

PETROLEUM DIVISION 0 9 MAY 1991 LAKES OIL LIMITED

WELL COMPLETION REPORT (WI037)

SOUTH CARAMUT NO. 1

PEP 122

OTWAY BASIN VICTORIA

Prepared by: A. Tabassi I.D. Buckingham March, 1991

•

LAKES OIL LIMITED

A.C.N. 004 247 214

PETROLEUM DIVISION

0 9 MAY 1991

Registered Office: 4th Floor, 766 Elizabeth Street Melbourne, Victoria, 3000. AUSTRALIA Telephone: (61-3) 347-5599 Fax: (61-3) 347-9306

9th May, 1991

Mr. Brij Agrawal Department of Manufacturing & Industry Development 151 Flinders Street <u>MELBOURNE</u> Vic 3000

DATA TRANSMITTAL

Please find enclosed the documents which are listed below: After checking for completeness, please sign and return the duplicated copy of this transmittal letter.

One copy Well Completion Report, South Caramut No.1

RECEIVED BY: ...k. Mich

DATE: 9 - 5 - 91

WELL COMPLETION REPORT

SOUTH CARAMUT NO. 1

PEP 122

OTWAY BASIN VICTORIA

Prepared by: A. Tabassi I.D. Buckingham March, 1991

LIST OF CONTENTS

١

CONTENTS

SUMM CONCL RECOM		1 3 4
1. INT	RODUCTION	5
2. WE	LL HISTORY	6
2.1	Location	6
2.2	General Data	6
2.3	Drilling Data	9
	2.3.1 Drilling Contract	or 9
	2.3.2 Drilling Rig	9
	2.3.3 Casing and Ceme	
	2.3.4 Drilling Fluid	10
	2.3.5 Water Supply	11
2.4	Formation Sampling and	Testing 11
	2.4.1 Cuttings	• 11
	2.4.2 Cores	· 11
	2.4.3 Tests	13
2.5	Logging and Surveys	15
	2.5.1 Mud Logging	15
	2.5.2 Wireline Logging	
	2.5.3 Deviation Survey	
	2.5.4 Velocity Survey	16
3. RES	ULTS OF DRILLING	17
3.1	Stratigraphy	17
3.2	Lithological Description	17
	3.2.1 Newer Volcanics	17
	3.2.2 Heytesbury Grou	p 20
	3.2.3 Otway Group	21
	3.2.4 Palaeozoic Basem	ent 22

	3.3	Hydrocarbon Indication		22	2
		3.3.1	Mud Gas Reading	22	2
		3.3.2	Sample Fluorescence	22	2
4.	GEOI	LOGY		23	3
	4.1	Structur	e	23	3
	4.2	2 Porosity and Water Saturation		26	5
	4.3		tion to Geology and Relevance		_
		to Occur	rences of Hydrocarbon	26	Ś

•

APPENDICES

- I. Details of Drilling Plant
- II. Summary of Wellsite Operation
- III Drilling Fluid Recap
- IV. Cutting Sample Description
- V. Sidewall Core Description
- VI. Formation Testing

VII. Velocity Survey

- VIII. Synthetic Seismograms
- IX. Palynology

FIGURES

PAGE

1.	Tenement Map	7
2.	Location Map	8
3.	Prognoses and Actual Stratigraphy	18
4.	Generalised Stratigraphic Table of Otway Basin	19
5.	Seismic Section	24
6.	Geochemical Anomaly	25
7.	Maturity Profile	29

ENCLOSURES

		<u>Scale</u>
1.	Composite Well Log	1:500
2.	Mud Log	1:500
3.	BPB Wireline Logs	
	DLL/MLL/GR/SP/CAL	1:200 & 1:500
	CSS/GR/CAL	1:200 & 1:500
	DLL/M CSS/GR (Composite)	1:200 & 1:500

.

SUMMARY

South Caramut No. 1 was drilled as a wildcat exploration well in PEP 122, Otway Basin, Victoria.

Participants in the well were Lakes Oil Limited (Operator) and Otgas N.L.

South Caramut No. 1 was located 5 km south of the township of Caramut, 52 km north of Warrnambool, 115 km northeast of Portland, 184 km west of Geelong and 259 km west southwest of Melbourne.

The Pretty Hill Sandstone of the Grayfish Formation was the primary objective of the well and was considered to be a potential oil play.

Drilling commenced on 15th October, 1990 and reached a total depth of 435.0m (KB) on 18th October, 1990.

At total depth the following logs were run: Dual Laterolog/Micro Laterolog Compensated Sonic Log Velocity Survey Sidewall Cores

One open, bottom hole drill stem test was carried out over the interval 375.0 - 435.0 m (T.D.) which covered the Pretty Hill Sandstone as well as Palaeozoic basement. The test recovered 20 m of muddy water and 230 m of mud cut water.

No conventional coring operations were performed.

No significant shows were observed during the drilling. The maximum background gas was a trace of C1 recorded at 385 m.

The DST No. 1 was conducted on the basis of porosity defined by log analysis only.

South Caramut No. 1 was plugged and abandoned as a dry hole and the rig was released at 0600 hours on 20th October, 1990.

CONCLUSIONS

- . South Caramut No.1 was drilled on a faulted basement high on the northern flank of the Minjah Trough.
- The primary reservoir objective of this well, the Pretty Hill Sandstone of the Crayfish Formation, was present and exhibited fairgood reservoir characteristics.
- The absence of the upper part of the Crayfish Formation could signify the presence of an unconformity, albiet locally, between the Crayfish and Eumeralla Formations.
- Palynological as well as lithological analyses confirm a major unconformity at the top of the Eumeralla Formation.
- The maturity profile indicates that both the Eumeralla and Crayfish Formations are marginally mature for the generation of hydrocarbons.
- The Pretty Hill Sandstone was encountered shallower than prognosed. This may be attributed to the general lack of velocity control within the permit.
- The reservoir was found to be water flushed, however due to lack of adequate control, particularly in an east-west direction, the well may not have been a valid test of the Pretty Hill Sandstone in a closed position.
- Although plugged and abandoned as a dry hole, South Caramut No. 1 has achieved a number of geological objectives well beyond expectation.

RECOMMENDATIONS

The following recommendations are based on the above observations and conclusions giving full consideration for the limited data available in the PEP 122:

- . A gravity survey should be implemented to outline the structural framework of the permit. This should be followed by a reconnaissance and a detailed seismic survey. The latter would eventually delineate and mature prospects.
- A major basin study project should be initiated utilising both existing and data acquired from the above recommendation as well as data in the other parts of the Ardonachie (Minjah) Trough. The project should place particular emphasis on structural analysis, source rock and reservoir potential, play type and aspects relevant to hydrocarbon generation, migration and entrapment.
- . Detailed exploration should be directed to the south, west and north west of the Caramut South #1 well, where the Pretty Hill Sandstone reservoir is expected to be thicker developed. Furthermore, this is the direction in which the potential source rocks are believed to be more mature and possibly within the oil window.
 - The best prospect, delineated from the above programme of works should be drilled to Basement.

1. INTRODUCTION

South Caramut No. 1 was drilled primarily to determine the presence of the Pretty Hills sandstone and if present to evaluate the nature of the fluids contained within it. As part of this evaluative process the stratigraphy and structure of the prospect was to be verified.

Within the Otway Basin, in both Victoria and South Australia, the Pretty Hill Sandstone (particularly its basal sand unit) exhibits excellent reservoir characteristics, and many of the wells that have penetrated this sequence have shown encouraging hydrocarbon shows. In the Katnook and Ladbroke Grove Gas Fields in the South Australian portion of the Otway Basin the Pretty Hill Sandstone is the primary reservoir.

The South Caramut prospect was seismically identified as a faulted anticline over a relatively shallow basement high. The potential of the prospect was further supported by the presence of a high soil gas geochemical anomaly recorded in the vicinity of the well location.

The well developed infrastructure and proximity of markets were other reasons justifying the drilling of South Caramut No. 1.

2. WELL HISTORY

2.1 Location (See Figures 1 & 2) Co-ordinates: Latitude: 38° 00' 16"S

Geophysical Control:

Description:

Longitude: 142° 28' 32"E Seismic Line: OLO 88B - 100 Shot Point: 430

Country of: Villiers Parish of: Minjah North Section: XVII Block: 4B Shire of: Warrnambool

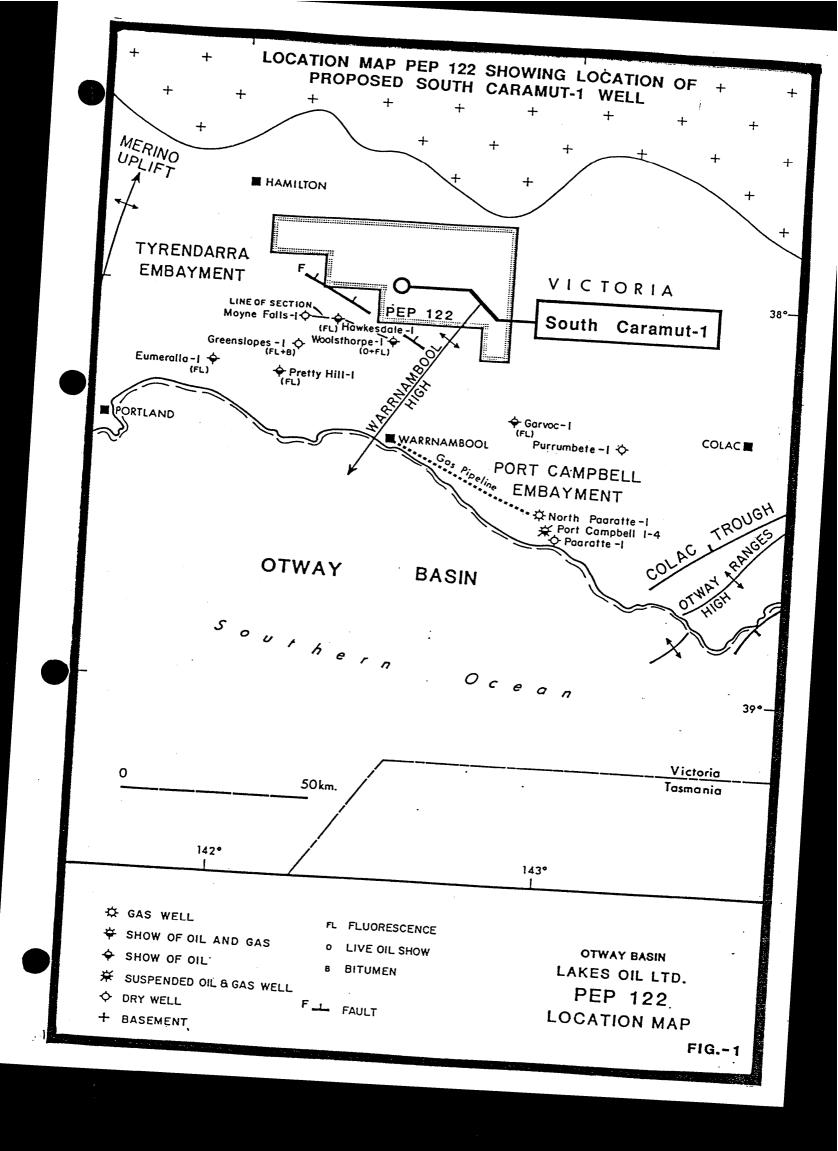
Property Owner:

2.2 <u>General Data</u> Well Name:

Operator:

Participant:

Elevation:


South Caramut No. 1

Neville Young

Lakes Oil Limited Level 4 766 Elizabeth Street Melbourne 3000

Otgas N.L. Level 4 766 Elizabeth Street Melbourne 3000

Ground Level: 142.0 m ASL Kelly Bushing: 145.3 m ASL Unless otherwise stated, all depths refer to K.B.)

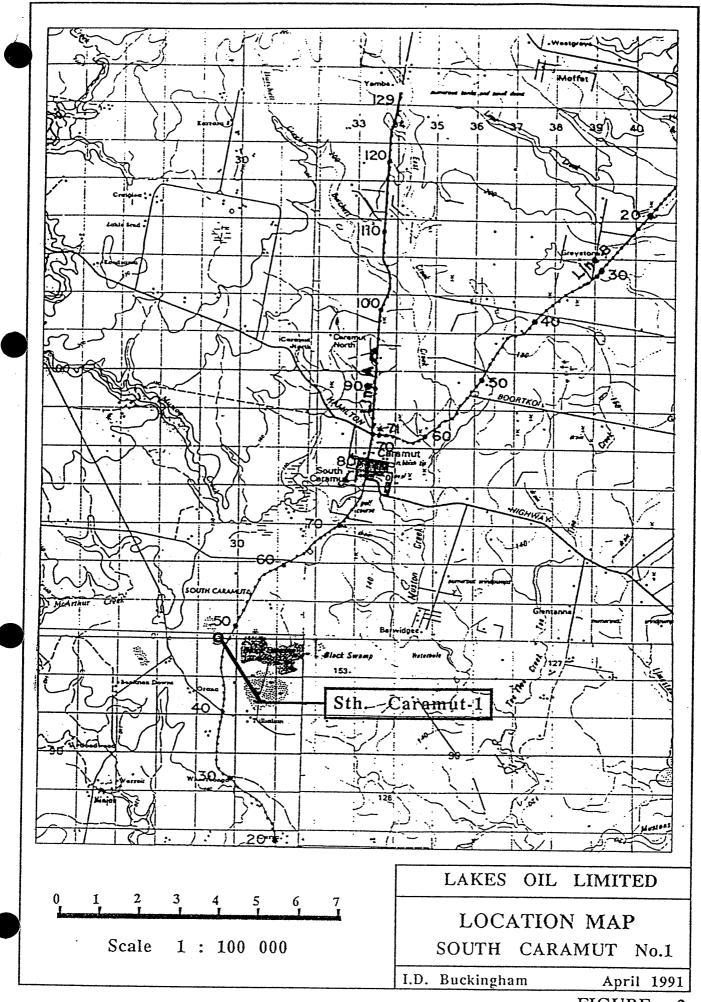


FIGURE - 2

Total Depth:	Driller: 435.0 m Wireline Logger: 433.3 m
Drilling Commencement:	15th October 1990 @ 0330 hrs
Total Depth Reached:	18th October 1990 @ 0300 hrs
Rig Released:	20th October 1990 @ 0600 hrs
Drilling Time to T.D.:	3 days

Plugged and abandoned, dry hole.

2.3 <u>Drilling Data</u> (see appendices 1 & 2)
2.3.1 <u>Drilling Contractor</u>

Drillcorp Limited

Status:

2.3.2 <u>Drilling Rig</u> Drillcorp Rig No. 24

2.3.3 <u>Casing and Cementing Details</u>18" conductor was set at 15.0 m prior to rig up.

Surface Casing	
Size:	9 ⁵ / ₈ "
Weight and Grade:	471b/ft, STC N80 Buttress
Centralisers;	at 1st and 3rd Joints
Float Collar:	
Shoe:	87.2 m
Cement:	230 sacks class "A" with 2% Calcium
	Chloride
Method:	Displacement
Equipment:	Halliburton Services

Page 9

<u>Cement Plugs</u>	
<u>Plug No. 1</u>	
Interval:	435.0 - 350.0 m
Cement:	100 sacks Class "A" neat
Method:	Balanced
Tested:	No
<u>Plug No. 2</u>	
Interval:	117.0 - 57.0 m
Cement:	70 sacks Class "A" neat
Method:	Balanced
Tested:	No

Plug No. 3	
Interval:	Surface
Cement:	10 sacks Class "A" neat

2.3.4 Drilling Fluid

The hole was spudded using fresh water AQUAGEL mud flocculated with lime. The viscosity of the mud was maintained by addition of lime and caustic soda. The $12^{1/4}$ " hole was drilled to the casing point at 91.4 m.

The $8_{1/2}$ " hole was drilled without any problems to the 435.0 m T.D. using a 2% KCL EZ MUD/Polymer mud. Typical mud properties close to T.D. were:

Weight	9.5 - 9.6 ppg
Viscosity	35 - 37 seconds
yield point	6 - 91b/100 ft ²
Filtrate	8.0 - 9.0 cc
Chlorides	12000 - 13500 mg/R
KCL	2%

For further details see Appendix III, "Drilling Fluids Recap".

2.3.5 <u>Water Supply</u>

Drilling water was obtained and transported from water supply dams which were located some 2 kilometres south of the well location.

2.4 Formation Sampling and Testing

2.41 Cuttings

Cuttings samples were collected at 5 m intervals from surface to total depth. Each sample was washed, air dried and divided into four splits, three of which were stored in labelled polythene bags and the fourth was stored in a plastic sample tray.

One set of washed and dried samples was dispatched to the Department of Manufacturing and Industry Development (Director of Energy Division) and the remaining was retained by the operator.

In addition, from surface casing to T.D. unwashed air-dried samples were collected at 10 m intervals and stored in labelled cloth bags. These were also retained by the operator. (see Appendix IV for description)

2.4.2 Cores

- (i) No conventional coring operations were carried out.
- (ii) Twenty four sidewall cores were attempted of which all were recovered. The list of these sidewall cores is summarised in Table - 1.

Table 1

LIST OF SIDEWALL CORES SOUTH CARAMUT NO. 1

No.	Depth (m)	Reocvery (mm)	Lithology	Remarks
1	430.0	23	Quartz Mica Schist	
2	420.0	28	Quartz Mica Schist	
3	411.0	33	Mica Schist	
4	396.0	38	Sandstone	
5	393.0	30	Claystone	Paly. dating
6	390.5	25	Sandstone	
7	384.5	20	Sandstone	
8	382.5	28	Sandstone	
9	381.0	22	Claystone	Paly. dating
10	379.5	35	Claystone	Paly. dating
11	373.0	25	Claystone	Paly. dating
12	351.0	33	Claystone	
13	334.0	25	Sandstone	
14	302.0	23	Claystone	Paly. dating
15	280.0	22	Claystone	
16	275.0	23	Claystone	
17	236.0	22	Claystone	
18	204.0	32	Claystone	
19	196.0	42	Claystone	Paly. dating
20	191.0	37	Marl	Paly. dating
21	182.0	35	Marl	
22	162.0	32	Marl	Paly. dating
23	140.0	30	Mari	Paly. dating
24	100.0	35	Marl	Paly. dating

See Appendix V for detail lithological description

2.4.3 Tests

.

One conventional open hole drill stem test was carried out at T.D. as follows:-

DST No.	one
Interval Tested	375.0 - 435.0 (T.D.)
Formation	Pretty Hill Sandstone
Packers depth	373.0 m & 374.8 m
Water cushion	None
Preflow	12 minutes, moderate blow
Initial shut-in	22 minutes
Second Flow	120 minutes, moderate
	blow becoming moderate to
	weak blow towards to end of
	the period.
Second Shut-in	120 minutes

Pressures:

	Top Recorder at 368.8 m	Bottom Recorder at 433.0 m
1st Period		
Initial Hydrostatic	627.59 psi	726.38 psi
Initial Flow	62.84 psi	172.92 psi
Final Flow	186.06 psi	272.93 psi
Initial Shut-In	186.06 psi	272.93 psi
Final Shut-In	507.13 psi	597.24 psi
2nd Period		
Initial Flow	212.02 psi	320.754 psi
Final Flow	408.55 psi	495.09 psi
Initial Shut-In	408.55 psi	495.09 psi
Final Shut-In	510.24 psi	602.13 psi
Final Hydrostatic	618.26 psi	708.60 psi
	Page 13	

<u>Recovery</u>

20 m	Watery Mud
230 m	Mud Cut Water

Chemical Analysis

Eight fluid samples were collected during pulling out the DST tool. The following are field chemical analysis:

Sa	mple No	Depth (m)	PH	CT (PPM)	Total Hardness	RW (ohm)
	1	265.0	10.0	11000	120	.42@64°F
	2	231.0	10.0	9700	140	.43@64°F
	3	212.0	10.0	9500	130	.46@62°F
	4	193.0	10.0	9500	100	.56@62°F
	5	155.0	9.5	6500	50	.87@60°F
	6	98.0	9.5	4500	40	1.1 @60°F
	7	25.0	9.0	3700	30	1.4 @64°F
*	8	5.0	8.5	4300	40	1.1 @64°F

* Contaminated by rig water

Assessment

No problems were encountered during the course of drill stem testing.

The test was mechanically successful and the collected data are valid.

The test recovered formation water whose chemical analysis may indicate that the reservoir has been flushed by ground water. (see Appendix VI for details of DST results)

2.5 Logging and Surveys (see Enclosure 1)

2.5.1 Mud Logging

A standard skid-mounted Halliburton (Geodata Division) unit was used to record penetration rate, continuous mud gas monitoring, intermittent mud and cuttings gas analysis, pump rate and mud volume data. The mud log is included as Enclosure 2.

2.5.2 <u>Wireline Logging</u> (see enclosure 3)

Wireline logging was performed by BPB Wireline Services using a standard truck mounted unit. One logging suite consisting of the following logs was carried out at total depth:

Suite 1	<u>Interval</u> (m)
Dual Laterolog/Micro Laterolog	433.3 - 87.0
Gamma Ray, Spontaneous Potential	(GR to Surface)
and Caliper (DLL/MLL/GR/SP/SP/CAL)	
Compensated Sonic Log	433.3 - 87.0
Gamm Ray (CSS/GR)	
Sidewall Coring (SCG)	1 Gun, 24 SWC
Gamma Ray	

2.5.3 Deviation Surveys

Hole deviation surveys were conducted regularly with the following results:

Depth (m)	Deviation (Deg.)
29.0	¹ / ₄
85.0	¹ / ₄
242.0	¹ / ₄
393.0	2
423.0	1 ³ / ₄

Page 15

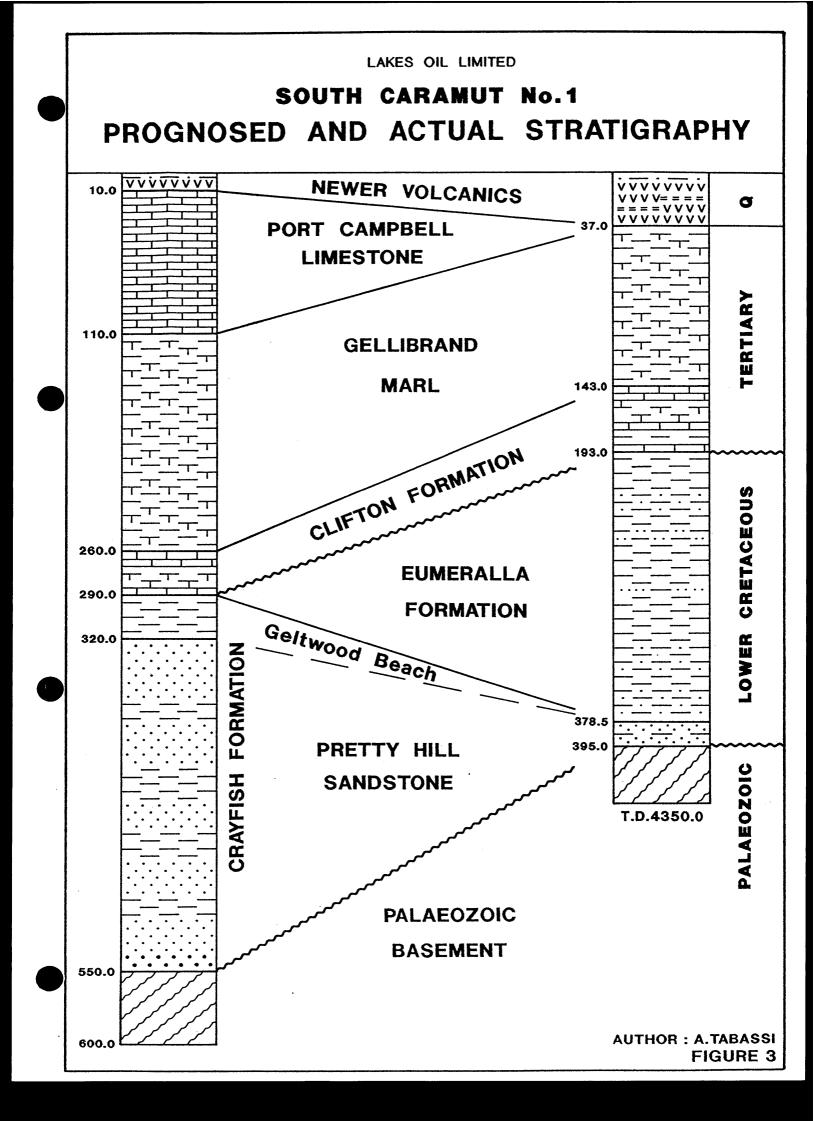
2.5.4 Velocity Survey

A velocity Survey was carried out by Velocity Data Pty. Ltd. the results of which are included as Appendix VII. A synthetic seismogram was also carried out by Welseis and the result is presented as Appendix VIII.

3. RESULTS OF DRILLING

3.1 <u>Stratigraphy</u>

The following stratigraphic intervals have been identified using penetration rate, cutting and sidewall core analysis, wireline log interpretation and palynological results (see figures 3 & 4).


<u>Group</u>	Formation	<u>Depth</u> (K.B.)	<u>Depth</u> Sub Sea	<u>Thickness</u> (m)
- Heytesbury	Newer Volcanics Gellibrand Clifton	Suf 37.0 143.0	142.0 108.3 2.3	37.0 106.0 50.0
Otway	Eumeralla Crayfish (Pretty Hill Sst.)	193.0 378.5	- 47.7 - 233.2	185.5 16.5
Palaeozic Total Depth (Total Depth (•	395.0 435.0 433.3	- 249.7 - 289.7 - 288.0	40.0+ - -

3.2 Lithological Description

3.2.1 New Volcanics (surface - 37.0 m)

Surface to 20.0 m

Weathered Basalt, medium to dark brownish red, dark to brown grey in part, speckled in part, weathered and crumbly at the top becoming hard to very hard towards the base, common multi-coloured minerals including olivines (?) trace medium grained quartz sand, interbedded/ interlaminated with tuff, medium to dark brown, medium olive brown, medium brown green in part, soft-firm, soapy luster, with apparent subconchoidal fractures.

CH Rodio-	CHRONOSTRATIGRAPHY			BIOSTRATIGRAPHY		_	LITHOSTRATIGRAPHY		FCTONIC									
Metric Age (m.s.)	Iric ERA PERIOD		EPOCH/AGE		SPORE — POLLEN ZONES ZONES													
				PLIOCENE		M.LIPSUS	. 1			40								
					T		{ }		WHALERS BUFF FN A NEWER VOLCANICS	970	l							
- 10 -	. •			ω	UPPER	C.BIFURCATUS		ł		\sim	ł							
				MIOCENE	MODLE	T.BELLUS	D.WHIVERSA D.SUTURALIS			ROUP								
				ŎŢ			P.G CURVA G.SICANUS			K.								
- 20 -					LOWER	P.TUBERCULATUS	C.EUAPERTURZ			1	1							
	O			NE	UPPER		G. STAVENSIS	5		-								
- 30 -	ō	TERTIARY		OLIGOCENE	ļ			ð,		6 A OI								
20	20			۲. ۲	LOWER	UPPER N.ASPERUS	S.MGIPOROIDS S.S.	1.										
1	AINOZOI	R		$ ^{\circ}$				E			1							
- 40 -	A D	E			UPPER		6.MDEX	13										
•	-			ENI	MIDOLE	Lower N.ASPERUS	T ACULEATA T.COLLACTEA T.PRIMITIVA	FORAMI	٢	1001								
				EOCENE			PAUSTRALIFORMIS			Š								
- 50 -					LOWER	Upper M. Drverses			Burrungule A	1111								
					UPPER	Lover M. Diversus	HOWOWDRPHA			HGE								
				Paleocene		open LibaLaEl	CHASSITABLEATA		PEMBER NUDSTONE	××								
- 60 -				e l	MODLE	LOWER L.BALMEI			FLUTEBLE POINT FORMATION									
ŀ			1		LOWER	TIONCUS I.	EVITTII	Ц		_								
- 70-				Moostr	ichtian	T.LONGUS		Ĭ	TIM BOON SAND									
				CAMP	ANIAN	K.SENECTUS		ŝ		OUP								
				SANTO		12	R.ACERAS		PAARATTE FORMATION	610								
- 80 -			ER		MAIN	T.PACHYEXINUS	J CRETACEUM	٦		A00X								
			10				CONIACIAN						a 1					
]			0 75101 FX	0.PORIFERA		BELFAST MUDSTONE	SHEA			
- 90 -							TURO	NIAN	C.TRIPLEX	C.STRIATOCONUS	-		•/					
1				CENON	ANIAN	A.Distocoringtus	D. HULTISPINUM		WAARRE FORMATION									
-100-	$\underline{\circ}$	ous			·····	P. PANNOSUS	X. ASPERATUS	7		-	1							
	0	111					P.LUDBROOKIAE	٦										
	SOZ	CRETAC	RETACI						ALBIA	N	C.PARADOXA	C.DENTICULATA		Health A FORMATION Healthfield Sond		l		
- 110 -	ES												C.STRIATUS	W.TETRACANTA	-	-EUMERALLA FORMATION		
	Σ						D.DAVIDII											
1										ER	APTIA	N	C.HUGHESI	O. OPERCULATA			NOUP	
-120-				≯	BARRE	MIAN		O.CINCTUN	-	-Gellwood Beach								
1				Ľ			F Worthons in a le	N AUSTRALIS	<u> </u>	Forit	YAY							
- 130-						z Hov	Houterivian	F. Wonthoogiensis	K. TESTUDINARIA			011	l					
				NAI			P.BURGERI		CRATFISH FORMATION									
-			ooV₀b	nginion		S AREOLATA	Ⅎ	Pretty Hill										
-140-				NEOCOM		CAUSTRALENSIS	E TORTHUN	1	Fecies									
			- Berr	iosion		C. DELICATA												
		SIC		тітно	MIAN	RJYATHEROOENSIS	1	Ŧ		Z								
- 150 -		JURASSIC					Į	ł		-	1							
		L N	1				1 7 1	E		NVO								
-248+			1			L	i	-	<u>(</u>	7	1							
				PAL	EOZOI	C BASEMENT		ľ	```````````````````````````````````````	1	1							
1								-[```````````````````````````````````````	A	1							

.

<u>20.0 - 37.0 m</u>

Basalt, (possibly Olivine Basalt), dark green grey, dark green, hard to very hard, speckled in part, fresh, amygdaloidal in part, amygdals are occasionally filled with secondary olivine and/or zeolite(?), tholeitic in part(?), interlaminated with dark grey, in part light to medium orange tuff, soapy luster, sub-conchoidal fracture, soft, occasionally firm, trace very coarse olivine and pyroxene laths, trace fine quartz sand grains.

3.2.2 <u>Heytesbury Group</u> 37.0 m - 193.0 m

Gellibrand Marl 37.0 m - 143.0 m

<u>Marl</u>, light to medium yellow, light to medium brown, light olive brown, occasionally medium to dark brown (due to iron oxide staining on forams and shell fragments). Possibly weathered and recycled, soft, sticky in part, dispersive in part, commonly to abundantly fossiliferous, trace rounded medium to coarse quartz sand grains, interbedded/ interlaminated with minor.

<u>Calcarenite</u>, light grey, light olive grey firm to hard, medium to coarse grained, no apparent matrix, moderately strong calcareous cement, trace forams, no visual porosity.

<u>Clifton Formation</u> 143.0 - 193.0 m

<u>Marl</u>, medium olive grey, medium brown grey, light grey to light olive grey in part, soft, very dispersive, extremely fossiliferous, rare iron oxide pellets with iron-stained shell fragments (unconformity surface?), rare medium to coarse rounded quartz sand grains interbedded with; <u>Calcarenite</u>, light grey to light olive grey, firm to hard, occasionally very hard, are argillaceous matrix, moderately strong calcareous cement, trace shell fragments, rare to trace glauconite, no visual porosity, at the base with minor; <u>Sandstone</u>, clear to very light brown, loose, fine to very coarse, dominantly medium to coarse, rounded to well rounded, poorly sorted quartz, no apparent matrix, very good visual porosity.

3.2.3 <u>Otway Group</u> 193.0 m - 395.0 m

Eumeralla Formation 193.0 m - 378.5 m

<u>Claystone</u>, dark to very dark grey, medium grey, medium to dark brown grey, medium to dark green grey, soft to firm, hard in part, blocky in part, dispersive in part. Occasionally subfissile, rarely to slightly calcareous at the top, non calcareous towards the base, rare fine lithics, rare to trace carbonaceous detritus, rare fine mica, rare very hard medium brown grey calcite band, becoming dolomitic in part, trace slickenside (possibly minor fault?), moderately to commonly silty in part, grading into and interlaminated with;

<u>Siltstone</u>, light to medium green grey, pale green in part, light brown grey in part, soft to firm, occasionally blocky, rarely carbonaceous and micaceous, interbedded with minor;

<u>Sandstone</u>, light grey to beige, light to medium green grey, occasionally light brown grey, firm to hard, very fine to fine, subangular to subrounded, fairly to well sorted quartz and multicoloured lithic fragments, common off-white kaolinitic argillaceous matrix, trace moderately strong calcite cement, rare partially altered feldspar, very slightly calcareous in part, occasionally micaceous in part, poor to no visual porosity.

Crayfish Formation 378.5 m - 395.0 m

PrettyHill Sandstone

Sandstone, clear to transluscent to very light grey, fine to coarse, dominantly medium, subangular to subrounded, poorly sorted quartz, trace off-white (kaolinitic) argillaceous matrix, trace moderately strong silica cement, rare garnet, rare very coarse quartz overgrowth, good to very good visual porosity, interbedded with;

<u>Claystone</u>, medium to dark grey, medium to dark brown grey in part, rarely medium to dark green grey in part, firm, hard in part, blocky to sub fissile occasionally dispersive, rare carbonaceous detritus, rare fine mica, rare fine lithic fragments, occasionally silty in part.

3.2.4 <u>Palaeozoic Basement</u> 395.0 m - 435.0 m (T.D.)

Quartz Mica Schist, weathered at the top with apparent reworking characteristic, with rare loose quartz sand grains, becoming less weathered with depth; medium green, hard to very hard, occasionally firm, trace pyrite.

3.3 <u>Hydrocarbon Indications</u>

3.3.1 Mud Gas Reading

The mud gas detection equipment was operational from spud to the total depth (435.0 m).

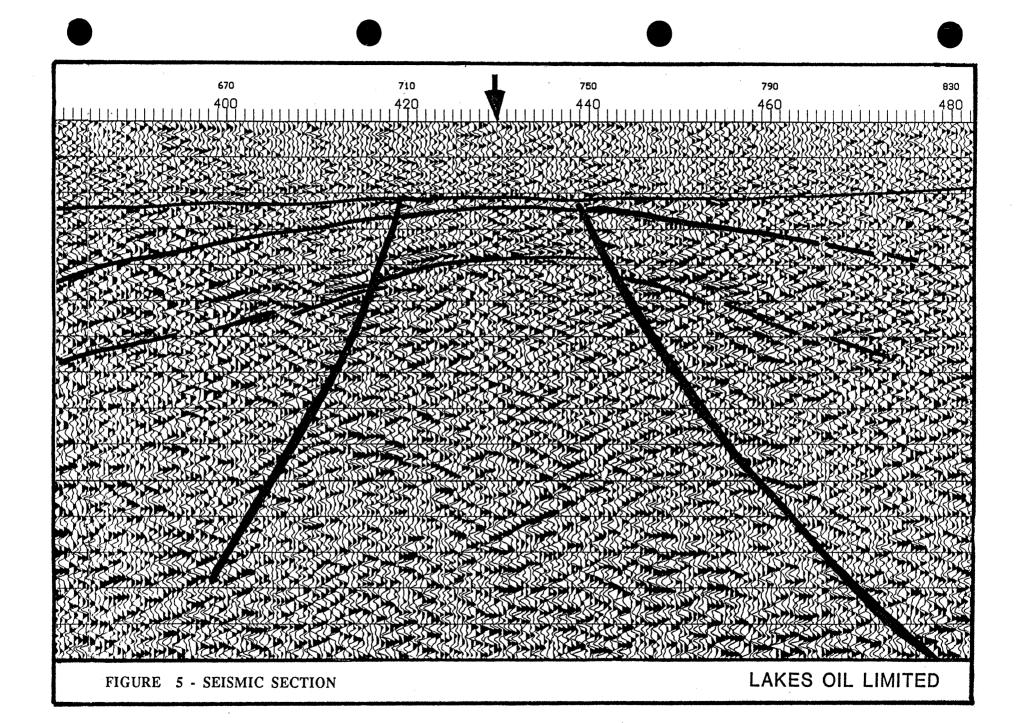
No background gas was recorded during drilling except at 385.0 m where a trace of C1 was detected.

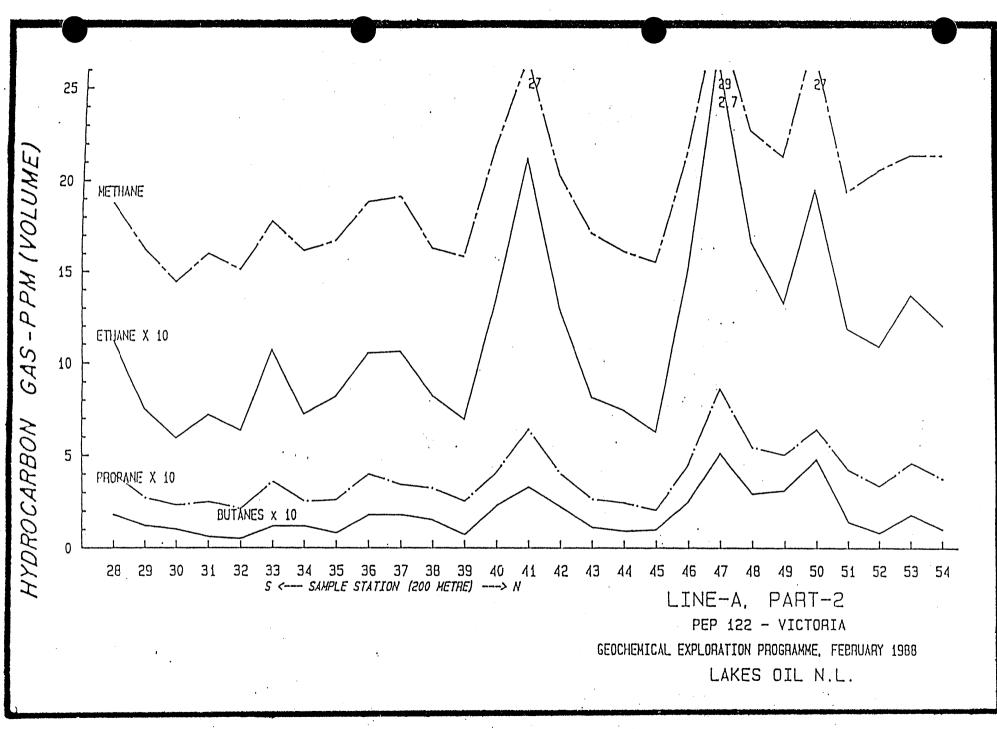
3.3.2 Sample Fluorescence

Cutting samples were routinely inspected for fluorescence at 5 m. intervals from spud to T.D.

No fluorescence or oil staining were reported in any of the cutting samples or any sidewall cores cut.

4. GEOLOGY


4.1 <u>Structure</u>


The South Caramut prospect was defined by the available seismic line in the PEP 122. This is the north - south seismic line OLO88B-100 shot by Lakes Oil Limited (the operator) in 1988.

Based on the interpretation of this line it was postulated that the South Caramut prospect was located on a relatively prominent basement high were both structural and stratigraphic traps may be present. (see figure 5)

Further support for locating the prospect on this location was the results of a geochemical soil gas microseepage survey, conducted by Lakes Oil Limited, carried out alongside the seismic line. The most significant anomaly occurred at stations 47 to 50 corresponding to the shot points 418 to 440. The well was located at shot point 430. (see figure 6)

Although the post drilling analysis confirms the validity of the well location on the north - south direction (on the seismic line), its position on the east - west direction is clearly questionable. This is due to the lack of any seismic or other means of control. It is therefore possible that well has been located off structure.

6 MAJOR GEOCHEMICAL ANOMALY BETWEEN STATIONS 47 & 50

LAKES OIL LIMITED

Figure - 6

4.2 Porosity and Water Saturation

The wireline log suite run in South Caramut No. 1 did not include the density - neutron logs. The decision not to run there logs was justified on the basis of potential reservoir's thickness and the obvious lack of hydrocarbons. The only potential reservoir penetrated in this well was the Pretty Hill Sandstone of the Crayfish Formation with the gross thickness of 16.5 m.

No detailed wireline log analysis was therefore attempted. Sonic porosity calculation is not recommended in this well due to diagenetic cement (s) and secondary porosity, possibly present in the Pretty Hill Sandstone.

The results of the DST-1 conducted over the Pretty Hill Sandstone indicated that the reservoir is porous and has sufficient permeability to flow. However the fresh water saturated reservoir might have been flushed by the ground water flow.

4.3 <u>Contribution to Geology & Relevance to Occurrences of</u> <u>Hydrocarbon</u>

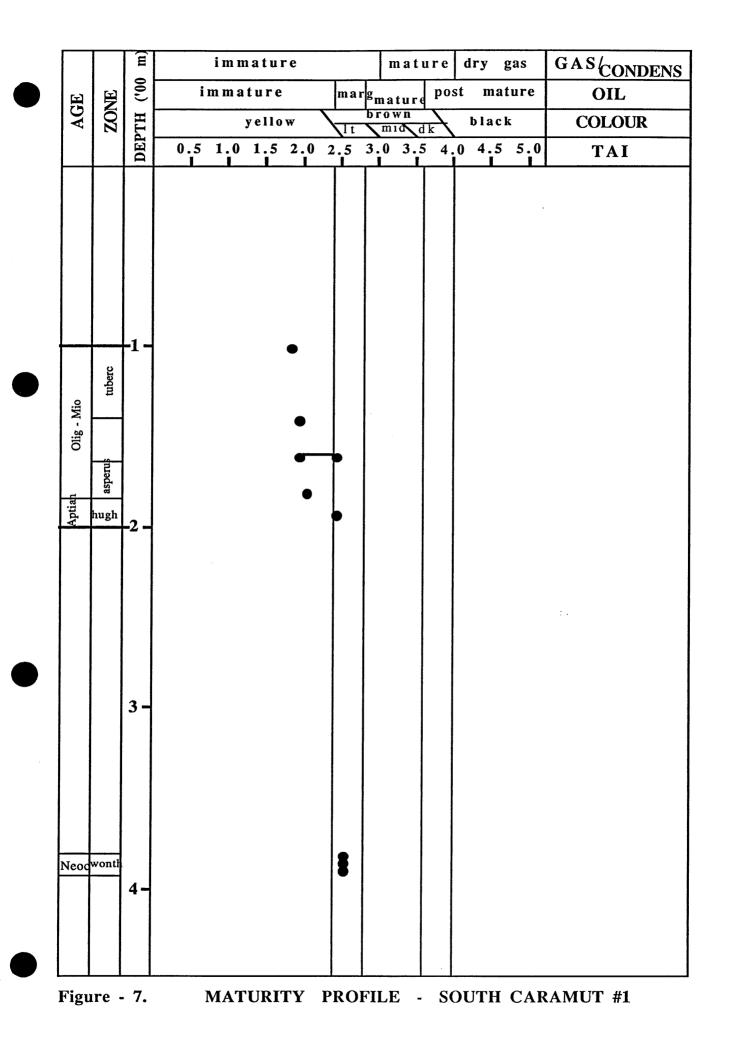
South Caramut No. 1 was the first petroleum exploration well drilled in PEP122.

The prospect was defined as a result of the first and only seismic line shot in the permit. The well's location at shot point 430 was supported by the first hydrocarbon micro see page survey conducted in the PEP 122.

The prospect has also positively tested a new concept in the Otway Basin exploration history. Until the play concept of the South Caramut prospect was suggested it was the consensus amongst explorationists that the northern margin of the Otway Basin lay to the south of the prospect and a veneer of late Tertiary sediments may be present in part of the permit. This was the major reason why this area remained unexplored for so long.

The drilling of the South Caramut No. 1 well not only proved that the basin margin extends to the north well beyond the prospect location but, also confirmed the validity of this new play concept. which proposed the presence of the stratigraphically oldest and deepest but, best quality reservoir of the Pretty Hill Sandstone to be well placed to reservoir hydrocarbons at very shallow depths. This is probably the shallowest play in Australia.

South Caramut No. 1 has also revealed that the Otway Basin Margin, particularly the prospect and its adjacent area had been tectonically active a number of times during its geological history. These events are summarised below:


- The South Caramut prospect was a low relief basement high in Neocomian time but below sedimentary datum. The lower Pretty Hill Sandstone was therefore deposited at this location. The lack of Barremian Pretty Hill Sandstone could be indicative of either uplift or erosion or both.
- The next significant tectonic event appears to have occurred during the Albian when major uplift probably resulted in the absence of the Upper Eumeralla Formation due to no deposition.
- The Upper Cretaceous appears to have been the period of continuous uplift and/or erosion. This seems to be a regional event along the northern flank in this part of the basin.

The absence of lower and middle Tertiary sediments in the well is attributed to a minor and possibly local movement.

These structural interpretations have, in turn revealed the following important conclusions:

- These frequent tectonic movements have created an excellent opportunities for both stratigraphic and structural traps to develop in PEP 122.
- The Eumeralla Formation and the shaly part of the Crayfish Formation appeared to be marginally mature (see figure 7). This is clearly indicative of a relatively major uplift in the area. Furthermore, although no significant hydrocarbon generation is expected at the well location ample mature source rock is postulated to be present immediately to the south and west of the prospect within the Minjah Trough.

The results of the drill stem test provided an adequate data on reservoir characteristics of what is considered to be the best potential reservoir, the Pretty Hill Sandstone, in the permit.

APPENDIX I

DETAILS OF

DRILLING PLANTS

DRILLCORP LTD.

<u>RIG 24</u>

INVENTORY

TYPE:	Franks Cabot Explorer, Carrier Mounted					
CAPACITY:	5,000' - 1,600m					
DERRICK:	Cabot 96' - 150' 96 X 150,000 lb. capacity 4 leg telescoping					
DRAWWORKS:	Cabot Split Drawworks Drilling/Tripping Drums Model 1D58/150-2 2 Detroit Diesel GM6V-71N Belt compound					
SUB-STRUCTURE:	1 Piece 8' X 14'					
MUD PUMPS:	1. Ideco MM450 Duplex 7-1/4" X 12" Powered by 2 6-71GM					
ROTARYTABLE:	Gardner-Denver No. RT-18, 18" opening					
SWIVEL:	Brewster Model 40S					
BLOCKS:	McKissick Model 83A					
HOOK:	Web Wilson Hydra Hook					
CROWN:	Cabot 152,000 lb. capacity with 5 X 25" Sheeves					
B.O.P.:	 Shaffer Type "E" Double Gate, 10" X 3,000 psi 1. Annular Shaffer 10" X 3,000 psi 2. Annular Regan 9" X 3,000psi 					
B.O.P.CONTROL:	Koomey 80 Gallon, 8 Bottles with 2 Air Pumps					
CHOKEMANIFOLD:	Demco 2 X 2 X 3,000 psi, 1/fixed, 1/adjustable					

DrillCorp Rig 24 Inventory (cont):

DRILLING LINE:	2,500' X 7/8" OD 6 X 19 E.I.P.S. APISQA
MUDCONTROL EQUIPMENT:	2-FMC 5 x 4 Shakers 1-Warman 2 x 10" Desander Unit 1-Warman 4 x 6" Desilter Unit
KELLY:	ONCOR 4-1/4" Hex 40"
MUDTANKS:	Shaker tank = 250 BBLS Suction tank = 150 BBLS
WATER TANK: &DOGHOUSE	200 BBLS
FUELTANKS:	400 gallons, 300 gallons
SUCTIONTANK:	150 barrels (optional)
GENERATORS:	1 Rolls Royce with 130 KVA Unit 50 HZ
POWER TONGS:	Farr Hydraulic Tubing Tongs, complete with inserts for 2.3/8 inch, 2.7/8 inch, 3.1/2 inch, 4.1/2 inch, 5.1/2 inch, tubing and drillpipe.
LUBRICATOR:	Guiberson Hydraulic Wireline Stripper with 2.3/8inch, 2.7/8 inch, 3.1/2 inch JV rubbers.
DEGASSER:	13ft x 1ft 6 inch Baffled Poor Boy Degasser.
HANDLING TOOLS:	Slips and elevator for 2.3/8 inch, 2.7/8 inch, 3.1/2 inch tubing. Air Slips Cavin model 'C' for 2.3/8 inch, 2.7/8 inch 3.1/2 inch tubing.
MISCELLANEOUS:	 2.7/8 inch stabbing valves with 2.3/8 inch X/O. 2 sets pipe raks. Swabbing equipment includes Mandrel and sinker bars.
TUBULARS AVAILABLE:	4,000 ft x 4.1/2 inch pipe grade 'E' 16.60 lb/ft
DRILLCOLLARS AVAILABLE:	22 x 6.1/4 inch 2.3/4 inch x 30 ft 4.1/2 in XH conn.

DrillCorp Rig 24 Inventory (cont):

ITEMS AVAILBABLE ON REQUEST

DRILLCOLLARS	15 X 4.3/4 inch x 30 ft with $3.1/2$ inch IF conn.						
FISHING EQUIPMENT	Wide rang available.						
TUBULARS	 6014 ft (194 JTS 2.7/8 inch OD x 10.4 lb/ft range 2 grade 'E' drillpipe with 4.1/8 OF tool having 2.7/8 inch IF pin x box connections. 						
	2. 12 JTS 4.1/8 inch OD range 2 slick drillcollars with 2.7/8 inch IF pin x box connections.						
	3. 12 JTS 3.1/2 inch OD range 2 slick drillcollars with 2.3/8 inch IF pin x box connections.						
TUBULARS	DP 4,200Ft x $3.1/2$ inch GR 'E' primium 13.31b/ft $3.1/2$ inch IF connection DC 22 x 6.1/4 inch zip with 4 inch IF connection.						
MUD TANKS	Shaker tank - 250BBLS						
WATER TANK	200BBLS						
FUELTANK	1,000 gallons						
GENERATORS	1 Rolls Royce with 130 KVA unit 50HZ.						

SUMMARY OF WELLSITE OPERATION

SUMMARY OF WELLSITE OPERATION

The South Caramut No. 1 drill site was prepared by Gordon Rudolph Earthmoving Pty. Ltd. of Timboon.

Prior to rig arrival, a 18" conductor pipe had been installed and cemented.

The Drillcorp Rig No. 24 was rigged up and South Caramut No. 1 was spudded on 0300 hours, 15th October, 1990.

Drilling $12^{1}/_{4}$ " hole continued to 91.4 m where the 9 $^{5}/_{8}$ " casing was run and cemented with shoe at 87.2 m.

The B.O.P's choke manifold, and flareline were installed and the B.O.P.'s were successfully tested to the following pressures:

Blind Rams1000 psiHCR - Choke Manifold1000 psi

The float, cement and shoe were drilled out and after drilling 5 metres of new hole, a formation integrity test was established to be 11.6 ppg equivalent.

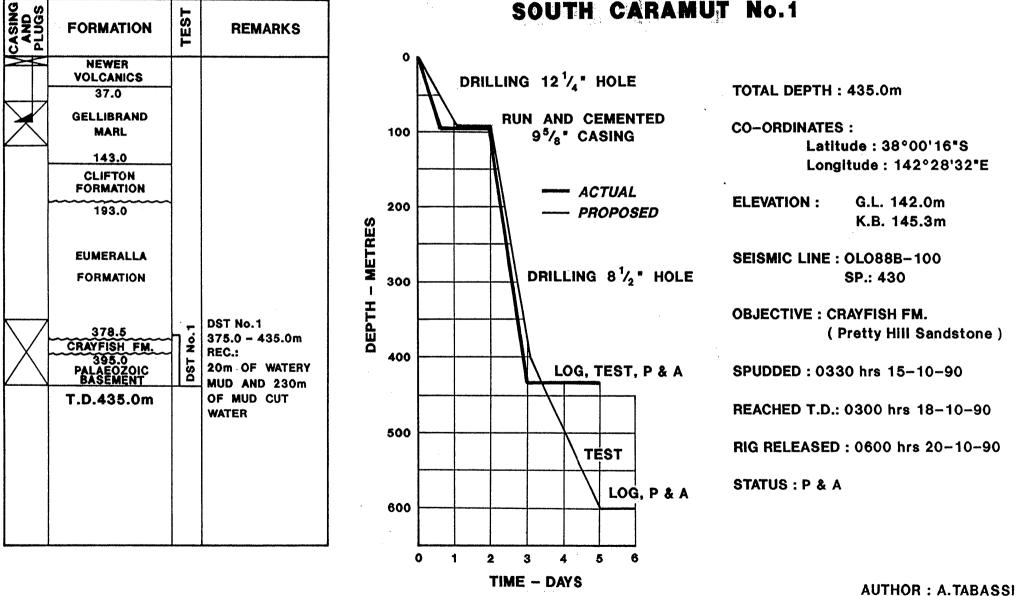
Drilling $8^{1}/_{2}$ " hole continued uneventfully to T.D. The total depth of 435.0 m was reached at 0300 hours 18th October, 1990.

The following logs were then run by BPB Wireline Services:

DLL/MLL/GR/SP/CAL CSS/GR/CAL SCG/GR Velocity Survey

Page 1

A drill stem test was carried out over the interval 375.0 - 435.0 m (T.D.) using open hole conventional packers.


Cement plugs were then set over the intervals 435.0 - 350.0 m and 117.0 - 57.0 m prior to setting the surface plug and abandonment of the well.

The rig was released at 0600 hours, 20th October, 1990.

LAKES OIL LIMITED

PROPOSED AND ACTUAL DRILLING TIMES

SOUTH CARAMUT No.1

APPENDIX III

DRILLING FLUID RECAP

LAKES OIL LIMITED DRILLING FLUIDS RECAP SOUTH CARAMUT NO. 1 PEP 122, OTWAY BASIN. VICTORIA

:

-

A10.000

1 (ví 1st. - ··

to there .

the second

. F 71 w 187 1

The second second

ź

Prepared by: M Olejniczak Dated : November 1990

BAROID AUSTRALIA PTY. LTD.

.

TABLE OF CONTENTS

İ

1

....

.....

Leve .

t sing

计计计计计

.

" (ge - 100 - 11)

•

tan and

- -

1.	WELL SUMMARY SHEET
2.	INTRODUCTION
3.	DISCUSSION BY INTERVAL
4.	CONCLUSIONS AND RECOMMENDATIONS
5.	MATERIAL RECAP (BY INTERVAL)
6.	MATERIAL RECAP SUMMARY
7.	DRILLING FLUID PROPERTIES RECAP
8.	BIT RECORD
9.	GRAPHS

APPENDICES

Α.	8 1/2"	Hole C	aliper
В.			
с.			

BAROID AUSTRALIA PTY. LTD.

1

1. N 19-11

ĩ

¥4 . 14 . .

÷

Rid (1942) - 1847 - 14

÷

11 112-10 1

14.5

n ar Matadana) - Pi

4 ...

the second

1.1.1

WELL SUMMARY

Operator	:	Lakes Oil Limited
Well Name	:	South Caramut No. 1
Location	:	PEP 122, Otway Basin, Victoria
Contractor/Rig	:	Drillcorp / Rig 24
Rig on Location	:	13 October, 1990
Spud Date	:	15 October, 1990
RKB Elevation	:	3.3m
Total Depth	:	435m
Date Reached TD	:	19 October, 1990
Total Days Drilling	:	5 Days
Rig Off Location	:	20 October, 1990
Total Days on Well	:	8 -

Drilling Fluid Type	<u>Interval</u>	<u>Hole Size</u>	<u>Cost (A\$)</u>
Freshwater AQUAGEL/Lime	15m - 91.4m	12 1/4"	\$ 615.95
KCL/AQUAGEL/Polymer	91.4m - 435m	8 1/2"	\$ 1,888.81

Mud Materials Charged to Drilling\$ 2,50Engineer on Location from Oct 13 to Oct 19. Drilling Fluid Engineering: 7 days @ \$410.00\$ 2,87Total Cost Drilling Materials & Engineering\$ 5,37Mud materials not charged to drilling\$ -Casing Programme: 18" Cond. at 15m 9 5/8" Csg at 87 2m				504.	76	
	\$	2,8	870.	00		
Total Cost Drilling Materials	& Eng	gineering	\$	5,3	374.	76
Mud materials not charged to drilling					-	
Casing Programme	18" Cond. at 15m 9 5/8" Csg. at 87.2m					
Drilling Supervisor	:	Barry Beetson				
Baroid Drilling Fluid Engineer	::	Gus van der He ide Manfred Olejniczak				

BAROID AUSTRALIA PTY. LTD.

INTRODUCTION

1.1.1

1

The well was spudded in on October 15th, 1990 using Drillcorp's Rig 24.

The 12 1/4" hole was drilled to 91.4m, using Freshwater AQUAGEL mud flocculated with Lime. The 9 5/8" casing was then run and cemented to 87.2m.

The 8 1/2" hole was then drilled without problems to the 435m TD using a 2% KC1/EZ MUD/Polymer mud. After running wireline logs, and a bottom hole DST, the well was plugged and abandoned on October 20th, 1990.

4

BAROID AUSTRALIA PTY. LTD.

DISCUSSION BY INTERVAL

<u>12 1/4" Hole (15m to 91.4m) - 1 day</u> <u>9 5/8" Casing Set at 87.2m</u>

The Baroid Engineer arrived on location on October 13 while the rig was being erected; the 18" conductor had previously been set at 15m. While the rig-up was being completed 190 bbl of prehydrated AQUAGEL was mixed at 10.5 ppb; this was flocculated with Lime and used to drill the rathole. This proved to be very hard to drill and took almost 18 hours - about 70 bbl of the spud mud was used up.

South Caramut No. 1 was spudded in at 0330 hrs on October 15, 1990. Early drilling through the weathered volcanics/basalt was slow (1/2 to 2 m/hr); a fractured tuff at 34m took 5 bph of mud before the Gellibrand Marl was encountered at 42m. The drilling rate increased to 300 m/hr and the interval TD at 91.4m was reached without problems. Surveys were taken at 29.3m and 85.4m with each showing a deviation of $1/4^{\circ}$.

The viscosity of the spud mud was maintained and controlled by additions of Lime and Caustic Soda. At the interval TD the hole was circulated clean and a wiper trip made; no fill was noticed and the hole was again circulated clean before pulling out to run casing.

The 9 5/8" casing was run and cemented with 230sx of neat cement and 2% calcium chloride, with the shoe at 87.2m.

DISCUSSION BY INTERVAL (cont.)

4-1-4-1-4-

NUMBER OF STREET

8 1/2" Hole (91.4m to 435m) - 4 days

During the nippling up and pressure testing of the BOP stack, the sand trap was dumped and washed out, and half the surface mud system dumped.

The cement and casing shoe were drilled out using this remaining old mud diluted with water to control the mud viscosity. A formation leak off pressure test was run at 95.4m giving an 11.6 ppg equivalent.

Drilling then continued through Marl and Coquina with potassium chloride added to 1% concentration immediately. With the Eumeralla Formation encountered from about 193m, the potassium chloride concentration was increased to 2%, and additional EZ MUD polyacrylamide added to improve cuttings quality and reduce hole stickiness.

As drilling continued steadily through the Eumeralla Formation, the filtration control was gradually reduced with additions of CMC HV and DEXTRID. The viscosity was deliberately kept low through most of the section to aid in the breaking up of large clay pieces.

Despite running the desander and desilter constantly the mud weight rose rapidly, even though the mud clay content remained relatively low. Both these machines failed to perform satisfactorily as they suffered from low operating pressure because of improperly designed plumbing.

With basement reached from about 395m, drilling continued on to TD at 435m. The mud weight had risen rapidly up to 9.6 ppg close to TD, but this was then cut back with increased dilution to 9.5 ppg. Typical mud properties close to TD were:

Weight	9.5 - 9.6 ppg
Viscosity	35 - 37 seconds
Yield Point	6 - 9 lb/100ft ²
Filtrate	8.0 - 9.0 cc
Chlorides	12,000 - 13,500 mg/l
KCl	2 %

It had been planned to increase the mud viscosity close to the target point by adding prehydrated AQUAGEL from a separate mixing tank. However, when this was tried it was found to be virtually impossible to mix bentonite in this tank at all, again due to poor design. This meant that the viscosity remained lower than desired at TD.

DISCUSSION BY INTERVAL (cont.)

<u>8 1/2" Hole</u> (cont.)

Az

and the state

Cable Trees

1 He - 1 - 1 - 1

After running a wiper trip and circulating the hole clean without problems, B.P.B. Wireline logs were run. The loggers reached 433.3m without having any hole problems, and the caliper log showed a very well gauged hole of 8 1/2 to 8 3/4 inches.

Following logging, another wiper trip was run with the hole circulated clean again and a DST run by Halliburton, recovering formation water.

The well was then plugged and abandoned on October 20th, 1990.

CONCLUSIONS AND RECOMMENDATIONS

di Pertinan

÷ 1,4

Selen Trains

The only real problems experienced from the mud point of view during this well, related to mechanical shortcomings with the mud pit system.

- 1) Poorly operating Desander and Desilter due to low operating pressure.
- 2) Premixing tank inadequate for mixing prehydrated bentonite, when using a salt based mud system where bentonite cannot be mixed in directly.
- 3) Desilter suction is from the same tank as the mixing suction, so that a part of the products being mixed goes directly out of the desilter, unless this is shut down during mixing.
- 4) Mid pits had no platform for forklifting mud to the mixing hopper, and no stairway at that end of the pits. Mud sacks had to be carried separately, either up the stairs and across the entire mud tank, or thrown up a height of 6 ft; a dangerous situation.

4

1

Anna 1944

a landaget

to a strat

1.11

· · · · ·

MATERIAL RECAP

mited mut No. 1 tway Basin	I, VIC.		CONTR	ACTOR	/RIG	12 1/4″ Drilcorp / Rig 24 Flocculated AQUAC	BEL/Lime
15			1 11.5		COST/	М	\$615.95 \$8.06
	990	MUD CO	ONSUM				\$1.90 4.24
115117	L 13 1177						τ (Δε)
UNIT.	COST	EST	ACT	EST		ESTIMATE	ACTUAL
100lb	18.64	29	29	12.2	9.0	540.56	540.56
25kg	27.93	2	2	0.5		55.86	55.86
25kg	6.51	2	3	0.5	0.5	13.02	19.53
Bbls							
Bbls			4				
Bbls		238	320				
Bbls		238	324			\$600 <i>44</i>	\$615 OF
						\$609.44	\$615.95 \$615.95
	91.4 91.4 15 76.4 Oct 16, 19 UNIT 100lb 25kg 25kg 25kg 25kg	mut No. 1 tway Basin, VIC. 91.4 DRILLING 15 ROTATIN 76.4 Oct 16, 1990 UNIT UNIT COST 100lb 18.64 25kg 27.93 25kg 6.51 Bbls Bbls Bbls Bbls Bbls	Bbls Bbls Bbls Bbls Bbls Bbls Bbls Bbls	mut No. 1CONTR MUD TY91.4 DRILLING DAYS115 ROTATING HRS.11.576.4Oct 16, 1990MUD CONSUMUNITUNITQUANTITYCOSTESTACT100lb18.64292925kg27.932225kg6.5123	mut No. 1CONTRACTOR MUD TYPE91.4 DRILLING DAYS115 ROTATING HRS.11.576.4Oct 16, 1990MUD CONSUMPTION IUNITUNITQUANTITYCONC COST100lb18.642929125kg27.932225kg6.51230.58bls4Bbls238320Bbls238320	mut No. 1 tway Basin, VIC.CONTRACTOR/RIG MUD TYPE91.4 DRILLING DAYS1COST/ COST/ 15 ROTATING HRS.11.576.4COST/ 76.4COST/ COST/ COSTCONSUMPTION FACTOUNITUNITQUANTITY CONC (ppb) COSTCONC (ppb) 25kg100lb18.64292912.225kg27.93220.525kg27.93220.525kg6.51230.50.58bls4Bbls238320Bbls238320	Bus CONTRACTOR/RIG MUD TYPE Drilcorp / Rig 24 Flocculated AQUAC 91.4 DRILLING DAYS 1 COST/DAY 15 ROTATING HRS. 11.5 COST/DAY 76.4 COST/BBL COST/BBL Oct 16, 1990 MUD CONSUMPTION FACTOR (bbl/m) TOTAL COS UNIT UNIT QUANTITY CONC (ppb) TOTAL COS 100lb 18.64 29 29 12.2 9.0 540.56 25kg 27.93 2 2 0.5 0.3 55.86 25kg 6.51 2 3 0.5 0.5 13.02

İ

1.1981

() distants ()

en operation

9-12488-9

· "\$2.74.14 4344 .

The state of

1 444444.4.5

MATERIAL RECAP

	NY Lakes Oil Limited South Caramut No. 1 ON PEP 122, Otway Basin, VIC.			HOLE S CONTR MUD T	ACTOR	/RIG	8 1/2" Drilcorp / Rig 24 KCI/AQUAGEL/Poly	-		
INTERVAL TO (m)	435	\$472.20								
FROM (m)		ROTATIN		24.5		COST/M	И	\$5.50		
DRILLED (m)	343.6					COST/E	BBL	\$5.46		
DATE	Oct 19,	1990	MUD C	ONSUM	PTION I	FACTOF	R (bbl/m)	1.01		
MATERIAL	UNIT	UNIT	QUA	TITY	CON	C (ppb)	TOTAL COS			
		COST	EST	ACT	EST	ACT	ESTIMATE	ACTUAL		
Barite										
AQUAGEL GOLD SEAL	100lb	18.64	29	2	5.9	0.6	540.56	37.28		
Caustic Soda	25kg	27.93	4	2	0.5	0.3	111.72	55.86		
EZ MUD	5gal	61.77		2		0.3		123.54		
CMC HV	25kg	67.17	15	7	1.7	1.1	1,007.55	470.19		
DEXTRID	50lb	37.96	20	15	2.0	2.2	759.20	569.40		
Sodium Bicarbonate	40kg	26.69		1				26.69		
Pot. Chloride (Ag)	50kg	17.31	35	35	7.9	11.2	605.85	605.85		
Soda Ash	25kg	14.06	2		0.2		28.12			
-					4					
DIESEL CHEMICAL VOLUME FRESH WATER SEA WATER	Bbls Bbls Bbls Bbls		488	6 340						
TOTAL MUD MADE	Bbls		488	346						
COST LESS BARYTES	20.0			- ••			\$3,053.00	\$1,888.81		
COST WITH BARYTES						:	\$3,053.00	\$1,888.81		
COMMENTS										

Baroid Australia Pty. Ltd. MATERIAL SUMMARY

Transa and

COMPANY L WELL S LOCATION F	South Caramu	t No. 1		CONTRACT	OR/RIG	Drilcorp / Rig 24	
INTERVAL	DRILLED	DAYS	HOURS	М	UD TYPES:	Flocculated AQUA	
12 1/4″	76.4	1	11.5			KCI/AQUAGEL/Po	lymer
8 1/2″	343.6	4	24.5				
			-			COST/DAY	\$500.95
TOTALS	420	5	36.00			COST/M	\$5.96
1	1. Olejniczak					COST/BBL	\$3.74
DATE C	Oct 19, 1990			MUD CONS	UMPTION F	ACTOR (bbl/m)	1.60
MATERIAL		UNIT	UNIT	QUANT	an a state strate in anatoli	distances in the second second	ST (A\$)
			COST	ESTIMATE	ACTUAL	ESTIMATE	ACTUAL
Barite							
AQUAGEL GO	OLD SEAL	100lb	18.64	58	31	1,081.12	577.84
Caustic Soda		25kg	27.93	6	4	167.58	111.72
EZ MUD		5gal	61.77		2		123.54
CMC HV		25kg	67.17	15	7	1,007.55	470.19
DEXTRID		50lb	37.96	20	15	759.20	569.40
Sodium Bicart	onate	40kg	26.69		. 1		26.69
Pot Chloride (Ag)	50kg	17.31	35	35	605.85	605.85
Lime		25kg	6.51	2	3	13.02	19.53
Soda Ash		25kg	14.06	2		28.12	
DIESEL		Bbls		•	4.0		
CHEMICAL VO		Bbls		700	10		
FRESH WATE	n	Bbls		726	660		
SEA WATER		Bbls Bbls		726	670		
		BUIS		720	070	\$3,662.44	\$2,504.76
COST LESS B						\$3,662.44	\$2,504.76 \$2,504.76
	ARTIED					Ψ0,002.44	ψ2,004.70
COMMENTS	otal days on h	ole taken fror	n spud to	plug and aba	ndon.		

PROPERTY RECAP

COMPANYLakes Oil LimitedWELLSouth Caramut No. 1LOCATIONPEP 122, Otway Basin, VIC.

ĺ,

CONTRACTOR/RIG Drilcorp / Rig 24

REMARKS/TREATMENT/FORMATION	Spud 12 1/4" hole Drill, rum 9 5/8" csg. Nipple up, drill cmt. Drill, Marl Drill to TD, basement, log Run DST, plug & abandon
MBC	
01L %	
RETORT H20	8 8 8 8 8 8 8
Sol. R	0 0 0 N 0 N
SAND %	0.30 0.10 tr tr
K+ S XWT %	888
Ca ng/l	4 1180 1180 1180 1180 1180 1180 1180 118
cl ca mg/l mg/l x1000	0.4 2.3 13.5 13.5
Mf	
Pf	0.50 0.80 0.15 0.20 1.30 0.15 0.20 1.30 0.15 0.20 1.30 0.15 0.20 1.30 0.15 0.20 1.30 0.15 0.20 1.30 0.15 0.20 1.30 0.15 0.20 0.20 0.15 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2
Hd	10.5 12.0 10.0 10.0
CC	
FILTRATION HTHP CAKE TEMP ml 32nd C	
FILTR HTHP ml	
API ml	14 18 15 15 15 15 15 15 15 15 15 15 15 15 15
GELS 10 10 sec min	
YP 6 Sec	و و و و و و و و و و و و و و و و و و و
PV	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VIS sec	33338
UUM TA DOD	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
F'LNE TEMP C	3 7 0 7 7 0
HOLE SIZE in	20 12 1/4 91.4 12 1/4 425 8 1/2 435 8 1/2 435 8 1/2 435 8 1/2
DEPTH	20 91.4 425 435 435
DATE 1990	00tr 11 13 13 13 13 13 13 13 13 13 13 14 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14

BIT RECORD

CONTRACTOR/RIG

Drilcorp / Rig 24

COMPANY L WELL S LOCATION P

1. N. N. N. N.

A

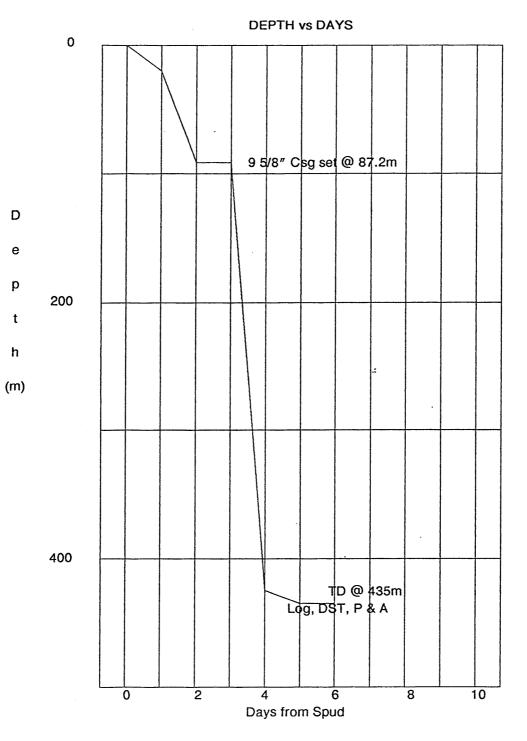
بغنكانهرنا

1444

Presidente de la composición de la composición de la composición de la composición de la composición de la comp

المناج الأرام

an, controliti


Lakes Oil Limited South Caramut No. 1 PEP 122, Otway Basin, VIC.

DATE	вп	r	вп	MAKE	TYPE	JETS	DEPTH	METRES	HOURS	RATE	ACCUM	вп	RPM	VERT	PUMP	PUMP	MUD	MUD	00	IDIT	ON	FORMATION
	NO		SIZE				ουτ	DRILLED			DRLG	wr.		DEV'N	PRESS	RATE	wr	vis	т	в	G	
1990			in			32nd*	m			m/hr	HOURS	tonnes		deg.	psi	gpm	PPg	sec				
Oct																						
14		- 1	2 1/4			3 x 16	91.4	155					120			466		36		3		Basalt/Clay
16	2	2	8 1/2	Varel	L114	13,12,12	435	275	24.5	22.9	18.5	15–30	100	2	850	265	9.60	35	4	2	1	Clay/Basement
1													·									
														:								

COMPANY WELL LOCATION

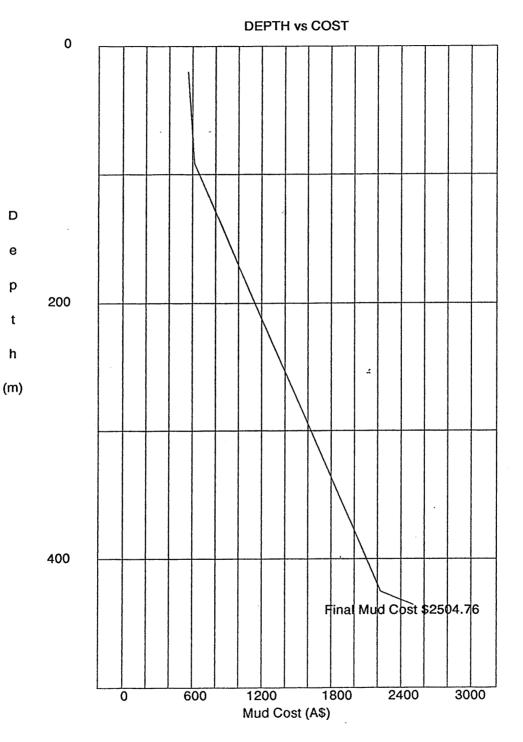
5.55

Lakes Oil Limited South Caramut No. 1 PEP 122, Otway Basin, VIC.

GRAPH

COMPANY WELL LOCATION

l


1.001

ł

1 Washer of u

÷.

. . Lakes Oil Limited South Caramut No. 1 PEP 122, Otway Basin, VIC.

GRAPH

COMPANY WELL LOCATION

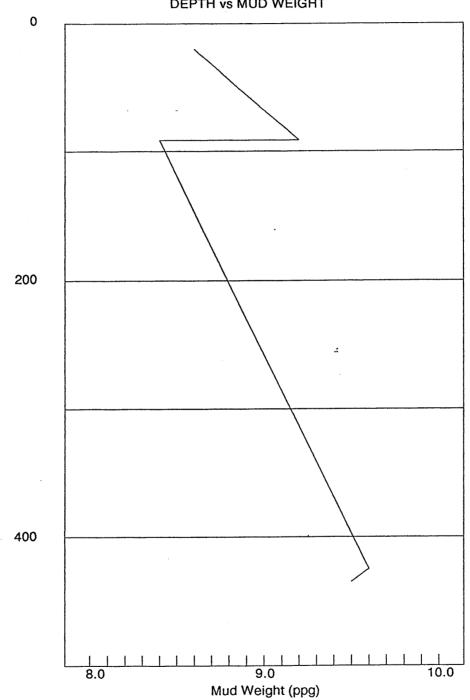
D

е

р

t

h


(m)

i

-

1.1214114.1.3

Lakes Oil Limited South Caramut No. 1 PEP 122, Otway Basin, VIC.

DEPTH vs MUD WEIGHT

GRAPH

COMPANY WELL LOCATION

i

1

0.11

1 4-4-

Lakes Oil Limited South Caramut No. 1 PEP 122, Otway Basin, VIC.

0 D e p 200 t h (m)

ا Drillers TD 435m

Loggers TD 433.3m

400

4 8 12 16

Hole Diameter (in)

4

CALIPER .

APPENDIX A

APPENDIX IV

CUTTING SAMPLE DESCRIPTION

WELL: South	ı Ca	ramut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 1			S	SHO	NS		
DEPTH (m)	%				GAS	5		FLU	OR
			TOTAL	C1	C2	Сз	C4	NAT	СИТ
		SOUTH CARAMUT NO. 1							
		Spudded @ 0330 hrs on Monday 15th October 1990 18" conductor was							
		set @ 15.0 m							
		G.L. to K.B. 3.3m.							
		Elevation: G.L. 142m ASL K.B. 145.3m ASL							
0.0 - 15.0		No sample: Weathered Basait							
15.0 - 20.0		Valcanic med - dk brn. red dk brn gry in part, spekled in part. hd-vhd							
		partically weathered volcanic rock of basaltic composition with multi							
		coloured minerals including olivine(?) tr med grained qrtz sand, interlam/							
		interbd with minor tuff: med-dk brn, med olive brn, med brn green in part							
		soft-firm, soapy luster, with apparant subconchoidal fractures.							
20.0 - 25.0		Olivine Basalt, dark gry green, dark green, ohd-vhd, speckled in part,							
		fresh, amigdaloidal in part, amigdals are occ. filled with secondary							
		olivine and/or zolite (?) tholeiitic in part (?), interlam with dk gry							

WELL: South	Cara	amut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 2			S	SHO\	NS		
DEPTH (m)	%	SAMPLE DESCRIPTION			GAS	\$		FLU	OR
		SAMPLE DESCRIPTION	TOTAL	C1	C2	Сз	C4	NAT	СИТ
		tuff with soapy luster and subcon fracture, tr clear calcite crystal.							
25.0-30.0	100	Basalt, generally as above, less olivine, becoming dom tholeiitic (?)							
30.0-35.0	100	Tuff It-med orange, soft, occ firm, disp, apparantly fractured (lost							
		approx. 5 bbls of drilling mud) oxidised with tr of vf sand or silt grans.						<u>-</u>	
35.0-40.0	100	Volcanic rock with basaltic composition as per 20-25m with vc olivine							
		and pyroxene laths. tr tuff as above tr grtz sand grains med.							
40.0-42.0	100	Volcanic rock as above.							
42.0-45.0		Marl, It-med yellow, It olive brn, soft, sticky in part, disp in part,							
		abundant microfossil and broken shell fragtruglauc. tr med-dk brn iron							
		oxide pellets at the top (weathered unconformity surface.)							
4.50-50.0	100								
50.0-55.0	100	Marl, generally as above, tan It-med olive gry.							
55.0-60.0	100	Marl, as above, extremely fossiliferous.							

WELL: South	Cara	mut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 3			S	SHOV	NS		
DEPTH (m)	%		-	I	GAS	5		FLU	OR
		SAMPLE DESCRIPTION	TOTAL	C1	C2	Сз	C4	NAT	СИТ
60.0-65.0	100	Marl, as above, occ med-dk brn due to iron oxide staining on some							
		forams and shell frag (possibly weathered and reworked?).							
65.0-70.0	100	Marl, generally as above, mud brn. It-med orange to brn. tr olive brn,							
		v disp, abundant iron oxide staining on microfossil and shell frag							
		apparently due to reworked weathered surface.							
70.0-75.0	100	Marl, generally as above, dom It occ med olive gry.							
75.0-80.0	100	Marl, generally as above, dom It occ med olive gry.							
80.0-85.0	100	Marl, generally as above becoming less fossiliferous and dom sticky.							
85.0-91.4	100	Marl, generally as above, dom med olive gry, dom sticky becoming less							
•		fossiliferous.							
1		The casing point of 91.4m was reached at 1700hrs Monday 15/10/90.							
		Ran casing, casing shoe at 87.2 m, drilled out of casing shoe at							
		0130hrs, 17/10/90 F.I.T. then drilled new hole at 0230hrs, 17/10/90.							

Iramut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 4 SAMPLE DESCRIPTION			GNG				
						FLU	OR
	TOTAL	C1	C2	Сз	C4	NAT	CUT
0 Marl, as above, med olive gry, dom disp, extremely fossil.							
0 Marl, as above.							-
0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor:							
Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no							
apparent mtx, mod strong calc cmt, tr foram no vis Ø.							
0 Marl, as above It-med olive gry, It-med brn gry in part v disp,							
extremely fossil.							
Calcarenite as above.							
0 Marl as above.							
r Calcarenite as above.							i
0 Marl as above.							
0 Marl as above, dom med olive gry and med gry.							
0 Marl as above, becoming sticky in part.							
	 r Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no apparent mtx, mod strong calc cmt, tr foram no vis Ø. 0 Marl, as above It-med olive gry, It-med brn gry in part v disp, extremely fossil. 	Marl, as above, It-med olive gry, extremely fossil, interbd with minor: r Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no apparent mtx, mod strong calc cmt, tr foram no vis Ø. 0 Marl, as above It-med olive gry, It-med brn gry in part v disp, extremely fossil. r Calcarenite as above. 0 Marl as above. r Calcarenite as above. 0 Marl as above. r Calcarenite as above. 0 Marl as above. 0 Marl as above.	0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor: r Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no apparent mtx, mod strong calc cmt, tr foram no vis Ø. 0 Marl, as above It-med olive gry, It-med brn gry in part v disp, extremely fossil. r Calcarenite as above. 0 Marl as above. 0 Marl as above.	0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor: Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no r Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no 0 Marl, as above It-med olive gry, It-med brn gry in part v disp, Image: Calcarenite as above. 0 Marl, as above It-med olive gry, It-med brn gry in part v disp, Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above.	0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor: Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no apparent mtx, mod strong calc cmt, tr foram no vis Ø. Image: Calcarenite, It gry, It olive gry, It-med brn gry in part v disp, Image: Calcarenite as above It-med olive gry, It-med brn gry in part v disp, Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl, as above It-med olive gry, It-med brn gry in part v disp, Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above, dom med olive gry and med gry. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. <td< td=""><td>0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor: Image: Constraint interbet with minor: Image: Constraint int</td><td>0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor: Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no apparent mtx, mod strong calc cmt, tr foram no vis Ø. Image: Calcarenite, It gry, It olive gry, It-med brn gry in part v disp, in the extremely fossil. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above.</td></td<>	0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor: Image: Constraint interbet with minor: Image: Constraint int	0 Marl, as above, It-med olive gry, extremely fossil, interbd with minor: Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no Image: Calcarenite, It gry, It olive gry, firm to hd, med to occ coarse, no apparent mtx, mod strong calc cmt, tr foram no vis Ø. Image: Calcarenite, It gry, It olive gry, It-med brn gry in part v disp, in the extremely fossil. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. 0 Marl as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above. Image: Calcarenite as above.

WELL: South	n Cara	mut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 5			S	SHO/	WS		
DEPTH (m)	%	SAMPLE DESCRIPTION	-						OR
(' <i>'</i>			TOTAL	C1	C2	Сз	C4	NAT	CU
130-135	100 Marl as above becoming sticky in part.								
	tr	Calcarenite as above.							
135-140	100	Marl as above, med olive gry occ dk olive gry dom sticky mod							
·		fossiliferous.							
	tr	Calcarenite as above.							
140-145	95	Marl, generally as above, med olive gry, med brn gry It gry to It							
		olive gry in part, soft, v disp, extremely fossiliferous, shell fragments							*******
		are med brn-stained by iron oxide, rare iron oxide pellets, rare med-							
		coarse rounded qrtz sand grains interlam with:							
	5	Calcarenite. It gry. It olive gry. firm-hd. occ vhd. f-med rare argill mtx.							
		mod strong calc. cmt, tr shell frag, rar-tr glauc, nouvis Ø.							
145-150	80	Marl, generally as above with no iron oxide staining interbedded with:							
	20	Calcarenite, as above no vis Ø.							

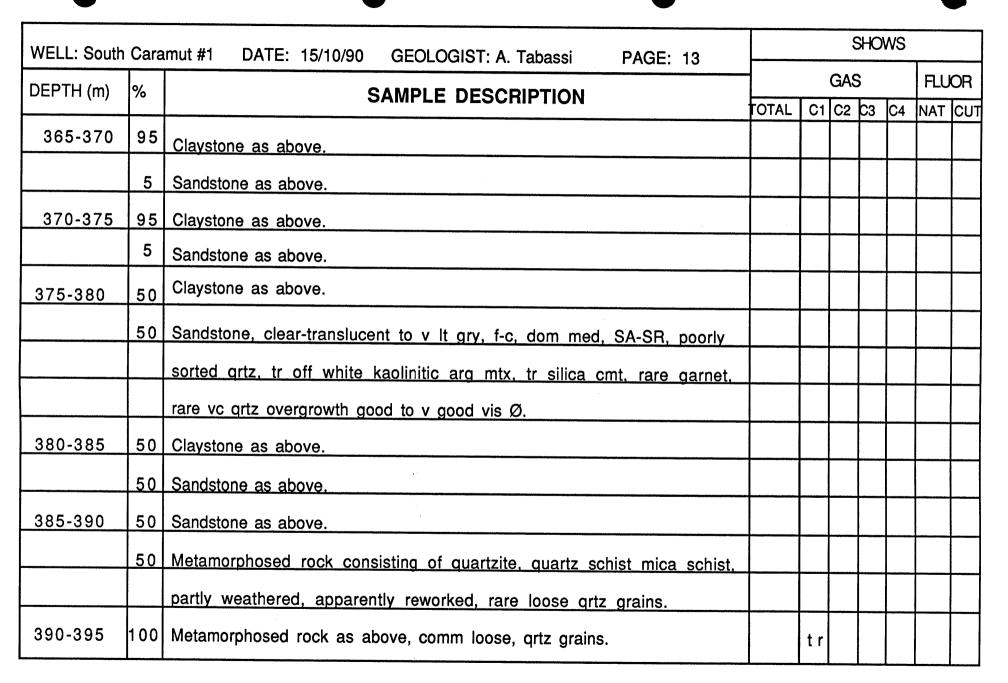
WELL: South	Cara	amut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 6			S	SHO	WS		Alexandra and a second
DEPTH (m)	%	SAMPLE DESCRIPTION			GAS	3		FLU	<i>I</i> OR
			TOTAL	C1	C2	Сз	C4	NAT	CUT
150-155	50	Marl as above.							
	50	Calcarenite as above.							
155-160	30	Marl, generally as above, dom med brn orange possibly due to weathering							
		and oxidation, com-abundant iron oxide pellets, tr med-c, rounded, It							
		brn stained qrtz sand grains interbedded with:							
	70	Calcarenite, generally as above with iron staining, no vis Ø.							
160-165		Marl, as above with moderate iron staining.							
	50	Calcarenite, as above with moderate iron staining, no vis Ø.							
165-170	65	Marl, generally as above, dom It-med olive gry, It gry to It brn gry in							
		part.							
	35	Calcarenite, generally as avove, dom v It gry, It-med olive gry in part,							
		no vis Ø.							
170-185	95	Marl, as above.							
	5	Calcarenite as above.							

WELL: South) Cara	mut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 7			S	SHOW	IS		
			-		GAS	6		FLUC	OR
DEPTH (m)	%	SAMPLE DESCRIPTION	TOTAL	C1	C2	C3 (24	NAT	сил
175-180	95	Marl as above.							
	5	Calcarenite as above.							
180-185	95	Marl as above.							
	5	Calcarenite as above.							
185-190	100	Marl as above, tr loose, f-vc dom med-c rounded sand grains.							
	tr	Calcarenite as above.							
190-195	95	Marl as above.							
	5	Sandstone, clear-vult brn, loose, f-vc, dom med-c, rounded-well							
		rounded poorly sorted qrtz, no apparant matrix v good vis Ø.							
195-200		Claystone. dk-vdk gry. dk brn gry in part, soft to firm sticky in part.							
		rare lit, rarely calc.							
200-205	100	Claystone, med gry, med green gry in part, firm, blocky in part, disp in							
		part, v occ silty in part, rare fine lithics.							

.

.

WELL: South	n Cara	umut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 8			S	HOV	NS		
DEPTH (m)	%		-	(GAS			FLU	DR
	/0	SAMPLE DESCRIPTION	TOTAL	C1	C2	C3	C4	NAT	CUT
205-210	100	Claystone, as above, occ med-dk brn gry, tr carb det in part.							
210-215	95	Claystone as above, slightly cabrarerous.							
	5	Sandstone, It gry to beige, firm-hd, vf to silt size SA-SR, well sorted							
		qutz and multi-col lithics, com off white kaolinitic arg mtx tr calc							
		cmt, rare partially altered feldspar, v poor - no vis Ø.							
215-220	95	Claystone as above, in part becoming silty and/or grading into minor							
		siltstone, slightly calcareous.			-				
	5	Sandstone, It-med gry and green gry, occ It brn gry, firm to hd, vf-f,							
		SA-SR, fair to well sorted qrtz and multi-col lithics, com off white							
		kaolinitic arg mtx, tr calc cmt, rare partially altered feldspar, v poor-							
		no vis Ø.							
220-225	100	Claystone as above, non calcareous.							,
	tr	Sandstone as above, slightly caleareous.							4 444 - 1999 - 1999 - 1 999 - 1999 -


WELL: South	n Cara	amut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 9			Sł	ЮWS				
DEPTH (m)	%	SAMPLE DESCRIPTION	GAS					FLUOR		
		SAMPLE DESCRIPTION		C1	C2 C	3 C4	NAT	CUT		
225-230	100	Claystone as above non calcareous.								
- <u></u>	tr	Sandstone as above.						1		
230-235	100	Claystone as above.								
235-240	95	Claystone as above.						+		
	5	Sandstone as above.								
240-245	100	Claystone as above.								
	tr	Sandstone as above.								
245-250	95	Claystone as above.								
	5	Siltstone, It-med green gry, pale green in part, occ It brn gry, soft to								
		firm, disp, occ blocky in part, rarely carb and micaceous.								
250-255	100	Claystone as above.								
255-260	90	Claystone as above, com micaceous, mod silty in part.						$\left \right $		
	10	Sandstone generally as above dom fine, commicareous, v poor to no								
		vis Ø.	,							

		mut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 10			S	SHOV	VS		
WELL. South Caramat #1 BATE. 15/16/56 GEOLOGIOT/A Fababa		-	GAS					OR	
DEPTH (m)	DEPTH (m) % SAMPLE DESCRIPTION						C4	NAT	сит
260-265	100	Claystone as above.							
265-270	100	Claystone as above.							<u> </u>
270-275	95	Claystone as above.							
	5	Siltstone as above				ļ			<u> </u>
275-280	100	Claystone as above with calcite band (286-287m) med brn gry,							<u> </u>
<u> </u>		extremely hd, cryptocrystalline in part, med, coarsely recrystallised,							<u> </u>
		dolomitic (?) in part, tr slickenside (possibly a minor fault).							
280-285	100	Claystone, generally as above, med-dk gry, med-dk green gry, med-dk		<u> </u>					<u> </u>
		brn gry in part, firm, hd in part, blocky to subfis, rare carb det & mica,	_			_			
		rare lithics, silty in part.							
285-290	100	Claystone as above becoming v silty in part.		<u> </u>		_			
290-295	100	Claystone as above, silty in part.	_	_		_			
295-300	100	Claystone as above.			+	_			
300-305	100	Claystone as above becoming v silty in part.							

WELL: South	SHOWS								
			G			GAS			OR
DEPTH (m)	%	SAMPLE DESCRIPTION	TOTAL	C1	C2	Сз	C4	NAT	CU
305-310	95	Claystone as above becoming v silty in part.							
	5	Siltstone as above.							
310-315	95	Claystone as above.							
	5	Siltstone as above.							
315-320	90	Claystone as above.							
	10	Siltstone as above.							
320-325	95	Claystone as above.							
	5	Siltstone as above.							
325-330	100	Claystone as above.							
	tr	Sandstone as above.							
330-335	100	Claystone as above.							
9.14 - 19.19 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4 - 19.4	tr	Siltstone as above.							
	tr	Sandstone as above.							
									

WELL: South	n Cara	amut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 12			ξ	SHOV	NS			
DEPTH (m)	%	SAMPLE DESCRIPTION			GAS	5		FLUC	JOR	
			TOTAL	C1	C2	СЗ	C4	NAT	сит	
335-340	90	Claystone as above.								
	10	Sandstone as above.								
	tr	Siltstone as above.								
340-345	95	Claystone as above.								
	5	Siltstone as above.								
	tr	Sandstone as above.								
345-350	100	Claystone as above								
350-355	95	Claystone as above.								
	5	Siltstone as above.								
355-360	100	Claystone as above, slightly dispersive in part.								
360-365	90	Claystone as above.								
	5	Sandstone as above.							_	
	5	Siltstone as above.								

	_	

WELL: South	Cara	mut #1 DATE: 15/10/90 GEOLOGIST: A. Tabassi PAGE: 14			Ş	SHOV	NS		
DEPTH (m)					GAS				
		SAMPLE DESCRIPTION	TOTAL	C1	C2	C3	C4	NAT	СИТ
395-400	100	Metamorphosed rock as above, com loose, qrtz grains.							
400-405	100	Metamorphosed rock as above, com loose, qrtz grains.							
405-410	100	Metamorphosed rock as above, com loose, qrtz grains.							
410-415	100	Metamorphosed rock as above, com loose, qrtz grains.							
415-420	100	Metamorphosed rock as above, com loose, qrtz grains.							
420-425	20-425 100 Quartz Mica Schist, med green hd-vhd, occ firm to friable, tr pyrite n								
		apparant weathering, becoming fresh.							
	100	Quartz, mica schist as above.							
	100	Quartz mica shist as above.							
		T.D. of 435 m was reached @ 0310 Thursday 18th October 1990.							
				t r					

SIDEWALL CORE DESCRIPTION

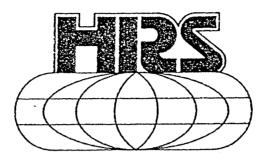
SIDE WALL CORE DESCRIPTION SOUTH CARAMUT #1

.

Page 1

No.	Depth (m)	Rec cm	SOUTH CARAMUT #1 Page 1 Description
1	430.0	2.3	Quartz Mica Schist, medium green grey, medium green, hard crumbly in part, core appears to be fractured/ fragmented and weathered in part.
2	420.0	2.8	Quartz Mica Schist, as per Sidewall Core No. 1.
3	411.0	3.3	Mica Schist. medium green grey, soft to firm, hard in part, morderately to strongly weathered.
4	396.0	3.8	<u>Sandstone</u> , medium green grey, firm to friable, fine to very coarse, dominantly medium to coarse, subangular to subrounded, poorly sorted quartz and multi-coloured metamorphic lithics, abundant dispersive off white kaolinitic and green (chloritic?) argillaceous matrix very poor visual porosity, no shows.
			The rock appears to be the product of reworked basement or "basement wash"(?).
5	393.0	3.0	<u>Claystone</u> , medium green grey, firm, sticky, moderately micromicaceous, rarely carbonaceous.
6	390.5	2.5	Sandstone, off white to very pale brown grey, friable, fine to coarse, dominantly medium, subangular to sub rounded, dominantly subangular, poor to fair sorted quartz, common off white kaolinitic clay matrix in part, slightly silty in part, trace to common carbonaceous material, fair to good visual porosity, no shows.
7	384.5	2.0	<u>Sandstone</u> , light to medium brown grey, firm to friable, very fine to medium, dominantly medium, subangular to subrounded, fair sorted quartz, common to abundant off white to light grey argillaceous matrix, silty in part, trace to common fine lithics, trace carbonaceous detritus, trace to common micromica, fair visual porosity, no shows.
8	382.5		<u>Sandstone</u> , light to medium grey and brown grey, friable, very fine to fine, silt size in part, subangular to sub- rounded fairly sorted quartz, common to abundant off white and light brown grey argillaceous matrix, common fine carbonaceous detritus and laminae, common fine mica flecks, trace lithics, fair to poor visual porosity, no shows.

No.	Depth (m)	Rec cm	Page 2 Description
9	381.0	1	<u>Claystone</u> , medium grey to medium olive grey, soft to firm, dispersive in part, trace to common carbonaceous detritus, trace to occasionally common silt, rare fine lithics, trace fine mica.
10	379.5	3.5	Claystone, as per Sidewall Core No. 9, sticky in part.
11	373.0	2.5	Claystone. as per Sidewall Core No. 9, sticky in part.
12	351.0	3.3	<u>Claystone</u> , medium to dark grey, medium to dark brown grey, soft to firm, dispersive in part, blocky and subfissile in part.
13	334.0	2.5	<u>Sandstone</u> , light green grey, friable, rarely firm, very fine to fine, silty in part, subangular to subrounded, fairly to well sorted quartz and light green grey lithics, common to bundant dispersive argillaceous matrix Kaolinitic in part, very poor visual porosity, no shows.
14	362.0	2.3	Sandstone, off white to very pale brown grey, friable,
15	280.0	2.2	<u>Claystone</u> , medium green grey to medium bluish grey, soft sticky, rarely carbonaceous and micaceous, trace fine mult-coloured lithics (volcano genic?).
16	275.0	2.3	<u>Claystone.</u> light grey to light green grey, soft, sticky, dispersive in part, trace mica and carbonaceous detritus, abundantly silty, in part grading into siltstone.
17	236.0	2.2	<u>Claystone.</u> medium green grey, medium to dark grey in part, soft to firm, dispersive in part, sticky in part, rarely blocky in part, trace to rare biotite flecks, rare lithics.
18	204.0	3.2	<u>Claystone</u> , dark brown grey, soft to firm, dispersive, sticky in part, commonly very fine micaceous and carbonaceous, trace lithics.
19	182.0	3.5	Claystone, as per Sidewall Core No. 18.
20	191.0	3.7	Marl. medium brown green, medium to dark green grey, firm, dispersive, extremely fossiliferous, grading into calcarenite in part


Page 3

No.	Depth (m)	Rec cm	Description
21	182.0	3.5	Marl. generally as Sidewall Core No. 20, dominantly medium dark green.
22	162.0	3.2	<u>Marl.</u> medium orange, soft, dispersive, very fossiliferous grading into loose calcarenite, (orange colour, "oxidation," of the sample may be due to weathered/unconformity surface).
23	140.0	3.0	<u>Marl.</u> medium to dark green grey, foft, dispersive, extremely fossiliferous, trace to common dark brown (iron oxide) pellets.
24	100.0	3.5	Marl, medium to dark grey, medium brown grey and green grey in part, soft to firm, gritty in part, extremely fossiliferous.
]		· · · · · · · · · · · · · · · · · · ·

APPENDIX VI

FORMATION TESTING

FORMATION TEST REPORT

HALLIBURTON RESERVOIR SERVICES

€

A Halliburton Company

Customer: LAKES OIL LTD Well Description: CARAMUT SOUTH #1 Field Name: CARAMUT

 TEST NO:
 DST #1

 TEST DATE:
 19–10–90

 TICKET NO:
 352326

HALLIBURTON SERVICES

REPORT TICKET NO: 352326 BT-GAUGE TICKET NO: 352326 DATE: 19-10-90 HALLIBURTON CAMP: ROMA, QLD. TESTER: K.Rixon WITNESS: B.Beetson

DRILLING CONTRACTOR: DRILLCORP #24 LEGAL LOCATION:

OPERATOR: LAKES OIL LTD. LEASE NAME: CARAMUT SOUTH WELL NO: 1 TEST NO: 1 TESTED INTERVAL: 1230.00 - 1425.00 ft

FIELD AREA: CARAMUT COUNTY/LSD: STATE/PROVINCE: VICTORIA COUNTRY: AUSTRALIA

NOTICE: THIS REPORT IS BASED ON SOUND ENGINEERING PRACTICES, BUT BECAUSE OF VARIABLE WELL CONDITIONS AND OTHER INFORMATION WHICH MUST BE RELIED UPON HALLIBURTON MAKES NO WARRANTY, EXPRESS OR IMPLIED AS TO THE ACCURACY OF THE DATA OR OF ANY CALCULATIONS OR OPINIONS EXPRESSED HEREIN. YOU AGREE THAT HALLIBURTON SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGE, WHETHER DUE TO NEGLIGENCE OR OTHERWISE ARISING OUT OF OR IN CONNECTION WITH SUCH DATA, CALCULATIONS OR OPINIONS.

TABLE OF CONTENTS

SECTION 1: TEST SUMMARY & INFORMATION

Summary of Test Results	1.1
Test Period Summary	1.2
Pressure vs. Time Plot	1.3
Test and Formation Data	1.4
Rate History Table	1.5
Tool String Configuration	1.6
Operator Job Log	1.7
SECTION 2: ANALYSIS	

Plots

ŧ

SECTION 3: MECHANICAL GAUGE DATA

Gauge No.	6106	3.1
Gauge No.	7885	3.2
Gauge No.	8008	3.3

÷.

2.1

.

-

.:

Date: 19-10-90

Ticket No: 352326 Page No: 1.1

SUMMARY OF TEST

Well No.: 1

Lease Owner: LAKES OIL LTD. Lease Name: CARAMUT SOUTH

Test No.: 1

· · · · ·

.:

State/Province: VICTORIA

Country: AUSTRALIA

County/LSD:

Formation Tested: PRETTY HILL

Hole Temp: 98.00 F -

Total Depth: 1425.00 ft

Net Pay: 195.00 ft

Gross Tested Interval: 1230.00 - 1425.00 ft

Perforated Interval (ft):

RECOVERY:

65ft WATERY MUD 754.5ft MUD CUT WATER

REMARKS:

ALL DOWNHOLE PRESSURES ARE IN ABSOLUTE.

Date: 19-10-90

Ticket No: 352326 Page No: 1.1

SUMMARY OF TEST

Lease Owner: LAKES OIL LTD. Well No.: 1 County/LSD:

Lease Name: CARAMUT SOUTH

,...^{...}

:

Test No.: 1

State/Province: VICTORIA

Country: AUSTRALIA

Formation Tested: PRETTY HILL

Hole Temp: 98.00 F

Total Depth: 1425.00 ft

195.00 ft Net Pay:

Gross Tested Interval: 1230.00 - 1425.00 ft

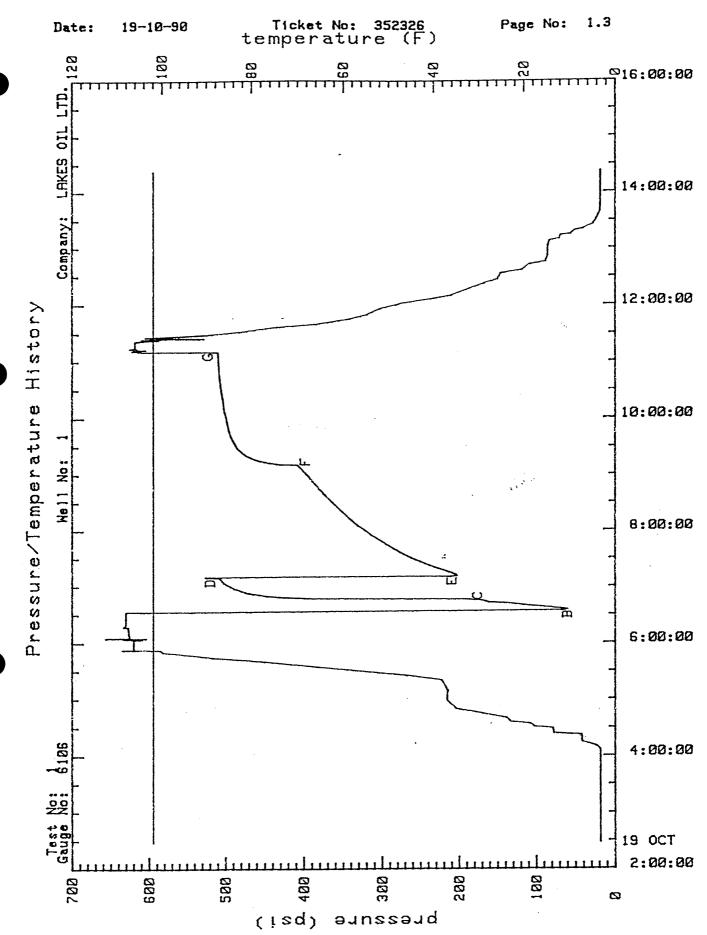
Perforated Interval (ft):

RECOVERY:

65ft WATERY MUD 754.5ft MUD CUT WATER

REMARKS:

ALL DOWNHOLE PRESSURES ARE IN ABSOLUTE.


Date: 19-10-90 Ticket No: 352326 Page No: 1.2

TEST PERIOD SUMMARY

Gauge 1	No.:	6106 Depth: 1210.00	ft Blanked off Hour of clock:	
ID	PERIOD	DESCRIPTION	PRESSURE (psi)	DURATION (min)
А		Initial Hydrostatic	627.59	
В	1	Start Draw-down	62.84	
С		End Draw-down	186.06	12.00
С	2	Start Build-up	186.06	
D		End Build-up	507.13	23.08
E	3	Start Draw-down	212.02	
F		End Draw-down	408.55	120.51
F	4	Start Build-up	408.55	
G		End Build-up	510.24	119.67
Н		Final Hydrostatic	618.26	

4

NOTE: for Pressure vs. Time Plot, see next page.

Date: 19-10-90 Ticket No: 352326 Page No: 1.4

TEST AND FORMATION DATA

Formation Tested: PRETTY HILL All Depths Measured From: KELLY BUSHINGS Lievation:476.70 ftTotal Depth:1425.00 ftNet Pav Hole or Casing Size: Gross Tested Interval: Perforated Interval: 1230 Perforated Interval (ft): 1230.00 - 1425.00 ft

HOLE FLUID

HOLE TEMPERATURE

Type:	DRILLING FLUID	Depth:	1420.90	ft
Weight:	9.50 lb/gal	Estimated:	0.00	F
Viscosity:	0 seconds	Actual:	98.00	F

HYDROCARBON PROPERTIES

CUSHION DATA

Oil Gravity (API): 0.0 @	60 F	TYPE	AMOUNT	WEIGHT
Gas/Oil ratio (ScF/STB):	0.0	NIL		
Gas Gravity (SG):	0.75			

FLUID PROPERTIES FOR RECOVERED MUD AND WATER

SOURCE	RESISTIV	/ITY	CHLORIDES	SG	PH
	6	F	PPM		
	6	F	PPM		
	6	F	PPM		
	6	F	PPM		
	6	F	PPM		
	e	F	PPM		

SAMPLER DATA

Surface Pressure:		psi
Volume of Gas:	0	ft3
Volume of Oil:	0	cc
Volume of Water:	0	cc
Volume of Mud:	0	сс
Total Liquids:	0	сс

REMARKS:

ALL DOWNHOLE PRESSURES ARE IN ABSOLUTE.

Date: 19-10-90

. : •

:

.

RATE HISTORY TABLE

.

Period	Test	j	Prod Rate q(j)	Duration	Cum. Time t(j)
No	Type		(MCF/D)	(hrs)	(hrs)
1 2 3 4	DD BU DD BU	0 1 2 3 4	0.0 0.0 0.0	0.00 0.20 0.39 2.03 2.02	0.00 0.20 0.59 2.62 4.64

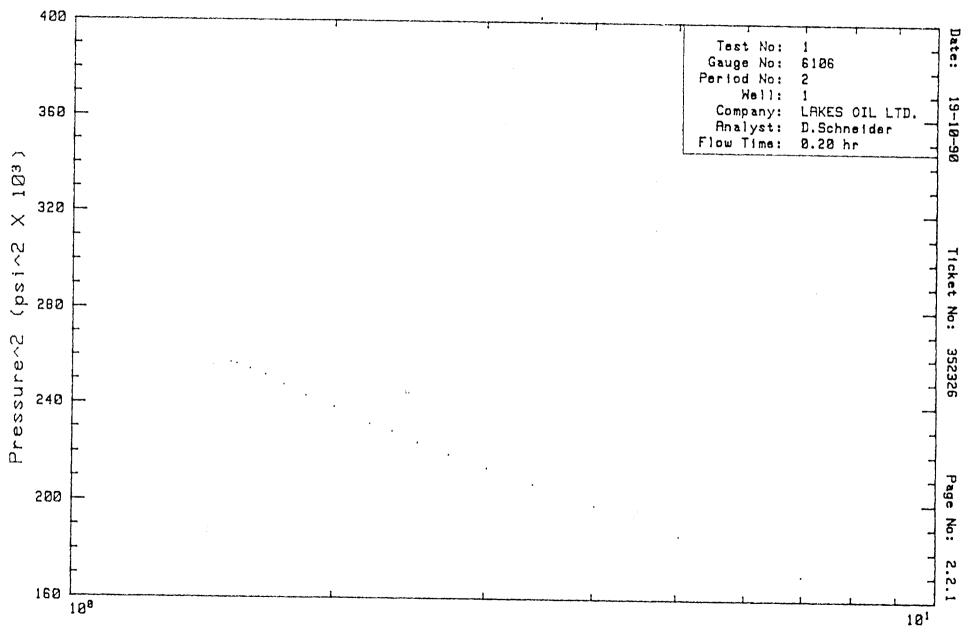
Date:19-10-90

Ticket no: 352326 Page no: 1.6.1

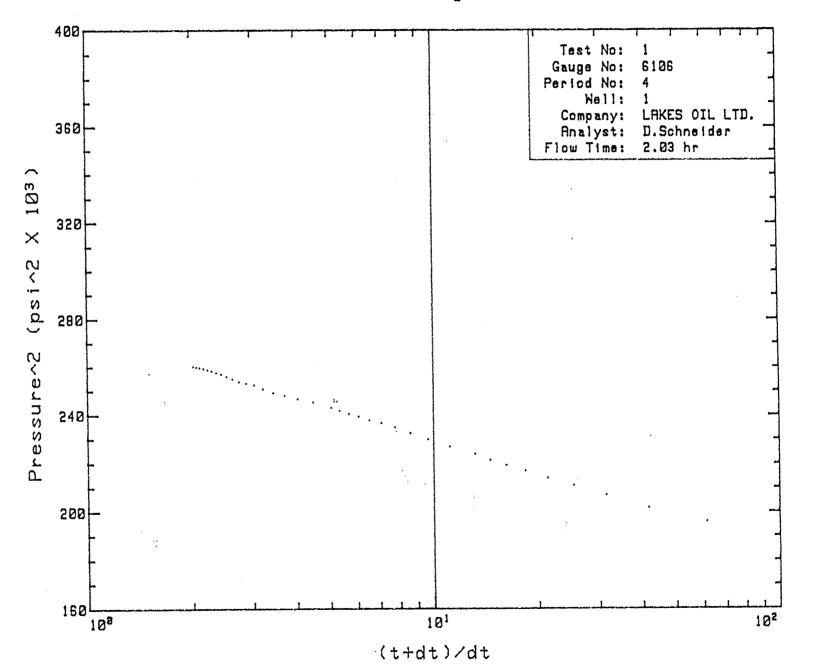
TEST STRING CONFIGURATION

		0.D. (in)	I.D. (in)	LENGTH (ft)	DEPTH (ft)
	DRILL PIPE	4.500	3.827	841.608	
	DRILL COLLARS	6.000	2.750	270.890	
•	PUMP OUT REVERSING SUB	6.989	3.000	1.000	1102.04
	DRILL COLLARS	6.090	2.870	59.140	
•	IMPACT REVERSING SUB	6.000	3.000	1.000	1162.98
	DRILL COLLARS	6.000	2.750	29.150	
	BAR CATCHER SUB	6.000	1.500	1.000	
	AP RUNNING CRSE	5.000	3.060	4.148	1195.13
•	DUAL CIP VALVE	5.000	0.870	5.870	1203.00
•	HYDROSPRING TESTER	5.000	8.758	5.000	1208.00
	AP RUNNING CASE	5.000	3.068	4.140	1210.00
	JAR	5.000	1.750	5.000	
, III	VR SAFETY JOINT	5.000	1.000	2.780	
	OPEN HOLE PACKER	7.750	1.680	5.850	1223.90
, ,	DISTRIBUTOR VALVE	5.000	1.680	2.090	
	OPEN HOLE PACKER	7.750	1.680	5.850	1229.70
	PERFORATED TAIL PIPE	5.000	2.370	6.000	
1	CROSSOVER	5.758	2.700	1.000	
Ц Я	DRILL COLLARS	6.000	2.750	180.320	
	CROSSOVER	5.850	2.850	1.000	
	BLANKED-OFF RUNNING CRSE	5.000	2.370	4.060	1420.94

TOTAL DEPTH

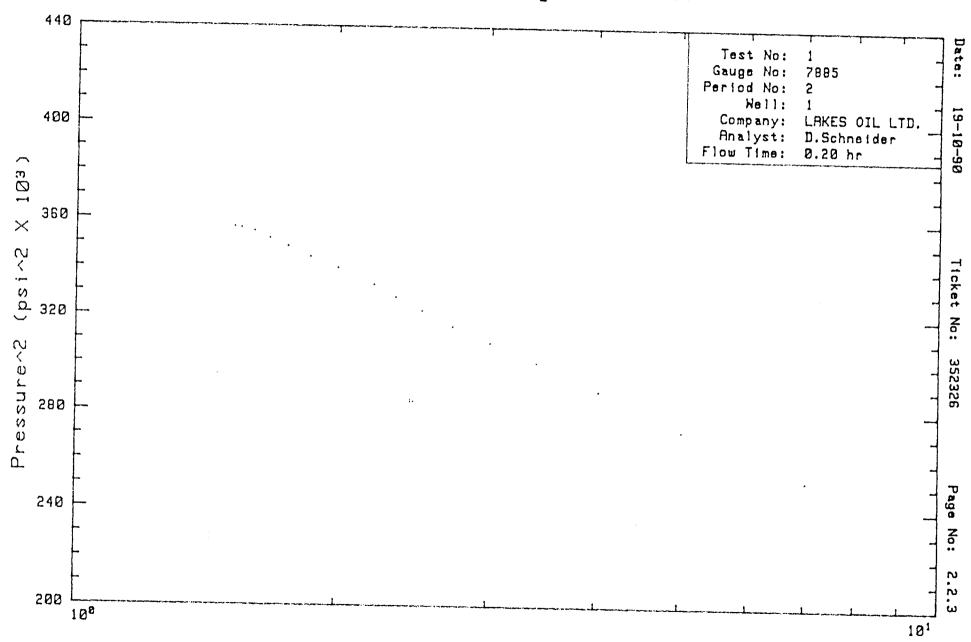

1425.00

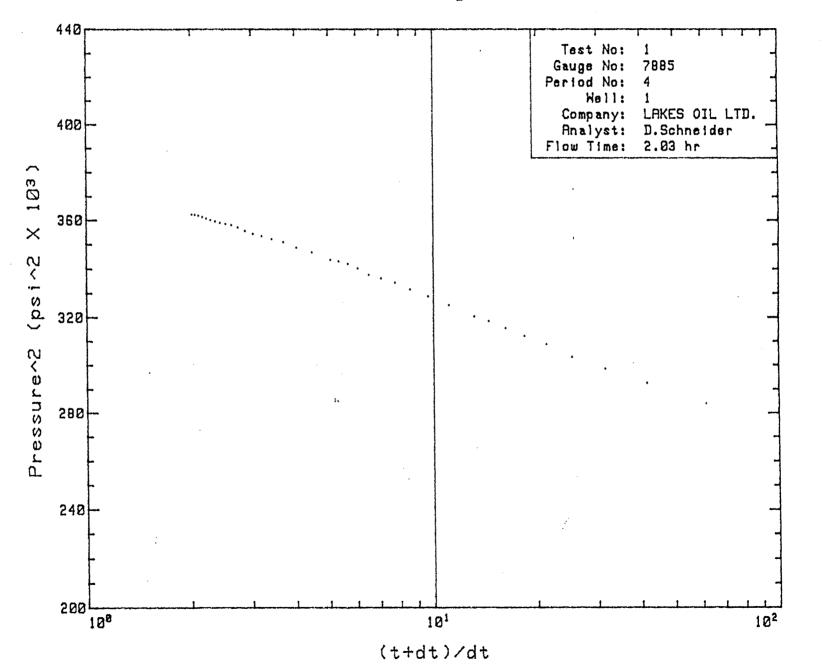
Date: 19-10-90 Ticket No: 352326 Page No: 1.7.1 Test No: 1


OPERATOR JOB LOG

Type of Flow Measuring Device: 6"CERAMIC CHOKE

-	TIME HH:MM:SS	CHOKE SIZE (in)	SURFACE PRESSURE (psi)	RATE	LIQUID RATE (bbl/d)	REMARKS
	-OCT-90 D2:45:00 D2:45:00 D4:15:00 D6:25:00 D6:34:00 D6:34:00 D6:47:00 D7:13:00 D7:30:00 D7:45:00 D8:00:00 D8:15:00 D8:45:00 D9:00:00 D9:13:00 L1:13:00 L1:30:00	0/64	0.00	-		SURFACE PRESSURE = PSIG MAKE UP TOOLS RUN IN HOLE RIG UP SURFACE EQUIPMENT TOOL OPEN, CLOSED AT CHOKE MAN MODERATE BUBBLE CLOSE TOOL TOOL OPEN, MOD. BLOW IN BUCKET MODERATE BLOW IN BUCKET MODERATE BLOW IN BUCKET MODERATE BLOW IN BUCKET MODERATE BLOW IN BUCKET MODERATE BLOW IN BUCKET MODERATE - WEAK BLOW IN BUCKET MODERATE - WEAK BLOW IN BUCKET MODERATE - WEAK BLOW IN BUCKET CLOSE TOOL PULL PACKERS FREE PULL OUT OF HOLE TOOLS LAID OUT


(t+dt)/dt


Date: 19-10-90

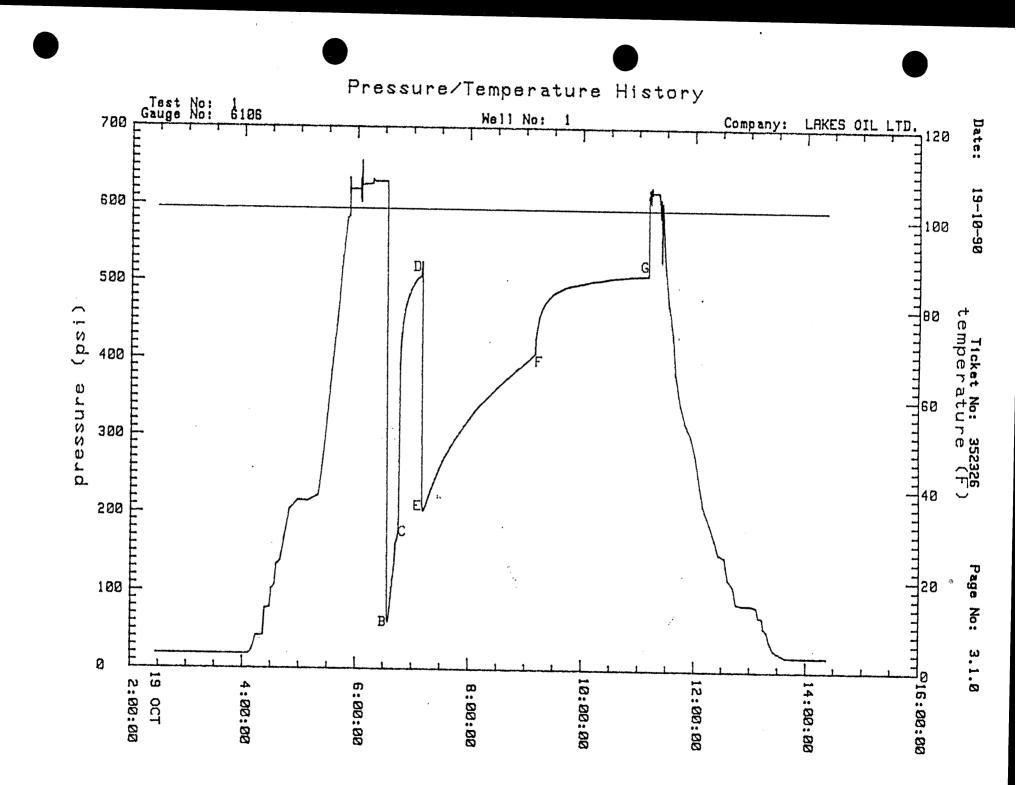
Ticket No: 352326

Page No: 2.2.2

(t+dt)/dt

Date: 19-10-90

Ticket No: 352326


Date: 19-10-90 Ticket No: 352326 Page No: 3.1

TEST PERIOD SUMMARY

		-lop		
Gauge	No.:	6106 Depth: 1210.00	ft Blanked off Hour of clock:	: No 24
ID	PERIOD	DESCRIPTION	PRESSURE (psi)	DURATION (min)
А		Initial Hydrostatic	627.59	
В	1	Start Draw-down	62.84	
С		End Draw-down	186.06	12.00
С	2	Start Build-up	186.06	
D		End Build-up	507.13	23.08
E	3	Start Draw-down	212.02	
F		End Draw-down	408.55	120.51
F	4	Start Build-up	408.55	
G		End Build-up	510.24	119.67
Н		Final Hydrostatic	618.26	

.:

NOTE: for Pressure vs. Time Plot, see next page.

		PRE	SSURE VS	TIME					
MECHANICAL o Clock no.:	gauge no.		Hour:			Gauge Depth 24	•	1210.00	ft
TIME	D TIME	PRESSURE	TEMP			COMMENTS			
HH:MM:SS	(min)	(psi)	(F)						
19-0CT-90		Data Prin	t Fremier	ncv•	٦				
02:27:51		18.199		nej.	-				
02:42:51		18.199							
02:42:01		1001200	20200	SURF	ACE	PRESSURE =	PSI	G	
02:45:00				MAKE	UP	TOOLS			
02:57:51		18.199	102.0						
03:12:52		18.199	102.0						
03:27:52		18.199	102.0						
03:42:52		18.199	102.0						
03:57:51		18.199							
04:06:29		18.199	102.0						
04:10:01		23.180							
04:14:45		41.772	102.0						
04:15:00				RUN	IN	HOLE			
04:22:18		42.767							
04:23:59		77.603	102.0						
04:29:09		78.597							
04:30:55		102.963	102.0						
04:34:07		107.272	102.0						
04:36:10		134.104	102.0						
04:40:02		137.912	102.0 102.0		.:				
04:44:36 04:49:47		167.537 204.083	102.0						
04:58:38		215.817	102.0						
05:09:18		214.826	102.0						
05:20:21		222.592	102.0						
05:25:19		267.177							
05:30:09		327.210							
05:34:44		382.713							
05:40:08		448.991	102.0						
05:44:37		515.495	102.0						
05:50:23		582.554	102.0						
05:52:33		584.520	102.0						
05:52:44		634.623	102.0						
05:52:55		614.163	102.0						
05:53:04		619.892	102.0						
05:58:03		619.892	102.0						
06:03:44		619.892	102.0						
06:04:01		608.105	102.0						
06:04:39		633.641	102.0						
06:05:09		603.520	102.0						
06:05:25		657.036	102.0						
06:05:48		624.476	102.0						
06:09:29		626.440	102.0						
06:13:19		627.094	102.0						
06:16:30		627.585 627.585	102.0						
06:17:11		021.085	102.0						

Date: 19-10-90

.

.

Ticket No: 352326 Page No: 3.1.2

MECHANICAL	gauge no.		SSURE VS	Gauge Depth: 1210.00 ft
Clock no.:			Hour:	24
TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
19-0CT-90		Data Prin		ncy: 1
06:17:31		633.477		
06:17:36		631.350		
06:20:13		630.204	102.0	
06:25:00				RIG UP SURFACE EQUIPMENT
06:25:23		630.204		
06:32:38		630.204	102.0	TOT OPEN OF OCED AT OUCKE MAN
06:34:00				TOOL OPEN, CLOSED AT CHOKE MAN MODERATE BUBBLE
06:34:00		the Chase	t of Dow	iod 1 ***
	0 00	62.843		
• 06:34:00	0.00 1.01	60.189		
06:35:01 06:36:01	2.02	65.662		
06:37:00		77.603		
06:38:01	4.01	90.699	102.0	
06:39:01	5.02	103.626	102.0	
06:40:00	6.00	116.052		
06:41:01	7.01	127.149		
06:42:01	8.02			
	9.00			
	10.01			
06:45:01	11.02			:
06:46:00	12.00	186.062		
06:47:00				CLOSE TOOL
	-14-			od 1 ***
				iod 2 ***
06:47:01	1.01			
06:48:01	2.02			
06:49:00	3.00	432.061		
06:50:01	4.01	446.032	102.0	
06:51:01	5.02	455.399	102.0	
06:52:00	6.00	462.628	102.0	
06:53:01	7.01	468.706	102.0	
06:54:01	8.02	473.798	102.0	·
06:55:00	9.00	478.397 481.517	102.0	
06:56:01	10.01 12.00	481.517 488.741	102.0 102.0	
06:58:00 07:00:02	14.02	493.338	102.0	
07:02:01	14.02	493.338	102.0	
07:02:01	18.00	502.038	102.0	
07:06:00	20.00	502.030	102.0	
07:08:00	22.02	506.470	102.0	
07:09:05	23.08	507.126	102.0	
0,.00.00	20.00			od 2 ***
07:09:36		510.901	102.0	
07:10:06		526.159	102.0	
_		•		

٠

		PRI	ESSURE VS	TIME
MECHANICAL Clock no.:	gauge no.	: 6106	Hour:	Gauge Depth: 1210.00 ft 24
TIME HH:MM:SS		PRESSURE (psi)		COMMENTS
19-OCT-90		Data Prin		
				iod 3 ***
07:10:13	0.00	212.017	102.0	
	1.01	202.761	102.0	
07:12:14	2.02	203.753	102.0	
07:13:00		•		TOOL OPEN, MOD. BLOW IN BUCKET
07:13:13		205.736		
07:14:14	4.01	208.876	102.0	
07:15:14	5.02	212.843	102.0	
07:16:13	6.00	216.644	102.0	
07:17:14 07:18:14	7.01	220.444	102.0	
07:18:14	8.02	223.914	102.0	
07:19:13	9.00	227.548	102.0	
07:20:14	10.01	231.348	102.0	
07:22:13	12.00	237.789	102.0	
07:24:14	14.02	244.065	102.0	
07:26:14	16.01	249.844	102.0	
07:28:13	18.00	256.118	102.0	
07:30:00				MODERATE BLOW IN BUCKET
07:30:14	20.02	261.731	102.0	
	22.02	267.012		
07:34:13	24.01	271.963		<i>4</i>
	26.00	276.254		
07:38:14	28.02	280.379		
07:40:13	30.01	285.163		
07:45:00	50.01	203.105	102.0	MODERATE BLOW IN BUCKET
	35.00	295.390	102 0	NODMARIE BLOW IN DOCKET
07:50:14	40.02	304.460		
07:55:14	45.01	313.858	102.0	
08:00:00	40.01	515.050	102.0	MODERATE BLOW IN BUCKET
08:00:13	50.00	321.771	102.0	MODERATE BLOW IN BUCKET
08:05:14	55.02	330.835	102.0	
08:10:14	60.01	338.085	102.0	
08:15:00	00.01	220.000	102.0	MODERATE BLOW IN BUCKET
08:20:13	70.00	351.100	102 0	MODERALE BLOW IN BUCKET
08:30:00	70.00	351.100	102.0	NODEDARE HEAV DION IN DUOVOR
08:30:14	00.01	262 703	100.0	MODERATE - WEAK BLOW IN BUCKET
	80.01	363.781	102.0	
08:40:14	90.02	375.470	102.0	
08:45:00	100 00	206 160	100 0	MODERATE - WEAK BLOW IN BUCKET
08:50:13	100.00	386.169	102.0	
09:00:00	110 00	206 000	100 0	MODERATE - WEAK BLOW IN BUCKET
09:00:14	110.02	396.207	102.0	
09:10:13	120.00	407.558	102.0	
09:10:43	120.51	408.545	102.0	
		*** End	of Peric	DC 3 ***

-

-

	_	PI	RESSURE V	S TIM	E			
MECHANICA Clock no.	L gauge no :	.: 6106	Hour:			ge Dep	th:	1210.00 ft
TIME	D TIME	PRESSURE	E TEMP		C	OMMENT	c	
HH:MM:SS	(min)	(psi)	(F)			Ormitin I	5	
19-0CT-90		Data Pri	nt Freque	ency:	1			
09:10:59	0.27	*** Sta 426.471	rt of Per	ciod 4	1 ***			
09:11:44	1.01	420.471						
09:12:45	2.02	442.581						
09:13:00		442.301	102.0	CTC	SE TOOL			
09:13:43	3.00	449.155	102.0	CIC	SE TOOL			
09:14:44	4.01	455.071					**•• ,	
09:15:45	5.02	459.342						
09:16:43	6.00	462.628						
09:17:44	7.01	465.914						
09:18:45	8.02	468.378						
09:19:43	9.00	470.677						
09:20:44	10.01	473.305						
09:22:43	12.00	476.426						
09:24:45	14.02	479. 546	102.0					
09:26:44	16.01	482.174						
09:28:44	18.00	484.801						
09:30:43	20.00	486.607			·			
09:32:44	22.02	487.756						
09:34:44 09:36:43	24.01	489.398	102.0					
09:38:43	26.00	490.547	102.0		:			
09:40:44	28.02	491.861	102.0					
09:45:43	30.01	493.174	102.0					
09:50:45	35.00 40.02	495.472	102.0					
09:55:44	40.02	496.786	102.0					
10:00:43	50.00	498.263 499.412	102.0					
10:05:45	55.02	501.053	102.0					
10:10:44	60.01	502.695	102.0 102.0					
10:15:44	65.01	503.351	102.0					
10:20:43	70.00	504.008	102.0					
10:25:44	75.02	505.157	102.0			•		
10:30:44	80.01	506.141	102.0					
10:35:43	85.00	507.126	102.0	•				
10:40:45	90.02	507.783	102.0					
10:45:44	95.01	508.439	102.0					
10:50:44	100.00	508.931	102.0					
10:55:43	105.00	509.424	102.0					
11:00:44	110.02	509.752	102.0					
11:05:44	115.01	510.080	102.0					
11:10:24	119.67	510.244	102.0					
11.10.01			of Period	14*1	* *			
11:10:31		611.216	102.0					
11:11:46 11:13:00		622.184	102.0					
11:13:02		604 E ==		PULL	PACKERS	FREE		
		604.502	102.0					

PRESSURE VS TIME									
MECHANICAL Clock no.:	gauge no.: 61	06	Hour:			auge Dep 24	oth:	1210.00	ft
TIME HH:MM:SS	D TIME PRE (min) (SSURE psi)				COMMENT	ſS		
		.			-				
19-OCT-90			: Freque	ncy:	T				
11:14:12		4.967							
11:14:49		6.291	102.0						
11:15:07		8.910 8.255	102.0						
11:17:01 11:20:05		8.255	102.0						
11:20:05		8.092	102.0						
11:23:03		6.486	102.0				···.		
11:23:39		9.742	102.0						
11:24:25		7.800	102.0						
11:25:49		4.666							
11:28:36		3.863	102.0						
11:30:00				PULL	OUT	OF HOLE	2		
11:32:30	47	2.484	102.0						
11:36:40	43	5.020	102.0						
11:39:50	38	2.877	102.0						
11:44:39		3.193	102.0						
11:49:42		8.804	102.0						
11:55:19		4.460	102.0						
12:00:47		6.914	102.0						
12:05:52		5.642	102.0		<i>::</i>				
12:09:33		0.199	102.0						
12:16:23		7.220 8.364	102.0 102.0						
12:21:49 12:26:22			102.0						
12:32:34			102.0						
12:36:28			102.0						
12:42:14			102.0						
12:45:08		8.047	102.0						
12:51:53		5.395	102.0						
13:02:28		4.898	102.0						
13:07:25	8	3.074	102.0						
13:09:41		0.140	102.0						
13:13:42		8.980	102.0				1 A		
13:15:02		6.042	102.0						
13:18:27		2.060	102.0						
13:20:32		0.444	102.0						
13:25:17		7.995	102.0						
13:30:22		4.342	102.0						
13:34:44		1.686	102.0 102.0						
13:38:55 13:47:02		8.863 8.531	102.0						
13:47:02		8.365	102.0						
14:04:55		8.365	102.0						
14:04:35		8.199	102.0						
14:16:59		8.199	102.0						
14:22:19		8.199	102.0						

Date: 19-10-90

Ticket No: 352326 Page No: 3.1.6

.:

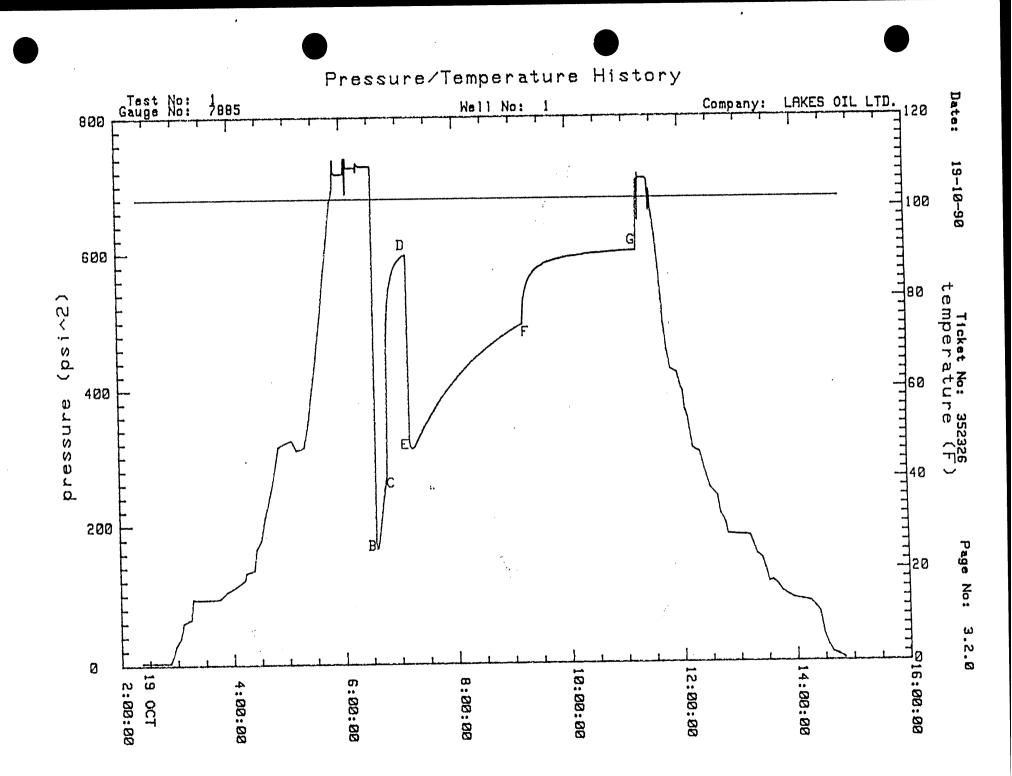
			SSURE VS TIME	Gauge Depth:	1210.00 ft			
MECHANICAL gauge no.: 6106 Clock no.:			Hour:	24				
TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS				

.

19-0CT-90 15:00:00

.

Data Print Frequency: 1 TOOLS LAID OUT



TEST PERIOD SUMMARY

bution									
Gauge	No.:	7885	Depth:	1420.90	ft			: Yes 24	
ID	PERIOD	DE	SCRIPTIO	N	PRES	SURE	(psi)	DURATION	(min)
А		Init	ial Hydr	ostatic		726.3	8		
В	1	Start Draw-down				172.9	2		
С		End Draw-down				272.9	3	12.05	
С	2	Start Build-up			272.93				
D		End Build-up				597.2	4	23.15	
E	3	Start Draw-down				320.7	4		
F		End Draw-down				495.0	9	121.33	
F	4	Star	t Build-	up		495.0	19		
G		End 1	Build-up			602.1	.3	121.24	
Н		Fina	l Hydros	tatic		708.6	0		

4

NOTE: for Pressure vs. Time Plot, see next page.

MECHANICAL Clock no.:	gauge no.		ESSURE VS Hour:	Gauge Depth: 1420.90 ft 24
TIME HH:MM:SS	D TIME (min)			COMMENTS
19-0CT-90		Data Prir	t Fremie	
02:22:18			102.0	ney. I
02:37:18			102.0	
02:45:00			100.00	SURFACE PRESSURE = PSIG
02:45:00				MAKE UP TOOLS
02:52:18		3.437	102.0	
02:58:28		28.191	102.0	
03:02:56		38.619	102.0	
03:06:42		60.352	102.0	
03:14:40	•	65.828	102.0	
03:17:06		94.434	102.0	
03:34:25		93.551	102.0	
03:45:52		95.316	102.0	
03:52:52		103.789	102.0	
04:03:11		112.260	102.0	
04:12:52		121.258	102.0	
04:14:16		131.314	102.0	
04:15:00				RUN IN HOLE
04:23:18		135.900		
04:25:49		166.227	102.0	
04:30:36		177.507		:
04:35:05		210.273		-
04:41:40		247.593		
04:47:51		294.731		
04:50:14		315.295		
04:59:26		322.148	+ · · · · · · · · · · · · · · · · · · ·	
05:04:27		324.608		
05:09:35		309.848	102.0	
05:17:58		313.890		
05:22:47		350.077	102.0	
05:27:12		400.625	102.0	
05:31:37 05:36:28		447.266	102.0	
05:40:28		505.244	102.0	
05:45:05		563.504	102.0	
05:49:05		619.775 675.111	102.0 102.0	
05:51:53		692.031		
05:53:09		737.706	102.0 102.0	
05:53:21		718.360	102.0	
05:55:37		716.966	102.0	
06:01:10		717.140	102.0	
06:03:58		717.837	102.0	
06:04:56		739.797	102.0	
06:06:06		687.322	102.0	
06:06:24		739.797	102.0	
06:06:55		726.204	102.0	
06:10:49		726.378	102.0	
			102.0	

٠

•

				SSURE VS	
	MECHANICAL Clock no.:	gauge no.	: 7885	Hour:	Gauge Depth: 1420.90 ft 24
	TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
. 19	-OCT-90		Data Prin		ncy: 1
•	06:17:23		726.378		
	06:17:35		726.378		
	06:17:42		721.149		
	06:18:02		732.827		
	06:18:15		730.561		
	06:21:08		728.296	102.0	RIG UP SURFACE EQUIPMENT
	06:25:00		728.644	102.0	RIG OF SORFACE EQUIPMENT
	06:26:22 06:33:08		728.044		
	06:34:00		720.121	102.0	TOOL OPEN, CLOSED AT CHOKE MAN
	06:34:00				MODERATE BUBBLE
	00.54.00	· *	*** Star	t of Per	iod 1 ***
	06:34:00	0.00	172.924		
	06:35:01	1.02	165.874		
	06:36:01	2.01	166.756		
	06:37:00	3.01	173.982		
	06:38:00	4.00	184.731		
		5.02	195.126		
	06:40:01	6.01	207.103	102.0	
	06:41:00	7.00	218.373	102.0	
	06:42:00	8.00	229.817	102.0	:
	06:43:01	9.02	241.610		
	06:44:01	10.01	252.696		
	06:45:00		262.373		
	06:46:03	12.05	272.927	102.0	
	06:47:00				CLOSE TOOL
				of Peri	
	0.0.17.05	1 00			iod 2 ***
	06:47:05	1.02	467.242 502.443	102.0 102.0	
	06:48:04 06:49:04	2.01 3.01	502.443	102.0	
	06:50:03	4.00	537.619	102.0	
	06:51:04	5.02	548.464	102.0	
	06:52:04	6.01	555.984	102.0	•
	06:53:04	7.00	562.105	102.0	
	06:54:03	8.00	567.875	102.0	
	06:55:04	9.02	572.770	102.0	
	06:56:04	10.01	577.315	102.0	
	06:58:05	12.02	583.083	102.0	
	07:00:04	14.01	586.928	102.0	
	07:02:05	16.02	590.598	102.0	
	07:04:04	18.01	593.395	102.0	
	07:06:05	20.02	595.841	102.0	
	07:08:04	22.00	596.889	102.0	
	07:09:12	23.15	597.239	102.0	
			*** End	of Perio	Da 2 ***

PRESSURE VS TIME							
MECHANICAL Clock no.:	gauge no.	: 7885	Hour:	Gauge Depth: 1420.90 ft 24			
		PRESSURE		COMMENTS			
HH:MM:SS	(min)	(psi)	(F)				
19-0CT-90		Data Prin	t Freque	ncy: 1			
		*** Star	t_of Per:	iod 3 ***			
07:10:30	0.00	320.743	102.0				
07:11:31	1.02	314.768	102.0				
07:12:31	2.01	312.659	102.0				
07:13:00		•		TOOL OPEN, MOD. BLOW IN BUCKET			
07:13:30	3.01	311.956	102.0	*.			
07:14:30	4.00	312.308	102.0				
07:15:31	5.02	313.362	102.0				
07:16:30	6.01	314.768	102.0				
07:17:30	7.00	317.931	102.0				
07:18:29	8.00	320.391	102.0				
07:19:31	9.02	323.730	102.0				
07:20:30	10.01	326.365	102.0				
07:22:31	12.02	332.162	102.0				
07:24:30	14.01	337.432	102.0				
07:26:31	16.02	343.404	102.0				
07:28:30		348.672	102.0				
07:30:00				MODERATE BLOW IN BUCKET			
07:30:31	20.02	352.887	102.0				
		357.803	102.0				
07:34:31			102.0	.:			
07:36:30		367.108	102.0				
		372.198	102.0				
07:40:30	30.00		102.0				
07:45:00				MODERATE BLOW IN BUCKET			
07:45:31	35.02	387.818	102.0				
07:50:30	40.01	396.941	102.0				
07:55:30	45.00	405.712	102.0				
08:00:00				MODERATE BLOW IN BUCKET			
08:00:31	50.02	413.781	102.0				
08:05:30	55.01	422.198	102.0				
08:10:30	60.00	429.737	102.0				
08:15:00				MODERATE BLOW IN BUCKET			
08:20:30	70.01	443.936	102.0				
08:30:00				MODERATE - WEAK BLOW IN BUCKET			
08:30:31	80.02	455.853	102.0				
08:40:30	90.00	467.067	102.0				
08:45:00				MODERATE - WEAK BLOW IN BUCKET			
08:50:31	100.01	477.402	102.0				
09:00:00				MODERATE - WEAK BLOW IN BUCKET			
09:00:31	110.02	486.859	102.0				
09:10:30	120.01	494.739	102.0				
09:11:49	121.33	495.089	102.0				
	_		of Perio	d 3 ***			

MECHANICAL Clock no.:	gauge no.		ESSURE VS Hour:	TIME	Gauge 24	Depth:	1420	.90	ft
TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)			COM	MENTS			
19-0CT-90		Data Prir	nt Freque	ncv: 1					
			t of Per						
09:12:51	1.02	519.771							
09:13:00				CLOSE	TOOL				
	2.01	532.895	102.0						
09:14:50	3.01	540.942	102.0						
09:15:49	4.00	546.365	102.0						
09:16:51	5.02	550.913	102.0						
09:17:50	6.01		102.0						
09:18:50	7.00		102.0						
09:19:49	8.00		102.0						
09:20:50	9.02		102.0						
09:21:50	10.01	566.126							
09:23:51	12.02	570.322							
09:25:50	14.01		102.0						
	16.02 18.01		102.0						
	18.01 20.02		102.0						
			102.0 102.0						
			102.0						
	26.00		102.0						
09:39:50	28.02	585.880	102.0						
09:41:49	30.00	586.404	102.0	:					
09:46:51	35.02	589.026	102.0						
09:51:50	40.01	590.598	102.0						
09:56:49	45.00		102.0						
10:01:51	50.02	593 569	102.0						
10:06:50	55.01		102.0						
10:11:50	60.00	595.317	102.0						
10:16:51	65.02	596.365	102.0						
10:21:50	70.01	597.588	102.0						
10:26:50	75.00	598.462	102.0						
10:31:51	80.02	598.811	102.0						
10:36:50	85.01	599.161	102.0			.:			
10:41:50	90.00	599.685	102.0						
10:46:51	95.02	600.209	102.0						
10:51:50	100.01	600.733	102.0						
10:56:50	105.00	601.258	102.0						
11:01:51	110.02	601.782	102.0						
11:06:50	115.01	601.957	102.0						
11:11:50	120.01	602.131	102.0		OVEDO	יייניי			
11:13:00 11:13:04	101 04	602 121	102 0	PULL PA	ACKERS	FREE			
11:13:04	121.24	602.131	102.0 of Peric	A +++					
11:14:05		704.239	or Perio 102.0	u 4 ***					
11:15:15		706.854	102.0						
11:15:57		646.141	102.0						
		040.141	102.0						

Clock no.: Hour: 24 TIME D TIME PRESSURE TEMP COMMENTS HH:MM:SS (min) (psi) (F)	
19-OCT-90 Data Print Frequency: 1	
11:16:22 715.223 102.0	
11:16:24 685.578 102.0	
11:16:49 707.551 102.0	
11:18:19 709.121 102.0	
11:20:40 708.598 102.0	
11:22:21 708.598 102.0	
11:24:02 708.598 102.0	
11:26:05 706.505 102.0	
11:27:38 660.628 102.0	
11:28:25 691.508 102.0	
11:30:00 PULL OUT OF HOLE	
11:30:14 659.232 102.0	
11:33:23 625.014 102.0	
11:36:07 583.608 102.0	
11:38:55 536.044 102.0	
11:41:06 494.039 102.0	
11:44:12 455.678 102.0	
11:48:09 426.757 102.0	
11:54:42 422.373 102.0	
11:59:01 399.924 102.0	
12:00:51 395.713 102.0 * 12:03:10 367.108 102.0	
12:05:08 358.857 102.0 12:07:35 338.135 102.0	
12:10:45 309.496 102.0	
12:17:54 303.696 102.0	
12:23:15 276.268 102.0	
12:28:33 251.289 102.0	
12:36:38 238.794 102.0	
12:39:33 213.795 102.0	
12:44:45 200.234 102.0	
12:47:18 183.674 102.0	
12:57:39 181.912 102.0	
13:06:16 181.560 102.0	
13:10:59 180.678 102.0	
13:13:53 171.162 102.0	
13:18:20 154.239 102.0	
13:23:33 149.302 102.0	
13:26:39 135.371 102.0	
13:30:43 113.495 102.0	
13:34:35 116.142 102.0	
13:39:38 109.966 102.0	
13:44:43 100.259 102.0	
13:51:04 94.610 102.0	
13:57:08 90.020 102.0	
14:05:24 87.902 102.0	

Date: 19-10-90

.

Ticket No: 352326 Page No: 3.2.6

1

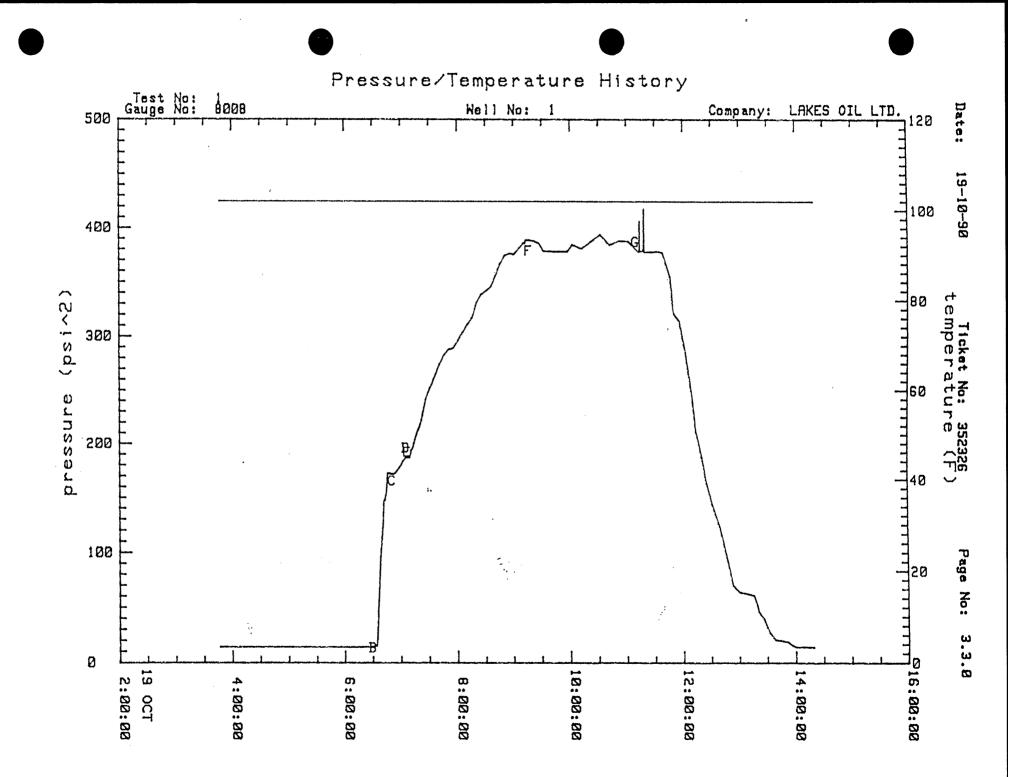
.:

.

. .

				SSURE VS TI	IME	Gauge Depth	: 1420.90 ft
	MECHANICAL Clock no.:	gauge no.	: 7885	Hour:		24	
	TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS	
, 1	9-OCT-90 14:14:27 14:18:50 14:24:33 14:28:49 14:33:22 14:38:05 14:43:29 14:49:25 14:49:50 14:50:21 15:00:00		Data Prin 85.607 79.250 70.597 38.442 22.887 11.748 8.919 4.321 3.437 3.437	t Frequency 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0		LAID OUT	• .

Date: 19-10-90


Ticket No: 352326 Page No: 3.3

TEST PERIOD SUMMARY

Gauge	No.:	8008 Depth:	1195.10	ft Blank Hour of G			
ID	PERIOD	DESCRIPTIO	ИС	PRESSURE	(psi)	DURATION	(min)
А		Initial Hydr	costatic	726.3	38		
В	1	Start Draw-d	lown	15.04			
С		End Draw-dow	172.5	55	12.12		
С	2	Start Build-	172.5	55			
D		End Build-up	- >	186.7	77	23.18	
E	3	Start Draw-d	lown	193.7	71		
F		End Draw-dov	vn	386.0)3	121.67	
F	4	Start Build-	-up	386.0)3		
G		End Build-up		378.0)7	121.15	
Н		Final Hydros		708.6	50		

.:

NOTE: for Pressure vs. Time Plot, see next page.

		PRF	SSURE VS	S TTME
MECHANICAL Clock no.:	gauge no.		Hour:	Gauge Depth: 1195.10 ft 24
	D TIME (min)	PRESSURE (psi)		COMMENTS
19-0CT-90		Data Prin	t Fremie	
02:45:00		bucu rran	e rreque	SURFACE PRESSURE = PSIG
02:45:00				MAKE UP TOOLS
03:46:58		13.688	102.0	
04:15:00				RUN IN HOLE
04:16:58		13.688	102.0	
04:46:59		13.688	102.0	
05:16:59		13.688		
05:46:59		13.688		
06:16:59		13.688	102.0	
06:25:00				RIG UP SURFACE EQUIPMENT
06:34:00				TOOL OPEN, CLOSED AT CHOKE MAN
06:34:00				MODERATE BUBBLE
06.24.00	0 00	*** Star 15.041		iod 1 ***
06:34:00 06:35:01	0.00 1.02	21.468	102.0	
06:36:01	2.01	45.825	102.0	
06:37:00	3.01	65.955	102.0	
06:38:00	4.00	84.733		
06:39:01	5.02	101.652		
06:40:01	6.01	113.495		
06:41:00	7.00		102.0	:
06:42:00	8.00		102.0	
06:43:01	9.02	147.506	102.0	
06:44:01	10.01	152.583	102.0	
	11.00	158.844	102.0	
	12.00			
06:46:07	12.12	172.552	102.0	
06:47:00			.	CLOSE TOOL
				od 1 ***
06.47.00	1 00		t of Per 102.0	iod 2 ***
06:47:08 06:48:08	1.02 2.01	172.552 172.382	102.0	
06:49:08	3.01	172.044	102.0	
06:50:07	4.00	171.875	102.0	
06:51:08	5.02	171.875	102.0	
06:52:08	6.01	171.875	102.0	
06:53:07	7.00	172.213	102.0	
06:54:07	8.00	172.721	102.0	
06:55:08	9.02	173.736	102.0	
06:56:08	10.01	175.090	102.0	
06:58:07	12.00	177.290	102.0	
07:00:07	14.01	179.998	102.0	
07:02:08	16.02	183.552	102.0	
07:04:07	18.01	185.921	102.0	
07:06:08	20.02	187.106	102.0	
07:08:07	22.01	186.768	102.0	

.

MECHANICAL Clock no.:	gauge no.		SSURE VS Hour:	Gauge Depth: 1195.10 ft 24
TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
		Data Prin	+ Fromie	ncv: 1
19-0CT-90	23.18	186.768	102.0	
07:09:18	23.10	*** End		od 2 ***
		*** Star	t of Per	iod 3 ***
07:10:59	0.00	193.707		
07:12:00	1.02	195.061	102.0	
07:12:00				TOOL OPEN, MOD. BLOW IN BUCKET
07:13:00	2.01	196.922	102.0	
07:13:59	3.01	200.477	102.0	
07:14:59	4.00	203.692	102.0	
07:16:00	5.02	206.231	102.0	
07:16:59	6.01	209.447	102.0	
07:17:59	7.00	211.647	102.0	
07:18:58	8.00	213.340	102.0	
07:20:00	9.02	215.710	102.0	
07:20:59	10.01	218.248	102.0	
07:21:59	11.00	222.142	102.0	
07:22:58	12.00	225.865	102.0	
07:24:59	14.01	234.667	102.0	
07:27:00	16.02	241.777	102.0 102.0	
07:28:59	18.01	247.194	102.0	MODERATE BLOW IN BUCKET
07:30:00	20.02	251.256	102.0	HODHRITZ ZZON ZN ZN ZNAM
07:31:00	20.02	255.319	102.0	
07:32:59	22.01 24.02	259.890	102.0	
07:35:00	24.02	264.122	102.0	
07:36:59 07:39:00	28.00	268.862	102.0	
07:40:59	30.00	273.433	102.0	
07:40:55	50.00	2/01/00		MODERATE BLOW IN BUCKET
07:46:00	35.02	282.406	102.0	
07:50:59	40.01	287.823	102.0	
07:55:59	45.00	289.347	102.0	
08:00:00				MODERATE BLOW IN BUCKET
08:01:00	50.02	296.119	102.0	
08:06:00	55.02	303.569	102.0	
08:10:59	60.01	310.849	102.0	
08:15:00				MODERATE BLOW IN BUCKET
08:15:58	65.00	316.944	102.0	
08:21:00	70.02	331.675	102.0	
08:25:59	75.01	338.956	102.0	MODERATE - WEAK BLOW IN BUCKET
08:30:00		AAC AC	102.0	MODERALE - WEAR DION IN DOCUDI
08:30:59	80.00	342.004	102.0	
08:36:00	85.02	345.730	102.0	
08:40:59	90.01	355.212	102.0	MODERATE - WEAK BLOW IN BUCKET
08:45:00	05 00	366.728	102.0	
08:45:59	95.00	374.348	102.0	
08:51:00	100.02	J/4.J40	102.00	

.....

		PRE	SSURE VS	TIME
MECHANICAL Clock no.:	gauge no.	: 8008	Hour:	Gauge Depth: 1195.10 ft 24
TIME	ה הדאד	PRESSURE	TEMP	COMMENTS
HH:MM:SS				COMMENTE
19-0CT-90		Data Prin	t Freque	ncy: 1
08:55:59	105.01	376.380		
09:00:00	100.01	•••••		MODERATE - WEAK BLOW IN BUCKET
09:00:59	110.00	375.534	102.0	
09:06:00		381.292		
09:10:59	120.01	385.864	102.0	
09:12:39	121.67	386.034		ст. 19
09:13:00				CLOSE TOOL
				od 3 ***
				iod 4 ***
09:13:40	1.02	388.743		-
09:14:39		388.743		
09:15:39		388.743		
	4.00	388.743		
	5.02	388.743		
09:22:39	10.01	387.896	102.0	
09:27:39	15.00	385.864	102.0	J. A. S.
09:32:40	20.02	378.582	102.0	
09:37:39	25.01	378.243	102.0	
09:42:39	30.00	377.905	102.0 102.0	
09:47:40	35.02	377.735 377.735	102.0	:
09:52:39 09:57:39	40.01 45.00	377.735	102.0	
10:02:40	50.02	384.509	102.0	
10:12:39	60.01	380.784	102.0	
10:22:41	70.05	387.388	102.0	
10:32:38		393.993	102.0	
10:42:39	90.01	384.340	102.0	
10:52:40	100.02	388.235	102.0	
11:02:39	110.00	387.388	102.0	
11:12:39	120.01	378.074	102.0	
11:13:00				PULL PACKERS FREE
11:13:48	121.15	378.074	102.0	•
				od 4 ***
11:14:02		406.526	102.0	
11:14:13		378.413	102.0	
11:18:15		378.413	102.0	
11:18:51		417.874	102.0	
11:19:22		377.566	102.0	
11:26:56		377.566	102.0	DILLI OUT OF HOLE
11:30:00		270 212	102 0	PULL OUT OF HOLE
11:31:56		378.243 377.058	102.0 102.0	
11:38:16 11:46:32		354.874	102.0	
11:50:14		321.347	102.0	
11:56:18		314.235	102.0	
12:01:02		292.564	102.0	
		2221001		

Date: 19-10-90

Ticket No: 352326 Page No: 3.3.4

MECHANICAL C	Tauge no	• 8000 PF	RESSURE VS	5 TIME			
Clock no.:	Judge 110.	: 8008	Hour:		Gaug 24	e Depth:	1195.10 ft
TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		co	MMENTS	
19-OCT-90 12:05:09 12:10:10 12:13:30 12:19:20 12:24:27 12:30:47 12:38:18 12:46:31 12:53:06 12:59:55 13:08:18 13:15:31 13:19:17 13:20:52 13:26:19 13:32:18 13:38:33 13:43:54 13:52:19 13:56:53 14:00:55 14:09:00 14:16:38		Data Pri 270.724 239.576 210.970	nt Freque 102.0 102.0 102.0 102.0 102.0	ncy:	1		
14:19:23 15:00:00		13.688	102.0	TOOLS	LAID OU	T	

ł

۰.

.

•

APPENDIX VII

VELOCITY SURVEY

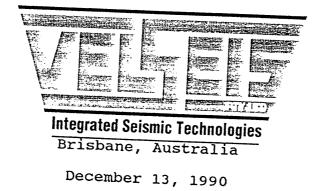
WELL VELOCITY SURVEY

SOUTH CARAMUT #1

PEP 122

VICTORIA

for


LAKES OIL LIMITED

4

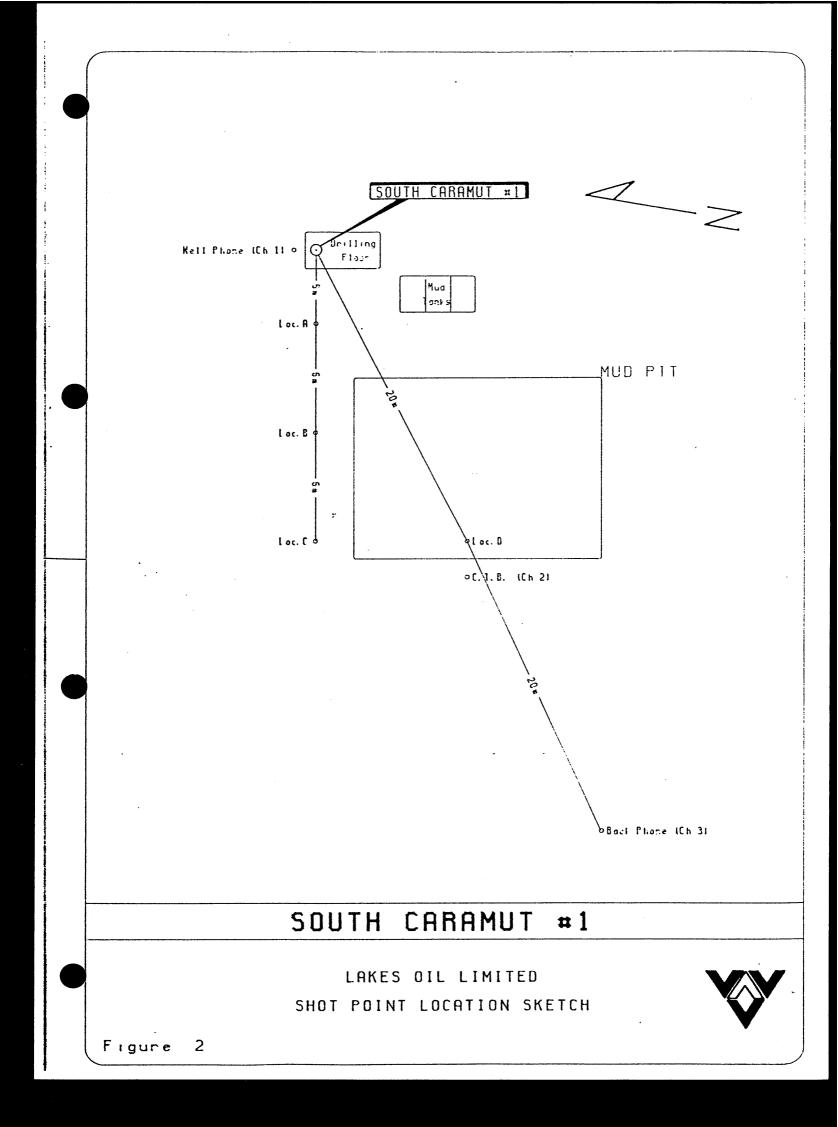
recorded by

VELOCITY DATA PTY. LTD.

processed by

CONTENTS

- Washington - Martin State


State and a state of the state

and a second second data the second data to construct the second s

anna magain beilgfiblichen bir blanter & e ann

10 0 N A 40

SUMMARY	•••	• • •	• • •	1
GENERAL I	NFORMATION	•••	•••	1
EQUIPMENT		•••	•••	2
RECORDING	•••	•••	•••	3
PROCESSIN	G			
Elevat	ion Data	• • •	•••	3
Record	ed Data	•••	•••	4
	tion for Instru and Shot Offset	ment	•••	4
Correc	tion to Datum	•••	• • •	4
Calibr	ation of Sonic 1	Log		
Met	hod ,	• • •	• • •	5
Res	ults	•••	• • •	5
Trace 3	Playouts	• • •	•••	6
FIGURES				
Figure	1	Well loca	ation map	
Figure	2	Shot loca	ation sketch	
Figure	3	Time-dept	ch and veloci	ity curves
Figure	4	Trace pla	ayouts	
Tables		-		
Table	1	Time-dept	ch values	
Table	2	Allowance	e for pitfati	igue
Enclosure	S			
	1.	Calculati	on Sheets	
	2.	Trace Dis First Arr	play and rival Plots	

SUMMARY

Shooter

Velocity Data Pty Ltd conducted a velocity survey for Lakes Oil Limited in the South Caramut Nol well, PEP-112, Otway Basin, Victoria ,Australia. The date of the survey was the 18th October 1990.

The results of the survey, which are considered to be reliable, have been used to calibrate the sonic log.

Explosives were used as an energy source with shots being fired in the mud pit in the majority of instances.

GENERAL INFORMATION

;

Name of Well : South Caramut #1 Location (Figure 1) : PEP 122 , Otway Basin Coordinates : Latitude 033 00 08.9 : Longitude 142 28 44.0 Seismic Reference : VP 430/88-100 Date of Survey : October 18th, 1990. Wireline Logging : BPB V1030 Weather : Fine Operational Base : Brisbane Operator : H Hunt

: J Brown

Client Representative : Mr A. Tabassi

EQUIPMENT

Downhole Tool

Veldata Camlock 100 (90 mm)

Sensors:

6 HSI 4.5 Hz 215 ohm, high temperature (300 degrees F) detectors connected in series parallel. Frequency response 8-300 Hz within 3 dB.

Preamplifier:

48 dB fixed gain. Frequency response 5-200 Hz within 3 dB.

Reference Geophone

Mark Products L1 4.5 Hz

Recording Instrument

VDLS 11/10 software controlled digital recording system utilising SIE OPA-10 floating point amplifiers for digital recording and SIE OPA-4 amplifiers for analog presentation. The system includes a DEC LSI-11 CPU, twin cassette tape unit and printer.

RECORDING

Energy Source	:	Explosive, AN-60
Shot Location	:	Mud pit
Charge Size	:	.25 (125grm) sticks
Average Shot Depth	:	3.0 metres
Average Shot Offset	:	20.0 metres
Recording Geometry	:	Figure 2

Shots were recorded on digital cassette tape. Printouts of the shots used are included with this report. (Enclosure 2)

The sample rate was 1 ms with 0.5 ms sampling over a 200ms window encompassing the first arrivals. The scale of the graphic display varies with signal strength and is noted on each playout.

The times were picked from the printouts using the numerical value of the signal strength. (Enclosure 2)

The surface channels showed evidence of pit fatigue and Table 2 shows the modifications made to the pick times to allow for this. PROCESSING

Elevation Data

Elevation of KB	:	145.3m above sea level
Elevation of Ground	:	142.0m above sea level
Elevation of Seismic Datum	:	150.0m above sea level
Depth Surveyed	:	434.0m below KB
Total Depth	:	435.0m below KB
Depth of Casing	:	87.0m below KB
Sonic Log Interval	:	11.0 to 432.0m below KB

PROCESSING

Recorded Data

Number of Shots Used	:	24
Number of Levels Recorded	:	20
Data Quality	:	Fair
Noise Level	:	Low

Correction for Instrument Delay and Shot Offset

The 'corrected' times shown on the calculation sheet have been obtained by:

- (i) Subtraction of the instrument delay (4msec) from the recorded arrival times
- (ii) geometric correction for non-verticality of ray paths resulting from shot offset.
- (iii) shot static correction to correct for the depth of shot below ground level at the well head using a correction velocity of 870 metres/sec
- (iv) readdition of the instrument delay (4msec).

Correction to Datum

The datum chosen was 150.0 metres ASL that is 4.7 metres above KB. This level is above ground level and it was necessary to calculate a datum correction using a suitable replacement velocity. The value used was 3500m/sec which over the 8m above ground gives 2.3msecs. An allowance for the instrument delay is then necessary to modify this time to be consistent with the other picks. This yields a time of 1.7msecs for the effective datum correction.

PROCESSING

Calibration of Sonic Log - Method

The sonic log was edited to exclude readings that lay within the casing that is to 100 metres below KB. The last sonic reading available was 432m KB this value was extrapolated to include the last check shot.

Sonic times were adjusted to checkshot times using a polynomial derived least squares fit correction of the sonic transient times.

These differences arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

Calibration of Sonic Log - Results (Enclosure 1)

The discrepancies between shot and sonic interval velocities were in general quite small except over some very short intervals which exhibited magnified errors.

In aggregate, the shot and sonic interval times differed by 0.7 msec over the logged portion of the well.

PROCESSING

Trace Playouts (Figure 4)

Figure 4A is a plot of all traces used. No filter or gain recovery has been applied.

Figure 4B is a plot to scale in depth and time of selected traces. No filter or gain recovery has been applied.

Figure 4C is a plot to scale in depth and time of selected traces with a 5 Hz - 40 Hz filter and a gain recovery function of t^2 applied.

Figure 4D is a plot of selected surface traces. No filter or gain recovery has been applied.

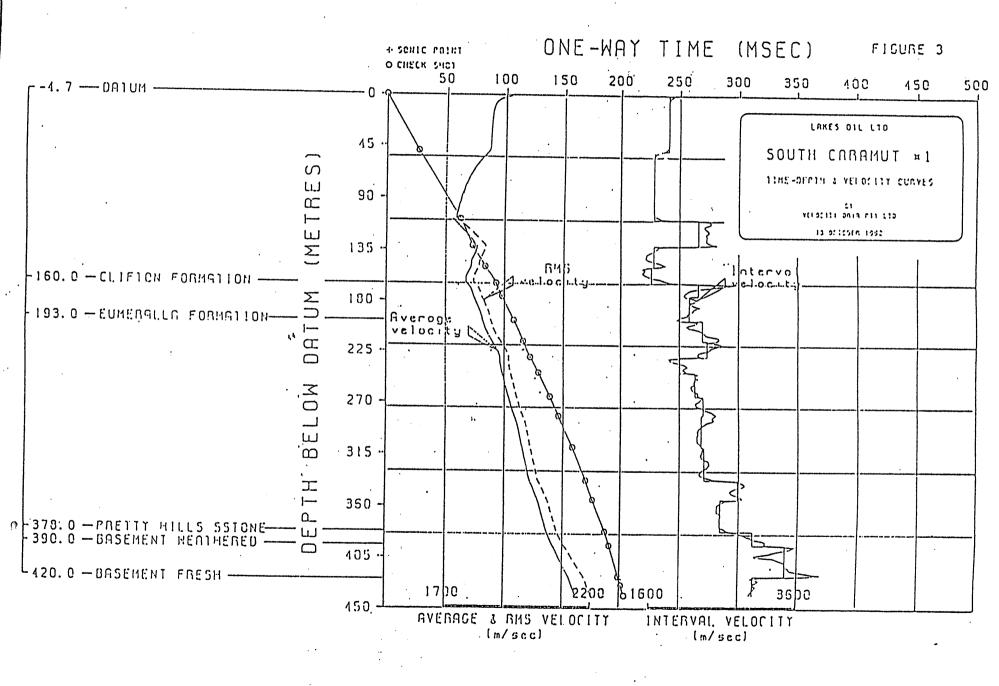
(re-lifer 12

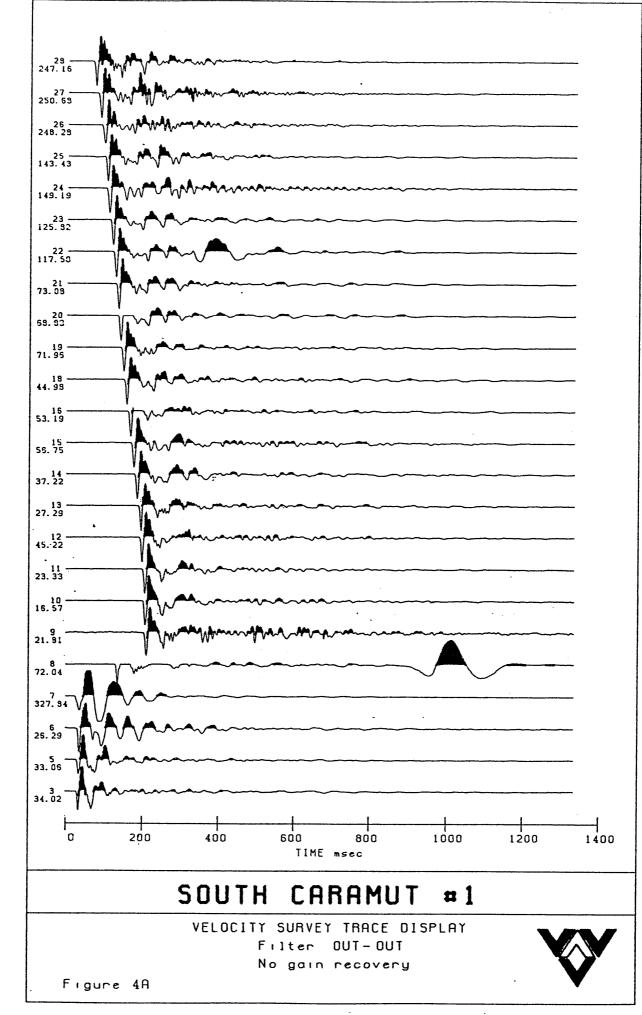
Geoffrey Bell Geophysical Analyst.

TABLE 2

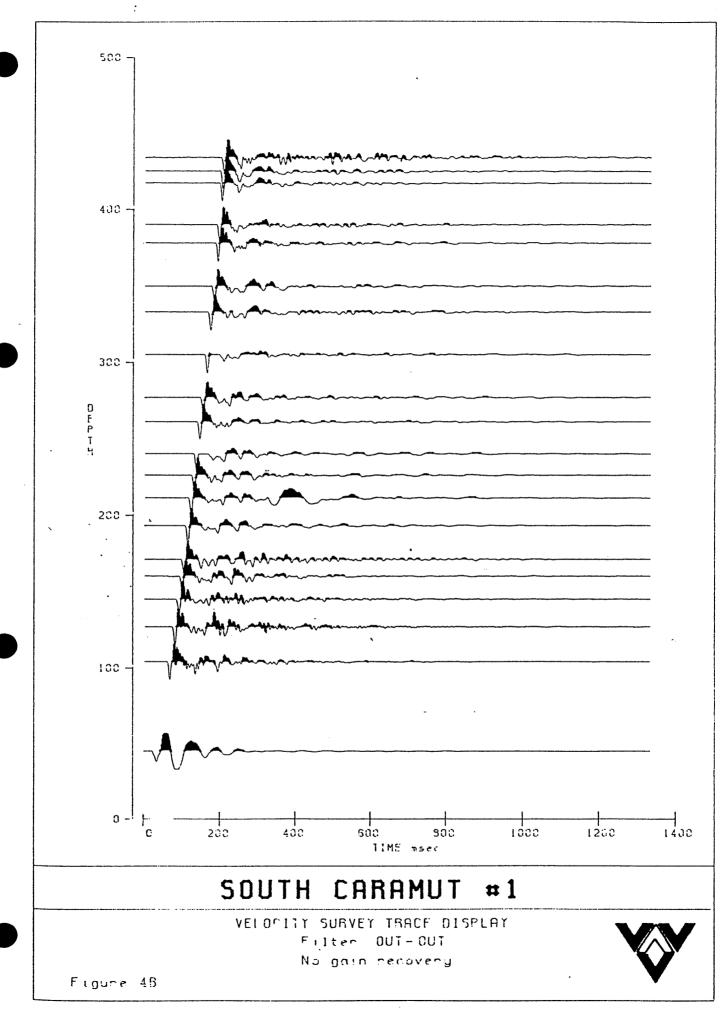
Shot Number

.

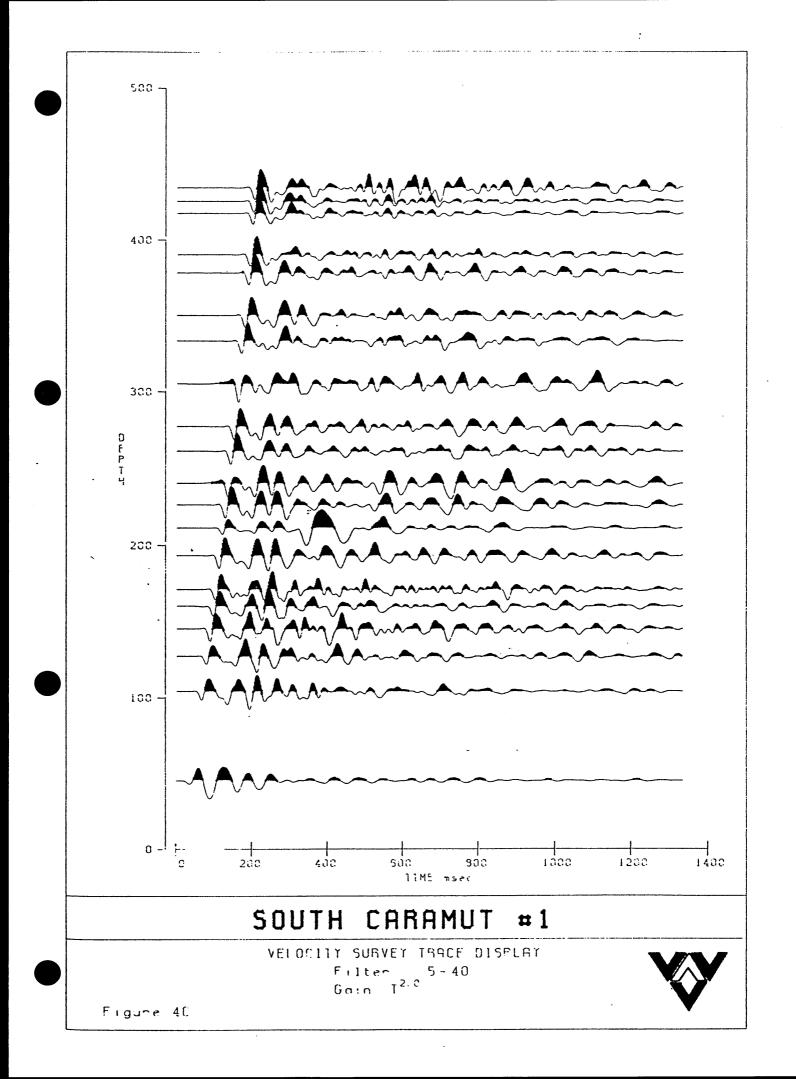

ANSWERSEN OF A

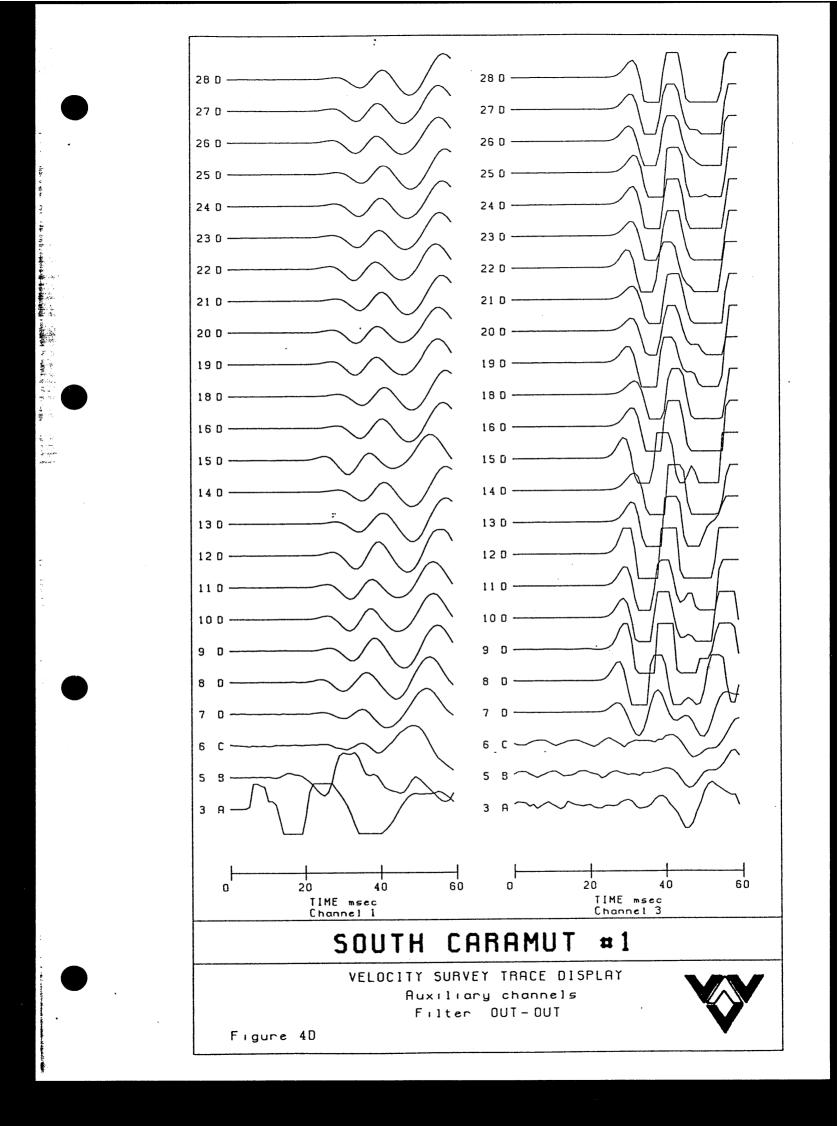

Allowance for Fatigue

.


11		-1
12		-1
13	l de la construcción de la construcción de la construcción de la construcción de la construcción de la constru	-2
14		-3
16	j	-2
18	i	-3
19		-2
20		-2
21		-2
22		-2
23		-2
24		-2
25	i	-2
26	•	-2
27	,	-2
28		-2

.




S. P. BULLET Print B. R. White

2.3 St. 10. 4

.

	TABLE 1.		Time	-Depth cu	rve value	5	Page	1.	
18	: SOUTH (LAKES OI	_ LTD		
	ey units brat <mark>ed so</mark> m			elocities	Datum : used from	150.0 n 109.0	to 43	8.0	
Datum	One-way	VE	LOCITI	ES	Datum	One-way	VE	LOCIT	1ES
Depth	time(ms)	Average	RMS I	nterval	Depth	time(ms)	Average	RMS 1	[nterval
1.0	0.5	1919	1919	1919	41.0	22.2	1849	1849	
2.0	1.1	1900	1900	1882	42.0	22.7	1849	1849	
3.0	1.6	1888	1888	1864	43.0		1849	1849	
£4. 0	2.1	1880	1880		44.0		1849	1849	
5.0	2.7	1874	1874	1850	45.0	24.3	1849	1849	1843
6.0	3.2	1869	1869	1848	46.0	24.9	1848	1848	
7.0	3.8	1866	1866	1847	47.0	25.4	1848	1848	
	4.3	1863	1864	1846	48.0	26.0	1848	1848	
19.0	4.8	1861	1862	1846	49.0		1847	1847	
10.0	5.4	1860	1860	1846	50.0	27.1	1845	1845	1768
-11.0	5.9	1859	1859	1846	51.0	27.7	1842	1842	1713
12.0	6.5	1857		* 1845	52.0	28.3	1839	1839	
13.0	7.0	1857	1857	1845	53.0		1835	1836	1662
14.0	7.5	1856	1856	1845	54.0	29.5	1831	1932	
15.0	8.1	1855	1855	1845	55.0	30.1	1828	1829	1650
16.0	8.6	1854	1855	1845	56.0	30.7	1824	1825	1647
17.0	9.2	1854	1854	1845	57.0	31.3	1821	1822	
18.0	9.7	1853	1854	1845	58.0	31.9	1817	1819	
19.0	10.3	1853	1853	1845	59.0	32.5	1814	1816	
20.0	10.8	1853	1853	1845	60.0	33.1	1811	1813	1645
0	11.3	1852	1852	1845	61.0	33.7	1808	1810	1645
22.0	11.9	1852	1852	1845	62.0	34.3	1805	1807	1645
23.0	12.4	1852	1852	1845	63.0	35.0	1802	1804	1645
24.0	13.0	1851	1851	1845	64.0	35.6	1800	1802	1645
25.0	13.5	1851	1851	1845	65.0	36.2	1797	1799	1645
26.0	14.0	1851	1851	1845	66.0	36.8	1795	1797	1645
27.0	14.6	1851	1851	1845	67.0	37.4	1792	1794	1645
28.0	15.1	1851	1851	1845	68.0	38.0	1790	1792	1645
29.0	15.7	1850	1850	1845	69.0	38.6	1788	1790	1645
30.0	16.2	1850	1850	1845	70.0	39.2	1785	1788	1645
31.0	16.8	1850	1850	1845	71.0	39.8	1783	1786	1645
32.0	17.3	1850	1850	1845	72.0	40.4	1781	1784	1645
33.0	17.8	1850	1850	1845	73.0	41.0	1779	1782	1645
34.0	18.4	1850	1850	1845	74.0	41.6	1777	1780	1645
35.0	18.9	1850	1350	1845	75.0	42.2	1775	1778	1645
36.0	19.5	1849	1849	1845	76.0	42.9	1773	1776	1645
	20.0	1849	1849	1845	77.0	43.5	1772	1774	1645
238.0	20.5	1849	1849	1845	78.0	44.1	1770	1773	1645
	21.1	1849	1849	1845	79.0	44.7	1768	1771	1645
40.0	21.6	1849	1849	1845	80.0	45.3	1767	1769	1645

-

TABLE 1.

Page 2.

Well : SOUTH CARAMUT #1Client : LAKES OIL LTDSurvey units : METRESDatum : 150.0Calibrated sonic interval velocities used from 109.0 to 438.0

Datum	One-way	VE	LOCITIE	S	Datum	One-way	VEI	LOCITIE	:s
Depth	time(ms)	Average	RMS In	terval	Depth	time(ms)	Average	RMS Ir	nterval
							1710	4770	4000
81.0	45.9	1765	1768	1645	121.0	68.7	1762	1739	1309
82.0	46.5	1763	1766	1645	122.0	69.2	1762	1740	1791
83.0	47.1	1762	1765	1645	123.0	69.8	1763	1740	1808
84.0	47.7	1760	1763	1645	124.0	70.3	1763	1740	1785
85.0	48.3	1759	1762	1645	125.0	70.9	1762	1740	1677
86.0	48.9	1758	1760	1645	126.0	71.6	1761	1739	1605
	49.5	1756	1759	1645	127.0	72.1	1760	1738	1690
80.0	50.1	1755	1758	1645	128.0	72.7	1760	1739	1786
89.0	50.8	1754	1756	1645	129.0	73.3	1760	1739	1756
90.0	51.4	1752	1755	1645	130.0	73.8	1761	1739	1771
	~~		2100	2					
91.0	52.0	1751	1754	1645	131.0	74.4	1761	1739	1764
92.0	52.6	1750	1753	1645	132.0	75.0	1761	1740	1824
93.0	53.2	1749	1751	1645	133.0	75.4	1763	1742	2048
94.0	53.8	1747	1750 :	1645	134.0	75.9	1764	1744	1992
95.0	54.4	1746	1749	1645	135.0	76.4	1766	1746	2038
96.0	55.0	1745	1748	1645	136.0	77.0	1766	1746	1734
97.0	55.6	1743	1743	1645	137.0	77.6	1765	1745	1691
98.0	56.2	1743	1746	1645	138.0	78.2	1765	1745	1740
99.0	56.8	1743	1745	1646	139.0	78.8	1764	1744	1588
100.0	57.4	1742	1743	1646	140.0	79.4		1743	1568
1.00.0	37.4	1741	1/44	1040	140.0	/ 7 . 4	1702	1740	1000
101.0	58.0	1740	1743	1646	141.0	80.1	1761	1742	1583
102.0	58.7	1739	1742	1647	142.0	80.7	1759	1741	1601
100	59.3	1738	1741	1649	143.0	81.3	1759	1740	1679
104.0	59.9	1737	1740	1652	144.0	81.9	1759	1741	1801
105.0	60.5	1736	1739	1659	145.0	82.4	1760	1741	1815
106.0	61.1	1736	1739	1673	146.0	83.0	1759	1740	1637
107.0	61.7	1735	1738	1701	147.0	83.6	1758	1740	1649
108.0	62.2	1736	1738	1759	148.0	84.2	1758	1740	1838
109.0	61.8	1763	1737	1887	149.0	84.6	1761	1743	2248
110.0	62.3	1765	1740	2004	150.0	85.0	1764	1747	2299
	02.0	1700	1/40	2004	10010	0010	1704	1/4/	
111.0	62.9	1765	1740	1764	151.0	85.5	1766	1749	2083
112.0	63.5	1765	1740	1741	152.0	86.0	1767	1751	2070
113.0	64.1	1764	1739	1613	153.0	86.5	1770	1753	2211
114.0	64.7	1763	1738	1654	154.0	86.9	1771	1756	2132
115.0	65.2	1763	1738	1762	155.0	87.4	1773	1757	2017
116.0	65.8	1763	1739	1802	156.0	87.9	1774	1758	1938
117.0	66.4	1763	1739	1803	157.0	88.4	1777	1762	2324
118.0	67.0	1762	1738	1641	158.0	88.8	1779	1765	2268
100	67.6	1761	1738	1655	159.0	89.3	1780	1766	1975
12.0	68.1	1762	1739	1840	160.0		1781	1766	1880
*	~~~~						_ /		

TABLE 1.

Time-Depth curve values

Page 3.

	: SOUTH (‡ 1		Client : Datum :	LAKES OI	_ LTD		
Cali	ey units brated so	nic inter	rval	velocities			to 43	8.0	
Datum	One-way	VEI	OCIT	IES	Datum	One-way	VE	LOCITIE	ES
Depth	time(ms)				Depth	time(ms)	Average	RMS In	nterval
					·				
161.0	90.3	1783	1770		201.0	108.9	1846	1848	1659
162.0	90.6	1787	1775		202.0	109.4	1846	1847	1698
163.0	91.0	1791	1780		203.0	110.0	1845	1846 1846	1730 1685
164.0	91.3	1795	1785		204.0	110.6	1844 1843	1845	1683
165.0	91.7	1800	1791	2968	205.0	111.2	1643	1040	1000
1600	92.0	1804	1797		206.0	111.3	1843	1844	1741
16 0	92.4	1808	1802		207.0	112.4	1842	1844	1774 1849
168.0	92.7	1812	1808		208.0	112.9	1842	1844 1846	2292
169.0	93.1	1816	1812		209.0	113.3	1844	1848	2288
170.0	93.6	1817	1814	2085	210.0	113.8	1846	1848	2200
171.0	94.1	1818	1814	1930	211.0	114.3	1846	1848	1916
172.0	94.6	1817	1814	1760	212.0	114.8	1847	1848	1915
173.0	95.2	1817	1814		213.0	115.3	1847	1848	1859
174.0	95.8	1817	1814	[°] 1823	214.0	115.9	1846	1848	1733
175.0	96.3	1818	1814	1962	215.0	116.5	1846	1848	1868
176.0	96.7	1821	1918	2532	216.0	116.9	1848	1850	2422
177.0	97.0	1824	1822		217.0	117.3	1851	1853	2586
178.0	97.5	1826	1825		218.0	117.7	1852	1855	2281
179.0	98.0	1827	1826		219.0	118.1	1854	1857	2429
180.0	98.5	1827	1826		220.0	118.5	1857	1860	2589
181.0	99.0	1828	1827	1961	221.0	118.9	1859	1863	2618
1820	99.4	1830	1829		222.0	119.4	1860	1864	2104
100	99.9	1831	1830		223.0	119.9	1861	1865	1981
184.0	100.4	1832	1831		224.0	120.3	1862	1866	2276
185.0	100.9	1834	1833		225.0	120.8	1863	1867	2007
186.0	101.4	1835	1834	2041	226.0	121.4	1862	1866	1774
187.0	101.8	1838	1837		227.0	121.9	1863	1867	1960
188.0	102.2	1839	1835		228.0	122.3	1865	1869	2414
188.0	102.6	1841	1841		229.0	122.7	1866	1871	2328
190.0	103.1	1844	1844		230.0	123.3	1866	1871	1851
191 0	107 4	1844	1844	1892	231.0	123.8	1966	1870	1771
192 0	103.6 104.2	1843	1844		232.0	124.4	1866	1870	1872
193 0	104.2	1843	1845		233.0	124.8	1867	1872	2311
194 0	104.8	1845	1846		234.0	125.2	1869	1874	2359
199.0 190.0 191.0 192.0 193.0 194.0 195.0	105.7	1845	1846		235.0	125.7	1870	1875	2213
196.0 197.0 197.0 1000 200.0	10/ 0	104/	1847	7 2053	236.0	126.1	1872	1877	2418
197 A	106.2	1846	184/		237.0	126.5	1874	1880	2651
19	106.6	1848	1851		238.0	126.9	1876	1881	2247
	107.0	1850 1849	1850		239.0	127.3	1877	1883	2288
200 0	107.6	1847	1849		240.0	127.7	1879	1885	2470
	108.3	104/	1041	, <u>, , , , , , , , , , , , , , , , , , </u>	240.0				

TABLE 1.

4

ž,

279.0

- 0

144.6

145.0

1930

1931

1941

1942

2543

2338

Page 4.

2336

2373

1990

1991

1975

1976

Client : LAKES DIL LTD Well : SOUTH CARAMUT #1 150.0 Datum : Survey units : METRES 438.0 109.0 to Calibrated sonic interval velocities used from ----VELOCITIES-----Datum One-way ----VELOCITIES-----One-way Datum Average RMS Interval time(ms) Depth time(ms) Average RMS Interval Depth 1943 2214 1932 145.5 2524 281.0 241.0 128.1 1881 1887 1945 2618 1933 145.9 242.0 128.5 1890 2550 282.0 1883 1948 2999 1936 146.2 243.0 128.9 1893 2700 283.0 1885 1950 2406 1937 146.6 2220 284.0 244.0 129.3 1894 1886 1951 2522 1939 245.0 1953 285.0 147.0 129.9 1894 1887 2634 1954 286.0 147.4 1941 2398 246.0 130.3 1888 1896 2516 1955 287.0 147.8 1942 247.0 130.6 1891 1899 2765 2624 148.2 1944 1957 288.0 1900 2339 0 131.1 1892 2353 1945 1959 148.6 289.0 247.0 131.5 1893 1902 2216 1946 1960 2436 149.0 250.0 290.0 132.0 1894 1903 2242 1961 2398 1948 251.0 149.4 2485 291.0 132.4 1896 1905 1962 2251 1949 252.0 149.9 2326 292.0 1906 132.8 1899 1963 2264 1949 150.3 253.0 293.0 2247 133.2 1899 1908 2292 1964 150.7 1950 254.0 2255 294.0 133.7 1900 1909 2340 1965 1952 255.0 295.0 151.2 134.1 1901 1910 2316 1967 2366 1953 151.6 256.0 2266 296.0 134.6 1903 1912 1968 2329 257.0 1954 152.0 297.0 135.0 1904 1913 2246 2303 258.0 1955 1969 298.0 152.4 2290 135.4 1905 1914 2335 259.0 1956 1970 299.0 152.9 2293 135.9 1906 1916 1957 1971 2345 260.0 153.3 300.0 136.3 1907 1917 2214 2272 1958 1972 261.0 153.7 136.8 1908 1917 2088 301.0 2304 262.0 1973 1959 154.2 137.2 1909 1919 2339 302.0 2289 263.0 1960 1974 154.6 1920 2343 303.0 137.7 1911 2249 1961 1975 2349 304.0 155.1 Ō 138.1 1912 1922 2304 1976 265.0 1962 2629 305.0 155.5 138.5 1914 1924 2394 1963 1977 266.0 155.9 1926 2689 306.0 138.8 1916 2311 1964 1978 267.0 2339 307.0 156.3 1928 139.3 1917 2311 1979 268.0 1965 2270 308.0 156.8 1929 139.7 1918 2390 1980 269.0 1966 157.2 2243 309.0 140.2 1919 1930 2417 1967 1982 270.0 157.6 310.0 2177 140.6 1920 1931 271.0 2480 1968 1983 158.0 311.0 141.1 1921 1931 2014 272.0 1984 2366 1969 312.0 158.4 141.6 1921 1931 1969 2362 273.0 1985 1970 158.9 313.0 142.1 1922 1932 2269 274.0 1986 2275 1971 314.0 159.3 142.5 1923 1934 2357 1986 2132 275.0 1972 159.8 315.0 142.9 1924 1935 2306 2029 276.0 1987 1972 160.3 2239 316.0 143.4 1925 1936 2339 277.0 1988 1973 160.7 317.0 143.8 1926 1937 2335 2373 278.0 1989 1974 318.0 161.1 144.2 1928 1939 2434

319.0

320.0

161.5

162.0

TABLE 1.

Page 5.

	: SOUTH (LAKES OI	LTD		
	ey units brated so			velocities	Datum : used fro	150.0 m 109.0	to 43	8.0	
Datum	One-way	VEI	OCIT	IES	Datum	One-way	VE	LOCITI	ES
Depth	time(ms)				Depth				
321.0	162.4	1977	1992		361.0	178.5	2022	2041	2465
322.0	162.8	1978	1993		362.0	178.9	2023	2042	2424
323.0	163.2	1979	1994		363.0	179.3	2024	2043	2441
324.0	163.6	1980	1995		364.0	179.7	2025	2045	2653
325.0	164.0	1981	1,997	2423	365.0	180.1	2027	2046	2632
326.0	164.4	1982	1998	2432	366.0	180.5	2028	2048	2587
¹ 3200	164.9	1984	1999	2435	367.0	180.9	2029	2049	2593
320	165.3	1984	2000	2364	368.0	181.3	2030	2050	2553
329.0	165.7	1985	2001	2286	369.0	181.7	2031	2051	2532
-330.0	166.2	1986	2002	2274	370.0	182.0	2032	2053	2612
331.0	166.6	1987	2002		371.0	182.4	2034	2054	2727
332.0	167.1	1987	2003	2160	372.0	182.8	2035	2056	2658
333.0	167.5	1988	2003		373.0	183.2	2036	2057	2537
\$334.0	168.0	1788	2004	7	374.0	183.6	2037	2058	2583
\$335.0	168.4	1989	2005	2341	375.0	184.0	2038	2059	2559
\$336.0	168.8	1990	2006	2251	376.0	184.4	2040	2060	2561
\$337.0	169.3	1991	2006		377.0	184.7	2041	2062	2542
\$338.0	169.7	1992	2003		378.0	185.1	2042	2063	2578
5338.0	170.0	1994	2010		379.0	185.5	2043	2064	2679
\$340.0	170.3	1996	2012		380.0	185.9	2044	2066	2639
\$341.0	170.7	1998	2014		381.0	186.3	2045	2067	2596
342.0	171.1	1999	2016		382.0	186.7	2047		2594
	171.4	2001	2018		383.0		2048	2069	2642
3500	171.8	2002	2019		384.0		2049	2071	2997
\$345.0	172.2	2003	2020	2466	385.0	187.7	2051	2073	2803
\$ 346.0 \$ 347.0	172.7	2004	2021		386.0	188.1	2052	2075	2844
1347.0	173.1	2005	2022			188.4	2054	2077	3184
348.0	173.5	2006	2023		388.0	188.7	2056	2079	3129
\$ 349.0 \$ 350.0	173.9 174.3	2007 2008	2024 2025		389.0 390.0	189.0 189.4	2058 2059	2081 2083	3107 2884
4									
351.0	174.7	2009	2027		391.0	189.7	2061	2085	2871
\$ 352.0	175.1	2010	2028		392.0	190.0	2063	2087	3170
\$353.0	175.5	2012	2030		393.0	190.4	2065	2089	3149
\$ 354.0	175.8	2013	2032		394.0	190.7	2067	2092	2288
355.0	176.2	2015	2033	2794	395.0	190.9	2069	2095	3799
\$356.0	176.6	2016	2035	2572	396.0	191.2	2071	2098	3529
357.0	177.0	2017	2036		397.0	191.5	2073	2100	3055
\$358.0	177.4	2019	2038		398.0	191.9	2074	2102	3073
350	177.7	2020	2039		399.0	192.2	2076	2104	3197
3.0	178.1	2021	2040		400.0	192.5	2078	2106	2986
357.0 358.0 358.0 350.0									

TABLE 1.

Page 6.

3771

3750

3729

3706

Well : SOUTH CARAMUT #1 Client : LAKES OIL LTD Survey units : METRES Datum : 150.0 Calibrated sonic interval velocities used from 109.0 to 438.0 One-way -----VELOCITIES-----Datum Datum One-way -----VELOCITIES-----Depth time(ms) Average RMS Interval time(ms) Average RMS Interval Depth 401.0 192.8 2079 2108 2911 420.0 199.0 2110 2145 3169 402.0 193.2 2081 2110 2894 421.0 199.3 2112 2147 3381 2403.0 193.5 2082 2111 2866 422.0 199.6 2114 2150 4025 404.0 193.9 2084 2113 2839 423.0 199.8 2117 2154 4322 405.0 194.2 2085 2114 2868 424.0 200.0 2120 2158 4223 406.0 194.6 2087 2116 3118 425.0 200.3 2122 2161 4109 407.0 194.9 2089 2119 3292 426.0 200.5 2124 2164 3973 40 195.2 2090 2121 3106 427.0 200.8 2127 2168 3920 40 :0 195.5 2092 2122 2874 428.0 201.1 2129 2171 3903 410.0 195.9 2093 2124 2903 429.0 201.3 2131 2174 3886 411.0 196.2 2095 2126 3204 430.0 201.6 2133 2177 3868 412.0 196.5 2097 2128 3230 431.0 201.8 2135 2180 3850 413.0 196.8 2098 2131 3209 432.0 202.1 2138 2183 3831 414.0 197.1 2100 2133 3214 433.0 202.4 2140 2186 3812 415.0 197.4 2102 2135 * 3208 434.0 202.6 2142 2188 3791

416.0 197.8 2104 2137 3145 435.0 202.9 2144 2191 417.0 198.1 2105 2139 3100 436.0 203.1 2146 2194 418.0 198.4 2107 2141 3107 437.0 203.4 2148 2197 419.0 198.7 2109 2143 3144 438.0 203.7 2150 2199

APPENDIX VIII

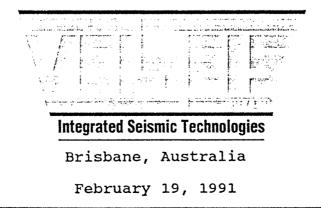
SYNTHETIC SEISMOGRAMS

SYNTHETIC SEISMOGRAMS

SOUTH CARAMUT #1

PEP 122

VICTORIA


for

LAKES OIL LIMITED

recorded by

VELOCITY DATA PTY. LTD.

processed by .

CONTENTS

SUMMARY	• • •	•••	• • •	1
GENERAL INFORMA	TION	• • •	• • •	1
CHECKSHOT DATA	•••	•••	• • •	2
SONIC DATA	• • •	•••	• • •	2
CALIBRATION OF	SONIC LOC	3		
Method		•••	• • •	3
Results		•••	• • •	3
REFLECTION COEF	FICIENT C	SENERATION	• • •	4
MULTIPLES	• • •	• • •	• • •	4
WAVELETS	•••	•••	•••	4
SEISMOGRAM DISP	LAYS	•••	•••	5
Tables				
Table 1		Time-dep	th values	
Enclosures				
1.		Syntheti	c seismogram	s
2.		Calculat	ion Sheet	

.

SUMMARY

Synthetic seismograms have been produced for the South Caramut No1 well, PEP 122, Victoria, Australia for Lakes Oil Limited.

These seismograms have been computed using a combination of check shot and sonic data. Velocity Data Pty Ltd acquired the check shot data and BPB Instruments provided the other wireline services.

The sonic data was calibrated using the check shot information. Reflection coefficients were then derived from the calibrated sonic data and convolved with specified wavelets to produce the synthetic seismograms. A number of trials were run before establishing the most appropriate wavelet.

GENERAL INFORMATION

Name of Well	:	South Caramut #1
Location	:	PEP 122, Victoria
Coordinates	:	Latitude 038 00 08.9 Longitude 142 28 44.0
Seismic Reference	:	VP 430/88-100
Velocity Survey	:	Velocity Data Pty Ltd
Wireline Logging	:	BPB Instruments V1030
Elevation of KB	:.	145.3m above sea level
Elevation of Ground	:	142.0m above sea level
Elevation of Seismic Datum	:	150.0m above sea level
Casing depth	:	87.0m below KB
Total Depth of well	:	433.3m below KB

1

CHECK SHOT DATA

Recorded by	:	Velocity Data Pty Ltd
Date	:	October 18 th 1990
Energy Source	:	Explosive, AN-60
Shot Location	:	Mud pit
Charge Size	:	0.25 (125 grm) sticks
Average Shot Depth	:	3.0 metres
Average Shot Offset	:	20 metres
Number of shots used	:	24
Number of levels recorded	:	20

SONIC DATA

Recorded by	:	BPB Instruments
Date	:	October 18 th 1990
Top logged interval	:	11m below KB
Bottom logged interval	:	432m below KB
Logging units	:	microseconds/metre

2

CALIBRATION OF SONIC LOG

Method

The sonic log was extended to 800 metres below KB in order to get full wavelet response at the end of the sonic. The log was edited out above 100 metres due to the casing effecting the results.

Sonic times were adjusted to checkshot times using a least squares polynomial fit for the sonic transit times. This method being chosen over a linear correction as the latter tends to introduce fictitious interfaces at areas of high drift correction.

Differences arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

Results

The discrepancies between shot and sonic interval velocities were in general quite small except over some very short intervals which exhibited magnified errors.

In aggregate, the shot and sonic interval times differed by 0.7 msecs over the logged portion of the well.

REFLECTION COEFFICIENT GENERATION

Reflection coefficients were generated from the calibrated sonic log only as no density information was available.

MULTIPLES

Only the primary response of the reflection coefficient series has been generated for the six seismograms.

WAVELETS

A variety of wavelets are presented of both phase.

Seismogram 1

- 1) Bandpass 20-80Hz Zero Phase Normal Polarity.
- 2) Bandpass 20-60Hz Zero Phase Normal Polarity.
- 3) Bandpass 10-40Hz Zero Phase Normal Polarity.

Seismogram 2

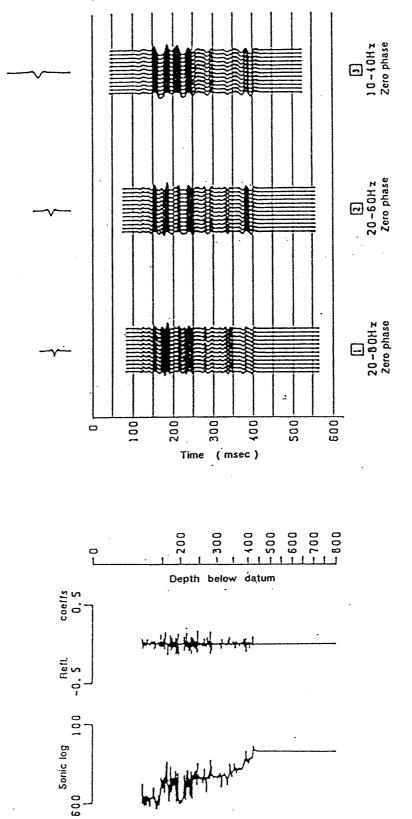
- 1) Bandpass 20-80Hz Zero Phase Reverse Polarity.
- 2) Bandpass 20-60Hz Zero Phase Reverse Polarity.
- 3) Bandpass 10-40Hz Zero Phase Reverse Polarity.

SEISMOGRAM DISPLAYS

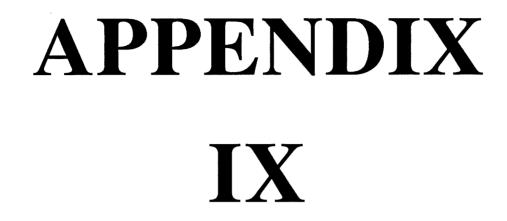
The final displays show the contributing logs in schematic form with time scale. The seismogram is displayed for each wavelet against two way time below the check shot datum. Trace amplitudes are normalized against their maxima. The subdatum two way time of 121 msecs for the start of the sonic was taken from the checkshot results.

A seismic section was received however the quality of the reflectors in the vicinity of the well was very poor and in such circumstances no comment can be made on the quality of the tie however it is hoped that the synthetic will prove to be a useful interpretation aid.

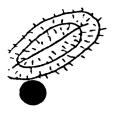
Geoffrey Bell Geophysical Analyst.

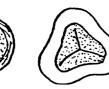

SYNTHETIC SEISMOGRAM

COMPANY - LAKES OIL LTD


AREA - PEP 122 CARAMUT.

- 1 Primaries only
- 2 Primaries only
- 3 Primaries only


Reflection coeffs, calculated from SONIC data only.



SOUTH CARAMUT # 1

PALYNOLOGY

PALYNOLOGY OF LAKES OIL SOUTH CARAMUT-1

OTWAY BASIN, VICTORIA

ΒΥ

ROGER MORGAN BOX 161 MAITLAND 5573 SOUTH AUSTRALIA

 PHONE:
 (088)
 322795

 FAX:
 (088)
 322798

 REF:DW:OTW.STHCARAM

U

February 1991

for LAKES OIL

PALYNOLOGY OF LAKES OIL SOUTH CARAMUT-1

OTWAY BASIN, VICTORIA

ΒY

ROGER MORGAN

CONT	ENTS	PAGE
I	SUMMARY	3
II	INTRODUCTION .	4
III	PALYNOSTRATIGRAPHY	5
IV	CONCLUSIONS	9
v	REFERENCES	10
		· · · · · · · · · · · · · · · · · · ·

FIGURE 1. CRETACEOUS REGIONAL FRAMEWORK, OTWAY BASIN FIGURE 2. MATURITY PROFILE, SOUTH CARAMUT-1

APPENDIX I PALYNOMORPH DISTRIBUTION DATA

I SUMMARY

- 100m (swc)-140m (swc) : lower to middle <u>P. tuberculatus</u> zone : Late Oligocene to Early Miocene : nearshore marine : immature
- 162m (swc)-191m (swc) : apparently upper <u>N. asperus</u> zone : Early Oligocene : nearshore marine : immature
- 196m (swc) : <u>C. hughesi</u> zone : Aptian : lacustrine : early marginal mature for oil

302m (swc)-373m (swc) : lean and indeterminate

- 379.5m (swc)-38lm (swc) : <u>F. wonthaggiensis</u> zone : Late Neocomian : non-marine : marginal mature
- 393m (swc) : very lean <u>F. wonthaggiensis</u> <u>C.</u> <u>australiensis</u> zones : Neocomian : non-marine : marginal mature

II INTRODUCTION

Eight sidewall cores were processed, to provide information on age, environment and maturity for the completion report.

- 4 -

Palynomorph occurence data are shown as Appendix I and form the basis for the assignment of the samples to four spore-pollen units of Neocomian to Miocene age. The Cretaceous spore-pollen zonation is essentially that of Dettmann and Playford (1969), but has been significantly modified and improved by various authors since, and most recently discussed in Helby et al (1987), as shown on figure 1 and modified by Morgan (1985) for application in the Otway Basin. The Tertiary zonation is that of Stover and Partridge (1973) and Stover and Evans (1973) as modified by Partridge (1976).

Maturity data was generated in the form of Spore Colour Index, and is plotted on figure 2 Maturity profile of South Caramat-1. The oil and gas windows in figure 2 follow the general consensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (Staplin Spore Colour Index of 2.7) to dark brown (3.6). These correspond to vitrinite reflectance values of 0.6% to 1.3%.

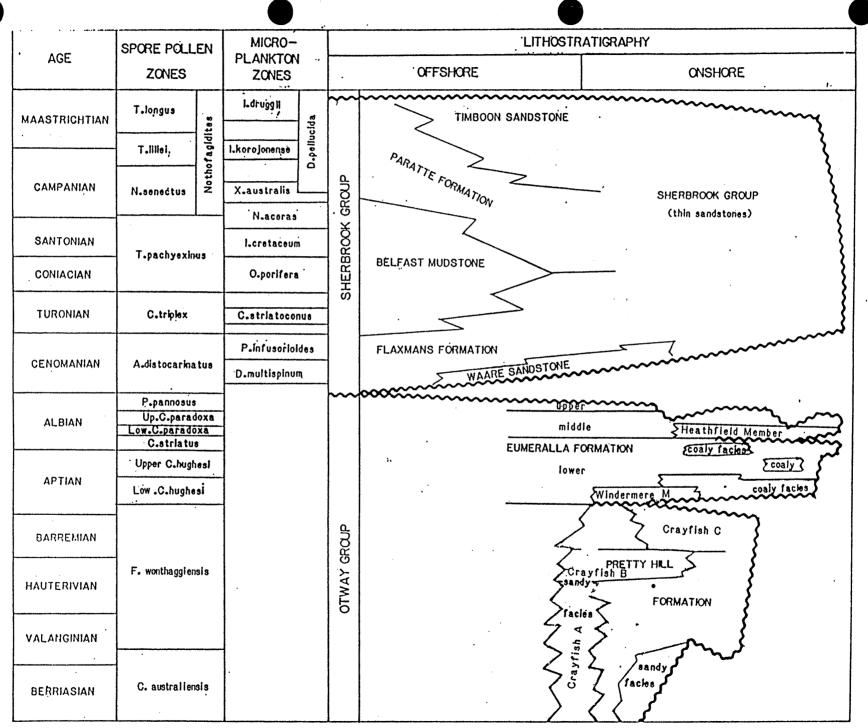
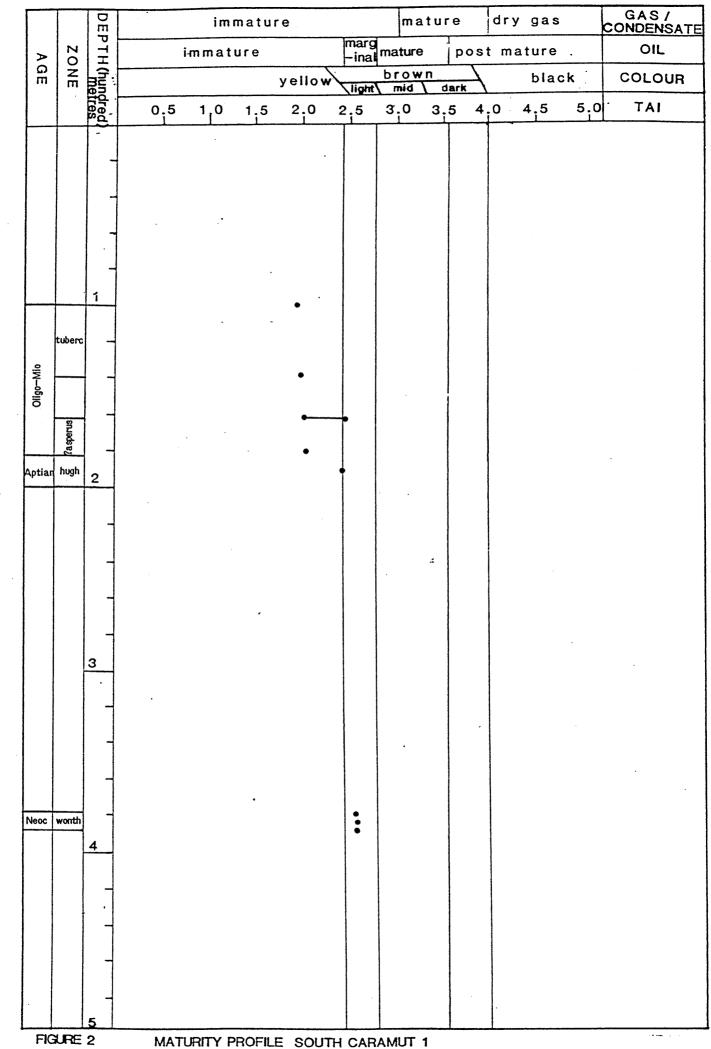



FIGURE I. CRETACEOUS REGIONAL FRAMEWORK, OTWAY BASIN

4

III PALYNOSTRATIGRAPHY

A 100m (swc)-140m (swc) : lower to middle <u>P. tuberculatus</u> zone

Assignment to the lower-middle <u>Proteacidites</u> <u>tuberculatus</u> zone is indicated at the top by youngest <u>Nothofagidites flemingii</u> and <u>Periporopollenites vesicus</u> and at the base by oldest <u>Cyatheacidites annulatus</u>. <u>Haloragacidites harrisii</u> is dominant with frequent <u>Cyathidites minor</u>, <u>Lygistepollenites florinii</u> and <u>Nothofagidites falcata</u>. The dinoflagellates are not age diagnostic but frequent <u>Operculodinium</u> and <u>Apteodinium</u> is consistent with the spore-pollen assignment.

Nearshore environments are indicated by the dominant and diverse spores and pollen and subordinate low diversity dinoflagellates.

These features are normally seen in the Gellibrand Marl, Clifton Formatin and Nirranda Subgroup in the Otway Basin.

Colourless to light yellow palynomorphs indicate immaturity for hydrocarbons.

B 162m (swc)-191m (swc) : apparently upper <u>N. asperus</u> zone

These two samples are somewhat problematic. The swc at 162m is lean but contains a fair Early Cretaceous spore-pollen assemblage with trace quantities of Tertiary palynomorphs, and in isolation might be considered Early Cretaceous with minor mud contamination.

The swc at 191m however, contains a very lean but exclusively Tertiary assemblage similar to that from the overlying <u>P. tuberculatus</u> zone, but lacking the key index <u>C. annulatus</u>. <u>H. harrisii</u> is dominant with <u>Nothofagidites falcata</u> and <u>N. emarcidus</u> common. Rare elements inclue <u>Nothofagidites asperus</u>, <u>Banksieacidites</u> <u>elongatus</u>, <u>Cupaneidites orthoteichus</u> and <u>Proteacidites</u> <u>rictomarginus/incurvatus</u> and an upper <u>N. asperus</u> zone assignment is tentatively applied, more on the absence of the other indicators than on firm positive occurrence. The nature of the assemblages indicates that it cannot possibly be older than lower <u>N. asperus</u> zone.

In view of the Tertiary swc at 191m, the shallower swc is considered to be Oligocene-Miocene with heavily reworked Cretaceous.

Nearshore marine environments are indicated by the dominant and diverse spores and pollen, and the subordinate low diversity dinoflagellates.

These features are normally seen in the Gellibrand Marl, Clifton Formation and Nirranda Subgroup or topmost Dilwyn formation in the Otway Basin.

Colourless to light yellow Tertiary palynomorphs indicate immaturity for hydrocarbons.

C 196m (swc) : C. hughesi zone

Assignment to the <u>Cydosporites hughesi</u> zone is indicated at the top by youngest <u>C. hughesi</u> without younger indicators, and at the base by oldest Pilosisporites notensis, P. parvispinosus and

- 6 -

<u>Triporoletes reticulatus</u>. <u>Cyathidites</u> and <u>Falcisporites</u> are common, with frequent <u>Microcacliryidites antarcticus</u> and <u>Osmundacidites</u> <u>wellmannii</u>.

Non-marine lacustrine environments are indicated by the dominance (60% of palynomorphs) of a thin walled leiosphere with rare <u>Microfasta evansii</u>. Spores and pollen are therefore subordinate but of high diversity.

- 7 -

These features are normally seen in the lower Eumeralla Formation and correlatives of Kopsen and Scholefield (1990).

Dark yellow to light brown spore colours indicate early marginal maturity for oil generation.

D 302m-373m : indeterminate

Yields are very low and confident zonal assignment is not possible. Non-marine environments are suggested by the dominant and diverse spores and pollen and absence of marine indicators.

Dark yellow to light brown spore colours indicate early marginal maturity for oil generation.

E 379.5m (swc)-381m (swc) : F. wonthaggiensis zone

Assignment to the Foraminisporis wonthaggiensis zone is indicated at the top by the absence of younger indicators and at the base by olderst <u>Dictyotosporites</u> <u>speciosus</u>. <u>Cyathidites</u>, <u>O. wellmannii</u> and <u>Falcisporites</u> dominate the assemblages.

Non-marine environments are indicated by the dominant

and diverse spores and pollen, common cuticle and absence of marine indicators. Minor lacustrine influence is indicated by the rare non-spiny acritarchs, including <u>M. evansii</u> at 381m.

These features are normally seen in the upper Pretty Hill Formation and correlatives.

Light brown spore colours indicate early maturity for hydrocarbons.

F 393m (swc) : <u>F. wonthaggiensis</u> or <u>C. australiensis</u> zones

Microfossil yield was lean in this sample, but it is essentially similar to that above. The absence of the key marker taxa <u>D. speciosus</u> suggests the <u>C.</u> <u>australiensis</u> zone, but its absence may be due to scarcity in a lean assemblage, and a <u>F. wonthaggiensis</u> age may be possible. The presence of <u>Cicatricosisporites australiensis</u> indicates that it can be no older than the Early Neocomian <u>C. australiensis</u> zone. <u>Cyathidites</u>, <u>Falcisporites</u> and <u>Osmundacidites</u> dominate the assemblage.

Non-marine probably fluvial environments are suggested by the common and diverse spores and pollen, and absence of acritarchs.

These features are normally seen in the Pretty Hill Formation and correlatives in the Otway Basin.

Light brown spore colours indicate marginal maturity for oil generation but immaturity for gas/condensate.

- 8 -

IV CONCLUSIONS

The sampled section includes a truncated Early Cretaceous sequence (consisting of Pretty Hill and basal Eumeralla correlatives) unconformably overlain by a thin Tertiary section (consisting of Oligocene to Miocene Gellibrand Marl, to Nirranda Group correlatives).

9 -

The Early Cretaceous is marginally mature near surface and suggests that it has been much more deeply buried at some time in the past, probably before deposition of the thin Tertiary section.

V REFERENCES

- Dettmann, M.E. and Playford, G. (1969) Palynology of the Australian Cretaceous : a review <u>In</u> Stratigraphy and Palaeontology. Essays in honour of Dorothy Hill, <u>KSW</u> Campbell Ed. ANU Press, Canberra 174-210
- Helby, R.J., Morgan, R.P. and Partridge, A.D. (1987) A palynological zonation of the Australian Mesozoic In Studies in Australian Mesozoic Palynology <u>Assoc.</u> Australas. Palaeontols. Mem 4 1-94
- Kopsen, E. and Scholefield, T. (1990) Prospectivity of the Otway Supergroup in the Central and Western Otway Basin Apea J. 30 (1) : 263-279
- Morgan, R.P. (1985) Palynology review of selected oil drilling, Otway basin, South Australia <u>unpubl. rept.</u> for Ultramar Australia
- Partridge, A.D. (1976) The geological expression of eustacy in the early Tertiary of the Gippsland Basin <u>Aust. Pet.</u> Explor. Assoc. J., 16 : 73-79
- Stover, L.E. and Evans, P.R. (1973) Upper Cretaceous-Eocene spore-pollen zonation, offshore Gippsland Basin, Australia Spec. Publ. geol. Soc. Austr. 4 : 55-72
- Stover, L.E. and Partridge, A.D. (1973) Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, south-eastern Australia Proc. R. Soc. Vict., 85 : 236-286

V REFERENCES

- Dettmann, M.E. and Playford, G. (1969) Palynology of the Australian Cretaceous : a review <u>In</u> Stratigraphy and Palaeontology. Essays in honour of Dorothy Hill, <u>KSW</u> Campbell Ed. ANU Press, Canberra 174-210
- Helby, R.J., Morgan, R.P. and Partridge, A.D. (1987) A palynological zonation of the Australian Mesozoic In Studies in Australian Mesozoic Palynology <u>Assoc.</u> Australas. Palaeontols. Mem 4 1-94
- Kopsen, E. and Scholefield, T. (1990) Prospectivity of the Otway Supergroup in the Central and Western Otway Basin Apea J. 30 (1) : 263-279
- Morgan, R.P. (1985) Palynology review of selected oil drilling, Otway basin, South Australia <u>unpubl. rept.</u> for Ultramar Australia
- Partridge, A.D. (1976) The geological expression of eustacy in the early Tertiary of the Gippsland Basin <u>Aust. Pet.</u> Explor. Assoc. J., 16 : 73-79
- Stover, L.E. and Evans, P.R. (1973) Upper Cretaceous-Eocene spore-pollen zonation, offshore Gippsland Basin, Australia Spec. Publ. geol. Soc. Austr. 4 : 55-72
- Stover, L.E. and Partridge, A.D. (1973) Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, south-eastern Australia Proc. R. Soc. Vict., 85 : 236-286

SOUTH CARAMUT #1 palynological data

ROGER P. MORGAN Ph.D. Palynological Consultant Box 161, Maitland, South Australia, 5573. phone (088) 32 3795 ... fax (088) 32 2798

C L I E N T: Lakes Oil W E L L: South Caramut #1 F I E L D / A R E A: Otway Basin

A N A L Y S T: Roger Morgan D A T E : February '91
N O T E S: all sample depths are in metres

RANGE CHART OF GRAPHIC ABUNDANCES BY LOWEST APPEARANCE: dino & s/p

Key to Symbols

1	= Very Rare
Δ.	= Rare
H	= Few
1	= Common
İ	= Abundant
?	= Questionably Present
	= Not Present

	1	ICKUFASIA EV	CHIZUSPUKIS KETT	LEIUSPHHEKIUIH SF. Coddosphaediniim fibrospinnsiim	PERCULODINIUM SPF	SPINIFERITES FURCATUS/RAMOSUS	SYSTEMATOPHORA PLACACANTHA	APTEODINIUM AUSTRALIENSE	AEQUITRIRADITES SPINULOSUS	BIRETRISPORITES SPECTABILIS	CERATOSPORITES EQUALIS	CICATRICOSISPORITES AUSTRALIENSIS	CONTIGNISPORITES COOKSONIAE	CONTIGNISPORITES GLEBULENTUS	COROLLINA TOROSUS	CYATHIDITES AUSTRALIS	CVATHIDITES MINOR	DICTYOTOSPORITES COMPLEX	FALCISPORITES SIMILIS	FORAMINISPORIS DAILVI	KLUKISPORITES SCABERIS	LEPTOLEPIDITES VERRUCATUS	MICROCACHRYIDITES ANTARCTICUS	OSMUDACIDITES WELLMANII	RETITRILETES AUSTROCLAVATIDITES	RETITRILETES WATHARODENSIS	TRIPOROLETES RADIATUS	TRIPOROLETES fine RETICULATUS	AEQUITRIRADITES VERRUCOSUS	ARAUCARIACITES AUSTRALIS	RITES TABULAT	CYCADOPITES FOLLICULARIS	CYCLOSPORITES HUGHESI
		- (NÌ	0 4	F IO	9	N	œ	0	10	11	12	13	14	15	16	17	18	19	20	21	22	ю С	34	25	26	27	28	29	30	31	32	N N
100.0 sw 140.0 sw 162.0 sw 191.0 sw 196.0 sw 302.0 sw 379.5 sw 381.0 sw 393.0 sw		• • •					· · · · ·	I		· · · · · · · ·		· · ·		- - - - - - - - - - - - - - - - - - -							•	•				• •	· · · ·	- - - - - - - - - - - - - - - - - - -	•	•	- - - - - - - - - - - - - - - - - - -	•	•

0142.0 0191.0 0196.0 0302.0 0379.5 0381. 0393. 0100. 0 ò 0 0 11 ល ស្ត្រ ស្ត្រ រ ខ្លុស ព SWC មេស មេស υ Σ Σ SΣC ິນຮັບ 11 i 11 11 1 11 1 İI 34 İİ DICTYOTOSPORITES SPECIOSUS . . LYCOPODIACIDITES ASPERATUS 1 35 1 Ĥ 36 ü PEROTRILETES WHITFORDENSIS RETITRILETES CIRCOLUMENUS 37 1 11 38 RETITRILETES FACETUS ï 11 STEREISPORITES ANTIQUISPORITES 39 ii 40 ii TRIPOROLETES SIMPLEX 41 ï CORONATISPORA PERFORATA 42 ï DICTYOTOSPORITES FILOSUS FALCISPORITES GRANDIS 43 ü ł 44 JANUASPORITES SPINULOSUS ï 45 ü LEPTOLEPIDITES MAJOR 46 RETITRILETES EMINULUS ï SESTROSPORITES PSEUDOALVEOLATUS 47 ü FORAMINISPORIS WONTHAGGIENSIS 48 İİ ISCHYOSPORITES PUNCTATUS 49 ï PILOSISPORITES NOTENSIS 50 İİ 51 İİ FILOSISPORITES PARVISPINOSUS 11 52 İ TRILOBOSPORITES TRIORETICULOSUS 53 İİ TRIPOROLETES RETICULATUS 54 BANKSIEACIDITES ELONGATUS 1 55 . CUPANEIDITES ORTHOTEICHUS 56 || DACRYCARPITES AUSTRALIENSIS 1 57 GLEICHENIIDITES 11 Î 11 58 HALDRAGACIDITES HARRISII 59 LYGISTEPOLLENITES FLORINII -0000 ï Ï 60 İİ NOTHOFAGIDITES ASPERUS Î İ 61 ï NOTHOFAGIDITES DEMINUTUS mm 1 ü 62 İİ NOTHOFAGIDITES EMARCIDUS NOTHOFAGIDITES FALCATA 63 İİ 0000 PERIPOROPOLLENITES VESICUS 64 || 65 || PHYLLOCLADIDITES MAWSONII 66 | PODOSPORITES MICROSACCATUS

	PROTEACIDITES INCURVATUS	PROTEACIDITES SCABORATUS	SAPATACEOIDAEPOLLENITES ROTUNDA	TRILETES TUBERCULIFORMIS	CYATHEACIDITES ANNULATUS	MYRTACEIDITES PARUUS	NOTHOFAGIDITES FLEMINGII	PERIPOROPOLLENITES POLYORATUS	PROTEACIDITES SP	TETRACOLPORITES OAMARUENSIS	VERRUCOSISPORITES KOPUKUENSIS	DILWYNITES GRANULATUS	
	67	68	69	20	71	72	23		1 75 1	1 76	II 77 II	1 78 1	
0100.0 swc 0140.0 swc 0162.0 swc	•	•	-			•		• •					0100.0 SWC 0140.0 SWC 0162.0 SWC

•

;

.

This is an enclosure indicator page. The enclosure PE907571 is enclosed within the container PE902067 at this location in this document.

The enclosure PE90	7571 has the following characteristics:
ITEM_BARCODE =	PE907571
CONTAINER_BARCODE =	PE902067
NAME =	Well Summary Sheet
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	MONTAGE
DESCRIPTION =	Well Summary Sheet (enclosure from WCR)
	for South Caramut-1
REMARKS =	
DATE_CREATED =	31/03/91
$DATE_RECEIVED =$	
W_NO =	W1037
WELL_NAME =	South Caramut-1
CONTRACTOR =	Lakes Oil Ltd
CLIENT_OP_CO =	Lakes Oil Ltd
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE605031 is enclosed within the container PE902067 at this location in this document.

The enclosure PE60	5031 has the following characteristics:
$ITEM_BARCODE =$	PE605031
CONTAINER_BARCODE =	PE902067
NAME =	Composite Well Log
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	COMPOSITE 10G
DESCRIPTION =	Composite Well Log (enclosure from WCR)
	for South Caramut-1
REMARKS =	
$DATE_CREATED =$	18/10/90
$DATE_RECEIVED =$	9/05/91
W_NO =	W1037
WELL_NAME =	South Caramut-1
CONTRACTOR =	Lakes Oil Ltd
CLIENT_OP_CO =	Lakes Oil Ltd
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE600889 is enclosed within the container PE902067 at this location in this document.

The enclosure PE60	0889 has the following characteristics:
ITEM_BARCODE =	PE600889
CONTAINER_BARCODE =	PE902067
NAME =	Mud Log
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log, Halliburton Geodata Services
	(enclosure fro WCR) for South Caramut-1
	REMARKS =
$DATE_CREATED =$	18/10/90
$DATE_RECEIVED =$	9/05/91
W_NO =	W1037
WELL_NAME =	South Caramut-1
CONTRACTOR =	Halliburton Geodata Services
CLIENT_OP_CO =	Lakes Oil Ltd
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE600890 is enclosed within the container PE902067 at this location in this document.

The enclosure PE60	0890 has the following characteristics:
ITEM_BARCODE =	PE600890
CONTAINER_BARCODE =	PE902067
NAME =	Dual Laterolog MLL Sonic CR
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Dual Laterolog MLL Sonic CR (enclosure
	from WCR) for South Caramut-1
REMARKS =	
$DATE_CREATED =$	18/10/90
DATE_RECEIVED =	9/05/91
W_NO =	W1037
WELL_NAME =	South Caramut-1
CONTRACTOR =	BPB
CLIENT_OP_CO =	Lakes Oil Ltd
(Inserted by DNRE -	Vic Govt Mines Dept)

ł

This is an enclosure indicator page. The enclosure PE600891 is enclosed within the container PE902067 at this location in this document.

The enclosure PE60	0891 has the following characteristics:
ITEM_BARCODE =	PE600891
CONTAINER_BARCODE =	PE902067
NAME =	Dual Laterolog MLL Gamma Ray Caliper
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Dual Laterolog MLL Gamma Ray Caliper
	(enclosure from WCR) for South
	Caramut-1
REMARKS =	
$DATE_CREATED =$	18/10/90
$DATE_RECEIVED =$	9/05/91
W_NO =	W1037
WELL_NAME =	South Caramut-1
CONTRACTOR =	BPB
CLIENT_OP_CO =	Lakes Oil Ltd
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE600892 is enclosed within the container PE902067 at this location in this document.

The enclosure PE60	0892 has the following characteristics:
ITEM_BARCODE =	PE600892
CONTAINER_BARCODE =	PE902067
NAME =	Compensated Sonic GR Cal
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Compensated Sonic GR Cal (enclosure
	from WCR) for South Caramut-1
REMARKS =	
$DATE_CREATED =$	18/10/90
DATE_RECEIVED =	9/05/91
W_NO =	W1037
WELL_NAME =	South Caramut-1
CONTRACTOR =	BPB
CLIENT_OP_CO =	Lakes Oil Ltd
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE600893 is enclosed within the container PE902067 at this location in this document.

The enclosure PE60	0893 has the following characteristics:
ITEM_BARCODE =	PE600893
CONTAINER_BARCODE =	PE902067
NAME =	Compensated Sonic GR Cal
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Compensated Sonic GR Cal (enclosure
	from WCR) for South Caramut-1
REMARKS =	
$DATE_CREATED =$	18/10/90
DATE_RECEIVED =	9/05/91
W_NO =	W1037
WELL_NAME =	South Caramut-1
CONTRACTOR =	BPB
CLIENT_OP_CO =	Lakes Oil Ltd
(Inserted by DNRE -	Vic Govt Mines Dept)

- -

This is an enclosure indicator page. The enclosure PE600894 is enclosed within the container PE902067 at this location in this document.

	0894 has the following characteristics:
ITEM_BARCODE =	
CONTAINER_BARCODE =	-
NAME =	Dual Laterolog MLL GR Cal
BASIN =	OTWAY
PERMIT =	PEP/122
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Dual Laterolog MLL Sonic GR (enclosure
	from WCR) for South Caramut-1
REMARKS =	
$DATE_CREATED =$	18/10/90
DATE_RECEIVED =	9/05/91
W_NO =	
WELL_NAME =	South Caramut-1
CONTRACTOR =	BPB
CLIENT_OP_CO =	Lakes Oil Ltd
	Via Cout Mines Dept)

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE600895 is enclosed within the container PE902067 at this location in this document.

The enclosure PE600895 has the following characteristics: ITEM_BARCODE = PE600895 CONTAINER_BARCODE = PE902067 NAME = Dual Laterolog MLL Sonic GR BASIN = OTWAY PERMIT = PEP/122TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Dual Laterolog MLL Sonic GR (enclosure from WCR) for South Carramut-1 REMARKS = $DATE_CREATED = 18/10/90$ DATE_RECEIVED = 9/05/91 $W_{NO} = W1037$ WELL_NAME = South Caramut-1 CONTRACTOR = BPB CLIENT_OP_CO = Lakes Oil Ltd (Inserted by DNRE - Vic Govt Mines Dept)