2 from 1942.5 m was opened at the wellsite and found to contain 77.7 SCF of gas, approximately 20 mL of condensate and 830 mL of water. The one gallon sample chamber from 1942.5 m was left sealed and sent for PVT analysis. Gas and water analyses were carried out on the fluids from the 6 gallon chamber at the wellsite and the results are reported below.

The 6 gallon sample chamber of Sample #3 from 1649.8 m was opened at the wellsite and found to contain 77.7 SCF of gas, a scum of condensate and 7500 mL of water. The one gallon sample chamber from 1649.8 m was left sealed and sent for PVT analysis. Gas and water analyses were carried out on the fluids from the 6 gallon chamber at the wellsite and the results are reported below.

Figure 2 RFT Sample Data Sheet

weii: wiinerva-i	Date:	22nd March 19	93	
KB: <u>25.0</u> m Sample No: 1 Depth	: 1931.0	mAHKB		
Formation Pressure: 2743.3	36 psia			
	Lower	<u>Up</u>	per	
Chamber No:		RF:	S-1227	
Chamber Size:	6		1	gal
Flowing Pressure:	Approx 2500	Appro	x 2450	psig
Time To Fill:	25		6	minutes
Opening Pressure:	1850	1.	800	psig
Gas Volume:	113		served for	ft^3
Total Liquids:	570		T Analysis	cc
Oil/Condensate Volume:	15			cc
Filtrate/Water Volume:	555			 CC
Gas Oil Ratio:	••			Scf/Stb
Condensate Gas Ratio:	0.8			Stb/MMscf
Oil/Condensate Analysis				
Specific Gravity:	Too small to measure			Air=1, Temp
Colour:	Too small to measure			
Fluorescence:	Bright Blue			
Gas Analysis:				
C1:	90.55			%
C2:	3.72		, , , , , , , , , , , , , , , , , , ,	 %
C3:	3.27			%
iC4:	0.36	_		%
nC4:	0.37		T	%
C5+:	0.62			%
CO2:	1.70	_		%
H2S:	0			ppm
Specific Gravity	0.65			Air=1.0
Water/Filtrate Analysis:			Filtrate	
_	Lower Upper	Drille	, 00	
Rw:	0.134		084	
pH:			9.5	
CI-:				mg/l
Total Hardness (Ca/Mg):	24000		200	
KCI:	24000		000	_
Tritium Analysis:				
Average Activity:	N/A N/A	N/A	N/A	_Bq/cc
Returns:				Bq/cc
% Filtrate:				- ·

Figure 3 RFT Sample Data Sheet

Well: Minerva-1		Date:	22nd M	arch 1993	_	
KB: <u>25.0</u> m	1942.5	_	mAHKB			
Formation Pressure: 2746.3	<u> </u>	psia				
Form Temp. OF						
	Lower	<u> </u>		<u>Upper</u>	•	
Chamber No:			_	RFS-1	157	
Chamber Size:	6		_	1		gal
Flowing Pressure:	Aprox 220		_	Aprox 250	0	psig
Time To Fill:	50)	-	10		minuites
Opening Pressure:	2050		_	2000		_psig
Gas Volume:	78		-	Preserv		ft^3
Total Liquids:	830		_	PVT Ar	nalysis	_cc
Oil/Condensate Volume:	20		-			∝
Filtrate/Water Volume:	810		<u>-</u>			_∝
Gas Oil Ratio:			-			_Scf/Stb
Condensate Gas Ratio:	1.6	<u> </u>	-			Stb/MMscf
Oil/Condensate Analysis						
Specific Gravity:		to measure				Air=1, Temp
Colour:		to measure	-			_
Fluorescence:	Bright I	3lue	_			
Heading Value RTU Jeft Gas Analysis:						
C1:	90.35		_			%
C2:	3.70		_			_%
C3:	3.11					%
iC4:	0.38					%
nC4:	0.62					%
C5+:	0.16					_%
CO2: H2S:	1.7					%
Specific Gravity	0.64					_ppm Air=1.0
,				-,		
Water/Filtrate Analysis:	1 -			Filtra		_
D	Lower	Upper		Drilled	Logged	
Rw:				0.084	! 	
pH:	6.8			9.5		
CI-:	42000	ļ				_mg/l
Total Hardness (Ca/Mg): KCl:	20000		-	05000		_
•	38000	<u> </u>	-	25000		_
Tritum Tritum Analysis:						
Average Activity:	N/A	N/A	_	N/A	N/A	_Bq/cc
Returns:			-			Bq/cc
% Filtrate:						

Well: Minerva-1

RFT Sample Data Sheet

Date:

23rd March 1993

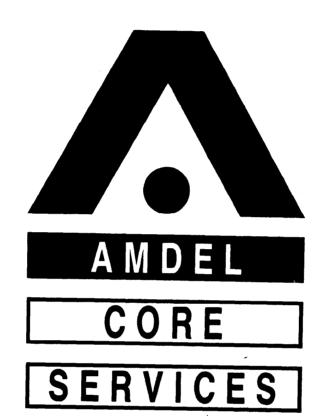
KB: <u>25.0</u> m Sample N <u>o: 3</u> Depth	n: <u>1649.8</u>				
Formation Pressure: 2694	.59	psia			
	Lower		<u>Upper</u>		
Chamber No:			RFS-AD-11	23	
Chamber Size:	6		1		gal
Flowing Pressure:	Approx 210	0	Approx 250	00	psig
Time To Fill:	25		6		minuites
Opening Pressure:	2100		2100		psig
Gas Volume:	77.7		Preserve	ed for	ft^3
Total Liquids:	7500		PVT An	alysis	cc
Oil/Condensate Volume:	film				cc
Filtrate/Water Volume:	••				cc
Gas Oil Ratio:					Scf/Stb
Condensate Gas Ratio:					Stb/MMscf
Oil/Condensate Analysis					
Specific Gravity:	Too small to) measure			Air=1, Temp
Colour:	Too small to				
Fluorescence:	Blue/White				
Gas Analysis:					
C1:	89.14				%
C2:	4.47				<u>%</u>
C3:	4.24				%
iC4:	0.65				%
nC4:	0.72				 %
C5+:	0.19				%
CO2:	0.6	······································	***		%
H2S:	0				ppm
Specific Gravity	0.65				Air=1.0
Water/Filtrate Analysis:			Filtra	ıte	
	Lower	Upper	Drilled	Logged	 .
Rw:	0.089		0.084		
pH:	6.4		9.5		
CI-:	45000				mg/l
Total Hardness (Ca/Mg):		· · · · · · · · · · · · · · · · · · ·			
KCI:	42000		25000		
Trituim Analysis:					
Average Activity:	N/A	N/A	N/A	N/A	Bq/cc
Returns:					Bq/cc
% Filtrate:					T
		-			

Table 5

MINERVA-1 OPEN HOLE RFT RESULTS

No.	Test	Dep	łh	Time	Initial Hydros	tatic Pressure	Formation	Pressure	Temperature	Final Hydros	tatic Press	Mobility	Permeability's	
	No.											Mosimy	r of the Editing	Commente
0 1161.7 1139.2 15.00 1933.2 1944.2 0 56.8 1831.0 1944.7									DegC			mD/cn	l mo	
1 1651.5 1624.6 15:37 2716.8 2738.4 0 13.0 79.8 2717.7 2738.6 Tipht 2738.6 1623.0 15:43 2718.6 2738.8							0						 	Good test on casing
2 1650.8 1623.9 15:43 2716.8 2733.8							0	13.0		2719.7	2736.8			
3 1948.9 1923.0 15:55 2716.1 2731.8 2878.9 2894.59 80.2 2715.8 2731.6 12.3 30 Good Test 1862.2 1635.2 16:23 2714.1 2757.5 2739.9 2755.80 81.0 2741.5 2757.3 1.3 5 Possible lost seel 1862.2 1635.2 16:23 2714.1 2757.5 2739.9 2755.80 81.0 2741.5 2757.3 1.3 5 Possible lost seel 170.0 170.									79.8	2717.8			1	
1682.8 1695.8 1695.5 2769.5 2778.4 2899.8 2705.5 2704.1 2778.2 2778.2 2778.2 1.3 5 Possible lost seel 1695.8 1695.2 1693.5 16:37 2742.1 2756.1 2740.5 2755.5 613.3 2741.8 2757.8 1.1 5 Possible lost seel 177 1696.8 1693.8 16:52 2742.5 2742.5 2756.6									80.2	2715.8	2731.6	12.3	30	
1662.2 1635.2 16:33 2741.6 2757.5 2739.9 2755.80 81.0 2741.5 2757.3 1.3 5 Possible lost seel						2752.4			80.7	2736.2	2752.1			
6 1666.5 1639.5 1637 2742.1 2756.1 2740.5 2755.55 61.3 2741.8 2757.8 1.1 5 Possible lost seel 7 1666.6 1639.8 165.2 2742.5 2758.6 61.4 2757.8 1.1 5 Possible lost seel 7 1666.6 1639.8 165.2 2742.5 2758.6 161.7 1784.7 171.7 2983.4 2999.9 2709.5 2725.09 67.1 2982.5 2999.0 9.2 20 Good Test 2759.5 275									81.0	2741.5				
1 1000.5 1839.8 1852 2742.5 2758.6							2740.5	2756.55	81.3	2741.8	2757.8			
6 1817.0 1788.7 17.17 2983.4 2996.9 2709.5 2726.09 87.1 2982.5 2999.0 9.2 20 Good Test 9 1829.5 1801.0 17:30 3002.2 3017.7 2711.5 2728.08 87.2 3002.0 3017.8 1565 1600 Good Test 10 1838.0 1809.5 17:43 3015.3 3031.7 2713.1 2728.28 87.5 3015.3 3031.3 68 150 Good Test 11 1845.0 1816.4 17:55 3028.4 3043.7 2714.3 2728.17 68.3 3026.2 3042.4 1040 1200 Good Test 12 1867.0 1838.2 18:20 3081.8 3079.5 2718.3 2733.38 58.8 3081.5 3077.9 878 1000 Good Test 13 1875.5 1846.6 18:44 3075.5 3080.0 2719.3 2733.38 59.8 3061.5 3077.9 878 1000 Good Test 14 1864.5 1855.5 19:00 3089.7 3106.9 2721.2 2738.13 91.1 3089.5 3105.8 105 240 Good Test 15 1890.6 1861.6 19:30 3089.8 3116.1 2722.3 2737.20 91.9 3099.7 3115.8 91.1 1000 1000 1000 16 1800.5 1877.3 19:45 3125.4 3143.4 2724.5 2739.30 20.8 3125.2 3141.5 426 970 Good Test 17 1919.0 1889.7 20:05 3145.5 3180.5 2726.7 2741.91 93.3 3145.5 3161.9 21 50 Good Test 18 1823.8 1894.5 20:35 3154.0 3169.4 2727.7 2742.19 94.1 3153.7 3169.7 114 2600 Good Test 19 1931.0 1901.6 20:50 3165.1 3161.5 2728.6 2743.36 94.0 3165.2 3161.7 116 260 Good Test 20 1935.7 1906.3 21:07 3176.3 3183.2 2730.0 2744.80 94.4 3175.9 3185.5 266 600 Good Test 21 1876.6 1906.2 21:17 3176.3 3183.2 2730.0 2744.80 94.4 3175.9 3185.5 266 600 Good Test 22 1895.5 1910.1 21:30 3196.0 2730.6 2736.6 2745.70 94.7 3179.2 3195.7 Good Test 23 1942.8 1994.2 21:30 3194.3 322.2 329.0 2744.80 94.4 3175.9 3195.7 Good Test 24 1949.2 1919.7 22:01 3185.8 3211.8 2730.0 2745.70 94.7 3179.2 3195.7 Good Test 25 1941.0 1911.5 23:00 316.3 3196.0 2730.6									81.4	2742.3	2759.2		† 	
V 159.9.5 1801.0 17:30 3002.2 3017.7 2711.5 2728.08 87.2 3002.0 3017.8 1565 1600 Good Test									87.1	2982.5	2999.0	9.2	20	
10										3002.0	3017.8	1565	1800	
11				17:43					87.5	3015.3	3031.3	66	150	
12 1867.0 1838.2 18:20 3061.8 3079.5 2716.3 2733.36 89.6 3061.5 3077.9 876 1000 Good Test 13 1875.5 1846.6 18:44 3075.5 3083.0 2719.3 2733.36 90.4 3075.4 3091.2 815 900 Good Test 14 1864.5 1855.5 19:00 3089.7 3106.9 2721.2 2736.13 91.1 3089.5 3105.8 105 240 Good Test 15 1890.6 1861.6 19:30 3099.8 3116.1 2722.3 2737.20 91.9 3099.7 3115.8 91 210 Good Test 16 1890.5 1877.3 19:45 3125.4 3143.4 2724.5 2739.30 92.8 3125.2 3141.5 426 970 Good Test 17 1919.0 1889.7 20:05 3145.5 3182.5 2726.7 2741.91 93.3 3145.5 3161.9 21 50 Good Test 18 1923.8 1894.5 20:35 3154.0 3169.4 2727.7 2742.19 94.1 3153.7 3166.7 114 260 Good Test 19 1931.0 1901.6 20:55 3165.1 3161.5 2728.6 2743.36 94.0 3165.2 3161.7 116 260 Good Test 20 1935.7 1906.3 21:00 3172.9 3189.6 2729.9 2744.70 94.5 3172.7 3189.5 226 600 Good Test 21 1937.6 1908.2 21:17 3176.3 3183.2 2730.0 2744.80 94.4 3175.9 3192.5 460 1000 Good Test 22 1939.5 1910.1 21:30 3179.3 3186.0 2730.6 2745.70 94.7 3179.2 3195.7 Good Test 23 1942.8 1913.3 21:40 3164.8 3202.2 2730.3 2746.01 95.0 3164.7 3201.2 3.4 10 Good Test 25 1941.9 1912.4 22:20 3164.2 3200.0 2731.2 2745.80 95.6 3185.0 3201.2 3.4 10 Good Test 26 1939.5 1910.1 21:30 3169.8 3211.8 2738.2 2738.2 2738.2 2738.2 3165.3 3195.9 321.5 557 1300 Good Test 27 1941.0 1912.4 22:20 3164.2 3200.0 2731.2 2745.80 95.6 3185.0 3201.2 3.4 10 Good Test 26 1939.5 1910.1 22:30 3164.2 3200.0 2731.2 2745.80 95.6 3185.0 3201.2 3.4 10 Good Test 27 1941.0 1911.5 23:00 3162.8 3199.0 2730.4 2745.22 95.4 3162.5 3196.9 20 455 Good Test 28 1951.5 1921.9 191.7 22:01 3165.8 3211.8 2738.2 2738.2 2758.60 95.6 3185.0 3200.2 286 610 Good Test 27 1941.0 1911.5 23:00 3162.8 3199.0 2730.4 2745.22 95.4 3162.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 191.7 22:01 3164.8 3210.6 2730.9 2745.92 95.5 3160.2 3196.9 20 455 Good Test 39 1952.2 1923.6 23:45 3212.0 3223.3 3239.9 2761.7 2775.91 96.4 3223.0 3228.8 500 1100 Good Test 30 1952.2 1923.6 23:45 3212.0 3223.3 3239.9 2761.7 2775.91 96.4 3223.0 3238.5 500 1100 Good Test 31 1942.5 1913.0 1901.6 012.5 3167.5 3182.2 2729.0 27									88.3	3026.2	3042.4	1040		
13 1875.5 1846.6 18:44 3075.5 3093.0 2719.2 2733.66 90.4 3075.4 3091.2 815 900 Good Test 14 1884.5 1855.5 19:00 3099.7 3109.9 2721.2 2733.61 3 91.1 3089.5 3105.8 105 240 Good Test 15 1890.6 1881.6 19:30 3099.8 3116.1 2722.3 2737.20 91.9 3099.7 3115.8 91 210 Good Test 16 1906.5 1877.3 19:45 3125.4 3143.4 2724.5 2739.30 92.8 3125.2 3141.5 428 970 Good Test 17 1919.0 1889.7 20:05 3145.5 3162.5 2726.7 2741.91 93.3 3145.5 3161.9 21 50 Good Test 18 1923.8 1894.5 20:35 3154.0 3169.4 2727.7 2742.19 94.1 3153.7 3169.7 114 280 Good Test 19 1931.0 1901.6 20:50 3165.1 3161.5 2728.6 2728.6 94.0 3165.2 3161.7 116 280 Good Test 20 1935.7 1906.3 21:00 3172.9 3169.6 2729.9 2744.70 94.5 3172.7 3189.5 266 600 Good Test 21 1837.8 1906.2 21:17 3176.3 3180.2 2730.0 2744.80 94.4 3175.9 3182.5 460 1000 Good Test 21 1937.8 1908.2 21:17 3176.3 3180.2 2730.0 2744.80 94.4 3175.9 3192.5 460 1000 Good Test 22 1839.5 1910.1 21:30 3179.3 3199.0 2730.8 2736.0 2745.70 94.7 3179.2 3195.7 Good Test 23 1942.8 1913.3 21:40 3184.9 3202.2 2730.3 2746.01 95.0 3164.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:01 3185.8 2211.8 2738.2 2738.2 2738.2 2738.2 3180.2 3199.0 320.2 288 610 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.8 3183.0 3200.2 288 610 Good Test 26 1939.5 1910.1 22:40 3180.2 3199.0 2730.8 2745.22 95.2 3180.2 3199.0 39.7 90 Good Test 27 1941.0 1911.5 23:30 3182.6 3199.0 2730.4 2745.22 95.4 3182.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 23:14 3199.4 32:10.7 2745.29 95.2 3180.2 3199.0 32:10.1 Good Test 30 1959.2 1									89.6	3061.5	3077.9	876		
14 1864.5 1955.5 19:00 3069.7 3106.9 2721.2 2736.13 91.1 3069.5 3105.8 105 240 Good Test 16 1900.5 1877.3 19:45 3125.4 3143.4 2724.5 2739.36 92.8 3125.2 3141.5 426 970 Good Test 17 1919.0 1889.7 20:05 3145.5 3162.5 2726.7 2741.91 93.3 3145.5 3161.9 21 50 Good Test 18 1923.8 1984.5 20:35 3154.0 3169.4 2727.7 2741.91 93.3 3145.5 3161.9 21 50 Good Test 19 1931.0 1901.6 20:50 3165.1 3161.5 2722.6 2743.36 94.0 3165.2 3181.7 116 260 Good Test 20 1935.7 1906.3 21:00 3172.9 3189.6 2729.9 2744.70 94.5 3172.7 3189.5 266 600 <									90.4	3075.4	3091.2	815		
18 1890.6 1861.6 19:30 3099.8 3116.1 2722.3 2737.20 91.9 3099.7 3115.8 91 210 Good Test 18 190.5 1877.3 191.45 3125.4 3143.4 2724.5 2739.36 92.6 3125.2 3141.5 426 970 Good Test 17 1919.0 1889.7 20:05 3145.5 3162.5 2786.7 2741.91 93.3 3145.5 3161.9 21 50 Good Test 18 1923.8 1894.5 20:35 3154.0 3169.4 2727.7 2742.19 94.1 3153.7 3169.7 1114 280 Good Test 19 1931.0 1901.6 20:50 3165.1 3161.5 2728.8 2743.36 94.0 3165.2 3181.7 116 280 Good Test 20 1935.7 1906.3 21:00 3172.9 3189.5 2729.9 2744.70 94.5 3172.7 3189.5 286 600 Good Test 21 1937.8 1908.2 21:17 3176.3 3189.2 2730.0 2744.80 94.4 3175.9 3182.5 480 1000 Good Test 22 1939.5 1910.1 21:30 3179.3 3190.0 2730.6 2745.70 94.7 3179.2 3195.7 Good Test 23 1942.8 1913.3 21:40 3184.9 3202.2 2730.3 2746.01 95.0 3184.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:01 3195.8 3211.8 2738.2 2752.48 95.8 3195.6 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.50 95.8 3185.0 3200.2 288 610 Good Test 2745.90 95.4 3199.5 3200.2 288 610 Good Test 2745.90 95.4 3199.5 3200.2 288 610 Good Test 3199.5 3200.2 2745.90 95.4 3199.3 3200.2 288 610 Good Test 3199.1 191.5 23:00 3180.2 3198.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 3195.1 191.5 23:00 3180.2 3198.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 3195.1 191.5 23:00 3180.8 3199.0 3200.2 288 610 Good Test 3195.5 3200.2 328.8 3200.2 328.8 3200.2 328.8 3200.2 328.8 3200.4 3219.1 2743.5 2758.30 95.6 3203.3 3218.8 270 610 Good Test 3199.9 195.1 190.1 22:10 3183.5 3202.4 3219.1 2745.50 95.4 3199.3 3218.7 3239.9 3283.5 3202.4 3219.1 2745.50 95.4 3199.3 3218.8 270 610 Good Test 3199.0 195.2 192.8 23:45 322.0 322.3 3233.3 3202.4 3219.1 2745.50 95.4 3199.3 3218.8 270 610 Good Test 3199.0 195.2 192.8 23:45 3210.0 3229.4 2751.9 2766.86 96.0 3233.4 3249.7 220 500 Good Test 3199.0 190.1 190.1 190.1 190.1 190.1 190.1 190.1 190.1 190										3089.5		105	240	
17											3115.8	91	210	
19 19 19 1889.7 20:05 3145.5 3182.5 2726.7 2741.91 93.3 3145.5 3181.9 21 50 Good Test 19 193.0 1901.6 20:50 3165.1 3181.5 2728.6 2743.36 94.0 3165.2 3181.7 116 260 Good Test 20 1935.7 1908.3 21:00 3172.9 3189.6 2729.9 2744.70 94.5 3172.7 3189.5 266 600 Good Test 21 1937.6 1908.2 21:17 3176.3 3193.2 2730.8 2744.80 94.4 3175.9 3189.5 266 600 Good Test 22 1939.5 1910.1 21:30 3179.3 3198.0 2730.8 2745.70 94.5 3179.2 3195.7 23 1942.8 1913.3 21:40 3164.9 3202.2 2730.3 2746.01 95.0 3164.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:20 3195.8 3211.8 2736.2 2752.48 95.6 3195.8 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.6 3185.0 3200.2 268 610 Good Test 26 1939.5 1910.1 22:40 3160.2 3196.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 27 1941.0 1911.5 23:00 3162.6 3199.0 2730.4 2745.92 95.2 3180.2 3196.9 20 45 Good Test 28 1951.5 1921.9 23:14 3199.4 3218.7 2741.0 2745.92 95.4 3182.5 3199.0 39.7 90 Good Test 29 1952.2 1923.6 23:33 3202.4 3219.1 2745.5 2755.90 95.6 3202.3 3216.1 Good Test 29 1952.2 1923.6 23:33 3202.4 3219.1 2745.5 2755.90 95.6 3202.3 3216.1 Good Test 30 1959.2 1929.8 23:45 3212.0 3229.4 2751.9 2765.06 96.0 3212.0 3228.8 0 Good Test 31 1966.2 1836.5 00:15 3223.7 3239.9 2761.7 2775.91 96.4 3223.6 3230.4 3249.7 220 500 Good Test 32 1972.2 1942.5 00:35 3265.5 3262.3 2797.2 2811.95 97.4 3265.5 3261.9 Good Test 33 1992.0 1962.1 00:55 3265.5 3362.3 2797.2 2811.95 97.4 3265.5 3261.9 Good Test 34 1831.0 1901.6 01:25 3167.5 3162.2 2729.0 2743.36 3165.4 3201.6 Sample Taken											3141.5	426	970	Good Test
19 1931.0 1901.6 20:50 3165.1 3181.5 2728.6 2743.36 94.0 3165.2 3181.7 116 260 Good Test 20 1935.7 1906.3 21:00 3172.9 3189.8 2729.9 2744.70 94.5 3172.7 3189.5 266 600 Good Test 21 1937.8 1908.2 21:17 3176.3 3193.2 2730.0 2744.80 94.4 3175.9 3192.5 460 1000 Good Test 22 1939.5 1910.1 21:30 3179.3 3196.0 2730.6 2745.70 94.7 3179.2 3185.7 Good Test 23 1942.8 1913.3 21:40 3184.9 3202.2 2730.3 2746.01 95.0 3184.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:01 3195.8 3211.8 2738.2 2752.48 95.8 3195.6 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.8 3183.0 3200.2 288 610 Good Test 26 1939.5 1910.1 22:40 3180.2 3196.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 27 1941.0 1911.5 23:00 3182.6 3199.0 2730.4 2745.22 95.4 3182.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.96 95.4 3182.5 3199.0 39.7 90 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2758.30 95.6 3202.3 3216.1 Good Test 30 1959.2 1929.6 23:45 3212.0 3224.4 2751.9 2766.66 96.0 3212.0 3228.8 0 0 Good Test 31 1966.2 1936.5 00:15 3223.7 3239.9 2761.7 2775.91 98.4 3223.6 3233.4 3249.7 220 500 Good Test 32 1972.2 1942.5 1933.5 30:33 3233.3 3249.9 2761.7 2775.91 98.4 3223.6 3233.4 3249.7 220 500 Good Test 31 1931.0 1901.6 01:25 3167.5 3182.2 2729.0 2745.28 3165.4 3201.6 Sample Taken 35 1942.5 1913.0 05:48 3167.5 3182.2 2729.0 2745.28 3165.4 3201.6 Sample Taken 36 1942.5 1913.0 05:48 3167.5 3182.2 2729.0 2745.28 3165.4 3201.6 Sample Taken											3161.9	21	50	
20 1935.7 1906.3 21:00 3172.9 3189.5 2729.9 2744.70 94.5 3172.7 3189.5 266 600 Good Test 21 1937.6 1906.2 21:17 3176.3 3189.2 2730.0 2744.80 94.4 3175.9 3182.5 460 1000 Good Test 22 1939.5 1910.1 21:30 3179.3 3198.0 2730.8 2745.70 94.7 3179.2 3185.7 Good Test 23 1942.8 1913.3 21:40 3184.9 3202.2 2730.3 2746.01 95.0 3184.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:01 3195.8 3211.8 2736.2 2752.48 95.6 3195.6 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.6 3183.0 3200.2 268 610 Good Test 26 1939.5 1910.1 22:40 3180.2 3198.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 27 1941.0 1911.5 23:00 3182.6 3199.0 2730.4 2745.22 95.4 3182.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.98 95.4 3182.5 3199.0 39.7 90 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2758.30 95.6 3202.3 3218.8 270 610 Good Test 30 1959.2 1923.6 23:35 3212.0 3229.4 2751.9 2766.66 96.0 3223.6 3233.4 3249.7 220 500 Good Test 31 1986.2 1936.5 00:15 3223.7 3239.9 2781.7 2775.91 96.4 3223.6 3233.4 3249.7 220 500 Good Test 32 1972.2 1942.5 00:33 323.3 3202.2 2789.9 2781.5 97.4 3265.5 3283.4 3249.7 220 500 Good Test 31 1992.0 1962.1 00:55 3265.5 3282.3 2797.2 2811.95 97.4 3265.5 3281.9 Good Test 32 1972.2 1942.5 00:33 3233.3 3249.9 2761.7 2775.91 96.4 3223.6 3233.4 3249.7 220 500 Good Test 33 1992.0 1962.1 00:55 3265.5 3282.3 2797.2 2811.95 97.4 3265.5 3281.9 Good Test 34 1931.0 1901.6 01:25 3167.5 3162.2 2729.0 2743.36 3165.4 3201.6 Sample Taken												114	260	Good Test
21 1937.6 1908.2 21:17 3176.3 3183.2 2730.0 2744.80 94.4 3175.9 3192.5 480 1000 Good Test 22 1939.5 1910.1 21:30 3179.3 3196.0 2730.8 2745.70 94.7 3179.2 3195.7 Good Test 23 1942.8 1913.3 21:40 3184.9 3202.2 2730.3 2748.01 95.0 3184.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:01 3195.8 3211.8 2752.48 95.6 3195.8 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.8 3183.0 3200.2 286 610 Good Test 26 1939.5 1910.1 22:40 3180.2 3196.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 27												116	260	Good Test
22 1939.5 1910.1 21:30 3179.3 3196.0 2730.6 2745.70 94.7 3179.2 3195.7 Good Test 23 1942.8 1913.3 21:40 3184.9 3202.2 2730.3 2746.01 95.0 3184.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:01 3195.8 3211.8 2738.2 2752.48 95.6 3195.6 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.6 3183.0 3200.2 286 610 Good Test 26 1939.5 1910.1 22:40 3180.2 3196.0 2730.4 2745.92 95.2 3180.2 3199.9 20 45 Good Test 27 1941.0 1911.5 23:00 3182.6 3199.0 2730.4 2745.22 95.4 3182.5 3199.0 39.7 90 Good Test											3189.5	266	600	
23 1942.8 1913.3 21:40 3184.9 3202.2 2730.3 2748.01 95.0 3184.7 3201.2 3.4 10 Good Test 24 1949.2 1919.7 22:01 3185.8 3211.8 2738.2 2752.48 95.6 3195.6 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.96 95.6 3183.0 3200.2 288 610 Good Test 26 1939.5 1910.1 22:20 3182.0 3198.3 2730.9 2745.92 95.2 3183.0 3200.2 288 610 Good Test 27 1941.0 1911.5 23:00 3182.6 3199.0 2730.4 2745.92 95.2 3180.2 3198.9 20 45 Good Test 28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.98 95.4 3199.3 3216.1 90 Good Test												460	1000	Good Test
24 1949.2 1919.7 22:01 3195.8 3211.8 2738.2 2752.48 95.6 3195.6 3211.5 557 1300 Good Test 25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.6 3183.0 3200.2 288 610 Good Test 26 1939.5 1910.1 22:20 3180.2 3196.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 27 1941.0 1911.5 23:00 3182.6 3199.0 2745.92 95.4 3182.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.98 95.4 3182.5 3199.0 39.7 90 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2758.30 95.6 3202.3 3218.8 270 610 Good Test	22													Good Test
25 1941.9 1912.4 22:20 3184.2 3200.0 2731.2 2745.86 95.6 3183.0 3200.2 288 610 Good Test 26 1939.5 1910.1 22:40 3180.2 3196.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 27 1941.0 1911.5 23:00 3182.6 3199.0 2730.4 2745.22 95.4 3182.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.98 95.4 3199.3 3216.1 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2755.98 95.4 3199.3 3216.1 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2755.98 95.6 3202.3 3218.8 270 610 Good Test 30 1959.2	23													Good Test
26 1939.5 1910.1 22:40 3180.2 3196.3 2730.9 2745.92 95.2 3180.2 3196.9 20 45 Good Test 27 1941.0 1911.5 23:00 3182.6 3199.0 2730.4 2745.22 95.4 3182.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.98 95.4 3199.3 3216.1 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2758.30 95.6 3202.3 3218.6 270 610 Good Test 30 1959.2 1929.6 23:45 3210.0 3229.4 2751.9 2766.66 96.0 3212.0 3228.8 0 Good Test 31 1968.2 1936.5 00:15 3223.7 3239.9 2761.7 2775.91 96.4 3223.6 3239.6 580 1100 Good Test 32														
27 1941.0 1911.5 23:00 3182.6 3199.0 2730.4 2745.22 95.4 3182.5 3199.0 39.7 90 Good Test 28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.98 95.4 3199.3 3216.1 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2756.30 95.6 3202.3 3218.8 270 610 Good Test 30 1959.2 1929.8 23:45 3212.0 3229.4 2751.9 2766.66 96.0 3212.0 3228.8 0 0 Good Test 31 1968.2 1836.5 00:15 3223.7 3239.9 2761.7 2775.91 96.4 3223.6 3239.6 580 1100 Good Test 32 1972.2 1942.5 00:33 3233.3 3249.9 2769.9 2784.55 96.6 3233.4 3249.7 220 500 Good Test	25													Good Test
28 1951.5 1921.9 23:14 3199.4 3216.7 2741.0 2755.98 95.4 3199.3 3216.1 Good Test 29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2758.30 95.6 3202.3 3218.8 270 610 Good Test 30 1959.2 1929.6 23:45 3212.0 3229.4 2751.9 2766.68 96.0 3212.0 3228.8 0 Good Test 31 1968.2 1938.5 00:15 3223.7 3239.9 2761.7 2775.91 96.4 3223.6 3239.6 580 1100 Good Test 32 1972.2 1942.5 00:33 3233.3 3249.9 2769.9 2764.55 96.6 3233.4 3249.7 220 500 Good Test 33 1992.0 1962.1 00:55 3265.5 3262.3 2797.2 2811.95 97.4 3265.5 3281.9 Good Test 34 1931.0 1901.6 01:25 3167.5 3162.2 2729.0 2743.36 3167.1 3163.9 Good Test 35 1942.5 1913.0 05:46 3167.6 3203.2 2731.9 2746.28 3185.4 3201.6 Sample Taken														
29 1953.2 1923.6 23:33 3202.4 3219.1 2743.5 2758.30 95.6 3202.3 3218.8 270 610 Good Test 30 1959.2 1929.6 23:45 3212.0 3229.4 2751.9 2766.66 96.0 3212.0 3228.8 0 Good Test 31 1966.2 1936.5 00:15 3223.7 3239.9 2761.7 2775.91 96.4 3223.6 3239.6 580 1100 Good Test 32 1972.2 1942.5 00:33 3233.3 3249.9 2764.55 96.6 3233.4 3249.7 220 500 Good Test 33 1992.0 1962.1 00:55 3265.5 3262.3 2797.2 2811.95 97.4 3265.5 3281.9 Good Test 34 1931.0 1901.6 01:25 3167.5 3182.2 2729.0 2743.36 3167.1 3183.9 Sample Taken 35 1942.5 1913.0 05:46 3167.												39.7	90	
30 1959.2 1929.6 23:45 3212.0 3229.4 2751.9 2766.66 96.0 3212.0 3228.8 0 Good Test 31 1968.2 1936.5 00:15 3223.7 3239.9 2761.7 2775.91 96.4 3223.6 3239.6 580 1100 Good Test 32 1972.2 1942.5 00:33 3233.3 3249.9 2769.9 2784.55 96.6 3233.4 3249.7 220 500 Good Test 33 1992.0 1962.1 00:55 3265.5 3262.3 2797.2 2811.95 97.4 3265.5 3281.9 Good Test 34 1931.0 1901.6 01:25 3167.5 3182.2 2729.0 2743.36 3167.1 3183.9 Good Test 35 1942.5 1913.0 05:46 3187.6 3203.2 2731.9 2746.28 3185.4 3201.6 Sample Taken														
31 1966.2 1936.5 00:15 3223.7 3239.9 2761.7 2775.91 96.4 3223.6 3223.6 580 1100 Good Test 32 1972.2 1942.5 00:33 3233.3 3249.9 2769.9 2784.55 96.6 3233.4 3249.7 220 500 Good Test 33 1992.0 1962.1 00:55 3265.5 3282.3 2797.2 2811.95 97.4 3265.5 3261.9 Good Test 34 1931.0 1901.6 01:25 3167.5 3162.2 2729.0 2743.36 3167.1 3183.9 Sample Taken 35 1942.5 1913.0 05:46 3167.6 3203.2 2731.9 2746.28 3185.4 3201.6 Sample Taken												270		
32 1972.2 1942.5 00:33 3233.3 3249.9 2769.9 2769.9 2764.55 96.6 3233.4 3249.7 220 500 Good Test 33 1992.0 1962.1 00:55 3265.5 3262.3 2797.2 2811.95 97.4 3265.5 3281.9 Good Test 34 1931.0 1901.6 01:25 3167.5 3162.2 2729.0 2743.36 3167.1 3183.9 Sample Taken 35 1942.5 1913.0 05:46 3167.6 3203.2 2731.9 2746.28 3185.4 3201.6 Sample Taken 36 1840.9 1823.0 1823.9 1823.9 Sample Taken														
33 1992.0 1962.1 00:55 3265.5 3262.3 2797.2 2811.95 97.4 3265.5 3261.9 Good Test 34 1931.0 1901.6 01:25 3167.5 3162.2 2729.0 2743.36 3167.1 3163.9 Sample Taken 35 1942.5 1913.0 05:46 3167.6 3203.2 2731.9 2746.28 3165.4 3201.6 Sample Taken														
34 1931.0 1901.6 01:25 3167.5 3182.2 2729.0 2743.36 3167.1 3183.9 Sample Taken 35 1942.5 1913.0 05:46 3187.6 3203.2 2731.9 2748.28 3185.4 3201.6 Sample Taken 36 1849.6 1823.0 1927.0 2731.9 2748.28 3185.4 3201.6 Sample Taken												220	500	
35 1942.5 1913.0 05:46 3167.6 3203.2 2731.9 2746.28 3165.4 3201.6 Sample Taken									97.4					
26 1849 1822 0 1827 0749 0759 0 000 0 000 0 000 0 000 0 000 0 000 0 0														
39 1049.0 1023.0 10:37 2/16:3 2/33.9 2679.2 2694.70 2716.6 2732.6 Sample Taken														Sample Taken
	1 30	1049.8	1623.0	10:37	2/18.3	2/33.9	2679.2	2694.70		2716.8	2732.6			Sample Taken
	L	L	لـــــــــــــــــــــــــــــــــــــ											

Filtrate:


Temp 194 Deg F % NaCl 25000 Pressure 2700 psia Viscosity 0.34

*N.B. Permeabilities rounded. K(h)/k(v)=1 Filtrate Viscosity = 0.34 cP k(rw)=0.15 for k<1000 mD k(rw)=0.30 for k>1000 mD 5.2 DST

6. APPENDICES

Appendix 1 Amdel Core Analysis Reports

6 May 1993

BHP Petroleum Pty Ltd GPO Box 1911R MELBOURNE VIC 3001

Attention: Peter Mills

REPORT: HH/2313

CLIENT REFERENCE:

PM 93035

MATERIAL:

Natural Gas and Water

LOCALITY:

Minerva-1 Production Test

WORK REQUIRED:

Gas Quality Testing and Water Analysis

Please direct technical enquiries regarding this work to the signatory below under whose supervision the work was carried out.

Ramin Water

BRIAN L WATSON Laboratory Supervisor on behalf of Amdel Core Services Pty Ltd

Amdel Core Services Pty Limited shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

MINERVA-1 GAS QUALITY TESTING

TABLE OF CONTENTS

1.	SUMMARY
2.	INTRODUCTION
3.	OXYGEN
4.	HELIUM
5.	ARGON
6.	RADIOACTIVE MATERIAL
7.	HYDROGEN SULPHIDE
8.	CARBONYL SULPHIDE
9.	MERCAPTANS
10.	TOTAL SULPHUR
11.	MERCURY
12.	TRACE METALS
13.	WATER ANALYSIS
14.	DISCUSSION and CONCLUSIONS

1. SUMMARY

Quality testing was performed on gas from the wildcat well MINERVA-1 during a 24 hour production test on the 11th and 12th of April 1993. The methods used and results obtained are detailed in this report with a brief summary of results below. Water samples were also collected during the test and analysed for the parameters as reported.

1.1 OXYGEN

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2311 h Cylinder #176

Oxygen: <0.01 % Mol Vol

1.2 HELIUM

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2311 h Cylinder #176

Helium: 0.016 % Mol Vol

1.3 ARGON

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2311 h Cylinder #176

Argon: <0.01 % Mol Vol

1.4 RADIOACTIVE MATERIAL

1.4.1 Date: 11/04/93, Time: 1430 h, Flow: 17 MMCFD

Radioactivity: <8 Becquerels/m³

1.4.2 Date: 11/04/93, Time: 2200 h, Flow: 28.8 MMCFD

Radioactivity: 15 Becquerels/m³

1.5 HYDROGEN SULPHIDE

1.5.1 5.5 MMCFD, 0419-1027 h 11/4/93

Hydrogen Sulphide: 0.4 mg/m³ (ppm w/v) 0.3 mL/m³ (ppm v/v) 1.5 HYDROGEN SULPHIDE (cont.)

1.5.2 17 MMCFD, 1126-1519 h 11/4/93

 0.5 mg/m^3 Hydrogen Sulphide: (ppm w/v)

- 0.4 mL/m^3 (v/v mag)
- 1.5.3 23 MMCFD, 1611-2108 h 11/4/93

Hydrogen Sulphide: 0.5 mg/m_3^3 0.4 mL/m_3^3 (ppm w/v)

 $(ppm \ v/v)$

1.5.4 28.8 MMCFD, 2232-0030 h + 0150-0330 h 11-12/4/93

Hydrogen Sulphide: 0.4 mg/m^{3} (ppm w/v)

 0.3 mL/m^3 (ppm v/v)

1.6 CARBONYL SULPHIDE

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD

Date: 11/04/93, Time: 2258 h Cylinder #07

Carbonyl Sulphide: <0.1 ppm by vol

- 1.7 **MERCAPTANS**
- 1.7.1 5.5 MMCFD, 0419-1027 h 11/4/93

 $< 0.1 \text{ mg/m}^3$ Mercaptans: (ppm w/v)

 $< 0.1 \text{ mL/m}^3$ $(ppm \ v/v)$

1.7.2 17 MMCFD, 1126-1519 h 11/4/93

 $< 0.1 \text{ mg/m}^{3}$ Mercaptans: (ppm w/v)

 $< 0.1 \text{ mL/m}^3$ $(ppm \ v/v)$

1.7.3 23 MMCFD, 1611-2108 h 11/4/93

 $< 0.1 \text{ mg/m}^3 \text{ (ppm w/v)}$ Mercaptans:

< 0.1 mL/m³ (ppm v/v)

1.7.4 28.8 MMCFD, 2232-0030 h + 0150-0330 h 11-12/4/93

 $< 0.1 \text{ mg/m}^3 < 0.1 \text{ mL/m}^3$ Mercaptans: (ppm w/v)

(ppm v/v)

1.8 TOTAL SULPHUR

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2256 h Cylinder #03

Total Sulphur: 0.5 mg/m^3 (ppm w/v)

1.9 **MERCURY**

1.9.1 Method A

Date: 11/04/93, Time: 1739-2108 h Flow: 23 MMCFD

Mercury: $0.8 \mu g/m^3$ ($0.8 q/m^3 x 10^6$)

1.9.2 Method B

Date: 11/04/93, Time: 2142-2234 h Flow: 28.8 MMCFD

Mercury: $> 0.1 \mu g/m^3$ NB: sample tubes overloaded

1.10 TRACE METALS

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2302 h Cylinder #04

Trace Metals: Ca, Mg, Na, K $< 0.001 \text{ mg/m}^3$

Cr, As, Sn, Mo, Cd, Pb, Ba, Co,

V, Ni, Y, Sr, Bi, Se, Ag, Cu mq/m^3 < 0.01

Zn mq/m^3 < 0.05

Fe, SiO₂, P, Mn mq/m^3 < 0.1

1.11 WATER ANALYSIS

See results in body of report, 13.

2. INTRODUCTION

Amdel Core Services Pty Ltd was requested to provide on-site testing, sampling and laboratory services to monitor the gas quality during production testing of the MINERVA-1 wildcat well.

The sampling and on-site testing was performed using a manifold located immediately downstream of the gas outlet from the HRS test separator.

The hydrogen sulphide determination was performed on-site in the mudlogging unit.

The radioactive material determination was performed at Australian Radiation Laboratories in Melbourne.

The carbonyl sulphide determination was performed by SAGASCO in Adelaide.

All remaining tests were performed in the Frewville laboratories of $\mbox{\sc Amdel}$ Core Services Pty Ltd.

At the conclusion of the production test water samples were taken from the separator. These were analysed by Amdel Laboratories in Thebarton.

OXYGEN

3.1 METHOD

A sample of the gas is collected in a stainless steel cylinder and analysed by gas chromatography using a molecular sieve column and thermal conductivity detector.

3.2 RESULT

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2311 h Cylinder #176

Oxygen: <0.01 % Mol Vol

4. HELIUM

4.1 METHOD

A sample of the gas is collected in a stainless steel cylinder and analysed by gas chromatography using a molecular sieve column with argon carrier gas and a thermal conductivity detector.

4.2 RESULT

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2311 h Cylinder #176

Helium: 0.016 % Mol Vol

5. ARGON

5.1 METHOD

A sample of the gas is collected in a stainless steel cylinder and analysed by gas chromatography using a molecular sieve column at subambient conditions and a thermal conductivity detector.

5.2 RESULT

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2311 h Cylinder #176

Argon: <0.01 % Mol Vol

6. RADIOACTIVE MATERIAL

6.1 METHOD

A measured volume of gas is passed through a copper tube containing activated charcoal. The radioactivity from adsorbed radon and its decay products is then measured by Australian Radiation Laboratories and this is then back-calculated to determine the activity of the original sample.

6.2 RESULTS

6.2.1 Date: 11/04/93, Time: 1430 h, Flow: 17 MMCFD

Radioactivity: < 8 Becquerels/m³

6.2.2 Date: 11/04/93, Time: 2200 h, Flow: 28.8 MMCFD

Radioactivity: 15 Becquerels/m³

7. HYDROGEN SULPHIDE

7.1 METHOD

Hydrogen sulphide is absorbed into cadmium sulphate solution on site by bubbling a measured volume of gas through an absorber train. The $\rm H_2S$ content is then determined by an Iodometric Titration of the solution. The method follows ASTM D2385.

7.2. RESULTS

7.2.1 5.5 MMCFD, 0419-1027 h 11/4/93

Hydrogen Sulphide: 0.4 mg/m^3 (ppm w/v) (101.3 kPag @ 15°C) 0.3 mL/m^3 (ppm v/v) (101.3 kPag @ 20°C)

7.2.2 17 MMCFD, 1126-1519 h 11/4/93

Hydrogen Sulphide: 0.5 mg/m^3 (ppm w/v) (101.3 kPag @ 15°C) 0.4 mL/m^3 (ppm v/v) (101.3 kPag @ 20°C)

7.2.3 23 MMCFD, 1611-2108 h 11/4/93

Hydrogen Sulphide: 0.5 mg/m^3 (ppm w/v) (101.3 kPag @ 15°C) 0.4 mL/m^3 (ppm v/v) (101.3 kPag @ 20°C)

7.2.4 28.8 MMCFD, 2232-0030 h + 0150-0330 h 11-12/4/93

Hydrogen Sulphide: 0.4 mg/m^3 (ppm w/v) (101.3 kPag @ 15°C) 0.3 mL/m^3 (ppm v/v) (101.3 kPag @ 20°C)

8. CARBONYL SULPHIDE

8.1 METHOD

A sample of the gas is collected in a teflon lined stainless steel cylinder and analysed by gas chromatography in the laboratory.

8.2 RESULT

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2258 h Cylinder #07

Carbonyl Sulphide: <0.1 ppm by vol

9. MERCAPTANS

9.1 METHOD

Mercaptans are absorbed into alkaline cadmium sulphate solution on site by bubbling a measured volume of gas through an absorber train. The mercaptan content is then determined by an Iodometric Titration of the solution. The method follows ASTM D2385.

9.2. RESULTS

9.2.1 5.5 MMCFD, 0419-1027 h 11/4/93

Mercaptans: $\frac{< 0.1 \text{ mg/m}^3}{< 0.1 \text{ mL/m}^3}$ (ppm w/v) (101.3 kPag @ 15°C) (ppm v/v) (101.3 kPag @ 20°C)

9.2.2 17 MMCFD, 1126-1519 h 11/4/93

Mercaptans: $\frac{< 0.1 \text{ mg/m}^3}{< 0.1 \text{ mL/m}^3}$ (ppm w/v) (101.3 kPag @ 15°C) (ppm v/v) (101.3 kPag @ 20°C)

9.2.3 23 MMCFD, 1611-2108 h 11/4/93

Mercaptans: $\frac{< 0.1 \text{ mg/m}^3}{< 0.1 \text{ mL/m}^3}$ (ppm w/v) (101.3 kPag @ 15°C) (ppm v/v) (101.3 kPag @ 20°C)

9.2.4 28.8 MMCFD, 2232 0030 h + 0150-0330 h 11-12/4/93

Mercaptans: $\frac{< 0.1 \text{ mg/m}^3}{< 0.1 \text{ mL/m}^3}$ (ppm w/v) (101.3 kPag @ 15°C) (ppm v/v) (101.3 kPag @ 20°C)

10. TOTAL SULPHUR

10.1 METHOD

A sample of gas is collected in a teflon-lined stainless steel cylinder and transported to the laboratory.

The sample is combusted and the waste gases absorbed into solution where oxides of sulphur are oxidised to sulphates as per ASTM D1072. The solution is then analysed by ion chromatography for sulphate concentration.

10.2 RESULT

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2256 h Cylinder #03

Total Sulphur: 0.5 mg/m3 (ppm w/v)

11. MERCURY

11.1A METHOD

A measured volume of gas is bubbled through acidified 0.5% potassium permanganate solution. The potassium permanganate is decolourised with 20% hydroxylamine hydrochloride and the mercury is evolved by reduction with stannous chloride and measured by cold vapour AAS (Atomic Absorption Spectrometry).

11.2A RESULT

Date: 11/04/93, Time: 1739-2108 h Flow: 23 MMCFD

Mercury: $0.8 \, \mu \text{g/m}^3$ ($0.8 \, \text{g/m}^3 \times 10^6$)

11.1B METHOD

The mercury is trapped onto silver lint in a silica tube as the gas is passed through the tube within a stainless steel, high-pressure vessel. In the laboratory the mercury is released by heat and passed through a tube containing gold thread where it is trapped while other materials pass through. The mercury vapour is then released from the gold by heating and the concentration of mercury determined by absorption at 253.7 nm in the beam of a flameless atomic absorption spectrophotometer. This conforms to Standard ISO/DIS 6978 Method B.

11.2B RESULT

Date: 11/04/93, Time: 2142-2234 h Flow: 28.8 MMCFD

Mercury: $> 0.1 \mu g/m^3$ NB: sample tubes overloaded

12. TRACE METALS

12.1 **METHOD**

A sample of gas is collected in a teflon-lined stainless steel cylinder and transported to the laboratory. The gas is bubbled through 1N nitric acid. The acid solution is then analysed by inductively coupled plasma (ICP) spectroscopy for the trace

elements listed below.

12.2 RESULT

Pressure: 4816 kPag @ 26.9°C, Flow: 28.8 MMCFD Date: 11/04/93, Time: 2302 h Cylinder #04

Trace Metals:	Calcium Magnesium Sodium Potassium	< 0.001 < 0.001 < 0.001 < 0.001	mg/m ³
	Chromium	< 0.01	mg/m^3
	Arsenic	< 0.01	11
	Tin	< 0.01	11
	Molybdenum	< 0.01	11
	Cadmium	< 0.01	11
	Lead	< 0.01	11
	Barium	< 0.01	11
	Cobalt	< 0.01	II
	Vanadium	< 0.01	11
	Nickel	< 0.01	11
	Yttrium	< 0.01	11
	Strontium	< 0.01	II
	Bismuth	< 0.01	H
	Selenium	< 0.01	11
	Silver	< 0.01	п
	Copper	< 0.01	11
	Zinc	< 0.05	mg/m^3
	Iron	< 0.1	mg/m ³
	Silica	< 0.1	""9/ ""
	Phosphorous	< 0.1	11
	Manganese	< 0.1	II
	Hanganese	· U.1	

13. WATER ANALYSIS

13.1 METHOD

Water samples were allowed to degas then split into three subsamples; one was left natural, one preserved at pH 2 with nitric acid and one preserved at pH 9 with sodium hydroxide.

The natural sample was used for the standard water analysis, pH, anions by ion chromatography and total dissolved solids at 180°C. The filtered natural sample was used for specific gravity and resistivity measurements.

The pH 2 sample was used for standard cations plus iron, strontium and barium by ICP.

The pH 9 sample was used for the sulphide determination.

13.2 RESULTS

Two sets of water samples were collected from the separator sight glass drain at 0220 and 0240 hours 12/4/93 near the end of the 24 hour production test.

The water results are presented on the following three pages.

Water Analysis Report Job No. 3AD1425

Method WAT 2 Page W1

Sample ID. Minerva 0220 Hrs.

; !	Chemical	Compositi	on		Derived I)ata	; ; ;
1 1 1		mg/L	me/L	t 1 1			mg/L
Cations Calcium Magnesium Sodium	(Ca) (Mg) (Na) (K)	72.0	1.65 5.93 33.54 450.43	Total Dissolved A. Based on E.C B. Calculated (}.		36712 34282
Anions Hydroxide Carbonate Bi-Carbonate Sulphate	(OH) (CO3)	46.3 220.0	0.76 4.58	Total Hardness Carbonate Hardn Non-Carbonate H Total Alkalinit (Each as CaCO3)	ardness y		379 379 407
Chloride	(Cl)	15515	437.04	1 1		Totals ar	nd Balance
Nitrate	(NO3)	36.0	0.58	Cations (me/L) Anions (me/L)	491.5 443.0		48.58 934.51
Other Analyse	es			ION BALANCE	(Diff*100		5.20%
1 f t				Sodium / Total	Cation Rat	cio	6.8%
				Remarks			
				1 1 1 1 1 1			1 1 1 1 1
Reaction - pl		5°C)	6.2 46200	, 			
Resistivity			0.22	Note:			per litre;

Name: Paul Marty Address: AMDEL Core Services

P.O. Box 338 Torrensville. SA.

Date Collected 12-04-93 Date Received 20-04-93 Date Received Collected by

Client

Water Analysis Report Job No. 3AD1425

Method WAT 2 Page W2

Sample ID. Minerva 0240 Hrs.

: !	Chemical Com	positi	======= on 	Derived Data ;
		mg/L	me/L	mg/L
Cations Calcium Magnesium Sodium			0.55 1.56 15.70 177.95	Total Dissolved Solids A. Based on E.C. 13975 B. Calculated (HCO3=CO3) 14140
Anions Hydroxide Carbonate	(OH) (CO3)			Total Hardness 106 Carbonate Hardness 106 Non-Carbonate Hardness 525
Bi-Carbonate Sulphate		59.8 120.0	0.98 2.50	(Each as CaCO3)
Chloride	(C1)	6626	186.65	Totals and Balance
Nitrate	(NO3)	15.0	0.24	Cations (me/L) 195.8 Diff= 5.40 Anions (me/L) 190.4 Sum = 386.14
Other Analys	ag.			ION BALANCE (Diff*100/Sum) = 1.40%
Owier Miarys	25			Sodium / Total Cation Ratio 8.0%
 				Remarks
Reaction - pl			6.4 21000	
	5/cm at 25°C) Dhm.M at 25°C		0.48	Note: mg/L = Milligrams per litre; me/L = MilliEqivs.per litre;

Name:

Paul Marty

Address:

AMDEL Core Services

P.O. Box 338 Torrensville. SA.

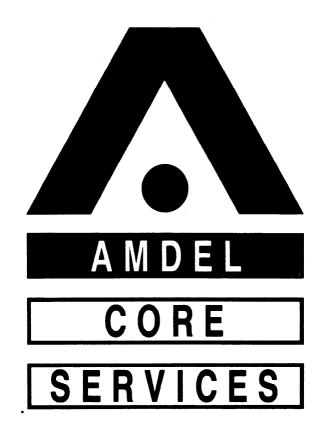
Date Collected Date Received 12-04-93

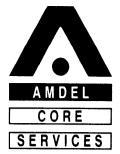
Collected by

20-04-93 Client

Job No.3AD1425 Page W3

Sample	0220	0240	Method No.
TDS (180 Deg.C.)	36460	14645	WAT 2G
Specific Gravity (g/mL)	1.017	1.014	WAT 26
Sulphide (mg/L)	3.62	8.44	WAT 20
Iron as Fe (mg/L)	500	436	WAT 3E
Strontium as Sr (mg/L)	1.17	0.50	WAT 3M
Barium as Ba (mg/L)	2.49	2.53	WAT 3E


14. DISCUSSION and CONCLUSIONS


The results of the above tests on the Minerva-1 gas as sampled on the 11th and 12th April 1993 show a relatively high mercury content with the remainder of the components tested being low and within typically acceptable ranges. The water samples appear to be contaminated with KCl brine.

The concentration of both mercury and hydrogen sulphide may increase over a longer period of production as the reactive surfaces of the tubing and production train become saturated with these compounds.

OTW/1/MINERVA-1/004

(ENCLOSURE)

20 May 1993

BHP Petroleum Pty Ltd GPO Box 1911R MELBOURNE VIC 3001

Attention: Jim Phipps

EHP PETROLEUM PTY, LTD, DO NOT RETAIN IN PERSONAL FILES
FILE COPY
PLEASE RETURN TO EXPLORATION INFORMATION COUTRE

REPORT: RG-205

CLIENT REFERENCE:

S/O No. 1632

MATERIAL:

Core - Minerva No. 1

LOCALITY:

Victoria

WORK REQUIRED:

Conventional Core Analysis

Please direct technical enquiries regarding this work to the signatory below under whose supervision the work was carried out.

CHRIS GAUGHAN

Adelaide Office:

on behalf of Amdel Core Services Pty Ltd

Amdel Core Services Pty Limited shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

BHP Petroleum Pty Limited 120 Collins Street MELBOURNE VIC 3000

Attention:

Jim Phipps

FINAL DATA REPORT - CONVENTIONAL CORE ANALYSIS

REPORT: RG202 - Minerva No.1

LOGISTICS

Three cores were collected from Portland, Victoria on May 20, 1993. Core intervals are as follows: Core 1, 1821.00 - 1824.04m (3.04m), core 2, 1828.00 - 1841.27m (13.27m) and core 3, 1842.50 - 1846.87m (4.37m).

INTRODUCTION

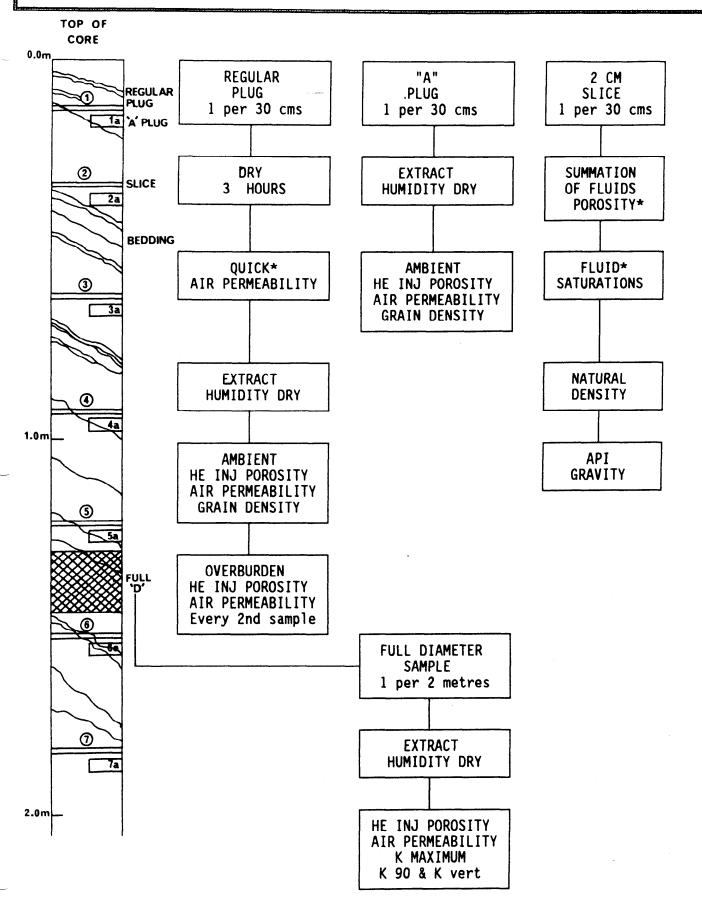
The following report includes tabular data of permeability to air, helium injection porosity, summation of fluids porosity, residual fluid saturations and density determinations. Data presented graphically includes a continuous core gamma log, a core log plot and a porosity versus permeability to air plot.

STUDY AIMS

The analyses were performed with the following aims:

- 1. To provide depth correlation through provision of a continuous core gamma log over the cored interval.
- 2. To provide quick (16 hour turnaround) air permeability, saturation, (So & Sw) and summation of fluids porosity data.
- 3. To provide 72 hour air permeability, helium injection porosity and density data.
- 4. To determine the effect of overburden stress on air permeability and helium injection porosity data.
- 5. To examine the effect of heterogeneities and 'scale' on measured air permeability and helium injection porosity data through determination of these properties on whole core sections. To identify and quantify vertical permeability barriers.
- 6. To confirm whether permeability is directionally controlled.
- 7. To provide information on the strength of the formation through Brinell Hardness measurements.
- 8. To provide quick API gravity measurements on retorted oil.

SAMPLING


The core was sampled as follows:

- A. 2cm slices were taken across the core at 30cm intervals for fluid saturation and summation of fluids porosity measurements.
- B. 1.5" diameter core plugs were drilled from the whole core at 30cm intervals using KCl brine as lubricant. The core was oriented such that the plugs were drilled parallel to the bedding. These plugs are designated as the 'regular' plugs.
- C. Further 1.5" diameter plugs were taken from the same intervals but with the core oriented such that the plugs were drilled perpendicular to the 'regular' plug. These plugs are designated as the 'A' plugs.
- D. All 'regular' and 'A' plugs were trimmed and offcuts retained. The offcuts were dispatched immediately to BHP Petroleum for viewing and possible selection of petrology/palaeontology samples.

This sampling procedure is illustrated along with an analytical flow chart on the following page for easy reference.

The core was sampled and analysed as follows:

ANALYTICAL FLOW CHART

* Data reported within 16 hours of receipt of core

1. CONTINUOUS CORE GAMMA

The core was laid out according to depth markings, and a continuous core gamma trace produced by passing the core beneath a gamma radiation detector. The detector is protected from extraneous radiation by a lead tunnel. The detector signal is amplified and digitised—to produce a gamma trace for comparison with the downhole log.

2. FLUID SATURATIONS AND SUMMATION OF FLUIDS POROSITY

The 2cm slices taken at 30cm intervals were used for these analyses. Approximately 100 gms of material was taken from the centre of the slice, crushed and placed in a thermostatically controlled high temperature retort. The retort is programmed to heat initially to 180°C. At this temperature pore water is vaporised, condensed and recovered in receiving tubes. When water production ceases at 180°C the retort temperature is increased to 650°C. At this temperature residual hydrocarbons and remaining bound water are recovered. Using this procedure the volumes of oil and water in a known weight of core material can be determined.

To determine the gas volume, approximately 40g of fresh core is taken from the same slice, weighed and placed in a mercury displacement pump to determine bulk volume. Mercury is then injected into the sample at 750psig (5200 kpa). The amount of mercury injected corresponds to the gas volume of the sample. From these measurements the summation of fluids porosity is calculated and oil and water saturations expressed as a percentage of the porosity.

3. NATURAL DENSITY

The natural density of the sample is obtained by dividing the weight of the fresh sample used for the gas volume measurement by it's bulk volume.

4. SAMPLE EXTRACTION AND DRYING

After sampling as described in section 2B the 'regular' set of plugs were dried in an oven at 80°C for 3 hours. After the quick permeability measurement the 'regular' and 'A' plugs were placed in a soxhlet extractor to remove hydrocarbons. When the toluene in the Soxhlet is no longer discoloured the core plugs were removed and checked under ultraviolet light to ensure all hydrocarbons had been removed.

After cleaning, all plugs were dried in a controlled humidity environment at 60°C and 40% relative humidity. The plugs were stored in an airtight plastic container and allowed to cool to room temperature before analysis.

5. AIR PERMEABILITY

Air permeability was determined on the 'regular' and 'A' set plugs. The plugs are placed in a Hassler cell at a confining pressure of 250 psig (1720 kpa). This pressure is used to prevent bypassing of air around the sample when the measurement is made. During the measurement a known air pressure is applied to the upstream face of the sample, creating a flow of air through the sample. Permeability for each sample is then calculated using Darcy's Law through knowledge of the upstream pressure and flow rate during the test, the viscosity of air and the plug dimensions.

6. HELIUM INJECTION POROSITY

The helium injection porosity of the extracted and dried 'regular' and 'A' set core plugs was determined as follows. The plugs were sealed in a matrix cup. A known volume of helium was held at 100psi reference pressure and then introduced to the cup. From the resultant pressure change the unknown grain volume was calculated using Boyles law, i.e P1V1 = P2V2.

The bulk volume of the plugs was determined by mercury immersion. The difference between the grain volume and the bulk volume is the pore volume and from this the porosity is calculated as the volume percentage of pores with respect to the bulk volume. The porosity calculated using this technique is an effective porosity.

7. APPARENT GRAIN DENSITY

The apparent grain density is determined by dividing the weight of the plug by the grain volume determined from the helium injection porosity measurement.

8. POROSITY AND PERMEABILITY AT OVERBURDEN PRESSURE

To determine the porosity and permeability of the core plug at overburden pressure, the sample is placed in a heavy duty Hassler sleeve. The assembly is loaded into a thick walled hydrostatic cell capable of withstanding the simulated reservoir overburden stress. After loading, helium injection porosity and air permeability was determined at simulated reservoir load conditions. The overburden stress values used in these analyses were supplied by BHP Petroleum.

9. BRINELL HARDNESS

Where possible, five readings (in a crossed pattern) are taken at each sample point. A pre-load of 10 kgs and a constant load of 20 kgs are applied at the load point using the 3.175 mm indentor; the depth of indentation is measured and this is used to obtain the Brinell Hardness. An average is given for the five points at each sample depth. Using this technique, the minimum attainable Brinell Hardness reading is 4.

10. ROLLING AND SPECIFIED AVERAGES

These averages of both Helium injection porosity and permeability are obtained by using a "rolling" three (3) point method. In the case of porosity a weighted arithmetic average is used:

$$\phi \text{ av}_{(i+1)} = [\phi_i + 2\phi_{(i+1)} + \phi_{(i+2)}]/4$$

In the case of permeability a weighted geometric average is used:

$$K \text{ av}_{(i+1)} = 10 \left[(\log_{10} K_i + 2 \log_{10} K_{(i+1)} + \log_{10} K_{(i+2)}) / 4 \right]$$

At any sample point, excluding the first and last, a rolling average is obtained by using the value at the specified sample point, the value before it and the value of the sample point after it. In the cases of the first and last sample points, only 2 sample points are used.

Using porosity as an example, the average of the first data point is obtained from the formula:

$$\phi \ av_{(i)} = [2\phi_i + \phi_{(i+1)}] /3$$

The average at the final data point is obtained by:

$$\phi$$
 av $_{(f)} = [\phi_{(f-1)} + 2\phi_{(f)}] /3$

The same method is used for permeability averages. At any break in the data the rolling averages are "re-started".

Specified averages are normal arithmetic averages which can be taken over any specified section of the core, as well as over the whole core.

On completion of the analysis the core was slabbed into one half, and two quarter slabs using water as the lubricating medium. One quarter was packed and shipped to the BMR, Canberra. The remaining quarter was packed and shipped to the Victorian Department of Mines and Energy. The one half slab was photographed under both white light and ultra-violet light at a 5m format and under white light at a 30cm(1:1) format. This core was then packed and shipped to the BHPP core store in Melbourne.

We have enjoyed working with BHPP and look forward to working with you again in the near future.

END OF REPORT.

Amdel Core Services Petroleum Reservoir Engineering Data

PO Box 5523 Brendale Q 4500 Tel: (07) 298-5272

CORE ANALYSIS FINAL REPORT

Company : BHP PETROLEUM PTY LTD

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval : Core 1: 1821.00 - 1824.04m Core Interval : Core 2: 1828.00 - 1841.27m Core Interval : Core 3: 1842.50 - 1846.87m

File No. : RG205 Country : AUSTRALIA

Country : AUSTRALIA State : Victoria

Sample	Depth	Porosi	ty ¦	Der	nsity	Permeab	ility	(md)¦Summati	on of	Fluids	Remarks
No.	!	HeInj¦	RollPor¦	Nat.	Grain	KH	Roll	KH	Por	Oil		See Below
1	1821.15	19.5	19.7	2.20	2.65	3839	3867		22.6	0.0) 43.9	C#1
2	1821.37			2.16	2.65	3924	3303		26.1	0.0		
3	1821.67			2.43	2.71	2013	1525		17.6	0.0		
4	1821.97	18.6		2.57	2.94	340	724		15.0	0.0	36.0	
5	1822.27	15.4	16.3	2.49	2.70	1180	1224		14.8	0.0		
6	1822.57	15.9		2.26	2.66	4729	1327		21.2	0.0	43.6	SP
7	1822.87	12.4	13.4	2.45	2.65	117	682		12.7	0.0		
8	1823.17	12.8	13.5	2.34	2.65	3322	1211		16.0	0.0	33.6	
9	1823.47	15.8	16.2	2.30	2.65	1660	1562		17.3	0.0	30.5	
10	1823.77	20.4	19.1	2.22	2.65	651	633		21.0	0.0	39.2	
11	1824.00			2.15	2.64	229	516		23.8	0.0	34.4	SP B#1
12	1828.15		19.6	2.20	2.65	2076	1309		25.0	0.0	44.8	C#2
13	1828.37			2.18	2.65	2976	2106		22.4	0.0	38.9	
14	1828.67			2.24	2.65	1070	1624		19.9	0.0	38.3	
15	1828.97			2.25	2.65	2041	1703		19.3	0.0	32.7	
16	1829.27			2.30	2.65	1888	1922		17.1	0.0	33.6	
17	1829.57			2.44	2.66	1874	1458		11.1	0.0		
18	1829.87			2.37	2.65	681	1284		13.8	0.0		
19	1830.17				2.66	3128	1493		13.1	0.0		
20	1830.47			2.43	2.68	746	1445		12.3	0.0		
21	1830.77			2.30	2.65	2502	1301		17.3	0.0		
22	1831.10			2.29	2.65	613	881		18.0	0.0		
23	1831.40			2.31	2.65	641	595		17.5	0.0		
24	1831.70			2.36	2.65	496	577		15.0	0.0		
25	1832.00			2.39	2.66	701	564		14.3	0.0		
26	1832.30			2.34	2.66	416	478		16.3	0.0		
27	1832.60			2.40	2.66	432	202	_	13.1	0.0		
28	1832.90			2.39	2.68	21.3	70.		14.4	0.0		VF
29	1833.20			2.37	2.65	129	22.		15.3	0.0		
30 31	1833.50 1833.80			2.40 2.25	2.66 2.65	0.72 23.3	6. 15.		10.9 21.3	0.0		
32	1834.10			2.26	2.65	139	107	J	20.3	0.0		
33	1834.40		16.1		2.65	288	216		22.0			
34	1834.70					188	410		19.8	0.0	43.3	
3 4 35	1835.00			2.27	2.65	2766	673		19.1	0.0		
36	1835.30			2.28	2.69	143	366		20.5	0.0		
37	1835.60			2.24	2.66	318	322		20.3	0.0		
38	1835.90			2.23	2.65	743	607		21.9	0.0		
3 9	1836.20			2.18	2.66	773	846		25.4	0.0		
40	1836.50			2.18	2.66	1154	927		22.9	0.0		

BHP PETROLEUM PTY LTD :

Minerva No.1 : Analysis by

Amdel Core Services

ample	e;Depth;	Porosit	y	De	nsity	Permeab	ility (m	d)¦Summati	on of	Fluids	Remarks
No.	i	HeInj¦R	CollPor	Nat.	Grain	i¦ KH	Roll KH	Por	Oil		See Below
41	1836.80	16.4	13.6	2.42	2.66	716	167	12.6	0.0	40.3	
42	1837.15	2.2	5.5		2.54	1.31					NO SAMPLE
43	1838.10	1.1	1.4	2.38	2.45	0.04			0.0	46.7	
44	1839.10	1.2	2.2	2.50	2.54	0.02			0.0		
45	1839.40	5.2	4.4	2.47	2.56	0.07			0.0		
46	1839.70	6.0	4.8	2.48	2.53	1.14			0.0		
47	1840.00	1.8	5.8	2.43	2.49	0.37			0.0		
48	1840.30	13.4	11.3	2.29	2.65	68.1	13.1	16.5	0.0	23.6	SP
49	1840.60	16.4	16.2	2.26	2.65	17.2	50.3	20.3	0.0		
50	1840.90	18.7	17.7	2.30	2.65	318	129	19.1	0.0		
51	1841.20	16.8	16.3	2.25	2.66	157	273	17.5	0.0	38.6	B#2
52	1842.80	12.9	14.6	2.30	2.65	709	824	16.4	0.0	23.7	
53	1843.10	15.7	15.3	2.25	2.65	5854	4200	20.5	0.0	36.2	
54	1843.40	17.0	15.8	2.34	2.65	12810	6113	16.3	0.0	32.9	
5 5	1843.70		14.8	2.30	2.65	1454	1817	16.0	0.0	27.3	
56	1844.05	15.2	14.0	2.24	2.65	402	306	19.8	0.0	36.2	
57	1844.30	12.1	13.8	2.28	2.65	37.1	138	17.2	0.0	30.5	
58	1844.60		15.4	2.26	2.65	647	397	17.2	0.0	27.6	
59	1844.90		16.2	2.22	2.65	1601	1199	18.8	0.0	29.5	
60	1845.22		15.1	2.29	2.65	1247	1936	17.8	0.0	36.2	
61	1845.52		15.6	2.30	2.65	5641	3676	16.5	0.0	39.0	
62	1845.82		16.5	2.28	2.65	4598	3863	17.1	0.0	38.6	
63	1846.12		16.4	2.24	2.65	1867	2563	19.3	0.0	37.1	
64	1846.42		16.2	2.23	2.65	2693	2076	20.7	0.0	37.6	
65	1846.72	14.4	15.5	2.29	2.65	1371	1717	17.1	0.0	36.1	B#3

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug

C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact

Tr = Probable Transition Zone; GC = Probable Gas Cap

Andel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Andel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report

Amdel Core Services Petroleum Reservoir Engineering Data

PO Box 5523 Brendale Q 4500 Tel: (07) 298-5272

CORE ANALYSIS FINAL REPORT

Company : BHP PETROLEUM PTY LTD

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval : Core 1: 1821.00 - 1824.04m Core Interval : Core 2: 1828.00 - 1841.27m Core Interval : Core 3: 1842.50 - 1846.87m

File No. : RG205 Country : AUSTRALIA

Country : AUSTRALIA State : Victoria

No.		Porosit		Della						TOIL OI		Remarks	i
		HeInj¦R	RollPor	Nat. G	rain	КН	Roll	KH	Por	Oil	Water	See Below	
	1821.15	19.7	19.2		. 65	2160	1929					C#1 SP	
	1821.37	18.2	17.7		. 65	1539	1581						
	1821.67	14.6	14.8		.84	1223	896						
	1821.97	11.6	12.7		.79	280	407						
	1822.27	13.1	13.8		.67	285	499						
	1822.57	17.4	15.0		.69	2744	1389						
	1823.17	11.9	15.2		. 65	1736	2363						
	1828.15	19.5	17.5		.65	3774	2442					C#2	
	1828.37	19.0	18.9		. 65	1438	2051						
	1828.67	17.9	17.9		.65	2267	2140						
	1828.97	16.7	16.5		.65	2839	2443						
	1829.27	14.6	14.6		. 66	1950	2100						
	1829.57	12.4	12.6		.65	1803	2028						
	1829.87	11.1	11.1		. 66	2670	1868						
	1830.17	9.9	10.2		.66	948	1260						
	1830.47	9.7	10.9		.69	1049	1255						
	1830.77	14.4	13.5		. 65	2380	1246						
	1831.10	15.3	14.6		. 65	406	756						
	1831.40	13.4	13.5		.65	833	629						
	1831.70	12.0	12.2		.66	558	581						
	1832.00	11.5	11.7		.71	438	478						
	1832.30	11.6	11.5		.66	488	473						
	1832.60	11.4	11.3		.67	482	405						
	1832.90	10.8	12.0		.67	239	355						
	1833.20	14.8	14.0		.65	578	221						
	1833.50	15.6	16.2		.65	29.9	102						
	1833.80 1834.10	18.8 19.0	18.1 19.4		.65	210 498	160 535						
	1834.40	20.8	18.7		.65	1568	795						
	1834.70	14.3	16.9		.66	326	851						
	1835.00	18.3	17.3		.66	3147	928						
	1835.30	18.3	18.3		.66	230	386						
	1835.60	18.2	18.1		.66	134	205						
	1835.90	17.7	18.3		.66	426	388						
	1836.20	19.5	19.4		.66	937	961						
	1836.50	20.7	18.6		.65	2274	797						
	1836.80	13.4	12.4		.68	83.1	115						
	1837.15	2.0	5.0		.51	11.1	5.	. 9					
1 4 1	1838.10	2.6	2.2		.52	0.12		47					

BHP PETROLEUM PTY LTD :

Minerva No.1 : Analysis by

Amdel Core Services

Sample Depth	Porosit	y ¦	Density	Permeab	ility (md)	Summatio	n of	Fluids	! Remarks
No.	HeInj¦R	ollPor¦	Nat. Grain	n KH				Oil		See Below
44A 1839.10	1.7	2.7	2.56	0.30	0.1	4			·	
45A 1839.40	4.8	3.5	2.57							
46A 1839.70	2.7	3.0	2.48	2.43	0.6	5				VF .
47A 1840.00	1.8	3.1	2.53	0.81	1.2					
48A 1840.30	5.9	7.3	2.60							
49A 1840.60	15.7	12.5	2.63	29.6	8.3					
50A 1840.90	12.7	14.5	2.63	3.25	18.2					
51A 1841.20	16.9	15.5	2.66	347	154					B#2
52A 1842.80	15.3	15.4	2.65	1439	1381					C#3
53A 1843.10	14.2	15.0	2.65	5052	4792					
54A 1843.40	16.1	15.5	2.65	14362	8351					
55A 1843.70	15.7	15.4	2.65	46 6 8	5502					
56A 1844.05	13.9	14.4	2.65	2929	3309					
57A 1844.30		14.7	2.65	2994	3207					
58A 1844.60	16.8	16.4	2.65	4031	3713					
59A 1844.90		16.5	2.65	3910	2500					
60A 1845.22		14.6	2.65	634	1308					
61A 1845.52		14.2	2.65	1865	159 6					
62A 1845.82		15.1	2.65	2948	2781					
63A 1846.12		16.2	2.65	3695	4308					
64A 1846.42		16.9	2.65	8563	5365					
65A 1846.72	15.5	16.4	2.65	3058	4310					B#3

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug

Andel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Andel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report

C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact

Tr = Probable Transition Zone; GC = Probable Gas Cap

Amdel Core Services Petroleum Reservoir Engineering Data

PO Box 5523 Brendale Q 4500 Tel: (07) 298-5272

CORE ANALYSIS FINAL REPORT

Company : BHP PETROLEUM PTY LTD

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval : Core 1: 1821.00 - 1824.04m Core Interval : Core 2: 1828.00 - 1841.27m Core Interval : Core 3: 1842.50 - 1846.87m

File No. : RG205 Country : AUSTRALIA

ountry : AUSTRALIA State : Victoria

Sample	e¦Depth¦	Porosi	ty :	De	nsity	Permea	bility	(md) Summati	on of	Fluids	Remarks
No.	:	HeInj¦	RollPor	Nat.	Grain	¦ KH	Roll	KH Por	Oil		See Below
1	1821.1	5 19.5	19.5	2.20	2.65	3839	3867	22.6	0.0	43.9	C#1
1A	1821.15	19.7			2.65	2160					SP
2	1821.37	7 20.1	18.5	2.16	2.65	3924	3303	26.1	0.0	51.2	
2A	1821.37	18.2			2.65	1539					
3	1821.67	7 17.5	16.6	2.43	2.71	2013	1525	17.6	0.0	42.7	
3A	1821.67	14.6			2.84	1223					
4	1821.97	18.6	15.2	2.57	2.94	340	724	15.0	0.0	36.0	
4A	1821.97	11.6			2.79	280					
5	1822.27	7 15.4	15.1	2.49	2.70	1180	1224	14.8	0.0	43.6	
5A	1822.27	13.1			2.67	285					
6	1822.57	7 15.9	15.0	2.26	2.66	4729	1327	21.2	0.0	43.6	SP .
	1822.57	17.4		-	2.69	2744					
7	1822.87		13.5	2.45	2.65	117	682	12.7	0.0	36.7	
8	1823.17		13.3	2.34	2.65	3322	1211	16.0	0.0	33.6	
	1823.17	11.9			2.65	1736					
9	1823.47			2.30	2.65	1660	1562	17.3	0.0	30.5	
10	1823.77			2.22	2.65	651	633	21.0	0.0	39.2	
11	1824.00		19.8	2.15	2.64	229	516	23.8	0.0	34.4	SP B#1
12	1828.15		19.5	2.20	2.65	2076	1309	25.0	0.0	44.8	C#2
	1828.15	19.5			2.65	3774					
13	1828.37			2.18	2.65	2976	2106	22.4	0.0	38.9	
	1828.37	19.0			2.65	1438					
14	1828.67			2.24	2.65	1070	1624	19.9	0.0	38.3	
	1828.67	17.9			2.65	2267					
15	1828.97			2.25	2.65	2041	1703	19.3	0.0	32.7	
	1828.97	16.7			2.65	2839					
16	1829.27			2.30	2.65	1888	1922	17.1	0.0	33.6	
	1829.27	14.6			2.66	1950					
17	1829.57			2.44	2.66	1874	1458	11.1	0.0	39.6	
	1829.57	12.4			2.65	1803		10.0		05.0	
18	1829.87		10.8	2.37	2.65	681	1284	13.8	0.0	35.9	
	1829.87	11.1		0.40	2.66	2670		10 1	0.0	07 1	
19	1830.17			2.43	2.66	3128	1493	13.1	0.0	37.1	
	1830.17	9.9		2.43	2.66	948		12.3	0.0	33.7	
20	1830.47			4.43	2.68	746	1445	14.3	0.0	33.1	
	1830.47	9.7		2 20	2.69	1049		17 9	0.0	39.9	
21	1830.77			2.30	2.65	2502	1301	17.3	0.0	39.9	
21A 22	1830.77	14.4		2.29	2.65 2.65	2380 613		18.0	0.0	35.5	
	1831.10	16.5 15.3		4.43	2.65	406	881	10.0	0.0	<i>3</i> 0.0	
22A	1831.10	13.3			2.00	400					

BHP PETROLEUM PTY LTD :

Minerva No.1: Analysis by
Amdel Core Services

Sample	e;Depth;	Porosi	ty	Dei	nsity	Permeab	ilitv	(md)!Summ	ation of	Fluide	Remarks
No.		HeInj	RollPor	Nat.	Grain	kH	Roll	KH Po	r Oil	Water	See Below
- 00											
23 234	1831.40		13.2	2.31		641 833	595	17	.5 0.0	34.3	
23A 24	1831.40			2 26	2.65	833 496	,	15	0 00) 91 F	
	1831.70			2.30	2.66	558	577	15	.0 0.0	31.5	
25	1832.00			2.39		701	564	11	.3 0.0	35.0	
	1832.00				2.71	438	J U 4	14	• 0 • 0	, ,,,,,	
26	1832.30		11.5			416	478	16	.3 0.0	32.9	
	1832.30	11.6	5		2.66	488		•			
27	1832.60		. 11.0			432	202	13	.1 0.0	34.7	
	1832.60				2.67	482					
28			11.2			21.3	70.	9 14	.4 0.0	34.9	VF
	1832.90				2.67	239			0 0		
29 204	1833.20		12.4			129 579	22.	5 15	.3 0.0	43.2	
29A 30	1833.20	14.8	13.8		2.65	578 0.72	•	, 10	.9 0.0	44.1	
	1833.50				2.65	29.9	ο.	2 10		44.1	
31	1833.80		16.1				15.	з 21	.3 0.0	47.4	
	1833.80				2.65	210			010	., , ,	
32			18.1			139	107	20	.3 0.0	46.7	
	1834.10	19.0)		2.66	498					
	1834.40		17.4			288	216	22	0.0	43.3	
	1834.40				2.65	1568			_		
34			16.0			188	410	19	.8 0.0	43.9	
	1834.70				2.66	326			1	00.0	
35 25 A	1835.00		16.2			2766	673	19.	1 0.0	38.2	
35A 36	1835.00 1835.30		17.0		2.66	3147 143	2.2.2	20	5 0.0	40.1	
	1835.30				2.66	230	366	20.	0.0	40.1	
37	1835.60		17.7			318	322	20	4 0.0	45.1	
	1835.60	18.2			2.66	134		20.			
38	1835.90		18.4	2.23		743	607	21	9 0.0	38.7	
	1835.90	17.7	•		2.66	426					
39	1836.20		19.2			773	846	25	4 0.0	42.9	
	1836.20							2 -			
40	1836.50		18.6				927	22.	9 0.0	38.0	
	1836.50	20.7			2.65	2274	4	10	c ^ ^	40.0	
41 41 A	1836.80	13.4	13.0	2.42	2.68	716 83.1		12.	6 0.0	40.3	
41A 42	1837.15				2.54	1.31		67			NO SAMPLE
	1837.15	2.0			1.51	11.1	۷,	· 1			Sirii iii
43	1838.10					0.04	٥.	08 5.	1 0.0	46.7	
	1838.10	2.6			2.52	0.12		_		•	
44	1839.10	1.2	2.5	2.50	2.54	0.02	0.	оз 7.	5 0.0	70.2	
	1839.10	1.7			2.56	0.30					
	1839.40			2.47	2.56	0.07	0.	11 7.	9 0.0	72.2	
	1839.40	4.8		0.40	2.57	0.04		_		#A #	
46	1839.70			2.48	2.53	1.14	0.	43 9.	1 0.0	70.5	WE.
	1839.70	2.7		9 49	2.48	2.43	_	o. 0	0 00	76.1	VF
47 47a	1840.00 1840.00) 1.8 1.8		2.43	2.49	0.37 0.81	1.	81 8.	0.0	10.1	
	1840.30			2.29		68.1	13	1 16.	5 0.0	23.6	SP
	1840.30				2.60	1.68	13,	. 100		2010	
	1840.60			2.26		17.2	50.	з 20.	3 0.0	44.5	
	1840.60				2.63	29.6					

BHP PETROLEUM PTY LTD : Minerva No.1 : Analysis by

Amdel Core Services

Sample	e¦Depth¦	Porosi	t y	De	nsity	Permeab	ility	(md) Summat	ion of	Fluids	Remarks
No.	;	HeInj¦	RollPor	Nat.	Grain	ı¦ KH	Roll	KH Por	Oil	Water	See Below
50	1840.90	18.7	16.1	2.30	2.65	318	129	19.1	0.0	57.8	
50A	1840.90	12.7			2.63	3.25				0.10	
51	1841.20	16.8	15.9	2.25	2.66	157	273	17.5	0.0	38.6	
51A	1841.20	16.9			2.66	347					B#2
52	1842.80	12.9	15.0	2.30	2.65	709	824	16.4	0.0	23.7	••
52A	1842.80	15.3			2.65	1439					- ", -
53	1843.10	15.7	15.2	2.25	2.65	5854	4200	20.5	0.0	36.2	
53A	1843.10	14.2			2.65	5052					
54	1843.40	17.0	15.7	2.34	2.65	12810	6113	16.3	0.0	32.9	
54A	1843.40	16.1			2.65	14362					
55	1843.70	13.4	15.1	2.30	2.65	1454	1817	16.0	0.0	27.3	
55A	1843.70				2.65	4668					
56	1844.05		14.2	2.24	2.65	402	306	19.8	0.0	36.2	
	1844.05				2.65	2929					
	1844.30		14.3	2.28	2.65	37.1	138	17.2	0.0	30.5	
	1844.30	14.0			2.65	2994					
58	1844.60	15.8	15.9	2.26	2.65	647	397	17.2	0.0	27.6	
58A	1844.60	16.8			2.65	4031					
59	1844.90		16.4	2.22	2.65	1601	1199	18.8	0.0	29.5	
59A	1844.90	18.0			2.65	3910					
60	1845.22		14.9	2.29	2.65	1247	1936	17.8	0.0	36.2	
	1845.22	13.1			2.65	634					
61	1845.52		14.9	2.30	2.65	5641	3676	16.5	0.0	39.0	
	1845.52	14.1			2.65	1865					
62	1845.82		15.8	2.28		4598	3863	17.1	0.0	38.6	
	1845.82	15.3			2.65	2948					
63	1846.12		16.3	2.24	2.65	1867	2563	19.3	0.0	37.1	
	1846.12	15.7			2.65	3695					
64	1846.42		16.6		2.65	2693	2076	20.7	0.0	37.6	
64A	1846.42	18.2			2.65	8563					
65	1846.72		16.0	2.29	2.65	1371	1717	17.1	0.0	36.1	
65A	1846.72	15.5			2.65	3058	•				B#3

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact

Tr = Probable Transition Zone; GC = Probable Gas Cap

Andel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Andel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report

Amdel Core Services Petroleum Reservoir Engineering Data

PO Box 5523 Brendale Q 4500

Tel: (07) 298-5272

OVERBURDEN ANALYSIS FINAL REPORT

Company : BHP PETROLEUM PTY LTD

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval : Core 1: 1821.00 - 1824.04m Core Interval : Core 2: 1828.00 - 1841.27m Core Interval : Core 3: 1842.50 - 1846.87m

File No. : RG205

Country : AUSTRALIA State : Victoria

	-	POROSITY	at OVERBURDEN	Pressure	g	¦¦Po	Porosity!	PERMEABIL	ITY at OVERBU	at OVERBURDEN Pressures		PBRM.
SANPLB Nunber		Ambient Porosity	; psi; 2100 ;	psi¦ 0¦	psi¦ 0¦	psi¦¦Ro	lling!!	Ambient Permeability	psi	psi¦ 0¦	psi; 0 ;	psi Rolling O Average
							2100					2100
1	1821.15	19.5	18.7			11	11	3839	2741			
7	1822.87	12.4	11.4			11	- 11	117	100			
10	1823.77	20.4	19.6			11	- 11	651	557			
15	1828.97	16.7	15.9			11	11	2041	1622			
17	1829.57	12.3	11.4			11	- 11	1874	1494			
21	1830.77	11.3	10.3			11		2502	1793			
25	1832.00	12.6	11.8			11	ii	701	551			
31	1833.80	14.7	13.9			11	ii	23.3	17.3			
34	1834.70	13.5	12.6			ii	ii	188	158			
37	1835.60	18.6	17.8			11		318	268			
40	1836.50	19.4	18.6			ii	- ;;	1154	947			•
41	1836.80	16.4	15.7			ii	11	716	592			
- 49	1840.60	16.4	15.6			11	- 11	17.2	12.3			
51	1841.20	16.8	16.2				- !!	157	141			
54	1843.40	17.0	15.9			ii	ii	12810	4118			
57	1844.30	12.1	11.5			ii	ii.	37.1	8.6			
61	1845.52	15.7	15.0			ii	ii	5641	3145			
65	1846.72	14.4	13.8			11		1371	1133			

Andel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Andel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report

PO Box 5523 Brendale Q 4500 Tel: (07) 298-5272

FULL DIAMETER CORE ANALYSIS FINAL REPORT

Company : BHP PETROLEUM PTY LTD

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval : Core 1: 1821.00 - 1824.04m Core Interval : Core 2: 1828.00 - 1841.27m Core Interval : Core 3: 1842.50 - 1846.87m

File No. : RG205

Country: AUSTRALIA State: Victoria

Sample No.	• •								Saturations %Water
1	1832.39	1832.52	11.5	2.67	2.36	492	 487	296	
2	1845.00	1845.15	14.6	2.65	2.26	899	529	96.2	

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug

C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact

Tr = Probable Transition Zone; GC = Probable Gas Cap

PO Box 5523 Brendale Q 4500 Australia

Tel: (07) 298-5272

SPECIFIED AVERAGE of DATA

Company : BHP PETROLEUM PTY LTD

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval: Core 1: 1821.00 - 1824.04m Core Interval: Core 2: 1828.00 - 1841.27m Core Interval: Core 3: 1842.50 - 1846.87m

File No. : RG205

Country : AUSTRALIA State : Victoria

SUMMATION POROSITY Average sample 1 to 65 Sample Type: R

POROSITY Average : 17.0 over 65 Samples

O Samples with a ZERO Porosity Value Ignored

SUMMATION % WATER Average Sample 1 to 65 Sample Type: R

% WATER Average : 39.5 over 65 Samples
0 Samples with a ZERO % Water Value Ignored

AMBIENT He POROSITY Average Sample 1 to 65 Sample Type: R

POROSITY Average : 14.1 over 65 Samples

O Samples with a ZERO Porosity Value Ignored
AMBIENT PERMEABILITY Average Sample 1 to 65 Sample Type: R

AMBIENT PERMEABILITY Average Sample 1 to 65 Sample Type: R
PERMEABILITY Average: 1434 over 65 Samples

O Samples with a ZERO Permeablity Value Ignored

OVERBURDEN POROSITY Average Sample 1 to 65 Sample Type: R

POROSITY Average : 14.8 over 18 Samples

O Samples with a ZERO Porosity Value Ignored

OVERBURDEN PERMEABILITY Average Sample 1 to 65 Sample Type: R

PERMEABILITY Average: 1077.8 over 18 Samples

O Samples with a ZERO Permeability Value Ignored

PO Box 5523 Brendale Q 4500 Australia

Tel: (07) 298-5272

SPECIFIED AVERAGE of DATA

Company : BHP PETROLEUM PTY LTD

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval : Core 1: 1821.00 - 1824.04m Core Interval : Core 2: 1828.00 - 1841.27m Core Interval : Core 3: 1842.50 - 1846.87m

File No. : RG205

Country: AUSTRALIA State: Victoria

SUMMATION POROSITY Average sample 1 to 11 Sample Type: R

POROSITY Average : 18.9 over 11 Samples

O Samples with a ZERO Porosity Value Ignored

SUMMATION % WATER Average Sample 1 to 11 Sample Type: R

% WATER Average : 39.6 over 11 Samples
0 Samples with a ZERO % Water Value Ignored

AMBIENT He POROSITY Average Sample 1 to 11 Sample Type: R

POROSITY Average: 17.1 over 11 Samples

O Samples with a ZERO Porosity Value Ignored

AMBIENT PERMEABILITY Average Sample 1 to 11 Sample Type: R

PERMEABILITY Average sample 1 to 11 sample type:

PERMEABILITY Average: 2000 over 11 samples

O Samples with a ZERO Permeablity Value Ignored

PO Box 5523 Brendale Q 4500 Australia

Tel: (07) 298-5272

Date

11

SPECIFIED AVERAGE of DATA

Company

: BHP PETROLEUM PTY LTD

Well

: Minerva No.1

Field

: Wildcat

Core Interval : Core 1: 1821.00 - 1824.04m

Core Interval : Core 2: 1828.00 - 1841.27m

Core Interval : Core 3: 1842.50 - 1846.87m

File No.

: RG205

Country

: AUSTRALIA

State : Victoria

AMBIENT He POROSITY Average Sample

to

1

Sample Type: A

: 21/03/93

POROSITY Average

15.2 over

7 Samples O Samples with a ZERO Porosity Value Ignored

AMBIENT PERMEABILITY Average Sample

to

Sample Type: A

PERMEABILITY Average:

1424 over

7 Samples

O Samples with a ZERO Permeablity Value Ignored

PO Box 5523 Brendale Q 4500 Australia

(07) 298-5272

Date

SPECIFIED AVERAGE of DATA

Company

: BHP PETROLEUM PTY LTD

Well

: Minerva No.1

Field

: Wildcat

Core Interval : Core 1: 1821.00 - 1824.04m

Core Interval : Core 2: 1828.00 - 1841.27m

Core Interval : Core 3: 1842.50 - 1846.87m

File No.

: RG205

Country

: AUSTRALIA

State: Victoria

: 21/03/93

SUMMATION POROSITY Average sample

12 17.7 over 41 Sample Type: R

POROSITY Average

30 Samples O Samples with a ZERO Porosity Value Ignored

SUMMATION % WATER Average Sample

12 to 41 Sample Type: R

% WATER Average

30 Samples

38.8 over O Samples with a ZERO % Water Value Ignored

to

AMBIENT He POROSITY Average Sample

12

41 Sample Type: R

POROSITY Average

to 14.4 over O Samples with a ZERO Porosity Value Ignored

30 Samples

AMBIENT PERMEABILITY Average Sample

12 to 41 Sample Type: R

PERMEABILITY Average:

989 over

30 Samples

O Samples with a ZERO Permeablity Value Ignored

PO Box 5523 Brendale Q 4500 Australia

Tel: (07) 298-5272

SPECIFIED AVERAGE of DATA

: BHP PETROLEUM PTY LTD Company

Well : Minerva No.1

Field : Wildcat Date : 21/03/93

Core Interval : Core 1: 1821.00 - 1824.04m Core Interval : Core 2: 1828.00 - 1841.27m Core Interval: Core 3: 1842.50 - 1846.87m

File No. : RG205

: AUSTRALIA Country State: Victoria

AMBIENT He POROSITY Average Sample 12 to 41 Sample Type :

15.4 over POROSITY Average 30 Samples O Samples with a ZERO Porosity Value Ignored

AMBIENT PERMEABILITY Average Sample 12 to 41

Sample Type: A PERMEABILITY Average: 1167 over 30 Samples

O Samples with a ZERO Permeablity Value Ignored

PO Box 5523 Brendale Q 4500 Australia (07) 298-5272

SPECIFIED AVERAGE of DATA

Company

: BHP PETROLEUM PTY LTD

Well

: Minerva No.1

Field

: Wildcat

Core Interval: Core 1: 1821.00 - 1824.04m

Core Interval : Core 2: 1828.00 - 1841.27m Core Interval: Core 3: 1842.50 - 1846.87m

File No.

: RG205

Country

: AUSTRALIA

to 6.3 over State: Victoria

Date

: 21/03/93

SUMMATION POROSITY Average sample POROSITY Average

42

Sample Type: R 6 Samples

O Samples with a ZERO Porosity Value Ignored SUMMATION % WATER Average Sample

42

47

47

Sample Type: R

% WATER Average

to 56.0 over

6 Samples

O Samples with a ZERO % Water Value Ignored

to

AMBIENT He POROSITY Average Sample

42

47 Sample Type: R

6 Samples

O Samples with a ZERO Porosity Value Ignored AMBIENT PERMEABILITY Average Sample

POROSITY Average

42 to 47 Sample Type: R

6 Samples

PERMEABILITY Average:

0.49 over

O Samples with a ZERO Permeablity Value Ignored

2.9 over

PO Box 5523 Brendale Q 4500 Australia

(07) 298-5272 Tel:

Date

48

SPECIFIED AVERAGE of DATA

Company

: BHP PETROLEUM PTY LTD

Well

: Minerva No.1

Field

: Wildcat

Core Interval : Core 1: 1821.00 - 1824.04m

Core Interval : Core 2: 1828.00 - 1841.27m Core Interval : Core 3: 1842.50 - 1846.87m

File No.

: RG205

Country

: AUSTRALIA

42

State : Victoria

AMBIENT He POROSITY Average Sample POROSITY Average

3.1 over

to

Sample Type:

: 21/03/93

O Samples with a ZERO Porosity Value Ignored

7 Samples

AMBIENT PERMEABILITY Average Sample

42

Sample Type: A

PERMEABILITY Average:

to 2.4 over

7 Samples

O Samples with a ZERO Permeablity Value Ignored

PO Box 5523 Brendale Q 4500 Australia

Tel: (07) 298-5272

Date

SPECIFIED AVERAGE of DATA

Company

: BHP PETROLEUM PTY LTD

Well

: Minerva No.1

Field

: Wildcat

Core Interval : Core 1: 1821.00 - 1824.04m

Core Interval : Core 2: 1828.00 - 1841.27m Core Interval: Core 3: 1842.50 - 1846.87m

File No.

: RG205

Country

: AUSTRALIA

52

to

State: Victoria

SUMMATION POROSITY Average sample

POROSITY Average

17.9 over

Sample Type: 14 Samples

O Samples with a ZERO Porosity Value Ignored

SUMMATION % WATER Average Sample

52 to

65

Sample Type:

: 21/03/93

% WATER Average

33.5 over

14 Samples

O Samples with a ZERO % Water Value Ignored

to

AMBIENT He POROSITY Average Sample

POROSITY Average

52

65 Sample Type: R

14 Samples

52 to

O Samples with a ZERO Porosity Value Ignored 65 Sample Type: R

AMBIENT PERMEABILITY Average Sample

15.3 over

PERMEABILITY Average:

2924 over

14 Samples

O Samples with a ZERO Permeablity Value Ignored

PO Box 5523 Brendale Q 4500 Australia

(07) 298-5272 Tel:

SPECIFIED AVERAGE of DATA

Company

: BHP PETROLEUM PTY LTD

Well

: Minerva No.1

Field

: Wildcat

Core Interval : Core 1: 1821.00 - 1824.04m

Date

: 21/03/93

Core Interval : Core 2: 1828.00 - 1841.27m

Core Interval : Core 3: 1842.50 - 1846.87m

File No. Country

: RG205

: AUSTRALIA

to

State: Victoria

AMBIENT He POROSITY Average Sample

52

65 Sample Type:

POROSITY Average

15.4 over

14 Samples

AMBIENT PERMEABILITY Average Sample

52 to

O Samples with a ZERO Porosity Value Ignored Sample Type: A

PERMEABILITY Average:

4296 over

14 Samples

O Samples with a ZERO Permeablity Value Ignored

BRINELL HARDNESS DATA

Company:

BHP PETROLEUM

Report:

RG-205

Well:

Minerva No.1

Sample Tumber	Depth (m)	Brinell Hardness (kg/sq.mm)	
1	1821.15	11	
	1821.37	11	
2 3	1821.67	14	
4	1821.97	14	
4 5 6 7	1822.27	15	
6	1822.57	15	
7	1822.87	11	
8	1823.17	17	
9	1823.47	13	
10	1823.77	14	
11	1824.00	14	
12	1828.15	17	
13	1828.37	13	
14	1828.67	12	
15	1828.97	13	
16	1829.27	14	
17	1829.57	17	
18	1829.87	14	
19	1830.17	15	
20	1830.47	21	
21	1830.77	14	
22	1831.10	14	
23	1831.40	14	
24	1831.70	16	
25	1832.00	16	
26	1832.30	17	
27	1832.60	13	
28	1832.90	15	
29	1833.20	16	
30	1833.50	14	
31	1833.80	13	
32	1834.10	11	
33	1834.40	8 7	
34	1834.70		•
35	1835.00	11	
36	1835.30	9	
37	1835.60	8	
38	1835.90	8	
39	1836.20	7	
40	1836.50	7	

Sample Number	Depth (m)	Brinell Hardness (kg/sq.mm)	
41	1836.80	10	
42	1837.15	4	
43	1838.10	9	
44	1839.10	11	
4 4 45			
	1839.40	11	
46 47	1839.70	9 8	
47	1840.00	0	
48	1840.30	11	
49 50	1840.60	8 7	
50	1840.90		
51	1841.20	10	
52	1842.80	11	
53	1843.10	11	
54	1843.40	12	
55	1843.70	11	
5 6	1844.05	8	
57	1844.30	11	
58	1844.60	12	
59	1844.90	12	
60	1845.22	11	
61	1845.52	10	
62	1845.82	9	
63	1846.12	11	
64	1846.42	12	
65	1846.72	12	

CORE PLUG DESCRIPTION

Company:

BHP PETROLEUM

Report:

RG-205

Well:

Minerva No.1

Sample Number		Description
1	Sst	lt gry, med - crs gr, sb ang, mod srt, mod hd, wh Cl Mtrx, Qtz, bd
2	Sst	<pre>lt - med gry, crs - v crs gr, com v crs sbrndd Qtz Gr, prly srt, ang - sbang, hd, non calc, Qtz Cmt, occ Qtz Pbl</pre>
3	Sst	med - dk gry, crs - v crs gr, com sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, pred Pyr Cmt, Sid Cmt I/P, occ Qtz Pbl
4	Sst	As in 3
5	Sst	As in 4 w/ less pyr cmt
6	Sst	As in 4 but with inc Qtz Pbl
7	Sst	lt brnish gry, f gr w/ Pbl upto 5 mm, sb rndd, w wl srt, wh Cl Mtrx, Qtz, Tr Musc/C/Pyr
8	Sst	lt gry, crs - v crs gr, com lg sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz Cmt,
9	Sst	lt gry, med - crs gr, com lg sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz Cmt
10	Sst	lt gry, f - med gr, sb rndd, wl srt, mod hd, wh Cl Mtrx, Qtz, Tr Pyr/C, Occ Qtz Pbl
11	Sst	lt gry, f gr, mod wl srt, ang - sbang, hd, non calc, Qtz Cmt
12	Sst	lt gry, med - v crs gr, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
13 - 14	Sst	As in 12
15	Sst	lt gry, crs - v crs gr, sb rndd, mod srt, mod hd, wh Cl Mtrx, Qtz, Tr Pyr $$
16	Sst	lt gry, med - v crs gr, rr Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
17	Sst	lt med gry, crs - v crs gr - gran, sb rndd - wl rndd, pr srt, hd, Cl Mtrx I.P., Qtz, Tr Pyr, Tr Cl Gr and carb Mat

Sample Number		Description
18	Sst	<pre>lt - med gry, v crs - lge Qtz Pbl, v prly srt, ang - sbrndd, v hd, non calc, com Pyr & Qtz Cmt</pre>
19	Sst	As in 18 w/ inc Qtz Pbl, conglomeritic
20	Sst	As in 19 w/ inc Pyr Cmt
21	Cgl	It med gry, crs gr wl rndd wl srt Sd w/ rndd Qtz Pbls from 2-10mm, sm wh Cl Mtrx, Tr Pyr
22	Sst	lt gry, med gr, ang - sb rndd, mod wl srt, non calc, com Pyr Cmt, Qtz Cmt
23	Sst	<pre>lt - med gry, v crs - lge Qtz Pbl, v prly srt, ang - sbrndd, v hd, non calc, com Pyr & Qtz Cmt</pre>
24	Sst	As in 23
25	Sst	It med gry, f - v crs gr w/ Gran of 2-4mm, rndd, pr srt, mod hd, Cl Mtrx, Qtz, Tr Pyr
26 -	27 Sst	As in 23 w/ inc Pyr Cmt
28	Sst	lt gry, med - v crs gr, rr Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt, dk gry Clst I/P
29	Sst	<pre>lt - med gry, v crs - lge Qtz Pbl, v prly srt, ang - sbrndd, v hd, non calc, com Pyr & Qtz Cmt</pre>
30	Sst	lt gry, f gr, com med gr, wl srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt, w/ Clst bnd
31	Sst	<pre>lt gry, f - med gr, sb ang - sb rndd, wl srt, mod hd, abd Cl Mtrx, Qtz, Tr Pyr/Mic/C, vague Lam</pre>
32	Sst	lt gry, f - med gr, mod wl srt, ang - sbang, hd, non calc, Qtz Cmt
33	Sst	As in 32
34	Sst	med gry, med - v crs gr, scatt Gran, rndd, mod srt, fri - mod hd, Cl Mtrx, Qtz, Tr C/Musc, bd
35	Sst	lt gry, med - v crs gr, com Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
36	Sst	As in 35 w/ lt gry, f - med gr, mod wl srt, ang - sbang Qtz Sd
37	Sst	lt gry, med - v crs gr, sb rndd, mod srt, Cl Mtrx, Qtz
38	Sst	<pre>lt - med gry, crs - v crs gr, com v crs sbrndd Qtz Gr, prly srt, ang - sbang, hd, non calc, Qtz Cmt, rr Pyr Cmt, occ Qtz Pbl</pre>
39	Sst	As in 38

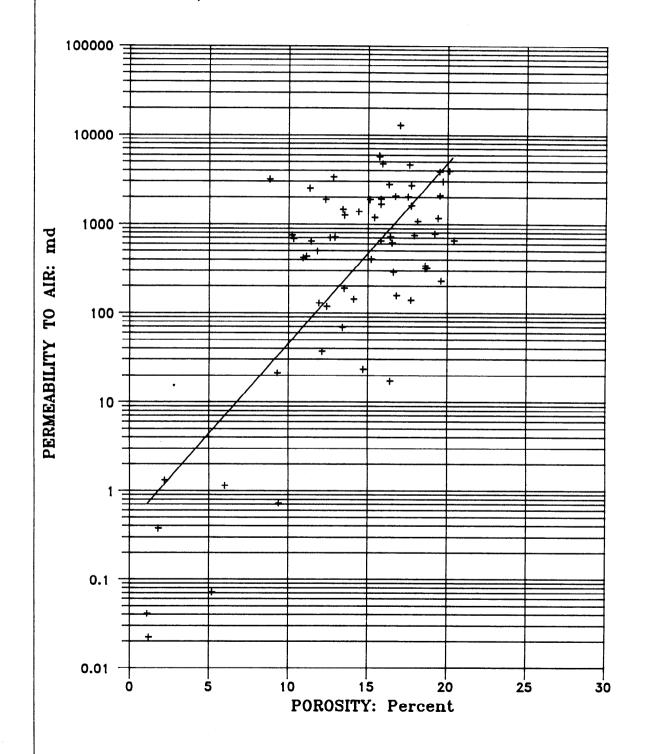
Sample Number	······································		Description
40-4	1 S		lt gry, crs - v crs gr, sb rndd - wl rndd, mod hd, var wh Cl Mtrx, Qtz Cmt, Qtz, Tr Pyr, often open framework
42 -	44 C	lst	dk brn - blk, com Pyr Gr, hd, sdy I/P, sb fis
45	S	Sltst	dk gry, v hd, non calc, sdy, cly Mtrx, bioturb
46	S	Sltst	med gry - dk gry, v hd, non calc, bndd, Tr Pyr Cmt, bioturb
47	C	lst	dk brn - blk, com Pyr Gr, hd, sdy I/P, sb fis
48	S	Sst	lt gry, f gr, wl srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
49	S		med gry, f - med gr, sbrndd, wl srt, mod hd, wh - lt brn Cl Mtrx, Qtz, Tr Mic/C, Tr carb Lam
50	S		lt gry, f - med gr, mod wl srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt, Pyr Bnd
51	S	Sst	lt gry, f - med gr, sb rndd, wl srt, mod hd, Qtz Cmt, var Cl Mtrx, Qtz
52	S		lt gry, med - v crs gr, occ Qtz pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
53	S		lt - med gry, v crs - lge Qtz Pbl, v prly srt, ang - sbrndd, v hd, non calc, com Pyr & Qtz Cmt
54	S		med gry, v crs gr - gran, rndd, pr - mod srt, mod hd, Qtz Cmt, Qtz, open framework
55	S		lt gry, med - v crs gr, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
56	S	Sst	As in 53
57	S		<pre>lt - med gry, med - v crs gr w/ comm Gran, rndd, hd, Qtz Cmt, Qtz, Tr Pyr</pre>
58	S		<pre>lt - med gry, pred crs gr, mod wl srt, ang - sbang, v hd, non calc, Tr Pyr, Mnr Bioturb, cly I/P</pre>
59	S	Sst	As in 58
60	S		lt gry, med - v crs gr, occ Qtz pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
61	S	Sst	lt med gry, med - v crs gr, rndd, hd, Qtz Cmt, sm Cl Mtrx, Qtz, Tr C
62	S		lt gry, med - v crs gr, rr Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
63 -	64 S		<pre>lt - med gry, med - v crs, pred crs gr, mod wl srt, ang - sbang, v hd, non calc, Tr Pyr, Mnr Bioturb, cly I/P</pre>

Sample Number		Description
65	Sst	<pre>lt med gry, med - v crs gr, slily gran, rndd, hd, Qtz Cmt, sm Cl Mtrx, Qtz, Tr C</pre>
1A	Sst	<pre>lt - med gry, crs - v crs gr, com v crs sbang Qtz Gr, prly srt, ang - sbang, hd, non calc, Qtz Cmt</pre>
2A	Sst	<pre>lt - med gry, crs - v crs gr, com v crs sbang Qtz Gr, prly srt, ang - sbang, hd, non calc, Qtz Cmt, com lge Qtz Pbl</pre>
3 A	Sst	med - dk gry, crs - v crs gr, com sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, pred Pyr Cmt, Sid Cmt I/P, occ Qtz Pbl
4A	Sst	As in 3A
5A	Sst	As in 4A w/ less pyr cmt
6A	Sst	As in 4A but with dec Qtz Pbl
7A	No p	lug
8 A	Sst	<pre>lt gry, crs - v crs gr, com lg rndd - sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz Cmt,</pre>
9 A	Sst	lt gry, med - crs gr, com lg sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz Cmt
10A	No p	lug
11A	No p	lug
12 A	Sst	lt gry, med - crs gr, pred med, mod wl srt, ang - sbang, hd, non calc, Qtz Cmt
13 - 14A	Sst	As in 12A
15 A	Sst	<pre>lt - med gry, crs - v crs gr, prly srt, ang - sbang, hd, non calc, Qtz Cmt, occ Qtz Pbl</pre>
16A	Sst	lt gry, crs - v crs gr, com lg rndd - sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz Cmt
17A	Sst	As in 16A w/ abd v crs - lge Qtz Pbl, v prly srt
18 - 20A	Sst	As in 17A
21A	Sst	<pre>lt - med gry, crs - v crs gr, prly srt, ang - sbang, hd, non calc, Qtz Cmt, com rndd Qtz Pbl</pre>
22A	Sst	lt gry, f - crs gr, ang - sbrndd, prly srt, non calc, Qtz Cmt, occ Qtz Pbl
23A	Sst	As in 16A

Sample Number			Description
24 -	27 A	Sst	<pre>lt gry, crs - v crs gr, com lg rndd - sbrndd Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt</pre>
28A		Sst	As in 24A w/ inc Pyr Cmt
29A		Sst	As in 21A
30A		Sst	lt gry, f gr, com med gr, wl srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt, w/ Clst bnd
31 -	33A	Sst	lt gry, f - med gr, mod wl srt, ang - sbang, hd, non calc, Qtz Cmt
34A		Sst	<pre>lt - med gry, med - crs gr, pred med, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt, Org Mat, com lge Qtz Pbl</pre>
35 -	38A	Sst	lt gry, med - v crs gr, com Qtz Pbl, prly srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt
39 -	41A	Sst	lt gry, f - med gr, mod wl srt, ang - sbang, hd, Tr Pyr Cmt, Qtz Cmt
42A		Coal	blk - dk brn, hd, bndd, Pyr I/P
43A		Clst	dk brn - blk, com Pyr Gr, hd, sdy I/P, sb fis
44 -	47A	Sltst	med gry - dk gry, v hd, non calc, bndd, Tr Pyr Cmt, bioturb, Org Mat
48A		Sst	lt gry, f gr, wl srt, ang - sbang, hd, non calc, Qtz & Pyr Cmt, Slsts asin 47A $\rm I/P$
49 -	50A	Sst	lt - med gry, f gr, wl srt, ang - sbang, hd, non calc, Qtz Cmt, Tr Mic, w / Clst bnd
51A		Sst	lt - med gry, f - med gr, mod wl srt, ang - sbang, hd, non calc, Qtz Cmt
52A		Sst	lt gry, med - v crs gr, occ Qtz pbl, prly srt, ang - sbang, hd, non calc, Qtz Cmt $$
53A		Sst	lt - med gry, v crs - lge sbrndd Qtz Pbl, v prly srt, ang - sbrndd, v hd, non calc, Qtz Cmt $$
54 -	57A	Sst	As in 53A w/ com Pyr Cmt
58A		Sst	lt - med gry, pred crs gr, mod wl srt, ang - sbang, v hd, non calc, Tr Pyr, cly I/P
59A		Sst	lt - med gry, v crs - lge sbrndd Qtz Pbl, v prly srt, ang - sbrndd, v hd, non calc, Qtz Cmt $$
60A		Sst	lt gry, med - v crs gr, occ sbang Qtz pbl, prly srt, ang - sbang, hd, non calc, Qtz Cmt, TR Pyr Cmt
61A		Sst	As in 60A

Sample Number	· · · · · · · · · · · · · · · · · · ·				
62A	Sst	lt gry, med - v crs gr, com rndd Qtz Pbl, prly srt, ang - sbang, k non calc, Qtz & Pyr Cmt	nd,		
63 - 64A	Sst	As in 62A			

65A


Sat As in 60

POROSITY vs PERMEABILITY

Company: Well: Depth:

BHP PETROLEUM PTY LTD

Minerva No.1 1821.00 — 1846.87 Metres

PE602758

This is an enclosure indicator page. The enclosure PE602758 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602758 has the following characteristics:

ITEM-BARCODE = PE602758
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Core Plot (1:200)

BASIN = Otway
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 Core Plot, Amdel Core

Services, 1;200

REMARKS = old barcode PE900066 replaced with

PE602758

DATE-CREATED' = *

DATE-RECEIVED = 13/01/94

 $W_NO = W1079$

WELL-NAME = MINERVA 1

CONTRACTOR = AMDEL CORE SERVICES

CLIENT_OP_CO = BHP AUSTRALIA

(Inserted by DNRE - Vic Govt Mines Dept)

PE602759

This is an enclosure indicator page. The enclosure PE602759 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602759 has the following characteristics:

ITEM-BARCODE = PE602759
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Core Plot (1:200)

BASIN = Otway
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 Core Plot, Amdel Core

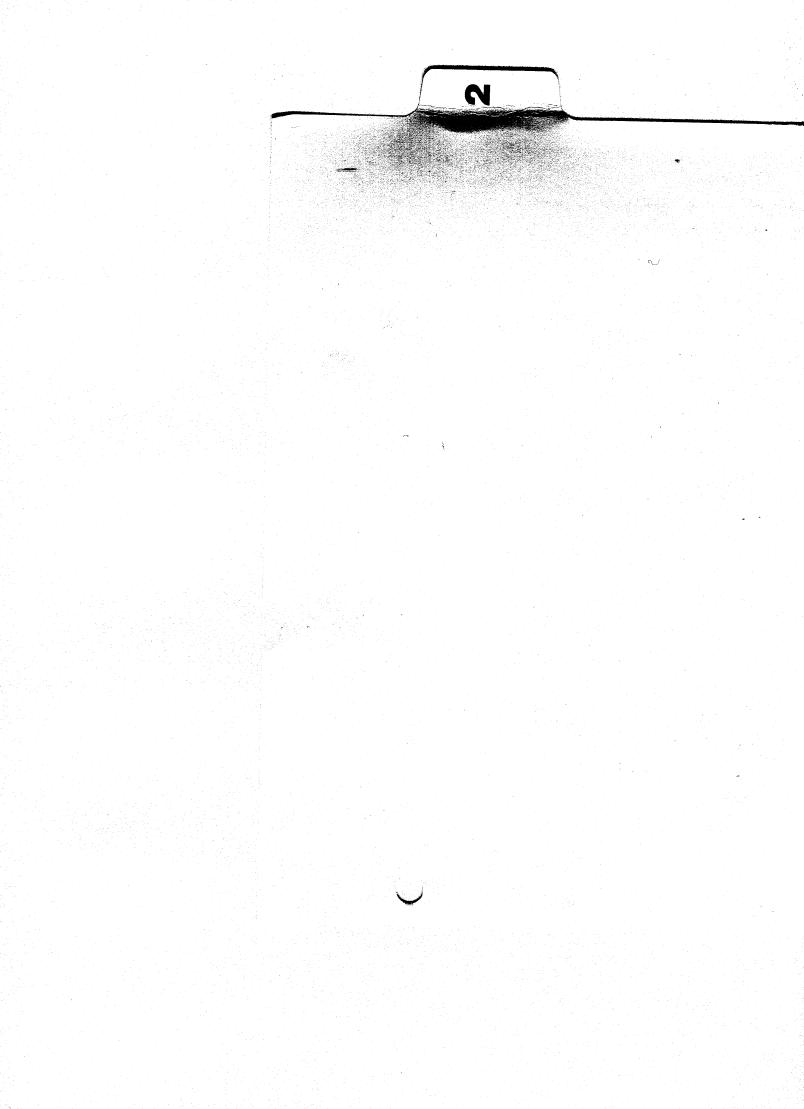
Services, 1;200

REMARKS = old barcode PE900065 replaced with

PE602759

DATE-CREATED = *

DATE-RECEIVED = 13/01/94


 $W_NO = W1079$

WELL-NAME = MINERVA 1

CONTRACTOR = AMDEL CORE SERVICES

CLIENT_OP_CO = BHP AUSTRALIA

(Inserted by DNRE - Vic Govt Mines Dept)

Appendix 2 Exlog End of Well Report (Mudlogging)

FINAL WELL REPORT BHP Petroleum Pty Ltd

Minerva - 1
Otway Basin, Victoria

March 1993 - April 1993

by

EXLOG Australia

The information, interpretations, recommendations, or opinions contained herein are advisory only and may be rejected. Consultant does not warrant their accuracy or correctness. Nothing contained herein shall be deemed to be inconsistent with, nor expand, modify or alter Consultants obligation of performance as provided for in a written agreement between the parties, or, if none, in Consultant's most recent price list.

CONTENTS

1. INTR	RODUCTION	
a.	Well and Rig Data	1
b.	Prognosis	2
c.	Sample Distribution	3
2. DRII	LING-ENGINEERING	
a.	Well History	5
b.	Bit Optimisation	13
c.	Hydraulics Optimisation	16
d.	Borehole Condition	19
3. PRES	SURE EVALUATION	
a.	Formation Fracture Pressure	21
b.	Formation Pore Pressure	22
4. GEOI	LOGY AND SHOWS	24
5. TEST	ING AND EVALUATION	
a.	Hydrocarbon Evaluation	28
b.	Wireline Logging	28
c.	Coring	28
d.	Measurement while Drilling	29
e.	Repeat Formation Test	29
f.	Drill Stem Test	29
6. DATA	A INVENTORY	32

PAGE

TABLES

- 1. Deviation Survey Record
- 2. Casing and Cementing Details
- 3. Drilling Fluid Properties
- 4. Bit Record
- 5. Bit Hydraulics Record
- 6. RFT Preliminary results

APPENDICES

I.	Drilling Data Plot	1:	2500
II.	Drilling Data Pressure Plot	1:	2500
III.	Pressure Gradient Analysis Plot	1:	5000
IV	MWD data Plot	1:	500
v.	Well Progress Plot	1:	15000
VI.	Drilling Data Printout		
VII.	Bit Hydraulics Printouts		
VIII	Geological-Engineering Morning Reports		
IX.	Formation Evaluation Log	1:	500

1. INTRODUCTION

a. Well & Rig Data

BHP Petroleum Pty Ltd Company

Minerva - 1 Well Name

Otway Basin, Victoria Location

: VIC/P31 Permit

38° 42' 12.35" South Latitude

142° 51' 12.64" East Longitude

: Exploration Field

"Byford Dolphin" Rig

Semi-submersible

25.00 metres RT - MSL

82.00 metres RT - Seabed

8th March 1993 spud Date

2425 metres Total Depth

04th April 1993 Total Depth Date

Tested and Completed. Completion Status

503 Exlog Unit No

: M. Sale, A. Thangam, K. Clarke, S. Ong Crew, DrillByte

S. Alexander, R. Tadiar, D. Alsop, V. Surla Crew, Logging

b. Prognosis

The proposed location for Minerva-1 is in the Northwestern part of Vic/P31 in the eastern Otway Basin, approximately 35 km north northeast of Mussel-1. The well is designed to test a faulted rollover anticline with closure mapped at the Top Lower Shipwreck Group.

The Minerva Structure is a faulted hanging wall anticline that began to develop towards the end of the Early Cretaceous. The structure continued to develop slowly throughout the Late Cretaceous and experienced significant growth throughout the Tertiary, particularly after the late Eocene.

The structure has 250 metres of vertical relief in the most likely case, with the closing contour of 1775 mSS. Closure is mapped from within the Nirranda Group (approx 191 mSS) to TD.

EXLOG Australia provided a DrillByte Service on Minerva-1 from spud to a Total Depth of 2425 metres. In addition to formation evaluation and conventional mud logging, real time data monitoring and recording as well as pressure and drilling analyses were carried out. Continuous evaluation of pressures and drilling progress provided an aid in optimizing drilling costs and ensuring that drilling continued with maximum safety to personnel, the well, and equipment. The operator was continuously advised as to the status of these analyses, with data and results stored on floppy disks for post-well evaluation. The printouts and plots of the results of these services are contained in the appendices to this report.

c. Sample Distribution

Formation evaluation services were provided from 82 metres to 2425 metres TD.

Two sets of unwashed cuttings, five sets of washed and dried cuttings samples and one set of Petrocraft sample vials were prepared for distribution as follows:

2 sets 200 g unwashed

2 sets 200 g washed and dried

Petrocraft sample vials

To: BHP Petroleum Pty Ltd

BHP Core Store

C/- Kestrel Management

Unit 58

Slough Estate 170 Forester Road

Mt Waverley Victoria

1 set 100 g washed and dried

To: Officer-in-Charge
BMR Core & Cuttings
Laboratory
80 Collins Street
Fyshwick ACT 2609

1 set 100 g washed and dried

To: VIC DEM

DMID Corelab

196 Turner Street

Port Melbourne

VIC 3207

1 set 100 g washed and dried

To: Bridge Oil

Officer-in-Charge 255 Elizabeth Street

NSW 2000

Attn. Mr G. Roder

1 set mud samples comprising of: 2 x 200 g composite unwashed (100 m samples)

1 x 1 Kg tin unwashed (100 m samples)

To: BHPP Melbourne Attn. R. Craddock

Mud samples were collected at the following depths:

1822, 2121 and 2425 metres

Samples were collected and processed from the 13.375" casing shoe over the following intervals:

565 - 1000 m : 5 m samples 1000 - 2425 m : 3 m samples

The following samples were not collected due to excessively high rates of penetration, and the highly dispersive nature of clay formations:

- 655, 680, 695 metres 710, 715, 725 metres 805, 815, 880, 895 metres
- 930 metres
- 1256, 1268, 1274, 1280, 1295 metres 1304, 1364 metres

Samples from 2069 m were lost due to shaker screen changes.

2. DRILLING-ENGINEERING

(a. Well History

The semi-submersible rig "Byford Dolphin" arrived at the Minerva-1 location on the 6th March 1993. The drill floor was 25 metres above sea level, and 82 metres above the sea-bed (water depth 57 metres).

36" Hole Section: 82 to 105 metres

After securing anchors and ballasting down, Minerva-1 was spudded at 12:00 hrs on the 8th March 1993.

NB#1, a 26.0" Security S3J (3x24 jets), run in tandem with a 36" hole-opener, spudded the well and drilled to a depth of 105 metres in 0.65 hrs (on-bottom) at an average rate of penetration of 35.38 m/hr and was graded 2-2-WT-A-1-I-NO-TD. Hi-Vis pills were spotted at every stand down and all returns were to the sea floor. At 105 metres, the bit was pulled out for a BHA and bit change. Typical drilling parameters used on this bit run were: WOB 0 - 10 klb, RPM 70 - 75 and pump pressure 1120 psi at 1050 gpm.

9.875" Pilot Hole Section: 105 to 560 metres

Due to the possibility of encountering shallow gas, a small (9.875") diameter hole section was first penetrated prior to being opened up to 36" and 17.5". This was completed during daylight hours so that ny gas could easily be seen.

NB#2, a 9.875" Security S44GF (3x16 jets), was made up on a new BHA and run into the hole to drill from 105 metres, using seawater as the drilling fluid (and Guar Gum Hi-Vis sweeps at every half and full stand drilled), with returns to the sea floor. At 560 metres, a survey was dropped (Dev = 1.0°), the hole circulated and conditioned and the bit pulled out of the hole for a BHA and bit change. This bit drilled 455 metres in 3.53 hrs (on-bottom) at an average rate of penetration of 128.89 m/hr and was graded 2-2-WT-A-E-I-NO-TD. Typical drilling parameters used on this bit run were: WOB 0 - 17 klb, RPM 110 - 120 and pump pressure 1770 psi at 760 gpm.

RR#1.1, a 26.0" Security S3J (3x24 jets), run in tandem with a 36" hole-opener, opened up the 9.875" hole from 105 to 115 metres, with Hi-Vis sweeps at each half stand. At 115 metres, 100 bbls of Hi-Vis mud was pumped prior to being displaced by 150 bbls of Hi-Vis mud. The bit was then tripped out to run casing. This bit drilled 10.0 metres in 0.28 hrs at an average penetration rate of 35.7 m/hr and was graded 2-2-NO-A-E-I-NO-TD. The drilling parameters used were: WOB 15-20 klb, RPM 120 and pump pressure 1250 psi at 1070 gpm.

Casing (three joints of Vetco, 310 lb/ft, B, 30.0") was then run, with the shoe set at 114 metres. The casing was cemented with 351 sx class "G" cement at 1.90 sg (15.8 ppg), with 2 CaCl₂, and displaced with 15 bbls seawater.

17.5" Hole Section: 115 to 560 metres

NB#3, a 17.5" Security SS44G (3x18 jets), was made up with a new BHA and run into the hole. The cement and casing shoe were drilled out and the 9.875" pilot-hole section was then opened to 17.5" from 115 metres to 560 metres. Hi-Vis pills (20 bbls) were pumped at every half stand and connection. At 560 metres, the hole was swept with 250 bbl of hi-vis mud followed by a further 630 bbl of weighted hi-vis mud being spotted on bottom. The bit was then pulled from the hole without drag.

Casing (39 joints of Sumiton, BTC, N80, 68 lb/ft, 13.375") was then run, with the shoe set at 549 metres. It was cemented with a lead slurry of 635 sacks class "G" cement at 1.50 sg (12.5 ppg) with 0.45 gal per sack Econolite, and a tail slurry of 502 sacks of class "G" cement at 1.90 sg (15.8 ppg), and displaced with 220 bbls of seawater.

The BOPs and riser were rigged up and run to the seafloor. The BOPs were then tested to BHPP specifications.

12.25" Hole Section: 560 - 1204 metres

NB#4, a 12.25" Hughes ATM11HG (13-16-18 jets), was made up on a MWD assembly and run into the hole tagging cement at 522.73 metres. This was subsequently drilled, together with the shoe at 549 metres. The 17.5" rathole was then reamed to 560 metres whilst displacing the hole and riser with a new KCL mud. Three metres of new hole was then drilled from 560-563 metres. The bit was then pulled back into the shoe and a Formation Integrity Test conducted. The results were as follows.

Depth (m)	Casing Shoe (m)	Hole Size (inches)	Mud σ (sg)	Fracture Press (sg EMD)
563	549.0	12.25	1.08	2.13

After the FIT, the bit was run back to bottom and subsequently drilled ahead from 563 metres, reaming at every connection. Surveys were taken using the MWD at every 5th connection (≈ 145 metres). Drill rates were highly variable due to the formation alternating between loose sandstone, claystone, siltstone, and very hard pyrite and dolomite bands. Higher torque and off-bottom drag from 1056 metres prompted washing and reaming on subsequent connections. Connection gas was also seen at 1081.5, 1110.5, 1139.5, 1168.9 and 1198.1 metres, with values of 0.11, 0.43, 0.04, 1.23, 0.12 % respectively. In view of this, the mud density was raised from 1.09 sg to 1.13 sg from 1186 metres. At 1204 metres, having found a stable casing seat, it was decided to terminate this section.

The hole was circulated until the shakers were clean. Overpull of up to 40 klbs was recorded from 1204-1084 metres, and 2 bbls were swabbed into the well at 1084 metres. The bit was then washed back from 1084-967 metres before continuing to pull out of the hole to 909 etres. Running the bit back to bottom, bottoms-up was circulated with a wiper trip gas of 1.53% recorded. No swab gas was recorded. The bit was then tripped out of the hole without problem. This bit drilled 644 metres in 22.47 hrs (on-bottom) at an average rate of penetration of 28.66 m/hr and was graded 2-3-FC-H-E-1-EC-TD. The drilling parameters used on this bit run were: WOB 0 - 40 klb, RPM 120 - 140 and pump pressure 2850 psi at 755 gpm.

The wireline unit was then rigged up and the following logs were run:

Run	Log Type	Interval
1	DLL-MSFL-BHC-AS-GR-SP-CAL	549.0 - 1204 m
2	VSP	150.0 - 1189 m
3	CST (46 shot, 46 recovered)	563.0 - 1193 m

Casing (94 joints of 47 lb/ft, P110, 9.625") was then run, with the shoe set at 1189.37 metres. The casing was cemented with 311 sx class "G" cement Neat at 1.89 sg (15.8 ppg), and displaced with 37 bbls drill water and 260 bbls of mud.

8.5" Hole Section: 1204 - 2107 metres

NB#5, an 8.5" Security SS44G (open jets) was then made up and run into the hole. The top of the cement was tagged at 1162 metres. The float was then drilled together with the shoe and shoe track. The rathole was reamed and cleaned out to 1204 metres. New hole was drilled from 1204 to 1207 metres, and the bit surged for junk on bottom to recover lost CST bullets. Bottoms-up was circulated and the bit was then pulled back to the shoe to perform an FIT. The results were as follows:

Depth (m)	Casing Shoe (m)	Hole Size (inches)	Mud σ (sg)	Fracture Press (sg EMD)
1207	1189	8.50	1.13	1.94

The bit was run back to bottom and surged for junk. Drilling continued from 1207-1209 metres where the junk sub was worked for 10 mins, a flow-check performed and a slug pumped before pulling out of the hole due to slow penetration rates. This bit drilled 5.0 metres in 3.35 hrs (on-bottom) at an average rate of penetration of 1.5 m/hr and was graded 6-2-BL-N-1-I-BU-PR. The drilling parameters used on this bit run were: WOB 20 - 25 klb, RPM 76 - 81 and pump pressure 650 psi at 430 gpm.

NB#6, an 8.5" Hycalog DS61H (14-10-10 jets) was then made up in combination with a Teleco MWD tool and run into the hole. The bit was washed down the last 17 metres to bottom in order to measure the MWD in this section. Drilling continued from 1209 metres, with surveys taken at each 5th stand, indicating that the angle was building from 2.5° to 4°. From 1379 metres, partial loss of returns were suspected and drilling was halted at 1383 metres and the well was monitored while circulating through the trip tank. With no losses registered, drilling continued with increased RPM from 140 to 150 in order to reduce hole deviation.

Connection gasses were noted in this section of the hole, and were recorded at 1364, 1393, 1422, 1451, 1481 metres with 0.08%, 0.05%, 0.08%, 0.04%, 0.06% respectively, above background. A drilling break at 1491 metres was flow-checked before drilling continued. More connection gases were noted at 1509, 1539, 1568, 1626 metres with 0.05%, 0.04%, 0.05%, and 0.07% respectively, above background. Another drilling break from 1648 to 1654 metres was flow-checked and the sample circulated up before resume drilling. Cavings were noted to have increased, and connection gases persisted at 1685, 1741, 1771, 1800 metres. A drilling break at 1821 metres was flow-checked and circulated up, with a maximum gas peak of 2.00% at 1811 metres. A decision was made to core and the bit was pulled. This bit drilled 612 metres in 24.23 hrs (on-bottom) at an average rate of penetration of 43.0 m/hr and was graded 3-8-RO-N-D-I-FC-CP. Typical drilling parameters used on this bit run were: WOB 0 - 18 klb, RPM 75 - 180 and pump pressure 2300 psi at 530 gpm.

CB#1, an 8.5" Diamant Boart Stratabit CD93 (9x9 jets: TFA 0.5591 $\rm in^2$) was then made up to a 9 metre core barrel and run in to 1707 metres where it washed and reamed to bottom. It cored 7 metres, from 1821-1828 metres, before it was halted due to slow rates of penetration. Typical drilling parameters used on this bit run were: WOB 6 - 27 klb, RPM 70 - 144 and pump pressure 1160 psi at 345 gpm. The bit was graded 4-4-BT-S-D-I-CT-PR. Recovery was 43%.

CB#2, an 8.5" DBS CB303 (with an undetermined TFA), was made up and run in with an 18 metre core barrel to continue coring. It cored a total of 14.5 metres, from 1828-1842.5 metres. At 1842.5 metres there was high circulation pressure and the penetration rate dropped to zero indicating that the core had jammed. On pulling out of the hole, a tight spot was noted at 1660 metres with 70 klb overpull. Typical drilling parameters used on this bit run were: WOB 18 - 28 klb, RPM 110 - 150 and pump pressure 1150 psi at 304 gpm. The bit was graded 0-8-RO-S-D-1-NO-PR. Recovery was 91.7%

CB#3, an 8.5" DBS CD502 (TFA 0.5591 in²), was made up and run in, and coring continued from 1842.5-1847 metres where it was halted because the penetration rate dropped to zero. A total of 4.5 metres were cored with a 100% recovery. Typical drilling parameters used on this bit run were: WOB 8 - 16 klb, RPM 72 - 114 and pump pressure 420 psi at 199 gpm. The bit was graded 0-8-RO-S-E-I-CT-PR.

NB#7, an 8.5" Hughes ATM22 (3x12 jets), in combination with a Teleco MWD tool, was run in and reamed down to bottom from 1810-1847 metres (the core rat-hole) in order to obtain MWD measurements in this

section, before proceeding to drill ahead with surveys taken at every connection. Due to reducing penetration rates drilling was halted, a flow-check made and a slug pumped prior to pulling out of the hole. Tight hole conditions, believed to be caused by a good filter cake ayer across the sandstone, were noted at 1970 metres and the bit had to be back-reamed to 1830 metres with a maximum overpull of 70 klb at 1891 metres. Typical drilling parameters used on this bit run were: WOB 7 - 29 klb, RPM 90 - 140 and pump pressure 2500 psi at 458 gpm. The bit was graded 8-8-BT-H-8-2-FC-PR.

The wireline unit was then rigged up and the following logs were run:

Run	Log Type	Interval	
1 2 3 4	DLL-MSFL-AS-GR-SP-AMS FMS-CDT-CNT-GRMS VSP RFT (4 Runs)	2024 - 1189 m 2024 - 1189 m 2017 - 920 m 1790 - 1058 m	

The BOPs were then tested to BHPP specification.

NB#8, an 8.5" Hughes ATM33 (3x12 jets), in combination with a Teleco MWD tool and a Howco temperature gauge, was run in to the shoe. Circulation was broken at the shoe and again just off-bottom in order to obtain temperature gauge readings. The bit was reamed down to bottom encountering 14 metres of fill. A flow-check was made and a lug pumped before pulling out of the shoe for a wiper trip as well as to retrieve the Halco temperature gauge. On running back in, a bridge was tagged at 1999 metres and reamed out to bottom. Drilling continued with surveys taken at every connections. At 2099 metres, a flow-check was made when a slight gain in the active pits was observed. An increase in rate of penetration at 2107 metres was also flow-checked.

With a suitable casing seat of about 30 metres of claystone drilled, it was decided that 7" liner should be run. At 2107 metres, a wiper trip to the shoe was made, with tight spots encountered from 2072 to 1940 metres. Maximum overpull of 100 klb was observed. A ledge at 1946 metres had to be back-reamed before the bit was pulled to the casing shoe. The bit was then run back in, washing and reaming from 2093 metres to bottom. After circulating the hole clean, the bit was pulled out to run the following wireline logs.

Run	Log Type	Interval
1 2	DLL-MSFL-AS-GR-SP-AMS CST-GR	2103 - 1800 m 2101 - 1195 m

NB#9, an 8.5" Security H77SG (open jets), was run in for a wiper trip. The bit took weight from 2097 metres and had to be washed and reamed to bottom, where it was surged for junk. On circulating bottoms-up, with a recorded wiper trip gas of 8.34%, a plug was pumped and the bit pulled out of the hole. It was graded 4-5-WT-A-4-1-BT-TD.

RR#9.1, an 8.5" Security H77SG (open jets), was run in for a scraper run to the bottom of the casing shoe. At the shoe, the scraper was worked and bottoms-up was circulated prior to pulling the bit out of the hole. Another wiper trip was made with RR#9.2, encountering 5 metres of fill before tagging bottom at 2107 metres. The bit was surged for junk and bottoms-up was circulated up and a slug pumped prior to pulling out of the hole to run 7" liner. The bit was graded 4-5-WT-A-4-1-BT-TD

Liner (84 joints of 7") was run to 2102 metres, where an attempt to break circulation found the liner to be packed-off, requiring the liner to be worked clear before circulating 1.5 times its volume. After an unsuccessful attempt to set the hanger, the ball was sheared at 2200 psi. On cementing the liner, it was set on bottom and a number of attempts were required to back out the running tool.

RR5.1, an 8.5" Security SS44G (12-14-open jets), was run in to 1084.5 metres where it was washed to the top of the liner at 1092 metres. The hole was circulated clean until there was no more cement coming over the shakers, and a slug was pumped before pulling the bit out of the hole. This bit was graded 8-3-BC-N-1-I-BU-BHA.

NB#10, a 6.0" Hughes J3 (3x12 jets), was run on 4.75" drill collars and 3.5" drill-pipe, to 1082 metres where it broke circulation and washed through to the top of the liner and pack-off sub at 1094 metres. Attempts to drill the pack-off sub resulted in pushing the pack-off sub further down the hole to 2036 metres. The bit then drilled through the pack-off sub and into cement. Once it was proven that cement was in the returns sample, and that it was still soft, a slug was pumped and the bit was pulled out of the hole and graded 2-2-WT-A-1-I-NO-DP.

A JM Packer was run in and set at the top of the liner at 1092 metres and was pressure-tested to 3500 psi. The BOPs were then pressure-tested to BHPPs specifications.

6.0" Hole Section: 2108 - 2425 metres TD

RR#10.1, a 6.0" Hughes J3 (3x12 jets), was made up and run in to drill cement, float collar at 2060 metres and shoe track at 2108 etres. The junk sub was worked a number of time, before drilling new formation commenced. At 2111 metres, bottoms-up was circulated and the bit was pulled to the shoe for a Formation Integrity Test. The results were as follows:

Depth (m)	Casing Shoe (m)	Hole Size (inches)	Mud σ (sg)	Fracture Press (sg EMD)
2111	2108	6.00	1.15	1.85

The bit was run back to bottom and drilling continued from 2111 metres, with the riser being flushed every 2 hours and flow-checks made at drilling breaks at 2117.7 and 2126 metres. At 2131 metres, the junk sub was worked a number of times and the riser was flushed along with a slug pumped before pulling out of the hole for a bit change. Typical drilling parameters used on this bit run were: WOB 10 - 17 klb, RPM 41 - 64 and pump pressure 2170 psi at 261 gpm. The bit was graded 8-8-WT-A-2-2-NO-TQ.

NB#11, a 6.0" Hycalog DS46HG6 (3x11 jets), was made up and run in. Bottom was tagged at 2108 metres and the hole was washed and lightly reamed to 2131 metres. New hole was drilled from 2131 to 2209 metres ith the riser being boosted clean every hour. At 2209 metres, the pit was pulled due to the low penetration rate. The hole was circulated clean, a survey was dropped, and a slug was pumped, prior to pulling out of the hole for a bit change. Typical drilling parameters used on this bit run were: WOB 5 - 13 klb, RPM 75 - 110 and pump pressure 2700 psi at 268 gpm. The bit was graded 8-8-LC-NS-D-I-WC-PR.

NB#12, a 6.0" Hughes ATJ44C (3x11 jets), was run in and washed and reamed from 2190 to 2209 metres. New hole was drilled to 2218 metres with the riser being flushed every three hours. At 2218 metres a drill break was encountered and a flow-check was performed (static). Drilling then continued to 2362 metres at which stage it was decided to pull the bit due to a combination of low penetration rate and hours run. Tight hole was encountered from 2237 to 2190 metres, with maximum overpull of 30 klb. The string had to be jarred free at 2184 metres, with maximum overpull of 50 klb. It was washed clear and no other problems were encountered on the trip out. Typical drilling parameters used on this bit run were: WOB 22 -27 klb, RPM 71 and pump pressure 1800 psi at 242 gpm. The bit was graded 4-5-WT-A-E-I-PT-HR.

NB#13, a 6.0" Smith F3 (3x11 jets), was run in and washed and reamed from 2277 to 2295 metres. New hole was drilled from 2295 to 2425 metres, with the riser being flushed every three hours, or as necessary. At 2425 metres, the hole was circulated clean before a

wiper trip to the shoe was made with no problem encountered. The bit was run in the hole and at 2424 metres, some fill was encountered and the hole was washed to bottom. Bottoms-up was circulated out before the bit was finally pulled out for the wireline logs. Typical drilling parameters used on this bit run were: WOB 20 -25 klb, RPM 71 and pump pressure 1800 psi at 255 gpm. The bit was graded 4-4-WT-A-4-1-BT-TD.

The following wireline logs were then run:

Run	Log Type	Interval
1 2 3 4 5	DLL-MSFL-AS-GR-SP-AMS CNL-FMS-GR VSP CST-GR CBL-VDC-USI	2224 - 2109.5 m 2425 - 2109.5 m 2425 - 1992.0 m 2420 - 2120.0 m 2106 - 1080.0 m

Minerva-1 was then tested according to the BHPP testing program (see Section 5: Testing and Evaluation [d] and [e] for further details).

b. Bit Optimisation

Bit performance was continuously monitored and the operator advised of rate of penetration, torque and formation changes. See Table 4 for detailed breakdown bit data. No bits were tripped on a cost/metre criteria.

Minerva-1 was drilled using a total of 13 new bits and 5 re-run bits in 138.91 hrs (on-bottom) at an average rate of penetration of 16.68 m/hr. Three coring bits were also used (at 9.13 hrs on-bottom) at with an average penetration rate of 2.85 m/hr.

36" Hole Section: this section was drilled in two runs, using one new bit and one re-run bit.

NB#1, a 26.0" Security S3J (IADC 111), run in tandem with a 36" hole-opener, drilled 23 metres to a depth of 105 metres in 0.65 hrs (on-bottom) at penetration rates varying between 21 and 156 m/hr with an average of 35.38 m/hr. Drilling parameters used were: WOB 0-20 klb, RPM 70-75 and pump pressure 1120 psi at 1050 gpm. This bit performed well and showed only minor wear consistent with the small amount of new formation penetrated. It was graded 2-2-WT-A-1-I-NO-TD.

RR#1.1, again run in tandem with a 36" hole-opener, was used to extend the 36.0" hole section from 105-115 metres after the drilling of the 9.875" pilot hole. This bit drilled 10 metres in 0.28 hrs (on-bottom) at an average rate of penetration rate of 35.71 m/hr. Drilling parameters used were: WOB 15-20 klb, RPM 110-115 and pump pressure 1250 psi at 1070 gpm. This bit performed well and showed only minor wear consistent with the small amount of new formation penetrated. It was graded 2-2-WT-A-1-I-NO-TD.

9.875" Hole Section: this section was drilled using one new bit.

NB#2, a 9.875" Security S44GF (IADC 137), was used to drill the pilot hole for this section from 105-560 metres, a distance of 455 metres, in 3.53 hrs (on-bottom). Penetration rates varied from 27 to 550 m/hr with an average of 128.89 m/hr. It was graded 2-2-WT-A-E-I-NO-TD. The bit was pulled to allow the section to be opened out to 36.0" showing only minor wear. Typical drilling parameters used were: WOB 0-17 klb, RPM 120 and pump pressure 1750 psi at 760 gpm.

17.5" Hole Section: this section was drilled with one new bit.

NB#3, a 17.5" Security SS44G (IADC 135), was used to open the remaining 9.875" pilot hole section of the previous run from 115-560 metres, in 4.52 hours (on-bottom). Penetration rates averaged 98.45 m/hr. This bit was pulled to run 13.375" casing, showing only minor wear for the amount of formation drilled and was graded 1-1-NO-A-E-1-NO-TD. Typical drilling parameters used were: WOB 10-20 klb, RPM 120 and pump pressure 2700 psi at 1080 gpm.

12.25" Hole Section: this section was also drilled using one new bit.

NB#4, a Hughes ATM-11HG 12.25" (IADC 437), drilled the cement, shoe track, shoe and 644 metres of new hole from 560 metres to 1204 metres, in 22.47 hours (on bottom). Penetration rates averaged 28.66 m/hr over the hole section. This bit performed well and showed only moderate wear consistent with the amount of new formation penetrated. It was graded 2-3-FC-H-E-1-EC-TD. Typical drilling parameters were: WOB 10-35 klb, RPM 120-140, and pump pressure 2850 psi at 755 gpm.

8.5" Hole Section: this section was drilled using 4 new bits and 3 core bits, totalling 63.68 hours at an average penetration rate of 14.2 m/hr.

NB#5, a Security SS44G 8.5" (IADC 135), was used to drill the cement, shoe track, shoe and clean up 15 metres of 12.25" rathole to 1204 metres. New hole was drilled from 1204-1209 metres, in 3.35 hours (on -bottom). Penetration rates averaged a low 1.5 m/hr because of a well cemented sandstone with abundant pyrite aggregates encountered after drilling out the rathole. This bit did not perform well considering the amount of new formation drilled. It recorded extensive wear in all areas, notably teeth and gauge, and was graded 8-8-BT-A-F-24-WT-TQ. Typical drilling parameters were: WOB 5-35 klb, RPM 100-115, and pump pressure 2300 psi at 405 gpm.

NB#6, a Hycalog DS61H 8.5" (IADC not available), drilled new hole from 1209 to 1821 metres, in 24.23 hours (on-bottom). Penetration rates averaged 43.0 m/hr over the hole section. This bit performed moderately well and showed wear above what was expected for the amount of new formation penetrated, and was finally tripped to core. It was graded 3-8-RO-N-D-I-FC-CP. Typical drilling parameters were: WOB 0-18 klb, RPM 75-180, and pump pressure 2300 psi at 530 gpm.

CB#1, a DBS CD93 8.5", cored 7 metres in 1 hour with an average penetration rate of 7 m/hr. Drilling was halted due to slow rates of penetration. Typical drilling parameters used on this bit run were: WOB 6-27 klb, RPM 70-144 and pump pressure 1160 psi at 345 gpm. The bit was graded 4-4-BT-S-D-I-CT-PR.

CB#2, a DBS CB303 8.5", continued the coring. It cored 14.5 metres in 7 hours at an average penetration rate of 2.07 m/hr. It was pulled because of a jammed core indicated by a high circulation pressure and the penetration rate dropping to zero. Typical drilling parameters used on this bit run were: WOB 18-28 klb, RPM 110-150 and pump pressure 1150 psi at 304 gpm. The bit was graded 0-8-RO-S-D-1-NO-PR.

CB#3, a DBS CD502 8.5", cored a further total of 4.5 metres in 1.13 hours with an average penetration rate of 4 m/hr. It was pulled due to very low penetration rates. Typical drilling parameters used on this bit run were: WOB 8-16 klb, RPM 72-114 and pump pressure 420 psi at 199 gpm. The bit was graded 0-8-RO-S-E-I-CT-PR.

NB#7, a Hughes ATM22 8.5" (IADC 517), drilled 184 metres in 18.82 hours with an average rate of penetration of 9.8 m/hr. It drilled through a predominantly hard and siliceous cemented sandstone, and was pulled because the penetration rate dropped to zero. Typical lrilling parameters used on this bit run were: WOB 7-29 klb, RPM 90-140 and pump pressure 2500 psi at 458 gpm. The bit was graded 8-8-BT-H-8-2-FC-PR.

NB#8, a Hughes ATM33 8.5" (IADC 537), drilled 76 metres in 8.15 hours with an average rate of penetration of 9.3 m/hr through a massive sandstone formation and into a soft to firm claystone bed. It performed two wiper trips to the shoe and had to ream certain sections. Drilling was halted in order to run a 7" liner and the bit was graded 1-1-NO-A-E-I-NO-FM. Typical drilling parameters used on this bit run were: WOB 7-31 klb, RPM 97-103 and pump pressure 2600 psi at 468 gpm.

NB#9, a Security H77SG 8.5" (IADC 335), was run in for a wiper trip prior to running 7" liner, washing and reaming from 2097 to 2107 metres. It did not drill any formation but was again used on a scraper run, and another wiper trip prior to being pulled and was graded 4-5-WT-A-6-I-NO-TD

RR#5.1, a Security SS44G 8.5" (IADC 135), was run in to ream out cement and was graded 8-3-BC-N-1-I-BU-BHA.

6.0" Hole Section: this section was drilled with three new bits, in 4 runs, in 56.5 hours (on-bottom) at an average rate of penetration of 5.6 m/hr.

AB#10, a Hughes J3 6" (IADC 136), was run in to drill out cement and packer. It unfortunately only managed to push the packer further down the hole and was pulled out of the hole and graded 2-2-WT-A-1-I-BHA.

RR#10.1, a Hughes J3 6" (IADC 136), was rerun and completed drilling cement and the shoe track. New hole was drilled from 2107 to 2131 metres, drilling 24 metres in 8.08 hours with an average ROP of 3 m/hr. The bit was pulled due to a pump pressure increase, later found to be caused by a blocked jet. Typical drilling parameters were: WOB 10-17 klb, RPM 41-64 and pump pressure 2170 psi at 261 gpm. The bit was graded 8-6-WT-A-4-I-NO-PR.

NB#11, a Hycalog DS46H66 6" (IADC unknown), drilled new hole from 2131 to 2209 metres in 8.08 hours (on-bottom) with an average penetration rate of 9.6 m/hr. The initial drilling rate was typical for a PDC bit (10-20 m/hr), but the lower section of the hole was strongly cemented medium to coarse sandstone which proved very detrimental to the bit. ROP was drastically effected (0.1-1.0 m/hr) initiating a bit change. On surface the bit displayed sever damage to the cutting faces and was badly eroded. Typical drilling parameters were: WOB 5-13 klb, RPM 75-110 and pump pressure 2700 psi at 263 gpm. The bit was graded 8-8-LC-NS-D-1-WC-PR.

NB#12, a Hughes ATJ44C 6" (IADC 267), drilled new hole from 2209 to 2295 metres in 17.77 hours (on bottom), with an average penetration rate of 4.8 m/hr. The lithology drilled was interbedded claystone and well cemented sandstone resulting in a slow relatively consistent ROP. The bit was pulled on hours run combined with a gradually decreasing average ROP. Typical drilling parameters were: WOB 14-23 klb, RPM 67-87, and pump pressure 1500 psi at 242 gpm. The bit was graded 4-5-WT-A-E-I-PT-HR.

NB#13, a Smith F3 6" (IADC 537X), drilled new hole from 2295 to 2425 metres (TD) in 23.5 hours with an average penetration rate of 5.5 m/hr. The relatively low penetration rate was due to the nature of the sandstone, but the Smith J3 was more suited to the matrix than the Hughes ATJ44C or the Hycalog PDC bit.

c. Hydraulics Optimisation

Hydraulics analyses were provided for the operator on a daily basis. Results of these analyses are provided on the daily Geological - Ingineering reports and on the Hydraulic data printouts in Appendices VII and VIII, respectively. A summary of this data is also provided in Table 5.

The rig was equipped with two NATIONAL 12P 160 triplex pumps. A pump output of 5.38 gal/stk at 96% efficiency was utilized.

36" Hole Section: 82 to 105 metres

This section was drilled with returns to the sea floor using seawater with guar gum, hi-vis sweeps as the drilling fluid. Flow rates of 1050-1070 gpm were used giving turbulent flow regimes within all annular sections. The impact force and percentage pressure loss were low due to the presence of the 36" hole-opener. However the lithology penetrated was probably insufficiently consolidated for the poor hydraulics to significantly affect the rate of penetration.

9.875" Pilot Hole Section: 105 to 560 metres

This section was drilled using seawater with hi-vis gel sweeps as the drilling fluid at a flow rate of 760 gpm, producing excellent cuttings transport properties but turbulent flow regimes within the 9.875" annular section. Bit hydraulics were optimal with the percentage pressure loss at the bit being 74% of the surface pressure.

12.25" Hole Section: 560 to 1204 metres

This section was drilled using a closed KCL mud system. Adequate mud rheology and flow rates in the order of 750-770 gpm resulted in laminar flow regimes throughout all sections of the annulus whilst drilling this section, thus keeping well below critical annular velocities and therefore hole erosion to a minimum. Cuttings transport was also optimal with sufficient annular velocities in the largest annular section (riser) to maintain efficient hole cleaning. Adequate nozzles (13-16-18) and flow rates also produced optimal bit hydraulics, despite the use of a MWD tool with the associated "parasitic" pressure loss, with a typical bit pressure losses of between 53 and 55%, producing hydraulic power of between 630 and 660 hp, impact force of between 1500 and 1560 lbf and a jet velocities of 128 m/sec.

8.5" Hole Section: 1204 to 2107 metres

This section was drilled with a KCL-PHPA mud system. Flow rates were maintained between 460 to 530 gpm, with the exception of the 3 coring runs which utilized a flow rate ranging from 200 to 345 gpm in which case flow rates were adequate but below optimal. Combined with good mud properties, laminar flow regimes were encountered throughout all

(:

section of the annulus. Thus, hole erosion was minimised while maintaining adequate cuttings transport in the largest annular section (riser). Even with the "parasitic" pressure loss associated with the MWD tool, the bit hydraulics were also optimal with bit pressure losses between 40 and 67% of total losses. Hydraulic power was maintained between 228 and 451 hp, impact force between 730 and 1010 lbf and jet velocity ranged from 95 to 135 m/sec.

6.0" Hole Section: 2107 to 2425 metres

This section was also drilled with a KCL-PHPA mud system. Flow rates were maintained between 252 to 263 gpm which, combined with good mud properties, to provide laminar flow regimes throughout all sections of the annulus. Adequate cuttings transport was able to be maintained in the largest section of the annulus (riser), but a riser booster pump was also utilised every two to three hours to prevent any possibility of cuttings settling in the riser. Bit hydraulics were sub-optimal with pressure losses between 39% and 47% of total loss. Hydraulic power was maintained between 85 and 115 hp, impact force between 328 and 396 lbf, and jet velocity ranged from 78 to 92 m/sec.

d. Borehole Condition.

Borehole condition was monitored by observing rotary torque, overpull and cavings for indications of tight hole. Carbides were also run to theck the lag and indicate the average hole size.

36" Hole Section: This was drilled with no hole problems.

9.875" Pilot Hole Section: The pilot hole was drilled to 560 metres with no hole problems. This was subsequently opened out to 36.0" to 115 metres without problems and the 30.0" casing run without drag. The remainder of the pilot hole section was then opened up to 17.5" and 13.375" casing run without problem.

12.25" Hole Section: This section recorded no hole problems whilst drilling until 1056 metres, where high torque and off-bottom drag on connections were first noted. Subsequently, connections were washed and reamed prior to making a connection. The attempted bit trip from 1204 metres showed overpull of 40 klb from 1204 to 1084 metres, swabbing in 2 bbls of formation fluid. However after a wiper trip to bottom, the hole condition stabilized resulting with no further overpull on pulling the bit. A carbide lag check at 1023 metres indicated that the sandstone sections may have been washed out to give an average hole size of 14.4". Wireline logs and 9.625" casing were then run without any problem.

8.5" Hole Section: This section was drilled without any hole problems to 1680 metres, even though certain pressure indicators such as the extra and resistivity readings indicated a possible over-pressuring from 1300 metres, with the subsequent raising of the mud density at 1450 metres from 1.12 to 1.15 sg. From 1680 metres, there was a slight increase in cavings to 20%. Although very few of these cavings were indicative of over-pressure, the mud density was increased again to 1.17 sg.

While making three coring runs, precautionary reaming was required, and tight hole was noted at 1660 metres with 70 klb overpull on the second coring run, which correlates with a porous sandstone. The hole was generally regarded as being in good condition. A carbide run at 2002 metres indicated an average hole size of 9.8", suggesting substantial hole erosion in the upper hole section. However, on pulling out, tight hole was noted at 1970 metres, requiring reaming at 1830 metres with a maximum overpull of 70 klb at 1891 metres. Wireline logs run at the end of this section showed certain upper sections of the hole to be washed out, with the basal interval generally close to in-gauge. The hole geometry itself appeared oblong rather than circular. The tight hole condition was thought to be caused by very porous sands with a good filter cake.

While running in with NB#8, 14 metres of fill were encountered, while a wiper trip after that noted a bridge at 1999 metres, requiring the bit to ream to bottom. A wiper trip with NB#9 also required reaming from 2097 metres to bottom.

6.0" Hole Section: This section encountered almost immediate problems. While running in with NB#11 (with only 24 metres of new formation having been drilled), 23 metres of fill and relatively tight hole were encountered, requiring the bit to be washed and reamed to bottom. Also, when tripping out with this bit at 2209 metres, tight hole was encountered from 2137-2190 metres (30 klb maximum overpull). The drill string had to be jarred and washed free at 2184 meters (maximum overpull of 50 klb). No other hole problems were encountered in this hole section.

The electric logs run over this section showed the hole to be relatively in-gauge. Only the basal 10 metres showed any significant erosion. During the running in of the VSP logging tool, tight hole, attributed to mud cake build-up, was encountered from 2230-2250 metres. Similar problems occurred during the retrieval of the CST tool, with tight hole at 2215 metres (maximum overpull 4 klb).

3. PRESSURE EVALUATION

a. Formation Fracture Pressure

Fracture pressures were calculated using the "Constant Effective Stress Ratio" method. This utilises leak-off data and allows for lithological and pore pressure variations. It should be noted that this method assumes uniform tectonic stress, and any unconformities may place the section on either side in a different stress regime. See Appendix III, Pressure Gradient Analysis Plot.

Three Formation Integrity Tests were conducted during the drilling of Minerva-1 and the results were as follows:

Depth (m)	Casing Shoe (m)	Hole Size (inches)	Mud σ (sg)	Fracture Press (sg EMD)
560	550.0	12.25	1.09	2.13
1207	1189.0	8.50	1.13	1.94
2108	2108.0	6.00	1.15	1.85

No estimate can be made of the fracture pressure characteristics of the 36", 9.875" and 17.5" hole sections as there were no returns to surface.

whilst drilling the 12.25" hole section, mud losses remained low and no partial or total loss of returns was encountered. The minimum fracture pressure of 2.13 sg was not exceeded at any time by the maximum circulating density of 1.14 sg. Some minor mud losses were encountered while running wireline logs in this section but were thought to be the product of mud invasion resulting from an overbalanced mud system.

The 8.5" hole section was drilled with no significant mud losses. At 1379 metres, a suspected partial loss of returns was flow-checked and circulation was made through the trip tank but it was found to be static. The minimum estimated fracture pressure of 1.72 sg EMD was never exceeded by the maximum equivalent circulating density of 1.20 sg.

The 6.0" hole section was drilled with no mud losses utilising a fluid density of 1.15 sg, with a maximum equivalent circulating density of 1.23 sg. This value was far below the minimum estimated fracture pressure of 1.85 sg EMD.

b. Formation Pore Pressure

Pore pressure indicators, including Dxc, flowline temperature, mud resistivity, hole condition, cavings and gas values, were monitored on a continuous basis while drilling and pore pressure estimates were reported to the operator on a daily basis. Plots of relevant pressure indicators and pressure estimates are detailed in the Drilling Data Pressure Plot in Appendix II and the Pressure Gradient Analysis Plot in Appendix III. Based on data from nearby wells, a normal pore pressure gradient of 1.03 sg EMD (8.6 ppg) was assumed for Minerva-1.

36.0", 9.875" and 17.5" Hole Sections

It was not possible to accurately monitor pore pressure through these sections as there were no returns to surface. However the DXC plot showed a normal trend through this interval and it is assumed that pore pressure remained normal at 1.03 sg EMD to 560 metres.

12.25" Hole Section

This section of the well showed a normal pore pressure regime to 1056 metres. Tight hole conditions were indicated with the presence of high torque and off-bottom drag, while connection gases appeared at 1081, 1110, 1139, 1168 and 1198 metres, with values of 0.19/0.08%, 0.68/0.25%, 0.24/0.2%, 1.43/0.2% and 0.33/0.21% respectively. The mud density was subsequently raised from 1.09 to 1.13 sg. On reaching casing point, overpull of 40 klb were noted and 2 bbls were swabbed. Dxc, temperature and resistivity values indicate a normally pressured regime existed. A slightly increasing background gas was noted. From the data obtained whilst drilling this hole section, the formation pressure was assumed to be normal. However, the electric logging runs over this interval (Sonic and resistivity) indicated the possibility of some over-pressuring.

8.5" Hole Section

The 8.5" hole section showed signs of over-pressuring with the occurrence of connection gases at 1363, 1393, 1422, 1452, 1481, 1509, 1539, 1568, 1626, 1685, 1742, 1771 and 1800 metres, with gas values of 0.04% to 0.1% above the background gas. Some overpressured and stress relief-type cavings were also seen at surface from 1680 metres. Indications of overpressure from the Dxc trend were visible but an attempt to quantify the pore pressure from the Dxc values was difficult as a PDC bit was being used. However, the pore pressure was estimated to be between 1.13 and 1.14+ sg EMD, and the mud density was initially raised to 1.17 sg. With the disappearance of connection gases and the stabilizing of the pressure indicators, the mud density was reduced to 1.15 sg. A return to normal pore pressure regime is believed to have occurred from 1941 to 2107 metres, based on the fact that the Dxc trend from a regular tri-cone bit showed a normal pressure trend while the background gas reduced significantly and remained low at around 0.08%, showing no increasing trend, coinciding

with the absence of connection gases. Flow-checks made during drill breaks were static and there was no overpressured cavings present at the shakers. The temperature and resistivity readings also corroborated with this normal pressure trend.

From the RFT results, over-pressuring was indicated from 1650 to 1867 metres, with a maximum of 1.16 sg EMD, and reverting to a normal pore pressure regime from 1941 to 2107 metres.

6.0" Hole Section

The 6.0" hole section, from 2107 metres to 2425 metres TD, showed a normal pore pressure regime of 1.03 sg. Background gas was low at 0.05% and no connection gas was observed. The Dxc plot for this hole section generally showed a normal trend and deviations from the normal trend was mainly due to the bit type used e.g. PDC bit.

4. GEOLOGY AND SHOWS

Cuttings samples were collected at 5 metre intervals from the 13.375" casing shoe to the base of the 12.25" in hole section, from 565 to 1100 metres.

Cuttings were also collected at 3 metre intervals from 1100 to 2425 metres.

Samples from the following drilling depths were not collected due to excessively high drilling rates:

655, 680, 695, 710, 715, 725, 805, 815, 880, 895, 930, 1256, 1268, 1274, 1280, 1295, 1304, and 1364 metres.

The sample at 2069 metres was not collected due to the shaker screens being changed.

The lithologies seen in Minerva-1 are described below. For further descriptions see Appendix IX (Formation Evaluation Log).

Spud to 565.0 m: Returns to the sea floor

565-655 m: WANGERRIP GROUP INTERBEDDED SANDSTONE AND MINOR CLAYSTONE

SANDSTONE: brown to dark brown and occasionally dark grey, friable with abundant loose grains, medium to coarse, occasionally very coarse, subrounded to rounded and moderately sorted. The grains are occasionally iron stained with trace amounts of a grey brown argillaceous matrix. Weak silica cement, common pyrite grains with occasional glauconite grains and fossil fragments. Visual porosity was poor.

CLAYSTONE: dark brown, soft to dispersive and was very arenaceous. Accessories included pyrite.

There were no oil shows in the Wangerrip Group. Maximum gas was 0.03%.

655-1816 m: SHERBROOK GROUP INTERBEDDED SANDSTONE CLAYSTONE AND SILTSTONE

SANDSTONE 1: This upper sandstone was brown to reddish in colour and consisted of friable to loose, medium to very coarse quartz grains and very common red, brown, grey, and green lithics. It was poorly sorted with rounded to subangular grains with very rare red argillaceous matrix. There was very good visual porosity.

sandstone 2: This middle to lower sandstone was light grey to grey with occasional grey and green grains. The sandstone consisted of friable to hard with depth, fine to medium and occasionally very fine to coarse grains of quartz with minor lithics. Many grains are loose, nostly subrounded to rounded and well sorted and have traces of silica and calcareous cement. There is trace to common white to grey very dispersive argillaceous matrix which is occasionally silty, trace to abundant glauconite grains and pellets, and trace to abundant pyrite aggregates. Poor to very poor porosity.

CLAYSTONE: light grey to dark grey to occasionally light grey brown to black. It was soft to firm, very dispersive, arenaceous and silty in part, common to trace black carbonaceous material and traces of light brown dolomite fragments in part.

SILTSTONE: dark grey to medium grey, moderately hard to hard, subfissile to massive with moderately strong siliceous cement. It was moderately arenaceous and moderately argillaceous in part with trace to common glauconite, trace dolomite, trace micromicaceous in part, and occasional fossil fragments in part.

Gas Peaks

Depth	Gas(%)	C1	C2	С3	IC4	NC4	C5
1649m 1662m 1811m	2.76 4.06 2.10	2.60 3.20 2.08	0.045	0.0178 0.0267 0.0116	0	-	1 1 1

There were no oil shows recorded in the Sherbrook Group. Maximum gas was 4.06%.

1816-2100 m: UPPER SHIPWRECK GROUP

SANDSTONE WITH MINOR INTERLAMINATED CLAYSTONE AND

SILTSTONE

SANDSTONE: light grey to off-white with translucent to clear quartz grains. It consisted of friable to hard, very fine to very coarse grains which were dominantly medium to coarse. The grains are mostly subrounded to subangular and moderately to poorly sorted and have trace to common siliceous cement forming quartz overgrowths. There is trace to common very light grey argillaceous matrix, trace to common white kaolin, trace carbonaceous specks, and trace pyrite aggregates and cement. Fair to good inferred porosity.

CLAYSTONE: light grey to medium grey to occasionally dark grey. It was firm to moderately hard, massive to subblocky, very silty and arenaceous in part, trace to non-calcareous, common to trace black carbonaceous material and traces of pyrite.

SILTSTONE: dark grey to black, moderately hard to hard, subfissile to sub-blocky. There was traces of quartz sand, argillaceous in part with trace Carbonaceous specks.

Gas Peaks

Depth	Gas(%)	C1	C2	C3	IC4	NC4	C5
1823m 1879m	1.06 1.02	1.03 1.017	0.011		0	-	-
1883m 1890m	1.11 1.23	1.08 1.14	0.111		0.0015 0.0016	-	<u>-</u>
1908m	1.55	1.43	0.154	0.0074	0	-	-

No oil shows were recorded in the Upper Shipwreck Group. Maximum gas was 1.55%.

2100-2425 m: LOWER SHIPWRECK GROUP INTERBEDDED SANDSTONE AND CLAYSTONE WITH MINOR SILTSTONE

ARGILLACEOUS SANDSTONE: light grey to off-white and occasionally light olive grey with translucent to clear quartz grains. The sandstone consisted of friable to hard, fine to coarse grains which were dominantly medium. The grains are mostly rounded to subangular and moderately to well sorted and have common to abundant white to light grey argillaceous matrix. There is trace to common pale green, brown, pale yellow, red, and black lithics, occasional siliceous and calcareous cement, trace to common white kaolin, trace carbonaceous specks, and trace pyrite aggregates and cement. Poor inferred porosity.

CLAYSTONE: light grey to medium grey. It was soft, amorphous, very dispersive, very arenaceous in part, common to trace black carbonaceous material, massive.

SILTSTONE: light to medium grey, moderately hard to hard, subfissile to blocky.

There were no oil or gas shows recorded in the Lower Shipwreck Group. Maximum gas was 0.35%.

Geology Summary: Minerva-1

		RC	ROP (m/hr)	(L)	TOTAL GAS	GAS			СВ	ROMATO	GRAPH	CHROMATOGRAPH ANALYSIS (%)	IS (%)	_		
DEPTH	LITHOLOGY					(%)	C1 Me	C1 Methane	C2 Ethane	hane	C3 Pr	C3 Propane	C4 Butane	ıtane	C5 Pe	C5 Pentane
INTERVAL (mRT)		Min	Мах	Avg	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Min	Мах
82 -7216	HEYTESBURY GROUP	20	352	138	0	0	I	ı	ı	1	t	1	1	ı	ı	1
7216 -7315	NIRRANDA GROUP	29	554	136	0	0	ı	ı	1	1	ı	1	ı	ı	1	.1
7315 - 655	WANGERRIP GROUP	m	580	188	0	0	t	ı	ı	1	i	1	ı	1	ı	1.
655 - 1816	SHERBROOK GROUP	М	545	70	0	4.06	0	3.21	0	0.05	0	0.03	0	0.005	1	ı
1816 - 2100	UPPER SHIPWRECK GROUP	H	សួ	11	0.19	1.55	0.12	1.43	0	0.02	0	0.008	0	0.002	ı	ı
2100 - 2425	LOWER SHIPWRECK GROUP	ન	30	7	0.03	0.35	0.03	0.33	0	0.02	1	ı	ı	1	ı	l

5. TESTING AND EVALUATION

a. Hydrocarbon Evaluation

Standard mudlogging techniques were utilized while drilling the Minerva-1 well. Total combustible gas levels in the mud were monitored continuously using an FID Total Gas Detector. The gas was also analyzed for its components (methane through pentane) using an FID Chromatograph and the data was continuously recorded on-line via the use of an Integrator. Carbon dioxide and hydrogen sulfide detectors were also run for the duration of the well. The drill cuttings, unwashed and washed were observed under ultra-violet light and cut with solvent to check for the presence of liquid hydrocarbons. Selected chromatograph data at certain depth intervals were used to produce gas ratio plots as an aid in interpreting any oil shows.

b. Wireline Logging

Depth (m)	Hole Diameter (inch)	LOGS
1204.0	12.25"	DLL-MSFL-BHC-SP-GR-CAL-AMS VSP CST (30 shot) (27 recovered)
2031.0	8.50"	DLL-MSFL-AS-AMS-GR-CAL FMS-CNL-LDL VSP RFT
2107.0	8.50"	DLL-MSFL-AS-AMS-GR-CAL CST (60 shots) (57 recovered)
2425.0	6.00"	DLL-MSFL-AS-AMS-GR-CAL FMS-CNL-LDL VSP RFT

c. Coring

Three successive fiberglass sleeved cores were cut in the 8.5" section of this well, from 1821 - 1847 metres.

CORE NUMBER	DEPTH INTERVAL(m)	RECOVERY (%)
1	1821.0 - 1828.0 m : 7.0 m	43
2	1828.0 - 1842.5 m : 14.5 m	92
3	1842.5 - 1847.0 m : 4.5 m	100

d. Measurement-While-Drilling (MWD).

MWD service was provided by Eastman-Teleco from 540-2107 metres. Data was regularly transferred to EXLOG's DrillByte computer and lotted against penetration rates. The data was submitted to BHPP on a daily basis. See Appendix IV for the MWD data plot.

e. Repeat Formation Testing

33 RFT pretests were performed in one run. Three (3) RFT samples were taken at 1649.8 metres, 1931.0 metres and 1942.5 metres.

Chromatograph analyses were performed on the gas samples and the results are tabulated in Table 6.

f. Drill Stem Test

Minerva-1 was tested using the Drill Stem Test (DST). The zone tested was from 1838-1816 metres.

DST-1 Chronology:

Time Activity

08.04.93

- 04:30 Rig up Wireline.
- 05:00 Prepare and run Perforating Gun #1.
- 17:03 Fire Perforating Gun (perforating 1838-1827 metres).
 POOH with wireline 7 bbl gain.
- 07:17 Close upper annulars
- 07:30 Pump 7 bbls. Annular not closed. Gain in trip tank.
- 07:35 Open upper annular, close lower. Pumped 25 bbls gained in trip tank.
- 08:12 Pump 10 bbls, gain 7 bbls in trip tank (2900 psi pump pressure). Bleed pressure from 2100 psi to 500 psi through choke.
- 08:30 Observe well.
- 09:22 Bleed pressure from 350 psi to 100 psi in 100 psi increments.
- 10:05 Pressure zero psi.
- 10:21 Open choke. Observe well.
- 10:23 Open upper annular.
- 10:24 Open lower annular. Observe well. Well static.
- 10:30 POOH with Schlumberger. Well static.
- 13:00 Make up bit and BHA and RIH to 1815 metres. Break circulation at 989 metres.
- 16:30 Circulate and increase mud density to 1.17 sg. Flow-check.

 Maximum gas 5.35%. Bottoms-up gas 1.14%. Spot 20 bbl hi-vis
 pill and flow-check OK.
- 19:15 POOH. Hole took correct displacement.
- 21:30 Rig up and run 3.5" tubing.

09.03.93

- 00:00 Continue make up and rack back in derrick 3.5" tubing.
- 03:30 Rig up Schlumberger.
- 04:00 Prepare and run Perforating Gun #2.
- Fired Perforating Gun #2 (perforations 1827.5 -1825 metres 06:31 and 1821 - 1816 metres).
- POOH with perforating guns and lay out same. Prepare and run Baker Packer Assembly "A". 08:18
- 08:45
- Set Baker Packer "A" at 1800 metres. Monitor hole on trip 11:12 tank. Losses 1 bbl/hr.
- 12:00 POOH with wireline and rig down Schlumberger.
- 13:00 Make up test string and RIH.
- 15:30 Pressure test HRS surface equipment and test tools to 3500 psi for 10 minutes. OK.
- Continue RIH whilst make up 3.5" tubing to 870 metres. 16:45
- 19:00 Rig up and test tubing to 3500 psi for 10 minutes.
- 19:30 Continue to RIH whilst making up 3.5" tubing.

10.04.93

- Pressure-test tubing and test valve to 3500 psi. 00:15
- Paint 3 joints. Continue to RIH with 3.5" tubing. 01:00
- 02:00 Increase flow from tubing string. Install TIW valve.
- 03:00 Rig up to reverse-circulate.
- Close annular. Reverse-circulate max gas 18.4%. Continue circulate for 300 stks until brine at 1.17 sg throughout 03:17 hole. Shut down pump and observe well. Static.
- Continue RIH. Stab into packer. 05:00
- 06:00 Close annular, shear TST, cycle OMNI valve and test packer to 1300 psi.
- POOH for space out calculations. 06:30
- 07:00 Trip 3 stands to confirm space out calculations.
- 07:30 Run upper test string.
- 11:00 Rig up extended bails for lubricator.
- 11:30 Pick up flow head.
- 12:00 Rig up coflex hose and kill line.
- Rig up HRS on rig floor and test shear rams. Close upper pipe 12:30 rams. Test surface equipment. Function test OMNI valve to blank and pressure-test from OMNI to choke.
- Function OMNI several times to circulate port and displace 20 15:00 bbls diesel.
- Function OMNI to Position 1. Held safety meeting. 15:15
- Open lower pipe rams and function OMNI pressure to 2300 psi to shear lower pipe ram pins. Bleed off pressure up annulus to 1300 psi and open well to flow to starboard side burner 15:45 boom.
- 19:00 Shut in well. Bleed off. Lower pipe ram not closing. Pressure up to 2500 psi and hold for 10 minutes.
- 19:26 Bleed off. Well shut in. Monitor trip tank.

11.04.93

- Well shut in. Continue monitor trip tank. 00:00
- Open well to port side burner boom. Maintain 1300 psi on 03:19 annulus.
- Wind change. Change flow to starboard burner boom. Maintain **15:40** 1300 psi annulus pressure.

12.04.93

Shut in well. Monitor well on trip tank. Monitor annulus 03:20 pressure (0 psi).

13.04.93

- Cycle OMNI valve 03:30
- Reverse-circulate with rig pumps to HRS choke and separator. 04:15
- Rig up Halliburton. Open variables. Pump 10 bbls mud. 04:30
- Close variables. Cycle OMNI valve to well test position. 05:00
- Bull head. Pump 12 bbl into formation. Maximum pressure 2000 05:15 psi.
- Cycle OMNI valve. Pump down string to check that OMNI open. 06:00
- Open variables. 07:00
- Observe well. 07:15
- Circulate bottoms-up. Maximum gas 1.55% 08:00
- 10:00
- Rig down flow head, coflex hose and kill line.

 Observe well for 10 minutes OK. POOH with 3.5" tubing. 10:30

uring the testing gas was collected from the HRS separator and analysed. The averaged results were as follows:

Gas	ppm	*
C ₁	190200	95.5
C ₂	4281	2.1
C ₃	3142	1.6
C ₄	606	0.3
NC ₄	778	0.4
C ₅	235	0.1

6. DATA INVENTORY

The following were supplied to BHPP on a daily basis or as required:

1 copy Morning Report

1 copy Hydraulics Printout

1 copy Formation Evaluation Log

In addition, data was transmitted by modem, on a daily basis, to a Drillbyte system in BHPPs Melbourne office.

On completion of Minerva-1, all charts, worksheets, raw data and data disks were forwarded to EXLOG Australia. Four (4) copies of the Final Well Report were compiled, with EXLOG Australia retaining one (1) copy, as well as all relevant data.

EXLOG Australia will use all reasonable diligence to maintain and store the listed items in a manner to reasonably prevent damage or loss. Provided, however, EXLOG Australia assumes no responsibility for the loss, damage or theft of these items or information contained herein, and shall not be liable to the Operator in any such event irrespective of cause, fault, or the active or passive negligence of EXLOG Australia its employees.

TABLES

- 1. Deviation Survey Record
- 2. Casing and Cementing Details
- 3. Drilling Fluid Properties
- 4. Bit Record
- 5. Bit Hydraulics Record
- 6. RFT Preliminary results

Table 1: Survey Data

Depth	Inclination deg	Azimuth deg
560	1.0	-
572	0.6	265.8
719	0.4	216.2
863	0.6	202.9
1038	1.5	214.1
1180	2.5	201.8
1265	3.7	203.6
1296	4.0	211.0
1385	4.8	200.8
1473	5.4	206.0
1559	6.0	216.0
1671	6.8	196.0
1733	7.4	192.7
1791	7.6	187.8
1880	7.6	185.7
1908	7.6	183.2
1937	7.6	182.1
1966	8.2	177.6
1995	8.6	175.5
2020	8.8	173.0
2050	8.9	170.5
2081	9.0	165.3

Table 2: Casing and Cementing Summary

Hole Depth	Hole Size in	Casing Hom in	Size ID in	Weight ppf	Shoe Depth		Cement Details
115	36.00	30.000	29.000	310	114	3	351sx 'G' cement @ 1.89 sg (15.8 ppg) + 2% CaCl
560	17.50	13.375	12.347	68	549	39	Lead: 635 sx Class 'G' cement @ 1.50 sg (12.5 ppg) + 0.45 gal/sx Econolite Tail: 502 sx Class 'G' neat slurry @ 1.90 sg (15.8 ppg) Displaced with 220 bbl seawater
1204	12.25	9.375	8.681	47	1189	74	311 sx Class 'G' cement Neat @ 1.89 sg (15.8ppg) displaced with 10 bbl drilling water + 260 bbl drillmud
2108	8.50	7.000	6.184	29	2108	84	Lead: 173 sx Class 'G' cement @ 1.58 sg (13.2 ppg) + 16.8 gals DEFORMER + 63 gals HALAD322L + 50 bbls mixwater Tail: 132 sx Class 'G' neat slurry @ 1.89 sg (15.7 ppg) + 15 bbls mixwater + 21.5 gals HALAD322L

Table 3: Mud Properties

Depth	NN Sg	Vis sec/qt	PV cp	¶P lb/cft²	Gels lb/cft² 10s/10m	F c <i>c</i>	FC 1/32*	SOL \$	3 01L	SD 1	MBT	рĦ	Cl Kpp=	Ca mg/l	K+ Kmg/l	KC1	PHPA 1b/bbl
560	1.03	Seawa	ter w	ith Guar	Gum Hi-V	is sw	eeps u	sed for	r the	36.0,	9.875	, 17.5	hole	sect	ions		
748 1130 1203 1320 1635 1745 1828 1842 1921 1971	1.09 1.10 1.13 1.12 1.15 1.17 1.16 1.17 1.15	50 58 50 48 52 56 50 50 46 46	17 18 18 16 20 18 20 15 12	19 22 21 18 25 26 20 20 16	5/12 8/14 6/14 5/8 10/21 8/28 4/20 4/18 4/25 5/25	6.0 5.5 5.0 4.8 5.0 5.5 6.0 6.0 5.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.5 6.0 6.6 6.8 7.6 8.5 9.9 9.1 9.4 9.4	-	0.25 Tr Tr Tr Tr Tr	8.0 10.0 12.0 12.0 14.0 15.0 17.5 17.5 15.0 15.0	9.1 9.0 9.7 9.2 9.0 9.0 9.0	27.0 25.0 34.0 35.0 34.0	200 160 400 320 240 230 200 170	26.3 27.7 29.6 25.0 30.5 30.0 23.0	5.0 5.4 5.6 4.8 5.8 5.7 4.4	0.99 - 0.81 0.81 - 0.81 1.10 1.10
2031 2084 2107 2131 2140 2209 2248 2295 2362 2425	1.13 1.15 1.15 1.15 1.15 1.15 1.16 1.15 1.15	45 43 45 45 43 45 45 42 46 46	12 12 17 12 14 15 15 14 15 15	18 16 20 16 16 18 18 17 19	5/25 3/15 4/14 3/7 3/7 5/8 5/8 4/6 5/9 5/9	5.5 5.0 4.6 5.0 4.8 4.5 5.2 5.4 5.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8.0 8.5 8.5 8.5 8.5 8.6 8.6		0.1 Tr Tr Tr Tr Tr	15.0 13.0 13.0 11.0 11.0 10.0 10.0 11.0	9.5 8.5 9.4 8.6 9.0 9.0 9.2 9.1	49.0 45.0 45.0 49.0 49.0 49.0	230 120 100 180 280 240 240 240	37.0 34.6 36.0 43.0	6.5 7.8 7.1 6.6 6.8 8.1 7.8 7.5 6.9	1.10 1.10 1.10 1.10 1.20 1.38 1.38 1.35 1.35

Table 4: Bit Record

Ror \$	Bit \$	Vendor	Type	Size in	IADC	Jets 1/32	Depth In (m)	Metres run	Hours	Avg ROP	WOB k1b	RPM	Torque amps	Pump psi	GPM	Grade IODLBGOR
「 1	NB1	Security H/O	S3J	26.00 36.00		24,24,24 CJx20,4x20	82.0	23.0	0.65	35.38	0-10	75-80	250-470	1150	1180	2-2-WT-A-1- I-NO-TD
2	NB2	Security	S44GF	9.875	137	3x16	105.0	455.0	3.53	128.9	0-17	100-120	40-119	1770	760	2-2-WT-A-E- I-NO-TD
3	RR1.1	Security H/O	S3J	26.00 36.00		24,24,24 CJx20,4x20	Open i	pen up 9.875" hole to 36.0" from 105-115m pen up 9.875" hole to 17.50" from 115-560m								
4	NB3	Security	SS44G	17.50	135	18,18,18	Open 1	ıp 9.875	hole hole	to 17.	0" fro	115-560)n			1-1-NO-A-E- 1-NO-TD
5	NB4	HTC	ATM11HG	12.25	437	13,16.18	560.0	644.0	22.47	28.66	10-40	120-140	200-450	2850	755	2-3-FC-H-B- 1-BC-TD
6	NB5	Security	SS44G	8.50	135	OPEN	1204.0	5.0	3.35	1.5	20-25	76-81	75-152	650	430	6-2-BC-N-1- I-BU-PR
7	NB6	Hycalog	DS61H	8.50		3x12,11,10	1209.0	612.0	24.23	43.0	0-18	75-180	200-560	2300	530	3-8-RO-N-D- I-FC-CP
8	CB1	DBS	CD93	8.50		9x9	1821	7.0	1.0	7.0	6-27	70-144	158-421	750	274	4-4-BT-S-D I-CT-PR
9	CB2	DBS	CB303	8.50			1828	14.5	7.0	2.07	18-28	110-150	119-376	1100	304	0-8-RO-S-D I-NO-PR
10	CB3	DBS	CD502	8.5		9x9	1842.5	4.5	1.13	4.0	8-16	72-114	128-386	420	199	0-8-RO-S-R I-CT-PR
] ¹¹	NB7	HTC	ATM22	8.5	517	3x12	1847	184.0	18.82	9.8	7-29	91-141	132-608	2500	458	8-8-BT-H-8 2-FC-PR
12	NB8	HTC	ATM33	8.5	537	3x12	2031	76.0	8.15	9.2	17-31	97-103	106-519	2600	467	1-1-NO-A-E- I-NO-PM
13	NB9	Security	H77SG	8.5	335	OPEN JETS										4-5-WT-A-6- I-NO-TD
14	RR9.1	Security	H77SG	8.5	335	SCRAPER RUN	RAPER RUN									
15	RR9.2	Security	H77SG	8.5	335	WIPER TRIP										
16	RR5.1	Security	SS44G	8.5	135	REAM OUT CE	MENT				*****					8-3-BC-N-1 I-BU-BHA
17	NB10	HTC	J3	6.0	136	DRILL CEMEN	Ī									2-2-WT-A-1 I-NO-DP

Table 4: Bit Record cont'd..

Run \$	Bit \$	Vendor	Туре	Size in	IADC	Jets 1/32	Depth In (m)	Metres run	Hours	Avg ROP	WOB #1b	RPM	Torque amps	Pump psi	GPM	Grade IODLBGOR
18	BB10.1	HTC	J3	6.0	136	3x12	2107	24.0	8.08	3.0	10-17	41-64	106-321	2170	261	8-8-WT-A-2 2-NO-TQ
19	NB11	Hycalog	DS46HG6	6.0	PDC	3x11	2131	78.0	8.08	9.6	5-13	75-110	100-240	2700	265	8-8-LC-NS-D -I-NC-PR
20	NB12	HTC	ATJ44C	6.0	627	3x11	2209	86.0	17.77	4.8	14-23	67-87	100-200	1500	242	4-5-WT-A-B -I-PT-HR
21	NB13	SMITH	F3	6.0	537 X	3x11	2295	130.0	23.50	5.5	20-25	71	100-180	1800	255	4-4-WT-A-4- 1-BT-TD

Note : Gauge in 1/16"

Table 5: Hydraulics Summary

Bit	Depth •	Hole Size in	Jets	un 36	PV/YP	Flow Rate EP#	ECD sg	Annular Velocities Min; DP ; DC ; Crit m/min	Jet Vel ∎/sec	HHP bp	Impact Force 1bf	Loss Bit <i>psi</i>	Pump Pres psi	XBit Loss
NB2	560	9.875	16,16,16	1.03	1/1	760	1.06	5 80 170 27	126	584	1401	1317	1770	75
NB3	560	17.500	18,18,18	1.03	1/1	1080	1.03	11 ; 29 ; 37 ; 26	142	1046	2235	1661	2700	62
NB4	765 1204	12.25	13,16,18	1.09		753 755	1.10 1.14	15 ; 46 ; 69 ; 118 16 ; 46 ; 69 ; 127	128 129	632 660	1492 1555	1439 1499	2600 2850	55 53
NB5	1208	8.50	Open	1.13	19/20	377	1.18	8 ; 57 ; 94 ; 164	16	5	95	22	500	5
NB6	1329	8.50	12,12,12 11,10	1.12	16/18	485	1.18	10 74 121 151	95	228	730	807	2000	40
	1747		11,10	1.16	19/24	530	1.23	11 86 132 175	104	308	903	998	2300	43
CB1	1828	8.50	9x9	1.17	18/26	274	1.22	5.6; 44 ; 65 ; 171	48	334	216	602	750	29
CB2	1842	8.50	3x9,2x10	1.17	20/20	303	1.22	6.2; 48 ; 85 ; 171	104	180	524	1019	1500	70
CB3	1847	8.50	9x9	1.15	15/18	108	1.17	2.2; 17 ; 27 ; 153	19	2	33	33	200	17
NB7	1971	8.50	3x12	1.15	15/18	457	1.20	9.4; 73 ;113 ; 146	135	448	1005	1681	2500	67
NB7	2031	8.50	3x12	1.13	12/18	458	1.19	9.4; 73 ;114 ; 146	135	451	1010	1688	2500	68
NB8	2107	8.50	3x12	1.15	17/20	467	1.19	9.6; 48 ;116 ; 163	138	477	1050	1755	2600	68
R10.1	2131	6.0	3x12	1.15	12/16	261	1.20	5.4; 40 ;145 ; 155	77	83	328	548	2170	39
NB11	2209	6.0	3x11	1.15	12/16	263	1.22	5.4; 40 ;146 ; 155	92	121	396	788	1692	47
NB12	2295	6.0	3x11	1.15	14/16	242	1.22	5.0; 37 ;134 ; 163	85	92	335	667	1563	43
NB13	2362 2425	6.0	3x11	1.15 1.15	15/18 15/18	252 255	1.23 1.23	5.2; 38 ;140 ; 174 5.2; 39 ;142 ; 174	88 90	106 110	364 372	724 748	1722 1769	42 42

Table 6: Preliminary Open Hole RFT Results

KB: 25.0 m Date: 23/3/1993

			Formatio	on Pressure	Temp.	Comments .
Test No.	Depth		Strain Gauge	HP Gauge		
	mTVDDF	mTVDSS	psig	psia	*c	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	1161.7 1651.5 1650.8 1649.8 1662.8 1662.2 1666.5 1666.8 1817.0 1829.5 1838.0 1845.0 1867.0 1875.5 1890.6 1906.5 1919.0 1923.8 1931.0 1935.7 1939.5 1942.8 1941.9 1951.5 1953.2 1959.2 1959.2 1959.2 1966.2 1972.2 1992.0	1136.7 1626.5 1625.8 1624.8 1637.8 1637.2 1641.5 1641.8 1792.0 1804.5 1813.0 1820.0 1842.0 1850.5 1859.5 1859.5 1865.6 1881.5 1894.0 1910.7 1912.6 1914.5 1914.5 1914.5 1914.5 1914.5 1916.0 1926.5 1928.2 1934.2 1947.2 1947.2	0 0 2678.9 2689.8 2739.9 2740.5 2711.5 2711.5 2713.1 2714.3 2718.3 2719.3 2721.2 2722.3 2724.5 2726.7 2727.7 2728.6 2727.7 2728.6 2730.0 2730.6 2730.3 2731.2 2730.9 2730.4 2741.0 2743.5 2751.9 2761.7 2769.9 2797.2	13.0 2694.59 2705.43 2755.80 2756.55 2725.09 2726.08 2728.28 2829.17 2733.38 2733.38 2737.20 2739.36 2741.91 2742.19 2742.19 2744.70 2744.80 2745.70 2744.80 2745.70 2745.86 2745.92 2745.92 2745.92 2755.98 2758.30 2766.66 2775.91 2784.55 2811.95	58.8 79.8 80.7 81.3 81.4 87.5 88.6 91.9 92.3 94.1 94.5 94.7 94.7 95.6	Good test on casing Tight Tight Good Test Good Test Possible lost seal Possible lost seal Tight Good Test

RFT Sample Data Sheet (PRELIMINARY)

Well: Minerva-1 Date: 21 March 1993

KB 25.0 m

Sample No:

Depth: 1931.0 mAHKB TVDSS: 1901.7 m Formation Pressure: 2743.36 psia

Chamber No: RFS-1227 Lower Upper Chamber Size: 6 1 gal Time To Fill: 25 6 minutes Opening Pressure: 1850 1800 psig Gas Volume: 113 ft3 Total Liquids: 570 CC Oil/Condensate Volume: 15 CC Filtrate/Water Volume: 555 CC Gas Oil Ratio: --Scf/Stb Stb/MMscf

Condensate Gas Ratio: 8.0

Oil/Condensate Analysis

Specific Gravity: Too small to measure Colour: Too small to measure

Fluorescence: Bright Blue

Gas Analysis:

C1: 81.57 % C2: 6.70 % C3: 8.84 % iC4: 1.31 % nC4: 1.34 % C5+: 0.230 % CO2: 1.8 % H2S: 0 ppm

Water/Filtrate Analysis:

Lower Rw: 0.134

pH:Logged

C1-:

Total Hardness (Ca/Mg):

KCl: 24000 mg/l

Tritium Analysis:

Average Activity: N/A Bq/cc

Returns: % Filtrate:

RFT Sample Data Sheet (PRELIMINARY)

Well: Minerva-1 Date: 22 March 1993 KB: 25.0 m

Sample No: 2

1942.5 mAHKB Depth: TVDSS: 1938.1 m Formation Pressure: 2746.3 psia

Chamber No: RFS-1157 Lower Upper Chamber Size: 6 1 gal Time To Fill: 50 10 mins Opening Pressure: 2050 2000 psig Gas Volume: ft3 78 Total Liquids: 830 cc Oil/Condensate Volume: 20 CC Filtrate/Water Volume: 810 CC Gas Oil Ratio: Scf/Stb __

1.6 Condensate Gas Ratio: Stb/MMscf

Oil/Condensate Analysis

Specific Gravity: Too small to measure Colour: Too small to measure

Fluorescence: Bright Blue

Gas Analysis:

79.92 % C1: 6.41 % C2: C3: 9.40 % iC4: 1.35 % nC4: 2.20 % C5+: 0.71 % CO2: 2.0 % H2S: 0 ppm

Water/Filtrate Analysis:

Lower Drilled Rw: 0.084

pH: 6.8

C1-: 42000

Total Hardness (Ca/Mg):

38000 25000 mg/l KC1:

RFT Sample Data Sheet (PRELIMINARY)

Well: Minerva-1 Date: 23 March 1993

KB: 25.0 m

Sample No: 3

Depth: 1649.8 mAHKB TVDSS: 1647.9 m Formation Pressure: 2694.59 psia

Chamber No: RFS-AD-11 Lower Upper Chamber Size: 6 1 gal Time To Fill: 25 6 minutes Opening Pressure: 2100 2100 psig Gas Volume: 77.7 ft3 Total Liquids: 7500 cc Oil/Condensate Volume: CC Filtrate/Water Volume: CC Gas Oil Ratio: Scf/Stb

Condensate Gas Ratio: Stb/MMscf

Oil/Condensate Analysis

Specific Gravity: Too small to measure Colour: Too small to measure Fluorescence: Blue/White

Gas Analysis:

C1: 89.67 % C2: % 4.49 C3: 4.27 % iC4: % 0.65 % nC4: 0.72 C5+: 0.190 % CO2: % 0.6 H2S: ppm

Water/Filtrate Analysis: Lower Rw 0.089 pH: 6.4 C1-: 45000

Total Hardness (Ca/Mg):

KC1: 42000 mg/l

Tritium Analysis:

N/A Average Activity:

% Filtrate:

APPENDIX VI: Drilling Data Printout

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM VELL: MINERVA I

# ECD	
· · · · · · · · · · · · · · · · · · ·	0000000000000000

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

TIKE	DEPTH	ROP	WOB	RPK	TRQ	SPP	FLOW IN OUT	EN IN	DENSITY	IN Rad	TEMP	RETURNS DEPTH	PVT	-81	T-	ECD	DIC	GAS
h:mm:sec	2	m/hr	klb		amp	psi	gpa		sg	· deg		1	bbl	ats	hh:mm	sg		X
9th March	1993																	
NB #2 SEC	9.875 3	x16																
05:46:38	107.0	135.6	6.6	51	50	1610	711	1.03	0.00	17.7	0.0	97.1	666	2.0	0:00	1.32	0.38	0.0
05:47:28	108.0	37.4	7.4	63	50	1617	730	1.03	0.00	17.7	0.0	97.3	666	3.0	0:01	1.48	0.51	0.0
05:49:15	109.1	32.8	6.3	72	48	1619	743	1.03	0.00	17.7	0.0	97.7	666	4.1	0:03	1.64	0.58	0.0
05:50:05	110.0	64.9	7.2	77	54	1623	762	1.03	0.00	17.7	0.0	97.9	665	5.0	0:04	1.79	0.45	0.0
05:51:22	111.0	47.7	8.1	77	50	1623	764	1.03	0.00	17.6	0.0	98.2	666	6.0	0:05	1.95	0.47	0.0
05:52:28	112.0	60.2		79	49	1630	775	1.03	0.00	17.6	0.0	98.5	665	7.0	0:06	2.12	0.40	0.0
05:54:14	113.0		7.0		48	1723		1.03	0.00	17.5	0.0	98.9	666	8.0	0:08	2.24	0.44	0.0
05:54:49	114.0		8.9		59	1755		1.03	0.00	17.5	0.0	99.0	667	9.0	0:09	2.34	0.34	0.0
05:55:11	115.1		13.1		66	1760		1.03	0.00	17.5	0.0	99.1	666	10.1	0:09	2.51	0.30	0.0
05:55:33	116.1		11.3		65	1760		1.03	0.00	17.5	0.0	99.2	666	11.1	0:09	2.65	0.25	0.0
05:55:58	117.1		10.9		53	1760		1.03	*	17.5	0.0	99.3	666	12.1	0:10	2.79	0.28	0.0
06:12:42	118.0		6.3		52	1780		1.03	0.00	17.5	0.0	102.5	657	13.0	0:12	3.11	0.24	0.0
06:13:45	119.0		4.7		59	1771		1.03	0.00	17.3	0.0	103.0	657	14.0	0:13	3.17	0.25	0.0
06:14:22	120.2		6.2		70	1777		1.03	0.00	17.3	0.0	103.3	656	15.2	0:13	3.29	0.22	0.0
06:14:43	121.1		9.5		77	1778		1.03	0.00	17.3	0.0	103.4	656	16.1	0:14	3.39	0.20	0.0
06:15:05	122.0		9.1		68	1773		1.03	0.00	17.3	0.0	103.6	657	17.0	0:14	3.51	0.21	0.0
06:15:27	123.1		10.5	120	78	1773		1.03	0.00	17.3	0.0	103.7	657	18.1	0:15	3.62	0.17	0.0
06:15:46	124.1		11.3		70	1770		1.03		17.3	0.0	103.9	657	19.1	0:15		0.19	0.0
06:16:08	125.1		8.9		68	1770		1.03		17.3	0.0	104.0	656	20.1	0:15		0.17	0.0
06:16:28	126.2		9.9		77	1770		1.03		17.3	0.0	104.2	657	21.2	0:15		0.15	0.0
06:16:55	127.1		8.8		66	1770		1.03		17.3	0.0	104.4	657	22.1	0:16		0.12	0.0
06:17:28	128.1		9.0		69	1770		1.03		17.3	0.0	104.6	657	23.1	0:16		0.18	0.0
06:17:44	129.1		12.3		79	1770		1.03		17.3	0.0	104.7	657	24.1	0:16		0.15	0.0
06:18:06	130.1		10.5		61	1767		1.03		17.3	0.0	104.9	657	25.1	0:17		0.15	0.0
06:18:26	131.0		9.7		71	1767		1.03		17.2	0.0	105.0	657	26.0	0:17		0.15	0.00
06:18:48	132.1		10.9		72	1766		1.03		17.3	0.0	105.2	657	27.1	0:17		0.14	0.00
06:19:10	133.0		10.7		72	1768		1.03		17.3	0.0	105.3	652	28.0	0:18		0.14	0.00
06:19:45	134.0		9.3		61	1772		1.03		17.2	0.0	105.6	650	29.0	0:18		0.14	0.0
06:20:13	135.1		10.6		67	1787		1.03		17.2	0.0	105.8	650	30.1	0:19		0.15	0.0
06:20:41	136.2		10.5		60	1764		1.03		17.2	0.0	106.0	650	31.2	0:19		0.14	0.0
06:21:02	137.0		11.1		71	1762		1.03		17.3	0.0	106.1	650	32.0	0:19		0.15	0.0
06:21:27	138.2		11.5			1765		1.03		17.2	0.0	106.3	650	33.2		5.27		0.0
06:21:49	139.0		11.2		63	1763				17.2	0.0	106.5	650	34.0		5.24		0.0
06:22:17	140.0		10.9		69	1760		1.03		17.3	0.0	106.7	650	35.0	0:21		0.15	0.0
06:22:47	141.0		8.3		63	1760		1.03		17.3	0.0	106.9	650	36.0	0:21		0.12	0.0
06:23:20	142.1		10.1		72	1757		1.03		17.2	0.0	107.1	648	37.1	0:22		0.15	0.00
06:23:49	143.1		8.4		59	1750		1.03		17.3	0.0	107.4	640	38.1	0:22		0.15	0.00
06:24:17	144.0		8.0		62	1773		1.03		17.2	0.0	107.5	639	39.0	0:22		0.13	0.00
06:35:32	145.1		6.5		58	1770		1.03		17.2	0.0	109.7	640	40.1	0:23		0.67	0.00
06:35:56	146.0		8.1		84	1779		1.03		17.2	0.0	110.0	639	41.0	0:24		0.67	0.00
06:36:18	147.1		11.0		95	1785		1.03		17.3	0.0	110.4	640	42.1	0:24		0.65	0.00
06:36:33	148.0		11.4		18	1789				17.3	0.0	110.6	640	43.0	0:24		0.61	0.00
06:36:55	149.2	418.2	10.4	110	85	1790	161	1.03	0.00	17.2	0.0	111.0	640	44.2	V:25	1.08	U.39	0.0

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

TINE	DEPTH	ROP	WOB	RPM	TRQ	SPP	IN	LOW OUT	DUK In	DENSITY OUT	MUD In	TEMP OUT	RETURNS DBPTH	PVT	-BI	T-	BCD	DIC	GAS
h:mm:sec	1	m/hr	klb		amp	psi		{P=		3g	deg		1	bbl	∎ts	hh:mm	ag		x
06:37:14	150.2	164.0	12.2	116	86	1796	797		1.03	0.00	17.2	0.0	111.3	640	45.2	0:25	1.09	0.68	0.00
06:37:35	151.1		8.9		76	1797			1.03	0.00	17.2	0.0	111.6	639	46.1	0:25	1.09	0.69	0.00
06:38:00	152.2	156.2	9.1	118	79	1794	831		1.03	0.00	17.2	0.0	112.1	641	47.2	0:26	1.09	0.66	0.00
06:38:20	153.1		10.7		80	1795			1.03		17.2	0.0	112.4	640	48.1	0:26	1.09	0.67	0.00
06:38:42	154.1		9.0		84	1792			1.03	0.00	17.2	0.0	112.8	639	49.1	0:26	1.09	0.64	0.00
06:39:07	155.2	201.5	9.5	119	73	1798	837		1.03	0.00	17.2	0.0	113.2	640	50.2	0:27	1.10	0.60	0.0
06:39:31	156.0	139.3	8.8	119	76	1800	838		1.03	0.00	17.2	0.0	113.6	640	51.0	0:27	1.10	0.68	0.00
06:39:50	157.0	169.7	10.8	119	81	1800	838		1.03	0.00	17.2	0.0	113.9	640.	52.0	0:27	1.10	0.66	0.00
06:40:15	158.1	134.4	9.8	119	74	1799	832		1.03	0.00	17.2	0.0	114.3	640	53.1	0:28	1.10	0.70	0.00
06:40:49	159.1	126.4	8.1	119	65	1798	827		1.03	0.00	17.2	0.0	114.8	640	54.1	0:28	1.10	0.70	0.00
06:41:18	160.0	131.4	8.1	119	17	1800	833		1.03	0.00	17.2	0.0	115.3	640	55.0	0:29	1.10	0.69	0.00
06:41:44	161.1	129.7	7.9	119	63	1800	836		1.03	0.00	17.2	0.0	115.8	640	56.1	0:29		0.69	0.00
06:42:10	162.2	177.8	9.5	119	76	1799	832		1.03	0.00	17.2	0.0	116.2	638	57.2	0:30		0.63	0.00
06:42:31	163.0	158.7	9.3		85	1798			1.03		17.2	0.0	116.6	630	58.0	0:30		0.66	0.00
06:42:53	164.0	178.5	9.5		81	1798			1.03		17.2	0.0	116.9	623	59.0	0:30		0.63	0.00
06:43:20	165.1		8.4		66	1794			1.03		17.2	0.0	117.4	623	60.1	0:31		0.47	0.00
06:43:54	166.0	99.3	8.7		77	1792			1.03		17.2	0.0	117.9	622	61.0	0:31		0.77	0.00
06:44:25	167.1		10.5		89	1797			1.03		17.2	0.0	118.4	622	62.1	0:32		0.69	0.00
06:44:47	168.1		9.3		12	1794			1.03		17.2	0.0	118.7	622	63.1	0:32		0.70	0.00
06:45:12	169.0		10.2		83	1791			1.03		17.2	0.0	119.1	622	64.0	0:33		0.69	0.00
06:45:37	170.1		9.5		75	1794			1.03		17.2	0.0	119.5	622	65.1	0:33		0.58	0.00
06:46:07	171.0		7.8		69	1800			1.03		17.2	0.0	120.0	622	66.0	0:34		0.74	0.00
06:56:53	172.1		7.1		70	1789			1.03		17.2	0.0	124.0	622	67.1	0:34		0.76	0.00
06:57:12	173.1		10.6		93	1779			1.03		17.1	0.0	124.3	623	68.1	0:34		0.62	0.00
06:57:30	174.1		11.4		79	1779			1.03		17.2	0.0	124.7	620	69.1	0:35		0.67	0.00
06:57:52	175.1		9.9		80	1780			1.03		17.2	0.0	125.2	612	70.1	0:35		0.64	0.00
06:58:16	176.1		9.6		84	1780			1.03		17.1	0.0	125.7	613	71.1	0:35		0.68	0.00
06:58:38	177.1		11.4		88	1780			1.03		17.1	0.0	126.2	612	72.1	0:36		0.68	0.00
06:59:00	178.2		11.1		87	1783			1.03		17.2	0.0	126.6	613	73.2	0:36		0.55	0.00
06:59:25	179.1		10.0		17	1787			1.03		17.2	0.0	127.1	613	74.1	0:37		0.69	0.00
06:59:49	180.0		10.0		81	1790			1.03		17.1	0.0	127.6	613	75.0	0:37		0.71	0.00
07:00:16	181.2		11.6		74	1785			1.03		17.2	0.0	128.2	613	76.2	0:37		0.69	0.00
07:00:48	182.1		7.4		66	1789			1.03		17.2	0.0	128.8	613	77.1	0:38		0.67	0.00
07:01:25	183.0		4.6		63	1788			1.03		17.2	0.0	129.7	613	78.0	0:38		0.70	0.00
07:01:25			9.0			1790			1.03			0.0	130.3	613	79.1		1.09		0.00
	184.1																		0.00
07:02:18	185.1		9.2		70 cc	1790				0.00		0.0	130.7	613	80.1	0:39		0.66	
07:02:45	186.1		7.9		66	1785			1.03			0.0	131.3	613	81.1	0:40		0.72	0.00
07:03:13	187.2		9.5		75	1787			1.03			0.0	131.8	613	82.2	0:40		0.68	0.00
07:03:40	188.0		6.6		60	1784			1.03		17.2	0.0	132.5	607	83.0	0:41		0.73	0.00
07:04:11	189.1		9.6		83	1788			1.03	0.00		0.0	133.1	500	84.1	0:41		0.66	0.00
07:04:33	190.0		10.4		78	1781			1.03		17.2	0.0	133.6	599	85.0	0:42		0.70	0.00
07:04:57	191.1		10.7		78	1780			1.03		17.1	0.0	134.1	600	86.1	0:42		0.68	0.00
07:05:22	192.0		9.6		69	1780			1.03		17.1	0.0	134.6	599	87.0	0:42		0.70	0.00
07:05:50	193.1		10.7		17	1780				0.00		0.0	135.2	599	88.1		1.09		0.00
07:06:12	194.0	155.9	10.1	119	72	1780	768		1.03	0.00	17.2	0.0	135.7	599	89.0	0:43	1.09	0.68	0.00

DrillByte Drilling Data Printout COMPANY: BMP PETROLEUM WELL : MINERVA 1

							_	_			_																																	
07:43:21 07:44:02	07:42:47	07:42:22	07:42:02	07:41:43	07:41:28	07:41:15	07:41:06	07:40:48	07:40:35	07:29:23	07:29:04	07:28:45	07:28:24	07:28:09	07:27:41	07:27:12	07:26:54	07:26:31	07:26:09	07:25:41	07:25:06	07:24:41	07:23:52	07:23:13	07:22:29	07:22:07	24.31.10	07.20.40	07:20:04	07:19:36	07:19:11	07:18:47	07:18:22	07:17:54	07:17:29	07:17:07	07:15:41	07:08:18	07:07:47	07:07:20	07:06:40	H. MM. 36C		TIME
238.1 239.1	237.0	236.2		0	(~	_		0	0	227.1	~		-	223. I	222.0	0	_	-	218.0	217.1	216.0	215.0	214.1	213.0	212.0	31 c	210.0	0.802	207.0	206.1	205.1	204.1	203.1	202.2	201.2	200.1	199.0	198.1	197.0	195.1	-	•	HIdao
120.0 93.4	109.7	202.2	181.1	273.5	25B.7	325.9	258.9	271.5	177.4	166.6	162.0	227.6	203.0	138.4	113.2	175.6	145.1	158.0	147.4	88.0	131.5	116.6	œ.	92.0		125.	21.0	37 .	139.9	146.9	14.6	150.7	132.1		138.1	136.	139		126.9	156.2	150.0	■/ar	, ר	ROP
9.2 1- 1	7.5 1	6.3	7.5	7.5	7.5	-	œ 	8.8 -	1.1	7.4	11.01	10.3 1	II.1	11.11	9.9	-	Ġ	~*	10.7 1	9.0	œ.5	6.9	7.1	9 9	5	9 4	- -	7.0	, c	10.2 1	•	صة	œ 	بو ده	œ ;	12.3	12.8	80 5	10,6	12.0		15	<u>.</u>	WOB
5 5	5	S	<u>چ</u>	5	<u></u>	=	5	=	113	118	28	118	=	118	=	118	118	18	=	=	=	=	₩	=======================================	(₩ 6	5 5	=======================================	<u> </u>	=	=	=	=	=]	= :	2 :	20	5	3 5	19			RPH
92 -	76	5 5	55	~	3 :	≍	79	=	57	==	89	=	9 4	96 _	82	85	86	75	8	5	<u>=</u>	77	23	器 :	77	ee 2	3 6	<u> </u>	77	~ ~	73	89	76	8 7	3	88 4	<u> </u>	= :	z :	= 2	2 2	=	į	TRQ
1780 8 1779 8	_	_	-		_	-	_			1770 8	1770 8								_							1780 7		1990 7		_		_	-		-	_				778 1		186		SPP
82 83 84 88	21	12	9	89	≈ i	82	ස	92	ᇤ	23	=	797	788	82	789	2	07	25	4	80	3	70	7	773	00 U1	795	P 4	780	13		8	8	8	02	<u>ب</u>	999	-3 e		790	796	782	2	TWO KI	2
 2 2	1.03	1.03	1.03	1.03		23	03	03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03		1.03	8	0	2	 23	 2. 5	3 5	3 5			1.01	1.03	1.03	- 2		2	2		2	2 :	: ::			
2 2	0.00	0.00	0.8	0.0	S	0. 8	0.00	0.00	0.00	0.00	0.00	0.8	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0	0.00	3 6	2 .		0.00	0.00	0.00	0.00	8	0.00	2	3	2 5	S :			88	TUO	DENSITY
17.2	17.2	17.2	17.2	17.2	- 2	7.3	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	7.2	7 2	17.2	3 6	7	17.2	17.2	17.2	17.2	17.2	7.		7.2	3	7 .	17.2	7.1	17.2	Qe 8	. -	
	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0	o :	> 5) ·		0.0	0.0	0.0	0.0	0.0	0.0	0 :))	5	2.0	.		'	, of	TEMP
174.2 175.4	173.3	172.6	172.1	171.7	171.3	170.9	170.7	170.3	170.0	161.4	160.8	160.3	159.8	159.4	158.7	157.9	157.5	156.9	156.4	155.6	154.7	154.1	152.9	151.9	150,8	150.2	140.7	147.8	147.0	146.4	145.8	145.2	141.6	٠ <u>٠</u>	143.2	142.6	11.0		137. 7	137.2	136.2	-	DEPTH	RETURNS
557		~		-3	~3 '	œ 		558	558				•	•-			572	573	578	587	588				~	587						۵.	587	596	600	600	3	9 0	50	9 4	599	2	Ξ	TVG
<u> </u>	132.0	131.2	30.1	29.0	28.	27.2	26.4	25.1	24.0	123.0	122.1	121.2	120.1	119.1	8.	17.0	16.0	5.	1	13.0	12.1	= .	0.0	9.	28.0	07.0	3		03.0	02.0	1.10	1.00	99.		97.2	96.2	9.	2 :	9 :	93.	90.1	103		-118-
 	1:02		1:01	1:01	= :	1:01	:: :::	Ξ	_	0:59	0:59]	0:58	0:58 1	0:58		0:57	0:56	0:56	0:56	0:55	0:55	0:54	0:53	0:53	0:52	0:52		2.50		0:19	0:19	0:48	0:48	0:47	0:17	0:17) ·	2	0:15	2 :	1:0	20:33	=	•-
 2 2	1.08	. 08	. 08	. 08		-	. 08	. 08	. 08	. 09	. 09	1.08	1.08	1.08	. 08	1.08	. 08	. 09	1.09	8	_	_					_				1.09	.09	.09	.09	. 09	. 09	2	200	1.09	2 5		#		BCD
0.73 0.73	0.72	0.56	0.60	0.50	0.52	0.45	0.52	0.52	0.56	0.62	0.68	0.58	0.62	0.72	0.76	0.63	0.70	0.66	0.70	0.81	0.70	0.71	0.79	0.8	0.56	0.73	9 9)		0.69	0.70	0.69	0.69	67	0.68	0.72	7:	0.72	0.74	2 0				DXC
 2 :	0.00	0.00	0.0	0.00	0.0	8	0.9	<u> </u>	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0	0 :	3 5	3 2	9.9	0.0	0.00	0.00	0.00	0	0.00	0.00	3 9	2 3	0.00	8 8	9.0	•	•	SYS

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL: MINERVA 1

TINE	DEPTH	ROP	WOB	RPM	TRQ	SPP	FLOW IN OUT	IN	DENSITY OUT	IN	TEMP OUT	RETURNS DEPTH	PVT	-81	T-	ECD	DIC	GAS
h:mm:sec	£	e/hr	klb		amp	psi	gpa		sg	deg		1	bbl	ats	hh:ma	sg		x
07:44:39	240.0		9.3		88	1778		1.03		17.3	0.0	176.4	558	135.0	1:04	1.09	0.82	0.0
07:45:13	241.1		10.2		85	1773		1.03	0.00	17.2	0.0	177.3	558	136.1	1:05	1.09	0.76	0.0
07:45:40	242.1		5.9		65	1777		1.03		17.3	0.0	178.1	558	137.1	1:05	1.09	0.64	0.0
07:46:14	243.1		7.4		81	1793		1.03		17.3	0.0	179.1		138.1	1:06		0.77	0.0
07:46:52	244.1	85.8	7.0		80	1679		1.03		17.2	0.0	180.1		139.1	1:06		0.77	0.00
07:47:32	245.0	90.2	8.4		81	1518		1.03		17.2	0.0	181.2		140.0	1:07		0.78	0.00
07:48:23	246.1	79.5	8.1		76	1623		1.03		17.2	0.0	182.6		141.1	1:08		0.81	0.0
07:49:01	247.0	80.9	8.5		84	1761		1.03		17.2	0.0	183.7		142.0	1:08		0.81	0.00
07:49:35 07:50:06	248.1		10.8		91	1768		1.03		17.2	0.0	184.7		143.1	1:09		0.76	0.00
07:50:08	249.1		10.9		90	1767		1.03		17.2	0.0	185.5		144.1	1:10		0.75	0.00
07:51:08	250.1		10.2		89	1767		1.03		17.2	0.0	186.4		145.1	1:10		0.75	0.00
07:51:35	251.0		10.0		90	1762		1.03		17.2	0.0	187.2		146.0	1:11		0.72	0.00
07:52:03	252.0		9.5		83	1763		1.03		17.2	0.0			147.0	1:11		0.73	0.00
07:52:34	253.0		9.7		90	1769		1.03		17.2	0.0			148.0	1:11		0.68	0.00
07:53:03	254.2 255.0		9.2		87	1770 1788		1.03		17.2	0.0			149.2	1:12		0.62	0.00
07:53:33	256.1		7.3 6.9		81	1675		1.03		17.2	0.0			150.0	1:12		0.73	0.00
08:02:10	257.2		1.8		82			1.03		17.2	0.0			151.1	1:13		0.72	0.00
08:02:10	258.0				70	1630		1.03		17.2	0.0			152.2	1:13		0.62	0.00
08:02:57			5.3 8.9		85	1759		1.03		17.2	0.0			153.0	1:13		0.64	0.00
08:03:09	259.0 260.0		8.5		100	1774		1.03		17.2	0.0			154.0	1:14		0.71	0.00
08:03:35	261.5		3.0		94 64	1780 1785		1.03		17.2	0.0			155.0	1:14		0.66	0.00
08:03:45	262.1		5.3		90	1780		1.03		17.2 17.2	0.0			156.5	1:14		0.61	0.00
08:04:16	263.0		4.9		84	1782		1.03		17.2	0.0			157.1 158.0	1:15		0.74	0.00
08:04:57	264.1		1.4		88	1783		1.03		17.2	0.0			159.1	1:15		0.70	0.00
08:05:28	265.1		1.6		100	1780		1.03			0.0			160.1	1:16 1:16		0.70 0.73	0.00
08:06:05	255.1		7.5		96	1780		1.03			0.0			161.1	1:17		0.78	0.00
08:06:39	267.0		4.8		89	1780		1.03			0.0			162.0	1:17		0.70	0.00
08:07:22		82.1	2.7		74	1782		1.03			0.0			163.0	1:18		0.69	0.00
08:07:56	269.0	96.6	4.6		90	1785		1.03		7.2	0.0			164.0	1:19		0.72	0.00
08:08:40	270.0	82.5	7.4		106	1781		1.03			0.0			165.0	1:19		0.81	0.00
08:09:16	271.1		5.2		94	1780		1.03			0.0			166.1	1:20		0.71	0.00
08:09:54		93.0	4.7		97	1774		1.03			0.0			167.0	1:21		0.73	0.00
08:10:36	273.0		5.0		96	1772		1.03	0.00		0.0			168.0	1:21		0.73	0.00
08:11:18	274.0		0.1		70	1774		1.03			0.0			169.0	1:22		0.23	0.00
08:11:42	275.0		1.1		11	1770		1.03			0.0			170.0	1:22		0.45	0.00
08:12:31	276.2		4.6		84	1782		1.03			0.0			171.2	1:23		0.62	0.00
08:12:57	277.4		0.0		56	1781		1.03			0.0			172.4	1:23		0.23	0.00
08:13:14	278.2		0.1		39	1746		1.03			0.0			173.2	1:23		0.38	0.00
08:13:36	279.1		0.5		38	1688		1.03			0.0			174.1	1:23		0.46	0.00
08:13:55	280.1		0.0		33	1770		1.03			0.0			175.1	1:24		0.31	0.00
08:14:09	281.2		4.8		121	1770		1.03			0.0			176.2	1:24		0.50	0.00
08:14:37	282.0		1.9		68	1770		1.03	0.00		0.0			177.0	1:24		0.78	0.00
08:15:24	283.2		10.1		66	1765		1.03	0.00		0.0			178.2	1:25		0.60	0.00
08:15:43	284.1		11.4		76	1770		1.03	0.00		0.0			179.1	1:25		0.71	0.00

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

TIME	Depth	ROP	WOB	RPH	TRQ	SPP		FLOW		DENSITY		TEMP	RETURNS	PVT	-BI	T-	ECD	DIC	GAS
h:mm:sec	1	s/hr	klb		amp	psi	IN	OUT PP	IN	TUO ge	IN deg	OUT C	DEPTH	bbl	ets	hh:mm	sg		x
08:16:54	285.0	35.3	15.0	121	80	1770	773		1.03	0.00	17.2	0.0	218.5	557	180.0	1:27	1.07	1.16	0.0
08:17:08	286.1		7.6		49	1800	768		1.03	0.00	17.2	0.0	218.9	558	181.1	1:27	1.07	0.55	0.0
08:17:21	287.1		9.7		75	1771			1.03	0.00	17.2	0.0	219.3	557	182.1	1:27	1.07	0.54	0.0
08:27:26	288.0		8.7		51	1769			1.03		17.2	0.0	226.2	558	183.0	1:27	1.07	0.91	0.0
08:27:41	289.3		4.3		40	1764			1.03		17.2	0.0	226.5	558	184.3	1:28	1.07	0.42	0.1
08:27:57	290.0		7.7		71	1766			1.03		17.1	0.0	226.9	558	185.0	1:28		0.66	0.
08:29:04		45.5	14.2		89	1771			1.03		17.2	0.0	228.7	558	186.0	1:29		1.07	0.
08:29:57	292.1	72.2	13.4		83	1770			1.03		17.2	0.0	230.0	557	187.1	1:30		0.94	0.
08:31:03	293.0	49.1	13.0		82	1770			1.03		17.2	0.0	231.7	557	188.0		1.07		0.
08:33:22	294.0	29.2	13.6		78	1770			1.03		17.2	0.0	235.2	557	189.0	1:33		1.19	0.
08:35:01	295.0	37.9	13.5		95	1766			1.03		17.2	0.0	237.9	558	190.0	1:35		1.11	0.
08:35:22	296.2		3.3		46	1763			1.03		17.2	0.0	238.4	558	191.2	1:35		0.39	0.
08:35:35	297.1		0.2		68	1758			1.03		17.2	0.0	238.8		192.1	1:35		0.34	0.
08:35:47	298.1		0.1		74	1760			1.03		17.2	0.0	239.1		193.1	1:36		0.27	0.
08:36:00	299.2		0.1		32	1766			1.03		17.2	0.0	239.5		194.2	1:36		0.63	0.
08:35:09	300.2		0.1		26	1761			1.03		17.2	0.0	239.7		195.2	1:36		0.21	0.
08:36:20	301.4		0.4		28	1760			1.03		17.2	0.0	240.0		196.4	1:36		0.29	0.
08:36:27	302.1		0.3		24	1763			1.03		17.1	0.0	240.1		197.1	1:36		0.29	٥.
8:36:36	303.1		0.5		28	1764			1.03		17.2	0.0	240.4	557	198.1	1:36		0.23	0.
8:36:48	304.3		0.7		29	1761			1.03		17.2	0.0	240.7		199.3	1:37		0.32	0.
8:36:58	305.1		1.0		30	1766			1.03		17.1	0.0	241.0	557	200.1	1:37		0.37	0.
8:37:12	306.3		0.5		43	1766			1.03		17.2	0.0	241.4	558	201.3		1.07		0.
8:37:22	307.1		0.2		96	1767			1.03		17.2	0.0	241.7	557	202.1	1:37		0.33	0.
8:37:34	308.0		0.5		50	1764			1.03		17.2	0.0	241.9	557	203.0	1:37		0.35	0.
8:37:49	309.3		0.1		47	1764			1.03		17.2	0.0	242.3	558	204.3	1:38		0.26	0.
8:37:58	310.1		0.4		92	1764			1.03		17.2	0.0	242.5		205.1	1:38		0.33	0.
)8:38:09	311.2		0.2		110	1767			1.03		17.2	0.0	242.8		206.2	1:38		0.29	0.
8:38:19	312.0		1.6		92	1761			1.03		17.2	0.0	243.1		207.0	1:38		0.37	0.
8:38:31	313.1		1.5		126	1795			1.03		17.2	0.0	243.3		208.1	1:38		0.38	0.
8:38:44	314.1		0.6		108	1788			1.03		17.2	0.0	243.7		209.1	1:39		0.36	0.
8:38:59	315.0		0.6		113	1770			1.03		17.2	0.0	244.1		210.0	1:39		0.41	0.
8:39:17	316.1		0.2		91	1760			1.03		17.2	0.0	244.6		211.1	1:39		0.35	0.
8:39:39	317.1		0.8		106	1714			1.03		17.2	0.0	245.2		212.1	1:39		0.46	0.
8:50:06	318.0		0.3		89	1750			1.03		17.1	0.0	251.8		213.0		1.07		0.
8:50:21	319.3		0.4		98	1758				0.00		0.0	252.2		214.3		1.07		0.
)8:50:30 \8.50:36	320.1		0.5		95	1759			1.03		17.2	0.0	252.3		215.1	1:41		0.32	0.
8:50:36	321.1		0.8		133	1760			1.03		17.1	0.0	252.6 252.9		216.1	1:41		0.25	0.
8:50:50	322.7		0.2		116	1760			1.03		17.2	0.0			217.7	1:41		0.26	0.
8:50:57	323.3		0.4		92	1763			1.03		17.2	0.0	253.1		218.3	1:41		0.33	0.
8:51:03	324.1		0.7		114	1764			1.03		17.2	0.0	253.3		219.1	1:41		0.27	0.
8:51:12	325.1		0.3		107	1764			1.03		17.2	0.0	253.5		220.1	1:41		0.27	0.
8:51:22	326.3		0.2		91	1762			1.03		17.1	0.0	253.8		221.3	1:41		0.22	0.
08:51:28	327.1		0.0		104	1760			1.03		17.1	0.0	253.9		222.1	1:42		0.18	0.
08:51:34	328.1		0.5		99	1767					17.2	0.0	254.0		223.1	1:42		0.23	0.1
8:51:43	329.0	170.5	1.0	120	32	1764	103		1.03	0.00	11.1	0.0	254.3	557	224.0	1:42	1.07	1.11	0.

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL : MINERVA 1

TIME	DEPTE	ROP	WOB	RPK	TRQ	SPP	FLOW IN OUT	KUD	DENSITY	HUD	TEMP	RETURNS DEPTH	PVT	-BI	T-	ECD	DIC	GAS
h:mm:sec	1	n/hr	kib		amp	psi	gpa		sg	deg		1	bbl	ats	hh:aa	3 g		x
08:51:55	330.3	358.4	1.0	120	125	1766	764	1.03	0.00	17.2	0.0	254.7	557	225.3	1:42	1.07	0.34	0.00
08:52:01	331.1		2.0		136	1769		1.03	0.00	17.1	0.0	254.8	558	226.1	1:42	1.07	0.30	0.00
08:52:11	332.1	408.6	1.8	120	127	1768	766	1.03	0.00	17.2	0.0	255.1	557	227.1	1:42	1.07	0.34	0.00
08:52:20	333.1	393.3	2.1	120	119	1770	766	1.03	0.00	17.1	0.0	255.4	558	228.1	1:42	1.07	0.35	0.00
08:52:35	334.5	319.6	2.7	120	90	1770	765	1.03	0.00	17.2	0.0	255.8	558	229.5	1:43	1.07	0.41	0.00
08:52:50	335.1	145.9	3.0	120	109	1771	762	1.03	0.00	17.2	0.0	256.2	557	230.1	1:43	1.07	0.58	0.00
08:53:34	336.1	145.6	1.7	120	116	1771	754	1.03	0.00	17.1	0.0	257.2	557	231.1	1:44		0.54	0.00
08:54:26	337.1	110.1	1.9	120	108	1785	746	1.03	0.00	17.2	0.0	258.6	558	232.1	1:45	1.07	0.60	0.00
08:54:39	338.1	300.8	2.1	120	109	1775		1.03	0.00	17.2	0.0	258.9	557	233.1		1.07	0.41	0.00
08:54:50	339.1	308.3	3.0	120	112	1761	758	1.03		17.2	0.0	259.3	558	234.1		1.07	0.42	0.00
08:55:06	340.1	213.1	2.2	120	98	1704		1.03		17.2	0.0	259.7	558	235.1		-	0.48	0.00
08:55:25	341.1		2.8		123	1667		1.03		17.2	0.0	260.2	557	236.1			0.53	0.00
08:55:40	342.2		3.4		114	1729		1.03		17.1	0.0	250.7	558	237.2		-	0.46	0.00
08:55:50	343.0		2.9		109	1771		1.03		17.1	0.0	260.9	558	238.0			0.43	0.00
08:56:02	344.2		3.4		88	1774		1.03		17.1	0.0	261.2	557	239.2			0.40	0.00
08:56:17	345.1		4.0		92	1770		1.03		17.1	0.0	261.6	557	240.1			0.52	0.00
08:56:42	346.1		1.8		79	1769		1.03		17.2	0.0	262.3	557	241.1			0.55	0.00
09:07:01	347.1		1.8		86	1771		1.03		17.2	0.0	268.8	558	242.1			0.46	0.00
09:07:14	348.0	256.8	0.6	121	119	1770		1.03		17.2	0.0	269.2	558	243.0	1:47		0.38	0.00
09:07:26	349.0	335.2	1.7	121	125	1772	718	1.03	0.00	17.2	0.0	269.5	558	244.0			0.38	0.00
09:07:39	350.2	331.1	2.2	121	119	1770		1.03	0.00	17.2	0.0	270.0	558	245.2	1:48		0.39	0.00
09:07:47	351.3	444.9	2.1	121	118	1770		1.03		17.2	0.0	270.1	558	246.3		1.07	0.33	0.00
09:07:53	352.2		2.0		113	1774		1.03		17.2	0.0	270.4	558	247.2			0.30	0.00
09:07:59	353.0	503.0	2.8	121	110	1771		1.03		17.2	0.0	270.6	558	248.0			0.32	0.00
09:08:09	354.2		1.4		99	1770		1.03		17.2	0.0	270.9	558	249.2			0.31	0.00
09:08:18	355.3		1.0		107	1770		1.03		17.2	0.0	271.2	558	250.3			0.33	0.00
09:08:28	356.3	336.5	2.4	121	99	1770	756	1.03		17.2	0.0	271.5	558	251.3			0.39	0.00
09:08:39	357.6		2.1		97	1770		1.03		17.2	0.0	271.8	558	252.6		1.07		0.00
09:08:42	358.2	695.0	2.0		70	1770		1.03		17.2	0.0	271.8	557	253.2		1.07	0.24	0.00
09:09:00	359.4	173.7		121	96	1772		1.03		17.2	0.0	272.5	557	254.4			0.53	0.00
09:09:15	360.0			121	116	1777		1.03		17.2	0.0	272.9	558	255.0	1:49		0.56	0.00
09:10:05	361.0			121	85	1771		1.03		17.2	0.0	274.5	557	256.0	1:50		0.70	0.00
09:10:32	362.0		0.3		83	1764		1.03		17.2	0.0	275.5	558	257.0	1:51		0.42	0.00
09:10:45	363.1		1.3		59	1794		1.03		17.2	0.0	275.8	558	258.1			0.36	0.00
09:11:00	364.1		5.1		103				0.00		0.0	276.3	558		1:51			0.00
09:11:22	365.0		12.7		139	1771		1.03			0.0	277.2	557			1.07		0.00
09:11:35	366.2			121	83	1758		1.03		17.2	0.0	217.5	557	261.2		1.07		0.00
09:11:51	367.4			121	65	1750		1.03		17.2	0.0	278.1	557	262.4		1.07		0.00
09:12:01	368.0			121	99	1713		1.03		17.2	0.0	278.5	558	263.0			0.38	0.00
09:12:16	369.2			121	73	1706		1.03		17.2	0.0	279.0	558	264.2			0.21	0.00
09:12:42	370.0			121	83	1756		1.03		17.2	0.0	279.8	558	265.0		1.07		0.00
09:12:54	371.1			121	72	1761		1.03		17.2	0.0	280.2		266.1		1.07		0.00
09:13:07	372.3			121	71	1763		1.03		17.2	0.0	280.7		267.3		1.07		0.00
09:13:16	373.2			121	14	1762				17.2	0.0	281.0	557	268.2		1.07		0.00
09:13:24	374.0	317.6	0.4	121	76	1761	825	1.03	0.00	17.2	0.0	281.1	557	269.0	1:54	1.07	0.33	0.00

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

ABTT : KINEBAY 1

TINE	DEPTH	ROP	WOB	RPK	TRQ	SPP	FLOW IN OUT	IN	DENSITY	EN UI	TEMP OUT	RETURNS Depte	PVT	-81	T-	BCD	DIC	GAS
h:mm:sec	1	n/hr	klb		amp	psi	gpa	711	sg	deg		2	bbl	ats	hh:mm	ag		X
09:28:24	375.0		0.8		64	1765		1.03		17.2	0.0	286.9	557	270.0	1:55	1.06	0.65	0.1
09:28:51	376.0 1		0.6		62	1770		1.03		17.2	0.0	287.9	558	271.0	1:55		0.51	0.1
09:29:16	377.0 1		1.0		61	1771		1.03		17.2	0.0	288.7	557	272.0	1:55		0.52	0.
09:29:55	378.0		2.2		93	1770		1.03		17.2	0.0	290.1	558	273.0	1:56		0.68	0.
09:30:45	379.0 1		7.2		96	1770		1.03		17.2	0.0	291.8	557	274.0	1:57		0.69	0.
09:31:09	380.1 1		1.1		83	1770		1.03		17.2	0.0	292.7	558	275.1	1:57		0.49	0.
09:31:34	381.1 1		0.4		70	1770		1.03		17.2	0.0	293.5	558	276.1	1:58		0.45	0.
09:31:59	382.0 1		1.4		84	1769		1.03		17.2	0.0	294.4		277.0	1:58		0.56	0.
09:32:26	383.1 1		1.2		95	1771		1.03		17.2	0.0	295.2	558	278.1	1:59		0.51	0.
09:32:54	384.0 1		1.1		89	1771		1.03		17.2	0.0	296.3	558	279.0	1:59		0.55	0.
09:33:26	385.1 1		1.1		96	1770		1.03		17.2	0.0	297.3	557	280.1	1:60		0.53	0.
09:34:05	386.0		1.5		118	1770		1.03		17.3	0.0	298.6	558	281.0	2:00		0.62	0.
09:34:49	387.1 1		2.8		119	1770		1.03		17.2	0.0	300.2	557	282.1	2:01		0.66	0.
09:35:29	388.1		5.8		140	1770		1.03		17.2	0.0	301.5	558	283.1	2:02		0.77	0.
09:36:03	389.1 2		6.0		139	1770		1.03		17.2	0.0	302.6		284.1	2:02		0.56	0.
09:36:21	390.0 1		0.2		124	1769		1.03		17.2	0.0	303.1	558	285.0	2:03		0.40	0.
9:36:46	391.1 1		0.1		105	1766		1.03		17.2	0.0	304.0		286.1	2:03		0.39	0.
9:37:04	392.0 2		0.1		109	1774		1.03		17.3	0.0	304.6		287.0	2:03		0.35	0.
9:37:31	393.2 1		0.7		127	1775		1.03		17.2	0.0	305.5		288.2	2:04		0.46	0
9:37:50	394.0 1		0.9		134	1769		1.03		17.2	0.0	306.2		289.0	2:04	1.06	0.46	0
9:38:15	395.0 1		0.4		129	1721		1.03		17.2	0.0	307.0		290.0	2:04		0.46	0
9:38:45	396.1 1		0.5		128	1665		1.03		17.2	0.0	308.2		291.1	2:05		0.44	0
9:39:13	397.1 1		0.6		122	1756		1.03		17.2	0.0	309.3		292.1	2:05		0.48	0.
9:39:44	398.1 1		0.5		113	1770		1.03		17.3	0.0	310.5		293.1	2:06	1.07	0.49	0.
9:40:15	399.1 1		0.9		111	1770		1.03		17.2	0.0	311.6		294.1	2:06		0.54	0.
9:40:51	400.1 1		0.0		116	1765		1.03		17.2	0.0	312.9		295.1	2:07	1.07	0.41	0.
9:41:35		80.6	0.2		112	1769		1.03		17.2	0.0	314.5	558	296.0	2:08	1.07	0.50	0.
9:42:47	402.0	47.9	1.4	121	127	1768		1.03	0.00	17.2	0.0	317.2	558	297.0	2:09	1.07	0.74	0.
9:43:38		83.0	6.9		142	1715		1.03		17.2	0.0	319.0	558	298.1	2:10	1.07	0.80	٥.
9:55:47		54.0	7.4		135	1770		1.03		17.2	0.0	332.0		299.1	2:11		0.92	0.
9:56:30		74.8	8.1		139	1771		1.03		17.3	0.0	333.1		300.1	2:12	1.06	0.86	0.
9:57:14		76.5	7.0		131	1776		1.03		17.2	0.0	334.4		301.0	2:13		0.83	0.
9:58:07		61.6	6.7		125	1780		1.03		17.2	0.0			302.0	2:14		0.87	0.
9:58:22	408.2 3		0.5			1783		1.03	0.00		0.0			303.2		1.07		0.
9:58:37	409.1 2		0.3		102	1780		1.03		17.2	0.0			304.1		1.07		0.
9:58:59	410.1 1		0.4		94	1775		1.03		17.2	0.0			305.1	2:14		0.43	0.
9:59:23	411.0 1		0.4		99	1779		1.03		17.2	0.0	338.1		306.0	2:15		0.43	0.
9:59:54	412.0 1		0.7		107	1777		1.03		17.2	0.0	338.9		307.0	2:15		0.53	0.
0:00:35	413.1		4.5		107	1779		1.03		17.2	0.0			308.1	2:15		0.73	0.
0:01:02	414.0 1		4.5		118	1774		1.03		17.2	0.0	340.8		309.0	2:16		0.64	0.
0:01:27	415.1 1		0.4		113	1777		1.03		17.2	0.0	341.5		310.1	2:17		0.42	0.
0:01:54	416.3 1		0.9		114	1771		1.03		17.2	0.0			311.3	2:17		0.46	0.
0:02:10	417.1 1		0.2		109	1770		1.03		17.2	0.0	342.1		312.1	2:18		0.41	0.
10:02:31	418.1 1		0.1		134	1771		1.03		17.2	0.0			313.1	2:18		0.37	0.
0:02:55	419.1 2	14.1	0.4	121	113	1769	742	1.03	0.00	17.2	0.0	343.9	558	314.1	2:18	1.06	0.39	0.

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL : MINERVA 1

TIME	DEPTH	ROP	WOB	RPM.	TRQ	SPP	IN	FLOW OUT		DENSITY	NUD IN	TEMP OUT	RETURNS Depth	PVT	-BI	7-	ECD	DIC	GAS
h:mm:sec	1	a/hr	klb		amp	psi		gpm OUI	IN	28 001	deg		PEPIE	bbl	ats	hh:mm	sg		*
10:03:08	120.2		0.8			1772		•		0.00		0.0	344.2	558	315.2		1.06		0.0
10:03:20	421.1		0.8		106	1770			1.03		17.2	0.0	344.6	558	316.1	2:19		0.38	0.0
10:03:36	422.0		5.1		142	1770			1.03		17.2	0.0	345.0	558	317.0	2:19		0.53	0.0
10:04:10	423.1		6.7		141	1768			1.03		17.2	0.0	346.0	557	318.1	2:20		0.72	0.0
10:04:51	424.1		4.6		118	1773			1.03		17.2	0.0	347.0	558	319.1	2:20		0.54	0.0
10:05:17	425.0		1.2		103	1767			1.03		17.2	0.0	347.7	557	320.0	2:21	1.06	0.57	0.0
10:06:04	426.0		0.1		96	1753			1.03		17.2	0.0	349.2	558	321.0	2:22	1.07	0.49	0.0
10:06:41	427.1		0.1		96	1769			1.03		17.2	0.0	350.2	558	322.1			0.44	0.0
10:07:28	428.1		0.2		100	1771			1.03		17.2	0.0	351.6	558	323.1	2:23	1.07	0.54	0.0
10:07:47	429.0		0.8		95	1768			1.03		17.2	0.0	352.2	557	324.0	2:23	1.07	0.46	0.0
10:08:04	430.2		0.5		109	1769			1.03		17.2	0.0	352.7	558	325.2	2:24	1.07	0.40	0.0
10:08:22	431.1		0.3		125	1792			1.03		17.2	0.0	353.1	558	326.1	2:24		0.39	0.0
10:08:47	432.1		1.1		109	1823			1.03		17.2	0.0	353.8	558	327.1	2:24		0.52	0.0
10:18:31	433.2		5.1		125	1775			1.03		17.2	0.0	360.8	557	328.2	2:25	1.06	0.65	0.0
10:18:54	434.0		6.4		130	1776	706		1.03		17.2	0.0	361.3	558	329.0	2:25	1.06	0.78	0.0
10:19:13	435.2	136.9	4.2	118	115	1780	709		1.03	0.00	17.2	0.0	361.7	557	330.2	2:25	1.06	0.63	0.0
10:19:43	436.1	184.8	0.9	118	99	1781	713		1.03	0.00	17.2	0.0	362.2	558	331.1	2:26	1.06	0.46	0.0
10:20:08	437.2	173.5	0.0	118	95	1785	716		1.03	0.00	17.2	0.0	362.9	557	332.2	2:26	1.06	0.33	0.0
10:20:30	438.1	157.3	0.1	118	101	1780	713		1.03	0.00	17.2	0.0	363.4	558	333.1	2:27	1.06	0.39	0.0
10:20:51	439.0	154.6	0.2	118	106	1780	712		1.03	0.00	17.2	0.0	363.9	557	334.0	2:27	1.06	0.42	0.0
10:21:13	440.0	159.0	0.4	118	110	1779	712		1.03	0.00	17.2	0.0	364.6	558	335.0	2:27	1.06	0.44	0.0
10:21:32	441.0	163.1	0.7	118	108	1779	714		1.03	0.00	17.2	0.0	365.1	557	336.0	2:28		0.46	0.0
10:21:57	442.2	178.8	0.3	118	103	1780			1.03		17.3	0.0	365.8	557	337.2	2:28		0.41	0.0
10:22:16	443.1	160.1	0.3		107	1773			1.03		17.2	0.0	366.2	557	338.1	2:28		0.42	0.0
10:22:39	444.2		0.1		108	1771			1.03		17.2	0.0			339.2	2:29		0.45	0.0
10:23:00	445.2		1.5		126	1770			1.03		17.2	0.0	367.4		340.2	2:29		0.51	0.00
10:23:47	446.0		2.9		137	1767			1.03		17.2	0.0			341.0	2:30		0.76	0.00
10:24:15	447.0		3.8		136	1766			1.03		17.2	0.0		558	342.0	2:30		0.51	0.00
10:24:37	448.1		2.4		110	1833			1.03		17.2	0.0			343.1	2:31		0.46	0.00
10:24:58	449.1		0.3		104	1777			1.03		17.2	0.0			344.1	2:31		0.40	0.00
10:25:17	450.0		0.7		105	1766			1.03		17.2	0.0			345.0	2:31		0.49	0.00
10:25:42	451.1		1.2		104	1763			1.03		17.2	0.0			346.1	2:32		0.44	0.00
10:26:06	452.1		3.7		98	1744			1.03		17.2	0.0			347.1	2:32		0.60	0.00
10:26:25	453.1		3.8			1772			1.03		17.2	0.0			348.1	2:32		0.56	0.00
10:26:39	454.1		3.2			1776				0.00		0.0			349.1	2:33		0.45	0.00
10:26:52	455.1		2.9		75	1773			1.03			0.0			350.1	2:33		0.42	0.00
10:27:07	456.2		1.9		78	1772			1.03		17.2	0.0			351.2	2:33		0.43	0.00
10:27:51	457.1		2.0		81	1772			1.03		17.3	0.0			352.1	2:34		0.71	0.00
10:28:19	458.2		2.0		96	1765			1.03		17.2	0.0			353.2	2:34		0.49	0.00
10:28:37	459.1		1.8		112	1786			1.03		17.2	0.0			354.1	2:35		0.49	0.00
10:28:55	460.3		1.5		116	1791			1.03		17.2	0.0			355.3	2:35		0.44	0.00
10:29:07	461.1		1.6		109	1765			1.03		17.2	0.0			356.1	2:35		0.43	0.00
											17.3				357.1			0.53	
10:39:53	462.1		1.2		120	1764			1.03			0.0				2:36			0.00
10:40:40	463.0		0.0		118	1765			1.03			0.0			358.0	2:37		0.43	0.00
10:41:10	464.1	140.2	0.3	113	122	1769	134		1.03	0.00	17.2	0.0	386.5	557	359.1	2:37	1.00	0.43	0.00

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

	TINE	DEPTH	ROP	WOB	RPH	TRQ	SPP	IN	PLOV OUT	UD In	DENSITY	KUD	TEMP	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GAS
L	h:mm:sec	1	a/hr	kib		asp	psi		gpa	***	sg	deg		1	bbl	ats	hh:==	sg		X
Γ	10:41:31	465.1	160.1	0.8	119	125	1767	730	,	1.03	0.00	17.2	0.0	387.3	557	360.1	2:37	1.06	0.47	0.00
1	10:41:49	466.3	341.5	0.8	119	123	1768	731		1.03	0.00	17.3	0.0	387.7	558	361.3	2:38	1.06	0.34	0.00
	10:42:03	467.1	228.7	2.7	119	128	1772	137		1.03	0.00	17.2	0.0	388.1	558	362.1	2:38	1.06	0.48	0.00
l	10:42:18	468.2	248.9	2.4	119	131	1770	740		1.03	0.00	17.3	0.0	388.5	558	363.2	2:38	1.06	0.45	0.00
	10:42:27	469.1	294.0	2.2	119	135	1770	742		1.03	0.00	17.2	0.0	388.8	558	364.1	2:38	1.06	0.42	0.00
	10:42:40	470.0		2.8	119	126	1764	744		1.03	0.00	17.3	0.0	389.2	558	365.0	2:39	1.06	0.44	0.00
•	10:42:54	471.0	343.2	2.5	119	122	1768	743		1.03	0.00	17.3	0.0	389.6	558	366.0	2:39	1.06	0.39	0.00
	10:43:06	472.0	305.5	2.7	119	129	1770	740		1.03	0.00	17.3	0.0	389.9	558	367.0	2:39	1.06	0.42	0.00
	10:43:19	473.1		3.2	119	137	1766	737		1.03	0.00	17.3	0.0	390.3	557	368.1	2:39	1.06	0.45	0.00
	10:43:32	474.2		1.2	119	143	1766	735		1.03	0.00	17.2	0.0	390.6	558	369.2	2:39	1.06	0.45	0.00
	10:43:46	475.1		0.9		146	1767			1.03	0.00	17.3	0.0	391.0	558	370.1	2:40	1.06	0.41	0.00
	10:44:05	476.1		1.2		156	1770			1.03		17.3	0.0	391.5	558	371.1	2:40	1.06	0.49	0.00
	10:44:44	477.0		0.4	119	148	1771	747		1.03	0.00	17.3	0.0	392.5	558	372.0	2:41	1.06	0.57	0.00
	10:45:54	478.1	72.2	1.1		153	1778	747		1.03	0.00	17.3	0.0	394.7	558	373.1	2:42	1.06	0.65	0.00
	10:47:42	479.1	28.7	3.7	119	163	1768			1.03	0.00	17.2	0.0	397.8	557	374.1	2:44	1.07	0.96	0.00
	10:48:49	480.1	91.4	4.6		150	1779			1.03		17.3	0.0	399.9	558	375.1	2:45	1.07	0.73	0.00
	10:49:49	481.0		3.0		138	1781			1.03	0.00	17.3	0.0	401.6	558	376.0	2:46	1.06	0.82	0.00
ı	10:50:29	482.0		0.9		151	1779			1.03	0.00	17.3	0.0	402.8	557	377.0	2:46	1.06	0.48	0.00
	10:50:54	483.1		6.8		129	1779	759		1.03		17.3	0.0	403.5	557	378.1	2:47	1.06	0.63	0.00
	10:51:12	484.0		5.6		132	1779			1.03	0.00	17.3	0.0	404.0	557	379.0	2:47	1.06	0.63	0.00
	0:51:33	485.1		6.5		131	1780			1.03		17.3	0.0	404.5	557	380.1	2:47	1.06	0.56	0.00
	0:51:52	486.1		5.2		116	1780			1.03		17.3	0.0	405.1	557	381.1	2:48	1.06	0.60	0.00
	0:52:11	487.2		4.1		119	1780			1.03		17.2	0.0	405.6	557	382.0	2:48	1.06	0.57	0.00
	0:52:26	488.2		3.1		126	1776			1.03		17.3	0.0	406.1	558	383.2	2:48	1.06	0.49	0.00
	10:52:42	489.1		3.1		130	1773			1.03		17.2	0.0	406.5	557	384.1	2:49	1.06	0.48	0.00
1	0:52:59	490.1		3.5		122	1770			1.03		17.3	0.0	407.0	558	385.1	2:49		0.49	0.00
1	1:03:03	491.1		2.4		118	1767			1.03		17.3	0.0	413.9	557	386.1	2:49	1.06	0.63	0.00
	1:03:53	192.1		1.4		115	1772			1.03	0.00	17.3	0.0	415.2	558	387.1	2:50	1.06	0.64	0.00
1		493.1		1.4		112	1771			1.03		17.3	0.0		558	388.1	2:51		0.51	0.00
	1:04:56	494.1		1.6		123	1770			1.03		17.2	0.0		558	389.1	2:51		0.56	0.00
	1:05:19	195.0		1.3		120	1770			1.03		17.2	0.0			390.0	2:52		0.53	0.00
ı	1:05:44	496.0		1.4		116	1769			1.03		17.3	0.0		557	391.0	2:52		0.55	0.00
		497.2		1.0		110	1769			1.03		17.3	0.0			392.2	2:53		0.47	0.00
		498.1		0.8		109	1770			1.03		17.3	0.0			393.1	2:53		0.51	0.00
		499.0		1.2			1768			1.03	0.00		0.0			394.0		1.06		0.00
	1:07:35	500.0		1.8		116	1770			1.03		17.3	0.0			395.0		1.06		0.00
		501.3		1.1		141	1770			1.03		17.3	0.0			396.3	2:55		0.73	0.00
		502.0		7.3			1770			1.03		17.2	0.0			397.0	2:55		0.73	0.00
		503.1		3.9		128	1767			1.03		17.2	0.0			398.1	2:56		0.58	0.00
		504.1		1.7		115	1766			1.03		17.3	0.0			399.1	2:56		0.52	0.00
		505.0		1.3		115	1769			1.03		17.3	0.0			400.0	2:56		0.55	0.00
		506.1		0.7		114	1770			1.03		17.2	0.0			401.1	2:57		0.52	0.00
		507.1		0.1			1769			1.03		17.2	0.0			402.1	2:57		0.43	0.00
		508.1		0.9		111	1779			1.03	0.00		0.0			403.1		1.06		0.00
1	1:12:13	509.1	106.6	1.1	121	97	1788	720		1.03	0.00	17.2	0.0	429.0	557	404.1	2:59	1.06	0.58	0.00

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

																																									Γ
12:06:35	12:04:51 12:05:45	12:03:50	11:50:51	11:48:53	11:46:36	11:45:43	11:44:45	11:44:04	11:43:20	11:42:40	11:4:4	11:40:59	11.10.30	11:38:52	11:36:49	11:36:02	11:35:23	11:34:51	11:34:16	11:33:48	11:33:12	11:32:40	11:32:03	11:31:35	11.11.19	11:30:28	11:29:53	11:29:29	11:19:12	11:18:31	11:17:59	11:16:39	11:15:58	11:15:19	11:14:48	11:14:13	11:13:30	11:12:48	h:mm:sec	•	TINE
551.0	551.1 552.1	550.0	549.0	548.0	3.0	545.1	0	_	542.0	541.1		539.	230.0		· -	534.1	0	-	0	-	0		6	526.0	٠ <i>ن</i>		Ö	-		_ `	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			514.0	513.1	512.0	511.0	510.0	-		DEPTH
71.6	81.1	64.0	27.3	* • • • • • • • • • • • • • • • • • • •	n 68 1	72.1	104.7	95.3	æ: •	60.9	73.7	105.1	9 44 9 49 9 00	152.5	108.3	134.7	164.2	137.9	183 .5	58.7		225.5	250.3	368.6	9 6	298.7	201.2	197.6	90.2	27.2	135.0	13.2	141.0		103.5	13.1	6	96.8	a/hr	:	E
on		1	2	4.7	» 2.		<u>د</u>	2.4	.0	=		c	s =		2	0.8		0.	0.7	-	0		9	- :	> •		0.0	.7	0	<u>.</u>	- :	0.2		.5	0.2	0.4	0.3	0.8	3	•	<u>s</u>
119		119	122	122	122	122	122	122	122	122	22	122	3 2	122	122	122	122	122	122	122	122	122	122	122	3 6	122	22	12 1	21	12:	121	121	121	121	121	121	120	22			200
122	148	120	109	22 3	112	000	108	107	108	Ξ	=		2 4	3 42	03	101	103	98	101	9	9	9	92	30 C	2 2	: Ξ	9	\$	9	2 :	2	3 4	205	901	102	99	102	9.	5		ig
1764 1763	1763 1761	1763	1768	1765	1754	1764	1760			_		17.5		. —			_		_						1771		_		-		773					٠.		1774	P 2	•	Spp
781 773	779 779	17.	741	760	764	785	788	793	806	805	796	794	703	740	721	731	730	721	723	74.	738	725	716	706	n 0 0	997	7	721	719	710	707	717	734	761	805	790	777	748	8Pa	TUO HI	PLOW
1.03			1.03	= :	3 5			1.03	1.03	1.03	. ខ្ល	:::	3 :		1.03	1.03	1.03	1.03			::	2	ខ		3 5	: :		1.03	.03	2	3	2		.03	.03	. 03	23	2			Š
0.00	0. 0. 0.	0.00	0.00	0.00	20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0 :	3 5	3 6	0.00	0.00	0.00	0.00	9 9	3 5	0.00	0.00	0.00	0.00	0.00	0.00	~	TOO	DENSITY
17.1	17.4	17.4	17.4	17.4	17.5	7.3	7.3	17.3	17.3	17.3	7.3	17.3	3 :	17.3	7.3	17.3	17.3	17.3	17.3	7.	7	7	7	7	-	17.1	17.1	17.3	17.3	17.2	17.2		17.2	17.2	17.2	17.2	17.3	17.3	deg	_	ā
0.0	0.0	0.0	0.0))	0.0		0.0	0.0	0	0.0	0 9	> ·		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0		> •		0.0	0.0	0.0	0) .)		0.0	0.0	0.0	0.0	0.0	G	100	dK31
501.9	500.4	196.7	190.4		187.0	•		ص	178.7	~	177.3	.	171.7	·	462.7		_	_		-	-	-	~ .	59.5	<i>,</i>	•	•	~		0	139.5	. O	•	· C	9	432.6	_	130.1	-	DEPTH	RETURNS
	569	5 6	_	56.	577 777		585	585	585	585	585	586		_			-	282	586	585	85	S .	_, .		7 O	500	584	585	557	55	N 6	7 0	5	557	_	557	557	558	2	:	T. F.
448.0 449.0	447.1	145.0	111.0	43.0	141.0		439.0	138.0	437.0	136.1	35.1	131.1	11.0	431.2	130.0	129.1	128.0	427.1	426.0	425.1	121.0	23.1	(22.0	421.0	190 0	118.2	417.0	416.4	115.1		413.0		410.0	409.0	108.1	407.0	406.0	405.0	ats.		-BIT-
3:26 3:27	3:26																3:09														2 6					3:01	2:50	2:59	2 th : 3 ca	:	
1.06	1.06		.06	200	5 5	2 6		.06	1.07	1.07	1.07	2	2 6	2 6		1.06	1.06	1.06	1.06	1.06	.06	8	6		3 8	2 2		1.06	. 06	06		2 .		. 06	. 06	.07	. 06	8	×		8
0.83	0.79	9 99	0.93	0.89	9	0.77	0.57	0.55	0.74	0.81	0.78	0.67)))) . ;	0.45	0.51	0.45	0.47	0.44	0.39	0.	0.40	0.28	0.27	ے د خ	2	0.31	0.49	0.59	0.49	0.42) . ;	0.47	0.52	0.48	0.50	0.52	0.57			DIC.
0.0	0.00	9.0	0.00	0 :	9 6	2.5		0.0	0.00	0.00	0.00	0.00	3 5	3 5		0.8	0.00	0.00	0.0	0.00	e. 8	o. 8	0 0	2	3 5	3 5	0.00	0.0	8	0.0	0 :	3 5	3 8	9.9	e. 8	0.00	0.00	0.00	-	•	CAS

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

TIME	DEPTH	ROP	MOB	RPH	TRQ	SPP	FLOW IN OUT		DENSITY	' NUD In	TEMP OUT	RETURNS DEPTH	PVT	-BI	T-	ECD	DIC	GAS
h:mm:sec		n/hr	klb		amp	psi			8g	deg		1	bbl	ats	hh:zz	sg		X
12:08:50	555.0	53.6	4.0	118	117	1760	759	1.03	0.00	17.4	0.0	506.8	569	450.0	3:29	1.06	0.84	0.0
12:09:55	556.0	61.4	3.9	119	120	1762	157	1.03	0.00	17.4	0.0	508.5		451.0			0.80	0.0
12:10:51	557.0	73.4	4.6	119	117	1761	147	1.03	0.00	17.5	0.0	510.0		452.0			0.78	0.0
12:12:00	558.0	54.5	5.3	118	123	1765	738	1.03	0.00	17.5	0.0	511.5	570	453.0			0.87	0.0

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL : MINERVA 1

TINE	DEPTH	ROP	WOB	RPK	TRQ	SPP		.OV		DENSITY	KUD	TEMP	RETURNS	PVT	-BI	T-	BCD	DIC	GAS
h:mm:sec		e/hr	klb		amp	psi	IN El	TUO R	IN	OUT sg	IN deg	OUT C	DEPTH	bbl	ats	hh:aa	sg		x
1944 Warra	1003																		
12th March		19 954		12 15	. 10 :														
NB #4 HTC	561.0					ets 1827	EIR	564	1.08	1 69	19 5	23.8	560.4	556	1.0	0:27	1.08	1.34	0.00
15:19:48 15:48:29	562.0	3.0 3.5	20.2 24.5		96 97	1868		588	1.08			31.7	561.2	563	2.0		1.08	1.57	0.00
16:19:45	563.0	4.9	21.2		99	1885		605	1.08			32.6	562.2	552	3.0		1.08	1.54	0.00
18:11:20	564.0	10.3	20.2		124	2078		624	1.07			31.1	563.0	624	4.0		1.08	0.91	0.00
18:18:32	565.1	9.5	19.2		126	2036		644	1.07			33.2	563.0	621	5.1		1.08	1.15	0.00
18:23:23	566.0	12.4	18.5		112	2055		682	1.07			33.7	563.2	616	6.0		1.08	1.05	0.01
18:28:35	567.0	12.3	19.3		115	2055		678	1.01			33.7	564.0	617	7.0		1.08	1.08	0.03
18:33:39	568.0	11.7	21.1		126	2047		674	1.08			34.1	564.6	617	8.0		1.08	1.10	0.03
18:38:27	569.0	12.1	22.5		123	2043		667	1.08			34.3	565.3	615	9.0		1.08	1.10	0.03
18:43:48	570.0	13.1	19.4		118	2215		744	1.08			34.3	566.2	613	10.0		1.08	1.12	0.03
18:46:53	571.0	24.3	18.9		130	2285		752	1.08	-		34.5	566.9	713	11.0		1.08	1.11	0.03
18:49:29	572.0	21.2	20.8		138	2396		802	1.08			34.5	567.3	722	12.0		1.08	1.14	0.03
18:52:23	573.0	18.2	20.3		130	2407		814	1.08			34.5	567.9	723	13.0		1.08	1.14	0.03
18:55:03	574.1	28.1	20.3		134	2418		197	1.08			34.5	568.5	723	14.1		1.08	1.13	0.03
18:57:17	575.0	24.1	24.2		148	2375		812	1.08			34.5	568.9	727	15.0		1.08	1.14	0.03
18:59:54	576.1	22.0	21.9		142	2387		825	1.08			34.6	569.4	727	16.1		1.08	1.15	0.03
19:02:39	577.0	25.6	21.1		140	2405		845	1.08			34.8	569.9	714	17.0		1.08	1.15	0.03
19:05:18	578.0	26.2	22.0		138	2408		845	1.0			34.9	570.6	724	18.0		1.08	1.15	0.03
19:08:03	579.0	21.5	22.4		131	2404		830	1.0			35.1	571.6	728	19.0		1.08	1.17	0.03
19:10:52	580.0	21.7	23.9		142	2400		855	1.0			35.3	572.7	725	20.0		1.08	1.17	0.03
19:13:29	581.0	23.0	21.3		131	2394		851	1.0			35.4	573.3	746	21.0		1.08	1.15	0.02
19:16:10	582.0	20.5	21.9		135	2412		868	1.0			35.5	574.5	739	22.0		1.08	1.16	0.20
19:18:28	583.0	26.9	23.1		138	2405		869	1.0			35.6	575.3	727	23.0		1.08	1.14	0.30
19:21:41	584.0	19.3	23.2		137	2401		863	1.0			35.7	576.3	734	24.0		1.08	1.22	0.30
19:23:28	585.0	35.9	22.3		130	2415		862	1.0			35.8	576.8	732	25.0		1.08	1.05	0.25
19:25:52	586.0	22.1	22.9		139	2431		842	1.0			35.9	577.5	731	26.0		1.08	1.14	0.02
19:28:14	587.1	20.2	22.1		133	2411		853	1.0			36.0	578.2	736	27.1		1.08	1.19	0.02
19:44:01	588.0	39.4	28.6		156	2537		877	1.0			36.0	585.1	731	28.0		1.09	1.29	0.03
19:46:15	589.1	23.2	26.3		160	2530		908	1.0			36.2	586.5	724	29.1		1.08	1.16	0.03
19:48:51	590.1	24.0	28.3		164	2548		890	1.0			36.4	587.1	733	30.1		1.08	1.23	0.03
19:51:37	591.0	18.6	26.8		163	2568		909	1.0			36.6	587.1	733	31.0		1.08	1.23	0.03
19:55:18	592.0	18.3	22.6		145	2536		882	1.0			36.7	587.1	740	32.0		1.08	1.25	0.03
19:58:45	593.0	16.8			160			894				36.7	587.5	748		3:15			
20:01:56	594.0	17.3		131	154	2554						36.7	588.9	749				1.23	
20:04:48	595.0	25.3	24.3		157	2578						37.0	589.9	750	35.0			1.20	
20:04:48	596.0			130	151	2551						37.1	591.0	750		3:24		1.26	
20:11:30	597.0			131	152	2587		886				37.3	591.8	743		3:27		1.24	
20:11:30		15.2		131	126	2593						37.4	592.8	740		3:31		1.26	
20:13:43		18.9		131		2571						37.5	593.6	741					0.04
20:22:49		16.4		131	128	2565						37.7	594.7	743			1.09	1.25	0.04
20:22:43	601.0			131		2606			1.0			37.8	595.5	744		3:41		1.23	0.04
20:23:41		18.6		131		2617			1.0			37.9	596.6	744		3:45			
20:23:03		19.9			145					8 1.08		38.0	597.2	747		3:48			
64:94:11	441.0	13.3	63.1	191	110	2001	416	.00			7411								- / - !

DrillByte Drilling Data Printout COMPANY: BHP PETEOLEUM WELL: MINERVA 1

TIME	DEPTH	ROP	MOB	RPH	TRQ	SPP	PLO IN	V OUT	EN THE	DENSITY	KUD In	TEMP	RETURNS	PVT	-81	T-	BCD	DIC	GAS
h:na:sec	ı	a/hr	klb		amp	psi	₹ pa			eg Eg	deg		DEPTH	bbl	ats	hh:xa	ıç		X
20:35:37	604.0	16.7	26.2	131	140	2598	804	786	1.08	1.08	36.0	38.1	598.0	743	44.0	3:51	1.09	1.27	0.0
20:39:01	605.0	19.6	27.3		148	2616		784	1.08	1.08		38.2	598.8	740	45.0	3:55	1.09	1.30	0.0
20:42:52	606.0	15.2	27.7		147	2609		789	1.08	1.08		38.3	599.7	736	46.0	3:59	1.09	1.31	0.0
20:46:12	607.0	18.2	26.9		137	2621		780	1.08	1.08	36.4		600.6	743	47.0	4:02	1.09	1.28	0.0
20:49:50	608.0	17.2	27.5		153	2655		783	1.08	1.08		38.5	601.6	716	48.0	4:06	1.09	1.31	0.3
20:53:26	609.0	16.6	27.4		144	2653		784	1.08	1.08		38.7	602.6	723	49.0	4:09	1.09	1.31	0.1
20:56:43	610.0	17.4	30.9		151	2652		779	1.08	1.08		38.8	603.5	725	50.0	4:12	1.09	1.33	0.1
21:00:47	611.0	15.4	27.1		143	2633		777	1.08	1.08		38.9	604.5	722	51.0	4:17	1.09	1.32	0.0
21:04:25	612.0	16.1	27.9		149	2653		785	1.08	1.08		39.0	605.5	691	52.0	4:20	1.09	1.32	0.0
21:07:29	613.0	17.2	28.8		150	2631		793	1.08	1.08	37.1		606.5	684	53.0	4:23	1.09	1.28	0.0
21:10:02	614.0	20.6	24.8		141	2635		189	1.08	1.08		39.2	607.0	692	54.0	4:26	1.09	1.17	0.0
21:11:58	615.0	21.4	27.0		168	2630		799	1.08	1.08	37.3		607.4	696	55.0	4:28	1.09	1.14	0.0
1:15:34	616.0	14.5	25.8		160	2615		790	1.08	1.08	37.4		608.3	698	55.0	4:31	1.09	1.29	0.0
1:26:27	617.0	19.0	29.5		164	2512		944	1.08	1.08	37.5		610.7	687	57.0	4:35	1.09	1.29	0.0
1:30:03	618.0	22.5	28.3		153	2456		176	1.08	1.08	37.6		612.3	706	58.0	4:38	1.09	1.25	0.0
1:31:42	619.0	36.8	24.6		150	2497		789	1.08	1.08	31.7		612.9	705	59.0	4:40	1.09	1.08	0.0
1:33:19	620.1	38.0	25.1		151	2461		787	1.08	1.08	31.7		613.6	707	60.1	4:42	1.09	1.06	0.0
1:34:44	621.0	41.1	24.5		155	2484		784	1.08	1.08	37.7		614.1	711	61.0	4:43	1.09	1.04	0.0
1:36:10	622.1	84.5	24.7		143	2496		785	1.08	1.08	37.7		614.7	712	62.1	4:45	1.09	1.01	0.0
1:38:12	623.1	24.8	22.1		143	2467		795	1.08	1.08	37.8		615.5	709	63.1	4:47	1.09	1.10	0.1
1:40:04	624.0	26.5	21.5		150	2506		782	1.08	1.08	37.8		616.2	712	64.0	1:49	1.09	1.08	0.0
1:42:09	625.0	27.8	21.9		164	2466		776	1.08	1.08	37.8		616.8	712	65.0	4:51	1.09	1.10	0.0
1:43:52	626.1	34.3	22.6		146	2488		790	1.08	1.08	37.9		617.3	709	66.1	4:52	1.09	1.06	0.0
1:45:57	627.0	29.1	22.9		147	2483		778	1.08	1.08	37.9		617.7	712	67.0	4:54	1.09	1.11	0.0
1:47:49	628.1	43.8	25.1		151	2485		779	1.08	1.08	38.0		618.1	717	68.1	4:56	1.09	1.11	0.0
1:49:11	629.0	42.1	26.4		159	2508		792	1.08	1.08	38.0		618.9	720	69.0	4:58	1.09	1.06	0.0
1:51:00	630.1	45.0	22.4		142	2651		817	1.08	1.08	38.1		619.8	770	70.1	4:59	1.09	1.06	0.0
1:52:50	631.1	37.4	22.5		155	2451		792	1.08	1.08	38.1		620.9	747	71.1	5:01	1.09	1.08	0.0
1:54:09	632.0	49.2	23.1		159	2417		768	1.08	1.08	38.1		621.9	768	72.0	5:03	1.09	1.01	0.0
1:55:33	633.0	38.8	22.2		153	2445		773	1.08	1.08	38.2		622.3	777	73.0	5:04	1.09	1.00	0.0
1:57:26	634.0	31.5	23.3		167	2434		773	1.08	1.08	38.2		623.2	767	74.0	5:06	1.09	1.10	0.0
2:00:03	635.1	28.6	24.8		155	2435		772	1.08	1.08	38.3		624.4	774	75.1	5:08	1.09	1.19	0.0
2:02:27	636.1	40.6	27.0	-	172	2414		775	1.08	1.08	38.3		625.4	782	76.1	5:11	1.09	1.20	0.0
2:03:50	637.0	36.6	33.9		187	2459			1.08	1.08	38.4		626.0	756	77.0	5:12	1.09		
2:05:32	638.1	36.2	29.4						1.08		38.4		626.7			5:14		1.12	0.0
2:07:59	639.0	30.9	28.6			2447					38.5		628.0	754 761					
2:09:49	640.1	36.3	28.2		167 180	2409			1.08		38.5		629.1	761 762		5:16 5:18		1.13	
2:11:42			28.0						1.08				630.0						
	641.0	29.3			176	2456					38.6			162	81.0				0.0
2:13:40 2:15:34	642.1	35.2	28.5		178	2443			1.08		38.6		631.1	763		5:22			0.0
	643.0	29.6	28.5		188	2461			1.08		38.6		632.5	762 750		5:24			0.0
2:17:21	644.0	33.1	30.0		197	2473			1.08		38.7		633.3	758		5:26			0.0
12:19:17	645.0	29.8	29.2		190	2495			1.08		38.7		634.2	759					0.0
2:30:24	646.1		25.5		167	2512			1.08		38.8		638.2	734		5:30			0.0
2:31:44	647.0		24.1		180		789		1.08		39.0		639.1	752		5:31			
2:33:09	648.0	42.7	24.4	134	200	2544	798	771	1.08	1.08	39.0	40.1	639.4	757	88.0	5:32	1.09	1.04	0.0

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUN WELL: MINERVA 1

TIME	DEPTH RO	P W)B	RPH	TRQ	SPP		.0¥		DENSITY	HUD	TEMP	RETURNS	PVT	-BI	T-	BCD	DIC	GAS
h:mm:sec	R B/	hr k	lb		amp	psi	IN	TUO E	IN	OUT	IN deg	OUT C	DEPTH =	bbl	ats	hh:nn	18		*

22:34:08	649.0 52		5.0		213	2556		780		-		40.4	639.9	764	89.0		1.09	0.95	0.0
22:35:17	650.0 48		5.0		196	2531		111	1.08	1.08		40.6	640.5	761	90.0		1.09	0.98	0.0
22:36:23	651.0 52		5.7		186	2555		776	1.08	1.08	39.0		641.0	759	91.0	5:36 5:36	1.09	1.00	0.0
22:36:58	652.1 110		0.6		168	2570		782	1.08	1.08		40.9	641.3	756	92.1				
22:37:30	653.1 101		9.1		152	2573		779	1.08	1.08		40.8	641.6	752	93.1	5:37	1.09	0.73	0.0
22:38:14	654.1 79		8.7		170	2540		781	1.08	1.08		40.8	642.0	755	94.1 95.1		1.09	0.78	0.0
22:38:51	655.1 81		9.7		179	2500		788	1.08	1.08		40.9	642.3	756 757	96.1		1.09	0.72	0.0
22:39:29	656.1 118		0.9		186	2566		778 774	1.08	1.08		40.9	642.6	756	97.1		1.09	0.72	0.0
22:39:56	657.1 113		1.2		186	2554			1.08	1.08		41.0	642.8	754	98.1		1.09	0.74	0.0
22:40:30	658.1 108		9.9		175	2560		789 782	1.08	1.08		41.0	643.0	751	99.1		1.09	0.59	0.0
22:40:58	659.1 183		9.3		174	2567			1.08	1.08		41.0	643.3				1.09	0.68	0.0
22:41:23	660.1 156		1.4		177	2569		795	1.08	1.08		41.0	643.5		100.1	5:41 5:41	1.09	0.61	0.0
22:41:49	661.1 139		7.1		160	2573		781	1.08	1.08		41.0	643.7		102.0	5:41	1.09	0.62	0.0
22:42:09	662.0 180		1.1		157	2465		780	1.08	1.08		41.0	643.9						
22:42:31	663.2 204		1.2		214	2585		115	1.08	1.08		41.0	644.1		103.2	5:42	1.09	0.69	0.1
22:42:44	664.2 238		9.1		187	2583		774	1.08	1.08		41.0	644.2		104.2	5:42	1.09	0.56	0.0
22:42:56	665.1 306		9.3		134	2573		783	1.08	1.08		41.1	644.3		105.1	5:42	1.09	0.45	0.6
22:43:26	667.0 418		1.8		102	2570		785	1.08	1.08		41.1	644.5		107.0	5:42	1.09	0.30	0.0
22:43:40	668.1 251			135	157	2583		768	1.08	1.08	-	41.1	644.6		108.1	5:43	1.09	0.56	0.1
22:43:51	669.2 310		5.6		148	2545		746	1.08	1.08		41.1	644.7		109.2	5:43	1.09	0.36	0.1
22:44:05	670.3 390		8.9		107	2590		768	1.08	1.08		41.1	644.8		110.3	5:43	1.09	0.43	0.
22:44:36	672.7 544		6.0		93	2585		757	1.08	1.08		41.1	645.1		112.7	5:43	1.09	0.31	0.
22:51:18	673.8 479		5.5		116	2611		710	1.08	1.08		41.1	645.9		113.8	5:43	1.09	0.32	0.1
22:51:27	674.4 445		5.1		106	2655		691	1.09	1.08		40.7	645.9		114.4	5:43	1.09	0.33	0.1
22:51:39	675.3 399		6.2		103	2671		719	1.08	1.08		40.8	645.9		115.3	5:43	1.09	0.37	0.1
22:51:48	676.2 358			122	106	2692		614	1.08	1.08		40.9	645.9		116.2	5:43	1.09	0.41	0.1
22:51:57	677.2 304			126	119	2683		733	1.08	1.08		40.9	645.9		117.2	5:44	1.09	0.46	0.0
22:52:14	678.5 279			130	137	2657		485	1.08			41.0	646.4		118.5	5:44	1.09	0.51	0.0
22:52:23	679.2 255			129	146	2686		590	1.08	1.08		41.0	646.7		119.2	5:44	1.09	0.59	0.1
22:52:29	680.1 180			130	153	2706		665	1.08	1.08		41.0	646.9		120.1 121.2	5:44	1.09	0.56	0.1
22:52:45	681.2 227			130	142	2697		735	1.08	1.08		41.0	647.0			5:44 5:45	1.09	0.54	0.1
22:53:01	682.0 185			130	128	2700		767	1.08	1.08		40.9	647.5		122.0		1.09		
22:53:21	683.5 275			130	167	2714		752	1.08	1.08		40.8	648.1		123.5	5:45		0.54	0.1
22:53:31	684.1 208			130	155	2716		726	1.08			40.6	648.4		124.1	5:45		0.46	0.1
22:53:47	685.1 286			130						1.08		40.5	649.0		125.1 126.2		1.09		
22:54:08	686.2 174				128	2619			1.08			40.4	649.6			5:46		0.54	
22:54:27	687.2 212				104	2571		773	1.08			40.3	650.2		127.2	5:46	1.09	0.47	0.1
22:54:51	688.1 133				114	2680			1.08			40.2	651.0		128.1		1.09	0.56	0.1
22:55:15	689.0 143				111	2697			1.09			40.3	651.8		129.0		1.09	0.55 0.54	0.1
22:55:40	690.1 176			130	116	2711			1.09			40.4	652.6		130.1 131.2		1.09		0.1 0.1
22:56:05	691.2 231			130	119	2670			1.08			40.5	653.4					0.53	
22:56:20	692.1 233			130	100	2694			1.08			40.6	653.9		132.1		1.09		0.
22:56:36	693.1 240			130	96	2686			1.08			40.7	654.4		133.1				
22:56:54	694.2 186			130	98					1.08		40.8	655.1		134.2				
22:57:06	695.1 234	1.1	3.2	130	130	Z681	758	772	1.08	1.08	39.2	40.9	655.4	128	135.1	7:43	1.09	V. 15	V.

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MIMERYA 1

TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP	F. IN	LOW	I DUN	PENSITY	MUD IN	TEMP OUT	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GAS
h:mm:sec	ı	=/hr	klb		amp	psi		b s		ig Uul	deg		2	bbl	ats	hh:mm	8g		*
22:57:19	696.0		20.1		137	2717		763	1.08	1.08		40.9	655.9		136.0	5:49	1.09	0.53	0.04
22:57:36	697.3		20.7		159	2531		775	1.09	1.08	39.2		656.4		137.3	5:49	1.09	0.51	0.04
22:57:49	698.1		23.8		179	2669		773	1.08	1.08	39.2		656.9		138.1	5:49	1.09	0.55	0.04
22:58:01	699.1		24.4		189	2707		770	1.09	1.08	39.2		657.2		139.1	5:50	1.09	0.50	0.04
22:58:16	700.2		14.7		110	2673		779	1.08	1.08	39.2		657.7		140.2	5:50	1.09	0.43	0.04
22:58:28	701.1		11.2		91	2694	-	774	1.08	1.08	39.2		658.2		141.1	5:50	1.09	0.40	0.04
22:58:47	702.1			131	82	2709		791	1.09	1.08		41.0	658.8		142.1	5:50	1.09	0.41	0.04
22:59:06	703.0			130	99	2707		787	1.09	1.08		41.0	659.3		143.0	5:51	1.09	0.52	0.04
23:05:29	704.2			128	95	2674		755	1.09	1.08	39.2		665.4		144.2	5:51	1.09	0.44	0.04
23:05:38	705.0			131	115	2636		734	1.08	1.08	39.2		665.7		145.0	5:51	1.09	0.34	0.04
23:05:50	706.1			134	119	2646		464	1.08	1.08	39.2		666.1		146.1	5:51	1.09	0.30	0.04
23:06:07	707.4			134	116	2632		612	1.09	1.08	39.2		666.6		147.4	5:52	1.09	0.36	0.04
23:06:17	708.2			135	102	2629		748	1.09	1.08	39.2		666.9		148.2	5:52	1.09	0.40	0.04
23:06:29	709.0		10.7		132	2647		748	1.09	1.08	39.2		567.2		149.0	5:52	1.09	0.45	0.04
23:06:44	710.1		8.9		137	2629		648	1.09	1.08	39.2		667.8		150.1	5:52	1.09	0.43	0.04
23:06:59	711.2			135	108	2645		755	1.09	1.08	39.2		668.2		151.2	5:52	1.09	0.32	0.04
23:07:24	712.7			136	103	2639		768	1.09	1.08	39.2		669.0		152.7	5:53	1.09	0.29	0.04
23:07:36	713.2			136	105	2629		773	1.09	1.08	39.2		669.3		153.2	5:53	1.09	0.33	0.04
23:07:46	714.0			136	121	2585		759	1.09	1.08	39.2		669.7		154.0	5:53	1.09	0.38	0.04
23:08:07	715.3			136	111	2569		769	1.08	1.08	39.2		670.3		155.3	5:53	1.09	0.40	0.04
23:08:19	716.2		4.4		128	2654		782	1.08	1.08	39.2		670.8		156.2	5:53	1.09	0.36	0.04
23:08:35	717.2		8.2		158	2637		781	1.09	1.08	39.2		671.2		157.2	5:54	1.09	0.52	0.04
23:08:46	718.1		16.7		180	2631		768	1.09	1.08	39.2		671.6		158.1	5:54	1.09	0.46	0.04
23:09:02	719.3		14.0		162	2633		780	1.09	1.08	39.2		672.2		159.3	5:54	1.09	0.47	0.04
23:09:20	720.4		12.1		153	2658		795	1.09	1.08	39.2		672.7		160.4	5:54	1.09	0.49	0.04
23:09:29	721.0		13.6		186	2661		819	1.08	1.08	39.2		673.0		161.0	5:54	1.09	0.49	0.04
23:09:45	722.2		35.4		239	2664		798	1.09	1.08	39.2		673.5		162.2	5:55	1.09	0.53	0.04
23:10:00	723.1		32.6		253	2656		802	1.09	1.08	39.2		673.9		163.1	5:55	1.09	0.64	0.04
23:10:19	724.1		25.3		197	2634		820	1.09	1.08	39.2		674.5		164.1	5:55	1.09	0.61	0.04
23:10:35 23:10:52	725.0		19.1		180	2626 2627		831	1.09	1.08	39.2		675.0		165.0	5:56	1.09	0.55	0.04
23:10:32	726.1 7 727.0		14.9 15.0		170	2636		808 808	1.09	1.08	39.2		675.6		166.1 167.0	5:56	1.09	0.44	0.04
23:11:29	728.0		16.6		185 286	2477		798	1.09	1.08	39.2 39.2		676.2			5:56 5:56	1.09	0.58 0.47	0.04
23:11:51	729.1		16.0		323	2640		785	1.09	1.08	39.2		676.7 677.5		168.0 169.1	5:57	1.09	0.58	0.04
1		_																	
23:12:11 23:12:30	730.1 1 731.1 1		15.0 15.6		322	2619 2644		772 771	1.09	1.08	39.2 39.2		678.1 678.7		170.1 171.1	5:57 5:57		0.56	0.04
23:12:50	732.1		17.8		320 275	2630			1.09	1.08	39.2		679.3		172.1	5:58	1.09	0.53	0.04
23:12:32	733.1		15.1		200	2628			1.09	1.08	39.2		680.1		173.1		1.09	0.58	0.04
23:13:14	734.1		10.4		150	2669			1.09	1.08	39.2		103.3		174.1		1.09		0.04
23:24:51	735.2		13.8		164	2652		820	1.09	1.08	39.3		103.5		175.2		1.09	0.10	0.04
23:25:15	736.2		13.1		162	2672		805	1.09	1.08	39.2		103.5		176.2	5:60	1.09	0.57	0.04
23:25:13	737.1		15.8		186	2672		815	1.09	1.08	39.3		103.6		177.1		1.09	0.59	0.04
23:25:55	738.0		17.7			2677		803	1.09	1.08	39.2		703.6		178.0	6:00		0.65	0.04
23:25:33	739.1		19.5		194	2552			1.09	1.08	39.3		703.6		179.1		1.03		0.04
23:26:41	740.0		16.5			2660			1.09		39.3		703.6		180.0			0.61	
84.64.41	174.0		10.3	190	101	200V	: 33	940	1.03	1140	****	1110	177.0	143		1.41	7.03	4.41	*.*7

DrillByte Drilling Data Printout COMPANT : BHP PETROLEUM WELL : MINERVA 1

TIME	DEPTH	ROP	MOB	RPH	TRQ	SPP		OV		DENSITY	KUD	TEMP	RETURNS	PVT	-81	T-	BCD	DIC	GAS
h:mm:sec		a/hr	klb		amp	psi	IN	OUT	IN	OUT sg	IN deg	OUT C	DEPTH	bbl	ats	hh:mm	ag		2
23:27:03	741.1		16.6		165	2663		807	1.09			41.7	703.6		181.1	6:01	1.09	0.61	0.04
23:27:24	742.1		17.1		181	2655		805	1.09	1.08		41.8	103.1		182.1	6:02	1.09	0.61	0.04
23:27:46	743.0		17.3		177	2672		803	1.09	1.08		41.8	704.0		183.0	6:02	1.09	0.63	0.04
23:28:11	744.1		14.4		171	2661		812	1.09	1.08		41.8	704.9		184.1	6:03	1.09	0.50	0.04
23:28:47	745.1		15.4		170	2682		800	1.09	1.08		41.8	707.9		185.1	6:03	1.09	0.70	0.04
23:29:15	746.1		11.9		153	2655	734	809	1.09	1.08		41.6	709.6		186.1	6:04 C:04	1.09	0.65	0.04
23:29:49	747.0		11.6		143	2559	728	815	1.09	1.08		41.4	712.1		187.0	6:04	1.09	0.65	0.04
23:30:23	748.0		11.0		157	2612		833	1.09	1.08		41.4	715.5		188.0	6:05	1.09	0.65	0.04
23:31:00	749.0		10.6	-	145	2629		821	1.09	1.08		41.5	717.4		189.0	6:05	1.09	0.65	0.04
23:31:45	750.1		13.9		165	2635		846	1.09	1.08		41.6	718.1		190.1	6:06	1.09	0.76	0.04
23:32:29	751.1	84.0	14.5		144	2627		835	1.09	1.08		41.7	719.9		191.1	6:07	1.09	0.76	0.04
23:33:13	752.0	65.5	15.3		152	2614		844	1.09	1.08		41.8	122.2		192.0	6:08	1.09	0.78	0.04
23:34:05	753.0	64.2	17.2		157	2545		826	1.09	1.08		41.9	724.9		193.0	6:09	1.09	0.83	0.04
23:35:07	754.0	50.5	18.6		144	2613		827	1.09	1.08		42.1	727.5		194.0	6:10	1.09	0.89	0.04
23:37:04	755.0	52.3	22.7		151	2592		821	1.09	1.08		12.2	732.2		195.0	6:12	1.10	1.09	0.04
23:37:56	756.0	66.4	21.9		169	2595		819	1.09	1.08		42.4	733.1		196.0	6:12	1.10	0.87	0.04
23:38:40	757.0	76.9	26.8		193	2592		799	1.09	1.08		42.5	733.1		197.0	6:13	1.10	0.89	0.04
23:39:43	758.0	53.3	27.8		198	2514		793	1.09	1.08		42.6	733.1		198.0	6:14	1.10	1.00	0.04
23:40:48	759.0	57.0	28.5		195	2563	716	774	1.09	1.08		12.5	733.1		199.0	6:15	1.10	0.99	0.04
23:41:40	760.0	70.1	24.9	136	178	2598		770	1.09	1.08		42.5	733.1		200.0	6:16	1.10	0.91	0.04
23:42:52	761.0	45.4	24.4	136	171	2591	720	772	1.09	1.08	39.7	42.5	733.1		201.0	6:17	1.10	0.98	0.04
00:00:40	762.1	24.8	24.7	135	170	2583		761	1.09	1.08		12.4	148.9		202.1	6:20	1.10	1.14	0.04
00:02:08	763.1	48.0	22.7	131	175	2496	711	759	1.09		40.2	42.1	750.5	709	203.1	6:21	1.10	1.00	0.04
00:03:08	764.0	52.7	22.1	131	173	2558	715	766	1.09	1.08	40.2	12.2	751.7	709	204.0	6:22	1.10	0.91	0.04
00:04:58	765.0	34.2	22.1	131	174	2570	716	753	1.09	1.08	40.2	42.3	153.7		205.0	6:24	1.10	1.05	0.04
00:06:54	766.0	32.2	22.6	131	177	2554	710	749	1.09	1.08		42.3	754.3		206.0	6:26	1.10	1.07	0.04
00:09:08	767.1	29.4	21.2	131	169	2551	718	764	1.09	1.08		42.5	756.8		207.1	6:28	1.10	1.06	0.04
00:11:31	768.0	25.1	23.4	131	184	2594	721	756	1.09	1.08		42.8	758.9		208.0	6:30	1.10	1.13	0.04
00:13:59	769.1	26.1	22.0	131	179	2551		750	1.09			42.8	761.0		209.1	6:33	1.10	1.13	0.04
00:16:15	770.0	22.6	21.5		180	2581		754	1.09			42.9	761.9		210.0	6:35	1.10	1.11	0.04
00:19:04	771.0	18.7	21.7	131	188	2597		751	1.09			43.0	761.9		211.0	6:38	1.10	1.15	0.04
00:22:09	772.0	17.5	21.7	131	181	2589		741	1.09	1.08	40.7	42.9	761.9		212.0	6:41	1.10	1.19	0.04
00:24:55	773.0	19.4	20.3	131	181	2601	722	749	1.09		40.8	42.9	761.9		213.0	6:44	1.10	1.13	0.04
00:28:21	774.0	18.6		131	170	2603	726	742	1.09	1.08		43.0	163.4		214.0	6:47	1.10	1.15	1.09
00:31:49	775.0	15.9	20.3	131	179	2582	729	749	1.09	1.08		43.2	765.4		215.0			1.19	
00:33:26	776.0	50.3	19.7	131	179		731		1.09			43.3	766.1		216.0		1.10		
00:36:31	777.0	16.9	21.2	131	174	2598	726		1.09			43.3	167.3		217.0		1.10		0.01
00:38:08	778.0	41.0		131	187	2592	707	750	1.09			43.3	767.9		218.0	6:57	1.10		
00:39:47	779.0	30.7	23.3	131	186	2630			1.09			43.4	168.5		219.0	6:59		1.03	
00:41:39	780.1	33.5	26.1		153	2607	707		1.09			43.5	779.8		220.1			1.07	
00:43:15	781.0	31.0	29.5		190	2637	717	742	1.09	1.08	41.3	43.5	179.9		221.0	7:02	1.10		
00:45:02		32.2		131	173	2627	117	735	1.09	1.08	41.3	43.6	779.9		222.0	7:04	1.10		
00:46:48		47.8		131	165	2640		729	1.09	1.08	41.4	43.7	779.9		223.1			1.11	
00:47:06		228.5	15.4		90		722		1.09	1.08	41.4	43.7	779.9		224.2			0.48	
00:47:27		240.0		131	69				1.09	1.08	41.4	43.7	779.9	639	225.5	7:06	1.10	0.41	0.01

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL: HINERVA 1

TINE	DEPTH I	ROP	WOB	RPH	TRQ	SPP	PI	OUT	I DUN	DENSITY OUT	HUD	TEMP	RETURNS DEPTH	PVT	-91	Ţ-	BCD	DIC	GAS
h:mm:sec	1 1	n/hr	klb		AMP	psi	81			ıg	deg		1	bbl	ats	hh:nn	ag .		*
00:47:40	786.1 11		4.1		71	2497	719	692	1.09	1.08	41.4	43.7	179.9	639	226.1	1:01	1.10	0.39	0.07
00:48:02	787.1 14		4.9	131	85	2648	721	714	1.09	1.08	41.4	43.7	779.9	640	227.1	7:07	1.10	0.52	0.07
00:48:55	788.0	58.7	9.6	130	94	2650	727	742	1.09	1.08	41.5	43.7	779.9	640	228.0	7:08	1.10	0.72	0.07
00:49:48	789.0	52.3	9.3	131	97	2636		746	1.09	1.08	41.5	43.8	779.9	641	229.0	7:09	1.10	0.73	0.07
00:50:37	790.0	61.9	10.1	132	91	2644	728	726	1.09	1.08	41.5	43.8	779.9	640	230.0	7:10	1.10	0.71	0.07
01:04:24		78.8	12.9	132	87	2564		730	1.09	1.08	41.5	43.8	779.9	613	231.0	7:10	1.10	0.72	0.07
01:04:49	792.0 15		8.6	134	77	2586	742	746	1.09	1.08	41.5	43.3	779.9	614	232.0	7:11	1.10	0.50	0.07
01:05:21	793.1 10		3.2		98	2725		761	1.09	1.08	41.6	43.0	779.9	621	233.1	7:11	1.10	0.51	0.07
01:05:46	794.0 15		4.5		95	2699		758	1.09	1.08	41.6		779.9		234.0	7:12	1.10	0.51	0.07
01:06:16	795.0 12		1.5		103	2706		765	1.09	1.08	41.6		779.9	630	235.0	7:12	1.10	0.61	0.07
01:06:41	796.0 16		11.1		132	2705		769	1.09	1.08	41.6		779.9		236.0	7:13	1.10	0.60	0.07
01:06:59	797.2 24		18.8		136	2742		147	1.09	1.08	41.5		779.9		237.2	7:13	1.10	0.51	0.07
01:07:12	798.1 25		13.6		118	2739		740	1.09	1.08	41.6		779.9		238.1	7:13	1.10	0.47	0.07
01:07:25	799.0 21		8.2		100	2749		741	1.09	1.08	41.6	43.0	779.9	640	239.0	7:13	1.10	0.44	0.07
01:07:45	800.2 20		10.2		113	2718		746	1.09	1.08	41.6		779.9	641	240.2	7:14	1.10	0.48	0.07
01:08:01	801.2 21		17.3	-	167	2730	773	773	1.09	1.08	41.5	43.1	779.9	642	241.2	7:14	1.10	0.52	0.07
01:08:13	802.1 24	18.1	26.7	135	198	2581	777	781	1.09	1.08	41.5	43.1	779.9	641	242.1	7:14	1.10	0.60	0.07
01:08:38	803.0 13	12.4	30.1	135	197	2760	111	771	1.09	1.08	41.6	43.1	779.9	636	243.0	7:15	1.10	0.74	0.07
01:09:07	804.1 13	33.4	21.2	135	175	2747	768	785	1.09	1.08	41.6	43.2	779.9	627	244.1	7:15	1.10	0.68	0.07
01:09:37	805.0 9	95.8	25.5	135	187	2750	763	790	1.09	1.08	41.5	43.2	779.9	619	245.0	7:16	1.10	0.81	0.07
01:10:27	806.0 6	4.7	27.0	135	189	2765	767	783	1.09	1.08	41.5	43.3	779.9	605	246.0	7:15	1.10	0.91	0.07
01:10:58	807.2 19	2.5	27.8	135	193	2765	777	775	1.09	1.08	41.5	43.4	779.9	612	247.2	7:17	1.10	0.71	0.07
01:11:23	808.1 15	2.7	27.4	135	185	2757	790	775	1.09	1.08	41.5	43.5	785.4	648	248.1	7:17	1.09	0.70	0.01
01:11:47	809.1 16	7.6	27.0	135	180	2652	802	771	1.09	1.08	41.5	43.5	785.8	677	249.1	7:18	1.09	0.63	0.00
01:12:11	810.0 16	8.5	27.4	135	232	2711	805	768	1.09	1.08	41.5	43.5	786.3	678	250.0	7:18	1.09	0.73	0.00
01:12:30	811.1 21	11.9	27.3	135	204	2762	804	760	1.09	1.08	41.5	43.6	186.7	676	251.1	7:18	1.09	0.66	0.00
01:12:45	812.1 23	12.7	31.9	135	208	2764	800	741	1.09	1.08	41.5	43.7	787.0	677	252.1	7:19	1.09	0.59	0.00
01:13:01	813.1 22	10.6	24.9	135	167	2761	798	765	1.09	1.08	41.5	43.7	187.3	679	253.1	7:19	1.09	0.60	0.00
01:13:20	814.1 17	12.8	21.1	135	154	2112	792	782	1.09	1.08	41.5	43.8	787.7	681	254.1	7:19	1.09	0.60	0.00
01:13:40	815.2 21	18.4	19.7	135	152	2753	782	774	1.09	1.08	41.5	43.8	788.1	680	255.2	7:20	1.09	0.57	0.00
01:13:59	816.0 18	16.3	16.5	135	144	2769		789	1.09	1.08	41.5		788.5	679	256.0	7:20	1.09	0.59	0.00
01:14:27	817.0 11	2.2	13.4	135	127	2783		795	1.09	1.08	41.5	43.9	788.9	676	257.0	7:20	1.09	0.65	0.00
01:15:02	818.1 10	9.0	11.4	135	112	2801	762	797	1.09	1.08	41.5	43.9	789.5	675	258.1	7:21	1.09	0.64	0.00
01:15:45	819.1 8	11.0	8.1	135	86	2755	750	796	1.09	1.08	41.4	43.9	790.5	681	259.1	7:22	1.09	0.54	0.00
01:33:17	820.0 2	15.5	22.6	131	162	2778	754	758	1.09	1.08	41.5	43.6	802.1	657	260.0	7:24	1.09	1.14	0.00
01:33:51	821.0 10	9.8	25.1	129	180	2751	744	769	1.09	1.08	41.5	43.5	802.7	642	261.0	1:24	1.10	0.79	0.00
01:35:03	822.0 4		30.0		194	2746	751	771	1.09	1.08	41.5	43.4	804.1	651	262.0			1.05	0.00
01:36:05		4.9	28.0		191	2715	754			1.08	41.5		805.2		263.0			0.97	
01:37:32		16.1	27.5		162	2692				1.08	41.5		806.9		264.0			1.01	
01:38:09		8.3	21.8		157	2693					41.5		807.4		265.0			0.78	
01:39:31		0.2	30.1		211	2653				1.08	41.5		809.4		266.2			0.95	
01:40:22		12.7	27.1		199	2680			1.09	1.08	41.5		811.5		267.1			0.93	
01:41:34		1.3	28.2		186	2668			1.09		41.5		815.3		268.0			1.01	
01:42:49		7.6	25.8		171	2591			1.09		41.5		817.6		269.1			1.03	
01:43:25	830.1 9		23.6		202	2661			1.09		41.5		818.4		270.1			0.82	

DrillByte Drilling Data Printout COMPANT : BHP PETROLEUM WELL : MINERVA 1

TIME	DEPTH	ROP	MOB	RPH	TEQ	SPP	FI	LOW	I DUN	DENSITY OUT	NUD IN	TEMP	RETURNS DEPTH	PVT	-81	1-	BCD	DIC	GAS
h:mm:sec	8	n/hr	klb		amp	psi		PR		ıg	deg		1	bbl	ats	hh:mm	ag		X
01:43:59	831.0	95.3	26.0	129	183	2668	745	816	1.09	1.08	41.5	44.3	819.0	607	271.0	7:35	1.10	0.80	0.00
01:44:43	832.1	79.5	30.0	129	184	2667	753	796	1.09	1.08	41.4	44.4	819.2	607	272.1	1:35	1.10	0.87	0.00
01:45:27	833.0	17.2	30.6	129	185	2681	788	808	1.10	1.08	41.5	44.4	819.2	723	273.0	7:36	1.10	0.90	0.00
01:45:29	834.0	70.7	28.9		177	2601		768	1.09	1.08	41.5	44.6	819.2		274.0	7:37	1.10	0.97	0.00
01:47:09	835.0	93.7	29.5		185	2653		760	1.09	1.08	41.5	44.5	819.2		275.0	7:38	1.10	0.87	0.00
01:48:02	836.0	62.3	30.1		177	2656		768	1.10	1.08	41.5		819.2		276.0	7:39	1.10	0.95	0.00
01:50:10	837.0	25.7	33.2		188	2641		762	1.10	1.08	41.6		819.3		277.0	7:41	1.10	1.21	0.00
01:51:51	838.1	51.4	34.8		202	2655		745	1.10	1.08	41.7		819.3		278.1	7:42	1.10	1.12	0.00
01:52:13	839.0		26.7		197	2688		754	1.10	1.08	41.7		819.3		279.0	7:43	1.10	0.67	0.00
01:52:30	840.1		18.5		147	2679		771	1.10	1.08	41.7		819.3		280.1	7:43	1.10	0.53	0.00
01:52:55	841.3		12.5		96	2680		753	1.10	1.08	41.8		819.4		281.3	7:43	1.10	0.53	0.00
01:53:20	842.1		11.4		103	2664		768	1.10	1.08	41.8		819.6		282.1	7:44	1.10	0.60	0.00
01:53:58	843.1		16.0		126	2629		769	1.10	1.08	41.8		820.0		283.1	7:45	1.10	0.75	0.00
01:54:22	844.2		27.2		210	2694		761	1.10	1.08	41.9		820.2		284.2	1:45	1.10	0.59	0.00
01:54:34	845.2		15.2		146	2701		753	1.10	1.08	41.9		820.3		285.2	7:45	1.10	0.44	0.00
01:55:07		93.2	14.2		132	2716		732	1.10	1.08	41.9		820.3		286.1	7:46	1.10	0.68	0.00
01:57:44	847.1	15.9	17.6		120	2699		711	1.10	1.08	41.9		822.5		287.1	7:48	1.10	1.09	0.00
01:58:40	848.1	97.3	18.5		119	2714		746	1.10	1.08	42.1		823.1		288.1	7:49	1.10	0.77	0.00
02:13:16	849.0	45.6	18.3		117	2676		740	1.10	1.08	41.9		832.3		289.0	7:51	1.10	0.93	0.00
02:14:30	850.0	63.6	28.5		170	2697		731	1.10	1.08	41.6		833.4		290.0	1:52	1.10	1.01	0.00
02:15:45	851.0	41.6	26.7		187	2684		756	1.10	1.08	41.5		834.8		291.0	1:53	1.10	1.02	0.00
02:16:34	852.0		24.5		184	2645		748	1.10	1.08	41.4		835.8		292.0	7:54	1.10	0.86	0.00
02:17:13	853.3		21.1		167	2609		751	1.10	1.08	41.4		836.2		293.3	7:54	1.10	0.53	0.00
102:17:47	854.1			131	192	2638		735	1.10	1.08	41.3		836.4		294.1	7:55	1.10	0.40	0.00
02:19:19	855.0	28.9		131	180	2639 2547		749	1.10	1.08	41.3		837.0		295.0	7:56	1.10	0.71	0.00
02:20:31	856.0 857.0	12.5 21.9	14.1		151	2509		754 746	1.10	1.08	41.2		846.9		296.0	8:02	1.10	1.23	0.00
02:23:31	858.0		30.4 23.4		169 173	2537		750	1.10	1.08	41.2		848.5		297.0	8:05	1.10	1.23	0.00
02:35:37	859.0	4.8	31.5		210	2521		741	1.10	1.08 1.08	41.2		848.5 848.6		298.0 299.0	8:06 8:11	1.10	1.46	0.00
02:33:12	860.0	21.3	28.6		196	2523		757	1.10	1.08	41.4		848.6		300.0	8:14	1.10	1.21	0.00
02:41:51	861.0	9.9	26.9		132	2513		750	1.10	1.08	41.5		850.9		301.0	8:17	1.10	1.29	0.00
02:42:22	862.1		22.5		133	2505		755	1.10	1.08	41.5		851.6		302.1	8:18	1.10	0.69	0.00
02:42:47	863.1		22.0		159	2508		753	1.10	1.08	41.5		852.2		303.1	8:18	1.10	0.66	0.00
02:43:12	864.1		23.4		168	2529		751	1.10	1.08	41.5		852.4		304.1	8:19	1.10	0.70	0.00
02:44:16	865.1			131		2522			1.10		41.5		852.9		305.1		1.10		0.00
02:44:41	866.0		25.0						1.10		41.6		853.5		306.0		1.10		*****
02:45:13	867.0		24.0			2406				1.08	41.6		854.1		307.0		1.10		0.00
02:47:07	868.0			131						1.08	41.5		855.0		308.0		1.10		0.00
02:48:51	869.0			131					1.10	1.08	41.6		855.1		309.0		1.10		0.00
02:49:43	870.0		28.1		178	2533			1.10	1.08	41.6		855.2		310.0		1.10		0.00
02:50:24	871.0		29.0		164	2519			1.10	1.08	41.7		855.2		311.0		1.10		0.00
02:51:11	872.0		29.8			2548					41.7		855.4		312.0		1.10		0.00
02:52:10	873.0		29.7							1.08	41.7		855.6		313.0		1.10		0.00
02:53:47	874.1		31.8			2486				1.08	41.7		855.8		314.1		1.10		0.00
02:54:17	875.0		23.9						1.10		41.7		855.9		315.1		1.10		
48.41.11	0.3.0	****1	54.3	191	100	2270		157			••••				7.711		••••	••••	

DrillByte Drilling Data Printout COMPANY: BEP PETROLEUM WELL: MINERVA 1

TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP	PI IN	OV TUO	KUD	DENSITY OUT	KUD	TEMP OUT	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GAS
h:mm:sec	a.	n/br	klb		anp	psi	E I			eg Out	deg		1811	bbl	ats	hh:zz	8g		*
02:54:45	876.0		18.9		102	2549	175	748	1.10	1.08	41.8	44.9	856.0	681	316.0	8:30	1.10	0.63	0.00
02:55:36	877.0	66.0	15.1		78	2541		736	1.10	1.08	41.7	44.9	856.4	687	317.0	8:31	1.10	0.58	0.00
03:12:19	878.1	58.4	21.2		62	2476		717	1.10	1.08	41.6	44.7	860.1	646	318.1	8:33	1.11	0.69	0.00
03:12:50	879.1		28.0		92	2513		687	1.10	1.08	41.5	44.5	860.6	655	319.1	8:34	1.11	0.90	0.00
03:15:41	880.1		36.6		151	2544		102	1.10	1.08	41.4	44.4	863.2	700	320.1	8:36	1.11	1.24	0.00
03:16:09	881.1		30.6		121	2601		731	1.09	1.08	41.4		863.7		321.1	8:37	1.11	0.91	0.00
03:16:31	882.0		28.0		111	2608		724	1.09	1.08	41.4		864.0		322.0	8:37	1.11	0.84	0.00
03:16:59	883.0		29.9		135	2616		717	1.09	1.08		44.2	864.4		323.0	8:38	1.11	0.90	0.00
03:17:43		78.5	33.1		153	2619		721	1.10	1.08	41.4		865.1		324.1	8:38	1.11	1.08	0.00
03:20:17	885.0	55.2	36.3		175	2595		726	1.10	1.08	41.4		867.5		325.0	8:41	1.11	1.55	0.00
03:21:02	886.0	75.2	30.6		143	2599		742	1.10	1.09	41.4		868.2		325.0	8:42	1.11	1.09	0.00
03:22:16	887.0	44.2	32.8		162	2563		716	1.09	1.09	41.4		869.3		327.0	8:43	1.11	1.26	0.00
03:24:26	888.0	25.6	35.3		215	2614		728	1.09	1.09	41.4		871.3		328.0	8:45	1.11	1.51	0.00
03:26:41	889.0	27.0	33.1		186	2599		727	1.09	1.09	41.5		873.4		329.0	8:47	1.11	1.51	0.00
03:30:40	890.0	7.7	31.5		170	2623		719	1.09	1.09	41.5		877.1		330.0	8:51		1.71	0.00
03:32:45	891.0	28.8	30.8		182	2597		703	1.09	1.09	41.6		877.7		331.0	8:53	1.11	1.19	0.00
03:33:57	892.0	50.7	23.3		157	2616		701	1.09	1.09	41.7		879.3		332.0	8:55	1.11	0.94	0.00
03:35:41	893.0	30.5	30.4		208	2617		692	1.09	1.09	41.7		879.8		333.0	8:56	1.11	1.14	0.00
03:38:57	894.0	18.4	30.5		211	2600		693	1.09	1.09	41.8		883.6		334.0	8:60	1.11	1.30	0.00
03:54:24	895.0	9.6	29.9		136	2594		715	1.09	1.09	42.3		889.9		335.0	9:15	1.10	1.71	0.00
03:56:35	896.0	28.5	28.2		220	2678		743	1.09	1.09	42.7		890.8		336.0	9:17	1.10	1.17	0.00
03:58:29	897.0	32.4	29.5		242	2690		784	1.09	1.09	42.8		892.3		337.0	9:19	1.10	1.14	0.00
04:00:26	898.0	26.5	30.2		221	2725		796	1.09	1.09	42.9		893.1		338.0	9:21	1.10	1.16	0.00
04:02:57	899.0	24.4	29.4		213	2711		790	1.09	1.09	43.0		893.9		339.0	9:24	1.10	1.21	0.00
04:03:55	900.0	70.3	27.8		201	2669		773	1.09	1.09	43.0		894.0		340.0	9:25	1.10	0.95	0.00
04:04:45	901.0	70.8	25.4		181	2663		746	1.09	1.09	43.0		894.1		341.0	9:25	1.10	0.90	0.00
04:06:22	902.0	34.0	29.4		189	2704		720	1.09	1.09	43.1		894.2		342.0	9:27	1.10	1.09	0.00
04:10:26	903.0	7.7	30.1		214	2717		699	1.09	1.09	43.2		894.3		343.0	9:31	1.10	1.35	0.00
04:11:01	904.1		24.9		250	2804		692	1.09	1.09	43.2		894.4		344.1	9:32	1.10	0.75	0.00
04:11:18 04:11:37	905.0		17.6		142	2588 2724		677	1.09	1.09	43.3		894.4		345.0	9:32	1.10	0.55	0.00
04:11:37	906.1 907.0		8.4		85 82	2749		664 670	1.09	1.09	43.2		894.4		346.1	9:32	1.10	0.47	0.00
04:12:05	908.0	53.3	5.4		55	2739		680	1.09	1.09	43.3		894.4		347.0 348.0	9:33	1.10	0.56	0.00
04:27:33	909.1		5.0		55 61	2750		675	1.09	1.09 1.09	43.3 43.4		894.5 895.9		349.1	9:34 9:36	1.10	0.66	0.00
04:21:55	910.1										43.4							0.75	0.00
04:27:37	911.2		7.7 6.3		89 102	2744			1.09	1.09 1.09	43.4		896.1 896.2		350.1 351.2			0.49	
04:28:15	912.0		2.8		102 75	2747			1.09	1.09	43.4		896.4		351.2			0.43	
04:28:34															353.0				
	913.0		6.4		86	2629			1.09	1.09	43.4		896.7				1.10		0.00
04:31:02	914.1		23.5		153	2785		708	1.09	1.09	43.4		897.5		354.1		1.10		0.01
04:47:02	915.1		30.4		125	2719			1.09	1.09	43.4		908.5		355.1		1.10		0.01
04:47:37	916.1		21.5		152	2752 2768			1.09	1.09	43.4		908.5		356.1			0.78	
04:48:14	917.1		22.0		150				1.09	1.09	43.5		908.5 908 E		357.1			0.77	
04:48:58	918.0		27.1		165	2774			1.09	1.09	43.5		908.5		358.0		1.10		0.01
04:49:36	919.2		23.4		167	2787			1.09	1.09	43.5		908.5		359.2			0.69	
04:49:53	920.1	107.9	17.1	179	124	4184	100	113	1.03	1.09	43.5	10.0	908.5	113	360.1	J:35	1.10	0.56	4.01

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

TIME	DEPTH	ROP	WOB	RPM	TRQ	SPP		,ow Tuo	IN TUD	DENSITY OUT	NUD In	TEMP OUT	RETURNS DEPTH	PVT	-BI	T-	BCD	DIC	GAS
h:mm:mec		n/hr	klb		amp	psi	81			ıg	deg		1	bbl	ats	hh:mm	ng		*
04:50:28	921.1	96.4	18.0	136	136	2785	785	712	1.09	1.09	43.5	46.0	908.5	649	361.1	9:58	1.10	0.74	0.01
04:50:50	922.2	203.4	17.4	136	174	2668	783	718	1.09	1.09	43.5	46.0	908.5	642	362.2	9:59	1.10	0.56	0.01
04:51:08	923.1	189.4	13.1	136	121	2786	778	724	1.09	1.09	43.6	46.0	908.5	650	363.1	9:59	1.10	0.54	0.01
04:51:27	924.1	217.7	11.1	136	110	2802	774	724	1.09	1.09	43.5	46.0	908.5	651	364.1	9:59	1.10	0.52	0.01
04:51:48	925.2	162.4	9.9	136	108	2796	772	733	1.09	1.09	43.5	46.0	908.5	655	365.2	9:60	1.10	0.51	0.01
04:52:07	926.2	168.7	9.2	136	98	2802	774	729	1.09	1.09	43.6	46.0	908.5	652	366.2	10:00	1.10	0.52	0.01
04:52:32	927.2	136.3	11.5	136	129	2810	776	728	1.09	1.09	43.6	46.0	908.5	652	367.2	10:01	1.10	0.58	0.01
04:53:00	928.1	145.8	10.6	135	107	2821	778	143	1.09	1.09	43.6	46.0	908.5	635	368.1	10:01	1.10	0.61	0.01
04:53:34	929.1	120.5	8.6	136	90	2707	779	746	1.09	1.09	43.6	46.0	908.5	654	369.1	10:02	1.10	0.59	0.01
04:54:14	930.0	75.4	7.9	135	101	2797	175	727	1.09	1.09	43.6	46.0	908.5	677	370.0	10:02	1.10	0.62	0.01
04:54:54	931.0	93.5	9.7	136	106	2817	777	733	1.09	1.09	43.6	46.0	908.5	675	371.0	10:03	1.10	0.57	0.01
04:56:08	932.1	52.4	5.1	136	81	2804	795	722	1.09	1.09	43.7	46.1	910.5	646	372.1	10:04	1.10	0.68	0.01
04:57:36	933.0	44.0	13.3	136	119	2786	795	710	1.09	1.09	43.7	46.1	913.2	680	373.0	10:06	1.10	0.93	0.01
05:08:11	934.0	77.3	14.0		128	2793	776	710	1.09	1.09	43.9	46.3	914.3		378.7	10:16	1.10	0.76	0.01
05:08:11	935.0	84.0	14.9		128	2793		710	1.09	1.09		46.3	914.3		378.7	10:16	1.10	0.78	0.01
05:08:11	936.0	88.0	15.4	-	128	2793		710	1.09	1.09		46.3	914.3		378.7	10:16	1.10	0.63	0.01
05:08:11	937.0	69.0	15.7		128	2793		710	1.09	1.09		46.3	914.3		378.7	10:16	1.10	0.78	0.01
05:08:11	938.0	17.3	14.9		128	2793		710	1.09	1.09		46.3	914.3		378.7	10:16	1.10	0.69	0.01
05:10:13	939.0	32.9	14.0		147	2828		711	1.09	1.09		46.3	915.1		379.0	10:17	1.10	0.77	0.00
05:11:39	940.0	68.9	12.5		131	2777		732	1.09	1.09		46.3	916.7		380.0	10:18	1.10	0.83	0.00
05:12:42	941.1	55.4		134	105	2807		742	1.09	1.09		46.3	917.9	-	381.1	10:19	1.10	0.72	0.01
05:30:04	942.1	58.8	12.1		142	2709		691	1.09	1.09		46.0	930.2		382.1	10:21	1.10	0.89	0.02
05:30:31	943.1		10.8		137	2712		675	1.09	1.09		45.9	930.7		383.1	10:21	1.10	0.50	0.02
05:31:11	944.0	84.9	11.2		137	2693		677	1.09	1.09		46.1	931.4		384.0	10:22	1.10	0.69	0.01
05:35:02	945.0	7.6	20.5		144	2688		693	1.09	1.09		46.3	935.5		385.0	10:25	1.10	0.85	0.01
05:39:52	945.0	55.8	27.4		165	2694		708	1.09	1.09		46.3	939.2		386.0	10:31	1.10	1.34	0.01
05:40:46	947.0	84.5	21.9		170	2658		701	1.09	1.03	44.2		939.8		387.0	10:32	1.10	0.88	0.01
05:41:19	948.0	97.8	21.5		160	2715		699	1.09						388.0	10:32	1.10	0.75	
05:42:30	949.0	43.5	19.6		209	2716		698	1.09	1.09 1.09		46.5	940.4		389.0	10:32	1.10	0.75	0.01
05:44:19	950.0		-	-	198	2689		718	1.03	1.09		46.5	941.0		390.0	10:35	1.10	1.07	0.01
05:45:53	951.0	31.1 42.7	23.0 22.0		179	2718		721	1.09			46.6 46.6	941.2		391.0	10:35	1.10	1.01	0.01
05:47:24	952.0	30.5	23.4		173	2699		719	1.09	1.09 1.09		46.7	941.2 941.2		392.0	10:38	1.10	1.02	0.01
05:48:24	953.0	52.5	23.2		188	2746		719	1.03	1.09		46.7	941.2		393.0	10:39	1.10	0.91	0.01
						2744			1.09	1.09		46.7	941.2		394.0	10:33	1.10	1.02	
05:49:53	954.0	39.2	24.0		196														0.01
05:51:30	955.0			130		2743				1.09	44.3		941.2			10:42			****
05:53:26	956.0		23.6							1.09		46.8	941.4			10:44			
05:55:19	957.0		22.1		180	2719			1.09			46.7	944.4		397.0		1.10		0.01
05:58:39	958.0		28.8			2741			1.09			46.8	944.9		398.0				0.02
06:00:26	959.0	35.5	27.5		160	2744			1.09			45.9	945.1		399.0	10:51			0.02
06:02:38	960.0		30.8		210	2732			1.09			47.0	945.2		100.0	10:53			0.02
06:04:30		30.0	31.4		182	2752			1.09			47.0	945.6		401.0	10:55			0.01
06:06:23	962.0		30.9		178	2711			1.09			46.9	947.6			10:57			0.02
06:08:32		24.0	31.4		202	2743			1.09			46.9	949.3		403.0		1.10		0.03
06:10:50		29.0	32.3		178	2745			1.09			47.0	950.5			11:02			0.04
06:31:22	965.0	36.7	26.3	130	198	2753	758	733	1.09	1.09	45.1	47.3	960.2	687	405.0	11:22	1.10	1.08	0.08

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUN VELL: MIMERVA 1

TINE	DEPTH	ROP	WOB	RPK	TRQ	SPP	FI In	LOW OUT	IN	DENSITY OUT	NUD IN	TEMP OUT	RETURNS DEPTH	PVT	-81	T-	ECD	DIC	GAS
h:mm:sec	1	n/hr	klb		amp	pei	£1	1		sg .	deg	C	1 .	bbl	sts	hh:==	18		1
, 06:33:39	966.0	24.8	25.7	126	226	2737	750	710	1 00	1 00	18 1	17 1	0EA E	eee	100 0	11.94	1 10	1 14	A A
06:53:44	967.0	2.9						719	1.09		45.1		960.6		406.0	11:24	1.10	1.14	0.0
06:58:35	968.1	66.9	26.3		167	2817		718	1.09		45.2		963.1		407.0	11:30	1.10	1.38	0.0
07:00:04	969.1	38.2	27.7 24.8		172	2772		714	1.09		45.1		964.0		408.1	11:35	1.10	1.23	0.0
07:02:05	970.0	28.0			185	2784		723	1.09		45.1		964.2		409.1	11:37	1.10	1.05	0.0
07:04:07	971.0	25.7	26.0		180	2746 2773		730	1.09	1.09	45.1		965.3		410.0	11:39	1.10	1.13	0.0
07:06:44	972.0	21.1	29.2 28.9		184 200	2790		722 733	1.09	1.09	45.1		966.1		411.0	11:41	1.10	1.17	0.1
07:09:08	973.0	26.2	27.8							1.09	45.1		966.4		412.0	11:43	1.10	1.23	0.1
07:11:31	974.0	25.7	28.7		203 222	2778 2779		724 722	1.09	1.09	45.1 45.2		966.4		413.0	11:45	1.10	1.19	0.1
07:14:14	975.0	24.3	25.1		207	2815		714	1.09	1.09			966.5		414.0	11:48	1.10	1.20	0.1
07:16:44	976.0	21.9	28.9		268	2794		731	1.09	1.09	45.2 45.3		966.5 ace a		415.0	11:51	1.10	1.17	0.13
07:18:49	977.0	34.5	27.8		224	2786		709	1.09	1.09 1.09	45.4		966.9 9 67.0		416.0	11:53 11:55	1.10	1.22	0.1
07:21:22	978.0	22.6	27.1		217	2809		711	1.09	1.09	45.4		967.1	_	418.0	11:58	1.10		
07:24:20	979.0	39.4	25.5		214	2788		712	1.09	1.09	45.5		968.2		419.0	12:01	1.10	1.19	0.13
07:25:38	980.1	48.3	24.6		230	2747		729	1.09	1.09	45.5		969.0		420.1	12:01	1.10	1.21	0.0
07:26:59	981.0		24.6		258	2822		736	1.09	1.09	45.5		969.6		421.0	12:04	1.10	1.01	0.1
07:27:40	982.0		24.4		230	2801		738	1.09	1.09	45.6		969.9		422.0				0.1
07:28:20	983.0	79.2	27.9		215	2792		127	1.03	1.09	45.6				423.0	12:04 12:05	1.10	0.84	
07:39:29	984.0	3.3	29.9		160	2773		711	1.09	1.09	45.7		970.3 974.5		123.0	12:05	1.10	1.62	0.1
07:52:58	985.0	5.7	28.5		120	2777	-	724	1.03	1.09	45.9		979.5		425.0	12:10	1.10	1.66	0.1
08:13:34	986.4	32.5	16.2		127	2737		701	1.09	1.09	45.7		983.5		126.4	12:36	1.10	1.57	0.4
08:14:16	987.0	73.5	2.0		89	2646		649	1.09	1.09	45.2		983.5		427.0	12:37	1.10	0.69	0.4
08:17:18	988.8	36.0	10.4		122	2661		648	1.09	1.09	45.2		983.9		428.8	12:40	1.10	0.62	0.2
08:17:45	989.0	34.7	27.8		188	2684		544	1.09	1.09	44.9		984.0		429.0	12:40	1.10	0.74	0.2
08:19:58	990.6	33.4	25.2		177	2660		626	1.09	1.09	44.8		984.2		430.6	12:42	1.10	1.04	0.2
08:20:45	991.0	31.8	22.7		154	2926		832	1.09	1.09	44.8		984.3		431.0	12:43	1.10	0.89	0.1
08:23:30	992.0	26.9	24.5		168	2900		763	1.09	1.09	44.7		984.6		432.0	12:46	1.10	1.19	0.1
08:26:22	993.0	18.9	24.4		174	2888		735	1.09	1.09	44.7		984.9		433.0	12:49	1.10	1.20	0.1
08:43:05	994.0	23.2	12.4		121	2815		737	1.09	1.09	44.8		986.2		434.0	12:51	1.10	1.19	0.1
08:46:19	995.9	24.5	16.9		147	2752		730	1.09	1.09	44.9		987.2		435.9	12:55	1.10	0.93	0.3
08:46:25	996.1	24.5	29.7		158	2702		692	1.09	1.09	44.9		987.3		436.1	12:55	1.10	0.98	0.3
08:48:05	997.1	27.2	25.9		171		783	726	1.09	1.09	45.0		987.8		437.1	12:56	1.10	1.06	0.3
08:49:39	998.1	38.1	23.5		163	2698		757	1.09	1.09	45.0		988.3		438.1	12:58	1.10	1.05	0.29
08:51:11	999.0		23.2						1.09		45.1		988.8			12:60			
08:52:54	1000.0	39.1	25.9		183	2675			1.09	1.09	45.2		989.4			13:01			
08:54:43	1001.0	32.6	26.0			2724			1.09	1.09	45.2		990.0			13:03			
08:56:16	1002.0	39.8	25.8			2692		729	1.09	1.09	45.3		990.5			13:05		1.08	
08:58:18	1003.0	26.9	25.1			2759		722	1.09	1.09	45.3		991.2			13:07		1.13	
09:01:25	1004.0	19.8	25.4			2737		134	1.09	1.09	45.4		992.2			13:10		1.23	
09:04:29	1005.0	20.3	26.5			2768		726	1.09	1.09	45.6		993.2			13:13		1.24	
09:06:59	1006.1	39.1	24.4			2737		728	1.09	1.09	45.7		994.1			13:15		1.14	
09:09:33	1007.0	19.4	25.9			2802			1.09	1.09	45.8		994.8			13:18			
09:11:55	1008.0		25.1			2825			1.09	1.09	45.9		996.7			13:20			
09:15:31		19.7	25.4		194	2881			1.09	1.09	46.0		998.8			13:24			
44.70.47	1003.0	14.1	90.1	441	147	9001	***	114	1.03		: • • •			740		14.91		4101	

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERYA 1

TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP		POA.		BNSITY	KOD	TEMP	RETURNS	PVT	-BI	T-	BCD	DIC	GAS
h:mm:sec		n/hr	klb		amp	psi	IN	OUT	_ IN 1	OUT g	IN deg	OUT C	DEPTH	bbl	ats	hh:mm	ıg		1
09:18:25	1010.1	19.7	23.3	137	202	2866	758	734	1.09	1.09	46.0	48.2	1000.3	620	450.1	13:27	1.10	1.18	0.2
09:21:29	1011.0	20.1	24.4		211	2888		724	1.09	1.09		48.2	1002.0		451.0	13:30	1.10	1.22	0.2
09:24:18	1012.0	21.2	23.9		252	2867		723	1.09	1.09		48.2	1003.4		452.0	13:33	1.10	1.17	0.2
09:26:54	1013.0	24.8	24.4		241	2845		737	1.09	1.09		48.4	1003.4		453.0	13:35	1.10	1.18	0.2
09:20:34	1014.0	24.3	23.7		204	2799		724	1.09	1.09		48.5	1003.3		454.0	13:38	1.10	1.18	0.2
09:32:58	1015.1	19.8	23.3		188	2760		729	1.09	1.09		18.5	1005.9		455.1	13:41	1.10	1.19	0.2
09:32:38 09:36:22	1015.1	19.6				2752		718	1.03			48.6	1003.3		456.0	13:45	1.10	1.23	0.2
)9:39:45	1017.0	17.5	23.4 24.2		172	2736		716	1.03	1.09			1007.3		457.0	13:48	1.10	1.23	0.2
					180				1.03	1.09		48.7							0.2
09:43:09	1018.0	15.3	23.1		220	2736		722		1.09		48.7	1009.4		458.0	13:52	1.10	1.24	0.1
9:46:30	1019.0	18.6	23.3		196	2711		726	1.09	1.09		48.8	1010.4		459.0	13:55	1.10	1.22	
9:50:51	1020.3	67.3	23.6		226	2687		724	1.09	1.09		48.8	1011.8		460.3	13:57	1.10	0.93	0.1
9:54:19	1021.0	11.8	14.5		277	2652		714	1.09	1.09		49.0	1012.9		461.0	14:01	1.10	1.25	0.1
0:02:02	1022.0	5.8	28.9		192	2637		700	1.09	1.09		19.0	1015.2		462.0	14:09	1.10	1.35	0.1
0:03:35	1023.0	79.2	23.3		204	2671		693	1.09	1.09		49.0	1015.6		463.0	14:10	1.10	1.02	0.
0:31:04	1024.0	13.8	22.2		120	2674		694	1.09	1.09		48.9	1020.9		464.0	14:14	1.10	0.98	0.1
10:32:25	1025.1	75.6	25.6		181	2776		700	1.09	1.09		48.7	1021.0		465.1	14:16	1.10	1.01	0.
0:32:53	1026.1	125.4	17.8	137	150	2794		692	1.09	1.09	46.0	48.7	1021.1	750	466.1	14:16	1.10	0.68	0.
0:33:25	1027.0	96.4	12.2	140	128	2111	778	687	1.09	1.09	46.0	48.7	1021.2	754	467.0	14:17	1.10	0.66	0.
0:34:30	1028.1	66.5	24.2	143	181	2704	773	698	1.09	1.09	46.0	48.7	1021.3	747	468.1	14:18	1.10	0.95	0.
0:35:16	1029.0	80.9	22.5	143	177	2788	779	711	1.09	1.09	46.0	48.7	1021.4	730	469.0	14:19	1.10	0.84	0.
0:35:54	1030.1	98.2	17.6	143	166	2768	783	698	1.09	1.09	45.9	48.6	1021.5	730	470.1	14:19	1.10	0.74	0.
0:36:25	1031.0	104.5	19.5		154	2772	779	706	1.09	1.09	45.9	48.4	1021.6	733	471.0	14:20	1.10	0.75	0.
10:41:51	1032.0	5.9	27.6		189	2773		708	1.09	1.09		48.3	1022.2		472.0	14:25	1.10	1.42	0.
0:42:41	1033.1	80.6	30.2		228	2786		698	1.09	1.09		48.9	1022.4		473.1	14:26	1.10	0.91	0.
0:43:20	1034.1	90.4	23.1		189	2778		727	1.09	1.09		48.9	1022.4		474.1	14:27	1.10	0.82	0.
0:44:17	1035.0	59.6	25.4		278	2795		746	1.09	1.09		48.9	1022.8		475.0	14:28	1.10	0.95	0.
0:46:38	1036.0	23.0	27.3		288	2756		718	1.09	1.09		48.9	1022.9		476.0	14:30	1.10	1.19	0.
0:48:52	1037.0	35.6	25.3		298	2746		703	1.09	1.09		19.0	1023.1		477.0	14:32	1.10	1.16	0.
0:50:58	1038.0	25.8	28.7		226	2784		688	1.09	1.09		49.0	1023.4		478.0	14:34	1.10	1.18	0.
						2712		690	1.09	1.09		49.1	1023.6	721		14:36	1.10	1.08	0.
10:52:37	1039.0	43.7	25.6		229								1023.8			14:37	1.10	1.10	0.
0:54:11	1040.0	34.6	27.3		281	2755 2705		702	1.09	1.09		49.1			480.0			1.11	0.
0:56:22	1041.0	24.7	22.7		225			693	1.09	1.09		49.1	1024.9		481.0	14:40	1.10	1.14	
0:59:17	1042.1	29.1	20.7		223	2697		711	1.09	1.09		49.0	1028.5		482.1	• • • • •			0.
1:01:33	1043.0	34.1	27.1		272	2789		713	1.09	1.09		49.0	1031.4		483.0	14:45		1.18	0.
1:02:35	1044.0			141						1.09			1031.7			14:46			
1:03:31	1045.0	60.9	24.1		257	2725			1.09				1031.8			14:47			
1:04:15	1046.0			142		2750			1.09				1031.8		486.0		1.10		0.
11:05:17	1047.0	51.4	25.1		285				1.09				1031.9		487.0	14:49			
11:06:36	1048.0	41.2		142		2752			1.09				1032.1		488.0	14:50			0.
11:08:24	1049.0	30.9			275	2746			1.09				1033.9		489.0	14:52			0.
11:10:41	1050.0	25.0	26.8		240	2725			1.09	1.09		48.5	1035.8		490.0			1.19	0.
11:13:14	1051.0	22.6	27.5	143	242			809	1.09				1036.5		491.0		1.10		
11:15:44	1052.0	19.9	28.0	143	258				1.09				1037.2			14:59	1.10		
11:18:37	1053.0				235	2782	175	701	1.09	1.09	45.7	49.3	1038.9			15:02			
11:55:41	1054.1			136						1.09	45.5	48.9	1053.0	693	494.1	15:05	1.10	1.21	0.

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERYA 1

1098.0 50.5	1097.0 65.0	1096.0 58.0	1095.0 50.1	1094.0 46.9	2 105.7	1091.0 41.5	1090.0 21.2	1089.0 21.1	1088.1 31.9	47.9	1086.0 48.5	1085.0 4.1	1084.1 78.6	1083.0 87.3	1082.1 30.9	1081.0 67.9	1080.0 51.3	1079.0 26.6	1078.0 26.9	1077.0 21.9	1076.0 19.5	1075.0 20.9	12:49:31 10/3.0 24.9	1072.1 28.0	1071.1 26.5	1070.0 20.0	1069.0 23.5	1068.0 29.2	1067.0 25.2	1066.0 14.3	n L	1063.0 36.4	1062.0 23.5	1061.0 29.2	1060.0 16.5	1059.0 20.1	8 1058.0 49.1		12:00:48 1056.0 24.1	1022 0 310	1	h:mm:sec m m/hr
¥ #	136	5 136	<u>ت</u>	15.0 136 148		3 3	136	2 136	0 136	8 136	136	6 136	7 136	1 136	36	5 136	5 136	9 136	1 136	- H	# E		25.8 136 191 26.8 136 191		2 136	7 136	9 136	1136	136		26.7 136 21	8 136	136	5 136	2 3	=	7 136	7	23.9 135 24			kib aso
2794 707 2783 687	2792 712 1	2798 708	2783 700	2678 680 6	2763 103 1	2714 722	2758 709	3 2724 707 6	3 2721 712 6	2703 702 (2712 711 (2704 734 1	2681 728	2670 729 6	2750 725	2753 742	2710 735	2745 736 (2720 726	2751 726	2775 704	2790 725 6	2715 715 6	2725 731	2705 738	2679 726	2780 736 6	2731 751 6	2741 760 6	2769 772 6	7775 783 1	2735 758 (2728 768 1	2723 756	2768 754	2739 762	2686 749	2712 739	2712 765	1 1645 141	h her She	3.
	1.09 1	1.09	1.09	1.09	77 1 00 1 00	1.09	64 1.09 1.09	_	2 1.09 1	14 1.09 1.09	58 1.09 1.09	1.09 1	1.09 1	1.99	1.09		1.09 1	1.09 1	1.09 1	1.09	1.09	1.09	76 1.09 1.09		5 1.09 1	162 1.09 1.09	1.09 1	1.09 1	1.09	56 1.09 1.09		7 1.09 1	_	2 1.09 1			1.09	1.09	559 1.09 1.09 559 1.09 1.09	8	•	•
	-	-	-		17 0 49.5	• •	ω.	ص	000	46.8 49.1	46.8 49.1		ø,	~	-		ø,	9	~	، صه	- •	- •	45.7 49.2	• •	15.5 19.2	45.5 49.2	51	91	5	45.5 49.1	15.5 16.5	45.5 48.8	45.5 48.6	45.5 48.9	45.5 49.2	45.5 49.2	15.5 19.2	45.5 49.1	45.5 49.1	10 1		2
<i></i>	O1		.	5	1091.0	• ~		ھ	•	1076.5	~	00		∞	.	~	5	~	~	 (-	1060.7	. 40	-	-	0	~	(1054.2		· —	-						1053.1	1		-
				-	711 511 0	_													-			716 515.0	715 513.0				-			728 506.0			_	_				_	200 495.0	_ 1		
16:49 I	_			16:44		16:41	16:40 1	16:37 1	_	16:33 1	16:32 1	16:31 1	16:19 1	16:19 1	5: 5:	16:16 I	16:15	16:14 1	16:11	16:09	16:06	16:02 1	7.50	15:54	15:51 1	15:49 1	15:46 1	15:43 1	15:41	15:37	15:30	15:28 1	15:26 1	15:23 1	15:21	۰۰ ·	_	15:13	15:10			
.10 0.90	_	_			10 0 61	.10 0.92	.10 1.15	.10 1.15	.10 1.07	.10 1.01	.10 1.01	.10 1.54	.10 0.87	.10 0.92	.10 1.09	.10 0.94	.10 0.99	.10 1.19	.10 1.18	.10 1.21	. 10 1.30	. 10 1.25	10 1.17	1.10 1.18	1.10 1.17	1.10 1.25	.10 1.20	.10 1.11	.10 1.23	.10 1.27	10 1.19	1.10	1.10 1.16	1.10 1.10	. 10 1.24		1.10 1.08	1.10 1.21		. [•
<u> </u>	0.13	0.13	0.13	0.13		0.16	0.19	0.24	0.26	0.21	0.19	0.17	0.09	0.08	2	0. <u>=</u>	<u>•</u>	₽. =	0. 13	0	0.11	0.12	3 E	0.14	0.12	0.10	0.02	0.02	0.01	0 5		0.10	0.10	0.10	0.10		_	_	5 6			1

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUN WELL: MINERVA 1

TIME	DEPTH	ROP	WOB	RPM	TRQ	SPP	PI IN	LOW	UUD In	DENSITY OUT	MUD IN	TEMP OUT	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GAS
h:mm:sec		n/hr	klb		amp	psi		pa		ag	deg		1	bbl	nts	hh:nn	ış		2
13:58:45	1100.1	34.7	26.3	136	174	2786	688	676	1.09	1.09	46.6	49.4	1081.5	719	540.1	16:53	1.10	1.11	0.13
14:00:22	1101.0	30.8	21.3		167	2793	693	670	1.09			49.5	1081.5		541.0	16:54	1.10	1.02	0.13
14:01:56	1102.1	49.2	23.8	136	254	2792	688	669	1.09	1.09	46.6	49.5	1081.5	721	542.1	16:56	1.10	1.04	0.13
14:03:58	1103.0	27.4	26.5	136	205	2770	692	663	1.09	1.09		49.5	1082.7	721	543.0	16:58	1.10	1.14	0.10
14:06:24	1104.1	28.7	29.0	136	244	2784	698	671	1.09	1.09		49.4	1084.5	722	544.1	17:00	1.10	1.19	0.10
14:08:42	1105.1	27.1	27.1	136	244	2729	678	678	1.09			49.3	1084.6		545.1	17:03	1.10	1.18	0.11
14:11:03	1106.0	22.6	27.5		231	2760	688	693	1.09			49.4	1084.7		546.0	17:05	1.10	1.20	0.13
14:13:30	1107.0	41.2	25.2	136	253	2759	685	690	1.09	1.09		49.5	1084.8	721	547.0	17:07	1.10	1.18	0.14
14:14:45	1108.0	58.4	23.9	136	250	2711	688	691	1.09	1.09		49.5	1084.8		548.0	17:09	1.10	1.07	0.14
14:16:05	1109.0	39.0	26.3		291	2771		691	1.09			49.5	1084.9	_	549.0	17:10	1.10	1.04	0.16
14:17:32	1110.0	39.3	25.6		220	2768		692	1.09			49.5	1085.7		550.0	17:11	1.10	1.04	0.27
14:32:06	1111.0	21.6	28.5	136	226	2733	693	679	1.09	1.09		49.4	1090.5	719	551.0	17:14	1.10	1.19	0.19
14:33:29	1112.1	62.6	29.3	137	209	2721	658	653	1.09	1.09		49.0	1091.3	719	552.1	17:15	1.10	1.13	0.23
14:34:18	1113.0	80.4	26.1		196	2741		666	1.09	1.09	47.1	48.8	1092.2		553.0	17:16	1.10	0.89	0.29
14:34:57	1114.1		25.8		228	2764		664	1.09		47.1		1092.9		554.1	17:17	1.10	0.82	0.30
14:35:38	1115.1		25.0		218	2743	655	674	1.09			49.0	1093.4		555.1	17:17	1.10	0.85	0.30
14:36:25	1116.1	83.7	26.6		196	2705		685	1.09	1.09		49.2	1094.1		556.1	17:18	1.10	0.88	0.29
14:37:15	1117.0	56.3	22.5		215	2742		677	1.09	1.09		49.3	1094.7		557.0	17:19	1.10	0.86	0.28
14:39:38	1118.0	17.7	20.8		177	2757		658	1.09			49.4	1096.3	716	558.0	17:21	1.10	1.12	0.24
14:49:15	1119.1	30.2	30.0		161	2770		658	1.09	1.09		49.5	1102.5		559.1	17:31	1.10	1.57	0.34
14:49:59	1120.0	81.5	25.3		190	2807		669	1.09			49.5	1102.8		560.0	17:32	1.10	0.87	0.37
14:50:47	1121.1	77.8	27.0		186	2750		661	1.09	1.09		49.6	1103.1		561.1	17:32	1.10	0.85	0.39
14:52:10	1122.0	39.6	27.0		192	2791		686	1.09			49.6	1103.8		562.0	17:34	1.10	1.07	0.38
14:54:15	1123.0	26.8	26.9		264	2839		681	1.09			49.6	1104.6		563.0	17:36	1.10	1.14	0.30
14:56:15	1124.0	29.0	26.2		215	2815		678	1.09			49.6	1105.6		564.0	17:38	1.10	1.15	0.20
14:58:30	1125.1	26.2	28.8		253	2823		658	1.09	1.09		49.6	1106.4		565.1	17:40	1.10	1.17	0.16
15:00:35	1126.0	29.3	30.1		232	2846		660	1.09			49.6	1107.7		566.0	17:42	1.10	1.19	0.14
15:02:34	1127.0	35.9	28.8		251	2826		676	1.09			49.5	1109.3		567.0	17:44	1.10	1.15	0.20
15:04:41	1128.0	30.8	27.0		222	2825		678	1.09	1.09		49.6	1110.4		568.0	17:46	1.10	1.16	0.37
15:06:42	1129.0	27.1	31.1		285	2880		677	1.09			49.7	1110.5		569.0	17:48	1.10	1.18	0.42
15:09:06	1130.0	30.9	30.0		258	2855		672	1.09	1.09		49.7	1110.5		570.0		1.10	1.23	0.42
15:10:37	1131.0	38.8	30.8		262	2908		666	1.09			49.8	1110.5		571.0	17:52	1.10	1.12	0.42
15:12:30	1132.0	30.8	29.7		214	2863		661	1.09			49.8	1110.5		572.0	17:54	1.10	1.16	0.42
15:15:03	1133.0	27.6	28.9		269	2905		658	1.09				1111.2		573.0	17:57			0.28
15:18:34	1134.0			137		2895				1.09			1115.7		574.0				0.13
15:20:08	1135.1			137		2861				1.09			1117.3			18:02			
15:22:22	1136.0			137		2861				1.09			1118.0			18:04			0.34
15:24:31	1137.0		29.9		240	2893				1.09			1118.2				1.10		0.35
15:27:10		20.7	30.0		200	2881			1.09				1118.3					1.26	0.34
15:29:42		23.7	29.7		205	2899			1.09				1118.4		579.0		1.10	1.24	0.34
15:56:29	1140.0	5.7	27.9		160	2744				1.09			1126.8			18:20			
16:09:01		14.5		133		2718				1.09			1132.4			18:32			0.22
16:12:03	1142.1			133		2743				1.09			1133.3			18:36			
16:14:05	1143.1			133		2768				1.09			1134.0			18:38			0.21
16:16:08	1144.0			133						1.09			1135.1			18:40			
14.10:00	1177.0	40.4	34.0	199	56V	6119	144	777	1.43	1.03	7119	****	******	441					

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL : MINERVA I

TINE	DEPTH	ROP	WOB	RPM	TRQ	SPP	PL In	OV TUO	I DON	ENSITY	NUD In	TEMP	RETURNS DEPTH	PVT	-BI	T-	BCD	DIC	GAS
h:mm:sec	1	e/br	klb		amp	psi	g P	I		g	deg	C	•	bbl	ats	hh:mm	11		X -
16:18:41	1145.0	22.0	28.6		206	2746		623	1.09	1.09	47.7	50.4	1136.2	694	585.0		1.10	1.21	0.17
16:21:05	1146.0	27.0	30.3	133	232	2781	736	626	1.09	1.09	47.8	50.4	1137.3	693	586.0	18:45	1.10	1.20	0.18
16:23:26	1147.0	26.9	26.8		182	2739		631	1.09	1.09	47.9		1138.1	695	587.0	18:47	1.10	1.18	0.21
16:26:24	1148.0	20.5	29.2		220	2768		637	1.09	1.09	47.9		1139.1		588.0	18:50	1.10	1.24	0.16
16:28:43	1149.1	27.1	29.5		211	2786		640	1.09	1.09	47.9		1139.5		589.1	18:52	1.10	1.18	0.14
16:31:32	1150.0	21.7	29.0		213	2772		639	1.09	1.09	47.9		1139.5		590.0	18:55	1.10	1.26	0.14
16:34:43	1151.0	17.4	27.3		190	2766		639	1.09	1.09		50.4	1139.5		591.0	18:58	1.10	1.26	0.14
16:36:39	1152.0	32.9	30.8		227	2735		642	1.09	1.09	47.7		1139.6		592.0	19:00	1.10	1.16	0.14
16:38:38	1153.0	31.9	28.7		207	2697		632	1.09	1.09		50.4	1139.7		593.0	19:02	1.10	1.16	0.13
16:41:19	1154.0	30.4	27.8		185	2669		641	1.09	1.09		50.3	1139.9		594.0	19:05	1.10	1.23	0.12
16:43:33	1155.0	25.3	30.3		206	2655		636	1.09	1.09	47.6		1140.0		595.0	19:07	1.10	1.20	0.12
16:46:41	1156.0	21.6	26.7		223	2641		646	1.09	1.09	47.5		1140.2		596.0	19:10	1.10	1.24	0.13
16:50:23	1157.0	15.7	28.3		285	2631		636	1.09	1.09	47.4		1140.3		597.0	19:14	1.10	1.31	0.15
16:54:09	1158.0	18.4	28.7		257	2646		653	1.09	1.09	47.4		1140.7		598.0	19:18	1.10	1.32	0.19
16:57:03		19.5	31.3		257	2619		655	1.09	1.09	47.4		1141.8		599.0	19:21	1.10	1.29	0.22
16:59:46	1160.0	23.0	32.2		238	2589		668	1.09	1.09	47.4	50.5	1143.4	720	600.0	19:23	1.10	1.29	0.22
17:03:50	1161.0	13.8	31.0		205	2626		651	1.09	1.09	47.4	50.6	1144.5	724	601.0	19:27	1.10	1.37	0.22
17:08:28	1162.0	12.3	31.3		207	2646		659	1.09	1.09	47.4		1146.4	726	602.0	19:32	1.10	1.41	0.23
17:12:01	1163.1	20.7	30.3		210	2625		656	1.09	1.09	47.4	50.5	1147.7	729	603.1	19:35	1.10	1.31	0.25
17:16:00	1164.0	14.0	28.6		179	2611	–	674	1.09	1.09	47.4		1149.2		604.0	19:39	1.10	1.34	0.26
17:19:23	1165.0	18.6	32.0		194	2626		654	1.09	1.09	47.4		1150.4		605.0	19:43	1.10	1.33	0.22
17:24:14	1166.0	11.0	31.6		176	2640		644	1.09	1.09	47.4		1152.3		606.0	19:48	1.10	1.43	0.19
17:30:32	1167.0	9.4	30.2		154	2662		623	1.09	1.09	47.5		1155.0		607.0	19:54	1.10	1.48	0.20
17:36:52	1168.0	10.1	31.2		147	2647		623	1.09	1.09	47.9		1156.8		608.0	20:00	1.10	1.48	0.18
17:58:57	1169.1	13.0	30.9		169	2636		624	1.09	1.09	48.0		1161.2		609.1	20:06	1.10	1.43	0.21
18:01:17	1170.1	24.5	31.2		190	2673		624	1.09	1.09	48.1		1161.7		610.1	20:08	1.10	1.22	0.20
18:04:41	1171.1	19.6	30.0		183	2697		638	1.09	1.09	48.1		1162.4		611.1	20:11	1.10	1.31	0.20
18:07:21	1172.1	33.6	28.5		189	2701		634	1.09	1.09	48.2		1163.2		612.1	20:14	1.10	1.22	0.19
18:09:29	1173.1	31.1	28.1		195	2702		639	1.09	1.09	48.2		1163.6		613.1	20:16	1.10	1.17	0.18
18:11:46	1174.0	22.4	28.0		183	2729		630	1.09	1.09	48.2		1164.2		614.0	20:18	1.10	1.18	0.18
18:14:13	1175.0	22.2	27.5		204	2695		642	1.09	1.09	48.2		1164.9		615.0	20:21	1.10	1.20	0.18
18:16:48	1176.0	24.3	29.3		238	2725		643	1.09	1.09	48.2		1165.5		616.0	20:23	1.10	1.23	0.28
18:19:34	1177.0	26.0	26.6		281	2763		642	1.09	1.09	48.2		1165.9		617.0	20:26	1.10	1.22	0.49
18:22:48	1178.0	21.5	28.9		307	2800		653	1.09	1.09	48.2		1166.4		618.0		1.10	1.27	0.44
18:25:23	1179.0		28.1							1.09			1166.9			20:33			
18:30:59	1180.0		27.1		271	2825		640	1.09	1.09	48.3		1167.6		620.0	20:38		1.35	
18:35:28	1181.0		28.0			2855			1.09	1.09	48.3		1168.4		621.0	20:42			
18:39:59	1182.0		27.2		219	2848		646	1.09	1.09		50.5			622.0	20:17			
18:42:53	1183.0		29.9		276	2834		653	1.09	1.09	48.4		1171.7			20:50		1.31	
	1184.0		26.1		200	2828			1.09	1.09			1173.1			20:53		1.29	
18:54:08		13.5	24.2		209	2816			1.09	1.09			1175.8			21:01		1.44	
18:58:31	1186.0		28.8		253	2808			1.09	1.09			1177.4			21:05		1.36	
19:02:13	1187.0		30.2		289				1.09	1.09			1178.7			21:09			
	1188.0		29.0						1.09				1180.1			21:13			
19:10:04	1189.0	15.1	29.5	111	291	2854	149	926	1.09	1.03	15.5	31.0	1181.3	167	043.0	21:17	1.10	1.35	U.28

DrillByte Drilling Data Printout COMPANY: BEP PETROLEUM WELL: MIMERVA 1

TIME	DEPTH	ROP	MOB	RPM	TRQ	SPP	PL In	VO TUO		ENSITY OUT	MUD In	TBMP OUT	RETURNS DRPTH	PVT	-81	T-	BCD	DIC	GAS
h:mm:sec		n/hr	klb		ARP	psi	8P			ig	deg		1	bbl	ats	bh:==	18		X
19:14:14	1190.0	14.7	29.0	134	220	2834	740	656	1.09	1.09	48.5	51.0	1182.2	736	630.0	21:21	1.10	1.36	0.4
19:18:37	1191.0	12.9	32.1	134	211	2778	724	650	1.09	1.09	48.7	51.0	1183.5	717	631.0	21:25	1.10	1.41	0.9
19:23:28	1192.0	12.4	31.3	133	245	2850	723	660	1.09	1.09	48.7	51.1	1184.3	717	632.0	21:30	1.10	1.42	0.5
19:30:24	1193.0	7.8	30.1	134	213	2861	731	648	1.09	1.09	48.7	51.1	1185.2	715	633.0	21:37	1.10	1.50	0.2
19:36:41	1194.0	10.3	30.0	134	216	2874	747	647	1.09	1.09	48.8	51.2	1186.7	715	634.0	21:43	1.10	1.47	0.2
19:41:48	1195.0	12.1	30.5	134	232	2858	772	647	1.09	1.09	48.9	51.3	1188.0	715	635.0	21:48	1.10	1.43	0.3
19:46:52	1196.0	12.0	31.7	134	224	2871	772	644	1.09	1.09	48.9	51.3	1189.2	715	636.0	21:53	1.10	1.44	0.3
19:52:20	1197.0	12.4	31.7	134	217	2861	766	646	1.09	1.09	49.0	51.3	1190.5	715	637.0	21:59	1.10	1.46	0.2
19:58:07	1198.0	11.7	30.7	134	197	2869	742	649	1.09	1.09	49.0	51.4	1191.7	713	638.0	22:05	1.10	1.45	0.2
20:18:29	1199.0	14.3	29.2		185	2814	764	618	1.09	1.09	49.0	51.4	1194.2	112	639.0	22:10	1.10	1.42	0.2
20:21:43	1200.1	21.4	31.0	137	205	2828	762	625	1.09	1.09	49.0	51.5	1194.7	712	640.1	22:13	1.10	1.30	0.2
20:24:41	1201.0	21.4	30.1		217	2834	761	624	1.09	1.09	49.1	51.4	1195.3	712	641.0	22:16	1.10	1.27	0.2
20:28:04	1202.0	17.2	27.8		250	2813		636	1.09	1.09	49.1	51.4	1195.9	711	642.0	22:20	1.10	1.29	0.2
									1.09	1.09	49.1	51.5	1196.8	710	643.0	22:25	1.10	1.32	0.1
20:33:21 POOH to c	1203.0 change bi	8.9 t.	27.0	138	165	2826	765	636	1.09	1.09	49.1	51.5	1196.8	710	643.0	22:25	1.10	1.32	

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUK VELL : MINERVA 1

TINE	DEPTH	ROP	WOB	RPK	TRQ	SPP	P IN	LOW	UDN		T HUD	TEMP	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GAS
h:mm:mec	1	m/hr	klb		4BP	psi		b ∎	LB	18		C 001	26714	bbl	ets	hh:mm	15		*
16th Marci NB #5 SEC		8.5*	3x32					, , , , and desired											
04:09:46	1205.0	31.6	14.0	81	66	509	350	271	1.09	1.09	35.8	35.7	1182.7	727	1.0	0:02	1.14	1.78	0.5
05:15:44	1206.0	6.3	23.9	78	93	526	375	316	1.09	1.09	35.9	37.7	1205.4	736	2.0	0:45	1.14	1.85	0.0
06:09:06	1207.0	2.5	21.8	77	78	536	408	378	1.13	1.13	36.3	38.2	1206.4	733	3.0	1:34	1.18	1.76	0.0
Drilled ou	it shoe	and 3m	forms	tion.	Perf	ormed	LOT.	Drill	Aher	ıd.						•		• • • •	• • •
09:14:44	1208.0	1.7	25.2	79	92	510	415	387	1.13	1.13	35.6	37.0	1207.5	733	4.0	2.29	1.19	1.92	0.0
10:11:34	1900 0		23.8	80	55	504	412						1208.4	686	5.0	3:21	1.12	1.82	0.0

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL : MINERVA 1

TINE	DEPTH	ROP	WOB	RPN	TRQ	SPP	PL IN	OW OUT	UDA	DENSITY OUT	IN	TEMP OUT	RETURNS DEPTH	PVT	-BI	T-	ECD	DIC	GAS
h:mm:sec	. 1	u/hr	klb		amp	psi	gp		•••	ag	deg			bbl	ets	hh:mm	sg		X
NB#6 8.5	* HYCALOG	DS61H	10x11	x12x1	2x12	with M	WD as	sembly	,										
19:28:35	1210.0	18.9	3.9	75	60	1849	483	330 1	.13	1.13	30.6	38.3	1209.0	705	1.0	0:05	1.19	0.79	0.02
19:31:00	1211.0	29.8	3.8	109	103	1823	484	372 1	.13	1.13	30.7	39.4	1209.0	707	2.0	0:07	1.19	0.74	0.03
19:32:55	1212.1	33.1	4.5	120	97	1833	486	369 1	.13	1.13	30.9	39.6	1209.0	706	3.1	0:09	1.19	0.71	0.05
19:34:04	1213.0	52.8	6.2	121	103	1833	484	370 1	.13	1.13	31.2	39.7	1209.0	706	4.0	0:10	1.19	0.69	0.06
19:35:54	1214.0	33.8	4.7	121	86	1803	475	345 1					1209.0	706	5.0	0:12	1.19	0.72	0.06
19:38:35	1215.0	27.0	5.5	120	94	1836	484	348 1					1209.0	712	6.0	0:15	1.19	0.84	0.07
19:40:19		36.1	7.0	120	101	1840	475	345 1					1209.0	708	7.0	0:17	1.19	0.78	0.07
19:41:59		38.5	7.3	120	120	1818	475	351 1					1209.0	705	8.0	0:18	1.19	0.77	0.08
19:43:21		46.5	7.9	122	142	1855	483	347 1					1209.0	704	9.0		1.19	0.78	0.08
20:12:25		51.7	5.6	118	155	1873	476						1217.3	667	10.0	0:22	1.19	0.80	0.09
20:13:49		46.4	3.5	118	136	1834	476						1218.1	663	11.0	0:24	1.19	0.64	0.08
20:15:32		37.3	6.7	119	99	1846	476	360 1					1218.1	662	12.0		1.19	0.78	0.08
20:18:01		27.8	7.8	118	138	1849	476	374 1					1218.1	662	13.0	0:28	1.19	0.85	0.08
20:20:02		33.9	7.5	118	107	1852	481	376 1					1218.1	664	14.0		1.19	0.82	0.08
20:22:18		24.4	8.0	119	114	1844	478	373 1					1218.1	667	15.0	0:32		0.85	0.08
20:24:56		21.6	8.3	119	70	1875	478	325 1					1218.1	695	16.0		1.13	0.87	
20:27:27		27.2	7.7	119	94	1863	483	337 1											0.08
													1218.1	700	17.0	0:37		0.86	0.08
20:28:48		51.0	9.3	120	106	1853	476	329 1					1218.1	700	18.0	0:38	1.19	0.78	0.08
20:30:13		41.0	9.7	118	125	1865	477	334 1					1218.2	699	19.0		1.19	0.79	0.07
20:32:02		40.8	8.7	119	109	1855	484	352 1					1218.2	698	20.0	0:41		0.81	0.07
20:33:29		39.6	10.0	119	111	1893	485	333 1					1218.2	698	21.1		1.19	0.77	0.07
20:35:09		48.8	9.6	119	113	1880	481	338 1					1218.2	696	22.0	0:44	1.19	0.83	0.07
20:36:27		41.1	10.3	119	123	1893	172	352 1					1218.2	697	23.0		1.19	0.80	0.07
20:38:10		45.4	8.6	119	95	1859	470	358 1					1218.4	698	24.1		1.19	0.80	0.07
20:40:05		31.9	9.4	119	104	1896	470	375 1					1219.7	698	25.0		1.19	0.84	0.08
20:43:15		28.3	9.1	118	102	1878	477	323 1					1221.3	699	26.1		1.19	0.90	0.06
20:44:30		41.1	9.8	119	114	1902	476	349 1					1221.9	699	27.0		1.19	0.77	0.06
20:46:29		34.5	9.0	119	144	1881	470	343 1					1222.8	700	28.0		1.19	0.84	0.07
20:48:25		25.8	8.9	119	123	1891	468	367 1					1223.6	699	29.0	0:57		0.84	0.07
20:49:48		53.5	9.1	118	132	1888	462	341 1					1224.2	699	30.0		1.19	0.77	0.06
20:51:46		32.6	8.3	119	76	1898	472	342 1					1224.8	698	31.0		1.19	0.83	0.05
20:54:28		20.6	7.5	119	60	1870	461	341 1					1225.6	699	32.0		1.19	0.86	0.06
20:56:24		35.9	8.0	119	109	1873	465	345 1					1227.4	700	33.0		1.19	0.82	0.08
20:58:48	1243.0	24.0	7.7	119						1.13						1:08	1.19	0.85	0.08
21:01:23	1244.0	24.5	7.4	119	70	1886	466	335 1	.13	1.13	35.5	37.3	1229.7		35.0	1:10	1.19	0.86	0.08
	1245.0		8.0							1.13				699	36.0	1:13	1.19	0.86	0.08
	1246.0		7.4							1.13					37.0	1:16		0.91	
	1247.0		7.6			1879							1234.2		38.0	1:18		0.85	
	1248.0		7.6		112	1861							1238.0		39.0	1:21		0.94	
	1249.1		8.1		87					1.13					40.1			0.99	
	1250.0			120		1861				1.13			1240.4		41.0	1:25		0.90	
	1251.0			120						1.13					42.0	1:26		0.84	
	1252.0		9.9	120	140	1861	469	359 1	.13	1.13	36.1	37.6	1241.3		43.0		1.19		
	1253.0									1.13					44.0		1.19		
JVI								••••			- · · -								

DrillByte Drilling Data Printout COMPANY: BHP PBTROLEUM WELL: MINERVA 1

21:33:29 1254.0 21:35:17 1255.0 21:36:41 1256.0 21:38:17 1257.0 21:39:45 1258.0 21:41:39 1259.0 21:43:23 1260.0 21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:50:29 1264.0 21:53:42 1266.1 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	36.2 43.0 39.3 37.3 28.1 31.4 40.5 37.4 32.2 34.0 46.7 41.2	9.6 9.9 9.5 10.5 9.9 10.1 9.9 9.8 9.7 9.5 10.1	119 120 120 120 120 124 133 134 133 132 133	139 141 95 116 134 133 130 121 119 153	1850 1890 1857 1890 1898 1872 1884 1862 1875	gp	345 353 340 336 322 336 350 347	1.13 1.13 1.13 1.13 1.13 1.13	OUT sg 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.1	36.1 36.2 36.2 36.2 36.2 36.2	37.8 37.9 37.9 38.0 38.0 38.0	DEPTH 1242.6 1243.3 1243.8 1244.4 1245.0 1245.5 1246.0	700 699 699 700 699 700	45.0 46.0 47.0 48.0 49.0 50.0	hh:mm 1:31 1:32 1:34 1:35 1:37 1:39 1:41	1.19 1.19 1.19 1.19 1.19 1.19	0.88 0.92 0.86 0.89 0.88	0.09 0.10 0.10 0.10 0.11
21:35:17 1255.0 21:36:41 1256.0 21:38:17 1257.0 21:39:45 1258.0 21:41:39 1259.0 21:43:23 1260.0 21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	36.2 43.0 39.3 37.3 28.1 31.4 40.5 37.4 32.2 34.0 46.7 41.2 60.5	9.6 9.9 9.5 10.5 9.9 10.1 9.9 9.8 9.7 9.5 10.1	120 120 120 120 124 133 134 133 132	141 95 116 134 133 130 121 119 153 106	1890 1857 1890 1898 1872 1884 1862 1875	471 465 467 468 470 465 465 458	353 340 336 322 336 350 347	1.13 1.13 1.13 1.13 1.13 1.13	1.13 1.13 1.13 1.13 1.13	36.1 36.2 36.2 36.2 36.2 36.2	37.9 37.9 38.0 38.0 38.0 38.1	1243.3 1243.8 1244.4 1245.0 1245.5	699 699 699 700 699	46.0 47.0 48.0 49.0 50.0	1:32 1:34 1:35 1:37 1:39	1.19 1.19 1.19 1.19 1.19	0.92 0.86 0.89 0.88 0.94	0.09 0.10 0.10 0.10 0.11
21:36:41 1256.0 21:38:17 1257.0 21:39:45 1258.0 21:41:39 1259.0 21:43:23 1260.0 21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	43.0 39.3 37.3 28.1 31.4 40.5 37.4 32.2 34.0 46.7 41.2 60.5	9.9 9.5 10.5 9.9 10.1 9.9 9.8 9.7 9.5 10.1	120 120 120 124 133 134 133 132	95 116 134 133 130 121 119 153 106	1857 1890 1898 1872 1884 1862 1875 1898	465 467 468 470 465 465 458	340 336 322 336 350 347	1.13 1.13 1.13 1.13 1.13	1.13 1.13 1.13 1.13 1.13	36.1 36.2 36.2 36.2 36.2	37.9 38.0 38.0 38.0 38.1	1243.8 1244.4 1245.0 1245.5	699 699 700 699	47.0 48.0 49.0 50.0	1:34 1:35 1:37 1:39	1.19 1.19 1.19 1.19	0.86 0.89 0.88 0.94	0.10 0.10 0.10 0.11
21:38:17 1257.0 21:39:45 1258.0 21:41:39 1259.0 21:43:23 1260.0 21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	39.3 37.3 28.1 31.4 40.5 37.4 32.2 34.0 46.7 41.2 60.5	9.5 10.5 9.9 10.1 9.9 9.8 9.7 9.5 10.1 9.9	120 120 124 133 134 133 132 133	116 134 133 130 121 119 153 106	1890 1898 1872 1884 1862 1875 1898	467 468 470 465 465 465	336 322 336 350 347	1.13 1.13 1.13 1.13	1.13 1.13 1.13 1.13	36.2 36.2 35.2 36.2	38.0 38.0 38.0 38.1	1244.4 1245.0 1245.5	699 700 699	48.0 49.0 50.0	1:35 1:37 1:39	1.19 1.19 1.19	0.89 0.88 0.94	0.10 0.10 0.11
21:39:45 1258.0 21:41:39 1259.0 21:43:23 1260.0 21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	37.3 28.1 31.4 40.5 37.4 32.2 34.0 46.7 41.2 60.5	10.5 9.9 10.1 9.9 9.8 9.7 9.5 10.1	120 124 133 134 133 132 133	134 133 130 121 119 153 106	1898 1872 1884 1862 1875 1898	458 470 465 465 458	322 336 350 347	1.13 1.13 1.13 1.13	1.13 1.13 1.13	36.2 36.2 36.2	38.0 38.0 38.1	1245.0 1245.5	700 699	49.0 50.0	1:37 1:39	1.19	0.88	0.10 0.11
21:41:39 1259.0 21:43:23 1260.0 21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	28.1 31.4 40.5 37.4 32.2 34.0 46.7 41.2 60.5	9.9 10.1 9.9 9.8 9.7 9.5 10.1 9.9	124 133 134 133 132 132	133 130 121 119 153 106	1872 1884 1862 1875 1898	470 465 465 458	336 350 347	1.13 1.13 1.13	1.13	36.2 36.2	38.0 38.1	1245.5	699	50.0	1:39	1.19	0.94	0.11
21:43:23 1260.0 21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	31.4 40.5 37.4 32.2 34.0 46.7 41.2 60.5	10.1 9.9 9.8 9.7 9.5 10.1 9.9	133 134 133 132 133	130 121 119 153 106	1884 1862 1875 1898	465 465 458	350 347	1.13 1.13	1.13	36.2	38.1							
21:45:03 1261.1 21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	40.5 37.4 32.2 34.0 46.7 41.2 60.5	9.9 9.8 9.7 9.5 10.1 9.9	134 133 132 133	121 119 153 106	1862 1875 1898	465 458	347	1.13				1246.0	700	51.0	1:41	1.19	0.94	A 11
21:46:59 1262.0 21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	37.4 32.2 34.0 46.7 41.2 60.5	9.8 9.7 9.5 10.1 9.9	133 132 133	119 153 106	1875 1898	458			1.13	36.3							••••	0.11
21:48:39 1263.0 21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	32.2 34.0 46.7 41.2 60.5	9.7 9.5 10.1 9.9	132 133	153 106	1898		358					1246.7	700	52.1	1:42	1.19	0.93	0.10
21:50:29 1264.0 21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	34.0 46.7 41.2 60.5	9.5 10.1 9.9	133	106		464		1.13	1.13			1247.2	700	53.0	1:44	1.19	0.97	0.09
21:52:08 1265.0 21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	46.7 41.2 60.5	10.1 9.9			1000			1.13	1.13			1247.2	699	54.0	1:46	1.19	0.92	0.09
21:53:42 1266.1 21:55:00 1267.1 21:56:34 1268.0	41.2 60.5	9.9	133		1869	460			1.13			1247.2	699	55.0	1:48	1.19	0.95	0.09
21:55:00 1267.1 21:56:34 1268.0	60.5			132	1889	465			1.13			1247.2	699	56.0		1.19	0.92	0.09
21:56:34 1268.0			133	131	1897	162			1.13			1247.3	698	57.1		1.19	0.92	0.10
i	35.7		134	131	1876	457		1.13	1.13			1248.0	698	58.1	1:52	1.19	0.87	0.13
1 91.27.2A 180A A			134	93	1900	454		1.13	1.13			1248.5	699	59.0	1:54	1.19	0.90	0.14
			133	178	1905	462		1.13	1.13			1249.1	698	60.0	1:55	1.19	0.90	0.15
1			134	149	1935	467		1.13	1.13			1250.4	699	61.0	1:56	1.19	0.91	0.16
L .						464			1.13		38.2	1251.2	698	62.0	1:58	1.19	0.89	0.16
1	50.6	12.6		177		463		1.13	1.13	36.6	38.2	1252.0	698	63.0	1:59	1.19	0.87	0.16
1				219	1931	465	343	1.13	1.13	36.6	38.2	1252.6	698	64.1	1:60	1.19	0.84	0.16
				176	1944	461		1.13	1.13		38.3	1252.9	698	65.0	2:01	1.19	0.91	0.16
				171	1915	460	353	1.13	1.13	36.7		1253.9	699	66.0	2:03	1.19	0.92	0.16
1				179	1935	466		1.13	1.13			1254.5	698	67.1	2:04	1.19	0.88	0.16
	60.3			203	1949	467		1.13	1.13			1260.8	695	68.1	2:05	1.19	0.77	0.16
3	75.4		130	218	1936	461		1.13	1.13			1261.3	694	69.0	2:06	1.19	0.67	0.17
1	29.6			151	1932	453		1.13	1.13			1262.0		70.1	2:08	1.19	0.77	0.19
	60.2		130	202	1925	454		1.13	1.13			1262.6	695	71.1		1.19	0.74	0.20
1	47.9			209	1961	459			1.13			1263.2	695	72.0			0.73	0.19
1	67.5		129	202	1957	464			1.13			1263.6	696	73.0			0.71	0.18
	66.4		130	189	1924	458			1.13			1264.2	696	74.2		1.19	0.72	0.18
•	55.4		130	207	1988	454		1.13	1.13			1264.8	696	75.0		1.19	0.72	0.19
)	40.3			215	1980	454		1.13	1.13			1265.6	696	76.0		1.19	0.76	0.20
	38.5				1953	451		1.13	1.13					77.0			0.78	0.21
	51.4					454								78.0				0.20
22:36:41 1288.0									1.13					79.0				
22:37:58 1289.0									1.13					80.0	2:20			
22:39:15 1290.1									1.13					81.1	2:21			
22:40:27 1291.1									1.13					82.1	2:23			
22:41:51 1292.0		8.7			2024				1.13			1272.6		83.0		1.19		
22:43:25 1293.0		8.1				453			1.13					84.0		1.19		
22:45:33 1294.0		7.4								37.1				85.0		1.19		
22:46:50 1295.0		8.7			1993					37.1				86.0	2:29			
22:47:40 1296.0									1.13					87.0	2:30			
22:49:08 1297.0									1.13					88.0	2:31			
22:51:50 1298.0	19.9	9.2	131	225	2020	457	360	1.13	1.13	37.1	38.8	1276.1	700	89.0	2:34	1.19	0.94	0.13

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL : MINERVA 1

TIME	DEPTH	ROP	WOB	RPM	TRQ	SPP	FL In		IN Tud	DENSITY	MUD In	TEMP	RETURNS DEPTH	PVT	-BI	T-	ECD	DIC	GA
h:mm:sec		n/hr	klb		amp	psi	gp			8 g		g C		bbl	ats	hh:mm	sg		X
22:53:12	1299.0	44.1	9.0	130	213	2030	458	356	1.13	1.13	37.1	38.9	1276.1	701	90.0	2:35	1.19	0.80	0.1
22:55:44	1300.0	25.9		130	206	1989	458	373	1.13	1.13	37.1	38.9	1276.1	700	91.0	2:38	1.19	0.92	0.1
22:57:28	1301.0	32.9	8.5	130	192	2014	457	349	1.13	1.13	37.1	38.9	1276.8	700	92.0	2:40	1.19	0.83	0.
22:58:58	1302.0	48.5	9.1	127	244	2019	457	402	1.13	1.13	37.1	38.9	1278.2	700	93.0	2:41	1.19	0.83	0.
23:00:47	1303.0	31.2	8.5	130	177	2030	456	385	1.13	1.13	37.1	39.0	1279.4	701	94.0	2:43	1.19	0.83	0.
23:02:20	1304.0	39.7	9.0	130	227	2009	458	359	1.13	1.13	37.1	39.1	1280.8	702	95.0	2:44	1.19	0.81	0.
23:03:50	1305.0	39.8	9.9	130	192	2067	457	353	1.13	1.13	37.1	39.1	1282.3	70 I	96.0		1.19	0.82	0.
23:18:17	1306.1	41.8	7.1	124	251	1982	458	355	1.13	1.13	37.1	38.7	1289.0	701	97.1	2:47	1.19	0.82	٥.
23:19:50	1307.1	64.4	6.2	127	197	1989	455	353	1.13	1.13	37.1	38.6	1290.1	700	98.1	2:49	1.19	0.78	0.
23:20:43	1308.0	61.9	8.4	126	209	2008	455	357	1.13	1.13	37.1	38.8	1290.7	700		2:50	1.19	0.69	
23:22:11	1309.1	43.9	7.0	126	199	1997	457	355	1.13	1.13	37.1	38.9	1291.8	700	100.1	2:51	1.19	0.75	
23:23:53	1310.0	32.4	6.4	127	164	2001	454	319	1.13	1.13	37.1	39.1	1292.9	701	101.0	2:53	1.19	0.77	0.
23:25:17	1311.0	49.1	7.2	127	206	1999	455	337	1.13	1.13	37.1	39.2	1293.9	700	102.0	2:54	1.19	0.76	0.
23:26:38	1312.1	44.7	6.9	126	191	2012	457	330	1.13	1.13	37.0	39.3	1294.8	700	103.1	2:55	1.19	0.74	0.
23:28:46	1313.0		6.0	127	162	2002	455	358	1.13	1.13	37.1	39.4	1296.3	700	104.0	2:58	1.19	0.75	0.
23:30:20	1314.0	42.6	7.3	127	190	2025	455	374	1.13	1.13	37.0	39.4	1297.3	699	105.0	2:59	1.19	0.78	0.
23:32:57	1315.0	16.9	6.6	126	177	2029	452	381	1.13	1.13	37.1	39.4	1299.3	699	106.0	3:02	1.19	0.86	0.
23:34:34	1316.0		6.5	127	196	2021	455	325	1.13	1.13	37.1	39.3	1300.5	699	107.0	3:03	1.19	0.77	0.
23:36:21	1317.0		8.8	126	203	2003	454	354	1.13	1.13	37.1	39.3	1301.7	700	108.0	3:05	1.19	0.80	0.
23:38:29	1318.0	40.3	6.7	126	180	2033	456		1.13		37.1	39.5	1303.3	701	109.0	3:07	1.19	0.83	0.
23:40:39	1319.0	28.5	7.2	126	166	2030	459		1.13		37.1	39.6	1304.9	701	110.0	3:09	1.19	0.85	0.
23:43:06	1320.0	27.0	6.7	126	151	2013	460		1.13		37.2	39.6	1306.0	700	111.0	3:12	1.19	0.85	٥.
23:45:26	1321.0	22.7	7.1	127	174	2029	459		1.13		37.2		1307.9	700	112.0	3:14	1.19	0.86	0.
23:47:30	1322.0	28.3	7.5	127	189	2035	463		1.13		37.2	39.5	1309.3	700	113.0	3:16	1.19	0.84	0.
23:49:26	1323.1	31.3	7.1	127	177	2035	466		1.13		37.3	39.6	1310.5	700	114.1	3:18	1.19	0.81	0.
23:51:16	1324.0		7.2	126	186	2051	463		1.13		37.3	39.6	1311.8	700	115.0	3:20	1.19	0.82	٥.
23:53:48	1325.0			127	183	2053	463		1.13		37.3	39.6	1313.2	698	116.0	3:23	1.19	0.86	٥.
23:55:49	1326.0			127	194	2051	466	338	1.13	1.13	37.4	39.7	1314.4	699	117.0	3:25	1.19		0.
23:58:20	1327.0			127	188	2050	462	357	1.13	1.13	37.4	39.7	1315.1	699	118.0	3:27	1.19	0.87	0.
16th Marc																			
00:01:14		35.6	1.5	127	166	2061	467	349	1.13	1.13	37.5	39.8	1317.2	699	119.0	3:30	1.19	0.91	0.
00:03:44	1329.0	21.9	7.7	127	176	2063	469	349	1.13	1.13	37.6	39.8	1318.4	699	120.0	3:33	1.19	0.88	
00:06:42	1330.0	20.0	7.2	127	183	2040	470		1.13				1319.1		121.0	3:36	1.19	0.90	
00:09:00	1331.0	36.3	8.1	127	177	2076	470	351	1.13	1.13	37.7	39.8	1320.1	699	122.0		1.19		0.
00:11:12	1332.0	33.2	8.5	127	185	2057	470	342	1.13	1.13	37.8	39.8	1320.9	599	123.0		1.19		
	1333.0							346	1.13	1.13	37.8	39.9	1322.6		124.0		1.19		
00:17:27				128				333	1.13	1.13	37.8	39.9	1323.9		125.0		1.19		
	1335.0			127		2040		353	1.13	1.13	37.9	40.0			126.0		1.19		
	1336.0			128	204	2034	451	356	1.13	1.13	37.9	39.6	1328.8		127.0			0.93	
00:36:41			9.4	130		2034		347	1.13	1.13	37.9	39.3			128.0		1.19	0.81	
00:38:15	1338.0		8.9	131	175	2062	451	306	1.13	1.13	37.9	39.5	1329.8	708	129.0			0.82	
00:40:36	1339.0		10.3	131	176	2082	452	326	1.13	1.13	37.8	39.7	1330.3	711	130.0	3:59	1.19	0.93	0.
00:43:40			9.2	131	156	2060	449	337	1.13	1.13	37.8	39.8	1331.6	712	131.0		1.19		
00:46:22			8.8	131	156	2049	442	348	1.13	3 1.13	37.8	40.0	1332.5		132.0		1.19		
00:47:56	1949 A	95 1	10 7	111	211	2059	117	181	1 1	1 11	37.7	40.1	1332.9	714	133.0	4:06	1.19	0.87	0.

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL : MINERVA 1

TINE	DEPTH	ROP	WOB	RPM	TRQ	SPP		.OV TUO		DENSITY OUT	NUD IN	TEMP OUT	RETURNS DBPTH	PVT	-BI	T-	ECD	DIC	GAS
h:mm:sec	1	n/hr	klb		amp	psi	81			ag	deg		1	bbl	ats	hh:nn	sg		\$
00:49:58	1343.0	26.1	10.1	131	171	2085	446	327	1.13	1.13	37.7	40.1	1333.4	716	134.0	4:08	1.19	0.89	0.13
00:53:02	1344.0	25.4	9.7	131	156	2082	448	341	1.13	1.13	37.7	40.2	1334.2	716	135.0	4:11	1.19	0.98	0.12
00:56:15	1345.0	22.4	10.5	131	164	2084	452	343	1.13	1.13	37.7	40.2	1334.8	716	136.0	4:14	1.19	1.01	0.14
01:00:01	1346.0	17.8	10.2	131	149	2071	448	341	1.13	1.13	37.8	40.2	1335.1	717	137.0	4:18	1.19	1.02	0.14
01:02:46	1347.0	23.1	10.6	130	152	2058	458		1.13			40.4	1335.1		138.0	4:21	1.19	0.97	0.14
01:05:54	1348.0	20.1	10.2	130	157	2044	458		1.13				1336.0		139.0		1.19	0.99	0.17
01:09:18	1349.0	17.0	10.0	131	154		452		1.13				1338.0		140.0		1.19	1.00	0.13
01:12:23	1350.0	17.3	10.1	130	169	2074	454		1.13				1339.3		141.0		1.19	0.99	0.13
01:16:21	1351.0		10.0	131	140	2057	460						1340.6		142.0		1.19	1.03	0.13
01:18:14	1352.0	30.4	10.3	131	162	2025	459						1341.4		143.0		1.19	0.88	0.13
01:21:16	1353.0	24.6	10.3	131	165	2040	449				38.0		1342.9		144.0		1.19	0.98	0.13
01:23:05	1354.0	28.9	9.8	131	166	2049	459						1343.4		145.0		1.19	0.87	0.12
01:25:36	1355.1	22.8	8.9	131	148	2059	462		1.13				1344.3		146.1	4:44		0.91	0.13
01:28:54	1356.0	23.8	9.0	130	160	2028	456		1.13				1345.3		147.0	4:47		0.98	
01:30:34	1357.0	34.4	9.5	130	173	2018	455		1.13				1345.8		148.0		1.19		0.13
01:32:08	1358.0	36.4	10.1	131	180	2068	453		1.13				1346.1		149.0		1.19		0.13
01:34:00	1359.0	30.9	10.2	130	201	2067	462		1.13				1346.7		150.0		1.19		0.12
01:36:45	1360.0	18.2	9.6	131	163	2058	454						1347.7		151.0				0.12
01:38:57	1361.0	27.5	9.5	130	157	2072	458						1348.3		152.0			0.91	
01:42:03	1362.0	20.0	9.1	130	165	2056	446						1349.1		153.0		1.19		
01:44:27	1363.0	25.8	9.3	130	181	2067	457						1349.9		154.0				0.12
02:11:02	1364.1	12.7	9.1	130	173	2051	449		1.13				1355.1		155.1	5:03	1.19	0.92	0.12
02:12:07	1365.1	74.5	8.0	131	204	1979	449		1.13				1355.6					1.05	0.10
02:12:07		48.6	9.7	131	224	2003	448								156.1		1.18	0.74	0.11
02:14:37	1367.0	39.1	9.5	130	220	2003	153						1356.3 1357.1		157.0		1.18	0.77	0.12
02:14:37	1368.0	31.6	8.1	132	184	2024	451						1358.2		158.0	5:11		0.81	
02:18:32	1369.0		7.5	132	171	2000	448						1358.5		159.0		1.18	0.84	0.12
02:20:21	1370.1														160.0	5:15		0.86	
02:22:14	1371.0	35.2 28.2	8.4 8.3	131 131	191 196	2030 2029	447						1359.3 1359.9		161.1	5:17		0.83	
02:25:50			7.4	131	181	2023	119						1361.2		162.0 163.0		1.18	0.85	0.12
02:23:39	1373.0																		0.11
02:28:39		25.7 41.2	1.5 1.5	132 131	166 217	2049 2018	454 450								164.0 165.0		1.18		0.11
02:30:32					183														0.10
	1375.0	29.0		131		2044	456								166.0		1.18		0.09
02:34:19	1376.0			131	215	2067	453								167.0			0.85	
02:36:53										1.12					168.1			0.93	
02:39:01						2048				1.12					169.0			0.92	
02:40:50			9.4		181		452			1.12					170.0		1.18		
02:42:45			9.7		199	2092	453			1.12					171.0			0.88	
02:44:54					189	2114	459								172.0	5:42		0.92	
02:49:19			9.3		155	2094									173.0			1.05	
02:51:58		24.5	9.9		173										174.0	5:49		0.95	
03:08:54		14.5			152										175.0			1.08	
03:15:15			11.1							1.12					176.0			1.18	
03:29:46			13.0							1.12					177.0			1.39	
03:39:23	1387.0	6.4	12.8	128	127	2091	455	285	1.12	1.12	39.1	11.5	1383.3	754	178.0	5:23	1.17	1.30	0.09

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

TIME	DEPTH	ROP	WOB	RPK	TRQ	SPP	PL: In		LN	DENSITY	NUD In	TEMP	RETURNS DEPTH	PVT	-BI	7-	BCD	DIC	GAS
h:mm:sec	ł	a/hr	klb		asp	psi	EP:			ag .	deg		2	bbl	ats	hh:aa	#g		x
03:51:09	1388.0									1.12					179.0		1.17		
03:54:05	1389.0		11.8		181	2067	452						1385.0		180.0		1.17		
03:56:34	1390.0	24.0	11.6	119	167	1986	450						1385.0		181.0	6:38	1.17	0.96	0.08
03:58:30	1391.0	30.3	11.5	131	193	2127	449						1385.1		182.0	6:40	1.17	0.93	0.08
04:00:51	1392.0	26.1	10.2	131	196	2122	448						1385.2		183.0		1.17	0.95	0.08
04:02:53	1393.0	28.9	10.2	131	198	2097	448						1385.5		184.0		1.17	0.91	0.09
04:19:00	1394.0	62.1	8.7	130	230	2072	452						1386.6		185.0		1.18	0.85	0.08
04:20:48	1395.0	28.4	6.5	132	198	2108							1386.7		186.0		1.18	0.80	0.08
04:22:38	1396.0	29.7	6.3	132	219	2092	452		1.12				1386.9		187.0		1.18	0.81	0.08
04:25:33	1397.0	37.1	6.3	132	191	2124	454						1387.2		188.0		1.17		
04:26:38	1398.0			131	242	2124	454			1.12			1387.3		189.0		1.17	0.74	0.09
04:28:34	1399.0			131		2153	452						1387.5		190.0		1.17	0.83	0.09
04:29:51	1400.0	45.1		131	247	2141	453						1387.5		191.0		1.17	0.76	0.09
04:32:46	1401.0	20.2		134	192	2149	447						1387.7		192.0		1.17	0.88	0.10
04:34:25	1402.0	34.3	5.5	138	174	2113	447		1.12				1387.8		193.0		1.17	0.81	
04:37:32	1403.0	16.8		143	160	2147	452						1388.7		194.0		1.17	0.85	0.11
04:39:26	1404.0	34.8	8.6	149	203	2149	452						1389.5		195.0		1.17	0.85	0.10
	1405.0	24.3	6.4	150	170	2127	449						1390.8		196.0		1.17	0.88	0.08
04:44:03	1406.0	28.4	6.1	149	162	2140	445			1.12			1392.3		197.0		1.17	0.87	0.10
04:46:05	1407.0	32.1	6.3	149	165	2140	445		1.12				1393.0		198.0		1.17	0.85	0.14
04:48:32	1408.1	25.6	6.0	149	183	2142	448			1.12			1393.1		199.1		1.17	0.86	
04:50:25	1409.0	29.3	6.9	149	170	2166	450			1.12			1393.1		200.0		1.17	0.86	0.14
04:52:48	1410.1	30.4		150	172	2158	449			1.12			1393.1		201.1		1.17	0.89	0.14
04:56:43	1411.0	15.2	6.2	150	127	2138	448						1393.1		202.0		1.17	0.96	0.14
04:59:04	1412.0	27.7	6.4	149	196	2129	447						1393.6		203.0		1.17	0.88	0.13
05:01:17		27.3	6.5	150	156	2150	443			1.12			1394.9		204.1		1.17	0.86	0.12
05:12:25		26.1	5.7	149	156	2122	444		1.12				1400.2		206.9		1.17	0.84	0.12
05:12:53	1416.0	24.9	5.5	150	155	2126	444			1.12			1400.4		207.0		1.17	0.85	0.12
05:15:01	1417.0	23.5	5.6	149	165	2157	442		1.12				1401.3		208.0		1.17	0.84	
05:17:38	1418.0	19.2	6.2	149	185	2139	445			1.12			1402.4		209.0		1.17		0.12
05:20:52		18.0	5.3	149	174	2135	443			1.12			1403.5		210.0		1.17	0.91	
05:26:15	1420.0	10.3	4.9	149	148	2129	446			1.12			1405.9		211.0		1.17	0.98	0.12
05:28:58	1421.0	21.0	5.8	149	174	2134	440		1.12				1407.1		212.0		1.17	0.87	0.12
05:33:17	1422.0	12.6		149		2117				1.12			1409.0		213.0		1.17		
05:51:24													1412.4		214.0		1.17		
05:52:27										1.12					215.0		1.17		
05:54:12										1.12					216.0		1.17		
05:55:49						2111	444			1.12					217.0		1.17		
05:57:14							448			1.12					218.0		1.17		
05:59:24						2178				1.12					219.0		1.17		0.11
06:01:57										1.12					220.0			0.93	
06:04:01										1.12					221.0		1.17		
06:06:40										1.12			1417.1		222.0		1.17		
06:08:17						2167				1.12					223.0		1.17		
06:11:03	1433.0	20.0	5.1	149	162	2155	461	412	1.12	1.12	40.9	42.9	1418.8	727	224.0	8:24	1.17	0.87	0.10

DrillByte Drilling Data Printout COMPANY: BHP PRTROLEUM WELL : MINERVA 1

TINE	DEPTH	ROP	AOB	RPK	TRQ	SPP	PLO IN	OW OUT	KUD	DENSITY	IN	TEMP	RETURNS DEPTH	PVT	-B1	T-	BCD	DIC	GAS
h:mm:sec	•	a/hr	klb		amp	psi	gpi		IN	ag 001	deg		18514	bbl	ats	hh:nn	sg		x
06:12:42	1434.0	34.8	6.0	148	191	2190	455	337	1.12	1.12	40.8	43.0	1419.3	127	225.0	8:25	1.17	0.80	0.10
06:15:02	1435.0	30.6	5.7	150	179	2208	459			1.12					226.0	8:28	1.17		0.10
06:18:47	1436.0	14.3	5.0	150	161	2187	458		1.12		40.9		1420.2		227.0	8:32		0.91	0.11
06:20:46	1437.0	25.9	5.7	149	213	2183	465	358	1.12	1.12	40.9		1420.9		228.0	8:34	1.17	0.83	0.14
06:22:58	1438.0	25.0	5.2	150	166	2204	454	334	1.12	1.12	40.9	43.2	1421.5		229.0	8:36	1.17	0.83	0.16
06:25:25	1439.0	21.1	5.5	149	166	2196	457	316	1.12	1.12	40.9	43.3	1422.0	731	230.0	8:38	1.17	0.86	0.16
06:28:19	1440.0	18.5	5.4	150	160	2206	456	325	1.12	1.12	41.0	43.3	1422.2	731	231.0	8:41	1.17	0.88	0.15
06:30:50	1441.0		5.1	150	187	2200	454	329	1.12	1.12	41.0	43.4	1422.2	732	232.0	8:44	1.17	0.85	0.15
06:32:49	1442.0		5.9	149		2195	457	338	1.12	1.12				732	233.0	8:46	1.17	0.83	0.15
06:35:13	1443.0	24.7	5.2	149	169	2186	451		1.12				1423.0	732	234.0	8:48	1.17	0.84	0.11
06:38:13	1444.0	25.5	4.8	149	153	2192	459	331	1.12		41.1		1425.1	734	235.0	8:51	1.17	0.87	0.11
06:40:11	1445.0	27.6	5.8	150	193	2203	455						1426.4	734	236.0	8:53	1.17	0.83	0.11
06:43:03	1446.0	20.5	1.7	150	165	2207	459			1.12			1427.9		237.0	8:56	1.17	0.87	0.11
06:46:16	1447.0	16.9	4.7	149	163	2197	453						1429.3		238.0		1.17	0.88	0.11
06:49:24	1448.1	20.1		150	201	2197	455						1430.4		239.1		1.17	0.87	0.11
06:51:20	1449.0	32.0		150	217	2198	453			1.12			1431.3		240.0		1.17	0.82	0.11
06:54:33	1450.0	16.2	4.9	149	162	2225	460			1.12					241.0		1.17		0.11
06:58:20	1451.0	21.7	4.8	149	168	2218	461			1.12				738	242.0	9:11	1.17	0.90	0.11
07:12:09	1452.0	19.2	4.7	144	165	2202	463			1.12				749	243.0	9:14	1.17	0.85	0.10
07:13:52	1453.0	39.3	4.2	153	218	2200				1.12	11.5	13.9	1438.5	749	244.0	9:16	1.17	0.76	0.11
07:15:39	1454.0	38.5		151	202	2166							1439.1	747	245.0	9:18	1.17	0.76	0.11
07:17:01	1455.0	55.7	3.7	151	223						41.5	13.5	1439.5	745	246.0	9:19	1.17	0.73	0.11
07:18:47	1456.0	34.4	4.3	150	214	2170							1440.2	747	247.0	9:21	1.18	0.78	0.11
07:21:40	1457.0	16.2	4.8	150	216	2160	460-						1441.5	745	248.0	9:24	1.17	0.87	0.11
07:24:10	1458.0	25.3	4.5	150	213	2137							1442.6	758	249.0	9:26	1.17	0.82	0.11
07:26:03	1459.1	32.0	4.4	150	215	2142							1443.3		250.1			0.78	0.11
07:28:43	1460.0	24.1	4.9	150	215	2170							1444.3		251.0	9:31	1.17	0.87	0.10
07:31:04	1461.0	25.5	4.7	150	182	2166							1445.5		252.0		1.17	0.84	0.11
07:33:22	1462.0	30.6	5.1	151	219	2140							1446.6	788	253.0		1.17	0.84	0.11
07:35:49	1463.0	24.7	5.2	151	197	2152									254.0		1.17		0.11
07:38:23	1464.1	24.2	4.4	150	184			331							255.1		1.17	0.84	0.10
07:40:45	1465.0	31.5	4.9	150	174										256.0	9:43			0.11
07:44:21	1466.0	15.6	4.4	152	158					1.12					257.0		1.17		0.15
	1467.0		4.1							1.12					258.0			0.84	
07:49:46		19.8	4.1							1.12					259.0			0.83	
07:52:35		22.5		153	188					1.12					260.0	9:55			
07:54:55		27.3			175					1.12					261.0	9:57			
	1471.0	16.4	4.4	153	171					1.12					262.0		1.17	0.88	0.10
08:01:04	1472.0	23.5	4.6	153	166					1.12					263.0	10:03	1.17		0.09
	1473.0	21.5		152	199					1.12					264.0	10:06			0.08
08:07:00		19.9			196		462			1.12						10:09		0.87	
		26.3	4.8	152	222		460			1.12						10:11		0.81	
08:12:03			4.0							1.12						10:14			
08:13:57			5.1							1.12						10:16			
08:16:43	1478.0	22.5	4.4	152	Z03	2284	455	198	1.12	1.12	2.2	0.0	1460.5	782	Z69.0	10:19	1.17	0.84	0.04

DrillByte Drilling Data Printout COMPANY: BHP PETROLBUM

COMPANY: BHP PETROLE
WELL: MINERVA 1

TIME	DEPTH	ROP	MOB	RPM	TRQ	SPP	FL IN		NUD	DENSITY	IN	TEMP OUT	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GAS
h:mm:sec		n/hr	klb		amp	psi	gp		T.M	28 001	deg		# PPL f II	bbl	ats	hh:am	sg		, \$
08:19:39	1479.0	28.8	3.2	152	178	2292	461	409	1.12	1.12	42.3	45.0	1461.6	783	270.0	10:22	1.17	0.82	0.04
08:22:42	1480.0	18.9	3.2	152	186	2304	464	447	1.12	1.12	42.3	44.9	1462.8	782	271.0	10:25	1.17	0.83	0.04
08:41:05	1481.1	17.7	3.3	153	169	2288	469	583	1.12	1.12	42.5	44.9	1467.2	770	272.1	10:28	1.17	0.81	0.04
08:43:17	1482.1	33.9	4.9	154	200	2256	470	588	1.12	1.12	42.7	44.7	1468.0	775	273.1	10:30	1.17	0.83	0.04
08:44:29	1483.0	50.1	4.9	153	218	2237	469	271	1.12	1.12	42.7	44.4	1468.5	777	274.0	10:31	1.18	0.72	0.05
08:46:39	1484.0	30.0	4.2	168	198	2270	470	257	1.12		42.7	44.3	1469.4	778	275.0	10:33	1.18	0.82	0.04
08:48:43	1485.1	33.5	3.7	177	205	2249	475	267	1.12	1.12	42.7	44.4	1470.2	779	276.1	10:35	1.18	0.80	0.04
08:50:45	1486.1	32.1	4.8	180	221	2331	476	290	1.12	1.12	42.7	44.5	1470.9	780	277.1	10:37	1.18	0.84	0.08
08:52:19	1487.1	63.6	4.3	180	232	2297	477	300	1.12	1.12	42.7	44.7	1471.2	780	278.1	10:39	1.18	0.80	0.09
08:53:22	1488.1	59.8	5.6	178	241	2321	476	281	1.12	1.12	42.7	44.7	1471.6	781	279.1	10:40	1.18	0.73	0.10
08:55:24	1489.1	29.3	4.5	182	210	2325	476	279	1.12			44.8	1472.4	778	280.1	10:42	1.18	0.83	0.11
08:56:32	1490.0	69.1	4.8	181	203	2347	480		1.12				1472.9		281.0	10:43	1.18	0.74	0.12
08:57:44	1491.0	54.5	4.9	180	232	2360	479		1.12				1473.3		282.0	10:44	1.18	0.76	0.12
09:14:53	1492.0	45.7	4.3	165	208	2308	476		1.12				1475.3	780	283.0	10:46	1.17	0.77	0.05
09:16:33	1493.1	35.3	3.7	156	224	2304	473		1.12				1476.4	782	284.1	10:48	1.17	0.73	0.07
09:17:39	1494.0	54.4	4.3	162	235	2318	477						1476.9	782	285.0	10:49	1.17	0.71	0.09
09:19:24	1495.0	30.2	3.2	178	205	2322	480		1.12				1477.3		286.0	10:51	1.17	0.77	0.10
09:20:24	1496.1	74.1	4.7	181	237	2353	477				42.3		1477.3		287.1	10:52	1.17	0.68	0.10
09:21:42	1497.0	40.6	5.3	179	241	2367	473		1.12		42.3		1477.6		288.0	10:53	1.17	0.79	0.11
09:23:07	1498.0	38.0	5.3	180	210	2360	476		1.12		42.2		1478.1		289.0	10:54	1.18	0.79	0.12
09:24:44	1499.0	33.8	5.2	181	204	2375	479		1.12				1478.6		290.0	10:56	1.18	0.81	0.12
09:26:15	1500.0	38.3	5.4	180	207	2331	478		1.12				1479.3		291.0	10:58	1.17	0.82	0.12
09:28:27	1501.1	38.3	5.0	180	222	2350	471		1.12		42.2		1480.0		292.1	10:60	1.17	0.86	0.12
09:29:26	1502.0	58.9	7.0	179	241	2369	475		1.12		42.2		1480.5		293.0	11:01	1.17	0.77	0.12
09:32:12	1503.0	29.7	5.2	180	207	2343	472		1.12		12.2		1480.7		294.0	11:03	1.17	0.90	0.12
09:33:45	1504.0	31.2	5.7	180	203	2325	474		1.12		12.3		1480.7		295.0	11:05	1.17	0.81	0.12
09:35:19	1505.0	32.5	5.1	181	205	2368	475		1.12		12.2		1480.7		296.0	11:07	1.17	0.78	0.12
09:36:31	1505.0	50.0	5.0	181	236	2361	475		1.12		12.3		1480.7		297.0	11:08	1.17	0.79	0.12
09:37:52	1507.0	40.8	7.0	180	266	2379	471		1.12		12.3	45.2	1480.7		298.0	11:09	1.17	0.82	0.12
09:40:02	1508.0	26.2	6.0	181	217	2386	478		1.14		12.1		1480.7		299.0	11:11	1.17	0.88	0.12
09:42:34	1509.0	27.6	5.6	180	190	2367	478		1.15		12.1		1481.8		300.0	11:14	1.17	0.90	0.13
09:58:34	1510.0	15.8	4.5	180	150	2354	477		1.15		12.5		1485.4		301.0	11:18	1.18	0.94	0.06
10:00:02	1511.0	33.2	3.0	181	210	2257	478		1.15				1487.3		302.0	11:19		0.71	0.10
-	1512.0			180						1.14						11:21			
10:01:38										1.14						11:22			
10:02:34			3.1	100	109	9901	106	270	1.15	1.14	12.0	11.1	1490.0			11:24			
10:04:27			2.9	181		2291		211	1.15	1.14	13.0	44.7	1491.2			11:25			
					231	2322	483			1.14						11:27		0.73	
10:07:58	1516.1		3.4		230	2326	483			1.14						11:28		0.73	
10:09:23	1517.0		3.8	181	221	2319	483			1.14						11:30		0.73	
10:11:03	1518.0			181						1.14						11:32		0.76	
10:13:21	1519.0			181	205	9999	100	922	1 12	1.14	11.0	15.1	1495 7			11:35		0.76	0.16
10:15:55	1520.1								1 12	1.14	17.0	15.1	1106 0			11:37			0.14
10:17:38	1521.0			180		2307										11:39			
10:19:34			2.0	191	411	4310	170	433	1.10	1.14	19.1	10.1	1100 9			11:40			
10:21:13	15Z3.0	31.0	Z.8	179	Z3Z	2316	171	445	1.15	1.14	13.1	13.3	1777.6	101	214.0	11:10	1.13	A . 1 I	A - 13

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL: MINERVA 1

TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP		VO. Tuo	UDN LN	DENSITY	HUD	TEMP	RETURNS DEPTH	PVT	-81	T-	ECD	DIC	GAS
h:mm:sec		e/hr	klb		amp	psi	gp			gg	deg		1	bbl	ats	hh:nn	8g		X
	1524.0		3.2	180	235	2357	494	237	1.15	1.14	43.1	45.6	1499.9	767	315.0	11:42	1.19	0.71	0.13
10:24:54	1525.0	25.7	2.4	181	188	2321	496	239	1.15	1.14	43.2	45.6	1500.9	767	316.0	11:44	1.19	0.71	0.11
10:27:09	1526.0	23.7	2.6	180	178	2368	495	255	1.15	1.14	43.2	45.6	1502.2	767	317.0	11:46	1.19	0.76	0.12
10:29:33	1527.0	23.0	2.6	180	170	2382	497	255	1.15	1.14	43.3	45.7	1503.3	767	318.0	11:49	1.20	0.79	0.15
10:31:34	1528.0	32.4	3.7	181	193	2350	498	259	1.15	1.14	43.3	45.7	1504.5	766	319.0	11:51	1.20	0.79	0.17
10:33:55	1529.1	46.2	2.8	182	187	2346	498	225	1.15	1.14	43.4	45.7	1505.9	767	320.1	11:53	1.20	0.75	0.14
10:35:06	1530.0	45.5	3.5	182	217	2319	504	245	1.15	1.14	43.4	45.8	1506.8	767	321.0	11:54	1.20	0.71	0.14
	1531.0	9.7	5.1	181	181	2348	505	244	1.15	1.14	43.5	45.8	1508.7	766	322.0	11:59	1.20	0.98	0.14
	1532.0	30.2	. 2.8	180	163	2334	500	240	1.15	1.14	43.6	46.0	1509.5	766	323.0	12:01	1.20	0.76	0.13
10:44:21	1533.0	27.9	3.5	180	210	2376	507	247	1.15	1.14	43.6	46.0	1509.8	767	324.0	12:03	1.21	0.76	0.12
10:47:20	1534.0	17.7	3.5	180	177	2364	509	246	1.15	1.14	43.7	46.0	1510.1	766	325.0	12:06	1.21	0.83	0.12
	1535.0	29.1	3.0	180	187	2359	512		1.15	1.14	43.7	46.0	1512.0	764	326.0	12:09	1.21	0.75	0.13
		17.3	3.1	181	178	2382	511	277	1.15	1.14	43.8	46.1	1513.8	760	327.0	12:12	1.21	0.82	0.13
	1537.0	11.9	2.9	181	151	2340	518	249	1.15	1.14	43.8	46.0	1516.4	756	328.0	12:16	1.21	0.83	0.14
	1538.0	19.9	2.9	181	191	2349	516	507	1.15	1.14	43.9	15.8	1537.0	759	329.0	12:20	1.21	0.81	0.14
		14.3	3.9	175	187	2325	515	322			43.9	45.8	1524.4	763	330.1	12:24	1.19	0.83	0.06
	1540.0	30.9	3.5	170	207	2366	515						1525.7	764	331.0	12:25	1.19	0.74	0.11
	1541.0	29.9	3.1	177	184	2365	515						1528.0		332.0	12:28	1.19	0.80	0.13
	1542.0	33.5	3.2	177	202	2357	515		1.15				1529.9	764	333.0	12:30	1.19	0.77	0.13
	1543.1	26.9	3.5	178	181	2344	515		1.15				1531.8	764	334.1	12:32	1.20	0.78	0.13
		27.5	3.4	177	204	2349	515		1.15				1533.6		335.0		1.20	0.78	0.12
		27.0	3.3	179	166	2371	515		1.15						336.0		1.20	0.75	0.11
	1546.0	26.5	2.5	180	186	2354	515		1.15				1537.4		337.0		1.20	0.76	0.11
	1547.0	31.6	2.9	180	214	2390	515		1.15				1538.7	765	338.0	12:41	1.20	0.77	0.11
	1548.0	25.6	2.2	181	180	2384	516		1.15				1538.8		339.0	12:45	1.20	0.79	0.11
	1549.0	21.6	2.1	181	186	2376	513	251	1.15				1538.8	766	340.0	12:47	1.21	0.75	0.11
	1550.0	18.2	2.1	180	183	2363	516		1.15				1540.0		341.0	12:50		0.74	0.12
	1551.0	28.5	2.8	178	186	2340	515		1.15				1542.3		342.0		1.21	0.85	0.16
	1552.0	40.0	2.8	178	203	2368	519		1.15				1542.9		343.0		1.21	0.71	0.14
	1553.1	45.6	3.0	178	204	2370	519		1.15				1543.5		344.1		1.21	0.68	0.14
		24.6	2.8	176	194	2412	519		1.15						345.0		1.21		0.13
	1555.0	32.3	2.4	178	201	2381	517		1.15						346.0		1.21		0.13
	1556.0	30.4	3.1	177	203	2425	519			1.14					347.0				0.12
		30.9			204					1.14						13:06			
11:59:57		33.1		177						1.14						13:08			
12:01:27		39.4		177	223					1.14						13:10			0.12
12:03:47		22.3		176						1.14						13:12			0.12
		25.0	1.8	177	214			248		1.14						13:14			0.12
		33.1		176	232			246		1.14						13:16			0.12
		28.4			219			253		1.14							1.21		0.12
		34.1	2.1		208					1.14					355.0		1.21		0.12
		44.8			246		522			1.14						13:21			0.12
		31.7	3.6		223		522			1.14						13:23			0.12
		28.9	1.8		188	2432				1.14						13:25			0.14
12:36:37	1268.0	38.8	1.0	175	102	Z503	222	274	1.15	1.14	15.4	18.2	1990.9	102	153.0	13:27	1.13	9.57	0.13

DrillByte Drilling Data Printout

COMPANY: BHP PETROLEUM
WELL: MINERYA 1

TIME	DEPTH	ROP	WOB	RPM	TRQ	SPP		OV		DENSITY		TEMP	RETURNS	PYT	-BI	T-	BCD	DIC	GAS
								OUT	IN	OUT	IN	OUT	DEPTE						_
h:mm:sec		a/hr	klb		amp	psi	£P	1		st	deg	C		bbl	ats	hh:ss	5 g		. \$
12:37:37	1569.0	53.3	2.6	175	194	2321	519	335	1.15	1.14	45.4	18.5	1560.9	763	160.0	13:28	1.19	0.63	0.13
12:39:28	1570.0	39.4	1.7	179	207	2349	518			1.14					361.0		1.19	0.68	0.14
12:41:27	1571.0	25.9	1.5	179	177	2336	518	331	1.15	1.14			1562.0		162.0	13:32	1.19	0.69	0.14
12:42:30	1572.0	61.7	3.1	180	208	2354	517						1562.1		163.0	13:33	1.19	0.65	0.15
12:44:35	1573.0	23.6	1.8	180	190	2345	518				45.5		1562.9		364.0		1.19	0.73	0.15
12:45:40	1574.1	58.2	2.6	180	222	2361	517						1563.2		165.1	13:36	1.19	0.63	0.16
12:47:34	1575.0	27.0	2.5	178	187	2380	518						1563.8		366.0	13:38	1.19	0.71	0.16
12:49:08	1576.0	34.3	2.6	179	188	2348	517						1564.2		367.0	13:40	1.19	0.71	0.16
12:51:14	1577.0	27.0	1.9	178	172	2374	518						1564.8		368.0	13:42	1.19	0.73	0.18
12:53:06	1578.1	33.2	2.2	180	188	2370	518						1565.4		369.1	13:44	1.20	0.69	0.19
12:54:43	1579.1	36.3	2.6	178	197	2403	517					47.8	1565.8		370.1 371.0	13:45	1.20	0.70 0.71	0.20
12:56:32 12:58:31	1580.0 1581.0	30.0 29.4	2.4 3.1	179 179	175 184	2399 2429	517 518				45.5 45.5		1566.4 1566.9		371.0	13:47	1.20	0.75	0.16
13:00:42	1582.1	33.4	2.6	179	211	2423	518			1.14			1567.6		373.1		1.20	0.73	0.14
13:02:53	1583.0	26.0	2.7	179	192	2413	518				45.5		1568.6		374.0	13:53	1.20	0.73	0.11
13:05:11	1584.0	4.3	2.8	179	213	2434	518					48.1	1569.9		375.0	13:56	1.20	0.78	0.12
13:07:55	1585.0	24.6	4.0	179	242	2440	518				45.6		1571.5		376.0	13:58	1.21	0.85	0.16
13:12:36	1586.0	14.3	3.2	179	157	2450	518		1.15				1574.5		377.0	14:03	1.21	0.88	0.14
13:15:03	1587.0	24.8	2.9	180	175	2416	518			1.14			1575.8		378.0	14:06	1.21	0.84	0.14
13:17:52	1588.0	24.5	2.6	179	176	2433	518					48.1	1577.2		379.0	14:08	1.21	0.79	0.13
13:20:06	1589.0	32.7	3.3	179	183	2447	518			1.14			1578.2		380.0	14:11		0.77	0.13
13:22:22	1590.0	28.0	4.1	178	201	2456	518	375	1.15	1.14	45.8	48.2	1580.0	766	381.0	14:13	1.21	0.80	1.14
13:25:43	1591.0	32.4	3.0	179	171	2452	518	358	1.15	1.14	45.8	48.4	1581.5	766	382.0	14:16	1.21	0.82	0.14
13:28:04	1592.0	24.6	3.3	179	175	2418	518	354	1.15	1.14		48.3	1582.2	766	383.0	14:19	1.21	0.78	0.14
13:30:49	1593.0	19.4	3.4	179	169	2469	512		1.15			48.4	1583.2		384.0	14:21	1.21	0.82	0.13
13:33:00	1594.0	27.1	3.5	178	208	2474	518		1.15			48.5	1584.1		385.0	14:24	1.21	9.77	0.13
13:35:20	1595.0	27.4	1.1	179	183	2467	518		1.15			41.6	1584.8		386.0	14:26	1.21	0.80	0.12
13:37:28	1596.0	30.4	4.2	179	189	2472	518					48.6	1585.4		387.0	14:28	1.21		0.12
13:39:33	1597.0	32.0	4.2	179	197	2473	518					48.5	1585.7		388.0	14:30	1.21	0.82	0.12
13:54:30	1598.0	34.7	3.7	180	177	2276	496		1.15			49.1	1589.1		389.0	14:33	1.19	0.82	0.08
13:57:00	1599.1	25.8	2.3	180	177	2253	494		1.15			49.2	1590.0		390.1	14:36	1.19	0.75 0.76	0.13 0.15
13:59:23	1600.0	19.6	2.8	181	197	2251	495		1.15			48.8 48.1	1590.9 1591.5		391.0 392.0	14:38 14:40	1.19		0.15
14:01:00 14:03:05	1601.0 1602.0	31.4 34.5	1.5 1.4	181 180	194 195	2277 2279	495 495		1.15							14:42			0.14
14:05:09										1.14						14:45			
14:08:14			1 1	191	271					1.14						14:47			
14:10:27										1.14						14:49			
14:12:45										1.14						14:51			
14:15:34						2309				1.14							1.20		
14:18:42						2289				1.14							1.20		
14:20:19										1.14					400.1	14:59	1.20	0.75	0.13
14:23:00			2.9	181	199					1.14							1.20	0.20	0.14
14:26:45			3.4	181	186	2269	494	307	1.15	1.14	45.4	41.1	1599.8			15:05	1.21		
14:29:25			2.6	181	194	2271	495	350	1.15	1.14	46.4	48.9	1601.1				1.21		
14:32:14			2.8	180	226	2282	495	357	1.15	1.14	46.4	48.9	1502.2	166	404.0	15:11	1.21	0.81	0.17

DrillByte Drilling Data Printout COMPANY: BHP PRTROLEUM WELL: MINERVA 1

TIME	DEPTH	ROP	MOB	RPK	TRQ	SPP	PLO IN		UUH KI	DENSITY	IN	TEMP	RETURNS DEPTH	PVT	-BI	7-	ECD	DXC	GAS
h:mm:sec	1	m/hr	klb		amp	psi	gpm		TW	ag 001	deg		PELIU	bbl	ats	hh:mm	sg		x
14:34:56	1614.0	29.6	3.9	179	193	2267	195	314	1.15	1.14	46.4	48.7	1603.2	766	405.0	15:14	1.21	0.84	0.15
14:37:22	1615.0	27.2	3.3	180	217	2262	495	332	1.15	1.14	46.5	48.9	1604.3	765	406.0	15:16	1.21	0.79	0.15
14:40:07	1616.0	26.1	2.4	181	183	2283	495	330	1.15	1.14	46.5	49.0	1606.0	765	407.0	15:19	1.21	0.79	0.15
14:42:25	1617.0	30.2	3.2	180	194	2289	495	308	1.15	1.14	46.5	49.1	1606.8	766	408.0	15:21	1.21	0.77	0.16
14:44:56	1618.0	27.4	3.1	180	170	2288	494	313	1.15	1.14	46.5	49.1	1607.6	766	409.0	15:24	1.21	0.79	0.15
14:47:20	1619.0	22.1	3.7	180	218	2322	496	333	1.15	1.14	46.5	49.2	1607.9	767	410.0	15:26	1.21	0.80	0.15
14:53:45	1620.0	55.0	1.1	181	197	2395	509	337	1.15	1.14	46.4	49.2	1610.3	765	411.0	15:27	1.21	0.45	0.14
14:55:29	1621.0	39.2	0.8	180	212	2410	513	330	1.15	1.14	46.5	49.4	1610.6	766	412.0	15:28	1.21	0.61	0.14
14:57:31	1622.0	33.0	2.1	179	234	2390	513	350	1.15	1.14	46.7	49.4	1611.4	766	413.0	15:30	1.21	0.71	0.14
14:58:40	1623.0	49.5	2.7	178	264	2417	513	335	1.15	1.14	46.7	49.4	1611.8	766	414.0	15:32	1.21	0.64	0.14
15:00:45	1624.0	31.0	1.9	181	201	2399	513	353	1.15	1.14	46.7	49.3	1612.7	766	415.0	15:34	1.21	0.69	0.14
15:01:59	1625.0	55.9	3.4	179	238	2417	513	361	1.15	1.14	46.8	49.3	1613.0	767	416.0	15:35	1.21	0.65	0.14
15:03:32	1626.0	32.9	3.3	179	242	2429							1613.5		417.0		1.21	0.71	0.14
15:21:06	1627.0	23.0	3.2		217	2403				1.14			1617.6		418.0	15:39		0.73	0.15
15:23:35	1628.0	27.6	3.3		178	2334			_				1618.8	764	419.0	15:41	1.21	0.76	0.19
15:26:55	1629.0	24.3	2.8	171	234	2343							1619.9	765	420.0	15:44	1.19	0.78	0.19
15:28:53	1630.0	32.9	3.7	170	231	2361							1620.6			15:46		0.77	0.18
15:30:49		29.9	3.8	171	232	2326					46.9	49.1	1621.2	765	422.0	15:48	1.19	0.78	0.17
15:33:19	1632.0	22.5		173	240	2350							1622.1		423.0	15:51		0.82	0.17
15:35:36	1633.0	30.0		173	230	2340				1.14			1622.9			15:53		0.81	
15:37:09		40.1		173	280	2339				1.14			1623.4		425.0	15:55		0.75	0.19
15:39:00	1635.0	36.8		174	268	2366					46.9		1624.1		426.0		1.19	0.78	0.21
15:40:31		41.5	4.8	173	317	2386							1624.6				1.19	0.76	0.21
15:42:27	1637.0	27.6	4.6	176	273	2351							1625.2				1.19	0.80	0.21
15:45:32	1638.0	25.4	4.8	179	241	2368							1626.3		429.0	16:03	1.20	0.89	0.16
15:47:04	1639.0	38.1	5.5	176	269	2409				1.14			1626.8		430.0	16:04	1.20	0.78	0.14
15:50:22	1640.0	15.4	4.7	177	240	2383				1.14			1627.9		431.0	16:08		0.88	0.18
15:52:04		47.2		177	248	2376				1.14			1628.4		432.0		1.20	0.84	0.19
15:53:57	1642.0	27.8	5.8	177	238	2432							1629.0		433.0	16:11		0.82	0.17
15:55:56	1643.0	33.1	5.1	177	270	2422							1630.0		434.0	16:13		0.82	0.16
15:58:45	1644.0	23.5	4.8	178	246	2411		319					1631.4		435.0		1.21	0.88	0.17
16:00:18		40.0	4.7	178	281	2393				1.14					436.0	16:18		0.77	
16:01:48		40.0		175	253	2382				1.14					437.0	16:19		0.78	0.17
16:03:34	1647.0	34.5			273	2377				1.14			1633.3		438.0	16:21		0.79	
16:09:12		5.9				2360				1.14						16:27			
16:23:22													1642.4						
16:24:27										1.14						16:40			
16:25:28										1.14						16:41			
16:26:40										1.14						16:42			
16:28:11						2341				1.14						16:44			
16:29:17			10.6			2369				1.14						16:45		0.76	
18:17:57										1.14						16:47		0.76	
18:19:12										1.14						16:48		0.74	
18:20:12			1.0	1/0	222								1654.3			16:49			
18:20:12			1.0	1/1	400	9991	501 501	212 1	1 15	1.14	19.6	10.1	1654.3			16:50			
10:41:49	1029.V	01.3	3.4	111	333	6667	201	414	1.13	1.11	10.0	77.0			41710			7.00	

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM WELL: MINERVA 1

18:23:18 1660.0 47.5 4.3 140 273 2241 500 294 1.15 1.14 48.6 49.6 1654.3 762 451.0 16:52 1.19 0.6 18:24:16 1661.0 83.0 1.8 139 299 2230 502 317 1.15 1.14 48.6 49.7 1654.3 761 452.0 16:53 1.19 0.5 18:25:58 1662.0 1.8 2.5 141 230 2191 501 316 1.15 1.14 48.6 49.9 1654.3 761 453.0 16:54 1.20 0.6 19:08:40 1663.0 1.6 11.4 100 153 2218 506 316 1.15 1.14 48.6 49.9 1654.3 761 453.0 16:54 1.20 0.6 19:08:40 1663.0 1.6 11.4 100 153 2218 506 316 1.15 1.14 48.6 50.6 1662.3 761 454.0 17:35 1.21 1.49 19:13										·									0180810	*500
h:ma:sec	GAS	DIC	ECD	T-	-81	PVT								SPP	TRQ	RPM	WOB	ROP	DEPTH	TIME
18:22:04 1659.0 69.8 4.6 141 300 2186 501 300 1.15 1.14 48.6 49.6 1654.3 762 450.0 16:51 1.19 0.6 18:22:18 1660.0 47.5 4.3 140 273 2241 501 2241 1.15 1.14 48.6 49.6 1654.3 762 450.0 16:52 1.19 0.6 18:22:16 1661.0 81.0 1.8 2.5 141 230 2191 501 316 1.15 1.14 48.6 49.7 1654.3 761 452.0 16:53 1.19 0.5 18:25:58 1662.0 1.8 2.5 141 230 2191 501 316 1.15 1.14 48.6 49.7 1654.3 761 452.0 16:54 1.20 0.6 18:25:118 1664.0 22.4 14.4 85 269 2256 510 319 1.15 1.14 48.6 49.5 1652.3 761 452.0 16:54 1.20 0.6 19:15:16 1664.0 22.4 14.4 85 269 2256 510 319 1.15 1.14 48.6 50.6 1662.3 761 454.0 17:35 1.21 1.4 19:15:16 1664.0 22.4 14.4 85 269 2256 510 319 1.15 1.14 49.0 51.7 1662.5 759 455.0 17:39 1.21 0.9 19:16:48 1666.0 36.1 9.8 98 200 2243 509 304 1.15 1.14 49.0 51.7 1662.6 759 457.0 17:43 1.21 0.8 19:26:54 1668.0 31.1 31.4 81 22.2 2256 512 221 1.15 1.14 49.3 51.7 1662.6 759 457.0 17:43 1.21 0.8 19:26:54 1668.0 31.1 31.4 81 22.2 2256 512 221 1.15 1.14 49.3 51.7 1662.8 759 462.0 17:51 1.21 0.8 19:30:38 1671.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.3 51.8 1662.9 375 462.0 17:55 1.21 0.8 19:30:38 1671.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.3 51.8 1662.9 375 462.0 17:57 1.21 0.8 19:30:38 1671.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.3 51.8 1662.9 375 462.0 17:57 1.21 0.3 19:30:38 1671.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.5 52.0 1662.9 375 462.0 17:57 1.21 0.35 19:30:30 1671.0 31.4 14.8 81 274 2259 512 300 1.15 1.14 49.5 52.0 1662.9 375 462.0 17:57 1.21 0	_			,,							IN						,	,.		١.
18:22:18 1660.0 47.5 4.3 140 273 2241 500 234 1.15 1.14 48.6 49.6 1654.3 762 451.0 16:52 1.19 0.6	X -		sg	hh:mm	ats	bbl	8	C C	deg	sg		1	g p	psi	amp		tib	n/hr	1	h:nn:sec
18:25:58 1662.0 1.8 2.5 141 230 231 501 316 1.5 1.14 48.5 49.7 1654.3 761 452.0 16:53 1.18 0.5 18:25:58 1662.0 1.8 2.5 141 230 231 501 316 1.5 1.14 48.5 49.7 1654.3 761 453.0 16:54 1.20 0.6 18:08:58 16:08 1.5 1.14 48.5 49.7 1654.3 761 453.0 16:54 1.20 0.6 19:08:40 1663.0 1.6 1.5 1.4 48.5 30.6 16:25 759 455.0 17:35 1.21 0.9 19:14:58 1665.0 32.4 11.5 88 251 232 510 301 1.15 1.14 48.9 51.7 1662.5 759 455.0 17:31 1.21 0.9 19:16:48 1666.0 36.1 3.8 38 200 2243 509 302 1.15 1.14 49.0 51.7 1662.5 759 455.0 17:41 1.21 0.8 19:16:48 1668.0 36.1 3.8 38 200 2243 509 304 1.15 1.14 49.0 51.7 1662.5 759 455.0 17:31 1.21 1.2 19:26:44 1668.0 31.3 13.4 81 232 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 455.0 17:53 1.21 0.83 19:28:47 1669.0 33.1 13.1 81 232 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 465.0 17:51 1.21 1.2 19:30:38 1671.0 30.4 14.8 81 232 235 513 230 1.15 1.14 49.5 51.8 1662.9 759 461.0 17:57 1.21 0.85 19:33:28 1671.0 34.9 14.5 81 232 232 513 234 1.15 1.14 49.5 51.8 1662.9 759 461.0 17:57 1.21 0.85 19:33:50 1674.0 30.7 14.9 81 284 2249 513 238 1.15 1.14 49.5 51.8 1662.9 759 461.0 17:57 1.21 0.85 19:33:50 1674.0 30.7 14.9 81 284 2249 513 239 1.15 1.14 49.5 51.8 1662.9 759 465.0 17:59 1.21 0.85 19:33:50 1674.0 30.7 14.9 81 284 2249 513 239 1.15 1.14 49.5 51.8 1662.9 759 465.0 17:59 1.21 0.85 19:33:50 1674.0 30.7 14.9 81 284 2249 513 239 1.15 1.14 49.5 51.8 1662.9 759 465.0 17:59 1.21 0.85 19:33:50 1674.0 30.7 14.9 81 284 2249 513 239 1.15 1.14 49.5 51.8 166	0.13																		1659.0	1
18:25:58 1682.0 1.8 2.5 141 230 2191 501 316 1.15 1.14 48.6 49.9 1654.3 761 453.0 16:54 1.20 0.6 19:08:00 1663.0 1.5 1.4 100 153 2218 506 316 1.15 1.14 48.6 50.6 1662.3 761 453.0 17:35 1.21 1.4 19:18:16 1664.0 28.4 14.4 85 252 2255 510 319 1.15 1.14 49.0 51.7 1662.5 759 455.0 17:39 1.21 0.3 19:18:18 1666.0 32.4 11.5 88 251 2235 510 304 1.15 1.14 49.0 51.7 1662.5 759 455.0 17:39 1.21 0.3 19:26:54 1666.0 36.1 9.8 98 200 2243 509 304 1.15 1.14 49.0 51.7 1662.6 759 457.0 17:41 1.21 0.8 19:26:54 1666.0 31.1 31.4 81 212 2250 512 271 1.15 1.14 49.0 51.7 1662.8 759 458.0 17:51 1.21 1.2 19:26:54 1666.0 33.1 31.4 81 212 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 458.0 17:51 1.21 1.2 19:30:38 1671.0 34.9 14.5 81 274 2259 512 300 1.15 1.14 49.3 51.8 1662.9 759 461.0 17:55 1.21 0.8 19:31:32 1671.0 34.9 14.5 81 274 2259 513 234 1.15 1.14 49.4 52.0 1662.9 759 461.0 17:55 1.21 0.8 19:31:32 1671.0 34.3 14.8 81 274 2259 513 234 1.15 1.14 49.4 52.0 1662.9 759 463.0 17:59 1.21 0.3 19:34:14 1672.0 31.4 14.8 81 274 2239 513 234 1.15 1.14 49.4 52.0 1662.9 759 463.0 18:00 1.21 0.8 19:33:07 1673.0 32.1 15.1 34.3 18.0 328 224 238 513 230 1.15 1.14 49.4 52.0 1662.9 759 463.0 18:00 1.21 0.8 19:33:07 1673.0 32.1 15.1 34.3 18.0 34 13.5 1.14 49.5 51.8 1662.9 759 463.0 18:00 1.21 0.8 19:33:08 1674.0 30.7 14.9 81 284 2294 513 230 1.15 1.14 49.4 52.0 1662.9 759 463.0 18:00 1.21 0.8 19:33:09 1674.0 30.7 14.9 81 284 2294 513 230 1.15 1.14 49.5 51.8 1662.9 758 465.0																				I .
19:08:40 1663.0 1.6 11.4 100 153 2218 506 316 1.15 1.14 48.6 50.6 1662.3 761 454.0 17:35 1.21 1.4 19:13:16 1664.0 28.4 14.4 85 269 2256 510 304 1.15 1.14 48.5 51.7 1662.5 754 455.0 17:39 1.21 0.39 19:16:48 1666.0 36.1 3.8 38 200 2243 509 302 1.15 1.14 49.0 51.7 1662.6 753 457.0 17:43 1.21 0.38 19:25:02 1667.0 15.1 15.0 90 216 2248 509 304 1.15 1.14 49.0 51.7 1662.6 753 457.0 17:43 1.21 0.38 19:26:47 1668.0 31.3 31.4 81 232 2250 512 271 1.15 1.14 49.0 51.7 1662.8 759 458.0 17:51 1.21 1.2 19:28:47 1669.0 31.3 13.1 81 248 2291 513 270 1.15 1.14 49.3 51.8 1662.9 757 460.0 17:55 1.21 0.38 19:30:38 1670.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.4 52.0 1662.9 759 461.0 17:57 1.21 0.38 19:38:28 1671.0 34.9 14.5 81 224 2239 513 231 1.15 1.14 49.4 52.0 1662.9 759 461.0 17:57 1.21 0.38 19:38:07 1671.0 32.1 15.1 81 304 2288 512 301 1.15 1.14 49.5 51.8 1662.9 758 461.0 17:57 1.21 0.38 19:39:54 1675.0 26.6 15.4 81 300 2281 512 239 1.15 1.14 49.5 51.8 1662.9 758 461.0 18:02 1.21 0.38 19:39:54 1675.0 26.6 15.4 81 300 2281 512 239 1.15 1.14 49.5 51.8 1662.9 758 461.0 18:02 1.21 0.38 19:39:54 1675.0 26.6 15.4 81 300 2281 512 239 1.15 1.14 49.5 51.8 1662.9 758 461.0 18:02 1.21 0.38 19:39:54 1675.0 26.6 15.4 81 300 2281 512 239 1.15 1.14 49.5 51.8 1662.9 758 461.0 18:02 1.21 0.38 19:39:54 1675.0 26.6 15.4 81 300 2281 512 239 1.15 1.14 49.5 51.8 1662.9 758 461.0 18:01 1.10 0.34 20:16:12 1676.1 34.3 15.0 84 272 2271 512 305 1.15 1.14 49.5 51.8 1662.9	0.13																			I .
19:13:16 1664.0 28.4 14.4 85 269 2256 510 319 1.15 1.14 48.9 51.7 1662.5 759 455.0 17:39 1.21 0.99 19:16:45 1666.0 32.4 11.5 88 251 2235 510 319 1.15 1.14 49.0 51.7 1662.5 760 465.0 17:41 1.21 0.89 19:25:02 1667.0 15.1 15.0 90 216 2248 509 304 1.15 1.14 49.0 51.7 1662.8 759 457.0 17:43 1.21 0.89 19:26:54 1668.0 31.3 13.4 81 232 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 457.0 17:53 1.21 1.2 19:26:54 1669.0 31.1 31.4 81 232 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 459.0 17:53 1.21 0.83 19:38:47 1669.0 33.1 31.1 81 248 2291 513 270 1.15 1.14 49.3 51.7 1662.8 759 451.0 17:55 1.21 0.83 19:31:41 1672.0 31.4 14.8 81 234 2228 513 234 1.15 1.14 49.3 51.9 1662.9 759 461.0 17:55 1.21 0.83 19:38:00 1674.0 30.7 14.9 81 284 2294 513 290 1.15 1.14 49.4 52.0 1662.9 759 461.0 17:55 1.21 0.85 19:39:35:01 1675.0 22.6 15.4 81 300 2281 512 301 1.15 1.14 49.5 51.8 1662.9 758 460.0 17:55 1.21 0.85 19:39:35:16 1675.0 22.6 15.4 81 300 2281 512 239 1.15 1.14 49.5 52.0 1662.9 758 460.0 18:00 1.21 0.85 19:39:35:4 1675.0 25.6 15.4 81 300 2281 512 305 1.15 1.14 49.5 51.8 1662.9 758 460.0 18:00 1.21 0.85 19:39:35:4 1675.0 25.6 15.4 81 300 2281 512 305 1.15 1.14 49.5 51.8 1662.9 758 460.0 18:00 1.21 0.85 19:39:35:4 1675.0 25.6 15.4 81 300 2281 512 305 1.15 1.14 49.5 51.8 1662.9 758 460.0 18:00 1.21 0.85 19:39:30:16 1675.0 25.6 15.4 81 300 2281 1.15 1.14 49.5 51.8 1662.9 758 460.0 18:00 1.21 0.85 19:39:30:40 1675.0 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.																				1
19:14:58	3.25																			1
19:16:48 1666.0 36.1 9.8 98 200 2243 509 302 1.15 1.14 49.0 51.7 1662.6 759 457.0 17:43 1.21 0.8 19:25:02 1667.0 15.1 15.0 90 216 2248 509 304 1.15 1.14 49.2 51.6 1662.8 759 459.0 17:51 1.21 1.28 19:26:47 1668.0 31.3 13.4 81 232 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 459.0 17:51 1.21 0.8 19:30:38 1670.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.3 51.8 1662.9 757 460.0 17:55 1.21 0.8 19:30:28 1671.0 34.9 14.5 81 222 2269 513 294 1.15 1.14 49.4 52.0 1662.9 759 461.0 17:55 1.21 0.8 19:36:07 1671.0 30.1 14.8 81 224 2289 513 294 1.15 1.14 49.5 52.0 1662.9 759 462.0 17:59 1.21 0.8 19:38:00 1674.0 30.7 14.9 81 284 2294 513 290 1.15 1.14 49.5 52.0 1662.9 758 465.0 18:00 1.21 0.8 19:39:39:44 1675.0 26.6 15.4 81 300 2281 512 391 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:00 1.21 0.8 19:39:39:44 1675.0 26.6 15.4 81 300 2281 512 390 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:00 1.21 0.8 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:00 1.21 0.8 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:00 1.21 0.8 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:00 1.21 0.8 20:10:42 1676.1 34.3 16.0 84 272 271 512 305 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:00 1.21 0.8 20:10:42 1676.1 34.5 3	2.70																			1
19:25:02 1667.0 15.1 15.0 90 216 2248 509 304 1.15 1.14 49.2 51.6 1662.8 759 458.0 17:51 1.21 1.2 1.2 19:26:54 1668.0 31.3 13.1 81 232 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 458.0 17:55 1.21 0.83 19:38:47 1669.0 33.1 13.1 81 248 2291 513 270 1.15 1.14 49.3 51.8 1662.9 757 460.0 17:55 1.21 0.83 19:38:28 1671.0 34.9 14.5 81 282 2269 513 294 1.15 1.14 49.4 52.0 1662.9 759 462.0 17:59 1.21 0.85 19:38:28 1671.0 31.4 14.8 81 294 2289 513 281 1.15 1.14 49.4 52.0 1662.9 759 462.0 17:59 1.21 0.85 19:38:00 1671.0 30.7 14.9 81 284 2289 513 281 1.15 1.14 49.4 52.0 1662.9 759 462.0 17:59 1.21 0.85 19:38:00 1671.0 30.7 14.9 81 284 2284 513 281 1.15 1.14 49.5 52.0 1662.9 758 464.0 18:02 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 289 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 289 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 305 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 305 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.86 20:10:42 1676.1 34.1 34.5 3	2.44																			1
19:26:54 1668.0 31.3 13.4 81 232 2250 512 271 1.15 1.14 49.3 51.7 1662.8 759 459.0 17:53 1.21 0.83 19:28:47 1669.0 33.1 13.1 81 248 2291 513 270 1.15 1.14 49.3 51.8 1662.9 757 460.0 17:55 1.21 0.81 19:30:38 1670.0 30.4 15.4 81 222 2269 513 294 1.15 1.14 49.3 51.9 1662.9 759 463.0 17:55 1.21 0.85 19:32:28 1671.0 34.9 14.5 81 222 2269 513 294 1.15 1.14 49.4 52.0 1662.9 759 463.0 18:00 1.21 0.84 19:36:07 1673.0 32.1 15.1 81 304 2288 512 301 1.15 1.14 49.4 52.0 1662.9 759 463.0 18:00 1.21 0.85 19:38:00 1674.0 30.7 14.9 81 284 2294 513 290 1.15 1.14 49.5 52.0 1662.9 758 464.0 18:02 1.21 0.85 19:38:00 1674.0 30.7 14.9 81 284 2294 513 290 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:04 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 239 1.15 1.14 49.5 51.8 1663.0 760 466.0 18:06 1.21 0.85 20:10:42 1676.1 34.3 16.0 84 272 271 512 305 1.15 1.14 49.5 51.8 1663.0 760 466.0 18:06 1.21 0.85 20:12:31 1677.0 31.5 17.1 85 273 2294 513 295 1.15 1.14 49.5 51.8 1663.0 760 466.0 18:06 1.21 0.85 20:12:31 1677.0 31.5 17.1 85 273 2294 513 295 1.15 1.14 49.3 51.0 1668.1 762 467.1 18:10 1.19 0.93 20:12:31 1678.0 28.0 17.4 85 275 2290 514 306 1.15 1.14 49.2 50.5 1669.7 755 470.0 18:16 1.19 0.94 0.16:25 1679.0 30.8 17.2 85 277 2045 514 306 1.15 1.14 49.2 51.2 1670.3 755 470.0 18:16 1.19 0.94 0.16:25 1679.0 30.8 17.2 85 277 2045 514 306 1.15 1.14 49.1 51.3 1670.9 755 471.0 18:18 1.19 0.93 20:22:41 1682.0 24.6 24.6 24.8 24.28 513 311 1.15 1.14 49.2 51.2 1670.3 755 472.0 18:20 1.19 0.	2.21																			
19:28:47 1669.0 33.1 13.1 81 248 2291 513 270 1.15 1.14 49.3 51.8 1662.9 757 460.0 17:55 1.21 0.81 19:30:38 1670.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.3 51.9 1662.9 759 461.0 17:57 1.21 0.85 19:32:28 1671.0 34.9 14.5 81 282 2269 513 294 1.15 1.14 49.4 52.0 1662.9 759 461.0 17:57 1.21 0.85 19:36:07 1673.0 32.1 15.1 81 304 2288 512 301 1.15 1.14 49.4 52.0 1662.9 759 463.0 18:00 1.21 0.85 19:38:00 1674.0 30.7 14.9 81 284 2294 513 293 1.15 1.14 49.5 52.0 1662.9 759 463.0 18:00 1.21 0.85 19:38:00 1674.0 30.7 14.9 81 284 2294 513 2291 1.15 1.14 49.5 51.8 1662.9 758 464.0 18:02 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 289 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:04 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 289 1.15 1.14 49.6 51.8 1662.9 758 465.0 18:06 1.21 0.85 19:39:54 1675.0 31.5 17.1 85 273 2294 513 2295 1.15 1.14 49.6 51.8 1662.9 758 465.0 18:06 1.21 0.85 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:10 1.21 0.85 20:12:31 1677.0 31.5 17.1 85 273 2294 513 2295 1.15 1.14 49.5 50.8 1668.5 761 468.0 18:12 1.19 0.90 20:14:33 1678.0 29.4 17.5 85 290 2280 513 325 1.15 1.14 49.2 50.8 1669.2 758 469.0 18:14 1.19 0.90 20:16:25 1679.0 30.8 17.4 85 275 2290 514 306 1.15 1.14 49.2 50.8 1669.2 758 469.0 18:14 1.19 0.90 20:20:29 1681.0 31.2 17.4 85 264 2298 514 344 1.15 1.14 49.2 51.3 1670.9 755 470.0 18:16 1.19 0.90 20:20:20:20 1681.0 37.2 17.4 85 286 2310 514 306 1.15 1.14 49.1 51.5	1.20																			3
19:30:38 1670.0 30.4 15.4 81 274 2259 512 300 1.15 1.14 49.3 51.9 1662.9 759 461.0 17:57 1.21 0.85 19:32:28 1671.0 34.9 14.5 81 282 2269 513 294 1.15 1.14 49.4 52.0 1662.9 759 462.0 17:57 1.21 0.83 19:34:14 1672.0 31.4 41.8 81 294 2289 513 281 1.15 1.14 49.4 52.0 1662.9 759 463.0 18:00 1.21 0.83 19:34:07 1673.0 32.1 15.1 81 304 2288 512 301 1.15 1.14 49.5 52.0 1662.9 758 465.0 18:02 1.21 0.85 19:38:00 1674.0 30.7 14.9 81 284 2294 513 290 1.15 1.14 49.5 51.8 1662.9 758 465.0 18:04 1.21 0.85 19:39:54 1675.0 26.6 15.4 81 300 2281 512 289 1.15 1.14 49.5 51.8 1663.0 760 466.0 18:04 1.21 0.85 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.86 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.86 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.86 20:10:42 1676.1 34.3 1677.0 31.5 17.1 85 273 2294 513 225 1.15 1.14 49.2 50.5 1669.2 758 469.0 18:14 1.19 0.94 20:16:26 1679.0 30.8 17.2 85 277 2304 514 2292 1.15 1.14 49.2 50.5 1669.2 758 469.0 18:14 1.19 0.94 20:16:26 1679.0 30.8 17.4 85 275 2290 514 306 1.15 1.14 49.2 50.8 1669.7 755 470.0 18:16 1.19 0.94 20:22:41 1682.0 23.0 17.4 85 275 2290 514 306 1.15 1.14 49.2 51.2 1670.3 755 470.0 18:16 1.19 0.94 20:22:41 1683.1 37.1 18.2 85 286 2310 514 307 1.15 1.14 49.2 51.2 1670.3 755 470.0 18:16 1.19 0.94 20:22:41 1683.1 37.1 18.2 85 286 2310 514 307 1.15 1.14 49.2 51.9 1671.5 755 47	1.18																			1
19:32:28	1.14																			1
19:34:14	1.10																			ł .
19:36:07	1.05																			l.
19:38:00	1.03																			1
19:39:54 1675.0 26.6 15.4 81 300 2281 512 289 1.15 1.14 49.6 51.8 1663.0 760 466.0 18:06 1.21 0.86 20:10:42 1676.1 34.3 16.0 84 272 2271 512 305 1.15 1.14 49.3 51.0 1668.1 762 467.1 18:10 1.19 0.93 20:12:31 1677.0 31.5 17.1 85 273 2294 513 2295 1.15 1.14 49.3 50.8 1668.5 761 468.0 18:12 1.19 0.90 20:14:33 1678.0 29.4 17.5 85 290 2280 513 325 1.15 1.14 49.2 50.5 1669.2 758 469.0 18:14 1.19 0.94 20:16:26 1679.0 30.8 17.2 85 277 2304 514 292 1.15 1.14 49.2 50.5 1669.2 758 469.0 18:14 1.19 0.94 20:16:26 1679.0 30.8 17.4 85 277 2304 514 292 1.15 1.14 49.2 50.8 1669.7 755 470.0 18:16 1.19 0.94 20:22:41 1682.0 24.6 17.9 85 254 2289 514 306 1.15 1.14 49.1 51.3 1670.9 755 472.0 18:20 1.19 0.94 20:22:41 1682.0 24.6 17.9 85 254 2289 514 307 1.15 1.14 49.1 51.5 1671.5 755 473.0 18:22 1.19 0.95 20:24:21 1683.1 37.1 18.2 85 286 2310 514 307 1.15 1.14 49.1 51.5 1671.5 755 473.0 18:22 1.19 0.95 20:24:21 1683.1 37.1 18.2 85 286 2310 514 307 1.15 1.14 49.1 51.5 1671.5 755 474.1 18:23 1.19 0.88 20:30:58 1684.0 20.4 16.6 82 200 2268 513 311 1.15 1.14 49.2 51.9 1673.9 756 475.0 18:30 1.20 1.17 20:34:04 1685.0 21.8 13.6 80 205 2280 513 308 1.15 1.14 49.5 52.2 1674.7 755 476.0 18:33 1.20 0.95 20:47:51 1686.0 43.3 11.9 83 263 2298 515 300 1.15 1.14 49.5 52.2 1674.7 755 476.0 18:33 1.20 0.95 20:47:51 1686.0 43.3 1.19 83 263 2298 515 300 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.49 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.	0.86																			
20:10:42	0.78																			
20:12:31 1677.0 31.5 17.1 85 273 2294 513 295 1.15 1.14 49.3 50.8 1668.6 761 468.0 18:12 1.19 0.90	0.58																			
20:14:33	1.38																			1
20:16:25 1679.0 30.8 17.2 85 277 2304 514 292 1.15 1.14 49.2 50.8 1669.7 755 470.0 18:16 1.19 0.90	1.26					-	-													
20:18:27 1680.0 28.0 17.4 85 275 2290 514 306 1.15 1.14 49.2 51.2 1670.3 756 471.0 18:18 1.19 0.93	1.02																			
20:20:29 1681.0 31.2 17.4 85 264 2298 514 344 1.15 1.14 49.1 51.3 1670.9 755 472.0 18:20 1.19 0.94	0.78																			1
20:22:41 1682.0 24.6 17.9 85 254 2289 514 312 1.15 1.14 49.1 51.5 1671.5 755 473.0 18:22 1.19 0.95 20:24:21 1683.1 37.1 18.2 85 286 2310 514 307 1.15 1.14 49.1 51.7 1672.0 755 474.1 18:23 1.19 0.88 20:30:58 1684.0 20.4 16.6 82 200 2268 513 311 1.15 1.14 49.2 51.9 1673.9 756 475.0 18:30 1.20 1.17 20:34:04 1685.0 21.8 13.6 80 205 2280 513 308 1.15 1.14 49.3 52.2 1674.7 755 476.0 18:33 1.20 0.95 20:47:51 1686.0 43.3 11.9 83 263 2298 515 300 1.15 1.14 49.5 52.2 1678.4 752 477.0 18:35 1.21 0.84 20:49:43 1687.0 29.6 10.6 83 281 2309 515 299 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.79 20:51:42 1688.1 29.0 10.3 84 254 2274 513 330 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.79 20:53:41 1689.0 30.0 10.3 83 257 2305 512 335 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.79 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:41 1.21 0.80 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:55 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.50																			9
20:24:21 1683.1 37.1 18.2 85 286 2310 514 307 1.15 1.14 49.1 51.7 1672.0 755 474.1 18:23 1.19 0.88 20:30:58 1684.0 20.4 16.6 82 200 2268 513 311 1.15 1.14 49.2 51.9 1673.9 756 475.0 18:30 1.20 1.17 20:34:04 1685.0 21.8 13.6 80 205 2280 513 308 1.15 1.14 49.3 52.2 1674.7 755 476.0 18:33 1.20 0.95 20:47:51 1686.0 43.3 11.9 83 263 2298 515 300 1.15 1.14 49.5 52.2 1678.4 752 477.0 18:35 1.21 0.84 20:49:43 1687.0 29.6 10.6 83 281 2309 515 299 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.79 20:51:42 1688.1 29.0 10.3 84 254 2274 513 330 1.15 1.14 49.6 52.0 1680.2 754 479.1 18:39 1.21 0.79 20:53:41 1689.0 30.0 10.3 83 257 2305 512 335 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.79 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:41 1.21 0.80 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.88 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1685.0 754 484.1 18:50 1.21 0.84 21:06:56 1695.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:55 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.49																			
20:30:58 1684.0 20.4 16.6 82 200 2268 513 311 1.15 1.14 49.2 51.9 1673.9 756 475.0 18:30 1.20 1.17 20:34:04 1685.0 21.8 13.6 80 205 2280 513 308 1.15 1.14 49.3 52.2 1674.7 755 476.0 18:33 1.20 0.95 20:47:51 1686.0 43.3 11.9 83 263 2298 515 300 1.15 1.14 49.5 52.2 1678.4 752 477.0 18:35 1.21 0.84 20:49:43 1687.0 29.6 10.6 83 281 2309 515 299 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.79 20:51:42 1688.1 29.0 10.3 84 254 2274 513 330 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.79 20:53:41 1689.0 30.0 10.3 83 257 2305 512 335 1.15 1.14 49.6 51.9 1681.2 752 480.0 18:41 1.21 0.80 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.3 1683.5 754 483.0 18:48 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 249 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:11:29 1697.0 29.6 10.5 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.5 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.43																			
20:34:04 1685.0 21.8 13.6 80 205 2280 513 308 1.15 1.14 49.3 52.2 1674.7 755 476.0 18:33 1.20 0.95 20:47:51 1686.0 43.3 11.9 83 263 2298 515 300 1.15 1.14 49.5 52.2 1678.4 752 477.0 18:35 1.21 0.84 20:49:43 1687.0 29.6 10.6 83 281 2309 515 299 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.79 20:51:42 1688.1 29.0 10.3 84 254 2274 513 330 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.79 20:53:41 1689.0 30.0 10.3 83 257 2305 512 335 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.79 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 752 480.0 18:41 1.21 0.80 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.8 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.5 1685.1 754 487.0 18:56 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:21 1:22 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:11:21 1697.0 2	0.41																			1
20:47:51 1686.0 43.3 11.9 83 263 2298 515 300 1.15 1.14 49.5 52.2 1678.4 752 477.0 18:35 1.21 0.84 20:49:43 1687.0 29.6 10.6 83 281 2309 515 299 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.79 20:51:42 1688.1 29.0 10.3 84 254 2274 513 330 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.79 20:53:41 1689.0 30.0 10.3 83 257 2305 512 335 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.80 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.8 52.4 1683.5 754 483.0 18:48 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21	0.34																			1
20:49:43 1687.0 29.6 10.6 83 281 2309 515 299 1.15 1.14 49.6 52.0 1679.3 752 478.0 18:37 1.21 0.79 20:51:42 1688.1 29.0 10.3 84 254 2274 513 330 1.15 1.14 49.6 51.9 1680.2 754 479.1 18:39 1.21 0.79 20:53:41 1689.0 30.0 10.3 83 257 2305 512 335 1.15 1.14 49.6 51.9 1681.2 752 480.0 18:41 1.21 0.80 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.3 1683.5 754 483.0 18:48 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.5 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.29																			
20:51:42	0.31																			•
20:53:41 1689.0 30.0 10.3 83 257 2305 512 335 1.15 1.14 49.6 51.9 1681.2 752 480.0 18:41 1.21 0.80 20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.3 1683.5 754 483.0 18:48 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.5 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.31																			1
20:55:52 1690.0 24.5 10.1 82 251 2290 513 334 1.15 1.14 49.6 52.0 1682.1 753 481.0 18:43 1.21 0.82 20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.3 1683.5 754 483.0 18:48 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 2	0.30																			1
20:58:27 1691.0 23.6 9.2 83 219 2299 512 312 1.15 1.14 49.7 52.2 1683.3 755 482.0 18:46 1.21 0.82 21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.3 1683.5 754 483.0 18:48 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.29																			
21:00:14 1692.0 29.3 10.7 83 268 2326 513 310 1.15 1.14 49.7 52.3 1683.5 754 483.0 18:48 1.21 0.78 21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.29																			
21:02:31 1693.1 29.9 11.2 83 233 2313 513 291 1.15 1.14 49.8 52.4 1683.8 754 484.1 18:50 1.21 0.83 21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.27																			1
21:04:43 1694.0 29.7 11.3 83 244 2322 513 308 1.15 1.14 49.8 52.5 1684.4 753 485.0 18:52 1.21 0.84 21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.21																			
21:06:56 1695.0 25.0 10.8 83 259 2303 512 330 1.15 1.14 49.9 52.5 1685.0 754 486.0 18:54 1.21 0.84 21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.6 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.22																			
21:09:05 1696.0 29.9 10.8 83 241 2311 513 314 1.15 1.14 49.9 52.4 1685.1 754 487.0 18:56 1.21 0.82 21:11:29 1697.0 29.6 10.5 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.22																			
21:11:29 1697.0 29.6 10.5 83 219 2339 512 294 1.15 1.14 49.9 52.4 1685.1 754 488.0 18:59 1.21 0.84	0.22																			
	0.22																			
	0.22																			1
21:16:11 1699.0 29.9 11.8 83 248 2307 513 304 1.15 1.14 50.0 52.6 1685.4 753 490.0 19:04 1.21 0.85	0.23																			
21:18:55 1700.0 22.0 11.5 83 233 2348 513 301 1.15 1.14 50.1 52.5 1686.9 753 491.0 19:06 1.21 0.88	0.32																			
21:21:04 1701.1 27.8 11.7 84 241 2327 512 327 1.15 1.14 50.1 52.6 1687.9 753 492.1 19:08 1.21 0.83	0.30																			3
21:37:18 1702.0 30.8 10.4 119 213 2255 506 315 1.15 1.14 50.3 52.4 1694.9 756 493.0 19:23 1.21 1.28	0.20														911	110				
21:39:36 1703.0 26.8 10.5 150 225 2274 502 297 1.15 1.14 50.4 52.4 1695.8 756 494.0 19:25 1.21 0.96	0.20																			
Pringsing lindin 20.0 Inin 190 PP11 and PP1 first first and anil tones to sain the sain the										4,11	****	631		6617	664	190	10.3	60.0	1109.0	61.93.90

TIME	DEPTH	ROP	MOB	EPH	TRQ	SPP		O¥ TUO		DENSITY	NUD IN	TEMP	RETURNS DEPTH	PVT	-81	Τ-	ECD	DIC	GAS
h:mm:sec		s/hr	klb		anp	psi	gp		10	sg	deg			bbl	ats	hh:sa	sg		x
21:42:07	1704.0	26.9	10.6	148	205	2269	502	294	1.15	1.14	50.4	52.3	1696.9	755	495.0	19:27	1.21	0.97	0.19
21:44:17	1705.0	28.3	10.6	149	200	2231	502	289	1.15	1.14	50.4	52.3	1697.7	755	496.0	19:30	1.21	0.94	0.18
21:46:33	1706.0	31.3	9.8	149	210	2252	502	287	1.15	1.14	50.4	52.4	1698.5		497.0	19:32	1.21	0.94	0.18
21:49:38	1707.0	32.2	9.9	148	210	2262	502	285	1.15	1.14	50.4	52.3	1699.5	755	498.0	19:35		0.92	0.18
21:52:24	1708.0	31.0	10.0	149	206	2261	502	286	1.15	1.14	50.4	52.4	1700.1	756	499.0	19:38	1.19	0.92	0.16
21:54:51	1709.0	30.4	10.0	149	207	2275	502	290	1.15	1.14	50.4	52.6	1700.8	753	500.0	19:40	1.19	0.96	0.15
21:58:10	1710.0	29.7	9.3	149	198	2270	502	296	1.15	1.14	50.5	52.6	1701.6		501.0	19:43		0.92	0.12
21:59:51	1711.0	36.3	9.8	149	230	2248	502	326	1.15	1.14	50.5	52.5	1702.1		502.0	19:45		0.90	0.11
22:01:43	1712.0	36.1	9.7	149	215	2233	502						1702.7		503.0	19:47		0.90	0.11
22:13:37	1713.0	28.0	9.3	150	200	2251	500	284	1.15	1.14	50.5	52.8	1704.9	760	504.0	19:50	1.19	0.95	0.11
22:15:51	1714.0	26.1	7.9	150	210	2235	500	300	1.15	1.14	50.6	52.8	1705.5	754	505.0	19:52		0.90	0.14
22:17:27	1715.1	43.0	9.0	151	248	2228	499						1706.0		506.1	19:53		0.85	0.17
22:19:20	1716.0	30.9	8.9	150	248	2243	499	309	1.15	1.14	50.6	52.2	1706.5	755	507.0	19:55		0.89	0.18
22:21:13	1717.1	33.2	9.1	151	230	2242	500	295	1.15	1.14	50.6	52.2	1707.1		508.1	19:57		0.89	0.19
22:23:09	1718.0	26.3	9.0	151	238	2244	500		1.15				1707.5		509.0	19:59		0.89	0.19
22:29:06	1720.0	14.2	9.3	150	227	2247	500		1.15				1709.3		511.0	20:05		0.99	0.20
22:31:33	1721.0	21.6	9.5	151	229	2250	500		1.15				1710.5		512.0	20:07		0.95	0.20
22:34:29	1722.1	26.5	9.3	151	214	2245	500						1712.0		513.1	20:10		0.96	0.22
22:36:22	1723.1	33.3	10.4	151	254	2264	500						1712.4		514.1	20:12		0.89	0.22
22:39:11	1724.1	21.5	9.4	151	238	2271	500						1712.4		515.1	20:15			0.22
22:40:46	1725.0	33.6	10.0	152	229	2248	501						1712.4		516.0	20:17			0.22
22:42:49	1726.0	29.2	10.4	150	246	2255	500								517.0	20:19		0.92	0.20
22:44:49	1727.1	30.5	9.4	152	223	2177	493								518.1	20:21		0.89	0.19
22:47:00	1728.0	24.2	9.3	151	223	2188	492		1.15						519.0	20:23			0.28
22:49:02	1729.0	28.1	9.8	152	201	2183	493								520.0	20:25			0.28
22:51:00			9.2		233	2205	492								521.0	20:27			0.22
22:53:19	1731.0	23.5	9.2		232	2195	492								522.0	20:29		0.91	0.21
	1732.0	44.6		152	224	2208	492								523.0	20:31			0.20
	1733.0	38.1		151	249	2187	492								524.0	20:32		0.87	0.19
	1734.1	33.7		151	209	2194	492								525.1	20:35		0.95	0.19
	1735.0	27.7	10.3	150	237	2220	493		1.15						526.0	20:36		0.90	0.18
	1736.0	30.3		151	219	2202	493		1.15						527.0	20:38		0.90	0.18
	1737.0			151	224	2208	496		1.15						528.0	20:44		1.16	0.18
	1738.0	26.2	9.7		239	2249										20:47			0.19
23:13:40																20:49			0.19
23:17:06										1.14						20:53			0.19
23:24:04										1.14						20:60			0.19
23:43:17			7.8							1.14					533.1				0.15
23:46:22			7.0							1.14						21:06			0.16
23:49:04			5.6		217					1.14						21:09			0.17
23:51:24		20.8	1.5		227					1.14						21:11			0.15
23:53:13			7.8		227	2236				1.14						21:13			0.14
23:54:56			6.8		219	2303				1.14						21:15			0.14
23:57:11										1.14						21:17			0.13
23:59:26										1.14						21:19			0.14
		W1 + L	V · T		***		441			3047				.,,					***1

DrillByte Drilling Data Printout COMPANY : BHP PETROLEUM

WELL : MINERVA 1

TIME	DEPTH	ROP	WOB	RPM	TRQ	SPP	FL In			DENSITY OUT	NUD In	TEMP OUT	RETURNS DEPTH	PYT	-BI	1-	BCD	DIC	GAS
h:mm:sec		=/hr	klb		amp	psi	g p		LR	sg		C	1	bbl	ats	hh:an	sg		*
17th Marc	h 1993																		
00:04:49		21.8	8.0	153	222	2288	508	263	1.15	1.14	51.5	52.8	1741.6	746	541.0	21:24	1.21	1.06	0.14
00:06:51		30.8	6.5	152	233	2311	508		1.15				1741.6		542.0	21:26		0.83	0.14
00:11:17	1752.0	7.5	8.1	152	242	2305	508		1.15				1741.6		543.0	21:31		1.02	0.14
00:14:06	1753.0	26.4	7.2	151	234	2318	509		1.15				1741.6		544.0	21:34		0.88	0.14
00:15:59	1754.0	46.6	6.9	152	240	2316	508		1.15				1741.8		545.0	21:36		0.84	0.1
00:17:41	1755.0	35.6	7.4	153	272	2329	508		1.15				1742.2		546.0	21:37		0.81	0.16
00:19:28	1756.0	37.8	6.9	153	236	2297	508		1.15				1742.9		547.0	21:39		0.83	0.17
00:21:07	1757.0	35.7	7.5	152	232	2329	508		1.15				1743.5		548.0	21:41	1.21	0.82	0.18
00:22:56	1758.0	35.8	1.3	152	247	2307	508		1.15				1744.1		549.0	21:43	1.21	0.84	0.19
00:24:43	1759.0	30.7	8.5	151	260	2342	508		1.15				1744.8		550.0	21:44			0.21
00:27:18	1760.0	22.7	1.1	152	223	2319	508		1.15				1746.1		551.0	21:47			0.22
00:29:51	1761.0	32.7		151	237	2330	509		1.15				1747.4		552.0	21:49			0.20
00:32:17	1762.0	27.4		152	226	2319	508		1.15				1748.5		553.0	21:52		0.88	0.17
00:34:01	1763.0	30.6	1.8	151	249	2336	508		1.16				1749.1		554.0	21:54		0.84	0.1
00:36:40	1764.0	30.5	7.1	152	229	2308	508		1.16		51.6		1749.4	746	555.0	21:56	1.21	0.89	0.1
00:38:57	1765.0	25.2	7.4	152	242	2338	509		1.16				1749.8	746	556.0	21:59	1.21	0.88	0.1
00:41:58	1766.0	17.7	7.2	151	239	2332	509	292	1.16	1.16	51.7	54.0	1751.3	745	557.0	22:02	1.21	0.93	0.1
00:44:09	1767.0	26.8	7.3	151	249	2330	508	273	1.16	1.16	51.8	54.0	1751.8	745	558.0	22:04	1.21	0.87	0.1
00:48:29	1768.0	23.9	8.2	152	210	2326	509		1.16		51.8	54.1	1752.8	744	559.0	22:08	1.21	1.03	0.2
00:51:52	1769.0	15.0	7.6	151	219	2321	509	273	1.16	1.16	51.8	54.3	1754.5	742	560.0	22:11	1.21	0.95	0.2
00:54:36	1770.0	26.5	1.1	151	229	2316	509		1.16		51.9		1756.0	743	561.0	22:14	1.21	0.90	0.2
01:17:36	1771.0	13.2	6.6	152	216	2335	510	260	1.16	1.16	51.8	54.3	1763.2	671	562.0	22:18	1.21	0.96	0.1
01:19:54	1772.0	21.6	6.3	152	226	2347	514	191	1.16	1.16	51.5	53.6	1763.5	679	563.0	22:20	1.22	0.84	0.13
01:22:00	1773.0	29.9	8.1	153	246	2365	514		1.16		51.4	53.2	1764.3	676	564.0	22:23	1.22	0.85	0.10
01:23:46	1774.0	34.6	6.9	152	250	2355	514		1.16		51.2	53.2	1765.1	667	565.0	22:24	1.22	0.82	0.10
01:25:50	1775.0	28.0	7.5	152	250	2371	515		1.16		51.0		1765.8	662	566.0	22:26	1.22	0.84	0.1
01:28:02	1776.0	25.7	7.3	152	244	2343	515		1.16		50.7		1766.6	661	567.0	22:29	1.22	0.86	0.15
01:30:13	1777.0	25.4	7.9	150	253	2342	515	204	1.16	1.16	50.5	53.6	1767.3	663	568.0	22:31	1.22	0.86	0.1
01:32:18	1778.0	29.8	8.0	151	260	2307	510	236	1.16	1.16	50.4	53.6	1767.6	664	569.0	22:33	1.22	0.88	0.1
01:34:35	1779.0	28.9	8.6	151	259	2272	508	199	1.16	1.16	50.3	53.6	1768.5	666	570.0	22:35	1.22	0.89	0.1
01:37:04	1780.0	20.2	8.3	152	213	2286	508	199	1.16	1.16	50.3	53.4	1769.2	667	571.0	22:38	1.22	0.92	0.1
01:40:24	1781.0	32.8	8.8	152	232	2233	507	206	1.16	1.16	50.2	53.2	1770.3	671	572.0	22:41	1.22	0.98	0.1
01:42:36	1782.1			152		2240	507			1.16			1770.8		573.1			0.89	0.1
01:45:47						2200				1.16						22:46			0.1
01:49:35						2187		189	1.16	1.16	50.0	52.8	1770.7			22:50			0.1
01:51:40		29.4	8.9		244	2170		201	1.16	1.16						22:52			0.1
01:54:13				152	266	2179	507						1770.7			22:55			0.1
01:55:56	1787.0		10.0		243	2147	507	219	1.16	1.16	50.0		1771.5		578.0			0.87	0.1
01:57:46	1788.0			152		2182	507	209	1.16	1.16	50.0		1772.1		579.0			0.88	0.1
01:59:23	1789.0	37.5				2142	507				50.1		1772.9		580.0			0.85	0.1
02:01:44			9.0			2174	507	234	1.16	1.16	50.1	54.4	1774.0	686	581.0	21:02	1.22	0.92	0.1
02:04:12			8.6	153	247	2154	507						1775.2		582.0				0.1
02:06:17			10.1	152	272	2170	508	254	1.18	1.16	50.1		1776.1			23:07			0.1
02:09:28			2 5	159	211	2191	513	217	1.16	1.16	50.2	54.2	1777.5	692	584.0	23:10	1.22	0.96	0.1

TIME	DEPTH	ROP	MOB	RPH	TRQ	SPP	FL IN		D DENSI	IN AND	TEMP	RETURNS DEPTH	PVT	-B1	T-	BCD	DIC	GAS
h:mm:sec	1	a/hr	klb		amp	psi	8 P		sg		g C	1	bbl	ats	hh:mm	sg		\$
02:11:38	1794.1	27.7	9.1	152	246	2197	513	216 1.1	6 1.16	50.1	54.0	1778.3	694	585.1	23:12	1.22	0.89	0.16
02:14:14	1795.0	24.9	9.8	152	217	2200	513	226 1.1	6 1.16	50.2	54.0	1779.5	695	586.0	23:15	1.22	0.95	0.16
02:17:40	1796.0	29.0	10.5	152	244	2202	514	231 1.1	6 1.16	50.2	54.0	1780.3	698	587.0	23:18	1.22	1.01	0.16
02:20:11	1797.0	20.5	10.1	152	245	2165	514	248 1.1	6 1.16	50.3	54.0	1781.5	698	588.0	23:21	1.22	0.95	0.15
02:22:16	1798.0	33.6	9.4	152	255	2167	513	240 1.1	6 1.16	50.5	53.9	1782.3	698	589.0	23:23	1.22	0.90	0.15
02:24:20	1799.0	27.8	9.3	152	258	2149	513	227 1.1	6 1.16	50.5	53.9	1783.5	699	590.0	23:25	1.22	0.89	0.16
02:42:04	1800.1	16.4	8.4	152	236	2179	512	240 1.1	6 1.16	50.4	52.7	1788.5	705	591.1	23:28	1.22	0.94	0.16
02:45:40	1801.0	14.4	6.8	151	218	2133	510	218 1.1	6 1.16	50.2	50.4	1790.1	707	592.0	23:31	1.22	0.93	0.16
02:48:20	1802.1	21.5	6.2	152	254	2129	510	252 1.1	6 1.16	50.3	53.7	1791.3	709	593.1	23:34	1.22	0.87	0.16
02:49:35	1803.0	48.5	7.9	151	256	2125	510	261 1.1	6 1.16	50.3	53.8	1791.8	709	594.0	23:35	1.22	0.76	0.15
02:51:31	1804.0	36.3	6.7	151	267	2110	510	259 1.1	6 1.16	50.3	54.0	1792.5	710	595.0	23:37	1.22	0.80	0.15
02:53:25	1805.0	31.3	6.7	152	252	2151	512	249 1.1	6 1.16	50.3	54.1	1793.0	711	596.0	23:39	1.22	0.81	0.15
02:55:17	1806.1	33.3	6.7	150	255	2147	515	261 1.1	6 1.16	50.3	54.2	1793.8	712	597.1	23:41	1.22	0.81	0.15
02:57:44	1807.0	23.7	7.1	151	240	2157	514	282 1.1	6 1.16	50.4	54.1	1794.6	712	598.0	23:43	1.22	0.86	0.16
02:59:40	1808.0	32.4	5.9	151	218	2139	514	272 1.1	6 1.16	50.4	54.0	1795.3	713	599.0	23:45	1.22	0.79	0.16
03:02:07	1809.0	23.5	7.5	151	254	2153	514	266 1.1	6 1.16	50.4	53.9	1796.1	714	600.0	23:48	1.22	0.88	0.16
03:04:30	1810.0	25.6	6.3	151	239	2132	514	249 1.1	6 1.16	50.4	53.6	1797.0	717	601.0	23:50	1.22	0.86	0.13
03:07:24	1811.0	18.4	5.9	152	247	2152	514	252 1.1	6 1.16	50.5	54.0	1798.3	717	602.0	23:53	1.22	0.88	0.10
03:10:10	1812.0	18.4	6.0	152	201	2138	514	232 1.1	6 1.16	50.8	54.1	1799.5	717	603.0	23:56	1.22	0.86	0.10
03:13:49	1813.0	17.7	6.2	153	218	2133	513	225 1.1	6 1.16	50.8	54.1	1799.7	717	604.0	23:59	1.22	0.92	0.12
03:16:07	1814.0	25.3	5.3	153	182	2133	513	235 1.1	6 1.16	50.9	54.0	1799.7	717	605.0	24:02	1.22	0.82	0.12
03:17:50	1815.0	35.2	5.8	153	189	2140	514	211 1.1		50.9	54.0	1799.7	717	606.0	24:03	1.22	0.77	0.12
03:20:36	1816.0	19.6	5.2	153	179	2134	514	231 1.1	6 1.16	51.0	54.0	1799.7	717	607.0	24:06	1.22	0.85	0.12
03:22:44	1817.1	35.0	7.1	153	203	2138	514	257 1.1	6 1.16	51.1	53.9	1799.9	717	608.1	24:08	1.22	0.83	0.14
03:24:43	1818.0	53.2	1.4	153	201	2125	513	294 1.1	6 1.16	51.1	53.8	1800.6	718	609.0	24:10	1.22	0.84	0.18
03:26:55	1819.0	28.5	7.0	153	191	2139	513	287 1.1	6 1.16	51.1	53.7	1801.0	718	610.0	24:13	1.22	0.85	0.22
03:28:40	1820.0	33.1	7.7	152	194	2131	513	274 1.1	6 1.16	51.1	53.8	1801.7	718	611.0	24:14	1.22	0.82	0.32

TINE	DEPTH	ROP	MOB	RPH	TRQ	SPP	PL In	OW	IN Dor	DENSITY	NUD IN	TEMP	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	G
h:mm:sec		n/hr	klb		ARP	psi	8P		•	sg	deg		1	bbl	ats	hh:sa	Eg -		X
03:32:40	1821.0	33.1	7.7	152	194	2131	513	274	1.10	1.16	51.1	53.8	1801.7	718	612.0	25:00	1.22	0.82	0.3
POOH NB#6																			
RIH CB#1	8.5° DRS	CD93	gyg is	te vi	th 29	B COP	e her	rel.											
16:53:42									1.16	1.16	50.8	53.2	1820.9	700	0.5	0:00	1.20	0.31	0.0
16:58:31										1.17			1820.9		1.0	0:05			0.1
17:11:41				93						1.17				694	2.0	0:10			0.0
17:20:27		9.0			385	1059				1.17			1820.9		3.0	0:17			0.1
7:35:46					421					1.17			1820.9		4.0	0:25			0.1
8:09:29		0.9		128						1.17			1823.4		6.0	0:52			0.
8:21:18		2.3		128						1.17			1824.3		7.0	1:00			0.
00H at 1								201	1.10	1.1.	1011	10.0	1061.4	433	1.0	1.00	1.60	1.31	۷.
ored 7.0				on ye	#C 61 8														
9th Marc	L 1009																		
IH CB#2		CD_41	Q-Q ;	.+- "	i+k 1	2 m ca	ea ha	era l											
5:49:10				100						1.17	17 7	11.1	1828.0	700	1 0	0.95	1 11	1.45	٨
6:10:08			17.6							1.17			1828.0	701				1.51	
6:26:12			19.1		257					1.17			1828.3	700				1.54	
6:46:09			18.8							1.17			1828.8	701					
7:03:34			20.7										1829.6	700				1.56	
			23.3							1.17				700				1.51	
7:18:36										1.17			1830.4		6.0			1.61	
7:36:54			18.9		214					1.17			1831.4	703	7.0			1.50	
9:00:14			16.2		134					1.16			1835.5	664				1.47	
9:30:27			21.3		152					1.16			1837.4	659	11.0			1.81	
0:00:57			26.1		177					1.16			1838.2	662				1.74	
10:27:57			25.2							1.15			1839.1		13.0			1.58	
1:18:13		-				1190		300	1.15	1.16	43.6	46.3	1841.1	670	14.0	5:55	1.20	1.96	0.
POOH CB#2	at 1842	.5 m. 1	Cored	14.5	ı. Re	c 92.0	X .												
IH CB#3	8.5° DBS	CD-50	2 9x9	jets.															
Oth Marc																			
0:00:23			4.9		171					1.18			1842.5	659				0.94	
0:05:26		22.1			228					1.18			1842.5	697				0.99	
0:08:53										1.18			1842.5	700				1.01	
0:13:28			12.4							1.18			1842.5	701	3.5			1.18	
1:19:50	1847.0	1.8	12.3	100	256	476	184	264	1.17	1.18	36.5	43.6	1844.3	728	4.5	1:08	1.17	1.31	0.
POOR CB#3	due to	very s	low pe	netra	tion	rate.													
Cored 4.5																			

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL: MINERVA 1

TIME	DEPTH	ROP	MOB	RPK	TRQ	SPP		OW OUT	IN	DENSITY	IN	TEMP	RETURNS DEPTH	PVT	-BI	7-	ECD	DIC	GAS
h:mm:sec		m/hr	klb		amp	psi	8 P			sg	deg		1	bbl	ats	hh:mm	ıg		x
NB#7 8.5"	HTC ATM	22 3x1	2 jets	with	MAD	assemb	ly.		-	"									
10:52:27		8.1						219	1.17	1.18	45.0	48.6	1847.0	722	1.0	0:10	1.23	0.79	0.03
ă .	1849.0	13.1				2461				1.18		48.8	1847.0	122	2.0		1.23		0.03
11:03:27	1850.0	13.6	17.1		137							48.8	1847.0	722	3.0		1.23		0.03
1	1851.0				137							48.8	1847.0	722	4.0		1.23		0.03
1		15.2			137							48.9	1847.0	722	5.0		1.23		0.03
11:18:27	1853.0	11.5			137		414					49.0	1847.2	722	6.0		1.23		0.03
	1854.0	11.4					415					49.0	1847.5	722	7.0		1.23		0.06
			16.1			2461	415					49.1	1848.2	722	8.0		1.23		0.12
1			16.9		142		415			1.18		49.1	1849.0	724	9.0		1.23		0.21
ł	1857.0	13.6	16.3		139		415					49.0	1849.7		10.0			1.10	
1	1858.0	13.2			137		415				46.2		1850.5		11.0		1.23		0.26
	1859.0	7.8			153	2466	435				46.3		1854.2		12.0		1.23		0.31
	1860.0	16.5			165	2451	460				46.1		1854.9		13.0		1.23		0.34
l .	1861.1	22.4			153	2472	461	465			46.1		1855.9	714	14.1		1.23		0.43
	1862.0		18.8		158	2465	461	541			46.1		1857.2		15.0		1.23		0.54
1	1863.0	12.4			170		461				46.2		1858.6		16.0		1.22		0.49
	1864.0		19.0		196	2481						48.9	1858.9		17.0		1.22		0.50
	1865.0	12.9	20.2		191		461					48.8	1858.9	714	18.0		1.22		0.50
	1866.0	12.9			202	2491	461				16.5		1859.2	715	19.0		1.21		0.43
1	1867.0		20.0		196	2503	461					49.2	1860.3	720	20.0		1.21		0.32
l.					199	2496	461				46.4		1861.4	724	21.0		1.21		0.56
		13.4			183	2499	461				46.3		1862.4	729	22.0		1.21		0.58
	1870.0				195	2490	461					49.4	1863.7	732	23.0		1.21		0.51
	1871.0		22.7		182	2504	461			1.16			1864.9	736	24.0	2:08			0.49
	1872.0		23.9		240	2493	461			1.16			1865.8	739	25.0	2:12			0.50
	1873.0	10.4			201	2473	461			1.16			1866.9	743	26.0			1.25	
	1874.0		20.5		220	2471	461				16.3		1868.0	747	27.0	2:23		1.22	
	1875.0		19.7		226	2474	461				46.3		1868.9	749	28.0			1.23	
			23.0		215	2472	461				16.3		1869.9	751	29.0		1.21		0.49
		13.2			264	2470	461					50.0	1870.6	156	30.0			1.21	
			22.7		278	2467	461					49.7	1871.0	759	31.0	2:42			
					185	2479	461				16.6		1872.0	761	32.0	2:47			
	1880.0				187		461			1.16			1873.3	762	33.0	2:52			
13:56:43														759		2:56			
14:01:41													1875.3		35.0	3:01			
14:07:19													1876.5		36.0			1.24	
14:12:40			19.8							1.16			1877.7		37.0			1.23	
14:18:08				97						1.16			1878.8		38.0			1.27	
	1886.0	7.7		91						1.16			1879.9		39.0	3:25			
14:23:13		11.2		92						1.16			1881.5		40.0	3:33			
14:52:49										1.16			1884.3		41.0	3:38			
	1889.0									1.16			1884.8		42.0	3:43			
													1885.2		43.0	3:47			
15:06:44													1885.8	749		3:52			
10.00.77	7041.0	10.4	4017	743	114	5543	144	***		1.10	• • • • •						••••		

TINE	DEPTH	ROP	WOB	RPK	TRQ	SPP		O¥ OUT		DENSITY		TEMP	RETURNS	PVT	-81	T-	ECD	DIC	GA
h:mm:mec	1	e/hr	klb		amp	psi	IN gp	OUT	IN	OUT sg	IN deg	OUT C	DBPTH	bbl	ats	hh:mm	ng		x
15:11:32	1892.0						460	100	1.15	1.16	47.2	50.1	1886.3	749	45.0	3:57	1.21	1.24	0.3
15:16:52	1893.0	10.6	23.9		232	2513	460	393	1.15	1.16	47.3	50.2	1886.9	749	46.0	4:02	1.21	1.29	0.4
15:22:56	1894.0	10.3	19.9	109	202	2525	460	397	1.15	1.16	47.4	50.2	1887.6	748	47.0	4:08	1.21	1.28	0.5
15:29:43	1895.0	9.7	22.2	109	197	2518	460	394	1.15	1.16	47.5	50.3	1888.8	748	48.0	4:15	1.21	1.34	0.3
15:37:30	1896.0	7.6		103	203	2540	460		1.15		47.7	50.4	1890.4	745	49.0	4:23	1.21	1.39	1.1
15:45:26	1897.0	8.6	24.7		196	2523	460					50.6	1891.9	745	50.0	4:31	1.21	1.39	1.1
15:50:50	1898.0	11.8	24.1	101	238	2523	460	410	1.15	1.16	47.8	50.5	1893.2	742	51.0	4:36	1.21	1.29	0.9
15:55:55	1899.1	13.7	23.8	101	190	2533	460				47.9	50.7	1893.9	743	52.1	4:41	1.21	1.26	0.9
16:02:17	1900.0	10.3	25.3	101	228	2527	460					50.7	1894.6	742	53.0	4:48	1.21	1.35	0.7
16:09:07	1901.0		25.5	99	202	2529						50.9	1895.6	745	54.0	4:55	1.21	1.37	0.5
16:15:24	1902.0	8.8	25.9	103	212	2533						50.9	1896.3	743	55.0	5:01	1.21	1.37	0.4
16:22:08	1903.0	9.4	25.6	103	171	2525						50.9	1897.1	740	56.0	5:08	1.21	1.37	0.2
16:27:10	1904.0		25.7		231	2521				1.16		51.0	1898.0	739	57.0	5:13	1.21	1.30	0.3
6:31:58	1905.1		24.9		230	2520				1.16		50.8	1899.0	737	58.1	5:18	1.21	1.26	0.
16:37:28	1906.0	10.5	25.7		209	2513				1.16		50.8	1905.0	737	59.0	5:23	1.21	1.33	0.5
6:42:45	1907.0	13.0	26.0		236					1.16			1901.6	736	60.0	5:28	1.21	1.31	0.
6:46:50	1908.0	13.9	25.0	103	213	2506				1.16	48.6	51.2	1903.0	740	61.0	5:32	1.21	1.25	0.
6:52:55	1909.0	9.3	26.0	103	206		460	429	1.15	1.16	18.6	51.4	1905.1	740	62.0	5:38	1.21	1.35	0.
7:01:32	1910.0	7.4	26.4		166	2521	460	437	1.15	1.16	48.7	51.3	1908.3	739	63.0	5:47	1.21	1.45	0.
	1911.0	8.0	26.2		183	2542	460	451	1.15	1.16	48.8	51.5	1908.8	739	64.0	5:54	1.21	1.35	0.
	1912.0		26.3	92	177	2539	460	438	1.15	1.16	48.8	51.5	1909.7	734	65.0	6:01	1.21	1.38	0.
	1913.0		25.3		199	2549	460	426	1.15	1.16	48.8	51.6	1911.0	733	66.0	6:08	1.21	1.38	0.
	1914.0		26.4		169	2552	460	400	1.15	1.16	18.9	51.8	1913.2	733	67.0	6:17	1.21	1.44	0.
	1915.0	12.2		96	220	2538	460	394	1.15	1.16	49.0	51.9	1913.2	715	68.0	6:22	1.21	1.30	0.
	1916.0		26.3	96	201	2534	460	403	1.15	1.16	48.9	51.9	1913.2	724	69.0	6:29	1.21	1.37	0.
		12.2			229	2542	460	412	1.15	1.16	49.1	52.0	1913.5	731	70.0	6:35	1.21	1.33	0.
		16.2		96	229	2542	460	412	1.15	1.16	49.1	52.0	1913.5	731	71.0	6:44	1.21	1.27	0.
	1919.0	9.4	23.0	96	199	2542	460	412	1.15	1.16	19.5	52.0	1915.0	731	72.0	6:49	1.21	1.30	0.
8:28:36	1920.0	10.0	21.0	95	167	2542	460	412	1.15	1.16	19.5	52.0	1917.5	731	73.0	6:56	1.21	1.33	0.
8:33:31	1921.0	12.7			224	2495	460	389	1.15	1.16	19.5	51.8	1918.8	727	74.0	7:01	1.21	1.25	0.
B:38:09	1922.0	13.3	21.7	109	231	2485	461	385	1.15	1.16	19.5	52.0	1920.1	728	75.0	7:06	1.21	1.23	0.
8:42:51	1923.0	11.7	22.4	109	227	2493	461	391	1.15	1.16	19.5	51.9	1920.0	728	76.0	7:11	1.21	1.25	0.
	1924.0				261	2488					19.6	51.9	1921.2	727	77.0	7:17	1.21	1.31	0.
	1925.0	9.9	22.3	110	181	2491	460	384	1.15	1.16	19.6		1922.2		78.0	7:23	1.21	1.31	0.
9:00:34													1922.1	727	79.0	7:28			
9:05:57													1923.4	727		7:34			
9:11:16													1924.6		81.0		1.21		0.6
9:16:24											19.8		1925.8	126			1.21		0.8
9:21:12		12.8			231					1.16			1927.3	725			1.21		0.9
9:27:03			24.3		231					1.16			1929.4	723			1.21		0.5
9:33:54			24.7			2481					19.9		1925.8	721			1.21		0.4
9:38:45			25.5								19.9		1927.5	721			1.21		0.4
9:45:48			25.5							1.16			1930.0	721			1.21		0.5
9:52:42										1.16			1932.5	721		8:20			0.5
9:59:57	1936.0	9.2	25.6	110	192	2478	458	425	1.15	1.16	19.9 5	2.3	1934.7	720	89.0	8:28	1.21	1.41	0.5

TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP		OW OUT	KUD	DENSITY	UUD IN	TEMP	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GAS
h:mm:mec	1	e/hr	klb		amp	psi	g p		1.N	sg	deg		8	bbl	sts	hb:mm	sg		X
20:04:50	1937.0	12.8	25.7	110	255	2481	458	411-1	.15	1.16	50.0	52.6	1935.7	720	90.0	8:33	1.21	1.31	0.57
20:11:25	1938.0	11.4	25.8	109	211	2481	458	419 1	.15	1.16	50.0	52.3	1935.7	718	91.0	8:39	1.21	1.39	0.67
20:17:43	1939.0	10.5	26.5	109	229	2475	458	404 1	.15	1.16	50.1	52.5	1935.6	716	92.0	8:45	1.21	1.39	0.59
20:23:07	1940.0	12.7	26.4	109	259	2485	458	424 1	.15	1.16	50.1	52.6	1937.7	716	93.0	8:51	1.21	1.35	0.39
20:28:46	1941.0	10.7	26.3	109	267	2478	458	427 1	.15	1.16	50.1	52.6	1938.9	716	94.0	8:56	1.21	1.35	0.33
20:34:35	1942.0	10.3	24.8	109	270	2474	458	422 1	.15	1.16	50.1	52.4	1941.0	716	95.0	9:02	1.21	1.34	0.32
20:41:09	1943.0	6.6	25.0	110	165	2489	458	440 1	.15	1.16	50.2	52.6	1939.3	716	96.0	9:09	1.21	1.24	0.38
20:50:19	1944.0	8.9	25.6	109	208	2470	458	403 1	.15	1.16	50.3	52.8	1942.6	714	97.0	9:18	1.21	1.47	0.49
21:03:50	1945.0	4.1	26.5	110	165	2484	453	453 1	.15	1.16	50.3	52.8	1943.1	711	98.0	9:29	1.21	1.25	0.54
21:29:39	1946.0	10.9	24.7	108	165	2462	453	256 1	.15	1.16	50.4	53.4	1943.9	706	99.0	9:37	1.21	1.43	0.19
21:35:38	1947.0	13.6	25.2	110	189	2424	452	354 1	.15	1.16	50.4	52.0	1945.3	198	100.0	9:43	1.21	1.36	0.18
21:42:28	1948.0	8.7	23.5	110	218	2437	453	280 1	.15	1.16	50.4	51.9	1945.1	707	101.0	9:50	1.21	1.37	0.11
21:48:51	1949.0	9.4	23.5	110	194	2449	455	323 1	.15	1.16	50.4	52.6	1945.6	706	102.0	9:56	1.21	1.35	0.10
21:56:56	1950.0	6.8	23.9	110	193	2471	456	418 1	.15	1.16	50.4	52.9	1946.2	706	103.0	10:04	1.21	1.41	0.09
22:05:50	1951.0	9.3	22.9	110	200	2477	457	434 1	.15	1.16	50.5	52.8	1947.0	705	104.0	10:13	1.21	1.41	0.07
22:15:34	1952.0	5.9	24.5	110	201	2475	458	437 1	.15	1.16	50.6	53.0	1947.8	703	105.0	10:23	1.21	1.48	0.26
22:21:42	1953.0	10.4	25.3	110	235	2477	458	440 1	.15	1.16	50.7	53.0	1948.7		106.0		1.21		0.22
22:26:49	1954.0	12.7	23.9	110	226	2480	458	466 1	.15	1.16	50.7	53.0	1949.5	701	107.0	10:34	1.21	1.30	0.13
22:32:04	1955.0	12.1	24.5	110	223	2470	458	456 1	.15	1.16	50.7	53.1	1950.1	702	108.0	10:39	1.21	1.32	0.09
22:36:22	1956.0	13.0	24.4	110	225	2481	458	454 1	.15	1.16	50.8	53.2	1950.5	701	109.0		1.21		0.08
22:41:47	1957.0	11.1	24.5	110	222	2473	458	455 1	.15	1.16		53.3	1951.1		110.0		1.21		0.06
22:47:42	1958.0	12.7	24.8	110	248	2484	458	459 1	.15	1.16	50.8	53.2	1951.9	709	111.0	10:55	1.21	1.35	0.04
22:53:55	1959.0	10.3	23.7	110	198	2486	458	458 1	.15	1.16	50.8	53.1	1952.4	708	112.0	11:01	1.21	1.34	0.04
22:59:05	1960.0	11.1	24.7	111	233	2483	458	461 1	.15	1.16	50.8	53.4	1953.3	707	113.0	11:06	1.21	1.32	0.05
23:02:43	1961.0	17.5	27.4	120	214	2493	458	442 1	.15	1.16	50.9	53.3	1954.0	707	114.0		1.21		0.09
23:06:49	1962.0	13.7	28.4	120	272	2468	458	454 1	.15	1.16	50.9	53.2	1954.7		115.0		1.21		0.09
23:11:52	1963.0	10.8	28.6	120	270	2487	458					53.3	1955.9		116.0		1.21		0.11
23:16:15	1964.0	14.2	27.8	119	290	2466	458					53.4	1956.7		117.0		1.21		0.13
23:20:41	1965.0	14.4	28.1	120	290	2460	458				_	53.2	1957.3		118.0		1.21		
23:27:39	1966.0	13.2	25.9	119	288	2450	458	455 1	.15	1.16	51.0	53.4	1958.5		119.0		1.21		0.05
23:32:12	1967.0	12.5	27.4	118	338	2453	458	469 1	.15	1.16	51.0	53.5	1959.3		120.0		1.21		0.05
23:39:13	1968.0	1.4	23.7	118	239	2461	458	469 1	.15	1.16	51.0	53.4	1960.7	705	121.0	11:44	1.21	1.39	0.05
23:45:29	1969.0	8.2	22.5	119	254	2450	458	462 1		1.16	51.1	53.3	1962.2		122.0	11:50	1.21	1.34	0.07
23:52:09	1970.0			119	208	2462		475 1	.15	1.16	51.1	53.5	1963.5	704	123.0			1.36	0.06
23:59:16	1971.0	7.8	23.6	119	239	2463	458	446 1	.15	1.16	51.1	53.7	1965.3	703	124.0	12:04	1.21	1.39	0.05
21st Marc																			
00:05:27	1972.0	11.0	22.7	118	254	2457	458	449 1	.15	1.16	51.2	53.6	1965.9	702	125.0	12:10	1.21	1.33	0.05
00:10:37										1.16			1966.9			12:16			
00:16:31			22.9							1.16			1967.8			12:22			
00:22:41			23.0		264					1.16			1968.7	700	128.0	12:28	1.21	1.35	0.07
00:47:24	1976.0	13.8			296	2462	456	441 1	.15	1.16	51.3	53.5	1970.9	695	129.0	12:34	1.21	1.35	0.06
00:51:47	1977.0	13.9	24.6	109	306	2443	457	439 1	.15	1.16	51.3	53.3	1971.6	696	130.0	12:38	1.21	1.27	0.05
00:56:32	1978.0	13.1	21.7	109	264	2454	457	443 1	.15	1.16	51.3	53.6	1972.4	695	131.0	12:43	1.21	1.24	0.06
01:01:54													1973.4	694	132.0	12:48	1.21	1.26	0.06
01:07:48													1974.4	695	133.0	12:54	1.21	1.30	0.05

TIME	DEPTH	ROP	WOB	RPK	TRQ	SPP		OV TÚO	MUD In	DENSITY OUT	HUD In	TEMP	RETURNS DEPTH	PVT	-81	T-	ECD	DIC	GAS
h:mm:sec	1	a/br	klb		amp	psi	g p			ag	de		1	bbl	ats	hh:an	ıg		X
01:14:42	1981.1	11.4	24.4	110	248	2469	458	451	1.15	1.16	51.4	53.9	1975.4	696	134.1	13:01	1.21	1.37	0.05
01:19:55	1982.0	12.7	25.2	110	284	2457	458	441	1.15	1.16	51.5	54.0	1975.5	695	135.0	13:06	1.21	1.33	0.04
01:25:18	1983.0	12.4	25.2	110	266	2467	459		1.15		51.5	54.1	1975.6	694	136.0	13:12	1.21	1.33	0.05
01:30:37	1984.0	11.4	24.8	110	220	2474	459		1.15		51.6	54.1	1976.7	694	137.0	13:17	1.21	1.31	0.07
01:35:03	1985.0	14.5	24.8	110	336	2459	459		1.15		51.6	54.0	1977.4	693	138.0	13:21	1.21	1.27	0.08
01:39:07	1986.0	12.7	24.3	110	188	2472	459	435	1.15	1.16	51.6	54.0	1978.2	694	139.0	13:25	1.21	1.25	0.09
01:44:26	1987.0	9.4	24.3	109	288	2461	459		1.15	1.16	51.6	54.2	1979.1	694	140.0	13:31	1.21	1.31	0.08
01:49:11	1988.0	13.2	24.2	109	328	2458	459		1.15	1.16	51.6	53.8	1979.9	694	141.0	13:35	1.21	1.29	0.11
01:53:52	1989.0	14.5	23.7	108	323	2474	459		1.15		51.6	54.2	1980.5	693	142.0	13:40	1.21	1.27	0.12
02:00:10	1990.0	9.7	23.6	109	317	2473	459	437	1.15	1.16	51.7	54.1	1981.6	693	143.0	13:46	1.21	1.34	0.08
02:06:28	1991.0	9.9	25.5	110	236	2465	459		1.15		51.7	54.2	1982.7	693	144.0	13:53	1.21	1.37	0.05
02:12:34	1992.0	8.2	27.0	109	314	2464	459		1.15		51.7	54.3	1983.9	692	145.0	13:59	1.21	1.39	0.05
02:18:00	1993.0	12.0	26.8	109	292	2461	459				51.7	54.2	1985.0	693	146.0	14:04	1.21	1.36	0.01
02:22:59	1994.0	13.7	26.3	109	307	2462	459		1.15		51.7	54.1	1986.1	692	147.0	14:09	1.21	1.32	0.0
02:27:51	1995.0	15.6	26.3	110	277	2474	459		1.15		51.7	54.2	1987.0		148.0	14:14		1.32	0.0
02:32:28	1996.0	14.8	25.8	109	315	2454	459		1.15		51.7	54.4	1987.9		149.0	14:19		1.30	0.0
02:36:20	1997.0	16.6	26.2	109	288	2467	459		1.15		51.8	54.3	1988.6	693	150.0	14:23	1.21		0.0
02:40:37	1998.0	13.3	25.5	109	288	2469	459		1.15		51.8	54.4	1989.5		151.0	14:27	1.21		0.0
02:45:14	1999.0	11.9	25.6	107	339	2441	459		1.15		51.9	54.4	1990.1		152.0	14:32		1.30	0.0
02:49:50	2000.0	13.1	24.8	109	258	2452	459		1.15		51.9	54.3	1991.1		153.0	14:36	1.21		0.0
02:53:50	2001.0	14.5	24.4	108	287	2455	459		1.15		51.9	54.5	1991.8		154.0	14:40	1.21		0.0
02:59:37	2002.0	8.9	21.9	108	279	2460	459		1.15		51.9	54.5	1992.4		155.0	14:46	1.21		0.0
03:04:41	2003.0	11.6	23.8	109	273	2472	459		1.15		51.9	54.4	1993.3		156.0	14:51	1.21		0.0
03:10:07	2004.0	14.7	25.2	109	267	2473	459		1.15		51.9	54.5	1994.3	692	157.0	14:56	1.21	1.33	-0.0
03:38:16	2005.0	9.6	18.5	130	187	2539	457		1.15		51.9	54.4	1999.6	687	158.0	15:06	1.21	1.22	0.11
03:45:06	2006.0	9.8	20.9	137	220	2554	457		1.15		51.8	53.7	2001.4	688	159.0	15:12	1.21	1.38	0.0
03:50:47	2007.0	11.5	21.0	137	255	2552	457		1.15		51.8	54.2	2002.9	688	160.0	15:18	1.21	1.32	0.0
04:00:14	2008.0	9.1	20.6	137	231	2560	457		1.15		51.8	54.4	2004.4	688	161.0	15:28	1.21	1.34	0.0
04:08:24	2009.0	9.0	21.3	137	203	2561	457		1.15		51.8	54.3	2005.2	689	162.0	15:35	1.21	1.42	0.0
04:14:58	2010.0	10.1	21.5	137	225	2560	457		1.15		51.8	54.6	2005.8	688	163.0	15:42	1.19	1.39	0.1
04:28:41	2011.0	7.1	21.4	138	247	2529	457		1.15		51.9	54.5	2005.4	687	164.0	15:56	1.19	1.48	0.0
04:35:22	2012.0	10.4	21.5	141	196	2534	457		1.15		52.0	54.5	2006.4	686	165.0	16:03	1.19	1.40	0.0
04:40:54	2013.0	12.8	21.1	141	235	2525	457		1.15		52.0	54.5	2007.3		166.0	16:08		1.35	0.0
04:46:42	2014.0	12.3	21.7			2515	457		1.15		52.0	54.4	2008.1	688	167.0	16:14	1.19	1.36	0.0
04:51:58		11.0	21.4	141	252	2523				1.16			2009.0			16:19			0.0
04:58:49		6.9	22.1	141	253	2524	458	477	1.15	1.16	52.0	54.6	2010.0			16:26			
05:04:42		10.6	21.6							1.16			2010.5			16:32			
05:10:52			21.5			2520				1.16			2011.2			16:38			
05:20:05	2019.0	6.9	22.8			2513	457			1.16			2012.6			16:47			
05:29:07	2020.0	4.6				2527	457				52.2		2014.1					1.51	0.0
05:46:21	2021.0	3.5	22.5				457				52.2		2016.8					1.66	0.0
05:56:35		9.7	21.2			2509	457			1.16			2018.3			17:24	1.19	1.51	0.0
06:03:43	2023.0	6.9				2509	457			1.16			2019.0	684	176.0	17:31	1.19	1.43	0.0
06:14:11		10.1				2530		467	1.15	1.16	52.1	55.0	2020.1	683	177.0	17:42	1.19	1.41	0.0
06:20:21		44 4	44.4	110	912	4500				1.16			2020.7	691	179 0	17:48	1 19	1.37	0.0

LINE	DEPTH	ROP	MOB	RPK	TRQ	SPP	PLC IN)V OUT		DENSITY	HUD IN	TEMP OUT	RETURNS DEPTH	PVT	-81	7-	BCD	DIC	GA
h:mm:mec	1	n/hr	klb		aap	psi	Spe		1.0	18		g C	PETE	bbl	ats	bb:ss	ıg		X
06:25:55	2026.0	11.6	20.5	140	244	2488	459	479	1.15	1.16	52.2	55.2	2021.2	683	179.0	17:53	1.19	1.34	0.0
06:32:51	2027.0	8.7	21.4	141	203	2505		463				55.2	2021.8	683	180.0	18:00	1.19		0.0
6:40:25	2028.0	7.9	21.3	141	225	2475	459	456	1.15	1.16	52.3	55.1	2022.5		181.0		1.19		
6:47:50	2029.0	12.0	20.6	141	188	2446	458	425	1.15	1.16	52.4	55.1	2023.2		182.0	18:15	1.19		0.1
6:54:56	2030.0	7.4	21.2	141	211	2417	458	424	1.15	1.16	52.4	54.9	2023.9		183.0		1.19		0.1
7:27:20	2031.0	1.6	22.2	141	159	2373	457	414	1.15	1.16	52.4	55.0	2028.5		184.0	18:49	1.19		0.0
OOH NB#7	due to	very s	low pe	netra	tion									•••			••••		•••
un E-Logi			•																
) DLL-KSI	PL-SAS-A	KS-GR-	CAL																
FES-CD1	r-CNT-GR	KS																	
2nd Marci	1993																		
) VSP																			
3rd March	1993																		
) RFT (3	Dane l																		

TIMB	DEPTH	ROP	WOB	RPH	TRQ	SPP	PL IN	OV OUT	UD IN	DENSITY	HUD In	TEMP	RETURNS DEPTH	PVT	-BI	Ţ-	BCD	DIC	GAS
h:mm:sec	1	n/hr	klb		aap	psi	g p			ag	deg		1	bbl	ats	hh:==	ag.		2
NB#8 8.5°	HTC ATJ	-33 3x	12 jet	s vit	P RAD	ASSER	bly.												
10:31:54	2033.0	7.0	24.0	102	128	2540	462	443	1.16	1.15	40.6	44.8	2031.4	724	2.0	0:20	1.20	1.44	0.02
10:36:54	2034.0	12.0	28.0	102	157	2540	462	443	1.16	1.15	41.0	45.4	2031.4	724	3.0	0:26	1.20	1.36	0.02
10:41:54	2035.0	12.0	25.0	102	168	2540	462	443	1.16	1.15	41.2	45.5	2031.4	724	4.0	0:31		1.30	0.02
10:45:54	2036.0	17.5	24.4	102	138	2540	462	443	1.16	1.15	41.5	45.7	2031.4	124	5.0	0:35	1.20	1.20	0.02
10:50:54	2037.0	14.1	25.3	102	138	2540	462	443	1.16	1.15	41.6	45.9	2031.4	724	6.0	0:40	1.20	1.31	0.02
10:55:54	2038.0	11.0	25.3	102	148	2540	462	443	1.16	1.15	41.8	46.0	2031.4	724	7.0	0:45		1.31	0.02
10:59:52	2039.0	15.2	27.9	101	148	2540	462	458	1.16	1.15	42.1	46.2	2031.6	726	8.0	0:49	1.20	1.28	0.02
11:03:03	2040.0	18.7	28.3	101	161	2542	462	460	1.16	1.15	42.2	46.3	2031.9	725	9.0	0:52	1.20	1.21	0.03
11:06:11	2041.0	18.8	28.1	101	155	2540	463	459	1.16	1.15	42.4	46.4	2032.2	125	10.0	0:55	1.20	1.22	0.03
11:09:49	2042.0	18.2	28.5	101	175	2530	464	463	1.16	1.15	42.5	46.4		723	11.0	0:59		1.27	0.03
11:13:25	2043.0	21.2	28.8	101	186	2532	463	454	1.16	1.15	42.7	46.5		724	12.0	1:02		1.26	0.03
11:16:45	2044.0	18.4	28.3	101	200	2533	462	450	1.16			46.6		725	13.0	1:05		1.22	0.04
11:20:06	2045.0	17.0	27.8	100	197	2532	462	463	1.16	1.15	42.8	46.6	2034.5	726	14.0	1:09		1.23	0.04
11:23:17	2046.0	17.2	28.7	101	228	2526	463	464	1.16	1.15	42.9	46.8	2035.0	724	15.0	1:12		1.24	0.04
11:27:38	2047.0	13.8	28.1	101	146	2537	462	493	1.16	1.15	43.0	46.8	2035.8	724	16.0	1:17		1.29	0.03
11:31:14	2048.0	16.9	28.3	101	149	2536	462	481	1.16	1.15	43.2	46.7	2036.6	722	17.0	1:20		1.29	0.02
11:34:09	2049.0	20.2	28.6	101	150	2540	462	452	1.16	1.15	43.2	46.8		723	18.0	1:23		1.21	0.01
11:38:00	2050.0	16.9	28.4	101	149	2538	463	459	1.17	1.15	43.3	46.9	2037.8	722	19.0	1:27		1.27	0.01
11:41:52	2051.0	16.0	28.2	101	160	2529	463	459	1.16	1.15	43.5	47.0	2038.8	722	20.0	1:31	1.20	1.27	0.01
11:45:39	2052.0	16.6	28.2	101	157	2542	464	457	1.16	1.15	43.5	47.1	2039.8	722	21.0			1.27	0.01
11:49:28	2053.0	15.8	28.3	101	143	2534	463	454	1.16	1.15	43.7	47.3	2040.9	720	22.0			1.27	0.01
11:52:47	2054.0	19.2	27.4	101	162	2529	463	449	1.16	1.15	43.7	47.3		719	23.0			1.22	0.01
11:56:08	2055.0	18.7	29.2	101	153	2534	463	453	1.16	1.15	43.9	47.4		572	24.0		1.21	1.23	0.01
11:59:08	2056.0	18.6	27.9	101	156	2528	463	452	1.17	1.15	44.0	47.5		574	25.0		1.21	1.20	0.01
12:02:56	2057.0	18.4	27.7	101	142	2522	463	455	1.17			47.6	2044.8	574	26.0			1.26	0.02
12:06:22	2058.0	19.3	28.5	101	140	2510	463	472	1.17	1.15		47.7		574	27.0			1.23	0.03
12:12:43	2059.0	12.7	29.7	101	134	2483	464	464	1.17	1.15	44.4	47.8	2047.2	573	28.0			1.42	0.03
12:29:12	2060.0	21.1	27.6	101	152	2516	465	429	1.17	1.15	44.7	48.3	2050.4	579	29.0	2:05	1.21	1.21	0.03
12:34:39	2061.0	7.1	27.5	101	147	2523	464	414	1.17	1.15	44.9	47.8	2051.8	571	30.0	2:10	1.21	1.35	0.04
12:45:10	2062.0	5.3	25.3	102	127	2548	465	419	1.16	1.15	45.1	47.8		564	31.0		1.21		0.01
12:55:00	2063.0	10.0	26.0	102	125	2541	463	424	1.15	1.15	45.4	48.3		559	32.0			1.48	0.01
13:02:09	2064.0	13.6	27.3	102	138	2540	463		1.15		45.6			559	33.0		1.21	1.42	0.02
13:09:02	2065.0		25.2			2533							2059.3		34.0			1.38	0.02
13:14:41	2066.0	10.5	24.4	102	141	2534	462	415	1.15	1.15	45.9	48.5	2059.8		35.0			1.32	
13:19:21	2067.0	14.0	24.3	102	149	2535	461	411	1.15	1.15	46.0	48.7	2060.8		36.0			1.27	
13:23:37	2068.0	10.9	25.2	102	150	2533	462	408	1.15	1.15	46.1	48.8	2061.2		37.0			1.26	
13:27:38	2069.0	17.5	24.7	102	145					1.15				557	38.0			1.25	
13:32:39	2070.0				151	2519				1.15			2062.0		39.0			1.29	
13:38:14	2071.0	10.4	24.6	102	147	2529				1.15			2062.6		40.0			1.33	
13:44:47	2072.0	9.7	24.0	102	165	2523	462			1.15		49.1	2063.3		41.0			1.35	0.02
13:53:17		8.0	24.5	102	122	2513	462			1.15		19.2	2064.5		42.0			1.44	0.04
13:58:33	2074.0	12.9	24.1	102	129	2521				1.15			2065.4	554	43.0			1.29	
14:03:36	2075.0	12.5	23.4	102	125	2508	463	420	1.16	1.15	46.7	49.4	2066.3		44.0			1.28	
14:06:47	2076.0	18.4	25.0	102	139	2517	463	426	1.16	1.15	46.7	49.4	2066.9	553	45.0	3:42	1.20	1.17	0.05

078.0		k1b		amp	psi		OUT		OUT	IN	OUT	DEPTH						
078.0		24.4				8 F	2		sg	des		1	bbl	ats	hh:an	ıg		*
079.0	14.4		102	147	2522	463	139 1	1.16	1.15	46.8	49.5	2067.9	549	46.0	3:46	1.20	1.21	0.0
		22.3	102	113	2521	463	458	1.16	1.15	46.8	49.5	2069.2	547	47.0			1.24	0.0
	11.3	24.3	102	106	2528	463	440 1	1.16	1.15	46.9	49.6	2070.3	540	48.0	3:57	1.20	1.33	0.
080.0	13.7	23.6	102	109	2524	463	411 1	1.16	1.15	47.0	49.8	2071.1	535	49.0	4:03	1.20	1.31	٥.
081.0	13.4	23.1	102	131	2523	462	412 1	1.16	1.15	47.0	49.9	2071.8	533	50.0	4:07	1.20	1.26	٥.
082.0	3.1	22.7	102	119	2539	463	410 1	1.15	1.15	46.8	50.1	2073.3	679	51.0	4:20	1.20	1.48	٥.
0.88	5.5	23.4	102	120	2541	463	418 1	1.15	1.15	46.9	50.0	2075.5	676	52.0	4:30			0.
084.0	4.9	23.3	102	116	2542	463	437 1	1.15	1.15	47.0	50.1	2078.2	675	53.0	4:42	1.20	1.49	٥.
	6.0	23.4			2541	463	455 1	1.15	1.15	47.1	50.1	2082.4	679	55.0	5:13	1.20	1.48	0.
	7.6	26.4	97	112		463	401 1	1.15	1.15	47.2	50.4	2082.5	679	56.0	5:14	1.20	1.48	0.
0.880	5.2	27.9	97	117	2542	463	402 1	1.15	1.15	47.2	50.4	2083.1	678	57.0	5:19	1.20	1.48	0.
089.0	7.3	29.1	98	127		465	419 1	1.15	1.15	47.3	50.5	2084.3	680	58.0	5:28	1.20	1.50	0.
090.0	6.4	28.1	102			463	409 1	1.15	1.15	47.3	50.2	2086.8	681	59.0	5:38	1.19	1.49	0
091.0	6.7	29.7	101	152	2549	461	401 1	1.15	1.15	47.4	50.8	2087.6	678	60.0	5:46	1.19	1.49	0.
092.0	7.8	30.2	103	131	2551	462	398 1	1.15	1.15	47.5	50.8	2088.2	679	61.0	5:54	1.19	1.53	0.
093.0	8.7	30.0	103	133	2570	461	391 1	1.15	1.15	47.7	50.9	2088.8	681	62.0	6:02	1.19	1.52	0.
	1.5	30.2	103	138		462	396 1	.15	1.15	47.8	51.0	2089.6	680	63.0	6:12	1.19	1.56	0.
	4.8			128		462	394 1	1.15	1.15	47.9	51.1	2090.3	680	64.0	6:23	1.19	1.58	0.
	8.7			132		462	393 1	.15	1.15	48.0	51.1	2091.4	683	65.0	6:32	1.20	1.55	0.
												2092.7	684	66.0	6:42	1.20	1.53	0
												2093.6	684	67.0	6:52	1.20	1.55	0.
		30.2	102	135	2559	462	419 1	1.16	1.15	48.3	51.1	2094.5	686	68.0	7:01	1.20	1.55	0.
•	•																	
														69.1	7:10	1.20	1.52	0.
	4.5			125		463							690	70.0	7:21	1.20	1.55	0.
							391 1	.16	1.15	48.2	51.3	2098.2	691	71.0	7:32	1.20	1.54	٥.
												2099.1	691	72.0	7:42	1.20	1.53	٥.
												2099.6	691	73.0	7:53	1.20	1.54	٥.
-		28.8	100	130	2574	463	393 1	.15	1.15	48.7	51.3	2100.8	693	74.0	8:03	1.20	1.55	٥.
														75.0				
						458	351 1	.16	1.15	48.7	51.1	2101.8	712	76.0	8:12	1.20	1.25	٥.
	er tr	ip to	cesin	g spo	e.													
	100.1 101.0 102.0 103.0 104.0 105.0 m. (-7 106.0 107.0 m. Wij	082.0 3.1 083.0 5.5 084.0 4.9 086.0 5.0 087.0 7.6 088.0 5.2 089.0 7.3 090.0 6.4 091.0 6.7 092.0 7.8 093.0 8.7 094.0 7.5 095.0 4.8 096.0 8.7 097.0 7.1 0098.0 7.1 0099.0 7.7 m. (-ve)7 100.1 7.9 101.0 4.5 102.0 6.2 103.0 6.6 104.0 6.1 105.0 6.5 m. (-ve) 107.0 18.7 m. Wiper tr: 1993	082.0 3.1 22.7 083.0 5.5 23.4 084.0 4.9 23.3 086.0 6.0 23.4 087.0 7.6 26.4 088.0 6.2 27.9 089.0 7.3 29.1 090.0 6.4 28.1 091.0 6.7 29.7 092.0 7.8 30.2 093.0 8.7 30.0 094.0 7.5 30.2 095.0 4.8 28.7 096.0 8.7 30.5 097.0 7.1 28.4 098.0 7.1 29.4 099.0 7.7 30.2 m. {-ve}7 100.1 7.9 29.9 101.0 4.5 28.1 102.0 6.2 27.8 103.0 6.6 28.0 104.0 6.1 28.5 105.0 6.5 28.8 m. (-ve) 106.0 12.7 26.6 107.0 18.7 30.2 m. Wiper trip to	082.0 3.1 22.7 102 083.0 5.5 23.4 102 084.0 4.9 23.3 102 086.0 6.0 23.4 102 087.0 7.6 26.4 97 088.0 5.2 27.9 97 089.0 7.3 29.1 98 090.0 6.4 28.1 102 091.0 6.7 29.7 101 092.0 7.8 30.2 103 093.0 8.7 30.0 103 094.0 7.5 30.2 103 095.0 4.8 28.7 102 096.0 8.7 30.5 102 097.0 7.1 28.4 102 098.0 7.1 29.4 102 099.0 7.7 30.2 102 m. (-ve)7 100.1 7.9 29.9 100 101.0 4.5 28.1 100 102.0 6.2 27.8 100 103.0 6.6 28.0 100 104.0 6.1 28.5 100 105.0 6.5 28.8 100 m. (-ve) 106.0 12.7 26.6 100 107.0 18.7 30.2 100 m. Wiper trip to casin 1993	082.0 3.1 22.7 102 119 083.0 5.5 23.4 102 120 084.0 4.9 23.3 102 116 086.0 6.0 23.4 102 115 087.0 7.6 26.4 97 112 088.0 6.2 27.9 97 117 089.0 7.3 29.1 98 127 090.0 6.4 28.1 102 129 091.0 6.7 29.7 101 152 092.0 7.8 30.2 103 131 093.0 8.7 30.0 103 133 094.0 7.5 30.2 103 133 094.0 7.5 30.2 103 138 095.0 4.8 28.7 102 128 096.0 8.7 30.5 102 132 097.0 7.1 28.4 102 131 098.0 7.1 29.4 102 135 099.0 7.7 30.2 102 135 m. (-ve)7 100.1 7.9 29.9 100 130 101.0 4.5 28.1 100 125 102.0 6.2 27.8 100 128 103.0 6.6 28.0 100 129 104.0 6.1 28.5 100 131 105.0 6.5 28.8 100 130 m. (-ve) 106.0 12.7 26.6 100 144 107.0 18.7 30.2 100 160 m. Wiper trip to casing sho	082.0 3.1 22.7 102 119 2539 083.0 5.5 23.4 102 120 2541 084.0 4.9 23.3 102 116 2542 086.0 6.0 23.4 102 115 2541 087.0 7.6 26.4 97 112 2547 088.0 6.2 27.9 97 117 2542 089.0 7.3 29.1 98 127 2546 090.0 6.4 28.1 102 129 2540 091.0 6.7 29.7 101 152 2549 092.0 7.8 30.2 103 131 2551 093.0 8.7 30.0 103 133 2570 094.0 7.5 30.2 103 138 2577 095.0 4.8 28.7 102 128 2576 096.0 8.7 30.5 102 132 2567 097.0 7.1 28.4 102 131 2559 098.0 7.1 29.4 102 135 2564 099.0 7.7 30.2 102 135 2559 m. (-ve)7 100.1 7.9 29.9 100 130 2639 101.0 4.5 28.1 100 125 2577 102.0 6.2 27.8 100 128 2592 103.0 6.5 28.8 100 130 2574 m. (-ve) 106.0 12.7 26.6 100 144 2575 107.0 18.7 30.2 100 160 2540 m. Wiper trip to casing shoe. 1993	082.0 3.1 22.7 102 119 2539 463 083.0 5.5 23.4 102 120 2541 463 084.0 4.9 23.3 102 116 2542 463 086.0 6.0 23.4 102 115 2541 463 087.0 7.6 26.4 97 112 2547 463 088.0 6.2 27.9 97 117 2542 463 089.0 7.3 29.1 98 127 2546 465 090.0 6.4 28.1 102 129 2540 463 091.0 6.7 29.7 101 152 2549 461 092.0 7.8 30.2 103 131 2551 462 093.0 8.7 30.0 103 133 2570 461 094.0 7.5 30.2 103 138 2577 462 095.0 4.8 28.7 102 128 2576 462 096.0 8.7 30.5 102 132 2567 462 097.0 7.1 28.4 102 135 2559 462 099.0 7.7 30.2 102 135 2559 462 099.0 7.7 30.2 102 135 2559 462 099.0 7.7 30.2 102 135 2559 462 099.0 7.7 30.2 102 135 2559 462 099.0 7.7 30.2 102 135 2559 462 099.0 7.7 30.2 102 135 2559 462 090.0 6.2 27.8 100 125 2577 463 101.0 4.5 28.1 100 125 2577 463 102.0 6.2 27.8 100 128 2592 463 103.0 6.6 28.0 100 129 2591 463 104.0 6.1 28.5 100 131 2594 463 105.0 6.5 28.8 100 130 2574 463 m. (-ve) 106.0 12.7 26.6 100 144 2575 462 107.0 18.7 30.2 100 160 2540 458 m. Wiper trip to casing shoe.	1082.0 3.1 22.7 102 119 2539 463 410 1 1083.0 5.5 23.4 102 120 2541 463 418 1 1084.0 4.9 23.3 102 116 2542 463 437 1 1086.0 6.0 23.4 102 115 2541 463 455 1 1087.0 7.6 26.4 97 112 2547 463 401 1 1088.0 6.2 27.9 97 117 2542 463 402 1 1089.0 7.3 29.1 98 127 2546 465 419 1 1090.0 6.4 28.1 102 129 2540 463 409 1 1091.0 6.7 29.7 101 152 2549 461 401 1 1092.0 7.8 30.2 103 131 2551 462 398 1 1093.0 8.7 30.0 103 133 2570 461 391 1 1094.0 7.5 30.2 103 138 2577 462 396 1 1095.0 4.8 28.7 102 128 2576 462 394 1 1096.0 8.7 30.5 102 132 2567 462 394 1 1097.0 7.1 28.4 102 131 2559 462 399 1 1098.0 7.1 29.4 102 135 2564 462 402 1 1099.0 7.7 30.2 102 135 2559 462 419 1 10.0 4.5 28.1 100 125 2577 463 402 1 101.0 4.5 28.1 100 125 2577 463 396 1 102.0 6.2 27.8 100 130 2639 470 415 1 103.0 6.6 28.0 100 129 2591 463 396 1 104.0 6.1 28.5 100 131 2594 463 393 1 105.0 6.5 28.8 100 130 2574 463 393 1 105.0 6.5 28.8 100 130 2574 463 393 1 105.0 6.5 28.8 100 130 2574 463 393 1 105.0 6.5 28.8 100 130 2574 463 393 1 105.0 6.5 28.8 100 130 2574 463 393 1 105.0 6.5 28.8 100 130 2574 463 393 1 107.0 18.7 30.2 100 160 2540 458 351 1 108. Wiper trip to casing shoe.	082.0 3.1 22.7 102 119 2539 463 410 1.15 083.0 5.5 23.4 102 120 2541 463 418 1.15 084.0 4.9 23.3 102 116 2542 463 437 1.15 086.0 6.0 23.4 102 115 2541 463 401 1.15 087.0 7.6 26.4 97 112 2547 463 401 1.15 088.0 6.2 27.9 97 117 2542 463 402 1.15 089.0 7.3 29.1 98 127 2546 465 419 1.15 090.0 6.4 28.1 102 129 2540 463 409 1.15 091.0 6.7 29.7 101 152 2549 461 401 1.15 092.0 7.8 30.2 103 131 2551 462 398 1.15 093.0 8.7 30.0 103 133 2570 461 391 1.15 094.0 7.5 30.2 103 138 2577 462 396 1.15 095.0 4.8 28.7 102 128 2576 462 394 1.15 096.0 8.7 30.5 102 132 2567 462 394 1.15 097.0 7.1 28.4 102 131 2559 462 399 1.15 099.0 7.7 30.2 102 132 2567 462 399 1.15 099.0 7.7 30.2 102 135 2564 462 402 1.16 099.0 7.7 30.2 102 135 2559 462 119 1.16 m. (-ve)7 100.1 7.9 29.9 100 130 2639 470 415 1.16 101.0 4.5 28.1 100 125 2577 463 402 1.16 102.0 6.2 27.8 100 128 2592 463 391 1.16 103.0 6.6 28.0 100 129 2591 463 396 1.16 104.0 6.1 28.5 100 131 2594 463 401 1.16 105.0 6.5 28.8 100 130 2574 463 393 1.16 m. (-ve) 106.0 12.7 26.6 100 144 2575 462 396 1.16 107.0 18.7 30.2 100 160 2540 458 351 1.16 m. Wiper trip to casing shoe.	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 1.083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 1.084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 1.086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 1.15 1.87 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 1.15 1.88. (-ve) 1083.0 5.5 23.4 102 115 2541 463 455 1.15 1.15 1.15 1.15 1.15 1.15 1.15	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 1084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 47.0 086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.1 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.5 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.7 094.0 7.5 30.2 103 138 2577 462 396 1.15 1.15 47.8 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.9 096.0 8.7 30.5 102 132 2567 462 399 1.15 1.15 47.9 096.0 8.7 30.2 103 138 2576 462 399 1.15 1.15 48.0 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.1 098.0 7.1 29.4 102 135 2564 462 402 1.16 1.15 48.2 099.0 7.7 30.2 102 135 2559 462 399 1.15 1.15 48.1 101.0 4.5 28.1 100 125 2577 463 402 1.16 1.15 48.2 103.0 6.6 28.0 100 128 2591 463 391 1.16 1.15 48.1 104.0 6.1 28.5 100 131 2594 463 391 1.16 1.15 48.4 104.0 6.1 28.5 100 131 2594 463 393 1.16 1.15 48.4 104.0 6.1 28.5 100 131 2594 463 393 1.16 1.15 48.4 104.0 6.1 28.5 100 132 2567 462 396 1.16 1.15 48.4 104.0 6.1 28.5 100 132 2574 463 393 1.16 1.15 48.4 104.0 6.1 28.5 100 132 2591 463 393 1.16 1.15 48.6 105.0 6.5 28.8 100 130 2574 463 393 1.16 1.15 48.7 m. (-ve)	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 50.1 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 50.0 084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 47.0 50.1 086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.1 50.1 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 50.4 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 50.5 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 50.2 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 50.8 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.5 50.8 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.5 50.8 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.5 50.8 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.9 51.1 096.0 8.7 30.5 102 132 2567 462 399 1.15 1.15 47.9 51.1 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.0 51.1 099.0 7.7 30.2 102 135 2564 462 402 1.16 1.15 48.2 51.1 099.0 7.7 30.2 102 135 2559 462 399 1.15 1.15 48.2 51.1 099.0 7.7 30.2 102 135 2559 462 399 1.15 1.15 48.2 51.1 009.0 7.7 30.2 102 135 2564 462 402 1.16 1.15 48.2 51.1 009.0 7.7 30.2 102 135 2559 462 399 1.15 1.15 48.2 51.1 009.0 7.7 30.2 102 135 2559 462 399 1.15 1.15 48.2 51.1 009.0 7.7 30.2 102 135 2559 462 399 1.15 1.15 48.2 51.3 103.0 6.6 28.0 100 129 2591 463 391 1.16 1.15 48.2 51.3 103.0 6.6 28.0 100 129 2591 463 391 1.16 1.15 48.4 51.3 104.0 6.1 28.5 100 131 2594 463 401 1.16 1.15 48.5 51.6 105.0 6.5 28.8 100 130 2574 463 393 1.16 1.15 48.7 51.3 m. (-ve)	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 50.1 2073.3 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 50.0 2075.5 084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 47.0 50.1 2078.2 086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.0 50.1 2082.4 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 50.4 2082.5 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2082.5 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2083.1 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 50.5 2084.3 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 50.2 2086.8 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 50.8 2087.6 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.5 50.8 2088.2 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.5 50.8 2088.8 094.0 7.5 30.2 103 138 2577 462 396 1.15 1.15 47.9 51.1 2090.3 096.0 8.7 30.5 102 128 2567 462 394 1.15 1.15 47.9 51.1 2090.3 096.0 8.7 30.5 102 132 2567 462 394 1.15 1.15 48.0 51.1 2091.4 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.0 51.1 2091.4 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.2 51.1 2093.6 099.0 7.7 30.2 102 135 2559 462 419 1.16 1.15 48.3 51.1 2094.5 m. (-ve)? 100.1 7.9 29.9 100 130 2539 470 415 1.16 1.15 48.3 51.1 2094.5 m. (-ve)? 100.0 6.5 28.8 100 125 2577 463 391 1.16 1.15 48.5 51.3 2099.1 102.0 6.2 27.8 100 128 2592 463 391 1.16 1.15 48.5 51.3 2099.5 105.0 6.5 28.8 100 130 2574 463 393 1.16 1.15 48.6 51.6 2099.6 105.0 6.5 28.8 100 130 2574 463 393 1.16 1.15 48.7 51.3 2099.5 105.0 6.5 28.8 100 130 2574 463 393 1.16 1.15 48.7 51.3 2100.8 m. (-ve)	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 50.1 2073.3 679 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 50.0 2075.5 676 084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 47.0 50.1 2078.2 675 086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.1 50.1 2082.4 679 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 50.4 2082.5 679 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2083.1 678 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 50.5 2084.3 680 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 50.2 2086.8 681 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 50.8 2087.6 678 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.4 50.8 2088.2 679 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.7 50.9 2088.8 681 094.0 7.5 30.2 103 138 2577 462 396 1.15 1.15 47.8 51.0 2088.6 680 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 2088.6 680 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.9 51.1 2090.3 680 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.9 51.1 2090.3 680 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.9 51.1 2090.3 680 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 48.0 51.1 2091.4 683 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.0 51.1 2091.4 683 099.0 7.7 30.2 102 132 2567 462 393 1.15 1.15 48.0 51.1 2091.6 684 099.0 7.7 30.2 102 135 2554 462 402 1.16 1.15 48.2 51.1 2093.6 684 099.0 7.7 30.2 102 135 2554 462 402 1.16 1.15 48.2 51.1 2093.6 684 099.0 7.7 30.2 102 135 2554 462 402 1.16 1.15 48.2 51.1 2093.6 684 099.0 7.7 30.2 102 135 2554 463 402 1.16 1.15 48.2 51.3 2098.2 691 101.0 4.5 28.1 100 125 2577 463 402 1.16 1.15 48.5 51.3 2098.2 691 101.0 4.5 28.1 100 125 2577 463 402 1.16 1.15 48.5 51.3 2099.5 691 100.0 6.5 28.8 100 130 2574 463 393 1.16 1.15 48.7 51.3 2099.5 691 105.0 6.5 28.8 100 130 2574 463 393 1.16 1.15 48.7 51.3 2100.8 693 m. (-ve)	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 50.1 2073.3 679 51.0 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 50.0 2075.5 676 52.0 084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 47.0 50.1 2078.2 675 53.0 086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.1 50.1 2082.4 679 55.0 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 50.4 2082.5 679 56.0 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2083.5 678 57.0 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.2 50.4 2083.1 678 57.0 099.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 50.5 2084.3 680 58.0 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 50.5 2084.3 680 58.0 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 50.8 2087.6 678 60.0 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.5 50.8 2087.6 678 60.0 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.5 50.8 2088.2 679 61.0 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.7 50.9 2088.8 681 62.0 094.0 7.5 30.2 103 138 2577 462 396 1.15 1.15 47.9 51.1 2090.3 680 64.0 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.9 51.1 2090.3 680 64.0 095.0 8.7 30.5 102 132 2567 462 393 1.15 1.15 48.0 51.1 2091.4 683 65.0 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.0 51.1 2091.4 683 65.0 097.0 7.1 28.4 102 135 2564 462 402 1.16 1.15 48.2 51.1 2093.5 684 67.0 099.0 7.7 30.2 102 135 2564 462 402 1.16 1.15 48.2 51.1 2093.5 684 67.0 099.0 7.7 30.2 102 135 2564 462 402 1.16 1.15 48.2 51.1 2094.5 686 68.0 m. {-re}? 100.1 7.9 29.9 100 130 2539 470 415 1.16 1.15 48.2 51.3 2094.5 686 68.0 m. {-re}? 100.1 7.9 29.9 100 130 2539 470 415 1.16 1.15 48.2 51.3 2094.5 686 68.0 m. {-re}? 100.1 7.9 28.9 100 130 2539 470 415 1.16 1.15 48.2 51.3 2099.5 691 73.0 102.0 6.2 27.8 100 122 2557 463 391 1.16 1.15 48.2 51.3 2099.5 691 73.0 102.0 6.2 27.8 100 122 2557 463 391 1.16 1.15 48.4 51.3 2099.6 691 73.0 103.0 6.6 28.0 100 129 2591 463 396 1.16 1.15 48.9 51.4 2101.1 692 75.0 m. {-re} 100.1 7.9 28.8 100 130 2539 470 415 1.16 1.15 48.9 51.4 2101.1 692 75.0 m. {-re} 100.1 8.7 30.2 100 160 2540 458 351 1.16 1.15 48.9	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 50.1 2073.3 679 51.0 4:20 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 50.0 2075.5 676 52.0 4:30 084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 47.0 50.1 2078.2 675 53.0 4:42 086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.1 50.1 2082.4 679 55.0 5:13 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 50.4 2082.5 679 56.0 5:14 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2082.5 679 56.0 5:14 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2083.1 678 57.0 5:19 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 50.5 2084.3 680 58.0 5:28 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 50.2 2086.8 681 59.0 5:38 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 50.8 2087.6 678 60.0 5:46 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.5 50.8 2088.2 679 61.0 5:54 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.7 50.9 2088.8 681 62.0 6:02 094.0 7.5 30.2 103 138 2577 462 396 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:12 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:12 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:02 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.0 51.1 2091.4 683 65.0 6:32 097.0 7.1 28.4 102 131 2559 462 399 1.15 1.15 48.2 51.1 2091.4 683 65.0 6:22 099.0 7.7 30.2 103 138 2577 463 391 1.15 1.15 48.3 51.1 2091.5 686 68.0 7:01 m. [082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 50.1 2073.3 679 51.0 4:20 1.20 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 50.0 2075.5 676 52.0 4:30 1.20 084.0 4.9 23.3 102 116 2542 463 437 1.15 1.15 47.0 50.1 2078.2 675 53.0 4:42 1.20 086.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.1 50.1 2082.4 679 55.0 5:13 1.20 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 50.4 2082.5 679 56.0 5:14 1.20 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2082.5 679 56.0 5:14 1.20 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 50.5 2084.3 680 58.0 5:28 1.20 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 50.2 2086.8 681 59.0 5:38 1.19 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 50.8 2087.6 678 60.0 5:46 1.19 092.0 7.8 30.2 103 131 2551 462 398 1.15 1.15 47.4 50.8 2087.6 678 60.0 5:46 1.19 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.7 50.9 2088.8 681 62.0 6:02 1.19 094.0 7.5 30.2 103 138 2577 462 396 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:12 1.19 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:12 1.19 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:22 1.19 095.0 7.1 28.4 102 132 2567 462 393 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:22 1.19 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:22 1.19 095.0 7.7 30.2 102 135 2564 462 396 1.15 1.15 48.0 51.1 2091.4 683 65.0 6:22 1.20 099.0 7.7 30.2 102 135 2564 462 391 1.15 1.15 48.1 50.7 2092.7 684 66.0 6:42 1.20 099.0 7.7 30.2 102 135 2564 462 391 1.16 1.15 48.1 50.7 2092.7 684 66.0 6:42 1.20 101.0 4.5 28.1 100 125 2577 463 395 1.16 1.15 48.2 51.1 2094.5 686 68.0 7:01 1.20 m. (-ve)?	082.0 3.1 22.7 102 119 2539 463 410 1.15 1.15 46.8 50.1 2073.3 679 51.0 4:20 1.20 1.48 083.0 5.5 23.4 102 120 2541 463 418 1.15 1.15 46.9 50.0 2075.5 676 52.0 4:30 1.20 1.47 084.0 4.9 23.3 102 116 2542 463 418 1.15 1.15 47.0 50.1 2078.2 675 53.0 4:42 1.20 1.49 088.0 6.0 23.4 102 115 2541 463 455 1.15 1.15 47.0 50.1 2078.2 675 53.0 4:42 1.20 1.49 087.0 7.6 26.4 97 112 2547 463 401 1.15 1.15 47.2 50.4 2082.4 679 55.0 5:13 1.20 1.48 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2082.5 679 56.0 5:14 1.20 1.48 088.0 6.2 27.9 97 117 2542 463 402 1.15 1.15 47.2 50.4 2083.1 678 57.0 5:19 1.20 1.48 089.0 7.3 29.1 98 127 2546 465 419 1.15 1.15 47.3 50.5 2084.3 680 58.0 5:28 1.20 1.50 090.0 6.4 28.1 102 129 2540 463 409 1.15 1.15 47.3 50.5 2084.3 680 58.0 5:28 1.20 1.50 090.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.4 50.8 2087.6 678 60.0 5:46 1.19 1.49 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.5 50.8 2087.6 678 60.0 5:46 1.19 1.49 091.0 6.7 29.7 101 152 2549 461 401 1.15 1.15 47.5 50.8 2087.6 678 60.0 5:46 1.19 1.49 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.7 50.9 2088.8 661 62.0 6:02 1.19 1.53 093.0 8.7 30.0 103 133 2570 461 391 1.15 1.15 47.7 50.9 2088.8 661 62.0 6:02 1.19 1.52 094.0 7.5 30.2 103 138 2577 462 396 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:12 1.19 1.56 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 47.8 51.0 2089.6 680 63.0 6:12 1.19 1.58 095.0 4.8 28.7 102 128 2576 462 394 1.15 1.15 48.1 50.9 2092.7 684 66.0 6:23 1.19 1.58 095.0 7.7 30.2 103 132 2579 462 399 1.15 1.15 48.1 50.9 2092.7 684 66.0 6:23 1.19 1.58 095.0 7.7 30.2 102 135 2564 462 402 1.16 1.15 48.1 50.9 2092.7 684 66.0 6:22 1.20 1.55 099.0 7.7 30.2 102 135 2564 462 402 1.16 1.15 48.3 51.1 2091.6 684 67.0 6:52 1.20 1.55 099.0 7.7 30.2 102 135 2559 462 419 1.16 1.15 48.1 50.7 2096.0 695 69.1 7:10 1.20 1.55 m. (-we)7

RIH, CBU and POOH for B-Logs.

The following E-Logs were ran:

1) DLL-MSFL-AS-GR-SP-AMS

2) CST-GR

25th - 29th March 1993

Run 2 wiper trips before running 7° liner with shoe set at 2108 m.

A:ma:sec m m/hr klb amp pmi gpm mg deg C m bbl mts hh:mm mg	ID DENSITY MUDITEMP RETURNS PVT -BIT- ECD DIC GAS N OUT IN OUT DEPTE		LOW		SPP	TRQ	RPK	AOB	ROP	DEPTH	INB
RB\$10 6" HTC J3 3x12 jetm. 08:34:45 2108.0 2.8 8 43 110 1590 214 185 1.15 1.15 41.2 43.6 2095.5 387.0 1.0 0:00 1.15 1.00:00:06 2110.0 3.6 13 42 132 1615 216 195 1.15 1.15 41.5 43.8 2108.1 390.0 2.0 1:07 1.21 1.10:00:06 2110.0 4.3 13 41 138 1619 217 196 1.15 1.15 41.7 43.6 2108.2 387.7 3.0 1:19 1.21 1.10:14:55 2111.0 3.4 14 41 137 1620 217 202 1.15 1.15 41.7 43.7 2108.3 387.5 4.0 1:34 1.21 1. CBU at 2111 n. Pull bit into caming and perform L.O.T. with 1.15 mg mud. EMW = 1.85 mg. BHY = 1.85 mg. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1. 13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 13:59:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1. 15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:58:46 2118.0 8.1 16 62 132 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 3.0 3:50 1.22 1. 16:58:46 2118.0 8.1 16 62 132 2050 269 329 31.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:52:57 212.0 4.0 15 63 118 2050 259 328 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:55:26 2122.0 2.3 17 62 116 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:55:26 2122.0 2.3 17 62 116 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 18:30:56 2122.0 3.1 16 61 116 210 263 579 128 1.15 1.15 43.0 44.0 2116.2 347.0 14.0 4:44 1.22 1. 18:51:37 2124.0 4.9 15 61 116 210 263 579 128 1.15 1.15 42.4 44.0 2123.3 355.3 15.0 5:09 1.22 1. 18:30:56 2122.0 3.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2122.0 3.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2126.0 3.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.7 2123.8 355.3 20.0 6:16 1.22 1. 18:39:30:57 2129.0 2.5 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2123.0 359.4 19.0 6:01 1.20 0. 18:45:10 2127.0 3.3					psi	amp		klb	n/hr	1	:BR:SeC
08:34:45 2108.0 2.8 8 43 110 1590 214 185 1.15 1.15 41.2 43.6 2095.5 387.0 1.0 0:00 1.15 1.09:47:38 2109.0 3.6 13 42 132 1615 216 195 1.15 1.15 41.5 43.8 2108.1 390.0 2.0 1:07 1.21 1.10:00:06 2110.0 4.3 13 41 138 1619 217 196 1.15 1.15 41.7 43.6 2108.2 387.7 3.0 1:19 1.21 1.10:14:55 2111.0 3.4 14 41 137 1620 217 202 1.15 1.15 41.7 43.6 2108.2 387.7 3.0 1:19 1.21 1.00:04:55 2111.0 3.4 14 41 137 1620 217 202 1.15 1.15 41.7 43.7 2108.3 387.5 4.0 1:34 1.21 1.00:08 42 111 0. Pull bit into casing and perform L.O.T. with 1.15 ug and. RRW = 1.85 ug. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1.13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1.14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1.15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1.15:39:21 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.15:88:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.15:88:46 2118.0 8.1 16 62 132 2050 259 329 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 42.4 45.7 2114.5 345.3 13.0 4:34 1.22 1.16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 42.4 45.7 2114.5 345.3 13.0 4:34 1.22 1.17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1.17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 42.4 44.9 2123.0 359.4 18.0 5:53 1.22 1.17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 42.4 44.9 2123.0 359.4 18.0 5:53 1.22 1.17:38:28 2123.0 2.7 16 66 122 2110 263 312 1.15 1.14 42.4 44.9 2123.0 359.4 18.0 5:53 1.22 1.17:38:28 2123.0 2.7 16 66 122 2110 263 312 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.17:38:28 2123.0 2.7 16 66 122 210 263 376 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.19:34:57 2129.									1993	st Warch	0th - 31
99:47:38 2109.0 3.6 13 42 132 1615 216 195 1.15 1.15 41.5 43.8 2108.1 390.0 2.0 1:07 1.21 1.10:00:06 2110.0 4.3 13 41 138 1619 217 196 1.15 1.15 41.7 43.6 2108.2 387.7 3.0 1:19 1.21 1.10:14:55 2111.0 3.4 14 41 137 1620 217 202 1.15 1.15 41.7 43.6 2108.3 387.5 4.0 1:34 1.21 1. CBU at 2111 m. Pull bit into caming and perform L.O.T. with 1.15 mg mud. EBW = 1.85 mg. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1. 13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1. 15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.16 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 333.0 8.0 3:31 1.22 1. 15:34:19 2117.0 6.1 16 61 119 2043 267 332 1.15 1.15 42.7 45.5 2114.0 330.0 9.0 3:50 1.22 1. 15:58:46 2118.0 8.1 16 62 132 2050 269 302 1.15 1.15 42.7 45.5 2114.0 340.0 9.0 3:50 1.22 1. 16:30:47 2119.0 5.5 15 64 129 2050 259 328 1.15 1.15 42.9 44.7 2115.5 348.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:35:26 2122.0 2.3 17 62 114 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 17:31:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2116.0 310.0 16.0 5:29 1.22 1. 17:31:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:33:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2125.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2125.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 42.6 44.1 2122.3 339.4 18.0 5:53 1.22 1. 19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 42.6 44.1 2122.3 339.4 18.0 5:53 1.22 1. 19:34:57 2129.0 2.5 17 62 108 2175 263 272 1.15 1.14 43.9 46.4 2126.7 358.8 22.0 7:05 1.2									x12 jet	HTC J3 3	B#10 6"
10:00:06 2110.0 4.3 13 41 138 1619 217 196 1.15 1.15 41.7 43.6 2108.2 387.7 3.0 1:19 1.21 1. 10:14:55 2111.0 3.4 14 41 137 1620 217 202 1.15 1.15 41.7 43.7 2108.3 387.5 4.0 1:34 1.21 1. CBU at 2111 m. Pull bit into casing and perform L.O.T. with 1.15 mg and. ERW = 1.85 mg. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1. 13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1. 15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1. 15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1. 15:88:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.2 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1. 18:30:31 2125.0 7.8 16 66 122 2110 263 512 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:30:36 2121.0 3.1 16 62 116 2050 259 286 1.15 1.15 41.4 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:30:31 2125.0 7.8 16 66 122 2110 263 512 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:30:36 2121.0 3.1 16 62 116 2050 259 286 1.15 1.15 41.4 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:30:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:30:32 2125.0 7.8 16 62 113 2151 264 249 1.15 1.14 42.9 44.0 2121.6 314.2 27.0 5:41 1.22 1. 18:30:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.9 44.0 2121.6 314.2	5 1.15 41.2 43.6 2095.5 387.0 1.0 0:00 1.15 1.40 0.01	1.15	185	0 214	1590	110	43	8	2.8	2108.0	8:34:45
10:14:55 2111.0 3.4 14 41 137 1620 217 202 1.15 1.15 41.7 43.7 2108.3 387.5 4.0 1:34 1.21 1. CBU at 2111 m. Pull bit into casing and perform L.O.T. with 1.15 mg mud. RMW = 1.85 mg. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1. 13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:09:21 2115.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2112.3 320.5 7.0 3:10 1.22 1. 15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.0 340.0 9.0 3:50 1.22 1. 15:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1. 16:08:47 2119.0 5.5 15 64 129 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.5 548.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.0 44.7 2115.5 548.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.0 44.7 2115.5 548.3 13.0 4:34 1.22 1. 16:35:26 2122.0 2.3 17 62 114 2050 259 288 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1. 17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.4 44.9 2123.0 359.4 18.0 5:33 1.22 1. 18:30:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:33 1.22 1. 18:30:51 2120.0 3.1 16 62 113 2151 264 249 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:33 1.22 1. 18:30:56 2122.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:33 1.22 1. 18:30:51 2120.0 3.1 16 62 113 2151 264 249 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:33 1.22 1. 18:30:51 2120.0 3.1 16 62 113 2151 264 249 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:33 1.22 1. 18:30:51 2120.0 3.1 16 62 113 2151 264 249 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:3	5 1.15 41.5 43.8 2108.1 390.0 2.0 1:07 1.21 1.54 0.01	1.15	195	5 216	1615	132	42	13	3.6	2109.0	9:47:38
CBU at 2111 m. Pull bit into caming and perform L.O.T. with 1.15 mg mud. BRW = 1.85 mg. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1. 13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1. 15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1. 15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1. 15:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 288 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.4 44.9 212.0 7 318.0 16.0 5:29 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 212.3 39.4 18.0 5:53 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0. 18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:94:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 260 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 260 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 260 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1.	5 1.15 41.7 43.6 2108.2 387.7 3.0 1:19 1.21 1.18 0.01	1.15	196	9 217	1619	138	41	13	4.3	2110.0	0:00:06
ERW = 1.85 sg. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1. 13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1. 15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1. 15:43:19 2117.0 6.1 16 61 119 2043 267 34 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1. 15:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.22 1. 16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:44 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 361 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 363 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:94:15 2128.0 1.6 17 62 103 2177 261 275 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:95:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:05 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.	5 1.15 41.7 43.7 2108.3 387.5 4.0 1:34 1.21 1.24 0.01	1.15	202	0 217	1620	137	41	14	3.4	2111.0	0:14:55
ERW = 1.85 mg. 13:17:45 2112.0 2.0 9 44 107 1537 208 172 1.15 1.15 41.0 40.4 2111.0 329.0 5.0 2:07 1.21 1. 13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1. 14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1. 15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1. 15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1. 15:58:46 2118.0 8.1 16 62 112 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.22 1. 16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:44 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 42.4 44.9 212.0 314.2 17.0 5:41 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 363 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:9:4:15 2128.0 1.6 17 62 102 2170 260 265 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:9:4:15 2128.0 1.6 17 62 108 2175 261 275 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 261 275 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:05 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.	h 1.15 mg mud.	with	.0.T.	form L	perfo	g and	CARID	into	ll bit	11 m. Pu	BU at 21
13:57:13 2113.0 1.2 11 46 111 1733 233 173 1.15 1.15 40.7 44.4 2111.2 341.8 6.0 2:39 1.22 1.4:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1.5:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1.5:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1.5:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.5:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.5:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1.5:58:46 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.22 1.5 16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1.5 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1.5 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1.5 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1.5 18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1.5 18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.5 19:44:15 2128.0 1.6 17 62 109 2177 261 275 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.5 19:44:15 2128.0 255 255 255 255 255 255 255 255 255 255 255 25										5 sg.	XW = 1.8
14:48:13 2114.0 2.1 11 46 106 1932 259 190 1.15 1.15 42.4 45.3 2112.3 320.5 7.0 3:10 1.22 1.5:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1.15:15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1.15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.0 340.0 9.0 3:50 1.22 1.15 1.15 42.4 45.7 2114.0 342.9 10.0 4:05 1.22 1.1 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1.2 1.6 16:20:27 120.0 4.0 15 63 118 2050 259 328 <td></td> <td>1.15</td> <td>172</td> <td>7 208</td> <td>1537</td> <td>107</td> <td>44</td> <td>9</td> <td>2.0</td> <td>2112.0</td> <td>3:17:45</td>		1.15	172	7 208	1537	107	44	9	2.0	2112.0	3:17:45
15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1. 15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1. 15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1. 15:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1. 16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.22 1. 16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 286 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.16 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1. 17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0. 18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:04:15 2128.0 1.6 17 62 102 2170 260 265 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.3 46.4 2129.4 340.0 24.0 7:54 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.				3 233	1733	111	46	11	1.2	2113.0	3:57:13
15:09:21 2115.0 3.3 14 58 113 2050 269 502 1.15 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1.15:28:01 2116.0 3.2 15 61 114 2050 267 332 1.15 1.15 41.9 45.3 2114.0 340.0 9.0 3:50 1.22 1.15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.15:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1.16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.22 1.16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1.16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1.16:30:36 2122.0 2.3 17 62 114 2050 259 286 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1.17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1.17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1.18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1.18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0.18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0.18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.19:04:15 2128.0 1.6 17 62 109 2177 261 275 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1.19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1.19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18		1.15	190	2 259	1932	106	46	11	2.1	2114.0	4:48:13
15:43:19 2117.0 6.1 16 61 119 2043 267 334 1.15 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.15:58:46 2118.0 8.1 16 62 132 2050 264 339 1.15 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1.16:20:57 2120.0 4.0 15 63 118 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.22 1.16:30:36 2121.0 4.1 16 62 116 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1.16:55:26 2122.0 2.3 17 62 114 2050 259 288 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1.17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1.17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1.18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1.18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1.18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0.18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.19:04:15 2128.0 1.6 17 62 102 2170 260 265 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1.19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1.19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.	5 1.14 42.4 42.9 2114.0 333.0 8.0 3:31 1.22 1.40 0.0	1.15	502	0 269	2050	113	58	14	3.3	2115.0	5:09:21
15:58:46	5	1.15	332	0 267	2050	114	61	15	3.2	2116.0	5:28:01
15:58:46	[5 1.15 42.4 45.7 2114.4 342.9 10.0 4:05 1.22 1.38 0.0]	1.15	334	3 267	2043	119	61	16	6.1	2117.0	5:43:19
16:08:47 2119.0 5.5 15 64 129 2050 259 329 1.15 1.15 42.9 44.7 2115.1 547.5 12.0 4:22 1.22 1. 16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 286 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1. 17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0. 18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:04:15 2128.0 1.6 17 62 109 2177 261 275 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1. 19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.	5 1.15 42.7 45.5 2114.7 355.8 11.0 4:12 1.22 1.19 0.0	1.15	339	0 264	2050	132	62	16	8.1	2118.0	5:58:46
16:20:57 2120.0 4.0 15 63 118 2050 259 328 1.15 1.15 43.0 44.4 2115.5 348.3 13.0 4:34 1.22 1. 16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 286 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.5 2120.7 318.0 16.0 5:29 1.22 1. 17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:03:31 2125.0 <td< td=""><td></td><td></td><td></td><td>0 259</td><td>2050</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				0 259	2050						
16:30:36 2121.0 4.1 16 62 116 2050 259 288 1.15 1.15 43.1 45.0 2116.2 347.0 14.0 4:44 1.22 1. 16:55:26 2122.0 2.3 17 62 114 2050 259 286 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1. 17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.0 244.0 2121.6 314.2 17.0 5:41 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56											
16:55:26 2122.0 2.3 17 62 114 2050 259 286 1.15 1.15 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1.17 1.15 1.14 43.3 45.5 2118.8 352.3 15.0 5:09 1.22 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1.21 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1.21 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1.22 1.22 1.22 1.22 1.23 1.											
17:38:28 2123.0 2.7 16 66 122 2110 263 512 1.15 1.14 43.1 43.5 2120.7 318.0 16.0 5:29 1.22 1. 17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1. 18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1. 18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0.18 18.6 1212.0											
17:51:17 2124.0 4.9 15 61 116 2131 262 461 1.15 1.14 42.9 44.0 2121.6 314.2 17.0 5:41 1.22 1.8:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1.8:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0.18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1.19:04:15 2128.0 1.6 17 62 112 2170 260 265 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1.19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1.19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.	• • • • • • • • • • • • • • • • • • • •										
18:03:31 2125.0 7.8 16 61 114 2100 261 376 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1.83 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 1.83 1.15 1.14 42.6 44.1 2122.2 339.4 18.0 5:53 1.22 <td></td>											
18:30:56 2126.0 9.1 17 59 133 2100 262 263 1.15 1.14 42.4 44.9 2123.0 359.4 19.0 6:01 1.20 0. 18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:04:15 2128.0 1.6 17 62 112 2170 260 265 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1. 19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.											
18:45:10 2127.0 3.3 16 62 113 2151 264 249 1.15 1.14 42.5 44.7 2123.8 355.3 20.0 6:16 1.22 1. 19:04:15 2128.0 1.6 17 62 112 2170 260 265 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1. 19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.	- • • • • • • • • • • • • • • • • • • •										
19:04:15 2128.0 1.6 17 62 112 2170 260 265 1.15 1.14 42.7 45.6 2124.8 357.3 21.0 6:35 1.22 1. 19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1. 19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.											
19:34:57 2129.0 2.5 17 62 109 2177 261 275 1.15 1.14 43.3 46.1 2126.7 358.8 22.0 7:05 1.22 1.19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1.20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.											
19:59:08 2130.0 2.4 17 62 108 2175 263 272 1.15 1.14 43.6 46.2 2128.0 357.9 23.0 7:30 1.22 1. 20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.											
20:37:31 2131.0 1.5 18 63 110 2434 272 314 1.15 1.14 43.9 46.4 2129.4 340.0 24.0 7:54 1.22 1.											
							-				
IAAN WALTA TAT ATA PHENEE:	A 7171 1010 1011 GT0011 G1010 G110 1101 1100 5100 G100		411	, ,,,	8161	114	**				
								,	. CHAR	A IOI DI	OUR ADEL

Instruct	TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP		OV TUO	TN	DENSITY	IN Rad	TEMP	RETURNS DEPTH	PVT	-BI	T-	ECD	DIC	GAS
RBHI 6" STCALOG DISSESSES SIZII jets.	h:mm:sec	1	s/hr	klb		amp	psi								bbl	ats	bh:nn	PPg		X
66:07:13 2132.0 7.3	lst Apri	1993		,												,				
06:218:220 2133.0	NB#11 6°	HYCALOG	DS46HG6	3111	jets	•														
66:218:22 2133.0 7.7							2484	264	303	1.15	1.15	33.4	40.6	2131.0	380.2	1.0	0:06	1.22	0.55	0.00
66:23:22 2134.0 9.7 4 75 157 252 268 099 1.15 1.15 3.6.7 41.2 2131.0 496.2 1.0 0.271 1.23 0.91 0.86 06:36:27 2136.0 18.2 5 79 199 2518 268 268 1.15 1.15 1.15 3.7.1 40.3 2131.0 496.2 1.0 0.272 1.23 0.92 0.82 0.86 06:36:27 2136.0 18.2 5 79 199 2518 268 268 1.15 1.15 3.7.1 40.3 2131.0 496.2 1.0 0.22 1.23 0.82 0.82 0.86 06:36:27 2136.0 18.2 5 79 199 2518 268 268 1.15 1.15 3.7.1 40.3 2131.0 507.6 6.0 0:39 1.22 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0	06:21:20	2133.0	7.7	3																
06:336:220 2135.0 18.0 4	06:28:23	2134.0	9.7	4	75															
06:36:27 2136.0 18.2 5	06:33:20																			
06:39:54 2137.0 20.2 6 79 192 252 263 433 1.15 1.15 37.4 37.8 2131.0 507.6 6.0 0:39 1.22 0.84 0.0 0:44:42:4 2133.0 10.0 7 79 189 2523 261 275 1.15 1.15 37.5 40.7 2131.0 515.0 7.0 0:44 1.22 0.35 0.0 0:44:42:4 2133.0 17.5 5 79 193 2545 261 253 1.15 1.15 37.5 40.7 2131.0 515.0 7.0 0:44 1.22 0.35 0.0 0:47 1.22 0.35 0.0 0:24:42 1.22 0.12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.5													-							
06:44:51 2138.0 10.0 7 79 189 2529 261 275 1.15 1.15 37.5 40.7 2131.0 515.0 7.0 0:44 1.22 0.35 0.0 0:48:24 2133.0 17.5 5 79 193 2545 261 253 1.15 1.15 37.5 40.5 211.0 515.9 8.0 0:47 1.22 0.35 0.0 0:48:24 2133.0 17.5 5 79 193 2545 263 263 1.15 1.15 37.5 42.5 2111.0 515.9 8.0 0:47 1.22 0.33 0.0 07:22:32 2141.0 9.8 5 82 184 2585 268 277 1.15 1.15 38.3 40.9 2133.5 513.8 10.0 1:00 1.23 0.39 0.0 07:34:51 2142.0 12.5 6 82 189 2621 269 265 1.15 1.15 38.3 40.9 2133.5 513.8 10.0 1:00 1.23 0.39 0.0 07:39:51 2143.0 12.5 6 82 189 2621 269 284 1.15 1.15 38.5 41.1 2144.5 517.6 11.0 1:06 1.23 0.34 0.0 07:39:51 2143.0 12.9 7 88 167 2626 269 284 1.15 1.15 38.5 41.1 2144.5 517.6 11.0 1:06 1.23 0.34 0.0 07:44:17 2144.0 15.5 6 90 184 2615 269 280 1.15 1.15 38.7 41.8 2153.7 511.3 13.0 1:15 1.23 0.33 0.7 49:36 2145.0 8.6 8 90 169 2628 269 272 1.15 1.15 38.7 41.8 2153.7 511.3 13.0 1:15 1.23 0.33 0.7 49:36 2145.0 8.6 8 90 169 2628 269 272 1.15 1.15 38.7 41.8 2153.7 511.3 13.0 1:15 1.23 0.33 0.0 08:07:40.0 19.5 5 90 172 2657 269 255 1.15 1.15 39.1 42.2 2137.6 511.3 13.0 1:15 1.23 0.33 0.0 08:07:40.0 11.8 9 90 173 2665 269 255 1.15 1.15 39.1 42.2 2137.6 511.0 10.0 1:24 1.23 0.04 0.0 08:07:40 2145.0 15.0 1 10 90 172 2688 268 288 281 1.15 1.15 39.4 42.5 2138.0 512.0 16.0 1:29 1.23 1.03 0.0 08:07:40 2145.0 15.0 1 10 90 172 2688 269 285 1.15 1.15 39.4 42.5 2138.0 512.9 16.0 1:34 1.23 1.05 0.0 08:07:40 2145.0 15.0 21.4 4 9 90 173 2665 269 285 1.15 1.15 39.4 42.5 2138.0 512.9 16.0 1:34 1.23 1.05 0.0 08:07:40 2145.0 15.0 1 1.0 10 10 10 10 10 10 10 10 10 10 10 10 10																				
06:48:24 2139.0 17.5 5 79 193 2545 261 253 1.15 1.15 37.5 42.5 2131.0 515.9 8.0 0:47 1.22 0.33 0.0 0:21:38 2140.0 13.9 6 79 173 2562 256 361 1.15 1.15 37.5 42.5 2131.0 515.9 8.0 0:47 1.22 0.33 0.0 0:21:32 2141.0 9.8 5 82 184 2585 268 277 1.15 1.15 38.5 41.1 2132.5 517.4 9.0 0:53 1.23 0.91 0.0 0:39:31 2141.0 12.5 6 82 189 2521 259 255 1.15 1.15 38.5 41.1 2134.3 517.6 11.0 1.06 1.23 0.99 0.0 0:39:51 2143.0 12.9 7 88 167 2562 259 254 1.15 1.15 38.5 41.1 2134.3 517.6 11.0 1.06 1.23 0.99 0.0 0:39:51 2143.0 12.9 7 88 167 2562 259 254 1.15 1.15 38.5 41.5 2135.0 516.0 12.0 1:11 1.23 0.98 0.0 0:449:12 1.44.0 15.5 6 90 184 2515 259 250 1.15 1.15 38.5 41.5 2135.0 516.0 12.0 1:11 1.23 0.98 0.0 0:49:36 2145.0 8.6 8 90 169 2528 259 251 1.15 1.15 38.9 42.0 2136.4 511.2 14.0 1:21 1.23 1.09 0.0 0:55:14 2140.0 15.5 5 90 172 2567 259 255 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.98 0.0 0:02:46 2148.0 11.8 9 90 173 2565 259 255 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.44 0.0 0:03:02:46 2148.0 11.8 9 90 173 2565 259 255 1.15 1.15 39.4 42.5 2133.3 512.9 11.0 1:24 1.23 0.98 0.0 0:02:46 2148.0 11.8 9 90 173 2565 259 255 1.15 1.15 39.4 42.5 2133.3 512.9 11.0 1:34 1.23 0.98 0.0 0:02:46 2148.0 11.8 9 90 173 2565 259 255 1.15 1.15 39.4 42.5 2133.3 512.9 11.0 1:34 1.23 0.98 0.0 0:02:46 2148.0 11.8 9 90 173 2565 259 255 1.15 1.15 39.4 42.5 2133.3 512.9 11.0 1:34 1.23 0.98 0.0 0:02:46 2149.0 15.0 1.0 90 172 2568 259 255 1.15 1.15 39.5 42.1 2139.0 512.9 18.0 1:39 1.23 1.05 0.0 0:03:46 2149.0 15.0 1.0 90 172 2568 250 257 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:0. 1:34 1.23 0.93 0.0 0:03:48:44 2152.0 13.6 8 94 155 2507 257 520 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:0. 1:0. 1:34 1.23 0.93 0.0 0:03:48:44 2152.0 13.6 8 94 155 2507 257 520 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:0. 1:0. 1:0. 1:0. 1:0. 1:0. 1:0. 1:																				
07:21:38 2140.0 13.9 6 79 173 2562 265 261 1.15 1.15 37.9 42.1 2132.5 517.4 3.0 0.53 1.23 0.91 0.0 07:23:52 2141.0 9.8 5 82 164 2585 268 277 1.15 1.15 38.3 40.9 2133.5 513.8 10.0 1:00 1.23 0.99 0.70 1.34:51 2142.0 12.5 6 82 189 2621 259 265 1.15 1.15 38.3 40.9 2133.5 513.8 10.0 1:00 1.23 0.99 0.70 1.34:51 2142.0 12.5 6 82 189 2621 259 265 1.15 1.15 38.5 41.1 2134.3 517.6 11.0 1:06 1.22 0.94 0. 0. 07:39:51 2143.0 12.9 7 88 167 2626 269 284 1.15 1.15 38.6 41.5 2135.0 516.0 12.0 1:11 1.23 0.98 0. 07:44:17 2144.0 15.5 6 90 184 2615 269 200 1.15 1.15 38.6 41.5 2135.0 516.0 12.0 1:11 1.23 0.98 0. 07:49:36 2145.0 8.6 8 90 169 2628 269 272 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.93 0. 07:53:14 2146.0 19.5 5 90 172 2657 269 255 1.15 1.15 39.1 42.0 2136.4 511.2 14.0 1:21 1.23 1.01 0.0 07:55:14 2146.0 19.5 5 90 172 2657 269 255 1.15 1.15 39.1 42.0 2136.4 511.2 14.0 1:21 1.23 1.04 0.0:55:05 2147.0 13.2 8 90 174 2571 258 276 1.15 1.15 39.2 42.2 2137.6 512.0 16.0 1:29 1.23 1.02 0. 08:02:46 2148.0 11.8 9 90 174 2571 258 269 255 1.15 1.15 39.4 42.5 2133.3 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 255 1.15 1.15 39.4 42.5 2133.3 512.9 17.0 1:34 1.23 1.03 0. 08:10:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 39.7 42.5 2133.4 517.7 19.0 1:42 1.23 1.05 0. 08:15:40 2153.0 10.0 9 93 122 2610 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 165 2600 267 527 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 165 2610 268 610 1.15 1.15 40.2 41.8 2144.3 511.2 52.0 1.60 1.23 1.23 1.00 0. 09:24:56 215.0 15.5 8 92 160 2610 267 527 1.15 1.15 39.8 41.2 2151.5 521.4 20.0 2:03 1.23 1.03 0. 09:24:56 2150.0 15.5 8 92 160 2610 267 527 1.15 1.15 39.8 41.2 2151.1 521.4 20.0 2:03 1.23 1.03 0. 09:24:56 2150.0 15.5 8 92 160 2610 267 527 1.15 1.15 39.8 41.2 2151.1 521.4 20.0 2:03 1.23 1.00 0. 09:233:36 21610.0 15.3 8 92 169 2610 268 267 1.15 1.15 39.8 41.2 2151.1 521.4 521.4 20.0 2:03 1.23 1.00 0. 09:233:36 21610.0 15.3 8 92 169 2610 268 267 1.																				
07:29:22 2141.0 9.8 5 82 164 2585 268 277 1.15 1.15 38.3 40.9 2133.5 513.8 10.0 1:00 1.23 0.99 0. 07:39:51 2142.0 12.5 6 82 189 2621 259 265 1.15 1.15 38.5 41.1 2134.3 517.6 11.0 1:06 1.23 0.94 0. 07:39:51 2143.0 12.9 7 88 167 2626 269 284 1.15 1.15 38.5 41.1 2134.3 517.6 11.0 1:06 1.23 0.94 0. 07:39:51 2144.0 15.5 6 90 184 2615 269 290 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.98 0. 07:44:17 2144.0 15.5 6 90 184 2615 269 290 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.98 0. 07:53:14 2146.0 19.5 5 90 172 2687 269 275 1.15 1.15 38.9 42.0 2136.4 511.2 14.0 1:21 1.23 1.01 0. 07:53:14 2146.0 19.5 5 90 172 2687 269 285 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.44 0. 07:53:14 2146.0 19.5 5 90 173 2685 269 285 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.44 0. 08:02:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 0.44 0. 08:02:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:10:48 2150.0 21.4 8 90 156 2608 263 1.15 1.15 39.6 42.1 2139.0 512.9 18.0 1:39 1.23 1.05 0. 08:16:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.3 2147.1 500.4 22.0 1:60 1.23 1.10 0. 08:55:00 2153.0 10.0 9 93 162 2610 268 610 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2154.0 19.7 8 92 185 2610 268 610 1.15 1.15 40.2 40.5 2148.9 492.4 24.0 2:03 1.23 1.03 0. 09:03:13 2155.0 15.2 8 92 178 2610 268 610 1.15 1.15 40.2 40.5 2148.9 492.4 24.0 2:03 1.23 1.03 0. 09:04:03 2157.0 7.5 7 92 161 2610 268 603 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:24:58 2159.0 13.4 8 92 185 2610 268 263 1.15 1.15 40.2 40.5 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:31:30 2157.0 7.5 7 92 162 2610 268 263 1.15 1.15 40.4 41.3 215.1 521.4 28.0 2:30 1.23 1.02 0. 09:24:58 2159.0 13.4 8 92 185 2610 268 267 1.15 1.15 40.4 41.3 215.1 521.4 28.0 2:30 1.23 1.02 0. 09:24:58 2159.0 13.4 8 92 185 2610 268 267 1.15 1.15 40.4 41.3 215.1 521.4																				
07:34:51 2142.0 12.5 6 82 189 2621 269 265 1.15 1.15 38.5 41.1 2134.3 517.6 11.0 1:06 1.23 0.94 0. 07:33:51 2143.0 12.9 7 88 167 2626 269 284 1.15 1.15 38.5 41.1 2134.3 517.6 11.0 1:06 1.23 0.94 0. 07:44:17 2144.0 15.5 6 90 184 2615 269 290 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.98 0. 07:49:36 2145.0 8.6 8 90 189 2628 269 272 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.98 0. 07:49:36 2145.0 8.6 8 90 182 2657 269 255 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.98 0. 07:58:05 2147.0 13.2 8 90 172 2657 269 255 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 1.01 0. 07:58:14 2146.0 19.5 9 90 173 2655 269 255 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 1.01 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.1 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.5 42.1 2139.0 512.9 18.0 1:39 1.23 1.03 0. 08:16:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 39.7 42.5 2139.4 517.7 19.0 1:42 1.23 0.93 0. 08:16:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.03 0. 08:55:00 2154.0 19.7 9 91 162 2610 268 612 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2154.0 19.7 8 92 185 2610 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.00 0. 09:03:20 2155.0 15.2 8 92 166 2610 268 610 1.15 1.15 40.2 41.8 2144.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:21:36 2159.0 15.4 8 92 180 2610 268 271 1.15 1.15 19.5 40.4 21.1 251.1 521.4 280.0 2:08 1.23 1.00 0. 09:33:30 2160.0 15.2 8 92 180 2610 268 271 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:33:30 2160.0 15.2 8 92 180 2610 268 271 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:33:30 2160.0 15.2 8 92 180 2610 268 271 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:33:30 2160.0 15.2 8 92 180 2610 268 271 1.15 1.15 39.8 41.2 2151.1 521.4 280.0 2:34 1.23 1.00 0. 09:33:30 2160.0 15.2 8 92 180 2610 268 271 1.15 1.15 40.1 40.				-																
07:39:51 2143.0 12.9 7 88 167 2626 269 284 1.15 1.15 38.6 41.5 2135.0 516.0 12.0 1:11 1.23 0.98 0. 07:44:17 2144.0 15.5 6 90 184 2615 269 290 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.98 0. 07:49:36 2145.0 8.6 8 90 169 2628 269 272 1.15 1.15 38.9 42.0 2136.4 511.3 13.0 1:15 1.23 0.93 0. 07:53:14 2146.0 19.5 5 90 172 2687 269 272 1.15 1.15 38.9 42.0 2136.4 51.0 12.1 12.1 1.23 0.98 0. 07:55:05 2147.0 13.2 8 90 174 2671 268 267 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.84 0. 07:58:05 2147.0 13.2 8 90 174 2671 268 269 285 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.84 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.2 42.2 2137.6 512.0 16.0 1:29 1.23 1.02 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.05 0. 08:10:48 2150.0 21.4 8 90 156 2688 269 285 1.15 1.15 39.7 42.5 2139.4 517.7 19.0 1:42 1.23 0.93 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 39.7 42.5 2139.4 517.7 19.0 1:42 1.23 0.93 0. 08:55:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 09:03:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 1.03 0. 09:03:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.2 40.5 2148.9 492.4 24.0 2:08 1.23 1.03 0. 09:03:20 2155.0 15.2 8 92 166 2610 268 610 1.15 1.15 39.8 40.9 2148.9 492.4 24.0 2:08 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 268 268 115 1.15 1.15 39.8 40.9 2148.9 492.4 24.0 2:08 1.23 1.00 0. 09:19:54 2158.0 10.3 7 92 165 2610 268 274 1.15 1.15 39.5 41.2 2151.1 522.7 30.0 2:25 1.23 1.02 0. 09:23:36 2160.0 15.2 8 92 180 2610 268 274 1.15 1.15 39.5 41.2 2151.1 522.7 30.0 2:25 1.23 1.02 0. 09:33:36 2160.0 15.2 8 92 185 2610 268 274 1.15 1.15 39.5 43.1 2151.1 522.7 30.0 2:39 1.23 1.02 0. 09:33:36 2160.0 15.2 8 92 185 2610 268 274 1.15 1.15 1.15 40.5 43.3 2151.1 522.7 30.0 2:39 1.23 1.02 0. 09:33:36 2160.0 15.2 8 92 185 2610 268 274 1.15 1.15 4				-																
07:44:17 2144.0 15.5 6 90 184 2615 269 290 1.15 1.15 38.7 41.8 2135.7 511.3 13.0 1:15 1.23 0.93 0. 07:49:36 2145.0 8.6 8 90 169 2628 269 272 1.15 1.15 38.9 42.0 2136.4 511.2 14.0 1:21 1.23 1.01 0. 07:53:14 2146.0 19.5 5 90 172 2657 269 255 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1221 1.23 1.01 0. 08:07:58:05 2147.0 13.2 8 90 174 2671 268 276 1.15 1.15 39.2 42.2 2137.6 512.0 16.0 1:29 1.23 1.02 0. 08:02:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.2 42.2 2137.6 512.0 16.0 1:29 1.23 1.02 0. 08:02:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 268 268 283 1.15 1.15 39.6 42.1 2139.0 512.9 18.0 1:39 1.23 1.05 0. 08:10:48 2150.0 21.4 8 90 165 2680 268 268 283 1.15 1.15 39.6 42.1 2139.0 512.9 18.0 1:39 1.23 1.05 0. 08:46:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.00 0. 08:55:00 2153.0 10.0 9 93 162 2610 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2153.0 10.0 9 93 162 2610 268 6610 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 09:03:03:02 2155.0 15.2 8 92 176 2610 268 6610 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:03:13 2156.0 15.5 8 92 166 2610 268 6610 1.15 1.15 39.4 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 268 6610 1.15 1.15 39.4 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:23:08 2150.0 15.2 8 92 173 2610 268 2681 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.03 0. 09:23:08 2150.0 15.2 8 92 173 2610 268 2681 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:23:08 2150.0 15.2 8 92 166 2610 267 327 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:23:08 2150.0 15.2 8 92 180 2610 268 268 11.15 1.15 39.6 41.2 2151.1 521.2 30.9 0. 2:31 1.23 1.00 0. 09:33:35 2150.0 15.2 8 92 180 2610 268 268 11.15 1.15 39.6 41.2 2151.1 521.2 30.9 0. 2:31 1.23 1.00 0. 09:33:35 2150.0 15.2 8 92 180 2610 268 268 11.15 1.15 39.6 41.2 2151.1 521.2 30.9 0. 2:31 1.23 1.00 0. 09:33:35 2150.0 15.2 8 92 180 2610																				
07:49:36 2145.0 8.6 8 90 169 2628 269 272 1.15 1.15 38.9 42.0 2135.4 511.2 14.0 1:21 1.23 1.01 0. 07:58:05 2147.0 13.2 8 90 174 2657 269 255 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.84 0. 07:58:05 2147.0 13.2 8 90 174 2671 268 267 269 275 1.15 1.15 39.1 42.2 2137.6 512.0 16.0 1:29 1.23 1.03 0. 08:07:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:08:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 39.7 42.5 2138.3 512.9 18.0 1:39 1.23 1.05 0. 08:58:00 2153.0 10.0 9 93 162 2610 267 567 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:58:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 08:58:00 2153.0 10.0 9 93 162 2610 268 610 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.00 0. 09:08:13 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:08:13 2155.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.8 40.9 2148.9 492.4 24.0 2:08 1.23 1.00 0. 09:19:54 2158.0 10.3 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:13 1.23 1.00 0. 09:29:08 2160.0 15.2 8 92 173 2610 268 274 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:29:08 2160.0 15.2 8 92 173 2610 268 274 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:31:36 2161.0 15.3 8 92 173 2610 268 274 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:31:36 2161.0 15.3 8 92 173 2610 268 274 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:31:36 2161.0 15.3 8 92 173 2610 268 274 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:49:19 2164.1 12.4 6 99 171 2610 268 274 1.15 1.15 40.2 40.3 2151.1 521.2 52.4 29.0 2:34 1.23 1.00 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.2 40.3 2151.1 521.1 521.2 3.0 0.0 2:49 1.23 1.00 0. 09:58:00 2166.0 14.8 6 99 171 2610 268 2																-				
07:53:14 2146.0 19.5 5 90 172 2657 269 255 1.15 1.15 39.1 42.2 2136.9 510.4 15.0 1:24 1.23 0.84 0. 07:53:05 2147.0 13.2 8 90 174 2671 268 267 1.15 1.15 39.2 42.2 2137.6 512.0 16.0 1:29 1.23 1.02 0. 08:02:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.4 42.5 2138.0 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.6 42.1 2139.0 512.9 18.0 1:39 1.23 1.05 0. 08:10:48 2150.0 21.4 8 90 156 2685 268 283 21.15 1.15 39.6 42.1 2139.0 512.9 18.0 1:39 1.23 1.05 0. 08:10:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 39.6 42.1 2139.0 512.9 18.0 1:39 1.23 1.05 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 185 2610 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 185 2610 268 612 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 09:03:20 2155.0 15.5 8 92 176 2610 268 612 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 09:103:20 2155.0 15.5 8 92 185 2610 268 608 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.03 0. 09:03:13 2155.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:22:08 2159.0 13.4 8 92 179 2610 268 279 1.15 1.15 39.6 41.2 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:33:36 2161.0 15.2 8 92 185 2610 268 279 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:33:36 2161.0 15.3 8 92 179 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 40.4 41.9 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 40.4 41.9 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:35:30 2166.0 16.3 8 95 171 2610 268 274 1.15 1.15 40.4 41.9 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:39:30 2166.0 13.2 7 98 184 2610 268 267 1.15 1.15 40.4 41.9 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.4 41.9																				
08:05:46 2147.0 13.2 8 90 174 2671 268 276 1.15 1.15 39.2 42.2 2137.6 512.0 16.0 1:29 1.23 1.02 0. 08:02:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:10:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 39.7 42.5 2139.4 517.7 19.0 1:34 1.23 1.03 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 39.7 42.5 2139.4 517.7 19.0 1:42 1.23 0.93 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 08:55:00 2154.0 19.7 8 92 185 2610 268 610 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 08:58:00 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:03:12 2155.0 15.2 8 92 176 2610 268 608 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:03:13 2155.0 15.5 8 92 166 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:23:08 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.00 0. 09:23:08 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:23:08 2160.0 15.2 8 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:33:16 2161.0 15.3 8 92 173 2610 268 274 1.15 1.15 39.6 43.1 2151.1 521.4 28.0 2:34 1.23 1.00 0. 09:33:30 2165.0 15.2 8 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 521.4 28.0 2:34 1.23 1.00 0. 09:33:31 2165.0 15.2 8 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:33:32 2165.0 15.2 8 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 521.4 28.0 2:34 1.23 1.00 0. 09:33:33 2165.1 14.9 7 98 184 2610 268 274 1.15 1.15 40.4 43.7 2152.3 52.2 33.1 2:34 1.23 0.98 0. 09:53:33 2165.0 15.2 8 92 185 2610 268 268 274 1.15 1.15 40.4 43.8 2153.0 524.5 34.1 2:59 1.23 0.99 0. 09:53:33 2165.0 15.2 8 93 187 2610 268 267 267 1.15 1.15 40.5 4				-																
08:02:46 2148.0 11.8 9 90 173 2685 269 285 1.15 1.15 39.4 42.5 2138.3 512.9 17.0 1:34 1.23 1.03 0. 08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.6 42.1 2139.0 512.3 18.0 1:39 1.23 1.05 0. 08:10:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 39.6 42.1 2139.0 512.3 18.0 1:39 1.23 1.05 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.00 0. 08:55:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 185 2610 268 610 1.15 1.15 40.2 41.8 2144.1 511.1 500.4 22.0 1:60 1.23 1.10 0. 09:08:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:08:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.03 0. 09:08:13 2156.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:19 1.23 1.00 0. 09:19:54 2158.0 10.3 7 92 163 2610 267 430 1.15 1.15 39.7 40.8 2159.3 522.2 27.0 2:25 1.23 1.00 0. 09:24:58 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.5 42.4 2151.1 521.4 28.0 2:30 1.23 1.02 0. 09:23:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.5 42.4 2151.1 521.4 28.0 2:30 1.23 1.02 0. 09:23:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.5 42.4 2151.1 521.4 28.0 2:30 1.23 1.02 0. 09:33:36 2161.0 15.3 8 92 173 2610 268 274 1.15 1.15 39.6 41.2 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:33:36 2161.0 15.3 8 92 173 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.4 524.8 32.0 2:30 1.23 1.03 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.6 43.1 2151.4 524.8 32.0 2:34 1.23 1.05 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:55:333 2165.0 14.8 9 5171 2610 268 274 1.15 1.15 40.9 43.2 2151.4 524.8 32.0 2:34 1.23 1.03 0.99 0. 10:30:55 2167.0 12.3 7 103 171 2610 268 274 1.15 1.15 40.9 43.2 2150.3 524.5 34.1 2:59 1.23 1.02 0. 10:03:55 2167.0 12.3 7 103 171 2610 268 277 271 1.15 1																				
08:07:40 2149.0 15.0 10 90 172 2688 269 285 1.15 1.15 39.6 42.1 2133.0 512.9 18.0 1:39 1.23 1.05 0. 08:10:48 2150.0 21.4 8 90 156 2686 268 283 1.15 1.15 39.7 42.5 2139.4 517.7 19.0 1:42 1.23 0.93 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2154.0 19.7 8 92 185 2610 268 612 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 09:09:09:120 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.2 41.9 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:08:13 2156.0 15.5 8 92 166 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.03 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:24:58 2159.0 13.4 8 92 173 2610 268 279 1.15 1.15 39.6 41.2 151.1 522.4 29.0 2:34 1.23 1.00 0. 09:29:08 2160.0 15.2 8 92 185 2610 268 279 1.15 1.15 39.6 41.2 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:33:36 2161.0 15.3 8 92 179 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.09 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 0.99 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.09 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 0.98 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.09 0. 09:55:00 2166.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:55:00 2166.0 14.8 6 98 171 2610 269 269 261 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 10:03:50 2167.0 12.3 7 108 160 2610 270 313 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 10:03:50 2167.0 12.3 7 108 160 2610 270 313 1.15 1.15 40.0 43.3 2152.3 524.5 34.1 2:59 1.23 0.95 0. 10:03:50 2166.0 14.8 6 98 171 2610 269 266 263 1.15 1.15 40.0																				
08:10:48 2150.0 21.4 8 90 156 268 268 283 1.15 1.15 39.7 42.5 2139.4 517.7 19.0 1:42 1.23 0.93 0. 08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 185 2610 268 612 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 09:03:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.2 41.8 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:08:13 2156.0 15.5 8 92 166 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.03 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 430 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:19 1.23 1.01 0. 09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.02 0. 09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:33:33 2165.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.3 2151.1 522.4 29.0 2:34 1.23 1.09 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.3 2151.1 522.3 31.0 2:43 1.23 0.99 0. 09:537:33 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 39.6 43.3 2151.1 523.3 525.2 33.1 2:54 1.23 0.99 0. 09:537:33 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.99 0. 09:537:33 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.99 0. 09:537:33 2162.0 15.4 9 93 184 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.99 0. 09:537:33 2165.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.99 0. 10:03:50 2166.0 14.8 6 98 171 2610 268 267 1.15 1.15 40.0 43.8 2152.3 524.5 34.1 2:59 1.23 0.99 0. 10:03:50 2166.0 14.8 6 98 171 2610 268 267 1.15 1.15 40.0 43																				
08:48:44 2152.0 13.6 8 94 165 2607 267 520 1.15 1.15 40.2 41.8 2144.1 511.1 21.0 1:54 1.23 1.10 0. 08:55:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 185 2610 268 612 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:03:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.00 0. 09:08:13 2156.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.02 0. 09:29:08 2160.0 15.2 8 92 180 2610 268 283 1.15 1.15 39.5 42.4 2151.1 521.4 28.0 2:30 1.23 1.02 0. 09:39:38 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:39:37:35 2162.0 15.4 9 92 185 2610 268 279 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.8 43.4 2151.4 522.7 30.0 2:49 1.23 1.05 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 1.15 39.8 43.4 2151.4 522.3 31.0 2:43 1.23 0.98 0. 09:58:00 2165.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.2 43.8 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.2 43.8 2152.3 525.2 33.1 2:54 1.23 0.95 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 267 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 1.05 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 267 267 1.15 1.15 40.9 43.2 2166.8 528.1 40.0 3:29 1.23 1.00 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 267 267 1.15 1.15 40.9 43.2 2166.8 506.1 38.0 3:09 1.23 1.00 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 267 267 1.15 1.15 40.9 43.2 2166.8 506.1 38.0 3:09 1.23 1.00 0. 09:39:57 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:31 1.23 0.99 0. 00:33:57 2172.0 16.5 7 108 178 2662 266 267 1.1			-	-															1.05	0.06
08:55:00 2153.0 10.0 9 93 162 2610 267 561 1.15 1.15 40.2 41.9 2147.1 500.4 22.0 1:60 1.23 1.10 0. 08:58:00 2154.0 19.7 8 92 185 2610 268 612 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.93 0. 09:08:13 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.03 0. 09:08:13 2155.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:19 1.23 1.01 0. 09:29:08 2160.0 15.2 8 92 180 2610 267 430 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.02 0. 09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.5 42.4 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:33:36 2161.0 15.3 8 92 179 2610 268 278 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:33:35 2162.0 15.4 9 92 185 2610 268 278 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.3 31.0 2:41 1.23 0.98 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.98 0. 09:59:30 2165.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.98 0. 09:59:30 2166.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.98 0. 09:59:30 2166.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.98 0. 09:59:30 2166.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.98 0. 09:59:30 2166.0 14.8 6 99 180 2610 268 274 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.98 0. 09:59:30 2166.0 14.8 6 99 180 2610 268 274 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.98 0. 09:59:00 2166.0 14.8 6 99 181 2610 268 271 1.15 1.15 40.2 43.8 2153.0 525.2 33.1 2:54 1.23 0.99 0. 09:37:37 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 40.9 40.9 2166.5 530.1 43.0 3:03 1.23 1.00 0. 00:39:57 2170.0 13.2 5 93 167 2637 267 267 1.15 1.15 40.9 40.9 2166		2150.0	21.4	8	90				283	1.15	1.15	39.7	42.5	2139.4	517.7	19.0	1:42	1.23	0.93	0.06
08:58:00 2154.0 19.7 8 92 185 2610 268 612 1.15 1.15 40.2 40.5 2148.7 496.2 23.0 2:03 1.23 0.99 0. 09:03:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.03 0. 09:08:13 2156.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:19 1.23 1.01 0. 09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.02 0. 09:24:58 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.5 42.4 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:337:35 2162.0 15.4 9 92 185 2610 268 279 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 523.9 31.0 2:43 1.23 0.99 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 274 1.15 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:53:33 2165.0 14.8 6 98 171 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.96 0. 09:58:00 2166.0 14.8 6 98 171 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.95 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.22 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.22 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 40.7 43.8 2158.5 50.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.8 528.3 43.0 3:03 1.23 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267	08:48:44	2152.0	13.6	8	94	165	2607	267	520	1.15	1.15	40.2	41.8	2144.1	511.1	21.0	1:54	1.23	1.10	0.11
09:03:20 2155.0 15.2 8 92 176 2610 268 610 1.15 1.15 40.1 40.9 2148.9 492.4 24.0 2:08 1.23 1.03 0.09:08:13 2156.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0.09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:19 1.23 1.01 0.09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:19 1.23 1.01 0.09:29:08 2160.0 15.2 8 92 180 2610 268 283 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.02 0.09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0.09:33:36 2161.0 15.3 8 92 173 2610 268 278 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0.09:33:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0.09:37:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0.09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0.09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0.09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:53:33 2165.0 14.8 6 98 171 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.98 0.09:58:00 2166.0 14.8 6 98 171 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.98 0.09:58:00 2166.0 14.8 6 98 171 2610 268 272 1.15 1.15 40.2 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.5 40.3 2158.2 514.1 37.0 3:14 1.23 1.02 0.10:14:53 2169.0 13.9 7 108 164 2610 270 313 1.15 1.15 40.5 40.9 43.2 2164.5 530.7 41.0 3:33 1.23 0.99 0.10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.99 0.10:33:57 2172.0 16.5 7 108 178 2663 266 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0.10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.57 1.57 1.15 40.8 41.9 2166.8 528.3 43.0 3:43 1.23 0.94 0.	08:55:00	2153.0	10.0	9	93	162	2610	267	561	1.15	1.15	40.2	41.9	2147.1	500.4	22.0	1:60	1.23	1.10	0.11
09:08:13 2156.0 15.5 8 92 166 2610 268 608 1.15 1.15 39.9 40.9 2148.9 500.7 25.0 2:13 1.23 1.00 0. 09:14:03 2157.0 7.5 7 92 163 2610 267 527 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:19 1.23 1.01 0. 09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.8 40.9 2148.9 519.2 26.0 2:19 1.23 1.01 0. 09:24:58 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.02 0. 09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:33:36 2161.0 15.3 8 92 179 2610 268 276 1.15 1.15 39.6 41.2 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 276 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:59:30 2166.0 14.8 6 98 171 2610 268 277 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:59:00 2166.0 14.8 6 98 171 2610 268 267 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.95 0. 10:03:50 2167.0 12.3 7 103 171 2610 269 269 1.15 1.15 40.2 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 40.7 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:30:50 2167.0 12.3 7 103 171 2610 269 269 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:30:55 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 40.9 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 267 1.15 1.15 40.8 41.9 2166.8 528.3 43.0 3:43 1.23 0.94 0.		2154.0	19.7	8	92	185	2610	268	612	1.15	1.15	40.2	40.5	2148.7	496.2	23.0	2:03	1.23	0.93	0.08
09:14:03 2157.0 7.5 7 92 163 2510 257 527 1.15 1.15 39.8 40.9 2148.9 519.2 25.0 2:19 1.23 1.01 0. 09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.02 0. 09:24:58 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.02 0. 09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.00 0. 09:33:36 2161.0 15.3 8 92 179 2610 268 276 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 284 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.3 2151.1 523.9 31.0 2:43 1.23 0.98 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2153.0 524.5 34.1 2:59 1.23 0.95 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:14:53 2169.0 13.9 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:33:57 2173.0 10.3 6 101 166 2670 267 267 1267 1.15 1.15 40.8 41.9 2166.5 530.7 41.0 3:33 1.23 0.94 0.	09:03:20	2155.0	15.2	8	92	176	2610	268	610	1.15	1.15	40.1	40.9	2148.9	492.4	24.0	2:08	1.23	1.03	0.08
09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.02 0.09:24:58 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.02 0.09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.6 43.1 2151.1 522.4 29.0 2:34 1.23 1.00 0.09:33:36 2161.0 15.3 8 92 179 2610 268 276 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0.09:37:35 2162.0 15.4 9 92 185 2610 268 274 1.15 1.15 39.6 43.1 2151.1 523.9 31.0 2:43 1.23 0.98 0.09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.3 2151.1 523.9 31.0 2:43 1.23 0.98 0.09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0.09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:53:33 2165.1 14.9 7 98 184 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.95 0.10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0.10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0.10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0.10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.23 0.94 0.10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.	09:08:13	2156.0	15.5	8	92	166	2610	268	608	1.15	1.15	39.9	40.9	2148.9	500.7	25.0	2:13	1.23	1.00	0.08
09:19:54 2158.0 10.3 7 92 165 2610 267 430 1.15 1.15 39.7 40.8 2150.3 522.2 27.0 2:25 1.23 1.02 0.09:24:58 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.02 0.09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.5 42.4 2151.1 522.4 29.0 2:34 1.23 1.00 0.09:33:36 2161.0 15.3 8 92 179 2610 268 276 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0.09:37:35 2162.0 15.4 9 92 185 2610 268 284 1.15 1.15 39.6 43.1 2151.1 523.9 31.0 2:43 1.23 0.99 0.09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.6 43.3 2151.1 523.9 31.0 2:43 1.23 0.98 0.09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0.09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:53:33 2165.1 14.9 7 98 184 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.95 0.10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2155.3 524.0 36.0 3:09 1.23 1.02 0.10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0.10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0.10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.23 0.94 0.10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.8 41.9 2166.8 528.3 43.0 3:43 1.23 0.94 0.	09:14:03	2157.0	7.5	7	92	163	2610	267	527	1.15	1.15	39.8	40.9	2148.9	519.2	25.0	2:19	1.23	1.01	0.08
09:24:58 2159.0 13.4 8 92 173 2610 268 283 1.15 1.15 39.6 41.2 2151.1 521.4 28.0 2:30 1.23 1.02 0.09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.5 42.4 2151.1 522.4 29.0 2:34 1.23 1.00 0.09:33:36 2161.0 15.3 8 92 179 2610 268 276 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0.09:37:35 2162.0 15.4 9 92 185 2610 268 284 1.15 1.15 39.6 43.3 2151.1 523.9 31.0 2:43 1.23 0.98 0.09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0.09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:53:33 2165.1 14.9 7 98 184 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.98 0.10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0.10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0.10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0.10:33:57 2172.0 16.5 7 108 178 2663 266 267 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0.10:39:57 2173.0 10.3 6 101 166 2670 267 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.09 0.10:43:58 2174.0 15.2 7 97 191 2684 267 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 0.94 0.	09:19:54	2158.0	10.3	7	92	165	2610	267												
09:29:08 2160.0 15.2 8 92 180 2610 268 279 1.15 1.15 39.5 42.4 2151.1 522.4 29.0 2:34 1.23 1.00 0. 09:33:36 2161.0 15.3 8 92 179 2610 268 276 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 284 1.15 1.15 39.6 43.3 2151.1 523.9 31.0 2:43 1.23 0.98 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.98 0. 09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.96 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.8 41.9 2166.8 528.3 43.0 3:43 1.23 0.94 0.	09:24:58			8	92															
09:33:36 2161.0 15.3 8 92 179 2610 268 276 1.15 1.15 39.6 43.1 2151.1 522.7 30.0 2:39 1.23 0.99 0. 09:37:35 2162.0 15.4 9 92 185 2610 268 284 1.15 1.15 39.6 43.3 2151.1 523.9 31.0 2:43 1.23 0.98 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.96 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:14:53 2169.0 13.9 7 108 160 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.																				
09:37:35 2162.0 15.4 9 92 185 2610 268 284 1.15 1.15 39.6 43.3 2151.1 523.9 31.0 2:43 1.23 0.98 0. 09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0. 09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.96 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.90 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				-																
09:44:06 2163.0 6.1 8 95 171 2610 268 274 1.15 1.15 39.8 43.4 2151.4 524.8 32.0 2:49 1.23 1.05 0.09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0.09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.96 0.09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0.10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0.10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0.10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0.10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0.10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0.10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0.10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0.10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.																				
09:49:19 2164.1 12.4 6 99 180 2610 268 274 1.15 1.15 40.0 43.7 2152.3 525.2 33.1 2:54 1.23 0.98 0. 09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.96 0. 09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.																	-			
09:53:33 2165.1 14.9 7 98 184 2610 268 272 1.15 1.15 40.2 43.8 2153.0 524.5 34.1 2:59 1.23 0.96 0. 09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				-																
09:58:00 2166.0 14.8 6 98 171 2610 269 269 1.15 1.15 40.3 43.6 2154.1 525.1 35.0 3:03 1.23 0.95 0. 10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				-																
10:03:50 2167.0 12.3 7 103 171 2610 268 267 1.15 1.15 40.5 43.8 2155.3 524.0 36.0 3:09 1.23 1.04 0. 10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				Ė																
10:09:12 2168.0 10.8 7 108 164 2610 270 313 1.15 1.15 40.7 43.8 2158.2 514.1 37.0 3:14 1.23 1.02 0. 10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				•																
10:14:53 2169.0 13.9 7 108 160 2610 271 351 1.15 1.15 40.9 43.2 2160.8 506.1 38.0 3:20 1.23 1.02 0. 10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				1																
10:26:07 2170.0 13.2 5 93 167 2637 267 271 1.15 1.15 41.0 41.3 2162.9 527.2 39.0 3:25 1.23 0.90 0. 10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				7																
10:30:15 2171.0 17.1 6 99 171 2655 266 263 1.15 1.15 41.0 41.1 2163.6 528.1 40.0 3:29 1.23 0.92 0. 10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				-																
10:33:57 2172.0 16.5 7 108 178 2663 266 263 1.15 1.15 40.9 40.9 2164.5 530.7 41.0 3:33 1.23 0.94 0. 10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				5																
10:39:57 2173.0 10.3 6 101 166 2670 267 267 1.15 1.15 40.8 41.9 2166.1 530.1 42.0 3:39 1.23 1.00 0. 10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				6																
10:43:58 2174.0 15.2 7 97 191 2684 267 267 1.15 1.15 40.7 42.7 2166.8 528.3 43.0 3:43 1.23 0.94 0.				7																
	10:39:57	2173.0	10.3	6	101	166														
	10:43:58	2174.0	15.2	1																
10:48:56 2175.0 14.7 7 97 177 2686 268 257 1.15 1.15 40.6 43.1 2167.5 529.6 44.0 3:48 1.23 1.00 0.				7			2686	268	257	1.15	1.15	40.6	13.1	2167.5	529.6	44.0	3:48	1.23	1.00	0.06

TINE	DEPTH	ROP	WOB	RPH	TRQ	SPP	FL IN	OV TUO		DENSITY	Y MUD IN	TEMP	RETURNS DEPTH	PVT	-BI	! -	BCD	DIC	GA
h:mm:sec		a/hr	klb		anp	psi	EP.		18	zg OUI	deg		1	bbl	ats	hh:mm	18		X
10:52:21	2176.0	17.7	1	97	187	2694	268	260	1.15	1.15			2167.5	529.7	45.0	3:51	1.23	0.91	0.06
	2177.0		6	97	175	2688	267		1.15	1.15			2167.5	529.6	46.0			0.94	
11:00:16	2178.0		6	97	174	2699	268		1.15		40.8		2167.5	529.5				0.91	
	2179.0		7	97	176	2702	268				40.8		2167.5	530.3	48.0			0.85	
11:19:26	2180.1		8	96	197	2706	268		1.15		40.9		2168.2	521.9	49.1			0.89	
11:21:47	2181.0		6	95	196	2746	270		1.15		41.1		2168.5	527.9	50.0			0.79	
11:24:54	2182.0		6	96	189	2743	270		1.15			43.2	2169.1	529.8	51.0	4:10		0.85	
11:33:31	2183.0		6	87	206	2749	263		1.15		41.3		2169.8	529.2		4:13		0.85	
11:35:33	2184.0		8	98	194	1585	262			1.15			2170.2	529.8	53.0			0.84	
11:38:53	2185.0		1	98	208	2708	264		1.15		41.3		2171.0	527.4	54.0			0.92	
11:41:22	2186.0		9	98	218	2710	265		1.15		41.4		2171.7	527.8	55.0			0.91	
11:44:02	2187.0		10	98	235	2710	267		1.15			43.6		530.9	56.0			0.94	
11:55:42	2188.0	22.5	9	96	207	2710	266		1.15		41.5		2174.1	526.7	57.0	4:27		0.97	
11:59:12	2189.0		3	96	194	2710	258		1.15				2174.7	528.4	58.0			0.96	
12:07:23	2190.0	23.0	10	94	205	2710	263			1.15			2176.7	530.9	59.0			0.95	
12:11:01	2191.0		8	94	195	2670	263			1.15		11.2	2177.5	526.4	60.0			0.95	
12:14:02	2192.0		9	94	209	2570	263					44.3	2178.3	524.7		4:40		0.95	
12:17:00	2193.0	26.4	9	94	209	2673	263					44.3	2178.9	526.7	62.0			0.94	0.0
12:19:12	2194.0	26.8	8	94	195	2692	263		1.15		41.7	44.4	2179.3	527.0	63.0			0.87	0.0
12:34:23	2195.0	7.3	10	91	161	2573	261		1.15			44.2	2181.8	526.7	64.0			1.25	
12:45:34	2196.0	4.9	10	97	167	2680	255		1.15			44.0	2187.4	510.2	65.0			1.24	
12:56:13	2197.0	5.1	9	92	156	2680	262		1.15		42.0		2187.4	386.7	66.0			1.19	
13:04:27	2198.0		10	84	171	2680	265			1.15	41.7		2189.9	392.5	67.0			1.14	
13:10:09	2199.0	11.8	9	84	171	2680	263		1.15			42.9	2191.5	406.9	68.0			1.06	
13:14:58	2200.0		10	14	183	2680	263		1.15			42.5	2193.3	403.9	69.0			1.03	
13:24:56	2201.0		9	77	172	2687	263		1.15			43.9	2194.9	406.1	70.0			1.06	
13:32:36	2202.0		10	75	164	2659	266		1.15			44.7	2195.6		71.0			1.10	
13:40:16	2203.1		10	78	181	2664	266		1.15		41.7		2196.2		72.1			1.12	
13:45:02	2204.0		10	81	178	2678	266		1.15		41.9		2196.5	399.0	73.0		-	1.03	
13:51:04	2205.0		8	95	161	2679	265		1.15			45.3	2197.1	400.3	74.0			1.07	
13:56:54	2206.0	-	9	80	164	2677	265		1.15		42.2		2198.0	400.5	75.0			1.05	
14:28:53	2207.0		10	79	165	2584	266		1.15			45.3	2203.0	400.1	76.0			1.36	
14:34:17	2208.0	11.1	11	79	186	2598	266		1.15				2203.9	398.8	77.0			1.07	
15:23:43	2209.0	1.6	13	21	165	2706	264	251	1.15	1.15	42.9	45.0	2208.4	397.6	78.0	7:15	1.23	1.49	0.0

DrillByte Drilling Data Printout COMPANY: BHP PETROLEUM

WELL: KINERVA I

TINE	DEPTH	ROP	MOB	RPH	TRQ	SPP		.OV TUO	NUD In	DENSITY	MUD	TEMP	RETURNS DEPTH	PVT	-81	T-	ECD	DIC	GAS
h:mm:mec	1	s/hr	klb		amp	psi	. 81			ag.	deg		1	bbl	1	hh:mm	ıg		*
2nd April	1993																		
MB#12 6.0	" HTC AT	J44C 3	xll je	ts.															
05:15:34	2210.0	5.2	12.3	62	109	1601	242	251	1.15	1.15	35.3	41.3	2209.2	370	1.0	1:06	1.23	1.41	0.00
05:50:05	2211.0	3.8	22.3	69	125	1494	242	251	1.15	1.15	38.2	41.9	2209.7	371	2.0	1:40	1.23	1.79	0.0
06:32:36	2212.0	1.2	26.0	78	137	1500	243	267	1.15	1.15	39.3	41.7	2211.1	334	3.0	2:23	1.23	1.97	0.0
07:24:08	2213.0	1.8	22.1	85	122	1500	242	242	1.15	1.15	39.3	41.2	2212.2	346	4.0	1:15	1.23	1.94	0.0
07:59:29	2214.0	3.3	22.4	85	127	1520	242	238	1.15	1.15	39.8	42.5	2212.7	353	5.0	3:50	1.23	1.85	0.0
08:36:37	2215.0	1.3	23.1	85	125	1520	242	242	1.15	1.15	40.0	42.5	2213.6	367	6.0	4:27	1.23	1.87	0.0
09:28:15	2216.0	1.1	22.4	85	122	1520	242	244	1.15	1.15	40.2	42.5	2215.0	377	7.0	5:19	1.23	1.95	0.0
10:00:57	2217.0	6.2	22.5	85	127	1507	243	244	1.15	1.16	40.2	42.7	2215.6	387	8.0	5:51	1.23	1.83	0.0
10:40:14	2218.0	5.6	15.3	12	140	1505	244	241	1.15	1.16	40.2	42.7	2216.4	430	9.0	5:56	1.23	1.77	0.0
10:46:11	2219.0	8.4	17.7	86	141	1505	247	313	1.15	1.16	40.1	42.5	2216.8	392	10.0	6:02	1.23	1.27	0.0
10:48:24	2220.0	17.2	16.9	86	135	1505	246	328	1.15	1.15	40.2	42.7	2217.0	389	11.0	6:04	1.23		0.0
10:52:35	2221.0	16.3	19.3	86	145	1505	241		1.15			40.6	2217.6	391	12.0	6:08	1.23		0.0
10:57:48	2222.0	12.5	19.4	86	143	1505	240	333	1.15	1.15	40.2	40.2	2218.1	388	13.0	6:13	1.23		0.0
11:07:21	2223.0	4.4	18.4	86	143	1505	237	266	1.15	1.16	40.1	40.4	2218.7	408	14.0	6:23	1.23		0.0
11:18:51	2224.0	7.8	19.8	86	136	1470	236	243	1.15	1.16	39.7	40.7	2219.2	411	15.0	6:34	1.23		0.0
11:25:05	2225.0	11.4	18.4	86	141	1450	237	254	1.15	1.16	39.4	42.0	2219.6	415	16.0	6:42	1.23		0.0
11:32:21	2225.0	11.9	16.3	86	136	1450	237	251	1.15	1.16	39.4	12.2	2219.9	417	17.0	6:48	1.23		0.0
11:36:50	2227.0	14.2	17.9	86	136	1450	239	252	1.15	1.16	39.4	42.3	2220.1	415	18.0	6:52	1.23		0.0
11:42:26	2228.0	9.9	18.5	86	140	1450	239	252	1.15	1.16	39.5	42.3	2220.8	416	19.0	6:58	1.23		0.0
11:47:44	2229.0	11.8	17.9	86	139	1450	239	251	1.15	1.15	39.5	42.5	2221.7	418	20.0	7:03	1.23		0.0
11:54:36	2230.0	6.0	18.0	86	137	1450	239	252	1.15	1.16	39.6	12.6	2222.9	418	21.0	7:10	1.23		0.0
12:01:11	2231.0	14.4	18.0	86	139	1450	240	235	1.15	1.16	39.8	12.6	2223.4	413	22.0	7:17	1.23		0.0
12:07:23	2232.0	9.4	17.2	86	134	1450	243	233	1.15	1.15	39.9	12.4	2223.8	413	23.0	7:23	1.23		0.0
12:13:25	2233.0	10.9	17.2	86	132	1450	243	230	1.15	1.16	40.0	12.6	2224.4	412	24.0	7:29	1.23		0.0
12:28:05	2234.0	3.3	17.7	86	127	1457	243		1.15		10.1	12.7	2227.2	415	25.0	7:44	1.23		0.0
12:38:48	2235.0	10.7	17.4	86	125	1499	243	232	1.15	1.16	10.3	12.7	2229.1	394	26.0	7:54	1.23		0.0
12:42:58	2236.0	19.2	16.7	86	133	1500	243		1.15	1.16		12.6	2229.8	394	27.0	1:58	1.23		0.0
12:50:35	2237.0		16.9		134	1500	243		1.15			12.6	2230.7	402	28.0	8:06	1.23		0.0
13:00:26	2238.0		17.1		136	1500	245		1.15			12.7	2234.3	398	29.0	8:16	1.23		0.0
13:06:20	2239.0		17.0		146	1500	246		1.15			10.7	2236.6	394	30.0	8:22	1.23		0.0
3:13:21	2240.1		16.8		167	1500	246		1.15			10.9	2238.7	393	31.1	8:29	1.23		0.0
	2241.0		16.5		140	1500	244			1.16			2239.7	416	32.0		1.23		0.0
	2242.0		17.9		127					1.16			2239.7		33.0		1.23		0.0
	2243.0		17.9		128	1500				1.16			2239.7		34.0		1.23		0.0
	2244.0	10.8			152						10.1		2239.7		35.0		1.23		0.0
	2245.0				142	1500					10.0		2240.9		36.0		1.23		0.0
	2246.0	15.2			134	1500	242				40.0		2241.3		37.0		1.23		0.0
	2247.0		17.5		145	1500	242			1.16			2241.7	428	38.0		1.23		0.0
14:20:15	2248.0		17.0		145	1500	242			1.16			2242.5		39.0		1.23		0.0
14:49:27	2249.0		15.2		132	1500	244			1.16			2245.3		40.0		1.23		0.0
14:56:44	2250.0	10.9			132	1500	243				10.5		2245.2		41.0		1.23		0.0
	2251.1				131	1500	242			1.16			2247.3		42.1		1.23		0.00
15:11:27			17.4		134	1500	242			1.17			2248.1		43.0	10:12			0.0

DrillByte Drilling Data Printout COMPANY: BEP PETROLEUM

WELL : MINERVA 1

LINB	DEPTH	ROP	AOB	RPE	TRQ	SPP		OV OUT		DENSITY	UDA !	TEMP OUT	RETURNS DEPTH	PVT	-81	T-	BCD	DIC	GA
: nn : sec	1	n/br	klb		anp	psi	E P			sg		g C	1	bbl	1	hh:ss	zξ		X
15:19:26	2253.0	4.7	17.4	85	137	1500	242	228	1.15	1.17	40.7	43.1	2248.5	416	44.0	10:20	1.23	1.34	0.0
15:26:41	2254.0	11.3			138	1500			1.15		40.8		2248.7			10:28			0.0
15:32:58	2255.0		16.0	85	142	1500	242	233	1.15	1.16	40.9	42.9	2249.4	415	46.0	10:34	1.23	1.25	0.0
15:39:47	2256.0		16.6	85	140	1500	243	262	1.15	1.16	40.9	43.0	2250.6	398	47.0	10:41	1.23	1.27	
15:47:52	2257.0	8.9	15.9	85	160	1500	244	289	1.15	1.16	41.0	42.4	2253.0	106	48.0	10:49	1.23	1.30	0.0
5:55:19	2258.0	9.7	15.5	85	171	1500	245	285	1.15	1.16	41.0	41.2	2255.2	410	49.0	10:56	1.23	1.28	0.0
6:01:04	2259.0	12.2	16.0	85	135	1500	244	280	1.15	1.16	40.8	41.3	2257.0	413	50.0	11:02	1.23	1.23	0.
6:09:48	2260.0	5.2	17.6	85	134	1500	242	233	1.15	1.16	40.6	41.5	2258.0	431	51.0	11:11	1.23	1.36	0.1
6:19:00	2261.0	6.9	16.7	85	130	1500	242	235	1.15	1.16	40.5	41.6	2258.8	431	52.0	11:20	1.23	1.36	0.1
6:26:56	2262.0	8.2	17.3	85	134	1500	242	232	1.15	1.17	40.3	42.9	2258.8	432	53.0	11:28	1.23	1.33	0.
6:36:03	2263.0	7.8	17.0	85	132	1500	242	235	1.15	-1.17	40.3	43.1	2259.1	424	54.0	11:37	1.23	1.35	0.0
6:44:52	2264.0	7.4	17.4	85	135	1500	242	230	1.15	1.17	40.5	43.0	2260.1	419	55.0	11:46	1.23	1.36	0.1
6:51:52	2265.0	3.5	17.4	85	135	1500	242	230	1.15	1.17	40.5	43.0	2260.1	419	56.0	11:58	1.23	1.36	0.
1:07:53	2266.0	8.4	17.3	85	127	1500	242	222	1.15	1.17	40.7	43.1	2261.5	418	57.0	12:07	1.23	1.44	0.
7:14:25	2267.0	10.7	15.6		128	1500	242		1.15		40.8	43.1	2262.0	419	58.0	12:13	1.23		0.
7:20:05	2258.0		16.4		132	1500	242		1.15			43.1	2262.3	419	59.0	12:19	1.23		0.
7:27:05	2269.0		16.3		132	1500	242		1.15			43.1	2262.8	423	60.0		1.23		0.
7:37:46	2270.0		17.4		132	1500	242		1.15	1.17			2263.5	425	61.0			1.41	
7:42:34	2271.0	13.2	15.5		128	1500	242		1.15		40.5		2263.8	425	62.0		1.23		0.
7:48:05	2272.0	10.8	16.4		130	1500	242				40.5		2264.2	425	63.0			1.23	
7:54:58	2273.0	10.0	17.9		133	1500	242		1.15		40.6		2264.9	425	64.0	12:54	1.23		0.
8:05:56	2274.0	6.0	18.1		128	1500	242		1.15		40.7		2265.6	426	65.0	13:05	1.23		0.
	2275.0	2.0	17.2		124	1500	244		1.15		40.9		2271.5	422	66.0		1.23		0.
	2276.0	5.3	17.6		123	1500	243		1.15			41.5	2272.5	443	67.0	13:52			0.
9:28:27	2277.0	4.8	17.7		119	1500	242		1.15			42.7	2274.2	445			1.23		0.
9:43:26	2278.0	4.9	21.0		131	1500	245		1.15			42.2	2274.9	436	69.0		1.23		٥.
0:04:25	2279.0	3.2	20.0		128	1500	244		1.15			42.4	2275.8	435	70.0		1.23		٥.
0:13:57	2280.0	10.7	18.8		128	1500	244				40.5		2276.2	434		14:52			0.
0:21:13	2281.0		18.9		129	1500	244				40.6		2276.5	432				1.34	
0:28:24	2282.0		18.8		132	1500	242				40.7		2276.9	433		15:07	1.23		0.
D:35:51	2283.0		18.7		130	1500	242				40.8		2277.4	433		15:14	1.23		0.
0:47:16	2284.0		18.7		126	1500	242		1.15		40.9		2278.1	432	75.0	15:22	1.23		0.
0:56:23	2285.1		19.3		130	1484	244		1.15			43.1	2280.0	412		15:31	1.23		0.
1:07:03	2286.0		20.2		131	1500				1.16			2282.2					1.47	
1:14:23			19.7							1.16						15:49			
1:22:35		11.1								1.16			2284.8			15:57			
1:31:42			20.0							1.16			2285.5			16:06			
1:31:42			21.4							1.16			2286.8			16:14			
1:48:16		8.4	20.2							1.16			2287.5			16:23			
1:48:18			20.2							1.16			2287.5	129		16:32			
2:07:38			20.3							1.16			2288.3			16:42			
										1.16			2289.8			16:55			
2:20:10 2:36:07			20.5							1.16			2291.5			17:11			
	4433.0	9.1	40.3	80	147	1900	676	613	1.13	1.10	4W. i	1001		740		41.11	1.63	1.40	

TIME	DEPTE	ROP	AOB	RPH	TRQ	SPP	FLOW IN C		DENSITY	NT NT	TEMP OUT	RETURNS Depth	PVT	-BI	T-	ECD	DIC	GAS
h:mm:sec		a/hr	klb		amp	psi	gpa	••	3 g	deg			bbl	sts	hh:sa	8 g		X
3rd April	1993																	
NB #13 Smi	ith F3 6	* 3x11																
10:30:19	2296.0	3.8	8.0	62	128	1800	248 2	50 1.15	1.16	31.7	35.0	2295.0	455	1.0	0:10	1.22	1.50	0.02
10:45:14	2297.0	8.2	22.9	66	152			58 1.15	1.15	32.0	38.5	2295.0	456	2.0	0:25	1.22	1.56	0.03
	2298.0	3.9	22.8	71				57 1.15				2295.0	456	3.0			1.57	0.03
11:13:46	2299.0	3.2	24.0	71				76 1.15			40.4	2295.0	460	4.0			1.58	0.03
	2300.0	3.1	24.3	71				56 1.15			41.2	2296.1	454	5.0			1.63	0.03
11:44:54	2301.0	4.0	23.5	71				46 1.15				2297.0	453	6.0		1.22		0.0
12:00:24	2302.0	4.3		71				53 1.15				2298.1	452	7.0			1.64	0.04
	2303.0	3.7	24.9					58 1.15			41.8	2299.2	454	8.0			1.61	0.04
	2304.0	3.9		71				55 1.15				2299.9	453	9.0			1.61	0.04
	2305.0	4.3	23.1	72				41 1.15				2301.9	447	10.0		1.22		0.04
	2306.0	5.9	24.3	72				33 1.15			42.4	2302.5	445	11.0			1.50	0.04
	2307.0	3.2	24.0	72				39 1.15				2303.7	432	12.0			1.69	0.04
	2308.0	5.1	23.5	72				90 1.15			41.4	2305.5	418	13.0		1.22		0.04
	2309.0 2310.0	4.8 5.2		12 12				87 1.15 25 1.15				2307.3	418	14.0		1.22		0.04
	2311.0	5.0		71				35 1.15			41.3	2307.6	443	15.0		1.22		0.0
	2312.0	5.1		71				25 1.15 27 1.15			42.8 43.6	2307.6	446	16.0	3:51			0.04
	2313.0		24.5					21 1.15 30 1.15				2307.6 2307.8	446 445	17.0 18.0	4:01 4:11			0.0
	2314.0	5.5		71				27 1.15				2308.5	446	19.0	4:21		1.49	0.0
	2315.0			71				30 1.15				2309.3	110	20.0	1:33			0.0
	2316.0	5.5		71				24 1.15				2310.3	446	21.0	4:45			0.0
	2317.0	5.7		71				20 1.15					447	22.0	4:57			0.04
	2318.0	9.0	22.7	71				20 1.15					449	23.0	5:03			0.04
	2319.0	2.6		71				25 1.15					446	24.0	5:16			0.04
	2320.0			71				27 1.15					439	25.0	5:41		1.76	0.04
	2321.0	4.8		71				24 1.15					437	26.0	5:60		1.67	0.06
	2322.0			71				28 1.15					437	27.0	6:17		1.65	0.08
	2323.0			71				27 1.15					437	28.0	6:36			0.04
	2324.0			71					1.17				436	29.0	6:47			0.04
17:44:24	2325.0	6.8	24.3	71	137	1800	250 2	23 1.15	1.17	43.0	44.8	2320.7	437	30.0	7:00	1.22	1.58	0.04
17:51:33	2326.0	9.1	23.4	71	141	1800	250 2	24 1.15	1.17	43.0	44.8	2321.2	435	31.0	7:07	1.22	1.39	0.04
18:01:28	2327.0	5.5	24.3	71	141	1800	250 2	30 1.15	1.17	43.1	44.9	2321.8	431	32.0	7:17	1.22	1.50	0.04
18:13:15	2328.0	3.7	24.0	71	135	1800	250 2	28 1.15	1.17	43.1	45.1	2322.6	432	33.0	7:29	1.22	1.54	0.04
18:26:10			24.6			1800			1.17				429	34.0	7:42			0.05
18:41:06	2330.0	7.8	24.5	71	136	1800			1.17			2324.5	429	35.0	7:57	1.22	1.61	0.05
18:49:45		10.5			139	1800			1.17				428	36.0	8:05	1.22	1.45	0.06
18:57:57	2332.0		24.3				250 2	27 1.15	1.17	43.6	45.3	2326.3	428	37.0	8:14	1.22	1.44	0.06
19:05:53	2333.0	7.5	23.5	71					1.17				427	38.0	8:22			0.06
19:47:40			23.3						1.17				431	39.0	8:30			0.05
19:52:32		12.2							1.17				426	40.0	8:35			0.05
19:58:26		15.6							1.17				422	41.0	8:41			0.06
20:17:23									1.17				435	42.0	8:44			0.06
20:19:02	2338.0	16.5	23.0	71	157	1800	245 2	38 1.15	1.17	44.2	44.7	2331.7	432	43.0	8:45	1.22	1.18	0.06

TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP		LOA		DENSITY		TENP	RETURNS	PYT	-81	T-	ECD	DIC	GAS
h:mm:sec	1	n/hr	klb		anp	psi		OUT Pe	IN	OUT ##	IN deg	OUT C	DEPTE	bbl	ats	hh:mm	15		x
20:22:50	2339.0	17.2	23 7	71	150	1800	247	227	1 15	1.17	11 1	11.1	9119 1	425	44.0	9.10	1 22	1.22	0.06
20:27:38	2340.0	13.5				1800	247			1.17			2332.7	422	45.0			1.32	0.06
20:32:39		12.0				1800	247			1.17			2333.4	420	46.0			1.28	0.06
20:36:21		14.3					247			1.17			2333.5	419	47.0			1.23	0.06
20:41:19		12.0					247			1.17				419	48.0			1.30	0.06
20:48:26	2344.0	10.9		71			247			1.17			2333.5	417	49.0	9:15		1.43	0.06
20:53:46	2345.0	11.4					247						2333.5	419	50.0			1.35	0.06
21:01:42			25.2				247			1.17				420	51.0			1.45	0.06
21:11:23	2347.0		24.4				248						2336.9	414	52.0			1.49	0.28
21:21:20	2348.0	5.4	25.1			1800	251			1.17			2340.7	411	53.0			1.52	0.31
21:30:32			26.6				251						2344.0	410	54.0			1.51	0.16
21:41:52		4.9		71			251		1.15				2346.7	409	55.0	10:08			0.11
	2351.0		24.1				251			1.17				413	56.0	10:18			0.09
	2352.0	6.1		71			251		1.15				2349.9	411		10:28		1.50	0.08
22:09:01				71			251		1.15				2349.9	408	58.0	10:35		1.44	0.08
22:18:08	2354.0	1.9		71			251		1.15				2349.9	404		10:44		1.46	0.08
22:36:06	2355.0		25.3				251			1.17			2350.1	404		10:52		1.39	0.06
22:38:58	2356.0	11.4		71		1800	251			1.17			2350.3	405		10:55		1.31	0.06
22:47:07	2357.0	6.0		71		1800	251		1.15				2351.1	403		11:03		1.41	0.06
22:57:19	2358.0			71			251			1.17				403		11:13		1.51	0.06
23:10:49	2359.0			71			251			1.17				401		11:27		1.61	0.06
23:23:49	2360.0		24.1				251			1.17				399		11:40		1.59	0.07
23:36:21			25.2				251			1.17				397		11:52			0.08
4th April		***		14	111	1000	241		1.10	1.11	10.0	1111	2331.0	431	***	11.00	1.66	1.30	V. VC
00:07:43		4.0	22.7	£3	199	1752	247	213	1 15	1.17	45 2	17 2	2150 8	382	£7 1	12:06	1 22	1 52	0.08
00:22:55	2363.0		25.6			1751				1.17				386		12:17			0.06
	2364.0			71			255				45.7		2360.9	382		12:29		1.59	0.06
00:48:07	2365.0		25.0				255		1.15				2361.5	383	70.0	12:42		1.60	0.06
01:01:48	2366.0		24.7				255		1.15					382		12:56		1.60	0.06
01:13:50	2367.0		25.1				255		1.15					384		13:08		1.57	0.05
01:24:07	2368.0		24.1				255		1.15					383		13:18		1.50	0.05
01:30:25	2369.0			71			255		1.15					383		13:24		1.38	0.05
01:40:25	2370.0			71			256		1.15		45.7			382		13:34		1.50	0.05
01:50:23	2371.0		25.6			1851				1.16				384		13:44			0.05
01:50:23			25.7			1852				1.16				382		13:53			0.06
02:04:12						1847				1.16				380		13:53			0.06
02:04:12		12.5				1849				1.16				378		14:02		1.31	0.08
02:08:38			25.4			1849				1.16				378		14:11		1.47	0.06
02:17:11									1.15	1.16				376		14:11		1.51	
			24.7	71		1847 1845			1.15	1.16			2369.8	379		14:22		1.49	0.06
02:37:17 02:46:40	2378.0		23.4			1845				1.16				378		14:40		1.45	0.07
						1841				1.16				377		14:50			0.05
02:56:19			22.8							1.16				376		14:50		1.48	0.10
03:05:46			23.6			1840				1.16				391		15:10			0.23
03:15:49			26.8			1841 1840				1.16				394		15:18			0.09
03:24:25	4304.V	0.V	27.0	11	170	1010	430	601	1.13	1.10	70.0	71.3	441411	771	01.0	14.10	1167	1.91	4.03

TIME	DEPTH	ROP	WOB	RPH	TRQ	SPP		LOW	KUD In	DENSITY OUT	NUD IN	TEMP OUT	RETURNS Depth	PVT	-81	T-	ECD	DIC	GAS
h:mm:mec		a/hr	klb		anp	psi	8	p a		s (deg	C	1	bbl	ets	hh:ss	1g		X
03:37:03	2383.0	4.9	25.2	71	126	1838	256	259-	1.15	1.16	46.1	48.0	2377.0	394	88.0	15:31	1.23	1.58	0.0
03:46:36	2384.0	6.3	22.5	71	113	1785	252	259	1.15	1.16	46.1	48.0	2378.0	394	89.0	15:40	1.22	1.45	0.0
03:55:46	2385.0	6.3	23.3	71	112	1764	249	262	1.15	1.16	46.1	48.0	2379.2	399	90.0	15:50	1.22	1.45	0.0
04:05:12	2386.0	7.0	24.1	71	120	1767	250	270	1.15	1.16	46.1	48.0	2380.2	400	91.0	15:59	1.22	1.48	0.0
04:13:25	2387.0	7.8	23.8	71	126	1769	250	260	1.15	1.16	46.1	47.9	2380.6	400	92.0	16:07	1.22	1.43	0.0
04:26:00	2388.0	6.7	23.9	71	122	1768	250	260	1.15	1.16	46.1	48.0	2382.0	398	93.0	16:20	1.22	1.55	0.0
04:37:40	2389.0	4.1	23.4	71	119	1770	250	265	1.15	1.16	46.1	48.1	2382.9	394	94.0	16:31		1.52	0.0
04:49:38	2390.0	2.2	24.2	71		1775	250		1.15			48.1	2384.2	393	95.0	16:43		1.54	0.0
05:02:32	2391.0	4.6	24.1	71		1776	249		1.15				2385.5	393	96.0	16:56		1.56	0.0
05:12:53	2392.0	5.4	25.3	71		1774	249	268					2386.7	393	97.0	17:07		1.53	0.0
05:44:30	2393.0	6.4	25.7	70		1861	257	270					2388.5	392	98.0	17:17		1.50	0.0
05:51:53	2394.0	9.5	26.0	71			253	270					2389.1	391	99.0	17:25		1.45	0.0
06:00:42	2395.0	6.3	26.7	71			253	270					2389.7	391	100.0	17:34		1.51	0.0
08:12:49	2396.0	5.7	27.0	71			253	256					2390.7	391	101.0	17:44		1.59	0.0
08:12:49	2397.0	4.9	25.0	70		1830	253	248					2391.9	392	102.0	17:58			0.0
08:12:50	2398.0	4.4	22.0	71			253		1.15				2393.4		103.0	18:14		1.61	0.0
08:12:51	2399.0	4.6	26.0	71			253	248					2394.3		104.0	18:24		1.53	0.0
08:12:52	2400.0	7.1		71			254	244					2395.2		105.0	18:35		1.50	0.0
08:12:53	2401.0	6.1		71			253	250					2396.2		106.0	18:46		1.53	0.0
08:12:53	2402.0	6.5	22.0	71			253	248					2397.0		107.0	18:57		1.49	0.0
08:12:54	2403.0	4.4	24.0	71			253	244					2397.7		108.0	19:07			
08:07:59	2404.0	4.7	22.7	71			250	258					2399.9		109.8			1.48	0.0
08:11:12	2405.0	3.7	22.4	71												19:34		1.55	0.0
)8:11:12	2406.0	3.7					249	256					2400.2		110.0	19:37		1.57	0.1
08:32:52	2407.0		22.4	71			249	256					2400.2		110.0	19:37		1.57	0.0
08:41:16		4.0	23.0	71			249	254					2402.1		112.0	19:59		1.51	0.0
)8:53:53	2408.0	8.0	22.9	71			249	249					2402.9		113.0	20:07		1.42	0.0
	2409.0	4.4	23.6	71			249	257					2403.7		114.0	20:20		1.55	0.0
09:02:33	2410.0	6.1	24.1	71			250	250					2404.3		115.0	20:29		1.45	0.0
09:10:08	2411.0	5.7	23.5	71			250	249					2404.8		116.0	20:35		1.41	0.0
09:16:50	2412.0	10.6	23.6	71			250	251							117.0	20:43		1.38	0.0
9:27:42	2413.0	5.7	24.1	71			249	250							118.0	20:54		1.52	0.0
9:39:36	2414.0	4.5	24.5	71			250	262							119.0	21:06		1.56	0.1
09:51:20	2415.0	4.1	25.3	71			250	265							120.0	21:17		1.57	0.1
	2416.0			71			250			1.18					121.0			1.55	0.1
10:18:31			25.4				250			1.18						21:44			0.3
0:30:41				71			250			1.18						21:57			0.1
0:44:28				71			250			1.18						22:10			0.0
0:59:02		5.0		71			250			1.18						22:25			0.0
11:30:06			25.7				250			1.18						22:35		1.58	0.0
11:40:37				71			245			1.18						22:46			0.0
11:51:48			21.2				244			1.18						22:57		1.47	0.0
12:02:58			23.6				244			1.18						23:08			0.0
12:15:02	2425.0	4.5	23.5	72	129	1763	244	257	1.15	1.18	45.1	18.2	2422.5	433	130.0	23:20	1.22	1.53	0.0
ID Kinerv	L POOH.	Rua B-I	Logs																

APPENDIX VII: Bit Hydraulics Printouts

Data Printed on : Tue Mar 9 20:19:37 1993

IMPUT DATA Hydraulics Model		Shoe Depth 105.0		et 1			in/32
Depth	560.0 m Weakest	t Fata Depth 1007.0	m Jo	et 2		16 f	Ln/32
Vertical Depth	560.0 m Mud Des	nsity 1.03	3 g 3 e	et 3		16 5	Ln/32
Flow Rate	760 gpm 300 rps	r viscometer 2	20	otal Fluid	Area 0.5	890 i	InA2
Average ROP	60.0 m/hr 600 rps						-
Cuttings Density	2.60 spc gPtastic	c Viscosity 1.00	CP				
/ tings Diameter	0.200 in Yield 1	Point 1.00	#/100ft^2				
ings Shape	SPHERICAL Power 1	Law k 0.05412	#sec^n/100ft^2				
Cuttings Thickness	0.000 in Power 1	Law n 0.58496					

	Length m 80.5 23.0	Size in 20.000		20 0	_		s & Cap	acities		Mud Veloc		71ow	
Burface 82.0 105.0 395.5	80.5				ID	Hole	Pipe /	Annulus	Pipe	Annulus	Critical	Regime	
\$2.0 105.0 395.5		20 000	2		in	bb1	bbl	bbl	m/min	m/min	m/min	•	
105.0 395.5	23.0	AU. VVV	5.	.000	4.276	103	5	96	310.5	15.2	25.3	LAMINAR	
395.5		36.000	5.	.000	4.276	95	1	93	310.5	4.5	25.2	LAMINAR	
	290.5	9.875	5.	.000	4.276	90	17	67	310.5	78.9	25.8	TURBULEET	
502.7	107.2	9.875	Š.	000	3.000	33	3	24	630.9	79.9	25.8	TURBULENT	
	57.3	9.875	8.	.000	2.875	18	2	-6	686.9	169.4	27.0	TURBULERT	
Rydrostati	.c Press	ure	818	psi									
Annular Vo			286		2235	strokes	1	6 mins					
Pipe Capac	itv			bb1	215	strokes		2 mins					
Circulatin		_	314			strokes		7 mins					
Pipe Displ				bb1			-						
Total Hole			339										
HYDRAULICE		e 1m va	TATE	• • ••••	RATES								
	M8001	9 AL VA	YTOU	7.00									
Flow Rate			gpm	1	660	680	700	720	740	760	780	800	82

HIDRAULICS RESULTS AT	AWKTOOR	FLOW KATE	:8									
Flow Rate	gpm :	660	680	700	720	740	760	780	800	820	840	860
Flow Regime at TD		TURB	TURB	TURB	TURB	TURB	TURB	TURB	TURB	TURB	TURB	TURB
Jet Velocity	B/Sec :	109.6	112.9	116.2	119.5	122.9	126.2	129.5	132.8	136.1	139.5	142.8
Impact Force	lbf:	1056.4	1121.4	1188.4	1257.2	1328.1	1400.8	1475.5	1552.2	1630.7	1711.3	1793.7
Hydraulic Power	hhp:	382.2	418.1	456.0	496.3	538.8	583.7	631.0	680.7	733.1	788.0	845.7
Bit Loss	psi:	993	1054	1117	1182	1249	1317	1387	1459	1533	1609	1687
% Bit Loss	:	72.0	72.6	73.2	73.7	74.2	74.6	75.0	75.4	75.8	76.1	76.4
Pipe Loss	psi:	262	275	289	302	316	331	345	360	375	390	405
Annular Loss	psi:	19	20	21	22	23	24	25	26	27	28	30
Cuttings Loss	psi:	89	85	82	79	76	73	71	68	66	64	62
Surface Loss	psi:	15	16	17	18	19	20	21	22	23	24	25
Total Loss	psi:	1379	1451	1526	1604	1683	1765	1849	1935	2024	2115	2208
Circ Pressure	psi:	926	924	921	919	917	916	914	913	912	911	910
ECD • TD	sg:	1.05	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.07	1.07
ECD • Shoe	sg:	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
ECD • Weakest Depth	89 1	1.10	1.11	1.11	1.12	1.12	1.12	1.13	1.13	1.14	1.14	1.14
ECD @ TD (cuttings)	ag:	1.17	1.16	1.16	1.16	1.16	1.15	1.15	1.15	1.15	1.15	1.15

Recommended Minimum Flow to maintain cuttings transport in top section is 458 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 121 gpm

Data Printed on : Thu Mar 11 01:16:36 1993

IMPUT DATA									
Rydraulics Model	Bingham	Casing Shoe Depth	114.0	=	Jet	1		18	in/32
Depth	560.0 m	Weekest Fats Depth	1007.0		Jet	2		18	in/32
Vertical Depth	560.0 m	Mud Density	1.03	80	Jet			18	in/32
Flow Rate	1980 gpm	300 rpm viscometer	2	•		Fluid	Area	0.7455	
Average ROP	120.0 m/hr	600 rps viscometer	3						
Cuttings Density	2.60 spc q	Ptastic Viscosity	1.00	CP					
Cuttings Diameter	0.200 in	Yield Point	1.00	#/100ft#2					
Cuttings Shape	SPHERICAL	Power Law k	0.05412	#secAD/100ftA2					
Cuttings Thickness	0.100 in	Power Law n	0.58496						

caretnan	Internet		. 100	ın	LOMET	PEA II		1	U.38476							
CALCULATI		_														
Sect		Hole			ipe			6 C	upacitie	15	Mud Vel	ocity	Flo	w		
Top	Length	Size	QI		ID	Hol	-		Annuly	E Pipe	Annulu	s Critic	al Reg	ime		
		in	ii		in	bb		pp]			n m/mi	n n/mi	.в.			
Burface	80.5	20.000		000	4.27			5		6 441.		6 25.	3 LAM	INAR		
82.0	32.0	28.000		000	4.27		0	2		7 441.		6 25.	2 LAM	IMAR		
114.0	277.6	17.500		000	4.27			10						BULL		
391.6	80.4	17.500	5.0		3.00		8	2		2 896.				BULENT		
471.9	55.8	17.500		000	2.87		4	1		3 976.			4 TUR	MUTRIML		
527.7	32.3	17.500	9.9	500	3.06	3 3	2	1	2	2 860.	0 37.	4 25.	5 TUR	BULINT		
Rydrostat	ic Press	ure	818 p	psi												
Annular V	/olume		559 I	bbl	43	61 strok	45		22 mins	1						
Pipe Cape			27 1	ьЫ	2	14 strok	-5		1 mins	1						
Circulati	ing Volum		586 1	bb1	45	76 strok	.		23 mins	B .						
Pipe Disp			32 1	bbl												
Potal Hol	e Volume)	618	bb1												
HYDRAULIC Flow Rate		S AT VA	TPM :		1030	1040	30)50	1060	1070	1080	1090	110	0 1110	1120	1130
Plow Regi	me at TI	1	-		TURB	TURB		DUB	TURB	TURB	TURB	TURB	TUR		TURB	TURB
Jet Veloc			/ sec :		135.1	136.4	137		139.0	140.4	141.7	143.0	144.		146.9	148.2
Empact. Fo	TOR		lbf	. :	2032.9	2072.6	2112		2153.1	2193.9	2235.1	2276.7	2318.		2403.7	2446.9
Hydraulic	Power		hhp		907.0	933.7	960		388.6	1016.8	1045.6	1074.9	1104.		1166.2	1197.7
Bit Loss			psi :		1510	1540		70	1600	1630	1661	1691	172		1786	1810
4 Bit Los	18		- ;	t .	65.4	65.7	65	e. i	66.2	66.4	66.6	66.9	67.		67.5	67.7
Pipe Loss	3		psi :		546	554		63	572	581	520	533	60:		627	636
Annular L	ASS.		DS1		1	1		1	1	1	1	1		1 1	1	1
Cuttings	Loss		DSI :		217	214	2	111	208	205	202	199	19		וֹעו	188
Surface L	OSS		Dai		35	35	_	36	36	37	38	38	3		40	41
Total Los	8		DS1		2303	2344	23	181	2417	2454	2492	2529	256		2645	2685
Circ Pres	SUFE		psi :		1036	1033		30	1027	1024	1021	1018	101		1010	1008
CD . TD			Bg :		1.03	1.03		. 03	1.03	1.03	1.03	1.03	1.0		1.03	1.03
ECD . Sho	16		Sg :		1.03	1.03		03	1.03	1.03	1.03	1.03	1.0		1.03	1.03
ECD . Nes	kest Dep	th	8g :		1.03	1.03		.03	1.03	1.03	1.03	1.03	1.0		1.03	1.03
CD . TD			BQ :		1.30	1.30		30	1.29	1.29	1.29	1.28	1.2		1.27	1.27
				•								*.44	4.4	- 1.20	1.47	1.4

Recommended Minimum Flow to maintain cuttings transport in top section is $552~\rm gpm$ Recommended Maximum Flow to maintain laminar flow in lowest section is $737~\rm gpm$

Data Printed on : Sat Mar 13 03:23:27 1993

IMPUT DAT	'A															
Hydraulic	- Model	POWER	T.AW	Ca	eine.	Shoe Depth		549.0	_		.70	et 1			18 in	/12
Depth			65.0 m			Fata Dept		1007.0			_	t 2			16 in	
Vertical:	Bankh.	-	65.0	-	d Det			1.09				et 3			13 in	
Plow Rate		• • • • • • • • • • • • • • • • • • • •	753 q			viscomete	_	35	-4		_				5745 in	
											21	otal Flu	IG AFGE	9.:	7/45 10	~4
Average R						viscomete		52								
Cuttings						Viscosity		17.00			_					
	Diameter		.200 1		eld E			18.00								
ttings		SPHER:			wer I			1.03145	#Bec/	^ B/10	102£^Z					
4fflngs	Thicknes	. 0	.100 1	n Po	wer I	WA D		0.57116								
CALCULATE	D RESULT	8														
Sect	ion	Hole		Pipe		Volumes	4 0	apacitio			Mud Velo	city	Flow			
Top	Length	Bire	ΩI		ID	Hole		e Annult		Pipe		Critic		.		
		in	i	-	in	bbl	Ьb			/min				_		
Surface	80.5	19.750	5.0		.276	100		_		07.7				IAR		
82.0	443.0	12.347	5.0		.276	215		6 17		107.7						
525.0	24.0	12.347	5.0		.000	12		-		25.0						
549.0	83.5	12.250	5.0		.000	40				25.0						
632.9	109.8	12.250	8.0		.875	53		-		80.6						
742.7	22.3	12.250	8.2		.875	ii		i .		80.6						
Rydrostat		ure :	L183 p			_										
Annular V			351 E			strokes		20 min								
Pipe Capa			37 k			strokes		2 mins	-							
Circulati			388 F		3033	strokes		22 mins	B							
Pipe Disp			42 E													
Total Hol	e Volume		430 E	ь1												
HYDRAULIC	S RESULT	S AT VAI	RIOUS	FLOW R	ATES											
Flow Rate			gpa :		53	673	693	713	9	733	753	773	793	813	83	853
Flow Regi			7,	-	NK.		LAM	LAM		AN	LAM	LAM	LAM	LAM	L	
Jet Veloc		_	/sec :				8.0	121.4	124		128.2	131.6	135.0	138.4	141.	
Impact For		-,	lbf :			191.9 126		1337.8	1413		1492.2	1572.5	1654.9	1739.4	1826.	
Hydraulic			hhp :				2.3	536.2	582		631.6	683.3	737.7	794.9	855.3	
Bit Loss			psi :				219	1290		63	1439	1516	1596	1677	176	
% Bit Los			,				4.8	65.2		. 6	66.0	66.3	66.6	67.0	67.3	
Pipe Loss	_		psi :		23		575	602		29	656	684	713	742		
Annular L			psi :		14	14	15	15		15					773	
Cuttings			psi :		60	58	56	54		52	15 51	16 49	16	16	10	
Surface L			psi:		16	17	17	18		19	20	21	48	47	4	
Total Los			psi :				881	1979		79	2181	2287		24	25	
Circ Pres	_		pai :				254	1252		51	1249	1248	2394	2505	2610	
ECD e TD			8G :	_			.10	1.10		10			1247	1246	1245	
ECD e Sho	_		ag:				.10	1.10		10	1.10 1.10	1.10	1.10	1.10	1.10	
	kest Depi	≥h	80 :	i.			. 11	1.11		11	1.11	1.10 1.11	1.10	1.10	1.10	
ECD e TD			3g :	î.			. 15	1.15		15	1.11	1.11	1.11	1.11	1.11	
			-9 .	••				4.43		43	* • *2	4.13	1.15	1.15	1.15	1.15

Recommended Minimum Flow to maintain cuttings transport in top section is 158 gpm Becommended Maximum Flow to maintain laminar flow in lowest section is 1297 gpm

Data Printed on : Sun Har 14 03:33:55 1993

IMPUT DATA Hydraulics Model Depth Vertical Depth Flow Rate	1203.9 m Mud Densi	matn Depth 1007.0	# sq	Jet 1 Jet 2 Jet 3 Total Pluid	l Area	18 in/32 16 in/32 13 in/32 0.5745 in^2
Average ROP Cuttings Density Cuttings Diameter Cuttings Shape Cuttings Thickness	32.0 m/hr 600 rpm v 2.60 spc gPtastic V 0.200 in Yield Poi SPHERICAL Power Law	riscometer 57 7iscosity 18.00 int 21.00 rk 1.33017				

	Shape	SPHER:	CAL		Power	Law k			1.33017	#####	LOOEt^2					
Cuttings	Thicknes	= 0.	.100	in	Power	Law z			0.54749							
CALCULAT	ED RESULT	8														
Sect	tion	Hole		2	ipe	V	olume		Capaciti		Mud Vel	ocity	Flow			
Top	Length	Size	(20			ole		e Annul			s Critica		84		
30	=	in	:	in	in		bb1	bk	ol b							
Surface	80.5	19.750	5	. 000	4.27	6	100		5	4 308.	5 15.	5 76.6	LANI	EAR		
82.0	467.0	12.347	5	.000	4.27	6	227	2	37 1	308.	5 44.	4 100.8	LAMI	EAR		
549.0	415.0	14.400	5	.000	4.37	6	274	2	34 2	11 308.	5 31.	0 91.5	LANI	LAR		
964.0	60.0	14.400	5	.000	3.00	0	40		2	15 626.	7 31.	2 91.9	LAMI	EAR		
1024.0	47.9	12.250	5.	.000	3.00	0	23		1	J 626.						
1071.9	109.8	12.250	8.	.000	2.87	5	53		3	80 682.	4 65.					
1181.7	22.3	12.250	8	.250	2.87	5	11		1	6 682.						
Hydrosta	tic Press	ure 1	L932	DS i												
Annular V	Volume		612			81 str	okes		34 min							
Pipe Cape	acity			bb1		I) str			3 min							
		_	675	bbl		70 str			38 min							
Circulati	TUG ACTUM															
	placement		52	bb1												
Pipe Dis			52 727													
Pipe Disp Total Hol	placement la Volume		727	bbl												
Pipe Disy Total Hol HYDRAULIC	placement la Volume CS RESUL/P		727	bbl	ON RATE	<u>.</u>										
Pipe Disp Total Hol HYDRAULIC Flow Rate	placement le Volume CS RESULT:		727	bbl FL	ON RATE	71		725	735	745	755	765	775	785	795	805
Pipe Dist Total Hol HYDRAULIC Flow Rate Flow Regi	placement le Volume CS RESUL/P e ime at TD		727	bbl FL	ON RATE	-		725 LAM	735 Lam	745 LAN	755 LAN	765 Lan	775 LAN	785 LAN	795 LAN	
Pipe Dist Total Hol HYDRAULIC Flow Rate Flow Regis Jet Veloc	placement le Volume CS RESUL/P e ime at TD city	E AT VAI	727 LIOUI TPE Sec	bbl FL	705 LAN 120.0	71 LA 121.	N 7 12	LAM 23.4	LAM 125.1	LAN 126.8						805 LAM 137.0
Pipe Disp Total Hol HYDRAULIC Flow Rate Flow Regi Jet Veloc Impact Fo	placement le Volume CS RESULTE a ime at TD city orce	E AT VAI	727 TOUS TOUS TOUS TOUS TOUS TOUS TOUS TOUS	bbl FL	705 LAM 120.0 1356.0	71 LA 121. 1394.	M 7 12 7 143	LAM 23.4 34.0	Lam	LAN	LAN	LAM 130.2	LAN	LAN	LAM	Lam
Pipe Disg Total Hol Flow Rate Flow Regi Jet Veloc Impact Fo Hydraulic	placement le Volume CS RESULTE a ime at TD city orce	E AT VAI	727 LIOUI TPE Sec	bbl FL	705 LAM 120.0 1356.0 537.4	71: LA: 121. 1394. 560.	M 7 <u>12</u> 7 143 6 50	LAM 23.4 34.0 14.4	LAM 125.1	LAN 126.8	LAN 128.5	LAM 130.2	LAN 131.9	133.6	135.3	137.0
Pipe Distratal Hol Total Hol Flow Rate Flow Registration of the Jet Veloc Impact For Rydraulic Bit Loss	placement le Volume CS RESULTE aime at TD city orce c Power	E AT VAI	727 TOUS TOUS TOUS TOUS TOUS TOUS TOUS TOUS	bbl	705 LAM 120.0 1356.0	71 LA 121. 1394.	M 7 <u>12</u> 7 143 6 50	LAM 23.4 34.0	LAM 125.1 1473.8	126.8 1514.2	LAN 128.5 1555.1	130.2 1596.6	LAN 131.9 1638.6	133.6 1681.2	LAM 135.3 1724.3	137.0 1767.9
Pipe Disg Total Hol Flow Rate Flow Regi Jet Veloc Impact Fo Hydraulic	placement le Volume CS RESULTE aime at TD city orce c Power	E AT VAI	727 gpm sec lbf hhp	bbl	705 LAM 120.0 1356.0 537.4	71: LA: 121. 1394. 560.	M 7 12 7 143 6 50 5 1	LAM 23.4 34.0 14.4	LAM 125.1 1473.8 608.9	126.8 1514.2 634.1	128.5 1555.1 660.0	130.2 1596.6 686.6	LAN 131.9 1638.6 713.9	133.6 1681.2 741.9	135.3 1724.3 770.6 1662	137.0 1767.9 800.0 1705
Pipe Distrotal Hollow Rate Flow Rate Flow Rate Flow Rate But Veloc Impact Fr. Hydraulic Bit Loss & Bit Loss Pipe Loss	placement le Volume CS RESUL/M e ime at TD city orce : Power	B AT VAI	727 gpm sec lbf hhp	bbl	705 LAM 120.0 1356.0 537.4 1307	71 LA 121. 1394. 560.	7 127 1436 516 516	LAM 23.4 34.0 14.4 1383	LAM 125.1 1473.8 608.9 1421	126.8 1514.2 634.1 1460	128.5 1555.1 660.0 1499	130.2 1596.6 686.6 1539	LAM 131.9 1638.6 713.9 1580	133.6 1681.2 741.9 1621 62.1	LAM 135.3 1724.3 770.6 1662 62.2	137.0 1767.9 800.0 1705 62.4
Pipe Distratal Holland Republic Registration	placement le Volume CS RESULT ine at TD city orce c Power s s s Loss	e at vai	727 gpm /sec lbf hhp psi	bbl	705 LAM 120.0 1356.0 537.4 1307 60.5	71 121. 1394. 560. 134	M 7 127 143 6 50 5 18 6 6 3	LAM 23.4 34.0 14.4 1383 51.0	LAM 125.1 1473.8 608.9 1421 61.1	126.8 1514.2 634.1 1460 61.3	128.5 1555.1 660.0 1499 61.5	130.2 1596.6 686.6 1539 61.7	LAM 131.9 1638.6 713.9 1580 61.9	133.6 1681.2 741.9 1621	135.3 1724.3 770.6 1662 62.2 914	137.0 1767.9 800.0 1705 62.4 932
Pipe Disp Total Hol HydrauLic Flow Rate Flow Regis Jet Veloc Impact Fo Hydraulic Bit Loss % Bit Los Pipe Loss Annular I Cuttings	placement le Volume CS RESULT: e ime at TD city orce c Power ss Loss Loss	E AT VAS	727 gpm sec lbf hhp psi psi	bbl	705 LAM 120.0 1356.0 537.4 1307 60.5 756	71 LA 121. 1394. 560. 134 60.	7 12 7 143 6 50 5 1	LAM 23.4 34.0 14.4 1383 51.0 790	125.1 1473.8 608.9 1421 61.1	LAN 126.8 1514.2 634.1 1460 61.3 825	LAN 128.5 1555.1 660.0 1499 61.5	LAN 130.2 1596.6 686.6 1539 61.7 860 22	LAM 131.9 1638.6 713.9 1580 61.9 878	133.6 1681.2 741.9 1621 62.1 896	LAN 135.3 1724.3 770.6 1662 62.2 914 23	137.0 1767.9 800.0 1705 62.4 932 23
Pipe Disp Total Hol Flow Rate Flow Regi Jet Veloc Impact For Rydraulic Bit Loss * Bit Los Pipe Loss Annular I Cuttings Surface I	placement la Volume CS RESULT: ime at TD city orce c Power ss s Loss Loss Loss	e at vai	727 gpm sec lbf hhp psi psi psi	bb1	705 LAM 120.0 1356.0 137.4 1307 60.5 756 21 56	71 121. 1394. 560. 134 60. 77. 2	7 127 143 6 50 5 1 6 6 5 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6	LAM 23.4 34.0 14.4 1383 51.0 790 22 54 20	125.1 1473.8 608.9 1421 61.1 807 22 53	LAM 126.8 1514.2 634.1 1460 61.3 825 22	LAM 128.5 1555.1 660.0 1499 61.5 843 22	130.2 1596.6 686.6 1539 61.7	LAM 131.9 1638.6 713.9 1580 61.9 878 23	133.6 1681.2 741.9 1621 62.1 896	135.3 1724.3 770.6 1662 62.2 914	137.0 1767.9 800.0 1705 62.4 932 23
Pipe Disp Total Hol HydrauLic Flow Rate Flow Regis Jet Veloc Impact Fo Hydraulic Bit Loss % Bit Los Pipe Loss Annular I Cuttings	placement la Volume CS RESULT: ime at TD city orce c Power ss s Loss Loss Loss	e at vai	gpm gpm sec lbf hhp psi psi psi psi	bbl	705 LAM 120.0 1356.0 537.4 1307 60.5 756 21 56	71 121. 1394. 560. 134 60. 77: 2:	7 127 143 6 50 5 1 6 6 5 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6	LAM 23.4 34.0 14.4 1383 51.0 790 22 54	LAM 125.1 1473.8 608.9 1421 61.1 807 22 53	LAM 126.8 1514.2 634.1 1460 61.3 825 22 53	LAM 128.5 1555.1 660.0 1499 61.5 843 22 52	LAM 130.2 1596.6 686.6 1539 61.7 860 22 51	IAN 131.9 1638.6 713.9 1580 61.9 878 23 50	133.6 1681.2 741.9 1621 62.1 896 23 50	LAM 135.3 1724.3 770.6 1662 62.2 914 23 49	137.0 1767.9 800.0 1705 62.4 932 23 48 24
Pipe Disp Total Hol Total Hol Flow Rate Flow Regis Jet Veloc Impact Fo Hydraulic Bit Loss N Bit Los Pipe Loss Surface I Cuttings Surface I Total Los Circ Free	placement la Volume CS RESULT: a ime at TD city orre c Power SS Loss Loss Loss	B AT VAI	gpm sec lbf hhp psi psi psi psi	bb1	705 LAM 120.0 1356.0 137.4 1307 60.5 756 21 56	71 121. 1394. 560. 134 60. 77. 2	7 143 7 143 6 50 5 1 8 0 3 2 5 3	LAM 23.4 34.0 14.4 1383 51.0 790 22 54 20	125.1 1473.8 608.9 1421 61.1 807 22 53	LAN 126.8 1514.2 634.1 1460 61.3 825 22 53 21	LAM 128.5 1555.1 660.0 1499 61.5 843 22 52	LAM 130.2 1596.6 686.6 1539 61.7 860 22 51 22	131.9 1638.6 713.9 1580 61.9 878 23	TAM 133.6 1681.2 741.9 1621 62.1 896 23 23 23 2612	LAN 135.3 1724.3 770.6 1662 62.2 914 23 49 23 2672	137.0 1767.9 800.0 1705 62.4 932 23 48 24 2732
Pipe Disp Total Hol Total Hol Flow Rate Flow Regi Jet Velow Impact Fo Hydraulie Bit Loss & Bit Los Pipe Loss Annular I Cuttings Surface I Total Los Circ Pres ECD & TD	placement le Volume CS RESULT: eine at TD city orce c Power ES LOSS LOSS LOSS ES ESULTE	B AT VAI	727 LIOUS Sec lbf hhp psi psi psi psi psi psi psi	bbl	705 LAM 120.0 1356.0 537.4 1307 60.5 756 21 56 19 2159	71 121. 1394. 560. 134 60. 77. 2	7 143 7 143 6 51 5 1 8 6 3 2 5 9	LAM 23.4 34.0 14.4 1383 51.0 790 22 54 20	LAM 125.1 1473.8 608.9 1421 61.1 807 22 2324	LAM 126.8 1514.2 634.1 1460 61.3 825 22 22 23 21 2380	128.5 1555.1 660.0 1499 61.5 843 22 22 21 2437	130.2 1596.6 686.6 1539 61.7 860 22 51 22 2495	131.9 1638.6 713.9 1580 61.9 878 23 50 22 2553 2005	133.6 1681.2 741.9 1621 52.1 896 23 50 23 2612 2004	LAN 135.3 1724.3 770.6 1662 62.2 914 23 49 23 2672 2004	137.0 1767.9 800.0 1705 62.4 932 23 48 24 2732 2003
Pipe Disp Total Hol Flow Rate Flow Regi Jet Veloc Impact Fr Hydraulic Bit Loss National Loss National Interpretation Pipe Loss Annular I Cuttings Surface I Total Los Circ Free ECD @ The	placement la Volume CS RESULT: ine at TD city Drue C Power ES Loss Loss Loss Loss Loss Loss Loss Los	B AT VAI	727 EIOUS gpm sec lbf hhp psi psi psi psi psi psi psi psi	bb1	705 LAM 120.0 1356.0 537.4 1307 60.5 756 21 56 19 2159 2009	71 LA 121. 1394. 560. 134 60. 77. 2 51. 221.	11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	LAM 23.4 34.0 14.4 1383 51.0 790 22 54 20 1268 1008	LAM 125.1 1473.8 608.9 1421 61.1 807 22 53 20 2324 2007	LAM 126.8 1514.2 634.1 1460 61.3 825 22 53 21 2380 2007	128.5 1555.1 660.0 1499 61.5 843 22 52 21 2437 2006 1.14	130.2 1596.6 686.6 1539 61.7 860 22 51 22 2495 2005 1.14	131.9 1638.6 713.9 1580 61.9 878 23 50 22 2553 2005 1.14	133.6 1681.2 741.9 1621 62.1 896 23 50 23 2612 2004	LAN 135.3 1724.3 770.6 1662 62.2 914 23 49 23 2672 2004 1.14	137.0 1767.9 800.0 1705 62.4 932 23 48 24 2732 2003 1.14
Pipe Disp Total Hol Flow Rate Flow Regi Jet Veloc Impact Fr Hydraulic Bit Loss National Loss National Interpretation Pipe Loss Annular I Cuttings Surface I Total Los Circ Free ECD @ The	placement le Volume CS RESULT: eine at TD city orce c Power ES LOSS LOSS LOSS ES ESULTE	B AT VAI	727 gpm sec lbf hhp psi psi psi psi psi psi psi psi psi ps	bb1	705 LAM 120.0 1356.0 537.4 1307 60.5 756 21 56 19 2159 2009 1.14	71: LAN 121. 1394. 560. 134 60. 77. 2 5: 1221. 200.	1177 1277 1436 56 56 56 56 56 56 56 56 56 56 56 56 56	LAM 23.4 34.0 34.4 1383 51.0 790 22 54 20 2268 1008 1.14	LAM 125.1 1473.8 608.9 1421 61.1 807 22 53 20 2324 2007 1.14	126.8 1514.2 634.1 1460 61.3 825 22 53 21 2380 2007 1.14	128.5 1555.1 660.0 1499 61.5 843 22 52 21 2437 2006	130.2 1596.6 686.6 1539 61.7 860 22 51 22 2495 2005	131.9 1638.6 713.9 1580 61.9 878 23 50 22 2553 2005	133.6 1681.2 741.9 1621 52.1 896 23 50 23 2612 2004	LAN 135.3 1724.3 770.6 1662 62.2 914 23 49 23 2672 2004	137.0 1767.9 800.0 1705 62.4 932 23 48 24 2732 2003

Recommended Minimum Flow to maintain cuttings transport in top section is 126 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 1396 gpm

÷ ...,

Data Printed on : Tue Mar 16 09:31:49 1993

IMPUT DATA									
Hydraulics Model	POWER LAW	Casing Shoe Depth	1189.0		Jet	1		32	in/32
Depth	1208.2 m	Weakest Fata Depth	1007.0		Jet	2		32	in/32
Vertical Depth	1208.1 =	Mud Density	1.13	8q	Jet	3		32	in/32
Flow Rate	377 gga	300 rpm viscometer	39		Total	Fluid A	Lres	2.3562	in^2
Average ROP		600 rpm viscometer	58						
Cuttings Density		gPtastic Viscosity	19.00	CP					
- Tuttings Diameter	0.200 in	Yield Point		#/100ft^2					
ttings Shape	SPHERICAL	Power Law k	1.13928	#sec^n/100ft^2					
uttings Thickness	0.100 in	Power Law n	0.57258						

CALCULATI	ED RESULT	8													
	tion	Hole		₽:	ipe	Volume	1 4 C	apacities	1	Mud Velo	city	Flow			
Top	Length	Size		OD	_ ID	Hole		• Annulus	Pipe		Critical				
•		in		in	in	bb1	bb	1 bb1	m/min						
hurface	80.5	19.750	5	.000	4.276	100	!	5 93	154.0	7.7	72.4	LAMINAR			
82.0	850.3	8.681	. 5	.000	4.276	204	5	0 135	154.0	56.6	129.0	LAMINAR			
932.3	107.9	8.681		.000	3.000	26		3 17	312.9	57.3	129.8	LAMINAR			
1040.2	148.8	8.681	. 6	.500	2.813	36		4 16	355.9	85.1	158.4	LAMINAR			
1189.0	19.2	8 .500	6	.500	2.813	4		0 2	355.9	93.9	164.0	LANINAR			
lydrosta	tic Press	ure	1939	psi											
Annular 1	Volume		263	bbl	2051	strokes		29 mins							
Pipe Cape	acity		62	bbl	481	strokes		7 mins							
irculat:	ing Volum	•	324	bbl	2532	strokes		36 mins							
	placement		46	bb1											
Notal Hol	le Volume		370	bbl											
HYDRAULIC	CS RESULT	S AT VA	RIOU	s TL	ON RATES										
Plow Rate	•		gpe	:	327	337	347	357	367	377	387	397	407	417	427
	ime at TD			:	Lan	LAM	LAM	LAM	Lam	LAM	Lan	LAM	LAM	LAM	Lam
Jet Velo			1/800		13.6	14.0	14.4	14.8	15.2	15.6	16.1	16.5	16.9	17.3	17.7
impact Po			lbf		71.1	75.5	80.1	84.8	89.6	94.5	99.6	104.8	110.2	115.7	121.3
Hydraulic	Power		ppb	:	3.2	3.5	3.8	4.1	4.5	4.9	5.3	5.7	6.1	6.6	7.1
Bit Loss			psi	2	17	18	19	20	21	22	23	25	26	27	29
Bit Los				:	4.6	4.7	4.8	4.9	5.0	5.0	5.1	5.2	5.3	5.3	5.4
Pipe Los:			psi		257	270	283	296	309	323	337	351	365	379	394
Annular I			psi		82	83	85	86	87	89	90	91	93	94	95
Cuttings			psi		2	2	2	2	2	2	2	2	2	2	2
Burface I			psi	:	4	5	5	5	6	6	6	6	7	7	7
Potal Los			psi	:	363	378	393	409	425	442	458	475	452	509	527
Circ Pres	STUTE		psi	:	2023	2024	2025	2027	2028	2029	2031	2032	2033	2034	2036
CD • TD			89	:	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.19
CD · Sho			89	1	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18
	akest Dep		89	:	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
CD • TD	(cutting	=)	89	:	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.19	1.19	1.19

Recommended Minisum Flow to maintain cuttings transport in top section is 105 gpm Recommended Maxisum Flow to maintain laminar flow in lowest section is 659 gpm

Data Printed on : Wed Mar 17 02:15:52 1993

IMPOT DATA

Hydraulics Depth	- Madel													
Depth	-	POWER	TW/M	Casing	Shoe Depti	1	189.0 m	1	Je	t 1			12 in/3	2
		132	9.0 =	Neakes	t Pata Dept	h 1	007.0	1	Je				12 in/3	2
Vertical I	Depth	132	8.7 m	Mud Des			1.12 .	Œ	Je		*		12 in/3	
Plow Rate			485 gps	200 rps	. Viscomete	NT.	33	•	Jei	ž 4			11 in/3	2
Average Ro	OP	3	0.0 =/	ar 600 rps	. Viscomete	LT .	45 .		Je	Ł 5			10 in/3	2
Cuttings I	Density				. Viscosity		16.00 c	P		tal Fluid	i Area		08 in^2	-
Cuttings I	Diameter	٥.	200 in	Yield !	Point		18.00 #	/100ft^2						
Cuttings !	Shape	SPHERI	CAL	Power !	iaw k			sec^n/10						
Cuttings ?	Thickness	0.	100 in	Power !	MW D	0.	55639							
CALCULATE	D RESULTS	!												
Secti	ion	Hole	1	Pipe	Volumes	& CAD	acities		Mud Veloc	sitv	Flow			
Top	Length	Size	00	10	Hole		Annulus		Annulus					
		in	in	in	bb1	bb1	bb1	m/min		m/min				
Surface		19.750	5.000	4.276	100	5	94	198.2		68.7	LAMIMAR			
82.0	956.1	8.681	5.000	4.276	230	56	152	198.2	72.7	119.6	LAMINAR			
1038.1	107.9	8.681	5.000	3.000	26	3	17	402.6	73.9	120.7	LAMINAR		•	
1146.0	43.0	8.681	6.50	2.813	10	1	5	457.9	109.4	145.9	LANINAR			
1189.0	140.0	8.500	6.50	2.813	32	4	13	457.9	120.8	150.8	LANDHAR			
Rydrostati	ic Pressu	re 2	114 ps:	į.										
Annular Vo			280 bb		strokes	2	4 mins							
Pipe Capac	city		68 bb		strokes		6 mins							
Circulatin	ne V elone													
~~~~~~~~	nd Advanta		348 bb	2719	strokes	3:	O mins							
Pipe Dispi		,	348 bb		STORES	31	0 mins							
	lacement			i -	Strokes	31	0 mins							
Pipe Dispi Total Hole	lacement e Volume		50 bb		Strokes	31	0 mins							
Pipe Disp	lacement e Volume	AT VAR	50 bb 398 bb 1008 F1			3: 455	0 mins	475	485	495	505	515	525	535
Pipe Dispi Total Hole HYDRAULICE	lacement e Volume s RESULTS	AT VAR	50 bb	ON RATES	445	455	465	475 Lam	485 LAM	495 Lan	505 Lam	515 Lam	525	535 Lam
Pipe Dispi Total Hole HYDRAULICE Flow Rate	lacement e Volume s RESULTS	AT VAR	50 bbi 398 bbi 1008 71	ON RATES	445 LAN			475 Lam 92.7	LAM	LAM	LAM	LAM	LAM	LAM
Pipe Dispi Total Hole HYDRAULIC: Flow Rate Flow Regis	lacement  Volume  RESULTS  me at TD  ity	AT VAR	50 bbi 398 bbi 1008 71 gpm :	CON RATES 435 LAN	445 IAM 86.9 8	455 Lan 8.8	465 LAM	LAM			1AH 98.6	LAM 100.6	1AM 102.5	104.5
Pipe Dispi Total Hole HYDRAULIC: Flow Rate Flow Regin Jet Veloci	lacement Volume RESULTS me at TD ity rce	AT VAR	50 bbi 398 bbi ICUS FI gpm :	LON RATES 435 LAN 84.9	445 LAM 86.9 8 614.2 64	455 LAM 8.8 2.1	465 LAM 90.8	1AM 92.7	14M 94.7 729.6	1AM 96.6 760.0	78.6 791.0	LAM 100.6 822.6	102.5 854.3	104.5 847.8
Pipe Displ Total Hole HYDRAULICE Flow Rate Flow Regin Jet Veloci Impact For	lacement Volume RESULTS me at TD ity rce	AT VAR	50 bbi 398 bbi ICUS FI gpm: sec: lbf:	A35 LAM 84.9 586.9	445 LAM 86.9 8 614.2 64 176.2 18	455 LAM 8.8 2.1	465 LAM 90.8 670.6	LAM 92.7 699.8	14H 94.7	1AM 96.6	791.0 257.6	LAM 100.6 822.6 273.2	LAM 102.5 854.9 289.4	104.5 847.8 306.2
Pipe Dispi Total Hole HYDRAULICE Flow Rate Flow Regis Jet Veloci Impact For Hydraulic	lacement Volume RESULTS me at TD ity ros Power	AT VAR	50 bbi 398 bbi IOUS FI gpm: sec: lbf: hbp:	435 136 138 84.9 586.9 164.6	445 Lam 86.9 8 614.2 64 176.2 18 679	455 TAM 8.8 2.1	465 LAM 90.8 670.6 201.1	22.7 699.8 214.3	14M 94.7 729.6 228.1	LAM 96.6 760.0 242.6 840	1AM 98.6 791.0 257.6 875	LAM 100.6 822.6 273.2 910	1AM 102.5 854.3 289.4 945	104.5 847.8 306.2 382
Pipe Dispi Total Hole HYDRAULICE Flow Rate Flow Regis Jet Veloci Impact Foz Hydraulic Sit Loss % Bit Loss Pipe Loss	lacement Volume RESULTS me at TD ity rue Power	AT VAR	50 bbi 398 bbi ICUS FI Gpm : sec : lbf : hhp : psi :	435 13M 84.9 586.3 164.6 649	445 Lan 86.9 8 614.2 64 176.2 18 679 53.6 5	455 TAM 8.8 2.1 8.4 710	465 LAM 90.8 670.6 201.1	1AM 92.7 699.8 214.3 774	14M 94.7 729.6 228.1 807	LAM 96.6 760.0 242.6	791.0 257.6	LAM 100.6 822.6 273.2	LAM 102.5 854.9 289.4	104.5 847.8 306.2 982 57.1
Pipe Dispi Total Hole HYDRAULICE Flow Rate Flow Regis Jet Veloci Impact Foz Hydraulic Bit Loss % Bit Loss % Bit Loss Annular Loss Annular Loss	lacement Volume RESULTS me at TD ity rue Power S	AT VAR	50 bbi 398 bbi IOUS FI gpm : : sec : lbf : hhp : psi :	435 13M 84.9 586.9 164.6 649 53.1	445 LIM 86.9 8 614.2 64 176.2 18 679 53.6 5 426	455 LAM 8.8 2.1 8.4 710	465 LAM 90.8 670.6 201.1 742 54.5	1AM 92.7 699.8 214.3 774 54.9	1AM 94.7 729.6 228.1 807 55.3	LAM 36.6 760.0 242.6 840 55.7	1AM 98.6 791.0 257.6 875 56.1	LAM 100.6 822.6 273.2 910 56.5	LAM 102.5 854.3 289.4 945 56.8	104.5 847.8 306.2 982 57.1 570
Pipe Dispi Total Hole HYDRAULICE Flow Regis Jet Veloci Impact Foz Hydraulic Bit Loss % Bit Loss Pipe Loss	lacement Volume RESULTS me at TD ity rue Power S	AT VAR	50 bbi 398 bbi IOUE FI gpm: sec: lbf: hhp: psi:	435 14M 84.9 586.9 164.6 649 53.1 411	445 LAM 66.9 8 614.2 64 176.2 18 679 53.6 5 426	455 LAM 8.8 2.1 8.4 710 4.0	465 LAM 90.8 670.6 201.1 742 54.5 457	1AM 92.7 699.8 214.3 774 54.9 472	1AM 94.7 729.6 228.1 807 55.3 488	LAM 96.6 760.0 242.6 840 55.7 504	TAM 98.6 791.0 257.6 875 56.1 520	LAM 100.6 822.6 273.2 910 56.5 537	LAM 102.5 854.3 289.4 945 56.8 554	104.5 887.8 306.2 982 57.1 570
Pipe Dispi Total Hole HYDRAULICE Flow Regin Jet Veloci Impact Foz Hydraulic Bit Loss 9 Bit Loss Pipe Loss Annular Lo Cuttings I Burface Lo	lacement Volume S RESULTS me at TD ity ros Power S Loss oss	AT VAR	50 bbi 398 bbi IOUS FI GPM : sec : lbf : hhp : psi : psi :	435 138 138 139 149 586.9 164.6 649 53.1 411 98 57 8	445 LAM 86.9 8 614.2 64 176.2 18 679 53.6 5 426	455 FAM 8.8 2.1 8.4 710 4.0 441	465 LAM 90.8 670.6 201.1 742 54.5 457	1AM 92.7 699.8 214.3 774 54.9 472 103	TAM 94.7 729.6 228.1 807 55.3 488 104	LAM 96.6 760.0 242.6 840 55.7 504 105	1AM 98.6 791.0 257.6 875 56.1 520 107	LAM 100.6 822.6 273.2 910 56.5 537	LAM 102.5 854.3 289.4 945 56.8 554	104.5 847.8 306.2 982 57.1 570
Pipe Dispi Total Hole HYDRAULICE Flow Rate Flow Regin Jet Veloci Impact For Rydraulic Bit Loss % Bit Loss Pipe Loss Annular Lo Cuttings I	lacement Volume S RESULTS me at TD ity ros Power S Loss oss	at var	50 bbi 398 bbi ICUS FI GPM : : sec : lbf : hhp : psi : psi : psi :	435 LAM 84.9 586.9 164.6 649 53.1 411 98 57	445 LAM 86.9 8 614.2 64 176.2 18 679 53.6 5 426 99 55	455 LAM 8.8 2.1 8.4 719 4.0 4.1 101	465 LAM 30.8 670.6 201.1 742 54.5 457 102 52	1AM 92.7 699.8 214.3 774 54.9 472 103 51	TAM 94.7 729.6 228.1 807 55.3 488 104 50	LAM 96.6 760.0 242.6 840 55.7 504 105 49	1AM 98.6 791.0 257.6 875 56.1 520 107 48	TAM 100.6 822.6 273.2 910 56.5 537 108 47	1AM 102.5 854.3 289.4 945 56.8 554 109 46	13M 104.5 887.8 306.2 982 57.1 570 110 45
Pipe Dispi Total Hole HYDRAULICE Flow Regis Jet Veloci Impact For Hydraulic Bit Loss % Bit Loss % Bit Loss Annular Lo Cuttings I Surface Lo Crotal Loss Circ Press	lacement Volume S RESULTS De at TD ity ros Power S DOSS LOSS DSS S	AT VAR	50 bbi 398 bbi ICUS FI GPM: sec: lbf: hhp: psi: psi: psi: psi: psi:	435 LIM 84.9 586.9 164.6 649 53.1 411 98 57 8 1222 2268	445 LAM 86.9 8 614.2 64 176.2 18 679 53.6 5 426 99 55 8 1267 1 2268 2	455 LAM 8.8 2.1 8.4 710 4.0 441 101 54	465 LAM 90.8 670.6 201.1 742 54.5 457 102 52 9 1361 2268	LAM 92.7 699.8 214.3 774 54.9 472 103 51 9 1409 2268	1AM 94.7 729.6 228.1 807 55.3 488 104 50 9	EAM 96.6 760.0 242.6 840 55.7 504 105 49	791.0 257.6 875 56.1 520 107 48 10	1AM 100.6 822.6 273.2 910 56.5 537 108 47	1AM 102.5 854.3 289.4 945 56.8 554 109 46 11	104.5 887.8 306.2 982 57.1 570 110 45
Pipe Dispi Total Hole HYDRAULICE Flow Regin Jet Veloci Impact For Rydraulic Sit Loss Pipe Loss Annular Lo Cuttings I Surface Le Total Loss Circ Press RCD e TD	lacement Volume Volume RESULTS Me at TD ity ros Power S Loss Loss S S S S S S S S S S S S S S S S S S	AT VAR	50 bbi 398 bbi ICUS FI GPM: sec: lbf: hhp: psi: psi: psi: psi: psi: psi:	435 138 139 140 84.9 586.9 164.6 649 53.1 411 98 57 8 1222 2268 1.17	445 LIM 86.9 8 614.2 64 176.2 18 679 53.6 5 426 99 55 8 1267 1 2268 2 1.17 1	455 LAM 8.8 2.1 710 4.0 441 101 54 8 314 268 2.17	465 Lam 90.8 670.6 201.1 742 54.5 457 102 52 9 1361 2268	1AM 92.7 699.8 214.3 774 54.9 472 103 51 9	1AM 94.7 729.6 228.1 807 55.3 488 104 50 9	12M 96.6 760.0 242.6 840 55.7 504 105 49 10	791.0 257.6 875 56.1 520 107 48 10 1559	1AM 100.6 822.6 273.2 910 56.5 537 108 47 10	1AM 102.5 854.3 289.4 945 56.8 554 109 46 11 1664	104.5 827.8 306.2 982 57.1 570 110 45 11
Pipe Dispi Total Hole HYDRAULICE Flow Regis Jet Veloci Impact For Hydraulic Bit Loss F Bit Loss Fipe Loss Annular Lo Cuttings I Surface Lo Total Loss Circ Press ECD e TD ECD e Shoe	lacement Volume S RESULTS me at TD ity ros Power S oss Loss oss s sure	at var	50 bb 398 bbl ICUE FI GPM : : : : : : : : : : : : : :	435 134.9 586.9 164.6 649 53.1 411 98 57 8 1222 2268 1.17 1.16	445 LAM 66.9 8 614.2 64 176.2 18 679 53.6 5 426 99 55 2267 1 2268 2 1.17 1 1.16 1	455 LAM 8 2 . 1 8 . 4 710 4 41 101 5 4 314 268 17	465 Lam 90.8 670.6 201.1 74.2 54.5 457 102 52.5 9 1361 2268 1.17	LAM 92.7 699.8 214.3 774 54.9 472 103 51 9 1409 2268 1.17 1.16	TAM 94.7 729.6 228.1 807 55.3 488 104 50 9 1458 2268 1.18 1.16	1AM 96.6 760.0 242.6 849 55.7 504 105 49 10 1508 2268	791.0 257.6 56.1 520 107 48 10 1559 2268	TAM 100.6 822.6 273.2 910 56.5 537 108 47 10 1611 2268	1AM 102.5 854.3 289.4 945 56.8 554 109 46 11 1664 2268	104.5 847.8 306.2 982 57.1 570 110 45 11 1718 2268
Pipe Dispi Total Hole HYDRAULICE Flow Regin Jet Veloci Impact For Rydraulic Bit Loss Pipe Loss Annular Lo Cuttings I Surface Lo Total Loss Circ Press ECD e TD	lacement  Volume  RESULTS  me at TD  ity  rue  Power  S  coss  coss  sure  kest Dept	at var	50 bb398 bb1 ICUE FI  GPM: Sec:   Ibf:   Ibf	435 138 139 140 84.9 586.9 164.6 649 53.1 411 98 57 8 1222 2268 1.17	445 LAM 86.9 8 614.2 64 176.2 18 679 53.6 5 426 99 55 2 1267 1 2268 2 1.17 1 1.16 1	455 LAM 8.8 2.1 710 4.0 441 101 54 8 314 268 2.17	465 Lam 90.8 670.6 201.1 742 54.5 457 102 52 9 1361 2268	1AM 92.7 699.8 214.3 774 54.9 472 103 51 9 1409 2268 1.17	TAM 94.7 729.6 228.1 807 55.3 488 104 50 9 1458 2268 1.18	1AM 96.6 760.0 242.6 840 55.7 504 105 49 10 1508 2268 1.18	791.6 791.6 257.6 875 56.1 520 107 48 10 1559 2268 1.18	1AM 100.6 822.6 273.2 910 56.5 537 108 47 10 1611 2268 1.18	1AM 102.5 854.3 289.4 945 56.8 554 109 46 11 1664 2268 1.18	104.5 847.8 306.2 982 57.1 570 110 45 11 1718 2268 1.18

Recommended Minimum Flow to maintain cuttings transport in top section is 141 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 606 gpm

Data Printed on : Thu Mar 18 02:39:50 1993

IMPUT DATA

Hydrauli														
	.cs Model	POWER 1			Shoe Dept		1189.0 m			1			12 in/3	
Depth			7.0 =		t Patn Dep	pth	1007.0 m			2			12 in/3	
Vertical	Depth	174	5.6 m	Mad Des			1.16 8	7		<b>t</b> 3			12 in/3	
Flow Rat			530 gpm		n viscome		42			t 4			11 in/1	
Average	ROP				n viscome		61			t 5			10 in/3	
	Density	2	.80 spc	gPłasti	c Viscosi	:y	19.00 c			tal Pluid	Area	0.5	008 in^2	5
Cuttings	Diameter		200 in	Tield	Point			/100£t^2						
tings	Shape	SPHERI		Power			1.65480 #	<b>sec^n/10</b>	0£t^2					
tings	Thickness	. 0.	000 in	Power	rea p		0.52793							
CALCULAT	ED RESULT	8												
Sec	tion	Hole	P	ipe	Volume	18 & C	apacities	· · · · · · · · · · · · · · · · · · ·	Mud Velo		Flow			
Top	Length	Size	OD		Hole	Pip	a Annulus	Pipe	Annulus	Critical	Regime			
		in	in	in	bb1	bb	1 bbl	m/min	m/min	z/zin				
Surface	80.5	19.750	5.000	4.276	100		5 94	216.5	10.9	83.9	LAMINA			
82.0	1107.0	8.681	5.000	4.276	266	6	5 176	216.5	79.4	140.6	LANINA			
1189.0	267.1	8.500	5.000	4.276	62	1	6 40	216.5	84.7	143.3	Laninai			
1456.1	107.9	8.500	5.000	3.000	25		3 16	439.9	16.2	144.5	LANINA			
1564.0	183.0	8.500	6.500	2.813	42		5 17	500.4	132.0	174.5	LAMINA	R		
Hydrosta	tic Press	ure 2	877 psi	,										
Annular			342 bbl	. 267	3 strokes		27 mins							
Pipe Cap	pacity		92 bbl	. 72	2 strokes		7 mins							
	ing Volum	•	435 bb1	. 339	5 strokes		34 mins							
Pipe Dis	placement		60 bb1	i										
Total Ho	le Volume		494 bbl	•										
HYDRAULI	cs result	S AT VAR			490	500	510	520	530	540	550	560	570	580
HYDRAULI Flow Rat	ole Volume (CS RESULT te pime at TD	S AT VAR	IOUS FL	ON RATES	LAM	LAM	Lam	LAM	LAM	Lam	LAM	LAM	LAM	Lan
HYDRAULI Flow Rat	ole Volume (CS RESULT te pime at TD	S AT VAR	ious Fi	AND LAMES 33.7	2AM 95.7	1AM 97.6	12M 33.6	IAN 101.5	LAN 103.5	LAM 105.4	LAM 107.4	LAM 109.3	111.3	113.2
HYDRAULI Flow Rat Flow Req Jet Velo Impact I	CCS RESULT te yime at TD ocity Force	s at var	IGUS FL gpm : sec : lbf :	480 LAM 93.7 740.1	2AH 95.7 771.3	27.6 97.6	1AM 99.6 835.5	101.5 868.6	103.5 902.4	LAM 105.4 936.7	LAM 107.4 971.7	LAM 109.3 1007.4	111.3 1043.7	113.2 1080.6
HYDRAULI Flow Rat Flow Req Jet Velo Impact H Hydrauli	ole Volume  CCS RESULT  te  prime at TD  ocity  Force  te Power	s at var	ICUS FL GPM : :	480 LAM 93.7 740.1 229.1	IAM 95.7 771.3 243.7	258.9	2AM 99.6 835.5 274.8	101.5 868.6 291.2	103.5 902.4 308.4	LAM 105.4 936.7 326.1	LAM 107.4 971.7 344.6	109.3 1007.4 363.7	LAM 111.3 1043.7 383.6	113.2 1080.6 404.1
HYDRAULI Flow Rat Flow Req Jet Velo Impact H Hydrauli	ole Volume  CCS RESULT  te  prime at TD  ocity  Force  te Power	S AT VAR	IGUS FL gpm : sec : lbf :	480 LAM 93.7 740.1 229.1 818	1AH 95.7 771.3 243.7 853	1AM 97.6 803.1 258.9	1AM 39.6 835.5 274.8 324	101.5 868.6 291.2 961	IAM 103.5 902.4 308.4 998	LAM 105.4 936.7 326.1 1036	LAM 107.4 971.7 344.6 1075	109.3 1007.4 363.7 1114	1AM 111.3 1043.7 383.6 1154	113.2 1080.6 404.1 1195
HYDRAULI Flow Rat Flow Req Jet Velo Impact H Hydrauli Bit Loss & Bit Loss	CS RESULT te fime at TD ocity force ic Power	s at var	IGUS FI GPM : sec : lbf : hhp : psi :	480 LAM 93.7 740.1 229.1 818 49.9	1AM 95.7 771.3 243.7 853 50.3	EAM 97.6 803.1 258.9 888 50.7	LAM 99.6 835.5 274.8 924 51.1	101.5 868.6 291.2 961 51.5	1AM 103.5 902.4 308.4 998 51.8	LAM 105.4 936.7 326.1 1036 52.2	EAM 107.4 971.7 344.6 1075 52.5	109.3 1007.4 363.7 1114 52.9	111.3 1043.7 383.6 1154 53.2	113.2 1080.6 404.1 1195 53.5
HYDRAULI Flow Rat Flow Req Jet Velc Impact I Hydrauli Bit Loss % Bit Los Pipe Los	CS RESULT  te yime at TD  ocity  force tc Power  sessions	s 17 VAR	gpm : sec : lbf : hhp : psi :	480 LAM 93.7 740.1 229.1 818 49.9 589	243.7 243.7 853 50.3 608	1AM 97.6 803.1 258.9 888 50.7 628	LAM 99.6 835.5 274.8 924 51.1 648	101.5 868.6 291.2 961 51.5 668	1AM 103.5 902.4 308.4 998 51.8 688	LAM 105.4 936.7 326.1 1036 52.2 709	LAM 107.4 971.7 344.6 1075 52.5 729	109.3 1007.4 363.7 1114 52.9 750	111.3 1043.7 383.6 1154 53.2 772	113.2 1080.6 404.1 1135 53.5 753
HYDRAULI Flow Res Jet Velo Impact I Hydrauli Bit Loss 8 Bit Los Pipe Los Annular	Loss	s at var	gpm : sec : lbf : hhp : psi : psi : psi :	480 LAM 93.7 740.1 229.1 818 49.9 589 175	2AM 95.7 771.3 243.7 853 50.3 608 177	LAM 97.6 803.1 258.9 888 50.7 628 179	EAM 99.6 835.5 274.8 924 51.1 648 181	101.5 868.6 291.2 961 51.5 668 182	13M 103.5 902.4 308.4 998 51.8 688 184	LAM 105.4 936.7 326.1 1036 52.2 709 186	LAM 107.4 971.7 344.6 1075 52.5 729 188	LAM 109.3 1007.4 363.7 1114 52.9 750 190	111.3 1043.7 383.6 1154 53.2 772 191	113.2 1080.6 404.1 1135 53.5 753 193
HYDRAULI Flow Rat Flow Reg Japact Veloc Hydrauli Bit Loss % Bit Lo Pipe Loss Annular Cuttings	CCS RESULT  te pime at TD  ocity  rorce  te Power  to SS  to Loss  to Loss  to Loss	s at var	rous France : : : : : : : : : : : : : : : : : : :	480 LAM 93.7 740.1 229.1 818 49.9 589 175 48	2AM 95.7 771.3 243.7 853 50.3 608 177 47	LAM 97.6 803.1 258.9 888 50.7 628 179 46	1AM 99.6 835.5 274.8 924 51.1 648 181 45	101.5 868.6 291.2 961 51.5 668 182 44	1AM 103.5 902.4 308.4 998 51.8 688 184 43	LAM 105.4 936.7 326.1 1036 52.2 709 186 42	LAM 107.4 971.7 344.6 1075 52.5 729 188 42	LAM 109.3 1007.4 363.7 1114 52.9 750 190 41	111.3 1043.7 383.6 1154 53.2 772 191 40	113.2 1080.6 404.1 1195 53.5 793 193
HYDRAULI Flow Rat Flow Rad Jet Velo Impact B Hydrauli Bit Loss % Bit Los Pipe Los Annular Cuttings Surface	te Volume  CCS RESULT  te yime at TD  coity  Force  CC Power  Loss  Loss  Loss  Loss  Loss	s at var	IGUS FL GDM: Sec: lbf: hhp: psi: psi: psi: psi: psi: psi:	480 Lam 53.7 740.1 229.1 818 49.9 589 175 48	2AM 95.7 771.3 243.7 853 50.3 608 177 47	LAM 97.6 803.1 258.9 888 50.7 628 179 46	99.6 835.5 274.8 924 51.1 648 181 45	101.5 868.6 291.2 961 51.5 668 182 44	13M 103.5 902.4 308.4 958 51.8 688 184 43 11	105.4 936.7 326.1 1036 52.2 709 186 42 12	107.4 971.7 344.6 1075 52.5 729 188 42 12	109.3 1097.4 363.7 1114 52.9 750 190 41	LAM 111.3 1043.7 383.6 1154 53.2 772 191 40	1.34 113.2 1080.6 404.1 1195 53.5 793 193 39
HYDRAULI Flow Rat Flow Req Jet Velc Impact I Hydrauli Bit Loss 8 Bit Los 9 Bit Los Pipe Los Annular Cuttings Surface Total Lo	CCS RESULT  te te yime at TD yority yorce te Power s ss ss ss Loss s Loss ss ss	s at var	IGUS FL GDM: Sec: lbf: hhp: psi: psi: psi: psi: psi: psi: psi:	480 1AM 93.7 740.1 229.1 818 49.9 589 175 48 9 1640	2AM 95.7 771.3 243.7 853 50.3 608 177 47 10	LAM 97.6 803.1 258.9 888 50.7 628 179 46 10	2AM 99.6 835.5 274.8 924 51.1 648 181 45 11	101.5 868.6 291.2 961 51.5 668 182 44 11 1866	1AM 103.5 902.4 308.4 998 51.8 688 184 43 11	105.4 936.7 326.1 1036 52.2 709 186 42 12 1985	107.4 971.7 344.6 1075 52.5 729 188 42 12 2046	109.3 1097.4 363.7 1114 52.9 750 190 41 13 2107	111.3 1043.7 383.6 1154 53.2 772 191 40 13 2170	113.2 1080.6 404.1 1195 53.5 793 193 39 13 2234
HYDRAULI Flow Rat Flow Req Jet Veloc Impact I Hydrauli Bit Loss Sit Los Pipe Los Annular Cuttings Strace Total Loc Circ Pre	CCS RESULT  te pime at TD  coity  corce ic Power  is  Loss Loss Loss Loss Loss Loss Loss	s at var	ICUS FI.  GPM:  sec: lbf: hhp: psi: psi: psi: psi: psi: psi: psi: ps	480 LAM 93.7 740.1 229.1 818 49.9 589 175 48 9 1640 3100	2AM 95.7 771.3 243.7 853 50.3 608 177 47 10 1695 3101	LAM 97.6 803.1 258.9 888 50.7 628 179 46 10 1751 3102	2AM 99.6 835.5 274.8 924 51.1 648 181 45 11 1808 3103	1AM 101.5 868.6 291.2 961 51.5 668 182 44 11 1866 3103	1AM 103.5 902.4 308.4 978 51.8 688 184 43 11 1925 3104	1AM 105.4 936.7 326.1 1036 52.2 709 186 42 1985 3105	107.4 971.7 344.6 1075 52.5 729 188 42 12 2046 3106	109.3 1097.4 363.7 1114 52.9 750 190 41 13 2107 3107	111.3 1043.7 383.6 1154 53.2 772 191 40 13 2170 3108	113 .2 1080 .6 404 .1 1195 53 .5 793 193 39 1234 3109
HYDRAULI Flow Req Jet Velc Jet Velc Impact I Hydrauli Bit Loss % Bit Lo Pipe Los Annular Cuttings Surface Total Lo Circ Pre ECD 6 TD	te Volume (CS RESULT te te tyime at TD coity Force ic Power is is Loss is Loss Loss as Loss	s at var	IOUS FI.  GPM:  sec: lbf: hhp: psi: psi: psi: psi: psi: psi: psi: ps	480 LAM 93.7 740.1 229.1 818 49.9 589 175 48 9 1640 3100 1.23	2AM 95.7 771.3 243.7 853 50.3 608 177 47 10 1695 3101 1.23	LAM 97.6 803.1 258.9 888 50.7 628 179 46 10 1751 3102 1.23	1AM 99.6 835.5 274.8 524 51.1 648 181 45 11 1808 3103 1.23	101.5 868.6 291.2 961 51.5 668 182 44 11 1866 3103 1.23	1AM 103.5 902.4 308.4 998 51.8 688 184 43 11 1925 3104 1.23	LAM 105.4 936.7 326.1 1036 52.2 709 186 42 12 1985 3105 1.24	107.4 971.7 344.6 1075 52.5 729 188 42 12 2046 3106 1.24	109.3 1007.4 363.7 1114 52.9 750 190 41 13 2107 3107 1.24	111.3 1043.7 383.6 1154 53.2 772 191 40 13 2170 3108 1.24	113.2 1080.6 404.1 1195 53.5 793 193 39 13 2234 3109 1.24
HYDRAULI Flow Rat Jet Velo Impact B Hydrauli Bit Loss % Bit Los % Bit Los % Bit Los % Annular Cuttings Surface Total Lo Circ Pre ECD @ Th ECD @ Sh	CCS RESULT  te te yime at TD yority yorce te Power te te te to te	s at var	IOUS FI gpm: sec:: lbf: hhp: psi: psi: psi: psi: psi: psi: psi: sg:	480 LAM 93.7 740.1 229.1 818 49.9 589 175 48 9 1640 3100 1.23 1.21	2AM 95.7 771.3 243.7 853 50.3 608 177 47 10 1695 3101 1.23 1.21	1AM 97.6 803.1 258.9 888 50.7 628 179 46 10 1751 3102 1.23	1AM 99.6 835.5 274.8 924 51.1 648 181 45 11 1808 3103 1.23 1.22	1AM 101.5 868.6 291.2 961 51.5 668 182 44 11 1866 3103 1.23	103.5 902.4 308.4 998 51.8 688 184 43 11 1925 3104 1.23 1.22	1AM 105.4 936.7 326.1 1036 52.2 709 186 42 12 1985 3105 1.24 1.22	107.4 971.7 344.6 1075 52.5 729 188 42 12 2046 3106 1.24	109.3 1007.4 363.7 1114 52.9 750 190 41 13 2107 3107 1.24 1.22	111.3 1043.7 383.6 1154 53.2 772 191 40 13 2170 3108 1.24	113.2 1080.6 404.1 1135 53.5 753 193 39 13 2234 3109 1.24
HYDRAULI Flow Rat Jet Velo Jet Velo Jet Velo Jet Velo Jet Velo Jet Velo Bit Loss % Bit Lo Pipe Loss % Annular Cuttings Surfaca Total Lo Circ Pre ECD & TE ECD & SE ECD & We	te Volume (CS RESULT te te tyime at TD coity Force ic Power is is Loss is Loss Loss as Loss	s it var	IOUS FI.  GPM:  sec: lbf: hhp: psi: psi: psi: psi: psi: psi: psi: ps	480 LAM 93.7 740.1 229.1 818 49.9 589 175 48 9 1640 3100 1.23	2AM 95.7 771.3 243.7 853 50.3 608 177 47 10 1695 3101 1.23	LAM 97.6 803.1 258.9 888 50.7 628 179 46 10 1751 3102 1.23	1AM 99.6 835.5 274.8 524 51.1 648 181 45 11 1808 3103 1.23	101.5 868.6 291.2 961 51.5 668 182 44 11 1866 3103 1.23	1AM 103.5 902.4 308.4 998 51.8 688 184 43 11 1925 3104 1.23	LAM 105.4 936.7 326.1 1036 52.2 709 186 42 12 1985 3105 1.24	107.4 971.7 344.6 1075 52.5 729 188 42 12 2046 3106 1.24	109.3 1007.4 363.7 1114 52.9 750 190 41 13 2107 3107 1.24	111.3 1043.7 383.6 1154 53.2 772 191 40 13 2170 3108 1.24	113.2 1080.6 404.1 1195 53.5 793 193 39 13 2234 3109 1.24

Recommended Minimum Flow to maintain cuttings transport in top section is 100 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 701 gpm

Data Printed on : Fri Her 19 00:41:59 1993

INPUT D	ATA													
Hydraul	ics Model	POWER	T.AW	Contra	Then Den			_	_					_
Depth			28.0 m		Shoe Dep		1189.0			et 1			9 in/3	
Vertica	1 Doneh		25.0 m		t Fata De	PEP	1007.0			et 2			3 in/3	
Flow Ra		704		Mud De			1.16	<b>8</b> 9	-	et 3			9 in/3	2
			274 gp		m Viscome	ter	41			ot 4			9 in/3	2
Average		_	7.0 8/1	r 200 rb	M Viscome	ter	57		Je	et 5			9 in/3:	2
	s Density				c Viscosi	ty	16.00			et 6			9 in/3:	2
	s Diameter		.200 in	Yield				#/100ft^	2 Jo	t 7			9 in/32	
Cutting		SPHER		POWEL			2.37410	#sec^b/l	DDft^2 Jo	at 8			9 in/32	
CALETING	s Thicknes:	• 0.	.050 in	POWEZ	Lev D		0.46566		Je	at 9			9 in/32	
									70	tal Flui	d Area		1 in^2	=
		_												
	TED RESULT	5												
	ction	Hole	1	Pipe	Volum	PS &	Capacitie	<b>5</b>	Mud Veld	city	Flow			
Top	Length	Size	œ	<b>ID</b>	Hole	Pi	pe Annulu	s Pipe		Critica				
-		in	in	in	bbl	ь	bl bb	l m/min			,			
Surface	<b>80.5</b>	19.750	5.900	4.275	100		5 9	4 112.			LANTHAR	,		
\$2.0	1107.0	8.681	5.000	4.275	266		64 17				LAMINA			
1189.0	335.9	8.500	5.000	4.275	77		20 5				LANINA	•		
1524.9	107.9	8.500	5.000		25		<b>3</b> 1					-		
1632.8	166.5	8.500	6.375		38		4 1				Laminae			
1799.3	28.7	8.500	6.750		37			2 70.5			Laminai Laminai			
Budroos	atic Press	1												
Annular		H4 3	008 psi											
Pipe Car			354 bbl		strokes		54 mins							
			99 bbl		strokes		15 mins							
	ting Volume	3	453 bb1		strokes		65 mins							
	splacement		60 PPI											
JOCAL HO	ole Volume		513 bb1											
HYDRAUL	CS RESULTS	AT VAR	LIOUS PI	ON RATES										
Flow Rat	te.		gpa :	264	266	268	270	272	274	276	278	280	282	284
Flow Req	rime at TD		•	LAM	LAM	LAM	LAM	LAN	LAM	LAM	LAM	LAM	LAM	LAM
Jet Veld	city	<b>=/</b>	Sec :	46.2	46.5	46.9	47.2	47.6	47.3	48.3	48.6	43.0	43.3	49.7
Impact	rorce	•	lbf :	200.5		06.7	209.8	212.9	216.0	219.2			128.8	232.1
Hydrauli	C Power		hhp:	30.6	31.3	32.0	32.7	33.4	34.2	34.9	35.7	36.5	37.3	
Bit Loss	•		DSI:	199	202	205	208	211	214	217	220			38.1
A Bit Lo	220		:	34.4	34.6	34.9	35.1	35.3	35.5	35.7		223	227	230
Pipe Los	1.6		DBi:	206	208	209	211	212	214		36.0	36.2	36.4	36.6
Annular	Loss		DSi :	143	144	144	145	145		216	217	215	220	222
Cuttings			DSi:	26	26	26	26		146	146	147	147	148	148
Burface			DBi:	-3	3			26	25	25	25	25	25	24
Total Lo			psi:	578	582	3	3	3	3	3	3	3	3	4
Circ Pre			• .			587	592	597	602	607	613	618	623	628
ECD e TI			psi:	3177	3178	3178	3178	3178	3179	3179	3179	3180	3180	3180
ECD e sh			sg:	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22
		_	sg:	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
	akest Dept		sg:	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
RCD . II	(outtings	)	sg:	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23		1.23	1.23

Recommended Minimum Flow to maintain cuttings transport in top section is 55 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 648 gpm

Data Printed on : Sat Mar 20 01:58:35 1993

AMBI	OT DATA													
1 3	raulics Model	POWER	LAN	Casi	ng Shoe D	enth	1189.0 m	ì	Je	t 1			9 in/32	
`p			16.5 m		est Fata		1189.0		Je				9 in/32	
	tical Depth	184	13.5 m		Density		1.15		Je				9 in/32	
	w Rate		108 g		IPE Visco	meter	33	•	Je				) in/32	
	rage ROP				rpm visco				Je				9 in/32	
	tings Density	5			tic Visco		15.00 c	· D	Je				9 in/32	
	tings Diameter		200 i		d Point	,		/100ft^2					9 in/32	
	tings Shape	SPHERI			r Law k		1.17465						) in/32	
	tings Thicknes		.000 i		r Lew n		0.54057	200.11					9 in/32	
	erman invester				4 540 11		V.34037		Je	tal Fluid	1 1		) 10/34 1 1n^2	
									10	car binte	ATOS	0.333	1 18-2	
CAL	CULATED RESULT	8												
	Section	Hole		Pipe	Vol	umes & C	apacities		Mud Velo	city	Flow			
T	op Length	Size	OD.				· Annulus			Critical				
1		in	in	in	ظط						,			
Sur	face 80.5	19.750	5.0	00 4.2	75 10	0	5 94	44.1			LAMINAR			
1	82.0 1107.0	8.681	5.0	00 4.2	75 26	6 6	4 176	44.3			LAMINAR			
11	89.0 363.5	8.500	5.0	00 4.2	75 84	4 2	1 54	44.1	17.3		LAMINAR			
15	52.5 107.9	8.500	5.0	00 3.0	00 2	5	3 16				LAMINAR			
160	60.5 165.8	8.500	6.5	00 2.8	12 3		4 16	102.0			LAMINAR			
183	26.3 20.2	8.500	6.7				2 2				LAMINAR			
Week.	rostatic Press													
	ular Volume	ure :	1012 p		796b		430 -1							
			357 b		786 stroke		139 mins							
	Capacity	_	99 b		777 stroke		39 mins							
	culating Volum		456 b		562 strok	95	177 mins							
	o Displacement al Hole Volume		61 b											
106	TT NOTE ACTUME		517 D	Dī										
HYDI	RAULICS RESULT	S AT VAL	LIOUS	PLON RAT	28									
710	Rate		gpe :	88	92	36	100	104	108	112	116	120	124	128
	Regime at TD			LAN		LAM	Lam	LAM	LAM	LAM	LAM	LAM	LAM	LAM
	Velocity	-/	Bec :	15.4	16.1	16.8	17.5	18.2	18.9	19.6	20.3	21.0	21.7	22.4
	act Force	-,	lbf:	22.1		26.3	28.5	30.5	33.3	35.8	38.4	41.1	43.9	46.7
	raulic Power		hhp :	1.1		1.5	1.6	1.5	2.1	2.3	2.6	2.8	3.1	3.5
	Loss		DSI :	22		26	28	31	33	35	38	41	43	46
	t Loss			13.0		14.5	15.8	16.8	17.7	18.6	19.5	20.4	21.1	21.9
	LOSS		psi:	60		63	65	66	67	69	70	72	75	78
	lar Loss		psi:	56		59	60	62	63	64	65	67	68	69
	ings Loss		psi :	30	28	26	25	24	22	21		- ·		
	ace Loss		DEI :	0		•	1	1	1	1	20 1	19	18	18
	l Loss		psi:	169	172	175	179	182	186	190	195	1	1	1
	: Pressure		psi:	3098		3098						200	205	212
	• TD		-	1.17	1.17	1.17	3097 1.17	3097	3097	3098	3098	3098	3098	3099
	• Shoe		sg:					1.17	1.17	1.17	1.17	1.18	1.18	1.18
			sg:	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
	<ul> <li>Weakest Dept</li> <li>TD (cutting)</li> </ul>		8g :	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
54	- IN IGREETINGS	3 /	ag:	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18

Recommended Minimum Flow to maintain cuttings transport in top section is 60 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 548 gpm

Data Printed on : Sun Mar 21 01:44:43 1993

IMPOT DATA

Hydrauli	.cs Nodel	POWER	LAN	ı	Casing	Shoe Depth		1189.0 #	1	J	et 1			12 ir	1/32
Depth		15	85.2		Neakes	: Fata Dept	h	1189.0 =	1	J	et 2			12 ir	1/32
Vertical		15	80.9		Mad Des	sity		1.15 #	T	J	let 3			12 ir	1/32
Flow Rat	:•		457	gpa	300 rps	. Viscomete	T	33	=	7	otal Flu	id Area	0.:	3313 iz	IA2
Average			15.5	m/b	r 600 rps	. Viscomete	T.	48							
Cuttings	Density		2.60	spe	grtastic	: Viscosity	,	15.00 c	P						
	Diameter		.200		Yield !	Point	partition .	18.00 #	/100ft^:	2					
Cuttings		SPHE			Power 1	iew k		1.17465 #	secan/1	D0£t^2					
Cuttings	Thickness	. 0	. 000	in	Power 1	MW D	•	0.54057							
CALCULAT	ED RESULT	В													
Sec	tion	Hole			ipe	Volumes	ě C	pacities		Mud Vel	ocity	Flow			
Top	Length	Size		ooo ¯	ID	Hole		Annulus			s Critic				
<b>*</b>	•	in		in	in	bb1	bb1								
Surface	<b>80.5</b>	19.750	5	.000	4.275	100		5 34					AR		
\$2.0	1107.0	8.681	. 5	.000	4.275	266	64	176	186.1	68.	5 116.	8 LAMIE	AR		
1189.0	505.5	8.500	5	.000	4.275	116	25	75	186.8	73.	1 119.	1 LAMIN	IAR.		
1694.5	107.9	8.500		.000		25	3	3 16	379.3	74.	5 120.	2 LAMIN	AR		
1802.4	182.8	8.500	6	.500	2.812	42	5	5 17	431.4	113.	8 146.	0 LAMIN	AR		
Hydrosta	tic Press	ure	3237	psi											
Annular	Volume		378	bbl	2950	strokes		35 mins							
Pipe Cap			106	bbl	830	strokes		10 mins							
Circulat	ing Volum	•	484	bb1	3780	strokes		44 mins							
	placement			bbl											
Total Ho	le Volume		549	bbl											
HYDRAULI	CE RESULTS	S AT VA	RIOU	8 FL	ON BATES										
Flow Rat			db=	1	437	441	445	449	453	457	461	465	459	47	3 477
	ime at TD			1	Lan		LAM	Lan	Lan	LAM	Lan	Lan	Lan	LA	m lan
Jet Velo			/ <b>B</b> ec	: :	129.0	130.2 13	1.3	132.5	133.7	134.9	136.1	137.2	138.4	139.	6 140.8
Impact P			1bf	:	<b>919.3</b>	936.2 95	3.3	970.5	387.3	1005.4	1023.0	1040.9	1058.9	1077.	0 1095.3
Hydrauli			bbp	:	391.5		3.4	424.7	436.1	447.8	459.7	471.7	484.0	496.	5 509.2
Bit Loss			psi	:	1537	1565 1	593	1622	1651	1681	1710	1740	1770	180	0 1831
A Bit Lo				:	68.3		9.2	69.3	69.4	69.6	69.7	69.9	70.0	70.	1 70.2
Pipe Los			psi		512		527	534	542	550	557	565	573	58	0 588
Annular :			psi		142		143	144	144	145	146	146	147	14	8 148
Cuttings			psi		33	33	32	32	32	31	31	31	31	3	0 30
Surface .			psi					8		•	9	,	•		, ,
Total Lo			psi		2231		304	2341	2378	2415	2453	2491	2529	256	
Circ Pre	SSUFE		DEi	:	3411	3412 3	412	3413	3413	3413	3414	3414	3414	341	5 3415

3413 1.20 1.19 1.19

3414 1.20 1.19 1.19 1.21

. . .

3414 1.20 1.19 1.19 1.21

3414 1.20 1.19 1.21

3415 1.20 1.19 1.19 1.21

3415 1.20 1.19 1.19 1.21

3412 1.20 1.19 1.19 1.21 psi: sg: sg: sg: 3413 1.20 1.19 1.19 1.21 3413 1.20 1.19 1.19 1.21 Circ Pressure
ECD + TD
ECD + Shoe
ECD + Weakest Depth
ECD + TD (cuttings) Recommended Minimum Flow to maintain cuttings transport in top section is 114 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 586 gpm

3412 1.20 1.19 1.19 1.21

3411 1.20 1.19 1.19 1.21

Data Printed on : Non Mar 22 01:11:44 1993

	IMPOT DAT	ra.													
	Rydraulic	m Model	POWER	Lan	Casing	Shoe Depth		1189.0 m		Je	t 1			12 in/	
-	pth		203	1.0 =	Weakest	Fata Depti	1 :	1189.0 m		Je	t 2			12 in/3	
	rtical	Depth	202	5.8 m	Mud Den	sity		1.15 s	đ	Je	t 3			12 in/:	32
	Flow Rate	-		458 gpa	300 TP	viscomete:	•	33	-	70	tal Flui	d Area	0.3	313 in^2	3
	Average !	-				viscometes	•	48							
	Cuttings					Viscosity		15.00 c	P						
		Diameter		200 in	Yield P			18.00 #	/100ft^2	2					
	Cuttings		SPHERI		Power L	aw k	1	.17465 #							
		Thickness	0.	000 in	Power L	er d	0	. 54057							
		D RESULTS		_		·				w		-1			
		tion	Hole		ipe _	Volumes				Mud Velo		71ow	_		
	Top	Length	Size	œ	ID	Hole		Annulus			Critica		•		
	-	<b>n</b>	in	in	in	bbl	bbl	bbl	m/mir						
	Surface		19.750	5.000		100	5	94	187.2						
	82.0	1107.0	8.681	5.000		266	64	176							
	1189.0	551.3	8.500	5.000		127	32	82	187.2						
	1740.3	107.9	8.500	5.000		25	3	16							
	1848.2	182.8	8.500	6.500	2.812	42	5	17	432.7	1 114.1	146.0	LAMIN	NK.		
	Hvdrostat	tic Pressu	ra 3	310 psi											
	Annular 1			385 bbl		strokes		35 mins							
	Pipe Cape			109 bbl		strokes	1	10 mins							
		ing Volume		494 bbl		strokes	4	45 mins							
		placement	,	66 bb1											
		le Volume		560 bbl											
	HYDRAULI	CS RESULTS	AT VA	LIOUS PI											
	Flow Rate	•		gpa:	438		145	450	454	458	462	466	470	474	478
	Flow Reg	ime at TD		:	Lam		M	LAM	LAN	LAM	LAM	LAN	LAM	LAN .	LAM
	Jet Velo	city	<b>m/</b>	/sec :		130.4 131		132.8	134.0	135.2	136.4	137.5	138.7	139.5	141.1
	Impact Po	orce		lbf :		940.5 957		374.8	992.2			1045.4	1063.4	1081.6	1099.9
	Hydraulie	c Power		hhp:	394.2	405.1 416		427.5	439.0	450.7	462.7	474.8	487.1	499.6	512.4
	Bit Loss			psi:	1544		601	1630	1659	1688	1718	1747	1778	1808	1839
	S Bit Los	88		:	68.9		.2	69.4	69.5	63.6	69 .7	69.9	70.0	70.1	70.2
	Pipe Loss			psi:	521		536	544	551	559	567	575	582	590	598
	Annular I	Loss		psi:	145		146	147	148	148	149	150	150	151	152
	Cuttings	Loss		psi:	22	21	21	21	21	21	20	20	20	20	20
	Surface	Loss		psi:	8		8			,	•	9	9	9	, ,
	Total Los			psi :	2239		312	2349	2387	2425	2463	2501	2539	2578	2617
	Circ Pres	ssure		psi:	3477		178	3478	3479	3479	3480	3480	3481	3481	3482
	ECD • TD			8g :	1.20		.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
	ECD . She	00		sg:	1.19		. 19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
	TOD . No.	akest Dept	Þ	ag :	1.19		. 19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
	D • TD	(cuttings	1)	sg:	1.21	1.21 1	. 21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21

sended Minimum Flow to maintain cuttings transport in top section is 114 gpm mended Maximum Flow to maintain laminar flow in lowest section is 586 gpm

Data Printed on : Thu Mar 25 02:54:49 1993

IMPUT DA	ra ·													
Hydrauli	cs Model	POWER	LAW	Casing	Shoe Dept	h	2002.0		.74	t 1			12 in/	12
Depth			7.0 m		: Fata Dep		1189.0		Je				12 in/	
Vertical	Depth		1.2 m	Mud Des			1.15			et 3			12 in/	
Plow Rate			467 gpm		viscomet	er	36			tal Flui	d Area	0.1	313 in^	
Average 1	ROP				viscomet.		53		-			• • • • • • • • • • • • • • • • • • • •		
Cuttings	Density	2	.50 spc	gPtastic	. Viscosit	Y	17.00	c <b>P</b>						
Cuttings	Diameter	0.	200 in	Yield I	Point	_	20.00	#/100£t^:	2					
Cuttings	Shape	SPHER	CAL	Power I	Lew k		L.27805	#sec^n/1	DOEt^2					
Cuttings	Thickness	0.	ai 000.	Power I	AW D		.54543							
'ALCULAT	ED RESULTS													
Sec	tion	Hole	Pi	.pe	Volume	8 & Ca	pacitie	6	Mud Velo	city	71ov			
Top	Length	Size	œ	ID	Hole		Annulu			Critical	l Regime			
	**	in	in	in	bb1	bb1				m/min	•			
urface		19.750	5.000	4.275	100						LANINA	R		
82.0	1107.0	8.681	5.000	4.275	266	64					Lanina	R		
1189.0	627.3	9.880	5.000	4.275	195	37				112.8	LANINA	R		
1816.3	107.5	9.880	5.000	3.000	34	3					Laninai	R		
1924.2	77.8	3.880	6.500	2.812	24	2					Laninai			
2002.0	88.0	8.500	6.500	2.812	20	3		441.2			<b>Pyhihy</b> i			
2090.0	17.0	8.500	6.500	2.812	4	•	) :	2 441.2	116.3	157.6	LAMINA	R		
	tic Pressu	re 3	434 psi											
nnular '			462 bbl		strokes		42 mins							
ipe Cap			113 bbl		strokes		10 mins							
	ing Volume		575 bbl	4490	strokes		52 mins							
	lacement		68 bbl											
otal Ho	ie Volume		643 bbl											
MORAULI	E RESULTS	AT VAR	IOUS FLO	M RATES										
low Rate			gber :	447	451	455	459	463	467	471	475	473	483	48
	ine at TD		:	Lan	Lam	LAM	Lam	LAM	Lam	LAM	LAM	LAM	LAK	LA
Tet Velo						34.3	135.5	135.6	137.8	139.0	140.2	141.4	142.6	143.
mpact Fo							1014.2			1067.9 1		104.5	1123.0	1141.
waran i i	Barres		hbe .	416 0	420 4 44	11 .	453 7	468 9	477 .	466.6	FAG 6		700 0	

	TAXLOGS												
Flow Rate	gpe	1	447	451	455	459	463	467	471	475	473	483	487
Flow Regime at TD		:	Lan	Lam	Lan	Lam	LAH	Lam	LAM	LAM	LAM	LAN	LAN
Jet Velocity	E/Sec	:	131.9	133.1	134.3	135.5	135.6	137.8	139.0	140.2	141.4	142.6	143.7
Impact Force	lbf	:	961.9	979.1	336.6	1014.2	1031.9	1049.9	1067.9	1086.1	1104.5	1123.0	1141.7
Hydraulic Power	hhp	:	419.0	430.4	441.9	453.7	465.7	477.8	490.2	502.8	515.6	528.7	541.9
Bit Loss	psi	:	1608	1637	1666	1695	1725	1755	1785	1816	1846	1877	1908
* Bit Loss	-	:	69.0	69.2	69.3	69.4	69.5	69.6	69.7	69.9	70.0	70.1	70.2
Pipe Loss	psi	1	572	580	588	596	605	613	621	630	638	646	655
Annular Loss	psi	:	128	128	129	130	130	131	132	132	133	133	134
Cuttings Loss	psi	ı	13	13	13	13	13	13	13	13	12	12	12
Burface Loss	psi	:			8	9	9	9	•	•	•	•	10
Total Loss	psi	1	2329	2367	2405	2443	2482	2520	2560	2599	2639	2679	2719
Circ Pressure	psi	:	3575	3575	3576	3576	3577	3577	3578	3578	3579	3579	3580
ECD • TD	89	:	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
ECD @ Shoe	<b>5q</b>	:	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
BCD @ Neakest Depth	89		1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.20	1.20	1.20	1.20
ECD 0 TD (cuttings)	89		1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20

Recommended Minimum Flow to maintain cuttings transport in top section is 98 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 633 gpm

Data Printed on : Wed Mar 31 01:07:06 1993

INPUT	DATA														
	lics Model	POWER	LAN		Casing	Shoe Dept	ь	2108.0	_	Je	t 1		12	in/32	
Papel			50.0			Fata Dep		2108.0		Je	t 2		12	in/32	
	cal Depth	20	54.2		Mud Den	sity		1.15	<b>5</b>	Je	t 3			in/32	
1	Rate		321	gpa	300 rpm	Viscomet	er	28		To	tal Pluid	l Area	0.3313	in^2	
Averag	re ROP					viscomet		42							
Cuttir	ngs Density					Viscosit	Y	14.00							
	ngs Diameter	-	. 200	in	Yield P				#/100ft^2						
	ngs Shape	SPHER!			Power L				#sec^n/10	UEEAZ					
Cuttii	ngs Thicknes		. 000	18	Power L	WA D		0.58496							
CALCUI	LATED RESULT	8													
	Bection	Hole		Pi	ipe		8 & C	apacities		Mud Velo		Flow			
Top	Length	Size	α	D	` 100	Hole	Pip	• Annulus			Critical	Regime			
•		in	1		in	bb1	рþ				m/min				
Surfac		19.750		000	4.275	100		5 93			55.1	LAMINAR			
82.		8.681		000	4.275	140	3				100.5 85.7	LAMINAR			
663		8.681		500	2.750	103	1				113.3	LAMINAR			
1092		6.184		500	2.750	97			383.7		146.5	TRANSIT			
1888	.4 171.6	6.184	4.	750	2.500	21			343.7	134.3	110.3				
Hydro	static Press	ure	3357	psi											
	ar Volume		344			strokes		45 mins							
	Capacity		71			strokes		9 mins							
	lating Volum		416		3244	strokes		54 mins							
	Displacement		45												
TOTAL	Hole Volume	)	461	901											
HYDRAI	OLICE RESULT	E AT VA	RIOUS	TL	ON RATES										
Flow I	Rate		gpm	:	301	305	305	313	317	321	325	329	333	337	341
Flow I	Regime at TI	3		:	Lam		Tans	Trans	TRANS	Trans	TRANS			rans	TRANS
	elocity	20,	/ Bec		88.8	90.0	91.2	92.4	93.6	94.7	95.9	97.1		9.5	100.6
	t Force		lbf				59.6	471.6	483.7	496.0	508.5			16.7 79.6	559.8 186.0
	ulic Power		hhp		127.9 729	133.1 1 749	.38 .4 768	143.9 788	149.5 809	155.2 829	161.1 850	871	892	)14	936
Bit L			psi		40.2		40.5	40.7	40.8	41.0	41.1	41.2		11.5	41.6
% Bit Pipe I			psi	:	920	940	960	380	1000	1020	1040	1061		1102	1123
	ar Loss		psi		159	160	162	163	166	168	170	172	175	178	180
	ngs Loss		psi		-33	3	3	3	3	3	3	3	3	3	3
	ce Loss		psi		4	4	4	4	4	4	5	5	5	5	5
Total			psi		1815		1897	1939	1981	2024	2068	2112		2202	2247
Circ I	Pressure		psi	:	3519	3520	3521	3523	3525	3527	3530	3532		3537	3540
ECD •	TD		89	:	1.20		1.21	1.21	1.21	1.21	1.21	1.21		1.21	1.21
ECD •			89		1.21		1.21	1.21	1.21	1.21	1.21	1.21		1.22	1.22
	Neakest Der		Bg		1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21		1.22	1.22
· •	TD (cutting	(2)	89	:	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21

Recommended Minisum Flow to maintain cuttings transport in top section is 133 gpm Recommended Maxisum Flow to maintain laminar flow in lowest section is 307 gpm

Data Printed on : Ned Nar 31 21:18:28 1993

IMPUT DATA

Rydraulic														
	s Model	POWER	LAW	Casing	Shoe De	pth	2108.0 m	ı	Je	t 1		1	12 in/3	2
Depth		213	31.0 m	Neakes	t Fath D	epth	2108.0 =	1	Je	t 2			2 in/3	
Vertical	Depth	212	25.2 m	Mud De	asity	_	1.15	đ	Je	£ 3			2 in/3	
Flow Rate			261 gps	300 rp	m viscom	eter	28	•	To	tal Fluid	Area		3 inA2	
Average R			3.0 m/2	r 600 rp	a viscou	ster	40							
Cuttings				gPtasti	c Viscos:	ity	12.00	P						
Cuttings			.200 in	Yield	Point	-	16.00 #	/100£tA2	2					
Cuttings		SPHER		Power	Law k		1.17019	Sec^b/1	00ft^2					
Cuttings	Thickness	0.	.050 in	Power	rea p		0.51457							
CALCULATE	D RESULTS	1												
Sect	ion	Hole		ipe	Volue	10E & C	Capacities		Mud Velo	of tw	Plow			
Top	Length	Rixo	മെ	70	Hole		e Annulus	Pipe		Critical				
<b>1</b>		in	in	in	bb1	bì		m/min		m/min				
Surface	80.5	19.750	5.000		100		5 93	106.7		65.1	LAMINAR			
82.0	652.3	8.681	5.000	4.275	157	1	102	106.7		107.9	LAMINAR			
734.3	357.7	8.681	3.500	-2.750	86		9 72	257.8		24.4	LAMINAR			
1092.0	867.4	6.184	3.500	2.750	106	2	11 71	257.8		119.4	LAMINAR			
1959.4	148.6	6.184	4.750	2.500	18		3 7	312.0		148.1	LAMINAR			
2108.0	23.0	€.000	4.750	2.500	3		0 1	312.0		155.3	LAMINAR			
Rydrostat:	ic Pressu	ra 3	473 psi											
Annular V			347 bb1	270	strokes	ı	56 mins							
Pipe Capa	city		76 bb1		0 strokes		12 mins							
Circulati	ng Volume		422 bb1		strokes		68 mins							
Dine Di-	lacement		47 bb1				**							
Total Hol			469 bb1											
Total Hold	e Volume		469 bb1	OM BATES										
	e Volume S RESULTS	AT VAR	469 bbl		253	255	257	259	261	263	265	257	254	271
Total Hold HYDRAULIC Flow Rate	e Volume	AT VAR	469 bbl 1008 FL gpm :	251	253 Lan	255 Lan	257 Lam	259 tan	261 Lan	263	265	267	269	271
Total Hole HYDRAULIC	e Volume S RESULTS me at TD	AT VAR	469 bbl	251 Lan	LAM	LAM	Lam	LAM	LAM	LAM	LAN	LAH	LAM	LAM
Total Hold HYDRAULIC: Flow Rate Flow Regis Jet Veloc:	e Volume S RESULTS me at TD ity	AT VAR	469 bbl	251		TAM 75.3	1.AH 75.8	1AM 76.4	TAM 77.0	1AM 77.6	1AH 78.2	1.AH 78.8	73.4	1.AM 80.0
Total Hold HYDRAULIC: Flow Rate Flow Regis Jet Veloc: Impact For	s RESULTS me at TD ity ros	AT VAR	469 bbl	251 LAN 74.1	14.7	LAM	LAM 75.8 318.0	LAM 76.4 322.5	TAM 77.0 327.9	TAM 77.6 333.0	1AM 78.2 338.1	78.8 343.2	79.4 348.3	1AM 80.0 353.5
Total Hold HYDRAULIC Flow Rate Flow Ragin Jet Veloc: Impact For Hydraulic	s RESULTS me at TD ity ros	AT VAR	469 bbl HOUS FL gpm : Sec : lbf :	251 LAM 74.1 303.3	TAM 74.7 308.1	75.3 313.0	LAM 75.8 318.0 79.6	1AM 76.4 322.9 81.5	TAM 77.0 327.9 83.4	TAM 77.6 333.0 85.3	LAM 78.2 338.1 87.3	IAH 78.8 343.2 89.3	79.4 348.3 91.3	80.0 353.5 93.4
Total Hold HYDRAULIC: Flow Rade Flow Radi Jet Veloc: Impact For Hydraulic Bit Loss	s RESULTS me at TD ity roe Power	AT VAR	469 bbl HOUS FL gpm : Sec : lbf : hhp :	251 LAM 74.1 303.3 74.2	TAM 74.7 308.1 76.0	TAM 75.3 313.0 77.8	1AH 75.8 318.0 79.6 531	1AM 76.4 322.9 81.5 540	TAM 77.0 327.5 83.4 548	TAM 77.6 333.0 85.3 557	1AM 78.2 338.1 87.3 565	TAM 78.8 343.2 89.3 574	79.4 348.3 91.3 582	80.0 353.5 93.4 591
Total Hold HYDRAULIC: Flow Ragin Jet Veloc: Hydraulic Bit Loss Bit Loss	e Volume S RESULTS me at TD ity ros Power s	at var	469 bbl slous FL gpm : sec : lbf : hhp : psi :	251 LAM 74.1 303.3 74.2 507	LAM 74.7 308.1 76.0 515	1AM 75.3 313.0 77.8 523 38.7	TAM 75.8 318.0 79.6 531 38.8	1AM 76.4 322.9 81.5 540 39.0	TAM 77.0 327.9 83.4 548 39.1	TAM 77.6 333.0 85.3 557 39.2	1AM 78.2 338.1 87.3 565 39.3	TAM 78.8 343.2 89.3 574 39.4	TAM 75.4 348.3 91.3 582 39.6	1AM 80.0 353.5 93.4 591 39.7
Total Hold HYDRAULIC Flow Rate Flow Ragin Jet Veloc: Impact Por Hydraulic Bit Loss Bit Loss Pipe Loss	e Volume S RESULTS me at TD ity roe Power	at var	469 bbl IOUS FL  GDM: Sec : lbf: hhp: psi:	251 LAM 74.1 303.3 74.2 507 38.5	TAM 74.7 308.1 76.0 515 38.6 645	13M 75.3 313.0 77.8 523 38.7 653	TAM 75.8 318.0 79.6 531 38.8 661	1AM 76.4 322.9 81.5 540 39.0 669	TAM 77.0 327.9 83.4 548 39.1 677	TAM 77.6 333.0 85.3 557 39.2 686	TAM 78.2 338.1 87.3 565 39.3 694	TAM 78.8 343.2 89.3 574 39.4 702	79.4 79.4 348.3 91.3 582 39.6 710	1AM 80.0 353.5 93.4 591 39.7 713
Total Hold HYDRAULIC: Flow Rate Flow Ragin Jet Veloc: Impact Fo: Hydraulic Bit Loss A Bit Loss Pipe Loss Annular Lo	e Volume S RESULTS me at TD ity rea Power s	at var	469 bbl  IOUS FL  GPM :  Sec :  lbf : hhp : psi : psi :	251 LAM 74.1 303.3 74.2 507 38.5 637	TAM 74.7 308.1 76.0 515 38.6	1AM 75.3 313.0 77.8 523 38.7	TAM 75.8 318.0 79.6 531 38.8 661 164	1AM 76.4 322.9 81.5 540 39.0 669 165	LAM 77.0 327.9 83.4 548 39.1 677 165	LAM 77.6 333.0 85.3 557 39.2 686 166	EAM 78.2 338.1 87.3 565 39.3 694 166	TAM 78.8 343.2 89.3 574 39.4 702 167	TAM 75.4 348.3 91.3 582 39.6 710 168	1AM 80.0 353.5 93.4 591 39.7 719 168
Total Hold HYDRAULIC Flow Rate Flow Ragis Jet Veloc: Impact Foot Bit Loss A Bit Loss Annular Loc Cuttings I	e Volume S RESULTS me at TD ity rea Power s oss Loss	at var	469 bbl  IOUS FL  GPm:  Sec: lbf: hbp: psi: psi: psi:	251 LAM 74.1 303.3 74.2 507 38.5 637 162	TAM 74.7 308.1 76.0 515 38.6 645 163	LAM 75.3 313.0 77.8 523 38.7 653 163	TAM 75.8 318.0 79.6 531 38.8 661	1AM 76.4 322.9 81.5 540 39.0 669 165	LAM 77.0 327.3 83.4 548 39.1 677 165	LAM 77.6 333.0 85.3 557 39.2 686 166	1AM 78.2 338.1 87.3 565 39.3 694 166	TAM 78.8 343.2 89.3 574 39.4 702 167	TAM 75.4 348.3 91.3 582 39.6 710 168	LAM 80.0 353.5 93.4 591 39.7 719 168
Total Hold HYDRAULIC: Plow Rate Flow Rate Flow Rate Jet Veloc: Impact For Hydraulic Bit Loss N Bit Loss N Bit Loss N Bit Loss Nanular Le Cuttings I Burface Le	e Volume S RESULTS me at TD ity ree Power S oss Loss oss	at var	469 bb1 IIOUS FL  GPM :  Sec : lbf : hhp : psi : psi : psi : psi :	251 LAM 74.1 303.3 74.2 507 38.5 637 162	TAM 74.7 308.1 76.0 515 38.6 645 163 9	TAM 75.3 313.0 77.8 523 38.7 653 163 9	TAM 75.8 318.0 79.6 531 38.8 661 164	1AM 76.4 322.9 81.5 540 39.0 669 165	1AM 77.0 327.9 83.4 548 39.1 677 165 9	TAM 77.6 333.0 85.3 557 39.2 686 166 9	1AM 78.2 338.1 87.3 565 39.3 694 166 9	TAM 78.8 343.2 89.3 574 39.4 702 167 8	TAM 79.4 348.3 91.3 582 39.6 710 168 8 3	TAM 80.0 353.5 93.4 591 39.7 719 168 8
Total Hold HYDRAULIC Flow Rate Flow Ragis Jet Veloc: Impact Fo: Impact Fo: Bit Loss h Bit Loss h Bit Loss Annular Le Cuttings I Fotal Loss Circ Press Circ Press	e Volume S RESULTS me at TD ity ros Power s coss Loss s	AT VAR	469 bb1 IOUS FL  GDM :  Sec : lbf : hhp : psi : psi : psi : psi : psi : psi :	251 LAM 74.1 303.3 74.2 507 38.5 637 162 9	TAM 74.7 308.1 76.0 515 38.6 645 163 9	LAM 75.3 313.0 77.8 523 38.7 653 163 9	TAM 75.8 318.0 79.6 531 38.8 661 164 9	1AM 76.4 322.9 81.5 540 39.0 669 165 9	LAM 77.0 327.3 83.4 548 39.1 677 165	LAM 77.6 333.0 85.3 557 39.2 686 166	1AM 78.2 338.1 87.3 565 39.3 694 166	TAM 78.8 343.2 89.3 574 39.4 702 167 8 3	TAM 79.4 348.3 91.3 582 39.6 710 168 8 3 1472	TAM 80.0 353.5 93.4 591 39.7 719 168 8 3
Total Hold HYDRAULIC Flow Rate Flow Ragin Jet Veloc: Impact For Hydraulic Bit Loss A Bit Loss A Bit Loss Cuttings I Burface Le Cuttings I Cutti	e Volume S RESULTS me at TD ity ree Power s oss Loss oss s sure	AT VAR	469 bb1 IOUS FL  GPM: Sec : lbf: hhp: psi: psi: psi: psi: psi: psi: psi: ps	251 LAM 74.1 303.3 74.2 507 38.5 637 162 9	TAM 74.7 308.1 76.0 515 38.6 645 163 9 3 1335	LAM 75.3 313.0 77.8 523 38.7 653 163 9 3 1351	TAM 75.8 318.0 79.6 531 38.8 661 164 9	1AM 76.4 322.9 81.5 540 39.0 669 165 9	1.AM 77.0 327.9 83.4 548 39.1 677 165 9	77.6 333.0 85.3 557 39.2 686 166 9 3 1420 3647	78.2 338.1 87.3 87.3 694 166 9 1437 3648	TAM 78.8 343.2 89.3 574 39.4 702 167 8 3 1454 3648	TAM 79.4 348.3 91.3 582 39.6 710 168 8 3 1472 3649	TAM 80.0 353.5 93.4 591 39.7 719 168 8 3 1489 3650
Total Hold HYDRAULIC Flow Rate Flow Ragin Jet Veloc: Impact For Hydraulic Bit Loss A Bit Loss A Bit Loss Annular Le Cuttings I Surface Loss Circ Prass ECD 0 Shoo	e Volume S RESULTS me at TD ity ros Power S oss Loss s sure	AT VAR	469 bb1 IGUS FL  GDm : Sec : lbf : hhp : psi :	251 LAM 74.1 303.3 74.2 507 38.5 637 162 9 3 1318	TAN 74.7 309.1 76.0 515 38.6 645 163 9 3 1335	LAM 75.3 313.0 77.8 523 38.7 653 163 9 3 1351 3645	TAM 75.8 318.0 79.6 531 38.8 661 164 9 3	1AM 76.4 322.5 81.5 540 39.0 669 165 9	77.0 327.9 83.4 548 39.1 677 165 9 1402	77.6 333.0 85.3 557 39.2 686 166 9 3 1420 3647 1.20	78.2 338.1 87.3 565 39.3 694 166 9 1437 3648 1.21	TAM 78.8 343.2 89.3 574 39.4 702 167 8 3 1454 3648 1.21	79.4 348.3 91.3 582 39.6 710 168 8 3 1472 3649	12M 80.0 353.5 93.4 591 39.7 719 168 8 3 1489 3650 1.21
Total Hold HYDRAULIC Flow Rate Flow Regis	e Volume S RESULTS me at TD ity ros Power S oss Loss s sure	AT VAR	469 bbl  HOUS FL  GDM:  Sec: lbf: hhp: psi: psi: psi: psi: psi: psi: psi: ps	251 LAM 74.1 303.3 74.2 507 38.5 637 162 9 3 1318 3644 1.20	TAM 74.7 308.1 76.0 515 38.6 645 163 9 3 1335 3644 1.20	LAM 75.3 313.0 77.8 523 38.7 653 163 9 3 1351 3645 1.20	LAM 75.8 318.0 79.6 531 38.8 661 164 9 3 1368 3645 1.20	1AM 76.4 322.5 81.5 540 39.0 669 165 9 1385 3346 1.20	10M 77.0 327.9 83.4 548 39.1 677 165 9 3 1402 3647 1.20	77.6 333.0 85.3 557 39.2 686 166 9 3 1420 3647	78.2 338.1 87.3 87.3 694 166 9 1437 3648	TAM 78.8 343.2 89.3 574 39.4 702 167 8 3 1454 3648	TAM 79.4 348.3 91.3 582 39.6 710 168 8 3 1472 3649	TAM 80.0 353.5 93.4 591 39.7 719 168 8 3 1489 3650

Recommended Minimum Flow to maintain cuttings transport in top section is \$2 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 279 gpm

Data Printed on : Thu Apr 1 21:51:27 1993

IMPUT DAT	ra .														
Rydraulic	ss Model	POWER LAW Casis		Casing	Shoe Depti	b.	2108.0 =		Ja	<b>t</b> 1	11	in/32			
Depth		22	0.00			t Fata Dep		2108.0 #	_	Je				in/32	
Vertical	Depth	2203.2 m Mad Density			1.15			t 3			1n/32				
Flow Rate	B .		263	<b>TP</b>		viscomet	er	28	•		tal Fluid	lares	0.2784		
 Verage I	ROP		3.6	m/b	r 600 rps	. Viscomet	er	40							
uttings	Density	:	2.45	Spo	griastic	. Viscosit	Y	12.00 c	:P						
Juttings	Diameter		. 200		Yield		•		/100ft^2	1					
Cuttings	Shape	SPHER	ICAL		Power I	Law k	1		sec^n/10						
Cuttings	Thicknes	. 0	. 050	in	Power I	W D		.51457							
		_													
	ED RESULT	_		_	_										
Sect		Hole			ipe _			pacities		Mud Velo		Flow			
Top	Length	Size		<b>OD</b>	130	Hole		Annulus		Annulus		Regime			
	•	in		in	in	bb1	bbl	bb1			=/=in				
Surface	80.5	19.750		.000		100	5	<b>9</b> 3			65.1	LANIXAR			
82.0	730.6	8.681		.000		175	43	114			107.5	LANINAR			
812.6	279.4	8.681		.500		67	7	56			94.4	Laminar			
1092.0	946.2	6.184		.500		115	23	78			119.4	Laninar			
2038.2	69.8	6.184		.750		9	1				148.1	Landuar			
2108.0	101.0	6.000	4	.750	2.500	12	2	4	314.4	146.2	155.3	LAMINAR			
Rydrostat	tic Press	ure :	3600	psi											
Annular V	/olume		349	bb1	2725	strokes	9	56 mins							
Pipe Cape	ecity		80	bb1	626	strokes		13 mins							
Circulati	ing Volum		429	bb1	3351	strokes		69 mins							
Pipe Disp	placement		49	bbl											
Total Hol	le Volume		478	PP1											
HYDRAULIC	S RESULT	AT VAI	LIOU	. FL	ON BATES										
Flow Rate			gpa		243	247	251	255	259	263	267	271	275	279	283
Flow Regi	me at TD			1	LAM	LAM	LAM	LAN	LAM	LAN	LAM	LAM	LAM	LAN	TRANS
Jet Veloc			<b>Sec</b>		85.4		18.2	89.6	91.0	32.4	93.8	25.2		2.0	33.4
Impact Po		_,	1bf	-			0.9	372.5	384.3	396.3					458.8
Hydraulic	Power		hhp	1			5.1	110.2	115.4	120.9					150.6
Bit Loss			psi	1	673	695	718	741	765	788	812	837	862	887	913
* Bit Los	18		_	2	45.2	45.5 4	5.7	46.0	46.3	46.6	46.3	47.1		17.7	47.9
Pipe Loss	3		psi	:	607	624	642	658	674	690	707	724	740	757	774
Annular L	A88		psi	\$	175	176	178	179	181	182	183	185	186	188	189
Cuttings	Loss		psi	1	31	30	30	29	29	28	28	27	27	26	26
Surface L			psi	:	3	3	3	3	3	3	3	3	3	3	-3
Total Los			psi	:	1488	1529 1	570	1610	1651	1692	1733	1776	-	1862	1906
Circ Pres	SULG		psi	:	3806		108	3809	3809	3810	3811	3812		814	3815
ECD • TD			89	:	1.21		.21	1.21	1.21	1.21	1.21	1.21		.21	1.21
ECD · Sho			89	1	1.20		20	1.20	1.20	1.20	1.20	1.20		.20	1.20
ECD . Mes			89	:	1.20		20	1.20	1.20	1.20	1.20	1.20		.20	1.20
ECD • TD	(cuttings	5)	<b>3</b> 9	:	1.22	1.22	22	1.22	1.22	1.22	1.22	1.22	1.22	.22	1.22

commended Minisum Flow to maintain cuttings transport in top section is 82 gpm accommended Maxisum Flow to maintain laminar flow in lowest section is 279 gpm

Data Printed on : Fri Apr 2 23:24:45 1993

INPUT DAT																
Rydraulic	:s Model	POWER	LAN		Casing	Shoe Dept	t.lh	210	8.0 m	<b>.</b>		et 1			11 in/3	2 1
Depth	_	229	5.0	=		t Fata Der			8.0	-		et 2			11 in/3	
Vertical	Depth		9.2		Mud Der		,		.15		_	et 3			11 in/3	
Flow Rate			242			viscome		•	30	<b>.</b> Y		otal Flui			784 in^2	•
Average R	-					viscome!	er		44			OCUL LIMI	G AFOR	0.4	/44 1D^4	
Cuttings						Viscosi		14	.00 c	-0						
Cuttings			200		Yield I		-J			: :/100ftA2						
Cuttings		SPHERI			Power I					secan/10						
Cuttings			050	in	Power I			0.55		Secult/ To	ULE ~2					
-								0.00								
CALCULATE	D RESULT	8														
Sect	ion	Hole		P:	ipe	Volume		Capaci	ities	3	Mud Vel	ocity	Flow			
Top	Length	Size	a	0		Hole	Pi	pe Ani	ulus			s Critica				
		in	1		in	bbl	ь	bl	bbl	m/min						
Surface	80.5	19.750	5.	000	4.275	100		5	93	98.9	5.		LAMINAR	!		
82.0	778.3	8.681	5.	000	4.275	187		45	122	98.9	36.		LAMINAR			
860.3	231.7	8.681	3.	500	2.750	56		6	46	239.1	28.		LAMINAR			
1092.0	334.8	6.184	3.	500	2.750	121		24	82							
2086.8	21.2	6.184	4.	750	2.500	3		٥	1		115.					
2108.0	187.0	6.000	4.	750	2.500	21		4		289.3	134.					
		_		_												
Hydrostat			741													
Annular V			352			strokes		61 :								
Pipe Capa			84			strokes		15 :								
Circulati		•	436		3403	strokes		76 :	ins							
Pipe Disp			52													
Total Hol	e Volume		488	PP1												
DVD0 LTT. TC		a m-			~											
HYDRAULIC								_								
Flow Rate			<b>abe</b>		232	234	236		138	240	242	244	246	248	250	252
Flow Regi				:	LAM	LAM	LAN		-XX	Lam	Lan	LAM	LAN	Lam	LM	LAM
Jet Veloc			Bec		81.5	82.2	82.9		-6	\$4.3	85.0	85.7	86.4	87.1	87.8	88.5
Impact For			lbf	:		313.7 3	19.1	324	.5	330.0	335.5	341.1	346.7	352.4	358.1	363.8
Hydraulic	Power		hhp	\$	<b>83.0</b>	85.1	87.3	85	. 6	91.9	94.2	<b>36.5</b>	38.3	101.4	103.8	106.3
Bit Loss			psi	:	613	624	635	•	46	656	667	679	690	701	712	724
% Bit Los	#		-	:	42.1	42.2	42.3	42	.5	42.6	42.7	42.8	43.0	43.1	43.2	43.3
Pipe Loss			psi .	:	623	632	641	(	51	660	€70	679	689	699	709	718
Annular L	085		psi	:	202	203	204	2	105	206	207	208	209	210	211	212
Cuttings !	Loss		DSi .	:	17	17	16		16	16	16	16	16	16	15	15
Surface L	055		DSi:	1	2	2	2		3	3	3	3	-3	-3	-3	-3
Total Los	8		DSi		1458		1499		20	1541	1563	1584	1606	1628	1650	1671
Circ Pres	ezys		DSi		3960		3961		62	3963	3964	3965	3965	3966	3967	3968
ECD e TD			84	-	1.21		1.21		21	1.21	1.21	1.21	1.21	1.21	1.21	1.22
ECD . Sho	•		80	-	1.15		1.19		15	1.19	1.19	1.19	1.19	1.19	1.19	1.12
	kest Dept	≥h	80		1.19		1.19		19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
	(cuttings		80		1.22		1.22		22	1.22	1.22	1.22	1.22	1.22	1.22	1.22
			-7	-				•				4.00	*•	4.44	1.44	1.44

Recommended Minimum Flow to maintain cuttings transport in top section is 90 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 293 gpm

#### EXLOG DRILLBYTE EAP : MUD HYDRAULICS ANALYSIS

Data Printed on : Sat Apr 3 23:36:01 1993

TOT DATA													
raulics Model	POWER	LAN	Casin	Shoe Depti	h	2108.0 m		Jet	: 1		11	in/32	
Depth	236	2.0 =	Neake	st Pata Dep	th	2108.0 m		Jet	. 2		11	in/32	
Vertical Depth	235	6.2 m	Mud D	ensity		1.15 8	7	Jet	: 3		11	in/32	
Flow Rate		252 g	pes 390 rg	pm viscomet	er	33		Tot	al Fluid	Area	0.2784	1n^2	
Average ROP		5.1 m	/hr 600 r	pm viscomet	er	41							
Cuttings Density	2	.45 8		ic Viscosit	Y	15.00 c							
Cuttings Diameter	0.	200 i		Point			/100ft^2						
Cuttings Shape	SPHERI			Law k		L.17465 #	<b>sec^n/10</b>	O£t^2					
Cuttings Thickness	. 0.	.050 i	n Power	Law n	•	3.54057							
CALCULATED RESULTS	<u>\$</u>												
Section	Hole		Pipe	Volume	s & Ca	pacities	1	Mud Veloc		Flow			
Top Length	Size	Œ	10	Hole	Pipe	Annulus	Pipe	Annulus	Critical	Regime			
a a	in	in	in	bb1	bb1	bb1	m/min	a/zin	m/min				
Surface 80.5	19.750	5.0	00 4.27	5 100	5	<b>5 5</b> 3	103.0	5.2	68.7	LAMINAR			
82.0 835.0	8.681	5.0	00 4.27	5 201	45	131	103.0	38.4	117.8	Laninar			
<b>91</b> 7.0 175.0	8.681	3.5			4		248.9	29.9	102.1	Laminar			
1092.0 1016.0	6.184	3.5			24		248.9	73.1	131.2	LAMINAR			
2108.0 35.4	6.000	3.5			1		248.5	80.0	134.8	Laminar			
2143.4 218.6	6.000	4.7	50 2.50	25	4	•	301.2	140.1	173.8	LANINAR			
			. •										
Hydrostatic Presso	re :	851 p		66 strokes		59 mins							
Annular Volume Pipe Capacity		354 b		B1 strokes		15 mins							
Circulating Volume	_	442 b		17 strokes		74 mins							
Pipe Displacement	•	54 b		i / bczckes		/1 =100							
Total Hole Volume		496 b											
10021 11010 101020		170 2	-										
HYDRAULICS RESULTS	AT VA	RIOUS	FLON RATE:	8							-		
Flow Rate		gpm :	242	244	246	248	250	252	254	256	258	260	262
Flow Regime at TD		:	LAM	LAM	LAM	LAM	LAM	LAM	LAM	LAM	LAM	LAM	LAM
Jet Velocity	=/	/sec :	85.0		86.4	87.1	87.8	88.5	85.2	89.9		91.3	92.0
Impact Force		lbf :	335.5		16.7	352.4	358.1	363.8	369.6	375.4	381.3 3	87.3	393.3
Hydraulic Power		hhp:	94.2	96.5	98.9	101.4	103.8	106.3	108.9	111.5	114.1 1	16.8	119.5
Bit Loss		psi :	667	679	690	701	712	724	735	747	759	770	782
% Bit Loss		- :	41.4	41.5	41.7	41.8	41.5	42.0	42.2	42.3	42.4	42.5	42.6
Pipe Loss		psi :	682	691	701	710	720	730	740	750	760	770	780
Annular Loss		psi :	244	245	246	247	248	249	251	252	253	254	255
Cuttings Loss		psi:	17	17	16	16	16	16	16	16	16	15	15
Surface Loss		psi:	3	3	3	3	3	3	3	3	3	. 3	3
Total Loss		psi:	1613		1656	1678	1700	1722	1744	1767		1812	1835
7 Pressure		psi:	4111		4113	4114	4115	4116	4117	4118		4120	4121
• TD		så :	1.22		1.22	1.22	1.22	1.22	1.22	1.23		1.23	1.23
• Bboe		sg :	1.20		1.20	1.20	1.20	1.20	1.20	1.20		1.20	1.20
ECD @ Neakest Dept		ag :	1.20		1.20	1.20	1.20	1.20	1.20	1.20		1.20	1.20 1.23
ECD • TD (cuttings	B)	sg:	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23

Recommended Minimum Flow to maintain cuttings transport in top section is 78 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 313 gpm

## EXLOG DRILLBYTE MAP : MUD HYDRAULICS ANALYSIS

Data Printed on : Sun Apr 4 18:26:05 1993

INPUT DATA					
Hydraulics Model	POWER LAW Casing &	hoe Depth 2108.0	a 3	ot 1	11 in/32
Depth		Patn Depth 2108.0	-	et 2	11 in/32
Vertical Depth	2419.2 m Mud Dens		<b>a</b> g 3	let 3	11 in/32
Flow Rate		Viscometer 33	7	otal Fluid Area	0.2784 in^2
Average ROP	5.5 m/hr 600 rpm				
Cuttings Density Cuttings Diameter	2.45 spc grtastic				
Cuttings Diameter Cuttings Shape	0.200 in Yield Pos		#/100ftA2		
Cuttings Thickness	8PHERICAL Power Let 0.050 in Power Let		#sec^n/100ft^2		
	A. ASA TH LOMAL DE	w n 0.54057			
CALCULATED RESULTS					

Sec	tion	Hole		P:	pe	Volum	C	pacitie	•	Mud Velo	city	Flow			
Top	Length	Size	•	<b>20</b>	ĬD.	Hole		Annulu			Critical				
<b>2</b>		in	1		in	bb1	bb:	bb	l s/min			,			
Surface	80.5	19.750	5.	000	4.275	100						LAMINAR			
82.0	838.0	8.681	5.	.000	4.275	216	52				117.8	LANTHAR			
<b>980.0</b>	112.0	8.681	3.	500	2.750	27					102.1	LANIMAR			
1092.0	1016.0	6.184	3.	500	2.750	124	2				131.2	LANINAR			
2108.0	28.4	6.000	3.	500	2.750	11			7 251.9			LAMINAR			
2206.4	218.6	6.000	4.	750	2.500	25	4	-	304.8		173.8	LANINAR			
Rydrosta	tic Press	re 1	354	psi											
Annular V			356		2782	strokes		59 mins							
Pipe Cape	acity			bbl		strokes		15 mins							
	ing Volume	•	447			strokes		74 mins							
	placement			bb1	0.00										
	le Volume		503												
TYDRAULI	CS RESULTS	AT VAL	LIOUS	. FLC	M PATES										
Flow Rate			gpa.		245	247	249	251	253	255	257	259	261	263	246
Flow Reg	ime at TD			:	LAM	LAM	LAM	LAM	LAK	LAM	LAM	LAN	LAM	Lam	265
Jet Veloc		=/	<b>50</b> C	-	86.1	86.8	87.5	88.2	88.3	83.6	90.3	31.0	91.7	32.4	LAM
Impact Fo		_,	1bf				355.2	360.9	366.7	372.5			390.3	396.3	93.1 402.3
Hydraulic	c Power		hhp				102.6	105.1	107.6	110.2			118.1	120.9	123.7
Bit Loss			psi		684	695	707	718	730	741	753	765	776	788	800
Bit Los	88			:	41.2	41.4	41.5	41.6	41.8	41.5	42.0	42.1	42.2	42.3	42.5
Pipe Loss	<b>s</b> .		psi	-	699	709	719	728	738	748	758	769	773	789	800
Annular I	Loss		psi		254	256	257	258	259	260	261	262	263	264	266
Cuttings	Loss		psi		18	18	18	17	17	17	17	17	17	17	16
Surface I	Loss		DSi		3	3	-3	3	3	-3	3	- 3	3	3	3
Total Los	8		DSi		1659	1680	1702	1725	1747	1769	1792	1815	1838	1862	1885
Lire Pres	ESUTO .		DBI		4226	4227	4228	4229	4230	4231	4232	4233	4234	4235	4236
CD e TD			89		1.22	1.22	1.22	1.22	1.23	1.23	1.23	1.23	1.23	1.23	1.23
ICD . Sho	04		84		1.20			1.20			1.20				
	oe akest Dept	h		\$		1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20

Recommended Minimum Flow to maintain cuttings transport in top section is 79 gpm Recommended Maximum Flow to maintain laminar flow in lowest section is 313 gpm APPENDIX VIII: Geological-Engineering Morning Reports



COMPANY BHP Petroleum	WELL MINERVA - 1
DATE 08.03.93	TIME 24:00hrs
DEPTH 105m. LAST REPORT DE	PTH -
RIG OPERATIONS Trouble shoot electrical fault.	
REPORT BY Matt Sale REPORT RECEIVED	BY J.Dickson/J.Boorman (OPTR)
DRILLING REPORT	
Bit No. NB#1 Type Sec S3J size 36"	in
On Bit: Distance 23.0 m Hours 0:39 hh:mm Ros 21 - 15	6 m/hr wos 0 - 10 klb spm 75 - 80
Pump Press 1120 psi see 200 Torque 250-470 Ten	2804 CP 118 - CP 818 -
HYDRAULICS REPORT	
Nud Density In 1.03 SG Rud Density out _ SG BCD	1.03 sg PV/YP 1/1
Gels	
Nois Volume 95 bbl Annular Volume 90 bbl Tubing Volume	3 bbl Displaced Volume 13 bbl
Carbide Leg-Calculated Leg 703 stks	
DrillPipe Annular Vel (Next. Dia. Sec.) 3.2 m/min DrillPipe As	mular Vel (Open Hole)
Drill Collar Annular Vel (Open Hole) 6.4 m/min cri	cical vel 25.2 m/min
Pressure Loss System 1150 psi Pressure Loss Bit -	↑ Pressure Loss
Nozzle Vel Jet Impect Force	
PRESSURE PARAMETERS	
rilling Exponent 0.30 - 0.67 Flowii	na Teen
Shale DensityShale F	
Background Gas Max. Pormation Gas 0	
Other Gas	
Fill Tight Role	
Cavings Est \Average Size	•
PORTIVINED DADE LIE EDIGUES DESCRIPT	
ESTIMATED PORE AND FRACTURE PRESSURE  Rick Telegrapes - Min. Estimated Procture Pro	egure (Open Noie)
Estimated Pore Pressure 1.03 SG Nin. Estimated Pore Pre	
	Stimated Fracture Pressure at TD
COMMENTS Spud Minerva -1 at 11:58 hrs.  Drill 36.0 hole from 82 - 105m.	
Sweep hole with 50 bbls hi-vis.	
POOH with 26.0" bit and 36.0" hole opener	
M/up 9.875" bit and RIH.	
Electrical fault with drawworks - trouble shoot same.	



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 09.03.93 TIME 24:00 hrs
DEPTH 560m LAST REPORT DEPTH 105m
RIG OPERATIONS Cmt 30° casing.
REPORT BY M. Sale REPORT RECEIVED BY G. Howard/J. Bootman (OPTR)
DRILLING REPORT
Bit No. NB#2 (pilot hole) Type Sec S33GF size 9.875 in Jets 3 x 16
On Bit: Pistance 455 m Nours 3:32 hh:mm mos 27 - 550 m/hr wos 0 - 15 RPM 120
Pump Press 1750 pgi gpm 150 Torque 100-200 TBR 25,298 CP II\$ CP 818 -
HYDRAULICS REPORT
Ned Density in 1.03 SG Red Density out - SG ND 1.06 SG PV/TP 1/1
GoldSelimity 800PPH Cl Selids
Note Volume 236 bb1 Annular Volume 190 bb1 Tubing Volume 28 bb1 Displaced Volume 25 bb1
Carbide Leg-Calculated Leg 1483 Stks Flowrate 760 gpm
DrillPipe Annular Vel (Max. Dia. Sec.) 4.5 m/min DrillPipe Annular Vel (Open Nele) 79.9 m/min
Drill Collar Annular Vel (Open Hole) 169.4 m/min Critical Vel 27.0 m/min
Procesure Local System 1750 psi Procesure Local Bit 1317 psi 9 Procesure Local 75.25
Hoszie Vel 126.2 m/sec Jet Impact Force 1400.8 lbf NHF 583.7 hp
PRESSURE PARAMETERS
Drilling Exponent 0.28 - 1.19 Flowline Temp
Shale Peacity Shale Factor
Sackground Gas Max. Pormation Gas 0 Trip Gas 0
Other Gas
Fill 4m (see below) Tight Nois -
Covings Bot %
ESTIMATED PORE AND FRACTURE PRESSURE
Rick Tolerance Ris. Estimated Procture Procesure (Open Hole)
Estimated Fore Pressure 1.03 89 Nin. Estimated Fore Pressure (Open Hole) 1.03 89 shoe
Nam. Estimated Pore Pressure (Open Role) 1.03 SG e TD Setimated Fracture Pressure at 70
COMMENTS RIH & stabbed into 36° hole w/ROV aid. RIH to 105m.
Drill 9.875* hole f/105 - 551m - sweep 15 bbl hi-vis on half & full stds.  Drill 551 - 560m. pump 50 bbl hi-vis sweep. Drop survey.
POOH.
P/up 36" BHA & RIH - tag at 101m (4m fill)
Drill 36" f/ 105 - 114m & 26" hole to 115m. Sweep pills.
Pump 100 bbl hi-vis & spot 150 bbl hi-vis on btm. POOR f/ 114m.
M/up 30" R/tool. Run 30" csg - hang up at 102m - work thru same. Land csg.
Cint as per programme.



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 10.03.93 TIME 24:00hrs
JEPTH 560m LAST REPORT DEPTH 560m
RIG OPERATIONSCmt 13.375* csg.
REPORT BY Matt Sale REPORT RECEIVED BY G. Howard/J. Boorman (OPTR)
DRILLING REPORT
Bit No. NB#3 Type Sec SS44G size 17.500 in Jets 3 x 18 On Siz: Distance 445.0 m Nours 3:01 hh:mm No. 10 - 350 m/hr NO. 10 - 20 klb RPM 120
Pump Press 2700 psi spx 200 Torque 100-600 TBR - CP I:8 - CP B:8 -
HYDRAULICS REPORT
Mud Density In 1.03 Sq Mud Density out 0.00 Sq RCD 1.03 Sq FV/YP 1/1
Carbide Lag-Calculated Lag 3302 StkS Flowrate 1080 gpm
DrillPipe Annular Vel (Nex. Dia. Sec.) 10.6 m/min DrillPipe Annular Vel (Open Mole) 28.8 m/min
Drill Coller Annular Vel (Open Hele) 37.4 m/min Critical Vel 25.5 m/min
Pressure Loss System 2700 psi Pressure Loss Siz 1661 psi 9 Pressure Loss 62
Nossie Vel 141.7 m/sec Jet Impect Force 2235.1 lbf MMF 1045.6 hp
PRESSURE PARAMETERS
Drilling Exponent - Plowline Temp
le Density Shale Factor
Background Gas Permation Gas e Trip Gas e
Other Gas _ *
Fill Tight Hole
Cavings Est % Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Telerance "Hin. Estimated Fracture Frassure (Open Nole)
Estimated Pore Pressure 1.03 Sg Nin. Estimated Pore Pressure (Open Nole) 1.03 SG e Shoe
Max. Estimated Fore Pressure (Open Mole) 1.03 SG e TD Estimated Fracture Pressure at TD
COMMENTS M/up 17.5" bit to 9.5" DC's - attach guide ropes and stab
into wellhead. ROV observe same. Drill shoe & cmt from 114 - 115m.
Open 9.875" pilot hole to 17.5" f/ 115 - 517m. Pump 20 bbls hi-vis at half & full std. Cont open hole to 560m. Sweep w/250bbl hi-vis & spot
630 bbl hi-vis & wt mud on btm. Drop survey. POOH w/ no drag.
R/up & run 13.375" csg. Land same.
Circ hole • 80 spm (350 psi) for 30 mins.
Cmt as per programme. Bump plug w/ 1500 psi



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 11.03.93 TIME 24:00 hrs
DEPTH 560m LAST REPORT DEPTH 560m
RIG OPERATIONS Testing BOP's
REPORT BY Matt Sale REPORT RECEIVED BY G. Howard/T. How (OPTR)
DRILLING REPORT
Bit No
On Sit: Distance . IN Nours . hh:mm nop
Pump Press SPN Torque TBR CP I:8 CP B:6
HYDRAULICS REPORT
Ned Density In _ SG Ned Density out _ SG NCD _ PV/YP
Gels
Noie Volume Displaced Volume Displaced Volume
Carbide Leg-Calculated Leg Plowrate
DrillPipe Annular Vel (Nam. Dia. Sec.) DrillPipe Annular Vel (Open Noie)
Drill Collar Annular Vel (Open Role) Critical Vel
Pressure Loss System Pressure Loss Bit Pressure Loss
Boszle Vel
PRESSURE PARAMETERS
Drilling ExponentFlowline Temp
Shale Pactor Shale Factor
Sectoround Gas Max. Formation Gas e Trip Gas e
Other Gas _ *
FillTight Role
Cavings Est % Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Rick Tolerance "Nim. Retimated Practure Procesure (Open Nole)
Estimated Pore Pressure 1.03 SG Nin. Estimated Pore Pressure (Open Nole) 1.03 SG e Shoe
Max. Estimated Pere Francus (Open Hole) 1.03 SG e TD Betinated Fracture Pressure at TD
COMMENTS
Disconnect cmt hose & back out r/tool.
РООН.
R/up and install BOP's and riser.
Install choke & kill lines.
M/up test plug & RIH.  Test BOP's to BHP specification.
Aest Dor & to our SpecialCation.



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 12.03.93 TIME 24:00 hrs
DEPTH 765m LAST REPORT DEPTH 560m
RIG OPERATIONS Drilling ahead.
REPORT BY Matt Sale REPORT RECEIVED BY G. Howard (OPTR)
DRILLING REPORT
Bit No. NB#4
Pump Press 2600 psi spn 140 torque 150-370 tan 44,613 CF I:8 CP B:6
HYDRAULICS REPORT
Mud Density In 1.09 SG Mud Density out 1.09 SG SCD 1.10 SG FV/YF 17/18
Gels 5/12 Salinity 31000 PPN CI Solids 5.5
Note Volume 430 bbl Annular Volume 351 bbl Tubing Volume 37 bbl Displaced Volume 42 bbl
Carbide Lag-Calculated Lag 2743 stks Flowrete 753 gpm
DrillFipe Annular Vel (Max. Dia. Sec.) 15.4 m/min DrillFipe Annular Vel (Open Role) 45.5 m/min
Drill Collar Annular Vel (Open Hole) 68.6 m/min Critical Vel 118.2 m/min
Pressure Loss System 2600 psi pressure Loss Bit 1439 psi Pressure Loss 55
Hossie vel 128.2 m/sec Jet Impact Force 1492.2 lbf MMP 631.6 hp
PRESSURE PARAMETERS
Drilling Exponent 0.10 - 1.33 Flowline Temp 42.2 deg C
Jhale Density Shale Factor
Background Gas Nil Max. Pormation Gas - Trip Gas
Other Gas _*
FillTight Noie
Cavings Est % Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Eick Tolerance 0.746 Sg Nin. Estimated Frecture Pressure (Open Hole) 1.875 Sg at 651m
Estimated Pore Pressure 1.03 SG Min. Estimated Pore Pressure (Open Noie) 1.03 SG e Shoe
Max. Setimated Pore Pressure (Open Hole) 1.03 SG e TD Batimated Fracture Pressure at TD 1.913 SG
COMMENTS All pore pressure indicators remain normal.
Continue BOP test. POOH w/ test plug & l/out same.  L/out 17.5 bit & BHA, p/up 12.25 BHA & bit.
Test rwd memory. Test mwd on rig pumps.
Continue RIH and tag TOC ● 522.73m. Drill out same w/flt & shoe at 549m.
Displace hole w/KCL mud. Drill out rathole 549 - 560m.
Sweep hole clean. Drill new 12.25* hole f/ 560 - 563m.
Sweep hole clean. Drill new 12.25 hole f/ 560 - 563m.  Pump back inside shoe, circ intil mud weight balanced.  Perform LOT - Applied 825psi, MW = 1.08sg, Frac Grad = 2.13 sg EQMW.



COMPANY BHP Petroluem WELL MINERVA - 1	
DATE 13.03.93 TIME 24:00 hrs	
DEPTH 1204m LAST REPORT DEPTH 765m	
RIG OPERATIONS Circ BU.	
REPORT BY Matt Sale REPORT RECEIVED BY G. Howard (OPTR)	
DRILLING REPORT	
Bit No. NB#4 Type HTC ATM11HG size 12.250 in Jets 13,16,18	
On Bit: Distance 644m m Hours 22:28 hh:mm nop 6 - 353 m/hr NOB 10 - 35 klbsnpm 140	
Pump Press 2850 psi spx 140 Torque 200 - 450 TBR 173,938 CF I:8 CF B:8	
HYDRAULICS REPORT	
Ned Density In 1.13 89 Ned Density out 1.13 89 BCD 1.14 PV/TP 18/21	
Gels 6/14 Salinity 27000 PPH Cl Solids 6.6%	_
Hole Volume 727 bbl America Volume 612 bbl Tubing Volume 63 bbl Displaced Volume 52 bbl	
Carbide Leg-Calculated Leg 4781 Stks (carbide) Flowrate 755 gpm	-
DrillPipe Annular Fel Glax, Dia. Sec.) 15.5 m/min DrillPipe Annular Fel (Open Rele) 45.6 m/min	
Drill Collar Annular Vel (Open Nole) 68.8 m/min Critical Vel 127.2 m/min	
Pressure Loss System 2850 psi Pressure Loss Bit 1499 psi Pressure Loss 53	
Bozzie vei 128.5 m/sec	
PRESSURE PARAMETERS	
Drilling Exponent 0.4 - 1.66 Flowline Temp 51.6 deg C	
Shale Pentity Shale Factor	
Background Gas 0.20 % Max. Formation Gas 1.13 % • 1183m Trip Gas - • -	
Connx gases • 1081.5,1110.5,1139.5,1168.9,1198.1m of 0.11,0.43,0.04,1.23,0.12% respectively	
Fill Tight note See below.	
Cavings Est % Average Size	
ESTIMATED PORE AND FRACTURE PRESSURE	
Rick Tolerance 0.40 sg Nis. Setimated Precture Pressure (Open Nole) 1.875 sg at 651m	_
Estimated Pore Pressure 1.03 89 Him. Estimated Pore Pressure (Open Noie) 1.03 89 e 549m	
· · · · · · · · · · · · · · · · · · ·	
Max. Estimated Fore Pressure (Open Mole) 1.03 89 e TD Estimated Fracture Pressure at 70 2.006 89	
COMMENTS All pore pressure parameters remain normal.	_
COMMENTS All pore pressure parameters remain normal.  Cont drill 765 - 1056m. Wash connxs - FLC drill breaks.	_
COMMENTS All pore pressure parameters remain normal.  Cont drill 765 - 1056m. Wash connxs - FLC drill breaks.  Cont drill 1056 - 1204m. Wash/ream ea connx & FLC.	
COMMENTS All pore pressure parameters remain normal.  Cont drill 765 - 1056m. Wash connxs - FLC drill breaks.	
COMMENTS All pore pressure parameters remain normal.  Cont drill 765 - 1056m. Wash connxs - FLC drill breaks.  Cont drill 1056 - 1204m. Wash/ream ea connx & FLC.  Incr Mud weight to 1.13sg at 19:00hrs.	
COMMENTS All pore pressure parameters remain normal.  Cont drill 765 - 1056m. Wash connxs - FLC drill breaks.  Cont drill 1056 - 1204m. Wash/ream ea connx & FLC.  Incr Mud weight to 1.13sg at 19:00hrs.  Circ & cond mud until hole clean. POOH f/ 1204 - 1084m	
COMMENTS All pore pressure parameters remain normal.  Cont drill 765 - 1056m. Wash connxs - FLC drill breaks.  Cont drill 1056 - 1204m. Wash/ream ea connx & FLC.  Incr Mud weight to 1.13sg at 19:00hrs.  Circ & cond mud until hole clean. POOH f/ 1204 - 1084m  w/ overpull 10 - 40 klbs. Swab 2 bbls @ 1084m.	



COMPANY BHP Petroleum WE	LL MINERVA - 1
TATE14.03.93T	IME 24:00hrs
DEPTH 1204m LAST REPORT DEPTH	1204m
RIG OPERATIONS Prepare to run 9.625 csg.	
REPORT BY Matt Sale REPORT RECEIVED BY	
DRILLING REPORT	
Bit No 2790 - Sime 0.000 i	n Jets -
On Bit: Distance 0.0 m Hours 1:00 hh:mm nos -	MOR . EPR .
Fump Freds SPN Torque TBR	CP Tid CP Bid
HYDRAULICS REPORT	
Mod Density In 1.13 SG Mud Density Out 0.00 SG ECD	- ру/үр 18/21
Gels 6/14 salinity 27000	PPN C1 30114s 6.50%
Note Volume 727 bbl Annular Volume Tubing Volume	Displaced Volume
Carbide Lag-Calculated Lag Floor	rate -
DrillPipe Annular Vel (Nax. Dia. Sec.)	r Vel (Open Hole)
Drill Collar Annular Vel (Open Nole) Critical	l Vol
Pressure Loss System Pressure Loss Bit	N Pressure Loss
Nossie Vel Jet Impact Force	101P
PRESSURE PARAMETERS	
Prilling Exponent - Flowline Tw	
Ale Density Bhale Factor	
Background Gas Nax. Pormation Gas 0	
Other Gas Nil	
Fill Tight Nois	
Cavings Est % Average Size	
CRATER REF. 4	
ESTIMATED PORE AND FRACTURE PRESSURE	1 975 and a 6515
Eich Tolerance 0.40 89 Min. Estimated Practure Pressure	
Estimated Pore Pressure 1.03 SG Nin. Satinated Pore Pressure	
Nax. Estimated Pore Pressure (Open Noie) 1.03 SG e TD	Sectinated Fracture Pressure at TD 2.006 SG
COMMENTS Continue CBU. WTG = 1.53%.	
POOH to log. Hole ok.	
Dump memory on mwd.  R/up Schlumberger Log#1 DLL-MSFL-AS-GR-AMS	
Log#2 VSP Log#3 CST (100% recovery)	
Retrieve wear bushing.	
M/up 9.625* hanger and cmt head.	



COMPANY HHP Petroleum WELL MINERVA - 1
DATE 15.03.93
DEPTH 1204m LAST REPORT DEPTH 1204m
RIG OPERATIONS M/up 8.5 BHA.
REPORT BY Matt Sale REPORT RECEIVED BY G. Howard (OPTR)
DRILLING REPORT
Bit No. Type Size in
On Sit: Distance " M Mours " hh:mm nos " won " new "
Pump Proces SPR Torque TBR CP I:8 CP B:8
HYDRAULICS REPORT
Med Density in 1.12 SG Nud Density out * SG SCD * PV/TP 19/20
Gold 5/10 Salinity 26000 PPM CI Solids 6.50%
Noie Volume
Carbido Leg-Calculated Leg Flowrate
DrillPipe Annular Vel (Max. Dia. Sec.) DrillPipe Annular Vel (Open Hole)
Drill Collar Annular Vel (Open Nole) Critical Vel
Proceure Loca System Freesure Loca Sit % Proceure Loca
Boszlo Vel
PRESSURE PARAMETERS
Drilling Exponent
Shale Desgity Shale Factor
Background Gas Strip Gas Trip Gas
Other des
fillTight Nois
Cavings Est % Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Rick Telerance 0.41 Min. Estimated Procture Pressure (Open Hole) 1.875 SG at 651m
Estimated Pore Pressure 1.03 89 Nim. Estimated Pore Pressure (Open Noie) 1.03 SG e Shoe
Max. Estimated Fore Pressure (Open Hole) 1.0389 e TD Setimated Fracture Pressure at TD 2.006 89
COMMENTS
R/up and run 9.625° casing.
Land same.
Circ prior to cont tob
Circ prior to cmt job.  R/up and test cmt lines.
R/up and test cmt lines.  Cmt casing.
Break down 12.25" BHA.



WELL MINERVA - 1
NATE 16.03.93 TIME 24:00 hrs
DEPTH 1329m LAST REPORT DEPTH 1204m
RIG OPERATIONS Drilling ahead 8.5" hole.
REPORT BY Matt Sale REPORT RECEIVED BY G. Howard (OPTR)
DRILLING REPORT
Bit No. NB#6
On Bit: Distance 120 m Nours 3:33 hh:mm ROF 2 - 75 m/hr NOS 5 - 30 klb RPN 75 - 135
Pump Press 2000 psi ses 90 Torque 200-450 TBR - CP II\$ - CP BI\$ -
HYDRAULICS REPORT
Ned Dessity In 1.12 SG Ned Dessity OUE 1.12 SG BCD 1.18 SG PV/YP 16/18
Gels 5/8 Selimity 27000 PPM CI Solids 6.8%
Note Volume 398 bbl Annular Volume 280 bbl Tubing Volume 68 bbl Displaced Volume 50 bbl
Carbide Leg-Calculated Leg 2187 stks (calc) Florrate 485 gpm
DrillPipe Amular Vel (Max. Dia. Sec.) 9.9 m/min DrillPipe Amular Vel (Open Hole)
Drill Collar Annular Vel (Open Hole) 120.8 m/min Critical Vel 150.8 m/min
Procedure Local System 2000 psi Procedure Local Sit 807 psi 9 Procedure Local 40
Bozzle Vel 94.7 m/sec Jet Impect Force 729.6 lbf MMF 228.1 hp
PRESSURE PARAMETERS
Planting Temp 33.0 deg C
والمستحافظ
Ale Dessity Shele Factor Shele Factor - Shele Factor - 1200m - 1200m - 1200m
Backyround das 0.15 % Max. Pormation das 0.24 % • 1270m Trip das 0.20% • 1209m
Max. Pormation das 0.24 % a 1270m Trip das 0.20% a 1209m
### Permation das   0.15 %   Max. Permation das   0.24 %   1270m   Trip das   0.20%   e   1209m    Other das   Nil     Tight Hole   Tight   Ti
### Average Size
Sackground Gas 0.15 % Max. Pormation Gas 0.24 % a 1270m Trip Gas 0.20% a 1209m  Other Gas Nil  Fill Nil Tight Hole
Average Size
Sectinated Fore Pressure 1.03 sg Nin. Sectinated Fore Pressure (Open Noie) 1.03 sg e Shoe
Average Size
Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Tolerance 0.73 sg Nin. Setimated Procesure (Open Noie) 1.94 sg at shoe  Retinated Pore Pressure (Open Noie) 1.03 sg shoe  Rax. Estimated Pore Pressure (Open Noie) 1.94 sg at shoe  Rax. Estimated Pore Pressure (Open Noie) 1.954 sg  Rin. Estimated Pore Pressure at TD Estimated Practure Pressure at TD 1.964 sg  COMMENTS All pore pressure indicators are normal.
Average Size  Cavings Est \( \frac{1}{2} \)  ESTIMATED PORE AND FRACTURE PRESSURE  Eick Telerance 0.73 sg   Min. Setimated Fracture Pressure (Open Noie)   1.94 sg at shoe  Estimated Fore Freesure (Open Noie)   1.03 sg   shoe  MAX. Estimated Fore Freesure (Open Noie)   1.94 sg at shoe  COMMENTS   All pore pressure indicators are normal.  Cont m/up 8.5 = BHA & RIH. Tag TOC @ 1162m.
Rachground das 0.15 % Max. Formation das 0.24 % • 1270m 7rip das 0.20% • 1209m  Other das Nil  Fill Nil Tight Note - Average Size - Average Size - Average Size - Average Size - I.03 sg Nia. Setimated Frecture Freesure (Open Note) 1.94 sg at shoe  Betinated Fore Freesure 1.03 sg Nia. Setimated Free Freesure (Open Note) 1.03 sg • Shoe  RAX. Estimated Fore Freesure (Open Note) 1.03 sg • TD Setimated Freeture Freesure at 70 1.964 sg  COMMENTS All pore pressure indicators are normal.  Cont m/up 8.5 BHA & RIH. Tag TOC • 1162m.  Drill same w/ flt, frm cmt & shoe. Clean out rathole.
Rachyround das 0.15 % Max. Formation das 0.24 % • 1270m Trip das 0.20% • 1209m  Other das Nil  Fill Nil Tight Hole -  Cavings Est % Average Size -  ESTIMATED PORE AND FRACTURE PRESSURE  Elick Telerance 0.73 sg Min. Setimated Frecture Pressure (Open Hole) 1.94 sg at shoe  Retinated Pore Pressure 1.03 sg Min. Setimated Fore Pressure (Open Hole) 1.03 sg • shoe  Max. Setimated Pore Pressure (Open Hole) 1.03 sg • TD Estimated Fracture Pressure at TD 1.964 sg  COMMENTS All pore pressure indicators are normal.  Cont m/up 8.5° BHA & RIH. Tag TOC • 1162m.  Drill same w/ flt, frm cmt & shoe. Clean out rathole.  Drill 3 m new hole f/1204-1207m. Work sunk sub. CBU.
Rachground das 0.15 % Max. Formation das 0.24 % • 1270m 7rip das 0.20% • 1209m  Other das Nil  Fill Nil Tight Note - Average Size - Average Size - Average Size - Average Size - I.03 sg Nia. Setimated Frecture Freesure (Open Note) 1.94 sg at shoe  Betinated Fore Freesure 1.03 sg Nia. Setimated Free Freesure (Open Note) 1.03 sg • Shoe  RAX. Estimated Fore Freesure (Open Note) 1.03 sg • TD Setimated Freeture Freesure at 70 1.964 sg  COMMENTS All pore pressure indicators are normal.  Cont m/up 8.5 BHA & RIH. Tag TOC • 1162m.  Drill same w/ flt, frm cmt & shoe. Clean out rathole.
Restricted Pore Pressure (Open Noie)  All pore pressure indicators are normal.  Cont m/up 8.5* BHA & RIH. Tag TOC @ 1162m.  Drill 3 m new hole f/1204-1207m. Work sunk sub. CBU.  Pare 1270m Trip das 0.20% a 1209m  Trip das
Section and Pore Pressure (Open Noie)  AND Section and Possure indicators are normal.  COMMENTS  All pore pressure indicators are normal.  Cont m/up 8.5° BHA & RIH. Tag TOC @ 1162m.  Drill same w/ flt, frm cmt & shoe. Clean out rathole.  Drill 3 m new hole f/1204-1207m. Work sunk sub.  Drill new hole f/1207-1209m. Rip to 1207m. Work junk sub.  Drill new hole f/1207-1209m. Work junk sub.



C

COMPANY BHP Petroleum WELL MINERVA - 1
Damp 17 02 02
TIME 24:00 hrs
DEPTH 1747m LAST REPORT DEPTH 1329m
RIG OPERATIONS Drilling ahead.
REPORT BY Matt Sale REPORT RECEIVED BY G. Howard (OPTR)
DRILLING REPORT
Bit No. NB#6 Type Hycalog DS61H size 8.500 in Jets 3x12,11,10
on sit; Distance 538 m Nours 21:15 hh:nm Nor 2 - 83 m/hr Nos 2 - 18 klb RPM 80 - 180
Pump Press 2300 psi sps 98 Torque 225-560 TBR - CP I:8 - CP B:8 -
HYDRAULICS REPORT
Mod Density In 1.16 SG Nucl Density out 1.16 SG ECD 1.23 FV/YP 19/24
Gale 7/26 Salinity 34000 PPM Cl Solide 7.6%
Nois Volume 494 bbl American Volume 342 bbl Tubing Volume 92 bbl Displaced Volume 60 bbl
Carbide Lag-Calculated Lag 2673 stks (calc) Pleyrate 530 gpm
DrillPipe Amular Val (Max. Dia. Sec.) 10.9 m/min DrillPipe Amular Val (Open Hole) 86.2 m/min
Drill Coller Annular Vel (Open Hole) 132.0 m/min Critical Vel 174.5 m/min
Pressure Loss System 2300 psi Pressure Loss Siz 998 psi Pressure Loss 43.4%
Dozzie Vel   103.5 m/sec   Jet Impact Force   902.4 lbf   MMP   308.4 hp
PRESSURE PARAMETERS
Drilling Exponent 0.45 - 1.49 Flowline Temp 52.6 deg C
Shale Density Shale Factor
Sachground Gas 0.15% Max. Pormetion Gas 4.5% e 1659m Trip Gas
Other theConnx gas recorded from 1364m to max of 0.08% above background
Fill
Cavings Est % Tr to 20% Average Size 20x10mm
ESTIMATED PORE AND FRACTURE PRESSURE
Fick Tolerance 0.71 Sq His. Setimated Frecture Pressure (Open Hole) 1.909 SG at 1648m
Partimeted have been processed of the parties of th
a since
Tracture Practure Pressure at TD 1.770 Bg
COMMENTS Indications of overpressure from DXC (unreliable with PDC bit), some overpressure & stress relief-type cavings seen at shakers, plus the commence of the population of the commence of the population of
overpressure & stress relief-type cavings seen at shakers, plus the occurance of connx gases.  Qualification of pore pressure difficult, but estimated to be between 1.13 and 1.14 sg.
New minimum fracture gradient recorded on entering sandstone at 1648m of 1.909sg.
Drill ahead from 1329-1559m - FLC connx & drilling breaks.
Drill 1559-drill break at 1648m. Drill 6m to 1654m.FLC & CBU sample.
Drill ahead from 1654-1747m Survey every 3rd connx.



COMPANY BHP Petroleum	WELL MINERVA - 1	
DATE 18.03.93	TIME 24:00 hrs	
DEPTH 1828 m LAST REPORT DE		
RIG OPERATIONS Making up Core barrel + RIH.		
	(0000)	
REPORT BY Andre Thangam REPORT RECEIVED	BY G. Howard (OPTR)	
DRILLING REPORT		
Bit No. CB#1 Type DBS CD93 size 8.500		
On Bit: Distance 7.1 m Hours 0:59 hh:mm nos 7 m/hr	MOB 6-27 klb RPN 93-146	
Pump Press 750 psi spm 42-51 torque 158-421 TER	7044 CP It 8 5145 CP Bt 8 11534	
HYDRAULICS REPORT		
Mad Descrity In 1.17 SG Mad Descrity out 1.17 SG BCD	1.22 sq PV/YP 18/26	
Gale 8/28 Salimity 34000	PPH Cl Solide 8.5%	
Hole Volume 513 bbl Annular Volume 354 bbl Tubing Volume	99 bbl Displaced Volume 60 bbl	
Carbido Log-Calculated Log 2767 stk	Flowrate 274 gpm	
DrillPipe Annular Vel (Nex. Dia. Sec.) 5.6 m/min DrillPipe An	meular Vel (Open Hole) 44 m/min	
Drill Collar Ammular Vel (Open Hole) 65 m/min Cri	tical vel 171 m/min	
Pressure Loss System 602 pSi Pressure Loss Bit 214 pSi	A Procesure Loca 29%	
Nozzie vel 48 m/sec Jet Impact Force 216	1bf mer 34 hhp	
DECOMP DIDIONEDO		
PRESSURE PARAMETERS  Drilling Exponent 0.31-1.94 Flowli	45 5 deg C	
ale Density		
Background Gas 0.5% Nax. Pormation Gas 0.9% a		
Other Gas CG • 1771m & 1800m, with 0.08% above background gas		
Fill " Tight Nois		
Cavings Est % Average Size		
reside ser /		
ESTIMATED PORE AND FRACTURE PRESSURE		
	1.803 sg at 1811m	
Estimated Fore Pressure 1.14 89 Min. Setimated Fore Fre	esure (Open Hole) 1.03 sg e shoe	
Max. Estimated Pore Pressure (Open Nole) 1.14+ 89 e TD	Estimated Fracture Pressure at TD 1.803 Sg	
COMMENTS Cont drill f/ 1747m-1821m. FLC, Circ BU.		
Pump slug. POOH.		
M/u core barrel + RIH to cut core.  Wash + ream f/ 1707m to 1821m.		
Pump slug + POOH to change bit + BHA		
Break off bit, core barrel, L/d 9m barrel.		
M/u CB#2 onto 18m core barrel.		
RIH.		



COMPANY BHP Petroleum	WELL MINERVA - 1	
DATE 19.03.93		
DEPTH 1847m LAST REPORT DEP		
RIG OPERATIONS Coring run #3		
REPORT BY Andre Thangam REPORT RECEIVED	BY G. Howard (OPTR)	
DRILLING REPORT		
Bit No. CB#3 Type DBS CD502 size 8.500	in Jees 9x9	
On Bit: Distance 4.5 m Hours 0:08 hh:mm HOP 3.98 m/h		
Pump Proces 200-740psi sen 36 Torque 122-385amp TBR 6	6100 cp 1:6 4755 cp 3:6 18253	
HYDRAULICS REPORT		
Med Density In 1.15 89 Med Density out 1.16 89 BCD	1.17 PV/TP 15/18	
Gals 4/15 Salinity 34000		
Nole Velume 517 bbl Ameular Velume 357 bbl Tubing Velume		
Carbido Log-Calculated Log 3012 stk		
DrillFipe Annular Vel (Max. Dia. Sec.) 2.2 m/min DrillFipe Annu		
Drill Collar Assular Vel (Open Hole) 27 m/min Criti		
Pressure Lose System 186 psi Pressure Lose Sit 33 psi		
Resale Vel 19 m/Sec Jet Impact Force 33 1b		
PRESSURE PARAMETERS		
Drilling Exponent 0.9-1.44 Flowline	43 5 dam c	
Shale Density		
Bookground das 0.3% Max. Permation das 0.7% a 1		
Other Que TG • 1828m=0.31%	LUTJIII TTIP GES A. VOTE T AVERTON	
FillTight Nois		
Cavings Est % Average Size		
ESTIMATED PORE AND FRACTURE PRESSURE		
Rick Tolorance 0.61 SG Rin. Estimated Fracture Press	reure (Open Hole) 1.803 sg ● 1811m	
Estimated Pore Pressure 1.14 SG Min. Estimated Pore Press	seure (open Hole) 1.03 sg e Shoe	
Max. Setimated Pero Pressure (Open Noie) 1.14+ 89 e TD	Estimated Fracture Pressure at TD 1.803 8g	
COMMENTS RIH w/ CB#2. Hole in Good cond. Precautionary	ream f/ 1796 to 1828m.	
Torq increase f/ 1821m. Circ 5 min. Drop ball.  Cut core#2 f/ 1828-1842.5M. Pump slug + POOH. Tight hole ● 1660m. 70 klb o/p.		
Flow check • shoe. Hole good. Cont. POOH.		
Recover core. service TDS. M/up core barrel + RIH w/ CB#3		
Wash + reqm to bottom, circ for 5 min.		
Drop ball + cut core#3 from 1842.5m to 1847m (0119hrs). Midr	inight depth=1843m	



COMPANY BRP Petroleum	WELL .	MINERVA - 1	
ATE 20.03.93	TIME	2400hr	
DEPTH 1971m LAST REPORT DEP	TH.	1847m	·
RIG OPERATIONS Drilling Ahead			
REPORT BY Andre Thangam REPORT RECEIVED I	BY	G. Howard	(OPTR)
DRILLING REPORT			
Bit No. NB#7 Type HTC ATM22 Size 8.500	in	Jecs 3x12	
On Sit: Distance 124 m Sours 12:04 hh:mm sop 10.3 m/h	<u>r</u>	wos 10-28 klb	RPN 81-121
Fump Frees 2500 psi see 85 Torque 119-608 TBR 9	1349	GP II-0 1015	G 3:4 1360
HYDRAULICS REPORT			
Med Density In 1.15 SG Med Density out 1.16 SG BCD	1.20	PV/YP 15/18	
Gals 5/25 Salinity 45000			
Note Volume 549 bbl Annular Volume 378 bbl Tubing Volume			
Carbide Lag-Calculated Lag 2950 Stk			
DrillPipe Annular Vel Otax. Dia. Sec.) 9.4 m/min DrillPipe Annu	ular Vel (f	Open Hole) 73 m/min	
Drill Coller Ammular Vel (Open Hele) 113 m/min crit:			
Pressure Loss System 2415 psi Pressure Loss Sit 1681 psi			
Sozzie Vel 135 m/Sec Jet Impact Force 1005			
PRESSURE PARAMETERS			
rilling Exponent 1-1.48 Floritation	n Temp	54.6 deg C	
shale Descity Shale Fac			
Sackeround Gas 0.04% Max. Permation Gas 1.55% e 1			• <u>1847m</u>
Other Gas			
FillTight Role			
Cavings Ret 4			
ESTIMATED PORE AND FRACTURE PRESSURE		- <del> </del>	
Rick Tolerance 0.60 SG Nin. Retimated Fracture Proc	sure (Open	1.803 sg • 1811	.m
Setimated Pero Pressure 1.1459 Nim. Retimated Pero Pres	sure (Open	1.03 sg	shoe
		imated Fracture Pressure at TD	1.81sg
COMMENTS Cont cut Core#3 to 1847m. Bit stopped drilling.  Pump slug + POOH. Hole Good. Taking Good mud.			
Recover core.			
M/u NB#7. RIH to 1810m. Ream while taking MWD from 1810-1847m			
Drill f/ 1847m to 1971m.			
Survey each connection.			



COMPANY BHP Petroleum	WELL MINERVA - 1	
DATE 21.03.93	TIME 2400hr	
DEPTH 2031m LAST REPORT DE		
RIG OPERATIONS Run E-Logs.		
REPORT BY Andre Thangam REPORT RECEIVED	BY G. Howard (OPTR)	
DRILLING REPORT		
Bit No. NB#7 Pype HTC ATM22 Size 8.500	in Jets 3x12	
On Sit: Distance 184.0 m nours 18:49 hh:mm nor 9.8 m/h	r MOB 18-27 klb RPH 107-141	
Pump Proces 2500 psi gpm 85 rorque 159-602 TBR	142963 CP 116 3124 CP 816 1237	
HYDRAULICS REPORT		
Ned Descity In 1.13 SG Ned Descity out 1.15 SG SCD	1.19 PV/YP 12/18	
901s 5/25 Salinity 45000	PPR CI Solids 8.0%	
Note Volume 560 bbl American Volume 385 bbl Tubing Volume	109 bbl Displaced Volume 66 bbl	
Carbide Leg-Calculated Leg 3003 gtk	Flowrese 458 gpm	
DrillPipe Annular Vol Glaz. Dia, Sec.) 9.4 m/min DrillPipe Annular Vol Glaz.	mular Vol (Open Hole) 73 m/min	
Drill Collar Annular Vol (Open Hole) 114m/min Crit		
Pressure Lass System 2425 psi pressure Loss Sit 1688 psi		
Resale Vel 135 m/sec Jet Impact Porce 1010	l lbf note 451 hhp	
PRESSURE PARAMETERS		
Drilling Broomet 1.22 - 1.72	ью темр	
Shale Density Bale Fa	actor .	
Sackyround Gas 0.06% Max. Permetion Gas 0.14% e 2	2024m Trip Gas	
Other Gas		
Fill Fight Hole		
Cavings Est % Average Size		
ESTIMATED PORE AND FRACTURE PRESSURE		
	1.803 sg ● 1811m	
	serre (Open Hole) 1.03 Sg e Shoe	
Max. Satisated Pore Pressure (Open Noie) 1.14 ag e 1800m	Botimated Practure Pressure at TD 1.848g	
COMMENTS Drill to 2031m.		
Survey + wash each connection. Flow check, pump slug.  POOH. (Tight • 1970m, backream to 1830m. Max o/p 70 klb • 1891m.)		
Cont POOH - Flow check • shoe, cont POOH.		
Run wireline logs, Log#1: DLL, MSFL, SAS, GR, AMS		
Run log#2: FMS, LDT, CNT, GRMS		



	WELL MINERVA - 1
DATE22.03.93	TIME _2400 hr
DEPTH 2031m LAST REPORT DE	PTH 2031 m
RIG OPERATIONS Runing RFTs	
REPORT BY Andre Thangam REPORT RECEIVED	BY G. Howard (OPTR)
DRILLING REPORT	
Bit No 17790 - 1200 8.5	in
On Bit: Distance M Hours ' hh:mm nop	MOB . RPM .
Pump Prace	. CP 1/4 . CP 8/4 .
HYDRAULICS REPORT	
Nad Density In 1.15 SG Nad Density out SG ECD	PV/YP 15/18
Gals 5/25 Salimity 45000	PPN C1 Solids 9.4%
Nois Volume 560 bbl Annular Volume - Tubing Volume	Displaced Volume
Carbide Leg-Calculated Leg	
DrillPipe Ammular Vel (Max. Dia. Sec.)	nuiar Vel (Open Hole)
Drill Collar Annular Vol (Open Nole) Crit	tical Wel
Pressure Loss System * Pressure Loss Bit *	↑ Fressure Loss
Norsie Vel Jet impact Force	XXVP
PRESSURE PARAMETERS	
Prilling ExponentFlowlin	ne Temp
Prilling Exponent	
	actor •
Shale Density Shale Fa	actor •
Shale Density Shale Fe	actor •
Shale Density Shale Fa  Background Gas Nax. Pormetion Gas e Other Gas	actor •
Shale Density Shale Fe  Sactyround Gas Max. Formation Gas e  Other Gas Tight Note	actor •
Shale Density Shale Fa  Sackground Gas Nax. Formation Gas o  Other Gas  Fill Tight Noie  Cavings Est % Average Size	Trip Gas - • -
Shale Density Shale Fe  Sectorround Gas Nax. Formation Gas o  Other Gas Tight Hole  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE	Trip das
Shale Density Shale Fe  Sectoground Gas	Trip das
Shale Density Shale Fa  Sactground Gas Nax. Formation Gas o  Other Gas  Fill Tight Hole  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Telerance 0.58 Sq	Trip Cas
Shale Density Shale Fe  Section of the Gas Nax. Formation Gas e  Other Gas Tight Note  Fill Tight Note  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Tolerance 0.58 Sq Nin. Setimated Fracture Free  Setimated Pore Fracture 1.10 Sq Nin. Estimated Fore Fracture Rax. Estimated Fore Fracture (Open Note) 1.14 e 1800m  COMMENTS Cont_run Logs#2: FMS-LDT-CNT-GRMS  Logs#2: VSP	Trip Cas
Shale Density Shale Fa  Sactground Gas Nax. Formation Gas o  Other Gas  Fill Tight Hole  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Telerance 0.58 Sq	Trip Cas
Shale Density Shale Fe  Section of the Gas Nax. Formation Gas e  Other Gas Tight Note  Fill Tight Note  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Tolerance 0.58 Sq Nin. Setimated Fracture Free  Setimated Pore Fracture 1.10 Sq Nin. Estimated Fore Fracture Rax. Estimated Fore Fracture (Open Note) 1.14 e 1800m  COMMENTS Cont_run Logs#2: FMS-LDT-CNT-GRMS  Logs#2: VSP	Trip Cas
Shale Density Shale Fe  Section of the Gas Nax. Formation Gas e  Other Gas Tight Note  Fill Tight Note  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Tolerance 0.58 Sq Nin. Setimated Fracture Free  Setimated Pore Fracture 1.10 Sq Nin. Estimated Fore Fracture Rax. Estimated Fore Fracture (Open Note) 1.14 e 1800m  COMMENTS Cont_run Logs#2: FMS-LDT-CNT-GRMS  Logs#2: VSP	Trip Cas
Shale Density Shale Fe  Section of the Gas Nax. Formation Gas e  Other Gas Tight Note  Fill Tight Note  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Tolerance 0.58 Sq Nin. Setimated Fracture Free  Setimated Pore Fracture 1.10 Sq Nin. Estimated Fore Fracture Rax. Estimated Fore Fracture (Open Note) 1.14 e 1800m  COMMENTS Cont_run Logs#2: FMS-LDT-CNT-GRMS  Logs#2: VSP	Trip Cas
Shale Density Shale Fe  Section of the Gas Nax. Formation Gas e  Other Gas Tight Note  Fill Tight Note  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Tolerance 0.58 Sq Nin. Setimated Fracture Free  Setimated Pore Fracture 1.10 Sq Nin. Estimated Fore Fracture Rax. Estimated Fore Fracture (Open Note) 1.14 e 1800m  COMMENTS Cont_run Logs#2: FMS-LDT-CNT-GRMS  Logs#2: VSP	Trip Cas
Shale Density Shale Fe  Section of the Gas Nax. Formation Gas e  Other Gas Tight Note  Fill Tight Note  Cavings Est \ Average Size  ESTIMATED PORE AND FRACTURE PRESSURE  Rick Tolerance 0.58 Sq Nin. Setimated Fracture Free  Setimated Pore Fracture 1.10 Sq Nin. Estimated Fore Fracture Rax. Estimated Fore Fracture (Open Note) 1.14 e 1800m  COMMENTS Cont_run Logs#2: FMS-LDT-CNT-GRMS  Logs#2: VSP	Trip Cas



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 23.03.93 TIME 2400 hr
DEPTH 2031 m LAST REPORT DEPTH 2031 m
RIG OPERATIONS RIH
REPORT BY Andre Thangam REPORT RECEIVED BY M. Imbert (OPTR)
DRILLING REPORT
Bit No. NB#8 Type HT ATM33 Sime 8.500 in Jets 3x12
On Sit: Distance 0.0 m Nours 1:00 hh:mm nos - NOS - RPM -
Pump Proce _ SPH _ Torquo _ TBR _ CP Is6 _ CP 8:6 _
HYDRAULICS REPORT
Not Density In 1.15 SG Mad Density Out 0.00 SG SCD - PV/YP 14/14
Gols 3/20 Salinity 50000 PFN Cl Solids 8.5%
Nois Volume 560 bbl Annular Volume 385 bbl Tubing Volume 109 bbl Displaced Volume 66 bbl
Carbido Leg-Calculated Leg 3003 Stk Flowrate
DrillPipe Annular Vel (Open Hole)
Drill Coller Annular Vel (Open Nole) Critical Vel
Pressure Loss System Pressure Loss Bit Pressure Loss -
Hozzie Vel
PRESSURE PARAMETERS
Drilling ExposentFlowline Temp
Shale Density Shale Factor
Beckground Gas Trip Gas s
Other das
Fill Tight Nois
Cavings Est % Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance 0.58 SG Min. Setimated Fracture Procesure (Open Nole) 1.803 SG
Estimated Pore Pressure 1.10 Sg Nin. Estimated Pore Pressure (Open Hole) 1.03 Sg e Shoe
Max. Estimated Fore Frequence (Open Hole) 1.13 SG e 1850 m Setimated Fracture Pressure at TD 1.84 SG
COMMENTS Cont. Log#4; RFT-GR-AMS  RFT#2
RFT#3
RFT#4
R/d wireline. Retrieve w/bushing. M/u test plug + RIH + L/o.
Test all rams, valve + ann. to 500/3500 psi. POOH w/ test plug.
Test surface equip. to 500/3500 psi  Set w/bushing. M/u Bit#8. Calibrate + test MWD. Install Howco temp.guage.
RIH.



COMPANY BHP Petroleum	WELL MINERVA - 1	
DATE 24.03.93	TIME 2400 hr	
DEPTH 2107m LAST REPORT DE	PTH 2031m	
RIG OPERATIONS Wiper trip		
REPORT BY Andre Thangam REPORT RECEIVED	BY M. Imbert (OPTR)	
DRILLING REPORT		
Bit No. NB#8 Fype HTC ATM33 size 8.500	in Jets 3x12	
On Bit: Distance 76.0 m Hours 8:09 hh:mm ROP 9.2 m/hr	. MOB 17-31 RPR 97-103	
Pump Press 2600 psi sps 85-87 Torque 106-519 TBR	56810 CP I:8 810 CP B:8 1852	
HYDRAULICS REPORT		
Mud Density In 1.15 SG Mud Density out 1.15 SG ECD	1.19 PV/TP 17/20	
Gale 4/14 Salinity 49000	PPM C1 2011de 8.5 %	
Nois Volume 643 bbl Ammular Volume 462 bbl Tubing Volume	113 bbl Displaced Volume 68 bbl	
Carbide Leg-Calculated Leg 3605 Stk	Plearate 467 gpm	
DrillPipe Annular Vel (Max. Dia. Sec.) 9.6 m/min DrillPipe An	nular Vol (Open Nole) 48.4 m/min	
Drill Collar Ammular Vel (Open Mole) 116 m/min Crit	tical vel 163 m/min	
Pressure Lass System 2520psi Pressure Lass Bit 1755psi	↑ Pressure Loss 67.5 %	
Reside Vel 138 m/Sec Jet Impact Porce 1050	1bf 100P 477 hhp	
PRESSURE PARAMETERS		
Orilling Stroomst 1.03-1.58 Flowlin	ъе тетр	
Shale Descrity Shale Fo	actor	
Sechyround Gas 0.042% Rax. Pormation Gas 0.085% e :	2074m	
Other das WTG:2.85% • 2031m		
Fill 14m Tight Note 2072m-1940m		
Cavings Ret %Average Sixe		
ESTIMATED PORE AND FRACTURE PRESSURE		
Rick Tolerance 0.56 89 Nin. Setimated Frecture Pro-	saure (Open Mole) 1.803 SG	
Estimated Pero Pressure 1.10 Sg Nin. Estimated Pero Pres	soure (Open Noie) 1.03 sg e shoe	
Nax. Estimated Pore Pressure (Open Hole) 1.13 SG e 1850m	Retinated Fracture Pressure at TD 1.848 SG	
COMMENTS Cont RIH to shoe. Circ MWD survey e start+fini		
Cont to 2017, 14m fill. Circ for halco temp guage reading, MWD survey at start, mid, end of circ.  Flow check hole, pump slug + pull back to shoe. R/u + recover temp guage on wireline. RIH.		
Cont. drill 8.5" hole from 2031. Flowcheck • 2099m b/c gain in pits. Flowcheck • 2106m due to incre ROP.		
Circ BU • 2107m. Flowcheck + POOH. Work thru tight hole f/		
Max o/p 100k. (backream ledge ● 1946m)		
Cont. POOH. Hole Good Cond.		



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 25.03.93 TIME 2400 hr
DEPTH 2107 m LAST REPORT DEPTH 2107 m
RIG OPERATIONS Pump slug and POOH.
REPORT BY Andre Thangam REPORT RECEIVED BY M. Imbert (OPTR)
DRILLING REPORT
Bit No. NB#9
Pump Proces SPN Torque TBR CP I:8 CP B:8
HYDRAULICS REPORT
Next Density In 1.15 SG Must Density out 1.15 SG MCD 1.19 PV/TF 18/22
Gale 4/10 Salinity 49000 PPM CI Solide 9.0%
Note Volume 643 bbl Annular Volume 462 bbl Tubing Volume 113 bbl Displaced Volume 68 bbl
Carbido Log-Calculated Log 3605 Stk Flowrete
DrillFipe Annular Vel (Nax. Dia. Sec.) DrillFipe Annular Vel (Open Nele)
Drill Collar Annular Vel (Open Hole) Critical Vel
Proceure Loca System - Procesure Loca Elt - 9 Procesure Loca
Bossle Vel Jet Impact Force NOP
PRESSURE PARAMETERS
Drilling Exponent - Flowline Temp 47.1 deg C
Shele Density Shele Factor
Background Gas 0.15 % Max. Pormetion Gas Trip Gas 1.78% a 2107m
Other Gas WTG 8.34% @2107m
FillTight Noie
Cavings Bet \ Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance 0.56 Sg Nin. Setimated Fracture Freedure (Open Noie) 1.803 Sg
Estimated Pore Pressure 1.10 SG Nin. Estimated Pore Pressure (Open No.1e) 1.03 SG e Shoe
Max. Estimated Pore Pressure (Open Nois) 1.13 SG e 1850 m Estimated Frecture Pressure at TD 1.848 SG
COMMENTS Cont. POOH to shoe. RIH to circ. Wash + ream f/ 2093-2107m. Tag bottom.
Circ. hole clean. Flow check, pump slug + POOH, Hole good. R/u wireline.  Log#1 DLL-MSFL-AS-GR-AMS
Log#2 CST
R/d wireline. Slip+cut line. service T/d. M/u BHA. RIH to 2097m-took weight.
Wash+ream to 2107m. Surge for junk.
Circ BU. pump slug, POOH.



COMPANY BHP Petroleum WELL MINERVA - 1		
)ATE 27.03.93 TIME 2400 hr		
DEPTH 2107 m LAST REPORT DEPTH 2107m		
RIG OPERATIONS POOH (wiper trip)		
REPORT BY Andre Thangam REPORT RECEIVED BY M. Imbert (OPTR)		
DRILLING REPORT		
Bit No. RR#9.2 SEC H77SG size 8.500 in Jets Open		
On Bit: Distance 0.0 m Nours 0 hh:mm ROP - wos - RPM -		
Pump Freds - SPH - Torque - TBR - CP Ité - CP Bté -		
HYDRAULICS REPORT		
Nucl Density In 1.15 SG Nucl Density out 1.16 SG SCD 1.19 PV/TP 18/22		
Gels 4/10 Salinity 48000 PPM Cl Solids 9.0%		
Mole Volume 643 bbl American Volume 462 bbl Tubing Volume 113 bbl Displaced Volume 68 bbl		
Carbide Leg-Calculated Leg 3605 Stk Flowrate		
DrillPipe Ammular Vel (Spen Hole)		
Drill Collar Ammular Vel (Open Hole) Critical Vel		
Prossure Loss System Pressure Loss Sit Pressure Loss		
Nozzie Vel		
PRESSURE PARAMETERS		
villing Exposenc - Flowing Temp 46.1 deg C		
Shale Density		
Other Cas -		
FillTight Hole		
Cavings Est %		
Average size		
ESTIMATED PORE AND FRACTURE PRESSURE		
Rick Tolerance 0.56 SG Nin. Setimated Procesure (Open Hole) 1.803 SG		
Setimated Pere Pressure 1.10 SG Nin. Estimated Pere Pressure (Open Nole) 1.03 SG e Shoe		
Max. Estimated Pere Pressure (Open Noie) 1.13 SG e 1850 Estimated Practure Pressure at TD 1.848 SG		
COMMENTS Flow check, POOH, clean out junk sub. M/u 9.625 csg. Scraper RIH to 1180m.		
Circ. hole clean, work scraper. POOH. M/u brown cmt head. L/o 6.5° + 8° DC.  M/u BHA, RIH. Fix hydraulic unit for top arm. Cont RIH. Fix hydraulic leak on top arm. Cont RIH t		
Wash 5m fill to 2107m, surge for junk. Circ btm up.		
Pump slug, POOH.		



COMPANY BHP Petroleum WELL MINERVA - 1		
Damp 27.03.93		
2400 nr		
RIG OPERATIONS POOH		
REPORT BY Andre Thangam REPORT RECEIVED BY M. Imbert (OPTR)		
DRILLING REPORT		
Bit No		
On Sit: Distance 0.0 m Hours 0:00 hh:mm nos - wos - RPH -		
Plump Proces SPH Torque TBR CP I:6 CP B:6		
HYDRAULICS REPORT		
Must Demeity In 1.15 SG Mad Demeity out 1.15 SG SCD - PV/YP 13/12		
Gels 2/4 Selimity 48000 PPN CI Solids 8.5 %		
Nois Volume 466 bbl Ansular Volume Tubing Volume Displaced Volume		
Carbide Lag-Calculated Lag 3638 Stk Flowrate		
DrillPipe Annular Vel (Open Hele)		
Drill Coller Annular Vel (Open Nole) Critical Vel		
Pressure Loss System Pressure Loss Bit Pressure Loss		
Nozzie Vel Jet Impact Porce		
PRESSURE PARAMETERS		
Shale Pensity Shale Factor		
Other Gas   Circ BU prior to cmt. WTG= 3.64%		
FillTight Nois		
Cavings Bet 4		
ESTIMATED PORE AND FRACTURE PRESSURE		
Kick Tolerance 0.56 Sg Min. Setimated Fracture Pressure (Open Note) 1.803 Sg		
Estimated Pore Pressure 1.10 SG Nin. Estimated Pore Pressure (Open Note) 1.03 SG e Shoe		
Max. Estimated Pore Pressure (Open Hole) 1.13 89 e 1850m Estimated Fracture Pressure at TD 1.848 89		
COMMENTS Cont POOH, FLC • shoe. Hole Good. R/u, RIH 7* liner to 2102m. Break circ. Packed off.		
Worked clear. Circ 1.5 times vol. Test lines to 4000psi. Drop ball + attempt to set hanger-unsuccesful.		
Sheared out ball @ 2200 psi. Circ + work string f/ 2102 to 2107m. Cmt casing while reciprocating pipe.		
Drop dart + displace cmt while reciprocating. Set casing on bottom • 2107m. Backed out R/tool.		
P/u 2m above T.O.L. • 1090m. Rev circ. 2xDP vol. Dump cmt returns.  Pump slug + POOH.		



COMPANY BHP Petroleum	WELL MINERVA - 1
DATE28.03.93	TIME 2400 hr
DEPTH 2107 m LAST REPORT DE	EPTH 2107 m
RIG OPERATIONS RIH + drill on Pack off sub.	
REPORT BY Andre Thangam REPORT RECEIVED	BY M. Imbert (OPTR)
DRILLING REPORT	
Bit No. NB10 Type HTC J3 Sise 6.000	
On Sit: Distance 0.0 m Hours 0:00 hh:mm soe -	WOB - RPM -
Pump Press	
HYDRAULICS REPORT	
Must Descrity In 1.16 SG Nod Descrity out 1.16 SG BCD	PV/TP 13/12
Gels 2/4 Selimity 48000	
Nois Volume 466 bbl Annular Volume Tubing Volume	
Carbide Leg-Calculated Leg	
DrillPipe Annular Vel (Nex. Dia. Sec.) DrillPipe An	
Drill Collar Annular Vel (Open Nole) Cri	
Pressure Loss System Pressure Loss Bit	
Notatie Vel Jet Impact Force	
PRESSURE PARAMETERS	
Drilling Exponent - Floring	- 49 1 Apr 6
Shele Density Shele F	
Background Gas Rax. Permation Gas 0	
Other Gas	TT19 846 V.203 4 1000 m
Fill	
Cavings Ret \ Average Size	
ESTIMATED PORE AND FRACTURE PRESSURE	
Eick Telerance 0.56 Sg Hin. Estimated Fracture Pre-	Seure (Open Nole) 1.803 Sg
Setimated Pore Pressure 1.10 Sg Him. Estimated Pore Pre	meture (Open Nole) 1.03 sg e shoe
Max. Estimated Pore Pressure (Open Role) 1.13 89 e 1850m	Betimated Fracture Pressure at TD 1.848 Sg
COMMENTS Cont. POOH. L/o R/t. B/d + L/o cmt head. M/u R Wash to top of liner at 1092m. Circ hole clean. No cmt. Pum	
L/d HWDP & 6.5 DC. R/u and p/u 12x4.75 DC, rack/back in dr	
Rack 4.75* DC & m/u NB#11. RIH, p/u 102 jnt 3.5*d/p to 1082	
Break circ & wash thru T.O.L. p/off sub at 1094m.	
Drill on pack off sub work & push same from 1094 to 1109m.	



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 29.03.93 TIME 2400 hr
DEPTH 2107 m LAST REPORT DEPTH 2107 m
RIG OPERATIONS Set packer + test to 3500 psi., POOH.
REPORT BY Andre Thangam REPORT RECEIVED BY M. Imbert (OPTR)
DRILLING REPORT
Bit No Type - size - in Jets -
On Bit: Distance Mours hh:mm
Pump Fress SPN Torque TBN CP I:8 CP B:6
HYDRAULICS REPORT
Must Density In 1.16 8G Mud Density out 1.16 8G BCD - PV/YF 14/14
Gale 3/7 Selimity 46000 FPM Cl Solids 9 %
Note Volume 466 bbl Ammelar Volume Tubing Volume Displaced Volume
Carbido Log-Calculated Log
DrillPipe Amular Vel (Nax. Dia. Sec.) DrillPipe Amular Vel (Open Hele)
Drill Collar Annular Vel (Open Hole) Critical Vel
Pressure Loss System
Bossle Vel Jet Impact Force XMF
PRESSURE PARAMETERS
PRESSURE PARAMETERS  Drilling Exponent - Floring Temp - Shale Pactor - Shale Pactor - Temp
Drilling Exponent - Flowline Temp -
Drilling Exponent - Florline Temp - Shale Descity - Shale Pector -
Prilling Exponent - Floring Temp - Shale Pactor - Shale Factor - Trip Gas
Drilling Exponent - Flowline Temp - Shale Density - Shale Pactor - Trip Gas Other Gas
Printing Exponent
Ployline Temp
Printing Exponent
Shale Dessity
Shale Descity - Bale Factor - Background des Max. Pormation Gas e Trip Gas - e - Cother Gas - Gaverage Size - Gaverage Siz
Shale Deseity Background Gas Bax. Formation Gas Trip Gas
Plowline Exponent    Plowline Temp
Shale Density
Plowline Exponent    Plowline Temp
Shale Density
Shale Density
Shale Density



COMPANY BHP Petroleum	WELL MINERVA - 1		
DATE 30.03.93	TIME _ 2400 hr		
DEPTH 2107 m LAST REPORT DE	PTH 2107 m		
RIG OPERATIONS			
REPORT BY Andre Thangam REPORT RECEIVED	BY M. Imbert (OPTR)		
DRILLING REPORT	,		
Bit No. RR10.1 Type HTC J3 size 6.000			
On Bit: Distance 0.0 m nours 0:00 hh:mm NOF -	W08 RPN		
Pump ProcesSPNTorqueTBR			
HYDRAULICS REPORT			
Need Describy In 1.15 SG Need Describy out 1.15 SG SCD	1.21 sg PV/YP 14/14		
<b>4.</b>	PPM CL solide 9 %		
Noise Volume 461 bbl Answelar Volume 344 bbl Tubing Volume	71 bbl Displaced Volume 45 bbl		
Carbido Lag-Calculated Lag 2686 Stk	Flowrate 321 gpm		
DrillPipe Annular Vel (Max. Dia. Sec.) 6.6 m/min DrillPipe Annu	sular Vel (Open Hele) 49 m/min		
Drill Coller Ammular Vel (Open Hole) 153 m/min crit	cical wel 146 m/min		
Pressure Loss System 2024 psi Pressure Loss Bit 829 psi	A Pressure Loss 41%		
Nozzie Vel 95 m/sec Jet Impact Force 496			
PRESSURE PARAMETERS			
Drilling ExponentFlowline	36.6 degC		
Shale Density - Shale Fa	cter		
Background Gas 0.02% Rax. Permation Gas	Trip Gas 7.14% e 2108m		
Other Gas -			
Fill fight Role			
Cavings Ret % Average Size	•		
ESTIMATED PORE AND FRACTURE PRESSURE			
Rick Telerance 0.56 89 Nin. Estimated Practure Press	sure (Open Hole) 1.803 Sg		
Setimated Pere Pressure 1.10 89 Him. Setimated Pere Press	sure (Open Nole) 1.03 Sg e Shoe		
Max. Estimated Pore Pressure (Open Hole) 1.13 8g e 1850m	Estimated Fracture Pressure at TD 1.848 8g		
COMMENTS Pump slug while r/up to 1/d DP on POOH. POOH.			
R/u + RIH w/ w/b R/T. POOH w/b. R/up + RIH w/ BOP T/tool. Te			
POOH w/ test plug. R/u + test surface equipment. Set w/b. M/u 6 BHA.  RIH + Tag @ 2045m.			
Drill cmt f/ 2045-2056m.			

COMPANY BHP Petroleum WELL MINERVA - 1
DATE 31.03.93 TIME 2400 hr
DEPTH 2131 m LAST REPORT DEPTH 2107 m
RIG OPERATIONS POOH for bit change.
REPORT BY Andre Thangam REPORT RECEIVED BY M. Imbert (OPTR)
DRILLING REPORT
Bit No. RR10.1 Type HTC J3 size 6.000 in Jees 3x12
On ait: Distance 24.0 m Hours 8:08 hh:mm sop 3 m/hr wos 10-17 klb spm 41-64
Pump Press 2170 psi sps 40-51 Torque 106-138 TBR 45289 CF It# 3449 CF Bt# 5727
HYDRAULICS REPORT
Ned Density In 1.15 SG Ned Density out 1.15 SG SCD 1.20 SG PV/TP 12/16
Gels 3/7 Salinity 45000 PPM Cl Selids 8.5 %
Note Volume 469 bbl Annular Volume 347 bbl Tubing Volume 76 bbl Displaced Volume 47 bbl
Carbide Log-Calculated Log 2706 Stk Flowrate 261 gpm
DrillFipe Amsular Vel (Max. Dia. Sec.) 5.4 m/min BrillFipe Amsular Vel (Open Hole) 40 m/min
Drill Collar Amnular Vol (Open Hole) 145 m/min Critical Vol 155 m/min
Procedure Local System 1402 psi Procedure Local Biz 548 psi 9 Procedure Local 39 %
Mozzie Vel 77 m/sec Jet impact Force 328 lbf mrs 83 hhp
PRESSURE PARAMETERS
Drilling Exponent 0.96 - 1.58 Florline Temp 46.2 degC
Shale Density Shele Factor
Sackpround Gas 0.04% Max. Pormation Gas 0.14% e 2127 m Trip Gas -
Other Que
FillTight Hole
Cavings Bet % Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Rick Telerance 0.69 Sq Rin. Setimated Frecture Procesure (Open Hole) 1.85 Sq
Estimated Fore Pressure 1.10 SG Nin. Estimated Pore Pressure (Open Hole) 1.03 SG e Shoe
Max. Estimated Fore Pressure (Open Nole) 1.10 SG e Shoe Stimated Fracture Pressure at TD 1.85 SG
COMMENTS Drill cmt f/ 2056 to 2060m, float collar. Trouble shoot surf press loss.
Cont. drill f/c + shoe track to 2108m. Work junksub. Drill 6" hole f/2108 to 2111m.  Circ BU. Pull back to shoe , Perform LOT, EMW=15.41 ppg (1.85 sg)
Drill 6" hole f/ 2111m to 2131m. Flush riser every two hrs w/ rig pumps down choke.
Flow check on drilling break. Work junk basket.
Cont flush riser. slug pipe.
POOH.
NB. Possible one blocked jet.



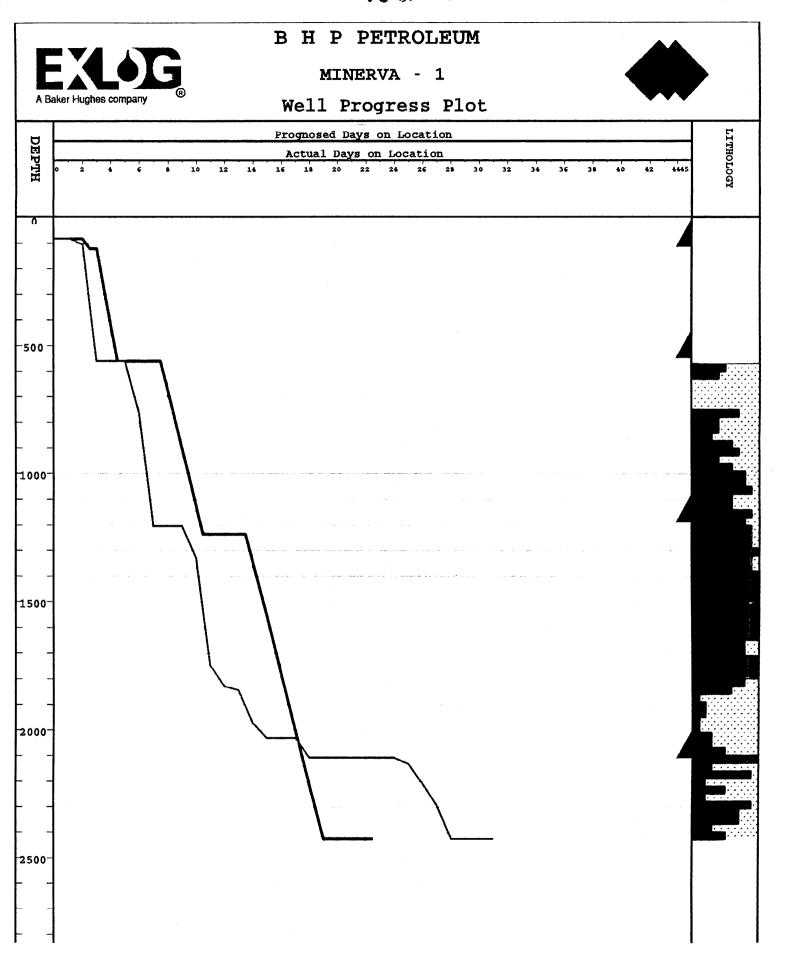
9.

COMPANY BH	P Petroleum	WELL	MINERVA - 1	
ATE 01	04 . 93	TIME	2400 hr	
DEPTH 2209	m LAST REPORT DE		2131 m	<del></del>
1	NS RIH after bit change			
1				
REPORT BY	Kieran Clarke REPORT RECEIVED	BY	M. Imbert	_ (OPTR)
DRILLING REP				
	Type HYCALOG size 6.000			
1	78.0 m seers 6:00 hh:mm see 9.6 m/hr			·
Pump Press 2700	psi sm 50 Torque 100-240 TBR	42500	CP I:#	G 816
HYDRAULICS R	EPORT			
Med Density In 1.1	15 SG Ned Density out 1.15 SG SCD	1.23	sg _{PV/YP} 15/18	
8	Salinity 49000			
	bbls master volume 349 bbls rubing volume			
	4 Lag 2725 stks			
	Olax. Dia. Sec.) 5.4 m/min DrillPipe Am			
	Vel (Open Noie) 146 m/min Criz			
	1692 psi Pressure Loss Bit 788 psi			
	SEC Jat Impact Force 396			
			MRP	
PRESSURE PARA				
į.	.82- 1.36 Ploviis			
	Shale Pa			
	0.05% Max. Permation Gas 0.19 % e 2	155 m	Trip des	•
			· · · · · · · · · · · · · · · · · · ·	
F111	Tight Mole			
Cavings Est &	Average Size	<u> </u>		•
ESTIMATED POR	RE AND FRACTURE PRESSURE			
Rick Tolerance 0.6	64 SG Nin. Batimeted Practure Press	swre (Open	Nole) 1.85 8g	
Setimated Pore Pressur	o 1.10 sgn Nin. Setimated Pore Press	sure (Open	Mole) 1.04 89	shoe
Max. Setimated Pore Pr	essure (Open Nole) 1.10 sg e shoe	<b>=</b> th	mated Fracture Pressure at TD	1.86 sg
COMMENTS C	ontinued to POOH			
	H with NB#11 to 2108m.			
	from 2108-2131m.			
	from 2131-2209m, boosting the riser every hour clean, drop survey, pump slug.	<u>·                                      </u>		
POOH for bit an				



COMPANY BHP Petroleum WELL MINERVA - 1
DATE 02.04.93 TIME 2400 hr
DEPTH 2295 m LAST REPORT DEPTH 2209 m
RIG OPERATIONS POOH to change bit.
REPORT BY Kieran Clarke REPORT RECEIVED BY M. Imbert (OPTR)
DRILLING REPORT
Bit No. NB#12 Type HTC ATJ44C size 6.000 in Jees 3x11
On Bit: Distance 86.0 m Nours 17:46 hh:mm nos 4.8 m/hr wos 14-23 klb RPM 67-87
Pump Proce 1500 psi spe 50 Torque 100-200 TBR 88526 CF I:8 - CP B:8 -
HYDRAULICS REPORT
Ned Density In 1.15 SG Ned Density out 1.15 SG NCD 1.22 SG PV/YP 14/16
Gale 4/6 Salinity 49000 PPM CI Solide 8.6%
Hole Volume 488 bbls member volume 352 bbls Tubing Volume 84 bbls Displaced Volume 52 bbls
Carbide Lag-Calculated Lag 2749 stks Florrate 242 gpm
DrillPipe Amsular Vel (Nex. Dia. Sec.) 5.0 m/min DrillPipe Amsular Vel (Open Hele) 36.9 m/min
Drill Collar Annular Vel (Open Hele) 134.5m/min Critical Vel 162.8 m/min
Pressure Loss System 1563 psi Pressure Loss Sit 667 psi 9 Pressure Loss 42.7%
Notatio Vol 85 m/sec Jet Impact Porce 335 lbf MMP 94 hhp
PRESSURE PARAMETERS
Drilling Exponent 0.98-1.85 Flowline Temp 42 degC
Shele Density Shele Factor
Background Gas 0.04% Max. Formation Gas 0.076 % a 2290m Trip Gas -
Other Que
Fill
Cavings Bot \ Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Eick Tolerance 0.63 SG Min. Estimated Fracture Pressure (Open Hole) 1.85 SG © 2111m
Retinated Pore Pressure 1.10 SG Nin. Setimated Pore Pressure (Open Noie) 1.04 SG e 2195m
Max. Estimated Pore Pressure (Open Hole) 1.10 sg e TD Estimated Practure Pressure at 7D 1.86 sg
COMMENTS Finish RIH.
Wash and lightly ream from 2190-2209m.  Drill 6" hole from 2209m to 2295m.
Flush riser every three hours. Flow Check at 2218m (static).
Surge and work junk sub.
Circulate and flush riser.




COMPANY BHP Petroleum WELL MINERVA - 1
DATE 03.04.93 TIME 2400 hr
DEPTH 2362 m LAST REPORT DEPTH 2295 m
RIG OPERATIONS Drilling ahead.
REPORT BY Kieran Clarke REPORT RECEIVED BY M. Imbert (OPTR)
DRILLING REPORT
Bit No. NB#13 Type HTC ATJ44C size 6.000 in Jets 3x11
On Bit: Distance 67.0 m Nours 12:06 hh:mm ROP 5.5 m/hr NOB 22-27 klb RPM 71
Pump Press 1800 psi spn 48 Torque 137-170 TBR 51543 CP II8 - CP BIR -
HYDRAULICS REPORT
Need Denneity In 1.15 SG Need Denneity out 1.15 SG SCD 1.23 SG PW/YP 15/19
Gals 5/8 Salinity 49000 PPM Cl Solids 8.6%
Note volume 496 bbls Annular volume 354 bbls Tubing Volume 87 bbls Displaced Volume 54 bbls
Carbide Lag-Calculated Lag 2766 Stks Flowrate 251 gpm
DrillPipe Annular Vel (Max. Dia. Sec.) 5.2 m/min DrillPipe Annular Vel (Open Hele) 38.4 m/min
Drill Collar Amoular Vel (Open Hole) 140.1 m/min critical Vel 173.8 m/min
Procesure Local System 1722 psi Procesure Local Sit 724 psi % Procesure Local 42.0 %
Bozzie vel 88.5 m/sec Jet Impact Force 364 lbf mmp 106 hhp
PRESSURE PARAMETERS
Drilling Exponent 0.82-1.68 Florline Temp 47.5 degC
Shale Pector Shale Factor
Background Gas 0.05% Max. Pormetion Gas 0.35 % a 2342 m Trip Gas -
Other Gas
FillTight Role
Cavings Est \ Average Size
ESTIMATED PORE AND FRACTURE PRESSURE
Eick Telerance 0.62 SG Nin. Setimated Frecture Procesure (Open Rele) 1.85 SG ● 2111m
Estimated Pore Pressure 103 SG Nin. Estimated Pore Pressure (Open Role) 1.03 SG a 2162m
Nax. Estimated Pore Pressure (Open Hole) 1.03 SG e TD Stimated Fracture Pressure at TD 1.87 SG
COMMENTS Flowcheck (static), pump slug and POOH.
Wipe through tight hole from 2237-2190m (max O/P 30klb).  Continued POOH, jarred free @ 2184m, washed clear (max O/P 50 klb).
Continued POOH. Layed out junk sub and jars.
M/U NB#13 and RIH with same.
Washed from 2277-2295m.
Drilled 6" hole from 2295-2362m. Flow check @ 2336.7m (static).
Boosted riser every two hours or as needed.



COMPAIN BUR BARRATAN
COMPANY BHP Petroleum WELL MINERVA - 1
DATE 04.04.93 TIME 2400 hr
DEPTH 2425 m TD LAST REPORT DEPTH 2362 m
RIG OPERATIONS Run E-Logs.
REPORT BY Kieran Clarke REPORT RECEIVED BY M. Imbert (OPTR)
DRILLING REPORT
Bit No. NB#13
On Sit: Distance 130.0 m nears 22:30 hh:mm ROP 5.5 m/hr WOB 20-25 klb RPH 71
Pump Press 1800 psi ppg 48 Torque 100-180 TBR 100252 CP I:# - CP B:# -
HYDRAULICS REPORT
Med Density In 1.15 SG Med Density out 1.15 SG NCD 1.23 SG PV/YP 15/21
Gale 5/9 Salimity 49000 PPM CL Solids 8.6%
Hole Volume 503 bbls movelar Volume 356 bbls Tubing Volume 91 bbls Displaced Volume 56 bbls
Carbide Leg-Calculated Leg 2782 Stks Flowrate 255 gpm
DrillPipe Amsular Vel (Nax. Dia. Sec.) 5.2 m/min DrillPipe Amsular Vel (Open Hole) 81.0 m/min
Drill Collar Asseular Vel (Open Hole) 141.8 m/min Critical Vel 173.8 m/min
Pressure Loss System 1769 psi Pressure Loss Bit 741 psi • Pressure Loss 41.9 %
Nenzie Vel 89.6 m/sec Jet Impect Force 372 lbf . MMP 110 hhp
PRESSURE PARAMETERS
Drilling Exponent 1.20-1.70 Flowline Temp 48.6 degC
Shale PencityShale Factor
Sacctyround Gas 0.05% Nax. Permation Gas 0.33 % a 2411 m Trip Gas .
Other Gas peaks • 2372m=0.29%, •2408m=0.15%
FillTight Hole
Cavings Est \
ESTIMATED PORE AND FRACTURE PRESSURE  Rick Telerance 0.61 89 1.85 89 2111m
Estimated Pore Pressure 1.03 SG Nin. Setimated Pore Pressure (Open Role) 1.03 SG a Shoe
Nax. Setimated Pore Pressure (Open Nois) 1.03 Sg o TD Setimated Fracture Pressure at TD 1.87 Sg
COMMENTS Drilled to 2425 m TD. CBU at 2425 m. Wiper trip to casing shoe.
RIH to bottom at 2425 m TD.
CBU and POOH for E-Logs.
Rig up Schlumberger.
Run wireline logs.
Run wireline logs.

# PETROLEUM DIVISION

HEET WALES



This is an enclosure indicator page.
The enclosure PE602760 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602760 has the following characteristics:

ITEM-BARCODE = PE602760
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Exlog Drilling Data Plot

(1:2500)

BASIN = Otway

PERMIT = VIC/P31

TYPE = WELL

SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 Exlog Drilling Data Plot

(1:2500), Appendix 2

REMARKS = old barcode PE900067 replaced with

PE602760

DATE-CREATED = *

DATE-RECEIVED = 13/01/94

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EXLOG (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

This is an enclosure indicator page. The enclosure PE602761 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602761 has the following characteristics:

ITEM-BARCODE = PE602761
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Exlog Pressure Data Plot

(1:2500)

BASIN = Otway
PERMIT = VIC/P31

TYPE = WELL

SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 Exlog Pressure Data Plot

(1:2500), Appendix 2

REMARKS = old barcode PE900070 replaced with

PE602761

DATE-CREATED = *

DATE-RECEIVED = 13/01/94

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EXLOG (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

This is an enclosure indicator page. The enclosure PE602762 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602762 has the following characteristics:

ITEM-BARCODE = PE602762 CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Exlog Pressure Gradient Plot (1:5000)

BASIN = Otway
PERMIT = VIC/P31

TYPE = WELL

SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 Exlog Pressure Gradient Plot

(1:5000), Appendix 2

REMARKS = old barcode PE900068 replaced with

PE602762

DATE-CREATED = *

DATE-RECEIVED = 13/01/94

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EXLOG (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

This is an enclosure indicator page.
The enclosure PE602763 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602763 has the following characteristics:

ITEM-BARCODE = PE602763
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Exlog Drillbyte MWD Log

(1:500)

BASIN = Otway

PERMIT = VIC/P31

TYPE = WELL

SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 Exlog Drillbyte MWD Log

(1:500), Appendix 2

REMARKS = old barcode PE900069 replaced with

PE602763'

DATE-CREATED = *

DATE-RECEIVED = 13/01/94

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EXLOG (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

m

• .

.

.

•

·

. . Appendix 3 Eastman Teleco End of Well Report (MWD)

# BHP PETROLEUM MINERVA-1 VICTORIA - OTWAY BASIN MARCH 1993

END OF WELL REPORT

EASTMAN TELECO FIELD SERVICE ENGINEERS

A. FELL

A. SOMOFF

# **DISCLAIMER**

Eastman Teleco does not guarantee the accuracy or correctness of interpretation provided in or from this report. Since all interpretations are opinions based on measurements Teleco shall, under no circumstances, be responsible for consequential damages or any other loss, costs, damages or expenses incurred or expressed and implied warranties related to its service which is governed by Teleco's terms and conditions.

# **CONTENTS**

Section 1.	· •	INTRODUCTION
Section 2.		GENERAL WELL INFORMATION
Section 3.		TOOL SUMMARY
Section 4.	,	MWD RUN SUMMARIES
Section 5.		MWD TOOL PERFORMANCE REPORT
Section 6.		SENSOR VERIFICATION DATA
Section 7.	,	SENSOR OFFSETS AND ENVIRONMENTAL CORRECTIONS
Section 8.	,	LOG MNEMONICS
Section 9.		MWD SURVEY LISTING
Section 10	).	BOTTOM HOLE ASSEMBLY RECORDS
Section 11	٠.	DRILLING DIARY

MUD RECORD

Section 12.

INTRODUCTION

#### 1. INTRODUCTION

Eastman Teleco's Dual Propagation Resistivity Measurement While Drilling services were utilized onboard the BYFORD DOLPHIN for the drilling of BHP Petroleum's MINERVA-1 well in the VIC/P31 Permit, offshore Victoria.

MINERVA-1 was spudded on March 8th, 1993 and Eastman Teleco's MWD services were utilized on the well from March 12th from a depth of 560m.

The 12 1/4" hole section was drilled from 560m to 1204m where wireline logs were run and the 9 5/8" casing was set.

The 8 1/2" hole section was drilled from 1204m to 2107m.

Eastman Teleco services were completed on March 24th, 1993. Eastman Teleco depths were measured in meters below the Drill Floor and were based on the drillers pipe tally.

GENERAL WELL INFORMATION

#### 2. GENERAL WELL INFORMATION

Oil Company

Oil Company Personnel

Well Name

Well Type

Well Permit

Area

D.F. Elevation

Water Depth

Spud Date

Teleco Comencement Date

Teleco Completion Date

Completion Depth

Drilling Contractor

Rig Name

Rig Type

Teleco Services

Teleco Job Number

Teleco Personnel

: BHP PETROLEUM

: G. Howard, M. Imbert

: MINERVA-1

: EXPLORATION

: VIC/P31

: OTWAY BASIN

: 25.0m

: 57.0m

: 8th MARCH 1993

: 12th MARCH 1993

: 24th MARCH 1993

: 2107 m

: DOLPHIN DRILLING

: BYFORD DOLPHIN

: SEMI-SUBMERSIBLE

: DPR

: ETAU 235

: A. Fell, A. Somoff

TOOL SUMMARY

#### 3. MWD TOOL SUMMARY

Two tools were used over 4 runs to drill from 560m to 2107m.

Run #	Tool Size	Serial No	Tool Type	DPR Hours	Drilled Interval	Failure Type
<del></del>	0 1/4!	0.4.4.7. 0.0		25 00	560 1004	
Ţ	8 1/4"	8447-02	DPR	35.00	560 - 1204	-
2	6 3/4"	1674-09	DPR	35.00	1209 - 1821	-
3	6 3/4"	1674-09	DPR	24.00	1821 - 2031	-
4	6 3/4"	1674-09	DPR	18.50	2031 - 2107	-

Interval Drilled: 560 - 2107m - 1547m Interval Logged: Gamma Ray - 100 % Resistivity - 100 %

#### Failure Statistics

Total DPR hours 112.5
DPR failures 0
Mean Time Between Failures N/A

MWD RUN SUMMARIES

### No.1

<u>Hole Size:</u> 12 1/4"

Tool Type & No: DPR TF4 B8447-02

Time & Date in the Hole: 08:30 hrs 12th March 1993

Time & Date out of Hole: 04:30 hrs 14th March 1993

<u>Depth Range:</u> 560m - 1204m

Circulating Hours for Run: 35.0

Operating Hours for Run: 35.0

#### Comments.

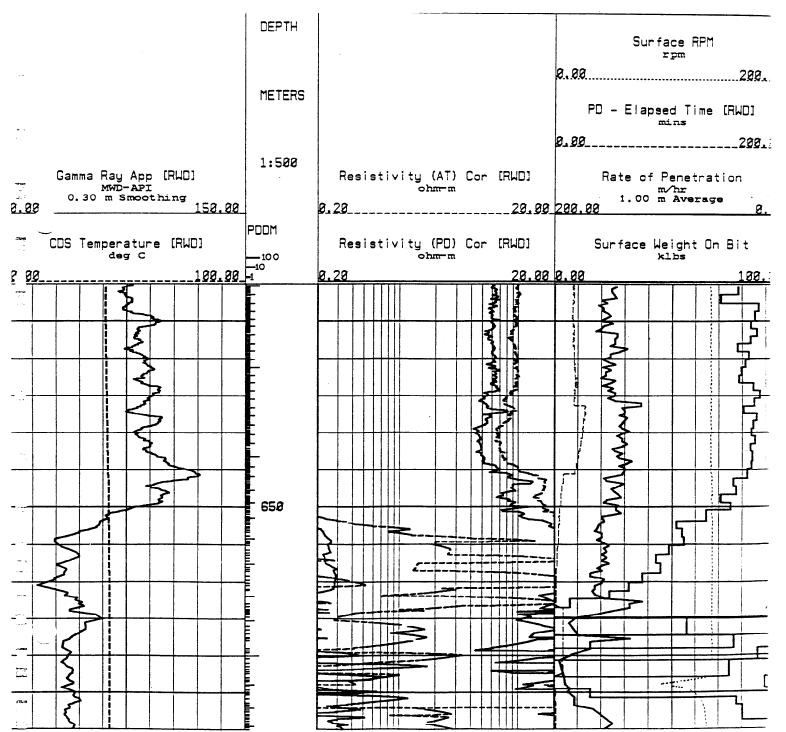
أغته

The Teleco tool was run in an assembly with a HTC ATM 11HG bit. The assembly was locked up with a near bit roller reamer, shock sub, string roller reamer, x/o, MWD and a stabilizer located above the Teleco tool.

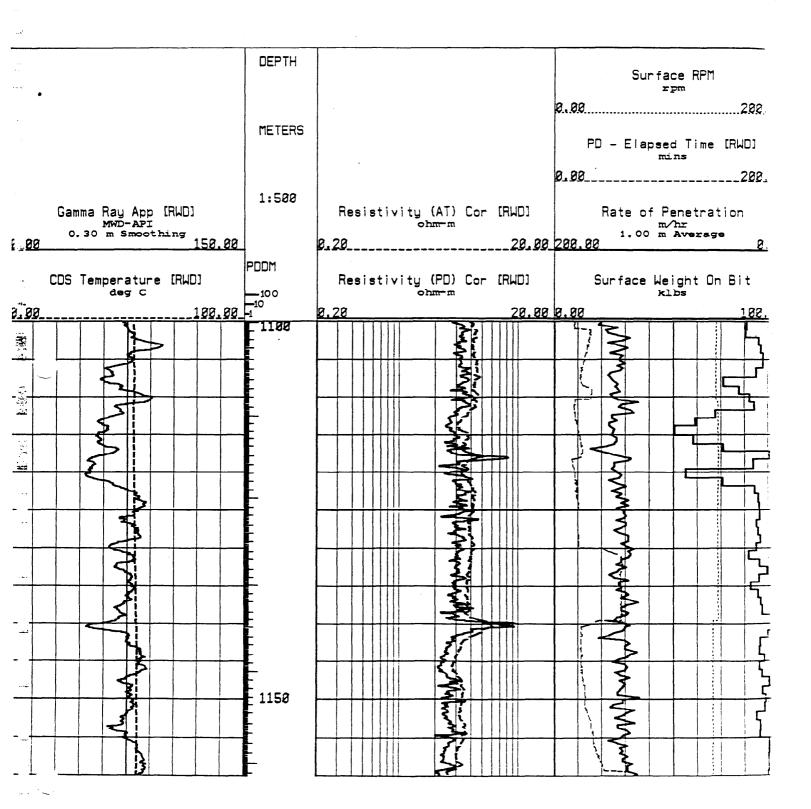
No operational problems were seen with the tool performing to specifications throughout the run.

A high resistivity sand was encountered over the interval 660m to 880m. The values for the amplitude ratio over this interval were without the tool specification range for amplitude ratio, resulting in no data over the interval. The phase difference was still within specification over this interval. The sand drilled at between 20 and 1000 m/hr, averaging 125 m/hr. This resulted in a paucity of gamma ray and resistivity, transmitted data, especially between 660m - 750m and 790m - 820m where the ROP was averaging above 175 m/hr.

The hole was drilled from 560m to 1204m with inclination building from 0.6 degrees at 572m to 2.5 degrees at 1180m. The azimuth turned from 265.8 degrees to 201.8 degrees.


Drilling parameters while drilling were: WOB 0 to 35 klbs, RPM 130 to 135, Flow rate 700 to 750 g/min giving a Pump Pressure of 2100 to 2760 Psi. Rate of penetration ranged from 1 to 1000 m/hr.

#### Geology


The following formation tops were picked using the MWD log and other drilling parameters. They were proposed tops only, picked at the time of drilling.

Formation	MWD pick (MDmRT)
SHERBROOK GP	650
SHIPWRECK GP	1123

The Sherbrook Group was picked at 650m on a sharp gamma ray decrease from an increasing trend. The gamma ray established a flatter trend at a much lower value. Resistivity increased sharply and established a more erratic higher trend.



The Upper Shipwreck was picked at 1123m on an increase in gamma ray of 30 API. The trend that developed after this increase was flatter in nature than the trend before the shift. There was no discernable change in the resistivity.



### No.2

Hole Size:

8 1/2"

Tool Type & No:

DPR / DHE 1674-09

Time & Date in the Hole:

15:30 hrs

16th March 1993

Time & Date out of Hole:

08:30 hrs

18th March 1993

Depth Range:

1209m - 1821m

Circulating Hours for Run:

35.0

Operating Hours for Run:

35.0

#### Comments.

The Teleco tool was run in an assembly with a HYCALOG DS61H bit. The assembly was locked up with a near bit roller reamer, x/o, an integral blade stabiliser on the MWD and a stabiliser located above the Teleco tool.

The 9 5/8" casing shoe was tagged and drilled at 1194.0m on the previous bit run using a rock bit. New hole was drilled to 1209m where the bit was pulled to run the PDC bit.

Drilling continued at between 15 and 75 m/hr to 1647.5m where the ROP slowed from 40m/hr to 2m/hr. This was perceived to be the cemented top of a sand. This proved correct as a sharp drop in gamma ray indicated sand and the resistivity gave an indication of hydrocarbons. Returns were circulated. The decision was made to drill ahead. Another hard streak followed by a sand was seen at 1662m. Once again there was a sharp drop in gamma ray and a sharp rise in resistivity. The formation changed back to siltstone at 1667. Drilling continued at 20 to 40 m/hr to 1812.5m where a clean sand was indicated by a sharp drop in gamma ray. The resistivity once again sharply increased. The MWD tool gave the only indication of the sand. There was no change in the ROP to indicate the change in lithology. This lack of a drill break can be attributed to the PDC bit. Returns were circulated and the decision made to POOH and cut core #1.

Inclination built throughout the run from 3.7 degrees at 1265m to 7.6 degrees at 1791m. The azimuth turned from 203.6 degrees to 187.8 degrees over the same interval.

Drilling parameters through the run were: WOB 1 to 15 klbs, RPM 80 to 180, pump flow of 440 to 500 gpm giving a pressure of 1900 to 2280 psi. Rate of penetration ranged from 1 to 75 m/hr.

#### No.3

Hole Size:
8 1/2"

<u>Tool Type & No:</u> DPR / DHE 1674-09

Time & Date in the Hole: 04:30 hrs 20th March 1993

Time & Date out of Hole: 13:30 hrs 21st March 1993

<u>Depth Range:</u> 1821m - 2031m

Circulating Hours for Run: 24.00

Operating Hours for Run: 24.00

#### Comments.

The Teleco tool was re-run in an assembly with a HTC ATM 22 bit. The assembly was locked up with a near bit roller reamer, x/o, an integral blade stabiliser on the MWD and a stabiliser located above the Teleco tool.

The cored section, 1821m - 1847m, was reamed for MWD data. Drilling continued from 1847m at 10-20 m/hr through sand. The MWD tool indicated that the sand was hydrocarbon bearing. The hydrocarbon - water transition zone was picked at 1942m - 1945m, this was indicated by a fall in the resistivity whilst still drilling a sandstone as indicated by the low gamma ray. The WOB was increased after entering the water wet zone, in an attempt to increase the ROP. This resulted in an increase in the level of drilling torque causing some loss of transmitted data. Drilling continued on to 2031m, where, due slow ROP, it was decided to POOH.

The decision was made to run intermediate wireline logs at 2031m.

Inclination remained steady at 7.6 degrees from 1880m to 1937m but then built to be 8.8 degrees at 2022m. The azimuth turned from 185.7 degrees to 173.0 degrees over the same interval.

Drilling parameters through the run were: WOB 20 to 35 klbs, RPM 110 to 115, pump flow of 340 to 410 gpm giving a pressure of 2100 to 2300 psi. Rate of penetration ranged from 8 to 45 m/hr.

#### No.4

<u>Hole Size:</u> 8 1/2"

Tool Type & No: DPR / DHE 1674-09

Time & Date in the Hole: 23:15 hrs 24th March 1993

Time & Date out of Hole: 06:30 hrs 25th March 1993

<u>Depth Range:</u> 2031m - 2107m

Circulating Hours for Run: 18.50

Operating Hours for Run: 18.50

#### Comments.

The Teleco tool was re-run in an assembly with a HTC ATMJ 33 bit. The assembly was locked up with a near bit roller reamer, x/o, an integral blade stabiliser on the MWD and a stabiliser located above the Teleco tool.

Drilling continued from 2031m at 5-20 m/hr through sandstone and minor claystone. Claystone was entered at 2077m and drilling continued to 2106m where a drill break occurred. Drilling continued to 2107m where returns were circulated. The formation was a sand and it was decided to POOH and run the 7" liner.

Inclination built slowly from 8.9 degrees at 2050m to 9.0 degrees at 2081m. The azimuth turned from 170.5 degrees to 165.3 degrees over the same interval.

Drilling parameters through the run were: WOB 20 to 35 klbs, RPM 100 to 110, pump flow of 450 to 460 gpm giving a pressure of 2270 to 2450 psi. Rate of penetration ranged from 3 to 20 m/hr.

# Section 5 MWD TOOL PERFORMANCE REPORT

#### PERFORMANCE REPORT NO.1

#### TOOL DHB 8447-02

Equipment Description:

8 1/4" DPR

Serial No. B8447-02 TF4 X4 Split Phase

Teleco Run No.:

1

Total Circulating Hours:

35.00

Non Operating Hours:

Resistivity:

0.0

Gamma Ray:

0.0

Directional:

0.0

Interval Drilled:

560m - 1204m

#### Operational Problems

No operational problems were seen with the tool performing to specifications throughout the run.

#### PERFORMANCE REPORT NO.2

#### TOOL DHE 1647-09

Equipment Description:

6 3/4" DPR

Serial No. E1674-09 TF4 X4 Split Phase

Teleco Run No.:

2 - 3 - 4

Total Circulating Hours:

77.50

Non Operating Hours:

Resistivity:

00.00

Gamma Ray:

00.00

Directional:

00.00

Interval Drilled:

1204m - 2107m

#### Operational Problems

Very high erratic torque at the beginning of Run 2 resulted in some loss of MWD and RWD data from 1209m to 1217m. High and erratic torque caused a paucity of data over the following intervals in the RWD log, 1652m to 1655m, 1672m to 1676m, 1782m to 1784m, 1785m to 1787m.

High, erratic torque on Run 3 caused the loss of, or paucity of, MWD and RWD data. This is most obvious on the 1:200 log by looking in the PDDM track over the interval 1942m to 1947m.

No problems were encountered on Run 4.

SENSOR VERIFICATION DATA

#### 6.1 FORMATION EVALUATION SENSOR VERIFICATION DATA

Teleco Run No: DPR Sub No: PDBV deg: PDOV deg:	Pre 1	Pre 2	Pre 3	Pre 4
	8107	6029	6029	6029
	10.408	8.463	8.463	8.463
	9.924	8.339	8.379	8.202
PDCV +/- deg:	-0.484	-0.124	-0.084	-0.261
ATBV dB: ATOV dB:	6.243 $6.477$	5.539 5.980	$5.539 \\ 6.213$	5.539 5.665
ATCV +/- dB:	0.234	0.441	0.674	0.126
STEEL m:	1.5	1.5	1.5	$\begin{array}{c} 1.5 \\ 17.4 \end{array}$
TCDV deg C:	16.3	21.2	20.1	
GR Detector No:	442-4	413-8	413-8	413-8
Background cps:	3.5	3.4	4.2	3.7

#### 6.2 VERIFICATION MNEMONICS

MNEMONIC		EXPLANATION
PDBV	=	Phase Difference - Shop air-hang calibration temperature corrected for rig verification temperature.
PDOV	=	Phase Difference - Wellsite air-hang verification.
PDCV	=	Phase Difference - Variance.
ATBV	=	Attenuation - Shop air-hang calibration temperature
	•	corrected for rig verification temperature.
ATOV	=	Attenuation - Wellsite air-hang verification.
ATCV	=	Attenuation - Variance.
STEEL	=	Distance to nearest steel during wellsite air-hang.
TCDV	=	Teleco Tool Temperature during air-hang verification.

# SENSOR OFFSETS and ENVIRONMENTAL CORRECTIONS

#### 7.1 SENSOR TO BIT DISTANCE (M)

Teleco Run No	11	2	3	4
Resistivity	9.60	3.00	3.02	3.02
Gamma Ray	11.05	4.78	4.80	4.80
Directional	13.70	7.39	7.41	7.41

#### 7.2 LOG ENVIRONMENTAL CORRECTIONS:

Normalised for Tool Size, Borehole Size, Sensor Type Gamma Ray:

and mud Potassium

Resistivity: Normalised for Tool Size, Borehole Size, Mud Resistivity, Temperature. No correction has been

applied for formation dielectric properties.

#### LOG CORRECTIONS

Date	Time	Depth	Chloride	Resist.(Rm)	KCL	M.W.
		m	ppm	ohm.m / deg C	%	sg
12-03-93	14:53	550	29000	0.1183 / 31	3.04	1.10
12-03-93	21:00	615	29000	0.1047 / 38	3.04	1.09
13-03-93	00:48	780	31000	0.0913 / 43	3.04	1.09
13-03-93	06:55	960	31000	0.0861 / 47	3.04	1.09
13-03-93	10:54	1030	31000	0.0825 / 50	3.04	1.09
13-03-93	14:23	1110	31000	0.0803 / 52	3.04	1.09
13-03-93	19:41	1194	27000	0.0892 / 53	2.58	1.12
16-03-93	20:05	1280	30000	0.1028 / 41	2.86	1.11
17-03-93	00:05	1325	28000	0.0982 / 44	2.86	1.11
17-03-93	01:00	1345	27000	0.1013 / 44	2.82	1.13
17-03-93	06:20	1436	27000	0.0969 / 47	2.82	1.12
17-03-93	11:29	1520	27000	0.0929 / 50	2.82	1.14
17-03-93	17:57	1654	27000	0.0892 / 53	2.82	1.14
17-03-93	21:47	1705	27000	0.0869 / 55	2.82	1.14
17-03-93	22:35	1723	27000	0.0837 / 58	2.82	1.14
18-03-93	02:15	1784	34000	0.0679 / 59	2.87	1.16
20-03-93	06:37	1821	34000	0.0723 / 54	2.21	1.15
20-03-93	11:35	1855	40000	0.0615 / 56	2.68	1.15
20-03-93	20:02	1936	45000	0.0525 / 61	3.41	1.15
20-03-93	02:06	1990	45000	0.0507 / 64	3.50	1.15
24-03-93	05:00	2031	50000	0.0447 / 62	4.04	1.15
24-03-93	10:36	2034	50000	0.0513 / 56	4.04	1.15
24-03-93	14:36	2081	50000	0.0488 / 60	4.04	1.15
24-03-93	18:36	2101	51000	0.0475 / 61	4.41	1.15

C

LOG MNEMONICS

#### 8. TELECO FORMATION EVALUATION LOG INFORMATION

#### 8.1 LOG MNEMONICS

```
GRAM = Natural Gamma Ray [RWD] (MWD-API)

GRAX = Natural Gamma Ray [MWD] (MWD-API)

TCDM = MWD Tool Temperature [RWD] (Deg C)

TCDX = MWD Tool Temperature [MWD] (Deg C)

RPCX = Resistivity Phase Difference, Corrected [MWD] (Ohmm)

RACX = Resistivity Amplitude Ratio, Corrected [RWD] (Ohmm)

RPCM = Resistivity Phase Difference, Corrected [RWD] (Ohmm)

RACM = Resistivity Amplitude Ratio, Corrected [RWD] (Ohmm)

RPDM = Resistivity Phase Difference, Dielectric Corrected [MWD]

RADM = Resistivity Amplitude Ratio, Dielectric Corrected [RWD]....

PDEM = Phase Difference, Elapsed Time Since Drilled [RWD] (Min)

PDDM = Phase Difference, Data Density Integrated.

WBCS = Surface Weight On Bit (1000 Lbs)

ROPS = Rate of Penetration (m//hr)

RPMS = Surface Revolutions Per Minute.
```

#### 8.2 SUB ASSEMBLY MNEMONICS:

DPR = Dual Propagation Resistivity Sub

DIR = Directional MWD Collar

6

MWD SURVEY LISTING

# DIRECTIONAL SURVEYS

COMPANY ... BHP PETROLEUM
WELL ... MINERVA-1
FIELD ... VIC/P31
COUNTY ... OTWAY BASIN
STATE ... VICTORIA
COUNTRY ... AUSTRALIA

WELL LOCATION: LATITUDE 38° 42' 12.23"S LONGITUDE 143° 57' 12.34"E

DRILLING COMPANY: DOLPHIN DRILLING RIG: BYFORD

PERMANENT DEPTH DATUM : MSLT ELEV. : 57M

SURVEYS MERS. FROM : ROTHRY THBLE, LOCATED 25M RBOVE PERM. DATUM.

SPUD DATE ... 08-03-93 PROP. AZIMUTH ..... N.A.
MND STARTED ... 12-03-93 TOTAL DEPTH ..... N.A.
MND ENDED ... 24-03-93 TELECO JOB ID .. ETAU 235

COORD. GRID SYSTEM:

GRID ORIGIN:

GRID CORR.: 0

MAGNETIC DECL. CORR.: 11.28 GRID DECL. CORR.: 11.28

MINIMUM CURVATURE METHOD USED FOR SURVEY CALCULATIONS.

VERTICAL WELL: CLOSURE CALCULATED AT EACH SURVEY STATION.

INITIAL TIE-IN TO SERBED.

COMPRNY PERSONNEL .... G. HOWARD, M. IMBERT

DIRECTIONAL COMPANY ... N.A.
DIRECTIONAL DRILLER ... N.A.

TELECO PERSONNEL ..... A. FELL, A. SOMOFF

REMARKS:



-	TELECO DIRECTIONAL SURVEY LISTING									
	Company									
	_/ell	• • • • • • • • • • • • • • • • • • • •	MINER					Teleco Job ID.:	ETAU 235	
	Survey Calc. Method Minimum Curvature Grid Correction: 0  Vert. Sect. Calc. Method Vertical well: Closure calculated at each survey station. Mag. Decl. Corr.: 11.28									
	Vert. Se	ct. Calc. He	ethod Vertic	al well: Clos	arre calculates	dateach surve	y station.	Mag. Decl. Corr.		
			N.A.					Grid Decl. Corr.		
	H.DPTH	CRS LEN	INCLINATION	azimuth	T.V.D.	CLOSURE	NORTH/SOUTH	EAST/NEST	DOGLEG SEV.	
	meters	neters	degrees	degrees	meters	meters	neters	meters		
i 1	57.0		0.000		AL TIE-IN COOR		0.00	0.00		
,	J2 +U		0.000	0.000	57.00	0.00	0.00	0.00		
1	572.0	515.0	0.600	265.800	571.99	2.70	-0.20	2 (1)	o one	
	719.0	147.0	0.400	216.200	718.99	3.82	-0.20 -0.57	-2 <b>.</b> 89 -3 <b>.7</b> 6	0.035 0.093	
<u>.</u>	863.0	144.0	0.500	202.900	862.98	3.62 4.70	-1.77	-3.76 -4 <b>.3</b> 5	0.048	
	1038.0	175.0	1.500	214.100	1037.95	7 <b>.</b> 50	-4.51	-5 <b>.99</b>	0.158	
	1180.0	142.0	2.500	201.800	1179.86	12.11	-8.92	-8.18	0.229	
	1265.0	85.0	3.700	203.500	1264.74	16.51	-13.16	-9 <b>.</b> 97	0.425	
	1296.0	31.0	4.000	211.000	1295.57	18.56	- <b>15.00</b>	-10 <b>.9</b> 3	0.561	
<u> </u>			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2114000	ILLO-Ca	1020	13.00	10.30	0.001	
	1385.0	89.0	4.800	200.800	1384.40	25.27	-21.14	-13.85	0.376	
	1473.0	88.0	5 <b>.400</b>	206.000	1472.06	33.00	-28.31	-16.97	0 <b>.258</b>	
	1559.0	<b>86.0</b>	5 <b>.000</b>	216.600	1557.63	41.51	-35.55	-21.42	0.422	
ļ	1671.0	112.0	6 <b>.800</b>	196.600	1668.95	<b>53.77</b>	-46.61	-25.81	0.631	
	1733.0	62.0	7 <b>.400</b>	192.700	1730.47	61.19	-54.02	-28.74	0.372	
	1791.0	58.0	7.600	187.800	1787.98	<b>68.4</b> 3	-61.46	-30.08	0 <b>.34</b> 6	
1	1880.0	89.0	7.600	185.700	1876.19	79.63	<b>-73.1</b> 5	-31.46	0.094	
-	1908.0	28.0	7.500	183.200	1903.95	83.14	-76.84	-31.75	0.354	
	1937.0	29.0	7.600	182.100	1932.69	<u></u> 86.76	<del>-8</del> 0.57	-31.93	0.150	
<u> </u>	1966.0	29.0	8.200	177.600	1961.42	90.47	-84.66	-31.91	0.891	
	1995.0	29.0	8.600	175.500	1990.11	D4 95	00.00	74 (*	0 F2 <del>1</del>	
E	2022.0	27.0	8.800	173.000	2016.80	94 <b>.3</b> 5 <b>98.06</b>	- <b>98.88</b> - <b>92.9</b> 5	-31.65 -31.24	0.521 0.475	
	2050.0	28.0	8 <b>.900</b>	170.500	20 <b>44.4</b> 6	101.92	-97.21	-31.24 - <b>30.5</b> 2	0.426	
}	2081.0	31.0	9.000	165.300	2075.09	106.13	-101 <b>.5</b> 2	-29.61	0.789	
		U11U	J+000	100-000	504 J•00	100.13	101.52	ं ८३∙०।	A•1 (77)	
10.				PROL	LECTED BOTTON	HTTE LOCATION				
)				(Extrapolati	ted from last	two survey stat	tions)			
-	2107.0	26.0	9 <b>.06</b> 4	160.939	2100.76	109.58	-105.83	-28.43		
L					ire azimuth = 1					



# Section 10 BOTTOM HOLE ASSEMBLY RECORDS

ITEM	OD (ins.)	ID (ins.)	LENGTH (m)	<u>REMARKS</u>
BIT	12 1/4	_	0.30	HTC ATM 11HG
NB ROLLER REAMER	12 1/4	3	2.45	WITH FLOAT
SHOCK SUB	8	2 13/16	3.44	
STRING R/R	12 1/4	2 7/8	2.33	•
X / O	8 1/4	2 3/4	0.50	TSI-23
TELECO MWD	8 3/4	-	12.37	B8447-02 DPR
STABILIZER	12 1/4	2 7/8	1.43	
DC	7 5/8	2 29/32	9.52	
DC	7 5/8	2 15/16	9.13	
DC	7 13/16	3	9.16	
DC	7 3/4	2 13/16	9.04	
DC	7 5/8	2 7/8	9.33	
DC	7 3/4	2 7/8	9.19	
DC	7 5/8	2 15/16	9.17	
DC	7 5/8	2 13/16	9.33	
DC	7 5/8	2 29/32	9.26	
PONY DC	7 13/16	2 13/16	2.73	
JARS	8 1/16	2 7/8	5.76	
-DC	7 15/16	2 7/8	9.21	
DC	7 7/8	2 13/16	8.86	
X/O	8 1/8	3 3/8	0.55	
1 X HWDP	5	3	9.05	
DART SUB	6 7/16	2 3/4	0.69	
11 X HWDP	5	<b>3</b> .	98.18	
TOTAL BHA			240.98	

BIT RUN #4 HTC ATM 11HG, 12 1/4" 1 X 18,16,13 JETS.
DRILLED FROM 550m TO 1204m. BIT GRADED 2-3-FC-H-E-1-EC-TD

TELECO MWD DHB 8447-02 DPR TF4, DATA RATE X4SP TURBINE FLOW RANGE 425 - 900 gpm. VALVE GAP 1.00".

ITEM	OD (ins.)	ID (ins.)	LENGTH (m)	<u>REMARKS</u>
BIT	8 1/2	-	0.24	HYCALOG DS61H
NB ROLLER REAMER	8 1/2	1 7/8	1.84	
X / O	6 3/4	2 13/16	0.35	6750-049
TELECO MWD	6 3/4	-	12.70	E1674-09 DPR
STAB	8 3/8	3	1.86	
DC	6 5/16	2 7/8	9.23	•
DC	6 5/16	3	9.16	
DC	6 5/16	2 7/8	9.02	•
DC	6 5/16	2 7/8	9.21	
DC	6 1/4	2 7/8	9.16	
DC	6 1/4	2 13/16	9.36	
DC	6 1/4	2 15/16	9.03	
DC	6 5/16	2 15/16	9.39	
DC	6 3/8	2 15/16	9.33	
DC	6 1/4	2 7/8	9.35	
DC	6 1/4	2 29/32	9.14	
DC	6 1/4	2 29/32	9.39	
DC	6 5/16	2 7/8	9.41	
DC	6 5/16	2 7/8	9.36	
DC	6 1/4	2 7/8	9.38	
PONY DC	6 1/2	2 7/8	3.07	
JARS	6 3/8	2 5/16	5.40	
DC	6 1/4	2 13/16	9.35	
DC	6 1/2	2 29/32	9.29	
1 X HWDP	5	3	9.05	
DIDS	6 .7/16	2 3/4 3	0.69	
14 X HWDP	5	3	98.18	
TOTAL BHA	,		290.94	

BIT RUN #6 HYCALOG DS61H 8 1/2" 3 X 12, 1 X 10, 1 X 11 JETS. DRILLED FROM 1209m TO 1821m. BIT GRADED 3-8-R0-N-D-I-FC-CP

TELECO MWD DHE 1674-09 DPR TF4, DATA RATE X4SP TURBINE FLOW RANGE 250 - 500 gpm. VALVE GAP 0.90".

<u>ITEM</u>	OD (ins.)	ID (ins.)	LENGTH (m)	<u>REMARKS</u>
BIT	8 1/2	-	0.26	HUGHES ATM22
NB ROLLER REAMER	8 1/2	1 7/8	1.84	
X / O	6 3/4	2 13/16	0.35	6750-049
TELECO MWD	6 3/4	-	12.83	E1644-09 DPR
STAB	8 3/8	3	1.77	
DC	6 5/16	2 7/8	9.23	
DC	6 5/16	3	9.13	•
DC	6 5/16	2 7/8	9.02	
DC	6 5/16	2 7/8	9.02	•
DC	6 1/4	2 7/8	9.05	
DC	6 1/4	2 13/16	9.28	
DC	6 1/4	2 15/16	9.16	
DC	6 5/16	2 15/16	9.19	
DC	6 3/8	2 15/16	9.19	
DC	6 1/4	2 7/8	9.35	
DC	6 1/4	2 29/32	9.29	
DC	6 1/4	2 29/32	9.39	
DC	6 5/16	2 7/8	9.36	
DC	6 5/16	2 7/8	9.39	
DC	6 1/4	2 7/8	9.02	
PONY DC	6 1/2	2 7/8	3.07	•
~JARS	6 3/8	2 5/16	5.20	
DC	6 1/4	2 13/16	9.28	
DC	6 1/2	2 29/32	9.07	
1 X HWDP	5	3	8.84	
DIDS	6 7/16	2 3/4	0.69	
14 X HWDP	5	3	125.12	
TOTAL BHA			290.76	

BIT RUN #10 HUGHES ATM22 8 1/2" 3 X 12 JETS.
DRILLED FROM 1821m TO 2031m. BIT GRADED 8-8-BT-H-8-2-FC-PR

TELECO MWD DHE 1674-09 DPR TF4, DATA RATE X4SP TURBINE FLOW RANGE 250 - 500 gpm. VALVE GAP 0.90".

ITEM	OD (	ins.)	ID	(ins.)	LENGT	<u>(m)</u>	REMARKS	
BIT	8 1	/2	_		0.26	;	HUGHES A	rm 33J
NB ROLLER REAMER	8 1		1	7/8	1.84			
X / O	6 3	3/4	2	13/16	0.35	;	6750-049	
TELECO MWD	6 3	3/4	-		12.83	3	E1644-09	DPR
STAB	8 3	3/8	3		1.77	7		
DC	6 5	5/16	2	7/8	9.23	}		
DC	6 5	5/16	3		9.13	}	•	
DC	6 5	5/16	2	7/8	9.02	2		
DC	6 5	5/16	2	7/8	9.02	}	•	
DC	6 1	1/4	2	7/8	9.05	i		
DC	6 1	1/4	2	13/16	9.28	}		
DC	6 1	1/4	2	15/16	9.16	5	-	
DC	6 5	5/16	2	15/16	9.19	)		
DC	6 3	3/8	2	15/16	9.19	)		
DC	6 1	L/4	2	7/8	9.35	5		
DC	6 1	1/4	2	29/32	9.29	)		
DC	6 1	1/4	2	29/32	9.39	)		
DC	6 5	5/16	2	7/8	9.36	5		
DC	6 5	5/16	2	7/8	9.39	)		
DC	6 1	l/4	2	7/8	9.02	2		
PONY DC	6 1	1/2	2	7/8	3.07	7		
JARS	6 3	3/8	2	5/16	5.20			
DC	6 1	L/4		13/16	9.28	}		
DC		L/2	2	29/32	9.07			
1 X HWDP	5		3		8.84			
DIDS	6 7	7/16	2	3/4	0.69			
14 X HWDP	5		3		125.12	2		
TOTAL BHA					290.76	<b>5</b>		

BIT RUN #11 HUGHES ATM 33J  $8\ 1/2$ " 3 X 12 JETS. DRILLED FROM 2031m TO 2107m. BIT GRADED 3-3-RO-N-D-I-FC-TD

TELECO MWD DHE 1674-09 DPR TF4, DATA RATE X4SP TURBINE FLOW RANGE 250 - 500 gpm. VALVE GAP 0.90".

Section 11

<u>Date</u>	<u>Time</u>	Operation
12-03-93		Teleco Run #1
	06:30	Make up 12 1/4" BHA, dress roller reamers.
	07:45	Test RWD memory on MWD.
	08:00	Continue making up 12 1/4" BHA.
	08:45	Test MWD with rig pumps.
	09:15	Continue make up BHA and RIH.
	12:00	
		and shoe from 522m to 549m.
	13:00	Displace hole with KCl mud and drill out rathole from 549m to 560m, sweep clean.
	14:15	
	14:45	
	16:30	
	10.00	weight and rig up to perform FIT. Leak off pressure 825 psi, MW 8.9 ppg, shoe at 549m.
	18:00	
13-03-93	00:00	Drill 12 1/4" hole from 765m to 1056m. Wash down each connection. Flow check drill breaks.
	12:00	Continue drilling 12 1/4" hole from 1056m to 1204m.
		Wash and ream each connection and flow check. Bring
	00.00	mud weight up from 1.09 to 1.12 S.G. @ 19:00 hrs
	20:30	
	22:00	POOH from 1204m to 1084m, drag 10 - 40 klbs, 1084m
		swab 2 barrels RIH and pump out from 1084m to 967m.
~	00.45	Continue pull with out pumps to 909m O.K. RIH.
	23:45	Circulate bottoms up.
14 02 02	00.00	Continue simpulating battane um
14-03-93	00:00	<del>-</del>
	00:45	POOH to log. SLM - Flow check before POOH @ shoe
	00.45	and with pipe in BOP. Hole took good mud.
	03:45	Dump memory on MWD.
	04:00	
	04:15	Rig up schlumberger run #1 DLL-MSFL-AS-GR-AMS. in @ 05:21 hrs - out 08:50 hrs. Lay out tools and
	10.00	make up Run #2 VSP in @ 10:00 hrs.
	12:00	
		out @ 18:10 hrs. Run #3 CST in hole @ 18:45 hrs out @
	00 00	21:40 hrs 100% recovery, rig down.
	22:00	
		wear bushing POOH lay out same.
	22:45	•
		head same.
15 00 00	00.00	Dia 0 5/0" series fill seems 5 isints
15-03-93		
	02:30	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	same, fill hydraulic tank.
	03:45	
	07:45	
		on drill pipe, land. Out @ 08:30 hrs, connect up
_		cement lines.
_	08:30	
	09:30	
		Mix and pump slurry to BHP spec.

<u>Date</u>	Time	<u>Operation</u>
5-03-93	09:30	Bump plug with 3500 psi, cement in place 11:11 hrs, break off cement line.
	11:15 12:00	Set seal assembly and pressure test same. Continue pressure testing seal assembly. Test BOP's
	15:30	ram, annular to 3000 psi. POOH with running tool, lay out same.
	16:15	Test shear ram.  Make up wear bushing and running tool, RIH wear bushing won't J in. POOH wear bushing not on running tool, RIH and retrieve, POOH. RIH to 1715m with washing tool and wash W.H. POOH. Pick up running tool and wear bushing RIH and J in O.K, unable to release wear bushing POOH. Tool jammed, lay out and pick up #2 running tool and wear bushing, RIH and set O.K. POOH.
		Pick up and lay out 12 1/4" BHA. Make up 8 1/2" BHA.
16-02-93	00:00	Continue make up 8 1/2" BHA and RIH, tag cement at 1162m.
	02:00	Drill cement, float, firm cement, shoe and clean out rat hole.
	04:15	Drill 3m of new hole from 1204m to 1207m. Work junk sub.
		Circulate bottoms up prior to leak off test.
_	07:00	Test lines - 3000 psi, perform leak off test - EMW 16.1 ppg.
		RIH to 1207m (work junk sub). Drill 8 1/2" hole from 1207m to 1209m.
	10:45	Work junk sub, flow check, pump slug and POOH.
		Continue POOH. Took good mud. Service top drive.
	14.00	Teleco Run #2
	14:00	Pick up and make up MWD and roller reamer, dump memory on MWD.
		Make up bit #6 PDC, surface test MWD.
	14:45	Continue making up BHA, pick up 30 joints of drill pipe and continue to run in with care.
	19:00	Fill pipe and wash 17m to bottom at 1209m. Break bit in and drill new 8 1/2" hole from 1209m to 1329m.
17-03-93	00:00	Drill 8 1/2" hole from 1329m to 1559m, flow check connections and drill breaks.
	12:00	
		Flow check and circulate sample up.
	18:15	Continue to drill from 1654m to 1747m. Survey every 3rd connection.
18-03-93		Continue drilling 8 1/2" hole from 1747m to 1821m.
	03:30	Circulate sample up at geologist's request.
_		Pump slug POOH.
_	08:45	Dump memory on MWD and rack back same.

<u>Date</u>	<u>Time</u>	Operation
<del></del>		
	09:00	Pick up 27m core assembly, make up outer barrels and stabilisers. Make up inner barrels and check catcher gap. No good. Install extra shims and make up core head.
18-03-93	12:00	RIH, lay out jars and pick up new jars. Continue to RIH to cut core.
	16:30 16:45	Wash and ream from 1707m to bottom at 1821m.  Cut core #1 from 1821m to 1828m.
		Pump slug and POOH to change bit and BHA.
	21:45	Break off bit and break down core barrel to recover core, lay down 9m of barrel.
	23:00	Make up bit #8 onto 18m of core barrel and check catcher gap.
19-03-93	00:00	Continue, gap no good. Lay out inner barrels (to short) pick up 2 more inner barrels. Stand off good.
	01:30 04:15	RIH to 1796m. Hole good.  Precautionary ream from 1796m to 1828m (torque
	04.10	increase from 1821m). Circulate 5 minutes, drop ball.
	05:00	
	12:00 13:00	Continue to cut core #2 from 1841m to 1842.5m.  Pump slug and POOH. Tight hole @ 1660m, 70K overpull.  Flow check @ shoe. Hole good.
	16:15	Break off bit and breakdown core barrel, recover core.
	18:00 19:00	
	19:00	
	21:00	RIH to cut core #3.
	23:30 23:45	Wash and ream to bottom @ 1842.5m, circulate 5 min. Drop ball and cut core #3 from 1842.5m to 1844m.
20-03-93	00:00	Continue cut core #3 from 1844m to 1847m. Bit stopped drilling.
	01:00 04:00	Pump slug and POOH. Hole good, took good mud. Broke off bit and recovered core. Racked back core barrel in derrick.
		Teleco Run #3
	04:45	Make up bit #10 perform memory verification on MWD and test same.
	05:15	RIH to 1810m (filled pipe at shoe).
		Ream for MWD from $1810m$ to $1847m$ .  Drill 8 $1/2$ " hole from $1847m$ to $1859m$ .
	12:00	
21-03-93	00:00	Drill 8 1/2" hole from 1970m to 2031m. Survey and wash each connection.
	08:15	Circulate.
	08:30	Flowcheck, pump slug, POOH (tight @ 1970m backream to 1830m. Maximum overpull 70 Klbs @ 1891m).
$\overline{}$	12:00	Continue to POOH, flowcheck at shoe.
	13:30 14:00	Break off bit #10. Make up bit #11. Dump MWD memory.

<u>Date</u>	Time	<u>Operation</u>
_`1-03-93	14:30	Rig up Log #1 DLL, MSFL, SAS, GR, AMS. Run log #1, rig down log #1. Rig up log #2 FMS, LDT, CNT, GRMS. Run log #2.
22-03-93	00:00 02:00 12:00	
23-03-93	12:00 13:30 14:00 14:45 15:15 17:45 18:15	Rig down Schlumberger. Retrieve wear bushing.
	04:45 23:30	Howco temperature.
		Circulate MWD @ start and finish circulation. Circulate for Halco temperature gauge. Continue to RIH to 2017m, 14m of fill. Circulate for Halco temp gauge reading MWD survey @ start, mid and finish of circulation. Flow check hole pump slug and pull back to shoe. Rig up and recover Halco temp gauge on wireline. RIH. Tag bridge @ 1999m and ream to bottom @ 2031m. Continue to drill 8 1/2" hole from 2031m to 2056m. Drill 8 1/2" hole from 2056m and 2107m.
25-03-93	00:00 03:15	ledge @ 1946m). Continue POOH, hole good. POOH to shoe. RIH to bottom, circulate bottoms up, repeat same. POOH.

SECTION 12

MUD RECORD

行門では

Child Actual

# MUD REPORTS

TELECO RUN #	1	1	2	2	2	3	3
HOLE SIZE ins	12.25	12.25	8.50	8.50	8.50	8.50	8.50
DATE	12-03	13-03	16-03	17-03	17-03	20-03	20-03
TIME	22:00	20:00	23:00	15:30	23:00	12:30	24:00
DEPTH m	748	1203	1320	1635	1745	1864	1971
WEIGHT sg	1.09	1.12	1.12	1.14	1.16	1.15	1.15
VISCOSITY sec	50	50	48	50	48	45	46
PV cp	17	18	16	20	19	15	15
YP 1b/100 sq ft	19	21	18	30	24	<b>2</b> 5	18
GELS 10s/10min	5/12	6/14	5/8	12/22	7/26	4/25	5/25
FILTRATE cc/30 min	6.2	5.0	4.8	5.0	5.0	6.0	5.5
HPHT FILTRATE cc/30 min	-	-	-	-		-	-
CAKE 32nd	1.0	1.0	1.0	1.0	1.0	1.0	1.0
SOLIDS % by vol	4.50	6.60	6.80	7.40	8.50	9.40	9.40
WATER CONTENT % by volume	95.5	93.40	93.20	92.60	91.50	90.60	90.60
SAND % by vol	Tr	0.25	Tr	Tr	Tr	Tr	Tr
РН	9.2	9.0	9.7	9.2	9.0	9.0	9.5
CHLORIDES Kppm	31	27	27	26	34	40	45
CALCIUM mg/l	240	160	400	360	280	230	120
POTASSIUM Kmg/l % WT KCl	32.0 6.10	27.7 5.30	29.6 5.60	25.3 4.80	30.1 5.70	34.0 6.50	37.0 7.10

TELECO RUN #	4	4
HOLE SIZE ins	8.50	8.50
DATE	24-03	24-03
TIME	15:00	21:00
DEPTH m	2084	2107
WEIGHT sg	1.15	1.15
VISCOSITY sec	43	45
PV cp	12	17
YP lb/100 sq ft	16	20
GELS 10s/10min	3/15	4/14
FILTRATE cc/30 min	4.6	4.6
HPHT FILTRATE cc/30 min	-	-
CAKE 32nd	1.0	1.0
SOLIDS % by vol	8.50	8.50
WATER CONTENT. % by volume	91.50	91.50
SAND % by vol	0.1	0.1
РН	9.0	9.4
CHLORIDES Kppm	51	49
CALCIUM mg/l	230	120
POTASSIUM Kmg/l % WT KCl	40.7 7.82	37.0 7.11

---1 

# Appendix 4 Micropalaeontology: Basic Data and Range Charts

No micropalaeontological analyses were performed on Minerva-1 samples.

# Appendix 5 Palynology: Basic Data and Range Charts

Morgan Palaeo Associates performed palynological analyses on 28 cuttings samples, 50 sidewall core samples and 4 core samples from Minerva-1. The range charts appear on the following pages.

### MINERVA #1 - palynological data -

## MORGAN PALAEO ASSOCIATES

BOX 171 MAITLAND S.A. AUSTRALIA 5573 PH.(088)322795 FAX.(088)322798

C L I E N T: BHPP

W E L L: MINERVA #1

FIELD/AREA: OTWAY

A N A L Y S T: ROGER MORGAN

D A T E : JULY 1992

N O T E S: ALL DEPTHS ARE IN METRES

FIGURES REPRESENT PERCENTAGES BASED ON 100 SPECIMEN COUNT

"x" INDICATES RARE PRESENCE OUTISDE THE COUNT

RANGE CHART OF OCCURRENCES BY LOWEST APP: Algae, Dinos, S/P

	DINOFLAGELLATE CONTENT	SCHIZOSPORIS RETICULATUS	BOTRYOCOCCUS	FROMER FRAGILIS	II NUHHUS HONOCULATUS	SCHIZOSPORIS PARVUS	SCHIZOSPORIS	SCHIZOSPORIS PSILATA	PALAMBAGES	PARALECANIELLA	H CRASSOSPHAERA CONCINNA	HETEROSPHAERIDIUM HETEROCANTHUM	HETEROSPHAERIDIUM SOLIDA	II ISABELIDINIUN CRETACEUN	II OLIGOSPHAERIDIUM COMPLEX	CONOSPHAERIDIUM STRIATOCONUS	CRIBROPERIDINIUM SP	H PALAEOPERIDINIUM CRETACEUM	CIRCULODINIUM DEFLANDREI	EXOCHOSPHAERIDIUM PHRAGHITES	B ODONTOCHITINA OPERCULATA	II ODONTOCHITINA PORIFERA	H OVOIDINIUM VERRUCOSUM	I TRITHYRODINIUM GLABRUM	II CHLAMYDOPHORELLA NYEI II	HETEROSPHAERIDIUM CONJUNCTUM	SPINIFERITES FURCATUS RANOSUS	II TRITHYRODINIUM MARSHALLII PSILATE	HYSTRICHODINIUM PULCHRUM	ODONTOCHITINA COSTATA	I CLEISTOSPHAERIDIUM	I FLORENTINIA DEANE!	II KIOKANSIUM POLYPES	II OLIGOSPHAERIDIUM PULCHERRINUM	II CALLADISPHAERIDIUM ASYNMETRICUM II	HICRODINIUM ORNATUM	H ODONTOCKITINA STUBBY	PALAEOHYSTRICHOSPHORA INFUSORIOIDES
********	-	.==:	m ====	*		•				2	: 	2	<u> </u>	<u>:</u>	=== E	2			2	50	2	5	23	* **	2 2 2	% ===	2	- 58 	5	30	<u></u>	32	£ ===	# #	32	2 2	3	 
0563.0 SWC 0594.0 SWC 0617.0 SWC 0617.0 SWC 0627.0 SWC 0763.0 SWC 0783.0 SWC 0810.0 SWC 0810.0 SWC 0891.0 SWC 0991.0 SWC 1054.0 SWC 1105.5 SWC 1149.0 SWC 1105.5 SWC 1149.0 SWC 1179.0 SWC	.13610 4342.622214468317711682215181334881611322714411422151713163313124816131333312	X	63.2313442.4213.213114111.3.121.1.348854356.61X.55.17413.514.4.8115		······117 ·X2 ·1 ···1 ·2 ·····X ····X ····31111X2X ··X12 ·22 ··X ·XX ·X ·X · · · · · · · · · ·	**************************************		**************************************		222.51	X	**************************************	2 X 1						:	:		:		:		X · · · 2 · · · 1 XX · · 1 · · · · · · · · · · ·		:			:			X	== ···································	•	. x . 1	

	I ISABELIDINIUM COOKSONAE	DE CVHATIOSPHAERA	H MILLIOUDIDINIUM	# PTEROSPERMELLA AUSTRALIENSIS	SI XIPHOPHORIDIUM ALATUM	# APTEODINIUM GRANULATUM	# S# CADDASPHAERA HALOSA #	MICRODINIUM SP	M NELSONIELLA ACERAS	BE ODONTOCHITINA NO HORNS	H CYCLOMEPHELIUM COMPACTUM	II ISABELIDINIUM BELFASTENSE	III ODONTOCHITINA CRIBROPODA	CASSIDIUM SP	OCCISUCYSTA SP	DOONTOCHITINA VERY STUBBY	II TRITHYRODINIUM RETIC "THICK"	RAPTER SP	ISABELIDINIUM RECTANGULARE	III AMPHIDIADEHA DENTICULATA II	) CHLAHYDOPHORELLA AMBIGUA	CIRCULODINIUM SOLIDA	CORONIFERA	I ISABELIDINIUM KOROJONENSE	II TRITHYRODINIUM SUSPECTUM	====	==:	CANNINGIA SPIN	H COUNCICHIINA CHESTA	I SABELIDINIUM SP	TRICHODINIUM	H HYSTRICHODINIUM FURCATUM	II ISABELIDINIUM BALMEI	TRITHYRODINIUM FINE GRANULATE	H KENASCUS CERATOIDES		II DISPHAERIA MACROPYLA II		
==========	& M	<b>-</b>	; ===	-== -==		‡ ===	10 + -		÷	- - 	÷	۵ د	آه ===	25 ===:		 2	2 2 2 3	% ===	5	BC ===	& ===:	9 ===:	:		===:	; ====	.==:	<b>%</b> !	•	\$	2		2	2	, ===	22	, ,		
																						_	_				_	_											
0563.0 SWC 0594.0 SWC	•	•	•	;	•	•	•	•	•	•	•		•	•	•	•	•		•	•			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
0617.0 SWC	:	:	:	î	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	i	:	:	:	:	:	:		
0627.0 SWC 0651.0 SWC	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:		•	i	•	:	:	:	٠:	:		
0760.0 SWC 0783.0 SWC	•	•	•	•	•	-	•	X	•	•	٠	•	٠	• ,	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•		•	•	•	•		
0810.0 SWC	:	•			:	•	:	:	:	:	:	:	:	:	:	•	:	:	:		:	:	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	:		
0838.5 SWC 0897.0 SWC	Х	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	2	?	:	:	•			X ·	:	:	:	•	:	•		
0954.0 SWC 0991.0 SWC	:	:	:	:	:	X	•	•	i	•	•	•	•			•	:			•						:				•	•	•	•	•	•	•			
1054.0 SWC 1105.5 SWC	•	•						•	x x	:	:	-		:		:	:	:	:	:	:	:				:	:		: :	:	:	:	:	:	:	:	:		
1149.0 SWC	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•		:	:	:	:	:	:	:	:		
1166.0 SWC 1179.0 SWC	:	:	:	:	:	:	:	:	X	:	:	:	•	:	•	•	·	•	•	•	:	:	:	:	•	•	•			•	٠	:	•	•	•	•	•		
1193.0 SWC 1220.0 SWC	•	•	•	•		•	•	•	1	•			•				•	:	÷	:	•				:	:	:			:	:	:	•		:		:		
1260.0 SWC	:	:	:	:	:	:	:	:	4	:	:	:	:	:	:	:	:	:	:	:	•	:		:	:	:	:	. 2		:	:	:	:	:	:	:	•		
1271 CUTTS 1298.0 SWC	:	i	:	:	:	:	:	:	5 1	:	:	•	ż	•	:	:	4	•	:	•	•	•	•	•	•	•	•	. ;	٠.	•	•	•	•	•	•	•	-		
1325 CUTTS 1351.0 SWC	•	•	•	•	-	-	•	•	4	•	•	X	4				X	•		x						:	:	. ;		:	:	:	:			:	:		
1398.0 SWC	:	:	:	:	:	:	:	:	:	:	:		x	:	:	X ·	X 2	:	:	Х	:	:	:	:	:	:	:	•	•	:	:	:	:	:	:	:	:		
1410 CUTTS 1453.0 SWC	i	:	:	:	:	:	:	:	1	:	:	4	1 X		:	:	x	:	:	•	•	•	•		x	•	•		•	٠	٠	•	•	•	•	•	•		
1502.0 SWC 1510 CUTTS	1	•	•	•	•	•	•	-	:		•	÷	;	•	•	•	;		2 X				:		•	:		:		:	:	:	:	:	:	:	:		
1562.0 SWC	:	:	:	:	:	:	:	:			:	•	:	:	:	:		:	•	:	:	:	:	:	:	:			•	•	:	X ·	:	:	:	:	:		
1597.0 SWC 1616 CUTTS	:	:	:	:	:	ż	•	:	:	:	:	•	i	:	:	:	:	:	i	i	•	X	•	•	X	•			•	•	X	•	•	•	÷	•	•	•	
'.0 SWC	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		X				:	•		•	:	x	:	:	x	•	:	:		
1660.0 SWC	•	:	:		:	•	•	•	•	•	•	:	•	:	:	:	:	:	:	:	:	i	:	:	:			: :		•	:	:	:		:	:	:		
1690.0 SWC 1699 CUTTS	:	:	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	x	:	•	:		-			•	•	i	X	¥ :	·	;	X	?		
1723.0 SWC 1747.0 SWC	•	•	1	•	•	•	•	•	•	•	X	•	•	•		•	•		•	•	•	1						: :	:	:	:	•	•		•	:	:		
1766.0 SWC	:	:	:	:	:	i	:	:	:	:	:	:	:	:	:	:	:	X 5	:	:	:	ż	:	:	:	:	•		i	X ·		:	:	•	:	:	:		
1790 CUTTS 1805.0 SWC	:	:	×	:	:	•	:	:	:	:	i	:	:	:	:	:	•	5 X	•		1	2	:	•	•	. ;	. : K	X X	•	•	•	•	•	•	•	•	•		
1820 CUTTS 1837.3 CORE	•	•	•	•	٠	X	•	•	X	•		•	•	•	•	•	•	?	X	•	X	3	X	?	X	X .	•		·	·	:	:	:	•	•	:	:		
1838.1 CORE	:	:	:	:	:	x	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:		•	: :	:	:	:	:	:	•	:	:	•		
1839.7 CORE 1840.3 CORE	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	-		-		•	• •	:	:	:	:	:	•	:	:	:		
1872.5 SWC 1886-89 CUTTS	:	•	:	:	:	:	•	•	•	•	x	•	•	•	•	•	•	X ·	:	X	•	•	•	•	•		•				:	•	•		•	•	•		
1910-16 CUTTS 1943-49 CUTTS		•				x	•	•	:		•		:	:			X	X	X		-	:		:				•	:	:	:	:	:		:	:	:		
1947.5 SWC		:	:	:	:	:	:	:	х :	:	•	•	•	1	•		•	:		-	-	-	:	-			•	• •	:	:	:	•	•	•	:	:	:		
1997-03 CUTTS 2021-27 CUTTS		:	:	:	:	:	:	:	1 X	i	1	Х		:	:	•	:	:	-	-	-	:	-	-	:	•	•		•	•	•	•	•	•	•	•	•		
2035.0 SWC 2061.0 SWC	•	i	X X	3	X 1	X	1	X	•	•	٠	•	•		-	•					•				•					•	•	•	•	•	•	•	•		
2084 CUTTS 2093 CUTTS	i	-	•	•		:	:	:	:	:	:	:	:				•		:	:	:	:	:						:	:	:	:		•	:	:	:		
2098.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:		:	:	:	•	•	: :	:	:	:	:	•	•	:	:	:		
2101.0 SWC 2102 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	•	:	:	:			• •	-		• •	-	•	•	•	•	•	•	•	•		
2105 CUTTS 2117 CUTTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•							·	:	•	:	•		:	:	:		
2123.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	-	:	:	:	:	:	:	:	:	:	•	:		: :	:	:	:	:	•	•	:	:			
2142.0 SWC 2150 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	•		-	-	-			• •	•	•	:	•		•	•	•	•		
2157.5 SWC 2180 CUTTS	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•						•		-				-	•	•	•	. :	•	•	•	•		
2212.5 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	-	:	:	:	-	•	-			: :		: :	:	:	:	:	: :	•	•	•	:		
2222 CUTTS 2261 CUTTS	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	-		:		•	:	:	•	-			•	•	•	•			•	•	•	•		
2270 CUTTS 2294.0 SWC	•	•	•	•		•	•	•	•	•	:	:	•	-	:	:	-	-				•	:	•	-				:			•	. :			•	•		
2318 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	•	:		•		•	:	:			•	:	:	:	:	: :			•			
2321.0 SWC 2 CUTTS	•	:	:	:	:	:	:	:	:	:	:	:	:	-	•	-	:	:	-	-	-	:			•				•	•	•	•			•	•			
CUTTS CUTTS	•	-	•	•	•	•	•	:	•	•	•	:	:	:	:	•	-					:			:			:	-	:	:	•			•	•	•		
2360.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	-	:	:	:	:	:	•		:	:	•	•	:	: :		•	:	:	:	:	: :		•	•	•		
2392.5 SWC 2408 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	•		-	-	•			-				:	:	:	:							
2412.0 SWC 2425 CUTTS	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•		-		•	•		•	•	•		: :			:		•	•	. :			•	•		
3.25 COIIS	•	•	•	•	•	•	•	•	•	•	•	•	•.	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •		•	•	•		

	CONOSPHAERIDIUM TUBULOSUM	# XENIKOON AUSTRALIS	H CHATANGIELLA TRIPARTITA	CHATANGIELLA VICTORIENSIS	SPINIDINIUM SP	===:	I TANYOSPHAERIDIUM SALPINK	GILLINIA HYHENOPHORA	HETEROSPHAERIDIUM LATEROBRACHIUS CT	TRITHYRODINIUH PUNCTATE	ISABELIDINIUH THOMASII	I ISABELIDINIUH TRIPARITA	I ODONTOCHITINA OBESOPORIFERA	DICONODINIUM PUSILLUM	DINOGYNNIUM ACUNINATUM	TRITHYRODINIUM	AREOSPHAERIDIUM SUGGESTIUM	HABOURADINIUM PENTAGONUM	EUCLADINIUM HADURENSE	MELSONIELLA TUBERCULATA	NELSONIELLA SENIRETICULATA	AREDL.IGERA SP	ISABELIDINIUM PELLUCIOUM	KIOKANSIUM SP	HANUMIELLA CORONATA	HANUMIELLA DRUGGII	TANYOSPHAERIDIUM "GRANULATUH"	CORDOSPHAERIDIUM INODES	DEFLANDREA DILUVNENSIS	DEFLANDREA SPECIOSA	EOCLADOPYXIS PENICULATA	HAFNIACYSTA SEPTATA	OPERCULODINIUM	THALASSIPHORA DELICATA	DEFLANDREA TRUNCATA	GLAPHYROCYSTA DIVARICATUH	ALISOCYSTA MAKGARITA	DIPHYES COLLIGERUM
2222222222	2		٤.	8	<u>.</u>	8	69	3	8	8	6	8	8	8	2	92	93	ð	9.5	96	9 2	96	0	100	101	102	103	101	105	901	107	801	109	=	=	112	m -	=
													===	===	===	===	===	===	===	===	===	:	===:	===:	===	===	===	===	===	===	===	===	===		-=-	===	===	==:
0563.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	X	:	•	•	•	•	-	•	•
0594.0 SWC 0617.0 SWC	•	:	:	:	:	•	:	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	X	•				i	:	x	:	:	:
0627.0 SWC 0651.0 SWC	•	•	-	•	•	•		•					•	:	:		:	:	:	:	:	:	:	:	:	:	:	1	:	i	:	i	3	:	x	:	х	×
0760.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	•	:	:	X	X	X 1	;	i	;	·	X	X	•	•
0783.0 SWC 0810.0 SWC	:	:	:	:	:	:	:	:	:	•	•	•	•	•	•	•	•	•	•	•	•	-	•	5	30	1	X	•	•	•	•	•	•		:	:	:	:
0838.5 SWC 0897.0 SWC	•	;			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	×	ż	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
0954.0 SWC	:	2	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ż	:	:	:	X	:	:	:	:	:	:	:	•	•		•	•	•	•	•	٠	•
0991.0 SWC 1054.0 SWC	:	7 X	:	:	:		:	:	:	:	•	•	•	•	•	•	i	1	X	X	•	•	•	•	•	•	•	•				:	:	:	:	•	:	:
1105.5 SWC 1149.0 SWC	٠	X 3	•	•	•	•	•		:	•	:	:	:	:	:	:	:	Ÿ	×	x	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1166.0 SWC	:		:	:	x	:	:	:	:	x	:	:	:		:	:	:	х	Х	х	:	:	:	:	•		•	•	•	•	•	•	•	•	•	•	•	٠
1179.0 SWC 1193.0 SWC	:	:	:	:	X 1	:	•	•	;	:	•	•	•	•	•	٠	÷	;	•	•	•	•	•	•	•	•			:		:	:	:	:	:	:	:	:
1220.0 SWC 1260.0 SWC	•	•	•		X	•			?		:	:	x	:	x	i	•		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1271 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	ż	:	:	:	:	:	:	:	:	:	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
1298.0 SWC 1325 CUTTS	:	:	:	:	:	:	:	•	:	•	•	•	ż	X	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		:	:	:	:	:	:	:
1351.0 SWC 1398.0 SWC	•	•	•	X	•	•	•	•		×	x	x	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1410 CUTTS	•	:	:	:	:	:	:	i	x.	1 X	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠,
1453.0 SWC '02.0 SWC	•	•	•	•	•	;	i	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		:	:	:	:	:	:	:	:	:	:	:	:	:
10 CUTTS			x	x	x	•	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	•	•	•	•	•	•	•	•
362.0 SWC 1597.0 SWC	:	:	:	:	:	•	:	:	:	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				÷		•	:	:
1616 CUTTS 1629.0 SWC	•	?	•	•	•	•	•	•	•	•	•			•		:	:	:	:	:	:		•	:		:	:	•	:	•	•	:	:	:	•	:	:	:
1647.0 SWC	x	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1660.0 SWC 1690.0 SWC	:	:	:	:	•	:	•	•	•	•	•	•	•	•	•		•	•	•	•		•	-	•	•	•	-	•			•	:	:	:	:	:	:	:
1699 CUTTS 1723.0 SWC	•	•	•	•	•	•		:		:	:		:	:	:	:	:	:		:	•		•	•	•	:	•	•	•	•	•	•	:	:	:	:	:	:
1747.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1766.0 SWC 1790 CUTTS	•	:	•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	:	:	:	:	:	:	:
1805.0 SWC 1820 CUTTS	•	•	•	•				·	:	:	:	:	:	:	:	:	•	:	:	:	•	•	•	•	•	•	•	•	•		•	•	•	:	:	:	•	•
1837.3 CORE	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
1838.1 CORE 1839.7 CORE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•				•	•	•	:	:	:	:	:		•
1840.3 CORE 1872.5 SWC	•	•	•				:	:	:	:	:	:	:	:	:	:	:	:	:		•	• •			•	•	•					•	•	•	•	•	•	•
1886-89 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	•	•				•	•	•	•				•	•		•	•		:
1910-16 CUTTS 1943-49 CUTTS	:		:	:		•	•	•	•	•	•	•	•	•	•	•	•		:	•	•	. :			•							•		:	:	•	•	•
1947.5 SWC 1997-03 CUTTS	•	•	•	•	•		•		:	:	:	:	:	:	:	:	:	:	:			• •	•		•	•						•		:		•	•	•
2021-27 CUTTS	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	•		•										• .	•	•	•	•	•	
2035.0 SWC 2061.0 SWC	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•																•	•	•
2084 CUTTS 2093 CUTTS	•	•	•	•	•	•		:		:	:	:	:	:	:	:	:	•	•	•		: :		•		•		•	•	•	•	•	•	•	•			•
2098.0 SWC	:	•	:	:	:	:	:	:	:	:	:	:	:	•	:	:		•	•	•		•	•	•		•	•	•	•	•	•		•	•	•			
2101.0 SWC 2102 CUTTS	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•				-			:			•	:					•			
2105 CUTTS 2117 CUTTS	•	•	•				:	:	:	:	:	:	:	:	:	:	•	•	•	. :	•	•	:	•	•	•		:	•	:	:	•		•			•	,
2123.0 SWC	:	•	•	•	:	:	:	:	:	:	:	•	•		:	:	•	•			•	•	•	•	•	•	•	•	•	•				•				•
2142.0 SWC 2150 CUTTS		•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•									:	:	:	:		•		•			•	•
2157.5 SWC	•	•	•	•	•	:		:		:	:	•	<u>.</u>	•	•	•	•			•	:	:	:	:	:		:	•	:	:	:	•		•		•	•	•
2180 CUTTS 2212.5 SWC	•	•	•	•	:	:	•	:	•	•	•	•		•		•				· •	•	•		•	•	•	•	•	•	•		•		. :	. :			
2222 CUTTS	•		•	-	•	•	•	•	•	•		•	•	•	-	•							:	:	:	:	:	:	:	:	:	:		: :			•	
) CUTTS				•	•	•		•	•	•	•				•	•	•	•	•	•	:	:	:	:	:	:	•	:	:	:	:	•	•	•			•	
4.0 SWC 2318 CUTTS		•		•	•	:	•	:	•	•		•		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				:	:	
2321.0 SWC 2324 CUTTS		•		•		•	•	•	•	•	-			•	•	•			:	:	:	:	:	:	:	:	:		:	:	:	:	:	•	:	:	:	
2333 CUTTS			•		•	•	•	•	•	•	•			•		•	•	:	•	•	:	:	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
2354 CUTTS 2360.0 SWC	• •	•	•		•	•	•							•	•	•		•		•	•	:	:	:	:	:	:	:	:	:	:	:	•	•	:	:	:	
2392.5 SWC	• •	:			•	•	•	•	•	•	•						•		•	:	:	:	:	:	:	:	:	:	:	•	•	•	•		•	•	•	
2408 CUTTS 2412.0 SWC	• •		•			•	•	•	•	•	. :	· •						•	•	•	•	•	•	•	•	•	•	:	:	:	:	•	•	:	:	•	•	
2425 CUTTS		•	•	•	•	•	•	• •	• •	•							•	•	•	:	:	:	:	•	:	:	:	:	•	:	:	:	:	•	:	:	:	

583.0 BMC	************	115 FIBROCYSTA VECTENSE	116   GLAPHYROCYSTA of MEDUSETTIFORMIS	117 A APECTODINIUM HOMOHORPHUM	118 DEFLANDREA OBLIQUIPES	119 FIBROCYSTA BIPOLARIS	120 HYSTRICHOSPHAERIDIUM TUBIFERUM	121 DEFLANDREA PACHYCERAS	1221 APTEODINIUH AUSTRALENSE	123% AREOSPHAERIDIUM CAPRICORNUM	II VERYHA	125ii CAUCA SP	126 HICRHYSTRIDIUM	127 A REQUITRIRADITES VERRUCOSUS	128# ARAUCARIACITES AUSTRALIS	129 CALLIALASPORITES DAMPIERI	130   CALLIALASPORITES TURBATUS	131 CICATRICOSISPORITES LUDBROOKIAE	132# CRYBELOSPORITES STRIATUS	333 CYATHIDITES AUSTRALIS	134 CYATHIDITES HINDR	135 FALCISPORITES GRANDIS	136 FALCISPORITES SIMILIS	137 H KLUKISPORITES SCABERIS	38 HICROCACHRYIDITES ANTARCTICUS	39 0 SHUNDACIDITES WELLHANII	40 PEROTRILETES JUBITUS HORGANII	41   PODOSPORITES HICROSACCATUS	42 RETITRILETES AUSTROCLAVATIDITES	+3# TRILOBOSPORITES TRIORETICULOSUS	44   TRIPOROLETES RETICULATUS	45# VELOSPORITES TRIQUETRUS	46 H REQUITRIRADITES SPINULOSUS	47 BALMEISPORITES MOLODICTYUS N	HOURETRISPORITES	# 49   CICATRICOSISPORITES AUSTRALIENSIS	SON CONTIGNISPORITES COOKSONIAE	51 COPTOSPORA HRINKLY	52 COROLLINA TOROSUS	
9894.0 Sect. X	**********		===	===	===	*===		===	<u>.</u>	===	# = # #	==	===	·==:	===	===	===	-=-	<b>-</b>	-==	-==	===	===	===	===	===	-==	===	-=-		-=-	===	===	-2-	===	===	===	-ī-	-E-	
2412.0 SWC	0594.0 SWC 0617.0 SWC 0617.0 SWC 0617.0 SWC 0627.0 SWC 0651.0 SWC 0763.0 SWC 0810.0 SWC 0810.0 SWC 0897.0 SWC 09954.0 SWC 10954.0 SWC 1105.5 SWC 1196.0 SWC 1195.5 SWC 1149.0 SWC 1120.0 SWC 1120.0 SWC 1120.0 SWC 1121.0 CUTTS 1298.0 SWC 1325 CUTTS 1298.0 SWC 1325.0 SWC 1325.0 SWC 1325.0 SWC 1325.0 SWC 1360.0 SWC 1370.0 SWC 1370.0 SWC 1371.0 CUTTS 1453.0 SWC 1597.0 SWC 1660.0 SWC 1699.0 SWC 1669.0 SWC 1699.0 CUTTS 1805.0 SWC 1747.0 SWC 1766.0 SWC 1690.0 SWC 1747.0 SWC 174					···2 ·································	:				x				1X.1.32221111112425X.11.342112194X1112513261511448312352.91563.433115512131	···1x··3····1x···1x····x·4x··12··11·3·1·1·3·121·3·121	··7·2·83··1112··113·11·4·6·348·4·326X·2·	······································	· · · · · · · · · · · · · · · · · · ·	2212123422133334 ·64515132134215111342323X41514243634424351577141156 ·198977987316 ·	573427525216499588163711751182557615161161915282836431711761126071X111523211122152	-2243X127334552334312431351133.3213244812.1232811331242119362846181.81685164114.1.	191291111111122211111111151222112112111111151221111511212111111	····1	29111367991878185611191221541210117711881211118101391171271151105614 4281523111018	22423112113121411122X11332521.2222121.X1122391.221.135X13.32123.1625116	1	43325152768123246221.242.2.3795031486749423.32.4442112121	11111324321X1141222132112441141121 .111 .X .1111XXXX11 .X12 .X1XX .11511 X2	-X	······································			··X···X···XXX·X·X·X······XXX	· · · · · · · · · · · · · · · · · · ·	1 .112x1x .11 .1 .1 .1x1 .11xx .x .1	······································	· · · · · · · · · · · · · · · · · · ·	····5X ··· · · · · · · · · · · · · · · ·	

0563.0 SWC	
0594.0 SWC . 17	
0617.0 SWC . 14	
0651.0 SWC . 19 1	
0760.0 SWC . 21 1	
0810.0 SWC . 9 1	
0897.0 SWC . 9 3 . 1 . X 1	
0954.0 SWC . 4 X . 3	
1054.0 SWC . 2 3 6 . 1 1 X X 1 . 1 1105.5 SWC . 4 3 . 2 1 1 1 3 X X 1	
1149.0 SWC . 6 3 . 1	• • •
1179.0 SWC . 11	
1193.0 SMC . 15 1	
1260.0 SWC . 7 1 1 3	
1298.0 SWC . 8 1	
1351.0 SWC . 11	
1398.0 SWC . 10 . 1 2 . 2	
1 0 SWC . 13 1	
1510 CUTTS . 7 . X X . 1	
1562.0 SWC . 12	· ·
1616 CUTTS . 14 3 . 1 12 2	
1647.0 SWC . 13	ż
1690.0 SWC . 8	: :
1699 CUTTS . 5 1 . 1 3	: :
1747.0 SWC . 24	. x
1790 CUTTS . 12 1 . 2	
1820 CUTTS . 22	. ?
1837.3 CORE . 11	• •
1839.7 CORE . 5 1	
1872.5 SWC 29	х.
1910-16 CUTTS . 5 . 1 1 . 2	
1943-49 CUTTS . 7	
1997-03 CUTTS . 9 2	
2035.0 SMC . 5 . 1	: :
2084 CUTTS 3 12	. x
2093 CUTTS . 6	. x x x
2101.0 SWC . 23	X 2
2105 CUTTS . 6 1 . 1 2 2 . 1	. 1
2123.0 SWC . 3	
2150 currs	
2157.5 SWC	 х х
2212.5 SWC	
2: NITS 1 1	
2294.0 swc - x x x . x 1 x	: :
2318 CUTTS	• •
2324 CUTTS 1 2 ? X 1 . X 1 . X 1 . 1 X 1	• •
2354 CUTTS	: :
2392.5 SWC . 1 X X X X X Z 3 1 X X	
2408 CUTTS	
2425 CUTTS	

	) III CAMEROZONOŠPORITES ROBUSTA	192   LILIACIDITES KAITANGATAENSIS	193 PHYLLOCLADIDITES MANSONII	194 CYATHEACIDITES TECTIFERA	195 PERINOPOLLENITES ELATOIDES	196 GAMEROZONOSPORITES SP	1971 DENSDISPORITES VELATUS	1981 FOUEDGLEICHENIDITES	199 PROTEACIDITES SP	2001 CLAUIFERA TRIPLEX	201 HOSTRALOPOLLIS OBSCURIS	2021 CAMEROZONOSPORITES OMAIENSIS	203# COPTOSPORA PILEOSA #	204M NEUESISPORITES	2058 SPINOZONOCOLPITES PROMINATUS	206 NEORAISTRICKIA	207   PHIMOPOLLENITES PANNOSUS	208 TRICOLPITES VARIVERRUCATUS	209# CONTIGNISPORITES GLEBULENTUS	210 NOTHOFAGIDITES SENECTUS	211 CICATRICOSISPORITES MEGA AUSTRALIENSIS	212   DICTYOTOSPORITES SPECIOSUS	213# RETITRILETES CIRCOLUMENUS	21+# TRICOLPITES SP	215# ASTEROPOLLIS ASTEROIDES	216 II ORNAHENTIFERA SENTOSA	217# TRICOLPORITES APOXYEXINUS	218 TRICOLPITES GILLII	219   INTERULOBITES INTRAVERRUCATUS	2204 NOTHOFAGIDITES PROTO SENECTUS	2211 ORNAMENTIFERA MINIMA	222 PROTEACIDITES LARGE	223  DILMYNITES TUBERCULATUS	224 CICATRICOSISPORITES RADIATUS	225# LYGISTIPOLLENITES FLORINII		227 PERIPOROPOLLENITES POLYORATUS	228   PHYLLOCLADIDITES VERRUCATUS
*********	<u>.</u>	<u>.</u>		***	. = = =	<u>.</u>		. <u>.</u>	- <u>-</u> -	- Z		- <u>5</u> -		-2	- 5		- <u>2</u> -	- <u>-</u> -	-2-	-2-	===	=2=	====	=2=	-2-	-2-	-2-	=2=	-2-	-2-	-2-	-2-	_2=	=2=	-2-	2===	-2-	===
0567 0 0040			;			•	•	•	:	;							•	•		•		•	•	;	•		•	i	•	•	•	•	3	•		•	•	•
0563.0 SWC 0594.0 SWC	:	:	1	:	:	:	:	:	9	1 2 1	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	:	:	1	:	:	:	:	4	:	9	:	;	:
0617.0 SWC 0627.0 SWC	:	:	3	:	:	:	:	i	22 6	1	ż	:	:	:	:	i	:	:	:	:	:	:	:	•	:	:	·	i	:	:	:	:	3	:	i	:	i	:
0651.0 SWC 0760.0 SWC	:	:	4	:	:	:	:	:	7	1	3 1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:	3	:	1	:	•	:
0783.0 SWC 0810.0 SWC	:	:	1	:	:	:	:	:	20 6	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	6	1	:	:	:	:	:
0838.5 SWC 0897.0 SWC	:	:	2 1	:	:	:	:	:	7 14	:	1	1	:	:	:	:	:	:	:	X 4	:	:	:	:	:	X	x	ż	:	:	•	3	2 1 2	:	•	i 2		:
0954.0 SWC 0991.0 SWC	:	:	3	:	:	•	:	:	16 4	X X	X 1	X 1	×	:	:	:	:	:	:	3 1	:	X	:	:	:	i	:	X	:	:	:	1		:	х	2	:	:
1054.0 SWC 1105.5 SWC	:	:	7 5	:	i	:	x	:	7 10	3 1	1	1	:	•	:	:	:	•	:	X ?	:	×	•		:	2	:	X ·	:	:	:	2	2 5	:	×	1	X 1	:
1149.0 SWC 1166.0 SWC	•	•	;	•	•	•	•	•	6 2	2 1	1	×	×	•	•	•	•	•	•	•	•	·	•	•	•	X	x	1	•	•	i	2	2	•	•	?	1	i
1179.0 SWC	:	:	2	i	:	:	÷	:	3	ī	2	1 X	1	•		•		•	•	•		1	•	1			•	•	•		•	X	2	•	•	-	X	•
1193.0 SWC 1220.0 SWC	:	:	1	:	:	:	:	:	6	i	1	•	:	:	:	:	x	•	:	x	:	:	:		:	:	:	:	:	:	X 1	î	1 4	:	:	:	2	i
1260.0 SWC 1271 CUTTS	:	:	2 9	:	:	:	:	:	2	i	2	i	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		3		×	i	i		:
1298.0 SWC 1325 CUTTS	:	:	4	1	:	:	:	:	5 5	1	1	×	•	:	:	:	1	:	:	:	:	:	•	:	:	i	:	2	:	5	:	x	1	:	:	:	:	:
1351.0 SWC 1398.0 SWC	:	•	3	•	:	:	:	:	7	:	1	:	ż	:	:	:	:	:	:	:	:	:	:	:	:	:	х	:	i	1 2	Х	:	:	:	:	:	:	•
1410 CUTTS 153.0 SWC	•	•	1	:	:	•	:	:	4 2	1	2	:	:	:	:	:	:	:	:	:	:	×	:	:	:	X ·	x	X ·	:	:	:	:	:	:	•	:	:	:
	:	:	:	:	i	:	·	:	•	i	;			•	•	•	•	•	•	•	•	•	•	•		X	•	•	•	•	•	•	•	٠	•	•	•	•
1562.0 SWC	:	:	:	x	i	:	:	:	•	:		•	•	:	•	:	•	·	÷	·	·	·	·					·	·	·	·	·		:	·	·	·	:
1597.0 SWC 1616 CUTTS	:	:	2 4	:	ż	:	:	:	×	X	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1629.0 SWC 1647.0 SWC	:	:	:	:	:	•	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1660.0 SWC 1690.0 SWC	:	:	3	2	:	:	:	:	:	4 X	:	X	:	:	:	:	•	:	:		:	:	:	i	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1699 CUTTS 1723.0 SWC	•	•	1	•	•	•	•	•	•	2	1	•	•	•	:	•	•	:			•		•	:	:		:	:	:	:	:	:	•	:	:	:	:	:
1747.0 SWC 1766.0 SWC	:	:	i	:	:	:	:	:	:	3 X	•	:	:	•	:	-	:	•	•	•	X	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1790 CUTTS	:	:	3	:	:	:	:	:	:	x	x	:	:	:	:	:	:	:	:	:	·	;	•	:	:	:	:	•	:	:	•	:	:	:	:	:	:	:
1805.0 SWC 1820 CUTTS	:	:	ż	:	i	:	:	:	:	•		:	:	:	:	:	•	:	:	x	•		:	:		:	:	:	•	:	:	:	:	:	:	:	•	:
1837.3 CORE 1838.1 CORE	:	:	3	:	:	:	:	:	:	х •	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1839.7 CORE 1840.3 CORE	:	:	2	:	2	:	:	:	:	ż	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1872.5 SWC 1886-89 CUTTS	:	:	<b>X</b>	X ·	:	:	:	:	:	:	:	:	•	:	:	:	:	:	X ·	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1910-16 CUTTS 1943-49 CUTTS	i	•	2	•	•	:	:	•	2 X	:	1	•	x	•	:		:	1	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:
1947.5 SWC 1997-03 CUTTS	x	•	2	:	•	•	•	•	X	i	X	•	•	•	•	•	×	:	•	•	•	:	•	•	:	•		:		•	•	•	•	•	•	•	•	•
2021-27 CUTTS 2035.0 SWC	i X	:	5 X	:	:	:	:	:	•	x x	î	:	:	:	:	ż	:	:		•	:	:		:	•	:	•	•	•	:	•	•	•	÷	•			•
2061.0 SWC	•	:	X	:	:	•	:	:	;	x	•	:	x	i	x	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2084 CUTTS 2093 CUTTS	:	i	X	:	:	:	:	:	1	i	i	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:
2098.0 SWC 2101.0 SWC	:	:	:	:	:	:	:	:	ż	i	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2102 CUTTS 2105 CUTTS	:	•	1	:	:	:	:	:	ż	х	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2117 CUTIS 2123.0 SWC	ż	X	X	•	i	X	X	1	X	•	:	:	•	•	:	:	:	•	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2142.0 SWC	X 2		;	ì	•	•		•	•	•	•	•	•	•	•	•	-	•	•	•	•	:	•	:	•	•	•	•	•	•	•	•	•	-	•	•	•	•
2150 CUTTS 2157.5 SWC			•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	•	:	:	:	•	:	:	:	:	•
2180 CUTTS 2212.5 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
222 CUTTS 261 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:
2270 CUTTS 2294.0 SWC	:	•	:	•	•	:	:	:	:	:	:	•	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:
2318 CUTTS 2321.0 SWC	•	:	:	•	•	•	•	•	•	•	•	•	•		•	•	:	:	:	:	:	:	:				•		:		:		:	:	:	:	:	:
2324 CUTTS	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	•	:		:	:	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
2333 CUTTS 2354 CUTTS	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2360.0 SWC 2392.5 SWC	•	•	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2408 CUTTS 2412.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2425 CUTTS													_	_	_	_		_		_	_			_	_	_	_	_	-	_	_	_	_	_	_	_		

	LILIACIDITES	NOTHOFAGIDITES PROTO ENDURUS	RICOLPITES SABULOSUS	GAHBIERINA TUISTED	NOTHOFAGIDITES ENDURUS	SESTROSPORITES PSEUDOALVEOLATUS	RICIPITES SCABRATUS	TRICOLPITES "MINOR"		DICTYOTOSPORITES FILOSUS	GAMBIERINA RUDATA	GAHBIERINA EDUARDSI	LYGISTIPOLLENITES BALHEI	NOTHOFAGIDITES FLEHINGII	TETRACOLPORITES VERRUCOSUS	TRICOLPITES LONGUS	TRICOLPORITES LILLIEI	TRIPOROPOLLENITES SECTILIS	ROTEACIDITES HAPUKUI		CHENTED TONG TONG CO	ANACOLOSADITES ACUTULLUS	CYATHIDITES GIGANTIS	NOTHOFAGIDITES BRACHYSPINOLOSUS	TRICOLPITES WAIPAWAENSIS	¥	CAMEROZONOSPORITES BULLATUS	ш	PROTEACIDITES ANNULARIS	PROTEACIDITES GRANDIS	CAMEROZONOSPORITES LATROBENSIS	HALVACIPOLLIS SUBTILIS	PROTEACIDITES BUN GRANDIS	PROTERCIDITES OTHRYENSIS	TETRACOLPORITES GAMARUENSIS	HALVACIPOLLIS DIVERSUS
		Š	TRIC	GAHE	Ž T	SESI	ERIC	78	3 3 2 3	010	9 69 H 63		, ,	===	-==	===:	===	===:	_ ===:	====	===	====	===:	===		====	===:	====	===:	===	===	2 HAL	===	===	:==:	===
	229	230	231	232	233	234	232	236	1237	1238	1239	240	- <del>-</del>	1242	= 2+3	± + + + + + + + + + + + + + + + + + + +	12 + 5	* * **	12+2	8 7 1	7	23 20	1252	253	152 123 1	1255	256	23,	125	1260	261	5	1263	56.		 
63.0 SWC	• •		•		•			•	•	•	•			i	:						1	i :	:	i	:	:		 8 1	:	×	:	1	:	:	i	2
94.0 SWC	•	:	:	:	:	:	1 2	:	:	:	:	:	:	. X	:	:	:	:	:	:	i	i :	:	X 2	:	X X	:	4 .	X 1	1	:	3 3	:	:	;	X
27.0 SWC	:	:	:		•	•	1	•	•	•	X 1	X	X 3	X 1	•	•	:	:	:	:	1 X	1 . X X	. X	2 1	:	х		1 1 1 1	1 X	1 X	х •				•	:
51.0 SWC 60.0 SWC	:	:	:	:	:	:	i	:	i	:	i	ž	X	•	•	•	•	•	X	· x	1 X	. X	X	2	×	x ·	:	• •		:	:	:	:	•	:	:
783.0 SWC 110.0 SWC	:	:	:	:	:	:		•		:		X	x	:	:	2	:	:	•	•	•	. :	:	:	•	•	•	. :	•	•	•	•		•	:	:
38.5 SWC	:	•	×	:	4	:	1	:	×	:	1 2	1	×		X ·	х •			:	:	:		•	:	:	:	:	. :	:	:	:	:		•	•	•
954.0 SWC	•	•	X	•	4	•	;	2		¥	X	•	•	•	:	:	:	•	:	:	:		•	:	:	:	:	: :	:	:	•	:	:	:	:	:
54.0 SWC	:	:	X	:	X	:	:	. :	i	•		:		•	•	•	•	•	•	•			•	•	•	:	:			•	:	:	•	:	:	:
105.5 SWC 149.0 SWC	:	:	1	:	1	•	. X	. 1		:	:	:	:	:	:	:	:	:	:	•	•		. :	:	•	•	•	. :	•	•	•	•	•	:	:	:
166.0 SWC 179.0 SWC	:	ż	?	<b>x</b>	2	. X			•	:	:	:	:	:	:	:	:	:	:	:	:	•	· ·	:	:	:	:	: :	:	:	:	:	•	•	•	•
193.0 SWC 220.0 SWC	1	•	•	•	•	•	•	•		•	•	:		•	:	:	:	:	:	:	:	:	• •	:	:	:	:	: :	:	:	:	•	:	:	:	:
260.0 SWC	•	•	:	:	•	:			. :	•	•	•	•	•	•	•	•	•	:	:	:	:		:	•	:	:	: :	•	:	•	:	:	:	•	:
271 CUTTS 298.0 SWC	:	•	:	:	:	:	:	•	: :	•	:	:	:	:	:	:	:	:				•		•	•	•	•		•	•	•	•	:	:	:	:
325 CUTTS 351.0 SWC	:	:	:	:	:	:	:	•	• •	•	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:		•	·		•	-	•	-	•
398.0 SWC	•	•	•	•	•	•	•		• •	•	•	•	:	٠	:	:	:	:	:	:	:	•	. :	:	:	:	:		•	:	:	:	:	:	:	:
153.0 SWC	:	:	:	:	:	•						•	•	•	•	•	•	•	•	•	•	•	• •	:	:	•	:		•	:	:	:	:	:	:	:
502.0 SWC 510 CUTTS	•	:	:	•	:		•		. :			:	:	:	:	:	:	:	:	:	:	:			•	•	•			-	•	•	•	•	:	:
.0 SWC	•	•	:	•	•		•		• •	•	•	:	•	•	:	:	:	:	:	:	:	:	•	•	:	:	:		:	:	•	•	•	•		•
CUTTS 529.0 SWC	•	•	•	•	•	•	•	•	•		:	•	:	:	:	:	:	:	:	:	:	. :	•	:	:	:	:	: :	•	:	•	:	:	:	:	:
647.0 SWC	:	:	:	:	:	•	•				•	•	•	•	•	•	•	•	•	•	•			:	:	:	:		· •	:	:	:	:	:	•	:
660.0 SWC 690.0 SWC	:	:	:	:	•	•	•		: :	•	:	:	:	:	:	:	:	:	:	:	:			•	•	•	•		•	•	•	•	•	•	•	•
699 CUTTS 723.0 SWC	•	•	•	•	•		•			•	•	:	:	:	:	:	:	:	:	:	:	•	•	:	:	:	:		•	:	:	:			•	•
747.0 SWC	•	•		•						•	•	•	•	•	•	:	:	•	:	:	:	•	•	•	•	:	:	•	: :		:	:	:	:	:	•
766.0 SWC 790 CUTTS	:	:	:	:	•				: :	•		:		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	: :	•	•	:	:	:		•
805.0 SWC 820 CUTTS	•	:	•	:			•		. :	•	•	•	:	:	:	:	:	:	:	•	:			:	:	:	•	•			•	•	•	•	•	
837.3 CORE 838.1 CORE	•	•	•	٠			. :			•	•	•	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:			:	:	:			
839.7 CORE 840.3 CORE	•	•	•					•			•	•	•	•	:	:	:	:	:	:	:	:	• •	:	:	:	:	:	: :	•	:	:	:	:		•
872.5 SWC	. :	:	•	•	. :		. :		: :			•		•	•	•	•	•	•	•	•	•	• •	•	•	•	:	•		•	:	:	:	:	•	•
886-89 CUTT 910-16 CUTT		:	•:	•			. :	•	. :	•	•	:	•	:	:	:	:	:	:	:	:	•			•	•	•	•		•	•	•	•	•	• •	
943-49 CUTT 947.5 SWC	rs .	•	•	٠				•			· •	•	•	•	:	:	:	:	:	:	:	:	• •	•	:	:	:	:	. :	•	•	•	:			•
997-03 CUT			•			•		•			•	•		:	•	:	:	:	•	:	:	•	. :	•	:	:	:	:	•	: :	•	•	:	•	. :	
021-27 CUTT 035.0 SWC		•			•			•				:		•	•	•	•	•	•	•	•	:			•	:	:	:			 	•	•			
061.0 SWC	:	:	:		•		•	•	•	: :	: :	:	•	•	:	:	:	:	:	:			. :		. :	•	•	•	•			•	•			
093 CUTTS 098.0 SWC	•	•	•					•		•		•	:	:	:	:	:	:	:	:	:	-	: :	•		:	:	:	-	: :	•	•				
101.0 SWC	:	:	•		•	•	•	•	•					•	•	:	:	:	•	:	:	:	. :	•	•	:	:	:	- :	: :	•	•	:		•	•
102 CUTTS	:	:	:		•	•	•		•	•	. :		•	:	:		•	•	•	•	•	•			•	:	•	:		. :		•	:			•
117 CUTTS 123.0 SWC	•		•		•	•			•	•		•	•	:	•	:	:	•	:	:	:	:	•		:	:	:	•	•	. :	. :	. •	•		•	
142.0 SWC	•				•				•					•	:	:	:	:	:	:	:	:				:	:	-	:	: :	: :	•	•		•	
150 CUTTS 157.5 SWC		•	:		•	•		•	•	•			. :	•	•	•	•	:	•	•		:		. :		:	:	•		• •	. :			•		
180 CUTTS 212.5 SWC	:	•			•	•	•	•	:	•	•		: :	:	:	:	:	:	:	:		:		. :	. :	:	•	-	-					•		
222 CUTTS 261 CUTTS	•					•	•		:					:	:	:	:	:	:	•	:	:	•	•	-	:	:	:	:	•	: :	. :				•
270 CUTTS	:			•	•	•	•	•	•	•				•	•	•	:	•	:	:	:	:				:	:	:	:	•	• •	•		•	•	•
294.0 SWC	:	•			•	:	:	•	:	•	:		. :	:	•	:	:	:	:	·	•	•					•		:							•
1.0 SWC	•				•		:		:	•	•			:	:		•	:	:	:	:	•	:	•	: :	•	:	•	•	•	•	•		•	•	•
333 CUTTS				•	•	•		•		•				•	:	•		:	:	:	:	:	:	•		:	:	:	:	•	•	•		•	•	:
				•	•	•		•	•	•	•		. :		•	•	•	•	•	•		•	-			:	:	:	•	•				•	•	•
360.0 SWC									_	_				•	•	•	•	•	•	•	•	•	-	- •	- •	•	-	-								
392.5 SWC 408 CUTTS	•			•	•	:	•	:	•					•	•	•	•	•	:	•	:	•	:	•		•	:	•	•	•	•	•		•	•	

0563.0 SWC		# PERIPOROPOLLENITES DEHARCATUS	# PROTERCIDITES INCURVATIS	PROTERCIDITES ORNATUS	DE PROTERCIDITES PACHYPOLUS	H BANKSIEAEIDITES ARCUATUS	CUPANELOTTES ORTHOTEICHUS	# PROTERCIOITES KOPIENSIS	+ TRICOLPORITES	SH TRIPOROPOLLENITES ANGIBUUS	BEAUPREADITES TRIGONALIS	# PERIPOROPOLLENITES VESICUS	BI PROTERCIDITES TUBERCULIFORHIS	
05914.0 SWC 1 1 1 1 1		-2-	- 2	<u>2</u> ,		-2-	-2-	-2-	====	====	-2-	-2-	===	
09954.0 SWC         09954.0 SWC           10941.0 SWC         0991.0 SWC           1054.0 SWC         1054.0 SWC           1105.5 SWC         1105.5 SWC           1149.0 SWC         1149.0 SWC           1179.0 SWC         1149.0 SWC           1179.0 SWC         1179.0 SWC           1220.0 SWC         1220.0 SWC           1220.0 SWC         1220.0 SWC           1271 CUTTS         1226.0 SWC           1271 CUTTS         1271 CUTTS           135.1 O SWC         1398.0 SWC           1351.0 SWC         1351.0 SWC           1351.0 SWC         1351.0 SWC           1351.0 SWC         1351.0 SWC           1351.0 SWC         1351.0 SWC           140.0 CUTTS         1453.0 SWC           1501.0 CUTTS         1500.0 SWC           1501.0 CUTTS         1500.0 SWC           1501.0 CUTTS         1500.0 SWC           1501.0 CUTTS         1500.0 SWC           1660.0 SWC         1660.0 SWC           1679.0 SWC         1647.0 SWC           1660.0 SWC         1647.0 SWC           1660.0 SWC         1660.0 SWC           1699.0 SWC         1660.0 SWC           1699.0 SWC         1660.0 SWC <t< td=""><td>0594.0 SWC 0617.0 SWC 0627.0 SWC 0651.0 SWC 0760.0 SWC 0783.0 SWC 0810.0 SWC 0838.5 SWC</td><td>i</td><td>X 1</td><td>i</td><td>•</td><td>1</td><td>:</td><td>1</td><td>1</td><td>х :</td><td></td><td>:</td><td>•</td><td>0594.0 SWC 0617.0 SWC 0627.0 SWC 0651.0 SWC 0760.0 SWC 0783.0 SWC 0810.0 SWC 0838.5 SWC</td></t<>	0594.0 SWC 0617.0 SWC 0627.0 SWC 0651.0 SWC 0760.0 SWC 0783.0 SWC 0810.0 SWC 0838.5 SWC	i	X 1	i	•	1	:	1	1	х :		:	•	0594.0 SWC 0617.0 SWC 0627.0 SWC 0651.0 SWC 0760.0 SWC 0783.0 SWC 0810.0 SWC 0838.5 SWC
1260.0 SWC	0954.0 SWC 0991.0 SWC 1054.0 SWC 1105.5 SWC 1149.0 SWC 1166.0 SWC 1179.0 SWC 1179.0 SWC	:					•			•	:	:		0954.0 SWC 0991.0 SWC 1054.0 SWC 1105.5 SWC 1149.0 SWC 1166.0 SWC 1179.0 SWC 1193.0 SWC
1510 CUTTS 1562.0 SWC 1597.0 SWC 1597.0 SWC 1597.0 SWC 1616 CUTTS 1616 CUTTS 1616 CUTTS 1616 CUTTS 1629.0 SWC 1647.0 SWC 1660.0 SWC 1660.0 SWC 1690.0 SWC 1699.0 SWC 1699.0 SWC 1699.0 SWC 1799.0 SWC 1747.0 SWC 1776.0 SWC 17776.0 SWC 177776.0 SWC 17776.0	1260.0 SWC 1271 CUTTS 1278.0 SWC 1325 CUTTS 1351.0 SWC 1398.0 SWC 1410 CUTTS 1453.0 SWC	:	:	:	:	:	:	:	:	:	:	:	:	1260.0 SWC 1271 CUTTS 1298.0 SWC 1325 CUTTS 1351.0 SWC 1398.0 SWC 1410 CUTTS 1453.0 SWC
1766.0 SMC	1510 CUTTS 1562.0 SWC 1597.0 SWC 1616 CUTTS 1629.0 SWC 1647.0 SWC 1660.0 SWC 1690.0 SWC		:	:			:	:			:			1510 CUTTS 1562.0 SWC 1597.0 SWC 1616 CUTTS 1629.0 SWC 1647.0 SWC 1660.0 SWC 1690.0 SWC
1840.3 CORE       1840.3 CORE         1872.5 SWC       1872.5 SWC         1866-89 CUTTS       1910-16 CUTTS         1910-16 CUTTS       1910-16 CUTTS         1943-49 CUTTS       1943-49 CUTTS         1947.5 SWC       1947.5 SWC         1997-03 CUTTS       1997-03 CUTTS         2021-27 CUTTS       2021-27 CUTTS         2035.0 SWC       2035.0 SWC         2061.0 SWC       2061.0 SWC         2093 CUTTS       2093 CUTTS         2093 CUTTS       2093 CUTTS         2093 CUTTS       2093 CUTTS         2093 CUTTS       2093 CUTTS         2093 CUTTS       2098.0 SWC         2101.0 SWC       2101.0 SWC         2102 CUTTS       2105 CUTTS         2105 CUTTS       2105 CUTTS         2105 CUTTS       2117 CUTTS         2142.0 SWC       2123.0 SWC         2142.0 SWC       2123.0 SWC         2150 CUTTS       2150 CUTTS         2150 CUTTS       2150 CUTTS         2150 CUTTS       2150 CUTTS         2150 CUTTS       2150 CUTTS         2212.5 SWC       2212.5 SWC         2222 CUTTS       2222 CUTTS         2294.0 SWC       2294.0 SWC	1723.0 SWC 1747.0 SWC 1766.0 SWC 1790 CUTTS 1805.0 SWC 1820 CUTTS 1837.3 CORE 1838.1 CORE		:	:		:		:	:	:	:		:	1723.0 SWC 1747.0 SWC 1766.0 SWC 1790 CUTTS 1805.0 SWC 1820 CUTTS 1837.3 CORE 1838.1 CORE
2061.0 SWC	1840.3 CORE 1872.5 SWC 1886-89 CUTTS 1910-16 CUTTS 1943-49 CUTTS 1947.5 SWC 1997-03 CUTTS 2021-27 CUTTS	•	:	:	:	:	:	:	:			•	:	1872.5 SWC 1886-89 CUTTS 1910-16 CUTTS 1943-49 CUTTS 1947.5 SWC 1997-03 CUTTS 2021-27 CUTTS
2142.0 SMC       2142.0 SMC         2150 CUTTS       2150 CUTTS         2157.5 SWC       2157.5 SWC         2180 CUTTS       2180 CUTTS         2212.5 SWC       2212.5 SWC         2222 CUTTS       2222 CUTTS         2261 CUTTS       2261 CUTTS         2270 CUTTS       2270 CUTTS         2294.0 SWC       2294.0 SWC         2318 CUTTS       2318 CUTTS         2321.0 SWC       2321.0 SWC         2324 CUTTS       2324 CUTTS         2333 CUTTS       2333 CUTTS         2334 CUTTS       2354 CUTTS         2360.0 SWC       2360.0 SWC         2408 CUTTS       2408 CUTTS         2412.0 SWC       2412.0 SWC	2061.0 SWC 2084 CUTTS 2093 CUTTS 2098.0 SWC 2101.0 SWC 2102 CUTTS 2105 CUTTS 2117 CUTTS	:	:	•	•	•	:		•	•	•	:	•	2061.0 SWC 2084 CUITS 2093 CUITS 2098.0 SWC 2101.0 SWC 2102 CUITS 2105 CUITS 2117 CUITS
2294.0 SMC	2142.0 SWC 2150 CUTTS 2157.5 SWC 2180 CUTTS 2212.5 SWC 2222 CUTTS 2261 CUTTS	:	:	:	•	•	:	:	•	:	:	:	:	2142.0 SWC 2150 CUTTS 2157.5 SWC 2180 CUTTS 2212.5 SWC 2222 CUTTS 2261 CUTTS
2412.0 SWC	2294.0 SWC 2318 CUTTS 2321.0 SWC 2324 CUTTS 2333 CUTTS 2354 CUTTS 2360.0 SWC 2392.5 SWC	•	:	:	:	•	:	:	:	:			•	2294.0 SWC 2318 CUTTS 2321.0 SWC 2324 CUTTS 2333 CUTTS 2354 CUTTS 2360.0 SWC 2392.5 SWC
	2412.0 SWC		•		:	•		:	:	:	:			2412.0 SWC

#### SPECIES LOCATION INDEX

Index numbers are the columns in which species appear.

### INDEX

NUMBER SPECIES 146 AEQUITRIRADITES SPINULOSUS AEOUITRIRADITES TILCHAENESIS 174 127 **AEQUITRIRADITES VERRUCOSUS** 113 **ALISOCYSTA MARGARITA** 185 AMOSOPOLLIS CRUCIFORMIS 58 AMPHIDIADEMA DENTICULATA 251 ANACOLOSADITES ACUTULLUS 117 APECTODINIUM HOMOMORPHUM 173 APPENDICISPORITES DISTOCARINATUS cf 189 APPENDICISPORITES TRICORNITATUS 56 APTEA SP APTEODINIUM AUSTRALENSE APTEODINIUM GRANULATUM 122 44 128 ARAUCARIACITES AUSTRALIS 98 AREOLIGERA SP 123 AREOSPHAERIDIUM CAPRICORNUM AREOSPHAERIDIUM SUGGESTIUM 215 ASTEROPOLLIS ASTEROIDES 201 AUSTRALOPOLLIS OBSCURIS 147 BALMEISPORITES HOLODICTYUS 161 BALMEISPORITES TRIDICTYUS 271 BANKSIEAEIDITES ARCUATUS 276 BEAUPREADITES TRIGONALIS 148 BIRETRISPORITES BOTRYOCOCCUS 45 CADDASPHAERA HALOSA CALLAOISPHAERIDIUM ASYMMETRICUM 35 129 CALLIALASPORITES DAMPIERI CALLIALASPORITES TRILOBATUS CALLIALASPORITES TURBATUS 186 130 CAMEROZONOSPORITES BULLATUS CAMEROZONOSPORITES LATROBENSIS 256 261 202 CAMEROZONOSPORITES OHAIENSIS 191 CAMEROZONOSPORITES ROBUSTA 196 CAMEROZONOSPORITES SP CANNINGIA SPINOSA 66 52 CASSIDIUM SP 125 CAUCA SP 162 CERATOSPORITES EQUALIS 75 CHATANGIELLA SVERDRUPIANA CHATANGIELLA TRIPARTITA CHATANGIELLA VICTORIENSIS 79 80 CHLAMYDOPHORELLA AMBIGUA CHLAMYDOPHORELLA NYEI 59 25 CICATRICOSISPORITES AUSTRALIENSIS CICATRICOSISPORITES FOVEOAUSTRALIENSIS 149 176 131 CICATRICOSISPORITES LUDBROOKIAE CICATRICOSISPORITES MEGA AUSTRALIENSIS 211 224 CICATRICOSISPORITES RADIATUS 179 CINGUTRILETES CLAVUS CIRCULODINIUM DEFLANDREI 19 60 CIRCULODINIUM SOLIDA 200 CLAVIFERA TRIPLEX CLEISTOSPHAERIDIUM 31 CONCAVISSIMISPORITES PENOLAENSIS 178 16 CONOSPHAERIDIUM STRIATOCONUS 77 CONOSPHAERIDIUM TUBULOSUM 150 CONTIGNISPORITES COOKSONIAE 209 CONTIGNISPORITES GLEBULENTUS 163 COPTOSPORA PARADOXA 203 COPTOSPORA PILEOSA 151 COPTOSPORA WRINKLY CORDOSPHAERIDIUM INODES 104 152 COROLLINA TOROSUS CORONIFERA 61 CRASSOSPHAERA CONCINNA 11 190 CRIBROPERIDINIUM EDWARDSII CRIBROPERIDINIUM SP 17 132 CRYBELOSPORITES STRIATUS 272 CUPANEIDITES ORTHOTEICHUS CYATHEACIDITES TECTIFERA 194 CYATHIDITES AUSTRALIS CYATHIDITES GIGANTIS 133 252 CYATHIDITES MINOR 134 CYCADOPITES FOLLICULARIS 164 49 CYCLONEPHELIUM COMPACTUM 40 **CYMATIOSPHABRA** 105 DEFLANDREA DILWYNENSIS 118 DEFLANDREA OBLIQUIPES 121 DEFLANDREA PACHYCERAS 106 DEFLANDREA SPECIOSA 111 DEFLANDREA TRUNCATA DENSOISPORITES VELATUS 197 90 DICONODINIUM PUSILLUM 153 DICTYOPHYLLIDITES 169 DICTYOTOSPORITES COMPLEX DICTYOTOSPORITES FILOSUS DICTYOTOSPORITES SPECIOSUS 238 212

DILWYNITES GRANULATUS DILWYNITES TUBERCULATUS

DINOFLAGELLATE CONTENT

154

DILWYNITES GRANULATUS DILWYNITES TUBERCULATUS 223 DINOFLAGELLATE CONTENT 91 DINOGYMNIUM ACUMINATUM 114 DIPHYES COLLIGERUM 76 DISPHAERIA MACROPYLA 107 EOCLADOPYXIS PENICULATA 235 ERICIPITES SCABRATUS 68 ESCHARISPHAERIDIUM SP 95 **EUCLADINIUM MADURENSE** 20 **EXOCHOSPHAERIDIUM PHRAGMITES** 135 FALCISPORITES GRANDIS 136 FALCISPORITES SIMILIS 119 FIBROCYSTA BIPOLARIS 115 FIBROCYSTA VECTENSE 32 FLORENTINIA DEANEI 155 FORAMINISPORIS ASYMMETRICUS 180 FORAMINISPORIS DAILYI 156 FORAMINISPORIS WONTHAGGIENSIS **FOVEOGLEICHENIIDITES** 198 165 FOVEOTRILETES PARVIRETUS FROMEA FRAGILIS GAMBIERINA EDWARDSI 240 GAMBIERINA RUDATA 239 232 GAMBIERINA TWISTED GILLINIA HYMENOPHORA 84 112 GLAPHYROCYSTA DIVARICATUM 116 GLAPHYROCYSTA of MEDUSETTIFORMIS 170 **GLEICHENIIDITES** 108 HAFNIACYSTA SEPTATA 257 HALORAGACIDITES HARRISII 237 HERKOSPORITES ELLIOTTI 26 HETEROSPHAERIDIUM CONJUNCTUM HETEROSPHAERIDIUM HETEROCANTHUM 85 HETEROSPHAERIDIUM LATEROBRACHIUS cf HETEROSPHAERIDIUM SOLIDA HYSTRICHODINIUM FURCATUM HYSTRICHODINIUM PULCHRUM 29 120 HYSTRICHOSPHAERIDIUM TUBIFERUM INTERULOBITES INTRAVERRUCATUS ISABELIDINIUM BALMEI 219 72 ISABELIDINIUM BELFASTENSE 50 39 ISABELIDINIUM COOKSONAE 14 ISABELIDINIUM CRETACEUM ISABELIDINIUM KOROJONENSE 62 99 ISABELIDINIUM PELLUCIDUM 57 ISABELIDINIUM RECTANGULARE 82 ISABELIDINIUM RECTANGULARE CONTRACTUM 69 ISABELIDINIUM SP 87 ISABELIDINIUM THOMASII 88 ISABELIDINIUM TRIPARITA 171 ISCHYOSPORITES PUNCTATUS 33 KIOKANSIUM POLYPES 100 KIOKANSIUM SP 137 KLUKISPORITES SCABERIS 187 LAEVIGATOSPORITES OVATUS 181 LEPTOLEPIDITES MAJOR 166 LEPTOLEPIDITES VERRUCATUS 229 LILIACIDITES 192 LILIACIDITES KAITANGATAENSIS 175 LYCOPODIACIDITES ASPERATUS 241 LYGISTIPOLLENITES BALMEI 225 LYGISTIPOLLENITES FLORINII 94 MADURADINIUM PENTAGONUM 266 MALVACIPOLLIS DIVERSUS 262 MALVACIPOLLIS SUBTILIS 101 MANUMIELLA CORONATA 102 MANUMIELLA DRUGGII 126 **MICRHYSTRIDIUM** 138 MICROCACHRYIDITES ANTARCTICUS MICRODINIUM ORNATUM 36 46 MICRODINIUM SP 41 MILLIOUDIDINIUM 47 NELSONIELLA ACERAS NELSONIELLA SEMIRETICULATA NELSONIELLA TUBERCULATA 97 96 206 NEORAISTRICKIA 204 **NEVESISPORITES** 253 NOTHOFAGIDITES BRACHYSPINOLOSUS 258 NOTHOFAGIDITES EMARCIDUS 233 NOTHOFAGIDITES ENDURUS NOTHOFAGIDITES FLEMINGII 242 NOTHOFAGIDITES PROTO ENDURUS 230 220 NOTHOFAGIDITES PROTO SENECTUS NOTHOFAGIDITES SENECTUS 210 NUMMUS MONOCULATUS OCCISUCYSTA SP 67 ODONOTCHITINA OBESA 30 ODONTOCHITINA COSTATA ODONTOCHITINA CRIBROPODA 51 48 ODONTOCHITINA NO HORNS 89 ODONTOCHITINA OBESOPORIFERA 21 ODONTOCHITINA OPERCULATA 22 ODONTOCHITINA PORIFERA 37 ODONTOCHITINA STUBBY 54 ODONTOCHITINA VERY STUBBY

OLIGOSPHAERIDIUM COMPLEX

```
37
        ODONTOCHITINA STUBBY
        ODONTOCHITINA VERY STUBBY
  54
        OLIGOSPHAERIDIUM COMPLEX
  65
        OLIGOSPHAERIDIUM DICTYOPHORUM
  34
        OLIGOSPHAERIDIUM PULCHERRINUM
 109
        OPERCULODINIUM
 221
        ORNAMENTIFERA MINIMA
 216
        ORNAMENTIFERA SENTOSA
 139
        OSMUNDACIDITES WELLMANII
        OVOIDINIUM VERRUCOSUM
  23
  38
        PALAEOHYSTRICHOSPHORA INFUSORIOIDES
  18
       PALAEOPERIDINIUM CRETACEUM
        PALAMBAGES
       PARALECANIELLA
 195
        PERINOPOLLENITES ELATOIDES
 267
        PERIPOROPOLLENITES DEMARCATUS
 227
       PERIPOROPOLLENITES POLYORATUS
 277
       PERIPOROPOLLENITES VESICUS
 140
       PEROTRILETES JUBATUS/MORGANII
 182
       PEROTRILETES MAJUS
       PEROTRILETES WHITFORDENSIS
 157
 207
       PHIMOPOLLENITES PANNOSUS
 188
       PHYLLOCLADIDITES EUNUCHUS
       PHYLLOCLADIDITES MAWSONII
 193
 228
       PHYLLOCLADIDITES VERRUCATUS
 177
       PILOSISPORITES NOTENSIS
 141
       PODOSPORITES MICROSACCATUS
 199
       PROTEACIDITES SP
 259
       PROTEACIDITES ANNULARIS
       PROTEACIDITES BUN GRANDIS
PROTEACIDITES GRANDIS
 263
260
247
       PROTEACIDITES HAPUKUI
268
       PROTEACIDITES INCURVATIS
273
       PROTEACIDITES KOPIENSIS
       PROTEACIDITES LARGE
222
269
       PROTEACIDITES ORNATUS
264
       PROTEACIDITES OTWAYENSIS
270
       PROTEACIDITES PACHYPOLUS
248
       PROTEACIDITES RETICULOCONCAVUS
278
       PROTEACIDITES TUBERCULIFORMIS
 42
       PTEROSPERMELLA AUSTRALIENSIS
       RETITRILETES AUSTROCLAVATIDITES
RETITRILETES CIRCOLUMENUS
142
213
183
       RETITRILETES FACETUS
       SCHIZOSPORIS
       SCHIZOSPORIS PARVUS
  8
       SCHIZOSPORIS PSILATA
       SCHIZOSPORIS RETICULATUS
158
       SENECTOTETRADITES VARIRETICULATUS
234
       SESTROSPORITES PSEUDOALVEOLATUS
       SPINIDINIUM SP
 81
 27
       SPINIFERITES FURCATUS/RAMOSUS
205
       SPINOZONOCOLPITES PROMINATUS
184
       STERIESPORITES ANTIQUASPORITES
249
       STERIESPORITES PUNCTATUS
103
       TANYOSPHAERIDIUM "GRANULATUM"
 83
       TANYOSPHAERIDIUM SALPINX
       TETRACOLPORITES OAMARUENSIS
TETRACOLPORITES VERRUCOSUS
265
243
110
       THALASSIPHORA DELICATA
 70
       TRICHODINIUM
236
       TRICOLPITES "MINOR"
       TRICOLPITES CONFESSUS
226
       TRICOLPITES GILLII
TRICOLPITES LONGUS
218
244
231
       TRICOLPITES SABULOSUS
214
       TRICOLPITES SP
      TRICOLPITES VARIVERRUCATUS
TRICOLPITES WAIPAWAENSIS
208
254
274
217
       TRICOLPORITES
       TRICOLPORITES APOXYEXINUS
      TRICOLPORITES LILLIEI
TRILETES TUBERCULIFORMIS
245
250
      TRILOBOSPORITES TRIBOTRYS
TRILOBOSPORITES TRIORETICULOSUS
159
143
      TRIPOROLETES BIRETICULATUS
TRIPOROLETES RADIATUS
167
168
      TRIPOROLETES RETICULATUS
TRIPOROLETES SIMPLEX
144
160
      TRIPOROPOLLENITES AMGIBUUS TRIPOROPOLLENITES SECTILIS
275
246
 92
       TRITHYRODINIUM
 73
       TRITHYRODINIUM FINE GRANULATE
       TRITHYRODINIUM GLABRUM
 24
 28
      TRITHYRODINIUM MARSHALLII PSILATE
      TRITHYRODINIUM PUNCTATE
TRITHYRODINIUM RETIC "THICK"
 86
 55
      TRITHYRODINIUM SUSPECTUM
 63
      TRITHYRODINIUM THICK VERMIC
 64
145
       VELOSPORITES TRIQUETRUS
255
      VERRUCOSISPORITES KOPUKUENSIS
124
      VERYHACHIUM
172
      VITREISPORITES PALLIDUS
 74
      XENASCUS CERATOIDES
 78
      XENIROON AUSTRALIS
```

XIPHOPHORIDIUM ALATUM

Appendix 6 Rig Positioning Report

# POSITIONING REPORT

**FOR** 

# **BHP PETROLEUM LTD**

# RIG MOVE OF THE

# DRILLING RIG BYFORD DOLPHIN

LOCATION

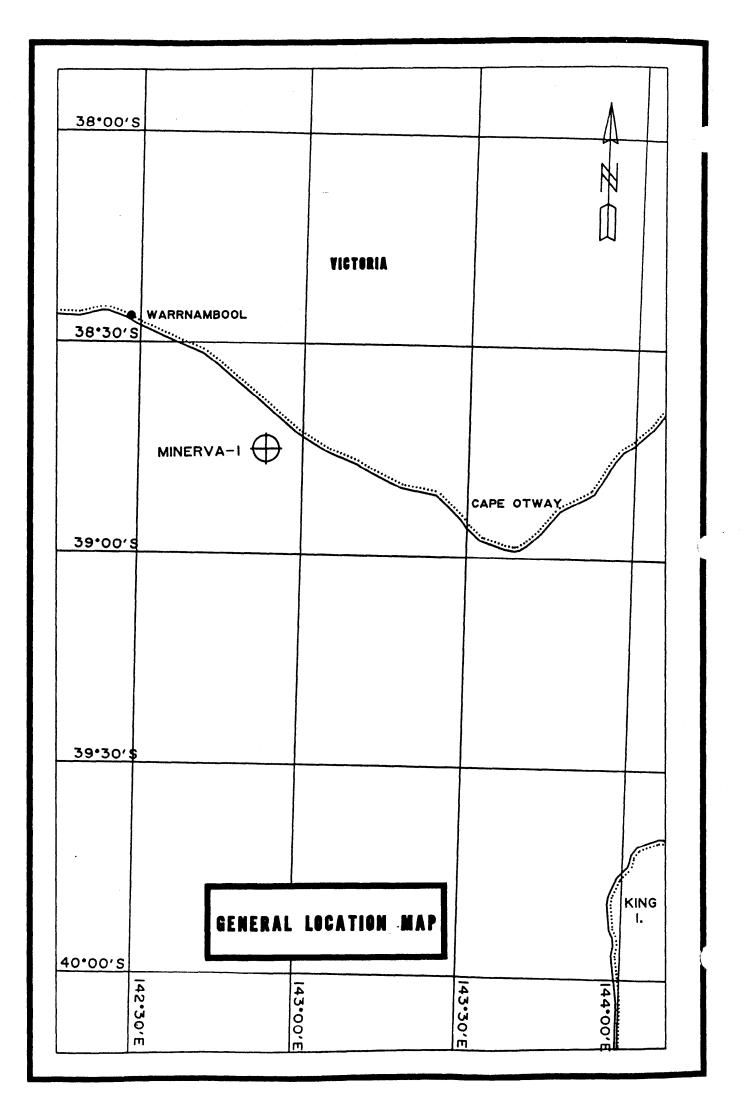
: MINERVA-1

BLOCK

: VIC P31

DATED

: 1ST of March - 9th of March, 1993


REPORT REF : 2058

## **CONTENTS**

ITEM		DESCRIPTION	PAGE NO.
Location	on dia	gram	
1.	ABS	TRACT	1
2.	REQ	QUIREMENTS	2
3.	SUM	IMARY OF EVENTS	3
4.	GEC	DDETIC PARAMETERS	4
	4.1	Datum	4
	4.2	Projection	4
	4.3		4
	4.4	Geoid/Spheroid Separation	4
5.	GLO	BAL POSITIONING SYSTEM	5
	5.1		5
	5.2		6
	5.3		7
	5.4		8
	5.5		10
	5.6	DGPS Operation	11
6.	ACO	USTIC POSITIONING SYSTEM	12
	6.1	System Description	12
	6.2		13
	6.3	Transponder Deployment and Calibration	14
	6.4	Seabed Calibration	15
	6.5	'Box-In' Calibrations	16
	6.6	Final Transponder Co-ordinates	17
7.	FINA	AL DRILLSTEM POSITION	18
	7.1	Final Differential GPS Position	18
8.	PER!	SONNEL AND EQUIPMENT	20
	8.1	Personnel	20
	8.2	Equipment	21
9.	DIST	RIBUTION	22

## **APPENDICES**

Α	-	OFFSET DIAGRAMS - BYFORD DOLPHIN AND PACIFIC MARLIN
В	-	VELOCITY PROFILE PRINTOUTS
С	-	ACOUSTIC NET DEPLOYMENT AND OASIS SEA-BED AND BOX-IN CALIBRATION PRINTOUTS
D	-	GOLF LASER TRACKING PRINTOUTS
E	-	ANCHOR PATTERN DIAGRAM
F	-	DGPS FINAL POSITION ANALYSIS PRINTOUTS - MINERVA-1
G	-	SATELLITE AVAILABILITY PREDICTIONS
H	-	DAILY LOG SHEETS



#### 1. ABSTRACT

This report details the services provided by RACAL SURVEY AUSTRALIA LIMITED (Racal), prior to and during the positioning of the semi-submersible drilling rig "BYFORD DOLPHIN" over the MINERVA-1 location in the Otway Basin, offshore Victoria, for BHP Petroleum Limited (BHPP).

Personnel and equipment mobilised to Portland on the 1st of March, 1993. The BHPP supplied Standby/Survey vessel M.V. "PACIFIC MARLIN" was mobilised with the survey equipment on the 2nd of March. On the 2nd of March, a four transponder acoustic net was deployed and calibrated around the MINERVA-1 location. Positioning equipment was set up on the "Byford Dolphin" on the 3rd of March, 1993.

The "Byford Dolphin" was positioned over the MINERVA-1 location, on the 6th of March, 1993.

A final Differential GPS position was obtained, after the "Byford Dolphin" had ballasted down to drilling draught, during the morning of the 8th of March, 1993.

### **Proposed Location**

The co-ordinates of the proposed location, MINERVA-1, were provided by BHPP as follows:

### Datum AGD 84

Latitude Longitude 38° 42' 12.35" South

142° 57' 12.64" East

AMG Zone 54 C.M. 141° E

Easting

669 869m

Northing

5 714 307m

Rig Heading

230°

### Final Differential GPS Position - MINERVA-1

The final DGPS position of the "Byford Dolphin" was derived between 0928 and 1032 hours on the 8th March, 1993. The final DGPS position was as follows:

### Datum AGD 84

Latitude

38° 42' 12.230" South

Longitude

142° 57' 12.337" East

AMG Zone 54 C.M. 141° E

Easting

669 862.5m

Northing

5 714 311.0m

Rig Heading

228.5°

The final position is 8.2 metres on a bearing of 296.8° (T) from the intended MINERVA-1 location.



## 2. REQUIREMENTS

Racal Survey Australia Limited were contracted by BHPP to provide personnel and positioning equipment consisting of a 4 transponder Sonardyne net and interfacing to BHPE's Del Norte 1008 GPS receivers for the rig move of the "Byford Dolphin" onto the MINERVA-1 location. Racal's GNS and Oasis II software were used to provide real-time navigation and acoustic calibration facilities. In addition to the acoustic system, Racal were requested to provide the "SkyFix" Differential GPS as back-up to the Del Norte GPS receivers. Racal's "SkyFix" system was used as the primary navigation system.

The requirements were as follows:

- a. To deploy and calibrate, both in relative and absolute position, a four transponder acoustic array around the MINERVA-1 location.
- b. To provide real-time positioning for the semi-submersible drilling rig "Byford Dolphin" during the tow and onto the MINERVA-1 location.
- c. To track, using a Golf II Laser system the Anchor Handling Vessels, during anchor deployment operations.
- d. To provide a final Differential GPS position of the MINERVA-1 well.



#### 3. SUMMARY OF EVENTS

Racal Survey personnel J. Tighe (Surveyor) and K. Perry (Engineer) departed Perth for Melbourne on the 1st of March, 1993. Racal Surveyor, K. Eddy arrived in Melbourne the same afternoon.

The Racal personnel departed Melbourne for Portland on the 1st of March, arriving in Portland at 1955 hours. The Racal personnel met up with BHPE representative, P. Riley at the Richmond Henty Motel at 2015 hours. The M.V. "Pacific Marlin" was at anchor off Portland. All personnel boarded the M.V. "Pacific Marlin" at 0015 hours on 2nd of March, departing Portland at 0035 hours.

The M.V. "Pacific Marlin" arrived at MINERVA-1 location at 0700 hours. Racal equipment was installed and fully operational by 0930 hours.

A STD-12 velocity profile was commenced at 1120 hours. Results are located in Appendix B. Between 1350 and 1651 hours on the 2nd of March, 1993, four Sonardyne Compatts were deployed in the area around the MINERVA-1 location.

Between 1759 hours and 2104 hours on the 2nd of March, 1993, the calibration of the acoustic net was carried out. The Sonardyne towfish was recovered at 2120 hours. Acoustic/DGPS positioning comparisons were completed at 2145 hours. Due to the unfavourable sea conditions the "Pacific Marlin" remained at the MINERVA-1 location awaiting instructions from "Byford Dolphin" on how personnel were to transfer to the rig.

At 0820 hours on 3rd of March, 1993, the "Pacific Marlin" was instructed by "Byford Dolphin" to proceed to the rig at ERIC THE RED-1, arriving at 1110 hours on the 3rd of March.

At 1540 hours, all personnel and equipment were transferred to the "Byford Dolphin".

By 1800 hours on the 3rd of March, 1993, the GNS was fully operational and interfaced to the all navigation systems.

At 1436 hours on the 4th of March, 1993, "Byford Dolphin" began recovery of anchors.

The run-in to the MINERVA-1 location commenced at 0330 hours on the 6th of March, 1993. Anchor handling operations commenced at 0852 hours with anchor No. 6 being set on the seabed. Anchor handling operations were completed at 0125 hours on the 8th of March, 1993, with the final anchor No. 1 being set on the bottom. Pre-tensioning operations commenced at 0130 hours. The "Byford Dolphin" moved over the MINERVA-1 location at 0130 hours, and ballasting of the rig commenced at 0135 hours.

Ballasting operations were completed at 0930 hours on the 8th of March, 1993. The final DGPS position observation commenced at 0930 hours and was completed at 1100 hours. The Sonardyne Compatts were released between 1400 hours and 1450 hours, and retrieved by the fast standby boat of the "Pacific Marlin".

The "Pacific Marlin" departed MINERVA-1 for Portland at 1500 hours on the 8th of March, 1993, arriving at 2130 hours.

All personnel departed Portland at 0720 hours on the 9th of March, arriving in Melbourne at 0830 hours.

Racal Personnel J. Tighe and K. Perry departed Melbourne at 0840 hours to arrive in Perth at 1040 (WST) hours. K. Eddy departed Melbourne for Barrys Beach.

All times, except where stated, are Eastern Standard Time (EST).



#### 4. GEODETIC PARAMETERS

The Geodetic parameters used during the project were as follows:

The location co-ordinates and the acoustic positioning systems are defined on Australian Geodetic Datum 84 (AGD 84). It was determined that the difference between AGD 84 and AGD 66 for the MINERVA-1 location was negligible.

The Global Positioning System (G.P.S.) is referenced to World Geodetic System 1984 (WGS 84).

#### 4.1 DATUMS

**DATUM** : **AGD** 1984

Spheroid : Australian National
Semi-major Axis (a) : 6 378 160.000m
Semi-minor Axis (b) : 6 356 774.719m
Eccentricity Squared (e²) : 0.006 694 542

Flattening (1/f) : 298.25

DATUM : WGS-84 Spheroid : WGS-84

 Semi-major Axis (a)
 :
 6 378 137.0000m

 Semi-minor Axis (b)
 :
 6 356 752.3142

 Eccentricity Squared (e²)
 :
 0.006 694 380

 Flattening (1/f)
 :
 298.257 223 563

4.2 PROJECTION : U.T.M.

AMG Zone : 54°
Central Meridian (C.M.) : 141° East
Scale factor on the C.M.: 0.9996
False Easting : 500 000m
False Northing : 10 000 000m
Latitude of Origin : 0° (Equator)
Unit of Measure : International Metre

### 4.3 DATUM TRANSFORMATION PARAMETERS

The datum transformation parameters used in Racal software to convert WGS 84 co-ordinates to AGD 84 co-ordinates were as follows:

GNS Version R2.06A and R2.06D(PC) Oasis II Version 1.7C.

Dx = + 116.00m Dy = + 50.47m Dz = - 141.69m Rx = + 0.230" Ry = + 0.390" Rz = + 0.344" Scale(k) = - 0.0983

### 4.4 GEOID/SPHEROID SEPARATION

The computed Geoid/Spheroid separation value (N) at the MINERVA-1 location is -1.77m. This value was computed using the Ohio State University OSU91A Geoid Interpretation Program.



### 5. GLOBAL POSITION SYSTEM (GPS)

### 5.1 SYSTEM DESCRIPTION

The NAVSTAR GPS (Navigational Satellite Timing and Ranging Global Positioning System) is an USA Military all weather, space based positioning system that transmits signals from a constellation of satellites orbiting the Earth. It is capable of providing suitably equipped users worldwide with accurate three dimensional positions on or near the Earth's surface. The accuracy of the determined positions can vary from a few millimetres to 100 metres depending on the method of data acquisition and processing. System design consists of three integrated parts: the Ground Control Segment, the Space Segment and the User Segment. The Space Segment is still in the process of being installed and as such is not completely operational.

When completed, the operational space segment will consist of 21 production satellites and 3 active spares; the term Space Vehicle (SV) is used as a synonym for satellite. The satellites will be in high orbits, at approximately 20,200km, having an orbit period of 12 hours. They will be arranged in 6 orbital planes, inclined at 55 degrees with near circular orbits.

The final configuration will provide complete 4 satellite (3D) coverage worldwide. With the present launch schedule, 24 hour 3 dimensional coverage will not be available until late 1993.

The current configuration consists of both Block I (testing) and Block II satellites orbiting and transmitting healthy data. The Block I's are SV's 3, 11, 12, and 13. The current Block II satellites are SV's 1, 2, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27 and 28. The amount of coverage that the satellite configuration provides, depends upon the geographical position of the user.

It should be noted that available coverage does not represent actual usable working periods, as the satellites will at times combine to produce poor geometry and therefore poor positioning. This can happen for short periods during the middle of multi-satellite coverage and is a result of the limited satellite constellations presently available. It is essential to ascertain the periods of good coverage prior to commencing any project involving GPS. Predicted satellite availability printouts are contained in Appendix G.

Individual satellites can be set 'unhealthy' from time to time whilst they are manoeuvred into new orbital planes or due to other operational circumstances which are usually predicted. The status of GPS and individual satellites can be obtained from one of the USA based GPS Bulletin Board Services. Prior to a project commencing Racal Australia download by modem the current status and almanac file, usually from the US Coast Guard Bulletin Board. In addition the Racal Survey Ltd office in Great Yarmouth, England monitor the GPS status daily and fax to all Racal operating companies any Notice Advisory to NAVSTAR Users (NANU's) that may affect the operational capabilities of the system.



### 5.2 OBSERVATIONS

There are two important types of GPS observations (observables):

Pseudo-range and Carrier phase.

Carrier phase is sometimes also referred to as carrier beat phase. Pseudo-range techniques are generally used for navigation e.g. Deltanav. In high-precision baseline surveying the carrier phase is used. Although the (undifferenced) phase can be used directly, it has become common practice, at least in surveying applications, to process certain linear combinations of the original carrier phase observations (double differences and triple differences).

### 5.2.1 Pseudo-ranges

The pseudo-range is a measure of the distance between the satellite and the receiver at the epochs of transmission and reception of the signals. The transit time of the signals is measured by comparing (correlating) identical pseudo-random noise (PRN) codes generated by the satellite and by the receiver. A code-tracking loop within the receiver shifts the internal replica of the PRN code in time until maximum correlation occurs. The codes generated at the receiver are derived from the receiver's own clock, and the codes of the satellite transmissions are generated by the satellite system of clocks. It follows that unavoidable timing errors in both the satellite and the receiver clock will cause the measured quantity (pseudo-range) to differ from the geometric distance.

In applications offshore where instantaneous positions are required, the Pseudo-range is the preferred observable. Given the satellite ephemeris (i.e. the position of the satellite at the epoch of transmission), there are seven unknowns: two clock errors, three receiver co-ordinates and the ionospheric and tropospheric delays. The effect of the satellite clock error is negligible for the typical navigation solution, particularly considering that the time errors are indistinguishable from the ionospheric and tropospheric delays. The satellite clocks are constantly monitored and synchronized with GPS time as maintained by the control centre. Actual offsets of the satellite clocks are approximated by polynomials in time and transmitted as part of the navigation message to the user for the correction of the measured pseudo-ranges. The ionospheric and tropospheric delays can be computed on the basis of ionospheric and tropospheric models, thus there are four unknowns left X, Y, Z and receiver clock error. These can be determined from four pseudo-ranges measured simultaneously to four GPS satellites.

### 5.2.2 Carrier Phase

The phase observable is the difference between the phase of the carrier signal of the satellite, measured at the receiver, and the phase of the local oscillator within the receiver at the epoch of measurement. This can be regarded as a biased range measurement of the satellite-receiver distance with the integer number of carrier waves being unknown. The wavelength of the L1 carrier is about 19cm. Because of the fraction of the carrier phase is measured, the term "interferometry" is often used to describe carrier phase techniques.

RACAL_

### 5.3 DIFFERENTIAL GPS (DGPS)

As the GPS is primarily a USA Defence system it can be expected that the navigation accuracy to the civil user will be degraded to about 100 metres standard deviation (Standard Position Service -SPS) as specified in the USA 1990 Federal Radio Navigation Plan. The means by which the USA Military degrade GPS is with the use of Selective Availability (SA) to control the accuracy of Pseudo-range measurements. Essentially, the user is given a false Pseudo-range for each satellite so that the resulting measurement is in error by a controlled amount.

DGPS is a means by which the civil user can overcome Selective Availability. It requires a receiver be located at a precisely known point from which Pseudo-range corrections for each satellite can be determined and monitored. These Pseudo-range corrections are then communicated by means of a telecommunications link to users at unknown locations. The DGPS technique has proven to be particularly effective and can improve the accuracy figure to 5 metres or better with or without Selective Availability activated. In the relative mode most of the important systematic errors common to the known station and at the unknown location cancel out to improve the accuracy of the computed position.



### 5.4 "SKYFIX" DIFFERENTIAL LINK

Racal Survey Australia Limited introduced its "SkyFix" Differential GPS System in Australia in January 1991, using the Inmarsat Pacific and Indian Ocean marine communications satellites as the differential data broadcast link. Extensive performance trials and projects undertaken to date have shown "SkyFix" to meet the best industry expectations in terms of quality of service and accuracy.

The system embodies the successful combination of data capacity, range and coverage with a flexible networked approach that lends itself to comprehensive performance and quality monitoring.

The link capacity of 1200 bits per second allows data from a number of networked reference stations to be sent simultaneously without introducing unacceptable delays between reference station and user. With four reference stations each generating correction data for ranges from eight satellites, an update rate of better than three seconds is achieved by the "SkyFix" system.

Satellite communications systems, particularly at the Inmarsat L-band frequencies of 1.5 GHz are reliable and free of the interference associated with the crowded M.F./H.F. bands. This high data integrity gives users confidence that the corrections will be continuously received without interference.

The "SkyFix" Australian network commenced operation in January 1991, and now comprises reference stations at Dampier, Broome, Perth, Adelaide, Sydney, Cairns and Darwin.

The differential corrections generated at each reference station are brought via landline links to the data hub and control centre in Singapore where the system is monitored for performance and quality. From there a composite message containing full RTCM 104 version 2 formatted data from all reference stations is sent via dual redundant links to satellite earth stations at Sentosa Island, Singapore and O.T.C. Perth, Western Australia for uplink and broadcast over the Inmarsat Pacific and Indian Ocean Region satellites.

The design of reference station networks provides a high quality service to major offshore hydrocarbons prospect areas, each of which, ideally will be within coverage of more than one reference station.

The system is easily expandable to provide new areas of coverage by the addition of further networked reference stations, with the correction data from these automatically included in the system performance and quality control function at the control centres.

Whilst the DGPS service provider has no control over the operation of the GPS system itself, performance can be monitored, quantified and reported to users. The functions of the "SkyFix" data hub and control centre in Singapore are of fundamental importance as its role is to guarantee the best possible system performance.

The "SkyFix" system includes a 24 hour monitoring facility to ensure the validity of data received at the control centre from the DGPS reference stations and that the same data is received over the "SkyFix" satellite data link.

The monitor system that has been developed by Racal Survey is designed to provide maximum system performance information availability whilst providing a rapid indication of performance or fault problems should they occur.

Monitoring and control functions therefore include extensive analysis and archiving of the reference corrections and the comparison of range rate corrections - arriving from different stations within the network. The system also receives the broadcast message from the satellite data link and applies this data to a monitor receiver at the control centre to verify positioning performance. Time series plots of this performance, in latitude, longitude, height, together with PDOP and HDOP figures are generated.



Monitoring the data on the link in this way also allows link performance to be appraised in terms of message success rate and in terms of overall system message delay.

Other functions include satellite status information, data recording, and a procedural approach to providing client information.

The "SkyFix" combination of the Inmarsat satellite communications links using the RTCM 104 Version 2 DGPS data protocol, the reference station, monitoring and user infrastructure has been shown through a growing body of project trials experience to provide a Differentially GPS operating environment consistently capable or providing position accuracy's of 5 metres or better.

The "SkyFix" scheme is a homogeneous network within the WGS 84 geodetic reference frame. The original network, prior to the Australian extension included ten primary triangulation stations for which the WGS 84 values were supplied. The vectors established during this build up create a network between the Far East, Australia and Europe. Purely for the purposes of testing the strength and internal consistency the network has been subjected to a least squares adjustment by variation of co-ordinates. In the final analysis two of the primary triangulation stations, Dongara 38 (W.A.) and Matera (Italy), were held fixed. The residual errors pertaining to the remaining eight primaries are listed below. For all stations included in the final analysis the mean semi-major axis of the twenty-nine 95% error ellipsoids is just over 0.6 metres. The total variation about this mean is contained within plus or minus 0.6 metres.

STATION	LATITUDE	LONGITUDE	HEIGHT	MISCLOSURE
Port Stanley (Hong Kong)	0.53m	- 1.56m	- 0.53m	1.73m
TC 58 (Abu Dhabi)	0.76m	- 0.97m	0.83m	1.49m
Station Hill(Broome W.A)	0.35m	0.50m	- 1.23m	1.95m
Gnangara (Perth W.A.)	1.04m	1.00m	- 1.82m	2.32m
Bologna (Italy)	- 0.14m	0.02m	0.39m	0.41m
Brimmond Hill (Scotland)	- 2.85m	0.32m	1.16m	3.09m
Dunnet Head (Scotland)	- 1.59m	1.50m	0.81m	2.04m
Tromso (Norway)	- 1.11m	2.25m	- 0.81m	2.64m

For the Australian extension to the network, two primary geodetic points were used at each site, together with the transportable laser ranging site, Gnangara 73 in Perth. Trimble 4000 SST geodetic receivers were used to simultaneously obtain phase data which was then post processed to derive the vectors between sites. The vector results were entered into "Geolab" 3D adjustment software, to obtain adjusted values for the reference stations.



### 5.5 Trimble 4000DL GPS Receiver

The Trimble 4000DL GPS receiver is designed for moderate precision static and dynamic positioning applications. The GPS receiver provides time and three-dimensional station co-ordinates at a once-per-second update rate.

The receiver receives the civilian coded signal (C/A) from the GPS NAVSTAR satellites. The receiver automatically acquires and simultaneously tracks GPS satellites and precisely measures carrier and code phase and computes position and velocity.

Latitude, longitude and height values are output on the World Geodetic System (WGS 84) Earth-centred, Earth-fixed co-ordinate system.

The receiver is designed to measure the following observables:

- Coarse/Acquisition (C/A) code Pseudo-ranges
- Rate of change of Pseudo-range
- Integrated Carrier

C/A code correlation techniques measure the propagation time of the signal from the satellite to the antenna. Latitude, longitude, height and time can be determined from measurements made from at least 4 satellites, by a process similar to triangulation.

To determine speed and heading, the receiver calculates the rate of change of Range (the range-rate) by measuring the Doppler shift of the carrier.

It is capable of receiving and processing differential corrections from other reference sources using the standard format of the Radio Technical Commission for Maritime Services, Special Committee 104 (RTCM SC-104), Version 1.0 or 2.0 protocols.

The 4000DL has several options available, including internal data logging memory, event marker logging etc. and therefore may be used alone or as part of a more extensive navigation system.



### **5.6 DGPS OPERATION**

During the acoustic net deployment and calibration the DGPS was operated using Trimble's DeltaNavN (DNAVN) 2.71 software in conjunction with a Toshiba T5200/100 computer. DNAVN controlled the Trimble GPS receiver and applied the RTCM 104 Version 2 differential corrections received from the "SkyFix" system to the observed GPS data. The computed DGPS position in WGS 84 was then output to the navigation computer and converted to AGD 84.



### 6. ACOUSTIC POSITIONING SYSTEM

### **6.1 SYSTEM DESCRIPTION**

Sonardyne high precision acoustic technology incorporates COMPATT (Computing and Telemetering Transponder) and PAN (Programmable Acoustic Navigator). The system is available in low, medium and high frequency versions. This allows selection of the optimum frequency band to suit each requirement. Medium frequency equipment was used during rig move operations.

The microprocessor-controlled intelligent COMPATT makes direct measurements on the seabed to other Sonardyne transponders, and transmits this baseline data back to a ship or submersible via fast acoustic telemetry in order to calculate the relative position of each transponder.

In its interrogator mode the COMPATT will measure ranges to 8 individual transponders with just one single interrogation. This speeds up 'mobile' COMPATT operations such as ROV tracking and pipelaying.

The reply frequency of the COMPATT is selectable from 15 channels by acoustic command. This feature reduces the need for a large transponder stock and increases immunity to 'rogue' frequencies.

Other commands instruct sensors to measure parameters such as water temperature and pressure, and at the end of the mission another command will effect recovery. An automatic 'self-test' facility can be performed without opening the transponder.

The medium frequency version gives the optimum combination of 3km ranges and 20cm accuracy. This suits most sub-sea engineering operations including rig moves, pipelaying, jacket emplacement and ROV positioning.



### 6.2 ACOUSTIC VELOCITY PROFILE

An Applied Microsystems STD-12 acoustic velocity probe was used to determine the acoustic velocity of the water column at the MINERVA-1 location on the 2nd of March, 1993. The probe was deployed over the stern of the "Pacific Marlin". Readings of the temperature and conductivity were recorded against pressure (depth) at 1 metre intervals as it was lowered to and then raised from the seabed.

The probe recorded a maximum depth of 58.21 metres.

A mean velocity of 1513.7 m/sec for the entire water column was obtained using the Chen and Milleros formula.

For the acoustic net calibration the following values from the observed profile were entered into the Oasis II software:

Depth	VP(ms ⁻¹ )
0.09	1513.3
5.90	1513.2
10.44	1513.3
15.05	1513.3
20.95	1513.5
25.47	1513.5
30.10	1513.6
35.86	1513.7
40.37	1513.8
45.10	1503.9
50.11	1503.9
55.96	1504.0
58.21	1504.1



### 6.3 TRANSPONDER DEPLOYMENT AND CALIBRATION

Sonardyne acoustic transponders were deployed and calibrated from the M.V. "Pacific Marlin" on the 2nd of March, 1993.

The transponders were deployed in a quadrilateral, approximately 700-900 metres from the intended location. Drop positions and telemetered depths were used as the basis of subsequent calibrations.

The calibration of the acoustic array was initially to be by the Relative/Absolute method. However, due too the prevailing sea state/swell (sea state 6-7, 4-5m swell) and problems experienced on previous rig moves with acoustic noise interference from the "Pacific Marlin" it was decided that the acoustic array would be calibrated by seabed baseline measurements and Boxing-In of two transponders.

The results from the seabed baseline calibration were considered to be marginal because of the sea state/swell and the ambient noise within the water column, possibly due too the shallowness of the location (56m).

Subsequently all transponders were Boxed-In to determine their absolute positions with regards to the chosen datum. All transponders were Boxed-In with a circle radius of 300 metres.



### 6.4 SEABED CALIBRATION

A seabed calibration was carried out on the 2nd of March, 1993. TP1 and TP3, co-ordinated by a Box-In calibration were fixed in this calculation.

### Acoustic Net Relative Positions After Seabed Calibration

Transponder	Easting (m)	Northing (m)	Depth (m)					
1	0.00	-0.00	48.10					
2	1150.04	-5.81	55.80					
3	1239.70	-1054.90	51.00					
4	230.57	-103.41	54.70					



### 6.5 'BOX-IN' CALIBRATIONS

The results of the Box-In calibrations as carried out on the 2nd of March, 1993 were:

Datum AGD 84 AMG Zone 54 CM 141° East

Tp	Code	Easting(m)	Northing(m)	Depth	RMS
1	503	669 332.62	5 714 943.89	48.10	3.1
2	1106	670 447.32	5 714 736.21	55.80	3.4
3	1109	670 353.60	5 713 683.17	51.00	3.8
4	1010	669 369.40	5 713 887.06	54.70	3.4

### **6.6 FINAL TRANSPONDER CO-ORDINATES**

The final set of co-ordinates used during the MINERVA-1 project were as follows:

Datum AGD 84 AMG Zone 54 C.M. 141° East

Tra	nsponder	Easting (m)	Northing (m)	Depth (m)						
1	503	669 322.62	5 714 943.89	48.10						
2	1106	670 447.32	5 714 736.21	55.80						
3	1109	670 353.60	5 713 683.17	51.00						
4	1010	669 369.40	5 713 887.06	54.70						



### 7. FINAL DRILLSTEM POSITION

### 7.1 FINAL DIFFERENTIAL GPS POSITION - MINERVA-1

The "Byford Dolphin" was positioned over the MINERVA-1 location on the 8th of March, 1993.

A final position of the "Byford Dolphin" was determined using Racal's "SkyFix" Differential GPS between 0930 and 1045 on the 8th of March, 1993. A total of 221 samples from 8 constellations were observed.

CONSTELLATION	SAMPLES	SATELLITES
A	38	26, 16, 12, 24, 03
В	2	20, 16, 12, 24, 03, 25
C	48	20, 16, 12, 24, 25
D	4	20, 16, 12, 24, 17, 25
E	8	20, 16, 24, 17, 25
F	1	20, 16, 24, 25
G	46	20, 24, 17, 25
H	74	20, 12, 24, 25

Total number of samples used = 221.

The computed Antenna position, with constellations given equal weights, was as follows:

### Datum WGS 84

Latitude	•	38° 42′ 07.310" South	(s.d. 0.18m)
Longitude	:	142° 57' 15.893" East	(s.d 0.27m)
Spheroidal			•
Height	:	24.94m	(s.d. 0.36m)

Transforming the above WGS 84 co-ordinates to AGD 84 using the parameters in section 4, gives the following co-ordinates:

### Datum AGD 84

Latitude	:	38° 42' 12.626" South
Longitude	:	142° 57' 10.949" East
Spheroidal		
Height	:	41.67m

Applying the antenna to datum offsets to the above co-ordinates gives the following drillstem position, over the MINERVA-1 location.

### Datum AGD 84

Latitude	:	38° 42′ 12.230″ South
Longitude	:	142° 57' 12.337" East



### AMG Zone 54 C.M. 141° East

Easting

669 862.46m

Northing

5 714 311.03m

Rig Heading

228.5°

This position is 8.21 metres on a bearing of 296.83° True from the intended MINERVA-1 location.

This final position as obtained using the Trimble GPS receiver and SkyFix was confirmed by the Del Norte GPS receiver of BHPE which gave the following final position::

### Datum AGD 84

Latitude

38° 42' 12.178" South

Longitude

142° 57' 12.434" East

AMG Zone 54 C.M. 141° East

Easting

669 864.83m

Northing

5 714 312.058

This position is 7.27 metres on a bearing or 316.8° from the inteded MINERVA-1 location.

### 8. PERSONNEL AND EQUIPMENT

### **8.1 PERSONNEL**

The following personnel were employed on this project:

For: Racal Survey (Australia)

K. Eddy J. Tighe K. Perry Surveyor/Party Chief

Surveyor

Navigation/Acoustic Engineer

For: BHPP Limited

P. Riley Client Representative

### **8.2 EQUIPMENT**

The following equipment was supplied for use on this project:

- 1 x Trimble 4000DL GPS Receiver, Cable and Antenna
- 1 x "SkyFix" Demodulator
- 1 x "SkyFix" Rig Portable
- 1 x Toshiba T5200/100 Computer (for DNAV-N)
- 2 x Sonardyne Pan Units
- 5 x Sonardyne Compatt Transponders
- 1 x Sonardyne Tow Fish
- 1 x Sonardyne Deck Winch
- 1 x Sonardyne Dunking Transducer
- 2 x HP 9000/320 Series Desktop Computers
- 1 x HP 9122D Dual Disk Drive
- 1 x HP 9122C Dual Disk Drive
- 2 x HP 35731B VDU's
- 2 x Barco Monitors
- 1 x HP Quietjet Plus Printer
- 1 x HP Thinkjet Printer
- 1 x HP 2673A Thermal Printer
- 2 x Toshiba T5200/100 Computers (for GNS PC Software)
- 2 x VGA Monitors
- 1 x STD-12 Velocity Probe
- 2 x Arma Brown Gyro Compasses
- 3 x Interface 80 Units
- 1 x Star LC-20 Printer
- 1 x Toshiba 1200 Computer (Velocity Probe)
- 2 x AC Voltage Stabilisers
- 1 x Golf Laser

plus all associated software (GNS Ver R2.06A, GNS Ver R2.06D PC, OASIS II Ver 1.7C), cables, manuals, etc.



### 9. DISTRIBUTION

Copies of this report have been distributed as follows:

BHP Engineering - Wollongong

Attn: Mr. S. Dykes

: 1 copy

BHP Petroleum - Melbourne

Attn: Mr. R. Willmore

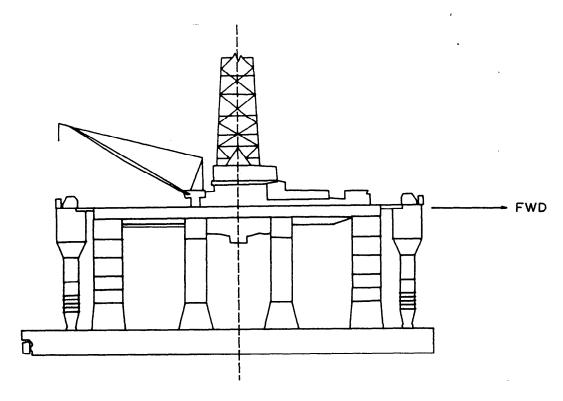
: 2 copies

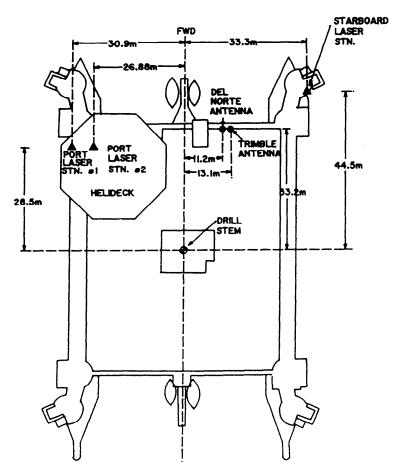
Racal Survey - Perth

: 1 copy

Ken Eddy Surveyor

Gareth Jones Area Surveyor

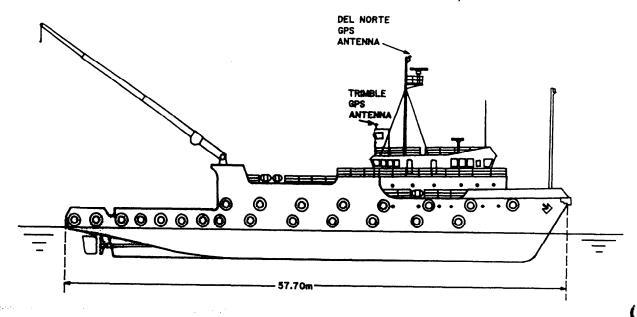

# ${\bf APPENDIX\; A}$ ${\bf OFFSET\; DIAGRAMS\; -\; BYFORD\; DOLPHIN\; AND\; PACIFIC\; MARLIN}$

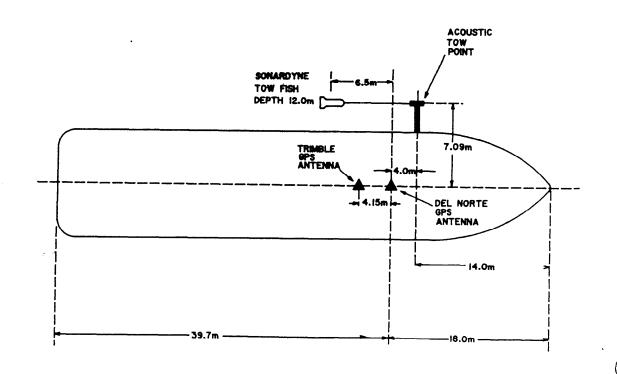

## OFFSET DIAGRAM

## APPENDIX A

## BYFORD DOLPHIN

(NOT TO SCALE)




## OFFSET DIAGRAM

# PACIFIC MARLIN

(NOT TO SCALE)





# APPENDIX B VELOCITY PROFILE PRINTOUT



## SUFT-12.STD version 2.35

you have specified a CGA compatible monitor.

The communication parameters are 2400 baud, COM1:.

The REAL TIME DISPLAY SAMPLE RATE is set at 1 sample every 5 sec.

There is a PRESSURE sensor.

PREBBURE will be displayed in meters.

There is a CONDUCTIVITY sensor.

There is a TEMPERATURE sensor.

There is no DISSOLVED OXYGEN sensor.

DISSOLVED OXYGEN display units not applicable.

There is no PH sensor.

There is no TRANSMISSOMETER.

There is no REDOX sensor.

Water density will be displayed as Specific Gravity.

Data log time increment is one scan every 60 seconds.

Data log depth increment is one scan every 100 cm.

Sound velocity calculated using Chen & Milleros formula.

### Sensor Coefficients

	А	В	С	D
Pressure	-a.08a856E+02	2.99953 <b>2E</b> -02	1.225578E-08	0.000000E+00
Temperature	4.1043098+01	-1.478494E-03	1.807922E-08	-2.454137E-13
Conductivity	-1.588024E+00	7.944621E-05	0.000000E+00	0.000000E+00

STD-12 DATA FRINTOUT FACILITY FILE CO-1991

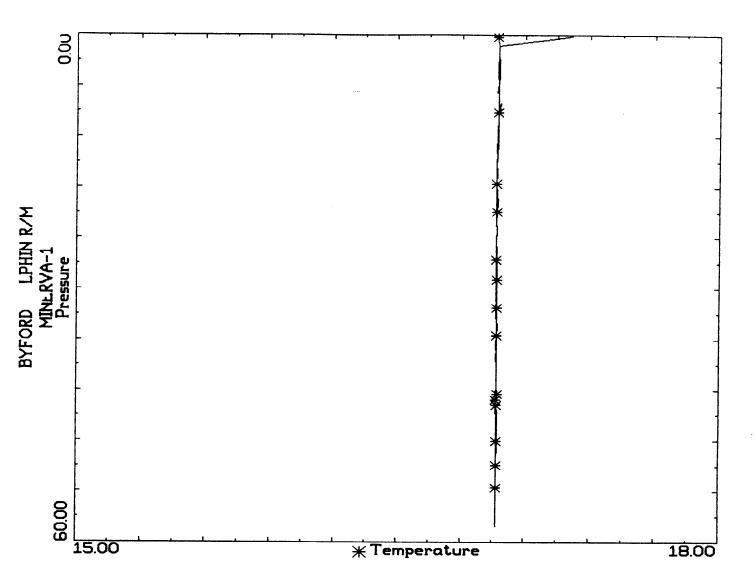
			ń	្នាំ	10 to	10	rj H	ń	ri H	٠ ان انج	ń	1010	ю П	М П	М П	510	П	010	010	513.	М П	513.	510	1010 1010	010 010	910	010	010	M 10	910	М П	ю. Ю. П.	510	510	ю П	ю П	in In	in To	in in in	010 10	
	-08-93 Sn Grav S	i	្ន	0257	000		000	10 10 10	0 0 0	01 00 00	00 101 101	00 101 101	00 101 101	(M (M)	М Ю	. 0258	,0258	.0258	.0258	.0258	.0258	.0258	.0258	1.025800	.0258	. OZ58	00 00 00	20 20 30	00 101 101	00 101 101	0 0 0	00 101 101	258	258	200	10	00 10 10	n	000	n	
ted t	20 i i u		4.61	(A)	10 10 10	10 10 10	Ü	ir)	ن	in)	'n	ហ	ហ	ເກ	ம்	5.34	10. W	10 10 10	5.34	5.34	0.34	5.34	0.00	40.00	9.04	40.0	រ បា	u)	تا	u)	ir)	e)	ហ	in.	ю.	U)	in)	u )	(T)	u)	
0.40 1.88	i C	mB/cm	7.	0	(N	(4 (0	45.26	(N	0	(N	(M	ei io	e io	ю (N	ю (Ч	(N	(N)	(4 (0)	S. S.	(N	(A	(d	o.	45.26	ei io	(M	(M	ei io	(N	e io	CI IO	e io	(H	in in	(N	04	(4 (5)		(H	in in	
	5 + 5	i.E	਼	(4	(A	10	()	0.	Gr.	Q.	G.	্	₩.	়	ω	(A	े.	ু :	10 10	N.	8.7	00	়. ও	22.11	<del>т</del> Ю	4.4	4.0	6.6	7.7	о О	ं.	(\frac{1}{2}	M N	0	-ও ব	(O)	ं.	 	 O^-	10 0	
	- -	1 . U	Б	1	10.	. 97	16.977	97	.97	.97	.97	.98	.97	6.97	.97	6.97	6.97	6.96	6.96	6.96	6.97	6.97	6.97	16.966	6.96	6.96	6.96	6.97	6.97	6.97	6.96	6.97	6.97	6.97	6.96	6.97	0.0	6.96	6.96	90.0	
	6	4 B	0.4	(14	10	4	4	4	寸	寸	749	M	54	40	切	10	-0	-O	-1)	1	1	1		777	1		00	00	$\omega$	00	Ů.	₹.	100	ō.	U	0	ं	ं	80 14		

Created - 03-02-1993

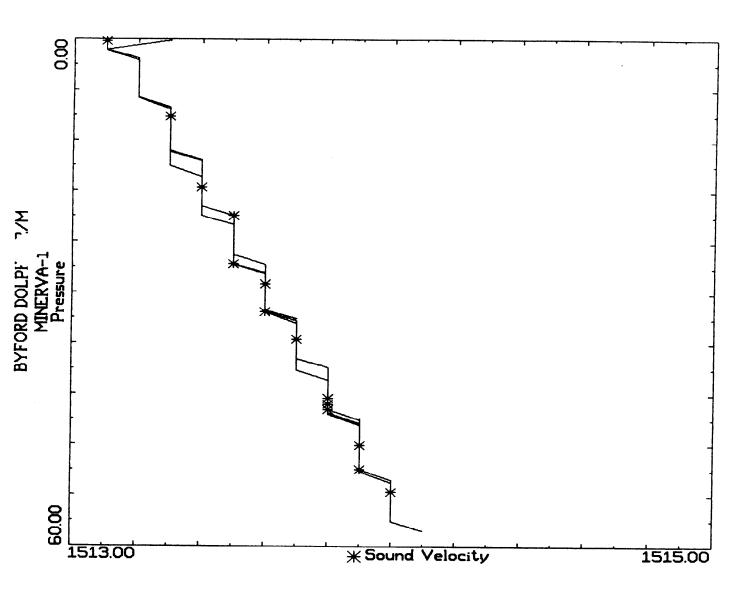
7 17663	- KE (T) (E)	Dectn	Cana	Salın	Sp Grav	Snd Vel
EFT:		· <b>T</b> · :	m5/cm	ppt		m/s
934	1 4 4 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	48,74	45.28	35.34	1.025800	1513.9
	16 976	医动脉 计图	45.28	35.34	1.025800	
540	15,770	51.20	45.28	35.34	1.025800	
244	16.976	57.51	45.28	35.34	1.025800	
845	16.970	55.66	45.28	35.34	1.025800	
847	lo.970	54.81	45.28	35.34	1.025800	
548	16.971	55.96	45.29	35.34	1.025800	
Ŧ()	16.971	57.12	45.28	35.34	1.025800	
51	16.771	58.21	45.28	35.34	1.025800	
857	16.970	57.12	45.27	35.33	1.025800	1514.0
859	16.970	55.87	45.27	35.33	1.025800	1514.0
864	16.971	54.78	45.29	35.34	1.025800	1514.0
869	16.970	53.54	45.28	35.34	1.025800	1514.0
870	16.970	52.20	45.28	35.34	1.025800	1514.0
871	16.970	50.95	45.28	35.34	1.025800	1513.9
874	16.969	49.86	45.28	35.34	1.025800	1513.9
880	16.970	50.89	45.28	35.34	1.025800	1513.9
883	16.970	49.61	45.28	35.34	1.025800	1513.9
885	16.970	48.46	45.28	35.34	1.025800	1513.9
897	16.972	49.55	45.29	35.35	1.025800	1513.9
900	16.974	48.18	45.29	35.35	1.025800	1513.9
901	16.975	46.81	45.29	35.34	1.025800	1513.9
902	16.974	45.69	45.29	35.34	1.025800	1513.9
907	16.970	46.94	45.28	35.34	1.025800	1513.9
908	16.970	48.12	45.28	35.34	1.025800	1513.9
913	16.970	46.91	45.29	35.35	1.025800	1513.9
4	16.972	45.69	45.28	35.34	1.025800	1513.9
₁ 4	16.972	44.35	45.28	35.34	1.025800	1513.8
917	16.969	45.60	45.28	35.34	1.025800	1513.9
920	16.967	44.23	45.28	35.34	1.025800	1513.8
925	16,970	45,47	45.28	35.34	1.025800	1513.9
930	15.767	44.29	45.28	35.34	1.025800	1513.8
931	16.967	45.14	45.28	35.34	1.025800	1513.8
934	16.967	44.29	45.28	35.34	1.025800	1513.8
937	16.967	43.23	45.26	35.34	1.025800	1513.8
940	16.967	42.11	45.28	35.34	1.025800	1513.8
946 947	16.7 <b>6</b> 7	43.24	45.28		1.025800	1513.8
951	16.970	44.31	45.28	35.34	1.025800	1513.8
751 952	16.970 16.971	45.11 41.65	45.26 45.28	35.34	1.025800	1513.8
755 755	10.771 16.770		+5.28	35.34 35.34	1.025800	1513.8 1513.8
\$ 6.0°	16.77	40.45 55.41	45.28	35.34	1.025800	1513.8
945	A Late of the Second		-90.20 -45.26		1.025800	1513.8
-66	lo. Alie	andry and and a			1.025800	1513.8
968	100 472	65 A			1.025800	1513.8
-, -, -,					1.625800	1513.8
1						
,						

. . .

STD-12 DATA FRINTOUT FACILITY File name - min.-ei Created - 03-02-1993


Time sec.	Temp °C	Depth m.	Cond mS/cm	Salin ppt	Sp Grav Snd Vei m/s
					·
1054 1057 1059 1062 1063 1063 1075 1077 1084 1098 1098 1101 1116 1116 1128 1128 1128 1133	16.967 16.969 16.969 16.969 16.969 16.969 16.969 16.965 16.965 16.965 16.965 16.965 16.970 16.970 16.970 16.970	29.82 31.03 32.04 33.09 32.06 31.03 30.01 28.98 27.83 24.22 23.16 21.95 20.92 19.83 15.49 15.49 15.49 15.49	45.28 45.28 45.28 45.28 45.28 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27 45.27	35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34 35.34	1.025800 1513.6 1.025800 1513.6 1.025800 1513.6 1.025800 1513.6 1.025800 1513.6 1.025800 1513.6 1.025800 1513.6 1.025800 1513.6 1.025800 1513.6 1.025800 1513.5 1.025800 1513.5 1.025800 1513.5 1.025800 1513.5 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4 1.025800 1513.4

lage J


STD-31 DATA ARINTOUT FACILITY File name - min.rel Created - 03-02-1993

Tim⊕	Temo	Deoth	Cond	Salin	Sp Grav	Snd Vel
sec.	\$ *** ***	m.	m9/cm	ppt		m/s
: Jò	16.767	11.16	45.26	35.34	1.025800	1513.3
1149	16.973	10.17	45.27	35.34	1.025800	1513.3
1151	16.972	9.11	45.26	35.34	1.025800	1513.3
1166	16.974	8.05	45.27	35.34	1.025800	1513.3
1177	16.972	ċ.84	45.26	35.34	1.025800	1513.2
1179	16.974	5,75	45.26	35.34	1.025800	1513.2
1182	16.966	6.87	45.26	35.34	1.025800	1513.2
1186	16.972	5.72	45.26	35.34	1.025800	1513.2
1191	16.969	4.66	45.26	35.34	1.025800	1513.2
1195	14.970	3.60	45.26	35.34	1.025800	1513.2
1198	16.972	2.48	45.26	35.34	1.025800	1513.2
1199	16.972	1.30	45.26	35.34	1.025800	1513.1
1204	16.957	0.24	45.23	35.31	1.025800	1513.1

-age 4



(



# APPENDIX C ACOUSTIC NET DEPLOYMENT AND OASIS SEA-BED AND BOX-IN CALIBRATION PRINTOUTS



```
Coment Offset : DATUM
X Coordinate: +0.0
Y Coordinate:
                 +0.0
```

### System Status

```
HP330 computer
Acoustic System: Med Frequency Sonardyne (HPIB Addr. 2)
Reference System: Delta Nav (Interface 80 Port 2)
Interface 80 is available on HPIB Addr. 1.
Synchro Gyro Headings are entered via Interface 80, port 5.
```

### <u>System Status</u>

```
HP330 computer
coustic System: Med Frequency Sonardyne (HPIB Addr. 2)
erence System: Delta Nav (Interface 80 Port 2)
Interface 80 is available on HPIB Addr. 1.
Synchro Gyro Headings are entered via Interface 80, port 5.
```

### Job Information

MINERVA-1 R/M for BHP on PACIFIC MARLIN by Ken Eddy

### Accustic Net Definition

### 4 transponders at a max range of 2500m

Transp	ponder	Code	Reply Frequency	Turn-around Delay
1	CPT7	503	3	125.00
2	CPT7	1106	6	125.00
3	CPT7	1109	9	125.00
4	CPT7	1010	10	125.00

### pustic Net Drop Positions

Transponder	Easting	Northing	Depth
1	669323.00	5714958.00	51.00
2	670406.00	5714757.00	51.00
3	670348.00	5713694.00	51.00
4	669372.00	5713889.00	51.00
(ir	n metres )		

### Acoustic Transducer Offsets

low Point X	:	-7.09m.
Tow Point Y	:	8.15m.
Tow Point Z	:	5.00m.
Tow Length	:	20.00m.
Tow Speed	:	2.00Kts.
<b>,</b> , , , , , , , , , , , , , , , , , ,		

Fis Layback: 10.47m. Fish Depth: 12.04m.

### Speed of Sound

```
13 Depth Values entered Directly
   Depth(m.)
Speed of Sound(m.\frac{1}{2}s.)
                         1513.30
        .10
       5.90
                         1513.20
      10.40
                         1513.30
      15.10
                         1513.30
      21.00
                         1513.50
      25.50
                         1513.50
      30.10
                         1513.60
      35.90
                         1513.70
      40.40
                         1513.80
      45.10
                         1513.90
      50.10
                         1513.90
      56.00
                        1514.00
      58.20
                         1514.10
```

### Acoustic Noise

```
Normal Standard Error :
                      .50m. Maximum Range: 2500.00m.
Range (m.) 0 250 500 750 1000 1250 1500 1750 2000 2250
            .50
Noise (m.) .50
                  .50
                       .50 .50 .50 .50 .50
                                              .50 .50
                                                       .50
```

### Tides

2000 1800 : 0000 0200 0400 0600 0800 1000 1200 1400 1600 _200 Height: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 all Heights in metres

### Reference System Antenna Offset

Antenna X : 0.00m. Antenna Y : 0.00m. Antenna Z : 0.00m.

### Spireroidal Information

Semi-Major Axis: 6378160.000m. Inverse Flattening: 298.25000

### Transformation from AGD84 to WGS84

Delta X (m): -116.00 Delta Y (m): -50.47 Delta Z (m): 141.69 X Rotation (secs): -.230 Y Rotation (secs): -.390 Z Rotation (secs): -.344 Scale (ppm): .0983

<u>Projection</u>: Universal Transverse Mercator / Transverse Mercator False Easting: 500000m. Latitude of Origin: 0 00'00.000" Central Meridian: 141 00'00.000"E False Northing: 10000000m. Grid Scale Constant: 0.999600000

Gy Offset: -7.00

### WAYPOINT MODE

Dropping Transponder 1

Current Offset : STERN
X Coordinate : +0.0
Y Coordinate : +35.6

Current Offset : STERN
X Coordinate : +0.0
Y Coordinate : -35.6

*** Tpdr 1 Dropped at 14:33:54 ***

DATUM GPS : E 669273.43 N 5714923.07 STERN GPS : E 669307.16 N 5714934.44

GPS Position Used for Drop

### Acoustic Net Drop Positions

Tra ponder	Easting	Northing	Depth
1	669307.16	5714934.44	51.00
2	670406.00	5714757.00	51.00
3	670348.00	5713694.00	51.00
4	669372.00	5713889.00	51.00
( i	n metres )		

### WAYPOINT MODE

opping Transponder 2

*** Tpdr 2 Dropped at 14:53:53 ***

DATUM GPS : E 670452.78 N 5714771.57 STERN GPS : E 670435.80 N 5714740.28

GPS Position Used for Drop

### Acoustic Net Drop Positions

ransponder	Easting	Northing	Depth
1	669307.16	5714934.44	51.00
2	670435.80	5714740.28	51.00
3	670348.00	5713694.00	51.00
4	669372.00	5713889.00	51.00
( i)	n metres )		

### WAYPOINT MODE

**Dropping Transponder 3** 

### WAYPOINT MODE

Dropping Transponder 3

```
*** Tpdr 3 Dropped at 16:29:04 ***
```

GPS : E 670305.96 N 5713675.52 GPS : E 670341.04 N 5713681.61 DATUM STERN

GPS Position Used for Drop

### / pustic Net Drop Positions

Transponder	Easting	Northing	Depth
1	669307.16	5714934.44	51.00
2	670435.80	5714740.28	51.00
3	670341.04	5713681.61	51.00
4	669372.00	5713889.00	51.00
( i	n metres )		

### WAYPOINT MODE

Dropping Transponder 4

```
*** Tpdr 4 Dropped at 16:51:42 ***
```

: E : E DATUM GPS 669334.24 N 5713870.36 STERN GPS 669366.61 N 5713885.19

GPS Position Used for Drop

### A-Justic Net Drop Positions

Transponder	Easting	Northing	Depth
1	669307.16	5714934.44	51.00
2	670435.80	5714740.28	51.00
3	670341.04	5713681.61	51.00
4	669366.61	5713885.19	51.00
( ir	n metres )		

### Acoustic Net Drop Positions

Transponder	Easting	Northing	Depth
1	669307.16	5714934.44	48.10
2	670435.80	5714740.28	55.80
3	670341.04	5713681.61	51.00
4	669366.61	5713885.19	54.70
( i	o matras l		

TA3,125.86

Til,125.86

1 2,125.86

ACAL Survey Ltd MINERVA-1 R/M

2 Mar 1993 16:57:03 Page 5

TA10,125.86

PA( 3t 1500m/s

PAN Firmware Version: V7.11: MF,DS,XC,LB PAN Telemetry Wait set to 4sec

PAN Window Width set to 5sec

### Acoustic Net Definition

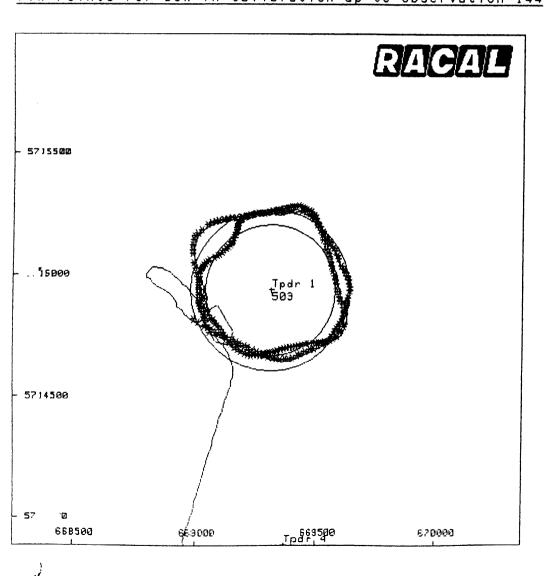
4 transponders at a max range of 2500m

Tran	sponder	Code	Reply Frequency	Turn-around Delay
1	CPT7	503	3	125.00
2	CPT7	1106	6	125.00
3	CPT7	1109	9	125.00
4	CPT7	1010	10	125.00

### BOX IN TRANSPONDER 1

### Speed of Sound Corrections

 Tx
 Fish
 TxDep
 Vsnd
 Vcor


 1
 12.0
 48.1
 1513.6
 1.00907

Data f	<u>or Calculation</u>				•
Νο	Easting(GPS)	Northing(GPS)	<u>Plan Range</u>	Gyro	RMS(ref)
1	669057.66	5714759.64	312.74	325.8	0.0
2	669047.40	5714777.44	312.53	333.2	0.0
3	669039.49	5714792.31	311.32	338.6	0.0
4	669034.17	5714808.96	311.54	346.4	0.0
5	669030.38	5714824.56	313.19	350.1	0.0
6	669027.92	5714860.10	304.81	355.5	0.0
)7	669027.47	5714878.65	304.90	353.2	0.0
8	669030.67	5714896.47	299.97	350.5	0.0
9	669028.07	5714911.58	306.11	347.3	0.0
10	669029.25	5714932.76	306.21	343.7	0.0
Curre	nt Offset : DATU	IM			
Coor	dinate :	+0.0			
/ Coor	dinate :	+0.0			
1 1	669013.81	5714972.68	309.92	341.9	0.0
12	669008.43	5714987.15	318.66	340.5	0.0
13	669004.30	5715005.97	324.14	339.7	0.0
1 4	669000.72	5715024.69	335.28	341.1	0.0
15	668992.10	5715043.81	343.72	345.2	0.0
16	668987.44	5715083.39	360.30	1.1	0.0
17	668986.54	5715099.66	367.93	10.1	0.0
1.8	668987 14	5715120 91	375 53	19 5	0 0

1 1	669013.81	5714972.68	309.92	341.9	0.0
12	669008.43	5714987.15	318.66	340.5	0.0
13	669004.30	5715005.97	324.14	339.7	0.0
14	669000.72	5715024.69	335.28	341.1	0.0
15	668992.10	5715043.81	343.72	345.2	0.0
16	668987.44	5715083.39	360.30	1.1	0.0
17	668986.54	5715099.66	367.93	10.1	0.0
18	668987.14	5715120.91	375.53	19.5	0.0
19	668991.27	5715139.36	378.06	29.3	0.0
0 د	668996.86	5715157.27	383.89	40.3	0.0
<b>_</b> 1	669009.36	5715166.70	381.99	52.0	0.0
22	669022.65	5715182.64	379.19	62.8	0.0
23	669047.94	5715201.18	371.89	77.3	0.0
24	669064.98	5715210.12	364.95	83.1	0.0
25	669079.60	5715215.28	358.25	87.2	0.0
26	669094.74	5715219.39	349.86	89.7	0.0
27	669112.35	5715222.77	342.29	90.9	0.0
28	669129.08	5715226.41	335.85	90.6	0.0
29	669148.80	5715230.02	329.34	91.1	0.0
3.0	669163.69	5715228.37	321.41	88.7	0.0
3 1	669185.96	5715233.51	314.54	90.1	0.0
3 2	669206.58	5715238.82	311.58	87.8	0.0
3 3	669222.25	5715238.48	304.40	87.5	0.0
3 4	669247.65	5715244.98	305.72	86.6	0.0
35	669269.39	5715249.10	304.08	85.7	0.0
36	669287.95	5715250.52	303.36	85.0	0.0
3 7	669311.49	5715254.54	309.93	89.1	0.0
3.8	669331.87	5715249.06	311.29	86.7	0.0
9 ر	669348.99	5715252.84	315.33	89.6	0.0
. <del>7</del> 0	669371.42	5715259.01	324.40	93.6	0.0

Data for Calculation

No	Easting(GPS)	Northing(GPS)	<u>Plan Range</u>	Gyro	RMS(ref)
253	669016.14	5715000.88	304.55	192.5	0.0
254	669013.71	5714987.76	305.19	194.2	0.0
255	669012.77	5714976.65	306.55	196.8	0.0
256	669011.56	5714964.79	308.34	200.4	0.0
257	669010.34	5714952.97	310.14	201.4	0.0
258	669012.56	5714943.79	309.15	200.5	0.0
259	669012.83	5714933.48	312.31	199.1	0.0
260	669012.36	5714923.24	313.26	197.2	0.0
261	669011.86	5714913.09	314.34	192.4	0.0
262	669011.22	5714902.29	315.19	185.3	0.0
263	669011.13	5714890.97	316.85	177.1	0.0
264	669012.04	5714880.32	318.24	167.7	0.0
265	669014.68	5714868.95	314.32	161.0	0.0
~ 5 G	669018.72	5714856.76	311.33	152.1	0.0
7 د	669027.16	5714844.52	303.35	144.9	0.0
268	669036.15	5714833.21	301.19	140.9	0.0
Fix Po	oints for Box-in	Calibration up to			



No	Residual	<u>Plan Range</u>
No 12345678901123456789012322222222233322333333442344567890123 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789000000000000000000000000000000000000	Residual  -9.8 -8.9 -9.6 -6.7 -2.3 -1.4 2.8 4.4 10.0 12.8 -0.0 1.7 0.0 3.6 -1.4 -2.3 -3.6 -5.4 -2.3 -4.1 -4.3 -5.9 -6.5 -5.4 -4.6 -5.3 -6.5 -5.4 -4.6 -5.3 -6.5 -5.2 -5.9 5.2 5.5 3.3 1.4 1.5 2.0 7 2.1 1.06 -1.8	312.74 312.53 311.32 311.54 313.19 304.81 304.90 299.97 306.11 306.21 309.92 318.66 324.14 335.28 343.72 360.30 367.93 375.53 378.06 383.89 381.99 379.19 371.89 364.95 358.25 349.86 342.29 335.85 329.34 321.41 314.54 311.58 304.40 305.72 304.08 303.36 309.93 311.29 315.33 324.40 329.15 335.33 324.40 329.15 335.33 324.40 329.15 335.33 324.40 329.15 335.33 336.84 334.00 332.84 326.35 324.34 314.85 311.81 305.98 304.31 300.70
ب	.7.	301.71

No	Residual	<u>Plan Range</u>
266	-4.6	311.33
267	-8.2	303.35
268	-5.7	301.19

#### Solution

Easting	Nor	thing	Depth
669322.43	57149	43.87	48.10
RMS Residual :	4 0		
Worst 8 Values:	10	12.83	
:	9	9.99	
:	1	9.81	
:	240	9.71	
:	3	9.65	
:	128	8.99	
:	241	8.95	
:	2	8.93	

No	Residual	<u>Plan Range</u>
F	-2.5	313.19
	-1.6	304.81
7	2.6	304.90
8	4.2	299.97
1 1	2	309.92
12	1.5	318.66
13	2	324.14
1 4	3.4	335.28
15	-1.6	343.72
16	-2.7	360.30
17	-2.5	367.93
. 8	-3.8	375.53
19	-6.6	378.06
20	-5.5	383.89
2 1	-2.4	381.99
22	-4.2	379.19
23	-4.5	371.89
2 4	-5.5	364.95
25	-6.0	358.25
29	-5.5	329.34
30	-4.4	321.41
3 1	-5.7	314.54
3 2	-5.4	311.58
3.3	-6.8	304.40
3 4	-4.6	305.72
35	-5.7	304.08
3	-5.2	303.36
3,	<del>'</del> 9	309.93
38	€.0	311.29
⁵ 9	5.3	315.33
, O	5.6	324.40

No	Residual	<u>Plan Range</u>	
213	-1.4	312., 43	
214	1.0	311.45	
215	1.7	310.79	
216	3.4	311.86	
217	3.2	311.34	
218	-1.0	311.15	
219	1.4	313.46	
220	1.6		
221	-1.3	314.53	
222		313.54	
	. 6	315.70	
223	7	313.95	
224	-1.6	313.22	
225	-1.9	312.59	
7 6	4	311.81	
. 7	-1.4	309.05	
228	-2.2	302.35	
229	1	301.02	
230	-2.3	293.15	
231	2.3	290.56	
232	3.5	285.93	
233	2.1	277.70	
234	3.0	272.70	
235	2.9	266.06	*
236	2.4	260.93	(
237	4.6	259.68	
238	4.1	257.33	
239	4.1	257.35	
242	6.3	263.68	
243	6.3	268.13	
244	6.7	273.72	
245	5.2	279.56	
246	3.1	291.25	
• 7	2.2	296.93	
<b></b> '8	1.1	300.81	
249	9	303.30	
250	-1.0	306.68	
251	-3.4	306.38	
255	-5.0	306.55	
256	-3.4	308.34	
257	-2.3	310.14	
258	9	309.15	
259	2.3	312.31	
260	2.3	313.26	
261	2.1	314.34	
262	1.0	315.19	
263	. 9	316.85	
264	1.2	318.24	
265	-2.6	314.32	
266	-4.8		
268	-4.8 -5.9	311.33 301.19	(
	<i>J</i> • <i>J</i>	301.13	

```
_S∉ tion
     Easting
               Northing
                           Depth
   669322.62 5714943.89
                           48.10
RMS Residual : 3.1
Worst 8 Values: 33
                     6.81
            : 244
                     6.73
             : 126
                      6.69
             : 19
                      6.65
             : 171
                      6.57
             : 242
                      6.28
            : 243
                      6.26
             : 91
                      6.24
```

#### Job Information

MINERVA-1 R/M for BHP on PACIFIC MARLIN by Ken Eddy

#### Acoustic Net Drop Positions

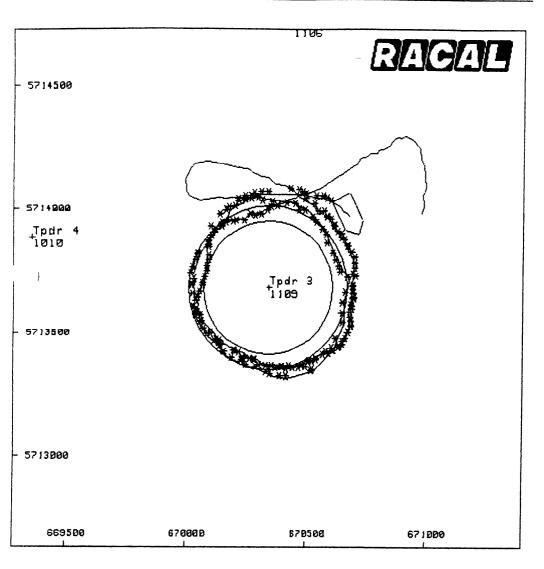
Transponder	Easting	Northing	Depth
1	669322.62	5714943.89	48.10
2	670435.80	5714740.28	55.80
3	670341.04	5713681.61	51.00
4	669366.61	5713885.19	54.70
( i:	n metres )		

#### BOX IN TRANSPONDER 3

#### Speed of Sound Corrections

 Tx
 Fish
 TxDep
 Vsnd
 Vcor

 3
 12.0
 51.0
 1513.6
 1.00909


#### Data for Calculation

No	<pre>Easting(GPS)</pre>	Northing(GPS)	<u>Plan Range</u>	Gyro	RMS(ref)
1	670373.52	5714012.04	319.31	249.8	0.0
2	670347.14	5714006.64	310.25	250.4	0.0
3	670333.51	5713995.53	303.77	247.1	0.0
4	670307.02	5713977.59	299.62	246.4	0.0
5	670282.09	5713973.72	295.74	249.8	0.0
6	670263.84	5713975.79	295.82	253.7	0.0
7	670238.52	5713953.71	304.56	257.7	0.0
8	670203.69	5713954.05	311.64	255.4	0.0
9	670191.32	5713947.60	314.58	249.3	0.0
10	670164.49	5713944.04	322.83	240.7	0.0
1 1	670148.27	5713945.88	327.48	231.6	0.0
12	670124.58	5713916.71	330.69	222.5	0.0
13	670120.13	5713915.66	330.60	211.6	0.0
1 4	670105.40	5713892.45	326.05	201.8	0.0
15	670093.06	5713870.64	315.60	193.6	0.0
16	670092.35	5713852.84	305.50	191.8	0.0
17	670093.06	5713845.15	295.93	195.9	0.0
18	670096.17	5713812.61	286.15	199.2	0.0
19	670093.59	5713793.09	278.09	200.0	0.0
20	670086.44	5713768.14	272.74	204.2	0.0
21	670087.13	5713747.54	273.70	209.3	0.0
22	670078.89	5713722.63	273.83	211.0	0.0
23	670069.14	5713696.54	279.22	210.1	0.0
24	670069.85	5713691.22	287.01	210.3	0.0
² 5	670059.01	5713664.28	297.79	212.0	0.0
_′6	670048.82	5713640.01	309.12	207.3	0.0
27	670040.38	5713586.35	331.08	181.8	0.0
28	670040.06	5713571.91	337.61	168.4	0.0
3.0	670075.25	5713516.53	329.28	149.2	0.0
31	670089.19	5713496.17	331.13	143.8	0.0
32	670121.05	5713468.32	325.16	143.1	0.0
33	670140.28	5713445.31	322.62	144.2	0.0
34	670158.04	5713424.36	331.32	140.9	0.0
35	670188.36	5713397.23	334.52	134.2	0.0
36	670229.31	5713389.27	335.12	124.0	0.0
37	670244.77	5713367.71	344.66	116.1	0.0
38	670288.78	5713360.72	346.48	115.8	0.0
39	670330.71	5713341.41	353.84	115.9	0.0
40	670346.56	5713334.14	365.32	108.2	0.0
4 1 4 2	670388.13	5713323.80	371.06	96.2	0.0
45	670414.54	5713322.21 5713350.72	379.45	87.8	0.0
46	670527.38		381.56	49.4	0.0
17	670521.93 670610.04	5713345.79 5713436.86	373.81 354.58	37.1	0.0
ැ -ව	670625.44	5713436.86		27.9	0.0
- 0	070625.44	5/134/4.11	346.37	20.0	0.0

## Data for Calculation

<u>N o</u>	Easting(GPS)	Northing(GPS)	<u> Plan Range</u>	Gyro	RMS(ref)
168	670064.15	5713546.13	315.92	327.4	0.0
169	670062.88	5713547.60	318.07	333.6	0.0
170	670061.56	5713568.88	320.14	336.4	0.0
171	670046.00	5713578.13	320.00	338.4	. 0.0
172	670044.91	5713593.72	319.72	339.9	0.0
173	670032.48	5713604.14	320.82	344.3	0.0
174	670041.01	5713627.44	324.44	347.8	0.0
176	670027.49	5713657.90	324.25	354.7	0.0
177	670022.95	5713690.02	325.12	356.6	0.0
178	670022.88	5713692.97	327.86	359.6	0.0
179	670032.32	5713716.46	328.77	1.5	0.0
180	670019.29	5713739.88	330.90	6.1	0.0
181	670030.39	5713763.74	332.29	9.9	0.0
33	670040.25	5713793.41	335.45	21.6	0.0
14	670049.05	5713818.48	334.03	24.6	0.0
185	670048.31	5713822.14	337.04	28.1	0.0
190	670101.05	5713926.57	347.83	39.1	0.0
191	670146.58	5713927.93	349.25	44.2	0.0
194	670138.05	5713979.02	354.21	53.8	0.0
195	670163.01	5713995.88	362.19	56.0	0.0
196	670177.40	5714006.32	363.22	55.6	0.0
197	670202.66	5714009.83	367.66	60.5	0.0
19~	670215.63	5714032.66	373.15	60.4	0.0
19.	670241.16	5714034.97	376.83	66.6	0.0
200	670244.32	5714049.57	381.08	71.3	0.0
201	670268.16	5714052.44	384.09	74.1	0.0
202	670281.26	5714061.69	386.77	80.2	0.0
203	670307.71	5714066.92	391.99	86.0	0.0
204	670336.15	5714067.21	393.35	89.0	0.0
209	670430.21	5714080.66	404.18	110.6	0.0
211	670469.79	5714074.23	403.81	113.0	0.0
212	670484.22	5714066.60	407.32	113.1	0.0
. 3	670498.50	5714059.67	409.80	109.9	0.0
_ 1′5	670543.92	5714049.55	416.93	109.4	0.0
216	670570.78	5714051.10	420.73	113.9	0.0
217	670572.59	5714049.33	425.40	119.4	0.0
218	670587.29	5714041.09	429.35	122.0	0.0
219	670605.29	5714031.72	430.47	126.8	0.0

### Fix Points for Box-in Calibration up to observation 79



No	Residual	<u>Plan Ranqe</u>
1	-9.6	319.31
2	-12.6	310.25
3	-8.5	303.77
4	2.4	299.62
5	-2.5	295.74
6	-9.2	295.82
7	11.7	304.56
8	3.3	311.64
9	5.6	314.58
10	2.0	322.83
1 1	-4.6	327.48
12	5.0	330.69
13	2.5	330.60
1 4	2.9	326.05
15	-3.9	315.60
1,6	-4.5	305.50
./	•	

<u>N o</u>	Residual	<u>Flan Range</u>
N 111222222222233 33333334444445555 5555566666679777	Pesidual  -9.45 -2.7 -6.1 1.0 -2.3 -4.2 4.5 3.9 2.6 4.3 6.0 5.7 8.0 9.1 3.5 7.2 4.4 16.0 10.8 17.2 10.8 17.2 10.8 15.6 9.3 12.5 -4.4 -2.4 2.0 -4.9 1.2 1.8 -11.7 -24.61 1.1 7.8 9.5 12.1 2.4 3.3 5.1 -2.1 -7.7 5.0 -6.4 1.8 7.8 4.6 1.2 2.3	295.93 286.15 278.09 272.74 273.70 273.83 279.22 287.01 297.79 309.12 331.08 337.61 329.28 331.13 325.16 322.62 331.32 334.52 335.12 344.66 346.48 353.84 365.32 371.06 379.45 381.56 373.81 354.58 346.37 326.94 318.93 310.14 302.78 301.24 300.59 299.47 302.85 303.30 308.71 314.41 320.85 327.83 329.78 333.88 337.81 342.43 345.35 349.31 355.80 369.06
4	5 . 2 4 . 2	377.42 384.53

No	Residual	<u>Plan Range</u>
200	3	381.08
201	6.0	384.09
202	2.3	386.77
203	6.3	391.99
204	9.6	393.35
209	3	404.18
211	-3.9	403.81
212	2.4	407.32
213	6.5	409.80
215	4.0	416.93
216	-6.7	420.73
217	-1.4	425.40
218	1.7	429.35
9	. 3	430.47
,		

Easting Northing Depth 670352.24 5713683.82 51.00

: 150 14.39

#### Solution

RMS Residual :	7.0	
Worst 8 Values:	191	30.06
:	5 4	24.59
:	38	17.21
:	36	15.95
:	40	15.59
:	147	14.81
:	108	14.80

Νο	Residual	<u>Plan Range</u>
^r 4	1.7	299.62
5	-3.2	295.74
8	2.7	311.64
9	5.0	314.58
10	1.4	322.83
1 1	-5.2	327.48
12	4.5	330.69
13	2.0	330.60
1 4	2.4	326.05
15	-4.3	315.60
16	-4.9	305.50
18	8	286.15
19	-3.0	278.09
20	-6.4	272.74
2 1	. 9	273.70
2.2	-2.4	273.83
23	-4.2	279.22
24	4.5	287.01
25 ئە	3.9	297.79
46	2.6	309.12

No	Residual	Plan Range
212	1.8	407.32
213	<b>5</b> .9	409.80
215	3.4	416.93
216	-7.2	420.73
217	-2.0	425.40
218	1.2	429.35
219	2	430.47

#### Solution

6	Easting	Northing	Depth
	70352.28	5713683.15	51.00
MC D		3 0	

RMS Residual : 3.9 V' ist 8 Values: 204 8.94 7.21 : 66 7.03 : 116 6.91 : 180 6.89 : 20 6.35 : 151 6.26 : 133 6.17

#### Aco stic Net Drop Positions

Transponder	Easting	Northing	Depth
1	669322.62	5714943.89	48.10
2	670435.80	5714740.28	55.80
3	670352.28	5713683.15	51.00
4	669366.61	5713885.19	54.70
( i	n metres )		

#### SEABED CALIBRATION

#### Seabed Speed of Sound

<u>T x 1</u>	<u>T × 2</u>	<u>Dep1</u>	<u>Dep2</u>	<u>V an d</u>
1	2	48.10		1513.94
1	3 4	48.10 48.10	51.00 54.70	
2	1	55.80 55.80		1513.94
2	3 4	55.80	51.00 54.70	1513.96 1513.99
3 3 3	1 2 4	51.00 51.00 51.00	48.10 55.80 54.70	1513.90 1513.96 1513.95
4 4 4	1 2 3	54.70 54.70 54.70	48.10 55.80 51.00	1513.93 1513.99 1513.95

#### Cycle 1

CI6,503 C: 503 2WAY MS= .00 E: 0 CI9,503 C: 503 2WAY MS= .00 E: 0 CI10,503 C: 503 2WAY MS=1418.71 E: 0 From 1 to 4 Range= 1073.9

CI3,1106 C:1106 2WAY MS= .00 E: 0 CI9,1106 C:1106 2WAY MS=1391.44 E: 0 From 2 to 3 Range= 1053.3 CI10,1106 C:1106 2WAY MS=4139.93 E:10

7 3,1109 C:1109 2WAY MS=2148.91 E: 0 1 3m 3 to 1 Range= 1626.6 CI6,1109 C:1109 2WAY MS=1390.19 E: 0 From 3 to 2 Range= 1052.3 CI10,1109 C:1109 2WAY MS=1333.18 E:12

CI3,1010 C:1014 2WAY MS=1400.27 E: 1 CI6,1010 C: 810 2WAY MS= .00 E: 1 CI9,1010 C:1010 2WAY MS=1327.64 E:10

#### Cycle 2

CI6,503 C: 503 2WAY MS=1520.77 E: 0 From 1 to 2 Range= 1151.2 CI9,503 C: 503 2WAY MS= .00 E: 0 CI10,503 C: 503 2WAY MS=1408.58 E: 0 From 1 to 4 Range= 1066.2

CI3,1106 C:1106 2WAY MS=1532.05 E: 0 F mm 2 to 1 Range= 1159.7 C 3,1106 C:2706 2WAY MS=1391.83 E: 1

# <u>Cyg</u> 13 C16,503 C: 503 2WAY MS = .00 E: 0 C19,503 C: 503 2WAY MS = .00 E: 0 CI10,503 C: 503 2WAY MS=1403.11 E: 0 From 1 to 4 Range = 1062.1 CI3,1106 C:1106 2WAY MS= .00 E: 0 CI9,1106 C:1106 2WAY MS=1391.10 E: 0 From 2 to 3 Range= 1053.0 CI10,1106 C:1106 2WAY MS= .00 E:12 CI3,1109 C:1109 2WAY MS= .00 E: 0 CI6,1109 C:1109 2WAY MS=1389.41 E: 0 From 3 to 2 Range = 1051.8 CI10,1109 C:1109 2WAY MS=1330.77 E: 0 F m 3 to 4 Range= 1007.4 CI3,1010 C:1010 2WAY MS= .00 E: 0 CI6,1010 C:1010 2WAY MS = .00 E: 0 CI9,1010 C:1010 2WAY MS = .00 E: 0 Cycle 14 CI6,503 C: 503 2WAY MS = .00 E: 0 CI9 503 C: 503 2WAY MS = .00 E: 0 CI1 503 C: 503 2WAY MS = .00 E: 0 .00 E: 0 CI3,1106 C:1106 2WAY MS=1518.33 E: 0 From 2 to 1 Range= 1149.3 CI9,1106 C:1106 2WAY MS=1392.05 E: 0 From 2 to 3 Range = 1053.8 CI10,1106 C:1106 2WAY MS= .00 E: 0 CI3,1109 C:1109 2WAY MS= .00 E: 0 CT5,1109 C:1111 2WAY MS= .00 E:11 C 70,1109 C: 909 2WAY MS=1331.89 E: 1 CI6,1010 C:1010 2WAY MS= .00 E: 0CI6,1010 C:1010 2WAY MS= .00 E: 0CI9,1010 C:1010 2WAY MC 1077 From 4 to 3 Range= 1011.1 Cycle 15 CI6,503 C: 503 2WAY MS=1519.68 E: 0 From 1 to 2 Range = 1150.3 CI9,503 C: 503 2WAY MS= .00 E: 0 CI10,503 C: 503 2WAY MS=1398.67 E: 0 From 1 to 4 Range= 1058.7 CI3 106 C:1106 2WAY MS=1522.17 E: 0 From 2 to 1 Range= 1152.2 CI9,1106 C:1106 2WAY MS=1391.02 E: 0

From 2 to 3 Range= 1053.0

C .D, 1106 C:1106 2WAY MS=1823.30 E:10

(

```
' ACAL Survey Ltd
                          MINERVA-1 R/M
CI3,1109 C:1109 2WAY MS=
                           .00 E: 0
CI6,1109 C:1513 2WAY MS=2001.51 E:13
CI10,1109 C:1109 2WAY MS= .00 E: 0
CI3,1010 C:1010 2WAY MS=
                          .00 E: 0
CI6,1010 C:1010 2WAY MS=
                           .00 E: 0
CI9,1010 C:1010 2WAY MS=
                           .00 E: 0
Statistics for each Range
Seabed range statistics from Tx1 to Tx2
4 ranges. Mean= 1150.04 Se= .7976
Seabed range statistics from Tx1 to Tx4
 7 ranges. Mean= 1063.38 Se= 4.8717 Edit 1/ 10.532
 6 ranges. Mean= 1061.63 Se= 2.4744
abed range statistics from Tx2 to Tx1
 4 ranges. Mean= 1155.06 Se= 4.4135
Seabed range statistics from Tx2 to Tx3
12 ranges. Mean= 1052.78 Se= .6637
Seabed range statistics from Tx2 to Tx4
 1 ranges. Mean= 1381.68 Se= 0.0000
Seabed range statistics from Tx3 to Tx1
1 ranges. Mean= 1626.62 Se= 0.0000
Seabed range statistics from Tx3 to Tx2
11 ranges. Mean= 1053.21 Se= .7629
Seabed range statistics from Tx3 to Tx4
 3 ranges. Mean= 1008.95 Se= 1.2168
```

Seabed range statistics from Tx4 to Tx1 5 ranges. Mean= 1061.29 Se= 1.5699 Seabed range statistics from Tx4 to Tx3

4 ranges. Mean= 1013.08 Se= 4.5939

I INSPONDER 1 HELD FIXED

TRANSPONDER 3 HELD FIXED

PII	NG-AROUND	SOLUTION	SUCCESSF	UL			
1	0.00	0.00	0.00	0.00	48.10	0.00	
2	1150.04	.54	-5.81	.52	48.10 55.80	0.00	
3	1239.70	0.00	-1054.90	0.00	51.00	0.00	7
4	230.57	.65	-1036.41	1.95	54.70	0.00	(
							)

#### Range Residuals

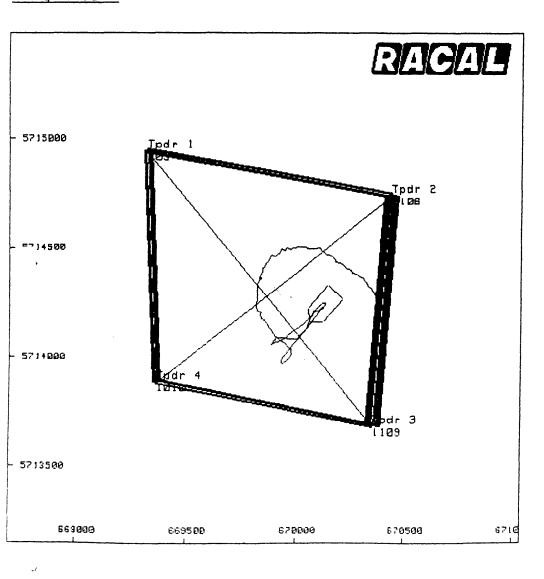
Сус	1-2	1-3	1-4
1			
2	1.093		4.476
3			
1			
•/			-1 /36

#### Range Residuals

Cyc	<u>1-2</u>	1-3	1 - 4
6			
7			
8			-2.148
9	542		
10			
1 1			.941
12	997		
13			.335
1 4			
15	.268		-3.026

#### Range Residuals

<u> </u>	2-1	2-3	2-4
1		.359	
2	9.631		
3		.525	
4		-1.314	
5			.532
6			
7		.571	
8		-1.026	
9		292	
10		996	
1 1	8.905	095	
12		534	
13		.101	
1 4	754	.821	
15	2.152	.041	


#### h qe Residuals

ус	3-1	3 - 2	3-4
1	-1.162	587	
2		254	
3		.230	
4		.374	
5		1.199	
6		. 291	
7		.026	112
8			
9		1.585	
10		1.063	
1 1		.329	1.008
12			
13		-1.178	-1.944
1 4			
1 5			
:			

#### Range Residuals

Cyc	4 - 1	4 - 2	4-3
1			
2			
3	-2.337		
4			
5			
6	1.682		
7	.706		
8	293		-2.239
9			
10	-2.140		5.376
1 1			
12			* * * * *
13			
4			1.765
ى			

#### Ping Around

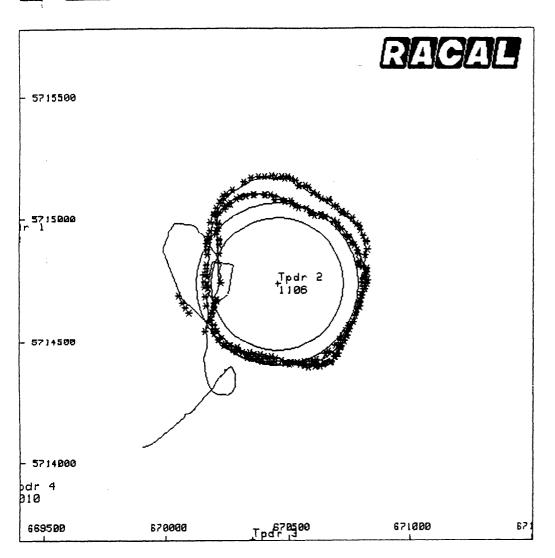


ACAL Survey Ltd MINERVA-1 R/M 2 Mar 1993 19:40:31 Page 24

#### BOX IN TRANSPONDER 2

#### Speed of Sound Corrections

 $\frac{Tx}{2}$   $\frac{Fish}{12.0}$   $\frac{TxDep}{55.8}$   $\frac{Vsnd}{1513.7}$   $\frac{Vcor}{1.00911}$ 


#### Data for Calculation

<u>N o</u>	Easting(GPS)	Northing(GPS)	<u>Plan Range</u>	Gyro	RMS(ref)
1	670165.47	5714639.70	298.56	1.8	0.0
3	670160.05	5714676.75	288.67	3.1	0.0
4	670171.21	5714712.82	284.84	.5	0.0
5	670157.80	5714720.69	285.02	1.7	0.0
6	670158.81	5714738.68	285.05	1.8	0.0
7	670168.01	5714760.00	286.94	356.7	0.0
8	670155.21	5714769.94	289.26	1.0	0.0
9	670164.84	5714791.94	293.06	.6	0.0
10	670164.15	5714809.80	300.05	4.5	0.0
12	670167.87	5714850.64	308.98	10.1	0.0
13	670167.83	5714869.22	315.10	10.3	0.0
1 4	670165.19	5714897.34	321.67	8.4	0.0
15	670175.43	5714911.19	331.88	6.9	0.0
16	670175.04	5714926.27	341.23	10.3	0.0
7	670183.48	5714949.18	350.16	10.3	0.0
ı u	670181.31	5714981.58	357.53	17.6	0.0
20	670195.37	5715011.78	377.10	24.3	0.0
21	670196.68	5715016.09	386.51	30.5	0.0
22	670206.85	5715039.49	394.27	34.9	0.0
23	670218.37	5715061.93	400.53	40.7	0.0
24	670231.93	5715073.20	406.69	46.1	0.0
25	670234.82	5715086.90	413.26	51.5	0.0
26	670248.09	5715096.19	416.15	55.2	0.0
27	670272.00	5715111.88	420.22	57.0	0.0
,0	670317.49	5715144.87	433.98	69.6	0.0
31	670344.91	5715161.48	438.08	76.6	0.0
3 2	670347.37	5715162.32	438.52	78.8	0.0
33	670374.51	5715165.67	440.89	84.1	0.0
3 4	670400.89	5715167.18	440.66	88.9	0.0
36	670426.56	5715170.53	439.79	103.1	0.0
37	670443.44	5715164.60	435.86	107.1	0.0
38	670468.37	5715166.74	435.00	114.9	0.0
39	670482.35	5715160.44	430.27	114.9	0.0
40	670493.69	5715167.25	426.88	120.8	0.0
4 1	670510.16	5715158.43	421.25	124.7	0.0
42	670525.34	5715150.33	417.21	128.6	0.0
43	670540.30	5715131.21	411.62	130.4	0.0
44	670543.43	5715131.10	406.97	130.1	0.0
45	670566.48	5715131.06	406.49	132.2	0.0
4 E	670581.88	5715121.62	397.72	129.7	0.0
	670598.81	5715102.01	399.37	130.7	0.0
4 ธ	670601.49	5715101.22	405.11	130.7	0.0
49	670617.19	5715093.85	393.35	130.8	0.0
١O	670634.52	5715075.22	397.31	130.3	0.0
♂1	670663.10	5715072.45	395.72	130.1	0.0
			• • • <del>-</del>	· •	- · ·

Data for Calculation

No	Easting(GPS)	Northing(GPS)	<u>Plan Range</u>	Cura	PMC( 6 )
14.0	2000	137 611 114 (31 37	ran Nange	<u>Gyro</u>	RMS(ref)
248	670540.68	5715039.07	322.70	287.7	0.0
249	670525.40	5715047.54	320.50	288.3	0.0
250	670511.14	5715054.53	327.90	289.1	0.0
251	670507.48	5715066.64	331.02	290.7	0.0
252	670483.46	5715065.79	335.84	290.3	0.0
253	670468.63	5715073.31	343.76	292.4	0.0
254	670441.68	5715072.40	348.51	290.1	0.0
255	670441.44	5715085.83	354.62	284.7	0.0
256	670425.11	5715092.80	357.67	276.2	0.0
257	670402.30	5715091.25	362.13	270.8	0.0
258	670400.85	5715091.29	365.13	266.1	0.0
261	670356.62	5715093.64	369.49	253.1	0.0
262	670353.00	5715093.03	371.81	252.4	0.0
53	670326.55	5715089.25	375.61	251.1	0.0
∠ 6 <b>4</b>	670303.01	5715086.19	374.11	250.5	0.0
265	670301.14	5715084.46	377.08	247.4	0.0
266	670288.77	5715075.54	375.77	242.6	0.0
268	670262.21	5715058.07	375.20	233.1	0.0
269	670257.15	5715056.81	369.47	223.5	0.0
270	670244.77	5715047.77	368.20	217.6	0.0
271	670241.00	5715035.64	362.16	211.3	0.0
272	670219.21	5715021.03	356.32	205.3	0.0
273	670219.32	5715019.70	352.93	201.6	0.0
276	670214.26	5714975.91	329.47	187.8	0.0
277	670214.07	5714974.26	321.28	184.8	0.0
278	670213.80	5714959.22	310.66	186.9	0.0
279	670205.19	5714947.73	305.30	187.1	0.0
280	670206.84	5714932.80	295.96	186.0	0.0
281	670218.44	5714912.16	282.54	186.0	0.0
282	670218.21	5714909.74	276.71	187.8	0.0
283	670218.12	5714893.25	268.04	188.0	0.0
285	670217.57	5714856.25	254.53	191.1	0.0
36	670217.87	5714853.99	247.97	192.0	0.0

# Fix Point's for Box-in Calibration up to observation 161



#### <u>ution Residuals</u>

No	Residual	<u>Plan Range</u>
1	1.0	298.56
3	-4.3	288.67
4	8.2	284.84
5	-4.5	285.02
6	-3.0	285.05
7	7.1	286.94
8	-4.3	289.26
9	5.6	293.06
10	8.0	300.05
12	7.5	308.98
13	6.1	315.10
1 4	-2.7	321.67
1	9.1	331.88
16	9.7	341.23
17	11.6	350.16
8	-3.8	357.53

<u>No</u>	Residual	Plan Range
277	-11.5	321.28
278	-11.7	31066
279	-15.7	305.30
280	-14.1	295.96
281	-5.6	282.54
282	-10.1	276.71
283	-9.2	268.04
285	-4.1	254.53
286	-9.4	247.97

#### Solution

Easting	Northing	Depth
670446.87	5714736.52	55.80

k o Residual: 5.6 15.66 Worst 8 Values: 279 : 280 14.11 : 254 12.59 : 135 11.93 : 278 11.70 : 17 : 277 11.64 11.46 : 198 11.37

#### Acoustic Transducer Offsets

Tow Point X: -7.09m.
Tow Point Y: 4.00m.
Tow Point Z: 5.00m.
Tow Length: 20.00m. Tow Point Y: Tow Point Z: Tow Speed : 2.00Kts.

Figh Layback: 10.47m. r.5h Depth: 12.04m.

ACAL Survey Ltd MINERVA-1 R/M 2 Mar 1993 20:23:41 Page 35

BOX IN TRANSPONDER 4

Speed of Sound Corrections

 Tx
 Fish
 TxDep
 Vsnd
 Vcor

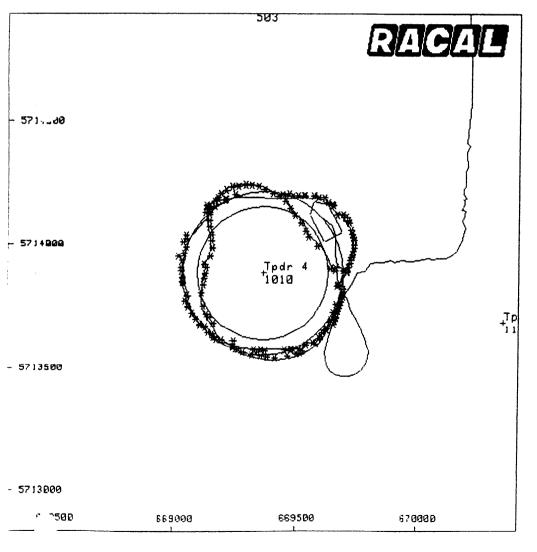
 4
 12.0
 54.7
 1513.7
 1.00910

Data for Calculation

No Easting(GPS) Northing(GPS) Plan Range Gyro RMS(ref)

RACAL Survey Ltd MINERVA-1 R/M 2 Mar 1993 20:29:50 Page 36

#### Data for Calculation


<u>N o</u>	Easting(GPS)	Northing(GPS)	<u>Plan Range</u>	Gyro	RMS(ref)
1	669659.37	5713704.68	338.10	223.3	0.0
2	669644.26	5713680.45	340.24	221.1	0.0
3	669628.54	5713655.05	344.56	221.1	0.0
4	669614.18	5713641.47	347.27	229.6	0.0
5	669597.38	5713617.54	350.99	238.1	0.0
6	669572.36	5713597.97	350.37	246.7	0.0
7	669542.98	5713591.20	348.63	255.2	0.0
8	669527.83	5713567.54	344.81	257.9	0.0
9	669513.11	57135 <b>74.7</b> 5	343.48	258.6	0.0
10	669481.25	5713574.68	343.66	258.7	0.0
1 1	669482.38	5713573.98	340.79	257.3	0.0
12	669481.46	5713572.31	339.18	259.1	0.0
13	669478.30	5713570.64	333.51	264.6	0.0
1 4	669452.73	5713568.52	334.50	266.6	0.0
20	669371.98	5713565.80	322.93	272.2	0.0
2 1	669356.33	5713570.67	324.04	275.1	0.0
22	669343.98	5713562.65	322.32	278.2	0.0
23	669326.16	5713569.70	324.26	278.6	0.0
27	669261.92	5713573.46	327.75	280.7	0.0
28	669244.22	5713581.79	330.27	284.9	0.0
, 9	669240.70	5713582.36	330.82	290.0	0.0
33	669175.38	5713613.65	333.23	304.4	0.0
3 4	669160.63	5713621.67	335.30	303.9	0.0
35	669158.09	5713634.70	336.75	306.7	0.0
36	669142.40	5713642.15	335.58	309.3	0.0
37	669127.12	5713663.11	338.59	311.7	0.0
38	669109.91	5713670.60	340.53	316.5	0.0
39	669107.63	5713672.44	338.99	319.7	0.0
40	669092.62	5713692.74	339.92	325.6	0.0
4 1	669076.49	5713716.49	343.45	330.1	0.0
42	669075.15	5713718.49	337.14	333.2	0.0
43	669059.72	5713742.02	334.53	340.4	0.0
44	669059.16	5713745.36	339.22	343.3	0.0
45	669046.65	5713767.49	334.89	341.5	0.0
46	669056.62	5713790.26	335.05	340.8	0.0
49	669037.09	5713843.38	342.01	345.1	0.0
50	669035.78	5713845.56	343.19	351.7	0.0
5 1 5 3	669034.87	5713861.11	343.05	354.0	0.0
5.2	669030.90	5713889.25	3 4 5 . 7 3	3.3	0.0
_3 5 4	669030.85	5713904.51 5713949.34	3 4 5 . 4 5	6.1	0.0
5 4 5 5	669020.00	5713949.34	345.98 346.78	5.4	0.0
55 56	669032.48	5713952.31	346.78 346.41	10.7 14.9	0.0 0.0
5 5 5 7	669043.55	5713984.32	346.41	16.3	0.0
5 <i>7</i> 5 8	.669051.75 669037.78	5714006.50	345.27	24.0	0.0
50 59	559037.78 EEGAMA MM	5714006.30	347.47	24.U 27.8	0.0 n n
	reconstruction of the contract	= , ,	, , ,	, , ,	, .

			·		
183	669607.04	5713624.60	349.95	29.3	100
104	669624.56	5713653.59	344.24	28.3	0.0
5	669644.94	5713692.82	338.31	21.5	0.0
186	669656.94	5713721.62	332.30	12.0	0.0
187	669666.09	5713754.99	326.42	4.7	0.0
18	669694.08	5713816.01	318.22	. 9	0.0
189	669675.47	5713832.39	312.00	351.0	0.0

RACAL Survey Ltd MINERVA-1 R/M 2 Mar 1993 21:01:35 Page 39

#### Data for Calculation

No	Easting(GPS)	Northing(GPS)	<u>Plan Range</u>	<u>Gyro</u>	RMS(ref)
190		5713890.54	304.94	345.1	0.0
1	669665.04	5713904.48	299.94	342.7	0.0
Fix	Points for Box-in	Calibration up to	observation 134		



#### <u>Solution Residuals</u>

<u>N o</u>	Residual	<u>Plan Range</u>
1	-4.2	338.10
2	-3.4	340.24
3	-3.0	344.56 347.37
		* *

	• •	- · · ·
F,	1.7	350.99
Æ,	- 2 . b	350.37
7	5.9	348.63
8	-11.5	344.81
9	0.0	343.48
1.0	12.2	343.66

RACAL Survey Ltd MINERVA-1 R/M 2 Mar 1993 21:03:04 Page 40

No	Residual	Plan Range
No  11 2 13 14 20 21 22 23 27 28 29 33 34 35 36 37 38 39 40	Residual  8.3 5.48 5.6 2.0 7.7 -2.8 4.3 -3.5 .6 .3 -1.8 -2.1 7.8 1.9 8.9 2.8 .7 1.9	Plan Range  340.79 339.18 333.51 334.50 322.93 324.04 322.32 324.26 327.75 330.27 330.82 333.23 335.30 336.75 335.58 338.59 340.53 338.99 339.92
41 ,2 43 44 45 46 49 50 51 52	4.6 -1.8 -7.3 -1.7 -9.2 7.7 6.8 7.0 7.5 7.2 6.4	343.45 343.45 337.14 334.53 339.22 334.89 335.05 342.01 343.19 343.05 345.73 345.45
54 55 56 57 58 59 60 66 67 #8 69 70 71	-9.0 6.7 12.4 13.9 -5.2 2.0 -2.9 -4.4 -3.8 -12.9 1.9 -9.0 2.3 3.2 -1.7	3 45 . 98 3 46 . 78 3 46 . 41 3 46 . 27 3 47 . 47 3 47 . 83 3 48 . 04 3 35 . 93 3 3 4 . 3 2 3 3 2 . 15 3 3 4 . 3 3 3 3 5 . 0 4 3 3 3 3 . 8 1 3 3 5 . 8 9 3 3 4 . 7 4 3 2 2 7 2

138	-5.6	302.60
139	6	317.77
0	-3.4	331.23
141	-4.1	343.08
142	-3.1	349.40
1 (	-2. <b>4</b>	358.31
144	2	362.72

RACAL Survey Ltd MINERVA-1 R/M 2 Mar 1993 21:03:09 Page 42

No	Residual	<u>Plan Range</u>
No 145678901234-15155916123456780127777778902	Residual  -3.5 -3.1 -2.3 -5.2 -2.1 -15.0 -3.0 -6.0 -3.0 -1.8 5.6 1.1 4.18 -1.4.7 3.2 4.0 2.8 5.4 -1.8 -2.6 -6.1 .7 6.2 -16.2 11.0 -9.8 -6.9 -4.2 -3.5 -1.6 -2.1 -1.9 -4.2 -5.2 -5.1	Plan Range  364.59 363.82 361.18 351.61 348.01 343.16 331.59 317.94 302.36 285.10 266.44 249.37 237.29 229.38 232.62 239.26 246.31 250.48 259.28 268.69 283.14 285.90 292.48 302.61 311.77 319.46 323.26 329.49 335.40 339.41 344.28 347.88 349.91 353.65 355.84 354.90
179 180	- <b>4</b> . 2 - <b>5</b> . 2	353.65 35 <b>5</b> .84
18 184 185	- 3 . 8 - 1 . 4 1 . 4 . 8	349.95 344.24 338.31 332.30
187 188 189 190	1.8 -14.0 1.2	326.42 318.22 312.00 304.94
191	-20.3 3.8	299.94

## 2 Mar 1993 21:03:11 Page 43

## RACAL Survey Ltd MINERVA-1 R/M

Solution Northing Depth Easting Easting Northing 669369.44 5713886.73 54.70 i Residual: 5.9 20.33 Worst 8 Values: 190 : 98 20.30 : 170 16.16 15.00 : 150 14.68 : 159 : 188 14.03 13.93 : 57 12.94 : 68

No	Residual	<u>Plan Range</u>
1	-4.5	338.10
2	-3.6	340.24
3	-3.3	344.56
4	. 5	347.27
5	-2.0	350.99
6	-2.8	350.37
7	5.6	348.63
9	3	343.48
12	5.1	339.18
13	-1.1	333.51
1 4	5.2	334.50
20	1.7	322.93
2 2	-3.1	322.32
23	4.0	324.26
27	-3.8	327.75
28	. 3	330.27
29	. 1	330.82
33	-2.0	333.23
3 4	-2.4	335.30
3.6	1.7	335.58
3.8	2.6	340.53
3 9	. <u>e</u>	338.99
40	1.7	339.92
41	4.5	343.45
12	-2.0	337.14
44	-1.8	339.22
58	-5.0	347.47
59	2.2	347.83
6.0	-2.7	348.04
66	-4.1	335.93
¬	= 0	334.32

	w . w	ت د د د د د د
139	3	317.77
1 10	-3.0	331.23
1	-3.7	343.08
142	-2.7	349.40
14,	-2.0	358.31
1 4	. 2	362.72
145	-3.2	364.59

RACAL Survey Ltd MINERVA-1 R/M 2 Mar 1993 21:06:16 Page 45

#### Solution Residuals

No	Residual	<u>Plan Range</u>
1 4 6	-2.8	363.82
7	-1.9	361.18
148	-4.8	351.61
149	-1.8	348.01
151	-2.8	331.59
152	-5.7	317.94
153	-2.7	302.36
154	-1.6	285.10
155	5.8	266 <b>.44</b>
156	1.3	249.37
15	4.3	237.29
15 ธ	6	229.38
160	3.3	239.26
161	4.1	246.31
162	2.8	250.48
163	5.3	259.28
164	-1.9	268.69
165	-2.8	283.14
166	-6.3	285.90
167	. 5	292.48
-8	6.0	302.61
174	-4.5	335.40
175	-3.8	339.41
176	-2.0	344.28
177	-2.4	347.88
178	-2.3	349.91
179	-4.5	353.65
180	-5.5	355.84
182	-5.4	354.90
183	-4.1	349.95
184	-1.6	344.24
185	1.2	338.31
186	. 6	332.30
187	1.7	326.42
189	1.1	312.00
191	3.8	299.94

#### Solution

Easting Northing Depth 669369.40 5713887.06 54.70

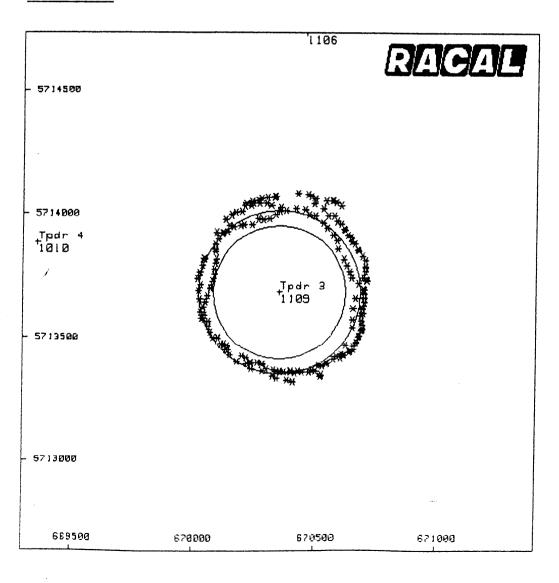
RMS Residual: 3.4

Worst 8 Values: 87 : 97 : 88 7.65 7.12 6.38 : 107 : 168 : 128 : 92 6.19 5.95 5.94 5.80

BOY 'N TRANSPONDER 3 (Calculation)

#### Speed of Sound Corrections

 Tx
 Fish
 TxDep
 Vsnd
 Vcor


 3
 12.0
 51.0
 1513.6
 1.00909

#### Data for Calculation

No	<pre>Easting(ref)</pre>	Northing(ref)	<u>Plan Range</u>	Gyro	RMS(ref)
1	670377.41	5714013.48	319.31	249.8	0.0
2	670351.05	5714008.03	310.25	250.4	0.0
3	670337.33	5713997.15	303.77	247.1	0.0
4	670310.82	5713979.25	299.62	246.4	0.0
5	670285.99	5713975.16	295.74	249.8	0.0
6	670267.83	5713976.95	295.82	253.7	0.0
7	670242.57	5713954.59	304.56	257.7	0.0
8	670207.71	5713955.09	311.64	255.4	0.0
9	670195.20	5713949.07	314.58	249.3	0.0
10	670168.11	5713946.07	322.83	240.7	0.0
1 1	670151.52	5713948.46	327.48	231.6	0.0
12	670127.38	5713919.77	330.69	222.5	0.0
13	670122.30	5713919.19	330.60	211.6	0.0
14	670106.94	5713896.30	326.05	201.8	0.0
1	670094.04	5713874.67	315.60	193.6	0.0
16	670093.19	5713856.90	305.50	191.8	0.0
17	670094.19	5713849.14	295.93	195.9	0.0
18	670097.54	5713816.53	286.15	199.2	0.0
19	670095.01	5713797.00	278.09	200.0	0.0
20	670088.14	5713771.93	272.74	204.2	0.0
21	670089.16	5713751.16	273.70	209.3	0.0
22	670081.02	5713726.19	273.83	211.0	0.0
23 24	670071.21	5713700.14	279.22	210.1	0.0
. 4 25	670071.95 670061.21	5713694.80 5713667.80	287.01 297.79	210.3	0.0
26	670050.73	5713643.70	309.12	212.0 207.3	0.0 0.0
27	670040.51	5713590.49	331.08	181.8	0.0
28	670039.23	5713575.98	337.61	168.4	0.0
29	670037.56	5713576.95	334.19	156.9	0.0
30	670073.13	5713520.10	329.28	149.2	0.0
3 1	670086.74	5713499.52	331.13	143.8	0.0
32	670118.56	5713471.64	325.16	143.1	0.0
33	670137.86	5713448.67	322.62	144.2	0.0
3 4	670155.42	5713427.58	331.32	140.9	0.0
35	670185.39	5713400.12	334.52	134.2	0.0
36	670225.87	5713391.59	335.12	124.0	0.0
37	670241.05	5713369.53	344.66	116.1	0.0
38	670285.04	5713362.52	346.48	115.8	0.0
39	670326.98	5713343.23	353.84	115.9	0.0
4 ^	670342.62	5713335.44	365.32	108.2	0.0
4	670384.01	5713324.25	371.06	96.2	0.0
42	670410.40	5713322.05	379.45	87.8	0.0
43	670409.02	5713320.33	383.00	74.6	0.0
4 <b>4</b>	670408.22	5713318.77	387.99	64.2	0.0
45	670524.23	5713348.02	381.56	49.4	0.0

Data for Calculation

No	<pre>Easting(ref)</pre>	Northing(ref)	Plan Range	Gyro	RMS(ref)
205	670332.14	5714067.27	392.17	90.2	0.0
206	670332.81	5714067.83	395.55	95.4	0.0
207	670333.79	5714068.48	395.64	102.4	0.0
208	670334.26	5714068.73	394.99	105.6	.0.0
209	670426.33	5714082.12	404.18	110.6	0.0
210	670426.51	5714082.19	401.32	111.7	0.0
211	670465.97	5714075.85	403.81	113.0	0.0
212	670480.41	5714068.23	407.32	113.1	0.0
213	670494.60	5714061.08	409.80	109.9	0.0
214	670494.52	5714061.05	410.12	109.3	0.0
215	670540.01	5714050.93	416.93	109.4	0.0
216	670566.99	5714052.78	420.73	113.9	0.0
217	670568.97	5714051.37	425.40	119.4	0.0
.8	670583.77	5714043.28	429.35	122.0	0.0
219	670601.97	5714034.21	430.47	126.8	0.0
Box Tx	: 3			.20.0	0.0



So) tion Residuals

No	Residual	61
		<u>Plan Range</u>
1234567890112134567890112134567890122222223312333333334423445678 1012345678901222222331233333334423445678	-11.7 -14.5 -10.5 -3.8 -10.0 11.5 -3.3 -5.3 -5.3 -5.3 -6.7 -7.3 -11.8 -2.3 -4.2 -6.9 -1.9 -3.4 -5.2 -6.9 -1.9 -3.4 -5.2 -6.9 -1.9 -3.4 -6.7 -7.3 -11.8 -2.3 -4.2 -6.9 -1.9 -3.4 -6.7 -7.3 -1.3 -4.9 -7.3 -1.3 -7.3 -1.3 -7.3 -1.3 -7.3 -1.3 -7.3 -1.3	319.31 310.25 303.77 299.62 295.74 295.82 304.56 311.64 314.58 322.83 327.48 330.69 330.60 326.05 315.60 305.50 295.93 286.15 278.09 272.74 273.70 273.83 279.22 287.01 297.79 309.12 331.08 337.61 334.19 329.28 331.13 325.16 322.62 331.32 334.52 334.52 334.52 331.32 344.66 346.48 353.84 365.32 371.06 379.45 383.00 387.99 381.56 379.45 383.00 387.99 381.56 373.81 354.58 346.40 326.94 318.93 310.14 302.78

35.438	2.5.	۷٠
18. <b>5</b> 78	∂.∂ 1.∂-	9 t 9 t
33.488	£ . g	9.8
352.62	0.4	ءَ ٤
329.28	8.4	3.0
334.19	8.	6.2
337.61	9.3	8.7
31. <b>6</b> 08 80.188	7.ε 9.μ	7.2
67.7es	0. è	9 Z 9 Z
10.785	1.8	7 Z
22.672	7.8-	23
88.872	1.5-	2.2
07.872	۲.	1.5
60.872	<b>7</b> • <b>7</b> -	61
356.05 286.15	9.2-	81
330,60	1.	7 7
93.088	ρ.ε.	13 15
84.758	0.9-	I I
322.83	1.1	οī
314.58	1.8	6
311.64	1.5	8
72.562	0.4-	<b>9</b>
29.662	g.	Þ
Plan Range	<u>[eubresA</u>	<u>∘N</u>
	Residuals	UOLINIOS
	- [	
	36 16.75	
	72.71 04 :	
	46.61 44 :	
	በድ'ድን <del>የ</del> ር :	
	08'82	
	32.82 28.25	
	25.82 191 : səufaV 70.82 29.37 70.82 291 :	8 <i>t</i> en
	70.62 29: 28: 25.25	izəA 2ma 8 isən
00.10	7.7 : Taub Se. 25 : 191 : seufav 70.92 : 291 : 20.82 : 591 :	raag 247
06pth 51.00	25.5835173 85.53 7.7 : Taub 7.7 : Taub 191 : səufaV 7.93 261 : 7.93 261 :	6703 Faag 849
Depth 51.00	Find Northing Se. 38 (5.38 F.) (7.7 : Laub 192 C.) (7.9 F.) (1.38	6703 Faag 849
рерғһ	Find Northing Se. 38 (5.38 F.) (7.7 : Laub 192 C.) (7.9 F.) (1.38	63 807a izəA 200
430.47 Depth	n. dorthing his series of the print of the prints of the p	oitulos Ea 6703 Fee S Resi
429.35 430.47 Depth	0.2 4. 6. 100 Northing Enisters 132 13683.32   7.7 : Leub 192   192   193   193   193   193   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195	218 0110108 6703 6703
426.40 429.35 430.47	7.7 53.38	218 219 219 6703 6703
420.73 429.35 429.35 425.40	0.3- 0.2 2.0 4. 0.2 5.10 Aurthing 53.38 F713683.32 7.7 : Teub 7.7 : Teub 7.92 191 : 29.32 82.82 82.82	218 219 219 219 6703 6703
430°47 430°47 426°40 426°40 416°93	7.4 0.3- 0.5 2.1- 0.5 4. 0.5 53.38 53.38 7.7 : Teub 7.7 : Teub 7.92 59.32 7.93 7.94 7.7 : Teub	216 218 219 219 219 6703 6703 6703
420.73 429.35 429.35 425.40	0.3- 0.2 2.0 4. 0.2 5.10 Aurthing 53.38 F713683.32 7.7 : Teub 7.7 : Teub 7.92 191 : 29.32 82.82 82.82	218 219 219 219 6703 6703
21.014 41693 420.73 420.40 74.054 74.054	6.9 4.7 6.0 2.1- 0.2 2.1- 0.2 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	216 218 219 219 219 219 219 6703 6703
430.80 430.40 416.93 74.054 74.054 74.054	### Teabises  6.8  6.9  7.7  6.9  7.7  0.2  2.0  6.9  7.7  7.7  192  29.32  192  29.32  29.07	No 219 219 219 219 219 219 219 219
430.80 430.40 416.93 74.054 74.054 74.054	6.6 6.9 7.7 6.9 6.9 7.7 6.9 6.9 6.9 7.7 7.7 191 192 193 193 193 193 193 193 193 193	No 219 219 219 219 219 219 219 219

2.2-

87

78.3**4**8

354.58

24.9 : 133 97.9 : 513 99.9 071: 97.9 911: 6.83 : 514 6.93 97 96.9 iii: 15.8 Morst 8 Values: 57

MINERVA-1 R/M

L. A C A L Survey Ltd

69.3

66 :

041:

1

)

Z Mar 1993 21:32:40 Page 59

# APPENDIX D GOLF LASER TRACKING PRINTOUTS



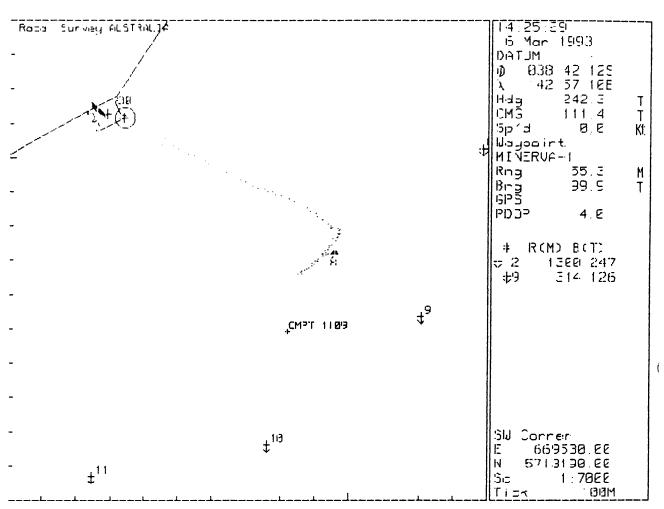
 Lug Posn
 670468E,
 5713908N

 Rng 8 Brg to Intended drop
 322.3 metres
 122.7 deg. True

TUG TRACKING FIX @ TIME 14:25:25 Ident 1 A

Eurrent Anchor # 9 Int. Location 670736E, 5713728N

Vessel Datum: 669814.18E, 5714316.62M Gyro: 242.30xT


Laser : HELIOECK 669800.66E, 5714279.86N

Range 775.00 metres Bearing 234.10 Relative to Vessel Head

Tug Posn 670487E, 5713920N

Rng & Brg to Intended drop 314.3 metres 126.5 deg. True

Anchor #9 on the Sembord.



TUG TRACKING FIX @ TIME 14:27:59 Ident 1 R

Current Anchor # 12 Int. Location 669283E, 5713432N

Vessel Datum : 669814.32E, 5714310.08M Gyro : 242.90xI

Laser: HELIDECK 669800.41E, 5714273.46N

Range 870.00 metres Bearing 337.50 Relative to Vessel Head

Tug Posn 669222E, 5713623N

Rng & Brg to Intended drop 200.5 metres 161.2 deg. True

Current Anchor # 12 Int. Location 669283E, 5713432N

Laser : HELIDECK 669801.60E, 5714272.97N

Range 910.00 metres Bearing 337.90 Relative to Vessel Head

Tug Posn 669196E, 5713591N

Rng & Brg to Intended drop 181.4 metres 150.1 deg. True

TUG TRACKING FIX @ FIME 14:29:57 Ident 1 B

Current Anchor # 12 Int. Location 669283E, 5713432N

Lowering Anchor #12 to the Scaled.

 Vessel Datum :
 669815.43E, 5714309.32M
 60vro : 241.60x1

 Laser : HELIDECK 669802.35E, 5714272.39M
 338.90 Relative to Vessel Head lug Posm

 Range 870.00 metres 669220E, 173625M
 5713625M

 Rng 6 Brg to Intended drop 702.6 metres 160.8 deg. True

Bearing 334.70 Relative to Vessel Head

Rng & Brg to Intended drop 191.0 metres 163.5 deg. Irue

Current Anchor # 12 Int. Location 669283E, 57134322N

Uessel Batum : 669812.20E, 5714308.02M 6yro : 244.80x1

lug Posn 669233E, 5713616M

Laser : HELIDECK 669797.08E, 5714271.88N

ING IBUCKING LIK 6 LINE 14:31:15 IGGUF 1 B

Range 865.00 netres

Lines portion # 12

	54 Correit 668310.22 1.7022 1.7022 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.7023 1.		-
		21 · · · · · · · · · · · · · · · · · · ·	-
	# R(M) BCT:	0181 Т∃ИД <u>.</u>	-
M	######################################	4	-
KI L L	ML1A0 ML42 54 5 ML42 57 1EE ML43 544 5 ML43 544 5 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A0 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML7A00 ML	-BI+	-
	14:32:48 1661 Jah G	ACURISTS SUPPLIED PROPERTY OF THE PROPERTY OF	<del>-</del>

130; 110: 21: 110; 110: 11: 130: 130:01: 1101 130:6: 110: 110; 8 ; 1011 130: 7 : 110; 130: 9 : 110: 130t S 1 110; 14 : OFF 1101 130; E ; ! A iIntended Drop 9 iLaser Target 181 1 | Intended Drop 3 | Winch Offset 3 | | From | Trom | RANGE & BEARING DISPLAY TABLE

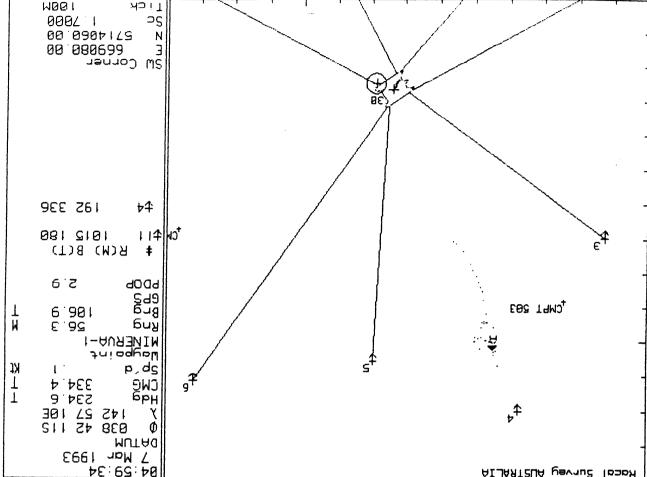
(

```
13.8 deg. True
                              Reg to Intended drop 184.5 metres
                                           '3516699
                                                                neog pul
                                 NSLISILS
125.50 Relative to Vessel Head
                                               845.00 metres
                                 Bearing
                                                                   Range
                               669760.99E, 5714344.40N
                                                          Laser: STARB
            T400.442 : 07Y2
                               669815.35E, S714332.82N
                                                         : mutsG laaeaV
                  Current Anchor # 5 Int. Location 669963E, 5715353N
                              A i insbl
                                            @ TIME 18:47:21
                                                                THE TRACKING FIX
    WOOL
               T I CK
     0007:1
                 ၁၄
     9214060.00
                  N
     00.005699
                  F
         SW Corner
    210 722
                $₽
   242 S≯6
               字字
                       2011 T9M2
     # B(M) B(T)
     0.5
              9009
               g 18
299
                                                                        CAPT 503
     4 901
     5.65
               Бuу
         NINERUA-1
          Maypaint
KĮ
     8.8
              p, dg
               CMG
     8 982.
     5'L72
                                                                       *
    301 ZS ZVI
                 0
    811 St 880
                                                 4
             MUTAG
      6 Mar 1993
          02:24:81
                                                           Racal Survey AUSTRALIA
```

125.40 Relative to Vessel Head 855.00 metres gainse8 Range Laser: STARB 669760.94E, 5714345.23N T-607. 243. 70-70 669815.36E, 5714333.93N Vessel Datum : Current Anchor # 5 Int. Location 669963E, 5715353N A I fasbi TUG TRACKING FIX @ TIME 18:48:02

Ja.5 deg. Irue Rng & Brg to Intended drop 174.1 metres , 3818888 N981S14S neo9 guT

17.5 deg. True King & Brg to Intended drop 221.4 metres '9Z68699 NEFISILS 124.50 Relative to Vessel Head Bearing 810.00 metres Vessel Datum : 669815.09E, 5714343.93N Laser : STARB 669760.63E, 5714343.93N T402.845 : 0749 Current Anchor # 5 Int. Location 669963E, 5715353N A I finabl 6 TIME 18:49:27 THE TRACKING FIX


669814.37E, 5714332.65N 669759.97E, 5714332.65N Laser : STARB 1408.845 : 07Yd : muteO lassaV Current Anchor # 5 Int. Location 669963E, 5715353N A 1 Jusbl 6 LIWE 18:49:58 TUG TRACKING FIX

2010 ) 34 APOD 3 MATCHE ALIAT DAH N TI month hatmator of and % and 124.30 Relative to Vessel Head Bearing 795.00 metres

1

)

114/11 1012 180 R(M) B(T) # 6.5 400d 6P5 8rg CMPT 583 6.381 € 95 Бuу Wiaypeint MIMERUA−1 1. p, dg 334.4 CWG Hqa 234.6 **₽**‡ 145 27 10E 038 45 112 Ø MUTAG 7 Mar 1993 PE:69:70 Racal Survey AUSTRALIA S37.9 deg. True sentem E.iei — gonb bebratri ot gn8 å gn8 **'381**5699 N180S1LS Tug Posn 106.30 Relative to Vessel Head 790.00 metres gar i ng N78.6254172 ,388.087688 BAATE : Jessl 669816.2ZE, 57143Z7.2ZN T408.455 : 0749 : mutsG [accev Current Anchor # 4 Int. Location 669450E, 5715260N A 1 tnebl 67:72:40 3MIT 9 TUG TRACKING FIX 336.5 deg. True Rng & Brg to Intended drop 216.8 metres **eea235E** N6505125 106.40 Relative to Vessel Head Bearing 755.00 metres Range bothom 669760.53E, 5714329.24N BAATS : Teesl 669816.03E, 57143Z6.31N T400.255 : 07Y0 : mutsO leaseV Current Anchor # 4 Int. Location 669450E, 5715260N @ IIWE Ot:28:29 Ident 1 A TUG TRACKING FIX 334.3 deg. True Reng to Intended drop 224.0 metres °32**7**9699 N9505172 neod gul 106.40 Relative to Vessel Head 750.00 metres Bearing Range Laser: STARB 669759.67E, 5714327.70N 669815.13E, S714323.99N : mutsO leaseV T408.255 : 07Y2 Current Anchor # 4 Int. Location 669450E, 5715260N TUG TRACKING FIX & TIME 04:55:23 Ident 1 A



```
74E 3191
     148 210
                 114
                                                                    z<sup>‡</sup>
      R(M) B(T)
                 ŧ
      3.5
               9009
                8rg
2d9
                            √<sub>±</sub>3011 T9M2<sub>±</sub>
      7.88
                gua
      9.S9
          N-AUA3MIM
                                                     EGE TANZ
           Jul odhom
               p,dg
      242 S
                CWC
                нча
     14S 24 10E
     821 24 850
                  0
              MUTAG
       7 Mar 1993
                                                            ALLARIZUA Pevnuč lebeñ
           99:64:50
             209.9 deg. True
                              Rang & Brg to Intended drop
                                 86985E, S713387N
                                                                nzo9 pul
DeaH lesseV of evitaleR 02.105
                                 Bearing
                                               29719m 00.288
                               Laser: HELIDECK 669801.29E, 5714270.74N
                              669809.50E, 5714309.04N
            1405.465 : 07V8
                                                        Vessel Datum :
                  Current Anchor # 11 Int. Location 669776E, 5713261N
                              A 1 Juabl
                                           6 TIME 05:49:04
                                                                ING IRACKING FIX
             209.5 deg. True
                               Rng & Brg to Intended drop 167.6 metres
                                 NS072125 '3298699
300.50 Relative to Vessel Head
                                 Bearing
                                              santam 00.078
                              Vessel Datum : 669802.43E, 5714272.47N
            1404.465 : 0748
                  Current Anchor # 11 Int. Location 669776E, 5713261N
                              ♥ 1 1WE 02:48:01 Iqeuf 1 ♥
                                                              ING IBACKING FIX
             Søs. 7 deg. True
                               sentem 7.171 qonb bebnetari of gra & gnA
                                           ° 3298699
                                N0178172
                                                                neog pul
300.50 Relative to Vessel Head
                                               865.00 metres
                                garinsə8
                                                                   Range
                              Laser : HELIDECK 669803.43E, 5714273.68N
            T404.465 : 0770
                              Vessel Datum : 669811.77E, 5714311.96N
                  Current Anchor # 11 Int. Location 669776E, 5713261N
                              A 1 Jabl 04:74:20 3MIT 0
                                                              TUG TRACKING FIX
             So7.1 deg. True
                              Tug Posn 669878E, 5713450N
Rng & Brg to Intended drop 215.1 metres
                                              830.00 metres
298.50 Relative to Vessel Head
                                Besurud
                              Laser : HELIDECK 669805.64E, S714277.17N
            T404.285 : 0740
                              669814.65E, 5714315.30N
                                                       Vessel Datum :
                  Current Anchor # 11 Int. Location 669776E, S713261N
                             A 1 Jaebl
                                           @ 11WE 02:46:30
                                                              TUG TRACKING FIX
             SIE.2 deg. True
                              197.1 metres
                                             ամգոր հետ եքույ ը։ ըրժ մ ըրդ
                                N7142172
```

CMPT 1189

**6**‡

01

0101

M001

00051-1

5712810.00

00 008899

ਮ⊃।1

Jeuroo We

၁၄

N

Ξ

neog pul

885.00 netres

Kguđe

1

```
MOOI
                MP!1
    0000111
                  ၁၄
    00 0408149
                   N
    00 055699
                    3
          Jaŭioo MS
                                                                     117
                                              eธเเ ⊤ฯหวุ
                                                            øιキ
                                                                                  zm +
                                                                               BIBI TAM2
                 4
    178 462
     # B(M) B(T)
     1.8
                9009
                 8 P S
     0.36
                 ճսչլ
     Σ3∵Σ
          Jaypaint
NIMERUA−1
               p,dg
     Ζ.
Κţ
     2.022
                 CWG
1
     2.525
1
                                           2011 T9N2
    145 S7 10E
                   0
    038 45 15S
              MUTAG
       7 Mar 1993
                                                                  ALLAPICIA yavruga lozofi
          BE: 2E
```

```
72.1 deg. Irue
                                                                                   Rng & Brg to Intended drop 299.9 metres
                                                                                     N8191172 , 3712078
Bearing 199,00 Relative to Vessel Head Achor #7 Socked Position,
                                                                                                                 lug Posn
                                                                                                   825.00 netres
                                                                                   Laser: HELIDECK 669812,56E, 5714273,18H
                                                                  Uessel Datum : 669812.90E, S714312.35N 6yra : 222.6041
                                                                        Current Anchor # 7 Int. Location 670834E, 5714734M
                                                                                   THE TRACKING FIX @ TIME 12:31:23 Ident 1 A
                                                                                  Rng & Brg to Intended drop 280.6 metres
                                                                   72.5 deg. Irue
                                                                                     670565E, 5714655N
                                                       Dearing 198.90 Relative to Vessel Head
                                                                                                   845.00 netres
                                                                                   Laser: HELIDECK 669811.19E, S714273.60M
                                                                  Usesel Datum : 669811.81E, 5714312.77M 6yro : 223.001
                                                                        Current Anchor 1 7 Int. Location 670834E, 57147348
                                                                                  THE TRACKING FIX @ TIME 12:31:16 Ident 1 A
                                                                   Rng & Brg to Intended drop 291.3 metres 71.5 deg. Irue
                                                                                     N8F8F172 , 3322078
                                                                                                                 neog pul
                                                       Bearing 198.00 Relative to Vessel Head
                                                                                                   835.00 netres
                                                                                   Laser : HELIDECK 669809, 98E, 5714272, 70H
                                                                  1401.455 : 0743 M28.1154172 ,335.118630 : muja0 faces)
                                                                        Current Anchor # 7 Int. Location 670834E, 5714734H
                                                                                  THE TRACKING FIX @ TIME 12:30:54 Ident 1 A
                                                                   73.1 deg. Irue
                                                                                  Rng & Brg to Intended drop 243.7 metres
                                                                                     NB994125 *3665029
```

Bearing 197.50 Relative to Vessel Head

```
zm'
                                                                     25
                  0009:1
                  00 01ZE1Z9
                                                                       N
                  00 01/899
                                                                         3
                                       SM Corner
                                                                                                                                                                ด้นอเ ⊺ฯหว<sub>ุ</sub>
               217 204
                                                               华S
                    # B(W) B(T)
                    0.4
                                                          9009
                                                              Pn8
299
                    G.S6
W
                                                             Buy
                    Z.83
                                     MINERUA-1
Kſ
                    Ζ.
                                                          p,dg
1
                    S'60Z
                                                             CWG
                                                             Брн
                   5.828
               145 27 10E
038 45 152
                                                                     Ø
                                                    MUTAG
                           E881 JBM 7
                                       36:11:5
                                                                                                                                                                                                                                               Racal Survey AUSTRALIA
                                                                                                                                                                       Rng & Brg to Intended drop 216.9 metres 203.9 deg. Irue
               Archo no natural
                                                                                                                                                                                                                     NE6SH12S '3916899
                                                                                                                                                                                                                                                                                             neo9 pul
                                                                                                                                         58.90 Relative to Vessel Head
                                                                                                                                                                                                                    Bearing
                                                                                                                                                                                                                                                                                                    Range
                                                                                                                                                                                                                                                       945.00 netres
                                                                                                                                                                                                                F92€F : HELIDECK 669804.90E, 5714273.30N
                                                                                                                                                                     Uessel Datum : 669809.94E, 5714312.15M Gyro : 229.501
                                                                                                                                                                                  Current Anchor & 2 Int. Location 668824E, 57143978
                                                                                                                                                                                                              ING INUCKING LIK 6 LIME 13:11:52 INGUF 1 B
                                                                                                                                                                      Rng & Brg to Intended drop 263.0 metres 215.3 deg. Irue
                                                                                                                                                                                                                     N809112S '3086899
                                                                                                                                                                                                                                                                                             lug Posn
                                                                                                                                                                                                                                                       895.00 metres
                                                                                                                                         62.30 Relative to Vessel Head
                                                                                                                                                                                                                    Bearing
                                                                                                                                                                                                                Laser : HELIDECK 669810.97E, 5714275.49N
                                                                                                                                                                    Vessel Datum : 669814.99E, 5714314.46H Gyro : 228.001
                                                                                                                                                                                 Current Anchor $ 2 Int. Location 668824E, 5714397M
                                                                                                                                                                                                             THE TRACKING FIX 8 TIME 13:06:27 Ident 1 A
               62.90 Relative to Vessel Head

223.5 deg. Irue

And And And Andrew Andre
                                                                                                                                                                                                               Rng & Brg to Intended drop 271.6 metres
                                                                                                                                                                                                                   M0624172 , 3210688
                                                                                                                                                                                                                 Bearing
                                                                                                                                                                                                                                                     855.00 netres
                                                                                                                                                                                                               Laser : HELIDECK 669808.38E, 5714272.05M
```

)

WDO I

Ab i T

KUNEE 8 BEUKING DISHFUK 148FE

| 510t; | 10 |

i 8 jazito danuui 8 oro bebrati f

170;

110;

110;

110; 130; Z 1

110: 1 3 10FF

130; 5 ;

```
from the state of 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RANGE & BEARING DISPLAY TABLE
WD01
           0009:1
                                                                                                                                                                                                                                                                                                             25
           00 0017178
                                                                                                                                                                                                                                                                                                                                    N
           00 018899
                                                                                                                                                                                                                                                                                                                                          3
                                                                                                                                     Janjoo Mg
```

110! 110: 11 1 110! 110 1011 1101 i B iIntended Drop B itaser Target 18! 1011 1 7 10FF 101 1 6 10FF 110! 130; 5 ; 1101 110: 1 i 3 iActual Orop 3 iWinch Offset 3 i 110; 1301 S 1 

385.00 netres Laser : HELIDECK 669801.91E, 5714274.77N Uessel Datum : 669808.78E, 5714313.34W Gyro : 232.20<u>4</u>1 Current Anchor # 8 Int. Location 670915E, 5714217M THE TRACKING FIX @ TIME 15:08:19 Ident 1 A

Bearing 222.50 Relative to Vessel Head

670185E, 5714238N

Rng & Brg to Intended drop 730.6 metres 90.5 deg. Irue

kng & Brg to Intended drop 735.4 metres 90.1 deg. Irue 670180E, 5714233N

Bearing 222.50 Relative to Vessel Head 380.00 netres Laser : HELIDECK 669801,72E, 5714274,89N Vessel Datum : 669808, 85E, 5714313, 41M Gyro : 232, 60½1 Current Anchor # 8 Int. Location 670915E, 5714217N THE TRACKING FIX E TIME 15:08:48 Ident 1 A

100

112 10FF

ING IKUCKING LIK 6 IINE 12:10:53 IGGUF 1 U

Laser : HELIDECK 669800, 76E, 5714274,17N Uessel Datum : 669808.50E, S714312.57M Gyro : 233.50±1 Current Anchor # 8 Int. Location 670915E, 5714217M

Range 380.00 metres

670178E, 5714230M ng Posn Bearing 221.90 Relative to Vessel Head

Rng & Brg to Intended drop 737.0 metres 89.8 deg. Irue

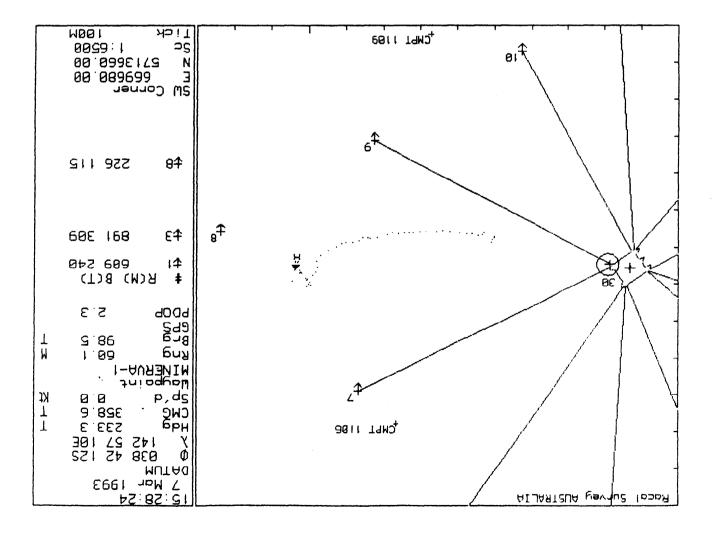
ING INACKING FIX & TIME 15:10:35 Ident 1 A

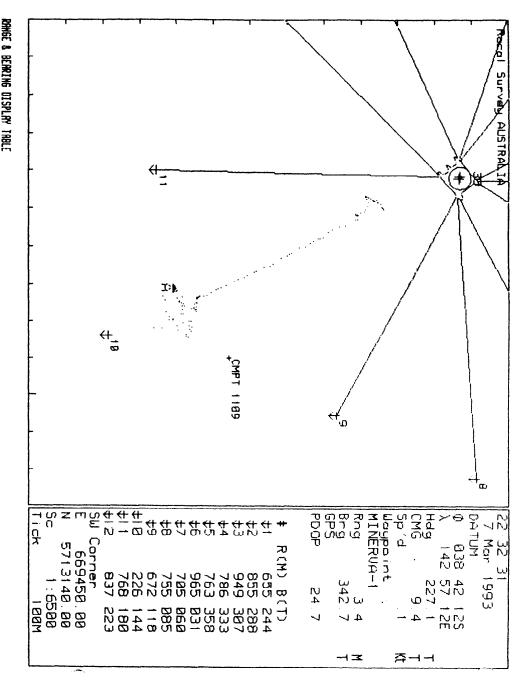
Current Anchor # 8 Int. Location 670915E, 5714217N

Laser : HELIDECK 669800.64E, 5714274.88M T\$05.255 : 0740 KIE.5184172 ,345.808630 : mused lessed

Range 110.00 metres Bearing 222.90 Relative to Vessel Head

670207E, 5714220H


Kng & Brg to Intended drop 708.2 metres 89.0 deg. Irue


Current Anchor # 8 Int. Location 670915E, 5714217N

ING IRRCKING FIX @ 11ME 15:10:44 Ident 1 A

```
43
           892 E.L
           142 889
                             14
            R(M) B(T)
             6 8
                           9009
                             Pn8
299
             2116
                            Бuу
             1.09
                                                                            EBB TAMO
                   NINERUA-1
                     Thiagpoint
                           p, dg
             3.835
                             CWC
                             БрН
             529, 4
            145 21 10E
            038 45 152
                                ø
                        MUTAG
               5:62:38
5:62:38
                                                                                              ALJARTEUA Yavaue lozofi
                                                                    Rng & Brg to Intended drop 78.4 metres 254.6 deg. Irue
                                                                                     NS06F172 , 3080633
                                                                                                               nso4 gul
                                                                                    Bearing
                                                                                                 900.00 netres
                                                                                                                 Kange
                                                         80.50 Relative to Vessel Head
                                                                                   669754.91E, 5714309.20N
                                                                                                          Laser : STARB
                                                                   Uessel Datum : 669810.45E, 5714311.40H Gyro : 229.701
                                                                        Current Anchor 1 3 Int. Location 669004E, 5714886M
                                                                                  INC IMMCKING LIX 6 11HE 14:20:43 I TOWN I B
6.70 Relative to Usessel Head Box 1. on Machay H. Os. 1.
                                                                    Rng & Brg to Intended drop 80.9 metres 257.9 deg. Irue
                                                                                     N1061-125
                                                                                             °3880699
                                                                                   Bearing
                                                                                                 895.00 netres
                                                                                                                 Kange
                                                                                   Laser: 518R8 669755, 40E, 5714310, 08M
                                                                   Uessel Datum : 669810.93E, 5714312.37N 6yro : 229.601
                                                                        Current Anchor $ 3 Int. Location 669004E, 5714886H
                                                                                  ING INBUXING FIX @ 11ME 14:56:28 Ident 1 A
                                                                    Rng & Brg to Intended drop 93.9 metres 259.1 deg. Irue
                                                                                             13260699
                                                                                                               neog pul
                                                                                     NIO6FIZS
                                                                                                 885.00 metres
                                                         Bearing 81.10 Relative to Usssel Head
                                                                                   Laser: STARB 669755.95E, 5714311.10M
        Commenced lowering
Anchor #3 to seebed.
                                                                   Uessel Datum: 669811.49E, 5714313.11N 6yro: 229.901
                                                                        Current Anchor # 3 Int. Location 669004E, 5714886H
                                                                                  TUG TRACKING FIX @ TIME 14:55:11 Ident 1 A
                                                                                              Rng & Brg to Intended drop
                                                                    95.4 metres 262.6 deg. True
                                                                                             3660699
                                                                                                               lug Posn
                                                                                     2514896H
                                                         81.00 Relative to Uessel Head
                                                                                    Bearing
                                                                                                 880.00 netres
                                                                                   Laser: 51888 669755,89E, 5714310,958
                                                                   1502.655 Datum : 669817.42E, 5714313.35M Gyro : 229.505
                                                                        Current Anchor # 3 Int. Location 669004E, 5714886H
                                                                                  THE TRACKING FIX PINE 14:55:00 Ident 1 A
                                                                    Rng & Brg to Intended drop 105.0 metres 260.9 deg. Irue
                                                                                     MO06F178 ,3801633
                                                         81.00 Relative to Vessel Head
                                                                                    Bearing
                                                                                               875.00 netres
                                                                                                                 Kange
```

Laser: SIARB 669755.24E, S714312.04N





														75	2
	12	=	=	9	8	~	σ	5	-	w	2	_	1	Slot!	9
-	Rctual	Actual	Retual	Actual	Actual	Actual	Rctual	Actual	i Actual	Actual	Actual	i Actual	-		משומכ פי מבשמדעם הזכנרטו נופרה
į	Drop	Pop	Pop	Drop	무	유	Pop	마	Prop	Orop	Dr op	Orop		7	נוס טון
ŀ	12	=	=	9	œ	~	δ	5	-	S	2	_			ב
Ī	121Uinch	II Hinch	101Uinch	Hinch	Winch	Hinch	Hinch	Hinch	Winch	Linch	Uinch	Winch			וז ווסכ
	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Offset		3	,
1	121	=	<u>=</u>	9	œ	~	5	5	-	w	2				

_	
_	9
~	CUKTUD
_	חל שנרענ
	ומפרנ
ì	

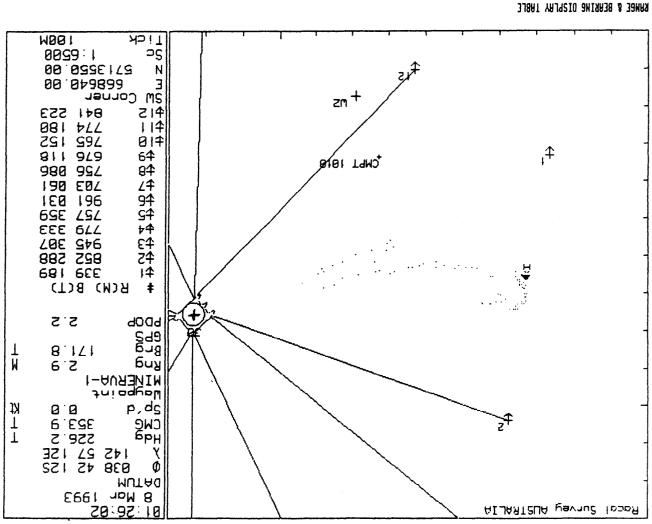
Slot    To   From								~-		-=
Intended Drop 1   Laser Target Intended Drop 1   Laser Target Retual Drop 2   Winch Offset Retual Drop 3   Winch Offset Retual Drop 4   Winch Offset Retual Drop 5   Winch Offset Retual Drop 6   Winch Offset Retual Drop 7   Winch Offset Retual Drop 8   Winch Offset	8	7	6	տ	-	w	2			탈
op 1 iLaser Target 2 ibinch Offset 3 ibinch Offset 4 ibinch Offset 5 ibinch Offset 6 ibinch Offset 6 ibinch Offset 8 ibinch Offset	Actual	ific tual	(Actual	i Actual	lActua]	(Actual	(Actual	Intend	i	
	Dr op	Drop .	Drop	Drop	Prop	마	Drop	ed Orop		70
	æ	7	9	5	4-	ű	2		1	
	Hinch	Hinch	Uinch	Hunch	(U) nch	Hinch	<b>!U</b> inch	Laser	i	
181 2 2 3 3 4 4 1 7	Offset	Offset	Offset	Offset	Offset	Offset	Offset	Target		70
	8	~	6	5	-	<b></b>	2	<del>=</del>	1	
								==	-'-	

Re-Run Anchor #1

```
106 IRRCKING FIX @ IIME 01:25:29 Ident 1 A

Current Anchor 1 1 Int. Location 668906E, 5713881M

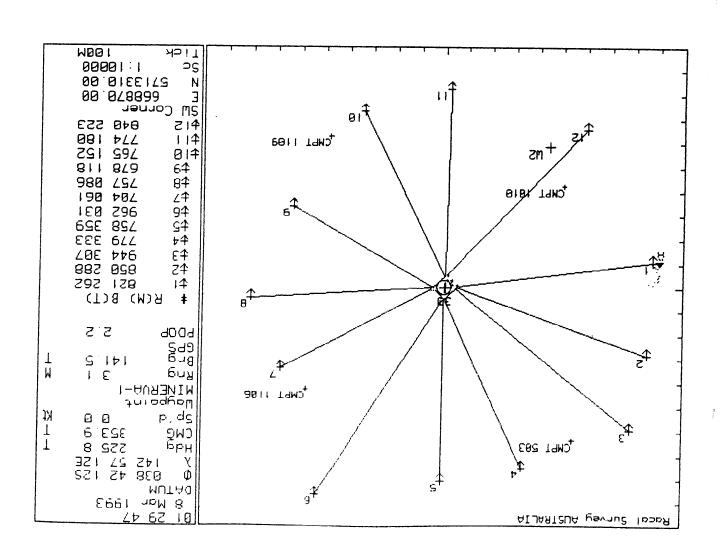
Uessel Datum: 669869.08E, 5714309.78M Gyro: 226.10½1


Laser: HELIOECK 669866.35E, 5714270.70M

Range 900.00 metres Bearing 39.00 Relative to Uessel Head

Ing Posn 668968E, 5714214M

Rng 8 Brg to Intended drop 338.9 metres 189.3 deg. Irue


Raccol Survey ALSTRALIA
```



|-----121 Actual Drop 12:Winch Offset 12: ill iActual Drop Ilitinch Offset III 1 10 !Nefns] Drop 101 Jactto Annibiot 1 6 Beetto daniul 6 : 9 : Hectus) Drop 8 Winch Offset 8 qond Lautofi 8 ; i S Jachlo daniwi S 1 SiActual Drop i d isteral Drop 6 Winch Offset 6 i 5 illinch Offset 5 t 5 ! Actual Drop 1 | Uinch Offset 1 | qond [sutofi f ! i & iActual Grop 3 illinch Offset 3 i 1 2 !Actual Orop 2 !Winch Offset 2 ; i i iActual Drop i iWinch Offset i i 01 fron ; 130[5]

# APPENDIX E ANCHOR PATTERN DIAGRAM





# APPENDIX F DGPS FINAL POSITION ANALYSIS PRINTOUTS - MINERVA-1



Convergence..... -1.221 Mean Grid Heading......229.7 שערם לסררפכלגסח... +0.0 Mean Corrected byro...228.5 695 Weighting Option - Constellations given equal weights 645 v R2.06 09:28:21 8 Mar 1993 to 10:32:22 8 Mar 1993 FINAL POSITION ANALYSIS: BYFORD DOLPHIN RAM MINERUR - 1

#### SECONDRRY COMPUTATION - Del Morte

#### CONSTELLENT USED

#### 24,20,12,03 7 24'50'15'03'52'15 111 K 24,20,12,03,25 11 52,50,61,51,05 20,12,16,03 7 52,81,51,05 1 24,20,12,16,03,25 15 24,20,12,16,03 24,20,12 £ 24,20,12,16,03 7 J 24,20,12,13,16,03 8 24,20,12,16,03 Const. # Samples 8.U.2

#### Total number of samples used = 221

#### COMPUTED FINAL ANTENNA POSITION

# WGS 84 Spheroid

Height			1.45	Retres			·a ·s)	0.00 Metres)	(
Longi tude	741	930	H ZS	16.042	<b>33</b> S	3	(2°D)	1.00 Metres)	(
Latitude	38	930	4S H	105,304	<b>33</b> \$	S	.0.2)	1.09 Metres)	(

	10.82 Metres	JApisH
3	338 860.11 MIN 52	630 SMI sbujignoj
S	42 MIN 12.620 SEC	Latitude 38 OE6
	84 Spheroid	AUSTRALIAN NAT 19

669832.27 Metres Eastings HINHTU

5714299.63 Netres Northings

669864.83 Metres Longitude 142 0EG 57 MIN 12,434 SEC E Latitude 38 DEG 12 MIN 12,178 SEC 5 AUSTRALIAN MAT 1984 Spheroid COMPUTED FINAL DATUM POSITION

S214312.58 Metres Northings Eastings MINHTU

669869.70 Metres egarte63 MINMIU Longitude 142 0E6 57 HIN 12,640 SEC E Latitude 38 0EG 42 HIN 12.350 SEC 5 AUSTRALIAM MAT 1984 Spheroid INTENDED FINAL DATUM LOCATION

Northings S714307.17 Metres

zi noifizof mufeO lenil

1

7.27 Metres (spheroidal distance) bearing 316.79 I from the Intended Loc.

#### TERTIARY COMPUTATION - Tau

#### CONSIETEUTIONS DEED

ŧ2	W
**	7
l	K
ı	1
l.	I
l	H
S	9
ı	1
ı	3
•	0
81	)
7	8
85	¥
\$ Sanples	.tenoJ
	1 1 1 5 1 1 8 8 7 8 8

#### ISS = beeu estques to madeun latol

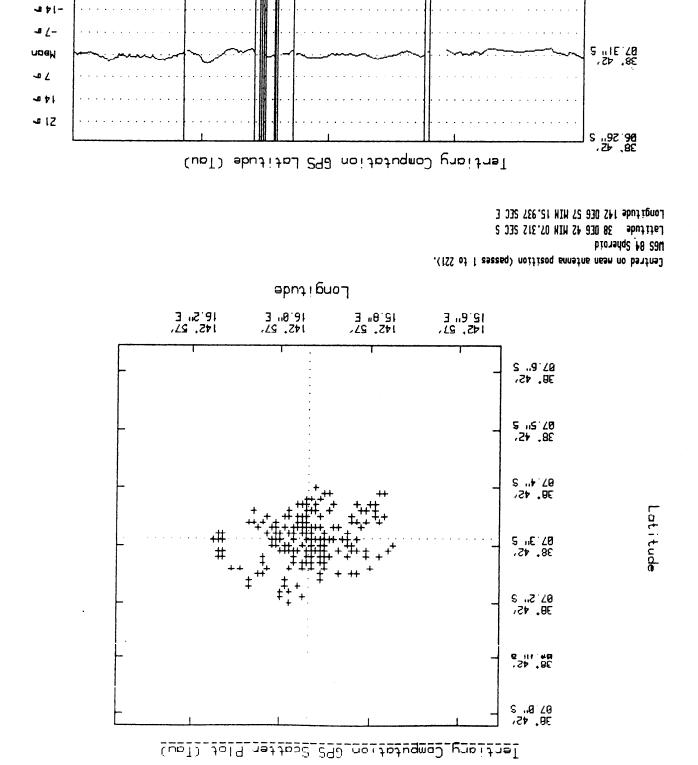
(13)

#### ·0·s) 24.94 Hetres Height .0.2> Longitude 112 DEG 57 MIN 15.893 SEC E .0.2) Latitude 38 0E6 12 MIN 07.310 SEC S U65 84 Spheroid COMPUTED FINAL MATERIAL STITON

41.67 Netres Longitude 142 DE6 57 HIH 10.949 SEC E Latitude 38 DE6 42 MIN 12,626 SEC 5 AUSTRALIAN NAT 1984 Spheroid

5714299.54 Metres Horthings 669828.67 Metres egatites? MINMIU JapisH

5714311.03 Metres Northings 669862.46 Metres **Epotites**3 MTNMTU Longitude 142 DE6 57 MIN 12,337 SEC E Cattlude 38 0EG 42 MIN 12,230 SEC 5 AUSTRALIAN NAT 1984 Spheroid COMPUTED FINAL DRIUM POSITION


S714307.17 Metres Horthings 669869.70 Metres egniteel MINMIU Longitude 112 0E6 57 HIN 12.610 SEC E Latitude 38 DE6 42 MIN 12,350 SEC 5 AUSTRALIAN NAT 1984 Spheroid INTENDED FINAL DATUM LOCATION

8.21 Metres (spheroidal distance) bearing 296.83 I from the Intended Loc. rinal Datum Position is

(zentel dE.

(297 Hetres)

(testres)



Time (Start Date 8 Mar 1993) Tertiary Computation GPS Longitude (Tau)

89:44:55

10:00:55

17 34" E

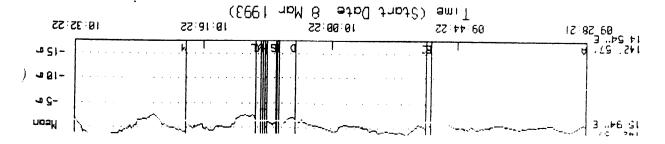
88, 42° | 9 88, 36" S 38° 42° |

131 181 13

-21 ف

18:35:55

10:10:55


#### Analysis data stored to file ANALYSISI

Tertiary Computation (WGS 84 - Tau)

Centred on mean of antenna position (passes 1 to 221).

Latitude 38 0E6 42 MIN 07.312 SEC 5 Sd 1.205 Netres

Longitude 142 0E6 57 MIN 15.937 SEC 8 Sd 1.922 Netres



)

# APPENDIX G SATELLITE AVAILABILITY PREDICTIONS



The section of the section of BULTITAL Followish 1100m & HoF

r ple setriverer vremorrataoop TA29AMMi adr or amorbov adT

Hanmizh (TRUE)		noijiso9	eatilite 
.Gt .IZ .09 9t .9I .∠∠Z	ZT LZ STZ STG ST 10	180. 0. 0. et. 20. 0.	ж.и.т Я.о.я
# <u>2</u> 2	ZI .6 .59-	-22 ₉ 0 ₉ 0 ₀	A.O.R (WEST)
"GI 291 "ZIZ	-01 - <del>1</del> 4 -15-	-12, 20, 0,	(TSAB) A.O.A

Inmarsat Elevations in RED are below the horizon Inmarsat Elevations in BLUE may be difficult to track reliably < Any Key To Continue, SHIFT PrtSc to Print or O to Guit >

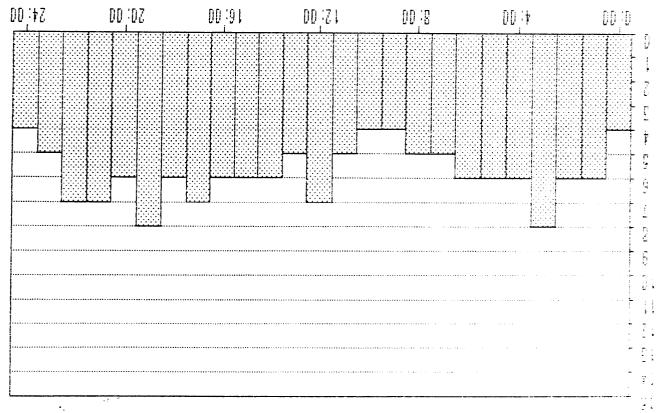
)

For a mobile location of LATITUDE 142° 42° 12" LONGITUDE 142° 57° 12"

The distances to the RACAL SKY-FIX reference stations are :-

ण्य ००	)Z 4846 - GB5	₩3 000Z-00SI -	200 FW BFNE	is of qu	) - MOTTBA
8067	<b>76</b> 06	.ZZ .ZZ .I <del>t</del> I	Zt .t .St	0#I	24PP0R0
Z00t	91 <b>7</b> 7	114. 10. 16.	18, 18, 25,	150	HONE KONE
2444	1929	102. B. 22 <i>n</i>	2.50.0.	101	LERENGGANU
2458	Z <b>G</b> 29	no lo azr	40 292 stl	OII	HTINUW
<i>1222</i>	0869	102. <del>4</del> 1. 561	11 L I L V V V	001	SINGHEORE
<b>⊅</b> ⊅0⊆	7 t 7 S	82 .49 .211	nIG .22 .t	ZOI	IAIM
ILYR	2575	ZI .Zt .9II	.95 .62 .0Z-	SOZ	DAMPIER
1702	9912	120. 201 LOS	-15, 52, 26 ₀	.ZOZ.	DARWIN
1991	0 <b>9</b> 02	ISS. 12. 2d.	-1\s 22. 29 _"	$\sqrt{\mathbf{x}}$ oz	*BEOOWE*
1284	₽9 <u>9</u> 2	TIR. RZS dAn	-21. d8. 25 _"	707	PERTH
9121	62 <del>1</del> 2	192 .St .St!	-19. 2t, ZZ"	102	IENS
06 <del>1</del>	806	121. It. 5t.	-22. 28. IZn	907	DNEA.
982	025	128. 25.	-22. 12. 25m	SOZ	ADELAIDE
.eimN	.entm3	Sbutignod	sbujijal		Ref. Stn.

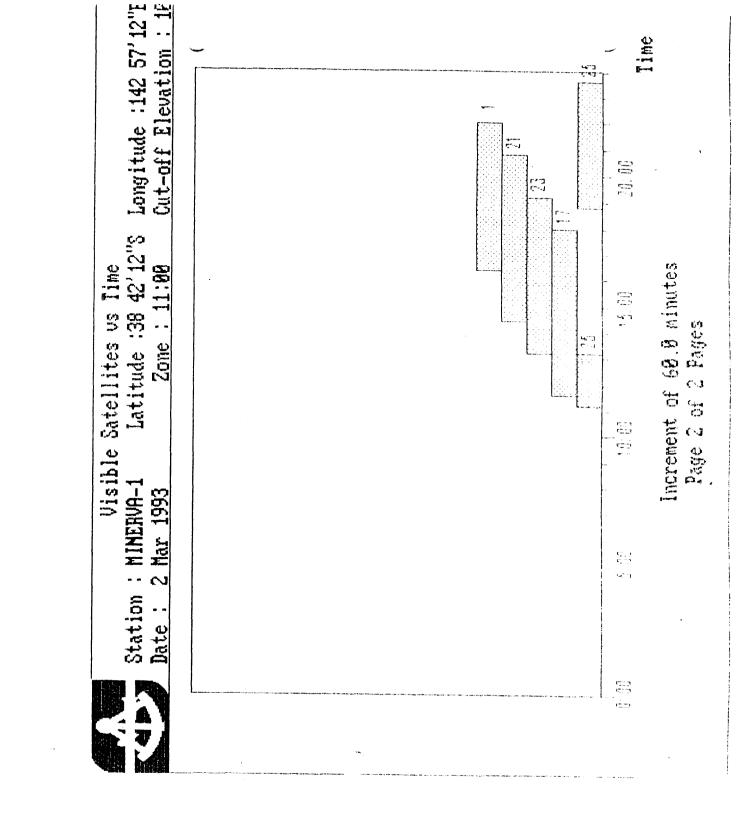
TIUD at 2 to TMIPP of Search TRIMS tanion wew has yes with


Aumber of Visible Satellites us Time

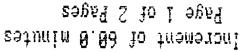
00:11 : anoS

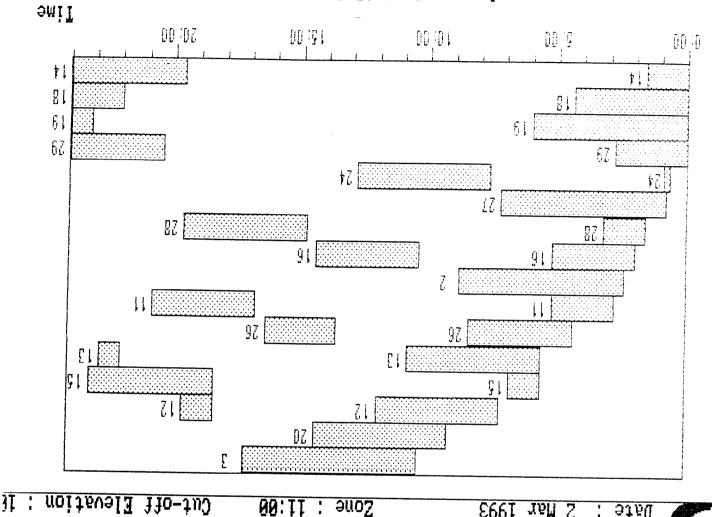
Station : MIMEBUA-1 Latitude :38 42'12"S Longitude :142 57'12"F

Date : 2 Mar 1993


Mumber of Satellites




Increment of 60.0 minutes


∌Mi∏

Cut-off Elevation : 16



T. American





15 6

Visible Satellites us Time

Jime Increment of 48.8 minutes 24:00 50,00 00/91 15,00 [][] [; 00/0 [], FI dodd Mumber of Satellites 9 Channel Receiver Cut-off Elevation: 1 88:11 : 900Z Date: 2 Har 1993 rongitude :142 57'12" Patitude :38 42'12"S Station : MINERUA-1

HII-In-View FDOP us Iime

## All-In-View PDOF for MINERVA-1

Toudifude : 142° 57° 12" E Latitude : 38° 42° 12" 5 Cated : Glevation 19°0° Cut-off Elevation 19°0° Cut-off Elevation 19°0°

9.99 9009 9218 900 9.99 0.82 9.2 9.2 4.2 8.5

#### Redem To Amor Abely

MIMERVA-1	707	PD0P	ΜŒ	₹^-	uI-	TT	$\nabla$

Cut-off Elevation : 10°

Date : 2 Mar 1993 Time : 0:00 -> 24:00

9.25 2.5 2.5 6.1 2.2 6.2 7.2 7.2 1.2		0:18 0:0 0:20 0:0 0:0 0:02 0:02 0:02 0:02 0	00:42 20:02 20:02 20:02 20:12 20:12 20:12 20:12 20:02	Z2:0Z Z2:0Z Z2:0Z Z2:0Z Z2:0Z Z1:0Z Z0:1Z Z0:1Z Z0:1Z Z0:4X	14 18 16 26 14 18 16 26 26 14 12 18 26 26 14 12 18 26 26 17 14 12 18 26 26 1 14 12 26 26 1 14 12 26 26 1 11 14 12 21 22 26 1 11 14 12 21 22 26 1 11 14 12 21 22 26
tes 9009	esia 9009			asiA amiT	noijaliatanoj ajiliajaS

sabey 2 to 2 apa4

•

OO:II : auoz

Toudifnde: 142. 27. 12" E

# APPENDIX H DAILY LOG SHEETS



# RAVAL

# RACAL SURVEY AUSTRALIA LIMITED

DAILY RECORD SHEET

WX.	SeaState	Swell	Wind Dir.
00	,		
06vz*			
1200			
1900			

Client: BHP			Job No: 2058			Date : 9.3.93   Vess	ei: Byford 1 PACIFIC 1	DCPM	W 180	Anchors /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid	Recovered
SKYFIX			STD 12 / VELOCITY PROBE			K.EDDY	ITEM	USED	REMAIN		
SYLEDIS ,			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER				
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY	E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				
GNS			SPARKER (DELPH/EPC)				DISKS				
GYRO			CORING (GRAVITY/GRAB)				PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY			UNDERWATER TRACKING			P. RILEY					
SONARDYNE COMPATTS											
SONARDYNE PAN											
SONARDYNE(Dunker/Winch/Fish)											
DIARY OF OPERATIONS:											
0630: RACAL perso	nne	1 a	leport Pacific Morli arrived Melboune of deport Melboune Melboune for Barry	$\sim$ .	for	Portland airport. E	TD 0720h	rs .			
oвоо: ч "		C	errived Melboune	airpo	»-t	from Portland.					<del></del>
0840 : J.TIGHE.	K . I	PERRY	deport Melborne	Ar	Pa	25th ETA 1040 (	WST)				
K.EDDY C	Re per	ts 1	Melbarne for Barry	B ي	Beach	•					
									· <del></del>		
	·										
									<del></del>		
		·					·	····		w	
							•				

Forms are to be completed dolly in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

ransponders to be listed by type and serial numbers.	Following codes to be used: L - Laid,	R - Recovered, FR - Failed to Reply, FS - Failed to Suri	tace

20.

Signature

SURVEYOR/ENGINEER

WHITE | Commercial Office

BLUE : Operations
YELLOW : Clients Representative

Signature

CLIENTS REPRESENTATIVE

## RACAL SURVEY AUSTRALIA LIMITED

#### DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1800			1

Client: BHP			Job No: 2058			Date : 3-3-93 V	essel : BYFORD DE	ZPHI1 MARL	W.	Anchors /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables		<u> </u>	Laid	Recovered
SKYFIX RIG POSIT	1		STD 12 / VELOCITY PROBE			K.EDDY	ITEM	USED	REMAIN		503
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER				1106
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY	E/SOUNDER PAPER				1109
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				1010
GNS PC	1		SPARKER (DELPH/EPC)				DISKS				
GYRO	1		CORING (GRAVITY/GRAB)				PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY GOLF USER	1		UNDERWATER TRACKING			P. RILEY					
SONARDYNE COMPATTS	4										
SONARDYNE PAN											
SONARDYNE(Dunker/Winch/Fish)											
DIARY OF OPERATIONS:	•	· —	•								<del></del>

*	*
---	---

1100: Find DGPS position of Bylond Dolphin over Minerva-1 derived from Skyfirtfrimbed DNAWN
Lat: 38° 42' 12-23" > Long: 142° 57' 12-337" E Eing 669 862.46m Nings 5714 311.03m
this placed the drillstem 8-2 m on a bearing of 295.80 (T) from the intended location.
1330: Personnel and survey equipment transfer to the Pacific Martin by basket.
1400: Commerced recovering Sonardyne Compaths at Minera. 1 location.
1450: All Somardyne Compalls recovered.
1500: Pacific Martin departs Minerian location Por Portland. ETA 2130.

Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

indisely to be libred by type and better tollowing become a management of the second o	Transpe	x to be listed by type and serial numbers.	Following codes to be used: L - Laid, F	Recovered, FR - Failed to Reply, FS - Failed to Surface
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------	--------------------------------------------	-----------------------------------------	---------------------------------------------------------

19

SURVEYOR ENGINEER

WHITE BLUE

: Commerial Office : Operations

ture

CLIENTS PRODECENTATIVE

# RACAL

## RACAL SURVE AUSTRALIA LIMITED

#### DAILY RECORD SHEET

WX	State	Swell	Wind Dir.
0000	(cal		
0600			
1200			
1800			

Client : BHP			Job No: 2058			Date: 8-3-93 Vess	el :134FORD [	) OLPI	11N	Anchors /	Todas
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid	Recovered
SKYFIX RIC PORT	$\int$		STD 12 / VELOCITY PROBE			K. EDOY	ITEM	USED	REMAIN		
SYLEDIS			ECHO SOUNDER (20/25)			J.TIGHE	SIDESCAN PAPER				
MICROFIX			SIDESCAN (595/53I/PINGER)			K- PERRY	E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				
GNS PC	1		SPARKER (DELPH/EPC)				DISKS				
GYRO	~		CORING (GRAVITY/GRAB)				PRINTER CART				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY GOLF LASER	<b>✓</b>		UNDERWATER TRACKING			P. RILEY					
SONARDYNE COMPATTS	4										
SONARDYNE PAN	<b>✓</b>										
SONARDYNE (Dunker/Wingh/Flee)	5										
DIARY OF OPERATIONS:			•								
0028! Commerced	٠,	NNIN	g anchor #1 - B	ONRU	rista						
0035: Problem	نممد	<u> </u>	andor #1, recover	in	to	re-ma					
0059: Re-commence	ed	<u>~~</u> ~	ing enchor #1								
UIII: Anchor #1	ص و	~ st.	m rollor and goi	ns la	<u> حو</u>	abed.					
0125: Anchor #1	ے ت	the	scaloed.	<u> </u>							
2130: Byland Dolph	:~	CON	sleted pre-tensionin	<u> </u>	<u>all a</u>	uchors.		····			
Drillsten to	<b>.</b>	Julio	Edion 2.2ms @ 140	فيز							
0135: Bylord Dapli	~ (	COMM	eneed ballading do	کسر .							
0930: Commerced	<u>cdle</u>	Ling	DGPS data from	. 5	skytix	and Od Node	1008 - Shi	NA.	Reli	1-milak	ldelade.
1 1111	عران	ノ	DGPS ddn.		3		•	3			
	70	7	7								

Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Failed to Reply, FS - Failed to Surface.

SURVEYOR/ENGINEER

WHITE : Commercial Office
BLUE : Operations

e *Riley* 

# RACAL

## RACAL SURVE AUSTRALIA LIMITED

#### DAILY RECORD SHEET

WX	State	Swell	Wind Dir.
0000	(cal		
0600			
1200			
1800			

Client : BHP			Job No: 2058			Date: 8-3-93 Vess	el :134FORD [	) OLPI	11N	Anchors /	Todas
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid	Recovered
SKYFIX RIC PORT	$\int$		STD 12 / VELOCITY PROBE			K. EDOY	ITEM	USED	REMAIN		
SYLEDIS			ECHO SOUNDER (20/25)			J.TIGHE	SIDESCAN PAPER				
MICROFIX			SIDESCAN (595/53I/PINGER)			K- PERRY	E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				
GNS PC	1		SPARKER (DELPH/EPC)				DISKS				
GYRO	~		CORING (GRAVITY/GRAB)				PRINTER CART				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY GOLF LASER	<b>✓</b>		UNDERWATER TRACKING			P. RILEY					
SONARDYNE COMPATTS	4										
SONARDYNE PAN	<b>✓</b>										
SONARDYNE (Dunker/Wingh/Flee)	5										
DIARY OF OPERATIONS:			•								
0028! Commerced	٠,	NNIN	g anchor #1 - B	ONRU	rista						
0035: Problem	نممد	<u> </u>	andor #1, recover	in	to	re-ma					
0059: Re-commence	ed	<u>~~</u> ~	ing enchor #1								
UIII: Anchor #1	ص و	~ st.	m rollor and goi	ns la	<u> حو</u>	abed.					
0125: Anchor #1	ے ت	the	scaloed.	<u> </u>							
2130: Byland Dolph	:~	CON	sleted pre-tensionin	<u> </u>	<u>all a</u>	uchors.		····			
Drillsten to	<b>.</b>	Julio	Edion 2.2ms @ 140	فيز							
0135: Bylord Dapli	~ (	COMM	eneed ballading do	کسر .							
0930: Commerced	<u>cdle</u>	Ling	DGPS data from	. 5	skytix	and Od Node	1008 - Shi	NA.	Reli	1-milak	ldelade.
1 1111	عران	ノ	DGPS ddn.		3		•	3			
	70	7	7								

Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Failed to Reply, FS - Failed to Surface.

SURVEYOR/ENGINEER

WHITE : Commercial Office
BLUE : Operations

e *Riley* 

# MINV1/PE900064/P679

## RACAL SURVEY AUSTRALIA LIMITED



Client : Dall D

#### DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1800	1		1

Client: PHH			Job No: 2058			Date : 7-3-93 Ves	sel: Byroan	Down	HIN	Anchors /	Todas
RACAL Equipment on Board	Op	NonOp	RACAL Equipment on Board	Op 1	VonOp	RACAL Personnei	Consummables			Laid	Recovered
SKYFIX RIG PORC	<b>/</b>		STD 12 / VELOCITY PROBE			K.EDD/	ITEM	USED	REMAIN	10	
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER				
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY	E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				
GNS PC	1		SPARKER (DELPH/EPC)				DISKS				
GYRO			CORING (GRAVITY/GRAB)				PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY GOLF LAGER	\		UNDERWATER TRACKING			P. RILEY		İ	<u> </u>		
SONARDYNE COMPATTS	4										
SONARDYNE PAN	<b>/</b>								<b>†</b>		
SONARDYNE (Dunker/Which / Figh)	1								<del> </del>		
DIARY OF OPERATIONS:			•	I				·I			.L
1920 - Recovering		260	- #10 - not hold:			<del></del>	W. C.		<del></del>		
2045- Anchor #1		۰ ح	se recovered - not	haid:	<u> </u>	· · · · · · · · · · · · · · · · · · ·					
2121 - Anchor #1			y to be re-nn.	NOIDI	<del></del>				·		
2204- Commenced				it 10	_ i	FAT Sword.		-			
			no over roller as								
2231 - Anchor #	OI OI	90:1		-co inc	<u> </u>			<del></del>	·		
- Insurv					<del></del>						
			<del></del>								
		*			· · · · · · · · · · · · · · · · · · ·			-		L	

Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

Transport a to be listed by type and serial numbers. Following codes to be used: L - Laid, R. *scovered, FR - Failed to Reply, FS - Failed to Surface.

Joh No : 7 - -

17

lure

SURVEYOR ENGINEER

WHITE : Commerial Office
BLUE : Operations

S re

Alley

# RACAL SURVEY AUSTRALIA LIMITED



ature

## DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir.
0000	HOD	1-2	125-25
0600			
1200			
1800			

Client: BHP			Job No: 2058			Date : 7-3-93	Vesse	1 : B45020	Dowi	HIN	Anchors /	TRAIS
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel		Consummables			Laid	Recovered
SKYFIX RIG PORT	$\int$		STD 12 / VELOCITY PROBE			K. EDOY		ITEM	USED	REMAIN	6	
SYLEDIS			ECHO SOUNDER (20/25)			コ. ていた		SIDESCAN PAPER				
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY		E/SOUNDER PAPER			9	
ARGO			BOOMER (DELPH/EPC)					ELICS PAPER			12	
GNS PC	/		SPARKER (DELPH/EPC)			·		DISKS			S	
GYRO	<b>V</b>		CORING (GRAVITY/GRAB)					PRINTER CART.			10	
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel		EPC ROLLS			4	
telemetry Golf Laser	1		UNDERWATER TRACKING			P. RILEY					11	
SONARDYNE COMPATTS	4										€7	
SONARDYNE PAN	<b>J</b>									,	2	
SONARDYNE (Dunker / Winch / Phop)	5											
DIARY OF OPERATIONS:												
1100- B. C. d Dod	in	PKP	aring to run and	ممل	#2							
1225- By God Dolp	him	$\sim$	ining anchor #7	JF.	<u> </u>	Sword.			_			
1231 - Anchor #7	O15		Senbed									
1250- Commenced	~~~	,~<	anchor #2 - Bon	ماداي	۸.							
1301 Anchor #2		•										
1311 - Anchor #2	ر <u>د</u>	) . [	1 1									
14d- Commerced	~~~	ننمر	anchor # B - Far	SNO	ord.							
1 1		,	anchor 48 - and			ed.						
1428- Commerced uning anchor #13- Bonavista.												
1455 - Commenced lowering anchor #3 to the seabed												
1510 - Re-connerad raning and #8												
1512- Anchor #3	Or.	<u>    th                                </u>	_ seabed	Red	<del>to</del>	1700 , 6/3						
Forms are to be completed doily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.												
Transpo to be listed by type and	serial	numbers.	Following codes to be used: L - L	.aid, F	Recove	ered, FR - Failed to Reply,	FS - Fo	niled to Surface.	4			15.

# RACAL

# RACAL SURVE' AUSTRALIA LIMITED

#### DAILY RECORD SHEET

WX	State	Swell	Wind Dir.
0000  -			
0600			
1200			
1800			

Client: BHP			Job No: 2058			Date : 7-3-93 Ves	sel: Byford D	)owPil	'n	Anchors /	TROPE		
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid	Recovered		
SKYFIX RIG PORT			STD 12 / VELOCITY PROBE			K.EDDY	ITEM	USED	REMAIN	6			
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER			1			
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY	E/SOUNDER PAPER			9			
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER			12			
GNS PC			SPARKER (DELPH/EPC)				DISKS			3	3		
GYRO	/		CORING (GRAVITY/GRAB)				PRINTER CART.			5			
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS			10			
TELEMETRY GOLF LASER			UNDERWATER TRACKING			P. RILEY	PRINTER PAP	0.5		4			
SONARDYNE COMPATTS	4					,				11			
SONARDYNE PAN	/												
SONARDYNE (Dunker/Winch/Fligh)													
DIARY OF OPERATIONS:													
0240: Changed	Com	puter	time to E.S.7	۲.									
0308: Running #	=10	An	ehor F/Sword.										
0320: #10 And	wr	at		ابع	to s	icabod.							
0333: #10 Anc	hor	on	bottom.	Re	rn	1820 hs, 7/3	and the second s						
			Anchor # 4										
1			r bottom										
			vout start.										
											<u></u>		
0549: Anchor # 11 on the sembed 0711: Byford Dolphin to recover anchor #3 and rach it as it is crossing over anchor #2													
chain which has to be chased out with Stopards flook - Pernant parted quality													
0855: Anchor #3 recovered and on # bolston													
				, , , , , , , , , , , , , , , , , , ,									
Forms are to be completed daily in duplica whichever is the earlier, when they	ite on a	il vessels	. Each form should be countersigned b	y the Cl	ients Rep	resentative, the original being retain	ed on board until the ne	xt crew	change o	r at the end	of job,		

Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Failed to Reply, FS - Failed to Surface.

SURVEYOR/ENGINEER

WHITE : Commerial Office
BLUE : Operations

ure

Rily

14.

# RACAL

# RACAL SURVEY AUSTRALIA LIMITED

## DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1000			

Client : BHP	<u> </u>		Job No: 2058			Date : 6-3-93 Ves	sel : Byford	Darpi	1 180	Anchors /	Todre
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables	۲۰۰۰		Laid	Recovered
SKYFIX RIG PORT	1		STD 12 / VELOCITY PROBE		1	K. EDOY	ITEM	USED	REMAIN	6	
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER			i	
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY	E/SOUNDER PAPER			9	1
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER			12	
GNS PC	<b>/</b>		SPARKER (DELPH/EPC)				DISKS			3	
GYRO	<b>/</b>		CORING (GRAVITY/GRAB)				PRINTER CART.			5	
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY COLF LASER	<b>✓</b>		UNDERWATER TRACKING			P. RILEY					
SONARDYNE COMPATTS	4										
SONARDYNE PAN	<u> </u>										
SONARDYNE (Dunker / Winch / Fieth )	J										
DIARY OF OPERATIONS:		· · · · · · · · · · · · · · · · · · ·			·						<del></del>
2338- By God Dulp	hin	رص	mnerced moving b	onek	, to	wards Mineria	location, bo	Core	~~~	ING GAC	hor # 11
			٥,				,			٠- ر	
7-3-93	ENE	OF	Summer Time								
2002 - Problems	Min	, 6	rake on anchor	#5	لبنا	idlass. Rin und	de to move	. ba	ed 1	0 100	alion
Drillaten	10	ż	cation 173m @			<b>3</b>					
0020- Brake or		an ch	or #5 windless h			on a replaced.					
			hing by anchor #				sik				
			#11 archar				· ·	•.		<del> </del>	
0114 - #11 turned, raised for re-lowering.											
0124 - #11 to be re-run commesced winch #11, burst hydrauke hose (30 minst repair)											
0215 - # 10 anchor to be run next on For Sword; BN/ste working on archor cobje/claim											
Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job,											
	whichever is the earlier, when they should be returned to the PERTH office.										

: Commerial Office

## RACAL SURVE AUSTRALIA LIMITED

#### DAILY RECORD SHEET

1	WX	State	Swell	Wind Dir.
	0000		<u> </u>	
	0600			
	1200			
	1800			

Client : BAP			Job No: 2058			Date: 6-3-93	Vess	el : Buford I	Jo-51	111	Anchors /	Todas
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel		Consummables			Laid	Recovered
SKYFIX RIG PORT	<b>/</b>		STD 12 / VELOCITY PROBE			K. EDOY		ITEM	USED	REMAIN	6	
SYLEDIS			ECHO SOUNDER (20/25)			J.TIGHE		SIDESCAN PAPER			(	
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY		E/SOUNDER PAPER			9	
ARGO			BOOMER (DELPH/EPC)					ELICS PAPER			12	
GNS PC	/		SPARKER (DELPH/EPC)					DISKS			3	
GYRO	<b>√</b>		CORING (GRAVITY/GRAB)					PRINTER CART.			5	
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel		EPC ROLLS				
TELEMETRY GOLF LANCE	/		UNDERWATER TRACKING			P. RILEY						
SONARDYNE COMPATTS	4											
SONARDYNE PAN	<i>\rightarrow</i>											
SONARDYNE (Dunker / Winch / Flat)	>											
DIARY OF OPERATIONS:												
1408-Commenced	loi	محذام	g auchor #9 to	th	ملميح	ed						
1425 - Anchor Ha	2	the	sealed.									
1427 - Commenced	la	سابر	enchor HIZ to	the	desse	ed again						
1431 - Anchor #1:	2 (	on tl	3			3						
1615 - In atcepting				both	> _P	ennant wips	PAG	ted.				
1700- Commenced	)	wing	· · · · · · · · · · · · · · · · · · ·	<i>ب</i> ہ خ	mond	•						
1713 - Commerced	la	ر در در الم	1 .1 - 1	He		1 .						
1713- Commenced lowering anchor #3 to the sealed 1716- Anchor #3 on the sealed Repun 1512ts, 7/3												
1824 - Commerced runing anchor #5 - Far Sword												
1840 - Anchor#5 on the crobed. E 669871 N. 57/5/17												
1923 - Byland Dolphin skidding over to starboard to try and recover anchor # 11 with Shepards Hook.												
2100- Bonavisa	tryin	us 1	o grapel archo			iain.						
Forms are to be completed daily in duplice whichever is the earlier, when they	ate on a should	Il vessels be retur	. Each form should be countersigned to ned to the PERTH office,	by the Cli	ients Rep	resentative, the original being	g retained	d on board until the ne	xt crew	change o	r at the end	of job,

Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Failed to Reply, FS - Failed to Surface.

ature SLIRVEYOR FNGINEED WHITE : Commercial Office

12.

# RACAL

## RACAL SURVEY AUSTRALIA LIMITED

#### DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
IROO			t

Client : BHP			Job No:2058			Date : 6-3-93	Vesse	1: BYFORD	Darp	KIN	Anchors /	Tracks.
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel		Consummables			Laid	Recovered
SKYFIX RICE PORT	1		STD 12 / VELOCITY PROBE			K.EDOY		ITEM	USED	REMAIN	#6	
SYLEDIS			ECHO SOUNDER (20/25)			J.TIGHE		SIDESCAN PAPER			#1	
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY		E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)					ELICS PAPER				
GNS PC	1		SPARKER (DELPH/EPC)					DISKS				
GYRO	<b>V</b>		CORING (GRAVITY/GRAB)					PRINTER CART.	1	1		
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel		EPC ROLLS				
TELEMETRY GOLF LASER	<b>✓</b>		UNDERWATER TRACKING			P. RILEY						
SONARDYNE COMPATTS	4											
SONARDYNE PAN	<b>✓</b>											
SONARDYNE(Dunker/Winch/Flat)	/		·									,
DIARY OF OPERATIONS:												
0330 - Anchor.	#7	rac	ked, underway to	· W	liner	m 1.						
			8 nm from Minera			1	omme	uncing app	road	n lo	locatio	j.,
onsa- Billing Dolph	ni m	has	a problem with a	rcho	~#7	1. will drop	anch	or #6 an	ろく	in.		
UBUG- By Food Do	الملزير	- 14	+00 melies from	Ki	موسه	e-1 location.	<i>ا</i>	, soproach	ko	deplo	on Anch	or #6
0852- Anchor #	کے	dedo	ed. Eing 670	39	8~	Ning 5	715	177'm			)	
	alphi:			اص	<u> برا: د</u>	n (113m - 131	٥) ٥	reparing to	<b>رب</b> ر	, an	chor #1	
	•		Anchor #1. Fo	1° 5	mond		7 7	1 3				
1127 - Far Sword lowering Anchor #1 to sended												
1132 - Anchor #1 on the scaled. Resum 0125 ho; 8/3												
1326- Commerced running anchor #12 - Borne Vita												
1343- Anchor #12 being lowered to the seabel to sealed @ 1431 h.												
1355 - Commenced running anchor #9 - Far Sword												
Forms are to be completed daily in duplice	ate on a	ll vessels	Each form should be countersigned b	y the Cli	ents Repr	resentative, the original being	g retained	on board until the ne	xt crew o	change or	at the end a	of job,

//.

Tronspor



#### RACAL SURVE AUSTRALIA LIMITED

### DAILY RECORD SHEET

WX	State	Swell	Wind Dir.	
00000	ZIF	1-2	UAR KON	5
0600				
1200				
1800				١

Client: BHP			Job No: 2058			Date : 5-3-93 Ves	isel: ByroRD	Dai	こまり	Anchors /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid	Recovered
SKYFIX RIG POR	1		STD 12 / VELOCITY PROBE			K.EDDY	ITEM	USED	REMAIN		
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER				
MICROFIX			SIDESCAN (595/531/PINGER)			K. EPERRY	E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				
GNS PC	5		SPARKER (DELPH/EPC)				DISKS				
GYRO	<b>✓</b>		CORING (GRAVITY/GRAB)				PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY GOLF LASER	/		UNDERWATER TRACKING			P.RILEY					
SONARDYNE COMPATTS	4										
SONARDYNE PAN	<b>✓</b>								,		
SONARDYNE(Dunker/Whigh/Fleip)	<b>\</b>										
DIARY OF OPERATIONS:											
0830- Bylond D	didh	· <b></b>	at Eric The Red	loca	tion.	Two anchors	ecoured ou	rnigh	J. a	ncho- #	2
			of being recover					3			
1330 - B. God Dal	shi n	ام	Eric The Red St	:ll =	مادرنه	a with exchang	5 anchors	ł.	bs. 0	caseed	•
1700- B. Tond Dalo	hi~	recis	Eric The Red, st.	•	1:11	las 1. Drimarics	to recover				·
2300- ByFord Dolp	hi.	has	recover all anch		عددو		10 10000				
9	<u> </u>	i									
				<del></del>							
									· · · · · · · · · · · · · · · · · · ·		
									w		
				·····	<del></del>			•			
			Each form should be sounded in a								

whichever is the earlier, when they should be returned to the PERTH office. Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Failed to Reply, FS - Failed to Surface.

.ature

WHITE : Commercial Office

# RACAL

nature

SURVEYOR ENGINEER

## RACAL SURVE AUSTRALIA LIMITED

## DAILY RECORD SHEET

_ [¬	ΝX	xa State	Swell	Wind Dir.
O	<del>~</del> √000	,,,,,		
T	600			
T	200			
	200			

Client : BHP			Job No: 2058			Date : 7-3-93	Vesse	11: BUFORD [	) OL PH	find	Anchors /	TROKS
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel		Consummables			Laid	Recovered
SKYFIX RIG FORT	1		STD 12 / VELOCITY PROBE			K. EDDY		ITEM	USED	REMAIN	3	
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE		SIDESCAN PAPER			8	
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY		E/SOUNDER PAPER				10
ARGO			BOOMER (DELPH/EPC)					ELICS PAPER			ið	
GNS PC	J		SPARKER (DELPH/EPC)					DISKS				10
GYRO	J		CORING (GRAVITY/GRAB)					PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel		EPC ROLLS				
TELEMETRY GOLF LASER	<b>√</b>		UNDERWATER TRACKING			P. RILEY						
SONARDYNE COMPATTS	4											
SONARDYNE PAN	<b>√</b>											
SONARDYNE (Dunker / Wingh / Flee)	5											
DIARY OF OPERATIONS:			•						<del></del>	<u> </u>		<u> </u>
1522 - Commence	ļ	loive	ring anchor #8 t	o th	• 4	abed.						
1527 - Anchor #			he scaled.									
1528 - All anchors		~~·			······································	***************************************						
$\sim 0.1$	dph		moving towards	Mine		location.	Dail	den to 1	oc cili	pr 5	7m @	GR°
	$\overline{}$	with				ocation.	<u> </u>				, ,,, (50	
, <del>, , , , , , , , , , , , , , , , , , </del>	.,		is to be re-nn.			nough chain	nut.	_				
1805 - Anchor # 1						J	<u> </u>					
			wing anchor # 10	.01	10 0	e renn.		10-10-1			<del></del>	
1832 - Anchor # 1			J		- 1	11.						
			r stern roller - low			the scaload.	<del></del>		<del> </del>		····	
1840- Anchor # 1				run	/							
1850 - Bytund Dolphin commenced pre-tensioning anchors												
19110- Problems	wilh	<u> </u>	nchor # 10 hold B. Each form should be countersigned t	lins	- 4	nable to run	$\sim$ $^{\circ}$	back chis	σ·.			

Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Failed to Reply, FS - Failed to Surface.

WHITE

BLUE

1 Commerial Office

: Operations

## RACAL SURVEY AUSTRALIA LIMITED

# RACAL

### DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1800			1

Client : BHP			Job No: 2058			Date:4-3-93 Ves	isel: ByFORD I	)cz_P	lin	Anchors /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid	Recovered
SKYFIX RIG PORT	1		STD 12 / VELOCITY PROBE			K.EDDY	ITEM	USED	REMAIN		
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER				
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY	E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				
GNS PC	1		SPARKER (DELPH/EPC)				DISKS				
GYRO	1		CORING (GRAVITY/GRAB)				PRINTER CART				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
-TELEMETRY GOLF LASER	/		UNDERWATER TRACKING			P. RILEY					
SONARDYNE COMPATTS	4										
SONARDYNE PAN	<b>✓</b>										
SONARDYNE (Dunker / Wingh / Figh)	1										
DIARY OF OPERATIONS:											
2045 - Bylord ,	eco	<u>erin</u>	g andror #3. R	نح ا	will	recour some a	nchors and	repla	ce	anchor	ス
oto ch	kir.	s lib		کی مو			·				
									<del></del>		
Francisco to be completed deliving duction											

Forms are to be completed dolly in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH affice.

anspon	to be listed by type and serial numbers.	Laudmind copes to be ased . T - Faid	i, n icovered,	FR - Fulled to Reply, FS - Fulled to 30	muce.
	11			_	

9

SURVEYOR/ENGINEER

WHITE : Commercial Office
BLUE : Operations

ıre



	WindDir.	llaw2	Spare	XM
,			٠٠٠٠	0000
21~	101-201	2-1	Will	0090
				1500

# SURVE' AUSTRALIA LIMITED



## DAILY RECORD SHEET

,do[ 1	o bne end o	no age or	xt crew c	on boord uniti the ne	esentative, the original being retained			rould be countersigned by					
······································					Ene The Red.	-S +C	- 1	sd sairon	bedelo		aide	1 7 1 2 0	- 9841
		.70	محدران	المع المحل الم	To-words [[is ]	200	ď	micon bo	DAMAC	_	गंतवी	B,64 D	1300-
								aled	Popp	رمرتج	12.	avisclex 3	- 2121
					Red	TYPE	كزم.	<u> </u>	Estan OC	-	2.49	न्त क्लेस्	-707!
					` /	حوات	<u>69</u>	diw fam	" ;	مدحن		Lewe a	
C	1 00:10	ומכי	Rach	Eric Tha	ی سطاری درا را د	2QZ	,	micon bas	SOMME.	> ~	. प्रदेश	<u> छित्य प्र</u>	- 55,00
						فانك	587	200 20 20 20	حد ساه	deni		SVISCICAL	
				. 70	OUST ENETTE	च्ट्र			stugnes	<del>, '</del>	appi .	12°(2-9 D	-5150
					Evic The Rid	न -	ومجلة	J. mouing	שאיניננ	· ·	المكند	By 6-4 Do	-8020
							<u>'</u>	- 1949	Ador.	ودودكة	3	26.6019×3	- 2510
			·	The Red	مادی هزاز هل لدیند	<u> </u>	<del>2</del> C	d moving	<u>sanplete</u>	<del></del>	<del>यःख</del> ा	, <u>C</u>	-5410
` 40	locat:	Rod.	TIME	نل فل لحدد	• •	oilis	<del>00</del>	ing to a		5 -	-:401		-1000
	<del>- '</del>				,	<del></del>			<u>'' '</u>			<del></del>	10 171810
						1	Ι	1		T	_	OPERATIONS:	
· · · · · · · · · · · · · · · · · · ·		<del>  </del>					ļ				1	(gart / Agwith \variance)	
		-						-		ļ	1	<del></del>	BUYORANOS
<del></del>					ם. מורפל					ļ	<u> </u>	E COMPATTS	
					<u> </u>			ER TRACKING		ļ	/	MOOLE LASER	HELEMETR
				EPC ROLLS	CLIENT Personnel			\EDW	THEODOLITE	<u> </u>		s'TSS	TRIMBLE
				ТЯАЗ ЯЗТИІЯЯ				(BARD\YTIVAS	CORING (GR	<u> </u>	/		6780
				DISKS				(ЭЕГЬН\ЕЬС)	SPARKER (C			-	ens be
				ELICS PAPER				ЕГРН / ЕРС)	BOOMER (D				0984
				E/SOUNDER PAPER	K. Peran			(A30NI9\188\368)	SIDESCAN (				MICROFIX
				SIDESCAN PAPER	J. TIGHE			DER (20/25)	ECHO SONN				SALEDIS
		NEWEN	<b>a3≥</b> 0	M∃TI	K'E ood			ELOCITY PROBE	STD 12 / VE		^	प्रदेश हो।	SKALIX &
Recovered	bio∟		·	Consummables	RACAL Personnel	dOnoV	dΟ	brood no tnamqii	RACAL Equ	dOugh	dΟ	uipment on Board	RACAL Eq
SibqT	Anchors \	HIN	Dars	1: Buro20	Date: 1-3-03 Vesse			8507	: ON dot				Client : D
		0081				<b></b>				·	1		

Tronsponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Falled to Reply, FS - Falled to Surfoce. whichever is the earlier, when they should be returned to the PERTH office.

WHITE : Commerial Office

311118

SURVEYORVENGINFFR

atute

## RACAL SURVEY AUSTRALIA LIMITED

# RACAL

## DAILY RECORD SHEET

WX	SeaState	Swell	Wind Dir.
0000			
0600	6	4.5	54-5
1200	3	3.4	52.3
1800			1

Client: BHP			Job No:2058			Date : 3-3-93 Ves:	sel : Pacific 1	1 ARL	N	Anchors /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid ·	Recovered
SKYFIX RIC PORT	5		STD 12 / VELOCITY PROBE	1		K.EDDY	ITEM	USED	REMAIN		
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER	2			
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY	E/SOUNDER PAPER				
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER				
GNS HP			SPARKER (DELPH/EPC)				DISKS		6		
GYRO	>		CORING (GRAVITY/GRAB)				PRINTER CART.		3		
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY			UNDERWATER TRACKING			P. RILEY	PRINT DAPER	0.5	0.75		
SONARDYNE COMPATTS	5										
SONARDYNE PAN	<b>\</b>								<del> </del>		
SONARDYNE(Dunker/Winch/Flah)	<b>\</b>										
DIARY OF OPERATIONS:											
0820 - Pacific M	، درسان، ر	~ ir	structed by Bu	Cord	Do	lphin to proce	ed to the	ria	at i	iric-The	Red-1
1110 - Pacific M	ladi	~	arrived Butond De	alahi.	.~	at Eric The Re				Dulies.	
1540 - K. Eddy ):						ia equipment tran	_		whord		~ .
Commence	J	,,,,	up equipment	<u> </u>	<del></del>	3 = 17			5	1 Siph	
1800 - All equip	- 1		is is and open	ation.	لم						<del></del>
0 0 1		shin				200 moles all	of EneT	L. D.	(, ,	locali	
2130 - Buland Di						200 //(4/13 21)	Or RIVE !	ive ju	<u> </u>	IDC.N.	<u> </u>
			,			a la G G	Eric The R	1.		(,	
19,100	SKI	<u> </u>	commenced moving	•	200	nelies all it it	trice the K	<u>ed -1</u>	100	ation.	
					<del></del>			·			
		<del></del>									
Forms are to be completed dolly in dualice	ite on si	Il vesse!s	. Each form should be countersigned b	Aba C!	anta 0	Adlina Aba asistant bal					

Forms are to be completed dolly in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

ranspor	to be listed by type and serial numbers.	Following codes to	) be used: L - Laid, F	F scovered, FR - Failed to Reply	, FS — Failed to Surface.

7.

SURVEYOR TENGINEER

sture

HITE : Commerial Office

are

# RACAL

## RACAL SURVE: AUSTRALIA LIMITED

### DAILY RECORD SHEET

WX	State	Swell	Wind Dir.
0000			
0600			
1200			
1800			

Client: BHP			Job No: 2058			Date: 2-3-99	Vesse	1 PACIFIC	MARI	-12	Anchors /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	· · · · · · · · · · · · · · · · · · ·	Consummables	• • • • • • • • • • • • • • • • • • • •		Laid	Recovered
SKYFIX RIG PORT	1		STD 12 / VELOCITY PROBE	1		K.EDOY		ITEM	USED	REMAIN	503	
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE		SIDESCAN PAPER			1106	
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY		E/SOUNDER PAPER			1109	
ARGO			BOOMER (DELPH/EPC)					ELICS PAPER			1010	
ens HP	<b>V</b>		SPARKER (DELPH/EPC)					DISKS				
GYRO	1		CORING (GRAVITY/GRAB)					PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnei		EPC ROLLS				
TELEMETRY			UNDERWATER TRACKING			P. RILEY						
SONARDYNE COMPATTS	5								<del></del>			
SONARDYNE PAN	J					· · · · · · · · · · · · · · · · · · ·						
SONARDYNE(Dunker/Winch/Fish)	J					***************************************						
DIARY OF OPERATIONS:	<u> </u>	•			·					<b></b>		<u> </u>
7155 - D L.	7			, ,	7.	. Л						

**

121	<u>55 -</u>	Results	d' Boxla	Calibrations of Minera-1	Acoustic array		
	TP	Addr	Reply Freq	Easting	Northing	Deplh	RMS.
	ì	<b>5</b> 03	3	669 322.62 m	5 714 943.89 m	48.10 ~	3.1
	2	1106	6	670 447.32m	5 714 736. ZIM	55.8 m	3.4
	_3_	1109	9	670 353.60 M	5 713 683.17 m	51.00 M	3· g
<b> </b>	4	0101	10	669 369.40m	5 713 887.06	54.7 m	34
	•			•		`	
						·	
				4			
						•	
1							

Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Falled to Reply,	, FS - Failed to Surfac
----------------------------------------------------------------------------------------------------------------------------------	-------------------------

Jture

SIRVEYOR FNGINEER

WHITE : Commercial Office

ال 5

Alex

# RACAL SURVEY AUSTRALIA LIMITED

## DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1800			

Client : BHP			Job No: 2058			Date : 2-3-93 Vess	el : PALIFIC M.	A24 1	1	AUCHOES /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	Consummables			Laid	Recovered
SKYFIX RIG PORT	1		STD 12 / VELOCITY PROBE	J		K.EDDY	ITEM	USED	REMAIN	503	
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE	SIDESCAN PAPER			1106	
MICROFIX			SIDESCAN (595/531/PINGER)			K. PEREY	E/SOUNDER PAPER			1109	
ARGO			BOOMER (DELPH/EPC)				ELICS PAPER			1010	
GNS HB			SPARKER (DELPH/EPC)				DISKS				
GYRO			CORING (GRAVITY/GRAB)				PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	EPC ROLLS				
TELEMETRY			UNDERWATER TRACKING			P. RILEY					
SONARDYNE COMPATTS	5										
SONARDYNE PAN	<b>√</b>										}
SONARDYNE(Donger/Winch/Fish)	J										
DIARY OF OPERATIONS:											<u> </u>
2017 - Completed	Box	-1~	Data Collection	6(	TF	2/1106 : R/s.				<del></del>	
2030 - Commenced				_	TF	3/1109; [Rel Nor	te Nav. Ra	dius	3000	~ ;	
2045 - Gmpleted			u 4		T	P3 1109 ?}				·····	
2050 - Commenced	,	L ~	• •	•	τ	P4/1010) Del Nort	e Nov. Rodius	300	~· t	100PI-TVO	d2.6
7104 - Condeted				7	T	P4/1010; DelNot P4/1010 } 5V.29	14.25.15 ]		7	·	
2120 - Sonardyne		154	Inboard.				<del></del>	<del></del>			
2130 - Commerced	Box	<u>.</u> <~l~	calculations								
			In re-calculation	NS	<del></del>			<del></del>			
			assumed steaming		und .	Minerua local	ion avail	. ^c	100	la clio	۸ ۲
From B	ر رک		Dolphin on how			mansfer to rig.	1	<del>''&gt;</del>	1103	,	· · · · · · · · · · · · · · · · · · ·
	<u> </u>					<u> </u>					· · · · · · · · · · · · · · · · · · ·
				<del></del>	·······························			•			
Forms are to be completed daily in duplical whichever is the earlier, when they	ite on a	l vessels	. Each form should be countersigned t	y the Cl	ents Rep	resentative, the original being retained	d on board until the ne	xt crew	change o	r at the end o	of job,

Transpor	to be listed by type and serial numbers.	Following codes to be used: L - Laid, P	scovered, FR - Failed to Reply, FS - Failed to Surface

sture	Kradi	, G
	SURVEYOR	FNGINEER

: Commerial Office

# RACAL

# RACAL SURVE; AUSTRALIA LIMITED DAILY RECORD SHEET

WX	State	Swell	Wind Dir.
0000			
0600			
1200			
1000	1		1

Client: BHP			Job No: 2058			Date: 2-3-93 V	Vessel	: PACIFIC M	1ARUA	/	Anchore /	Tpdrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp	RACAL Personnel	<del></del>	Consummables			Laid	Recovered
SKYFIX ZIG PORT	1		STD 12 / VELOCITY PROBE	1		K.EDOY		ITEM	USED	REMAIN	503	
SYLEDIS	<u> </u>		ECHO SOUNDER (20/25)			J.TIGHE	S	SIDESCAN PAPER			1106	
MICROFIX			SIDESCAN (595/531/PINGER)			K. PERRY	E,	SOUNDER PAPER			1109	
ARGO			BOOMER (DELPH/EPC)				E	LICS PAPER			100	
GNS HA	$\checkmark$		SPARKER (DELPH/EPC)				C	ISKS				
GYRO	<b>✓</b>		CORING (GRAVITY/GRAB)				F	PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel	E	PC ROLLS				
TELEMETRY			UNDERWATER TRACKING			P. RILEY					:	
SONARDYNE COMPATTS	5											
SONARDYNE PAN	/					·						
SONARDYNE (Declar/Winch/Fish)	1											
DIARY OF OPERATIONS:									· · · · · · · · · · · · · · · · · · ·	LJ		
1732 - Completed	Box	-1~	Calibration Dala	C	Meck	ion of TPI/50	(C) 3	<del></del>		<del> </del>		
1745- Box-In 1	esul	ای ا	P1/503			11 ( )						
Eins 66	9 3	322	62m - 5 714 96	<u>√3.8</u>	39~	Nine Da	Ala.	48-10 m				
1801 - Commence	J	Box	In Calibration Do	sta d	Call	edian of TP	3/115	$\infty$ '	b	R.	elias.	3r-Om
Nav on	De	Nor	le Direct Injection	11)e	1 Nor	le Ref 5 1/2 7	Z31	1 \ 21.78	11 14	DoP	1.5 JE	2.9 GC
1837 - Completal	B	بعداب	Calibration Dat	<del>/</del> (	تمالو	tion of TP3/	11100	<del>', ', ' , ' ', '</del> ,	• • • • • • • • • • • • • • • • • • • •		, ,	
1852 - Commence		5	Joed Pingaround	Ba	alin	ness met	· · ·	ac austic	A CCA		15 aug 6	ζ .
		ملم	& Pinnaround d			shection.		-COU.3. C	,	) '	v ege	
1938 - Completed Scaled Pingaround data collection.  Results were poor due sea state and noise in the mater column - shallow water												
Will Box-In remaining two TP's 23044.												
1944 - Commerced	В	-x-	- Calibration date		- oller	tion of TP	2/110	6- 0:06	Rad	<b>د</b> ین ن	3000	
Nau on De	1 No	rte i	Directly iection S	J'S	12.14	k, 25, 15 1, 21, 11.	-11.0 H	DOP 1.2	., <u></u>	-וכילוו	2.4	
Forms are to be completed daily in duplica whichever is the earlier, when they	ite on al	l vessels	Each form should be countersianed by	y the Cli	ents Repr	esentative, the original being re	retained o	n board until the nex	t crew o	change or	at the end o	of job,

Transponders to be listed by type and serial numbers. Following codes to be used: L - Laid, R - Recovered, FR - Failed to Reply, FS - Failed to Surface.

sture	Kladi,
	SURVEYOR/FNGINFFR

WHITE : Commercial Office
BLUE : Operations

ure Allen

# RACAL

## RACAL SURVEY AUSTRALIA LIMITED

## DAILY RECORD SHEET

WX	Sea State	Swell	Wind Dir
0000			
0600			
1200			
1900			t

Client : BHP			Job No: 2050	<u> </u>		Date : 2-3-93	Vesse	:1 : PACIFIC MA	12. (4. /	, 180	Anchors /	Todrs
RACAL Equipment on Board	Ор	NonOp	RACAL Equipment on Board	Ор	NonOp			Consummables	uc//O		Laid	Recovered
SKYFIX RIG PORT	1		STD 12 / VELOCITY PROBE	1		K.EDOY		ITEM	USED	REMAIN	503	
SYLEDIS			ECHO SOUNDER (20/25)			J. TIGHE		SIDESCAN PAPER			1106	
MICROFIX			SIDESCAN (595/53I/PINGER)			K. PERRY		E/SOUNDER PAPER			1109	
ARGO			BOOMER (DELPH/EPC)					ELICS PAPER			1010	
GNS H7	1		SPARKER (DELPH/EPC)					DISKS				
GYRO			CORING (GRAVITY/GRAB)					PRINTER CART.				
TRIMBLE SST'S			THEODOLITE / EDM			CLIENT Personnel		EPC ROLLS				
TELEMETRY			UNDERWATER TRACKING			P. RILEY						
SONARDYNE COMPATTS	5					,						
SONARDYNE PAN												
SONARDYNE(Dunker/Winch/Fish)												
DIARY OF OPERATIONS:												
1453 - Deployed Sonardyne Compat 1106												
670 435.8m 5 714 740.3m Depth TX Point 55.8m												
1513- Informed by BHP-E Reserve Station that we may have been provided with the												
wrom location co-ords.												
1536- Co-ordinates provided on Well location sheet are correct												
Minona-1 38° 42' 12.35" 3 142° 57' 12.64" E Ein 669 869.702m Nin 5714 307.169m												
1629 - Deplaced Sonardyne Compatt 1109												
Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job,												
whichever is the earlier, when they	should	be retur	ned to the PERTH office.	y me ch	ems repr	esemunive, me original being	, reidined	on poorg until the he	AI CTEW (	nange or	r at the end	ot job,

Transpor to be listed by type and serial numbers. Following codes to be used: L - Laid, F = Recovered, FR - Failed to Reply, FS - Failed to Surface.

SURVEYOR/ENGINEER

WHITE : Commerial Office
BLUE : Operations

ure

Alex

## 7. ENCLOSURES

**Enclosure 1 Exlog Mudlog** 

This is an enclosure indicator page.

The enclosure PE602754 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602754 has the following characteristics:

ITEM-BARCODE = PE602754 CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Exlog Mud Log

BASIN = Otway
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Minerva 1 Exlog mud log

REMARKS = old barcode PE900073 replaced with

PE602754

DATE-CREATED = 4/04/93 DATE-RECEIVED = 13/01/94

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EXLOG (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

Enclosure 2 Teleco MWD Log

This is an enclosure indicator page.

The enclosure PE602755 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602755 has the following characteristics:

ITEM-BARCODE = PE602755
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Teleco MWD log (1:1000)

BASIN = Otway
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = WELL-LOG
DESCRIPTION = Minerva 1 MWD log. Dual Propagation

Resistivity, Gamma Ray, 1:1000

REMARKS = old barcode PE900071 replaced with PE602755

DATE-CREATED = 24/03/93 DATE-RECEIVED = 13/01/94

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EASTMAN TELECO (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

This is an enclosure indicator page. The enclosure PE602756 is enclosed within the container PE900064 at this location in this document.

The enclosure PE602756 has the following characteristics:

ITEM-BARCODE = PE602756
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Teleco MWD log (1:500)

BASIN = Otway
PERMIT = VIC/P31

TYPE = WELL

SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 MWD log. Dual Propagation Resistivity, Gamma Ray, 1:500

REMARKS = old barcode PE900072 replaced with PE602756

DATE-CREATED = 24/03/93

DATE-RECEIVED = 13/01/94

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EASTMAN TELECO (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

This is an enclosure indicator page. The enclosure PE602757 is enclosed within the container PE900064 at this location in this document.

```
The enclosure PE602757 has the following characteristics:
```

ITEM-BARCODE = PE602757
CONTAINER_BARCODE = PE900064

NAME = Minerva 1 Teleco MWD log (1:200)

BASIN = Otway
PERMIT = VIC/P31
TYPE = WELL
SUBTYPE = WELL-LOG

DESCRIPTION = Minerva 1 MWD log. Dual Propagation

Resistivity, Gamma Ray, 1:200

REMARKS =

DATE-CREATED = 24/03/93 DATE-RECEIVED = 2/06/93

 $W_NO = W1079$ 

WELL-NAME = MINERVA 1

CONTRACTOR = EASTMAN TELECO (BAKER HUGHES)

CLIENT_OP_CO = BHP AUSTRALIA

Enclosure 3 Core Photographs - UV and White Light

This is an enclosure indicator page. The enclosure PE905190 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905190 has the following characteristics:

ITEM_BARCODE = PE905190
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under UV Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under UV light for depths 1821.00 - 1828.00 m.

From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905191 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905191 has the following characteristics:

ITEM_BARCODE = PE905191
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under UV Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under UV light for depths 1829.00 - 1833.00 m.

From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905192 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905192 has the following characteristics:

ITEM_BARCODE = PE905192
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under UV Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under UV light for depths 1834.00 - 1838.00 m. From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905193 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905193 has the following characteristics:

ITEM_BARCODE = PE905193
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under UV Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under UV light for depths 1839.00 - 1843.00 m.

From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905194 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905194 has the following characteristics:

ITEM_BARCODE = PE905194
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under UV Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under UV light for depths 1844.00 - 1846.00 m. From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905195 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905195 has the following characteristics:

ITEM_BARCODE = PE905195
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under White light for depths 1821.00 - 1828.00 m.

From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905196 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905196 has the following characteristics:

ITEM_BARCODE = PE905196
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under White light for depths 1829.00 - 1833.00 m.

From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

W_NO = W1079

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905197 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905197 has the following characteristics:

ITEM_BARCODE = PE905197
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under White light for depths 1834.00 - 1838.00 m.

From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905198 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905198 has the following characteristics:

ITEM_BARCODE = PE905198
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under White light for depths 1839.00 - 1843.00 m. From enclosure 3 of WCR (Basic Data)

From encrosure 5 or wer (

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

W_NO = W1079
WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905199 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905199 has the following characteristics:

ITEM_BARCODE = PE905199
CONTAINER_BARCODE = PE900064

NAME = Core Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Core Photo taken under White light for depths 1844.00 - 1846.00 m.

From enclosure 3 of WCR (Basic Data)

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905200 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905200 has the following characteristics:

ITEM_BARCODE = PE905200 CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY PERMIT = VIC/P31 TYPE = WELL

SUBTYPE = CORE PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 71 at 1814.0 m and SWC 70 at 1861.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905201 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905201 has the following characteristics:

ITEM_BARCODE = PE905201
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 69 at 1872.5 m and SWC 68 at 1896.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905202 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905202 has the following characteristics:

ITEM_BARCODE = PE905202
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 67 at 1915.0 m and SWC 66 at 1944.5 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905203 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905203 has the following characteristics:

ITEM_BARCODE = PE905203
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 65 at 1947.5m and SWC 64 at 1961.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905204 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905204 has the following characteristics:

ITEM_BARCODE = PE905204
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 63 at 1969.0 m and SWC

62 at 1982.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

W_NO = W1079
WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905205 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905205 has the following characteristics:

ITEM_BARCODE = PE905205
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 61 at 1996.0 m and SWC 60 at 2013.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905206 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905206 has the following characteristics:

ITEM_BARCODE = PE905206
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 59 at 2023.0 m and SWC 58 at 2030.5 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905207 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905207 has the following characteristics:

ITEM_BARCODE = PE905207
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 57 at 2035.0 m and SWC 56 at 2040.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905208 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905208 has the following characteristics:

ITEM_BARCODE = PE905208
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 55 at 2046.0 m and SWC 54 at 2061.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

W_NO = W1079

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905209 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905209 has the following characteristics:

ITEM_BARCODE = PE905209
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 53 at 2066.0 m and SWC 52 at 2073.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905210 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905210 has the following characteristics:

ITEM_BARCODE = PE905210
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 51 at 2078.0 m and SWC 50 at 2084.5 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

W_NO = W1079
WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905211 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905211 has the following characteristics:

ITEM_BARCODE = PE905211
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 49 at 2089.0 m and SWC 48 at 2098.0 m. From enclosure 3 of WCR

(Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905212 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905212 has the following characteristics:

ITEM_BARCODE = PE905212
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 47 at 2101.0 m and SWC 126 at 2123.0 m. From enclosure 3 of

WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905213 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905213 has the following characteristics:

ITEM_BARCODE = PE905213
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 125 at 2129.5 m and

SWC 124 at 2142.0 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

DATE_RECEIVED = 13/01/1994

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905214 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905214 has the following characteristics:

ITEM_BARCODE = PE905214
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 123 at 2157.5 m and SWC 122 at 2212.5 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

W_NO = W1079

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905215 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905215 has the following characteristics:

ITEM_BARCODE = PE905215
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31

 $\mathtt{TYPE} = \mathtt{WELL}$ 

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 121 at 2215.0 m and

SWC 120 at 2259.0 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

 $CLIENT_OP_CO = BHP Petroleum Pty Ltd$ 

This is an enclosure indicator page. The enclosure PE905216 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905216 has the following characteristics:

ITEM_BARCODE = PE905216
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 117 at 2294.0 m and SWC 116 at 2304.0 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905217 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905217 has the following characteristics:

ITEM_BARCODE = PE905217
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 115 at 2319.0 m and SWC 114 at 2321.0 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905218 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905218 has the following characteristics:

ITEM_BARCODE = PE905218
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 113 at 2340.0 m and

SWC 112 at 2359.5 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page. The enclosure PE905219 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905219 has the following characteristics:

ITEM_BARCODE = PE905219
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 111 at 2360.0 m and SWC 110 at 2388.0 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

W_NO = W1079
WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905220 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905220 has the following characteristics:

ITEM_BARCODE = PE905220
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Minerva-1 Side Wall Core Photos under White light. SWC 109 at 2392.5 m and SWC 108 at 2412.0 m. From enclosure 3

of WCR (Basic Data).

REMARKS = This item is in colour.

DATE_CREATED =

 $DATE_RECEIVED = 13/01/1994$ 

 $W_NO = W1079$ 

WELL_NAME = Minerva-1

CONTRACTOR =

CLIENT_OP_CO = BHP Petroleum Pty Ltd

This is an enclosure indicator page.

The enclosure PE905221 is enclosed within the container PE900064 at this location in this document.

The enclosure PE905221 has the following characteristics:

ITEM_BARCODE = PE905221
CONTAINER_BARCODE = PE900064

NAME = SWC Photos Under White Light

BASIN = OTWAY
PERMIT = VIC/P31
TYPE = WELL

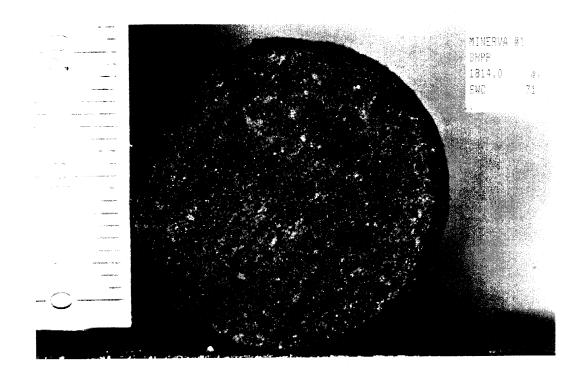
SUBTYPE = CORE_PHOTOS

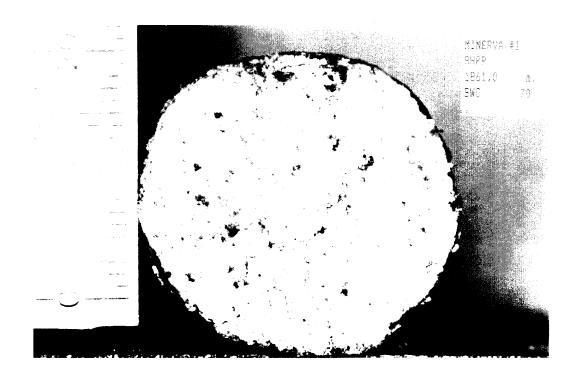
DESCRIPTION = Minerva-1 Side Wall Core Photo under White light. SWC 107 at 2420.5 m. From

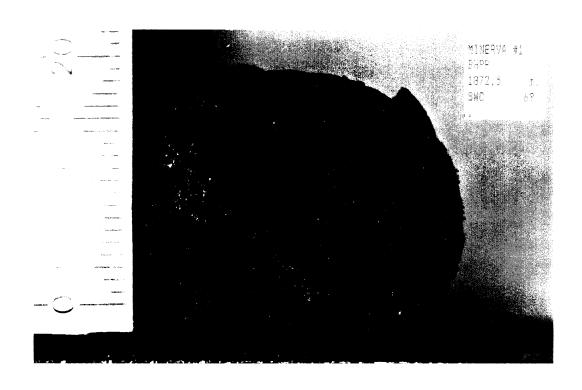
enclosure 3 of WCR (Basic Data).

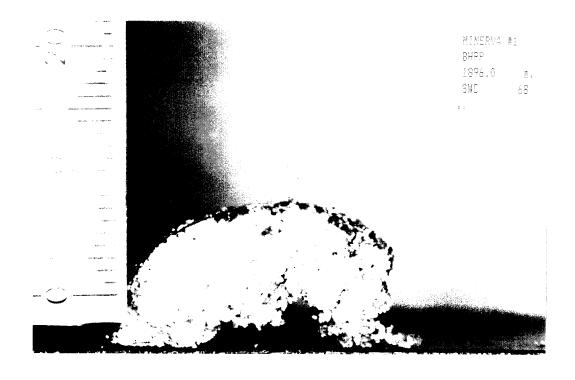
REMARKS = This item is in colour.

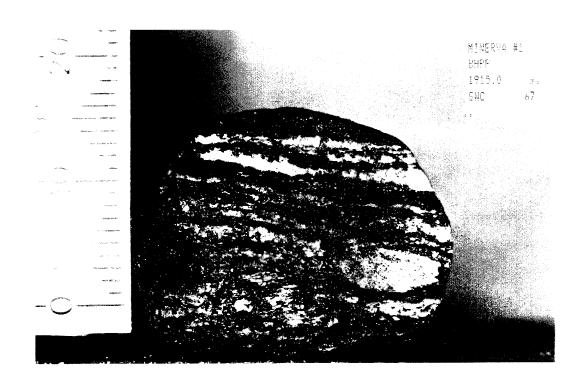
DATE_CREATED =


 $DATE_RECEIVED = 13/01/1994$ 


 $W_NO = W1079$ 


WELL_NAME = Minerva-1


CONTRACTOR =


CLIENT_OP_CO = BHP Petroleum Pty Ltd

