

Cultus Petroleum NL

PPL1

OTWAY BASIN, VICTORIA

SKULL CREEK-1 WELL COMPLETION REPORT

(WII53)

submitted by R. Jason

August, 1997

PETROLEUM DIVISION

3 1 OCT 1997

Cultus Petroleum NL

PPL1

OTWAY BASIN, VICTORIA

SKULL CREEK-1 WELL COMPLETION REPORT

636)

submitted by R. Jason

August, 1997

)

ericist)

)

WELL COMPLETION REPORT

CONTENTS

1.INTRODUCTION11.1Well Data Card32.0GEOLOGICAL DATA52.1Lithological Descriptions82.3Hydrocarbon Indications142.3Log Analysis142.4Structural History203.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing314.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.3Deviation Survey345.4Velocity Survey34	<u>PAR'</u>	<u>F 1</u>	Page No.
2.0GEOLOGICAL DATA52.1Lithological Descriptions82.3Hydrocarbon Indications142.3Log Analysis142.4Structural History203.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.3Deviation Survey34	1.	INTRODUCTION	1
2.1Lithological Descriptions82.3Hydrocarbon Indications142.3Log Analysis142.4Structural History203.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis2974Caring and Cementing Details304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.1Mudlogging325.2Wireline325.3Deviation Survey34	1.1	Well Data Card	3
2.1Lithological Descriptions82.3Hydrocarbon Indications142.3Log Analysis142.4Structural History203.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis2974Caring and Cementing Details304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.1Mudlogging325.2Wireline325.3Deviation Survey34			
2.3Hydrocarbon Indications142.3Log Analysis142.4Structural History203.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34			5
2.3Log Analysis142.4Structural History203.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	2.1		8
2.4Structural History203.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	2.3	Hydrocarbon Indications	14
3.0OPERATIONAL INFORMATION233.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing314.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	2.3	Log Analysis	14
3.1Well Location Survey233.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	2.4	Structural History	20
3.2Drilling Summary253.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	3.0	OPERATIONAL INFORMATION	23
3.3Drilling Fluid Summary273.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	3.1	Well Location Survey	23
3.4Casing and Cementing Details283.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	3.2	Drilling Summary	25
3.5Bit History283.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	3.3	Drilling Fluid Summary	27
3.6Time Analysis294.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	3.4	Casing and Cementing Details	28
4.0FORMATION SAMPLING AND TESTING304.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	3.5	Bit History	28
4.1Cuttings304.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	3.6	Time Analysis	29
4.2Cores304.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	4.0	FORMATION SAMPLING AND TESTING	30
4.3Sidewall Cores304.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	4.1	Cuttings	30
4.4Drill Stem Testing304.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	4.2	Cores	30
4.5Wireline Formation Testing314.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	4.3	Sidewall Cores	30
4.6Palynology325.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	4.4	Drill Stem Testing	30
5.0LOGGING AND SURVEYS325.1Mudlogging325.2Wireline325.3Deviation Survey34	4.5	Wireline Formation Testing	31
5.1Mudlogging325.2Wireline325.3Deviation Survey34	4.6	Palynology	32
5.1Mudlogging325.2Wireline325.3Deviation Survey34	5.0	LOGGING AND SURVEYS	32
5.2 Wireline325.3 Deviation Survey34			
5.3 Deviation Survey34			
-			
		-	34

889

WELL COMPLETION REPORT

	Dura	TABLES
	Page	
1.	Well Card	3
2.	Formation Tops and Thicknesses	5
3	Hydrocarbon Show Summary	14
4.	Bottom Hole Temperature Extrapolation	15
5.	Bit Record	28
6.	RFT Results	31
7.	Wireline Logging Tables	33
8.	Mud Properties While Logging	33
9.	TOTCO Deviation Surveys	34
FIG	URES	Page
1.	Skull Creek-1 Location Map	2
2.	Offshore - Onshore Operational Stratigraphic Chart	6
3.	Predicted verses Actual	7
4.	Seismic Line 9490 - Waarre 3D	21
5.	TWT Structure On Top Waarre Fm.	22
6.	Surface Elevation Plan	24
7.	Skull Creek-1 Drilling Progress Chart	29

APPENDICES

1.	Rig	Spe	cific	ations
----	-----	-----	-------	--------

- 2. Drilling Fluid Recap
- 3. Daily Drilling Reports
- 4. Daily Geological Reports
- 5. Cuttings Descriptions
- 6. Palynology of Skull Creek-1
- 7. Velocity Survey
- 8. Casing and Cementing Reports

WELL COMPLETION REPORT

<u>PART 2</u>

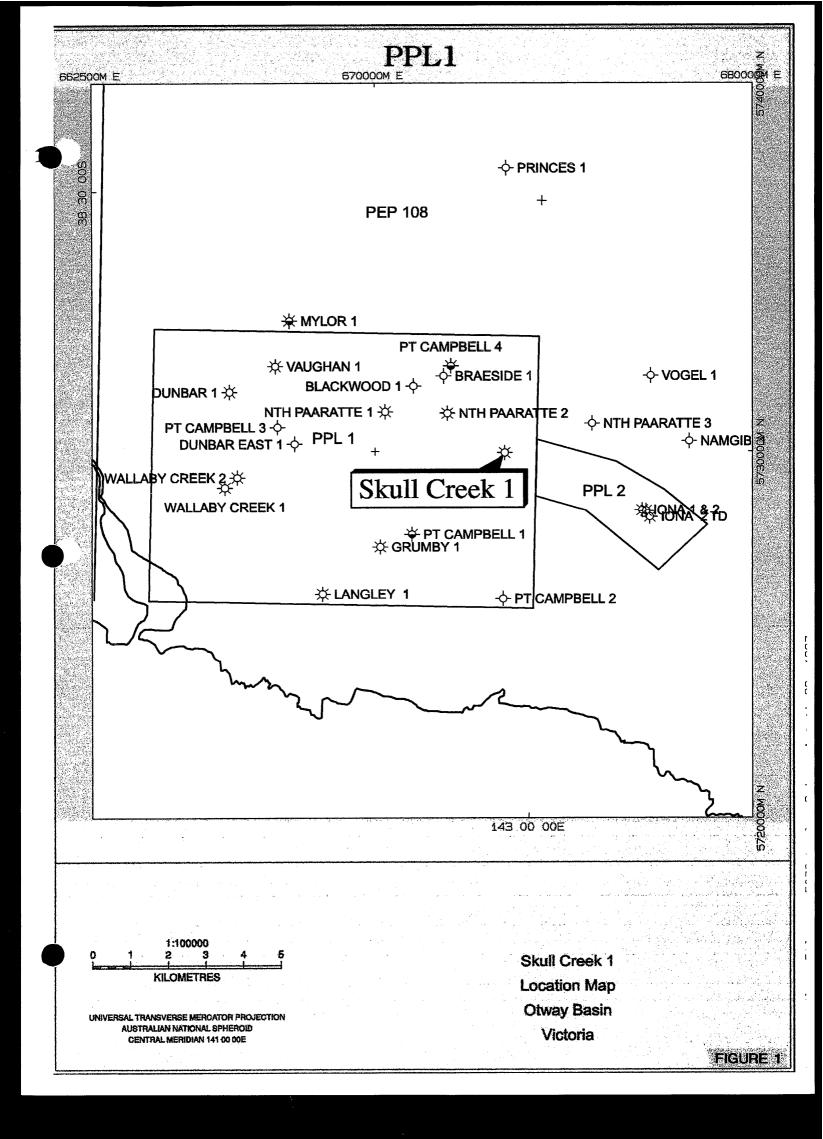
)

DST & RFT Interpretation and Analysis

ENCLOSURES

1	Composite Log	1:500
2	Formation Evaluation Log (Mud Log)	1:500
3	Waarre Formation - Stratigraphic Correlation	1:750
4	Log Analysis - Waarre Formation	1:500
5	Log Analysis - Eumeralla Formation	1:500

INTRODUCTION


Skull Creek-1 is located onshore in the Port Campbell Embayment in the eastern part of the Otway Basin. The Otway Basin is a northwest to southeast trending sedimentary basin which formed primarily due to extension along the southern margin of Australia during the Late Jurassic - Early Cretaceous. The well is located in production license PPL1, onshore Victoria, approximately 200km west of Melbourne (Figure 1).

Skull Creek-1 was the final well in a three well exploration programme planned for the first half of 1996. This programme was the first for GFE Resources as part of the new parent company Cultus Petroleum NL. Basin Oil, a wholly owned subsiduary of Cultus, acquired PPL1 via an *in specie* distribution of GFE's assets on the 26th June, 1996.

The Skull Creek prospect is a seismically defined central horst fault block on the upthrown side of two major faults. The well was designed to test the presence of hydrocarbons in the sand reserviors of the basal Upper Cretaceous Waarre Formation.

The well was spudded at 0200 on 19 May 1996 and reached a total depth of 1700mMD after 9 days at 0530 on 28 May 1996. The OD & E rig 30 was released at 1700 on 6 June 1996, 18.6 days after spud.

Skull Creek-1 intersected gas saturated sands in the main target Waarre Formation and in the underlying Eumeralla Formation. Seven DST's, conducted primarily from the Warre Formation, produced a combined flow rate of 26 MMCFD of gas. Skull Creek-1 was cased and suspended as a gas producer.

1.1 Well Data Card

<u></u>	SKULL CREEK #1	SPUD:	0200 hours, 19-05-96	
,		TD REACHED:	0530 hours, 28-05-96	
	EXPLORATION	RIG RELEASED:	1700 hours, 06-06-96	
BLOCK/LICENCE::]	PPL1 Otway Basin Victoria	COMPLETED:		
RIG:	DDE 30			1
LATITUDE:	38 33' 42.4"	STATUS:	Cased and Suspended Gas and Co	idensate
	142 59' 25.1"	d	iscovery	
LONGITODE:		TYPE COMPLETION:	· · · · · · · · · · · · · · · · · · ·	
¥7	573411 mE	TYPE STRUCTURE:	Horst block	
A coolu.	729 963 mN			
	Vaarre 3D Xline 2805 Inline 9465	ZONE(S):		
N MINATER C	88.6 m AHD	REMARKS:		
EDEVAIION OB		1		
M1.	2.9 m	CASING SIZE	SHOE DEPTH	TYPE
TD:	1701.4 m MD (Logr Ext)		mRT	
1700.0 m MD (Driller)		16"	9.0	
1700		9 5/8"	332.3	
		7"	1614.0	

		DEPI	TH (m)			
AGE	FORMATION OR ZONE TOPS	LOGGERS MD	SUBSEA TVD	THICKNESS (metres)	HIGH (H) LOW (L)	Prelim. TWT (msec)
TERTIARY	PORT CAMPBELL LIMESTONE	4.7	88.6	15.3	0	l
TERTIARY	GELLIBRAND MARL	20	72.9	209		140.0
TERTIARY	CLIFTON FORMATION	229	-136.1	29	50.9m H	142.0
TERTIARY	NARRAWATURK MARL	258	-165.1	85		172.6
TERTIARY	MEPUNGA FORMATION	343	-250.1	52	14.9m H	261.0
TERTIARY	DILWYN FORMATION	395	-302.1	196	22.9m H	312.8
TERTIARY	PEMBER MUDSTONE	591	-498.1	84		479.0
TERTIARY	PEBBLE POINT FORMATION	675	-582.1	62.5	17.1mL	544.8
ATE CRETACEOUS	PAARATTE FORMATION	737.5	-644.6	360.1	19.6m L	580.1
ATE CRETACEOUS	SKULL CREEK MUDSTONE	1098	-1004.7	77.8		861.6
	BELFAST MUDSTONE	1176	-1082.5	26.4	2.5m L	909.2
LATE CRETACEOUS	WAARRE FM: UNIT "C"	1202.5	-1108.9	19.4	75.1m H	932.5
LATE CRETACEOUS	WAARRE FM: UNIT "B"	1222	-1128.3	27		944.0
LATE CRETACEOUS	WAARRE FM: UNIT "A"	1249	-1155.3	23.4		963.2
LATE CRETACEOUS	EUMERALLA FORMATION	1272.5	-1178.7		76.3m H	1252.0
EARLY CRETACEOUS	EUWERALLATORMATION	1212.5				
	T.D. (LOGR. EXTRAP.)	1701.4	-1607.2			

	LOG INTERPRET	TION (Interval A)	verages)			PERFORAT	IONS (4 shots/ft)
ZONE	INTERVAL m MD	THICKNESS	NP m	POR %	SW %	ZONE	INTERVAL m MD
Waarre C1 sand	1202.9 - 1213.5	10.6	10.6	24.1	12.4	Waarre Unit 'C'	1205 - 1212
Waarre C2 sand	1214.3 - 1221.3	7.0	6.3	22.9	23.1	Eumeralla '1400'	1402 - 1417
Waarre B1 sand	1230.7 - 1232.0	1.3	1.2	22.5	36.7		
Waarre B2 sand	1234.7 - 1236.9	2.2	2.2	26.9	38.2		
Waarre A sand	1249.2 - 1258.4	9.2	7.3	22.5	30.3		
No pay mapped in	Eumeralla						
Hydrocarbon Show Summary							
1512-1525 Gas sho	w - Waarre						
1525-1549 Gas sho	w - Eumeralla Sandstor	e and Claystone - po	oor porosity	у.			

LOG (BPB)	RUN	INTERVAL mRT	BHT/TIME	LOG	RUN	INTERVAL mRT	BHT/TIME
MLL-DLS-SP-CAL	1/1	1064.0 - 1369.6		PDS-CNL-GR-CAL	3/2	1350.0 - 1701.4	63.0°C/24.5hrs
-SONIC-GR PDS-CNL-GR-CAL	2/1	1064.0 - 1369.6		Dipmeter	4/2	1350.0 - 1701.4	63.0°C/28hrs
LL-DLS-SP-CAL	1/2	1350.0 - 1701.4	55.0°C/8.5hrs	SRS (Vel survey)	5/2	96.3 - 1694.5	
	2/2	1350 0 1701.4	48°C	CBL	6/2	800.0 - 1600.0	

					FORM	MATION TEST	S				
	Y 0.	INTERVAL (mRT)	FORMATION	FLOW (mins)	SHUT IN (mins)	BOTTOM GAUGE IP/FP (psia)	SIP	MAX SURF PRESS (psia)	FLUID TO SURF (mins)	TC/ BC	REMARKS
I	1	1199.0 - 1 22 1.0	Waarre Unit C			•					Misrun
L	2	1200.5 - 1210.5	Waarre Unit C	90	13			540	5	3/4"	GTS @ 8.2 MMCFD
	3	1402.0 - 1417.0	Eumeralla '1400 sand	125	30			400	2.5	3/8"	GTS @ 1.1 MMCFD with indet amount of cond.
	4	1240.0 - 1255.0	Waarre Unit A	60	36			680	0	3/4"	GTS @ 11.1 MMCFD
	5	1500.0 - 1520.0	Eumeralla '1500 sand	8	30						Strong air blow, misrun packer seat failed
Γ	6	1225.0 - 1245.0	Waarre Unit B								Misrun
	7	1234.0 - 1245.0	Waarre Unit B	120	0			880	1	1/2"	GTS @ 6.2 MMCFD WTS after 24 mins, rec 1.4bbl W (Fm water?)
ŀ											

SUMMARY:

Skull Creek is a new gas field discovery in PPL1, onshore Otway Basin, Victoria. The well tested gas from the Waarre Formation and from sands within the upper Eumeralla Formation, primary and secondary targets respectively. Skull Creek #1 is located approximately 1.9km southeast of North Paaratte #2 and 4.0km northwest of Iona #1. It was drilled near the crest of a horst block, bounded by two major normal faults which extend down to the Early Cretaceous.

The top of the Waarre Unit C (75m High) and the top of the Eumeralla (76m High) were encountered high to prognosis. A fault was intersected in Skull Creek #1 at approximately 1160mRT within the Skull Creek Mudstone. It is estimated that approximately 220+ metres of section (including the Nullawarre Greensand) is missing. From the Velocity Survey, the top of the Waarre Unit C was 60 msec TWT less and that prognosed, the result of higher velocities over the Skull Creek Horst.

Strong gas shows were encountered throughout the Waarre Formation in Units C, B and A. Gas shows were also encountered in the Eumeralla Formation with gas peaks of 405 and 497 units within the '1400' and '1500' sands respectively.

From RFT, DST and log interpretation a GWC is present within the Waarre Unit A sand at approximately 1170.1m SS (1263.0m RT). RFT interpretation and DST #7 result suggests a possible GWC in the Waarre Unit B2 sand at approximately 1143.8m SS (1237.5m RT)

AUTHOR: RJJ

DATE: April, 1997

2.0 GEOLOGICAL DATA

The section penetrated in Skull Creek-1 is summarised in Table 2 below. Interpreted formation tops are based on rate of penetration, cuttings descriptions, palynological analyses and wireline logs. Unless stated otherwise, depths mentioned in this report will be referenced on the well datum, the rotary table (RT). The Onshore - Offshore Operational Stratigraphic Table, from which interpreted formation tops are based, is presented on the following page (Figure 3).

Formation Tops	Prognosed	Actual	Actual	Difference	Thickness
	(mRT)	(mRT)	(m TVD SS)	(m)	(m)
Port Campbell	4.3	4.3	-88.6		
Limestone					
Gellibrand Marl		20	-72.9		209
Clifton Formation	283	229	136.1	50.9 High	29
Narrawaturk Marl		258	165.1	·	85
Mepunga Formation	361	345	250.1	14.9 High	52
Dilwyn Formation	421	397	302.1	22.9 High	196
Pember Mudstone		590	498.1		84
Pebble Point Formation	661	651	582.1	17.1 Low	62.5
Paaratte Formation	721	719	644.6		360.1
Skull Creek Mudstone	1031	1139	1004.7	19.6 Low	77.8
Nullawaarre Formation	1121	absent			_
Belfast Mudstone	1201	1183	1082.5	2.5 Low	26.4
Waarre Formation	1266	1203	1108.9	75.1 High	69.8
Eumeralla Formation	1316	1272	1178.7	76.3 High	429+
T.D	1500.0	1700	1607.2	200 Low	

Table 2 : Formation tops and thicknesses.

5

PE907567

This is an enclosure indicator page. The enclosure PE907567 is enclosed within the container PE900832 at this location in this document.

The enclosure PE90	7567 has the following characteristics:
ITEM_BARCODE =	PE907567
CONTAINER_BARCODE =	PE900832
NAME =	Schematic Stratigraphic Table
BASIN =	OTWAY
PERMIT =	PPL/1
TYPE =	WELL
SUBTYPE =	STRAT_COLUMN
DESCRIPTION =	Schematic Stratigraphic Table
	(enclosure from WCR) for Skull Creek-1
REMARKS =	
DATE CREATED =	28/02/97
DATE_RECEIVED =	31/10/97
W_NO =	W1153
WELL_NAME =	Skull Creek-1
CONTRACTOR =	Cultus Petroluem NL
CLIENT_OP_CO =	Cultus Petroluem NL
(Inserted by DNRE -	Vic Govt Mines Dept)

PE907568

This is an enclosure indicator page. The enclosure PE907568 is enclosed within the container PE900832 at this location in this document.

The enclosure PE907 ITEM_BARCODE =	7568 has the following characteristics: PE907568
CONTAINER_BARCODE =	
NAME =	Predicted vs. Actual Stratigraphic
	Section
BASIN =	OTWAY
PERMIT =	PPL/1
TYPE =	WELL
SUBTYPE =	STRAT_COLUMN
DESCRIPTION =	Predicted vs. Actual Stratigraphic
	Section (enclosure from WCR) for Skull
	Creek-1
REMARKS =	
$DATE_CREATED =$	
$DATE_RECEIVED =$	
W_NO =	
	Skull Creek-1
	Cultus Petroluem NL
CLIENT_OP_CO =	Cultus Petroluem NL
(Inserted by DNRE -	Vic Govt Mines Dept)

2.1 LITHOLOGICAL DESCRIPTIONS

The predicted verses actual stratigraphic section (Figure 4) on the previous page, provides the basis for a summary of the lithological units observed in Skull Creek-1. Descriptions are compiled from the wellsite geologist as well as interpretations from wireline results. Skull Creek-1, situated on a regional high trend, is characterised by the absence of Nullawarre Greensand and Waarre 'D' (Flaxmans Formation) of the Late Cretaceous Sherbrook Group.

HEYTESBURY GROUP (Surface - 124.0 mRT)

Port Campbell Limestone (Surface - 20.0 mRT) This formation was noticably much thinner than anticipated, being only 16m thick. Lithology dominantly consists of:-Calcarenite: no samples collected.

Gellibrand Marl (20.0 - 229.0 mRT) This formation was much thicker than anticipated. The Gellibrand Marl consists of the following observed lithology:-

Massive Marl: medium grey to medium green grey, minor medium brown grey, abundant bryozoa, forams, shell fragments, trace echinoid spines and sponge spicules, trace pyrite occasionally replacing and infilling fossil fragments, trace glauconite, rare clear fine quartz sand grains, very soft and sticky, non fissile.

Clifton Formation (229.0 - 258.0 mRT) 50.9 metres high to prognosis and comprising the following observed lithology:-

Calcarenite: medium orange brown, yellow-red in part, very coarse grained, abundant fossil fragments including bivalves, gastropods, bryozoa, forams, sponge spicules and echinoid spines, minor strong cryptocrystalline calcite cement, trace to common very fine to grit frosted rounded brown stained quartz sand grains, abundant glauconite, common brown iron oxide pellets and iron oxide rich clay, friable, very poor inferred porosity, no oil fluorescence.

NIRRANDA GROUP (258.0 - 395.0 mRT)

Narrawaturk Marl (258.0 - 343.0 mRT) Thickness and significance greater than anticipated. Consists entirely of:-

Marl: medium brown grey to medium green grey, abundant bryozoa, forams and shell fragments and forams, trace echinoid spines and sponge spicules, trace to common pryite often as fossil infill and replacement, trace to common very fine to fine clear quartz sand grains, trace to common glauconite, very soft and sticky, non fissile.

Mepunga Formation (343.0 - 395.0 mRT) 14.9 meteres high to prognosis. The Mepunga Formation consists of an upper sandstone interval underlain by a claystone dominant interval. Lithological descriptions are as follows:-

Sandstone: light to medium brown, very fine to coarse, dominantly fine to medium, angular to subrounded, moderately to well sorted, very weak silica cement, common to abundant medium brown argillaceous and silt matrix, moderate to strong in general decreasing with depth yellow to orange to brown iron oxide stain on quartz grains, trace multicoloured volcanic lithics, trace coarse muscovite flakes, trace pyrite, trace to common iron oxide pellets, trace glauconite, trace dark brown clay lithics, friable to unconsolidated, fair to good inferred porosity, no oil fluorescence with minor interbedded and becoming dominant with depth.

Claystone: dark brown, moderately silty, trace pyrite, trace glauconite, trace micromica, soft, very dispersive, non fissile.

WANGERRIP GROUP (395.0 - 737.5 mRT)

Dilwyn Formation (395.0 - 591.0 mRT) 22.9 metres high to prognosis. The Dilwyn Formation is dominantly sandstone and consists of several cycles of sandstone and claystone with the following descriptions:-

Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderately well sorted, very weak silica cement, trace to abundant medium brown grey argillaceous and silt matrix, minor pyrite cement, clear to opaque quartz grains, trace yellow to red stained quartz grains, trace brown red and black lithics, trace coarse mica flakes, friable to unconsolidated, very good inferred porosity, no oil fluorescence, with minor interbedded

9

Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.

Pember Mudstone (591.0 - 675 mRT) Dominantly claystone with minor interbeds of sandstone and generally described as:-

Claystone: (591-642m) medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine quartz and off white partially altered feldspar sand grains, common glauconite, slightly calcareous in part, trace black coaly detritus often associated with pyrite, trace pyrite, trace micromica, , very soft and sticky, moderately dispersive, non fissile, with minor interbedded Sandstone: light brown, very fine to fine, subangular to subrounded, moderately to well sorted, very weak silica cement, common to abundant dark brown grey argillaceous and silt matrix, trace glaucontie, common coarse mica flakes, friable, poor inferred porosity, no oil fluorescence.

The lower sequence of Pember Mudstone is characterised by a hot GR log response similar to the lower sequence of Pebble Point Formation otherwise known as the KT shale.

Claystone: (642-675m) medium to dark brown grey to medium grey, trace to common dispersed very fine to grit quartz sand grains, moderately to very silty, trace to common dark green argillaceous glauconite, trace pyrite, trace fine mica flakes, soft, moderately dispersive, non fissile.

Pebble Point Formation (675 - 737.5 mRT) 17 metres low to prognosis. Pebbly sand sequence underlain by claystone sequence (KT shale) with very high GR response. Inferred porosity in sandstone increases with depth, confirmed by sonic log response.

Sandstone: light orange green, very fine to pebble, dominantly medium to coarse, subangular to subrounded, moderately sorted, very weak silica cement, common medium to dark green argillaceous and silt matrix, weak yellow to green stain on quartz grains, common glauconite, common multicoloured volcanic lithics, trace coarse green mica flakes, friable to unconsolidated, very poor to good inferred porosity in general increasing with depth, no oil fluorescence, grading to and in general decreasing with depth

Claystone: medium to dark green, medium brown, moderately to very silty, abundant dispersed very fine to grit green-brown stained quartz grains - grading to argillaceous sandstone, common glauconite, trace pyrite, soft, moderately dispersive, non fissile.

10

SHERBROOK GROUP (737.5 - 1272.5 mRT)

Paaratte Formation (737.5 - 1098.0 mRT) 19.6 metres low to prognosis. Upper sequence is massive coarse grained sandstone 120 metres thick. Sharp spikes identified on the sonic log and MSFL, matched with slow drilling, are interpreted to be dolomitic bands average 2 metres thick, increasing in frequency with depth. Lower sequences occur as sandstone, becoming finer, interbedded with claystone.

Sandstone: light grey, very fine to grit, dominantly coarse, at base often dominantly fine, subangular to subrounded, moderately sorted, weak silica cement, no visual matrix, clear to translucent quartz grains, trace green grey lithics, trace black coaly detritus, trace pyrite, trace coarse mica flakes, friable, fair to very good inferred porosity, no oil fluorescence, occasionally with towards base minor interbeds of

Claystone: medium to dark brown to medium grey, moderately to very silty, moderately carbonaceous, common black carbonaceous flecks and coaly detritus in part, trace disseminated and nodular pyrite, common micromica, firm, very dispersive and washing from samples, slightly subfissile.

Skull Creek Mudstone (1098.0 - 1176.0 mRT) Basal sequence of Paaratte Formation. Dominantly claystone with minor interbedded sandstone.

ici çoj

Claystone: medium to dark grey, medium brown grey, very silty, common very fine partially altered feldspar grains in part, trace black carbonaceous flecks, trace micromica, trace pyrite, soft, very dispersive, slightly subfissile, interbedded and laminated with

Sandstone: light grey, very fine to coarse, dominantly fine, subangular to subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown volcanic lithics, trace black carbonaceous matter, common pyrite, friable to moderately hard, very poor visual porosity, no oil fluorescence.

Belfast Mudstone (1176.0 - 1202.5mRT) 2.5 metres low to prognosis. Skull Creek-1 intersected a major fault at around 1160 mRT when drilling through the Skull Creek Mudstone. An estimated 220+ m of missing section have been interpreted from lithology, palynology and dipmeter data. The Belfast Mudstone is in direct contact with the Skull Creek Mudstone. (The Nullawarre Greensand had been faulted out). Belfast Mudstone is dominantly claystone described as:-

Claystone: medium to dark grey, medium to dark brown grey, very silty, common very fine partially altered feldspar grains in part, common black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile with minor laminatied and probably contaminated by cavings **Sandstone:** light grey, very fine to coarse, dominantly fine grained, subangular to subrounded, moderately sorted, moderate silica cements, trace white argillaceous matrix - matrix supported, trace red brown lithics, friable, trace carbonaceous matter, common pryite, friable to moderately hard, very poor visual porosity, no oil fluorescence.

Waarre Formation (1510.0 - 1595.0 metres) 75 metres high to prognosis. Units C, B and A present with the following lithology descriptions:-

Unit C (1202.5 - 1222.0 mRT)

Sandstone: very light to light grey, very fine to grit, dominantly medium to very coarse, angular to subrounded, poor to moderate sorting, becoming moderate to well sorted with depth, very weak silica cement, no visual matrix, trace yellow stained quartz grains, trace black carbonaceous detritus, friable, very good inferred porosity, no oil fluorescence.

Unit B (1222.0 - 1249.0 mRT)

Claystone: medium grey to medium brown, very silty grading to siltstone, common very fine off white partially altered feldspar grains in part, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile interbedded with Sandstone: very light brown grey, very fine to medium, dominantly fine, angular to subrounded, moderately sorted, weak silica cement, no visual matrix, common bright red green brown grey and black lithics, common black coaly detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescence.

Unit A (1249.0 - 1272.5 metres)

Sandstone: light orange grey, very fine to grit, dominantly medium, angular to subangular, well sorted, moderate silica cement, trace white argillaceous matrix, common to abundant yellow orange

lithics, trace red green grey and black lithics, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.

OTWAY GROUP (1272.5 - 1701.4 mRT)

Eumeralla Formation (1272.5- 1701.4 mRT) 76.3 metres high to prognosis. Top Eumeralla unconformity at Skull Creek evidenced by weathering of the uppermost Eumeralla.

Sandstone: weathered at top with abundant white argillaceous matrix, with depth cleaning to Sandstone: medium green grey, mottled, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, very weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence, interbedded with

Claystone: very weathered at top to structureless white to light blue grey clay, with depth cleaning to Claystone: light to medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially altered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, firm, slightly subfissile.

Claystone: off white to medium green grey, light to medium grey, light to medium brown grey, slightly to occasionally moderately silty, trace to common very fine partially altered feldspar grains in part, trace to common brown to black carbonaceous flecks and detritus, trace micromica, trace pyrite, firm, slightly subfissile, interbedded with

Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare to trace pyrite, friable, very poor visual porosity, no oil fluorescence.

2.2 HYDROCARBON INDICATIONS

Whilst drilling Skull Creek-1, cuttings and gas levels were carefully monitored. Cuttings were analysed under a fluoroscope to detect any hydrocarbon occurences. Gas equipment used by Haliburton in the monitoring of gas levels comprised an FID Gas Chromatograph and an FID Total Gas tool. Skull Creek-1 intersected several intervals recording significant gas shows as listed below:-

Interval	Formation	Units	ROP	Remarks
		Peak / Backgnd		
1203 - 1214 mRT	Waarre 'C'	727 / 12 units	60 m/hr	Gas show
1214 - 1221 mRT	Waarre 'C'	195 / 6 units	40 m/hr	Gas show
1229 - 1232 mRT	Waarre 'B'	313 / 22 units	28 m/hr	Gas show
1235 - 1238 mRT	Waarre 'B'	134 / 11 units	45 m/hr	Gas show
1249 - 1265 mRT	Waarre 'A'	234 / 21 units	30 m/hr	Gas show
1399 - 1427 mRT	Eumeralla	405 / 45 units	110 m/hr	Gas show
1498 - 1518 mRT	Eumeralla	497 / 72 units	100 m/hr	Gas show
1528 - 1533 mRT	Eumeralla	318 / 29 units	40 m/hr	Gas show

Table 3 : Hydrocarbon Show Summary

2.3 LOG ANALYSIS

Independant interpertations have been conducted on the Waarre and Eumeralla Formations. The evaluation of the Waarre, conducted by A. Pomilio using a deterministic approach is included in Appendix 6a. Conventional resistivity based log analysis of the Eumeralla Formation was not possible. A probablistic approach was conducted by A. Calcraft using Multimin with results presented in Appendix 6b.

Hole Conditions

The 8 1/2"section of the well was drilled with a fresh water mud system down to approximately the base of the Waarre Formation. Because of the inability to run the laterolog tools (the only resistivity log available on location) in this type of mud system, KCl was added and intermediate logs run at 1368 mRT.

Suite #1 comprised the following logs:

DLL-MLL-CALI-SP-GR	1369.6 to 1064 mRT (GR to shoe)	Run #1
SONIC	1369.6 to 1064 mRT	Run #1
NEUTRON/DENSITY	1369.6 to 1064 mRT	Run #2

Because of encouraging results in the Waarre Formation, the well was deepened and a second suite of logs were run to evaluate the Upper Eumeralla sandstones.

At total depth, Suite #2 comprised the following logs:

DLL-MLL-CALI-SP-GR	1701.4 to 1350 mRT	Run #1
SONIC	1701.4 to 1350 mRT	Run #1
RFT	1701.4 to 1350 mRT	Run #2
NEUTRON-DENSITY	1701.4 to 1350 mRT	Run #3
DIPMETER	1701.4 to 1350 mRT	Run #4

Side wall cores were not attempted because of concerns regarding borehole stability.

The RFT tool was affected by continuos plugging of the filter probe. The question of the RFT plugging has caused much debate, but the most plausible explanation for the plugging is poor mud properties control upon entering the Waarre Sandstone. Fluid losses into the Waarre have been estimated at greater than 27 cc.

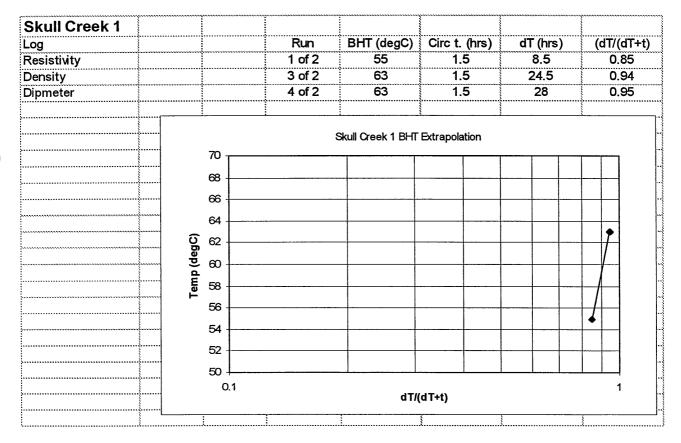


Table 4 : Bottom Hole Temperature Extrapolation

The bottom hole temperature for Skull Creek-1 of 67° C was extrapolated using a Horner plot (Table 4). Using a surface hole temperature of 15°C a geothermal gradient of 3.05° C/100m is calculated.

There were seven open hole drill stem tests conducted as follows:

DST-1	1199-1221m	Misrun
DST 2	1200.5-1210.5m	GTS at 8.2 MMCFD on 3/4"
DST 3	1402-1417m	GTS at 1.3 MMCFD on 3/8"
DST-4	1240-1255m	GTS at 11.1 MMCFD on 3/4'
DST-5	1500-1520 m	Misrun
DST-6	1225-1245 m	Misrun
DST-7	1234-1245 m	GTS at 6.2 MMCFD + Fm water

The well was cased and suspended with 7" casing run down to 1600 m where it became stuck.

Correlation of the Waarre Sandstone (Enclosure 3)

The typical Units 'C', 'B' and 'A' into which the Waarre Sandstone is normally subdivided can be easily recognised at Skull Creek-1. This well correlates quite well with nearby Iona 1 & 2 wells and North Paaratte 2, where the Waarre Sandstone displayed very similar log character response. At Iona Field the Waarre is slightly thicker (around 80 m). The shale barriers separating Unit 'C' from 'B' and Unit 'B' from 'A' are clearly continuous, at least in the direction of Iona Field and North Paaratte 2. The correlation in Enclosure 3 is characterised by an absence of Waarre Unit D in both Wallaby Creek 2 and Skull Creek 1.

The implications of this lateral continuity are quite important. At Skull Creek-1, pressure data from DST and RFT indicates that there are at least three gas columns under separate pressure regimes. Therefore, given the clay continuity, it is possible that the accumulations in Units C and B at Iona Field might be separate.

Log evaluation: Waarre Sandstone

Log evaluation (Enclosure 4) has identified three gas accumulations separated by, so far, two water contacts. The gas accumulation in Unit 'B' has no identified GWC from logs at Skull Creek-1.

<u>Accumulation 1</u>

1202.5-1222 mRT UNIT 'C"

HKG	•	1202.5 mRT
LTG	:	1210.5 mRT
LKG	:	1222.0 mRT (Strong gas indications from logs)
GGC	:	19.5 m
Net	:	15.5 m
N/G	:	80%
Ave Vcl	:	0.04
Ave PHIE	:	0.24
Ave Sw	:	0.15

No GWC identified. However, the decrease in deep resistivity log values at around 1219.0 mRT might indicate, as in nearby Iona that:

- 1) The GWC is not far downdip from the well
- 2) An oil leg might be present downdip from the well

or alternatively a change in lithology

Accumulation 2 1229.0-1237.0 mRT UNIT 'B"

This accumulation comprises two thin sandstones. It is unclear if the two are communicated by a single pressure regime (ie one GWC).

HKG	:	1229.0 mRT
GWC	:	1237.0 mRT
GGC	:	8.0 m
Net	:	3.4 m
N/G	:	40%
Ave Vcl	:	0.13
Ave PHIE	:	0.24
Ave Sw	:	0.41

The presence of a GWC at 1237.0 mRT is unquestionable; it has been predicted by log evaluation and confirmed by RFT pressure data, RFT sampling and DST results.

Oaterit

Accumulation 3 Case 1:1249.0 to 1258.0 Case 2: 1249.0-1263.0 mRT UNIT 'A'

Accumulation 3 is contained within reservoir Unit 'A'; because of varying and possibly deteriorating reservoir quality with depth, a unique position for the GWC could not be established. Log evaluation suggests that the GWC is around 1258 to 1263 mRT and more likely at 1263 mRT than at the shallower alternative.

HKG	:	1249.0 mRT
LTG	:	1255.0 mRT

Case 1

GWC1	:	1258.0 mRT (?)
ĠĠĊ	:	9.0 m
Net Pay	:	8.5 m
N/G	:	94%
Ave Vcl	:	0.28 (?)
Ave PHIE	:	0.21
Ave Sw	:	0.33

Case 2 Additional pay

:	1263.0 mkb
:	5 m
:	1.3 m
:	26%
:	0.33
:	0.19
:	0.47
	::

RFT and Drill Stem Test data indicate that the three gas accumulations encountered have three separate pressure regimes. Accumulation 1, the only accumulation without an identified GWC, is therefore likely to have a separate contact.

The possibility also exists that the sands in Unit 'B', grouped under Accumulation 2, might, instead, be two separate and independent accumulations. Therefore, the Waarre Sandstone at Skull Creek-1 might contain up to four gas zones with their respective GWC's.

RFT results in the Waarre Sandstone

The interpretation of RFT data was conducted by B.Richardson and results are presented in a separate report (Appendix 9). However some of the main results are highlighted here:

A gas gradient in Unit 'C' A valid water point in Unit 'B' A valid water point in Unit 'A' A valid formation water sample in Unit 'B' mixed with filtrate

Evaluation of the Eumeralla Gas

soul

Initial evaluations were conducted from a lithology aspect, tests results, raw logs, dipmeter data, gas shows and mudcake build-up. Conventional log evaluation of the Eumeralla was very unreliable due to a number of adverse factors such as:

Complex lithology Lack of resistivity contrast Radioactive minerals affecting VCL from GR.

A. Calcraft, of the Modern Log Analysis Company Pty Ltd, employed a complex lithology model of the Eumeralla section (Enclosure 5) in order to evaluate shows encountered in this formation. The use of Multimin, a volume optimisation model, was important for the petrophysical analysis because it allows for small changes in one or more rock components. The felspathic litharenite reservoirs of the Eumeralla Formation were evaluated using a quartz-illite-smectite-chlorite mineralogy (Calcraft, 1997). Other minerals known to be present were incorporated by appropriate ajustments, i.e. The properties of the quartz component were adjusted for the commonality of albite.

Several other wells including Iona-2 and Vaughan-1 were investigated together with Skull Creek-1 to form a robust model for determining hydrocarbon bearing zones. Poor reservoir quality was

determined to be a primary reason why zones in the Eumeralla did not flow. High gas ratios are thought to be relate to intervals with low clay bound water (Calcraft, 1997).

The best tested complex lithology model indicated that Smectite acted to fill pore spaces and pore throats. This implied that if there is little or no Smectite present then the reservoir may flow. On the reslutant log analysis plot this criteria is flagged at HF 1. The second flag HF 2 marks the more conventional test of a water saturation - porosity cross plot using an Sw cutoff of 0.6. This criteria is subject to the effects of Zeolite being insignificant (Calcraft, 1997). Intervals that meet both sets of criteria in Skull Creek-1 are 1400 -1420mRT (Tested @ 1.1MMCFD) and 1510 - 1530mRT (Tested but misrun).

In summary, the best quick-look indicators for the Eumeralla are good gas shows followed by the presence of some cross over on a conventional density neutron log plot. In Skull Creek-1 the best evidence of this occurs in the `1400m sand'. Intervals like this should be considered for underbalance drilling which could determine what effect formation damage has on the flowability of Eumeralla sands. A summary of the Eumeralla sands intersected in Skull Creek-1 follows:-

A) The '1300' m sand

This zone comprises, from mud log data, a series of thinly interbedded sandstones and claystones. The sandstones have been described as 'typical Eumeralla' with abundant lithics and poor visible porosity.

Mudlog gas readings in the overlying shale between 1270 and 1312.0 mRT approximately, averaged only 10 units. Gas between 1312.0 and 1355.0 mRT approximately was 100 units in the sands indicating the possibility of a gas column due to the 10 fold increase. Therefore a gross gas column of 43 m can be postulated from the gas detector.

This zone could be considered as a candidate for cased hole testing but does not meet both sets of criteria as set out in the complex lithological analysis. Wireline logs are characteristically featureless and the dipmeter shows uniform low resistivity with no visible thin resistive beds that could be indicative of pay.

Net pay is probably low, however, the N/D logs approaching each other several times suggest that this zone probably has some pay when compared with the other Eumeralla accumulations.

B) The '1400' sand

This gas zone was tested by DST-3 conducted between 1402.0 and 1417.0 mRT, that flowed GTS at 1.3 MMCFD with no water and with a small amount of condensate.

The overall extent of the gas bearing interval is likely to be 1402.0 to 1439.0 mRT, spanning a 37 m gross interval. Log analysis indicated a 20m gross interval.

Lithological descriptions and dipmeter data are as per the zone above and are considered rather useless.

Drill Stem Test results have indicated that most of the gas produced on DST is probably originated from a thin net pay sand with low permeability. Net pay is unlikely to exceed 2 to 3 m and is concentrated around the zone with N/D cross over at 1402.0 mRT.

C) The '1500' sand

Underlying a non-net, argillaceous zone at 1470 to 1500 mRT, another sequence of very poor visual porosity sands displayed attractive gas readings suggestive of an accumulation. The interpreted gas zone comprises the interval 1508.0 to 1532.0 mRT.

DST-5 between 1502.0 and 1522.0 mRT blowed strongly before being aborted as a misrun. Because of the near absence of N/D cross over or the logs approaching each other, this zone is estimated to contain only very little pay and it is anticipated that flow rates will be smaller than at the '1400' m sand.

2.4 STRUCTURAL HISTORY

Uplift and erosion of Eumeralla to the east during the early Cenomanian acted as sediment provinence for the Waarre Formation. The Skull Creek Horst is interpreted to have influenced the palaeotopography since the Late Cenomanian. Firstly, the Waarre 'B' and 'C' units are known to thin in a westerly direction across the Skull Creek Horst. The non deposition or erosion of Waarre Unit 'D' at Skull Creek-1 is a direct result of the horst being high prior to the deposition of Belfast Mudstone. Although the Belfast Mudstone is thin and Nullawarre Greensand is faulted out at Skull Creek-1, the Skull Creek Horst significantly influenced its deposition. The Nullawarre Greensand is not recognised south of the Skull Creek horst and its aerial extent is believed to be influenced by along shore currents and wave action during a period of relative tectonic quiescence.

The Skull Creek Horst probably incurred tilting and uplift of the eastern part of the horst during the mid Miocene compressional event related to collision of the Australian craton with the Banda arc. This event had basin wide effect with contribution to the formation of the Otway Ranges and the Dartmoor uplift. Hydrocarbon generation is believed to have been filling the structure formed at the eastern part of the Skull Creek Horst from Miocene to Recent times.

20

PE907569

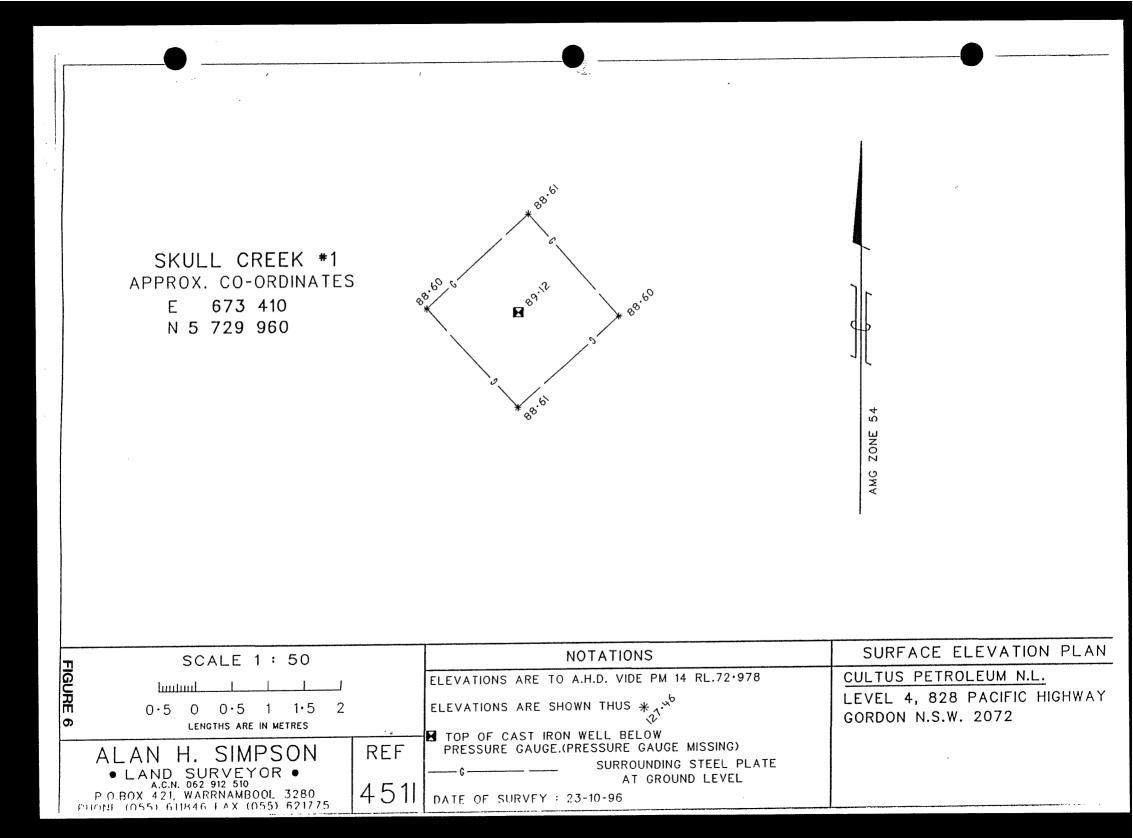
This is an enclosure indicator page. The enclosure PE907569 is enclosed within the container PE900832 at this location in this document.

The enclosure PE907569 has the following characteristics: ITEM_BARCODE = PE907569 CONTAINER_BARCODE = PE900832 NAME = Seismic section BASIN = OTWAY PERMIT = PPL/1TYPE = SEISMIC SUBTYPE = SECTION DESCRIPTION = Seismic Section with Interpretation (enclosure from WCR) for Skull Creek-1 REMARKS = DATE_CREATED = $DATE_RECEIVED = 31/10/97$ $W_NO = W1153$ WELL_NAME = Skull Creek-1 CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL (Inserted by DNRE - Vic Govt Mines Dept)

PE907570

This is an enclosure indicator page. The enclosure PE907570 is enclosed within the container PE900832 at this location in this document.

The enclosure PE907570 has the following characteristics: $ITEM_BARCODE = PE907570$ CONTAINER_BARCODE = PE900832 NAME = Structure Map BASIN = OTWAY PERMIT = PPL/1TYPE = SEISMIC SUBTYPE = HRZN_CNTR_MAP DESCRIPTION = TWT Structure on Top of Waarre Formation, Post Drill Map (enclosure from WCR) for Skull Creek-1 REMARKS = DATE_CREATED = 28/08/97DATE_RECEIVED = 31/10/97W_NO = W1153 WELL_NAME = Skull Creek-1 CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL (Inserted by DNRE - Vic Govt Mines Dept)


3.0 OPERATIONAL INFORMATION

Operator Personnel on Site	Drilling Supervisor : Engineer/Night Supervisor :	Henry Flink Bruce Richardson /Kevin Kelly
	Geologist :	Dave Horner
Drilling Contractor	Oil Drilling and Exploration Pty I	_td (O.D.&E.) Rig #30
Drilling Fluids	Independent Drilling Fluid Service	
Cementing	Halliburton	-
Mud Logging	Halliburton	
Coring & Testing	Australian DST	
Wireline Logging	BPB Logging	
Total Cost	\$949,000.00	

3.1 Well Location Survey

The Skull Creek-1 location was surveyed by Alan Simpson of Warrnambool (Figure 4) after the well was suspended. The surveyed co-ordinates and ground level are used throughout the text and in the database for the location map.

3.2 Drilling Summary

S. J

)

DATE DEPTH OPERATION

)		
19-May-96	306	Mobilised OD & E Rig # 30 from Blackwood-1. Skull Creek-1 spudded at
		02:00 hrs on 19th May 1996. Drilled 12.25" hole to 306m
20-May-96	335	Drilled 12 ¹ / ₄ " hole to 335mRT using Tricone Bit with active mud.
		Displaced active system with gel mud. Run wiper trip was run with
		minimal drag. $9^{5}/_{8}$ " surface casing was run and landed at 332.5mRT.
		Casing was pressure tested to 2500 psi. Nipple up the BOP's.
21-May-96	481	Continue to nipple up the BOP's, pressure tested the kelly and surface
		equipment prior to drilling out. Drill out the float collar, cement, float
		shoe and 5m of new formation with 8 ¹ / ₂ " Rock Bit. A formation integrity
		test was conducted with 9.2 ppg drilling fluid to 13.5 ppg equivalent. Drill
		8.5" hole to 481m.
22-May-96	1158	Circulate and sweep with hi-visc pill. Drill 8.5" from 481 to 642m. Run
		survey, unable to pass 292m, pull survey. Drill to 651, 11 stand wiper trip,
		change out corrosion ring. Run survey @ 638m. Drill 8.5" to 954m, circ
		and survey @ 942m. Drill 8.5" from 954 to 1158m.
23-May-96	1338	Drilled ahead to 1214m (Waarre Fm) and circulated. Wiper trip to shoe.
		Drilled 8.5" from 1214 to 1338m.
24-May-96	1368	Drilled ahead to 1368m and circulated before running a wiper trip (18units
		of gas on wiper trip). Pumped pill, dropped survey (3° @ 1360mRT).
		Pulled out of hole to wireline log, Run 1: MLL-DLS-SP-CAL-SONIC-
		GR, Run 2: PDS-CNL-GR-CAL. Make up DST tools.
25-May-96	1368	Make up DST tools. RIH with DST#1. Inflate packers, interval 1199 to
		1221m. Expected mechanical problem or plugged tool after weak flow.
		Unseat and reset packers @ 1200 to 1222m. Circ and work stauck pipe.
		Flow check and POOH with DST tools.
26-May-96	1373	Lay out test tools, make up bit, junk sub, b/sub and r/reamer. Work junk
		sub and drill 5m new hole to 1373m. POOH to m/u DST #2. Inflate
		packer and set, open & close tool, re-inflate, open & close tool, re-inflate,
		still communication past packer. Deflate, drop down 2.5m re-inflate.

)

27-May-96	1592	Build mud wt from 8.7 to 9.2 to bal well. POOH with test tools. M/u
		r/reamer, X/O, motor and bit #4. Pull up kelly and test motor. RIH, 2m
		fill. Drill 8.5" from 1373 to 1592m.
28-May-96	1700	Drill 8.5" from 1592 to 1700 (1701.4m RT Logger extrapolated). Circ
		b/u, wiper trip to 1180m. RIH to 1600, wash thru tight hole 1600 to
		1604m. Circ hole clean, POOH, run survey (7.5° @ 1696m). Rig up
		BPB.Run #1: MLL-DLS-SP-CAL-SONIC-GR, Run #2: RFS-GR.
29-May-96	1700	Cont RFS, problem with tool. POH, RIH with new tool, not working,
		POH. Run #3: PDS-CNL-GR-CAL, Run #4: Dipmeter, Run #5: SRS
		Velocity survey. Make up BHA for wiper trip prior to DST.
30-May-96	1700	Condition hole. RIH with DST tools, packer depth 1402 - 1417m. Run
		DST #3. Rig down DST head & surface lines. POH to top packer. R/u
		DST head & surface lines 1240 to 1255m.
31-May-96	1700	Inflate packer, run DST #4. POH, rec sample
01-Jun-96	1700	Circ and condition mud. R/u BPB, m/u RFS. Problems with tool, POH.
		M/u BHA and RIH to 1600m. Circ and condition mud. POH to p/u DST
		tools.
02-Jun-96	1700	M/u DST tools for DST #5 & 6. Run DST's. POH with DST tools, rec
		sample.
03-Jun-96	1700	Condition hole, flow check, Max gas 100u. POH for DST #7 RIH , set
		packers @ 1234-1245m, perform DST #7. Unseat packers. Change
		surface lines circ conventionally.
04-Jun-96	1700	B/out & lay down DST tools. M/u bit, bit sub, 1 RR and RIH to shoe. Slip
		33' drill line. RIH to 1582m, work tight spot @ 1515m. Circ and
		condition mud, flow check, POH. Rack 700m pipe in mast, lay out
		remainder. P/u kelly, flush rat hole and mouse hole. Break upper kelly
		joints. Remove kelly/hose, clear floor. Rig up and run 7" casing.

05-Jun-96	1700	Circ and work 7" casing @ 1622m. Test casing to 1600psi		
		The well was cased and suspended and the rig released at 17:00 hrs 6th		
		June 1996.		
06-Jun-96	1700	Install and test packoff to 200psi. R/u BPB and run CBL. N/d BOP, install		
		tubing hanger, blind flange and secure well head. RIG RELEASED @		
		17:00.		

3.3 Drilling Fluid Summary

12 1/4" Hole, Surface to 329mRT

A gel spud mud, prehydrated with caustic soda to peptise it, was used to drill out the Mouse and Rat holes prior to being used to drill out the conductor pipe and top hole, to the marl. Water with slight additives was used to pass the marl section and drill to 335m where the system was reverted back to the fresh water gel polymer mud which was circulated proir to pulling out to run casing.

Weight (ppg)	•	9.25
Viscosity (API)	:	36
Fluid Loss (BBLS)	:	136 Downhole

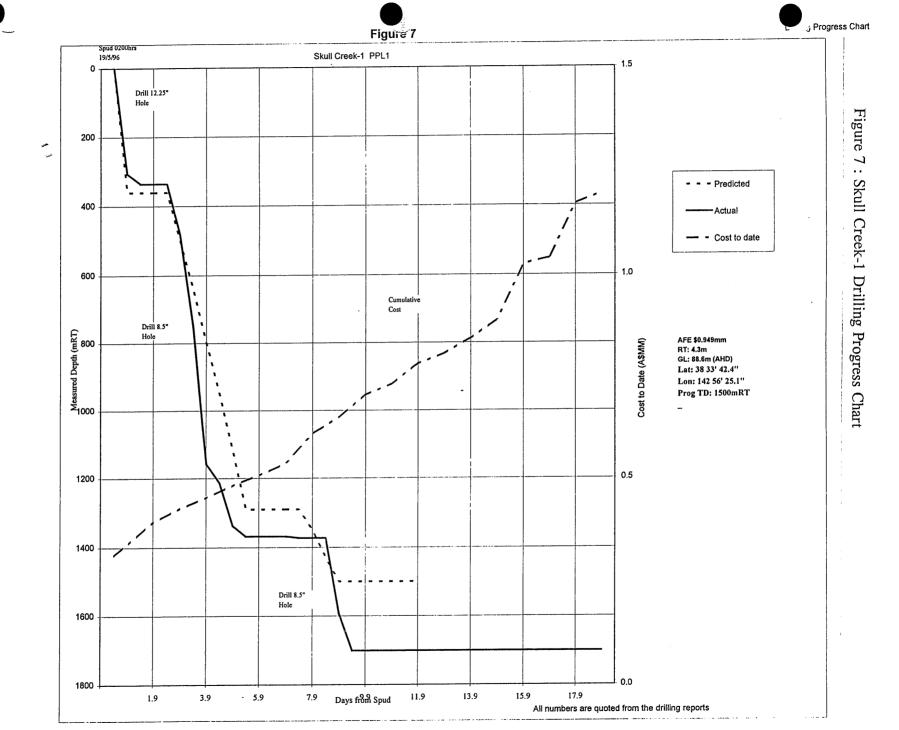
81/2" Hole, 329 to 1700mRT

The 8 1/2" hole was started with the cement and shoe being drilled out with water. Treated water was used to drill out the rest of the marl until 367mRT when sand returns were observed. The gel polymer mud that was retained from the 12 1/4" section, with appropriate dilution, then displaced the water. The mud system was then diluted to counter weight and viscosity gains. Flowzan was added as the main objective Waarre was drilled through. Bentonite was added to build wall cake. Drispac was used to raise the yeild point. The down hole loss was minimised once the API fluid loss was reduced.

To assist wireline logging KCl was added towards the base of the Waarre Formation. A wipr trip was initiated at 1212mRT using CaCO3 to slug the pipe. During this trip 56BBLS (12BBLS / hour) were lost down hole. Ammonium Nitrate was used as a tracer for the first DST.

There were signs of overpressured Eumeralla in the cuttings. The 8 1/2" bit was drilled to TD and two check trips were conducted prior to pumping a pill and pulling out to log. Attention was aimed at maintaining a low fluid loss during DST operations.

Weight (ppg)	:	9.2 to 9.5
Viscosity (API)	:	37 to 48
Fluid Loss (BBLS)	:	1034 Downhole


Drilling fluid reports are provided in Appendix 2.

3.4 Casing and Cementing Details

Casing and cementing reports including FIT's are provided in Appendix 8.

3.5 Bit History

To be forwarded at a later date.

1

CULTUS PETROLEUM

Time Analysis

3.6

4.0 FORMATION SAMPLING AND TESTING

4.1 Cuttings

Cuttings samples were collected at ten metre intervals from spud to 9 5/8 casing point. At five metre intervals from 9 5/8 casing to 1300 metres. At three metre intervals from 1300 m to 1700 metres (T.D.) and subdivided into sets as follows;

- 1 set of washed and dried samples in sample bags from spud to 1700 metres (T.D).
- 1 set of washed and dried samples in Samplex trays spud to 1700 metres (T.D).

The set of washed and dried samples in sample bags were subsequently sent to the Department of Energy and Minerals (Petroleum Division) sample store. The remaining samples were retained by Cultus Petroleum N.L.

A summary of the lithological descriptions from daily reports issued during the drilling can be found in Appendix 4. Cuttings descriptions made by the wellsite geologist are provided in Appendix 5.

4.2 Cores

No conventional cores were cut in Skull Creek-1.

4.3 Sidewall Cores

No sidewall cores were cut in Skull Creek-1.

4.4 Drill Stem Testing

Seven Drill Stem Tests (DST's) was conducted in Skull Creek-1. A full report including all sample analysis is provided in Part 2, the DST and RFT interpretation and analysis.

1.	1199.0 - 1221.0mRT Waarre Unit C	Misrun
2.	1200.5 - 1210.5mRT Waarre Unit C	GTS @ 8.2 MMCFD

3.	1402.0 - 1417.0mRT	Eumeralla `1400 sand'	GTS @ 1.1 MMCFD with
			indeterminate amount of condensate.
4.	1240.0 - 1255.0mRT	Waarre Unit A	GTS @ 11.1 MMCFD
5.	1500.0 - 1520.0mRT	Eumeralla `1500 sand'	Strong air blow, misrun due to packer
			seat failure.
6.	1225.0 - 1245.0mRT	Waarre Unit B	Misrun
7.	1234.0 - 1245.0mRT	Waarre Unit B	GTS @ 6.2 MMCFD water to surface
			after 24 minutes, recovered 1/4BBL
			water (Formation Water Or Filtrate?)

4.5 Wireline Formation Testing

)

Repeat Formation Test (RFT) pressure readings were carried out in Skull Creek-1 and the results listed in Part 2, the DST and RFT interpretation and analysis.

Test	Depth	Depth	HydroStatic		Formation	Comments
No.			Pressure		Pressure	
	КВ	SS	Initial	Final		
1	1205.0	-1111.4	1984.8	1993.4	1613.4	Hydrostatic Varying
2	1211.3	-1117.7	1990.0	2000.0	1680.7	
3	1212.5	-1118.9	1993.7	2004.9	-	
4	1212.5	-1118.9	1992.0	2003.7	?	Very low perm/stopped
5	1212.2	-1118.6	1993.7	2003.7	-	
6	1212.3	-1118.7	1995.6	2004.5	1614.5	
7	1216.7	-1123.0	2000.0	2008.3	1623.2	
8	1237.5	-1143.8	2031.8		1644.9	Sample taken
9	1237.9	-1144.2	2023.3	2023.1		Pressure dropping
10	1271.5	-1177.7	2076.8	2076.2		Tight-Low perm.
11	1271.0	-1177.2	2076.0	2075.4		Tight
12	1267.4	-1173.6	2069.0	2068.4		Tight
13	1261.4	-1167.6	2059.4	2059.1		Tight

14	1237.5	-1143.8	2020.6	2019.8		Tight
15	1271.5	-1177.7	2078.8	2078.7	1717.5	Good test
16	1266.0	-1172.2	2069.9	2069.7		Tight/plugged
17	1261.4	-1167.6	2061.8	2061.3		Tight/plugged
18	1217.0	-1123.3	1991.5	1991.0		Tight/plugged
19	1217.5	-1123.8	1992.3	1992.1		Tight/plugged

Table 6 : RFT Results

4.6 Palynology

Eight cuttings samples were sent to Roger Morgan for analysis. Palynology results for Skull Creek-1 are provided in Appendix 5.

5.0 LOGGING AND SURVEYS

5.1 Mud Logging

A standard skid-mounted unit equipped for continuous recording of depth, rate of penetration (ROP), mud gas, pump rate and mud volume data, as well as intermittent mud and cuttings gas (blender) analysis was operative from spud until the well was plugged and abandoned. The ROP and gas data is included on the 1:500 scale Composite Log (Enclosure 1), the Formation Evaluation Log (i.e., "Mud Log") at 1:500 scale is provided in Enclosure 2a, and a Gas Ratio Analysis Log at 1:1000 scale is provided in Enclosure 2b.

5.2 Wireline Logging

Wireline logging was performed by BPB using a standard truck-mounted unit. Two logging suites were carried out. Intermediate logs were run at 1368 mRT. The second suite was run at 1700mRT (TD).

<u>Suite 1</u>

Run	Tool	Interval m RT	BHT (°C)	Hours Since Circ	Comments
1/1	MSFL-DLL-GR- CAL-DT	1064 - 1369.6	48	7	
2/1	PDS-CNL-CR- CAL	1064 - 1369.6			

Suite 2

Run	Tool	Interval m RT	BHT (°C)	Hours Since Circ	Comments
1/2	MSFL-DLL-GR- CAL-DT	1350 - 1701.4	55	8.5	
2/2	RFS-GR	1350 - 1701.4			
3/2	PDS-CNL-CR-	1350 - 1701.4	63	24.5	
	CAL				
4/2	DIPMETER	1350 - 1701.4	63	28	
5/2	SRS (Velocity)	96.3 - 1694.5			35 shots, 22 levels
6/2	RFS-GR	1350 - 1701.4			Continued plugging, RFS logging eventually abandoned
7/2	CBL	800 - 1600			

Table 7 : Wireline Logging

Suite 1	Run 1 & 2	Suite 2	Runs 1 to 7
Fluid Type	FW Poly	Fluid Type	KCL
Density (ppg)	9.3	Density (ppg)	9.3
Viscosity (sec)	46	Viscosity (sec)	46
pH	9.5	pH	9.5
Fluid Loss (cc)	9.6	Fluid Loss (cc)	8.7
Rm @ Temp	0.896 @ 16.7 °C	Rm @ Temp	0.618 @ 20.7 °C
Rmf @ Temp	0.795 @ 15.0 °C	Rmf @ Temp	0.528 @ 17.6 °C
Rmc @ Temp	1.500 @ 18.9 °C	Rmc @ Temp	1.293 @ 22.4 °C

Table 8 : Mud Properties While Logging

5.3 Deviation Surveys

Totco deviation surveys were carried out periodically throughout the drilling of Skull Creek-1, with results as shown in Table 9. Using this data a maximum radius of deviation was calculated by summing the products of the component of horizontal shift [*interval length* \times sin(*deviation angle*)] for each interval.

Depth (mRT)	Deviation (degree)
170	0.3
329	0.0
638	0.5
940	1.8
1199	4.0
1360	3.0
1695	7.5

Table 9 : TOTCO Deviation Surveys

5.4 Velocity Survey

)

A Velocity Survey (WST-Checkshot) was carried out by Velocity Data. 35 shots were processed and 22 levels recorded. The velocity survey report is provided in Appendix 7.

APPENDIX 1 - RIG SPECIFICATIONS

RIG AND CONTRACTOR'S EQUIPMENT

CONTRACTOR'S RIG	:	Rig 30 - rates to 3,350 m (11,000 ft) with $4\frac{1}{2}$ " drill pipe	
DRAWWORKS	:	Dreco Model 700E, driven by EMD 79 electric motor maximum input: 1,000 HP	
ENGINES	:	Four (4) Caterpillar Model 3412 PCTA diesel engines	
SUBSTRUCTURE	:	One piece substructure 14' high x 13'6" wide and 50' long with 12' BOP clearance	
		Setback area loading:250,000 lbsCasing area loading:275,000 lbs(loading concurrently)275,000 lbs	
MAST	:	Dreco Model #: M12713-510 Floor Mounted Cantilever Mast designed in accordance with API Specification 4E Drilling & Well Servicing Structures. Hook load Gross Nominal Capacity - 510,000 lbs with:- 10 lines strung - 365,000 lbs 8 lines strung - 340,000 lbs Clear working height of 127' Base width of 13'6 Adjustable racking board with capacity for:- (i) 120 stands of 4 ¹ / ₂ ' drill pipe, (ii) 10 stands of 6 ¹ / ₂ " drill collars, (iii) 3 stands of 8" drill collars Designed to withstand an API windload of 84mph with pipe racked and 100 mph with no pipe racked	
CATHEADS	:	One (1) Foster Model 37 make-up spinning cathead mounted on drillers side.	
		One (1) Foster Model 24 break-out cathead mounted off drillers side	
CROWN BLOCK	:	215 ton with five (5) 36" sheaves and one (1) 36" fastline sheave grooved $1\frac{1}{8}$ "	
TRAVELLING BLOCK	Ξ :	One (1) 667 Crosby McKissick 250 ton combination block hook Web Wilson. 250 ton Hydra hook Unit 5 - 36" sheaves	

1

SWIVEL	:	One (1) Oilwell PC-300 ton swivel		
RIG LIGHTING	:	Explosion proof fluorescent. As per approved State Specifications		
MUD PUMPS	:	Two (2) Gardner Denver mud pumps Model PZ-8 each driven by 800 HP EMD 79 motors - 8" stroke		
MIXING PUMPS	:	Five (5) Mission Magnum 5" x 6" x 12" centrifugal pumps complete with 50 HP, 600 Volt, 60 HZ, 3 phase explosion proof electric motors		
MUD AGITATORS	:	Six (6) Geolograph/Pioneer 40TD - 15" "Pitbull" mud agitators with 15HP, 600 Volt, 60HZ, 3 phase explosion proof electric motors		
SHALE SHAKER	:	Two (2) Derrick high speed sandwich linear motion shale shakers, Model No K48-96-DF3		
DEGASSER	:	One (1) Drilco See-Flo		
DESILTER	:	One (1) Pioneer T12-4 'Siltmaster' desilter 12 x 4" cones		
DESANDER	:	Harrisburg DSN-1000 unit with 2 x 10" cones		
GENERATORS	:	Four (4) Brown Boveri 600 Volt, 3 phase, 60HZ AC generators. Powered by four (4) Cat 3412 PCTA diesel engines		
DRILL PIPE SAFETY VALVE	:	One (1) Griffith $6\frac{1}{2}$ " inside blowout preventers (4" IF) One (1) Griffith $6\frac{1}{2}$ " stabbing value (4" IF)		
AIR COMPRESSORS & RECEIVERS	:	Two (2) LeRoi Dresser Model 660A air compressor packages c/w 10 HP motors rated at 600 Volts, 60 HZ, 3 phase Receivers each 120 gallon capacity and fitted with relief valves		
AIR WINCH	:	One (1) Ingersol Rand HU-40 with ⁵ / ₈ " wireline. Capacity 2,000 lb		
POWER TONGS	:	One (1) Farr 13 ⁵ / ₈ - 5 ¹ / ₂ " hydraulic casing tongs c/w hydraulic power pack and hoses and torque gauge assembly		
ROTARY TABLE	:	One (1) Oilwell A 20 ¹ / ₂ rotary table torque tube driven from drawworks		

MUD TANKS (SHAKER)	:	One (1) Shaker tank total 265 bbls with sand trap - 15 bbls with desander tank - 120 bbls
(INTERMEDIATE)	:	One (1) Intermediate tank total 240 bbls with desilter tank - 120 bbls with settling tank - 120 bbls
(SUCTION)	:	 One (1) Suction tank total 241 bbls with pill tank - 25 bbls with suction tanks - 108 bbls each Total system: 746 bbls
TRIP TANK PUMP	:	One (1) Mission Magnum 2" x 3" centrifugal pump complete with 20 H, 600 Volts, 60 HZ, 3 phase explosion proof motors
CHOKE MANIFOLD	:	One (1) McEvoy choke and kill manifold 3" 5,000 psi with hydraulic Swaco "super" choke
DRILL PIPE	:	11,000' 4½" 16.60 lb/ft drill pipe, with 4 IF connections - ,8,800' "E" Grade - '2,200' "G" Grade
PUP JOINTS	:	One (1) - $4\frac{1}{2}$ " OD Grade 'G', 5 foot long One (1) - $4\frac{1}{2}$ " OD Grade 'G', 10 foot long One (1) - $4\frac{1}{2}$ " OD Grade 'G', 15 foot long
HEVI-WATE DRILL PIPE	:	12 joints of 4 ¹ / ₂ " hwdp
DRILL COLLARS	:	6 - 8" OD drill collars 24 - 6½" OD drill collars 1 - 6½" OD short drill collar
KELLY	:	One (1) 4 ¹ / ₄ " Square Kellys 40 foot long complete with Scabbard
KELLY DRIVE	:	One (1) 20 HDP Varco kelly drive bushing
KELLY COCK (UPP	PER) :	One (1) Griffith Upper Kelly Cock 7 ³ / ₄ " with 6 ⁵ / ₈ " API connections
KELLY COCK (LOWER)		: One (1) Griffith Lower Kelly Cock 6 ¹ / ₂ " OD with 4" IF connections
FISHING TOOLS		: One (1) only 8 ¹ / ₈ " Bowen series 150 FS overshot c/w grapples & Packoff to catch Contractors downhole equipment

SUBSTITUTES

:

HANDLING TOOLS

ROTARY TONG

One (1) only 8" OD fishing magnet 4½" reg pin One (1) only 7⁷/₈" OD Reverse circle junk basket 4" IF box One (1) only Fishing Jars 6½" OD Griffith Fishing 4" IF pin & box One (1) only 12" Junk Mill - 6⁵/₈" reg pin One (1) only 8" Junk Mill - 4½" reg pin

Two (2) Bit Subs - 65/8" reg double box Two (2) Bit Sbs - 41/2" reg x 4" IF double box One (1) X/O Sub - 75/8" reg x 65/8" reg double box One (1) X/O Sub - 4" IF box x 41/2" IF pin One (1) X/O Sub - 41/2" reg x 4" IF double pin Two (2) X/O Sub - 65/8" reg pin x 4" IF box One (1) Junk Sub - 65/8" reg pin and 65/8" reg box One (1) Junk Sub - 41/2" reg box x 41/2" reg pin One (1) Junk Sub - 41/2" reg box x 41/2" reg pin One (1) Junk Sub - 41/2" reg box x 4" IF box Two (2) Kelly Saver Subs c/w rubber 4" IF pin & box Two (2) Circulating Subs - 4" If x 2" Fig 1502 hammer union

- 1 only 13³/₈" Baash Ross 150 ton side door elevator 1 only 13³/₈" single joint elevators
- 1 only 95%" Webb Wilson 150 ton side door elevators
- 1 only 95%" single joint elevator
- 1 only 7" BJ 200 ton side door elevator
- 1 only 7" single joint elevator
- 2 only 41/2" BJ 250 ton 18 degree taper D/P elevators
- 1 only 3¹/₂" BJ 100 ton tubing elevator
- 1 only 21/8" IUS 100 ton tubing elevator

(all single joint elevators c/w slings & swivel)

1 only 8" Webb Wilson 150 ton single ton door elevator $\rm D/C$

1 only $6\frac{1}{2}$ " Webb Wilson 150 ton single ton door elevator D/C

(above c/w lift nubbing and bails)

1 only 13%" Varco CMS-XL casing slips

- 1 only 95/8" Varco CMS-XL casing slips
- 1 only 7" Varco CMS-XL casings slips
- 2 only 4¹/₂" Varco SDXL D/P slips
- 1 only 3¹/₂ Varco SDML tubing slips
- 1 only 37/8" Varco SDML tubing slips
- 2 only 8" 61/2" DCS-R drill collar slips

One set BJ type 'B' c/w latch & lug jaws 13³/₈"-3¹/₂"

BIT BREAKERS	:	Four (4) 17½", 12¼", 8½", 6"
FUEL TANK	:	1 only 30,000 litres
WATER TANK	:	1 only 400 bbls
DRILLING RATE RECORDER	:	 only open 6 drill sentry recorder to record: weight penetration (feet) pump pressure (0-6,000 psi) electric rotary torque rotary speed (rpm) pump spm (with selector switch)
DEVIATION INSTRUMENT	:	1 set Totco 'Double Shot' deviation instrument 0°-8°
INSTRUMENTS & INDICATORS	:	1 only Martin Decker Auto Driller SA-102 satellite
		 only drillers console including the following equipment: Martin Decker Weight Indicator type 'D' Electric rotary torque gauge Pit scan SPM gauge (2 per console) Rotary rpm gauge
MUD TESTING	:	1 set Baroid mud testing laboratory (standard kit)
RATHOLE DRILLER	:	One (1) fabricated rotary table chain driven
WATER PUMPS	:	Three (3) Mission Magnum 2" x 3" centrifugal pumps c/w 20 HP, 600 Volts, 69 HZ, 3 phase explosion proof motors
AUGER	:	One (1) 27 ¹ / ₂ " auger 4" IF box
CUP TESTER DRILLING LINE	:	One (1) Grey Cup Tester c/w test cups for 9 ⁵ / ₈ " & 13 ³ / ₈ " 5,000' 1 ¹ / ₈ " - E.I.P.S.

TRANSPORT EQUIPMENT AND MOTOR VEHICLES

1 International 530 Forklift

1 Mack Oilfield Truck

Toyota 4 x 4 units - 1 Tray Top Utility - 1 Crew Wagon 2

CAMP EQUIPMENT

- 4 8-Man Bunkhouses
- 1 Recreation/Canteen unit
- 1 Ablution/Laundry/Freezer unit
- 1 Kitchen/Cooler/Diner unit
- 2 Toolpushers/Engineer units with bathrooms
- 1 Combined Water/Fuel Tank unit
- 2 CAT 3304PC generator sets each 106Kva, 50 HZ
- Note: Contractor reserves the right to replace any listed item with a replacement of equal or greater capacity.

EQUIPMENT DATA/SPECIFICATIONS

1 <u>Maximum Pull</u>

(i)

Drill Pipe	<u>E Grade</u>	<u>G Grade</u>
4½" New	16.6 lbs/ft 330,560 lbs	16.6 lbs/ft 462,780 lbs
Used Premium	260,100 lbs	364,140 lbs

(ii) Kelly - OMSCO

4¹/₄" Square 40 ft long w/- 6⁵/₈" Reg L/H/ Box & 4" IF Pin Tensile Yield 1,488,500 Drive Section 1,924,300 Lower Pin Connection

(iii) Swivel - OILWELL PC 300 w/- 6⁵/₈" Reg LH Box

Deadload Capacity (AP Strength Rating): 300 tons API Bearing Load @ 100 rpm: 192 tons

2 Maximum Hook Load

 (i) Drawworks - DRECO 700E - 750 combined engine hp Make: Dreco 700E
 Model #: D-700-E
 Serial #: -48-

		TOTAL LOAD PULL				
SPEED	8 LINES	BLOCK SPEED FT/MIN	10 LINES	BLOCK SPEED FT/MIN		
Low	288,000	57	347,000	46		
High	135,000	122	163,000	98		

Wireline 1¹/₈" Extra Improved Plow Steel 130,00 lbs single line pull

(ii) Mast DRECO Model #: M12713-510-1

(a) (b)	Rating: Mast:	Gross Nominal Capacity (Static Load)	510.000 lbs 8 lines 340,000 lbs 10 lines 365,000 lbs
Max	Wind Resistance:	84 mph actual velocity back 100 mph actual velocity v zero hook load	w/- 150,000 lb pipe set w/- zero pipe set back &

(iii) Substructure - DRECO: One piece

Dimensions:	Height:	14 ft
	Width:	13 ft 6 in
	Length:	50 ft
	BOP clearance:	12 ft

Capacity Set Back Area	250,000 lbs
Capacity Rotary Table Beams	<u>275.000</u> lbs
Simultaneous Capacity	525,000 lbs

- (iv) Blocks - 667 CROSBY McKISSICK TRAVELLING BLOCK w/- 250 ton Hydra Hook - combination - total 500,000 lbs
- (v) Rotary Table - OILWELL A201/2" complete with API Split Master Bushings and 1 & 2 inset bowls Supportable deadload capacity 350 tons

3 Pumps No 1 & No 2

(i)	Make:	GARDNER DENVER (750 hp)
(ii)	Model:	PZ-8 : Max Liner Size: 7" x 8" strok

PZ-8 : Max Liner Size: 7" x 8" stroke

- **Power Source:** (iii) 800 hp EMD & chain driven
- Maximum Discharge Pressure (iv)

LINER	PSI
7"	1996
6½"	2315
6¼"	2504
6"	2717
5½"	3233
5"	3912

- 4 **BOP** Equipment
 - Hydril 135/8" 3000 psi Spherical Annular BOP studded top flanged bottom 1
 - Hydril 135/8" 500 psi Double Gate BOP flanged top & bottom 1 1
 - McEvoy Choke Manifold w/- 1 Swaco hydraulic adjustable choke 5000 psi

5 <u>Generators</u>

Four (4) Brown Boveri 600v, 3 phase, 60 HZ. AC generators and powered by four (4) Cat D3412 PCTA diesel engines.

Note: The above are all original equipment manufacturers specifications.

6 <u>Derrick Shale Shakers</u>

The Derrick - Sandwich Model K-48-96-DF-3-SM Shale Shaker is one of the most advanced designed vibrating Screen systems available to the Oil industry. This Derrick design is a result of 30 years experience in the mining and chemical industries.

The design incorporates the most efficient combination of many variables of pitch, frequency and layouts. The most significant development of these units is a non plugging sandwich type screen panel assembly which is patented to the Derrick Corporation. The assembly uses identical screen cloths bonded together with a backing panel in a sandwich arrangement. The wires of the intermediate cloth interfere with a particle that would plug the top cloth. With the use of a tension bolt compression tool screen panels can be changes in a matter of minutes.

The three section unit with a pitch increasing from 20 to 30 degrees produces excellent results. With a flatter pitch at the feed end of the unit, the maximum amount of fluid is achieved. As fluid is removed, it becomes necessary to increase pitch to convey the solids.

The general layout and installation of unit is similar to most shakers. As an additional feature a hydraulically operated by pass valve has been incorporated in place of mechanical slide gates which tend to jam and are prone to leak.

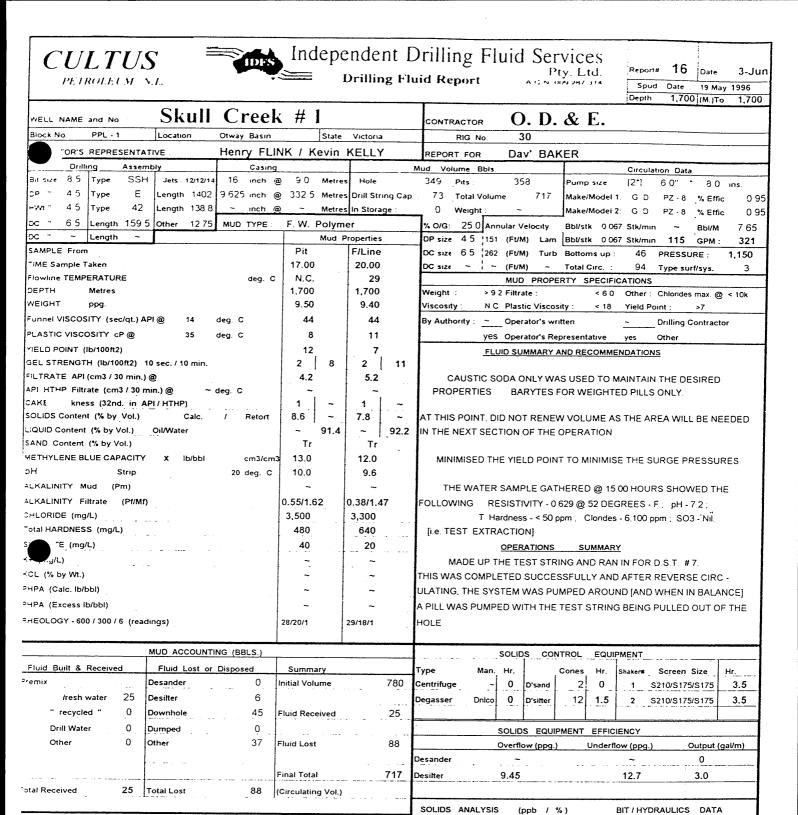
The vibrator and all electrical equipment on Shaker are division Class 1 Group D for hazardous locations. An electric lubricator on a timed cycles insures that the vibrator is properly lubricated.

These designs coupled with a constant program of research to improve or existing and develop new ideas make Derrick sandwich Shale Shakers one of the most advance unit available to the Drilling industry.

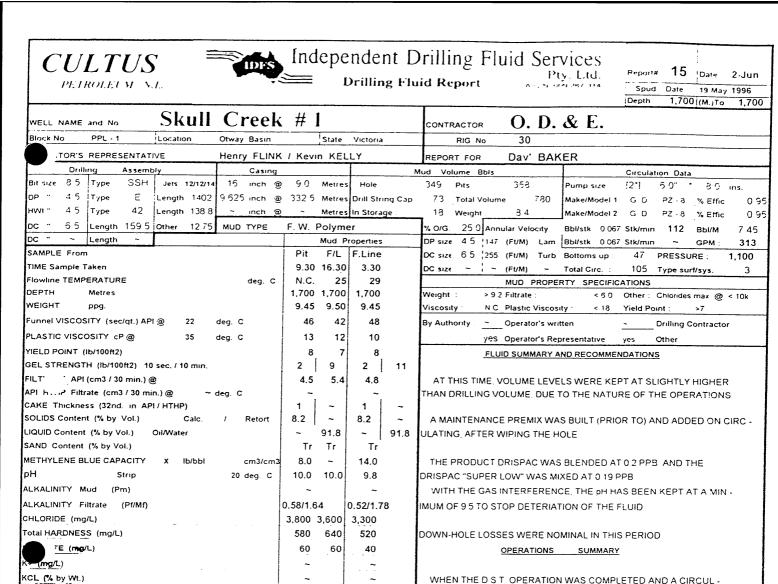
APPENDIX 2 - DRILLING FLUID REPORTS

		-	IDFS					Drilling Fl uid Report			Ltd.	Report Spud Depth	Date	Date 19 May	•
WELL NAME and N	lo	Skull	Cree	k #	1			CONTRACTOR	0.	D. (& E.				
Block No PPL -	1	Location	Otway Basin		State	Victoria		RIG No	30						
TOR'S REPRI	ESENTA	TIVE	Henry FL	INK / H	(evin M	ELLY	•	REPORT FOR	Dav'	BAKE	R				
Drilling	Assen	שופר	Casin					Mud Volume Bbls				Circulat	ion Data		
Bitsize 8.5 Type DP " 4.5 Type	ε	1	16 inch	•	Metres	Hole		8 Pits		F	Pump size	[2]	60°.	80	ins.
DP " 45 Type HWt" 45 Type	42	Length Length	9 525 inch 7 0 inch	'ഇ 3325 ഇ 1614				> Total Volui O Weight	me	1	Make/Model 1	GD	PZ - 8	% Effic	
DC " 65 Lengt		Other	MUD TYPE		Polyme		ye		nular Velo		Make/Model 2		PZ - 8	% Effic	
DC " ~ Lengt	h ~			1	Mud Pre			DP size 45			361/stk 0.067 361/stk 0.067		~	Bbl/M GPM :	
SAMPLE From				~		Pit		DC size 65		L.,	Bottoms up :		PRESSU		
TIME Sample Taken				-	-	08.00		DC size ~ : ~			otal Circ. :		Type sur	f/sys.	3
Flowline TEMPERATU DEPTH Metres			deg. (~		N.C.					TY SPECIFIC				
WEIGHT ppg.	•			-		1,700 9.50		Weight : Viscosity :	Filtrate			Other :			
Funnel VISCOSITY (s	ec/qt.) A	PI@ 20	deg. C			47		By Authority . ~		Viscosity or's writte		Yield Po	Int : Drilling C	ontract	
PLASTIC VISCOSITY		30	deg. C	######		12					esentative		Other	JINIACIO	•
VIELD POINT (Ib/100f	t2)			######	.	11		,FL			DRECOMMEN				
SEL STRENGTH (Ib/1	· ·		· ·	-	~	2	12						-		
FILTP API (cm3 /		0		~		6.4		ON COMPLETIN					URFACE	E VOLUM	ME
API F. Filtrate (cr CAKE Thickness (32r			deg. C	-	1 ~ 1	1	~	WAS TREATED P							
OLIDS Content (% b)		Calc.	/ Retort	#####	~	8.6	~	THE CHEMICALS ALUMINIUM SU						ATABILI	TY.
IQUID Content (% by	Vol.)	Oil/Water		-	`####	~	91.4	LIME WAS ADD							
AND Content (% by						Tr		DRILLPOL WAS	ADDED	AT 0 17	LT/BBL				
		X lb/bbi	cm3/cn	1		15.0									
H	Strip		12 deg. C	-		9.4									
LKALINITY Filtrate	(Pm) (Pf/Mf)	1		-		-	`								
HLORIDE (mg/L)	(= """")			~	ł	.27/1.1 3,100	3								
otal HARDNESS (mg/	/L)		· ••• · · ·	~		560									
rE (mg/L)				-		Tr			OPERAT	LIONS	SUMMARY				
(mg/L)				-	1	~		CASING W			PROBLEM		E REVIS	EN NEP	ты
CL (% by Wt.)						~		THE VOLUME W							
HPA (Calc. lb/bbl)				~		~		(40 BBL) SWEEP			•				
HPA (Excess lb/bbl)				-	1	~		FROM THIS POIL	NT THE	CEMENT	OPERATIO	N FOLLO	WED WI	TH NO	
HEOLOGY - 600 / 300	/6 (read	lings)		-	3	5/23/3		PROBLEMS							
		MUD ACCOUNT	ING (BBLS.)	 					SOLIDS	CONTR	OL EQUIP	MENT			
Flui Tuilt & Receive		Fluid Lost or		Summ	ary			Type Man.	Hr.	Co	nes Hr. s	Shaker#	Screen_S	Size I	Hr.
en.	1 1	Desander	0	Initial Vol	ume		722	Centrifuge ~	0 0	sand	2 0	1 S	210/\$175	S175	4.5
w/ fresh water		Desilter Deverbele	0				 C	Degasser Drilco	0	silter	12 0	2 .S	210/5175/	S175	4.5
" recycled " Drill Water		Downhole Dumped	- <u>31</u> 684	Fluid Rec	erved		0		<u>L</u>		<u></u>			l	
Other		Other		Fluid Lost		• • • •	722				ENT EFFICIE				<u> </u>
			· · · · · · ·		•		122	Desander	Overflow ~	(ppg.)	Underflo	w (ppg.)	0	utput (g: 0	ai/m)
				Final Tota	1			Desilter	~		• • •	~		0	•
tal Received	0	Total Lost	722	(Circulatin					··· •· ··		•			<u> </u>	
·····	7. 1.		, , , , , , , , , , , , , , , , , , , ,	Conculation	ig voi.)				-			······			
Product	Invento	ory Rec'd.	Used Balan		loit f	Cont		SOLIDS ANALYSIS	÷.	b / %)			AULICS		
irytes		365	5 360	U	6.20	Cost \$		High Gravity Solids Bentonite		010 951		the address and the second second		<u>₩##_</u> F ₩##	T / SEC
illpol		6	4 2		75.75	303.00	1	Drilled Solids	•	1	0 Impact Fe 5 HHP / in:			#### #####	LBS
onox 2-100		1	1 0	-	81 15	881.1	5	Low Gravity Solids Average S. G.		818			#	### ###	-
L			24	•	25 70	616.80	- 1	-	·				• • • • •		
PP		9	9		67 95	611.55	- 1	E	1		05 Csg. Seal				PSI
rflo B54X		1	1	•	07.75	207.75	t	Med. "K" "		### 2 69 ### 0 53		iiv. Mud V			PPG PPG
D04A			• • • •	2		201.15	-		· · · • • • ~					I	485
			0					ow "K" *	* 1 11**	100 H H H H H	() C+4 E+- @		CDM .		
mium Sulphate		56	· •		24.00	1.344.0	T	Low "K" *	• #	### 4.3	0 Crit.Flo@		GPM 3	559	
	. .		0 56 4 14		24.00 5.80	1,344.0 23.20	T	Low "K" *	- ##		Cumulativ	ve Cost :	GPM 3		

31 Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so ele y ourselves or our agents as to it's correctness or completeness, and no liability is assumed for any damages resulting from the use of same as been prepared carefully and maybe used if the user so elects, however, no represe on or warranty is made



Independent Drilling Fluid Services Drilling Fluid Report


Report# 17 Date 4-Jun

Spud Date 19 May 1996 Depth 1,700 (M.)To 1.70

WELL NAME a	and No	Skull	Creek	(# 1		CONTRACTOR O. D. & E.
Block No	PPL - 1	Location	Otway Basin	State	Victoria	RIG No 30
TOR'S I	REPRESENT	ATIVE	Henry FLI	NK / Kevin	KELLY	REPORT FOR Dav' BAKER
Drillin	ng Asse	mbly	Casing			Mud Volume Bbls Circulation Data
Bit size 35	Type SS	H Jets 12/12/1	4 16 inch @	9 90 Metre	s Hole	349 Pits 300 Pump size. [2*] 6.0" * 8.0 ins.
DP " 45	туре Е	Length 1402	9625 inch @	9 332 5 Metre	s Drill String Cap.	. 73 Total Volume 722 Make/Model 1: G D PZ - 8 % Effic C
нwn." 45	Type: 42	Length 138 E	3 ~ inch @) ~ Metre	s In Storage :	0 Weight ~ Make/Model 2: G D PZ - 3 % Effic 0
DC " 65	Length 159	5 Other 12 75	MUD TYPE	F. W. Polym	er	% O/G: 250 Annular Velocity Bbl/stk 0.067 Stk/min 126 Bbl/M 8.3
DC " ~	Length ~			Mud I	Properties	DP size 4.5 166 (Ft/M) Lam Bbl/stk 0.067 Stk/min ~ GPM : 35
SAMPLE From				F/Line	Pit	DC size 65 287 (FUM) Turb Bottoms up : 42 PRESSURE : 1,150
TIME Sample Ta	aken			07.30	22.00	DC size ~ (FUM) ~ Total Circ. : 86 Type surf/sys. 3
Flowline TEMPE	ERATURE		deg. C	26	N.C.	MUD PROPERTY SPECIFICATIONS
DEPTH I	Metres			1,700	1,700	Weight : > 9.2 Filtrate : < 6.0 Other : Chlorides max @ < 10k
WEIGHT I	ppg.			9.45	9.50	Viscosity: N.C. Plastic Viscosity: < 18 Yield Point: >7
Funnel VISCOSI	ITY (sec/qt.)	API @ 22	deg. C	42	40	By Authority : ~ Operator's written _ Drilling Contractor
PLASTIC VISCO	SITY cP@	33	deg. C	11	10	yes Operator's Representative yes Other
YIELD POINT (I	Ь/100ft2)			8	8	FLUID SUMMARY AND RECOMMENDATIONS
GEL STRENGTH	H (Ib/100ft2)	10 sec. / 10 min.		2 11	2 8	
FILTT 'S API ((cm3 / 30 mir	.)@		5.7	5.5	NO TREATMENT WAS REQUIRED IN THIS PERIOD
API. 2 Filtra	ate (cm3/30	min.)@~~	deg. C	~.	~	
CAKE Thicknes				1 ~	1 ~	
SOLIDS Content			/ Retort	8.2 ~	8.6 ~	THE ID - GEL IS TO BE USED FOR THE CEMENT OPERATION AND HAS
LIQUID Content		Oil/Water		~ 91.8	~ 91.4	BEEN PREHYDRATED (BY HALIBURTON) FOR THIS
SAND Content				Tr	Tr	
METHYLENE BL		Y X Ib/bbl	cm3/cm3	ł	10.0	THROUGH THE JETTING OF THE CELLAR ON TWO OCCASIONS.
рН	Strip		15 deg. C	9.8	9.8	WATER WAS PERMITTED INTO THE SURFACE SYSTEM, THIS DID NOT
ALKALINITY MU	ud (Pm)			-	~	CAUSE ANY PROBLEMS TO THE MUD. AT THIS TIME
ALKALINITY Fil	ltrate (Pf/I	10		0.46/1.63	0.36/1.55	
CHLORIDE (mg/	/L)			3,200	3,000	
Total HARDNESS	S (mg/L)			600	480	
TE (mg/L	L)			20	Tr	OPERATIONS SUMMARY
(mg/L)				~	~	THE SYSTEM WAS CIRCULATED CLEAR OF GAS WITH A BALANCED
(CL (% by Wt.)				~	~	MUD WEIGHT, PRIOR TO PULLING OUT - USING A BARYTES PILL TO CLEAR
PHPA (Calc. lb/b	obl)			~	~	THE PIPE AND COROSSION INHIBITOR TO TREAT THE WORK STRING
HPA (Excess lb	o/bbl)			~	~	PICK UP AND RUN 7" CASING
RHEOLOGY - 600	0/300/6/re	adings)		30/19/2	28/18/2	
		2011937		50/15/2	20/10/2	
		MUD ACCOUN	TING (BBLS.)	· · · · · · · · · · · · · · · · · · ·		SOLIDS CONTROL EQUIPMENT
Fly Built & F	Received	Fluid Lost o	r Disposed	Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
rei.		Desander	6	Initial Volume	717	Centrifuge - 0 D'sand 2 2 1 S210/S175/S175 2
w/ fresh v	water 0	Desilter	0			Degasser Drilco 0 D'sitter 12 0 2 S210/S175/S175 2
" recycle		Downhole	19	Fluid Received	35	
Drill Wate						
Driit wate	ar <u>0</u> 35	Dumped Other			20	SOLIDS EQUIPMENT EFFICIENCY
01			5	Fluid Lost	30	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
Other		Other				Desander 9.5 12.6 2.3
Other	55	outer		· .		
Other				Final Total	722	Desilter ~ 0
	35	Total Lost	30	Final Total (Circulating Vol.)		
Other otal Received			30			Desilter ~ 0
otal Received	35	Total Lost	1	(Circulating Vol.)		Desilter - 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
otal Received Product	35	Total Lost	Used Balanc	(Circulating Vol.) :e Unit \$	Cost \$	Desilter 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/S
otal Received	35	Total Lost	1	(Circulating Vol.)		Desilter 0 SOLIDS ANALYSIS (ppb / %) Bit / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 Bentonite 2.9 0.3 Impact Force 526
Product Product arytes	35	Total Lost	Used Balance 35 365	(Circulating Vol.) re Unit \$ 6 20	Cost \$	Desilter 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT / SI Bentonite 2.9 0.3 Impact Force 526 Li Drilled Solids 75.3 8.3 HHP / in2 2.8
Product Product arytes	35 Inve	Total Lost ntory Rec'd. 400	Used Balanc	(Circulating Vol.) ee Unit \$ 6 20 881 15	<u>Cost</u> \$ 217.00	Desilter 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 30.4 FT/S Bentonite 2.9 0.3 Impact Force 52.6 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161
Product Product arytes ronox 2-100 ronox C798M	35 Inve	Total Lost ntory Rec'd. 400 1 4	Used Balance 35 365 0 1 4	(Circulating Vol.) ee Unit \$ 6 20 881 15 132 00	Cost \$	Desilter O SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 Fir/S Bentonite 2.9 0.3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 L Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784
Product Product arytes ronox 2-100 ronox C798M CL	35 Inve	Total Lost ntory Rec'd. 400 1 4 24	Used Balance 35 365 0 1 4 0 24	(Circulating Vol.) ee Unit \$ 6 20 881 15	<u>Cost</u> \$ 217.00	Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/S Bentonite 2.9 0.3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784 Med. "n" #1ck # 2 ck 0.659 0.637 Csg. Seat Frac Pres 320
Product Product arytes ronox 2-100 ronox C798M CL APP	35 Inve	Total Lost ntory Rec'd. 400 1 4	Used Balance 35 365 0 1 4	(Circulating Vol.) ee Unit \$ 6 20 881 15 132 00	<u>Cost</u> \$ 217.00	Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0 1 0 0 Jet Velocity 304 FT/S Bentonite 2.9 0.3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784 Med. "n" #1ck #2 ck 0.659 0 637 csg. Seat Frac Pres 320 Med. "K" - 0.313 1.731 " Equiv. Mud Wt. 14.04 PH
Product Product arytes ronox 2-100 ronox C798M CL APP	35 Inve	Total Lost ntory Rec'd. 400 1 4 24	Used Balance 35 365 0 1 4 0 24	(Circulating Vol.) e Unit \$ 6 20 881 15 132 00 25 70	<u>Cost</u> \$ 217.00	Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0 1 0 0 Jet Velocity 304 FT/S Bentonite 2.9 0 3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784 Med. "n" #1ck # 2 ck 0.659 0 637 Csg. Seat Frac Pres 320 Med. "K" - 0.313 1.731 " Equiv. Mud Wt. 14.04 PL Low "n" - 0.489 0.477 E C D 970 PL
otal Received Product	35 Inve	Total Lost ntory Rec'd. 400 1 4 24	Used Balance 35 365 0 1 4 0 24	(Circulating Vol.) (Circulating Vol.) (Circu	<u>Cost</u> \$ 217.00	Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/S Bentonite 2.9 0.3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784 Med. "n" #1ck # 2 ck 0.659 0 637 Csg. Seat Frac Pres 320 Med. "K" - 0.313 1.731 " Equiv. Mud Wt. 14.04 Pr Low "n" - 0.489 0.477 E C D 970 Pr
Product Product arytes ronox 2-100 ronox C798M CL APP	35 Inve	Total Lost ntoryRec'd. 400 1 4 24 9 1	Used Balance 35 365 0 1 4 0 24 0 9 0 1	(Circulating Vol.) e Unit \$ 6 20 881 15 132 00 25 70 67 95 207 75 8.13	Cost \$ 217.00 528.00 162.60	Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/S Bentonite 2.9 0.3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784 Med. "n" #1ck #2.ck 0.659 0.637 Csg. Seat Frac Pres 320 Med. "K" - 0.313 1.731 "Equiv. Mud Wt. 14.04 PF Low "n" - 0.489 0.477 E.C. 9.70 PF
Product arytes onox 2-100 onox C798M CL APP	35 Inve	Total Lost ntoryRec'd. 400 1 4 24 9 1	Used Balance 35 365 0 1 4 0 24 0 9 0 1 20 205	(Circulating Vol.) (Circulating Vol.) (Circu	Cost \$ 217.00 528.00 162.60	Desilter - 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/S Bentonite 2.9 0.3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784 Med. "n" #1ck #2 ck 0.659 0.637 Csg. Seat Frac Pres 320 Med. "K" - 0.313 1.731 " Equiv. Mud Wt. 14.04 PH Low "n" - 0.489 0.477 E c D 9.70 PH Low "n" - 0.901 4.69 Crit.Flo @ DC/DP - GPM 318 443
Product arytes onox 2-100 onox C798M CL APP Inflo B54X	35 Inve	Total Lost ntory Rec'd. 400 1 4 24 9 1 225	Used Balance 35 365 0 1 4 0 24 0 9 0 1 20 205	(Circulating Vol.) e Unit \$ 6 20 881 15 132 00 25 70 67 95 207 75 8 13	Cost \$ 217.00 528.00 162.60	Desilter ~ 0 SOLIDS ANALYSIS (ppb /%) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/S Bentonite 2.9 0.3 Impact Force 526 L Drilled Solids 75.3 8.3 HHP / in2 2.8 Low Gravity Solids 78.2 8.6 HHP 161 Average S. G. 2.60 Solids Bit Press. Loss 784 Med. "n" #1ck #2 ck 0.659 0.637 Csg. Seat Frac Pres 320 Med. "K" - 0.313 1.731 " Equiv. Mud Wt. 14.04 Pi Low "n" - 0.489 0.477 E C D 9.70 Pi Low "K" - 0.901 4 69 Crit.Flo @ DC/DP - GPM 318 443 Daily Chemical Cost : Cumulative Cost : 443

Product	Inventory	Rec'd.	Used	Balance	Unit \$	Cost \$	High Gravity	Solids		0.1	00	Jet Velocity	311	FT / SEC
arytes	460		60	400	6.20	372.00	Bentonite			6.4	0.7	Impact Force	486	LBS
	• • • • • • • • • • • • • • • • • • • •						Drilled Solid	5		64.7	71	HHP / in2	2.7	
Crispac - Low Vis	27		0	27	152.28		Low Gravity	Solids		712	78	ннр	152	
Cefoam L	6		0	6	84.05		Average S. (З.		2.60	Solids	Bit Press. Loss	811	2S.
laustic Soda	. 26		1	25	21.38	21.38	Med. "n"	#1ck	# 2 ck	0.485	0.688	Csg. Seat Frac Pres	320	PS:
spac	19		0	19	152.28		Med. "K"	•	-	0.971	1.263	" Equiv. Mud Wt	14.04	PPG
	•		0				Low "n"	•	-	0.500	0.477	Total nozzle area	0.331	SO NCH
			0				Low "K"		•	0.885	4.69			
			0				Daily Chemic	al Cost	:			Cumulative Cost :		
						-			\$	393		s 32,	505	
NGINEER EDD	PERKINS			ADDRESS	South	Australia				TELEP	IONE	08 - 338 3027		
Any opinion and I ourselves or our agents	or recommendation. e				been prepared	carefully and maybe			owever.	no repres				

WHEN THE DISIT OPERATION WAS COMPLETED AND A CIRCUL -ATION WAS COMPLETED. THE TEST STRING WAS PULLED OUT AND THE WORKING STRING WAS RUN IN TO WIPE AND CIRCULATE BOTTOMS UP ON COMPLETING CIRCULATING, A SLUG WAS PUMPED TO POOH.

		·					GAS PEAK 105 L	INITS	@ BOTT	OMS U	P			
		MUD ACCOU	NTING (E	BBLS.)	-r			SOL	ios co	NTROL	. EQUIPM	ENT		
Fli uilt & Receiv	ed	Fluid Lost	or Dispo	osed	Summary		Type Ma	n. Hr.		Cones	s Hr. sr	haker#	Screen Size	Hr.
Premis		Desander		0	Initial Volume	815	Centrifuge	- 0	D'sand	2	2 0	1 S2	210/S175/S175	2
w/ fresh water	0	Desilter		7			Degasser Drild	0 0	Disilter	12	2 1.5	2 S2	210/S175/S175	2
" recycled "	0	Downhole		26	Fluid Received	0		1						
Drill Water	0	Dumped		0				SOL	DS EQU	IPMENT	T EFFICIEI	NCY		
Other	0	Other		2	Fluid Lost	35		Over	flow (ppg	.)	Underflow	v (ppg.)	Output	(gal/m)
							Desander		-			~	0	
					Final Total	780	Desilter	9.	5		1	13.2	3.4	
Total Received	0	Total Lost		35	(Circulating Vol.)									
							SOLIDS ANALYS	 SIS	(ppb /	%)	BI	T / HYDR	AULICS DAT	A
Product	Inve	ntory Rec'd	Used	Balar	nce Unit \$	Cost \$	High Gravity Solids		0.1	00	Jet Veloci	ty	270	FT / SEG
Barytes		520	60	460	6 20	372.00	Bentonite		8.6	09	Impact Fo	rce	414	LB
							Drilled Solids		66.0	72	HHP / in2		2.0	
Drispac - Low Vis		30	. 3	27	152 28	456.84	Low Gravity Solids		74 6	82	ННР		112	
Defoam L		6	. 0	6	84 05		Average S. G.		2 60	Solids	Bit Press.	Loss	616	P
Caustic Soda		27	. 1	26	21.38	21.38	Med. "n" #1ck	#2ck	0 695	0 637	Csg. Seat	Frac Pre	s 320	P
Drispac		22	3	19	152 28	456.84	Med. "K" "	-	0 276	1.731	" Equi	iv. Mud V	vt. 14.04	PFC
			. 0 .				Low "n" "	-	0.511	0.477	Total nozz	le area	0.371	SQ INC:
			0				Low "K" "		0.870	4.69				
• .			0				Daily Chemical Cost	:			Cumulative	e Cost :		
								s	1,307			\$ 32	2,112	

~

28/18/1

~

_

34/21/1

by ourselves or our agents as to it's correctness or completeness; and no hability is assumed for any damages resulting from the use of same

PHPA (Calc. Ib/bbl)

PHPA (Excess lb/bbl)

RHEOLOGY - 600 / 300 / 6 (readings)


CULTUS

Independent Drilling Fluid Services Drilling Fluid Report

15005

Report# 14 Date Spud Date 19 May 1996

WELL NAME	and No		Skull	Cree	k # 1	1			CONTRACTOR	Ο	. D.	& 1	E.				
Block No	PPL - 1		Location	Otway Basin		7	Victoria		RIG No	30			····				
TOR'S	REPRES	SENTAT	IVE	Henry FLIN	K / Kevi	n KEL	LY		REPORT FOR	Dav	' BAI	KER					
Drille	ng	Assem	oly	Casin	1		I	1	Mud Volume Bbls.			1		Circulati	on Data		
Bitsize 3.5	Туре	SSH	Jets 12/12/14	16 inch	@ 90	Metres	Hole .		349 Pits	39:	3	Pump	size	121	60° •	8.0	ins.
OP " 45	Туре	E	Length 1402	9 525 inch	@ 3325	Metres	s Drill Stri	ng Cap.	73 Total Volum	ne	815	Make/M	Model 1	GD	PZ · 8	% Effic	(
	Туре	42	Length 138.9	~ inch			In Storac	je .	0 Weight			Make/N	Nodel 2	GD	PZ 8	% Effic	(
	Length		Other 1275	MUD TYPE :	F. W.	Polym	er		% O/G 25 0 Anr	nular Ve	locity	8bi/stk	0.067	5 Stk/min	126	вы/м	8 3
	Length	~					Properties) Lam	L		7 Stk/min		GPM :	35
SAMPLE From TIME Sample T					F.Line 19.30		F.Line 20.30		DC size 6 5 287		-	Bottor	•		PRESSUR		1,350
Flowline TEMPE		1F		deg. (20.30		DC size ~ · ~			Total C ERTY SI			Type surf/	sys.	3
	Metres	-		urg. v	1,700		1,700		Weight : > 9 :	2 Filtrat			< 6 0		Chlorides n	nax @	< 10k
WEIGHT	ppg.				9.40		9.40		Viscosity : N C	Plasti	c Visco	sity:	< 18	Yield Poi		•7	
Funnel VISCOS	ITY (see	c/qt.) AF	PI@ 23	deg. C	44		47		By Authority : ~	Opera	ator's wr	ritten		~ (Drilling Co	ntractor	
PLASTIC VISCO	SITY c	P @	35	deg. C	13		14		yes	— 6 Opera	ator's Re	epresenta	ative	yes (Other		
VIELD POINT (I	Ib/100ft2)			9		11		FLU		MARY	AND REC	OMME	NDATIONS	;		
GEL STRENGT	Н (16/10	0ft2) 1) sec. / 10 mm.		2	10	2	12							-		
FILTRATE API	(cm3 / 3	0 min.) (ø		7.1		5.0		FOR MAINTER	NANCE	E, PREF	IYDRAT	ED PO	YMERS W	VERE US	ED TO	
API HTHP Filtra	•			d e g. C	~.	i			ENSURE THE DES	SIRED	PARAN	IETERS	WERE	RETAINE	ED		
			기 / HTHP)	, <u> </u>		~		~		FP / -	o 40 = -	NO 0 1					
SOLIDS Content		-	Calc.	/ Retort	7.8	~	7.8	~	PAC WAS ADD								
IQUID Content		-	Oil/Water		Tr	92.2	∼ Tr	92.2	WITH THE PREMI	A PIT B	EING F	LUSHE	001	VVIIH MU	U AF TER	WARD	5
AETHYLENE BL			X Ib/bbi	cm3/cn	1		10.0		THE FIRST MUL	D CHE		STAKEN			FET DOV	NN.HO	F
oH		Strip		20 deg. C	9.6		9.8		DURING THE LAS						L: 1 00.		
LKALINITY M	ud (P	'm)		2	~	İ	~		THE SECOND C				FTER	BOTTOM	S - UP		
LKALINITY F	iltrate	(Pf/Mf)			0.42/1.3	38	0.5/1.53										
HLORIDE (mg	/L)				4,200		3,600										
otal HARDNES	\$ (mg/L	.)			820		640		ļ								
	'L)			-	80		80			OPER	ATIONS	su	MMARY	<u>(</u>			
_,/L)					-	[~		LOGGING F	OLLOV	VED AN	ND WHE	N FINI	SHED, A (снеск т	RIP TO	
(CL (% by Wt.)					~		~		1,600 METRES WA	AS CON	IDUCTE	ED.					
HPA (Calc. Ib/b	obl)				~		~		THE SYSTEM W	AS CIF	RCULA	TED ANI	D A SLI	UG PUMP	PED TO C	LEAR T	ΉE
HPA (Excess It	b/bbl)				~		~	1	PIPE, THEN THE W	VORKIN	NG STR	ING WA	S CHA	NGED FC	R THE T	EST	
HEOLOGY - 600	0 / 300 /	6 (read	ngs)		35/22/2		39/25/2		STRING AND D	S T 's F	OLLOV	VED					
			MUD ACCOUNT							SOLID		NTROL	EQUIP	MENT			
Fluid Built & I	Pecaiva	ſ	Fluid Lost or						Type Man.		5 00		1	• • •		Ι.	
remix	Receive		Desander	7	Initial Vol			847	Type Man. Centrifuge ~	1 1	D'sand	Cones 2	2.5	Shaker# 1 Si	210/S175/S		Hr. 2.5
esh v	water	_	Desilter	, 0		une		047	Gentinge			12	0	•	210/S175/S		2.5
	match	- U	Jesiner						Decrease Dulas		D'silter	12		2 S	210/31/3/2	5175	2.5
	n "	0 1	Jownhoie		Eluid Rec	aivad		0	Degasser Drilco	0							
" recycle		_ 1	Downhole	22	Fluid Rec	eived		0	Degasser Drilco					- NOV			
" recycle Drill Wate		0	Dumped	0						SOLID		PMENT				iterit (a	\/m\
" recycle		0	• •		Fluid Rec			32		SOLIDS	S EQUI			ow (ppg.)		utput (ga 2 0	al/m)
" recycle Drill Wate		0	Dumped	0	Fluid Los	t		32	Desander	SOLID						2.0	<u>al/m)</u>
" recycle Drill Wate Other		0	Dumped Other	0 3	Fluid Losi Final Tota	t 11		32		SOLIDS				ow (ppg.)			<u>al/m)</u>
" recycle Drill Wate		0	Dumped	0	Fluid Los	t 11		32	Desander	SOLIDS				ow (ppg.)		2.0	<u>al/m)</u>
" recycle Drill Wate Other otal Received		0	Dumped Dther Fotal Lost	0 3 32	Fluid Losi Final Tota	t 11	· · · · · · · · · · · · · · ·	32 815	Desander	SOLIDS Overflo 9.5		<u>}</u>	Underfic	ow (ppg.)	RAULICS	2.0 0 DATA	<u>al/m)</u>
" recycle Drill Wate Other btal Received Product		0	Dumped Other Fotal Lost Pry Rec'd.	0 3 32 Used Balar	Fluid Losi Final Tota (Circulatir	t ng Vol.) Jnit_\$	Cost	32 815 5	Desander Desilter SOLIDS ANALYSIS High Gravity Solids	SOLIDS Overflo 9.5	уж (ррд. орь / 0 1) (%) 00 J	Underfic t	оw (ppg.) 12.4 ~ ВІТ / НҮДЯ city	RAULICS	2.0 0 DATA 304	FT / SE
" recycle Drill Wate Other otal Received		0	Dumped Dther Fotal Lost	0 3 32	Fluid Losi Final Tota (Circulatir	t il ng Vol.)	· · · · · · · · · · · · · · ·	32 815 \$	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite	SOLIDS Overflo 9.5	орь / 0 1 3 8) (%) 00 J 04 In	Underfic I let Velo mpact F	ow (ppg.) 12.4 ~ BIT / HYDR city Force	RAULICS	2.0 0 DATA 304 521	FT / SE
" recycle Drill Wate Other btal Received <u>Product</u> arytes	27	0	Dumped Dther Fotal Lost ory Rec'd. 550	0 3 32 <u>Used Balar</u> 30 520	Fluid Lost Final Tota (Circulatir	t ng Vol.) <u>Jnit \$</u> 6.20	<u>Cost 1</u> 186.0	32 815 \$	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids	SOLIDS Overflo 9.5	ууу (ррд. орб / 0 1 3 8 67 2) (%) 00 J 04 II 74 I	Jnderfic let Velo mpact F HHP / ir	ow (ppg.) 12.4 ~ BIT / HYDR city Force	RAULICS	2.0 0 DATA 304 521 2.8	FT / SE
" recycle Drill Wate Other Dtal Received Product arytes	27	0	Dumped Dther Fotal Lost <u>ory Rec'd.</u> 550 35	0 3 32 <u>Used Balar</u> 30 520 5 3 0	Fluid Losi Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20	Cost	32 815 	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids	SOLIDS Overflo 9.5	ррь / 0.1 3.8 67.2 71.0) (%) 00 J 04 III 7.4 I 7.8	Jnderfic let Velo mpact F HHP / in HHP	bw (ppg.) 12.4 ~ BIT / HYDR city force h2	RAULICS	2.0 0 DATA 304 521 2.8 159	FT / SE
" recycle Drill Wate Other 	27	0	Dumped Dther Fotal Lost 550 35 6	0 3 32 <u>Used Balar</u> 30 520 5 30 0 6	Fluid Losi Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20 52 28 84 05	<u>Cost 1</u> 186.0	32 815 s 00	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids Average S. G.	SOLIDS Overflo 9.5 S (p	ррь / 01 38 672 710 260) (%) 00 J 04 h 74 h 78 Solids E	Jnderfic let Velo mpact F HHP / ir HHP	BIT / HYDR city Force s. Loss	RAULICS	2.0 0 DATA 304 521 2.8 159 775	FT / SE LE
" recycle Drill Wate Other otal Received Product arytes rispac - Low V efoam L austic Soda	27	0	Dumped Dther Fotal Lost 550 35 6 27	0 3 32 <u>Used Balar</u> 30 520 5 30 6 0 6 0 27	Fluid Lost Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20 52 28 84 05 21 38	Cost 1 186.0 761.4	32 815 s 00	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids Average S. G. Med. "n" #1ck #	SOLIDS Overflo 9.5 ~ S (F # 2 ck	уу (ррд. ррь / 0 1 3 8 67 2 71 0 2 60 0 669) (%) 00 J 04 In 74 In 78 <u>Solids</u> E 0641 C	Jnderfic let Velo mpact F HHP / in HHP Sit Press	Div (ppg.) 12.4 DIT / HYDR city force 12 s. Loss at Frac Pre	AULICS	2.0 0 DATA 304 521 2.8 159 775 320	FT / SE
" recycle Drill Wate Other btal Received Product	27	0	Dumped Dther Fotal Lost 550 35 6	0 3 32 Used Batar 30 520 5 30 6 0 27 2 22	Fluid Lost Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20 52 28 84 05	<u>Cost 1</u> 186.0	32 815 \$ 00 6	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids Average S. G. Med. "n" #1ck / Med. "K"	SOLID: Overflo 9.5 	уу (ррд. орь / 0 1 3 8 67 2 71 0 2 60 0 669 0 338) (%) 00 J 04 In 74 In 78 Solids E 0641 c 2344	Jnderfic let Velo mpact F HHP / ir HHP Sit Press Ssg. Sea "Eq	bw (ppg.) 12.4 	RAULICS RAULICS	2.0 0 DATA 304 521 2.8 159 775 320 104	FT / SI
" recycle Drill Wate Other otal Received Product arytes rispac - Low V efoam L austic Soda	27	0	Dumped Dther Fotal Lost 550 35 6 27	0 3 32 Used Balar 30 520 5 30 0 6 0 27 2 22 0	Fluid Lost Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20 52 28 84 05 21 38	Cost 1 186.0 761.4	32 815 \$ 00 6	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids Average S. G. Med. "n" #1ck / Med. "K" - Low "n" "	SOLIDS Overflo 9.5 S. (F # 2 ck	уу (ррд. орь / 0 1 3 8 67 2 71 0 2 60 0 669 0 338 0 521	<pre>%) 00 J 04 II 74 I 78 Solids E 0641 c 2344 0.548 T</pre>	Jnderfic let Velo mpact F HHP / ir HHP Sit Press Ssg. Sea "Eq	Div (ppg.) 12.4 DIT / HYDR city force 12 s. Loss at Frac Pre	RAULICS RAULICS	2.0 0 DATA 304 521 2.8 159 775 320 104	
" recycle Drill Wate Other otal Received Product arytes rispac - Low V efoam L austic Soda	27	0	Dumped Dther Fotal Lost 550 35 6 27	0 3 32 Used Batar 30 520 5 30 6 0 27 2 22	Fluid Lost Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20 52 28 84 05 21 38	Cost 1 186.0 761.4	32 815 \$	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids Average S. G. Med. "n" #1ck // Med. "K" "	SOLIDS Overflo 9.5 	уу (ррд. орь / 0 1 3 8 67 2 71 0 2 60 0 669 0 338 0 521	<pre>%) 0 0 J 0 4 h 7 4 h 7 8 Solids E 0 641 c 2 344 0.548 T 4.18</pre>	Jnderfic let Velo mpact F HHP / ir HHP Sit Press Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea	Div (ppg.) 12.4 24 25 26 27 27 27 27 27 27 27 27 27 27	RAULICS RAULICS	2.0 0 DATA 304 521 2.8 159 775 320 104	FT / SE LE F
" recycle Drill Wate Other otal Received Product arytes rispac - Low V efoam L austic Soda	27	0	Dumped Dther Fotal Lost 550 35 6 27	0 3 32 Used Balar 30 520 5 30 0 6 0 27 2 22 0	Fluid Lost Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20 52 28 84 05 21 38	<u>Cost 1</u> 186.0 761.4	32 815 \$	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids Average S. G. Med. "n" #1ck / Med. "K" - Low "n" "	SOLIDS Overflo 9.5 	ww (ррд. орь / 0 1 3 8 67 2 71 0 2 60 0 669 0 338 0 521 0 855	<pre>%) 0 0 J 0 4 h 7 4 h 7 8 Solids E 0 641 c 2 344 0.548 T 4.18</pre>	Jnderfic let Velo mpact F HHP / ir HHP Sit Press Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea	Div (ppg.) 12.4 24 25 20 20 22 25 25 25 25 25 25 25 25 25	RAULICS	2.0 0 DATA 304 521 2.8 159 775 320 104	FT / SE LE F
" recycle Drill Wate Other otal Received Product arytes rispac - Low V efoam L austic Soda	27	0	Dumped Dther Fotal Lost 550 35 6 27	0 3 32 Used Balar 30 520 5 30 0 6 0 27 2 22 0	Fluid Lost Final Tota (Circulatir ce U	t ng Vol.) Jnit \$ 6.20 52 28 84 05 21 38	<u>Cost 1</u> 186.0 761.4	32 815 \$	Desander Desilter SOLIDS ANALYSIS High Gravity Solids Bentonite Drilled Solids Low Gravity Solids Average S. G. Med. "n" #1ck // Med. "K" "	SOLIDS Overflo 9.5 	уу (ррд. орь / 0 1 3 8 67 2 71 0 2 60 0 669 0 338 0 521	<pre>%) 0 0 J 0 4 h 7 4 h 7 8 Solids E 0 641 c 2 344 0.548 T 4.18</pre>	Jnderfic let Velo mpact F HHP / ir HHP Sit Press Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea Sig. Sea	Div (ppg.) 12.4 24 25 20 20 25 25 25 25 25 25 25 25 25 25	RAULICS RAULICS	2.0 0 DATA 304 521 2.8 159 775 320 104	FT / SE E E P P P SQ INC

Ltd. Repo

 Report#
 13
 Date
 31-May

 Spud
 Date
 19 May 1996

 Depth
 1.700
 (M.)To
 1.700

		Skull	Creek	# 1		Depth 1.700 (M.)To 1.70
WELL NAME and No Block No PPL -		······			Victoria	
		Location	Otway Basin	State		
TOR'S REPRE			Henry FLINK Casing	A Kevin KE		REPORT FOR Dav' BAKER Mud Volume Bbis Circulation Data
Bit size 85 Type	Assem SSH		1	90 Metre		349 Pits 425 Pump size [2*] 5.0" * 8.0 ins.
DP " 45 Type:	E	Length 1402			s Drill String Cap	
HWt" 45 Type	42	Length 138.8	-		s In Storage	0 Weight Make/Model 2: G D PZ - 8 % Effic 0
DC " 65 Length	1595	Other 12.75	MUD TYPE	F. W. Polyn	ner	% O/G: 25.0 Annular Velocity Bbl/stk 0.067 Stk/min 126 Bbl/M 8.38
DC " ~ Length	n ~			Mud	Properties	DP size 4.5 166 (FVM) Lam Bbl/stk 0.067 Stk/min ~ GPM : 352
SAMPLE From				F.Line	F.Line	DC size 6.5 287 (Ft/M) Turb Bottoms up : 42 PRESSURE : 1,300
TIME Sample Taken				14.00	24.30	DC size ~ i ~ (FUM) ~ Total Circ. : 101 Type surf/sys. 3
Flowline TEMPERATU			deg. C	29 1,700	29 1,700	MUD PROPERTY SPECIFICATIONS Weight : > 9 1 Filtrate : < 10 0 Other : Chlorides max. @ < 10k
WEIGHT ppg.				9.30	9.30	Viscosity: N C Plastic Viscosity: < 18 Yield Point : >10
Funnel VISCOSITY (se	ec/at.) Al	ମ ଉଚ୍ଚ 26	deg. C	41	38	By Authority : ~ Operator's written ~ Drilling Contractor
PLASTIC VISCOSITY		30	deg. C	11	11	yes Operator's Representative Other
YIELD POINT (Ib/100ft	_		acg. o	9	11	FLUID SUMMARY AND RECOMMENDATIONS
GEL STRENGTH (Ib/10		0 sec. / 10 min.		2 11	2 8	ON COMPLETION OF DST # 4 THE SYSTEM WAS CIRCULATED TO
FILTRATE API (cm3 / :	•	-		7.3	5.7	WORK THE GAS OUT OF THE MUD DUE TO THE LOW YIELD POINT, THIS
API ? Filtrate (cn	n3 / 30 n	nin.)@ ~	deg. C	~	~	WAS READILY ACHIEVED WITH THE ASSISTANCE OF DEFOAMER TO
CAKE + hickness (32n	nd. in A	PI / HTHP)		1 ~	1 ~	CUT THE ENTRAINMENT WITH THE DEGASSER (DRILCO)
SOLIDS Content (% by	Vol.)	Calc.	/ Retort	7.3 ~	7.0 ~	OPERATING, NO SOLIDS CONTROL EQUIPMENT WAS RUNNING [BAR THE
LIQUID Content (% by		Oil/Water		~ 92.7	1 1	
SAND Content (% by		w 167661		Tr 13.0	Tr 11.0	PLACE ALTHOUGH THIS MAY HAVE CAUSED SOME SOLIDS TO BE ABSORBED, WITH THE BARYTES SLUGS ON TRIPS RAISING THE WEIGHT,
METHYLENE BLUE CA pH	Strip	X Ib/bbl	cm3/cm3 18 d e g. C	9.8	10.0	THE PRIORITY WAS TO STOP AIRATION AND ENSURE A SAFE BALANCED
	Pm)		to deg. C	~	~	SYSTEM
ALKALINITY Filtrate	(Pf/Mf)			0.58/1.66	0.65/1.63	WITH A BALANCED & LOW "BACK-GROUND", A SLUG WAS USED TO POH
CHLORIDE (mg/L)	(3,800	4,000	AS PER INSTRUCTIONS [29 MAY] NO FURTHER SODIUM SULPHITE HAS
Total HARDNESS (mg/	ΓL)			420	540	BEEN ADDED TO THE SYSTEM
TE (mg/L)				60	80	OPERATIONS SUMMARY
(mg/L)				1,200	1,000	Continued From Above
<pre><cl (%="" by="" pre="" wt.)<=""></cl></pre>				0.24	0.21	WITH THE T/TOOLS LAID OUT, A BIT WAS RUN TO 1,600 METRES AND
PHPA (Calc. lb/bbl)				~	~	BOTTOMS - UP CIRCULATED DURING THIS TIME, A VOLUME / MAIN -
PHPA (Excess lb/bbl)				~	-	TENANCE MIX WAS BLED INTO THE SYSTEM. TO BRING THE PROPERTIES
RHEOLOGY - 600 / 300	/6 (read	lings)		31/20/2	33/22/2	INTO LINE PRIOR TO PUMPING A BARYTES SLUG AND PULLING OUT.
						THE MUD WEIGHT IS CLIMBING (DUE TO ALL THE TRIP - SLUGS).
		MUD ACCOUNT	TING (BBLS.)			SOLIDS CONTROL EQUIPMENT
Fluid Built & Receiv	ed	Fluid Lost o	r Disposed	Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
re		Desander	. 1	Initial Volume	824	Centrifuge - 0 D'sand 2 0.5 1 S210/S175/S175 8.5
w/ fresh water	83	Desitter	0			Degasser Drilco 7 D'sitter 12 0 2 S210/S175/S175 8.5
recycled "	0	Downhole	36	Fluid Received	83	
Drill Water	0	Dumped	. 0			SOLIDS EQUIPMENT EFFICIENCY
Other	0	Other	23	Fluid Lost	60	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
						Desander 9.4 12.6 1.7
				Final Total	847	Desilter ~ O
		<u> </u>		(Circulating Vol	.)	
otal Received	83	Total Lost	60	(
otal Received	83	Total Lost	60	(-		SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
otal Received	83	···	60 Used Balanc		Cost \$	SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/SEC
		···				High Gravity Solids 01 00 Jet Velocity 304 FT / SEC
Product		ory Rec'd.	Used Balanc	e Unit \$		High Gravity Solids 0.1 0.0 Jet Velocity 304 FT / SEC
Product		ory Rec'd.	Used Balanc	e Unit \$	186.00	High Gravity Solids 0.1 0.0 Jet Velocity 304 FT / SEC Bentonite 6.1 0.7 Impact Force 5.15 LBS
Product arytes		ory <u>Rec'd.</u> 580	Used Balance 30 550	e Unit \$ 6 20	186.00	High Gravity Solids 0.1 0.0 Jet Velocity 304 FT / SEC Bentonite 6.1 0.7 Impact Force 515 LBS Drilled Solids 57.9 6.4 HHP / in2 2.8 Low Gravity Solids 63.9 7.0 HHP 157
Product Jarytes Drispac - Low Vis IMC - LV		ory <u>Rec'd.</u> 580 40	Used Balance 30 550 5 35	e Unit \$ 6 20 152 28	186.00	High Gravity Solids 0.1 0.0 Jet Velocity 304 FT / SEC Bentonite 6.1 0.7 Impact Force 515 LBB Drilled Solids 57.9 6.4 HHP / in2 2.8 Low Gravity Solids 63.9 7.0 HHP 157 Average S. G. 2.60 Solids Bit Press. Loss 767 PE
Product Jarytes Prispac - Low Vis		ory Rec'd. 580 40 2	Used Balance 30 550 5 35 2	e Unit \$ 6 20 152 28 71.70	186.00 761.40 143.40 42.76	High Gravity Solids 0.1 0.0 Jet Velocity 304 FT / SEC Bentonite 6.1 0.7 Impact Force 515 LBB Drilled Solids 57.9 6.4 HHP / in2 2.8 Low Gravity Solids 63.9 7.0 HHP 157 Average S. G. 2.60 Solids Bit Press. Loss 767 P3 Med. "n" #1ck #2 ck 0.632 0.585 Csg. Seat Frac Pres 320 P3
Product larytes Prispac - Low Vis IMC - LV laustic Soda		ory Rec'd. 580 40 2 29	Used Balance 30 550 5 35 2 2 27	e Unit \$ 6 20 152 28 71 70 21 38	186.00 761.40 143.40 42.76 761.40	High Gravity Solids 0.1 0.0 Jet Velocity 304 FT / SEC Bentonite 6.1 0.7 Impact Force 515 LBB Drilled Solids 57.9 6.4 HHP / in2 2.8 Low Gravity Solids 63.9 7.0 HHP 157 Average S. G. 2.60 Solids Bit Press. Loss 767 P4 Med. "n" #1ck #2 ck 0.632 0.585 Csg. Seat Frac Pres 320 P4 Med. "K" - 0.389 2.935 * Equiv. Mud Wt. 14.04 PPC
Product larytes Prispac - Low Vis IMC - LV laustic Soda		ory Rec'd. 580 40 2 29 29	Used Balance 30 550 5 35 2 2 27	e Unit \$ 6 20 152 28 71 70 21 38 152 28	186.00 761.40 143.40 42.76 761.40 148.70	High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/SEC Bentonite 6.1 0.7 Impact Force 515 LBS Drilled Solids 57.9 6.4 HHP / in2 2.8 Low Gravity Solids 63.9 7.0 HHP 157 Average S. G. 2.60 Solids Bit Press. Loss 767 PS Med. "n" #1ck #2 ck 0.632 0.585 Csg. Seat Frac Pres 320 PS Med. "K" - 0.389 2.935 *** Equiv. Mud Wt. 14.04 PPC
Product larytes MC - Low Vis MC - LV laustic Soda inispac oli-thin		ory Rec'd. 580 40 2 29 29 2	Used Balance 30 550 5 35 2 27 5 24 2	e Unit \$ 6 20 152 28 71 70 21 38 152 28 74 35	186.00 761.40 143.40 42.76 761.40 148.70	High Gravity Solids 0 1 0 0 Jet Velocity 304 FT / SEC Bentonite 6 1 0 7 Impact Force 515 LBS Drilled Solids 57 9 6 4 HHP / in2 2.8 Low Gravity Solids 63 9 7 0 HHP 157 Average S. G. 2.60 Solids Bit Press. Loss 767 PS Med. "n" #1ck # 2 ck 0.632 0.585 Csg. Seat Frac Pres 320 PS Med. "K" 0 0.389 2.935 " Equiv. Mud Wt. 14.04 PPC Low "n" - 0.500 0.521 Total nozzle area 0.371 SQ INCA
Product larytes MC - Low Vis MC - LV laustic Soda inispac oli-thin		ory Rec'd. 580 40 2 29 29 2	Used Balance 30 550 5 35 2 27 5 24 2	e Unit \$ 6 20 152 28 71 70 21 38 152 28 74 35	186.00 761.40 143.40 42.76 761.40 148.70	High Gravity Solids 0 1 0 0 Jet Velocity 304 FT / SEC Bentonite 6 1 0 7 Impact Force 515 LBS Drilled Solids 57 9 6 4 HHP / in2 2.8 Low Gravity Solids 63 9 7 0 HHP 157 Average S. G. 2.60 Solids Bit Press. Loss 767 PS Med. "n" #1ck #2 ck 0 632 0 585 Csg. Seat Frac Pres 320 PS Med. "K" - 0 389 2 935 " Equiv. Mud Wt. 14 04 PPO Low "n" - 0 500 0.521 Total nozzle area 0.371 so incritical incrital incritical incritical incritical incritica

Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, ho by ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

IDI-S

Otway Basin State Victoria

Skull Creek #1

Location

CULTUS

WELL NAME and No

BOCK NO PPL - 1

PETROLEUM N.L.

dependent Drilling Fluid Services Pty. Ltd. Drilling Fluid Report

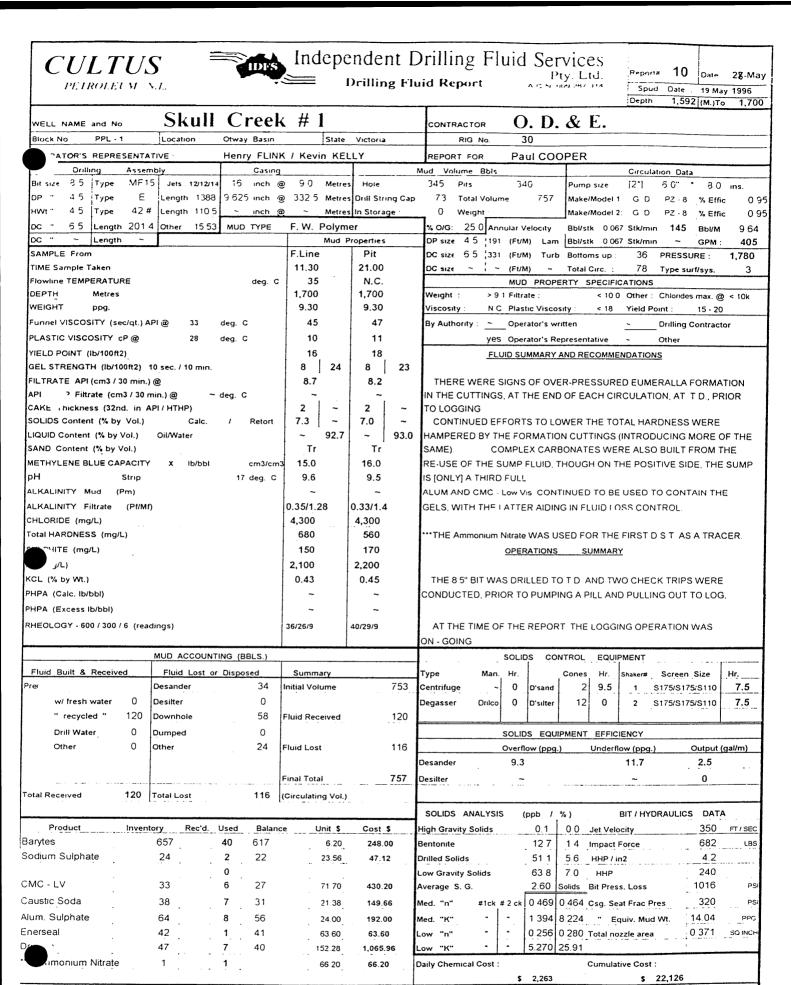
CONTRACTOR

RIG No

1		:	
Report#	12	Date	30-May
Spud	Date	19 May	1996
Depth	1,700	(M.)To	1,700

						10.110	1,700
О.	D.	& E	•				
30							
Paul	coo	PER					
				Circulat	ion Data		
401		Pump si	ze	[2]]	5 0 •	80	ins.
•	824	Make/Mo	odei 1	GD	PZ · B	% Effic	0.95
		Make/Mo	odel 21	GÐ	PZ 8	% Effic	0 95
alar Velo	ocity	8bl/stk	0 C67	Stk/min	125	вы/м	8 31
(Ft/M)	Lam	Bbi/stk	0 067	Stk/min	~	GPM :	349
(Ft/M)	Turb	Bottoms	up:	42	PRESSU	RE :	1,300
(Ft/M)	~	Total Cir	c . :	99	Type sur	f/sys.	3
MUD	PROPER	TY SPE	CIFIC	ATIONS			

OR'S REPRESENT	ATIVE	Henry FLIN	K / Kevin KEI	LLY	REPORT FOR Paul COOPER
Orilling Asse	mbly	Casing			Mud Volume Bbis Circulation Data
Bit size 35 Type SS	H Jets 12/12/14	16 inch @	9 90 Metre	s Hole	350 Pits 401 Pump size [2*] 6.0" * 8.0 ins.
20 - 45 Type E	Length 1403	9 525 inch @) 332 5 Metre	s Drill String Cap	73 Total Jolume 824 Make/Model 1 G D PZ - 8 % Effic 0 3
-wr 45 Type 42	Length 138.8	~ inch @	D ~ Metre:	s In Storage	0 Weight Make/Model 21 G D PZ - 8 % Effic 0 3
C " 55 Length 158	5 Other 1454	MUD TYPE	F. W. Polym	er	% O/G: 25.0 Annular Velocity Bbl/stk 0.067 Stk/min 125 Bbl/M 8.31
C " ~ Length ~		.	Mud F	Properties	DP size 4.5 164 (Ft/M) Lam Bbi/stk 0.067 Stk/min ~ GPM : 349
SAMPLE From			Pit	Pit	DC size 6.5 285 (Ft/M) Turb Bottoms up : 42 PRESSURE : 1,300
TME Sample Taken			16.00	16.00	DC size ~ - (Ft/M) ~ Total Circ. : 99 Type surf/sys. 3
Fowline TEMPERATURE		deg. C	N.C.	N.C.	MUD PROPERTY SPECIFICATIONS
CEPTH Metres			1,700	1,700	Weight : > 9.1 Filtrate : < 10.0 Other : Chlorides max @ < 10k
AEIGHT ppg.			9.30	9.30	Viscosity N.C. Plastic Viscosity < 18 Yield Point >10
Funnel VISCOSITY (sec/qt.)	API@ 17	deg. C	48	48	By Authority Operator's written Drilling Contractor
PLASTIC VISCOSITY CP @	35	deg. C	12	12	yes Operator's Representative ~ Other
· ELD POINT (Ib/100ft2)			11	11	FLUID SUMMARY AND RECOMMENDATIONS
SEL STRENGTH (Ib/100ft2)	10 sec. / 10 min.		2 13	2 13	
F LT' API (cm3 / 30 min	.)@		4.7	4.7	VOLUME LOSSES WERE BROKEN DOWN THUS
API h Piltrate (cm3/30	min.) @ ~	deg. C	~.		SOLIDS DUMPED FROM THE SAND TRAP (20 BBLS).
CAKE Thickness (32nd. in	API / HTHP)		1 ~	1 ~	SOLIDS CONTROL EQUIPMENT AND SURFACE LOSSES
SOLIDS Content (% by Vol.)	Calc.	/ Retort	7.3 ~	7.0 ~	ESTIMATED DOWN - HOLE LOSSES
QUID Content (% by Vol.)	Oil/Water		~ 92.7	~ 93.0	THE CHEMICALS CONSUMED IN THE MUD. WERE ADDED AFTER MIDNIGHT
SAND Content (% by Vol.)			Tr	Tr	DURING THE CIRCULATING TO CONDITION THE MUD
HETHYLENE BLUE CAPACIT	Ү Х ір/ррі	cm3/cm3	1	12.0	
ː⊣ Strip		14 deg. C	9.5	9.5	THE DST OPERATION WAS TAKING PLACE. DURING THE REST OF
LKALINITY Mud (Pm)			-	~	THIS REPORT PERIOD
+_KALINITY Filtrate (Pf/M	1Ŋ		0.43/1.32	0.43/1.32	
C-LORIDE (mg/L)			4,100	4,100	
Total HARDNESS (mg/L)			620	620	
5 📻 E (mg/L)			80	80	OPERATIONS SUMMARY
. الم			1,500	1,500	ON COMPLETING THE CONDITIONING OF THE MUD SYSTEM (IN
・CL (% by Wt.)			0.3	0.3	TWO CIRCULATIONS) A BARYTES SLUG WAS PUMPED TO CLEAR THE
P-PA (Calc. lb/bbl)			~	~	PIPE AND THE BIT WAS PULLED OUT OF THE HOLE
P-PA (Excess lb/bbl)		_	~	~	
EOLOGY - 600 / 300 / 6 (re	adings)	-	35/23/2	35/23/2	DST #3FOLLOWED
· · · · · · · · · · · · · · · · · · ·					
	MUD ACCOUNT	ING (BBLS.)			SOLIDS CONTROL EQUIPMENT
Ev uilt & Received	Fluid Lost or	Disposed	Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
.:ew""	Desander	10	Initial Volume	685	Centrifuge - 0 D'sand 2 3 1 S210/S175/S175 3
w/ fresh water 183	Desilter	0			Degasser Drilco 0 D'silter 12 0 2 S210/S175/S175 3
" recycled " 0	Downhole	47	Fluid Received	234	
Drill Water 51	Dumped	20		201	
Other 0			Eluid Loot	95	
Other 0	Other	18	Fluid Lost	90	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
					Desander 9.3 11.8 2.3
· · · ·	· · · · ·		Final Total	824	Desilter ~ 0
total Received 234	Total Lost	95	(Circulating Vol.)		
					SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
Product Inve	ntory Rec'd.	Used Baland	ce Unit \$	Cost \$	High Gravity Solids 0.1 0.0 Jet Velocity 302 FT / SEC
arytes	617	37 580	6 20	229.40	Bentonite 7.4 0.8 impact Force 507 LBS
, , , , , , , , , , , , , , , , , , ,		·			Drilled Solids 56 5 6 2 HHP / in2 2 7
		0	• •		Low Gravity Solids 63.9 70 HHP 154
°℃ - LV	7	5 2	71 70	358.50	Average S. G. 2.60 Solids Bit Press. Loss 755 PS
austic Soda	30	1 29	21 38		Med. "n" #1ck # 2 ck 0 605 0 605 Csg. Seat Frac Pres 320 PS
· spac	32	3 29	· ·		
s ythin			152.28	1	
· · ·	14 3	12 2 2 1	. 74 35.	892.20	
54X)	J .		207 75	415.50	Low "K" - 0.842 4.30
—		0 :	; - ·		Daily Chemical Cost : Cumulative Cost :
					\$ 2,374 \$ 27,173
NGINEER EDD PERKI	NS	ADDRESS	South	Australia	TELEPHONE 08 - 338 3027
			has been prepared c	arefully and maybe us	sed if the user so elects, however, no representation or warranty is made
ourselves or our agents as to it's co	prrectness or complete	ness; and no liability	r is assumed for any o	aamages resulting from	m the use of same



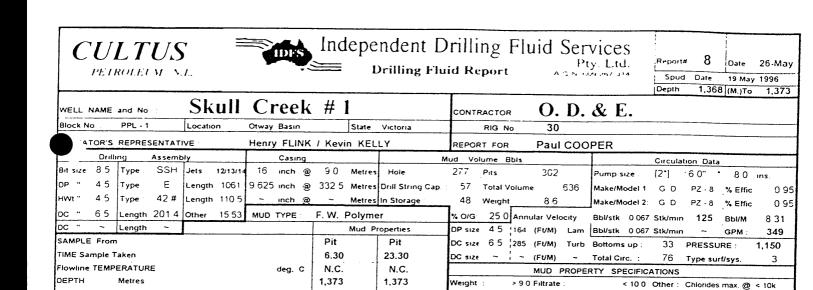
Independent Drilling Fluid Services Pty Ltd. Drilling Fluid Report

Perfort# 11 Date 29-May
 Spud
 Date
 19 May 1996

 Depth
 1,700
 (M) To
 1,700

										· ···					Depth	1,700 (M.)To	1,70
WELL NAME and				Creek	. #				CONTRACTO		O_{30}		&	<u>E.</u>				
	L - 1	Location		way Basin		A	Victoria		RIG			-						
TOR'S REP			He	enry FLINK	/ Kevi	in KEL	<u>.LY</u>		REPORT FO		Pau	1 COO	OPER			··		
Drilling Bit size 8.5 Typ	Asse De SSI		1	Casing 16 inch @	90	Matra	Hala		Mud Volume 350 Pits	Bbis					Circulati		0.0	
	_	H Jets 12/12/ Length 140	1	625 inch @		Metres	1				262	2 585	Pump				80	
DP " 45 Тур HWt " 45 Тур			1	∼ inch @			In Stora		168 Weig	l Volun	ne 34		1	Model 1 Model 2			6 Effic	-
	ath 158			UD TYPE :	F. W.			ye		-	nular Ve					•	6 Effic	
	igth ~	J Other 14	54 M	OD TIPE.	<u> </u>		Properties		DP size 45	-		•	,		7 Stk/min 7 Stk/min		SPM :	8 31 349
SAMPLE From	3			• • • • • •	Pit		F.Line		DC size 65				Bottor			PRESSURE		1,300
TIME Sample Take	- n				12.00		5.00		DC size ~				Total (Type surf/s		3
Flowline TEMPERA	TURE			deg. C	N.C.		28				MUD	PROP	ERTY S	PECIFI	CATIONS			
DEPTH Met	res				1,700		1,700		Weight :	> 9	1 Filtrat	te :		< 10 0	Other : 0	Chlorides m	ax @	< 10k
WEIGHT PPg	ŀ.				9.35		9.30		Viscosity :	N C	Plasti	c Visco	sity :	< 18	Yield Por	nt: >	10	
Funnel VISCOSITY	(sec/qt.)	API@ 14	deg	g. C	44		47		By Authority	~	Opera	ator's w	ritten		1	Drilling Cor	ntracto	or
PLASTIC VISCOSIT	ΥсР@	35	deg	g. C	14		12		L	yes	Opera	ator's R	epresent	ative	~ (Other		
YIELD POINT (Ib/10	00ft2)				16	r	10			FLI		MARY	AND RE	COMME	NDATIONS			
GEL STRENGTH (I	-		ı.		4	17	2	16	1						S. THE CO	NSENSIS	WAS	S TO
FILTRATE API (cm		· -		_	6.8		5.8		LOWER THE	E FLUI	ID LOS	S AND	ALIGN F	PROPE	RTIES			
API ? Filtrate			~ deg	д. С	2	1 -	1	~	THE MIT		10055				MC Law	Le MAC	MODE	-
CAKE Thickness (SOLIDS Content (%		API/HTHP) Calc.	,	Retort	7.7	-	7.0	~	EXPENSIVE						MC - Low			
LIQUID Content (%		Oil/Water			~	92.3	~	93.0	DRILLTHIN				-			•		-
SAND Content (%)					Tr		Tr		IMPLEMENT	0								
METHYLENE BLUE	CAPACIT	Y X (b/bbl	I	cm3/cm3	12.0		14.0		THE PAR	AMET	ERSW	IERE T	O LOW	ER THE	EFLUID-LO	DSS. YIEL	D POI	NT.
рН	Strip			12 deg. C	9.5		9.7		GEL STREN	GTHS	AND C	ONTA		WEIGH	т			
ALKALINITY Mud	(Pm)				[~		~		WATER V	VAS A	DDED	то тн	E FLUID	THAT	WAS CIR	CULATED	UP, A	ASIT
ALKALINITY Filtrat	e (Pf/M	f)			0.4/1.2	3	0.54/1.3	8	WAS DEHY	ORATE	ED - BIO	DCIDE	(@ 0.04	LT/881) ALSO V	AS ADD	ED AS	;
CHLORIDE (mg/L)					4,400		3,900		THERE WAS	S BAC	TERIAL	DEGR	RADATIC	ON TAK	ING PLAC	Ε,	. •	
Total HARDNESS (r	ng/L)				920		480		THE WAT	ER AD	DITION	V WAS	@ 0 05	LT/BBL				
'TE (mg/L)					150		100				OPER	ATIONS	<u>s</u>	JMMAR	Y			
ung/L)					2,000		1,400		ONC	OMPL	ETING	THE L	OGGING	G, A BIT	WAS RU	N TO BOT	TOM	WITH
KCL (% by Wt.)					0.42		0.28		NO TIGHT "S	POTS	S" BEIN	G OBS	ERVED					
PHPA (Calc. lb/bbl)					~		~		A HIGH VI	scos	ITY SW	EEP W	VAS INC	ORPO	RATED IN	ГО ТНЕ В	EGINI	NING
PHPA (Excess lb/bb	51)				~		~		OF THE CIR	CULAI	TION, F	OR CH	ECKINO	3 PURF	POSES - N	INIMAL C	AVINO	GS.
RHEOLOGY - 600 / 3	00/6 (re	adings)			44/30/5		34/22/2		THE SYST									
		MUD ACCOU	NTING	(BBLS.)		l	·····		BEING BUILT	IN PF			NTROL		D S L'S A	ND A CAS	SINGF	RUN.
Fluid Built & Rec	eived	Fluid Lost			Summ	arv			Туре	Man	Hr.		Cones		Shaker#	Screen Si	7.0	Hr.
Pre		Desander			Initial Vo			757	Centrifuge	~	1 . 1	D'sand	1	1		175/8175/8		0
w/ fresh wat	er O	Desilter		o					Degasser	Drilco		D'silter	12	0		175/\$175/\$	·	0
" recycled "	0	Downhole		43	Fluid Red	eived		0									1	
Drill Water	0	Dumped		0							SOLID	S EQU	IPMENT	EFFIC	IENCY			-
Other	0	Other		29	Fluid Los	at		72				w (ppg			low (ppg.)	Ou	itput (ç	gai/m)
									Desander		~				~		0	
					Final Tota	ai		685	Desilter		~		•	-	~		0	
otal Received	0	Total Lost			(Circulati					••••						_		
otarricectivea	Ŭ.		-	7 -	Circulati	ng voi.)												
D	•							•	SOLIDS AN		5 (I	opb /	1		BIT / HYDI		DATA	
Product	Inve				e l	Jnit \$	Cost	\$	High Gravity S	olids	··· · •	01	1	Jet Velo			302 507	FT / SEC
Barytes		617	. 0	617		6 20			Bentonite		:	100		Impact		÷	507 2.7	LBS
		•	0		•				Drilled Solids			54.0 64.0	· ·	HHP/i	112	1	<u>-</u> 154	
MC - LV		27	20	. 7		71 70	1,434	00	Low Gravity Se Average S. G.	2010			7 0 Selids	HHP Bit Pres	is Loss	· ·	755	PS
austic Soda		31		30					-						at Frac Pre		320	PS
		•	. '	•		21 38	21.3		Med. "n"	#1CK			· ·			: -	04	PPG
)rispac nerseal		40 41	. 0	. 32		152 28	1,218	.24	Med. "K"			1	•		quiv. Mud '		371	SQ INCH
		41		41		63 60 _.			Low "n"					i otal no	ozzle area			5-2 INCP
									Low "K"		I	1.308	4 37					
		•	. 0	•					Daily Chemical	Cost :		a ·		Cumula	tive Cost :	4 700		
											\$	2,674			\$ 2	4,799		
	DEDVI	le le		10000000	c	South	Australi	-						08 - 33	8 3027			
	PERKI	endation expressed		ADDRESS								TELEPH						

ENGINEER EDD PERKINS ADDRESS South Australia TELEPHONE 08 - 338 3027
Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made
y ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.



Independent Drilling Fluid Services Drilling Fluid Report

9 Date 27-May Report# Spud Date 19 May 1996 Depth 1,373 (M.)To 1,592

Biols Mol Pick Dot Mol 30 Tices serversestration Henry FLUK Kern RELLY Rescale Res Million Strate 30 Tices serversestration Henry FLUK Kern RELLY Rescale Res Tices serversestration Res Res Tices serversestration Tices Tices Tices <th></th> <th></th> <th>SL11</th> <th>Cuar</th> <th>, 41</th> <th></th> <th>Depth 1.373 (M.)To 1.</th>			SL11	Cuar	, 41		Depth 1.373 (M.)To 1.
TOPS REPRESENTATIVE Heany FLINK / Kevin KELLY Product Source Pail COOPER 1 1000 Automa source 100 Constantion Data 1 1000 Automa source 100 Constantion Data 1 1000 1000 1000 1000 1000 1000 1 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000000							
Ording Attempt Carry Attempt Carry Attempt Carry Photo	Block No PPL - 1	1	Location	Otway Basin	State	Victoria	RIG No 30
In use 35 Type VP-15	TOR'S REPRE	SENTA	TIVE	Henry FLIN	K / Kevin KE	LLY	REPORT FOR Paul COOPER
p) 0 45 Type E Surget Data 737 Task Marrier Task Marrier 737 Task Marrier			1	· · · · · · · · · · · · · · · · · · ·			
Win 4.2 Type 4.2 Windproved 3.3 Sector 3.5 Sector 3.6				1	-	1	
Sci Sci Langer Number F. W. Polymeter Number Sci Sci <td></td> <td></td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td>				1	-		
Sci Jacobin Joury Properties Operated 5 (star (roth)) (star) Desite (Star) Operated 5 (star) Operated							
Number Forms Fill			Other 1553	MUD TYPE			· · · · · · · · · · · · · · · · · · ·
Image Taxem 11.00 24'80 Occur > point The Bandward Top analysis DePriv Metrics 9.20 35 Weight : 491 (Facula: 1 75 Type weights DePriv Metrics 9.20 9.20 9.20 9.20 Weight : 491 (Facula: 1 10.0 Gac Difficience	12 Izengin		1			· · · · · · · · · · · · · · · · · · ·	
Insome FUMPER TURE deg N.C. 35 M.G.					}		
DEPTH Metrics 17.37 16.15 PrepH 9 1 Filted 0.00 Consists marging Consists marging Consists marging Consists marging Consists marging Consis	-	00		4 0		-	
VEGUT ppg 9.20 9.21 11 12 12 9.20 9.20 9.21 11 12 <th12< th=""> <th12< th=""> <th12< th=""></th12<></th12<></th12<>		RE		deg. C	1		
ummer Viscosity year dag C dig dig <thdig< th=""> dig dig <thdi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdi<></thdig<>							
LASTE OF SEGNTY of @ 25 deg C 10 11 IELD POINT (bH 0602) IELD SCHMET		c/at.) A	PI@ 27	dea C			
HELD Porty (Inv100R) 14 14 15 2 14 15 2 14 15 2 10 2 10 2 10			-				
Bits STRENTH (INFORM) Desc. (19 min.) 4 21 3 25 IN REFERENCE OUTHER LOSSES* 43 BIDLS (SIG) TO FLARE GAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS Cut MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE GAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS Cut MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CAS CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUR CAS CONTENT AS CUR CONSTRUCT ON THE FLORE CUR CUR CUT MUD REC DI OTHER LOSSES* 43 BIDLS (SIG) TO FLARE CUR CUR CUR AS CUR THE FLORE AS CONSTRUCT ON THE FLORE CUR CUR CUR AS CUR		-	25	ueg. C		1	
IL TRAFE AP((cnc) 120 mm.) B(P) 9.2 9.2 9.1 Gas CUT MUD REQUIRED THAT THE MCD WEIGHT DE INCREASED APE	-		0 sec / 10 mm		1 1	+ ,	
Private (cm) 10 min, 8 - eq. C					1 1	1 1	
ARE	-		-	deg. C		-	9
OLDS Content (K by Vol.) Calc. / Retort 6.5 ~ 6.3 ~ 93.5 OGUID Content (K by Vol.) OdWater - 93.5 T - 93.7 THE EFFECTS OF THE "PIPE-FREE" WAS SITLL INFLUENCING THE FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS PRUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE DOSA NAM MORE POLYMER WAS BEING CONSUMED IN THIS FLUE AURINESS (mgL) DIALHAR MORESS (mgL) 0.217.23 0.2311.27 TITE INTELEMET WAS BEING CONSUMPTION OF DEERATIONS Orget To FLUE AND RESS (mgL) 960 1220 DUE TO THE MARDNESS OF THE FLUID AND THE CARBONATES INDUCED FROM THE FEST THERE WAS A HIGHER CONSUMPTION OF DEERATIONS DUE TO THE MARDNESS OF THE FLUID AND THE CARBONATES INDUCED FROM THE FEST THERE WAS A HIGHER CONSUMPTION OF DEERATIONS Optimiter 0.48 0.47 Continuef from above Control of result DATA SUBMARY PAC (access libbbi) 0.48 0.47 Control WEINT AT THE CONSUMPTION OF THE MARDNESS CONTROL SUBMARY PAC (access libbbi) <t< td=""><td></td><td></td><td></td><td></td><td>1 1</td><td>2 ~</td><td></td></t<>					1 1	2 ~	
UQUID Content (% by Vol.) OWWater - 93.5 - 93.7 THE EFFECTS OF THE TIPLE FREE*WAS STILL INFLUENCING THE FUUID LOSS AND MORE POLYWER WAS BEING CONSUMED IN THIS PERIOD TO COUNTER IT H Strip 19.0 13.0 9.0 THE EFFECTS OF THE TIPLE FREE*WAS STILL INFLUENCING THE PERIOD TO COUNTER IT H Strip 19.0 9.0 THE CLAY CONVER NAS BIGGE POLYWER WAS BIGGE CONSUMED IN THIS PERIOD TO COUNTER IT LKALINITY Mutale (PP) 19.0 0.2/1.23 0.23/1.27 0.23/1.27 HLORIDE (mg/L) 0.2/1.23 0.23/1.27 NUDE TO THE TIPLE FREE WAS A HIGHER CONSUMPTION OF DEC (AV Vs AND ALL WAS INCORPORATED TO RESTRAIN THE RISING GEL STRENGTHS DUE TO THE ANDESS OF THE FLUID AND THE CARBONATES SUBMARY 0.00 1000 DUE TO THE ANDESS OF THE FLUID AND THE CARBONATES NUDCE DEFEATIONS SUBMARY Caust LARDNESS (mg/L) 0.048 0.47 Continued from above CAUSTIC SODA CAUSTIC SODA PA (Caust Inbbi) - - - THE INITIAL TREATINET, AFTER RUNNING BACK IN THE HOLE WITH THE PERIOD SUBMARY SOLUDS CONTROL EQUIPMENT THE ENCEASED MUD ACCOUNTING (BELS) - - - THE WAS CHANCED ASTHE PERICENCY - <tr< td=""><td></td><td></td><td></td><td>/ Retort</td><td>+ +</td><td>1 1</td><td></td></tr<>				/ Retort	+ +	1 1	
MAD Content (% by Vol.) Tr Tr Tr FLUID LOSS AND MORE POLYMER WAS BEING CONSUMED IN THIS. PHYLENE BLUE CAPACITY: X: Ibibbi (mailers) 18.0 13.0 PERIOD TO COUNTER IT CHALINITY Mud (Pm) 0.211.23 0.2311.27 CMC - Low Vs. AND ALUM WAS INCORPORATED TO RESTRAIN THE LKALINITY Finde (PMM) 0.211.23 0.2311.27 RISING GEL STRENOTHS DUE TO THE HARDNESS OF THE FLUID AND THE CARBONATES LKALINITY Finde (mpL) 960 1220 NUDUCED FROM THE TEST. THERE WAS A HIGHER CONSUMPTION OF Ord(n) 2,300 2,300 2,300 Constructions Summary Ord(n) 0.48 0.47 - - THE NITAL TREATMENT. AFTER RUNNING BACK IN THE HOLE WITH THE AS WAS WORKED OUT OF PA (Excess bibbin) - - - BIT. WAS AMED AS THE PENETATION RATE INCREASED THEA BUR & Received Fluid Lost or Disposed Summary Type Man - Wide S AMED AS THE PENETATION RATE INCREASED DUE Contenue from above 2 1.57551755110 Order & Disposed Summary Type Man - - Wide BACCOUNTING (BELS) - - - - -	IQUID Content (% by	Vol.)	Oil/Water		~ 93.5	93.7	
HETHYLENE BLUE CAPACITY X Ibibility em/arms 13.0 13.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 7.0 <t< td=""><td>AND Content (% by V</td><td>/ol.)</td><td></td><td></td><td>Tr</td><td>Tr</td><td>1</td></t<>	AND Content (% by V	/ol.)			Tr	Tr	1
Multip Muld (Pm) Product <	ETHYLENE BLUE CAI	PACITY	х іб/бы	cm3/cm	3 18.0	13.0	PERIOD TO COUNTER IT
LKALINITY Filtrate (PIMI) 0.2/1.23 0.23/1.27 Hit of the Harbors in Concentration in the Harbors in Concentration in Concententic in Concentration in Concentration in Co	н	Strip		19 deg. C	9.0	9.0	THE CLAY CONTENT WAS HIGHER, AFTER THE TEST
MLORIDE (mg/L) 4.400 4.100 DUE TO THE HARDNESS OF THE FLUID AND THE CARBONATES Org(L) 960 1220 INDUCED FROM THE TEST. THERE WAS A HIGHER CONSUMPTION OF Org(L) 2.300 2.300 OPERATIONS SUMMARY Continued from above 0.48 0.47 Continued from above CL (% by WL) 0.48 0.47 Continued from above PA (Calc. Ibbbi) - - THE INITIAL TREATMENT. AFTER RUNNING BACK IN THE HOLE WITH TI HPA (Calc. Ibbbi) - - BIT. WAS AIMED AT ENSURING THAT THE GAS WAS WORKED OUT OF HEDLOGY + 600 / 300 / 6 (readings) 38/24/5 38/27/5 THE MUD [SO THE YIELD WAS KEPT AT THE LOW END OF THE SPECIS) THUE Built & Received Fluid bailt of Disposed Summary Type Man. Hr Cones Fluid SUBST (SS110) The MUD SOLDS Destander 66 Initial Volume 6326 Orsand 2 15 S17551755110 Tree, Ved * 251 Destifier 0 Fluid Received 326 SOLDS Colling Kern Fluid Received 326 Orter 0 Dumped 0 Fluid Received 20	LKALINITY Mud (F	Pm)			~~	~	CMC - Low Vis AND ALUM WAS INCORPORATED TO RESTRAIN THE
bits HARDNESS (mg/L) 960 1220 INDUCEO FROM THE TEST. THERE WAS A HIGHER CONSUMPTION OF T (mg/L) 2,300 2,300 2,300 Continued from above C (% by WL) 0.48 0.47 Continued from above C (% by WL) 0.48 - - HPA (Cate. txbbb) - - - HPA (Eaces tb/bbi) - - - HEOLOGY . 600 / 300 / 6 (readinge) 34/24/5 38/24/5 38/27/5 SULDOS CONTROL (BBLS) - - - MUD ACCOUNTING (BBLS) - - - THE MITIL TREATMENT, AFTER RUNNING BACK IN THE HOLE WITH THE SPE CST THELOWS & KERE DOUT OF FILE OWS & KERE TA THE LOWE NOT CHAR THE SPE CST THE SPE CST THE WOR NOT RATE INCREASED MUD ACCOUNTING (BBLS) - - - - THIS WAS CHANGED AS THE PENETATION RATE INCREASED - - - MUD ACCOUNTING (BBLS) - - - - - Thud Built & Received 300 - 0 - - - - Moresteed account of the second	LKALINITY Filtrate	(Pf/Mf)			0.2/1.23	0.23/1.27	RISING GEL STRENGTHS
Te (mg/L) The matrix operations in the form the	HLORIDE (mg/L)				4,400	4,100	DUE TO THE HARDNESS OF THE FLUID AND THE CARBONATES
TE (mg/L) (a/L) (c) (x by WL) 160 160 OPERATIONS SUMMARY C (x by WL) HPA (Cac. bobb) 0.48 0.47 CAUSTIC SODA CAUSTIC SODA HPA (Cac. bobb) ~ ~ ~ THE INITIAL TREATMENT, AFTER RUNNING BACK IN THE HOLE WITH TI HEINITIAL TREATMENT, AFTER RUNNING BACK IN THE HOLE WITH TI HEINIG DO THAT THE CAS WAS WORKED OUT OF JAT2475 HPA (Cac. bobb) ~ ~ ~ HEINIG DO THAT THE CAS WAS WORKED OUT OF HEINIG DO THAT THE LOW END OF THE SPECTS THE MUD (SD THE YIELD WAS KEPT AT THE LOW END OF THE SPECTS THIS WAS CHANGED AS THE PENETRATION RATE INCREASED MUD ACCOUNTING (BBLS.) SOLIDS CONTROL EQUIPMENT THIS WAS CHANGED AS THE PENETRATION RATE INCREASED THE MUG SO THE PENETRATION RATE INCREASED MUD ACCOUNTING (BBLS.) Desander 66 Initial Yolume 636 MUD ACCOUNTING (BBLS.) Desister 0 Orsiner 12 0 2 15 1 SITSSITSSITE H emr Desinter 0 Orsiner 12 0 2 13 1 SITSSITSSITE H Online 0 Dumped 0 Orsiner 9.2 12.6 3.1 <	otal HARDNESS (mg/l	L)			960	1220	INDUCED FROM THE TEST, THERE WAS A HIGHER CONSUMPTION OF
Image: Control of give in the second of t	E (mg/L)				160	160	
CL (% by WL) HPA (Galc, lib/bb) 0.48 0.47 CAUSTIC SODA HPA (Galc, lib/bb) - - - BIT THE INITIAL TREATMENT, AFTER RUNNING BACK IN THE HOLE WITH TI BIT WAS AIMED AT ENSURING THAT THE LOW END OF THE SPECIS) HEOLOGY - 680 / 300 / 6 (readings) 34/24/5 38/27/5 THE WID SOTHE YIELD WAS KEPT AT THE LOW END OF THE SPECIS) THE MUD ACCOUNTING (BBLS.) - - - SUIDS CONTROL EQUIPMENT Fluid Built & Received Fluid Lost or Disposed Summary Type Man. Hr. Conces Hr. Stassere Screen, Size, H env MUD ACCOUNTING (BBLS.) -	ig/L)				2,300	2.300	
HPA (Cale. Ib/bbl) - - - - - - - - THE INITIAL TREATMENT, AFTER RUNNING BACK IN THE HOLE WITH TI HPA (Excess Ib/bb) HEQLOGY - 600 / 300 / 6 (readings) 34/24/5 30/27/5 31/27/5 31/27/5 BIT, WAS AIMED AT ENSURING THAT THE GAS WAS WORKED OUT OF THE MUD [SO THE YIELD WAS KEPT AT THE LOW END OF THE SPECTS) HEQLOGY - 600 / 300 / 6 (readings) MUD ACCOUNTING (BBL S.) THIS WAS CHANGED AS THE PENETRATION RATE INCREASED Fluid Built & Received Fluid Lost or Disposed Summary SolLIDS CONTROL EQUIPMENT w/ fresh water 75 Desinder 0 Initial Volume 636 Control 0 Drisiter 12 0 2 31/55/3175/3110 Degasser Drid 0 2 15 1 s17/5/3175/3110 Degasser Drid 0 Drisiter 12 0 2 31/5/3175/3110 Degasser Drid 0 Drisiter 12 0 2 31/5/3175/3175/3110 Desinter 0 Desinter 0 Desinter 1 0 1 0 Underline (pg) Output (gal Drill Water 0 Dumped 0 </td <td>CL (% by Wt.)</td> <td></td> <td></td> <td></td> <td>ł .</td> <td>1</td> <td></td>	CL (% by Wt.)				ł .	1	
HPA (Excess lb/bb) BIT. WAS AIMED AT ENSURING THAT THE GAS WAS WORKED OUT OF HEOLOGY - 600 / 300 / 6 (readings) 34/24/5 BIT. WAS AIMED AT ENSURING THAT THE GAS WAS WORKED OUT OF HEOLOGY - 600 / 300 / 6 (readings) 38/27/5 THE MUD (SO THE YIELD WAS KEPT AT THE LOW END OF THE SPECIS) HIM Built & Received Fluid Lost or Disposed Summary Type Mun. Hr. Cones Fluid Note w/ fresh water 75 Desinder 06 Initial Volume 636 Orlec 0 0'sinter 12 0 2 515/55175/5110 0 m' fresh water 75 Desinder 0 Oumped 0 Output (gal 0 Output (gal 0 0'sinter 12 0 2 515/55175/5110 0 Drill Water 0 Output 0 Output (gal 0 Output (gal 0 0'sinter 0 0 1 0 esceree 31 0 Hal Received 326 Total Lost 209 (Circulating Vol.) EGUIPMENT EFFICIENCY 0 0 0 0					~		
HEOLOGY - 600 / 300 / 6 (readings) 34/24/5 34/24/5 31/24/5 Solution that the MUD (SO THE YIELD WAS KEPT AT THE LOW END OF THE SPECS) THIS WAS CHANGED AS THE PENETRATION RATE INCREASED MUD ACCOUNTING (BBLS.) Fluid Lost or Disposed Summary Type Man. Hr. Control. EQUIPMENT Fluid Lost or Disposed Summary Type Man. Hr. Control. EQUIPMENT Private Muter 75 Desitter O Drain 0 Disting for the full (So THE PENETRATION RATE INCREASED) Solutos Control. EQUIPMENT output Of the Solutos for the full cols for the full co	HPA (Excess lb/bbl)				~~	~	
THIS WAS CHANGED AS THE PENETRATION RATE INCREASED MUD ACCOUNTING (BBLS.) Fluid Built & Received Fluid Lost or Disposed Summary Type Man. Hr. Cones Hr. Snaker# Sorter# Hr. erry Desander 66 Initial Volume 636 Contrifuge 0 0 1 Snaker# Screen Size H w// fresh water 75 Desilter 0 Initial Volume 636 Fluid Received 326 Fluid Lost 209 0 0 D'sinter 12 0 2 SizeSizeSizeSize H other 0 Dumped 0 0 Final Total 753 Desilter - 0 Underflow (ppg.) Output (gal tal Received 326 Total Lost 209 (Circulating Vol.) SOLIDS ANALYSIS (pp / %) BIT / HYDRAULICS DATA product Inventory Rec'd. Use Balance Unt \$ Cost \$ High Gravity Solids		6 (read	linas)		34/24/5	38/27/5	
MUD ACCOUNTING (BBLS.) SOLIDS CONTROL EQUIPMENT Fluid Built & Received Fluid Lost or Disposed Summary Type Man. Hr. Cones Hr. Shaker# Solaps Hr. enry Desander 66 Initial Volume 636 Centrifuge 0 Drsand 2 15 1 Shaker# No Hr. w/ fresh water 75 Desilter 0 Fluid Received 326 Downhole 85 Fluid Lost 209 Diril Water 0 Overflow (pg.) Underflow (pg.) Output (gal 0 Difl Water 0 Other 58 Fluid Lost 209 Circulating Vol.) Erinal Total 753 Desilter - - 0 tal Received 326 Total Lost 209 (Girculating Vol.) Einal Total 753 Desilter - - 0 ryptes 784 127 657 620 787.40 Bentonite 96 11 Impact Force 656						00/2/15	
erry Desander 66 Initial Volume 636 Centrifuge 0 0's and 2 1 Sitest Sitest Site 1 Sitest Sitest Site 1 Sitest Sitest Site 1 Sitest Sitest Site 1 Sitest S			MUD ACCOUNT	ING (BBLS.)	·		
erry Desander 56 Initial Volume 636 Centrifuge 0 D'sané 2 1 S175/S176/S110 " recycled" 251 Downhole 85 Fluid Received 326 Degasser Dnico 0 D'sané 12 0 2 S175/S175/S110 1 Drill Water 0 Dumped 0 Other 58 Fluid Lost 209 Overflow (ppg.) Underflow (ppg.) Output (gal 0 Other 58 Fluid Lost 209 (Circulating Vol.) Desinter 9.2 12.6 3.1 1 SolLIDS ANALYSIS (pp / %) BIT / HYDRAULICS DATA Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0 Jet Velocity 345 0 0 11 Impact Force 656 0 11 Impact Force 656 10/Um Soliphate 28 4 24 23.56 94.24	Fluid Built & Receive	d	Fluid Lost or	Disposed	Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
w// fresh water 75 Desilter 0 <td>emr</td> <td></td> <td>Desander</td> <td>66</td> <td>Initial Volume</td> <td></td> <td></td>	emr		Desander	66	Initial Volume		
" recycled " 251 Downhole 85 Fluid Received 326 SOLIDS EQUIPMENT EFFICIENCY Drill Water 0 Other 58 Fluid Lost 209 Overflow (ppg.) Underflow (ppg.) Output (gal Other 0 Final Total 753 Desinder 9.2 12.6 3.1 Lal Received 326 Total Lost 209 (Circulating Vol.) Desinder 9.2 12.6 3.1 Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0.0 Jet Velocity 345 F Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0.1 0.0 Jet Velocity 345 F odium Sulphate 28 4 24 23.56 94.24 Dilled Solids 47.4 52 HHP / in2 4.0 Low Gravity Solids 57.0 6 38 21.38 128.28 Med. "n" #1ck #2 ck 0.502 0.433 Bit Press. Loss 977 </td <td>w/ fresh water</td> <td>75</td> <td>Desilter</td> <td>0</td> <td></td> <td>1</td> <td></td>	w/ fresh water	75	Desilter	0		1	
Drill Water Other 0 Dumped Other 0 0 Fluid Lost 209 SOLIDS EQUIPMENT EFFICIENCY 1 0 1 58 Fluid Lost 209 Overflow (ppg.) Underflow (ppg.) Underflow (ppg.) Output (gal Desander 9.2 12.6 3.1 1 Final Total 753 Desiter ~ 0 0 Jet Velocity 345 7 1 1 0 (Circulating Vol.) SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0 Jet Velocity 345 F Arytes 784 127 657 6 20 787.40 Bentonite 9 6 1 1 Impact Force 656 odum Sulphate 28 4 24 23 56 94.24 Diffed Solids 47.4 5 2 HHP / in2 4.0 uow Gravity Solids 57.0	" recycled "	t			Fluid Received	· · · ·	
Other 58 Fluid Lost 209 Overflow (ppg.) Underflow (ppg.) Output (gal Underflow (p	Drill Water	0	Dumped				
tal Received 326 Total Lost 209 Final Total 753 Desander 9.2 12.6 3.1 Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0 0 Jet Velocity 345 r nytes 784 127 657 6.20 787.40 Bentonite 9.6 1 1 Impact Force 656 dium Sulphate 28 4 24 23.56 94.24 Drilled Solids 47.4 52 HHP / in2 4.0 AC - LV 42 9 33 71.70 645.30 Average S.G. 260 Solids Bit Press. Loss 977 ustic Soda 44 6 38 21.38 128.28 Med. "n" #1ck #2 ck 0 502 0.493 csg. Seat Frac Pres 320 Im Sulphate 76 12 64 24.00 288.00 Med. "n" #1ck #2 ck 0 502 0.493 csg. Seat Frac Pres 320 Im Sulphate 76 12 64 24.00 288.00 Med. "n" #1ck #2 ck 0 502 0.493			-		Fluid Lost	209	
Final Total753Desilter \sim 01 Received326Total Lost209(Circulating Vol.)SOLIDS ANALYSIS(ppb / $\frac{1}{2}$)BIT / HYDRAULICSDATAProductInventoryRec'd.UsedBalanceUnit \$Cost \$High Gravity Solids0 10 0Jet Velocity345FInventoryRec'd.UsedBalanceUnit \$Cost \$High Gravity Solids0 10 0Jet Velocity345FInventory7841276576 20787.40Bentonite9 61 1Impact Force656Idium Sulphate2842423.5694.24Drilled Solids47.45.2HHP / in24.0Inventory0Inventory4293371.70645.30Average S. G.260SolidsBit Press. Loss977-Inventory4463821.38128.28Med. "n" #1ck #2 ck0 5020.493Csg. Seat Frac Pres320Im Sulphate76126424.00288.00Med. "K" -1 0.476 387<" Equiv. Mud Wt.		-					
tal Received 326 Total Lost 209 (Circulating Vol.) Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 01 00 Jet / HYDRAULICS DATA Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 01 00 Jet Velocity 345 F rytes 784 127 657 6 20 787.40 Bentonite 96 1 1 Impact Force 656 dium Sulphate 28 4 24 23.56 94.24 Drilled Solids 47.4 52 HHP / in2 4.0 O 0 Used Solids 57.0 6.3 HHP / in2 4.0 Low Gravity Solids 57.0 6.3 HHP / in2 4.0 Inscription 44 6 38 21.38 128.28 Med. "n" #1ck #2 ck 0.502 0.493 csg. Seat Frac Pres 320 Inscription 14 0 14 74.35 1047 6.387 Tequiv. Mud wit. 14.04 0.371		f			Final Total	· · · · · · · · · · · · · · · · · · ·	
Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0 0 Jet Velocity 345 F rytes 784 127 657 6 20 787.40 Bentonite 9 6 1 1 Impact Force 656 dium Sulphate 28 4 24 23 56 94.24 Drilled Solids 47 4 5 2 HHP / in2 4.0 AC - LV 42 9 33 71 70 645.30 Average S. G. 260 Solids Bit Press. Loss 977 ustic Soda 44 6 38 21 38 128.28 Med. "n" # lok # 2 ck 0 502 0.493 csg. Seat Frac Pres 320 m Sulphate 76 12 64 24 00 288.00 Med. "n" # lok # 2 ck 0 502 0.493 csg. Seat Frac Pres 320 m Sulphate 76 12 64 24 00 288.00 Med. "n" 1 0.47 6 387<" Equiv. Mud Wt.	n n	200					
Product Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0 0 Jet Velocity 345 Free control of the control	al Received	320	i otal Lost	209	(Circulating Vol.)	
rytes 784 127 657 6 20 787.40 Bentomite 96 1 1 Impact Force 656 dium Sulphate 28 4 24 23 56 94.24 Drilled Solids 47 4 52 HHP / in2 4.0 0 0 0 0 0 0 10 228 4.0 1C - LV 42 9 33 71 70 645.30 Average S. G. 260 Solids Bit Press. Loss 977 ustic Soda 44 6 38 21 38 128.28 Med. "n" # 1047 6 387 " Equiv. Mud Wt. 14.04 m Sulphate 76 12 64 24 00 288.00 Med. "K" 1 1047 6 387 " Equiv. Mud Wt. 14.04 y -Thin 14 0 14 74 35 Low "h" 1 0 388 0 477 Total nozzle area 0.371 s 0 0 - - 152 28 1.218.24 Low "K" 1 2 120 7.04							SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
dium Sulphate 28 4 24 23 56 94.24 Drilled Solids 47 4 52 HTP inpact rote 4.0 1C - LV 42 9 33 71 70 645.30 Average S. G. 260 Solids Bit Press. Loss 977 ustic Soda 44 6 38 21 38 128.28 Med. "n" #1ck # 2 ck 0 502 0 493 csg. Seat Frac Pres 320 m Sulphate 76 12 64 24 00 288.00 Med. "n" #1ck # 2 ck 0 502 0 493 csg. Seat Frac Pres 320 y -Thin 14 0 14 74 35 Low "n" " 0 389 0 477 Total nozzle area 0.371 seat 0 0 0 1228 1.218.24 Low "K" - 2 2 120 7.04 0 0.371 seat 0.371 seat 0 0 - - 1.218.24 Low "K" - 2 2 120 7.04 0 0.371 seat 0 - - - - 2 120 7.04 0.371 seat 0 0	Product	Invent	ory Rec'd.	Used Balan	e Unit S	Cost \$	High Gravity Solids 01 00 Jet Velocity 345 FT / SI
IC - LV 42 9 33 71 70 645.30 Average S. G. 2 60 Solids Bit Press. Loss 977 ustic Soda 44 6 38 21 38 128.28 Med. "n" # 1047 6 387 " Equiv. Mud Wt. 14 04 m Sulphate 76 12 64 24 00 288.00 Med. "k" 1 1047 6 387 " Equiv. Mud Wt. 14 04 y -Thin 14 0 14 74 35 Low "n" 1 0.389 0.477 Total nozzle area 0.371 s 0 0	rytes .		784	127 657	6 20	787.40	Bentonite 9.6 1.1 Impact Force 656
IC - LV 42 9 33 71 70 645.30 Average S. G. 2 60 50 6 5 3 Bit Press. Loss 977 Justic Soda 44 6 38 21 38 128.28 Med. "n" #1ck # 2 ck 0 502 0.493 csg. Seat Frac Press 320 m Sulphate 76 12 64 24 00 288.00 Med. "K" 1 1047 6 387 " Equiv. Mud Wt. 14 04 y -Thin 14 0 14 74 35 Low "n" " 0.389 0.477 Total nozzle area 0.371 55 0 0 - - 1.218.24 Low "K" - 2.120 7.04	dium Sulphate		28	4 24	23.56	94.24	Drilled Solids 47.4 5.2 HHP / in2 4.0
Justic Soda 44 6 38 21 38 128.28 Med. "n" # 1ck # 2 ck 0 502 0 493 Csg. Seat Frac Pres 320 m Sulphate 76 12 64 24 00 288.00 Med. "k" - 1 047 6 6 387 " Equiv. Mud Wt. 14 04 y Thin 14 0 14 74 35 Low "n" - 0 389 0 0 477 Total nozzle area 0 371 st 0 0 Daily Chemical Cost : Cumulative Cost : Cumulative Cost : Cumulative Cost :				0		l.	ow Gravity Solids 57.0 6.3 HHP 228
m Sulphate 76 12 64 24 00 288.00 Med. "K" - 1 047 6 387 " Equiv. Mud Wt. 14 04 y -Thin 14 0 14 74 35 Low "n" " 0.389 0.477 Total nozzle area 0.371 si 55 8 47 152 28 1.218.24 Low "K" - 2.120 7.04 0 Daily Chemical Cost :	IC - LV		42	9 33	71 70	645.30	Average S. G. <u>260</u> Solids Bit Press. Loss 977
Image: Subplate 76 12 64 24 00 288.00 Med. "K" 1 1 047 6 387 " Equiv. Mud Wt. 14 04 y Thin 14 0 14 74 35 Low "n" 0 0.389 0.477 Total nozzle area 0.371 start 55 8 47 152 1,218.24 Low "K" - 2 120 7.04 0 Daily Chemical Cost :	ustic Soda		44	6 38	21 38	128.28	Med. "n" #1ck # 2 ck 0 502 0 493 Csg. Seat Frac Pres 320
y - Thin 14 0 14 74 35 Low "n" 0.389 0.477 Total nozzle area 0.371 st 55 8 47 152 28 1,218.24 Low "K" - 2.120 7.04 0 Daily Chemical Cost :	m Sulphate		76	12 64		1	
55 8 47 152 28 1,218.24 Low "K" - 2.120 7.04 0 Daily Chemical Cost : Cumulative Cost : Cumulative Cost : Cumulative Cost :				· · ·		1	
0 Daily Chemical Cost : Cumulative Cost :	y -Thin			· · · ·	• • •	i i	
	y -Thin				. 132.20		
	y -Thin .		•••••••••••••••••••••••••••••••••••••••	0		1_	
\$ 3,161 \$ 19,863	y -Thin .		·····	0		. C	
INEER EDD PERKINS ADDRESS South Australia TELEPHONE 08 - 338 3027 Any opinion and / or recommendation. expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made	y -Thin .		·····	0	- ·		Daily Chemical Cost : Cumulative Cost : \$ 3,161 \$ 19,863

9.15

42

8

15

6 21

8.8

2

5.9

~

Tr

13.0

9.5

~

0.28/1.22

4.100

720

160

2.600

0.54

~

~

94.1

Viscosity

HOLE

PERIOD

By Authority :

N.C. Plastic Viscosity :

yes Operator's written

THE END OF THE TEST OPERATION].

yes Operator's Representative

FLUID SUMMARY AND RECOMMENDATIONS

PIPE - FREE [AS NEEDED DURING THE PREVIOUS REPORT PERIOD].

PREPARATION FOR DISIT #3 [THIS WAS PUT TO GOOD USE DURING

MORE VOLUME WAS PREPARED FOR THE NEXT PHASE OF THIS

THE BIOCIDE (B54X) WAS USED DURING THE PREVIOUS REPORT

THE BARYTES WAS USED FOR A TRIP SLUG

SUMMARY

THE CLEAN OUT AND DRILLING OF 5 METRES WAS COMPLETED

ENERSEAL WAS USED FOR THE MOPPING UP OF SPILLAGE ETC

AND A BARYTES SLUG USED TO CLEAR THE PIPE, ON PULLING OUT.

ON FINISHING THE DIS T. VOLUME WAS LOST [DURING DISPLACING].

OPERATIONS

A SULIC MAC DUE T TO DE LICED TO DUE A

CMC - Low Vis USAGE WAS UP DUE TO THE EFFECTS OF THE

ANOTHER VOLUME PREMIX WAS BUILT AND PLACED ON STANDBY, IN

< 18

Yield Point :

Other

15 - 20

Drilling Contractor

9.20

44

9

18

9 28

~

93.5

9.7

2

~

6.5 ~

Tr

17.0

9.0

0 15/0 93

840

120

2,800

0.58

~

4,300

~ ~

deg. C

deg. C

~ deg. C

1

Retort

cm3/cm3

17 deg. C

29

25

Calc

lb/bbl

Oil/Water

x

WEIGHT

SOLIL

DH

ppg

Funnel VISCOSITY (sec/qt.) API @

FILTRATE API (cm3 / 30 min.) @

API HTHP Filtrate (cm3 / 30 min.)@

.ntent (% by Vol.)

CAKE - ickness (32nd. in API/HTHP)

GEL STRENGTH (Ib/100ft2) 10 sec. / 10 min.

Strip

(Pm)

PLASTIC VISCOSITY CP @

LIQUID Content (% by Vol.)

METHYLENE BLUE CAPACITY

ALKALINITY Filtrate (Pf/Mf)

SAND Content (% by Vol.)

ALKALINITY Mud

CHLORIDE (mg/L)

(L/L)

KCL (% by Wt.)

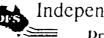
PHPA (Calc. Ib/bbl)

PHPA (Excess Ib/bbl)

Total HARDNESS (mg/L)

'ITE (mg/L)

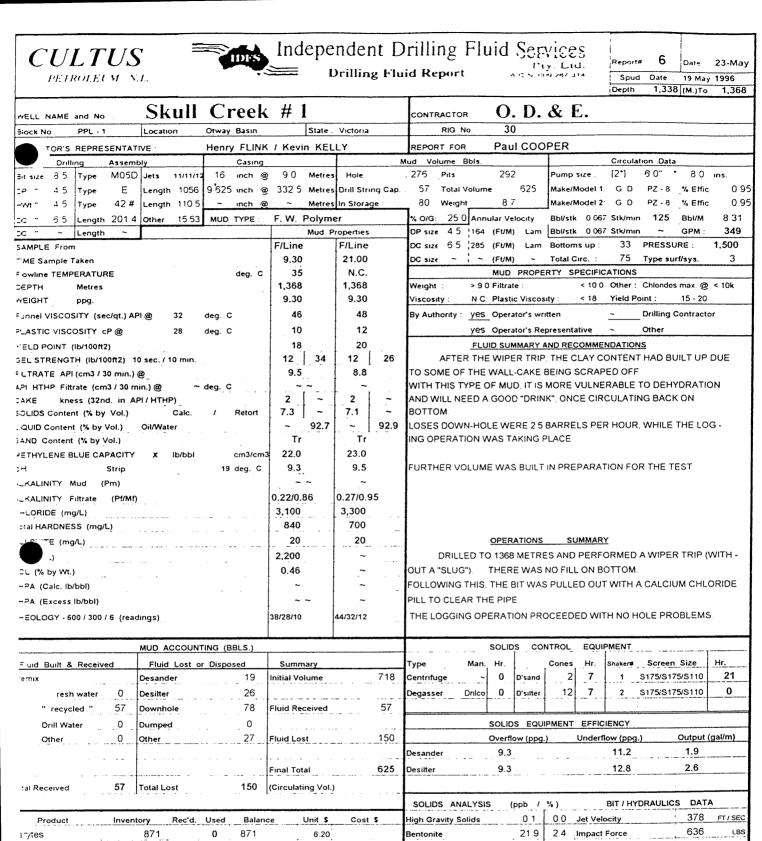
YIELD POINT (Ib/100ft2)


PHPA (Excess ID/DDI)				~~	~	A SLUG WAS BUILT (TO BE USED, TO PULL OUT WITH)											
RHEOLOGY - 600 / 300)/6 (rea	adings)				36/27/9	31/23/8	REVERSE P	ROCE	DURE	S WER	E IN PL	LACE. A	T REPOP	RT TIME.		
		MUD A	CCOUN	ITING (E	38LS.)				<u></u>	SOLI	os co	NTROL	EQUI	PMENT			
Fluid Built & Receiv	ved	Fluid	Lost	or Dispo	sed	Summary		Type	Man.	Hr.		Солез	s Hr.	Shaker#	Screen S	ize	Hr.
Premix		Desand	ler		7	Initial Volume	655	Centrifuge	•	0	D'sand	1 2	2 3	1	S175/S175/		7
fresh water	45	Desilter	•		5			Degasser	Drilco	0	D'silter	12	· • · · · ·	1	S175/S175/		7
recycled "	66	Downho	ole		95	Fluid Received	111										
Drill Water	0	Dumpe	d		0					SOLIE			F EFFIC	IENCY		es-rec-la	
Other	0	Other			23	Fluid Lost	130				ow (ppg			low (ppg.) 0	utout ((gal/m)
								Desander		9.2				10.3		1.6	gauny
	-	[Final Total	636	Desilter	•	9.2		••		12.7		1.3	
Total Received	111	Total Lo	ost	• • • • • • •	130	(Circulating Vol.)				0.2							
								SOLIDS AN	ALYSIS	s (ррь /	%)		BIT / HYE	DRAULICS	DATA	4
Product	Inven	itory	Rec'd.	Used	Baland	ce Unit S	Cost \$	High Gravity S	Solids		01	00	Jet Velo	ocity		287	FT / SE
Barytes		824		40	784	6.20	248.00	Bentonite			10 1	1.1	Impact	Force		474	LB
Sodium Sulphate		34		6	28	23.56	141.36	Drilled Solids			43.5	4.8	HHP/i	n2		2.4	
Enerseal		94		15	79	63 60	954.00	Low Gravity S	olids		53.6	59	ннр			137	
CMC - LV		52		10	42	71.70	717.00	Average S. G.			2 60	Solids	Bit Pres	s. Loss		672	Р
Caustic Soda		45		1	44	21.38	21.38	Med. "n"	#1ck.	# 2 ck	0.415	0 430	Csg. Se	at Frac P	res	320	P
lum. Sulphate		78		2	76	24.00	48.00	Med. "K"	-	-				quiv. Mud		1.04	PPO
oly -Thin		14		0	14	74 35	• • • • •	Low "n"	-	•				zzle area		390	SQ INC
cide (B54X)		5		2	3	207.75	415.50	Low "K"	-	-		19.05					
Agn		24	•	0	24	25.70		Daily Chemical	Cost :				Cumula	tive Cost	:		
lowzan		່										,					

 FlowZan
 2
 1
 400.00
 400.00
 \$ 2,945
 \$ 16,701

 ENGINEER
 EDD PERKINS
 ADDRESS
 South Australia
 TELEPHONE
 08 - 338 3027

 Any opinion and / or recommendation, expressed orally or written hern, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made
 TELEPHONE
 08 - 338 3027


Independent Drilling Fluid Services Drilling Fluid Report

i

7 Date 25-May Report#
 Spud
 Oate
 19 May
 1996

 Depth
 1.368 (M.)To
 1.368

WELL MART	and Mr	Skull	Creel	∠ <u>#</u> 1		
WELL NAME					······································	CONTRACTOR O. D. & E.
Block No	PPL - 1	Location	Otway Basin	A	ate Victoria	RIG No 30
	REPRESENT		Henry FLIN		KELLY	REPORT FOR Paul COOPER
Driller			Casing			Mud Volume Bbls Circulation Data
Bitsize 85	Type ~	Jets ~	16 inch (•	tres Hole	276 Pits 322 Pump size [2*] 60" * 80 ir
	Туре Е Туре 42	Length 1056 # Length 110.5	9 625 inch (-	tres Drill String Cap	
_	Length 201	1 -	h		tres In Storage	0 Weight ~ Make/Model 2 G D PZ - 8 % Effic
	Length ~	4 Other 1953	MUD TYPE	F. W. Pol	d Properties	% O/G: 25.0 Annular Velocity Bbl/stk 0.067 Stk/min 55 Bbl/M DP size 4.5 172 (Ft/M) Lam Bbl/stk 0.067 Stk/min ∼ GPM
SAMPLE From	_			F/Line	Pit	
TIME Sample Ta	aken			13.30	22.30	DC size 6.5 ;125 (FUM) Lam Bottoms up : 75 PRESSURE : 8i DC size (FUM) - Total Circ. : 179 Type surf/sys.
lowline TEMPE	ERATURE		deg. C	35	N.C.	MUD PROPERTY SPECIFICATIONS
	Metres			1,368	1,368	Weight : > 9.0 Filtrate : < 10.0 Other : Chlorides max.@ <
	ppg.			9.30	9.20	Viscosity: N.C. Plastic Viscosity: < 18 Yield Point: 15 - 20
unnel VISCOSI	ITY (sec/qt.)	API @ 28	deg. C	43	44	By Authority : <u>yes</u> Operator's written - Drilling Contractor
LASTIC VISCO	SITY cP@	25	deg. C	9	10	yes Operator's Representative ~ Other
IELD POINT (I	b/100ft2)			16	17	FLUID SUMMARY AND RECOMMENDATIONS
EL STRENGTH	H (Ib/100ft2)	10 sec. / 10 min.		10 2	4 7 18	WHILE CIRCULATING, ON COMPLETION OF DST #1, FURTHER V
	cm3 / 30 min.			9.4	8.6	UME (HELD IN STORAGE) WAS ADDED TO THE ACTIVE SYSTEM
PI HINP Filtra			deg. C	~~~	~	THIS PRACTICE WAS CONTINUED WHEN - EVER CIRCULATING WAS
AKE Thicknes OLIDS Content		API / HTHP) Calc.	/ Retort	2 ~	2 ~ 6.3 ~	
IQUID Content		Oil/Water	/ Reloft	~ 92	1 ···	THE ABOVE PROCEDURE ASSISTED IN REDUCING THE MUD WEIGH TO 9 15 PPG . AS OF THE 16 00 HOUR CHECK
AND Content (· • · · · · · · · · · · · · · · · · · ·		· · ·	Tr	./ ~ [93./ Tr	DUE TO THE DRILL-STRING CONDITION, A "FREE-PIPE" AND DIESEL (
ETHYLENE BL		/ X lb/bbi	cm3/cm		16.0	BARREL) MIX WAS PUMPED AND SPOTTED [WITH AN INITIAL 16 BBL. SI
н	Strip		17 deg. C	9.0	9.0	IN THE ANNULUS AND 4 BBLS LEFT IN THE STRING!
LKALINITY MU	ud (Pm)			~~	~	THE PRODUCT ENERSEAL WAS USED TO SOAK UP THE DIESEL [ETC
LKALINITY Fil	trate (Pf/M	0		0.2/1.37	0.18/1.04	SPILLAGE, WHEN THE TANK WAS CLEANED OUT, AFTER THE OPERATI
HLORIDE (mg/l	L)			4,000	3,700	WITH THE DRILL-STRING FREE, WHAT DIESEL MIX AS COULD BE TAK
otal HARDNESS	5 (mg/L)			1200	1600	FROM THE SYSTEM, WAS CIRCULATED OUT & INTO THE FLARE PIT.
E (mg/L	-)	··· • ···		160	140	OPERATIONS SUMMARY
.g/L)				2,700	2,500	LOSSES FROM THIS WERE REPLACED AND FURTHER VOLUME
CL (% by Wt.)				0.56	0.52	WAS BUILT
HPA (Calc. Ib/bl	ы)			~	~	ATTENTION WAS AIMED AT MAINTAINING A LOW FLUID LOSS, AS IT WA
IPA (Excess lb	/bbl)			~~	~	CLIMBING AFTER THE PREVIOUS EXERCISE
HEOLOGY - 600	/300/6 (rea	dings)		34/25/12	37/27/9	BARYTES WAS USED TO TRIP OUT WITH. POLY-THIN WAS INTRODUCE
						TO ENSURE CONTROL OVER THE FINAL GEL STRENGTHS [FOR TRIPS].
		MUD ACCOUNT	NG (BBLS.)			SOLIDS CONTROL EQUIPMENT
uit & R	Received	Fluid Lost or	Disposed	Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
emix		Desander	25	Initial Volume	625	Centrifuge - 0 D'sand 2 8 1 \$175/\$175/\$110
w/ fresh w	vater 85	Desilter	20			Degasser Drilco 0 D'silter 12 8 2 S175/S175/S110
" recycled	d." 175	Downhole	57	Fluid Received	260	
Drill Water	r 0	Dumped	110			SOLIDS EQUIPMENT EFFICIENCY
			18	Fluid Lost	230	Overflow (ppg.) Underflow (ppg.) Output (gal/
Other	0	Other				
Other	. 0	Other				Desander 9.3 10.5 2.2
Other -	0	Other	a <u>-</u> .	Final Total	655	Desander 9.3 10.5 2.2
				Final Total	655	Desander 9.3 10.5 2.2 Desilter 9.3 11.4 1.7
	0 260	Other Total Lost		Final Total (Circulating Vo		Desilter 9.3 11.4 1.7
al Received	260	Total Lost	230	(Circulating Vo	H.)	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
al Received		Total Lost ory Rec'd. I	230 Jsed Balanc	(Circulating Vo e Unit \$	ol.) GCost_ \$	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity ##### FT
al Received Product rytes	260 Invent	Total Lost ory <u>Rec'd t</u> 871	230 Jsed Balanc 47 824	(Circulating Vo e Unit \$ 6.20	51.) Cost <u>\$</u> D_291.40	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity ##### FT Bentonite 1.36 1.5 Impact Force #####
al Received Product nytes dium Sulphate	260 Invent	Total Lost ory <u>Rec'd.1</u> 871 40	230 Jsed Balanc 47 824 6 34	(Circulating Vo e Unit \$ 6 20 23 56	bl.) Cost \$ D. 291.40 5 141.36	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity ##### FT Bentonite 13.6 1.5 Impact Force ##### Drilled Solids 43.7 4.8 HHP / in2 #####
al Received Product rytes dium Sulphate erseal	260 Invent	Total Lost ory <u>Rec'd.1</u> 871 40 71	230 Jsed Balanc 47 824 6 34 14 5 1	(Circulating Vo e Unit \$ 6 20 23 50 4 63 60	5. Cost \$ 0. 291.40 5. 141.36 0. 890.40	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity ##### Bentonite 13.6 1.5 Impact Force ##### Drilled Solids 43.7 4.8 HHP / in2 ##### Low Gravity Solids 57.3 6.3 HHP #####
Product Product rytes dium Sulphate erseal IC - LV	260 Invent	Total Lost ory Rec'd t 871 40 71 65	230 Jsed Balanc 47 824 6 34 14 5 13 52	(Circulating Vo e Unit \$ 6 20 23 56 7 63 60 71 70	5. Cost 5 0, 291.40 5. 141.36 0. 890.40 0. 932.10	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity #### Bentonite 13.6 1.5 Impact Force #### Drilled Solids 43.7 4.8 HHP / in2 #### Low Gravity Solids 57.3 6.3 HHP ##### Average S. G. 2.60 Solids Bit Press. Loss #####
al Received Product rytes dium Sulphate erseal IC - LV ustic Soda	260 Invent	Total Lost ory Rec'd. t 871 40 71 65 46	230 Jsed Balanc 47 824 6 34 14 5 13 52 1 45	(Circulating Vo e Unit \$ 6 20 23 50 4 63 60	5. Cost 5 0, 291.40 5. 141.36 0. 890.40 0. 932.10	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity #### Bentonite 13.6 1.5 Impact Force #### Drilled Solids 43.7 4.8 HHP / in2 #### Low Gravity Solids 57.3 6.3 HHP #### Average S. G. 2.60 Solids Bit Press. Loss #### Med. "n" #1ck # 2 ck 0.443 0.454 Csg. Seat Frac Pres 320
Product rytes dium Sulphate erseal 1C - LV ustic Soda m. Sulphate	260 Invent	Total Lost ory Rec'd. 1 871 40 71 65 46 82	230 Jsed Balanc 47 824 6 34 14 5 1 13 52 1 45 4 78	(Circulating Vo e Unit \$ 6 20 23 56 7 63 60 71 70 21 30 24 00	Cost \$ 0 291.40 5 141.36 0 890.40 0 932.10 3 21.38 0 96.00	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0 1 0 0 Jet Velocity #### Bentonite 13 6 1.5 Impact Force #### Drilled Solids 43 7 4.8 HHP / in2 ##### Low Gravity Solids 57 3 6.3 HHP ##### Average S. G. 2 60 Solids Bit Press. Loss ##### Med. "n" # 1ck # 2 ck 0.443 0.454 Csg. Seat Frac Pres 320 Med. "K" " 1.575 8.118<"
Product rytes dium Sulphate erseal 1C - LV ustic Soda m. Sulphate	260 Invent	Total Lost ory Rec'd. 1 871 40 71 65 46 82 20	230 Jsed Balanc 47 824 6 34 14 5 1 45 4 78 6 14	(Circulating Vo e Unit \$ 6 20 23 56 2 63 60 71 77 21 36 24 00 74 35	Cost \$ 0 291.40 5 141.36 0 890.40 0 932.10 3 21.38 0 96.00 6 446.10	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity #### Bentonite 13.6 1.5 Impact Force #### Drilled Solids 43.7 4.8 HHP / in2 #### Low Gravity Solids 57.3 6.3 HHP ##### Average S. G. 2.60 Solids Bit Press. Loss ##### Med. "n" #1ck # 2 ck 0.443 0.454 Csg. Seat Frac Pres 320 Med. "K" " 1.575 8.118<"
Product Product nytes dium Sulphate erseal IC - LV ustic Soda m. Sulphate y -Thin	260 Invent	Total Lost ory Rec'd. 1 871 40 71 65 46 82 20 23	230 Jsed Balanc 47 824 6 34 14 54 13 52 1 45 4 78 6 14 13 10	(Circulating Vo e Unit \$ 6 20 23 56 7 63 60 71 70 21 30 24 00	Cost \$ 0 291.40 5 141.36 0 890.40 0 932.10 3 21.38 0 96.00 5 446.10	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0 1 0 0 Jet Velocity #### Bentonite 13 6 1.5 Impact Force #### Drilled Solids 43 7 4.8 HHP / in2 ##### Low Gravity Solids 57 3 6.3 HHP ##### Average S. G. 2 60 Solids Bit Press. Loss ##### Med. "n" # 1ck # 2 ck 0.443 0.454 Csg. Seat Frac Pres 320 Med. "K" " 1.575 8.118<"
Product Product nytes dium Sulphate erseal 1C - LV ustic Soda m. Sulphate y -Thin Ogri.	260 Invent	Total Lost ory Rec'd 1 871 40 71 65 46 82 20 23 26	230 Jsed Balanc 47 824 6 34 14 5 1 45 4 78 6 14	(Circulating Vo e Unit \$ 6 20 23 56 2 63 60 71 77 21 36 24 00 74 35	Cost \$ 0 291.40 5 141.36 0 890.40 0 932.10 3 21.38 0 96.00 5 446.10 3 250.64	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity #### Bentonite 13.6 1.5 Impact Force #### Drilled Solids 43.7 4.8 HHP / in2 #### Low Gravity Solids 57.3 6.3 HHP ##### Average S. G. 2.60 Solids Bit Press. Loss ##### Med. "n" #1ck # 2 ck 0.443 0.454 Csg. Seat Frac Pres 320 Med. "K" " 1.575 8.118<"
Product Product nytes dium Sulphate erseal IC - LV ustic Soda m. Sulphate y -Thin	260 Invent	Total Lost ory Rec'd. 1 871 40 71 65 46 82 20 23	230 Jsed Balanc 47 824 6 34 14 54 13 52 1 45 4 78 6 14 13 10	(Circulating Vo e Unit \$ 6 20 23 56 7 63 60 71 77 21 38 24 00 74 35 19 28	Cost \$ 0 291.40 5 141.36 0 890.40 0 932.10 3 21.38 0 96.00 5 446.10 3 250.64 5 51.40	Desilter 9.3 11.4 1.7 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids 0.1 0.0 Jet Velocity #### Bentonite 13.6 1.5 Impact Force #### Drilled Solids 43.7 4.8 HHP / in2 #### Low Gravity Solids 57.3 6.3 HHP ##### Average S. G. 2.60 Solids Bit Press. Loss ##### Med. "n" #1ck # 2 ck 0.443 0.454 Csg. Seat Frac Pres 320 Med. "K" - 1.575 8.118 " Equiv. Mud wt. 14.04 Low "n" - 0.199 0.293 Total nozzle area sc Low "K" - 7.228 22.17 - -

GINEER EDI	D PERKINS		ADDRESS	South	Australia		TELEP	HONE	08 - 338 3027		
						\$	1,687		\$ 10,35	5	
gri	33	7	26	25.70	179.90	Daily Chemical Cost :			Cumulative Cost :		
5	40	40		4.52	180.80	Low "K"	8.889	43.32			
_ (ligno.)	4	4		36 00	144.00	Low "n"	0 184	0.213	Total nozzle area	0.296	SQ INCH
.m Sulphate		0		24.00		Med. "K"	1 798	9.333	" Equiv. Mud Wt.	14.04	PPG
_stic Soda	46	0	46	21 38		Med. "n" #1ck #2 ck	0 440	0 459	Csg. Seat Frac Pres	320	PS
*C - LV	73	8	65	71 70	573.60	Average S. G.	2 60	Solids	Bit Press. Loss	1187	PS
spac	22	4	18	152.28	609.12	Low Gravity Solids	64 3	71	ннр	242	
						Drilled Solids	42 5	47	HHP / in2	4.3	

urselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same

CULTUS

PETROLEUM N.L.

Independent Drilling Fluid Services Drilling Fluid Report

5 Report# Date 23-May Spud Date 19 May 1996 Depth 1.158 (M.)To 1.3: Deoth 4 3 3 0

WELL NAME and No.	~	\sim .					Depth 1,158 (M.)To		
	Skull	Creek	<u>(</u> # 1	[CONTRACTOR O. D. & E.		
Block No PPL - 1	Location	Otway Basin		State	Victoria		RIG No 30		
ATOR'S REPRESENT	ATIVE :	Henry FLIN	K / Kevi	n KEL	LY		REPORT FOR Paul COOPER		
	mbly	Casing					Mud Volume Bbis Circulation Data		
Bitsize 8.5 Type, MO	1	1	-	Metres	· •		270 Pits 392 Pump size [2*] 30" * 80 ins		
DP 45 Type: E		9 625 inch @	3325	Metres	Drill Stri	ng Cap	56 Total Volume 718 Make/Model 1. G D PZ-3 % Effic		
HWt" 45 Type 42	# Length 1105	~ inch @	~	Metres	In Stora	ge .	43 Weight 88 Make/Model 2: G D PZ - 8 % Effic		
DC " 65 Length 201	4 Other 15 53	MUD TYPE	F. W. F	Polym	er		% O/G: 25.0 Annular Velocity Bbl/stk 0.067 Stk/min 125 Bbl/M		
DC " ~ Length ~				Mud P	roperties		DP size 4.5 164 (Ft/M) Lam Bbl/stk 0.067 Stk/min ~ GPM :		
SAMPLE From			F / Line	F/L	F / Line		DC size 6.5 285 (FVM) Lam Bottoms up : 32 PRESSURE : 1,		
TIME Sample Taken			11.00	18.00	24.00		DC size - i - (Ft/M) - Total Circ. : 86 Type surf/sys.		
Flowline TEMPERATURE		deg. C	27	33			MUD PROPERTY SPECIFICATIONS		
DEPTH Metres WEIGHT ppg.			1,212		ł		Weight : > 9.0 Filtrate : < 10.0 Other : Chlorides max. @ < 1		
FF3			9.20	9.30	1		Viscosity: N.C. Plastic Viscosity: < 18 Yield Point: 15 - 20		
Funnel VISCOSITY (sec/qt.)	API@ 24	deg. C	45	40	46		By Authority : <u>yes</u> Operator's written - Drilling Contractor		
PLASTIC VISCOSITY CP @	23	deg. C	16	11	11		yes Operator's Representative - Other		
YIELD POINT (Ib/100ft2)			17	14	17		FLUID SUMMARY AND RECOMMENDATIONS		
GEL STRENGTH (Ib/100ft2)			7	26	9	32	DUE TO THE RESTRICTION OF BEING UNABLE TO ADD L.C.M. (JE		
FILTRATE API (cm3 / 30 min	-		8.5	8.0	9.6		BLOCKAGE) THERE WAS NO CHECK TO THE LOSS DOWN-HOLE AND		
API ? Filtrate (cm3 / 30		d e g. C	~	~	~		SO NEW VOLUME NEEDED TO BE BUILT AND ADDED CONSTANTLY.		
CAKE Thickness (32nd. in	-		2	~	2	~	WITH THE SAND SECTIONS BEING DRILLED AND ADDING SOLIDS TO TH		
SOLIDS Content (% by Vol.)		/ Retort	6.5	~	7.1	~	SYSTEM, LOSES ASSISTED IN KEEPING THE WEIGHT DOWN.		
-IQUID Content (% by Vol.)	Oil/Water		~	93.5	~_	92.9	CHLORIDES WERE PICKED UP FROM THE FORMATION (# 1 CHECK).		
SAND Content (% by Vol.)			0.75	Tr	Tr		TO ASSIST LOGGING, KCL WAS ADDED [PARAMETERS 3,000 PPM APP.]		
METHYLENE BLUE CAPACIT	Y X Ib/bbi	cm3/cm3	- ·	13.0	20.0		FLOWZAN WAS ADDED IN THE PREVIOUS REPORT. BUT NOT NOTED		
oH Strip	•••	17 deg. C	9.5	9.2	9.5		AS THE SANDS WERE DRILLED THROUGH, MORE BENTONITE WAS NEE		
LKALINITY Mud (Pm)	· -		~ -	• .	~		ED TO BUILD WALL-CAKE [AND WAS BEING DEPLETED QUICKLY]		
LKALINITY Filtrate (Pf/M	lf)		0.33/1.0	· · · •	0.27/0.9	2	DRISPAC WAS USED TO RAISE & MAINTAIN THE YIELD POINT.		
HLORIDE (mg/L)			800	870	3,200		THE DOWN-HOLE LOSS WAS MINIMISED, ONCE THE API FLUID-LOSS		
otal HARDNESS (mg/L)			680	720	920		WAS REDUCED		
ITE (mg/L)			80	_ 40	40		OPERATIONS SUMMARY		
(۱۷ او			~		~		A WIPER TRIP WAS INITIATED AT 1,212 METRES, USING CALCIUM		
CL (% by Wt.)			~		~		CARBONATE TO "SLUG" THE PIPE. DURING THIS TRIP 56 BBLS. WERE		
HPA (Calc. lb/bbl)		l	~ .		~		LOST DOWN-HOLE [A STATIC CHECK SHOWED A 12 BBL LOSS PER		
10 A / P			~ ~		~		HOUR] ONCE BACK ON BOTTOM, THE FLUID LOSS WAS REDUCED		
HPA (Excess Ib/bbl)			A						
	adings)	- -	49/33/5 3	6/25/4	39/28/9	í			
	adings)		49/33/5 3 Gels: 5	· •	39/28/9	.	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED		
HPA (Excess Ib/bbi) HEOLOGY - 500 / 300 / 6 (rea	adings) MUD ACCOUNTI	NG (BBLS.)		· •	39/28/9		FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED		
	MUD ACCOUNTI		Gels: 5	/28	39/28/9		FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT		
HEOLOGY - 600 / 300 / 6 (rea		Disposed	Gels: 5 Summa	/28	39/28/9		FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shakers Screen Size Hr.		
HEOLOGY - 500 / 300 / 6 (rea	MUD ACCOUNTI Fluid Lost or Desander	Disposed 62	Gels: 5	/28	39/28/9	562	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shakens Screen Size Hr. Cones Centrifuge 0 D'sand 2 19 1 S175/S175/S110 2		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received rei w/ fresh water 45	MUD ACCOUNTI Fluid Lost or Desander Desilter	Disposed 62 54	Gels: 5 Summa Initial Volu	/28	· · · ·	562	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8.3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shakers Screen Size Hr.		
HEOLOGY - 500 / 300 / 6 (rea Fluird Built & Received rei w/ fresh water 45 " recycled " 340	MUD ACCOUNTI Fluid Lost or Desander Desilter Downhole	Disposed 62 54 99	Gels: 5 Summa	/28	· · · ·	562	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Streen Size Hr. Centrifuge 0 D'sand 2 19 1 S175/S175/S110 2 Degasser Drilco 0 D'sinter 12 12 2 S175/S175/S110 2		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received rei w/ fresh water 45 " recycled " 340 Drill Water 0	MUD ACCOUNTI Fluid Lost or Desander Desilter Downhole Dumped	Disposed 62 54 99 0	Gels: 5 Summa Initial Volu Fluid <u>Rece</u>	/28	· · · · · · · · · · · · · · · · · · ·	562 385	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. SoliDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. SoliDS CONTROL EQUIPMENT Cones Hr. SoliDS Control Disand 2 19 SoliDS control Degasser Drilco SOLIDS EQUIPMENT EFFICIENCY		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340	MUD ACCOUNTI Fluid Lost or Desander Desilter Downhole	Disposed 62 54 99 0	Gels: 5 Summa Initial Volu	/28	· · · · · · · · · · · · · · · · · · ·	562	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Solups Cones Cones Hr. Stand 2 19 1 Solups D'sand 2 19 Conesser Drilco 0 D'sand 12 12 2 S175/S175/S110 2 SOLIDS EQUIPMENT EFFICIENCY		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received rei w/ fresh water 45 " recycled " 340 Drill Water 0	MUD ACCOUNTI Fluid Lost or Desander Desilter Downhole Dumped	Disposed 62 54 99 0	Gels: 5 Summa Initial Volu Fluid <u>Rece</u>	/28	· · · · · · · · · · · · · · · · · · ·	562 385 229	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. SoliDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. SoliDS CONTROL EQUIPMENT Cones Hr. SoliDS Control Disand 2 19 SoliDS control Degasser Drilco SOLIDS EQUIPMENT EFFICIENCY		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0	MUD ACCOUNTI Fluid Lost or Desander Desilter Downhole Dumped	Disposed 62 54 99 0 14	Gels: 5 Summa Initial Volu Fluid <u>Rece</u>	/28		562 385 229	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Stand 2 19 1 S175/S175/S110 2 Degasser Drilco O D'sitter 12 12 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Underflow (ppg.) Output (gal/m		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0	MUD ACCOUNTI Fluid Lost or Desander Desilter Downhole Dumped	Disposed 62 54 99 0 14	Gels: 5 Summa Initial Volu Fluid Rece	/28		562 385 229	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shakers Screen Size Hr. Centrifuge 0 D'sand 2 19 1 S175/S175/S110 2 Degasser Drico 0 D'sitter 12 12 2 S175/S175/S110 2 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Underflow (ppg.) Output (gal/rr Desander 9.3 11.5 2.3		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received rei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0	MUD ACCOUNTI Fluid Lost or Desander Desilter Downhole Dumped Other	Disposed 62 54 99 0 14	Gels: 5 Summa Initial Volu Fluid Rece	/28		562 385 229	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Centrifuge 0 O'sand 2 19 1 S175/S175/S110 2 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Desander 9.3 11.5 2.3 Desilter 9.3 13.6 3.2		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0	MUD ACCOUNTIL Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost	Disposed 62 54 99 0 14	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Final Total	/28 ry me ived		562 385 229 718	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Centrifuge 0 D'sand 2 19 1 S175/S175/S110 2 Degasser Drico 0 D'sitter 12 12 2 S175/S175/S110 2 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Underflow (ppg.) Output (gal/m Desander 9.3 11.5 2.3 Desilter 9.3 13.6 3.2 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven	MUD ACCOUNTIL Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost	Disposed 62 54 99 0 14 14 7 229 (Jsed Balance	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Fluid Lost Circulating	/28 ry me ived g Vol.)	Cost \$	562 385 229 718 F	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Desander 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA SOLIDS ANALYSIS (0 0 OTICO 0 Solids Colspan="2">OTICO 0		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven ispac	MUD ACCOUNTIL Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost	Disposed 62 54 99 0 14 7 229 (Jsed Balance	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Circulating Circulating	/28 ry me ived g Vol.)	Cost \$ 1,065.5	562 385 229 718 F	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Degasser Drilco 0 D'sitter 12 12 SIT5/S175/S110 2 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Desander 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA Gravity Solids 01 0.0 Jet Velocity 378 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA Gravity Solids 01 0.0 Jet Veloci		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven ispac da Ash	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost Itory Rec'd L 29 9	Disposed 62 54 99 0 14 229 (Jsed Balance 7 22 9	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Circulating Circulating Circulating 15	/28 ry me ived g Vol.) hit \$ 5 75	<u>Cost \$</u> 1,065.5 141.76	562 385 229 718 718	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Overflow (ppg.) Output (gal/n Desander 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA Gligh Gravity Solids 0 1 0.0 SOL		
HEOLOGY - 500 / 300 / 6 (rea Filured Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven ispac da Ash - Gel	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost tory Rec'd U 29 9 240	Disposed 62 54 99 0 14 7 229 (7 22	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Circulating Circulating Circulating 15	/28 ry me ived g Vol.) hit \$ 5 75 8 13	<u>Cost \$</u> 1,065.5 141.77 447.18	562 385 229 718 5 5 5	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Degasser Drilco 0 D'sitter 12 12 2 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Desander 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA Gligh Gravity Solids 0 1 0.0 Jet Hr. SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received rei w/ fresh water 45 "recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven ispac oda Ash - Gel AC - LV	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost tory Rec'd. L 29 9 240 10 80	Disposed 62 54 99 0 14 14 7 229 9 55 185 17 73	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Circulating Circulating 1 1 7	/28 ry me ived g Vol.) bit \$ i2.28 5 75 8 13 1 70	Cost \$ 1,065.5 141.7? 447.12 1,218.9	562 385 229 718 718 5 5 5 1 229 7 1 7 18 7 18 7 18 7 18 7 18 7 18 7 18	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shakers Screen Size Hr. Centrifuge 0 D'sand 2 19 1 S175/S175/S110 2 Degasser Drilco 0 D'sitter 12 12 2 S175/S175/S110 2 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Underflow (ppg.) Output (gal/n Desander 9.3 11.5 2.3 Desander 9.3 13.6 3.2 SOLIDS ANALYSIS (ppb / %) Bit / HYDRAULICS DATA Gentonite 17.9 2.0 Impact Force 636 Drilled Solids 46.5 5.1 HHP / in2 4.3 .3 ow Gravity Solids 64.4 7.1 HHP 242 .43		
HEOLOGY - 500 / 300 / 6 (rea Fluind Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 Other 0 tal Received 385 Product Inven ispac - Gel MC - LV iustic Soda	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost tory Rec'd U 29 9 240 10 80 16 40	Disposed 62 54 99 0 14 229 (229 (229 (229 55 185 17 73 10 46	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Circulating Circulating Circulating 1 1 7 2	/28 ry me ived g Vol.) bit \$ 5 75 8 13 1 70 1 38	Cost \$ 1.065.5 141.7! 447.1! 1.218.9 213.80	562 385 229 718 5 5 5 100 A	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Centrifuge 0 D'sand 2 19 1 S175/S175/S110 2 Degasser Drilco 0 D'sinter 12 12 2 S175/S175/S110 2 SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Underflow (ppg.) Output (gal/m Desander 9.3 11.5 2.3 Desilter 9.3 13.6 3.2 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA digh Gravity Solids 0 1 0.0 Jet Velocity 37.8 FT/ SoliDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA digh Gravity Solids 0 1 0.0 Jet Velocity 37.8 FT/ Gold Solids 46.5 5.1 HHP / in2 4.3 aco Gold Solids 64.4 7.1 HHP 24.2 Verage		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received rei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven ispac vda Ash - Gel AC - LV sulphate	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost tory Rec'd. L 29 9 240 10 80 16 40 10	Disposed 62 54 99 0 14 229 (Jsed Balance 7 22 9 55 185 17 73 10 46 10	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Circulating Circulating 1 Circulating 1 7 2 2 2	/28 ry me ived g Vol.) bit \$ 5 75 8 13 1 70 1 38 4 00	Cost \$ 1,065.5 141.76 447.16 1,218.9 213.80 240.00	562 385 229 718 5 5 5 5 6 6 7 7 18 7 7 18 7 7 7 7 8 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 8 7 8 7 7 8 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Control QUIPMENT Cones Hr. Shaker# Screen Size Hr. SoLiDS CONTROL Cones Hr. Shaker# Screen Size Hr. SOLIDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Desider 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA dight Gravity Solids		
HEOLOGY - 500 / 300 / 6 (rea Fluind Built & Received rei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 Other 0 tal Received 385 Product Inven ispac oda Ash - Gel MC - LV iustic Soda	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost tory Rec'd L 29 9 240 10 80 16 40 10 7	Disposed 62 54 99 0 14 229 (Jsed Balance 7 22 9 55 185 17 73 10 46 10 3 4	Gels: 5 Summa Initial Volu Fluid Rece Fluid Lost Circulating Circulating 1 Circulating 1 7 2 2 2	/28 ry me ived g Vol.) bit \$ 5 75 8 13 1 70 1 38	Cost \$ 1.065.5 141.7! 447.1! 1.218.9 213.80	562 385 229 718 5 5 5 5 6 6 7 7 18 7 7 18 7 7 7 7 8 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 8 7 8 7 7 8 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaken# Screen Size Hr. Cones Hr. Shaken# Screen Size Hr. Cones Hr. Shaken# Screen Size Hr. Cones Hr. Shaken# Screen Size Hr. Cones Hr. Shaken# Screen Size Hr. Cones Hr. Shaken# Screen Size Hr. Cones Hr. Shaken# Screen Size Hr. Cones Hr. Shaken# Screen Size Hr. SoliDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/m Desider 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA digh Gravity Solids 01 0.0 Jup 2 SOLIDS ANALYSIS (ppb / %) <th <="" colspan="2" td=""></th>		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven ispac ida Ash - Gel AC - LV ustic Soda im Sulphate L (ligno)	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost tory Rec'd. L 29 9 240 10 80 16 40 10 7 80 4	Disposed 62 54 99 0 14 229 (Jsed Balance 7 22 9 55 185 17 73 10 46 10 3 4 40 40	Gels: 5 Summa Initial Volu Fluid Lost Fluid Lost Circulating Circulating 1 1 7 2 2 3	/28 ry me ived g Vol.) bit \$ 5 75 8 13 1 70 1 38 4 00	Cost \$ 1,065.5 141.76 447.16 1,218.9 213.80 240.00	562 385 229 718 96 5 5 5 1 0 0 M	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shakers Screen Size Hr. Contribute Output Control Cones Hr. Shakers Screen Size Hr. SoliDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Desider 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HydraULICS DATA Gentonite 17 9 2.0 Impact Force G36 SOLIDS ANALYSIS (ppb / %) BIT / HydraULICS DATA		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received ei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inventispac ida Ash - Gel AC - LV ustic Soda Im Sulphate L (ligno) Wzan	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost tory Rec'd. L 29 9 240 10 80 16 40 10 7 80 4	Disposed 62 54 99 0 14 229 (Jsed Balance 7 22 9 55 185 17 73 10 46 10 3 4	Gels: 5 Summa Initial Volu Fluid Lost Fluid Lost Circulating Circulating 1 1 7 2 2 3	/28 ry me ived g Vol.) bit \$ 52 28 5 75 8 13 1 70 1 38 4 00 6 00	Cost \$ 1,065.5 141.74 447.16 1,218.9 213.80 240.00 108.00	562 385 229 718 718 96 5 10 8 90 8 90 8 90 8 90 90 90 90 90 90 90 90 90 90 90 90 90	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. SoliDS CONTROL EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/m Desider 9.3 11.5 2.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA digh Gravity Solids 01 0.0 Jut 4.3 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA d		
HEOLOGY - 500 / 300 / 6 (rea Fluid Built & Received rei w/ fresh water 45 " recycled " 340 Drill Water 0 Other 0 tal Received 385 Product Inven ispac oda Ash - Gel AC - LV sustic Soda Jm. Sulphate L (ligno)	MUD ACCOUNTII Fluid Lost or Desander Desilter Downhole Dumped Other Total Lost ttory Rec'd. L 29 9 240 10 80 16 40 10 7 80 4 4	Disposed 62 54 99 0 14 229 (Jsed Balance 7 22 9 55 185 17 73 10 46 10 3 4 40 40	Gels: 5 Summa Initial Volu Fluid Lost Final Total Circulating Circulating T T T T T T T T T T T T T T T T T T T	/28 ry me ived g Vol.) iit \$ i2 28 5 75 8 13 1 70 1 38 4 00 6.00 4.52	Cost \$ 1,065.5 141.77 447.16 1,218.9 213.80 240.00 108.00 180.80	562 385 229 718 718 6 5 5 10 8 6 5 10 8 6 10 10 10 10 10 10 10 10 10 10 10 10 10	FROM 17 3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK). DRILLING CONTINUED SOLIDS CONTROL EQUIPMENT Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. Cones Hr. Shaker# Screen Size Hr. SoliDS EQUIPMENT EFFICIENCY Overflow (ppg.) Output (gal/n Desider 9.3 11.5 2.3 SoliDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA digh Gravity Solids 01 0.		

CULTUS PETROLEUM N.L.

Independent Drilling Fluid Services Drilling Fluid Report

4 Report# Date 22-May Spud Date 19 May 1996

WELL NAME	and No	Skull	Creel	k #1		CONTRACTOR O. D. & E.
Block No.	PPL - 1	Location :	Otway Basin		e Victoria	RIG No 30
OR'S	REPRESENT	TIVE	Henry FLIN	K / Bruce RI	CHARDSON	REPORT FOR Paul COOPER
Dril	lling Asse	nbly	Casing		T	Mud Volume Bbis Circulation Data
Bitsize 8.5	Type M05	D Jet size 11/11/12	16 inch	@ 90 Met	res Hole	232 Pits 386 Pump size [2*] 6.0" * 8.0 ins.
OP " 45	Туре Е	Length 846 1	9625 inch (@ 3325 Met	res Drill String Ca	
wnt" 4.5	Type 42	Length 1105	~ inch (<u>@ ~ Meti</u>	es In Storage	85 Weight 86 Make/Model 2: G D PZ - 8 % Effic (
x c * 6 5	Length 201	4 Other 15 53	MUD TYPE :	Relaxed Na	ative Clay	% O/G: 25.0 Annular Velocity Bbl/stk 0.067 Stk/min 125 Bbl/M 8
×	Length ~				Properties	DP size 4.5 164 (Ft/M) Lam Bbl/stk 0.067 Stk/min ~ GPM : 34
AMPLE From				F / Line	F/Line	DC size 6.5 285 (Ft/M) Turb Bottoms up : 28 PRESSURE : 1,45
IME Sample				11.30	24.00	DC size ~ (Ft/M) ~ Total Circ. : 68 Type surf/sys. 3
EPTH	Metres		deg. C	32	32	MUD PROPERTY SPECIFICATIONS
EIGHT	ppg.			9.25	9.20	Weight : Min Filtrate : NC Other : Chlorides max @ < 10k Viscosity : N.C. Plastic Viscosity : - Yield Point : 10
unnel VISCO	SITY (sec/qt.) A	PI@ 29	deg. C	45	35	
	OSITY cP@	-	deg. C	7	6	By Authority : <u>~</u> Operator's written <u>~</u> Drilling Contractor
ELD POINT	-	20	acy. o	22	1	yes Operator's Representative ~ Other
		10 sec. / 10 min.		12 34	11 6 24	FLUID SUMMARY AND RECOMMENDATIONS
	t (cm3 / 30 min.)			>35.0	26.2	The second s
	rate (cm3 / 30 r	+	d e g. C	~~	~	& VISCOSITY GAINS [WITH DILUTION]& VOLUME NEEDED FOR HOLE LOSS ALL ADDITIONS WERE PRETREATED WITH ALUM [TO INHIBIT THE CLAY:
	ess (32nd, in A			4 ~	3 ~	AND ASSIST IN THE SEPARATION OF THE WATER PHASE. FROM THE
	nt (% by Vol.)	Calc.	/ Retort	6.9 ~	6.5 ~	SOLIDS - ONCE IN THE SUMP]. CFL (ligno) WAS USED TO LIMIT THE
	t (% by Vol.)	Oil/Water		~ 93.1	~ 93.5	
	(% by Vol.)			0.75	1.5	URED QUANTITIES (AS THE NATIVE CLAYS ARE VOLATILE TO ANY
	LUE CAPACITY	X Ib/bbl	cm3/cm		15.0	INCREASE OF THE pH]
	Strip	· -	17 deg. C	8.5	8.5	DUE TO THE NEED TO MINIMISE THE SUMP VOLUME. THIS SOURCE
KALINITY N					~	OF "HARDNESS" [FROM THE CEMENT OPERATION] WAS ACCEPTED IN
KALINITY F	•)		0.08/0.6	0.1/0.38	THIS PERIOD NOTE THE FORMATION CUTTINGS ARE THE PRIMARY
LORIDE (mg				270	390	SOURCE OF THE INCREASE IN THE HARDNESS
al HARDNES				1440	980	
(mg.	/ <u>-</u>)			160	120	OPERATIONS SUMMARY
/*/ h i * h ·		· · · · · · · · · · ·		· ~ .	-	THE POINT IN WHICH TO REDUCE THE FLUID - LOSS TO BELOW
L (% by Wt.)					···· · ~	10 Occ's. HAS BEEN REVISED DOWN-WARD TO SUITE THE FORMATIONS
PA (Calc. Ib/				~	~	BEING DRILLED THE MAIN AIM IS TO ENSURE THAT THE DESIRED
PA (Excess i				~ ~	-	PROPERTIES ARE ACHIEVED PRIOR TO DRILLING THE BASE OF THE
LULUGY - 60	0/300/6 (read	lings)		36/29/16	23/17/6	BELFAST SECTION (SO THAT THE WAARRE HAS THE CORRECT PROPER-
					<u> </u>	TIES A WIPER TRIP WAS CONDUCTED AT 651 METRES.
	····	MUD ACCOUNTI				SOLIDS CONTROL EQUIPMENT
	Received	Fluid Lost or		Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
אות		Desander		Initial Volume	433	Centrifuge ~ 0 D'sand 2 23 1 S175/S175/S175 23
w/ fresh		Desilter	33			Degasser Drilco 0 D'silter 12 18 2 S175/S175/S175 23
" recycle	ed "428	Downhole	226	Fluid Received	532	
Drill Wate	er O	Dumped	65			SOLIDS EQUIPMENT EFFICIENCY
Other	0	Other	32	Fluid Lost	403	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
						Desander 9.2 10.0 1.5
-				Final Total	562	Desilter 9.2 11.8 1.3
Received	532	Total Lost	403	Circulating Vol.		
	ال				·	
Product	Invento	ory Rec'd. U	sed Balanci			SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
tes			0 871		Cost \$	High Gravity Solids 00 00 Jet Velocity 378 FT / SEC
	• •		U 0/1	. 6 20		Bentonite 12.0 1.3 Impact Force 629 LB
Sel	··	264 2	24 240	· .		Drilled Solids 47.2 5.2 HHP / in2 4.2
Sulphite		7	7	. 8 13.	195.12	Low Gravity Solids 59.2 6.5 HHP 239
tic Soda		21	5 1¢	23 56	164.92	Average S. G. 260 Solids Bit Press. Loss 1174 Pe
Sulphate		· · · ·	5 16	21 38	106.90	Med. "n" #1ck, # 2 ck 0.312 0 436 Csg. Seat Frac Pres 320 pe
			26 10	24 00	624.00	Med. "K" - 4.150 5.734 " Equiv. Mud. Wt. 14.04 PPC
(liges)	·· •		28 7	36 00	1,008.00	Low "n" " 0.192 0.226 Total nozzle area 0.296 sQ INC
(ligno)			0 			Low "K" - 8.779 21.20
(ligno)	· • · · · ·		~			Daily Chemical Cost : Cumulative Cost :
(ligno)	· · · · · ·		0	•	Į	Daily Chemical Cost : Cumulative Cost :
(ligno)	· · · · · · · ·			· .		\$ 2,099 \$ 3,917
	DD PERKINS	· (ADDRESS	South	Australia	

			Indene	endent	Drilling Fluid Services
CULTUS		IDFS			Prv I trd Report# J Date 21-Ma
PETROLEUM N	<i>I.</i> .	÷.		Drilling F	uid Report A 12 N 009 28/ 314 Spud Date : 19 May 1996 Depth 335[(M.)To 48
	Skull	Creek	# 1		
WELL NAME and No. : Block No. : PPL - 1	Location :	Otway Basin		Victoria	CONTRACTOR U. D. & E.
TOR'S REPRESENTAT			/ Bruce RICI		REPORT FOR Paul COOPER
Drilling Assemi		Casing			Mud Volume Bbis Circulation Data
Bit size 8.5 Type: M05D				1	81 Pits 369 Pump size [2*] 60" * 80 ins.
DP " 45 Type. E	Length 169 1	1 -		s Drill String C.	
HWrt" 4.5 Type: 42.# DC " 6.5 Length 201.4	Length 1105 Other 1553	· · · · · · · · · · · · · · · · · · ·	Relaxed Nat	s In Storage	165 Weight 8.4 Make/Model 2: G D PZ - 8 % Effic 0 % O/G: 10 0 Annular Velocity Bbl/stk 0.067 Stk/min 75 Bbl/M 9.9
DC 05 Length 2014	other 15.55	MOD TIPE		Properties	DP size 4.5 197 (FVM) Turb Bbl/stk 0.067 Stk/min 75 GPM : 419
SAMPLE From	4		F / Line	F / Line	DC size 6.5 342 (FVM) Turb Bottoms up : 8 PRESSURE : 2,000
TIME Sample Taken			20.00	24.00	DC size ~ (FUM) - Total Circ. : 43 Type surf/sys. 3
FlowIne TEMPERATURE		deg. C	22 367	25 481	MUD PROPERTY SPECIFICATIONS Weight : Min Filtrate : NC Other : Chlorides max @ < 10k
WEIGHT ppg.			9.00	9.20	Viscosity : N C Plastic Viscosity : ~ Yield Point : 10
Funnel VISCOSITY (sec/qt.) AF	1@ 21	deg. C	37	38	By Authority : <u>yes</u> Operator's written <u>~</u> Drilling Contractor
PLASTIC VISCOSITY cP @	24	deg. C	7	8	yes Operator's Representative ~ Other
IELD POINT (Ib/100ft2)			8	9	FLUID SUMMARY AND RECOMMENDATIONS
GEL STRENGTH (Ib/100 t2) 1			2 17	2 2	THE INITIAL WATER PHASE ON DRILLING OUT THE MARL SECTION WAS TREATED WITH SOD. BICARB , THE SECONDARY WATER PHASE
FILTRATE API (cm3 / 30 min.) (API } Filtrate (cm3 / 30 m		deg. C	28.6	26.4	WAS TREATED WITH SOD. BICARD, THE SECONDART WATER PHASE
CAKEckness (32nd. in Al	·	-e- =	4 -	4 -	WAS DISPLACED, EXTRA VOLUME WAS MADE UP WITH SUMP WATER
SOLIDS Content (% by Vol.)	Calc.	/ Retort	5.0 ~	6.5 ~	[SEPARATED FROM THE CEMENT WATER - BY A PARTITION].
IQUID Content (% by Vol.)	Oil/Water		~ 95.0	~ 93	THE MARL WAS DRILLED WITH THE TREATED FLUID UNTIL SAND RETURNS WERE OBSERVED AT THE SHAKERS. AT THIS POINT.
SAND Content (% by Vol.)	X ib/bbi	cm3/cm3	1.25 22.0	2.25	THE MUD WITH APPROPRIATE DILUTION, THAT WAS RETAINED FROM THE
oH Strip	A 10/00/	19 deg. C	9.0	9.2	12.25" SECTION, DISPLACED THE ABOVE MENTIONED FLUID.
LKALINITY Mud (Pm)			~~	~	THE pH WAS RAISED AND THIS WAS SUFFICIENT TO ACTIVATE THE CLAY
ALKALINITY Filtrate (Pf/Mf)			0.15/0.32	0.2/0.35	BEING DRILLED. TO GIVE THE NECESSARY PROPERTIES.
CHLORIDE (mg/L)			380	380	ALUM TREATED WATER WAS USED TO INHIBIT THE ACTIVE SYSTEM AND
fotal HARDNESS (mg/L)			360	240	CAUSTIC WATER WAS USED TO BUILD VOLUME AND PROPERTIES.
SULTE (mg/L)				80	
			~ ~	~	THE 8 5" SECTION WAS STARTED WITH THE CEMENT BEING DRILL - ED OUT WITH WATER, WHICH WAS DISPOSED OF, ONCE THE SHOE
(CL (% by Wt.) PHPA (Calc. lb/bbl)		· · · · · · · · · · · · · · · · · · · 		~	WAS PENETRATED. TREATED WATER WAS USED FOR THE MARL SEC -
PHPA (Excess lb/bbl)			~~	~	TION. FROM 367 METRES, WHEN SAND RETURNS WERE OBSERVED,
RHEOLOGY - 600 / 300 / 6 (read	ings)		22/15/2	25/17/2	THE FLUID WAS BROUGHT INTO LINE WITH THE DESIRED PROGRAMME
		<u></u>			SPECIFICATIONS
	MUD ACCOUNT				SOLIDS CONTROL EQUIPMENT
Fluid Built & Received	Fluid Lost of Desander	r Disposed 10	Summary	99	Type Man. Hr. Cones Hr. Shaker# Screen Size Hr. Centrifuge ~ 0 D'sand 2 5 1 S175/S175/S175 8
w/ fresh water 90	Desilter	77		33	Degasser Drillo 0 D'siller 12 3 2 5175/S175/S175 8
" recycled " 149	Downhole	67	Fluid Received	576	
Drill Water 0	Dumped	137			SOLIDS EQUIPMENT EFFICIENCY
Other 337	Other	21	Fluid Lost	242	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
					Desander 8.8 10.1 1.4
			Final Total	433	Desilter 8.8 9.8 1.7
otal Received 576	Total Lost	242	(Circulating Vol.)	-
	-				SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
Product Invent	ory Rec'd.	Used Balance	ce Unit \$	Cost \$	High Gravity Solids 00 00 Jet Velocity 454 FT / SE
arytes	871	0 871	6 20		Bentonite 23.9 2.6 Impact Force 906 LE
· · · · · · · · · · · · · · · · · · ·			·····		Drilled Solids 35.3 3.9 HHP / in2 7.3 Low Gravity Solids 59.2 6.5 HHP 413
- Gel	278	14 264 A 7	8.13	113.82 94.24	
od. Sulphite	18	0 18	23.56	94.24	
те 4PP	4	0 18	5.80		Med. "n" #1ck #2 ck 0.552 0.556 Csg. Seat Frac Pres 320 F Med. "K" 0.479 2.710 Equiv. Mud Wt. 14.04 PP
	25	4 21	67.95 21.3 8	85.52	Low "n" - 0.438 0.465 Total nozzle area 0.296 so IN
austic Soda	<u> </u>	•	16.38		Low "K" - 0.980 4.79
austic Soda	26	0 26			
rbonate	26 42	· _ · · · · · · · · · · ·		144.00	Daily Chemical Cost : Cumulative Cost :
•	26 42	· • · · · · · · ·	24.00	144.00	Daily Chemical Cost : Cumulative Cost : \$ 438 \$ 1,818
rbonate	42	· • · · · · · · ·	24.00	144.00 Australia	

CULTUS PETROLEUM N.L.

Independent Drilling Fluid Services Drilling Fluid Report

2 Report# Date 19-May

Spud Date : 19 May 1996

WELL NAME	Skull	Cree	1, 41		Depth 306 (M.)To
WELL NAME and No Block No PPL - 1					CONTRACTOR O. D. & E.
	Location	Otway Basin		State Victoria	RIG No 30
Drilling Asse				RICHARDSON	REPORT FOR Paul COOPER
Bit size 12.3 Type: 1G	BJ Jet size 20/20/15	Casin			Mud Volume Bbls. Circulation Data
DP 45 Type: E			-	Metres Hole .	144 Pits 18 Pump size [2*] 6.0" * 8.0 ins
HWt" 45 Type: 42		inch	-	Metres Drill String	makermodel i G D PZ 8 % Effic
	2 Other 13 34	MUD TYPE :		Metres In Storage	U Weight ~Make/Model 2: G D PZ - 8 % Effic
DC " 8 Length 26 9	the second se	MUD TTPE:		Aud Aud Properties	% O/G: 10 Annular Velocity Bbl/stk 0 067 Stk/min 130 Bbl/M 1
SAMPLE From			Pit	Pit Pit	DP size 4.5 137 (FUM) ###### Bbl/stk 0.067 Stk/min 130 GPM 7
TIME Sample Taken			10.00	17.00	DC size 6 5 165 (FVM) ###### Bottoms up : 8 PRESSURE : 1,0
Flowline TEMPERATURE		deg. C		N.C.	(the surface of the
DEPTH Metres			335	335	MUD PROPERTY SPECIFICATIONS Weight :: Min Filtrate : NC Other : Chlorides may @ < 15
WEIGHT ppg.	· .		9.30	8.33	Viscosity NC Plactic Viscosity
Funnel VISCOSITY (sec/qt.)	API@ 26 c	deg. C	35	27	By Authority : VGC Operated
PLASTIC VISCOSITY CP @	22 c	deg. C	8		
YIELD POINT (Ib/100ft2)			6		
GEL STRENGTH (Ib/100ft2)	10 sec. / 10 min.		1	3	FLUID SUMMARY AND RECOMMENDATIONS
ILTRATE API (cm3 / 30 min.))@		21.4	N.C.	WHILE THE HOLE WAS BEING DRILLED WITH WATER. SAPP WAS USED
API HTHP Filtrate (cm3/30 r		leg. C	~~~	-	IN LUE OF ALUM, TO ENSURE THAT NO FURTHER PROBLEMS WERE
CAKE kness (32nd. in A CLIDS Content (% by Vol.)			4	~	ENCOUNTERED AS PREVIOUSLY MENTIONED, PRIOR TO PULLING
IQUID Content (% by Vol.)	Calc. Oil/Water	/ Retort	1	~ 0.0	 OUT, MUD DISPLACED THE WATER AT IT D. AND WAS CIRCULATED.
AND Content (% by Vol.)	J		1	+ +	0.0
ETHYLENE BLUE CAPACITY	Х ІЬ/БЫ	cm3/a1	Tr	N.C.	ON COMPLETION OF THE CEMENT OPERATION. IT WAS FOUND FURTHER
H Strip		cm3/cm3 .C. deg. C	16.0 8.8	N.C.	WATER HAD MIXED IN WITH THE MUD; AT THIS TIME NO TREATMENT WI
LKALINITY Mud (Pm)	·•.	. <u>-</u>	0.0	6.2	BE DONE [TO THE MUD] UNTIL THE NEXT SECTION HAS BEEN DRILLED.
LKALINITY Filtrate (Pf/Mf))				
	· .		0.1/0.22 260	0.0/0.08	MORE WORK WAS DONE TO THE SOLIDS CONTROL EQUIPMENT DURING
otal HARDNESS (mg/L)			400	180 440	THIS PERIOD
E (mg/L)				440	
— _)				· -+	OPERATIONS SUMMARY
CL (% by Wt.)	•		~		CASING WAS RUN TO BOTTOM WITHOUT ANY PROBLEMS: THE
IPA (Calc. Ib/bbl)	•••••••••••••••••••••••••••••••••••••••		#####	~ #####	SYSTEM WAS CIRCULATED AND THEN THE CEMENT OPERATION FOL -
IPA (Excess Ib/bbi)			~ ~		LOWED. THE PITS WERE THEN CLEANED. WHILE LITTLE OF THE MUD
EOLOGY - 600 / 300 / 6 (read	lings)		22/14/4	-	WAS LOST A PIT WAS LINED UP TO DRILL OUT THE CEMENT AND
	9-1	· · ·	22/14/1		SHOE, WITH A SECOND PIT OF TREATED WATER, TO COMPLETE DRILL -
	MUD ACCOUNTING	GIBPISY			ING THE MARL SECTION [AND A THIRD PIT OF WATER ON STAND-BY].
luid Built & Received	Fluid Lost or D		_		SOLIDS CONTROL EQUIPMENT
	Desander	0	Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
rech water 0	· ···· ···· ···· ···· ····		nitial Volume	458	Centrifuge - 0 D'sand 2 3.5 1 S175/S175/S175 4.5
	Desilter	- 0			Degasser Drilco 0 D'silter 12 0 2 S175/S175/S175 4.5
· · · · · · · · · · · · · · · · · · ·	Downhole	· · · · · · · · · · · · · · · · · · ·	luid Receive	d <u>110</u>	
Drill Wotor 140 -	the second second	92			
	Dumped	· · · ·			SOLIDS EQUIPMENT EFFICIENCY
<u>.</u>	Dumped Other	207	luid Lost	469	
<u>.</u>		· · · ·	luid Lost	469	
<u>.</u>		337 F	luid Lost inal Total	469 99	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2
Other 0 c		337 F	· · · · ·	99	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2
Other 0 c	Other	337 F	inal Total	99	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 0
Other 0 c	Other Fotal Lost	337 F 469 (0	inal Total Sirculating Vo	99 51.)	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
Other 0 c Il Received 110 T Product Inventor	Other Fotal Lost	337 F 469 (C Balance	inal Total Circulating Vo Unit 1	99 ol.) 6 Cost \$	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC
Other 0 c Il Received 110 T Product Inventor	Other Fotal Lost	337 F 469 (C Balance	inal Total Sirculating Vo	99 ol.) 6 Cost \$	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC Bentonite #### #### Impact Force 928 LBS
Other 0 c	Other Fotal Lost	337 F 469 (C Balance	inal Total Circulating V Unit 1 6 2	99 ol.) Cost \$	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC Bentonite #### #### Impact Force 928 LBS Drilled Solids #### #### HHP / in2 2.3
Other 0 c	Other Fotal Lost 17 Rec'd. Use 871 0	337 F 469 (c ad Balance 871	inal Total Circulating Vo	99 ol.) Cost \$ 0	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEG Bentonite #### #### Impact Force 928 LBS Drilled Solids .0.1 0.0 HHP 276
Other 0 c Il Received 110 T Product Invento /tes Gel pol	Other Fotal Lost 177 Rec'd. Use 1871 0 278 0	337 F 469 (0 871 278 6	Unit 1 Unit 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 51.) 5 Cost \$ 00	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEG Bentonite #### #### Impact Force 928 LBS Drilled Solids #### #### HHP / in2 2.3 Low Gravity Solids -0.1 0.0 HHP 276 Average S. G. 2.60 Solids Bit Press. Loss 652 psec
Other 0 c al Received 110 T Product Inventor Ales Gel	Other Fotal Lost FY Rec'd. 871 0 278 0 6 0 18 0	337 F 469 (0 871 278 6 18	Unit 9 0 2000 0 000 00000000	99 51.) Cost \$ 0	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC Bentonite #### ##### Impact Force 928 LBS Drilled Solids #### ##### HHP / in2 2.3 Low Gravity Solids -0.1 0.0 HHP 276 Average S. G. 2.60 Solids Bit Press. Loss 652 PS Med. "n" #1ck # 2 ck 0.652 #### Csg. Seat Frac Pres PS
Other 0 c	Other Fotal Lost FY Rec'd. 871 0 278 0 6 0 18 0 7 3	337 F 469 (0 871 278 6 18 4	inal Total Dirculating Vo 6 2 6 2 75 7 5 80 67 95	99 51.) 5 Cost \$ 0 3 5 5 203.85	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 Bentonite #### ##### Impact Force 928 Drilled Solids #### HMP / in2 2.3 Low Gravity Solids -0.1 0.0 HHP 276 Average S. G. 2.60 Solids Bit Press. Loss 652 Pg Med. "n" #1ck # 2 ck 0.652 #### rs Pg Med. "K" - 0.241 #### Tequiv. Mud Wt. Ppc
Other 0 c	Other Fotal Lost Fry Rec'd. 871 0 278 0 6 0 18 0 7 3 25 0	337 F 469 (0 871 278 6 18 4 25	Unit 9 Unit 9 6 2 8 11 75 79 5 80 67 96 21 38	99 51.) 5 Cost \$ 00 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC Bentonite #### ##### Impact Force 928 LBS Drilled Solids #### ##### HHP / in2 2.3 Low Gravity Solids 0.1 0.0 HHP 276 Average S. G. 2.60 Solids Bit Press. Loss 652 ps Med. "n" #1ck. # 2 ck 0.652 #### Csg. Seat Frac Pres ps Med. "K" 0.241 #### Total nozzle area 0.786 SOINCE
Other 0 al Received 110 Product Inventor /tes Gel pol e p stac Soda rbonate	Pry Rec'd. Use 871 0 278 0 6 0 18 0 7 3 25 0 30 4	337 F 469 (0 871 278 6 18 4	Unit 9 0 2010 0 br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 51.) 5 Cost \$ 00 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC Bentonite #### ##### Impact Force 928 LBS Drilled Solids #### #### HHP / in2 2.3 Low Gravity Solids 0.1 0.0 HHP 276 Average S. G. 2.60 Solids Bit Press. Loss 652 ps Med. "n" #1ck. # 2 ck 0.652 #### Csg. Seat Frac Pres ps Low "n" 0.241 #### Total nozzle area 0.786 SO INCE Low "K" - 0.393 #### Total nozzle area 0.786 SO INCE
Other 0 c	Other Fotal Lost Fry Rec'd. 871 0 278 0 6 0 18 0 7 3 25 0	337 F 469 (0 871 278 6 18 4 25	Unit 9 Unit 9 6 2 8 11 75 79 5 80 67 96 21 38	99 51.) 5 Cost \$ 00 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC Bentonite #### ##### Impact Force 928 LBS Drilled Solids #### ##### HHP / in2 2.3 Low Gravity Solids 0.1 0.0 HHP 276 Average S. G. 2.60 Solids Bit Press. Loss 652 ps Med. "n" #1ck. # 2 ck 0.652 #### Csg. Seat Frac Pres ps Med. "K" 0.241 #### Total nozzle area 0.786 SOINCE
Other 0 c	Pry Rec'd. Use 871 0 278 0 6 0 18 0 7 3 25 0 30 4	337 F 469 (0 871 278 6 18 4 25	Unit 9 0 2010 0 br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 51.) 5 Cost \$ 00 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 9.3 10.5 1.2 Desilter ~ 0 SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA High Gravity Solids Jet Velocity 296 FT / SEC Bentonite #### #### Impact Force 928 Les Drilled Solids #### #### HHP / in2 2.3 Low Gravity Solids -0.1 0.0 HHP 276 Average S. G. 2.60 Solids Bit Press. Loss 652 ps Med. "n" #1ck # 2 ck 0.652 #### Tequiv. Mud Wt. ppG Low "n" - 0.241 #### Total nozzle area 0.786 sol Nor- Low "K" - 0.393 #### Total nozzle area 0.786 sol Nor-

by ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

CULTUS PETROLEUM N.L.

Independent Drilling Fluid Services Drilling Fluid Report

1 Date 19-May Report# Spud Date 19 May 1996

							Depth 9 (M.)To 33
WELL NAME and	No	Skull	Cree	k # 1			CONTRACTOR O. D. & E.
Block No PPI	L · 1	Location	Otway Basin		State	: Victoria	RIG No 30
ERATOR'S REP	PRESENTA	TIVE	Henry FLIN	K / Bruce	RICH	ARDSON	REPORT FOR Paul COOPER
Drilling	Assen		Casin	1			Mud Volume Bbls Circulation Data
Bit size 12 3 Typ	_		16 inch	@ 90	Metre	s Hole	146 Pits 302 · Pump size [2*] 60" * 80 ins.
DP " 45 Тур		Length 91 37	~ inch	-		s Drill String (
нwt" 45 Тур			~ inch			In Storage	0 Weight ~ Make/Model 2: G D PZ - 8 % Effic (
	ngth 1032		MUD TYPE	Spud	Mud		% O/G 10 0 Annular Velocity Bbl/stk 0 067 Stk/min 130 Bbl/M 17
SAMPLE From	ngth 26.94	•		F / Line		Properties	DP size 4 5 137 (FVM) Turb Bbl/stk 0.067 Stk/min 130 GPM: 72
TIME Sample Taker	0			17.30		Pit 5.00	DC size 6.5 165 (FVM) Turb Bottoms up : 8 PRESSURE : 1,000 DC size 8 ~ (FVM) Turb Total Circ. : 26 Type surf/sys. 3
Flowline TEMPERA			deg. C			NC	DC size 8 - (Ft/M) Turb Total Circ. : 26 Type surf/sys. 3 MUD PROPERTY SPECIFICATIONS
DEPTH Met			9.	226		335	Weight : Min Filtrate : NC Other : Chlondes max @ < 15k
WEIGHT ppg	j .			9.25		9.25	Viscosity : N.C. Plastic Viscosity : ~ Yield Point : ~
Funnel VISCOSITY	(sec/qt.) A	PI@ 25	deg. C	36		35	By Authority : yes Operator's written ~ Drilling Contractor
PLASTIC VISCOSIT	ΎcΡ@e	24	deg. C	9		8	yes Operator's Representative - Other
YIELD POINT (IL/10	00ft2)			9		7	FLUID SUMMARY AND RECOMMENDATIONS
GEL STRENGTH (I	b/100ft2) 1	0 sec. / 10 min.		1	3	1 1	4 IG - Gel was prenydrated with Caustic Soda to peptise it
FILTRATE API (cm	3 / 30 min.)	0		8.5		17.9	This was used to drill out the Mouse and Rat holes, prior to being used to drill
API HTHP Filtrate	(cm3 / 30 n	nin.) @ ~	deg. C		~	~.	out the conductor pipe and top hole, to the Mart. From this point water was
	32nd. in A			1	~ .	1 - 1	 used to pass the Marl section with slight additives being incorporated after that.
SOLIDS Content (%		Calc.	/ Retort	6.9	~		 Lime was to adjust the pH and Drillpol was used for lubrication.
LIQUID Content (%)		Oil/Water		~	93.1		3.1
SAND Content (% t			-	Tr		nT C C C	THE MAKE - UP WATER CONSISTED OF
METHYLENE BLUE pH		X lb/bbl	cm3/cm	1		19.0	6 2 pH , 180 ppm. Chlorides ,
ALKALINITY Mud	Strip (Pm)		19 deg. C	9.2		8.8	440 ppm Total Hardness 00/008 pf / Mf This was retrieved from both
						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	a dam on site and suplemented with pipe-line water, trucked in.
ALKALINITY Filtration	e (Pf/Mf)			0.18/0.3	2	0.14/0.27	
Total HARDNESS (n	ng/L)		+	240		220 340	With only 3 joints to drill, the viscosity was slowly being raised with Drilpol (37
PHITE (mg/L)	ng/L)			240		540	sec/qut being the last check) but a mud ring delayed the operation.
				1			OPERATIONS SUMMARY
,mg/L) {CL_(% by Wt.)						~	From there [299m] water (treated with SAPP) was used to drill to T.D.
PHPA (Calc. Ib/bbl)				######		~ #####	[335m] and then the system was reverted to mud, once again.
PHPA (Excess lb/bb					Í	****	A wiper trip found no fill (back on bottom) and the bit was pulled out to run Csg
					-	~	
RHEOLOGY - 600 / 30	ооль (reac	ings)		27/18/1		23/15/1	
·				.L			Spud Time was at 02 00 hours, drilling ahead with a 12.25" bit.
		MUD ACCOUNT		T			SOLIDS CONTROL EQUIPMENT
Fluid Built & Rece		Fluid Lost or		Summa			Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
remix		Desander	39	Initial Volu	ime		Centrifuge - 0 D'sand 2 19 1 S110/S110/S84 22
i fresh wate		Desilter				-	Degasser Drilco 0 D'silter 12 3 2 S110/S84/S84 22
" recycled "		Downhole	102	Fluid Rece	eived	64	9
Drill Water		Dumped	0				SOLIDS EQUIPMENT EFFICIENCY
Other	0	Other	47	Fluid Lost		19	1 Overflow (ppg.) Underflow (ppg.) Output (gal/m)
						••••	Desander 9.2 10.1 1.4
••• · · · · ·				Final Tota		45	8 Desilter 9.1 11.5 0.8
tal Received	649	Total Lost	191	(Circulatin	g Vol.)		
							SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA
Product	Invent	ory Rec'd. I	Used Balan	ce U	nit \$	Cost \$	High Gravity Solids 00 00 Jet Velocity 296 FT/SE
arytes		871	0 871		6.20		Bentonite 16.8 1.8 Impact Force 1.030 LB
	•			•			Drilled Solids 459 50 HHP / in2 2.6
- Gel	•	316	70 246	•	8.13	569.10	Low Gravity Solids 62.7 69 HHP 307
rill pol	• •••	8	2 6		75 75	151.50	Average S. G. 2.60 Solids Bit Press, Loss 724 P
me		23	5 18		5 80	29.00	Med. "n" #1ck # 2 ck 0 585 0 616 Csg. Seat Frac Pres
		12	5 7		•	339.75	
766		26	1 25	•	67 95 _.		
			• 2J		21 38	21.38	
	•	20	0				
	• •	20	0	•			Low "K" - 0 359 1 96
	• · ·		0			·	Daily Chemical Cost : Cumulative Cost :
APP austic Soda	• •		0	<u>.</u>			

APPENDIX 3 - DAILY DRILLING REPORTS

Cultus		DALL	DRILLING REPORT	-	SKUII	1.FOOV #
REPORT# : 18	8 Report Date:	5/06/96	Issue Date : 6/06	196	Page Nu	Creek #
Basic Data	•					
DRILL CO. : RIG KB TO GRND LVL GRND LVL AMSL	4 98 DAYS	TH : 1; GRESS : S FROM SPUD : S +/- CURVE :	700.0HOLE SIZE0.0LAST CSG SIZE17 92SHOE DEPTH0.0LEAK-OFF	8.50 9-5/8" 332.50 13.50	TOT PERS ON DAILY COST : CUM COST : AFE COST :	SITE \$130,106.0 \$1,170,626.0 \$940,000.0
Gas and General	Data				1	
FORMATION : MAX GAS : B/G GAS % :		HER : JS @ 0600 :	Cold, windy, occasional show Energise "B" section, test to 2		einstalling BOP's.	
Bit/Hydraulics	ROTATE HRS :		Mud Properties			
BIT # : SIZE : MFR : TYPE : SERIAL # :	AVE WOB : AVE RPM : FLOW : PUMP PRESS.	:		Pit Poly 8:00 9.50 47	%LGS: %DS: SAND: MBT: PH:	9 8 Tr 15.0
DEPTH IN m :	NOZZLES : HHSI :		PV : YP :	12 11	CI: K+:	9.4 3,100
DEPTH OUT m : METERAGE : TOT HRS :	ANN VEL DP : ANN VEL DC : BIT VEL mps :		GEL 10 sec : GEL 10 min : API FL :	11 12 6,4	HARD/Ca: 6RPM:	560 3
BIT # :	IADC #	••••••••••••••••••••••••••••••••••••••	FILTER CAKE : SOLIDS :	1 8.6	DAILY COST : CUM. COST :	\$4,018.00
WEAR I: 01:		02: R:		0.0	COM: COST .	\$37,431.00
HRS ON JARS :	WT BLW JAR : BHA WT :		STRING WT : PICK UP WT : SLK 0FF WT :		TRQE MAX : TRQE ON : TRQE OFF :	
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : vey MD points 1,199.0 1,360.0 1,695.0	BHA WT : TVD INCL AZ. 4.0 3.0 7.5 P	umps # MA 1 GD- 2 GD-	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00		TRQE ON : TRQE OFF : Slow F	Pump Rates PM SLWPRE
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : vey MD points 1,199.0 1,360.0 1,695.0 Bulk Stocks	BHA WT : TVD INCL AZ. 4.0 3.0 7.5 Drill Water Pot. Wate Used Stock Used Stoc	umps # MA 1 GD- 2 GD- er Fuel ck Used Sto	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 PZ8 6.00 115 Barite Ge ck Used Stock Used	/FLOW AN 320 I Stock U	TRQE ON : TRQE OFF : Slow F VEPRESS SLWSI 300 Cement Jsed Stock Use	Diesel
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : Vey MD points 5niy) 1,199.0 1,360.0 1,695.0 Bulk Stocks	BHA WT : TVD INCL AZ. 4.0 3.0 7.5 Drill Water Pot. Wate	umps # MA 1 GD- 2 GD- er Fuel	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 PZ8 6.00 115 Barite Ge ck Used Stock Used 0 5 360 0	/FLOW A\ 320	TRQE ON : TRQE OFF : Slow F VEPRESS SLWSI 300 Cement	Diesel
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : vey MD points only) 1,199.0 1,360.0 1,695.0 Bulk Stocks	BHA WT : TVD INCL AZ. 4.0 3.0 7.5 Drill Water Pot. Wate Used Stock Used Stoc 0	umps # MA 1 GD 2 GD er Fuel ck Used Sto 0	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 PZ8 6.00 115 Barite Ge ck Used Stock Used 0 5 360 0 Drills and Inspecti	I Stock U 185 ONS	TRQE ON : TRQE OFF : Slow F VEPRESS SLWSI 300 Cement Jsed Stock Use 0 750 2,0	Diesel ed Stock 00 8,000
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : vey MD points 1,199.0 1,360.0 1,695.0 Bulk Stocks	BHA WT : TVD INCL AZ. 4.0 3.0 7.5 Drill Water Pot. Wate Used Stock Used Stoc 0 NAME COMF Halibur IDFS Weathe Halibur DFS Weathe DFS Weathe DFS	umps # MA 1 GD 2 GD er Fuel ck Used Sto 0 0 PANY NAME ton Cementin erford	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 PZ8 6.00 115 Barite Ge ck Used Stock Used 0 5 360 0 Drills and Inspection # DRILL TYPE TIN FIRE INCIDENT	FLOW AN 320 Stock U 185 ONS MING DA' BOG RIG S05/96 NE	TRQE ON : TRQE OFF : Slow F VEPRESS SLWSI 300 Cement Jsed Stock Use	Diesel ed Stock 00 8,000 TIMING 290 21/5/96 20/5/96
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : Vey MD points 1,199.0 1,360.0 1,695.0 Bulk Stocks L ersonnel JOB TITLE DRILLING ENGINEER DRILLING SUPERVISC WELLSITE GEOLOGIS	TVD INCL AZ. 4.0 3.0 7.5 7.5 7.5 Image: Comparison of the second sec	umps # MA 1 GD 2 GD er Fuel ck Used Sto 0 0 PANY NAME ton Cementin erford	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 PZ8 6.00 115 Barite Ge ck Used Stock Used 0 5 360 0 Drills and Inspection FIRE INCIDENT PIT DRILL 27/0 TRIP DRILL 27/0	Stock U 185 0005 05/96 05/96 05/96	TRQE ON : TRQE OFF : Slow T VEPRESS SLWSI 300 Cement Jsed Stock Use 0 750 2,0 INSPECTIONS YS SINCE LTA P TEST SINSPECTION XT TEST DUE DAT	PM SLWPRE Diesel
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : Vey MD points 1,199.0 1,360.0 1,695.0 Bulk Stocks Construction Bulk Stocks Bulk Stocks Construction Bulk Stocks Construction Bulk Stocks Construction Bulk Stocks Construction Bulk Stocks Construction Bulk Stocks Construction Bulk Stocks Bulk	TVD INCL AZ. 4.0 3.0 7.5 Drill Water Pot. Water Used Stock Used Stock Used Stock 0 0 0	Umps # MA 1 GD 2 GD er Fuel ck Used Sto 0 PANY NAME ton Cementin erford	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 PZ8 6.00 115 Barite Ge ck Used Stock Used 0 5 360 0 Drills and Inspection FIRE INCIDENT PIT DRILL 27/0 TRIP DRILL 27/0 TRIP DRILL 4/06	Stock U 185 0005 05/96 05/96 05/96	TRQE ON : TRQE OFF : Slow T VEPRESS SLWSI 300 Cement Jsed Stock Use 0 750 2,0 INSPECTIONS YS SINCE LTA P TEST SINSPECTION XT TEST DUE DAT	Diesel ad Stock 00 8,000 TIMING 290 21/5/96 20/5/96 20/5/96 4/6/96
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : Vey points 1,199.0 1,695.0 Bulk Stocks U BRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIS ROM TO HRS 00 1:00 1:00 1.0 :30 3:30 1.0 :30 4:30 1.0	BHA WT : TVD INCL AZ. 4.0 3.0 7.5 Drill Water Pot. Wate Used Stock Used Stock Used Stock Used Stock 0 0 0 0 Kevin Kelly Halibur IDFS Weathe 0DEPTH 0 0 0 1,700.0 Run 7" casing 1,700.0 Circ and work (0 1,700.0 Circ 120 % cas 1,700.0 Circ 120 % cas 1,700.0 Hold safety me 250 sx, 15.8pp, throughout job,	umps # MA 1 GD- 2 GD- er Fuel ck Used Sto 0 0 PANY NAME ton Cementin erford casing at 162 of casing. Rig sing contents eeting. Perforn g Tail w/1%	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 PZ8 6.00 115 Barite Ge ck Used Stock Used 0 5 360 0 Drills and Inspecting FIRE INCIDENT PIT DRILL 27/C TRIP DRILL 27/C TRIP DRILL 4/06 DESCRIPTION-ACTI 22. No progress up cement head and linu Pump 40 bbl of SAPP m cement job; 482 sx, 12 dalad 322 display/201 bl	FLOW AN 320 Stock U 185 Ons MING DA' BOI S/96 NE2 5/96 NE2 5/96 NE2 5/96 NE2 S/96 SAF	TRQE ON : TRQE OFF : TRQE OFF : Slow F VEPRESS SLWSI 300 Cement Jsed Stock Use 0 750 2,0 INSPECTIONS YS SINCE LTA P TEST SINCE LTA SINCE LTA	PM SLWPRE Diesel ed Stock 00 8,000 TIMING 290 21/5/96 20/5/96 4/6/96 5/6/96 /OC PHB,
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : Vey points 1,199.0 1,360.0 1,695.0 Bulk Stocks U BRILLING ENGINEER DRILLING SUPERVISC WELLSITE GEOLOGIS ROM TO HRS :00 1:00 :30 3:30 :30 4:30 :30 6:30	TVD INCL AZ. 4.0 3.0 7.5 3.0 7.5 Image: Addition of the state	umps # MA 1 GD- 2 GD- er Fuel ck Used Sto 0 PANY NAME ton Cementin erford	PICK UP WT : SLK OFF WT : PUMp Data - Tast 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 Barite Ge ck Used Stock Used 0 0 5 360 0 Drills and Inspection PIC DRILL TYPE TIN FIRE 1 1 1 21 DRILL TYPE TIN FIRE 2 1 1 1 21 DRILL TYPE TIN FIRE 1 1 21 DRILL TYPE TIN FIRE 1 1 21 DESCRIPTION-ACTI 22 22. No progress up cement head and line Pump 40 bbl of SAPP m cement job; 482 sx, 12 talad 322, displ w/201 bl o surface. Bump plug,tes	FLOW AN 320 320 Stock U 185 0ns MING DA BOI RIG RIG S/96 SAF VITY es. 2.8ppg Le bl inhibite st casing	TRQE ON : TRQE OFF : Slow F VEPRESS SLWSI 300 Cement Jsed Stock Use 0 750 2,0 INSPECTIONS YS SINCE LTA P TEST SINSPECTION XT TEST DUE DAT ETY MEETING ETY MEETING EAG w/2.5% BW ed mud. Full ret to 1600psi. Flo	Diesel d Stock 00 8,000 TIMING 290 21/5/96 20/5/96 4/6/96 5/6/96 VOC PHB, urns ats held
BHA LENGTH : HRS ON JARS : BHA DESCRIPTION : Vey MD points 1,199.0 1,360.0 1,695.0 Bulk Stocks I Image: Stock	BHA WT : TVD INCL AZ. 4.0 3.0 7.5 Drill Water Pot. Water Used Stock Used Stock 0 0 0 0 Kevin Kelly Halibur IDFS Weather 0 0 0 0 0 Depth Halibur IDFS Weather ODE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	umps # MA 1 GD- 2 GD- er Fuel ck Used value Sto 0	PICK UP WT : SLK 0FF WT : Pump Data - last 2 KE/TYPE LINR AVSPM AV PZ8 6.00 115 Barite Ge ck Used Stock Used 0 0 5 360 0 Drills and Inspection I DRILL TYPE TIN PIT DRILL 27/C FIRE INCIDENT PIT DRILL 27/C TRIP DRILL 27/C TRIP DRILL 27/C C 2. No progress up cement head and line PUMP 40 bbl of SAPP m cement job; 482 sx, 12 Halad 322, displ w/201 bl D surface. Bump plug,tes Casing in rotary table; 100 install acaing outb 400	FLOW AN 320 320 Stock U 185 Ons MING DA BOI RIG NED 5/96 SAF VITY es. 2.8ppg Le bl inhibite st casing 0000 lbs. r BOP's.	TRQE ON : TRQE OFF : TRQE OFF : Slow F VEPRESS SLWSI 300 Cement J Jsed Stock Use 0 750 2,0 INSPECTIONS YS SINCE LTA P TEST SINCE LTA	PM SLWPRE Diesel ed Stock 00 8,000 TIMING 290 21/5/96 20/5/96 4/6/96 5/6/96 VOC PHB, urns ats held BOP's.

Cultus		DAI	LY DRIL	LING REPO	ORT	Sku	III Creek #1
REPORT#	17 Repo	ort Date: 4/06/	'96 Is	sue Date :	5/06/96	Page	Number
Basic Data DRILL CO RIG : 8 TO GRND GRND LVL AMS	LVL 4	DE DEPTH 30 PROGRESS 98 DAYS FROM SI 2.0 DAYS +/- CURV			SIZE 9-5/8	B" DAILY COST	\$24,924.00
Gas and Ger FORMATION : MAX GAS : B/G GAS % :	eral Data Eumeral	IIa WEATHER STATUS @ 060		windy, occasiona 7" casing. Unable		set shoe at 1614.	Bumped plug at
Bit/Hydraulic BIT # : SIZE : MFR : TYPE : SERIAL # : DEPTH IN m : DEPTH OUT m : METERAGE : TOT HRS : BIT # : 7 RR WEAR I:	7 RR A 8.50 A SM F MFDSSH F LFG918 N A A B 01: D: L:	HHSI : NNN VEL DP : NN VEL DC : IT VEL mps : ADC # B: G: O2:	12 12 R:	Mud Propertie SAMPLE FROM TYPE : TIME : WEIGHT : VISCOSITY : PV : YP : GEL 10 sec : GEL 10 sec : GEL 10 min : API FL : FILTER CAKE : SOLIDS :		%LGS : %DS : SAND : MBT : PH : CI : K+ : HARD/Ca : 6RPM : DAILY COS CUM. COS	2 T: \$908.00
BHA # : BHA LENGTH : HRS ON JARS : BHA DESCRIPTION Depoints Only)	311 DN : Check Trij	WT BLW JAR : BHA WT : p. Bit, B/S, 6 1/2" D/C, R/ NCL AZ. 4.0 3.0	# MAKE/T	Pump Data YPE LINR AVS 6.00	- last 24 hrs PM AVFLOW	SI AVEPRESS SL	: -: .
Bulk Stocks	Drill Wate		2 GD-PZ8 Fuel d Stock	Barite	15 320 Gel Used Stock 0 185		Diesel Used Stock 2,000 10,000
Personnel				Drills and In	spections		
JOB TITL DRILLING ENGI DRILLING SUPE WELLSITE GEC	NEER Kevin Kel RVISO Henry Flir	Australian DST Haliburton Cerr IDFS Weatherford nk ODE	2 nentin 2 1 1 20	DRILL TYPE		INSPECTIO DAYS SINCE LT. BOP TEST RIG INSPECTIO NEXT TEST DUE SAFETY MEETIN	A 289 21/5/96 N 20/5/96 E DATE 4/6/96
FROM TO 0:00 2:30 2:30 3:00 3:00 3:30 3:30 5:30 5:30 6:00 6:00 8:00 8:00 9:00 9:00 11:30 11:30 12:30	.5 1,700.0 M .5 1,700.0 S 2.0 1,700.0 F .5 1,700.0 V 2.0 1,700.0 C 1.0 1,700.0 F 2.5 1,700.0 L	B/out & lay down DS Make up bit, bit sub, Slip 33' drill line RIH to 1582m Work t Vash from 1582 to 1 Dirculate and conditio Tow check, POH. Ra ayout remaining drill	T Tools 1 RR and ight spot a 600 m on mud. P ack 700 m l pipe.	at 1515 m with ump pill pipe in mast	15000 lbs		
	1.0[1,700.0]P	Pick up kelly, flush ra Kelly/hose. lower coc	thole and	i mouse hole. E	sreak upper	Kelly Joints. R	emove

 15:00
 16:00
 1.0
 1,700.0
 Rig up to run 7

 16:00
 0:00
 8.0
 1,700.0
 Run 7" casing.

Cultus		DAILYD	RILLING REPORT	Skull Creek #1
REPORT# : 16	Report Date:	3/06/95	Issue Date : 4/06/96	Page Number: 1
Basic Data DRILL CO 3 TO GRND LVL GRND LVL AMSL	4 98 DAYS	TH 1.7 GRESS S FROM SPUD :1 S +/- CURVE	YOO 0 HOLE SIZE 8.50 0 0 LAST CSG SIZE 9-5/8' 5 92 SHOE DEPTH 332 50 0 0 LEAK-OFF 13.50	DAILY COST \$138,197.00 CUM COST \$1,026,396.00
Gas and General FORMATION MAX GAS B/G GAS %	Eumeralla WEAT		Cold and raining. Circulating and conditioning mud prior l	to running casing.
SERIAL # : DEPTH IN m : DEPTH OUT m : METERAGE : TOT HRS :			Mud Properties SAMPLE FROM : FL TYPE : F.W.Poly TIME : 20:00 WEIGHT : 9:40 VISCOSITY : 44 PV : 11 YP : 7 GEL 10 sec : 2 GEL 10 min : 11 API FL : 5.2 FILTER CAKE : 1 SOLIDS : 7.8	%LGS: 8 %DS: 7 SAND: Tr MBT: 12.0 PH: 9.6 CI: 3,300 K+: HARD/Ca: 640 6RPM: 1 DAILY COST: \$393.00 CUM. COST: \$32,505.00
BHA and Drilling BHA # · BHA LENGTH : 31 HRS ON JARS : BHA DESCRIPTION :	7 WT BLW JAR 1 BHA WT :		STRING WT : 138 PICK UP WT : SLK 0FF WT : 6 1/2" D/C's, Jars, 2 x 6 1/2" D/C's, 15	TRQE MAX : TRQE ON : TRQE OFF : 5 x 4 1/2" HWDP
ey MD points only) 1,199.0 1,360.0 1,695.0	TVD INCL AZ. 4.0 3.0 7.5	1 GD-	Pump Data - last 24 hrsKE/TYPELINRAVSPMAVFLOWPZ86.00115320PZ86.00115320	Slow Pump Rates AVEPRESS SLWSPM SLWPRE
Bulk Stocks	Drill Water Pot. Wa Used Stock Used Sto 0	ter Fuel ock Used Stor	BariteGelckUsedStockUsedStock0604000185	CementDieselUsedStockUsed07502,70012,000
Personnel			Drills and Inspections	
JOB TITLE DRILLING ENGINEER DRILLING SUPERVIS GEOLOGIST WELLSITE GEOLOGIS	Austr Halibu Weatl Kevin Kelly BPB Henry Flink ODE Alex Pumillio IDFS	alian DST urton Cementin herford	2 FIRE B 1 INCIDENT R 5 PIT DRILL 27/05/96 N	INSPECTIONSTIMINGDAYS SINCE LTA288DOP TEST21/5/96DIG INSPECTION20/5/96JEXT TEST DUE DATE4/6/96AFETY MEETING2/6/96
FROM TO HRS	DEPTH		DESCRIPTION-ACTIVITY	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,700.0 RIH to 1505 r 1,700.0 Wash and rea 1,700.0 RIH from 1500 1,700.0 Circulate and 1,700.0 Pump pill and 1,700.0 Pick up and n 1,700.0 RIH with DST 1,700.0 Pick up and n 1,700.0 Pressure test 1,700.0 Set packers a 1,700.0 Perform DST:	am from 1505 5 to 1600 m condition muc POH for DST nake up DST t tools, SLM nake up head manifold, surf t 1234 to 1245 one 2 hour flo	to 1528 m d, flow check. Max gas 100 unit: # 7 cools	psi for 10 minutes. eeting.

Cu	ltus
----	------

DAILY DRILLING REPORT

Skull Creek #1

2

REPORT# : 16 Report Date: 3/06/95 Issue Date : 4/06/96 Page Number

			DEPTH	DESCRIPTION-ACTIVITY
20:30	21:00	.5	1,700.0	Rig down, clean and layout surface lines and test manifold. Flow check, static, pump
1:00	0:00	3.0	1,700.0	siug. POH with DST tool (slow).

	tus				L	MILIU	RILL	ING REF	PORT			Skı	III Ci	reek #
REP	ORT# :	15	Re	port Da	ate: 2/	06/96	lssu	ue Date	: 3/06/	96		Page	Numb	er:
DRILL RIG : RKB 1	IC Data L CO TO GRND I D LVL AMS			ODE 30 4 98 92 0	DEPTH PROGRESS DAYS FROI DAYS +/- CI	S Mispud 14	00 0 0 0 4 92 0 0	HOLE SIZ LAST CSI SHOE DE LEAK-OF	G SIZE	8.5 9-5/ 332.5 13.5	B" DAI	F PERS LY COS M COST COST	T: :	E : \$44,388.0 \$888,199.0 \$940,000.0
1		eral Dat	a Eume		WEATHER STATUS @			arm in day, c out of hole fr			ior to DS	T #7		
BIT # : SIZE : MFR : TYPE : SERIAL DEPTH DEPTH METER TOT HF BIT # : WEAR	_ # : _ IN m : I OUT m : RAGE :	7 8 MFDS LFG	D	ROTATE AVE WO AVE RPM FLOW PUMP PF NOZZLES HHSI ANN VEL BIT VEL r IADC # L B	B. M RESS.: S: DP: DC:	14 12 12 R:	SA TY TIM WE VIS PV YP GE GE AP FIL	EIGHT SCOSITY	M : F.W.I	FL Doly 3:30 9:45 48 10 8 2 11 4.8 1 8.2	%I SA PH CI K+ HA 6R DAI	:	T: \$	8 7 Tr 14.0 9.8 3,300 520 1 51,307.00 2,112.00
HRS OI	s	T	Check T	BHA W Frip. Bit. B/	S. 6 1/2" D/C	os	SI	CK UP WT : _K 0FF WT :)/C's, Jars, 2 Pump Dat	x 6 1/2"		I TF		- ow Pun	1p Rates
Bulk S	1.3	·	·····		t. Water	1 GD- Fuel	PZ8	E LINR AV 6.00 Barite	SPM A	/FLOW	Cen	ESS SL	Di	SLWPRE
	tocks	60.0 95.0	·····	30 7.5 ater Po		1 GD-	PZ8	E LINR AV 6.00 Barite	SPM A	/FLOW el	Cen Used	ESSS		SLWPRE esel Stock
Person	tocks	60.0 95.0 Dr Used	d Sto	30 75 ater Po ock Use	d Stock I	T GD-	PZ8 ck Use	E LINR AV 6.00 Barite ed Stock 60 460 rills and h	SPM AV	/FLOW el Stock 185	Cen Used	nent Stock 750	Di Used 2,300	SLWPRE esel Stock 14,700
DRILLI	1.3 1.6 tocks JOB TITLI	60.0 95.0 Dr Usec E VEER	d Sto	AME	d Stock l	T GD- Fuel Jsed Sto Y NAME DST Cementin	PZ8 ck Use 0 # 2 2 5 1 P	E LINR AV 6.00 Barite ed Stock 60 460	SPM AN Ge Used 0 nspect PE TI 27/	/FLOW el Stock 185 ions MING	Cen Used	ESS SL nent Stock 750 PECTIO NCE LT. ST PECTIO EST DUE	Di Used 2,300 NS A N E DATE	SLWPRE esel Stock 14,700 TIMING 287 21/5/96 20/5/96
DRILLI DRILLI DRILLI GEOL WELLS	1.3 1.6 tocks inel JOB TITLI ING ENGIN ING SUPE OGIST SITE GEOL	60.0 95.0 Dr Usec E VEER	d Sta N, Kevin K Henry F Alex Pu Dave H	30 7.5 ater Po ock Used 0 AME Celly Flink amillio forner	d Stock I 0 COMPAN Australian I Haliburton (BPB ODE IDFS	T GD- Fuel Jsed Sto Y NAME DST Cementin	PZ8 ck Use 0 2 2 5 20 1 3	E LINR AV 6.00 Barite ed Stock 60 460 rills and In DRILL TYP IRE IRE ICIDENT IT DRILL	SPM AN	/FLOW el Stock 185 ions MING 6/96	Cen Used 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESS SL nent Stock 750 PECTIO NCE LT. ST PECTIO EST DUE	Di Used 2,300 NS A N E DATE	SLWPRE esel Stock 14,700 TIMING 287 21/5/96 20/5/96 4/6/96
Person DRILLI DRILLI GEOLC WELLS FROM 0:00 1:30 6:00	1.3 1.6 tocks tocks Inel JOB TITLI ING ENGIN ING SUPE OGIST SITE GEOI TO I 1:30 6:00 7:30	60.0 95.0 Dr Usec E NEER RVISO HRS DE 1.5 1.7 4.5 1.7 1.5 1.7	d Sta N. Kevin K Henry F Alex Pu Dave H EPTH 700.0 700.0	30 7.5 ater Po ock User 0 AME AME AME AME AME AME AME AME AME AME	COMPAN Australian D Haliburton (BPB ODE IDFS Halliburton DST tool DST tool bead, lines # 5, Pump	I GD- Fuel Jsed Jsed Sto Y NAME OST Cementin Mudloggi Stor DST s. for DST Is. install & manifo Up pack	PZ8 ck Use 0	E LINR AV 6.00 Barite ad Stock 60 460 Fills and In DRILL TYP IRE NCIDENT IT DRILL RIP DRILL SCRIPTIO Dut and implest surface d set Hold	SPM AN Ge Used 0 nspect 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,	/FLOW el Stock 185 ions MING 6/96 V05/96 6/96	Cen Used 0 INS DAYS SI BOP TES RIG INSI NEXT TE SAFETY	ESS SL nent Stock 750 PECTIO NCE LT ST PECTIO EST DUE MEETIN MEETIN	Di Used 2,300 NS A NG DATE NG	SLWPRE Stock 14,700 TIMING 287 21/5/96 20/5/96 4/6/96 2/6/96
Person DRILLI DRILLI GEOLC WELLS FROM 0:00 1:30 6:00 7:30	1.3 1.6 tocks tocks ING ENGIN ING SUPE OGIST SITE GEOL SITE GEOL TO I 1:30 6:00 7:30 10:00	60.0 95.0 Dr Usec E VEER RVISO HRS DE 1.5 1.7 4.5 1.7 1.5 1.7 2.5 1.7	d Sta NA Kevin K Henry P Jave H Zave H Zave H 700.0 700.0 700.0	30 7.5 ater Po ock Used 0 AME AME Celly Tink amilio orner RIH with Rig up h for DST Open to Commu	COMPAN Australian I Haliburton (BPB ODE IDFS Halliburton DST tool DST tool nead. lines # 5. Pump ol. DST he nication or	I GD- Fuel Jsed Jsed Sto Y NAME OST Cementin Mudloggi Sto S for DST S for DST S for DST S for DST Cementin Sto Mudloggi Sto S for DST	PZ8 ck Use 0	E LINR AV 6.00 Barite ed Stock 60 460 rills and In DRILL TYP IRE NCIDENT IT DRILL RIP DRILL SCRIPTIO pout and imp est surface d set. Hold up, shut in d shut in	SPM AN Ge Used Used 0 nspect PE TI 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,	/FLOW Pl Stock 185 ions MING /05/96 6/96 FIVITY bs positic meetin head	Cen Used 0 INS DAYS SI BOP TES RIG INSI NEXT TE SAFETY SAFETY on packe ng. d, set pa	ESS SL nent Stock 750 PECTIO NCE LT. ST PECTIO EST DUE MEETIN MEETIN	Di Used 2,300 NS A DATE IG 1500 to and op	SLWPRE Stock 14,700 TIMING 287 21/5/96 20/5/96 2/6/96 2/6/96 2/6/96 0 1520 n ben tool.
Person DRILLI DRILLI GEOLC WELLS FROM 0:00 1:30 6:00	1.3 1.6 tocks tocks Inel JOB TITLI ING ENGIN ING SUPE OGIST SITE GEOI TO I 1:30 6:00 7:30	60.0 95.0 Dr Usec Usec E VEER RVISO H COGIST I.5 1.5 1.7 2.5 1.7 2.5 1.7 2.5 1.7 1.0 1.7 2.5 1.7 5 1.7	d Sta N. Kevin K Henry F Dave H 200.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0	30 7.5 ater Po ock Used 0 AME AME Celly Flink amillio lorner Make up RIH with Rig up h for DST Open to Commu Lower p abandor Pick up Attempt	COMPAN Australian D Haliburton (BPB ODE IDFS Halliburton DST tool DST tool bead, lines # 5, Pump	I GD- Fuel Jsed Sto Jsed Sto Y NAME DST Cementin Mudloggi s for DST State State	PZ8 ck Use 0	E LINR AV 6.00 Barite ad Stock 60 460 rills and II DRILL TYP IRE NCIDENT IT DRILL RIP DRILL SCRIPTIO Dut and impest surface d set. Hold up, shut in. 2 m. Atter ds. Positio sful suspe	SPM AN Ge Used 0 nspect PE TI 27. 27. 27. 27. 27. 27. 27. 27. 27. 27.	/FLOW All Stock 185 ions MING 05/96 6/96 FIVITY bs positic meeti n head set pac ers at	Cen Used 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESS SL nent Stock 750 PECTIO PECTIO ST DUE MEETIN ers @ ackers ice, un 1245 p	Di Used 2,300 NS A DATE G 1500 to and op succes	SLWPRE Stock 14,700 TIMING 287 21/5/96 20/5/96 4/6/96 2/6/96 2/6/96 0 1520 n ben tool. ssful, 0ST #6.

Cultus

DAILY DRILLING REPORT

Skull Creek #1

REPORT# : 15 Report Date: 2/06/96 Issue Date : 3/06/96

REPO	RT#	: 15	Report Date:	2/06/96	lssue Date : 3/06/96	Page Number :	2
FROM	то	HRS	DEPTH		DESCRIPTION-ACTIVITY		
22:00	0.00	2.0	1 700 0 Make up BH	A and RIH fo	r check trip.		

Cultus				DAILY	DR	ILLING REI	PORT			Skı	ull Cr	eek #
REPORT# : 1	4 R	eport D)ate:	1/6/96	1	lssue Date	: 2/6/9	6		Page	Numbe	r:
Basic Data DRILL CO IG RKB TO GRND LVL GRND LVL AMSL		ODE 30 4 98 92 0			.700 0 13 9 0	0 LAST CS 2 SHOE DE	G SIZE		5/8" DA 50 CU	T PERS (ILY COST M COST : E COST :	5 \$ 24 \$ \$ 84	1, 343 3, 811
Gas and Genera FORMATION : MAX GAS % : B/G GAS % :		neralla	WEATHE STATUS			n, windy, and cold for DST # 5.Testi	ing surfac	ce equi	pment.prio	r to set pa	ickers and	d open
Bit/Hydraulics BIT # : SIZE : MFR : TYPE : SERIAL # : DEPTH IN m : DEPTH OUT m : MFTERAGE : HRS : BIT # : 6 RR VEAR I: 01 BHA # : BHA LENGTH : 3 HRS ON JARS : COMPLEXENTION :	6 311	AVE WO AVE RP FLOW : PUMP P NOZZLE BIT HHS ANN VE BIT VEL BIT VEL IADC # L: B: tion WT BL BHA W	2M : 2RESS. : SI : L DP : DC : mps : G: 0 W JAR : /T :	14 12 12		Mud Properti SAMPLE FROM TYPE : TIME : WEIGHT : VISCOCITY : PV : YP : GEL10S : GEL10M : APIFL : FILTER CAKE : SOLIDS : STRING WT : PICK UP WT : SLK OFF WT :	M : F.W. 20 5	0:30 9.40 47 14 11 2 12 5.0 1 7.8 	SA M8 PH CI K+ HA 6R DAI CU	: RD/Ca : PM : LY COST M. COST	: \$30, 	8 7 Tr 10.0 9.8 3,600 640 2 ,252.00 805.00
Urvey MD 3 points hly) 1,199.0 1,360.0 1,695.0				nps # MA 1 GD		6.00	- last 24	hrs	AVEPRE	Slo	w Pump SPM SL	Rates WPRES
ulk Stocks		ater Po tock Use		Fuel Used Sto	ick O	Barite Used Stock 30 520	Ge Used 0	l Stock		Stock l	<u> </u>	sel itock 7,000
JOB TITLE	R Kevin H		Australian IDFS BPB ODE		# 2 1 5 20	Drills and In DRILL TYPE FIRE INCIDENT PIT DRILL	E TIN	5/96	INSP DAYS SIN BOP TES RIG INSP NEXT TES	ECTIONS ICE LTA T ECTION ST DUE D	S 1 28 27 20 0ATE 4	TIMING 36 1/5/96 0/5/96 6/96
DRILLING SUPERVIS WELLSITE GEOLOGI	ST Dave H	orner	Halliburtor	Mudloggin	3	TRIP DRILL	1/06	/96	SAFETYN	IEETING	30	0/5/96
DRILLING SUPERVIS WELLSITE GEOLOGI	ST Dave F	lorner	Halliburtor	n Mudloggin			1/06	/96	SAFETY N	MEETING	30	0/5/96

	<u> </u>	111(0	DEFIN	DESCRIPTION-ACTIVITY
0:00	0:30	.5	1,700.0	Circulate and condition mud
0:30	3:30	3.0	1,700.0	Flow check, pump pill, POH
3:30	15:30	12.0	1,700.0	R/U BPB. M/U RFT. Replace BPB wt indicator sensator. RFT in 5:30, out 8:00. Clean
				out tool. In 9:45, out 11:35. Tool not working. Rig down
1 3	19:00	3.5	1,700.0	M/U BHA and RIH to 1600 m
	21:00	2.0	1,700.0	Circulate and condition mud
21:00	0:00	3.0	1,700.0	POH to pick up DST tools.

Cultus					DAIL		RIL	LINC	REP	ORT			Sk	ull Cr	eek #
REPORT# : 13	3 Re	eport	Dat	:e: 3	1/5/96	6	ls	sue	Date :	1/6/9	6		Page	Numbe	er :
Basic Data DRILL CO RIG RKB TO GRND LVL GRND LVL AMSL		ODE 30 4 98 92 0	P	DEPTH PROGRES DAYS FRO DAYS +/- 0	OM SPU	D : 12	00	L S	OLE SIZE AST CSG HOE DEF EAK-OFF	SIZE PTH	8.5 9-57 332.5 13.5		Y COS COST	0N SITE 57: \$37 : \$806 : \$940	, 421 , 390
Gas and General FORMATION MAX GAS % : B/G GAS % :		neralla		VEATHEI TATUS (-	-	and coo rith RFT							
Bit/Hydraulics BIT # : SIZE : MFR : TYPE : SERIAL # : DEPTH IN m : DEPTH OUT m : TERAGE : J UT HRS :	5 RR 8.50 SM MFDSSH LFG918	AVE AVE FLO PUM NOZ BIT ANN	TATE H WOB RPM W: IP PRE ZLES HHSI: I VEL I VEL I VEL I	ESS. : : : : : : : : : : : : : : : : : : :	14 12	2 12		SAMPI TYPE TIME: WEIGI VISCO PV: YP: GEL10 GEL10 APIFL	HT : CITY : S : M :	FW.	FL Poly 0:30 9:30 38 11 11 2 8 5.7 1	%E SA MB PH CI: K+ HAI 6RI	ND : T		7 6 Tr 11.0 4,000 1,000.0 540 2 32,380.00
BIT #: 5 RR WEAR I: 01 BHA and Drilling	Informa		B:	G: 0	2: R:			SOLID	S :		7	. CUM	И. СО8 	ST: \$2	9,553.00
BHA # : BHA LENGTH : 3 HRS ON JARS : A DESCRIPTION :	5 311 Check	BH	IA WT		/C, R/R,	14 x 6	5 1/2"	PICK SLK C	IG WT : UP WT : FF WT : Jars, 2 x		38 /C's, 15	TR	QE MA QE ON QE OF WDP	N :	
Survey MD		1		Pur	nns			P	Imp Data	- last 2	4 hrs			Slow Pum	p Rates
Survey MD (3 points 1,199.0 only) 1,360.0 1,695.0 1,695.0		INC 4. 3. 7.	0		# 1 2	MAP GD- GD-	PZ8	(NR AVS 5.00 5.00	35 AV	100 /FLOW	AVEPRE	SS SI 500	LWSPM	SLWPRE
·····															
······														Di	innal I
Bulk Stocks	Drill V Used	Vater Stock	Pot. Used	Water Stock	Fu Used	iel Sto	ck	Ba Used	rite Stock	G Used	el Stock	Cen Used	<u>nent</u> Stock		esel Stock
Bulk Stocks					Used		c k				Stock	Used		Used	Stock
		Stock		Stock	Used			Used 30	Stock 550	Used C	Stock	Used	Stock	Used	Stock
		Stock		Stock 0	Used	Sto		Used 30 Drills	Stock	Used C Ispect	Stock	5 0	Stock	Used 3,000	Stock
Bulk Stocks Personnel DRILLING ENGINEEI DRILLING SUPERVIS RESERVOIR ENGINE WELLSITE GEOLOG	Used S R Kevin SOR Henn EER Rod H	Stock 0 NAME	Used	Stock 0	Used NY NAM DST	Stor		Used 30 Drills FIRE INCII PIT [Stock 550 s and In RILL TYP	Used C ISPECT E T 27	Stock 185 ions	5 0	Stock 750 PECTION ST PECTIONST ST DU	ONS TA DN JE DATE	Stock 19,000
Personnel JOB TITLE DRILLING ENGINEEI DRILLING SUPERVIS RESERVOIR ENGINE	Used S R Kevin SOR Henn EER Rod H	Stock 0 NAME NAME NAME Stink Harris	Used	Stock 0 COMPA Australiar BPB ODE IDFS	Used NY NAM DST	Stor	0 # 2 5 20 1	Used 30 Drills FIRE INCII PIT [Stock 550 s and In RILL TYP DENT DRILL	Used C ISPECT E T 27	Stock 185 ions IMING	Used 5 0 INS DAYS SI BOP TES RIG INSP NEXT TE	Stock 750 PECTION ST PECTIONST ST DU	ONS TA DN JE DATE	Stock 19,000 TIMING 285 21/5/96 20/5/96 4/6/96
Personnel JOB TITLE DRILLING ENGINEEI DRILLING SUPERVIS RESERVOIR ENGINE WELLSITE GEOLOG	Used S R Kevin SOR Henn EER Rod H	Stock 0 NAME NAME NElly y Flink Harris Horner	Used	Stock 0 COMPA Australiar BPB ODE IDFS	Used NY NAM DST	Stor	0 # 2 5 20 1 3	Used 30 Drills FIRE INCII PIT C TRIP	Stock 550 s and In RILL TYP DENT DRILL	Used conspect E T 27 31	Stock 18: ions MING /05/96	Used 5 0 INS DAYS SI BOP TES RIG INSP NEXT TE	Stock 750 PECTION ST PECTIONST ST DU	ONS TA DN JE DATE	Stock 19,000 TIMING 285 21/5/96 20/5/96 4/6/96

	- I			
0:00	4:30	4.5	1,700.0	Inflate packer & set . Open tool @ 0:50, close @ 1:00, open @ 1:46, close @ 2:46. Pull
				packer free @ 4:16
4:30	5:30	1.0	1,700.0	Fill 1000 ft of d/pipe with mud. Drob bar, didn't shear pins.
5:30	6:00			Fill pipe, blow pump out sub at 1100 psi.
טר י	10:00	4.0	1,700.0	Circulate gas through BPM and Poor Boy. Max 22%, LMW 8.1%
. J:00	10:30	.5	1,700.0	Flow check. RIH 7 stds. Top packer @ 1430
10:30	13:00	2.5	1,700.0	Circulate out gas and condition mud. Max 28%, LMW 8.7%
13:00	13:30	.5	1,700.0	Break and layout test head and DST surface equipment.
13:30	14:00	.5	1,700.0	F/check (static) POH 2 stds, P/U kelly pump pill.
14:00	16:30	2.5	1,700.0	POH slow with DST tools. Flow check on way out (static)
16:30	19:30	3.0	1,700.0	Recover samples from chamber. Break and layout test tools, service and clean.
19.30	20:30	1.0	1 700.0	M/U BHA and RIH for check trip

DAIL	_Y	DRIL	LING.	REPORT

Skull Creek #1

	REPO	RT# :	: 13	Rep	ort Date: 31/5/96	Issue Date : 1/6/96	Page Number :	2
	FROM	то	HRS	DEPTH		DESCRIPTION-ACTIVITY		
_	20:30	21:00	.5	1,700.0	Slip and cut line			
	21:00	23:00	2.0	1,700.0	Cont RIH to 1600 m			
	23:00	0:00	1.0	1,700.0	Circulate and condition mu	d.		

Cultus

Cultus			DRILLING REPORT	Skull Creek #1
REPORT# :	12 Report Date:	30/05/96	lssue Date : 31/05/96	Page Number : 1
Basic Data DRILL CO RIG B TO GRND GRND LVL AMS	LVL 4 98 DAY L 92 0 DAY	TH 1. GRESS S FROM SPUD S +/- CURVE	700.0 HOLE SIZE 8.50 0.0 LAST CSG SIZE 9-5/8" 11.92 SHOE DEPTH 332.50 0.0 LEAK-OFF 13.50	TOT PERS ON SITE : 35 DAILY COST : \$50,405.00 CUM COST : \$782,047.00 AFE COST : \$853,600.00
Gas and Gen FORMATION MAX GAS B/G GAS %	Eumeralla WEA	THER TUS @ 0600	Clear and cool Completed DST #3 & 4 Circulating con	ventionally.
Bit/Hydraulic BIT # : SIZE : MFR : TYPE : SERIAL # : DEPTH IN m : DEPTH OUT m : METERAGE : TOT HRS : BIT # : WEAR I:	S ROTATE HRS AVE WOB : AVE RPM FLOW PUMP PRESS NOZZLES : HHSI : ANN VEL DP : ANN VEL DC : BIT VEL mps : IADC # O1: D L: B: G		Mud Properties SAMPLE FROM : PIT TYPE : F.W.Poly TIME : 16:00 WEIGHT : 9:30 VISCOSITY : 48 PV : 12 YP : 11 GEL 10 sec : 2 GEL 10 min : 13 API FL : 4.7 FILTER CAKE : 1 SOLIDS : 7	%LGS: 7 %DS: 6 SAND: TR MBT: 12.0 PH: 9.5 CI: 4,100 K+: 1,500.0 HARD/Ca: 620 6RPM: 2 DAILY COST: \$2,374.00 CUM. COST: \$27,173.00
BHA # : BHA LENGTH : HRS ON JARS : BHA DESCRIPTIC Output Solution (1,1) 1,3	1	Pumps # MA 1 GC	STRING WT : PICK UP WT : SLK 0FF WT : Pump Data - last 24 hrs AKE/TYPE LINR AVSPM AVFLOW / D-PZ8 6.00 -PZ8 6.00	TRQE MAX : TRQE ON : TRQE OFF : Slow Pump Rates AVEPRESS SLWSPM SLWPRE
Bulk Stocks	Used Stock Used S		BariteGelockUsedStockUsedStock0375800185	CementDieselUsedStockUsed07502,2007,000
Personnel JOB TITL DRILLING ENGIN	Aus	MPANY NAME		INSPECTIONS TIMING DAYS SINCE LTA 284 OP TEST 21/5/96
DRILLING SUPE RESERVOIR EN WELLSITE GEOI	RVISO Henry Flink ODE GINEE Rod Harris IDFS	-	20 INCIDENT R 1 PIT DRILL 27/05/96 N	AFETY MEETING
			DESCRIPTION-ACTIVITY	
0:00 2:30 2:30 3:00 3:00 6:30 6:30 9:30 9:30 11:30 11:30 15:00 15:00 23:00	2.0 1,700.0 Prepare and 3.5 1,700.0 RIH with DS 8.0 1,700.0 P/U & M/U E safe valve o Set packers	1679 to 1700 n d condition mu OH. Break out pick up DST f T tools. Strap DST head and n DST head. F	n, 2 m fill. ud, Flow check. : 2 x R/reamer, bit sub, bit. tools. in, no corrections. surface lines, check pump 1 & 2 Packer depth - 1402 - 1417 m. 2, tool open 15:55, tool closed 16	
00:0 OL	1.0 1,700.0 Rig down DS	ST head & sur	face lines. POH to top packer 12	40 to 1255m. R/u DST head

J0 0:00 1.0 1,700.0 Rig down DST head & surface lines. POH to top packer 1240 to 1255m. R/u DST head and surface lines.

Cultus	DAILY	DRILLING REPORT	Skull Creek #1
REPORT# : 11	Report Date: 29/05/96	Issue Date : 30/05/96	Page Number : 1
Basic Data DRILL CO. : RIG : B TO GRND LVL GRND LVL AMSL	ODE DEPTH 1. 30 PROGRESS 4 98 DAYS FROM SPUD 92 0 DAYS +/- CURVE	700.0 HOLE SIZE 8.50 0.0 LAST CSG SIZE 9-5/8" 10.92 SHOE DEPTH 332.50 0.0 LEAK-OFF 13.50	
Gas and General FORMATION MAX GAS : B/G GAS % :	Data Eumeralla WEATHER STATUS @ 0600	Showers, clearing in afternoon Circulating and conditioning mud prior t	o DST. Max gas 0.6%
Bit/Hydraulics BIT # : SIZE : MFR : TYPE : SERIAL # : DEPTH IN m : DEPTH OUT m : METERAGE : TOT HRS : BIT # : WEAR I: O1:	ROTATE HRS : AVE WOB : AVE RPM : FLOW : PUMP PRESS. : NOZZLES : HHSI : ANN VEL DP : ANN VEL DC : BIT VEL mps : IADC # D: L: B: G: O2: R:	Mud Properties SAMPLE FROM : FL TYPE : F.W.Poly TIME : 5:00 WEIGHT : 9:30 VISCOSITY : 47 PV : 12 YP : 10 GEL 10 sec : 2 GEL 10 min : 16 API FL : 5.8 FILTER CAKE : 1 SOLIDS : 7	%LGS: 7 %DS: 6 SAND: Tr MBT: 14.0 PH: 9.7 CI: 3,900 K+: 1,400.0 HARD/Ca: 480 6RPM: 2 DAILY COST: \$2,674.00 CUM. COST: \$24,799.00
BHA and Drilling BHA # : BHA LENGTH : HRS ON JARS : BHA DESCRIPTION :	Information WT BLW JAR : BHA WT :	STRING WT : PICK UP WT : SLK 0FF WT :	TRQE MAX : TRQE ON : TRQE OFF :
Yey MD Jints 1,199.0 1,360.0 1,695.0	4.0 3.0 7.5 2 GD	Pump Data - last 24 hrs KE/TYPE LINR AVSPM AVFLOW / -PZ8 6.00 -PZ8 6.00	
Bulk Stocks	Drill Water Pot. Water Fuel Used Stock Used Stock Used Stock 0 <td>Barite Gel ock Used Stock Used Stock 0 0 617 0 185</td> <td>CementDieselUsedStockUsedStock07502,0009,200</td>	Barite Gel ock Used Stock Used Stock 0 0 617 0 185	CementDieselUsedStockUsedStock07502,0009,200
DRILLING ENGINEER DRILLING SUPERVISI WELLSITE GEOLOGIS	O Henry Flink ODE	1 FIRE B 1 INCIDENT R 5 PIT DRILL 27/05/96 N	INSPECTIONS TIMING AYS SINCE LTA 283 OP TEST 21/5/96 IG INSPECTION 20/5/96 EXT TEST DUE DATE 4/6/96 AFETY MEETING 29/5/96
	DEPTH 1,700.0 Con't RFT log. Problems w	DESCRIPTION-ACTIVITY	not working POH Abandan

0:0023:3023.51,700.0Con't RFT log. Problems with tool, POH. RIH wit new tool, not working, POH. Abandon
RFT's, Run #3 - LDL-CNL-GR-CAL. Run #4 - Dipmeter. Perform velocity survey.23:300:00.51,700.0Make up BHA for wiper trip prior to DST

.

Cult	us								ING REP				Skul	101	
REPC	ORT#:	10	Re	∍port	Date	: 28	/05/96	lss	ue Date :	29/05	5/96	l	Page N	umbe	er :
DRILL PIG KB TC	CO CO D GRND L LVL AMS			ODE 30 4.98 92.0	PR DA			700 0 108 0 9 92 0 0	HOLE SIZ LAST CSC SHOE DE LEAK-OFF	G SIZE : PTH :	8 50 9-5/8 332.50 13.50	" DAIL CUM	PERS ON Y COST : COST : COST :	\$	\$56,282. 706,187 853,600
Gas al FORMA MAX GA B/G GA	AS :	eral [eralla		ATHEF	₹ : ⋑ 0600 :		aring in afterr h RFT tool. S			complete	RFT logg	jing.	
BIT # SIZE : MFR : TYPE : SERIAL DEPTH I	N m : OUT m : \GE :	t	4 8.50 SM MF15 LC2089 1,373.0 1,700.0 327.0 13.0	AVE AVE FLO PUM NOZ HHS ANN BIT V	IP PRES	SS.: ; ; ;	9. 3 200 40 1.50 14 12 12 3 189 327 325 2:N R:TD	20 S.T.T.W.V.P.Y.G.G.A.	d Properti AMPLE FROM (PE : BIGHT : SCOSITY : / : EL 10 sec : EL 10 min : PI FL : LTER CAKE : DLIDS :	1 : F.W. 2	PIT Poly 1:00 9:30 47 11 18 8 23 8.2 2 7	%D SAN PH CI : K+ : HAF 6RF DAIL	ND : T : : RD/Ca :		7 6 Tr 16.0 9.5 4,300 2,200.0 560 9 2,263.00 2,126.00
BHA # :	and Dril	-													400
HRS ON BHA DE Frey points	I JARS : SCRIPTIC	328 195 ON :	5	BH 1/2" mo	L AZ.	R/Rea	nps # M	DC, R/R	STRING WT : PICK UP WT : SLK 0FF WT : eamer, 15 x 6 Pump Date PE LINR 6.00	1 1 1/2" DC <u>a - last</u>	24 hrs	TR TR 2 x 6 1/2"	Slo	: 5 x 4 1/ w Pum	ip Rates
HRS ON BHA DES points only)	I JARS : SCRIPTIC (328 195 DN : D 199.0 360.0 595.0	Bit, 6 HVVDf TVD	BH	tor, X/O	R/Rea	64 amer, 6 1/2" mps # M. 1 Gi 1 Gi Vsed S	DC, R/R AKE/TYP D-PZ8	PICK UP WT : SLK 0FF WT : eamer, 15 x 6 Pump Dat PE LINR AV	1 1/2" DO (a - last SPM A G Used	54 44 2's, Jars, 24 hrs VFLOW	TR' TR' 2 x 6 1/2" AVEPRE Cem Used	QE ON : QE OFF ' DC's, 15 SS SLV : : : : : : : : : : : : : : : : : : :	: 5 x 4 1/ w Pun WSPM 45	100 70 2" IP Rates SLWPF
HRS ON BHA DES points only) Bulk St	I JARS : SCRIPTIC 	328 195 ON : 199.0 360.0 595.0	Bit, 6 HVVDf TVD	BH 1/2" mo INCI 4, 3. 7. Vater Stock	L AZ. 0 5 Pot. 1	R/Rea	64 amer, 6 1/2" mps # M. 1 Gi 1 Gi Vsed S	DC, R/R AKE/TYP D-PZ8 tock U	PICK UP WT : SLK 0FF WT : eamer, 15 x 6 Pump Dat PE LINR AV 6.00 Barite Sed Stock	1 1 12" DC 3 - 1ast SPM A G Used (54 44 24 hrs 24 hrs VFLOW el Stock	TR' TR' 2 x 6 1/2" AVEPRE Cem Used	QE ON : QE OFF ' DC's, 15 SS SLV : : : : : : : : : : : : : : : : : : :	: 5 x 4 1/ WSPM 45 Di Used	100 70 2" IP Rates SLWPF
ARS ON BHA DES points only) Bulk St	I JARS : SCRIPTIC (1,1 1,3 1,6 tocks	328 195 ON : 199.0 360.0 595.0	Bit, 6 HWDF TVD Drill V Used	BH 1/2" mo INCI 4. 3. 7. Vater Stock 0 NAME NAME	A WT : tor, X/O L AZ. 0 5 Pot. V Used Used C A B B I L Used Used Used	R/Rea Pur Stock 0 COMPA Ustralia PB FS Blocity a allibutto DE	64 amer, 6 1/2" mps # M. 1 Gi Used S Used S NY NAME n DST	DC. R/R AKE/TYH D-PZ8 tock U 0 # 2 5 1 1 1 21	PICK UP WT :: SLK 0FF WT :: eamer, 15 x 6 Pump Dat PE LINR AV 6.00 Barite Sed Stock 40 617	1 5 1/2" DC 23 - Tast SPM A Used Used 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54 44 24 hrs 24 hrs VFLOW el Stock 0 18: tions 1MING	TR TR 2 x 6 1/2" AVEPRE	QE ON : QE OFF DC's, 15 SIO SS SLV Stock 750 PECTION NCE LTA PECTION ST DUE	E VSPM 45 Used 3,500	100 70 2" IP Rates SLWPF
HRS ON BHA DES Points only) Bulk St Person	I JARS : SCRIPTIC 1,1 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	328 195 ON :	Bit, 6 HWDF TVD Drill V Used	BH 1/2" mo INC 4. 3. 7. Vater Stock 0 NAME NAME	A WT : tor, X/O L AZ. 0 5 Pot. V Used Used C A B B I L Used Used Used	R/Rea Pur Stock 0 COMPA Ustralia PB FS Blocity a allibutto DE	64 amer, 6 1/2" mps # M 1 G Used S Used S NY NAME n DST Data on Dir Drill	DC, R/R AKE/TYP D-PZ8 tock U 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1	PICK UP WT : SLK 0FF WT : eamer, 15 x 6 Pump Dat PE LINR AV 6.00 Barite Sed Stock 40 617 Drills and I DRILL TYF FIRE INCIDENT PIT DRILL	1 1 1/2" DC 21/2" DC 2	54 44 24 hrs 24 hrs VFLOW el Stock 185 1015/96 3/05/96	TR TR 2 x 6 1/2" AVEPRE Used Used DAYS SII BOP TES RIG INSF NEXT TE SAFETY	QE ON : QE OFF DC's, 15 SIO SS SLV Stock 750 PECTION NCE LTA PECTION ST DUE	E VSPM 45 Used 3,500	100 70 2" p Rates SLWPF esel Stock 11,200 TIMIN 282 21/5/96 20/5/96
ARS ON BHA DES opints only) Bulk St Person DRILLI DRILLI WELLS FROM D::00 5:00	A JARS : SCRIPTIC SCRIPTIC 1,1 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	328 195 ON : D 199.0 360.0 395.0 U 199.0 30 0 0 199.0 30 0 0 199.0 30 0 0 0 10 0 10 0 10 0 10 0 10 0 10	Bit, 6 HVVDF TVD Drill V Used Dept Dave DEPT 1,700. 1,700. 1,700.	BH 1/2" mo INCC INCC 4. 3. 7. Vater Stock 0 Vater NAME NAME NAME NAME NAME	A WT : tor, X/O L AZ. 0 5 Pot. 1 Used C AA BIC V4 H. 0 H. 18 1/2 culate to ber trip 628m.	R/Rea Pur Nater Stock 0 COMPA ustralia PB Selocity alliburto DE alliburto Thole DE alliburto Thole DE alliburto	64 amer, 6 1/2" mps # M. 1 Gi Used S Used S NY NAME n DST Data on Dir Drill on Mudloggi from 159 n's up 30. RIH to c wash thr	DC, R/R AKE/TYP D-PZ8 tock U 0 # 2 5 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	PICK UP WT : SLK 0FF WT : eamer, 15 x 6 Pump Date PE LINR AV 6.00 Barite Sed Stock 40 617 DRILL TYF FIRE INCIDENT PIT DRILL TRIP DRILL TRIP DRILL ESCRIPTIC 20 m B/circ, was 2 1628 to 16	1 1 1 1/2" DC 1/2" DC 1/2" DC SPM A SPM A Used Used 0 0 0 0 0 0 0 0 0 0 0 0 0	54 44 24 hrs 24 hrs VFLOW el Stock 0 188 tions 1MING 7/05/96 3/05/96 TIVITY tight hc Cont F	TR TR 2 x 6 1/2" AVEPRE Used 5 0 INSF DAYS SII BOP TES RIG INSF NEXT TE SAFETY OLE 1600	QE ON : QE OFF DC's, 15 SIO SS SLV Dent Stock 750 PECTION ST DUE MEETING MEETING TO 1604	S × 4 1/ W Pum VSPM 45 Used 3,500 IS DATE G	100 70 2" ip Rates SLWPF esel Stock 11,200 TIMIN 282 21/5/96 21/5/96 28/5/96
Bulk St	A JARS : SCRIPTIC 1,1 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	328 195 ON : D 199.0 360.0 595.0 U 5.5 5.5 3.0 1.0 1.0 1.0 5.5 2.0 1.0	Bit, 6 HVVDF TVD TVD Drill V Used Drill V Used Drill V Used 1,700.	BH 1/2" mo INC 4. 3. 7. Vater Stock 0 Vater NAME NAME Horner Horner Horner Horner 0 Drill 0 Circo 0 Circo 0 Drill 0 Droll 0 Dr	A WT tor, X/O L AZ. 0 5 Pot. 1 Used C AA BI Used C AA BI 18 1/2 C C C AA BI C C AA BI C C AA BI C C C C C C C C C C C C C	R/Rea Pur Vater Stock 0 COMPA Ustralia PB Selocity alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE conton to 118 B/circul alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto DE alliburto B/circul B/circul	64 amer, 6 1/2" mps # M. 1 GI Fuel Used S Used S NY NAME n DST Data on Dir Drill on Mudloggi 50. RIH to 1 5 wash thr thr, 5 m o . RIH to 1 late hole o ump pill, P / check 5 line	DC, R/R AKE/TYP D-PZ8 tock U 0 tock U 0 4 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 2 5 1 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 5 1 1 1 2 1 2 5 1 1 1 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 2 1 2 5 1 1 1 1 2 1 2 5 1 1 1 2 1 2 5 1 1 1 1 2 1 2 5 1 1 0 0 0 C ru t/hole 5, Hoc S- S- CH SL S- S- S- S- S- S- S- S- S- S-	PICK UP WT :: ELK OFF WT :: eamer, 15 x 6 Pump Dat PE LINR AV 6.00 Barite Sed Stock 40 617 DRILL TYF FIRE INCIDENT PIT DRILL TRIP DRILL TRIP DRILL TRIP DRILL ESCRIPTIC 00 m B/circ, was 2 1628 to 16 culate botto ole good.	1 1 1 1/2" DC 2 2 2 2 2 2 2 2 2 2 2 2 2	54 44 2's, Jars, 24 hrs VFLOW vFLOW el Stock D 185 tions TIVITY tight hc Cont F 0.	TR TR 2 x 6 1/2" AVEPRE Used DAYS SII BOP TES RIG INSF NEXT TE SAFETY Ole 1600 RIH to 16	QE ON : QE OFF DC's, 15 SIO SS SLV Stock 750 PECTION NCE LTA ST DUE MEETING ST DUE MEETING ST DUE MEETING	S × 4 1/ W Pum VSPM 45 Used 3,500 IS DATE G	100 70 2" ip Rates SLWPF SLWPF Stock 11,200 TIMIN 282 21/5/96 28/5/96 28/5/96

Cultus		DAILY D				
REPORT# : 9 Basic Data	Report Da	ate: 27/05/96	Issue Date : 28	/05/96	Page N	Number :
DRILL CO. RIG KB TO GRND LVL : GRND LVL AMSL :			192 0 HOLE SIZE : 119 0 LAST CSG SIZ 8 92 SHOE DEPTH 0 0 LEAK-OFF :		B" DAILY COST CUM COST	
Gas and General I FORMATION MAX GAS B/G GAS %	Eumeralia		Clear and Cool Drill to 1700 m (TD). Circ.	Btms up. pr	ior to WT and logg	jing run.
	ROTATE 4 AVE WOU 8.50 AVE RPM SM FLOW : MF15 PUMP PF LC2089 NOZZLES 1,373.0 HHSI : ANN VEL 219.0 ANN VEL 07.5 BIT VEL m IADC # 4 D: L: B:	B: 30 A: 200 400 RESS.: 1,500 S: 14 12 12 3 .DP: 189 DC: 327 nps: 325	SAMPLE FROM : TYPE : F TIME :	FL .W.Poly 0:30 9.20 44 11 16 3 25 9.1 2 6.3	%LGS : %DS : SAND : MBT : PH : CI : K+ : HARD/Ca : 6RPM : DAILY COST CUM. COST	
BHA # : 2 BHA LENGTH : 328	WT BLW		STRING WT : PICK UP WT :	140	TRQE MAX	
BHA # : 2 BHA LENGTH : 328 HRS ON JARS : 8 BHA DESCRIPTION : 8 rvey MD points 940.0	4 WT BLV 3 BHA WT Bit, 6 1/2" motor, X HWDP TVD INCL A2 1.8	T: 64 2/O, R/Reamer, 6 1/2" D Z. Pumps # MAI	PICK UP WT : SLK 0FF WT : IC, R/Reamer, 15 x 6 1/2" Pump Data - 1a KE/TYPE LINR AVSPM	144 136 DC's, Jars, IST 24 hrs	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO	110 : 60 5 x 4 1/2"
BHA # : 22 BHA LENGTH : 328 HRS ON JARS : 8 BHA DESCRIPTION : rvey MD	4 WT BLV 3 BHA WT Bit, 6 1/2" motor, X HWDP TVD INCL A2	T: 64 2/O, R/Reamer, 6 1/2" D Z. Pumps # MAI 1 GD-	PICK UP WT : SLK 0FF WT : IC, R/Reamer, 15 x 6 1/2" Pump Data - 1a	144 136 DC's, Jars, Ist 24 hrs	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO	110 : 60 5 x 4 1/2"
BHA # : 2 BHA LENGTH : 328 HRS ON JARS : 8 BHA DESCRIPTION : 8 rvey points 940.0 1,199.0 1,360.0 Bulk Stocks 9	4 WT BLV 3 BHA WT Bit, 6 1/2" motor, X HWDP TVD INCL 1.8 4.0 3.0	T: 64 Z/O, R/Reamer, 6 1/2" D Z. Pumps # MAI 1 GD- 2 GD- t. Water Fuel	PICK UP WT : SLK 0FF WT : DC. R/Reamer, 15 x 6 1/2" Pump Data - 1a KE/TYPE LINR AVSPM PZ8 6.00 PZ8 6.00 143 Barite	144 136 DC's, Jars, IST 24 hrs AVFLOW 400 Gel	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO AVEPRESS SLV 1,500 Cement Used Stock	110 5 x 4 1/2" WSPM SLWPRE 45 24
BHA # : 2 BHA LENGTH : 328 HRS ON JARS : 8 BHA DESCRIPTION : 8 Points 940.0 1,199.0 1,360.0 Bulk Stocks 1	4 WT BLV 3 BHA WT Bit, 6 1/2" motor, X HWDP TVD INCL 1.8 4.0 3.0 Drill Water Pot Jsed Stock	T: 64 J/O, R/Reamer, 6 1/2" D Z. Pumps # MAI 1 GD- 2 GD- t. Water Fuel d Stock Used Sto	PICK UP WT : SLK 0FF WT : 0C. R/Reamer, 15 x 6 1/2" Pump Data - 1a KE/TYPE LINR AVSPM PZ8 6.00 PZ8 6.00 143 Barite ck Used Stock Use	144 136 DC's, Jars, IST 24 hrs AVFLOW 400 Gel ed Stock 0 185	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO AVEPRESS SLV 1,500 Cement Used Stock	110 : 60 5 x 4 1/2" WPump Rates WSPM SLWPRE 45 24 55 30 Diesel Used Used Stock
BHA # : 2 BHA LENGTH : 328 HRS ON JARS : 8 BHA DESCRIPTION : 8 Points 940.0 1,199.0 1,360.0 Bulk Stocks 1	4 WT BLV 3 BHA WT Bit, 6 1/2" motor, X HWDP TVD INCL 1.8 4.0 3.0 Drill Water Pot Jsed Stock	T: 64 Z/O, R/Reamer. 6 1/2" D Z. Pumps # MAI 1 GD- 2 GD- t. Water Fuel d Stock Used Sto 0 COMPANY NAME	PICK UP WT : SLK 0FF WT : PUMP Data - 1a KE/TYPE LINR AVSPM PZ8 6.00 PZ8 6.00 PZ8 6.00 143 Barite ck Used Stock Use 0 127 657 Drills and Inspec # DRILL TYPE	144 136 DC's, Jars, IST 24 hrs AVFLOW 400 Gel ed Stock 0 185	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO AVEPRESS SLV 1,500 Cement Used Stock	110 60 5 x 4 1/2" WPump Rates WSPM SLWPRE 45 24 55 30 Diesel Used Stock 2,800 14,700
BHA # : 2 BHA LENGTH : 328 HRS ON JARS : 8 BHA DESCRIPTION : 8 Points 940.0 1,199.0 1,360.0 Bulk Stocks 1 ersonnel 1	A WT BLV BHA WT BHA WT BHA WT BHA WT TVD INCL A2 1.8 4.0 3.0 Drill Water Pot Jsed Stock Used 0 NAME Kevin Kelly Henry Flink Andy Ion	T: 64 Z/O, R/Reamer, 6 1/2" D Z. Pumps # MAI 1 GD- 2 GD- t. Water Fuel d Stock Used Sto 0 COMPANY NAME Halliburton Mudloggi Velocity Data IDFS	PICK UP WT : SLK 0FF WT : Pump Data - 1a KE/TYPE LINR AVSPM PZ8 6.00 143 PZ8 6.00 143 Ck Used Stock Use 0 127 657 Drills and Inspe	144 136 DC's, Jars, AVFLOW 400 Gel ed Stock 0 185 ections TIMING 27/05/96	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO AVEPRESS SLV 1,500 Cement Used Stock 0 150	110 60 5 x 4 1/2" w Pump Rates WSPM SLWPRE 45 24 55 30 Diesel Used Stock 2,800 14,700 IS Z81 20/5/96 DATE 4/6/96
BHA # : 22 BHA LENGTH : 328 HRS ON JARS : 28 BHA DESCRIPTION : Points 940.0 1,199.0 1,360.0 Bulk Stocks U Personnel JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO RESERVOIR ENGINEER WELLSITE GEOLOGIS	4 WT BLV 3 BHA WT Bit, 6 1/2" motor, X HWDP TVD INCL A 4.0 3.0 Drill Water Pot Jsed Stock Used 0 NAME Kevin Kelly Henry Flink Andy Ion T Dave Horner	T: 64 J/O, R/Reamer, 6 1/2" D Z. Pumps # MAI 1 GD- 2 GD- t. Water Fuel d Stock Used Sto 0 COMPANY NAME Halliburton Mudloggi Velocity Data IDFS ODE Australian DST	PICK UP WT : SLK 0FF WT : PC. R/Reamer, 15 x 6 1/2" PUMp Data - 1a KE/TYPE LINR AVSPM PZ8 6.00 PZ8 6.00 PZ8 6.00 143 PZ8 6.00 PZ8 7.00 PZ8 7.00	144 136 DC's, Jars, St 24 hrs AVFLOW 400 Gel ed Stock 0 185 ections TIMING 27/05/96 27/05/96	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO AVEPRESS SLV 1,500 Cement Used Stock 0 150 INSPECTION DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE	110 : 60 5 x 4 1/2" w Pump Rates WSPM SLWPRE 45 24 55 30 Diesel Used Stock 2,800 14,700 IS TIMING 281 21/5/96 20/5/96 4/6/96
HRS ON JARS : E BHA DESCRIPTION : Particle Points only : 940.0 1,199.0 1,199.0 1,360.0 1,199.0 1,360.0	WT BLV Bit, 6 1/2" motor, X Bit, 6 1/2" motor, X HWDP TVD INCL A 1.8 4.0 3.0 Drill Water Pot Jsed Stock Used 0 Kevin Kelly Henry Flink Andy Ion Dave Horner DEPTH 1,373.0 Cont rev to build r 1,373.0 POH wit 1,373.0 P/U and 1,373.0 P/U and 1,373.0 P/U and 1,373.0 RIH with	T: 64 Z/O, R/Reamer, 6 1/2" D Z. Pumps # MAI 1 GD- 2 GD- t. Water Fuel d Stock Used Stock Used Stock Used COMPANY NAME Halliburton Mudloggi Velocity Data IDFS ODE Australian DST Halliburton Dir Drill verse circ 940 stks. mud weight from 8. h test tools. L/O 2 c 'o DST tools. m/u R/reamer, 6 1/	PICK UP WT : SLK 0FF WT : PC. R/Reamer, 15 x 6 1/2" Pump Data - 1a KE/TYPE LINR AVSPM PZ8 6.00 PZ8 6.00 PZ8 6.00 PZ8 6.00 143 PZ8 6.00 PZ8 7.00 PZ8 7.00	144 136 DC's, Jars, AVFLOW 400 Gel ed Stock 0 185 ections TIMING 27/05/96 27/05/96 27/05/96	TRQE ON : TRQE OFF 2 x 6 1/2" DC's, 15 SIO AVEPRESS SLV 1,500 Cement Used Stock 0 150 INSPECTION DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE SAFETY MEETING SAFETY MEETING	110 : 60 5 x 4 1/2" WPUMP Rates WSPM SLWPRE 45 24 55 30 Diesel Used Used Stock 2,800 14,700 IS TIMING 21/5/96 20/5/96 0ATE 2/5/5/96

Cultus	DAILY	DRILLING REPORT	Skull Creek #1
REPORT#: 8	Report Date: 26/05/96	Issue Date :27/05/96	Page Number: 1
Basic Data DRILL CO RIG KB TO GRND LVL JRND LVL AMSL	ODE DEPTH 30 PROGRESS 4 98 DAYS FROM SPUD 92 0 DAYS +/- CURVE	1.373.0 HOLE SIZE : 8.50 5.0 LAST CSG SIZE : 9-5/8 0: 7 92 SHOE DEPTH : 332.50 0 0 LEAK-OFF : 13.50	" DAILY COST \$73,844.00 CUM COST \$609,864.00
Gas and General I FORMATION MAX GAS : B/G GAS % :	Data Eumeralla WEATHER STATUS @ 0600	Sunny and cool Complete rev circ after DST. Circ. build 13%/LW 8.6	ding MW up to 9.2. Max gas
SERIAL # : I DEPTH IN m :	OT FLOW : 3 FDSSH PUMP PRESS. : 1,1 LF6918 NOZZLES : 14 1,368.0 HHSI : 1 1,373.0 ANN VEL DP : 1 5.0 ANN VEL DC : 24	12 VISCOSITY: 42 2 PV: 8 52 YP: 15 86 GEL 10 sec : 6 88 GEL 10 min : 21 API FL : 8.8 FILTER CAKE : 2 SOLIDS : 5.9	%LGS: 6 %DS: 5 SAND: Tr MBT: 13.0 PH: 9.5 CI: 4,100 K+: 2,600.0 HARD/Ca: 720 6RPM: 8 DAILY COST: \$2,945.00 CUM. COST: \$16,701.00
BHA and Drilling In BHA #: 3 BHA LENGTH: 321 HRS ON JARS: 3 BHA DESCRIPTION: 3 rvey MD Joints 940.0 1,199.0 1,360.0	WT BLW JAR : BHA WT : Bit, J/sub, B/sub, 6 1/2" D/C, R/R, 18 x TVD INCL 1.8	STRING WT : 60 PICK UP WT : 50 SLK 0FF WT : 6 6 1/2" D/C, Jars, 2 x 6 1/2" D/C, 12 x HW Pump Data - 1ast 24 hrs MAKE/TYPE LINR AVSPM GD-PZ8	Slow Pump Rates
	Drill Water Pot. Water Fue Ised Stock Used S	el Barite Gel Stock Used Stock Used Stock 0 40 784 0 185	Cement Diesel Used Stock Used Stock 0 150 2,400 17,500
Personnel		Drills and Inspections	
JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO RESERVOIR ENGINEE WELLSITE GEOLOGIS	Andy Ion Australian DST	i 3 FIRE E INCIDENT F 1 PIT DRILL 2/05/96 N 21 TRIP DRILL 26/05/96 S	INSPECTIONSTIMINGDAYS SINCE LTA2803OP TEST21/5/96RIG INSPECTION20/5/96JEXT TEST DUE DATE4/6/962AFETY MEETING25/5/96
FROM TO HRS	DEPTH	DESCRIPTION-ACTIVITY	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,368.0Cont b/dn and lay out tes1,368.0Make up bit, junk sub, b/s1,368.0Slip 33 feet drill line Rese1,368.0Cont RIH to 11931,368.0B/circ and wash from 1191,368.0Cont RIH to 1354m1,373.0B/circ and wash to btm 11,373.0Circ btm's up, pump pill1,373.0POH to m/u DST #2 tools1,373.0RIH with DST #2 tools1,373.0RIH with DST #2 tools1,373.0Rig up head, manifold an1,373.0Inflate packer and set, oppast packer. re inflate/opeDeflate, drop down 2.5 m	st tools sub and r/reamer. RIH to shoe et COM 93 to 1224m 368 m. Work junk sub and drill 5 r s d surface lines ben & close tool, re inflate, open &	close tool. communication

Cultus

DAILY DRILLING REPORT

Skull Creek #1 Page Number :

2

REPORT# : 8 Report Date: 26/05/96 Issue Date : 27/05/96

FROM				BEGORI HOR ACTIVITY
20:00 (0:00	4.0	1,373.0	Pull packer free at 20:30. Fill hole, reverse circ 220 stks, circ to clean out ports, reverse circ 147 stks, circ to clean out ports, reverse circ.

Cultus		DAILY DR	RILLING REPORT	Skull Creek #1
REPORT#: 7	Report Date:	25/5/96	Issue Date : 26/5/96	Page Number : 1
Basic Data DRILL CO RIG : RKB TO GRND LVL GRND LVL AMSL	498 DAYS	RESS FROM SPUD 6	8 0 HOLE SIZE 8 50 0.0 LAST CSG SIZE 9-5/8" 92 SHOE DEPTH 332.50 0.0 LEAK-OFF 13.50	DAILY COST: \$28,023 CUM COST: \$536,020
Gas and General Data FORMATION : E MAX GAS % : B/G GAS % :	Eumeralla WEATH STATU		ain periods, cool IH and work junk bit to 1373 m. Circulat	ting bottoms up.
Bit/Hydraulics BIT # : SIZE : MFR : O TYPE : SERIAL # : DEPTH IN m : TH OUT m : METERAGE : TOT HRS :	ROTATE HRS : AVE WOB : AVE RPM : FLOW : PUMP PRESS. : NOZZLES : BIT HHSI : ANN VEL DP : ANN VEL DC : BIT VEL mps :		Mud Properties SAMPLE FROM : PIT TYPE : F.W.Poly TIME : 22:30 WEIGHT : 9:20 VISCOCITY : 44 PV : 10 YP : 17 GEL10S : 7 GEL10M : 18 APIFL : 8.6	%LGS : 6 %DS : 5 SAND : Tr MBT : 16.0 PH : 9.0 CI : 3,700 K+ : 2,500.0 HARD/Ca : 1,600 6RPM : 9
BIT # : WEAR I: O1: D: BHA and Drilling Inform		02: R:	FILTER CAKE : 2 SOLIDS : 6.3	DAILY COST : \$3,727.00 CUM. COST : \$13,756.00
BHA # : BHA LENGTH : HRS ON JARS : "HA DESCRIPTION : DST	WT BLW JAR : BHA WT : T # 1		STRING WT : PICK UP WT : SLK OFF WT :	TRQE MAX : TRQE ON : TRQE OFF :
Survey (3 points only) MD TVI 940.0 1,199.0 1,360.0	INCL AZ. 1.8 4.0 3.0	umps # MAKI 1 GD-P 2 GD-P	Z8 6.00 100 110	Slow Pump Rates VEPRESS SLWSPM 500 SLWPRES
Bulk Stocks Drill Used	Water Pot. Water Stock Used Stoc	k Used Stock	Barite Gel Vised Stock Used Stock 0 47 824 0 185	Cement Diesel Used Stock Used Stock 0 150 6,100 19,900
Personnel JOB TITLE		PANY NAME #	Drills and Inspections	
DRILLING ENGINEER Kev DRILLING SUPERVISOR Hen RESERVOIR ENGINEER And	in Kelly IDFS nry Flink ODE ly Ion Australi	y Data Iton Mudloggin an DST	1 FIRE BC 3 INCIDENT RI 1 PIT DRILL 2/05/96 NE	AYS SINCE LTA 278 OP TEST 21/5/96 IG INSPECTION 20/5/96 EXT TEST DUE DATE 4/6/96 AFETY MEETING 25/5/96

LABEL

	FROM	то	HRS	DEPTH	DESCRIPTION-ACTIVITY
	0:00	1:00	1.0	1,368.0	Cont. P/u and Make up DST tools.
	1:00	2:00			RIH to 350 m
	2:00	2:30	.5	1,368.0	Slip 33 ft drill line. Reset C.O.M.
	30	3:30			Fill Pipe with sodium nitrate bumper 350 m.
_	1	5:00			Cont RIH with DST #1. S.L.M. in.
1		5:30			P/u and m/u test head and surface lines.
1		6:00	.5	1,368.0	Rig service
f		6:30	.5	1,368.0	Inflate packers.
1		7:00	.5	1,368.0	Check head up and surface lines.
	7:00	7:30	.5	1,368.0	Hold safety meeting - pre DST

Cultus

ŧ

DAILY DRILLING REPORT Skull Creek #1

REPO	RT# :	7	Rep	ort Date:	25/5/96	Issue Date : 26/5/96	Page Number : 2
FROM	то	HRS	DEPTH			DESCRIPTION-ACTIVITY	
30	12:00	4.5		with bubbles Expect mech 1222m. Ope bucket).	s down to 3 in nanical proble n tool @ 12:1 areline and b	221 m. Open tool @ 8:25 for 10 . Open tool at 9:12 for main flow em or plugged tool. Unseat pack 1. Afetr 20 min bubble started g ubble died. S/I @ 11:00, unseate flaring	v, still weak flow. ers and reset @ 1200 to etting stronger (bottom of
12:00	14:00	2.0				nd conventionally circulate.	
14:00	16:30					140 k overpull.	
16:30	17:00					Set down 60 k and hold 300 am	p torque.
17:00	17:30	.5	1,368.0	Rig up BPB.	Pipe came fr	ee. Rig down down BPB.	
17:30	19:00			Work pipe. c			
19:00	22:00	3.0	1,368.0	Flow check,	POOH with D	ST tools.	
22:00	0:00	2.0	1,368.0	B/out DST to	ols.		

Cultus		DAILY	DR	ILLING REI	PORT		Skull (Creek #1
REPORT#: 6	Report D	ate: 24/5/96	; I	lssue Date	: 25/5/96	P	age Num	ber: 1
Basic Data DRILL CO RIG RKB TO GRND LVL GRND LVL AMSL	ODE 30 4.98 92.0	DEPTH PROGRESS DAYS FROM SPUD DAYS +/- CURVE		0 LAST CS	G SIZE 9-5 EPTH 332.5	78" DAILY 50 CUM C	ERS ON SI COST : ♪ OST : ♪ S DST : ♪ 8	25,161 507 497
Gas and General D FORMATION : MAX GAS % : B/G GAS % :	a ta Eumeralla	WEATHER : STATUS @ 0600 :		n periods, mod. wi with DST#1. Wai	-	o run test.		
SERIAL # : S OTPTH IN m : JTH OUT m : JTH OUT m : METERAGE : METERAGE : METERAGE : TOT HRS : METERAGE : BIT # : 2 WEAR I: 8 01:8	ROTATE 2 AVE WC 8.50 AVE RPI HU FLOW P 002W5 NOZZLE 335.0 BIT HHS 1,368.0 ANN VEL 1,033.0 ANN VEL 1,033.0 BIT VEL r IADC # D:WT L:A B:E	DB: M: 1 RESS.: 1,5 S: 11 11 I: DP: 11 .DC: 28 mps: 31 4 2 7	12 64 35 78	Mud Propert SAMPLE FROM TYPE : TIME : WEIGHT : VISCOCITY : PV : YP : GEL10S : GEL10M : APIFL : FILTER CAKE : SOLIDS :	M : FL F.W.Poly 21:00 9:30 48 12 20 12 26 8.8	1	:): /Ca: : COST:	7 5 Tr 23.0 9.5 3,300 700 12 \$1,687.00 10,355.00
BHA and Drilling InBHA #:2BHA LENGTH:327HRS ON JARS:182PHA DESCRIPTION:	WT BLV BHA W	W JAR : 62 T : 69 R, 6.5" pony DC, string	g R/R,	STRING WT : PICK UP WT : SLK OFF WT : 6.5' DC, string R/	146 140	TRQE TRQE	OFF :	220 220 180 WDP
(3 points MD	TVD INCL A	Z. Pumps			a - last 24 hrs		Slow Pur	np Rates
only) 940.0 1,199.0 1,360.0	1.8 4.0 3.0	1 G	D-PZ8		SPM AVFLOW 125 350	AVEPRESS 1,500	SLWSPM 45 55	SLWPRES 280 380
	Drill Water Pot sed Stock Used	the second se	l tock O	Barite Used Stock 0 871	Gel Used Stock 0 185	+	nt D ock Used 150 3,500	iesel Stock 26,000
Personnel				Drills and In	spections			
JOB TITLE DRILLING ENGINEER DRILLING ENGINEER DRILLING SUPERVISOR RESERVOIR ENGINEER WELLSITE GEOLOGIST	Andy Ion	COMPANY NAME BPB Halliburton Mudloggir IDFS ODE Australian DST Halliburton Cementers	1 21 2	DRILL TYP FIRE INCIDENT PIT DRILL TRIP DRILL	E TIMING 2/05/96	INSPEC DAYS SINCE BOP TEST RIG INSPEC NEXT TEST SAFETY MEE	E LTA TION DUE DATE	TIMING 278 21/5/96 20/5/96 4/6/96 24/5/96
LABEL				I				

FROM	то	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	6:00	6.0	1,368.0	Drill 8.5" hole from 1338 to 1368 mRT
6:00	6:30	.5	1,368.0	Circ btm's up
6:30	8:00	1.5	1,368.0	POH 10 std wiper trip to 1076m. RIH to 1360m. 18 units of gas on wiper trip.
8.00	9:00	1.0	1,368.0	B/circ wash to bottom. Circ hole clean.
• ,	13:30	4.5	1,368.0	Pump pill, drop survey and POH to log. SLM out. Break out bit. Recover survey - 3 deg at 1360 m.
	22:00 0:00	8.5 2.0	1,368.0 1,368.0	Rig up BPB. Run #1: LCS/DFE - 1368 to 330 m. Run #2: PDS/CNS. Rig down BPB P/up 6 1/2" D/C. P/u and Make up DST tools.

Cultus	DAIL	Y DRILLING REPORT	Skull Creek #1
REPORT# :	5 Report Date: 23/05/9	6 Issue Date : 24/05/96	Page Number : 1
Basic Data DRILL CO. RIG : RKB TO GRND LVI GRND LVL AMSL :	ODE DEPTH 30 PROGRESS - 4 98 DAYS FROM SPL 95 0 DAYS +/- CURVE	1,338.0 HOLE SIZE 8.5 180.0 LAST CSG SIZE 9-5/ JD 4.92 SHOE DEPTH 332.5 9 LEAK-OFF 13.5	8" DAILY COST: \$29,356.00 0 CUM COST: \$482,836.00
Gas and Gener FORMATION : MAX GAS : B/G GAS % :	Al Data Eumeralla WEATHER 6 2 STATUS @ 0600 : .6	Rain periods, mod. winds, cold Drilled to 1368 m. ROP 1.5 m/hr. Circ and POH.	ulating btm's up prior to wiper trip
SERIAL # : DEPTH IN m : DEPTH OUT m : METERAGE : TOT HRS : BIT # : 2	SO2W5 NOZZLES : 11 1 335.0 HHSI : ANN VEL DP : 1,003.0 ANN VEL DC : BIT VEL mps : 11.5 BIT VEL mps : IADC # 4 2 7 1: D: L: B: G: 02: R:	40.7 Mud Properties 15 SAMPLE FROM : FL 100 TYPE : F.W.Poly 350 TIME : 24:00 500 WEIGHT : 9:30 112 VISCOSITY : 46 4 PV : 11 164 YP : 17 285 GEL 10 sec : 9 378 GEL 10 min : 32 API FL : 9.6 FILTER CAKE : 2 SOLIDS : 7.1	%LGS: 7 %DS: 5 SAND: Tr MBT: 20.0 PH: 9.5 CI: 3,200 K+: HARD/Ca: 920 6RPM: 9 DAILY COST: \$4,750.00 CUM. COST: \$8,667.00
BHA # : BHA LENGTH :	2 WT BLW JAR 62 327 BHA WT 69 176	STRING WT : 142 PICK UP WT : 144 SLK 0FF WT : 140 tring R/R, 6.5" DC, string R/R, 18x6.5" DC	TRQE MAX : 220 TRQE ON : 180 TRQE OFF : 100 , 6.5" jars, 2x6.5" DC,
(3 points only) (3 points 0 (3 points) (3 po		Pump Data - last 24 hrsMAKE/TYPELINRAVSPMAVFLOWGD-PZ86.00125350GD-PZ86.00125350	Slow Pump RatesAVEPRESSSLWSPM1,50045275538
Bulk Stocks	Drill Water Pot. Water Fu Used Stock Used Stock Used 0 0 0 0 0	Iel Barite Gel Stock Used Stock Used Stock 0 0 871 55 185	CementDieselUsedStockUsed01503,80029,500
Personnel JOB TITLE		Drills and Inspections	
DRILLING ENGINEE DRILLING ENGINEE DRILLING SUPERVI WELLSITE GEOLOG	R Bruce Richardso R Kevin Kelly SO Henry Flink ODE	2 ggi 3 1 20 FIRE 1 NCIDENT 20 PIT DRILL 23/05/96	INSPECTIONSTIMINGDAYS SINCE LTA277BOP TEST21/5/96RIG INSPECTION20/5/96NEXT TEST DUE DATE4/6/96SAFETY MEETING23/5/96
	SDEPTH	DESCRIPTION-ACTIVITY	
4:00 4:30	5 1,212.0 Drill 8.5" hole from 1158 5 1,212.0 Circulate and survey at 5 1,214.0 Drill 8.5" hole from 1212 0 1,214.0 Circulate sample at Geo pill.	1199m, 4 deg. 2 to 1214 mRT	nd cont. to circ. Mix and pump

- 9:00 2.5 1,214.0 POH. Wiper trip to shoe. RIH to 1209m. 11:00 2.0 1,214.0 B/circ, wash to Btm and circ 5 mins. Pull back one std and circ and cond mud. 0:00 13.0 1,338.0 Drill 8.5" hole from 1214 to 1338 mRT 6:30 9:00 11:00

Cultus		DAILY D	RILLING REPORT	Skull Creek #
REPORT#: 4	Report Date:	22/05/96	Issue Date : 23/05/96	Page Number :
Basic Data DRILL CO. : RIG (B TO GRND LVL URND LVL AMSL :	4 98 DAYS		58.0 HOLE SIZE : 8.50 77.0 LAST CSG SIZE : 9-5/8' 3 92 SHOE DEPTH : 332.50 .9 LEAK-OFF : 13.50	DAILY COST \$26,500.0 CUM COST \$453,500.0
Gas and General D FORMATION : MAX GAS % : B/G GAS % :	Skull Creek WEAT	US @ 0600 : F	Rain periods, mod. winds, cold POH for wiper trip from 1214 mRT to si cone)	noe prior to DST (likely Waare
SERIAL # : S DEPTH IN m :	ROTATE HRS 2 AVE WOB : 8.50 AVE RPM : HU FLOW : PUMP PRESS. 02W5 NOZZLES : 335.0 HHSI : 1.158.0 ANN VEL DP : 823.0 ANN VEL DC : BIT VEL mps : IADC # 4 2 D: L: B: G:	15 100 350 1,450 11 11 12 4 164 285 378	TYPE: NativeClay	%LGS : 7 %DS : 5 SAND : 1.5 MBT : 15.0 PH : 8.5 CI : 390 K+ : 980 6RPM : 6 DAILY COST : \$2,099.00 CUM. COST : \$3,917.00
BHA and Drilling In BHA #: 2 BHA LENGTH: 327 HRS ON JARS: 159 BHA DESCRIPTION:	WT BLW JAR BHA WT : 8.5" bit, near bit R/R, 6.5" 12xHWDP TVD INCL 0.0 .5	69 " pony DC, string F Pumps # MAK 1 GD-F		Slow Pump Rates
940.0	1.8	2 GD-F	PZ8 6.00	55 43
·	Drill Water Pot. Wa sed Stock Used Sto 0		BariteGelckUsedStockUsedStock0087124240	Cement Diesel Used Stock Used Stock 0 150 5,200 33,300
ersonnel			Drills and Inspections	
JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	Austra IDFS Bruce Richardso Henry Flink ODE	alian DST urton Mudloggi 2	1 IFIRE B 3 INCIDENT R 20 PIT DRILL N	INSPECTIONSTIMINGAYS SINCE LTA276OP TEST21/5/96IG INSPECTION20/5/96EXT TEST DUE DATE4/6/96AFETY MEETING20/5/96
DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST ROM TO HRS D 0:00 00:30 .5	Bruce Richardso Henry Flink Dave Horner DEPTH	alian DST urton Mudloggi urton Cemente	1 1 1 1 3 FIRE 3 INCIDENT PIT DRILL N TRIP DRILL S DESCRIPTION-ACTIVITY	AYS SINCE LTA 276 OP TEST 21/5/96 IG INSPECTION 20/5/96 EXT TEST DUE DATE 4/6/96
DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	Austra IDFS Henry Flink Dave Horner DEPTH 481.0 Circulate hole 481.0 Pump up and 642.0 Drill 8.5" hole 642.0 Drill 8.5" hole	alian DST urton Mudloggi urton Cemente e clean, 7m of f recalibrate geo from 481m to 6 In survey, unat from 642 to 65 5mins, POH 1	1 FIRE B 320 PIT DRILL N 2 TRIP DRILL N DESCRIPTION-ACTIVITY S. fill, sweep hole with Hi-vis pill olograph ROP sensor 642 mRT ble to pass 292m, pull survey. 51 mRT 1 stands for wiper trip, change	AYS SINCE LTA 276 OP TEST 21/5/96 IG INSPECTION 20/5/96 EXT TEST DUE DATE 4/6/96 AFETY MEETING 20/5/96

Cultus		DAILY D	RILLING REPO	RT	Skull	Creek #
REPORT#: 3	Report Dat	e: 21/05/96	Issue Date : 22	2/05/96	Page Nu	
Basic Data				··· · <u>··</u> · · · · · · · · · · · · · · ·		
DRILL CO RIG 'KB TO GRND LVL JRND LVL AMSL	4 98 D	ROGRESS 14 AYS FROM SPUD 2	1 0HOLE SIZE6 0LAST CSG SI92SHOE DEPTH0 0LEAK-OFF	IZE : 9-5/8"	TOT PERS ON DAILY COST CUM COST AFE COST :	SITE : 2 \$31,300.0 \$426,900.0 \$853,600.0
Gas and General	Data				1	
FORMATION MAX GAS % B/G GAS %	Pember W		loudy, occ. showers,colo rill ahead in 8.5" hole @			
Bit/Hydraulics	ROTATE H	IRS : 3.1	Mud Properties			
SERIAL # : DEPTH IN m : DEPTH OUT m : METERAGE : TOT HRS : BIT # : 2	2 AVE WOB 8.50 AVE RPM : HU FLOW : J- S05D PUMP PRE S02W5 NOZZLES : 335.0 HHSI : 481.0 ANN VEL D 146.0 ANN VEL D BIT VEL mp IADC # 4	20 110 420 2,000 11 11 12 7 197 C: 342 s: 454 2 7	SAMPLE FROM	FL 00:00 9.20 38 8 9 2 23 26.4 4 6.5	%LGS : %DS : SAND : MBT : PH : CI : K+ : HARD/Ca : 6RPM : DAILY COST : CUM. COST :	7 4 2.3 24.0 9.2 380 240 2 \$438.00 \$1,818.00
WEAR I: O1:	D: L: B: (G: 02; R:		I		
	7 BHA WT :	JAR : 62 69	STRING WT : PICK UP WT : SLK 0FF WT :	92 95 89	TRQE MAX : TRQE ON : TRQE OFF :	220 220 100
HRS ON JARS : 140 BHA DESCRIPTION :	7 BHA WT : 0 8.5" bit, near bit R/R, 12xHWDP	69 6.5" pony DC, string R	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R,	95 89 18x6.5" DC, 6	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC,	220 100
HRS ON JARS : 140 BHA DESCRIPTION : Vey MD	7 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ.	69 6.5" pony DC, string R	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R, Pump Data - 1a	95 89 18x6.5" DC, 6 Ist 24 hrs	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, L Slow P	220 100
HRS ON JARS : 140 BHA DESCRIPTION : Vey MD	7 BHA WT : 0 8.5" bit, near bit R/R, 12xHWDP	69 6.5" pony DC, string R	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R, <u>Pump Data - 1a</u> /TYPE LINR AVSPM 28 6.00 75	95 89 18×6.5" DC, 6 IST 24 hrs AVFLOW A 210	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, Slow P VEPRESS SLWSF 2,000	220 100
HRS ON JARS : 140 BHA DESCRIPTION : vey MD points 170.0 329.0	7 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ.	69 6.5" pony DC, string R Pumps # MAKE 1 GD-P2 2 GD-P2	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R, /Pump Data - 1a /TYPE LINR AVSPM 28 6.00 75 28 6.00 75	95 89 18x6.5" DC, 6 15t 24 hrs AVFLOW A 210 210	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, Slow P VEPRESS SLWSF 2,000 2,000	220 100 ump Rates 20 SLWPRE 45 24 55 34
HRS ON JARS : 140 BHA DESCRIPTION : points MD 170.0 329.0 Bulk Stocks	7 0 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. .3 0.0 Drill Water Pot. V Jsed Stock Used	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel Stock Used Stock	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R, Pump Data - la /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 29 75 28 6.00 75 28 75	95 89 18x6.5" DC, 6 IST 24 hrs AVFLOW A 210 210 Cel ed Stock	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, Slow P VEPRESS SLWSF 2,000	220 100 WM SLWPRE 45 24 55 34 Diesel
HRS ON JARS : 140 BHA DESCRIPTION : vey MD points 170.0 329.0 Sulk Stocks	7 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL 0.0 Drill Water Pot. 1	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel	PICK UP WT SLK 0FF WT /R, 6.5" DC, string R/R, Pump Data - 1a /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 28 0.00 75 28 0.0	95 89 18x6.5" DC, 6 IST 24 hrs AVFLOW A 210 210 210 Gel	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, Slow P VEPRESS SLWSF 2,000 2,000 Cement	220 100 W Rates M SLWPRE 45 24 34 Diesel d Stock
HRS ON JARS : 14(BHA DESCRIPTION : vey MD points 170.0 329.0 MIK Stocks	7 0 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. .3 0.0 Drill Water Pot. V Jsed Stock Used	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel Stock Used Stock	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R, Pump Data - la /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 28 6.00 75 28 0.00 75 	95 89 18x6.5" DC, 6 ast 24 hrs AVFLOW A 210 210 210 Cel ed Stock 14 264	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, SIOW P VEPRESS SLWSF 2,000 2,000 Cement Used Stock Use	220 100 W Rates M SLWPRE 45 24 34 Diesel d Stock
HRS ON JARS : 140 BHA DESCRIPTION : vey MD points 170.0 329.0 Ulk Stocks	7 0 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. 3 0.0 Drill Water Pot. V Jsed Stock Used 0	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel Stock Used Stock	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R, Pump Data - la /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 29 75 28 6.00 75 28 75	95 89 18x6.5" DC, 6 ast 24 hrs AVFLOW A 210 210 210 Cel ed Stock 14 264	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, SIOW P VEPRESS SLWSF 2,000 2,000 Cement Used Stock Use 0 150 1,60	220 100 N SLWPRE 45 24 55 34 Diesel d Stock 00 13,500
HRS ON JARS : 140 HRS ON JARS : 140 BHA DESCRIPTION : vey MD 170.0 329.0 Sulk Stocks U ersonnel JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO	7 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. .3 0.0 Drill Water Pot. V Jsed Stock Used 0 Bruce Richardso Henry Flink	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Nater Fuel Stock Used Stock 0 0	PICK UP WT : SLK 0FF WT : /R, 6.5" DC, string R/R, Pump Data - la /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 28 6.00 75 28 0 0 75 Barite Used Stock Use 0 0 871 Drills and Inspe DRILL TYPE FIRE INCIDENT	95 89 18x6.5" DC, 6 ast 24 hrs AVFLOW A 210 210 210 210 210 210 210 210 210 210	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, SIOW P VEPRESS SLWSF 2,000 2,000 Cement Used Stock Use	220 100 NUMP Rates M SLWPRE 45 24 55 34 Diesel d Stock 00 13,500 TIMING 274 21/5/96
HRS ON JARS : 140 BHA DESCRIPTION : Vey MD points 170.0 329.0 Bulk Stocks L ersonnel JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIS	7 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. .3 0.0 Drill Water Pot. N Jsed Stock Used 0 Bruce Richardso Henry Flink Dave Horner	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel Stock Used Stock 0 0 0 COMPANY NAME # FS alliburton Mudloggi 2 20	PICK UP WT SLK 0FF WT /R. 6.5" DC, string R/R, /PUMp Data - Ta /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 28 0 75 28 0 75 28 0 75 29 0 871 0 871	95 89 18x6.5" DC, 6 AVFLOW A 210 210 210 Gel ed Stock 14 264 Ections TIMING DA BC RI(NE SA	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, VEPRESS SLWSF 2,000 2,000 Cement Used Stock Use 0 150 1,60 INSPECTIONS VYS SINCE LTA JP TEST 3 INSPECTION XT TEST DUE DAT	220 100 ump Rates M SLWPRE 45 24 55 24 34 Diesel d Stock 00 13.500 TIMING 274 21/5/96 E 4/6/96
HRS ON JARS : 140 BHA DESCRIPTION : vey MD points 170.0 329.0 Bulk Stocks L ersonnel JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIS ROM TO HRS	7 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. 0 Drill Water Pot. Jsed Stock Used 0 Bruce Richardso Henry Flink Dave Horner DEPTH	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel Stock Used Stock 0 0 0 COMPANY NAME # FS 1 alliburton Mudloggi 2 DE 20 20 21 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20	PICK UP WT SLK 0FF WT /R. 6.5" DC, string R/R, /PUMp Data - Ta /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 28 75 28 75 29 0 871 0 871	95 89 18x6.5" DC, 6 18x6.5" DC, 6 18x6.5" DC, 6 18x6.5" DC, 6 10 10 210 210 210 210 210 210	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, SIOW P VEPRESS SLWSF 2,000 2,000 Cement Used Stock Use 0 150 1,60 INSPECTIONS VYS SINCE LTA DP TEST 3 INSPECTION XT TEST DUE DAT FETY MEETING	220 100 200 200 200 200 200 200 200 200
HRS ON JARS : 140 BHA DESCRIPTION : Points MD 170.0 329.0 Bulk Stocks L ersonnel JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIS ROM TO HRS 0:00 07:30 7.5 7:30 11:30 4.0	7 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. .3 0.0 Drill Water Pot. N Jsed Stock Used 0 Bruce Richardso Henry Flink Dave Horner DEPTH 335.0 Continue E 335.0 Pick up cuj Line valves	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel Stock Used Stock 0 0 0 COMPANY NAME # FS alliburton Mudloggi 20 COMPANY NAME 20 COMPANY NAME 4 Stock Used Stock 0 0 0 COMPANY NAME 4 Stock 12 COMPANY NAME 4 COMPANY A COMPANY A	PICK UP WT SLK 0FF WT /R, 6.5" DC, string R/R, /PUMP Data - Ta /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 29 0 871 20	95 89 18x6.5" DC, 6 Ist 24 hrs AVFLOW A 210 210 CTIVITY Uface equire	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, SIOW P VEPRESS SLWSF 2,000 2,000 Cement Used Stock Use 0 150 1,60 INSPECTIONS VYS SINCE LTA DP TEST 3 INSPECTION XYT SSINCE LTA DP TEST 3 INSPECTION XYT SSINCE LTA DP TEST 3 INSPECTION XYT SSINCE LTA DP TEST 3 INSPECTION	220 100 200 200 200 200 200 200 200 200
HRS ON JARS : 140 BHA DESCRIPTION : vey MD points 170.0 329.0 Bulk Stocks Comparison Comparison Bulk Stocks Comparison Comparison Bulk Stocks Comparison Comparison Comparison br>Comparison Compari	70 BHA WT : 8.5" bit, near bit R/R, 12xHWDP TVD INCL AZ. 0 TVD INCL AZ. 0 Drill Water Pot. Jsed Stock Used 0 Bruce Richardso Henry Flink Dave Horner Ha 335.0 Continue E 335.0 Pick up cup line valves. 335.0 Pick up and 335.0	69 6.5" pony DC, string R # MAKE 1 GD-P2 2 GD-P2 Water Fuel Stock Used Stock 0 0 0 COMPANY NAME # FS alliburton Mudloggi 2 COMPANY NAME # FS alliburton Cemente 2 COMPANY NAME # FS COMPANY NAME # COMPANY NAME # FS COMPANY NAME # COMPANY NAME # COMPANY	PICK UP WT SLK 0FF WT /R, 6.5" DC, string R/R, PUMP Data - Ta /TYPE LINR AVSPM 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 28 6.00 75 29 0 871 20	95 89 18x6.5" DC, 6 ast 24 hrs AVFLOW A 210 210 210 Criving Criving Criving Criving Sure test ment @ 316	TRQE ON : TRQE OFF : 5.5" jars, 2x6.5" DC, SIOW P VEPRESS SLWSF 2,000 2,000 Cement Used Stock Use 0 150 1,60 INSPECTIONS VYS SINCE LTA DP TEST 3 INSPECTION XYT SSINCE LTA DP TEST 3 INSPECTION XT TEST DUE DAT FETY MEETING	220 100 200 200 200 200 200 200 200 200

- 367.0 Drill 8.5" hole from 340 o 367mRT 367.0 Repair mudlogging block/ROP indicator 481.0 Drill ahead 8.5" hole from 367 481 mRT 0 .30 20:00 20:30 00:00 .5 3.5

Cultus		DAILY D	RILLING REPOR	Γ	Skull	Creek #
REPORT#: 2	Report Date:	20/05/96	Issue Date : 21/	05/96	Page Nur	mber:
Basic Data DRILL CO RIG (B TO GRND LVL (ND LVL AMSL	4 98 DAYS 95 0 DAYS	RESS	35 0 HOLE SIZE : 29 0 LAST CSG SIZE 1 92 SHOE DEPTH 0 0 LEAK-OFF :	12.25 9-5/8" 332.50	TOT PERS ON S DAILY COST CUM COST AFE COST	SITE 556,500.0 \$394,900.0 \$853,600.0
Gas and General D FORMATION MAX GAS % B/G GAS %	Narrawaturk WEAT	•	Cloud patches, occas, show Continue to nipple up BOP's			ent.
MFR : TYPE : OS	ROTATE HRS : 1 AVE WOB : 12.25 AVE RPM : HU FLOW : 93489 NOZZLES : 9.0 HHSI : 335.0 ANN VEL DP : 326.0 ANN VEL DC : 19.0 BIT VEL mps : IADC # 1 1 1 D:N L:A B:7 G:I	15 120 726 1,000 15 20 20 3 137 165 296	SAMPLE FROM : TYPE : Wate	Pit r/Clay 17:00 8.33 27 0	%LGS : %DS : SAND : MBT : PH : CI : K+ : HARD/Ca : 6RPM : DAILY COST : CUM. COST :	0 0 0.0 6.2 180 440 \$269.00 \$1,380.00
BHA and Drilling In BHA #: 1 BHA LENGTH: 254 HRS ON JARS: 135 BHA DESCRIPTION: S'''rvey ints 170.0 7 170.0 329.0 1170.0	WT BLW JAR : BHA WT : 12.25" bit, bit sub, 2x8" Di	64 C, 12.25" stabilise umps	STRING WT : PICK UP WT : SLK 0FF WT : er, 8" DC, x/o, 9x6.5" DC, 6 Pump Data - last E/TYPE LINR AVSPM A PZ8 6.00 130	24 hrs	Slow P	150 150 80 /ump Rates /M SLWPRE
h	Drill Water Pot. Wated Stock Used Stock		Barite C k Used Stock Used 0 0 871	Gel Stock 1	Cement Jsed Stock Use 490 150 1,9	
ersonnel			Drills and Inspec	tions		
JOB TITLE DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	HiTorq IDFS Bruce Richardso Hallibu Henry Flink ODE	ue Irton Mudloggi 2		TIMING DA BC RIC NE	INSPECTIONS YS SINCE LTA P TEST 3 INSPECTION XT TEST DUE DAT FETY MEETING	TIMING 274 30/4/96 TE 21/5/96 20/5/96
ROM TO HRS D	EPTH		DESCRIPTION-AC	TIVITY		······································
22:00 03:30 1.5 03:30 04:00 .5 04:00 05:00 1.0 05:00 06:00 1.0 06:00 09:30 3.5 19:30 11:00 1.5 1:00 12:30 1.5	335.0 POH for wiper 335.0 Circulate shak 335.0 POH to run 9- 335.0 Rig up to run c 335.0 Run 9-5/8" mix 335.0 Circulate casin 335.0 Rig in cementi bump plug, pre	survey @ 329 trip, RIH to 32 ers clean 5/8" casing, br asing ked casing stri g and condition ng head and lit essure test cast	m, displace active sys 29, wash to bottom, no reak out bit, recover su ng to 332.5 mRT, circl on mud ines, hold JSA, cemen sing to 2500psi	o fill. irvey. ulate last j t 9-5/8" ca	oint down.	

								Creek #
Report D	ate: 19	9/5/96	lssue	Date : 2	0/5/96	F	Page Num	iber :
ODE 30 4.98 95.0	DAYS FRO	S : M SPUD :	3060 L 092 S	AST CSG S	IZE 1	6" DAILY D CUM (COST: ≸ COST: Љ	340, 700
ata Narrawaturk 0.0 0.0		0600 :	Drill from 306	i to 335 mRT		-5∕8" casing	, pick up sho	e & float
1 AVE WC 12.25 AVE RPI HU FLOW : SC IGJ PUMP PI 93489 NOZZLE: 9.0 BIT HHS 306.0 ANN VEL 17.5 BIT VEL r IADC # D: L: B: B:	DB : M : RESS. : S : I : DP : DC : mps : 1 1 1 G: O2:	10 120 726 1,000 15 20 20 137 165 296 	SAMPL TYPE : TIME : WEIGH VISCO PV : YP : GEL100 GEL100 APIFL : FILTER	E FROM : W HT : CITY : S : M : CAKE :	Pit 2ater/Clay 5:00 9.25 35 8 7 1 4 17.9 3 6.9	%DS SANI MBT PH : CI : K+ : HARE 6RPM DAILY)/Ca : 1: COST :	7 5 Tr 19.0 8.8 220 340 1 \$1,111.00 \$1,111.00
BHA W	Т:	47 64 25" stabilise	PICK U SLK OF	JP WT : F WT :	74 76 70 5.5" jars, 2x6.	TRQE TRQE	E ON : E OFF :	150 150 80
	Pump		Pu	mn Data . Ia	et 24 hre			
	<u>z. </u>					AVEPRESS	SLWSPM	SLWPRES
0.0]	1 GD-	PZ8 6.	00 130	363	1,000		
rill Water Po	t Water	Fuel	Por	to 1	0.1			
ed Stock Used	d Stock L		k Used	Stock Us	ed Stock	Used St	ock Used	
						0	640 3,000	0 17,000
NAME	001/24/2							
Bruce Richardson	IDFS Halliburton M ODE	ludloggin	1 2 2 20 1 1 FIRE 20 1 1 NCIDE		l E F	DAYS SINCE BOP TEST RIG INSPEC	E LTA TION DUE DATE	TIMING 273 30/4/96 21/5/96 19/5/96
	ODE 30 498 95.0 Pata Narrawaturk 0.0 0.0 ROTATE AVE WC 12.25 AVE RP HU FLOW P SC IGJ 9.0 BIT HHS 306.0 17.5 BIT HUS SC IGJ 9.0 17.5 BIT HHS 306.0 17.5 IADC # D: IADC # D: D: B: Formation WT BLN BHA W 12.25" bit, bit sub, 1 TVD INCL A A D: L: B: Formation WT BLN BHA W 12.25" bit, bit sub, 1 BHA W D: L: B: TVD INCL A A D: L: B: Formation WT BLN BHA W 12.25" bit, bit sub, 1 BHA W D: INCL A A BHA W D: L BHA W D: D: D: INCL A J J D: INCL A J Bruce Richardson Henry Flink D: D: D:	ODE 30 DEPTH PROGRES 498 498 DAYS FRO DAYS FRO 950 980 DAYS FRO DAYS +/- C Pata Narrawaturk 0.0 Narrawaturk 0.0 WEATHER STATUS @ 1 AVE WOB: AVE RPM: FLOW: FLOW: FLOW: FLOW: FLOW: SC IGJ 90 SC IGJ 90 PUMP PRESS: NOZZLES: 90 91T HHSI: 306.0 ANN VEL DP: ANN VEL DP: BIT VEL mps: 306.0 ANN VEL DC: BIT VEL mps: 17.5 BIT VEL mps: IADC # 1 1 1 1 D: L: BHA WT: 12.25" bit, bit sub, 2x8" DC, 12.2 TVD INCL AZ O O Drill Water Pot. Water ied Stock US JDFS Bruce Richardson Halliburton M ODE	ODE 30 4.98 950 DEPTH PROGRESS DAYS FROM SPUD DAYS +/- CURVE Pata Narrawaturk 0.0 0.0 WEATHER STATUS @ 0600 ROTATE HRS : 10.0 10.0 1 AVE WOB : 10.0 10.0 12.25 HU AVE RPM : 120 FLOW : SC IGJ HU PUMP PRESS :: 1,000 SC IGJ HU PUMP PRESS :: 1,000 S306.0 ANN VEL DP : 137 306.0 ANN VEL DP : 137 ANN VEL DC : 165 17.5 BIT VEL mps : 296 IADC # 1 1 D: L B: G: O2: R: formation WT BLW JAR : 47 BHA WT : 64 12.25" bit, bit sub, 2x8" DC, 12.25" stabilise # MAH 1 GD- 2 GD- Drill Water Pot. Water Fuel God # MAH 1 GD- 2 GD- Drill Water Pot. Water Fuel Stock Stock Used Stock NAME COMPANY NAME Bruce Richardson Halliburton Mudloggin ODE DE	ODE 30 PROGRESS 950 DEPTH PROGRESS 3060 3060 LS S060 H S060 498 950 DAYS FROM SPUD 092 092 S1 S060 DAYS S1 CURVE 00 L Pata Narrawaturk 0.0 WEATHER: Cloud patche 0.0 Drill from 306 joint and chec Pata Narrawaturk 0.0 WEATHER: Cloud patche 0.0 Drill from 306 joint and chec 1 AVE WOB: 100 12.25 AVE RPM: 120 FLOW: TYPE: 1 AVE WOB: 100 FLOW: TYPE: TIME: WEIGH VISCO 9.0 SAMPL SAMPL 12.25 AVE RPM: 120 FVE FLOW: 726 FVE TIME: WEIGH VISCO 9.0 SAMPL SAMPL 30 NOZLES: 15 20 20 FVE BIT HHSI: TIME: WEIGH VISCO 9.0 SAMPL FVE THE: 306.0 ANN VEL DP: 137 FVE THE SOLIDS SECIDE FVE 17.5 BIT VEL mps: 296 OZ STRIN PICK U SLK OF 12.25" bit, bit sub, 2x8" DC, 12.25" stabiliser, 8" DC, x/o, FUE FUE 1 GD-PZB 6 COPZB	ODE 30 DEPTH: PROGRESS 3060 3060 LAST CSG S 3060 HOLE SIZE LAST CSG S SHOE DEPTI LEAK-OFF 498 DAYS FROM SPUD 0AYS FROM SPUD 950 092 SHOE DEPTI LEAK-OFF Pata Narrawaturk 0.0 WEATHER: STATUS @ 0600: Cloud patches, occas, sho 306 to 335 mRT joint and check same 1 AVE WOB: 100 AVE RPM: Drill from 306 to 335 mRT joint and check same 1 AVE WOB: 100 AVE RPM: SAMPLE FROM: 12.25 AVE RPM: 120 HU FLOW: 726 FUMP PRESS: Mud Properties SC IGJ PUMP PRESS: 1,000 AVE RPM: TYPE: WEIGHT: 306.0 ANN VEL DC: 165 BIT VEL mps: 296 BIT HHSI: 137 ANN VEL DC: 165 BIT VEL mps: 296 BIT HHSI: FILTER CAKE : SOLIDS: 306.0 ANN VEL DC: 165 BIT VEL mps: 296 OZ: R: FILTER CAKE : SOLIDS: 12.25° bit, bit sub, 2x8° DC, 12.25° stabiliser, 8° DC, x/o, 9x6.5° DC, 62 GD-PZ8 100 130 2 GD-PZ8 6.00 130 130 0.0 0 0 0 871 1 GD-PZ8 6.00	ODE 30 498 498 950 DEPTH PROGRESS 3060 DAYS FROM SPUD DAYS FROM SPUD 350 HOLE SIZE LAST CSG SIZE 1 SHOE DEPTH SHOE DEPTH STRING WIT STRING WIT STRING WIT SC IG PUMP PRESS: Mud Properties SAMPLE FROM: Pit TYPE: 1 AVE WOB: 1 100 AVE RPM: 1225 AVE RPM: 1225 HUW PRESS: 100 AVE RPM: 1200 SC IG PUMP PRESS: Mud Properties SAMPLE FROM: Pit TYPE: Pit TYPE: SOCITY: 35 PV: 8 VISCOCITY: 35 VISCOCITY: 35 PV: 8 VISCOCITY: 35 PV: 8 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCITY: 35 VISCOCIT	ODE 30 4 98 950 DEPTH: PROGRESS DAYS FROM SPUD 092 DAYS FROM SPUD 092 DAYS +/- CURVE HOLE SIZE 12 25 SHOE DEPTH: DAYS LEAK-OFF: 12 25 90 TOT F DAILY CUM C AFE C Narrawaturk 0.0 WEATHER: 0.0 Cloud patches, occas. showers, cool STATUS @ 0600: 0.0 Drill from 306 to 335 mRT. Rig to run 9-5/8" casing joint and check same 1 AVE WOB: HU 100 FLOW: FLOW	ODE 30 DEPTH: PROGRESS 2060 300 HOLE SIZE LAST CSG SIZE 12 25 LAST CSG SIZE TOT PERS ON SI DAILY COST: 34 CUM COST: 36 CUM COST: 37 CUM COST: 36 CUM COST: 37 CUM COST:

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
02:00	02:30	.5	9.0	SPUD WELL @ 02:00 hrs 19/5/96 Hold pre-spud and safety meetings, make up BHA
02:30	14:00	11.5	183.0	Drill 12.25" hole from surface to 183mRT
14:00	14:30	.5	183.0	Circulate and survey @170m.
14:30	17:00	2.5	220.0	Drill 12.25" hole from 183 to 220mRT
	17:30			Install mudloggers ROP line on blocks
47.30	20:30	3.0	299.0	Drill 12.25" hole from 220 to 299mRT
.30	23:30	3.0	299.0	Mud rings to surface, blocked bell nipple, flowline & shaker possum bellys. Clear same.
				Circulate and use mud pump flowline jet to remove further material.
23:30	00:00	.5	306.0	Drill ahead from 299 to 306mRT

Cultus Petroleum NL

Skull Creek #1

MORNING REPORT - Pre Spud 19/5/96

Lay pit liners, take on water, mix spud mud, 200 bbls @ 17.5 ppb gel Pressure test surface lines to 2000 psi Drill rat hole, drill mouse hole Replace two liners in #2 pump Hold pre-spud & safety meeting Pick up 12.25" bit, bit sub & 8" drill collar and make up BHA. RIH, **Spud well @ 02:00 hrs 19/5/96** Initially drill ahead with one pump at 145 SPM, 400 GPM, maximum available WOB, 50 RPM.

06:00 hrs update Drill ahead in 12.25" hole @ 20m, maximum available WOB, 560 GPM, 80-100 RPM

APPENDIX 4 - DAILY GEOLOGICAL REPORTS

.

ñ,

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 1

Well Name: Skull Creek-1 P

Permit: PPL1

Report Date: 20/ 5 /96

Rig: ODE-30 Cultus Rep: Henry Flink	GL(AHD):			Report to 0600 for 24hrs
	KB(AHD):	•	m)	0600 Depth: 335m
Geologist: Dave Horner	Last Casing:	at	m	Progress to 0600: 335m

Comments:

Spud Skull Creek-1 with 12.25" hole at 0200hrs 19th May, 1996. Drill to 335m, wiper trip, POOH to run 9.625" casing.

Interval (m)	Description
Spud - 20	Calcarenite - Port Campbell Limestone - No Show
20 - 229	Massive Marl - Gellibrand Marl - No Show
229 - 257	Calcarenite - Clifton Formation - No Show
257 - 335	Massive Marl - Narrawaturk Marl - No Show
-	
-	
-	
-	
-	
_	
_	

Gas Summary Interval (m)	: ROP (m/hr)	Total (units)	<i>Cı</i>	C2	. Сз рт)	C4	Cs	Co	mments
Spud - 20 20 - 229 229 - 257 257 - 335 - - - - - - - - - - - - -	22 60 100 45	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	Port Campbe Gellibrand M Clifton - No S Narrawaturk	larl - No Show Show
Formation Tops	5:			ognosed (mKB)		ctual * (mKB)		fference * High/Low)	Thickness * (m)

				Page
Port Campbell Limestone	4.3 (surface)	4.3	0	
Gellibrand Marl	-	20	0	16
Clifton Formation	283		-	201
Narrawaturk Marl	205	229	54 High	28
Mepunga Formation	361	257	-	
Pilwyn Formation	421			
Pember Mudstone	721			
Pebble Point Formation	661			
Paaratte Formation	721			
Skull Creek Mudstone	,21			
Nullawarre Greensand	1056			
Belfast Mudstone	1176			
Vaarre Formation Unit D	1170			
Vaarre Formation Unit C	1280			
Vaarre Formation Unit B	-			
Vaarre Formation Unit A	-			
umeralla Formation	1351			
'.D.	1500			

Provisional, based on mud log.

*

Lithological a	nd Fluorescence	Description:
Interval (m)	ROP (Av.) (m/hr)	Description
Spud-20 20-229	17-30 (22) 14-120 (60)	No samples collected. Marl: medium grey to medium green grey, minor medium brown grey, abundant bryozoa, formas, shell fragments, trace echinoid spines and sponge spicules, trace pyrite occasionally replacing and infilling fossil fragments, trace glauconite, rare clear quartz sand grains, very soft and sticky, non fissile.
229-257	21-200 (100)	Calcarenite: medium orange brown, yellow-red in part, very coarse grained, abundant fossil fragments including bivalves, gastropods, bryozoa, forams, sponge spicules and echinoid spines, minor strong cryptocrystalline calcite cement, common very fine to grit frosted rounded brown stained quartz sand grains, abundant glauconite, common brown iron oxide pellets and iron
257-335	6-300 (45)	oxide rich clay, friable, poor inferred porosity, no oil fluorescence. Marl: medium brown grey to medium green grey, abundant bryozoa, shell fragments and forams, trace echinoid spines and sponge spicules, trace to common pyrite aoften as fossil infill and replacement, trace to common glauconite, trace to common very fine to fine clear quartz sand grains, very soft and sticky, non fissile.

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 2

Skull Creek-1 PPL1 Permit: Well Name:

21/5/96 **Report Date:**

Report to 0600 for 24hrs **ODE-30** GL(*AHD*): 95.0m **Rig:** 0600 Depth: 335m 99.3m (datum) KB(AHD): Cultus Rep: Henry Flink Last Casing: 9.625" at 332.27m Progress to 0600: 0m Geologist: Dave Horner

Comments:

Run 9.625" casing to 332.27m, cement casing, WOC, nipple up and pressure test BOP's.

Lithologi	cal and H	Iuorescence Summary:
Inter (m		Description
-		No new formation drilled.
-		
-		
-		
- esteral -		
-	•	
-	•	
-		
-		

Gas Summar Interval (m)	y: ROP (m/hr)	Total (units)	<i>C</i> 1	C2	C3 pm)	С.	Cs	Comments
-					,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
-								
-								
-								
-								
-								
-								
-								
-								
-								
-								•
· · · · · · · · · · · · · · · · · · ·								·······
Formation To	ps:		P	rognosed		Actual *	Difference	
	-			(mKB)		(mKB)	(m High/Lov	v) (m)

Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	
Mepunga Formation	361			
ilwyn Formation	421			
Pember Mudstone	-			
Pebble Point Formation	661			
Paaratte Formation	721			•
Skull Creek Mudstone	1031			
Nullawarre Greensand	1121			
Belfast Mudstone	1201			
Waarre Formation Unit D	-			
Waarre Formation Unit C	1266			
Waarre Formation Unit B	-			
Waarre Formation Unit A	-			
Eumeralla Formation	1316			
T.D.	1500			

* Provisional, based on mud log.

Lithological and Fluorescence Description:

Interval ROP (Av.) (m) (m/hr)

 $\omega \gamma^{i}$

Description

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 3

Well Name	: Skull Cree	k-l Pern	nit: PPL1	Report Date: 2	22/ 5 /9
Rig:	ODE-30	GL <i>(AHD</i>):	95.0m	Report to 0600 fo	r 24hrs
Cultus Rep	: Henry Flink	KB(AHD):	99.3m (datum)	0600 Depth:	642m
Geologist:	Dave Horner	Last Casing:	9.625" at 332.27m	Progress to 0600:	
		l out shoe track off, drill ahead with		run FIT to 13.5lb/gal	equivale
Lithological	and Fluorescenc	e Summary:			
Interva (m)	l		Description		
335 - 34	5 Massive M	larl - Gellibrand Ma	rl - No Show		

C

	(m)	Description
	335 - 345	Massive Marl - Gellibrand Marl - No Show
	345 - 397	Sandstone with minor interbedded Claystone - Mepunga - No Show
	397 - 590	Sandstone grading to and interbedded with minor Claystone - Dilwyn - No Show
1	590 - 642	Claystone with minor interbedded Sandstone - Pember - No Show
D	-	
	-	
	-	
	-	
	-	
	-	
	-	
	Gas Summary: Interval	ROP Total C1 C2 C3 C4 C5 Comments
	(<i>m</i>)	(m/hr) (units) \leftarrow (ppm) \rightarrow

	1									
	Interval (m)	ROP (m/hr)	Total (units)	<i>C</i> ₁	(p	C3 pm)	<i>C</i> .	Cs	<i>Comments</i>	
	335 - 345	50	0	0	0	0	0	0	Gellibrand - No Show	
	345 - 397	70	ŏ	0	0	0	0	0	Mepunga - No Show	
	397 - 590	80	0	0	0	0	0	0	Dilwyn - No Show	
	590 - 642	35	0.1	28	0	0	0	0	Pember - No Show	
	550 - 042	55	0.1	20	0	0	0	U	Pelliber - No Show	
	-									
	-									
	-									
	-									
_	-									
	·			<u> </u>	·		<u>, , , , , , , , , , , , , , , , , , , </u>			
	Formation To	ps:			Prognosed (mKB)		Actual * (mKB)		ifference * Thickness High/Low) (m)	

4.3 (surface) - 283 - 361	4.3 20 229 257	0 - 54 High	16 201 28
283	229	- 54 High	201
-		54 High	
- 361	257	-	20
361		-	88
	345	16 High	52
421	397	24 High	193
-		-	175
661			
721	·		
1031			
1121			
1201			
-			
1266			
-			
-			
1316			
1500			
	661 721 1031 1121 1201 - 1266 - 1316	- 590 661 721 1031 1121 1201 - 1266 - 1316	- 590 661 721 1031 1121 1201 - 1266 - 1316

* Provisional, based on mud log.

Lithological ar	Lithological and Fluorescence Description:						
Interval (m)	ROP (Av.) (m/hr)	Description					
335-345	26-120 (50)	Marl: medium brown grey, common bryozoa, shell fragments and forams, trace pyrite, trace glauconite, trace very fine to fine dispersed clear quartz					
345-397	13-150 (70)	sand grains, very soft, very dispersive, non fissile. Sandstone: light to medium brown, very fine to coarse, dominantly fine to medium, angular to subrounded, moderately to well sorted, very weak silica cement, common to abundant medium brown argillaceous and silt matrix, moderate to strong in general decreasing with depth yellow to orange to brown stain on quartz grains, trace multicoloured volcanic lithics, trace coarse muscovite flakes, trace pyrite, trace to common iron oxide pellets, trace glauconite, trace dark brown clay lithics, friable to unconsolidated, fain to good inferred porosity, no oil fluorescence, with minor interbedded Claystone: dark brown, moderately silty, trace pyrite, trace glauconite, trace micromica, soft, very dispersive, non fissile.					
397-590	17-600 (80)	Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderately well sorted, very weak silica cement, minor pyrite cement, trace to abundant medium brown grey argillaceous and silt matrix, clear to opaque quartz grains, trace yellow to red quartz grains, trace brown red and black lithics, trace coarse mica flakes, friable to unconsolidated, very good inferred porosity, no oil fluorescence, grading to and interbedded with minor Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.					

rage z

590-642

14-75 (35)

Claystone: medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine quartz and off white partially altered feldspar sand grains, trace pyrite, common glauconite,trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile, with minor interbedded

Sandstone: light brown, very fine to fine, subangular to subrounded, moderately to well sorted, very weak silica cement, common to abundant dark brown grey argillaceous and silt matrix, trace glauconite, common caorse mica flakes, friable, poor inferred porosity, no oil fluorescence. CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 4

Well Name: Sk

Skull Creek-1

Permit: PPL1

Report Date:

: 23/ 5 /96

Rig: ODE-30	GL(AHD): 95.0m	Report to 0600 for 24hrs
Cultus Rep: Henry Flink	KB(AHD): 99.3m (<i>datum</i>)	0600 Depth: 1214m
Geologist: Dave Horner	Last Casing: 9.625" at 332.27m	Progress to 0600: 572m

Comments:

Drill to 651m, wiper trip to shoe, drill ahead. Circulate sample at 1214m, begin wiper trip prior to running DST-1. Identification of lower formations may not be correct and are best guess only based on presently available data.

Interval (m)	Description
642 - 651	Claystone with minor interbedded Sandstone - Pember - No Show
651 - 719	Sandstone grading to Claystone - Pebble Point - No Show
719 - 1139	Sandstone with minor interbeds towards base of Claystone - Paaratte - No Show
1139 - 1183	Claystone laminated/interbedded with Claystone - Skull Creek - No Show
1183 - 1203	Massive Claystone minor laminated Sandstone - Belfast? - No Show
1203 - 1214	Massive Sandstone - Waarre? "C" - Gas Show
-	
-	
-	
-	
_	

Gas Summar Interval (m)	y. ROP (m/hr)	Total (units)	<i>C</i> ₁	C2	C3 opm)	C.	Cs	Comments
642 - 651	35	0.1	11	0	0	0	0	Pember - No Show
651 - 719	90	0.4	74	0	0	0	Ō	Pebble Point - No Show
719 - 1139	120	27	5326	32	0	0	Ő	Paaratte - No Show
1139 - 1183	25	31	5927	59	0	0	Õ	Skull Creek - No Show
1183 - 1203	12	12	1954	18	0	Õ	Õ	Belfast? - No Show
1203 - 1214 -	60	727	144000	690	0	0	0	Waarre? C - Gas Show
-								
-								
-								
-								
) _								

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	201
Narrawaturk Marl	-	257	J+ Ingn	28 88
Mepunga Formation	361	345	16 High	88 52
Dilwyn Formation	421	397	24 High	
Pember Mudstone	-	590	24 High	.193
Pebble Point Formation	661	651	- 10 High	61
Paaratte Formation	721	719	2 High	68
Skull Creek Mudstone	1031	1139	108 Low	420
Nullawarre Greensand	1121	absent	100 LUW	64
Belfast Mudstone	1201	1183	- 19 Uich	0
Waarre Formation Unit D		absent	18 High	20
Waarre Formation Unit C	1266	1203	-	0
Vaarre Formation Unit B	-	1205	63 High	
Vaarre Formation Unit A	-			
Sumeralla Formation	1316			
.D.	1510			

* Provisional, based on mud log.

Lithological and Fluorescence Description:

Interval (m)	ROP (Av.) (m/hr)	Description
642-651	30-45 (35)	Claystone: dark green grey to dark brown grey, moderately to very silty, abundant dispersed very fine to grit clear to opaque quartz sand grains, common glauconite, common pyrite, trace light brown cryptocrystalline dolomite, rare micromian and sticker were here to be in the second sticker were been as a
651-719	25-300 (90)	dolomite, rare micromica, soft and sticky, moderately dispersive, non fissile. Sandstone: light orange green, very fine to pebble, dominantly medium to coarse, subangular to subrounded, moderately sorted, very weak silica cement, common medium to dark green argillaceous and silt matrix, weak yellow-green stain on quartz grains, common glauconite, common multicoloured volcanic lithics, trace coarse green mica flakes, friable to unconsolidated, very poor to good inferred porosity in general increasing with depth, no oil fluorescence, grading to and in general decreasing with depth Claystone: medium to dark green, medium brown, moderately to very silty, abundant dispersed very fine to grit green-brown stained quartz grains - grading to argillaceous sandstone, common glauconite, trace pyrite, soft, moderately dispersive, non fissile.

		гаде з
719-1139	8-600 (120)	Sandstone: light orange brown, very fine to pebble, dominantly very coarse, subangular to subrounded, moderately sorted, weak silica cement, trace medium brown argillaceous matrix, common weakly yellow orange stained quartz grains, common to abundant red green and varicoloured volcanic lithics, nil to common black coal detritus, trace pyrite, friable to unconsolidated, very good inferred porosity, no oil fluorescence grading with depth to Sandstone: light grey, very fine to grit, dominantly coarse, at base often dominantly fine, subangular to subrounded, moderately sorted, weak silica cement, no visual matrix, clear to translucent quartz grains, trace green grey lithics, trace black coal detritus, trace pyrite, friable, fair to very good inferred porosity, no oil fluorescence, occasionally with towards base minor interbeds of Claystone: medium to dark brown to medium grey, moderately to very silty, moderately carbonaceous, common black carbonaceous flecks and coaly detritus in part, trace disseminated and nodular pyrite, common micromica, firm, very dispersive and washing from samples, slightly subfissile.
1139-1183	8.6-86 (25)	Claystone: medium to dark grey, medium brown grey, very silty, common very fine partially altered feldspar grains in part, trace black carbonaceous flecks, trace micromica, trace pyrite, soft, very dispersive, slightly subfissile, interbedded and laminated with Sandstone: light grey, very fine to coarse, dominantly fine, subangular to
1100 1000		subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown lithics, trace carbonaceous matter, common pyrite, friable to moderately hard, very poor visual porosity, no oil fluorescence.
1183-1203	6.8-14 (12)	Claystone: medium to dark grey, medium to dark brown grey, very silty, common very fine partially altered feldspar grains in part, common black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile, with minor laminated and probably contaminated by cavings Sandstone: light grey, very fine to coarse, dominantly very fine, subangular to subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown lithics, trace carbonaceous matter,
1203-1214	24-120 (60)	common pyrite, friable to moderately hard, very poor visual porosity, no oil fluorescence. Sandstone: very light grey, very fine to grit, dominantly coarse to very coarse, subangular to subrounded, poor to moderate sorting, very weak silica cement, no visual matrix, trace yellow stained quartz grains, trace black carbonaceous detritus, friable, very good inferred porosity, no oil fluorescence.

GEOLOGY OPERATIONS CULTUS PETROLEUM N.L. REPORT NO. 5

Skull Creek-1 Well Name:

Permit: PPL1 **Report Date:**

24/5/96

Rig: ODE-30 Cultus Rep: Henry Flink Geologist: Dave Horner

GL(*AHD***)**: 95.0m KB(AHD): 99.3m (datum) Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs 0600 Depth: 1368m Progress to 0600: 154m

Comments:

Wiper trip at 1214m, condition mud, drill ahead (probable gas saturation from 1203 to 1265m). Reach 1368m - Total Depth - at 0600hrs 24th May, 1996.

Lithological and	Fluorescence Summary:
Interval (m)	Description
1214 - 1221 1221 - 1249 1249 - 1265 1265 - 1272 1272 - 1368 - - - -	Massive Sandstone - Waarre "C" - Gas Show Claystone with minor interbedded Sandstone - Waarre "B" - Gas Shows Sandstone - Waarre "A" - Gas Show Probable Gas/Water contact 1265m. Sandstone - Waarre "A" - No Show Sandstone interbedded with Claystone - Eumeralla - No Show

1214 - 1221 1221 - 1229 1229 - 1232	40 10 28	195 6 313	36521 1193 37714	150 6 562	pm) 0 0	0 0 0	0 0 0	Waarre C - Gas Show Waarre B - Clay Waarre B - Cas Shaw
1232 - 1235 1235 - 1238	12 45	22 134	4350 20796	42 187	0 0	0 0	0	Waarre B - Gas Show Waarre B - Clay Waarre B - Gas Show
1238 - 1249 1249 - 1265 1265 - 1272	10 30 35	11 234 21	3403 41079 3204	32 702 30	0 0	0	0 0	Waarre B - Clay Waarre A - Gas Show
1272 - 1368	8	64	13100	1020	0 421	0 202	0 42	Waarre A - No Show Eumeralla - No Show
-								
-								

				Page
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	_	20	-	16
Clifton Formation	283	229	- 54 Ulah	201
Narrawaturk Marl		257	54 High	28
Mepunga Formation	361	345	-	88
Dilwyn Formation	421	343	16 High	52
Pember Mudstone			24 High	193
Pebble Point Formation	661	590	-	61
Paaratte Formation	721	651	10 High	68
Skull Creek Mudstone	1031	719	2 High	420
Nullawarre Greensand	1121	1139	108 Low	64
Belfast Mudstone		absent	-	0
Vaarre Formation Unit D	1201	1183	18 High	20
Vaarre Formation Unit C	-	absent		0
Vaarre Formation Unit B	1266	1203	63 High	18
	-	1221	-	28
Vaarre Formation Unit A	-	1249	-	23
umeralla Formation	1316	1272	44 High	 96+
.D.	1500	1368	132 High	201

* Provisional, based on mud log.

Lithological and Fluorescence Description:							
Interval (m)	ROP (Av.) (m/hr)	Description					
1214-1221	17-46 (40)	Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderate to well sorted, weak silica cement, no visual matrix, trace black coaly detritus, friable, very good to good inferred porosity, no oil fluorescence.					
1221-1249	5.2-50 (12)	Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspar grains in part, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile, interbedded with Sandstone: very light brown grey, very fine to medium, dominantly fine, angular to subrounded, moderately sorted, weak silica cement, no visual matrix, common bright red green brown grey and black lithics, common black coaly detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescence.					
1249-1272	16-57 (32)	Sandstone: light orange grey, very fine to grit, dominantly medium, angular to subangular, well sorted, moderate silica cement, trace white argillaceous matrix, common to abundant yellow orange lithics, trace red green grey and black lithics, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.					

1272-1368 T.D. 1.3-40 (8)

Sandstone: weathered at top with abundant white argillaceous matrix, with depth cleaning to - Sandstone: medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence, interbedded with Claystone: very weathered at top to structureless white to light blue grey clay, with depth cleaning to Claystone: light to medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, firm, slighttly subfissile

CULTUS PETROLEUM N.L. ELECTIC LOGGING REPORT SHEET

wen mame: Sh	cull Creek-1 Permit: PPL1	Observer: Dave Horner	Date: 25-5-96			
TIME	OPERATION					
0900	BPB arrive on site.	· · · · · · · · · · · · · · · · · · ·				
1400	Rig-up LCS/DFE.					
1420	Run tool in hole.					
1445	Run casing check.					
1530	Log repeat section					
1550	Log main log -LCS/DFE 1368	3-330m				
1740	Out of hole.	, 550m.				
1800	Rig-up PDS/CNS					
1830	Run tool in hole.					
1915	Log repeat section.					
1945	Log main log - PDS/CNS.					
2015	End PDS/CNS.					
2045	Rig down.		····			
			• • • • • • • • • • • • • • • • • • •			
· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·				
			······································			

CULTUS PETROLEUM N.L. GEOLOGY OPERATIONS

Well Name: Skull Creek-1

Permit: PPL1

L1 Rer

REPORT NO. 6

Report Date: 25/ 5 /96

Rig:	ODE-30	GL <i>(AHD</i>):	95.0m	Report to 0600 for	r 24hrs
Cultus Rep	: Henry Flink	KB(<i>AHD</i>):	99.3m (datum)	0600 Depth:	1368m
Geologist:	Dave Horner	Last Casing:	9.625" at 332.27m	Progress to 0600:	0m

Comments:

Circulate bottoms up, 10 stand wiper trip, circulate hole clean, POOH. Rig-up BPB, run-1 DLL-MSFL-GR-SP-Cal-Sonic, run-2 LDL-CNL-GR-Cal, rig down BPB, make-up inflate straddle test tool for DST-1, run test tool in hole in preparation for testing interval 1199-1221m.

L	ithological and	Fluorescence Summary:		
	Interval (m)		Description	
	-	No new formation drilled		
	-			
	-			
	-			
	-			
	-			
	-			
	-			
L	-			

Gas Summary Interval (m)	r: ROP (m/hr)	Total (units)	<i>C</i> ₁	C2 C3 (ppm)	<i>C</i> 4	Cs	<i>Comments</i>
-							
-							
-							
-							
-							
-							
-							
-							
-							
: -							
-							

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
larrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	•	28
Vaarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	96+
Г.D.	1500	1368	132 High	

Lithological and Fluorescence Description:

Interval (m)

83

ROP (Av.) (m/hr)

Description

GEOLOGY OPERATIONS

REPORT NO. 7

0600 Depth:

Progress to 0600:

1373m

5m

				
Well Na	me: Skull Cro	eek-l Per	mit: PPL1	Report Date: 26/ 5/96

Last Casing: 9.625" at 332.27m

96.3m (datum)

KB(AHD):

Comments:

Cultus Rep: Henry Flink

Geologist: Dave Horner

Continue RIH test string, DST-1 inflate straddle 1199-1221m - weak blow to bubble hose only, close and unseat tool, reseat tool 1200-1222m - weak blow, increased to strong blow before dying - tool assumed to be plugged - close tool, reverse cirulate out gas cut water cushion, tool differentially stuck, spot pipe lax, work pipe free, POOH test string - sample chamber 1225 PSI containing gas and rathole mud. Gas analysis - 95.8%=C1: 4.1%=C2 : No C3C4C5: 0.1%= CO2 No H2S, charts show test tool blocked above both mechanical charts - no solid physical blockage found in tool but hydraulic tool and entry ports covered with thick filtercake. RIH with bit and junk sub for cleanout trip, work junk sub and drill 5m new hole, circulate hole clean, POOH in preparation for running DST-2 across interval 1198-1208m.

hological and	Fluorescence Summary:
Interval (m)	Description
1368 - 1373	Claystone interbedded with Sandstone - Eumeralla - No Show.
-	
-	
-	
-	
-	
-	
-	
-	
-	
•	

Gas Summary	y:							
Interval (m)	ROP (m/hr)	Total (units)	<i>C₁</i>	C2	Сз рт)	C.	Cs	<i>Comments</i>
1368 - 1373	17	17	3150	118	0	0	0	Eumeralla - No Show

Formation Tops:	rmation Tops: Prognosed (mKB)		Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	. 0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	96+
T.D.	1500	1368	132 High	

)

- - - -

Lithological an	Lithological and Fluorescence Description:							
Interval (m)	ROP (Av.) (m/hr)	Description						
1368-1373	2-21 (17)	Claystone: medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, trace pyrite, firm, slightly subfissile, interbedded with Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence.						

CULTUS PETROLEUM N.L. **GEOLOGY OPERATIONS**

REPORT NO. 8

Well Name: Skull Creek-1

Permit: PPL1 **Report Date:**

27/5/96

-	ODE-30 Henry Flink	GL(AHD):		Report to 0600 for	r 24hrs
	Dave Horner		96.3m <i>(datum)</i> 9.625" at 332.27m	0600 Depth: Progress to 0600:	1373m 0m

Comments:

Continue POOH, make-up inflate straddle tool, RIH, run DST-2 1198-1208m - packer seat leaking close tool, reinflate rubbers, packer seat still leaking, unseat tool and reset across interval 1200.5-1210.5m. No water cushion was used - one flow period only was used due to suspect nature of packer seats - IF=90min, ISI=120min, Q = 8.2 MMCFD, no formation water Gas analysis C1=93.8%, C2=6.2%, C3=C4=C5=0, H2S=0, CO2=0.69%. Reverse circulate drill string, balance mud weight to 9.2lb/gal.

Litholo	gical and	f Fluorescence Summary:	
In	te r val (m)	Description	
	-	No new formation drilled	
	-		
	-		
	-		
	-		
	-		
	-		
	-		
	-		
	-		
	-		

Gas Summary Interval (m)	y: ROP (m/hr)	Total (units)	<i>C₁</i>	C2	C3 opm)	C4	Cs	((Comments
-									
-									
-									
-									
-									
-									
-									

Formation Tops:	Prognosed Actual (mKB) (mKB)		Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
lifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	
Dilwyn Formation	421	397	24 High	52
Pember Mudstone	-	590	24 High	193
Pebble Point Formation	661	651	- 10 Uiah	61
Paaratte Formation	721	719	10 High	68
Skull Creek Mudstone	1031	1139	2 High	420
Nullawarre Greensand	1121		108 Low	64
Belfast Mudstone	1201	absent	-	0
Voore Erenting II in D	1201	1183	18 High	20

1266

1316

1500

× Provisional, based on mud log.

Waarre Formation Unit D

Waarre Formation Unit C

Waarre Formation Unit B

Waarre Formation Unit A

Eumeralla Formation

Lithological and Fluorescence Description:

" Interval

(m)

T.D.

ROP (Av.) (m/hr)

Description

absent

1203

1221

1249

1272

63 High

44 High

-

0

18

28

23

GEOLOGY OPERATIONS CULTUS PETROLEUM N.L.

REPORT NO. 9

Well Name:

Skull Creek-1

Permit: PPL1 **Report Date:**

28/5/96

Rig: ODE-30 Cultus Rep: Henry Flink Geologist: Dave Horner

GL(AHD): KB(AHD):

92.0m 96.3m (datum) Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs 0600 Depth: 1700m Progress to 0600: 1373m

Comments:

POOH and break down test string, make up and RIH mud motor/drilling assembly, drill ahead to 1700m Total Depth reached at 0500hrs 28th May, 1996, circulate hole clean.

Lithological and	Lithological and Fluorescence Summary:							
Interval (m)	Description							
1373 - 1399	Claystone interbedded with Sandstone - Eumeralla - No Show							
1399 - 1427	Sandstone with minor interbedded Claystone - Eumeralla - Gas Show							
1427 - 1484	Sandstone with minor interbedded Claystone - Eumeralla - No Show							
1484 - 1498	Claystone with minor interbedded Sandstone - Eumeralla - No Show							
1498 - 1518	Sandstone with minor interbedded Claystone - Eumeralla - Gas Show							
1518 - 1528	Claystone with minor interbedded Sandstone - Eumeralla - No Show							
1528 - 1533	Sandstone with minor interbedded Claystone - Eumeralla - Gas Show							
1533 - 1615	Sandstone with minor interbedded Claystone - Eumeralla - No Show							
1615 - 1700	Claystone interbedded with Sandstone - Eumeralla - No Show							
-								
-								

Interval	ROP	Total	C_{I}	<i>C</i> ₂	Сз	C4	Cs	Con	nments
(m)	(m/hr)	(units)	~	(p)	om)			>	
1373 - 1399	20	117	22904	1655	409	98	20	Eumeralla - N	o Show
1399 - 1427	110	405	33143	1167	370	121	26	Eumeralla - G	as Show
1427 - 1484	95	45	8521	599	188	74	18	Eumeralla - No	o Show
1484 - 1498	40	49	8274	603	165	57	16	Eumeralla - No	o Show
1498 - 1518	100	497	45086	5525	1375	330	57	Eumeralla - Ga	as Show
1518 - 1528	50	72	12384	939	248	73	13	Eumeralla - No	Show
1528 - 1533	40	318	29083	3514	867	204	37	Eumeralla - Ga	s Show
1533 - 1615	60	29	5557	406	123	46	1	Eumeralla - No	Show
1615 - 1700	30	12	2132	147	35	18	0	Eumeralla - No	Show
-									
-									
-									
_									
ormation Tops:			Prognosed	F	Actual *	Di	fference *	Thickness	
F			-	(mKB)		(mKB)		High/Low)	(<i>m</i>)

L				Page
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	1201

Lithological an	d Fluorescence	Description:
Interval (m)	ROP (Av.) (m/hr)	Description
1373-1399	13-60 (20)	Claystone: off white to medium green grey, light to medium brown, medium brown grey, slightly to occasionally moderately silty, common very fine partially alterered feldspar grains in part, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile, interbedded with Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
1399-1484	12-600 (100)	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red lithics, trace to common black to very dark green lithics, trace black coaly detritus, trace brown and green black mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence, with minor interbedded Claystone: off white to medium green grey, light to medium brown, medium brown grey, slightly to occasionally moderately silty, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile.

		Page
1484-1498 1498-1518	25-150 (40) 50-300 (100)	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subangular, well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace feldspars, trace brown black mice flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence, interbedded with minor Claystone: off white to medium grey to medium brown grey to medium green grey, slightly silty, trace brown to black carbonaceous flecks, trace pyrite, trace micromica, firm to moderately hard, slightly subfissile. Sandstone: medium green grey, fine to coarse, dominantly medium to coarse, angular to subangular, moderately to well sorted, weak silica and calcareous cements, trace to common white argillaceous matrix, abundant grey green lithics, trace black carbonaceous matter, friable, poor inferred porosity, no oil fluorescence, interbedded with minor
1518-1528	23-60 (50)	no oil fluorescence, interbedded with minor Claystone: off white to medium grey to medium brown grey to medium green grey, slightly silty, trace brown to black carbonaceous flecks, trace pyrite, trace micromica, firm to moderately hard, slightly subfissile. Claystone: off white to medium grey to medium green grey, slightly silty, trace brown to black carbonaceous flecks, trace pyrite, trace micromica, firm to moderately hard, slightly subfissile, interbedded with minor
1528-1615	15-400 (60)	Sandstone: medium green grey, very fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, trace to common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace brown to black mica flakes, trace black carbonaceous matter, friable, very poor inferred porosity, no oil fluorescence. Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, common brown to black mica flakes, trace black carbonaceous matter, friable, very poor inferred porosity,
1615-1700 T.D.	8.6-300 (30)	no oil fluorescence, interbedded with minor Claystone: off white to medium grey to medium green grey, slightly to rarely very silty, trace brown to black carbonaceous flecks, trace pyrite, trace micromica, firm to moderately hard, slightly subfissile. Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common orange brown and black lithics, trace brown mica flakes, trace black carbonaceous matter, friable, nil to very poor visual porosity, no
		oil fluorescence, interbedded with Claystone: off white to medium, light to medium brown grey, light to medium green grey, slightly to very silty, trace to common brown to black carbonaceous flecks, trace black coaly detritus, trace pyrite, trace micromica, trace coarse brown mica flakes, firm to moderately hard, moderately dispersive, slightly subfissile

GEOLOGY OPERATIONS REPORT NO. 10

Rig:	ODE-30	GL(AHD):	92.0m	Report to 0600 for 24hrs
Well Na	me: Skull Cre	ek-l Per	mit: PPL1	Report Date: 29/ 5 /96

0	
Cultus Rep:	Henry Flink
Geologist:	Dave Horner

GL(AHD): 92.0m KB(AHD): 96.3m (datum) Last Casing: 9.625" at 332.27m
 Report to 0600 for 24hrs

 0600 Depth:
 1700m

 Progress to 0600:
 0m

Comments:

Wiper trip, circulate hole clean, POOH to run BPB electric logs. Run-1 DLL-MSFL-SP-GR-Sonic-Cal, Run-2 RFS-GR 5 pressure points & sample (hole very sticky to cable) POOH RFS due to inability to achieve stabilized pressure readings - suspect possible problem with tool.

Lit	hological and	I Fluorescence Summary:	
	Interval (m)	Description	
	-	No new formation drilled.	
	-		
	-		
	-		
	-		
	-		
	-		
	-		
	-		
	-		
	-		

	Tedal	C	0	0	0	6	
KOP (m/hr)	I Otal (units)	€1 <	(pj	C3 ()m)	<i>C</i> .	Cs	Comments →
		······					·····
	ROP	ROP Total	ROP Total Ci	ROP Total C1 C2	ROP Total C1 C2 C3	ROP Total C1 C2 C3 C4	ROP Total C1 C2 C3 C4 C5

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Jarrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone		590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	 ·	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	

Lithological and Fluorescence Description:

Interval (m) ROP (Av.) (m/hr)

Description

rage z

CULTUS PETROLEUM N.L. RFT - PRESSURE TEST REPORT SHEET

Well Name: Skull creek-1 Permit: PPL1 Observer: D.Horner Date: 29-5-96

1	1	1205.0	Y	T	1984.8	1993.4	1613.4	1	465	T	N	Hydrostatic varying
2	2	1211.3	1 Y		1990.0	2000.0	1680.7	1	205		N	
3	x	1212.5	+	N	1993.7	2004.9	-	1	1	1	1	
4	3	1212.5	Y	1	1992.0	2003.7	?	1	?	1	N	Very low perm/stopped
5	X	1212.2	1	N	1993.7	2003.7	-					
6	4	1212.3	Y		1995.6	2004.5	1614.5		166		N	
7	5	1216.7	Y		2000.0	2008.3	1623.2		15		N	
8	6	1237.5	Y		2031.8		1644.9		150	Y		
												Samples
	1											Large Tank
							1		1			filled initially
										1		Small Tank
								1				filled second at same
				1								
												interval - partial
	1							[plugging of tool
												during flow.
												Large Tank
												Rw = 0.655 @ 61.1F
												850 PSI
												12 cu ft gas
												4 litres water
												C1 = 95.9%
			.									C2 = 4.1%
							1					C3=C4=C5=0
							1					CO2=H2S=0
												pH = 7.7
												SO3 = 160 ppm
												Pmf = 0.0-1.13
												Cl = 3600 ppm
												Ca = 2500 ppm
												Small Tank
												Rw = 0.702 @ 63.2F
												400 PSI
												3 cu ft gas
												300 ml water
												C1 = 93.7%
												C2 = 6.3%
												C3=C4=C5=0
												L3-L4-L3-0

666

ic

CULTUS PETROLEUM N.L. RFT - PRESSURE TEST REPORT SHEET

Well Name: Skull creek-1	Permit: PPL1	Observer: D.Horner	Date: 29-5-96
		المستعلقان والمغالبة بالالقام والمتقافات والفرج ويستعد ومتحد والمتحد والمتحد والمتحد والمتحد والمتحد	

1

Test No.	File No	Depth		AT N	Hydro Pressu Initial	re	Formation Pressure Quartz St Gauge Gau	rain	Time to Stabili zation	Samp Y	le N	Formation - Remarks
	, , , , , , , , , , , , , , , , , , ,	1205.0	Y	r	1984.8	1993.4	1613.4	r	465		IN	Hydrostatic varying
1 2	1 2	1203.0	$\frac{1}{Y}$		1984.8	2000.0	1680.7		205		N	Try Costance var ynig
3	x	1211.5		N	1993.7	2004.9	-				 	
4	3	1212.5	Y	<u> </u>	1992.0	2003.7	?		?		N	Very low perm/stopped
5	x	1212.2	<u> </u>	N	1993.7	2003.7						
6	4	1212.3	Y	<u> </u>	1995.6	2004.5	1614.5		166		N	
7	5	1216.7	Ŷ	—	2000.0	2008.3	1623.2		15		N	
8	6	1237.5	Y		2031.8		1644.9		150	Y		
			1									
			 									
			<u> </u>								<u> </u>	
				<u> </u>								
			 				-				1	
											<u> </u>	
											1	
											ļ	
											1	
[
											1	1
											-	
	ł										 	
											I	
T	T								1			
						·						
											ļ	
									1	1	1	

CULTUS PETROLEUM N.L. ELECTIC LOGGING REPORT SHEET

Well Name: Skull Creek-1 Permit: PPL1

Observer: D. Horner

Date: 30-5-95

TIME	OPERATION
0930	BPB arrive on site
1635	Rig-up
1700	Assemble DFE
1745	Run DFE in hole
1800	Casing check LCS-DFE
1845	Log repeat section
1900	Main log LCS-DFE (1700-1350m)
1945	Finish main log
2100	Rig up RFT - 5 pressure points plus sample
0730	Rig down RFT
0730	Begin rig-up PDS-CNS
0900	Log repeat section PDS-CNS
0930	Main Log PDS-CNS (1700-1350m - Max temp = 63C)
1045	Out of hole with PDS-CNS
1130	Rig down PDS-CNS
1130	Rig up PSD (dipmeter)
1245	Log repeat section PSD
1300	$Main \log PSD (1700-700m - Max temp = 63C)$
1530	Rig down PSD
1530	Rig up VD (velocity data - 22 levels)
2220	Rig down
2220	145 40111
· · · · · · · · · · · · · · · · · · ·	

CULTUS PETROLEUM N.L. GEOLOGY OPERATIONS

REPORT NO. 11

Well Name: Skull Creek-1 Permit: PPL1 Report Date: 30/5/96

Rig:	ODE-30	GL <i>(AHD</i>):	92.0m	Report to 0600 for	- 24hrs
Cultus Rep	: Henry Flink	KB <i>(AHD</i>):	96.3m <i>(datum)</i>	0600 Depth:	1700m
Geologist:	Dave Horner	Last Casing:	9.625" at 332.27m	Progress to 0600:	0m

Comments:

POOH RFS, retrieve samples (see RFT report), rig up Run-3 LDL-CNL-GR-Cal, Run-4 Dipmeter, Run-5 Velocity Survey, 22 levels, rig down BPB. RIH for clean-up trip and condition mud.

Lit	Lithological and Fluorescence Summary:								
	Interval (m)	Description							
	-	No new formation drilled.							
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
L									

Gas Summary Interval (m)	r: ROP (m/hr)	Total (units)	<i>C</i> ₁	C2	C3 pm)	<i>C</i> ₄	<i>Cs</i> (Comments
-						· · · · · · · · · · · · · · · · · ·		
-								
-								
-								
-								
-								
-								
-								
-								
-								
-								
Formation Top	os:			ognosed (mKB)		ctual * (mKB)	Difference (m High/Low	

				Page
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	•

Lithological and Fluorescence Description:

Interval (m) ROP (Av.) (m/hr) **Description**

CULTUS PETROLEUM N.L. GEOLOGY OPERATIONS

REPORT NO. 12

Well Name: Skull Creek-1

Permit: Pl

it: PPL1

Report Date: 31/ 5 /96

Rig:ODE-30GL(AHD):92.0mReport to 0600 for 24hrsCultus Rep: Henry FlinkKB(AHD):96.3m (datum)0600 Depth:1700mGeologist:Dave HornerLast Casing:9.625" at 332.27mProgress to 0600:0m

Comments:

Condition mud, POOH, make up inflate straddle tool with no water cushion, RIH test string and run DST-3 (1402-1417m) IF 5min ISI 30 min FF 120min FSI 240min GTS 2.5min Q = 1.1 MMCFD through 0.375" choke, C1=58.9% C2=23.5% C3=14.2% C4=7.7% C5=1.7% CO2=0.05% H2S=0 deflate tool and move to DST-4 (1240-1255m) IF 10min, ISI 36min, FF 60min, FSI 90min, GTS 1 min, Q=11.1 MMCFD through 0.75" choke, C1=99.45%, C2=C3=C4=C5=0.0%, CO2=0.55%, H2S=0. Deflate packers, Reverse circulate out test string.

Lit	Lithological and Fluorescence Summary:							
	Interval (m)		Description					
	-	No new formation drilled.						
	-							
	-							
	-							
	-							
	-							
	-							
	-							
	-							
	-							
L								

Gas Summary Interval (m)	y: ROP (m/hr)	Total (units)	<i>Cı</i>	C2 (C3 <u>C4</u>	Cs	<i>Comments</i> →
- - -	*******						
-							
-							
-							

1

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)	
Port Campbell Limestone	4.3 (surface)	4.3	0	16	
Fellibrand Marl	-	20	-	201	
Clifton Formation	283	229	54 High	28	
Narrawaturk Marl	-	257	-	88	
Mepunga Formation	361	345	16 High	52	
Dilwyn Formation	421	397	24 High	193	
Pember Mudstone	-	590	-	61	
Pebble Point Formation	661	651	10 High	68	
Paaratte Formation	721	719	2 High	420	
Skull Creek Mudstone	1031	1139	108 Low	64	
Nullawarre Greensand	1121	absent	-	0	
Belfast Mudstone	1201	1183	18 High	20	
Waarre Formation Unit D	-	absent	-	0	
Waarre Formation Unit C	1266	1203	63 High	18	
Waarre Formation Unit B	-	1221	-	28	
Waarre Formation Unit A	-	1249	-	23	
Eumeralla Formation	1316	1272	44 High	428+	
Г.D.	1500	1700	200 Low		

* Provisional, based on mud log.

i thological and Fluorescence Description:

Interval (m) ROP (Av.) (m/hr)

Description

CULTUS PETROLEUM N.L. GEOLOGY OPERATIONS **REPORT NO. 13**

Well Name: Skull Creek-1	Permit: PPL1 Report Date: 1/6/96

Rig: ODE-30	GL <i>(AHD</i>):	92.0m	Report to 0600 for	· 24hrs
Cultus Rep: Henry Flink	KB(<i>AHD</i>):	96.3m <i>(datum)</i>	0600 Depth:	1700m
Geologist: Dave Horner	Last Casing:	9.625" at 332.27m	Progress to 0600:	0m

Comments:

Continue reverse circulation after DST-4, POOH and lay out test string, RIH to 1600m, circulate hole clean, POOH, RIH BPB RFS tool.

Lithol	ogical and	Fluore	scence Su	nmary:					
In	iterval (m)					Descriț	otion		
	-	No n	ew formatic	on drilled.					
	-								
	-								
antion)	-								
P	-								
	-								
	-								
	-								
	-								
	-								
L	-							<u></u>	
Gas Su	mmary:						· · <u>-</u> . · ·		
	rval	ROP (m/hr)	Total (units)	<i>C</i> ₁	C2 (pj		<i>C</i> ₄	<i>Cs</i> →	Comments
	-		<u> </u>		···, <u>·</u>				
	-								
	-								
	-								
	-								
	-								

Formation Tops:	Prognosed	Actual *	Difference *	Thickness *
-	(mKB)	(mKB)	(m High/Low)	(m)

				Page
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590		61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	· –	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	

Lithological and Fluorescence Description:

Interval (m)

 $^{\circ\circ}$

ROP (Av.) (m/hr) Description

GEOLOGY OPERATIONS REPORT NO. 15

		1									

Skull Creek-1

Permit: PPL1

Report Date:

3/ 6 /96

Rig:	ODE-30	GL <i>(AHD</i>):	92.0m	Report to 0600 for	· 24hrs
Cultus Rep	: Henry Flink	KB <i>(AHD</i>):	96.3m <i>(datum)</i>	0600 Depth:	1700m
Geologist:	Dave Horner	Last Casing:	9.625" at 332.27m	Progress to 0600:	0m

Comments:

RIH inflate straddle, DST-5 1500-1520m - strong air blow - packer seat failed after 8 mins, reseat at 1502-1522m - strong air blow - packer seat failed after 2 mins, abandon DST-5, attempt DST-6 1225-1245m unable to seat packers, abandon test, POOH test string (top packer burst) rig down test string, RIH with bit, circulate hole clean, POOH.

Lit	hological and	Fluorescence Summary:		
	Interval (m)		Description	
	-	No new formation drilled.		
-essert -	-			
	-			
	-			
	-			
	-			
	-			
	-			
	-			
	-			
L				

1	s Summary Interval (m)	: ROP (m/hr)	Total (units)	• C1	C2 (ppm)	C4	<i>Cs</i> →	Comments
	-					 		
	-							
	-							
	-							
	-							
	-							
	-							
	-							
	-							

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	_	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	

Lithological and Fluorescence Description:

)

ROP (Av.) (m/hr)

Description

APPENDIX 5 - CUTTINGS REPORTS

 $\langle i \rangle$

APPENDIX

CUTTINGS DESCRIPTION

WELL	NAME:	Ski	ull Creek-1	DATE:	28-5-96
GEOL	OGIST:	Da	ve Horner	PAGE:	1
L			1		
Interv	val (m)	%	Description	•	
Contin	uation for ge	ology rep	port-9		
165	50-1653	20	subangular, moderately to argillaceous matrix, abun		areous cements, common white
		80	dominantly medium grey		ey to medium green grey, brown to black carbonaceous ca, firm to moderately hard, very
165	53-1656	10	subangular, moderately to argillaceous matrix, abun		areous cements, common white
		90	dominantly medium grey		ey to medium green grey, brown to black carbonaceous ca, firm to moderately hard, very
165	6-1680	100	slightly to very silty, trace coaly detritus, trace pyrite	nedium, light to medium brown gr to common brown to black carbo e, trace micromica, trace coarse br tely dispersive, slightly subfissile.	onaceous flecks, trace black rown mica flakes, firm to
		Tr	subangular, moderately to common to abundant whi common orange brown ar	n grey, very fine to medium, dom o well sorted, weak to moderate si te argillaceous matrix, abundant g nd black lithics, common fine brow ble, no visual porosity, no oil fluo	lica and calcareous cements, grey green lithics, trace to wn mica flakes, trace black
168	0-1683	95	slightly to very silty, trace coaly detritus, trace pyrite	edium, light to medium brown gr to common brown to black carbo e, trace micromica, trace coarse br ely dispersive, slightly subfissile.	onaceous flecks, trace black
		5	subangular, moderately to common to abundant whi common orange brown ar	n grey, very fine to medium, domi o well sorted, weak to moderate sil te argillaceous matrix, abundant g id black lithics, common fine brow ble, no visual porosity, no oil fluo	lica and calcareous cements, grey green lithics, trace to wn mica flakes, trace black
168	6-1689	40	occasionally dark brown,s carbonaceous flecks, trace	edium, light to medium brown gr slightly to very silty, trace to comr black coaly detritus, trace pyrite, o moderately hard, moderately dis	non brown to black , trace micromica, trace coarse

l	Interval (m)	%	Description	PAGE:	7
		10	Claystone: off white to medium brown grey to medium grey to medium, dominantly light brown, slightly to rarely very silty, trace brown to black flecks, trace black coal detritus, trace pyrite, trace micromica, firm to mo dispersive, slightly subfissile.	carbonaceous	s , very
	1641-1644	80	Sandstone: medium green grey, fine to coarse, dominantly medium, ang moderately to well sorted, weak silica and calcareous cements, common v matrix, abundant grey green lithics, trace to common orange brown and t brown mica flakes, trace black carbonaceous matter, friable, very poor int oil fluorescence.	white argillace	eous race
		20	Claystone: off white to medium brown grey to medium grey to medium g dominantly medium grey, slightly to rarely very silty, trace brown to black flecks, trace black coal detritus, trace pyrite, trace micromica, firm to mod dispersive, slightly subfissile.	carbonaceoi	ıs very
	1644-1650	40	Sandstone: medium green grey, fine to coarse, dominantly fine to medium subangular, moderately to well sorted, weak silica and calcareous cements argillaceous matrix, abundant grey green lithics, trace to common orange lithics, trace brown mica flakes, trace black carbonaceous matter, friable, porosity, no oil fluorescence.	, common wh	ack
		60	Claystone: off white to medium brown grey to medium grey to medium grey dominantly medium grey, slightly to rarely very silty, trace brown to black flecks, trace black coal detritus, trace pyrite, trace micromica, firm to mod dispersive, slightly subfissile.	carbonaceou	s very

)

Q.

Interval (m)	%	Description	PAGE:	6
1602-1608	80	Sandstone medium green grey, fine to coarse, dominantly fine to subangular, moderately to well sorted, weak silica and calcareous c argillaceous matrix, abundant grey green lithics, trace to common a lithics, common brown to black mica flakes, trace black carbonaced poor inferred porosity, no oil fluorescence.	ements, common w	hit ¢
	20	Claystone: off white to medium brown grey to medium grey to med to rarely very silty, trace brown to black carbonaceous flecks, rare p firm to moderately hard, very dispersive, slightly subfissile.	lium green grey, sli yrite, trace micromi	gh ica
1608-1620	90	Sandstone: medium green grey, fine to coarse, dominantly fine to r subangular, moderately to well sorted, weak silica and calcareous co argillaceous matrix, abundant grey green lithics, trace to common r lithics, common brown to black mica flakes, trace black carbonaceo poor inferred porosity, no oil fluorescence.	ements, common wheed brown and black	hite
	10	Claystone: off white to medium brown grey to medium grey to med to rarely very silty, trace brown to black carbonaceous flecks, rare py firm to moderately hard, very dispersive, slightly subfissile.	ium green grey, slig rrite, trace micromic	ght ca,
1620-1626	80	Sandstone: medium green grey, fine to coarse, dominantly fine to m subangular, moderately to well sorted, weak silica and calcareous ce argillaceous matrix, abundant grey green lithics, trace to common re lithics, common brown mica flakes, common black coaly detritus, fri inferred porosity, no oil fluorescence.	ments, common wh d brown and black	ite
	20	Claystone: off white to medium brown grey to medium grey to medi to rarely very silty, trace brown to black carbonaceous flecks, rare py firm to moderately hard, very dispersive, slightly subfissile.	um green grey, slig rite, trace micromic	htl a,
1626-1632	80	Sandstone: medium green grey, fine to coarse, dominantly fine to me subangular, moderately to well sorted, weak silica and calcareous cer argillaceous matrix, abundant grey green lithics, trace to common red lithics, common brown to black mica flakes, trace black carbonaceous poor inferred porosity, no oil fluorescence.	nents, common whi l brown and black	
	20	Claystone: off white to medium brown grey to medium grey to mediu to rarely very silty, trace brown to black carbonaceous flecks, rare pyr firm to moderately hard, very dispersive, slightly subfissile.	im green grey, sligh ite, trace micromica	ntly a,
1632-1635	50	Sandstone: medium green grey, fine to coarse, dominantly fine to me subangular, moderately to well sorted, weak silica and calcareous cen argillaceous matrix, abundant grey green lithics, trace to common red lithics, common brown to black mica flakes, trace black carbonaceous poor inferred porosity, no oil fluorescence.	ents, common whit brown and black	
	50	Claystone: off white to medium brown grey to medium grey to mediu dominantly light brown, slightly to rarely very silty, trace brown to bla flecks, trace black coal detritus, trace pyrite, trace micromica, firm to dispersive, slightly subfissile.	ick carbonaceous	:гу
1635-1638		Sandstone: medium green grey, fine to coarse, dominantly fine to med subangular, moderately to well sorted, weak silica and calcareous cem- argillaceous matrix, abundant grey green lithics, trace to common red lithics, common brown to black mica flakes, trace black carbonaceous poor inferred porosity, no oil fluorescence.	ents, common white brown and black	
		Claystone: off white to medium brown grey to medium grey to mediur dominantly light brown, slightly to rarely very silty, trace brown to bla flecks, trace black coal detritus, trace pyrite, trace micromica, firm to r dispersive, slightly subfissile.	ck carbonaceous	ry
1638-1641	1 1 1	Sandstone: medium green grey, fine to coarse, dominantly medium, an moderately to well sorted, weak silica and calcareous cements, common matrix, abundant grey green lithics, trace to common orange brown and brown mica flakes, trace black carbonaceous matter, friable, very poor bil fluorescence.	h white argillaceous d black lithics, trace	5 e

	Interval (m)	%	Description	PAGE: 5
		30	Claystone: off white to medium grey to medium green grey, light brow trace brown to black carbonaceous flecks, trace pyrite, trace micromica hard, slightly subfissile.	wn, slightly silty, a, firm to moderate
)	1554-1560	80	Sandstone: medium green grey, very fine to medium, dominantly med subangular, moderately to well sorted, weak silica and calcareous cem- common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black of friable, very poor inferred porosity, no oil fluorescence.	ents, trace to to common red
		20	Claystone: off white to medium grey to medium green grey, light brow trace brown to black carbonaceous flecks, trace pyrite, trace micromica hard, slightly subfissile.	vn, slightly silty, , firm to moderatel
	1560-1566	90	Sandstone: medium green grey, very fine to medium, dominantly med subangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace to brown and black lithics, trace brown to black mica flakes, trace black of friable, very poor inferred porosity, no oil fluorescence.	ents, trace to o common red
		10	Claystone: off white to medium grey to medium green grey, light brow trace brown to black carbonaceous flecks, trace pyrite, trace micromica hard, slightly subfissile.	
	1566-1572	90	Sandstone: medium green grey, very fine to medium, dominantly med subangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace t brown and black lithics, trace brown to black mica flakes, trace black c friable, very poor inferred porosity, no oil fluorescence.	nts, trace to o common red
		10	Claystone: off white to medium grey to medium green grey, slightly to trace brown to black carbonaceous flecks, trace pyrite, trace micromica, hard, slightly subfissile.	rarely very silty, firm to moderately
	1572-1581	90	Sandstone: medium green grey, very fine to medium, dominantly medi subangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace to brown and black lithics, common brown to black mica flakes, trace blac matter, friable, very poor inferred porosity, no oil fluorescence.	nts, trace to common red
		10	Claystone: off white to medium grey to medium green grey, slightly to trace brown to black carbonaceous flecks, trace pyrite, trace micromica, hard, slightly subfissile.	
	1581-1593	90	Sandstone: medium green grey, fine to coarse, dominantly medium, an moderately to well sorted, weak silica and calcareous cements, common matrix, abundant grey green lithics, trace to common red brown and bla brown to black mica flakes, trace black carbonaceous matter, friable, ver porosity, no oil fluorescence.	white argillaceous ick lithics, common
		10	Claystone: off white to medium grey to medium green grey, slightly to trace brown to black carbonaceous flecks, trace pyrite, trace micromica, hard, slightly subfissile.	
	1593-1602	90	Sandstone: medium green grey, fine to coarse, dominantly fine to media subangular, moderately to well sorted, weak silica and calcareous cemer argillaceous matrix, abundant grey green lithics, trace to common red bu lithics, common brown to black mica flakes, trace black carbonaceous m poor inferred porosity, no oil fluorescence.	ts, common white rown and black
		10	Claystone: off white to medium grey to medium green grey, slightly to a trace brown to black carbonaceous flecks, trace pyrite, trace micromica, hard, slightly subfissile.	

Interval (m)	%	Description	PAGE:	4
1500-1503	100	Sandstone: medium green grey, very fine to coarse, dominantly med to subangular, moderately to well sorted, weak silica and calcareous common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace black mica flakes, trace black carbona poor inferred porosity, no oil fluorescence.	cements, trace to	-
	Tr	Claystone: off white to medium grey to medium brown grey to medi silty, trace brown to black carbonaceous flecks, trace pyrite, trace mi moderately hard, slightly subfissile.		gh
1503-1512	70	Sandstone: medium green grey, fine to coarse, dominantly medium subangular, moderately to well sorted, weak silica and calcareous cer common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace black mica flakes, trace black carbonar poor inferred porosity, no oil fluorescence.	ments, trace to e to common red	
	30	Claystone: off white to medium grey to medium brown grey to medi silty, trace brown to black carbonaceous flecks, trace pyrite, trace mi moderately hard, slightly subfissile.		ght
1512-1518	20	Sandstone: mcdium green grey, fine to coarse, dominantly medium subangular, moderately to well sorted, weak silica and calcareous cer common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	ments, trace to e to common red	
	80	Claystone: off white to medium grey to medium brown grey to medi silty, trace brown to black carbonaceous flecks, trace pyrite, trace mid moderately hard, slightly subfissile.		ght
1518-1524	50	Sandstone: medium green grey, very fine to coarse, dominantly fine subangular, moderately to well sorted, weak silica and calcareous cer common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	nents, trace to e to common red	
	50	Claystone: off white to medium grey to medium green grey, slightly black carbonaceous flecks, trace pyrite, trace micromica, firm to mod subfissile.		
1524-1530	90	Sandstone: medium green grey, very fine to coarse, dominantly med subangular, moderately to well sorted, weak silica and calcareous cer common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	nents, trace to to common red	tter
	10	Claystone: off white to medium grey to medium green grey, slightly black carbonaceous flecks, trace pyrite, trace micromica, firm to mod subfissile.		
1530-1536	80	Sandstone: medium green grey, very fine to coarse, dominantly medi subangular, moderately to well sorted, weak silica and calcareous cen common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	nents, trace to to common red	ter
	20	Claystone: off white to medium grey to medium green grey, light bro trace brown to black carbonaceous flecks, trace pyrite, trace micromic hard, slightly subfissile.		tely
1536-1554	70	Sandstone: medium green grey, very fine to medium, dominantly me subangular, moderately to well sorted, weak silica and calcareous cen common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	to common red	ter

j

3)

I	nterval (m)	%	Description	PAGE:	3
		Tr	Claystone: off white to medium green grey, light to medium brown, med slightly to occasionally moderately silty, trace to common brown to black flecks and detritus especially where brown, trace micromica, trace pyrite, subfissile.	carbonaceou	IS
	1455-1461	80	Sandstone: medium green grey, fine to coarse, dominantly medium, ang well sorted, weak silica and trace weak calcareous cement, common whit matrix, abundant grey green lithics, trace to common red brown and blac feldspars, trace brown black mica flakes, trace pyrite, friable, very poor v oil fluorescence.	e argillaceou k lithics, trac	s ce
		20	Claystone: off white to medium green grey, light to medium brown, med dominantly medium grey, slightly to occasionally moderately silty, trace to black carbonaceous flecks and detritus especially where brown, trace n pyrite, firm, slightly subfissile.	to common b	rown
	1461-1467	90	Sandstone: medium green grey, fine to coarse, dominantly medium, ang well sorted, weak silica and trace weak calcareous cement, common whit matrix, abundant grey green lithics, trace to common red brown and blac feldspars, trace brown black mica flakes, trace pyrite, friable, very poor v oil fluorescence.	e argillaceous k lithics, trac	s :e
		10	Claystone: off white to medium green grey, light to medium brown, med dominantly medium grey, slightly to occasionally moderately silty, trace to black carbonaceous flecks and detritus especially where brown, trace n pyrite, firm, slightly subfissile.	to common b	rown
	1467-1473	80	Sandstone: medium green grey, fine to coarse, dominantly medium, ang well sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and blac feldspars, trace brown black mica flakes, trace pyrite, friable, very poor v oil fluorescence.	e argillaceous k lithics, trac	s e
		20	Claystone: off white to medium green grey, light to medium brown, med dominantly medium grey, slightly to occasionally moderately silty, trace to to black carbonaceous flecks and detritus especially where brown, trace m pyrite, firm, slightly subfissile.	o common bi	rown
	1473-1482	60	Sandstone: medium green grey, fine to coarse, dominantly medium, angu well sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and black feldspars, trace brown black mica flakes, trace pyrite, friable, very poor vi oil fluorescence.	e argillaceous k lithics, trac	e e
		40	Claystone: off white to medium grey to medium brown grey to medium g silty, trace brown to black carbonaceous flecks, trace pyrite, trace microm moderately hard, slightly subfissile.		ghtly
	1482-1494	20	Sandstone: medium green grey, fine to coarse, dominantly medium, angu well sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and black feldspars, trace brown black mica flakes, trace pyrite, friable, very poor vi oil fluorescence.	e argillaceous c lithics, trace	e
		80	Claystone: off white to medium grey to medium brown grey to medium g silty, trace brown to black carbonaceous flecks, trace pyrite, trace microm moderately hard, slightly subfissile.		ghtly
	1494-1500	40	Sandstone: medium green grey, very fine to coarse, dominantly medium to subangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace to c brown and black lithics, trace black mica flakes, trace black carbonaceous poor inferred porosity, no oil fluorescence.	nts, trace to ommon red	
		60	Claystone: off white to medium grey to medium brown grey to medium g silty, trace brown to black carbonaceous flecks, trace pyrite, trace microm moderately hard, slightly subfissile.		ghtly

L	Interval (m)	%	Description	PAGE:	2
		30	Claystone: off white to medium green grey, light to medium brown, med dominantly off white to light green grey, slightly to occasionally modera common brown to black carbonaceous flecks and detritus especially whe micromica, trace pyrite, firm, slightly subfissile.	tely silty, trac	e to
-	1407-1413	90	Sandstone: medium green grey, fine to coarse, dominantly medium, ang subrounded, moderately to well sorted, weak silica and trace weak calcar common white argillaceous matrix, abundant grey green lithics, common black lithics, trace black coaly detritus, trace brown and dark green mica pyrite, friable, very poor visual porosity, no oil fluorescence.	eous cement, n red brown a	nd
		10	Claystone: off white to medium green grey, light to medium brown, med dominantly off white to light green grey, slightly to occasionally modera common brown to black carbonaceous flecks and detritus especially whe micromica, trace pyrite, firm, slightly subfissile.	ely silty, trace	e to
	1413-1419	100	Sandstone: medium green grey, fine to coarse, dominantly medium, ang subrounded, moderately to well sorted, weak silica and trace weak calcar common white argillaceous matrix, abundant grey green lithics, common to common black to very dark green lithics, trace black coaly detritus, tra green black mica flakes, trace pyrite, friable, very poor visual porosity, n	eous cement, a red lithics, ta ce brown and	
	1419-1431	100	Sandstone: mcdium green grey, fine to coarse, dominantly medium, ang subrounded, moderately to well sorted, weak silica and trace weak calcar common white argillaceous matrix, abundant grey green lithics, commor to common black to very dark green lithics, trace black coaly detritus, co green black mica flakes, trace pyrite, friable, very poor visual porosity, ne	eous cement, 1 red lithics, ti mmon brown	and
		Tr	Claystone: off white to medium green grey, light to medium brown, med slightly to occasionally moderately silty, trace to common brown to black flecks and detritus especially where brown, trace micromica, trace pyrite, subfissile.	carbonaceous	S
	1431-1440	100	Sandstone: medium green grey, fine to coarse, dominantly medium, ang subrounded, moderately to well sorted, weak silica and trace weak calcar common to abundant white argillaceous matrix, abundant grey green lith lithics, trace to common black to very dark green lithics, trace black coal common brown and green black mica flakes, trace pyrite, friable, very po no oil fluorescence.	eous cement, ics, common a y detritus,	
		Tr	Claystone: off white to medium green grey, light to medium brown, med slightly to occasionally moderately silty, trace to common brown to black flecks and detritus especially where brown, trace micromica, trace pyrite, subfissile.	carbonaceous	5
	1440-1443	100	Sandstone: medium green grey, fine to coarse, dominantly medium, ang well sorted, weak silica and trace weak calcareous cement, common whit matrix, abundant grey green lithics, trace to common red brown and blac feldspars, trace brown black mica flakes, trace pyrite, friable, poor visual poor inferred porosity, no oil fluorescence.	e argillaceous k lithics, trace	e
	1443-1449	90	Sandstone: medium green grey, fine to coarse, dominantly medium, ang well sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and blac feldspars, trace brown black mica flakes, trace pyrite, friable, poor visual poor inferred porosity, no oil fluorescence.	e argillaceous k lithics, trace	•
		10	Claystone: off white to medium green grey, light to medium brown, med slightly to occasionally moderately silty, trace to common brown to black flecks and detritus especially where brown, trace micromica, trace pyrite, subfissile.	carbonaceous	;
	1449-1455	100	Sandstone: medium green grey, fine to coarse, dominantly medium, angu well sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and black feldspars, trace brown black mica flakes, trace pyrite, friable, poor visual poor inferred porosity, no oil fluorescence.	e argillaceous k lithics, trace	;

ang Brag

0

APPENDIX

CUTTINGS DESCRIPTION

WELL NAME:	Sk	ull Creek-1	DATE:	28-5-97
GEOLOGIST:	Da	ave Horner	PAGE:	1
Interval (m)	%	Description		
For geology report	-9			
1373-1380	70	Sandstone: medium green grey, fine to subrounded, moderately to well sorted, common white argillaceous matrix, ab black lithics, trace black coaly detritus visual porosity, no oil fluorescence.	, weak silica and tra undant grey green li	ce weak calcareous cement, ithics, common red brown and
	30	Claystone: off white to medium green slightly to occasionally moderately silt grains in part, trace to common brown where brown, trace micromica, trace p	y, common very fine to black carbonaced	e partially alterered feldspar ous flecks and detritus especially
1380-1383	30	Sandstone: medium green grey, fine to subrounded, moderately to well sorted, common white argillaceous matrix, abu black lithics, trace black coaly detritus, visual porosity, no oil fluorescence.	o coarse, dominantly weak silica and trac undant grey green li	r medium, angular to be weak calcareous cement, thics, common red brown and
	70	Claystone: off white to medium green slightly to occasionally moderately silty grains in part, trace to common brown where brown, trace micromica, trace py	v, common very fine to black carbonaceou	partially alterered feldspar us flecks and detritus especially
1383-1395	10	Sandstone: medium green grey, fine to subrounded, moderately to well sorted, common white argillaceous matrix, abu black lithics, trace black coaly detritus, visual porosity, no oil fluorescence.	weak silica and trac indant grey green lit	e weak calcareous cement, hics, common red brown and
	90	Claystone: off white to medium green g dominantly off white to light green grey common brown to black carbonaceous f micromica, trace pyrite, firm, slightly su	r, slightly to occasion lecks and detritus es	nally moderately silty, trace to
1395-1401	30	Sandstone: medium green grey, fine to subrounded, moderately to well sorted, v common white argillaceous matrix, abut black lithics, trace black coaly detritus, t pyrite, friable, very poor visual porosity,	weak silica and trace ndant grey green lith trace brown and dar	e weak calcareous cement, hics, common red brown and k green mica flakes, trace
		Claystone: off white to medium green g dominantly off white to light green grey, common brown to black carbonaceous fl micromica, trace pyrite, firm, slightly su	, slightly to occasion ecks and detritus esp	ally moderately silty, trace to
1401-1407		Sandstone: medium green grey, fine to o subrounded, moderately to well sorted, w common white argillaceous matrix, abun black lithics, trace black coaly detritus, th pyrite, friable, poor visual porosity, very	veak silica and trace idant grey green lith race brown and dark	weak calcareous cement, ics, common red brown and green mica flakes, trace

APPENDIX

CUTTINGS DESCRIPTION

	WELL NAME:	Skı	ull Creek-1	DATE:	26-5-97
	GEOLOGIST:	Dav	ve Horner	PAGE:	1
	Interval (m)	%	Description		
	For geology report-	7			
	1368-1371	20	Sandstone: light to medium green g subangular to subrounded, moderate common to abundant white argillace brown and black lithics, trace black very poor visual porosity, no oil fluo	ly to well sorted, weal ous matrix, abundant coaly detritus, trace m	silica and calcareous cements, grey green lithics, common red
		80	Claystone: mcdium green grey, ligh trace very fine partially alterered felo flecks and detritus, trace micromica,	lspar grains in part, ti	ace brown to black carbonaceous
	1371-1373	40	Sandstone: light to medium green g subangular to subrounded, moderate common to abundant white argillace brown and black lithics, trace black very poor visual porosity, no oil fluo	ly to well sorted, weak ous matrix, abundant coaly detritus, trace m	silica and calcareous cements, grey green lithics, common red
		60	Claystone: medium green grey, ligh trace very fine partially alterered felo flecks and detritus, trace micromica,	lspar grains in part, ti	ace brown to black carbonaceous
)				
				- <u></u> 0,	
ł					
ł					
D)				

interval (m)	%	Description	PAGE:	7
	80	Claystone: light to medium green grey, light to medium grey, medium be silty, trace very fine partially alterered feldspar grains in part, trace brown carbonaceous flecks and detritus, trace micromica, firm, slightly subfissi	n to black	lightly
		Total Depth : 1368m.		

. .

. .

.

	Interval (m)	9/	6 Description	PAGE:	6
	1338-1344	-4(Sandstone: medium green grey, very fine to coarse, dominantly medi subrounded, moderately to well sorted, weak silica and calcareous cer argillaceous matrix, abundant grey green lithics, trace to common red lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable porosity, no oil fluorescence.	nents, common v	white
		60	Claystone: light to medium green grey, light to medium grey, medium silty, trace brown to black carbonaceous flecks and detritus, trace micr subfissile	n brown grey, sli omica, firm, slig	ghtly ;httly
	1344-1347	50	Sandstone: medium green grey, very fine to coarse, dominantly mediu subrounded, moderately to well sorted, weak silica and calcareous cem argillaceous matrix, abundant grey green lithics, trace to common red lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, porosity, no oil fluorescence.	ents, common w	hite
		50	Claystone: light to medium green grey, light to medium grey, medium silty, trace brown to black carbonaceous flecks and detritus, trace micro subfissile	brown grey, slig omica, firm, sligl	htly; htly;
	1347-1350	30	Sandstone: medium green grey, very fine to coarse, dominantly medium subrounded, moderately to well sorted, weak silica and calcareous ceme argillaceous matrix, abundant grey green lithics, trace to common red b lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, porosity, no oil fluorescence.	ents, common wh	uite
		70	Claystone: light to medium green grey, light to medium grey, medium silty, trace brown to black carbonaceous flecks and detritus, trace micros subfissile	brown grey, slig mica, firm, sligh	ntly ttly
\$80) }	1350-1356	40	Sandstone: medium green grey, very fine to coarse, dominantly medium subrounded, moderately to well sorted, weak silica and calcareous cemer argillaceous matrix, abundant grey green lithics, trace to common red br lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, v porosity, no oil fluorescence.	nts, common whi	te
		60	Claystone: light to medium green grey, light to medium grey, medium b silty, trace very fine partially alterered feldspar grains in part, trace brow carbonaceous flecks and detritus, trace micromica, firm, slightly subfissi		tly
	1356-1362	30	Sandstone: medium green grey, very fine to coarse, dominantly medium, subrounded, moderately to well sorted, weak silica and calcareous cement argillaceous matrix, abundant grey green lithics, trace to common red bro lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, ve porosity, no oil fluorescence.	, subangular to ts, common whit	e
		70	Claystone: light to medium green grey, light to medium grey, medium br silty, trace very fine partially alterered feldspar grains in part, trace brown carbonaceous flecks and detritus, trace micromica, firm, slighttly subfissil	to hlast	ly
	1362-1365	40	Sandstone: medium green grey, very fine to coarse, dominantly medium, subrounded, moderately to well sorted, weak silica and calcareous cements argillaceous matrix, abundant grey green lithics, trace to common red brow lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, ver porosity, no oil fluorescence.	subangular to s, common white	
		1	Claystone: light to medium green grey, light to medium grey, medium bro silty, trace very fine partially alterered feldspar grains in part, trace brown carbonaceous flecks and detritus, trace micromica, firm, slighttly subfissile	to blook	 /
	1368-1368	20	Sandstone: medium green grey, very fine to coarse, dominantly medium, s subrounded, moderately to well sorted, weak silica and calcareous cements, argillaceous matrix, abundant grey green lithics, trace to common red brow lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very porosity, no oil fluorescence.	subangular to , common white	

interval (m)	1/0	Description	PAGE:	5
	90	Claystone: light to medium green grey, light brown grey, slightly silty i fine brown to black carbonaceous flecks, trace micromica, rare pyrite, so to slightly subfissile.	n part, trace v ft and sticky,	ery non
)	20	Sandstone: light grey to light green grey, very fine to coarse, dominantly angular to subrounded, moderately to well sorted, weak silica and calcard abundant white argillaceous matrix, abundant green grey lithics, trace to brown black lithics, trace black carbonaceous detritus, friable, very poor oil fluorescence.	cous cements, common red	
	80	Claystone: light to medium green grey, light brown grey, slightly silty in fine brown to black carbonaceous flecks, trace micromica, rare pyrite, so to slightly subfissile.	a part, trace ve and sticky, a	ery non
1317-1323	60	Sandstone: light grey to light green grey, very fine to coarse, dominantly to subrounded, moderately to well sorted, weak silica and calcareous cem white argillaceous matrix, abundant green grey lithics, trace to common lithics, trace black carbonaceous detritus, friable, very poor visual porosit fluorescence.	ents, abundar red brown bla	nt
	40	Claystone: light to medium green grey, light brown grey, slightly silty in fine brown to black carbonaceous flecks, trace micromica, rare pyrite, sof to slightly subfissile.	part, trace ve t and sticky, r	ry non
1323-1326	80	Sandstone: light grey to light green grey, very fine to coarse, dominantly to subrounded, moderately to well sorted, weak silica and calcareous cemwhite argillaceous matrix, abundant green grey lithics, trace to common r lithics, trace black carbonaceous detritus, friable, very poor visual porosit fluorescence.	ents, abundan ed brown blac	t
	20	Claystone: light to medium green grey, light brown grey, slightly silty in fine brown to black carbonaceous flecks, trace micromica, rare pyrite, soft to slightly subfissile.	part, trace ve and sticky, n	ry on
1326-1329	30	Sandstone: light grey to light green grey, very fine to coarse, dominantly to subrounded, moderately to well sorted, weak silica and calcareous ceme white argillaceous matrix, abundant green grey lithics, trace to common r lithics, trace black carbonaceous detritus, friable, very poor visual porosity fluorescence.	ents, abundant ed brown blac	t
	70	Claystone: light to medium green grey, light brown grey, slightly silty in fine brown to black carbonaceous flecks, trace micromica, rare pyrite, soft to slightly subfissile.	part, trace ver and sticky, n	ry on
1329-1335	40	Sandstone: medium green grey, very fine to coarse, dominantly medium to subangular to subrounded, moderately to well sorted, weak silica and calca common white argillaceous matrix, abundant grey green lithics, trace to co brown and black lithics, trace black coaly detritus, trace mica flakes, rare p very poor visual porosity, no oil fluorescence.	areous cement ommon red	
	60	Claystone: light to medium green grey, light brown grey, slightly silty in fine brown to black carbonaceous flecks, trace micromica, rare pyrite, soft to slightly subfissile.		
1335-1338	50	Sandstone: medium green grey, very fine to coarse, dominantly medium, s subrounded, moderately to well sorted, weak silica and calcareous cements argillaceous matrix, abundant grey green lithics, trace to common red brow lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, ver porosity, no oil fluorescence.	, common wh vn and black	
		Claystone: light to medium green grey, light brown grey, slightly silty in p fine brown to black carbonaceous flecks, trace micromica, rare pyrite, soft to slightly subfissile.		

	Interval (m)	%	Description	PAGE:	4
	1284-1287	70	Sandstone: medium blue grey, very fine to coarse, dominantly fine, ang moderately to well sorted, weak silica and calcareous cement, common to argillaceous matrix, abundant green grey lithics, common red brown and common fine black carbonaceous detritus, friable, very poor visual poros fluorescence.	o abundant wł I black lithics,	nite
		30	Claystone: off white to light blue grey to light green grey,occasionally ne trace pyrite, structureless, soft and sticky.	edium brown,	•
	1287-1290	10	Sandstone: medium blue grey, very fine to coarse, dominantly fine, angumoderately to well sorted, weak silica and calcareous cement, common to argillaceous matrix, abundant green grey lithics, common red brown and common fine black carbonaceous detritus, friable, very poor visual porosi fluorescence.	abundant wh black lithics,	ided, ite
		90	Claystone: off white to light blue grey to light green grey, occasionally m trace pyrite, structureless, soft and sticky.	edium brown,	
	1290-1293	30	Sandstone: light grey to light green grey, very fine to coarse, dominantly to subrounded, moderately to well sorted, weak silica and calcareous ceme white argillaceous matrix, abundant green grey lithics, trace to common r lithics, trace black carbonaceous detritus, friable, very poor visual porosity fluorescence.	ents, abundan ed brown blac	t l
		70	Claystone: off white to light green grey to light blue grey, occasionally light brown, slightly silty in part, trace very fine carbonaceous flecks, rare pyrit micromica, soft and sticky, slightly subfissile.	ght to medium e, trace	
	1293-1299	20	Sandstone: light grey to light green grey, very fine to coarse, dominantly to subrounded, moderately to well sorted, weak silica and calcareous ceme white argillaceous matrix, abundant green grey lithics, trace to common relithics, trace black carbonaceous detritus, friable, very poor visual porosity fluorescence.	ents, abundant ed brown blac	
à,		80	Claystone: off white to light green grey to light blue grey, occasionally lig brown, slightly silty in part, trace very fine carbonaceous flecks, rare pyrite micromica, soft and sticky, slightly subfissile.	ht to medium e, trace	
	1299-1302	10	Sandstone: light grey to light green grey, very fine to coarse, dominantly to subrounded, moderately to well sorted, weak silica and calcareous ceme white argillaceous matrix, abundant green grey lithics, trace to common relithics, trace black carbonaceous detritus, friable, very poor visual porosity fluorescence.	nts, abundant d brown black	
		90	Claystone: light to medium green grey, light brown grey, trace very fine b carbonaceous flecks, trace micromica, rare pyrite, soft and sticky, non to sl	rown to black ightly subfissi	le.
	1302-1305	Tr	Sandstone: light grey to light green grey, very fine to coarse, dominantly r to subrounded, moderately to well sorted, weak silica and calcareous cemer white argillaceous matrix, abundant green grey lithics, trace to common re lithics, trace black carbonaceous detritus, friable, very poor visual porosity, fluorescence.	nedium, angu its, abundant d brown black	lar
		100	Claystone: light to medium green grey, light brown grey, slightly silty in p fine brown to black carbonaceous flecks, trace micromica, rare pyrite, soft to slightly subfissile.	art, trace very and sticky, not	, n
	1305-1308	100	Claystone: light to medium green grey, light brown grey, slightly silty in p fine brown to black carbonaceous flecks, trace micromica, rare pyrite, soft a to slightly subfissile.	art, trace very and sticky, nor	n
	1308-1314		Sandstone: light grey to light green grey, very fine to coarse, dominantly fi subrounded, moderately to well sorted, weak silica and calcareous cements, argillaceous matrix, abundant green grey lithics, trace to common red brow trace black carbonaceous detritus, friable, very poor visual porosity, no oil f	abundant whi n black lithics	ite

interval (m)	%	Description	PAGE:
1257-1260	100	Sandstone: very light brown, very fine to very coarse, dominantly m subrounded, poorly sorted, weak to moderate silica cement, trace to c argillaceous matrix, common to abundant yellow orange lithics, trace black lithics, trace black coal detritus, trace coarse brown and green fair to good visual porosity, no oil fluorescence.	common white
1260-1263	100	Sandstone: light orange grey, very fine to very coarse, dominantly fine to subangular, well sorted, moderate silica cement, common white an abundant yellow orange lithics, trace red green grey and black lithics detritus, friable to moderately hard, poor visual porosity, no oil fluored	gillaceous matrix,
1263-1266	100	Sandstone: light orange grey, very fine to medium, dominantly fine, subangular, well sorted, moderate silica cement, trace white argillace yellow orange lithics, trace red green grey and black lithics, trace blac friable, fair visual porosity, no oil fluorescence.	ous matrix common
1266-1269	100	Sandstone: light orange grey, very fine to grit, dominantly medium to subangular, well sorted, moderate silica cement, trace white argillaced yellow orange lithics, trace red green grey and black lithics, trace black friable, fair visual porosity, no oil fluorescence.	ous matrix common
1269-1272	100	Sandstone: light orange grey, very fine to grit, dominantly fine to measubangular, well sorted, moderate silica cement, weak calcareous cemargillaceous matrix, common yellow orange lithics, trace red green gret trace black coaly detritus, friable, fair visual porosity, no oil fluorescer	ent, trace white ev and black lithics
1272-1275	50	Sandstone: light orange grey, very fine to grit, dominantly fine to med subangular, well sorted, moderate silica cement, weak calcareous ceme argillaceous matrix, common yellow orange lithics, trace red green gree trace black coaly detritus, friable, fair visual porosity, no oil fluorescen	ent, trace white
	30	Sandstone: medium blue grey, very fine to coarse, dominantly medium subrounded, moderately to well sorted, weak silica and calcareous cem abundant white argillaceous matrix, abundant green grey lithics, comm black lithics, common fine black carbonaceous detritus, friable, very po no oil fluorescence.	n, angular to ent, common to non red brown and
	20	Claystone: off white to light blue grey, structureless, soft and sticky.	
1275-1278	70	Sandstone: medium blue grey, very fine to coarse, dominantly medium subrounded, moderately to well sorted, weak silica and calcareous ceme abundant white argillaceous matrix, abundant green grey lithics, comm black lithics, common fine black carbonaceous detritus, friable, very po no oil fluorescence.	ent, common to on red brown and
	30	Claystone: off white to light blue grey to light green grey, structureless	, soft and sticky.
1278-1281	60	Sandstone: medium blue grey, very fine to coarse, dominantly fine, any moderately to well sorted, weak silica and calcareous cement, common argillaceous matrix, abundant green grey lithics, common red brown an common fine black carbonaceous detritus, friable, very poor visual poro fluorescence.	to abundant white d black lithics.
	40	Claystone: off white to light blue grey to light green grey, structureless,	, soft and sticky.
1281-1284		Sandstone: medium blue grey, very fine to coarse, dominantly fine, ang moderately to well sorted, weak silica and calcareous cement, common t argillaceous matrix, abundant green grey lithics, common red brown and common fine black carbonaceous detritus, friable, very poor visual poros fluorescence.	to abundant white d black lithics.
	50	Claystone: off white to light blue grey to light green grey, occasionally n trace pyrite, structureless, soft and sticky.	nedium brown,

	miervar (m)	70	Description	PAGE: 2
	1239-1242	60	Sandstone: very light brown grey, very fine to medium, dominantly subrounded, moderately sorted, weak silica cement, no visual matrix, green brown grey and black lithics, common black coaly detritus, trac inferred porosity, no oil fluorescence.	common bright rod
		40	Claystone: medium grey to medium brown, very silty, common very altered feldspars grains in part, common brown to black carbonaceous detritus, trace medium brown cryptocrystalline dolomite, trace glauco trace micromica, soft, very dispersive and washing from sample, slight	s flecks and fine
	1242-1245	20	Sandstone: very light brown grey, very fine to medium, dominantly fisubrounded, moderately sorted, weak silica cement, no visual matrix, green brown grey and black lithics, common black coaly detritus, trac inferred porosity, no oil fluorescence.	common bright red
		80	Claystone: medium grey to medium brown, very silty, common very f altered feldspars grains in part, common brown to black carbonaceous detritus, trace medium brown cryptocrystalline dolomite, trace glaucor trace micromica, soft, very dispersive and washing from sample, sligh	flecks and fine
	1245-1248	20	Sandstone: very light brown grey, very fine to medium, dominantly fin subrounded, moderately sorted, weak silica cement, trace white argilla common bright red green brown grey and black lithics, common black pyrite, friable, fair inferred porosity, no oil fluorescence.	ne, angular to
		70	Claystone: mcdium grey to medium brown, very silty, common very fi altered feldspars grains in part, common brown to black carbonaceous detritus, trace medium brown cryptocrystalline dolomite, trace glaucon trace micromica, soft, very dispersive and washing from sample, slight	flecks and fine
2525		10	Coal: dark brown to black, very argillaceous in part, often abundant di subvitreous lustre with platy to dominantly subconchoidal fracture whe fracture with earthy texture where argillaceous, trace medium brown tra- hard and brittle.	sseminated pyrite,
	1248-1251	60	Sandstone: very light brown, very fine to grit, dominantly medium to c subrounded, poorly sorted, weak to moderate silica cement, trace to con argillaceous matrix, common red green grey and black volcanic lithics, detritus, trace coarse brown and green mica flakes, friable, fair to good oil fluorescence.	nmon white
		40	Claystone: light to medium brown grey, light to medium grey, very silt fine off white partially altered feldspars grains in part, common brown to carbonaceous flecks and fine detritus, trace medium brown cryptocrystal glauconite, trace pyrite, trace micromica, soft, very dispersive and washes slightly subfissile.	o black
	1251-1254	90	Sandstone: very light brown, very fine to very coarse, dominantly fine to to subrounded, poorly sorted, weak to moderate silica cement, trace to co argillaceous matrix, common yellow orange red green grey and black vo black coal detritus, trace coarse brown and green mica flakes, friable, fai porosity, no oil fluorescence.	ommon white
			Claystone: light to medium brown grey, light to medium grey, very silty fine off white partially altered feldspars grains in part, common brown to carbonaceous flecks and fine detritus, trace medium brown cryptocrystall glauconite, trace pyrite, trace micromica, soft, very dispersive and washin slightly subfissile.	black
)	1254-1257		Sandstone: very light brown, very fine to grit, dominantly medium, angu poorly sorted, weak to moderate silica cement, trace to common white arg common to abundant yellow orange lithics, trace green grey red and black coal detritus, trace coarse brown and green mica flakes, friable, fair porosity, no oil fluorescence.	gillaceous matrix, k lithics_trace

CULTUS PETROLEUM N.L.

APPENDIX

CUTTINGS DESCRIPTION

WELL NAME: Skull Creek-1 **GEOLOGIST:** Dave Horner

PAGE:

DATE:

24-5-96

1

Interval (m)	%	Description
--------------	---	-------------

For geology report-5

	1214-1220	100	Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderate to well sorted, weak silica cement, no visual matrix, trace black coaly detritus, friable, good inferred porosity, no oil fluorescence.
	1220-1225	100	Sandstone: light grey, very fine to very coarse, dominantly medium, angular to subrounded, moderate to well sorted, weak silica cement, no visual matrix, trace black coaly detritus, friable, good inferred porosity, no oil fluorescence.
		Tr	Claystone: medium grey, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
	1225-1230	60	Sandstone: light grey, very fine to very coarse, dominantly medium, angular to subrounded, dominantly subangular, poorly sorted, weak silica cement, clear to opaue quartz grains, trace pyrite, trace fine black to brown carbonaceous matter, friable, good inferred porosity, no oil fluorescence.
<u>@</u>		40	Claystone: medium grey, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
	1230-1233	50	Sandstone: light grey, very fine to very coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, weak silica cement, clear to opaue quartz grains, trace pyrite, trace fine black to brown carbonaceous matter, friable, fair to good inferred porosity, no oil fluorescence.
		50	Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
	1233-1236	30	Sandstone: light grey, very fine to very coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, weak silica cement, clear to opaue quartz grains, trace pyrite, trace fine black to brown carbonaceous matter, friable, fair to good inferred porosity, no oil fluorescence.
		70	Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
	1236-1239	60	Sandstone: very light brown grey, very fine to coarse, dominantly fine to medium, angular to subrounded, moderately sorted, weak silica cement, no visual matrix, common bright red green brown grey and black lithics, common black coaly detritus, trace pyrite, friable, fair to good inferred porosity, no oil fluorescence.
			Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspars grains in part, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.

		CU	TTINGS DESCRIPTI	[ON
WELL NAME:		ull Creek-1	DATE: 23-5-96	
••••••			PAGE: 1	
GEOLOGIST:	Da	ve Horner		
Interval (m)	%	Description		
Continuation for ge	ology rep	port-4		
1200-1205	80	Claystone: medium to dark partially altered feldspar gra micromica, firm, very dispe	grey, medium to dark brown grey, very silty, comm ins in part, common black carbonaceous flecks, trac sive, slightly subfissile.	on very fin ce
	20	to subrounded, poor to mod	very fine to grit, dominantly coarse to very coarse, s rate sorting, very weak silica cement, no visual man trace black carbonaceous detritus, friable, very goo	trix, trace
1205-1210	90	to subrounded, poor to mode	very fine to grit, dominantly coarse to very coarse, s rate sorting, very weak silica cement, no visual mat trace black carbonaceous detritus, friable, very goo	trix, trace
	10	Claystone: medium to dark partially altered feldspar gra micromica, firm, very dispe	grey, medium to dark brown grey, very silty, commins in part, common black carbonaceous flecks, trac sive, slightly subfissile.———	on very fin ce
1210-1214	100	to subrounded, poor to mode	very fine to grit, dominantly coarse to very coarse, s rate sorting, very weak silica cement, no visual mat trace black carbonaceous detritus, friable, very goo	trix, trace
18 m · · · · · · · · · · · · · · · · · ·				
]			

Interval (m)	%	Description	PAGE:	6
	10	Sandstone: off white to light brown, very fine to fine, subangular to su moderately to well sorted, moderate silica and calcarcous cements, com white to medium brown argillaceous and silt matrix, trace green lithics flecks and detritus, trace pyrite, moderately hard, nil to very poor visua fluorescence.	mon to abunda , trace carbonae	ceous
1160-1170	70	Claystone: medium to dark grey, medium brown grey, very silty, comm partially altered feldspar grains in part, trace black carbonaceous flecks trace pyrite, soft, very dispersive, slightly subfissile.		ica,
	30	Sandstone: light grey, very fine to very coarse, dominantly fine to medi subrounded, poorly sorted, weak silica cement, minor off white argillace red brown lithics, trace black carbonaceous matter, trace pyrite, friable poor inferred porosity, no oil fluorescence.	cous matrix, tra	ace
1170-1175	30	Claystone: medium to dark grey, medium brown grey, very silty, comm partially altered feldspar grains in part, trace black carbonaceous flecks, trace pyrite, soft, very dispersive, slightly subfissile.	on very fine trace micromi	ca,
	70	Sandstone: light grey, very fine to coarse, dominantly fine, subangular moderately sorted, moderate silica cement, trace white argillaceous mat lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	rix, trace red bi	rown
1175-1180	20	Claystone: medium to dark grey, medium brown grey, very silty, comm partially altered feldspar grains in part, trace black carbonaceous flecks, trace pyrite, soft, very dispersive, slightly subfissile.	on very fine trace micromi	ca,
	80	Sandstone: light grey, very fine to coarse, dominantly fine, subangular to moderately sorted, moderate silica cement, trace white argillaceous matu- lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	ix, trace red br	rown r
1180-1185	50	Claystone: medium to dark brown grey, moderately to very silty, commo partially altered feldspar grains in part, trace black carbonaceous flecks, trace micromica, trace pyrite, soft, very dispersive, slightly subfissile.		ie,
	50	Sandstone: light grey, very fine to coarse, dominantly fine, subangular t moderately sorted, moderate silica cement, trace white argillaceous matr lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	ix, trace red bro	own r
1185-1190	80	Claystone: medium to dark grey, medium to dark brown grey, very silty, partially altered feldspar grains in part, common black carbonaceous flee micromica, firm, very dispersive, slightly subfissile.		fine
	20	Sandstone: light grey, very fine to coarse, dominantly very fine, subangu moderately sorted, moderate silica cement, trace white argillaceous matri- lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	ix, trace red bro	own
1190-1195	100	Claystone: medium to dark grey, medium to dark brown grey, very silty, partially altered feldspar grains in part, common black carbonaceous flec micromica, firm, very dispersive, slightly subfissile.		fine
	Tr	Sandstone: light grey, very fine to coarse, dominantly very fine, subangu moderately sorted, moderate silica cement, trace white argillaceous matri lithics. trace carbonaceous matter, common pyrite, friable to moderately b visual porosity, no oil fluorescence.	x, trace red bro	own
1195-1200	90	Claystone: medium to dark grey, medium to dark brown grey, very silty, partially altered feldspar grains in part, common black carbonaceous flect micromica, firm, very dispersive, slightly subfissile.		fine
	10	Sandstone: light grey, very fine to coarse, dominantly very fine, subangu moderately sorted, moderate silica cement, trace white argillaceous matri lithics, trace carbonaceous matter, common pyrite, friable to moderately h visual porosity, no oil fluorescence.	x, trace red bro	wn

Interval (m)	%	Description	PAGE:	5
1090-1100	90	Sandstone: light brown grey to light grey, very fine to coarse, domina subangular to subrounded, moderately sorted, weak to moderate silica occasionally common white argillaceous matrix, trace green gry and r black coal detritus, trace coarse mica flakes, trace pyrite, friable, fair v fluorescence.	cement, trace to ed lithics, comm) 10n
	10	Claystone: medium grey to medium brown grey, very silty, often very common black carbonaceous flecks and detritus, trace pyrite, commor very dispersive, slightly subfissile.		
1100-1110	80	Sandstone: light brown grey to light grey, very fine to coarse, domina to subrounded, moderately sorted, weak to moderate silica cement, tra common white argillaceous matrix, trace green gry and red lithics, condetritus, trace coarse mica flakes, trace pyrite, friable, fair visual porse fluorescence.	ce to occasionall mmon black coa	y
	20	Claystone: medium grey to medium brown grey, very silty, often very common black carbonaceous flecks and detritus, trace pyrite, common very dispersive, slightly subfissile.		
1110-1120	60	Sandstone: light brown grey to light grey, very fine to coarse, domina to subrounded, moderately sorted, weak to moderate silica cement, trac common white argillaceous matrix, trace green gry and red lithics, con detritus, trace coarse mica flakes, trace pyrite, friable, fair visual porso fluorescence.	ce to occasionall nmon black coal	y
	40	Claystone: medium grey to medium brown grey, very silty, often very common black carbonaceous flecks and detritus, trace pyrite, common very dispersive, slightly subfissile.		
1120-1140	50	Sandstone: light brown grey to light grey, very fine to coarse, dominat to subrounded, moderately sorted, weak to moderate silica cement, trace common white argillaceous matrix, trace green gry and red lithics, cor detritus, trace coarse mica flakes, trace pyrite, friable, fair visual porso fluorescence.	te to occasionally nmon black coal	y
	50	Claystone: medium brown grey to medium brown, very silty, often ver common black carbonaceous flecks and detritus, trace pyrite, common very dispersive, slightly subfissile.		
1140-1145	80	Claystone: medium brown to medium brown grey, moderately to very fine quartz and partially altered feldspar grains in part, common black and fine detritus, trace medium brown cryptocrystalline dolomite, com common pyrite, soft, very dispersive and washing from samples, slight	carbonaceous fle	ecks
	20	Sandstone: off white to light brown, very fine to fine, subangular to su moderately to well sorted, moderate silica and calcareous cements, com white to medium brown argillaceous and silt matrix, trace green lithics flecks and detritus, trace pyrite, moderately hard, nil to very poor visua fluorescence.	mon to abundan, trace carbonace	eous
1145-1150	70	Claystone: medium brown to medium brown grey, moderately to very s fine quartz and partially altered feldspar grains in part, common black and fine detritus, trace medium brown cryptocrystalline dolomite, common common pyrite, soft, very dispersive and washing from samples, slightly	carbonaceous fle non micromica,	
	30	Sandstone: off white to light brown, very fine to fine, subangular to sub moderately to well sorted, moderate silica and calcareous cements, com white to medium brown argillaceous and silt matrix, trace green lithics, flecks and detritus, trace pyrite, moderately hard, nil to very poor visual fluorescence.	mon to abundan trace carbonace	eous
1150-1160	90	Claystone: medium brown to medium brown grey, moderately to very s fine quartz and partially altered feldspar grains in part, common black of and fine detritus, trace medium brown cryptocrystalline dolomite, comm common pyrite, soft, very dispersive and washing from samples, slightly	carbonaceous fle non micromica,	

Interval (m)	%	Description	PAGE: 4
	10	Claystone: medium to dark brown to medium grey, moderately to very carbonaceous, common black carbonaceous flecks and coaly detritus in disseminated and nodular pyrite, common micromica, firm, very dispe- from samples, slightly subfissile.	n part, trace
1010-1030	100	Sandstone: light grey to light brown grey, very fine to grit, dominantl subangular to subrounded, moderately sorted, weak to moderate silica argillaceous matrix, trace green grey lithics, trace black coal detritus, fair to good inferred porosity, no oil fluorescence.	cement, trace white
	Tr	Claystone: medium to dark brown to medium grey, moderately to very carbonaceous, common black carbonaceous flecks and coaly detritus in disseminated and nodular pyrite, common micromica, firm, very disper from samples, slightly subfissile.	i part, trace
1030-1040	100	Sandstone: light grey to light brown grey, very fine to grit, dominantly subangular to subrounded, moderately sorted, weak to moderate silica argillaceous matrix, trace green grey lithics, trace black coal detritus, t fair to good inferred porosity, no oil fluorescence.	cement, trace white
1040-1050	100	Sandstone: light grey to light brown grey, very fine to grit, dominantly subangular to subrounded, moderately sorted, weak to moderate silica occasionally common white argillaceous matrix, trace green gry and re coal detritus, trace coarse mica flakes, trace pyrite, friable, fair visual p fluorescence.	cement, trace to ed lithics, trace blac
1050-1060	20	Sandstone: light grey to light brown grey, very fine to grit, dominantly subangular to subrounded, moderately sorted, weak to moderate silica occasionally common white argillaceous matrix, trace green gry and re coal detritus, trace coarse mica flakes, trace pyrite, friable, fair visual p fluorescence.	cement, trace to d lithics, trace blac
	70	Sandstone: light grey, very fine to fine, well sorted, strong silica and to cements, trace white argillaceous matrix, trace fine black carbonaceous lithics, trace fine mica flakes, hard, very poor visual porosity, no oil flu	detritus, trace gree
	10	Claystone: dark grey, very silty, common black carbonaceous flecks, c common disseminated pyrite, firm, very dispersive, slightly subfissile.	ommon micromica
1060-1070	100	Sandstone: light brown grey to light grey, very fine to very coarse, dor medium, subangular to subrounded, moderately sorted, weak to modera trace to occasionally common white argillaceous matrix, trace green gr trace black coal detritus, trace coarse mica flakes, trace pyrite, friable, f no oil fluorescence.	ate silica cement, y and red lithics,
	Tr	Claystone: dark grey, very silty, common black carbonaceous flecks, co common disseminated pyrite, firm, very dispersive, slightly subfissile.	ommon micromica,
1070-1080	100	Sandstone: light brown grey to light grey, very fine to very coarse, dom medium, subangular to subrounded, moderately sorted, weak to modera trace to occasionally common white argillaceous matrix, trace green gr trace black coal detritus, trace coarse mica flakes, trace pyrite, friable, f no oil fluorescence.	te silica cement, y and red lithics,
1080-1090	90	Sandstone: light brown grey to light grey, very fine to coarse, dominant subangular to subrounded, moderately sorted, weak to moderate silica of occasionally common white argillaceous matrix, trace green gry and re- black coal detritus, trace coarse mica flakes, trace pyrite, friable, fair vi fluorescence.	ement, trace to d lithics, common
	10	Claystone: medium grey to medium brown grey, very silty, often very f common black carbonaceous flecks and detritus, trace pyrite, common very dispersive, slightly subfissile.	

Batal State

)

Interval (m)	%	Description	PAGE:	3
	10	Claystone: medium to dark grey, moderately silty, trace black carbona detritus, trace to common pyrite, common micromica, soft, very disper subfissile.		1
890-910	100	Sandstone: very light brown grey to light grey, very fine to grit, domin coarse, occasionally dominantly fine, subangular to subrounded, mode moderate silica cement, trace medium to dark grey argillaceous matrix opaque quartz grains, trace grey green lithics, trace pyrite, trace coarse fair to good inferred porosity, no oil fluorescence.	rately sorted, we in part, clear to	ak to
910-930	100	Sandstone: light grey, very fine to grit, dominantly medium to coarse, subrounded, moderately sorted, weak silica cement, no visual matrix, c quartz grains, trace green grey lithics, trace black coal detritus, trace p inferred porosity, no oil fluorescence.	lear to transluce	
930-950	100	Sandstone: light grey, very fine to grit, dominantly coarse, subangular moderately sorted, weak silica cement, no visual matrix, clear to transl trace green grey lithics, trace black coal detritus, trace pyrite, friable, v porosity, no oil fluorescence.	ucent quartz gra	
950-960	90	Sandstone: light grey, very fine to grit, dominantly coarse, subangular moderately sorted, weak silica cement, no visual matrix, clear to transle trace green grey lithics, trace black coal detritus, trace pyrite, friable, ve porosity, no oil fluorescence.	ucent quartz grai	
	10	Claystone: medium to dark brown to brown black, moderately to very s very carbonaceous grading to black coal, common disseminated pyrite, micromica, firm, very dispersive and washing from samples, slightly su	common	to
960-970	100	Sandstone: light grey, very fine to grit, dominantly coarse, subangular moderately sorted, weak silica cement, no visual matrix, clear to translu trace green grey lithics, trace black coal detritus, trace pyrite, friable, very porosity, no oil fluorescence.	icent quartz grai	
	Tr	Claystone: medium to dark brown to brown black, moderately to very so very carbonaceous grading to black coal, common disseminated pyrite, micromica, firm, very dispersive and washing from samples, slightly su	common	to
970-980	100	Sandstone: light grey, very fine to very coarse, dominantly fine, subang moderately sorted, weak silica cement, no visual matrix, clear to translu trace green grey lithics, trace black coal detritus, trace pyrite, friable, go porosity, no oil fluorescence.	cent quartz grai	
	Tr	Claystone: medium to dark brown to brown black, moderately to very s very carbonaceous grading to black coal, common disseminated pyrite, o micromica, firm, very dispersive and washing from samples, slightly su	common	to
980-990	100	Sandstone: light grey, very fine to coarse, dominantly fine, subangular moderately sorted, weak silica cement, no visual matrix, clear to translu trace green grey lithics, trace black coal detritus, trace pyrite, friable, go porosity, no oil fluorescence.	cent quartz grain	ns,
990-1000	100	Sandstone: light grey to light brown grey, very fine to grit, dominantly subrounded, moderately sorted, weak to moderate silica cement, trace we cement, trace to common white argillaceous matrix, trace green grey lith coal detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescent	eak calcareous nics, trace black	to
	Tr	Claystone: medium to dark brown to medium grey, moderately to very s carbonaceous, common black carbonaceous flecks and coaly detritus in p disseminated and nodular pyrite, common micromica, firm, very dispers from samples, slightly subfissile.	bart, trace	
1000-1010	90	Sandstone: light grey to light brown grey, very fine to grit, dominantly f subrounded, moderately sorted, weak to moderate silica cement, trace we cement, trace to common white argillaceous matrix, trace green grey lith coal detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescen	ak calcareous ics, trace black	to

	Interval (m)	%	Description	PAGE:	2
	710-720	70	Sandstone: medium orange brown, very fine to grit, dominantly mediu subrounded, poorly sorted, very weak silica cement, common medium t argillaceous and silt matrix, weak yellow-green stain on quartz grains, t oxide pellets, common multicoloured volcanic lithics, trace coarse green friable to unconsolidated, fair to good inferred porosity, no oil fluoresce	o dark green race brown iror n mica flakes,	
		30	Claystone: medium to dark green to dark brown, slightly silty, common dispersed very fine to grit quartz sand grains, trace glauconite, soft, mo non fissile.		sive,
	720-730	80	Sandstone: medium orange brown, very fine to grit, dominantly very co subrounded, moderately sorted, very weak silica cement, trace medium matrix, common yellow orange stained quartz grains, trace multicolour trace pyrite, friable to unconsolidated, very good inferred porosity, no o	brown argillace ed volcanic lith	eous
		20	Claystone: medium to dark green to dark brown, slightly silty, common dispersed very fine to grit quartz sand grains, trace glauconite, soft, more non fissile.		ive,
	730-740	100	Sandstone: light orange brown, very fine to grit, dominantly very coars subrounded, moderately sorted, very weak silica cement, trace medium matrix, common yellow orange stained quartz grains, trace multicoloure trace pyrite, friable to unconsolidated, very good inferred porosity, no of	orown argillace ed volcanic lith	ous
	740-750	100	Sandstone: light orange brown, very fine to grit, dominantly very coars subrounded, moderately sorted, very weak silica cement, trace medium matrix, common weakly yellow orange stained quartz grains, trace mult lithics, trace pyrite, friable to unconsolidated, very good inferred porosit fluorescence.	prown argillace icoloured volca	ous
	750-760		No sample.	<u></u>	
Ì)	760-800	100	Sandstone: light orange brown, very fine to pebble, dominantly very cos subrounded, moderately sorted, weak silica cement, trace medium brown matrix, common weakly yellow orange stained quartz grains, abundant varicoloured volcanic lithics, trace pyrite, friable to unconsolidated, very porosity, no oil fluorescence.	n argillaceous red green and	r to
	800-810	100	Sandstone: light orange brown, very fine to pebble, dominantly very coa subrounded, moderately sorted, weak silica cement, trace medium brown matrix, common weakly yellow orange stained quartz grains, abundant to varicoloured volcanic lithics, common black coal detritus, trace pyrite, fi unconsolidated, very good inferred porosity, no oil fluorescence.	argillaceous red green and	r to
	810-850	100	Sandstone: very light orange brown, very fine to pebble, dominantly very subangular to subrounded, moderately sorted, weak silica cement, trace grey argillaceous matrix, common weakly yellow-orange stained quartz multicoloured volcanic lithics, trace black coal detritus, trace pyrite, fria unconsolidated, very good inferred porosity, no oil fluorescence.	medium brown grains, commo	
	850-860	100	Sandstone: very light brown grey, very fine to grit, dominantly coarse, s subrounded, moderately sorted, weak silica cement, trace medium to dar matrix in part, clear to opaque quartz grains rarely with yellow orange si green and rare pink lithics, common pyrite, trace coarse mica flakes, fria inferred porosity, no oil fluorescence.	k grey argillace aining, trace g	
	860-880	100	Sandstone: very light brown grey, very fine to grit, dominantly very coa subrounded, moderately sorted, weak silica cement, trace medium to dar matrix in part, clear to opaque quartz grains, trace grey green lithics, con coarse mica flakes, friable, very good inferred porosity, no oil fluorescen	k grey argillace nmon pyrite, tr	ous
)[880-890	90	Sandstone: light grey, very fine to grit, dominantly fine, subangular to s moderately sorted, weak to moderate silica cement, trace weak calcareou medium grey argillaceous matrix in part, trace partially altered feldspar grey lithics, trace coarse mica flakes, trace black coaly detritus, trace pyr visual porosity, no oil fluorescence.	s cement, trace grains, trace gr	een

CULTUS PETROLEUM N.L.

APPENDIX

CUTTINGS DESCRIPTION

WELL NAME:	Sk	ull Creek-1	DATE:	23-5-96
GEOLOGIST:	Da	ve Horner	PAGE:	1
Interval (m)	%	Description		
For geology report-	-4			
645-650	100	Claystone: dark green grey to dark dispersed very fine to grit clear to o pyrite, trace light brown cryptocrys moderately dispersive, non fissile.	paque quartz sand grai	ns, common glauconite, commor
650-655	100	Claystone: dark green grey to dark dispersed very fine to grit clear to o pyrite, trace light brown cryptocryst moderately dispersive, non fissile.	paque quartz sand grai	ns, common glauconite, common
655-660	100	Claystone: dark green grey to dark dispersed grit to dominantly very fur pyrite, trace light brown cryptocryst moderately dispersive, non fissile.	ne quartz sand grains, c	common glauconite, common
660-670	100	Claystone: dark green grey to dark dispersed grit to dominantly very fin pyrite, trace light brown cryptocryst moderately dispersive, non fissile.	ne quartz sand grains, a	abundant glauconite, common
670-680	10	Sandstone: medium green, very fin subrounded, poorly sorted, weak sili argillaceous and silt matrix - gradin quartz grains, common glauconite, t porosity, no oil fluorescence.	ca cement, abundant m g to arenaceous claysto	nedium to dark green ne, yellow to green stained
	90	Claystone: medium to dark green, r dispersed very fine to grit green-bro sandstone, common glauconite, trac	wn stained quartz grain	is - grading to argillaceous
680-690	100	Sandstone: light orange green, very subangular to subrounded, moderate dark green argillaceous and silt mate glauconite, common multicoloured v to unconsolidated, fair to good inferr	ly sorted, very weak sil rix, weak yellow-green volcanic lithics, trace co	ica cement, common medium to stain on quartz grains, common barse green mica flakes, friable
690-700	90	Sandstone: light orange green, very subangular to subrounded, poorly so green argillaceous and silt matrix, w glauconite, common multicoloured v to unconsolidated, fair to good inferr	rted, very weak silica co eak yellow-green stain olcanic lithics, trace co	ement, common medium to dark on quartz grains, trace parse green mica flakes, friable
	10	Claystone: dark green brown, slight quartz sand grains, trace glauconite,		
700-710	90	Sandstone: medium orange brown, v subrounded, poorly sorted, very weak argillaceous and silt matrix, weak ye oxide pellets, common multicoloured friable to unconsolidated, fair to good	s silica cement, commo llow-green stain on qua l volcanic lithics, trace	n medium to dark green artz grains,trace brown iron coarse green mica flakes,
	10	Claystone: dark green brown, slight quartz sand grains, trace glauconite,		

 \mathbf{D}^{sc}

	%	Description PAGE:
	10	Claystone: medium brown grey, moderately to very silty, common to abundant disperse very fine to coarse quartz sand grains, trace pyrite, rare black coaly detritus, trace micromica, very soft, very dispersive, non fissile.
600-605	90	Claystone: dark brown grey, moderately to very silty, common dispersed very fine to grantz sand grains, trace pyrite, trace glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissi
	10	Sandstone: light brown grey, very fine to very coarse, dominantly fine to medium, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace black coaly detritus, trace pyrite, friable, good inferred pososity, no oil fluorescence.
605-610	100	Claystone: dark brown grey, moderately to very silty, common dispersed very fine to fir quartz sand grains, trace pyrite, trace to common glauconite, trace black coaly detritus of with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile.
610-615	100	Claystone: medium to dark brown grey, moderately to very silty, common dispersed very fine to fine quartz sand grains, trace pyrite, common glauconite, trace black coaly detribut often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive non fissile.
615-620	100	Claystone: medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine to fine quartz and off white partially altered feldspar sand grains, trace pyrite, common glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile.
620-630	100	Claystone: medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine quartz and off white partially altered feldspar sand grains, trace pyrite common glauconite, trace black coaly detritus often with associated pyrite, trace micromic very soft and sticky, moderately dispersive, non fissile.
630-640	80	Claystone: medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine to fine quartz and off white partially altered feldspar sand grains, trace pyrite, common glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile.
	20	Sandstone: light brown, very fine to fine, subangular to subrounded, moderately to well sorted, very weak silica cement, common to abundant dark brown grey argillaceous and si matrix, trace glauconite, common caorse mica flakes, friable, poor inferred porosity, no of fluorescence.
640-645	100	Claystone: dark brown grey, moderately to very silty, common dispersed very fine to fine quartz and partially altered feldspar sand grains, common glauconite, trace pyrite, rare light brown cryptocrystalline dolomite, trace black coaly detritus, trace micromica, very soft and sticky, non fissile.

	70	Description PAGE:
	30	Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed v fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.
525-540	100	Sandstone: light brown grey, very fine to very coarse, dominantly fine to medium, ang to subrounded, poorly sorted, very weak silica cement, common to abundant medium be grey argillaceous and silt matrix, clear to opaque quartz grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, fair inferred pososity, no oil fluorescence.
	Tr	Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.
540-550	90	Sandstone: light brown grey, medium to grit, dominantly very coarse, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferred pososity, no oil fluorescence.
	10	Claystone: mcdium to dark brown grey, moderately to very silty, abundant dispersed ver fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.
550-560	100	Sandstone: light brown grey, very fine to grit, dominantly medium, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferred pososity, no oil fluorescence.
	Tr	Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed ver fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.
560-570	90	Sandstone: light brown grey, very fine to grit, dominantly medium to coarse, subangular subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferred pososity, no oil fluorescence.
	10	Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.
570-580	100	Sandstone: light brown grey, very fine to grit, dominantly coarse, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferred pososity, no oil fluorescence.
	Tr	Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.
580-590		Sandstone: light brown grey, very fine to grit, dominantly medium to coarse, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferred pososity, no oil fluorescence.
	1	Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.
590-600	a y	Sandstone: light brown grey, very fine to very coarse, dominantly fine to medium, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace vellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace black coaly letritus, trace pyrite, friable, good inferred pososity, no oil fluorescence.

interval (m)		70	Description	PAGE:	2
	405-410	100	Sandstone: light grey, very fine to coarse, dominantly medium, ang moderately to well sorted, very weak silica cement, minor pyrite cen brown grey argillaceous and silt matrix, clear to opaque quartz grain quartz grains, trace brown to black lithics, trace coarse muscovite fla unconsolidated, very good inferred porosity, no oil fluorescence.	nent, trace medium	•
	410-420	100	Sandstone: light grey, very fine to coarse, dominantly fine to mediu subrounded, moderately to well sorted, very weak silica cement, min medium brown grey argillaceous and silt matrix, clear to opaque qua yellow to red quartz grains, trace brown to black lithics, trace coarse friable to unconsolidated, very good inferred porosity, no oil fluoresc	or pyrite cement, tr artz grains, trace muscovite flakes	race
	420-430	100	Sandstone: light grey, very fine to medium, dominantly fine, angula moderately to well sorted, very weak silica cement, minor pyrite cem brown grey argillaceous and silt matrix, clear to opaque quartz grain quartz grains, trace brown to black lithics, trace coarse muscovite fla unconsolidated, very good inferred porosity, no oil fluorescence.	ent, trace medium s, trace yellow to re	ed
	430-440	100	Sandstone: very light brown grey, very fine to coarse, dominantly me subrounded, moderately to well sorted, weak silica cement, minor py medium brown argillaceous and silt matrix, clear to opaque quartz gr orange quartz grains, trace red and grey lithics, trace coarse muscovi unconsolidated, very good inferred porosity, no oil fluorescence.	rite cement, trace	0₩
	440-460	100	Sandstone: very light brown grey, very fine to coarse, dominantly me subrounded, moderately to well sorted, weak silica cement, minor pyr medium brown argillaceous and silt matrix, clear to opaque quartz gr orange quartz grains, trace red and grey lithics, trace coarse muscovit coal detritus, friable to unconsolidated, very good inferred porosity, n	rite cement, trace rains, common yello te flakes, trace black	ow k
ſ	460-475		No sample.		
	475-490	100	Sandstone: very light brown grey, very fine to coarse, dominantly me subrounded, moderately to well sorted, weak silica cement, minor pyr medium brown argillaceous and silt matrix, clear to opaque and occas stained quartz grains, common yellow orange quartz grains, trace red coarse muscovite flakes, trace black coaly detritus, friable to unconsol inferred porosity, no oil fluorescence.	ite cement, trace sionally orange and grey lithics, tra	ace
	490-500	100	Sandstone: very light brown grey, very fine to coarse, dominantly me subrounded, poor to moderate sorting, weak silica cement, minor pyri medium brown argillaceous and silt matrix, clear to opaque and occas stained quartz grains, trace yellow orange quartz grains, trace red and coarse muscovite flakes, friable to unconsolidated, very good inferred fluorescence.	te cement, trace ionally orange grey lithics, trace	
	500-510	90	Sandstone: very light brown grey, very fine to coarse, dominantly med subrounded, poor to moderate sorting, weak silica cement, minor pyrit medium brown argillaceous and silt matrix, clear to opaque and occasi stained quartz grains, trace yellow orange quartz grains, trace red and coarse muscovite flakes, friable to unconsolidated, very good inferred p fluorescence.	e cement, trace ionally orange grey lithics, trace	
		10	Claystone: medium to dark brown grey, moderately to very silty, abun fine to coarse quartz sand grains in part, trace pyrite, trace micromica, dispersive, non fissile.	dant dispersed very very soft, very	,
)	510-525	70	Sandstone: very light brown grey, very fine to coarse, dominantly med subrounded, poor to moderate sorting, weak silica cement, minor pyrite medium brown argillaceous and silt matrix, clear to opaque and occasi stained quartz grains, trace yellow orange quartz grains, trace red and coarse muscovite flakes, friable to unconsolidated, very good inferred p fluorescence.	e cement, trace onally orange grey lithics, trace	

CULTUS PETROLEUM N.L.

APPENDIX

CUTTINGS DESCRIPTION

WELL NAME:	: Skull Creek-1		DATE:	22-5-96
GEOLOGIST:	Da	ave Horner	PAGE:	1
Interval (m)	%	Description		
For geology report	-3			
335-340	100	Very poor sample due to clay disper Marl: medium brown grey, commo- trace glauconite, trace very fine to fi dispersive, non fissile.	n bryozoa, shell fragm	nents and forams, trace pyrite,
340-355	100	Probable inaccurate sample collection Sandstone: medium to dark greeniss medium, angular to subrounded, don weak iron oxide and silica cements, matrix, strong brown staining on qui white and green lithics, trace multice coarse clear to brown mica flakes, un fluorescence.	h brown, very fine to o ninantly subangular, a abundant dark brown artz grains, common b bloured volcanic lithic	moderately to well sorted, very iron oxide rich argillaceous brown iron oxide pellets, commo cs, common glauconite, trace
355-365	100	Sandstone: medium brown, very fin subrounded, poor to moderately sorte medium brown argillaceous matrix, iron oxide pellets, trace glauconite, t to unconsolidated, good inferred pore	ed, very weak iron oxi strong brown stain on race multicoloured vo	de and silica cements, common quartz grains, common brown lcanic lithics, trace pyrite, friable
365-370	100	Sandstone: medium brown, very fine subrounded, poor to moderately sorte medium brown argillaceous matrix, s iron oxide pellets, trace glauconite, th to unconsolidated, good inferred pore	d, very weak iron oxi- strong brown stain on race multicoloured vol	de and silica cements, common quartz grains, common brown lcanic lithics, trace pyrite, friable
370-390	100	Sandstone: light to medium brown, angular to subrounded, moderately to medium brown argillaceous and silt r quartz grains, trace multicoloured vo pyrite, trace iron oxide pellets, trace g unconsolidated, good inferred porosit	well sorted, very wea natrix, common yello lcanic lithics, trace co glauconite, trace dark	ak silica cement, common w to orange to brown stain on arse muscovite flakes, trace brown clay lithics, friable to
390-400	100	Sandstone: light to medium brown, f angular to subrounded, moderately to medium brown argillaceous and silt r quartz grains, trace multicoloured vol pyrite, trace iron oxide pellets, trace g unconsolidated, good inferred porosit	well sorted, very wea natrix, common yellow canic lithics, trace co lauconite, trace dark	k silica cement, common w to orange to brown stain on arse muscovite flakes, trace brown clay lithics, friable to
	Tr	Claystone: dark brown, moderately si soft, very dispersive, non fissile.	lty, trace pyrite, trace	glauconite, trace micromica,
400-405	100	Sandstone: light grey to light browning angular to subrounded, dominantly su cement, trace medium grey to medium opaque quartz grains occasionally wit lithics, trace pyrite, trace brown clay l porosity, no oil fluorescence.	bangular, moderately a brown grey argillace h weak yellow brown	to well sorted, very weak silica cous and silt matrix, clear to staining, trace red and green

APPENDIX 6 - PALYNOLOGICAL REPORT

PALYNOLOGY OF SKULL CREEK-1

OTWAY BASIN, VICTORIA

BY

ROGER MORGAN

	CONT	ENTS		PAGE	
	1	SUMMARY	<i>r</i>	3	
1	2	INTRODUC	TRODUCTION		
	3	PALYNOSTRATIGRAPHY			
	4	CONCLUSIONS			
	5	REFERENC	CES	10	
	FIGURE	E 1 :	CRETACEOUS REGIONAL FRAMEWORK, OTWAY B	ASIN	
FIGURE 2 : DETAILED ZONATION USED HEREIN					

FIGURE 3 : MATURITY PROFILE : SKULL CREEK-1

)

SUMMARY

- 1125-1130m (cutts), 1145-50m (cutts) : middle *senectus* Spore-pollen Zone (upper *aceras* Dinocyst Zone) with caved Middle Eocene, Early Eocene, late Paleocene and Maastrichtian (*longus/druggii* Zones) : early Campanian : nearshore marine : immature : usually upper Belfast Mudstone and correlative lower Paaratte Formation.
- 1155-1160m (cutts) : apparently middle *apoxyexinus* Spore-pollen Zone (lower *cretacea* Dinocyst Zone) with mixed younger caving : Santonian : very nearshore marine : immature : usually mid Belfast Mudstone and correlative basal Paaratte Formation.
- 1175-1180m (cutts) : apparently middle *apoxyexinus* Spore-pollen Zone (no Dinocyst Zone possible) with mixed younger caving : Santonian : marginal marine : immature : usually mid Belfast Mudstone and correlative basal Paaratte Formation.
- 1185-1190m (cutts) : apparently lower *mawsonii* Spore-pollen Zone (*infusorioides* Dinocyst Zone) mixed with caved middle *apoxyexinus* Spore-pollen Zone (no Dinocyst Zone) and mixed younger presumed caving : Turonian : very nearshore marine : immature : usually basal Belfast Mudstone/upper Flaxmans Formation/uppermost Waare Sandstone.
- 1195-1200m (cutts), 1278-1281m (cutts) : nothing older seen and samples appear to be mostly mixed younger caving : may be mixed caving in lean sandy lithologies.
- 1287-1290m (cutts) : *paradoxa* Zone (no Dinocyst Zone with dinoflagellates probably entirely caved) with mixed younger caving : probably Albian : probably non-marine : marginally mature : usually Eumeralla Formation.

2 INTRODUCTION

Eight cuttings samples were studied after drilling at the request of Alex Pomilio. An initial breakdown was faxed on 11/7/96, and the final results are summarised herein.

Palynomorph occurrence data are shown as Appendix I and form the basis for the assignment of the samples to six units of Campanian to Albian age. Younger caving is also detailed.

Specimen counts were made on all assemblages and expressed in the raw data as percentages.

The Cretaceous spore-pollen zonation is essentially that of Dettmann and Playford (1969), but has been significantly modified and improved by various authors since, and most recently discussed in Helby et al (1987), as shown on Figure 1. The Late Cretaceous zonation has been refined by Morgan (1992) in project work (Figure 2).

Maturity data was generated in the form of Spore Colour Index, and is plotted on Figure 3 Maturity Profile of Skull Creek-1. The oil and gas windows on Figure 3 follow the general consensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (Staplin Spore Colour Index of 2.7) to dark brown (3.6). These respond to vitrinite reflectance values of 0.6% to 1.3%. Geochemists argue variations on kerogen type, basin type and basin history. The maturity interpretation is thus open to reinterpretation using the basic colour observations as raw data. However, the range of interpretation philosophies is not great, and probably would not move the oil window by more than 200 metres.

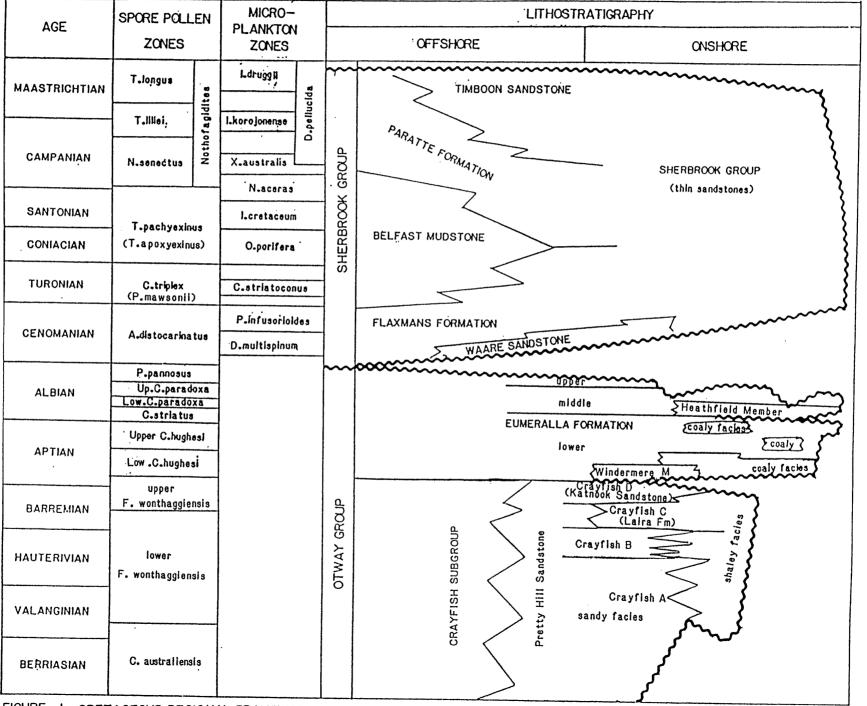


FIGURE 1. CRETACEOUS REGIONAL FRAMEWORK, OTWAY BASIN

AGE	SPORE-POLLEN ZONES		DINOFLAGELLATE ZONES	
MAASTRICHTIAN	LONGUS	upper lower	DRUGGII	
	LILLEI	upper lower	KOROJONENSE	
CAMPANIAN	SENECTUS	upper	upper AUSTRALIS – lower	
		middle lower	upper ACERAS middle lower	
SANTONIAN	APOXYEXINUS	upper	CRETACEA upper	
	APOXIEXINUS	lower	upper PORIFERA lower	
CONIACIAN	MNRCONT	upper	STRIATOCONUS	
TURONIAN	MAWSONII	lower	INFUSORIOIDES	
CENOMANIAN	DISTOCARIN	ATUS	- <u>-</u>	

FIGURE 2 DETAILED ZONATION USED HEREIN

isteria

)

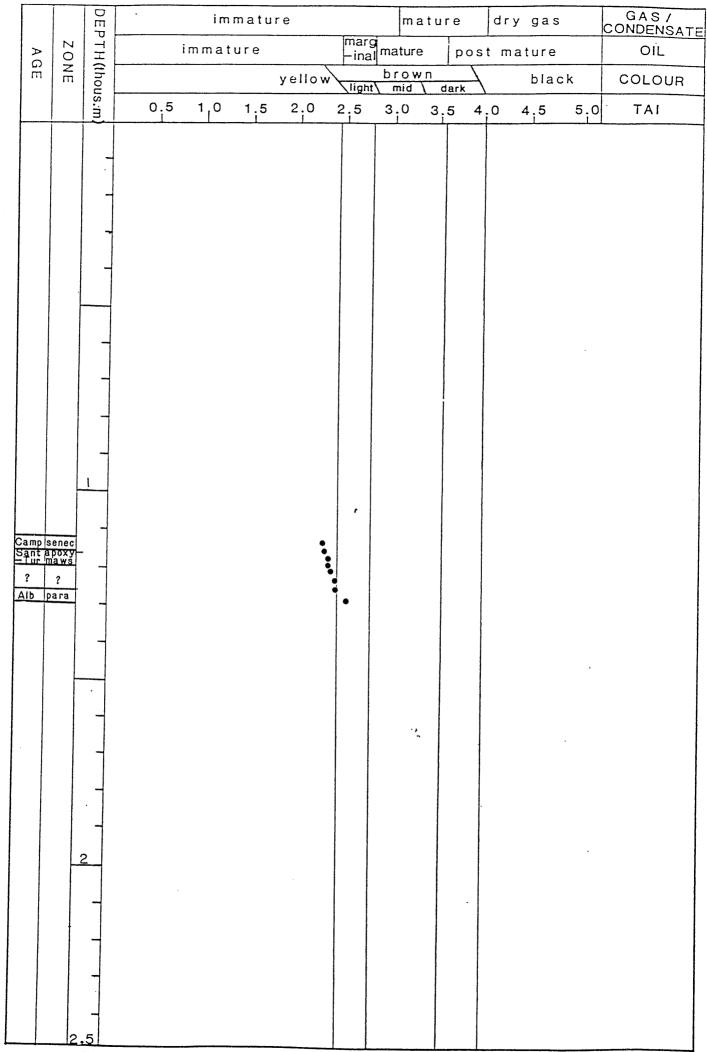


FIGURE 3 : MATURITY PROFILE - SKULL CREEK - I

Desig

)

3

3.1

PALYNOSTRATIGRAPHY

1125-30m (cutts), 1145-50m (cutts) : middle *senectus* Spore-pollen Zone (upper *aceras* Dinocyst Zone)

Assignment to the middle Subzone of the Nothofagidites senectus Spore-pollen Zone is indicated by the dinoflagellates present. On the basis of the spores and pollen seen, these cuttings might be assigned to much younger Zones, but the markers are considered caved. Assignment to the upper Nelsoniella aceras Dinocyst Zone of early Campanian age is on youngest Nelsoniella tuberculata at 1125-30m, without older markers. Also consistent are Nelsoniella semireticulata and Xenikoon australis down to 1145-50m, although these could be caved. Amongst the scarce dinoflagellates, Heterosphaeridium spp and Spiniferites spp are the most frequent with rare Nelsoniella spp and Trithyrodinium spp. Obviously caved are the Middle Eocene Alisocysta ornata, Corrudinium incompositum and Heteraulacysta sp, the Early Eocene Apectodinium homomorphum, the late Paleocene Deflandrea obliquipes, Cordosphaeridium inodes and Hafniasphaera septata and the Maastrchtian Manumiella coronata.

Given these dinoflagellate data, spores and pollen considered in place include N. senectus, Nothofagidites endurus and Tricolpites sabulosus, consistent with the correlative middle senectus Spore-pollen Zone. Considered caved are Middle Eocene Nothofagidites falcatus, Malvacipollis subtilis, Paleocene Lygistepollenites balmei, Gambierina rudata and Maastrichtian Stereisporites punctatus, Tricolpites confessus. Overall, Falcisporites similis is common with Cyathidites minor, Dilwynites granulatus, Gleicheniidites, Podosporites microsaccatus, Proteacidites spp and Vitreisporites pallidus frequent.

Nearshore marine environments are suggested by the dominant and diverse spores and pollen, minor dinoflagellates and common freshwater algae *Botryococcus*. However, in these cuttings, much of the observed microflora may be caved.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are usually seen in the upper Belfast Mudstone, correlative Paaratte Formation, and other correlatives.

3.2 1155-60m (cutts) : apparently middle *apoxyexinus* Spore-pollen Zone (lower *cretacea* Dinocyst Zone)

Assignment to the middle *Tricolporites apoxyexinus* Spore-pollen Zone is indicated by the associated dinoflagellates. On the basis of spores and pollen, a younger assignment might be suggested, but key markers are considered caved. Assignment to the lower Subzone of the *Isabelidinium cretaceum* Dinocyst Zone of Santonian age is indicated by *I. cretaceum* without younger (especially *Nelsoniella* or *Amphidiadema* spp) or older markers. Considered caved are the Middle Eocene C. incompositum, Early Eocene Homotriblium tasmaniense, and Maastrichtian Manumiella druggii. Heterosphaeridium heteracanthum is the most common dinoflagellate and rare *Isabelidinium balmei* and *Trithyrodinium suspectum* are considered in place.

Given the dinoflagellate data, caved spores and pollen include Middle Eocene-Paleocene *H. harrisii, Nothofagidites emarcidus* and Maastrichtian-Campanian *N. endurus, N. senectus* and *T. sabulosus.* Overall, *F. similis* is common, with *Australopollis obscurus, C. minor, D. granulatus, H. harrisii, P. microsaccatus* and *Proteacidites* frequent.

Very nearshore marine environments are suggested by the very low dinoflagellate content and low "*in situ*" diversity, abundant and diverse spores and pollen and common *Botryococcus*. However, these assemblages may be largely caved.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are normally seen in the mid Belfast Mudstone, correlative basal Paaratte Formation and other correlatives.

3.3 1175-1180m (cutts) : apparently middle *apoxyexinus* Spore-pollen Zone (no Dinocyst Zone)

Assignment to the middle *T. apoxyexinus* Spore-pollen Zone of Santonian age is on the zonal assignment of the sample above, and the lack of older markers. *Amosopollis cruciformis* is rare in this sample. Overall, *F. similis* is very common, with *D. granulatus* and *P. microsaccatus* common, and *C. minor*, *Gleicheniidites* and *V. pallidus* frequent. Considered caved are the Eocene *H. emarcidus*, *H. harrisii*, *M. subtilis* and Maastrichtian-Campanian *G. rudata*, *T. confessus* and *T. sabulosus*.

Dinoflagellates are non-descript and lack zonal markers considered in place. Most consistent are *Heterosphaeridium* spp and *Spiniferites* spp. Considered caved are Eocene *A. ornata* and Paleocene *Deflandrea dartmooria*.

Marginal marine environments are indicated by the very scarce dinoflagellates considered in place, the common and diverse spores and pollen and common freshwater *Botryococcus*. However, these assemblages may be largely caved.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are usually seen in the mid Belfast Mudstone and correlative basal Paaratte Formation and other correlatives.

3.4 1185-90m (cutts) : apparently lower *mawsonii* Spore-pollen Zone (*infusorioides* Dinocyst Zone)

Assignment is on the dinoflagellate data, namely youngest *Cribroperidinium edwardsii*, indicating the *Palaeohystrichophora infusorioides* Dinocyst Zone of Turonian age, and the correlative lower *Phyllocladidites mawsonii* Spore-pollen Zone. Of the dinocysts, only *Heterosphaeridium* spp and *C. edwardsii* are considered in place, with caved Eocene *A. homomorphum*, *Deflandrea phosphoritica* and *Achomosphaera crassipellis*, Maastrichtian *M. coronata*, Campanian *N. aceras* and Campanian-Santonian *Odontochitina porifera*.

Amongst the spores and pollen, *P. mawsonii* is considered in place, but the 3% *A. cruciformis* with 8% *Proteacidites* suggests caving from the mid *apoxyexinus* Zone. Definitely caved are the Eocene-Paleocene *H. subtilis, H. harrisii, L. balmei* and the Maastrichtian-Campanian *T. confessus*. Overall, *D. granulatus* and *P. microsaccatus* are common with *F. similis, Proteacidites* and *V. pallidus* frequent.

Marginal marine environments are suggested by the scarce dinoflagellates considered in place, the abundant and diverse spores and pollen, common freshwater algae *Botryococcus* and common plant cuticle.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are normally seen in the basal Belfast Mudstone and correlative upper Flaxmans Formation and uppermost Waare Sandstone and their correlatives.

1195-1200m (cutts), 1278-1281m (cutts) : nothing older seen, mostly caved

3.5

These samples are leaner than those overlying, contain nothing new, and a higher content of caved material. This would be consistent with lean sandy lithologies yielding poorly, with the caving therefore a higher proportion of the assemblage. Overall, *F. similis* is common, with *C. minor*, *Gleicheniidites*, *Microcachryidites antarcticus*, *P. microsaccatus*, *Proteacidites*, *S. antiquasporites* and *V. pallidus* frequent. Obviously caved are Eocene-Paleocene Anacolosidites acutullus, *H. harrisii*, Malvacipollis diversus, *N. emarcidus*, *Proteacidites incurvatus*, *Proteacidites grandis* and *Spinozonocolpites prominatus* and Maastrichtian-Campanian *G. rudata*, *N. endurus*, *N. senectus*, *Oramentifera sentosa*. Possibly in place is *P. mawsonii*, although it too is likely to be caved. Rare older elements include *Crybelosporites striatus* (very rare above the Albian) and Permian taxa, presumed reworked.

8

Dinoflagellates include Eocene A. ornata, Heteraulacysta sp and A. homomorphum, Paleocene D. obliquipes, Maastrichtian M. druggii, Campanian N. aceras and X. australis, with Heterosphaeridium spp and Spiniferites spp the most consistent. Most, if not all, are considered caved.

Marginal marine environments are suggested by the common freshwater algae *Botryococcus*, dominant and diverse spores and pollen, and minor dinoflagellates. However, much of the assemblage is caved.

Yellow to light brown darkest spore colours suggest immaturity for hydrocarbons. The Tertiary elements are mostly colourless.

These features suggest nothing older than the overlying samples, but barren sandstones (?Waare Sandstone) would be consistent with these data.

3.6 1287-1290m (cutts) : paradoxa Spore-pollen Zone (no dinocyst Zone)

Assignment to the Coptospora paradoxa Spore-pollen Zone of Albian age is indicated by youngest C. paradoxa, coincident with youngest Triporoletes reticulatus, Triporoletes bireticulatus, Appendicisporites distocarinatus and downhole influxes of Cicatricosisporites australiensis, Crybelosporites striatus and other spores. Overall, C. minor and F. similis are common, with Gleicheniidites, Laevigatosporites ovatus, M. antarcticus, O. wellmanii, P. microsaccatus and V. pallidus frequent. Obviously caved are Eocene-Paleocene Intratriporopollenites notabilis, H. harrisii and Late Cretaceous A.

4 CONCLUSIONS

Palynology results are not precise due to the apparent heavy caving in these cuttings and poor yields in sandy section. Samples towards the base are particularly problematic, and the section may be fairly incomplete.

Present only as caving are the Middle Eocene (on *Deflandrea phosphoritica* and *Alisocysta ornata*), Early Eocene (*Homotriblium tasmaniense*), probable late Paleocene (*Deflandrea dartmooria* and *D. obliquipes*) and Maastrichtian (*longus/druggii* Zones) all above the sampled section. Probably in place are early Campanian (*senectus/aceras* Zones) and probably Santonian (mid *apoxyexinus* Zone, possible Turonian (lower *mawsonii* Zone) and Albian (*paradoxa* Zone).

Normally distinctive but not seen even as caving are the *lillei/korojonense* Zones, lower *senectus*-upper *apoxyexinus/*lower aceras-upper *cretacea* Zones and lower *apoxyexinus/porifera* Zones. These are probably absent. Bland and non-distinctive are the upper *senectus/australis* Zones, upper *mawsonii/striatoconus* Zones and *distocarinatus*/unzoned Zones. These may be barren sands, absent or masked by caving from the more distinctive horizons.

5 **REFERENCES**

Dettmann ME and Playford G (1969) Palynology of the Australian Cretaceous : a review In Stratigraphy and Palaeontology. Essays in honour of Dorothy Hill, KSW Campbell ED. ANU Press, Canberra 174-210

7

Helby RJ, Morgan RP and Partridge AD (1987) A palynological zonation of the Australian Mesozoic In Studies in Australian Mesozoic Palynology Assoc. Australas. Palaeontols. Mem 4 1-94

APPENDIX 7 - VELOCITY SURVEY REPORT

Velocity Data

VELOCITY SURVEY

SKULL CREEK No.1

PPL 1

OTWAY BASIN VICTORIA

for

CULTUS PETROLEUM N.L.

recorded by

VELOCITY DATA PTY LTD

Processed by

Velseis Processing Pty Ltd

Brisbane, Australia 26 September 1996

Integrated Seismic Technologies

98) (49)

)

CONTENTS

SUMMARY	•••					•••	1
GENERAL INFORM	IATION	ſ		•••			1
EQUIPMENT		•••					2
RECORDING		•••	••••	•••	•••		3
PROCESSING							
Elevation Data			•••	•••	•••		3
Recorded Data	•••	•••		•••			4
Correction for Instru Delay and Shot Offse		•••					4
Pit Fatigue Analysis		•••	•••	•••	•••	•••	4
Correction to Datum			•••		•••	••••	5
Calibration of Sonic Log							
Method							5
Results		•••	•••	•••	•••	•••	5
Trace Playouts	•••		•••				6

FIGURES

Figure 1	Shot location sketch
Figure 2	Time-depth and velocity curves
Figure 3	Trace playouts

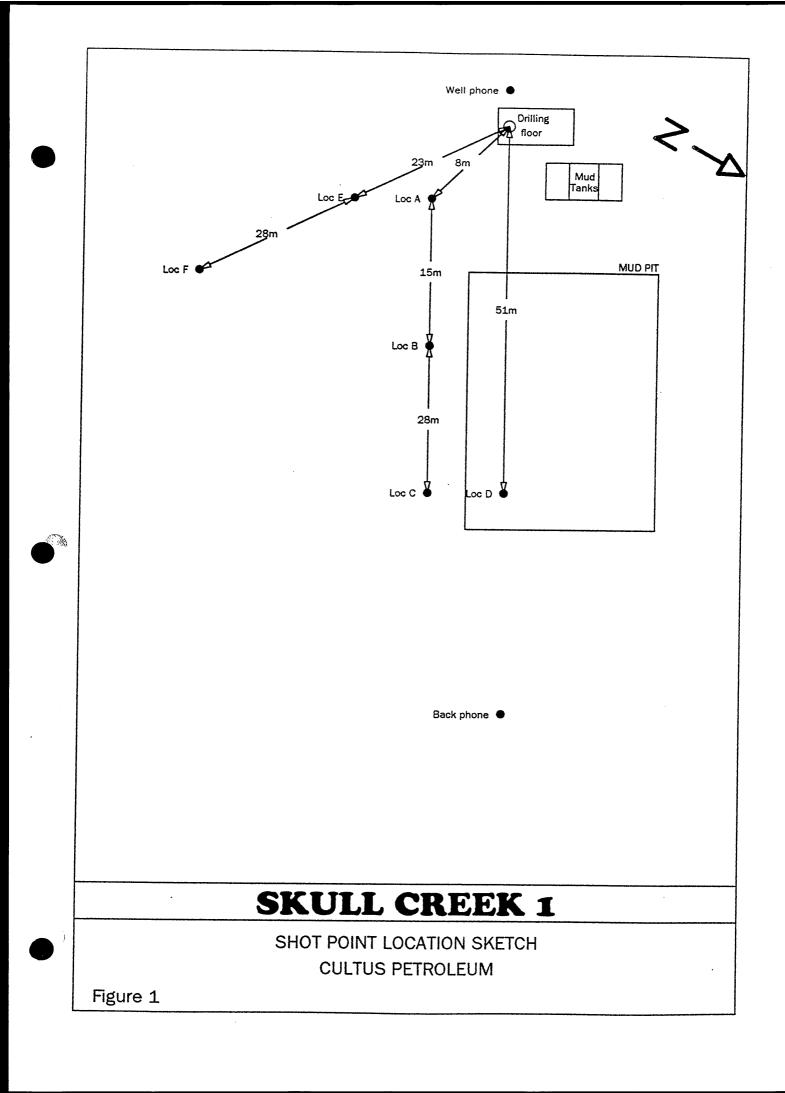

TABLES

Table 1	Time-depth values
---------	-------------------

ENCLOSURES

.

- 1 Shot Calculation Sheets
- 2 Trace Display and First Arrival Plots

SUMMARY

1.

Velocity Data Pty Ltd conducted a velocity survey for Cultus Petroleum N.L. in the Skull Creek No. 1 well, PPL 1, Otway Basin, Victoria. The date of the survey was the 29 May, 1996.

The results of the survey, which are considered to be reliable, have been used to calibrate the sonic log.

Explosives were used as an energy source with shots being fired in the mud pit in the majority of instances.

GENERAL INFORMATION

Name of Well	: Skull Creek No. 1	
Location	: PPL 1	
Coordinates	: 5729963.0 N : 673411.5 E	
Date of Survey	: 29 May, 1996	
Wireline Logging	: BPB Wireline Services	
Weather	: Fine	
Operational Base	: Brisbane	
Operator	: D. Blick	
Shooter	: G. Clifford	
Client Representative	: Mr. D. Horner	

EQUIPMENT

Downhole Tool

Veldata Camlock 100 (90 mm)

Sensors:

6 HSI 4.5 Hz 215 ohm, high temperature (300 degrees F) detectors connected in series parallel. Frequency response 8-300 Hz within 3 dB.

Preamplifier:

48 dB fixed gain. Frequency response 5-200 Hz within 3 dB.

Reference Geophone

Mark Products L1 4.5 Hz

Recording Instrument

(1) System VDL 16

Windows based high resolution seismic acquisition instruments

Computer : Resolution : Dynamic Range : Total Gain : Data channels : Display : 386 Portable computer
A/D conversion 16 bits
96dB
136dB
8
A4 Bubble Jet Printer 300 D.P.I.

RECORDING

Energy Source	: Explosive, Powergel
Shot Location	: Mud pit
Charge Size	: 0.3 - 3 sticks
Average Shot Depth	: 2.0 metres
Mud Pit Shot Offset	: 51.0 metres
Recording Geometry	: Figure 1

Shots were recorded on $3^{1/2}$ " floppy disc. Printouts of the shots used are included with this report.

The sample rate was 0.5 millseconds across the entire survey.

The scale of the graphic display varies with signal strength and is noted on each playout. The times were picked from a sample by sample screen plot a full set of these trace displays can be seen at the rear of the report.

PROCESSING

1865

)

Elevation Data

Elevation of KB	:	96.3 metres above A.S.L.
Elevation of Ground	:	92.0 metres above A.S.L.
Elevation of Seismic Datum	:	0.0 metres A.S.L.
Depth Surveyed	:	1694.5 metres below KB
Total Depth	:	Unknown
Depth of Casing	:	333.0 metres below KB
Sonic Log Interval	:	300 to 1701.7 metres below KB

PROCESSING

Recorded Data

Number of Shots Processed	: 35
Number of Levels Recorded	: 22
Data Quality	: Good
Noise Level	: Low

Correction for Instrument Delay and Shot Offset

The 'corrected' times shown on the calculation sheets have been obtained by:

- 1. Subtraction of the instrument delay (2.0 milliseconds) from the recorded arrival times.
- 2. Geometric correction for non-verticality of ray paths resulting from shot offset.
- 3. Shot static correction to correct for the depth of shot below ground level at the well head using a correction velocity of 2000 metres/second.
- 4. Additional 1.0 milliseconds uphole time was added to all shots external to the mud.
- 5. 1.1 milliseconds bulk shift applied to all shots discharged within the mud pit to tie them to shots external to the pit.
- 6. Re-addition of the instrument delay (2.0 milliseconds).

Pit Fatigue Analysis

An examination of surface channel information indicated a degree of noise associated with traces on both the well and back phones. Thus these were not used for pit fatigue analysis. Instead pick times for shots in and out of the hole at the same interval were examined. Pick times were found to be similar and no pit fatigue correction required.

Correction to Datum

The datum chosen was 0.0 metres ASL that is 96.3 metres below KB. This level was shot nine (9) times during the survey and an effective datum correction time of 63.3 milliseconds was calculated.

This value includes the 2.0 milliseconds instrument delay which must be subtracted to obtain the raw time.

PROCESSING

Calibration of Sonic Log - Method

Sonic times were adjusted to checkshot times using a polynomial derived least squares fit correction of the sonic transient times. The sonic log that lay within the casing was deleted from the calibration.

Differences between the check shot and sonic times arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

Calibration of Sonic Log - Results (Enclosure 1)

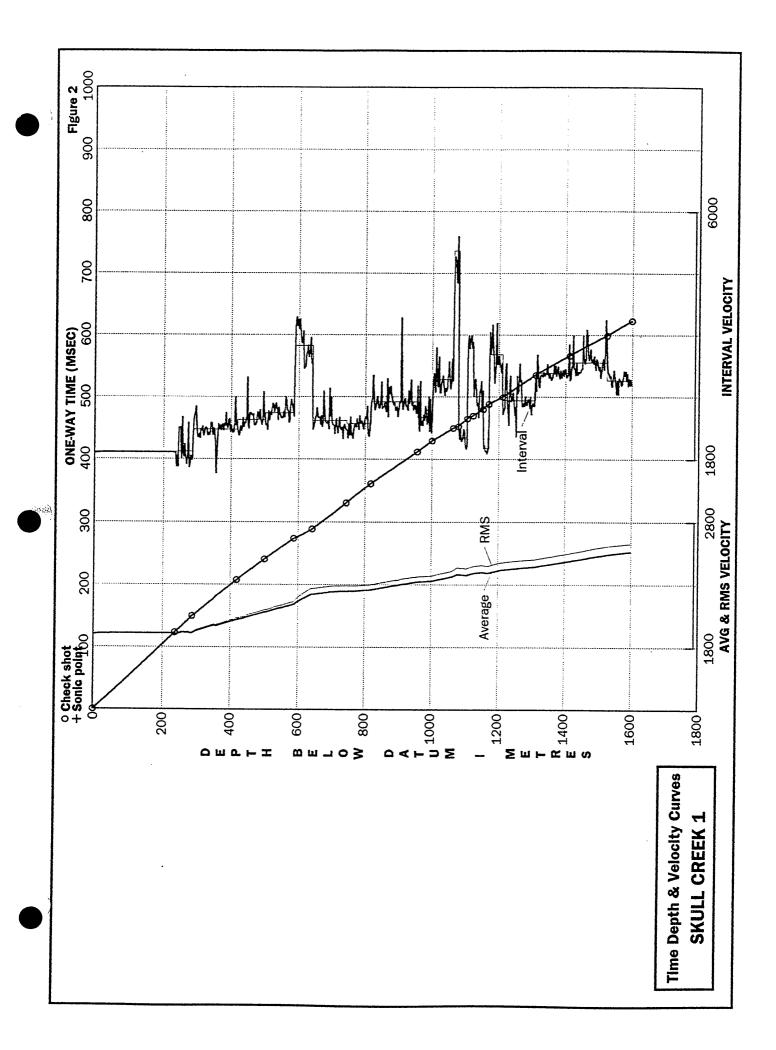
Sonic values were only available between the interval 300.0 and 1701.7m below KB.

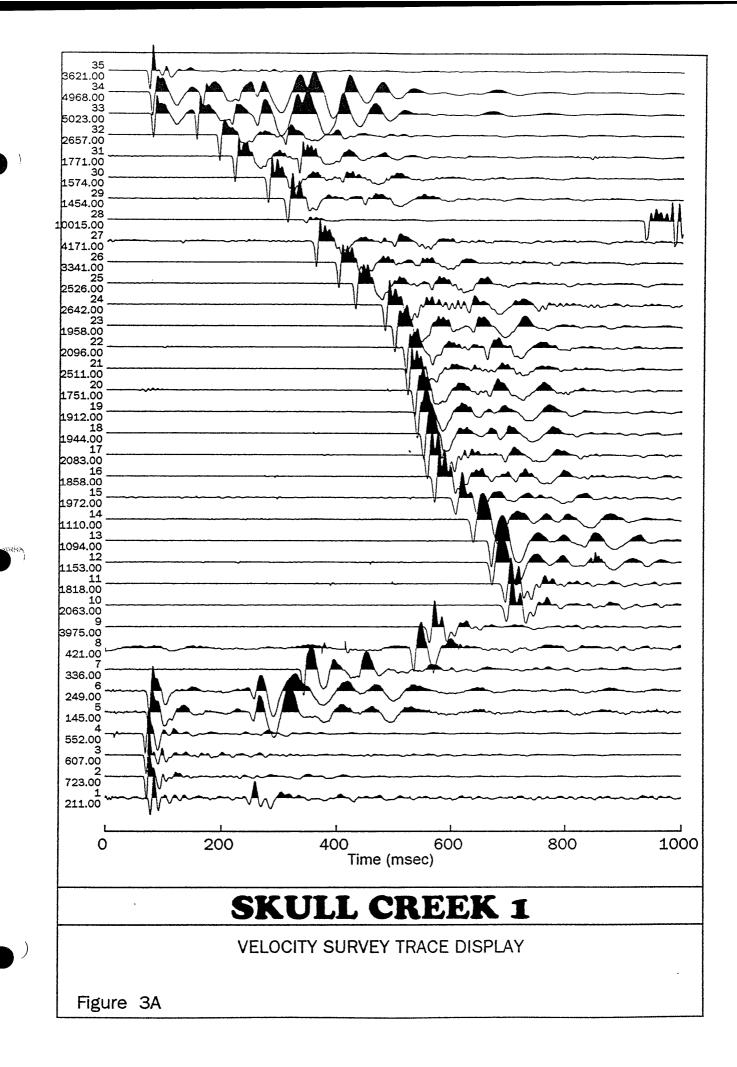
The discrepancies between shot and sonic interval velocities were small. The largest of these occurred over the interval 1176 to 1203 metres which yielded an interval sonic drift of 137.04µsec/m. This value is large due to the small interval distance over which it was calculated

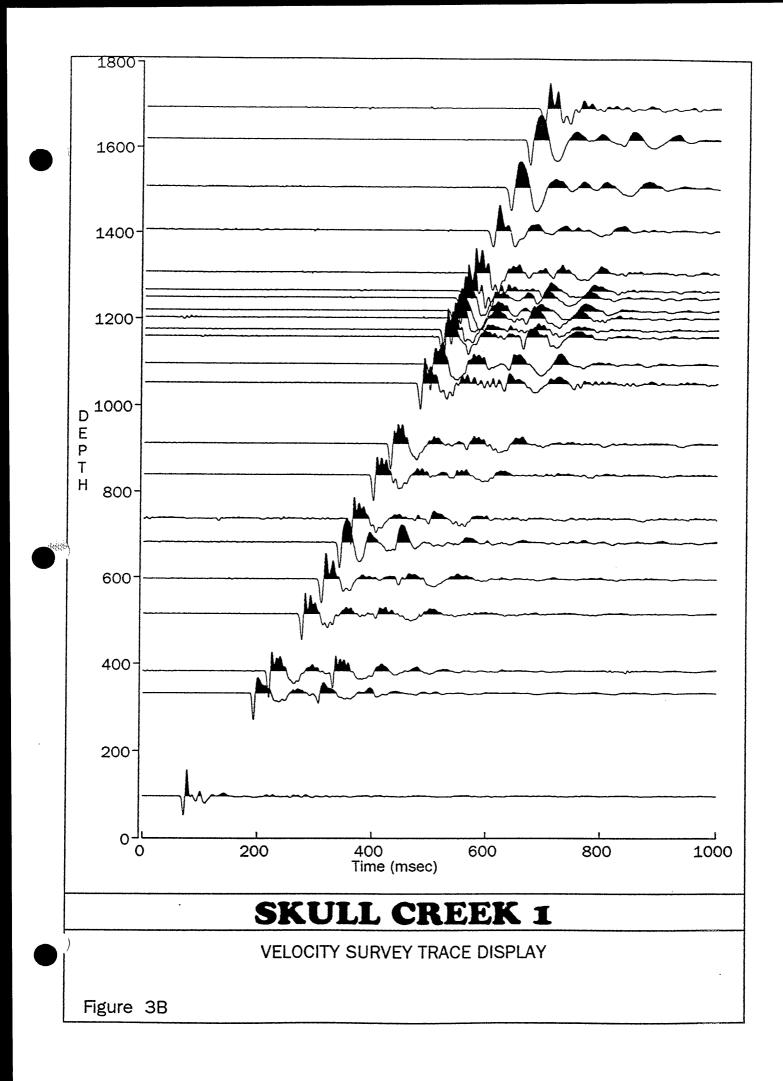
In aggregate, the shot and sonic interval times differed by 13.6 milliseconds over the logged portion of the well.

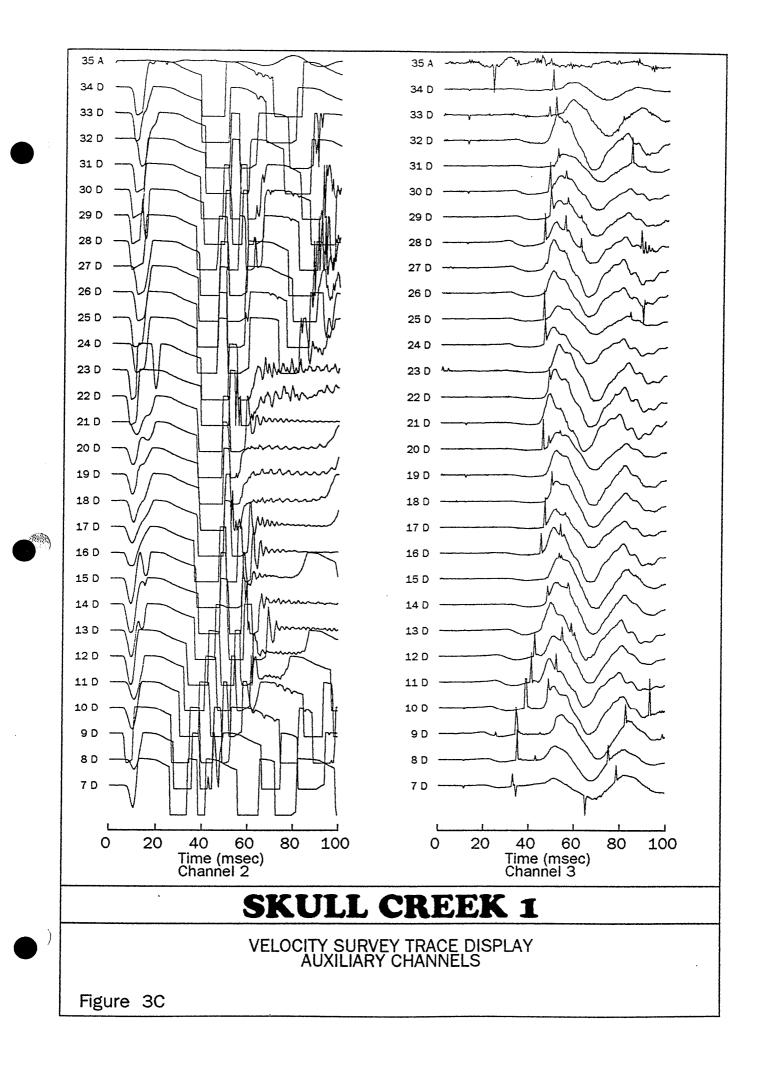
PROCESSING

Trace Playouts (Figure 3)


Figure 3A is a plot of all raw data traces used.


Figure 3B is a plot to scale in depth and time of selected traces.


Figure 3C is a plot of selected surface traces.


Troy Peters Geophysicist

)

Page 1

Survey a	KULL CREE units : MET ed sonic ve	RES	used from	Datu	nt : CULTUS um : 0.0 to 1597.5	PETROLEU	JM		
Datum depth	One-way time(ms)		LOCITIE RMS		Datum depth	One-way time(ms)	VE Average		ES Interval
2.5	1.3	1905	1905	1905	102.5	53.6	1911	1911	1911
5.0	2.6	1906	1906	1907	105.0	55.0	1911	1911	1911
7.5	3.9	1907	1907	1909	107.5	56.3	1911	1911	1911
10.0	5.2	1908	1908	1910	110.0	57.6	1911	1911	1911
12.5	6.6	1908	1908	1910	112.5	58.9	1911	1911	1911
15.0	7.9	1909	1909	1911	115.0	60.2	1911	1911	1911
17.5	9.2	1909	1909	1911	117.5	61.5	1911	1911	1911
20.0	10.5	1909	1909	1911	120.0	62.8	1911	1911	1911
22.5	11.8	1909	1909	1911	122.5	64.1	1911	1911	1911
25.0	13.1	1910	1910	1911	125.0	65.4	1911	1911	1911
27.5	14.4	1910	1910	1911	127.5	66.7	1911	1911	1911
30.0	15.7	1910	1910	1911	130.0	68.0	1911	1911	1911
32.5	17.0	1910	1910	1911	132.5	69.3	1911	1911	1911
35.0	18.3	1910	1910	1911	135.0	70.6	1911	1911	1911
37.5	19.6	1910	1910	1911	137.5	72.0	1911	1911	1911
40.0	20.9	1910	1910	1911	140.0	73.3	1911	1911	1911
42.5	22.2	1910	1910	1911	142.5	74.6	1911	1911	1911
45.0	23.6	1910	1910	1911	145.0	75.9	1911	1911	1911
47.5	24.9	1910	1910	1911	147.5	77.2	1911	1911	1911
50.0	26.2	1910	1910	1911	150.0	78.5	1911	1911	1911
52.5	27.5	1910	1910	1911	152.5	79.8	1911	1911	1911
55.0	28.8	1910	1910	1911	155.0	81.1	1911	1911	1911
57.5	30.1	1910	1910	1911	157.5	82.4	1911	1911	1911
60.0	31.4	1911	1911	1911	160.0	83.7	1911	1911	1911
62.5	32.7	1911	1911	1911	162.5	85.0	1911	1911	1911
65.0	34.0	1911	1911	1911	165.0	86.3	1911	1911	1911
67.5	35.3	1911	1911	1911	167.5	87.7	1911	1911	1911
70.0	36.6	1911	1911	1911	170.0	89.0	1911	1911	1911
72.5	37.9	1911	1911	1911	172.5	90.3	1911	1911	1911
75.0	39.3	1911	1911	1911	175.0	91.6	1911	1911	1911
77.5	40.6	1911	1911	1911	177.5	92.9	1911	1911	1911
80.0	41.9	1911	1911	1911	180.0	94.2	1911	1911	1911
82.5	43.2	1911	1911	1911	182.5	95.5	1911	1911	1911
85.0	44.5	1911	1911	1911	185.0	96.8	1911	1911	1911
87.5	45.8	1911	1911	1911	187.5	98.1	1911	1911	1911
90.0	47.1	1911	1911	1911	190.0	99.4	1911	1911	1911
92.5	48.4	1911	1911	1911	192.5	100.7	1911	1911	1911
95.0	49.7	1911	1911	1911	195.0	102.0	1911	1911	1911
97.5	51.0	1911	1911	1911	197.5	103.4	1911	1911	1911
100.0	52.3	1911	1911	1911	200.0	104.7	1911	1911	1911

)

.

Time depth curve valuesPage 2

Survey u	KULL CREE units : MET ed sonic ve	RES	used fro	Datı	nt : CULTUS Jm : 0.0 to 1597.5	PETROLE	M		
Datum depth	One-way time(ms)		ELOCITIE e RMS		Datum depth	One-way time(ms)		ELOCITIE e RMS	S —— Interval
202.5	106.0	1911	1911	1911	302.5	156.4	1934	1940	2167
205.0	107.3	1911	1911	1911	305.0	157.5	1936	1942	2219
207.5	108.6	1911	1911	1911	307.5	158.7	1938	1943	2152
210.0	109.9	1911	1911	1911	310.0	159.8	1940	1946	2304
212.5	111.2	1911	1911	1911	312.5	160.9	1942	1949	2273
215.0	112.5	1911	1911	1911	315.0	161.9	1945	1951	2345
217.5	113.8	1911	1911	1911	317.5	163.1	1947	1953	2193
220.0	115.1	1911	1911	1911	320.0	164.2	1949	1955	2247
222.5	116.4	1911	1911	1911	322.5	165.3	1951	1958	2318
225.0	117.7	1911	1911	1911	325.0	166.4	1954	1961	2323
227.5	119.0	1911	1911	1911	327.5	167.4	1956	1963	2303
230.0	120.4	1911	1911	1910	330.0	168.6	1958	1965	2199
232.5	121.7	1911	1911	1910	332.5	169.7	1959	1967	2239
235.0	123.0	1911	1911	1909	335.0	170.8	1961	1968	2204
237.5	124.5	1908	1908	1679	337.5	171.9	1963	1970	2246
240.0	125.8	1908	1908	1853	340.0	173.0	1966	1973	2406
242.5	127.3	1905	1905	1682	342.5	174.0	1968	1976	2390
245.0	128.4	1908	1909	2325	345.0	175.2	1970	1977	2207
247.5	129.4	1912	1913	2331	347.5	176.2	1972	1980	2314
250.0	130.5	1915	1917	2329	350.0	177.3	1974	1982	2285
252.5	131.9	1914	1916	1818	352.5	178.5	1975	1982	2097
255.0	132.9	1919	1921	2499	355.0	180.1	1971	1979	1564
257.5	134.2	1919	1921	1909	357.5	181.5	1970	1978	1861
260.0	135.6	1918	1920	1841	360.0	182.6	1971	1980	2179
262.5	136.8	1918	1921	2046	362.5	183.7	1974	1982	2385
265.0	138.2	1918	1920	1827	365.0	184.7	1976	1984	2300
267.5	139.6	1916	1918	1714	367.5	185.8	1978	1987	2364
270.0	141.0	1916	1918	1869	370.0	186.9	1980	1988	2285
272.5	142.0	1919	1922	2405	372.5	188.0	1982	1991	2367
275.0	143.5	1917	1919	1668	375.0	189.0	1984	1993	2387
277.5	144.9	1915	1918	1739	377.5	190.1	1986	1995	2284
280.0	146.3	1914	1917	1853	380.0	191.1	1988	1997	2398
282.5	147.7	1913	1916	1785	382.5	192.2	1990	2000	2364
285.0	149.1	1912	1915	1823	385.0	193.2	1993	2003	2573
287.5	150.1	1915	1918	2277	387.5	194.2	1995	2005	2356
290.0	151.1	1919	1922	2503	390.0	195.3	1997	2007	2318
292.5	152.1	1923	1927	2593	392.5	196.3	1999	2009	2446
295.0	153.0	1928	1933	2682	395.0	197.3	2002	2012	2473
297.5	154.1	1931	1936	2370	397.5	198.4	2003	2013	2254
300.0	155.3	1932	1938	2170	400.0	199.5	2005	2015	2360

883

.

TABLE 1Time depth curve valuesPage 3

Survey	SKULL CREI units : MET ted sonic ve	RES	used fro	Dat	nt : CULTUS um : 0.0 to 1597.5	S PETROLE	ÜΜ		
Datum	One-way		ELOCITI	ES	Datum	One-way	V	ELOCITI	ES ——
depth	time(ms)		e RMS	Interval	depth	time(ms)	Averag	e RMS	Interval
402.5	200.6	2006	2017	2280	502.5	241.5	2081	2097	2369
405.0	201.7	2008	2018	2246	505.0	242.5	2082	2098	2385
407.5	202.8	2009	2020	2258	507.5	243.6	2083	2099	2294
410.0	203.9	2011	2022	2374	510.0	244.6	2085	2102	2611
412.5	204.8	2015	2026	2836	512.5	245.6	2085	2103	2455
415.0	205.8	2016	2028	2366	515.0	246.6	2089	2105	2589
417.5	206.9	2018	2030	2403	517.5	247.6	2090	2107	2545
420.0	208.0	2020	2031	2251	520.0	248.5	2093	2110	2672
422.5	209.1	2021	2032	2198	522.5	249.4	2095	2112	2738
425.0	210.2	2022	2033	2235	525.0	250.3	2097	2115	2711
427.5	211.3	2023	2035	2353	527.5	251.3	2099	2117	2602
430.0	212.4	2025	2036	2278	530.0	252.2	2101	2119	2676
432.5	213.5	2026	2038	2332	532.5	253.1	2104	2122	2742
435.0	214.5	2028	2040	2489	535.0	254.1	2106	2124	2641
437.5	215.5	2030	2042	2343	537.5	255.1	2107	2125	2460
440.0	216.6	2032	2044	2413	540.0	256.0	2109	2128	2672
442.5	217.6	2034	2046	2411	542.5	257.0	2111	2129	2550
445.0	218.6	2036	2048	2500	545.0	258.0	2112	2131	2532
447.5	219.4	2040	2053	3180	547.5	259.0	2114	2133	2496
450.0	220.4	2041	2055	2372	550.0	260.0	2115	2134	2490
452.5	221.5	2043	2056	2315	552.5	261.0	2117	2136	2503
455.0	222.5	2045	2059	2575	555.0	262.0	2119	2138	2603
457.5	223.5	2047	2061	2578	557.5	263.0	2120	2139	2513
460.0	224.4	2050	2064	2551	560.0	263.8	2123	2142	2848
462.5	225.4	2052	2066	2541	562.5	264.7	2125	2144	2794
465.0	226.4	2054	2068	2552	565.0	265.7	2127	2146	2624
467.5	227.5	2055	2070	2380	567.5	266.6	2128	2148	2618
470.0	228.5	2057	2071	2367	570.0	267.7	2129	2149	2416
472.5	229.6	2058	2073	2387	572.5	268.7	2131	2151	2461
475.0	230.6	2060	2075	2427	575.0	269.6	2133	2153	2715
477.5	231.6	2062	2077	2590	577.5	270.5	2135	2155	2803
480.0	232.5	2064	2079	2551	580.0	271.4	2137	2157	2727
482.5	233.5	2066	2081	2474	582.5	272.4	2139	2159	2668
485.0	234.5	2068	2084	2629	585.0	273.3	2140	2161	2520
487.5	235.5	2070	2085	2431	587.5	274.1	2144	2165	3543
490.0	236.6	2071	2087	2381	590.0	274.7	2148	2172	4144
492.5	237.6	2073	2088	2455	592.5	275.2	2153	2178	4202
495.0	238.4	2076	2092	2939	595.0	275.9	2157	2184	4050
497.5	239.4	2078	2094	2533	597.5	276.5	2161	2190	4158
500.0	240.4	2080	2096	2485	600.0	277.1	2165	2196	4008

j

(in the second

)

Time depth curve values

Page 4

	SKULL CRE					S PETROLE	UM		•
	units : ME ted sonic v		used fro	Dat om 237.5	um : 0.0 to 1597.5				
Datum depth	One-way time(ms)		ELOCITI ge RMS	ES Interval	Datum depth	One-way time(ms)		/ELOCITI ge RMS	ES —— Interval
602.5 605.0 607.5 610.0 612.5	277.7 278.3 279.0 279.7 280.3	2170 2174 2178 2181 2185		3960 3770	702.5 705.0 707.5 710.0 712.5	313.1 314.2 315.3 316.4	2243 2244 2244 2244	2288 2288 2288	2363 2228 2362
615.0 617.5 620.0 622.5 625.0	281.0 281.8 282.5 283.2 283.9	2188 2191 2195 2198 2201	2227 2231 2234 2239 2243	3333 3357 3368 3574 3619	712.5 715.0 717.5 720.0 722.5 725.0	317.4 318.4 319.6 320.6 321.6 322.7	2245 2245 2245 2246 2246 2247	2289 2289 2289 2289 2290 2290	2349 2246 2358
627.5 630.0 632.5 635.0 637.5	284.6 285.3 286.0 286.6 287.4	2205 2208 2212 2215 2218	2248 2252 2256 2261 2265	3723 3531 3629 3849 3414	727.5 730.0 732.5 735.0 737.5	323.8 324.9 326.0 327.1 328.1	2247 2247 2247 2247 2247 2248	2290 2290 2290 2290 2290	2296 2332 2149 2356 2382
640.0 642.5 645.0 647.5 650.0	288.1 289.2 290.2 291.3 292.3	2222 2222 2222 2223 2223 2224	2269 2269 2269 2270 2270	3441 2304 2359 2417 2500	740.0 742.5 745.0 747.5 750.0	329.2 330.3 331.4 332.6 333.6	2248 2248 2248 2248 2248 2248	2290 2290 2290 2290 2290	2315 2288 2283 2154 2383
652.5 655.0 657.5 660.0 662.5	293.3 294.2 295.2 296.2 297.2	2225 2226 2227 2228 2229	2271 2273 2273 2274 2275	2533 2662 2500 2497 2508	752.5 755.0 757.5 760.0 762.5	334.7 335.7 336.9 338.0 339.2	2248 2249 2249 2249 2249 2248	2290 2290 2290 2290 2290	2202 2504 2203 2231 2149
665.0 667.5 670.0 672.5 675.0	298.2 299.2 300.3 301.3 302.2	2230 2231 2231 2232 2232	2275 2276 2277 2277 2277 2279	2382 2532 2345 2405 2953	765.0 767.5 770.0 772.5 775.0	340.2 341.3 342.3 343.4 344.4	2248 2249 2249 2250 2250	2290 2290 2290 2290 2290 2291	2302 2373 2397 2342 2475
677.5 680.0 682.5 685.0 687.5	303.1 304.2 305.2 306.2 307.3	2235 2236 2236 2237 2238	2280 2281 2281 2282 2282 2282	2625 2444 2403 2404 2438	777.5 780.0 782.5 785.0 787.5	345.5 346.5 347.5 348.6 349.6	2251 2251 2252 2252 2253	2291 2291 2292 2292 2293	2392 2299 2526 2402 2443
590.0 592.5 595.0 597.5 700.0	308.3 309.2 310.2 311.0 312.1	2238 2240 2241 2242 2243	2282 2285 2286 2287 2288	2312 3000 2527 2832 2418	790.0 792.5 795.0 797.5 800.0	350.6 351.7 352.8 353.8 354.8	2253 2253 2253 2254 2255	2293 2293 2293 2294 2294 2294	2421 2344 2308 2456 2514

)

esi)

Time depth curve values

Page 5

								1 45	,e 3	
Surve	: SKULL CF ey units : M rated sonic	ETRES	es used		lient : CULT atum : 0.0 .5 to 1597		LEUM			
Datur depth	m One-wa	ay	VELOCI	TIES S Interva	 Datur	n One-wa			IES —— S Interval	-
802.	5 355.8	225	5 229	5 2477				*****		•
805.0										
807.5										
810.0							230			
812.5	5 360.1	225					230 230			
815.0	361.1	225	7 229	6 2442						
817.5		2258			915.0		2305			
820.0		2260			917.5		2306	• •		
822.5		2262			920.0		2307			
825.0		2263			922.5 925.0		2308			
827.5	365.5						2309	2350	2682	
830.0		2264 2265			927.5		2310) 2350	2632	
832.5	- • •	2265			930.0		2311	. 2352	2960	
835.0		2268			932.5	403.3	2312	2353	2746	
837.5		2268			935.0	404.2	2313	2354	2863	
				2767	937.5	405.0	2315	2356	3142	
840.0		2270			940.0	405.9	2316	2357	2709	
842.5		2271			942.5	406.8	2317		2750	
845.0	371.9	2272			945.0	407.8	2317		2630	
847.5 850.0	372.7	2274			947.5	408.7	2318	2359	2710	
850.0	373.6	2275	2315	2657	950.0	409.6	2319	2360	2698	
852.5	374.6	2276	2316	2686	952.5	410.6	2320	2260		
855.0	375.5	2277	2317	2689	955.0	411.6	2320	2360 2361	2573	
857.5	376.4	2278	2318	2767	957.5	412.4	2322	2361	2651 3041	
860.0	377.4	2279	2319	2620	960.0	413.4	2322	2363	2485	
862.5	378.3	2280	2319	2601	962.5	414.5	2322	2363	2275	
865.0	379.1	2282	2321	3163	965.0	415.3	0204			
867.5	380.1	2282	2322	2522	967.5	416.3	2324 2324	2364	3113	
870.0	380.9	2284	2324	3019	970.0	417.4	2324	2364 2365	2371	
872.5	381.8	2285	2325	2910	972.5	418.4	2324	2365	2437	
875.0	382.6	2287	2327	3028	975.0	419.4	2325	2365	2372 2542	
877.5	383.5	2288	2328	2887						
880.0	384.4	2289	2330	2812	977.5 980.0	420.4	2325	2365	2459	
882.5	385.3	2291	2331	2746	980.0 982.5	421.4	2326	2366	2692	
885.0	386.2	2292	2332	2713	982.5 985.0	422.3 423.3	2327	2367	2638	
887.5	387.1	2293	2333	2745	983.0 987.5	423.3 424.4	2327 2327	2367	2389	
890.0	388.1	2293	2334					2367	2425	
892.5	389.0	2293 2294	2334	2622	990.0	425.3	2328	2368	2846	
895.0	389.9	2294	2334	2658 2685	992.5 005 0	426.4	2328		2271	
897.5	390.9	2296	2335	2521	995.0 007.5	427.2	2329		2813	
900.0	391.9	2297	2337	2656	997.5 1000.0	428.4	2329		2251	
		1		2000	1000.0	429.4	2329	2369	2453	

TABLE 1

)

sáð

Time depth curve values

Page 6

Survey	KULL CREE units : MET ed sonic ve	RES	used
Datum	One-way	VE	ELOCI
depth	time(ms)	Average	e⊸RM
1002.5	430.2	2330	237
1005.0	431.0	2332	237
1007.5	431.8	2333	237
1010.0	432.6	2335	237
1012.5	433.3	2337	237
1015.0	434.1	2338	237
1017.5	434.9	2339	238
1020.0	435.6	2341	228

Client : CULTUS PETROLEUM

Datum : 0.0 from 237.5 to 1597.5

Datum depth	One-way time(ms)		/ELOCITI ge RMS	ES —— Interval	Datum depth	One-way time(ms)		ELOCITI e RMS	ES —— Interval
1002.5 1005.0	430.2 431.0	2330 2332			1102.5 1105.0	463.9 465.2	2376 2376	2428	1976
1007.5	431.8	2333			1107.5	465.8	2378	2427 2430	2032
1010.0	432.6	2335			1110.0	466.5	2378	2430	3809 3881
1012.5	433.3	2337	2377	3678	1112.5	467.1	2381	2435	3669
1015.0	434.1	2338		3180	1115.0	467.8	2384	2437	3816
1017.5	434.9	2339		3028	1117.5	468.4	2386	2440	3880
1020.0	435.6	2341	2383	3521	1120.0	469.1	2387	2442	3673
1022.5	436.5	2343	2384	2927	1122.5	469.8	2389	2444	3702
1025.0	437.3	2344	2385	2934	1125.0	470.7	2390	2445	2865
1027.5 1030.0	438.1 438.9	2345	2387	3095	1127.5	471.5	2391	2446	3087
1030.0		2347	2388	3134	1130.0	472.3	2393	2448	3153
1032.5	439.7	2348	2390	3204	1132.5	473.1	2394	2449	2977
1035.0	440.6 441.4	2349	2391	3023	1135.0	474.0	2394	2449	2706
		2350	2392	2884	1137.5	475.0	2395	2450	2740
1040.0	442.3	2352	2394	3001	1140.0	475.9	2395	2450	2503
1042.5	443.1	2353	2395	2954	1142.5	476.8	2396	2451	2934
1045.0	443.9	2354	2396	3013	1145.0	477.6	2397	2452	2984
1047.5	444.7	2356	2398	3237	1147.5	478.4	2398	2453	3116
1050.0	445.4	2357	2400	3441	1150.0	479.4	2399	2454	2603
1052.5	446.2	2359	2402	3190	1152.5	480.2	2400	2455	2954
1055.0	447.0	2360	2403	2996	1155.0	481.5	2399	2453	1982
1057.5	447.9	2361	2404	3097	1157.5	482.7	2398	2452	2025
1060.0	448.6	2363	2406	3489	1160.0	484.0	2396	2451	1930
1062.5	449.4	2364	2408	3131	1162.5	485.3	2395	2450	1936
1065.0	449.9	2367	2412	4910	1165.0	486.6	2394	2449	1896
1067.5	450.4	2370	2417	5229	1167.5	487.9	2393	2448	1960
1070.0	450.8	2373	2421	5141	1170.0	489.0	2393	2447	2344
1072.5	451.4	2376	2426	4787	1172.5	489.6	2395	2450	3940
1075.0	451.8	2379	2431	5579	1175.0	490.3	2396	2452	3582
1077.5	452.3	2382	2435	5007	1177.5	491.0	2398	2454	3682
1080.0	453.4	2382	2435	2261	1180.0	491.6	2400	2457	4067
1082.5	454.6	2381	2434	2134	1182.5	492.3	2402	2459	3725
1085.0	455.7	2381	2434	2287	1185.0	493.0	2404	2461	3521
1087.5	456.9	2380	2433	2103	1187.5	493.8		2462	3093
1090.0	458.1	2380	2432	2111	1190.0	494.6	2406	2463	3355
1092.5	459.2	2379	2431	2148	1192.5	495.2			4094
1095.0	460.3	2379	2431	2299	1195.0	495.9			3412
1097.5	461.4	2379	2431	2244	1197.5	496.6			3402
1100.0	462.7	2378	2430	2008	1200.0	497.3			3536
								-	

TABLE 1Time depth curve valuesPage 7

Survey	KULL CREI units : MET ted sonic ve	RES	used fro	Dat	ent : CULTUS um : 0.0 to 1597.5	S PETROLE	UM		
Datum depth	One-way time(ms)		ELOCITI e RMS	ES —— Interval	Datum depth	One-way time(ms)		ELOCITI ge RMS	ES Interval
1202.5 1205.0 1207.5 1210.0 1212.5	498.1 498.8 499.6 500.3 501.3	2414 2416 2417 2418 2419	2473 2474 2476 2477 2478	3350	1302.5 1305.0 1307.5 1310.0	533.4 534.3 535.3 536.1	2442 2442 2443 2444	2499 2500 2501	2741 2699 2700 3165
1215.0 1217.5 1220.0 1222.5 1225.0	502.2 503.2 503.9 504.7 505.5	2419 2420 2421 2422 2423	2478 2478 2478 2480 2481 2482	2629 2666 3314 3410 2851	1312.5 1315.0 1317.5 1320.0 1322.5 1325.0	536.9 537.6 538.4 539.2 540.0 540.8	2445 2446 2447 2448 2449 2450	2502 2503 2505 2506 2507 2508	2959 3559 3359 3061 3023 3204
1227.5	506.5	2423	2482	2587	1327.5	541.6	2451	2509	3226
1230.0	507.6	2423	2482	2378	1330.0	542.3	2452	2510	3231
1232.5	508.4	2424	2483	2982	1332.5	543.1	2453	2511	3200
1235.0	509.2	2425	2484	3204	1335.0	543.9	2455	2512	3270
1237.5	510.1	2426	2485	2775	1337.5	544.7	2456	2514	3220
1240.0	511.0	2427	2485	2809	1340.0	545.4	2457	2515	3245
1242.5	511.8	2428	2486	2926	1342.5	546.2	2458	2516	3245
1245.0	512.7	2428	2487	2779	1345.0	546.9	2459	2517	3404
1247.5	513.7	2428	2487	2546	1347.5	547.7	2460	2519	3257
1250.0	514.6	2429	2487	2674	1350.0	548.5	2461	2520	3181
1252.5	515.8	2428	2487	2183	1352.5	549.2	2462	2521	3253
1255.0	516.6	2430	2488	3208	1355.0	550.0	2463	2522	3183
1257.5	517.4	2430	2489	2920	1357.5	550.8	2464	2523	3144
1260.0	518.3	2431	2489	2964	1360.0	551.6	2465	2524	3187
1262.5	519.0	2433	2491	3409	1362.5	552.4	2467	2525	3249
1265.0	519.8	2434	2492	3114	1365.0	553.1	2468	2526	3377
1267.5	520.6	2435	2493	3130	1367.5	553.9	2469	2528	3251
1270.0	521.5	2435	2494	2698	1370.0	554.6	2470	2529	3375
1272.5	522.5	2436	2494	2689	1372.5	555.4	2471	2530	3216
1275.0	523.4	2436	2494	2746	1375.0	556.2	2472	2531	3291
1277.5	524.3	2437	2495	2696	1377.5	556.9	2473	2532	3365
1280.0	525.2	2437	2495	2853	1380.0	557.7	2474	2534	3217
1282.5	526.1	2438	2496	2724	1382.5	558.5	2475	2535	3166
1285.0	527.0	2438	2496	2714	1385.0	559.2	2477	2536	3296
1287.5	527.9	2439	2497	2803	1387.5	560.0	2478	2537	3186
1290.0 1292.5 1295.0 1297.5 1300.0	528.8 529.7 530.6 531.6 532.5	2440 2440 2441 2441 2441	2497 2498 2498 2498 2498 2499	2806 2664 2849 2557 2706	1390.0 1392.5 1395.0 1397.5 1400.0	560.8 561.6 562.3 563.1 563.8	2479 2480 2481 2482 2483	2538 2539 2540 2541 2543	3232 3308 3213 3325 3310

68X)

Survey u	KULL CREE units : MET ed sonic ve	RES	used fro	Dat	nt : CULTUS um : 0.0 to 1597.5	S PETROLEI	M		
Datum depth	One-way time(ms)		LOCITIE RMS	ES Interval	Datum depth	One-way time(ms)		ELOCITIE RMS	ES —— Interval
1402.5	564.6	2484	2544	3188	1502.5	593.8	2530	2594	3364
1405.0	565.4	2485	2545	3203	1505.0	594.6	2531	2595	3183
1407.5	566.2	2486	2546	3228	1507.5	595.4	2532	2596	3311
1410.0	566.8	2487	2547	3736	1510.0	596.1	2533	2597	3456
1412.5	567.6	2488	2548	3142	1512.5	596.8	2534	2599	3496
1415.0	568.4	2489	2549	3170	1515.0	597.6	2535	2600	3318
1417.5	569.2	2490	2550	3341	1517.5	598.3	2536	2601	3560
1420.0	569.9	2492	2552	3375	1520.0	598.9	2538	2603	4152
1422.5	570.6	2493	2554	3884	1522.5	599.5	2540	2605	3838
1425.0	571.3	2494	2555	3333	1525.0	600.3	2541	2606	3371
1427.5	572.1	2495	2556	3331	1527.5	601.0	2541	2607	3261
1430.0	572.8	2496	2557	3225	1530.0	601.8	2542	2607	3233
1432.5	573.6	2498	2558	3419	1532.5	602.6	2543	2608	3178
1435.0	574.3	2499	2559	3232	1535.0	603.4	2544	2609	3208
1437.5	575.1	2500	2560	3254	1537.5	604.2	2545	2610	3040
1440.0	575.9	2501	2561	3274	1540.0	605.0	2545	2610	3043
1442.5	576.6	2502	2562	3273	1542.5	605.8	2546	2611	3180
1445.0	577.4	2503	2564	3279	1545.0	606.6	2547	2612	3303
1447.5	578.2	2504	2565	3321	1547.5	607.3	2548	2613	3185
1450.0	578.9	2505	2566	3341	1550.0	608.2	2549	2614	3104
1452.5	579.5	2506	2568	3888	1552.5	609.0	2549	2614	2906
1455.0	580.3	2508	2569	3508	1555.0	609.8	2550	2615	3130
1457.5	581.0	2509	2570	3418	1557.5	610.7	2550	2615	2909
1460.0	581.7	2510	2572	3491	1560.0	611.5	2551	2616	3173
1462.5	582.3	2511	2574	3985	1562.5	612.3	2552	2617	3140
1465.0	583.0	2513	2575	3890	1565.0	613.1	2553	2618	3127
1467.5	583.7	2514	2577	3570	1567.5	613.9	2553	2618	3058
1470.0	584.4	2515	2578	3477	1570.0	614.7	2554	2619	3079
1472.5	585.1	2517	2580	3550	1572.5	615.5	2555	2620	3180
1475.0	585.8	2518	2581	3652	1575.0	616.2	2556	2621	3289
1477.5	586.5	2519	2582	3441	1577.5	617.0	2557	2622	3221
1480.0	587.2	2520	2584	3485	1580.0	617.8	2558	2622	3284
1482.5	588.0	2521	2585	3416	1582.5	618.6	2558	2623	3131
1485.0	588.7	2523	2586	3535	1585.0	619.3	2559	2624	3240
1487.5	589.4	2524	2587	3396	1587.5	620.2	2560	2625	3042
1490.0 1492.5 1495.0 1497.5 1500.0	590.2 590.9 591.6 592.3 593.1	2525 2526 2527 2528 2529	2588 2590 2591 2592 2593	3315 3487 3443 3373 3313	1590.0 1592.5 1595.0 1597.5	620.9 621.8 622.6 623.4	2561 2561 2562 2563	2625 2626 2627 2627	3163 3062 3147 3063

COMPANY : CULTUS PETROLEUM WELL : SKULL CREEK 1

Latitude: 572 9963 N Longitude: 673 411.5 E Survey date: 29-May-96 Elevations: Datum: 0 Ground: 92 Kelly: 96.3

Shot data : Location	Elevation	Offset
A	92.0	8.0
В	90.5	23.0
C	90.0	51.0
E	92.0	23.0
F	91.5	51.0
D	89.0	51.0

SHOT CALCULATIONS :

Survey units : METRES Times : MILLISECONDS

Rig identification : O.D. & E.RIG 30 Energy source : POWERGEL Logger : B.P.B. Elevation velocity for shot statics : 2000 Instrument delay : 2.0 msec

Shot		one depth	Shot	Shot		TIM	ES		Check sho	tintonal		N - 1 111	
no.	Kelly	Datum	Locn	Depth	Record -	Corr	Avg	Datum	distance	time	Average	Velocities RMS	Interval
DATUN	1										******	******	
1	96.3	0.0	F	0.6	72.5	64.7 n/u							
2	96.3	0.0	E	0.3	64.5	63.6							
З	96.3	0.0	А	0.3	65.5	66.3 n/u							
4	96.3	0.0	В	0.6	63.5	63.3							
5	96.3	0.0	С	0.6	70.0	63.1							
6	96.3	0.0	С	0.3	70.0	63.1							
33	96.3	0.0	D	2.0	70.5	63.7							
34	96.3	0.0	D	2.0	69.5	62.8							
35	96.3	0,0	А	0.3	64.0	64.8 n/u	63.3	0.0					
32	332.3	236.0	D	2.0	186.5	186.8	186.8	123.5	236.0	123.5	1910.9	1910.9	1910.9
31	383.0	286.7	D	2.0	212.5	213.2	213.2	149.9	50.7	26.4	1912.6	1912.6	1920.5
30	515.0	418.7	D	2.0	269.5	270.7	270.7	207.4	132.0	57.5	2018.8		2295.7
									82.0	33.3	2010.0	2026.1	2462.5
29	597.0	500.7	D	2.0	302.5	304.0	304.0	240.7			2080.2	2091.9	2402.0

SHOT CALCULATIONS : (cont)

Shot	Geop	none depth	Shot	Shot		TI	MES		Check sho	t interval		- Velocities	
no.	Kelly	- Datum	Locn	Depth	Record	Corr	Avg	Datum	distance	time	Average	- velocities RMS	Interval
7	683.0	586.7	D	2.0	335.5	337.1			86.0	33.4			0574.0
28	683.0	586.7	D	2.0	336.0	337.6	337.4	274.1	00.0	00.4	2140.5	2156.5	2574.8
07									55.0	14.8	2140.0	2100.0	3716.2
27	738.0	641.7	D	2.5	350.5	352.2	352.2	288.9			2221.2	2262.7	07 20.2
26	840.0	743.7	D	0.5					102.0	41.7			2446.0
20	040.0	743.7	D	2.5	392.0	393.9	393.9	330.6			2249.5	2286.6	
25	913.0	816.7	D	2.0	422.5	424.4	424.4	204.4	73.0	30.5			2393.4
			-	2.0	422,0	424.4	424,4	361.1	140.0	50.0	2261.7	2295.9	
24	1053.0	956.7	D	2.0	473.0	475.0	475.0	411.7	140.0	50.6	2323.8	0050.0	2766.8
									44.0	17.6	2323,0	2358.8	2500.0
23	1097.0	1000.7	D	2.0	490.5	492.6	492.6	429.3		2.10	2331.0	2364,8	2500.0
22	1100.0	4000 7	_						63.0	20.0		2001,0	3150.0
22	1160.0	1063.7	D	2.0	510.5	512.6	512.6	449.3			2367.5	2405.2	
21	1176.0	1079.7	D	2.0	610 G	645 0			16.0	3.0			5333.3
		1010.1	D	2.0	513.5	515.6	515.6	452.3			2387.1	2436.2	
8	1203.0	1106.7	D	2.0	526.5	528.6			27.0	40 F			
20	1203.0	1106,7	D	2.0	525.5	527.6	528,1	464.8	21.0	12.5	2381.0	0400.0	2160.0
								10110	17.0	4.5	2301.0	2429.2	2777 0
19	1220.0	1123.7	D	2.0	530.5	532.6	532.6	469.3			2394.4	2445.7	3777.8
10	1050 0		_						30.0	10.5		2-1-10,7	2857.1
18	1250.0	1153.7	D	2.0	541.0	543.1	543.1	479.8			2404.5	2455.4	
9	1267.0	1170 7	D	2.0	550 F								
17	1267.0		D	2.0	550.5 548.5	552.6	664 7	400.4	17.0	8.6			1976.7
				2.0	J40.J	550.7	551.7	488.4	44.0		2397.0	2447.8	
16	1308.0	1211.7	D	2.0	561.0	563.2	563.2	499.9	41.0	11.5	0400.0		3565.2
							000.2	423.9			2423.9	2479.2	

SHOT CALCULATIONS : (cont)

.

Shot no.	Geophone depth Kelly Datum	Shot Locn	Shot Depth	Deserved	TI	MES		Check shot	t interval		- Velocities	
				Record -	Corr	Avg	Datum	distance	time	Average	RMS	Interval
15	1407 0 4040 7	_						99.0	35.5			2788.7
10	1407.0 1310.7	D	2.0	596.5	598.7	598.7	535.4			2448.1	2500.9	
14	1508.0 1411.7	D	2.0	627.5	629.7	600.7	500 4	101.0	31.0			3258.1
		0	2.0	021.5	029.1	629.7	566.4			2492.4	2548.1	
12	1620.0 1523.7	D	2.0	659.5	661.8			112.0	32.6			0.407.0
13	1620.0 1523.7	D	2.0	660.5	662.8	662.3	599.0	112.0	52.0	2543.7	2604.2	3435.6
10	1694.5 1598.2	D	2.0	684.5	686.8			745	00.0			
11	1694.5 1598.2	D	2.0	683.0	685.3	686.0	622.8	74.5	23.8			3136.8
						000.0	022.0			2566.4	2626.5	

COMPANY : CULTUS PETROLEUM WELL : SKULL CREEK 1

Latitude : 572 9963 N Longitude : 673 411.5 E Survey date : 29-May-96 Elevations : Datum : 0 Ground : 92 Kelly : 96.3

SONIC DRIFT :

Survey units : METRES Times : MILLISECONDS

Geophone depth Kelly — Datum		Check shot times Average - Below Datum		Check s Distand	Check shot interval Distance – Time		Interval sonic drift usec/m – msec		Cumulative
DATUM	I								drift msec
96.3	0.0	63.3	0.0						
332.3	236.0	186.8	123.5	236.0	123.5				
383.0	286.7	213.2	149.9	50.7	26.4	21.7	92.70	4.7	4.7
515.0	418.7	270.7	207.4	132.0	57.5	58.6	-8.33	-1.1	3.6
597.0	500.7	304.0	240.7	82.0	33.3	32.7	7.32	0.6	4.2
683.0	586.7	337.4	274.1	86.0	33.4	33.8	-4.65	-0.4	3.8
738.0	641.7	352.2	288.9	55.0	14.8	18.1	-60.00	-3.3	0.5
840.0	743.7	393.9	330.6	102.0	41.7	39.6	20.59	2.1	2.6
913.0	816.7	424.4	361.1	73.0	30.5	27.5	41.10	3.0	5.6
053.0	956.7	475.0	411.7	140.0	50.6	53.0	-17.14	-2.4	3.2
97.0	1000.7	492.6	429.3	44.0	17.6	14.7	65.91	2.9	6.1
60.0	1063.7	512.6	449.3	63.0	20.0	20.6	-9.52	-0.6	5.5

.

.

Geophone depth Kelly Datum		Check shot times Average - Below Datum		Check shot interval Distance Time		Sonic Int. time	Interval sonic drift usec/m msec		Cumulative drift msec
1160.0	1063.7	512.6	449.3						
1176.0	1079.7	515.6	452.3	16.0	3.0	4.7	-106.25	-1.7	3,8
1203.0	1106.7	528.1	464.8	27.0	12.5	8.8	137.04	3.7	7.5
1220.0	1123.7	532.6	469.3	17.0	4.5	6.1	-94.12	-1.6	5.9
				30.0	10.5	10.3	6.67	0.2	6.1
1250.0	1153.7	543.1	479.8	17.0	8.6	6.4	129.41	0.0	
1267.0	1170.7	551.7	488.4		0.0	0.4	129.41	2.2	8.3
1308.0	1211.7	563.2	499.9	41.0	11.5	13.1	-39.02	-1.6	6.7
1407.0	1310.7	598.7	535.4	99.0	35.5	31.2	43.43	4.3	11.0
1508.0				101.0	31.0	30.7	2.97	0.3	11.3
1008.0	1411.7	629.7	566.4	112,0	32.6	32.4	1 70		
1620.0	1523.7	662.3	599.0	112.0	52.0	52.4	1.79	0.2	11.5
1694.5	1598.2	686.0	622.8	74.5	23.8	21.6	28.86	2.1	13.6

COMPANY : CULTUS PETROLEUM WELL : SKULL CREEK 1

Latitude: 572 9963 N Longitude: 673 411.5 E Survey date: 29-May-96 Elevations: Datum: 0 Ground: 92 Kelly: 96.3

Survey units : METRES Times : MILLISECONDS

SONIC CALIBRATION :

Geopho	ne depth	Interval	Original s	sonic times	Adjusted	sonic times		- Velocities -	
Kelly -	- Datum	Distance		Cumulative		- Calibrated		RMS	
DATUM									
96.3	0.0								
		236.0							1910.9
332.3	236.0						1910.9	1910.9	
		50.7	21.7		26.4				1920.5
383.0	286.7			21,7		149.9	1912.6	1912.6	
		132.0	58.6		57.5				2295.7
515.0	418.7			80.3		207.4	2018.8	2026.1	
		82.0	32.7		33.3				2462.5
597.0	500.7			113.0		240.7	2080.2	2091.9	
683.0	586.7	86.0	33.8	446.0	33.4	0744			2574.9
003.0	566.7	55.0	18.1	146.8	14.0	274.1	2140.5	2156.5	07400
738.0	641.7	55.0	10.1	164.9	14.8	288.9	2221.2	2262.7	3716.2
	0.111	102.0	39.6	104.0	41.7	200.9	~~~1.~	2202.1	2446.0
840.0	743.7		00.0	204.5	-1-4-11	330.6	2249.5	2286.6	2440.0
		73.0	27.5		30.5				2393.4
913.0	816.7			232.0		361.1	2261.7	2295.9	
		140.0	53.0		50,6				2766.8
1053.0	956.7			285.0		411.7	2323.8	2358.8	
		44.0	14.7		17.6				2500.0
1097.0	1000.7			299.7		429.3	2331.0	2364.8	
		63.0	20.6		20.0				3150.0
1160.0	1063.7			320.3		449.3	2367.5	2405.2	

	ne depth Datum	Interval Original sonic times Distance Interval – Cumulative		sonic times - Cumulative	Adjusted sonic times Interval Calibrated		Average RMS Interval			
					interval		Average -	RMS	Interval	
1160.0	1063.7						2367.5	2405.2		
		16.0	4.7		3.0			2400.2	5333.3	
1176.0	1079.7			325.0		452,3	2387.1	2436.2	0000.0	
		27.0	8.8		12.5	102.0	2007.1	2430.2		
1203.0	1106.7			333.8	12.0	464.8	0204 0	0.100.0	2160.0	
		17.0	6.1	000.0	4.5	404.0	2381.0	2429.2		
1220.0	1123.7		Q. T	339.9	4.5	400.0			3777.8	
		30.0	10.3	559.9	10 5	469.3	2394.4	2445.7		
1250.0	1153.7	00.0	T0'2	250.0	10.5				2857.1	
	1200.1	17.0	6 4	350.2		479.8	2404.5	2455.4		
1267.0	1170.7	11.0	6.4		8.6				1976.7	
1207.0	11/0.7	44.0	40.4	356.6		488.4	2397.0	2447.8		
1209.0	4044 7	41.0	13.1		11.5				3565.2	
1308.0	1211.7			369.7		499.9	2423.9	2479.2		
4 4 9 7 9		99.0	31.2		35.5				2788.7	
1407.0	1310.7			400.9		535.4	2448.1	2500.9		
		101.0	30.7		31.0				3258.1	
1508.0	1411.7			431.6		566.4	2492.4	2548.1	0200.1	
		112.0	32.4		32.6		2402.4	2040.1	2425 0	
1620.0	1523.7			464.0		599.0	2543.7	2604.0	3435.6	
		74.5	21.6		23.8	000.0	2043.1	2604.2		
1694.5	1598.2			485.6	20,0	600.0	0500 1		3136.8	
				100.0		622.8	2566.4	2626.5		

Shot Location : F 1	Firs	t arriv	vals p	lot : SI	CULL	CREE	К 1			
2 Charge depth 0.3 Size 0.3 3 Arrival time : 64.5 msec 4 Shot 3 Location : A 5 Shot 3 Location : A 5 Shot 3 Location : A 6 Shot 3 Location : A 7 Shot 3 Location : A 6 Shot 4 Location : B 7 Shot 5 Location : C 8 Shot 5 Location : C 9 Shot 5 Location : C 1 SHOT 2 SHOT 3 1 SHOT 2 SHOT 3 1 SHOT 2 SHOT 3 20 -4.00 54.0 -2.00 63.0 -5.00 55.5 -4.00 56.5 63.0 -5.00 55.5 -4.00 56.5 -4.00 64.0 -8.00 56.5 -1.00 55.5 -1.00 55.5 -1.00 64.1 -1.00 57.5 -1.00 55.5 -1.00 56.5 -1.00					2	\frown	Sho Cha Pho	arge depth one depth	0.6 Siz :96.3	ze 0.3
4 Charge depth 0.3 Size 0.3 5 Arrival time : 65.5 msec 5 Shot 4 Location : B 6 Charge depth 0.6 Size 0.3 7 Phone depth : 96.3 7 Arrival time : 63.5 msec 8 Shot 4 Location : B Charge depth 0.6 Size 0.3 Phone depth : 96.3 Arrival offset time (msec) SHOT 1 SHOT 2 SHOT 1 SHOT 2 SHOT 1 SHOT 2 SHOT 1 SHOT 2 SHOT 1 SHOT 3 SHOT 1 SHOT 2 SHOT 1 SHOT 2 SHOT 3 SHOT 3 SHOT 4 SHOT 5 Case 4.00 54.0 62.0 4.00 55.5 7.00 63.5 7.00 55.5 7.00 66.5 4.00 57.5 3.00 66.5 1.000 66.5 1.000 66.5 1.000 57.5 3.000 55.0 1.000 66.5 1.000 57.5	1 2						Cha	arge depth one depth	0.3 Siz : 96.3	e 0.3
Charge depth 0.6 Size 0.3 Phone depth : 96.3 Arrival time : 63.5 msec Shot 5 Location : C Charge depth 0.6 Size 0.3 Arrival time : 63.5 msec Shot 5 Location : C Charge depth 0.6 Size 0.3 Arrival offset time (msec) SHOT 1 SHOT 1 SHOT 2 SHOT 3 SHOT 3 SHOT 4 SHO 54.0 55.0 57.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 57.0 55.5 55.0 57.0 55.5 57.0 55.5 57.0 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5				\int			Cha Pho	nge depth ne depth	0.3 Siz 96.3	e 0.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5			~			/ Cha Pho	rge depth ne depth :	0.6 Siz 96.3	e 0.3
Time Ampl Time Ampl <th< th=""><th></th><th>A</th><th></th><th></th><th>10 nsec)</th><th>15 20</th><th> Cha 25Pho</th><th>rge depth ne depth :</th><th>0.6 Size 96.3</th><th>e 0.3</th></th<>		A			10 nsec)	15 20	Cha 25Pho	rge depth ne depth :	0.6 Size 96.3	e 0.3
62.0 4.00 54.0 2.00 54.0 3.00 52.0 2.00 59.0 2.00 63.0 -5.00 55.0 -7.00 55.0 -2.00 53.0 1.00 60.5 -3.00 63.5 -7.00 55.5 -5.00 55.5 -4.00 53.5 1.00 60.5 -1.00 64.0 -8.00 56.5 -5.00 55.5 -4.00 53.5 1.00 60.5 -1.00 64.5 -8.00 56.5 -1.00 56.5 -1.00 54.5 1.00 61.5 -3.00 65.5 -10.00 57.5 -3.00 55.5 -1.00 62.5 -3.00 65.5 -10.00 57.5 -2.00 55.5 -1.00 62.0 -3.00 65.5 -10.00 57.5 -2.00 55.5 -1.00 62.5 -3.00 65.5 -10.00 57.5 -2.00 55.5 -1.00 62.5 -3.00 66.5 -4.00 58.5 -7.00 56.5 -2.00 63.5 3.00 67.5 -2.00 59.0 -2.00 57.5 2.00 63.5 3.00 67.5 -2.00 59.5 -1.00 64.5 3.00 67.5 -2.00 59.5 -1.00 64.5 3.00 67.5 -2.00 59.5 -1.00 64.5 3.00 67.5 -2.00 59.5 -3.00 64.5 3.00 69.5			<u> </u>							
82.0 140.00 74.0 274.00 74.0 347.00 72.0 49.00 78.3 50.00 82.5 173.00 74.5 460.00 74.5 469.00 72.5 314.00 79.5 111.00 83.0 199.00 75.0 602.00 75.0 555.00 73.0 424.00 80.0 127.00	6645.0505050505050505050505050505050505050	-5.00 -8.00 -10.	50.50.50.50.50.50.50.50.50.50.50.50.50.5	$\begin{array}{c} -7.00\\ -5.00\\ -1.00\\ 0.00\\ -4.00\\ -3.00\\ 0.00\\ 1.00\\ 2.00\\ 3.00\\ 3.00\\ 3.00\\ -3.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -1.00\\ -276.00\\ -376.00\\ -376.00\\ -376.00\\ -376.00\\ -376.00\\ -376.00\\ -590.00\\ -59$	50505050505050505050505050505050505050	$\begin{array}{c} -2.00\\ -4.00\\ -7.00\\ -6.00\\ -7$	55555555555555555555555555555555555555	$\begin{array}{c} 1.00\\ 1.00\\ -1.00\\ -2.0$	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	$\begin{array}{c} 2.00\\ -1.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -1.$

SHOT Time 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.5 64.0 65.5 64.0 65.5 66.0 65.5 65.5 65.5	6 Ampl -7.00 -5.00 -5.00 -5.00 -5.00 -5.00 -3.00	SHO Time 324.0 324.5 325.0 325.5 326.5 326.5 327.5 328.5 329.5 329.5 329.5 330.5 331.5 332.5 333.5 333.5 334.5 335.6	Ampl -4.00 -6.00 -5.00 -4.00 0.00 0.00 1.00 1.00 1.00 0.00 -3.00 5.00 1.00 1.00 1.00 -3.00	SH0 Time 516.0 517.0 517.5 518.0 519.5 520.0 5221.0 5220.5 5223.0 5223.0 5224.5 5224.5 5225.0 5225.5 526.0 526.5 527.0	Ampl 23.00 26.00 27.00 28.00 28.00 24.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 27.00 24.00 21.00 17.00 9.00 6.00 3.00 2.00 15.00 5.00	SHC Time 540.0 541.5 542.5 542.5 542.5 542.5 542.5 542.5 544.5 554.5 554.5 554.5 554.5 555.5	Ampl 4.00 5.00 5.00 5.00 2.00	SHO Time 674.0 674.5 675.0 675.5 676.0 676.5 677.5 677.5 678.0 678.5 679.0 678.5 680.5 680.5 6881.0 6881.5 6883.5 6883.5 6883.5 6884.0 684.5 685.0	Ampl -7.00 -3.00 0.00 5.00 5.00 5.00 5.00 5.00 7.00 5.00 4.00 2.00 0.00 2.00 6.00 3.00 1.00 -1.00 -4.00
61.50 622.50.50 6622.50.50 666666666666666666666666666666666	$\begin{array}{c} -4.00\\ -3.00\\ 0.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 4.00\\ 6.00\\ 4.00\\ -6.00\\ -9.00\\ -7.00\\ -7.00\\ -4.00\end{array}$	326.5 3277.50 32278.50 32288.50 32288.50 32288.50 32289.50 32289.50 32289.50 3228.50 3228.50 3228.50 3228.50 3232.50 3233.50 3233.50 3233.50 3233.50 3233.50 3333.50 3	-4.00 -4.00 0.00 0.00 1.00 1.00 -3.00 5.00 1.00 -3.00	55190.50 55190.50 552201.05 552201.50 552221.50 552223.50 552223.50 552225.50 552255.55 552255.55 552255.55 552255.55 552255.55 552255.55 552255.55 552255.55 552255.55 552255.55 552555.55 552555.55 552555.55 552555.55 552555.55 552555.55 552555.55 552555.55 552555.55 5525555.55 55255555.55 55255555555	$\begin{array}{c} 28.00\\ 24.00\\ 26.00\\ 28.00\\ 28.00\\ 28.00\\ 24.00\\ 24.00\\ 21.00\\ 17.00\\ 9.00\\ 3.00\\ 0.00\\ 15.00\end{array}$	542.050 542.050 55433.50 55444.55 55444.55 55445.50 55447.55 55448.9.55 55449.0 55499.0 5555 55555 555555555555555555555555	5.00 3.00 2.00 2.00 1.00 2.00 -3.00 -1.00 3.00 4.00 -1.00 0.00	677.50 677.50 677.50 678.5 679.05 679.50 679.50 6880.5 6881.0 6881.50 6883.5 6883.5 6883.5 6883.5 6883.5 6883.5	5.00 6.00 5.00 7.00 4.00 2.00 2.00 2.00 3.00 1.00 -1.00 -4.00

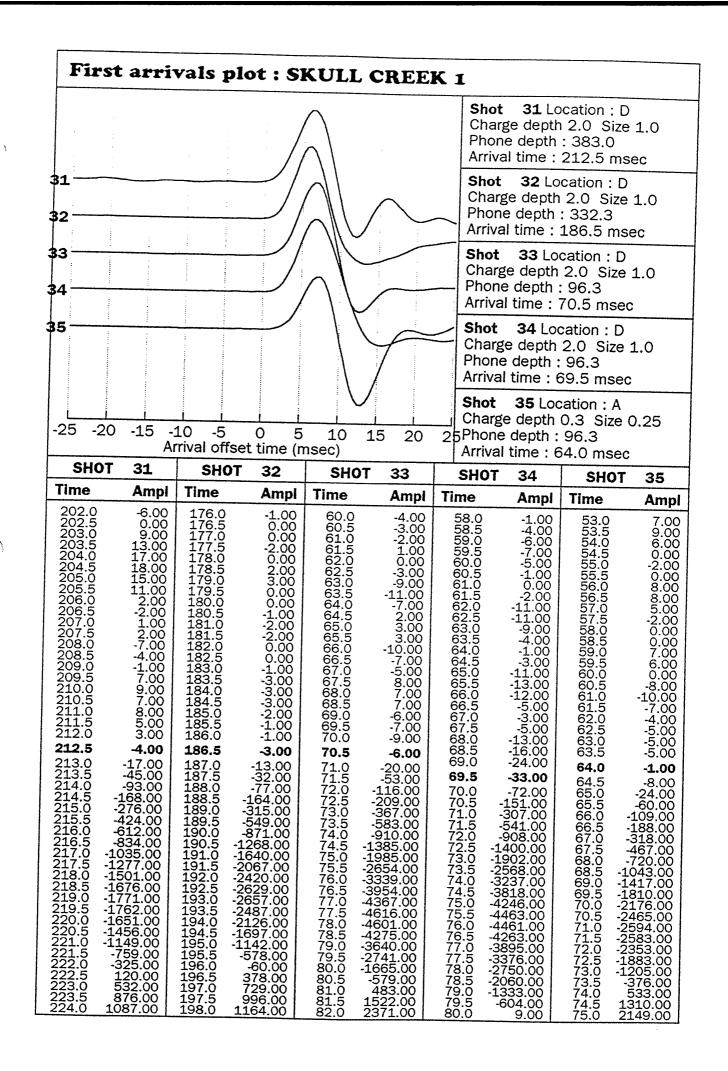
MAG &

ì

.

ioso),

16 17 18 19						CI Pt Ar SI Ct Pt Ar St Ct Ph	narge depth rival time : not 17 Lo narge depth none depth rival time :	: 1308. 561.0 r cation : 1267. 548.5 r cation : 2.0 Si : 1250.	ize 2.0 0 msec D ze 2.0 0 nsec D ze 2.0 0 0
20		10 -5	0 5 set time (n	10	15 20	Ph Arr Sh Ch 25Ph	arge depth one depth ival time : ot 20 Loo arge depth one depth :	: 1220.0 530.5 m cation : 2.0 Siz 1203.0	ze 2.0 Disec D ze 2.0
SHO		SHO		SHO	T 18	SH	ival time : { 0T 19	525.5 m	
Time 550.0	Ampl	Time	Ampl	Time	Ampl	Time	Ampl	Time	Amp
55555555555555555555555555555555555555	9.00 12.00 14.00 19.00 18.00 14.00 12.00 13.00 10.00 12.00 19.00 19.00 10.00 -2.00 -1.00 -2.00 -1.00 -2.00 -1.00 -2.00 -1.00 -2.00 -	538.0 538.5050.50 5539.5555555555555555555555555555555555	$\begin{array}{c} -8.00\\ -10.00\\ -10.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -14.00\\ -3.00\\ -12.00\\ -14.00\\ -3.00\\ -12.00\\ -1$	530.05 5331.05 5531.50 55332.50 55332.50 55332.50 55332.50 553333.55 553333.55 553333.55 553333.55 5555.05 55555.05 555555.05 555555.05 555555.05 5555555.05 5555555.05 55555555	-8.00 -7.00 -6.00 -7.00	520.050 5221.050 5221.050 5221.050 55221.050 55222.050 5555555555	-7.00 -12.00 -9.00 -9.00 -5.00 -4.00 -3.00 -4.00 -3.00 -4.00 -3.00 -1.00 -28.00 -28.00 -28.00 -28.00 -28.00 -28.00 -28.00 -291.00 -2912.00	514.055055555555555555555555555555555555	$\begin{array}{c} 15.00\\ 10.00\\ -8.00\\ -8.00\\ -12.00\\ -13.00\\ -13.00\\ -13.00\\ -13.00\\ -11.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -3.00\\ -26.00\\ -26.00\\ -52$
50505050505050505050505050505050505050	-303.00 -421.00 -555.00 -717.00 -897.00 -1055.00 -1251.00 -1439.00 -1608.00 -1743.00 -1834.00 -1858.00 -1858.00 -1825.00 -1722.00 -1546.00 -1299.00	5556.0 556.5 557.0 557.5 558.0 558.5 558.5 559.0	-589.00 -754.00 -927.00 -1325.00 -1325.00 -1517.00 -1517.00 -1656.00 -1794.00 -1886.00 -1886.00 -1881.00 -1920.00 -1881.00 -1920.00 -1341.00 -1341.00 -1017.00 -633.00	550.5 551.0 551.5	-286.00 -396.00 -504.00 -664.00 -1032.00 -1234.00 -1435.00 -1435.00 -1626.00 -1752.00 -1872.00 -1940.00 -1944.00 -1878.00 -1736.00 -1523.00	531.050.50.50.50.50.50.50.50.50.50.50.50.50	-563.00 -743.00 -913.00 -1133.00 -1355.00 -1565.00 -1740.00 -1912.00 -1912.00 -1912.00 -1912.00 -197.00 -1575.00 -1575.00 -997.00 -657.00 -319.00	526.0.50.50.50.50.50.50.50.50.50.50.50.50.5	-123.00 -183.00 -274.00 -387.00 -528.00 -695.00 -1043.00 -1239.00 -1239.00 -1424.00 -1582.00 -159.00 -1751.000 -1510.00 -1294.00


First arriv	vals plot	: SKULI	L CREE	K 1			
				Ph	ot 21 Lo arge depth one depth ival time :	: 1176.	ze 2.0 0
21				Ph	ot 22 Lo arge depth one depth ival time :	: 1160.	ze 2.0 0
23				Pho	ot 23 Lo arge depth one depth ival time :	: 1097.0	ze 2.0 0
5			\mathcal{V}	Pho	ot 24 Lo arge depth one depth val time : 4	: 1053.0	ze 2.0)
	10 -5 C rrival offset t) 5 10 ime (msec)	15 20	25Phc	ot 25 Loc arge depth one depth : val time : 4	: 913.0	e 1.5
SHOT 21	SHOT	22 SH	OT 23	SHO		SHO	······
Time Ampl 502.0 -6.00		Ampl Time	Ampl	Time	Ampl	Time	Amp
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	502.5 503.5 504.0 505.5 506.5 506.5 506.5 507.05 508.0 509.0 509.0 509.0 509.5 509.5 509.5 509.5 511.0 5112.0 5113.0 513.0 513.0 513.0	$\begin{array}{c ccccc} -1.00 & 480.0 \\ -2.00 & 480.5 \\ -1.00 & 481.0 \\ 96.00 & 481.0 \\ 96.00 & 481.0 \\ 96.00 & 482.0 \\ 16.00 & 482.0 \\ 16.00 & 482.0 \\ 48.00 & 483.0 \\ 48.00 & 483.0 \\ 48.00 & 484.0 \\ 48.00 & 485.0 \\ 48.00 & 485.0 \\ 48.00 & 485.0 \\ 48.00 & 486.0 \\ 31.00 & 487.5 \\ -5.00 & 488.0 \\ 7.00 & 488.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 489.0 \\ 18.00 & 490.5 \\ 2.00 & 491.0 \\ 35.00 & 491.0 \\ 35.00 & 492.5 \\ 2.00 & 493.0 \\ 25.00 & 495.0 \\ 33.00 & 494.5 \\ 33.00 & 496.0 \\ 25.00 & 495.0 \\ 33.00 & 496.0 \\ 25.00 & 498.0 \\ 25.00 & 498.0 \\ 20.0$	-1.00 3.00 2.00 -4.00 -5.00	462.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.	$\begin{array}{c} -2.00\\ -1.00\\ 0.000\\ 1.000\\ -2.000\\ -2.000\\ -2.000\\ -3.000\\ -3.000\\ -5.000\\ -7.8,000\\ -5.000\\ -7.8,000\\ -6.000\\ -7.8,000\\ -6.000\\ -7.8,000\\ -9.000\\ -7.8,000\\ -3.000\\ -3.000\\ -9.222,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.225,000\\ -9.25,000\\ -9$	$\begin{array}{c} 412.05.05.05.05.05.05.05.05.05.05.05.05.05.$	$\begin{array}{r} -9.00\\ -6.00\\ -1.00\\ 4.00\\ 7.00\\ 11.00\\ 10.00\\ 9.00\\ -3.00\\ -4.00\\ -23.00\\ -27.00\\ -27.00\\ -27.00\\ -27.00\\ -27.00\\ -12.00\\ -11.00\\ -12.00\\ -192.00\\ -192.00\\ -192.00\\ -192.00\\ -192.00\\ -195.00\\ -195.00\\ -1504.00\\ -295.00\\ -295.00\\ -295.00\\ -295.00\\ -2526.00\\ -$

Calif.

398.5	A	SHO Time 340.0 341.5 342.0 341.5 342.0 344.5 355.5	0 5 set time (1 -53.00 -53.00 -53.00 -2.00 23.00 53.00 62.00 54.00 48.00 39.00 54.00 48.00 39.00 54.00 48.00 19.00 14.00 12.00 12.00 12.00 -26.00 -22.00 -389.00 -125.00 -127.0	SHO SHO 325.0 326.0 326.5 327.5 328.0 328.5 329.0 328.5 329.0 3331.0 3331.5 3330.5 3331.0 3331.5 3332.5 3334.0 3335.5 336.0 335.5 336.0 335.5 336.0 337.5 338.0 337.5 338.0 335.5 336.0 337.5 338.0 337.5 338.0 337.5 338.0 339.5 339.0	Ampl	25Ph	one depth ival time : OT 29 Ampl -3.00 -1.00 3.00 2.00 1.00 -5.00 -3.00 -1.00	: 515.0 269.5 m SHC 7ime 258.0 259.5 259.0 259.0 259.0 260.5 260.5 2660.5 2662.0 2662.0 2663.5 2663.5 2664.5 2665.5 2665.5 2666.5 2667.5 2668.5 2668.5 2668.5 2667.5 2668.5 2668.5 2667.5 2668.5 2668.5 2668.5 2667.5 2668.5 2668.5 2667.5 2668.5 2668.5 2667.5 2668.5 2668.5 2668.5 2667.5 2668.5 2668.5 2667.5 2668.5 2668.5 2667.5 2668.5 2667.5 2668.5 2667.5 2668.5 2667.5 2668.5 2667.5 2668.5 2667.5 2668.5 2677.5 2668.5 2677.5 2677.5 2771.5 2772.5 2773.5 2774.0 2774.0	nsec
26 27 28 29 30						CPA SCPA SCPA SCPA SCPA SCPA An Sh	harge depth hone depth rrival time hot 27 L harge depth hone depth rival time : hot 28 L hone depth rival time : hot 29 L harge depth hone depth rival time :	h : 840.0 : 392.0 .ocation : h 2.5 S : 351.5 r ocation : h 2.0 Si : 683.0 336.0 r Dcation : h 2.0 Si : 597.0 302.5 n Dcation :	Size 1.5 msec : D ize 1.5 msec D ize 3.0 msec D ze 2.0 msec D

)

189

cccc

APPENDIX 8 - CASING & CEMENTING REPORTS

	Cultus
--	--------

Skull Creek #1

Well Name : Rig Name : ODE Rig 30 Engineer : H Flink/K Kelly

CEMENTING REPORT

1

Date : E 2000 €€ Casing Size : Casing MD/TVD : 1514

Gas Reading

. . . .

)

Hole C	Beometry	Mu	ud Properties	
Hole Size :	8:2	Mud Wt :	3.5	Max Gas :
Hole MD :	1700	Vis :	43	Bttms Up :
Hole TVD :		PV:	10	Final BG :
Hole Angle :	0	YP:	8	T indi DO .
Last Csg Size :		WL:	5.5	
Last Csg MD :		BHCT :		
Last Csg TVD :		BHST :		
Casing Summary				
Decerintian	18/4 /11 /01			

Description	Wt (lb/ft)	Grade	Conn	Length	Depth, mRT
Float Shoe		K55	3RD	0.53	1613 47
Lit casing	26	K55	8PD	11.88	1601.59
Float collar		K55	8RD	12.19	1589.40
119 jts casing	26	K55	8RD	1422.69	166.71
1 X/O	26	K.55	8RD	1.36	165.35
14 jts casing	26	K55	VAM	166.79	-1.44
					1

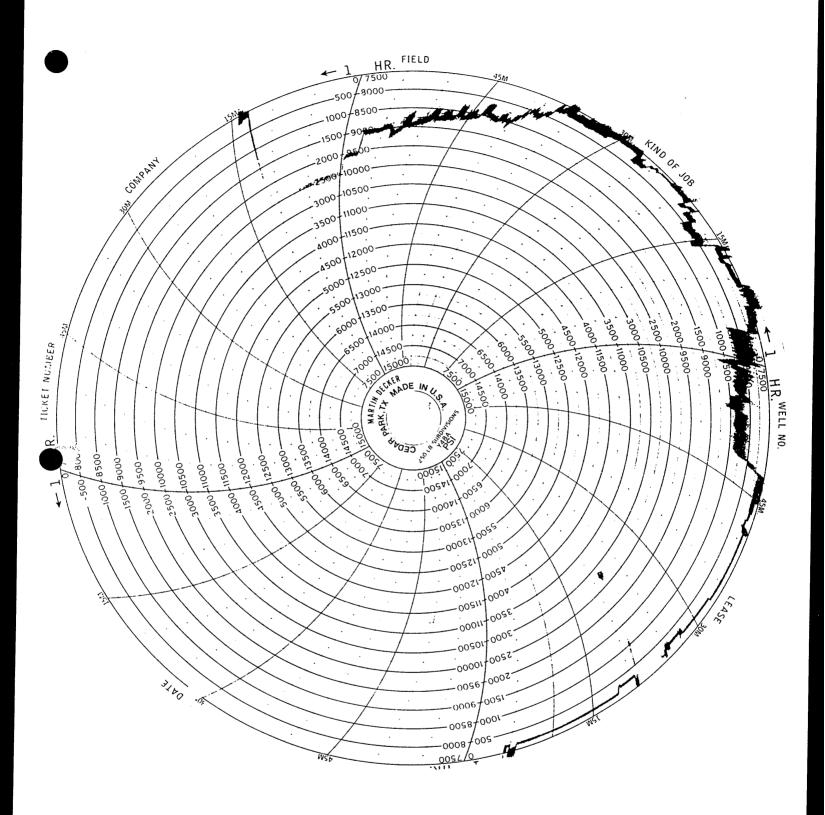
Centralizers

Manufacturer	Туре	Quantity	Remark / Placement
(2009) Davis Lynch	SRC	9	1601. 1490. 1467.14431389.1372. 1360.1301. 1240 m
Davis Lynch	SBS	5	1215. 1191.45, 1180 1155 1132

Lead Cement Slurry Details

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	C Malland	
12.8	156	126		S. Vol(ft3/sk)	Additives
		120	482	2.05	2.5% PreHydGel

Tail Cement Slurry Details


F	Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
\vdash	15.8	48	30	250	1.15	1 % Halad 322
\vdash						

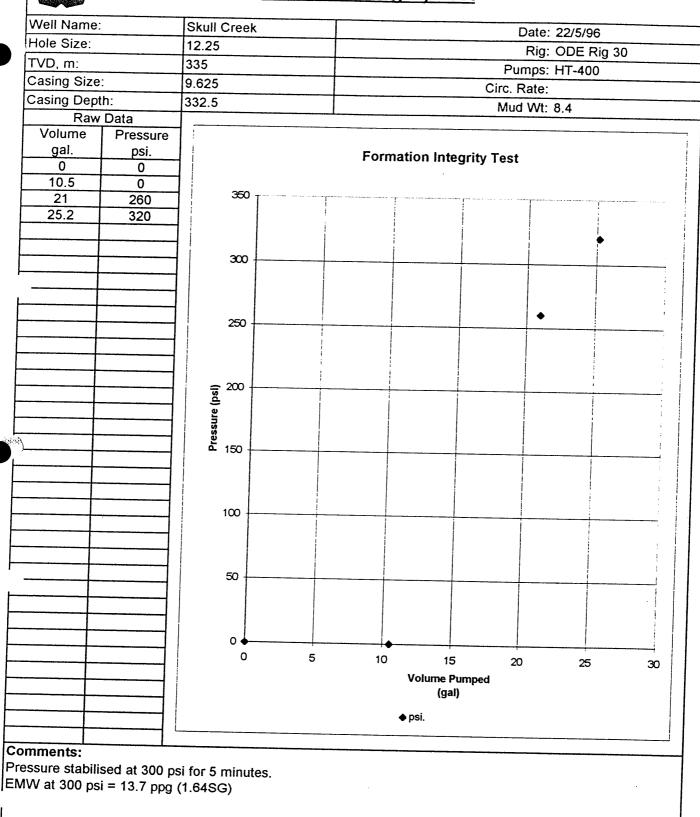
Top Up Cement Slurry Details

Weight (ppg)	Malthen				
	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
N/A	N/A	N/A	N/A	N/A	N/A
		·	14.7 (N/A	<u> </u>

Operation Description

	Circulation	Pre-Flush	Lead	Tail	Displacement
Volume (bbl)	250	50	156	48	
Time (min)	40	15	20		201
ob Evaluation			Remarks	10	
Reciprocate :	Yes			Lead (bbl)	20
Full Returns :	Yes			201	
Cmt to Surface :	No			179	
	Yes, 1600 psi, press		_	438	
Processo Test	165, 1000 psi, press	ure up to 2100 psi	Pumped	455	
Flessure lest:	2500 psi for 10 min.	1 bbl bled back		17	
ECP :	No			Difference (bbl)	•

٠


WELL	SKUU	CREEK #1		DEDMI							
Cating		7"		PERMI	T: PPL 1	. DATE	: 31/5/96				: RIG 30
						5 <u> </u>					
					Measured by	ODET	OOLPUSHER	2	Page: 1 of	f Pages	: <u>2</u>
Order	Jt No:	Length	Total		Comment	Order	Jt No:	Length	Total	Depth	Comment
	Chas A			1614.0	0 Battom of Shoe						
	Shoe 1				9 SRC 5 m above shoe		· · · · · · · · · · · · · · · · · · ·				
3	F/Col 2	12.19	• · · · · · · · ·	0 1589.4				0.00			Total from last col
			•	8 1576.8		53	+	12.59	· • · · · · · · · · · · · · · · · · · ·		
	<u>116</u> 117	12.58 12.58		6 1564.2 4 1551.6		54	· · · · · · · · · · · · · · · · · · ·	12.57			
6	118	12.58		2 1539.0		55	t	12.57	+		
7	119	12.58		0 1526.5		56 57		12.58			
8	120	12.58		8 1513.9		57	······	11.66 12.59		1	
9	3	11.83		1 1502.0	the second se	59		12.55			
10	4	11.84	123.7	5 1490.2	SRC MIDDLE of JOINT	60		12.58			
11	5	11.83		8 1478.4		61	55	12.57			
12	6	11.84	147.4	2 1466.5	SRC MIDDLE of JOINT	62	56	12.59			
Total		147.42				Total		124.87			
13	7	11.83	159 25	5 1454.75	3	63	67	10.57	702.00	054.04	
14	8	11.83			SRC MIDDLE of JOINT	64	57 58	12.57 12.59		851.34	
15	9	11.83		1431.09		65	59	12.59		838.75 826.17	
16	10	11.84	194.75			66	59 60	12.58		826.17	
17	11	11.83		1407.42	the second secon	67	61	12.08		801.51	
18	12	11.83		1395.59		68	62	12.58		788.93	· · · · · · · · · · · · · · · · · · ·
19	13	11.84	230.25	1383.75	SRC MIDDLE of JOINT	69	63	12.58	837.65	776.35	
20	14	11.84	242.09	1371.91	SRC MIDDLE of JOINT	70	64	12.58		763.77	
21	15	11.83			SRC MIDDLE of JOINT	71	65	12.58	862.81	751.19	
22 otal	16	11.83	265.75	1348.25		72	66	12.59	875.40	738.60	
		118.33		I		Total		125.31			
23	17	11.83	277.58	1336.42		73	67	11.84	887.24	726.76	
24	18	11.83	289.41	1324.59		74	68	11.84	899.08	714.92	
25	19	11.84		1312.75		75	69	12.58	911.66	702.34	
26	20	11.84	313.09	1300.91	SRC MIDDLE of JOINT	76	70	11.83	923.49	690.51	
27	21	12.57		1288.34		77	71	11.83	935.32	678.68	
28	22	12.58		1275.76		78	72	11.84	947.16	666.84	
29 30	23 24	11.83		1263.93		79	73	11.84	959.00	655.00	
31	24	11.83		1252.10		80	74	11.84	970.84	643.16	
32	25	11.83 12.57		1240.27	SRC MIDDLE of JOINT	81	75	11.84	982.68	631.32	
tal	- 20	120.55	300.30	1227.70		82 Total	76	11.84	994.52	619.48	
					La construction of the second s			119.12		<u> </u>	
33	27	12.58			SBS MIDDLE of JOINT	83	77	11.83	1006.35	607.65	
34 35	28	11.84	410.72			84	78		1018.19	595.81	
	29	11.83	422.55		SBS MIDDLE of JOINT	85	79	11.84	1030.03	583.97	
<u>36</u> 37	30 31	<u> 11.84</u> 11.84	434.39		SBS MIDDLE of JOINT	86	80		1041.87	572.13	
37	32	11.84	446.23 458.07	1167.77		87	81		1053.71	560.29	
39	33	11.83	458.07	1155.93	SBS MIDDLE of JOINT	88	82		1065.55	548.45	
40	34	11.83	481.73		SBS MIDDLE of JOINT	89	83		1077.39	536.61	
41	35	11.83	493.56	1120.44		90	84		1089.22	524.78	
42	36	11.84	505.40	1108.60		91 92	85		1101.06	512.94	
al		119.10			{ ₇	otal 92	86	<u>11.84</u> 118.38	1112.90	501.10	
43	37		E47.00	1000			L_		L	L	
43	37	11.83 11.84	517.23	1096.77		93	87	11.84		489.26	
	39	11.84	529.07 540.90	1084.93		94	88		1136.57	477.43	
451			540.90	1073.10		95	89		1148.41	465.59	
45 46	401		564.56	1061.27		96	90		1160.25	453.75	·····
45 46 47	40	11 831				97 98	91 92		1172.08 1183.91	441.92	
46	41 42		576.39	1037.61							
46 47 48 49	41	11.83			EMENT BASKET	99	931	11831 1	1195 7/1	A18 201	
46 47 48 49 50	41 42 43 44	11.83 11.84 11.83			EMENT BASKET	99 100	93 94		195.74	418.26	
46 47 48 49 50 51	41 42 43 44 45	11.83 11.84 11.83	588.23	1025.77	EMENT BASKET		94	11.83 1	207.57	406.43	
46 47 48 49 50 51 52	41 42 43 44	11.83 11.84 11.83 12.59 12.57	588.23 600.06	1025.77 C	EMENT BASKET	100		11.83 1 11.84 1	1207.57 1219.41	406.43 394.59	
46 47 48 49 50 51 52	41 42 43 44 45	11.83 11.84 11.83 12.59	588.23 600.06 612.65	1025.77 (1013.94 1001.35		100 101	94 95	11.83 1 11.84 1	207.57	406.43	
46 47 48 49 50 51 52	41 42 43 44 45 46	11.83 11.84 11.83 12.59 12.57 119.82	588.23 600.06 612.65 625.22	1025.77 (1013.94 1001.35	To	100 101 102 otal	94 95	11.83 1 11.84 1 11.83 1	1207.57 1219.41	406.43 394.59	
46 47 48 49 50 51 52 1 Total Cas	41 42 43 44 45 46 sing:	11.83 11.84 11.83 12.59 12.57 119.82 154 Jts	588.23 600.06 612.65 625.22	1025.77 (1013.94 1001.35 988.78	Remarks: See	100 101 102 otal	94 95	11.83 1 11.84 1 11.83 1	1207.57 1219.41	406.43 394.59	
46 47 48 49 50 51 52 1	41 42 43 44 45 46 sing:	11.83 11.84 11.83 12.59 12.57 119.82	588.23 600.06 612.65 625.22	1025.77 (1013.94 1001.35 988.78	To	100 101 102 otal	94 95	11.83 1 11.84 1 11.83 1	1207.57 1219.41	406.43 394.59	

Casing	size (in)	7"	Wt(ppf) 26.00	GR/	ADE K55		Connection	8 Rd Ltc-	17t/its van	n on ton
Sup	ervisor:	H.FLINK/	K.KELLY		Measure					Pages	
rder	Jt No:	Length	Total		Comment	Order	Jt No:	Length	Total	Depth	Comment
			1231.24	382.7	6 Total from page 1				0.00		Total from last co
103	97	11.8	3 1243.07	370.9	3				0.00	-1.44	
104	98	11.8	4 1254.91	359.0	9	1		-	0.00	-1.44	
105	99	11.8	3 1266.74	347.2	6				0.00	-1.44	
106	100	11.8		335.4	3				0.00	-1.44	
107	101	11.8-		323.5					0.00	-1.44	
108	102	11.8-							0.00	-1.44	
109	103	11.84							0.00	-1.44	
110	104	11.83		288.0					0.00	-1.44	
111	105	11.85						_	0.00	-1.44	
112 tai	106	11.84		264.3					0.00	-1.44	
		110.31		<u> </u>	1	Total		0.00		······	
113	107	12.58	1362.19	251.8					0.00	-1.44	
114	108		1374.77	239.23	3				0.00	-1.44	
115	109		1387.35	226.65	1				0.00	-1.44	
116	110	12.59	-	214.06					0.00	-1.44	
117	111		1411.77	202.23					0.00	-1.44	
118	112	11.84		190.39					0.00	-1.44	
119	113		1435.45	178.55			1		0.00	-1.44	
120	114		1447.29	166.71					0.00	-1.44	
121	115		1448.65		8rd x vam		ļ		0.00	-1.44	
otal		11.99	1460.64	153.36	VAM				0.00	-1.44	· · · · · · · · · · · · · · · · · · ·
		111.05				Total	1	0.00			
123	117		1472.61	141.39	VAM			1	0.00	-1.44	
124	118		1484.59	129.41	VAM			1	0.00	-1.44	
125	119		1496.57	117.43					0.00	-1.44	
126	120		1508.55	105.45					0.00	-1.44	
127	121	11.97		93.48					0.00	-1.44[
128	122		1532.50	81.50					0.00	-1.44	
129	123		1544.48	69.52					0.00	-1.44	
130 131	124	11.99		57.53				ļ	0.00	-1.44	
132	125		1568.45 1580.43	45.55 33.57					0.00	-1.44	
al		119.79	1300.43	33.57	VAM	Tatal			0.00	-1.44	
						Total		0.00		I	
133			1592.43	21.57					0.00	-1.44	
134			1604.41		VAM				0.00	-1.44	
135		11.03	1615.44		VAM - B/SPRING				0.00	-1.44	
136			1615.44	-1.44					0.00	-1.44	
137			1615.44	-1.44		_	<u> </u>		0.00	-1.44	
138			1615.44	-1.44	VAM				0.00	-1.44	
			1615.44	-1.44					0.00	-1.44	
			1615.44 1615.44	-1.44		-			0.00	-1.44	
			1615.44	-1.44 -1.44	· · · · · · · · · · · · · · · · · · ·				0.00	-1.44	····
		35.01	1013.44	-1.44	······	Total		0.00	0.00	-1.44	
			L					0.00		L	· · · · · · · · · · · · · · · · · · ·
			1615.44	-1.44					0.00	-1.44	
			1615.44	-1.44					0.00	-1.44	
			1615.44	-1.44					0.00	-1.44	
			1615.44	-1.44					0.00	-1.44	
			1615.44	-1.44		-			0.00	-1.44	· ····
	———		1615.44	-1.44		-1			0.00	-1.44	
			1615.44	-1.44		-11			0.00	-1.44	
				-1.44					0.00	-1.44	
				-1.44		-			0.00	-1.44	
		0.00		-1.44		Total		0.00	0.00	-1.44	
						ed Generation	l				
Total Ca		154 J		L L	Remarks:	134 joints p	lus x/over=1	35 - Shoe = .	58 - f/colla	r .48	
	sea:	134 J		L	eft over 17 jts 8 rd ltc+ 3	jts vam csg					
Casing U Casing	Loft-	20 J	to I	, r							

CASING RUNNING LIST

Formation Integrity Test

CEMENTING REPORT

Well Name : Skull Creek #1 Rig Name : 00E Rig 30 Engineer : H FEnkle Richardson

Date: 26 May 16 Casing Size : 🧿 Casing MD/TVD: 332-54

Hole	<u>e Geometry</u>	Mu	d Properties		Gas Reading
Hole Size :	± 1 ± 4	Mud Wt :	5.3	Max Gas :	
Hole MD :	1 .	Vis :		Bttms Up :	
Hole TVD :		PV:	· ·	Final BG :	
Hole Angle :)	YP :	Ç		
Last Csg Size :		WL :	21.4		
Last Csg MD :		BHCT :			
Last Csg TVD :		BHST :			

Casing Summary

Description	Wt (lb/ft)	Grade	Conn	Length	Depth, mRT
Float Shoe		N30	BTC	0.53	332.01
1 jt. casing	36	K55	BTC	11.80	320.21
Fioat collar		N30	BTC	0.41	319.80
2 jts casing	36	K55	BTC	23 00	296.80
1 jt casing	40	N80	BTC	11 72	285.08
3 jts casing	36	K55	BTC	33.11	251.97
20 jts casing	43.5	N80	BTC	235.35	16.62
1 jt casing	36	K55	BIC	11 11	5.51
Bradenhead	43.5	N30	8RD X BTC	0.67	4.84
RT to flange				4.84	+

Centralizers

anufacturer	Туре	Quantity	Remark / Placement
Davis Lynch	Bow spring	3	329m, 308.7m, 296.6m

Lead Cement Slurry Details

	Matthen	1			
Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
1					·····
			······································		
l					
				- deserve and the second se	

Tail Cement Slurry Details

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
15.8	93	53,4	450	1.15	Neat

Top Up Cement Slurry Details

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
15.8	10	4.2	35	1.15	2% CaCl ₂ (SWOC)

Operation Description

	Circulation	Pre-Flush	Lead	Tail	Displacement	
Volume (bbl)	200	20	N/A	93	82	
Time (min)	40	5	N/A	30	02	
Job Evaluation			Remarks		<u>?</u>	
Reciprocate :	No		<u>r ternar Ko</u>			
Full Returns :	No. 8bbis water			,		
) Cmt to Surface :	No					
Bump Plug :	Yes. 600 psi, pressu	ire test to 1100 psi, 5	5 mins			
Pressure Test:	2500 psi for 10 mini	ites, 1 bbl bleed bac	k			
ECP :						

	Cultus		CASING T	ALLY (a	as run)		
Casing	Size		.9-5/8''				Page No. 1
JOINT	LENGTH	CUM. L	Wt/Grade/Conn.	JOINT	LENGTH	CUM. L	Wt/Grade/Conn.
Shoe	12 33	12-33	K55 Butt, 36#	41			inte of duc/ o offit.
2 Float	11.55	23.58	K55 Butt, 36#	42			
3	11 85	35.74	K55 Butt, 36#	43			
4	1172	47.46	N80 Butt, 40#	44			
5	10.97	58 43	K55 Butt, 36#	45			
7	11.06	69 49	K55 Butt, 36#	46			
8	11 08	80.57	K55 Butt, 36#	47			
9	11.78	92 35	N80 Butt, 43.5#	48			
10	11 39	104.24	N80 Butt, 43.5#	49			
11	11.81	116.05	N80 Butt, 43.5#	50			
				1			
12	11.86	127.91	N80 Butt, 43.5#	51	T	T	
13	11.86	139.77	N80 Butt, 43.5#	52			······································
<u>ن</u>	11.86	151.63	N80 Butt, 43.5#	53			
16	11 59	163.22	N80 Butt, 43.5#	54			
17	11.64	174,36	N80 Butt, 43.5#	55			
18	1131	126.67	N80 Butt, 43.5#	56			
19	1186	198.53	N80 Butt, 43.5#	57			
20	1168	210 21	N80 Butt, 43.5#	58			
21	11.86	222.07	N80 Butt, 43.5#	59			
100 mg 22	11.66	233.73	N80 Butt, 43.5#	60			
4					<u></u>		
23	11.68	245.41	N80 Butt, 43.5#	61			
24	1186	257.27	N80 Butt, 43.5#	62			
25	11.86	269 13	N80 Butt, 43.5#	63			
26	11.55	280.68	N80 Butt, 43.5#	64			
27	11.88	292 54	N80 Butt, 43.5#	65			
30	1170	304.24	N80 Butt, 43.5#	66			
- 3	11.68	315.92	N80 Butt, 43.5#	67			
35	11.11	327.03	K55 Butt, 36#	68			
				69			
				70			
31				71			
32				72			
33				73			
34				74			
35				75			
36				76			
37				77			
38				78			
P				79			
40				80			
				L	L	l	
тот	AL THIS PAG	SE:		CUMI	ULATIVE TOT		
CSG TLY							

CSG_TLY9.XLS

20/5/96

	Cultus	;	CASIN	<u>G TAL</u>	LY A:	эткарре ў	;
Casing	Size		.9-5/8''				I
IOINT	LENGTH	CUM. L	Wt/Grade/Conn.	JOINT	LENGTH	CUM. L	W
. Shoe	12.33	12.53	K55 Butt, 36#	41	<u> </u>		
2 Float	11.55	20 38	K55 Butt, 36#	42	1	1	
3	11.86	35 74	K55 Butt, 36#	43		1	
4	11.72	47 46	N: テン K5 5 Butt, 40#	44	1	1	
5	10.97	58 43	K55 Butt, 40# 35	45			
-6	1131	69.74	K55 Butt, 36#	46	NO DRIFT		
7	11.06	80 80	K55 Butt, 36#	47			
8	11.08	91 88	K55 Butt, 36#	48			
9	11.78	103,66	N80 Butt, 43.5#	49			1
10	11.89	115.55	N80 Butt, 43.5#	50			
11	11.81	127.36	N80 Butt, 43.5#	51	<u></u>	r	
12	11.86	139.22	N80 Butt, 43.5#	52			
.3	11 86	151.08	N80 Butt, 43.5#	52			
14	11.80		N80 Butt, 43.5#	54	DAMAGED	RAY	
15	11.86	174 74	N80 Butt, 43.5#	55	UMIMUED	Boy	
16	11 59	186.33	N80 Butt, 43.5#	56			
17	11.64	197.97	N80 Butt, 43.5#	57		······································	
18	11 81	209.78	N80 Butt, 43.5#	58			
19	11.86	221.64	N80 Butt, 43.5#	59		<u> </u>	
20	11.68	233.32	N80 Butt, 43.5#	60			
)		200.02	1100 Bull, 43.0#	00 1			1
21	11 86	245.18	N80 Butt, 43.5#	61	······		1
22	11.66	256.84	N80 Butt, 43.5#	62			
23	11.68	268.52	N80 Butt, 43.5#	63			
24	11.86	280.33	N80 Butt, 43.5#				<u> </u>
25	11.86	292.24	N80 Butt, 43.5#	64		,	ļ
26	11 55	303.79	N80 Butt, 43.5#	65		A	
7	11.86	315.65	N80 Butt, 43.5#	66		OUT \$6	11.3
28	11.80	327.45	N80 Butt, 43.5#	67		# 14.	118
29	11.79	339.24	N80 Butt, 43.5#	68		·····-	22.11
30	11.70	350.94	the second s	69			
	11.10	5.50.34	N80 Butt, 43.5#	70			
31	11.86	362.80	N80 Butt, 43.5#	71		IN #30	11.70
32	11.86	374.66	N80 Butt, 43.5#	72		£ 33	
33	1168	386.34	N80 Butt, 43.5#	73			23.38
34	10.27	396.61	N80 Butt, 43.5#	74			~ <u></u>
35	11.11	407.72	K55 Butt, 36.5#	75			
36				76			
37		/·					

77

78

79

80

CUMULATIVE TOTAL:

Page No. 1 Wt/Grade/Conn.

TALYFORM.XLS

TOTAL THIS PAGE:

37

38

P

40

20/5/96

11.31 11..80

22.11

WELL :	Skull Cre	eek #1		PERMIT	PPL 1		UNNING L DATE				Rig	ODE#30
Casing	g size (in)	9-5/8"	Wt(ppf)	36.5/43.5	i	Grade:	K55/N80	0	Connection	: BUTTRI	ESS	
Su	pervisor:	H FLINK.	/ B. Richa	rdson	 Measu	red by:	ODE/Cu	 Itus				_ <u>1</u>
Order	Jt No:	Length	Total	Depth	Comment		Order				Depth	Comment
					Bottom of Shoe			1	-			
BHOE 1	1			320.21				1		1		
F/COL 2	2	11.15		309.06				1	0.00		0.00	Total from last col
3	3	11.86								1		
4	4	11.72			N80 40#							
5	5	10.97	÷		K55 36#							
6 7	7	11.06			K55 36#			L		L		
8	8	11.08			K55 36#						_	
9	10	<u>11.78</u> 11.89			N80 43.5#			<u> </u>				
10	11	11.89	· · · · · · · · · · · · · · · · · · ·		N80 43.5# N80 43.5#							
11	12	11.86			N80 43.5#							
12	13	11.86			N80 43.5#							
Total		139.37	100.07	133.17	1100 40.5#							
	451					I		I		L		
13	15	11.86			N80 43.5#			ļ		ļ		
14 15	16 17	11.59	162.82		N80 43.5#			ļ				
15	17	11.64			N80 43.5#							
16	<u> </u>	11.81	186.27		N80 43.5#							
1/	20	11.86	198.13		N80 43.5#						ļ	
- 10	20	11.68 11.86	209.81 221.67		N80 43.5# N80 43.5#						↓ ↓	
20	21	11.66	221.67		N80 43.5#	{}}			-			
20	22	11.68	233.33		N80 43.5# N80 43.5#						II	· · · · · · · · · · · · · · · · · · ·
21	24	11.86	245.01		N80 43.5#	-					ļ	
otal		117.50	230.07	15.07	1100 43.5#	{ -						
	L			l		<u> </u>]				[]	
23	25	11.86	268.73		N80 43.5#							
24	26	11.55	280.28		N80 43.5#							
25	27	11.86	292.14		N80 43.5#							
26	30	11.70	303.84		N80 43.5#	_						
27 28	35	11.68	315.52		N80 43.5#				_			
	nding jt.	11.11 6.88	326.63 333.51	-0.97	<55 36#					···· .		
30	28	11.80	345.31		N80 43.5#							
31	29	11.79	357.10		180 43.5#	1						
32	6	11.31	368.41	-35.87								
otal		111.54							++			
201		44.00					L		_ <u></u>			
33	31 32	11.86	380.27		180 43.5#				<u> </u>			
34	14	11.86 11.80	392.13 403.93		180 43.5#							
36	34	10.27	403.93		180 43.5#	<u> </u>						
		10.27	414.20	-01.001	180 43.5#				I			
				0.00					╂			
				0.00					<u> </u>			
				0.00								
				0.00					╉───┤			
				0.00					╂───┼		ŀ-	
					* <u> </u>				<u>├</u>			
T		T		0.001					1			
				0.00					┟────┼			
				0.00	····				┨────┤			
				0.00					┠			
				0.00					┠	-		
				0.00					╂··───┨-			
				0.00		$-\parallel$			╏────┤─			
				0.00					<u>├</u> {			
				0.00					<u>├</u> ────			
				0.00								
		Jt			Dama - vite				·	L.		
·		Jt			Remarks:							
	1		5									

·

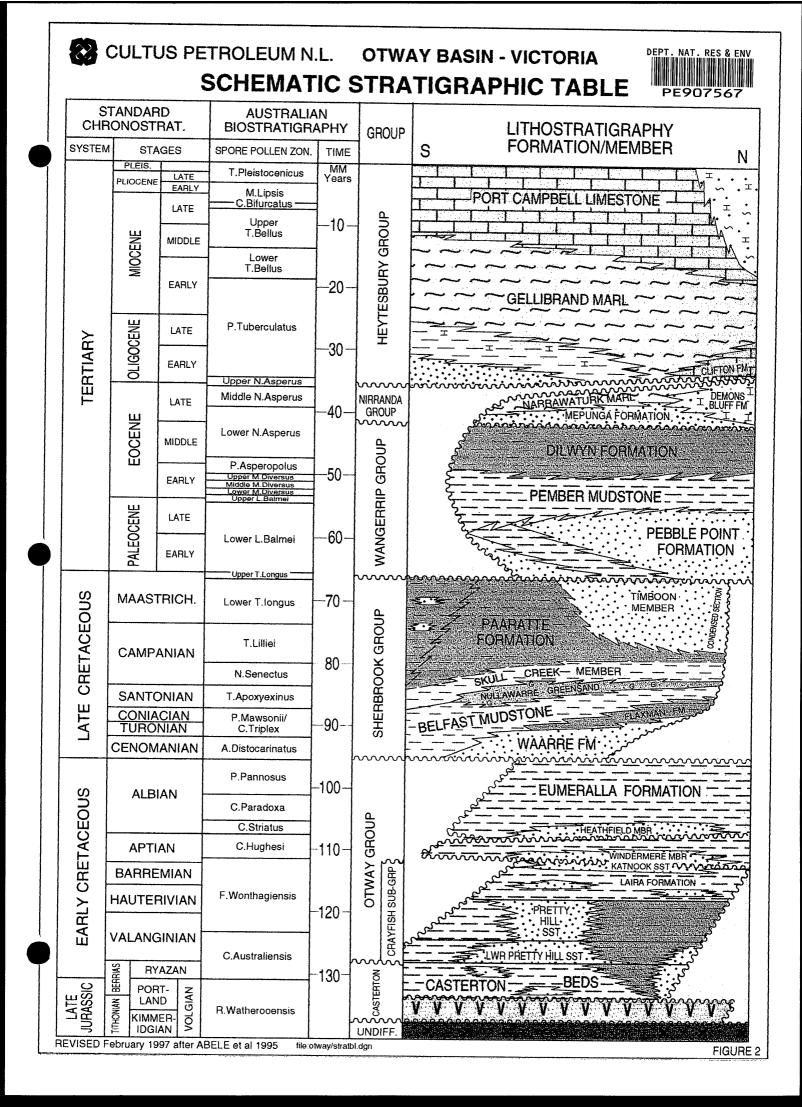
•

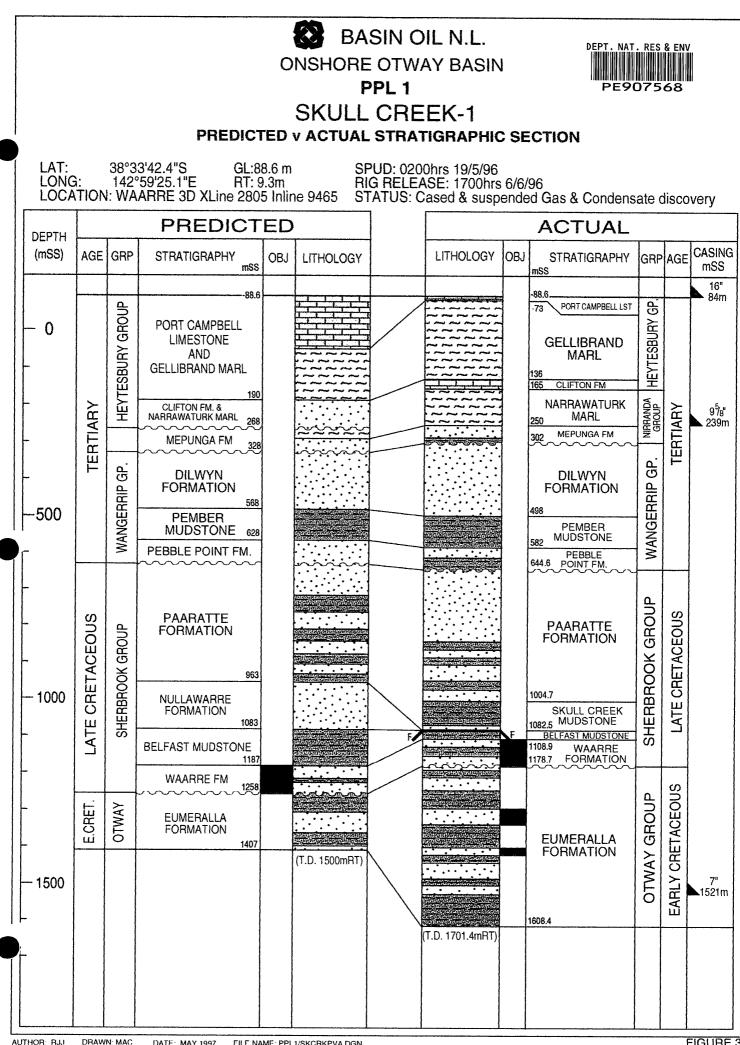
This is an enclosure indicator page. The enclosure PE600652 is enclosed within the container PE900832 at this location in this document.

The enclosure PE60 ITEM_BARCODE =	0652 has the following characteristics: PE600652
CONTAINER_BARCODE =	PE900832
NAME =	Composite Well Log
BASIN =	OTWAY
PERMIT =	PPL/1
TYPE =	WELL
SUBTYPE =	COMPOSITE_LOG
DESCRIPTION =	Composite well log (enclosure from WCR)
	for Skull Creek-1
REMARKS =	
$DATE_CREATED =$	13/06/96
$DATE_RECEIVED =$	
W_NO =	W1153
WELL_NAME =	Skull Creek-1
CONTRACTOR =	Cultus Petroluem NL
$CLIENT_OP_CO =$	Cultus Petroluem NL
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE900833 is enclosed within the container PE900832 at this location in this document.

The enclosure PE90	0833 has the following characteristics:
ITEM_BARCODE =	PE900833
CONTAINER_BARCODE =	PE900832
NAME =	Stratigraphic Correlation - Wallaby
	Creek - 1 to Iona 2
BASIN =	OTWAY
PERMIT =	PPL/1
TYPE =	WELL
SUBTYPE =	WELL_CORRELATION
DESCRIPTION =	Stratigraphic Correlation - Wallaby
	Creek - 1 to Iona 2, Waarre Formation
	(enclosure from WCR) for Skull Creek-1
REMARKS =	
DATE_CREATED =	31/08/97
DATE_RECEIVED =	
WNO =	W1125
WELL_NAME =	Skull Creek-1
CONTRACTOR =	Cultus Petroluem NL
CLIENT_OP_CO =	Cultus Petroluem NL
(Inserted by DNRE -	Vic Govt Mines Dept)


This is an enclosure indicator page. The enclosure PE600653 is enclosed within the container PE900832 at this location in this document.


The enclosure PE60	0653 has the following characteristics:
ITEM_BARCODE =	PE600653
CONTAINER_BARCODE =	PE900832
NAME =	Complex Lithology Model - Log
BASIN =	OTWAY
PERMIT =	PPL/1
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Complex Lithology Model - Log, CPI,
	(enclosure from WCR) for Skull Creek-1
REMARKS =	
$DATE_CREATED =$	5/06/96
$DATE_RECEIVED =$	
W_NO =	W1153
WELL_NAME =	Skull Creek-1
CONTRACTOR =	Cultus Petroluem NL
CLIENT_OP_CO =	Cultus Petroluem NL
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE600654 is enclosed within the container PE900832 at this location in this document.

The enclosure PE	50	0654 has the following characteristics:
ITEM_BARCODE	=	PE600654
CONTAINER_BARCODE	=	PE900832
NAME	=	Volume Optimized Log Analysis
BASIN	=	OTWAY
PERMIT	=	PPL/1
TYPE	=	WELL
SUBTYPE	=	WELL_LOG
DESCRIPTION	=	Volume Optimized Log Analysis
		(Multimin), enclosure from WCR, for
		Skull Creek-1
REMARKS	=	
DATE_CREATED	=	21/04/97
DATE_RECEIVED	=	
W_NO	=	W1153
WELL_NAME	=	Skull Creek-1
CONTRACTOR	=	Cultus Petroluem NL
CLIENT_OP_CO	=	Cultus Petroluem NL
(Incorted by DNPF		

(Inserted by DNRE - Vic Govt Mines Dept)

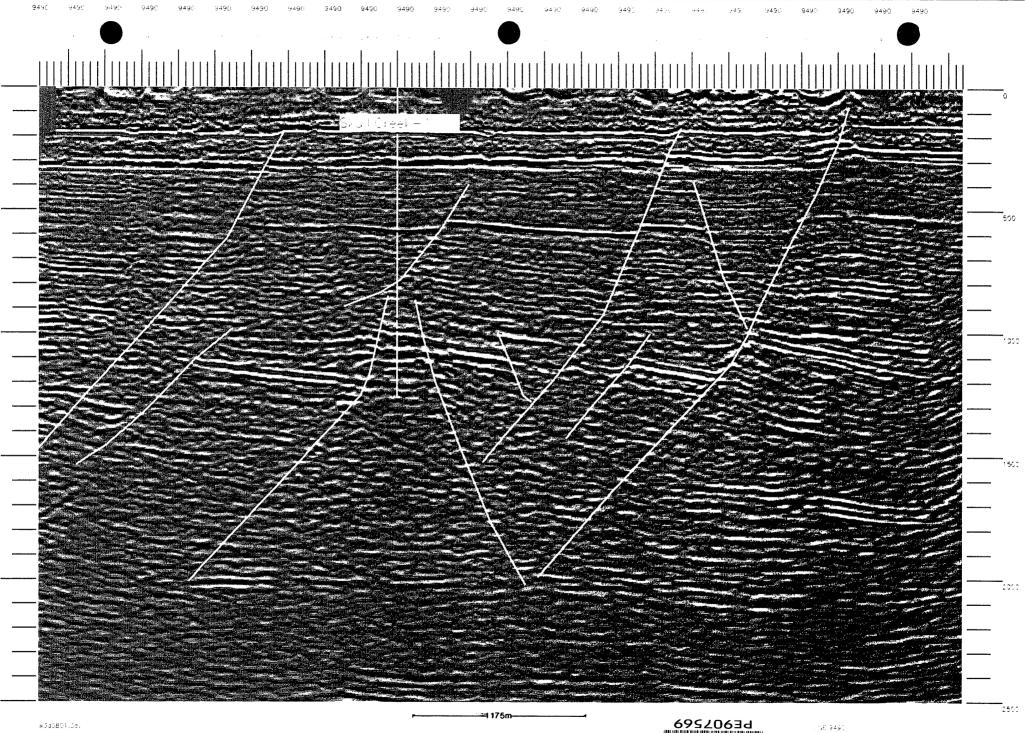


FIGURE 4

DEPT. NAT. RES & ENV

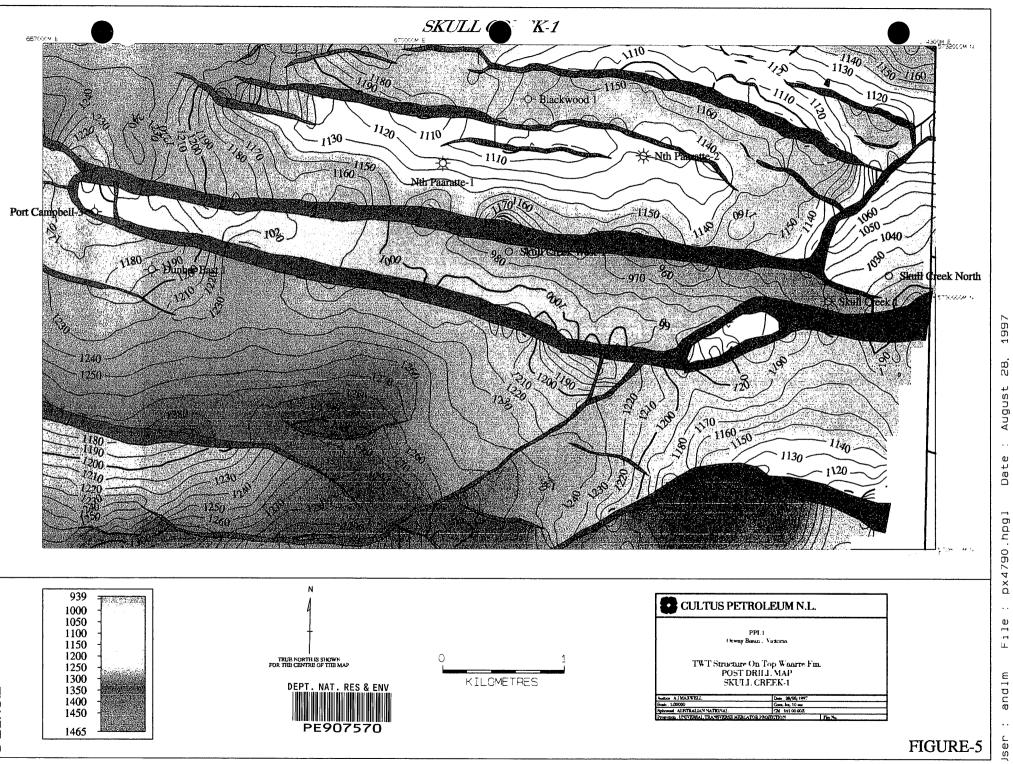


FIGURE 5