

WELL COMPLETION REPORT

DUNBAR-1

PPL1

OTWAY BASIN, VICTORIA

TEXT, APPENDICES & ENCLOSURES

January, 1996

WCR DUNBAR - 1 WII19 31 JAN 1996

PETROLEUM DIVISION

GFE RESOURCES LTD

PPL1 OTWAY BASIN, VICTORIA

DUNBAR-1 WELL COMPLETION REPORT

submitted

January, 1996

CONTENTS

TEX	T				Page
1.	INT	RODUCT	TION		1
1.	1.1				1
	1.1	Main I	ns For Drillin Posults	ng .	1
	1.2	Mam	xesuis		1
2.	WEI	LL HIST	ORY		2
	2.1	Location	o n		2
	2.2	Genera	al Data		2
	2.3	Drilling	g Data		2
		2.3.1	Drilling (Contractor	2
		2.3.2	Drilling I	Rig	2
		2.3.3	Casing an	nd Cementing Details	2
		2.3.4	Drilling I	Fluid	4
		2.3.5	Drilling E	Bits	4
		2.3.6	Water Su	pply	4
		2.3.7	Drilling I	History	5
	2.4	Forma	tion Samplii	ng and Testing	7
		2.4.1	Cuttings	•	7
		2.4.2	Cores		7
			2.4.2.1	Conventional Cores	7
			2.4.2.2	Sidewall Cores	7
		2.4.3	Testing		7
			2.4.3.1	Drill Stem Testing	7
			2.4.3.2	Wireline Formation Testing	9
		2.4.4	Sample A	nalyses	9
	2.5	Loggin	g and Surve	eys .	9
		2.5.1	Mud Logg	ging	9
		2.5.2	Wireline I		9
		2.5.3	Deviation	a Surveys	10
		251	Valority 9	Turnov	10

GEO	LOGY			1
3.1	Stratig	raphy		1
3.2	Litholo	ogy		12
	<i>3.2.1</i>	Heytesbu	ry Group	12
		3.2.1.1	Port Campbell Limestone	12
		3.2.1.2	Gellibrand Marl	1:
		3.2.1.3	Clifton Formation	1:
	3.2.2	Nirranda	Group	1:
		3.2.2.1	Narrawaturk Marl	1:
		3.2.2.2	Mepunga Formation	1:
	<i>3.2.3</i>	Wangerri	p Group	1:
		3.2.3.1	Dilwyn Formation	13
		3.2.3.2	Pember Mudstone	13
		3.2.3.3	Pebble Point Formation	1
		3.2.3.4	"K-T" Shale	1
	<i>3.2.4</i>	Sherbrook	k Group	14
		3.2.4.1	Paaratte Formation	14
		3.2.4.2	Skull Creek Mudstone	1:
		3.2.4.3	Nullawarre Greensand	1:
		3.2.4.4	Belfast Mudstone	1:
		3.2.4.5	Waarre Formation	1:
			3.2.4.5.1 Unit D	1:
			3.2.4.5.2 Unit C	16
			3.2.4.5.3 Unit B	10
			3.2.4.5.4 Unit A	10
	3.2.5	Otway Gr	roup	10
		3.2.5.1	Eumeralla Formation	10
3.3	Hydro	carbon Indic	cations While Drilling	1
	3.3.1	Mud Gas		1′
	3.3.2	Fluoresce	ence	1′
		3.3.2.1	Cuttings	1′
		3.3.2.2	Sidewall Cores	1′
3.4	Geoche	emistry		13
3.5	Palyno	logy		13
3.6	Structu	ıre		13
3.7	Log Ar	alysis		19
CON	CLUSIO	NS		2,
IMPI	LICATIO	ONS		

21

3.

4.

5.

TABLES

1.	Bit Record		6
2.	TOTCO Deviation Surveys		10
3.	Formation Tops and Thicknesses		11
4.	Predicted vs Actual Formation tops		18
5.	Log Analysis Results - Waarre Formation		20
FIGU	RES		
1.	Location Map		
2.	Otway Basin generalised stratigraphy		
3.	Drilling Progress Chart		
4.	RFT Pressure Plot		
APPE	ENDICES		
1.	Rig Specifications		
2.	Drilling Fluid Recap		
3.	Daily Report Summary of Drilling Operations		
4.	A Cuttings Descriptions		
	B Daily Report Lithological Descriptions		
5.	Sidewall Core Descriptions		
6.	Drill Stem Test Data (DST-1) & Gas Sample Analysis		
7.	RFT Pressure Test Report Sheet		
8.	Velocity Survey		
9.	Geochemistry Report		
10.	Palynology Report		
ENCI	LOSURES		
1	Composite Log	1:1000	
2	Formation Evaluation Log (Mud Log)	1:500	
3	Gas Ratio Analysis Log	1:1000	
4	Log Analysis	1:500	

1. INTRODUCTION

1.1 Reasons For Drilling

Dunbar-1 is an exploration well located in the northwest of PPL1 Otway Basin, Victoria, approximately 1.6 kilometres from Port Campbell-3 and 2.5 kilometres north of the commercial gas discovery Wallaby Creek-1 (Figure 1).

The well is situated at the northwestern end of a west-northwest trending tilted horst block in the Port Campbell Embayment, which has fault-dependant closure with the crest situated adjacent to the major north-bounding fault.

The primary objective in Dunbar-1 was the Waarre Formation (Figure 2), which was interpreted to be over 100m thick at the well location.

Lateral seal was the dominant risk associated with the prospect since the throw at the crest could have been sufficient to place the top of the reservoir against the Nullawarre Greensand equivalent. To the south and southeast of Dunbar-1 the Nullawarre Greensand equivalent dominantly comprises silty claystones with only occasional very fine sandstone interbeds up to four metres thick, but to the east and north it is thicker and coarser, and thus less likely to be an effective seal.

Hydrocarbon charge was considered low risk due to the numerous hydrocarbon intersections in the region. It was proposed to continue the well about 200 metres below the target horizon to investigate the interpreted spill-point depth into adjacent structures.

1.2 Main Results

Dunbar-1 spudded on 9 March, 1995 and was drilled to a total depth of 1758.0 mKB in 10 days.

Log analysis evaluation and RFT pressure measurements indicate a gas zone in the Waarre Formation at the top of Unit 'C'. The gross hydrocarbon column comprises the interval 1481.8-1485.0 (1399.1-1402.3 mSS) mKB and is 3.2 m thick. Water saturations increase below 1485.0 mKB suggesting a transition zone down to 1488.5 mKB (1405.8 mSS) The zone was not tested. Deep resistivity values drop considerably below 1488.5 mKB and are indicative of a water zone underneath the gas.

A second gas zone is present in the Waarre Formation, Unit 'A', between 1533.0-1543.0 mKB (mSS). Below this depth the section comprises predominantly non-net claystones and, therefore, a GWC could not be identified. Gas is indicated by DST results, logs, high mud gas readings and RFT pressure data.

Two Drill Stem Tests were conducted over the same interval, 1526.0 - 1557.0 mKB, within the lower interpreted hydrocarbon zone. DST-1 failed due to plugging. DST-2 also partially failed due to plugging, but flowed gas at an unstabilised rate of 750 MCFD and recovered 40 m of viscous mud with condensate/oil.

It is thought that the Unit 'A' sand is in a separate system to the unit 'C' sand above.

An attempt was made to run 7" casing down to the Waarre gas zones, but the casing became stuck and Dunbar-1 had to be suspended with casing cemented down to 1209.83 mKB. The rig was released on 1 April, 1995.

Surface Casing

Size:	9 ⁵ /8"
Size:	95/8"

Weight & Grade: 18 Joints 36 lb/ft Buttress K55

7 Joints 43.5 lb/ft Buttress K55

Centralisers: 308m, 287m, 276m and 264m

Float Collar: 299.77m

Shoe: 311.93m

Hole Depth: 317.0m

Cement: 393 sacks Class "A" neat cement

Method: Single plug displacement (top plug only)

Equipment: Dowell/Schlumberger

Production Casing

Size: 7"

Weight & Grade: 12 Joints 23 lb/ft STC J55

75 Joints 26 lb/ft LTC N80 15 Joints 26 lb/ft LTC K55

Centralisers: 1207m, 1162m, 1127m, 1093m, 1081m,

1070m, 1058m, 1046m, 1034m, 1022m, 1010m, 998m, 973m, 937m, 901m, 865m,

829m, 793m and 721m.

Float Collar: 1196.98m

Shoe: 1209.83m

Hole Depth: 1758.0m

Cement: 447 bbls 2% Gel class "G" cement and

31.4 bbls Class "G" neat cement

Method: Top and bottom plug displacement method

Equipment: Dowell/Schlumberger

2. WELL HISTORY

2.1 Location

Surface Location: Latitude: 53.791"S 38° 32'

Longitude: 142° 54' 23.113"E

AMG:

666133.3mE

5731612.3mN

Seismic:

Line:

Inline 6515

Crossline 2665

2.2. General Data

Well Name: Dunbar-1

Permit: PPL1 Otway Basin, Victoria

Operator: GFE Resources Ltd

Level 6, 6 Riverside Quay

South Melbourne Victoria 3205

Participants: **GFE Resources Ltd** 100%

Elevation: Ground Level (GL): 76.4m AHD

> Kelly Bushing (KB): 82.1m AHD (datum)

(All depths are Drilled Depths relative to KB

unless otherwise stated).

Total Depth: Logger: 1754.0mKB

Driller: 1758.0mKB

Drilling Commenced: 1700 hours, 9 March, 1995

Total Depth Reached: 2100 hours, 19 March, 1995

Rig Released: 2400 hours, 1 April, 1995

Well Status: Suspended

2.3. Drilling Data

2.3.1 **Drilling Contractor**

Century Drilling Limited

2.3.2 **Drilling Rig**

Century Rig 11 (see Appendix 1)

2.3.3 Casing and Cementing Details

A 16" Conductor pipe was cemented at 5 metres (GL) prior to rig up.

Cement plugs

Plug No.1

Interval:

1610-1440m

Cement:

240 sacks class "G" cement

Method:

Balanced

Tested:

Tagged at 1437m

Plug No.2

Interval:

1240-1180m

Method:

Balanced

Tested:

Tagged at 1178m

Pressure tested to 500 PSI

Surface Plug

Top flange and bull plug installed on 7" casing

2.3.4 Drilling Fluid

The drilling fluid program used was that designed and recommended by M-I Australia Pty. Ltd. after consultation with GFE representatives. The well was spudded with drill water and relied on native clays for viscosity. Excessive rheology from the Gellibrand Marl caused mud ring problems on three occasions whilst drilling. After running the surface casing the shoe track was drilled out with water and whilst drilling 5 metres of new hole prior to running the FIT the hole was displaced to a PHPA mud. Drilling of the 8½ hole section proceeded with a Drill water/PHPA/PAC R mud system which was maintained to total depth. On every wiper and bit trip, tight hole necessitated considerable time to be spent reaming. Excessive filter cake build up also appeared primarily to cause the plugging of the DST tool on both drill stem test attempts. On running the 7" production casing this became irretrievably stuck and was cemented in place at 1209 metres. Details of the mud system used and assessment of its performance are contained in the Drilling Fluid Recap (Appendix 2).

2.3.5 Drilling Bits

Three new drilling bits and two re-runs were used during the drilling of Dunbar-1, and a record is shown in Table 1.

2.3.6 Water Supply

Drilling water was obtained from a domestic water main and trucked to a pit dug at the wellsite.

2.3.7 Drilling History

The following summary of operations and the drilling progress chart (Figure 3) for Dunbar-1 are based on tour sheets and daily drilling reports. A more detailed account can be found in the compilation of the operations summaries from daily drilling reports in Appendix 3.

A 16" conductor pipe was cemented at 5 metres (GL) prior to rig up. Dunbar-1 was spudded at 1700 hours on March 9, 1995 with a $12^{1}/4$ " bit. Drilling $12^{1}/4$ " hole continued with surveys until 317m (9⁵/8" casing depth) without problems except for mud rings occurring at 263m, 291m, 310m, and after a wiper trip at 317 metres. The $9^{5}/8$ " casing was run to 311.93 metres but during cementing the cement unit was unable to mix continuously and maintain slurry weight so after 1 hour and only 35bbls of slurry pumped the cement was circulated to surface and dumped. The cement unit was repaired and the $9^{5}/8$ " casing was cemented in place without problems. After waiting on the cement to set, the BOP's were installed and pressure tested. An $8^{1}/2$ " bit and drilling assembly was used to drill 5m of new hole whereupon a formation integrity test was conducted (equivalent mud weight of 22.89ppg).

Drilling of 81/2" hole then continued with surveys to 856m with the only drilling problems encountered being from balling clays causing an inability of the shakers to cope with the mud flow. At 856m a wiper trip was run which encountered severe tight hole problems. After reaming all tight hole sections drilling of $8^{1}/2$ " hole with surveys continued to 1287m where another wiper trip was conducted. This wiper trip also encountered tight hole which was subsequently reamed on the way back to bottom. Drilling $8^{1}/2$ " hole with surveys then continued to 1507m where the bit was tripped due to high torque. On the trip out severe tight hole was again encountered. The bit was found to be 1/2" undergauge. After changing bits and picking up a junksub the 8½" drilling assembly was run back in hole reaming all tight hole sections on the way in. Drilling $8^{1}/2$ " hole then continued to 1557m where drilling ceased to conduct a drill stem test. After conditioning the hole and working all tight hole sections Drill Stem Test-1 was run over the interval 1526 to 1557m. However on retrieving the test tool it was found to be plugged. The hole was then conditioned and Drill Stem Test-2 was run over the same interval (1526 to 1557m). Drilling of $8^{1}/2$ " hole with surveys then continued to 1758m (Total Depth).

After conditioning the hole and reaming all tight hole sections BPB were rigged up and the wireline logging suite run. After completion of the wireline logging suite with clean-out trips as necessary, 7" production casing was run but at a depth of 1245m this became stuck - after freeing the 7" casing it again hung up and was unable to pass 1253m. At this point an attempt was made to retrieve the casing to surface however at 1210m the casing became irretrievable stuck. The 7" casing was then cemented in place at 1210m. After changing the 7" casing rams to $3^{1}/2$ " pipe rams, a $3^{1}/2$ " drill string was picked up with a 6" BHA. The cement shoe track was drilled with the 6" assembly and was then used to run to total depth (1758m) and the hole circulated clean. The 6" assembly was subsequently tripped out and the drill string run back open ended to set cement plugs. Plug-1 was tagged and plug-2 in the bottom of the 7" casing tagged and pressure tested. The $3^{1}/2$ " drill string was layed out, the BOP's removed and a new top flange and bull plug installed. The rig was released at 2400 hrs on April 1, 1995.

TABLE 1

Well: Dunbar-1 Permit: PPL1

GFE Rep.: Spud:

Ken Smith 1700hrs 9/3/95

BIT RECORD

Rig: Reached T.D.:

Century Rig 11 2100hrs 19/3/95

Hours Ave Av					ī			П		Γ	<u> </u>						
Signature Type Jeas Soviet Depth More Hours Account Part More Part More Part More Part More Part More Part Pa		Remak	ΤЉ		Torq				Test		T/D						
Size Make Type Jess Serial Daysh Mirs Hours Ave Accommos Free Press		0			BT		ige)										
Size Make Type Jess Serial Daysh Mirs Hours Ave Accommos Free Press	L Grade	0	1/16		72		nder gau		ħ		1/16						
Size Make Type Jess Serial Daysh Mirs Hours Ave Accommos Free Press	C Dui	B	2		7		e 7/81		1		7						
Size Make Type Jess Serial Daysh Mirs Hours Ave Accommos Free Press	141	7					r gang			L		_	L		L		
Size Make Type Jess Serial Daysh Mirs Hours Ave Accommos Free Press					 	L	8 und			L		L					
Size Make Type Jess Serial Daysh Mirs Hours Ave Accommos Free Press		2			<u> </u>	_	Stab 3	_	1 1	L	1	\vdash	_		-	_	
Size Male Type Test Depth Mirs Hours Origin Depth Mirs Hours Origin Depth Mirs Hours Origin Depth Mirs Hours Origin Mirs Mirs Hours Origin Mirs Mirs		AYP.	3/20	5/24					98/9		5/14						
Size Marke Type Jess Serial Dayth Mire Hours Ave Accommon Pi on Press Press	Ипд	<u> </u>															
Size Make Type Jets Serial Depth Mrs Hours Ave Drig During Make Drig During Make Drig During																	
National Street Marke Type Jess Serial Depth Mirs Hours Ave Drig	l n	<u> </u>								\vdash							_
Site Make Type Jess Serial Depth Mirs Hours Ave Accum H1 on RPM Verial December Inchination Inch			45	27					27		27.						
Site Mitch Ijpe Jess Serial Daptit Mitrs Hours Ave Account W1. on RPM	Pump Press.	(psi)	006	1200			ge)		1200		1200						
Site Mitch Ijpe Jess Serial Daptit Mitrs Hours Ave Account W1. on RPM	Vert Dev.	0	1/8	10			mder gau		10		10						
Sirge Make Type Jess Serial Depth Mitrs Hours Rate Drig Indiang Rate Drig Indiang Rate Drig Indiang				95/11 0					90/11 0		110						
Size Make Type Jess Serial Depth Mirs Hours Rate (inch) (inch) (int)	Wt. on bit	(0001bs	5/20	20/25					25		25						
	Accum Drlg	Hours	121%	72.5			- 7/8		76.5		91.5						
	Ave Rate	(m/kr)	24.5	20	NE	ffective	nder gauge		12.5		13.4					20.2	
	Hours		121⁄2	09	g loose seal	eal - non ea	(stab 3/8 ur		4	Row	15 (19)			W.		91.5	7/8
			307	1190	broken Br	brg loose s	n-effective		20	in Middle				Middle Rc		L	200
			317		row insert	w broken -	e & seal no		1557	oken insert				t broken in			
	Serial		22776	L03W	ken, 1 inner	d 1 nose ro	earing loos		V79BV	cone: 2 br		2nd row		and 1 inser		Penetration	813724
	Jas		2x20 1x16		e row brok	er row, an	ner row b			Row, 2nd	3x11	hipped in	ose Row	auge row		Average	
			L-114		All gaug	e row, 7 inn	e row, all im			d in Middle	ATJ.05	1 insert o	hipped in N	hipped in G.			6S4
	Make		Varel	HTC	;;	: All gang	All gaug		нтс	1 chippe	HTC	.;	: 1 insert c	1 insert c			SEC
		\ \	12%	%8	Lead Con	2nd Cone	3rd Cone:	-	%8	2nd cone:	8,7	Lead Con	2nd Cone	3rd Cone:			9
			1RR	2					3		3RR						4

2.4 Formation Sampling And Testing

2.4.1 Cuttings

Cuttings samples were collected at five-metre intervals from 6 metres to 1758 metres (T.D.) and subdivided into sets as follows;

1 set of unwashed and air-dried samples in calico bags 6 - 1758 metres

3 sets of washed and dried samples in plastic bags 6 - 1758 metres

1 set of washed and dried samples in Samplex trays 6 - 1758 metres

One set of washed and dried samples was subsequently made available to the Department of Energy and Minerals (Petroleum Division) sample store. The remaining samples were retained by GFE Resources Ltd.

Lithological descriptions of cuttings by the wellsite geologist are provided in Appendix 4A, and a compilation of the lithological descriptions from daily reports issued during the drilling can be found in Appendix 4B.

2.4.2 Cores

2.4.2.1 Conventional Core

No conventional cores were cut in Dunbar-1.

2.4.2.2 Sidewall Cores

A total of 24 sidewall cores were attempted (Appendix 5), of which 20 were recovered.

All recovered sidewall core samples were checked for lithology and hydrocarbon shows.

2.4.3 *Testing*

2.4.3.1 Drill Stem Testing

Two Drill Stem Tests (DST's) were conducted in Dunbar-1, as outlined below.

DST-1 was a conventional dual-packer, bottom-hole test conducted on 17 March 1995 over the interval 1526.0-1557.0 metres (driller's depth) to evaluate the top of the Waarre Formation Unit A sandstone. The Drill Stem Test failed due to plugging and recovered 3 m of rathole mud.

After drilling through a predominantly shaly interval (Waarre Formation Unit B) with Total Gas readings ranging 10-11 units, a peak of 821 units was recorded at 1523 metres followed by 510 units down to 1545 metres then decreasing to 35 units by 1557 metres. This gas increase coincided with a lithology change from a shale to a dominantly fine grained sandstone and a rate of penetration (ROP) increase from 10-15 metres/hour to 30-60 metres/hour. These observations suggested probable gas saturation associated with probable good porosity, so the decision to conduct a DST was made.

The tool was opened at 0801 hours for a six-minute Pre-Flow, with both the manifold and the bubble hose closed. During this period no visible pressure increase occurred. After the test tool was closed in at 0807 hours the bubble hose was opened with a very weak air blow. The tool was reopened at 0852 hours after a 45 minutes initial shut-in period with both the manifold and bubble hose closed. After five minutes into the final flow period and no surface pressure indications were present, the bubble hose was opened but was dead. To remove doubt about correct tool functioning the test tool was closed at 0909 hours after a final flow period of 17 minutes. The tool was re-opened at 0912 hours but the blow remained dead until the tool was closed at 0942 hours. The tool was then shut-in for 30 minutes before the test interval was equalised with the annulus and the tool pulled free.

Total fluid recovered was 3 metres of rathole mud. The test was deemed a failure due to plugging at perforations externally and in the hydraulic tool internally.

After the failure of DST-1 due to plugging, it was decided a second attempt at testing the Waarre Formation Unit A was warranted.

DST-2 was a conventional dual-packer, bottom-hole test conducted on 18 March 1995 over the interval 1526.0-1557.0 metres (driller's depth). The DST partially failed due to plugging. It flowed gas to surface at an unstabilised rate of 750 MCFD. It recovered 40 m viscous mud cut with condensate/oil.)

The tool was opened at 1128 hours for a five-minute Pre-Flow, with both the manifold and the bubble hose closed. During this period the pressure increased to 9 PSI. After the tool was closed in at 1133 hours the manifold was opened to allow the pressure to bleed off in preparation for the final flow period. The tool was reopened at 1233 hours after a 60 minute initial shut-in period with the manifold closed but the bubble hose open. A strong air blow was evident. The manifold was opened through a 1/2" choke at 1234 hours and the pressure increased to 5 PSI by 1238 hours then began to gradually decrease. Gas reached surface at 1238 hours. The manifold was closed at 1244 hours to allow the pressure to build up for a gas sample. By 1313 hours with the manifold closed the pressure had built up 20 PSI when the manifold was opened. pressure decreased to 6.5 PSI by 1318 hours when the manifold was again closed to allow pressure to build up for an alternative sample. By 1320 hours the pressure had built up to 20 PSI when the manifold was opened through a 1/2" choke. The pressure began to build rapidly so at 1324 hours the manifold choke was changed to 1" to stimulate clean-up. The flowing pressure stabilised at 50 PSI by 1329 hours when the choke was changed back to a 1/2". The flowing pressure then increased to its maximum of 105 PSI at 1333 hours but thereafter steadily decreased to 10 PSI by the time the test tool was closed at 1433 hours, after a total final flow time of 120 minutes. The tool was then shut-in for 90 minutes before the test interval was equalised with the annulus and the tool pulled free.

Total fluid recovered was 40 metres of highly viscous mud cut with condensate/light oil. The test was deemed a failure due to plugging at perforations externally and in the hydraulic tool internally similar to that which occurred in DST-1.

Due to positive identification of pore fluid type and good permeability due to referencing the build-up the decision was made not to repeat the test.

The Drill Stem Test report and results of analysis carried out on gas samples are found in Appendix 6.

2.4.3.2 Wireline Formation Testing

Repeat Formation Test (RFT) pressure readings were carried out in Dunbar-1 and the results listed in Appendix 7. The pressure vs depth plot is found in Figure 6. The interpretation of the plot is found under section 4. An attempt was made to take a sample at 1486.0 m but it failed due to seal failure.

2.5 Logging And Surveys

2.5.1 Mud Logging

A standard skid-mounted unit equipped for continuous recording of depth, rate of penetration (ROP), mud gas, pump rate and mud volume data, as well as intermittent mud and cuttings gas (blender) analysis was operative from spud until the well was plugged and suspended. The Formation Evaluation Log (i.e., "Mud Log") at 1:500 scale is provided in Enclosure 2, and a Gas Ratio Analysis Log at 1:1000 scale is provided in Enclosure 3.

2.5.2 Wireline Logging

Wireline logging was performed by BPB using a standard truck-mounted unit. Only one logging suite was carried out (at total depth) and comprised the following:-

Run	Tool String	Interval (mKB)	BHT (°C)	Hours since circulation stopped	Comments
1	Array Induction - Microlaterolog - Sonic- SP-GR-CALI	1754.0- 312.0	58	6.5	GR to surface
2	Acoustic Imaging Tool	1737.0- 1355.0	N/A	12.0	
3	Compensated Neutron - Photodensity - GR	1748.0- 800.0	64	21.0	
4	Repeat Formation Sampler	1644.5- 1482.2	N/A		39 tests attempted
5	Velocity Survey	T.D - Surface	N/A		Run by Velocity Data
6	Sidewall Cores		N/A		24 attempted, 20 recovered

Hole Size Logged: 8.5"

The mud properties during logging were as follows:

Mud Type	PHPA/PAC
Density (ppg)	9.3
Viscosity (sec)	4.0
рH	8.6
Fluid Loss (cc)	6.8
Rm @ Temp	2.71 @ 19.6 °C
Rmf @ Temp	2.56 @ 21.2 °C
Rmc @ Temp	3.33 @ 22.2 °C

2.5.3 Deviation Surveys

Totco deviation surveys were carried out periodically throughout the drilling of Dunbar-1, with results as shown in Table 2. Using this data a maximum radius of deviation was calculated by summing the products of the component of horizontal shift [interval length \times sin(deviation angle)] for each interval. This indicates that the Waarre Formation primary objective was intersected within a 16-metre radius of the surface location and the bottom hole location was within a 18-metre radius, which equates to an overall deviation of no more than one degree.

TABLE 2

	DUNBAR-1 HOLE DEVIATION												
Depth (m)	Interval (m)	Angle (m)	Sin(angle)	Herizontal distance (m)	Tetal herizental (m)	ces(angle)	Vertical distance (m)	Total vertical distance (m)					
0													
11	11	0	0.00	0.00	0.00	1.00	11.00	11.00					
30	19	0	0.00	0.00	0.00	1.00	19.00	30.00					
84	54	0	0.00	0.00	0.00	1.00	54.00	84.00					
129	45	0.5	0.01	0.39	0.39	1.00	45.99	129.00					
193	64	0	0.00	0.00	0.39	1.00	64.00	193.00					
250	57	0.125	0.00	0.12	0.52	1.00	57.00	250.00					
442	192	0	0.00	0.00	0.52	1.00	192.00	442.00					
626	184	0.5	0.01	1.61	2.12	1.00	183.99	625.99					
814	188	0	0.00	0.00	2.12	1.00	188.00	813.99					
1015	201	0.25	0.00	0.88	3.00	1.00	201.00	1014.99					
1217	202	1.25	0.02	4.41	7.14	1.00	201.95	1216.94					
1417	200	1	0.02	3.49	10.90	1.00	199.97	1416.91					
1619	202	1.5	0.03	5.29	16.18	1.00	201.93	1618.84					
1744	125	1	0.02	2.18	18.37	1.00	124.98	1743.82					
			Totals	18.37			1743.82						

2.5.4 Velocity Survey

A Velocity Survey (WST-Checkshot) was carried out by Velocity Data. This report is found in Appendix 8.

3. GEOLOGY

3.1 Stratigraphy

The section penetrated in Dunbar-1 is interpreted to have formation tops as shown in Table 3 based on consideration of rate of penetration, cuttings descriptions, palynological analyses and wireline logs. Unless stated otherwise, depths mentioned in this report will be referenced on the well datum, the kelly bushing (KB).

TABLE 3

DUNBAR-1 FORMATION TOPS AND THICKNESSES

Stratigraphic Unit	De	Thickness	
	(mKB)	(mSS)	(m)
Heytesbury Group	5.7	+77.0	420.3
Port Campbell Limestone	5.7	+77.0	118.3
Gellibrand Marl	124.0	-41.3	291.0
Clifton Formation	415.0	-332.3	11.0
Nirranda Group	426.0	-343.3	136.0
Narrawaturk Marl	426.0	-343.3	86.0
Mepunga Formation	512.0	-429.3	50.0
Wangerrip Group	562.0	-479.3	317.0
Dilwyn Formation	562.0	-479.3	200.0
Pember Mudstone	762.0	-679.3	60.0
Pebble Point Formation	822.0	-7 39.3	43.0
K-T Shale	865.0	-782.3	14.0
Sherbrook Group	879.0	-796.3	816.2
Paaratte Formation	879.0	-796.3	356.0
Skull Creek Mudstone	1235.0	-1152.3	114.0
Nullawarre Greensand (equiv.)	absent	-	0.0
Belfast Mudstone	1405.5	-1322.8	72.5
Waarre Formation	1478.0	-1395.3	217.3
Unit D †	1478.0	-1395.3	3.8
Unit C	1481.8	-1399.1	19.2
Unit B	1501.0	-1418.3	31.5
Unit A	1532.5	-1449.8	15.6
Otway Group	1548.1	-1465.4	209.9+
Eumeralla Formation	1548.1	-1465.4	209.9+
Total Depth (Driller)	1758.0	-1675.3	

[†] Also known as the Flaxman Formation

3.2 Lithological Description

The following is a summary of the lithological units observed in Dunbar-1 compiled from the descriptions by the wellsite geologist (Appendix 4), as well as the Mud Log (Enclosure 2), and sidewall core descriptions (Appendix 5).

3.2.1 Heytesbury Group (Surface - 426.0 metres)

3.2.1.1 Port Campbell Limestone (Surface - 124.0 metres)

<u>Calcarenite</u>: orange, very fine to fine grained, sucrosic texture, common shell fragments and foraminifer, common red brown iron oxide rich calcilutite, friable, good visual porosity. By 50m gradually becoming very light grey, fine grained, trace fossil fragments including bivalves, gastropods, foraminifer, sponge spicules and echinoid spines, slightly argillaceous, trace glauconite, trace medium grey marl, friable, poor visual porosity. With minor interbedded

<u>Marl</u>: medium grey, very calcareous grading to calcilutite, firm, non-fissile.

3.2.1.2 Gellibrand Marl (124.0 - 415.0 metres)

<u>Marl</u>: medium grey with increasing medium green grey below 205m, occasionally medium brown grey, in general becoming less calcareous with depth, abundant fossil fragments including bivalves, gastropods, foraminifer, bryozoa, sponge spicules and echinoid spines, rare glauconite, rare dispersed quartz sand grains, trace pyrite occasionally as fossil replacement, rare micromica in part, very soft, sticky, non-fissile.

3.2.1.3 Clifton Formation (415.0 - 426.0 metres)

Calcarenite: orange brown, very fine to very coarse grained, abundant dark brown iron oxide pellets, abundant light to medium orange brown iron oxide stained bryozoa, trace to common shell fragments, echinoid spines and sponge spicules, common brown iron oxide stained very fine to very coarse frosted subrounded to well rounded quartz grains, weak cryptocrystalline calcareous cement, friable to moderately hard, poor inferred porosity. Grading with depth to off white to light yellow to orange to brown, occasionally yellow green, often very lutitic, common bryozoa fragments, trace foraminifer, echinoid spines, sponge spicules and shell fragments, trace dark brown very fine to occasionally very coarse iron oxide pellets, trace brown very fine to occasionally very coarse iron oxide stained frosted subrounded to well rounded quartz grains, friable, very poor visual porosity. With minor interbedded

Marl: medium to dark brown, trace to common medium grey to medium green grey, common bryozoa, trace shell fragments, foraminifer, echinoid spines and sponge spicules, common pyrite, trace dark green to black glauconite, common very fine clear quartz grains, very soft, sticky, non-fissile.

3.2.2 Nirranda Group (426.0 - 562.0 metres)

3.2.2.1 Narrawaturk Marl (426.0 - 512.0 metres)

<u>Marl</u>: medium to dark brown, common medium grey, trace medium green grey, common bryozoa, trace shell fragments, foraminifer, echinoid spines and sponge spicules, common pyrite grading to marcasite, trace dark green to black glauconite, common very fine clear quartz grains, very soft, sticky, non-fissile.

3.2.2.2 Mepunga Formation (512.0 - 562.0 metres)

<u>Sandstone</u>: medium brown, very fine to grit, dominantly medium, very poorly sorted, subangular to rounded, weak calcareous cement, weak silica cement, abundant white calcilutite matrix in part, abundant medium to dark brown argillaceous and silt matrix, strong brown stain on quartz grains, common glauconite, friable, very poor inferred porosity. With depth grading to

<u>Sandstone</u>: medium brown, very fine to very coarse, dominantly fine to medium, angular to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix (matrix supported grading to arenaceous claystone), weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Grading to

<u>Claystone</u>: medium to dark brown, non to occasionally very calcareous, very silty in part, abundant dispersed quartz grains in part grading to argillaceous sandstone, common glauconite, trace micromica, trace pyrite, soft, non-fissile.

3.2.3 Wangerrip Group (562.0 - 879.0 metres)

3.2.3.1 Dilwyn Formation (562.0 - 762.0 metres)

Sandstone: light brown grey, very fine to very coarse, dominantly coarse, subangular to subrounded, moderately sorted, weak silica cement, occasional strong dolomite cement towards base, abundant medium to dark brown argillaceous and silt matrix, trace white calcilutite matrix in part, clear to light orange brown stained quartz grains, trace pyrite, trace muscovite flakes, trace green grey cherty lithics, trace glauconite, friable, poor visual porosity. Grading to and occasionally interbedded with Claystone: medium to dark brown, very silty, trace to abundant dispersed very fine to very coarse light brown stained quartz grains, trace pyrite grading to marcasite, trace medium brown cryptocrystalline dolomite increasing towards base, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non-fissile.

3.2.3.2 Pember Mudstone (762.0 - 822.0 metres)

<u>Claystone</u>: medium to dark brown, very silty, common to abundant dispersed very fine to fine quartz sand grains, trace dispersed medium to grit sized quartz sand grains, common pyrite, trace glauconite, trace fossil fragments, slightly calcareous in part, trace medium brown cryptocrystalline dolomite, trace black carbonaceous material, trace micromica, soft, very dispersive, non-fissile.

Occasionally grading to <u>Sandstone</u>: light brown, very fine to fine, occasional medium to grit sized grains, subangular to rounded, dominantly subrounded, poorly sorted, weak silica cement, rare brown dolomite and calcareous cements, abundant medium to dark brown argillaceous and silt matrix (matrix supported), rare green grey cherty lithics, trace muscovite flakes, friable, very poor visual porosity Below 810m the Pember becomes very sandy being:

<u>Sandstone</u>: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, dominantly subrounded, very poorly sorted, occasional strong calcareous and medium brown cryptocrystalline dolomite cements, abundant medium brown argillaceous and silt matrix (matrix supported), trace brown stain on quartz grains, trace pyrite, friable, very poor visual porosity With minor interbedded and in part grading to

<u>Claystone</u>: medium brown, very silty, common to abundant dispersed very fine to grit quartz sand grains, common pyrite, trace glauconite, trace fossil fragments, slightly calcareous in part, trace medium brown cryptocrystalline dolomite, trace black carbonaceous material, trace micromica, soft, very dispersive, non-fissile.

3.2.3.3 Pebble Point Formation (822.0 - 879.0 metres)

<u>Sandstone</u>: light brown, very fine to grit, dominantly very coarse, subangular to subrounded, very poorly sorted, weak silica cement, trace to common medium brown argillaceous and silt matrix, trace white argillaceous matrix, trace to common yellow to brown quartz grains, trace green clay lithics, friable, fair visual porosity. Grading in part to and occasionally interbedded with

<u>Claystone</u>: medium to dark brown, very silty, occasionally iron oxide rich, abundant dispersed very fine to grit quartz sand grains, common pyrite, trace glauconite, slightly calcareous in part, trace black carbonaceous material, soft, very dispersive, non-fissile.

3.2.3.4 K-T Shale (865.0 - 879.0 metres)

Claystone: medium to dark brown, silty, abundant quartz grains, soft, dispersive.

3.2.4 Sherbrook Group (879.0 - 1477.9 metres)

3.2.4.1 Paaratte Formation (879.0 - 1235.0 metres)

Sandstone: very light orange grey, very fine to pebble, dominantly coarse to very coarse in general gradually becoming finer grained with depth, subangular to subrounded, moderately to well sorted, weak silica cement, trace medium brown argillaceous and silt matrix, common yellow quartz grains, common grey green and trace red cherty lithics, trace pyrite, friable, fair to good visual porosity. With depth gradually grading to Sandstone: light grey, very fine to grit, dominantly fine, subangular, poorly sorted, moderate silica cement, weak light brown dolomite cement in part, common to abundant white to light brown argillaceous matrix, abundant medium grey argillaceous and silt matrix in part, trace grey green and red lithics, trace black coal detritus, trace pyrite often associated with coal detritus, friable to moderately hard, poor visual porosity, grading to;

Sandstone: off white to light grey to light brown, very fine to dominantly fine, subangular, well sorted, strong dolomite cement in part, moderate silica cement, abundant white argillaceous matrix, common very fine partially altered feldspar grains, trace black carbonaceous flecks, rare pyrite, trace very fine muscovite flakes, moderately hard, very poor visual porosity grading to and interbedded with

<u>Claystone</u>: light to dark grey, dominantly medium grey, often light grey and very silty, abundant dispersed very fine to fine quartz and altered feldspar grains in part, common dispersed medium to grit quartz sand grains in part, trace pyrite, trace black coal detritus, trace medium brown cryptocrystalline dolomite, trace to common micromica, firm, very dispersive, slightly subfissile.

3.2.4.2 Skull Creek Mudstone (1235.0 - 1349.0 metres)

<u>Claystone</u>: medium to dark grey, occasionally medium to dark brown grey, very silty, common dispersed very fine to fine quartz and partially altered feldspar grains, common pyrite, trace medium brown cryptocrystalline dolomite, trace black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile. With minor interlaminated

Sandstone: off white to very light grey, very fine to fine, occasional medium to very coarse grains, subangular, moderately sorted, moderate to strong silica cement, trace strong dolomite cement, common to abundant white argillaceous matrix, occasionally abundant medium grey argillaceous and silt matrix, trace very fine to fine grey and rare red lithics, common very fine to fine partially altered feldspar grains, trace black carbonaceous flecks, trace very fine light green glauconite, moderately hard, very poor visual porosity. With from 1308 to 1309.5m. and 1316 to 1317.5m.

<u>Sandstone</u>: off white to light grey, very fine to fine, subangular, well sorted, strong silica and calcareous cements, common white argillaceous matrix in part, common light green lithics, trace biotite and muscovite, trace very fine black carbonaceous grains, very hard, no visual porosity.

3.2.4.3 Nullawarre Greensand (equivalent) (absent)

This unit is absent due to faulting

3.2.4.4 Belfast Mudstone (1405.5 - 1477.9m)

<u>Claystone</u>: dark grey, occasionally very dark grey and very carbonaceous, trace to common glauconite increasing with depth, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace to occasionally common medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.

3.2.4.5 Waarre Formation (1478.0 - 1548.1 metres)

3.2.4.5.1 Unit D (1478.0 - 1481.8 metres)

<u>Limestone:</u> very light brown, lutitic to cryptocrystalline, trace glauconite, hard, no visual porosity. Intermixed with minor;

<u>Claystone:</u> medium to dark brown grey, dark grey, occasionally very dark grey and very carbonaceous, trace to common glauconite increasing with depth, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace to occasionally common medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.

3.2.4.5.2 Unit C (1481.8 - 1501.0 metres)

<u>Sandstone</u>: light grey, very fine to grit, dominantly very coarse, angular to subangular, poorly sorted, weak silica cement, trace white argillaceous matrix, trace black coal detritus, trace pyrite, friable, good inferred porosity.

3.2.4.5.3 Unit B (1501.0 - 1532.5 metres)

Sandstone: light grey, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, weak silica cement, trace weak calcareous cement, trace to occasionally abundant white argillaceous matrix, trace black carbonaceous detritus, trace pyrite, friable, good inferred porosity. Interbedded with

<u>Claystone:</u> medium to dark grey, moderately silty, moderately carbonaceous, trace black coal flecks, trace pyrite, trace very fine dispersed quartz and altered feldspar grains in part, trace to common micromica, firm, very dispersive, slightly subfissile.

3.2.4.5.4 Unit A (1532.5 - 1548.1 metres)

Sandstone: off white to very light grey, very fine to medium, occasional coarse to very coarse grains, dominantly fine, angular to subangular, poor to moderate sorting, weak silica cement, abundant white argillaceous matrix, in part matrix supported, trace to common grey, green, red and brown lithics, trace muscovite and brown mica flakes, trace black coal detritus, trace pyrite, friable, very poor to poor visual porosity. Grading with depth to

<u>Sandstone</u>: light green grey, very fine to coarse, trace very coarse to grit grains, dominantly fine to medium, subangular, moderately sorted, weak silica cement, trace to abundant white argillaceous matrix, common green and brown lithics, trace black carbonaceous detritus, friable, poor visual porosity.

Grading in part to

<u>Claystone:</u> (kaolinite) off white, abundant dispersed very fine to fine quartz and lithic sand grains in part, soft, sticky, non-fissile.

3.2.5 Otway Group (1548.1 - 1758.0 metres)

3.2.5.1 Eumeralla Formation (1548.1- 1758.0 metres)

Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular, moderately sorted, weak silica cement, occasional moderate calcareous cement, common to dominantly abundant white argillaceous matrix, abundant green to grey to black lithics, common brown to red lithics, common to abundant altered feldspar grains, trace black coaly detritus, trace brown and green mica flakes, rare pyrite, friable, very poor visual porosity. Interbedded with and in part grading to Claystone: light to medium grey, light to medium brown grey, light to medium green grey, slightly to occasionally very silty, common black carbonaceous flecks and black coal detritus, trace brown mica flakes, trace pyrite, nil to occasionally common very fine partially altered feldspar grains, trace micromica, firm, very dispersive, slightly subfissile.

3.3 Hydrocarbon Indications

3.3.1 Mud Gas

There was no gas recorded down to 1245 mKB. Between 1245 and 1350 mKB gas consisted of background methane only (C_1) .

Between 1350 mKB and the top of the Waarre Formation at 1477.9 mKB gas was background C_1 and C_2 , with total gas at around 0.1%.

Waarre Formation

A gas peak with up to 5% total gas and C_1 to C_3 was recorded between the top of this unit at 1478.0 and 1490.0 mKB.

Background gas predominated below 1490.0 mKB, but at 1532.0 mKB, conciding with the top of Unit 'A' gas reading increased very significantly to more than 10% total gas with gas composition of C₁ to C₃. The high gas readings persisted down to 1548.0 mKB (Top Eumeralla).

Eumeralla Formation

There were no significant gas peaks within the Eumeralla Formation, and gas was mostly background comprising C_1 to C_3 .

3.3.2 Fluorescence

Cuttings samples and sidewall cores were routinely inspected for shows with the following results;

3.3.2.1 **Cuttings**

Oil fluorescence was observed in the Waarre Unit C across the interval 1487.5 to 1489 metres with the sandstone having trace dull blue-white fluorescence associated only with the rock flour giving a weak blue-white crush cut and also in the Waarre Unit A at a depth of 1544 metres with a trace of the sandstone having a dull blue-white fluorescence giving a very dull blue crush cut. Apart from these two occurrences no other oil fluorescence was observed from cuttings during the drilling of Dunbar-1.

3.3.2.2 Sidewall Cores

No oil fluorescence was observed in any sidewall cores from Dunbar-1.

3.4 Geochemistry

A mud/oil sample from DST-2 was sent to Geotech in Perth for geochemical analysis. The worked performed comprised GC and branched/cyclic GC-MS analysis. Results of the analysis are contained in Appendix 9. The sample chamber sample was sent to Amdel for analysis and their report is contained in the same Appendix 9.

3.5 Palynology

Fourteen sidewall core samples were analysed in Dunbar-1 with the focus of the palynological investigation concentrated on the Waarre Formation and Belfast Mudstone.

The investigation was conducted by Alan Partridge of Biostrata Pty Ltd. The report is contained in Appendix 10.

3.6 Structure

The following table 4 shows the predicted versus actual formation tops encountered in the well.

Table 4

Predicted vs Actual Formation Tops

Stratigraphic Unit	Predicted Depth (mKB)	Actual Depth (mKB)	+/- (m)
Port Campbell Limestone/			
Gellibrand Marl	6	5.7	+0.3
Clifton Formation	401	415.0	-14.0
Mepunga Formation	484	512.0	-28.0
Dilwyn Formation	551	562.0	-11.0
Pebble Point Formation	812	822.0	-10.0
Paaratte Formation	887	879.0	+8.0
Skull Creek Mudstone	1246	1235.0	+11.0
Nullawarre Equiv.	ABS	ABS	-
Belfast Mudstone	1357	1405.5	+48.5
Waarre Fm. (Top	1482	1478.0	+4.0
Porosity)			
Eumeralla Formation	1583	1548.1	+34.9
T.D.	1728	1758.0	-30.0

Generally horizon tops came in close to prediction.

The Waarre Formation had a minor gas column in the Unit C sand with a definite water contact. The inference from this is that the northern fault leaks at just below the top of the Waarre in Dunbar across into the Nullawarre Greensand.

The Unit A sand in the lower Waarre Formation appeared to contain gas with no observed water contact. Although not conclusive it is thought that the Unit A sand is in a separate system to the Unit C sand above it and probably contains a commercial reserve of gas.

3.7 Log Analysis

Log analysis was performed only over the primary objective, the Waarre Formation and parts of the underlying Eumeralla Formation. All other formations lacked any hydrocarbon indications and were interpreted as water wet.

Log analysis was performed using Croker Data Processing PETROLOG software.

The Caliper log shows that over the analysed interval the hole is in good condition. All logs are also reading adequately.

Waarre Formation

The Waarre Formation Unit 'D' developed between 1477.9 - 1481.8 mKB is not a reservoir and consists of sandy claystone.

Unit 'C' and 'B' (1481.8 - 1532.5 mKB) comprise light grey, fine to grit, dominantly very coarse sandstones interbedded with claystone. The sandstones are angular to subangular, poorly sorted, with trace of argillaceous matrix and very good visual porosity.

Unit 'A' (1532.5 - 1548.1 mKB) comprises a reservoir sandstone described as light green grey, dominantly fine to medium, subangular, moderately sorted, with trace to abundant argillaceous matrix, common green and brown lithics and poor visual porosity. The logs response over this zone is atypical, and this sand might constitute a transition between the Eumeralla and the Waarre Formation. The sandstone displays high gamma ray values, PEF of around 3.2 and higher density than the sandstones above. Indeed, the log response of Unit 'A' is very similar to the underlying Eumeralla Sandstones.

A Drill Stem Test conducted over Unit 'A' flowed gas to surface at an unstabilised rate of 750 MCFD. A second gas zone was suspected at the top of Unit 'C' where there was high gas recorded while drilling.

Results of this log evaluation have indicated:

- 1. High gas saturations at the top of unit 'C' in good agreement with the high gas recorded while drilling.
- 2. Gas saturations of around 50% in Unit 'A'. The calculated gas saturations appear to be too low considering the flow of gas in DST-1. The reasons of why log analysis cannot calculate higher gas saturations are not readily apparent but it could be due to:
 - * Uncertain a, m, n
 - * Complex lithology
 - * Conductive clays within the formation

Formation water resistivity was calculated from the Rwa method in the clean, water sand at around 1517.0 m. A value of 0.126 ohmm was obtained at formation temperature, which is around 31,000 ppm salinity. This salinity was applied to the entire Waarre Formation.

Results of the log analysis are presented in Table 5 and Enclosure 4.

* The Eumeralla Formation was found to be water wet with minor residual hydrocarbons (Enclosure 4).

Table 5

Log Analysis Results - Waarre Formation

Top Waarre = Top Unit 'D' 1477.9 mKB

Top Porosity = Top Unit 'C' 1481.8 mKB

1. UNITS 'C' and 'B'

Sand 1 1481.8 - 1501.0 mKB

	Total Interval (m)	Gross Sand (m)	Net Sand (m)	Net Pay (m)	ØE	Ave Sw	Ave VcL	Comments
1481.8-1485	3.2	3.2	3.0	3.0	0.24	0.70	0.03	Gas Zone
1485.0-1485.7	0.7	-	-	-	-	-	-	Argillaceous
1485.7-1488.5	2.8	2.5	2.45	2.45?	0.22	0.45	0.03	Transition Zone
Summary	6.7	5.7	5.45	5.45?	0.23	0.60	0.03	
1488.5-1491.0	1.5	2.5	2.50		0.23	0.75	0.05	Water
1491.0-1501.0	10.0	8.55	5.15		0.24	0.93	0.16	Water
Sand 2 1507	'.0 - 1519.0) mKB						
	12.0	12.0	12.0	-	0.23	0.94	0.07	Water - Minor Residual Hydrocarbons

2. UNIT 'A'

Sand 3 1533.0 - 1543.0 mKB

1533.0-1537.0	4.0	3.75	3.75	3.75	0.21	0.47	0.17	Tested Gas
1537.0-1538.0	1.0	1.00	0.05	0.05	0.19	0.49	0.27	Tested Gas
1538.0-1543.0	5.0	3.70	3.70	3.70	0.21	0.49	0.15	Tested Gas
Summary	10.0	8.45	7.50	7.50	0.21	0.48	0.16	

4. CONCLUSIONS

- * The Waarre formation contains two gas accumulations.
- * The first accumulation in Unit 'C' comprises a minimum 3.2 m gross interval between 1481.8-1485.0 mKB (1404.8-1408.0 mSS). Below 1485.0 mKB there appears to be a transition zone down to 1488.5 mKB. Water saturations are very high below 1488.5 mKB indicating a water zone.
- * The second accumulation, in Unit 'A', comprises the interval 1533.0-1543.0 mKB (1456.0-1466.0 mSS) and is 10 m thick. A gas/water contact (GWC) could not be identified because the section becomes shaly below 1543.0 mKB.
- * The accumulation in Unit 'A' highlights the good sealing potential of intra-Waarre claystone.
- * The two gas accumulations are not in communication as suggested by the water zone separating them.
- * The gas-water contact identified in Unit 'C' suggests cross-fault leakage into the Nullawarre Greensand.

5. IMPLICATIONS

The failed completion of Dunbar-1 as a result of the 7" production casing becoming irretrievably stuck at 1209.83 mKB provides a clear indication that future drilling in the area requires a more detailed assessment of the factors affecting borehole condition, such as design of mud systems and casing points.

PE907919

This is an enclosure indicator page.

The enclosure PE907919 is enclosed within the container PE900923 at this location in this document.

The enclosure PE907919 has the following characteristics:

ITEM_BARCODE = PE907919
CONTAINER_BARCODE = PE900923

NAME = Well Location Map

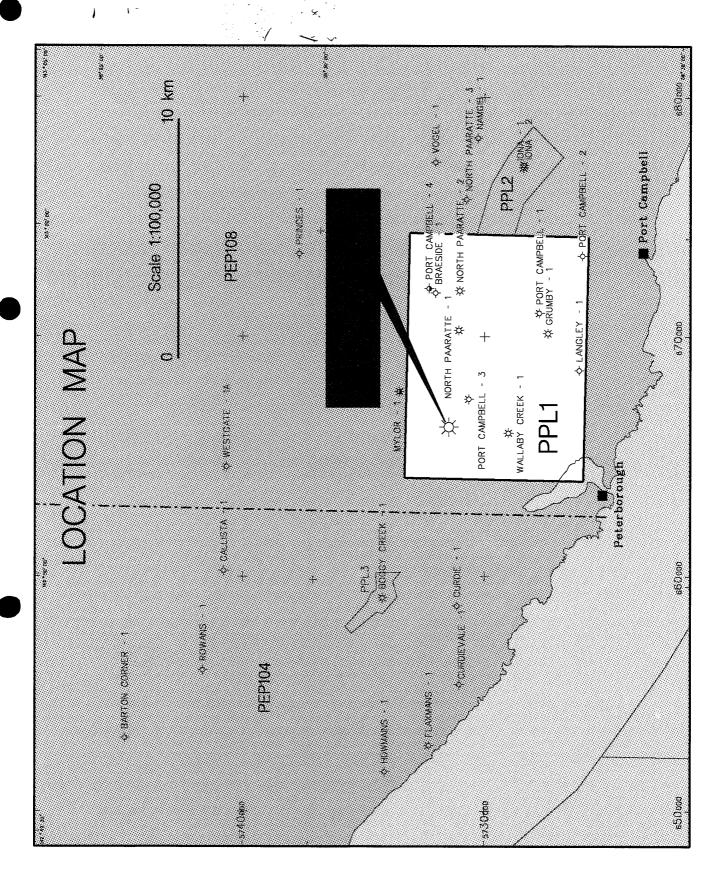
BASIN = OTWAY
PERMIT = PPL/1
TYPE = WELL

SUBTYPE = MAP

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 31/01/96


W_NO = W1119

WELL_NAME = Dunbar-1

CONTRACTOR =

CLIENT_OP_CO = GFE Resources

(Inserted by DNRE - Vic Govt Mines Dept)

PE907920

This is an enclosure indicator page.

The enclosure PE907920 is enclosed within the container PE900923 at this location in this document.

The enclosure PE907920 has the following characteristics:

ITEM_BARCODE = PE907920
CONTAINER_BARCODE = PE900923

NAME = Stratigraphic Table

BASIN = OTWAY
PERMIT = PPL/1
TYPE = WELL

SUBTYPE = STRAT_COLUMN

DESCRIPTION = Onshore/Offshore Operational

Stratigraphic Table (enclosure from Well Completion Report) for Dunbar-1

REMARKS =

DATE_CREATED =

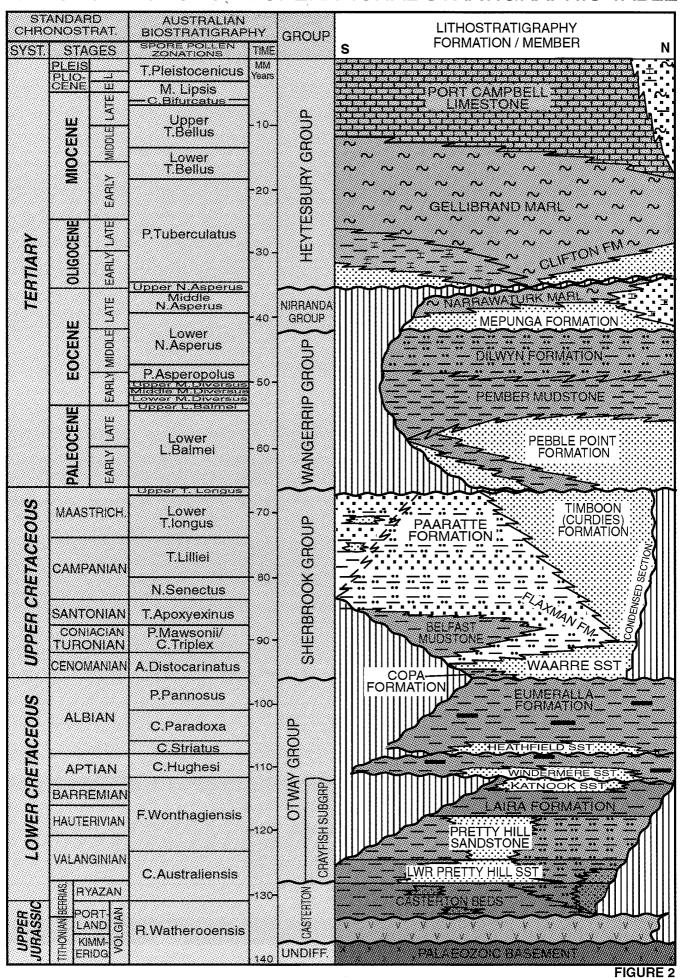
DATE_RECEIVED = 31/01/96

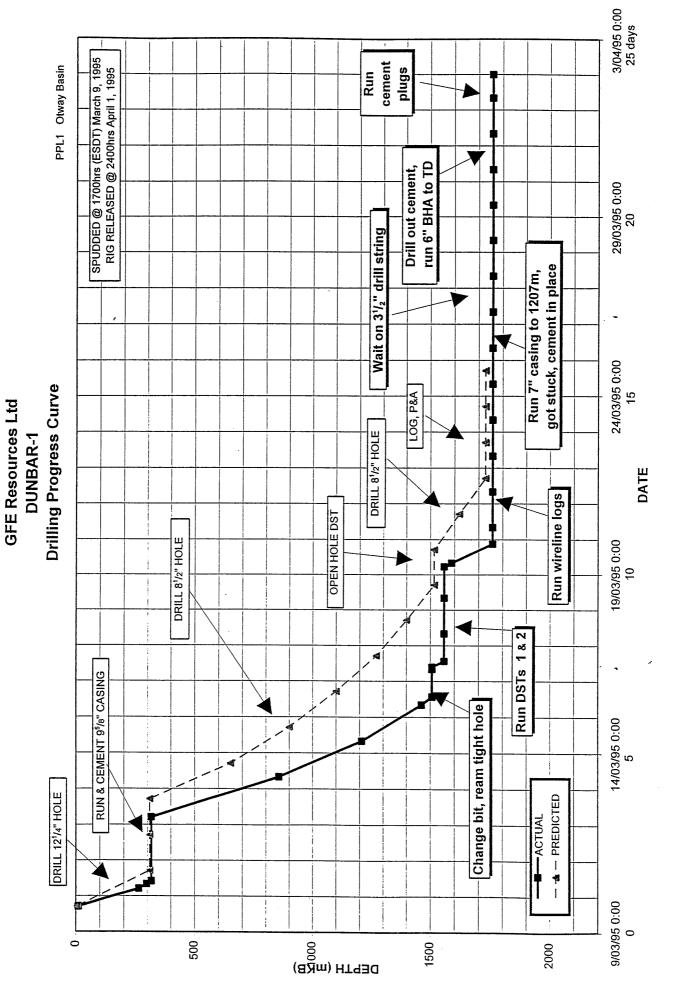
 $W_NO = W1119$

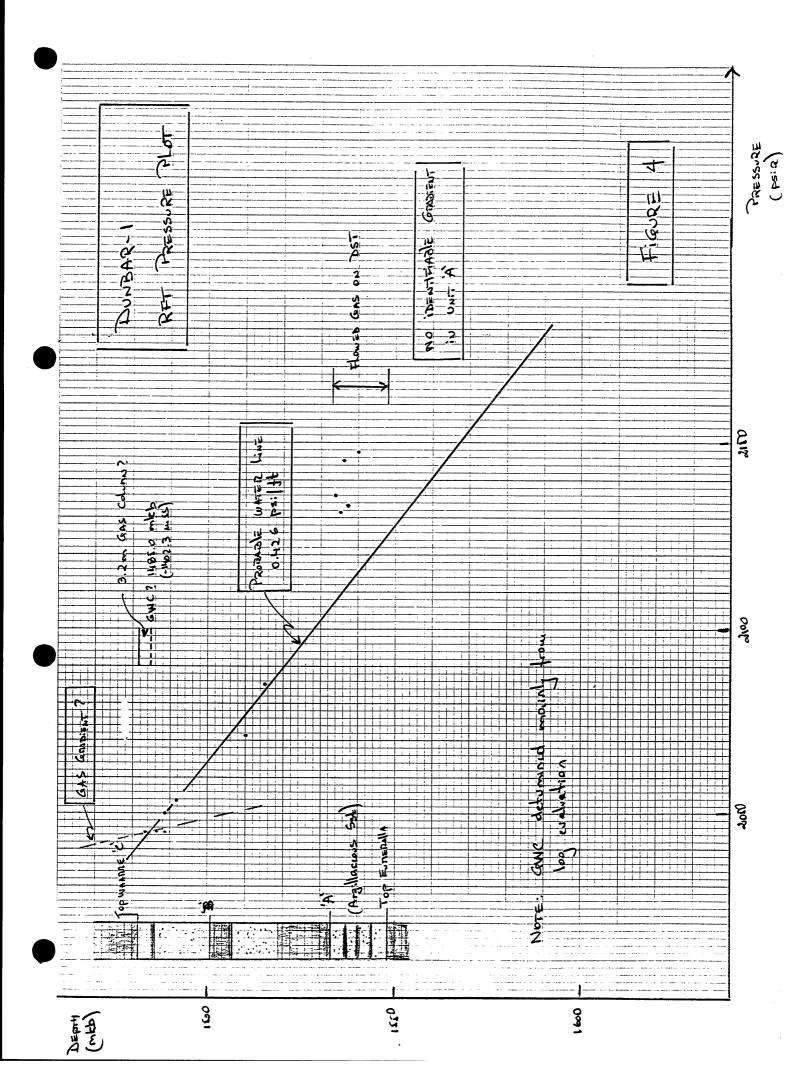
WELL_NAME = Dunbar-1

CONTRACTOR = Cultus Petroleum NL

CLIENT_OP_CO = GFE Resources


(Inserted by DNRE - Vic Govt Mines Dept)




OTWAY BASIN

OFFSHORE-ONSHORE OPERATIONAL STRATIGRAPHIC TABLE

APPENDIX 1

APPENDIX 1

RIG SPECIFICATIONS

INVENTORY - RIG #11

CARRIER Cooper LTO 750 Carrier with triple front and rear axles

54000lb front and 70000lb rear. All necessary highway equipment. Unit levelled with hydraulic jacks when

stationary.

SUBSTRUCTURE 17' floor height - 14' below table beams with plates in base.

DRAWWORKS Cooper 750 H.P. Drawworks.

42" x 12" main drum with Fawick 28VC 1000 clutch and 3000 metres $\frac{9}{16}$ " sandline. Driven by 2 each Cat D3406TA

Diesel Engines.

ROTARY TABLE National Rotary Table Model C-175.

DERRICK Cooper Derrick Model 118-365. Ground height 118'.

Maximum rated static hook load 350000 lbs with 10 lines.

Mast raised, lowered and telescoped hydraulically.

CROWN BLOCK Cooper Crown Block with 4 working sheaves. Fast line

sheave and dead line sheave. All grooved for $1 - \frac{1}{8}$ " line.

Sandline sheave grooved for $^9/_{16}$ " line.

HOOK BLOCK National Hook Block Model 435 G-175. 175 ton capacity.

4-35" sheaves grooved for $1-\frac{1}{8}$ " line.

SWIVEL P-200 National.

KELLY SPINNER Foster Model K-77

SLUSH PUMPS No. 1:

National 8-P-80 Slush Pump. $6^{1}/_{4}$ " x $8^{1}/_{2}$ " Triplex single

acting driven by Cat. D398TA Diesel Engine.

No. 2:

National 7-P-50 Slush Pump driven by Cat D379TA Diesel

Engine.

PULSATION DAMPENER 1 each Hydril Pulsation Dampener type K20-3000.

MUD SYSTEM 2 x 300 bbl tanks incorporating 80 bbl pill tank and 40 bbl

trip tank.

SHAKERS Triton NNF Screening Machine (Linear Motion).

DEGASSER Drilco Atmosheric Degasser Standard Pit. 7¹/₂ H.P. 60 Hz

230v.

DESANDER Demco Model 122. Two, 12" cone with Warman 6" x 4"

Centrifugal pump driven by 50 H.P. Electric Motor.

DESILTER Pioneer Economaster Model T12-E4. 12 x 4" cones with

Warman 6" x 4" Centrifugal pump, driven by a 50 H.P.

Electric Motor.

MUD MIXING PUMP Warman 6" x 4" Centrifugal pump driven by a 50 H.P.

Electric Motor.

MUD AGITATORS 4 only Brandt Mud Agitator Model MA 7.5.

B.O.P'S & 10" x 3000 P.S.I. Shaffer Double Gate B.O.P. with $2^3/8$,

ACCUMULATOR $2^{7}/_{8}$ ", $3^{1}/_{2}$ ", $4^{1}/_{2}$ ", $5^{1}/_{2}$ ", 7" and Blind.

10" x 3000 P.S.I. Hydril GK Annular B.O.P. Koomey B.O.P. Control Unit. Accumulator Unit Model 100-11S.

CHOKE MANIFOLD Cameron 5000 psi.

SPOOL 10" x 3000 x 10" x 3000 Flanged Drilling Spool with 3" x

3000 flanged choke and kill outlets.

INSTRUMENTATION Martin-Decker 6 pen Record-O-Graph

Martin-Decker Weight Indicator Type F.S.

Martin-Decker Mud Pressure Gauge
Martin-Decker Rotary R.P.M. Indicator
Martin-Decker Stroke Indicator (2 off)
Martin-Decker Rota Torque Indicator
Martin-Decker Tong Torque Indicator
Martin-Decker Mud Flow Sensor
Martin-Decker Mud Flow Fill System

Martin-Decker Mud Volume Totaliser (M.V.T.)

AUTOMATIC DRILLER Satellite Automatic Driller Model SA100-50-1500.

WIRELINE STRIPPER Guiberson Oil Saver Type H-4.

SURVEY UNIT Totco 8 Deg Recorder.

MUD LAB Baroid Rig Laboratory Model 821.

KELLY $5^{1}/_{4}$ " HEX Kelly. $2^{13}/_{16}$ " I.D. x 40' long with $6^{5}/_{8}$ " API Reg.

L.H. Box up 4" I.F. Pin down.

UPPER KELLY VALVE Upper Kelly Cock. 10000 test 6⁵/₈" API Reg. L.H.

Connections.

LOWER KELLY VALVE Hydril Kelly Guard. $4^{1}/_{4}$ " - 10000 P.S.I. 4" I.F. Pin and Box.

KELLY DRIVE BUSHING Varco Type 4 KRS Kelly Drive Bushing.

DRILL PIPE 7000' Drill Pipe $4^{1}/_{2}$ " O.D. 16.60 lb. Grade E Range 2 with

4" I.F. x 18 degree taper tool joints.

DRILL COLLARS 20 each Drill Collars $6^{1}/_{4}$ " O.D. slick $2^{13}/_{16}$ " I.D. x 30' long

with $4^{1}/2^{11}$ XH pin and box connections.

FISHING TOOLS To suit pipe, collars and tubing.

SUBSTITUTES To suit drill string.

HANDLING TOOLS Farr Hydraulic Power Tongs, 13³/₈" Varco SSW-10

spinning wrench.

Manual tongs, elevators and slips to handle pipe, collars,

casing and tubing.

WELDING EQUIPMENT Lincoln Electric Welder Model 400AS.

AIR COMPRESSORS Sullair compressor Package Model 10-30.

AC GENERATOR 2 each Caterpillar 3408TA AC Generator model SR-4. 1800

rpm 60 hz 275 kw.

FUEL TANKS 2 each 10,000 litre - Skid Mounted.

WATER TANK 400 bbl tank with two Warman 3 x 2 pumps driven by 24 hp

electric motors.

PIPE RACKS 5 sets 30 feet in length.

CATWALKS 2 piece Catwalk drill pipe construction 42" height.

RADIO Codan Mobile Transceiver.

TRANSPORTATION International 530 Payloader.

Toyota 4 x 4 Pickup.

Toyota 4 x 4 Crew Vehicle.

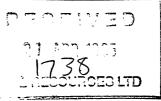
RIG ACCOMMODATION 2 Skid Mounted Toolpusher/Company Man Units.

CAMP

1- Camp Generator House 31' long x 10' wide skid mounted complete with 2 -3304 T 80 Kw, 50 Hz, 200 - 400 volt generators, camp distribution panel. 6,794 litres fuel storage, 12,000 litres fresh water storage and 24,000 litres shower water storage.

1 Kitchen/Dining Room	40' x 10' x 10'
1 Recreation Room	40' x 10' x 10'
1 Ablution/Laundry	40' x 10' x 10'
3 12 Man Bunkhouses	40' x 10' x 10'
1 Cooler/Freezer	20' x 8' x 8'

APPENDIX 2


APPENDIX 2

DRILLING FLUID RECAP

FDC4 DRILLING FLUIDS DATA MANAGEMENT SYSTEM

GFE RESOURCES
DUNBAR 1
PPL 1
OTWAY BASIN

M-I Drilling Fluids L.L.C.

FDC4 **DRILLING FLUIDS DATA MANAGEMENT SYSTEM**

Operator: GFE RESOURCES

Well Name: DUNBAR 1

Field/Area: PPL 1

Description: EXPLORATION

Location: OTWAY BASIN

Warehouse: ADELAIDE

Contractor: CENTURY DRILLING 11

Spud Date: 03/09/95

TD Date : 04/01/95

Loc Code : VICTORIA

Dist Engr: BLAIR JACK

Sales Engr: PAUL MARSHALL

Sales Engr:

Well Number: G0003

Comments	: 1	ALL REP	ORTS :	FO 24:00	O HRS AS	PER THE	IADC REPORT.	WELL PLUC	GGED &	SUSPE	NDED		
Туре	Size	Depth	TVD	Hole	MaxMW	Mo	ud 1	Muc	d 2		Drilling Problem	Days	Cost
	in	m	m	in	lb/gal			•					
+		++		+	•			+			+	+	
Casing	9.625	312	312	12.250	9.3	FW NATIVE	W/SWEEPS				NO PROBLEMS	3	403
Casing	7.000	1209	1209	8.500	9.4	FW POLYPL	us				RUNNING CSG TO BTM	19	14525
OpenH		1758	1758	6.000	9.3	FW POLYPL	us				NO PROBLEMS	2	2029

Depth:

1758 m

TVD : 1758 m

Water Depth:

m Drilling Days: 24

Total Mud Cost:

16957

GFE RESOURCES

WELL: DUNBAR 1

- 1. INTRODUCTION
- 2. DISCUSSION BY INTERVAL
- 3. DAILY DISCUSSION REPORT
- 4. PRODUCT USAGE BY INTERVAL
- 5. DAILY VOLUME SUMMARY SHEETS
- 6. TOTAL MATERIAL CONSUMPTION
- 7. HYDRAULICS
- 8. GRAPHS
- 9. BIT RECORD
- 10. WEEKLY INVENIORY SHEETS
- IL DAILY RECAP
- 12. DAILY CHEMICAL ADDITIONS
- 13. DAILY MUD REPORTS

M-I AUSTRALIA PTY LTD

SECTION 1

INTRODUCTION

-M-I AUSTRALIA PTY LTD

INTRODUCTION:

GFE Resources exploration well, Dunbar 1, was spudded by Century rig 11 at 1700 hours on 9 March 1995. The well was located in the Otway basin in permit PPL-1 onshore SW coast of Victoria. The primary objective was the Waarre sandstone at 1477 meters.

The well was drilled to a total depth of 1758 meters in 24 drilling days without significant drilling or mud problems. The 7" casing, however, was not able to pass 1209 meters and was cemented, some 540 meters high. Problems were also encountered with the first of two DSTs and the RFT log run. Observations and specific recommendations are made at the conclusion of this report. P & A operations commenced once 3.5" drill pipe was located and arrived on location. The rig was released on 1 April 1995, 24 days since spud date.

The geological formation tops as supplied by the wellsiite geologist were:

Age Formation		Depth (meters)
Tertiary	Port Campbell	6
	Gellibrand Marl	124
	Clifton Calcarenite	415
	Narrawaturk Marl	426
	Mepunga - sandy claystone	512
	Dilwyn - Sandstone interbed claystone	562
Late Cretaceous	Pember Claystone	763
2000 01000000	Pebble Point	810
	Paaratte Sandstone	879
	Skull Creek Mudstone	1245
	Nullawarre Greensand	absent
	Belfast Mudstone	1352
	Warre Formation	1477
Early Cretaceous	Eumeralla Formation	1548

SECTION 2

DISCUSSION BY INTERVAL

M-TAUSTRALIA PTY LTD

Interval 0 - 317 Meters 12.1/4" Hole 9.5/8" Casing

MUD TYPE

DRILLWATER NATIVE CLAY

HOLE PROBLEMS

NONE

MUD PROPERTIES

Mud Weight

9.1 - 9.3 ppg

Funnel Viscosity

45 - 55 sec/qt

Weight Loss

n/c

OPERATIONS:

The hole was spudded with a 12.1/4" bit and 6.1/4" and 8" DCs and drilled to an interval total depth of 317 meters in 20 hours drilling time. Deviation surveys were taken at approximately 50 meter intervals, with a maximum of 1° recorded. At total depth a wiper trip was made and revealed 1 meter fill. The hole was circulated clean and 9.5/8" casing run to 312 meters and cemented. Cement was displaced with drillwater.

MUD:

The well was spudded with drillwater and for hole cleaning, relied on the reactive clays particularly the Gellibr and Marl, to build sufficient viscosity. The need to flocculate the system with Lime never arose. Continued dumping and fresh water dilution (sump water was used when it became available) to control high rheology was necessary. Within 6 hours the native clay content of the system had risen to a level that would not allow the proposed addition of KCl without an unacceptable viscosity increase. High viscosity PHG sweeps were only deemed necessary on two occasions prior to surveys. The development of mud rings and their obstruction of the flowline interrupted drilling on three occasions between 263 meters and 317 meters. Failure to introduce KCl into the system at the outset of drilling may have been a factor in allowing the mud rings to develop to the extent that required physical of the flowline. However, since treatment of this system is solely by means of dump and dilute, continuous large scale additions of KCl would be required. The resultant unmanageable increase in viscosity might still not be avoided.

Interval 317 - 1758 Meters 8.1/2" Hole 7" Casing

MUD TYPE : FRESHWATER/PHPA

HOLE PROBLEMS : UNABLE TO RUN 7" CASING TO BOTTOM

MUD PROPERTIES :

Mud Weight : 8.6 - 9.4 ppg
Funnel Viscosity : 38 - 47 sec/qt
PV : 14 - 26 cp

Yield Point : 14 - 26 cp 9 - 26 lb/100 sq ft

MBT : 7.5 - 12.5 ppb equivalent

PHPA : 1.0 - 1.5 ppb

OPERATIONS:

An 8.1/2" drilling assembly (6.1/4" DC on 4.1/2" DP) was run to bottom and tagged cement at 294 meters. Cement, shoe track and rathole were drilled out with drill water and 5 meters new hole drilled while displacing to PHPA mud. A FIT was performed - 22.9 ppg mud weight equivalentand drilling of reactive marls and sandy claystone commenced. Significant shaker losses resulted while drilling this top section even at controlled and moderate rates of penetration in the range of 20 - 25 meters/hour. Wiper trips at 856 meters and 1287 meters revealed a consistently tight hole that required extensive washing and working out and reaming back to bottom. There appeared to be no consistent tight zones. On each leg of each trip gauge and under gauge hole was recorded at differing depths, 18 meters and 7 meters of fill respectively were recorded. A bit trip at 1507 meters revealed a severely undergauge bit and stabilizer. On pulling out, tight hole from 1331 -1082 meters required working and washing and again running back to bottom consistent reaming between 920 -1507 meters was necessary. Drilling proceeded to 1557 meters, exposing the Waare formation to DST #1. The zone was tested from between 1557 and 1526 meters. After a slight initial pressure abruptly stopped, the test tool was pulled to reveal most of the ports blocked by small Paaratte sandstone cutting. A bit was run to bottom and, but for 3 meters of fill, the hole was otherwise in good condition. A high vis sweep was circulated without noticeable increase in cuttings at the shaker. A second DST over the same interval, recorded an initial pressure build of 9 psi before a 1 hour shut in. Pressure built to 105 psi and gas flowed before once again partial blockage of the tool was indicated.

Interval 317 - 1758 Meters 8.1/2" Hole	7" Casing

On surface the test tool again revealed the ports obstructed with wall coating and sandstone cuttings. A final wiper trip at total depth - 1758 meters, required only light reaming from 1533 - 1648 meters and washing 7 meters to bottom. The hole was circulated clean and was shown on the trip out to be free of any tight spots. A comprehensive suite of logs, including velocity, RFT and side wall cores, commenced requiring 7 runs and an RFT rerun, over four days. The failure of the RFT rerun was attributed to excessive borehole accumulation of mud and cuttings. On completion of logging 7" casing was run and after 30 hours working and washing eventually cemented at 1209 meters. It is assumed that centralisers and scratchers on the first joint of casing collapsed onto each other and prevented movement up or down by more than the length of a joint. Operations ceased for four days at this point while waiting for 3.1/2" drill pipe. On its arrival cement was drilled out and P & A procedures. The cement and shoe track were drilled out and cement plug #1 set over the Waarre sandstone from 1610 - 1440 meters. A second plug was set at the shoe and the hole displaced to inhibited mud. Operations ceased on 1 April.

MUD:

A drillwater/PHPA/PAC R system was prepared with additional filtrate control provided by CMC low viscosity. Initially it contained 1.6 ppb of each polymer with the intention of introducing 5 ppb PHG once drilling commenced. Native clays, however provided yield and gel strength sufficient for good hole cleaning and suspension and with no apparent reason to provide additional yield and the system remained basically a PHPA/PAC - native clay one. PHPA was maintained by means of whole mud premixes. The mud proved remarkably stable and responsive to dilution and treatment and exhibited excellent rheology, gel properties and filtrate control. After four days logging the system required only minor dilution to maintain programmed properties. Dilution of the system was reduced by 50% over the programmed estimate and total cost - excluding Barite - halved. Down hole losses and regular use of solids control equipment accounted for the unprogrammed use of Barite amounting to a cost of \$ 4,131.00.

OBSERVATIONS AND RECOMMENDATIONS:

It was noted throughout the 8.1/2" section, that despite maintaining an adequate PHPA concentration, cuttings at the shaker did not exhibit the discrete, hard brittle preserved quality usually associated with a well maintained PHPA system. Rather they appeared as well sorted (fine grained up to 0.5 cm) poorly defined agglomerations bound in a PHPA matrix. This did, however, reveal a 'dry' quality once squeezed. This cuttings quality says more about the formation than the level of PHPA in the system. The formation is recognized as young or immature having not suffered the slow depositional de-watering which is evident in most other areas of familiarity and as such results in the lack of cuttings integrity described.

Interval 317 - 1758 Meters 8.1/2"	

The failure of DST #1 and the premature pulling of the test tool in DST #2 was at least in part due to a build up of mud and fine cuttings lining the wellbore. This should be seen as something different to filter cake and was most likely due to the gentle hydraulics regime used throughout the 8.1/2" section. Typical pump output was in the order of 250 - 275 gpm. Only occasionally was it 300 gpm and never while drilling. Drill pipe/open hole annular velocities ranged from between 36 - 40 m/min. These rates, low by most standards, may not have been sufficient to scourer the borehole of polymer/cutting build up. The development of a wellbore coating was inferred from the caliper logs which showed a consistently under gauge wellbore exhibiting high energy absorption. The dense mud and cuttings that coated the DST tool and blocked the ports (the same is later inferred on the sidewall cores) was this wellbore coating with very fine - coarse ex situ cuttings from, amongst others, the Belfast and Paaratte formations. What was most obvious from examining the test tool was the individual Paaratte sandstone clasts (semi rounded chips) that neatly sat in the ports of the tool.

A revised hydraulics program may be necessary for future wells drilled in the region using a PHPA system.

SECTION 3

DAILY DISCUSSION REPORT M-I AUSTRALIA PTY LTD

Operator : GFE RESOURCES Well Name : DUNBAR 1		Contractor : CENTURY DRIU Field/Area : PPL 1		escription ocation	: EXPLORA : OTWAY B		Page: Well:	G000
Date : 09/03/95	Continue to r	115.0 ig up. Spud Dunbar 1 at 170 to 115m, sweeping hole with					Day	: 1
Date : 10/03/95	Drill 12.1/4" 291m and 310m wiper trip wi	317.0 hole from 115-317m TD. Seron required the flow line to the 1m fill on bottom. Circuiting. Run casing and prepare	be cleared o ulate and cle	of mud cake	. Performe	ed .	Day	: 2
Date : 11/03/95	Cement 9.5/8	317.0 casing and displace with test. Pick up BHA and prep	drill water-Ware to run in	NOC. Nipple	BOP's fur 8.1/2" dr	nction rilling	Day	: 3
Date : 12/03/95	RIH and tag of hole. Perform POOH and add clear header	693.0 mement at 294m. Drill out con FIT, mud wt equiv = 22.9 stabilizer to BHA. RIH and box of clay "boulders". Droposition of the box of clay with surverse.	ppg. Drill 8 drill from 3 ill from 387	.1/2" hole 349-387m. (n-406m. Cl	from 322m- Clear shake	-349m. ers and	Day	: 4
Date : 13/03/95	Drill from 69	: 1047.0 93m-856m. Circulate B/U and t tight hole from 579m-531m IH and ream from 531m to bo 17m.	n. Continue t	o POOH tig	nt from		Day	: !
Date : 14/03/95	Drill 8.5" he to 1287m and	: 1382.0 bel from 1047m-1230m & surv POOH for wiper trip to 576 13-675m. RIH and ream from	im. Work tigh	t hole fro	n 1095-8471	n,	Day	: (
Date : 15/03/95	Drill 8.5" h pipe from 13 under gauge	: 1507.0 ble from 1382-1507m. Survey 31-1082m. M/U junk sub and hole from 660-683m, 756-780	new bit and. Om & 813-875m	RIH. Preca	it change. utionary r	Work eam	Day	:
M-I Drilling Fluid	_	DRILLING FLUIDS DAT		CVCTEM	========		 12	==== 2-04-

)perato Nell Na	or : GFE RES	TO THE PARTY OF TH	Page: Well: (G000
Date	: 16/03/95	Depth: 1557.0 Continue to RIH and ream under gauge hole. Ream from 920-971m, 1016-1061m, 1192-1248m and 1283-1507m. Circulate and pull back to 785m for wiper trip. Work tight hole from 1340-1168m. RIH-hole good 5m. Fill. Pull back 3 stands circulate bottoms up and RIH. Spot Hi Vis mud over 50m hole and POOH to run test tool.	Day :	8
Date	: 17/03/95	Depth: 1557.0 Continue POOH. Make-up and RIH with test tool. DST #1? failure. POOH and lay out test tool-tool blocked. Make-up BHA and RIH-wash from 1533m to bottom-3m. fill. Circulate on bottom, pull 3 stands and continue to circulate and dilute mud. Maintain mud weight = 9.3 ppg with Barite. Run to bottom-no fill, pumpP Hi Vis pill and circulate out - no increase cuttings over shaker.	Day :	
Date	: 18/03/95	Depth: 1557.0 Perform wiper trip. POOH for DST. Conduct DST #2. Build to 9 psi. Close tool for 1 hr. Flow well. Pull free-hole good. Recover sample and lay out test tool. Test BOPs. Prepare to make up BHA and RIH.	Day:	10
Date	: 19/03/95	Depth: 1758.0 RIH with BHA, break circulation at 1533m and wash and ream to bottom-1.5m. Fill drill 8.5" hole from 1557-1758m. Survey -1.5 deg. Circulate bottoms up and POOH for wiper trip.	Day :	1
Date	: 20/03/95	Depth : 1758.0 RIH for wiper trip. Ream tight hole f/1533-1648m 7m fill. Circulate hole clean and POOH. Hole good. Rig up and log. Run log #1, 2 & 3.	Day :	1:
Date	: 21/03/95	Depth: 1758.0 Continue to run log #3. Rig down and RIH to 1741m. Wash to bottom-4m fill. Circulate hole clean-increased hole losses. POOH and rig up to run log #4 RFT/GR and log #5-VEL.	Day :	1:
Date	: 22/03/95	Depth: 1758.0 Continue log run #5. R/U and run log #6. Rig down BPB and pick up BHA. RIH-3m fill-circulate hole clean and POOH on wiper trip to 1176m. RIH-1.5m fill. Circulate bottoms up. Pump slug and POOH to continue logging. Rig up and run log #7-RFT/CR.	Day :	1
Date	: 23/03/95	Depth : 1758.0 Continue to run log #7-RFT. Pull blocked RFT tool to surface. Re-run log #7. Rig down BPB. Pick up 8.5" drilling assembly and RIH to 1755.5-2.5m fill. Wash to bottom and circulate hole.	Day :	
M_I D	 rilling Fluid	s Co Drilling fluids data management system		-04-

Operator : GFE Well Name : DUN		Page: Well: G000
Date : 24/03/	95 Depth : 1758.0 Continue to circulate hole clean, pump slug and POOH. Lay down DP and drilling assembly. Rig up and run 7" casing. Casing held up at 1130 m. Rig up and circulate hole. Circulates freely. Work and circulate casing from 1123-1130m.	Day : 16
Date : 25/03/	'95 Depth : 1758.0 Continue to run casing. Circulate and work stuck casing from 1148-1153m. LayA' out 4 joints and continue to wash and work. Pick up 1 joint and work 1097-1108m.	Day : 17 Y
Date : 26/03/	/95 Depth : 1758.0 Rig up cement head and circulate 260 GPM at 1097m. Pump cement and displace with water and dump returns. Nipple down BOPs, cut casing, nipple up and test Wait on 3.5" drill pipe to drill out and set cement plugs.	Day : 18
Date : 27/03/	/95 Depth : 1758.0 Wait on cement. Pressure test casing. Wait on 3.5" drill pipe.	Day : 19
Date : 28/03/		Day: 20
 Date : 29/03/	/95 Depth : 1758.0 Wait on 3.5" drill pipe. Service rig.	Day : 2
 Date : 30/03/	/95 Depth : 1758.0 Test BOPs. Pick up 4.75" DCs, make-up 6" bit and RIH with 3.5" DP. Tag cement at 1102m. Drill out cement and shoe track from 1102-1196m.	Day : 2
 Date : 31/03/	/95 Depth : 1758.0 Continue to drill out shoe track. RIH to 1265m, 1302m & 1758m. Circulate and flow check each stage. POOH and lay out DC. RIH O/E to 1610m and pump cement plug #1 from 1610 -1440m. POOH 12 stands and WOC. RIH and tag cement at 1437m Circulate and lay out DP.	Day : 2
Date : 01/04/	Rig up and set cement plug #2 from 1240-1189m. Pull 5 stands and WOC. RIH and tag cement at 1178m. Circulate and pressure test plug to 500 psi. Minimize pi volume and circulate inhibited mud. POOH and lay out drill pipe. P & A complete. Rig down.	Day: 2
M-I Drilling F		12-04-

SECTION 4

PRODUCT USAGE BY INTERVAL

M-I AUSTRALIA PTY LTD

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 08/03/95 - 10/03/95, 0 - 317.0 m

12.	9.5/	8" Casing		
WATER-BASE PROD	SIZE	AMOUNT	UNIT COST	PROD COST
Calcium Chloride	25 KG SX	1	17.80	17.80
Caustic Soda	25 KG SX	1	22.35	22.35
Lime	40 KG SX	2	6.00	12.00
M-I Gel	25 KG SX	28	9.44	264.32
Potassm Chloride	25 KG SX	4	11.46	45.84
Spersene CF	50 LB SX	1	40.55	40.55
*** INTERVAL WATE	R-BASE MUD	COST TOT	AL =	402.86
*** TOTAL MUD CO	ST FOR INT	erval =	4	102.86

M-I Drilling Fluids L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

Total Meters Drilled

: 317 Meters

Cost per Meter

\$1.27

Total Days on Interval

3 Days

Cost per Day

: \$134.29

Total Barrels Mixed

: 690 bbls

Cost per Barrel

\$0.58

Dilution Rate

2.17 bbl/mtr

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

BREAKDOWN OF COST BY PRODUCT GROUP 08/03/95 - 10/03/95,	0 - 317.0 m

40 4 /411 77 7	9.5/8" Casing	
12.1/4" Hole WATER BASE MUD PRODUCTS	Cost	% Total
1 - BENTONITE	264.32	65.6
2 - SALTS	63.64	15.8
3 - THINNERS	40.55 34.35	10.1 8.5
4 - ALKALIES	34.33	0.0
WATER BASE MUD TOTAL COST	402.86	100.0

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 11/03/95 - 29/03/95, 317.0 - 1758.0 m

8.1/2	7"	Casing		
WATER-BASE PROD	SIZE	AMOUNT	UNIT COST	PROD COST
Bacban	6 LB JUG	1	109.34	109.34
CMC TG LV	25 KG SX	22	61.23	1347.06
Caustic Soda	25 KG SX	9	22.35	201.15
M-I Bar	25 KG SX	564	5.53	3118.92
M-I Gel	25 KG SX	38	9.44	358.72
os-1	25 KG SX	13	50.95	662.35
Polypac R	25 KG SX	20	131.74	2634.80
Polyplus Powder	25 KG SX	35	173.25	6063.75
Soda Ash	40 KG SX	2	14.31	28.62
*** INTERVAL WATE	er-base mud	COST TOT	AL =	14,524.71

*** TOTAL MUD COST FOR INTERVAL =

14,524.71

M-I Drilling Fluids L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

Total Meters Drilled

: 1,441 Meters

Cost per Meter

\$10.08

Total Days on Interval

19 Days

Cost per Day

\$764.46

Total Barrels Mixed

2,001 bbls

Cost per Barrel

\$7.26

Dilution Rate

: 1.39 bbl/mtr

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

BREAKDOWN OF COST BY PRODUCT GF	ROUP 11/03/95 - 29/03/95, 317.0 - 1758.0 m
---------------------------------	--

8.1/2" Hole	7" Casing		
WATER BASE MUD PRODUCTS	Cost	% Total	
1 - WEIGHT MATERIAL	3,118.92	21.5	
2 - BENTONITE	358.72	2.5	
3 - VISCOSIFIERS	3,981.86	27.4	
4 - ENCAPSULATORS	6,063.75	41.7	
5 - ALKALIES	229.77	1.6	
6 - MISC	771.69	5.3	
WATER BASE MUD TOTAL COST	14,524.71	100.0	

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 30/03/95 - 01/04/95, 1758.0 - 1758.0 m

Compl	etion
-------	-------

WATER-BASE PROD	SIZE	AMOUNT	UNIT COST	PROD COST
Bacban	6 LB JUG	1	109.34	109.34
Congor 303	25 LT DM	10	51.27	512.70
M-I Bar	25 KG SX	183	5.53	1011.99
Polypac R	25 KG SX	3	131.74	395.22
*** INTERVAL WAT	er-base mud	COST TOT	AL =	2,029.25

*** TOTAL MUD COST FOR INTERVAL =

2,029.25

M-I Drilling Fluids L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

April 12, 1995

BREAKDOWN OF COST BY PRODUCT GROUP 30/03/95 - 01/04/95, 1758.0 - 1758.0 m

Complet WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	1,011.99	49.9
2 - VISCOSIFIERS	395.22	19.5
3 - MISC	622.04	30.7
WATER BASE MUD TOTAL COST	2,029.25	100.0

i Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM G0003

SECTION 5

DAILY VOLUME SUMMARY SHEETS

M-I AUSTRALIA PTY LTD

12.1/4" Hole

	60.000 (CO.000)	55555	88888	300000
1				
1	- S	00	70	069
- 1	umm. Lost	্ন	e e	ဖေ
- 1	Cumm Lost			
- 1	التنتين			
- 1	0000000000	*******		
		0		•
	Dai Tot	20	70	420
0.000	-0.000000000000000000000000000000000000			
	Casing Plugs			1
	Casing Plugs			
	• -			
	· · · · ·			
			1	
S	•			
ಂ	<u> </u>			
	-			
ಲ		_		_
₩ Ξ	_ 3			
: 5		155	6	420
	S S		4	4
O	್ರಾರೆ			
~		\vdash	\vdash	╙
_		1]
∷≍ા	- ú	ا ـ. ا	ا ہا	
=		45	30	
2	∞ ⊃			
		\neg	$\overline{}$	
	_ 2		l	
	; <u>≅</u> ∷:5			
		[]		
		لجبيا		لييبا
	Cum Built	625		0
	3 3	. (2)	9	্ত
	. O			

				33333
=	Daily Total			
	- S	625	v.	_
		6	9	
ш.				
a		******		*****
l ě				
∞ ⊆			1	
- 3	o o			
17		l		
		ı		
-		1	1	
_ <u>≃</u>		ı		
-		1	1	•
\geq		1	1	l
				l
		_		
	3 1	δ		
	Mud Bulk	50		
	Mud Built	50		
	Mud	50		
	r Mud Built	_		
	ter Mud Bulk	_	5	
	Vater Mud Bulk	575 50	65	
	Water Mud Built	_	65	
	Water Mud Built	_	65	
	Water Mud Built	_	65	
	Water	_	0 65	
	Water	_	(20 65	0
	Water	425 575	120	0
	Total Water Mud	425 575	120	
S	Water	_	120	0
SI	Total Water	425 575	420	0
tus	Total Water	425 575	420	0
atus	Total Water	425 575	120	0
Status	Total Water	425 575	420	
Status	Water	425 575	420	0
e Status	Res Total Water	50 42\$ 575	50 420	0
me Status	Res Total Water	50 42\$ 575	50 420	0
ume Status	Res Total Water	50 42\$ 575	50 420	0
Jume Status	Total Water	50 42\$ 575	50 420	0
70lume Status	Surf Res Total Water Active Vol	270 50 42\$ 575	420	0
Volume Status	Surf Res Total Water Active Vol	270 50 42\$ 575	50 420	0
1 Volume Status	Surf Res Total Water Active Vol	270 50 42\$ 575	243 50 420	0
id Volume Status	Surf Res Total Water Active Vol	270 50 42\$ 575	243 50 420	•
fud Volume Status	Surf Res Total Water Active Vol	270 50 42\$ 575	243 50 420	0
Mud Volume Status	Surf Res Total Water Active Vol	270 50 42\$ 575	50 420	0
Mud Volume Status	Surf Res Total Water Active Vol	50 42\$ 575	243 50 420	0
Mud Volume Status	Res Total Water	105 270 50 42\$ 575	127 243 50 420	0
Mud Volume Status	Surf Res Total Water Active Vol	105 270 50 42\$ 575	127 243 50 420	
Mud Volume Status	Surf Res Total Water Active Vol	105 270 50 42\$ 575	127 243 50 420	
Mud Volume Status	Surf Res Total Water Active Vol	105 270 50 42\$ 575	127 243 50 420	
Mud Volume Status	Surf Res Total Water Active Vol	270 50 42\$ 575	243 50 420	317 0
Mud Volume Status	Depth Hole Surf Res Total Water Active Vol	115 105 270 50 42\$ 575	317 127 243 50 420	317
Mud Volume Status	Depth Hole Surf Res Total Water Active Vol	115 105 270 50 42\$ 575	317 127 243 50 420	317
Mud Volume Status	Depth Hole Surf Res Total Water Active Vol	115 105 270 50 42\$ 575	317 127 243 50 420	317
Mud Volume Status	Surf Res Total Water Active Vol	115 105 270 50 42\$ 575	127 243 50 420	

8.1/2" Hole

	Cummul	Lost		0	363	363	363	9 363 553 611	553 644	553 611 644 735	553 611 611 735 735	553 553 611 611 764 764	553 553 611 611 764 764 895	553 553 611 614 735 764 895 895	553 458 458 611 611 735 735 895 895 1065	90 363 458 611 611 735 764 895 956 11065	9 363 458 458 641 611 611 764 764 135 1065 1108	9 363 458 553 611 611 614 644 735 735 1065 1108 1176 11304	553 553 553 611 611 614 735 735 735 1065 1106 1176 1176	90 363 458 553 611 614 614 735 735 1065 1106 1176 1176 1131 1141	9 9 363 458 611 611 614 614 735 735 1065 1108 11304 1141 1141	9 953 458 553 644 644 644 644 956 956 956 1108 1176 11708 1141 1441 1441 1441 1441 1441 1441 14	9 363 458 553 611 611 614 644 735 735 956 1065 1108 1108 1118 1141 1441 1441	9 363 458 553 611 611 614 644 735 735 1065 1108 1176 1176 1171 1141 1141 1141
	ing Daily	gs Total		0	363	363	363	363	363 95 95 95 88	95 95 95 88 33	95 95 95 88 88 33 91	95 95 95 95 95 91 91 91 131	95 95 95 95 95 91 91 131 131	95 95 95 98 88 88 33 91 91 131 131	95 95 95 95 98 91 91 131 131 109	95 95 95 95 91 131 131 109 109	95 95 95 95 95 91 91 91 91 131 109 109 109 109 109 109 109 109 109 10	95 95 95 95 95 91 131 131 109 109 109 109 109 109 109 109 109 10	9	95 95 95 95 91 91 131 131 131 137 137 137 137 137	95 95 95 95 91 131 131 109 109 137 137 137	95 95 95 95 95 91 131 131 137 137 137	95 95 95 95 95 91 131 131 131 137 137 143 137 140 0	
Jost .	Hole Casing	Plugs				25																		
Mud Volume Lost	Dump				123	123	123 25 25	123 25 25 18	123 25 25 25 18	123 25 25 18 16	123 25 25 25 18 16	123 25 25 25 18 16 60	123 25 25 25 18 16 60 60	123 25 25 25 18 16 60 60	123 25 25 25 25 16 60 60 60	123 25 25 25 25 16 60 60 60	123 25 25 25 25 18 16 60 60 60	123 25 25 25 25 18 16 60 60 60	123 25 25 25 18 16 60 60 60 131	123 25 25 25 18 18 60 60 60 80	123 25 25 25 18 18 60 60 60 31 31	123 25 25 25 25 18 16 60 60 60 137	123 25 25 25 18 16 60 60 60 31 137	123 25 25 25 18 16 60 60 60 137
Mud	s Surf	•			180																			
	spilos mi	ilt Equip).5	30S 84S 60																			
Built	Daily Cum	Total Built		305 305																				
Mud Volume Built	Inc	from Barite								8		8 4	8 4	8 4 -	88 4 1 2	8 8 1 1 2	8 4 1 5	8 4 L 2	8 4 - 2	8 4 1 5	8 4 1 5	8 4 1 5	8 4 1 2	8 4 - 2
7.	Mud	Build		305	305	305 400 186	305 400 100	305 400 186 100 210	305 400 186 100	305 400 186 100 210	305 400 186 100 210	305 400 100 210	305 400 100 210	305 400 186 100 210	305 400 186 100 210	305 400 186 100 210	305 400 186 100 210	305 400 100 100	305 400 100 210	305 400 186 100 210 74 74 135	305 400 186 100 210 74 74 135	305 400 100 100 210	305 400 100 210	305 400 100 210
	Water		8		140																			
cma	Res Total	Vol		305 30\$																				
Mud Volume Status	Surf Re	Active	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN C	30	30																			
O A DITA	Hole				981	136	136 213 281	136 213 281 305	136 213 281 305 317	136 213 281 305 317	136 213 281 305 317 317 362	136 213 281 305 317 317 362 358	136 213 281 305 317 317 362 358 408	136 213 281 305 317 317 317 362 362 408	136 213 281 305 317 317 362 362 408 408	136 213 281 305 317 317 362 358 408 408 408	136 213 281 305 317 317 362 362 368 408 408 408 358 358	136 213 281 305 317 317 362 362 368 408 408 408 378 371	136 213 281 305 317 317 317 358 408 408 408 378 371	136 213 281 305 317 317 317 362 362 408 408 408 371 371 152	136 213 281 305 305 317 317 368 408 408 408 408 371 372 152	136 213 281 305 317 317 362 368 408 408 408 408 372 152 152 152	136 213 281 305 317 317 318 408 408 408 408 358 371 372 152 152 152 152 152 152	136 213 281 305 317 317 317 318 408 408 408 408 152 152 152 152 152 152 152 152 152 152
0.0000000000000000000000000000000000000	Depth			ar 317	 																			
	Date	1995	-	11-Mar	11-Mar 12-Mar	11-Mar 12-Mar 13-Mar	11-Mar 12-Mar 13-Mar 14-Mar	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar	11-Mar 12-Mar 13-Mar 15-Mar 16-Mar	11-Mar 12-Mar 13-Mar 15-Mar 16-Mar 17-Mar	11-Mar 12-Mar 13-Mar 15-Mar 16-Mar 17-Mar 18-Mar	11-Mar 12-Mar 13-Mar 15-Mar 15-Mar 17-Mar 19-Mar 19-Mar 20-Mar	11-Mar 12-Mar 13-Mar 15-Mar 16-Mar 16-Mar 17-Mar 19-Mar 20-Mar 21-Mar	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar 17-Mar 19-Mar 19-Mar 20-Mar 21-Mar 21-Mar 21-Mar 22-Mar 22-Mar	11-Mar 12-Mar 13-Mar 14-Mar 16-Mar 17-Mar 19-Mar 20-Mar 20-Mar 21-Mar 23-Mar 23-Mar	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar 17-Mar 18-Mar 19-Mar 20-Mar 21-Mar 22-Mar 23-Mar 23-Mar 24-Mar	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar 17-Mar 19-Mar 20-Mar 22-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar	11-Mar 12-Mar 13-Mar 14-Mar 16-Mar 17-Mar 19-Mar 19-Mar 20-Mar 21-Mar 23	11-Mar 12-Mar 13-Mar 14-Mar 16-Mar 17-Mar 19-Mar 20-Mar 21-Mar 22-Mar 23	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar 17-Mar 19-Mar 20-Mar 22-Mar 23-Mar 23-Mar 25-Mar 26-Mar 27-Jan 27-Jan 28-Mar 28-Mar 28-Mar	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar 16-Mar 17-Mar 19-Mar 20-Mar 21-Mar 22-Mar 23	11-Mar 12-Mar 13-Mar 14-Mar 15-Mar 17-Mar 19-Mar 20-Mar 22-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 34-Mar 34	11-Mar 12-Mar 13-Mar 14-Mar 16-Mar 17-Mar 19-Mar 20-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 23-Mar 30-Mar 30-Mar 31-Mar

SECTION 6

TOTAL MATERIAL CONSUMPTION

M-Í ÁÚSTRALIA PTY LTD

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11 Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 08/03/95 - 01/04/95, 0 - 1758.0 m

WATER-BASE PROD	SIZE	AMOUNT	UNIT COST	PROD COST
Bacban	6 LB JUG	2	109.34	218.68
CMC TG LV	25 KG SX	22	61.23	1347.06
Calcium Chloride	25 KG SX	1	17.80	17.80
Caustic Soda	25 KG SX	10	22.35	223.50
Congor 303	25 LT DM	10	51.27	512.70
Lime	40 KG SX	2	6.00	12.00
M-I Bar	25 KG SX	747	5.53	4130.91
M-I Gel	25 KG SX	66	9.44	623.04
os-1	25 KG SX	13	50.95	662.35
Polypac R	25 KG SX	23	131.74	3030.02
Polyplus Powder	25 KG SX	35	173.25	6063.75
Potassm Chloride	25 KG SX	4	11.46	45.84
Soda Ash	40 KG SX	2	14.31	28.62
Spersene CF	50 LB SX	1	40.55	40.55

*** INTERVAL WATER-BASE MUD COST TOTAL = 16,956.82

*** TOTAL MUD COST FOR INTERVAL = 16,956.82

M-I Drilling Fluids L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	4,130.91	24.4
2 - BENTONITE	623.04	3.7
3 - VISCOSIFIERS	4,377.08	25.8
4 - SALTS	63.64	0.4
5 - THINNERS	40.55	0.2
6 - ENCAPSULATORS	6,063.75	35.8
7 - ALKALIES	264.12	1.6
8 - MISC	1,393.73	8.2
WATER BASE MUD TOTAL COST	16,956.82	100.0

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM G000

M-I DRILLING FLUIDS PRODUCT SUMMARY

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING:11 Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area : PPL 1

Location: OTWAY BASIN

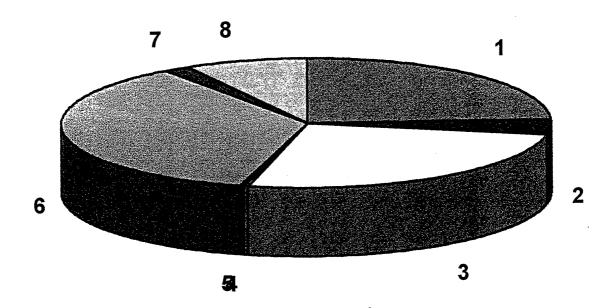
BREAKDOWN OF PRODUCT USAGE BY GROUP 08/03/95 - 01/04/95, 0 - 1758.0 m WATER BASE MUD

PRODUCT CAT	egory		PRODUCTS USED	
WEIGHT MATE	RIAL M-I Bar			
BENTONITE	M-I Gel			
O _{ISCOSIFIEF}				
	CMC TG LV	Polypac R		
	Calcium Chloride	Potassm Chloride		
THINNERS	Spersene CF			
ENCAPSULATO	ORS Polyplus Powder			
ALKALIEŠ	Caustic Soda	Lime	Soda Ash	
MISC	Bacban	Conqor 303	os-1	
	···· DDIVI	NG ELLIDS DATA MANA	CEMENT SYSTEM	G0003 April 12, 1995

Operator : GFE RESOURCES

Well Name: DUNBAR 1

Description: EXPLORATION


Field/Area: PPL 1

Location: OTWAY BASIN

COST

ANALYSIS

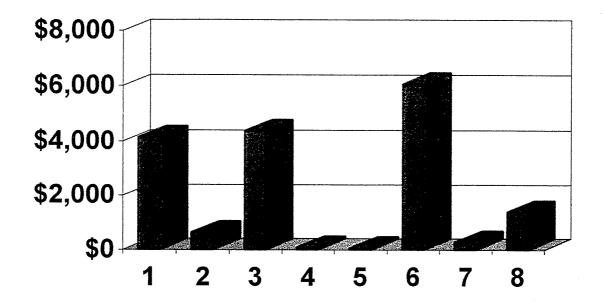
BREAKDOWN OF COST BY PRODUCT GROUP 08/03/95 - 01/04/95, 0 - 1758.0 m

WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	4,130.91	24.4
2 - BENTONITE	623.04	3.7
3 - VISCOSIFIERS	4,377.08	25.8
4 - SALTS	63.64	0.4
5 - THINNERS	40.55	0.2
6 - ENCAPSULATORS	6,063.75	35.8
7 - ALKALIES	264.12	1.6
8 - MISC	1,393.73	8.2
WATER BASE MUD TOTAL COST	16,956.82	100.0

Operator: GFE RESOURCES

Well Name: DUNBAR 1

Description: EXPLORATION


Field/Area: PPL 1

Location: OTWAY BASIN

COST

ANALYSIS

BREAKDOWN OF COST BY PRODUCT GROUP 08/03/95 - 01/04/95, 0 - 1758.0 m

WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	4,130.91	24.4
2 - BENTONITE	623.04	3.7
3 - VISCOSIFIERS	4,377.08	25.8
4 - SALTS	63.64	0.4
5 - THINNERS	40.55	0.2
6 - ENCAPSULATORS	6,063.75	3 5.8
7 - ALKALIES	264.12	1.6
8 - MISC	1,393.73	8.2
WATER BASE MUD TOTAL COST	16,956.82	100.0

HYDRAULICS

M-LAUSTRALIA PTY LTD

M-I DRILLING FLUIDS HYDRAULICS RECAP

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1		Fie	ld/Area: PPL	1			Location :	OTWAY BASI	N	
*Date	09/03/95	10/03/95	11/03/95	12/03/95	13/03/95	14/03/95	15/03/95	16/03/95	17/03/95	
*Depth	115.0	317.0	317.0	693.0	1047.0	1382.0	1507.0	1557.0	1557.0]
*Days Since Spud	1	2	3	4	5	6	7	8	9	
*RHEOLOGICAL PROPERTIES										
Mud Wt -lb/gal	9.3	9.1	8.5	8.7	9.0	9.1	9.3	9.3	9.3	
Plastic Visc -cps	. 10	13	41	17	17	18	24	22	18	
Yield Point -lb/100ft2	24	20	65	23	21	21	24	22	19	
3-rpm Rdg -Fann deg	4	5	6	3	2	2	3	3	2	
np Value	0.372	0.479	0.471	0.511	0.533	0.547	0.585	0.585	0.572	
<pre>Kp -lb-sec^n/100ft2</pre>	3.5715	1.7772	5.9786	1.7670	1.4593	1.3720	1.3369	1.2255	1.1179	
na Value	0.465	0.410	0.624	0.562	0.639	0.645	0.602	0.583	0.634	
Ka -lb-sec^n/100ft2	2.0000	2.7343	2.3151	1.2789	0.7521	0.7452	1.1989	1.2364	0.7592	00000000000
*FLOW DATA								275	275	
Flow Rate -gal/min		450	330	275	275	275	275 1220	1220	1200	
Pump Pressure -psi		900	1400	950	1100	1150	196	196	193	
Pump -hhp	, 122	236	270	152	176	185	130			
*PRESSURE LOSSES		***		150	208	255	287	301	283	.0000000000000000000000000000000000000
Drill String -psi		230	196 1100	156 780	208 810	820	840	840	840	
Bit -psi		230	72	47	52	66	94	92	70	
Annulus -psi	•	***	1368	983	1070	1141	1221	1233	1193	
Total System -psi		eterete et et e	1366	903 		************				******
*BIT HYDRAULICS Nozzles -1/32 inch	18/20/20	18/20/20	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	300000000000
Nozzles -1/32 inch Nozzles -1/32 inch		/ /	/ /	/ /	/ /	/ /	/ /	//	11	
Bit Pressure -8		25	79	82	74	71	68	68	70	
Bit -hhr		60	212	125	130	131	134	134	134	
Bit HSI (Index)		0.50	3.70	2.20	2.30	2.30	2.40	2.40	2.40	
Jet Velocity -m/sec		51.0	115.9	96.6	96.6	96.6	96.6	96.6	96.6	
Impact Force -lbs		355	552	392	406	410	419	419	419	
*DRILL COLLARS ANNULUS										
Velocity -m/mir	***	***	74.3	61.9	61.9	61.9	61.9	61.9	61.9	
Critical Vel -m/mir	***	***	258.4	130.1	116.3	117.1	137.9	131.1	111.8	
Reynolds Number	***	***	470	928	1100	1091	863	922	1160	
Crit Re (Lam - Tran)	***	***	2616	2699	2594	2586	2645	2671	2602	.00000000000000000000000000000000000000
*DRILL PIPE ANNULUS								37.3	37.3	
Velocity -m/mir		***	44.7	37.3	37.3	37.3	37.3 105.6	37.3 101.6	37.3 83.9	
Critical Vel -m/mir		***	195.2	102.1	86.9	87.2	105.6	101.6	83.9 859	
Reynolds Number	***	***	345	634	820	819 2586	2645	2671	2602	
Crit Re (Lam - Tran)	***	***	2616	2699	2594	∠ ⊃ 86	2043	701T		*******
*HOLE CLEANING		***	7.3	14.1	16.2	15.9	12.2	12.6	15.9	200000000000000000000000000000000000000
Slip Velocity -m/mir	-	***			21.1	21.4	25.1	24.6	21.4	
Rising Velocity -m/mir		***	37.4 84	23.2	57	57	67	66	57	
Lifting Capacity -	-	***	***	2.07	2.28	1.85	0.89	1.11	***	
Cuttings Conc -	•	28.0	***	22.0	22.0	18.1	10.2	12.5	***	
Penetration Rate -m/h	9.6	28.0	# ## 	42. U	42.0					*******
*CASING SHOE PRESSURES	l ***	***	9.8	8.9	9.2	9.3	9.6	9.6	9.5	A0000000000000000000000000000000000000
ECD -1b/gal	•	***	9.8 ***	9.2	9.5	9.5		9.7	***	
ECD+Cuttings -lb/gal	L ***	कस्त्र (((((((((((((((((((((((((((((((((((****							
*TOTAL DEPTH PRESSURES	***	***	9.8	9.1	9.3	9.4	9.7	9.6	9.6	A00000000000
ECD -lb/gal ECD+Cuttings -lb/gal			9.8 ***		9.6	9.6		9.8	***	
ECU+Cuttings -15/gal	-					**********			N	
M-I Drilling Fluids L.L.C.	DRILLING FLU	JIDS DATA M	ANAGEMEN	T SYSTEM			G0003		April 12, 1995	

			M-I DI	RILLING FL	UIDS HYDI	RAULICS R	ECAP				
Operator : GFE	RESOURC	es	Con	tractor : CEN	TURY DRILL	ING 11		Description :	EXPLORATIO)N	
Well Name:: DUNI	BAR 1		Fie	d/Area : PPL	1			Location :	OTWAY BASI	n	
*Date	_	18/03/95	19/03/95 1758.0	20/03/95 1758.0	21/03/95 1758.0	22/03/95 1758.0	23/03/95 1758.0	24/03/95 1758.0	25/03/95 1758.0	26/03/95 1758.0	
*Depth *Days Since Spud		1557.0 10	1/58.0	1758.0	1736.0	14	15	16	17	18	
*RHEOLOGICAL PROPE	RTIES lb/gal	9.3	9.3	9.3	9.3	9.4	9.4	9.3	9.4	9.4	
Mud Wt - Plastic Visc	-cos	18	17	16	16	20	23	14	16	19	
	100£t2	21	15	12	15	15	18	11	12	12	
	nn deg	2	3	2	3	2	2	2	2	2	
np Value	_	0.547	0.614	0.652	0.600	0.652	0.642	0.641	0.652	0.689	
Kp -lb-sec^n/	100ft2	1.3720	0.7405	0.5133	0.7843	0.6416	0.7981	0.4894	0.5133 0.573	0.4496 0.595	
na Value		0.645	0.514	0.573	0.507	0.622	0.656 0.7321	0.548 0.8723	0.8380	0.8083	
Ka -lb-sec^n/	100ft2	0.7452	1.3841	0.8380	1.3997	0.7743	U.1321	V.6123	V.838V	· · · · · · · · · · · · · · · · · · ·	
*FLOW DATA	-1 /	0	275	0	300	250	275	275	160	0	200000000000000000000000000000000000000
-	al/min -psi	0	1220	0	800	600	700	700	200	o	
Pump Pressure Pump	-hhp	***	196	***	140	88	112	112	19	***	
*PRESSURE LOSSES											
Drill String	-psi	***	308	***	346	280	340	294	***	***	
Bit	-psi	***	840	***	240	170	210	200 61	***	***	
Annulus	-psi	***	84	***	86	71 521	82 632	555	***	***	
Total System	-psi	***	1232	***	672	521	93 <u>2</u>		****************		
*BIT HYDRAULICS		/ /	11/11/11	11/11/11	11/17/18	11/17/18	11/17/18	11/17/18	, ,	, ,	888888888888
	2 inch 2 inch	11/11/11	/ /	/ /	/ /	/ /	/ /	/ /	11	//	
Nozzles -1/3 Bit Pressure	2 inch -8	/ /	′′68	/ / ***	30	28	30	29	***	***	
Bit Pressure	-hhp	***	134	***	43	25	33	33	***	***	
	(Index)	***	2.40	***	0.80	0.40	0.60	0.60	***	***	
Jet Velocity	-m/sec	***	96.6	***	52.1	43.4	47.8	47.8	***	***	
Impact Force	-lbs	***	419	***	247	173	210	207	***	***	8888888888
*DRILL COLLARS AND							61.9	61.9	+++	***	
Velocity	-m/min	***	61.9	***	67.5	56.3 107.5	117.6	90.7	***	***	
Critical Vel	-m/min	***	110.1	***	108.3 1372	107.5	1085	1562	***	***	
Reynolds Number		***	1176 2766	***	2775	2619	2571	2719	***	***	
Crit Re (Lam - T)		***	2100 		2.13						
*DRILL PIPE ANNULU Velocity	-m/min	***	37.3	***	40.7	33.9	37.3	37.3	***	***	
Critical Vel	-m/min	***	88.8	***	87.7	81.3	86.9	71.7	***	***	
Reynolds Number		***	761	***	881	784	824	1051	***	***	
Crit Re (Lam - T	can)	***	2766	***	2775	2619	2571	2719	***	***	********
*HOLE CLEANING							15.0	19.7	***	***	
Slip Velocity	-m/min	***	14.7	***	15.0 25.7	16.2 17.7	22.3	17.6	***	***	
Rising Velocity	-m/min	***	22.6 61	***	25.7 63	52	60	47	***	***	
Lifting Capacity	-8 -8	***	1.30	***	***	***	***	***	***	***	
Cuttings Conc Penetration Rate	•	***	13.4	***	***	***	***	***	***	***	
*CASING SHOE PRES											
	-lb/gal	***	9.5	***	9.5	9.6	9.6		***	***	
	-lb/gal	***	9.7	***	***	***	***	***	***	***	*****
*TOTAL DEPTH PRES											
	-lb/gal	***	9.6	***						***	
	-lb/gal	***	9.7	***	***	***	***	***	***	###	
			JIDS DATA N	Contracting Contracting Contracting	ANTONIO MARCO M	90000000000 000000000		G0003	224344444444	April 12, 199	

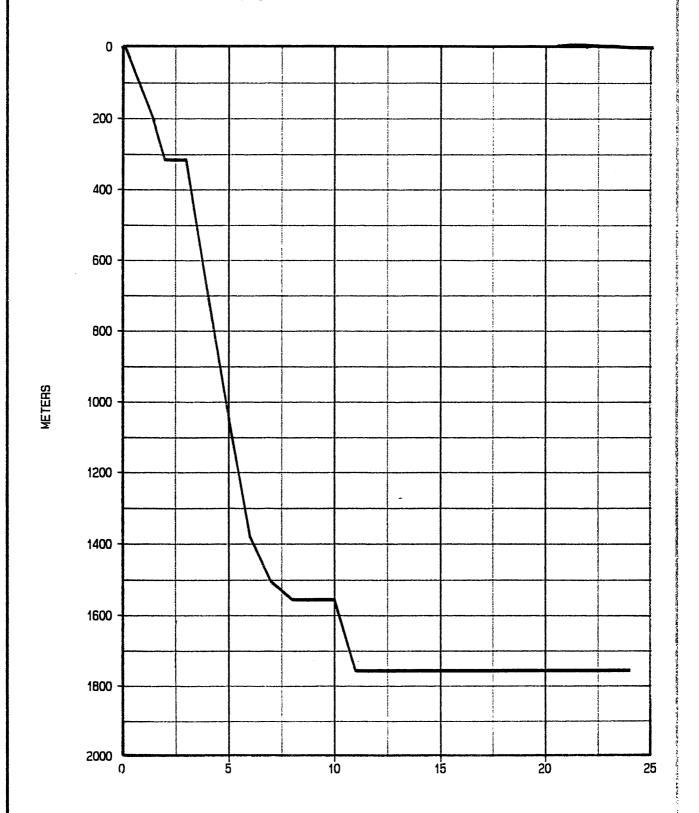
Control Cont		M-I DRILLING FLUIDS HYDI	RAULICS R	ECAP				
Date 1703 2703 2803 2803 2803 3003 3103	Operator: GFE RESOURCES	Contractor: CENTURY DRILL	ING 11		Description :	EXPLORATIO	N	
1758.0 1	Well Name: DUNBAR 1	Field/Area: PPL 1			Location :	OTWAY BASI	N	
1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1758.0 1759.0 1		27/02/95	20/03/05	29/03/95	30/03/95	31/03/95	01/04/95	
19 20 21 22 23 24								
### TIPOLOGICAL PROPERTIES Mai wit — 1b/qal Plastic Viac — cps 20 19 20 14 19 20 10 10 10 10 10 10 10 10 10 10 10 10 10 1							24	
Mad No. 1.0								
Plastic Vision		9.4	9.4	9.4				
Yield Point -lb/100ft2	·	20						
3-rpm Rdy	Yield Point -lb/100ft2							
The second 100	3-rpm Rdg -Fann deg	_	-			_		
## The sace is a content of the same is a content of the sace is a cont	np Value							
TA Value RA -lb-sec'n/100ft2 0.8083 0.8178 0.8085 0.8276 0.8276 0.8276 0.8276 0.8276 0.8276 0.8276 0.8276 0.8276 0.8276 0.8278 0.8288 0.82766 0.82766 0	-w							
The Table 1 of the second of t								
Flow Rate		U.8083	0.51/8	0.8083	J. 35JU			
Flow Nate		^	n	n	250	0	0	000000000000000000000000000000000000000
Pump -hpp		-	-	_		_	Ō	
Fung -nnp **********************************				-		***	***	
Drill String								
Bit -psi		***	***	***	***	***	***	
Annulus		***	***	***	***	***	***	
Total System -psi ***********************************		***	***	***	***	***	***	
Norzles -1/32 inch Norzles -1/32 inch Norzles -1/32 inch Norzles -1/32 inch Bit Pressure -4 Bit Pressure -4 Bit (Index)		***	***	***	***	***	***	
Nozzles -1/32 inch Nozles -1								
Nozzles -1/32 inch Bit Pressure -0 Bit Pressure -0 Bit HSI (Index) Bit HSI (In		1 /	//	/ /	/ /	7 7	7 7	
### ### ### ### ### ### ### ### ### ##		/ /	//					
Bit HSI (Index) 11		***						
Bit HSI (Index)		***						
Test Velocity								
Templat Force	Jet Velocity -m/sec							
Velocity -m/min	Impact Force -lbs	***	***	***	文字字 	***	****	0000000000
Velocity -m/min	DRILL COLLARS ANNULUS					111		
Critical Vel -m/min	Velocity -m/min							
Reynolds Number Crit Re (Lam - Tran) ***	Critical Vel -m/min							
### Critic (Lam - Tran) ***********************************	Reynolds Number							
Velocity -m/min		大大文 	**************************************	***	_,			********
Velocity -m/min		***	***	**	6R 7	***	***	440000000000000000000000000000000000000
Critical Vel —mmin Reynolds Number Crit Re (Lam - Tran) ************************************	,			***		***	***	
Reynolds Number Crit Re (Lam - Tran) **KOLE (Liean-Tran) **KOLE (L		***		***		***	***	
Crit Re (Lam - Tran) **HOLE CLEANING Slip Velocity -m/min Rising Velocity -m/min *** *** *** 48.8 *** *** Lifting Capacity -0 *** *** *** *** *** *** *** *** *** **	-			***		***	***	
Slip Velocity -m/min								
Slip Velocity		***	***	***	19.9	***		· · · · · · · · · · · · · · · · · · ·
Lifting Capacity -8 Cuttings Conc -8 Penetration Rate -m/hr **CASING SHOE PRESSURES ECD -lb/gal **** **** **** *** *** *** **			***	***	48.8	***		
Cuttings Conc		***	***	***	71	***		
Penetration Rate -m/hr *CASING SHOE PRESSURES ECD -lb/gal	Tit crist cabacted	***	***					
*CASING SHOE PRESSURES ECD -lb/gal	caccange come	***	***	***	***	***	***	
ECD -lb/gal								
ECD+Cuttings -lb/gal *** *** *** *** *** *** *TOTAL DEPTH PRESSURES ECD -lb/gal *** *** 9.9 *** *** ECD +lb/gal *** *** *** 9.9 *** ***		***	***	***				
*TOTAL DEPTH PRESSURES ECD -1b/gal *** *** 9.9 *** *** ECD -1b/gal *** *** *** 9.5 *** ***		***	***	***	***	***	会会	****
ECD -1b/gal *** *** 9.9 *** ***								
	ECD+Cuttings -lb/gal	***	***	***	***	***	***	

GRAPHS

M-I AUSTRALIA PTY LTD

Operator : GFE RESOURCES

Well Name : DUNBAR 1

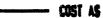

Legal: EXPLORATION

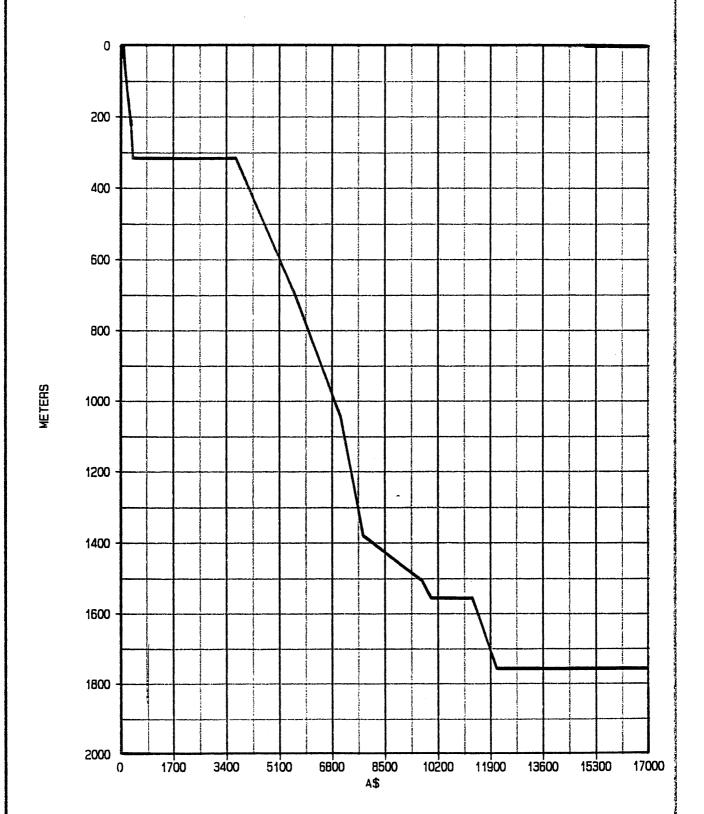
Field/Block: PPL 1

County/State : OTWAY BASIN

DRILLING FLUID PARAMETERS

Operator : GFE RESOURCES

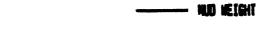

Well Name : DUNBAR 1

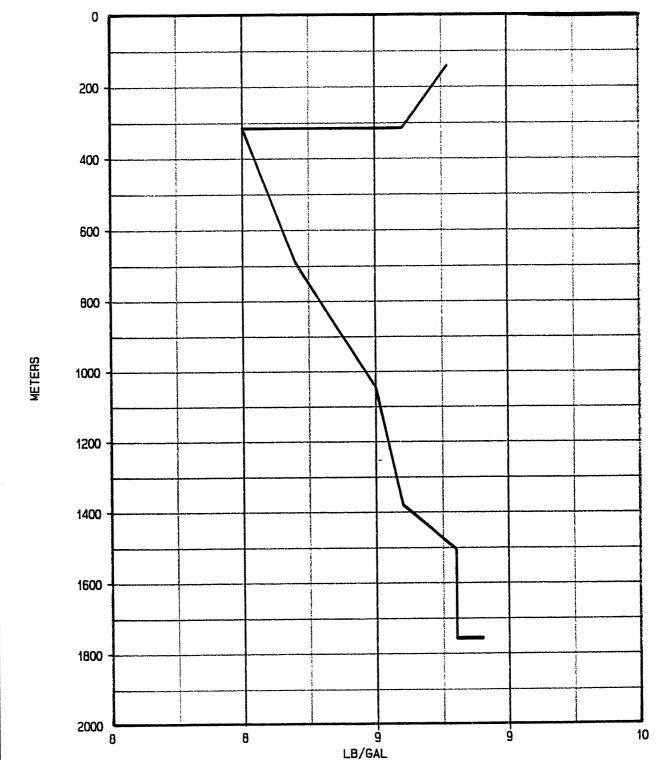

Legal : EXPLORATION

Field/Block: PPL 1

County/State : OTWAY BASIN

ORILLING FLUID PARAMETERS

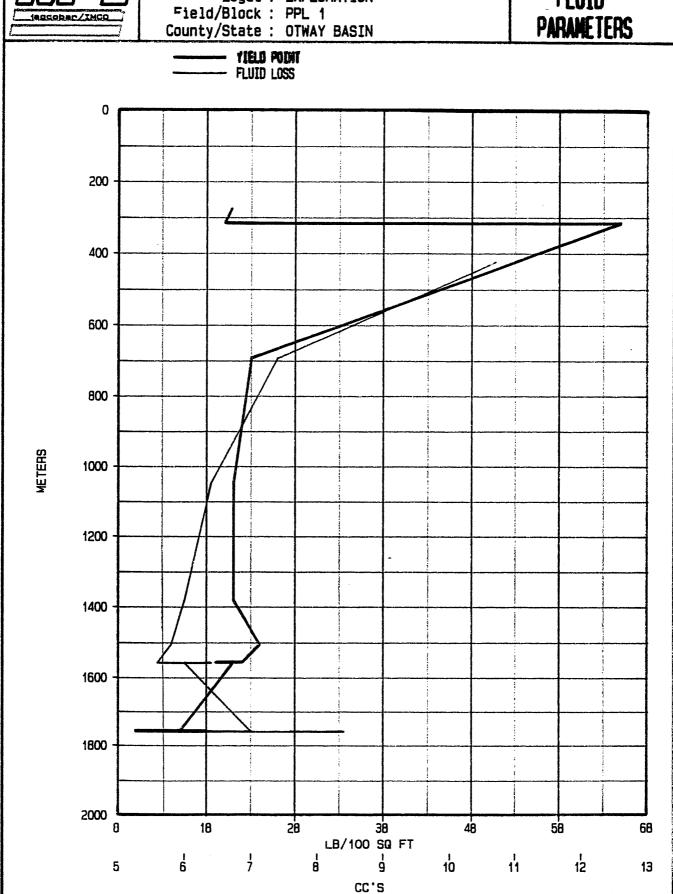

Operator: GFE RESOURCES


Well Name : DUNBAR 1

Legal : EXPLORATION Field/Block : PPL 1

County/State : OTWAY BASIN

JAILL ING FLUID Parameters



Jperator : GFE RESOURCES

well Name : DUNBAR 1 _egal : EXPLORATION

JAILLING FLUID Parameters

BIT RECORD

M-LAUSTRALIA PTY LTD

Cont	tractor - C	Sentury L	Contractor - Century Drilling Rig 11	g 11			Locatio	Location - Otway Basin, Victoria	√ Basin, \	Victoria			We	Well: Dunbar 1	ar 1
	Operator	: GFE R	Operator: GFE Resources					Permit PPL-1	PPL-1				Engine	Engineer: Paul Marshall	larshall
Pump	Pump Name	Size	Liner Size/Stroke	e/Stroke	Drill Collars OD x ID x Length	rill Collars x ID x Length	Dipe Drill	Drill	Tool Joint Type	Joint pe	9/JAN	Ti.		Pump Output bbls/Stles	
Nati	National	7-P-50	5.1/2 x 7.75	x 7.75	6.1/4, 2.25 x 162m	5 x 162m	4.]	4.1/2			16.6	9:		0.054	
Date 1995	Run No	Size	Make	lype	Jet Size	Depth Out	Meters Drilled	Hours Run	Wt on Bit	RPM	Pump Pressure	Vert Dev	Sths/min	Ann Vel m/min	Sths/min Ann Vel Condition nv/min T.B.G
9-Mar	IRR	12.1/4	Varel	L114	2x20,1x18	317	307	12.1/2	20k	125	300	0	195	94	2-3-1/16
11-Mar	2	8.1/2	IITC	ATJ05	3 x 11	1507	1190	09	25k	100	1220	1 deg	121	278	7-8-1/2
13-Mar	3	8.1/2	HTC	ATJ05	, 3 x 11	1758	251	61	25k	110	1220	1 deg	121	130	
30-Mar	4RR	9	HIC	654	w/c	1758	Drill Cmt	8	20k	110	800		110	226	

WEEKLY INVENTORY SHEETS

DATE:	1995	8-Mar		9-Mar	ar	91	10-Mar		11-Mar	ı	12.	12-Mar		13-Mar		14-Mar	far	Tot	Total for Week	Veck
	•																			
Product Name	Tinti Bal	Recd Used	Ball	Recd	Used Ball	Recd	Used	Bal Recd	cd Used	Ball	Recd	Used Bal	il Recul	Dasil	Ball	Recol Us	Used Bal	al Recol	i Used	Hail
Barite			1			1		904		200		907	×1×		200		-96		0 0	907
M-I Gel			C	41	47 109	96		202		305		205	. H 0:		305	19*	224	#61 #	47	ä
KCI	25 kg 149		1.19		149		4	5115		\$11		145	a		*	-	\$		4	14.5
Polypac R	25 kg to		01	49	65	***		56	32 9	83	-	1 8		-	08	1	*	80	=	08
CMCLV	25 kg 8		8	08	88			88	6	\$2		3 7	76	5	F	-	•	71 80	17	7
Polyplus	25 kg 0		0			×.		0	6 19	28		6	9	5	#	-	3 4	41 67	7 26	7
Caustic Soda	25 kg 10		0.	42	1 31	200000		15		1\$		51			15		va	51	42 1	\$1
Soda Ash	25 kg 20		0.7	-	20			2.0		30		•	30		20		7	20	0 0	20
Sod Bicarbonate			72		2			22		13			13		11		•	23	0	1.2
Spersene			22		1.1	-	-	91		91		_	•		91		1	91	1 0	91
Lime	20 kg 19		61		61	×	2	-1		2		-	1		2.1		1	2.4	0 2	10
Calc Chloride	25 kg 40		9		0#		1	39		39			86		66			200	0 1	6
OS-1	25 kg 20		20		20			07		20		. T	20	4	91		2	<u> </u>	9 0	7
Bacban III	9 99		9		9	- C-		٥		9					G		-		0	
Conqor 303	25 11 10		01		10	×=		9		01			9		01		-	9	0	01
Defoam A	25 11 5		up)			•		90		16	-		**0:		49	1		90	0	40
Pipelax	205 It 2		2			⊗ee:		64		74			es.		74	-		64	0	
Mica Medium	50 lb 30		30		30	×.e.		30		30			98		30	-	2	9	0	30
Kwikseal Med	40 lb 30		0,		90			06	4	90	\dashv		30		8	\dashv		2	0	ē

DATE:	1995	15	15-Mar	16-Mar		17-Mar	18-Mar		19-Mar	2(20-Mar	21-	21-Mar	Total for Week	Week
(4,7)	The Bas		Treat Rail	Recd Used	Ball Recd	Used Bal	Recd Used	Bal Reed	pasa	Bal Recul	Used Bul	Recd	Used Bai	Recal U	Used But
Po-its					3	208 699		559	66	009	40 560		40 530	0	387 520
Darlie		8 8 8 8	72		33.1			T C C		7	124		9 215	0	9 215
M-I Gel		18 800	145		145	145		145		96	145		145	0	0 145
Polypac R		08	90	-	20	1 78	202-202	7.8		30 12	78	1	2 76	0	4 76
CMCLV	25 kg 7	12	5 66		96	99		99		.8	99		3	0	<u>م</u>
Polyplus	25 kg	7	2£ 6		32	32		32		63	32		33	0	6
Caustic Soda	25 kg	36	15	3	8#	48		87	4		7		2 42	0	6
Soda Ash	25 kg	900	07		20	20		00		50	30		- 19	0	1 10
Sod Bicarbonate			12		13	12		1.3		8	=		12	0	0
Spersence		91	91		91	91		91		91	16		91	0	0
I ime		1	12		1.1	13		21		12	17		1	0	0 17
Calc Chloride		98	8		39	39		30		30	39		39	0	0 39
OS-1			=	2	1.2	1		-1	3		8		8	0	9
Bachan III		40			-40			3		16	· S		9	0	0
Condor 303		2	101		01	01		10		01	2		01	0	0 10
Defoam A		99	•		16			vo		v	45		9	0	0
Pipelax		ct	2		7		· 63	23		63			e	0	0
Mica Medium	50 lb	30	30		90	30	0	30		30	30		9	0	080
Kwikseal Med	40 lb	30	30		30	30		30		30	98		8	0	0 30

(,	1
ĺ	_	=
i	-	3
	_	j
5	7	
	7	5
•	•	•
	>	4
3	~	ø
,	ż	•
()
	-	4
7	2	_
	ż	1
,	2	-
,	_	=
	>	4
)	_	3
)	¥	9
ļ	Y	1
ļ	'n	1
į	₹	>
ż	1	
ŧ		
-	•	

Resources
GFE
Ā
pe

WEEKLY INVENTORY SHEETS

Week
otal for Week
Ĭ.
Apr
-
3 Apr
Ē
3-Apr 3-Apr 4-Apr
l-Apr
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr Total for Week
lar
31-N

30-Mar
E
29-Mar
29-M
1995

Preduct Name	Turn	Bull Reed	d Used	Bal	Recd	Used	Ball Recd	l Used	Bal	Real	Used Bal	al Recd	Used	Bal Re	Recul Used	d Bai	Recd	Used	Bal Recd	to Used	Bal
Rorite			1_	2	1		37.	08	981		160			160		091			160	0 183	160
M-I Gel		986		981			981		981	<u> </u>		981		981		186			186	0 0	186
IVCI		*		97	-		30.7		145	-	3	20		57.		\$			911	0 0	145
Polymer R		F		16		2	60	2	29			Į.		29		5			29	0 4	(2)
CMCLV		***		99			99		99			**		95		3			99	0 0	Ğ
Polyplus	25 kg	23		12			23		3.2		3	25		32	-	8			2	0	32
Caustic Soda	25 kg	c;		ej			42		c;			5		C	_	7			Ç.	0	3
Soda Ash	25 kg	8		81			18		81					80		8			90 11	0	18
Sod Bicarbonate	25 kg	*:		13			23		7			E.		13		2			23	0	2
Spersene	25 kg	91		91			10		10					91		91			91	0	Ŧ
Lime	20 kg	22		13			21		1.1					12		21			12	0	
Calc Chloride	25 kg	6,		9			62		36			30		39		39			2	0	ă
OS-1	25 kg				-				7					•		7			15	0	
Bachan III	616	99		30			90		ın			46		vo.		ų,			50	0 0	
Congor 303	2511	2		9			9		01		10			0		0			0	0 10	
Defoam A	25.14	·o		v			9		w			vs		30		5			v	0 0	4
Pipelax	205 14	2		7			ra		2					6		- 1			ra .	0	
Mica Medium	50 lb	30		90			30		30			30		30		30			9	0	S
77 11 11 11 11	11.07		_		-		***						<u></u>					***		-	

DAILY RECAP

M-l'AUSTRALIA PTY LTD

M-I DRILLING FLUIDS RECAP Description: EXPLORATION Contractor: CENTURY DRILLING 11 Operator: GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 109/03/95- 1 10/03/95- 2 11/03/95- 3 112/03/95- 4 13/03/95- 5 114/03/95- 6 15/03/95-Date - Day |317.0 |317.0 |317.0 |317.0 |693.0 |693.0 |1047.0|1047.0 |1382.0|1382.0 |1507.0|1507.0 Depth/TVD :115.0 /115.0 DRILL 8.5" DRILL 8.5" RIN RIH DRILL 8.5" CEMENT CSG DRILLING Activity 206 206 206 206 206 208 Mud Type Code 208 8.5 8.5 8.5 8.5 Hole Size -in Circ Volume -bbl 12.25 8.5 12.25 :580 433 1370 :305 1362 :375 275 1220 275 275 275 335 1450 330 1400 Flow Rate -gal/min 1100 1150 950 625 900 Circ Pressure -psi 10.2 22 18.1 -m/hr 9.6 28 Avg ROP PIT 24:00 FL 23:00 FL 23:00 PIT 23:00 FL PIT 23:00 Sample From FL 24:00 182 90 170 Flow Line Temp - T 80 9.1 8.7 9.1 Mud Wt -1b/gal 9.3 42 17 46 @ 60 ^F 6 77 ^F 42 120 @ 50 ^F 45 @ 78 ^F |45 @ 50 ^F 145 @ 68 ^F Funnel Vis -s/qt :24 8 60 AF 8 65 ^F 118 @ 70 ^F @ 63 ^F e 75 ^r @ 50 ^F :41 @ 50 ^F 117 113 :10 PV -cps ³21 / 2 24 / 3 20 / 5 21 / 2 24 / 4 23 / 3 65 / 6 YP/R3 -1b/100ft2 / 10 10 / 8 4 / 10 10 / 34 / 17 4 6 / 30 10s/10m Gel 6 :5.8 7.4 12 API Filtrate HTHP Filtrate -cm3 Cake API/HT -1/32* 3 / 3.5 5.5 -tvol / 95 L/Water -tvol 0.5 10.5 Sand -%vol 10.75 10 22.5 8.3 @ 70 7.5 -lb/bbl 17.5 MBT 6 60 VE 8.5 6 60 AE 8.3 8.3 8 60 AF 8.5 @ 55 ^F @ 50 ^F 8.5 @ 50 ^F 8.3 @ 70 ^F DΗ (0.1 0.1 0.1 Alkal Mud (Pm) 0.1 0.1 0.1 10.05 / 0.3 0.05 / 0.2 0.05 / 0.2 0.05 / 0.1 0.05 / 0.1 0.05 / 0.2 0.0 / 0.4 Pf/Mf 800 800 PI/MI Chlorides -mg/L 700 800 1000 500 600 100 60 80 80 100 80 Hardness (Ca)-mg/L 160 11.3 1.44 11.1 100 80 1865 731 1875 1508 3296 287 116 Daily Mud Cost -7812 9678 7081 3699 5574 403 Cumml Mud Cost -287 P.MARSHALL P.MARSHALL P.MARSHALL P.MARSHALL P. MARSHALL P. MARSHALL P.MARSHALL Sales Engineer POLP 3 POLP 9 POLP 5 POLP 9 POLP 9 GEL 28 KCL 4 Products Used PACR 1 PACR 1 OS-1 2 CMCL 5 CAUS 1 SPCF 1 PACR 9 CMCL 5 BAC 1 LIME 2 CMCL 3 CMCL 9 os-1 4 CACL 1 emarks 09/03 : Spud Dunbar 1 at 1700 hrs and drill 12.1/4" hole to 115m 10/03 : Drill 12.1/4" hole f/115m-317m TD. Perform wiper trip. POOH. Run casing. Prepare to cement 9.5/8" casing. 11/03 : Cement casing. WOC. Nipple up BOP's. Pick up BHA and prepare to run in hole with 8.1/2" drill assembly. 12/03 : RIH and tag cement at 294m.Drill out and displace hole to PHPA system. Perform FIT and drill 8.5" hole f/322m- 69 13/03 : Drill to 856m. POON for wiper trip. Circ out tight hole f/579-531m. Cont POON tight. RIN & Rream to bottom18mFILL 14/03 : Drill from1047M-1230M.POOH for wiper trip.Work tight hole RIH & ream 1255M-1287M. 7M fill.Drill F/1287-1382M. 15/03 : Drill from 1382m-1507m. POOH for bit change. M/U new bit and RIH.

Page 1

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

April 12, 1995

G0003

M-I DRILLING FLUIDS RECAP

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN

Date: - Day	.16/03/95- 8	17/03/95- 9	;18/03/95- 10	19/03/95- 11	20/03/95- 12	21/03/95- 13	22/03/95- 14
Depth/TVD -m	;1557.0/1557.0	1557.0/1557.0	:1557.0/1557.0	1758.0/1758.0	1758.0/1758.0	1758.0/1758.0	:1758.0/1758.
Activity	POH TO TEST	CIRCULATE		W/TRIP		LOGGING	LOGGING
Mid Type Code	206	206	206	206	206	206	206
Hole Size -in	8.5	ູ່8.5	8.5	8.5		8.5	18.5
Circ Volume -bbl	587	1509				1571	:548
Flow Rate -gal/min	1275	¹ 275	1	275	Ţ.	300	250
Circ Pressure -psi	1220	1200		1220		, 800	;600
Avg ROP -m/hr	12.5	i e	i	₁ 13.4	1	f	! :PIT 22:30
Sample From	300	FL 24:00		FL 22:00	PIT 23:00	PIT 24:00	!PIT 22:30
Flow Line Temp -^F	86	87		88		,	9.4
Mud Wt -1b/gal	9.3	9.3		9.3	¦9.3	1	
Funnel Vis -s/qt		44 @ 85 °F		140 8 85 AF			:20 6 65 ^F
pv -cps	· ·				.=-		15 / 2
YP/R3 -1b/100ft2	22 / 3	19 / 2	21 / 2	15 / 3		15 / 3	
10s/10m Gel	4 / 14	3 / 10	4 / 10	4 / 10	;3 / 13	4 / 12	4 / 13 6.4
API Filtrate -cm3	5.6	6.4	;6	17	6.4)6.2 	30.9
HTHP Filtrate -cm3		!	i		: :in: /	; ;1 /	; '1 /
Cake API/HT -1/32"	1 /	}1 /	1 /	1 /		A Company of the Comp	7
lids -%vol	7	7	j 7	j6.5	6.5	6.5	/ 93
1/Water -%vol	į / 93	/ 93	j / 93	/ 93.5	/ 93.5	/ 93.5	; / 93 10.75
Sand -%vol		10.75	10.5	10.5	10.75	10.5 111	11.5
MBT -lb/bbl	10	12.5	12	10.5	11	to the second se	8.5 @ 55 ^1
Hq	.8.6 @ 60 ^F	8.3 @ 60 AF	8.3 @ 55 ^F	38.6 @ 55 ^F	.8.5 @ 55 ^F	8.6 @ 55 ^F	0.1
Alkal Mud (Pm)	10.2	10-1	;0.1	10.1	10.1 10.1 / 0.45	10.1 / 0.45	0.05 / 0.45
Pf/Mf	0.1 / 0.3	0.05 / 0.35	0.05 / 0.35	10.1 / 0.5	10.1 / 0.45 17500	10.1 / 0.45 1750	750
Chlorides -mg/L	800	750	800	¹ 750	.7500 .60	, /50 , 60	:60
Hardness (Ca)-mg/L	;80	, 80	:80	, 60	, bu	100	100
		1		i 1.2	1.2	11.2	¹ 1.1
PHPA	1.44	11.3	¹ 1.3 ¹ 50	'1.2 120	100	100	180
SULPHITE	100	t 60	;50	120	,200		
		act or operation of the object of 200		 	silan assertion de la company	residence in the second	. i .
		.	4	.) 1790	:221	629	1529
Daily Mud Cost -	301	11333	!11311	12101	12322	12951	14480
Cumml Mud Cost -	9979	11311	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL
Sales Engineer	P.MARSHALL	P.MARSHALL PACR 1	:F.RARORALL	CAUS 4	BAR 40	igel 9	GEL 11
Products Used	CAUS 3	OS-1 1		os-1 3		CAUS 2	PACR 5
	PACR 1 OS-1 2	BAR 208	adaminana	BAR 99		PACR 2	BAR 136
	08-1 Z	BAR 200			33 3 0000000000000000000000000000000000	BAR 40	SODA 1
] ~2000		·	4	SODA 1	a i re e e e e e e e e e e e e e e e e e e
		4			200000000000000000000000000000000000000	**************************************	
		. 			d	.	
		Ą	·	•	(1.00)	\$\$600000000000000000000000000000000000	*
	. (200) 6000 :	} ~~***********************************	· .	·	di d	i i	
				7		3	
				. 		.	
_		4		•	**************************************	1	.0000000000000000000000000000000000000
	21	<u> </u>	<u> </u>	·	.	·k	i.
						<u>(6)</u> (6)6666666666666666666666666666	<u> Parilla de consciones de conserverses en la conserverse en la co</u>

16/03: Contin RIN & ream u/gauge hole. Drill f/1507-1557m. Circ and POON for wiper trip.RIN-hole good-5m.Fill.POH to tes
17/03: Cont POON. M/U and RIN w/ test tool. DST #1.POH & lay out T/T-tool blocked.RIN & circ and dilute.Pump Hi Vis & PO
18/03: Wiper trip.POON.RIN for DST #2. Perform DST #2. Pull free hole good. Recover sample. Test BOPs. Prepare to RIN.
19/03: RIN W/ BHA.Break circ.@1533m and wash and ream to bottom- 1.5m fill. Drill f/1557-1758m. POON for wiper trip. 19/03: RIH W/ BHA.Break circ.@1533m and wash and ream to bottom- 1.5m rill. Drill f/1557-1758m. POOK for Wiper trip. 20/03: RIH for wiper trip.Ream tight hole f/1533-1648m. 7m fill circulate hole clean and POOK.Hole good.Rig up and log. 21/03: Cont log run #3. RIH to 1741m. Wash to bottom-4m fill. Circ hole clean and POOK. Rig up and run logs #4 & 5. 22/03: Cont log run #5, run log #6. P/U BHA and RIH, circ and trip out to 1176m. RIH, circ & POOH to log. Run log #7

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

M-I DRILLING FLUIDS RECAP

Operator: GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description: EXPLORATION

Well Name: DUNBAR 1

Field/Area: PPL 1

Location: OTWAY BASIN -

Well Name: DUNEA		rietarica i					
Date - Day	.23/03/95- 15	24/03/95- 16	25/03/95- 17	26/03/95- 18	27/03/95- 19	28/03/95- 20	29/03/95- 21
Depth/TVD -m	1758.0/1758.0	1758.0/1758.0	:1758.0/1758.0	11758.0/1758.0	1758.0/1758.0	1758.0/1758.0	:1758.0/1758.0
Activity		RUN CASING	WORK CASING	WAIT ON DP	WAIT ON DP	WAIT ON DP	WAIT ON DE
Mud Type Code	206	206	206	206		206	206
Hole Size -in	. 8.5	8.5	8.5	8.5	8.5	18.5	8.5
Circ Volume -bbl		1509	:532	1315	:315	1315	.
Flow Rate -gal/min	1275	[]] 275	160	1		ł	
Circ Pressure -psi	.700	700	200	1	· ·		
Avg ROP -m/hr		1	•	į.	ı	£	
Sample From	FL 23:00		FL 23:00	PIT 23:00	PIT 22:30	PIT 22:00	PIT 22:00
Flow Line Temp - T	84		74	1. 1		9.4	9.4
Mud Wt -1b/gal	9.4	9.3	9.4	9.4	9.4		40 @ 60 ^F
Funnel Vis -s/qt	44 8 80 °F		:39 @ 68 ^F			140 6 60 °F	
PV -cps			• • • • • • • • • • • • • • • • • • • •	: · · · · · · · · · · · · · · · · · ·	120 @ 55 ^F	111 / 2	11 / 2
YP/R3 -1b/100ft2	18 / 2	11 / 2	12 / 2	112 / 2 13 / 9	;11 / 2 ;3 / 9	11 / 2 3 / 11	3 / 10
10s/10m Gel	3 / 12	3 / 10	3 / 10	¦3 / 9 ∤6.6	6.6	16.6	6.6
API Filtrate -cm3	į6.4	6.4	6.6	10.0	1	a∓tY I	7.7.7
HTHP Filtrate -cm3	000 0 000 0 00000000000000000000000000	-} -}_a	: '1 /	, !1/	i <u>1</u> /	11 /	11
Cake API/HT -1/32"	1 /	1 /	17	7	!7	1 7	! 7
lids -%vol	7	6.5	/ / 93	}' / 93	/ 93	/ 93	/ 93
1/Water -%vol	/ 93	/ 93.5	, , , , , , , , , , , , , , , , , , ,	10.5	:0.5	10.25	0.25
Sand -%vol	0.75	10.5	12.5	12.5	12.5	¹ 12.5	12.5
MBT -1b/bbl	12	12 8.7 @ 55 ^F	.8.5 @ 55 ^F	8.5 @ 55 ^F	.8.3 @ 55 ^F	8.5 @ 55 ^F	8.5 8 55 °F
PH	,8.5 @ 55 ^F :0.1	8.7 @ 55 ^F	0.1	0.1	0.1	0.1	0.1
Alkal Mud (Pm)	:0.15 :0.05 / 0.45	10.08 / 0.6	0.05 / 0.5	0.05 / 0.45	0.05 / 0.4	10.1 / 0.6	0.1 / 0.65
Pf/Mf	750	1750	1750	750	750	¹ 750	750
Chlorides -mg/L	60	,60	:60	, 60	,60	50	;50
Hardness (Ca)-mg/L			4	ika sa atau ka sa	i de la companya de	i e	1
PHPA	1.1	} 1	1	11	11	11	1
SULPHITE	50	^t 100	¹ 80	50	50	10	10
SUMERITA		≱ 7	KEGO OGGOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1	•	1	i
	i K	i de la companya de	į.	1	*	ţ.	
Daily Mud Cost -		1353	94	1		} .t	•
Cumml Mud Cost -	14480	14833	14928	14928	14928	14928	14928
Sales Engineer	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL
Products Used	•	igel 8	GEL 10	1		ļ.	ţ.
		os-1 1		1 	: ::	* v k o	
		BAR 41			ì	1	
		1				1	: :
		f		1		†	
	**** !	1	•		: :: ::::::::::::::::::::::::::::::		
			1	4		4	
	***	1	L	- { agrae = 15.000000000000000000000000000000000000		i T	; :
		1				†	
	500 4 500 4		• •••••••••••••••••••••••••		k		
	į.	1	i k	. P	•	1	>: !
		}	 		! :: :: ::::::::::::::::::::::::::::::::	 	•
		ļ.		,	4	1	
	,	·		<u> </u>	<u> </u>	<u></u>	

Remarks

23/03 : Coneinue log run#7.POOH w/blocked tool.Rerun log #7.POOH P/U 8.5" Drl assy and RIH to 1755.5m.wash to bottom. Cir 23/03: Coneinue log run#7.FOOH w/blocked tool.Rerun log #7.FOOH P/U 8.5" Drl assy and RIH to 1755.5m.wash to bottom. Ci 24/03: Cont circ hole clean. Lay out DF & drill assy. Rig up and run casing.Work and circ tight hole f/1123-1130m. 25/03: Cont to run casing. Circ & work stuck casing F/1148m. - 1153m.Lay out 4 JNTS,P/U 1 JNT.Cont to work f/1097-1108m 26/03: Rig up and cement 7" casing. Cut casing. Nipple down BOPs Nipple up and test. Wait on 3.5" drill pipe. 27/03: WOC. Pressure test casing. Wait on 3.5" drill pipe. 28/03: Wait on 3.5" drill pipe. Service rig. 29/03: Wait on drill 3.5" drill pipe.

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

G0003

April 12, 1995

Operator: GFE 1	RESOURCES	Contractor:	CENTURY DRILLI	NG 11	Description:	EXPLORATION	
Well Name: DUNE	AR 1	Field/Area:	PPL 1		Location	otway basin	
ate - Day epth/TVD -m	,30/03/95- 22 :1758.0/1758.0	31/03/95- 23 1758.0/1758.0	01/04/95- 24 ; 1758.0/1758.0	:			
ctivity	DRILL CMT	LAY OUT DP	RIG DOWN				location in the second
nd Type Code ole Size -in	206 6	206 6	6	ļ			i
ird Volume -bbl	410	∤319	4	: ••••••••••••••••••••••••••••••••••••	1	P	: \$************************************
low Rate -gal/min irc Pressure -psi	250 .800	ļ					
vg ROP -m/hr							
ample From	FL 23:00	PIT 24:00	FL 15:00	! ::::::::::::::::::::::::::::::::::::			
low Line Temp - F md Wt - 1b/gal	9.3	¹ 9.3	9.3			J	! !:::::::::::::::::::::::::::::::::::
unnel Vis -s/qt		41 0 70 ^F	42 6 70 °F			l	francisco L
v -cps p/R3 -1b/100ft2	14 6 65 °F	10 / 2	10 / 2			r F	ļ
0s/10m Gel	2 / 9	2 / 9	2 / 9				1
PI Filtrate -cm3 THP Filtrate -cm3	(8.4)	17.6	7.6			i	<u>.</u>
ke API/HT -1/32"	1 /	12 /	<u> </u> 1 /			F	
lids -%vol il/Water -%vol	;7 ; / 93	7 / 93	7 / 93			i I	.
and -%vol	, , , , , , , , , , , , , , , , , , ,	11.5	1.5			l Follows and acceptance of the control of the cont] \$000000000000000000000000000000000000
BT -1b/bbl	12	12.5 13.5 @ 55 ^F	12.5 12.5 @ 55 ^F			;	1 1
oH Likal Mud (Pm)	12.5 @ 55 ^F	12	12.3 6 33 2				(
f/Mf	11.9 / 2.1	11.8 / 2.0 1750	1.8 / 2.0 750	l L ection		i k	; ;
Thlorides -mg/L Mardness (Ca)-mg/L	750 200	,750 ,200	:200	р. 1	:	ļ	
	i	į.	i '0.9	l I		1	
PHPA SULPHITE	10	, 110	300	i i		t I	
, ,,,,		1	1	 		<u> </u>	1
Daily Mud Cost ~	! !833	} 574	622	1]	•
Cumml Mud Cost -	15761	[‡] 16335	16957	l: 1		t .	
Jales Engineer	P.MARSHALL	P.MARSHALL	P.MARSHALL BAC 1	(l £	j
Products Used	BAR 103	BAR 80	CNQ3 10	1	i Lagrana and a second and a second and a second as	T 4	: :-•
		i.		i	i	1	**************************************
) 	1	i e	i			
			· .	1 4	: J	ł	<u>:</u>
	i.	- E		‡ 1	1 !	1	:
		į		1			
			į	į	ļ	l	†
))	1	•	1	**************************************	Ì	
-		-	-	ļ	•	1	1
marks	P/U 4.75" DC,M/	_\		<u> </u>	<u> </u>		

Page 4

G0003

April 12, 1995

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

×X.

DAILY CHEMICAL ADDITIONS

M-TAUSTRALIA PTY LTD

Óperator : GFE R Well Name : DUNBA			tractor : CEN ld/Area : PPL		11 Descri	otion : EXPLOI		Page: Well: G00
======================================	:	09/03/95	10/03/95	11/03/95	12/03/95	13/03/95	14/03/95	15/03/95
Depth	-m:	115.0	317.0	317.0	693.0	1047.0	1382.0	1507.0
Daily Mud Cost	:	287	116	3296	1875	1508	731	1865
Cumulative Mud Co	st :	287	403	3699	5574	7081	7812	9678
Bacban	6 LB JU:		Ì		į		1	
CMC TG LV	25 KG S:			9	3	5		5
Calcium Chloride	25 KG S:		1					
Caustic Soda	25 KG S:	1	į					
Congor 303	25 LT D:		İ	İ				
Lime	40 KG S:		2]
M-I Bar	25 KG S:		İ					
M-I Gel	25 KG S:	28			1			
OS-1	25 KG S:					4	2	
Polypac R	25 KG S:			9	1	1		
Polyplus Powder	25 KG S:			9	9	5	3	9
Potassm Chloride	25 KG S:		4					
Soda Ash	40 KG S:							
persene CF	50 LB S:		1					1

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : GFE R Well Name : DUNBA			tractor : CENT 1d/Area : PPL			otion : EXPLOR		Page: 2 Well: G0003
Date Depth Daily Mud Cost	: -m: :		17/03/95 1557.0 1333	18/03/95 1557.0	19/03/95 1758.0 790	20/03/95 1758.0 221	21/03/95 1758.0 629	22/03/95 1758.0 1529
Cumulative Mud Co	st :	9979	11311	11311	12101	12322	12951	14480
Bacban	6 LB JU:							
CMC TG LV	25 KG S:]
Calcium Chloride	25 KG S:							
Caustic Soda	25 KG S:	3			4		2	
Conqor 303	25 LT D:]			
Lime	40 KG S:							100
M-I Bar	25 KG S:		208		99	40	40	136
M-I Gel	25 KG S:						9	11
0S-1	25 KG S:	2	1		3			
Polypac R	25 KG S:	1	1				2	5
Polyplus Powder	25 KG S:							
Potassm Chloride	25 KG S:							
Soda Ash	40 KG S:						1	1
Spersene CF	50 LB S:							

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : GFE R Well Name : DUNBA			tractor : CEN 1d/Area : PPL			otion : EXPLO		Page: Well: G000
Date Depth		23/03/95 1758.0	24/03/95 1758.0	25/03/95 1758.0	26/03/95 1758.0	27/03/95 1758.0	28/03/95 1758.0	29/03/95 1758.0
Daily Mud Cost Cumulative Mud Co	st :	14480	353 14833	94 14928	14928	14928	14928	14928
Calcium Chloride	25 KG S:		41					
OS-1			8 1	10				

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : GFE RESOURCES Well Name : DUNBAR 1		or : CENTU ea : PPL 1	RY DRILLING	11 Descri	otion : EXPLORATION : OTWAY BA	: 4 : G0003
	Date	:	30/03/95	31/03/95	01/04/95	
	Depth	-m:	1758.0	1758.0	1758.0	
	Daily Mud Cost	:	833	574	622	
	Cumulative Mud Co	st :	15761	16335	16957	
	Bacban	6 LB JU:			1	
	CMC TG LV	25 KG S:				
	Calcium Chloride	25 KG S:]	
	Caustic Soda	25 KG S:				
	Congor 303	25 LT D:			10	
	Lime	40 KG S:				
	M-I Bar	25 KG S:	103	80		
	M-I Gel	25 KG S:				
	0S-1	25 KG S:]	
	v 1	25 KG S:	2	1]	
	Polyplus Powder	25 KG S:				
	Potassm Chloride	25 KG S:			!	
	Soda Ash	40 KG S:				
	Spersene CF	50 LB S:				

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : GFE RESOURCES

Contractor: CENTURY DRILLING 11

Description : EXPLORATION

Well: G0003

Well Name : DUNBAR 1

Field/Area : PPL 1

Location : OTWAY BASIN

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 09/03/95 - 01/04/95, 115.0 m - 1758.0 m

WATER-BASE PROD	SIZE	AMOUNT
Bacban	6 LB JUG	2
CMC TG LV	25 KG SX	22
Calcium Chloride	25 KG SX	1
Caustic Soda	25 KG SX	10
Congor 303	25 LT DM	10
Lime	40 KG SX	2
M-I Bar	25 KG SX	747
M-I Gel	25 KG SX	66
OS-1	25 KG SX	13
Polypac R	25 KG SX	23
Polyplus Powder	25 KG SX	35
Potassm Chloride	25 KG SX	4
Soda Ash	40 KG SX	2
Spersene CF	50 LB SX	1

DRILLING FLUIDS DATA MANAGEMENT SYSTEM M-I Drilling Fluids Co

SECTION 13

DAILY MUD REPORTS

MITATISTRATIA PTV LTD

Date: 09/03/95 Depth : 115.0 m M-I Drilling Fluids Company Spud Date : 09/03/95 Activity : DRILLING DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: G0003 _______ Contractor: CENTURY DRILLING 11 Description : EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 12.250 in in Liner OD: Hole Volume : Nozzles:18/20/20/ / 1/32" Casing OD: in Liner ID: Pits Volume : in Drill Pipe 1 OD: 4.500 in Error m Casing ID: m Circulating Volume: 375 m Liner TD: Drill Pipe 2 OD: 4.500 in 55.0 m Casing TD: m Liner TVD: m Mud : FW NATIVE MUD Casing TVD : Drill Collar OD: 6.250 in 145.0 m SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES Flow Rate -gal/min: NaC1 : 0.0 / 0 335 : FL 24:00 Sample From : 0.0 / : 80 ^F Ω KC1 DP Annular Vel -m/min : Flow Line Temp Low Gravity Solids : 7.2 / 66 -m :115.0 /115.0 DC Annular Vel -m/min : Depth/TVD : 1.9 / 17 DP Critical Vel -m/min: Bentonite Mud Wt -1b/gal : 9.3 : 5.4 / 49 Drill Solids -s/qt : 45 @ 78 ^F Funnel Vis DC Critical Vel -m/min: Weight Material : N/A / N/A Chemical Conc : - / 0.0 Plastic Visc -osi: -cps : 10 @ 75 ^F Circ. Pressure P/R3 -1b/100ft2 /deg : 24 / 4 Bottoms Up -min: Inert/React : 1.93 Average SG : 2.60 / 30 10s/10m Ge1 -1b/100ft2 : 6 Total Circ Time -min : API F Loss -cc/30 min: SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS a HTHP F Loss -cc/30 min: Shaker #1 : 84 X 3 13 25 KG S 28 -1/32" : 3 M-I Gel Cake API/HT Shaker #2 25 KG S 1 Caustic Soda -%vo1: 3.5Solids Shaker #3 -%vol: /96.5 0il/Water Shaker #4 -%vol: 0.75 Sand Mud Cleaner -1b/bb1 : 22.5MBT Centrifuge : 8.3 @ 70 ^F рΗ : 2 X 12" 12 Desander : 0.1 Alkal Mud (Pm) 12 X 4" Desilter : : 0.0 / 0.4 Pf/Mf Degasser : -mq/1:600Chlorides Hardness Ca : 160 MUD VOLUME ACCOUNTING 661 Oil Added : DUMP :155 Water Added :575 SURFACE :45 Mud Built :50 TOTAL MUD :425 Mud Received: : 0.372 no Value Mud Disposed:200 Kp -1b-sec^n/100ft2: 3.57151 : 0.465 na Value -lb-sec^n/100ft2: 1.99997 Ka

Remarks:

Spud Dunbar 1 at 1700 hrs and drill 12.1/4" hole to 115m Continue to rig up. Spud Dunbar 1 at 1700 hrs on 9 March 1995 and drill 12.1/4" hole to 115m, sweeping hole with Hi Vis PHG on surveys.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 287 Cumul Cost : 287

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 287 Cumul Cost : 287

DRILLING MUD REPORT DRILLING MU REF

OPERATOR

	.===			3 -	İ		7	DHILLIN	G MC .1E	PORT NO.		/	
Magco Magco	IIIIN G A	TIL. Dresse	IIOS C	50. ompany		A		DATE_	O MAR	19.95	DEPTH.	/15 ⁻ 4	
				33.13.E		/ L	$J \mid$		~		SENT ACTIV	- 1/.	
P.O. BOX 42842 ■ I	HOUSTON,	TEX	AS 77242 L	JSA		2011-01			ATE 9 MA	2	DRILL		1015
OPERATOR GFE	RESOUR	CES	S			CONTRA	CTO	i CENT	TURY			RIG NO.	
EPORT FOR / <e <="" td=""><td>SMITH</td><td></td><td></td><td></td><td></td><td>REPORT FO</td><td></td><td></td><td></td><td></td><td>ON.</td><td>ION, TOWNSHIP, タルのRだ</td><td>RANGE</td></e>	SMITH					REPORT FO					ON.	ION, TOWNSHIP, タルのRだ	RANGE
ELL NAME AND NO.	BAR #	/			BLOCK NO				ARISH OR OFF ジペタン ぴん		STATE/PF	OVINCE	
DRILLING ASSEM			SING		O VOLUM	/					TION DATA	, _ ,	
IT SIZE TYPE VAREL	JET SIZE		RFACE	HOLE		ITS		PUMP SIZE				R VEL (ft/min)	
124 LI14	×18 ×20	in	. @ ft.	105	- 1,	270			5.5 6.0	7. B.s		DC	
RILL PIPE TYPE	LENGTH		IMEDIATE		CULATING	VOLUME	_ 1	PUMP MAK	E MODEL	ASSUMED	CIRCULA PRESSU	TION	
1ZE 4 1/2			. @ ft.		375				7P50 8P80	EFF 95	%	62	5
PRILL PIPE TYPE	LENGTH	INTEF	RMEDIATE	IN STORAG	GE V	VEIGHT	- 11	obl/stk		stk/	. UP (min)		
A12 HUOP	LENGTH P		. @ ft.	MUD TYPI			•	5.054	1/0 07	49/	72 (strk)	14 mm	
	99m		ON OR LINER			SPUL	$\setminus \parallel$	8.0		335	TIME (mi	n) 17	_
6/4/8"	, , , ,	in	. @ ft.			3 /- 02			PROPERT	gal/ Y SPECIFI		<u>, , , , , , , , , , , , , , , , , , , </u>	
Sample From			□ F.L. □ PIT	Ø∕FL □	WEIG	нт		1,4101	VISCOSITY		FILTRA		
····	*		ure UTII			MIN			35-4	15 sue/	2/	N/A	
Time Sample Taken				060	의 -			RECC	MMENDED	TOUR TR	EATMENT		
Flowline Temperature (°F)				80									
Depth (ft) (TVD	1	ft)		263		ROP					YSTEM		
		(sp gr)		9.3			< <u> </u>	. <i>\$</i>	DILU	772 L	11771 4	0/W A	5
unnel Viscosity (sec/qt) API				45	1	EQ'P							*****
Plastic Viscosity cp @	° F			10					··		-		
'ield Point (lb/100 ft²)				24									
Gel Strength (lb/100 ft²) 10 se	ec/10 min		/	613	70								
Filtrate API (cm³/30 min)				11/2	2				RE	MARKS			
API HTHP Filtrate (cm³/30 m	in) @ °F												
Cake Thickness (32nd in. AF	H/HTHP)			31		SPUL	2 4	1526		700 H	es 9,	13/95	
Solids Content (% by Vol)	calculated []	retort		3.5	<u> </u>	DRILL		121/4	HOLE	70	1154		
iquid Content (% by Vol) Oi	/Water			19	45								
Sand Content (% by Vol)	l .			0.7	5 -	ALL	041	1=01	RMATTL	N TO	301	LO VIS	COS1.
Methylene Blue Capacity ☐ t	/bbl equiv m³/cm³ mud			22.	5 ,	WITT	<u>, , , , , , , , , , , , , , , , , , , </u>	4101	5 54	EEPS	ON 5	URVEYS	<u>-</u>
oH 🗆 Strip 🗀 N	feter @ °F	:		8	3 -								
Alkalinity Mud (P _m)													
Alkalinity Filtrate (P _f /M _f)			1	1									
Chloride (mg/L)	20'000000000000000000000000000000000000			60	0								
Total Hardness as Calcium (mg/L)			160	2								
	1.												
PRODUCT (X /)	\$\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			//	7		$\overline{/}$	$\overline{}$	//		SOL	IDS EQUIPMEN	ut
	4/ /	-/-			-(-	-	\leftarrow		\leftarrow		(J EGOII MEI	
STARTING NVENTORY											SHAKER #1		mes
RECEIVED											SHAKER #2		mes
USED LAST													
24 hr 47	- -	+-			_	-	-	-	 		MUD CLEAN	ER	mes
INVENTORY			_				<u> </u>				CENTRIFU	GE	hou
COST LAST 68 22 hr 443 22	33	-				1	i				DESANDE	R	hou
USED											1		
(from IADC) M-I REPRESENTATIVE			PHONE		VAREHOUS	E PHONE	DAI	LY COST			DESILTER		hou
		1					11 .		1.23			/ ~ 3	

PAUL MARSHALL # 466.03 # 466.03

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

TIME DISTRIBUT	ION (hrs)	MUD VOLUME ACCOUNTING	SOLIDS ANALYSIS		MUD RHEOL	OGY and	HYDRAULI	cs	
Rig Up/Service	7	Water Added (bbl)	Low Gravity %	Zero Gel	Avg ROP		ECD @_		
Drilling	12.5	Mud Built (bbl)	Low Gravity, ppb	n Factor	% Cutting			@	
Reaming/Coring		Mud Received (bbl)	Bentonite %	k Factor	psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)	Bentonite, ppb	Bit Hydraulics					
Tripping			Drill Solids %	Annular Section	1	2	3	4	5
Survey	1.0		Drill Solids, ppb	Hole Size					
Logging			Shale CEC, ppb	Pipe OD					
Running Casing			D/B Ratio	Critical Velocity					
Testing		Starting Depth	High Gravity %	Annular Velocity					
Fishing		Ending Depth	High Gravity, ppb	Viscosity					1
RIG DOWN	3.5	New Hole Vol. (bbl)		Annular Pressure					

Date: 10/03/95 Depth: 317.0 m _ _ M-I Drilling Fluids Company Activity: CEMENT CSG Well No. : G0003 Spud Date: 09/03/95 DRILLING FLUIDS DATA MANAGEMENT SYSTEM Description : EXPLORATION Contractor: CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 12.250 in in Liner OD: Hole Volume : Nozzles:18/20/20/ / / 1/32" Casing OD: in in Liner ID: Pits Volume : in Drill Pipe 1 OD: 4.500 in 117 m Casing ID: m Liner TD: m Circulating Volume: 370 Casing TD: Orill Pipe 2 OD: 4.500 in 55.0 m m Mud : FW NATIVE MUD m Liner TVD: Casing TVD: 145.0 m Drill Collar OD: 6.250 in SOLIDS ANALYSIS (%/1b/bb1) CIRCULATION DATA MUD PROPERTIES NaC1 : 0.0 / -gal/min : : PIT 23:00 450 Flow Rate Sample From : 0.0 / 0 KC1 DP Annular Vel -m/min: : ^F Flow Line Temp : 5.7 / Low Gravity Solids 52 DC Annular Vel -m/min: -m :317.0 /317.0 Depth/TVD : 1.5 / 13 Bentonite DP Critical Vel -m/min: -1b/gal : 9.1 Mud Wt : 4.3 / 39 DC Critical Vel -m/min: Drill Solids -s/qt : 45 @ 50 ^F Funnel Vis : N/A / N/A -cps : 13 @ 50 ^F Circ. Pressure -osi: 900 Weight Material Nastic Visc : - / 0.0 Chemical Conc P/R3 -1b/100ft2 /deg : 20 / 5 Bottoms Up -min: Inert/React: 1.97 Average SG: 2.60 10s/10m Ge1 -1b/100ft2: 10 / 34 Total Circ Time -min: API F Loss -cc/30 min : SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: ^F 84 X 3 12 Potassm Chloride 25 KG S 4 Shaker #1 : -1/32" : 3 Cake API/HT Shaker #2 50 LB S 1 Spersene CF -xvo1:5Solids Shaker #3 40 KG S 2 Lime -%vol: /95 0i1/Water Shaker #4 Calcium Chloride 25 KG S 1 -%vol: 0.5Sand Mud Cleaner MBT -1b/bb1: 17.5Centrifuge : 8.5 @ 50 ^F οН : 2 X 12" 10 Desander : 0.1 Alkal Mud (Pm) 10 Desilter : 12 X 4" : 0.05/ 0.2 Pf/Mf Degasser -mg/1:1000Chlorides : 80 Hardness Ca MUD VOLUME ACCOUNTING Oil Added : DUMP :40 :30 Water Added :65 SURFACE :420 Mud Built : TOTAL MUD Mud Received: : 0.479 no Value Mud Disposed:70 -1b-sec^n/100ft2 : 1.77720 Kρ : 0.410 -1b-sec^n/100ft2 : 2.73433 Remarks : Drill 12.1/4" hole f/115m-317m TD. Perform wiper trip. POOH. Run casing. Prepare to cement 9.5/8" casing. Drill 12.1/4" hole from 115-317m TD. Severe build up of mud rings at 263m,

Drill 12.1/4" hole f/115m-317m TD. Perform wiper trip. POOH. Run casing. Prepare to cement 9.5/8" casing. Drill 12.1/4" hole from 115-317m TD. Severe build up of mud rings at 263m, 291m and 310m required the flow line to be cleared of mud cake. Performed wiper trip with 1m fill on bottom. Circulate and clear flow line. POOH and rig up to run casing. Run casing and prepare to cement.

M. I. Calan Farinana D. MARSHALL Marchouse: ADELAIDE Daily Cost : 116 Cumul Cost : 403

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 116 Cumul Cost : 403

DRILLING MUD REPORT

			DHILLI
	Drilli Magcobar/IMC	ng Fluid.	S Co.
	Green, Hermanistrations have	each, 1927 abus 1924 a mis chulle fhilligh	market arministra
OPERATOR		STON, TEXAS 77	242 USA

COST LAST 24 hr USED (from IADC)

M-I REPRESENTATIVE

P

DRILLING MUL REPORT NO. 2

DATE 10 MAR 19 95 PRESENT ACTIVITY

DESILTER______CUMULATIVE COST

P.O. BOX	(42842	H H	DUST	ON, T	EXAS	77242	USA	4	Ì			SPUD	DATE_ <u>9</u>	MAR	1 1	REP	MRE	70	CEM	IENI
OPERATOR			RES							CONTR			.,					RIG	NO.	
REPORT FOR					<u> </u>					REPORT I	FOR	TUR							/NSHIP, F	
WELL NAME A	NO NO		5/417				II EIEI	LD OR BLO	CK NO	Ro	GER		WDO PARISH O		IORE .	_ _	STATE/PROV		ORL	<u>-</u>
	0	UNC	BAR	# 1	<i>,</i>			PPL				AREA O 7	WA >	L B	10HE 151 N				ORIA	1
DRI	LLING AS	SEMBI	LY		CASI	NG		MUD V		E (BBL)	- 11				CIRCULA	TION	DATA			
BIT SIZE	TYPE	JE	T SIZE		SURF	ACE	HOI	LE	Pi	rs	- 1	PUMP SIZ	E	51/2	×	IN. 7	ANNULAR \	/EL (#	min)	
					in. @			27		243			E		8.	ا ح	OP 85		DC/_	28
DRILL PIPE SIZE	TYPE	LI	ENGTH		INTERME		тот	AL CIRCUL	ATING V	OLUME			KE, MODE 70 57 80 80	b [ASSUMED EFF	- 10	PRESSURE	(nei)	900	
DRILL PIPE SIZE	TYPE	LI	ENGTH		INTERME		IN S	STORAGE		EIGHT	_#,	obl/stk	J. 00		stk/	/min E	воттомѕ		,00	
					in. @		ft.	50		8.7.		054	1070	z	99/	76	JP (min) (strk)		2 mi	٠.
DRILL COLLAR	R SIZE	L	ENGTH	PRO	DUCTION	OR LINER	11	D TYPE	,			10.6	:B		150		TOTAL CIRC TIME (min)	;		
					in. @			14710	<u> E/S</u>	PUD		obl/min			gal	/min	(strk)			
						MUD PF	$\overline{}$		WEIGI	JT.		MUI	D PROF		SPECIF	ICATI	ONS			
Sample From						F.L. [] PIT		L. DPPIT	WEIGI	" M/^	,		1		5sec/	01		1/0		
Time Sample	Taken						·		<u> </u>	77/~	, 				-		<u> </u>	1/2		
Flowline Tem	perature (°	F)										REC	OMMEN	IDED 1	TOUR TE	REAT	MENT			
Depth (ft)	(TVD 37)	17	1		AY)		3	174	-	DIL	ميرس و	WI	771	0/0	45	- /	REQ'L	,	70	
Weight ☑ (p	opg)	□ (lb/c	cu ft)	□ (s	gr)		9	7./	1	AIN!	777 10	I VI	/5· =	•	-50					
Funnel Visco	sity (sec/qt)	API @	52	٥F			1	15	-	KC			70NS	ح	U 5 P/3	-w0	ED	מ	י שני	70
Plastic Viscos	sity cp @	50	°F					3		MAC		TABL		VIS		NC,				
Yield Point (It	b/100 ft²)							?0								,	<u> </u>			
Gel Strength	(lb/100 ft²)	10 sec/1	0 min			1		134			-							,		
Filtrate API (c	cm³/30 min)						//c	 					REM	ARKS					
API HTHP Fi	iltrate (cm³/	30 min)	@	۰F			Ť.	<u>, </u>	-	RILL		/								
Cake Thickne						1	. 2	1 -		CIR	•				3 ~ .		ZZZA	<u> </u>	F 20	0 4 <u>4 1</u> 1
Solids Conter	<u>`</u>		<u></u>	□reto	ort		+3	<u>'</u>	4	CIR					1455					
Liquid Conter							-	195	01	2144					· CZ					
Sand Conten							-			112		291	<u>- </u>	100	- CL	LA	R /	2000	ره تر شد ا	12 OF
Methylene Bl			equiv					2.5	1770	ID R										
	Strip	y □ cm³/ci		۰F				7.5	21	2122		10 14			72		CIR	100	LAZ	Z
Alkalinity Muc		□ Mere	sı W	<u> </u>	-+		1	3.3	110	a.E	CLL	AN			DEV		1/3"			
							1	05	1	200	4	FOR	WI	PER	TRI					
Alkalinity Filtr					-+		1.03	510.2	-	214		10	FIL		- 61	RC	3/0	<u>~ ~</u>	CL	EAR
Chloride (mg/								000	1	200	411								_ <2	ELLAK
Total Hardnes	ss as Caici	um (mg/	L)				<	90 	12	00,	4	י טיק	RUN	9	5/B.	C 1	51115	-		
							-		R	16 0	9	wo	RU	~ c	A512	15.	~			
									R	40	P 1	WD	PRE	PAR	E 7	5 C	SEME	5N 7		56
									ļ											-7
N.B.	* 120	ICAT	E5 ,2	DAMA	900	رمرن	540	12x 5	700	K,		,				A				
PRODUCT INVENTORY	(th)	Se dici	KU.	OPUR	C,C	1 /5/V	300	8 P 10 5 (3	LIME	Oute Oute	05'	oo'ev	35 ONC!	3000	ary Inch	AL Y	SOLIDS	s EQU	IIPMEN ¹	т
STARTING INVENTORY	109	907	149	59	88	51	12	17	20	40	20	1	6/10	5/2	30	SHAK	(ER #1	3	* 84	# mesh
RECEIVED	96	ŀ							-							1	(ER #2		,:	, mesh
USED LAST 24 hr			4					*,	*2	*,			1			1	CLEANER.		*	
CLOSING	205	907		59	20	51	12	1,4	18	39	70	1_	6/0	5/2	30/	, woo	OLEANEH.	-		mesn

ENTATIVE PHONE WAREHOUSE PHONE DAILY COST CUMULATIVE COST

MARSHALL 3254822 B 116.19 B 582.22

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS			IUD RHEOI	OGY and	HYDRAULI	cs	
Rig Up/Service		Water Added (bbl)	65	Low Gravity %	5.1	Zero Gel	5	Avg ROP	28.	ECD @_		
Drilling	7.0	Mud Built (bbl)		Low Gravity, ppb	46.3	n Factor	0.41	% Cutting		Leak Off		
Reaming/Coring	<u> </u>	Mud Received (bbl)		Bentonite %	1.5	k Factor	2.73	psi	%	hhp	HSI	Jet Vel
Circulating	1.5	Mud Disposed (bbl)	70	Bentonite, ppb	13.9	Bit Hydra	ulics	263	29	69	0.59	180
Tripping	4.5	DUMP	40	Drill Solids %	3.6	Annular S	ection	1	2	3	4	5
Survey	1.5	SURFACE	30	Drill Solids, ppb	32.4	Hole Size		12:25	12.25	12.25		
Logging		מטא בותומז	420	Shale CEC, ppb	-	Pipe OD		4.5	6.25	8.0		
Running Casing	4.0			D/B Ratio	1.65	Critical Ve	locity	289	309	337		
Testing		Starting Depth	115	High Gravity %	-	Annular V	elocity	85	99	128		
Fishing		Ending Depth	317	High Gravity, ppb	-	Viscosity		190	149	105		
OTHER	5-5	New Hole Vol. (bbl)				Annular P	ressure	08	1.2	Ø.3		

	•					
	DF	RILLING	MUD REF	PORT		OPERATOR
	:	0-	E	DRILLING MUD HE	PORT NO.	<i>3</i>
Drilling Flow Magcobar/IMCO A Dress	UIOS er/Halliburton C	JO. ompany		DATE // MAR	19 95	DEPTH 3/7 M
and the first of the desirable to the first of the second management of the first o	State Despera	-245°-150°	\ 🚣 /			NT ACTIVITY
P.O. BOX 42842 ■ HOUSTON, TEX	AS 77242	USA		SPUD DATE 9 MA	R R.	1.4
OPERATOR GFE RESOURCE	<i>E C</i>		CONTRACTO			RIG NO.
REPORT FOR			REPORT FOR	CENTURY	-	SECTION, TOWNSHIP, RANGE
KEN SMITH		,,	Ro	GER BINDO	w	ONSHORE
WELL NAME AND NO. OUNBAR # 1		FIELD OR BLOCK		COUNTY, PARISH OR OFF	SHORE	STATE/PROVINCE
	ASING			OI WAY B		<u> </u>
	UNFACE	HOLE WOD VOL	UME (BBL)	PUMP SIZE	CIRCULATIO X IN.	
81/2 HUCHES 3x11 95/8	п. @ 312 д	70± 0/2	1 1	J'/2	X IN. 7.75 8.5	DP_137(426 2 14(65)
DRILL PIPE TYPE LENGTH INTE	RMEDIATE	TOTAL CIRCULATI	ING VOLUME	PUMP MAKE, MODEL	ACCUMED	CIRCULATION PRESSURE (psi)
4/2 16.6	n. @ ft.			NAT PP SU	ASSUMED EFF 95 %	1400
DRILL PIPE TYPE LENGTH INTE	RMEDIATE	IN STORAGE	WEIGHT	bbl/stk	stk/min	1.5
4/2 HWOP 55 M	n. @ ft.	305		0.054/0072	110	UP (min) /O —
	TION OR LINER	MUD TYPE	,	6.93	290	TOTAL CIRC TIME (min) 19
6/4 1621	n. @ ft.	·	APAC	bbl/min	gal/min	
	MUD PRO			MUD PROPERTY	Y SPECIFICA	
Sample From	□ F.L. 🖬 PIT	ØF.L. □ PIT	VEIGHT	VISCOSITY		FILTRATE
Time Sample Taken	23:00	05:30	29.2p	09 33-4	42 sec/9	# 8.0cc
Flowline Temperature (%F)		27		RECOMMENDED	TOUR TREA	TMENT
Depth (ft) (TVD / ft)	317~	348	- DUMP à	E CLEAN AL	L PITS	SERVICE
Weight (ppg) ☐ (lb/cu ft) ☐ (sp gr	2.5	8.6	SHAKER	2 AND REP	LACE S	SCREENS
Funnel Viscosity (sec/qt) API @ °F	120	45	- PREPI	ARE PHPAI	LOACRI	CMCLV DISPL
Plastic Viscosity cp @ °F	41	22	545121	4 - & SHEAR	THROUG	SH SCE
Yield Point (lb/100 ft²)	65	25	- PROPOS	,		+ BLEED INTO
Gel Strength (lb/100 ft²) 10 sec/10 min	10117	315	SYSTEM		conn	
Filtrate API (cm³/30 min)	12.0	10.0			MARKS	
API HTHP Filtrate (cm³/30 min) @ °F		4	CEMEN	T CASING +	DISPL	WITH O/W"
Cake Thickness (32nd in. API/HTHP)	11	11	WOC			
Solids Content (% by Vol) ☐ calculated ☐ retort	/	2	NIPPLE	UP BOPS	- FUCT	TION + PRESS TEST
Liquid Content (% by Vol) Oil/Water	199	198	PlU N	IEW BHA.		
Sand Content (% by Vol)	-	TR	PREPAR	E TO RIH	41771	B'L" DRL ASSY
Methylene Blue Capacity ☐ tb/bbl equiv ☐ cm³/cm³ mud	0.0	0.0				
pH □∕Strip □ Meter @ °F	8.3	8.3				
Alkalinity Mud (P _m)	0.05	0.05				

			_						1							
PRODUCT INVENTORY	C V	porph	st pc	د ناد با ۷ ن				/	$\overline{/}$	7	$\overline{/}$	7	$\overline{/}$	7	7	SOLIDS EQUIPMENT
STARTING INVENTORY	205	-	59	88												SHAKER #1 3 x 84 mesh
RECEIVED		67	32										100			SHAKER #2 / mesh
USED LAST 24 hr		9	9	9				ï								MUD CLEANERmesh
CLOSING	205	58	82	79												CENTRIFUGE hours
COST LAST 24 hr		.25		01 55%												DESANDER O hours
USED (from IADC)																DESILTER O hours
M-I REPRESEN	TATIVE		'	t	PH	IONE	<u> </u>	WARE	HOUSE F	HONE	DAILY	COST		·		CUMULATIVE COST
PAUL	MA.	R54	ALL		0	9 325	4822				\$	329	5-9	8		# 3878.20

105/01/05/01

600

60

1.4

500

60

Alkalinity Filtrate (P_f/M_f)

PHPA ppb

Total Hardness as Calcium (mg/L)

Chloride (mg/L)

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

TIME DISTRIBUTION	ON (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANALYSIS		1	MUD RHEO	LOGY and	HYDRAULI	cs	
Rig Up/Service		Water Added (bbl)		Low Gravity %	Zero Gel	2	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)	305	Low Gravity, ppb	n Factor	0.68	% Cutting		Leak Off		
Reaming/Coring		Mud Received (bbl)		Bentonite %	k Factor	6.70	psi	%	hhp	HSI	Jet Vel
Circulating	1.5	Mud Disposed (bbl)	420	Bentonite, ppb	Bit Hydra		859	61	145	2.56	334
Tripping	2.0	DUMP	420	Drill Solids %	Annular S	Section	1	2	3	4	5
Survey				Drill Solids, ppb	Hole Size)	8.68	8.5	8.68		
Logging				Shale CEC, ppb	Pipe OD		4.5	6.25	2,25		
Running Casing /Cm7	8.0	TOTAL MUD	305	D/B Ratio	Critical V	elocity	324	448	430		
Testing Oop	2.5	Starting Depth		High Gravity %	Annular \	/elocity	1.37	214	196		
Fishing		Ending Depth		High Gravity, ppb	Viscosity		83.5	60.5	63.8		
BOPs	10.0	New Hole Vol. (bbl)			Annular F	ressure	2.2	1.7	4.9		

Date: 12/03/95 Depth: 693.0 m M-I Drilling Fluids Company Activity : DRILL 8.5" Spud Date : 09/03/95 Well No.: G0003 DRILLING FLUIDS DATA MANAGEMENT SYSTEM ______ Contractor: CENTURY DRILLING 11 Description: EXPLORATION Operator : GFE RESOURCES Field/Area: PPL 1 Location : OTWAY BASIN Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME Bit: 8.500 in CASING Casing OD: 9.625 in Liner OD: Hole Volume: 137 Nozzles:11/11/11/ / / 1/32" in Pits Volume: 225 Casing ID: 8.680 in Liner ID: in Drill Pipe 1 OD: 4.500 in 476 m m Circulating Volume: 362 Casing TD: 312.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 55.0 m m Mud : FW POLYMER Casing TVD: 312.0 m Liner TVD: Drill Collar OD: 6.250 in 162.0 m SOLIDS ANALYSIS (% / lb/bbl) CIRCULATION DATA MUD PROPERTIES -gal/min : : 0.0 / 0 275 NaCl : FL 22:30 Flow Rate Sample From : 70 ^F 39.5 KC1 : 0.0 / n DP Annular Vel -m/min : Flow Line Temp Low Gravity Solids : 2.7 / 25 Depth/TVD DC Annular Vel -m/min : 61.9 -m :693.0 /693.0 : 0.7 / 6 103.9 Mud Wt -1b/ga1 : 8.7DP Critical Vel -m/min: Bentonite : 1.5 / 14 Drill Solids 130.1 Funnel Vis -s/qt : 45 @ 68 ^F DC Critical Vel -m/min: Weight Material : N/A / N/A Chemical Conc : - / 5.0 950 Weight Material Circ. Pressure -osi: Plastic Visc -cps: 17 @ 63 ^F -min : YP/R3 -1b/100ft2 /deg : 23 / 3 Bottoms Up Inert/React : 1.63 Average SG : 2.60 / 10 55.3 10s/10m Gel -1b/100ft2: 4 Total Circ Time -min : -cc/30 min : 7.4APT F Loss SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ 2X50+84 18 Polyplus Powder 25 KG S 9 Shaker #1 -1/32":1Cake API/HT Shaker #2 Polypac R 25 KG S 1 -%vol : 3 Solids Shaker #3 25 KG S 3 CMC TG LV -%vol: /97 0il/Water Shaker #4 -%vol: 0.5 Sand Mud Cleaner -1b/bb1:7.5MBT Centrifuge : 8.5 @ 55 ^F ρН : 2 X 12" Desander 14 : 0.1 Alkal Mud (Pm) 12 X 4" Desilter : : 0.05/ 0.1 Pf/Mf Degasser -mq/1 : 800: Chlorides : 80 Hardness Ca MUD VOLUME ACCOUNTING bb1 PHPA : 1.1 Oil Added : DUMP :123 Water Added: 140 SURFACE +SCE: 240 Mud Built :400 TOTAL MUD :482 Mud Received: np Value : 0.511 Mud Disposed: 363 Kp -1b-sec^n/100ft2: 1.76696 na Value : 0.562 -1b-sec^n/100ft2 : 1.27888 Ka

Remarks:

RIH and tag cement at 294m. Drill out and displace hole to PHPA system. Perform FIT and drill 8.5" hole f/322m-693M RIH and tag cement at 294m. Drill out cement, float, shoetrack and 5m new hole. Perform FIT, mud wt equiv = 22.9 ppg. Drill 8.1/2" hole from 322m-349m. POOH and add stabilizer to BHA. RIH and drill from 349-387m. Clear shakers and clear header box of clay "boulders". Drill from 387m-406m. Clear header box and sand trap. Drill 406-693m with surveys. Max dev 0.5 deg.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1875 Cumul Cost : 5574

.

Drilling Fluids Co.

P.O. BOX 42842 HOUSTON, TEXAS 77242 USA

RESOURCES

OPERATOR

REPORT FOR

DAG OFFIDWO-BGPH

DRILLING MUL REPORT NO.

DATE /2 MAR 19 95 DEPTH 693 W

SPUO DATE 9 HAR DRILL 8 1/2 HOLES

REPORT FOR ROCER BINDON SECTION, TOWNSHIP, RANGE ROCER BINDON ONSHORE

COUNTY, PARISH OR OFFSHORE
AREA TWAY 3151N FIELD OR BLOCK NO. ·VICT 1-296 OUNBAR CIRCULATION DATA MUD VOLUME (BBL) DRILLING ASSEMBLY CASING IN. ANNULAR 7.75 0.5 SURFACE 5/2 476 JET SIZE BIT SIZE DP 226 95/8in 0312 ? * 11 8 ASSUMED MAKE, MODEL 7050 CIRCULATION PRESSURE (psi) TOTAL CIRCULATING VOLUME LENGTH ORILL PIPE 950 362 1117 4/2 BOTTOMS WEIGHT UP (min) (sirk) INTERMEDIATE 21--120 054/-072 8.5 4/2 55~ TOTAL CIRC 275 SOCIUCTION OR LINER TIME (m ------6.55 ORILL COLLAR SIZE (strk PHPA / PAC gatim 61/4 162 MUD PROPERTY SPECIFICATIONS

MUD PROPERTIES FILTRATE VISCOSITY WEIGHT DEL OPT DEL OPT 8.00 = Sample From 35-42 sec/21 05:30 22:30 Time Sample Taken RECOMMENDED TOUR TREATMENT 70 (212 74 /23 Flowline Temperature (°F) MAINTAIN 660 <u> 805</u> Depth (ft) (TVD (sp qr) Weight & (ppg) (lb/cu ft) <u>8:7</u> A.8 45 Funnel Viscosity (seciqt) API @ 14 17 Plastic Viscosity cp @ 16 68 23 20 Yield Point (lb/100 ft²) 63 110 317 Gel Strength (lb/100 ft²) 10 sec/10 min 4 REMARKS 7.4 7.0 Filtrate API (cm2/30 min) API HTHP Filtrate (cm³/30 min) @ 1 Cake Thickness (32nd in. APVHTHP) Solids Content (% by Vol) 🗹 calculated 🛚 retort 197 197 Liquid Content (% by Vol) Oil/Water 25 Sand Content (% by Vol) <u>تد، 0</u> <u>8.5</u> 387 349... Methylene Blue Capacity Cont 7.5 2.5 ☐ Strip ρH 20-0 Alkalinity Mud (Pm) 406-0510. 0310·Z Alkalinity Filtrate (P_I/M_I) 5-12-1545 800 800 Chloride (mg/L) Total Hardness as Calcium (mg/L) 80 80 BHPA BAB B. 7 ppg OFLOW 4GPM UFLOW OISANDER

2 2 4 C 7 SOLIDS EQUIPMENT x 34 SPATTING 58 79 8Z 4. 4. MUD CLEANER UNED LAST Q-CENTRIFICE CLOSING 47 81 76 559 131 .69 DESILTER. WAST WAIT CUMULATIVE COST DAILY COST \$ 5752.88 # 1874.68 093254822

DISILTER

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

							AUD RHEOL	OGY and h	YDRAULIC	S	
TIME DISTRIBUT	TON (hrs)	MUD VOLUME ACCO	DAITANC	SOLIDS ANAL	YSIS						
Rig Up/Service		Water Added (bbi)	140	Low Gravity %	2.7	Zero Gel 3	Avg ROP	22	ECD @_		
	2.0		400	Low Gravity, ppb	24.7	n Factor 0-54	% Cutting		Leak Off	<u> </u>	
Drilling	14.0		400	Bentonite %		k Factor 1.28	psi	%	hhp	HSI	Jet Vel
Reaming/Coring	0.5	Mud Received (bbl)				Bit Hydraulics	782	34	125	221	317
Circulating	1.0	Mud Disposed (bbl)	363	Bentonite, ppb	5.B		702	2	3	4	5
Tripping	3.5	DUMP	123	Orill Solids %	1.6	Annular Section	1				
		SURF	180	Orill Solids, ppb	14.9	Hole Size	8.68	8.5	8.5		
Survey	- /.s	566	60	Shale CEC, ppb		Pipe OD	4.5	4.5	6.25		ļ
Logging Cooking		TOTAL MUD	432	O/B Ratio	1.76	Critical Velocity	102	104	130		
Running Casing	+	Starting Depth	317	High Gravity %	-	Annular Velocity	37	40	61.8		
Testing	1.5		2/7	High Gravity, ppb	-	Viscosity.	95		58.2		
Fishing.		Ending Depth:		right Clarity, pr	-	Annular Pressure :-	4:00	2:4	7.8	*	お茶り

Date: 13/03/95 Depth : 1047.0 m _ -M-I Drilling Fluids Company Well No. : G0003 Spud Date : 09/03/95 Activity: DRILL 8.5" DRILLING FLUIDS DATA MANAGEMENT SYSTEM Contractor: CENTURY DRILLING 11 Description: EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name : DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Hole Volume: 211 Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Casing ID: 8.680 in Liner ID: Pits Volume: 222 Drill Pipe 1 OD: 4.500 in 830 m in Casing TD: 312.0 m Liner TD: m Circulating Volume: 433 Drill Pipe 2 OD: 4.500 in 55.0 m Casing TVD: 312.0 m Liner TVD: m Mud : FW POLYMER Drill Collar OD : 6.250 in 162.0 m (% / lb/bbl) SOLIDS ANALYSIS CIRCULATION DATA MUD PROPERTIES NaC1 : 0.0 / 0 275 Flow Rate -gal/min : : FL 23:00 Sample From : 0.0 / 0 DP Annular Vel -m/min: 39.5 : 82 ^F Flow Line Temp Low Gravity Solids : 5.0 / 45 -m :1047.0/1047.0 DC Annular Vel 61.9 -m/min : Depth/TVD : 0.6 / - 5 DP Critical Vel -m/min: 88.7 Bentonite -1b/ga1 : 9.0 Mud Wt : 3.9 / 35 Drill Solids -s/qt: 42 @ 77 ^F DC Critical Vel -m/min: 116.3 Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 Weight Material 1100 Plastic Visc -cps : 17 @ 65 ^F Circ. Pressure -psi : 25.5 YP/R3 -1b/100ft2 /deg : 21 / 2 Bottoms Up -min : Inert/React : 3.48 Average SG : 2.60 / 8 66.1 Total Circ Time -min : 10s/10m Gel -1b/100ft2: 3 API F Loss -cc/30 min : 6.4SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: Shaker #1 2X50+84 22 25 KG S 5 -1/32" : 1 Polyplus Powder Cake API/HT Shaker #2 Polypac R 25 KG S 1 -%vol : 5 Solids Shaker #3 25 KG S 5 CMC TG LV /95 -%vol: Oil/Water Shaker #4 25 KG S 4 0S-1 Sand -%vol: 3 Mud Cleaner MBT -1b/bb1 : 9.0Centrifuge : 8.5 @ 60 ^F рΗ : 2 X 12" Desander Alkal Mud (Pm) : 0.1 : 12 X 4" Desilter : 0.05/ 0.2 Pf/Mf Degasser -mg/1:700Chlorides Hardness Ca : 80 MUD VOLUME ACCOUNTING 661 : 1.3 PHPA Oil Added : DUMP+D/H :25 : 60 SULPHITE Water Added: SURFACE +SCE :70 Mud Built :186 TOTAL MUD :573 Mud Received: np Value : 0.533 Mud Disposed:95 Kp -1b-sec^n/100ft2 : 1.45926 : 0.639 na Value -1b-sec^n/100ft2 : 0.75207 Remarks:

Drill to 856m. POOH for wiper trip. Circ out tight hole f/579-531m. Cont POOH tight. RIH & Rream to bottom18mFILL Drill from 693m-856m. Circulate B/U and POOH for wiper trip. P/U kelly and circulate out tight hole from 579m-531m. Continue to POOH tight from 512m-378m. RIH and ream from 531m to bottom with 18m fill. Continue to drill from 856m-1047m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1508 Cumul Cost : 7081

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1505 Cumul Cost : 7505

RIG NO.

		u , -	DR	ILLING	М	UD REF	PORT	a Mile da		
				_			DRILLING MUD) . ·ORT	NO.	
	Drilling Magcobar/MCO	A Dresse	r/Halliburton Co	ompany		(A)	DATE 13 MA	aR 19 9	75 PRESEN	DEPTH
,	P.O. BOX 42842 ■ HOUSTO						SPUD DATE 9	MAR		/ <u>/</u> /_/
	OPERATOR GFE RE.					CONTRACTO	CENTUR	~		
ř	REPORT FOR					REPORT FOR	OGER BIL			SEC
	WELL NAME AND NO.			FIELD OR BLOO			COUNTY, PARISH OR AREA O TWA			STATE/F
	DRILLING ASSEMBLY	CA	SING	MUD VO	DLUN	ME (BBL)		CIRC	ULATIO	N DATA
	BIT SIZE ,, TYPE JET SIZE HTC ATJOS 3 × 11		RFACE . @ 312 #	HOLE 2/3	- 1	2 20	PUMP SIZE	51/2 ×	7.75	ANNUL
	DRILL PIPE, TYPE LENGTH SIZE 4/2 /6.6	INTER	RMEDIATE	TOTAL CIRCULA	33		PUMP MAKE, MODEL	ASSU EFF	JMED 95 %	CIRCUI
	DRILL PIPE TYPE LENGTH SIZE		RMEDIATE	IN STORAGE	ľ	WEIGHT	bbl/stk		stk/min	BOTTO UP (mir
	DRILL COLLAR SIZE LENGTH		i. @ ft. ION OR LINER	MUD TYPE		0.0	0.054/0.0; 62.53	12	275	TOTAL TIME (
	6/4" 162 ~	in	. @ ft.		OA.	/PAC	bbl/min		gal/min	(:
	Sample From		MUD PRO	F.L. 🗆 PIT	WE	GHT	MUD PROP		ECIFICAT	FILTE
	Time Sample Taken		23 00	05 30		~ 9.2p	35	-42	sec/q1	1
	Flowline Temperature (°F) (°C)		82(28)	82 (28			RECOMMEN	DED TOU	R TREAT	TMEN
	Depth (ft) (TVD /	A1)	1047	1191	1	COMMEN	ICE RE-C	YCLI	V G _	SUM
	Weight Ø (ppg) ☐ (lb/cu ft)	□ (sp gr)	9.0	9.1	1	• •	PREMIX			
)	Funnel Viscosity (sec/qt) API @ 77	F	42	40	<u> </u>	MAINT	AIN VOL	& DH	PAC	201

LING MUD 1 . ORT NO. 6

1047 4 13 MAR 19 95 DEPTH

PRESENT ACTIVITY DRILLING 81/2 DATE 9 MAR

ITURY SECTION, TOWNSHIP, RANGE R BINDON ONSHORE STATE/PROVINCE , PARISH OR OFFSHORE DTWAY BASIN VICT. CIRCULATION DATA

7.75 ANNULAR VEL (Affinin) 51/2 × 40 8.5 DC_ 6 ASSUMED EFF 95 % CIRCULATION PRESSURE (psi) MODEL P50 1100 8P 80 BOTTOMS UP (min) (strk) 121 33 min 54/0·072 TOTAL CIRC TIME (min) (strk) 275 53 66 min. gal/min

FILTRATE 48.00cc 35-42 sec/91 COMMENDED TOUR TREATMENT RE-CYCLING SUMP WATER 41% VOL & PHPA CONC WITH P/MIX PARTIALLY DUMP SAND LADOEN STRAP Plastic Viscosity cp @ 17 16 Yield Point (lb/100 ft2) 21 18 INTERMITT Gel Strength (lb/100 ft²) 10 sec/10 min 318 317 DESANDER & DESILTER CONTIN.

LOSSES REMARKS TO S/ST FORMATION Filtrate API (cm3/30 min) FORMATION 6.4 6.0 API HTHP Filtrate (cm³/30 min) @ F/693m-856m-CIRC B/U 8 DRILL Cake Thickness (32nd in, API/HTHP) 11 11 WIPER TRIP TO SHOE Solids Content (% by Vol) ☑ calculated ☐ retort 5 PIU KELLY & CIRC OUT TIGHT HOLE 5 195 Liquid Content (% by Vol) Oil/Water - 195 = 1579n - 531m Sand Content (% by Vol) TO POOH TIGHT 1= 512-378 / Methylene Blue Capacity | Ib/bbl equiv 9.0 9.5 REAM F/ 53/M-856 ₩ Strip рΗ ☐ Meter @ 8.5 8.5 DNIL 81/2" F/ 856-1047-Alkalinity Mud (Pm) 0.05 0.05 CONTIN TO Alkalinity Filtrate (Pf/Mf) 0510-2 -0570.2 Chloride (mg/L) 700 700 Total Hardness as Calcium (mg/L) 80 80 PHPA ppb 1.3 1.3 LOSSE TO FM = 3 6615/HR 160 <u>503</u> 160 DISAND 14.6 ppg U/F 8-8ppg OF 2.86PM 8.8,ppg 1.2GPM OF

4 M 3 105.1 PV P SOLIDS EQUIPMENT 1 × 84 2 × ---STARTING INVENTORY 49 81 76 20 x 50 RECEIVED SHAKER #2 USED LAST 5 5 4 MUD CLEANER_ CLOSING INVENTORY 71 16 44 80 CENTRIFUGE... COST LAST 24 hr .80 866 14 131 306 203 DESANDER USED UNIT DESILTER____ 173 61.23 50.93 _ hours WAREHOUSE PHONE DAILY COST CUMULATIVE COST PHONE # 7260.82 \$1507.94 093254822 PAUL MARSHALL

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

TIME DISTRIBUT	ΓΙΟΝ (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANAI	YSIS		1	IUD RHEOI	OGY and I	HYDRAULIC	cs	
Rig Up/Service	•	Water Added (bbl)		Low Gravity %	5.0	Zero Gei	2	Avg ROP	26.	ECD @_		
Drilling	13.5	Mud Built (bbl)	186	Low Gravity, ppb	45-3	n Factor	0.55	% Cutting		Leak Off	@ <u>317</u> ~	= 22-91
Reaming/Coring	1.5	Mud Received (bbl)		Bentonite %	0.5	k Factor	1.30	psi	%	hhp	HSI	Jet Vel
Circulating	0.5	Mud Disposed (bbl)	95	Bentonite, ppb	5.0	Bit Hydra	ulics	809	74	130	2.29	97
Tripping	7.0	DUMP	25	Drill Solids %	4.0	Annular S	Section	1	2	3	4	5
Survey	1.5	SURF	30	Drill Solids, ppb	36.3	Hole Size)	8.68	8.5	8.5		
Logging		SCE+O/H	40	Shale CEC, ppb	•	Pipe OD		4.5	4.5	6.25		
Running Casing		TOTAL HUD	573.	D/B Ratio	3.58	Critical Ve	elocity	87	89	116		
Testing		Starting Depth	693	High Gravity %	•	Annular V	elocity	40	37	62		
Fishing		Ending Depth	1047.	High Gravity, ppb	-	Viscosity		75	78	52		
		New Hole Vol. (bbl)	80			Annular F	ressure	3.2	6.3	6.8		

Date: 14/03/95 Depth: 1382.0 m M-I Drilling Fluids Company Well No.: G0003 Spud Date: 09/03/95 Activity: DRILL 8.5" DRILLING FLUIDS DATA MANAGEMENT SYSTEM Contractor: CENTURY DRILLING 11 Description : EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area : PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bbl) CASTNG Bit: 8.500 in Casing OD: 9.625 in Liner OD: in Hole Volume: 283
Casing ID: 8.680 in Liner ID: in Pits Volume: 245
Casing TD: 312.0 m Liner TD: m Circulating Volume: 528 Hole Volume: 283 Nozzles:11/11/11/ / / 1/32" Drill Pipe 1 OD: 4.500 in 1165 m Casing TD: 312.0 m Liner TD: Drill Pipe 2 OD : 4.500 in 55.0 m m Mud : FW POLYMER Casing TVD: 312.0 m Liner TVD: Drill Collar OD: 6.250 in 162.0 m SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES : ample From : FL 23:00 : 0.0 / 0 275 NaC1 Flow Rate -gal/min: Sample From : 0.0 / 0 : 90 ^F KC1 DP Annular Vel -m/min: 39.5 Flow Line Temp Low Gravity Solids : 5.7 / 52 61.9 -m :1382.0/1382.0 DC Annular Vel -m/min : Depth/TVD Bentonite : 0.5 / 4 DP Critical Vel -m/min: 89.0 -1b/gal : 9.1 Mud Wt -s/qt : 42 @ 80 ^F : 4.7 / 43 Drill Solids DC Critical Vel -m/min: 117.1 Funnel Vis | Weight Material : N/A / N/A | Chemical Conc : - / 5.0 1150 -psi : -cps : 18 @ 70 ^F Plastic Visc Circ. Pressure 34.1 YP/R3 -1b/100ft2 /deg : 21 / 2 Bottoms Up -min : Inert/React : 4.23 Average SG : 2.60 -min : 80.6 Total Circ Time 10s/10m Gel -1b/100ft2:3 /8 API F Loss -cc/30 min: 6.0 SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS @ ^F HTHP F Loss -cc/30 min: Shaker #1 : 3 X 50 24 Polyplus Powder 25 KG S 3 -1/32":1Cake API/HT Shaker #2 25 KG S 2 0S-1-%vol: 5.5 Solids 6 LB JU 1 Shaker #3 Bacban -%vol: /94.5 0i1/Water Shaker #4 -%vo1:2Sand Mud Cleaner : -1b/bb1 : 9.0MBT Centrifuge : : 8.3 @ 60 ^F ρН Desander 2 X 12" 18 : : 0.1 Alkal Mud (Pm) 12 X 4" Desilter : 4 : 0.05/ 0.3 Pf/Mf Degasser -mg/1:800Chlorides : 100 Hardness Ca MUD VOLUME ACCOUNTING 661 : 1.3 PHPA Oil Added : DUMP+D/H :55 : 100 SULPHITE SURFACE +SCE :40 Water Added: Mud Built :100 TOTAL MUD :578 Mud Received: : 0.547 no Value Mud Disposed: Kp -1b-sec^n/100ft2: 1.37205 na Value : 0.645 Ka -1b-sec^n/100ft2: 0.74518

Drill from1047M-1230M.POOH for wiper trip.Work tight hole RIH & ream 1255M-1287M. 7M fill.Drill F/1287-1382M. Drill 8.5" hoel from 1047m-1230m & survey. Maximum deviation = 1.25 deg. Drill to 1287m and POOH for wiper trip to 576m. Work tight hole from 1095-847m, 790-770m & 713-675m. RIH and ream from 1255-1287m. 7m fill. Drill ahead to

Daily Cost : 731 Cumul Cost : 7812 M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

	DF	RILLING	MUD REI	PORT			OI EIIATOII
				DRILLII	NG MUU RE	PORT NO.	6
Fig. 1 Drilling Fl	uide 1	Co			<u> </u>		8
Magcobar/IMCO A Dress	er/Halliburton C	ompany	(HV)	DATE 1	14 MAR		DEPTH 1382 m
P.O. BOX 42842 ■ HOUSTON, TEX	ΛC 770Λ0			epun i	DATE 9 MA.		NT ACTIVITY
OPERATOR	MO 11242	USA	CONTRACTO		DAIEZZZZZ		RIG NO.
GFE RESOURCE	: ZZS ,			CEN	TURY		//
REPORT FOR KEN SMITH			REPORT FOR	ROGE	R BING	, אסר	SECTION, TOWNSHIP, FIANGE
WELL NAME AND NO. DUNBAR # 1		FIELD OR BLO			PARISH OR OFF		STATE/PROVINCE
1	ASING		OLUME (BBL)			CIRCULATIO	n data
	URFACE	HOLE	PITS	PUMP SIZI	E ~'/	× 7.13	ANNULAR VEL (Min)
8/2 AT105 3×11 9/8	in. @ 312 49,	281	247		5/2	8.5	DP_40_DC_62_
	ERMEDIATE	TOTAL CIRCUL	ATING VOLUME	PUMP MAI	KE, MODEL アク 5 じ	ASSUMED EFF 95 %	CIRCULATION PRESSURE (psi)
	in. @ ft.	52		2000	3P80		/150
SIZE	ERMEDIATE	IN STORAGE	WEIGHT	bbl/stk	lu	stk/min	BOTTOMS UP (min)
	in. @ ft.	MUD TYPE	8.5	, ,	/ <i>U</i> ·072	121	(strk) 70
6/4" 162 M	in. @ ft	اريزع	PALPAC	bbl/min	3	' 275 gal/min	TIME (min) &/
		PERTIES			D PROPERT	Y SPECIFICA	
Sample From	ØF.L. □ PIT	Ç√F.L. □ PIT	WEIGHT		VISCOSITY		FILTRATE
Time Sample Taken	23:00	05:30	~ 9.3pp	9	35.4	2 ppg	∠8.00cc
Flowline Temperature (°F) (°C)	90 (32)			REC	OMMENDED	TOUR TREA	TMENT
Depth (ft) (TVD / ft		1440	- CONTI	4/ 70	RE-C	1015	SUMP WATER
Weight ☑ (ppg) ☐ (lb/cu ft) ☐ (sp gr	_	9.2					CONC WITH P/MIX
Funnel Viscosity (sec/qt) API @ °F	42	47	1				t DUMP S/TRAP
Plastic Viscosity cp @ °F	18	20					LLAR LETTER AC
Yield Point (lb/100 ft²)	21	24	- MINO				RMATION CONTIN.
Gel Strength (lb/100 ft²) 10 sec/10 min	318	3110	- RAISE		OWT		PP9 WITH BARITE
Filtrate API (cm³/30 min)	6.0	6.0	IF NEC				Pry Will BAILIE
API HTHP Filtrate (cm³/30 min) @ °F	-	-					IACIOE TREATMEN
Cake Thickness (32nd in. API/HTHP)	11	11	- DRILL		. /		230m - SURV = 1.
Solids Content (% by Vol) ☐ calculated ☐ retort	5-5	6.0	- DRLL				JUY POOH FOR
Liquid Content (% by Vol) Oil/Water	174.5		WIRER	TRI		576m	
Sand Content (% by Vol)	2	1+	1			1095m	
Methylene Blue Capacity ☐ lb/bbl equiv	9.0	10.0	2022	71477	77022		770m
pH ☐ Strip ☐ Meter @ °F	8.3	8.3					-675n
Alkalinity Mud (P _m)	0.05	0.05	RIH +	REA.	m = /		- 1287m 7m FILE
Alkalinity Filtrate (P _I /M _I)	0.0510.3	1.051-3	ORIGH			- /382	
Chloride (mg/L)	800	800	ORILL			,,,,,,,,,	
Total Hardness as Calcium (mg/L)	100	100	 				
	1.40	1.3	5/5040	11.7.	11/51	90	0/F 1.4 GPM
PHPA SD-	80	80					OF O'BCPM
ENV	7/06	20	0/3/2/	240	pg 47-1	- 1000	30/2 0 2 0 1
			* 40TE -	STACK		Trod = C	UMM\$COST ADJUSTE
/ / / / /	} 	' 7 7	14/00/2.	7 7	CORREC	7 7	/
PRODUCT NVENTORY STARTING	" / /	/ / ,	/ / /		//		SOLIDS EQUIPMENT
STARTING INVENTORY 205 44 16 6						SH	IAKER #1 3 x 50 mesh
RECEIVED 19					(A)	SH	IAKER #2 mesh
USED LAST 24 hr 3 2 /						ML	JD CLEANER mesh
CLOSING							CENTRICHOC
COST LAST .34 .75 .90 .34					 		CENTRIFUGE hours
USED 79 5/9 /0/ /09 USED 25 34							DESANDER hours
(from IADC) 173 50.45 109							DESILTER 4 hours
M-I REPRESENTATIVE	PHONE	l l		AILY COST	00	11	MULATIVE COST

PAUL MARSHALL 093254822 \$ 730.99 \$ 7812.45

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

TIME DISTRIBU	FION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS			NUD RHEO	LOGY and	HYDRAULI	cs	
Rig Up/Service		Water Added (bbl)		Low Gravity %	5.7	Zero Gel	2	Avg ROP	18.1	ECD @_		
Drilling	18.5	Mud Built (bbl)	100	Low Gravity, ppb	52.0	n Factor	0.55	% Cutting		Leak Off	@ <i>317</i>	22.914
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.5	k Factor	1.29	psi	%	hhp	HSI	Jet Vel
Circulating	10	Mud Disposed (bbl)	95	Bentonite, ppb	4.1	Bit Hydra	ulics	818	71	131	2.31	97
Tripping	4.0	DUMP	25	Drill Solids %	4.8	Annular Section		1	2	3	4	5
Survey	0.5	SURF + SCE	40	Drill Solids, ppb	43.9	Hole Size	Hole Size		8.5	8.5		
Logging		DH	30	Shale CEC, ppb	-	Pipe OD		4.5	4.5	6.25		
Running Casing		TOTAL MUD	578	D/B Ratio	4.34	Critical V	elocity	87	89	117		
Testing		Starting Depth	1047	High Gravity %	-	Annular \	/elocity	37	40	62		
Fishing		Ending Depth	1382	High Gravity, ppb	-	Viscosity		19	76	53		
		New Hole Vol. (bbl)	77			Annular F	ressure	3.2	10.1	6.9		

Depth : 1507.0 m Date : 15/03/95 _ -M-I Drilling Fluids Company Well No.: G0003 Spud Date: 09/03/95 Activity: RIH DRILLING FLUIDS DATA MANAGEMENT SYSTEM . Contractor : CENTURY DRILLING 11 Description : EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: in Hole Volume: 310 Nozzles:11/11/11/ / / 1/32" Casing ID: 8.680 in Liner ID: Pits Volume: 270 in Drill Pipe 1 OD: 4.500 in 1290 m m Circulating Volume: 580 Drill Pipe 2 OD: 4.500 in 55.0 m Casing TD: 312.0 m Liner TD: m Mud : FW POLYMER Drill Collar OD : 6.250 in 162.0 m Casing TVD: 312.0 m Liner TVD: SOLIDS ANALYSIS (% / lb/bb1) CIRCULATION DATA MUD PROPERTIES : 0.0 / 0 Flow Rate -gal/min: 275 NaC1 : PIT 24:00 Sample From DP Annular Vel -m/min: 39.5 KC1 : 0.0 / n : ^F Flow Line Temp Low Gravity Solids : 7.2 / 66 -m :1507.0/1507.0 DC Annular Vel -m/min : 61.9 Depth/TVD : 0.4 / DP Critical Vel -m/min: 107.6 Bentonite -1b/gal : 9.3 Mud Wt : 6.3 / 57 Drill Solids -s/qt: 46 @ 60 ^F -cps: 24 @ 60 ^F DC Critical Vel -m/min: 137.9 Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 1220 Circ. Pressure -psi : lastic Visc 37.3 P/R3 -1b/100ft2 /deg : 24 / 3 Bottoms Up -min : Inert/React : 5.07 Average SG : 2.60 -min : 88.6 10s/10m Gel -1b/100ft2: 4 / 10 Total Circ Time -cc/30 min : 5.8API F Loss SOLIDS EQUIPMENT Size Hours HTHP F Loss -cc/30 min : @ ^F PRODUCTS USED LAST 24 HOURS : 3 X 50 15 Shaker #1 Polyplus Powder 25 KG S 9 -1/32" : 1 Cake API/HT Shaker #2 25 KG S 5 CMC TG LV -**%**vol: 7 Solids Shaker #3 -%vol: /93 0i1/Water Shaker #4 : -%vol: 0.5 Sand Mud Cleaner -1b/bb1 : 10.0MBT Centrifuge : 8.3 @ 60 ^F : pН : 2 X 12" 12 Desander : 0.1 Alkal Mud (Pm) : 12 X 4" 12 Desilter : 0.05/ 0.2 Pf/Mf Degasser -mg/1:800Chlorides : 100 Hardness Ca MUD VOLUME ACCOUNTING 661 : 1.44 PHPA Oil Added : DUMP : 80 SULPHITE Water Added : SURFACE +SCE :40 Mud Built :210 TOTAL MUD :730 Mud Received: : 0.585 no Value Mud Disposed:58 -lb-sec^n/100ft2 : 1.33695 Κp a Value : 0.602 -lb-sec^n/100ft2: 1.19890 Remarks:

Drill from 1382m-1507m. POOH for bit change. M/U new bit and RIH. Drill 8.5" hole from 1382-1507m. Survey (1deg) and POOH for bit change. Work pipe from 1331-1082m. M/U junk sub and new bit and RIH. Precautionary ream under gauge hole from 660-683m, 756-780m & 813-875m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1865 Cumul Cost : 9678

DRILLING MUD REPORT | DRILLING MUD REPORT NO.

		n_:	II:	- F	-1.		Λ_				Γ	DRILLII	NG MUL	HEPOR	i NO.	7_	
	ratebase M	agcobar	/IMCO	$g_{_{\scriptscriptstyle{A}D}}$	resse	IIOS (GO Compa	m .		A		DATE	5 MA	7/2_19_ ^	95	DEPTH	1507 m
1 - 24 / 49 / 2018 15 / (14	iga polineci.	ing the same the	(2) ve (14, 14, 14, 14)	ige Bauchte, S	art dan	s entraphylia (1941) Subst	A. desert	Í	1		.]					IT ACTIVITY	
P.O. BOX	42842	H H	DUST	ON, T	EX	AS 77242	USA	١				44	DATE 2	MAR	ļ <u>. </u>		R 1 H
OPERATOR	GFE	RE	500	IRC	ی سے	-			'	CONTR			URY			11	RIG NO.
REPORT FOR	<i>i</i> ,	, «	~ N. w. y. T	l					1		OR			20.1		ll l	TOWNSHIP, RANGE
WELL NAME AN	D NO.				,		FIEL				- 11	COUNTY, F	ARISH OF	OFFSHORE	ī ,	STATE/PROVIN	CE CE
				#	_							AREA O	WA	Y BAS	1/1/	VI	CT.
							.11								CULATIO		
~'/	HTC	l _		09								PUMP SIZE	ě			ANNULAR VEI	_ //y min)
DRILL PIPE	<i>A F J OS</i> TYPE			7/	B in	ائر 2/2 @ RMEDIATE	TOTA				$-\parallel$	PIIMP MAR	E MODEL	ACCI	8.5 UMED	DP_40	bc <u>6.2</u>
\$4/2	16.6#											NAT :	76 5	EFF	95 % stk/min	PRESSURE (p	si) 1220
DRILL PIPE	TYPE	LE	NGTH				IN S	TORAGE	W	EIGHT	-#	bbl/stk	<u> </u>	<u>, o</u>	stk/min	BOTTOMS	
4/2	HWDF						11			8.6		0-05-	1/0.0	72	121	UP (min) (strk)	47 min.
	SIZE	-		PROI	DUCT	ION OR LINER	MUD			,		6.5	3	. 2	75	TOTAL CIRC TIME (min)	29 min.
£ 14		10	<u> </u>	<u> </u>	in				PA	PAC					gal/min	(strk)	
Comple From									WEIGH	4T		MUL			ECIFICAI	FILTRATE	
<u> </u>	T-1	-							i		. 7		75	-12.	10 1		8.00
		•							<u> </u>		سر ب	-					
	RECORT FOR RECORT A RECORT A RECORT A RECORT A RECORT A RECORT A RECORT A RECORT A RECORT A RECORT A RECORD																
	CONTROL CONT														,		OREMIX
			u II)		gr)		1		- R	eun.	0/5.	AND &	t D/	SILT.	CON	<i></i>	
		API @	oE	<u> </u>					1								
			-F		-				<u> </u>	PAR	ern.	<u> </u>	DUM	P 5/	TRAP	REGU	LARLY
 		10.000/1	0 min				1		_							***************************************	
							1							DEMARK			
		(O min)		°E			3	-	<u> </u>								
							╁	1 -				7					
	<u> </u>			□reto	rt		† - -		ı								
		<u> </u>		1.3 1010	<u>'</u>				1	,						CIRC	TO WASH
		•					 										
			equiv						,								
				٥F					i .						•		
Alkalinity Mud	(P _m)									NEISA	CG 74	042	140 L			56 - 70 13 - 8	
								· · · · · · · · · · · · · · · · · · ·							. 01	3 2	F 3 A7
Chloride (mg/L	.)					-	1		0.	600	~ /	2121 00	10/10	lca	ce e	(10) 1 E	
Total Hardness	as Calciu	m (mg/l	L)						<u> </u>	<u> </u>				0/411			
PHPA)	******		****			1	. ~	,								
											•					·····	
									DIS	AND	/	2.400	الاه	= 9.3	3 000	OF C	D.8 GPM
											12	2.000	9 0/	F 9.2	2009	OF	0.6 GPM
	4	5/0	$\overline{\mathcal{L}}$	7	_/	7	7	7	7	7	$\overline{}$	7	7	/	/	7	
PRODUCT INVENTORY	/00 ² v	₩\	ì/			/ /	/	/					/ .	/ /	/ /	SOLIDS E	QUIPMENT
STARTING	1 !				\vdash					ſ	$\overline{}$	1-		f - f	-		
	41		 	ļ	-						<u> </u>				SHA	KER #1	3 x 50 mesh
RECEIVED		<u> </u>	<u></u>		ļ								100		SHA	KER #2	
USED LAST 24 hr	9	5													MUI	D CLEANER	mesh
CLOSING INVENTORY	32	66														ENTRIFICE	
COST LAST	25	.15								 		+				ENTRIFUGE	hours
USED	1559	306	ļ	-						 		+			D	ESANDER	<i>12</i> hours
(from IADC)		61 23		L	Ĺ,						<u> </u>	1				ESILTER	12 hours
M-I REPRESENT	ATIVE				- 1	HONE			OUSE I	PHONE	- 11 .	LY COST			CUM	IULATIVE COST	
PAUL						932548						1865			18	9677	
N	OTICE:	THIS	REPO	RT IS	SUE	SJECT TO	THE	TERMS	AND	CON	OITIO	NS SET	FORT	H ON R	EVERS	SIDE HE	REOF.
			T			<u> </u>											
TIME DIST	RIBUTION	l (hrs)	MUD	VOLUM	E AC	COUNTING		SOLIDS	ANALY	SIS			M	JD RHEOL	OGY and	HYDRAULICS	
			#				Low G				#-						

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		٨	IUD RHEO	LOGY and	HYDRAULIC	cs	
Rig Up/Service	2.0	Water Added (bbl)		Low Gravity %	7.2	Zero Gel	2	Avg ROP	10.2	ECD @_		
Drilling	13.0	Mud Built (bbl)	210	Low Gravity, ppb	65.7	n Factor	0.58	% Cutting	-		@ 3/7m	22.900
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.4	k Factor	1-23	psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)	58	Bentonite, ppb	3.5	Bit Hydra	ulics	836	68	134	2.36	97.
Tripping	8.5	DUMP	18	Drill Solids %	6-4	Annular Section		1	2	3	4	5
Survey	0.5	SURF	20	Drill Solids, ppb	58.2			8.68	8.5	8.5		
Logging		SCE	20	Shale CEC, ppb	-	Pipe OD		4.5	4.5	6.25		
Running Casing		TOTAL MUD	730	D/B Ratio	5.17	Critical Ve	elocity	905	92	123		
Testing		Starting Depth	1382	High Gravity %		Annular V	elocity	37	40	62		
Fishing		Ending Depth	1507	High Gravity, ppb		Viscosity		86	84	61		
		New Hole Vol. (bbl)	29			Annular P	ressure	3.4	12.3	8.2		

Date: 16/03/95 Depth : 1557.0 m - -M-I Drilling Fluids Company Well No.: G0003 Spud Date: 09/03/95 Activity: POH TO TEST DRILLING FLUIDS DATA MANAGEMENT SYSTEM Contractor: CENTURY DRILLING 11 Description: EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area : PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: Hole Volume: 320 in Nozzles:11/11/11/ / / 1/32" Casing ID: 8.680 in Liner ID: in Pits Volume: 267 Drill Pipe 1 OD: 4.500 in 1340 m Casing TD: 312.0 m Liner TD: m Circulating Volume: 587 Drill Pipe 2 0D: 4.500 in 55.0 m Casing TVD: 312.0 m Liner TVD: m Mud : FW POLYMER Drill Collar OD : 6.250 in 162.0 m SOLIDS ANALYSIS (% / lb/bbl) CIRCULATION DATA MUD PROPERTIES : 0.0 / 0 NaC1 275 Flow Rate -gal/min : Sample From : FL 20:00 : 0.0 / 0 DP Annular Vel -m/min: 39.5 : 86 ^F Flow Line Temp Low Gravity Solids : 7.2 / 66 -m :1557.0/1557.0 DC Annular Vel 61.9 -m/min : Depth/TVD : 0.4 / DP Critical Vel -m/min: 103.5 Bentonite -1b/gal : 9.3 Mud Wt : 6.3 / 57 -s/qt: 48 @ 75 ^F Drill Solids DC Critical Vel -m/min: 131.1 Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 1220 Plastic Visc -cps : 22 @ 70 ^F Circ. Pressure -psi : 38.5 -min : P/R3 -1b/100ft2 /deg : 22 / 3 Bottoms Up Total Circ Time -min: 89.7 Inert/React : 5.07 Average SG : 2.60 10s/10m Gel -1b/100ft2: 4 / 14 -cc/30 min : 5.6API F Loss SOLIDS EQUIPMENT Size Hours HTHP F Loss -cc/30 min: @ PRODUCTS USED LAST 24 HOURS 3 X 50 20 Shaker #1 : Caustic Soda 25 KG S 3 -1/32" : 1 Cake API/HT 25 KG S 1 Shaker #2 -%vol : 7.0 Polypac R Solids Shaker #3 25 KG S 2 0S-1 -%vol: /93 0i1/Water Shaker #4 -%vol : 1.0 Sand Mud Cleaner -1b/bb1 : 10.0 MBT : 8.6 @ 60 ^F Centrifuge pΗ : 2 X 12" Desander : 0.2 Alkal Mud (Pm) : 12 X 4" 12 Desilter : 0.1 / 0.3 Pf/Mf 4 Decasser -mg/1:800Chlorides : 80 Hardness Ca MUD VOLUME ACCOUNTING : 1.44 PHPA Oil Added : DUMP : 100 SUI PHITE Water Added : SURFACE +SCE :17 TOTAL MUD :697 Mud Built : Mud Received: : 0.585 np Value Mud Disposed:33 Kp -1b-sec^n/100ft2: 1.22553 na Value : 0.583 ka -1b-sec^n/100ft2 : 1.23643

Remarks:

Contin RIH & ream u/gauge hole. Drill f/1507-1557m. Circ and POOH for wiper trip.RIH-hole good-5m.Fill.POH to test Continue to RIH and ream under gauge hole. Ream from 920-971m, 1016-1061m, 1192-1248m and 1283-1507m. Circulate and pull back to 785m for wiper trip. Work tight hole from 1340-1168m. RIH-hole good 5m. Fill. Pull back 3 stands circulate bottoms up and RIH. Spot Hi Vis mud over 50m hole and POOH to run test tool.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 301 Cumul Cost : 9979

DRILLING MUD REPORT DRILLING MUD 1-1EPORT NO.

	-:11		E	 .	ida i	<u>_</u>			X	Γ		LING W				9
Mag	cobar/IN	ICO S	y A Dr	esser	/Halliburton (G Compa	my	1	A		DAT	16 1	1AR 19	95	DEPTH	1557
P.O. BOX 42842 ■	HOL	ISTO	N T	- Χ Δ	S 77242	LISA			L	J	SPI	D DATE S	7 MAR		NT ACTIVITY	
PERATOR						00,			CONTRA	CTO	OR			1	T T	RIG NO.
GF E	<u> </u>	25	001	وح	£5.				REPORT F	OR	CE	NTU	RY		SECTION	N, TOWNSHIP, RANGI
KEN	ری (417	TH			II e.e.	00 DI					ELLY			1000	SHORE
ELL NAME AND NO.	VBA.	e :	#1	•		FIEL	OR BLO	/			AREA	Y, PAHISH	OR OFFSHOF 94 BA	E 51√.	STATE/PROV	/INCE
DRILLING ASSE					SING		MUD V	OLUM	E (BBL)					CULATIC	ON DATA	
T SIZE TYPE	JET S		25	SUF	FACE	HOL		PIT			РИМР	SIZE	X	tN.	ANNULAR V	/EL (ft/min)
3/2 ATTOS	3x	//	17/2		@ 312 4 MEDIATE	-11	3/7		270				5/2	7.7:		
2E	LENG	1111	'			III		587			11	MAKE, MOI	EFF	95 %	CIRCULATIO PRESSURE	n ^(psi) 1220
ILL PIPE TYPE	LENG	TH	+	in. NTERI	@ fi MEDIATE	IN S	TORAGE		EIGHT		bbl/stk	-7P	301	stk/min	I BOLIOMS	
4/2 HWDP	55	~		in.		41	110		8.6		0.00	4		121	UP (min) (strk)	48 min.
ILL COLLAR SIZE	LENG		PROD	UCTIO	ON OR LINER	MUD	TYPE	_ ,			6.5 bbl/min	.3		275	TOTAL CIRC TIME (min)	90 min
6/4	162	2	<u> </u>	in.		4		PA/.	PAC		*************			gal/min	(strk)	70 20
male France				-	MUD PR			WEIGH	łT		<u> </u>	VISCO	PERTY SE	PECIFICA	FILTRATE	
mple From ne Sample Taken				\dashv			L. DPIT		م 3.3	م	~	37	5-42	sec /2	A 5	7 cc
				\dashv	20:00	03	5:30	 		7			NDED TO			
wline Temperature (°F) pth (ft) (TVD		,			86 (30)	1	7	 								
· · · · · · · · · · · · · · · · · · ·	/ □ (lb/cu fi		□ (sp	ft)	1557		57	 -	RAL				ITH C			
nnel Viscosity (sec/qt) Al	<u> </u>	<u></u>		917	9.3		1.3+ 52	╁┋	MAI						PRE	
astic Viscosity cp @		۰F	•	\dashv	48	+-	?6				ARE		V15 2	ACR	PILL	70 SP07
eld Point (lb/100 ft²)		<u> </u>		+	<i>22</i> 22		6	10	~ ~	20	770.					
I Strength (lb/100 ft²) 10	sec/10 n	nin		\dashv	4114	1	114	 								
trate API (cm³/30 min)				_	5.1.	1	.0	ļ				······	REMAR	KS		
I HTHP Filtrate (cm³/30	min) @		۰F	\neg		٦.			NTI	.,	RI				~	HOLE
ke Thickness (32nd in. /	API/HTH	P)		$\neg \dagger$	11	1	7	T	EAM	<u> </u>						m 1192-
lids Content (% by Vol)	☐ calcı	ulated	□ reto	1	7	1	7.0	1					507		7007	7772
quid Content (% by Vol)	Oil/Water	•			193		193	0	2144				m - /		Z 423	
nd Content (% by Vol)	,		ı		/	1	0.5		RC		4 00					M FOR W.
ethylene Blue Capacity	Ib/bbt equi	iv nud			10.0	1	0.0	T	ORK		7764				- 116	
I ☐ Strip ☐	Meter @	39	۰F		8.6	8	٠ 🌫	R	14-		404	E 90		- m		
calinity Mud (P _m)					0.15	0	./0	عرا	ULL	B	ACK	35	ros .	BREA	K CIK	C - CLE
kalinity Filtrate (P _f /M _f)					1 103	1.1	10.3	ر ا	PH	62	E	\$ 1	14 -	500	or 141	IVIS PIL
loride (mg/L)					800	18	00	101	IER	4	50,	, \$	POO	H 70	755	<i></i>
tal Hardness as Calcium	(mg/L)				80	E	0	ļ								
PHPA					1.44	1	44	<u> </u>								
503					100	10	00	<u> </u>								
ENV LC50					7106	-			AND		14.4	ppg L	1/= 9	·3pp	9 0/5	0.2561
	. , -	7,0		Щ	,	۲,		10/5	ILT		12.6	pro 4	1/1= 9	<u>مم 2·</u>	5 0/F	6.5 91
ODUCT /V	2/0 C/	ps go	o s						/ -	/				/ /		
	<u>'?' /(</u>	8 9	/O'	_	-	, 		/	<u> </u>	_					SOLIDS	S EQUIPMENT
ENTORY 32	80 3	51	14											SH	1AKER #1	3 x 50 "
CEIVED		į												SH	IAKER #2	
ED LAST	,	3	2													
						_					-		+	ML	JD CLEANER.	n
	79 4	8	12 <u>:</u> 85											'	CENTRIFUGE	h
ST LAST	31746	7.05	187												DESANDER	/5h
m IADC)	31.74 2	2.35	50-95											1	DESILTER	/2h
REPRESENTATIVE			15	P	HONE		WARE	HOUSE	PHONE	11	AILY COS				MULATIVE CO	
PAUL MARS	CHAI	, ,		-	93254	182	2			1	\$ 30	00.69	7	\$	997	8.54
NOTICE: T			RT IS					SANF	СОИГ				•———	SEVEDO		
														v	,_ SIDE F	ILIILUF.
TIME DISTRIBUTION	(hrs)	MUD	VOLUM	E AC	COUNTING		SOLIDS	ANALY	SIS				MUD RHEO	LOGY and	i HYDRAULI	cs
lig Up/Service	.5	Water	Added	(bbl)		Low G	iravity %	, 1	7.2	1/2	ero Gel	3	Avg ROP	12.5	ECD @_	
Drilling 1			Built (bb		1		ravity n		<u> </u>	#_	Factor		06 Cutting	12.3	1000 @_	

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		٨.	JUD RHEO	LOGY and	HYDRAULI	cs	
Rig Up/Service	0.5	Water Added (bbl)		Low Gravity %	7.2	Zero Gel	3	Avg ROP	12.5	ECD @_		
Drilling	4.0	Mud Built (bbl)		Low Gravity, ppb	65.7	n Factor	0.58	% Cutting		Leak Off	@ 3/7-	=229pr
Reaming/Coring	9.0	Mud Received (bbl)		Bentonite %	0.4	k Factor	Factor /.23		%	hhp	HSI	Jet Vel
Circulating	2.5	Mud Disposed (bbl)	33	Bentonite, ppb	3.5	Bit Hydra	ulics	836	36 68 134 2		2.36	96
Tripping	8.0	DUMP	16	Drill Solids %	6.4	Annular Section		1	2	3	4	5
Survey		SURF	5	Drill Solids, ppb	58.2	Hole Size			8.5	8.5		
Logging		SCE	12	Shale CEC, ppb		Pipe OD		4.5	4.5	6.25		
Running Casing		TOTAL MUD	697	D/B Ratio	5-17	Critical Ve	elocity	104	105	134		
Testing		Starting Depth	1507	High Gravity %	-	Annular \	/elocity	37	40	62		
Fishing		Ending Depth	1557	High Gravity, ppb	-	Viscosity		103	99	65		
		New Hole Vol. (bbl)	11			Annular F	Pressure	4.2	15.6	9.1		

Date: 17/03/95 Depth: 1557.0 m M-I Drilling Fluids Company DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: G0003 Spud Date: 09/03/95 Activity : CIRCULATE Description : EXPLORATION Operator : GFE RESOURCES Contractor: CENTURY DRILLING 11 Location : OTWAY BASIN Well Name: DUNBAR 1 Field/Area : PPL 1 Report For: KEN SMITH MUD VOLUME (bb1) Bit: 8.500 in CASING Casing OD: 9.625 in Liner OD: Hole Volume: 320 in Nozzles:11/11/11/ / / 1/32" Pits Volume: 189 Casing ID: 8.680 in Liner ID: in Drill Pipe 1 OD: 4.500 in 1340 m Casing TD: 312.0 m Liner TD: m Circulating Volume: 509 Drill Pipe 2 OD: 4.500 in 55.0 m m Mud : FW POLYMER Casing TVD: 312.0 m Liner TVD: Drill Collar OD : 6.250 in 162.0 m (% / 1b/bb1) CIRCULATION DATA SOLIDS ANALYSIS MUD PROPERTIES -gal/min : : 0.0 / 0 275 NaC1 Flow Rate : FL 24:00 Sample From : 0.0 / : 87 ^F 39.5 KC1 0 DP Annular Vel -m/min : Flow Line Temp Low Gravity Solids : 7.2 / 66 -m :1557.0/1557.0 DC Annular Vel -m/min : 61.9 Depth/TVD : 0.7 / DP Critical Vel -m/min: 85.6 Bentonite Mud Wt -1b/gal : 9.3 : 6.0 / 54 -s/qt : 44 @ 85 ^F Drill Solids DC Critical Vel -m/min: 111.8 Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 : N/A / N/A 1200 -cps : 18 @ 75 ^F Circ. Pressure -psi : Plastic Visc 38.5 P/R3 -1b/100ft2 /deg : 19 / 2 Bottoms Up -min : Inert/React: 3.86 Average SG: 2.60 77.7 10s/10m Ge1 -1b/100ft2: 3 / 10 Total Circ Time -min : API F Loss -cc/30 min : 6.4SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: Shaker #1 : 3 X 50 10 25 KG S 1 -1/32" : 1 Polypac R Cake API/HT Shaker #2 25 KG S 1 0S-1 -%vol: 7.0 Solids Shaker #3 25 KG S 208 : M-I Bar -%vol: 0i1/Water Shaker #4 -%vol: 0.75 Sand Mud Cleaner -1b/bb1 : 12.5MBT Centrifuge : 8.3 @ 60 ^F : 2 X 12" Desander : 0.1 Alkal Mud (Pm) : 12 X 4" Desilter : 0.05/ 0.35 Pf/Mf Degasser -mg/1:750Chlorides Hardness Ca : 80 MUD VOLUME ACCOUNTING 661 : 1.3 PHPA Oil Added : DUMP SULPHITE : 60 Water Added: 110 SURFACE +SCE: 31 TOTAL MUD :716 Mud Built : Mud Received: : 0.572 np Value Mud Disposed:91 Kp -1b-sec^n/100ft2 : 1.11793 : 0.634 na Value -lb-sec^n/100ft2: 0.75921 Κa

Cont POOH. M/U and RIH w/ test tool. DST #1.POH & lay out T/T-tool blocked.RIH & circ and dilute.Pump Hi Vis & POOH Continue POOH. Make-up and RIH with test tool. DST #1 ? failure. POOH and lay out test tool-tool blocked. Make-up BHA and RIH-wash from 1533m to bottom-3m. fill. Circulate on bottom, pull 3 stands and continue to circulate and dilute mud. Maintain mud weight = 9.3 ppg with Barite. Run to bottom-no fill, pumpP Hi Vis pill and circulate out - no increase cuttings over shaker.

11311 Daily Cost : 1333 Cumul Cost : M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE _____

DRILLING MUD REPORT

		_		DRILLING MUD RE	PORT NO.	9
Drilling F. Magcobar/IMCO	UICS (sser/Halliburton C	CO.	P	DATE 17 MAR		DEPTH 1557 M
DO DOV 42942 E HOLISTON TE	V A C 770 40	LICA		SPUD DATE 9 MA		NT ACTIVITY CIRC
P.O. BOX 42842 ■ HOUSTON, TE	XAS / /242	USA	CONTRAC		/K_	RIG NO.
GFE RESOURCE	2 <i>ES</i> .		1	CENTURY		11
REPORT FOR KEN SMITH			REPORT FOR	SEAN KELL	4	SECTION, TOWNSHIP, RANGE
WELL NAME AND NO		FIELD OR BLO	CK NO.	COUNTY, PARISH OR OFF	SHORE	STATE/PROVINCE
DUNBAR # 1		ر م م		AREAOTWAY L	BASIN	VICT.
DRILLING ASSEMBLY	CASING	H	OLUME (BBL)		CIRCULATIO	
BIT SIZE TYPE JET SIZE	SURFACE	HOLE 2/7	192	PUMP SIZE	X IN.	1
8/2 ATJOS 3 x // 95/8 DRILL PIPE TYPE LENGTH IN	in. @312 # TERMEDIATE		ATING VOLUME	5 /2	2 7.75 ASSUMED	DP_40 DC_62
SIZE		11	09	NAT 7P50	EFF 95 %	
	in. @ fi TERMEDIATE	IN STORAGE	WEIGHT	bbl/stk	stk/min	
SIZE 41/2 HUDP 55m		207	9.3	0.054	121	UP (min) 48 min
	in. @ ft JCTION OR LINER	MUD TYPE				TOTAL CIRC
6/4 162-	in. @ ft	PHP	PAIPAC	6.53	275 gal/min	TIME (min) 90
		OPERTIES	1////	MUD PROPERT		
Sample From	Ø/E.L. □ PIT	□ F.L. DVPIT	WEIGHT	VISCOSITY		FILTRATE
Time Sample Taken	24 00	05:30	9.3	PP9 35-4	2 pec/91	5-7cc
Flowline Temperature (°F)				RECOMMENDED		
Depth (ft) (TVD /	87(30					
	1557	1557				M WITH D/W
Weight ☑ (ppg) ☐ (lb/cu ft) ☐ (sp		9.3+	WHILE	MAINTAINI	NG WI	F = 9.3 ppg WITH
Funnel Viscosity (sec/qt) API @ 85 °F	44	46	BARITE	<u> </u>		
Plastic Viscosity cp @ 75 °F	18	19	- PREP	ARE HIVIS F	AC PI	LL WITH WHICH
Yield Point (lb/100 ft²)	19	20	70 SWE	EP HOLE !	PRIOR	TO WIPER TRIP.
Gel Strength (lb/100 ft²) 10 sec/10 min	3 110	3110	- REDUC			E VOL.
Filtrate API (cm³/30 min)	6.4	6.2		REI	MARKS	
API HTHP Filtrate (cm³/30 min) @ °F		_	- CONT.	IN TO POOR	1. M/U	AND RIH WITH
Cake Thickness (32nd in. API/HTHP)	11	11	TEST	TOOL.		
Solids Content (% by Vol)	7.0	7.0	057	#1 - ? F.	AILURE	
Liquid Content (% by Vol) Oil/Water	193	193	POOH			TOOL - TOOL BLOCK
Sand Content (% by Vol)	0.75	0.5	M/U S	BHA + RIH	- WASI	4 F/1533 - 1557
Methylene Blue Capacity ☐ tb/bbt equiv	125	12.5	- 3~			
pH ☐ Strip ☐ Meter @ °F	8.3	8.3	- CIRC		21.11	3 STOS Y CONTIN
Alkalinity Mud (P _m)	0.05	0.05	TO C/1			MAINTAIN
Alkalinity Filtrate (P _t /M _t)	.051.35		WT			
Chloride (mg/L)	750	750	RUN		NBUND	HIVIS PAC PILL
Total Hardness as Calcium (mg/L)	80	80	+ CIRC			
PHPA	1.3	1.3		C OUT - N	0 ///	R. IN CUTTINGS
_ =	60					
503		60	1			
		 	 			
	-}	'//-	' / 	/ / /	, , , , , , , , , , , , , , , , , , , 	
PRODUCT INVENTORY ON O PAR P	///			/ / / /		SOLIDS EQUIPMENT
STARTING NVENTORY 907 12 79					er.	IAKER #1 3 x 50 mesh
RECEIVED .						mesn
					s	AKER #2 mesh
USED LAST 208 / /					мі	JD CLEANER mesh
CLOSING INVENTORY 699 // 78						
COST LAST • 24						CENTRIFUGE hours
24 hr 1150 50.91 131.74						DESANDER hours
USED (from IADC) 5.53 50.95 131.74						DESILTER hours
M-I REPRESENTATIVE	PHONE	WARE	63	DAILY COST	cn	MULATIVE COST
PAUL MARSHALL	093254	822	ls	\$ 1332.93	\$	11311.47
······································	~ , UZU 7		P			

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

TIME DISTRIBUT	ION (hrs)	MUD VOLUME ACCO	DUNTING	SOLIDS ANA	LYSIS		N	IUD RHEOL	OGY and	HYDRAULIO	cs	
Rig Up/Service	4.5	Water Added (bbl)	110	Low Gravity %	7.2	Zero Gel	2	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	65.7	n Factor	0.63	% Cutting		Leak Off	@317~	-22.9/
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.7	k Factor	0.75	psi	%	hhp	HSI	Jet Vel
Circulating	2.5	Mud Disposed (bbl)	91	Bentonite, ppb	6.3	Bit Hydra	ulics	836	68	134	2 36	96
Tripping	13.0	DUMP	60	Drill Solids %	6.1	Annular Section		1	2	3	4	5
Survey		SURFACE	31	Drill Solids, ppb	55.4	Hole Size		8.48	8.5	8.5		
Logging				Shale CEC, ppb	-	Pipe OD		4.5	4.5	6.25		
Running Casing		TOTAL MUD	716	D/B Ratio	3.94	Critical Ve	elocity	84	86	162		
Testing DST	4-0	Starting Depth		High Gravity %	_	Annular V	elocity	37	44	62		
Fishing		Ending Depth		High Gravity, ppb	-	Viscosity		77	74	51		
		New Hole Vol. (bbl)				Annular P	ressure	3-1	11.8	7.2		

```
Depth : 1557.0 m
                                                            Date: 18/03/95
M-I Drilling Fluids Company
                                                                            Activity : M/U BHA
                                                       Spud Date : 09/03/95
DRILLING FLUIDS DATA MANAGEMENT SYSTEM
                                        Well No. : G0003
                                   ______
                                 Contractor: CENTURY DRILLING 11
                                                                 Description : EXPLORATION
Operator : GFE RESOURCES
                                                                   Location : OTWAY BASIN
                                 Field/Area: PPL 1
Well Name: DUNBAR 1
Report For: KEN SMITH
                                                                           MUD VOLUME
                                                                                          (bb1)
                                              CASING
Bit: 8.500 in
                                                                           Hole Volume: 320
                                                                     in
                                    Casing OD: 9.625 in Liner OD:
Nozzles:11/11/11/ / / 1/32"
                                                                     in
                                                                               Pits Volume: 182
                                    Casing ID: 8.680 in Liner ID:
Drill Pipe 1 OD: 4.500 in 1340 m
                                    Casing TD: 312.0 m Liner TD:
                                                                     m Circulating Volume: 502
Drill Pipe 2 OD: 4.500 in 55.0 m
                                                                         Mud : FW POLYMER
                                    Casing TVD: 312.0 m Liner TVD:
Drill Collar OD: 6.250 in 162.0 m
                                                                                    (% / 1b/bb1)
                                                                  SOLIDS ANALYSIS
                                        CIRCULATION DATA
 MUD PROPERTIES
                                                                                 : 0.0 / 0
                                                               NaC1
Sample From : FL 23:30
                                 Flow Rate
                                           -gal/min :
                                                                                 : 0.0 /
                                                                                           n
                                 DP Annular Vel -m/min:
                                                                KC1
                        ^F
                  :
Flow Line Temp
                                                                Low Gravity Solids : 7.2 /
                                                                                          66
                                 DC Annular Vel -m/min:
               -m :1557.0/1557.0
Depth/TVD
                                                                 Bentonite : 0.7 /
                                                         87.6
                                 DP Critical Vel -m/min:
Plastic Visc -cne 10
Mud Wt
                                                                                          55
                                                                                 : 6.0 /
                                                                 Drill Solids
                                                       115.2
                                 DC Critical Vel -m/min:
Funnel Vis
                                                                Weight Material : N/A / N/A Chemical Conc : - / 5.0
               -cps : 18 @ 57 ^F
                                 Circ. Pressure
 P/R3 -1b/100ft2 /deg : 21 / 2
                                                 -min :
                                  Bottoms Up
                                                                 Inert/React: 4.06 Average SG: 2.60
10s/10m Gel -lb/100ft2: 4 / 10
                                  Total Circ Time
                                                 -min :
          -cc/30 min : 6.0
API F Loss
                                                                 SOLIDS EQUIPMENT Size
                                                                                        Hours
                                    PRODUCTS USED LAST 24 HOURS
HTHP F Loss -cc/30 min:
                                                                 Shaker #1 : 3 X 50
                                                                                        10
             -1/32" : 1
Cake API/HT
                                                                 Shaker #2
              -\%vol: 7.0
Solids
                                                                 Shaker #3
               -%vol: /93
0il/Water
                                                                 Shaker #4
              -%vol:0.5
Sand
                                                                 Mud Cleaner
             -1b/bb1 : 12.0
MBT
                                                                 Centrifuge :
                   : 8.3 @ 55 ^F
ρН
                                                                           : 2 X 12"
                                                                 Desander
                   : 0.1
Alkal Mud (Pm)
                                                                 Desilter
                                                                               12 X 4"
                                                                            :
                   : 0.05/ 0.35
Pf/Mf
                                                                 Degasser
                                                                            :
               -mg/1 : 800
Chlorides
                   : 80
Hardness Ca
                                                                   MUD VOLUME ACCOUNTING 661
PHPA
                    : 1.3
                                                                Oil Added : D/H
                    : 50
SULPHITE
                                                                               SURFACE
                                                                                          :17
                                                                Water Added:
                                                                                          :687
                                                                Mud Built :
                                                                               TOTAL MUD
                                                                Mud Received:
                    : 0.547
 np Value
                                                                Mud Disposed:29
 Kp -1b-sec^n/100ft2 : 1.37205
                   : 0.645
 na Value
    -1b-sec^n/100ft2 : 0.74518
 Ka
 Remarks:
 Wiper trip.POOH.RIH for DST #2. Perform DST #2. Pull free hole good. Recover sample. Test BOPs. Prepare to RIH.
 Perform wiper trip. POOH for DST. Conduct DST #2. Build to 9 psi. Close tool
```

for 1 hr. Flow well. Pull free-hole good. Recover sample and lay out test

tool. Test BOPs. Prepare to make up BHA and RIH.

11311 Daily Cost : M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

P.O. BOX 42842 HOUSTON, TEXAS 77242 USA OPERATOR REPORT FOR WELL NAME AND NO. DUNBAR # 1 DRILLING ASSEMBLY SUFFACE BY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DATE /B MAR 19 95 DEPTH 1557 77 SPUD DATE 9 MAR 19 95 SPUD DATE 9 MAR 19 95 SPUD DATE 9 MAR 19 95 SPUD DATE 9 MAR 19 95 SPUD DATE 9 MAR 19 95 SPUD DATE 9 MAR 19 96 SPUD DATE 9 MAR 19 96 SPUD DATE 9 MAR 19 96 SECTION, TOWNSHIP, RANGE 18 STATE 19 PROVINCE 18 STATE 19 PROVIN
P.O. BOX 42842 HOUSTON, TEXAS 77242 USA OPERATOR REPORT FOR WELL NAME AND NO. DUNBAR # 1 DRILLING ASSEMBLY DRILLING ASSEMBLY DRILL PIPE SIZE 1/L 1/L 1/L 1/L 1/L 1/L DRILL PIPE TYPE LENGTH INTERMEDIATE IN. @ 11 DRILL PIPE SIZE 1/L 1/L 1/L 1/L DRILL OLLAR SIZE LENGTH DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L 1/L DRILL PIPE SIZE 1/L 1/L 1/L 1/L 1/L 1/L 1/L 1/	PRESENT ACTIVITY M/U BHA/TEST BOF RENTURY IRIG NO. SECTION, TOWNSHIP, RANGE CUSHORE CUNTY, PARISH OR OFFSHORE DUNTY, PARISH OR OFFSHORE STATE/PROVINCE CIRCULATION DATA UMP SIZE X IN. ANNULAR VEL (tt/min) 5/L 7.75 DP DC UMP MAKE, MODEL ASSUMED EFF 95 % BOTTOMS UP (min) (sirk) O · O 5 4 [2] MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE 35-42 sec/91 5-7 cc RECOMMENDED TOUR TREATMENT REATMENT TO SYSTEM SYSTEM WITH O 5-1 4 MAISE PH SYSTEM WITH O 5-1 4 MAISE PH COMMENDED TOUR TO SYSTEM SYSTEM WITH O 5-1 4 MAISE PH COMMENDED TOUR TO SYSTEM SYSTEM WITH O 5-1 4 MAISE PH COMMENDED TOUR TO SYSTEM COMMENDED TOUR TOUR SYSTEM COMMENDED TOUR SYSTEM COMMEN
CONTRACTOR REPORT FOR RE	SPUD DATE 9 MAR MAJOR SECTION, TOWNSHIP, RANGE SECTION, TOWNSHIP, RANGE SECTION, TOWNSHIP, RANGE SECTION, TOWNSHIP, RANGE ON SHORT CIRCULATION DATA UMP SIZE X IN. ANNULAR VEL ((II/min) 5/L 7.75 DP DC CIRCULATION PRESSURE (psi) JAT 7P5D JOHN O. 054 J2/ WISCOSITY MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE 35-425c/9/ FILTRATE RECOMMENDED TOUR TREATMENT PAISE PAIS
CONTRACTOR REPORT FOR RE	RIGNO. SECTION, TOWNSHIP, RANGE STATE/PROVINCE CIRCULATION DATA UMP SIZE VIN MANNUAR VEL (t/min) SIXE CIRCULATION DATA UMP MAKE, MODEL ASSUMED LOFF, 3-06 LOFF, 3-
REPORT FOR SEA	SECTION, TOWNSHIP, RANGE OUNTY, PARISH OR OFFSHORE REA D TWAY BASIN CIRCULATION DATA UMP SIZE X IN. ANNULAR VEL (tt/min) DC. UMP MAKE, MODEL SEFF 95 96 DC UMP MAKE, MODEL SEFF 95 96 DC UMP MAKE, MODEL SEFF 95 96 DC UMP MAKE, MODEL SEFF 95 96 DC UMP MAKE, MODEL SEFF 95 96 DC UMP MAKE, MODEL SEFF 95 96 DC UMP MODEL SEFF 95 96 SUP (min) (strk) MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE 35-42se/31 S-7ec RECOMMENDED TOUR TREATMENT RECATMENT TO SYSTEM AND WT = 9.3 ppg SYSTEM WITH OS-1 & PAISE PH STATEPOVINCE WICH STATEPOVINCE WICH STATEPOVINCE
WELL NAME AND NO. DUNBAR # FIELD OR BLOCK NO. CO PPL - AR	DUNTY, PARISH OR OFFSHORE DEAD TWAY BASIN CIRCULATION DATA UMP SIZE X IN. ANNULAR VEL (tt/min) 5/L 7.75 DP DC UMP MAKE, MODEL ASSUMED EFF 95 % BOTTOMS UP (min) (strk) DOTAL CIRC TOTAL CIRC TOTAL CIRC TOTAL CIRC TOTAL CIRC SIRK MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE 35-425cc/91 FILTRATE RECOMMENDED TOUR TREATMENT PAISE RECOMMENDED TOUR TREATMENT PAISE PAISE SYSTEM WITH OS-1 A PAISE PH TOUR TREATMENT DEAT MENT TO SYSTEM STATE/PROVINCE WISCORIE STATE/PROVINCE VICTOR UICT CIRCULATION PRESSURE (psi) (strk) TOTAL CIRC TIME (min) (strk) TOTAL CIRC T
DUNBAR # PPL- ARE	CIRCULATION DATA UMP SIZE X IN. ANNULAR VEL (It/min) 5/L 7.75 DP DC UMP MAKE, MODEL ASSUMED EFF 95 96 BOTTOMS O O S 4 12/ CIRCULATION PRESSURE (psi) //50 BOTTOMS UP (min) (strk) MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE 35-42se/91 S-7cc RECOMMENDED TOUR TREATMENT RECATMENT TO SYSTEM ALL MAT = 9.3 ppg SYSTEM WITH OS-1 & PAISE PH CIRCULATION PRESSURE (psi) //50 BOTTOMS FILTRATE S-7cc RECATMENT TO SYSTEM ALL MAT = 9.3 ppg SYSTEM WITH OS-1 & PAISE PH
DRILLING ASSEMBLY	CIRCULATION DATA UMP SIZE S/L 7.75 DP DC
B '/L ATJOS 3 ∧ 1 / 9 % in. @ 3 / 2 rd 362 140 DRILL PIPE TYPE LENGTH INTERMEDIATE TOTAL CIRCULATING VOLUME PU SIZE 4 '/L 16 · 6 INTERMEDIATE IN STORAGE WEIGHT WEIGHT DRILL PIPE TYPE LENGTH INTERMEDIATE IN STORAGE WEIGHT WEIGHT DRILL COLLAR SIZE LENGTH PRODUCTION OR LINER MUD TYPE MUD TYPE Bbb MUD PROPERTIES Sample From □ F.L. ☑ PIT ☑ F.L. □ PI	JAT 750 JAT
B	UMP MAKE, MODEL ASSUMED EFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BFF 95 % IAT 7050 BOTTOMS IVE (min) (strk) IOTAL CIRC TOTAL CIRC TOTAL CIRC STRK) IOTAL CIRC STRK) IOTAL CIRC STRK) IOTAL CIRC STRK (min) (strk) IOTAL CIRC TOTAL CIRC TOTAL CIRC TOTAL CIRC TOTAL CIRC TOTAL CIRC STRK INTEL TOTAL CIRC
SIZE 4/1	PRESSURE (psi) PRESSURE (psi)
DRILL PIPE SIZE TYPE SIZE LENGTH INTERMEDIATE IN STORAGE IN SIZE IN STORAGE IN SIZE IN STORAGE IN SIZE IN STORAGE IN STORAGE IN SIZE IN STORAGE IN STORAGE IN SIZE IN STORAGE IN SIZE IN STORAGE IN STOR	Deletik stik/min BOTTOMS UP (min) (strik) 0.054 2/ TOTAL CIRC TIME (min) (strik) MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE 35-42se/91 5-7cc RECOMMENDED TOUR TREATMENT RECOMMENDED TOUR TREATMENT RECOMMENDED TOUR TREATMENT RECOMMENDED TOUR TREATMENT RECOMMENDED TOUR TREATMENT RESTANCE 9 3 ptg SYSTEM WITH OS-1 \$ PAISE PM
SIZE	O 054 121 UP (min) (strk) 6 53 275 TOTAL CIRC TIME (min) (strk) MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE 35-42xc/91 5-7cc RECOMMENDED TOUR TREATMENT REATMENT TO SYSTEM AIN WT = 93ppg 5 YSTEM WITH OS-1 & PAISE PH
DRILL COLLAR SIZE	MUD PROPERTY SPECIFICATIONS VISCOSITY STATEM RECOMMENDED TOUR TREATMENT PLANT TO SYSTEM ALL MATERIAL STATEMENT SYSTEM WITH OS-1 & PAISE PH
MUD PROPERTIES	MUD PROPERTY SPECIFICATIONS VISCOSITY ST-425ce/g1 FILTRATE 35-425ce/g1 5-7cc RECOMMENDED TOUR TREATMENT REATMENT TO SYSTEM AIN WT = 9.3 ppg SYSTEM WITH OS-1 & PAISE PH
Sample From □ F.L. ⋈ PIT ₩EIGHT Time Sample Taken 23:30 05:30 Flowline Temperature (°F) - Depth (ft) (TVD / Weight □ (ppg) □ (lb/cu ft) □ (sp gr) Funnel Viscosity (sec/qt) API @ °F 48 43 - TREAT Plastic Viscosity cp @ °F //8 //9 // <	VISCOSITY 35-425c/9/ 5-7cc RECOMMENDED TOUR TREATMENT REATMENT TO SYSTEM AIN WT = 9.3 ppg 5 SYSTEM WITH OS-1 & PAISE PH
Sample From	RECOMMENDED TOUR TREATMENT REATMENT TO SYSTEM AIN WT = 9.3 ppg SYSTEM WITH OS-1 & RAISE PH
Flowline Temperature (°F) Depth (ft) (TVD	RECOMMENDED TOUR TREATMENT REATMENT TO SYSTEM AIN WT = 9.3 ppg SYSTEM WITH OS-1 & PAISE PH
Depth (ft) (TVD / ★ /557 /557 - NO TR Weight □ (ppg) □ (lb/cu ft) □ (sp gr) 9.3 + 9.3 - MAINTA Funnel Viscosity (sec/qt) API @ °F 48 43 - TREAT Plastic Viscosity cp @ °F /8 /9 Yield Point (lb/100 ft²) 21 /1 Gel Strength (lb/100 ft²) 10 sec/10 min 41/0 318 Filtrate API (cm³/30 min) 6.0 5.8 API HTHP Filtrate (cm³/30 min) @ °F - PERFOR Cake Thickness (32nd in. API/HTHP) /1 / 1 / 1 / - POOH	REATMENT TO SYSTEM AIN WT = 9.3 ppg SYSTEM WITH OS-1 & RAISE PH
Weight □ (ppg) □ (lb/cu ft) □ (sp gr) 9.3 + 9.3 - MAINITA Funnel Viscosity (sec/qt) API @ °F 48 43 - TREAT Plastic Viscosity cp @ °F /8 /9 Yield Point (lb/100 ft²) 21 /1 Gel Strength (lb/100 ft²) 10 sec/10 min 4 / 1/0 / 3 / 8 Filtrate API (cm³/30 min) 6 · 0 5 · 8 API HTHP Filtrate (cm³/30 min) @ °F - - - PERFOR Cake Thickness (32nd in. API/HTHP) / 1 / 1 / 1 / 1 / 1 / - POOM	SYSTEM WITH OS-1 & RAISE PH
Funnel Viscosity (sec/qt) API @ °F	SYSTEM WITH OS-1 & PAISE PH
Funnel Viscosity (sec/qt) API @ °F	SYSTEM WITH OS-1 & PAISE PH
Yield Point (lb/100 ft²) 21 ; 7 Gel Strength (lb/100 ft²) 10 sec/10 min 4 1/0 318 Filtrate API (cm³/30 min) 6 · U 5 · 8 API HTHP Filtrate (cm²/30 min) @ °F - - - PERFOR Cake Thickness (32nd in. API/HTHP) 1 1 1 - POOH	REMARKS
Gel Strength (lb/100 ft²) 10 sec/10 min	REMARKS
Filtrate API (cm³/30 min) API HTHP Filtrate (cm³/30 min) @ °F PIERFOR Cake Thickness (32nd in. API/HTHP)	REMARKS
API HTHP Filtrate (cm³/30 min) @ °F PERFOR Cake Thickness (32nd in. API/HTHP) / / / / POOM	REMARKS
Cake Thickness (32nd in. API/HTHP)	
7.007	RM WIPER TRIP
Solids Content (% by Vol) □ calculated □ retort 7 7 4 M/U 7	FOR DST # 2 LAY OUT BHA
	TEST TOOL.
Liquid Content (% by Vol) Oil/Water 193 193 RIH	FOR DSF#2
Sand Content (% by Vol) 0.5 0.5 DST -	OPEN - 9PSI-CLOSE FOR IHR
Methylene Blue Capacity ☐ thibble equiv	LOWED.
pH Strip Meter@ °F 8.3 8.3 - PULL	FREE - HOLE GOOD
Alkalinity Mud (Pm) 0.05 05 RECOVE	ER SAMPLE + LAY OUT T/TOOL
Alkalinity Filtrate (P ₁ /M ₁) .05/0.35 .05/0.35 - 1/2 c	CUP TESTER - TEST BOPS
	TO M/U BHA & RIH
Total Hardness as Calcium (mg/L) 86 80	Annual de la companya del companya del companya de la companya de
PHPA 1.3 1.3	
Sox 50 40	AND THE STATE OF T
PRODUCT INVENTORY	SOLIDS EQUIPMENT
STARTING INVENTORY	SHAKER #1_3 x 50_ mesh
	SHAKER #1 3 x 20 mesh
RECEIVED 1 USED LAST	SHAKER #2 mesh
24 hr	MUD CLEANER mesh
CLOSING INVENTORY	CENTRIFUGEhours
COST LAST 24 hr	
USED USED	
	DESANDER hours
(from IADC)	DESILTERhours

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		N	IUD RHEOI	OGY and	HYDRAULI	cs	
Rig Up/Service	4.0	Water Added (bbl)		Low Gravity %	7.2	Zero Gel	2	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	65.7	n Factor	0.63	% Cutting		Leak Off	@3/7-	22.91
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.7	k Factor	0.75	psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)	29	Bentonite, ppb	6.3	Bit Hydraulics		836	68	134	2.36	96
Tripping	19.5	SURFACE	17	Drill Solids %	6.1	Annular Section		1	2	3	4	5
Survey		0/14	12	Drill Solids, ppb	55.4	Hole Size		8.68	8.5	8.5		
Logging				Shale CEC, ppb	-	Pipe OD		1.5	4.5	6.25		
Running Casing		70772	587	D/B Ratio	3.94	Critical Ve	elocity	84	86	1/2		
Testing DST	B 5	Starting Depth		High Gravity %	_	Annular V	/elocity	37	40	62		
Fishing		Ending Depth		High Gravity, ppb	-	Viscosity		77	74	51		
		New Hole Vol. (bbl)				Annular P	ressure	3.1	11.8	7.2		

. .

Date: 19/03/95 Depth: 1758.0 m M-I Drilling Fluids Company Spud Date: 09/03/95 Activity: W/TRIP Well No.: G0003 DRILLING FLUIDS DATA MANAGEMENT SYSTEM Description : EXPLORATION Contractor: CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area : PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Hole Volume : 363 Bit: 8.500 in Casing OD: 9.625 in Liner OD: Nozzles:11/11/11/ / / 1/32" in Casing ID: 8.680 in Liner ID: Pits Volume: 263 Drill Pipe 1 OD: 4.500 in 1541 m Casing TD: 312.0 m Liner TD: Casing TVD: 312.0 m Liner TVD: m Circulating Volume: 626 Drill Pipe 2 OD: 4.500 in 55.0 m m Mud : FW POLYMER Drill Collar OD : 6.250 in 162.0 m SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES : : 0.0 / 0 Flow Rate -gal/min: 275 NaC1 : FL 22:00 Sample From : 0.0 / 0 DP Annular Vel -m/min: 39.5 KC1 : 88 ^F Flow Line Temp Low Gravity Solids : 7.2 / 66 -m :1758.0/1758.0 DC Annular Vel -m/min : 61.9 Depth/TVD Bentonite : 0.5 / DP Critical Vel -m/min: 90.2 -1b/gal : 9.3 Mud Wt : 6.2 / Drill Solids 57 Funnel Vis -s/qt : 40 @ 85 ^F DC Critical Vel -m/min: 110.1 Funnel Vis : N/A / N/A Weight Material -psi: 1220 Circ. Pressure : - / 5.0 43.5 Chemical Conc -min : P/R3 -1b/100ft2 /deg : 15 / 3 Bottoms Up Inert/React : 4.79 Average SG : 2.60 95.6 Total Circ Time -min: 10s/10m Gel -lb/100ft2: 4 / 10 API F Loss -cc/30 min : 7.0 SOLIDS EQUIPMENT Size PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ Shaker #1 : 3 X 50 20 Caustic Soda 25 KG S 4 -1/32" : 1 Cake API/HT Shaker #2 25 KG S 3 -%vol: 6.5 OS-1 Solids Shaker #3 25 KG S 99 ٠: 0i1/Water -%vo1: /93.5 M-I Bar Shaker #4 : -%vol: 0.5 Sand Mud Cleaner : -1b/bb1 : 10.5MBT Centrifuge : 8.6 @ 55 ^F рΗ : 2 X 12" 12 Desander : 0.1 Alkal Mud (Pm) : 12 X 4" Desilter : 0.1 / 0.5 Pf/Mf Degasser -mg/1:750Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING 661 : 1.2 PHPA Oil Added : DUMP :60 SULPHITE : 120 Water Added :110 SURFACE+SCE :71 TOTAL MUD Mud Built : Mud Received: : 0.614 np Value Mud Disposed: 131 Kp -1b-sec^n/100ft2: 0.74047 pa Value : 0.514 Ka -1b-sec^n/100ft2: 1.38406 RIH W/ BHA.Break circ.@1533m and wash and ream to bottom- 1.5m fill. Drill f/1557-1758m. POOH for wiper trip. RIH with BHA, break circulation at 1533m and wash and ream to bottom-1.5m. Fill drill 8.5" hole from 1557-1758m. Survey -1.5 deg. Circulate bottoms up and POOH for wiper trip.

790

Daily Cost :

Cumul Cost :

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

DRILLING MUD REPORT

	I									٦	DRILLIN	G MU	REPOR	IT NO.	//		
	D Magcoba			ser/h	IDS (Halliburton C	GO ompa	ny		A		DATE Z	9 MA	/2 19 <u>/</u>		DEPTH_Z		3 70
P.O. BOX 4284	2 ■ H(OUST	ON, TE	XAS	3 77242	USA	3 \		L	J	SPUD D	ATE 9 _	IAR		NT ACTIVITY		RIP.
OPERATOR								C	ONTRA	СТО	ENT	2100		-	11	RIG NO	D.
GF /			URCE	- 3				F	EPORT FO	OR							IIP, RANGE
WELL NAME AND NO.	اک \/	MIT	-4			FIELI	D OR BLO	OCK NO.			COUNTY, PA			IE .	STATE/PROV		<u> </u>
	DUNB	AR	# 1				PPL			_ /	AREA O	TWA	Y BA	45/1		CT.	
DRILLING				CASI		!	MUD V		<u>`</u>						ON DATA		
BIT SIZE TYPE		T SIZE	1	SURF.		HOLI		PIT		'	PUMP SIZE	_	9, ×	8.8			_
DRILL PIPE TYPE		x // ENGTH			3/2 (t EDIATE	TOTA	358		268	-#,	PUMP MAK		Z ASS	7.73 SUMED	CIRCULATIO		62_
SIZE 4/2 16.6	.			in. @				626		ll ll	NAT		O EFF	95,	PRESSURE	(1)	20
DRILL PIPE TYPE		ENGTH	IN.		EDIATE	IN S	TORAGE	WE	IGHT	14	bbl/stk			stk/mi	n BOTTOMS UP (min)		
4/2 HWD		15 m		in. @		-					0.05	54/o·	072	93	(strk)	ಎ =	5 min .
B/4		ENGTH 2	PRODU		OR LINER	II	TYPE	/			6.5	5	٠.	275	TOTAL CIRC	96	prin.
0 14	16	214		in. @	MUD PRO		PHP TIES	74/1	PAC		bbl/min MI II)	PROPE	RTV SE	gal/mi			
Sample From				+	FL. D PIT	T	L. DVPIT	WEIGH	T			VISCOSITY		LO11 10	FILTRATE		
Time Sample Taken				+	22:00	 	5 30		9.3	pq		35	- 40	see/9	1 5	-7c	٠.
Flowline Temperature	(°F) / 1	ر ۍ		+	88(31)	<u> </u>	, 50	1			RECO	MMEND	ED TO	JR TRE	ATMENT		
Depth (ft) (TVD	`	<u></u>		fter	1758	17	158	- /	REDL	JCE	00	,,,,	2110	.5 13	y 2/2	1 22 1	LUTTON
Weight (ppg)	□ (lb/c	cu ft)	☐ (sp (9.3		7.3		MIL		MAI						H BARIT
Funnel Viscosity (sec	/qt) API @	86	°F		40		!2	1	5451								1 05-1
Plastic Viscosity cp @		۰F			17		6					-			EQUIA		
Yield Point (lb/100 ft²))			\top	15	1	4										
Gel Strength (lb/100 f	t²) 10 sec/1	IO min			4110	3	1										
Filtrate API (cm ³ /30 n	nin)				7.0	6	8						REMAR	KS			
API HTHP Filtrate (cr	n ³ /30 min)	@	٥F				-	-	RIL	/ ,	WITH	BH	A -	BR	EAK C	IRC.	@ 1533.
Cake Thickness (32nd	d in. API/H	THP)		_	11	1	1		WAS	11.	& RA	411	TO 1	3077	017 1.5		=144.
Solids Content (% by	Vol) □ c	alculated	d □ retort	\perp	6.5	6	· <i>5</i>	ļ	DRIL	<u></u>	81/2	1=/	155	7	- 1758	3~.	
Liquid Content (% by	Vol) Oil/W	ater		_	93.5		93.5	2	CIRC	<u> </u>	B/U	ANI	o P	004	FOR	WIR	ER
Sand Content (% by				_	0.5	_ c) • 5	_ <u></u>	RIP								
Methylene Blue Capa					10.5	1	0.5	ļ									
pH Strip	☐ Mete	er @	۰F		8.6		3.6	<u> </u>									
Alkalinity Mud (P _m)	• •				0.1		>-/										
Alkalinity Filtrate (P _I /h Chloride (mg/L)	νι ^ξ)			_ 0	1 10.5			'									
Total Hardness as Ca	loium (ma	// N		+	750		750										
	ucium (mg/			+	60		30										
PHPA			···	+	1.2		·2	+									
<u>56, </u>	-			+	120	1	20	0/	24.40		77		1-	0.2.	10-		.1
	•						,	0/3	~ ~ ~ ~	<i></i>	2 0 -	09 01	15 9	7.24	pgO/F	2.	0000
	13/13	(/)	. /	$\overline{}$	7	7	7	10/	/	-7	<u> , , , , , , , , , , , , , , , </u>	9 0 ,	7	7	7		<u> </u>
PRODUCT INVENTORY	2 10 4 4	0 05	/ /		/ /	/							/ .	/ ,	SOLIDS	EQUIPM	MENT
STARTING INVENTORY 69	1	11	f = f		f - f				(-($\overline{}$	f - f				3 ×	
RECEIVED 5 7	7 40	1			1 1						+						
USED LAST	+ .	-	++		+		 		 		+			s	SHAKER #2		
24 hr 99	4	3													MUD CLEANER		mesh
	0 44	8													CENTRIFUGE		hours
COST LAST · 4		152	7												DESANDER_	12	hours
USED		1			1 1						1					12	
M-I REPRESENTATIVE	53 223	509		PH	ONE		WARE	HOUSE I	PHONE	DAII	LY COST	Lİ		II c	DESILTER UMULATIVE CO	ST Z	hours
PAUL MA				09	3254		2			\$	790		H ON I	.8	`/2/0 SE SIDE H	2.1	
						.,,,,	1141)	COND	1		IONI	II ON I	IL VEN	OE SIDE F	ENEU	
TIME DISTRIBUT	TION (hrs)	MU	D VOLUME	ACC	OUNTING		SOLIDS	ANALY	SIS			MU	D RHEO	LOGY an	d HYDRAULI	CS	

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANAL	YSIS		ħ	/UD RHEO	LOGY and	HYDRAULIC	cs	
Rig Up/Service	1.5	Water Added (bbl)	140	Low Gravity %	6.3	Zero Get	3	Avg ROP	13.4	ECD @_		· · · · · · · · · · · · · · · · · · ·
Drilling	150	Mud Built (bbl)		Low Gravity, ppb	57.5	n Factor	0.514	% Cutting		Leak Off	@3/7:	22.90
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.8	k Factor	1.38	psi	%	hhp	HSI	Jet Vel
Circulating	1.0	Mud Disposed (bbl)	101	Bentonite, ppb	7.4	Bit Hydra	ulics	836	68	134	2.34	97
Tripping	6.0	S.C.E	41	Drill Solids %	5.1	Annular S	Section	1	2	3	4	5
Survey	0.5	SURF	20	Drill Solids, ppb	46.1	Hole Size		8-68	12.5	8.5		
Logging		DUMP	40	Shale CEC, ppb	-	Pipe OD		4.5	4.5	6.25		
Running Casing		TOTAL MUD	626	D/B Ratio	3.28	Critical Ve	elocity	89	90	110		
Testing		Starting Depth	1557	High Gravity %	0.5	Annular V	elocity	37	40	62		
Fishing		Ending Depth	1758	High Gravity, ppb	6.7	Viscosity		84	80	49		
!		New Hole Vol. (bbl)	46			Annular P	ressure	3.5	15.6	7.1		

Date : 20/03/95 Depth : 1758.0 m M-I Drilling Fluids Company Spud Date : 09/03/95 Well No.: G0003 Activity : LOGGING DRILLING FLUIDS DATA MANAGEMENT SYSTEM Description : EXPLORATION Contractor: CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area : PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: Hole Volume: 363 in Nozzles:11/11/11/ / / 1/32" Casing ID: 8.680 in Liner ID: Pits Volume: 242 in Drill Pipe 1 OD: 4.500 in 1541 m Casing TD: 312.0 m Liner TD: m Circulating Volume: 605 55.0 m Drill Pipe 2 OD: 4.500 in m Mud : FW POLYMER Casing TVD: 312.0 m Liner TVD: Drill Collar OD: 6.250 in 162.0 m SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES : 0.3 / 4 NaC1 : PIT 23:00 -gal/min : Flow Rate Sample From : 0.0 / 0 KC1 : ^F DP Annular Vel -m/min : Flow Line Temp Low Gravity Solids : 6.8 / 62 -m :1758.0/1758.0 -m/min : DC Annular Vel Depth/TVD : 0.6 / Bentonite DP Critical Vel -m/min: 76.3 -1b/qa1 : 9.3Mud Wt : 5.6 / 51 DC Critical Vel -m/min: 96.1 Drill Solids -s/qt : 40 @ 70 ^F Funnel Vis : N/A / N/A Weight Material -cps : 16 @ 65 ^F Circ. Pressure -osi: Plastic Visc : - / 5.0 Chemical Conc -min : YP/R3 -1b/100ft2 /deg : 12 / 2 Bottoms Up Inert/React: 4.14 Average SG: 2.60 Total Circ Time -min : 10s/10m Gel -1b/100ft2:3 / 13 API F Loss -cc/30 min : 6.4SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ Shaker #1 : 3 X 50 5 25 KG S 40 -1/32" : 1 M-I Bar Cake API/HT Shaker #2 -%vol: 6.5 Solids Shaker #3 -%vol: /93.5 0i1/Water Shaker #4 -%vo1:0.75Sand Mud Cleaner -1b/bb1 : 11.0MBT : 8.5 @ 55 ^F Centrifuge ρН 2 X 12" Desander : 0.1 Alkal Mud (Pm) : 12 X 4" Desilter : 0.1 / 0.45 Pf/Mf Degasser -mg/1:7500Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING PHPA : 1.2 Oil Added : :31 : 100 SULPHITE D/HOLE :30 Water Added: :605 Mud Built : TOTAL MUD Mud Received: : 0.652 np Value Mud Disposed:61 Kp -1b-sec^n/100ft2 : 0.51331 : 0.573 na Value -lb-sec^n/100ft2: 0.83798

Remarks:

RIH for wiper trip.Ream tight hole f/1533-1648m. 7m fill circulate hole clean and POOH.Hole good.Rig up and log. RIH for wiper trip. Ream tight hole f/1533-1648m 7m fill. Circulate hole clean and POOH. Hole good. Rig up and log. Run log #1, 2 & 3.

Daily Cost : 221 Cumul Cost : M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

OPERATOR DRILLING MUD REPORT DRILLING MUD REPORT NO. 12 Drillina Fluids Co. DATE 20 MAR 19 95 DEPTH 1758 M- TO PRESENT ACTIVITY P.O. BOX 42842 M HOUSTON, TEXAS 77242 USA SPUD DATE 9 MAR LOGGING OPERATOR CONTRACTOR RIG NO. GFE RESOURCES ENTURY REPORT FOR REPORT FOR SECTION, TOWNSHIP, RANGE WELL NAME AND NO. SEAN KELLY SMITH ONSHORE COUNTY, PARISH OR OFFSHORE
AREA OTWAY BASIN FIELD OR BLOCK NO DUNBAR PPL -DRILLING ASSEMBLY CASING MUD VOLUME (BBL) CIRCULATION DATA BIT SIZE #TYPE SURFACE ANNULAR VEL (ft/min) 5/8in. @312 INTERMEDIATE 81/2 36 408 197 ATIOS DP DRILL PIPE SIZE 4/2 PUMP MAKE, MODEL VAT 8P80 LENGTH TOTAL CIRCULATING VOLUM CIRCULATION PRESSURE (psi) 605 1000 DRILL PIPE LENGTH IN STORAGE SIZE 1/2 UP (min) (strk) 354 68 min 0.054/0.072 83 in. @ DRILL COLLAR SIZE LENGTH PRODUCTION OR LINER MUD TYPE 6.0 250 162 101 min MUD PROPERTIES MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE Sample From DEL ZPIT DEL ZPIT 9.3 ppg 5-7cc 35-42sec/91 Time Sample Taken 22:30 05 30 RECOMMENDED TOUR TREATMENT Flowline Temperature (°F) Depth (ft) (TVD 1758 1758 NO TREATMENT Weight ☑ (ppg) (lb/cu ft) (sp gr) 9.3 9.3 MIX SLUG Funnel Viscosity (sec/qt) API @ 70 °F LOOSING APPROX 266/HR B/HOLE 40 42 Plastic Viscosity cp @ 63 20 16 WHILE LOCGING Yield Point (lb/100 ft²) 12 12 Gel Strength (lb/100 ft²) 10 sec/10 min 3112 3113 Filtrate API (cm³/30 min) 6.4 REMARKS 6.6 API HTHP Filtrate (cm³/30 min) @ RIH - REAM 1533n- 1648m. Cake Thickness (32nd in. API/HTHP) 11 _/ SURVEY, PUMP SLUG HOLE CLEAN Solids Content (% by Vol) ☐ calculated ☐ retort 6.5 6.5 POOH - HOLE COOD Liquid Content (% by Vol) Oil/Water 93.5 93.5 RIG UP AND LOG Sand Content (% by Vol) 0-75 0.75 RUN LOG #1, 2 \$ 3 Methylene Blue Capacity ☐ Ib/bbl equiv 11.0 11.0 рΗ Strip 8.5 8.5 Alkalinity Mud (Pm) 0.1 0-1 Alkalinity Filtrate (P_f/M_f) 0.110.45.11.45 Chloride (mg/L) 750 750 Total Hardness as Calcium (mg/L) 60 60 1.2 PHPA 1.2 50, 100 100 PRODUCT SOLIDS EQUIPMENT STARTING INVENTORY 3 x 50 mest 600 (3) USED LAST 24 hr 40 CLOSING INVENTORY 560 COST LAST 24 hr

093254822 221.20 12323.39 MARSHALL NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

DAILY COST

WAREHOUSE PHONE

PHONE

DESILTER

221

USED (from fADC)

M-I REPRESENTATIV

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		N	IUD RHEOI	LOGY and	HYDRAULIC	cs	
Rig Up/Service	0.5	Water Added (bbl)		Low Gravity %	6.3	Zero Gel	2	Avg ROP	_	ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	57.5	n Factor	0.57	% Cutting	-		@ <u>317 =</u>	22.9
Reaming/Coring	2.0	Mud Received (bbl)		Bentonite %	0.8	k Factor	0.84	psi %		hhp	HSI	Jet Vel
Circulating	1-5	Mud Disposed (bbl)	61	Bentonite, ppb	7.4	Bit Hydra	Hydraulics 691 69			101	1.78	88
Tripping	3.0	D/HOLE.	30	Drill Solids %	5.1	Annular Section		1	2	3	4	5
Survey	0.5	DUMP	31	Drill Solids, ppb	46.1	Hole Size		8.68	8.5	8.5	P	
Logging	14.5			Shale CEC, ppb	-	Pipe OD		4.5	4.5	6.25		
Running Casing		TOTAL MUD	605	D/B Ratio	3.28	Critical Ve	elocity	75	76	96		
Testing		Starting Depth		High Gravity %	0.5	Annular V	/elocity	34	36	56		
Fishing		Ending Depth		High Gravity, ppb	4.7	Viscosity		68	65	42		
		New Hole Vol. (bbl)				Annular F	ressure		11.4	5.5		

Date: 21/03/95 Depth: 1758.0 m _ _ -I Drilling Fluids Company Activity: LOGGING Well No.: G0003 Spud Date: 09/03/95 DRILLING FLUIDS DATA MANAGEMENT SYSTEM Contractor : CENTURY DRILLING 11 Description: EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area : PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME CASTNG Bit: 8,500 in Casing OD: 9.625 in Liner OD: Hole Volume: 363 in Nozzles:11/17/18/ / / 1/32" Casing ID: 8.680 in Liner ID: in Pits Volume: 208 Drill Pipe 1 OD: 4.500 in 1541 m Casing TD: 312.0 m Liner TD: Casing TVD: 312.0 m Liner TVD: m Circulating Volume: 571 Drill Pipe 2 0D : 4.500 in 55.0 m m Mud : FW POLYMER Drill Collar OD : 6.250 in 162.0 m CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) MUD PROPERTIES :
sample From : PIT 24:00 : 0.0 / 0 300 | NaC1 Flow Rate -gal/min: Sample From : 0.0 / n : ^F DP Annular Vel -m/min: 43.1 I KC1 Low Gravity Solids : 7.2 / : 0.5 / Bentonite 5 DP Critical Vel -m/min: 89.0 -1b/ga1 : 9.3 Mud Wt : 6.1 / 56 Drill Solids -s/qt : 40 @ 70 ^F 108.3 DC Critical Vel -m/min: Funnel Vis : N/A / N/A 800 Weight Material Circ. Pressure -cps : 16 @ 65 ^F -psi : Plastic Visc : - / 5.0 Chemical Conc 39.9 Bottoms Up -min : P/R3 -1b/100ft2 /deg : 15 / 3 Inert/React : 4.52 Average SG : 2.60 79.9 -min: 10s/10m Gel -1b/100ft2: 4 / 12 Total Circ Time API F Loss -cc/30 min : 6.2 SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ Shaker #1 : 3 X 50 25 KG S 9 -1/32" : 1 M-I Gel Cake API/HT Shaker #2 25 KG S 2 -%vol: 6.5 Caustic Soda Solids Shaker #3 25 KG S 2 : -%vol: /93.5 Polypac R 0i1/Water 25 KG S 40 Shaker #4 -%vo1: 0.5 M-I Bar Sand 40 KG S 1 Mud Cleaner : Soda Ash MRT -1b/bb1 : 11.0Centrifuge : 8.6 @ 55 ^F ρН : 2 X 12" Desander Alkal Mud (Pm) : 0.1 : 12 X 4" Desilter : 0.1 / 0.45 Pf/Mf Degasser -mg/1 : 750Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING 661 PHPA : 1.2 Oil Added : SURFACE :10 SULPHITE : 100 D/HOLE :99 Water Added: :571 Mud Built :75 TOTAL MUD Mud Received: : 0.600 np Value Mud Disposed: 109 Kp -1b-sec^n/100ft2: 0.78428 na Value : 0.507 ka -lb-sec^n/100ft2: 1.39972

Remarks:

Cont log run #3. RIH to 1741m. Wash to bottom-4m fill. Circ hole clean and POOH. Rig up and run logs #4 & 5. Continue to run log #3. Rig down and RIH to 1741m. Wash to bottom-4m fill. Circulate hole clean-increased hole losses. POOH and rig up to run log #4 RFT/GR and log #5-VEL.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 629 Cumul Cost : 12951

DRILLING MUD REPORT

OPERATOR

	ے کے			_			_				۱ ا	DRILLIN	IG MUL	REPO	ORT NO.	/	3		
		gcobar/		. -		Ids (-		A		DATE	21 M	4R 1	9 <i>95</i>	DEPTH	1	1758	~
Maria Sale Mannegaria	24 x x 44	as that there	からがはまれ	A-3-11-1-1		SORTH MEXICO	MANUTA.	í		T	J		0		PRES	ENT ACTI			
P.O. BOX 42	842	HC	USIC)N, IE	=XAS	5 77242 1	JSA			ONTO	OTOD		ATE 9	MAI	<u> </u>	100			
	FE	- 1	Esc	URC	LES.	5				ONTRA	\mathcal{C}	EN	TUR	Y			11	rig no.	
REPORT FOR	1<13	·~ .	5741	TH.					R	EPORT FO		AN	KE	227	,			TOWNSHIP, FI	ANGE
WELL NAME AND N	in.						FIELD	OR BLO			C	OUNTY, P	ARISH OR	OFFSH	IORE	STATE/F			
			AR	//-			<u> </u>	ا حر حر			- ^	HEA O	TWA		BASIN		V1C		
DRILLIN BIT SIZE T				-	CASI		HOLE	NUD VC	DLUME			UMP SIZE			IRCULATI			1 (htm://	
81/2 4	YPE 25	/×11	SIZE	3 0:				408		, 163		UMP SIZE	:	51	× 8/2	DP			p
	YPE	/ x /	NGTH	7/	Sin. @	ョコ/ス 🙀 EDIATE	I	CIRCULA			- P	UMP MAK	E, MODEL		ASSUMED	CIRCUI		DC_ <u>60</u>	
1/2 SIZE 4 1/2					in. @	n ft		ے	571		h	AT A	P 80	2 1	EFF 95	PRESS	URE () 800	>
ORILL PIPE T	YPE	LEI	NGTH	1	NTERM		IN STO	ORAGE		IGHT	ь	bł/stk	<i>,-</i> 09		stk/m	in BOTTO			
	SOP		5-4		in. @						b	054	10.07	12	100		k)	57~	<u>.</u>
RILL COLLAR SIZI	E	į.	NGTH	PROD	OUCTION	OR LINER	MUD		,		Ш	○・7 . bl/min	2	•	300	TIME (r	CIRC min)	800	
6/4		/6	2 "		in. @			PHA	1/1	PAC	b						strk)	207	
						MUD PRO			WEIGH	Ť		. MUL	VISCOSIT		SPECIFIC	FILTE	RATE		
ample From						J.E.L. 😿 PIT		. 🗆 PIT		9.3					12 sec/			700	
ime Sample Tak					2	24:00	05	:30			פש				OUR TRE	t		,	
lowline Temperal	·)			-														
epth (ft) (TVI)		1			1758	17.	58										ERM	
/eight 12 (ppg)		☐ (lb/cı		□ (sp	gr)	9.3		٠3.		C01	171	<u>~. </u>	0 4	005	EZ	2 66	1/1	IR WI	114
unnel Viscosity	(sec/qt)	API @	70	°F		40	3	8		1050	- //	<u>'</u>							
lastic Viscosity	p @	64	۰F			16		7											
'ield Point (lb/100) ft²)					15		2											
el Strength (lb/1	00 ft²) 1	0 sec/10) min			4 112	3	113.											
iltrate API (cm³/	30 min)					6.2	6	.2						REM	ARKS				
PI HTHP Filtrate	cm ³ /3	0 min) (@	٥Ł				_	ے-	مرره		400	RU	N	# 3	PO	5		
ake Thickness (32nd in	. API/HT	THP)			11	1	1	R	(C) D	04	iN &	+ R	14	70	174	2/1	- W.	A51
olids Content (%	by Vol) ⊠ ca	lculated	□ reto	rt	6.5	6	.5	70	BO	772	· 14	400	· /-	122				
iquid Content (%	by Vol) Oil/Wa	ter			93.5		735	<u> </u>	CIR	ے.	HO	LE C	CLE.	AN.	INC	<u>e.</u>	HOLE	203
and Content (%						0.5	0	· <i>5</i>		POC	M	RI	GUP	9 <i>\$</i>	RUI	v 20	25	#4 R	FT
lethylene Blue C	Capacity	☐ lb/bbl e	equiv 13 mud			11.0	11	1.0	-	RIG	ے ۔	10 8	1 RO	אאט	209	#5	V	EL.	
H ᡚ Strip)	☐ Mete	r @ 50	o °F		8.6	8	5											
Nkalinity Mud (P	n)					0.1		.05							ı				
Ikalinity Filtrate	(P _I /M _I)				1	0.11.45	.05	7.45	-										
Chloride (mg/L)						750	7	50											
otal Hardness as	Calciu	m (mg/L	_)		$\neg \vdash$	60		60											
PHPA						1-2	1.	2								•			
503						100	10	0 0											
-										-									
			,																
	750	7.	350	OP OP L	» /s	194	7	7	7	$\overline{}$	7	$\overline{}$	7	7	7	7			
RODUCT NVENTORY	CAL	/6 ^W	/P 4	OP OP	, Ob.	'	/				/					/ so	LIDS	EQUIPMEN ³	Т
TARTING	_				(1 1	-					1	f	<u> </u>	1 1				
	560	224	44	20	78	' -							1.	 	+	SHAKER #1	ـــــا	3 × 50	<u>.</u> me
ECEIVED		l 											100	<u> </u>		SHAKER #2	5	<u> </u>	me
SED LAST	40	9	2	1	2											MUD CLEA	NER.		me
LOSING		7,5		10															
OST LAST	•20 •20	215	42	17	76						~~~~~	+	 	 	+	CENTRIF	uGE_		ho
hr ~ .		84.96	14-70	14-31									 	ļ		DESAND	ER		ho
SED rom IADC)	5.53	9.44	22.35	14.31	131.7	14										DESILTE	A		ho
-I REPRESENTATI					PH	IONE		WARE	HOUSE F	HONE		Y COST			T (CUMULATIV		ST	
PAUL A	IAR	541	926		09	32546	322				18	628	3.6	5	1/2	\$ 129	75.	2.04	
				nr is	sur.	ECT 10	THE	TERMS	S AND	CONE					N REVE	RSE SIE	E H	EREOF.	
TIME DISTRI	BUTIO	V (hrs)	MUD	VOLUM	IE ACC	COUNTING		SOLIDS	ANAIY	SIS	T	***************************************	NA.	(ID Bh	EOLOGY a	nd HVDD	AI 11 17	9	
		,	-			,					#_								
Ria Un/Service	- !	1.5	Wate	r Added	(hhl)	1 T	low G	ravity 0%	I	12	700	o Got T		Ava D	OB -	ECF	۱ ۵		

Leak Off @ 3/7- : 22.9005 Drilling Mud Built (bbl) 75 Low Gravity, ppb 57.5 n Factor 0.507 % Cutting Reaming/Coring Mud Received (bbl) Bentonite % 0.8 k Factor 1.40 psi % hhp HSI Jet Vel Circulating 109 Mud Disposed (bbl) 1.0 Bentonite, ppb 7.4 Bit Hydraulics 243 30 43 O.75 52 Tripping Drill Solids % 6.0 SURFACE 10 5.1 Annular Section 2 3 Survey Drill Solids, ppb DIHOLE 99 Hole Size 46.1 8.68 8.5 8.5 Logging 15.5 Shale CEC, ppb Pipe OD 6.25 4.5 4.5 Running Casing 571 D/B Ratio 3·28 Critical Velocity 88 TOTAL MUD 89 108 Testing Starting Depth High Gravity % 0.5 Annular Velocity 68 43 40.5 Fishing **Ending Depth** High Gravity, ppb 6 . 7 . Viscosity 75 45 79 New Hole Vol. (bbl) Annular Pressure

- -Date: 22/03/95 Depth : 1758.0 m M-I Drilling Fluids Company Well No.: G0003 Spud Date: 09/03/95 Activity : LOGGING DRILLING FLUIDS DATA MANAGEMENT SYSTEM ______ Description: EXPLORATION Contractor : CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: Hole Volume: 363 Nozzles:11/17/18/ / / 1/32" in Casing ID: 8.680 in Liner ID: Pits Volume: 185 in Drill Pipe 1 0D : 4.500 in 1541 m Casing TD: 312.0 m Liner TD: m Circulating Volume: 548 Drill Pipe 2 OD: 4.500 in 55.0 m Casing TVD: 312.0 m Liner TVD: m Mud : FW POLYMER Drill Collar OD: 6.250 in 162.0 m (% / 1b/bb1) SOLIDS ANALYSIS CIRCULATION DATA MUD PROPERTIES : 0.0 / 0 : PIT 22:30 -gal/min : 250 NaC1 Flow Rate Sample From : 0.0 / 0 35.9 KC1 DP Annular Vel -m/min: : ^F Flow Line Temp -m :1758.0/1758.0 Low Gravity Solids : 8.0 / 73 -m/min : 56.3 DC Annular Vel Depth/TVD : 0.5 / Bentonite 4 DP Critical Vel -m/min: 83.0 -1b/gal: 9.4 Mud Wt : 6.9 / 63 107.5 Drill Solids -s/qt : 42 @ 70 ^F DC Critical Vel -m/min: Funnel Vis : N/A / N/A -cps : 20 @ 65 ^F 600 Weight Material Circ. Pressure -psi : Plastic Visc : - / 5.0 Chemical Conc -min : 47.9 P/R3 -1b/100ft2 /deg : 15 / 2 Bottoms Up Inert/React: 4.88 Average SG: 2.60 92.1 Total Circ Time -min : 10s/10m Gel -1b/100ft2:4 / 13 API F Loss -cc/30 min : 6.4 SOLIDS EQUIPMENT Size PRODUCTS USED LAST 24 HOURS Hours HTHP F Loss -cc/30 min: @ Shaker #1 : 3 X 50 25 KG S 11 -1/32":1M-I Gel Cake API/HT Shaker #2 25 KG S 5 Polypac R -%vol: 7 Solids Shaker #3 25 KG S 136 -%vol: /93 M-I Bar 0il/Water Shaker #4 40 KG S 1 : -%vol: 0.75Soda Ash Sand Mud Cleaner -1b/bb1 : 11.5MBT Centrifuge : 8.5 @ 55 ^F рΗ 2 X 12" Desander Alkal Mud (Pm) : 0.1 : 12 X 4" Desilter : 0.05/ 0.45 Pf/Mf Degasser -mg/1:750Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING bbl PHPA : 1.1 SURFACE :13 Oil Added : SULPHITE : 80 :30 D/HOLE Water Added: :668 Mud Built :140 TOTAL MUD Mud Received: : 0.652 np Value Mud Disposed:43 Kp -lb-sec^n/100ft2: 0.64163 : 0.622 na Value -1b-sec^n/100ft2: 0.77430

Cont log run #5, run log #6. P/U BHA and RIH, circ and trip out to 1176m. RIH, circ & POOH to log. Run log #7 Continue log run #5. R/U and run log #6. Rig down BPB and pick up BHA. RIH-3m fill-circulate hole clean and POOH on wiper trip to 1176m. RIH-1.5m fill. Circulate bottoms up. Pump slug and POOH to continue logging. Rig up and run log #7-RFT/CR.

Daily Cost : 1529 Cumul Cost : M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE _____

15:41

KL. RIH. MOG. WS. FEB. 20.02 RECEIVED 23 MAR PRILLING MUD REPORT

OPERATOR

DRILLING MUD REPORT NO.

14

PRESENT ACTIVITY

P.O. BC	X 42842	■ HOUSTO	N, TEXAS 7724	2 USA		SPUD DATE_Z	MAR	LOGGING	
OPERATO	RGF	E RESO	DURCES		CONTRAC	TOR	Y	// RIG NO	
REPORT FO	• •	W 574177	14		HEPORT FOR	EAN KELL	۷.Υ	SECTION, TOWNSH	
WELL NAME		UNBAR	#/	FIELD OR BLOCK		COUNTY, PARISH C		STATE/PROVINCE	
DI	RILLING AS	SEMBLY	CASING	MUD VOL	UME (BBL)	\ .	CIRCULAT	ION DATA	
BIT SIZE	HYPE	JET SIZE	SURFACE	HOLE	PITS	PUMP SIZE	6 × 8-51	N. ANNULAR VEL (A)(min)	
011	77. ~	1x11,1x18	05%	1 100	111	11	F11	-	<i></i> /

CIRCULATION A7205 18 in # 312 m 408 x /7 LENGTH PUMP MAKE, MODEL NAT FR 50 INTERMEDIATE TOTAL CIRCULATING VOLUME ASSUMED EFF 95 SIZE 41/2 PRESSURE (psi) NAT 600 548 BOTTOMS TYPE LENGTH INTERMEDIATE IN STORAGE WEIGHT SIZE 4 1/2 60 m 55-120 9.2 83 0.054/0072 LENGTH DRILL COLLAR SIZE PRODUCTION OR LINER MUD.TYPE TOTAL CIF 6.0 250 TIME (min) (strk) 92 min 6 14 162. PH MUD PROPERTIES MUD PROPERTY SPECIFICATIONS

Sample From CEL PHT © F.L. LyPIT 9.3009 35-42 sec/91 05:30 Time Sample Taken 22:30 TRIF RECOMMENDED TOUR TREATMENT Flowline Temperature (°F) Depth (ft) (TVD MUD - 9.3ppg 1758 1758 ADDITIONAL PREPARE RESERVE Weight 🗹 (ppg) ☐ (fb/qu ft) (sp gr) 9.4 3011/3 Funnel Viscosity (sec/qt) API @ 42 40 Plastic Viscosity op @ 20 70 16 Yield Point (lb/100 ft²) 65 15 14 0/5 . 4.77 3111 Gel Strength (lb/100 ft²) 10 sec/10 min 4 113 504 Filtrate API (cm3/30 min) 6.4 6.4 REMARKS API HTHP Filtrate (cm²/30 min) @ CONTIN LOG RUN Cake Thickness (32nd In. API/HTHP) 1 7.0 7.0 Liquid Content (% by Vol) Oil/Water - 193 193 Sand Content (% by Vol) 0.50 0.75 Methylene Blue Capacity C cmilent may 70 LOC 11.5 рΗ ☐ Strip ☐ Meter @ 8.5 B:5 Alkalinity Mud (Pm) 0.05 005 Alkalinity Filtrate (P_f/M_f) 051-40 051.45 Chloride (mg/L) 750 750 Total Hardness as Calcium (mg/L) 60 60 PHPA 1.1 1.1 <u>ئرەي</u> 80 80

PRODUCT SOLIDS EQUIPMENT STARTING HIVENTORY 3 x50 76 RECEIVED USED LAST 24 Nr 5 CLOSING 71 204 18 COST LAST 21 752 103. USED (from IAOC) DESILTER. M-I REPRESENTATI PHONE WAREHOUSE PHONE DAILY COST \$ 14480.97 \$ 1528.93

093254822 PAUL MARSHAL NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

						,						
TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS			MUD RHEOL	.OGY and	HYDRAULI	CS	
Rig Up/Service		Water Added (bbl)	I	Low Gravity %	60	Zero Gel	2	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)	140	Low Gravity, ppb	54.3	n Factor	0.42	% Cutting	-	Leak Off	@3/Z:	22.9/
Reaming/Coring		Mud Received (bbl)		Bentonite %	1.0.9	k Factor	0.77	pal	96	hhp	HSI	Jet Vel
Circulating	5.5	Mud Disposed (bbl)	43	Bentonito, ppb	7.8	Bit Hydrai	ulics	171	28	25	044	43
Tripping	5.0	DIHOLE	30	Drill Solids %	4.7	Annular S	nnular Section		2	3 .	4	5
Survey		SURFACE	/3	Drill Solids, ppb	42.5	Hole Size		8.68	8.5	8.5	<u> </u>	
Logging	13.5			Shale CEC, ppb	ji-3	Pipe OD		4.5	4.5	6.25		
Running Casing	T	TOTAL HUD	668	D/B Ratio	3.02	Critical Vo	olocity	81	83	108		
Testing		Starting Depth		High Gravity %	1.8	Annular V	elocity	34	36	56		
Fishing	1	Ending Depth		High Gravity, ppb	14.8	Viscosity		77	74	50	<u> </u>	
	1	New Hole Vol. (bbl)	-			Annular F	ressure	2.9	13.0	60	1	1

```
Date: 23/03/95
                                                                                 Depth: 1758.0 m
M-I Drilling Fluids Company
                                         Well No. : G0003
                                                         Soud Date: 09/03/95
                                                                              Activity: CIRC.
DRILLING FLUIDS DATA MANAGEMENT SYSTEM
Description : EXPLORATION
                                  Contractor: CENTURY DRILLING 11
Operator : GFE RESOURCES
                                                                   Location : OTWAY BASIN
                                 Field/Area : PPL 1
Well Name: DUNBAR 1
Report For: KEN SMITH
                                                                            MUD VOLUME
                                                                                           (bb1)
                                               CASTNG
Bit: 8.500 in
                                     Casing OD: 9.625 in Liner OD:
                                                                                 Hole Volume: 363
Nozzles:11/17/18/ / / 1/32"
                                                                       in
                                     Casing ID: 8.680 in Liner ID:
                                                                                 Pits Volume: 131
                                                                       in
Drill Pipe 1 OD: 4.500 in 1541 m
                                     Casing TD: 312.0 m Liner TD:
                                                                       m Circulating Volume: 494
Drill Pipe 2 OD : 4.500 in
                       55.0 m
                                     Casing TVD: 312.0 m Liner TVD:
                                                                       m Mud : FW POLYMER
Drill Collar OD : 6.250 in 162.0 m
                                                                   SOLIDS ANALYSIS ( % / 1b/bb1)
                                         CIRCULATION DATA
 MUD PROPERTIES
                                                                           : 0.0 / 0
                                                          275
                                                                NaC1
                   : FL 23:00
                                  Flow Rate
                                              -gal/min :
Sample From
                                                                                   : 0.0 /
                                                                  KC1
                                                          39.5
                                  DP Annular Vel -m/min:
                  : 84 ^F
Flow Line Temp
                                                                  Low Gravity Solids : 8.0 /
                                                                                            73
                                  DC Annular Vel -m/min:
                                                          61.9
                -m :1758.0/1758.0
Depth/TVD
                                  DP Critical Vel -m/min:
                                                          88.8
                                                                  Bentonite
                                                                                   : 0.6 /
             -1b/gal : 9.4
Mud Wt
                                                                                   : 6.9 / 63
                                  DC Critical Vel -m/min:
                                                         117.6
                                                                  Drill Solids
              -s/qt : 44 @ 80 ^F
Funnel Vis
                                                                                : N/A / N/A
: - / 5.0
              -cps : 23 @ 70 ^F
                                  Circ. Pressure
                                                 -psi :
                                                          700
                                                                  Weight Material
Plastic Visc
                                                                  Chemical Conc
P/R3 -1b/100ft2 /deg : 18 / 2
                                  Bottoms Up
                                                  -min :
                                                          43.5
                                                                  Inert/React : 4.63 Average SG : 2.60
10s/10m Ge1 -1b/100ft2: 3 / 12
                                  Total Circ Time
                                                  -min:
                                                          75.4
API F Loss -cc/30 min : 6.4
                                                                  SOLIDS EQUIPMENT Size
                                                                                          Hours
                                     PRODUCTS USED LAST 24 HOURS
HTHP F Loss -cc/30 min:
                                                                  Shaker #1 : 3 X 50
                                                                                          2
Cake API/HT
             -1/32" : 1
                                                                  Shaker #2
Solids
              -%vol : 7
                                                                  Shaker #3
               -%vol:
                         /93
0il/Water
                                                                  Shaker #4
               -%vo1 : 0.75
Sand
                                                                  Mud Cleaner
             -1b/bb1: 12.0
MBT
                                                                  Centrifuge
                   : 8.5 @ 55 ^F
рΗ
                                                                              : 2 X 12"
                                                                  Desander
                   : 0.1
Alkal Mud (Pm)
                                                                             : 12 X 4"
                                                                  Desilter
                   : 0.05/ 0.45
Pf/Mf
               -mg/1 : 750
                                                                  Decasser
Chlorides
                    : 60
Hardness Ca
                                                                     MUD VOLUME ACCOUNTING 661
                    : 1.1
PHPA
                                                                 Oil Added : SURFACE+SCE :32
                    : 50
SULPHITE
                                                                 Water Added: 40 D/HOLE
                                                                                           :36
                                                                                TOTAL MUD
                                                                                           :640
                                                                 Mud Built :
                                                                 Mud Received:
                    : 0.642
np Value
                                                                 Mud Disposed:68
Kp -1b-sec^n/100ft2 : 0.79811
 na Value
                   : 0.656
      -1b-sec^n/100ft2: 0.73210
 Ka
Coneinue log run#7.POOH w/blocked tool.Rerun log #7.POOH P/U 8.5" Drl assy and RIH to 1755.5m.wash to bottom. Circ
Continue to run log #7-RFT. Pull blocked RFT tool to surface. Re-run log #7.
Rig down BPB. Pick up 8.5" drilling assembly and RIH to 1755.5-2.5m fill.
Wash to bottom and circulate hole.
```

Daily Cost :

0 Cumul Cost :

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

DRILLING MUD REPORT

OPERATOR

						_			F	7	DRILL	ING MU	L HEPOR	IT NO.	15		
	U III Magcobai		$g F_{ADres}$	UI.	Ids (GO.	•		(A)		DATE	ىر 23	11 R ₁₉	95	DEPTH_	758	~
on the statement tacker on	response region	PARTICULAR CONTRACTOR	grade de la constante de la co	vitra in	SHERWING THE CO.	Paneral I		1							IT ACTIVITY		
P.O. BOX 42842	2 ■ HC	OUST	ON, TE	XAS	77242	USA						DATE 2	MAR	·l	CIR	CUZ	ATE.
	E	RES	OUR	CE	<i>S</i> .				CONTRA			701	24		11	RIG NO.	
REPORT FOR	151	417	14					F	REPORT FO		4N	KE	224			N, TOWNSHI	
WELL NAME AND NO.	UNC		•	/			OR BLOCK			II c	OUNTY,	PARISH C	OR OFFSHOR	IE	STATE/PROV		
DRILLING A				CASII	NG	1	UD VOI		= (BBL)	- -	St.	212		CULATIO		- ′ · 	
BIT SIZE TYPE	JE	1 SIZE		SURFA		HOLE	00 10.	PIT		- F	UMP SIZ	ZE .			ANNULAR V	'EL (fl/min)	
8/2 ATTO		11, 1-1. 17 .	95%	Bn. @	312 1	3:	58	1	136				51/2 x	7.75	DP_40	DC_	62
DRILL PIPE TYPE	1	ENGTH	IN ⁻	renme	DIATE	TOTAL (CIRCULAT			F	UMP MA	KE, MODI	ASS	UMED	CIRCULATIO	(nei)	
SIZE 1/2 166# DRILL PIPE TYPE		ENGTH	101	in. @	DIATE	IN STO		94	1 EIGHT	K	VAT bl/stk	BP	80	95 %		7	00
SIZE 1/2 HUO	1	55-	"			II .	76	- 1	9.2	- 11		4/0.0		stk/min 121	BOTTOMS UP (min) (strk)	55	min .
DRILL COLLAR SIZE		ENGTH	PRODU	in. @	OR LINER	MUD T					6.5	-/		<u> </u>	TOTAL CIRC		
6/4	16	52 -		in. @) fi		OHR	A	PAC	- l	bl/min	<u> </u>		275 gal/min	TIME (min) (strk)	7	smin.
					MUD PR	OPERTI		WEIGH	IT.		MU		PERTY SF	PECIFICA	IONS		
Sample From					F.L. 🗆 PIT	□ F.L.	₩ PIT	WEIGH	9.3	00	•	viscos	5-4	2 sec/9	1	5-7	
Time Sample Taken					4:00	05	30			7						· · ·	
Flowline Temperature (°F) (°C				34 (29)	1 -					HEC	OMME	NDED TOU	JR THEA	IMENT		
Depth (ft) (TVD		1			758	175							MEN				
Weight ☑ (ppg)	□ (lb/c		☐ (sp g		9.4+	9.									DILL		
Funnel Viscosity (sec/o		<u> </u>	°F	- -	44	3			CON	711	<i>/</i>	15E	0=	SC!	EWH	ILE	CIRC
Plastic Viscosity cp @	70) °F			23	13											
Yield Point (lb/100 ft²) Gel Strength (lb/100 ft²)	2) 10 000/1				18	12											
Filtrate API (cm³/30 mi		U Milit		+	3 12	31							DEMAR	1/0			
API HTHP Filtrate (cm	·		۰۴		6.4	6.	6			-			REMAR			/ 4	
Cake Thickness (32nd				-	11	11	, +								RFT	-	
Solids Content (% by			□ retort	+	7.0	6.											SURF
Liquid Content (% by				+	93		3.5								14 00		
Sand Content (% by V				+	0.75	0.									\$ 10		<u>v 1755</u>
Methylene Blue Capac	•	equiv			12.0	11.										4 524 /	
pH □ Strip	☐ Mete		۰F	+	8.5	8.			1301	101	7,	ر بے	RC A	40 Z.C			
Alkalinity Mud (P _m)				+	0.05		05										
Alkalinity Filtrate (P _I /M	1)				051.43				*						*****		
Chloride (mg/L)				T	750	75											
Total Hardness as Cald	cium (mg/	L)			60	8					•						
PHPA					1.1	1.		•									
<i>5</i> 0₹					50	50	9										
-								0/5	AND	12	7.8	pg	U/F	9.40	90/	- 4	GPM
		,-		<u> </u>	,- -	<u> </u>			5147							7	GPM
PRODUCT INVENTORY						/ ,	/ ,							/ /	/ SOLIDS	EQUIPME	ENT
STARTING	1	f	f = f		f - f	-	-		f - f		f	$\overline{}$	f - f				
INVENTORY	1.	+			-						+-		+	SH	AKER #1	<u> </u>	o mesh
RECEIVED USED LAST		 									ļ	1,45		SH	AKER #2		/ mesh
USED LAST 24 hr														ми	D CLEANER.		mesh
CLOSING INVENTORY											T				ENTRIFUGE		hours
COST LAST	1										1					,	
USED	+	 			 -						\vdash		+	—— °	ESANDER		hours
(from IADC)		<u> </u>		1	<u> </u>					11	<u> </u>		$\perp \perp \perp$		ESILTER		hours
M-I REPRESENTATIVE				PHC			WAREHO	OUSE F	PHONE	11 .	COST			CUI	AULATIVE CO		
PAUL MA					9 <i>325</i> 4	1		A NII	COND	#		00		DENEDO	/44 E SIDE H	80.9	7
100 110.6	> 3 [[1]		10 0	J (201	54571 IL)	. 1 . 1 . 1 . 1			, COND	1110	10 01	- i ruh	······································	TEVERS	c SIDE F	EHEOF.	···
TIME DISTRIBUTION	ACCC	DUNTING	S	OLIDS A	NALY	SIS			٨	/UD RHEO	LOGY and	HYDRAULI	cs				
Rig Up/Service	T	10/01-	r Addo-1 (*)	b))	10	Lov: C	uibe o'			+-	<u>а</u> .Т		T	T	1		
Drilling			r Added (b Built (bbl)	UIJ	40	Low Gra			6.0	#	Gel	2	Avg ROP	<u> </u>	ECD @_		- 27 0
Reaming/Coring			Received (ppl)		Low Grade Bentonite			54.3	1			% Cutting	0,	 	1	- 22.9p
Circulating	1.0		Disposed (68	Bentonit		-+	0.9		ctor 2	o. 732	psi 201	%	hhp	HSI	Jet Vel
Tripping	7 -		/ , /		3/	Drill Coli		-+	7.8	H BILL	yuraul		297	30	33	0.58	48

4.7 Survey Drill Solids, ppb 8.5 SURF 17 Hole Size 425 8.68 8.5 Logging 19.5 Shale CEC, ppb SCE 4.5 15 Pipe OD 6.25 4.5 Running Casing TOTAL MUD 640 D/B Ratio 3.02 Critical Velocity 87 89 118 Testing Starting Depth High Gravity % Annular Velocity 1.8 38 40 62 Fishing **Ending Depth** High Gravity, ppb Viscosity 90 85 55 15.0 7.1 14.8 New Hole Vol. (bbl) Annular Pressure 3.3

Date : 24/03/95 Depth: 1758.0 m M-I Drilling Fluids Company Well No. : G0003 Spud Date : 09/03/95 Activity: RUN CASING DRILLING FLUIDS DATA MANAGEMENT SYSTEM Contractor : CENTURY DRILLING 11 Description : EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: Hole Volume: 363 Nozzles:11/17/18/ / / 1/32" Pits Volume: 146 Casing ID: 8.680 in Liner ID: in Drill Pipe 1 OD: 4.500 in 1541 m m Circulating Volume: 509 Drill Pipe 2 OD: 4.500 in 55.0 m Casing TD: 312.0 m Liner TD: m Mud : FW POLYMER Drill Collar OD : 6.250 in 162.0 m Casing TVD: 312.0 m Liner TVD: SOLIDS ANALYSIS (% / lb/bbl) CIRCULATION DATA MUD PROPERTIES : 0.0 / 0 NaC1 Flow Rate -gal/min: 275 : FL 23:00 Sample From : 0.0 / 39.5 KC1 : 80 ^F DP Annular Vel -m/min : Flow Line Temp Low Gravity Solids : 7.2 / 66 -m/min : 61.9 -m :1758.0/1758.0 DC Annular Vel Depth/TVD : 0.6 / Bentonite DP Critical Vel -m/min: 73.0 -1b/gal : 9.3 Mud Wt -s/qt : 39 @ 75 ^F : 6.0 / 55 Drill Solids DC Critical Vel -m/min: 90.7 Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 700 Plastic Visc -cps : 14 @ 70 ^F Circ. Pressure -psi : 43.5 P/R3 -1b/100ft2 /deg : 11 / 2 Bottoms Up -min : Inert/React : 4.06 Average SG : 2.60 Total Circ Time -min: 77.7 10s/10m Gel -lb/100ft2: 3 / 10 -cc/30 min : 6.4API F Loss SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: 3 X 50 4 Shaker #1 : M-I Gel 25 KG S 8 -1/32" : 1 Cake API/HT Shaker #2 25 KG S 1 0S-1 -xvo1 : 6.5Solids Shaker #3 25 KG S 41 M-I Bar -%vol: /93.5 Oil/Water Shaker #4 -%vol: 0.5 Sand Mud Cleaner : -1b/bb1 : 12.0MBT Centrifuge : 8.7 @ 55 ^F ρН : 2 X 12" 2 Desander Alkal Mud (Pm) : 0.2 : 12 X 4" Desilter : 0.08/ 0.6 Pf/Mf Degasser : -mg/1:750Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING 661 : 1.0 PHPA Oil Added : SURFACE+SCE :25 SULPHITE : 100 Water Added: 40 D/HOLE :30 TOTAL MUD :625 Mud Built : Mud Received: : 0.641 Mud Disposed:55 Kp -1b-sec^n/100ft2: 0.48940 : 0.548 na Value -1b-sec^n/100ft2: 0.87230 Ka Remarks: Cont circ hole clean. Lay out DP & drill assy. Rig up and run casing. Work and circ tight hole f/1123-1130m.

Continue to circulate hole clean, pump slug and POOH. Lay down DP and drilling assembly. Rig up and run 7" casing. Casing held up at 1130 m. Rig up and circulate hole. Circulates freely. Work and circulate casing from 1123-1130m.

Daily Cost : 353 Cumul Cost : 14833

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

DRILLING MUD REPORT | DRILLING MUD REPORT NO.

		D:	II =	F	'I.	-:	Λ_			(I	Γ	DHILLIN	IG MUL	REPU	HI NO.	16	
	Marie Street N					ids (50. Company	y		A		DATE 2	4 MA	IR_ 19.		DEPTH_ / 758	
P.O. BOX	< 42842	■ HC	DUSTO	ON. TE	XA	\S 77242	USA		ı		J	SPUD D	ATE 9 2	MAR		RUN CASING	
OPERATOR	3	_								ONTRA	ACTO	R.				RIG NO.	
REPORT FOR				OUR	_	123			-	EPORT F		CEN	FUR	У		SECTION, TOWNSHIP, RA	NGE
WELL NAME A	1<1.	EN.	5141	TH			11					EAN				ONSHORE	
WELL NAME A	AND NO.	UN.	BAI	2 #	- 2	1		OR BLOO				COUNTY, PA				STATE/PROVINCE VICTORIA	
DRI	ILLING AS					SING	N	NUD VC	DLUME	(BBL)				CII	RCULAT	ION DATA	
BIT SIZE	TYPE	JE	T SIZE			RFACE	HOLE		PIT	_	1	PUMP SIZE		6 ,	8.5	N. ANNULAR VEL (ft/min)	
				19%	B in.	@312 M	کہ 🌡	371		138				5.5	7.75		<u> 52</u>
DRILL PIPE SIZE	TYPE	LE	NGTH	11	NTER	MEDIATE	TOTAL	CIRCUL/	ating vo	DLUME	- 11	PUMP MAK	7P 5	OLE	SUMED F	CIRCULATION PRESSURE (psi)	_
DRILL PIPE	TYPE	LE	NGTH	10		. @ ft	IN STO			IGHT		bbl/stk	3P E	80	stk/m	% 700	
SIZE						. @ ft	1			9.2		0.054	6.07.	2	121	UP (min) 55 mg	i
DRILL COLLA	R SIZE	LE	NGTH	PROD		ON OR LINER	MUD 1					6.5	7		275	TOTAL CIRC	
					in.	. @ ft	J		PAJ	PAC		bbl/min			gal/m	nin (Strk)	um.
					\dashv	MUD PRO	7		WEIGH	Ť			VISCOSIT		PECIFIC	CATIONS FILTRATE	
Sample From					_	Ø F.L. □ PIT	+	. SØ PIT		9.	3,	pg	3.	5 - 4	12 su		2 .
Time Sample		n /-	- 1		-	23:00		30		·····	•					EATMENT	
Flowline Tem	TVD	r) (°c	c)		_	80 (27			<u> </u>								
Depth (ft)		□ /lb/a			<i>(</i> 4)	1758		58 3+								WT: 9.3ppg	3 _Y
Weight □ (□ (lb/c	75	□ (sp	917	9.3	 		1	-			,			SCE	
Plastic Visco		70			-	39	4									MT MIX WATE	
Yield Point (I			<u> </u>			14 	12		_	~ 0	, <u>c</u>	HAR	G 12	FOR	/54	NOH - STOCK	CAD
Gel Strength	<u>-</u>	10 sec/1	 0 min		\neg	3110		110	ļ								
Filtrate API (6.4		4	 					REMAI	RKS.		
API HTHP F				۰F	\neg	- 5 -	T -		<u> </u>							POOH - LA	
Cake Thickn						11	/	1	1			00					
Solids Conte	ent (% by Vo	ol) 🗹 ca	alculated	□ retor	,	6.5	+	.5								ASING	
Liquid Conte	ent (% by Ve	ol) Oil/Wa	ater			93.5		13.5	ı							1130m · WORK	ســـــــــــــــــــــــــــــــــــــ
Sand Conter	nt (% by Vo	1)				0.5	+	5								3m - 1130m	
Methylene B	lue Capacit	y □ lb/bbl ∪ cm³/cr	equiv			12.0	12.						<u> </u>			<u> </u>	
	Strip	☐ Mete		۰F		8.7	8										
Alkalinity Mu	ıd (P _m)			***************************************		0.15	0.1	15							1		
Alkalinity Filt	trate (P _f /M _f)					.0810.6	.08	1-6				:					
Chloride (mg	g/L)					750	75	50									
Total Hardne	ss as Calci	um (mg/	L)			60	60	9									
PHP	Δ					1.0	1.	6	,								
503	-					100	100	٥									
							-			512T		12.8			9.30	P3 0/F 2GP 4GPM	
	BARI	(/ V	7>	7	_/	7	/	7	1	7	7	7	7	7	7	/	
PRODUCT INVENTORY	BAR	CEV	100	/ .		///	/ /	/ ,							/ ,	SOLIDS EQUIPMENT	
STARTING INVENTORY		J					-	-				1					
RECEIVED	384		8				-+					 	<u> </u>			SHAKER #1 3 x 50	mesh
USED LAST	-	!	<u> </u>							ļ	<u> </u>	<u> </u>	100	· .		SHAKER #2	mest
24 hr	41	8	1								L					MUD CLEANER	mest
CLOSING INVENTORY	343	196	7													CENTRIFUGE	hour
COST LAST 24 hr	226		50.95														
USED		1				+ +				 					\vdash	7	hour
(from IADC) M-I REPRESE	5.53	9.44	50.95		Te	PHONE		IMADE:	IOUSE F	PIONE:	1 50	LY COST	L	L	L	DESILTER	hour
_					- 1	HUNE 1932546	972	WARE	JUJE I	· MINE	\$. 20			5 14834 · 17	
PAUL				DT IC C		<u> </u>		EDM							DE:::=		
	NOTICE	: IHIS	HEPU	HI 15 5	OUE	SUECI IO	IHE I	EHIVIS	AND	CONI	אונוכ	JNS SET	FORT	H ON	HEVEF	RSE SIDE HEREOF.	
TIME DI	STRIBUTIC	N (hrs)	MUE	VOLUM	E AC	COUNTING	S	SOLIDS	ANALY	SIS			М	UD RHE	OLOGY a	nd HYDRAULICS	
In:- 11-10			11			1					11	T			1		

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		N	NUD RHEOL	OGY and	HYDRAUL	cs	
Rig Up/Service	2.5	Water Added (bbl)	40	Low Gravity %	6.0	Zero Gel	2	Avg ROP	-	ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	54.3	n Factor	0.656	% Cutting		Leak Off	@ 317=	= 22.9/4
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.8	k Factor	0.73	psi	%	hhp	HSI	Jet Vel
Circulating	4.0	Mud Disposed (bbl)	55	Bentonite, ppb	7.8	Bit Hydraulics 207			30	33	0.58	48
Tripping	8.0	DIHOLE	30	Drill Solids %	4.7	Annular S	Section	1	2	3	4	5
Survey		SURFACE	10	Drill Solids, ppb	42.5	Hole Size)	8.68	8-5	8.5		
Logging		SCE	15	Shale CEC, ppb	-	Pipe OD		4.5	4.5	6.25		
Running Casing	9.5	TOTAL MUD	625	D/B Ratio	3.02	Critical Ve	elocity	87	89	118		
Testing		Starting Depth		High Gravity %	1.8	Annular V	/elocity	38	40	62		
Fishing		Ending Depth		High Gravity, ppb	14.8	Viscosity		90	85	55		
		New Hole Vol. (bbl)				Annular F	ressure	3.3	15.0	7.1		

Date : 25/03/95 Depth : 1758.0 m M-I Drilling Fluids Company Spud Date : 09/03/95 Activity: WORK CASING DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No. : G0003 Contractor : CENTURY DRILLING 11 Description : EXPLORATION Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: in Hole Volume : Nozzles: / / / / 1/32" Casing ID: 8.680 in Liner ID: Pits Volume : in in 1758 m Drill Pipe 1 OD: m Circulating Volume: 532 Casing TD: 312.0 m Liner TD: Drill Pipe 2 OD: in m m Mud : FW POLYMER Casing TVD: 312.0 m Liner TVD: Drill Collar OD: m in SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES : : 0.0 / 0 NaC1 Flow Rate -gal/min: 160 : FL 23:00 Sample From : 0.0 / DP Annular Vel KC1 : 74 ^F -m/min : Flow Line Temp Low Gravity Solids : 8.0 / 73 -m/min : -m :1758.0/1758.0 DC Annular Vel Depth/TVD : 0.6 / DP Critical Vel -m/min: Bentonite -1b/gal : 9.4 Mud Wt : 6.8 / 62 -s/qt : 39 @ 68 ^F -cps : 16 @ 55 ^F Drill Solids DC Critical Vel -m/min: Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 Circ. Pressure -psi: Plastic Visc P/R3 -1b/100ft2 /deg : 12 / 2 Bottoms Up -min: Inert/React : 4.41 Average SG : 2.60 -min: 10s/10m Gel -1b/100ft2: 3 / 10 Total Circ Time API F Loss -cc/30 min : 6.6SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ : 3 X 50 24 Shaker #1 25 KG S 10 -1/32": 1 M-I Gel Cake API/HT Shaker #2 -%vo1 : 7.0 Solids Shaker #3 : -%vol: /93 0il/Water Shaker #4 -%vo1:0.5Sand Mud Cleaner -1b/bb1 : 12.5MBT Centrifuge : 8.5 @ 55 ^F рΗ : 2 X 12" Desander : 0.1 Alkal Mud (Pm) : 12 X 4" Desilter : 0.05/ 0.5 Pf/Mf Degasser -mg/1 : 750Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING 661 : 1.0 PHPA SURFACE+SCE : 37 Oil Added : : 80 SULPHITE Water Added:30 D/HOLE :36 : 582 Mud Built : TOTAL MUD Mud Received: : 0.652 np Value Mud Disposed:73 Kp -1b-sec^n/100ft2 : 0.51331 : 0.573 na Value -1b-sec^n/100ft2: 0.83798

Remarks:

Cont to run casing. Circ & work stuck casing F/1148m.- 1153m.Lay out 4 JNTS,P/U 1 JNT.Cont to work f/1097-1108m Continue to run casing. Circulate and work stuck casing from 1148-1153m. LayAY out 4 joints and continue to wash and work. Pick up 1 joint and work 1097-1108m.

Daily Cost : 94 Cumul Cost : M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

ח	P	1	•	1	I	V	G	٨	A	1	I	n	P	F	P	n	П	7	ľ
$\boldsymbol{\omega}$	-	l t	_	_	п	ч	u	- 11	"	•		_	. 1	_		v		u	

		7 _	_ ==			_	_		_				ر ار	PILLI	ng Mui	HEPOR	RT NO.	17
	and the second	Ma) ri		g	F A Dres	UI sser/h	IdS (GO.	#		A		DATE	25 M	MR 195	75	DEPTH / 758 M
at the transfer	Section Section	4	A. Alege Med	والمراجعة	ونداز لاء	St 2 164	45.44.44	erro altraverse se	entain de se	i		\Box	J					SENT ACTIVITY
P.O. BOX		2	HU	051	UN	, IE.	XAS	5 / /242	USA			ONTRA		SPUD	DATE	MAR		RC & WORK CASING
REPORT FOR		E	R	1=50	ين د	RC	<u>:</u> :S	•			I_	EPORT FO	\subset	EN	TUR	У		SECTION, TOWNSHIP, RANGE
	161	-	کم 🗸	MI	7	M					- 11	Eroni re	SE	AN	KE	444		ONSHORE
WELL NAME A	.ND NO.	2	1110	AR	? :	# 1	,		FIELD	OR BLO	CK NO.		AF	DUNTY, REA-77	Parish of Way	OFFSHOI	NE /	STATE/PROVINCE
DRI	LLING				T		CASI	NG	1	/UD V	OLUME	(BBL)						ION DATA
BIT SIZE	TYPE			SIZE	-		SURF		HOLE		PIT		PI	JMP SIZ	E (IN. ANNULAR VEL (ft/min)
					- -	95/6	in. @	312 -11		72		160					7.75	
DRILL PIPE SIZE	TYPE		LEI	VGTH		IN	TERM	EDIATE	TOTAL		ATING VO	DLUME	- 11		KE, MODE	L AS	SUMED	CIRCULATION PRESSURE (psi)
					_		in. @				32		H T	ol/stk	30 8	0	95	% 200-600 nin BOTTOMS
DRILL PIPE SIZE	TYPE		LE	NGTH	i	IN		EDIATE	11	DRAGE	1 -	іднт 7. <i>3</i>	li li			• •		UP (min)
DRILL COLLAF	SIZE		LEI	NGTH	+	PRODU	in. @	OR LINER	MUD	TYPE					10.07		70	(strk) TOTAL CIRC
							in. @		ll		AIR	AC	bi	3.72 Ol/min	3		160 gal/r	TIME (min) nin (strk)
							T	MUD PRO			1	, <u>, , , , , , , , , , , , , , , , , , </u>			D PROF	PERTY S		CATIONS
Sample From	1						Ū	Í F.L. □ PIT	□ F.L	. 🗹 PIT	WEIGH				VISCOS	TY		FILTRATE
Time Sample	Taken						+	23.00	05	30	<u> </u>	9.3,	0,09		33	5-42	sec/	91 5-7cc
Flowline Tem		(°F)					7 <i>4(23</i>)			1			REC				EATMENT
Depth (ft)	(TVD	•		1				14 (23) 1758	17	58			-ر-		72/ ^	/, ,	1 <	REO'D TO CONTRO
Weight □ (p	<u> </u>		☐ (lb/cu			□ (spg	-+-	9.3+		. 4					106			LUU IU CONIRO
Funnel Visco					٥F	,-I- 2	+	39		9								400.500.50
Plastic Visco			చ్చే	52 ⊘ °F			+	16		8	1							ADDITIONAL
Yield Point (!			32				+	12		<u>0</u> 1	L.G.	<u> </u>	13/15	2.13	VO	LUME		
Gel Strength			0 sec/10	min				3 110		<u>.</u> 19	 					************		
Filtrate API (+				\vdash					REMAR	N.C	
API HTHP FI		<u>`</u>	0 min) @		۰F	=	+	6.6	6	· 6	 							
Cake Thickne							_		 ,	,								RK CASING E
Solids Conte					1 [retort	-	1 /	1		-	148,	~, ~	1/3	3 ~	/	007	T 3 JOINTS
Liquid Conte						TOTOTE	+	70	1	13								DRK CLOUT IN
Sand Conten			, 011, 110				\dashv		1	1 <u>.5</u> 5	1	•			~7_	AND	WC	AK 1097 11 4 -
Methylene Bl			☐ fb/bbl e	quiv			-	0.5	1		//	08	11)	<u>*</u>				
	Strip		□ cm³/cm			F		12:5	12		╁──							
Alkalinity Mu				<u> </u>		•		B.5	1	5	 						1	
Alkalinity Filt		A.)						0.10	1	10 1.50	╂						•	
Chloride (mg		••(/					-{	<u> </u>	1	150 50	 							
Total Hardne	•	deiu	m (ma/l	,				750			+							
			(g. 2	·			+	<u>60</u> 1.0		0	-							
PHPA	·							80 80	+	0	 							
50,							\top	<u> </u>	-	<u> </u>	0/		. //	1.9		9.3	2/:	2004
							+		 						מןט נט כיז		- درن	3 GPM
		7	7	7		7			'/-	7	10/3	12/	-/	7	<i>79 01</i>	7	7	/ 5 57-77
PRODUCT INVENTORY	_/&	, , 	<u>/_</u> ,	\angle		, (-			/ 1		_	_		\angle				SOLIDS EQUIPMENT
STARTING INVENTORY	19	6	1			1			}									SHAKER #1 3 x, 50 mest
RECEIVED			1												1,50			SHAKER #2 mesi
USED LAST		\dashv	·		+			 -							+ -			
24 hr	10	-			+	+		1							-	-		MUD CLEANER mest
CLOSING INVENTORY	18	6			1													CENTRIFUGE hours
COST LAST 24 hr	94																	DESANDER 4 hours
USED					+	\neg		1						1	1			4
(from IADC)	9.4	4				L	Te.:	ONE		JA/A D	HOUSE F	HOME	I Den:	COST		<u> </u>	- 11	DESILTER 4 hour CUMULATIVE COST
PAUL		12	514/	144				ONE 13254	822		HOUSE	PHONE	یم اا		40			\$ 14928.57
						IS S					S AND	COND	ITIO	1S SE	T FOR	TH ON	REVE	RSE SIDE HEREOF.
TIME DI	STRIBUT	TION	l (hrs)	MU	D VC	DLUME	ACC	OUNTING		SOLIDS	ANALY	SIS			N	IUD RHE	DLOGY a	and HYDRAULICS
Rig Up/Ser	vice	T		Wat	er Ar	ded (b	obl)	30	Low G	ravity %	, T	6.0	Zero	Gel		Avg ROF	, [ECD @
1		-+-		-11		(0	/			//		9 ~	11-010	<u>~~1</u>		Lingitor	1	1

TIME DISTRIBUT	FION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		MUD RHEOL	OGY and	HYDRAULK	cs	
Rig Up/Service		Water Added (bbl)	30	Low Gravity %	6.0	Zero Gel	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	54.3	n Factor	% Cutting		Leak Off	@	
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.9	k Factor	psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)	73.	Bentonite, ppb	78	Bit Hydraulics					
Tripping		DIHOLE	36	Drill Solids %	4.7	Annular Section 1		2	3	4	5
Survey		SCE	31	Drill Solids, ppb	42.5	Hole Size		_			
Logging		SURF.	6	Shale CEC, ppb	-	Pipe OD					
Running Casing	24.0	TOTAL MUD	58Z	D/B Ratio	3.02	Critical Velocity					
Testing		Starting Depth		High Gravity %	1.0	Annular Velocity					
Fishing		Ending Depth		High Gravity, ppb	14.8	Viscosity					1
		New Hole Vol. (bbl)				Annular Pressure	,		1		1

Depth : 1758.0 m Date : 26/03/95 M-I Drilling Fluids Company Well No. : G0003 Spud Date : 09/03/95 Activity : WAIT ON DP DRILLING FLUIDS DATA MANAGEMENT SYSTEM Description : EXPLORATION Contractor : CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area : PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: Hole Volume : in Nozzles: / / / / 1/32" Pits Volume : Casing ID: 8.680 in Liner ID: in Drill Pipe 1 0D: in 1758 m Casing TD: 312.0 m Liner TD: m Circulating Volume: 315 Drill Pipe 2 0D: in m m Mud : FW POLYMER Casing TVD: 312.0 m Liner TVD: Drill Collar OD: m in SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES : 0.0 / 0 NaC1 Flow Rate -gal/min : : PIT 23:00 Sample From : 0.0 / Ω DP Annular Vel -m/min: : ^F Flow Line Temp Low Gravity Solids : 8.0 / 73 -m :1758.0/1758.0 DC Annular Vel -m/min : Depth/TVD : 0.6 / DP Critical Vel -m/min: Bentonite -1b/gal : 9.4 Mud Wt : 6.8 / 62 Drill Solids -s/qt: 40 @ 60 ^F -cps: 19 @ 55 ^F DC Critical Vel -m/min: Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 Circ. Pressure -psi : lastic Visc P/R3 -1b/100ft2 /deg : 12 / 2 Bottoms Up -min : Inert/React : 4.41 Average SG : 2.60 / 9 10s/10m Gel -1b/100ft2: 3 Total Circ Time -min : API F Loss -cc/30 min : 6.6 SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ : 3 X 50 Shaker #1 -1/32" : 1 Cake API/HT Shaker #2 -%vol: 7.0Solids Shaker #3 : Oil/Water -%vol: /93 Shaker #4 -%vo1:0.5Sand Mud Cleaner -1b/bb1:12.5MBT Centrifuge : 8.5 @ 55 ^F ρН : 2 X 12" Desander : 0.1 Alkal Mud (Pm) : 12 X 4" Desilter : 0.05/ 0.45 Pf/Mf Decasser -mg/1:750Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING 661 : 1.0 PHPA Oil Added : SURFACE+SCE : : 50 SULPHITE :137 Water Added: DUMP : 445 TOTAL MUD Mud Built : Mud Received: : 0.689 no Value Mud Disposed:137 -1b-sec^n/100ft2 : 0.44963 Κp a Value : 0.595 -1b-sec^n/100ft2: 0.80831 Remarks : Rig up and cement 7" casing. Cut casing. Nipple down BOPs Nipple up and test. Wait on 3.5" drill pipe. Rig up cement head and circulate 260 GPM at 1097m. Pump cement and displace

with water and dump returns. Nipple down BOPs, cut casing, nipple up and test. Wait on 3.5" drill pipe to drill out and set cement plugs.

Daily Cost : 0 Cumul Cost : 14928 M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

				DR	ILLING	М	UD R	ΕP	ORT			OPERATOR
		·					(I	7	1	G MUD HE	PORT NO.	
	Ma	Drilling gcobar/IMCO	A Dresse	IIOS U	JO. ompany		P		DATE_	6 MAR		DEPTH_/758 M
PO BOX	12842 I	■ HOUSTO	N TEX	ΔS 77242 I	ISA			J	SPUD D	ATE 9 MA.		BENT ACTIVITY UPPLE UP & TEST BOP.
OPERATOR		1100010	'IN, 1 L/\/	10 11242	JUA		CONTRA	сто	R			, RIG NO.
REPORT FOR		E RESC	OURCE				REPORT FO		CEN	TURY		SECTION, TOWNSHIP, RANGE
	KEI	V 5M1	TH					ی		KELLY		ONSHORE
WELL NAME A	ND NO.	NBAR	# 1		FIELD OR BLO).			ARISH OR OFFS		STATE/PROVINCE
DBII	LLING ASS		T	SING			/E (BBL)	\dashv			CIRCULAT	
BIT SIZE	TYPE	JET SIZE	1	RFACE	HOLE		AL (DDL)		PUMP SIZE			IN. ANNULAR VEL (ft/min)
			95%	. @312 n	152		163			5-5	_	1
DRILL PIPE SIZE	TYPE	LENGTH	INTER	RMEDIATE	TOTAL CIRCUL	ATING			PUMP MAK	8/ 80	ASSUMED EFF 95	CIRCUI ATION
DRILL PIPE	TYPE	LENGTH		i. @ ft. RMEDIATE	IN STORAGE		VEIGHT		bbl/stk	<i>57 8</i> 0	stk/i	nin BOTTOMS
SIZE			in	n. @ ft.	130		8.8		0054	0.072	115	UP (min) (strk)
DRILL COLLAR	SIZE	LENGTH	PRODUCT	ION OR LINER	MUD TYPE	101	1/PAC		6.21		260 gal/	TOTAL CIRC TIME (min)
			1	MUD PRO		Π	11740	!!		PROPERT		
Sample From				□ EL. M'PIT	□ EL. □ PIT	WEI				VISCOSITY	<u> </u>	FILTRATE
Time Sample				23:00			9.3	ק ד	19	35-4	725ec,	191 5-7cc.
Flowline Tem		1		23.00	1				RECO	MMENDED	TOUR TR	EATMENT
	(TVD	,	At)	1758		-	410		0,=1	MENT	_	
Weight W (p		[] (lb/cu ft)	(sp gr)	9.4		1						W + DUMP
			rF	40		1				IETUR.	•	W + 2041-
Plastic Visco:		55°F		19		1	/S F	66	18 /	121 416	<i></i>	
Yield Point (ii				12		\vdash						
Gel Strength		0 sec/10 min		319	,	+-						
Filtrate API (6.6		┢═				BEN	MARKS	
API HTHP FI		0 min) @	°F	9.6		\vdash						d 0 . 1 2 2
Cake Thickne				11	,							A CIRC 260CPM
	•) 🗆 calculated	□ retort	7.0	· · · · · · · · · · · · · · · · · · ·	\vdash					+13 C	EMENTA DISPL
Liquid Conte		·		93	,	\dagger	2177				(3n a)	Y CUT CASING
Sand Conten		·		0.5	,	1				P BO		TEDI CASING
Methylene Bl				12.5		\vdash			- 01		DP.	
		☐ Meter @	۰F	8.5		T	- WA		<i>- 6</i> ~	<u> </u>	<u> </u>	
Alkalinity Mu				0.10		1-						- I de la companya de
Alkalinity Filt				.051.45	,	T						
Chloride (mg	j/L)			750								
Total Hardne	ss as Calciu	m (mg/L)		60		1	···					
PHPA				1.0		,						
50,				50								
											-	
						1						
PRODUCT INVENTORY		///	//		7/	7				$\overline{//}$		SOLIDS EQUIPMENT
STARTING INVENTORY												SHAKER #1 3 x 50 mesh
RECEIVED		,								.e		
USED LAST			-			-	+ -		-		-	SHAKER #2 mesh
24 hr						<u> </u>	\perp			 		MUD CLEANER mesh
CLOSING												CENTRIFUGE hours
COST LAST 24 hr]				}	DESANDER hours
USED												
(from IADC) M-I REPRESE	NTATIVE	L	1	PHONE 09	WARE	HOUS	E PHONE	DA	JLY COST	<u> </u>		DESILTERhours CUMULATIVE COST
				- 09	1		_	1 1			11	Ji

PHONE 09. 3254822 DAILY COST \$ 14928.57

TIME DISTRIBUTIO	N (hrs)	MUD VOLUME ACC	DUNTING	SOLIDS ANAI	LYSIS		MUD RHEOL	.OGY and	HYDRAULI	cs	
Rig Up/Service	7.0	Water Added (bbl)		Low Gravity %	6.0	Zero Gel	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	54.3	n Factor	% Cutting		Leak Off	@	
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.9	k Factor	psi	%	hhp	HSI	Jet Vel
Circulating	2.0	Mud Disposed (bbl)	137	Bentonite, ppb	7.8	Bit Hydraulics					
Tripping		DUMP	137	Drill Solids %	4.7	Annular Section	1	2	3	4	5
Survey				Drill Solids, ppb	42.5	Hole Size					
Logging				Shale CEC, ppb		Pipe OD					
Running Casing	3.0	TOTAL MUD	445	D/B Ratio	3.02	Critical Velocity					
Testing		Starting Depth		High Gravity %	1.0	Annular Velocity					
Fishing		Ending Depth		High Gravity, ppb	14.8	Viscosity					
BOPS	12-0	New Hole Vol. (bbl)				Annular Pressure					

```
Date : 27/03/95
                                                                           Depth : 1758.0 m
                                      _ _
M-I Drilling Fluids Company
                                       Well No. : G0003
                                                      Spud Date: 09/03/95
                                                                          Activity: WAIT ON DP
DRILLING FLUIDS DATA MANAGEMENT SYSTEM
Contractor : CENTURY DRILLING 11 Description : EXPLORATION
Operator : GFE RESOURCES
                                                                 Location : OTWAY BASIN
Well Name : DUNBAR 1
                                Field/Area: PPL 1
Report For: KEN SMITH
                                                                         MUD VOLUME
                                                                                       (bb1)
                                             CASING
Bit: 8.500 in
                                   Casing OD: 7.000 in Liner OD:
                                                                             Hole Volume :
Nozzles: / / / / 1/32"
                                                                    in
                                   Casing ID: 6.280 in Liner ID:
                                                                  in
                                                                             Pits Volume :
Drill Pipe 1 OD :
                   in 1758 m
                                   Casing TD: 1197.0m Liner TD:
                                                                    m Circulating Volume: 315
Drill Pipe 2 0D:
                   in
                           m
                                   Casing TVD: 1197.0m Liner TVD:
                                                                   m Mud : FW POLYMER
Drill Collar OD:
                  in
                                                                                (%/1b/bb1)
                                                                SOLIDS ANALYSIS
                                       CIRCULATION DATA
 MUD PROPERTIES
                                                                       : 0.0 / 0
                  : PIT 22:30
                                                              NaC1
                                Flow Rate
                                            -gal/min :
Sample From
                                                                              : 0.0 /
                                                               KC1
                                                                                         0
                                DP Annular Vel -m/min:
                 : ^F
Flow Line Temp
                                                              Low Gravity Solids : 8.0 /
              -m :1758.0/1758.0
                                                                                        73
                                DC Annular Vel -m/min:
Depth/TVD
                                                                              : 0.6 /
                                                               Bentonite
                                                                                        6
                                DP Critical Vel -m/min:
            -1b/gal : 9.4
Mud Wt
                                                                               : 6.8 / 62
                                                               Drill Solids
                                DC Critical Vel -m/min:
            -s/qt : 39 @ 60 ^F
Funnel Vis
                                                                            : N/A / N/A
: - / 5.0
             -cps : 20 @ 55 ^F
                                Circ. Pressure
                                               -psi :
                                                               Weight Material
Plastic Visc
YP/R3 -1b/100ft2 /deg : 11 / 2
                                 Bottoms Up
                                                -min :
                                                               Chemical Conc
                                                               Inert/React: 4.41 Average SG: 2.60
10s/10m Gel -1b/100ft2: 3
                        / 9
                                Total Circ Time
                                              -min :
API F Loss -cc/30 min : 6.6
                                   PRODUCTS USED LAST 24 HOURS
                                                               SOLIDS EQUIPMENT Size
                                                                                     Hours
HTHP F Loss -cc/30 min: @
                                                                       : 3 X 50
                                                               Shaker #1
Cake API/HT
             -1/32": 1
                                                               Shaker #2
              -%vol : 7.0
Solids
                                                               Shaker #3
              -%vol: /93
0i1/Water
                                                               Shaker #4
                                                                          :
              -\%vol: 0.5
Sand
                                                               Mud Cleaner
            -1b/bb1 : 12.5
MBT
                                                               Centrifuge
ρН
                  : 8.3 @ 55 ^F
                                                                             2 X 12"
                                                               Desander
Alkal Mud (Pm)
                  : 0.1
                                                                             12 X 4"
                                                               Desilter
                  : 0.05/ 0.4
Pf/Mf
                                                               Degasser
              -mg/1:750
Chlorides
                   : 60
Hardness Ca
                                                                 MUD VOLUME ACCOUNTING 661
                   : 1.0
PHPA
                                                              Oil Added : SURFACE+SCE :
                   : 50
SULPHITE
                                                                            DUMP
                                                              Water Added:
                                                              Mud Built :
                                                                            TOTAL MUD
                                                                                       :445
                                                              Mud Received:
                   : 0.718
no Value
                                                              Mud Disposed:
Kp -1b-sec^n/100ft2: 0.37629
                  : 0.595
na Value
    -1b-sec^n/100ft2: 0.80831
Ka
Remarks:
WOC. Pressure test casing. Wait on 3.5" drill pipe.
Wait on cement. Pressure test casing. Wait on 3.5" drill pipe.
0
                                                                          Cumul Cost :
M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE
                                                    Daily Cost :
```

					DF	RILLING	MUD RE	PORT			OPERATOR
						.		DRILLI	NG MUL . ÆPOF	RT NO.	19
	Marian Ma	gcobar/	MCO (A Dress	uids (er/Halliburton C	50. ompany	(A)	DATE	27 MAR 19		DEPTH 1758 A
· FIRST STATE OF THE STATE OF T	Development of the second	· 大小 人名克拉斯斯克	建一个工作的		AS 77242	usa Usa		SPUD	DATE 9 MAR.		IT ACTIVITY
OPERATOR		- 110				00/1	CONTRAC	TOR		-	RIG NO.
REPORT FOR	Ci.F.	E.	RE	SOUR	CES.		REPORT FOR		TURY		SECTION, TOWNSHIP, RANGE
	KE	~ .	5111	TH.			- .	SEAN	KELLY		ONSHORE.
WELL NAME A	ND NO. ころし	NB	ar	#1		FIELD OR BLO	OCK NO.		PARISH OR OFFSHOI TWAY BA		STATE/PROVINCE
DBI	LLING AS			T	ASING	MUD V	OLUME (BBL)	1 -		RCULATIO	<u> </u>
BIT SIZE	TYPE		SIZE		URFACE	HOLE	PITS	PUMP SIZ			ANNULAR VEL (ft/min)
				9%	in. @ 312 A	152	163		5.5.	7. 75	DP DC
DRILL PIPE	TYPE	LEI	NGTH	INTE	RMEDIATE	TOTAL CIRCUL	ATING VOLUME	PUMP MA	KE MODEL AS	SUMED	CIRCULATION PRESSURE (psi)
SIZE					in. @1197 4 1		15	WAI	8P. 80 "	F95 %	" '
DRILL PIPE SIZE	TYPE	LEI	NGTH	INTE	RMEDIATE	IN STORAGE	WEIGHT	bbl/stk		stk/min	BOTTOMS UP (min)
	1	ļ.,,	IOTII		in. @ ft	MUD TYPE	8.8	0.05	4/0072		(strk) TOTAL CIRC
DRILL COLLAR	1 SIZE	LE	NGTH	1		nu	PA/PACR	1	•		TIME (min)
···		J			in. @ ft	OPERTIES	1 DACK	bbl/min	D PROPERTY S	gal/min	(strk)
Comple From					□ F.L. D PIT	D F.L. D PIT	WEIGHT	1410	VISCOSITY	LOWION	FILTRATE
Sample From						U.F.L. U.PH	9.3	009	35-42	See A	5-7cc
Time Sample		•			22:30		-	-	OMMENDED TO		
Flowline Tem		')				<u> </u>					
	(TVD	1.1.40-4	1	s -ft	1,,,,,,		- ~0	TRE	ATMEN		
Weight W(1 (lb/cu		11 (sp gr		ļ					
Funnel Visco				°F	39	 	-				
Plastic Visco		55	°F		20		 				
Yield Point (I		10 110	·		1/	 	-				
Gel Strength			7 771111		319	'			DEMAI	21/0	
Filtrate API (6.6				REMAR		
API HTHP F				°F	-	<u> </u>			RESS TE		CASINC.
Cake Thickn	<u>_</u>				11	1	WAI	T ON	31/2"	DP_	
Solids Conte				☐ retort	7.0	 				*	
Liquid Conte		·	ter		93.	/	-				
Sand Conter			miv		0.5		-				was a second control of the second control o
Methylene B	A				12.5		-				
<u> </u>	Strip	☐ Mete	r @	°F	8.3	<u> </u>					
Alkalinity Mu	id (P _m)				0.05		_				
Alkalinity Fill					.051.45						
Chloride (mg	g/L)				750						
Total Hardne	ess as Calci	um (mg/l	-)		60	-					******
PHP	4				1.0	ļ					
503					50						
					_						
PRODUCT INVENTORY					///	/ /		/ /		//	SOLIDS EQUIPMENT
STARTING INVENTORY	\top			f = f				-(1-1-	SH	1AKER #1 3 x 50 me
RECEIVED		j									:
USED LAST		<u> </u>	<u> </u>						1	SI	IAKER #2 me
24 hr		<u> </u>		-					+	М	UD CLEANER me
CLOSING											CENTRIFUGE hou
COST LAST 24 hr											DESANDER hou
USED (from IADC)											DESILTER hou
M-I REPRESE	ENTATIVE			·	PHONE	WARI	EHOUSE PHONE	DAILY COST			MULATIVE COST

\$ 14928.57 PAUL MARSHALL 09 3254822 \$ 0.00 \$ 14928.5 NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. 0.00

TIME DISTRIBUT	TION (hrs)	MUD VOLUME ACCO	UNTING	SOLIDS ANA	LYSIS		MUD RHEOL	OGY and	HYDRAULI	cs	
Rig Up/Service	12.0	Water Added (bbl)		Low Gravity %	6.0	Zero Gel	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	54.3	n Factor	% Cutting		Leak Off		
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.9	k Factor	psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)		Bentonite, ppb	7.8	Bit Hydraulics					
Tripping				Drill Solids %	4.7	Annular Section	1	2	3	4	5
Survey				Drill Solids, ppb	42.5	Hole Size					
Logging				Shale CEC, ppb	-	Pipe OD					
Running Casing		TOTAL MUD	145	D/B Ratio	3.0Z	Critical Velocity					
Testing		Starting Depth		High Gravity %	1.0	Annular Velocity					1
Fishing		Ending Depth		High Gravity, ppb	14.8	Viscosity					
WOC	12.0	New Hole Vol. (bbl)				Annular Pressur	9				

```
Date: 28/03/95 Depth: 1758.0 m
                                       _ _
M-I Drilling Fluids Company
                                       Well No.: G0003
                                                        Spud Date : 09/03/95
                                                                            Activity : WAIT ON DP
DRILLING FLUIDS DATA MANAGEMENT SYSTEM
Description : EXPLORATION
Operator : GFE RESOURCES
                                 Contractor: CENTURY DRILLING 11
                                                                  Location : OTWAY BASIN
                                 Field/Area: PPL 1
Well Name: DUNBAR 1
Report For: KEN SMITH
                                                                           MUD VOLUME
                                                                                         (bb1)
                                              CASING
Bit: 8.500 in
                                                                           Hole Volume :
Nozzles: / / / / 1/32"
                                    Casing OD: 7.000 in Liner OD:
                                                                     in
                                                                    in
                                                                               Pits Volume :
                                    Casing ID: 6.280 in Liner ID:
Drill Pipe 1 OD:
                  in 1758 m
                                                                     m Circulating Volume: 315
                                    Casing TD: 1197.0m Liner TD:
Drill Pipe 2 0D:
                            m
                                                                        Mud : FW POLYMER
                                    Casing TVD: 1197.0m Liner TVD:
                                                                     m
Drill Collar OD:
                  in
                            m
                                                                                    (% / 1b/bb1)
                                                                 SOLIDS ANALYSIS
                                       CIRCULATION DATA
 MUD PROPERTIES
                  :
                                                                                 : 0.0 / 0
                  : PIT 22:00
                                                               NaC1
                                 Flow Rate -gal/min:
Sample From
                                                                                          n
Flow Line Temp : 'F | DF Allius III | -m/min : Denth/TVD | -m :1758.0/1758.0 | DC Annular Vel | -m/min : -m/min :
                                 DP Annular Vel -m/min:
                                                                KC1
                                                                                 : 0.0 /
                                                                Low Gravity Solids : 8.0 /
                                                                                          73
                                                                Bentonite : 0.6 /
                                                                                          6
                                 DP Critical Vel -m/min:
Mud Wt
            -1b/gal : 9.4
                                                                               : 6.8 /
                                                                Drill Solids
            -s/qt : 40 @ 60 ^F
                                 DC Critical Vel -m/min:
Funnel Vis
                                                                                 : N/A / N/A
                                                                Weight Material
               -cps : 19 @ 55 ^F
                                 Circ. Pressure
                                                -osi:
Plastic Visc
                                                                Chemical Conc : - / 5.0
                                                -min :
P/R3 -1b/100ft2 /deg : 11 / 2
                                 Bottoms Up
                                                                Inert/React : 4.41 Average SG : 2.60
                                                -min :
                                 Total Circ Time
10s/10m Gel -lb/100ft2:3 / 11
API F Loss -cc/30 min : 6.6
                                                                 SOLIDS EQUIPMENT Size
                            ^F
                                    PRODUCTS USED LAST 24 HOURS
HTHP F Loss -cc/30 min: @
                                                                Shaker #1
                                                                          : 3 X 50
Cake API/HT
            -1/32" : 1
                                                                Shaker #2
Solids
              -\%vo1:7.0
                                                                Shaker #3
              -%vol: /93
0i1/Water
                                                                Shaker #4
              -%vol: 0.25
Sand
                                                                Mud Cleaner
                                                                           :
             -1b/bb1 : 12.5
MRT
                                                                Centrifuge
                                                                            :
ρН
                   : 8.5 @ 55 ^F
                                                                               2 X 12"
                                                                 Desander
                                                                            :
                   : 0.1
Alkal Mud (Pm)
                                                                               12 X 4"
                                                                Desilter
                   : 0.1 / 0.6
Pf/Mf
                                                                Degasser
                                                                            :
               -mg/1 : 750
Chlorides
                  : 50
Hardness Ca
                                                                  MUD VOLUME ACCOUNTING 661
                   : 1.0
PHPA
                                                                             SURFACE+SCE :
                                                                Oil Added :
SULPHITE
                                                                              DUMP
                                                                Water Added:
                                                                              TOTAL MUD
                                                                Mud Built :
                                                                                         : 445
                                                                Mud Received:
np Value
                    : 0.707
                                                                Mud Disposed:
Kp -1b-sec^n/100ft2: 0.38856
 na Value : 0.588
   -1b-sec^n/100ft2 : 0.81775
Remarks:
Wait on 3.5" drill pipe. Service rig.
Wait on 3.5" drill pipe. Service rig.
```

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

14928

Cumul Cost :

Daily Cost :

DRILLING MUD REPORT

				_	_					F	۱ ر	DRILLII	NG MUU	REPO	RT NO.	20
		Magcobar/	IMCO '			IIGS (r/Halliburton C	GO Compa	any		P		DATE_	28 M	AR19		DEPTH_/758m
P.O. BOX	〈 42842	· ■ HC			ΧA	\S 77242	I ISA))		L	ノ	SPUD I	DATE 9 2	TAR		INT ACTIVITY
OPERATOR	٦						00,			CONTRA		1				RIG NO.
REPORT FOR	GF			oun	<u> </u>	25				REPORT FO)B		TUR			SECTION, TOWNSHIP, RANGE
WELL NAME A		······································	5/4	171			II cici	D OR BLC	CK NO				KEL.		DE	ONSITORIS STATE/PROVINCE
WELL NAME A	- D	UNB	AR	#1				PPL					WAY			VICT.
DRI	ILLING A	SSEMBL	Y		CA	SING		MUD V	OLUM	E (BBL)					RCULATIO	
BIT SIZE	TYPE	JET	SIZE	25		RFACE	HOL			ITS		PUMP SIZ	E 2	, x	B.5-IN	. ANNULAR VEL (ft/min)
				91/2	j in.	@312 H	15	2+2	ATTER	, 163			5	5	7.75	
DRILL PIPE SIZE	TYPE	LE	NGTH	7	ıen	INICUIAI C	'''	AL CINCUL	Aina	VOLUME		PUMP MAI V <i>at</i>	KE MODE!	> AS	SUMED .	CIRCULATION PRESSURE (psi)
DRILL PIPE	TYPE	I F	NGTH	<i>†</i>		. @ //975		TORAGE	3/3	EIGHT	_1_	obl/stk	8P8)	95 o,	
SIZE	''''		10111	"			1 /	30	"	8.8	- 11		10.07	, ,	Storm	UP (min) (strk)
DRILL COLLA	I R SIZE	LEI	NGTH	PRODU		ON OR LINER	11	TYPE		<u> </u>	1	-054	1001	<u>~</u> .		TOTAL CIRC
					in.	. @ #		PHA	DA /	PACI	\mathbb{Z}	bbl/min			gal/mi	TIME (min) (strk)
						MUD PR	OPEF	TIES				MU	D PROPE		PECIFIC	
Sample Fron	n					□ F.L. 🖬 PIT	□ F	L 🗆 PIT	WEIG				VISCOSIT		_	FILTRATE
Time Sample	e Taken					22:00	T		<u> </u>	9.3 p	29	<u> </u>	33	-42	2/19	5-7cc
Flowline Tem	perature (°F)							L			REC	OMMEN	DED TO	UR TRE	ATMENT
Depth (ft)	(TVD		1		ft)	1758			_	NO	, ,	- 12/5/	4T 121	ミルァ	-	
Weight ☑ (ppg)	□ (lb/cı	ı ft)	□ (sp	gr)	9.4			-	CIR	cı	LAT	E ps	00	TAN	'K5
Funnel Visco	osity (sec/o	t) API @		۰F		40										
Plastic Visco	sity cp @		۰F			19										
Yield Point (I	lb/100 ft²)			·		11										
Gel Strength	(lb/100 ft²) 10 sec/10) min			3111		1								
Filtrate API ((cm³/30 mi	п)				6.6								REMAR	RKS	
API HTHP F	iltrate (cm	3/30 min) @	9	٥F		•										
Cake Thickn	ess (32nd	in. API/HT	HP)			11		1		WA	,,-	0~	, 3	<u>%</u> .	DRIL	L PIPE.
Solids Conte	ent (% by \	√ol) □ ca	lculated	☐ retort		7.0										
Liquid Conte	ent (% by \	√ol) Oil/Wa	ter			93.0		1					,			,
Sand Conter						0.25										
Methylene B	lue Capac	ity ☐ lb/bbl e	quiv 3 mud			12.5										
рН 🗹	Strip	☐ Mete	r @	۰F		8.5										
Alkalinity Mu	ıd (P _m)					0.1									1	
Alkalinity Filt	trate (P _f /M	1)				.1 10-6		1								
Chloride (mg	g/L)					750	L									
Total Hardne	ess as Cal	cium (mg/L	.)			50										
PHPA	<u> </u>					1.0			<u> </u>							
503	,					10										
PRODUCT			7	7	_	ļ	/		1		7	7	7	7	7	/
INVENTORY				/_/		//	<i>,</i>	/	<u> </u>						/	SOLIDS EQUIPMENT
STARTING INVENTORY															s	HAKER #1_ 3 x 50_ mest
RECEIVED		1											(2)			;
USED LAST		· ·								1		 	11.7		^s	HAKER #2i mesh
24 hr CLOSING		-		\vdash				ļ		+			1		^	MUD CLEANER mest
INVENTORY																CENTRIFUGE hours
COST LAST 24 hr																DESANDER hours
USED								1								_
(from IADC) M-I REPRESE	NTATIVE		<u> </u>		7,	PHONE		WARE	HOUSE	PHONE	DAII	LY COST				DESILTER hours UMULATIVE COST
PAUL	MA				6	93254	~~~	2			#	0.			8	\$ 14928.57
	NOTIC	:: THIS	HEPO	HT IS S	UE	SJECT TO	THE	TERM	S AN	D COND	ITIO	NS SE	T FORT	H ON	REVER	SE SIDE HEREOF.
TIME DI	ISTRIBUTI	ON (hrs)	MU	O VOLUME	AC	COUNTING		SOLIDS	ANAL	YSIS	Ī		М	ID RHE	OLOGY an	d HYDRAULICS
Rig Up/Ser	rvice	24.0	Wate	er Added (t	nb()		Low 4	Gravity %	,	6.0	761	o Gel	1	Ava BOE	.	ECD @
		24.0	1		,			aravity %		6.0	1 201	o dei		Avg ROF	-	ECD @

TIME DISTRIBUT	ION (hrs)	MUD VOLUME ACCO	DUNTING	SOLIDS ANA	IVSIS		MUD RHEOLO	OGV and	UVDDAI!!!	00	
				OOLIBO AIVA	LIGIO			JGT and	- HIDHAULI		
Rig Up/Service	24.0	Water Added (bbl)		Low Gravity %	6.0	Zero Gel	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)		Low Gravity, ppb	54.3	n Factor	% Cutting		Leak Off		
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.9	k Factor	psi	%	hhp	HSI	Jet Vel
Circulating	:	Mud Disposed (bbl)		Bentonite, ppb	7.8	Bit Hydraulics					
Tripping				Drill Solids %	4.7	Annular Section	1	2	3	4	5
Survey				Drill Solids, ppb	42.5	Hole Size					
Logging				Shale CEC, ppb	-	Pipe OD					
Running Casing		TOTAL MUD	445	D/B Ratio	3-02	Critical Velocity					
Testing		Starting Depth		High Gravity %	1.0	Annular Velocity					
Fishing		Ending Depth		High Gravity, ppb	14.8	Viscosity					
		New Hole Vol. (bbl)				Annular Pressure					

```
Date: 29/03/95
                                                                           Depth : 1758.0 m
M-I Drilling Fluids Company
                                                                           Activity : WAIT ON DP
                                                       Spud Date : 09/03/95
DRILLING FLUIDS DATA MANAGEMENT SYSTEM
                                       Well No.: G0003
Description: EXPLORATION
                                 Contractor : CENTURY DRILLING 11
Operator : GFE RESOURCES
                                                                 Location : OTWAY BASIN
                                 Field/Area: PPL 1
Well Name: DUNBAR 1
Report For: KEN SMITH
                                                                         MUD VOLUME
                                                                                        (bb1)
                                              CASING
Bit: 8.500 in
                                    Casing OD: 7.000 in Liner OD:
                                                                            Hole Volume :
Nozzles: / / / / 1/32"
                                                                             Pits Volume :
                                    Casing ID: 6.280 in Liner ID:
                                                                   in
                   in 1758 m
Drill Pipe 1 OD:
                                                                    m Circulating Volume:
                                    Casing TD: 1197.0m Liner TD:
Drill Pipe 2 OD:
                            m
                   in
                                                                    m Mud : FW POLYMER
                                    Casing TVD: 1197.0m Liner TVD:
Drill Collar OD:
                   in
                            m
                                                                                  ( % / 1b/bb1)
                                                                 SOLIDS ANALYSIS
                                        CIRCULATION DATA
 MUD PROPERTIES
                                          -gal/min :
                                                                                : 0.0 / 0
                                                               NaCl
                   : PIT 22:00
                                 Flow Rate
Sample From
                                                                                : 0.0 /
                                                                                         0
                                                               KC1
                                 DP Annular Vel
                                              -m/min :
                       ^F
Flow Line Temp
                                                               Low Gravity Solids : 8.0 / 73
               -m :1758.0/1758.0
                                 DC Annular Vel
                                              -m/min :
Depth/TVD
                                                                                : 0.6 /
                                                               Bentonite
                                 DP Critical Vel -m/min:
            -1b/gal : 9.4
Mud Wt
                                                                               : 6.8 / 62
                                                               Drill Solids
             -s/qt : 40 @ 60 ^F
                                 DC Critical Vel -m/min:
Funnel Vis
                                                                              : N/A / N/A
                                                               Weight Material
               -cps : 20 @ 55 ^F
                                 Circ. Pressure
                                                -psi :
Plastic Visc
                                                                Chemical Conc : - / 5.0
/P/R3 -1b/100ft2 /deg : 11 / 2
                                 Bottoms Up
                                                -min:
                                                                Inert/React : 4.41 Average SG : 2.60
10s/10m Gel -1b/100ft2: 3
                        / 10
                                 Total Circ Time
                                               -min :
API F Loss
          -cc/30 min : 6.6
                                                                SOLIDS EQUIPMENT Size
                                                                                       Hours
                                    PRODUCTS USED LAST 24 HOURS
HTHP F Loss -cc/30 min: @
                                                                             3 X 50
                                                                Shaker #1
            -1/32" : 1
Cake API/HT
                                                                Shaker #2
              -%vol: 7.0
Solids
                                                                Shaker #3
Oil/Water
              -%vol: /93
                                                                Shaker #4
              -%vol: 0.25
Sand
                                                                Mud Cleaner
MBT
             -1b/bb1 : 12.5
                                                                Centrifuge
                   : 8.5 @ 55 ^F
pН
                                                                              2 X 12"
                                                                Desander
                   : 0.1
Alkal Mud (Pm)
                                                                          : 12 X 4"
                                                                Desilter
                   : 0.1 / 0.65
Pf/Mf
                                                                Degasser
                                                                          :
               -mg/1 : 750
Chlorides
                   : 50
Hardness Ca
                                                                  MUD VOLUME ACCOUNTING 661
                    : 1.0
PHPA
                                                               Oil Added : SURFACE+SCE :
SULPHITE
                    : 10
                                                                             DUMP
                                                               Water Added:
                                                               Mud Built :
                                                                             TOTAL MUD
                                                                                        :445
                                                               Mud Received:
                   : 0.718
no Value
                                                               Mud Disposed:
 Kp -lb-sec^n/100ft2 : 0.37629
         : 0.595
 na Value
    -1b-sec^n/100ft2: 0.80831
 Ka
 Remarks:
 Wait on drill 3.5" drill pipe.
 Wait on 3.5" drill pipe. Service rig.
```

Daily Cost :

14928

Cumul Cost :

-

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE

DRIL	181	\sim	RAI	In	DED	ODT
UNIL	 114	u	IVIC	עע	ner	Uni

		!		_	· 						ا ۱	ORILLIN	IG Mul	REPOR	IT NO.		2	,	
		Dri Magcoba	r/IMCO	AD	resse	IIds (_ ny		A		DATE 🚄	9 M	4R_19_				1758	سر ا
	/ 400 A					7 7 7 7 7 4 0	35,737,30	<u> </u>		L	J	anus n	9	MAR			CTIVITY	31/2"	np
OPERATOR		2 = H	0051	ON, I	EXA	AS 77242	USA	\		CONTRA		SPUD D	AIEZ	74/	- W	7/		RIG NO.	
	G	FE	RE	500	nc	ES.						CEN	TUR	. Y		_ _	_//		
REPORT FOR		-~ s	541	TH					- 1	REPORT FO		4~	KEL	4 Y				I, TOWNSHI	
WELL NAME					. ,	·	FIEL	D OR BLO	OCK NO.		С	OUNTY, P.	ARISH OF	OFFSHOR		STA	TE/PROV	INCE	
		DUN		2 <i>#</i> -			₩				^	HEA O	WA	Y 13A.				ICT.	
		ASSEMB				SING	HOL			E (BBL)	_ _				CULAT				
BIT SIZE	TYPE	, J	ET SIZE	0		RFACE						UMP SIZE						EL (ft/min)	
DRILL PIPE	TYPE		ENGTH	7	INTER	. <i>@3/2 н</i> RMEDIATE	1014	L CIRCU	ATING V	163 VOLUME	- P	UMP MAK		بر کی کی ASS			CULATIO	DC	
SIZE				7	26	@1197-	11		315		- 11	AT	7P :	5 0 EFF	95		ESSURE		
DRILL PIPE	TYPE		ENGTH	<u>-</u> -		MEDIATE		TORAGE		EIGHT	ь	bl/stk	000	<i>50</i>	stk/r		ттомѕ		
SIZE		İ			in	. @		30		8.8	0	.054	1/0.0	072		UP	(min) (strk)		
DRILL COLLA	R SIZE	ι	ENGTH	PRO		ION OR LINER		TYPE								TOT	TAL CIRC		
					in	. @	ı.	Þ	HP	A / PAG	c ∥ь	bl/min			· gal/s		AE (min) (strk)		
						MUD PR	OPEF	TIES		,		MUE		ERTY SE	PECIFI				
Sample Fron	n					□ F.L. 🖟 PIT	□ F.	L. 🗆 PIT	WEIG				VISCOSI	TY		F	FILTRATE		
Time Sample	e Taken					22:00	 		1	9.3p	Pg		3:	5-42	sec	191	త	7c	c
Flowline Ten		(°F)			-	22.00	-		1			RECO	MMEN	DED TO	UR TR	EATME	ENT		
Depth (ft)	(TVD	, · /	1		£1)	1750	+		+	41-		·	س مر م سو						
Weight ∏√		□ (lb/		□ /•	ip gr)	1758	+		+	NO									
Funnel Visco				•F	ויצ אי	9.4	┪		╁╌	SER	ZVIC		UES	ILTE	<u> </u>				
Plastic Visco			°F	•		40	+		+										
Yield Point (20	+		+			-							
<u>`</u>	·					_//													
Gel Strength			10 min			3110	-	1.	-										
	API (cm³/30 min) THP Filtrate (cm³/30 min) @ °F					6-6	-		 					REMAR					
				°F		-	-		1-	WA	17	01	3.	5° C	RIL	/	0/01	<u> </u>	
Cake Thickn						11			<u> </u>	SER	21/6	: <u> </u>	RIC	·					
Solids Conte	ent (% by	Vol) 🕼	calculate	d □ ret	ort	7.0			1										
Liquid Conte	ent (% by	Vol) Oil/V	/ater			93.		1											
Sand Conte						0.25					~								
Methylene B	Blue Capa	city cm3/	t equiv			12.5													
pH 🗆	Strip	□ Me	er @	°F		8.5													
Alkalinity Mu	ud (P _m)					0.1									1				
Alkalinity Fil	trate (P _f /I	N _I)				0-110-6	5	7											
Chloride (mg	g/L)					750													
Total Hardne	ess as Ca	ılcium (mç	/L)			50													
PHA	OA.			***************************************		1.0	1		,							-			
رەك						10													
						<i>'</i>	\top		-										
		, 		7		}	┵		٠-		7		7		7	-			
PRODUCT	/						/												
INVENTORY	_/_	_/					<u>/</u>		_	//			/	(SOLIDS	SEQUIPM	ENI
STARTING INVENTORY													İ			SHAKE	R #1	3 x 5	<u>50</u> me
RECEIVED		1			T								Ç.S.						,
USED LAST	-	+-	+	+	+				-	+		 	+	1		SHAKE	н #2		/_ me
24 hr			1	1				L				 	1			MUD C	LEANER.		me
CLOSING INVENTORY		-			1				1				1			CENT	TRIFUGE		ho
COST LAST					T			1				T				1			
24 hr USED				+	+			 	 	+		<u> </u>	 	┼┼		DESA	ANDER		ho
(from IADC)																	ILTER		ho
M-I REPRESE	ENTATIVE					PHONE		WAR	EHOUSE	PHONE	DAIL	COST					ATIVE CO		
PAUL	· M	ARS.	HAL	4		093254	18 Z.	z			1	0	00		-	# /	49-	28.5	7
						BJECT TO			IS AN	D COND	ITIO	NS SE	T FOR	TH ON	REVE	RSE S	SIDE I	HEREOF	
											<u> </u>								
TIME	ICTDIDI I	TION (bra)		ID VOLU	14F A	COLINITINO		COLID	0. 45141	VO10	T								
I INVIE U	ioi nibU	TION (hrs)	MU	ەر VOLU	WE A	CCOUNTING		SOLID	S ANAL	.1 515			M	IUD RHEC	JLUGY :	and HY	DHAULI	US	
Rig Up/Se	rvice	24.0	Wat	er Added	d (bbl)		Low (Gravity 9	6	6.0	Zer	Gel		Avg ROP	T	Ti	ECD @_		
Drilling				d Built (b				Gravity, p		54.3	1	actor		% Cutting	+		Leak Off		,
Reaming/0	Coring	1		d Receiv		st)	 	onite %	•	09		actor		psi	%		hhp	HSI	Jet Ve
Circulating		1		d Dispos	<u>-</u> -			onite, pp	b	7.8	-11	Hydraulic	s	P-01	†			1	351 76
Tripping		_	1		. ,			Solids %		4.7	-11	ular Sec		1	2		3	4	5
Survey	***	1					 	Solids, p		425	-11	Size		:	† <u> </u>	-		 	† •
Logging		1	-					CEC, p		423	-	OD			1			1	+
- 559							Julan	, μ	<u> </u>	<u> </u>	II cabe			L	1			1	

Testing

Fishing

Running Casing

445

TOTAL MUD

New Hole Vol. (bbl)

Starting Depth

Ending Depth

D/B Ratio

High Gravity %

High Gravity, ppb

1.02

1.0

14.8

Critical Velocity

Annular Velocity

Annular Pressure

Viscosity

Depth : 1758.0 m Date: 30/03/95 _ -M-I Drilling Fluids Company Spud Date : 09/03/95 Activity: DRILL CMT Well No. : G0003 DRILLING FLUIDS DATA MANAGEMENT SYSTEM Description : EXPLORATION Contractor : CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 6.000 in Casing OD: 7.000 in Liner OD: Hole Volume: 184 in Nozzles: / / / / 1/32" Casing ID: 6.280 in Liner ID: Pits Volume: 226 in Drill Pipe 1 0D: 3.500 in 1619 m m Circulating Volume: 410 Casing TD: 1209.0m Liner TD: Drill Pipe 2 OD: in m m Mud : FW POLYMER Casing TVD: 1209.0m Liner TVD: Drill Collar OD: 4.750 in 139.0 m (%/1b/bb1) SOLIDS ANALYSIS CIRCULATION DATA MUD PROPERTIES : 0.0 / 0 250 NaC1 -gal/min : Flow Rate : FL 23:00 Sample From : 0.0 / DP Annular Vel -m/min: 0 78.6 : 74 ^F Flow Line Temp Low Gravity Solids : 7.2 / 66 -m :1758.0/1758.0 DC Annular Vel -m/min : 139.0 Depth/TVD : 0.6 / DP Critical Vel -m/min: 85.4 Bentonite Mud Wt -1b/gal : 9.3 : 6.0 / 55 -s/qt : 38 @ 70 ^F -cps : 14 @ 65 ^F Drill Solids DC Critical Vel -m/min: 110.4 Funnel Vis Weight Material : N/A / N/A Chemical Conc : - / 5.0 800 Circ. Pressure -psi : lastic Visc 23.9 P/R3 -1b/100ft2 /deg : 10 / 2 Bottoms Up -min : Inert/React : 4.06 Average SG : 2.60 68.9 / 9 -min : 10s/10m Gel -1b/100ft2 : 2 Total Circ Time API F Loss -cc/30 min: 8.4 SOLIDS EQUIPMENT Size PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ : 3 X 50 6 Shaker #1 Polypac R 25 KG S 2 -1/32" : 1 Cake API/HT Shaker #2 25 KG S 103 M-I Bar -%vol: 7.0 Solids Shaker #3 /93 -%vol: 0i1/Water Shaker #4 -%vol : 3 Sand Mud Cleaner : -1b/bb1 : 12.0MBT Centrifuge : : 12.5@ 55 ^F : 2 X 12" Desander Alkal Mud (Pm) : 2.2 : 12 X 4" Desilter : 1.9 / 2.1 Pf/Mf Degasser : -mg/1 : 750Chlorides : 200 Hardness Ca MUD VOLUME ACCOUNTING 661 PHPA Oil Added : SURFACE+SCE :30 : 10 SULPHITE. :10 DUMP Water Added :15 :460 Mud Built :40 TOTAL MUD Mud Received: : 0.663 np Value Mud Disposed:40 Kp -1b-sec^n/100ft2: 0.41111 a Value : 0.540 -1b-sec^n/100ft2 : 0.88501 Remarks:

Test BOPs. P/U 4.75" DC, M/U bit and RIH with 3.5" DP. Tag cement at 1102m. Drill out cmt & shoe track f/1102-1196m. Test BOPs. Pick up 4.75" DCs, make-up 6" bit and RIH with 3.5" DP. Tag cement

at 1102m. Drill out cement and shoe track from 1102-1196m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 833 Cumul Cost : 15761

,

DRILLING MUD REPORT NO.

			.		·		3			F	1	DRILL	.ING MUI	REPOR	I NO.	22		
	M.	Drill agcobar/IM		A Dre	esser/l	IOS C	Ompany	• '		P		DATE	30 M	19 9		DEPTH		M
O. BOX 4	2842	■ HOL	ISTO	N TF	ΧAS	S 77242 I	ISA				J	SPUD	DATE 2	MAR		LL OU		4EN7
PERATOR									la	ONTRA		Ŕ			1	1	RIG NO.	
EPORT FOR	GI	-E ,	RES	OUR	CE.	5.			R	EPORT FC		CEN	TUR	7		SECTION	I, TOWNSHI	P, RANGE
	K	W S	5111	TH			T				/			3/400		0~5	HORE	
ELL NAME AND	NO.	NBA	R#	-/			FIELD	OR BLO	CK NO. <i>O</i>	/				OFFSHORE		STATE/PROV	CT.	
DRILL		SEMBLY			CAS	ING	М	IUD VC	LUME	(BBL)	_					ON DATA		
	TYPE	JET S	SIZE	 -	SURF		HOLE		PIT	· ·	-1	PUMP SI	ZE			. ANNULAR V	EL (Mmin)	
	654			19%	} in. ∉	312 m	24	14	/	166	I			5.5 x 7	7.75	DP_6	9 DC	111
RILL PIPE	TYPE	LENG	ЭТН	7"	NTERM	iediate @ 1209 aa	TOTAL	CIRCUL/	ATING VO	OLUME		PUMP M	AKE, MODE	ASSI EFF	UMED 95 %	CIRCULATIO PRESSURE	in (psi) 80	00
RILL PIPE ZE	TYPE	LENG	STH	11	TERM	IEDIATE	IN STO	_		IGHT -		bbl/stk	. ,		stk/mir	BOTTOMS UP (min)	11	<i>د</i> ش .
1		ļ		ļ.,,,	in. (0		9.3	_	0.05	4/00	72	110	(strk)		
TILL COLLAR S $4^{3}/4$		LENG		PROD	UCTIO	N OR LINER	MUD T		/.	.	_	5.0	74		250	TOTAL CIRC TIME (min)	52	. شهر
7 14	<u>. </u>	139	74	<u> </u>	in. (<i>121 1</i> -	PACA	<	bbl/min	ID BBOT	ERTY SP	gal/mi			
						MUD PRO	IN EL		WEIGH	iŤ		IVIC	VISCOSI		ECIFICA	FILTRATE		
ample From						F.L. 🗆 PIT				9.3	no	c	35	-425	oe 19	/	5-7	cc
me Sample Ta						23:00		:00:		, -,				IDED TOU			<u> </u>	
owline Temper					-	74(23)	75	(23)				- INL	CIVILVIEN	IDED TOO	n me	- INICIAI	-	
· · · · · ·	VD		<i>'</i>		ft)	1758		<i>5</i> 8	<u> </u>	0150	AC	F 1	JELL	76 A	100	& MA	111311	1 MU
eight 🗹 (ppg	·	[] (lb/cu		☐ (sp	gr)	9.3.	9.	3	 				وم م 3					
innel Viscosit	y (sec/qt)	API @	70 °	°F	_	38	40)		PRI	P	ar E	AD	0/7/0	NAL	. VOL	W	T = 12
astic Viscosity	/ cp @	65	۰F			14	18	3	ļ									
eld Point (lb/1	00 ft²)					10	9											
el Strength (lb	/100 ft²)	10 sec/10 i	min			219	2	19										
trate API (cm	3/30 min)) .				8.4	8.	<						REMAR	<s< td=""><td></td><td></td><td></td></s<>			
1 HTHP Filtra	ate (cm³/	30 min) @		٥F				•		TES	7	80	25.					
ake Thickness	(32nd ir	n. API/HTH	IP)			11	1	1	-	P/	ب	4	14" 2	C 1	1/0	6 81	r \$	RIH
lids Content	(% by Vo	ol) 🗹 calc	ulated	☐ retor	t	7.0	7	'- o		4170	,	3/		•		CMT C		24.
quid Content	(% by Vo	ol) Oil/Wate	г			93	93	7-0		DRI	<u>.</u>	00	TC	17 \$	SHO	E TRA	cK	
and Content (% by Vol)				3	3			F/11	02		119	-				
ethylene Blue	Capacit	y lb/bbl equ	iiv mud			12.0	12	?. 0						-				
H D/St		☐ Meter		°F		12.5		.0				•						
kalinity Mud (P _m)					2.2	2								ı			
kalinity Filtrat					<u> </u>	1.9 12.1	1.8	12·i										
hloride (mg/L)						750		50						···································				
tal Hardness	as Calci	um (mg/L)				200		30	 									
PHPA					1		1.		ļ -									
50;			,			TR	71		 									
303					_	1/2	'	<u> </u>	-									
									 -									
ODUCT	BARIT	PACP	7	$\overline{\mathcal{I}}$	$\overline{}$		/	$\overline{\mathcal{I}}$	7	7	/	/	$\overline{}$	7	7	/		
ENTORY ARTING ENTORY			, 			-	-		/			+	-	f - f	<u> </u>		S EQUIPM	
	343	7/					-+					+	+	1 1	—— °	HAKER #1		me
CEIVED	ļ											\bot		1	s	HAKER #2	<u>_</u>	
ED LAST hr	103	2			L		_				_		\perp			UD CLEANER		me
OSING VENTORY	240	10														CENTRIFUGE		h-
ST LAST	.59	.48					-+			\vdash		+	+	1				ho
hr	569	263				-								1		DESANDER_		ho
ED m IADC)	5.53	131.74				L	_					<u>. </u>				DESILTER		ho
I REPRESENTA					PF	IONE		WARE	HOUSE	PHONE	DA	VILY COST		_	С	UMULATIVE CO		
PAUL	1	RSH	421	<u>.</u>	h	932548	322				1	t 83	3.0	7	8	\$ 1576	51.6	4
								TERMS	SANE	CONE	ITI	ONS S	ET FOR	TH ON F	REVER	SE SIDE I	IEREOF	•
TIME DIST	RIBUTIO	N (hrs)	MUD	VOLUM	E ACC	COUNTING		SOLIDS	ANALY	'SIS	T		٨	IUD RHEO	LOGY ar	nd HYDRAULI	cs	
Rig Up/Service		5.5	Water	Added	(hhl)	1,-	Low G-	avity %	Ī	1.7	1,	aro Gal	2	Ave BOD	1	ECD C		
			 	Built (bb	`	15				6.7	╫┈	ero Gel	2	Avg ROP		ECD @_		
Drilling pri		6.0	 			40		avity, pr	טנ	61.1	╫	Factor	0.54	% Cutting	 	Leak Off		·
Reaming/Cori	···y		ji wua i	Received	(1001) ı	1 1	Benton	⊪e %	- 1	0.8	IJΚ	Factor	0.88	psi	%	hhp	HSI	Jet Ve

TIME DISTRIBUTIO	ON (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		t	MUD RHEOI	OGY and I	HYDRAULIC	s	
Rig Up/Service	5.5	Water Added (bbl)	15	Low Gravity %	6.7	Zero Gel	2	Avg ROP		ECD @_		
Drilling CMT	6.0	Mud Built (bbl)	40	Low Gravity, ppb	61.1	n Factor	0.54	% Cutting		Leak Off	@	
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.8	k Factor	0.88	psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)	40	Bentonite, ppb	6.9	Bit Hydra	ulics					
Tripping	8.5	SURFACE.	30	Drill Solids %	5.5	Annular S	Section	1	2	3	4	5
Survey		SCE/ DUMP	10	Drill Solids, ppb	50.2	Hole Size)	6.276	6.276	6.00		
Logging				Shale CEC, ppb		Pipe OD		4.75	3.5	4.75		
Running Casing		TOTAL HUD	460	D/B Ratio	3.57	Critical Ve	elocity	182	82	110		
Testing BOP+SURF	4.0	Starting Depth		High Gravity %	0.3	Annular V	elocity/	111	69	139		
Fishing		Ending Depth		High Gravity, ppb	3.7.	Viscosity		23	37.	19		
		New Hole Vol. (bbl)				Annular F	ressure	9.7	22.4	10.2		

MI-39P

Date: 31/03/95 Depth : 1758.0 m M-I Drilling Fluids Company Well No. : G0003 Spud Date : 09/03/95 Activity: LAY OUT DP DRILLING FLUIDS DATA MANAGEMENT SYSTEM Description : EXPLORATION Contractor : CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME CASING Bit: 6.000 in Casing OD: 7.000 in Liner OD: Hole Volume: 190 in Nozzles: / / / / 1/32" Casing ID: 6.280 in Liner ID: Pits Volume: 129 in Drill Pipe 1 OD: 3.500 in 1758 m Casing TD: 1209.0m Liner TD: m Circulating Volume: 319 Drill Pipe 2 OD: in m m Mud : FW POLYMER Casing TVD: 1209.0m Liner TVD: Drill Collar OD: in m SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES : NaC1 : 0.0 / 0 : PIT 24:00 -gal/min : Flow Rate Sample From : 0.0 / 0 KC1 DP Annular Vel -m/min: : ^F Flow Line Temp Low Gravity Solids : 7.2 / 66 -m/min : DC Annular Vel -m :1758.0/1758.0 Depth/TVD : 0.7 / DP Critical Vel -m/min: 89.8 Bentonite 6 -1b/gal : 9.3 Mud Wt : 6.0 / 54 Drill Solids DC Critical Vel -m/min: -s/qt : 41 @ 70 ^F Funnel Vis : N/A / N/A Weight Material -cps : 19 @ 65 ^F Circ. Pressure -psi : Nastic Visc : - / 5.0 Chemical Conc P/R3 -1b/100ft2 /deg : 10 / 2 Bottoms Up -min: Inert/React : 3.86 Average SG : 2.60 10s/10m Gel -1b/100ft2 : 2 / 9 Total Circ Time -min : API F Loss -cc/30 min : 7.6SOLIDS EQUIPMENT Size Hours PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ 3 X 50 Shaker #1 25 KG S 1 -1/32": 1 Polypac R Cake API/HT Shaker #2 25 KG S 80 -%vol : 7.0 M-I Bar Solids Shaker #3 : -%vol: /93 0il/Water Shaker #4 -%vol : 1.5 Sand Mud Cleaner -1b/bb1:12.5MBT Centrifuge : 13.5@ 55 ^F рΗ 2 X 12" Desander : Alkal Mud (Pm) : 2.0 Desilter 12 X 4" : 1.8 / 2.0 : Pf/Mf Degasser -mg/1:750Chlorides : 200 Hardness Ca MUD VOLUME ACCOUNTING 661 PHPA SURFACE+SCE :30 Oil Added : : 10 SULPHITE Water Added: D/H +PLUG :66 :424 Mud Built :60 TOTAL MUD Mud Received: : 0.727 np Value Mud Disposed:96 -lb-sec^n/100ft2: 0.33333 Κp : 0.581 -1b-sec^n/100ft2 : 0.82763

Remarks:

Drill out shoe track.RIH to 1758m & circ POOH, lay out drl assy and RIH 0/E to 1610m and set cmt plug #1.1610-1440m. Continue to drill out shoe track. RIH to 1265m, 1302m & 1758m. Circulate and flow check each stage. POOH and lay out DC. RIH 0/E to 1610m and pump cement plug #1 from 1610 -1440m. POOH 12 stands and WOC. RIH and tag cement at 1437m. Circulate and lay out DP.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 574 Cumul Cost : 16335

			DR	ILLING	MUD	REP	ORT			OPERATOR
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			13	בו	1	G MUL≟POR	T NO.	23
	Drilling Magcobar/IMCO) FIU	II OS C	O.	(A	D	DATE =	RI MAR 19	95	DEPTH 1758 M
ELECTRICAL PARTY	Magooda/moo							_	1	T ACTIVITY
P.O. BOX 42	842 HOUSTO	N, TEXA	S 77242 L	JSA			SPUD D	ATE 9 MAR	LA	YOUT D.P.
OPERATOR	GFE RESO				CONT		R CENT	rury		RIG NO.
REPORT FOR	<i>:/ (</i>	-41			REPORT	FOR	OCER	BINDO	,	SECTION, TOWNSHIP, RANGE
WELL NAME AND N	KEN SMIT 10. DUNBAR	# 1		FIELD OR BLO			COUNTY, P.	ARISH OR OFFSHOR	ιE	STATE/PROVINCE
		T	OINIO		OLUME (BBI	$\overline{}$			CULATIO	
	IG ASSEMBLY		SING RFACE	HOLE	PITS	-)	PUMP SIZE			ANNULAR VEL (ft/min)
BIT SIZE T	YPE JET SIZE			203	į.		101111	5.5°.	_	
		7 /8 in	@3/2 #1.	1	LATING VOLUME		PUMP MAK		SUMED	DPDC
DRILL PIPE T	TYPE LENGTH				319		NAT	7 P 50 EFF	95 %	PRESSURE (psi)
		/ in	@1209*	IN STORAGE	WEIGHT		bbl/stk	8-P-80	stk/min	воттомѕ
DRILL PIPE T SIZE	TYPE LENGTH		MEDIATE		9.3		1	6.072	132	UP (min) (strk)
DRILL COLLAR SIZE	E LENGTH		ON OR LINER	MUD TYPE			7.1.	?	300	TOTAL CIRC TIME (min)
		in	. @ tt.	PH	PA / PA	ا ے	bbl/min	•	gal/min	(strk)
		<u> </u>	MUD PRO		T		MUE	PROPERTY SI	PECIFICAT	TIONS
			□ EL. M PIT	□ EL. □ PIT	WEIGHT			VISCOSITY		FILTRATE
Sample From				DF.L. IDPII	9.	م م 3	9	35-42	sec/9,	1 5-7cc
Time Sample Take	en		24:00							
Flowline Temperat	ture (°F)		7.3				HECC	MMENDED TO	UH IHEA	IMENT
Depth (ft) (TVI	D /	ft)	1758		Bul	120	ADDI	TIONAL	VOL.	& JUNINIAIN
Weight ☑ (ppg)	☐ (lb/cu ft)	☐ (sp gr)	9.3		1			. وم		•
					1 ~ ~ ·			— ر م		
	(sec/qt) API @ 65	т-	41							
Plastic Viscosity of	cp @ 60 °F		19							
Yield Point (lb/100	O ft²)		10							
Gel Strength (lb/1	100 ft²) 10 sec/10 min		219	1	1					
Filtrate API (cm ³ /3	30 min)		7.6					REMAF	RKS	
API HTHP Filtrate		۰F	7.6		· co.		~ 70	DRILL		SHOE TRACK
			l , , ,	 						
	(32nd in. API/HTHP)		/ /		RI			265~ £		C B/U - FLOW CHECK
Solids Content (%	6 by Vol) □ calculated	□ retort	7.0		RI			302 m &		
Liquid Content (%	% by Vol) Oil/Water		93.		P1	# 7	ਹ ,	758~,	CIRC	V ELOW CHIECK
Sand Content (%			1.5		ے حر	2014	1 4 2	44 005	DIC	
Methylene Blue C	Capacity 🗆 lb/bbl equiv		12.5		R	IN	0/6	70 /	6100	Y PUMP
pH ∇∕Strip		۰F	13.5			en to	UT B	600 # 1	16	510m - 1440m
Alkalinity Mud (P			2.0		- 1	204		STOS CI		
				 , 	1 7					37 n. CIRC PIPE
Alkalinity Filtrate	(PhMb)		1.812.0	 	 		1 TAG		14	SFA. CIRC FIFE
Chloride (mg/L)			750	ļ	#	44	4 00	T DP		
Total Hardness a	as Calcium (mg/L)		200		_					
PHPA										
507			10							
<u> </u>										
		· · · · · · · · · · · · · · · · · · ·			1					
	/ 4 / 0 /		}	'//	-1-/	/	7 7			/
PRODUCT	CARITE ACP	//		/ /	//	/	′ /		/ /	SOLIDS EQUIPMENT
INVENTORY	/b ^r /\' /		_{_/		/ / /				\leftarrow	
STARTING INVENTORY	240 69					_			SI	HAKER #1
RECEIVED									SI	HAKER #2 mesh
USED LAST 24 hr	80 1		·						м	UD CLEANER mesh
CLOSING INVENTORY	160 68									CENTRIFUGE hours
COST LAST 24 hr	442 131									DESANDER hours
USED (from IADC)	5.53 131.74									DESILTER hours
M-I REPRESENTAT	TIVE		PHONE	1	REHOUSE PHON		DAILY COST	4 : 4	- 11	JMULATIVE COST
PAUL M	IARSHALL		0932548	322		Z	\$ 574	1.14 	18	16335.78

PAUL MARSHALL 993254822 \$ 574.14 \$ 16335.78

NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

		I				I					
TIME DISTRIBUT	ION (hrs)	MUD VOLUME ACC	DUNTING	SOLIDS ANA	LYSIS		MUD RHEOLO	OGY and	HYDRAULK	OS 	
Rig Up/Service	1.5.	Water Added (bbl)		Low Gravity %	6.7	Zero Gel	Avg ROP		ECD @_		
Drilling		Mud Built (bbl)	60	Low Gravity, ppb	61.1	n Factor	% Cutting		Leak Off	@	
Reaming/Coring	2.0	Mud Received (bbl)		Bentonite %	0.8	k Factor	psi	%	hhp	HSI	Jet Vet
Circulating	2.0	Mud Disposed (bbl)	96	Bentonite, ppb	6.9	Bit Hydraulics					
Tripping	13.5	PLUG.	35	Drill Solids %	5.5	Annular Section	1	2	3	4	5
Survey		SURF	30	Drill Solids, ppb	50.2	Hole Size					
Logging		DIH	31	Shale CEC, ppb		Pipe OD					
Running Casing		TOTAL MUD	424	D/B Ratio	3.57	Critical Velocity					
Testing		Starting Depth		High Gravity %	0.3	Annular Velocity					
Fishing CMT	1.0	Ending Depth		High Gravity, ppb	3.7	Viscosity					
NOC	4.0	New Hole Vol. (bbl)				Annular Pressure					

Date: 01/04/95 Depth: 1758.0 m M-I Drilling Fluids Company Spud Date: 09/03/95 Activity: RIG DOWN DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: G0003 _______ Description: EXPLORATION Contractor : CENTURY DRILLING 11 Operator : GFE RESOURCES Location : OTWAY BASIN Field/Area: PPL 1 Well Name: DUNBAR 1 Report For: KEN SMITH MUD VOLUME (bb1) Bit: 6.000 in CASING Hole Volume: 190 Casing OD: 7.000 in Liner OD: in Nozzles: / / / / 1/32" Casing ID: 6.280 in Liner ID: in Pits Volume: -190 Drill Pipe 1 OD: 3.500 in 1758 m Casing TD: 1209.0m Liner TD: Circulating Volume: m Drill Pipe 2 OD: in Mud : FW POLYMER Casing TVD: 1209.0m Liner TVD: m Drill Collar OD: in m SOLIDS ANALYSIS (% / 1b/bb1) CIRCULATION DATA MUD PROPERTIES : : 0.0 / 0 NaC1 -gal/min : : FL 15:00 Flow Rate Sample From : 0.0 / 0 -m/min : KC1 : 70 ^F DP Annular Vel Flow Line Temp Low Gravity Solids : 7.2 / 66 DC Annular Vel -m/min : -m:1758.0/1758.0 Depth/TVD DP Critical Vel -m/min: : 0.7 / 6 -1b/ga1 : 9.3 Bentonite Mud Wt : 6.0 / 54 -s/qt: 42 @ 70 ^F Drill Solids DC Critical Vel -m/min: Funnel Vis : N/A / N/A Weight Material -cps : 20 @ 65 ^F Circ. Pressure -psi: Plastic Visc : - / 5.0 Chemical Conc -min : YP/R3 -1b/100ft2 /deg : 10 / 2 Bottoms Up Inert/React : 3.86 Average SG : 2.60 Total Circ Time -min : 10s/10m Gel -lb/100ft2: 2 / 9 API F Loss -cc/30 min : 7.6 PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours HTHP F Loss -cc/30 min: @ 7 6 LB JU 1 Shaker #1 : 3 X 50 -1/32": 1 Bacban Cake API/HT Shaker #2 -%vol : 7.0 Congor 303 25 LT D 10 Solids Shaker #3 -%vol: /93 0il/Water Shaker #4 -%vol: 1.5 Sand Mud Cleaner MBT -1b/bb1 : 12.5Centrifuge : 12.5@ 55 ^F ρН 2 X 12" Desander : 2.0 Alkal Mud (Pm) 12 X 4" Desilter : : 1.8 / 2.0 Pf/Mf Degasser -mg/1:750Chlorides : 200 Hardness Ca MUD VOLUME ACCOUNTING 661 : 0.9 PHPA PLUG :46 Oil Added : : 300 SULPHITE :230 Water Added: Mud Built : TOTAL MUD :148 Mud Received: : 0.737 np Value Mud Disposed:276 -1b-sec^n/100ft2 : 0.32402 Κp : 0.588 na Value -1b-sec^n/100ft2: 0.81775 Ka

Remarks:

Rig up and set cement plug #2 f/1240-1180m. RIH and tag cmt @ 1178m circ and displace hole to inhibited mud. Rig up and set cement plug #2 from 1240-1189m. Pull 5 stands and WOC. RIH and tag cement at 1178m. Circulate and pressure test plug to 500 psi. Minimize pit volume and circulate inhibited mud. POOH and lay out drill pipe. P & A complete. Rig down.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 622 Cumul Cost : 16957

DRILLING MUD REPORT

	.		Ω_) [DRILLING	MUI	D toEPOR	IT NO.	2	4							
		lagcoba	r/IMCO	$g_{_{ADre}}$	sser/H	US (50.	,		A		DATE/SY	AP	R/L 19_	95	DEPTH	¥58)		
ACCOMPANIA SON SAN SE	ध्यानुबन्ध्यक्षके च	m.chességeib	कारमक्त	经产业的	医水杨素	Mark Francisco	THE PARTY AND				.J		_		1	IT ACTIVITY				
P.O. BOX 4	2842	<u> </u>	JUST	ON, TE	XAS	3 77242	USA					SPUD DA	TE Z	MAR		R19 0				
OPERATOR	GF	上.	RES	OUR	CE S	5'			- 11	CONTRA	ACTOR	CENT	-U/	27		11	RIG NO.			
EPORT FOR									-	REPORT F	OR	GER			. ,		N, TOWNSHI			
VELL NAME AND	NO.		5141				FIELD C	OR BLOC	K NO.			OUNTY, PAR	RISH O	R OFFSHOR	IE :	STATE/PROV	HORE INCE			
		UNL	BAR	#			1				A	REA OTA	VAY	BAS	· No	VICT.				
DRILLI	NG AS	SEMBI	LY		CASI	NG	М	UD VC	LUMI	ME (BBL)					CULATIO					
IT SIZE	TYPE	JE	T SIZE		SURF		HOLE		PI	is	P	UMP SIZE		×	IN.	ANNULAR V	/EL (ft/min)			
1				95/2	3 in.@	312 A	148	}		-						DP	DC			
RILL PIPE	TYPE	LE	ENGTH	11	INTERMEDIATE			CIRCULA	TING V	OLUME	P	UMP MAKE,	MODE	CIRCULATIO						
				7"	in. @	12091	ı.	RAGE WEIGHT				•		EFF	%	PHESSURE	(psi)			
RILL PIPE	TYPE	LE	ENGTH	11	ITERM	EDIATE	IN STOP	IN STORAGE			ь	bl/stk			stk/min	BOTTOMS UP (miri)				
	RILL COLLAR SIZE LENGTH PROI						u		丄						(strk)					
RILL COLLAR SI	ZE	L	ENGTH	PROD	UCTION	OR LINER	MUD TY							•		TOTAL CIRC TIME (min)	;			
•					in. @		ul		10%	1/PA	<u>د</u> ا ه				gal/min	(strk)				
						MUD PR	7		WEIGH	, JT			PROF	PERTY SE	PECIFICA	FILTRATE				
sample From					E	F.L. 12 PIT	□ F.L. [☐ PIT	WEIGI	.,		[*	130031	11 1		FICINAIE				
ime Sample Ta	ken					8:00										_L				
lowline Temper	ature (°	F)										RECON	MEN	IDED TO	JR TREA	TMENT				
epth (ft) (TV	/D		1		ft)	1758.			_				52	·	0.7	70	501	1/-		
).3+	†													
unnel Viscosity				°F			†			AND						3, BA				
		, ~	°F	•	+	42	+			05-	•					CK A				
lastic Viscosity		-				20				WHI	4 <u>5</u>	CIR		0~	CMT	PLU	5 18th 2	2		
ield Point (lb/10						10			-	00	MP	501	21=1	ace.	VOLL	ME.				
iel Strength (lb/	/100 ft²)	10 sec/1	0 min			219	1													
iltrate API (cm³	/30 min)			1	7.4								REMAR	KS		-			
PI HTHP Filtra	te (cm³/	30 min)	@	۰F		-			- LAY OUT DIP.											
ake Thickness	(32nd i	n. API/H	THP)			/ /	1		- RIG UP & PUMP CMT PLUG # 2											
Solids Content (% by V	ol) 🗆 c	alculated	☐ retori		7.0	† <u> </u>													
iquid Content (-		† ,			·-						RESS		- 04		
		·			+	93.0			- 1											
Sand Content (%			ecuiv		-	2.0	ļ			RIN	2	TA	4	CEM	ENT	<u>@</u>	1178	~		
Methylene Blue						12.5	ļ			CIRC	2 4	PRE	کک	7557	PLO	15 70	500	Dps1 6		
oH Ø Stri	<u></u>	☐ Mete	er @	°F	\perp	12.5	<u> </u>		DISPARCE CASED HOLE TO INHIBITE											
Alkalinity Mud (F	² m)	·				2.0			MUD. POOH + L/OUT D.P.											
Alkalinity Filtrate	(P _I /M _I)				·	8120	/													
Chloride (mg/L)					i_	750				1	Ξ,	0.	4.							
lotal Hardness	as Calci	um (mg/	L)			200														
						7			,											
503°						300	1													
<i></i>	•					500	1										·····			
					\dashv		 													
PRODUCT	Col 45	300	651	7	$\frac{1}{2}$	7	7		\mathcal{T}	$\overline{\mathcal{I}}$	7		7	7	7/	SOLIDS	S EQUIPME	 =NT		
TARTING	/ <u>U 19</u>	(V	1	1-1		\leftarrow	-				\leftarrow	\leftarrow		/ 						
VENTORY	10	5	ļ			<u> </u>						1			SH	AKER #1	3 x 5	<u>රිට</u> me		
ECEIVED		!											1		<u></u>	AKER #2	.;	, me		
SED LAST		Η.	 	1 - 1		1 1		\dashv		<u> </u>		+-+	• •	+ +	SH	DOEN #2		me		
1 hr	10	/	/	\vdash		+				<u> </u>				 	М	D CLEANER		me		
LOSING IVENTORY		4										1				ENTRIFUGE.		ho		
OST LAST	. 70	.34	NO	1				$\neg \dagger$				1 1		1				110		
t hr	512	109	CHA	RGE.		1 1				<u> </u>		 		 		ESANDER		ho		
SED rom IADC)			1				1								0	ESILTER	-	ho		
-I REPRESENTATIVE					PHO	ONE		WAREH	OUSE	PHONE	DAIL	COST			CUI	MULATIVE CO				
DAUL 1	MAR	SHA	44		09	3254	822				\$	622	· 0	4	#	169	57.8	<i>32</i>		
NOTICE: THIS REPORT IS S						ECT TO	THE TE	ERMS	ANE	CON	DITIO	NS SET	FOR	TH ON F	REVERS	E SIDE H	IEREOF.			
TIME DISTRIBUTION (hrs) MUD VOLUME ACC																				
					. MUU	CONTING	SC	OLIDS A	MNALY	SIS			MUD RHEOLOGY a			HYDRAULI	US			
Rig Up/Service /2.0 Water Added (bbl)					obl)		Low Grav	vity %	T	70		Zero Gel				ECD @				
Drilling				Mud Built (bbl) Low Gravity, p					, 			actor		Avg ROP % Cutting		Leak Off				
Reaming/Corin	a			Received			Bentonite				k Fa				 		1	1 1-1-1-		
Circulating	<u> </u>	1.0		Disposed		27/					-			psi	<u>%</u>	hhp	HSI	Jet Ve		
Tripping		5.5			(001)	276	Bentonite Drill Solid					lydraulics			 	+	 	+		
		J.3	PLL			46						ular Section	"	1	2	3	4	5		
Survey			100	MP		230	Drill Solid	as, ppb			Hole	Size			l	1	l	I		

Shale CEC, ppb

High Gravity %

High Gravity, ppb

D/B Ratio

148

TOTAL MUD

Starting Depth

Ending Depth

5-0 New Hole Vol. (bbl)

Pipe OD

Viscosity

Critical Velocity

Annular Velocity

Annular Pressure

WOC MI-39P

Logging

Testing

Fishing

Running Casing Full 025

• APPENDIX 3

APPENDIX 3

DAILY REPORT SUMMARY OF DRILLING OPERATIONS

DRILLING OPERATIONS SUMMARY

DUNBAR-1

Permit:

PPL1

Spud Date:

10/05/1995

Rig:

Century Rig 11

GFE Rep:

K. Smith

Geologist:

D. Horner

s. contary rag r.

		Oper:							çe:	

9/3/	95	
0600-1700	11	Finalize rig-up. Drill rat hole and mouse hole. Pre-spud meeting with crews
		and service companies.
1700-1900	2	Spud in and drill 12 ¹ / ₄ " hole from 10 to 41m.
1900-1930	1/2	Work on generator to restore power.
1930-2000	1/2	Drill to 43m. Circulate and survey at 30m.
2000-2300	3	Drill 12 ¹ / ₄ " hole from 43 to 97m.
2300-2330	1/2	Circulate and survey at 84m.
2330-2400	1/2	Drill 12 ¹ / ₄ " hole from 97 to 115m.
10/3/	95	
0000-0100	1	Drill 121/4" hole from 115 to 142m.
0100-0130	1/2	Circulate and survey at 129m.
0130-0300	$1\frac{1}{2}$	Drill 12 ¹ / ₄ " hole from 142 to 206m.
0300-0330	1/2	Circulate and survey at 193m.
0330-0500	11/2	Drill 121/4" hole from 206 to 263m.
0500-0530	1/2	Work mud ring out of annulus and flow line.
0530-0600	1/2	Circulate and survey at 250m.
0600-0730	11/2	Drill 12 ¹ / ₄ " hole from 263 to 291m.
0730-0800	1/2	Clear flow-line and conductor of mud ring.
0800-0900	1	Drill 12¼" hole from 291 to 310m.
0900-0930	1/2	Clear flow-line and conductor of mud ring.
0930-1000	1/2	Drill 12 ¹ / ₄ " hole from 310 to 317m - casing point.
1000-1030	1/2	Circulate hole clean.
1030-1400	31/2	Wiper trip to surface - strap out to top of 8" DC's. Tag 1m of fill.
1400-1430	1/2	Circulate hole clean. Clean flow-line and unblock cellar jet from mud ring.
1430-1500	1/2	Circulate hole clean prior to running casing.
1500-1700	2	Pull out of hole to run casing. Lay out 8" DC's and 121/4" stabilizer.
1700-2200	5	Rig up to run and run 9 ⁵ / ₈ " casing. Hold safety meeting.
2200-2230	1/2	Break collar and head up Dowell.
2230-2300	1/2	Circulate 120bbls of mud through casing prior to cementing.
2300-2400	1	Pressure test and mix cement. Only 35bbls of slurry mixed after 1 hour.
		Unable to mix continuously and maintain weight.

TT	O	게 하나도 하다 하고 화면 활동되어	
Time Hours	Operations		Page: 2
			1.50

11/3/	95	
0000-0130	1½	Circulate cement to surface and dump. Dowell working on cement unit.
0130-0230	1	Resume cementing - run 393 sacks and displace.
0230-0600	31/2	Wait on cement.
0600-0930	31/2	Wait on cement.
0930-1030	1	Slack off and remove landing joint and lay out same. Lay out cementing head and conductor barrel.
1030-2000	91/2	Install casing bowl, nipple up BOP's, install choke manifold and lay flare line - function BOP.
2000-2200	2	Pressure test Hydril and flare line to 1500psi, blind rams to 1000psi, pipe rams to 2500psi and 300psi and all choke manifold valves, manual and HCR valve and 2 kill line valves to 2500psi.
2200-2400	2	Make up slick 8½" BHA and run in hole - pick up 2 x 6½" DC's and drilling jars.
12/3/	95	
0000-0030	1/2	Run in hole with 8½" BHA.
0030-0100	1/2	Slip 20 ft of drill line.
0100-0130	1/2	Run in hole - tag top of cement at 293m.
0130-0200	1/2	Pressure test upper and lower kelly cocks to 1000psi.
0200-0330	11/2	Drill out float, cement and shoe, and drill 5m of new hole (317-322m).
0330-0400	1/2	Circulate hole clean.
0400-0500	1	Run formation integrity test with Dowell/Schlumberger with 8½ppg mud at 321m to 790psi - EMW 22.89ppg.
0500-0600	1	Drill 8½" hole from 322 to 348m.
0600-0830	21/2	Pull outof hole to pick up stabilizer, install at 60ft and run in hole.
0830-0930	1	Drill 8½" hole from 349 to 387m.
0930-1000	1/2	Clear shakers (and flow-line) of balling clay, reduce bit weight and ROP for shakers to cope.
1000-1100	1	Drill 8½" hole from 387 to 406m.
1100-1130	1/2	Clean shakers and sand trap - cuttings too gluey to flow through sand trap - dump gate.
1130-1230	1	Drill 8½" hole from 406 to 422m.
1230-1300	1/2	Circulate and survey at 422m.
1300-2030	71/2	Drill 8½" hole from 435 to 626m.
2030-2100	1/2	Circulate and survey at 613m.
2100-2400	3	Drill 8½" hole from 626 to 693m.

													age	

13/3/		
0000-0600	6	Drill 8½" hole from 693 to 818m.
0600-0630	1/2	Drill 8½" hole from 818 to 827m.
0630-0700	1/2	Circulate and survey at 814m.
0700-0800	1	Drill 8½" hole from 827 to 856m.
0800-0830	1/2	Circulate bottoms up prior to wiper trip to casing shoe of 29 stands.
0830-0930	1	Wiper trip first 3 stands free - then starting to pull tight.
0930-1100	11/2	Pick up kelly, work to free stuck pipe and work tight hole from 579 to 559m.
1100-1330	21/2	Circulate and continue pulling to shoe, work tight hole from 550 to 531m.,
		512 to 474m., 394 to 378m. String spiralling and twisting block line - pull
		1 pass with unlocked blocks and re-pull same with locked blocks to wipe
1330-1700	31/2	hole clean. Run in hole. Ream from 531 to 569m, 597 to 610m, 665 to 678m, 798 to
1550-1700	372	856m, running stands where possible - 18m. of fill.
1700-2230	5½	Drill 8½" hole from 856 to 1028m.
2230-2300	1/2	Circulate and survey at 1015m.
2300-2400	1	Drill 8½" hole from 1028 to 1047m.
14/3/		2111 0/2 11010 11011 1020 to 101/111
0000-0600	6	Drill 8½" hole from 1047 to 1204m.
0600-0730	1½	Drill 8½" hole from 1204 to 1230m.
0730-0800	1/2	Circulate and survey at 1217m.
0800-1130	3½	Drill 8½" hole from 1230 to 1287m.
		<u> </u>
1130-1200	1/2	Circulate bottoms up prior to wiper trip.
1200-1430	21/2	Wiper trip from 1287 back to 575m work tight hole at 905 to 847m., 790 to 770m. and 713 to 675m.
1430-1500	1/2	Pick up kelly and break circulation to check for plugged bit jet and to wash stabilizer blades.
1500-1630	11/2	Run in hole -ream and clean from 1255 to 1287m 7m. of fill.
1630-2400	$7\frac{1}{2}$	Drill 8½" hole from 1287 to 1382m.
15/3/	95	
0000-0400	4	Drill 8½" hole from 1382 to 1430m.
0400-0430	1/2	Circulate and survey at 1417m.
0430-0600	11/2	Drill 8½" hole from 1430 to 1445m.
0600-1330	71/2	Drill 8½" hole from 1445 to 1507m - Drill string torqueing up.
1330-1930	6	Pull out of hole, work tight hole 1331 to 1082m with up to 40000 lbs overpull. Approximately 230m of the tight section was wiped last trip. Picked up kelly twice to fill pipe and wash stabilizer. Stabilizer ³ / ₈ " and ⁷ / ₈ " undergauge, bit ½" undergauge.
1930-2100	11/2	Make up new bit on junk sub and run in slick BHA to casing shoe.
2100-2130	1/2	Slip 32 feet of drilling line.
2130-2400	21/2	Run in hole -precautionary ream tight hole from 616 to 683m, 756 to 780m, 823 to 836m, and 852 to 875m, running stands where possible.

			eratio							
									Pag	

)		0.5	
	16/3/	95	
	0000-0600	6	Continue running in hole. Precautionary reaming tight hole from 920 to 971m, 1016 to 1067m, 1092 to 1125m, 1150 to 1248m and 1283 to 1411m Running stands where possible without forcing bit into under-gauge hole.
	0600-0900	3	Ream and clean tight hole from 1411 to 1507m running stands where possible.
	0900-0930	1/2	Work junk sub at 1507m.
	0930-1330	4	Drill 8½" hole from 1507 to 1557m.
	1330-1530	2	Circulate geological sample at 1507m - flow check and pull back 3 stands.
	1530-1700	11/2	Wiper trip back to 785m - work sticky hole from 1340 to 1168m.
	1700-1850	11/2	Run in hole - 5m of fill.
	1830-1930	1	Break circulation, clean to bottom, pull 3 stands and circulate hole clean.
	1930-2000	1/2	Run in hole 3 stands and spot high viscosity pill on bottom 50m of hole.
1	2000-2130	11/2	Pull out of hole - strap pipe.
	2130-2200	1/2	Slug pipe with baryte pill.
	2200-2300	1	Continue to pull out of hole.
	2300-2330	1/2	Slip 17 feet of drilling line.
	2330-2400	1/2	Continue to pull out of hole.
	17/3/	95	
	0000-0100	1	Pull out of hole - lay out jars.
	0100-0300	2	Make up test tool.
	0300-0600	3	Run in hole with test tool.
	0600-0700	1	Run in hole with test tool.
	0700-0800	1	Head up surface equipment, pressure test chiksans with 100psi air pressure and hold safety meeting.
	0800-1000	2	Run DST-1 from 1526m to 1557m.
	1000-1400	4	Rig down surface equipment, pull free and pull out of hole for suspected plugged test tool.
	1400-1700	3	Break and lay-out test tool and clean same - plugged.
	1700-2100	4	Make up 8½" BHA and run in hole to bridge at 1533m.
	2100-2130	1/2	Clean out bridge at 1533 to 1535m and wash to bottom - 3m of fill.
	2130-2400	2½	Circulate 5 minutes, pull 3 stands to 1493m and circulate and condition mud, run back to bottom, pump 20bbls of 80 viscosity sweep and circulate around while conditioning mud - pull back to 1493m when sweep clear of bit.

Time Hours Operation	Page: 5

18/3/	/ 95	
0000-0200	2	Wiper trip to 977m - 1.5m of fill.
0200-0600	4	Pull out of hole for DST-2. Lay out jars, shock sub and bit.
0600-0730	11/2	Make up test tools.
0730-1100	31/2	Run in hole with test tool.
1100-1130	1/2	Head up surface equipment. Pressure test surface chiksans and hold safety meeting.
1130-1600	4½	Set packers, open tool and run DST-2 from 1526m to 1557m with Baker Tools.
1600-2000	4	Unseat packers, rig down surface equipment and pull out of hole - recover fluid samples.
2000-2230	21/2	Break and lay out test tools.
2230-2400	11/2	Pressure test pipe rams, choke manifold valves, HCR, manifold choke line valve and kill line valve to 2500psi and Hydril to 1000psi.
19/3/	95	
0000-0200	2	Make up 8½" BHA and run in hole.
0200-0300	1	Slip 40ft and cut 110ft of drilling line.
0300-0500	2	Run in hole to 1533m.
0500-0530	1/2	Break circulation and wash to bottom - 1.5m of fill. Work junk sub and put fresh mud spacer behind rathole mud prior to drilling ahead.
0530-0600	1/2	Drill 8½" hole from 1557 to 1559m.
0600-1100	5	Drill 8½" hole from 1559 to 1632m.
1100-1130	1/2	Circulate and survey at 1619m.
1130-2100	$9\frac{1}{2}$	Drill 8½" hole from 1632 to 1758m.
2100-2200	1	Circulate bottoms up.
2200-2400	2	30 stand wiper trip back to 1169m - work tight hole from 1552 to 1495m.
20/3/	95	
0000-0200	2	Run in hole - wiper trip, clean and wash from 1533 to 1648m. Run stands where able - 7m of fill
0200-0330	11/2	Circulate hole clean.
0330-0400	1/2	Drop survey and pump barite pill.
0400-0600	2	Pull out of hole to log - strap drill pipe.
0600-0730	11/2	Pull out of hole to log. Lay out jars - recover survey barrel - strap pipe
0730-2400	16½	Rig up BPB and run logs - Run#1 AIS/MRS/BCA/SP/GR/CAL Run#2 AST. Run#3 PDS/CNS.

,	21 / 3 /	95	
	0000-0330	31/2	Continue logging Run#3 with BPB and rig down.
	0330-0430	1	Make up 8½" BHA and run in hole to casing shoe.
	0430-0500	1/2	Slip 20ft of drilling line.
	0500-0600	1	Run in hole to condition for RFT.
	0600-0630	1/2	Run in hole to 1741m.
	0630-0700	1/2	Break circulation and ream to bottom - 4 metres of fill.
	0700-0800	1	Circulate hole clean at 300gpm.
	0800-0830	1/2	Pull out of hole.
	0830-0900	1/2	Pick up kelly and circulate barite pill - mud out of balance - wet pipe.
	0900-1200	3	Pull out of hole - lay out jars.
1	1200-2400	12	Rig up BPB - BPB wireline damaged picking up tools, rig down, cut and splice new socket end, run RFS-GR - unable to maintain pressure on hydraulic arm and unable to repair - run velocity survey.
	22 / 3 /	95	
	0000-0430	41/2	Run velocity survey and sidewall cores with BPB - rig down BPB.
	0430-0600	11/2	Run in hole to condition mud and hole.
	0600-0730	11/2	Run in hole to 1751m. Break circulation and clean to bottom - 3m of fill.
	0730-1200	4½	Circulate and condition mud while waiting for new RFS tool.
	1200-1400	2	Wiper trip back to 1176m. Run in hole - 1.5m of fill.
l	1400-1500	1	Circulate bottoms up.
	1500-1800	3	Pull out of hole to run RFS.
	1800-2400	6	Rig up BPB and run RFS-GR.
	23/3/	95	
	0000-0530	5½	Continue to run RFS-GR with BPB.
	0530-0600	1/2	Pull out of hole to clear plugging of RFS tool.
	0600-1930	13½	Run RFS with BPB - pull out and rig down BPB.
	1930-2300	31/2	Make up 8½" BHA and run in hole.
	2300-2400	1	Break circulation and clean to bottom, 2.5m of fill, circulate hole clean and prepare casing.
	24/3/		
	0000-0200 0200-0600	2	Circulate hole clean prior to running casing and prepare casing.
	0600-0730	4 1½	Pull out of hole laying down drill pipe. Layout drill pipe and BHA and break Kelly.
	0730-0800	1/2	Slip 40ft of drill-line.
	0800-1030	21/2	Lay out BHA.
	1030-1200	11/2	Change 4½" to 7" rams and rig up to run 7" casing.
	1200-2130	9½	Back out swage nipple, back off 2 x 7" collars. Make up shoe and float collar and run 7" casing installing centralisers and scratchers - casing stuck at 1245m while running in Joint #105.
	2130-2400	1½	Work pipe free. Make up circulating swage. Circulate casing and work from 1237 to 1248m to clean up hole.

Page:

Time

Hours

Operations

Time	Hours	Operations Page: 7
25/3/	95	
0000-0330	3½	Pick up Joint #106 and try to run - unable to get past 1253m (5m in). Work casing while circulating through swage.
0330-0600	21/2	Circulate and lay out three joints of casing - work each joint free first.
0600-1200	6	Continue to try to get fourth Joint out before attempting to re-run casing. Hole packed off after getting joint #102 laid out. Picked up joint #103 to re-establish circulation; worked and circulated tight hole. Laid out joints # 103 and 102. Work joint #101 at 1201 to 1197m - 240,000 lbs pull.
1200-2230	10½	Picked up joint #102 and circulated and worked down from 1201 to 1210m. Pulled up with 250,000 lbs and lost 10 inches of down travel at 1210m end.
2230-2300	1/2	Slip 20 feet of drilling line.
2300-2400	1	Continue to work casing down at 1210m.
26/3/	95	
0000-0100	1	Head up casing with Dowell cement head and load plugs.
0100-0200	2	Circulate casing at 260 gpm - no losses. Hold cementing safety meeting with Dowell and rig crew.
0200-0400	2	Mix and run cement with Dowell Schlumberger and cement casing at 1209.32m.
0400-0430	1/2	Set 7" slip and assembly in casing bowl.
0430-0600 0600-0830	1½ 2½	Nipple down BOP's. Nipple down BOP and raise stack - slup and seal not level, re-seat - cut casing and lay out.
0830-0930	1	Lay out flow nipple and lift stack and dress casing stub at 6" (7" of clearance in spool).
0930-1130	2	Install tubing spool and lay out spacer spool.
1130-1500	31/2	Nipple up BOP's.
1500-1730	21/2	Change 7" casing rams to 3½" pipe rams.
1730-1900	11/2	Energize 'X' bushing and pressure test to 3,000 psi with hydraulic hand pump.
1900-2000	1	Cut 84 feet of drilling line.
2000-2200	2	Lay out kelly bushing, kelly spinner and kelly.
2200-2400	2	General maintenance while waiting on cement and waiting on 3½" drill string.
27/3/	95	
0000-0600	6	General maintenance to rig while waiting on cement and waiting on 3½" drill string.
0600-2400	18	Standby with crew while waiting on 3½" drill string - test casing to 1,000 psi against blind rams and HCR valve for 15 minutes with Dowell/Schlumberger - OK.
28/3/	95	
0000-0600	6	Stand by with crew.
0600-2400	18	Standby with crew while waiting on 3½" drill string.
29/3/	95	
0000-0600	6	Standby with crew while waiting on 3½" drill string.
0600-2330	17½	Standby with crew while waiting on 3½" drill string.
2330-2400	1/2	Unload tubulars and handling equipment.

					\$ 5gm 0.00 0.00 0.00 objects over the first few rest		
l'ime							
						Page:	

20.10.1		
30/3/		
0000-0130	1½	Unload tubulars.
0130-0230	1	Pick up and make up kelly and kelly cock and install kelly bushing.
0230-0300	1/2	Pick up joint of 3½" drill pipe and make up 7" cup tester.
0300-0600	3	Pressure test pipe rams, all choke manifold valves, HCR valve, manual valve and kill-line valves to 300psi - chase and repair leaks.
0600-0700	1	Continue pressure testing pipe rams and pressure test Hydril to 1500psi. Load racks and sort pipe.
0700-0830	11/2	Pick up 4¾" drill collars and make up 6" BHA.
0830-1530	7	Pick up 3½" drill pipe and run in hole. Tag cement at 1102m.
1530-1600	1/2	Hold meeting with crews on drill-out procedure. Pick up kelly and make up kelly cock and saver sub.
1600-1700	1	Pressure test upper and lower kelly cocks and stabbing valve to 1500psi.
1700-1730	1/2	Repair blockage in air line to koomey remote control.
1730-1800	1/2	Circulate through choke prior to drilling out.
1800-2400	6	Drill out cement from 1102 to 1196m.
31/3/	95	
0000-0100	1	Drill out shoe track to 1209m - flow check.
0100-0200	1	Precautionary ream from 1209m to1265m.
0200-0230	1/2	Circulate bottoms up.
0230-0300	1/2	Run in hole, ream from 1264m to 1274m, run in hole to 1302m.
0300-0330	1/2	Circulate 1½ times hole volume.
0330-0600	21/2	Run in hole, flow check every 10 stands, break circulation every 15 joints.
0600-0630	1/2	Run in hole to TD with flow check every ten stands - 2.5 metres of fill.
		Circulate.
0630-0730	1	Circulate two times hole volume at 300gpm.
0730-1030	3	Pull out of hole.
1030-1230	2	Lay out 4¾" drill collars and break out bit and bit sub.
1230-1530	3	Run in hole with open-ended drill pipe.
1530-1600	1/2	Head up to run cement plugs and circulate - wrong crossover sub.
1600-1700	1	Pick up kelly, prime pumps and circulate prior to running plug #1.
1700-1800	1	Pressure test line and run cement plug #1 from 1610 to 1440m with 200 sacks class 'G' cement through kelly.
1800-1830	1/2	Pull back 12 stands.
1830-2330	5	Wait on cement - circulate and lay out excess pipe. Run in hole nine stands and tag plug #1 at 1437m.
2330-2400	1/2	Circulate pipe clear after tagging plug.

													ge: 🧐	

1/4/9	95	
0000-0030	1/2	Lay out 21 singles and run in hole one stand to 1240m.
0030-0130	1	Pick up kelly, circulate and run plug #2 from 1240 to 1180m.
0130-0600	41/2	Pull out of hole five stands and circulate at 1144m while waiting on cement.
0600-0700	1	Circulate at 1144m while waiting on cement plug #2.
0700-0730	1/2	Run in hole and tag plug #2 at 1178m.
0730-0830	1	Circulate, pressure test plug to 500psi -OK, mix and circulate inhibited mud.
0830-0930	1	Pull out of hole laying out 3½" drill pipe.
0930-1100	11/2	Break and lay out 3½" kelly and swivel.
1100-1200	1	Continue to lay out drill pipe.
1200-1500	3	Re-reeve fast line over crown with sand line. Slip 205ft of drilling line and cut
		189ft after travelling block dropped on floor (refer to separate report).
1500-1730	21/2	Finish laying out 3½" drill pipe.
1730-1800	1/2	Load last of 3½" (rental) drill pipe and handling equipment for return to Perth.
1800-2230	41/2	Tear out BOP's and clean mud tank.
2230-2400	11/2	Lay out studded adaptor flange. Grease tubing hanger seat. Install new
		adaptor flange, recover Cameron valve and install with top flange and bull
		plug. Release rig at 2400hrs. FINAL REPORT.

• APPENDIX 4

APPENDIX 4

A: CUTTING DESCRIPTIONS

B: DAILY REPORT LITHOLOGICAL DESCRIPTIONS

CUTTINGS DESCRIPTION

WELL NAME:

DUNBAR - 1

Description

DATE:

16 January, 1996

GEOLOGIST:

Interval (m)

D.Horner

%

PAGE:

1.

	· · · · · · · · · · · · · · · · · · ·	
6-10	100	<u>Calcarenite</u> : orange, very fine to fine grained, sucrosic texture, common shell fragments and forams, common red brown iron oxide rich calcilutite, friable, good visual porosity.
10-15	100	Calcarenite: as for 6 to 10m.
15-20	100	Calcarenite: as for 6 to 10m.
20-25	30	Calcarenite: as for 6 to 10m.
	40	<u>Calcarenite</u> : light grey, very fine to fine grained, slightly to very argillaceous, common shell fragments, common forams, friable, poor visual porosity.
	30	<u>Marl</u> : medium grey, very calcareous grading to calcilutite, firm, non fissile.
25-30	10	<u>Calcarenite</u> : orange, very fine to fine grained, sucrosic texture, common shell fragments and forams, common red brown iron oxide rich calcilutite, friable, good visual porosity.
	60	<u>Calcarenite</u> : light grey, very fine to fine grained, slightly to very argillaceous, common shell fragments, common forams, friable, poor visual porosity.
	30	Marl: medium grey, very calcareous grading to calcilutite, firm, non fissile.
30-35	20	Marl: as for 25 to 30m.
	80	Calcarenite: light grey to yellow to orange to brown, very fine grained, often lutitic and very iron oxide rich, otherwise fine grained with common fossil fragments, trace glauconite, friable to moderately hard, poor visual porosity.
35-40	30	Mari: as for 25 to 30m.
	70	Calcarenite: as for 30 to 35m.
40-45	100	Calcarenite: light grey, occasionally yellow orange, fine grained, common fossil fragments including bivalves, gastropods, forams, sponge spicules, echinoid spines and bryozoa, trace grey chert, trace glauconite, trace black carbonaceous detritus, friable to moderately hard, poor visual porosity.
45-50	100	Calcarenite: as for 40 to 45m.
50-55	100	Calcarenite: very light grey, fine grained, trace fossil fragments as for 40 to 45m, slightly argillaceous, trace glauconite, trace medium grey marl, friable, poor visual porosity.
55-60	100	Calcarenite: as for 50 to 55m. but with common fossil fragments.
60-65	100	<u>Calcarenite</u> : very light grey, fine grained, slightly argillaceous, common fossil fragment including bivalves, gastropods, forams, sponge spicules, echinoid spines and bryozoa, tragery chert, trace glauconite, trace black carbonaceous detritus, rare pyrite, friable to moderately hard, poor visual porosity.

Interval (m)	%	Description PAGE: 2
65-70	100	Calcarenite: as for 60 to 65m.
70-75	100	Calcarenite: as for 60 to 65m. but with fossil fragments increasing to common to abundant.
75-80	90	Calcarenite: as for 70 to 75m.
	10	Marl: medium grey, very calcareous grading to calcilutite, firm, non fissile.
80-85	90	Calcarenite: as for 70 to 75m. becoming light grey with increasing argillaceous content.
	10	<u>Marl</u> : as for 75 to 80m.
85-90	90	Calcarenite: light grey, fine grained, slightly to occasionally very argillaceous, common fossil fragments including bivalves, gastropods, forams, sponge spicules, echinoid spines and bryozoa, trace grey chert, trace glauconite, trace black carbonaceous detritus, rare pyrite, friable to moderately hard, poor visual porosity.
	10	Marl: as for 75 to 80m.
90-95	100	Calcarenite: as for 85 to 90m.
	trace	Marl: medium grey, very calcareous grading to calcilutite, firm, non fissile.
95-100	100	Calcarenite: as for 85 to 90m.
	trace	Marl: as for 90 to 95m.
100-105	100	Calcarenite: light grey, very fine to fine grained, slightly to moderately argillaceous, trace fossil fragments, rare glauconite, trace black carbonaceous detritus, friable, poor visual porosity.
105-110	100	Calcarenite: as for 100 to 105m.
110-115	100	Calcarenite: as for 100 to 105m.
115-120	20	Calcarenite: as for 100 to 105m. but becoming finer grained and very calcilutitic.
	80	Marl: medium grey, very calcareous, common fossil fragments including bivalves, gastropods, forams, bryozoa, sponge spicules and echinoid spines, trace glauconite, rare dispersed quartz sand grains, very soft, sticky, non fissile.
120-125	10	Calcarenite: as for 115 to 120m.
	90	Marl: as for 115 to 120m.
125-130	100	Marl: as for 115 to 120m. with trace pyrite.
130-135	100	Marl: medium grey, very calcareous, common fossil fragments including bivalves, gastropods, forams, bryozoa, sponge spicules and echinoid spines, trace glauconite, rare dispersed quartz sand grains, rare pyrite, very soft, sticky, non fissile.
135-140	100	Marl: as for 130 to 135m but with trace black carbonaceous detritus.
140-150	80	Marl: as for 130 to 135m.
	20	Calcarenite: light grey, very fine to fine grained, slightly to moderately argillaceous, trace fossil fragments, rare glauconite, trace black carbonaceous detritus, friable, poor visual porosity.
150-155	100	Marl: medium grey, very calcareous, abundant fossil fragments including bivalves, gastropods, forams, bryozoa, sponge spicules and echinoid spines, rare glauconite, rare dispersed quartz sand grains, trace pyrite, very soft, sticky, non fissile.

155-160	100	Mari: as for 150 to 155m.
160-165	100	Mari: as for 150 to 155m.
165-170	100	Marl: as for 150 to 155m. with abundant forams.
170-175	100	<u>Marl</u> : medium grey, very calcareous, abundant fossil fragments including bivalves, gastropods, forams, bryozoa, sponge spicules and echinoid spines, rare glauconite, rare dispersed quartz sand grains, trace pyrite, very soft, sticky, non fissile.
175-180	100	Marl: as for 170 to 175m.
180-185	100	<u>Mari</u> : as for 170 to 175m.
185-190	100	<u>Marl</u> : as for 170 to 175m.
190-195	100	<u>Marl</u> : as for 170 to 175m.
195-200	100	<u>Mari</u> : as for 170 to 175m.
200-205	100	Marl: as for 170 to 175m.
205-210	100	Marl: medium grey, occasionally medium green grey, occasionally medium brown grey moderately to very calcareous, abundant fossil fragments including bivalves, gastropods forams, bryozoa, sponge spicules and echinoid spines, rare dispersed very fine quartz sar grains, trace pyrite, very soft, sticky, non fissile.
210-215	100	Marl: as for 205 to 210m.
215-220	100	<u>Marl</u> : as for 205 to 210m.
220-225	100	Marl: as for 205 to 210m. but with common pyrite replaced fossil fragments.
225-230	100	<u>Marl</u> : as for 205 to 210m.
230-235	100	Marl: as for 205 to 210m.
235-240	100	Marl: medium grey, occasionally medium green grey, occasionally medium brown grey moderately to very calcareous, abundant fossil fragments including bivalves, gastropods forams, bryozoa, sponge spicules and echinoid spines, rare dispersed very fine quartz sar grains, trace pyrite, trace pyrite replaced fossil fragments, very soft, sticky, non fissile.
240-245	100	Marl: as for 235 to 240m.
245-250	100	Marl: as for 235 to 240m.
250-255	100	Marl: as for 235 to 240m.
255-260	100	<u>Marl</u> : as above, medium grey, occasionally medium green grey, occasionally medium brown grey, moderately to very calcareous, abundant fossil fragments including bivalves gastropods, forams, bryozoa, sponge spicules and echinoid spines, rare dispersed very fi quartz sand grains, trace pyrite, trace pyrite replaced fossil fragments, very soft, sticky, r fissile.
260-265	100	Marl: medium grey to medium green grey, occasionall medium brown grey, abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace c very fine to coarse quartz sand grains, very soft, sticky, non fissile.
265-270	100	<u>Marl</u> : as for 260 to 265m.
	100	Marl: as for 260 to 265m.

abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace core to the spice of the spic	280-290	100	<u>Mari</u> : as for 260 to 265m.
300-305 100 Marl: as for 290 to 295m. but with trace black carbonaceous material. 305-310 100 Marl: as for 290 to 295m. 310-315 100 Marl: as for 290 to 295m. 315-317 100 Marl: as above, medium green grey, often medium grey, occasionally medium brown grey, abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non fissil fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace cvery fine to coarse quartz sand grains, very soft, sticky, non fissile. 325-330 100 Marl: as for 317 to 325m. 330-335 100 Marl: as for 317 to 325m. 340-345 100 Marl: as for 317 to 325m. 345-348 100 Marl: as for 317 to 325m. 346-348 100 Marl: as above, medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spiculand echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non fissile. 348-355 100 Marl: medium grey, often medium green grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non fissile. 348-355 100 Marl: as for 348 to 355m. 360-365 100 Marl: as for 348 to 355m. 360-366 100 Marl: as for 348 to 355m. 360-367 100 Marl: as for 348 to 355m. 360-368 100 Marl: as for 348 to 355m. 360-369 100 Marl: as for 348 to 355m.	290-295	100	Marl: as above, medium grey to medium green grey, occasionally medium brown grey abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spice and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, tracelear very fine to coarse quartz sand grains, very soft, sticky, non fissile.
305-310 100 Marl: as for 290 to 295m. 310-315 100 Marl: as for 290 to 295m. 315-317 100 Marl: as above, medium green grey, often medium grey, occasionally medium brown grey, abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non fissil fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace overy fine to coarse quartz sand grains, very soft, sticky, non fissile. 325-330 100 Marl: as for 317 to 325m. 330-335 100 Marl: as for 317 to 325m. 340-345 100 Marl: as for 317 to 325m. 340-345 100 Marl: as for 317 to 325m. 345-348 100 Marl: as above, medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace civery fine to coarse quartz sand grains, very soft, sticky, non fissile. 348-355 100 Marl: medium grey, often medium green grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace civery fine to coarse quartz sand grains, very soft, sticky, non fissile. 355-360 100 Marl: as for 348 to 355m. 360-365 100 Marl: as for 348 to 355m. 360-365 100 Marl: as for 348 to 355m. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: as for 348 to 355m. 386-390 100 Marl: as for 348 to 355m. 390-395 100 Marl: as for 348 to 355m.	295-300	100	<u>Marl</u> : as for 290 to 295m.
Marl: as for 290 to 295m.	300-305	100	Mari: as for 290 to 295m. but with trace black carbonaceous material.
Marl: as above, medium green grey, often medium grey, occasionally medium brown grey, abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non fissil fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace overy fine to coarse quartz sand grains, very soft, sticky, non fissile. Marl: as for 317 to 325m.	305-310	100	Mari: as for 290 to 295m.
grey, abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non fissil maritime to coarse quartz sand grains, very soft, sticky, non fissile. Mari: medium green grey, often medium grey, occasionally medium brown grey, commodition spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, very soft, sticky, non fissile. Mari: as for 317 to 325m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m. Mari: as for 348 to 355m.	310-315	100	Marl: as for 290 to 295m.
fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace c very fine to coarse quartz sand grains, very soft, sticky, non fissile. 325-330	315-317	100	grey, abundant fossil fragments including gastropods, forams, bivalves, bryozoa, sponge
330-335 100 Marl: as for 317 to 325m. 340-345 100 Marl: as for 317 to 325m. 340-345 100 Marl: as for 317 to 325m. 345-348 100 Marl: as for 317 to 325m. 345-348 100 Marl: as above, medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spiculand echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace chinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace chinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace chinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace chinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace chinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace chinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace chinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of the spine	317-325	100	echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace cl
335-340 100 Marl: as for 317 to 325m. 340-345 100 Marl: as for 317 to 325m. 345-348 100 Marl: as above, medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicu and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, tracelear very fine to coarse quartz sand grains, very soft, sticky, non fissile. 348-355 100 Marl: medium grey, often medium green grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, very soft, sticky, non fissile. 355-360 100 Marl: as for 348 to 355m. 360-365 100 Marl: as for 348 to 355m. 365-370 100 Marl: as for 348 to 355m. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: as for 348 to 355m. 390-395 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace overy fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	325-330	100	<u>Marl</u> : as for 317 to 325m.
340-345 100 Marl: as for 317 to 325m. 345-348 100 Marl: as above, medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicu and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace lear very fine to coarse quartz sand grains, very soft, sticky, non fissile. 348-355 100 Marl: medium grey, often medium green grey, occasionally medium brown grey, comm fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace civery fine to coarse quartz sand grains, very soft, sticky, non fissile. 355-360 100 Marl: as for 348 to 355m. 360-365 100 Marl: as for 348 to 355m. 365-370 100 Marl: as for 348 to 355m. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: as for 348 to 355m. 390-395 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, comm fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	330-335	100	<u>Marl</u> : as for 317 to 325m.
345-348 100 Marl: as above, medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicu and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non fissile. 348-355 100 Marl: medium grey, often medium green grey, occasionally medium brown grey, comm fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace civery fine to coarse quartz sand grains, very soft, sticky, non fissile. 355-360 100 Marl: as for 348 to 355m. 360-365 100 Marl: as for 348 to 355m. 365-370 100 Marl: as for 348 to 355m. Very poor samples due to clay encapsulation by PHPA. and from shaker screen blinding. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, comm fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace covery fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	335-340	100	<u>Marl</u> : as for 317 to 325m.
common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicular and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, tracelear very fine to coarse quartz sand grains, very soft, sticky, non fissile. Marl: medium grey, often medium green grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace civery fine to coarse quartz sand grains, very soft, sticky, non fissile. Marl: as for 348 to 355m. Marl: as for 348 to 355m. Marl: as for 348 to 355m. Very poor samples due to clay encapsulation by PHPA. and from shaker screen blinding. Marl: as for 348 to 355m. Marl: as for 348 to 355m. Marl: as for 348 to 355m. Marl: as for 348 to 355m. Marl: as for 348 to 355m. Marl: as for 348 to 355m. Marl: medium green grey, often medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace covery fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	340-345	100	<u>Marl</u> : as for 317 to 325m.
fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace civery fine to coarse quartz sand grains, very soft, sticky, non fissile. 355-360 100 Marl: as for 348 to 355m. 360-365 100 Marl: as for 348 to 355m. 365-370 100 Marl: as for 348 to 355m. Very poor samples due to clay encapsulation by PHPA. and from shaker screen blinding. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: as for 348 to 355m. 390-395 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	345-348	100	Marl: as above, medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicu and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, tracelear very fine to coarse quartz sand grains, very soft, sticky, non fissile.
360-365 100 Marl: as for 348 to 355m. 365-370 100 Marl: as for 348 to 355m. Very poor samples due to clay encapsulation by PHPA. and from shaker screen blinding. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: as for 348 to 355m. 390-395 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, commossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	348-355	100	echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace cl
365-370 Marl: as for 348 to 355m. Very poor samples due to clay encapsulation by PHPA. and from shaker screen blinding. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: as for 348 to 355m. 390-395 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	355-360	100	Marl: as for 348 to 355m.
from shaker screen blinding. 370-385 100 Marl: as for 348 to 355m. 385-390 100 Marl: as for 348 to 355m. 390-395 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	360-365	100	<u>Marl</u> : as for 348 to 355m.
385-390 100 Marl: as for 348 to 355m. 100 Marl: medium green grey, often medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace of very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	365-370	100	<u>Marl</u> : as for 348 to 355m. Very poor samples due to clay encapsulation by PHPA. and from shaker screen blinding.
390-395 Marl: medium green grey, often medium grey, occasionally medium brown grey, common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace overy fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	370-385	100	Marl: as for 348 to 355m.
fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace c very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky non fissile.	385-390	100	Marl: as for 348 to 355m.
395-405 100 Marl: as for 390 to 395m, rare brown calcarenitic material.	390-395	100	echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace cl very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky,
	395-405	100	Marl: as for 390 to 395m, rare brown calcarenitic material.

410-415	100	Marl: as above, medium green grey, often medium grey, occasionally medium brown
	100	common fossil fragments including gastropods, forams, bivalves, bryozoa, sponge spice and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, tracelear very fine to coarse quartz sand grains, trace black carbonaceous matter, very soft, sticky, non fissile.
415-420	100	<u>Calcarenite</u> : orange brown, very fine to very coarse grained, abundant dark brown iron oxide pellets, abundant light to medium orange brown iron oxide stained bryozoa, trace common shell fragments, echinoid spines and sponge spicules, common brown iron oxis stained very fine to very coarse frosted subrounded to well rounded quartz grains, weak cryptocrystalline calcareous cement, friable to moderately hard, poor inferred porosity, oil fluorescence.
420-425	30	Calcarenite: off white to light yellow to orange to brown, occasionally yellow green, o very lutitic, common bryozoa fragments, trace forams, echinoid spines, sponge spicules sheel fragments, trace dark brown very fine to occasionally very coarse iron oxide pellet trace brown very fine to occasionally very coarse iron oxide stained frosted subrounded well rounded quartz grains, friable, very poor visual porosity, no oil fluorescence.
	70	<u>Marl</u> : medium to dark brown, trace to common medium grey to medium green grey, common bryozoa, trace shell fragments, forams, echinoid spines and sponge spicules, common pyrite, trace dark green to black glauconite, common very fine clear quartz gravery soft, sticky, non fissile.
425-435	10	Calcarenite: as for 420 to 425m.
	90	Marl: as for 420 to 425m.
435-440	100	Marl: medium to dark brown, trace to common medium grey to medium green grey, common bryozoa, trace shell fragments, forams, echinoid spines and sponge spicules, common pyrite, trace dark green to black glauconite, common very fine clear quartz gravery soft, sticky, non fissile.
440-445	100	Marl: as for 435 to 440m. but with increasing dispersed very fine to occasionally fine contains and grains.
445-450	100	Marl: as for 440 to 445m.
450-455	100	Marl: as for 435 to 440m.
455-460	100	Marl: medium to dark brown, common medium grey, trace medium green grey, common bryozoa, trace shell fragments, forams, echinoid spines and sponge spicules, common py grading to marcasite, trace dark green to black glauconite, common very fine clear quar grains, very soft, sticky, non fissile.
460-470	100	Marl: as for 455 to 460m.
470-480	100	Marl: medium brown, trace medium grey to medium green grey, common bryozoa, trace shell fragments, forams, echinoid spines and sponge spicules, common pyrite grading to marcasite, trace dark green to black glauconite, common very fine clear quartz grains, v soft, sticky, non fissile.
480-485	100	Marl: as for 470 to 480m. but with quartz sand grains decreasing to trace.
485-490	100	Marl: as for 470 to 480m but with common to abundant pyrite.
490-495	100	Marl: medium brown, trace medium grey to medium green grey, common bryozoa, trace shell fragments, forams, echinoid spines and sponge spicules, common pyrite grading to marcasite, trace dark green to black glauconite, trace very fine clear quartz grains, very sticky, non fissile.
495-500	100	Marl: as for 490 to 495m.
500-505	100	Marl: as for 490 to 495m. but with glauconite increasing to common.

subangular to rounded, weak calcareous cement, weak silica cement, abundant white calcitutite matrix in part, abundant medium to dark brown argillaceous and silt matrix, strong brown stain on quartz grains, common glauconite, friable, very poor inferred porosity, no oil fluorescence. 50	subangular to rounded, weak calcareous cement, weak silica cement, abundant white calcilutite matrix in part, abundant medium to dark brown argiliaceous ad silt matrix, strong brown stain on quartz grains, common glauconite, friable, very poor inferred porosity, no oil fluorescence. 50 Claystone: medium to dark brown, non to occasionally very calcareous, very silty in pa abundant dispersed quartz grains in part grading to argiliaceous sandstone, common glauconite, trace micromica, trace pyrite, soft, non fissile. 515-520 60 Sandstone: as for 510 to 515m. but becomin less calcareous. 40 Claystone: as for 510 to 515m. 520-530 70 Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, very poorly sorted, occasionally bundant medium to dark brown argiliaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace aburbown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 530-540 80 Sandstone: as for 520 to 530m. but with calcareous content decreasing to trace. Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abunda dispersed quartz grains in part grading to argiliaceous and silt matrix, trace black carbonaceous detritus. 540-550 60 Sandstone: medium to dark brown argiliaceous and silt matrix ratirs supported grading to arenaceous claystone, weak silica and calcareous cements, abundant medium brown to dark brown argiliaceous and silt matrix appropried grading to arenaceous claystone, weak silica and calcareous cements, abundant medium brown to dark brown argiliaceous and silt matrix are dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black a very carbonaceous, trace micromica, soft, very dispersive, non fissile. 540-5	505-510	100	<u>Mari</u> : as for 490 to 495m.
abundant dispersed quartz grains in part grading to argillaceous sandstone, common glauconite, trace micromica, trace pyrite, soft, non fissile. 515-520 60 Sandstone: as for 510 to 515m. but becomin less calcareous. 40 Claystone: as for 510 to 515m. 520-530 70 Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica cere casionally abundant white calcilutitic matrix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace of brown iron oxide pellets, strong prown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 30 Claystone: as for 520 to 530m. but with calcareous content decreasing to trace. 20 Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abund dispersed quartz grains in part grading to argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dare brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. 40 Claystone: as for 530 to 540m. 50-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brown stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. Sandstone: light to medium brown, very silty, abundant dispersed very fine to grit brown stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile. 50-580 80 Sandstone: light to medium br	abundant dispersed quartz grains in part grading to argillaceous sandstone, common glauconite, trace micromica, trace pyrite, soft, non fissile. 515-520 60 Sandstone: as for 510 to 515m. but becomin less calcareous. 40 Claystone: as for 510 to 515m. 520-530 70 Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica cemen occasionally abundant white calcululititic matrix, abundant medium to dark brown argillaceous and slit matrix, trace black carbonaceous detritus, trace glauconite, trace darbonaceous detritus, trace grains in part grading to matrix grains from the dispersed quartz grains in part grading to argillaceous content decreasing to trace. 20 Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abunda dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, angul to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. 40 Claystone: as for 530 to 540m. 550-560 30 Sandstone: light to medium brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcsite, occasionally black are very carbonaceous, trace micromica, soft, very dispersive, non fissile. Claystone: medium to dark brown, very silty, abundant medium to dark brown argillaceous and silt matrix - matrix s	510-515	50	subangular to rounded, weak calcareous cement, weak silica cement, abundant white calcilutite matrix in part, abundant medium to dark brown argillaceous and silt matrix, strong brown stain on quartz grains, common glauconite, friable, very poor inferred
520-530 70 Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, very poorly sorted, occasionally moderate calcarceous cement, weak silica coasionally abundant white calciluttic martix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace of brown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 30 Claystone: as for 510 to 515m. 530-540 80 Sandstone: medium to dark brown, non to slightly calcareous, very silty in part, abundispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, and to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace darbrown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit bro stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous, trace micromica, soft, very dispersive, non fissile. 570-580 80 Sandstone: light to medium brown, very fine to very coarse, dominantly medium, subangular subrounded, moderately sorted	520-530 70 Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica ceme occasionally abundant white calcilutitic matrix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace darbrown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 30 Claystone: as for 510 to 515m. 30 Sandstone: as for 520 to 530m. but with calcareous content decreasing to trace. 20 Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abunda dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, angul to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. 40 Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black iron oxide pellets, trace black carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous, trace micromica, trace marcasite, occasionally black and very		50	
Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica cer occasionally abundant white calciluttic matrix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace d brown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 30 Claystone: as for 510 to 515m.	Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica ceme occasionally abundant white calcilutitic matrix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace darbrown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 30 Claystone: as for 510 to 515m.	515-520	60	Sandstone: as for 510 to 515m. but becomin less calcareous.
rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica cer occasionally abundant white calcilutite matrix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace obrown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 30 Claystone: as for 510 to 515m. 530-540 80 Sandstone: as for 520 to 530m. but with calcareous content decreasing to trace. 20 Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abundispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, and to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dare brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brostained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very co light brown stained quartz grains, trace muscovite flakes, soft	rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica ceme occasionally abundant white calciluttic matrix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace darborown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally moderately hard, very poor inferred porosity, no oil fluorescence. 30 Claystone: as for 510 to 515m. 530-540 80 Sandstone: as for 520 to 530m. but with calcareous content decreasing to trace. Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abunda dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, angul to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20 Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, trace micromica, soft, very dispersive, non fissile. 570-580 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace muscovite flakes, soft, very dispersive, non fissile. 570-580 80		40	Claystone: as for 510 to 515m.
Sandstone: as for 520 to 530m. but with calcareous content decreasing to trace. 20	530-540 80 Sandstone: as for 520 to 530m. but with calcareous content decreasing to trace. 20 Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abunda dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, angul to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. 70 Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black overy carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceou and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20 Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coar light brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile. 570-580 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oi fluorescence. 20 Claystone: as for 560 to 570m.	520-530	70	rounded, very poorly sorted, occasionally moderate calcareous cement, weak silica ceme occasionally abundant white calcilutitic matrix, abundant medium to dark brown argillaceous and silt matrix, trace black carbonaceous detritus, trace glauconite, trace dar brown iron oxide pellets, strong brown stain on quartz grains, friable to occasionally
Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abund dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, and to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace darbrown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit bro stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaced and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coarbonaceous, trace micromica, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissil	20 Claystone: medium to dark brown, non to slightly calcareous, very silty in part, abunda dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, angul to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. 40 Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. 70 Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceou and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20 Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coarlight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile. 570-580 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrit trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oi fluorescence. 20 Claystone:		30	Claystone: as for 510 to 515m.
dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, ang to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements abundant medium brown to dark brown argillaceous and silit matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace day brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. 40 Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. 70 Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coallight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile 570-580 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangula subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyt trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no fluorescence. Claystone: as for 560 to 570m.	dispersed quartz grains in part grading to argillaceous sandstone, trace glauconite, trace micromica, trace pyrite, soft, non fissile. 540-550 60 Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, angul to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. 550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black avery carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceou and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coarlight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace marcovite flakes, soft, very dispersive, non fissile. 570-580 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrit trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oi fluorescence. Claystone: as for 560 to 570m.	530-540	80	Sandstone: as for 520 to 530m. but with calcareous content decreasing to trace.
to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dat brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit bro stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaced and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very colight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissil subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyr trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no fluorescence. Claystone: as for 560 to 570m.	to rounded, dominantly subrounded, poorly sorted, weak silica and calcareous cements, abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Claystone: as for 530 to 540m. Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black avery carbonaceous, trace micromica, soft, very dispersive, non fissile. Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coar light brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile. Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrit trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oi fluorescence. Claystone: as for 560 to 570m.		20	
550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. 70 Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit bro stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaced and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20 Claystone: medium to dark brown, very silty, abundant dispersed very fine to very colight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissil subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyr trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no fluorescence. 20 Claystone: as for 560 to 570m.	550-560 30 Sandstone: as for 540 to 550m. but becoming dominantly coarse grained. 70 Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black a very carbonaceous, trace micromica, soft, very dispersive, non fissile. 560-570 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceou and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20 Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coard light brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile. 570-580 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrit trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oi fluorescence. 20 Claystone: as for 560 to 570m. 580-585 80 Sandstone: as for 570 to 580m. but with common muscovite flakes.	540-550	60	abundant medium brown to dark brown argillaceous and silt matrix - matrix supported grading to arenaceous claystone, weak to strong brown stain on quartz grains, trace dark
Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brostained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaced and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very collight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissil Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangula subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyr trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no fluorescence. Claystone: as for 560 to 570m.	Claystone: medium to dark brown, very silty, abundant dispersed very fine to grit brow stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black a very carbonaceous, trace micromica, soft, very dispersive, non fissile. Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular to rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coar light brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile. Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrit trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oil fluorescence. Claystone: as for 560 to 570m. Sandstone: as for 570 to 580m. but with common muscovite flakes.		40	Claystone: as for 530 to 540m.
stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black very carbonaceous, trace micromica, soft, very dispersive, non fissile. 80 Sandstone: light to medium brown, very fine to grit, dominantly medium, subangular rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaced and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20 Claystone: medium to dark brown, very silty, abundant dispersed very fine to very collight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissil 570-580 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangula subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyr trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no fluorescence. 20 Claystone: as for 560 to 570m.	stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black avery carbonaceous, trace micromica, soft, very dispersive, non fissile. 80	550-560	30	Sandstone: as for 540 to 550m. but becoming dominantly coarse grained.
rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaced and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20	rounded, poorly sorted, weak silica cement, abundant medium to dark brown argillaceou and silt matrix - matrix supported, trace brown to black iron oxide pellets, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence. 20		70	<u>Claystone</u> : medium to dark brown, very silty, abundant dispersed very fine to grit brown stained quartz grains, moderately calcareous in part, trace marcasite, occasionally black a very carbonaceous, trace micromica, soft, very dispersive, non fissile.
light brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissil 570-580 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangula subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyr trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no fluorescence. 20 Claystone: as for 560 to 570m.	light brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile. 80 Sandstone: light brown grey, very fine to very coarse, dominantly medium, subangular subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrit trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no of fluorescence. 20 Claystone: as for 560 to 570m. 80 Sandstone: as for 570 to 580m. but with common muscovite flakes.	560-570	80	
subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyr trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no fluorescence. 20 Claystone: as for 560 to 570m.	subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrit trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no of fluorescence. 20 Claystone: as for 560 to 570m. Sandstone: as for 570 to 580m. but with common muscovite flakes.		20	<u>Claystone</u> : medium to dark brown, very silty, abundant dispersed very fine to very coarlight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile.
	580-585 80 Sandstone: as for 570 to 580m. but with common muscovite flakes.	570-580	80	argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrite trace muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oi
580-585 80 Sandstone: as for 570 to 580m, but with common muscovite flakes			20	Claystone: as for 560 to 570m.
SMINUTE AS TO 370 to South out with common muscovite mass.	20 Claystone: as for 560 to 570m	580-585	80	Sandstone: as for 570 to 580m. but with common muscovite flakes.

585-595	70	Sandstone: light brown grey, very fine to very coarse, dominantly coarse, subangular to subrounded, moderately sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrite common muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, n oil fluorescence.
	30	Claystone: medium to dark brown, very silty, abundant dispersed very fine to very coardlight brown stained quartz grains, trace marcasite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile.
595-605	70	Sandstone: as for 585 to 595m.
	30	Claystone: as for 585 to 595m.
605-615	50	Sandstone: light brown grey, very fine to grit, dominantly very coarse, subangular to subrounded, very poorly sorted, weak silica cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrite common muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, noil fluorescence.
	50	<u>Claystone</u> : medium to dark brown, very silty, abundant dispersed very fine to very coard light brown stained quartz grains, trace marcasite, common pyrite, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non fissile.
615-625	10	Sandstone: as for 605 to 615m.
	90	Claystone: medium to dark brown, occasionally dark grey and very carbonaceous, nil to abundant dispersed very fine to grit quartz sand grains, common pyrite occasionally grad to marcasite, trace micromica, soft, very dispersive, non fissile.
625-635	10	Sandstone: as for 605 to 615m.
	90	Claystone: as for 615 to 625m.
635-645	100	Claystone: as for 615 to 625m.
645-655	90	Claystone: as for 615 to 625m.
	10	Sandstone: as for 605 to 615m.
655-665	50	Sandstone: light brown grey, very fine to grit, dominantly very coarse, subangular to subrounded, very poorly sorted, weak silica cement, trace strong medium brown cryptocrystalline dolomite cement, abundant medium to dark brown argillaceous and silt matrix, clear to light orange brown stained quartz grains, trace pyrite, common muscovite flakes, trace green grey cherty lithics, friable, poor visual porosity, no oil fluorescence.
	50	Claystone: medium to dark brown, occasionally dark grey and very carbonaceous, nil to abundant dispersed very fine to grit quartz sand grains, slightly calcareous in part, common pyrite occasionally grading to marcasite, trace micromica, soft, very dispersive, non fissil
665-675	100	<u>Claystone</u> : medium to dark brown, occasionally very dark grey and very carbonaceous, very silty, nil to often abundant dispersed very fine to grit subrounded to rounded brown stained quartz grains, trace fossil fragments, non to occasionally moderately calcareous, trace pyrite grading to marcasite, trace micromica, rare glauconite, soft, very dispersive, if fissile.
	Trace	Sandstone: as for 655 to 665m.
675-680	90	Claystone: as for 665 to 675m.
	10	Sandstone: as for 655 to 665m.
680-690	90	Claystone: as for 665 to 675m.

Interval (m)	%	Description PAGE: 8
	10	Sandstone: as for 655 to 665.
690-700	80	<u>Claystone</u> : medium to dark brown, trace very dark grey and very carbonaceous, very silty, nil to often abundant dispersed very fine to grit subrounded to rounded brown stained quartz grains, trace fossil fragments, non to occasionally very calcareous, trace pyrite grading to marcasite, trace micromica, trace glauconite, soft, very dispersive, non fissile.
	20	Sandstone: as for 655 to 665m.
700-710	60	Claystone: as for 690 to 700m.
	40	Sandstone: light to medium brown, very fine to grit, dominantly coarse, subangular to occasionally rounded, very poorly sorted, weak silica and rare pyrite cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace with off white calcilutite matrix, rare green grey cherty lithics, rare muscovite flakes, weak brown stain on quartz grains, trace yellow quartz grains, friable, very poor visual porosity, no oil fluorescence.
710-715	90	Sandstone: light to medium brown, very fine to grit, dominantly medium to coarse, subangular to occasionally rounded, very poorly sorted, weak silica and rare pyrite cement, strong dolomite cement in part, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace with off white calcilutite matrix, rare green grey cherty lithics, rare muscovite flakes, weak brown stain on quartz grains, trace yellow quartz grains, friable, very poor visual porosity, no oil fluorescence.
	10	Claystone: as for 690 to 700m.
715-720	60	Sandstone: as for 710 to 715m. but becoming dominantly coarse grained.
	40	<u>Claystone</u> : medium to dark brown, trace very dark grey and very carbonaceous, very silty, nil to often abundant dispersed very fine to grit subrounded to rounded brown stained quartz grains, trace fossil fragments, non to occasionally very calcareous, trace medium brown cryptocrystalline dolomite, trace pyrite grading to marcasite, trace micromica, trace glauconite, soft, very dispersive, non fissile.
720-725	80	Sandstone: light to medium brown, very fine to grit, dominantly medium to coarse, subangular to occasionally rounded, very poorly sorted, weak silica and rare pyrite cement, strong dolomite cement in part, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace with off white calcilutite matrix, rare green grey cherty lithics, rare muscovite flakes, weak brown stain on quartz grains, trace yellow quartz grains, friable, very poor visual porosity, no oil fluorescence.
	20	Claystone: as for 715 to 720m.
725-730	80	Claystone: as for 715 to 720m.
·	20	Sandstone: as for 720 to 725m.
730-740	70	Sandstone: as for 720 to 725m.
	30	<u>Claystone</u> : as for 715 to 720m. but with glauconite increasing to trace to common.
740-745	70	Sandstone: light to medium brown, very fine to grit, dominantly coarse to very coarse, subangular to occasionally rounded, very poorly sorted, weak silica and rare pyrite cement, trace strong dolomite cement, abundant medium to dark brown argillaceous and silt matrix - matrix supported, trace with off white calcilutite matrix, rare green grey cherty lithics, rare muscovite flakes, weak brown stain on quartz grains, trace yellow quartz grains, friable, very poor visual porosity, no oil fluorescence.
	30	<u>Claystone</u> : medium to dark brown, trace very dark grey and very carbonaceous, very silty, nil to often abundant dispersed very fine to grit subrounded to rounded brown stained quartz grains, trace fossil fragments, non to occasionally very calcareous, trace medium brown cryptocrystalline dolomite, trace pyrite grading to marcasite, trace micromica, trace glauconite, trace to occasionally common black carbonaceous matter, soft, very dispersive, non fissile.

745-760	60	Claystone: as for 740 to 745m.
	40	Sandstone: as for 740 to 745m.
760-765	90	Claystone: as for 765 to 770m. but with common pyrite.
	10	Sandstone: light brown, very fine to fine, occasional medium to grit sized grains, subangular to rounded, dominantly subrounded, poorly sorted, weak silica cement, rare brown dolomite and calcareous cements, abundant medium to dark brown argillaceous a silt matrix - matrix supported, rare green grey cherty lithics, trace muscovite flakes, frial very poor visual porosity, no oil fluorescence.
765-770	95	<u>Claystone</u> : medium to dark brown, very silty, common to abundant dispersed very fine fine quartz sand grains, trace dispersed medium to grit sized quartz sand grains, common pyrite, trace glauconite, trace fossil fragments, slightly calcareous in part, trace black carbonaceous material, trace micromica, soft, very dispersive, non fissile.
	5	Sandstone: as for 760 to 765m.
770-775	100	Claystone: as for 765 to 770m.
775-780	100	Claystone: as for 765 to 770m.
780-785	100	<u>Claystone</u> : medium to dark brown, very silty, common to abundant dispersed very fine fine quartz sand grains, trace dispersed medium to grit sized quartz sand grains, common pyrite, trace glauconite, trace fossil fragments, slightly calcareous in part, trace medium brown cryptocrystalline dolomite, trace black carbonaceous material, trace micromica, s very dispersive, non fissile.
	Trace	Sandstone: as for 760 to 765m.
785-790	100	Claystone: as for 780 to 785.
790-795	100	Claystone: as for 780 to 785m.
795-805	100	Claystone: as for 780 to 785m.
805-815	90	<u>Claystone</u> : medium to dark brown, very silty, common to abundant dispersed very fine fine quartz sand grains, trace dispersed medium to grit sized quartz sand grains, common pyrite, trace glauconite, trace fossil fragments, slightly calcareous in part, trace medium brown cryptocrystalline dolomite, trace black carbonaceous material, trace micromica, s very dispersive, non fissile.
	10	Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, dominantly subrounded, very poorly sorted, occasional strong calcareous ceme abundant medium brown argillaceous and silt matrix - matrix supported, trace brown sta on quartz grains, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
815-825	90	Claystone: as for 805 to 815m.
	10	Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, dominantly subrounded, very poorly sorted, occasional strong calcareous and medium brown cryptocrystalline dolomite cements, abundant medium brown argillaceou and silt matrix - matrix supported, trace brown stain on quartz grains, trace pyrite, friable very poor visual porosity, no oil fluorescence.
825-835	90	Sandstone: light brown, very fine to grit, dominantly very coarse, subangular to subrounded, very poorly sorted, weak silica cement, trace to common medium brown argillaceous and silt matrix, trace white argillaceous matrix, trace to common yellow to brown quartz grains, trace green clay lithics, friable, fair visual porosity, no oil fluorescence.
	10	Claystone: medium to dark brown, very silty, occasionally iron oxide rich, abundant dispersed very fine to grit quartz sand grains, common pyrite, trace glauconite, slightly calcareous in part, trace black carbonaceous material, soft, very dispersive, non fissile.

835-845	90	Sandstone: as for 825 to 835m.
	10	Claystone: as for 825 to 835m.
845-855	90	Sandstone: light to medium brown, very fine to coarse, dominantly medium, subangular subrounded, moderately sorted, moderate silica cement, abundant medium brown argillaceous and silt matrix, quartz graind stained yellow-brown, rare dark brown iron ox pellets, friable, fair visual porosity, no oil fluorescence.
	10	Claystone: as for 825 to 835m.
855-865	90	Sandstone: light to medium brown, very fine to very coarse, dominantly coarse, subangular to subrounded, moderately sorted, moderate silica cement, abundant medium brown argillaceous and silt matrix, quartz graind stained yellow-brown, rare dark brown iron oxide pellets, friable, fair visual porosity, no oil fluorescence.
	10	<u>Claystone</u> : medium to dark brown, very silty, abundant dispersed very fine to very coars brown stained quartz grains, trace pyrite, trace micromica, firm, very dispersive, non fissi
865-875	20	Sandstone: as for 855 to 865m.
	80	<u>Claystone</u> : dark brown to dark grey, very silty, abundant dispersed very fine to very coal brown stained quartz grains, trace pyrite, trace micromica, firm, very dispersive, non fissi
875-885	80	Sandstone: light orange grey, very fine to pebbly, dominantly coarse, subangular to subrounded, very poorly sorted, weak silica cement, common medium brown argillaceou and silt matrix in part, common yellow quartz grains, trace to common grey green cherty lithics, trace pyrite, friable, fair to good visual porosity, no oil fluorescence.
	20	<u>Claystone</u> : medium to dark grey, often very fine to pebble dispersed quartz grains, very silty, trace micromica, common pyrite, firm, very dispersive, slightly subfissile.
885-895	100	Sandstone: very light orange grey, very fine to pebbly, dominantly grit, subangular to subrounded, moderately to well sorted, weak silica cement, trace medium brown argillaceous and silt matrix, common yellow quartz grains, common grey green and trac red cherty lithics, trace pyrite, friable, fair to good visual porosity, no oil fluorescence.
895-905	100	Sandstone: very light orange grey, very fine to pebbly, dominantly very coarse to grit, subangular to subrounded, moderately to well sorted, weak silica cement,trace medium brown argillaceous and silt matrix, common yellow quartz grains,common grey green a trace red cherty lithics, trace pyrite, friable, fair to good visual porosity, no oil fluorescent
905-915	100	Sandstone: very light orange grey, very fine to pebbly, dominantly coarse to very coarse subangular to subrounded, moderately to well sorted, weak silica cement,trace medium brown argillaceous and silt matrix, common yellow quartz grains,common grey green a trace red cherty lithics, trace pyrite, friable, fair to good visual porosity, no oil fluorescent
915-925	100	Sandstone: very light orange grey, very fine to grit, dominantly coarse, subangular to subrounded, moderately sorted, weak silica cement, trace to common dark grey argillaced and silt matrix, common yellow to orange quartz grains, trace grey to green cherty lithics, rare red to brown cherty lithics, trace pyrite, trace black carbonaceous detritus, trace muscovite flakes, friable, good inferred porosity.
925-930	100	Sandstone: very light orange grey, very fine to grit, dominantly medium to coarse, subangular to subrounded, moderately sorted, weak silica cement, trace to common dark grey argillaceous and silt matrix, common yellow to orange quartz grains, trace grey to green cherty lithics, rare red to brown cherty lithics, trace pyrite, trace black carbonaceou detritus, trace muscovite flakes, friable, good inferred porosity.
930-940	100	Sandstone: very light orange grey, very fine to grit, dominantly very coarse to grit, subangular to subrounded, moderately sorted, weak silica cement, trace to common dark grey argillaceous and silt matrix, common yellow to orange quartz grains, common grey green cherty lithics, common red to brown cherty lithics, trace pyrite, trace black carbonaceous detritus, trace muscovite flakes, friable, good inferred porosity.
940-950	100	Sandstone: as for 930 to 940m. but dominantly coarse to very coarse.

950-960	100	Poor sample - abundant contaminants.
960-970	100	Sandstone: as for 930 to 940m.
970-980	70	Sandstone: very light orange grey, very fine to pebble, dominantly very coarse to pebble subangular to subrounded, poorly sorted, weak silica cement, trace to common dark grey argillaceous and silt matrix, common yellow to orange quartz grains, trace grey to green cherty lithics, trace red to brown cherty lithics, trace pyrite, trace black carbonaceous detritus, trace muscovite flakes, friable, good inferred porosity.
	30	<u>Claystone</u> : medium to dark grey to dark brown grey, very silty, often abundant dispersed very fine to pebble quartz grains, trace dispersed green grey and red cherty lithics, common black coally detritus, common pyrite often associated with the coally detritus, trace micromica, firm, very dispersive and washing from samples, slightly subfissile.
980-990	70	Claystone: as for 970 to 980m.
	30	Sandstone: as for 970 to 980m.
990-995	90	Claystone: as for 970 to 980m.
	10	Sandstone: as for 970 to 980m.
995-1005	90	<u>Claystone</u> : as above, medium to dominantly dark grey, ark brown grey in part, very silty often abundant dispersed very fine to pebble quartz grains, trace dispersed green grey and red cherty lithics, common black coaly detritus, common pyrite often associated with the coaly detritus, trace micromica, firm, very dispersive and washing from samples, slightly subfissile.
	10	Sandstone: as for 970 to 980m.
1005-1015	80	Sandstone: very light brown grey, very fine to pebble, dominantly very coarse to grit, subangular, poorly sorted, weak silica cement, trace to abundant medium to dark grey argillaceous and silt matrix, trace grey green and red cherty lithics, trace pyrite, trace blac coal detritus often with associated pyrite, friable, fair to good visual porosity, no oil fluorescence.
	20	Claystone: as for 995 to 1005m.
1015-1025	60	Sandstone: as for 1005 to 1015m. but dominantly coarse grained.
	40	Claystone: as for 995 to 1005m.
1025-1035	100	<u>Claystone</u> : as above, medium to dominantly dark grey, dark brown grey in part, very silt often abundant dispersed very fine to grit quartz grains, trace dispersed green grey and receherty lithics, common black coaly detritus, common pyrite often associated with the coal detritus, trace micromica, firm, very dispersive and washing from samples, slightly subfissile.
	Trace	Sandstone: as for 1005 to 1015m.
1035-1045	100	<u>Claystone</u> : medium grey occasionally dark grey and very carbonaceous, often light grey and very silty grading to siltstone, common dispersed very fine quartz and partially altered feldspar grains in part, common black coal detritus, common pyrite often being associated with the coal, trace micromica, firm, slightly subfissile.
1045-1050	70	Claystone: as for 1035 to 1045m.
	30	Sandstone: light grey, very fine to fine, dominantly fine, subangular, moderately sorted, weak to moderate silica cement, abundant light grey silt and medium grey argillaceous matrix, common very fine off white partially altered feldspars, trace grey green and red cherty lithics, trace black carbonaceous flecks, rare pyrite, friable, very poor visual porosi
	1	

	40	Sandstone: light grey, very fine to coarse, dominantly fine, subangular, moderately sor weak to moderate silica cement, abundant light grey silt and medium grey argillaceous matrix, common very fine off white partially altered feldspars, trace grey green and red cherty lithics, trace black carbonaceous flecks, rare pyrite, friable, very poor visual poro
1055-1060	80	Sandstone: light grey, very fine to grit, dominantly coarse, subangular, poorly sorted, v silica and pyrite cement, abundant white argillaceous and silt matrix in part, abundant medium grey argillaceous and silt matrix in part, trace green grey cherty lithics, commo very fine to medium off white partially altered feldspar, trace black coal detritus, friable moderately hard, poor visual porosity, no oil fluorescence.
	20	<u>Claystone</u> : medium grey occasionally dark grey and very carbonaceous, often light gre and very silty grading to siltstone, common dispersed very fine quartz and partially alter feldspar grains in part, common black coal detritus, common pyrite often being associat with the coal, trace micromica, firm, slightly subfissile.
1060-1070	90	Sandstone: as for 1055 to 1060m.
	10	Claystone: as for 1055 to 1060m.
1070-1080	100	Sandstone: light grey, very fine to grit, dominantly coarse, subangular, poorly sorted, v silica and pyrite cement, abundant white argillaceous and silt matrix in part, abundant medium grey argillaceous and silt matrix in part, trace green grey cherty lithics, commovery fine to medium off white partially altered feldspar, trace black coal detritus, friable moderately hard, poor visual porosity, no oil fluorescence.
1080-1090	70	Claystone: light to dark grey, dominantly medium grey, often light grey and very silty, abundant dispersed very fine to fine quartz sand grains in part, common dispersed media to grit quartz sand grains in part, trace pyrite, trace black coal detritus, trace very fine partially altered feldspar, trace micromica, firm, very dispersive and washing from samp slightly subfissile.
	30	Sandstone: as for 1070 to 1080.
1090-1095	90	Claystone: as for 1080 to 1090m. but with minor medium brown cryptocrystalline dolomite.
	10	Sandstone: as for 1070 to 1080m. but dominantly very coarse grained.
1095-1100	100	<u>Claystone</u> : as for 1080 to 1090m. but with common medium brown cryptocrystalline dolomite.
	Trace	Sandstone: as for 1070 to 1080m.
1100-1110	100	Claystone: light to dark grey, dominantly medium grey, often light grey and very silty, abundant dispersed very fine to fine quartz sand grains in part, common dispersed media to grit quartz sand grains in part, trace pyrite, trace black coal detritus, trace very fine partially altered feldspar, trace medium brown cryptocrystalline dolomite, trace microm firm, very dispersive and washing from samples, slightly subfissile.
	Trace	Sandstone: as for 1070 to 1080m. but dominantly fine grained.
1110-1120	80	Sandstone: light grey, very fine to grit, dominantly very coarse, subangular, poorly sor weak silica and pyrite cement, abundant white argillaceous and silt matrix in part, abundant medium grey argillaceous and silt matrix in part, trace green grey cherty lithics, commo very fine to medium off white partially altered feldspar, trace black coal detritus, friable moderately hard, poor visual porosity, no oil fluorescence.
	20	Claystone: as for 1110 to 1120m.
1120-1130	70	Sandstone: as for 1110 to 1120m.
	30	Claystone: as for 1110 to 1120m.
1130-1140	60	Sandstone: as for 1110 to 1120m.

	40	Claystone: as for 1110 to 1120m.
1140-1150	70	Sandstone: as above, light grey, very fine to grit, dominantly very coarse, subangular, poorly sorted, weak silica and pyrite cement, abundant white argillaceous and silt matrix in part, abundant medium grey argillaceous and silt matrix in part, trace green grey cherty lithics, common very fine to medium off white partially altered feldspar, trace black coal detritus, friable to moderately hard, poor visual porosity, no oil fluorescence.
	30	Claystone: as above, light to dark grey, dominantly medium grey, often light grey and versilty, abundant dispersed very fine to fine quartz sand grains in part, common dispersed medium to grit quartz sand grains in part, trace pyrite, trace black coal detritus, trace very fine partially altered feldspar, trace medium brown cryptocrystalline dolomite, trace micromica, firm, very dispersive and washing from samples, slightly subfissile.
1150-1160	80	Claystone: as for 1140 to 1150m.
	20	Sandstone: as for 1140 to 1150m.
1160-1170	70	Claystone: as for 1140 to 1150m.
	30	Sandstone: light grey, very fine to grit, dominantly fine, subangular, poorly sorted, weak silica and pyrite cement, abundant white argillaceous and silt matrix, abundant medium grey argillaceous and silt matrix in part, trace green grey cherty lithics, common very fine to medium off white partially altered feldspar, trace black coal detritus, friable to moderately hard, poor visual porosity, no oil fluorescence.
1170-1180	50	Claystone: as for 1140 to 1150m.
	50	Sandstone: light grey, very fine to grit, dominantly fine, subangular, poorly sorted, moderate silica cement, weak light brown dolomite cement in part, common to abundant white to light brown argillaceous matrix, abundant medium grey argillaceous and silt matrix in part, trace grey green and red lithics, trace black coal detritus, trace pyrite often associated with coal detrital, friable to moderately hard, poor visual porosity, no oil fluorescence.
1180-1190	30	Sandstone: as for 1170 to 1180m.
	70	<u>Claystone</u> : as above, light to dark grey, dominantly medium grey, often light grey and vesilty, abundant dispersed very fine to fine quartz sand grains in part, common dispersed medium to grit quartz sand grains in part, trace pyrite, trace black coal detritus, trace very fine partially altered feldspar, trace medium brown cryptocrystalline dolomite, trace micromica, firm, very dispersive and washing from samples, slightly subfissile.
1190-1200	90	Claystone: as for 1180 to 1190m. in part off white and very kaolinitic.
	10	Sandstone: off white to light grey to light brown, very fine, subangular, well sorted, strondolomite cement in part, moderate silica cement, abundant white argillaceous matrix, common very fine partially altered feldspar, trace black carbonaceous flecks, rare pyrite, trace very fine muscovite flakes, moderately hard, very poor visual porosity
1200-1210	90	Claystone: as for 1180 to 1190m. in part off white and very kaolinitic.
	10	Sandstone: off white to light grey to light brown, very fine to dominantly fine, subangula well sorted, strong dolomite cement in part, moderate silica cement, abundant white argillaceous matrix, common very fine partially altered feldspar, trace black carbonaceous flecks, rare pyrite, trace very fine muscovite flakes, moderately hard, very poor visual porosity
1210-1220	70	Claystone: medium grey, occasionally light grey and very kaolinitic with abundant dispersed very fine quartz and partially altered feldspar grains, common black carbonaced flecks in part, trace very fine light green glauconite grains, common micromica, trace medium brown cryptocrystalline dolomite, trace pyrite, firm, very dispersive washing from samples, very dispersive, slightly subfissile.

Interval (m)	%	Description PAGE: 14
	30	Sandstone: off white to very light grey, very fine to fine, occasional medium to very coarse grains, subangular, moderately sorted, moderate to strong silica cement, trace strong dolomite cement, common to abundant white argillaceous matrix, occasionally abundant medium grey argillaceous and silt matrix, trace very fine to fine grey and rare red lithics, common very fine to fine partially altered feldspar grains, trace black carbonaceous flecks, trace very fine light green glauconite, moderately hard, very poor visual porosity, no oil fluorescence.
1220-1230	60	Claystone: as for 1210 to 1220m.
	40	Sandstone: as for 1210 to 1220m.
1230-1240	80	Claystone: as for 1210 to 1220m.
	20	Sandstone: off white to very light grey, very fine, subangular, moderately sorted, moderate to strong silica cement, trace strong dolomite cement, common to abundant white argillaceous matrix, occasionally abundant medium grey argillaceous and silt matrix, trace very fine to fine grey and rare red lithics, common very fine to fine partially altered feldspar grains, trace black carbonaceous flecks, trace very fine light green glauconite, moderately hard, very poor visual porosity, no oil fluorescence.
1240-1245	90	<u>Claystone</u> : medium grey, occasionally light grey and very kaolinitic with abundant dispersed very fine quartz and partially altered feldspar grains, common black carbonaceous flecks in part, trace very fine light green glauconite grains, common micromica, trace medium brown cryptocrystalline dolomite, trace pyrite, firm, very dispersive washing from samples, very dispersive, slightly subfissile.
	10	Sandstone: off white to very light grey, very fine, subangular, moderately sorted, moderate to strong silica cement, trace strong dolomite cement, common to abundant white argillaceous matrix, occasionally abundant medium grey argillaceous and silt matrix, trace very fine to fine grey and rare red lithics, common very fine to fine partially altered feldspar grains, trace black carbonaceous flecks, trace very fine light green glauconite, moderately hard, very poor visual porosity, no oil fluorescence.
1245-1250	90	<u>Claystone</u> : medium to dark grey, very silty, common dispersed very fine to fine quartz and partially altered feldspar grains, common pyrite, trace black carbonaceous flecks, trace micromica, firm, very dspersive, slightly subfissile.
	10	Sandstone: light brown grey, very fine to fine, dominantly very fine, subangular, moderately sorted, moderate silica cement, abundant white to light brown argillaceous and silt matrix, trace black and green lithics, trace pyrite, trace micromica, moderately hard, no visual porosity, no oil fluorescence.
1250-1255	100	Claystone: as for 1245 to 1250m.
	Trace	Sandstone: as for 1245 to 1250m.
1255-1260	100	<u>Claystone</u> : medium to dark grey, very silty, common dispersed very fine to fine quartz and partially altered feldspar grains, common pyrite, trace medium brown cryptocrystalline dolomite, trace black carbonaceous flecks, trace micromica, firm, very dspersive, slightly subfissile.
	Trace	Sandstone: as for 1245 to 1250m.
1260-1270	100	Claystone: as for 1255 to 1260m, with trace medium to dark brown grey
	Trace	Sandstone: as for 1245 to 1250m.
1270-1280	100	<u>Claystone</u> : medium to dark grey, occasionally medium to dark brown grey, very silty, common dispersed very fine to fine quartz and partially altered feldspar grains, common pyrite, trace medium brown cryptocrystalline dolomite, trace black carbonaceous flecks, trace micromica, firm, very dspersive, slightly subfissile.

Interval (m)	%	Description PAGE: 15
	Trace	Sandstone: as above, light brown grey, very fine to fine, dominantly very fine, subangular, moderately sorted, moderate silica cement, abundant white to light brown argillaceous and silt matrix, trace black and green lithics, trace pyrite, trace micromica, moderately hard, no visual porosity, no oil fluorescence.
1280-1285	100	Claystone: as for 1270 to 1280m.
	Trace	Sandstone: as for 1270 to 1280m.
1285-1290	100	Claystone: as for 1270 to 1280m.
	Trace	Sandstone: as for 1270 to 1280m. but with very strong calcareous and dolomitic cement in part.
1290-1295	100	<u>Claystone</u> : as for 1270 to 1280m. but with common medium brown cryptocrystalline dolomite.
	Trace	Sandstone: as for 1285 to 1290m.
1295-1300	100	Claystone: as for 1285 to 1290m.
	Trace	Sandstone: as for 1285 to 1290m.
1300-1305	80	<u>Claystone</u> : medium to dark grey, occasionally medium to dark brown grey, very silty, common dispersed very fine to fine quartz and partially altered feldspar grains, common pyrite, trace medium brown cryptocrystalline dolomite, trace black carbonaceous flecks, trace micromica, firm, very dspersive, slightly subfissile.
	20	Sandstone: off white to light grey to light brown, very fine to fine, dominantly very fine, subangular, well sorted, strong silica cement, strong calcareous cement in part, abundant white argillaceous matrix in part, abundant partially altered feldspar in part, common very fine grey to green to brown lithics, trace very fine black carbonaceous grains, trace pyrite, trace micromica, friable to hard, no visual porosity, no oil fluorescence.
HARD BANDS	100	INTERVALS: 1308-1309.5m. 1316-1317.5m. Sandstone: off white to light grey, very fine to fine, subangular, well sorted, strong silica and calcareous cements, common white argillaceous matrix in part, common light green lithics, trace biotite and muscovite, trace very fine black arbonaceous grains, very hard, no visual porosity - MINERAL FLUORESCENCE: The sandstone has 20% solid moderately bright greenish yellow-white fluorescence, no cut, no show.
1305-1310	60	Claystone: as for 1300 to 1305m.
	40	Sandstone: as for "hard bands".
1310-1315	90	Claystone: as for 1300 to 1305m.
	10	Sandstone: as for 1300 to 1305m.
1315-1320	70	Sandstone: off white to light grey, very fine to fine, subangular, well sorted, strong silica and calcareous cements, common white argillaceous matrix in part, common light green lithics, trace biotite and muscovite, trace very fine black arbonaceous grains, very hard, no visual porosity, 10% dull orange mineral fluorescence, no cut, no show.
	30	<u>Claystone</u> : medium to dark grey, occasionally medium to dark brown grey, very silty, common dispersed very fine to fine quartz and partially altered feldspar grains, common pyrite, trace medium brown cryptocrystalline dolomite, trace black carbonaceous flecks, trace micromica, firm, very dspersive, slightly subfissile.
1320-1325	90	<u>Claystone</u> : medium grey to medium brown grey, very silty, very dolomitic in part, very calcareous in part, occasionally dark grey and very carbonaceous, common very fine sandstone laminae, very finely arenaceous in part, trace black carbonaceous flecks, trace pyrite, trace micromica, firm, very dspersive, slightly subfissile.
	10	Sandstone: as for 1320 to 1325m.

Interval (m)	0/0	Description PAGE: 16
1325-1330	90	Claystone: as for 1320 to 1325m.
	10	Sandstone: off white to light grey to light brown, very fine to fine, dominantly very fine, subangular, well sorted, strong silica cement, strong calcareous cement in part, abundant white argillaceous matrix in part, abundant partially altered feldspar in part, common very fine grey to green to brown lithics, trace very fine black carbonaceous grains, trace pyrite, trace micromica, friable to hard, no visual porosity, no oil fluorescence.
1330-1335	100	Claystone: medium grey to medium brown grey, very silty, trace dolomite, slightly calcareous in part, occasionally dark grey and very carbonaceous, common very fine sandstone laminae, very finely arenaceous in part, trace black carbonaceous flecks, trace pyrite, trace micromica, firm, very dspersive, slightly subfissile.
	Trace	Sandstone: as for 1325 to 1330m.
1335-1340	100	Claystone: as for 1330 to 1335m. but with abundant pyrite.
	Trace	Sandstone: as for 1325 to 1330m.
1340-1345	100	<u>Claystone</u> : medium to dark grey, occasionally medium brown grey, very silty, trace dolomite, slightly calcareous in part, occasionally dark grey and very carbonaceous, common very fine sandstone laminae, very finely arenaceous in part, trace black carbonaceous flecks, trace pyrite, trace micromica, firm, very dspersive, slightly subfissile.
1345-1350	90	Claystone: medium grey to medium brown grey, very silty grading to siltstone, common dispersed very fine quartz sand grains in part, abundant dispersed very fine to fine off white partially altered feldspar grains in part, trace to common black carbonaceous flecks, common medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile Sandstone, off white to light grey to light brown, very fine, subangular, moderately sorted, moderate to strong calcareous cement, common to abundant white argillaceous matrix, abundant medium grey silt matrix in part, common very fine black carbonaceous grains, trace pyrite, abundant off white partially altered feldspar grains, trace very fine biotite and muscovite flakes, friable to dominantly hard, no visual porosity, no oil fluorescence but 30% dull orange mineral fluorescence.
1350-1355	100	Claystone: as for 1345 to 1350m.
	Trace	Sandstone: as for 1345 to 1350m.
1355-1360	100	<u>Claystone</u> : dark grey, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1360-1370	100	<u>Claystone</u> : as for 1355 to 1360m. Note: very poor samples due to clay encapsulation by PHPA - difficult to describe formation fully.
1370-1380	100	Claystone: Claystone: as for 1355 to 1360m.
1380-1385	100	<u>Claystone</u> : dark grey, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1385-1390	100	Claystone: as for 1380 to 1385m.
1390-1395	100	Claystone: as for 1380 to 1385m. but with common very fine dispersed quartz sand grains.
1395-1400	100	<u>Claystone</u> : dark grey, occasionally very dark grey and very carbonaceous, trace very fine dispersed quartz sand grains, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.

1400-1405	100	<u>Claystone</u> : dark grey, occasionally very dark grey and very carbonaceous, trace glaucor moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grain in part, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, fir very dispersive, slightly subfissile.
1405-1410	100	<u>Claystone</u> : dark grey, occasionally very dark grey and very carbonaceous, common glauconite, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, common medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1410-1415	100	<u>Claystone</u> : dark grey, occasionally very dark grey and very carbonaceous, common blac coaly detritus, trace glauconite, moderately silty, moderately carbonaceous, trace very fit partially altered feldspar grains in part, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1415-1420	100	Claystone: as for 1410 to 1415m.
1420-1425	100	Claystone: as for 1410 to 1415m.
1425-1430	100	<u>Claystone</u> : dark grey, occasionally very dark grey and very carbonaceous, trace to common black coaly detritus, common very dark green glauconite, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1430-1435	100	<u>Claystone</u> : dark grey, occasionally very dark grey and very carbonaceous, trace to common black coaly detritus, common to abundant very dark green to black glauconite, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grain in part, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, fir very dispersive, slightly subfissile.
1435-1440	100	Claystone: as for 1430 to 1435m.
1440-1445	100	Claystone: as for 1430 to 1435m.
1445-1450	100	<u>Claystone</u> : dark grey, occasionally very dark grey and very carbonaceous, trace to common black coaly detritus, common to abundant very dark green to black glauconite, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grain in part, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, fir very dispersive, slightly subfissile.
1450-1455	100	Claystone: as for 1445 to 1450m.
1455-1460	100	Claystone: medium to dark grey, moderately to very silty, common to bundant glauconi comm medium brown cryptocrysalline dolomite, trace to common Inoceramus, trace very fine quartz and altered feldspar sand grains, trace black coal detritus, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1460-1465	100	Claystone: as for 1455 to 1460m. but with minor very strongly calcareous and dolomitically cemented sandstone laminae.
1460-1470	100	Claystone: as for 1455 to 1460m.
1470-1477	100	Claystone: as for 1455 to 1460m.
1477-1479	60	Claystone: as for 1455 to 1460m.
	40	Limestone: very light brown, lutitic to cryptocrystalline, trace glauconite, hard, no visua porosity - the limestone has solid bright yellow mineral fluorescence, no cut, no show.
1479-1485	20	Claystone: as for 1455 to 1460m.
	80	<u>Sandstone</u> : light grey, very fine to grit, dominantly very coarse, angular to subangular, poorly sorted, weak silica cement, trace white argillaceous matrix, trace black coal detritt trace pyrite, friable, good inferred porosity.

1485-1490	00	Conditions light and some Great and Justicell
1483-1490	90	Sandstone: light grey, very fine to grit, dominantly very coarse, angular to subangular, poorly sorted, weak silica cement, trace white argillaceous matrix, trace black coal detri trace pyrite, friable, very good inferred porosity.
		Fluorescence: the sandstone from 1487.5 to 1489m. has trace dull blue-white fluorescences associated only with the rock flour giving a blue-white crush cut.
	10	Claystone: as for 1455-1460m.
1490-1495	90	Sandstone: as for 1485 to 1490m. but with increasing silica cement and argillaceous matrix, good inferred porosity, no oil fluorescence.
	10	Claystone: as for 1455-1460m.
1495-1500	100	Sandstone: light grey, very fine to grit, dominantly very coarse, angular to subangular, poorly sorted, weak silica cement, trace white argillaceous matrix, trace black coal detrictrace pyrite, friable, very good inferred porosity.
1500-1505	100	Sandstone: as for 1495 to 1500m.
1505-1507	70	<u>Claystone</u> : medium to dark grey, very silty, moderately carbonaceous, trace micromica firm, very dispersive, subfissile. Very poor sample due to low drill rate and clay encapsulation by PHPA.
	30	Sandstone: as for 1505 to 1507m.
1507-1510	90	Sandstone: light grey, very fine to very coarse, dominantly coarse, angular to subangul poorly sorted, weak silica cement, trace weak calcareous cement, trace to occasionally abundant white argillaceous matrix, trace black carbonaceous detritus, trace pyrite, friab good inferred porosity.
	10	<u>Claystone</u> : medium to dark grey, moderately silty, moderately carbonaceous, trace black coal flecks, trace pyrite, trace very fine dispersed quartz and alteered feldspar grains in particle to common micromica, firm, very dispersive and washing from sample, slightly subfissile.
1510-1515	100	Sandstone: as for 1507 to 1510m.
1515-1520	90	<u>Claystone</u> : medium to dark grey, moderately silty, moderately carbonaceous, trace blac coal flecks, trace pyrite, trace very fine dispersed quartz and alteered feldspar grains in particle to common micromica, firm, very dispersive and washing from sample, slightly subfissile.
	10	Sandstone: as for 1507 to 1510m.
1520-1525	100	Claystone: as for 1515 to 1520m.
	Trace	Sandstone: as for 1507 to 1510m.
1525-1530	100	Claystone: as for 1515 to 1520m.
1530-1535	70	Sandstone: off white to very light grey, very fine to medium, occasional coarse to very coarse grains, dominantly fine, angular to subangular, poor to moderate sorting, weak si cement, abundant white argillaceous matrix, in part matrix supported, trace to common grey, green, red and brown lithics, trace muscovite and brown mica flakes, trace black of
		detritus, trace pyrite, friable, very poor to poor visual porosity, no oil fluorescence.
	30	<u>Claystone</u> : - kaolinite - off white, abundant dispersed very fine to fine quartz and lithi sand garins in part, soft, sticky, non fissile.
1535-1540	90	Sandstone: light green grey, very fine to coarse, trace very coarse to grit grains,, dominantly fine to medium, subangular, moderately sorted, weak silica cement, trace to abundant white argillaceous matrix, common green and brown lithics, trace black carbonaceous detritus, friable, poor visual porosity
		Fluorescence: the sandstone at 1544m. has trace dull blue white fluorescence giving tra

Interval (m)	%	Description PAGE: 19
	10	Claystone: as for 1530 to 1535m.
1540-1545	90	Sandstone: light green grey, very fine to girt, common very coarse to grit grains,, dominantly medium, subangular, moderately sorted, weak silica cement, trace to abundant white argillaceous matrix, common green and brown lithics, trace black carbonaceous detritus, friable, poor visual porosity
	10	Claystone: as for 1530 to 1535m.
1545-1550	40	Sandstone: medium green grey, very fine to coarse, dominantly medium, subangular, moderately sorted, weak silica cement, trace weak calcareous cement, abundant white argillaceous matrix, abundant green grey lithics, common brown and red lithics, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence.
	60	<u>Claystone</u> : light blue grey, soft, sticky, very dispersive and washing from sample, non fissle.
1550-1555	50	Sandstone: as for 1530 to 1535m.
	50	Claystone: as for 1530 to 1535m.
1555-1557	60	Sandstone: as for 1530 to 1535m.
	40	Claystone: as for 1530 to 1535m.
1557-1560	60	<u>Claystone</u> : sample too contaminated by cavings after DST for useful description.
	40	Sandstone: sample too contaminated by cavings after DST for useful description.
1560-1565	60	Sandstone: light grey to medium green grey, very fine to coarse, dominantly fine to medium, subangular, moderately sorted, weak silica and calcareous cement, abundant white argillaceous matrix, abunant gray green lithics, common brown and trace red lithics, abundant off white altered feldspars, trace black coal detritus, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
	40	<u>Claystone</u> : off white to light grey, slightly silty in part, trace dispersed very fine to medium lithic and quartz sand grains in part, trace black coaly detritus, trace pyrite, trace micromica, firm, very dispersive washing from sample, sticky, non fissile.
1565-1570	70	Sandstone: as for 1560 to 1565m.
	30	Claystone: as for 1560 to 1565m.
1570-1575	90	Sandstone: as for 1560 to 1565m.
	10	Claystone: as for 1560 to 1565m.
1575-1580	50	Sandstone: light grey to medium green grey, very fine to coarse, dominantly fine to medium, subangular, moderately sorted, weak silica and calcareous cement, abundant white argillaceous matrix, abunant gray green lithics, common brown and trace red lithics, abundant off white altered feldspars, trace brown and green mica flakes, trace black coal detritus, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
	50	<u>Claystone</u> : off white to light grey, slightly silty in part, trace very fine latered feldspar grains in part, trace black coaly detritus, trace pyrite, trace micromica, firm, very dispersive washing from sample, sticky, non fissile.
1580-1585	90	Sandstone: light grey to medium green grey, very fine to coarse, dominantly medium to coarse, subangular, moderately sorted, weak silica and calcareous cement, abundant white argillaceous matrix, abunant gray green lithics, common brown and trace red lithics, abundant off white altered feldspars, trace brown and green mica flakes, trace black coal detritus, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
	10	Claystone: as for 1575 to 1580m.

Interval (m)	%	Description PAGE: 20
1585-1595	70	Sandstone: as for 1580 to 1585m.
	30	Claystone: as for 1575 to 1580m.
1595-1600	50	Sandstone: light to medium green grey, very fine to coarse, dominantly medium to coarse, subangular, moderately sorted, weak silica and calcareous cements, common to dominantly abundant white argillaceous matrix, abundant green to grey to black lithics, common brown to red lithics, common to abundant altered feldspar grains, trace black coaly detritus, trace brown and green mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence.
	50	<u>Claystone</u> : light green grey to medium grey, slightly silty, trace black coal detritus, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1600-1605	50	Sandstone: as for 1595 to 1600m.
	50	Claystone: as for 1595 to 1600m.
1605-1610	70	Sandstone: as for 1595 to 1600m.
	30	Claystone: as for 1595 to 1600m.
1610-1620	60	Sandstone: as for 1595 to 1600m.
	40	Claystone: light green grey to medium grey, occasionally medium brown grey, slightly to occasionally very silty, trace black coal detritus, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1620-1630	50	Sandstone: as for 1595 to 1600m.
	50	Claystone: as for 1610 to 1620m.
1630-1635	60	Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular, moderately sorted, weak silica cement, occasionally moderate calcareous cement, common to dominantly abundant white argillaceous matrix, abundant green to grey to black lithics, common brown to red lithics, common to abundant altered feldspar grains, trace black coaly detritus, trace brown and green mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence but trace dull orange mineral fluorescence, no cut, no show.
	40	Claystone: as for 1610 to 1620m.
1635-1640	70	Sandstone: as for 1630 to 1635m.
	30	Claystone: as for 1610 to 1620m.
1640-1645	50	Sandstone: as for 1630 to 1635m.
	50	Claystone: as for 1610 to 1620m.
1645-1650	20	Sandstone: as for 1630 to 1635m.
	80	<u>Claystone</u> : light green grey to medium grey, occasionally medium brown grey, slightly to occasionally very silty, trace black coal detritus, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1650-1655	70	Sandstone: light to medium green grey, very fine to occasionally coarse, dominantly fine to medium, subangular, moderately sorted, weak silica cement, occasionally moderate calcareous cement, abundant white argillaceous matrix, abundant green to grey to black lithics, common brown to red lithics, common to abundant altered feldspar grains, trace black coaly detritus, trace brown and green mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence but trace dull orange mineral fluorescence, no cut, no show.
	30	Claystone: as for 1645 to 1650m.

Interval (m)	%	Description PAGE: 21
1655-1660	80	Claystone: as for 1645 to 1650m.
	20	Sandstone: as for 1650 to 1655m.
1660-1665	90	<u>Claystone</u> : light green grey to medium grey, occasionally medium brown grey, slightly to occasionally very silty, trace black coal detritus, slightly calcareous in part, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
	10	Sandstone: as for 1650 to 1655m.
1665-1670	90	Claystone: as for 1660 to 1665m.
	10	Sandstone: as for 1650 to 1655m.
1670-1675	70	Sandstone: light to medium green grey, very fine to occasionally coarse, dominantly fine to medium, subangular, moderately sorted, weak silica cement, occasionally moderate calcareous cement, abundant white argillaceous matrix, abundant green to grey to black lithics, common brown to red lithics, common to abundant altered feldspar grains, trace black coaly detritus, trace brown and green mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence but trace dull orange mineral fluorescence, no cut, no show.
	30	Claystone: as for 1660 to 1665m.
1675-1680	50	Sandstone: as for 1670 to 1675m.
	50	Claystone: as for 1660 to 1665m.
1680-1685	70	Sandstone: as for 1670 to 1675m.
	30	Claystone: as for 1660 to 1665m.
1685-1690	80	Sandstone: as above, light to medium green grey, very fine to occasionally coarse, dominantly fine to medium, subangular, moderately sorted, weak silica cement, occasionally moderate calcareous cement, abundant white argillaceous matrix, abundant green to grey to black lithics, common brown to red lithics, common to abundant altered feldspar grains, trace black coaly detritus, trace brown and green mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence but trace dull orange mineral fluorescence, no cut, no show.
	20	Claystone: as above, light green grey to medium grey, occasionally medium brown grey, slightly to occasionally very silty, trace black coal detritus, slightly calcareous in part, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.
1690-1700	90	Sandstone: as for 1685 to 1690m.
	10	Claystone: as for 1685 to 1690m.
1700-1710	90	Sandstone: as for 1685 to 1690m.
	10	Claystone: as for 1685 to 1690m.
1710-1720	90	Sandstone: as for 1685 to 1690m.
	10	Claystone: as for 1685 to 1690m.
1720-1725	80	Sandstone: as for 1685 to 1690m.
	20	Claystone: as for 1685 to 1690m.
1725-1730	30	Sandstone: as for 1685 to 1690m.

Interval (m)	%	Description PAGE: 22
	70	<u>Claystone</u> : light to medium grey, light to medium brown grey, light to medium green grey, slightly to occasionally very silty, common black carbonaceous flecks and black coal detritus, trace brown mica flakes, trace pyrite, nil to occasionally common very fine partially altered feldspar grains, trace micromica, firm, very dispersive, slightly subfissile.
1730-1735	90	Claystone: as for 1725 to 1730m.
	10	Sandstone: as for 1685 to 1690m.
1735-1740	90	Claystone: as for 1725 to 1730m.
	10	Sandstone: as for 1685 to 1690m.
1740-1745	90	Claystone: as for 1725 to 1730m.
	10	Sandstone: as for 1685 to 1690m.
1745-1750	90	Sandstone: medium green grey, very fine to coarse, dominantly medium, subangular, moderately to well sorted, weak silica cement, trace weak calcareous cement, common to abundant white argillaceous matrix, abundant grey to green lithics, common black brown and red lithics, abundant white altered feldspar grains, trace black carbonaceoius detritus, trace brown and green mica flakes, friable, very poor visual porosity, no oil fluorescence.
	10	Claystone: as for 1725 to 1730m.
1750-1755	80	Sandstone: as for 1745 to 1750m.
	20	Claystone: as for 1725 to 1730m.
1755-1758	60	Sandstone: medium green grey, very fine to coarse, dominantly medium, subangular, moderately to well sorted, weak silica cement, trace weak calcareous cement, common to abundant white argillaceous matrix, abundant grey to green lithics, common black brown and red lithics, abundant white altered feldspar grains, trace black carbonaceoius detritus, trace brown and green mica flakes, friable, very poor visual porosity, no oil fluorescence.
TD 1758m.	40	Claystone: light to medium grey, light to medium brown grey, light to medium green grey, slightly to occasionally very silty, common black carbonaceous flecks and black coal detritus, trace brown mica flakes, trace pyrite, nil to occasionally common very fine partially altered feldspar grains, trace micromica, firm, very dispersive, slightly subfissile.

GEOLOGICAL SUMMARY

DUNBAR-1

Permit:

PPL1

Spud Date:

Rig:

Century Rig 11

GFE Rep:

K. Smith

Geologist:

D. Horner

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description
6-124	10-150 (60)	Calcarenite: orange, very fine to fine grained, sucrosic texture, common shell fragments and forams, common red brown iron oxide rich calcilutite, friable, good visual porosity. By 50m gradually becoming very light grey, fine grained, trace fossil fragments including bivalves, gastropods, foraminifera, sponge spicules and echinoid spines, slightly argillaceous, trace glauconite, trace medium grey marl, friable, poor visual porosity. With minor interbedded Marl: medium grey, very calcareous, grading to calcilutite, firm, non-fissile.
124-263	60-240 (120)	Marl: medium grey, very calcareous, abundant fossil fragments including bivalves, gastropods, foraminifera, bryozoa, sponge spicules and echinoid spines, rare glauconite, rare dispersed quartz sand grains, trace pyrite, very soft, sticky, non-fissile, with minor medium green grey and medium brown grey marl below 205m.
263-317	25-220 <i>(</i> 70)	Marl: medium grey, very calcareous, massive, abundant fossil fragments including bivalves, gastropods, foraminifera, bryozoa, sponge spicules and echinoid spines, rare glauconite, rare dispersed quartz sand grains, trace pyrite, very soft, sticky, non-fissile with minor medium green grey and medium brown grey marl below 205m.
317-348	15-180 <i>(75)</i>	Marl: medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, foraminifera, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non-fissile. NOTE: very poor samples due to clay encapsulation by PHPA.
348-415	8-125 (70)	Marl: medium green grey to medium grey, occasionally medium brown grey, common fossil fragments including gastropods, foraminifera, bivalves, bryozoa, sponge spicules and echinoid spines, trace pyrite occasionally as fossil replacement, trace micromica, trace clear very fine to coarse quartz sand grains, very soft, sticky, non-fissile.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page:
415-426	15-60 (40)	Calcarenite: orange brown, very fine to very coarse grained, abundant dark brown iron oxide pellets, abundant light to medium orange brown iroxide stained bryozoa, trace to common shell fragments, echinoid spines and sponge spicules, common brown iron oxide stained very fine to very coarse frosted subrounded to well rounded quartz grains, weak cryptocrystalline calcareous cement, friable to moderately hard, poor inferred porosity, no oil fluorescence. Grading with depth to off white to light yellow to orange to brown, occasionally yellow green, often very lutitic, common bryozoa fragments, trace foraminifera, echinoid spines, sponge spicules and shell fragments, trace dark brown very fine to occasionally very coarse iron oxide pellets, trace brown very fine to occasionally very coarse iron oxide stained frosted subrounded to well
		rounded quartz grains, friable, very poor visual porosity, no oil fluorescence. With minor interbedded Marl: medium to dark brown, trace to common medium grey to medium green grey, common bryozoa, trace shell fragments, foraminifera, echinos spines and sponge spicules, common pyrite, trace dark green to black glauconite, common very fine clear quartz grains, very soft, sticky, non-fissile.
426-512	17-100 <i>(50)</i>	Marl: medium to dark brown, common medium grey, trace medium green grey, massive, common bryozoa, trace shell fragments, foraminifer echinoid spines and sponge spicules, common pyrite grading to marcasite trace dark green to black glauconite, common very fine clear quartz grains, very soft, sticky, non-fissile.
512-562	8-125 (55)	Sandstone: medium brown, very fine to grit, dominantly medium, very poorly sorted, subangular to rounded, weak calcareous cement, weak silic cement, abundant white calcilutite matrix in part, abundant medium to da brown argillaceous and silt matrix, strong brown stain on quartz grains, common glauconite, friable, very poor inferred porosity, no oil fluorescence. With depth grading to Sandstone: medium brown, very fine to very coarse, dominantly fine to medium, angular to rounded, dominantly subrounded, poorly sorted, weak
		silica and calcareous cements, abundant medium brown to dark brown argillaceous and silty matrix (matrix supported grading to arenaceous claystone), weak to strong brown stain on quartz grains, trace dark brown iron oxide pellets, trace black lithics, friable, very poor visual porosity. Grading to Claystone: medium to dark brown, non to occasionally very calcareous,
		very silty in part, abundant dispersed quartz grains in part grading to argillaceous sandstone, common glauconite, trace micromica, trace pyrite soft, non-fissile.
562-763	6-150 <i>(60)</i>	Sandstone: light brown grey, very fine to very coarse, dominantly coarse subangular to subrounded, moderately sorted, weak silica cement, occasional strong dolomite cement towards base, abundant medium to da brown argillaceous and silty matrix, trace white calcilutite matrix in part, clear to light orange brown stained quartz grains, trace pyrite, trace muscovite flakes, trace green grey cherty lithics, trace glauconite, friable.
		poor visual porosity, no oil fluorescence. Grading to and occasionally interbedded with Claystone: medium to dark brown, very silty, trace to abundant disperse very fine to very coarse light brown stained quartz grains, trace pyrite grading to marcasite, trace medium brown cryptocrystalline dolomite increasing towards base, occasionally black and very carbonaceous, trace micromica, trace muscovite flakes, soft, very dispersive, non-fissile.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 3
763-810	13-45 (30)	Claystone: medium to dark brown, very silty, common to abundant dispersed very fine to fine quartz sand grains, trace dispersed medium to grit-sized quartz sand grains, common pyrite, trace glauconite, trace fossil fragments, slightly calcareous in part, trace medium brown cryptocrystalline dolomite, trace black carbonaceous material, trace micromica, soft, very dispersive, non-fissile. Occasionally grading to Sandstone: light brown, very fine to fine, occasional medium to grit sized grains, subangular to rounded, dominantly subrounded, poorly sorted, weak silica cement, rare brown dolomite and calcareous cements, abundant medium to dark brown argillaceous and silt matrix (matrix supported), rare green grey cherty lithics, trace muscovite flakes, friable, very poor visual porosity, no oil fluorescence.
810-818	13-63 (45)	Sandstone: medium brown, very fine to grit, dominantly very coarse, subangular to rounded, dominantly subrounded, very poorly sorted, occasional strong calcareous and medium brown cryptocrystalline dolomite cements, abundant medium brown argillaceous and silt matrix (matrix supported), trace brown stain on quartz grains, trace pyrite, friable, very poor visual porosity, no oil fluorescence. With minor interbedded and in part grading to Claystone: medium bown, very silty, common to abundant dispersed very fine to grit quartz sand grains, common pyrite, trace glauconite, trace fossil fragments, slightly calcareous in part, trace medium brown cryptocrystalline dolomite, trace black carbonaceous material, trace micromica, soft, very dispersive, non-fissile.
818-879	10-125 (55)	Sandstone: light brown, very fine to grit, dominantly very coarse, subangular to subrounded, very poorly sorted, weak silica cement, trace to common medium brown argillaceous and silt matrix, trace white argillaceous matrix, trace to common yellow to brown quartz grains, trace green clay lithics, friable, fair visual porosity, no oil fluorescence. Grading in part to and occasionally interbedded with Claystone: medium to dark brown, very silty, occasionally iron oxide rich, abundant dispersed very fine to grit quartz sand grains, common pyrite, trace glauconite, slightly calcareous in part, trace black carbonaceous material, soft, very dispersive, non-fissile.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 4
879-	6-120 (50)	Sandstone: very light orange grey, very fine to pebbly, dominantly coarse to very coarse in general gradually becoming finer grained with depth, subangular to subrounded, moderately to well sorted, weak silica cement, trace medium brown argillaceous and silt matrix, common yellow quartz grains, common grey green and trace red cherty lithics, trace pyrite, friable, fair to good visual porosity, no oil fluorescence. With depth becoming Sandstone: light grey, very fine to grit, dominantly fine, subangular, poorly sorted, moderate silica cement, weak light brown dolomite cement in part, common to abundant white to light brown argillaceous matrix, abundant medium grey argillaceous and silt matrix in part, trace grey green and red lithics, trace black coal detritus, trace pyrite often associated with coal detritus, friable to moderately hard, poor visual porosity, no oil fluorescence. Grading to Sandstone: off white to light grey to light brown, very fine to dominantly fine, subangular, well sorted, strong dolomite cement in part, moderate silica cement, abundant white argillaceous matrix, common very fine partially altered feldspar, trace black carbonaceous flecks, rare pyrite, trace very fine muscovite flakes, moderately hard, very poor visual porosity grading to and interbedded with Claystone: light to dark grey, dominantly medium grey, often light grey and very silty, abundant dispersed very fine to fine quartz sand grains in part, common dispersed medium to grit quartz sand grains in part, trace pyrite, trace black coal detritus, trace very fine partially altered feldspar, trace medium brown cryptocrystalline dolomite, trace micromica, firm, very dispersive and washing from samples, slightly subfissile.
1204-1245	5-65 (40)	Claystone: medium grey, occasionally light grey and very kaolinitic with abundant dispersed very fine quartz and partially altered feldspar grains, common black carbonaceous flecks in part, trace very fine light green glauconite grains, common micromica, trace medium brown cryptocrystalline dolomite, trace pyrite, firm, very dispersive, slightly subfissile. Interbedded with and grading to Sandstone: off white to very light grey, very fine to fine, occasional medium to very coarse grains, subangular, moderately sorted, moderate to strong silica cement, trace strong dolomite cement, common to abundant white argillaceous matrix, occasionally abundant medium grey argillaceous and silt matrix, trace very fine to fine grey and rare red lithics, common very fine to fine partially altered feldspar grains, trace black carbonaceous flecks, trace very fine light green glauconite, moderately hard, very poor visual porosity, no oil fluorescence.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 5		
1245-1352 1-60 (20)		Claystone: medium to dark grey, occasionally medium to dark brown grey, very silty, common dispersed very fine to fine quartz and partially altered feldspar grains, common pyrite, trace medium brown cryptocrystalline dolomite, trace black carbonaceous flecks, trace micromica, firm, very dspersive, slightly subfissile. With minor interlaminated Sandstone: off white to very light grey, very fine to fine, occasional medium to very coarse grains, subangular, moderately sorted, moderate to strong silica cement, trace strong dolomite cement, common to abundant white argillaceous matrix, occasionally abundant medium grey argillaceous and silt matrix, trace very fine to fine grey and rare red lithics, common very fine to fine partially altered feldspar grains, trace black carbonaceous flecks, trace very fine light green glauconite, moderately hard, very poor visual porosity, no oil fluorescence. With from 1308-1309.5m. and 1316-1317.5m. Sandstone: off white to light grey, very fine to fine, subangular, well sorted, strong silica and calcareous cements, common white argillaceous matrix in part, common light green lithics, trace biotite and muscovite, trace very fine black Carbonaceous grains, very hard, no visual porosity - MINERAL FLUORESCENCE: The sandstone has 20% solid moderately bright greenish yellow-white mineral fluorescence, no cut, no show.		
1352-1445	8.5-57 (13)	Claystone: dark grey, occasionally very dark grey and very carbonaceous, trace to common glauconite increasing with depth, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace to occasionally common medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.		
1445-1477	5-15 <i>(11)</i>	<u>Claystone:</u> dark grey, occasionally very dark grey and very carbonaceous, trace to common glauconite increasing with depth, moderately silty, moderately carbonaceous, trace very fine partially altered feldspar grains in part, trace to occasionally common medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, firm, very dispersive, slightly subfissile.		
1477-1479	2.5-6 (5)	Limestone: very light brown, lutitic to cryptocrystalline, trace glauconite, hard, no visual porosity - the limestone has solid bright yellow mineral fluorescence, no cut, no show. Intermixed with minor brownish <u>Claystone</u> , generally as for 1445 - 1477m.		
1479-1507	12-35 (27)	Sandstone: light grey, very fine to grit, dominantly very coarse, angular to subangular, poorly sorted, weak silica cement, trace white argillaceous matrix, trace black coal detritus, trace pyrite, friable, good inferred porosity.		
		Interbedded below 1503m with <u>Claystone:</u> medium to dark grey, very silty, moderately carbonaceous, trace micromica, firm, very dispersive, subfissile.		
		The <u>Sandstone</u> from 1487.5 to 1489m. has trace dull blue-white fluorescence associated only with the rock flour giving a blue-white crush cut.		

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 6
1507-1519	15-40 (30)	Sandstone: light grey, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, weak silica cement, trace weak calcareous cement, trace to occasionally abundant white argillaceous matrix, trace black carbonaceous detritus, trace pyrite, friable, good inferred porosity.
1519-1532	10-15 <i>(11)</i>	<u>Claystone:</u> medium to dark grey, moderately silty, moderately carbonaceous, trace black coal flecks, trace pyrite, trace very fine dispersed quartz and altered feldspar grains in part, trace to common micromica, firm, very dispersive and washing from sample, slightly subfissile.
1532-1544.5	12-56 (30)	Sandstone: off white to very light grey, very fine to medium, occasional coarse to very coarse grains, dominantly fine, angular to subangular, poor to moderate sorting, weak silica cement, abundant white argillaceous matrix, in part matrix supported, trace to common grey, green, red and brown lithics, trace muscovite and brown mica flakes, trace black coal detritus, trace pyrite, friable, very poor to poor visual porosity, no oil fluorescence. Grading with depth to Sandstone: light green grey, very fine to coarse, trace very coarse to grit grains, dominantly fine to medium, subangular, moderately sorted, weak silica cement, trace to abundant white argillaceous matrix, common green and brown lithics, trace black carbonaceous detritus, friable, poor visual porosity.
		Grading in part to <u>Claystone (kaolinite)</u> : off white, abundant dispersed very fine to fine quartz and lithic sand garins in part, soft, sticky, non-fissile. The sandstone at 1544m has trace dull blue white fluorescence giving trace blue crush cut.
1544.5-1548	10-58 <i>(30)</i>	Sandstone: off white to very light grey, very fine to medium, occasional coarse to very coarse grains, dominantly fine, angular to subangular, poor to moderate sorting, weak silica cement, abundant white argillaceous matrix, in part matrix supported, trace to common grey, green, red and brown lithics, trace muscovite and brown mica flakes, trace black coal detritus, trace pyrite, friable, very poor to poor visual porosity, no oil fluorescence. Interbedded with Claystone (kaolinite): off white, abundant dispersed very fine to fine quartz and lithic sand grains in part, soft, sticky, non-fissile.
1548-1557	3-45 <i>(35)</i>	Sandstone: medium green grey, very fine to coarse, dominantly medium, subangular, moderately sorted, weak silica cement, trace weak calcareous cement, abundant white argillaceous matrix, abundant green grey lithics, common brown and red lithics, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence.
		Interbedded with <u>Claystone:</u> light blue grey, soft, sticky, very dispersive and washing from sample, non-fissile.
1557-1559	31-42 (36)	Sample too contaminated with cavings after DST for useful lithological description.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 7
1559-1758	4-59 (25)	Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular, moderately sorted, weak silica cement, occasionally moderate calcareous cement, common to dominantly abundant white argillaceous matrix, abundant green to grey to black lithics, common brown to red lithics, common to abundant altered feldspar grains, trace black coaly detritus, trace brown and green mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence but trace dull orange mineral fluorescence, no cut, no shows. Interbedded with and in part grading to
		<u>Claystone:</u> light to medium grey, light to medium brown grey, light to medium green grey, slightly to occasionally very silty, common black carbonaceous flecks and black coal detritus, trace brown mica flakes, trace pyrite, nil to occasionally common very fine partially altered feldspar grains, trace micromica, firm, very dispersive, slightly subfissile.

SIDEWALL CORE DESCRIPTIONS

SIDEWALL CORE DESCRIPTION

WELL NAME:

Dunbar-1

DATE:

16 January, 1996

GEOLOGIST:

David Horner

PAGE:

: 1

Attempted 24,	Recovered	20
---------------	-----------	----

	1	1568.0	15	<u>Claystone</u> : medium brown grey, moderately carbonaceous, very silghtly calcareous, slightly silty, trace micromica, slightly subfissile, no oil fluorescence.					
	2	1552.7	20	Sandstone: off white to light grey, very fine to medium, dominantly fine, subangular, moderately sorted, moderate calcareous cement in part, abundant white argillaceous matrix, common grey green lithics, trace red brown lithics, abundant altered feldspar grains, friable, no visual porosity, no oil fluorescence. Very finely interbedded with Siltstone: medium brown grey, very argillaceous, common dispersed very fine lithic and quartz sand grains, trace micromica, trace black carbonaceous flecks, firm, slightly subfissile, no oil fluorescence.					
	3	1548.2	30	Sandstone: light grey, very fine to dominantly fine, subangular, moderately to well sorted, weak calcareous cement, abundant white argillaceous matrix (matrix supported), abundant grey green lithics, soft and sticky, no visual porosity, no oil fluorescence.					
	4	1544.4	25	Claystone: medium brown grey, moderately carbonaceous, non-calcareous, non-silty, trace micromica, soft, non-fissile. Interbedded with					
				20% <u>Sandstone</u> : light grey, very fine to dominantly fine, subangular, well sorted, weak silica cement, non-calcareous, abundant white argillaceous matrix, common green grey lithics, trace red brown lithics, firm, no visual porosity, no oil fluorescence.					
)	5	1543.5	26	Sandstone: light grey, very fine to dominantly fine, subangular, well sorted, non-calcareous, weak silica cement, abundant white argillaceous matrix, common green black lithics, abundant white altered feldspar grains, trace red lithics, trace black carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence.					
	6	1541.9	29	Sandstone: light brown grey, very fine to dominantly fine, subangular, moderately sorted, trace weak calcareous cement, abundant white argillaceous matrix, common grey green lithics, trace red brown lithics, abundant altered feldspar grains, common black coaly detritus, soft, sticky, very poor visual porosity, no oil fluorescence. Interlaminated with					
				10% <u>Siltstone</u> : medium brown, very argillaceous, slightly calcareous, trace micromica, soft, slightly subfissile.					
	7	1540.5	36	Sandstone: light brown grey, very fine to dominantly fine, subangular, well sorted, weak calcareous cement in part, abundant white to light brown grey argillaceous matrix, common grey green lithics, friable, very poor visual porosity, no oil fluorescence.					
	8	1538.3	26	Sandstone: light brown grey, very fine, subangular, well sorted, trace weak calcareous cement, abundant light grey brown argillaceous matrix (matrix supported), common grey to green to brown lithics, soft, sticky, very poor visual porosity, no oil fluorescence.					
)	9	1535.9	30	Sandstone: light brown grey, very fine to dominantly fine, subangular, well sorted, non-calcareous, very weak silica cement, abundant light brown grey argillaceous matrix (matrix supported), common grey green lithics, trace red brown lithics, soft, sticky, very poor visual porosity, no oil fluorescence.					

WELL NAME: D

Dunbar-1

GEOLOGIST:

David Horner

DATE:

16 January, 1996

PAGE:

2

SWC No.	DEPTH (m)	REC'D (mm)	DESCRIPTION
10	1534.8	37	Sandstone: light brown grey, fine to occasionally medium, subangular, well sorted, moderate calcareous cement in part, common light brown grey argillaceous matrix, trace grey to green to black lithics, friable, poor to fair visual porosity, no oil fluorescence.
11	1534.0	34	Sandstone: very light brown grey, very fine to dominantly fine, subangular, moderately sorted, non-calcareous, very weak silica cement, abundant light brown grey argillaceous matrix, trace grey lithics, abundant black to dark brown carbonaceous detritus, friable, very poor visual porosity, no oil fluorescence.
12	1531.5	25	<u>Claystone</u> : medium to dark brown grey, slightly silty, trace black coal detritus, non-calcareous, trace micromica, soft, sticky, non- to slightly subfissile, no oil fluorescence.
13	1523.5	30	Medium brown filter cake only.
14	1520.6	30	<u>Claystone</u> : medium to dark brown grey, very silty, moderately carbonaceous, trace micromica, non-calcareous, soft, sticky, slightly to non-fissile. Interlaminanted with
			10% <u>Sandstone</u> : off white, very fine, subangular, well sorted, very weak silica cement, abundant white argillaceous matrix (matrix supported), trace medium green lithics, soft, no visual porosity, no oil fluorescence.
15	1505.8	23	<u>Claystone</u> : medium to dark brown grey to dark green grey (mottled), very silty, common dispersed very fine quartz and fine glauconite and alterd feldspar grains, trace micromica, firm, sticky, non-fissile, no oil fluorescence.
16	1501.3	34	Sandstone: light grey, very fine to grit, dominantly very coarse, angular, very poorly sorted, non-calcareous, very weak silica cement, trace white argillaceous matrix, friable, good visual porosity, no oil fluorescence. Interlaminated with 25% Coal: black to very dark brown, earthy to slightly subvitreous texture, blocky to
15	1401.4		granular fracture, abundant pyrite, firm to moderately hard.
17	1491.4		No Recovery.
18	1489.5		No Recovery.
19	1480.2	23	<u>Claystone</u> : medium to dark brown, moderately carbonaceous, slightly silty, trace very fine glauconite, trace to common very fine to micromica, firm, slightly subfissile, no oil fluorescence.
20	1477.0	34	<u>Claystone</u> : medium to dark brown, moderately carbonaceous, slightly silty, slightly to moderately calcareous, common fine glauconite, trace to common very fine to micromica, firm, slightly subfissile, no oil fluorescence.
21	1475.2		No Recovery.
22	1472.3	42	<u>Claystone</u> : medium to dark brown, moderately arbonaceous, slightly silty, slightly calcareous in part, common very fine to medium glauconite, trace very fine to micromica, firm, slightly subfissile, no oil fluorescence.
23	1467.2	41	<u>Claystone</u> : medium to dark brown, moderately carbonaceous, slightly silty, slightly calcareous in part, trace to common fine to medium glauconite, trace very fine to micromica, firm, slightly subfissile, no oil fluorescence.
24	1401.0	43	<u>Claystone</u> : medium to dark brown, moderately carbonaceous, slightly silty, non-calcareous, trace very fine to, fine altered feldspar grains, race very fine to micromica, firm, slightly subfissile, no oil fluorescence.

DRILL STEM TEST DATA (DST-1)
& GAS SAMPLE ANALYSIS

G.F.E. RESOURCES LTD

DST #: 1 DUNBAR # 1

5006.8 ft - 5108.5 ft

Location: INLINE 6515 XLINE 2665

Recorder Number: 1273A

Test Type: DUAL CONVENTIONAL BOTTOM HOLE

Recorder Depth: 4984 ft

Formation: WARRE

Test Date: 17/03/95

PRESSURE

psia

1)Initial Hydrostatic: 2486.0 14)Final Hydrostatic: 2411.0

TEST TIMES (MIN)

BLOW DESCRIPTION:

PRE-FLOW: THE TOOL WAS OPENED AT 08:01 HRS WITH BOTH MANIFOLD AND BUBBLE HOSE CLOSED. NO VISIBLE PRESSURE INCREASE OCCURED. WHEN TOOL WAS CLOSED AT 08:07 THE BUBBLE HOSE WAS OPENED AND THERE WAS A TRACE AIR BLOW EVIDENT. FINAL FLOW: TOOL WAS RE-OPENED AT 08:52 WITH BOTH MANIFOLD AND BUBBLE HOSE CLOSED. THE BUBBLE HOSE WAS OPENED AT 08:58 TO CHECK FOR ANY INDICATIONS OF PRESSURE BUILD UP BUT IT WAS DEAD. IT WAS DECIDED THAT THE HYDRAULIC SHUT-IN VALVE SHOULD BE CYCLED TO REMOVE ANY DOUBT FROM THE PREVIOUS OPENING. IT WAS CLOSED AT 09:09 AND RE-OPENED AT 09:12. SURFACE INDICATIONS OF TOOL FUNCTION WERE GOOD. BLOW REMAINED DEAD UNTIL TOOL CLOSED AT 09:42.

LIQUID RECOVERY:

THE TOTAL LIQUID RECOVERY WAS 10 FEET OF RAT HOLE MUD. THE DOWNHOLE SAMPLER CONTAINED MUD ONLY.

REMARKS AND TEST SUMMARY:

PACKER DEPTHS WERE CALCULATED USING THE DRILLERS TALLY. NO PRESSURE INCURRED AT SURFACE. TEST FAILURE DUE TO PLUGGING AT PERFORATIONS EXTERNALLY AND IN THE HYDRAULIC TOOL INTERNALLY.

Page 2

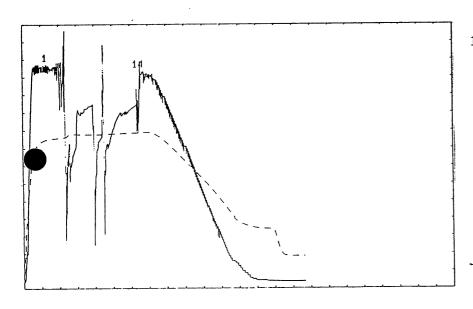
G.F.E. RESOURCES LTD

DST #: 1 DUNBAR # 1

5006.8 ft - 5108.5 ft

PRESSURE RECORDER NUMBER: 1273A

DEPTH : 4983.90 ft


LOCATION : INSIDE

DEPTH: 4983.90 ft LOCATION: INSIDE CAPACITY: 10000.00 psig ***** TEMPERATURE AT RECORDER DEPTH = 138.0 F

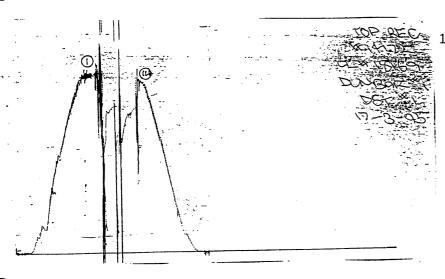
PRESSURE

psia

1) Initial Hydrostatic: 2486.0 14) Final Hydrostatic: 2411.0

TEST TIMES (MIN)

PRESSURE RECORDER NUMBER: 14172


DEPTH : 4972.90 ft

YPE : K-3

LOCATION : INSIDE CAPACITY : 3000.00 psig

psia 1)Initial Hydrostatic: 2430.9 14)Final Hydrostatic: 2352.5

PRESSURE

G.F.E. RESOURCES LTD

DST #: 1 DUNBAR # 1

5006.8 ft - 5108.5 ft

PRESSURE RECORDER NUMBER: 21149

DEPTH : 5082.00 ft

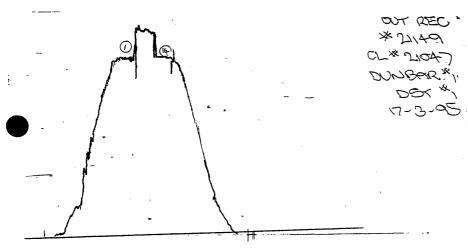
LOCATION : OUTSIDE

TYPE : K-3

CAPACITY: 3025.00 psig

PRESSURE

Page 3


UBU PRIJALI

May a to the same of

psia

1) Initial Hydrostatic: 2450.4

14) Final Hydrostatic : 2467.4

TEST TIMES (MIN)

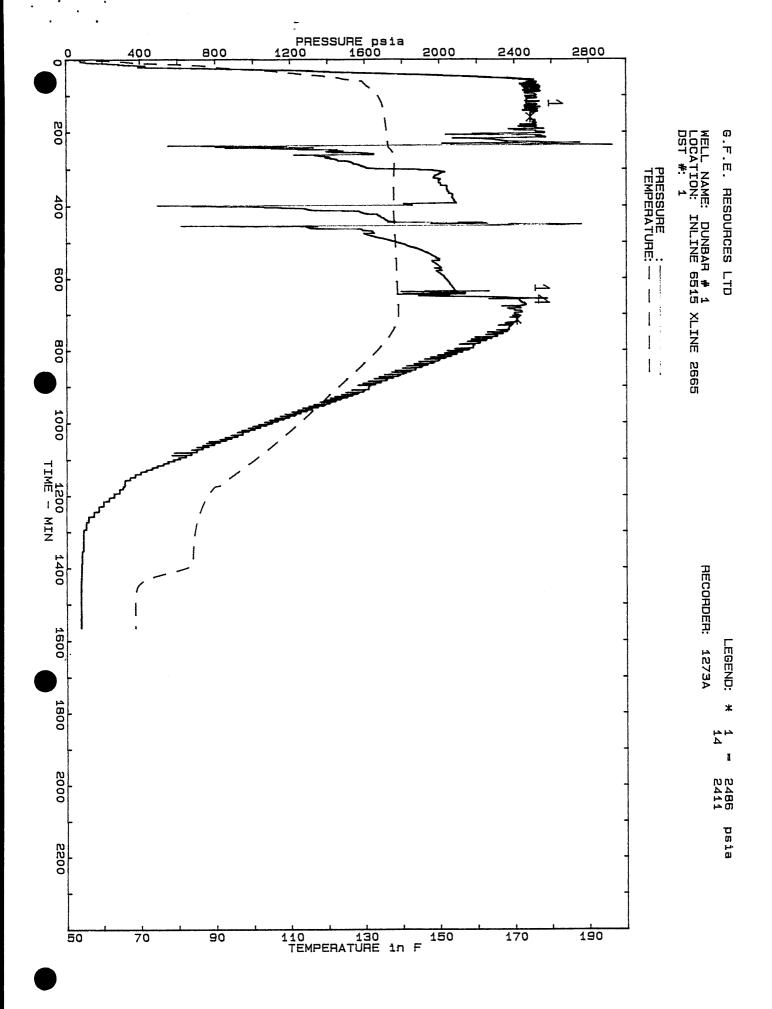
PRESSURE RECORDER NUMBER: 9987

DEPTH: 4951.70 ft

TYPE : K-3

LOCATION : INSIDE

CAPACITY: 3000.00 psig


PRESSURE psia

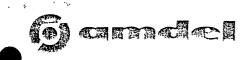
0.0

1) Initial Hydrostatic: REC REC, 2)Start of 1st Flow : 14.7 × 99987. 3)End of 1st Flow : 4)End of 1st Shut-in : 14.7 OL & 13112. 14.7 DNO BOSC & 1 5)Start of 2nd Flow : 14.7 DEX *1 6)End of 2nd Flow : 7)End of 2nd Shut-in : 14.7 46.0

14) Final Hydrostatic :

1 (I) ÷--

BOT CONVENTIONAL DST


DVG NO. 869-055-3

•	DESCRIPTION PUMP OUT TYPE REVERSE CIRCULATING SUB		LENGTH	а.в. 6 . 25	3.00	осртн 1480.99
		DRILL COLLARS	8.61	6.25	2.8125	
			0.42	6.25	3.00	1490.02
		DRILL COLLARS	17.53	6.25	2.8125	
		CROSS OVER SUB	0.30	6.25	2.25	
		INSIDE RECORDER CARRIER	1.37	4.875	1.00	1509.22
		- ROTATING SHUT IN VALVE	2.59	5.00	1.00	1511.81
•		POSITIVE CONTROL SAMPLER	1.04	5.00	1.00	
		- HYDRAULIC MULTIPLE SHUT IN VALVE	1.49	5.00	1.00	
		- INSIDE RECORDER CARRIER	1.37	4.875	1.00	1515.71
		- PANEX	3.35	4.75	2.25	1519.06
	8	- HYDRAULIC JARS	2.01	5.00	1.25	
		SAFETY JOINT	0.69	5.00	2.25	
	(B) (C)	— PACKER SECTION	2.88	7.50	1.00	
	D Q	PACKER SECTION STICK UP AND ELEMENT	1.36	7.50	1.00	1526.00
	B O	PACKER SECTION STICK DOWN	1.33	7.50	1.00	
		PERFORATED ANCHOR PIPE	4.57	4.75	2.25	
		OUTSIDE RECORDER CARRIER	2.06	5.00	1.25	1533.96
		CROSS OVER SUB	0.70	6.25	2.25	
-		DRILL COLLARS	19.01	7.50	2.8125	
		SPACING SECTIONS	2.44	4.75	2.25	
	8 3 8	ANCHOR SHOE	0.91	5.00	-	1557.02

- DUNBAR # 1 DST # 1

TEST TOOL AND PIPE RECORD (CONVENTIONAL).

DESCRIPTION.	LENGTH	<u>od</u>	ID
TOTAL STRING BELOW PACKER SEAL	31.02	-	_
TOTAL TOOLS BETWEEN PACKER SEALS	•••	_	_
TOTAL TOOLS ABOVE PACKER SEAL + PUP	22.23	-	-
TOTAL DRILL COLLARS ABOVE INTERVAL	142.96	6.25	2.8125
TOTAL HEVI-WATE ABOVE INTERVAL	55.18	4.50	2.8750
TOTAL DRILL PIPE ABOVE INTERVAL	1310.65	4.50	3.8260
TOTAL STRING	1562.04	-	-
TOTAL DEPTH	1557.00	-	_
TOP SINGLE ABOVE TABLE	5.04	-	_

12 April 1995

Amdel Limited A.C.N. 008 127 802

Petroleum Services PO Box 338 Torrensville Plaza SA 5031

Telephone: (08) 416 5240 Facsimile: (08) 234 2933

GFE Resources Limited GPO Box 1841Q MELBOURNE VIC 3001

Attention: Kevin Lanigan

REPORT LO3754

CLIENT REFERENCE:

Verbal Request

WELL NAME/RE:

Dunbar-1 DST-2

MATERIAL:

DST Tool & Oil/Mud Sample

WORK REQUIRED:

Sample Recovery & Compositional Analysis

Please direct technical enquiries regarding this work to the signatory below under whose supervision the work was carried out.

Brian L. Watson

Brie Water

Manager

Petroleum Services

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested.

1. INTRODUCTION

A DST Tool was received from Dunbar-1 DST-2 for sample recovery and compositional analysis of recovered hydrocarbons. In addition an oil/mud was received.

This report is a formal presentation of data transmitted by facsimile on 21 and 22 March 1995.

2. PROCEDURE

Initially the opening pressure of the DST Tool was determined to be 2025 kPa @ 22°C. 29.63L of gas was recovered and the composition of this sample is presented in Table 1.

Oil separated from the oil/mud sample was analysed by gas chromatography (GC) for compositional analysis (Table 2). A density and kinematic viscosity determination were also performed on the oil, these results are presented in Table 3

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

TABLE 1

PETROLEUM SERVICES GAS ANALYSIS

Method GL-01-01

ASTM D 1945-81 (modified)

Client:

GFE RESOURCES Ltd

Report # LQ3754

Sample:

DUNBAR-1, DST-2 Gas Ex DST Tool

Open.press. 2025 kPag @ 22°C

GAS	MOL %
Nitrogen	1.98
Carbon Dioxide	0.85
Methane	87.75
Ethane	5.11
Propane	2.37
I-Butane	0.52
N-Butane	0.65
I-Pentane	0.20
N-Pentane	0.16
Hexanes	0.18
Heptanes	0.15
Octanes and higher h'c	0.08
Total	100.00

(0.00 = less than 0.01%)

Calculated Gas Density

(Air = 1):

Calorific Value (15.0 deg C, 101.325 kPa)

Gross:

1113 BTU/CU Ft

41.45 MJ/CU.M

Nett:

1006 BTU/CU Ft

37.48 MJ/CU.M

Gross calorific value of water-saturated gas Average Molecular Weight = 18.924

40.73 MJ/CU.M

All results are calculated on the basis that only the measured constituents are present.

This report relates specifically to the sample submitted for analysis.

Approved Signatory

Registration No: 2013

Date

20-Mar-95

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

TABLE 2

PETROLEUM SERVICES LIQUID ANALYSIS

Method GL-02-01

Client:

GFE RESOURCES Ltd

Report #

3754

Sample:

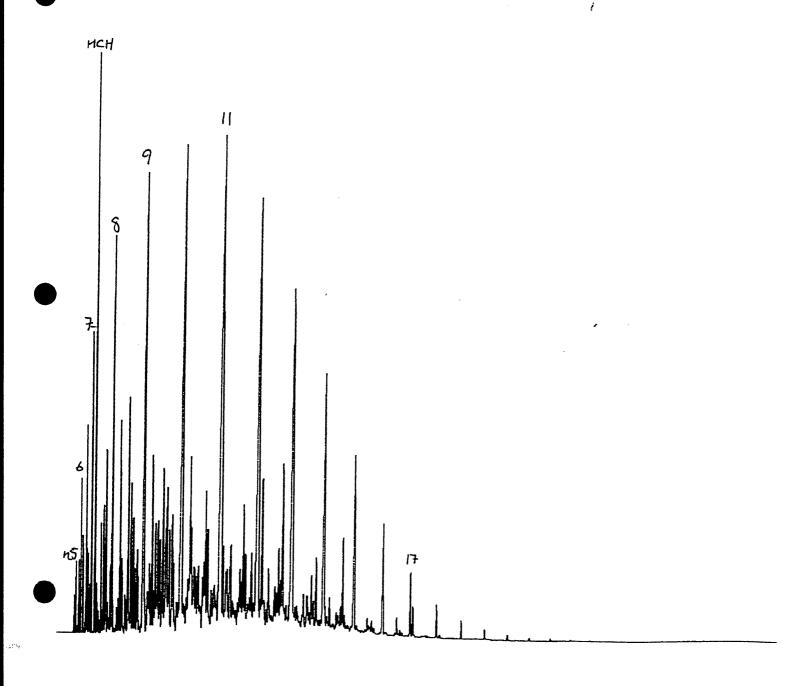
DUNBAR-1, DST-2 Concentrated Sample

1526-1557 m

Boiling Point Range (Deg.C)	Component	Weight%	Mol%
-88.6	ETHANE	0.00	0.01
-42.1	PROPANE	0.01	0.03
-11.7	I-BUTANE	0.01	0.03
-0.5	N-BUTANE	0.03	0.08
27.9	I-PENTANE	0.05	0.10
36.1	N-PENTANE	0.07	0.14
36.1-68.9	C-6	0.39	0.69 /
80.0	BENZENE	0.01	0.02
68.9-98.3	C-7	1.99	3.03
100.9	METHYLCYCHX	1.87	2.90
110.6	TOLUENE	0.29	0.48
98.3-125.6	C-8	6.28	8.39
136.1-144.4	ETHYLBZ+XYL	1.09	1.57
125.6-150.6	C-9	8.49	10.12
150.6-173.9	C-10	17.54	18.83
173.9-196.1	C-11	18.19	17.79
196.1-215.0	C-12	15.85	14.21
215.0-235.0	C-13	13.37	11.08
235.0-252.2	C-14	6.72	5.17
252.2-270.6	C-15	4.62	3.32
270.6-287.8	C-16	1.57	1.06
287.8-302.8	C-17	0.93	0.59
302.8-317.2	C-18	0.29	0.18
317.2-330.0	C-19	0.17	0.09
330.0-344.4	C-20	0.08	0.04
344.4-357.2	C-21	0.04	0.02
357.2-369.4	C-22	0.01	0.01
369.4-380.0	C-23	0.01	0.01
380.0-391.1	C-24	0.01	0.00-
391.1-401.7	C-25	0.00	0.00
401.7-412.2	C-26	0.00	0.00
412.2-422.2	C-27	0.00	0.00
>422.2	C-28+	0.02	0.01
	Total	100.00	100.00

(0.00 = LESS THAN 0.01%)

The above boiling point ranges refer to the normal paraffin hydrocarbon boiling in that range. Aromatics, branched hydrocarbons, naphthenes and olefins may have higher or lower carbon numbers but are grouped and reported according to their boiling points.


Average molecular weight of C-8 plus 155 g/mol

This report relates specifically to the sample submitted for analysis.

Approved Signatory

Robyn L Tamke

DUNBAR-1 DST-2 1526-1557 m

(6) amdel

TABLE 3

PHYSICAL PROPERTIES

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Client:

G.F.E. RESOURCES Ltd.

Report #

LQ3754

Sample:

DUNBAR #1 (CONCENTRATED).

DST-2

1526-1557 m.

Method		=====================================		!
			Units	DST-2
		 		=========
P2	ASTM D611	 Aniline Point		
-		Appearance, Free Water and Particulate Matter	'C	ļ
P364	ASTM D976	Calculated Cetane Index		
P219		Cloud Point	'C	ļ
P17		Colour by Lovibond Tintometer	16	<u> </u>
P274	ASTM D2624	Conductivity of Fuels	-6	ļ
P13		Conradson Carbon Residue	pS *	
	ASTM D130	Copper Corrosion	%wt	ļ
		Density a 15'C	(l	0 7770
P21		Diesel Index	gm/mL	0.7778
	ASTM D86	Distillation		
		IBP	10	
		10% Rec	'C 'C	
		20% Rec	_	
		20% Rec 30% Rec	'C	
		30% Rec 40% Rec	'C	
		50% Rec	'C	
		60% Rec	'C	
		70% Rec	'C 'C	ļ
		80% Rec	_	
		90% Rec	'C	
	•	95% Rec	'C	
		!	'C	ļ
		Decomposition Point	/c	
		Residue	%vol	
		Loss Evaporated @ 75'C, 105'C, 135'C	%vol	
			%vol	
P131	ASTM D381	Existent Gum by Evaporation	mg/100mL	
P170		Flash Point Abel Closed Cup	/C	
P34	ASTM D93	Flash Point Pensky Martens Closed Cup	'c	
P156	ASTM D1319	Fluorescent Indicator Absorption Aromatics	%	
P16	ASTM D2386	Freezing Point	'C	
P71	ASTM D445	Kinematic Viscosity a 40'C	cSt	. 1.244
P71	ASTM D445	Kinematic Viscosity a100'C	cSt	,
P15	ASTM D97	Pour Point	'C	
	ASTM D323	Reid Vapour Pressure	kPa	
P277		Silver Corrosion		
P57		Smoke Point	mm	
P160	ASTM D1298	Specific Gravity @ 60/60'F		0.7781
P354	ASTM D3242	Total Acidity in Aviation Fuel	mgKOH/gm	1
P270		Total Lead in Gasoline by Iodine Monochloride	gm/L	
		Viscosity Index	3, -	
P289		Water Reaction Interface Rating		
		Separation		
	ASTM D96	Water	%vol	
	ASTM D96	Sediment	%vol	1
P160		API Gravity	/6401	 50.75
		;	=======================================	50.35

Approved Signatory

Mohammad Massoumi

Date 21-Mar-95

Registration No: 2013

This report relates specifically to the sample submitted for testing.

OPENING PRESSURE

WELL:

DUNBAR-1 DST-2

SEPARATOR:

DATE:

21/03/95

CYLINDER NO:

DST TOOL

OPENING PRESSURE:

2025 kpag @ 22°C

LIQUID CHECK:

NIL

G.F.E. RESOURCES LTD

DST #: 2 DUNBAR # 1

5006.8 ft - 5108.5 ft

Location: INLINE 6515 XLINE 2665 Recorder Number: 1273A
Test Type: DUAL CONVENTIONAL BOTTOM HOLE Recorder Depth: 4984 ft

Formation: WARRE

Test Date: 18/03/95

PRESSURE

psia

1) Initial Hydrostatic: 2528.0 14) Final Hydrostatic: 2527.2

TEST TIMES (MIN)

BLOW DESCRIPTION:

PRE-FLOW: TOOL WAS OPENED AT 11:28 WITH BOTH MANIFOLD AND BUBBLE HOSE CLOSED, A 60 PSI GAUGE WAS USED TO MONITOR PRESSURE INCREASE. PRESSURE INCREASED TO 9PSIGAT THE SHUT IN TIME OF 11:33. THE MANIFOLD WAS OPENED TO ALLOW THE DRILL STRING TO BLEED OFF IN PREPARATION FOR THE OPENING OF THE FINAL FLOW. FINAL FLOW: TOOL WAS RE-OPENED AT 12:33 WITH CLOSED MANIFOLD. A STRONG AIR BLOW WAS EVIDENT. 0.5 INCH CHOKE WAS OPENED AT 12:34. GAS TO SURFACE AT 12:38 (4PSIG SURFACE PRESSURE INCREASED AT 12:39 THEN BEGAN TO DECREASE. 0.5 INCH CHOKE WAS CLOSED TO BUILD UP PRESSURE FOR GAS SAMPLE. CHOKE REOPENED AT 13:13 PRESSURE BEGAN TO DECREASE. AT 13:18 (6PSIG) 0.5 INCH CHOKE CLOSED. THERE WAS A RAPID INCREASE IN PRESSURE AND AT 13:20 (20 PSIG) THE 0.5 INCH CHOKE WAS RE-OPENED

TOOL CLOSED AT 14:33 HRS (10 PSIG).

LIQUID RECOVERY:

THE TOTAL LIQUID RECOVERY WAS 40 m OF CONDENSATE AND LIGHT OIL CUT RAT HOLE MUD DOWNHOLE SAMPLER WAS SENT TO PERTH FOR ANNALYSIS.

TOOL CLOSED AT 14:33 HRS (10 PSIG).

REMARKS AND TEST SUMMARY:

PACKER SETTING DEPTHS WERE CALCULATED USING DRILLER'S TALLY. PROBLEMS WITH INTERNAL AND EXTERNAL PLUGGING WERE THE SAME AS ENCOUNTERED ON D.S.T. # 1. THE SAME OFFENDING MATERIAL WAS FOUND THROUGHOUT THE TOOL.

Page 2

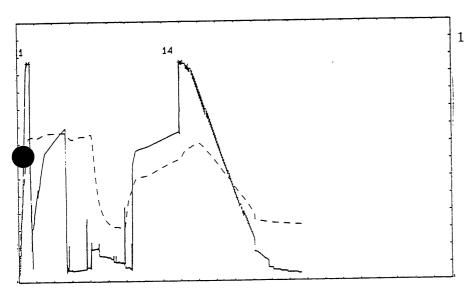
G.F.E. RESOURCES LTD

DST #: 2 DUNBAR # 1

5006.8 ft - 5108.5 ft

PRESSURE RECORDER NUMBER: 1273A

DEPTH : 4983.90 ft



LOCATION : INSIDE

CAPACITY: 10000.00 psig TYPE : PANEX **** TEMPERATURE AT RECORDER DEPTH = 138.0 F

PRESSURE psia

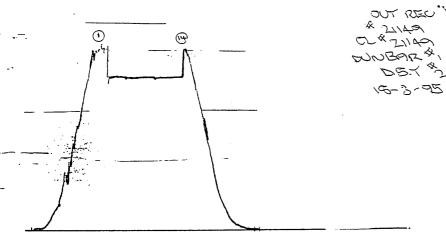
2528.0 1)Initial Hydrostatic: 14) Final Hydrostatic : 2527.2

TEST TIMES (MIN)

PRESSURE RECORDER NUMBER: 21149

DEPTH : 5032.80 ft

_____ ___


LOCATION : OUTSIDE

CAPACITY: 3025.00 psig TYPE : K-3

1) Initial Hydrostatic: 2517.8 * 2149 | 14) Final Hydrostatic : 2503.5

PRESSURE

01 4 21149 NOBARA, 15-3-95

Page 3

G.F.E. RESOURCES LTD

DST #: 2

DUNBAR # 1

5006.8 ft - 5108.5 ft

PRESSURE RECORDER NUMBER: 14172

(4)

DEPTH : 4972.90 ft

LOCATION: INSIDE

TYPE : K-3

CAPACITY: 3000.00 psig

PRESSURE

psia

TOP REC & 14172 OL* 16169 WNB90 * 1 DSX 42

1) Initial Hydrostatic: 2443.7 14) Final Hydrostatic : 2440.7

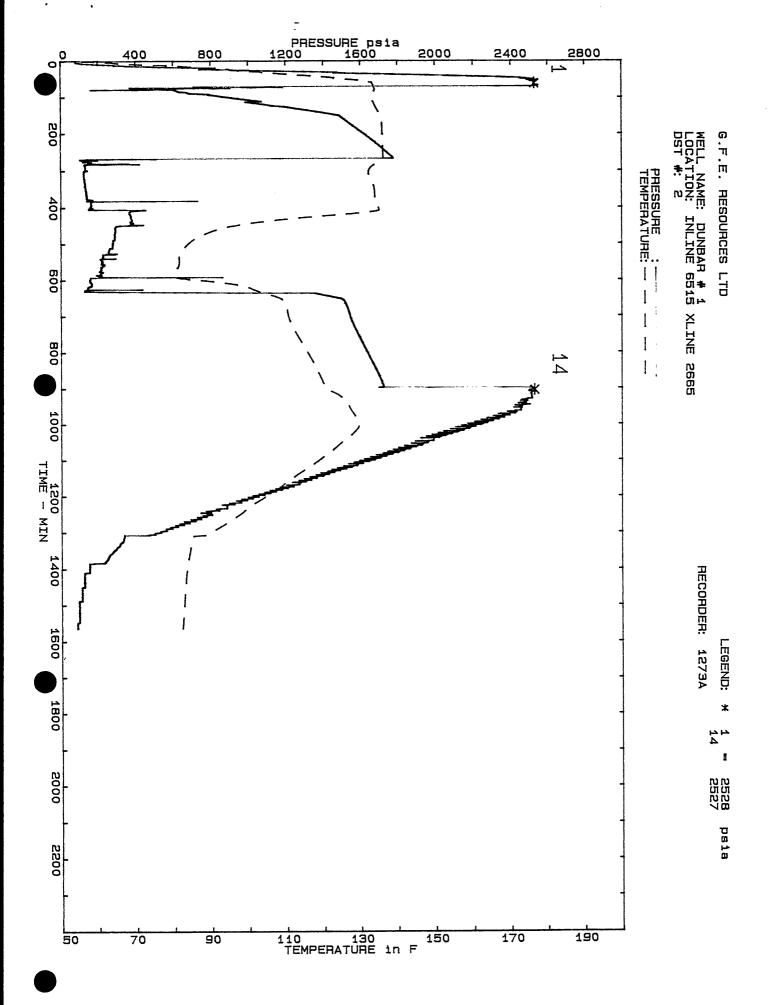
TEST TIMES (MIN)

PRESSURE RECORDER NUMBER: 9987

_____ DEPTH : 4951.60 ft

LOCATION : INSIDE CAPACITY : 3000.00 psig

TYPE : K-3


PRESSURE

psia

07, 1815 * 06, 61 DNBOD *1 DSY *2 16.3-95

1) Initial Hydrostatic: 14.7 2)Start of 1st Flow: 3)End of 1st Flow : 4) End of 1st Shut-in: 5)Start of 2nd Flow: 14.7 6)End of 2nd Flow : 7)End of 2nd Shut-in : 14.7

80.9 14) Final Hydrostatic : 14.7

BOT CONVENTIONAL DST

DVG NO. 869-055-3

٦		DESCRIPTION	LENGTH 0.42	ал. 6 . 25	1.D. 3.00	DEPTH 1489.60
			8.61	6.25	2.8125	
		DRILL COLLARS	0.42	6.25	3.00	1498.63
		IMPACT TYPE REVERSE CIRCULATING SUB	8.92	6.25		11,70,00
		——— DRILL COLLARS	0.30	6.25	2.25	
		CROSS OVER SUB	0.50			
		INSIDE RECORDER CARRIER	1.37	4.875	1.00	1509.22
		- ROTATING SHUT IN VALVE	2.59	5.00	1.00	1511.81
		- KOTATING SHOT IN VALVE				
	 	Н .				
		POSITIVE CONTROL SAMPLER	1.04	5.00	1.00	
	-					
	0 (- HYDRAULIC MULTIPLE SHUT IN VALVE	1.49	5.00	1.00	
		\vdash	1.37	4.875	1.00	1515.71
		- INSIDE RECORDER CARRIER - PANEX	3.35	4.75		
			2.01	5.00	1.25	
	}	HYDRAULIC JARS	2.01	3.00	2,42	
		SAFETY JOINT	0.69	5.00	2.25	
•						
	G 01		2.88	7.50·	1 00	
		PACKER SECTION	2.00	/ • 50 ·	1.00	
						1506.00
	0 0	PACKER SECTION STICK UP AND ELEMENT	1.36	7.50	1.00	1526.00
	D 0	PACKER SECTION STICK DOWN	1.33	7.50	1.00	
		PERFORATED ANCHOR PIPE	4.57	4.75	2.25	
		OUTSIDE RECORDER CARRIER	2.06	5.00		1533.96
			0.70	6.25		
		DRILL COLLARS	19.01	6.25	2.8125	
			2.44	4.75	2.25	
		SPACING SECTIONS			4•4J	
		ANCHOR SHOE	0.91	5.00	-	1557.02

- DUNBAR # 1 DST # 2

TEST TOOL AND PIPE RECORD (CONVENTIONAL).

DESCRIPTION.	LENGTH	<u>OD</u>	ID
TOTAL STRING BELOW PACKER SEAL	31.02		
TOTAL TOOLS BETWEEN PACKER SEALS	-	_	-
TOTAL TOOLS ABOVE PACKER SEAL	22.23	-	-
TOTAL DRILL COLLARS ABOVE INTERVAL	142.96	6.25	2.8125
TOTAL HEVI-WATE ABOVE INTERVAL	55.18	4.50	2.8750
TOTAL DRILL PIPE ABOVE INTERVAL	1310.65	4.50	3.8260
TOTAL STRING	1562.04	_	-
TOTAL DEPTH	1557.00	-	_
TOP SINGLE ABOVE TABLE	5.04	-	_

GAS AND FUEL

SCIENTIFIC SERVICES - LABORATORY REPORT

1136 Nepean Highway, Highett, Victoria 3190 Tel. 556 6222 Fax 555 7616

Subject:

Analysis of Exploration Sample Dunbar No.1 - DST #2

@1340 Hr. - 18/03/1995

Requested by:

Kevin Lanigan, GFE Resources Ltd

Report Reference:

95/0428

Date:

March 21 1995

Received:

March 19, 1995

Author:

I. Strudwick

Approved by:

P. Roga

Distribution:

Kevin Lanigan

Explorationist

GFE Resources Limited Level 6, 6 Riverside Quay South Melbourne 3205

Gas Quality and Environment (2)

Master File

Keywords:

Exploration, Natural, Gas, Analysis

Disc Reference:

A2:\95\GFE0428,DOC

Job Order Number: 10031140

Master Report Number:

95/0428/C

GAS AND FUEL

SCIENTIFIC SERVICES - LABORATORY REPORT

1136 Nepean Highway, Highett, Victoria 3190 Tel. 556 6222 Fax 555 7616

Subject:

Analysis of Exploration Sample Dunbar No.1 - DST #2

@ 1340 Hr. - 18/03/1995

Requested by:

Kevin Lanigan, GFE Resources Ltd

Report Reference:

95/0428

Component	Mole Percent Concentration
Methane	88.3
Ethane	4.53
Propane	2.19
Iso-Butane	0.513
Normal-Butane	0.599
Neo-Pentane	0.008
Iso-Pentane	0.215
Normal-Pentane	0.180
Hexanes	0.327
Heptanes+	0.295
Carbon Dioxide	0.14
Oxygen+Argon	0.14
Nitrogen	2.56
Helium	0.022
Calculated Characteristics fo	r the dry gas at MSC
Gross Heating Value	41.6 MJ/m ³
Wobbe Index	51.5 MJ/m3
Relative Density	0.652

Method References:

SSS-11-006, ISO 6974

Analyst: I. Strudwick

Date: 21/03/1995

Approved Signatory: The during

SCIENTIFIC SERVICES - LABORATORY REPORT

1136 Nepean Highway, Highett, Victoria 3190 Tel. 556 6222 Fax 555 7616

Subject:

Analysis of Exploration Sample Dunbar No.1 - DST #2

@1426 Hr. - 18/03/1995

Requested by:

Kevin Lanigan, GFE Resources Ltd

Report Reference:

95/0427

Date:

March 21 1995

Received:

March 19, 1995

Author:

I. Strudwick

Approved by:

P. Roga

Distribution:

Kevin Lanigan **Explorationist**

GFE Resources Limited Level 6, 6 Riverside Quay South Melbourne 3205

Gas Quality and Environment (2)

Master File

Keywords:

Exploration, Natural, Gas, Analysis

Disc Reference:

A2:\95\GFE0427.DOC

Job Order Number: 10031140

Master Report Number:

95/0427/C

APPENDIX 7

APPENDIX 7

RFT PRESSURE TEST REPORT SHEET

GFE RESOURCES LTD

RFT - PRESSURE TEST REPORT SHEET

DATE: 22/3/95		FORMATION/REMARKS			Still unstabilised	Close to stabilised	Superchaged and tight		Seal failure	Close to stabilised	Supercharged?	Tool plugged	Seal failure	Seal failure	Tight	Seal failure	Suspect tool plugged	Suspect tool plugged	Suspect tool plugged	Suspect tool plugged
DATE	SAMPLE		z	>	>	>	>	>		>	>									
	SA		>																	
Dean Grant	**	TIME TO	STABILISATION (secs)	843	1535	1431		65		1437	732									
OBSERVER:	PRESSURE	A)	STRAIN GAUGE																	-
	FORMATION PRESSURE	(PSIA)	QUARTZ GAUGE	2135.7	2145.2	2147.3		2130.9		2132.9	2217.0									
PPL1	HYDROSTATIC	PRESSURE	INITIAL FINAL	2505.1	2510.2	2518.1	2521.5	2511.4	2518.7	2513.7	2523.6	2612.2	2627.5	2627.7	2689.2	2426.5	2426.2	2427.4	2427.7	2429.6
PERMIT:	HYDRO	PRES	INITIAI	2504.3	2508.8	2518.0	2512.2	2511.2	2518.5	2513.5	2523.2	2612.4	2627.4	2627.7	2689.1	2427.2	2426.0	2426.9	2428.6	2429.1
	SEAT		z						>				>	>		>				
	SE		>	>	>	>	>	>		>	>	>			>		>	>	>	>
DUNBAR-1		DEPTH	(mKB)	1534.0	1536.0	1540.5	1542.5	1535.5	1540.0	1536.5	1542.3	1597.5	1607.0	1607.0	1644.5	1482.5	1482.2	1482.4	1483.2	1484.0
1		FILE	Q	-	2	3	-1	5		9	7	8			6		10	=	12	13
WELL NAME:		TEST	ON	_	2	Э	4	5	9	7	8	6	10	=	12	13	14	15	16	17

techstafirb:b3688

RFT - PRESSURE TEST REPORT SHEET

DATE: 22/3/05	Division: 441 01 /0
OBSERVER: Dean Grant	
PERMIT: PPL1	
WELL NAME: DUNBAR-1	

	i	1				1	1						1			$\neg \neg$								
DATE: 22/3/95			FORMATION/REMARKS		Plugging test, tool plugged		Seal failure	Seal failure	Seal failure		stabilised andstarted building again.				Supercharged?	Seal failure	Seal failura		1.01.0	Seal taiture	Seal failure	Seal failure	Seal failure	
DAT		SAMPLE		Z	>		>	>	>	\ -	.	>	>	>	>	>	\ <u>\</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. >	-	>	>	>	
		S	 -			-			-				-	-		-		-		-				
Dean Grant			TIME TO	STABILISATION (secs)																				
OBSERVER		V PRESSURE	IA)	STRAIN	1		1	E	ı	458	9	126	64	355	1		•	122			1	ŧ	ľ	
		FORMATION PRESSURE	(PSIA)	QUARTZ GAUGE	E				-	2044 5		2044.5	2049.6	2053.4	1	ı	1	2085.1	1		ī	1	ı	
PPLI		HYDROSTATIC	PRESSURE	INITIAL FINAL	2479.9	P.O.H. and Inspect Tool	2425.1	2426.4	2429.5	2431.0		2436.5	2440.7	2446.1	2451.4	2459.9	2459.2	2484.1					٠.	
PEKMI1:		HYDRO	PRES	INITIA	2479.2	P.O.H. and	2424.6	2426.1	2429.2	2430.6		2435.9	2440.2	2445.5	2452.4	2460.0	2459.6	2484.2						
		SEAT		z			>	>	>							>	>		>	>		>	>	
		SS		>	>					>		>	>	^	>			>						
DOINDAR-1			DEPTH	(mKB)	1515.0		1482.5	1482.6	1483.5	1483.8		1486.5	1488.5	1491.5	1495.5	1500.2	1500.3	1515.0	1518.0	15175	0.7101	1518.5	1518.7	
		!	FILE	Q	4		,	,	15	91		17	18	19	20	ı	ı	21	ı				'	
" EEE INDINE.			TEST	0	81		61	20	21	22		23	24	25	26	27	28	29	30	31	: ?	76	33	

GFE RESOURCES LTD RFT - PRESSURE TEST REPORT SHEET

	DATE: 22/3/95	
	Dean Grant	
	OBSERVER:	
	PPL1	
	PERMIT:	
	WELL NAME: DUNBAR-1	
L	_≥	

	_					1	- 1			 	 	 	 	 	 ı
DATE: 22/3/95		FORMATION/REMARKS		Tool not set		Seal failure	Seal failure	Sample failed. Seal failure							
DATE	<u> </u>	1	z	>	>	>	>		>						
\exists	CANADI H	COLVI	¥					^							
Dean Grant		TIME TO	STABILISATION (secs)	ı	1	1	1	•	320						
OBSERVER:	30,100,000	rkessone A)	STRAIN	•	ŧ	ŧ	•	1	•						
	MOTERATION	FURIMATION PRESSURE (PSIA)	QUARTZ	1	2070.7	3	s	1	2044.2						·
PPL.1		SURE	FINAL	ī	2474.3	-	1	2443.9	2444.5			,			· · · · · · · · · · · · · · · · · · ·
PERMIT:) during	HYDROSIATIC PRESSURE	INITIAL FINAL	1	2473.8	1	1	2443.4	2444.5						
			z	>		>	>	>							
		SEAI	X		`>				>						
JNBAR-1		DEPTH	(mKB)	1510.0	1510.0	1500.0	1496.0	1488.0	1488.3						
WELL NAME: DUNBAR-1		FILE	ON	,	22	1		23	24						T
WELL N		TEST	ON	. 34	35	36	37	38	39						

APPENDIX 8

APPENDIX 8

VELOCITY SURVEY

Velocity Data

VELOCITY SURVEY

DUNBAR No. 1

VICTORIA

AUSTRALIA

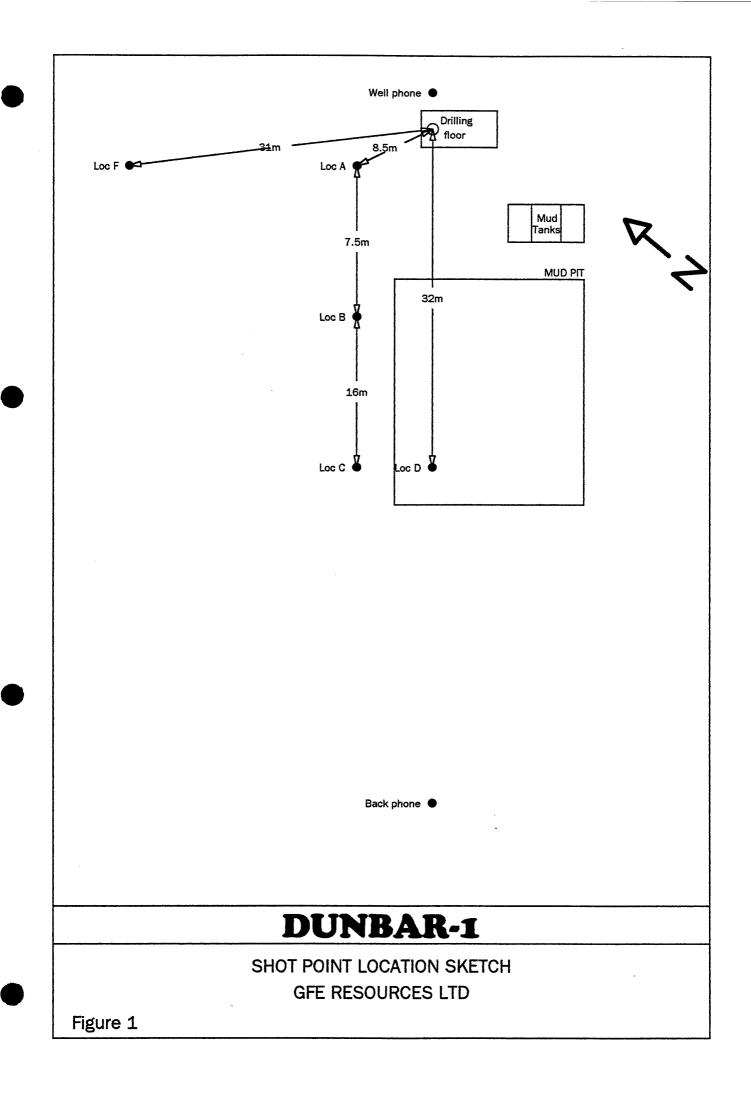

for

GFE RESOURCES

recorded by

VELOCITY DATA PTY. LTD.

processed by


Integrated Seismic Technologies

Brisbane, Australia 19 July, 1995

CONTENTS SUMMARY 1 **GENERAL INFORMATION ...** 1 **EQUIPMENT** 2 RECORDING 3 **PROCESSING Elevation Data** 3 Recorded Data 4 Correction to Obtain ... 4 Vertically Corrected Time **Mud Pit Calibration** 4 Correction to Datum ... 4 Calibration of Sonic Log Method 4 Trace Playouts 5 **FIGURES** Figure 1 Shot location sketch Figure 2 Time-depth and velocity curves Figure 3 Trace playouts **Enclosures** 1. Calculation Sheets

Trace Display and First Arrival Plots

2.

SUMMARY

Velocity Data Pty Ltd conducted a velocity survey for GFE Resources in the Dunbar No. 1 well, Victoria, Australia. The date of the survey was the 21st March 1995.

Explosives were used as an energy source with shots being fired in the mud pit in the majority of instances.

GENERAL INFORMATION

Name of Well : Dunbar No. 1

Location : Victoria - PPL 1

Coordinates : Latitude 38 32 54.09 S

: Longitude 142 54 23.8E

Date of Survey : 21st March 1995

Weather : Showers

Operational Base : Brisbane

Operator : J. Larsen

Shooter : D. Blick

Client Representative : Mr. D. Horner

EQUIPMENT

Downhole Tool

Veldata Camlock 100 (90 mm)

Sensors:

6 HSI 4.5 Hz 215 ohm, high temperature (300 degrees F) detectors connected in series parallel. Frequency response 8-300 Hz within 3 dB.

Preamplifier:

48 dB fixed gain. Frequency response 5-200 Hz within 3 dB.

Reference Geophone

Mark Products L1 4.5 Hz

Recording Instruments

System VDL 16

Windows based high resolution seismic acquisition instruments

Computer:

386 Portable computer

Resolution:

A/D conversion 16 bits

Dynamic Range:

96dB

Total Gain:

136dB

Data channels:

Ω

Display:

A4 Bubble Jet Printer 300 D.P.I.

RECORDING

Energy Source

: Explosive, Powergel

Shot Location

: Mud pit

Charge Size

: .2/3.0 sticks

Average Shot Depth

: .7 metres

Mud Pit Shot Offset

: 32.0 metres

Recording Geometry

: Figure 1

Acquisition of the survey was carried out using the VDLS 16 recording system.

Shots were recorded on $3^{1}/2$ " floppy disc. The sample rate was 0.5 msec for the entire survey.

The scale of the graphic display varies with signal strength and is noted on each playout. The times were picked from a sample by sample screen plot, a full set of these trace displays can be seen at the rear of the report.

PROCESSING

Elevation Data

Elevation of KB

: 82.7m above sea level

Elevation of Ground

: 77.0m above sea level

Elevation of Seismic

Datum

: 0.0m above sea level

Depth Surveyed

: 1752.0m below KB

Depth of Casing

: 312.0m below KB

PROCESSING

Recorded Data

Number of Shots Used : 30

Number of Levels

Recorded : 20

Data Quality : Excellent

Noise Level : Low

Corrections to Obtain Vertically Corrected Time

The 'corrected' times shown on the calculation sheet have been obtained by:

- (1) Subtraction of the instrument delay (2msec) from the recorded arrival times.
- (2) Geometric correction for non-verticality of ray paths resulting from shot offset.
- (3) Addition of an Uphole correction time which corrects for the depth of shot below ground level for shots external to the pit using an uphole time (2.0msec) determined from surface channel information.
- (4) Replacement velocity to correct for variation in elevation between the ground level of the shot and ground level of the well head.
- (5) re-addition of the instrument delay (2msec).

Mud Pit Calibration

Due to a variation in shooting conditions between shots discharged within the pit to those external to the pit, It is necessary to tie the mud pit shots to the external shots. Thus a bulk shift of 2.0msec has been applied which has been calculated from the difference in corrected vertical time for pit and external shots at the 82.7m below KB level.

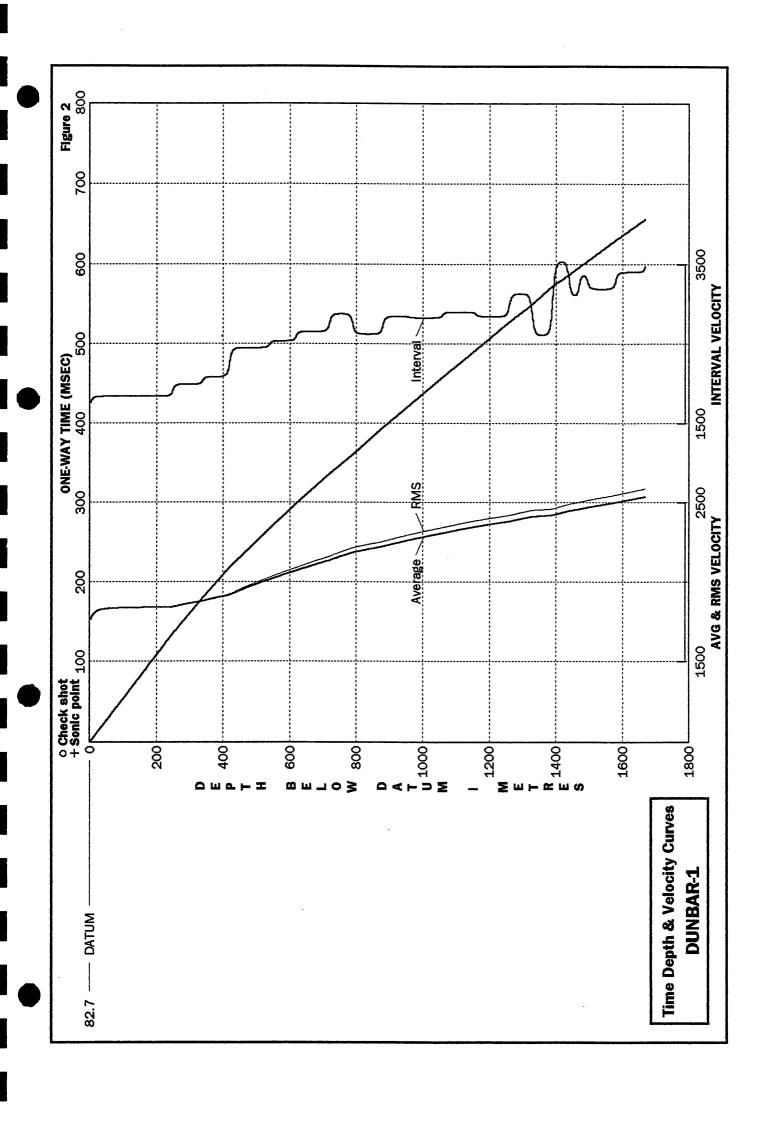
Correction to Datum

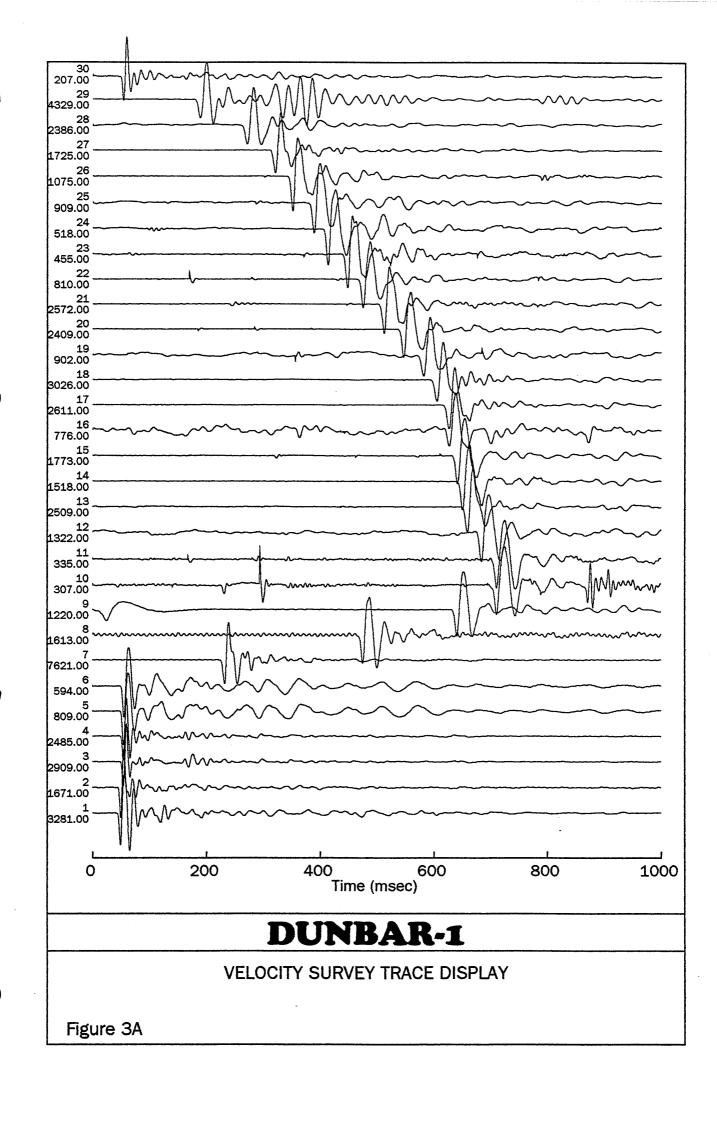
The datum chosen was 0.0 metres ASL that is 82.7 metres below KB. This level was shot eight times during the survey, all of which have been used to calculate an effective datum correction time of 47.4msec. Please note this time includes a 2msec instrument delay which must be subtracted to obtain the raw pick time.

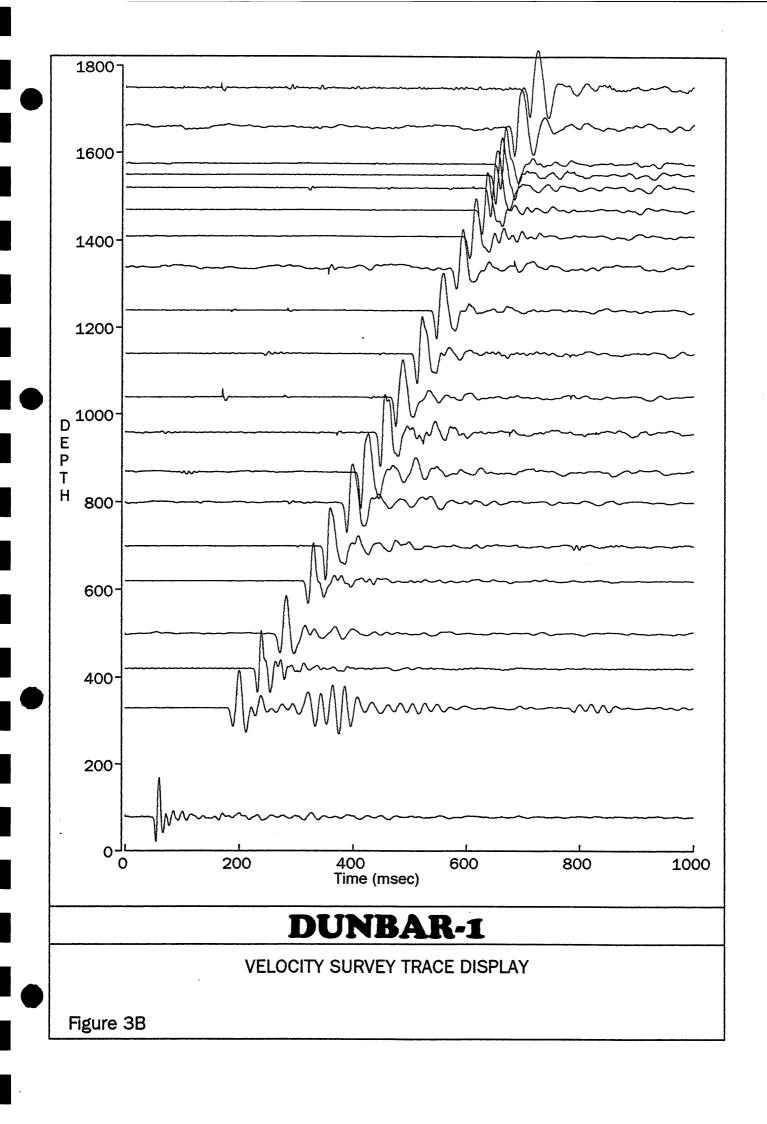
Calibration of Sonic Log - Method

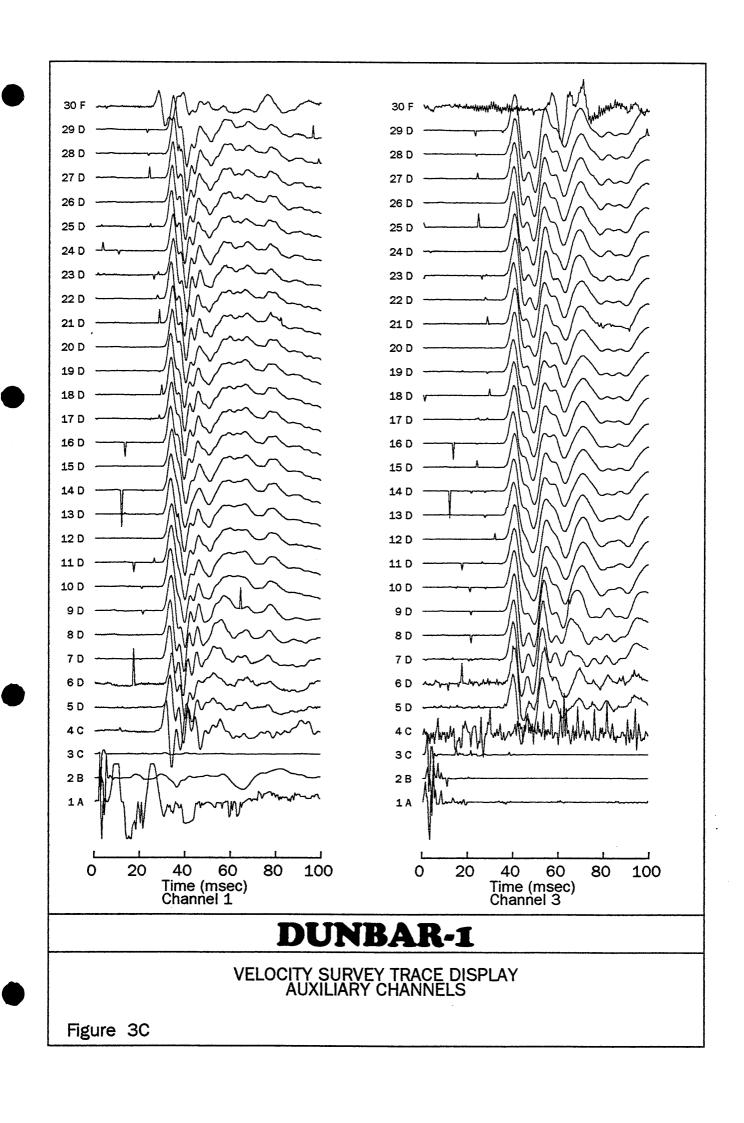
A sonic log was not provided by GFE Resources. As a result all values appearing on the calculation sheet are un-calibrated.

PROCESSING


Trace Playouts (Figure 3)


Figure 3A is a plot of all raw data traces used.


Figure 3B is a plot to scale in depth and time of selected traces.


Figure 3C is a plot of selected surface traces. .

Troy Peters Geophysicist.

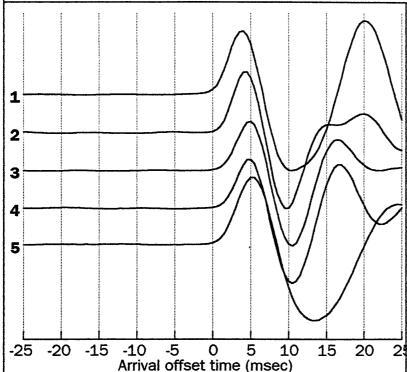
COMPANY: GFE RESOURCES LTD WELL: DUNBAR-1

Survey units: METRES Times: MILLISECONDS Survey date: 21-Mar-95 Latitude: 38 32 54.097S Longitude: 142 54 23.82E Elevations: Datum: 0 Ground: 77 Kelly: 82.7

Energy source: POWERGEL Logger: BPB Elevation velocity for shot statics: 1700 Rig identification: CENTURY 11 Instrument delay: 2.0 msec - Offset 8.5 16.0 32.0 32.0 Elevation 77.0 8. 77.0 16.7 76.3 3.76.1 3.76.1 3.77.8 3.3 Shot data: Location A B O O F

SHOT CALCULATIONS:

Shot	Geophoi	ne denth	Shot	Shot		ALL I	- TIMES		Check shot interval	interval		- Velocities -	
.o.	Kelly -	Kelly - Datum	Locn	Depth	Record	Corr	— Avg. ——	Datum	distance	time	Average	RMS	Interval
DATUM	_												
⊣	82.7	0.0	4	0.5	44.5	46.2							
8	82.7	0.0	Ω	0.5	45.0	46.1							
ო	82.7	0.0	ပ	0.5	49.0	47.7							
4	82.7	0.0	ပ	0.5	49.0	47.7							
ഗ	82.7	0.0	۵	0.5	49.0	47.8							
9	82.7	0.0	۵	0.5	49.5	48.3							
တ္ထ	82.7	0.0	ட	0.5	50.0	48.1	47.4	0.0					
									247.3	134.2			1842.8
59	330.0	247.3	۵	0.7	180.0	181.6	181.6	134.2			1842.8	1842.8	
									90.0	45.2			1991.2
7	420.0	337.3	۵	0.5	225.0	226.8	226.8	179.4			1880.2	1881.3	
									80.0	38.2			2094.2
28	500.0	417.3	Ω	0.7	263.0	265.0	265.0	217.6			1917.7	1920.4	
									120.0	49.1			2444.0
27	620.0	537.3	۵	0.7	312.0	314.1	314.1	266.7			2014.6	2026.9	
									80.0	31.5			2539.7
26	700.0	617.3	۵	0.7	343.5	345.6	345.6	298.2			2070.1	2087.1	
									100.0	37.6			2659.6
25	800.0	717.3	a	0.7	381.0	383.2	383.2	335.8			2136.1	2158.7	


SHOT CALCULATIONS: (cont)

Shot no.	Geopho Kelly	Geophone depth Kelly - Datum	Shot	Shot Depth	Record	TIN Corr. —	TIMES	Datum	Check shot interval distance time	interval time	Average	Velocities - RMS	Interval
5	0.00	787 3	c	7	20 20 20 20 20 20 20 20 20 20 20 20 20 2	7 204	7 207	, , ,	70.0	24.5	20 20 7	2242	2857.1
t V			۵	;	o i	2	7	5	90.0	34.1	110017	7.6177	2639.3
23	0.096	877.3	۵	0.7	439.5	441.8	441.8	394.4			2224.4	2253.2	
œ	1040.0	957.3	۵	0.5	468.5	470.8			80.0	28.2			2836.9
22	1040.0	957.3	۵	0.7	467.0	469.3	470.0	422.6			2265.3	2296.8	
27	1140.0	1057.3	_	0.7	503.0	505.3	505.3	457.9	100.0	35.3	2309.0	2342.5	2832.9
8	9			1	1 1 1	((() ()		100.0	34.5	i i	1	2898.6
8	1240.0	£./511	2	ò	03/10	5.85.0 5.85.0	538.8 2	492.4	100.0	35,0	2300.3	7385.7	2857.1
19	1340.0	1257.3	۵	0.7	572.5	574.8	574.8	527.4		 - -	2384.0	2419.8	
									70.0	22.6			3097.3
18	1410.0	1327.3	۵	0.7	595.0	597.4	597.4	550.0			2413.3	2451.4	
16	1470.0	1387.3	۵	0.7	618.0	620.4			60.0	22.5			2666.7
17	1470.0	1387.3	۵	0.7	617.0	619.4	619.9	572.5			2423.2	2460.2	
တ	1520.0	1437.3	Q	0.5	632.0	634.4			50.0	14.5			3448.3
15	1520.0	1437.3	۵	0.7	632.0	634.4	634.4	587.0	1	!	2448.6	2489.3	1
14	1550.0	1467.3	۵	0.7	641.5	643.9	643.9	596.5	30.0	G.0	2459.8	2501.4	3157.9
			ć	1	0	() ()	() ()	0	25.0	7.5	1	() ()	3333.3
13	15/5.0	1497.3	۵		0.649.0	63T.4	651.4	0.4.0	85.0	26.5	24/0./	2513.4	3207.5
12	1660.0	1577.3	۵	0.5	675.5	6.77.9	677.9	630.5			2501.7	2546.4	
10	1752.0	1669.3	۵	0.5	702.5	704.9							

SHOT CALCULATIONS: (cont)

Interval	3407.4
- Velocities - RMS	2587.4
Average	2538.9
interval	27.0
Check shot interval distance time	92.0
Datum	657.5
TIMES Datum	704.9
	704.9
Record -	702.5
Shot Depth	0.5
Shot Locn	Q
Geophone depth Kelly - Datum	1669.3
Geop Kelly	1752.0
Shot no.	11

First arrivals plot: DUNBAR-1

Shot 1 Location: A Charge depth .5 Size .2 Phone depth: 82.7 Arrival time: 44.5 msec

Shot 2 Location: B Charge depth .5 Size .2 Phone depth: 82.7 Arrival time: 45.0 msec

Shot 3 Location: C Charge depth .5 Size .3 Phone depth: 82.7 Arrival time: 49.0 msec

Shot 4 Location: C Charge depth.5 Size.3 Phone depth: 82.7 Arrival time: 49.0 msec

Shot 5 Location: D Charge depth .5 Size .3 25 Phone depth: 82.7

Arrival time: 49.0 msec

SHOT	1	SHOT	2	SHOT	Г 3	SHO	T 4	SHO	Г 5
Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl
34.5.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.	-22.00 -19.00 -18.00 -15.00 -9.00 -8.00 -7.00 -13.00 -13.00 -13.00 -13.00 -23.00 -43.00 -43.00 -43.00 -43.00 -43.00 -135.00 -135.00 -135.00 -135.00 -238.00 -135.00 -238.00 -238.00 -238.00 -238.00 -238.00 -238.00	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	5.00 4.00 3.00 -4.00 -6.00 -17.00 -22.00 -24.00 -26.00 -27.00 -26.00 -11.00 -11.00 -11.00 -11.00 -15.00 -721.00 -492.00 -721.00 -492.00 -721.00 -1335.00 -19.00 -19.00 -19.00 -19.00 -19.00 -10	38.50.50.50.50.50.50.50.50.50.50.50.50.50.	-11.00 -14.00 -18.00 -24.00 -31.00 -34.00 -34.00 -34.00 -34.00 -31.00 -25.00 -24.00 -14.00 -14.00 -14.00 -14.00 -147.00 -277.00 -452.00 -1048.00 -1048.00 -1361.00 -1899.00 -1899.00 -1895.00 -1895.00 -1895.00 -1895.00 -1895.00 -1895.00 -1895.00	750505050505050505050505050505050505050	***Boo	388.50.50.50.50.50.50.50.50.50.50.50.50.50.	-18.00 -18.00 -17.00 -16.00 -15.00 -12.00 -12.00 -12.00 -13.00
55.5	2248.00 -921.00 -202.00 -663.00 1338.00 1939.00 2523.00 2878.00 3109.00 3240.00 3255.00 3218.00	55.0 55.5	193.00 592.00 1033.00 1332.00 1548.00 1671.00 1656.00 1543.00 1305.00	56.5 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0	374.00 1015.00 1613.00 2224.00 2602.00 2836.00 2909.00 2803.00	56.5 56.5 57.5 58.5 59.5 59.5 60.0	407.00 931.00 1419.00 1912.00 2219.00 2415.00 2485.00 2409.00	56.0 56.5 57.0 57.5 58.5 59.5 59.5 60.0	-489.00 -322.00 -167.00 -4.00 182.00 325.00 450.00 564.00 647.00

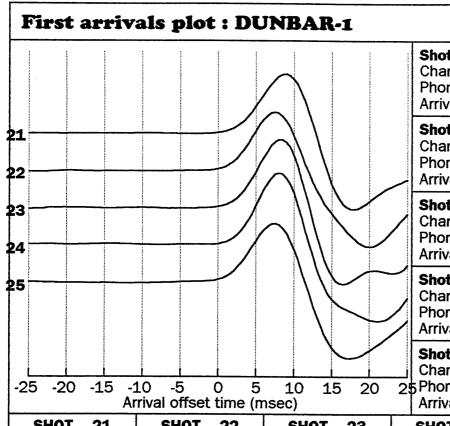
First arrivals plot: DUNBAR-1 Shot 6 Location: D Charge depth .5 Size .3 Phone depth: 82.7 Arrival time: 49.5 msec 7 Location: D 6 Charge depth .5 Size .8 Phone depth: 420.0 7 Arrival time: 225.0 msec Shot 8 Location: D 8 Charge depth .5 Size 1 Phone depth: 1040.0 9 Arrival time: 468.5 msec Shot 9 Location: D 10 Charge depth .5 Size 2 Phone depth: 1520.0 Arrival time: 632.0 msec Shot 10 Location: D Charge depth .5 Size 4 25 Phone depth: 1752.0 -25 -20 -15 -10 -5 10 15 20 Arrival time: 702.5 msec Arrival offset time (msec) SHOT SHOT SHOT SHOT CHOT

SHOT	6	SHO	T 7	SHO	T 8	SHO	Т 9	SHOT	10
Time	Ampi	Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl
38.0	-21.00	214.0	-55.00	458.0	-9.00	621.0	-11.00	692.0 692.5 693.0 693.5	-6.00 -8.00 -8.00 -10.00
38.5	-20.00	214.5	-36.00 -20.00	458.5	5.00	621.5	-11.00	692.5	-8.00
39.5	-19.00 -17.00	215.5	6.00	459.0 459.5	22.00 33.00	622.5	-12.00 -13.00	693.0 693.5	-0.00 -10.00
40.0	-19.00 -17.00	216.0	12.00	460.0	39.00 43.00	623.0	-14.00 -14.00	694.0	
40.5	-17.00	216.5	25.00	460.5	43.00	623.5	-14.00	694.5	0.00
39.0 39.5 40.0 41.5 42.0 42.5 43.5 44.0	-17.00 -16.00 -14.00	214.5 215.5 215.5 216.5 217.5 218.5 219.5 219.5 221.5 222.3 222.3 222.3 222.3 222.3 222.3	12:00 25:00 36:00 43:00 43:00 39:00 31:00 4:00	459.5 460.5 461.5 461.5 462.5 463.0 463.0 464.5	42.00 36.00 25.00 13.00 -4.00	622.0 622.5 6223.5 6223.5 6224.5 6225.5 6225.5 6227.5 6228.5 6229.5 6230.5 6230.5	-14.00 -14.00 -13.00 -13.00 -11.00	694.5 695.0 695.5 696.5 697.5 698.5 698.5 699.5 700.0	4.00 0.00 -5.00 -6.00 -7.00 -9.00 -11.00 -15.00 -19.00 -22.00
42.0	-14.00	218.0	43.00	462.0	25.00	625.0	-13.00	696.0	-7.00
42.5	-14.00 -15.00	218.5	39.00	462.5	13.00	625.5	-13.00	696.5	-9.00 11.00
43.5	-16.00	219.5	21.00	463.5	-20.00	626.5	-11.00	697.0 697.5	-11.00
44.0	-16.00	220.0	4.00	464.0	-20.00 -33.00	627.0	-9.00	698.0	-15.00
44.5	-16.00 -15.00	220.5	-11.00 -29.00	464.5 465.0	-50.00 -60.00	627.5	-9.00	698.5	-19.00
44.5 45.0 45.5 46.0	-15.00 -16.00	221.0	-29.00 -46.00	465.0 465.5	-00.00	628.0	-9.00 -9.00 -9.00 -8.00 -7.00	699.U 699.5	-22.00 -26.00
46.0	-14.00	222.0	-56.00	466.0	-66.00 -70.00	629.0	_X (1() (700.0	-26.00 -30.00
46.5 47.0	-16.00	222.5	-62.00	466.5	-74.00 [629.5	-9.00	700.5	-32.00
47.0	-15.00 -15.00	223.0	-66.00 -69.00	467.0 467.5	-80.00 -93.00	630.0	-9.00 -9.00 -12.00 -15.00	701.0 701.5 702.0	-32.00 -35.00 -37.00
48.0	-16 00 1	224.0	-69.00 -74.00	468.0	-115.00	631.0	-15.00	702.0	-39.00
47.5 48.0 48.5 49.0	-19.00	224.5	-91.00	468.5	-148.00	631.5	-20.00	702.5	-38.00
49.0 49.5	-20.00 -24.00	225.0	-124.00	469.0		632.0	-30.00	703.0 703.5 704.0	-42.00 -46.00 -52.00
I .	-35.00	225.5	-182.00 -304.00	469.5	-273.00 -359.00	632.5	-41.00 -63.00	703.5	- <u>4</u> 6.00
50.5	-53.00	226.5	-462.00	470.0	-359.00 -482.00	633.0 633.5	-83.00	704.0	-52.00 -61.00
51.0	-78.00	227.0	-462.00 -739.00	471.0	-598.00	634.0	-121.00	705.0	-61.00 -76.00
51.5	-53.00 -78.00 -127.00 -178.00	227.5	-1048.00 -1438.00	471.5	-482.00 -598.00 -726.00 -882.00	634.5	-85.00 -89.00 -121.00 -173.00 -226.00 -289.00 -376.00 -456.00	704.5 705.0 705.5 706.0	-92.00
52.0	-240.00	228.5	-2001 00	472.0	-882.00 -1005.00	635.0 635.5	-226.00 -289.00	706.0 706.5	-138 00
53.0	-321.00	229.0	-2531.00	473.0	-1111.00	636.0	-376.00	707.0	-159.00
53.5	-240.00 -321.00 -387.00 -443.00	229.5	-3091.00	473.5	-1005.00 -1111.00 -1205.00 -1244.00	636.5	-456.00	707.5	-183.00
54.0 54.5	-443.00 -492.00	230.0	-1438.00 -2001.00 -2531.00 -3091.00 -3752.00 -4241.00 -4625.00 -4879.00 -4868.00	474.0	-1244.00	637.0	-539.00	708.0	-209.00
55.0	-492.00 -508.00	231.0	-4625.00	475.0	-1241.00 -1174.00	638.0	-719.00	709.0	-241.00
55.5	-498.00	231.5	-4879.00	475.5	-1063.00 -912.00	638.5	-787.00	709.5	-251.00
56.5	-458.00 -397.00	232.0	-4868.00 -4623.00	476.0	-912.00 -678.00	639.0	-848.00 -878.00	710.0	-252.00 -247.00
50.505050505050505050505050505050505050	-498.00 -458.00 -397.00 -298.00	225.5 226.5 227.5 227.5 228.5 228.5 229.5 231.5 233.5 233.5 233.5 233.5	-3994 OO	469.0 469.0 470.0 470.5 471.0 472.5 472.5 473.0 474.5 475.5 476.0 477.5 477.5 477.5 478.5	-678.00 -452.00	632.5 633.5 6334.5 634.5 635.5 636.5 636.5 637.5 638.6 639.5 639.0	-539.00 -640.00 -719.00 -787.00 -848.00 -878.00 -885.00 -861.00 -725.00 -621.00	706.5 707.0 707.5 708.0 708.5 709.0 710.5 711.0 711.5 712.0 712.5 713.0 713.5	-76.00 -92.00 -111.00 -138.00 -159.00 -183.00 -29.00 -241.00 -251.00 -252.00 -247.00 -235.00 -190.00
57.5	-199.00	233.5	-3199.00 -2178.00	477.5	-160.00	640.5 641.0	-861.00	711.5	-218.00
58.5	-92.00 41.00	234.0	-2178.00 -718.00	478.0	88.00 327.00	641.0 641.5	-815.00 -725.00	712.0	-190.00 -164.00
1 59.0	147.00	234.5 235.0	628.00	479.0	590.00 1	642.0	-626.00	713.0	-133.00
59.5	245.00	235.5	2294.00	479.5	783.00 l	642.5	-011.00	713.5	-92.00
60.0	349.00	236.0	3641.00	480.0	947.00	643.0	-353.00	714.0	-58.00

Shot 11 Location: D Charge depth .5 Size 4 Phone depth: 1752.0 Arrival time: 702.5 msec

Shot 12 Location: D Charge depth .5 Size 3 Phone depth: 1660.0 Arrival time: 675.5 msec

Shot 13 Location: D Charge depth: 7 Size 3 Phone depth: 1575.0 Arrival time: 649.0 msec


Shot 14 Location: D Charge depth: 7 Size 3 Phone depth: 1550.0 Arrival time: 641.5 msec

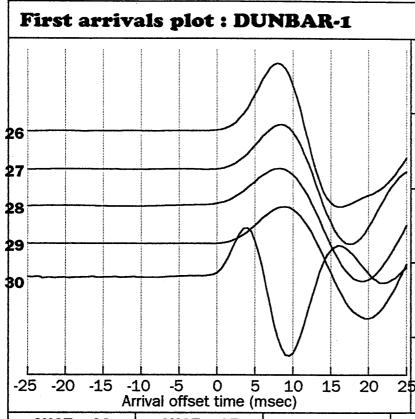
Shot 15 Location: D
Charge depth: 7 Size 3
25 Phone depth: 1520.0
Arrival time: 632.0 msec

SHOT	11	SHOT	12	SHOT	13	SHOT	T 14	SHOT	15
Time	Ampi	Time	Ampl	Time	Ampl	Time	Ampi	Time	Ampi
692.0 693.0 693.5 694.5 694.5 695.5 696.5 696.5 697.5 698.5 699.5 700.5 701.5 702.5 703.5 704.5 705.5 706.5 706.5 707.5 708.5 709.5 711.5	9.00 -11.00 -13.00 -17.00 -24.00 -24.00 -24.00 -18.00 -14.00 -17.00 -17.00 -17.00 -17.00 -17.00 -17.00 -17.00 -17.00 -121.00 -	683.0 -	1.00 1.5.00 1.5.00 1.5.7.00 1.5.00 1.	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-15.00 -14.00 -13.00 -14.00 -14.00 -16.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -14.00 -15.00 -15.00 -14.00 -15.00 -14.00 -15.00 -15.00 -15.00 -15.00 -15.00 -16.00 -16.00 -17.00 -1	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-9.00 -13.00 -13.00 -13.00 -13.00 -14.00 -14.00 -14.00 -14.00 -14.00 -14.00 -17.00 -19.00 -17.00 -27.00 -27.00 -29.00 -213.00 -213.00 -213.00 -213.00 -213.00 -213.00 -213.00 -1163.00 -213.00 -1163.00 -1163.00 -1036.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -11160.00 -1175.00	641.0 641.5	-2.00 1.00 -1.00 -1.00 -2.00 -3.00 -5.00 -10.00 -11.00 -11.00 -11.00 -11.00 -10.00 -11.00 -10

First arrivals plot: DUNBAR-1 16 Location: D Shot Charge depth .7 Size 3 Phone depth: 1470.0 Arrival time: 618.0 msec Shot 17 Location : D 16 Charge depth .7 Size 3 Phone depth: 1470.0 17 Arrival time: 617.0 msec Shot 18 Location : D 18 Charge depth .7 Size 3 Phone depth: 1410.0 19 Arrival time: 595.0 msec Shot 19 Location : D 20 Charge depth .7 Size 3 Phone depth: 1340.0 Arrival time: 572.5 msec Shot 20 Location : D Charge depth .7 Size 2 -25 -20 -15 -10 5 15 20 25 Phone depth: 1240.0 -5 10 0 Arrival time: 537.5 msec Arrival offset time (msec)

SHOT	16	SHOT	17	SHO.	Г 18	SHOT	19	SHOT	20
Time	Ampi	Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl
607.05.05.05.05.05.05.05.05.05.05.05.05.05.	43.00 37.00 33.00 29.00 29.00 21.00 16.00 15.00 15.00 23.00 23.00 25.00 23.00 25.00 23.00 25.00 27.00 28.00 27.00	624.5 625.0 625.5 626.0 626.5 627.0 627.5	-12.00 -12.00 -12.00 -11.00 -1	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-12.00 -9.00 -4.00 -1.00	562.05.05.05.05.05.05.05.05.05.05.05.05.05.	-51.00 -51.00 -47.00 -42.00 -42.00 -42.00 -42.00 -36.00 -35.00 -29.00 -26.00 -26.00 -26.00 -26.00 -26.00 -26.00 -26.00 -26.00 -26.00 -26.00 -27.00 -26.00 -27.00 -26.00 -27.00 -2	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-7.00 -10.00 -11.00 -11.00 -12.00 -11.00 -12.00 -10

Shot 21 Location: D Charge depth .7 Size 2 Phone depth: 1140.0 Arrival time: 503.0 msec


Shot 22 Location: D Charge depth: 7 Size 2 Phone depth: 1040.0 Arrival time: 467.0 msec

Shot 23 Location: D Charge depth: 7 Size 1 Phone depth: 960.0 Arrival time: 439.5 msec

Shot 24 Location: D Charge depth .7 Size 1 Phone depth: 870.0 Arrival time: 405.5 msec

Shot 25 Location: D
Charge depth .7 Size 1
25 Phone depth: 800.0
Arrival time: 381.0 msec

SHOT	21	SHOT	22	SHOT	23	SHOT	24	SHOT	25
Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl
492.3.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-14.00 -15.00 -17.00 -17.00 -17.00 -17.00 -14.00 -10.00 -1	456.50 456.75.05.05.05.05.05.05.05.05.05.05.05.05.05	-8.00 -7.00 -8.00 -9.00 -8.00 -9.00 -10.00 -10.00 -12.00 -	428.9.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	9.00 -10.	394.5.05.05.05.05.05.05.05.05.05.05.05.05.0	-17.00 -17.00 -14.00 -13.00 -13.00 -13.00 -13.00 -13.00 -15.00 -17.00 -1	370.0 371.0 371.5 372.5 373.5 374.5 375.5 376.5 377.5 377.0	-11.00 -12.00 -12.00 -12.00 -12.00 -15.00 -15.00 -15.00 -17.00 -19.00 -234.00 -277.00 -29.00 -24.00 -34.00 -34.00 -34.00 -34.00 -34.00 -34.00 -356.00 -319.00

Shot 26 Location: D Charge depth .7 Size 1 Phone depth: 700.0 Arrival time: 343.5 msec

Shot 27 Location: D Charge depth: 7 Size 1 Phone depth: 620.0 Arrival time: 312.0 msec

Shot 28 Location: D Charge depth .7 Size 1 Phone depth: 500.0 Arrival time: 263.0 msec

Shot 29 Location: D Charge depth: 7 Size: .7 Phone depth: 330.0 Arrival time: 180.0 msec

Shot 30 Location: F Charge depth .5 Size .3 25 Phone depth: 82.7 Arrival time: 50.0 msec

SHOT	26	SHOT	27	SHO	Г 28	SHO	Г 29	SHOT	30
Time	Ampl	Time	Ampi	Time	Ampi	Time	Ampi	Time	Ampi
332.0 332.5 333.5 335.5 355.5	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -14.00 -15.00 -15.00 -16.00 -15.00 -16.00 -16.00 -16.00 -16.00 -17.00 -1	301.0 301.5 302.5 302.5 303.0 304.0 304.0 305.5 306.0 306.5 307.5 308.5 309.5 309.5 310.5 311.5 312.5 313.5 314.5 315.6 317.5 318.5 317.5 318.5 319.5	-4.00 -4.00 -5.00 -8.00 -10.00 -13.00 -14.00 -17.00 -18.00 -15.00 -16.00 -15.00 -11.00 -7.00 -9.00 -11.00 -7.00 -9.00 -11.00 -15.00 -15.00 -15.00 -15.00 -17	252.53.50.50.50.50.50.50.50.50.50.50.50.50.50.	-12.00 -12.00 -14.00 -17.00 -20.00 -20.00 -20.00 -20.00 -30.00 -34.00 -37.00 -41.00 -45.00 -55.00 -57.00 -61.00 -65.00 -78.00 -134.00 -1217.00 -217.00 -217.00 -217.00 -345.00 -424.00 -517.00 -1213.00 -1213.00 -1213.00 -1234.00 -1232.00	169.0 169.0 170.5 171.0 171.0 172.5 173.5 174.5 175.0 177.5	-19.00 -18.00 -18.00 -17.00 -17.00 -17.00 -17.00 -16.00 -16.00 -13.00 -13.00 -12.00 -13.00 -11.00 -13.00 -11.00 -14.00 -13.00 -14.00 -13.00 -14.00 -14.00 -15.00 -10.00 -14.00 -18.00 -14.00 -18.00 -19.00 -10.00 -1	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-12.00 -10.00 -11.00 -10.00 -11.00 -10.00 -11.00 -11.00 -11.00 -11.00 -12.00 -14.00 -14.00 -14.00 -15.00 -14.00 -15.00 -14.00 -15.00 -14.00 -17.00 -18.00 -17.00 -18.00 -17.00 -18.00 -17.00 -18.00 -17.00 -18.00 -19.00

APPENDIX 9

APPENDIX 9

GEOCHEMISTRY REPORT

GEOTECHNICAL SERVICES PTY LTD

41-45 Furnace Road, Welshpool, Western Australia. 6106 Locked Bag 27, Cannington, Western Australia. 6107

Telephone: (09) 458 8877 Facsimile: (09) 458 8857

4 April, 1995

Mr. K. Lanigan GFE Resources Ltd Level 6 6 Riverside Quay South Melbourne VIC 3205

FILE COPY

Dear Kevin,

Please find enclosed saturate GC and branched/cyclic GC-MS data for Dunbar-1 DST 2, as well as an invoice for this work.

If you have further queries or if we can be of any assistance to you, please do not hesitate to contact us.

Yours sincerely,

Dr. Birgitta Hartung-Kagi

G.A Nand

Managing Director

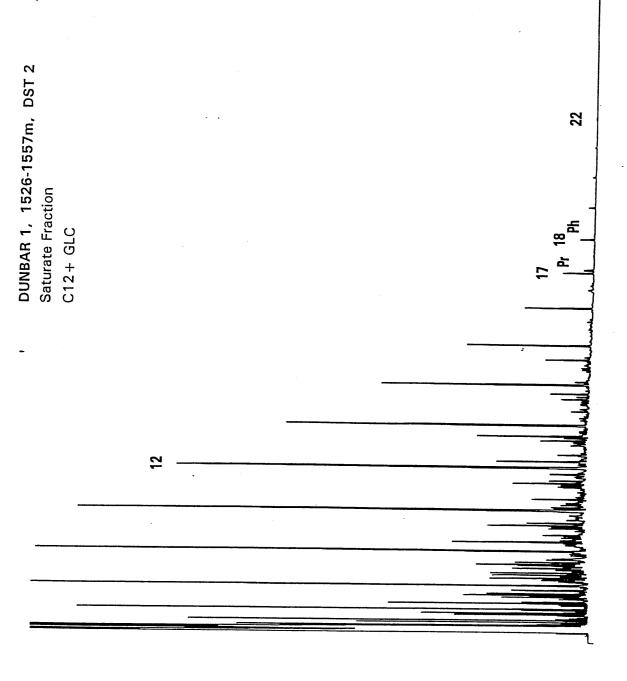


TABLE 1

Summary of Physical Property and Sulphur Data

DUNBAR 1	er.	Mar-95

	API	%SULPHUR	VISCOSITY	VISCOSITY
SAMPLES	GRAVITY nd	(W/W)	at 25°C (cSt)	at 60°C (cSt)
DST 2		nd	nd	nd

TABLE 1

Summary of Liquid Chromatography (Compositional data),

DUNBAR 1									Mar-95
		Hydrocarbons		Nor	nhydrocarb	ons	SAT	ASPH	НС
CAAADI MO							******		
SAMPLES	%SAT	%AROM	%HC's	%NSO's	%ASPH	%Non HC's	AROM	NSO	Non HC
DST 2	96.5	1.6	98.2	1.8	nd	1.8	59.3	nd	E2 6

TABLE 2

Summary of Gas Chromatography Data

DUNBAR 1

A. Alkane Compositional Data

SAMPLES Prist./Phyt. Prist./n-C17 Phyt./n-C18 CPI(1) CPI(2) (C21 + C22)/(C28 + C2: DST 2 10.1 0.44 0.09 nd nd nd nd

TABLE 2

Summary of Gas Chromatography Data

DUNBAR 1

B. n-Alkane Distributions

TABLE 3

SELECTED AROMATIC PARAMETERS

DOMBAK 1									Apr-95
DEPTH 1526-1557m	TYPE DST 2	DNR-1 7.60	DNR-5	DNR-6 3.64	TNR-1 0.52	TNR-5 0.67		MPI-2 0.88	

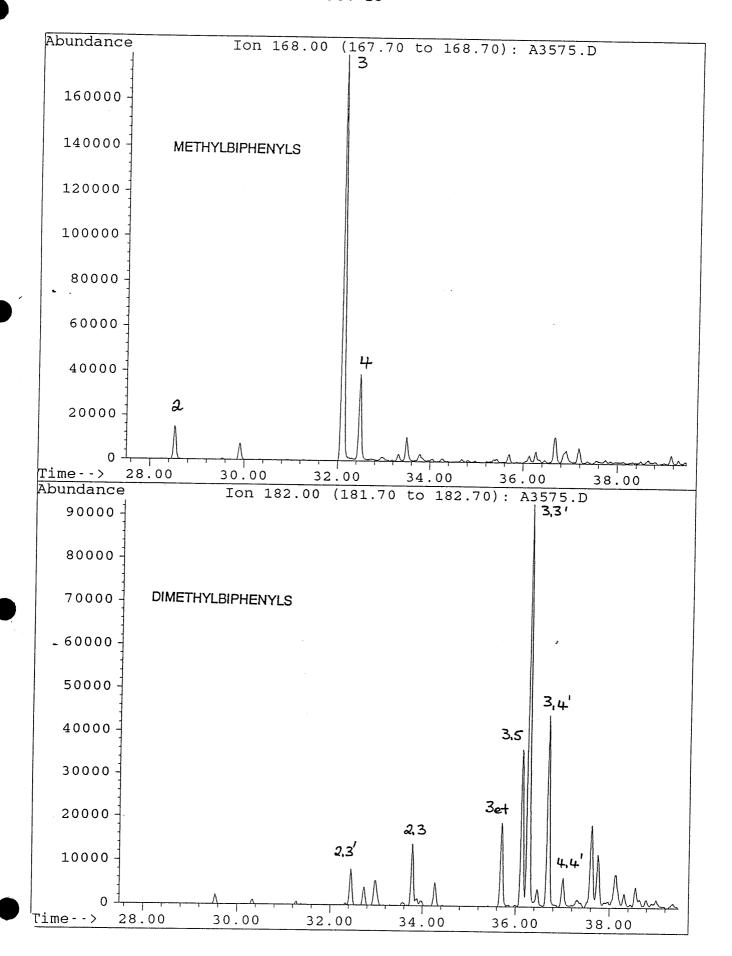
response factors have been applied to DNR 6, TNR 1, TNR 5, MPI 1 and MPI 2

TABLE 3

SELECTED AROMATIC PARAMETERS CONT.

DUNBAR 1					Apr-95
DEPTH	TYPE	1,7-DMP/X (m/z 206)	RETENE/9-MP (m/z 219,192)	1MP/9MP	
1526-1557m	DST 2	0.50	0.28	0.81	

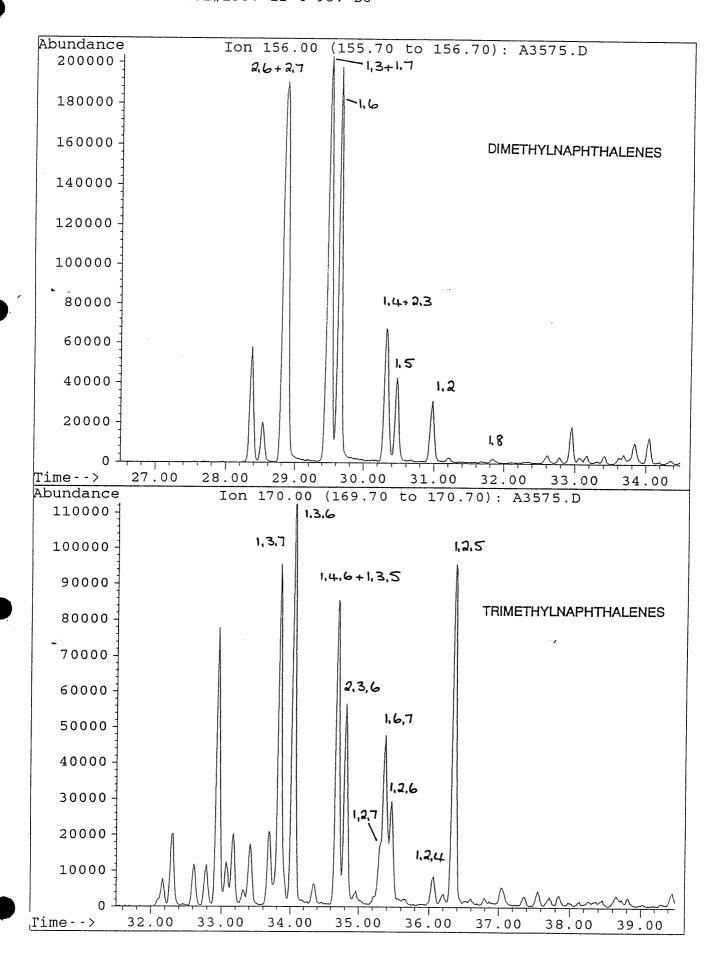
90,06 80,00 70.00 60,00 TIC: A3575.D 50.00 40.00 30.00 20.00 Abundance 1300000 1200000 1100000 300000 200000 100000 1000000 500000 400000 900006 800000 700000 000009 Time-->


A3575.D DUNBAR-1 DST#2 AF COL#155. 12-4-95. DJ

Masc. Info:

A3575.D

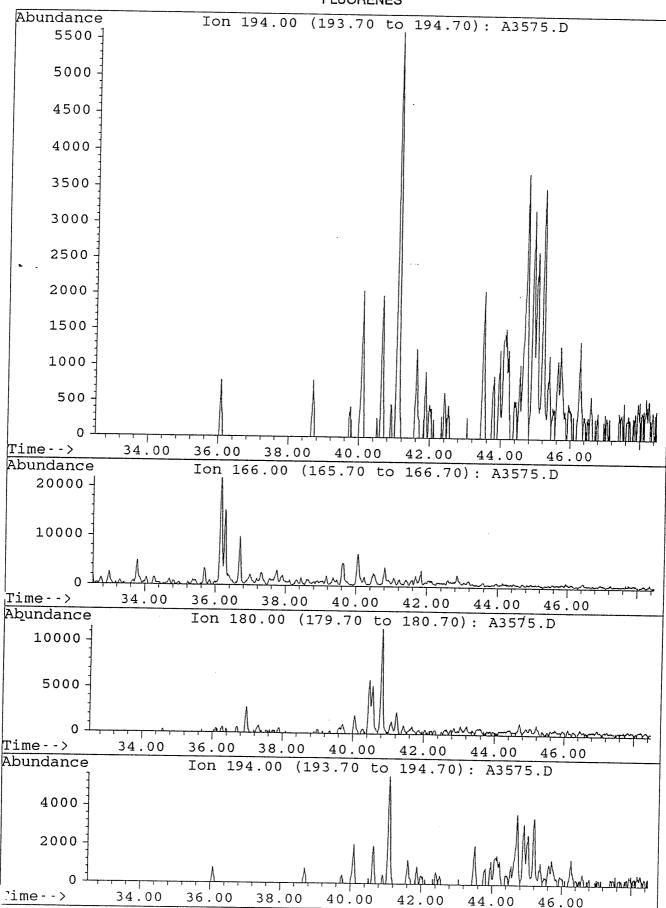
Sample :


DUNBAR-1 DST#2 AROS Misc. Info: COL#155. 12-4-95. DJ

A3575.D

Sample :

DUNBAR-1 DST#2 AROS Misc. Info: COL#155. 12-4-95. DJ



A3575.D

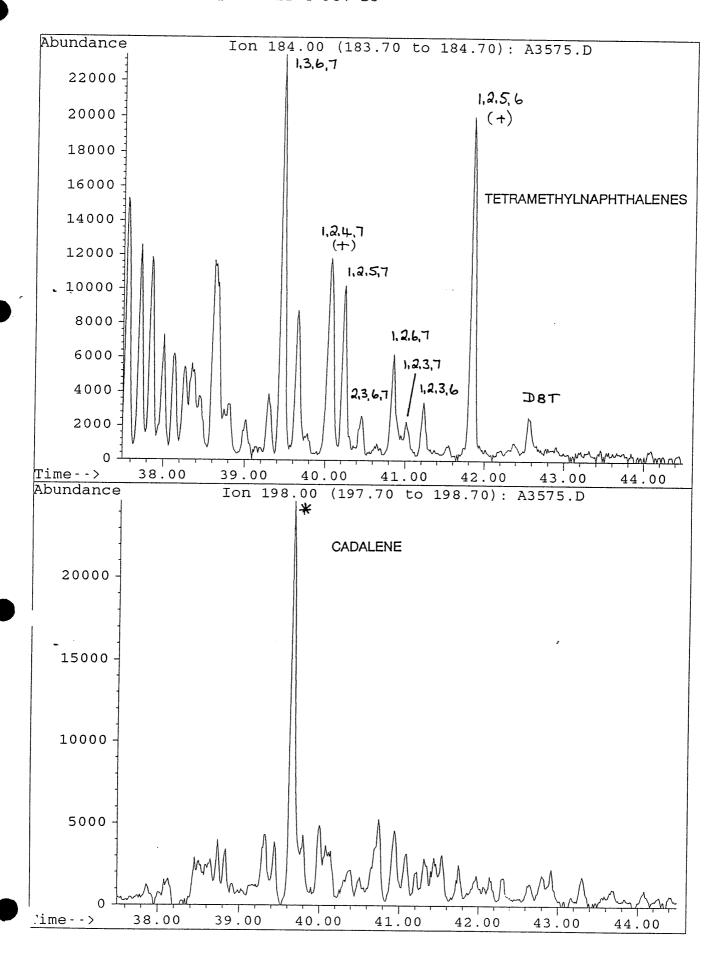
Sample :

DUNBAR-1 DST#2 AROS Misc. Info: COL#155. 12-4-95. DJ

FLUORENES

A3575.D

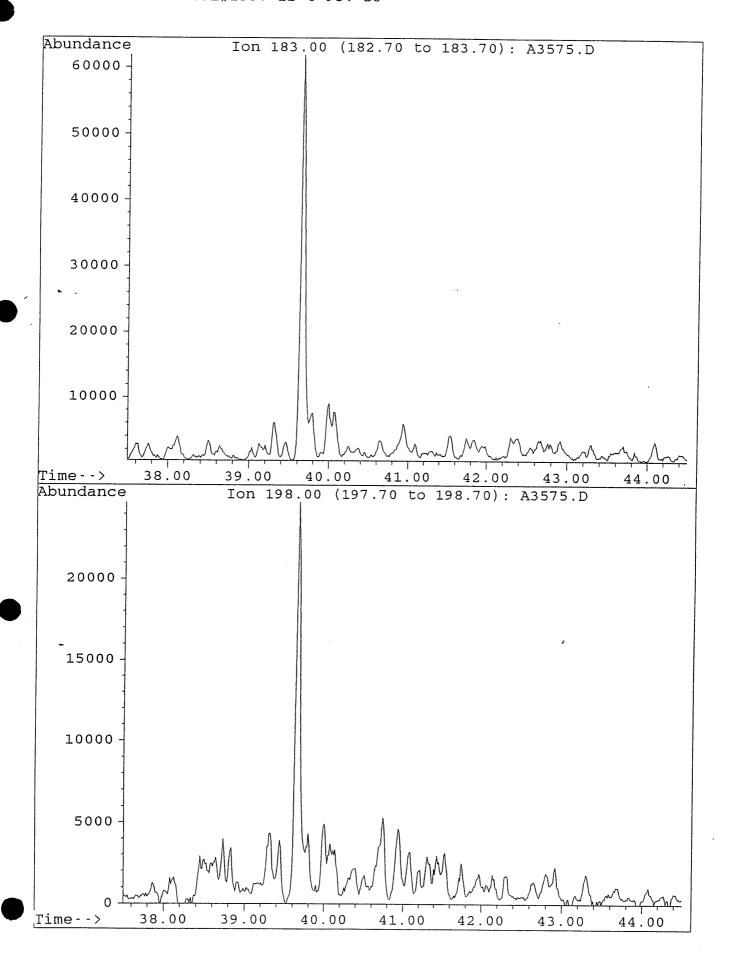
Sample : Misc. Info :


DUNBAR-1 DST#2 AROS COL#155. 12-4-95. DJ

Abundance Ion 170.00 (169.70 to 170.70): A3575.D 110000 -100000 -90000 -80000 -70000 -60000 50000 40000 30000 20000 -10000 Time--> 32.00 33.00 34.00 35.00 36.00 37.00 39.00 38.00 Abundance Ion 184.00 (183.70 to 184.70): A3575.D 22000 -20000 -18000 -16000 -14000 -12000 -10000 -8000 6000 4000 -2000 0 Time--> 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00

A3575.D

Sample : Misc. Info :


DUNBAR-1 DST#2 AROS COL#155. 12-4-95. DJ

A3575.D

Sample : Misc. Info :

DUNBAR-1 DST#2 AROS COL#155. 12-4-95. DJ

A3575.D

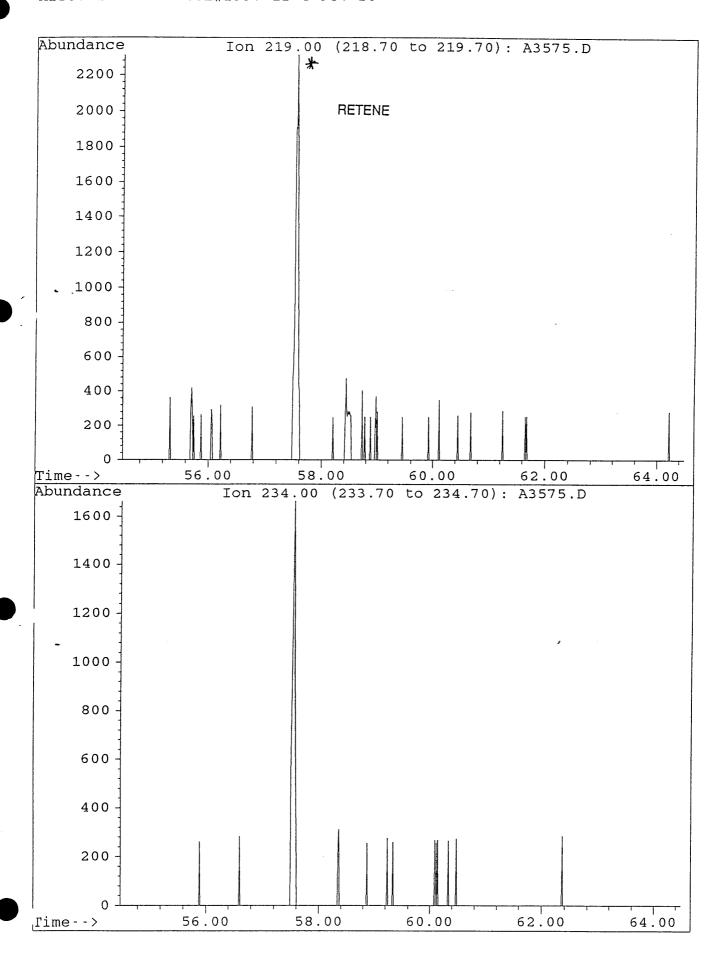
Sample : Misc. Info :

DUNBAR-1 DST#2 AROS COL#155. 12-4-95. DJ

Abundance Ion 178.00 (177.70 to 178.70): A3575.D 25000 + **PHENANTHRENE** 20000 15000 10000 5000 0 Time - -> 42.00 43.00 45.00 46.00 47.00 49.00 Abundance Ion 192.00 (191.70 to 192.70): A3575.D 2 8000 9 3 7000 **METHYLPHENANTHRENES** 6000 5000 4000 3000 2000 1000 46.00 47.00 48.00 49.00 50.00 51.00

A3575.D

File : Sample :


DUNBAR-1 DST#2 AROS Misc. Info: COL#155. 12-4-95. DJ

Abundance Ion 206.00 (205.70 to 206.70): A3575.D (x) 1,3+3,9+2,10+3,10 4000 -**DIMETHYLPHENANTHRENES** 3500 1,6+2,9 3000 -1.7 26 2500 -2000 -2,3 1,9+4,9 1500 1000 -1.8 500 -0 -50.00 54.00 53.00 51.00 52.00 55.00 56.00

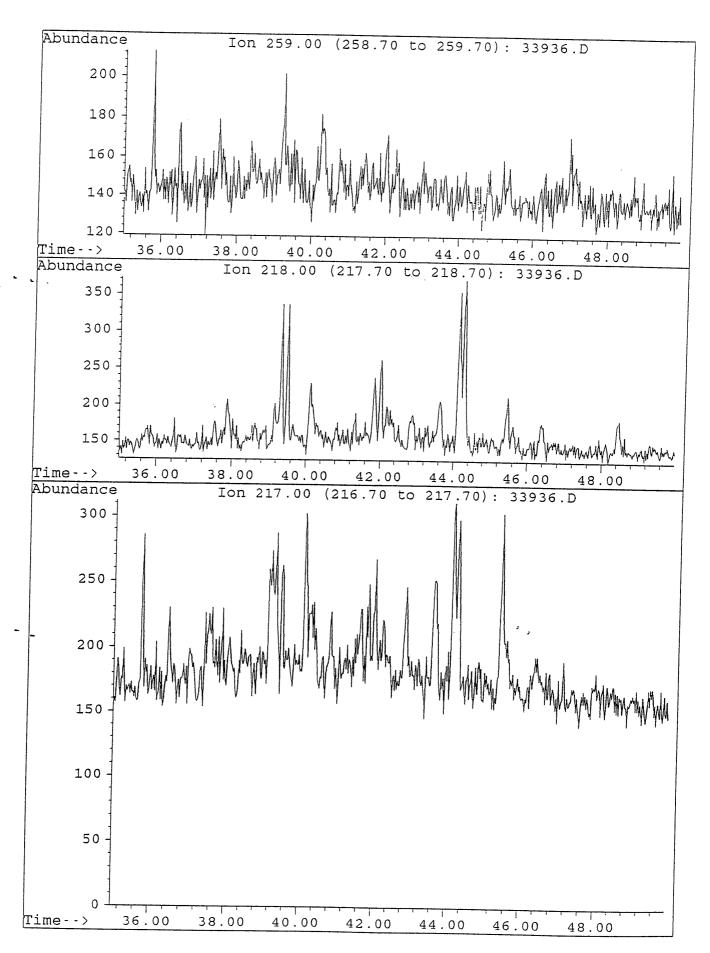
A3575.D

Sample :

DUNBAR-1 DST#2 AROS Misc. Info: COL#155. 12-4-95. DJ

SELECTED PARAMETERS FROM GC/MS ANALYSIS

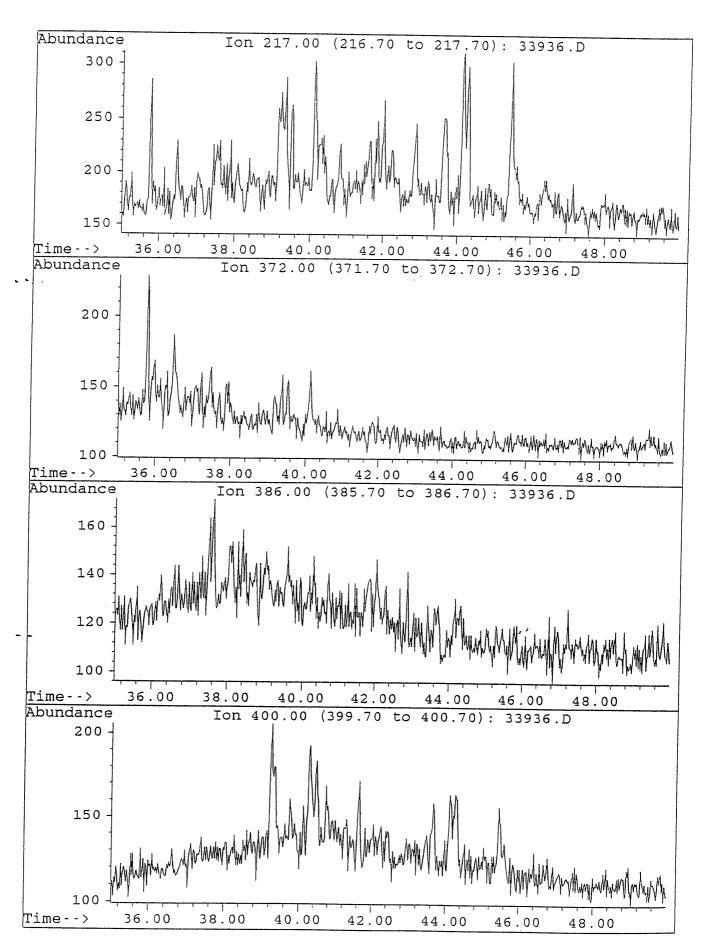
DUNBAR 1, DST 2, Condensate


	<u>Parameter</u>	lon(s)	<u>Value</u>
1.	18 α (H)- hopane/17 α (H)-hopane (Ts/Tm)	191	nd
2.	C30 hopane/C30 moretane	191	nd
3.	C31 22S hopane/C31 22R hopane	191	nd
4.	C32 22S hopane/C32 22R hopane	191	nd
5.	C29 20S ααα sterane/C29 20R ααα sterane	217	nd
6.	C29 ααα steranes (20S / 20S+20R)	217	nd
_	C29 $\alpha\beta\beta$ steranes		
7.	C29 $\alpha\alpha\alpha$ steranes + C29 $\alpha\beta\beta$ steranes	217	nd
8.	C27/C29 diasteranes	259	nd
9.	C27/C29 steranes	217	nd
10.	18 α (H)-oleanane/C30 hopane	191	nd
11.	C29 diasteranes	047	
	C29 $\alpha\alpha\alpha$ steranes + C29 $\alpha\beta\beta$ steranes	217	nd ,
12.	C30 (hopane + moretane)	101 /017	
14.	C29 (steranes + diasteranes)	191/217	nd
13.	C15 drimane/C16 homodrimane	123	1.26
14.	Rearranged drimanes/normal drimanes	123	1.33

nd = not detectable

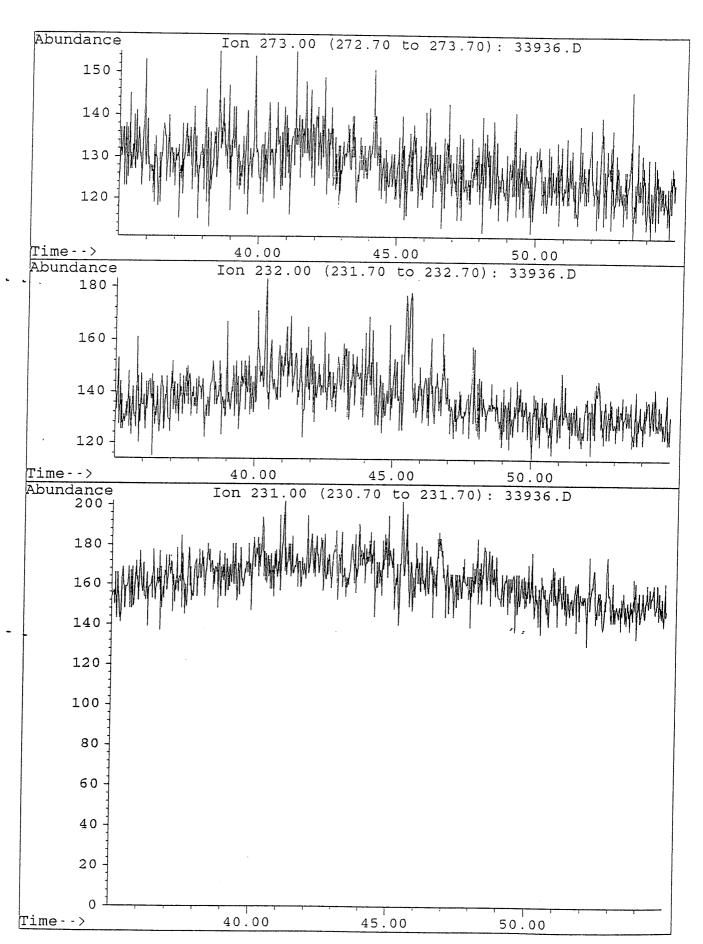
33936.D

Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

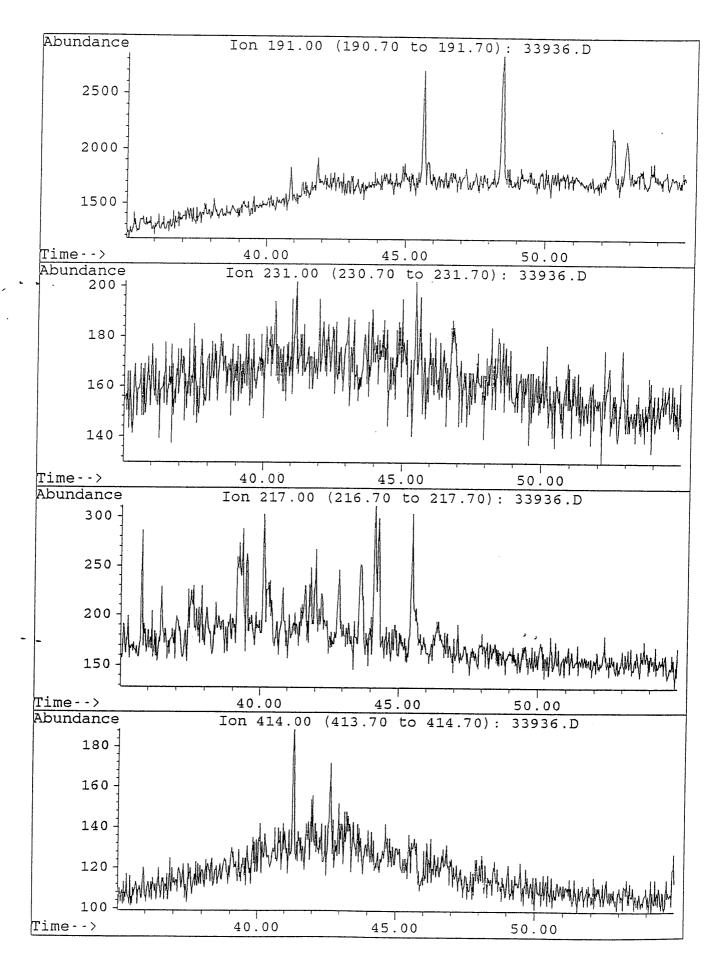
33936.D

Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

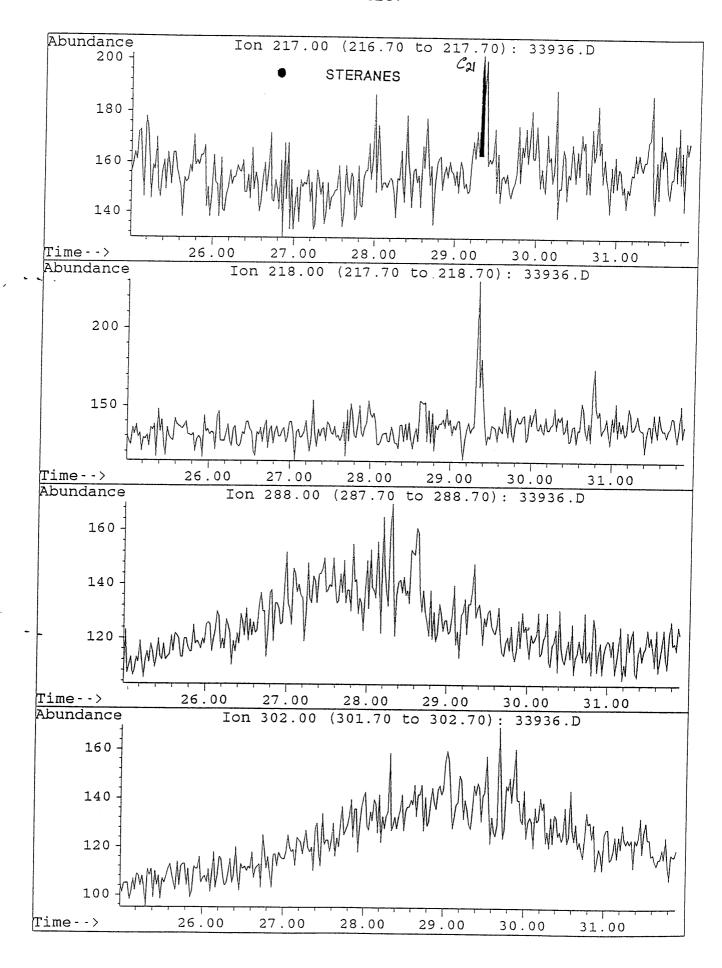
33936.D

Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

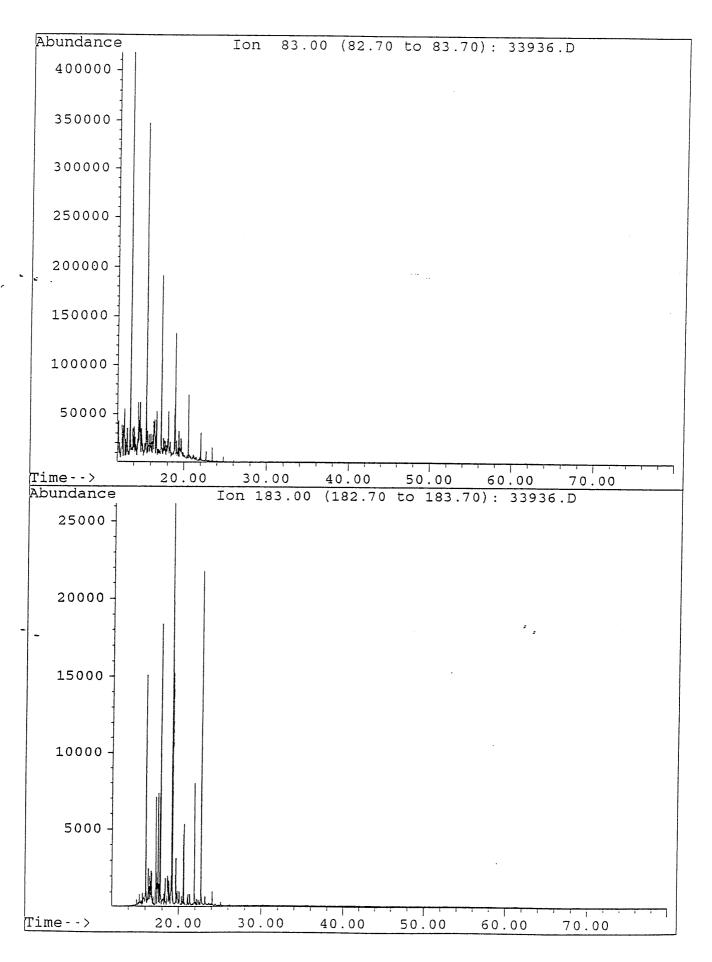
33936.D

Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

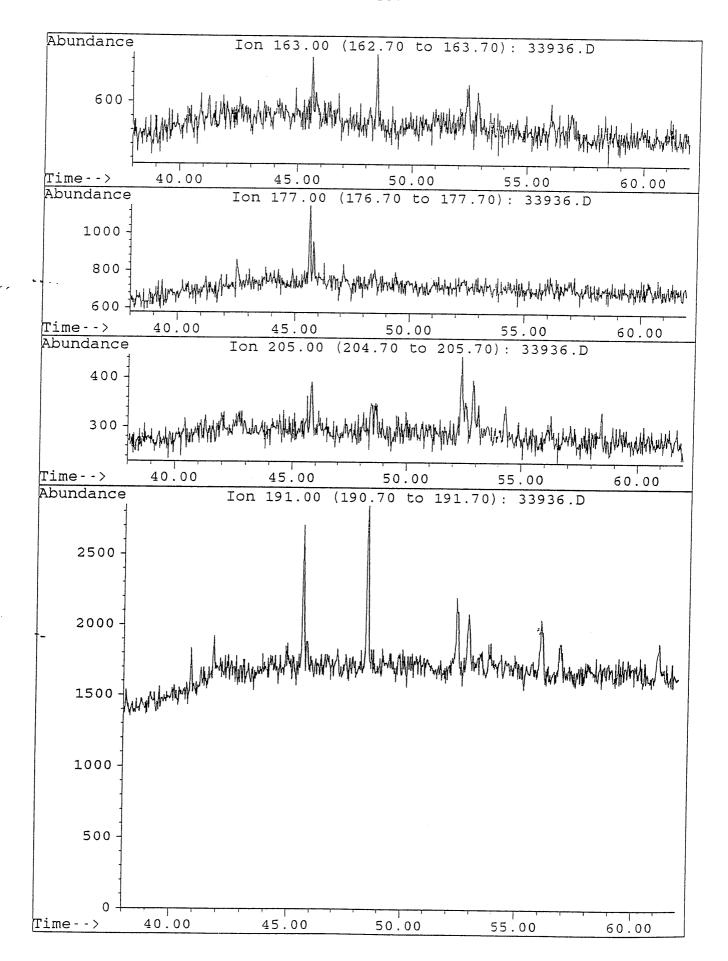
33936.D

Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

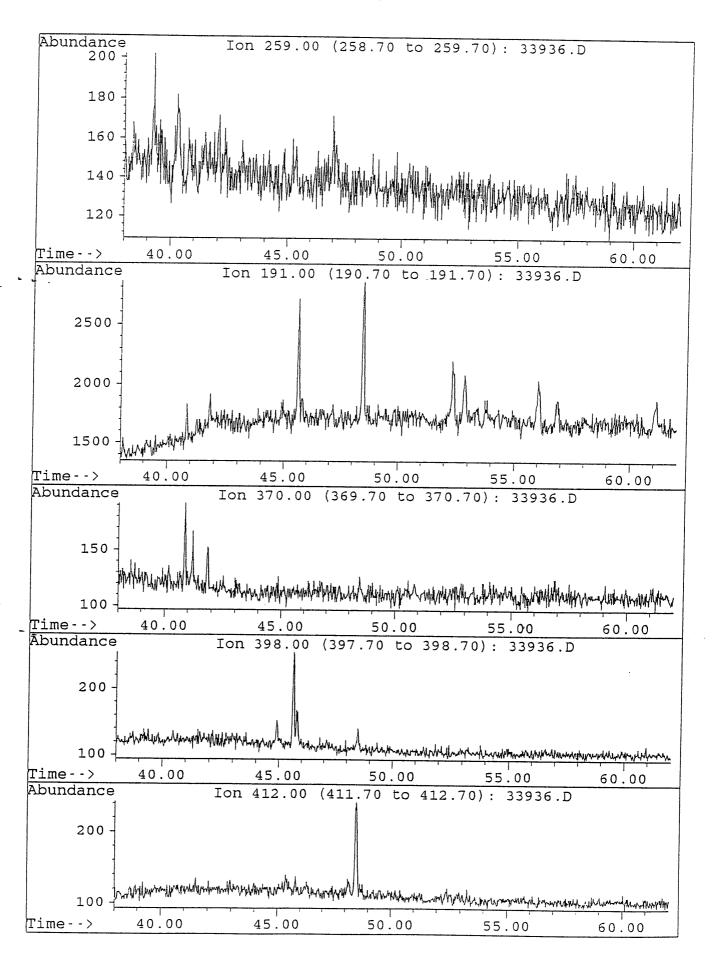
33936.D

Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

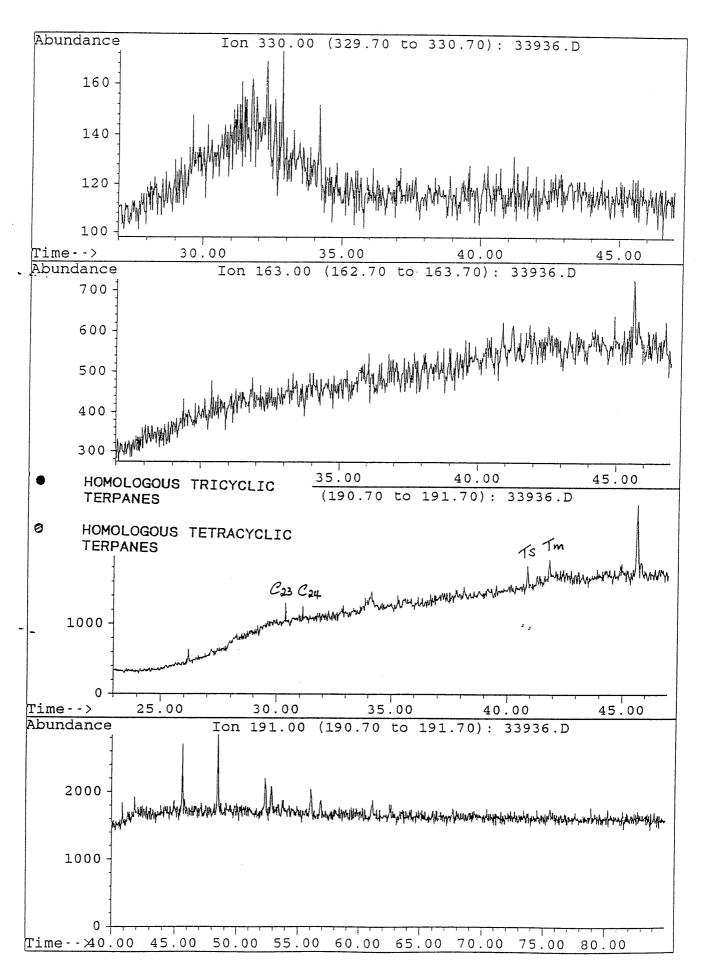
33936.D

Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

33936.Ď

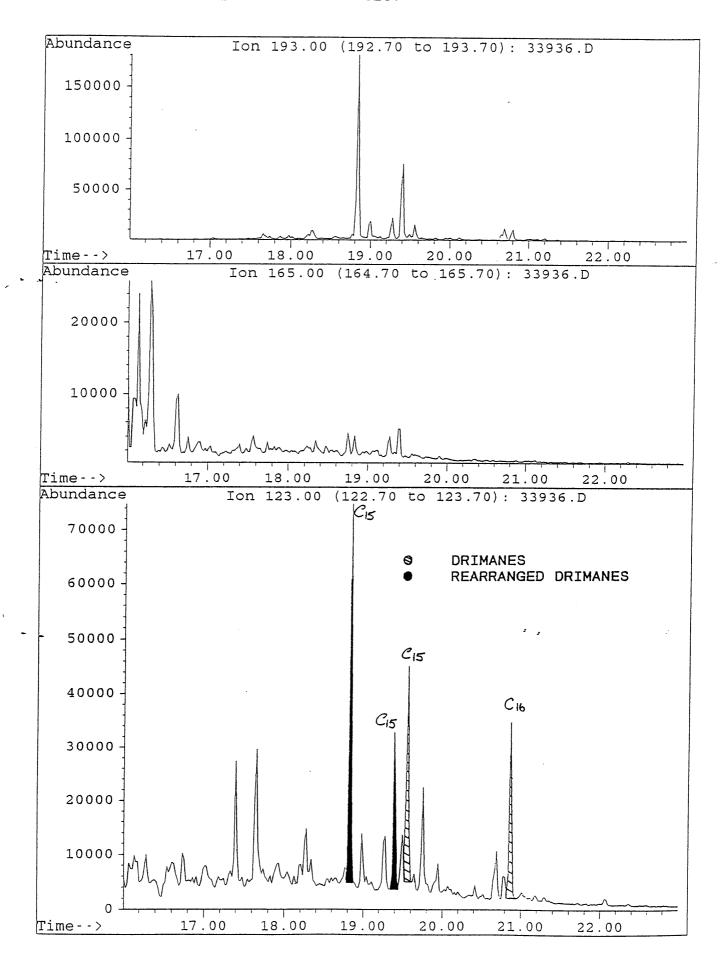
Sample :


DUNBAR#1, DST#2, CONDENSATE. B/C.

33936.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

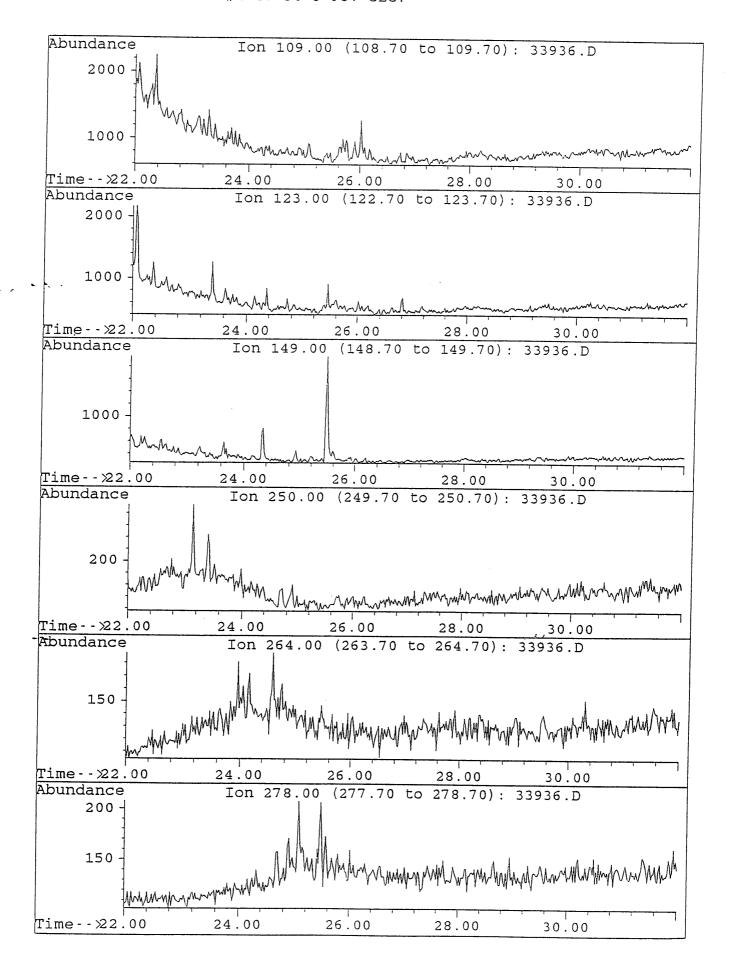


33936.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info :

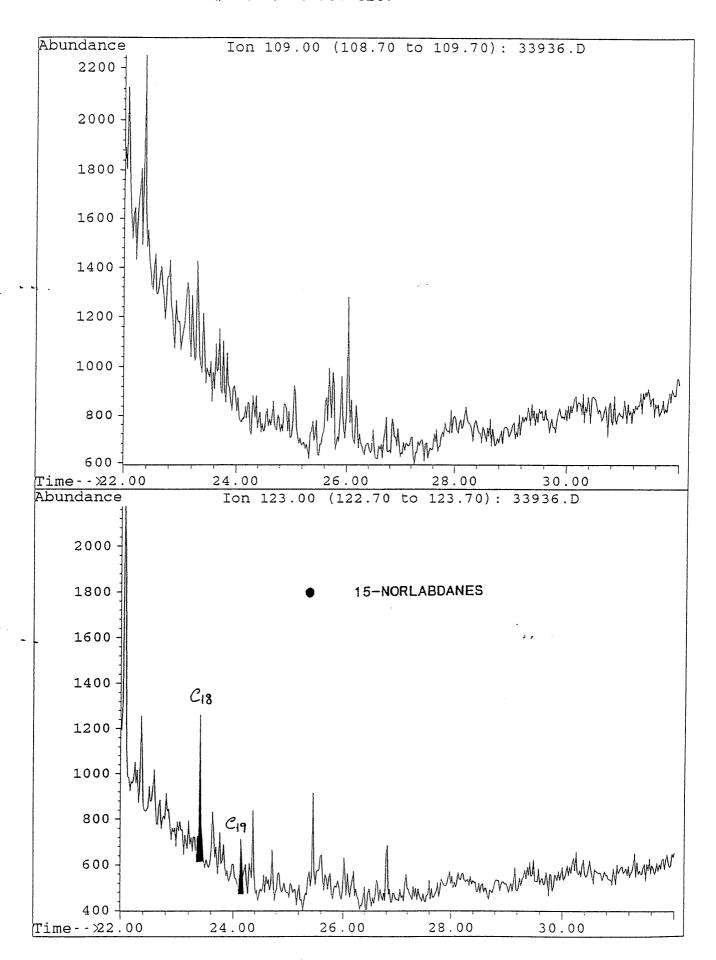


33936.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info :

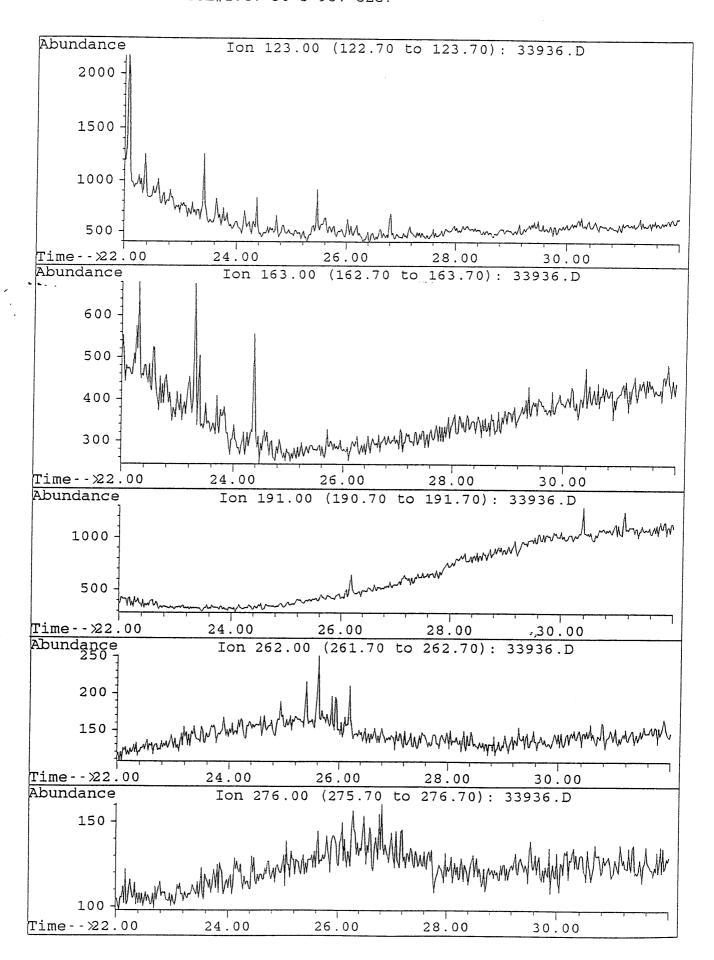


33936.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info :

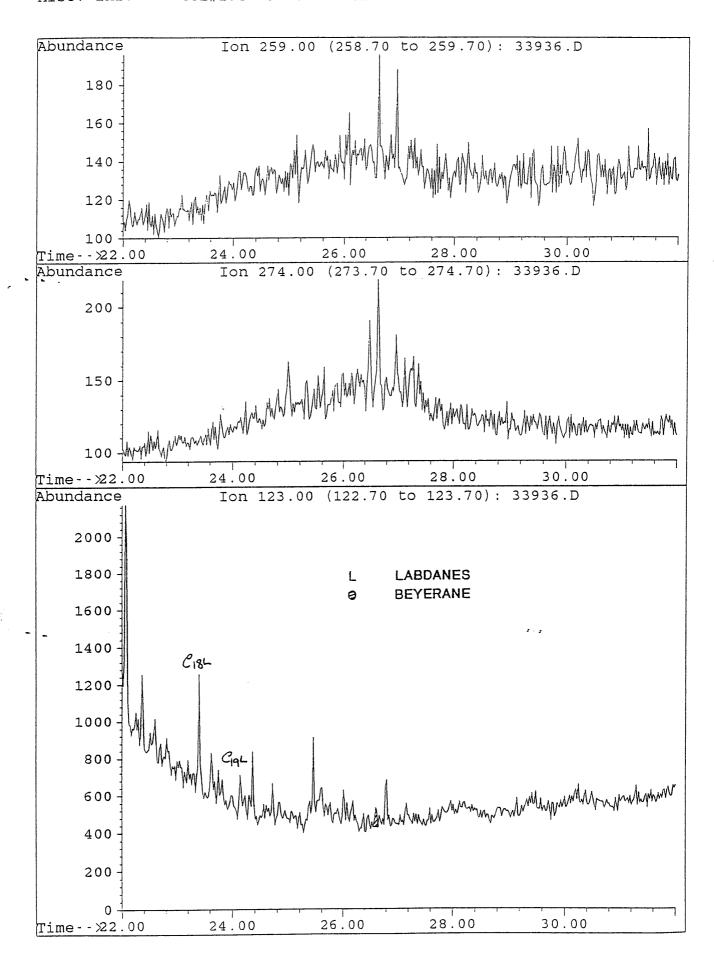


33936.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info :



33936.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info :

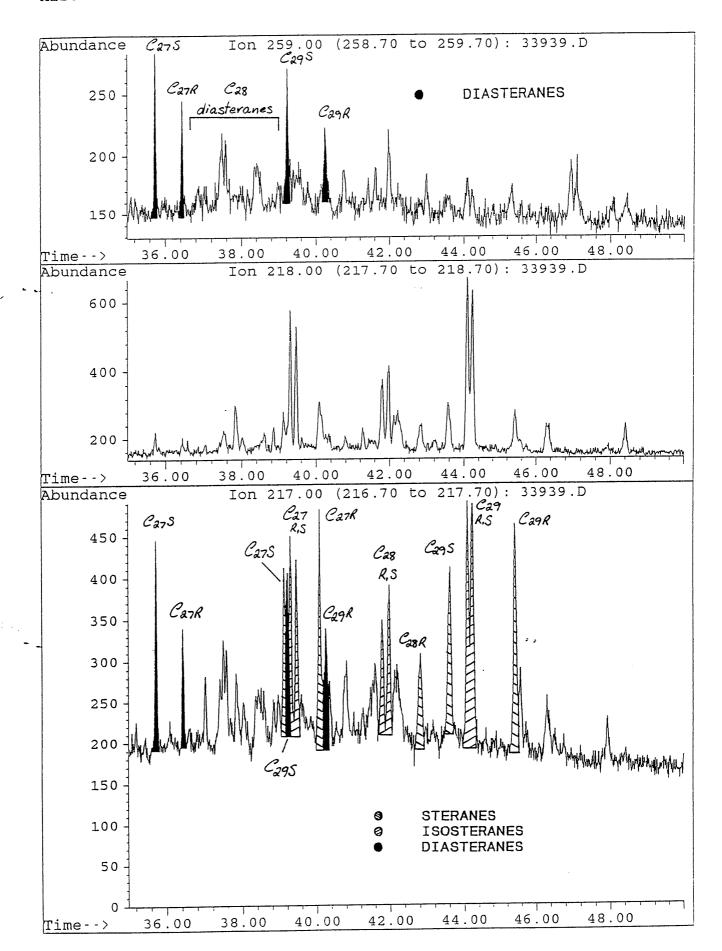
SELECTED PARAMETERS FROM GC/MS ANALYSIS

DUNBAR 1, DST 2, Condensate Special SIM

	<u>Parameter</u>	lon(s)	<u>Value</u>
1.	18 α (H)- hopane/17 α (H)-hopane (Ts/Tm)	191	0.99
2.	C30 hopane/C30 moretane	191	13.01
3.	C31 22S hopane/C31 22R hopane	191	1.38
4.	C32 22S hopane/C32 22R hopane	191	1.37
5.	C29 20S ααα sterane/C29 20R ααα sterane	217	0.73
6.	C29 \(\alpha\alpha\alpha\) steranes (20S / 20S + 20R)	217	0.42
7.	C29 αββ steranes	217	0.55
	C29 $\alpha\alpha\alpha$ steranes + C29 $\alpha\beta\beta$ steranes		
8.	C27/C29 diasteranes	259	1.38
9.	C27/C29 steranes	217	1.04
10.	18 α (H)-oleanane/C30 hopane	191	nd
	C29 diasteranes	217	0.37
11.	C29 $\alpha\alpha\alpha$ steranes + C29 $\alpha\beta\beta$ steranes		
	C30 (hopane + moretane)	191/217	1.79
12.	C29 (steranes + diasteranes)	101,2	•
13.	C15 drimane/C16 homodrimane	123	nd
14.	Rearranged drimanes/normal drimanes	123 ·	nd

nd = not detectable

File :

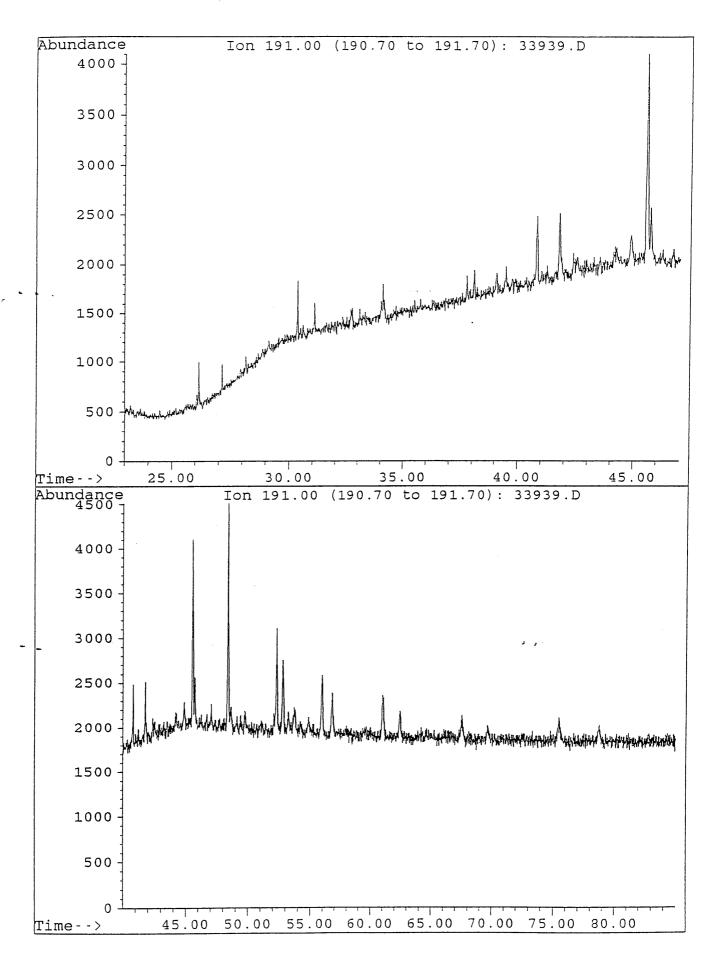

33939.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info :

COL#164. 30-3-95. GEC.


File :

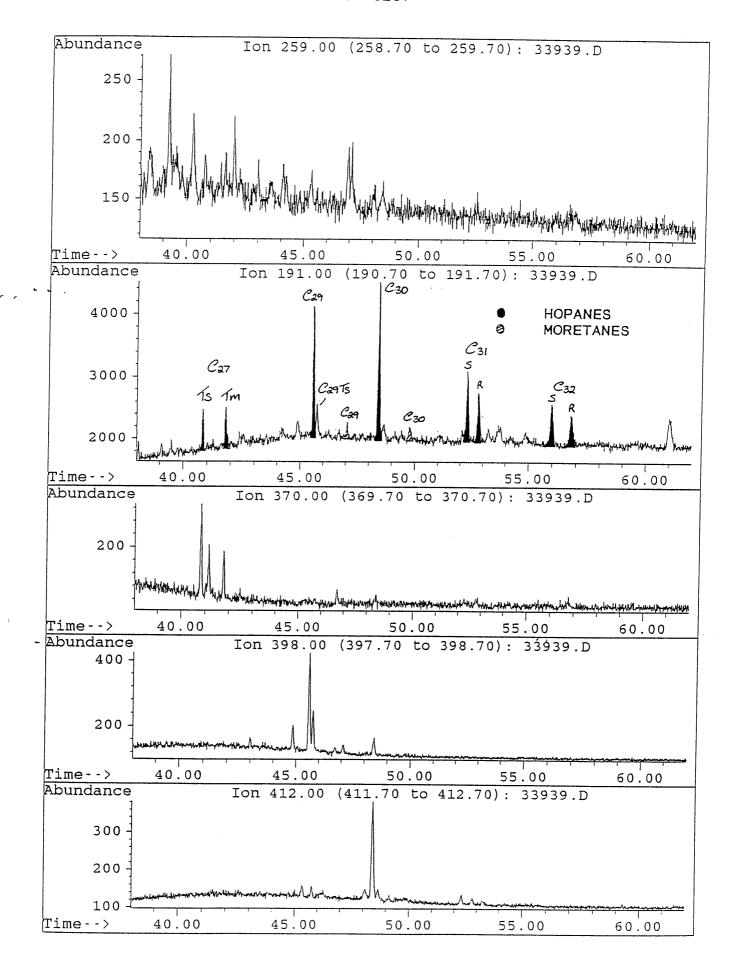
33939.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info : COL#164. 30-3-95. GEC.

File :


33939.D

Sample :

DUNBAR#1, DST#2, CONDENSATE. B/C.

Misc. Info :

COL#164. 30-3-95. GEC.

48.00 46.00 Ion 217.00 (216.70 to 217.70); 33939.D 44.00 42.00 40.00 38,00 36,00 Abundance 200-450 400 350 300 250 100 150 50 Time-->

33939.D DUNBAR#1, DST#2, CONDENSATE. B/C. COL#164. 30-3-95. GEC.

Jample :
Misc. Info :

-i.le :

Ü

48.00 46.00 44.00 Ion 217.00 (216.70 to 217.70): 33939.D 42.00 40.00 38,00 36,00 34,00 32.00 30.00 28,00 26.00 Abundance 450 300 -400 350 250 200 150 50 -100

33939.D DUNBAR#1, DST#2, CONDENSATE. B/C. COL#164. 30-3-95. GEC.

> sample : Misc. Info

ile:

80.00 75,00 70,00 Ion 191.00 (190.70 to 191.70); 33939.D 65,00 60.00 55,00 50.00 45.00 40.00 Abundance 45007 1500 -4000 3500 3000 2500 2000 1000 500 Time-->

33939.D DUNBAR#1, DST#2, CONDENSATE. B/C. COL#164. 30-3-95. GEC.

> Sumple : Misc. Info

r. Le :

80.00 75.00 70.00 (190.70 to 191.70); 33939.D 65.00 60.00 55,00 50,00 Ion 191.00 45.00 40.00 35.00 30,00 25.00 Abundance 4500 7 500 -4000 3500 2500 -1500 -1000 3000 2000

33939.D DUNBAR#1, DST#2,'CONDENSATE. B/C. COL#164. 30-3-95'. GEC.

Misc. Info

F e : Sample

APPENDIX 10

APPENDIX 10

PALYNOLOGY REPORT

Palynological Analysis of Dunbar-1, Port Campbell Embayment, Otway Basin.

by

Alan D. Partridge

Biostrata Pty Ltd A.C.N. 053 800 945

Biostrata Report 1995/7
21 June 1995

CONTENTS

INTERPRETATIVE DATA

Introduction	1
Table 1: Palynological Summary Dunbar-1	1
Geological Comments	2
Table-2: Microplankton Abundance in Selected Samples	3
Biostratigraphy	4
References	7
Table-3: Interpretative Palynological Data for Dunbar-1	8
Confidence Ratings	9
BASIC DATA	
Table 4: Basic Sample Data - Dunbar-1	10
Table-5: Basic Palynomorph Data for Dunbar-1	11
Palvnomorph Range Chart for Dunbar-1	Attachment

INTERPRETATIVE DATA

Introduction

Fourteen sidewall cores samples were analysed in Dunbar-1 with the focus of the palynological investigation concentrated on the Waarre Formation and basal Belfast Mudstone. Age dating is provided for only a short 167 metres interval of the well extending from 1401.0m within the Belfast Mudstone to 1568.0m within the Eumeralla Formation. The palynological zones and ages identified and their correlations to formations or units identified in the well are summarised in Table 1 below. Additional interpretative data with zone identification and Confidence Ratings are recorded in Table 3, whilst basic data on sidewall core lithologies, sample quality and quantities, residue yields, preservation and diversity are recorded on Tables 4 and 5. All species which have been identified with binomial names are tabulated on a composite range chart for both sporepollen and microplankton which presents the recorded assemblages in order of lowest appearances.

Table 1: Palynological Summary Dunbar-1.

AGE	UNIT SPORE-POLLEN ZONES		MICROPLANKTON ZONES (SUBZONES)	
SANTONIAN	BELFAST MUDSTONE	T. apoxyexinus 1401.0m	I. cretaceum 1401.0m	
CONIACIAN	1349*-1476m	P. mawsonii 1467.2-1472.3m	C. striatoconus 1467.2-1472.3m	
TURONIAN	WAARRE FORMATION UNIT D 1476-1482m	P. mawsonii 1477.0-1480.2m	P. infusorioides 1477.0-1480.2m	
	WAARRE FORMATION UNIT C 1482-1520m	P. mawsonii 1501.2-1505.8m	P. infusorioides 1501.2-1505.8m (C. edwardsii) 1505.8m	
	WAARRE FORMATION UNITS A/B 1520-1548m	P. mawsonii 1520.6-1544.4m	P. infusorioides 1520.6-1544.4m	
ALBIAN	EUMERALLA FORMATION 1548-1758m (T.D.)	C. paradoxa or younger 1552.7-1568.0m	NO ZONES PRESENT	

^{*} Top of Belfast Mudstone in Dunbar-1 is a fault contact.

Between 3.8 to 12.4 grams (average 8 g) of the sidewall cores were cleaned and split by the author then forwarded them to Laola Pty Ltd in Perth for processing. Moderated to high residue yields were extracted from most samples. Kerogen slides were prepared with filtered and unfiltered fractions, and where sufficient

residue was recovered separate oxidised slides were prepared from fractions concentrated from the residues using 8 and 15 micron filters. Palynomorph concentrations on the palynological slides were mostly low to moderate, while palynomorph preservation was poor to fair and only very occasionally good.

Overall spore-pollen diversity was high averaging 26+ species per sample (Table 5). Microplankton diversity was moderate averaging 13+ species per sample in the Belfast Mudstone and Unit D of the Waarre Formation between 1401-1480.2m. But diversity was low from the rest of the Waarre and underlying Eumeralla Formation where it ranged from zero to 12 species per sample with an average of less than 5 species per sample. The microplankton abundance data presented in Table 2 was obtained from counts made on slides prepared using 8 micron filter cloth.

Geological Comments

- 1. The short sequence analysed from Dunbar-1 spans the time interval of Late Albian to Santonian, and except for some minor modifications most samples can be readily assigned to the Mesozoic spore-pollen and microplankton zones defined by Helby, Morgan & Partridge (1987).
- 2. The spore-pollen succession analysed commences with two assemblages from the Eumeralla Formation which are no older than the *C. paradoxa* Zone and no younger than the *P. pannosus* Zone. These assemblages are overlain by the *P. mawsonii* Zone which includes all samples from Waarre Formation and basal Belfast Mudstone between 1544.4m and 1467.2m. As has been found in the recently analysed Iona-2, Langley-1, Howmains-1 and the nearby Vaughan-1 wells (Partridge 1994a, b, c, 1995) the Cenomanian *A. distocarinatus* Zone as redefined by Helby Morgan & Partridge (1987) is considered to be absent in Dunbar-1 at the unconformity between the Waarre and Eumeralla Formations. Above the *P. mawsonii* Zone there is a 66-metre gap to the shallowest sample analysed from the middle of the Belfast Mudstone which is assigned to the *T. apoxyexinus* Zone.
- 3. Marine microplankton were recorded from all but one of the twelve samples from in the Waarre Formation and overlying Belfast Mudstone (Table 5). However, as observed in the nearby Vaughan-l well, the microplankton abundances in Units A to C of the Waarre are notably less than found in either Langley-l or Howmains-l suggesting that Dunbar-l, like Vaughan-l, is located closer to the palaeoshoreline. The abundances and diversity of microplankton from the overlying Unit D of the Waarre and the Belfast

Mudstone are, in contrast, interpreted to represent open marine environments.

Table-2: Microplankton Abundance in Selected Samples in Dunbar-1

SAMPLE TYPE	DEPTH (Metres)	Microplankton Zone and (Subzone)	Microplankton Abundance as % Relative to total Spore-pollen and Microplankton Count	Most abundant microplankton species as % of total Microplankton Count
SWC 24	1401.0	I. cretaceum	11%	Heterosphaeridium spp. >60%.
SWC 23	1467.2	C. striatoconus	12%	Amosopollis cruciformis ~20%.
SWC 22	1472.3	C. striatoconus	12%	Heterosphaeridium spp. >50%.
SWC 20	1477.0	P. infusorioides	22%	Heterosphaeridium spp. >25%. Cribroperidinium spp. >25%. Amosopollis cruciformis >20%.
SWC 19	1480.2	P. infusorioides	12%	Amosopollis cruciformis ~40%.
SWC 15	1505.8	(C. edwardsii)	10%	No species dominant in low count.
SWC 14	1520.6	Indeterminate	«1%	Microplankton too rare to count.
SWC 12	1531.5	P. infusorioides	<3%	No species dominant in low count.
SWC 4	1544.4	P. infusorioides	29%	Exochosphaeridium sp. ~35%. Cyclonephelium spp. ~20%.

4. Subdivision of the Waarre Formation into the units proposed by Buffin (1989) is provisionally suggested as follows:

Waarre Unit D:	1476-1482m
Waarre Unit C:	1482-1520m
Waarre Unit B:	1520-1534m
Waarre Unit A:	1534-1548m

These picks are consistent with palynomorph ranges recorded and units picked in Langley-1 and Vaughan-1. Like in Vaughan-1, the sidewall cores at 1501.5m and 1505.8m are considered to be no younger than the sample from core 1 at 1750m in Langley-1.

5. In Dunbar-1 the Waarre Unit D is taken as the interval below the lowest occurrence of the *C. striatoconus* Zone (or younger zones if the former is missing) to the top of the first clean sand of Unit C. On the electric logs in Dunbar-1 the top is picked at 1476m at the point of increase in the resistivity and sonic logs and at what is considered the best log break above the sample at 1477m. On the gamma ray log the top could be picked slightly lower at 1478m to correspond to a decline in the gamma ray readings. On either pick Unit D is very thin being represented by only 4 to

6 metres of section in contrast to a thickness 15 metres in Langley-1 (Partridge, 1994b) and 20 metres in Iona-2. In the nearby Vaughan-1 well a thickness of 9.5 metres was assigned to Unit D based on the comparison of the distinct spike on the sonic log at 1594m, which was correlated to a similar spike at 1479m in Dunbar-1. Unfortunately, the top of Unit D in Vaughan-1 could not be confirmed by the palynology because the most likely position for the *C. striatoconus* Zone could not be sampled by sidewall cores owing to severe caving problems at the base of the Belfast Mudstone.

6. The oldest unit penetrated in Dunbar-1 is the Eumeralla Formation between 1548-1758m (T.D.). Of the three sidewall cores over this interval only the deeper two were considered suitable to process (Table 4), but the spore-pollen assemblages extracted were poor and provide only an age range from the *C. paradoxa* to the *P. pannosus* Zones.

Biostratigraphy

The zone and age determinations are based on the Australia wide Mesozoic spore-pollen and microplankton zonation schemes described by Helby, Morgan & Partridge (1987). Author citations for most spore-pollen species can be sourced from Helby, Morgan & Partridge (1987), Dettmann (1963), Stover & Partridge (1973) or other references cited herein, whilst author citations for dinoflagellates can be found in the index of Lentin & Williams (1993). Species names followed by "ms" are unpublished manuscript names.

Tricolporites apoxyexinus spore-pollen Zone

and

Isabelidinium cretaceum microplankton Zone.

Interval: 1401.0 metres.

Age: Santonian.

The shallowest sample analysed is assigned to this zone on the presence of the eponymous species *Tricolporites apoxyexinus* and the associated secondary index species *Latrobosporites amplus* and *L. ohaiensis*. In composition the sample is characterised by the incoming of significant angiosperm pollen comprising >19% of the spore-pollen count. The most abundant angiosperms are small varieties of *Proteacidites* spp. at 9% and *Australopollis obscurus* at 5%. The sample also contains common microplankton which are assigned to the *I. cretaceum* Zone on the presence of frequent specimens of both *Amphidiadema denticulata* and *Isabelidinium rotundatum* ms and rare specimens of *Isabelidinium thomasii* in an assemblage dominated by *Heterosphaeridium* spp.

Phyllocladidites mawsonii spore-pollen Zone

(formerly the Clavifera triplex Zone).

Interval: 1467.2-1544.4 metres (77+ metres).

Age: Turonian-Coniacian.

The eleven samples assigned to the *P. mawsonii* Zone can be subdivided into two subzones based mainly on the range of *Hoegisporis trinalis* ms.

The lower subzone is represented by the six samples between 1505.8-1544.4m and probably should also include the sample at 1501.2m, which gave a high residue yield with unfortunately only a very low concentration of palynomorphs. The subzone is characterised by the consistent and occasionally frequent occurrence of *Hoegisporis trinalis* ms and *Appendicisporites distocarinatus* associated with rare *Stoverisporites microverrucatus*. Other species considered diagnostic of this lower subzone were either rare or not recorded in Dunbar-1. Although the eponymous species *Phyllocladidites mawsonii* was not recorded to overlap with *H. trinalis* ms this is not of concern as the occurrence of *P. mawsonii* near the base of its range is both very rare and variable. The same comments are true for the base range of *Clavifera triplex* in the Otway Basin which in this well was found as deep as 1535.9m before the deepest occurrence of *P. mawsonii* at 1477m. As this is the reverse of the situation in the other wells recently analysed it would surely be refuted if additional slides were prepared and examined.

The upper subzone is characterised by the extension of the ranges of Rugulatisporites admirabilis ms and Laevigatosporites musa ms above the last occurrence of H. trinalis ms and an increase in abundance of the gymnosperm pollen Cupressacites sp. and Dilwynites spp. The occurrence of the distinctive spore Clavifera vultuosus ms at the top of the zone in the two samples containing the dinoflagellate Conosphaeridium striatoconus suggests that a further subdivision of the P. mawsonii Zone may be possible.

Overall the *P. mawsonii* Zone assemblages are very similar those recorded in other recent wells examined (*loc. cit.*). A character which distinguishes all assemblages from the *P. mawsonii* Zone from those in the underlying Eumeralla Formation is the consistent and common occurrence of *Gleicheniidites circinidites* in nearly all samples.

Conosphaeridium striatoconus microplankton Zone.

Interval: 1467.2-1472.3 metres (5+ metres).

Age: Coniacian.

Two samples are assigned to this zone on the occurrence of the eponymous species *C. striatoconus* and absence of both *Kiokansium polypes*, characteristic of the underlying *P. infusorioides* Zone, and species of *Odontochitina* and *Isabelidinium* diagnostic of the immediately younger zones. The moderate diversity assemblages recorded from the two samples are dominated by *Heterosphaeridium* spp. and *Amosopollis cruciformis* and lack other species considered diagnostic of the zone.

Palaeohystrichophora infusorioides microplankton Zone.

Interval: 1477.0-1544.4 metres (67+ metres).

Age: Turonian.

The samples identified as belonging to the *P. infusorioides* Zone, like others recently analysed from the Port Campbell Embayment (Partridge, 1994a, b, c; 1995), are assigned to the zone on negative evidence. All lack the key index species of the underlying *D. multispinum* Zone, yet lie below the FAD (First Appearance Datum) for *Conosphaeridium striatoconus* which defines the next youngest zone. In Dunbar-1 the total assemblage recorded from the zone of comprises all of which are known to have long ranges extending into both older and younger zones. Confidence in the zone assignment is therefore dependant, firstly, on the fact that the composite assemblage from the zone can be considered to have a high diversity yet still lack older or younger index species and secondly, because it reproduces similar results obtained the other recently analysed wells.

Cribroperidinium edwardsii Subzone.

Interval: 1505.8.0 metres

Age: Turonian.

The Cribroperidinium edwardsii Subzone was originally recognised and defined with the concept of an acme zone in the Iona-2 and Langley-1 wells (Partridge 1994a, b). However, in Dunbar-1 the zone is not clearly identified. Although *C. edwardsii* occurs as the most prominent *Cribroperidinium* species at 1505.8m, it is not the dominant or even the most conspicuous species in the sample. Nevertheless, this sample is the best candidate for the zone. Other occurrences include only a tentative identification of *C. edwardsii* at 1531.5m and its presence as rare specimens amongst a similar but non-verrucate *Cribroperidinium*

species at 1477m. This latter sample is not typical of concept the *C. edwardsii* acme in Iona-2 and Langley-1 as it contains abundances of both *Heterosphaeridium* spp. and *Amosopollis cruciformis*, which is other wells occur above the *C. edwardsii* acme. Similar difficulties with identification of the subzone were reported from the nearby Vaughan-1 (Partridge, 1995). It would appear the difficulty with identifying the subzone is related to the overall reduction in abundance of microplankton through the lower part of the Waarre Formation in these two wells.

Coptospora paradoxa spore-pollen Zone or younger.

Interval: 1552.7?-1568.0 metres.

Age: Late Albian.

The two samples analysed from the Eumeralla Formation are no older than the *C. paradoxa* Zone on presence of the eponymous species in the deeper sample, but could just as easily belong to the younger *P. pannosus* Zone as both assemblages are poor. The lithological character supports the assignment along with the frequent occurrence of *Corallina torosa* in the shallower sample, as this is a typical character of Eumeralla assemblages analysed from the *P. pannosus* Zone.

References

- BUFFIN, A.J., 1989. Waarre Sandstone development within the Port Campbell Embayment. *APEA J.* 29 (1), 299-311.
- DETTMANN, M.E., 1963. Upper Mesozoic microfloras from southeastern Australia. *Proc. R. Soc. Vict.* 77, 1-148.
- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. *Mem. Ass. Australas. Palaeontols* 4, 1-94.
- LENTIN, J.K. & WILLIAMS, G.L., 1993. Fossil Dinoflagellates: Index to genera and species, 1993 Edition. *AASP Contribution Series No. 28*, 1-856.
- PARTRIDGE, A.D., 1994a. Palynological analysis of Iona-2 in Port Campbell Embayment, Otway Basin. *Biostrata Report 1994/4*, 1-25.
- PARTRIDGE, A.D., 1994b. Palynological analysis of Langley-1, Port Campbell Embayment, Otway Basin. *Biostrata Report 1994/11*, 1-28.
- PARTRIDGE, A.D., 1994c. Palynological analysis of Howmains-1, Port Campbell Embayment, Otway Basin. *Biostrata Report 1994/13*, 1-22.
- PARTRIDGE, A.D., 1995. Palynological analysis of Vaughan-1, Port Campbell Embayment, Otway Basin. *Biostrata Report 1995/5*, 1-14.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. *Proc. R. Soc. Vict.* 85, 237-286.

Table-3: Interpretative Palynological Data for Dunbar-1, Otway Basin.

Sample	Depth Metres	Spore-Pollen Zone	*CR	Microplankton Zones and (Subzone)	*CR	Comments and Key Species
SWC 24	1401.0	T. apoxyexinus	B4	I. cretaceum	В3	FADs for Isabelidinium rotundatum ms and Amphidiadema denticulata.
SWC 23	1467.2	P. mawsonii	B2	C. striatoconus	В3	LAD of C. striatoconus with Clavifera vultuosus ms
SWC 22	1472.3	P. mawsonii	B2	C. striatoconus	B2	FADs for Conosphaeridium striatoconus & C. vultuosus ms.
SWC 20	1477.0	P. mawsonii	B4	P. infusorioides	В3	LADs of Kiokansium polypes and Rugulatisporites admirabilis ms. Assemblage contains common Cribroperidinium sp.
SWC 19	1480.2	P. mawsonii	B2	P. infusorioides	B4	LAD of <i>Laevigatisporites musa</i> ms.
SWC 16	1501.2	P. mawsonii	B4			LAD of <i>Appendicisporites</i> distocarinatus in sample with low fossil concentration.
SWC 15	1505.8	P. mawsonii (H. trinalis)	B2	P. infusorioides (C. edwardsii)	В3	LAD of Hoegisporis trinalis ms
SWC 14	1520.6	P. mawsonii (H. trinalis)	В3			Similar to overlying sample, but lacking key microplankton.
SWC 12	1531.5	P. mawsonii (H. trinalis)	B2	P. infusorioides	B4	Cribroperidinium edwardsii possibly present.
SWC 9	1535.9	P. mawsonii (H. trinalis)	ВЗ			Very low yield with <i>H. trinalis</i> present.
SWC 8	1538.3	P. mawsonii	B5			Low yield sample lacking key index species.
SWC 4	1544.4	P. mawsonii (H. trinalis)	B2	P. infusorioides	B2	Typical basal Waarre microplankton assemblage. FAD <i>H. trinali</i> s ms and <i>R. admirabili</i> s ms.
SWC 2	1552.7	Indeterminate				Frequent <i>Corallina torosa</i> and marked jump in maturation suggests sample is from Eumeralla Formation
SWC 1	1568.0	C. paradoxa or younger.				Coptospora paradoxa frequent without younger index species.

*CR = Confidence Ratings LAD = Last Appearance Datum FAD = First Appearance Datum

Confidence Ratings

The Confidence Ratings assigned to the zone identifications on Table-4 are quality codes used in the STRATDAT relational database being developed by the Australian Geological Survey Organisation (AGSO) as a National Database for interpretive biostratigraphic data. Their purpose is to provide a simple relative comparison of the quality of the zone assignments. The alpha and numeric components of the codes have been assigned the following meanings:

Alpha codes: Linked to sample type

- A Core
- **B** Sidewall core
- C Coal cuttings
- **D** Ditch cuttings
- E Junk basket
- F Miscellaneous/unknown
- **G** Outcrop

Numeric codes: Linked to fossil assemblage

1 Excellent confidence: High diversity assemblage recorded with

key zone species.

2 Good confidence: Moderately diverse assemblage recorded

with key zone species.

3 Fair confidence: Low diversity assemblage recorded with

key zone species.

4 Poor confidence: Moderate to high diversity assemblage

recorded without key zone species.

5 Very low confidence: Low diversity assemblage recorded without

key zone species.

BASIC DATA

Table 4: Basic Sample Data - Dunbar-1, Otway Basin.

SAMPLE TYPE	DEPTH (Metres)	REC (cm)	LITHOLOGY	SAMPLE WT (g)	RESIDUE YIELD
SWC 24	1401.0	4.1	Dark brown-grey mainly homogeneous claystone. Well cleaned	11.1	High
SWC 23	1467.2	4.0	Dark brown homogeneous claystone. No obvious glauconite. Well cleaned	10.2	High
SWC 22	1472.3	4.2	Dark brown grey homogeneous claystone. No obvious glauconite. Well cleaned	11.8	High
SWC 20	1477.0	3.4	Dark brown grey claystone, trace glauconite and pyrite, very fine. Small shark tooth observed on broken surface. Well cleaned.	12.4	Moderate
SWC 19	1480.2	2.3	Medium grey to brown pyritic claystone. Pyrite nodule 7mm diam. and shelly fossil fragments present. Well cleaned.	6.9	Moderate
SWC 16	1501.3	3.4	Light grey very coarse sandstone with 2mm thick carbonaceous laminae. Moderately well cleaned.	7.6	High
SWC 15	1505.8	2.3	Medium grey claystone. Sample soft, mud penetrated. Poorly cleaned.	7.1	High
SWC 14	1520.6	3.0	Dark grey claystone with minor <2mm white sandstone laminae. Moderately well cleaned, some mud penetration.	8.4	High
SWC 12	1531.5	<2.0	Medium brown soft claystone badly mud contaminated. Not cleaned.	5.4	High
SWC 9	1535.9	3.0	Light brown grey fine grained sandstone with argillaceous matrix and lithic grains. Sample very soft but well cleaned.	7.6	Low
SWC 8	1538.3	2.6	Light brown grey very fine sandstone. Similar to SWC 9. Sample soft but well cleaned.	7.0	Low
SWC 4	1544.4	2.5	Dark brown grey homogeneous claystone with 3mm laminae of medium grey sandstone. Well cleaned.	8.4	Moderate
SWC 3	1548.2	3.0	Light grey fine grained sandstone with white argillaceous matrix. Not processed.		
SWC 2	1552.7	2.0	Medium grey fine grained sandstone with argillaceous matrix with irregular clasts of medium grey claystone. Moderately well cleaned.	3.8	Low
SWC 1	1568.0	<1.5	Medium grey brown subfissil claystone. Mud penetrated. Poorly cleaned.	4.3	High

Table-5: Basic Palynomorph Data for Dunbar-1, Otway Basin.

SAMPLE TYPE	DEPTH (Metres)	Palynomorph Concentration	Palynomorph Preservation	Number S-P Species*	Microplankton Abundance	Number MP Species*
SWC 24	1401.0	Moderate	Fair	32+	Common	11+
SWC 23	1467.2	Moderate	Fair	33+	Common	9+
SWC 22	1472.3	Moderate	Poor-fair	40+	Common	16+
SWC 20	1477.0	Moderate	Fair	34+	Abundant	20+
SWC 19	1480.2	Low	Poor-fair	29+	Common	11+
SWC 16	1501.3	Very low	Fair	11+	NR	
SWC 15	1505.8	Low	Fair	31+	Common	10+
SWC 14	1520.6	Moderate	Fair-good	34+	Very rare	2+
SWC 12	1531.5	Moderate	Fair-good	32+	Frequent	6+
SWC 9	1535.9	Low	Poor-good	16+	Very rare	1+
SWC 8	1538.3	Low	Poor	19+	Very rare	1+
SWC 4	1544.4	High	Poor	31+	Abundant	12+
SWC 2	1552.7	Low	Very poor	11+	NR	
SWC 1	1568.0	Moderate	Very poor	15+	Frequent	2+

*Diversity:

Very low 1-5 species

6-10 species Low = Moderate = 11-25 species = 26-74 species = 75+ species = Not recorded in sample High Very high

NR

This is an enclosure indicator page. The enclosure PE900752 is enclosed within the container PE900923 at this location in this document.

WELL_NAME = Dunbar-1

CLIENT_OP_CO = GFE Resources

(Inserted by DNRE - Vic Govt Mines Dept)

CONTRACTOR =

The enclosure PE900752 has the following characteristics:

ENCLOSURES

This is an enclosure indicator page.

The enclosure PE600732 is enclosed within the container PE900923 at this location in this document.

The enclosure PE600732 has the following characteristics:

ITEM_BARCODE = PE600732
CONTAINER_BARCODE = PE900923

NAME = Composite Well log

BASIN = OTWAY
PERMIT = PPL/1
TYPE = WELL

SUBTYPE = COMPOSITE_LOG

REMARKS =

 $DATE_CREATED = 1/04/95$

DATE_RECEIVED =

 $W_NO = W1119$

WELL_NAME = Dunbar-1
CONTRACTOR = GFE Resources

CLIENT_OP_CO =

This is an enclosure indicator page. The enclosure PE604390 is enclosed within the container PE900923 at this location in this document.

The enclosure PE604390 has the following characteristics:

ITEM_BARCODE = PE604390

CONTAINER_BARCODE = PE900923

NAME = Formation Evaluation Log

BASIN = OTWAY BASIN

PERMIT = PP/L1

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Formation Evaluation Log (enclosure 2

from WCR) for Dunbar-1

REMARKS =

 $DATE_CREATED = 26/03/95$

DATE_RECEIVED =

 $W_NO = W1119$

WELL_NAME = DUNBAR-1

CONTRACTOR = BAKER HUGHS INTEQ CLIENT_OP_CO = GFE RESOURCES LTD

This is an enclosure indicator page. The enclosure PE600734 is enclosed within the container PE900923 at this location in this document.

The enclosure PE600734 has the following characteristics:

ITEM_BARCODE = PE600734
CONTAINER_BARCODE = PE900923

NAME = Gas Ratio Analysis Log

BASIN = OTWAY PERMIT = PPL/1

TYPE = WELL

SUBTYPE = WELL_LOG

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1119$

WELL_NAME = Dunbar-1

CONTRACTOR = Baker Hughes Inteq

CLIENT_OP_CO = GFE Resources

This is an enclosure indicator page. The enclosure PE600735 is enclosed within the container PE900923 at this location in this document.

The enclosure PE600735 has the following characteristics:

ITEM_BARCODE = PE600735
CONTAINER_BARCODE = PE900923

NAME = Complex Lithology Model

BASIN = OTWAY PERMIT = PPL/1

TYPE = WELL

SUBTYPE = WELL_LOG

REMARKS =

 $DATE_CREATED = 18/01/96$

DATE_RECEIVED =

 $W_NO = W1119$

WELL_NAME = Dunbar-1

CONTRACTOR = GFE Resources

CLIENT_OP_CO = GFE Resources