

WELL COMPLETION REPORT

DIGBY-1

DIGBY JOINT VENTURE OTWAY BASIN, VICTORIA

compiled by

Kevin Lanigan

November, 1995

VOLUME 1

TEXT & APPENDICES 1 - 8

PETROLEUM DIVISION

17 NOV 1995

Level 6, 6 Riverside Quay, Southbank, Victoria 3006 Telephone: (03) 9684-4888 Facsimile: (03) 9684-4897

GFE RESOURCES LTD

DIGBY JOINT VENTURE OTWAY BASIN, VICTORIA

DIGBY-1

WELL COMPLETION REPORT

compiled by

Kevin Lanigan

submitted

November, 1995

CONTENTS

VOLUME 1

					Page
SUN	MMAR	Y SHEE	Γ		
1.	INT	RODUC	ΓΙΟΝ		1
2.	WE	LL HIST	ORY		5
	2.1	Locatio	on		5
	2.2	Genera	l Data		5
-	2.3	Drilling	g Data		6
		2.3.1	Drilling (Contractor	
		2.3.2	Drilling I	₹ig	
		2.3.3	Casing ar	nd Cementing Details	
		2.3.4	Drilling I	Fluid	
		2.3.5	Drilling I	Bits	
		2.3.6	Water Su	pply	
	2.4	Format	tion Sampl	ing and Testing	11
		2.4.1	Cuttings		
		2.4.2	Cores		
			2.4.2.1	Conventional Cores	
			2.4.2.2	Sidewall Cores	
		2.4.3	Testing		
			2.4.3.1	Drill Stem Testing	
			2.4.3.2	Wireline Formation Testing	
		2.4.4	Sample A	analyses	
	2.5	Loggin	g and Surv	reys	16
		2.5.1	Mud Log	ging	
		2.5.2	Wireline	Logging	
		2.5.3	Bottom H	Iole Temperature	
		2.5.4	Deviation	Surveys	
		2.5.5	Velocity	Survey	

		Page
TA	BLES	
1.	Bit Record	8
2.	Analysis of DST-1 Water Sample	14
3.	Sidewall Cores and Cuttings Analyses	17
4.	Hole Deviation	20
5.	Digby-1 Formation Tops and Thicknesses	21
6.	Digby-1 Basic Input Parameters for Log Analysis	43
7.	Digby-1 Log Analysis Results Summary	44
FIG	SURES	
1.	DIGBY JV Location Map	2
2.	Annya Seismic Lines and Digby-1 Location	3
3.	Digby-1 Drilling Progress Chart	10
4.	Digby-1 Formation Top Depths and Times	23
5.	Digby-1 Pre-drill Interpretation, Seismic Line OMN 93-14	40
6.	Digby-1 Post-drill Interpretation, Seismic Line OMN 93-14	41
API	PENDICES	
1.	Rig Specifications	
2.	Drilling Fluid Recap	
3.	Daily Report Summary of Drilling Operations	
4.	Lithological Descriptions	
	A. Cuttings Descriptions	
	B. Lithological Descriptions from Daily Reports	
5.	Sidewall Core Descriptions	
6.	Drill Stem Test Data *	
	A. DST-1	
	B. DST-2	
7.	Tabulated Mud Gas Data	
3.	Petrography Report	

^{*} Note: A disk containing ascii files of DST downhole electronic gauge data is included inside the cover of Volume 1.

VOLUME 2

APPENDICES (continued)

- 9. Geochemistry Data
 - A. Gas Chromatograms from Cuttings and DST Mud
 - B. Gas Chromatograms from Sidewall Cores
 - C. Vitrinite Reflectance & Rock-Eval
 - **D.** Pyrolysis GC from Sidewall Cores
 - E. GC-MS (Branched / Cyclics & Aromatics)
 - F. GC & GC-MS from Lindon-1, 2895m (and Correlation to Digby-1)
- 10. Palynological Reports
 - A. Palynostratigraphy and Organic Facies
 - B. Review of Selected Otway Basin Wells
- 11. Velocity Survey Report
- 12. Log Analysis Data

VOLUME 3

ENCLOSURES

		Scale
1	Composite Log	1:1000
2a	Formation Evaluation Log (Mud Log)	1:500
2 b	Gas Ratio Analysis Log	1:1000
3a	DLS-MRS-CSS-GR-SP-Cal	1:200
3 b	DLS-MRS-CSS-GR-SP-Cal	1:500
4a	PDS-CNS-GR-Cal	1:200
4b	PDS-CNS-GR-Cal	1:500
5	Synthetic Seismogram and Time-/Velocity-Depth Curves	
6	Stratigraphic Correlation (Greenbanks-1 to McEachern-1)	1:100000
7a	Top Pretty Hill Time Map (Pre-drill)	1:25000
7 b	Top Basement (Pre-drill)	1:25000
7 c	Top Pretty Hill Time Map (Post-drill)	1:25000
7d	Top Pretty Hill Depth Map (Post-drill)	1:25000
7 e	Intra-Casterton (DST-2) Time Map (Post-drill)	1:25000
7 f	Intra-Casterton (DST-2) Depth Map (Post-drill)	1:25000
8	Log Analysis Plot	1:500

SUMMARY

WELL DATA SUMMARY

DIGBY-1

Permit:

DIGBY JV Otway Basin, Victoria

Lat./Long.:

37° 50' 46.183"S / 141° 30' 11.257"E

AMG:

544265.6mE 5811119.6mN

Seismic:

Line OMN93-14 cmp 739.5

Elevation:

Ground Level: 138.0m AHD

Kelly Bushing (well datum): 143.77m AHD

Total Depth:

Driller 2088.0mKB

Rig:

Logger 2088.0mKB

Century Rig 11

Pre-drill Status: Exploration Well

exhibitation wen

Post-drill Status: Plugged and Abandoned

Participants:

Crusader Ltd

32.8125%

GFE Resources Ltd (Operator)
Santos Ltd

28.125% 25.0%

Australian Hydrocarbons Ltd Beach Petroleum N.L.

7.8125% 6.25%

Spud Date:

0100hrs, 10 May, 1995

TD Reached:

2330hrs, 31 May, 1995

Rig Released:

0300hrs, 4 June, 1995

	ing

Hole Size 12¹/₄" to 342mKB

81/2" to 2088mKB

Casing

16" Conductor to ≈5mGL (pre-spud) 9⁵/_s" 43.51b/ft Buttress N80 to 337.12mKB **Plugs**

1. 1950-1890m (not tested)

2. 1490-1430m (tagged at 1428m)

3. 283-380m (tagged at 333m)

4. 300-333m (pressured to 500psi)

5. Surface (≈30 sacks)

	~	(a) (a) (a) (b) (b) (b) (b)		•			
		THAT THAT	n	•	w	7.	
	.7	tratigra	ŧ)	н	٠,	<i>(</i> :-	

Group	Formation/Unit	Dep	pth	Thickness	Two-Way Time	High/Low to	Prognosis		
•		(mKB)	(mSS)	(m)	(milliseconds)	Depth	Time		
Otway		5.77	+138.0	1893.23					
,	Eumeralla Formation	5.77	+138.0	1096.73					
Crayfish Sub-Group	•	1102.5	-958.73	796.5					
	Laira Formation	1102.5	-958.73	360.5	705	not prognosed			
	Pretty Hill Formation	1463.0	-1319.23	436.0	922	56.0m Low	38ms High		
	Casterton Formation	1899.0	-1755.23	189.0+	1160	not prognosed			
	(Volcanics)	(2052.0)	(-1908.23)	(36.0+)	1250				
	TD	2088.0	-1944.23						

Key Hydrocarbon Indications

Eumeralla Formation: 445-470m (fault?) trace to 10% patchy to solid golden orange fluorescence; no gas.

950-1100m gas spikes up to 34 units associated with coal bands.

Pretty Hill Formation: 1463-1468m 70% pinpoint to patchy very pale yellow white to milky white fluorescence; no significant increase in gas.

1468-1750m occasional intervals with minor (mostly trace-5%) light yellow fluorescence; no significant gas.

Casterton Formation: 1922-1951m 70-100% pinpoint to solid yellow gold fluorescence; minor gas increase, mostly to 3-5 units, with peaks

up to 36.7 units.

1951-2052m no fluorescence; gas readings ranged 4-14 units.

Logging

Coring

No cores were cut

DLS-MRS-CSS-GR-SP-Cal: 2088.0 - 337.0m (GR to surface)

PDS-CNS-GR-Cal: 2088.0 - 337.0m

Velocity Survey (Checkshots): 2085.0 - 143.0m (20 levels) SCG (Sidewall cores): 2076.2 - 449.2m (shot 48, recovered 44)

Formation Tests

DST-1: 1460-1467.9m, Conventional bottom-hole test, 5min. PF, 60min. ISI, 180min. MF, 180min. FSI. Very weak blow (<1psig).

Recovered 54bbls of formation water and slightly oil-cut mud.

DST-2: 1920-1951m, Conventional bottom-hole test, 7min. PF, 45min. ISI, 60min. MF, 30min. FSI. No blow. Recovered 1.28bbls of slightly oil-cut mud.

Log Analysis

			We remark the			
Interval	Thickness (m)	Net Sand (m)	Net Pay (m)	Av. Eff. Ø (%)	<u>S_w (%)</u>	<u>V_{cl} (%)</u>
1461.3-1503.0m	41.7	28.8	0.0	13.8	84.8	27.0
1503.1-1595.0m	91.9	20.9	0.0	9.8	87.9	27.3
1595.1-1700.0m	104.9	94.2	0.1	14.2	48.4	35.6
1700.1-1899.9m	199.8	176.4	0.0	15.7	92.2	16.9
1923.2-1954.0m	30.8	15.3	1.3	20.1	35.9	28.3

INTRODUCTION

1. INTRODUCTION

The Digby prospect is located in western Victoria, approximately 60 kilometres north of Portland and about five kilometres southwest of the Digby township (Figure 1). Because it straddles the boundary between Petroleum Exploration Permits 134 and 126, the participants in both permits agreed to proportionally combine their interests in the area of the prospect by forming a new joint venture (henceforth referred to as the Digby Joint Venture or Digby JV), specifically to share evaluate the prospect.

The Digby Joint Venture comprises:

Company	Interest (%)				
Crusader Limited NL	32.8125				
GFE Resources Ltd (Operator)	28.125				
Santos Ltd	25.0				
Australian Hydrocarbons Ltd	7.8125				
Beach Petroleum NL	6.25				

Geologically, the Digby prospect is located at the junction of the Ardonachie Trough and an eastern extension of the Tantanoola Trough, with the nearest subsurface control being Mocamboro-11, a Geological Survey of Victoria stratigraphic well drilled in 1990, situated about ten kilometres to the north on the flank of the Ardonachie Trough.

The Digby structure was first identified from the Crawford River Seismic Survey, conducted by Beach Petroleum in 1988, and further delineated by GFE Resources Ltd's 1994 Annya Seismic Survey, which provided an uneven grid with an approximate two-kilometre dip line spacing (Figure 2).

As mapped on the top Pretty Hill Formation horizon prior to drilling, the Digby structure is a large east-west trending fault-dependent closure, bounded to the north by a down-to-the-north half-graben-forming fault. This fault also bounds a basement high block which divides the Ardonachie Trough into two separate half grabens. The bounding fault is interpreted to have had several periods of movement throughout the Cretaceous and Tertiary, including a compressional pulse in the mid-Tertiary (and possibly another in the mid-Cretaceous) which resulted in the rollover on the Digby structure.

Pre-drill mapping of the Digby prospect suggested an areal closure at the Top Pretty Hill Formation level of 2.24 square kilometres with a vertical relief of up to 155 metres and estimated potential reserves of 53 MMBBL OIP (13 recoverable) or 48 BCF GIP (31 recoverable).

1

PE905731

This is an enclosure indicator page.

The enclosure PE905731 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905731 has the following characteristics:

ITEM_BARCODE = PE905731
CONTAINER_BARCODE = PE900874

NAME = Digby JV Location Map

BASIN = OTWAY BASIN

PERMIT = PEP/134

TYPE = WELL

SUBTYPE = MAP

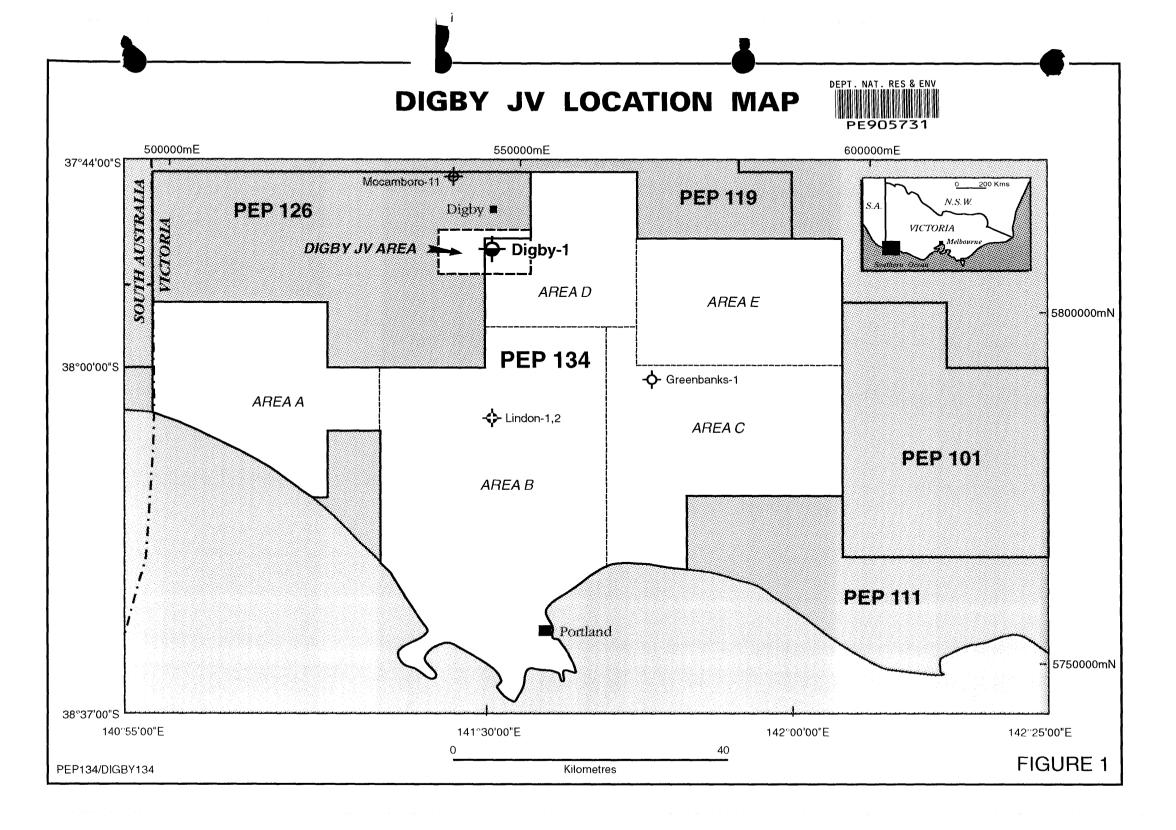
DESCRIPTION = Digby JV Location Map (from

Introduction of WCR vol. 1) for Digby-1

REMARKS =

 $DATE_CREATED = 30/11/95$

DATE_RECEIVED = 17/11/95


 $W_NO = W1130$

WELL_NAME = DIGBY-1

CONTRACTOR =

CLIENT_OP_CO = GFE RESOURCES LTD

(Inserted by DNRE - Vic Govt Mines Dept)

PE905732

This is an enclosure indicator page.

The enclosure PE905732 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905732 has the following characteristics:

ITEM_BARCODE = PE905732
CONTAINER_BARCODE = PE900874

NAME = Location Map

BASIN = OTWAY BASIN

PERMIT = PEP/134

TYPE = SEISMIC

SUBTYPE = LOCATION_MAP

DESCRIPTION = Annya Seismic Lines and Digby-1

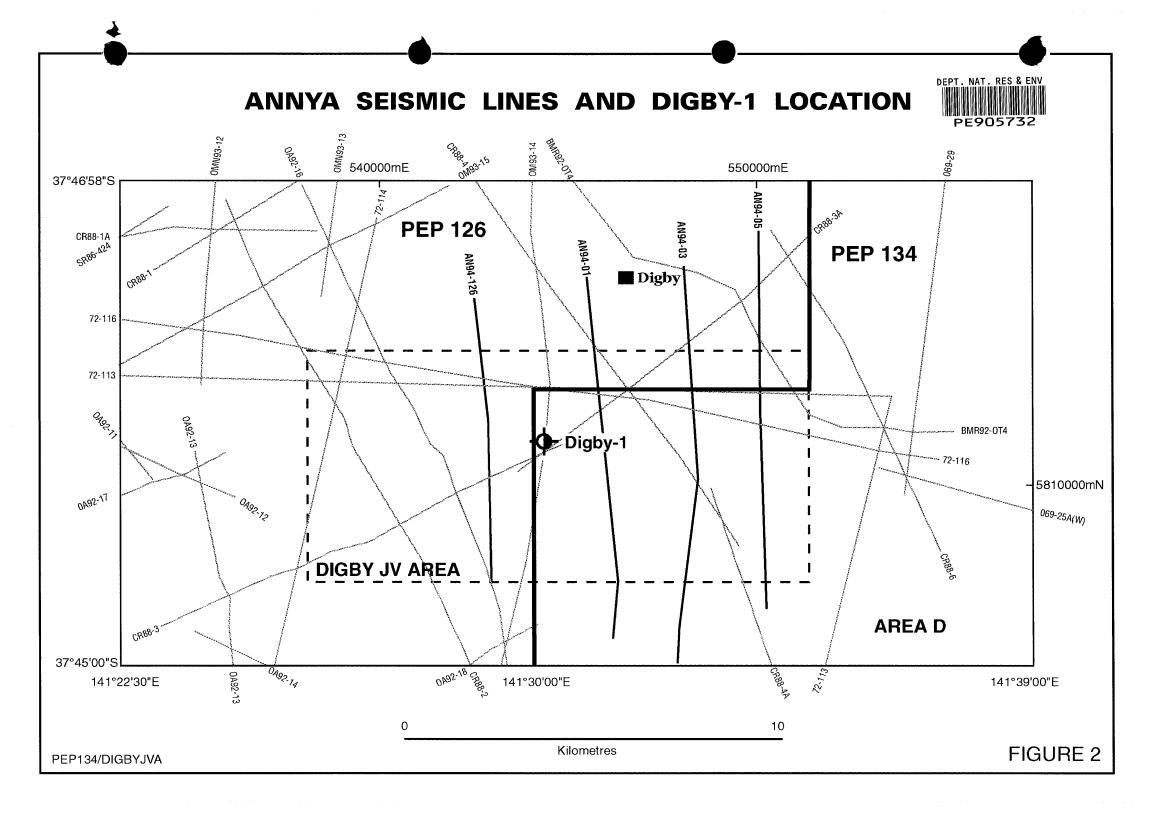
Location Map (from Introduction of WCR

vol. 1) for Digby-1

REMARKS =

 $DATE_CREATED = 30/11/95$

 $DATE_RECEIVED = 17/11/95$


 $W_NO = W1130$

WELL_NAME = DIGBY-1

CONTRACTOR =

CLIENT_OP_CO = GFE RESOURCES LTD

(Inserted by DNRE - Vic Govt Mines Dept)

Prior to drilling, a major perceived risk associated with the Digby prospect was that the seismic horizon picked as top of reservoir (Top Pretty Hill Formation) was incorrect. Both Digby-1 and the nearest well providing stratigraphic control (Mocamboro-11) are located on high blocks; in the ten kilometres separating them the correlation had to traverse two major faults and a graben, making a confident seismic pick problematic. Based on the section observed in Mocamboro-11, the primary target (Pretty Hill Formation) sandstones in Digby-1 were expected to be of good to excellent reservoir quality, notwithstanding the uncertainty of predicting their location within the structure.

Another major risk was that of hydrocarbon charge into the Digby structure. Although potentially suitable source rocks had previously been identified in the Portland and Penola Troughs, nothing was known of their distribution in the Ardonachie and Tantanoola Troughs and significant hydrocarbon migration into/through the Digby region was unproven prior to the drilling of Digby-1.

With regard to seal, the Pretty Hill Formation was interpreted to be stratigraphically directly below the dominantly claystone Eumeralla Formation, although the presence of crestal faults that both extend to surface and have been activated relatively recently always put doubt on the efficacy of any potentially sealing interval.

					Page			
3.	GEC	LOGY			21			
	3.1	Stratig	raphy		21			
	3.2	Lithol	ogy		22			
		3.2.1	Otway G	coup (Surface - 1899.0 metres)				
			3.2.1.1	Eumeralla Formation (Surface - 1102.5 metres)				
		3.2.2	Otway G	coup - Crayfish Sub-Group (1102.5 - 1899.0 metres)				
			3.2.2.1	Laira Formation (1102.5 - 1463.0 metres)				
			3.2.2.2	Pretty Hill Formation (1463.0 - 1899.0 metres)				
		3.2.3	Casterton	Formation (1899.0 - 2088.0 metres)				
	3.3 Hydrocarbon Indications							
		3.3.1	Mud Gas	Readings				
		3.3.2	Fluoresce	ence				
			3.3.2.1	Cuttings				
			3.3.2.2	Sidewall Cores				
	3.4	Geoch	emistry		34			
		3.4.1	Hydrocar	bon Geochemistry				
		3.4.2	Source ar	nd Maturity				
		3.4.3	Oil-Sourc	ee Pairing				
	3.5	Palyno	ology		39			
	3.6	Seismic Interpretation						
	3.7	Log Analysis						
4.	CON	CLUSIO	ONS		46			
	4.1	•		Performance	46 48			
	4.2	Contribution to Geological Knowledge & Hydrocarbon Prospectivity						

· WELL HISTORY

2. WELL HISTORY

2.1 LOCATION (see Figures 1 and 2)

Surface Location: Latitude: 37° 50′ 46.183″S

Longitude: 141° 30' 11.257"E

AMG: 544265.6mE

5811119.6mN

Seismic: Line: OMN93-14

cmp 739.5

Property Title: County: Normanby

Parish: Digby

Allotment: 56

Property Owner: W & J Simkin

2.2 GENERAL DATA

Well Name: Digby-1

Permit: DIGBY JV Otway Basin, Victoria

Operator: GFE Resources Ltd

Level 6, 6 Riverside Quay

South Melbourne Victoria 3205

Participants: Crusader Limited 32.8125%

GFE Resources Ltd 28.125% Santos Limited 25.0% Australian Hydrocarbons Ltd 7.8125%

Translation 11, around 50th Eta 7.0125

Beach Petroleum N.L. 6.25%

Elevation: Ground Level (GL): 138.0m AHD*

Kelly Bushing (KB): 143.77m AHD* (datum)

(All depths are Drilled Depths relative to KB

unless otherwise stated).

Total Depth: Driller: 2088.0mKB

Logger: 2088.0mKB

*AHD = Australian Height Datum

Drilling Commenced: 0100 hours, 10 May, 1995

Total Depth Reached: 2330 hours, 31 May, 1995

Rig Released: 0300 hours, 4 June, 1995

Well Status: Plugged and Abandoned

2.3 DRILLING DATA

2.3.1 Drilling Contractor

Century Drilling Limited

2.3.2 Drilling Rig

Century Rig 11 (see Appendix 1)

2.3.3 Casing and Cementing Details

A 16" Conductor pipe was cemented at ≈5 metres (GL) prior to rig up.

Surface Casing

Size: 9⁵/₈"

Weight & Grade: 43.5 lb/ft Buttress N80 (28 Joints)

Centralisers: 335m, 312m, 300m and 289m

Float Collar: 324.76m

Shoe: 337.12m

Hole Depth: 342m

Cement: 615 sacks Class "A" neat cement

Method: Single plug displacement

(top plug only)

Equipment: Dowell/Schlumberger

Cement plugs

Plug No.1 Interval: 1950-1890m

Cement: 71 sacks class "A" cement

Method: Balanced

Tested: No

Plug No.2 Interval: 1490-1430m

Cement: 78 sacks class "A" cement

Method: Balanced

Tested: Tagged at 1428m

Plug No.3 Interval: 283-380m

Cement: 180 sacks class "A" cement

Method: Balanced

Tested: Tagged at 333m

Plug No.4 Interval: 300-333m

Cement: 40 sacks class "A" cement

Method: Balanced

Tested: Pressure tested to 500psi

Surface Plug Emplaced by hand

2.3.4 Drilling Fluid

The drilling fluid program used was that designed and recommended by M-I Drilling Fluids Co. after consultation with GFE representatives. The well was spudded with a 4% KCl and 1.8-2.0 lb/bbl PHPA inhibited mud system. After running the surface casing, the shoe track was drilled out with water and the hole displaced to mud before conducting the FIT (EMW = 22.3 lb/gal).

The 8¹/₂" hole section was commenced with the KCl/PHPA mud from the 12¹/₄" section. The KCl content typically maintained between 5.5% and 6.5% and the PHPA between 1.0 to 2.0 lb/bbl. The mud weight was maintained between 9.1 and 9.3 lb/gal to 1200 metres thereafter being increased to 9.5 lb/gal. After DST-1 the mud weight was reduced to between 9.0 and 9.2 lb/gal for the rest of the hole. Apart from total loss of circulation occurring at 1759 metres, which was subsequently cured by additions of Mica/Kwikseal, no significant hole problems were encountered. Details of the mud system used and assessment of its performance are contained in the Drilling Fluid Recap (Appendix 2).

2.3.5 Drilling Bits

Six drilling bits were used during the drilling of Digby-1, and a record of their pertinent details is shown in Table 1.

TABLE 1

BIT RECORD

Well: Permit: Digby-1

DIĞBY JV

GFE Rep.:

Spud:

Ken Smith

0100hrs 10/5/95

Rig:

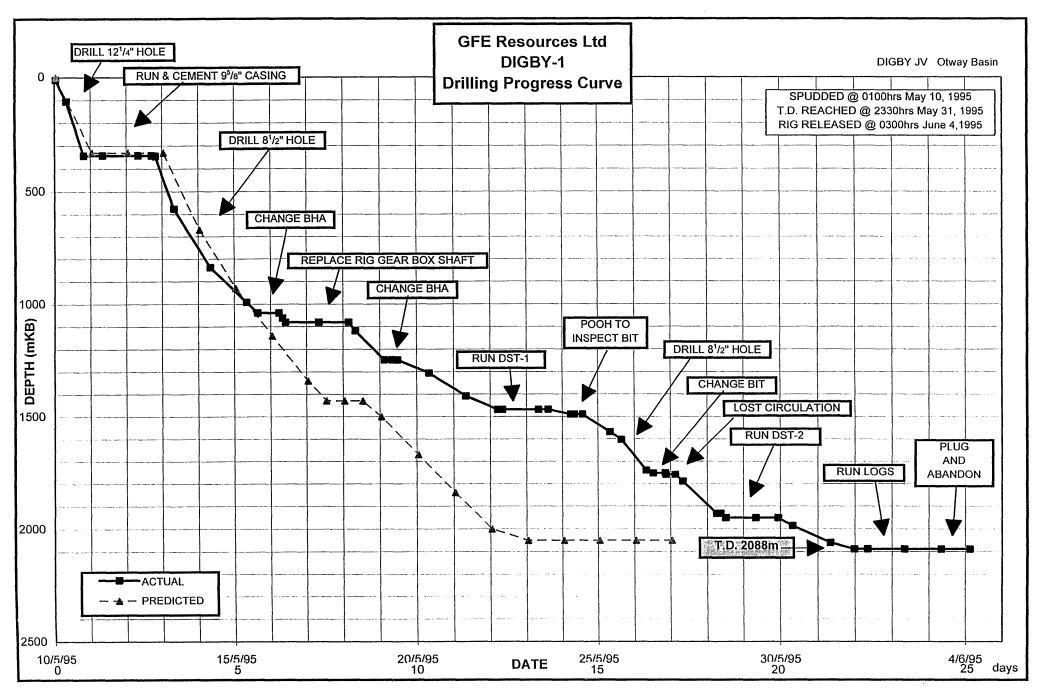
Century Rig 11

Reached T.D.: 2330 hrs 31/5/95

No.	Size (inch)	Make	Туре	Jets	Serial	Depth Out	Metres Drilled	Hours	Ave Rate	Accum Drlg	Wt. on bit	RPM	Vert Dev.	Pump Press.	GPM		Mud		L	ADC I	Dull. G	rade	Remarks
2,345	V 11 - 192					(m)			(m/hr)	Hours	(000lbs)		(*)	(psi)	akka ke At	WT	VIS	PV/YP	I	0	В	G	
1RR	121/4	Varel	L-114	2x20 1x18	26776	342	331	15½	21.3	151/2	5-20	90-120	1/2	700	450	8.9	48	20/16	1	1	2	1/16	Casing T.D.
2	81/2	HTC	ATJM-05	3x11	W16BK	1039	697	57½	12.1	73	17-20	90-100	2	1350	325	9.2	42		1	1	5	In	BHA change
$\mathcal{H}_{i} \subseteq \mathbb{R}$	2 insert	s broke	in heel or ga	auge ro	w of lead of	cone															, ,	ĺ	
3	81/2	Varel	ETD-417m	3x11	101792	1247	208	251/2	8.1	981/2	15-25	65-100	31/2	1600	325	9.5	50	20/19	1	1		Ĭn	
3RR	81/2	Varel	ETD-417M	3x11	101792	1468	221 (429)	56 (81.5)	3.9	124½	15-17	110-125	31/2	1600	325	9.5	50	21/20					DST-1
46		J	I	<u></u>			* Bearin	gs grade	d 5 on tot	tal hours	run - not a	pparent c	ondition						1	1	5*	In	
4	81/2	Varel	ETD-417M	3x11	102317	1489	21	15	1.4	139.5	23-50	90-100	3¾	1575	325	9.3+	47	16/20	3	co	ne lock skidde		Torque & ROP
1 527 31	Knock-	out plus	g from drop-b	ar sub	of Baker to	est-tool	wedged b	etween a	pices of	3 cones -	bit ruined												
5RR	8½	Varel	ETD-417M	3x11	98053	1752	(461) 263	(57) 36½	7.2	176	16-20	90-100	51/4	1600	325	9.4	45	20/16	1	1	5*	178	Torque
	3 inser	ls missir	g from gauge	e row of	second co	one - no	cone she	ll erosior	- cracks	in cone	shell arour	d holes o	f missin	g inserts.	One								Ĭ
	retaine	d insert	twisted 20° in	n it's ho	le. Seven	connect	ed cracks	S.									i				'		İ
6	81/2	HTC	ATJ-05	3x11	BO4XS	1951	199	26	7.6	1651/2	18-20	100	5	1350	300	9.1	42	20/15	1	1	4	I	DST-2
6RR	81/2	HTC	ATJ-05	3x11	BO4XS	2088	137 (336)	47 (73)	2.9 (4.6)	2121/2	25-27	55	51/2	1390	30	9.1+	40	15/14	2	3	5]	T.D.
			in gauge row ne. Seals eff		l cone, 2 b	oroken ii	serts in a	gauge rov	v of seco	nd cone a	ınd 4 brok	en inserts	in midd	le of inne	r gauge								

2.3.6 Water Supply

Drilling water was trucked from the existing Digby Township Bore approximately two kilometres from the rig and stored in a pit dug at the wellsite.


2.3.7 Drilling History

The following summary of operations and the drilling progress chart (Figure 3) for Digby-1 are based on tour sheets and daily drilling reports. A more detailed account can be found in the compilation of the operations summaries from daily drilling reports in Appendix 3.

A 16" conductor pipe was cemented at five metres (GL) prior to rig up. Digby-1 was spudded at 0100 hours on May 10, 1995 with a $12^{1}/_{4}$ " bit and proceeded without problems to the $9^{5}/_{8}$ " casing point (342 metres) by the end of that day. Minor tight hole problems were encountered on the clean out trip, following which the $9^{5}/_{8}$ " casing was run to of 337.12 metres and cemented. After nippling up and testing the BOP's, three metres of new formation were drilled with an $8^{1}/_{2}$ " bit and a Formation Integrity Test was run (Equivalent Mud Weight = 22.3 ppg).

The 8½" hole was then continued (with regular surveys and wiper trips) to 1039 metres, where the bit was pulled for a bottom hole assembly (BHA) change due to excessive hole deviation problems. Drilling proceeded with the new 8½" BHA until, with the hole at a depth of 1080 metres, the drive shaft for the main rig gear box sheared. This was removed and sent to Adelaide for duplication and, once the replacement was installed, a wiper trip was run and drilling resumed. At 1247 metres the BHA was changed again to attempt to redress the continuing deviation problems and drilling continued (with regular surveys and wiper trips) down to 1467.9 metres, five metres into the primary target sandstone, where it was decided to run a Drill Stem Test (DST).

DST-1 was conducted over the interval 1460 to 1467.9 metres and recovered 54bbls of formation water and slightly oil-cut rathole mud. After reverse circulating the contents of the drill string the test tool was pulled and drilling in $8^{1}/_{2}$ " hole resumed. Due to exceedingly slow rate of penetration drilling was halted again at 1489 metres, where the bit was pulled for inspection and shown to have been seized by the pin from the DST drop-bar sub (which had fallen into the hole).

After replacing the bit drilling continued in 8½," hole, pausing only for surveys and wiper trips down to 1752 metres, where another bit change was required. Shortly after the resumption of drilling following this bit change, with the hole at a depth of 1759 metres, a total loss of circulation occurred, which was remedied by pumping 55bbls of lost circulation material (LCM) into the annulus and decreasing the mud weight. Once returns were re-established and the annulus was stabilised, drilling resumed and was continued without interruption down to 1932 metres, where encouraging shows began to be observed. These were monitored as drilling continued and by 1951 metres a sufficient column of shows had been intersected to warrant testing.

DST-2 was conducted over the interval 1920-1951 metres and recovered only 1.28bbls of slightly oil-cut mud. After the test, drilling in 8¹/₂" hole continued to a Total Depth of 2088 metres which was reached at 2330 hours on May 31. The hole was then conditioned, wireline logs, sidewall cores and a check shot survey were run and four cement plugs were emplaced, the last of which (across the casing shoe) was tagged and pressure tested to 500psi. The drill pipe was then layed out, the BOPs nippled down, and the surface plug was emplaced by hand. The rig was released at 0300 hours on June 4, 1995.

2.4 FORMATION SAMPLING AND TESTING

2.4.1 Cuttings

Cuttings samples were collected at ten-metre intervals from spud to 350 metres and then at five-metre intervals from 350 metres to 2088 metres (TD) and subdivided into sets as follows;

1 set of unwashed and air-dried samples in calico bags at ten-metre intervals spud - 2088 metres

3 sets of washed and dried samples in plastic bags spud - 2088 metres 4 sets of washed and dried samples in Samplex trays spud - 2088 metres

A set of washed and dried samples was subsequently made available to the Victorian Department of Energy and Minerals (Petroleum Division) sample store and one set of Samplex trays was supplied to each of the joint venture participants. The remaining samples were retained by GFE Resources Ltd.

Lithological descriptions of cuttings by the wellsite geologist are provided in Appendix 4A, and a compilation of the lithological descriptions from daily reports issued during the drilling can be found in Appendix 4B.

2.4.2 Cores

2.4.2.1 Conventional Core

No conventional cores were cut in Digby-1.

2.4.2.2 Sidewall Cores

A total of 48 sidewall cores were attempted, of which 44 were recovered; two had no recovery and two were misfires.

All recovered sidewall core samples were checked for lithology and hydrocarbon shows, descriptions of which are contained in Appendix 5. A summary of analyses subsequently undertaken on the sidewall cores is given in Section 2.4.4.

2.4.3 Testing

2.4.3.1 Drill Stem Testing

Two Drill Stem Tests (DSTs) were conducted in Digby-1.

DST-1 1460.0-1467.9mKB

After drilling through a predominantly shaly interval (the Laira Formation) with Total Gas readings ranging trace-0.5 units, a peak of 1.0 unit was recorded at 1463 metres associated with 70% pale yellow-white oil fluorescence. This coincided with a lithology change at 1462 metres to a very fine to coarse sandstone and a rate of penetration (ROP) increase from 3-5 metres/hour to 12-32 metres/hour. These observations suggested the top of the primary objective had been intersected and, due to the presence of the oil fluorescence and inferred porosity the decision to conduct a test was made.

DST-1 was a conventional dual-packer, bottom-hole test conducted on 22 May 1995 over the interval 1460.0-1467.9 metres (driller's depth)

to evaluate the top of the Pretty Hill Formation sandstone.

The tool was opened at 1747 hours for a five-minute Pre-Flow with the floor manifold closed. During the Pre-Flow the manifold pressure rose to a maximum pressure of 0.5psig by the end of the flow period. The tool was then shut-in for a period of 60 minutes. During the first couple of minutes the closed-in surface pressure rose to 1.5psig and then remained static, until the floor manifold was opened and the string pressure allowed to blow down. Following the Initial Shut-In the tool was opened for the Main Flow at 1851 hours with the chamber closed-in at surface. On opening the surface pressure built to 1.0psig in the first minute and reached 3.25psig after six minutes, at which time the floor manifold was opened through a 1/4" choke. Eight minutes into the Main Flow the surface pressure reached a maximum of 3.5psig, shortly after which the manifold was opened fully for a few minutes, then restricted back to a 1/2" choke. During this time the flowing pressure dropped to 1.0psig and then continued to gradually weaken for the remainder of the Main Flow, decreasing to a very weak blow by the end of the 180-minute flow period.

Following a three-hour Final Shut-In (commencing at 2151 hours) the test was ended and the contents of the drill string were reverse-circulated out. Fifty four barrels of formation water and slightly oil-cut rathole mud were recovered. An estimate of the rate of influx during the Pre-Flow and early in the Main Flow suggests that the test zone was initially producing this water at around 2500-3000 barrels per day.

Data and observations recorded during DST-1, including charts from the mechanical and electronic gauges, are included in Appendix 6A. Of the eleven liquid samples taken, only one (from the DST tool sample chamber) was analysed for standard water properties, the results of which are presented in Table 2. (Also, a sample of the recovered mud was analysed for hydrocarbons - see Geochemistry section). No sample of make-up water or mud from the active pit was analysed for similar properties to compare with this test chamber sample, but from indirect indications the mud is thought to have more than double the salinity of the DST sample. Therefore, the DST sample is assumed to be largely representative of the formation water.

TABLE 2

ANALYSIS OF DST-1 WATER SAMPLE

Sample	From within sample chamber of DST tool
Chemical Composition	(mg/L)
Cations:	
Calcium (Ca)	2800.0
Magnesium (Mg)	64.0
Sodium (Na)	9500.0
Potassium (K)	440.0
Anions:	
Hydroxide (OH)	
Carbonate (CO ₃)	
Bi-Carbonate (HCO ₃)	88.5
Sulphate (SO ₄)	32.0
Chloride (Cl)	20966
Nitrate (NO ₃)	<0.1
Reaction - pH	6.5
Conductivity (E.C.)	45900
(micro -S/cm at 25°)	
Resistivity (ohm.m at 25°C)	0.22
Derived Data:	(mg/L)
Total Dissolved Solids	, ,
A. Based on E.C.	29376
B. Calculated	33846
(HCO ₃ =CO ₃)	
Total Hardness	7255
Carbonate Hardness	71
Non-Carbonated Hardness	7184
Total Alkalinity	71
(Each as CaCO ₃)	
Totals and Balance:	
Cations (me/L)	569.5
Anions (me/L)	592.7
Ì	Difference= 23.24
	Sum=1162.2
Ion Balance (Diff*100/Sum)	2.00%
Sodium/Total Cation Ratio	72.6%

Note:mg/L = Milligrams per litre

me/L = MilliEqivs. per litre

n/a = not analysed

full Amdel report in Appendix 6A

DST-2 1920.0-1951.0mKB

After drilling through a shale interval (the top of the Casterton Formation) with Total Gas readings ranging 0.5 - 5.0 units, peaks of 7.0 - 37.0 units were recorded from sandstone interbeds within an interbedded shale/sandstone sequence (Casterton Formation). associated with the sandstone was 70-100% moderately bright pinpoint to solid yellow gold oil fluorescence. The sandstones, although having abundant white argillaceous matrix, were dominantly medium to very coarse grained and associated with a rate of penetration (ROP) increase from 3-5 metres/hour in the shales to 7-27 metres/hour in the sandstones. These observations suggested probable oil saturation and although the visual porosity appeared poor due to the abundance of clay matrix, this conflicted with the coarse nature of the sandstones. To positively identify reservoir fluid type and permeability, the decision to conduct a DST was made.

DST-2 was a conventional dual-packer, bottom-hole test conducted on 29 May 1995 over the interval 1920.0-1951.0 metres (driller's depth) to evaluate an interbedded sandstone/shale sequence within the Casterton Formation. The tool was opened at 0822 hours for a fiveminute Pre-Flow with the floor manifold closed. During the Pre-Flow no surface pressure rise was observed. The tool was then closed for a 45 minute Initial Shut-In period, at the beginning of which the floor manifold was opened to the bubble hose, but no bubbles were observed. The tool was re-opened at 0914 hours for the Main Flow period but, after 35 minutes with no bubbles detected at surface, the test tool was closed, the packers unseated (50,000lbs overpull being necessary to pull free), and reset for a second Main Flow period, with the tool opening at 0954 hours. The second final flow period was of 60 minutes duration, during which time no bubbles were observed at surface. The tool was then shut-in for 30 minutes before being pulled free and the string tripped to surface dry. Recovery consisted of 1.28bbls (55.3 metres) of slightly oil-cut mud.

Data and observations recorded during DST-2, including charts from the mechanical and electronic gauges, are included in Appendix 6B. Of the six mud samples taken, one was analysed for hydrocarbon content, the results of which are presented in the Geochemistry section.

2.4.3.2 Wireline Formation Testing

No Repeat Formation Sample (RFS) pressure readings were undertaken in Digby-1.

2.4.4 Sample Analyses

Analysis of selected cuttings and sidewall core samples from Digby-1 comprised palynology, organic geochemistry, source quality/maturation and petrography. Table 3 outlines the analyses performed on each sample, details of which can be found in the appropriate Section/Appendix.

Palynology	see Section 3.1	and Appendix 10
Petrography	see Section 3.2	and Appendix 8
Geochemistry	see Section 3.4	and Appendix 9
Source quality/maturity	see Section 3.4	and Appendices 9 & 10

2.5 LOGGING AND SURVEYS

2.5.1 Mud Logging

A standard skid-mounted unit (supplied by Baker Hughes-Inteq) equipped for continuous recording of depth, rate of penetration (ROP), mud gas, pump rate and mud volume data, as well as intermittent mud and cuttings gas (blender) analysis was operative from nine metres until the well was plugged and abandoned.

The ROP and gas data is included on the 1:1000 scale Composite Log (Enclosure 1). The Formation Evaluation Log (i.e., "Mud Log") at 1:500 scale is provided in Enclosure 2a, and a Gas Ratio Analysis Log at 1:1000 scale is provided in Enclosure 2b. In addition to these plots a tabulated listing of the gas data is also provided in Appendix 7.

TABLE 3

SIDEWALL CORES AND CUTTINGS ANALYSES

		SWC						
Sample	Depth (mKB)	Recovery (cm)	Palynology	Geochemistry	тос	Rock-Eval	Vitrinite Reflectance	Petrography
Cuttings	130	(4)					✓	
Cuttings	260						✓	
Cuttings	440						✓	
SWC#48	449.2	4.1	✓					
Cuttings	450 480			/			→	
Cuttings Cuttings	635							
SWC#47	735.6	2.8	1					
SWC#46	849.0	2.0						
Cuttings	850						✓	
SWC#45	983.8	1.5						
SWC#44	1025.5 1050	1.3		 			-	
Cuttings SWC#43	1096.8	2.6			7		√	
SWC#42	1220.8	2.2			•			
SWC#41	1318.1	2.0	/					
SWC#40	1338.2	2.2						✓
SWC#39	1364.4	4.1	✓		√		✓	
SWC#38	1414.6	3.2			<i>'</i>	✓		
SWC#37 SWC#36	1445.2 1457.5	2.7			· ·	-	V	
SWC#35	1464.4	2.6	· ·					→
SWC#34	1465.7	2.4						1
Cuttings	1468							
DST-1 mud	1468							·
SWC#33	1468.2	3.3						✓
SWC#32 SWC#31	1473.7 1496.2	2.1		✓				
SWC#30	1506.2	2.6	7	 				
SWC#29	1536.4	2.2	-		7	√	√	
SWC#28	1564.0	2.4						
SWC#27	1591.0	1.9	✓		✓		✓	
SWC#26	1608.2	2.5						✓
SWC#25	1739.7 1740	no recovery						
Cuttings SWC#24	1837.2	2.8	-	-				
SWC#23	1872.7	2.1						√
SWC#22	1903.2	2.8	1	✓	√	1		
SWC#21	1914.2	2.6	1		√	✓		
Cuttings	1920				*	1		
SWC#20	1920.2	misfire						
SWC#19 SWC#18	1923.9 1926.4	1.5 1.5			-	-	7	
Q	1000	1.3		 	•	· · · · · ·	<u>v</u>	
SWC#17	1930	2.4		 				√
SWC#16	1936.4	2.7	1		*	4		
SWC#15	1938.7	2.2						*
SWC#14	1940.8	2.8		· ·		· · · · · · · · · · · · · · · · · · ·		
SWC#13	1944.2 1945.9	2.7		-	1	*	✓	
SWC#12 SWC#11	1945.9	2.8						
SWC#10	1948.1	2.0	7					
SWC#9	1949.3	1.8						/
DST-2 mud	1951			·				
SWC#8	1954.7	misfire				,	, , , , , , , , , , , , , , , , , , , ,	
Cuttings SWC#7	1955 1779.2	no recover:		ļ	✓	*		
Cuttings	1779.2	no recovery			√	7		
SWC#6	2002.0	2.6	/		-	·		
SWC#5	2017.2	2.3	1					
Cuttings	2020				✓	✓		
SWC#4	2028.2	2.5	· · · · · · · · · · · · · · · · · · ·		√	ļ	✓	
Cuttings SWC#3	2040 2048.2	2.5			✓ ✓	✓	√	
3 W C#3			<u>*</u>	L		<u> </u>	Ψ	
SWC#2	2069.2	2.6	1		1			✓

2.5.2 Wireline Logging

Wireline logging was performed by BPB Wireline Services using a skid-mounted unit. Only one logging suite was carried out (at Total Depth) and comprised the following:-

Log	Interval (mKB)	Enclosure Number
Dual Laterolog - Micro-Laterolog - Compensated Sonic - Gamma Ray - Spontaneous Potential - Caliper (DLS-MRS-CSS-GR-SP-Cal)	2088.0 - 337.0 (GR T.D Surface)	3
Photo Electric Compensated Density - Thermal Neutron - Gamma Ray - Caliper (PDS-CNS-GR-Cal)	2088.0 - 337.0	4
Velocity Survey (Velocity Data)	2085.0 - 143.0	
Sidewall Core Gun (SCG)	2076.2 - 449.2	

Due to tool problems the wireline logging program was not run in the originally intended sequence. After successfully running the Resistivity-Sonic tool the Density-Neutron tool failed (and could not be completely fixed in good time) so the back-up Density-Neutron tool was run. This was found to be reading incorrectly, so the velocity survey was run instead. While Velocity Data ran their survey the original Density-Neutron tool was repaired and then successfully run prior to the sidewall cores.

2.5.3 Bottom Hole Temperature

In order to obtain an estimate of true formation temperature, a Horner-type method using temperatures and times from the wireline logs run after reaching Total Depth (T.D.) was adopted, with the following input data;

Time when drilling stopped (reached T.D.) 2330hrs on 31/5 Time when circulation ended 0400hrs* on 1/6 \Rightarrow .: Circulation Time (t_c) = 4.5 hours

^{*}Note: this is incorrectly recorded on the wireling log headers as 0430hrs

Maximum temperatures recorded during the two successful wireline logging runs were as follows:

Log	Depth (mKB)	Temperature [T] (°C)	Time since end of circulation $[\Delta t]$ (hours)	log <u>tc+∆t</u> ∆t
DLS-MRS-CSS	2088.0	86	8.0+	0.1938
PDS-CNS	2088.0	95	29.5 ⁺	0.0617

^{*}Not listed on the log headers. When requested later, BPB reported times at which the logging tools were on bottom (ie. assumed maximum temperature) as being;

DLS-CSS 1200hrs on 1/6 PDS-CNS 0930hrs on 2/6

Running a linear regression on the temperature versus $\log(t_c + \Delta t)/\Delta t$ data to find the intercept (or, equivalently, by plotting these on linear axes and extrapolating a straight line back to the Temperature axis) yields an estimated stabilized bottom hole temperature of 99.2°C. Assuming a mean surface temperature of 18°C, this stabilized bottom hole temperature at 2088mKB indicates a temperature gradient of about 3.9°C per 100 metres.

2.5.4 Deviation Surveys

Totco surveys were carried out frequently throughout the drilling of Digby-1 to monitor deviation. Using this deviation data maximum horizontal and vertical distances from the initial location were obtained by summing the components of horizontal distance [interval length × sine(deviation angle)] and vertical distance [interval length × cosine(deviation angle)] for each interval (Table 4). The results of this are;

- at the depth of the primary target (1463 metres) the hole location was within a 39-metre radius of the surface location and the true vertical depth was less than one metre short of the measured (drilled) depth.
- the bottom hole location was within a 94-metre radius of the surface location and the true vertical total depth was about ten metres short of the measured (drilled) total depth.

2.5.5 Velocity Survey

As part of the logging program a velocity survey was carried out by Velocity Data on June 2. The Velseis processing report of this survey and a copy of the synthetic seismogram produced from it are contained in Appendix 11. The resulting time-depth and velocity-depth curves and the synthetic seismogram merged into the OMN93-14 seismic line are provided in Enclosure 5.

TABLE 4

Hole Deviation

Depth	interval	Deviation Angle	Horizontal Distance	Cumulative Horizontal	Vertical Distance	Cumulative Vertical
(m)	(m)	(%)	(m)	(m)	(m)	(m)
11	11	0	0.00	0.00	11.00	11.00
40	29	0.75	0.38	0.38	29.00	40.00
76	36	0	0.00	0.38	36.00	76.00
130	54	0.25	0.24	0.62	54.00	130.00
192	62	0.75	0.81	1.43	61.99	191.99
247	55	0.5	0.48	1.91	55.00	246.99
333	86	0.5	0.75	2.66	86.00	332.99
441	108	1.5	2.83	5.48	107.96	440.95
470	29	0.75	0.38	5.86	29.00	469.95
575	105	0.5	0.92	6.78	105.00	574.94
681	106	0.5	0.93	7.71	106.00	680.94
768	87	1.5	2.28	9.98	86.97	767.91
796	28	1.75	0.86	10.84	27.99	795.90
834	38	1	0.66	11.50	37.99	833.89
863	29	i	0.51	12.01	29.00	862.89
892	29	1.5	0.76	12.77	28.99	891.88
	28	1.25	0.61	13.38	27.99	919.87
920	1	1.25	0.79	14.16	29.99	949.86
950	30		0.79	14.16	27.99	977.85
978	28	1.5		15.53	28.99	1006.84
1007	29	1.25	0.63			
1036	29	1.75	0.89	16.41	28.99	1035.83
1085	49	2.25	1.92	18.34	48.96	1084.79
1143	58	2.5	2.53	20.87	57.94	1142.74
1175	32	2.5	1.40	22.26	31.97	1174.71
1201	26	2.5	1.13	23.40	25.98	1200.68
1229	28	3	1.47	24.86	27.96	1228.64
1236	7	3.5	0.43	25.29	6.99	1235.63
1256	20	3.25	1.13	26.42	19.97	1255.60
1265	9	3	0.47	26.89	8.99	1264.58
1285	20	3	1.05	27.94	19.97	1284.56
1304	19	3	0.99	28.94	18.97	1303.53
1313	9	3	0.47	29.41	8.99	1312.52
1333	20	3	1.05	30.45	19.97	1332.49
1352	19	3	0.99	31.45	18.97	1351.47
1381	29	2.75	1.39	32.84	28.97	1380.43
1409	28	4	1.95	34.79	27.93	1408.36
	10	3.5	0.61	35.40	9.98	1418.35
1419			0.63	36.03	8.98	1427.32
1428	9	4			9.98	1437.30
1438	10	3.5	0.61	36.64	8.98	1446.28
1447	9	4	0.63	37.27		
1457	10	4	0.70	37.97	9.98	1456.26 1486.19
1487	30	3.75	1.96	39.93	29.94	
1515	28	4	1.95	41.88	27.93	1514.13
1544	29	4	2.02	43.90	28.93	1543.06
1573	29	5	2.53	46.43	28.89	1571.94
1602	29	4.5	2.28	48.71	28.91	1600.86
1630	28	4.75	2.32	51.03	27.90	1628.76
1659	29	5	2.53	53.55	28.89	1657.65
1688	29	5	2.53	56.08	28.89	1686.54
1717	29	5.25	2.65	58.73	28.88	1715.42
1745	28	5.25	2.56	61.30	27.88	1743.30
1774	29	6	3.03	64.33	28.84	1772.14
1803	29	6	3.03	67.36	28.84	1800.98
1832	29	5.75	2.91	70.27	28.85	1829.84
1861	29	5.75	2.91	73.17	28.85	1858.69
1890	29	6	3.03	76.20	28.84	1887.53
1918	28	5.75	2.81	79.01	27.86	1915.39
1947	29	5	2.53	81.53	28.89	1944.28
1947	29	5	2.53	84.06	28.89	1973.17
		5	2.33	86.50	27.89	2001.06
2004	28					
2033	29	5.5	2.78	89.28	28.87	2029.93
2081	48	5.5	4.60	93.88	47.78	2077.71

GEOLOGY

3. GEOLOGY

3.1 STRATIGRAPHY

The section penetrated in Digby-1 is interpreted to have formation tops as shown in Table 5 based on consideration of rate of penetration, cuttings descriptions, palynological analyses and wireline logs. Unless stated otherwise, all depths mentioned are referenced on the well datum, the kelly bushing (KB).

TABLE 5

DIGBY-1 FORMATION TOPS AND THICKNESSES

Stratigraphic Unit	Dep	Depth		
	(mKB)	(mSS)	(m)	
Otway Group	5.77(Surface)	+138.0	1893.23	
Eumeralla Formation	5.77	+138.0	1096.73	
Crayfish Sub-Group	1102.5	-958.73	796.5	
Laira Formation	1102.5	-958.73	360.5	
Pretty Hill Formation	1463.0	-1319.23	436.0	
Casterton Formation	1899.0	-1755.23	189.0	
(volcanics)	(2052.0)	(-1908.23)	(36.0)	
Total Depth (Driller) Total Depth (Logger)	2088.0 2088.0	-1944.23 -1944.23		

Correlation with a selection of wells in the region was undertaken, particularly Mocamboro-11, Casterton-1, McEachern-1 and Greenbanks-1, for which a well correlation diagram is provided in Enclosure 6. It should be noted that some formation tops in some of these wells have been re-interpreted to different horizons than indicated

in the original well completion reports (some of these changes are supported by the palynostratigraphic review provided in Appendix 10B).

During the drilling of Digby-1 the (unprognosed) Laira Formation was not distinguished from the overlying Eumeralla Formation due to the close lithological resemblance between them (see descriptions in Section 3.2). Some suggestion of a stratigraphic boundary was first indicated in the wireline logs (most notably gamma ray and resistivity), but was not confirmed until the palynological work on the sidewall cores identified an unconformity between 1096.8 and 1220.8 metres (Appendix 10). This coincides with a slight change in seismic character at this level, which had previously been regarded as an intra-Eumeralla event of unknown significance.

The Casterton Formation had also not been prognosed in Digby-1 (top of basement had been interpreted at about the same level that the top of the intra-Casterton volcanics was intersected), but was identified from cuttings during drilling (Appendix 4). The marked lithological difference was further demonstrated in the wireline log character above and below 1899 metres, and (despite the inability to assign the thick sandstone section at 1600-1900 metres to a biostratigraphic zone) the palynological work (Appendix 10) clearly identified the section below 1903.2 metres as being correlative with Casterton Formation sections elsewhere.

The volcanics intersected below 2052.0 metres are regarded, in stratigraphic terms, as being intra-Casterton, since there are numerous previous examples of such strata occurring within this formation (eg. Casterton-1, Hawkesdale-1).

A comparison of the predicted and actual stratigraphy penetrated in Digby-1 is shown in Figure 4. (Note: the predicted subsurface depths shown in this figure are 12 metres less than those given in the Drilling Application due to a relocation of the hole from a hillside to a flatter area, approximately 37 metres to the south, to minimize site works).

3.2 LITHOLOGY

The following summary of the lithological units observed in Digby-1 was compiled from the descriptions by the wellsite geologist (Appendix 4), as well as the Mud Log (Enclosure 2a), and sidewall core descriptions (Appendix 5). Further detail for selected sidewall cores (thirteen sandstones and the two volcanics samples) can be found in Appendix 8.

DIGBY-1

FORMATION TOP DEPTHS AND TIMES

Predicted

Actual

EUMERALLA MARKER) PRETTY HILL FORMATION CASTERTON FORMATION CASTERTON FORMATION CASTERTON FORMATION FORMATION CASTERTON FORMATION (Volcanics) (-1908.23) 1250 (2052.0) 47.0m LOW	ri	Cuicie	;u		Actual				
+138 6 EUMERALLA FORMATION +138.0 5.77 -943 715 1087 (INTRA EUMERALLA FORMATION -958.73 705 1102.5 15.5m LOW (10ms HIGH) -1263 960 1407 PRETTY HILL FORMATION -1319.23 922 1463.0 -136.0m LOW (38ms HIGH) -1361 1254 2005 BASEMENT (Valcanics) (-1908.23) 1250 (2052.0) 47.0m LOW (10ms LOW) -140.0m LOW	mSS) (n	vo-Way Tim nilliseconds	e s) (mKB)	ļ		(mSS) (mi	o-Way Ti Ilisecond	<i>me</i> ds) (mKB)	
EUMERALLA FORMATION				EUME	RALLA	·			
PRETTY HILL FORMATION -1319.23 922 1463.0 56.0m LOW (38ms HIGH	 -943	– – – 715	 1087	EUMERALLA	LAIRA FORMATION	-958.73	705		15.5m LOW <i>(10ms HIGH)</i>
FORMATION 1254 2005 BASEMENT	-1263	960	1407	PRETT FORM	Y HILL ATION	-1319.23	922		56.0m LOW (38ms HIGH)
(Volcanics) (-1908.23) 1250 (2052.0) 47.0m LOW			2225		CASTERTON FORMATION	-1755.23	1160	1899.0	
OTAL DEPTH 2034.0mKB (1975, 1975)					(Volcanics)	(-1908.23)	1250	(2052.0)	47.0m LOW (4ms HIGH)

TOTAL DEPTH 2088.0mKB

3.2.1 Otway Group (Surface - 1899.0 metres)

3.2.1.1 Eumeralla Formation (Surface - 1102.5 metres)

Claystone: off white, light to medium grey to medium green grey to medium brown grey, rarely dark brown and very carbonaceous, moderately to very silty, slightly calcareous in part, trace to common black carbonaceous flecks and detritus, common to abundant very fine quartz and partially altered feldspar grains in part, rare very fine red lithics where arenaceous, trace micromica, trace brown, clear and green mica flakes in parts, occasionally slightly calcareous, occasionally common crystalline calcite as fracture infilling, rare pyrite, firm, non to slightly subfissile, grading in part to and with minor interlaminated and finely interbedded

Sandstone: medium grey to medium olive grey, off white to light brown grey, very fine to medium, dominantly fine to medium, in general becoming finer with depth, subangular to subrounded, poor to occasionally moderately sorted, weak silica cement, weak to strong calcareous cement, abundant off white to medium grey argillaceous and silt matrix (often matrix supported), abundant grey brown, off white, green and red lithics, trace brown mica flakes in part, trace pyrite, common black carbonaceous detritus, friable to occasionally moderately hard, very poor visual porosity, with minor detrital and occasionally interlaminated

<u>Coal</u>: black to dark brown, earthy texture, platy fracture, slightly to dominantly very argillaceous, hard and brittle.

3.2.2 Otway Group - Crayfish Sub-Group (1102.5 - 1899.0 metres)

3.2.2.1 Laira Formation (1102.5 - 1463.0 metres)

Claystone: light to medium brown, off white to medium grey, light to medium green grey, light to medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous in part, trace fine brown mica flakes, trace to common micromica, firm to moderately hard, subfissile, with minor

<u>Sandstone</u>: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to

fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace fine to coarse brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity.

3.2.2.2 Pretty Hill Formation (1463.0 - 1899.0 metres)

(1463 - 1598 metres)

<u>Claystone</u>: (kaolinite) white, structureless sticky clay, occasionally very calcareous, occasionally abundant dispersed very fine to fine quartz sand grains, in general decreasing with depth and interbedded with

Claystone: medium to dark grey, occasionally medium green grey, trace medium brown grey, dominantly medium grey, slightly to very silty, trace black coaly detritus, trace carbonaceous flecks, trace very fine partially altered feldspar grains in part, common micromica, moderately hard, subfissile, laminated and interbedded with

Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate to occasionally very strong silica cement, trace weak to occasionally moderate calcareous cement, common to abundant white argillaceous matrix grading to kaolinite, trace to common red garnet, trace green lithics, trace brown and green mica flakes, trace black coaly detritus, friable to hard, very poor to fair visual porosity.

(1598 - 1899 metres)

Sandstone: off white to light grey, very fine to very coarse, dominantly fine to medium (in general becoming slightly coarser with depth), angular to subangular, poorly sorted, weak to moderate silica cement, trace weak calcareous cement, rare strong dolomite cement, trace to abundant white argillaceous matrix, trace red, grey, brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable to moderately hard, poor to dominantly fair visual porosity, grading to and interbedded with

<u>Claystone</u>: (kaolinite), white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains,

sticky and structureless, in general decreasing with depth and being replaced with minor interbedded

<u>Claystone</u>: medium grey to medium brown, medium green grey, occasionally dark grey and moderately carbonaceous, moderately to very silty, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.

3.2.3 Casterton Formation (1899.0 - 2088.0 metres T.D.)

(1899 - 1922 metres)

<u>Claystone</u>: very dark grey to dark brown, slightly to moderately silty, moderately to very carbonaceous, common micromica, moderately hard, subfissile.

(1922 - 1951 metres)

Sandstone: light brown to light brown grey, fine to very coarse, dominantly medium to very coarse, angular to subangular, poor to moderate sorting, weak to moderate silica cement, trace weak calcareous cement, moderately strong brown cement having dull to moderately bright yellow orange mineral fluorescence, trace to common white to light brown argillaceous matrix, trace black coal detritus, friable to moderately hard, poor visual porosity, interbedded with

<u>Claystone</u>: very dark grey to grey black, very dark brown grey, moderately to very carbonaceous and grading to coal in part, slightly to moderately silty, common micromica, moderately hard, subfissile. Grading to and interbedded with minor

<u>Coal</u>: black, earthy texture, platy fracture, non to very argillaceous and grading to carbonaceous claystone, common micromica where argillaceous, hard and brittle.

(1951 - 2022 metres)

<u>Claystone</u>: dark brown grey to very dark grey, moderately to very carbonaceous, slightly to moderately silty, non-calcareous, trace angular coarse clear quartz - possibly fracture infill, common micromica, moderately hard, subfissile.

(2022 - 2045 metres)

Shale: medium brown grey, very silty grading to siltstone in part, common micromica, non-calcareous, angular fracture, occasional slickensided surfaces often lined with ankerite/calcite, trace vein quartz and calcite, soft to moderately hard, subfissile, grading with depth to

Shale: medium brown grey, occasionally dark brown grey, very silty, trace black carbonaceous detritus, common very fine off white lithics in part, trace to common very fine brown regrown crystals in part, slightly dolomitic, trace micromica, hard, angular fracture - possible contact metamorphic (?).

(2045 - 2052 metres)

<u>Sandstone</u>: off white, very fine to very coarse, dominantly fine, angular, poor to moderately sorted, very strong silica cement, no visual matrix, trace green brown and black lithics, very hard, no visual porosity.

(2052 - 2088 metres T.D.)

<u>Volcanics</u>: (basalt?) medium to dark green, finely crystalline, off white, light green and black minerals embedded in a dark green ground mass (possibly feldspar, olivine and pyroxene), very calcareous, common calcite infilling fractures, trace slickensides, often weathered at top to red brown to white clay in general decreasing with depth, hard.

3.3 HYDROCARBON INDICATIONS

3.3.1 Mud Gas Readings

The mud gas detection equipment was operational from spud until the cement plug at the $9^5/8$ " casing shoe was set during the abandonment of the well. The levels of gas detected during drilling are plotted on the Composite Log (Enclosure 1) the Mud Log (Enclosure 2a) and the Gas Ratio Analysis Log

(Enclosure 2b), as well as being tabulated in Appendix 7 and summarised in the following:

- Down to 604 metres no gas was detected.
- Over the interval 604 958.5 metres in the Eumeralla Formation mud gas readings were only;

Total Gas : 0.1 - 2.2 units C_1 : 1 - 434 ppm

From 958.5 metres down to 1463 metres (the base of the Laira Formation) gas levels remained between 0.1 and 3 units in the claystone with peaks of 5 units from sandstone and 34 units from coal laminae,

Total Gas : 0.2 - 5.0 units C_1 : 21 - 985 ppm C_2 : 0 - 22 ppm

with small spikes from coal laminae as follows;

Depth 959m 983.5m 1026m Total Gas: 7 units 26 units 34 units C_1 : 1300 ppm 4884 ppm 4695 ppm C_2 29 ppm 103 ppm 713 ppm C_3 14 ppm 37 ppm : 252 ppm C_4 0 ppm 0 ppm 1 ppm

Over the interval 1463 - 1598 metres (corresponding to the upper portion of the Pretty Hill Formation) gas readings ranged;

Total Gas : 0.1 - 2 units C_1 : 8 - 343 ppm C_2 : 1 - 26 ppm C_3 : 0 - 23 ppm C_4 : 0 ppm

Between 1598 and 1899 metres (corresponding to the base of the Pretty Hill Formation) mud gas readings remained below 0.6 units, with no spikes;

Total Gas : 0.1 - 0.6 units C_1 : 1 - 129 ppm C_2 : 0 - 1 ppm

In the interval 1899 - 1922 metres (corresponding to a carbonaceous claystone sequence at the top of the Casterton Formation) gas readings rose to a maximum of 5.3 units with no spikes,

Total Gas : 1.0 - 5.3 units C_1 : 37 - 159 ppm C_2 : 1 - 61 ppm C_3 : 1 - 120 ppm C_4 : 1 - 88 ppm C_5 : 1 - 17 ppm

Within the interval 1922 - 1951 metres (corresponding to the claystone/sandstone sequence within the Casterton Formation which recovered traces of oil from DST-2) gas readings mostly ranged;

 Total Gas
 : 2.8 - 13.6 units

 C_1 : 62 - 503 ppm

 C_2 : 25 - 197 ppm

 C_3 : 67 - 321 ppm

 C_4 : 52 - 214 ppm

 C_5 : 6 - 30 ppm

with a peak at 1943.5 metres of;

 Total Gas
 : 36.7 units

 C_1 : 2734 ppm

 C_2 : 290 ppm

 C_3 : 651 ppm

 C_4 : 477 ppm

 C_5 : 33 ppm

Within the interval 1951 - 2022 metres (corresponding to a claystone sequence within the Casterton Formation) gas readings ranged;

Within the interval 2022 - 2052 metres (a shale/sandstone sequence immediately above the volcanics) gas readings ranged;

Within the interval 2052 - 2088 metres (the Casterton Formation volcanics) gas readings decreased rapidly and ranged;

Total Gas : 0.1 - 0.4 units C_1 : 9 - 60 ppm C_2 : 0 - 5 ppm C_3 : 0 - 7 ppm C_4 : 0 - 1 ppm

3.3.2 Fluorescence

Cuttings samples and sidewall cores were routinely inspected for shows with the following results.

3.3.2.1 Cuttings

Oil fluorescence was observed in several intervals throughout Digby-1 within the Eumeralla Formation, the Pretty Hill Formation and the Casterton Formation as described below.

445 - 470 metres (Eumeralla Formation)

Fluorescence: The claystone and occasionally sandstone have trace to 10% moderately bright to bright patchy to solid golden orange fluorescence giving a bright, light yellow white, slow streaming cut fluorescence, with no natural cut colour and a moderate to thick ring residue.

832 - 838 metres (Eumeralla Formation)

Fluorescence: the sandstone has trace patchy bright orange-gold fluorescence giving a moderately bright slow streaming to crush light yellow white cut fluorescence, with no natural cut colour and a moderate ring residue.

1463 - 1468 metres (Pretty Hill Formation)

Fluorescence: the sandstone has 70% dull to bright, pinpoint to patchy, very pale yellow white to milky white fluorescence, giving dull very pale yellow white to milky white crush cut, with no natural cut colour, no natural oil stain, a thin ring residue, and no free oil in drilling mud, but trace pinpoint bright milky white fluorescence from a cuttings/water mix.

This fluorescence corresponds to the interval tested in DST-1, which recovered 54 bbls of slightly oil-cut rathole mud and formation water.

1468 - 1502 metres (Pretty Hill Formation)

Fluorescence: The sandstone has trace to 50% dull to moderately bright, pinpoint to patchy light yellow fluorescence giving a dull pale yellow white crush cut and trace residue.

1530 - 1545 metres (Pretty Hill Formation)

Fluorescence: The sandstone has 10-70% patchy, dull to moderately bright light yellow fluorescence giving dull pale yellow white crush cut and a thin yellow ring residue from very tight sandstone laminae.

1553 - 1630 metres (Pretty Hill Formation)

Fluorescence: the sandstone has trace to 5% dull to moderately bright, pinpoint to occasionally solid light yellow fluorescence giving dull pale yellow white crush cut, and trace residue. In general this fluorescence decreased with depth and primarily came from tight aggregates only.

1720 - 1750 metres (Pretty Hill Formation)

Fluorescence: the sandstone has trace to 5% bright pinpoint to patchy pale yellow white fluorescence giving dull milky white to pale yellow crush cut, with trace to thin ring residue.

1922 - 1951 metres (Casterton Formation)

The claystones at the top of the Casterton Formation (1899 - 1922 metres) have no fluorescence, but give very weak pale yellow white crush cut.

Fluorescence: The sandstone has 70 - 100% moderately bright, pinpoint to solid, yellow gold fluorescence giving a dull to moderately bright light yellow crush cut, a light straw natural cut colour, a thin yellow ring residue, no free oil in drilling mud, and trace weak brown oil stain in some aggregates.

This fluorescence corresponds to the interval tested in DST-2, which recovered 1.3bbls of slightly oil-cut mud.

2022 - 2045 metres (Casterton Formation)

Fluorescence: The fracture infill material often has bright yellow fluorescence with weak instant dull pale yellow white cut and trace residue.

2045 - 2050 metres (Casterton Formation)

Fluorescence: The sandstone has trace pinpoint moderately bright medium yellow fluorescence giving very weak dull light yellow crush cut and trace residue.

3.3.2.2 Sidewall Cores

Fluorescence was observed in ten sidewall cores, four from the Pretty Hill Formation and six from the Casterton Formation, and is described as follows.

SWC#11 (1946.3 metres) The sandstone has trace patchy bright yellow fluorescence giving bright slow to moderately fast streaming pale yellow cut fluorescence and thick ring residue.

SWC#12 (1945.9 metres) The sandstone has 70% dull orange mineral fluorescence and trace pinpoint bright yellow fluorescence giving weak light yellow crush cut and trace residue.

SWC#14 (1940.8 metres) The sandstone has 70% dull to bright patchy to solid yellow fluorescence giving dull to bright slow streaming to crush pale yellow cut and trace to thick ring residue.

SWC#17 (1931.3 metres) The sandstone has 5-10% bright patchy yellow white fluorescence giving moderately bright white crush cut and thin to moderate ring residue.

SWC#18 (1926.4 metres) The sandstone has trace dull pinpoint medium yellow fluorescence giving weak dull to moderately bright pale yellow crush cut and thin ring residue.

SWC#19 (1923.9 metres) The sandstone has no oil fluorescence, but gives trace dull white crush cut and trace residue.

SWC#32 (1473.7 metres) The sandstone has 100% dull to bright patchy light yellow fluorescence giving dull to moderately bright milky white crush cut and thin ring residue.

SWC#33 (1468.2 metres) The sandstone has trace patchy moderately bright light yellow fluorescence giving dull milky white crush cut and trace residue.

SWC#34 (1465.7 metres) The sandstone has trace dull patchy yellow fluorescence giving weak dull milky white crush cut and trace residue.

SWC#35 (1464.4 metres) The sandstone has trace bright pinpoint yellow fluorescence giving trace dull milky white crush cut and trace residue.

Two of these samples (SWCs 14 and 32) were amongst those submitted for geochemical analysis via extraction, liquid chromatographic separation, gas chromatography of the saturates fraction and GC-MS, and one (SWC 18) was amongst those analysed by Rock-Eval and Vitrinite Reflectance. Results of this work are provided in Appendix 9 and discussed in the Geochemistry section (3.4).

3.4 GEOCHEMISTRY

As a result of intersecting significant shows and organic-rich mudstones in Digby-1 an extensive suite of geochemical analyses were performed on a range of cuttings and sidewall core samples.

The main aims of the analysis program were to evaluate;

- the characteristics of the hydrocarbons encountered
- the source affinity of these hydrocarbons
- the maturity at which these hydrocarbons were generated
- the source potential of the mudstones, and
- the maturity profile, uplift and timing at Digby-1.

All results are provided in Appendix 9, which is partitioned into parts A through F for ease of reference.

3.4.1 Hydrocarbon Geochemistry

During the drilling of Digby-1 oil shows were observed in cuttings and in mud recovered from the two drill stem tests. Selected samples of these were solvent extracted and separated via liquid chromatography so that a gas chromatogram of the saturates fraction (GC_{sats}) could be obtained. The results of this work are provided in Appendix 9A, which also contains a thermal extraction gas chromatogram (Gc_{therm}) for one of these samples to provide a comparison of the output of the two techniques.

Similarly, four sidewall cores also underwent solvent extraction and liquid chromatographic separation, so that a gas chromatogram of their saturates fractions (GC_{sats}) could be obtained. Two of these sidewall cores (1473.7 and 1940.8 metres) were sandstones which exhibited the best shows, thus representing migrated hydrocarbons, and the the other two were a dark claystone (1903.2 metres) and a coal (1944.2 metres), representing potential source rocks. Results from these samples are contained in Appendix 9B.

The fluorescing cuttings sample from 450 metres is believed to be from a fault zone, and its chromatogram displays a complex signature which is interpreted to represent at least two separate hydrocarbons. Because the hydrocarbon content of this sample was low a large amount of material was required for extraction and it is likely that some of the resulting signature was contributed by immature organic matter from the Eumeralla claystones. This material probably accounts for the large peaks and the baseline hump centered around C₃₀, and appears to overprint a more mature hydrocarbon with a unimodal distribution centered around C₁₉. The low abundance of hydrocarbons between C₁₂ and C₁₅ may be indicative of some degradation, however caution must be taken when interpreting this region due to possible depletion from the The pristane/phytane ratio of 2.99 indicates solvent extraction process. deposition in a sub-oxic environment, however other ratios based on heavier compounds (eg. carbon preference index - CPI) are considered unreliable due to the inferred "contamination" by the immature organic matter.

Shows at the top of the Pretty Hill Formation were sampled in cuttings (1468 metres), drilling mud (DST-1), and a sidewall core (1473.7 metres) and, despite comprising up to 70% dull to bright yellow gold fluorescence, they had virtually no associated gas. The DST-1 mud sample is considered unreliable due to its low hydrocarbon concentration (7.7ppm), but the other two samples display relatively consistent chromatograms with alkanes up to approximately C_{33} . Like the cuttings sample at 450 metres both have a unimodal distribution with a maximum at approximately C_{19} , with only a slight hint of an odd-overeven preference (CPI=1.1). The pristane/phytane ratios (3.44 and 3.06) are also similar to that of the 450-metre sample while, again, there is an apparent depletion of the C_{12} to $C_{15/16}$ components. This depletion would be also consistent with the very low gas readings associated with this interval.

The next noteworthy shows encountered in Digby-1 are exemplified by cuttings from 1740 metres, within the Pretty Hill Formation, with no apparent associated seal. Like the shows around 450 metres, these are thought to be associated with a fault zone, which is interpreted on seismic data and supported by the total loss of circulation which occurred at the base of this zone of shows (1757 metres). The GC_{sats} trace of this sample displays a similar signature to the shows higher up, however with a few minor differences indicating it is probably of at least a slightly different origin or migration route. The chromatogram illustrates a bimodal distribution with peaks at C₁₃ and C₁₈, the CPI of 1.2 indicates a slightly more pronounced odd-over-even preference, and the pristane/phytane ratio of 4.03 is somewhat higher (indicative of a more oxic environment) than the top Pretty Hill Formation samples.

From within the Casterton Formation section three samples were extracted for migrated hydrocarbons, one cuttings (1930 metres), one DST-2 mud sample, and one sidewall core (1940.8 metres). Two other sidewall cores, a mudstone (1903.2 metres) and a coal (1944.2 metres), were extracted for source rock information. A duplicate of the cuttings sample was also thermally extracted and this chromatogram is considerably different to the others. In particular, the lighter components (up to C_{12}) can be seen (as opposed to being lost by the extraction process), however the heavier components may be underestimated by the technique.

The three "migrated hydrocarbons" samples are all quite different to each other, which may be due to the different types of samples from which they were extracted (ie. varying degrees of contamination). The cuttings and sidewall core samples both show bimodal distributions, with peaks around C_{13} and C_{17} for the cuttings sample and C_{19} and C_{23} for the sidewall core sample, while the mud sample shows a unimodal distribution with a peak around C_{16} . Both the cuttings and the sidewall core samples show only a slight odd-overeven preference (CPI=1.13-1.14), while the pristane/phytane ratio is significantly greater (4.73-5.48) than the oil samples higher up.

The mudstone and coal samples share a broad similarity, with n-alkane distributions centred around C_{13-14} and smaller peaks around C_{19} and C_{17} , respectively, some of which could account for the bimodality observed in the "migrated" samples.

3.4.2 Source and Maturity

In order to ascertain the organic richness and maturity of potential source rocks encountered in Digby-1 during the drilling of the well, samples of cuttings were periodically sent for analysis by Rock-Eval pyrolysis (R-E) and by Vitrinite Reflectance (V_R). At the end of the well a selection of sidewall cores were sent for Total Organic Carbon (TOC) determination and from these some were chosen for R-E and/or V_R analyses to supplement the cuttings sample data. All results from this work are provided in Appendix 9C. In addition, four sidewall cores (spanning the range of TOC results) were analysed via Pyrolysis GC to ascertain the remaining generative potential, and results of this work comprise Appendix 9D. Also with regard to source quality and maturity, the nature of the organic material and spore colour changes were documented as part the work conducted on sidewall cores submitted for palynological analysis, a full report of which is contained in Appendix 10A.

Apart from some intervals within the Casterton Formation, the section penetrated at Digby-1 was generally organically lean (and this paucity of organic-rich material throughout the Eumeralla-Laira-Pretty Hill section limited the number of samples which could be taken for R-E). The rich coaly intervals within the Eumeralla Formation often intersected further to the south were essentially absent from Digby-1. The richest sample above the Casterton Formation was in the Laira Formation (1445.2m), but only reported a TOC of 1.08% with a modest S2 value (1.51) and a low Hydrogen Index (140).

TOC values within the Casterton Formation range 0.42-35.9% (average 5.5%), with the highest value corresponding to a coal. These values demonstrate the shales of the Casterton Formation in Digby-1 to be a moderate to rich source, which is also supported by the organic facies data in Appendix 10A, which suggests it may have originally been as rich or richer than the equivalent strata in Sawpit-1.

Indications of the maturity of the Dibgy-1 section as provided by the R-E, V_R and palynology work are variably erratic, but all conclusively point to the section being more mature than anticipated (when compared to other wells in the region), especially below the Eumeralla Formation. This is due, at least in part, to the maturity gradient (ie. increase with depth) being significantly higher than in comparable wells (eg. Sawpit-1 in Appendix 10A), which may result from a higher level of igneous activity in the vicinity of Digby-1. The

comparitively higher maturity for a given depth also indicates that there has been greater uplift of the Digby-1 section relative to other wells in the region, including Mocamboro-11 in which the equivalent stratigraphic section is currently at a higher elevation.

The Pyrolysis GC and organic facies data indicate that much of the potential hydrocarbon source material sampled in Digby-1 (almost all in the Casterton Formation) is now mostly gas/condensate prone. Some samples appear to have originally had good to excellent oil-generating potential but, while moderate potential remains in a few samples, this is now largely spent due to the high maturity. Overall, the section penetrated in Digby-1 is estimated to range from 'early mature for oil generation' down to 'mature for wet gas and condensate.'

3.4.3 Oil-Source Pairing

Due to indications that oil samples from the Pretty Hill (1473.7 metres) and Casterton (1940.8 metres) Formations were significantly different from each other, and showed varying degrees of similarity with the Casterton shale (1903.2 metres) and coal (1944.2 metres) source types, GC-MS work was undertaken on these samples to further investigate their possible interrelationship. Results of this work comprise Appendix 9E. In addition to this, a Eumeralla Formation source sample from the region (cuttings containing both shale and coal from 2895 metres in Lindon-1) was also analysed via GC-MS to see how it compared with the two Digby-1 oil samples. The Lindon-1 GC-MS results and comments on how they compare to the Digby-1 data are provided in Appendix 9F. (Also included in this appendix is a summary of petroleum geochemistry methods and the fundamental results they produce).

The results suggest that the oil from 1473.7 metres correlates well with the organic-rich shale from 1903.2 metres, and that the oil from 1940.8 metres appears to be genetically related to the coal from 1944.2 metres. In contrast to this, despite similarities between the Lindon-1 sample and the oil sample from 1940.8 metres in Digby-1, the Lindon-1 sample is not regarded as a likely source for either of the two Digby-1 oil samples.

3.5 PALYNOLOGY

Twenty sidewall cores from Digby-1 were submitted to APG Consultants for palynological investigation to assess their age, biostratigraphy, depositional environment, organic facies and hydrocarbon source potential. The results of this work comprise Appendix 10A.

In most cases the biostratigraphy confirmed the lithologically-based stratigraphic picks made during the drilling, with the important exception that it identified the presence of the Laira Formation, which is not lithologically distinguishable from the unconformably overlying Eumeralla Formation.

Depositional environments interpreted from the palynological data range from "fluvial-lagoonal; coastal plain" for the Eumeralla, Laira and upper Pretty Hill Formations, "braided stream, swamp" for the lower Pretty Hill Formation, and "lacustrine, fluvial-lagoonal, swamp; coastal plain" for the Casterton Formation.

As a result of the palynological identifications and the synthesis of biostratigraphic and lithostratigraphic data in Digby-1 a review of key wells in the region for which data was available was undertaken in order to provide a consistent interpretation across this part of the basin. This report (Appendix 10B) suggests some significant revisions to the previous stratigraphic interpretation of some of these wells.

3.6 SEISMIC INTERPRETATION

Digby-1 is located at CMP 739.5 on seismic line OMN93-14, as shown in Figure 5 with the pre-drill interpretation. Prior to drilling, two horizons across the Digby prospect were mapped, the top Pretty Hill Formation sandstone primary target (Enclosure 7a) and a reflector thought to represent Palaeozoic basement (Enclosure 7b). At the top Pretty Hill horizon the Digby structure was interpreted as a large east-west trending fault-dependent closure, bounded to the north by a major down-to-the-north half-graben-forming fault.

This area is structurally complex and some aspects of it are not adequately explained by our understanding of the regional tectonic elements. However, it is currently thought that the major down-to-the-north fault forms the southern boundary of the eastern extension of the Tantanoola Trough and that the small half-graben to the south of

PE905733

This is an enclosure indicator page.

The enclosure PE905733 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905733 has the following characteristics:

ITEM_BARCODE = PE905733
CONTAINER_BARCODE = PE900874

NAME = Pre-Drill Seismic Interpretation

BASIN = OTWAY BASIN

PERMIT = PEP/134

TYPE = SEISMIC

SUBTYPE = SECTION

DESCRIPTION = Seismic Interpretation (from Geology of

WCR vol. 1) for Digby-1

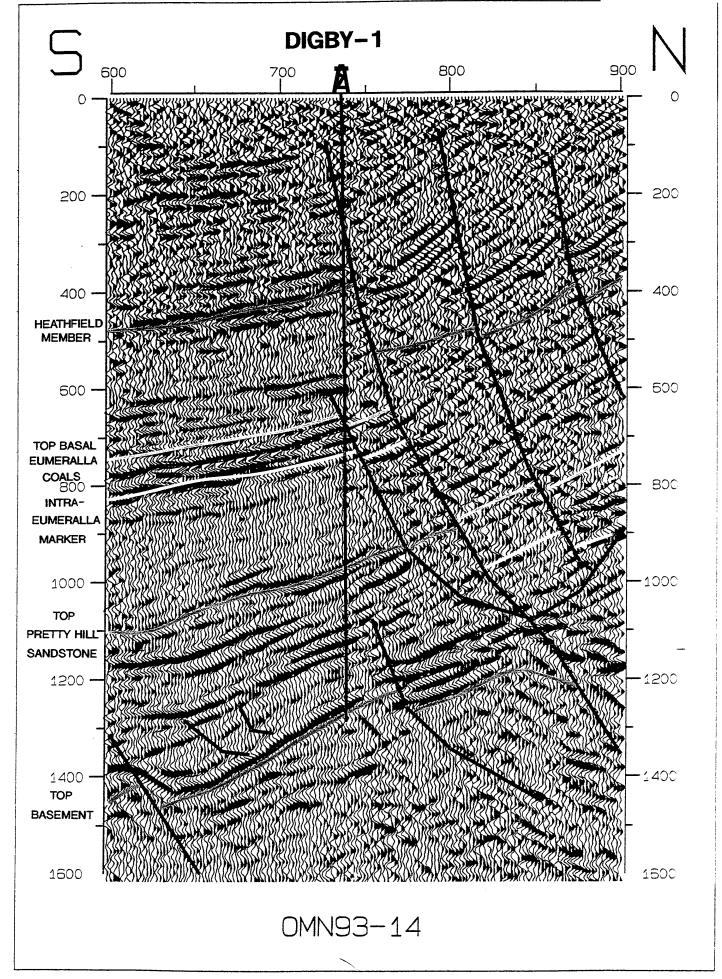
REMARKS =

 $DATE_CREATED = 30/11/95$

DATE_RECEIVED = 17/11/95

 $W_NO = W1130$

WELL_NAME = DIGBY-1


CONTRACTOR =

CLIENT_OP_CO = GFE RESOURCES LTD

(Inserted by DNRE - Vic Govt Mines Dept)

PRE-DRILL SEISMIC INTERPRETATION

PE905734

This is an enclosure indicator page. The enclosure PE905734 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905734 has the following characteristics:

ITEM_BARCODE = PE905734
CONTAINER_BARCODE = PE900874

NAME = Post-Drill Seismic Interpretation

BASIN = OTWAY BASIN

PERMIT = PEP/134 TYPE = SEISMIC

SUBTYPE = SECTION

 ${\tt DESCRIPTION = Post-Drill \ Seismic \ Interpretation \ (from \ }$

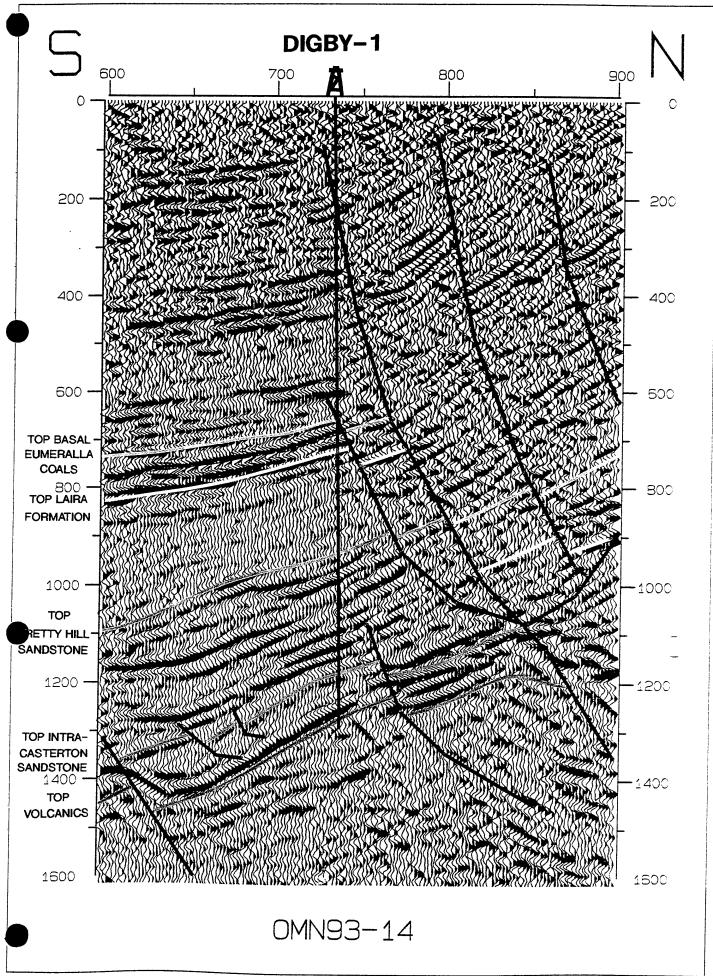
Geology of WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED = 30/11/95 DATE_RECEIVED = 17/11/95

 $W_NO = W1130$

WELL_NAME = DIGBY-1


CONTRACTOR =

CLIENT_OP_CO = GFE RESOURCES LTD

(Inserted by DNRE - Vic Govt Mines Dept)

POST-DRILL SEISMIC INTERPRETATION

Digby-1 is the subdued western extension of the Ardonachie Trough, which appears to terminate in this vicinity. The drilling of Digby-1 did not alter this structural model, but did necessitate revision of the stratigraphic interpretation, as shown in Figure 6.

After drilling, an interpretation of the top intra-Casterton sandstone horizon (ie. top of the sand tested in DST-2) was undertaken. As a result of this, the pre-drill fault correlations were altered slightly and a revised time map of the top Pretty Hill Formation displaying both these changes and horizon's post-drill time pick was produced. These post-drill time maps and their depth map counterparts are provided in Enclosures 7c-7f.

The formation tops encountered in Digby-1 were all slightly shallower in time and deeper in depth than prognosed (Figure 4). This suggests that the seismic interpretation carried across from the nearest control point (Mocamboro-11) was substantially correct, but that the velocities used in the depth conversion were marginally slower than expected.

3.7 LOG ANALYSIS

Log analysis was undertaken on the Digby-1 wireline logs using Crocker Data Processing's PETROLOG software. The Pretty Hill - Casterton section was divided into seven zones, and those containing significant proportions of sand were analysed for their hydrocarbon reservoir potential. Subdivision of the thick Pretty Hill Formation sandstone (1595-1900 metres) into two zones was done partly to avoid analysing one large zone, but also to take into account a slight lithological change suggested by the gamma ray around 1700 metres.

For each zone basic input parameters are given in Table 6 and a summary of the results is provided in Table 7. A detailed listing of all input parameters, environmental corrections, preinterpretation results and complex lithology results can be found in Appendix 12 and a 1:500 scale analysis log is provided as Enclosure 8.

The overall quality of the logs in the zones analysed is regarded as good to very good, however it should be noted that there was a relatively large time period (approximately 21½ hours) between the acquisition of the resistivity-sonic and the density-neutron data, due to malfunctions in both the primary and back-up density-neutron tools.

The estimated formation water salinity (and, therefore, R_w) used in the upper Pretty Hill Formation sand (Zone 2) was based on the salinity of the DST-1 sample which, being

TABLE 6

DIGBY-1
BASIC INPUT PARAMETERS FOR LOG ANALYSIS

ZONE#	2	3	4	5	7
FORMATION	Pretty Hill	Pretty Hill	Pretty Hill	Pretty Hill	Casterton
From (m)	1461.3	1503.1	1595.1	1700.1	1923.2
To (m)	1503.0	1595.0	1700.0	1899.9	1954.0
Interval (m)	41.7	91.9	104.9	199.8	30.8
Average Zone Temperature (°C)	75.2	77.4	80.6	85.6	90.1
Rw at Av. Zone Temp. (ohm.m)	0.106	0.141	0.189	0.180	0.173
Rw at 23.9 °C (ohm.m)	0.226	0.306	0.425	0.425	0.425
Salinity (Kppm)	28.0	20.0	14.0	14.0	14.0
Mud Filtrate Salinity (Kppm)	75.1	75.1	75.1	75.1	75.1
Assumed Matrix Density (g/cc)	2.67	2.67	2.67	2.67	2.67
GRclean (API units)	40	40	40	40	40
GRelay (API units)	175	175	175	175	170
Relay (ohm.m)	3.2	3.2	4.5	6.5	12.0
Saturation Equation	Indonesian	Indonesian	Indonesian	Indonesian	Indonesian
Tortuosity (a)	0.8	0.8	0.8	0.8	0.8
Cementation Exponent (m)	2.0	2.0	2.0	2.0	2.0
Saturation Exponent (n)	2.0	2.0	2.0	2.0	2.0

TABLE 7

DIGBY-1
LOG ANALYSIS RESULTS SUMMARY

ZONE#	2	3	4	5	7
FORMATION	Pretty Hill	Pretty Hill	Pretty Hill	Pretty Hill	Casterton
From (m)	1461.3	1503.1	1595.1	1700.1	1923.2
To (m)	1503.0	1595.0	1700.0	1899.9	1954.0
Interval (m)	41.7	91.9	104.9	199.8	30.8
Net Sand [†] (m)	28.8	20.9	94.2	176.4	15.3
Net/Gross (%)	69.1	22.7	89.8	88.3	49.7
Sand Average Ø _{eff.} † (%)	13.8	9.8	17.2	15.7	12.1
Sand Average S _w [†] (%)	84.8	87.9	84.9	92.2	78.1
Sand Average V _{clay} † (%)	27.0	27.3	21.8	16.9	26.9
For net pay:					
Average Ø _{eff.} Cut off	0.05	0.05	0.05	0.05	0.05
S _w Cut off	0.50	0.50	0.50	0.50	0.50
V _{clay} Cut off	0.40	0.40	0.40	0.40	0.40
Net Pay (m)	0.0	0.0	0.1	0.0	1.3
Pay Average ∅ _{eff} (%)	n/a	n/a	14.2	n/a	20.1
Pay Average S _w (%)	n/a	n/a	48.4	n/a	35.9
Pay Average V _{clay} (%)	n/a	n/a	35.6	n/a	28.3

[†]Obtained using cut offs of S_w = 100%; $\varnothing_{eff.}$ = 5%; V_{clay} = 40%

the last water produced in the 50+ barrel flow, is assumed to be reasonably representative of the true formation water. The salinity used in the lower Pretty Hill (Zones 4 and 5) and the intra-Casterton (Zone 7) sands was only half this, and the salinity used in Zone 3 was intermediate between the two. All of these salinities are higher than would be anticipated, especially when considering the much fresher formation waters which have been interpreted elsewhere for these strata. However, they yield results which appear to provide a reasonable (if not slightly conservative) fit to the hydrocarbon shows observed in the well. Without altering other input parameters, lowering the formation water salinities in these zones would result in even lower hydrocarbon saturations than those produced in this analysis.

As shown in Table 7, the upper Pretty Hill Formation sand (Zone 2), over the top part of which DST-1 was conducted, was estimated to comprise about 70% net sand with an average V_{clay} of 27%, average porosity around 14%, and average water saturation around 85%, yielding no net pay. The two zones representing the lower Pretty Hill sand (Zones 4 and 5) were estimated to comprise about 90% net sand with average V_{clay} ranging 17-22%, average porosity 16-17%, and average water saturation 85-92%, and insignificant net pay. The intra-Casterton sand (Zone 7), most of which was spanned by DST-2, was estimated to comprise 50% net sand with an average V_{clay} of 27%, average porosity of 12%, and average water saturation around 78%. Within this, the analysis estimated 1.3 metres of net pay with an average porosity of 20% and average water saturation of 36%, however no significant flow of hydrocarbon or water was produced during the test.

CONCLUSIONS

4. CONCLUSIONS

4.1 OBJECTIVES VERSUS PERFORMANCE

The main objective in drilling Digby-1 was to evaluate the hydrocarbon potential of the structure mapped at the top Pretty Hill Formation sandstone level and the section beneath it down to the interpreted top of basement (fractured metamorphic?). The top Pretty Hill Formation sandstone was evaluated by DST-1 and the seismic event that had been inferred to be the top of basement was actually the top of the intra-Casterton Formation volcanics, which showed no evidence of fracturing or hydrocarbons. Thus, Digby-1 can be said to have largely satisfied its intended purpose.

Assessment of performance in terms of time (and thus cost) is less favourable. As shown in Figure 3, Digby-1 took eight days longer than the prognosed 17 days to drill, due to a variety of causes, including;

- the rig gear shaft broke, requiring a duplicate to be machined (two days lost)
- the pin from the drop bar sub used in DST-1 fell into the hole and its absence was not noticed until (after several hours of very slow drilling) the bit was pulled and found to have the pin lodged between its cones (one day lost)
- below 1200 metres hole deviation began to increase above three degrees, so the rate of penetration was eased back to help minimise this (two to three days extra)
- an extra drill stem test (DST-2) was conducted to evaluate shows in the unanticipated intra-Casterton sandstone unit (one and a half days extra)
- the total depth was extended beyond the prognosed 2046 metres to 2088 metres (one day extra).

Despite problems with the neutron-density tools, the logging and plugging-and-abandonment of Digby-1 took about a day less than prognosed.

Another parameter which pertains to performance during drilling of the well is hole deviation. As outlined in Section 2.5.4, the horizontal component of hole deviation was kept within a 39-metre radius of the proposed location at the top Pretty Hill Formation sandstone level (1463 metres), which equates to a maximum overall deviation of about one and a half degrees. This increased markedly to being within a 94-metre radius of the proposed location at total depth, which equates to a maximum overall deviation of about two and a half degrees.

Assessment of the Digby-1 results with regard to the prognosis of geological and geophysical parameters is quite favourable, given that sparse well control, seismic data quality and structural complexity of the area imposed significant limitations on accuracy. Formation tops were all high to prognosis in time (by up to 38 milliseconds) and low to prognosis in depth (by up to 56 metres), but the magnitude of these differences was not unexpected due to the paucity of pre-drill data available to constrain the predictions. The time-depth relationship observed in Digby-1 indicates that the actual velocity profile differs significantly from the pre-drill velocity model used. However, since this model was based on the nearest well (Mocamboro-11), the variation at the Digby-1 location could not have been readily anticipated.

With regard to stratigraphy, the biggest discrepancies between the predicted and actual sections in Digby-1 involve the failure to prognose the Laira Formation, the Casterton Formation and the intra-Casterton Formation volcanics.

In the case of the Laira Formation this is entirely justified by both the close lithological similarity to the Eumeralla Formation and (more importantly) the fact that that it was not recognized in Mocamboro-11. Seismically the Laira Formation was indirectly prognosed in Digby-1, in that the predicted "Intra-Eumeralla Marker" closely coincides with the Laira Formation top.

Failure to prognose the Casterton Formation (including the volcanics) in Digby-1 is at least partly attributable to the heavy (over?) reliance on the correlation from Mocamboro-11, where this part of the section is not present. The pre-drill interpretation of the strong reflector at 1254 milliseconds in Digby-1 being basement was not unreasonable when considering the correlation from Mocamboro-11, especially given that the seismic data quality beneath this reflector is poor in the Digby area. (With hindsight, consideration of the lower section of the Casterton-1 well would have provided a useful analogue for the lower section of Digby-1 but, as well as being much older and further away from the Digby area than Mocamboro-11, it is also more difficult to correlate from the available seismic).

An objective which remains unsatisfied by the drilling of Digby-1 is a definitive assessment of hydrocarbon prospectivity of the entire Digby structure. As no commercial accumulations were intersected in the well, the structure down-dip of Digby-1 (and, therefore, the prospect as currently mapped) has been effectively demonstrated to be unprospective. However, the up-dip Casterton Formation section to the north displays a series of strong amplitude reflectors which could (among other

things) be indicating hydrocarbon prospectivity. Assessment of this possibility will only be definitively addressed by drilling this up-dip section, but the economic justification for doing so is questionable.

4.2 CONTRIBUTION TO GEOLOGICAL KNOWLEDGE AND HYDROCARBON PROSPECTIVITY

In addition to the basic information that drilling a petroleum well adds to the geological knowledge and hydrocarbon prospectivity of an area (eg. depth to formation tops, cuttings samples, sidewall cores, wireline logs, etc.) the drilling of Digby-1 has;

- identified the presence of the Laira Formation in this area and, in doing so, has necessitated a revision to the interpreted section in the Mocamboro-11 stratigraphic well (and probably also to other wells in the region).
- confirmed the presence of good to excellent reservoir potential in the top Pretty Hill Formation sandstones (ie. a relatively conservative log analysis estimated average effective porosity to be around 14% and the water influx in DST-1 indicated flow rates of around 2500-3000 bbls/day).
- identified the presence of the Casterton Formation in the Ardonachie Trough.
- identified apparently tight (but oil-bearing) potential reservoir sandstones within the Casterton Formation.
- identified good to excellent source rocks in the Casterton Formation.
- demonstrated a higher thermal maturity than other wells in the region (with peak oil generation around 1400-1500 metres and the Casterton Formation source rocks being in the wet gas/condensate zone).
- confirmed the migration of hydrocarbons (apparently at least mostly sourced from Casterton Formation strata) through this area, as evidenced by the mostly sparse but numerous shows throughout the well.
- demonstrated the potential for unpredictable velocity variations in the region by revealing a substantially different velocity profile to Mocamboro-11.

- provided temperature data which allows an estimate of true bottom hole temperature (99.2 °C at 2088 metres) and geothermal gradient (3.9 °C per 100m, assuming 18 °C at surface).
- provided a useful addition to the small number of formation water samples from the Pretty Hill Formation. Relatively pristine samples of formation water from prospective reservoir units in this region of the Otway Basin are few in number, so the sample from DST-1 has allowed a rare opportunity to obtain a compositional analysis and R_w (= 0.22 ohm.m at 25°C) for use in log analysis.

49

APPENDIX 1

GFE RESOURCES LTD

APPENDIX 1

RIG SPECIFICATIONS

DIGBY-1

INVENTORY - RIG #11

CARRIER Cooper LTO 750 Carrier with triple front and rear axles

54000lb front and 70000lb rear. All necessary highway equipment. Unit levelled with hydraulic jacks when

stationary.

SUBSTRUCTURE 17' floor height - 14' below table beams with plates in base.

DRAWWORKS Cooper 750 H.P. Drawworks.

42" x 12" main drum with Fawick 28VC 1000 clutch and 3000 metres $^{9}/_{16}$ " sandline. Driven by 2 each Cat D3406TA

Diesel Engines.

ROTARY TABLE National Rotary Table Model C-175.

DERRICK Cooper Derrick Model 118-365. Ground height 118'.

Maximum rated static hook load 350000 lbs with 10 lines.

Mast raised, lowered and telescoped hydraulically.

CROWN BLOCK Cooper Crown Block with 4 working sheaves. Fast line

sheave and dead line sheave. All grooved for $1-\frac{1}{8}$ " line.

Sandline sheave grooved for $\frac{9}{16}$ " line.

HOOK BLOCK National Hook Block Model 435 G-175. 175 ton capacity.

4-35" sheaves grooved for $1-\frac{1}{8}$ " line.

SWIVEL P-200 National.

KELLY SPINNER Foster Model K-77

SLUSH PUMPS No. 1:

National 8-P-80 Slush Pump. $6^{1}/_{4}$ " x $8^{1}/_{2}$ " Triplex single

acting driven by Cat. D398TA Diesel Engine.

No. 2:

National 7-P-50 Slush Pump driven by Cat D379TA Diesel

Engine.

PULSATION DAMPENER 1 each Hydril Pulsation Dampener type K20-3000.

MUD SYSTEM 2 x 300 bbl tanks incorporating 80 bbl pill tank and 40 bbl

trip tank.

SHAKERS Triton NNF Screening Machine (Linear Motion).

DEGASSER Drilco Atmosheric Degasser Standard Pit. $7^1/_2$ H.P. 60 Hz

230v.

DESANDER Demco Model 122. Two, 12" cone with Warman 6" x 4"

Centrifugal pump driven by 50 H.P. Electric Motor.

DESILTER Pioneer Economaster Model T12-E4. 12 x 4" cones with

Warman 6" x 4" Centrifugal pump, driven by a 50 H.P.

Electric Motor.

MUD MIXING PUMP Warman 6" x 4" Centrifugal pump driven by a 50 H.P.

Electric Motor.

MUD AGITATORS 4 only Brandt Mud Agitator Model MA 7.5.

B.O.P'S & $10'' \times 3000 \text{ P.S.I.}$ Shaffer Double Gate B.O.P. with $2^3/8''$,

ACCUMULATOR $2^{7}/_{8}$ ", $3^{1}/_{2}$ ", $4^{1}/_{2}$ ", $5^{1}/_{2}$ ", 7" and Blind.

10" x 3000 P.S.I. Hydril GK Annular B.O.P. Koomey B.O.P. Control Unit. Accumulator Unit Model 100-11S.

CHOKE MANIFOLD Cameron 5000 psi.

SPOOL 10" x 3000 x 10" x 3000 Flanged Drilling Spool with 3" x

3000 flanged choke and kill outlets.

INSTRUMENTATION Martin-Decker 6 pen Rcord-O-Graph

Martin-Decker Weight Indicator Type F.S.

Martin-Decker Mud Pressure Gauge Martin-Decker Rotary R.P.M. Indicator Martin-Decker Stroke Indicator (2 off) Martin-Decker Rota Torque Indicator Martin-Decker Tong Torque Indicator Martin-Decker Mud Flow Sensor Martin-Decker Mud Flow Fill System

Martin-Decker Mud Volume Totaliser (M.V.T.)

AUTOMATIC DRILLER Satellite Automatic Driller Model SA100-50-1500.

WIRELINE STRIPPER Guiberson Oil Saver Type H-4.

SURVEY UNIT Totco 8 Deg Recorder.

MUD LAB Baroid Rig Laboratory Model 821.

KELLY $5^{1}/_{4}$ " HEX Kelly. $2^{13}/_{16}$ " I.D. x 40' long with $6^{5}/_{8}$ " API Reg.

L.H. Box up 4" I.F. Pin down.

UPPER KELLY VALVE Upper Kelly Cock. 10000 test 6⁵/₈" API Reg. L.H.

Connections.

LOWER KELLY VALVE Hydril Kelly Guard. $4^{1}/_{4}$ " - 10000 P.S.I. 4" I.F. Pin and Box.

KELLY DRIVE BUSHING Varco Type 4 KRS Kelly Drive Bushing.

DRILL PIPE 7000' Drill Pipe $4^{1}/_{2}$ " O.D. 16.60 lb. Grade E Range 2 with

4" I.F. x 18 degree taper tool joints.

DRILL COLLARS 20 each Drill Collars $6^{1}/_{4}$ " O.D. slick $2^{13}/_{16}$ " I.D. x 30' long

with $4^{1}/_{2}$ " XH pin and box connections.

FISHING TOOLS To suit pipe, collars and tubing.

SUBSTITUTES To suit drill string.

HANDLING TOOLS Farr Hydraulic Power Tongs, 13³/₈" Varco SSW-10

spinning wrench.

Manual tongs, elevators and slips to handle pipe, collars,

casing and tubing.

WELDING EQUIPMENT Lincoln Electric Welder Model 400AS.

AIR COMPRESSORS Sullair compressor Package Model 10-30.

AC GENERATOR 2 each Caterpillar 3408TA AC Generator model SR-4. 1800

rpm 60 hz 275 kw.

FUEL TANKS 2 each 10,000 litre - Skid Mounted.

WATER TANK 400 bbl tank with two Warman 3 x 2 pumps driven by 24 hp

electric motors.

PIPE RACKS 5 sets 30 feet in length.

CATWALKS 2 piece Catwalk drill pipe construction 42" height.

RADIO Codan Mobile Transceiver.

TRANSPORTATION International 530 Payloader.

Toyota 4 x 4 Pickup.

Toyota 4 x 4 Crew Vehicle.

RIG ACCOMMODATION 2 Skid Mounted Toolpusher/Company Man Units.

CAMP

1- Camp Generator House 31' long x 10' wide skid mounted complete with 2 -3304 T 80 Kw, 50 Hz, 200 - 400 volt generators, camp distribution panel. 6,794 litres fuel storage, 12,000 litres fresh water storage and 24,000 litres shower water storage.

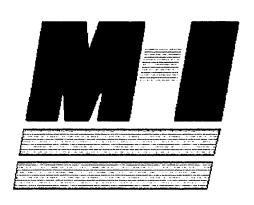
1 Kitchen/Dining Room	40' x 10' x 10'
1 Recreation Room	40' x 10' x 10'
1 Ablution/Laundry	40' x 10' x 10'
3 12 Man Bunkhouses	40' x 10' x 10'
1 Cooler/Freezer	20' x 8' x 8'

• APPENDIX 2

GFE RESOURCES LTD

APPENDIX 2

DRILLING FLUID RECAP


DIGBY-1

FDC4

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

GFE RESOURCES LTD
DIGBY 1
OTWAY BASIN
PEP 105 & PEP 126

M-I Drilling Fluids L.L.C.

F D C 4 DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator: GFE RESOURCES LTD

Well Name : DIGBY 1

Field/Area: OTWAY BASIN Description: EXPLORATION

Location : PEP 105 & PEP 126

Warehouse : ADELAIDE

Contractor: CENTURY

Spud Date: 05/09/95

TD Date: 06/03/95

Loc Code : VICTORIA

Dist Engr: B.JACK

Sales Engr : P.MARSHALL

Sales Engr :

Well Number: W0003

Comments	: .	ALL REP	ORTS T	ro 24:0	O HRS AS	PER THE LADC REPORT				
Туре	Size	Depth	TVD	Hole	MaxMW	Mud 1	Mud 2	Drilling Problem	Days	Cost
	in	m	m	in	lb/gal					
+ Casing	9.625			12.250	•	PHPA/KCL/MUD		no problems	2	7358
OpenH			2088	8.500	9.6	PHPA/KCL/MUD		PROB W/ STAIGHT HOLE	22	56515

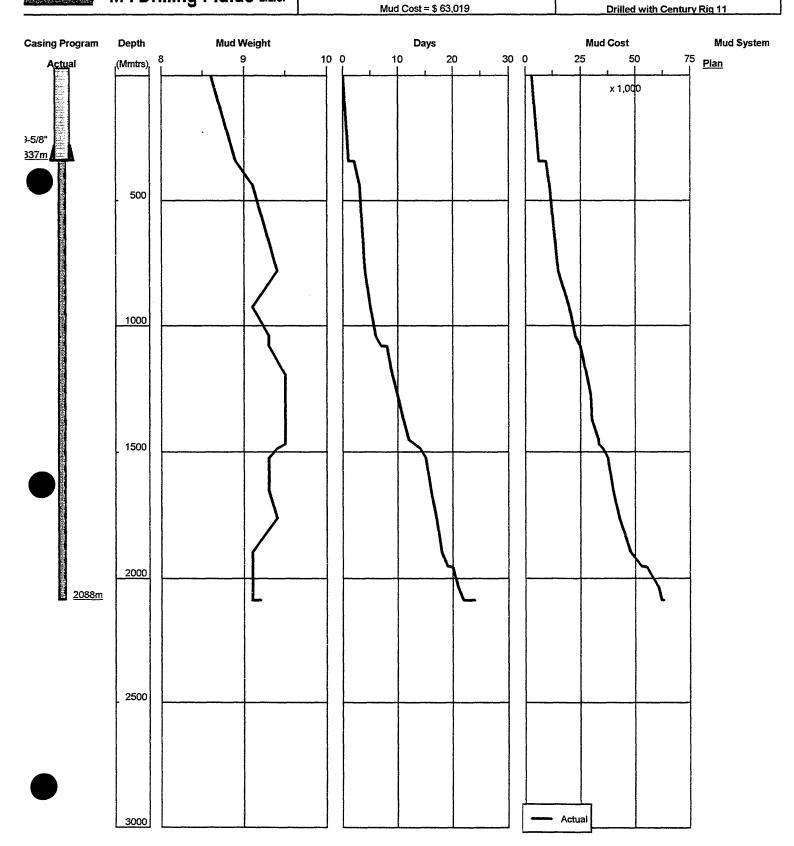
otal Depth: 2088 m TVD: 2088 m Water Depth: m Drilling Days: 26 Total Mud Cost: 63873

2/06/95 - 24 Days

TD =2,088 Mmtrs

TVD =2,088 Mmtrs

Spud=9/05/95


MW = 9.2

GFE Resources

Digby 1

Otway Basin, South West Victoria

Drilled with Century Rig 11

GFE RES	

WELL: DIGBY 1

- 1. INTRODUCTION
- 2. DISCUSSION BY INTERVAL
- 3. DATLY DISCUSSION REPORT
- 4. PRODUCT USAGE BY INTERVAL
- 5. DAILY VOLUME SUMMARY SHEETS
- 6. TOTAL MATERIAL CONSUMPTION
- 7. HYDRAULICS
- 8. BIT RECORD
- 9. WEEKLY INVENTORY SHEETS
- 10: DAILY RECAP
- 11. DAILY CHEMICAL ADDITIONS
- 12. DAILY-MUD REPORTS

M-I AUSTRALIA PTY LTD

INTRODUCTION

M-I AUSTRALIA PTY LTD

INTRODUCTION:

GFE Resources Limited's exploration well, Digby 1, was spudded by Century 11 at 0100 hours on 10 May 1995. The well is located in the Otway basin, south-west Victoria in permit, formally designated Digby JV, an excision straddling two adjoining permits, PEP 105 and PEP 126, controlled by two of the joint venture partners. The objective, the Pretty Hill formation, has no recognized source but is considered structurally and lithologically receptive to hydrocarbon migration.

The well was drilled to a total depth of 2088 meters in 334 drilling hours over 23 days. The hole proved trouble free despite the exposure of over 1100 meters of the reactive Eumerella formation. Constant delays, due primarily to controlled drilling (3 - 5 m/hr) in an attempt to correct stubborn and constantly increasing hole deviation (max recorded 6°), together with junk in the hole, rig failure and loss of returns, contributed to a completion time overrun of approximately 7 days. Two DST's were successfully conducted but neither indicated the presence of significant hydrocarbons. Logging was completed over 36 hours, without incident and P & A procedures were concluded on 4 June 1995.

Geological formation tops as supplied were:

Formation	Lithology	Depth (meters)
Eumeralla	Claystone	6
Pretty Hill	Sandstone/minor interbedded claystone	1463
Basement		1899
Total Depth		2088

DISCUSSION BY INTERVAL

M-L'AHSTRALIA-PTV LTD

interval interval	0 - 342 Meters	12.1/4" Hole	
			9.5/8" Casing
			set at 337 Meters

MUD TYPE

KCI/PHPA

HOLE PROBLEMS

NONE

MUD PROPERTIES

Mud Weight : 8.7 - 9.0 ppg Funnel Viscosity : 36 - 48 sec/qt Plastic Viscosity : 16 - 21 cp

Yield Point : 14 - 19 lb/100 sq ft Gels : 2 - 5 / 4 - 10 lb/100 sq ft

Filtrate : 5.6 - 15 cc

KCl : 3.5 - 4.0 % weight PHPA : 1.8 - 2.0 ppb

OPERATIONS:

Digby 1 was spudded with a 12.1/4" bit and was drilled to section total depth at 342 meters in 15.1/2 hours drilling time A wiper trip at total depth encountered a minor obstruction at 327 meters and 6 meters of fill. The hole was circulated clean and casing was run and cemented without incident. Cement was displaced to the annulus with drillwater.

MUD:

The decision to spud with an inhibited system proved sound. No hole problems were experienced and cuttings, while friable, were well encapsulated and dry on compression. There was no evidence of balling, a frequent problem in top hole and drilling progressed to total depth uninterrupted.

The initial mud up consisted of 4% KCl/1.8 ppb PHPA, approximately 6 ppb PHG and PAC R/CMC LV providing adequate hole cleaning and water loss less than 8.0 cc. Maintenance of inhibition and circulating volume was by way of concentrated premix. 3 x 50 mesh screens and constant use of the desander and desilter enabled mud weight to be maintained below 9 ppg. The higher than anticipated consumption of PHPA and KCl for the section was due to the high reactivity of the surface claystone and greater than expected mud on cuttings losses. Inhibition by sections end had been increased to 2 ppb PHPA and 5% KCl. 260 bbl of mud remained after cementing for use in the 8.1/2" section.

Interval 342 - 2088 Meters 8.1/2" Hole No Casing Set

MUD TYPE : KCI/PHPA

HOLE PROBLEMS : HOLE DEVIATION/LOSS OF CIRCULATION

MUD PROPERTIES :

Mud Weight : 9.0 - 9.5 ppg Funnel Viscosity : 38 - 50 sec/qt Plastic Viscosity : 12 - 23 cp

Yield Point : 11 - 24 lb/100 sq ft Gels : 3 - 7 - 8 - 19 lb/100 sq ft

Filtrate : 4.0 - 6.0 cc

MBT : 10 - 20 lb/bbl equivalent

KCl : 4.5 - 8.0 % wt PHPA : 0.7 - 2.7 ppb

OPERATIONS:

To avoid the likelihood of cement contamination, the collar, shoe track and rathole were drilled out with water and the hole displaced to mud prior to conducting a FIT at 345 meters - mud weight equivalent = 22.3 ppg.

Drilling progressed through the Eumeralla claystone at rates between 15 - 20 m/hr with regular surveys. A 2° deviation at 781 meters and a subsequent reading of 3° and 4° at 1465 meters required controlled drilling (3 - 5 m/hr) and a stiffened assembly to allay the possibility of drifting off target. Further delays were incurred when a sheared drive shaft halted drilling for 36 hours. A drilling break at 1468 meters (Pretty Hill sandstone - 68 meters below prognosed depth) demanded DST #1 to be conducted over the interval 1460 meters - 1468 meters. After an initial 4 psi build up and gas to surface, the tool was shut in after 3 hours open to the formation but yielded only 18000 ppm Chloride formation water. Highly reactive kaolinitic clay was intersected soon after the test interval (1468 - 1531 meters) and was thought, by balling the bit and stabilisers to have reduced ROP to less than 1 m/hr. A trip out revealed junk from the DST tool lodged in the crown of the bit. A series of drilling breaks and minor shows in poorly cemented and sorted sandstone were deemed unsuitable to test. The hole continued to deviate and by 1905 meters had climbed to 6°. At 1759 meters total losses drained the active system before the floor was alerted. An LCM pill was prepared and spotted and while losses of up to 15 bbl/hr were recorded, returns were thereafter constant. An oil show at 1951 meters in carbonaceous sandy clay (Casterton formation) prompted DST #2. The test resulted in the recovery of 1.3 bbl of sightly oil cut mud and mud tested at 29,000 ppm Chlorides was collected from the sample chamber. Drilling continued to 2088 meters in an attempt to confirm basement depth.

	ters				208				3.1/					asing	

At 2088 meters, while still drilling pre-basement volcanics at approximately 2 m./hr, TD was declared. Ultimately after considering further testing of the Casterton and sidetracking the hole, P & A procedures commenced and were completed at 2100 hours on 3 June, 1995.

MUD:

Approximately 350 bbl of KCl/PHPA mud from the 12.1/4" section was available for use on commencement of the 8.1/2" hole section. While drilling this section, most of which consisted of the Eumeralla Formation (6 - 1463 meters), KCl concentration was increased from 3 - 5% by weight to 5 - 8% and PHPA maintained at 1.5 - 2.0 ppb.

On no occasion of the twelve wiper trips or bit, BHA or test trips during this interval did the hole present problems. Only after stiffening the BHA at 1080 meters, in an effort to correct increasing hole deviation, was it necessary to ream the hole to bottom. Once reamed, no further significant tight hole was recorded.

All treatment to the system was by premixes of varying concentrations to maintain PHPA levels at between 1.0 - 2.0 ppb corrected for depletion and KCl % by weight between 5% at total depth to a maximum of 8% at the commencement of the section. Typically they ranged between 5.5 and 6.5 % by weight and on the evidence of the hole and the condition of the cuttings, was more than adequate. Mud weights were maintained at between 9.1 - 9.3 ppg to 1200 meters and thereafter increased to 9.5 ppg (maximum 9.6 ppg) with Barite additions. After DST #1 at 1486 meters it was reduced to 9.3 ppg and allowed, with the regulated use of solids control equipment, to drift to between 9.0 - 9.2 ppg.

Severe downhole losses were recorded on two occasions; firstly at 1531 meters and again at 1759 meters. Losses to the formation were first recorded at 1080 meters and continued with typical volumes of 30 - 40 bbl/day until approximately 1450 meters. At 1531 meters, some 70 meters into the Pretty Hill Formation, approximately 100 bbl was lost while running in the hole and immediately subsided until at 1759 meters when total losses were recorded. A 55 bbl 45 ppb Mica/Kwikseal pill was spotted and circulation regained. Over the following 7 days approximately 550 bbl of mud was lost to the formation and a total of 800 bbl between 1080 meters and total depth was recorded. LCM was maintained in the system with daily additions from 1905 meters to total depth with apparent effect.

At the commencement of the section new mud was prepared with 5 - 10 ppb Gel in the form of PHG. Further additions were not considered necessary.

Interval	342 - 2088 Meters	8.1/2" Hole No Casing Set

SOLIDS CONTROL EQUIPMENT:

A single Triton shaker fitted with, firstly 3 x 50 mesh screens and beyond 780 meters with 3 x 84 mesh provided excellent primary solids control. A shortage of 84 mesh (not available) necessitated the use of 50 mesh towards the end of the well. Care in fitting the screens - a total of 5 screens were discarded-and their consequent long life was a feature. A 2 x 12" DEMCO desander, capable of handling 500 gpm each and a 12 x 4" SWECO desilter, 50 gpm each provided erratic but adequate sand and silt removal. As much as anything a four stage sand trap/settling tank system contributed to post shaker coarse solids removal. Solids build up (maximum MBT = 20 lb/bbl equivalent) was rarely excessive and never proved an intractable problem. With selective use of the solids control equipment, mud weights were able to be maintained within the ranges specified. Underflow weights for the desander were consistently in the range of 10.5 - 13.5 ppg with discard rates between 0.5 - 2.0 gpm.

CONCLUSIONS AND RECOMMENDATIONS:

The caliper log plot showed considerable hole enlargement below the shoe to a depth of 740 meters, ranging erratically from 20% - 60% of nominal hole size. From 740 - 1680 meters an almost constant 5% - 10% enlargement was recorded. Thereafter to total depth, the hole can be described as in-gauge. No apparent lithological changes (nor pump pressures) account for these discrete intervals and may relate to the maturity of the sediments.

It has to be recognized that the Eumeralla Formation, identified to a depth of 1463 meters, is not as reactive as supposed. The Cl / K+ ratio, which indicates the degree of K+ exchange with the formation, was relatively constant and only below 1468 meters to approximately 1560 meters, while drilling a section of highly plastic kaolinitic clay was formation reactivity apparent.

For all the problems encountered in drilling Digby 1, none relate to the mud system or to the condition of the hole. As described all trips were trouble free and logging (over a total of approximately 48 hours) was completed, while unsatisfactorily, without incident.

Considering the unusual length of time it took to drill Digby 1 and the probable extent of lost circulation, as opposed to that recorded, the approximate 30% mud cost overrun is easily accounted for in the use of Barite, LCM and the additional volume required to replace volume lost downhole.

DAILY DISCUSSION REPORT

M-PAIISTRATIA PTV LTD

Operator : GFE RES Well Name : DIGBY 1	Field/Are	or : CENTURY ea : OTWAY BASIN	Description : EXPLORATION Location : PEP 105 & PEP 126	Page: Well:	
Date : 09/05/95	· ·	• •	PA/4% KC1 system. PHPA/KC1 mud to ted once mixing completed and	Day :	1
Date : 10/05/95			o TD at 342m with regular wiper trip. Prepare to run	Day :	2
Date : 11/05/95	Depth : 342.0 Continue to RIH. Work by Rig up and run and cemen	_	. Circulate hole clean and POOH. . Nipple up BOPs.	Day :	3
Date : 12/05/95		ar shoe track and cemen	BHA and RIH - Tag cement at nt with water drill 3m new hole.	Day:	4
Date : 13/05/95	Depth : 781.0 Drill 8.5" hole from 438 Drill from 656m-781m.	•	and wiper trip - hole good.	Day :	 5
Date : 14/05/95	Depth : 924.0 Control drill (building RIH-3m fill drill from 8	angle) from 781m-896m.	POOH for wiper trip-hole good.	Day :	6
Date : 15/05/95		_	cion = 2 deg) from 944m-1040m. Ke up stiff BHA and change bit.	Day :	 7
Date : 16/05/95		rom 1040m-1080m. Inspec	bottom (STIFF ASSEMBLY) - 7m ct drive shaft - failed transfer	Day :	8
Date : 17/05/95			naft. Circulate continuously at at 300 gals/min. Install new	Day:	9
========= M–I Drilling Fluids	Co DRIL	LING FLUIDS DATA MANAG	EMENT SYSTEM	-707	==== 07-9

Operator : GFE R Well Name : DIGBY		Page: 2 Well: W0003
Date : 18/05/95	Depth: 1195.0 Complete shaft replacement. POOH to shoe - hole good. Tight spot at 794m. RIH - hole good - 7m fill. Drill 8.5" hole from 1080m - 1231m with regular surveys. Maximum deviation at 1201m - 2.75 deg.	Day: 10
Date : 19/05/95	Depth: 1277.0 Control drill 8.5" hole from 1231m - 1247m. Deviation = 3.0 deg. POOH and re-make up BHA. RIH to 1237m. Wash to bottom - hole good. Control drill (3-5 m/hr) from 1247m-1269m. Maximum deviation = 3.25 deg. Control drill from 1269m-1277m.	Day: 11
Date : 20/05/95	Depth : 1373.0 Attempt to reduce hole deviation, currently 3 deg, by control drill at +/-5m/hr from 1277m - 1373m.	Day: 12
Date : 21/05/95	Depth: 1451.0 Control drill (4.5m/hr) from 1373m - 1418m. Make 13 stand wiper trip-hole good- 3m fill. Control drill from 1418m - 1451m (3-5m/hr) current hole deviation = 4 deg.	Day: 13
Date : 22/05/95	Depth: 1468.0 Control drill (4.25m/hr) from 1451m - 1468m. Circulate out sample and flow check drilliing break. Pull back stands, circulate and run back to bottom-no fill. POOH and lay out BHA, make up DST tool and RIH. Commence DST #1.	Day: 14
Date : 23/05/95	Depth: 1486.0 Continue DST #1 over interval 1460m-1468m. Shut in after 3 hrs, unseat packer and reverse circulate-no go. Conventional circulate pull test tool and retrieve sample - water only. Lay out test tool and make up stiff BHA. RIH - 2m fill. Drill "sticky" balling clay from 1468m - 1486m at 1 - 2 m/hr - bit and stabiliser balled?	Day: 15
Date : 24/05/95	Depth: 1523.0 Continue to drill 8.5" from 1486m-1489m at <1.0 m/hr. Bit stopped drilling. POOH tight hole at 683m. Break out bit and recover DST tool junk lodged in cones. Make up bit RR #5 and RIH. Drill from 1489m-1523m at 3-5m/hr through plastic reactive clay.	Day: 16
Date : 25/05/95	Depth: 1650.0 Continue to drill 8.5" hole from 1531m-1560m. Drill break-circulate up sample-minor sand. Drill from 1560m-1601m. Circulate drilling break. Pull back 2 stands and circulate up sand sample. Drill ahead from 1601 - 1664m @ 8.0 m/hr through Pretty Hill sands.	Day: 17
M-I Drilling Flui	ds Co Drilling Fluids data management system	

Operator : GFE RES Well Name : DIGBY	Field/Area : OT	WAY BASIN	Description : EXPLORATION Location : PEP 105 & PEP 126	Page: Well: W	
Date : 26/05/95	Depth: 1759.0 Drill from 1664m-1740m (dev = from 1740m-1750m. Circulate an from 1750m-1753m. POOH for bit bottom. Drill from 1553m-1559m well. Build volume with sump w continue at 40 strokes/min. Mi Able to circulate - observe we	nd pull 2 stands, cir c change. Make up bit n. Total loss of retu vater and attempt to ix and pump 55 bbl of	rculate up sample. Drill : #6 and RIH. Wash 13m to urns - 140 bbl lost. Observe keep hole full-losses	Day :	18
Date : 27/05/95	Depth: 1895.0 Circulate to balance mud weigh drill-high torque, very low RC 1772m - 1905m. Maximum deviati approximately 5 bbl/hr.	P-work bit on bottom	n? Clear junk. Drill from	Day:	19
Date : 28/05/95	Depth: 1951.0 Drill from 1905m - 1932m. Circ sample-oil shoe. RIH-no fill. 3 stands and circulate sample- POOH for DST #2.	Drill from 1932m - 1	951m. Circulate 5 min, pull	Day :	20
Date : 29/05/95	Depth: 1956.0 Pressure test BOPs and surface Stuck pipe at 1945m. Set packe sample chamber. Pull free and choride whole mud. Make up BHA	er and conduct DST #2 POOH. Test sample ch	2. Cycle for 2 hrs and close namber contents - 29,000 ppm	Day:	21
Date : 30/05/95	Depth: 2037.0 Drill 8.5" hole from 1956m - 2 ahead to confirmed basement. D bbl/hr. Treat system with LCM.	Downhole losses conti	nue at approximately 1 - 2	Day :	22
Date : 31/05/95	Depth : 2087.0 Continue to drill 8.5" hole fr volcanics. POOH on wiper trip		rough pre-basement?	Day :	23
Date : 01/06/95	Depth : 2088.0 Continue wiper trip to 1000m - survey (deviation = 5.5 deg) a	_		Day :	24
Date : 02/06/95	Depth : 2088.0 Complete logging with velocity open ended and commence P & A		l cores. Lay down BHA. RIH	Day:	25
======================================	Co DRILLING F	LUIDS DATA MANAGEMEN	======================================	 07-0	:====)7-9!

PRODUCT USAGE BY INTERVAL

Operator: GFE RESOURCES LTD

Contractor: CENTURY

Description: EXPLORATION

Well Name: DIGBY 1

Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 09/05/95 - 10/05/95, 0 - 342.0 m

12.1/4" Hole

9.5/8" Casing

WATER-BASE PROD	SIZE	AMOUNT	UNIT COST	PROD COST
CMC TG LV	25 KG SX	10	61.23	612.30
Caustic Soda	25 KG SX	5	22.35	111.75
M-I Gel	25 KG SX	48	9.44	453.12
Polypac	25 KG SX	5	131.74	658.70
Polyplus Powder	25 KG SX	20	173.25	3465.00
Potassm Chloride	25 KG SX	177	11.46	2028.42
Soda Ash	25 KG SX	2	14.31	28.62

*** INTERVAL WATER-BASE MUD COST TOTAL =

7,357.91

*** TOTAL MUD COST FOR INTERVAL =

7,357.91

M-I Drilling Fluids L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

W0003

July 11, 1995

Total Meters Drilled

: 342 Meters

Cost per Meter

\$21.51

Total Days on Interval

3 Days

Cost per Day

\$2,452.63

Total Barrels Added

700 bbls

Cost per Barrel

: \$10.51

Dilution Rate

: 2.04 bbl/mtr

Operator: GFE RESOURCES LTD

Contractor: CENTURY

Description: EXPLORATION

Well Name: DIGBY 1

Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

BREAKDOWN OF COST BY PRODUCT GROUP 09/05/95 - 10/05/	/95 0 - 34	12.0 m
DICEARDO FINE OF COOT DEFRODUCE GROOF 03/03/33 - 10/03/	700. U - U-	74.V III

12.1/4" Hole	9.5/8"	Casing
WATER BASE MUD PRODUCTS	Cost	% Total
1 - BENTONITE	453.12	6.2
2 - VISCOSIFIERS	658.70	9.0
3 - FLUID LOSS AGENTS	612.30	8.3
4 - SALTS	2,028.42	27.6
5 - ENCAPSULATORS	3,465.00	47.1
6 - ALKALIES	140.37	1.9
WATER BASE MUD TOTAL COST	7,357.91	100.0

M-I Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

W0003

July 11, 1995

Operator: GFE RESOURCES LTD

Contractor : CENTURY

Description: EXPLORATION

Well Name: DIGBY 1

Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 11/05/95 - 02/06/95, 342.0 - 2088.0 m

8.1/	2" Hole		No	o Casing	Set
WATER-BASE PROD	SIZE	AMOUNT	UNIT COST	PROD COST	
CMC TG LV	25 KG SX	7	61.23	428.61	
Caustic Soda	25 KG SX	14	22.35	312.90	
Conqor 303	25 LT DM	1	51.27	51.27	
Cronox 2-100	208 LT DM	1	871.25	871.25	
Kwik Seal M	40 LB SX	71	40.89	2903.19	
M-I Bar	25 KG SX	440	5.53	2433.20	
M-I Gel	25 KG SX	111	9.44	1047.84	
Mica Medium	50 LB SX	62	18.01	1116.62	
05-1	25 KG SX	39	50.95	1987.05	
Polypac	25 KG SX	33	131.74	4347.42	
Polyplus Powder	25 KG SX	117	173.25	20270.25	
Potassm Chloride	25 KG SX	1320	11.46	15127.20	
Soda Ash	25 KG SX	16	14.31	228.96	
Sodium Bicarb	25 KG SX	21	15.34	322.14	
XCD	25 KG SX	12	422.29	5067.48	
*** INTERVAL WATE	R-BASE MUD	COST TOT	AL =	56,515.38	
*** TOTAL MUD CO	ST FOR INTE	RVAL =	56,5	15.38	

M-I Drilling Fluids L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

W0003

July 11, 1995

Total Meters Drilled

: 1,746 Meters

Cost per Meter

\$32.37

Total Days on Interval

: 23 Days

Cost per Day

: \$2,457.19

Total Barrels Added

: 3,381 bbls

Cost per Barrel

: \$16.72

Dilution Rate

: 1.94 bbl/mtr

Operator: GFE RESOURCES LTD

Contractor: CENTURY

Description: EXPLORATION

Well Name: DIGBY 1

Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

BREAKDOWN OF COST BY PRODUCT GROUP 11/05/95 - 02/06/95, 342.0 - 2088.0 $\,$ m

8.1/2" Hole	No Casing Set	04 T-4 1
WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	2,433.20	4.3
2 - BENTONITE	1,047.84	1.9
3 - VISCOSIFIERS	9,414.90	16.7
4 - FLUID LOSS AGENTS	428.61	0.8
5 - SALTS	15,127.20	26.8
6 - ENCAPSULATORS	20,270.25	35.9
7 - ALKALIES	864.00	1.5
8 - LCM	4,019.81	7.1
9 - MISC	2,909.57	5.1
WATER BASE MUD TOTAL COST	56,515.38	100.0
Drilling Fluids L.L.C. DRILLING FLUIDS DATA MANAGEME	ENT SYSTEM W	

DAILY VOLUME SUMMARY SHEETS

M-FAUSTRALIA PTY LTD

Well: Digby 1

12.1/4" Hole

		Mud V	'olume	Status			Mud Volume Built			Mud Volume Lost							
Date	Depth	Hole	Surf	Res	Total	Water	Mud	Increase	Daily	Cum	Solids	Surf	Dump	Hole	Casing	Daily	Cummul
1995	Meters		Active		Vol		Built	from Barite	Total	Bullt	Equip				Plugs	Total	Lost
9-May				450	450		450		450	450						0	0
10-May	342	145	210	36	391		125		125	575	60	94	30			184	184
11-May	342	D/W	383		383		125		125	700		43	90			133	317

8.1/2" Hole

		Mud \	Volume	Status			Mud Volume Built					Mud	Volum	e Lost			
Date	Depth	Hole	Surf	Res	Total	Water	Mud	Increase	Daily	Cum	Solids	Surf	Dump	Hole	Casing	Daily	Cummul
1995	Meters		Active		Vol		Bullt	from Barite	Total	Built	Equip				Plugs	Total	Lost
12-May	435	80	256		336		35		35	735	30	30	22			82	399
13-May	781	150	240		390		250		250	985	80	90	26			196	595
14-May	944	183	198	185	566		250		250	1235	60	50	9			119	714
15-May	1040	243	232	75	550		55		55	1290	31	40				71	785
16-May	1080	217	224	127	568		90		90	1380	7	50	15			72	857
17-May	1080	217	224	90	531				0	1380		7		30		37	894
18-May	1231	250	200	100	550		140		140	1520		65	20	36		121	1015
19-May	1277	258	215	65	538		70		70	1590		39	15	30		84	1099
20-May	1373	280	223	70	573		90		90	1680		30	5	18		53	1152
21-May	1451	295	287	80	662	28	120	2	150	1830	5	30	18	8		61	1213
22-May	1468	300	313	42	655				0	1830		7				7	1220
23-May	1486	304	392		696		100		100	1930	20	25	14			59	1279
24-May	1531	312	304	43	659		130		130	2060		30	35	102		167	1446
25-May	1664	349	205	100	654	25	100		125	2185	22	60	48			130	1576
26-May	1759	361	259	60	680	181	100		281	2466	34	36	15	170		255	1831
27-May	1905	392	270	93	755		250		250	2716	25	50	5	95		175	2006
28-May	1951	443	178	133	754		210		210	2926	15	30	15	151		211	2217
29-May	1956	393	216	125	734		90		90	3016	10	20	5	75		110	2327
30-May	2038	421	232	168	821		178	2	180	3196	30	20	10	33		93	2420
31-May	2088	432	258	128	818		95		95	3291	45	20		33		98	2518
1-Jun	2088	485	145	68	698				0	3291		15	90	15		120	2638
2-Jun	2088	432	185	124	741		90		90	3381		32		15		47	2685
3-Jun	2088	280	144	105	529				0	3381		25	187			212	2897

TOTAL MATERIAL CONSUMPTION

M-LAUSTRALIA PTV LTD

Operator: GFE RESOURCES LTD

Contractor: CENTURY

Description: EXPLORATION

Well Name: DIGBY 1

Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 09/05/95 - 02/06/95, 0 - 2088.0 m

WATER-BASE PROD	SIZE	AMOUNT	UNIT COST	PROD COST
CMC TG LV	25 KG SX	17	61.23	1040.91
Caustic Soda	25 KG SX	19	22.35	424.65
Conqor 303	25 LT DM	1	51.27	51.27
Cronox 2-100	208 LT DM	1	871.25	871.25
Kwik Seal M	40 LB SX	71	40.89	2903.19
M-I Bar	25 KG SX	440	5.53	2433.20
M-I Gel	25 KG SX	159	9.44	1500.96
Mica Medium	50 LB SX	62	18.01	1116.62
os-1	25 KG SX	39	50.95	1987.05
Polypac	25 KG SX	38	131.74	5006.12
Polyplus Powder	25 KG SX	137	173.25	23735.25
Potassm Chloride	25 KG SX	1497	11.46	17155.62
Soda Ash	25 KG SX	18	14.31	257.58
Sodium Bicarb	25 KG SX	21	15.34	322.14
XCD	25 KG SX	12	422.29	5067.48

*** INTERVAL WATER-BASE MUD COST TOTAL = 63,873.29

*** TOTAL MUD COST FOR INTERVAL = 63,873.29

M-I Drilling Fluids L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

W0003

July 11, 1995

Operator : GFE RESOURCES LTD

Contractor: CENTURY

Description: EXPLORATION

Well Name: DIGBY 1

Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	2,433.20	3.8
2 - BENTONITE	1,500.96	2.3
3 - VISCOSIFIERS	10,073.60	15.8
4 - FLUID LOSS AGENTS	1,040.91	1.6
5-SALTS	17,155.62	26.9
6 - ENCAPSULATORS	23,735.25	37.2
7 - ALKALIES	1,004.37	1.6
8 - LCM	4,019.81	6.3
9 - MISC	2,909.57	4.6
WATER BASE MUD TOTAL COST	63,873.29	100.0
		# 155

Operator : GFE RESOURCES LTD

Contractor: CENTURY

Description : EXPLORATION

W0003

July 11, 1995

Well Name: DIGBY 1

M-I Drilling Fluids L.L.C.

Field/Area: OTWAY BASIN

Location : PEP 105 & PEP 126

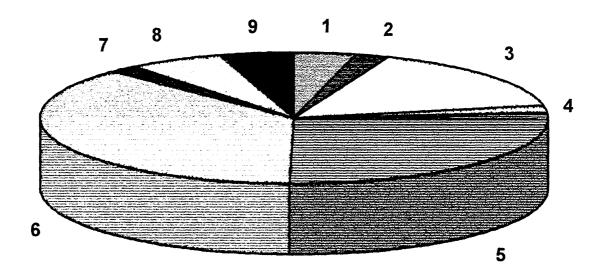
BREAKDOWN OF PRODUCT USAGE BY GROUP 09/05/95 - 02/06/95, 0 - 2088.0 m WATER BASE MUD

PRODUCT CA	TEGORY		PRODUCTS USED
WEIGHT MAT			
	M-I Bar		
BENTONITE			
	M-I Gel		
VISCOSIFIE			
	Polypac	XCD	
FLUID LOSS			
	CMC TG LV		
SALTS			
	Potassm Chloride		
ENCAPSULAT	 ORS		
	Polyplus Powder		
ALKALIES			
	Caustic Soda	Soda Ash	Sodium Bicarb
LCM			
	Kwik Seal M	Mica Medium	
MISC			
	Conqor 303	Cronox 2-100	OS-1

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator: GFE RESOURCES LTD

Well Name: DIGBY 1


Description: EXPLORATION Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

COST

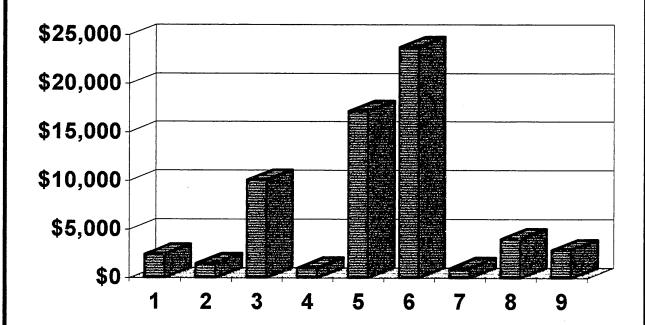
ANALYSIS

BREAKDOWN OF COST BY PRODUCT GROUP 09/05/95 - 02/06/95, 0 - 2088.0 m

WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	2,433.20	3.8
2 - BENTONITE	1,500.96	2.3
3 - VISCOSIFIERS	10,073.60	<i>15.</i> 8
4 - FLUID LOSS AGENTS	1,040.91	1.6
5 - SALTS	17,155.62	26.9
6 - ENCAPSULATORS	23,735.25	<i>37.2</i>
7 - ALKALIES	1,004.37	1.6
8 - LCM	4,019.81	6.3
9 - MISC	2,909.57	4.6
WATER BASE MUD TOTAL COST	63,873.29	100.0

Operator: GFE RESOURCES LTD

Well Name: DIGBY 1


Description: EXPLORATION Field/Area: OTWAY BASIN

Location: PEP 105 & PEP 126

COST

ANALYSIS

BREAKDOWN OF COST BY PRODUCT GROUP 09/05/95 - 02/06/95, 0 - 2088.0 m

WATER BASE MUD PRODUCTS	Cost	% Total
1 - WEIGHT MATERIAL	2,433.20	3.8
2 - BENTONITE	1,500.96	2.3
3 - VISCOSIFIERS	10,073.60	15.8
4 - FLUID LOSS AGENTS	1,040.91	1.6
5 - SALTS	17,155.62	26.9
6 - ENCAPSULATORS	23,735.25	37.2
7 - ALKALIES	1,004.37	1.6
8 - LCM	4,019.81	6.3
9 - MISC	2,909.57	4.6
WATER BASE MUD TOTAL COST	63,873,29	100.0

HYDRAULICS

M-T AUSTRALIA PTY LTD

			M-I DRILLI	NG FLUIDS	HYURAUL	ICS RECAI	•				
Operator: GFE	RESOURCE	S LTD	Contracto	or: Century			Description: EXPLORATION Location: PEP 105 & PEP 126				
Well Name: DIG	BY 1		Field/Are	a: OTWAY B	asin						
*Date		09/05/95	10/05/95	11/05/95	12/05/95	13/05/95	14/05/95	15/05/95	16/05/95	17/05/9	
*Depth		0.0	342.0	342.0	435.0	781.0	924.0	1040.0	1080.0	1080.	
*Days Since Spud		1	2	3	4	5	6	7	8		
*RHEOLOGICAL PRO											
Mud Wt	-lb/gal	8.6	8.9	8.9	9.1	9.4	9.1	9.3	9.3	9.	
Plastic Visc	-cps	8 5	17	22	18	18	19	19	18	2	
	b/100ft2 Fann deg	1	14 2	19 2	17 2	12 1	14 2	12 1	12 2	1	
np Value	rann deg	0.691	0.630	0.619	0.598	0.678	0.656	0.689	0.678	0.65	
Kp -lb-sec^:	n/100f+2	0.1860	0.6490	0.9195	0.8952	0.4677	0.5902	0.4496	0.678	0.641	
na Value	1, 1001 02	0.557	0.595	0.656	0.622	0.739	0.609	0.746	0.588	0.77	
Ka -lb-sec^:	n/100f+2	0.4301	0.8083	0.7321	0.7743	0.739	0.7906	0.746	0.556	0.302	
*FLOW DATA	., .v.t	J. 7501	v.6v63	V.,JLL	V.//33	4.3233	0.7500	V.3102	V.01/5	v.3UZ	
	-gal/min	0	450	0	250	250	250	250	300	16	
Pump Pressure	-psi	ŏ	700	ŏ	1250	1350	1400	1400	1400	45	
Pump	-hhp	***	184	***	182	197	204	204	245	4	
*PRESSURE LOSSES	.										
Drill String	-psi	***	***	***	224	278	288	310	416	14	
Bit	-psi	***	220	***	680	700	680	690	1000	30	
Annulus	-psi	***	***	***	25	26	41	33	49	2	
Total System	-psi	***	***	***	929	1004	1009	1033	1465	47	
*BIT HYDRAULICS									101000000000000000000000000000000000000		
Nozzles -1,	/32 inch	/ /	20/20/18	/ /	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/1	
Nozzles -1,	/32 inch	/ /	/ /	/ /	//	/ /	/ /	/ /	/ /	/ /	
Bit Pressure	-8	***	32	***	54	52	48	49	71	6	
Bit	-hhp	***	59	***	99	102	99	101	174	2	
Bit HSI	(Index)	***	0.50	***	1.70	1.80	1.70	1.80	3.10	0.5	
Jet Velocity	-m/sec	***	51.0	***	87.8	87.8	87.8	87.8	105.4	58.	
Impact Force	-lbs	***	347	***	339	350	339	347	499	15	
*DRILL COLLARS A	nnulus										
Velocity	-m/min	***	***	***	56.3	56.3	56.3	56.3	67.5	37.	
Critical Vel	-m/min	***	***	***	110.1	85.8	106.6	88.1	99.7	94.	
Reynolds Number		***	***	***	1038	1445	1084	1396	1538	76	
Crit Re (Lam - !	•	***	***	***	2619	2458	2636	2448	2664	241	
*DRILL PIPE ANNU											
Velocity	-m/min	***	***	***	33.9	33.9	33.9	33.9	40.7	22.	
Critical Vel	-m/min	***	***	***	83.3	59.7	81.3	61.0	77.0	64.	
Reynolds Number		***	***	***	759	1205	781	1173	1082	66	
Crit Re (Lam - !	Iran)	***	***	***	2619	2458	2636	2448	2664	241	
*HOLE CLEANING											
Slip Velocity	-m/min	***	***	***	16.7	19.7	17.2	19.9	17.7	19.	
Rising Velocity		***	***	***	17.2	14.2	16.7	14.0	23.0	2.	
Lifting Capacity	7 -8 -8	***	***	***	51 2.87	42 2.54	49	41	57	1	
Cuttings Conc	•	***	22.0	***		2.54 16.5	0.93	1.09	0.86	**	
Penetration Rate *CASING SHOE PRE		समझ (1990)((((((((((((((((((((((((((((((((((22.0	सस्य (१९१९)(१९१९)(१९१९)	22.6	16.5	7.1	7.0	9.0		
*Casing shoe pre:	-lb/gal	***	***	***	9.3	9.5					
		***	***	***	9.3 9.7	9.5 9.8	9.3	9.4	9.5	9. **	
ECD+Cuttings *TOTAL DEPTH PRE:	-lb/gal	समझ 1990(1993(1993(1993)	समझ १९२१:११:११:११:११:११	### 	9.7	у. 8	9.4	9.5	9.6		
*TOTAL DEPTH PRE:		***	***	***	9.4	9.6	9.4			el di in kanyana	
ECD+Cuttings	-lb/gal -lb/gal	***	***	***	9.4 9.8	9.6	9.4 9.5	9.5 9.6	9.6 9.7	9.	
acurcuttings	سب ومب				3.6	3.9	y. 5	3.6	3.1	**	

M-I DRILLING FLUIDS HYDRAULICS RECAP

Operator: GFE RESOURCES LTD Contractor: CENTURY Description: EXPLORATION

Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location: PEP 105 & PEP 126

*Date		18/05/95	19/05/95	20/05/95	21/05/95	22/05/95	23/05/95	24/05/95	25/05/95	26/05/
*Depth	_	1195.0	1277.0	1373.0	1451.0	1468.0	1486.0	1523.0	1650.0	1759
*Days Since Spuc		1.0	11	12	13	14	15	16	17	
*RHEOLOGICAL PRO										
Mud Wt	-lb/gal	9.5	9.5	9.5	9.5	9.5	9.4	9.3	9.3	9
Plastic Visc	-cps	23	21	22	19	23	17	20	20	
	b/100ft2	16	18	20	22	24	18	17	15	
	Fann deg	2	3	4	4	4	4	3	4	
np Value		0.668	0.621	0.607	0.549	0.574	0.571	0.623	0.652	0.6
-	n/100ft2	0.6442	0.8651	1.0154	1.4259	1.3956	1.0624	0.8108	0.6416	0.72
na Value		0.645	0.557	0.511	0.505	0.535	0.471	0.546	0.471	0.4
	n/100ft2	0.7452	1.2904	1.8557	1.8716	1.7833	1.9795	1.3147	1.9795	1.95
*FLOW DATA										
Flow Rate	-gal/min	325	325	325	325	325	325	325	325	6
Pump Pressure	~psi	1550	1600	1550	1600	1625	1525	1550	1625	16
Pump	-hhp	294	303	294	303	308	289	294	308	5
*PRESSURE LOSSES	000000000000000000000000000000000000000									
Drill String	-psi	534	522	542	516	556	508	550	580	17
Bit	-psi	1190	1190	1190	1190	1190	1180	1170	1170	43
Annulus	~psi	65	79	98	101	111	93	89	102	3
Total System	-psi	1789	1791	1830	1807	1857	1781	1809	1852	62
*BIT HYDRAULICS										
	/32 inch	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/
	/32 inch	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	1 /
Bit Pressure	-8	77	75	77	75	73	77	75	72	2
Bit	-hhp	226	226	226	226	226	224	221	221	15
Bit HSI	(Index)	4.00	4.00	4.00	4.00	4.00	3.90	3.90	3.90	28.
Jet Velocity	-m/sec	114.2	114.2	114.2	114.2	114.2	114.2	114.2	114.2	219
Impact Force	-lbs	598	598	598	598	598	592	586	586	21
*DRILL COLLARS A	nnulus									
Velocity	-m/min	73.2	73.2	73.2	73.2	73.2	73.2	73.2	73.2	140
Critical Vel	-m/min	113.4	120.7	130.6	128.8	139.0	119.2	119.0	120.0	120
Reynolds Number		1428	1314	1169	1192	1069	1340	1342	1326	35
Crit Re (Lam -	Tran)	2586	2707	2770	2778	2737	2825	2723	2825	28
*DRILL PIPE ANNU	LUS									
Velocity	-m/min	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.1	84
Critical Vel	-m/min	84.4	95.0	105.6	104.5	110.9	98.5	94.3	99.1	99
Reynolds Number		1072	893	754	764	708	826	900	818	22
Crit Re (Lam -	Tran)	2586	2707	2770	2778	2737	2825	2723	2825	28
*HOLE CLEANING									1010000000000	
Slip Velocity	-m/min	15.2	13.0	11.0	11.1	10.5	12.1	13.7	12.2	11
Rising Velocity	-m/min	28.9	31.0	33.1	33.0	33.6	32.0	30.4	31.9	72
Lifting Capacit	y -8	65	70	75	75	76	73	69	72	
Cuttings Conc	-8	0.62	0.23	0.33	0.26	0.28	0.14	0.17	0.58	0.
Penetration Rat	e -m/hr	8.2	3.3	5.0	4.0	4.3	2.0	2.3	8.5	12
*CASING SHOE PRE										
ECD	-lb/gal	9.7	9.8	9.8	9.8	9.8	9.7	9.6	9.6	9
ECD+Cuttings	-lb/gal	9.8	9.8	9.9	9.8	9.9	9.7	9.6	9.6	9
*TOTAL DEPTH PRE						9879387 (879 88 58887)				S September 1981
ECD	-lb/gal	9.8	9.9	9.9	9.9	9.9	9.8	9.6	9.7	9
ECD+Cuttings	-lb/gal	9.9	9.9	10.0	9.9	10.0	9.8	9.0	9.7	9
			5.5	20.0	3.3	10.0	3.0	3 ./	9 ./	9

M-I DRILLING FLUIDS HYDRAULICS RECAP Contractor: CENTURY Description: EXPLORATION

Operator: GFE RESOURCES LTD

Well Name: DIGBY 1	Field/Area: OTWAY B	ASIN	Location: PEP 105 & PEP 126									
*Date	27/05/95	28/05/95	29/05/95	30/05/95	31/05/95	01/06/95	02/06/9					
*Depth	1895.0	1951.0	1956.0	2037.0	2087.0	2088.0	2088.					
*Days Since Spud	19	20	21	22	23	24	2					
*RHEOLOGICAL PROPERTIES							(Hashitta)					
Mud Wt -lb/gal	9.1	9.1	9.1	9.1	9.1	9.1	9.					
Plastic Visc -cps	16	15	16	16	15	14	1					
Yield Point -lb/100ft2	10	13	15	15	13	12	1					
3-rpm Rdg -Fann deg	2	3	3	2	3	3						
np Value	0.691	0.619	0.600	0.600	0.619	0.621	0.61					
<pre>Kp -lb-sec^n/100ft2</pre>	0.3719	0.6312	0.7843	0.7843	0.6312	0.5767	0.685					
na Value	0.557	0.485	0.507	0.595	0.485	0.469	0.50					
Ka -lb-sec^n/100ft2	0.8603	1.4511	1.3997	0.8083	1.4511	1.4897	1.416					
*flow data												
Flow Rate -gal/min	300	300	300	300	300	300						
Pump Pressure -psi	1400	1390	1325	1325	1400	1400						
Pump -hhp	245	243	232	232	245	245	**					
*PRESSURE LOSSES												
Drill String -psi	514	496	502	513	515	506	**					
Bit -psi	970	970	970	970	970	970	**					
Annulus -psi	70	88	94	83	94	90	**					
Total System -psi	1554	1554	1566	1566	1579	1566	**					
*BIT HYDRAULICS												
Nozzles -1/32 inch	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/1					
Nozzles -1/32 inch	/ /	/ /	/ /	/ /	/ /	/ /	/ /					
Bit Pressure -8	70	70	73	73	70	70	**					
Bit -hhp	170	170	170	170	170	170	**					
Bit HSI (Index)	3.00	3.00	3.00	3.00	3.00	3.00	**					
Jet Velocity -m/sec	105.4	105.4	105.4	105.4	105.4	105.4	**					
Impact Force -lbs	488	488	488	488	488	488	**					
*DRILL COLLARS ANNULUS												
Velocity -m/min	67.5	67.5	67.5	67.5	67.5	67.5	**					
Critical Vel -m/min	93.9	104.2	109.8	103.0	104.2	100.3	**					
Reynolds Number	1682	1454	1342	1467	1454	1542	**					
Crit Re (Lam - Tran)	2707	2806	2775	2655	2806	2828	**					
*DRILL PIPE ANNULUS												
Velocity -m/min	40.7	40.7	40.7	40.7	40.7	40.7	**					
Critical Vel -m/min	73.9	85.5	89.0	79.2	85.5	83.0	**					
Reynolds Number	1143	911	862	1040	911	949	**					
Crit Re (Lam - Tran)	2707	2806	2775	2655	2806	2828	**					
*HOLE CLEANING					N 258 698 0							
Slip Velocity -m/min	19.6	16.3	15.3	17.7	16.3	17.0	**					
Rising Velocity -m/min	21.1	24.4	25.4	22.9	24.4	23.6	**					
Lifting Capacity -8	52	60	62	56	60	58	**					
Cuttings Conc -8	0.86	0.46	0.23	0.35	0.19	***	**					
Penetration Rate -m/hr	8.3	5.1	2.7	3.7	2.1	***	**					
*CASING SHOE PRESSURES												
ECD -lb/gal	9.3	9.3	9.3	9.3	9.3	9.3	**					
ECD+Cuttings -lb/gal	9.4	9.4	9.4	9.3	9.3	***	**					
*TOTAL DEPTH PRESSURES												
ECD -lb/gal	9.3	9.4	9.4	9.3	9.4	9.4	**					
ECD+Cuttings -lb/gal	9.4	9.4	9.4	9.4	9.4	***	**					

BIT RECORD

M-I AUSTRALIA PTY LTD

BIT AND HYDRAULIC RECORD

Well: Digby 1

Contractor - Century Rig 11 Operator : GFE Resources Ltd							Well : Digby 1 Engineer: P Marshall								
Pump Name		Size	Liner 8	Size/Stroke	Drill Collars OD x ID x Length		Pipe	Drill		Joint ype	Wt/1	i)	Pump Output bbls/Stks		
Nat	National 7P50/8P80		5.5/7.5 #1 6.0/8.5 #2		6.1/4 x 161m		4.	1/2		-	16.0	5		7	
Date 1995	Run No	Size	Make	Туре	Jet Size	Depth Out	Metera Drilled	Hours Run	Wt on Bit	RPM	Pump Pressure	Vert Dev	Stks/min	Ann Vel m/min	Condition T-B-G
10-May	1	12.1/4	Varel	L114	2x20,1x18	342	331	15.5	11/20	120	6-800	0.75	99/77	39	1-2-1/16
12-May	2	8.1/2	нтс	ATJ05	3 x 11	1040	709	56	15/18k	100/110	1250/1400	2-Jan	100 #1	43	1-5-IN
15-May	3	8.1/2	Varei	ETC 417m	3 x 11	1247	428	82	10/17	110	1400/1625	4-Jan	110	47	1-1-IN
20-May	3RR	8.1/2	Varel	ETD 417m	3 x 11	1468	221	56	15/17	125	1600	4	109	47	1-5-IN
24-May	4	8.1/2	Varel	ETD 417m	3 x 11	1489	21	15	23/30	90/110	1600	4	109	47	L-S-R
25-May	5RR	8.1/2	Varel	ETD 417m	3 x 11	1752	263	36.5	16/20	90/110	May-04	5-25	110	47	1-5-1/4
27-May	6	8.1/2	нтс	ATJ05	3 x 11	1951	19	26	18/20	100	1350	6	101 #2	43	1-4-IN
30-May	6RR	8.1/2	нтс	ATJ05	3 x 11	2088	136	47	25/27	55	1325	5.5	101 #2	43	

WEEKLY INVENTORY SHEETS

Operator : GFE Resources

WEEKLY INVENTORY SHEETS

Well: Digby 1

DATE:	1995		i-May)-May		1	0-May		1	1-May		1	2-Ma		1.)-May			4-May		Total	for V	Veek
	NE 2000000000000000000000000000000000000				************			************ S	800000000000000000000000000000000000000	800000000000000000000000000000000000000			**********	××××××××××××××××××××××××××××××××××××××		*********		*********	***********	*********	800000000000000000000000000000000000000	*********	***********	********	***********
Product Name	Unit Bal	Reca	Lised		Recd	Used			Uned	Hal	Recd	Used		Recd	Used		Recd	Used	Bal	Recd	Uned	Bal	Recd	Used	***********
Barite	25 kg 440			440			440			440			440			440			440			440	0	0	440
Gel	25 kg 111			111			111		48	63			63			63		30	33		33	0	0	111	- 0
Pot Chloride	25 kg \$37			537	400	137	80 0		40	760		160	600		80	520		120	400		120	280	400	657	280
Polyplus	25 kg 30			30	44		24		20	54		7	47		3	44		10	34		15	19	44	55	10
Polypac R	25 kg 27			27	32	5	54			54		1	53			53		2	51		3	48	32	11	48
CMC LV	25 kg 42			42		10	32			32		2	30			30			30			30	0	12	30
Caustic Soda	25 kg 👪			15	42	5	62		1	- \$1			41			51			51		2	49	42	8	49
Soda Ash	25 kg 16			16		1	15		1	14			14		2	12		5	7		4	3	0	13	3
Sodium Bicarb	25 kg 🔰			3			•			3		3	θ			0			Ð			0	0	3	- 0
OS-1	25 kg 37			37			37			37			37		3	34		4	30		3	27	0	10	27
Calc Chloride	25 kg 39			39			39			39			39			39			39			39	0	0	39
Lime	20 kg 16			16			16			16			16			16			16			16	0	0	16
Kwikseal Med	40 lb 30			30			30			30			30			30			30			30	0	0	30
Mica Med	50 lb 30			30			30			30			30			30			30			30	0	0	30
Spersene	50 lb 13			13			13			13			13			13			13			13	0	0	13
Defoam A	25 lt 🐧			8						5						- 5						5	0	0	- 5
Bacban III	6 lb 2			2			2			2			2			2			2			2	0	0	2
Pipelax	208 lt 3			2			2			2			2			2			1			2	0	0	2

 $Operator: GFE\ Resources$

WEEKLY INVENTORY SHEETS

Well: Digby 1

DATE:	1995	1:	5-May	16-M	ay	1	7-May	18-May		19-May	20-May	21-May	Total	for Week
800000000000000000000000000000000000000	000 000000000000000 pooroooooo	o occossos 20	000000000000000000000000000000000000000	*************************	************									
Product Name	Unit Ba		Used Bal	Recul Use	d Bul	Reed	Used Bal	Recd Used	Bal	Reed Used Bal	Recd Used Bal	Recd Used Bal	Recd	Used Bul
Barite	25 kg 444		440		440		440	160	280	280	40 240	50 190	••••	250 1 9 0
Gel	25 kg		0	96	96		96		96	96		96	96	0 96
Pot Chloride	25 kg 280		80 200	400 10	ю 500		500		500	599		40 450	400	220 460
Polyplus	25 kg 👪		4 15		6 9	47	56	5	51	5 46		13 353	47	33 33
Polypac R	25 kg 44		6 42		42	32	74		74	1 73		73		7 82
CMC LV	25 kg 36		30		30		30		30	30		310	32	
Caustic Soda	25 kg 45		6 43		43		43		43	43		2 40	0	0 30
Soda Ash	25 kg		2 1		1 0						1 32	2 49	0	9 40
Sodium Bicarb	25 kg (0	40	40		40	4	36	36	36	2 34	40	-3
OS-1	25 kg 25		4 23		23		23	6	7,	17		14	- 70	13 14
Calc Chloride	25 kg 35		39		39		39		39	39		39	0	15 24
Lime	20 kg 16		16		16		16		16	16		16	- 0	-0-38
Kwikseal Med	40 lb 34		30		30		30		30	30	30	30	0	0 \$6
Mica Med	50 lb 30		30		30		30		30	30	30	30	9	0 30
Spersene	50 lb 13		13		13		13		13	133	13	13	9	0 30
Defoam A	25 lt £						5			- 1			0	0 13
Bacban III	6 lb 2		,				2						0	0 5
Pipelax	208 lt 2		,							***************************************			0	0 2
XCD Polynmer	25 kg (17	177							2		2
	22 18		IV	1 /			17	2	15	2 13		13	17	4 3

Operator : GFE Resources

WEEKLY INVENTORY SHEETS

Well: Digby 1

DATE:	1995		2	2-Ma	Y	2	3-Ma	y	24-	May		⁄5-Via	y		26-May		27-Ma	y		28-Ma	y	Hota	for V	/eek
Product Name	Unit	Bul	Recd	Used	Bal	Recd	Used	Bal	Reed	Used Bal	Recti	Uned	Bal	Reed	Used B	ol Res	ul Used	Bal	Recd	Used	Bal	Recu	Used	Bat
Barite	25 kg	190	320	30	480			480		480			480		4.	0		480		80	400	320	110	400
Gel	25 kg	96			96			96		96			96			6		96			96	0	0	96
Pot Chloride	25 kg	460			460		80	380		80 39 0		80	220		2	0	170	50	360	90		360	500	***************************************
Polyplus	25 kg	33			33		5	28		7 21		8	13	36	5	4	10	34	36	5	65	72	40	65
Polypac R	25 kg	73			73			73		73			73			3	9	***************************************		2		0	11	***************************************
CMC LV	25 kg	30			30			30		30			30			s		25			25	0	5	25
Caustic Soda	25 kg	40			40			40		40			40			0		40			40	0	0	46
Soda Ash	25 kg	0			0			θ		0			0			0		0	42		42	42	0	27
Sodium Bicarb	25 kg	34			34		2	32		2 30		2	28			8	2	26			26	-	8	2,6
OS-1	25 kg	14			14		3	11		- 1		3	8			8	3		40	3	42	40	12	**********
Calc Chloride	25 kg	39			39			39		39			39			9	1	39			39	-10	- 12	
Lime	20 kg	16			16			16		16			16			6	 	16			16	0		16
Kwikseal Med	40 lb	30			30			30		30			30		30	0		1	101	13		101	43	
Mica Fine	50 lb	0			q			0		0								0	20		20	20		
Mica Med	50 lb	30			30			30		30			30		30	*		0	32		32	32	30	32
Mica Coarse	50 lb	0			0			0					0					0	26		26	26	0	26
Mud Fibre	40 lb	0			0			0		0			n				+	0	98		98	98	0	98
Spersene	50 lb	13			13			13		13			13			3		13	70		13	- 30		13
Conqor 303	25 lt	0	1					1														1	0	*****
Defoam A	25 lt	5						5					6			5	1	5			*	0	0	

Operator : GFE Resources

WEEKLY INVENTORY SHEETS

Well: Digby 1

DATE:	1995	29-M	ay	3	0-May		31	-May		1-Jun		2-Jun		3-Jun			4-Jun		Rom	for V	Veek
Product Name	Unit B	al Recd Use	d Bai	Rend	Used	Bail	Recd	Used Ba	Recd	Lised Hal	Recd	Used B	il Ren	l Used		Recd	Used	Bal	Rend	Used	Ball
Barite		00 3	200000000000000000000000000000000000000	**********	50	320		320	**********	320	*******	32	<u> </u>		320	nv.	OSeu	320	Recu	80	320
Gel	25 kg	×6	96			96		48 48		48		4	9	1	48			48		48	
Pot Chloride	25 kg 🔏	0 4	0 280		80	200		200		200		20	*	1	200			200	0	120	200
Polyplus	25 kg	38	3 62		10	52		52		52		-1 5		1 1	53			53	0	12	
Polypac R	25 kg	32	2 60		8	52		.52	-	52		-1 5			53			.53	o	9	
CMC LV	25 kg	6	25			25		25		25		2			25	-		25	0	0	2.5
Caustic Soda	25 kg	10	40		3	37		1 36		36		-1 3	,		37			37	0	3	37
Soda Ash	25 kg	2	42			42		1 41		41		4		1	41			41	0	1	41
Sodium Bicarb	25 kg	6	26		3	23		2 21		21		-1 2			22	***		22	0	4	22
OS-1	25 kg	2	42		2	40		2 38		38		3			38			38	0	4	38
Calc Chloride		iý.	39			39		39		39		3			39			39	0	0	39
Lime	20 kg	6	16			16		16		16		1			16			16	0	0	16
Kwikseal Med	40 lb	8	88		12	76		16 6 0		60		6			60			60	0	28	60
Mica Fine	50 lb	0	20			20		20		20		2			20			20	0	0	20
Mica Med	50 lb	2	32		18	14		14 0		0					0			0	0	32	0
Mica Coarse	50 lb	6	26			26		26		26		2			26			26	0	0	26
Mud Fibre	40 lb	8	98			98		998		98		9			98			98	0	0	98
Spersene	50 lb	3	13			13		13		13		1			13			13	0	0	13
Conqor 303	25 lt	i .				ı									1			1	0	0	
Defoam A	25 lt	3				3													0	0	
Bacban III	6 lb	2	2			2		2		2					2			2	0	0	<u></u>
Pipelax	208 lt	2	2			2		2		2					2			2	0	0	2
XCD Polymer	25 kg	9	3 6		1			5		- 5								\$	0	4	
Cronox 2-100	208 lt	0	0			0		0		0	1	1			0			0	1	1	0

DAILY RECAP

M-LAUSTRALIA PTY LTD

M-I DRILLING FLUIDS RECAP Operator: GFE RESOURCES LTD Contractor: CENTURY Description: EXPLORATION Well Name : DIGBY 1 Field/Area: OTWAY BASIN Location: PEP 105 & PEP 126 Date - Day 09/05/95- 1 10/05/95- 2 11/05/95- 3 12/05/95- 4 13/05/95- 5 14/05/95- 6 15/05/95-Depth/TVD 342.0 /342.0 342.0 /342.0 435.0 /435.0 781.0 781.0 924.0 924.0 1040.0/1040.0 Activity P/H DRT. ASS WIPER TRIP NIPPLE UP DRILL 8.5" DRILL 8.5" RIH Mud Type Code 251 251 251 251 251 251 251 Hole Size :12.25 12.25 8.5 8.5 :8.5 8.5 :8.5 Circ Volume -bbl 450 355 336 390 ¹381 475 Flow Rate -gal/min 250 450 250 250 250 Circ Pressure -psi 700 1250 1350 1400 1400 AVG ROP ~m/hr 22 22.6 16.5 7.1 7 Sample From PIT 00:01 FL 00:01 PIT 23:00 FL 21:00 FL 22:00 FL 21:00 PIT 21:30 Flow Line Temp -^F 196 94 105 1112 Mud Wt -lb/gal 8.6 8.9 9.1 9.4 9.1 9.3 Funnel Vis -s/qt 36 8 65 T 45 6 95 ^F:50 6 76 ^F 46 @ 90 ^F:43 8 90 AF:43 @ 105^F:43 8 95 AF -cps 8 60 AF 17 ^F 22 @ 72 ^F 18 8 @ 85 8 76 ^F 18 8 76 ^F 19 @ 97 AF 19 @ 84 ^F YP/R3 ,5 14 / 2 19 / 2 17 / 2 12 / 1 14 / 2 -1b/100ft2 /1 /1 112 10s/10m Gel 12 / 2 :3 / 8 :3 / 9 :3 / 9 3 / 8 4 / 13 2 API Filtrate -cm3 5.6 HTHP Filtrate -cm3 Cake API/HT -1/32" Solids ~%vol 4.8 011/Water -8vol -8vol Sand 1.5 0.5 0.75 0.5 0.5 MBT -lb/bbl 13.5 13 10 .15 16.5 .17.5 нœ 9.0 6 60 ^F :8.5 @ 65 ^F |8.5 @ 65 ^F 9.5 @ 65 ^F:8.5 e 65 ^F 19.0 ^F :9.0 8 65 AF Alkal Mud (Pm) 0.1 10.1 0.1 0.1 0.1 0.2 0.1 P£/M£ / 0.3 0.05 / 0.2 0.1 0.05 / 0.2 0.1 / 0.3 0.05 / 0.3 0.05 / 0.3 0.05 / 0.2 -mg/L Chlorides 20000 17000 121000 40000 151000 133000 132000 Hardness (Ca)-mg/L 360 60 400 200 280 320 320 K+ PPM 21500 18750 21000 30000 44000 33000 32000 KCL WT & 4 3.5 .4 :5.5 .B .6 6 PHPA 1.9 2.1 :2 :2 2.3 2.5 ENV 90000 185000 75000 40 100 140 Daily Mud Cost -2945 4413 3347 1618 3930 4935 2767 Cumml Mud Cost . 12945 16145 9360 10978 14908 19843 22610 Sales Engineer P.MARSHALL P. MARSHALL P.MARSHALL P.MARSHALL P.MARSHALL P.MARSHALL P.MARSHALL Products Used :KCL 137 :KCL 40 KCL 160 KCL 80 KCL 120 KCL 120 KCL 80 CAUS 4 CAUS 1 POLP 7 POLP 3 POLP 10 CAUS 2 CADS 6 PAC 5 POLP 20 PAC 1 SODA 2 PAC 2 POLP 15 POLP 4 CMCL 10 SODA 1 CMCL 2 OS-1 3 SODA 5 PAC 3 PAC 6 SODA 1 GEL 48 GEL 30 SODA 4 SODA 2 OS-1 4 GEL 33 OS-1 4 :OS-1 3 09/05 : Commence preparation of PHPA/KCl mud.

10/05 : Digby 1 spudded 0100 hrs. Drill 12.25" hole to 342m-TD. POOH for wiper trip. Prepare to run casing.

11/05 : Continue to RIH work bridge at 327m-6m fill. Circulate hole clean and POOH. Run and cement 9.625" casing.

12/05 : Cont to nipple up. M/U BHA & RIH. Drill collar, shoe track & cmt.Displ hole to mud,perform LOT and drill 8.5 TO 43

13/05 : Drill 8.5" hole from 435m-656m. POOH for wiper trip-hole good. Drill from 656m-781m.

14/05 : Control drill from 781m-896m. Max dev = 2 deg. FOOH for wiper. Hole good. RIH-3m fill drill from 896m-944m.

Control drill from 944m-1040m. Max dev = 2 deg. Circ & POOH. Hole good. M/U stiff BHA & change bit. RIH.

M-I Drilling Fluids L.L.C DRILLING FLUIDS DATA MANAGEMENT SYSTEM

W0003

July 11, 1995

M-I DRILLING FLUIDS RECAP

Operator: GFE RESOURCES LTD Contractor: CENTURY Description: EXPLORATION

Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location: PEP 105 & PEP 126

Date - Day	16/05/95- 8	17/05/95- 9	18/05/95- 10	19/05/95- 11	20/05/95- 12	21/05/95- 13	22/05/95- 14
Depth/TVD -m	1080.0/1080.	1080.0/1080.	1195.0/1195.	1277.0/1277.	1373.0/1373.	1451.0/1451.	1468.0/1468.0
Activity	9 7	REPAIR RIG	DRILL 8.5"	DRILL 8.5"	DRILL 8.5"	DRILL 8.5"	DST#1
Mud Type Code	251	251	251	.251	251	251	251
Hole Size -in	18.5	8.5	8.5	8.5		8,5	8.5
Circ Volume -bbl	441	441	450	473	503	582	613
Flow Rate -gal/min	300	165	325	325	325	; 325	325
Circ Pressure -psi	1400	1450	1550	11600	1550	11600	1625
Avg ROP -m/hr	19	1	8.2	3.3	15	4	4.3
Sample From	FL 20:30	:FL 20:30	:FL 17:30	FL 00:01		:FL 00:01	:PIT 00:01
Flow Line Temp - F	; 1115	1115	1118	1120	120	1128	
Mud Wt -1b/gal	9.3	9.3	9.5	9.5	9.5	9.5	9.5
Funnel Vis -s/qt	44 @ 112^F	43 @ 112^F	45 @ 112^F	47 @ 118^F	47 @ 118^F	47 @ 122^F	52 @ 95 ^F
Py −cps	18 @ 100^F	20 @ 100^F	23 @ 104^F	21 @ 110^F	22 @ 110^F	19 @ 115^F	Ngara na na ani na ani na ani na ani
YP/R3 -1b/100ft2	12 / 2	15 / 1	16 / 2	18 / 3	20 / 4	22 / 4	24 / 4
10s/10m Gel		3 / 7	3 / 10	4 / 14	all and the second contract of the second con	6 / 17	8 / 19
API Filtrate -cm3	! 5	4.4	4.2	4.4	4.8	5.4	!s
HTHP Filtrate -cm3		•	•	}	1		elinia inter
Cake API/HT -1/32"	i1 /	i1 /	i1 /	11 /	11 /	1 /	11 /
Solids -%vol	4.5	4.5	5.5	5.5	5.7	6	6
Oil/Water -%vol	/ 95.5	/ 95.5	/ 94.5	/ 94.5	/ 94.3	/ 94	/ 94
Sand -%vol	0.5	0.25	0.5	0.5		0.25	0.25
MBT +1b/bbl	17.5	17.5	18.5	19	19.5	18	18
pH	9.0 @ 65 ^r	8.5 @ 65 Ar	9.0 @ 65 ^F	9.0 @ 65 AF	8.5 @ 65 ^F	9.0 @ 65 ^F	9.0 @ 65 AF
Alkal Mud (Pm)	0.1	0.1	0.1	0.2	0.1	0.2	0,1
PÉ/MÉ	0.05 / 0.2	0.05 / 0.1	0.05 / 0.35	0.1 / 0.6	0.05 / 0.4	0.1 / 0.45	0.05 / 0.3
Chlorides -mg/L	135000	135000	138000	35000	134000	30000	133000
Hardness (Ca) -mg/L	240	240	320	100	240	100	120
	į	1	\$;]	,]		
K+ PPM	34000	34000	35500	32500	30000	27000	29000
KCL WT %	6.5	6	6.5	6	5.5	5	5.5
PHPA	2.5	2.6	2.5	2.4	2.1	1.2	1.5
so3=	100	40	80	100	40	80	40
Daily Mud Cost -	2214		2963	1843	396	3063	166
Cumml Mud Cost -	24824	24824	127771	29614	30010	33073	133239
Sales Engineer	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL
Products Used	KCL 100	Î	POLP 5	POLP 5	CAUS 1	RCL 40	BAR 30
	POLP 6	•	BCAR 4	PAC 1	OS-1 3	CAUS 2	
	SODA 2	1 1	os-1 6	XCD 2	BAR 40	POLP 13	3 1
	•	<u> </u>	BAR 160		•	BCAR 2	•
	1		XCD 2	l]	BAR 50	
	1	!	!		į		
	ļ		į		•		1
	1		•				•
	î		Î		; }		? }
			!				•
	1)	! !	j. 1		<u> </u>		∮
			•		•		•
	!		}				•
			: 				

16/05 : Contin.RIM & precaution ream to bottom-7m fill.Drill 8.5" 1040m-1080m. Transfer box drive shaft failed Wait on ri 17/05 : Contin.to wait on fabricated transfer box shaft.Circ.cont @ 165 gal/min.B/U @ 300g/min every 4HRS.Install new sha 18/05 : Complete shaft replacement POOH to shoe-hole good. RIH-7m fill. Drill 8.5" from 1080m-1231m. Max Dev - 2.75 deg.

19/05: Control drill F/1231m.-1247m.DEV.=3deg.POOH & Re make up BHA.RIH-Hole good.Control drill to 1277m.MAX DEV.=3.25de

20/05: Control drill at +/- 5.0 m/hr from 1277m-1373m. Max and current deviation = 3 deg.

21/05: Control drill F/1373m. - 1418m. Make 13 STD wiper trip-hole good-3m.fill.control drill F/1418m. -1451m. Hole dev. =4de 22/05: Control drill f/1451m. - 1468m. Circ. sample and flow check drill break. POOH, M/U DST tool, RIH & commence DST \$1

M-I Drilling Fluids L.L.C DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Remarks

W0003

July 11, 1995

M-I DRILLING FLUIDS RECAP

Operator: GFE RESOURCES LTD Contractor: CENTURY Description: EXPLORATION

Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location: PEP 105 & PEP 126

Date - Day		•	25/05/95- 17		a 🌓 a la la la la la la la companio de la	A service of the control of the c	Aller and the second of the se
Depth/TVD -m	1486.0/1486.	1523.0/1523.	1650.0/1650.	1759.0/1759.	1895.0/1895.	1951.0/1951.	1956.0/1956.
Activity	DRILL 8.5"	DRILL 8.5"	DRILL 8.5"	CIRC. & OBSV	DRILL 8.5"	POOH	DRILL 8.5"
Mud Type Code	251	251	251	251	251	251	251
Hole Size -in	18.5	:8,5	8.5	8.5	8.5	8.5	8,5
Circ Volume -bbl	696	616	554	620	662	621	609
Flow Rate -gal/min	325	325	325	625	300	300	300
Circ Pressure -psi	1525	1550	1625	1600	1400	1390	1325
Avg ROP -m/hr	!2	2.3	8.5	12.5	8.3	5.1	2.7
Sample From	FL 00:01	FL 22:00	FL 22:00	FL 24:00	FL 23:00	PIT 24:00	FL 23:30
Flow Line Temp - F	125	120	125	120	120	120	120
Mid Wt -1b/gal	9.4	9.3	9.3	9.4	9.1	9.1	9.1
Funnel Vis -s/qt	44 @ 116^F	45 @ 118^F		45 @ 115^F	38 @ 115^F	39 @ 110^F	40 @ 110^F
PV -cps	17 @ 114^F	20 @ 105^F	20 6 110^F	20 @ 110^F	16 @ 110^F	15 @ 100^F	16 @ 100^F
YP/R3 -1b/100ft2	6.	17 / 3	· • • • • • • • • • • • • • • • • • • •	16 / 4	10 / 2	13 / 3	15 / 3
10s/10m Gel	7 / 15	6 / 16		7 / 18	3 / 6	4 /8	4 /8
API Filtrate -cm3	i ₅	ļs		6.4	5	4.8	5
HTHP Filtrate -cm3	. .	\$2000000000000000000000000000000000000	;	}	\$1,000,000,000,000 1	≱astonerilibele .ebb •	grupece et. 1 - 1815. Sil •
Cake API/HT -1/32"	i1 /	i1 /	i1 /	1 /	1 /	:1 /	1 /
Solids -%vol		- , !5	.5	5	3.5	3.5	3.5
Oil/Water -%vol	/ 94	; / 95.0	1 / 95.0	/ 95.0	7 96.5	/ 96.5	
Sand -%vol	0.25	0.25	\$500,000,000,000,000,000,000,000	1.5	0.75	0.75	11
MBT -1b/bbl	18	16	;	16	13	13	12.5
р Н]]9.0 @ 65 ^r	4		L	Article Control Control Control Control	· · · · · · · · · · · · · · · · · · ·	8.5 @ 65 ^F
Alkal Mud (Pm)	0.1	0.1	0.1	0.1	0.1	0.1	0.1
PE/ME	0.05 / 0.4	0.05 / 0.35		0.1 / 0.5	0.1 / 0.4	0.05 / 0.4	0.05 / 0.4
Chlorides -mg/L		36000				132000	133000
Hardness (Ca) -mq/L	120	160	120	160	160	240	280
			!		‡	‡aan aan aan aa aan	
K+ PPM	29000	32000	32500	28500	27000	29000	29000
KCL WT &	5.5		6	5.5	; 5	5.5	5.5
PHPA COR	1.2	:1.4	; ;1.3	1.4	: :0.95	:0.8	; 1
803≠	1100	¹ 60			¹ 100	100	10
Daily Mud Cost -	1967	2146	2486	2939	5050	4977	2674
Cumml Mud Cost -	::: :: :::::::::::::::::::::::::::::::	37351		ī 	47827	52804	5547B
Sales Engineer	P. MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P.MARSHALL	P. MARSHALL
Products Used	KCL 80	KCL 80		POLP 5	KCL 170	KCL 90	KCL 40
		POLP 7	State and a second contract of the contract of	CMCL 5	POLP 10	POLP 5	POLP 3
	BCAR 2	BCAR 2	BCAR 2	MYCM 30	PAC 9	PAC 2	PAC 2
	:0S-1 3	•			BCAR 2	:OS-1 3	:BAR 30
	1	İ	j		08-1 3	BAR 80	xcp 3
		<u>}</u>	•		podrostrostrostros de del	XCD 4	postinical or a like
		į	i		<u>i</u>	KWKM 13	ļemas ar iedzīvai ar iedzīvai ar iedzīvai ar iedzīvai ar iedzīvai ar iedzīvai ar iedzīvai ar iedzīvai ar iedzīv
	o -t eccolosis (1996) (1997) 	•	Ī		1	;	î
	•	.	ļ		į	;	tagggaryaan oo ji aasaas
	: :	: 	1 1		1	\$6888 65 (11) (10 (16) 1	
	1	j eografija	!	: Essentia	∮::::::::::::::::::::::::::::::::::::	ქლილი	• •
	2]	1				parte to the field
	ं है •	! ************************************	₹ 2 000-000-000-000-000-000-000-000-000-00		i Yang dan kalang dan ka	i ¥000000000000000000000000000000000000	¥ggggoggesterin de teres saas
	i	i	i		1	7	🗱 🗱
		!			!	<u> </u>	:

Remarks

23/05: Cont DST #1 over interval 1460m.-1468m.Pull test tool- water only.M/U BHA & RIH.dillL F/1468m.-1486m.e 1-2 m/hr
24/05: Drill 8.5" F/1486m.-1489m.ROP<1.0 m/hr Bit stopped drill. POOH.Remove junk from bit.RIH and drill f/1489m.- 1523m
25/05: Contin drill 8.5"f/1531m-1560m.Circ.drill brk.Drill 1560m -1601m.Drill brk.circ.up sand sample.Drill f/1601m.-166
26/05: Drill 1664-1753m.POOH for bit change.RIH & drill f/1735m. -1759m.Loose total returns(140bbl)Pump LCM pill & obser
27/05: Circ. to balance mud wt.Drill 8.5"f/1759m.- 1905m.through Pretty Hill sandstone.Max dev.=6deg.D/hole losses conti
28/05: Drill f/1905m.-1932m.Circ.sample-OIL SHOW.Drill f/1932m.- 1951m. Circ sample-OIL SHOW. POOH for DST #2

29/05: M/U & RIH with T/T run DST #2. Retrieve sample-whole mud. M/U and RIH. Drill f/1951m. -1956m. D/hole losses=3-5bbl/hr

M-I Drilling Fluids L.L.C DRILLING FLUIDS DATA MANAGEMENT SYSTEM

W0003

July 11, 1995

M-I DRILLING FLUIDS RECAP

Operator: GFE RESOURCES LTD Contractor: CENTURY Description: EXPLORATION

Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location: PEP 105 & PEP 126

	31/05/95- 23 2087.0/2087.				 a signification consumer to be a significant or significa	· Control District
	WIPER TRIP	LOGGING	RIN TO PEA	1	installation of	ing a samuran mener
251	251	251	251	•	• 1 ### ITTL TO LET CO.	:
8.5	18.5	18.5	8.5			inana
653	1690	[!] 630	617			illude takkalan i Pitalia.
300	300			<u> </u>	<u> </u>	i.
					() - 1 (100 (100 (100 (100 (100 (100 (100 (**************************************
3.7	¹ 2.1	1	•		1 (1935)	
		: PIT 23:00	PIT 23:00	Nedeki salah peperanan alah •	1.000 000 0000 00 00 00 •	de Maria de Paris
136	138	.				🕯 ayaas o da ka sab
9.1	9.1	9.1	9.2			•
	\$	• · · · · · · · · · · · · · · · · · · ·				
	**************************************	C. C. C. C. C. C. C. C. C. C. C. C. C. C	*		Pristables all de	
		I		388888000000000000000000000000000000000	Bassarang kepinasi di ka	Presidente en esp
	3			territario de la composició de la compos	3 kustusest stille den vad. 3	 10 (1) (2) (3) (4) (4) (4) 10 (4) (4) (4) (4) (4) (4)
• • • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * *					#000000000000000000000000000000000000
	‡75:5					parakan basa
1 /		!a	! ! •		: ¥5000000000000000000000000000000000000	∳:59:109:40
	•					
	4				Basansas na mana un	
	•		Taran tata ati sanina Sari i iran na na na na arang isi		Premioritant de la 1919 Premioritant de la 1919	
	1				Paragraphic properties	Beremaan oo e
han a reconstruction of the factor of the fa	Print Control Control Control Control Control	\$	transfer and the transfer to the transfer and the		prospecto (Britis) (Bit	
MANAGER AND AND AND AND AND AND AND AND AND AND					: 1 000000000000000000000000000000000000	: :
			p6:5:555:::::::::::::::::::::::::::::::			jaran di balan da
	•			(\$2,000,000,000,000,000,000,000,000,000,0		Lengue
			pie die debes de nation de nationale de		(especial especial filmbio, 1 milio) 	
						Programa en senas
29500	29500	27000	25000		Paradio di Kilanda (Kilanda) B	≇HIM BABİLAİSI •
						Bereseren er er
				naente Maren erini (h. 1907) L	j sessoonson filologia (* 1755) 1	şa deri etkir ildiği. •
p\$1050.0000000000000000000000000000000000						•
						Propositional de la company de la company de la company de la company de la company de la company de la company
27-7-7-7-1000-00-00-00-00-00-00-00-00-00-00-00-0	, and a substitute of the subs					
NAMES AND ADDRESS OF THE PARTY		toronana anti-anti-anti-anti-anti-anti-anti-anti-		langerer en en en en en en en	Portigoración el portigo el per-	Programa
			177767.44447744444.444			
				i Laggeranda ang against territorial	: Napagar gori , kiark sukus - risas	: ∰ tometukenevkk teks
					Militaria e proportio de la	
			CRON 1	560056005600050000000000000000000000000		.
	AWAM 16					
						: ;
99. 9999994. 994. 99999994		į.	1			
KWKM 12						
	300 1325 3.7 FL 23:00 136 9.1 40 @ 124^F 16 @ 110^F 15 / 2 3 / 8 4.8 1 // 3.5	300 300 300 325 300 325	300 300 300 300 300 31325 1400 1400 3.7 2.1 FL 23:00 FL 23:00 FIT 23:00 3136 3138 9.1 9.1 9.1 40 6124^F 39 6 124^F 38 6 88 ^F 16 6 110^F 15 6 118^F 14 6 84 ^F 15 / 2 13 / 3 12 / 3 3 / 7 4.8 4.4 5 3.5 3.5 7 3 / 7 4.8 4.4 5 5 7 7 7 7 7 7 7 7	300 300	300 300 300 300 300 3250 3250 32500 32	300 300 300 300 300 325 325 3250

30/05: Drill 8.5" hole from 1956m - 2038m. D/hole losses contin. @ 1-2 bbl/hr. Drill ahead to confirm basement depth.

31/05 : Continue to drill 8.5"f/2038m.-2088m.through pre-basement volcanics? POOH for wiper trip prior to logging.

01/06 : Continue wiper trip to 1000m.-hole good,no fill.Circ.B/U and POOH to log. R/U and run log #1 £ 2

02/06 : Complete logging. Lay down BHA. RIH open ended and prepare to P & A.

M-I Drilling Fluids L.L.C DRILLING FLUIDS DATA MANAGEMENT SYSTEM W0003 July 11, 1995

DAILY CHEMICAL ADDITIONS

M-I AUSTRALIA PTY LTD

------ M-I DRILLING FLUIDS DAILY MUD ADDITIONS ---------------------------------Operator : GFE RESOURCES LTD Contractor: CENTURY Description : EXPLORATION Location : PEP 105 & PEP 126 Well Name: DIGBY 1 Field/Area: OTWAY BASIN Well: W0003 _____ 10/05/95 11/05/95 : 09/05/95 Date 12/05/95 13/05/95 14/05/95 15/05/95 342.0 Depth 342.0 435.0 781.0 924.0 -m: 1040.0 4413 Daily Mud Cost 2945 3347 1618 3930 4935 2767 : Cumulative Mud Cost : 2945 6145 9360 10978 14908 19843 22610 CMC TG LV 25 KG S: 10 2 Caustic Soda 25 KG S: 4 Conqor 303 25 LT D: Cronox 2-100 208 LT: Kwik Seal M 40 LB S: M-I Bar 25 KG S: M-I Gel 25 KG S: 48 30 33 Mica Medium 50 LB S: 25 KG S: 0S-1 3 4 3 4 25 KG S: 5 Polypac 1 2 3 6 Polyplus Powder 25 KG S: 20 7 3 10 15 4 Potassm Chloride 25 KG S: 137 160 120 40 80 120 80 Soda Ash 25 KG S: 1 2 5 1 4 2 Sodium Bicarb 25 KG S: 3 XCD 25 KG S:

M-I Drilling Fluids Co

٤,

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

10-07-95

Operator : GFE Nell Name : DIGBY			tractor : CEN ld/Area : OTW		Descri Locati	ption : EXPLO on : PEP 10	RATION 05 & PEP 126	Page: W000
Date	:	16/05/95	17/05/95		19/05/95	======================================	21/05/95	22/05/95
Depth	-m:	1080.0	1080.0	1195.0	1277.0	1373.0	1451.0	1468.0
Daily Mud Cost	:	2214	İ	2963	1843	396	3063	166
Cumulative Mud Co	ost :	24824	24824	27771	29614	30010	33073	33239
CMC TG LV	25 KG S:		İ	İ	İ	İ	İ	
Caustic Soda	25 KG S:		İ	ļ		1	2	İ
Conqor 303	25 LT D:		İ	İ		ĺ		İ
Cronox 2-100	208 LT:		į	İ	İ			ĺ
Kwik Seal M	40 LB S:		į	İ	İ		İ	İ
M-I Bar	25 KG S:			160	İ	40	50	30
M-I Gel	25 KG S:				İ			İ
Mica Medium	50 LB S:				İ		ĺ	ĺ
OS-1	25 KG S:			6	j	3		Ī
Polypac	25 KG S:				1		İ	İ
Polyplus Powder	25 KG S:	6		5	5		13	İ
Potassm Chloride	25 KG S:	100	ŀ				40	j
Soda Ash	25 KG S:	2			1			į
Sodium Bicarb	25 KG S:			4	1		2	ĺ
XCD	25 KG S:			2	2			İ

M-I Drilling Fluids Co DRILLING FLUIDS DATA MANAGEMENT SYSTEM

10-07-95

Operator : GFE RESOURCES LTD Contractor : CENTURY Description : EXPLORATION Page: 3

Well Name : DIGBY 1 Location : PEP 105 & PEP 126 Well: W0003 Field/Area: OTWAY BASIN : 23/05/95 24/05/95 25/05/95 26/05/95 27/05/95 28/05/95 29/05/95 1523.0 Depth -m: 1486.0 1650.0 1759.0 1895.0 1951.0 1956.0 : 1967 2486 5050 Daily Mud Cost 2146 2939 4977 2674 Cumulative Mud Cost : 35205 37351 39838 42777 47827 52804 55478 CMC TG LV 25 KG S: 5 25 KG S: Caustic Soda Congor 303 25 LT D: Cronox 2-100 208 LT: Kwik Seal M 40 LB S: 30 13 25 KG S: M-I Bar 80 30 M-I Gel 25 KG S: 50 LB S: Mica Medium 30 25 KG S: 3 3 0S-1 3 3 Polypac 25 KG S: 9 2 2 Polyplus Powder 25 KG S: 5 7 8 5 10 5 3 Potassm Chloride 25 KG S: 80 80 170 90 40 Soda Ash 25 KG S:

M-I Drilling Fluids Co

25 KG S:

25 KG S:

Sodium Bicarb

XCD

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

2

2

10-07-95

3

Operator : GFE RESOURCES LTD	Contractor			Description	: EXPLORATION : PEP 105 & PEP 126	Page: 4 Well: W0003
M-I Bar	Cost : 25 KG S: 25 KG S: 25 LT D: 208 LT : 40 LB S: 25 KG S: 25 KG S: 25 KG S: 25 KG S: 25 KG S: 25 KG S:	12 50 18 2 8 10 80	31/05/95 2087.0 1529 62096 1 1 16 48 14 2	01/06/95 2088.0 62096	02/06/95 2088.0 60 63019 1 1 1 1 1 1 1 1 1	

10-07-95

M-I Drilling Fluids Co DRILLING FLUIDS DATA MANAGEMENT SYSTEM Operator : GFE RESOURCES LTD Contractor : CENTURY Description : EXPLORATION Well: W0003

Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 09/05/95 - 02/06/95, 0 m - 2088.0 m

WATER-BASE PROD	SIZE	AMOUNT
CMC TG LV	25 KG SX	17
Caustic Soda	25 KG SX	19
Conqor 303	25 LT DM	1
Cronox 2-100	208 LT DM	1
Kwik Seal M	40 LB SX	71
M-I Bar	25 KG SX	440
M-I Gel	25 KG SX	159
Mica Medium	50 LB SX	62
OS-1	25 KG SX	39
Polypac	25 KG SX	38
Polyplus Powder	25 KG SX	137
Potassm Chloride	25 KG SX	1497
Soda Ash	25 KG SX	18
Sodium Bicarb	25 KG SX	21
XCD	25 KG SX	12

M-I Drilling Fluids Co DRILLING FLUIDS DATA MANAGEMENT SYSTEM

DAILY MUD REPORTS

M-LAUSTRALIA PTY LTD

Date: 09/05/95 Depth: M-I Drilling Fluids Company _ -DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No. : W0003 Spud Date : 09/05/95 Activity: P/U DRL ASS ______ Contractor : CENTURY Description : EXPLORATION Operator : GFE RESOURCES LTD Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Well Name: DIGBY 1 Report For: KEN SMITH CASING MUD VOLUME (bbl) Bit: 12.250 in Nozzles: / / / / 1/32" Casing OD: in Liner OD: in Hole Volume : in O Drill Pipe 1 OD: Casing ID: in Liner ID: in Pits Volume: m m Circulating Volume: 450
m Mud: POLYPLUS/KCL MUD m Liner TD: Casing TD: Drill Pipe 2 OD: in m m Liner TVD: Casing TVD: Drill Collar OD: in m SOLIDS ANALYSIS (% / 1b/bb1) MUD PROPERTIES CIRCULATION DATA

: PIT 00:01 : ^F NaC1 : 0.0 / 0 Flow Rate -gal/min: Sample From : 1.5 / KC1 14 DP Annular Vel -m/min: Flow Line Temp Low Gravity Solids : 0.4 / 4 Depth/TVD DC Annular Vel -m/min : -m : -1b/qai : 8.6 DP Critical Vel -m/min: Bentonite : 0.0 / Mud Wt : 0.2 / Funnel Vis -s/qt : 36 @ 65 ^F Plastic Visc -cps : 8 @ 60 ^F Drill Solids DC Critical Vel -m/min: : N/A / N/A Circ. Pressure Weight Material -psi : : - / 2.0 YP/R3 -1b/100ft2 /deg : 5 / 1 Bottoms Up Chemical Conc -min: Inert/React : - Average SG : 2.60 10s/10m Ge1 -1b/100ft2: 2 / 2 Total Circ Time -min: API F Loss -cc/30 min : 14 SOLIDS EQUIPMENT Size PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: Hours Potassm Chloride 25 KG S 137 Shaker #1 : 3 X 50 Cake API/HT -1/32": 1 Caustic Soda 25 KG S 4 Shaker #2 -**%**vol : 2 : Solids 25 KG S 5 Shaker #3 0i1/Water -%vol: /98 Polypac : CMC TG LV 25 KG S 10 Shaker #4 -%vol: Sand -1b/bb1 : 25 KG S 1 Mud Cleaner : Soda Ash MBT : 9.0 @ 60 ^F Centrifuge : 12"X 2 : 0.1 Desander Alkal Mud (Pm) : 0.1 / 0.3 Desilter : 4"X 12 Pf/Mf -mg/1 : 20000Degasser Chlorides : 60 Hardness Ca MUD VOLUME ACCOUNTING 661 K+ PPM : 21500 : 4 Oil Added : : KCL WT % Water Added: PHPA Mud Built :450 ENV : 0.691 Mud Received: np Value Mud Disposed: Kp -lb-sec^n/100ft2 : 0.18597 na Value : 0.557 Ka -1b-sec^n/100ft2: 0.43013

Remarks :

Commence preparation of PHPA/KC1 mud.

Commence preparation of 500 bbl of 1.5 ppb PHPA/4% KCl system. PHPA/KCl mud to be used from spud. Mud properties to be adjusted once mixing completed and drilling commences.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2945 Cumul Cost : 2945

•

	4	Dr	illin arimoo	g		iids		O.		A			O MA	· <u>'</u> 19	95-		DEPTH		
		viageoo	21711100												PRE	SEN	TACTIVITY	Υ .	
P.O. BOX	42842		IOUST	ON, T	EX/	AS 7724	42 U	SA					DATE	OMA	<u> </u>	101	دس بم	12'14	CAL
PERATOR	سير چې		RES		- J.	~				CONTR	RACTO	ログヘノフ	UR	,			11	RIG NO.	
EPORT FOR	<u> </u>		KLine	OURE		S				REPORT	FOR						SECTION	N. TOWNSHI	RANGE
VELL NAME A	KE	<u>~_</u> .	5/1/2	<i>H</i>				FIELD OR B	OCK NO		RC	COUNTY, F		B OFFSHO		\dashv	STATE/PROV	INCE	<u>-</u>
VELL NAME A	.ND NO.	DIG.	BY 7	# 1			- [[PER		5/12	4	AREA O	The said	Y BA	5101			TORIA	
DRI	LLING A		-		CA	SING		MUD	VOLUM	E (BBL)				RCULA	OIT	N DATA		
IT SIZE	TYPE		JET SIZE	_		RFACE		HOLE		TS		PUMP SIZE	:		×		ANNULAR V	/EL (þýmin)	
214	VARAL	1	18	4	in	<i>a</i>				150				4	۵	ا-ی.	DP	DC	39
RILL PIPE	TYPE	- 2	LENGTH			. @ RMEDIATE	-" :	TOTAL CIRCI				PUMP MAR	E, MODE		SSUMED		CIRCULATIO	ON	
4/2					in	. @	,		450		1	NAT	00	20	「 <i>95</i> 」	- %	PRESSURE	(psi)	0
RILL PIPE	TYPE	+	LENGTH	<u> </u>		RMEDIATE	-"	IN STORAGE		EIGHT		bbi/stk	9.4.4			min	воттомѕ		
IZE 11/2	HWO	اه		1	in	. @	ft.		- 1			0.03	7/-	a=1	90	122	UP (min) (strk)		
RILL COLLAR			LENGTH	PROI		ON OR LINE		MUD TYPE					10.		-/6/	- 1	TOTAL CIRC	:	
6/4	18"	İ		1	in	. @	n.	KC	رحران	HPA		60/min 6 8	5		45 Gal/		TIME (min) (strk)		
								PERTIES	1	*****		MUE	PROP	PERTY S	SPECIFI	ICAT	IONS		
ample From					_	□ F.L. □		Q.F.L. 🖸 PI	WEIG	нт			VISCOS	ITY			FILTRATE		
						□ r.c. y a		- L. L. 11	\dashv	M	~		35	-45	514	171	10	-15-	: <
me Sample						23:0	20	053	4		<u> </u>	DECC	DAAAAEA	IDED TO	NID TO	EAT			
owline Tem	perature (°F)						76	_			HECC)IVIIVIE I	VOLU IC	JUN 111	LAI	MENT		
epth (ft)	(TVD		1		<i>5</i> 4			62	10	-	- Come		A.E.		تۍ ت	-%	KCI/	יכונבי	a
eight 🗆 (p	pg)	☐ (lb	/cu ft)	☐ (st	p gr)	9.7	_ [8.7		-روس		رر ھر_	<u>aa</u> .	מק.	~	as	محم		
innel Visco	sity (sec/a) API @	3	۰F		36		47	757				A 10 A	چـــــــ اعربوا		- - ر ر	.,,	ne .	O.
astic Viscos			°F				\dashv						-				-	~	
						8	-+	19_	_	15	-		2011	1100			-11-01		
eld Point (lt						_5_		19											
el Strength			/10 min					<u>215</u>											
Itrate API (c	m3/30 mi	1)				14		15	<u></u> _					REMAI	RKS				
PI HTHP Fil	ltrate (cm ³	/30 min) @	۰F				_	بصا	_	حر	au	مـــ	سده		2	Hoc	/=	
ake Thickne	ess (32nd	in. API/	HTHP)			, 1		, 1		050	10		-	34.6			• -		
lids Conter	nt (% by \	(ol) [2]	calculated	l □ reto	ort	2		2		E Z				•••					
					-		_		_										
quid Conter			valer			- 19	8	1 92	2	· · · · · · · · · · · · · · · · · · ·									
and Content								TR											
ethylene Bli	ue Capaci	ty 🗆 cm²	(cw ₂ wing					-											
- - :	Strip	☐ Me	ter @	۰F		9.0		9.0											
kalinity Mud	d (Pm)					0./		0.1											
Ikalinity Filtr	ate (P ₄ /M ₄)				. / -	-	11.3											
hloride (mg/					-	0.1.0													
			- 0 \			20,00	20	20,000	2										
otal Hardnes	s as Caic	um (mg	J/ L)			60		60											
KIP	200					2150	20	215∞											
KCI	4/ c	<i>t</i>				4		4	No	75	so	01710	ine	MUD	-	j: ~,	5 00	RIVED	_04
DHDA	-					·	1	1.8	120	Car	100	1011			وررح		013/	DROV	10/5
4									*- ^	JOTE	45	AGE 1	~1010	172	39	, ,	1~50	~05A	34- 3
		6/	7.	/ t		0. /	. /	3º /s			ا ع	15 100	×//×	G 18 1	57/12	٤٨٠	/		
RODUCT	By b,	C. (E)	, LC	DIP	/6		J /ci	40 05'Y	SOF	10/2	20 40¢	5° 20' (1)	L CON	O Wast	أبرادلان	NY.	SOLIDS	EQUIPME	NIT
VENTORY	/3r.	10,4	/\	/QX	/8°	_/O``	V/0	400	/50 p	1/3.5	150	5 (2)	100	/ ON	PAR	<u> </u>	30000	- COON MIC	
ARTING VENTORY	440	1	537	30	2	42	15	_	16	3	13		1/2	3/3	39	SHA	KER #1	3 45	<u>_</u>
CEWED	7-7-	1	7-7-			7	7,0		T		1	7.70				1		- • -	
CEIVED		 		ļ	<u> </u>		+-	-		-			-			SHA	KER #2		m
ED LAST hr			137	5	5	- 10	*5	-	1							MUE	CLEANER.		m
OSING	_	1					1	- 1	 	T	1	39	-/	2/	30/	i			
/ENTORY	140	111		-	22		10	2 37	15	3	13	116	15	12	30	CE	NTRIFUGE		ho
DST LAST			1070			30 30		75	14.31							DE	SANDER		ho
ED UNI		-	1570	 	658	3 512	///	13	14.0	1	†			T		1			
m IADCEOS /	15.5	<u> </u>	11.46		131	zyk1:23	22.	35	14 31		1,		l	1	l		SILTER	OT.	h
REPRESEN	TATIVE				P	HÔNE		WAR	EHOUSE *	PHONE	- 11 .	ILY COST	_				ULATIVE CO		
DAUL	MAI	2511.	146		-	9325	48		32,51	89 <i>7</i>	B.	296	7.08	3	k	8	2967	7. <i>0</i> පු	
				RT IS	SUE	BJECT T	O TH				DITK	INS SE	FOR	TH ON	REVE	RSE	SIDE	EREOF.	
TIME OF	יייי וחוחיייי	NI /5	T	/0!				00::-	C A 1	reie	1				01.00		17004		
TIME DIS		un (nrs)	II MUE	VOLUM	it AC	COUNTIN	ا تا	SOLID	S ANALY	212				OU HHE	ULUGY a	and H	HYDRAULI	US.	
lig Up/Serv	rice		Wate	r Added	(bbn		110	w Gravity	%		70	ro Gel		Avg ROF	5		ECD @_		
		24																	
Drilling				Built (bb		400		w Gravity,	hbo			Factor O	79	% Cuttin	<u> </u>		Leak Off	· · · ·	Γ.
Reaming/Co	oring			Received			+	entonite %				actor	-29	psi	9/0		hhp	HSI	Jet Ve
irculating			Mud	Dispose	d (bbl)	Be	entonite, pp	b		Bit	Hydraulic	s	218	30	هـ	57	0.49	51
ripping							Dr	ill Solids %	6		An	nular Sect	ion	1	2		3	4	5
Survey						1	Dr	ill Solids, p	pb		Ho	le Size		12.25	5 12	25			
ogging								ale CEC, p			-#-	oe OD		_		25			
Running Ca	sino					1		B Ratio				itical Veloc	itv					 	
	on y					+	_		04					67	5-4				
Testing				ing Depti		+	\neg	gh Gravity			ii	nular Velo	ity	39	125	_		 	
ishing			Endi	ng Depth	1		Hi	gh Gravity,	ppb		Vis	scosity		77	75	-		<u> </u>	<u> </u>
			New	Hole Vol	. (bbl))					An	nular Pres	sure	0.5	04			1	l

Date: 10/05/95 M-I Drilling Fluids Company Depth: 342.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: WIPER TRIP Contractor: CENTURY Operator : GFE RESOURCES LTD Description: EXPLORATION Location : PEP 105 & PEP 126 Well Name: DIGBY 1 Field/Area : OTWAY BASIN Report For: KEN SMITH Bit: 12.250 in CASING MUD VOLUME (bb1) Nozzles:20/20/18/ / / 1/32" in Casing OD: in Liner OD: Hole Volume : in Liner ID: ni Drill Pipe 1 OD: in 342 m Casing ID: Pits Volume: Casing TD: Drill Pipe 2 OD: in m Casing TVD: Drill Collar OD: 'n m Liner TVD: m MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / lb/bbl) : : FL 00:01 Flow Rate 450 | NaC1 : -0.1 / -1 Sample From -gal/min : : 96 ^F DP Annular Vel -m/min: KC1 : 1.5 / Flow Line Temp 14 -m :342.0 /342.0 Depth/TVD DC Annular Vel -m/min : Low Gravity Solids : 2.9 / 26 : 1.3 / Mud Wt. -lb/gal : 8.9 DP Critical Vel -m/min: Bentonite 12 -s/qt : 45 @ 95 ^F : 1.3 / 12 Funnel Vis DC Critical Vel -m/min: Drill Solids -cps : 17 @ 85 ^F Weight Material : N/A / N/A Plastic Visc Circ. Pressure 700 -psi: Chemical Conc : - / 2.0 YP/R3 -1b/100ft2 /deg : 14 / 2 Bottoms Up -min: 10s/10m Gel -lb/100ft2:3 /8 Inert/React : 0.80 Average SG : 2.60 Total Circ Time -min: API F Loss -cc/30 min : 7.6 HTHP F Loss -cc/30 min: @ ^F PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours -1/32" : 1 : 3 X 50 24 Cake API/HT Potassm Chloride 25 KG S 40 Shaker #1 25 KG S 1 Shaker #2 Solids -%vol : 3 Caustic Soda /97 0i1/Water -%vol: Polyplus Powder 25 KG S 20 Shaker #3 : Sand -%vol : 1.5 Soda Ash 25 KG S 1 Shaker #4 -1b/bb1 : 13.525 KG S 48 Mud Cleaner MRT M-T GeT : рΗ : 8.5 @ 65 ^F Centrifuge : : 12"X 2 Alkal Mud (Pm) 16 : 0.1 Desander : 0.05/ 0.2 4"X 12 12 Pf/Mf Desilter : -mg/1:17000Chlorides Degasser Hardness Ca : 360 MUD VOLUME ACCOUNTING 661 K+ PPM : 18750 Dump KCL WT % : 3.5 Oil Added : :30 SCE :60 PHPA Water Added: : 1.9 Mud Built :125 Surface :94 ENV : 90000 : 0.630 Mud Received: np Value Mud Disposed: 184 Kp -1b-sec^n/100ft2 : 0.64902 : 0.595 na Value -lb-sec^n/100ft2: 0.80831

Remarks :

Digby 1 spudded 0100 hrs. Drill 12.25" hole to 342m-TD. POOH for wiper trip. Prepare to run casing. Digby 1 spudded 0100 hrs. Drill 12.25" hole to TD at 342m with regular

surveys. Maximum deviation 0.75 deg. POOH for wiper trip. Prepare to run 9.625" casing.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 4413 Cumul Cost : 6145

	lling Fi	uias	GO.			DATE AO MA	7 1 9	95-	DEPTH	34	2 ~1
Magcoba		ser/Halliburton				Onicia			NT ACTIVI	TY	
P.O. BOX 42842 ■ H	DUSTON, TEX	(AS 77242	USA			SPUD DATE	DMAY		IPER	TRI	
OPERATOR GFE	RESOURC	:ES 4	10	CONTRA		ENTU	Q Y		1	, RIG NO) .
REPORT FOR	SMITH			REPORT F	OR				li .	ON, TOWNS	
WELL NAME AND NO.	7		FIELD OR BLO		C	OUNTY, PARISH		RE	STATE/PRO		
DIC B			DIGBY		- ^	REAO TWA				TOP	11
DRILLING ASSEMBLE BIT SIZE TYPE JE		CASING	HOLE MUD V	OLUME (BBL)		UMP SIZE	CII	RCULATIO		VEL (tymin)	
	20	in. @	1145	210			5.5	7.5	DP	ر DC د DC	70
DRILL PIPE TYPE LE		RMEDIATE		ATING VOLUME	P	UMP MAKE, MOI		SUMED	CIRCULAT	ION	
SIZE 1/2 16.6#		in. @	ت	755	W	NT AP		「95 %	PRESSUR	E (psi) アロ	0
DRILL PIPE TYPE LE	ENGTH INTE	RMEDIATE	IN STORAGE	WEIGHT	bi	bl/stk			BOTTOMS UP (min)		
A /2 VILIDE ST		in. @ TION OR LINER	ft. 36 MUD TYPE	8.6	c	0.054 0.c	27	99/77	(strk)	14	<u>-</u>
	, ,			. 1		0.65		450	TIME (min)		,
B" /6/4 18/	161-1		ROPERTIES	/pupa	II pi	MUD PRO	PERTY S	gal/min	TIONS	<u> </u>	<u></u>
Sample From		ØEL. □ PIT		WEIGHT		visco		1 2011 107	FILTRATE	E	
Time Sample Taken		·		MIN		3:	5-45	Sec/9		0-15	- < <
	-	20 30	V			RECOMME	NDED TO	UR TREA		*	
Depth (ft) (TVD	(بائر /	96(36	/								
Veight √2 (ppg) □ (lb/c			342	- PREC	ak E			15	COME	. <u>, , 2</u> , p.	×100
Funnel Viscosity (sec/qt) API @		- 3.7	8.8+	TO MA	متريم	un Kl	1_1~	10/1	Ca E	ALPAN S	CONC
Plantin Vincentity on ©	90 °F °F	45	48	- PRE	PAL	<u> </u>	ic a	BLEE	12 /·V2	50 2×	-715
riastic viscosity cp @ 84	· · · · · · · · · · · · · · · · · · ·	17	120	200	100	ر مرم	5				
Gel Strength (lb/100 ft²) 10 sec/10	n min	14	1/4	- RUN		CE 5	01113		con.		
Filtrate API (cm³/30 min)	J 11881	318	110		7/2	CEE	REMAF	<u> </u>	TOR	<u> </u>	
API HTHP Filtrate (cm³/30 min) (7.6	7.2								
Cake Thickness (32nd in. API/H)				- 520	100	50 010	-13/1	10	0100	11.75	10/:
Solids Content (% by Vol) , Ca		11-	 / /	DRILL	/-	2 /4 110	15 7	U FA	9	742 m	. 44.0
		3	3	RECUL	AR	SURVE	· Y.5 -	1112	DEI	0.75	
iquid Content (% by Vol) Oil/Wa	ner	- 197	197	FIRCU	16/17	E 11041	CAR	111 9	Po	204 2	OR
Sand Content (% by Vol) Methylene Blue Capacity (lb/bbl e cm²/cm²/cm²/cm²/cm²/cm²/cm²/cm²/cm²/cm²/	viup	1.5	1.0	11121	'Z	TR112.					
		13.5	-/wi-5-	- PRI	. ډر حر ج	DE TO	1200	9.	6 <i>25</i> "	CASI	15
	- F	8.5	8.3								
Alkalinity Mud (P _m)	· · · · · · · · · · · · · · · · · · ·	0.1	0.05								
Alkalinity Filtrate (P _f /M _f) Chloride (mg/L)		05/0.2									
Total Hardness as Calcium (mg/L)	`	17000	17000								
<u> </u>	-1	360	360			• •					
K+ 119/8		18750	1				·····				
KCI Yout		3.5	1.9	DISAND		2.3ppg.	NETO	4.85	grada	FELOW	_2.57 _
PHPA PPL		1.9	1.7	0/5147	11.2	209-U/i	ZOLL.				200
RODUCT VVENTORY	20 21 CM Still	2 5 5 00 8 V	, 7		7	//		//	/		
TARTING	/x 2/c1 /50	3, 24,00,61	//	′ 	/		1-1		SOLID	S EQUIPMI	LIN I
IVENTORY /// 400	30 10 1	5 22						SH	AKER #1	<u>3 × 3</u>	<u>50</u> "
ECEIVED 400	44 42	32						SH	AKER #2		m
SED LAST /	. 5 /	1									
OSING 70 40	20 1 1	+ +					 	MU	D CLEANER		п
VENTORY 63 760	54 51 1	4 54						c	ENTRIFUGE		h
ost Last 12 40 hr 153 458	3465 2235 14	3/						ם	ESANDER_	76	he
SED om (ADC)					-					12	
I-I REPRESENTATIVE		PHONE	WAREH	OUSE PHONE	DAILY	COST			ESILTER	OST	ho
00		0-2-1	027		Ø.	14/3.1	R	6	7 38	0.26	
NOTICE: THIS		7 <i>9 3754.</i> BJECT TO		AND COND				REVERS			
									L SIDE :	TETEOT.	
TIME DISTRIBUTION (hrs)	MUD VOLUME AC	CCOUNTING	SOLIDS	ANALYSIS		Ŋ	JUD RHEO	LOGY and	HYDRAULI	cs	
Rig Up/Service / O	Water Added (bbl)		Low Gravity %	2.9	Zero	Gel 5	Avg ROP		ECD @_		
Orilling 1.5.5	Mud Built (bbl)	125	Low Gravity, ppt		n Fac		% Cutting	22.2	Leak Off	<u> </u>	
Reaming/Coring	Mud Received (bb		Bentonite %	26.6	k Fac		psi	%	hhp	HSI	Jet Ve
Circulating / O	Mud Disposed (bb		Bentonite, ppb	122	-	rdraulics	= 23			1	+
Tripping 3 5	DUMP	107	Drill Solids %	1.2		ar Section	1	_32 2	5-7	0·5 ⁻	51 5
Survey 3.0	SCE	60	Drill Solids, ppb		Hole			12.25			1 3
ogging	SURFACE	94	Shale CEC, ppb	- 7.	Pipe (12 25		_		-
Running Casing	TOTAL MU		D/B Ratio	0.75	 	al Velocity	80	625	4:5		i
Testing	Starting Depth	0	High Gravity %		-	ar Velocity	-39	30	25.9		1
Fishing	Ending Depth		High Gravity, on	h	Vince					 	

New Hole Vol. (bbl)

Annular Pressure 0.5 2.4 1.5

Date: 11/05/95 Depth: 342.0 m M-I Drilling Fluids Company - -DRILLING FLUIDS DATA MANAGEMENT SYSTEM Spud Date : 09/05/95 Well No.: W0003 Activity: NIPPLE UP ______ Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Well Name: DIGBY 1 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Nozzles: / / / / 1/32" Hole Volume : Casing OD: in Liner OD: in in 342 m in Liner ID: Drill Pipe 1 OD: Casing ID: Pits Volume: in m Liner TD: Drill Pipe 2 OD: Casing TD: m Circulating Volume: in m Drill Collar OD: Casing TVD: m Liner TVD: m Mud : POLYPLUS/KCL MUD in m MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) : PIT 23:00 : ^F NaC1 Sample From : 0.1 / 1 Flow Rate -gal/min: KC1 : 1.5 / Low Gravity Solids : 2.6 / Flow Line Temp DP Annular Vel -m/min : 14 -m :342.0 /342.0 Depth/TVD DC Annular Vel -m/min : 24 DP Critical Vel -m/min: Mud Wt -lb/gal : 8.9 Bentonite : 1.3 / 12 -s/qt : 50 @ 76 ^F -cps : 22 @ 72 ^F : 1.1 / 10 DC Critical Vel -m/min: Drill Solids Funnel Vis : N/A / N/A Plastic Visc Circ. Pressure -psi: Weight Material : - / 2.0 YP/R3 -1b/100ft2 /deg : 19 / 2 Bottoms Up -min : Chemical Conc 10s/10m Gel -1b/100ft2:3 / 9 Total Circ Time -min: Inert/React : 0.68 Average SG : 2.60 API F Loss -cc/30 min : 5.8 PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size HTHP F Loss -cc/30 min: @ ^F Hours Cake API/HT -1/32" : 1 Potassm Chloride 25 KG S 160 Shaker #1 : 3 X 50 4 Solids -%vol : 4 Polyplus Powder 25 KG S 7 Shaker #2 25 KG S 1 0il/Water -%vol: Shaker #3 /96 Polypac : Sand -xvo1:0.5CMC TG LV 25 KG S 2 Shaker #4 MBT -1b/bb1 : 13.0Sodium Bicarb 25 KG S 3 Mud Cleaner На : 8.5 @ 65 ^F Centrifuge : Alkal Mud (Pm) : 0.1 12"X 2 Desander : Pf/Mf : 0.05/ 0.2 Desilter : 4"X 12 Chlorides | -mg/1:21000Degasser Hardness Ca : 400 : 21000 K+ PPM MUD VOLUME ACCOUNTING 661 : 4 KCL WT % Oil Added : Dump :90 PHPA : 2.1 Water Added : SCE : ENV : 85000 Mud Built :125 Surface :43 np Value : 0.619 Mud Received: Kp -lb-sec^n/100ft2 : 0.91951 Mud Disposed:133 na Value : 0.656 -1b-sec^n/100ft2 : 0.73210 Ka

Remarks :

Continue to RIH work bridge at 327m-6m fill. Circulate hole clean and POOH. Run and cement 9.625" casing. Continue to RIH. Work bridge at 327m-6m fill. Circulate hole clean and POOH. Rig up and run and cement 9.625" casing - WOC. Nipple up BOPs.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 3347 Cumul Cost : 9360

			ЧΙ	ΓIU	IIU	13 L	JU.	-	! !		DATE_	صه در			DEPTH	742	
	Magcoba	r/IMCO	A	Dresse	r/Hallit	burton Co	ompan	y 7	1	T	DATE	11_100	<u>ـــ 19 ـــ</u>	PRESEN	IT ACTIVITY		
O POV 4004) = L/	OUET	ON -	TEY/	19.7	7242 1	ISΔ	1			SPUD	DATE 2	111	111		UP 6	206
O. BOX 42842	2 = H	70511	JIN,	IEA	15 /	1242 (JOA			ONTRACT				130	T	RIG NO.	
PERATOR	FE	RE	-500	urc	- E.	5	4	2	-		CENT	URY			of drove	TOWNSHIP.	DANGE
PORT FOR									RE	EPORT FOR	2	, ,	(0/1)()	~/	SECTION	Marin.	<u>ب</u>
ELL NAME AND NO		حمد	مساسية				FIELD	OR BLO	CK NO.		COUNTY.	PARISH OF	OFFSHORE	:	STATE/PROVI		
DIG G	·	# 1					_	تعصد	} \/	/- V	AREA	TULA		المميح		TOR	121
DRILLING A	SSEMB	LY			SING				DLUME	<u> </u>				CULATIO	ANNULAR VE	1 (tt/min)	
T SIZE TYPE	JE	T SIZE		_	RFACE		HOLE		PITS	6	PUMP SIZ	E 5	× حد:	7.5	1		
a %			9	5/2 in		ft.	0	14	ATING VO	<u> 83 </u>	-				CIRCULATION	DC	
RILL PIPE TYPE	L	ENGTH		INTER	RMEDIA	Œ	TOTAC	CIRCUL	ating vo	DLUME	11	KE, MODE	SU EFF	UMED	PRESSURE (
ZE					. @	ft.					WAT	200	20	stk/min	BOTTOMS		
RILL PIPE TYPE	L	ENGTH		INTER	RMEDIA	1E	IN ST	ORAGE	WEI	IGHT	bbl/stk			SIMILI	UP (min)		
26					. @	ft.	<u> </u>				0.05	A fo	07_		(Strk)		
RILL COLLAR SIZE	L	ENGTH	PR	ODUCTI	ON OF	LINER	MUD	TYPE				•			TIME (min)		
				in	. @	ft.	<u> </u>	KC	حراب	HPA	bbl/min			gal/min	(strk)		
					М	UD PRO	PER	ries	WEIGH	-	MU	VISCOSI	ERTY SP	ECIFICA	FILTRATE		
ample From					□ F.L	L. PIT	□ F.U	🖓 PIT	WEIGH	•		1.0000		_ ,			
me Sample Taken					2.	7 :		5. 20		MIN			45		7 0	- 10	<u> </u>
owline Temperature	(°F)				-		0	-	1		REC	OMMEN	DED TOL	IR TREA	TMENT		
	,	1		ft)			-				C 4	~ ~ ~	00	d. a	0.300	21=	
``````				(sp gr)	-3	42		42	1	·			9%	- N	DUDD		>
eight 📝 (ppg)	□ (lb/			(ah Ai)	8	-9	, , ,		 	0001	TONA	<u></u>	1 / K				
nnel Viscosity (sec/	t) API @		°F		-5	70	تـــــا	-2	+								
astic Viscosity cp @	7.7	, °F				22	12	/	No	2775	ZOOF	5- 10	IDICA	77.3	111	UUD !	CH.
eld Point (lb/100 ft²)	7-					9		20	100	1- 771	OSE_	05-1	21/5	SECT	300	6121 -	
el Strength (lb/100 ft	2) 10 sec/	10 min			7	19	7	110			and M	3 ,,,	771 A	1561	~00		
Itrate API (cm³/30 m					-		$\overline{}$. 6	T-630				REMAR	KS			
			°F			:8	ح- ا	<u> </u>	1			2	1	ORK	30,0	cr (2)	77
PI HTHP Filtrate (cm					├─	-			100	MITIN		12.1.1	1 - Za	(4)	_5/02	<u> </u>	
ake Thickness (32nd						<u> </u>	-	/ -	 	64	FILL						
olids Content (% by	Vol) 🗘	calculated	d 🗆 re	etort	<u> </u>	1	4	<u> </u>	 	CIRC	1101	EC	41541	1 4	POOR		
quid Content (% by	Vol) Oil/V	√ater		_	_	196	_	196	R	16 4	10,	RUN	70	EME	n= 9	5/8 0	: s <u>c</u>
and Content (% by \	/ol)				0					Noc							
ethylene Blue Capa		viupe le			1	2.0		7.0	T _		011=		BOP	5			
	☐ Me		۰F		-		13		1								
H ☐ Strip		.er @			+8	-5	-8		+								
Ikalinity Mud (P _m)					2	•/	<u> </u>		 								
Ikalinity Filtrate (P _f /N	14)				-05	10.2	Los	-1-2	 								
hloride (mg/L)					21	1000	12,	4000									
otal Hardness as Ca	lcium (mg	3/L)			1	00	1-	100									
					Τ,-	200	1	2000									
16 mg/ 1					0			4	T								
KCI "9	ur.					.9	1	.9	1	*							
DHRA 1	rpb_					.9	+-1	-7	+								
	,			,	1.0		ل ر ـــ		ــــــــــــــــــــــــــــــــــــ		7				7		
/	د/ ح	ں/دہ ا	, Q-/S	/	1200 P	. /	/				/ /			/ /	/		•
RODUCT EVENTORY	204	ON OF	1/3	v/8	10V	/ /	/		/ .	/_/					SOLIDS	EQUIPME	N I
TARTING					- 1									[.	HAKER #1	7 4 .	CO.
VENTORY 76	050	154	32	2 -3	3				 	 			+	3"	TARER #1		
	-							1	1								
				-										SI	HAKER #2		
ECEIVED SED LAST		7	-	,	-	_											
SED LAST		/ /	2		3									м	UD CLEANER		
ECEIVED SED LAST I hr LOSING	2 7	/ /			7									м			
ECEIVED SED LAST I III LOSING VENTORY	2 7 2 47		30	2	3´ -									M	UD CLEANER		
ECEIVED SED LAST In / 61 LOSING IVENTORY OST LAST IN / 93	7 7		30	2	3'-									M	UD CLEANER		
ECEIVED SED LAST 1 hr LOSING IVENTORY OST LAST 2 hr 1 SED	7 7		30	2	-									M	UD CLEANER. CENTRIFUGE DESANDER. DESILTER.		
ECEIVED SED LAST 4 hr LOSING VENTORY OST LAST 4 hr 4 9 3. SED	7 7		30	46	-	E		WARE	EHOUSE I	- 1	DAILY COST			M	UD CLEANER. CENTRIFUGE DESANDER. DESILTER. JMULATIVE CO	OST	
SED LAST IN IN LOSING WENTORY OST LAST IN IN LOSING WENTORY AN IN LOSING HAVE A PARTICIPATE AND IN	7 47	5 .74 2 /31	30 4 4 122	46	- 		767		EHOUSE 1	- 1		16.5	7	M	UD CLEANER. CENTRIFUGE DESANDER. DESILTER. JMULATIVE CO	OST	
ECEIVED SED LAST I IN	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	742 131	30	46	- 	3254	782 Tuc	2			# 334			CL	UD CLEANER. CENTRIFUGE DESANDER DESILTER JMULATIVE CC	ost 26.8	
SED LAST LOSING VENTORY LOSING VENTORY LOSI LAST LOSI LA	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	742 131	30	46	- 	3254	782 THE	2			# 334			CL	UD CLEANER. CENTRIFUGE DESANDER. DESILTER. JMULATIVE CO	ost 26.8	
SED LAST LOSING VENTORY LOSING VENTORY LOSI LAST LOSI LA	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	742 131	30	46	- 	3254	%%2 THE	2			# 334	ET FOR	TH ON	a cu	UD CLEANER. CENTRIFUGE DESANDER DESILTER JMULATIVE CO LO 7 2 SE SIDE H	ost 26.8 HEREOF.	
CECIVED SEED LAST IN OSING VENTORY AD 4 SEED om IADC) I REPRESENTATIVE	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 .74 2 /3/ S REP	3(4 .4 122	IS SU	PHONI	3254	7 <u>882</u> THE	Z TERM		соио)	# 334	ET FOR	TH ON	a cu	UD CLEANER. CENTRIFUGE DESANDER DESILTER JMULATIVE CC	ost 26.8 HEREOF.	
SED LAST N 1/40 OSING VENTORY 20 SST LAST 40 SST LAST 40 SST SST SST SST SST SST SST SST SST SS	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 .74 2 /3/ S REP	3(4 .4 122	IS SU	PHONI	<i>3254</i> CT TO	THE	Z TERM SOLIDS	S ANE	CONDI	# 334 TIONS S	ET FOR	ATH ON	a cu	UD CLEANER. CENTRIFUGE DESANDER DESILTER JMULATIVE CO L JO 7 2 SE SIDE H	ost 26.8 HEREOF.	
SED LAST IN 1/40 LOSING IVENTORY SED ST LAST 40.3 SED SORT LAST 40.3 SED SORT LAST ADDITION HI REPRESENTATIVE PAUL - TIC	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 .74 2 /31 1 A C C S REP	3(4 .4 122	IS SU	PHONI PHONI	<i>3254</i> CT TO	THE	Z TERM	S ANE	соио)	# 334	ET FOR	AVG ROP	CL REVERS	UD CLEANER. CENTRIFUGE DESANDER_ DESILTER_ JMULATIVE CC L/O 7 2 SE SIDE H d HYDRAULI ECD @	est 26.8 HEREOF.	
SED LAST IN 1/4 LOSING VENTORY SET LAST IN 1/9 IN 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 .74 7 /31 S REP	0RT I	IS SU	PHONI PHONI	<i>3254</i> CT TO	THE Low (Z TERM SOLIDS	IS ANE	CONDI	# 334 TIONS S	ET FOR	ATH ON	CL REVERS	UD CLEANER. CENTRIFUGE DESANDER DESILTER JMULATIVE CO L JO 7 2 SE SIDE H	est 26.8 HEREOF.	
SED LAST I IN	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S REP ML Wa Mu	ORT I	IS SU LUME A led (bbl)	PHONI PHONI	3254 CT TO JNTING	Low (Z TERM SOLIDS	IS ANE	CONDI	# 334 TIONS S	ET FOR	AVG ROP	CL REVERS	UD CLEANER. CENTRIFUGE DESANDER_ DESILTER_ JMULATIVE CC L/O 7 2 SE SIDE H d HYDRAULI ECD @	est 26.8 HEREOF.	3
SED LAST LOSING VENTORY SED ST LAST A N 19 3. SED ON IADC) HI REPRESENTATIVE NOTIC TIME DISTRIBUT Rig Up/Service Drilling Reaming/Coring	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S REP Mu Mu Mu	ORT I	IS SU LUME A led (bbl) sived (bl	PHONI 29; IBJEC ACCOL	3254 CT TO JINTING	Low C	SOLIDS Gravity % Gravity, p	S ANALY	CONDI	# 33 4 TIONS S Zero Gel n Factor	ET FOR	AVG ROP	REVERS	DESILTER DESIL	PST 26.8 HEREOF.	3
SED LAST N 1/4 LOSING WENTORY 93. SED on IADC) HI REPRESENTATIVE NOTIC TIME DISTRIBUT Rig Up/Service Drilling Reaming/Coring Circulating	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S . 744 Z / 31 S REP) ML Mu Mu Mu	ORT I	UME A Led (bbl) Eived (b	PHONI 29; IBJEC ACCOL	3254 CT TO JINTING 25	Low (C Low (C Bento Bento	Z TERM SOLIDS Gravity % Gravity, ponite % onite, ppb	S ANE	3.7 33.5 3.3 11.4	Zero Gel n Factor	ET FOR	AVG ROP	REVERS	DESILTER DESIL	PST 26.8 HEREOF.	3
SED LAST N 1/40 LOSING VENTORY 29.3 SED on IADC) HI REPRESENTATIVE PAUL - VIII TIME DISTRIBUT Rig Up/Service Drilling Reaming/Coring Circulating Tripping	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S . 744 Z / 31 S REP) ML Wa Mu Mu	ORT I	JS SU LUME A (bbl) (bbl) (bbl) (bbl) (consider (bbl)	PHONING PHONIN	3254 CT TO JINTING 25 /33	Low (Company) Low (Company) Bento	SOLIDS Gravity % Gravity, ponite % conite, ppt Solids %	S ANELY	3·7 33·5 11·4 2·1	Zero Gel n Factor k Factor Bit Hydrau	ET FOR	Avg ROP Cutting psi	REVERS	DESANDER DESANDER DESANDER DESILTER DIMENSION DE SIDE HELDE DE COMPANION DE COMPANI	HEREOF. CS HSI	3
SED LAST I A II' LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY LOSING IVENTORY IVENTO	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S . 744 Z / 31 S REP) ML Wa Mu Mu	ORT I	JS SU LUME A (bbl) (bbl) (bbl) (bbl) (consider (bbl)	PHONING PHONIN	3254 CT TO JINTING 25	Low C Low C Bento Bento Drill S	SOLIDS Gravity % Gravity, p onite % onite, ppb Solids % Solids, pp	S ANALY 6 6 b b pb	3.7 33.5 3.3 11.4	Zero Gel n Factor k Factor Bit Hydrau Annular Se	ET FOR	Avg ROP Cutting psi	REVERS	DESANDER DESANDER DESANDER DESILTER DIMENSION DE SIDE HELDE DE COMPANION DE COMPANI	HEREOF. CS HSI	3
ECEIVED SED LAST IN IN IN IN IN IN IN IN IN IN IN IN IN I	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S . 744 Z / 31 S REP) ML Wa Mu Mu	ORT I	JS SU LUME A (bbl) (bbl) (bbl) (bbl) (consider (bbl)	PHONING ACCOL	3254 CT TO JINTING 25 /33 90 43	Low (Company) Bento Bento Drill Si Drill Si Shale	SOLIDS Gravity % Gravity, ponite % onite, ppb Solids % Solids, ppe CEC, p	S ANALY 6 6 6 6 6 6 6 6 6 6 6 6 6	3.7 33.5 11.4 2.1	Zero Gel n Factor k Factor Bit Hydrau Annular Se Hole Size Pipe OD	ET FOR	Avg ROP Cutting psi	REVERS	DESANDER DESANDER DESANDER DESILTER DIMENSION DE SIDE HELDE DE COMPANION DE COMPANI	HEREOF. CS HSI	3
SEED LAST IN LOSING VENTORY OST LAST IN 193. SED om IADC) HI REPRESENTATIVE NOTIC TIME DISTRIBUT Rig Up/Service Drilling Reaming/Coring Circulating Tripping Survey	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S REP Mu Mu Mu S S	ORT !	UME A led (bbl) (bbl) (bbl) (bbl)	PHONING PROPERTY OF THE PROPER	3254 CT TO JINTING 25 /33	Low C Low C Bento Bento Drill S Drill S Shale	SOLIDS Gravity % Gravity, ponite % onite, ppb Solids % Solids, pp CEC, p Ratio	S ANALY 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8	3·7 33·5 11·4 2·1	Zero Gel n Factor k Factor Bit Hydrau Annular So Pipe OD Critical Vel	Lics ection	Avg ROP Cutting psi	REVERS	DESANDER DESANDER DESANDER DESILTER DIMENSION DE SIDE HELDE DE COMPANION DE COMPANI	HEREOF. CS HSI	Jet !
SED LAST IN 1/20 LOSING WENTORY SED COST LAST A 1 IN 1/20 SED COMMADC) HI REPRESENTATIVE PAUL - 771 TIME DISTRIBUT Rig Up/Service Drilling Reaming/Coring Circulating Tripping Survey Logging Running Casing/C	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S REP Mu Mu Mu S S	ORT I	UME A led (bbl) (bbl) (bbl) (bbl)	PHONING PROPERTY OF THE PROPER	3254 CT TO JINTING 25 /33 90 43	Low C Low C Bento Bento Drill S Shale D/B F High	SOLIDS Gravity % Gravity, ponite % onite, ppt Solids % Solids, pp CEC, p Ratio	S ANELY 6 ppb b b ppb ppb	3.7 33.5 11.4 2.1	Zero Gel n Factor k Factor Bit Hydrau Annular Sc Pipe OD Critical Vel Annular Ve	Lics ection	Avg ROP Cutting psi	REVERS	DESANDER DESANDER DESANDER DESILTER DIMENSION DE SIDE HELDE DE COMPANION DE COMPANI	HEREOF. CS HSI	3
ECEIVED SED LAST A IN LOSING WENTORY COST LAST A IN PROPRESENTATIVE PAUL TIME DISTRIBUT Rig Up/Service Drilling Reaming/Coring Circulating Tripping Survey Logging Running Casing	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S REP Mu Mu Mu Mu S Sta	ORT !	JUME A A Good (bbl) (bbl	PHONING PROPERTY OF THE PROPER	3254 CT TO JINTING 25 /33 90 43	Low C Low C Bento Bento Drill S Shale D/B F High	SOLIDS Gravity % Gravity, ponite % onite, ppb Solids % Solids, pp CEC, p Ratio	S ANELY 6 ppb b b ppb ppb	3.7 33.5 11.4 2.1	Zero Gel n Factor k Factor Bit Hydrau Annular So Pipe OD Critical Vel	Lics ection	Avg ROP Cutting psi	REVERS	DESANDER DESANDER DESANDER DESILTER DIMENSION DE SIDE HELDE DE COMPANION DE COMPANI	HEREOF. CS HSI	Jet !

----- WATER BASE MUD REPORT - Day : 4 ------ WATER BASE MUD REPORT - Day : 4 Date: 12/05/95 M-I Drilling Fluids Company _ _ Depth: 435.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: DRILL 8.5" _______ Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Well Name: DIGBY 1 Report For: KEN SMITH MUD VOLUME (bb1) Bit: 8.500 in CASTNG Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: Hole Volume: 81 in Drill Pipe 1 OD: 4.500 in 219 Casing ID: 8.680 in Liner ID: Pits Volume: 255 in Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 55.0 m m Circulating Volume: 336 Casing TVD: 337.0 m Liner TVD: Drill Collar OD : 6.250 in 161.0 m m Mud : POLYPLUS/KCL MUD MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / lb/bbl) -gal/min : : FL 21:00 Flow Rate 250 NaC1 : 1.0 / 11 Sample From : 94 ^F DP Annular Vel -m/min: 33.9 KC1 Flow Line Temp : 1.5 / 14 Low Gravity Solids : 2.8 / -m :435.0 /435.0 DC Annular Vel -m/min : 56.3 26 Depth/TVD : 0.9 / Mud Wt -1b/gal: 9.1 DP Critical Vel -m/min: 83.3 Bentonite Funnel Vis -s/qt: 46 @ 90 ^F DC Critical Vel -m/min: 110.1 Drill Solids : 1.7 / : N/A / N/A -cps : 18 @ 76 ^F Plastic Visc Circ. Pressure -psi : 1250 Weight Material : - / 2.0 YP/R3 -1b/100ft2 /deg : 17 / 2 11.1 Chemical Conc Bottoms Up -min: Inert/React : 1.38 Average SG : 2.60 10s/10m Gel -1b/100ft2: 3 Total Circ Time -min: 56.4 -cc/30 min : 6.0API F Loss SOLIDS EQUIPMENT Size PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: Hours Potassm Chloride 25 KG S 80 -1/32" : 1 Shaker #1 : 3 X 50 8 Cake API/HT -%vol : 4 Polyplus Powder 25 KG S 3 Shaker #2 Solids : 25 KG S 2 Shaker #3 0il/Water -%vol: /96 Soda Ash : -%vol: 0.75 0S-1 25 KG S 3 Shaker #4 Sand : -1b/bb1 : 10.0 MRT Mud Cleaner : 9.5 @ 65 ^F Centrifuge pН Alkal Mud (Pm) : 0.1 Desander 12"X 2 Pf/Mf : 0.1 / 0.3 Desilter 4"X 12 Chlorides -mg/1 : 40000Degasser Hardness Ca : 200 : 30000 MUD VOLUME ACCOUNTING 661 K+ PPM Oil Added : KCL WT % : 5.5 Dump :22 PHPA Water Added: SCE :30 : 2.0 ENV : 75000 Mud Built :35 surface :30 np Value Mud Received: : 0.598 Kp -1b-sec^n/100ft2: 0.89522 Mud Disposed:82 na Value : 0.622 -1b-sec^n/100ft2 : 0.77430 Ka

Remarks

Cont to nipple up. M/U BHA & RIH. Drill collar, shoe track & cmt.Displ hole to mud, perform LOT and drill 8.5"TO 435m Continue to nipple up and test BOPs. Make up BHA and RIH - Tag cement at

319m. Drill floaat collar shoe track and cement with water drill 3m new hole.

Displace hole to mud. Perform LOT and drill 8.5" hole to 435m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1618 Cumul Cost : 10978

	iuius	ŲU.		DATE /	2 MA Y19	95	DEPTH_	435m
	esser/Halliburton	Company		J DAIE 22			NT ACTIVITY	
P.O. BOX 42842 HOUSTON, T	EXAS 77242	USA			E 10 MAY	DR	111 8	3/2 HOLE
OPERATOR GFE 855 L	<i></i> 0		CONTRA	CTOR	URY			RIG NO.
REPORT FOR			REPORT FO	dr Rocer	RINDO	•	11	, TOWNSHIP, RANGE
WELL NAME AND NO.		FIELD OR BLO	CK NO.	COUNTY, PAR	NSH OR OFFSHO	RE	STATE/PROV	
DRILLING ASSEMBLY	CASING		OLUME (BBL)	0/2		RCULATIO		<u> </u>
BIT SIZE TYPE JET SIZE	SURFACE	HOLE	PITS	PUMP SIZE	5.5 ×			EL (ft/min)
8/2 ATJOS 3 x 11 95	9 in. @ 337	80	256	0		SUMED	DP74	DC
SIZE	NTERMEDIATE	11	ATING VOLUME		50 FF	F	PRESSURE	(psi) 1250
DRILL PIPE TYPE LENGTH	in. @ NTERMEDIATE	IN STORAGE	WEIGHT	bbl/stk	80	95 % stk/min	воттомѕ	72 3 0
4/2 HUDA 55 m		ft.		0.054/0	0.07	110	UP (min) (strk)	14 ~-
11"	OUCTION OR LINER	MUD TYPE	UPHPA	bbl/min 5-	94	250	TOTAL CIRC TIME (min)	56.00
6/4 16/~		OPERTIES	17 DA DA		PROPERTY S	gal/min PECIFICAT	(strk)	
Sample From	FL. D PIT	F.L. 🗆 PIT	WEIGHT		SCOSITY		FILTRATE	
Time Sample Taken	21:00	05.30	MIN		35-15 ₈	xe/9+	<u>వ</u> ె	-7cc
Flowline Temperature (°F) , *C	921/34	1		RECOM	IMENDED TO	UR TREA	TMENT	
Depth (ft) (TVD /	375	530	- INCR	EASE A	CI con	10 /	1 ~ 0 ~ 1	BISTAIN
Weight (sp (sp (sp (sp (sp (sp (sp (gr) 9.1	9.4	ARHER	BY PRI	- x11x	10017	1015.	·····
Funnet Viscosity (sec/qt) API @ °F Plastic Viscosity cp @ °F	46	47	- RUN	504105	CONTRO	04 FC	م ر ر ۱	CONTIN.
Yield Point (lb/100 ft²)	18	19	- COMME	NCE OS	- I TREA	THE.V	706 5	SYS / FM
Gel Strength (lb/100 ft²) 10 sec/10 min	319	15						
Filtrate API (cm³/30 min)	1:0	7.0			REMAR	KS .		
API HTHP Filtrate (cm ³ /30 min) @ °F	-	1.	CONTIN	/ 772	ر جرردی .	,0 13	020.	Euros
Cake Thickness (32nd in. API/HTHP)	٦١-	11-	A PRES	5 77.57				
Solids Content (% by Vol)	4	4	M/U G	3111 \$	DAILL	COLLA	R, SH	OF THACK
Liquid Content (% by Vol) Oil/Water	196	196	AND CI	· MENT	DAIL	3~	Man	Mary CE
Sand Content (% by Vol)	0.75	1.0	DISPLA	CE MOLL	* 70 F	100	AND	PFAFURM
Methylene Blue Capacity Complems mud	100	11.5	10T.	MUD WT	EDUIV:	22.	<i>ه و سر</i> مر 3	345
pH ☑ Strip ☐ Meter @ °F Alkalinity Mud (P _m)	9.5	90	DALL	81,	106 1 1	=/ 34	5	435~
Alkalinity Filtrate (P _I /M _I)	0./	0.2						
Chloride (mg/L)	D-1 10-3							
	10000							
Total Hardness as Calcium (mg/L)	200	400						
	200 3000	400						
Total Hardness as Calcium (mg/L) K' mg/C KCl % wt	200	400	מגופןם	12.0005	UFLON	9.200	9 O/F4	0.45.21
K' ng/l	30000	4000	DISAND	12.0ppg		9.20	19 O/FU	06004521 Q 2008
K' mg/l KCl % wt PHPA FNV /50;	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISUT			9.2,0,	ng OfFU	04@0.49PM
K' mg/l KCl % wt PHPA FNV /50;	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISNET			9.2,0,	7	<u>@ 2.0¢P</u> M
PRODUCT INVENTORY VI CONTO	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DJSAND OJSUT			9.2,0,0	7	2.0 9 PM
K' mg/l KCl % wt PHPA FNV /50;	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISNE				7	<u>@ 2.0¢P</u> M
PRODUCT INVENTORY STARTING	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISAND			SHA	SOLIDS	EQUIPMENT
PRODUCT NVENTORY LOO 14 37 17 RECEIVED USED LAST	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISARD			SHA SHA	SOLIDS قد KER #1	EQUIPMENT
PRODUCT NVENTORY LOO 14 37 47 RECEIVED USED LAST 24 hr 80 2 3 3 CLOSING	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISNED			SHA SHA	SOLIDS KER #1 KER #2 COLEANER	EQUIPMENT The second of the s
### ### ### ### ### ### ### ### ### ##	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISAND			SHA SHA MUE	SOLIDS LIKER #1	EQUIPMENT mesh mesh
### PRODUCT NVENTORY ### PRODU	200 3000 5.5 2.0 75000	400 40000 7.0 1:85	DISAND			SHA SHA MUE	SOLIDS KER #1 KER #2 COLEANER	EQUIPMENT The second of the s
PRODUCT INVENTORY LOC 14 37 47 RECEIVED USED LAST 24 hr 10 16 28 17 24 hr 10 16 28 17 28 519 USED LAST 24 hr 27 17 29 16 28 17 28 519 USED (Irom IADC) 11 44 43 150 95 121 23	200 3000 5.5 2.0 75000	4000 7.0 1.85 (100		11.00,000		SHA SHA MUC CI DI	SOLIDS KER #1	EQUIPMENT mesh mesh hours hours
## ## ## ## ## ## ## ## ## ## ## ## ##	200 3000 5-5 2-0 75000 9-/	400 7.0 7.85 100	DISNED	DAILY COST	VEION	SHA MUE	SOLIDS SOLIDS	EQUIPMENT mesh mesh hours hours
PRODUCT INVENTORY LOCAL AT A T T RECEIVED USED LAST 24 hr 9/6 28 1/2 34 44 COST LAST 80 2 3 3 COST LAST 80 2 3 4 44 COST LAST 80 28 1/2 285 5/9 USED (Irom IADC) 1/4 4/3/1 50.95/1/2.25 M-1 REPRESENTATIVE PAUL MARSHALL	200 3000 5.5 2.0 75000 9.	400 4000 7.0 1.85 100	OUSE PHONE	DAILY COST	.02	SHA MUE	SOLIDS SOLIDS SOLIDS SOLIDS SOLICE	EQUIPMENT
## ## ## ## ## ## ## ## ## ## ## ## ##	200 3000 5.5 2.0 75000 9.	400 4000 7.0 1.85 100	OUSE PHONE	DAILY COST	.02	SHA MUE	SOLIDS SOLIDS SOLIDS SOLIDS SOLICE	EQUIPMENT
## PRODUCT NVENTORY	200 3000 5.5 2.0 75000 9.	400 4000 7.0 1.85 100	OUSE PHONE AND COND!	DAILY COST	.02	SHA SHA MUE CI DI DI CUM	SOLIDS KER #1	EQUIPMENT J 50 mesh mesh hours hours 1 4.35
## PRODUCT NVENTORY	75000 75000 75000 75000 9./	400 7.0 7.85 1.85 100 WAREH	OUSE PHONE AND COND!	DAILY COST	ORTH ON F	SHA SHA MUE CI DI DI CUM	SOLIDS SOLIDS	EQUIPMENT J 50 mesh mesh hours hours 1 4.35
## PRODUCT INVENTORY	75000 75000 75000 75000 9./	400 7.0 7.85 7.00 WAREH	OUSE PHONE AND COND: ANALYSIS 2.8	DAILY COST # 1618 TIONS SET F	OZ ORTH ON F	SHA SHA MUE CI DI DI CUM SEVERSI	SOLIDS SOLIDS	EQUIPMENT JSO mesh mesh hours hours T A.85
### PRODUCT INVENTORY STARTING INVENTORY STARTING INVENTORY STARTING INVENTORY A D D D D D D D D D D D D D D D D D D	200 3000 5-5 2-0 75000 9- 9- PHONE DBJECT TO ACCOUNTING	WAREHUES SOLIDS A Low Gravity, ppt Bentonite %	AND COND!	DAILY COST I G I B TIONS SET F Zero Gel 7 n Factor 0.6 k Factor 0.7	OZ ORTH ON F	SHA SHA MUE CI DI DI CUM SEVERSI	SOLIDS SOLIDS SKER #1	EQUIPMENT JSO mesh mesh hours hours T A.85
PRODUCT INVENTORY STARTING INVENTORY STARTING INVENTORY STARTING INVENTORY STARTING INVENTORY AND IA 37 A7 RECEIVED USED LAST 24 hr 216 28.6715285 519 USED USED ITOM IADO) 11 44 4.31 50.95 121.25 MI REPRESENTATIVE PAUL MARSHALL NOTICE: THIS REPORT IS STARTING INVENTORY Rig Up/Service 4.5 Water Added (Drilling A.5 Mud Built (bbf) Reaming/Coring 1.0 Mud Received Circulating 1.0 Mud Disposed	75000 750000 750000 75000 75000 75000 75000 75000 75000 75000 75000 75000 75000 750000 75000 75000 75000 75000 75000 75000 75000 75000 75000 750000 75	WAREHUS VACO 7. 0 1.85 VOO WAREHUS VOO LOW Gravity % Low Gravity % Bentonite % Bentonite, ppb	AND COND: ANALYSIS 2.8 2.5.1 1.0 9.1	DAILY COST I G I B TIONS SET F Zero Gel Z n Factor 0.6. k Factor 0.7 Bit Hydraulics	MUD RHEOL Avg ROP 9 Cutting 9 Psi 676	SHA SHA MUC CI DI DI DI DI DI DI DI DI DI DI DI DI DI	SOLIDS SKER #1	EQUIPMENT J SO mesh mesh hours hours A hours 4.35 HSI Jet Vel
PRODUCT INVENTORY STARTING INVENTORY STARTIN	75000 750000 750000 750000 750	WAREHUS SOLIDS A Low Gravity % Low Gravity ppb Bentonite % Bentonite % Bentonite spb Drill Solids %	AND COND: ANALYSIS 2.8 2.5.1 1.0 9.1	DAILY COST I G I B TIONS SET F Zero Gel Z n Factor 0.6. k Factor 0.7 Bit Hydraulics Annular Section	MUD RHEOL Avg ROP W Cutting S psi 676	SHAMUL CI DI DI DI DI DI DI DI DI DI DI DI DI DI	SOLIDS IKER #1	EQUIPMENT J 50 mesh mesh hours hours A hours HSI Jet Vel
### PRODUCT INVENTORY STARTING INVENTORY STARTING INVENTORY STARTING INVENTORY A D D D D D D D D D D D D D D D D D D	75000 750000 750000 75000 75000 75000 75000 75000 75000 75000 75000 75000 75000 750000 75000 75000 75000 75000 75000 75000 75000 75000 75000 750000 75	WAREHUS VACO 7. 0 1.85 VOO WAREHUS VOO LOW Gravity % Low Gravity % Bentonite % Bentonite, ppb	AND COND: ANALYSIS 2.8 2.5.1 1.0 9.1	DAILY COST I G I B TIONS SET F Zero Gel Z n Factor 0.6. k Factor 0.7 Bit Hydraulics	MUD RHEOL Avg ROP 9 Cutting 9 Psi 676	SHA SHA MUC CI DI DI DI DI DI DI DI DI DI DI DI DI DI	SOLIDS SKER #1	EQUIPMENT J SO mesh mesh hours hours A hours 4.35 HSI Jet Vel

Annular Velocity 34 51 56

Viscosity 77 53 50

Annular Pressure 2.0 2.0 3.3

Testing 30 P

Fishing

Starting Depth

Ending Depth

New Hole Vol. (bbi)

High Gravity %

High Gravity, ppb

KC1 / un

Date: 13/05/95 Depth: 781.0 m M-I Drilling Fluids Company - -DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: DRILL 8.5" Contractor : CENTURY Description : EXPLORATION Operator : GFE RESOURCES LTD Well Name : DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Hole Volume: 155 Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Casing ID: 8.680 in Liner ID: Drill Pipe 1 OD: 4.500 in 565 m in Pits Volume: 235 Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 55.0 m m Circulating Volume: 390 Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD SOLIDS ANALYSIS MUD PROPERTIES CIRCULATION DATA (% / lb/bbl) : FL 22:00 -gal/min : NaC1 250 : 1.5 / 17 Flow Rate Sample From : 105 ^F : 1.5 / DP Annular Vel -m/min : 35.9 KC1 13 Flow Line Temp Low Gravity Solids : 4.4 / -m :781.0 /781.0 Depth/TVD DC Annular Vel -m/min : 56.3 40 DP Critical Vel -m/min: : 1.3 / Mud Wt -1b/gal : 9.4 61.2 Bentonite 12 -s/qt : 43 @ 90 ^F | -cps : 18 @ 76 ^F | : 2.9 / 26 DC Critical Vel -m/min: Drill Solids Funnel Vis 85.8 : N/A / N/A Weight Material Circ. Pressure 1350 Plastic Visc -psi: YP/R3 -1b/100ft2 /deg : 12 / 1 20.8 Chemical Conc : - / 2.0 Bottoms Up -min : 10s/10m Gel -1b/100ft2:3 /8 Total Circ Time -min: 65.5 Inert/React : 1.54 Average SG : 2.60 API F Loss -cc/30 min : 5.6 SOLIDS EQUIPMENT Size HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS Hours Potassm Chloride 25 KG S 120 24 Cake API/HT -1/32" : 1 Shaker #1 : 3 X 84 Polyplus Powder 25 KG S 10 -%vol: 4 Shaker #2 Solids : 25 KG S 2 Shaker #3 0il/Water -%vol: /96 Polypac Polypac : 25 KG S 5 Shaker #4 -%vol: 1 Soda Ash Sand : 25 KG S 30 MBT -1b/bb1 : 15.0M-I Gel Mud Cleaner 25 KG S 4 : 8.5 @ 65 ^F 0S-1 Centrifuge : 12"X 2 22 Alkal Mud (Pm) : 0.1 Desander : 0.05/ 0.3 Pf/Mf Desilter : 4"X 12 -mg/1 : 51000Degasser Chlorides Hardness Ca : 320 : 44000 MUD VOLUME ACCOUNTING 661 K+ PPM Oil Added : KCL WT % : 8 Dump :26 Water Added: SCE :80 PHPA : 2.0 Mud Built :250 surface S03= : 40 :90 Mud Received: np Value : 0.678 Kp -lb-sec^n/100ft2 : 0.46771 Mud Disposed: 196 : 0.739 na Value -1b-sec^n/100ft2 : 0.31986 Ka Remarks:

Drill 8.5" hole from 435m-656m. POOH for wiper trip-hole good. Drill from 656m-781m.

Drill 8.5" hole from 435m-656m POOH for 16 stand wiper trip - hole good.

Drill from 656m-781m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 3930 Cumul Cost : 14908

		JIII		7 F	<i>IUI</i>	ios u	<i>,</i> 0.		(A)	DATE_	13 H	A Y 19		DEPTH	181 1			
CALL THE MY W. CALL	Ma	gcobar/l	MCO -	A Dre	sser/F	lalliburton C	ompany		TI	/			PRESENT	ACTIVITY	, 11.			
O. BOX 4	2842	HO	USTO	N, TE	XAS	77242	JSA				DATE 10	1124	004		2 1/0	.6		
PERATOR								C	CONTRAC		rur	,		// '	rig no.			
PORT FOR	GE	-	055	OUR	تےے	5	<i>TD</i>	R	EPORT FOR	- 2-20					TOWNSHIP.	RANGE		
	KEN	حــــ	C+17	-/-/			FIELD OR BLO	CK NO		ROCE!		OFFSHORE	<u> </u>	STATE/PROVIN	NCE			
ELL NAME AND	NO.	24	***				DICA		V	AREA	THE	1315	1	VICT	OPIA			
	ING ASS				CASI	NG	MUD V	OLUME	(BBL)				ULATION					
T SIZE	TYPE		SIZE	 	SURF	ACE	HOLE	PIT	S	PUMP SIZ		×		ANNULAR VE	L (H/min)			
	it c	.7×	//	95%	in. @	337 t	150	.	240			0		DP_34		<u>'&</u>		
RILL PIPE	TYPE		NGTH	1 in	TERM	EDIATE	TOTAL CIRCUL	ATING VO	OLUME	PUMP MA	KE, MODE		MED (CIRCULATION PRESSURE (F	osi)			
ZE 41/2 1	1.14				in. @			90		NAT	80		25 %	2022016	/33			
RILL PIPE	TYPE	LEN	NGTH	11	ITERM	EDIATE	IN STORAGE	WE	IGHT	bbl/stk		_		UP (min)	25.	<u>.</u>		
1/2 11	MOD		5		in. @		A5 MUD TYPE			005	2/06	7	110	TOTAL CIRC				
RILL COLLAR SI	IZE	1	NGTH	PHOD		OR LINER	1			bbl/min	14	2	50 gailmin	TIME (min) (strk)	66.			
6/1		16	<u> </u>	1	in. @		DPERTIES	1/0	upa_			ERTY SPE						
					+			WEIGH	4T		VISCOSI			FILTRATE				
ample From					-+	F.L. 🗆 PIT	F.L. PIT	1	MIN		25	-453	10/91	.5	-700			
me Sample Ta	aken				_	22:00	0:600	-		BEC		DED TOU						
owline Temper	rature (°F)				105/00	110(43	}		nec	OWNER	DED 100						
epth (ft) (T	VD		1		át)	760	828	100			بمردر	-0-10		011127	124			
eight 🕼 (ppg	9)	☐ (lb/cu	ı ft)	🗆 (sp	gr)	9.4	9.3	72	170	INTA	~	KCI.	زی- ح	12 t 4	ا د حمر ال خ	, מסי		
nnel Viscosity	y (sec/qt)	API @	102	°F		43	42		200	50111	3	ديدر ريد	1 6	2000	CONT	~		
astic Viscosity	y cp @	95				18	16		Marin.	71101	RILE	01000		קבת זה	4CF	pac		
eld Point (lb/1						12	11	_~										
el Strength (lb		10 sec/10) min			318	218											
trate API (cm					+	<u> </u>	=-4	 				REMARK	(S					
PI HTHP Filtra		n min)		۰F	\dashv	<u> </u>		 		041	1101		1135		451			
				<u> </u>				1-0	2111		-1101		4.33					
ake Thickness					\dashv	/	11	<u>م</u> إ	0011	FOR	-/6	20 -		P 34 00 56 PRECULATION PRESSURE (PSI) J350 DOTTOMS P (min) (SITK) DOTAL CIRC (SITK) ONS FILTRATE 5 - 7 CC MENT M				
olids Content	(% by Vo	l) 🗆 ca	lculated	⊔ retor	1	4	4		10cE	0000		1150	<u>سر ح</u>	TAIP				
quid Content	(% by Vo	I) Oil/Wa	ter		_	196	196	10	RILL	FIC	56 M	- 731	~7					
and Content (1%	1%		tAx D	FULATI	01	_ 						
lethylene Blue	Capacity	□ cm³/cm	equiv			15.0	150											
H Q7 St	rip	☐ Mete	r @	۰F		8.5	B.5											
Ikalinity Mud ((P _m)					0./	0.1	ļ										
ikalinity Filtrat						0:70.3	05 10.3											
hloride (mg/L)					1	51000												
otal Hardness		ım (ma/l				320	300											
		(9	'							-								
K m					\dashv	44 000 8%		1	····									
KCI	12. ht.	<u> </u>					182	-				11- 0	11 0 00	OF	5, 1	\sim		
PHPA						2:0	2.2	1 .										
503			7.			40	1/00	تهمل	T/L T	11,003	, ceft		4 107.7	7				
RODUCT	CEV	/,c\	100°51	100 be		,\ 01°21	/ /			/ /		/ ,	/ /	SOLIDS	FOUIPME	NT		
IVENTORY	/cv	14	/803h	606	0/0	150 8/	'	\leftarrow	/ /		_{_	f - f						
TARTING EVENTORY	63	520	44	53	34	12		ļ	1 1			+	SHA	AKER #1				
ECEIVED													SHA	AKER #2	Z × 8.	r r		
ISED LAST	+ 7	 			-	/			 			1		- a · ·				
4 hr	30	120	10	2	4	5'		 				+	MU	U CLEANER_				
LOSING IVENTORY	33	100	34	51	30	7						1	c	ENTRIFUGE		r		
OST LAST	• 20	.20	- 50	48	.9	0								ESANDER	22			
t hr	283	1375	732	263	203	71.55		+	+			+						
SED rom IADC)	9.44	11.46	173.25	131-74		5 14.31		<u> </u>	Щ,					ESILTER				
1-1 REPRESENT	TATIVE				Pi	HONÉ	WAR	EHOUSE	PHONE	DAILY COST			11	1627		2		
PAUL	17171	2511	116			932548				第392								
N	OTICE	: THIS	REPO	RT IS	SUB	JECT TO	THE TERM	IS AN	D COND	ITIONS S	ET FOF	RTH ON F	REVERS	E SIDE H	IEREOF.			
										,,								
TIME DIST	TRIBLITIO	M (hrs)	MUE	NOLUN	IF AC	COUNTING	SOLID	S ANAL	YSIS	İ	1	MUD RHEO	LOGY and	HYDRAULIC	cs			
TIME DIST	T MIDO TIC	14 (1113)	111.02							 								
Rig Up/Service	ce		Wate	r Added	(ppl)		Low Gravity 9	/ 6	4.2	Zero Gel		Avg ROP	16.5	ECD @_				
Drilling		19.5	Mud	Built (bt	ol)	250	Low Gravity, p	opb	3.9 3	n Factor	0 74	% Cutting		Leak Off	@ 3450	22		
Reaming/Cor	ring			Receive	d (bbl)		Bentonite %		1.4	k Factor	0-32	psi	%	hhp	HSI	Jet		
Circulating		0.5		Dispose			Bentonite, pp	b	12.5	Bit Hydrau		698	52	102	179	ريح		
Tripping					,,	26	Drill Solids %		2.5	Annular S		1	2	3	4	5		
		1.5		<u> </u>			Drill Solids, p		22.9	Hole Size		868		18.5				
Survey		2.5		RFAC	<u> </u>	90	Shale CEC, p		22.9	Pipe OD		4.5	4.5	6 25				
Logging Cas	sing		50			80	D/B Ratio			Critical Ve	locity	76	78	99				
Running Cas	sing			FXI L			High Gravity	0/0	1.36	Annular V		34	36	56		i		
Testing				ing Dept		701	High Gravity,		-	Viscosity		71		44		i		
Fishing				ng Depti		781	riigii Gravity,	μμυ	 	 			67		 	-		
			New	Hole Vo	l. (bbl)	80.				Annular P	ressure	93	3.6	16.0	ļ. <u></u> .	!		

Date: 14/05/95 Depth: 924.0 m M-I Drilling Fluids Company _ _ DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: DRILL 8.5" ______ Contractor : CENTURY Description : EXPLORATION Operator : GFE RESOURCES LTD Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Well Name : DIGBY 1 Report For: KEN SMITH Bit: 8.500 in MUD VOLUME (bb1) CASING Hole Volume: 184 Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Casing ID: 8.680 in Liner ID: Drill Pipe 1 OD: 4.500 in 708 m Pits Volume: 197 in Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 55.0 m m Circulating Volume: 381 Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD Drill Collar OD: 6.250 in 161.0 m MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) : FL 21:00 : 112 ^F Flow Rate -gal/min: 250 : 0.6 / 7 NaC1 Sample From : 1.5 / 14 DP Annular Vel -m/min: 35.9 KC1 Flow Line Temp -m :924.0 /924.0 | DC Annular Vel -m/min : 56.3 Low Gravity Solids : 3.3 / 30 Depth/TVD Bentonite : 1.7 / Drill Solids : 1.4 / DP Critical Vel -m/min: Mud Wt -1b/gal : 9.1 82.9 DC Critical Vel -m/min: -s/qt : 43 @ 105^F -cps : 19 @ 97 ^F 13 106.6 Funnel Vis : N/A / N/A Plastic Visc Circ. Pressure -psi: 1400 Weight Material Chemical Conc : - / 2.0 YP/R3 -1b/100ft2 /deg : 14 / 2 Bottoms Up -min : 24.7 10s/10m Gel -1b/100ft2: 4 / 13 Total Circ Time -min: Inert/React : 0.71 Average SG : 2.60 64.0 API F Loss -cc/30 min : 5.2 HTHP F Loss -cc/30 min: @ ^F PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Cake API/HT -1/32" : 1 Potassm Chloride 25 KG S 120 Shaker #1 : 3 X 84 24 25 KG S 2 Solids -%vol: 3 Caustic Soda Shaker #2 /97 Polyplus Powder 25 KG S 15 -%vol: Shaker #3 0i1/Water -%vol: 0.5 Polypac 25 KG S 3 Shaker #4 Sand : -1b/bb1 : 16.525 KG S 4 Mud Cleaner MBT Soda Ash 25 KG S 33 : 9.0 @ 65 ^F M-I Gel Centrifuge 12"X 2 25 KG S 3 21 Alkal Mud (Pm) : 0.2 QS-1 Desander : : 0.05/ 0.3 Desilter 4"X 12 Pf/Mf : Chlorides | -mg/1: 33000 Degasser Hardness Ca : 280 : 33000 MUD VOLUME ACCOUNTING 661 K+ PPM Oil Added : : 6 Dump :9 KCL WT % Water Added: SCE PHPA : 2.3 :60 S03= Mud Built :250 surface :50 : 100 : 0.656 Mud Received:

Кa

Kp -lb-sec^n/100ft2 : 0.59019

na Value : 0.609 -lb-sec^n/100ft2: 0.79060

Control drill from 781m-896m. Max dev = 2 deg. POOH for wiper. Hole good. RIH-3m fill drill from 896m-944m. Control drill (building angle) from 781m-896m. POOH for wiper trip-hole good. RIH-3m fill drill from 896m-944m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 4935 Cumul Cost : 19843

Mud Disposed:119

STATE		Magcoba		A Dress	UIOS er/Halliburto	GO Compa	any		A		DATE	14	MAY.	19 <u> </u>	5	DEPTH_	94	1
CONTRACTOR SECOND TOWNS SECOND	DO BOY 420	42 = U	OLISTO	N TEV	AC 7704	O LICA	Į.			ال-				P	RESE	NT ACTIV	ITY	
RECORT FOR RECORT FOR RECORT FOR RECORT FOR RECORT FOR RECORT FOR RECORD FOR REC		42 = 70	00810	IN, IEX	AS 1124	2 05/	+		CONTR	ACTO	-11	DATE,	Oran		13/21	*	BIG N	<u> </u>
PRILI NAME AND PROPERTY STATE OF ALL PARTY ST		ER.	-50	ACE	s -	· 70						/	2-/			ļ		11
DRILLIANS SERVINIV CASINS MID VOLUME (BBL) 01 572	11		~,,, ~	·						-OH -	 صمد	مــــه						HIP, RANGE
## 1975 ## 19	WELL NAME AND NO.	DICA	ني راح	7		FIEL	D OR BLO	CK NO				PARÍSE	OR OPFST	IÓRE		STATÉ/PR	OVINCE .	_
## SEE TYPE ## SEE SUMME SOLE TTS #NUM SEE X R. ARMANIA FEE COMMITTEE TYPE	DRILLING	ASSEMBI	LY	C	ASING	100	MUD VO	DLUM	IE (BBL)					IRCU	LATIC	N DATA		
1	l l	I	T SIZE			HOL	E	P	ITS		PUMP SI	ZE					R VEL (ft/min)
March Marc	B1/2 AF/0	- 7x	//	9 1/3 1	n. @ 7 7 7	n. /	93		198				5:5		7.5	סף <u>. כי</u>	DC.	51
BRILL PINE		E LE	ENGTH	INTE	RMEDIATE'	TOTA			VOLUME		PUMP M.	AKE, MC		ASSUMI	ED .	CIRCULAT PRESSUR	FION RE (psi)	
SECTION COLUMN CENTER PRODUCTION OR LINER NO TYPE CENTER CENT	DRILL PIPE TYPE	# LE	ENGTH			ft.			/EIGHT		bbl/stk	70	50			BOTTOMS		00
MID PROPERTIES	SIZE	0 5		ir	n. @	n /	85	- 1		- 1		7		,,	·	UP (min)	_	
MUD PROPERTIES MUD PROPERTIES MUD PROPERTIES MUD PROPERTIES MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATIONS FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE MUD PROPERTY SECRIFICATION FUTANTE FUTANTE MUD PROPERTY SECRIFICATION FUTANTE FU	DRÍLL COLLAR SÍZE	LE	ЙGTH	PRODUCT	ION OR LINE		TYPE										RC	
Sample From	-61/4-	10	1	ir				1/2	11.01							(strk		ž ,
Sample File Sample File				·				WEIG	HT		ML			SPEC	IFICA		F	
Power Temperature Temper					DEL DP	+-						1		-	12/	1		
Depth (I) (TVD		(05)			2100				~1/N		DEC						/ -	٠ د_
Meght 5 (ppg) (loke in		(-1)	,	4)	112 (4	7	-,		· 		nec	Olvilvie	INDED	OUR	INEA	INEN		
Funnel Viscosity (sector) API @ 105 °F		□ /lb/e			12.				ORE	2	سمه		2430	1.00	2/: 1	· / · · · /	27.50	·1) 76
Plastic Viscosity op @ 72							-		1000	<u> </u>	6111	uë	-2411	110	· ·			
									ma.	171	Lec/	C.H.	EULU	<u>~</u>	4	111	211000	م يردر
All Strength (In-100 Rg) to section min		/			19				arei.	** X								
REMARKS	Gel Strength (lb/100 f	t²) 10 sec/10	0 min		1/1		-	<u> </u>	-R-61	·	500		تعمد					
API HTHP Filtrate (cm/30 min) @ "F	Filtrate API (cm³/30 m	nin)			7				als F. F.	·/ <u>·</u>		-1/1/	REMA	KRKS	25.4	2 /2	YER -	======
Solids Comern (% by Vol)	API HTHP Filtrate (cn	n ³ /30 min) (<i>®</i> •	۲F							04					70.		0.4
Solids Content (% by Vol) Z calculated □ retort 27	Cake Thickness (32nd	d in. API/HT	THP)			1,	1-				- 	·//	<u></u>		<u>محر ن</u>	//5 /		77.04
April Apri	Solids Content (% by	Vol) 🗷 ca	liculated [☐ retort	· · · · · · · · · · · · · · · · · · ·				20	, ,		<i></i>		<i>n</i> .		2/ /-	COOL	
Sand Content (% by Vol) Wethlydene Blue Capacity Debte New Made Wethlydene Blue Capacity Debte New Made Wethlydene Blue Capacity Debte New Made With Strip Meter @ 75 °F 9.0	Liquid Content (% by	Vol) Oil/Wa	ter			1												
Methylene Blue Capacity		-								محمد	//-	7.5		11.11		*** C * (EC)		<i>2.927 V 2</i> :
Albertin Mul Part Multiple Multiple Part Par	Methylene Blue Capa	city 🗅 lb/bbl e	guiv Jampo		11.5	1	_		Den		E.	18	96 ~	_	91	á		*******
Common	oH ☑ Strip	☐ Meter	· @ 75 '	۰F	9.0	9.	0								/		7	
Color Colo	Alkalinity Mud (P _m)				0.2	0.	15											
Contain Cont	Alkalinity Filtrate (P _f /N	14)			. واح م	-05	6.3											
33 000 72000 30 00 74 7.3 2.3 30 0.74 7.3	Chloride (mg/L)				33000	310	200											
SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SOLIDS EQUIPMENT SHAKER #1		lcium (mg/L)				0											
SOLIDS EQUIPMENT SOLIDS EQUI					33000	2/320	200											
SOLIDS EQUIPMENT SOLIDS EQUIP	KCI	<i>.</i>																
SOLIDS EQUIPMENT SOLIDS EQUIP	PHDA PAG			2.74														
SHAKER #1 2 2 2 2 2 2 2 2 2	, 50,		7, ,	7 8 /	100 -	1,4	ρ_{f}	7		7						/		
SHAKER #1 2 2 2 2 2 2 2 2 2		V (C)	/orv/	or purps	00/00/51	6'\ !			_		\angle		\angle	\angle	\angle	SOLID	S EQUIPM	ENT
SECURIT		400	34 3	5/ 51	7	30								L	SHA	KER #1	2 12	S L me
SED LAST	ECEIVED					T									7			
CENTRIFUGE CEN	SED LAST	1120	15-	2/ -		7/					1	1			7			
DESTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS SET FORTH ON REVERSE SIDE HEREOF.	LOSING	1				-5-					 -	+-			- MUE	CLEANER		me
PROPERTY 1157 375 2592 795 44 70 57.24 52.55 71.74 72.25 72.25 7			7		3	27					 	 			CE	NTRIFUGE		ho
DESILTER 7/ DESILTER 7/ DESILTER 7/ H REPRESENTATIVE PHONE WAREHOUSE PHONE DAILY COST CUMULATIVE COST ## 49.35.48 NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS Rig Up/Service Water Added (bbl) Low Gravity % 3.1 Zero Gel 7 Avg ROP 7.5 ECD @— Drilling ### Mud Built (bbl) 750 Low Gravity, ppb 246 In Factor 779 psi % hhp HSI Je Reaming/Coring Mud Received (bbl) 7/8 Bentonite % 1.7 k Factor 7.79 psi % hhp HSI Je Circulating Mud Disposed (bbl) 1/7 Bentonite, ppb / 15.48 Bit Hydraulics / 76 4.8 7.9 / 7.4 8. Timping DESILTER 7/ CIMULATIVE COST #### Z1 Z 10.06 ### Z1 Z	shr 311.5				0 57.24	·52:35									DE	SANDER_	21	ho
NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS Rig Up/Service Water Added (bbl) Low Gravity % 3./ Zero Gel 5 Avg ROP 7. ECD @ Drilling Water Added (bbl) Mud Built (bbl) 250 Low Gravity, ppb 24 (n Factor 7 9 psi % hhp HSI de Mud Received (bbl) Mud Received (bbl) Mud Disposed (bbl)		u.u.c.	73 25 31	70 22 3	5 14 31 5	0.95									DE	SILTER	71	ho
NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS Rig Up/Service Water Added (bbl) Low Gravity % 3./ Zero Gel 7. Avg ROP 7. ECD @—— Drilling Mud Built (bbl) 250 Low Gravity, ppb 24 6 n Factor 6 9 6 Cutting Mud Received (bbl) Mud Received (bbl) Mud Received (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl)	-I REPRESENTATIVE						WAREHO	USE P	HONE	11					СОМ	ULATIVE CO		
NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS MUD RHEOLOGY and HYDRAULICS Rig Up/Service Water Added (bbl) Low Gravity % 3./ Zero Gel 5. Avg ROP 7. ECD 60 Drilling Mud Built (bbl) 250 Low Gravity, ppb 246 n Factor 649 % Cutting Leak Off 6465 Reaming/Coring Mud Received (bbl) Mud Received (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl) Mud Disposed (bbl)							<u> </u>											<u></u>
TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS MUD RHEOLOGY and HYDRAULICS MUD RHEOLOGY and HYDRAULICS RECD @	NOTICE	E: THIS F	REPORT	IS SUB	JECT TO	THE T	ERMS	AND	COND					REVI				
Rig Up/Service Water Added (bbl) Low Gravity % 3.1 Zero Gel = Avg ROP = ECD @————————————————————————————————————	TIME DISTRIBUTION	ON (hrs)	MUD VO	DLUME ACC	COUNTING	s	OLIDS AI	NALYS	SIS			N	UD RHE	DLOGY	and F	IYDRAULI	cs	
Orilling 48 Mud Built (bbl) 250 Low Gravity, ppb 24 n Factor 49 Cutting Leak Off 64 12 Cutting Mud Received (bbl) 7 Bentonite % 1 7 k Factor 7 9 psi % hhp HSI de Circulating Mud Disposed (bbl) 1/ 9 Bentonite, ppb 15 k Bit Hydraulics 176 48 79 174 80 Circulating Mud Disposed (bbl) 1/ 9 Bentonite, ppb 15 k Bit Hydraulics 176 48 79 174 80 Circulating	Rin Un/Service		Mata- A	Idod /55"		1.0.0		-		-								
Reaming/Coring Mud Received (bbl) 7/ Bentonite % / 7 k Factor / 7.9 psi % hhp HSI Je Circulating Mud Disposed (bbl) // 7 Bentonite , ppb / 15.4 Bit Hydraulics / 7.6 4.8 7.9 / 7.4 Bit Hydrauli		-	 					-				=			:-			
Circulating Mud Disposed (bbl) // 7 Bentonite, ppb / 5.4 Bit Hydraulics / 7.6 4.8 7.9 / 7.4 8.	Reaming/Coring	16.0	 					+		-	-4	41		-				
Tripping 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Circulating		 		, , , , , , , , , , , , , , , , , , , ,			+		 			ļ					Jet Vel
17.7 Harmon Country 1 1 2 1 3 1 4 1	Tripping	3.0	Dures					7	1.1	 			1			77	1 7÷	8.8 5

Survey

Logging

Testing

Fishing

Running Casing

SUPFACE

TOTAL MUG

Starting Depth

Ending Depth

New Hole Vol. (bbl) 38

SCE

Drill Solids, ppb

Shale CEC, ppb

High Gravity %

High Gravity, ppb

D/B Ratio

9.7

Hole Size

Pipe OD

Viscosity

Critical Velocity

Annular Velocity

Annular Pressure

50

60

566

71.0

934

2

8 68

7/

34

11.9

Depth: 1040.0 m Date: 15/05/95 M-I Drilling Fluids Company _ _ DRILLING FLUIDS DATA MANAGEMENT SYSTEM Spud Date : 09/05/95 Activity: RIH Well No.: W0003 Description : EXPLORATION Operator : GFE RESOURCES LTD Contractor : CENTURY Location : PEP 105 & PEP 126 Field/Area: OTWAY BASIN Well Name: DIGBY 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Hole Volume: 210 Casing OD: 9.625 in Liner OD: in Nozzles:11/11/11/ / / 1/32" Pits Volume: 265 Casing ID: 8.680 in Liner ID: in Drill Pipe 1 OD: 4.500 in 824 m m Circulating Volume: 475 Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 55.0 m m Mud : POLYPLUS/KCL MUD Casing TVD: 337.0 m Liner TVD: Drill Collar OD : 6.250 in 161.0 m CIRCULATION DATA SOLIDS ANALYSIS (% / lb/bbl) MUD PROPERTIES : 0.6 / 7 : PIT 21:30 Flow Rate -gal/min : 250 NaC1 Sample From : 1.5 / 14 KC1 35.9 Flow Line Temp : ^F DP Annular Vel -m/min: 56.3 Low Gravity Solids : 4.9 / 45 DC Annular Vel -m/min : -m :1040.0/1040.0 Depth/TVD : 1.6 / 14 -1b/gal : 9.3 DP Critical Vel -m/min: 62.6 Bentonite Mud Wt : 3.1 / 28 -s/qt: 43 @ 95 ^F -cps: 19 @ 84 ^F DC Critical Vel -m/min: 88.1 Drill Solids Funnel Vis : N/A / N/A Weight Material Circ. Pressure -psi : 1400 Plastic Visc : - / 2.0 Chemical Conc 28.1 YP/R3 -1b/100ft2 /deg : 12 / 1 Bottoms Up -min: Inert/React : 1.44 Average SG : 2.60 79.8 Total Circ Time 10s/10m Gel -lb/100ft2: 2 / 8 -min : API F Loss -cc/30 min : 4.6 SOLIDS EQUIPMENT Size HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS Hours Shaker #1 : 3 X 84 19 -1/32" : 1 Potassm Chloride 25 KG S 80 Cake API/HT Shaker #2 25 KG S 6 -%vo1 : 4.8Caustic Soda Solids Polyplus Powder 25 KG S 4 Shaker #3 0il/Water -%vol: /95.2 : 25 KG S 6 Shaker #4 : -%vol: 0.5 Polypac Sand 25 KG S 2 Mud Cleaner -1b/bb1 : 17.5Soda Ash MRT : 9.0 @ 65 ^F 25 KG S 4 Centrifuge 0S-1 На 12"X 2 12 : 0.1 Desander : Alkal Mud (Pm) 4"X 12 Desilter : 0.05/ 0.2 Pf/Mf Decasser -mg/1: 32000Chlorides : 320 Hardness Ca MUD VOLUME ACCOUNTING bbl : 32000 K+ PPM Oil Added : Dump : KCL WT % : 6 SCE :31 Water Added: : 2.5 PHPA Mud Built :55 surface :40 S03= : 140 : 0.689 Mud Received: np Value Mud Disposed:71 Kp -lb-sec^n/100ft2 : 0.44963 na Value : 0.746 -1b-sec^n/100ft2: 0.31617 Ka

Control drill from 944m-1040m. Max dev = 2 deg. Circ & POOH. Hole good. M/U stiff BHA & change bit. RIH. Control drill (building angle - Maximum deviation = 2 deg) from 944m-1040m.

Circulate hole clean and POOH - hole good. Make up stiff BHA and change bit.

Commence RIH.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2767 Cumul Cost : 22610

Free States of the Arts	Magcoba	ar/IMCO	9 1	resse	IIUS er/Halliburton	UU. Company		A		DATE 15 /	4A / 19	45	DEPTH_,	1040	2
DO DOY 400			ON T		AO 770 4	<u>-</u>		T	J			PRESE	NT ACTIVIT	Υ	,
P.O. BOX 4284 OPERATOR	12 = H	0081	ON, I	EX/	45 / /242	USA		CONTRA	CTOF	SPUD DATE ≠	0.114		T	RIG NO	
	FF	137.5	27	0				REPORT FO		TENTUR	<u>'</u>		SECTIO	N, TOWNSH	P. RANGE
	EN	514	1711			FIELD OR BL	OCK NO		RO	OUNTY, PARISH	08 0558H0		STATE/PRO	VINCE	
WELL NAME AND NO.	2168	V #	1			PIELD ON BL		_/	Ä	REA	V 42.95			VICTO	nin
DRILLING					SING			ME (BBL)			CIF	RCULATIO			
BIT SIZE TYPE	- 1 -	ET SIZE		_	RFACE	HOLE	F	PITS	P	UMP SIZE	×		ANNULAR		
DRILL PIPE TYPE	17., 3	x // ENGTH			@ 337	tt 243	ILATING	232 VOLUME	P	UMP MAKE, MOI	<i>-5</i> 5 DEL IAS	7.5 SUMED	CIRCULATE		<u> </u>
SIZE 41/1 16.6					. @	11	7 \$		- 11	WT 7P 3	_ EF	F G- %	PRESSURE		0
DRILL PIPE TYPE		ENGTH			MEDIATE	IN STORAGE		WEIGHT	ь	bl/stk		stk/min	BOTTOMS UP (min)		
4/2 1111		56-				n. 75		8.7	_	054		110	(strk)	41.	
DRILL COLLAR SIZE	1	ENGTH	PRO		ON OR LINER	il		1040	۱.	5. 94 bl/min		250 gal/min	TOTAL CIRC TIME (min) (strk))
6 /4	1_/_	61.		in	. @ MUD PF	ROPERTIES	$\frac{1}{1}$	ر ۱۰۱۰ ور	: b	MUD PRO			1	<u> </u>	
Sample From					□ F.L. O'PI		WEI	GHT		visco			FILTRATE		
Time Sample Taken						16/5	L	9.2	-9	3 mg	75-45	54/7.	1 5	7c	<u>حـــــ</u>
Flowline Temperature	(°F)				21.30	117 100				RECOMME	NDED TO	UR TREA	TMENT		
Depth (ft) (TVD		1		(ټام	1049	10 40	1		, ,,	-2FA	F = 0.10	F 12 14 2	4.4.2737	iscel	מפענים
Weight [2] (ppg)	□ (lb/	(cu ft)	□ (sp		9.3	9.2+		201	رات جد	Esex					
Funnel Viscosity (sec	/qt) API @	25	٥F		13	42		auu	50	E energi		auti.	,		
Plastic Viscosity cp @		°E			19	17		DUEG	تروره	70 60	70.05	110 5	- y 5 17	- y - y ()	95,0
Yield Point (lb/100 ft²))				12	11		.3./_/	20						
Gel Strength (lb/100 f	t²) 10 sec	10 min			218	318	_								·····
Filtrate API (cm ³ /30 n					4.6	4.8	_				REMAR	RKS			
API HTHP Filtrate (cr			°F			<u>-</u>	10	RILL	8	15" 11010		714.	- 104	20~	
Cake Thickness (32n					11-	1 1-	-	يم جم سر عدر	٠	care			- برد	2"	
Solids Content (% by			l 🗆 reto	nt -	_ 	5	10	AC	/	e cuia	4.7	popul	1100		-
Liquid Content (% by		vater			- 195	195	12	455	* /* 5	T. SURI	ace 1	=000	t Re	ئص	
Sand Content (% by Methylene Blue Capa		l equiv			0.5	0.5	~	1/45	TIE	12 6110	4-1	INNER	27.7		
pH 🗆 Strip	□ Met		۰F		17.5	9.0	-5.	404	~~	TORK	- Leeli				
Alkalinity Mud (P _m)					7.0	0-1	+								
Alkalinity Filtrate (P _f /h	/ ₄)				05/0:	· ·	+								
Chloride (mg/L)					72000	32000	1								
Total Hardness as Ca	lcium (mg	/L)			32000 320	320				***	······································				
K' -5/1					-72000	32000									
	WI				-6	6	4	SACKS	5 <u>S</u> .	2115 01	101016	TRAN	1.12 . 18	E MESIN	s con
DHPA PY	L 0	ncorr		1	2.5	2.5	1 .	5000		1.6,00g L	1 FLOW	9.1	الم بيدم	<u> </u>	.80.Pr
أ دك	,	 ,			140	140	برمك	5147	-19		UJE		, 	/	0 (121
PRODUCT INVENTORY	\ \(\frac{1}{2}\)	35 0 0 p	V 25.05	N S								/ /	/ SOLID	S EQUIPME	-NT
TARTING	\d. 5.	1000,	l	150	V/0-1	<u> </u>	_	1		(-(-	1				
NVENTORY 28	0 19	48	49		3 27					-	1	SH	AKER #1	2-15	.1 mes
RECEIVED			ļ									SH	AKER #2	1 + 5	mes
ISED LAST) 4	1	*5	1	4							ми	D CLEANER		mes
CLOSING		42	-										ENTRIFUGE		hou
COST LAST . A		44	7.3	-	1 23 .go						+			_	
4 hr 9/6	693	7.90	134	28									ESANDER_		hou
rom IADC)		<u> </u>	<u> </u>	1	1	<u> </u>		- DUG!!	11				ESILTER	12	hour
1-1 REPRESENTATIVE				P	HONE	WARE	HOUSE	PHONE	11	COST	7 /	11	AULATIVE CO		
DALL MAR			DT 10		732548			D 00:::		766.7			<u> 2397</u>		
NOTIC	⊏: THIS	HEPO	HI IS	SUB	JECT TO	THE TERM	S AN	n COND	ITIO	S SET FOI	TH ON I	HEVERS	E SIDE F	EREOF.	
TIME DISTRIBUT	ION (hrs)	MUE	VOLUM	IE AC	COUNTING	SOLIDS	ANAL	YSIS			MUD RHEO	LOGY and	HYDRAULI	cs	
								1	-			7			
Rig Up/Service	7.5	34	r Added		 	Low Gravity %		4.8	Zero		Avg ROP	70	ECD @_	~~-	2
Drilling Reaming/Coring	14.0		Built (bbi	<u> </u>	55	Low Gravity, p	рв	240	n Fa		% Cutting	 	 	245m	1
Circulating	05		Disposed			Bentonite % Bentonite, ppb	`	1.6	k Fa	lydraulics	psi	%	hhp	HSI	Jet Vel
Tripping	4.0		L.IP	_ \	7/	Drill Solids %	·	14.C 2.B	#	lar Section	671	1 7 2	3	1.78	<i>88</i>
Survey	2.0	1	REAC.		40	Drill Solids, pp	ob	25.9	11	Size	3.68	13.5	R.S	 	
	- C		11.50	·	1-4 <u>U</u>	, Pp		127	+		40:65	+17:5	13:2		I

31

722

1040

Starting Depth

Ending Depth

New Hole Vol. (bbl) 26

550 D/B Ratio

Shale CEC, ppb

High Gravity %

High Gravity, ppb

Pipe OD

Viscosity

131

Critical Velocity

Annular Velocity

Annular Pressure

34

34

36

67 12.1 13.B

88

:0

Logging

Testing

Fishing

Running Casing

Date: 16/05/95 Depth: 1080.0 m M-I Drilling Fluids Company - -DRILLING FLUIDS DATA MANAGEMENT SYSTEM Spud Date: 09/05/95 Activity: WAIT ON RIG Well No.: W0003 _______ Operator : GFE RESOURCES LTD Contractor : CENTURY Description : EXPLORATION Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Well Name : DIGBY 1 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bbl) Hole Volume: 218 in Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: Casing ID: 8.680 in Liner ID: in Pits Volume: 223 Drill Pipe 1 OD: 4.500 in 864 m Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 55.0 m m Circulating Volume: 441 Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD Drill Collar OD: 6.250 in 161.0 m (% / lb/bbl) SOLIDS ANALYSIS MUD PROPERTIES CIRCULATION DATA : FL 20:30 | Flow Rate -gal/min : : 115 ^F | DP Annular Vel -m/min • NaC1 300 : 0.7 / 8 Sample From KCl : 1.5 / Low Gravity Solids : 4.7 / 43.1 -m/min : 67.5 43 : 1.6 / DP Critical Vel -m/min: -1b/gal: 9.3 78.4 Bentonite Mud Wt : 2.9 / 26 Drill Solids Funnel Vis -s/qt: 44 @ 112^F | Plastic Visc -cps: 18 @ 100^F | DC Critical Vel -m/min: 99.7 : N/A / N/A Weight Material Circ. Pressure 1400 -psi: YP/R3 -1b/100ft2 /deg : 12 / 2 24.2 Chemical Conc : - / 2.0 -min : Bottoms Up Inert/React : 1.34 Average SG : 2.60 10s/10m Gel -1b/100ft2:3 /8 Total Circ Time -min: 61.7 API F Loss -cc/30 min : 5.0 SOLIDS EQUIPMENT Size HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS Hours : 3 X 84 20 -1/32": 1 Potassm Chloride 25 KG S 100 Shaker #1 Cake API/HT Polyplus Powder 25 KG S 6 Shaker #2 Solids -%vol: 4.5 : 25 KG S 2 Shaker #3 0il/Water -%vol: /95.5 Soda Ash : Shaker #4 -%vol: 0.5 Sand : -1b/bb1 : 17.5 Mud Cleaner MBT Centrifuge : 9.0 @ 65 ^F : Alkal Mud (Pm) : 0.1 : 12"X 2 Desander : 0.05/ 0.2 : 4"X 12 Pf/Mf Desilter -mq/1:35000Degasser Chlorides : 240 _____ Hardness Ca MUD VOLUME ACCOUNTING 661 K+ PPM : 34000 Oil Added : Dump :15 : 6.5 KCL WT % Water Added: SCE :7 PHPA : 2.5 Mud Built :90 surface : 50 S03= : 100 Mud Received: np Value : 0.678 Mud Disposed:72 Kp -1b-sec^n/100ft2 : 0.46771 na Value : 0.588 Ka -lb-sec^n/100ft2: 0.81775

Remarks

Contin.RIH & precaution ream to bottom-7m fill.Drill 8.5" 1040m-1080m. Transfer box drive shaft failed Wait on rig. Continue to RIH. Precaution ream from 367m to bottom (STIFF ASSEMBLY) - 7m fill. Drill 8.5" hole from 1040m-1080m. Inspect drive shaft - failed transfer box. Wait on replacement.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2214 Cumul Cost : 24824

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		UTI Aagcoba	r/IMCO	9	resse	II US	GC Comp.]		A		DAT	E/6/	<i>9AY</i> 19	95	DEPTH /060~
Same of the second		1.25			131			Ĭ			- /				PRE	SENT ACTIVITY
P.O. BOX 4	2842	H H(DUST	ON, T	EXA	NS 77242	2 US	Α		CONTR	ACTO		JD DATE Z	OMA	<u> </u>	RIG NO.
REPORT FOR	GE		255	0011	- ي	5 17	ے۔۔۔			REPORT F	FOR	حت	17118			SECTION, TOWNSHIP, RANGE
	10 13	<u>v</u> s	2012	-/-/							_/		ER L			ONSHOPE
WELL NAME AND	NO.	010	34	# /			FIE	LD OR BL		11/	-	AREA	TY, PARISH (OR OFFSHO	RE Serve	STATE/PROVINCE VICTORIA
DRILL	ING AS	SEMBI	LY		CA	SING	T	MUD \	VOLUN	E (BBL)	- 11					TION DATA
BIT SIZE	TYPE	JE	T SIZE	- 	SUF	RFACE	но	LE	Р	its		PUMP	SIZE	х	(IN. ANNULAR VEL (ft/min)
872 1	70 17 m	3×		2%	/ 3 in.	@ 737.		2/7		224				6	8:	
DRILL PIPE SIZE	TYPE	LE	ENGTH		INTER	MEDIATE .	TOT	AL CIRCU		VOLUME	- 11		MAKE, MOD	1	SUMED F95	CIRCULATION PRESSURE (psi)
DRILL PIPE	と# TYPE	 	NGTH		in.	@ MEDIATE	ft.	STORAGE	141	/EIGHT			- BPE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		% /400
SIZE	ITPE	1 _					- 11	127	ľ	2.7	- 11	bbl/stk	n 705		stk/	UP (min)
DRILL COLLAR S	ZE		NGTH	PRC	in. DUCTIO	ON OR LINER		D TYPE		<u> </u>			705		100	TOTAL CIRC
61/4		1 /	<i>(1)</i>		in.	a	ft	K	11)	ردر بهرجه	A	7 bbl/min	:05		$\mathcal{Z}\mathcal{Q}_{gal}$	TIME (min) 63 ~···
					T	MUD PE	ROPE	RTIES	Τ-		U-		UD PRO			
Sample From						ØF.L. □ PI	Z	L 🖵 PIT	WEIG	нт			VISCO	SITY		FILTRATE
Time Sample Ta	iken					20:30		<i>17/5</i> 5∷30	<u> </u>	9.2-	9.3	3,00	<u> </u>	5-45	55.0/	11 5-766
Flowline Temper	ature (°	F)				115(4		15	7			RI	ЕСОММЕ	NDED TO	UR TR	EATMENT
Depth (ft) (T	VD.		1		(الكر	1080	1	280	1					10		
Weight (Z) (ppg	1)	☐ (lb/c	u ft)	□ (s		9.3		9. z	+	41.6	<u>-</u>	حت	- -	~//	י של כל קצי	PARTIN NOTING
Funnel Viscosity				۰F				/ 1 5	1~	211.6.15			-	_		
Plastic Viscosity			%F			44_			+	12 cses			1017	Rett	7. 2.	11/3-
Yield Point (lb/10		100			\dashv			<u>^</u>	+							
Gel Strength (lb		10 sec/1	0 min			718		110	+							
Filtrate API (cm ²						~								REMAR	DKC	
API HTHP Filtra				۰F		50	+4	.0	 					NEWAR	11/0	
Cake Thickness	<u> </u>				+	11-		-	-6	RUL		50.	uzini	70	R	H BRECOUZIUL
Solids Content (<u> </u>			□ reto	,et		+-	1 -	12	FAM	772		OZZO	~ (5	<u> 71 ~ 7</u>	= BILA) - FRIFILL
					+	4.5			10	RILL	_£	3//2	Hick	: <i>E</i> -f	1.04	102 1080 m
Liquid Content (uer			195		195.5	7-7	FAL	151	2	TRAIN	155512	72.0	Y ORIVE SUAF
Methylene Blue		·	quiv			0.5		-25	┼	1005	سم چيرت	_ -	- 41	170	~/_/	EFFICAFOST.
				°F	-+	17.5	1-1-7	7.5	 − −	-10	<u> </u>	-3/	100	100	مر دے	s (3005/m-)
pH D/Str		☐ Mete	r @	<u> </u>		9.0	18	<u>-خ-</u>	1-	1111	Y	21	1125 -	10		TY, NES AT SHAK
Alkalinity Mud (F						0.1	- 1	05	 		-					
Alkalinity Filtrate	(P/Mt)				-	05/2	205	10.1.	7~	OTE	<u>. /-</u>	-40	W RAI	TES P.	REVIO	OUSLY REPORTED
Chloride (mg/L)	- 0-1-1				-	25000	35	000	14	1COR	RIFC	<u>-</u> Y	15	25c. 9	<u> : / -</u>	HAYEBEEN 300g/m
Total Hardness		um (mg/i	-)			240		40								·
1000						34000	34	500	+							
KCI	%	<u>nt</u>		0.	49	6.5		نــ								
PHPA	<u>6 99</u>		ec.a.	:150 F		2.5	12	-6_	2/5	140	10	مرحن	p. 7 - 4/+	1001	9.3	Proposition 0.750
<u>50;</u>				7.6		100,	1,4	10	عهجد	1-17	10	7	19 11 11 11 11 11 11 11 11 11 11 11 11 1	-204		0.5GPA
PRODUCT INVENTORY	CEV	AC	QO'QV	3/21/20	5 /() X	(20) 1,51										SOLIDS EQUIPMENT
STARTING				1					<u> </u>			$ \uparrow $		1-1	f	
INVENTORY		200	15		<u> </u>	12				-	<u> </u>	+-		-		SHAKER #1 2 134 mes
RECEIVED	96	400		40	17											SHAKER #2 mes
USED LAST		100	1			2									ļ	MUD CLEANER mesi
CLOSING	<u> </u>		0	40	17							1				
COST LAST	96	500	9	40	1 +	+-+				+		+	-	+		CENTRIFUGE hour
24 hr		1146	1037			28 62										DESANDER hour
USED (from IADC)																DESILTER hour
M-I REPRESENTAL	IVE			·	PH	IONE		WARE	HOUSE	PHONE	DAIL	y cos	Τ		1	CUMULATIVE COST
Below re					0	332540	422				4	22	14.12	2	19	\$ 26190.94
		THIS		RT IS				TERMS	S ANT	CONF					REVFF	RSE SIDE HEREOF.
															· · · · · · · · ·	OL OIDE HEREUF.
TIME DISTR	IBUTIO	V (hrs)	MUD	VOLUM	E ACC	COUNTING		SOLIDS	ANALY	SIS			N	IUD RHEO	LOGY a	nd HYDRAULICS
Rig Up/Service	T	40	Water	Added	(bbl)	T	Low G	iravity %		4.6	Zerr	o Gel	-	Avg ROP	0 -	ECD @
Drilling		4.5	Mud	Built (bb)	90		ravity, p		120		actor	0.59	% Cutting	-	Leak Off @ 125 22 3/1/

TIME DISTRIBUTION	ON (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS			MUD RHEC	LOGY and	HYDRAULI	cs	
Rig Up/Service	40	Water Added (bbl)		Low Gravity %	4-6	Zero Gel	Z.	Avg ROP	90	ECD @		
Drilling	4.5	Mud Built (bbl)	90	Low Gravity, ppb	120	n Factor	-59	% Cutting		Leak Off	@ 125	122311
Reaming/Coring	55	Mud Received (bbl)	,	Bentonite %	1.6	k Factor		psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)	72	Bentonite, ppb	14.9	Bit Hydraulic		975	71	174	7.07	105
Tripping		Dump	15	Drill Solids %	2.6	Annular Sect	tion	1	2	3	4	5
Survey		SUPERCE	50	Drill Solids, ppb	23.6	Hole Size		8 68	R 5	85		
Logging	<u> </u>	505	7	Shale CEC, ppb	1.19	Pipe OD		2.5	1.5	6.25		
Running Casing		TUTTIL FIND	568	D/B Ratio		Critical Veloc	city	77	78	100		
Testing	<u> </u>	Starting Depth	1000	High Gravity %	-	Annular Velo	city	41	43	68		
Fishing		Ending Depth	080	High Gravity, ppb	_	Viscosity		43	60	39		
WAITON PARTS	10.0	New Hole Vol. (bbl)	9			Annular Pres	ssure	10:5	18 1	18.1		

Date: 17/05/95 _ _ Depth: 1080.0 m M-I Drilling Fluids Company DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: REPAIR RIG _______ Contractor : CENTURY Description: EXPLORATION Operator : GFE RESOURCES LTD Location : PEP 105 & PEP 126 Well Name : DIGBY 1 Field/Area: OTWAY BASIN Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Hole Volume: 218 Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Drill Pipe 1 OD: 4.500 in 864 m Casing ID: 8.680 in Liner ID: in Pits Volume: 223 Casing TD: 337.0 m Liner TD: m Circulating Volume: 441 Drill Pipe 2 OD: 4.500 in 55.0 m m Mud : POLYPLUS/KCL MUD Casing TVD: 337.0 m Liner TVD: Drill Collar OD: 6.250 in 161.0 m CIRCULATION DATA SOLIDS ANALYSIS (% / lb/bbl) MUD PROPERTIES : FL 20:30 Flow Rate -gal/min : 165 l NaC1 : 0.7 / 8 Sample From Flow Line Temp : 115 ^F DP Annular Vel -m/min: 23.7 KC1 : 1.5 / 14 -m :1080.0/1080.0 DC Annular Vel -m/min: 37.1 Low Gravity Solids : 4.7 / 43 Depth/TVD 65.8 -1b/gal : 9.3 DP Critical Vel -m/min: Bentonite : 1.6 / 15 Mud Wt -s/qt : 43 @ 112^F : 2.9 / 26 94.4 Drill Solids DC Critical Vel -m/min: Funnel Vis : N/A / N/A -cps : 20 @ 100^F Circ. Pressure -psi: 450 Weight Material Plastic Visc YP/R3 -1b/100ft2 /deg : 15 44.0 Chemical Conc : - / 2.0 / 1 Bottoms Up -min : Inert/React : 1.34 Average SG : 2.60 10s/10m Gel -1b/100ft2: 3 / 7 Total Circ Time -min : 112.3 -cc/30 min : 4.4API F Loss SOLIDS EQUIPMENT Size PRODUCTS USED LAST 24 HOURS Hours HTHP F Loss -cc/30 min: : 3 X 84 24 Cake API/HT -1/32" : 1 Shaker #1 -%vol: 4.5 Shaker #2 Solids Shaker #3 0i1/Water -%vol: /95.5 : -%vol: 0.25 Shaker #4 Sand : Mud Cleaner MBT -1b/bb1 : 17.5: рΗ : 8.5 @ 65 ^F Centrifuge 12"X 2 Alkal Mud (Pm) : 0.1 Desander : 0.05/ 0.1 4"X 12 Desilter Pf/Mf -mg/1:35000Degasser Chlorides : 240 Hardness Ca : 34000 MUD VOLUME ACCOUNTING 661 K+ PPM Oil Added : D/hole :30 KCL WT % : 6.0 Water Added: SCE PHPA : 2.6 : : 40 Mud Built : surface :7 S03= : 0.652 Mud Received: no Value Kp -1b-sec^n/100ft2: 0.64163 Mud Disposed:37 : 0.772 na Value -1b-sec^n/100ft2: 0.30287

Remarks :

Contin.to wait on fabricated transfer box shaft. Circ.cont @ 165 gal/min.B/U @ 300g/min every 4HRS. Install new shaft Continue to wait on fabricated transfer box shaft. Circulate continuously at 165-170 gal/min and bottoms up every 4 hours at 300 gals/min. Install new shaft and trial.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 0 Cumul Cost : 24824

Magcobar/IMCO	J FIL	IIUS (bu.	HAD	DATE	7 MAY	19_9:	5	DEPTH 1080m
		The state of the second			/ -				IT ACTIVITY
P.O. BOX 42842 ■ HOUSTO	N, TEX	AS 77242	USA		SPUD I	DATE/O M	14-	1015	TALL NEW SIME
OPERATOR	^			CONTRAC		TURY			RIG NO.
REPORT FOR	270			REPORT FOR					SECTION, TOWNSHIP, RANGE
WELL NAME AND NO.	<u>'!</u>		FIELD OR BLO			スルン。 PARISH OR OFF			STATE/PROVINCE
DICAY #			11	37 11		- 12 PA 12		V	MICTORIA
DRILLING ASSEMBLY	CA	SING	MUD W	OLUME (BBL)			CIRCU	ILATIO!	n data
BIT SIZE TYPE JET SIZE		RFACE	HOLE	PITS	PUMP SIZE		х	IN.	ANNULAR VEL (ft/min)
81/2 FTO 3x11		. @337 tt	217	224		<u> 55</u>		7. 5	DP 24/47 DC 27/18
DRILL PIPE TYPE LENGTH	INTER	RMEDIATE	TOTAL CIRCUL	ATING VOLUME	li .	KE, MODEL	ASSUM EFF	ED	CIRCULATION PRESSURE (psi)
A / 16 6 H DRILL PIPE TYPE LENGTH		. @ ft	IN STORAGE	4 / WEIGHT	bbl/stk	7P 5U	L75	stk/min	BOTTOMS 430
SIZE			90	87	0.50	04	7	, ,	UP (min) (strk) 56
DRILL COLLAR SIZE LENGTH		ION OR LINER	MUD TYPE		10.5	<i>)</i>			TOTAL CIRC
61/4" 161-	ir	n. @ ft	10	CILDURA	Bolimin 9		165	gal/min	TIME (min) (strk) //3
		MUD PR	OPERTIES	7,	MU	PROPERT			
Sample From		DEL □ PIT	Z F.L PIT	WEIGHT		VISCOSITY			FILTRATE
Time Sample Taken		20.00	05:30	9.2 - 9	1-3	35-	455	· 4/9/	5-766
Flowline Temperature (°F)		115/11) 115		RECO	OMMENDED	TOUR	TREAT	rment
Depth (ft) (TVD /	aft)	1080	1099				2.1.		or paray
Weight ☑ (ppg) ☐ (lb/cu ft)	(sp gr)	C 2	9.3	066	- 1 1 6	,,,		 	
Funnel Viscosity (sec/qt) API @	:	7.	42						
Plastic Viscosity cp @ G - °F		20	18	- 410	~	10165	~ 111°	2 4	511 216FR
Yield Point (lb/100 ft²)		15	14						
Gel Strength (lb/100 ft²) 10 sec/10 min		3/7	3 17						
Filtrate API (cm³/30 min)		1.4	4.2			REI	MARKS		
API HTHP Filtrate (cm³/30 min) @	F	-	_			2) (, , , 2	:		6120161160
Cake Thickness (32nd in. API/HTHP)		, / -	11.	70011	-,-,-,-	200	5110	,- <u>-</u> -	
Solids Content (% by Vol) ☐ calculated	□ retort	15	4.5	772733		~ ~ ~ ~	<i></i>		1708.11
Liquid Content (% by Vol) Oil/Water		- 655	95.5					21.	200-11
Sand Content (% by Vol)		0.25	0.5	25.72.7					Til Take
Methylene Blue Capacity ☐ tb/bbl equiv		17.5	18.0	- 1205	Total de de	-5			
pH □ Strip □ Meter @	۰F	R.C	13.5						
Alkalinity Mud (P _m)		0.05	0.05				-		
Alkalinity Filtrate (P ₄ /M ₄)	· · · · · · · · · · · · · · · · · · ·	05/01	05 10-1						
Chloride (mg/L)		35000	38000						
Total Hardness as Calcium (mg/L)			280						
		240	35000						
K' 1/°		24000	6.5						
K.	0-95	3.0	2.6	+ RECEN	1ED 3	2 < 4 < 13	ac R	, ,	57 100472005
pura pal	7-73	40	80	A RECEN	<u></u>	<u>,, </u>	// - /\		
50,	7	7-40	77	' / /	7 7	///	7	7	/
PRODUCT INVENTORY OF OF OR	/ /								SOLIDS EQUIPMENT
STARTING 69 42								SHA	AKER #1 2 , 84 mesh
									• • •
USED LAST						 		SH/	AKER #2 mesh
24 hr								ми	D CLEANER mesh
CLOSING INVENTORY 5-3 56 74	-				1			c	ENTRIFUGE hours
COST LAST								,	ESANDER hours
USED		+		- -		 			_
(from IADC)		PHONE	luare.	HOUSE PHONE	DAILY COST				ESILTER hours
M-I REPRESENTATIVE	- 1		i	TOUSE PRONE	14	0 -			26140.94
PAUL MARSHALL		732549			# O · 1				
NOTICE: THIS REPORT	1 15 SUE	SUECT TO	IHE LERMS	AND CONDIT	HONS SE		JN HE'	VERS	E SIDE HEHEOF.
									

TIME DISTRIBUTION	ON (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANA	LYSIS		ħ	IUD RHEOI	OGY and	HYDRAULI	cs			
Rig Up/Service/RFP	12 0	Water Added (bbl)		Low Gravity %	4.6	Zero Gel		Avg ROP	_	ECD @_	ECD @			
Drilling		Mud Built (bbl)		Low Gravity, ppb	420	n Factor	2.77	% Cutting		Leak Off	eak Off @ 245 2			
Reaming/Coring		Mud Received (bbl)		Bentonite %	1.6	k Factor	7.36	psi	%	hhp	HSI	Jet Vel		
Circulating		Mud Disposed (bbl)	37	Bentonite, ppb	1	Bit Hydrau		301	4.7	29	0.51	5-12		
Tripping		2001/10/12	70	Drill Solids %	2.6	Annular Se	ection	1	2	3	4	5		
Survey		SURFACE	7	Drill Solids, ppb	23.6	Hole Size		8.68	R.5	35				
Logging				Shale CEC, ppb		Pipe OD		1.5	4.5	1.25				
Running Casing		TOTAL MIL	531	D/B Ratio	1.19	Critical Vel	ocity	63.7	225	100				
Testing		Starting Depth	_	High Gravity %		Annular Ve	locity	22	70-	3.7		•		
Fishing		Ending Depth		High Gravity, ppb		Viscosity		90	87	59				
W. O. PARTS	120	New Hole Vol. (bbl)				Annular Pr	essure	7.8	15-1	14.0		_		

M-I Drilling Fluids Company Date: 18/05/95 Depth: 1195.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: DRILL 8.5" Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Hole Volume: 242 Drill Pipe 1 OD: 4.500 in 978 m Casing ID: 8.680 in Liner ID: Pits Volume: 208 in Drill Pipe 2 OD : 4.500 in Casing TD: 337.0 m Liner TD: 56.0 m m Circulating Volume: 450 Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: Mud : POLYPLUS/KCL MUD MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% 7)Sample From : FL 17:30 Flow Rate -gal/min: 325 : 0.8 / 10 : 118 ^F Flow Line Temp DP Annular Vel 46.7 KC1 -m/min : : 1.4 / 13 Depth/TVD -m :1195.0/1195.0 DC Annular Vel -m/min : 73.2 Low Gravity Solids : 6.1 / 55 Mud Wt -1b/ga1 : 9.5DP Critical Vel -m/min: 86.2 Bentonite : 1.6 / 14 Funnel Vis -s/qt: 45 @ 112^F DC Critical Vel -m/min: Drill Solids 113.4 : 4.3 / -cps : 23 @ 104^F Plastic Visc Circ. Pressure -psi: 1550 Weight Material : N/A / N/A YP/R3 -1b/100ft2 /deg : 16 / 2 : - / 2.0 Bottoms Up -min : 24.8 Chemical Conc Inert/React : 1.87 Average SG : 2.60 10s/10m Gel -1b/100ft2: 3 / 10 Total Circ Time -min: 58.2 API F Loss -cc/30 min : 4.2HTHP F Loss -cc/30 min: ^F @ PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours -1/32" : 1 Cake API/HT Polyplus Powder 25 KG S 5 Shaker #1 : 3 X 84 24 Solids -%vol: 5.5 25 KG S 4 Sodium Bicarb Shaker #2 0i1/Water -%vol: /94.5 0\$-1 25 KG S 6 Shaker #3 : Sand -%vo1:0.5M-I Bar 25 KG S 160 Shaker #4 : -1b/bb1 : 18.525 KG S 2 MBT XCD Mud Cleaner ρН : 9.0 @ 65 ^F Centrifuge Alkal Mud (Pm) : 0.1 12"X 2 Desander : 0.05/ 0.35 Pf/Mf Desilter 4"X 12 -mg/1:38000Chlorides Degasser : 320 Hardness Ca K+ PPM : 35500 MUD VOLUME ACCOUNTING 661 Oil Added : KCL WT % : 6.5 D/hole :36 PHPA : 2.5 Water Added: :20 dump S03= : 80 Mud Built :140 surface np Value : 0.668 Mud Received: Kp -lb-sec^n/100ft2 : 0.64422 Mud Disposed:121 na Value : 0.645

Remarks

Ka

-1b-sec^n/100ft2: 0.74518

Complete shaft replacement POOH to shoe-hole good. RIH-7m fill. Drill 8.5" from 1080m-1231m. Max Dev - 2.75 deg. Complete shaft replacement. POOH to shoe - hole good. Tight spot at 794m. RIH - hole good - 7m fill. Drill 8.5" hole from 1080m - 1231m with regular surveys. Maximum deviation at 1201m - 2.75 deg.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2963 Cumul Cost : 27771

M-I Drilling Fluids Company Date: 19/05/95 Depth : 1277.0 m - -DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: DRILL 8.5" Operator : GFE RESOURCES LTD Contractor : CENTURY Description : EXPLORATION Well Name : DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in MUD VOLUME (bbl) CASTNG Nozzles:11/11/11/ / / 1/32" Hole Volume: 260 Casing OD: 9.625 in Liner OD: in Casing ID: 8.680 in Liner ID: in Drill Pipe 1 OD: 4.500 in 1060 m Pits Volume: 213 Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 56.0 m m Circulating Volume: 473 Casing TVD: 337.0 m Liner TVD: Drill Collar OD: 6.250 in 161.0 m m Mud : POLYPLUS/KCL MUD CIRCULATION DATA SOLIDS ANALYSIS MUD PROPERTIES (% / lb/bbl) : FL 00:01 -gal/min : 325 NaC1 Flow Rate : 0.7 / 8 Sample From : 1.4 / : 120 ^F DP Annular Vel -m/min : 46.7 KC1 Flow Line Temp 13 -m :1277.0/1277.0 DC Annular Vel 73.2 Low Gravity Solids : 6.3 / Depth/TVD -m/min : Mud Wt -1b/gal : 9.5DP Critical Vel -m/min: 96.7 Bentonite : 1.6 / 15 : 4.4 / 40 Funnel Vis -s/qt: 47 @ 118^F DC Critical Vel -m/min: 120.7 Drill Solids -cps : 21 @ 110^F : N/A / N/A Plastic Visc Circ. Pressure -psi: 1600 Weight Material : - / 2.0 YP/R3 -1b/100ft2 /deg : 18 / 3 Bottoms Up -min : 26.6 Chemical Conc 10s/10m Gel -1b/100ft2: 4 / 14 Inert/React: 1.89 Average SG: 2.60 Total Circ Time -min: 61.1 API F Loss -cc/30 min : 4.4HTHP F Loss -cc/30 min: @ PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours Cake API/HT -1/32" : 1 Polyplus Powder 25 KG S 5 Shaker #1 : 3 X 84 24 -%vol: 5.5 25 KG S 1 Shaker #2 Solids Polypac 25 KG S 2 0il/Water -%vol: /94.5 XCD Shaker #3 -%vol: 0.5Shaker #4 Sand MRT -1b/bb1 : 19.0Mud Cleaner ٠: пΗ : 9.0 @ 65 ^F Centrifuge Alkal Mud (Pm) 12"X 2 : 0.2 Desander Pf/Mf : 0.1 / 0.6 Desilter : 4"X 12 -mg/1 : 35000Chlorides Degasser : 100 Hardness Ca : 32500 K+ PPM MUD VOLUME ACCOUNTING 661 Oil Added : KCL WT % : 6.0 D/hole :30 PHPA : 2.4 Water Added : dump :15 Mud Built :70 S03= : 100 surface :39 : 0.621 Mud Received: Kp -lb-sec^n/100ft2: 0.86512 Mud Disposed:84 : 0.557 na Value

Remarks :

Кa

-1b-sec^n/100ft2 : 1.29040

Control drill F/1231m.-1247m.DEV.=3deg.POOH & Re make up BHA.RIH-Hole good.Control drill to 1277m.MAX DEV.=3.25deg Control drill 8.5" hole from 1231m - 1247m. Deviation = 3.0 deg. POOH and re-make up BHA. RIH to 1237m. Wash to bottom - hole good. Control drill (3-5 m/hr) from 1247m-1269m. Maximum deviation = 3.25 deg. Control drill from 1269m-1277m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1843 Cumul Cost : 29614

M-I Drilling Fluids Company Date: 20/05/95 Depth : 1373.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No. : W0003 Activity: DRILL 8.5" Spud Date : 09/05/95 _______ Operator : GFE RESOURCES LTD Description : EXPLORATION Contractor : CENTURY Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit : 8.500 in CASING MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: Hole Volume: 280 in Drill Pipe 1 OD: 4.500 in 1156 m Drill Pipe 2 OD: 4.500 in 56.0 m Casing ID: 8.680 in Liner ID: Pits Volume: 223 in Casing TD: 337.0 m Liner TD: m Circulating Volume: 503 Drill Collar OD : 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) : PIT 00:01 Flow Rate -gal/min : 325 NaC1 : 0.7 / Sample From 8 Flow Line Temp : 120 ^F DP Annular Vel -m/min: 46.7 KC1 : 1.4 / Low Gravity Solids : 6.3 / Depth/TVD -m :1373.0/1373.0| DC Annular Vel -m/min : 73.2 58 15 DP Critical Vel -m/min: 107.2 -1b/gal: 9.5 Bentonite : 1.6 / Mud Wt -s/qt: 47 @ 118^F -cps: 22 @ 110^F Funnel Vis DC Critical Vel -m/min: 130.6 Drill Solids : 4.5 / Circ. Pressure 1550 Weight Material Plastic Visc -psi : : N/A / N/A : - / 2.0 YP/R3 -1b/100ft2 /deg : 20 / 4 Bottoms Up -min : 28.7 Chemical Conc Inert/React : 1.85 Average SG : 2.60 10s/10m Ge1 -1b/100ft2: 4 / 16 Total Circ Time -min: 65.0 API F Loss -cc/30 min: 4.8 HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours Cake API/HT -1/32" : 1 25 KG S 1 Shaker #1 3 X 84 24 Caustic Soda 25 KG S 3 Solids -%vol: 5.7 0S-1 Shaker #2 -%vol: /94.3 M-I Bar 25 KG S 40 Shaker #3 0il/Water -%vo1:0.75Shaker #4 Sand : Mud Cleaner -1b/bb1 : 19.5MBT : : 8.5 @ 65 ^F Centrifuge Alkal Mud (Pm) 12"X 2 : 0.1 Desander Pf/Mf : 0.05/ 0.4 4"X 12 Desilter Chlorides -mg/1 : 34000Degasser Hardness Ca : 240 K+ PPM : 30000 MUD VOLUME ACCOUNTING 661 Oil Added : KCL WT % : 5.5 D/hole :18 PHPA : 2.1 Water Added : dump :5 S03= : 40 Mud Built :90 surface :30 no Value : 0.607 Mud Received: Kp -1b-sec^n/100ft2: 1.01538 Mud Disposed:53 na Value : 0.511 Ka -1b-sec^n/100ft2: 1.85574

Control drill at +/-5.0 m/hr from 1277m-1373m. Max and current deviation = 3 deg. Attempt to reduce hole deviation, currently 3 deg, by control drill at +/-5m/hr from 1277m - 1373m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 396 Cumul Cost : 30010

Description		y I	Dril	linc	ı Flu	iids (Co.		M	1	20 M	14 .0 9	25-	DEPTH	277	
O DIOX 42842	a. Haliphari -	М	agcobar/l	мсо	A Dresse	/Halliburton C	Company		M	DATE	2011	19_7			, , , , , , , , , , , , , , , , , , , 	
CONTRACTOR	O DOV	40040		LISTO	N TEY	S 77242	LISA			SPUE	DATE Z	1111	عبيد	2010		£31
PRIL DATE PRIL		42842	= nO	0310	IN, IEAA	10 / / 242	USA	 ,	CONTRAC				33		RIG NO.	
THE PLANS THE	PERAIUN	00	E .	2,				- 1		<u></u>	T112	/		SECTION	TOWNSHIP	RANGE
DRILLING ASSEMBLY CASING MUD FORLING (BB) DRILLING ASSEMBLY CASING SUMPCE FIRE	PORT FOR	-6-4 /		7.2 0				11	REPORT FOR	0	- 2 /2		~/			
DRILLING ASSEMBLY DOTE AT 122 SUPPORT FOR THE STATE SUPPORT STATE SUPPORT FOR THE STATE	LL NAME AN	D NO.	 	, , , , , , , , , , , , , , , , , , , 	<i>-</i>		FIELD OR	BLOCK NO.		COUNT	, PARISH OF	OFFSHORE		STATE/PROVI	NCE	
Delicity Assembly Delicity Assembly Delicity Assembly Delicity Delicity Assembly Delicity Delic			بيب	, #	/		جعديا	C+.	<u> </u>	AREA		<u></u>		<u> </u>		
The	DRIL	LING AS	SEMBLY												(fr/min)	
The content of the	SIZE	TYPE	JET	SIZE	SU	RFACE	HOLE	Pi		PUMP S	IZE	. ×	IN.			
Lines		50	7,	//	0.5% in	@ 737 !					<	/ 1.000				73
The Profession The		TYPE	LEN	NGTH	INTER	MEDIATE	TOTAL CIR			ll .		EFF				- .
Libert Prince Description Prince Description Prince	11/2	11. 1. 15					1.				-308	60 6		POTTOMS	155	0_
MID PROPERTY SECTION MID PROPERTY SECTION		TYPE	LEN	NGTH	INTER	MEDIATE	IN STORAG			bbl/stk				UP (min)	21	
COLLARS POWER PO	11/	بصحيين							9.3	100	705		110		. ی د.	
MUD PROPERTIES	ILL CÓLLAR	SIZE	LEI	NGTH	PRODUCT	ON OR LINER	MUD TYPE			17 .	75		275	TIME (min)	15	
Part Part	11.	2	1161	<u>'</u>	in				1100							
Part Part						MUD PR	OPERTIES			M			ECIFICAI	FILTRATE		
in Sample Samp Comparison	mple From					DEL DIT	DEL DI	PIT	ні		Viscosi	• •				
### RECOMMENDED TOUR TREATMENT ### PAIR (P) (P) (P)	ne Sample	Taken					04:0	0 9	5-9.	7	35				-7cc	·
Part Part			. ·			2200	1			T RE	COMMEN	IDED TOU	R TREAT	MENT		
			<u>'</u>		41		A									
THE DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET		<u>`</u>				1365			MAIN	Til side	VOL	4 Z ~2 ×	<i></i>			
## Paint (PUP) 1	ight 🗩 (pr	pg)	□ (lb/cu			9.5	9.5	* 	بر - بروبر دیر							
Second S	nnel Viscos	ity (sec/qt)	API @	118 °	°F	17	50									
Sevente (portion this) Sevente (portion th	stic Viscos	ity cp @				22	23									
Strength (b)100 Pt) 10 sect10 min	eld Point (lb.	/100 ft²)														
REMARKS HTHP Fitze (cm/30 min)			10 sec/10) min		,		3								
THE PERMITTER (PMD) PROPERTY PMD						4-16	1					REMARK	KS			
Notice N					05	4.8	1 5.6	' 				- / -		.272	/5	//
Idea					-г	-	 ,-		ONTRE	26 - 0.	?++-	,-//2	11	- / \ / \ / -	- (-	
Marting Mart						11-	11.		14	AX	=3	11.00		· + 7 / 7		
Introduction (% by Vol) Introduction (% by Vo	lids Conten	t (% by Vo	ol) Prca	Iculated	□ retort	5.7	5-8									
### Blue Capacity @ Meter @ *F	uid Conten	at (% by Vo	ol) Oil/Wa	ter		94.3	91.1									
### SOLIDS EQUIPMENT ### SOLIDS EQUIPMENT	nd Content	(% by Vol)			0.75	7.	-								
Comparison				quiv		-	10.									
Asimity Mud (Pm)					0E	14.5	1200									
Selection Sele	<u></u>		□ Meter	<i>w</i>		3.5	8.0									
SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SHAKER 1	kalinity Mud	1 (P _m)				0.05	20.00	<u> </u>								
A A A A A A A A A A	kalinity Filtra	ate (P _f /M _f)				.05/0.4	-0510.	4								
A	loride (mg/	L)				74000	7300	0								
	tal Hardnes	s as Calci	um (mg/L	_)		2413		- 1								
SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SHAKER #1 2						70-00	_									
SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SHAKER #1 2						50000	3 3000									
SOLIDS EQUIPMEN SOLIDS EQUIPMEN SOLIDS EQUIPMEN SHAKER #1 2 6			LIT		- 20											
SOLIDS EQUIPMENT SOLIDS	PHDA				0.38	21	2.0									
SHAKER #1 200 17 43 SHAKER #2 SHAKER	್ಷಾ.					,40	110	, L,			, ,					
SHAKER #1 200 17 43 SHAKER #2 SHAKER	,	/:	(*/ \	1,4	s /	/ /	/ /	′ /		/ /	′ /		/ /	/		
SHAKER #1 200 17 43 SHAKER #2 1 SHAKER #2	ODUCT /ENTORY	(NA)	15	(3,3	Y /		/ /			/ /	/ /		/ /	SOLIDS	EQUIPME	NT
SHAKER #2 / MUD CLEANER	ARTING	15	/ 0 	15 10											2 × 84	-
ED LIST MAD A A A A A A A A A A A A A A A A A A	ENTORY	280	17	13		_						+-+	SH	IAKEH #1		
CENTRIFUGE DESINDER TORY 210 14 12 DESINTER TORY 210 14 12 DESINTER TORY DESILITER TORY	CEIVED		1							- 1			SH	AKER #2		
CENTRIFUGE SING ENTORY 210 14 12 ST LAST 220 35 7235 ED MILDO; ST LAST 220 35 7235 ED MILDO; ST LAST 220 35 7235 ED MILDO; ST LAST ST	ED LAST		+		 	+								ID 01 54::55		
ENTORY 730 14 72 DESANDER TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS TIME DISTRIBUTION (hrs) Mud Volume ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS TIME DISTRIBUTION (hrs) Mud Received (bbl) Low Gravity % 5.1 Zero Gel 7 Avg ROP 5.0 ECD @ Desiling 20.5 Mud Built (bbl) 90 Low Gravity, ppb 46.8 n Factor 5.1 % Cutting Leak Off @ 7.2 Conditing Mud Received (bbl) Bentonite % 1.8 k Factor 5.1 psi % hnp HSI Circulating Mud Disposed (bbl) 5.3 Bentonite, ppb 16.4 Bit Hydraulics 16.9 7.7 7.2 2.4 3.7 % Survey 3.0 Survey 3.0 Drill Solids % 2.8 Annular Section 1 2 3 4 Survey 3.0 Survey 3.0 Drill Solids, ppb 2.5 9 Hole Size 8.18 8.5 5.5 Shale CEC, ppb - Pipe OD 4.5 2.5 (7.2 7.3 5.0 Normalization) Testing Starting Depth 1.7.7 High Gravity % 1.0 Critical Velocity 1.0 1.7 7.3 Included the condition of th	hr	10	17	1					++			+	MU	UD CLEANER_		
DESAIDER TO DESILT		210	1.1	12				}				11	(CENTRIFUGE.		
DESILTER DESILT		-		100				1					7.	DECANDED	-	
PHONE WAREHOUSE PHONE DAILY COST CUMULATIVE COST 3 7 2 7 3 7 2 2 6 0 NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS Rig Up/Service D 5 Water Added (bbl) Low Gravity % 5.1 Zero Gel 7 Avg ROP < 0 ECD @ Drilling 20.5 Mud Built (bbl) 90 Low Gravity, ppb 46 8 n Factor 0.51 % Cutting Leak Off @ 245 Reaming/Coring Mud Received (bbl) Bentonite % / 8 k Factor , psi % hhp HSI Driculating Mud Disposed (bbl) 5 3 Bentonite, ppb / 6 Bit Hydraulics // 92 7 7 2 2 6 3 9 3 Firipping Driver 18 Drill Solids % 2 R Annular Section 1 2 3 4 Survey 3.0 Survey 3.0 Drill Solids, ppb 25 9 Hole Size 8 6 8 5 5 5 5 Survey 3.0 Survey 5 Shale CEC, ppb Pipe OD 2 5 2 5 6 5 5 Resting Starting Depth / 2 7 7 7 7 5 5	hr		15-2	27 35					+			+	'	DESANDER_		
REPRESENTATIVE PHONE OPERATOR OF CONTROL O	ED m (ADC)	7	1000	22 20												
NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS AND REVERSE SIDE HEREOF. MUD RHEOLOGY and HYDRAULICS MID RHEOLOGY and HYDRAULICS Rig Up/Service O 5 Water Added (bbl) Low Gravity % 5.1 Zero Gel 7 Avg ROP < 0 ECD @						PHONE	W	AREHOUSE	PHONE	11			∥			
NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF. TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS MID RHEOLOGY and HYDRAULICS MID RHEOLOGY and HYDRAULICS MID RHEOLOGY and HYDRAULICS Rig Up/Service Drilling 20.5 Water Added (bbl) Low Gravity % 5.7 Zero Gel 7 Avg ROP 5 ECD 6 Leak Off 6.245 Promitting Mud Built (bbl) Bentonite % Mud Received (bbl) Bentonite % Mud Disposed (bbl) Survey 3.0 Drill Solids % Drill Solids % Drill Solids % Drill Solids, ppb 25.9 Hole Size BLAS B 5 6.5 Shale CEC, ppb Pipe OD Accounting Critical Velocity Critical Velocity Annular Velo				_		09226	222			\$ 39	96.40	<u>ن</u>	3	3139	2.60	<u> </u>
TIME DISTRIBUTION (hrs) MUD VOLUME ACCOUNTING SOLIDS ANALYSIS MUD RHEOLOGY and HYDRAULICS Rig Up/Service D 5 Water Added (bbl) Low Gravity % S 7 Zero Gel 7 Avg ROP C ECD © Contiling 20.5 Mud Built (bbl) Reaming/Coring Mud Received (bbl) Bentonite % Mud Received (bbl) Bentonite % Mud Disposed (bbl) T Bentonite, ppb Mud Disposed (bbl) Bentonite, ppb Mud Disposed (bbl) Bentonite, ppb Mud Disposed (bbl) Mud Disposed (bbl) Bentonite, ppb Mud Disposed (bbl) Mud Disposed (bbl) Bentonite, ppb Mud Disposed (b	Park	NOTICE	<u> </u>	DERR				DAG AND	D COND							
Reaming/Coring Mud Received (bbl) Mud Received (bbl) Bentonite % J. B. Factor Mud Disposed (bbl) Mud		NUTICE	. i HIS	HEPO	ni 15 50	DUECT 10	1116 161	IIVIS AN	COND.		JE: 10F	011 7				
Reaming/Coring Mud Received (bbl) Mud Received (bbl) Bentonite % J. B. Factor Mud Disposed (bbl) Mud				_						1						
Reaming/Coring Mud Built (bbl) Mud Received (bbl) Bentonite % Mud Disposed (bbl)	TIME DIS	STRIBUTIO	ON (hrs)	MUD	VOLUME A	CCOUNTING	sou	LIDS ANAL	YSIS			MUD RHEO	LOGY and	HYDRAULI	cs	
Drilling 20.5 Mud Built (bbl) 90 Low Gravity, ppb 468 in Factor 559 % Cutting Leak Off @ 3450				#			 		T	 	T -===	T	T	T ======		
Reaming/Coring Mud Received (bbl) Bentonite % Bentonite % Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Bit Hydraulics Mud Disposed (bbl) Dill Solids % Dill Solids % Dill Solids % Dill Solids % Dill Solids ppb Di	Rig Up/Sen	vice	0.5	Water	r Added (bbl)	Low Gravi	ty %	5.1	Zero Gel	3					
Reaming/Coring Mud Received (bbl) Bentonite %	Drilling		20.5	Mud	Built (bbl)	90	Low Gravi	ty, ppb	468	n Factor	0.51	% Cutting	<u> </u>	Leak Off	@ 3.15	-22
Circulating Mud Disposed (bbl) 5-3 Bentonite, ppb // 6 Bit Hydraulics // 92 7-7 7-2 2-2 3-93 Tripping D/LLST // 8 Drill Solids % 2-R Annular Section 1 2 3 4 Survey 3-0 Survey 3/2 Drill Solids, ppb 25-9 Hole Size 2-8 8-5 5-5 Logging Shale CEC, ppb Pipe OD 4-5 4-5 7-5 Running Casing Total Solids 7-7 High Gravity % O-6 Annular Velocity 7-5 7-5 Testing Starting Depth 1/2-7 High Gravity % O-6 Annular Velocity 7-4 7-7 7-5	Reaming/Co	oring			Received (b		Bentonite	%	1.8	k Factor	hac	psi	%	hhp	HSI	Je
Tripping D/III / T I/B Drill Solids % Z/B Annular Section 1 2 3 4 Survey 3 / O Survey 3 / O Drill Solids, ppb 25/9 Hole Size Q/B B 5 5 5 Logging Shale CEC, ppb Pipe OD 4 / O 4 / O 7 7 5 Running Casing Total Starting Depth 1/277 High Gravity % O Annular Velocity 1/2 1/2 7 <td></td> <td></td> <td></td> <td>Mud</td> <td>Disposed (b</td> <td>bl) 57</td> <td>Bentonite,</td> <td>ppb</td> <td></td> <td>Bit Hydra</td> <td>ulics</td> <td>1192</td> <td>77</td> <td>226</td> <td>3.93</td> <td>11.</td>				Mud	Disposed (b	bl) 57	Bentonite,	ppb		Bit Hydra	ulics	1192	77	226	3.93	11.
Survey 3.0 Survey 3.0 Drill Solids, ppb 25.9 Hole Size 9.0 95.5 Logging 5 Shale CEC, ppb - Pipe OD 4.5 4.5 7.5 Running Casing 7.5 D/B Ratio 7.0 Critical Velocity 7.0 7.5 7.5 Starting Depth 7.7.7 High Gravity % 0.0 Annular Velocity 7.1 7.7				1			Drill Solids	s %		Annular :	Section		7	3	4	L
Logging Shale CEC, ppb - Pipe OD 4 5 4 5 7 7 7 7 Pipe OD 4 5 4 5 7 7 7 7 Pipe OD 4 5 7 7 7 7 7 Pipe OD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			2							-		0.10	1	B		Π
Running Casing Testing Starting Depth 7.77 High Gravity % Annular Velocity 7.75 Annular Velocity 7.75 Annular Velocity 7.75 Annular Velocity			3.0						T	1						
Testing Starting Depth /777 High Gravity % O. C. Annular Velocity .7.1 .77										 	/elocity				1	1
7//		asing								-					†	-
Fighing Finding Depth High Gravity, pob 0 7 Viscosity 3 1 2 7 1 7 7	Testing					1277										+-
New Hole Vol. (bb) 1/C/ 8/ // Annular Pressure 17 3/ -15 5 2/	Fishing			Endir	ng Depth		High Grav	ity, ppb	87	Viscosity		20_	85	57	-	┼

Date: 21/05/95 M-I Drilling Fluids Company Depth: 1451.0 m Spud Date : 09/05/95 Activity: DRILL 8.5" DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Description: EXPLORATION Contractor : CENTURY Operator : GFE RESOURCES LTD Location : PEP 105 & PEP 126 Field/Area: OTWAY BASIN Well Name: DIGBY 1 Report For: KEN SMITH CASING MUD VOLUME (bb1) Bit: 8.500 in Casing OD: 9.625 in Liner OD: Hole Volume: 297 Nozzles:11/11/11/ / / 1/32" in Casing ID: 8.680 in Liner ID: Pits Volume: 285 Drill Pipe 1 OD: 4.500 in 1234 m in Casing TD: 337.0 m Liner TD: m Circulating Volume: 582 Drill Pipe 2 OD: 4.500 in 56.0 m Mud : POLYPLUS/KCL MUD Casing TVD: 337.0 m Liner TVD: Drill Collar OD: 6.250 in 161.0 m m CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) MUD PROPERTIES : FL 00:01 -gal/min : 325 : 0.5 / 6 Flow Rate Sample From -m/min : 46.7 KC1 : 1.4 / 13 : 128 ^F DP Annular Vel Flow Line Temp Low Gravity Solids : 6.6 / 60 -m:1451.0/1451.0 DC Annular Vel -m/min : 73.2 Depth/TVD 106.1 Bentonite : 1.4 / 13 -1b/ga1 : 9.5DP Critical Vel -m/min: Mud Wt Drill Solids : 4.9 / 45 -s/qt : 47 @ 122^F DC Critical Vel -m/min: 128.8 Funnel Vis : N/A / N/A 1600 Weight Material Plastic Visc -cps: 19 @ 115^F Circ. Pressure -psi: : - / 2.0 Chemical Conc YP/R3 -1b/100ft2 /deg : 22 / 4 Bottoms Up -min : 30.4 Inert/React : 2.22 Average SG : 2.60 75.2 10s/10m Gel -1b/100ft2:6 / 17 Total Circ Time -min : -cc/30 min : 5.4API F Loss HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours Potassm Chloride 25 KG S 40 24 Shaker #1 : 3 X 84 Cake API/HT -1/32" : 1 25 KG S 2 Shaker #2 -%vol: 6.0 Caustic Soda Solids /94 25 KG S 13 Shaker #3 Polyplus Powder 0il/Water -%vol: : 25 KG S 2 Shaker #4 -%vo1 : 0.25Sodium Bicarb Sand -1b/bb1 : 18.0M-I Bar 25 KG S 50 Mud Cleaner MRT рΗ : 9.0 @ 65 ^F Centrifuae 12"X 2 Desander Alkal Mud (Pm) : 0.2 : 0.1 / 0.45 Desilter 4"X 12 Pf/Mf -mg/1:30000Degasser Chlorides : 100 Hardness Ca MUD VOLUME ACCOUNTING bbl : 27000 K+ PPM Oil Added : D/hole :8 KCL WT % : 5.0 Water Added: 30 dump/SCE :23 PHPA COR : 1.2 Mud Built :120 surface :30 S03= : 80 : 0.549 Mud Received: no Value -1b-sec^n/100ft2: 1.42586 Mud Disposed: 61 Kρ : 0.505 na Value -1b-sec^n/100ft2: 1.87165

Remarks :

Control drill F/1373m.- 1418m.Make 13 STD wiper trip-hole good-3m.fill.control drill F/1418m.-1451m.Hole dev.=4deg. Control drill (4.5m/hr) from 1373m - 1418m. Make 13 stand wiper trip-hole good- 3m fill. Control drill from 1418m - 1451m (3-5m/hr) current hole deviation = 4 deg.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 3063 Cumul Cost : 33073

	Magcobas		gi	resse	IIOS (LU.			A		DATE _	21 %	<i>14Y</i> 19_	95	DEPTH_	115	
and the second	Waycoba	711VICO		// 6356	an amounton	- Diriparty		ŀ						PRESE	NT ACTIVITY	Y	
P.O. BOX 4284	42 ■ H0	DUST	ON, T	EX/	AS 77242	USA		ļ	_	ا ر	SPUD I	DATE/	1401	Con	برين وري	2116	3%
OPERATOR								C	CONTRA	CTOR						RIG NO	
REPORT FOR	<i>J= J=</i>	RL	:5		-/)			-	REPORT FO	OR.	المقرا	TU	57_		SECTION	N, TOWNSHI	P. RANGE
<i>_</i>	12-1	_5~	1171	1		.,				R	001		31110		ممصا	تبجيب	·=
VELL NAME AND NO.	Die	/	nt- 1			FIELD OF	R BLOC			A	DUNTY, I	Parish C Zalai	R OFFSHOF	RE 1511	STATE/PRO	/INCE	
DRILLING			~ '	CA	SING				(BBL)	-#-				CULATIO			
IT SIZE TYPE		T SIZE			RFACE	HOLE	, D VC	PIT	<u> </u>	PI	JMP SIZE		x	IN.		/EL (tt/min)	·
011 ETD			2.5		@.337	1	ر ۱	- 1		li i	J J	-		_	DP 17		77
8/1 4/7 PRILL PIPE TYPE		NGTH	17/	ノと、in. INTER	MEDIATE	29 TOTAL CI		ATING VO	287 OLUME	PL	JMP MAI	KE, MOD	L ASS	SUMED	CIRCULATIO		/
SIZE							م	-02		11	INT	820	EFF		PRESSURE	(psi)	,00
PRILL PIPE TYPE		NGTH			. @	IN STORA	AGE	WE	IGHT		ol/stk			stk/min	BOTTOMS		
SIZE		6		in	. @ f	00	``	-	2.8		101	ے در '		110	UP (min) (strk)	38.	
PRILL COLLAR SIZE	<u>ح (صرح</u> لفا	NGTH	PRO		ON OR LINER	MUD TY			0.0						TOTAL CIRC		
614"	11	1 ~		in	. @ f		K	c//	DHD	л bt	フ. フ. ol/min	5		32gat/min	TIME (min) (strk)	75	,
0.7=				T		OPERTIE		- / /					PERTY SE		TIONS		
Sample From					☑ F.L. □ PIT	T		WEIGH	fT .			viscos	ITY		FILTRATE		
ime Sample Taken					<i>y</i>			9	7.5-0	9.7		3.	5-15	500/3		5-7	<i></i>
	(05)				22:30	105	30			-	RÉC	OMME	NDED TO	JR TREA	TMENT		
lowline Temperature	(-1)				1 <i>28</i> (53)	130 (51)										
Depth (ft) (TVD		1		_ft)	1446	1168		Con	لمدسور	77	 -	054	- 5.45			CONC	DOF
Veight □/(ppg)	□ (lb/c	u ft)		p gr)	9.5	9.5		- 1		د جمرت	car	عمتدن					
unnel Viscosity (sec	/qt) API @	122	°F		47	50			aun	_00		سمد	11 5	aca.	105	تحدون	4
Plastic Viscosity cp	0 //5	- °F			19	22											
rield Point (lb/100 ft²)				72	22	- 1										
Sel Strength (lb/100	ft²) 10 sec/1	0 min			6117	71	ان										
filtrate API (cm³/30 r	nin)				5.1	2 7							REMAR	KS			
API HTHP Filtrate (ci	m³/30 min)		۰F			-								۰, ۰-	/ . 1 /	1 277	7 - ,
Cake Thickness (32n						1,1		6	~~~	02_			2-5	ر ی سددر	() F /		1-77
					<u>, </u>	111			HOLE		N (14	10-	4			
Solids Content (% by			l 🗆 reto	oπ	60	6.6			2004		_	/3-	INO.	1100	1 -12	12-11.	· · · · · ·
iquid Content (% by	Vol) Oil/Wa	ater			94	94	1		2111	- 7	-	111					
Sand Content (% by					0.25	10.2	25		00171	101	-011	116	F/1	114	/	5/- 0	00 3-
Methylene Blue Capa	acity 8 cm³/cn	n ³ mud			18.0	18.	5-		2036	<u> </u>	2000	0 14	<u> </u>	<u> </u>			
oH Ç∕Strip	☐ Mete	r @	۰F	I	9.0	C											
Alkalinity Mud (P _m)					0.2	0.7	5	0	RILL	BRE	TAK (<i>@</i> /	468 -	CIR	C. RIJ	- 51-	10517
Alkalinity Filtrate (P/I	M _t)				- 1- 40	-	2.4										
Chloride (mg/L)			-			340	1										
Total Hardness as Ca	deium (ma/	11			30000												
				\neg	100	150											
K + wife	· · · · · · · · · · · · · · · · · · ·			-	27000	7200			 								
1601 9	!}				5.0	6.0	2										
PURG	CORRE	017.17			1.2	1.5		200	CANO	F1?	11.	2 4	LELOW	9.	5 0/1-10	u O	0.50
50-	,				,80,	عمل		L,									
/	In It	لأ/	35/33/3°	50 00	nia/	/ /	/							/ /	/		
PRODUCT NVENTORY	ing /ry	2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SP CV	400	/ /	/	/	/ ,					/ /	SOLIDS	EQUIPME	ENT
STARTING		RU	, ()	10	7		-		f - f	-		<u> </u>	f = f			_	
NVENTORY 24	0 500	43	12	30									├	SH	AKER #1	3 12	2 <u>-7</u> me
RECEIVED	-					-	Ì							SH	AKER #2		me
JSED LAST			_														
CLOSING 50	2 40	/3_	2	12								╁	+	MC	ID CLEANER		me
NVENTORY 9	2 460	30	40	34											ENTRIFUGE		hou
	0 40	21											1 1	١,	ESANDER_	/	hou
USED 276	3 450	2043	14-70	30.6	²⁸							1	╁╌╌┼		ZESKNOZN_		
from IADC)				<u>L,</u>							L				ESILTER		hou
M-I REPRESENTATIVE				P	HONE	ľ	WAREH	OUSE P	PHONE	DAILY	COST			Cui	MULATIVE CC	181	
PAUL MA	25111			3	75482	2				9	28:	53.4	19	1/2	342	46.0	9
NOTIC	E: THIS	REPO	RT IS	SUB	JECT TO	THE TE	RMS	AND	СОИД	ITION	IS SE	T FOR	TH ON F	REVERS	E SIDE H	EREOF.	
		7															
TIME DISTRIBUT	TION (hrs)	MUE	VOLUN	ME AC	COUNTING	so	LIDS A	ANALYS	SIS			N	UD RHEO	LOGY and	HYDRAULI	cs	7
	- ()									<u> </u>							
Rig Up/Service		Wate	r Added	(bbl)	30	Low Gravi	ity %		5.3	Zero	Gel	1	Avg ROP	1.0	ECD @_		
Drilling	19.5	Mud	Built (bb	ol)	120	Low Gravi	ity, ppt	b	483	n Fac	ctor	505	% Cutting		Leak Off	@ 345.	223/
Reaming/Coring	1	Mud	Receive	d (bbl)		Bentonite			1.6	k Fac		87	psi	%	hhp	HSI	Jet Ve
Circulating	0.5		Dispose			Bentonite,			14.6	1	ydraulic		1192	75	226	3.9%	†
Tripping	1.0	1			- 0/	Drill Solid			3.3	ti –	ılar Seci		1	2	3	4	11.4
Survey			1101-15		8	Drill Solid		- 1	30.2	-				8.5	8.5	 	+
	130		21		30				<u> - 20. </u>	1			8.68				1
Logging Pupping Casing	+		1000			Shale CE				Pipe			1-5	.2 5	C 25	<u> </u>	+
Running Casing	+	-11		<u>uo</u>	662	D/B Ratio			1.49	+	at Veloc		106	100	1.31	-	+
Testing	-	-11	ing Dept		1373	High Grav			0.6	11	ılar Velo	city	4.1	47	7.3		+
Fishing	1	II Endi	ng Depth	1	1451	High Grav	rity, pp	ا مو	9.0	Visco	sitv		41	147	10	1	f

Annular Pressure 17.7 51.2 27.8

New Hole Vol. (bbl)

Date: 22/05/95 Depth : 1468.0 m M-I Drilling Fluids Company _ _ DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: DST#1 ______ Description: EXPLORATION Contractor : CENTURY Operator : GFE RESOURCES LTD Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Well Name: DIGBY 1 KEN SMITH Report For: CASING MUD VOLUME (bb1) Bit: 8.500 in Hole Volume: 300 Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Casing ID: 8.680 in Liner ID: Pits Volume: 313 in Drill Pipe 1 OD: 4.500 in 1251 m Casing TD: 337.0 m Liner TD: 56.0 m m Circulating Volume: 613 Drill Pipe 2 0D : 4.500 in Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD (% / 1b/bb1) CIRCULATION DATA SOLIDS ANALYSIS MUD PROPERTIES : PIT 00:01 : ^F : 0.6 / 7 325 NaC1 Flow Rate -gal/min : Sample From : 1.4 / 46.7 KC1 13 DP Annular Vel -m/min: Flow Line Temp Low Gravity Solids : 6.4 / 58 -m:1468.0/1468.0 DC Annular Vel -m/min : 73.2 Depth/TVD : 1.5 / DP Critical Vel -m/min: 112.7 Bentonite 13 Mud Wt -lb/gal: 9.5 : 4.7 / 43 -s/qt: 52 @ 95 ^F -cps: 23 @ 85 ^F Drill Solids DC Critical Vel -m/min: 139.0 Funnel Vis Weight Material : N/A / N/A Circ. Pressure 1625 -psi: Plastic Visc Chemical Conc : - / 2.0 YP/R3 -1b/100ft2 /deg : 24 / 4 30.6 Bottoms Up -min: 79.2 Inert/React : 2.12 Average SG : 2.60 10s/10m Gel -lb/100ft2:8 / 19 Total Circ Time -min: -cc/30 min : 5.0 API F Loss SOLIDS EQUIPMENT Size ^F PRODUCTS USED LAST 24 HOURS Hours HTHP F Loss -cc/30 min: Shaker #1 : 3 X 84 -1/32" : 1 M-I Bar 25 KG S 30 Cake API/HT Shaker #2 -%vol: 6.0 Solids Shaker #3 0i1/Water -%vol: /94 Shaker #4 Sand -%vo1:0.25Mud Cleaner : -1b/bb1 : 18.0MBT : 9.0 @ 65 ^F Centrifuge : 12"X 2 Alkal Mud (Pm) : 0.1 Desander 4"X 12 : 0.05/ 0.3 Desilter Pf/Mf -mg/1:33000Degasser Chlorides : 120 Hardness Ca : 29000 MUD VOLUME ACCOUNTING 661 K+ PPM : 5.5 Oil Added : D/hole KCI WT % dump/SCE Water Added: PHPA COR : 1.5 Mud Built : surface :7 S03= : 40 Mud Received: np Value : 0.574 Kp -1b-sec^n/100ft2: 1.39561 Mud Disposed:7 : 0.535 na Value -1b-sec^n/100ft2: 1.78326 Ka

Pomarks .

Control drill f/1451m.- 1468m.Circ.sample and flow check drill break. POOH, M/U DST tool, RIH & commence DST #1 Control drill (4.25m/hr) from 1451m - 1468m. Circulate out sample and flow check drilliing break. Pull back stands, circulate and run back to bottom-no fill. POOH and lay out BHA, make up DST tool and RIH. Commence DST #1.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 166 Cumul Cost : 33239

Date: 23/05/95 Depth : 1486.0 m M-I Drilling Fluids Company _ _ DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: DRILL 8.5" Operator : GFE RESOURCES LTD Contractor: CENTURY Description: EXPLORATION Well Name: DIGBY 1 Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASTNG MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Hole Volume: 304 Drill Pipe 1 OD: 4.500 in 1269 m Casing ID: 8.680 in Liner ID: Pits Volume: 392 in Drill Pipe 2 OD: 4.500 in 56.0 m Casing TD: 337.0 m Liner TD: m Circulating Volume: 696 m Mud : POLYPLUS/KCL MUD Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / lb/bbl) : FL 00:01 Sample From Flow Rate -gal/min : 325 NaCl : 0.6 / 7 : 125 ^F Flow Line Temp DP Annular Vel -m/min: : 1.4 / 46.7 KC1 13 -m :1486.0/1486.0 Low Gravity Solids : 5.6 / 51 Depth/TVD DC Annular Vel -m/min : 73.2 Mud Wt -1b/ga1 : 9.4DP Critical Vel -m/min: 99.8 Bentonite : 1.6 / 14 -s/qt : 44 @ 116^F Funnel Vis DC Critical Vel -m/min: 119.2 Drill Solids : 3.9 / 35 : N/A / N/A Plastic Visc -cps : 17 @ 114^F Circ. Pressure -psi: 1525 Weight Material YP/R3 -1b/100ft2 /deg : 18 / 4 Bottoms Up -min : 31.0 Chemical Conc : - / 2.0 10s/10m Gel -1b/100ft2: 7 / 15 Total Circ Time -min : 89.9 Inert/React : 1.73 Average SG : 2.60 API F Loss -cc/30 min : 5.0 SOLIDS EQUIPMENT Size HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS Hours Cake API/HT -1/32" : 1 Potassm Chloride 25 KG S 80 19 Shaker #1 3 X 84 Solids -%vo1 : 6.0Polyplus Powder 25 KG S 5 Shaker #2 0il/Water 25 KG S 2 -%vol: /94 Shaker #3 Sodium Bicarb -%vol: 0.25 25 KG S 3 Sand 0S-1 Shaker #4 : MRT -1b/bb1 : 18.0Mud Cleaner : 9.0 @ 65 ^F На Centrifuge Alkal Mud (Pm) : 0.1 12"X 2 8 Desander : 0.05/ 0.4 Pf/Mf Desilter 4"X 12 Chlorides -mg/1:33000Degasser Hardness Ca : 120 K+ PPM : 29000 MUD VOLUME ACCOUNTING 661 KCL WT % : 5.5 Oil Added : D/hole : PHPA COR : 1.2 Water Added: 100 dump/SCE :34 S03= Mud Built : : 100 surface :25 Mud Received: np Value : 0.571 Kp -lb-sec^n/100ft2 : 1.06245 Mud Disposed:59 na Value : 0.471 -1b-sec^n/100ft2 : 1.97954 Ka

Remarks:

Cont DST #1 over interval 1460m.-1468m.Pull test tool- water only.M/U BHA & RIH.dillL F/1468m.-1486m.@ 1-2 m/hr Continue DST #1 over interval 1460m-1468m. Shut in after 3 hrs, unseat packer and reverse circulate-no go. Conventional circulate pull test tool and retrieve sample - water only. Lay out test tool and make up stiff BHA. RIH - 2m fill. Drill "sticky" balling clay from 1468m - 1486m at 1 - 2 m/hr - bit and stabiliser balled?

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1967 Cumul Cost : 35205

		Dr		ng	FI	uids	C	0.			D	DATE 23	3 404	n 95			
			Dar/IIVICC) — A	Uress	ser/Halliburt	on Con	npany			[DAIE_Z_			DEPTH SENT ACTI	7 77.	36
P.O. BOX	428	42 I F	HOUS	TON,	TEX	AS 772	42 U	SA				SPUD DATE	10 40	4-6	RILL	6/1	11.01 F
OPERATOR		J= J=	0,	·	سر سو ،					CONT	RACTOF	ト アルフロ	2			RIGN	10.
REPORT FOR	~		رمدد							REPORT	_			. ,	- 11		SHIP, RANGE
WELL NAME A	ND NO.		- -				F	ELD OR BL		NO.	0	OUNTY, PARIS	パノスノンン SH OR OFFSH		STATE	ROVINCE	£
DRI	LING	ASSEM!	ス <u>ソ</u> BIV	7/2/		ASING	-	DICK!		VV (DDI		REA	7.42.2			VICTO	RIA
BIT SIZE	TYP	Ε	JET SIZE			JRFACE	- H	OLE	VOLU	ME (BBL		UMP SIZE			ION DATA	AR VEL (ft/mu	
81/2	VARI		3 11	9	5/0 i	n. @ <u>73</u> 7		70 K		392			· ·	<i>&</i> .5	DP_A		,
DRILL PIPE SIZE	TYP		LENGTH		INTE	RMEDIATE	T	OTAL CIRCU		G VOLUME	Р	UMP MAKE, M		ASSUMED	CIRCUL	ATION	/
DRILL PIPE	/ <u>/ </u>		LENGTH			n. @ RMEDIATE	n.	STORAGE	65	WEIGHT		ar gp	80	95 <u>-</u>	%	15	25
SIZE	מטוו	- 1	56-	ļ		n. @	, "	SIONAGE		WEIGHT	- 1		-	stk/n	nin BOTTON UP (min) (strk)		
DRILL COLLAR			LENGTH	PR		ION OR LINE	A M	UD TYPE				0705			TOTAL C	IRC	
	4		161-		iı	n. @	ft.		91,	PIP	1 61	7.75 Ilmin		.325 gal/n	TIME (m	rk) 89	<u> سا سر ۲</u>
								ERTIES	WE	IGHT			COPERTY	SPECIFIC	CATIONS		
Sample From	Tabasa					J2 F.L. □ 1	77 72	F.L. 🗆 PIT	```		- 9.5	1	75 - 45	ر ب	- 1	5 - 7 c	
Flowline Temp		(95)				2100	40	5:30	╁╴	7.5			S - 4-			5 - 7 - 2	. 4
	(TVD	(*F)				125 (5.	7	25	╁═			RECOMM	IENDED I	OUR TRE	AIMENI		
Weight [] (p)	·	□ (ih	/cu ft)		للرم((sp gr	1480		189	17	REAT	_ _ \$%	FFE H	سمعم	4	511_1C	afour	21
Funnel Viscos				•F	r 311	9.4		7.3+	+-	<u> </u>	414						
Plastic Viscos			// <u>/</u> °F			11		<u> </u>	+-	RUL	ب جد	2445	CONZ	204	Eaux	· × 57	a FAM
Yield Point (lb.						17		16 20	+-	,	455	72	REDL	ر ت	سوري	17- :	يدعبة بح
Gel Strength (1b/100 ft	2) 10 sec/	/10 min			7/15		7 117	1								
Filtrate API (cr	n³/30 m	in)				5.0		5.0	1				REMA	RKS			
API HTHP Filt	rate (cm	³ /30 min)	@	۰F		-		-		- T.			/ ^				
Cake Thicknes	s (32nd	in. API/H	ITHP)			, 1-	,	1-	1	1460	·	141.2.				:	,
Solids Content	(% by	Vol) 🌠 d	alculated	d □ ret	ort	6.0		6-0	1	2111	مرور ور	4:15-12	وری ورس	- 4 /	24-1417 3	c	120
Liquid Content	(% by	Vol) Oil/M	/ater			94		74		NOC	٠	ciac		-5//	2:11	177 5 7	2000
Sand Content						0.25		7-P	\perp	2550	12-10	- 511-	ICI E	- 610	عد سرور		
Methylene Blue				·		18.0		7.5	<u> </u>	114	OUT	77:57	7001	7	4/4	- 	11/1
oH □S		□ Met	er @	•F		9.0		7.0	14	2/11		- ee F	116				
Alkalinity Mud						0.1		2:05	 	DRIL		TICKY	1 13.00	une	CLAY	(53 /-	21.11
Alkalinity Filtra Chloride (mg/L		f)) <u>os l</u> ou4	2-0	5/0.4	1	317 1	5201	1 1300	?ردت	E/	168-	-146	6 ~
fotal Hardness		cium (mai	")			33000	2 - ا	500	┢								
11 5					-	120		60_	\vdash								
KCI	, , , , , , ,	e			_	290cc	13	<u> 2000 -</u>	1 -	5511 77		Uffe	13	(pay	െ	2601	
DUPA	,	4				<u> 5.5°</u> 1.2°	1	5-0 -25	00			Maid		7,07	7 - 68	0.75	GPM
CO :					7			:23 100	× ,	15125	200						
~ - '	7.	1/1	5/1	7	0/	16 /K	7	/	7	////	- 13ar	1 0000	- 10 / "	de correction	-,,,,	F. 131501	· <u> </u>
NODUCT	1/10	OUN	3/05/	GO BIC	1. /3º	OS GARTE		/ ,			/ ,	/ /	, /	/ /	SOLIE	S EQUIPM	ENT
TARTING IVENTORY	400	3.5	14	74	10								1	- f			
ECEIVED	700	130	/-	1,4	it O			 		+		_		S	HAKER #1	3 4 2	3.4 mesh
SED LAST	 	+	-		-*	320		++		 				s	HAKER #2		mesh
LOSING	80	50,	3	2	<u> </u>	+				-				м	UD CLEANER	3	mesh
VENTORY	380		11_	32	40	480		11							CENTRIFUGI	£	hours
OST LAST	916	785	.85	30.65											DESANDER_		hours
SED om IADC)	1 41	57.17	50 55														
-I REPRESENTA	77 57	17.1.11		15 74	PI	IONE		WAREH	OUSE	PHONE	DAILY C	OST			DESILTER_ IMULATIVE C	OST	hours
2001	200	11/1/	<u></u>			3254	922	-			1 15	86.18	3	12	3629		
				RT IS					ANI	COND	ITIONS	SET FO	RTH ON	REVERS			
			T					===									
TIME DISTR	RIBUTIO	N (hrs)	MUD	VOLUM	E ACC	OUNTING		SOLIDS A	ANALY	'SIS			MUD RHEC	LOGY and	HYDRAUL	ICS	
Rig Up/Service			Water	Added	L L0		-				 			Т			
Orilling	-	20		Added (Built (bbl		 		Gravity % Gravity, ppt		5.€	Zero G		Avg ROP	1.9	ECD @		
Reaming/Corin	g	7:5	-	Received		100		nite %		506	h Facto	- 207	% Cutting	 		@ <u>345 .</u>	23/
Circulating		1.5	11	Disposed		59		nite, ppb		1. C 14. 9	Bit Hyc	7-7-/-	psi	7.7	hhp	HSI	Jet Vel
Tripping		4.5	1000			14	-	olids %		74 7 3.5	#	Section	1//50	77	224 3	3.94	114
Survey			50			20		olids, ppb		32 - 2	Hole S		818	19.5	14.5	 	-
ogging			500	orne	٠-	25	Shale	CEC, ppb			Pipe O		4.5	4.5	C 25	1	
Running Casin	9		Jroc.		<u></u>	696	D/B R	atio		1 55	Critical	Velocity	93	100	119		
esting			-	g Depth		1368		Gravity %			Annula	Velocity	21	47	73		
ishing			1	Depth		1486		Gravity, ppl	b	-	Viscosi		91	27	50		
0	i	1.0	II New F	łole Vol.	(Ida)	1	110		1	7.0	Annular	Pressure	11.7	~ ~ ~	2011		

M-I Drilling Fluids Company Date: 24/05/95 Depth: 1523.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: DRILL 8.5" _____ Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASTNG MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: Hole Volume: 312 in Drill Pipe 1 OD: 4.500 in 1306 m Casing ID: 8.680 in Liner ID: in Pits Volume: 304 Drill Pipe 2 OD : 4.500 in Casing TD: 337.0 m Liner TD: m Circulating Volume: 616 56.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD Drill Collar OD: 6.250 in 161.0 m MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / lb/bbl) : FL 22:00 Sample From Flow Rate -gal/min : 325 NaCl : 0.8 / 9 : 120 ^F : 1.5 / Flow Line Temp DP Annular Vel KC1 -m/min: 46.7 14 Depth/TVD -m :1523.0/1523.0 DC Annular Vel -m/min : 73.2 Low Gravity Solids : 4.6 / 42 Mud Wt -1b/ga1 : 9.3DP Critical Vel -m/min: 95.9 Bentonite : 1.4 / -s/qt : 45 @ 118^F Funnel Vis DC Critical Vel -m/min: 119.0 Drill Solids : 3.0 / 27 -cps : 20 @ 105^F : N/A / N/A Plastic Visc Circ. Pressure Weight Material -psi: 1550 YP/R3 -1b/100ft2 /deg : 17 / 3 Bottoms Up 31.9 Chemical Conc : - / 2.0 -min: 10s/10m Gel -1b/100ft2: 6 / 16 Total Circ Time 79.6 Inert/React : 1.52 Average SG : 2.60 -min: API F Loss -cc/30 min : 5.0HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours -1/32": 1 Cake API/HT Potassm Chloride 25 KG S 80 Shaker #1 3 X 84 22 : Solids -%vol : 5.0Polyplus Powder 25 KG S 7 Shaker #2 0il/Water -%vol: /95.0 Sodium Bicarb 25 KG S 2 Shaker #3 Sand -%vol: 0.25 Shaker #4 : MBT -1b/bb1 : 16.0 Mud Cleaner : рΗ : 9.0 @ 65 ^F Centrifuge : 0.1 Alkal Mud (Pm) 12"X 2 12 Desander Pf/Mf : 0.05/ 0.35 4"X 12 Desilter -mg/1:36000**Chlorides** Degasser Hardness Ca : 160 K+ PPM : 32000 MUD VOLUME ACCOUNTING 661 KCL WT % : 6.0 Oil Added : :102 D/hole PHPA COR : 1.4 Water Added: dump/SCE :35 S03= : 60 Mud Built :130 surface :30 no Value : 0.623 Mud Received: Kp -1b-sec^n/100ft2 : 0.81085 Mud Disposed:167 na Value : 0.546 -1b-sec^n/100ft2 : 1.31469

Remarks:

Drill 8.5" F/1486m.-1489m.ROP<1.0 m/hr Bit stopped drill. POOH.Remove junk from bit.RIH and drill f/1489m.- 1523m. Continue to drill 8.5" from 1486m-1489m at <1.0 m/hr. Bit stopped drilling. POOH tight hole at 683m. Break out bit and recover DST tool junk lodged in cones. Make up bit RR #5 and RIH. Drill from 1489m-1523m at 3-5m/hr through plastic reactive clay.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2146 Cumul Cost : 37351

		ril	lind	r F	lui	ds L	70.	,	11			DATE_	24	124	109	5	DEPTH_Z	 21	
Control of the Control of the	Mag	cobar/l	мсо	A Dre	sser/H	alliburton Co	ompany		-	7		DATE_4		.,-/	_ 19		NT ACTIVITY		
P.O. BOX 42	2842	■ HO	USTO	N. TE	XAS	77242 l	JSA		'		ן נ	SPUD D	DATE) H	11	-0	0111	31/2-	HOLE
OPERATOR				,					C	ONTRA	CTOF	1					1	RIG NO.	
REPORT FOR	GE	<u>/=</u>	RE	<u>S. </u>		△			AE	PORT FO		<i>عبة لب</i> ب	,,,	-75	7		SECTION	, TOWNSHI	P. RANGE
	1 m	<i>م</i> لہ	524.	T.			FIELD (OR BLOC	K NO.			COUNTY, P	ARISH	OR OF	FSHOR	<u> </u>	STATEPROV	INCE	<u></u>
WELL NAME AND	NO. カム	1.1	#	1				ب جه ب	2	·./	_ ^	REA		1.1	130	5111	1 1/1	مدد	2/1
DRILLII	NG ASS	EMBLY	,		CASI	1G	М	טס עכ	LUME		_ _						ON DATA	EL (#/min)	
	TYPE	JET	SIZE	_	SURFA	1	HOLE	_	PITS		f	PUMP SIZE	•	٠,٠	×	IN	1		70
9/2 91		3.	11	97/2	in. @	-777 tt.	3/		TING VO	OA	-	PUMP MAH	E. MOI	DEL	ASS	UMED	CIRCULATIO	N	/ -
ORILL PIPE	TYPE	LEN	IGTH	"		DIAIE	I OIAL		.16	202		inr d	306	30	EFF	G5 9	PRESSURE		50_
A / / / / C	TYPE	LEN	IGTH	11	in. @	DIATE	IN STO		WEI	GHT		obl/stk				stk/mi	n BOTTOMS UP (min)		
SIZE		56	·		in. @	ft.	43		-5	3.8		207	05			<i>~~</i>	(strk)	40	
ORILL COLLAR SIZ	E		NGTH	PROD	UCTION	OR LINER	MUD T			,	. .	ファ			. 7	Z Çal/mi	TIME (min)	79	,
61/1		16	1		in. @	ft.			<u> </u>	[DII!	1	bl/min S) PR)PER	TY SE		ATIONS		
					_	MUD PRO			WEIGHT			MOL	VISCO		1 0	2011 10	FILTRATE		
Sample From					1	F.L. 🗆 PIT	√Z F.L.			9.3			7	ر	15.	11/3	1 5	· 7 c	<
ime Sample Tal					-	2 00	05:				وتبصر	REC	OMME	ENDE	D TO	JR TŔE	ATMENT		
lowline Tempera		•				7 (50)	12				_==								
Depth (ft) (TV			1			523	1531		7	RE	7 .7-		, , , , , , , , , , , , , , , , , , , 			~~ <u>~</u>			
Weight ☑ (ppg)		(lb/cu		□ (sp •F	_	9.3	9.		-	<u> </u>	رتبر	7,27		<u> </u>		-		9	Ŧ ,, ,,
unnel Viscosity			*/ <i>/</i> -⊱			15 ⁻	47						— ,2 .	ري- تـم	ور شیمور				777
Plastic Viscosity		105				20	20		GI	IF	<u>-</u>	YOUR	F	100	RF.S	FOR	STOCK	ATC	OCLEN
rield Point (lb/10		0.000/10) min			13		118		E CO	001					F40			DELIYE
Sel Strength (lb/		U Sec 10	7 111111		- 6	116				DAY	7.	-/-			EMAF				
Filtrate API (cm ³ API HTHP Filtra		0 min) 6	a	°F		5.0	5.	<u>. </u>	7.		011	·	/ /	126	·	148	9- 12	1 ~1/	1.1
Cake Thickness					\dashv	, -	 , 	1 -	100				115	27~	:	7 . 7	50		
Solids Content (□ retor	1	<u> </u>	5.		0		, .		~ ~ ~ ~		1.6	334	ERE	11.00	17 21
Liquid Content (-	95	-	15 15		~ ~ ~ z		201	100	111	101	 معتمم	er Fe		حصدة
Sand Content (9		,				 25		25		1	015	00	# 5	5	K	1+1			
Methylene Blue		E intent	viup			16:0	16		7	200	,	<i>,- ,</i>	111	, 9		1531	M 7-	50/1.	
pH 🗹 Str		☐ Meter		۰F		9.0	9.			2100	715	- ~	- مند	_					
Alkalinity Mud (I						0:05	0	/											
Alkalinity Filtrate						c-1.35	05	140											
Chloride (mg/L)						26000	350	000											
Total Hardness	as Calciu	m (mg/l	L)			160	10												
K+ 105/	P				-	220xx	320	200	00	540	رم	<u>-a</u>	4	<u></u>	061	13.	2 ppg (30.	وروس
VCI	% 4	+				6.0	6.	0											
اردراء ي						1.4	1.	4											
50 ;						60,	1,6	<u>o</u> ,	 \	men	, ,	057	CRL	717	<u>17-17-</u>	1,50	120 10 50	1=14	.3/
PRODUCT INVENTORY	/ ^V C\	OCV OV	05/2000	1 /1×	101	;t ^h /	/ ,								/		SOLIE	S EQUIPN	MENT
STARTING	}		1														SHAKER #1	-32 N	<i>5:4</i> me
INVENTORY	380	25	32	40	-	++			-		 	_	1	\top			SHAKER #2		me
RECEIVED	ļ		<u> </u>		570CA	.				-	+-	-	+	+					
USED LAST 24 hr	80	7	2	NK	שנמת						-		-	\dashv			MUD CLEANE	Я	me
CLOSING INVENTORY	300	182	30	40						<u> </u>							CENTRIFUG	E	hou
COST LAST 24 hr	-80	.19	3268		*11.	,											DESANDER.	12	hou
USED	7/4	1100	13765		(1)									T			DESILTER_		ho
M-I REPRESENTA	ATIVE	157.1	715 34	<u></u>	PH	ONE		WARE	HOUSE	PHONE	DA	ILY COST				<u> </u>	CUMULATIVE (COST	
							427				1	20	47	67	7		# 383	31.5.	3
<i>DNUL</i> N	OTICE:	THIS	REPO	RT IS	SUB	JECT TO	THE	TERM	S AND	CON	DITI					REVE	RSE SIDE	HEREO	F.
TIME DIST	RIBUTIO	N (hrs)	ми	D VOLUM	ME ACC	COUNTING	Ī	SOLIDS	S ANALY	'SIS	T	-		MUE) RHE	OLOGY a	and HYDRAU	LICS	

TIME DISTRIBUT	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANAI	LYSIS	1	AUD RHEO	LOGY and	HYDRAULI	cs	
Rig Up/Service	2:0	Water Added (bbl)		Low Gravity %	11.6	Zero Gel 3	Avg ROP	23	ECD @_		
Drilling		Mud Built (bbl)	130	Low Gravity, ppb	41.5	n Factor 0.55	% Cutting		Leak Off	@ 225	22.30
Reaming/Coring	1	Mud Received (bbl)		Bentonite %	1.4	k Factor / 3/	psi	%	hhp	HSI	Jet Vel
Circulating		Mud Disposed (bbl)	167	Bentonite, ppb	13.1	Bit Hydraulics	1167	75	221	3.90	114
Tripping	5.5	SURFACE	-70	Drill Solids %	2.8	Annular Section	1	2	3	4	5
Survey	1:0	Quest SCE	35	Drill Solids, ppb	25.9	Hole Size	8.68	8.5	8.5		<u> </u>
Logging		DINNE	102	Shale CEC, ppb	-	Pipe OD	3-5	4.5	625		ļ
Running Casing		TOLOU CLUD	159	D/B Ratio	1 22	Critical Velocity	23	100	119		
Testing	1	Starting Depth	12116	High Gravity %		Annular Velocity	14	21	7.3		
Fishing		Ending Depth	1523	High Gravity, ppb		Viscosity	81.5	81	51		<u> </u>
		New Hole Vol. (bbl)	9	KC1 Yuni	2.7	Annular Pressure	14.9	19.0	74.3	1	I

Date : 25/05/95 M-I Drilling Fluids Company _ _ Depth: 1650.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: DRILL 8.5" Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Hole Volume: 339 Drill Pipe 1 OD: 4.500 in 1433 m Casing ID: 8.680 in Liner ID: Pits Volume: 215 in Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD : 4.500 in 56.0 m m Circulating Volume: 554 Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: Mud : POLYPLUS/KCL MUD m MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) -gal/min : Sample From : FL 22:00 Flow Rate 325 NaC1 : 0.9 / : 125 ^F Flow Line Temp DP Annular Vel -m/min : 46.7 KC1 : 1.5 / 14 Low Gravity Solids : 4.5 / Depth/TVD -m :1650.0/1650.0 DC Annular Vel -m/min : 73.2 41 Mud Wt -1b/gal : 9.3DP Critical Vel -m/min : 100.5 Bentonite 1.4 / : 2.9 / -s/qt: 44 @ 118^F DC Critical Vel Drill Solids Funnel Vis -m/min : 120.0 : N/A / N/A -cps : 20 @ 110^F Circ. Pressure Weight Material Plastic Visc -psi : 1625 YP/R3 -1b/100ft2 /deg : 15 / 4 34.6 Chemical Conc : - / 2.0 Bottoms Up -min: 10s/10m Gel -1b/100ft2:5 / 16 Total Circ Time -min : 71.6 Inert/React : 1.44 Average SG : 2.60 API F Loss -cc/30 min : 5.2HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours -1/32" : 1 Potassm Chloride 25 KG S 80 Cake API/HT Shaker #1 : 3 X 84 24 Polyplus Powder Solids -%vol: 5.0 25 KG S 8 Shaker #2 0il/Water -%vol: /95.0 Sodium Bicarb 25 KG S 2 Shaker #3 : 25 KG S 3 Sand -%vol: 2.0 0S-1 Shaker #4 : MRT -1b/bb1 : 16.0Mud Cleaner : рΗ : 9.0 @ 65 ^F Centrifuge : Alkal Mud (Pm) : 0.1 12"X 2 Desander : : 0.1 / 0.4 Pf/Mf Desilter 4"X 12 Chlorides -mg/1:38000Degasser Hardness Ca : 120 K+ PPM : 32500 MUD VOLUME ACCOUNTING 661 KCL WT % : 6.0 Oil Added : dump : 48 PHPA COR : 1.3 Water Added: 25 SCE :22 S03= : 140 Mud Built :100 surface :60 no Value : 0.652 Mud Received: Kp -lb-sec^n/100ft2 : 0.64163 Mud Disposed: 130 na Value : 0.471 -lb-sec^n/100ft2: 1.97954 Ka

Remarks :

Contin drill 8.5"f/1531m-1560m.Circ.drill brk.Drill 1560m -1601m.Drill brk.circ.up sand sample.Drill f/1601m.-1664m Continue to drill 8.5" hole from 1531m-1560m. Drill break-circulate up sample-minor sand. Drill from 1560m-1601m. Circulate drilling break. Pull back 2 stands and circulate up sand sample. Drill ahead from 1601 - 1664m @ 8.0 m/hr through Pretty Hill sands.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2486 Cumul Cost : 39838

		Dr		g į		uids	Ĺ	<i>.</i> 0.		ПП		DATE	751	<u>42 Y</u> 19	95~	DEPTH.		1
	FARLER &		ar/IMCC			er/Halliburto		mpany		1		DATE				ENT ACTIV	ITY	
P.O. BOX	4284	2 = F	lous	TON,	TEX	AS 7724	12 U	SA			<u> </u>		DATE/	OMC.	1-0	RILL	21/1	11.01.E
OPERATOR	6	<u> </u>	055		zΩ					CONTR		IR CEA	120	184		11	RIG N	O.
REPORT FOR	10	r=N	ربرے	117	./					REPORT	FOR	00.67		21:11.70		11	ION. TOWNS	HIP. RANGE
WELL NAME AN	ID NO.	24	-134	#	/			FIELD OR I	BLOCK N			COUNTY P.	ARISH	OR OFFSHO	ORE	STATE/PR		~- <u></u>
DRIL	LING A	ASSEME		7		ASING	7	MUD	<u>کرک برد</u> VOLU	ME (BBL)		AREA	41		BCULATI	ON DATA	15,70	214
BIT SIZE	TYPE		ET SIZE		St	JRFACE	- -	HOLE		PITS		PUMP SIZE					R VEL (ft/min	<u> </u>
8/2	117-		11	9	5/ ₂ i	n. @ 777	ft.	34	7	205				6	29.5	DP	Z pc.	73
DRILL PIPE SIZE	TYPE		LENGTH		INTE	RMEDIATÉ	1	TOTAL CIRC			31	PUMP MAK		DEL A	SSUMED FF-	CIRCULA PRESSUR	TION	
DRILL PIPE	K / t		LENGTH	_		n. @ RMEDIATE	ft.	N STORAG	<u> 554</u>	A WEIGHT		UNIT E	308	30	SSUMED FF Stk/m	%		25
SIZE		1	56 "			n. @		100	- 1	8:8	[]				3170111	UP (min) (strk)		5
DRILL COLLAR			LENGTH	PR		TION OR LINE	R	MUD TYPE		<u> </u>		207	<u>05.</u>		//0	TOTAL CI		
	14	10	Im		i	n. @	n.		C11	DHPA	,	7.75 bb/min			325 gal/m	TIME (mir in (stri	" 7 <u>.</u>	2
								ERTIES	- VEI	GHT			PRO	PERTY S	PECIFIC	ATIONS	<u>-</u>	
Sample From						ØF.L. OF		F.L. D P	<u></u>	9.3.			_		- /-	1	- 5-70	•
Time Sample T		-				22:00		25:00	ᅪᅳ	75	707	PECO		5-45 NDED TO			5 7 6	
Depth (ft) (1	erature ((*F)			41	125/5	7	25	$+\!\!-$			TIECO	141111		ON INE	, u mcni		,
Weight □ (pp		☐ (lb.		Π.	(زایر (sp gr	1650		726		CONTI	ae2	TO TR	<i>[</i> 2	- 5 4	<u> </u>	-61117	1.1501,	laur
Funnel Viscosit				•F	-P 91)	9.3		9·3+	+	DRED	2/X							
Plastic Viscosit			~ <i>/~/<)</i>			20		17	+-	Rein		250	-0-	-2-c	رسررمون	·~		
Yield Point (lb/1			<u></u>			20	+	<u>21</u> 15	十一	-544	نتب	50.16) ,,,		esca	encer		
Gel Strength (It) 10 sec/	10 min			5 16	+	75 7 1/7	+-									
Filtrate API (cm						5.2	+	5 ,3	+					REMAR	RKS			
API HTHP Filtra			@	۰F		3.2	+	_ کی ر	+			2 /4 "	<u> </u>	٠٠٠٠٠٠١				
Cake Thickness	s (32nd	in. API/H	HTHP)			11-		, 1-	6			7 /	-/-	/ *	~ -/-	5.6Om.	- 13011	1 13 8 4
Solids Content	(% by \	/ol) 🛭 d	alculated	i 🗆 ret	ort	50	1	5.0	+-				شعص			25-		
Liquid Content	(% by \	/ot) Oil/M	/ater			95	十	95	1					/ <u>-</u> -	· CZ . ,		 	J . 1 K
Sand Content (% by V	ol)				27	\top	7.5	1	1	<u>~~</u>		- // ·				<u>~</u>	205
Methylene Blue	Capac	ity 🗆 ib/bbi	m ³ mud			16:0		6.0	7			E 1 16		- /	664.	T,,	~ · ·	
pH 🗆 Str		☐ Met		۰F		90		9.0		Egyl Friendle		-/-/-	٠					
Alkalinity Mud (P _m)					0.1	4	> 15										
Alkalinity Filtrate	e (P _f /M _f)				0.1 10.	40	1 10-5	-									
Chloride (mg/L)						38000	• 1	39000	,									
Total Hardness	as Calc	ium (mg	IL)			120		120										
K'	14/1					32500	2 3	3 <i>0</i> 00	4									
KCL		c. 1				60	4	6.0	100	E.S.A.	ER		151	141	1.5,	_ تقنوه	1.20	G PM
DIIDA						1.3		.4				···-						
<u>. 50 ; </u>			. /.	/2		140	4	110	٠,									
PRODUCT	AC.	90'0'	35/5	56. 40°									Ι.		/ /	SOLID	S EQUIPM	ENT
STARTING INVENTORY	300	1	11	30											61	AKER #1	71.	9.L me
RECEIVED		T	T							1							· · · · · · · · · · · · · · · · · · ·	
USED LAST		1-	<u> </u>	_	t	_		-	+	+		1 -		+	—— Sh	IAKER #2		me
24 hr CLOSING	90	18	3.	2	┼			+	+	-	-			++		JD CLEANER		me:
INVENTORY	220	10	8	28	 				1			4		$\perp \perp$		CENTRIFUGE		hou
COST LAST 24 hr	916	1257	15.2	30-68												DESANDER_	13	hou
USED (from IADC)	11 41	1 .														DESILTER		hou
M-I REPRESENTA					P	HONE		WAR	EHOUSE	PHONE	DAIL	COST		.ıl.		MULATIVE CO	OST	1100
Paul 1	<u> </u>	5111	11		b.	132546	322			\$	\$ 2	357	ے ہے	9	#	4068	39.22	2
				RT IS					S AN	D COND	ITIOI	VS SET	FOR	ио нт	REVERS	E SIDE I	HEREOF.	
TIME DISTR	RIBUTIO	N (hrs)	DUM	VOLUM	ME AC	COUNTING	T	SOLIDS	S ANALY	rsis				IUD RHEO	LOGY and	HYDRAUL	ıcs	
Dia Hate			-		a	T	+-				-				T -			
Rig Up/Service Drilling		. ~		Added		25	-	Gravity %		1.1.	Zero			Avg ROP	8.5	ECD @		
Reaming/Corin	- 	19.0	71	Built (bb		100	_	Gravity, p	opo	40.2	n Fa			% Cutting	-	7	@345	
Circulating	-	1.5		Dispose			 	tonite, ppt	,	1.5	k Fa	tydraulics	7	psi	%	hhp	HSI	Jet Vel
Tripping								Solids %		7 3	 	ular Section	n	1167	72	22/	3.90	5
Survey							 	Solids, pr		24.4		Size		8.68	25	r3.5	+	1 3
Logging			SC			22	_	e CEC, p		•	Pipe			15.5°	1.5	6 25	 	†
Running Casin	g			71 1-1	· / ·	1.54	1	Ratio		1:31	-	al Velocity		27	101	120	†	
Testing								Gravity 9	%		Annı	ular Velocity	у	23	17	72		
Fishing	g Starting Depth 7.4							Gravity,	ppb		Visco	osity		910	87	505		
			New	Hole Vol	. (bb!)	<u> </u>	11	1 7	Val.	7.3	Annu	lar Pressu	re	16 2	635	24.6		

M-I Drilling Fluids Company Date: 26/05/95 - -Depth : 1759.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity : CIRC.& OBSV Contractor : CENTURY Operator : GFE RESOURCES LTD Description: EXPLORATION Well Name: DIGBY 1 Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Hole Volume: 362 Drill Pipe 1 OD: 4.500 in 1542 m Casing ID: 8.680 in Liner ID: Pits Volume: 258 in Drill Pipe 2 OD: 4.500 in 56.0 m Casing TD: 337.0 m Liner TD: m Circulating Volume: 620 Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) : FL 24:00 : 120 ^F Sample From -gal/min : Flow Rate 625 : 0.8 / Flow Line Temp DP Annular Vel -m/min : 89.8 KC1 : 1.5 / 13 Depth/TVD -m :1759.0/1759.0 DC Annular Vel -m/min : 140.7 Low Gravity Solids : 5.4 / 49 Mud Wt -1b/ga1 : 9.4DP Critical Vel Bentonite : 1.3 / 12 -m/min : 101.0 Funnel Vis -s/qt : 45 @ 115^F Drill Solids DC Critical Vel -m/min: 120.9 : 3.8 / -cps : 20 @ 110^F Plastic Visc Circ. Pressure -psi : 1600 Weight Material : N/A / N/A YP/R3 -1b/100ft2 /deg : 16 / 4 Bottoms Up -min: 19.2 Chemical Conc : - / 2.0 / 18 10s/10m Gel -1b/100ft2: 7 Total Circ Time -min: Inert/React : 1.92 Average SG : 2.60 41.7 API F Loss -cc/30 min : 6.4 HTHP F Loss -cc/30 min: @ ^F PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours Cake API/HT -1/32" : 1 Polyplus Powder 25 KG S 5 Shaker #1 : 3 X 84 17.5 -%vol : 5.0 Solids CMC TG LV 25 KG S 5 Shaker #2 0il/Water -%vol: /95.0 50 LB S 30 Mica Medium Shaker #3 . -%vol : 1.5 Kwik Seal M Sand 40 LB S 30 Shaker #4 : MRT -1b/bb1 : 16.0Mud Cleaner рΗ : 9.0 @ 65 ^F Centrifuge Alkal Mud (Pm) : 0.1 12"X 2 Desander 4"X 12 Pf/Mf : 0.1 / 0.5 Desilter -mg/1: 37000 Chlorides Degasser Hardness Ca : 160 K+ PPM : 28500 MUD VOLUME ACCOUNTING 661 KCL WT % : 5.5 Oil Added : dump :15 PHPA COR : 1.4 Water Added:181 surface/SCE:70 S03= : 60 Mud Built :100 down hole :170 np Value : 0.637 Mud Received: Kp -1b-sec^n/100ft2 : 0.72304 Mud Disposed:255 na Value : 0.477 -1b-sec^n/100ft2 : 1.95988

Remarks :

Drill 1664-1753m.POOH for bit change.RIH & drill f/1735m. -1759m.Loose total returns(140bbl)Pump LCM pill & observe Drill from 1664m-1740m (dev = 5 deg). Wiper trip 12 stands - 1m. Fill. Drill from 1740m-1750m. Circulate and pull 2 stands, circulate up sample. Drill from 1750m-1753m. POOH for bit change. Make up bit #6 and RIH. Wash 13m to bottom. Drill from 1553m-1559m. Total loss of returns - 140 bbl lost. Observe well. Build volume with sump water and attempt to keep hole full-losses continue at 40 strokes/min. Mix and pump 55 bbl of 45 ppb Mica/Kwikseal pill.

Able to circulate - observe well.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2939 Cumul Cost : 42777

	U III Magcobar		g r	IU	IOS (LU	.		A		DATE	261	1AY 19_	95	DEPTH_	1759	>
	iviagcoual	/IIV/CO	7 J.M	SSein	Talliburion C	Jompa	ביי כ								NT ACTIVIT	Y	
P.O. BOX 4284	2 H H	DUST	ON, TE	XAS	5 77242	USA				<i>-</i>	SPUD	DATE 4	2111	CIR	C 40	الزريم يحجم	
OPERATOR								7	CONTRA	CTO		~~~				RIG NO	
REPORT FOR	E	25	20						REPORT FO						SECTIO	N, TOWNSH	P. RANGE
WELL NAME AND NO.	1-1	5140	711			I FIELD	OR BLC	OCK NO		1	<u> COUNTY</u>	PARISH (ペタノへノのC OR OFFSHOR	<i>⊙ ^</i> √ RE	STATE/PRO	VINCE	£
WELL NAME AND NO.	21013	1 #	1				2151		11				Y 1305		1	TORIL	1
DRILLING A	ASSEMBL	.Y		CASI	ING		MUD V	OLUME	E (BBL)	- 11			CIF	CULATIO	n data		
BIT SIZE TYPE	JE	T SIZE		SURF	ACE	HOLE		PI	rs	1	PUMP SI	ZE.	х	IN.	ANNULAR V	VEL (tt/min)	
8/2 Front		x //	9%	in. @	0.777.1				259				6"	85	DP	DC_	73
DRILL PIPE TYPE		NGTH			EDIATE	TOTA	L CIRCUL	ATING V	OLUME		PUMP MA	KE, MOD	EL ASS	SUMED	PRESSURE	ON . (psi)	
A12 16.6A				in. @				520				108	2 1	75 %		160	20
DRILL PIPE TYPE SIZE	LE	NGTH	IN	TERM	EDIATE	IN ST	ORAGE	- 1	EIGHT		bbl/stk			stk/min	BOTTOMS UP (min)	47.	
1/2 1140			22001	in. @			TYPE		36	-#	0.07	05		110	(strk)		
DRILL COLLAR SIZE		NGTH	PHODE		OR LINER	1		-11:	תכונים		Dollmin -	5		325	TIME (min) (strk)	80	
6/4	161	/ ,	ــــــــــــــــــــــــــــــــــــــ	in. @	MUD PR			1//-	.,,,,,,,,				PERTY SE	gal/min			
				+-				WEIGH	-IT		IVIC	viscos		LOII IOA	FILTRATE		
Sample From				7	F.L. 🗆 PIT	√Z.) F.I	_ 🗆 PIT	-	9.1	, ,	13,0		35-45	sr=/9/	.5	· 7cc	
Time Sample Taken					24 00	05	00	<u> </u>	<u></u>	<u>_</u>		-1					
Flowline Temperature	(°F)			<u> </u>	120/19	12	٥	<u> </u>			HEC	OMME	NDED TO	UH IHEA	IMENI		
Depth (ft) (TVD		1		ft)	1759	17	61	<u> -</u> _	4,12,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	<i>,</i> ,,,		1	-×11-1	.	_	ندور بن	<u> </u>
Weight 🗆 (ppg)	☐ (lb/c	u ft)	□ (sp (gr)	9.4	9.	0 t	1-1	2000	می	· - ت		F 70.	<u></u>)		سيموع
Funnel Viscosity (sec/	qt) API @		٥F		15	3	Z		440	صب	- J	155	. ء ـــــــــــــــــــــــــــــــــــ	ر. . مردد مرسستان	·		-
Plastic Viscosity cp @)	۰F		T	20	,,			2000	 o	1000		2111	1000	e: , , .	-	
Yield Point (lb/100 ft²)					1/-	10	<u> </u>	Ī	م معسی								
Gel Strength (lb/100 ft	2) 10 sec/1	0 min		_	7/10	3	112	1	-								
Filtrate API (cm³/30 m				+	1 113	12		100	1 = 2	411	11 111	<i>10-C</i>	REMAR	<i></i>	C. C. C.	· · · · · ·	
API HTHP Filtrate (cm		<u> </u>	٥F	+	6.4	1		 (43 2-		~	A 15	بحبيب	2	444	(نووسر و برس	علوم ترمن	<u> </u>
				+-			,	+	Sua	4.	10	166	· · ·	_5"			
Cake Thickness (32nd				+	/ 1-	-	<u> </u>	-0	A:LL		-/10	600	-/7	10-	Cinc	<i>it 120</i>	206/
Solids Content (% by			☐ retort	-	50		.0	12	510	s:	RI	/ /	1-16	<i></i>			
Liquid Content (% by	Vol) Oil/Wa	ter			45	<u> </u>	76_	-	301LL		=//	740	17	50m	CIRC	70	<i>U/-</i> /
Sand Content (% by \				_	1.5-	0	<u> </u>	12	5120		· c	ac	اسک هاره		· K		
Methylene Blue Capac	≥ity ☐ cm³/cm	J ₂ LLnq ednin			16.0	13	.0	رحــــــــــــــــــــــــــــــــــــ	A.L.		/_/;	250-	/75	-3-	200	11 -00	
pH □ ∕Strip	☐ Mete	r@	°F		9.0	8	.5		2	1.2	مارين		100	F ~~	C # R	111 1	11511
Alkalinity Mud (P _m)					o.		7.05	13	בכל		?	ر مز د					
Alkalinity Filtrate (P _I /M	(_f)				1/05	205	6.6		BRU		EL	75	3 /	759	~ - 7 50	1706	2055
Chloride (mg/L)					7 7000	23	000	0,0		7	. ,	2,1,6	0 618	G 10	1. 611	ni Ki	CSENV.
Total Hardness as Cal	cium (mg/l	_)				T	50	0	17 15 000		:/ c	11/4/	210157	- P	Bimp	5511	15@20
u · 10				٦.	28500	22	దలధ	1			, , ,	, , , , ,		0355	1111 6	11324	
KC1 %	4				.5.5	4.		05	5120							1.50	47.00
				_			7	12/63	2122		2/12	<i></i>	بربر ک کی	5		· 5- 6/	
DHPA				+	1.4	10		1000	F. J. Land		45.5	11.1	4 0 p	~5`		. 5 /	
- 50:			7 .:	. /-	60_	1,0	7	' 		7		7			7		
PRODUCT INVENTORY	ovitiv	Nico 4	A Jake of											/ /	/ SOLIDS	S EQUIPME	ENT
STARTING	0 / V	1,	(F. P.)		f = f		<u> </u>		(-($\overline{}$	_	- 			- 2 0	
INVENTORY 10	30	30	30		 -							+	+	SH	AKER #1	באנג צי	# mest
RECEIVED 36	,													SH	AKER #2		mest
USED LAST 154 5	5	30	7.0											M	JD CLEANER		mest
CLOSING		30	30		+								1				
INVENTORY 41	25				4								+-+	^	CENTRIFUGE		hour
COST LAST 3		540	1226											c	DESANDER	8	hours
USED	1	-														<i>~</i> ,	
(from IADC) M-I REPRESENTATIVE			LL	PHO	DNE		WAREI	HOUSE F	PHONE	DAI	LY COST				MULATIVE CO	OST	hour
M-1 REPRESENTATIVE				1	3254E	,,,	, MAINE	1.0032		44	28 <i>9</i>	Ω.		1	43548		
PAUL MAI	-													LZD			
NOTIC	E: THIS	REPO	RT IS S	UBJ	ECT TO	THE '	TERMS	SAND	COND	ITIC	NS SE	T FOF	RTH ON F	REVERS	E SIDE H	HEREOF.	
		T								n							
TIME DISTRIBUTI	ON (hrs)	MUD	VOLUME	ACC	DUNTING		SOLIDS	ANALY	SIS			,	MUD RHEO	LOGY and	HYDRAULI	cs	
		-		—						₩			7	†			
Rig Up/Service	20	Water	Added (b	bl)	181	Low G	ravity %		5.3	Zer	ro Gel	4	Avg ROP	12.5	ECD @_		
Drilling	7.5	#	Built (bbl)		100		ravity, pp	ob /	482	n F	actor	.47	% Cutting		Leak Off	T	1213/
Reaming/Coring		Mud	Received	(bbl)		Bentor	ite %		1.4	k F	actor /	95	psi	%	hhp	HSI	Jet Vel
Circulating	50	Mud I	Disposed	(bbl)	255	Bentor	ite, ppb		12 3	Bit	Hydrauli	cs	1180	74	224	2.44	114
Tripping	7.5	DI	IOLE		170	Drill S	olids %		3.7	Anı	nular Se	ction	1	2	3	4	5
Survey	20	SUR	F + 5C	1.5	70	Drill So	olids, ppl	b	334	Но	le Size		R.18	8.5	8.5		
Logging		Du.			15	Shale	CEC, pp	ь	-	Pip	e OD		1.5	4.5	6 25		
Running Casing			AL MU	احد	680	D/B Ra	atio		7.85	Cri	tical Velo	city	99	101	120		
Testing		-11	ng Depth			High G	ravity %	,	-	Anı	nular Vel	ocity	14	47	7.3		L
Fishing		Endin	g Depth		1759	High G	ravity, p	pb	-	Vis	cosity		23	88	517		
		New I	Hole Vol. (bbl)		KC	1 %0	104	1.9	Ant	nular Pre	ssure	16.4	67 B	25.2		1
										****						·	·

M-I Drilling Fluids Company Date: 27/05/95 - -Depth: 1895.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date: 09/05/95 Activity: DRILL 8.5" Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Well Name: DIGBY 1 Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Hole Volume: 391 Drill Pipe 1 OD: 4.500 in 1678 m Casing ID: 8.680 in Liner ID: Pits Volume: 271 in Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 56.0 m m Circulating Volume: 662 Casing TVD: 337.0 m Liner TVD: Drill Collar OD: 6.250 in 161.0 m m Mud : POLYPLUS/KCL MUD MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) Sample From : FL 23:00 Flow Rate -gal/min : 300 NaC1 : 0.4 / : 120 ^F Flow Line Temp DP Annular Vel 43.1 -m/min : KC1 : 1.5 / 14 Low Gravity Solids : 3.6 / Depth/TVD -m:1895.0/1895.0 DC Annular Vel -m/min : 67.5 33 Mud Wt -1b/gal : 9.1DP Critical Vel : 1.2 / -m/min : 75.2 Bentonite 11 -s/qt: 38 @ 115^F Funnel Vis DC Critical Vel -m/min: 93.9 Drill Solids : 2.2 / 20 -cps : 16 @ 110^F Plastic Visc Circ. Pressure -psi: 1400 Weight Material : N/A / N/A YP/R3 -1b/100ft2 /deg : 10 / 2 Bottoms Up Chemical Conc -min: 43.1 : - / 2.0 10s/10m Gel -lb/100ft2: 3 / 6 Total Circ Time 92.7 Inert/React : 1.36 Average SG : 2.60 -min : API F Loss -cc/30 min : 5.0HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours Cake API/HT -1/32": 1 Potassm Chloride 25 KG S 170 Shaker #1 3 X 84 22.0 -%vol: 3.5 Solids Polyplus Powder 25 KG S 10 Shaker #2 0il/Water -%vol: /96.5 25 KG S 9 Shaker #3 Polypac • Sodium Bicarb Sand -%vol: 0.75 25 KG S 2 Shaker #4 : -1b/bb1 : 13.0MRT 25 KG S 3 0S-1Mud Cleaner рΗ : 9.0 @ 65 ^F Centrifuge Alkal Mud (Pm) : 0.1 12"X 2 Desander 3 Pf/Mf : 0.1 / 0.4 Desilter 4"X 12 -mg/1:29000Chlorides Degasser Hardness Ca : 160 K+ PPM : 27000 MUD VOLUME ACCOUNTING 661 KCL WT % : 5.0 Oil Added : dump :20 PHPA COR : 0.95 Water Added: surface/SCE:60 S03= : 100 Mud Built :250 down hole :95 no Value : 0.691 Mud Received: -lb-sec^n/100ft2: 0.37193 Κp Mud Disposed: 175 na Value : 0.557 -1b-sec^n/100ft2: 0.86027

Remarks:

Circ. to balance mud wt.Drill 8.5"f/1759m.- 1905m.through Pretty Hill sandstone.Max dev.=6deg.D/hole losses contin. Circulate to balance mud weight. IN/OUT. Drill from 1759m-1772m-attempt to drill-high torque, very low ROP-work bit on bottom? Clear junk. Drill from 1772m - 1905m. Maximum deviation = 6 deg. Variable downhole losses continue approximately 5 bbl/hr.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 5050 Cumul Cost : 47827

		Ur		g į		II OS	l	<i>5</i> 0.		П		DATE	27 MA	7 19	95	DEPTH	190	5-	
1.00.10.00.70.00.00		waycoo	amivico	A	Diesse	**/Hamburio	JII C	ompany				-			PRESE	NT ACTIVI	TY		
P.O. BOX	42842	2 🗯 📙	lous	TON,	TEX	AS 7724	12 I	USA				SPUD	DATE 102	114	_0	2122	8/2	110	15
OPERATOR		1= 1 <u>=</u>	RL			-0				CONT	RACTO	DR	NTUR	,		11	RIG I	VO.	
REPORT FOR								 		REPORT	FOR	<u> </u>	~/ ~/				ON, TOWN	SHIP, RA	ANGE
WELL NAME A		<u> </u>	5~1	171	<u></u>			FIELD OR BLO	20K NO		_/		PARISH OR OF			STATE/PR	5//0	OF	
WELL NAME A		DIC	34	#	/			FIELD OR BL	JCK NO				TLIMY			1 -	CTO	امراج	
DRIL	LING A	SSEME	BLY		CA	SING		MUD V	OLUM	E (BBL)				CULATIO				
BIT SIZE	TYPE	Π.	JET SIZE			RFACE		HOLE	P	TS		PUMP SI	ZE	х	IN.	ANNULAR	VEL (ft/m	in)	
8/4	ETD AITO	3	× 11	9	15) e in	Q537	أالزسم	392		270	>		5	%	7.5	DP SE	7 o	5	3
DRILL PIPE	TYPE		LENGTH		INTER	MEDIATE		TOTAL CIRCUI		VOLUME		PUMP MA	AKE, MODEL	ASSU	JMED	CIRCULAT	ION		
SIZE 1/2	16 GP					. @	ft.	6	62				7P50	EFF	75 %		_ (531)	100	
DRILL PIPE SIZE	TYPE	. 1	LENGTH		INTER	MEDIATE	- 1	IN STORAGE	- 1	EIGHT	1	bbl/stk	-,		stk/min	UP (min)		- -	
DRILL COLLAR	11291 SIZE		LENGTH	-		ON OR LINE	ft.	MUD TYPE	ىلــــ	<u>88</u>		00	34		32_	(Strk)		5 m =	
67		- 1		1			- {				1	boumin	3	. 3	gat/min	TIME (min	02	• • •	
6/	4	1/6	10		in	MUD F	tt.	PERTIES	7//2	NPA	l		D PROPER				100		
Sample From					-	₽FL. □		DEL DPIT	WEIG	нт		1010	VISCOSITY	I I SF	CIFICA	FILTRAT	 E		
	Takan					·			┨	9.0-	9.1	<i>א</i> מע מ	83.5	- 45		. <	-70	۷	
Time Sample						230	7	06:30	\vdash		 -		OMMENDE						
Flowline Temp				·		120 (19	120	┾				OWNINETABL	- 100		11016141			
	TVD		1		(17)	1895	-	1937	PR	E 201.	DE	KC	rfeues	_e	25.11	x 7	مصد	عسد	كنداننا
Weight (p		(lb)	<u>_</u>		sp gr)	9.1		9.01	126	2.4	15	RE	₹						
Funnel Viscos) API @		°F		_38_		<u> 38 </u>	-	2111	-22	<u> </u>	eer tie	UZZ.Z	1.N.T.	17			
Plastic Viscosi		_//) °F			16	_		1	OROL	محم	5 77)	TREA	<u> </u>	45/7	:17 61	1771	10	4
Yield Point (lb.	/100 ft²)					10	_	/3	<u> </u>										
Gel Strength (1b/100 ft²)	10 sec/	10 min			316	_	317											
Filtrate API (cr	m ³ /30 mir	1)				5.0		1.6					RE	MARK	S				
API HTHP Filt	rate (cm ³	/30 min)	@	•F		-			- /	cinc		نر ن	MANCE		20 4	17 10	1/04	7	
Cake Thickness	ss (32nd i	n. API/I	HTHP)			1 1-		1 1-	1-0	au		-//7	-9	1772	7	1110		وحدد	~
Solids Content	(% by V	ol) 🗹 o	alculated	d 🗆 ret	tort	7.5		3.5	L	100	10	00	- 177	ور بسر =	<u> </u>			cocce	-تدى.
Liquid Content	(% by V	ol) OilM	/ater			96.	5	96.5	100	1 13	ozz	0.01	- HICH	Vac	2000	e 78	رر در در	E	
Sand Content						0.75	-	0.75	مــــــــــــــــــــــــــــــــــــــ	en		e	772	. / =	م کدر و	. دسم	0 × 0	د مرتد	
Methylene Blu	e Capacit	y □ cm³/c	m ³ mud			13.0	\perp	130	<u> </u>	isai	17 19 10 10	- /	1014101 11		کاری کے	525	110 2	22_5	Lula
pH □S	trip	☐ Met	er @	٥F		9.0		9.0											
Alkalinity Mud	(P _m)					0.1		0.1											
Alkalinity Filtra	te (P _f /M _f)					0.110.	4	1 645	*	REC	EIV	ED	MUD M	ATE	RIAL	- 70	BE	CHE	CKED
Chloride (mg/L	.)					2900		31000	#	REP	ORT	ED 0	N REP	ORT	# 20				
Total Hardness	as Calci	um (mg	/L)			160		200											
K+ m	10					27000	,	28000	06	510	رعرور	2	14.30	.3 0	11/51	1111		<u></u>	
KCI		,				5.0	_	ن حق	1 -				12.6	_	,				
BHRA						0 95	\neg	0.9	1					, 2] -	مستدعوت				
50,						100	7	00											
-362		7	5/0			J. C.		7	7	7	7	7	7	7	7	/			
PRODUCT	AC.	20°5	, , ,		200	13 50 Feb. 20	1 /c	y /	_	_	_	\angle				SOLID	S EQUIP	MENT	·
STARTING INVENTORY	220	11	7.3	0	25		ĺ							1	SHA	KER #1	3 x1	34	_ mesh
RECEIVED																KER #2			_ mesh
USED LAST 24 hr	170	10	9	3	2										MI IF	CLEANER			meeh
CLOSING INVENTORY	50	31	64	5	26	40			~ ~			1	1			ENTRIFUGE			_ 1116511
COST LAST 24 hr	.20	.70	.06	85	T							 	1	_	_				_ hours
USED	1948	1571	1135	152	30.6	٢	-					+	 		DE	ESANDER_			_ hours
(from IADC)	ATD/E				1	IONE			101107		115:	<u></u>	1			SILTER	4		hours
M-I REPRESENTA						IONE 3254	- ہ	ł	IOUSE F	HUNE	H	Y COST	0		11	ULATIVE CO			
AUNG.				DT :=									9.09			484.			
N	OHCE:	1 HIS	KEPO	H1 15	SUB	JECT TO	1	1E LERMS	AND	CONE	סודונ	NS SE	T FORTH (ON RE	VERSE	SIDE	FREO	F	

ŧ

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANAL	YSIS		h	AUD RHEO	LOGY and	HYDRAULI	cs	
Rig Up/Service	2.5	Water Added (bbl)		Low Gravity %	3.5	Zero Gel	2	Avg ROP	83	ECD @_		
Drilling	17.5	Mud Built (bbl)	250	Low Gravity, ppb	32.5	n Factor	0.56	% Cutting				225000
Reaming/Coring		Mud Received (bbl)		Bentonite %	1.2	k Factor		psi	%	hhp	HSI	Jet Vel
Circulating	1.5	Mud Disposed (bbl)	175	Bentonite, ppb	10.9	Bit Hydra		973	70	170	30	105
Tripping		SURFACE	50	Drill Solids %	2.1	Annular S	Section	1	2	3	4	5
Survey	2.5	DUMP ISCA	30	Drill Solids, ppb	18.0	Hole Size	•	8.68	\$5	55		
Logging		DINOLE	95	Shale CEC, ppb	-	Pipe OD		4.5	4.5	6 25		
Running Casing		TOTAL MUID	755	D/B Ratio	129	Critical Ve	elocity	74	75	74		
Testing		Starting Depth	ノフ・ニジ	High Gravity %	-	Annular V	elocity	20.5	43	38		
Fishing		Ending Depth	1305	High Gravity, ppb	-	Viscosity		60	5.8	37		1
		New Hole Vol. (bbl)	31	KC1 /1 VUL	1.9	Annular P	ressure			115 2		

Date: 28/05/95 Depth: 1951.0 m M-I Drilling Fluids Company DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: POOH Contractor : CENTURY Description : EXPLORATION Operator : GFE RESOURCES LTD Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Well Name : DIGBY 1 Report For: KEN SMITH MUD VOLUME (bb1) CASING Bit: 8.500 in Casing OD: 9.625 in Liner OD: Hole Volume: 403 Nozzles:11/11/11/ / / 1/32" in Pits Volume: 218 Drill Pipe 1 OD : 4.500 in 1734 m Casing ID: 8.680 in Liner ID: in Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in m Circulating Volume: 621 56.0 m Drill Collar OD : 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD SOLIDS ANALYSIS (%/1b/bb1) MUD PROPERTIES CIRCULATION DATA : PIT 24:00 Flow Rate 300 NaC1 : 0.6 / 7 -gal/min : Sample From KC1 : 120 ^F DP Annular Vel -m/min: 43.1 : 1.5 / 14 Flow Line Temp 67.5 Low Gravity Solids : 3.4 / 31 -m :1951.0/1951.0 DC Annular Vel -m/min : Depth/TVD 11 DP Critical Vel -m/min: 86.7 -lb/gal : 9.1 Bentonite : 1.2 / Mud Wt -s/qt : 39 @ 110^F -cps : 15 @ 100^F Drill Solids DC Critical Vel -m/min: 104.2 : 2.0 / Funnel Vis : N/A / N/A Circ. Pressure 1390 Weight Material Plastic Visc -psi: : - / 2.0 YP/R3 -1b/100ft2 /deg : 13 / 3 Bottoms Up -min : 44.5 Chemical Conc Inert/React : 1.21 Average SG : 2.60 10s/10m Gel -lb/100ft2: 4 / 8 Total Circ Time -min : 86.9 API F Loss -cc/30 min: 4.8 PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size HTHP F Loss -cc/30 min: -1/32" : 1 Potassm Chloride 25 KG S 90 Shaker #1 : 3 X 84 19.0 Cake API/HT Polyplus Powder 25 KG S 5 Shaker #2 Solids -%vol: 3.5 25 KG S 2 Shaker #3 -%vol: /96.5 Polypac 0il/Water : -%vol: 0.75 0S-1 25 KG S 3 Shaker #4 Sand : -1b/bb1 : 13.0 M-I Bar 25 KG S 80 Mud Cleaner MBT : На : 9.0 @ 65 ^F XCD 25 KG S 4 Centrifuge 40 LB S 13 12"X 2 Kwik Seal M Alkal Mud (Pm) : 0.1 Desander : : 0.05/ 0.4 : 4"X 12 Desilter Pf/Mf -mg/1 : 32000Degasser Chlorides Hardness Ca : 240 MUD VOLUME ACCOUNTING 661 K+ PPM : 29000 Oil Added : : 5.5 KCI WT % dump :15 Water Added: surface/SCE:45 PHPA COR : 0.8 Mud Built :210 down hole :151 S03= : 100 Mud Received: : 0.619 Kp -lb-sec^n/100ft2 : 0.63117 Mud Disposed:211 : 0.485 na Value -1b-sec^n/100ft2 : 1.45110 Κa

Remarks :

Drill f/1905m.-1932m.Circ.sample-OIL SHOW.Drill f/1932m.- 1951m. Circ sample-OIL SHOW. POOH for DST #2 Drill from 1905m - 1932m. Circulate 5 min. Pull 2 stands and circulate up sample-oil shoe. RIH-no fill. Drill from 1932m - 1951m. Circulate 5 min, pull 3 stands and circulate sample-OIL SHOW. Wiper trip to 1152m. Circulate and POOH for DST #2.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 4977 Cumul Cost : 52804

	Magcobar			UIOS ser/Halliburto) <u>.</u>		A		DATE	28/	<u> ケイソ</u> 19	95	DEPTH_	195	<u> </u>
in special section	THE CONTRACT		· Proceeds	والمراجع المراجع	100 mm / 100	<u></u>			\int					ENT ACTIVIT		
P.O. BOX 4284	2 H C	DUSTO	N, TE	XAS 7724	12 US/	4		CONTR	ACTO		DATELL	DAMY		1011 1	RIG NO	S 7 # 2
	FE	RE	5 1	. 10							NTU	1.1		11		
REPORT FOR	ر الم	5141	TH					REPORT F		2066	a i	2120	01/	11	ON, TOWNSH	
WELL NAME AND NO.					11	D OR BLO				COUNTY,	PARISH	OR OFFSHO	PRE	STATE/PRO	OVINCE	
2011110	DIG		# /			0150				ALEAD!	THIM	1 /3/			FOR	11
DRILLING A		SIZE		CASING	HOL			IE (BBL)		PUMP SIZ	,,		RCULATI		VEL (ft/min)	
ALL ETO	_		1051	in. @.337	il	113	- 1	178		1 01111 012		5 1/2	· · · · · · · · · · · · · · · · · · ·	DP_4		4.0
DRILL PIPE TYPE		NGTH		ERMEDIATE		AL CIRCUL	ATING '			PUMP MA	KE, MOE	EL AS	SSUMED	CIRCULATI	ION	
4/2 16/1			1	in. @	n.	62	2/			NAF	70:	ئ ن∵	F45 9	PRESSURI	- /	90
DRILL PIPE TYPE		NGTH	INT	ERMEDIATE	IN S	TORAGE	W	EIGHT		bbl/stk			stk/mi	n BOTTOMS UP (min)		
4/2 1120		6		in. @		33		9.0	_	0.05	74		132	(strk)	<u>ن</u>	<u> </u>
DRILL COLLAR SIZE		NGTH	PRODUC	CTION OR LINE	- 11	TYPE		,		7.1	3		300 gal/mi	TOTAL CIR TIME (min)	0.	7 7
614	161	e4·7	<u></u>	in. @	t.		7/	DIIPI		bbt/min	0.000	DEDTY C			0,	
					ROPER		WEIG	HT		MU	viscos	PERTY S	PECIFIC	FILTRATE		
Sample From				□ EL. D	PIT I U F	L PIT	1	9.0 -	9.1	1 200	1.2.	5-42	51.19	/ 4	7c	
Time Sample Taken	05)			24:0	,	-30_	-	<i>/.</i> -	1.1	, , ,		NDED TO				
Flowline Temperature (120/4	7	<u> </u>	-				CIVILL	11000 10				
Depth (ft) (TVD	- m. r.	1	<u></u>			51	+	PRE	2012	<u> </u>	15.00	1177	K	-4/211	og M	ــــــــــــــــــــــــــــــــــــــ
Weight □ (ppg)	(lb/cu		□ (sp gr			-/	72	110	101	2010	· vc	~ ~	10551	EC AV	≈ &	1011/
Funnel Viscosity (sec/o			F	39	4	2	 -									
Plastic Viscosity cp @	100	°F		15		20	├									
Yield Point (lb/100 ft²)				13		5-										
Gel Strength (lb/100 ft²		min		418	4	19_	Ļ									
Filtrate API (cm³/30 mi				4.8			ـــــ					REMAR	RKS			
API HTHP Filtrate (cm			°F	 -		<u> </u>	12	RILL		1190	254	- 193	2-,0	inc	2011	2520
Cake Thickness (32nd				11-	1	<u> </u>	4	CIRC		10-5	مصم	<u> </u>	1311	~~	<u> cu</u>	
Solids Content (% by \			□ retort	3.5		<u>.5-</u>	 	DRILL		<u> </u>	932		9510	FIC	1600	CIRC
Liquid Content (% by \		er		96.5		71.5		· · · · ,	_;>	ULL	كت	203 3	t cia	C 1112	51-16	<u> </u>
Sand Content (% by V	. *	Triiv		0 75	-	<u></u>	<u> -</u>	011	511	061_		RID	TU 1	15200	RIH	20,5°12
Methylene Blue Capac				13.0	/_3	:0	1-	IRC	سک	·	au	4-3-	200	CIRC	50.00	CLE
pH D'Strip	☐ Meter	@	° F	9.0	- 19.		ļ <u> </u>	04	514	244		CA11 0	unne	Eurs .	501.400	151121
Alkalinity Mud (P _m)				01		.05		200	<u> </u>	م دم تعر	2	<u> </u>	12			
Alkalinity Filtrate (P ₁ /M ₁)			1056.	7	1.45	1									
Chloride (mg/L)				3200	2 32	00Q	├									
Total Hardness as Cald	ium (mg/L)			240		40	 -									
K' mill				2900	0 29	<u>'600</u>	<u> </u>									
K(1 %	est.			55	5	-5	DE	516 1.	<u> 77</u>	4	-106	4	3.6,0	, 6	/:5	COM
PIIPA				0.8	10	· &	DE	5-9-11	1-12		IFL	14/				
<u> 50; </u>				100	1,4	<u>00,</u>	1× 1/2	ECF1	100	22	/=-	(c - 1 ;/				
PRODUCT NVENTORY	10			2 25 / 6 2	i j	ALT V			A 15	77.75	/~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1301	/ /	SOLID:	S EQUIPM	ENT
STARTING			ı					()	نت	7	1	1	·		2 - 3	ن ت
NVENTORY 160	150	13 6	54 3		5			 -		+	1-	+	S	HAKER #1	1 -1 -5	mesh
RECEIVED 320	360		3	6 12	40	<u>.32</u>	20	26	101	98	*/	1	sı	HAKER #2		mesh
USED LAST	90	4	2/13	5-1	31				13				М	UD CLEANER		mesh
CLOSING INVENTORY	320		62 6	2:42	12	32	20	26	5:8	98	Τ,					
COST LAST '40	7	16		····	35	3=	20	0 2	-51	170	+-	+-+		CENTRIFUGE		hours
24 hr 142		689 2	63 78		152				531	 		4		DESANDER_		hours
(from IADC)	1146	727	74 57	7	7.9°				19.337					DESILTER	6	hours
M-I REPRESENTATIVE				PHONE		WAREH	OUSE I	PHONE	DAIL	Y COST			Cu	MULATIVE CO	OST	
ور در مدر شرد از این	11161			932545	2.2.	J		,	18 -	489	6.7	7 /		5333	34.0	2
		REPOR	T IS SU	BJECT TO	THE '	TERMS	AND	COND	ITIO	NS SE	T FOR	TH ON				
TIME DISTRIBUTION	ON (hrs)	MUD V	OLUME A	CCOUNTING		SOLIDS	ANALY:	SIS	T			AUD RHEC	LOGY and	I HYDRAULI	cs	
					-				1-						- -	
Rig Up/Service	1.0		dded (bbl)			ravity %		<u> 3· 3</u>	1	o Gel	7	Avg ROP	13	ECD @_		
Drilling Reaming/Coring	9.0	Mud Bu	ceived (bb	210	-	ravity, pp	D	300	1		43	% Cutting	 		@3.15-	223707
Circulating	50		sposed (bi		Bentor	nite %	\dashv	1.2	1	Hydraulio	115-	psi	%	hhp	HSI	Jet Vel
Tripping	30	50,77		30		olids %		11 2 1 3	#	Hydraulic Jular Sect		97.3	70	170	3.0	1055 5
	(2:17	11-11-1-		1 50	,	10	1	1.0	11 40011	JEC		, ,	, 4	, ,	1 4	

Drill Solids, ppb

Shale CEC, ppb

High Gravity %

High Gravity, ppb

KCI / You

D/B Ratio

16.3

Hole Size

Pipe OD

Viscosity

Critical Velocity

Annular Velocity

Annular Pressure

8 68 85 85

87

13

71

12.1 57.5

4.5

35

30.5

74

6 25

104

GB

12.

30

151

754

1951

ours/sci

TOTAL MUD

New Hole Vol. (bbi) 13

DINOLE

Starting Depth

Ending Depth

Survey

Logging

Testing

Fishing

Running Casing

M-I Drilling Fluids Company Date: 29/05/95 Depth: 1956.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: DRILL 8.5" Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Hole Volume: 404 Casing ID: 8.680 in Liner ID: Drill Pipe 1 OD: 4.500 in 1739 m Pits Volume: 205 in 56.0 m Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD : 4.500 in m Circulating Volume: 609 Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD SOLIDS ANALYSIS MUD PROPERTIES CIRCULATION DATA (% / lb/bbl) : FL 23:30 Sample From Flow Rate -gal/min : 300 NaC1 : 0.6 / 7 Flow Line Temp : 120 ^F DP Annular Vel -m/min : 43.1 KC1 1.5 / 14 Low Gravity Solids : 3.3 / -m:1956.0/1956.0 DC Annular Vel 67.5 Depth/TVD -m/min : 30 Mud Wt -1b/qa1 : 9.1DP Critical Vel -m/min: 90.3 Bentonite : 1.2 / 11 -s/qt : 40 @ 110^F Funnel Vis DC Critical Vel -m/min: 109.8 Drill Solids : 1.9 / 18 -cps : 16 @ 100^F Plastic Visc Circ. Pressure -psi: 1325 Weight Material : N/A / N/A YP/R3 -1b/100ft2 /deg : 15 / 3 44.5 Bottoms Un Chemical Conc : - / 2.0 -min : 10s/10m Gel -lb/100ft2: 4 / 8 Total Circ Time −min : 85.3 Inert/React : 1.25 Average SG : 2.60 API F Loss -cc/30 min : 5.0HTHP F Loss -cc/30 min: PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours Cake API/HT -1/32": 1 Potassm Chloride 25 KG S 40 Shaker #1 : 3 X 84 3.0 25 KG S 3 Solide -%vol: 3.5 Polyplus Powder Shaker #2 0il/Water -%vol: /96.5 25 KG S 2 Shaker #3 Polypac : Sand -%vol : 1.0 M-I Bar 25 KG S 30 Shaker #4 : 25 KG S 3 MRT -1b/bb1 : 12.5XCD Mud Cleaner рΗ : 8.5 @ 65 ^F Centrifuge : Alkal Mud (Pm) : 0.1 12"X 2 Desander : 0.05/ 0.4 Pf/Mf Desilter 4"X 12 1.5 Chlorides -ma/1 : 33000Decasser Hardness Ca : 280 K+ PPM : 29000 MUD VOLUME ACCOUNTING 661 KCL WT % Oil Added : : 5.5 :10 dump PHPA COR : 1.0 Water Added: surface/SCE:25 S03= Mud Built :90 : 10 down hole :75 np Value : 0.600 Mud Received: Kp -1b-sec^n/100ft2: 0.78428 Mud Disposed: 110 na Value : 0.507 Ka -1b-sec^n/100ft2: 1.39972

Remarks:

M/U & RIH with T/T run DST #2.Retrieve sample-whole mud. M/U and RIH.Drill f/1951m.-1956m.D/hole losses=3-5bbl/hr Pressure test BOPs and surface equipment. Make up and RIH with test tool. Work Stuck pipe at 1945m. Set packer and conduct DST #2. Cycle for 2 hrs and close sample chamber. Pull free and POOH. Test sample chamber contents - 29,000 ppm choride whole mud. Make up BHA and RIH. Drill from 1951m-1956m.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 2674 Cumul Cost : 55478

					Maillourton (1	\	1 +				PRESE	NT ACTIVITY	,	
P.O. BOX 42842										J ,	SPUD (DATE <u>/U</u>	MAY	1		1/2 1104	<u> </u>
OPERATOR		0010	<i>J</i> . (, , ,)		0 , , , , , ,				ONTRA	CTOR					1	RIG NO.	
REPORT FOR	1=/	2155		z: <u>/</u>)_				- B	EPORT FO		EN	TURY	<u> </u>		SECTION	, TOWNSHIP, RA	ANGE
101	<u> - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	100	r11							RO	CE		~20		STATEUPROV	NORE	
WELL NAME AND NO.	10.84	#	1			FIELD OF		CK NO.	11/			PARISH OF			1	TOPIA	
DRILLING A			Ť	CAS	SING				(BBL)					RCULATIO	ON DATA		
BIT SIZE TYPE	JET	SIZE		SUF	FACE	HOLE		PIT	s	PU	MP SIZE		×		ANNULAR V	EL (ft/min)	
8/2 2170	,3×	11	17/2		@7.77 J	39			216				1/2	7/2	DP 43	DC	\$
DRILL PIPE TYPE SIZE	LEI	NGTH		INTER	MEDIATE	TOTAL CI			DLUME	- 11		(E. MODEL	_ FF	SUMED F	CIRCULATIO PRESSURE	(psi)	_
4/2 16.6			 	in.	@ ! MEDIATE	IN STORA		09	IGHT	- 1	/stk	775 3		55 %		1325	
DRILL PIPE TYPE		NGTH ,		_		12	_		70			. 1	~	132	UP (min) (strk)	55	-
A/2 VILLOP DRILL COLLAR SIZE		NGTH	PRO	in.	ON OR LINER	MUD TYF		تــلــ	7		05	<u>4</u>			TOTAL CIRC		
614	161			in.	@ 1	1 /2	/~/	10	IPA	ьы	7.13 Imin			ろのご gal/min	TIME (min) (strk)	85~	~ .
2 17	1.7.27.					OPERTIE		<i>,,</i>			MUE	PROP	ERTY S	PECIFICA			
Sample From					ØF.L. □ PIT	ۯ F.L.	PIT	WEIGH	Τ			VISCOSIT			FILTRATE	,	
Time Sample Taken				$\neg \uparrow$	23:30	06:	<i></i>	9	0-7	1/21	7	35	. 17	pre /1/		766	
Flowline Temperature (°F)				120149	122					RECO	OMMEN	DED TO	UR TREA	ATMENT		
Depth (ft) (TVD	<u> </u>	1		ft)	1453	1980					-				\	04001	1100
Weight [7] (ppg)	☐ (lb/cu	ft)	□ (sp		9.1	9.0		-1-14		·	a	, 	~ ~~	2	5/11/	in the co	
Funnel Viscosity (sec/q			•F		40	39	•							نوــــــــــــــــــــــــــــــــــ	2 - 11		- ,,
Plastic Viscosity cp @		°F		\neg	16	15			-22-21-7	ن دو ن م		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2000	44 4 7 °	900
Yield Point (lb/100 ft²)				-	15	14			/~~					·			
Gel Strength (lb/100 ft²)) 10 sec/10	min		\dashv	<u> ۱۵</u>	7 18	3										
Filtrate API (cm³/30 mil	·			\dashv	7	5.4							REMAR	RKS			
API HTHP Filtrate (cm ³		 D	۰F	\dashv	<u> 5.0 </u>	3.4								e:	٠٠٠٠ د در . ۲	ct Pro	14.42
Cake Thickness (32nd			-	\dashv	, 1 -	, 1-			a por	مىرىن ج	ر م	,	سا دی نویس سد دوسو بر	7777	- 1000		
Solids Content (% by \			□ retc	ort	7.5	7 5	-		7./	7	, ,		0.44		015		
Liquid Content (% by \					94.5	916	.~		<i></i>				. مر مر د مر مر			· · · · · · · · · · · · · · · · · · ·	
Sand Content (% by Vo					, */	0.7				:	200	u R	ا م جرا	.3611	54.016	CUTMU	10
Methylene Blue Capac		quiv			12.5	11.5		-,	· · · · · · · · · · · · · · · · · · ·	7			7 700		TIEF	500000	,ç
pH 🗆 Strip	☐ Meter		۰F	\neg	_/2.3	9.0			<i>B. 12 12</i>					ر در در	200	C/	٠
Alkalinity Mud (Pm)				\dashv	2.5	0.1			دکاردو ور د را د								
Alkalinity Filtrate (P ₁ /M ₁	3			\neg	-0:05-	,	•/15	77	<i>/</i>		 ,			756m			
Chloride (mg/L)	<u>,</u>			\neg	05 10.4	720	7-	- ,:`}									
Total Hardness as Cald	ium (mg/L)		\dashv	33000 280	100		GI	LES	- Z	6/12	4 5	TILL	RE	a 1x	CRON	OX
		·		\neg	29000	2900			FOR	/-	كبيح	A -	アム	and s			
KCI 1/2/	,			\neg	5-5-	5.5		17.65	11000		1111	-100	. /2	.7	Ch.	1.5 c. Pc	7
211.211					1:0	0.9			12717			Clari	: /	1.8	7	1.2.61	ىرىد ب
Co.					40	I B								— — — — — — — — — — — — — — — — — — —	-)		
73	Kr /	/2-	. 7	7	16/0	10	7	7		\overline{T}	7	/	7	7	7		
PRODUCT INVENTORY	hc,	Sur 3-	40	20	Drizer Cha	5¢ 4./	,		/ /		/			/ /	/	EQUIPMENT	
STARTING	1		1		* (` (T									SOLIDS	EQUIFMENT	
INVENTORY 300	ł 1		9		1 1	-	- 1							<u></u>			
	320	62	-/-	62	72	88	4								HAKER #1	2,50,	mes
RECEIVED	320	62		62	32	88										2,50,	
RECEIVED USED LAST		62 2	3	3		88								SI	HAKER #1	2 , 50	mes
RECEIVED USED LAST 24 hr 300 CLOSING	40	2		33										Sł	HAKER #1 HAKER #2 UD CLEANER	2 × 50,	mes
RECEIVED USED LAST 24 hr 30 CLOSING INVENTORY 770	40		3 6	3	7 32 8	88 -								Si Mi	HAKER #1 HAKER #2 UD CLEANER_ CENTRIFUGE	2 x 50 1	mes mes
RECEIVED USED LAST 24 hr 30 Closing INVENTORY 370 COST LAST 90 24 hr 45	40	2 60		3	328									Si Mi	HAKER #1 HAKER #2 UD CLEANER	2 x 50 1	mesi
RECEIVED USED LAST 24 hr	40 280 •40	7 60 48	3 6 .87	3 59 59 471	32 8	B8								Sł Mi	HAKER #1 HAKER #2 UD CLEANER_ CENTRIFUGE. DESANDER DESILTER	1.5	mes mes hour
RECEIVED USED LAST 24 hr	40 280 •40	7 60 48	3 6 .87	3 59 59 471	7 32 8	B8	WAREH	IOUSE F	PHONE	DAILY				St	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO	2 , 50 , 6, 1	mes mes hour
RECEIVED USED LAST 24 hr 30 CLOSING INVENTORY 370 COST LAST 90 24 hr 1/65 USED USED USED USED USED USED USED USE	40 280 .40 458 4.40	2 60 .48 263 71.74	.3 6 .87 .246	3 55 471 PI	7 32 8 11 17/40 4 HONE 932548	B8				# 2	62	6.16		SH	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO	2 7 50, 1 5 1 5 st 0 18	mes mes hour
RECEIVED USED LAST 24 hr 30 CLOSING NVENTORY 370 COST LAST 90 24 hr 45 USED USED USED USED USED M-I REPRESENTATIVE	40 280 .40 458 4.40	2 60 .48 263 71.74	.3 6 .87 .246	3 55 471 PI	7 32 8 11 17/40 4 HONE 932548	B8				# 2	62			SH	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO	2 7 50, 1 5 1 5 st 0 18	mes mes hou
RECEIVED USED LAST 24 hr 30 CLOSING INVENTORY 370 COST LAST 90 24 hr 455 USED USED USED USED USED USED USED USE	40 280 .40 458 4.40	2 60 .48 263 71.74	.3 6 .87 .246	3 55 471 PI	7 32 8 11 17/40 4 HONE 932548	B8				# 2	62			SH	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO	2 7 50, 1 5 1 5 st 0 18	mes mes hour
RECEIVED USED LAST 24 hr 30 CLOSING INVENTORY 370 COST LAST 90 24 hr 455 USED USED USED USED USED USED USED USE	40 280 40 458 4.40 158	2 .48 263 71.744 REPO	.3 .87 .246 122 29	5 9 5 9 471 PI SUB	7 32 8 11 17/40 4 HONE 932548	BB inge	RMS		COND	# 2	62	T FORT	TH ON	CU CU	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO	2 × 50,	mes mes hour
RECEIVED USED LAST 24 hr CLOSING INVENTORY 370 COST LAST 24 hr V65 USED WHI REPRESENTATIVE NOTICE	40 280 40 458 4.40 158	2 48 263 71.744 REPO	.3 .87 .244 .22 29 RT IS	SUB	7 32 8 1 17/20 4 HONE 732546 JECT TO	58 52 2 THE TE	RMS	AND	CONDI	# 2	62. S SE	T FORT	TH ON	CU €.	HAKER #2 HAKER #2 UD CLEANER_ CENTRIFUGE. DESANDER DESILTER JMULATIVE CO SE SIDE H HYDRAULI	2 × 50,	mes mes hou
RECEIVED USED LAST 20 SLOSING NIVENTORY 370 SOST LAST 24 hr 45 SED OTHER REPRESENTATIVE NOTICE TIME DISTRIBUTIO Rig Up/Service	280 .40 458 .4.40 458 40 40	2 -48 263 -21 744 MUD Water	3 -57 -246 722 29 RT IS	3 55 55 471 471 YY SUB	32 de la serie de	SS THE TE SO Low Gravi	RMS	AND	CONDI	TION Zero	S SE	T FORT	TH ON UD RHEC	CU &	HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO SE SIDE H HYDRAULI	2 × 50 ,	mes mes hou hou
RECEIVED USED LAST 24 hr 300 CLOSING INVENTORY 370 COST LAST 24 hr 45 USED USED USED INTERPRESENTATIVE WHI REPRESENTATIVE NOTICE TIME DISTRIBUTIO Rig Up/Service Drilling	40 280 40 458 4.40 158	7 48 263 27, 74, 4 REPO!	RT IS VOLUM r Added Built (bb	3 5 5 5 4 7 1 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32 PARCE AND AND AND AND AND AND AND AND AND AND	BS3 In ESS THE TE SO Low Gravi Low Gravi	RMS	AND	CONDI	Zero n Fac	S SE	MI	TH ON UD RHEC Avg ROF % Cutting	CU ₹;	HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO SE SIDE H HYDRAULI ECD @ _ Leak Off	2 × 50 , 1 × 5	mes mes hour hour hour
ACCEIVED JSED LAST 24 hr JCD. SLOSING NIVENTORY 770 COST LAST 24 hr JSED LOSING NOTICE TIME DISTRIBUTIO Rig Up/Service Drilling Reaming/Coring	280 .40 458 4.40 458 1.41 2.41 2.41 3.41 4.42 4.42 4.43 4.43 4.44 4.44 4.44 4.44	AUD Water Mud Mud	RT IS VOLUM r Added Built (bb Receiver	5 5 5 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 32 8 11 17 12 01 4 17 12 01 4 17 12 12 12 12 12 12 12 12 12 12 12 12 12	BSS THE TE SO Low Gravi Low Gravi Bentonite	RMS	AND	CONDI	Zero n Fac	Gel ttor p	MI 3 507 40	ON RHECO	CCU ST PREVERS	HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO SE SIDE H HYDRAULI ECD @- Leak Off	2 x 50 , 1.5 IST 2 / 18 IEREOF. CS	mes mes hou hou hou
ACCEIVED USED LAST 24 by 370 CLOSING NIVENTORY 370 COST LAST 90 24 by 45 MAI REPRESENTATIVE WHITE DISTRIBUTION Rig Up/Service Drilling Reaming/Coring Circulating	280 280 458 458 444 2 7/22 2 7	Z 40 48 263 71744 REPOI	RT IS VOLUM r Added Built (bb Received	5 5 5 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 32 8 1 17 18 01 4 18 18 18 18 18 18 18 18 18 18 18 18 18	THE TE SO Low Gravi Low Gravi Bentonite Bentonite	RMS	AND	CONDI	Zero n Fac k Fac Bit H	S SE Gel ttor ydraulio	MI ? .507 40	OD RHEC	REVERS	HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER JMULATIVE CO SE SIDE H HYDRAULI ECD @ - Leak Off hhp - /70	2 x 50, 1.5 IEREOF. CS Q245 HSI 3 0 4	mes mes hou hou hou July Jet Vel
ACCEIVED JUSED LAST 24 hr JOCUSING NIVENTORY 370 COST LAST 24 hr JOSE HAT REPRESENTATIVE WHITE PROPERSENTATIVE TIME DISTRIBUTIO Rig Up/Service Drilling Reaming/Coring Circulating Tripping	280 .40 458 4.40 458 1.41 2.41 2.41 3.41 4.42 4.42 4.43 4.43 4.44 4.44 4.44 4.44	Z 40 48 263 71744 REPOI	RT IS VOLUM r Added Built (bb Receive Dispose	SUB ME ACC (bbl) ad (bbl)	7 32 6 11 17 18 01 18 18 18 18 18 18 18 18 18 18 18 18 18	THE TE SO Low Gravit Low Gravit Bentonite Bentonite, Drill Solid	RMS LIDS . ity % ity, pp % ppb	AND	CONDI 30 0 1 2 11 2	Zero n Fac k Fac Bit H	Gel stor , ydraulic lar Sec	MI 3 507 40	UD RHEC Avg ROF Cutting psi 773	SEVERS DLOGY and 7 3 96 7 3 2	HAKER #2	2 x 50 , 1.5 IST 2 / 18 IEREOF. CS	me: hou hou local
ACCEIVED USED LAST 24 hr 37.0 CLOSING NIVENDAY 37.0 COST LAST 4 hr 45.5 WH REPRESENTATIVE WHOTH REPRESENTATIVE TIME DISTRIBUTIO Rig Up/Service Drilling Reaming/Coring Circulating Tripping Survey	280 280 458 458 444 2 7/22 2 7	Z 40 48 263 71744 REPOI	RT IS VOLUM r Added Built (bb Received	SUB ME ACC (bbl) ad (bbl)	7 32 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE TE SO Low Gravit Low Gravit Bentonite Bentonite Drill Solid	RMS LIDS ity % ity, pp % , ppb s % s, ppt	AND	CONDI 30 0 1 2 11 2 1.8	Zero n Fac k Fac Bit H Annu Hole	Gel stor / ydraulic lar Sec	MI 3 507 40	ON PHECO Avg ROF Cutting psi 973 1	SEVERS DLOGY and 73 2 9 5	HAKER #2	2 x 50, 1.5 IEREOF. CS Q245 HSI 3 0 4	mes mes hou hou hou July Jet Vel
ACCEIVED USED LAST 24 hr 30 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOST LAST 90 24 hr 95 WAST NOTICE TIME DISTRIBUTIO Rig Up/Service Drilling Reaming/Coring Circulating Tripping Survey Logging	280 280 458 458 444 2 7/22 2 7	2 40 48 263 71 744 MUD Water Mud Mud Mud	RT IS VOLUM r Added Built (bb Receive Dispose	SUB ME ACC (bbl) ad (bbl)	7 32 10 11 12 12 12 12 12 12 12 12 12 12 12 12	Drill Solid Shale CE	RMS LIDS LIDS tity % ty, pp % ppb s % s, ppt C, ppt	AND	CONDI 30 0 1 2 11 2	Zero n Fac k Fac Bit H Annu Hole Pipe	Gel stor potential sect	MI 3 507 40 is tion	UD RHECON Cutting psi 1 773 1 8 633	SEVERS DLOGY and 7.3 2 9.5	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER MULATIVE CO SE SIDE H HYDRAULIU ECD @- Leak Off hhp - 170 3 3 3 3 3 3	2 x 50, 1.5 IEREOF. CS Q245 HSI 3 0 4	mes mes hour hour hour hour hour hour hour hour
RECEIVED USED LAST 22 hr 20 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NVENTORY 370 CLOSING NOTICE TIME DISTRIBUTIO Rig Up/Service Drilling Reaming/Coring Circulating Tripping Survey Logging Running Casing	280 .40 .458 .4.46 	2 40 48 263 71 744 Mud Mud Mud Mud Mud Mud Mud Mud Mud Mud	RT IS VOLUM r Added Built (bb Receive Dispose	3 5-5 4711 SUB ME ACC (bbl) bil) dd (bbl)	7 32 10 17 17 17 17 17 17 17 17 17 17 17 17 17	THE TE SO Low Gravi Low Gravi Bentonite Bentonite, Drill Solid Shale CE D/B Ratio	RMS LIDS whity % ppb s % s, ppt C, ppt	AND	CONDI 30 0 1 2 11 2 1.8	Zero n Fac k Fac Bit H Annu Hole Pipe Critic	Gel ctor / ydraulic lar Sec Size OD al Veloci	MI SUT	UD RHECE Avg ROP % Cutting psi 973 1 8 655 £5	CLU ST	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER MULATIVE CO SE SIDE H HYDRAULIU ECD @- Leak Off hhp - 170 3 SS SS SS SS SS SS SS SS SS SS SS SS SS	2 x 50, 1.5 IEREOF. CS Q245 HSI 3 0 4	mes mes hour hour hour hour hour hour hour hour
RECEIVED USED LAST 24 hr 3/O CLOSING NVENTORY 3/O CLOSING NVENTORY 3/O CLOSING NVENTORY 3/O 24 hr 4/S USED 24 hr 4/S WISED CIONING AND AND AND AND AND AND AND AND AND AND	280 280 458 458 444 2 7/22 2 7	2 42 263 71 744 MUD Water Mud Mud Mud Mud Mud Mud Mud Mud Mud Mud	RT IS VOLUM r Added Built (bb Receive Dispose	SUB ME ACC (bbl) oil) dd (bbl)	7 32 6 17 20 01 6	THE TE SO Low Gravi Low Gravi Bentonite Bentonite, Drill Solid Shale CE D/B Ratio High Grav	RMS LIDS tity % % ppb % ppb s % s. ppt C, ppt	AND	CONDI 30 0 1 2 11 2 1.8	Zero n Fac k Fac Bit H Annu Hole Pipe Critic	Gel stor y draulic lar Sec Size OD al Velociar V	MI SUT	UD RHEC Avg ROF Cutting psi 773 1 8 633 £ 5 £ 9 £ 0	CLOGY and	HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER MULATIVE CO SE SIDE H HYDRAULI ECD @- Leak Off hhp - /70 3 //10 //2	2 x 50, 1.5 IEREOF. CS Q245 1. HSI .	mes mes hour hour hour hour hour hour hour hour
RECEIVED USED LAST 24 hr 3/O CLOSING NIVENTORY 3/O CLOSING INVENT	280 .40 .458 .4.46 	MUD Water Mud Mud Mud Mud Startit Endir	RT IS VOLUM r Added Built (bb Receive Dispose	SUB ME ACC (bbl) od (bbl) dd (bbl)	7 32 6 17 20 01 6	THE TE SO Low Gravi Low Gravi Bentonite Bentonite, Drill Solid Shale CE D/B Ratio	RMS LIDS ity % % ppb % ppb ss % s. ppt C, ppt	AND	CONDI 30 0 1 2 11 2 1.8	Zero n Fac k Fac Bit H Annu Hole Pipe Critic Annu Visco	Gel stor y draulic lar Sec Size OD al Velociar V	MU 3 SU7 SU7 SU7 SU7 SU7 SU7 SU7 SU7 SU7 SU7	UD RHECE Avg ROP % Cutting psi 973 1 8 655 £5	CLU ST	HAKER #1 HAKER #2 UD CLEANER CENTRIFUGE DESANDER DESILTER MULATIVE CO SE SIDE H HYDRAULIU ECD @- Leak Off hhp - 170 3 SS SS SS SS SS SS SS SS SS SS SS SS SS	2 x 50, 1.5 IEREOF. CS Q245 1. HSI .	mesi mesi mesi mesi mesi mesi mesi mesi

Date: 30/05/95 Depth: 2037.0 m M-I Drilling Fluids Company Spud Date: 09/05/95 Activity: DRILL 8.5" DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Operator : GFE RESOURCES LTD Contractor : CENTURY Description: EXPLORATION Well Name : DIGBY 1 Field/Area : OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH CASING MUD VOLUME (bb1) Bit: 8.500 in Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Hole Volume: 421 Casing ID: 8.680 in Liner ID: Drill Pipe 1 OD: 4.500 in 1820 m in Pits Volume: 232 Drill Pipe 2 OD: 4.500 in 56.0 m Casing TD: 337.0 m Liner TD: m Circulating Volume: 653 m Mud : POLYPLUS/KCL MUD Casing TVD: 337.0 m Liner TVD: Drill Collar OD: 6.250 in 161.0 m SOLIDS ANALYSIS MUD PROPERTIES CIRCULATION DATA (% / lb/bbl) : FL 23:00 : 136 ^F Flow Rate 300 NaC1 : 0.6 / 7 Sample From -gal/min : Flow Line Temp DP Annular Vel -m/min: 43.1 KC1 : 1.5 / -m :2037.0/2037.0 DC Annular Vel -m/min : Low Gravity Solids : 3.3 / 30 Depth/TVD 67.5 Mud Wt -1b/gal : 9.1 DP Critical Vel -m/min: 80.7 Bentonite : 0.8 / -s/qt: 40 @ 124^F -cps: 16 @ 110^F Funnel Vis DC Critical Vel -m/min: 103.0 Drill Solids : 2.2 / 20 : N/A / N/A : - / 2.0 -psi: 1325 Plastic Visc Circ. Pressure Weight Material YP/R3 -1b/100ft2 /deg : 15 / 2 Bottoms Up -min : 46.5 Chemical Conc Inert/React : 1.82 Average SG : 2.60 10s/10m Gel -lb/100ft2: 3 Total Circ Time -min: 91.4 API F Loss -cc/30 min: 4.8 HTHP F Loss -cc/30 min: @ ^F PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size -1/32": 1 Potassm Chloride 25 KG S 80 Shaker #1 : 3 X 84 24 Cake API/HT 25 KG S 3 Solids -%vol: 3.5 Caustic Soda Shaker #2 -%vol: /96.5 Polyplus Powder 25 KG S 10 Shaker #3 0il/Water : Polypac 25 KG S 3
25 KG S 2 -%vol: 0.5 Shaker #4 Sand : MBT -1b/bb1 : 10.0Mud Cleaner : 9.0 @ 65 ^F Centrifuge 12"X 2 Alkal Mud (Pm) : 0.1 M-I Bar 25 KG S 50 Desander : 0.05/ 0.5 Pf/Mf XCD 25 KG S 1 Desilter : 4"X 12 Mica Medium -mg/1:3300050 LB S 18 Chlorides Degasser : 160 Kwik Seal M 40 LB S 12 Hardness Ca MUD VOLUME ACCOUNTING 667 K+ PPM : 29500 Oil Added : dump/SCE :40 KCI WT % : 5.5 PHPA COR Water Added: surface :20 : 1.0 S03= Mud Built :180 down hole :33 : 0.600 Mud Received: Kp -1b-sec^n/100ft2: 0.78428 Mud Disposed:93 na Value : 0.595

Remarks:

Ka -1b-sec^n/100ft2: 0.80831

Drill 8.5" hole from 1956m - 2038m. D/hole losses contin. @ 1-2 bbl/hr. Drill ahead to confirm basement depth. Drill 8.5" hole from 1956m - 2038m through possible weathered basement. Drill ahead to confirmed basement. Downhole losses continue at approximately 1-2 bbl/hr. Treat system with LCM. Current hole deviation ≈ 5.5 deg.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 5432 Cumul Cost : 60605

M-I Drilling Fluids Company Date: 31/05/95 Depth : 2087.0 m DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: WIPER TRIP Operator : GFE RESOURCES LTD Contractor : CENTURY Description : EXPLORATION Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH MUD VOLUME Bit: 8.500 in CASTNG (bb1) Casing OD: 9.625 in Liner OD: Nozzles:11/11/11/ / / 1/32" in Hole Volume: 432 Drill Pipe 1 OD: 4.500 in 1870 m Casing ID: 8.680 in Liner ID: Pits Volume: 258 in Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 56.0 m m Circulating Volume: 690 Casing TVD: 337.0 m Liner TVD: Drill Collar OD: 6.250 in 161.0 m m Mud : POLYPLUS/KCL MUD MUD PROPERTIES CIRCULATION DATA SOLIDS ANALYSIS (% / lb/bbl) : FL 23:00 Flow Rate -gal/min : 300 : 0.6 / 7 NaC1 Sample From : 1.5 / 14 : 138 ^F DP Annular Vel -m/min: 43.1 KC1 Flow Line Temp -m :2087.0/2087.0 Low Gravity Solids : 3.3 / 30 Depth/TVD DC Annular Vel -m/min: 67.5 Mud Wt. -1b/gal : 9.1 DP Critical Vel -m/min: 86.7 8 Bentonite : 0.9 / -s/qt : 39 @ 124^F Funnel Vis DC Critical Vel -m/min: 104.2 Drill Solids : 2.2 / 20 Plastic Visc -cps : 15 @ 118^F Circ. Pressure -psi : 1400 Weight Material : N/A / N/A YP/R3 ~1b/100ft2 /deg : 13 / 3 Bottoms Up -min : 47.6 Chemical Conc : - / 2.0 10s/10m Gel -1b/100ft2:3 / 7 Total Circ Time -min: 96.6 Inert/React: 1.71 Average SG: 2.60 API F Loss -cc/30 min : 4.4 HTHP F Loss -cc/30 min: ^F PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Cake API/HT -1/32" : 1 25 KG S 1 Shaker #1 : 3 X 84 24 Caustic Soda 25 KG S 1 Shaker #2 Solids -xvol: 3.5Soda Ash M-I Gel 25 KG S 48 Shaker #3 0il/Water -%vol: /96.5 : -%vol: 0.5 25 KG S 2 Sand Sodium Bicarb Shaker #4 : MBT -1b/bb1 : 10.50S-1 25 KG S 2 Mud Cleaner : : 9.0 @ 65 ^F 50 LB S 14 рΗ Mica Medium Centrifuge 40 LB S 16 12"X 2 Alkal Mud (Pm) : 0.1 Kwik Seal M Desander 14 : 0.05/ 0.6 Pf/Mf Desilter 4"X 12 Chlorides -mg/1 : 32500 Degasser

Remarks:

Hardness Ca

K+ PPM

KCL WT %

PHPA COR

no Value

na Value

S03=

Ka

: 80 : 29500

: 5.5

: 60

Kp -lb-sec^n/100ft2: 0.63117

-1b-sec^n/100ft2: 1.45110

: 0.85

: 0.619

: 0.485

Continue to drill 8.5"f/2038m.-2088m.through pre-basement volcanics? POOH for wiper trip prior to logging. Continue to drill 8.5" hole from 2038m - 2088m through pre-basement? volcanics. POOH on wiper trip prior to logging.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 1529 Cumul Cost : 62096

MUD VOLUME ACCOUNTING 661

dump/SCE :45

surface

down hole

:20

:33

Oil Added :

Mud Built :95

Mud Disposed:98

Water Added:

Mud Received:

Date: 01/06/95 Depth: 2088.0 m M-I Drilling Fluids Company Activity : LOGGING DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 _______ Contractor : CENTURY Description : EXPLORATION Operator : GFE RESOURCES LTD Well Name : DIGBY 1 Field/Area: OTWAY BASIN Location : PEP 105 & PEP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Hole Volume: 432 Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Casing ID: 8.680 in Liner ID: Drill Pipe 1 OD: 4.500 in 1871 m in Pits Volume: 198 Casing TD: 337.0 m Liner TD: Drill Pipe 2 OD: 4.500 in 56.0 m m Circulating Volume: 630 Drill Collar OD: 6.250 in 161.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD CIRCULATION DATA SOLIDS ANALYSIS (% / 1b/bb1) MUD PROPERTIES : PIT 23:00 : ^F -gal/min : 300 NaC1 : 0.5 / 6 Sample From Flow Rate Flow Line Temp :
-m :2088.0/2088.0 : 1.5 / DP Annular Vel −m/min : 43.1 KC1 14 DC Annular Vel -m/min : 67.5 Low Gravity Solids : 3.5 / 32 : 0.9 / Mud Wt -lb/gal : 9.1 DP Critical Vel -m/min: 84.1 Bentonite - 8 -s/qt : 38 @ 88 ^F : 2.4 / 22 Drill Solids Funnel Vis DC Critical Vel -m/min: 100.3 : N/A / N/A Plastic Visc -cps: 14 @ 84 ^F Circ. Pressure -psi : 1400 Weight Material YP/R3 -1b/100ft2 /deg : 12 / 3 47.6 Chemical Conc : - / 2.0 Bottoms Up -min : 10s/10m Gel -1b/100ft2:3 / 7 Total Circ Time -min: 88.2 Inert/React : 1.86 Average SG : 2.60 API F Loss -cc/30 min : 5.0 HTHP F Loss -cc/30 min: @ ^F PRODUCTS USED LAST 24 HOURS SOLIDS EQUIPMENT Size Hours -1/32" : 1 Shaker #1 : 2X50+84 Cake API/HT -%vol: 3.5 Shaker #2 Solids -%vol: /96.5 Shaker #3 0i1/Water Sand -%vol : 0.25 Shaker #4 -1b/bb1 : 10.5Mud Cleaner MBT : 9.0 @ 70 ^F Centrifuge pН : Alkal Mud (Pm) : 0.1 12"X 2 Desander Pf/Mf : 0.05/ 0.55 Desilter : 4"X 12 -mg/1:30000Chlorides Degasser Hardness Ca : 160 : 27000 MUD VOLUME ACCOUNTING 661 K+ PPM KCL WT % : 5.0 Oil Added : dump/SCE : 90 : 0.8 Water Added: PHPA COR surface :15 S03= : 40 Mud Built : down hole :15 : 0.621 Mud Received: np Value Mud Disposed:120 Kp -1b-sec^n/100ft2 : 0.57674 na Value : 0.469 -1b-sec^n/100ft2: 1.48969 Ka

Continue wiper trip to 1000m.-hole good, no fill.Circ.B/U and POOH to log. R/U and run log #1 & 2 Continue wiper trip to 1000m - hole good, no fill. Circulate bottoms up, survey (deviation = 5.5 deg) and POOH to log. Rig up and run logs #1 & 2.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 0 Cumul Cost : 62096

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 0 Cumul Cost : 62096

DI DESTRUCTION		Magcob	oar/IMCC		resse	IIdS er/Halliburto	Lon Co	O.		A	D	DAT	re_	1 40	INE	19_	95	DEPTH 2088	p-1
P.O. BO	X 428	12 ■ 1	10110	TON T	FΥ	AS 770/	101	ISA		7		Q PI	חנו	DATE/	211	44		SENT ACTIVITY	
OPERATO!	R			S 27		W1124	ب _ ب	,011		CONT	RACT	me.		STU			1	// RIG NO.	
REPORT FOR	7	·~/ ,								REPORT	FOR	RUG				201	/	SECTION, TOWNSHIP,	
WELL NAME							1	FIELD OR BLO				COUN	TY, I	PARISH (OR OFF	SHOR	Ē,	STATE/PROVINCE	
				#/			-#	DICE				AREA	2	TWA	y 13.			VICTORIA	
DR BIT SIZE	TYPI	ASSEME	BLY JET SIZE			SING RFACE	-#	MUD V		IE (BBL	-)	PUMP	617			CIR		ION DATA N. ANNULAR VEL (tt/min)	
511 5125	1111	• '	JE I SIZE	73	,	. @337	- 11	4.85			_	FOMP	3141	-	6	^	ئى ئى	, ,	10
DRILL PIPE	TYPE		LENGTH			MEDIATE		TOTAL CIRCUI	ATING	145 VOLUME	,			KE, MOD			UMED	CIRCULATION	
SIZE					in	. @	tt.	6	30			Wn?		وحرق	80	EPF	75	PRESSURE (psi)	00
DRILL PIPE SIZE	TYPE		LENGTH		INTER	MEDIATE	\neg	IN STORAGE	V	VEIGHT		bbi/stk					stk/m	LIP (min)	
	<u></u>					@	ft.	<u>68</u>		8.6	2	0.	0	705			01	(strk)	
DRILL COLLA	A SIZE		LENGTH	PROI		ON OR LINE		MUD TYPE	11	1100	2	bbl/mir					س. پاک	TOTAL CIRC TIME (min)	
					in.	@ MUD E	#. 2000	PERTIES	7/~	,) BBOI	SERT	V 60	gal/m	in (strk)	
Sample From					-			C F.L C PIT	WEIG	нт			101	VISCOS		1 31	COILIC	FILTRATE	
						DFL DF		C.F.L. D.PII	-	9.0	- 4.	ومرمرا		.3.	5	25.	sie/	71 5 700	
Flowline Terr		(0E)			-	23 0	2		 	,							<u> </u>	ATMENT	
Depth (ft)	(TVD	(-1)	.		41				┝╾				===						
		Ω //b	/cu ft)		(t)	2089	+		 -	Dur	7 12	-/		F.10	<u></u>	571-		1811 P. J. S. S. S. S. S. S. S. S. S. S. S. S. S.	15.7
Weight () (Funnel Visco					91)	<u>-9.1</u>	+		 -			17000	<u>-</u>	13.1					
			~~~~	3 -		_33_	$\dashv$		┝╌	2/1	406	1º 20	05	565	Les.	111.	<u> </u>	0000000 - 1000	
Plastic Visco Yield Point (I			Ja -			14	-												
Gel Strength			/10 min			12	+	<del></del>	├										
Filtrate API (						317	-		├				-:-		DEA	MARK	'e		
API HTHP F				۰F		<u> </u>	+		-							==			<del></del>
Cake Thickne						1:1-	$\dashv$	·····	19	متعمدة	<u>~</u>		_?	1513	_T :3	2/5	·	12 11.10.00 co 11.	221
Solids Conte	<u></u>			d 🗆 retor	1				1-0	نعدد	٠,		<u>)                                    </u>	<i>F. 1</i> is	4				,
Liquid Conte					-	_ 3 5 . 96 :	-1-		<del>                                     </del>			/-	<u>-</u>	£		<u> </u>	ے نے	may a tox	
Sand Conten					$\neg$	0.25		'	广	100	01	<u> </u>	<u>.</u>		<u> </u>			<del></del>	
Methylene Bi			viups k			10:5			<del>                                     </del>	-211	<u> </u>	10 /	· ·	: .2			12.1		
	Strip	☐ Met		۰F	7	9.0	+	<del></del>	1		166					<u></u>	1050	<u> </u>	
Alkalinity Mu	<del></del>				7	005	-		<b>†</b>		<u>e. e.</u>				?//				
Alkalinity Filt		1.)			7	·0510·		<del></del>	<del> </del>		 per per per						12.11		
Chloride (mg					$\neg \uparrow$	3000	_		<del>                                     </del>		ا موادم الموادم دارم الموادم			, e , = ,			4.	<u> </u>	
Total Hardne		lcium (mg	/L)		_	160	1		<del>                                     </del>	****	<u> </u>			<i>26.7</i> -	<u> </u>	<u></u>		<u> </u>	
K + ,.	-10		<u></u>			2700			<del>                                     </del>									<del></del>	
KCI	, ,	./			7	5 O			<del>                                     </del>									<del></del>	
PHPA		<del></del>				0.80	$\top$		<u> </u>										
50.	<u> </u>					40													
PRODUCT INVENTORY							/	' / .				' /	/	/.		/	/ /	SOLIDS EQUIPMEN	т
STARTING NVENTORY	1	1	1	1-1				1		1	1	1		<u> </u>	1	1	<u> </u>	2 x 50 HAKER #1 7 x 5:4	
RECEIVED	+	+	+	1							$\vdash$	_			<del> </del>	+		HAKER #1	
JSED LAST	_		+	11				+			T			<b> </b>	$\vdash$	+			mes
24 hr CLOSING			+	+		-		$\rightarrow$		<del> </del>	+				-	+	N	NUD CLEANER	mes
NVENTORY			-	1						ļ	↓_					+		CENTRIFUGE	hour
COST LAST 24 hr																		DESANDER	hour
USED (from IADC)																T	7	DESILTER	hou
M-I REPRESEN	NTATIVE				PI	HONE	<b></b>	WAREH	IOUSE	PHONE	עם	AILY COS	T	L			Ci	JMULATIVE COST	.100
PAUL	~1	, , , , , , ,	,,		(3	4325.	18.	22			18	0.	0	ري			12	62759 96	
									ANE	CON	DITI	ONS S	ET	FOR	гн о	N RE		SE SIDE HEREOF.	
			TI		==		T=		==		п	==	=		==				
TIME DIS	STRIBUTI	ON (hrs)	МП	D VOLUME	E ACC	COUNTING		SOLIDS	ANALY	SIS				М	UD RH	EOLO	OGY an	d HYDRAULICS	
			11								11								

TIME DISTRIBU	TION (hrs)	MUD VOLUME ACC	OUNTING	SOLIDS ANAL	YSIS	MUD RHEOLOGY and HYDRAULICS						
Rig Up/Service		Water Added (bbl)		Low Gravity %	3.5	Zero Gel	Avg ROP	Avg ROP		ECD @		
Drilling		Mud Built (bbl)		Low Gravity, ppb	316	n Factor	% Cutting			@		
Reaming/Coring		Mud Received (bbl)		Bentonite %	0.8	k Factor	psi	%	hhp	HSI	Jet Vei	
Circulating	1.0	Mud Disposed (bt	120	Sentonite, ppb	7.6	Bit Hydraulics					1	
Tripping	7.0	SUPERER	15	Drill Solids %	24	Annular Section	1	2	3	4	5	
Survey	1.0	Dura	70	Drill Solids, ppb	21.5	Hole Size	1		P			
Logging	150	Dimer	15	Shale CEC, ppb		Pipe OD						
Running Casing	Ľ	TOTALTIND	678	D/B Ratio	1.71	Critical Velocity		/			1	
Testing		Starting Depth		High Gravity %		Annular Velocity	12					
Fishing		Ending Depth		High Gravity, ppb		Viscosity	1				1	
		New Hole Vol. (bbl)		KCI %. VUL	1.9	Annular Pressure						

Date: 02/06/95 Depth: 2088.0 m - -M-I Drilling Fluids Company DRILLING FLUIDS DATA MANAGEMENT SYSTEM Well No.: W0003 Spud Date : 09/05/95 Activity: RIH TO P&A ________ Contractor : CENTURY Description : EXPLORATION Operator : GFE RESOURCES LTD Well Name: DIGBY 1 Field/Area: OTWAY BASIN Location • PFP 105 & PFP 126 Report For: KEN SMITH Bit: 8.500 in CASING MUD VOLUME (bb1) Hole Volume: 447 Nozzles:11/11/11/ / / 1/32" Casing OD: 9.625 in Liner OD: in Casing ID: 8.680 in Liner ID: in Drill Pipe 1 OD: 4.500 in 2032 m Pits Volume: 170 Casing TD: 337.0 m Liner TD: m Circulating Volume: 617 Drill Pipe 2 OD: 4.500 in 56.0 m Casing TVD: 337.0 m Liner TVD: m Mud : POLYPLUS/KCL MUD Drill Collar OD: in m SOLIDS ANALYSIS ( % / 1b/bb1) MUD PROPERTIES CIRCULATION DATA : 0.3 / 4 : PIT 23:00 : ^F | NaC1 Sample From Flow Rate -gal/min : : 1.5 / -m/min : KC1 14 DP Annular Vel Flow Line Temp -m :2088.0/2088.0 Depth/TVD Low Gravity Solids : 4.5 / DC Annular Vel -m/min : 41 -1b/gal : 9.2 DP Critical Vel -m/min: 87.2 Bentonite : 0.8 / 7 Mud Wt Funnel Vis -s/qt : 40 @ 88 ^F | Plastic Visc -cps : 16 @ 84 ^F | : 3.5 / 32 DC Critical Vel -m/min: Drill Solids : N/A / N/A Circ. Pressure Weight Material -psi : : - / 2.0 YP/R3 -1b/100ft2 /deg : 14 / 3 Chemical Conc Bottoms Up -min : Inert/React : 2.70 Average SG : 2.60 10s/10m Gel -1b/100ft2:3 /8 Total Circ Time -min: API F Loss -cc/30 min : 4.8 SOLIDS EQUIPMENT Size ^F PRODUCTS USED LAST 24 HOURS HTHP F Loss -cc/30 min: @ Hours -1/32" : 1 Caustic Soda 25 KG S -1 Shaker #1 : 2X50+84 Cake API/HT 25 KG S -4 Shaker #2 -%vol: 3.5 Polyplus Powder Solids | -%vol: /96.5 25 KG S -1 Shaker #3 0i1/Water Polypac 25 KG S -1 Shaker #4 Sand -%vol: 0.25 Sodium Bicarb -1b/bb1 : 10.5Congor 303 25 LT D 1 Mud Cleaner MBT : 8.5 @ 70 ^F Cronox 2-100 208 LT 1 Centrifuge рΗ Alkal Mud (Pm) : 0.1 Desander 12"X 2 Pf/Mf : 0.05/ 0.4 Desilter : 4"X 12 -mg/1 : 27000Chlorides Degasser : 100 Hardness Ca MUD VOLUME ACCOUNTING 661 : 25000 K+ PPM Oil Added : dump/SCE : KCL WT % : 4.5 PHPA COR : 0.75 Water Added : surface :32 Mud Built :90 S03= : 40 down hole :15 : 0.616 Mud Received: np Value Mud Disposed:47 Kp -lb-sec^n/100ft2 : 0.68576 na Value : 0.500 -lb-sec^n/100ft2: 1.41607 Кa

#### Remarks:

Complete logging. Lay down BHA. RIH open ended and prepare to P & A. Complete logging with velocity survey and side wall cores. Lay down BHA. RIH open ended and commence P & A with plug #1.

M-I Sales Engineer: P.MARSHALL Warehouse: ADELAIDE Daily Cost : 60 Cumul Cost : 63019

		Dri	llin	a F	IL	iids	Co		Ì	IT			~ /	19 <u>- يى را</u>	G=	Ī	208	
mental mental so	* *** N	/lagcobar	/IMCO	A Dr	esse	r/Halliburton	Compai	ny <del>D</del>		1		DATE	- No.	JUN:419_		DEPTH_		
O. BOX 4	40040		TOUC	ON TI	EV/	\C 7701'	O I ICA	ប	l		· )	SPU	D DATE /	MAY				1 1
PERATOR	42042	- 110	7031	JIN, 11		10 / 1242	2 0 3 7	<u> </u>		CONTRA	ACTO		- Dr. (1222			I	RIG NO	
	GE	<u></u>	35.5	17	<u>-/&gt;</u>					REPORT F			ITUR	7		SECTION	ON, TOWNSH	IP RANGE
EPORT FOR	KE	S	1417	·/-/						HEFONI F	/			31112		1201	501011	
ELL NAME AND	D NO.							OR BLC						OR OFFSHOR		STATE/PRO	OVINCE とかべ	11
		<u> 6 /3 /</u>		<u></u>		SING		<u> </u>		E (BBL)	- 1		1 201		CULATIO		<u></u>	<u> </u>
IT SIZE	TYPE	SEMBL	Y T SIZE			RFACE	HOLE			TS	-#	PUMP S	SIZE	x			VEL (ft/min)	
0/5	1176	32	1 SILL	05%		@ 3.37	11	32		185	-			6	81.5	DP	. DC	
RILL PIPE	TYPE	LE	NGTH			<u>@ スンメァ</u> IMEDIATE	TOTA	L CIRCUL	ATING V	<u> </u>	-#	PUMP N	AKE, MOD	EL AS	SUMED	CIRCULAT		
ZE //	16.64				in	. @			617	:		.105	BP	50 F	F 95 %	PRESSUR	E (psi)	
RILL PIPE						MEDIATE	IN ST	ORAGE		EIGHT		bbl/stk			stk/min	BOTTOMS		
ZE 1 1/2 1	16:01	2			in	@	ft. /	24		स ह	l	00	705			(Strk)		
RILL COLLAR S	SIZE	LE	NGTH	PROD	OUCTI	ON OR LINEF	MUD	TYPE		, .						TOTAL CIF		
					in.	. @	ft.		201	PRIP	1	bbl/min			gal/min	(strk		
						MUD PI	ROPER	TIES	<u></u>			M		PERTY S	PECIFICA			
ample From						□ F.L. Ø Pi	T 🗆 F.	L □ PIT	WEIG				VISCOS			FILTRAT	-	
me Sample T	aken					23 00	.			90-	9.1	1010	30	5-45	5-0/97	<u> </u>	<u> 7 - 7 -</u>	<u></u>
owline Tempe	erature (°	F)							1			RE	COMME	NDED TO	UR TREA	TMENT		
<u>_</u>	rvo	· <u>·</u>	1		ft)	2088	-		T	1-1:11)			<u> </u>		1 0 5 1 1	. العراض و الشام	3. F.	: 12/1
eight (pp		[] (lb/c		☐ (sp			+		1	raug					×- ×- 1-			
nnel Viscosit	-			۰F	3.7	9.1+			1									
		AFIW	°F	<u>'</u>		40	+		╫									
lastic Viscosit					$\dashv$	16			+					···-				
eld Point (lb/1	<u>_</u>					14		,	<del> </del>									
el Strength (It			0 min			318		1	<del> </del>									
trate API (cm		·				4.8			<u> </u>					REMAF	IKS			
HTHP Filtra				°F			_		1-	000	111	R	UN	400	<u> </u>	1.00	FURCE	11 1
ake Thickness	s (32nd i	n. API/H	THP)			11-		1	<u> </u>			Ri	1~ 4	LOC P	3 0	10 ·	REMU	1200
olids Content	(% by V	ol) 🗆 ca	lculated	□ retor	rt	3.5						Re	11/ 2	C11 10	4 :	June	20011	<u>. موجود</u>
quid Content	(% by V	ol) Oil/Wa	iter			96.5	-	1		214	-	, , -	41 13	111	POOL	1 411	TH 131	111 1
Sand Content (% by Vol)						0.25			<u> </u>	111	20	12.12	<u></u>					
ethylene Blue	Capacit	y C cm³/cm	adnin			10.5	-											
pH ☐ Strip ☐ Meter @ °F						8.5				2 111	01	<i>,=</i>	1.11	PREP	ARE	70	51-7-1	200
Alkalinity Mud (P _m )						0 05			1			· ·						
Alkalinity Filtrate (P ₁ /M ₁ )						.05-10.	,	1	†									
hloride (mg/L)								<del></del>	†									
otal Hardness		um (ma/l				27000	4		$\dagger$									
		um (mgn				100	_		╁╌									
<u> </u>						75 cm	2		1	OTE:				1110				
KCI	1/2 6				_	4.5											305 C	
17/1/15						0.75	-										10000	
50%			,1,	·····	لــــ	,40			رىدا	1116	<u>08</u>	155	CA AI	PEARS	5 /~ /	-DC4	AS C	ROI
RODUCT	10 3	10 / C. O.	60.V	0/2/20	o / (0	20 2V	5/								/ /	/ SOUI	S EQUIPM	ENT
VENTORY FARTING	1803	10,0	( P. V	1 1		- 1 - 1		/	$\leftarrow$	$\leftarrow$		_	-	+	<del>′                                    </del>		2, 1,5	
VENTORY	52	1	-	36	21	49						-			SH	IAKER #1	-/ 4 - 5	meme
CEIVED	1		1												SH	IAKER #2_		me
SED LAST	81	,	,	_ ,	- '	-4									1.01	ID CI EANE	R	me
OSING		+	<del>  '</del>	<del>-</del>	<del>-/</del> .	_				+		-						
VENTORY	53	-	-	37	22					-	<u> </u>	-			(	CENTRIFUG	E	ho
ST LAST hr	131	51 27	1371	-15-34	. 2						L					DESANDER.		ho
ED	1		.25															
I REPRESENTA	ATIVE	5127	471		 	PHONE		WARE	HOUSE	PHONE	DAI	LY COS	FDC 4	- 346.	co lcu	DESILTER_ MULATIVE (	OST	ho
					i		160	- 1			11		2. 419	- 366. Su obe None	are gr		 2 క్ క	7
PHUL						19325												
N	OTICE	: THIS	REPO	HT IS	SUE	SJECT TO	THE:	TERMS	S ANI	CONE	OITIC	NS S	ET FOF	RTH ON	REVERS	E SIDE	HEREOF.	
			1				<del></del>				1							
TIME DIST	RIBUTIO	N (hrs)	MUD	VOLUM	E AC	COUNTING		SOLIDS	ANALY	rsis			1	MUD RHEC	LOGY and	HYDRAU	LICS	
	<del>- 1</del>		#==				+			T .	+-			T	<del>T</del>	T		
Rig Up/Servic	e	05	-	r Added (				ravity %		3.5		ro Gel		Avg ROP	<del> </del>	ECD @		
Drilling				Built (bbl	-	90	<del>                                     </del>	ravity, p	pb	325		actor		% Cutting	+	Leak O	<del></del>	<del></del>
Reaming/Coring Mud Received (bbl)						Bentor	nite %		#.2	k F	actor		psi	%	hhp	HSI	Jet Ve	
Circulating			Mud	Disposed	ldd) b	) 47	Bentor	nite, ppb	)	82	Bit	Hydrau	ulics	1	ļ	/	1	-
Tripping		40	50	م ابرسم جر	E	32	Drill S	olids %		2.2	Anı	nular S	ection	1	2	3	4	5
Survey			10/	HOLE		15-	Drill S	olids, pp	b	190	Но	le Size						
Logging		19.5					Shale	CEC, pp	ob	-	Pip	e OD						
Running Casi	ing		TO7.	14 10	10	7-41	D/B R	atio ·		1.26	Cri	tical Ve	locity	-				
esting			Starti	ng Depth	1		High C	Sravity %	6	-	An	nular V	elocity					
Fishing			Endir	ng Depth			High C	Gravity, p	opb	-	Vis	cositý						
			New	Hole Vol.	(bbl		ICC	1// 1	101	1-8	Ani	nular P	ressure	]	L			
																•		*

P.O. BOX										J			1	T ACTIVIT	Y د ص	
OPERATOR		HC	UST	ON, TE	EXA	S 77242	USA			11	D DATE Z	O MAY		11	P. 8	A
		E A	2	1 17					CONTRA		NIUR	4		1	RIG NO.	•
EPORT FOR			Ze?						REPORT FO	OR				ii	N, TOWNSHI	P. RANGE
ELL NAME	AND NO	W 5	11/	7-1			FIELD OR E	LOCK NO	).			スノヘノシシ OR OFFSHOR		STATE/PRO	VINCE	
YELL NAME A	Z	1687	#	/			DIEBY IV			AREA	OFWA	1 305	·V	3/1	CTORI	A
DRI	ILLING A	SSEMBL	Y		CAS	SING	MUD VOLUME (BBL)		1		CIR	CULATIO	n data			
BIT SIZE	TYPE	JET	SIZE	1	SUR	FACE	HOLE 4	24	PITS	PUMP	SIZE	х	IN.	ANNULAR	VEL (ft/min)	
		-			in.	@ ft	284	1	_	-				DP		
RILL PIPE	TYPE	LE	NGTH	11		MEDIATE	TOTAL CIRCULATING VOLUME			PUMP	MAKE, MOD	EL ASS	SUMED	CIRCULATION		
SIZE		}			in.	@ ft							%		. (60.)	
ORILL PIPE	TYPE	LE	NGTH	l I	NTERM	MEDIATE	IN STORAGE	١ ١	WEIGHT	bbl/stk			stk/min	BOTTOMS UP (min)		
01ZE					in.				-					(strk)		
RILL COLLA	R SIZE	LE	NGTH	PROD	OUCTIC	N OR LINER	MUD TYPE		/					TOTAL CIRC TIME (min)	3	
		<u> </u>			in.		1L	<u> (C//</u>	PIIPA	bbVmir			gal/min	(strk)		
					_	MUD PRO	PERTIES	11/51	OUT.	N		PERTY SP	PECIFICA	FILTRATE	:	
Sample From	n					□ F.L. □ PIT	D F.L D P	WEI	GHI		viscos	511 7		PILINAIE	:	
ime Sample	e Taken							٦								
lowline Tem	nperature (	'F)			$\neg$					R	COMME	NDED TO	JR TREA	TMENT		
Depth (ft) (TVD / ft)						_						_				
						+	SPOT			CRON	ux /	C-7U5	115 7	161-6		
Weight □ (ppg) □ (lb/cu ft) □ (sp gr)						<del> </del>		MUD	111.	-15-		<u> </u>				
unnel Visco		) API @		°F	_				Dun	0 11	<u> </u>	AFAC	- 10	يمين		
lastic Visco	sity cp @		°F_		$\perp$											
'ield Point (I	Ib/100 ft ² )							$\bot$								
Sel Strength	(lb/100 ft ²	10 sec/10	min		T	1	1									
iltrate API (	(cm ³ /30 mi)	1)										REMAR	KS			
PI HTHP F	·			۰F	$\neg \uparrow$			一	50 mm		01	1				
ake Thickn					_	,	,	1-6	O mal	NEE		<i>c</i> 1		<del></del>		
				□ roto	<del>,  </del>		<del> '</del>	1-					, - ,	1/2/	1000	
olids Conte				retor	1	<del></del>	ļ		SET CEMENT PLUG #1 F/ 1950-1890-							
iquid Conte			ter				/-	# 2 F/ 1490 - 1430 -								
and Conten					$\perp$		ļ					# 3	F/ -	180-	300 -	<del></del>
/lethylene Bl	lue Capaci	y 🗆 (b/bb) e	quiv P mud													
	Strip	☐ Meter		۰F												
Alkalinity Mu	ud (Pm)				$\neg \dagger$				٠٠. ــــر	2.06	- ,,,,					
Alkalinity Filt					$\dashv$	1	,					TION	_~	/ -	<u></u>	
					$\dashv$		, , , , , , , , , , , , , , , , , , ,	+-	12-1	eel	LOCA	TON	4.	1.001.	-95	
Chloride (mg								+								
Total Hardne	ss as Calc	um (mg/L	.)													
					_			_ _								
			7	7	7		7 7	7		7	7 7		7	7		
RODUCT						/ /	/ /			/ /			/ /	, פטו זטי	S EQUIPME	ENT
NVENTORY	_/_					_//	/_		-//	//_						
TARTING NVENTORY													sн	AKER #1		n
ECEIVED						1 1		1				1 1				
	<del></del>	<del>  </del>		$\vdash$				-				+	SH	AKER #2		г
SED LAST 4 hr													MU	D CLEANER		
LOSING																
VENTORY		-						+	+			+	°	ENTRIFUGE		r
OST LAST													c	ESANDER_		r
SED													7 .	NECHTED.		
rom IADC) A-I REPRESE	NTATIVE			<b></b>	I PI	HONE	- I was	REHOUSE	E PHONE	DAILY COS	<u></u>			MULATIVE CO	OST	
							1			1 4			- 11 .		5.5.	7
PAUL					Ш_						0.00					
	NOTICE	: THIS	REPO	at is s	SUB	JECT TO	HE TERM	IS AN	ID COND	ITIONS !	SET FOF	RTH ON F	REVERS	E SIDE H	HEREOF.	
			11-			<del>-</del>				T						
	ISTRIBUTIO	N (hrs)	MUD	VOLUM	E ACC	COUNTING	SOLIC	S ANA	YSIS			MUD RHEO	LOGY and	HYDRAULI	ics	
TIME DI									-T***	<b> </b>	<del></del>	7	<del></del>	7		
TIME DI	rvice Water Added (bbl)					Low Gravity	%		Zero Gel		Avg ROP	<u></u>	ECD @			
		Mud Built (bbl)				Low Gravity,	ppb		n Factor		% Cutting		Leak Off	@		
Rig Up/Ser		<del></del>				Bentonite %			k Factor		psi	%	hhp	HSI	Jet \	
Rig Up/Ser Drilling	oring		Circulating Mud Disposed (bbl)							11	ulics				<del>                                     </del>	<b>†</b>
Rig Up/Ser Drilling Reaming/C			Mud	311		Bentonite, ppb		Bit Hydraulics		+	1					
Rig Up/Ser Drilling Reaming/C Circulating			1		(001)	1511	Drill Solide 1	√n	1	Annular	Section	1 1	2	1/3	Δ	F
Rig Up/Ser Drilling Reaming/C Circulating Tripping			Mud		(001)	457	Drill Solids		-	Annular :		1	2	3	4	5
Rig Up/Ser Drilling Reaming/C Circulating Tripping Survey			1		1 (001)	457	Drill Solids,	ppb		Hole Size		1	2	3	4	5
Rig Up/Ser Drilling Reaming/C Circulating Tripping Survey Logging			סטו	mp		457	Drill Solids,	ppb		Hole Size	)	1	2	3	4	5
Rig Up/Ser Drilling Reaming/C Circulating Tripping Survey Logging Running Ca			70 n	ME MU	20	457	Drill Solids, Shale CEC, D/B Ratio	ppb		Hole Size Pipe OD Critical V	elocity	1	2	3	4	5
Rig Up/Ser Drilling Reaming/C Circulating Tripping Survey Logging Running Ca			70 n	mp	20	457	Drill Solids,	ppb		Hole Size	elocity	1	2	3	4	5
Rig Up/Ser Drilling Reaming/C Circulating Tripping Survey Logging Running Ca Testing Fishing			70 m	ME MU	20	457 424 281	Drill Solids, Shale CEC, D/B Ratio	ppb ppb 		Hole Size Pipe OD Critical V	elocity	1	2	3	4	5

## APPENDIX 3

#### **GFE RESOURCES LTD**

### **APPENDIX 3**

# DAILY REPORT SUMMARY OF DRILLING OPERATIONS

**DIGBY-1** 

#### **APPENDIX 3**



**HOURS** 

TIME

## DRILLING OPERATIONS SUMMARY

Page:

1 of 8

#### **DIGBY-1**

Permit: DIGBY JV Spud Date: 10/05/1995 Rig: Century Rig 11

GFE Rep: K. Smith Geologist: D. Horner

**OPERATIONS** 

9/05/	95		
0600 - 2400	18	_	Rig up. Mix spud mud. Drill rat-hole and mouse-hole.
10/05/			
0000 - 0100	1	_	Lay out rat-hole and mouse-hole drilling gear.
0100 - 0400	3	_	Spud-in and drill 12½" hole from 11 to 43m.
0400 - 0430	1/2	_	Circulate and survey at 29m.
0430 - 0500	1/2	-	Drill 12 ¹ / ₄ " hole from 43 to 53m.
0500 - 0530	1/2	_	Circulate and survey at 40m.
0530 - 0700	11/2	_	Drill 12 ¹ / ₄ " hole from 53 to 89m.
0700 - 0730	1/2	-	Circulate and survey at 76m.
0730 - 0900	11/2	_	Drill 121/4" hole from 89 to 143m.
0900 - 0930	1/2	-	Circulate and survey at 130m.
0930 - 1200	$2\frac{1}{2}$	_	Drill 121/4" hole from 143 to 204m.
1200 - 1230	1/2	-	Circulate and survey at 192m.
1230 - 1500	21/2	-	Drill 121/4" hole from 204 to 260m.
1500 - 1530	1/2	-	Circulate and survey at 247m.
1530 - 1930	4	-	Drill 12 ¹ / ₄ " hole from 260 to 342m.
1930 - 2000	1/2	-	Circulate hole clean.
2000 - 2030	1/2	-	Survey at 333m.
2030 - 2130	1	-	Pull out of hole. Work tight hole at 310m. Pick up kelly and ream from
			303 to 310m.
2130 - 2400	2½	-	Pull out of hole. Wiper trip - strap out to top of 8" DC's.
11/05/	95		0.71
0000 - 0100	1	-	Run in hole. Work through bridge at 327m. Six metres of fill.
0100 - 0130	1/2	-	
0130 - 0300	1½	-	_ <del></del>
0300 - 0400	1	-	,
0400 - 0900	5	-	
0900 - 0930	½ 1/	-	Break casing collar and head up Dowell.
0930 - 1000	½ 1,7	-	Circulate casing with 150 bbls.  Mix and pump cement.
1000 - 1130 1130 - 1830	1½ 7	-	Wait on cement.
1830 - 1830	/ 1½	-	Slack off. Lay out cement head, landing joint and conductor barrel. Break
1650 - 2000	1 72	-	out cement head nubbin and recover casing collar.
2000 - 2400	4	-	Nipple up BOP's.

TIME	HOURS	01	PERATIONS Page: 2 of 8
12 / 05 /	95		
0000 - 0530	5½	_	Nipple up BOP's, install flare line, install choke, function test BOP's.
0530 - 0600	1/2	_	Pressure test BOP's.
0600 - 0730	1½	_	Pressure test blind rams and flare line to 1500 psi, pipe rams, all choke
0000 - 0730	172	_	manifold valves, HCR and manual valve to 3000 psi.
0730 - 1300	5½	_	Lift BOP and change out soft iron ring gasket that started to leak while
0730 - 1300	372	_	testing - kill line valves and would not respond to tightening.
1300 - 1330	1/2	-	Pressure test kill line valves to 3000 psi and Hydril to 1500 psi.
1330 - 1530	2	_	Make up 8½" pendulum BHA and run in hole. Top of cement at 318.5m.
1530 - 1530	1	-	Pressure test upper and lower kelly cocks to 1000 psi with rig pump.
1630 - 1730	1	_	Drill out shoe track and 3m of new hole.
1730 - 1730	1/2	-	Displace hole to mud.
1800 - 1900	1	-	Run Formation Integrity Test at 345m with 9.2 ppg mud weight to 770 psi
1800 - 1900	1	-	(EMW of 22.3 ppg).
1900 - 1930	1/2	_	Attempt to unblock jets - pipe rams had failed to open after FIT.
1930 - 2400	4½	_	Drill 8½" hole from 345 to 435m.
13 / 05 /		_	Dilli 0/2 Hole Holl 5 to to tom.
0000 - 0100	1	_	Drill 8½" hole from 435 to 454m.
0100 - 0130	1/2	_	Circulate and survey at 441m.
0130 - 0300	1½	_	Drill 8½" hole from 454 to 483m.
0300 - 0330	1/2	_	Circulate and survey at 470m.
0330 - 0830	5	_	Drill 8½" hole from 483 to 588m.
0830 - 0900	1/2	_	Circulate and survey at 575m.
0900 - 1330	$4\frac{1}{2}$	_	Drill 8½" hole from 588 to 656m.
1330 - 1400	1/2	_	Circulate hole clean.
1400 - 1500	1	_	Wiper trip from 656m to casing shoe - hole good.
1500 - 1530	1/2	_	Break circulation at 643m and wash to bottom. Two metres of fill.
1530 - 1800	2½	_	Drill 8½" hole from 656 to 694m.
1800 - 1830	1/2	-	Circulate and survey at 681m.
1830 - 2400	5½	_	Drill 8½" hole from 694 to 781m.
14/05/			Dim 0/2 Mote from 05 to 70 min
0000 - 0030	1/2	_	Circulate and survey at 768m.
0030 - 0300	$2\frac{1}{2}$	_	Drill 8½" hole from 781 to 810m.
0300 - 0330	1/2	_	Circulate and survey at 796m.
0330 - 0800	41/2	_	Drill 8½" hole from 810 to 838m.
0800 - 0830	1/2	_	Circulate and survey at 834m.
0830 - 1200	3½	-	Drill 8½" hole from 838 to 866m.
1200 - 1230	1/2	-	Circulate and survey at 863m.
1230 - 1500	21/2	-	Drill 8½" hole from 866 to 895m.
1500 - 1530	1/2	-	Circulate and survey at 892m.
1530 - 1730	2	-	Wiper trip from 895 to 652m - hole good. Lay out bent single of drill pipe
			and run in hole to 892m. Break circulation and clean to bottom. Three
			metres of fill.
1730 - 2100	31/2	-	Drill 8½" hole from 895 to 924m.
2100 - 2130	1/2	-	Circulate and survey at 920m.
2130 - 2400	$2\frac{1}{2}$	-	Drill 8½" hole from 924 to 943m.
15/05/	95		
0000 - 0130	11/2	-	Drill 8½" hole from 943 to 953m.
0130 - 0200	1/2	-	Circulate and survey at 950m.
0200 - 0600	4	-	Drill 8½" hole from 953 to 981m.
0600 - 0630	1/2	_	Circulate and survey at 978m.

1100   4½   - Drill 8½" hole from 981 to 1010m.   1130   1530   4   - Drill 8½" hole from 1910 to 1039m.   1530 - 1630   1   - Circulate and survey at 1036m - misrun at first attempt.   1630 - 1700   ½   - Circulate hole prior to trip for BHA change.   1930 - 2000   ½   - Pull out of hole for BHA change.   Pull out of hole for BHA change.   2000 - 2030   ½   - Pull out of hole for BHA change.   Pull out of hole for BHA change.   2000 - 2030   ½   - Pressure test pipe rams, choke manifold valves, HCR, manual valve and kill line valves to 3000 psi and Hydril to 1500 psi.   Make up cup tester.   Make up stiff BHA.   Run in hole to casing shoe. Lay out work single.   Slip and cut drilling line.   Slip and cut drilling line.   Run in hole with stiff assembly reaming any indicated tight spots, starting at 367m.   Check drum clutch when unable to pull out of slips after making connection. Clutch OX - check drive line back to gear-box - broken shaft. Remove shaft and send to Adelaide for duplicating. Continue circulating hole at 170 gpm with periodic flushes at 300 gpm. Turn string a few rotations every two hours with kelly spinner while waiting on shaft for gearbox.   Install new gearbox shaft, re-fit panels and hydraulic oil tank.   Re-fit panels and fill hydraulic oil tank with oil.   Wiper trip to casing shoe before drilling ahead. Work tight hole at 795m - 15000 1850 over-pull. Seven metres of fill.   Drill 8½" hole from 1080 to 1099m.   Orill 8½" hole from 1080 to 1185m.   Circulate and survey at 1120m.   Drill 8½" hole from 1185 to 1214m.   Drill 8½" hole from 1230 to 1242m.   Circulate and survey at 1122m.   Drill 8½" hole from 1230 to 1242m.   Circulate and survey at 1122m.   Drill 8½" hole from 1230 to 1242m.   Circulate and survey at 1229m.   Drill 8½" hole from 1230 to 1242m.   Circulate and survey at 1229m.   Drill 8½" hole from 1230 to 1242m.   Circulate and survey at 1229m.   Drill 8½" hole from 1241 to 1230m.   Drill 8½" hole from 1241 to 1230m.   Drill 8½" hole from 1241 to 124m.   Circulate and surv	11	WIIL	HOUND		ENATIONS 1 age: 3 01 8
1100 - 1130	0630	1100	/1/		Drill 814" hale from 081 to 1010m
1130 - 1530	1			-	
1530 - 1630	1			-	· · · · · · · · · · · · · · · · · · ·
1630 - 1700	1			-	
1700 - 1930   2½   - Pull out of hole for BHA change.	1		_		
1930 - 2000   ½   - Break and lay out bit, bit sub, shock sub and stabiliser. Make up cup tester.					<u> </u>
tester.  Pressure test pipe rams, choke manifold valves, HCR, manual valve and kill line valves to 3000 psi and Hydril to 1500 psi.  2030 - 2100				-	e e e e e e e e e e e e e e e e e e e
Kill line valves to 3000 psi and Hydril to 1500 psi.	1930	- 2000	1/2	-	•
2100 - 2230				-	kill line valves to 3000 psi and Hydril to 1500 psi.
2230 - 2400	ŀ			-	•
16 / 05 / 95   0000 - 0530   5½   - Run in hole with stiff assembly reaming any indicated tight spots, starting at 367m.	l .			-	
0000 - 0530   5½   - Rum in hole with stiff assembly reaming any indicated tight spots, starting at 367m.   - Drill 8½" hole from 1039 to 1080m.   - Check drum clutch when unable to pull out of slips after making connection. Clutch OK - check drive line back to gear-box - broken shaft. Remove shaft and send to Adelaide for duplicating. Continue circulating hole at 170 gpm with periodic flushes at 300 gpm. Turn string a few rotations every two hours with kelly spinner.   Continue circulating and turning string while waiting on shaft for gearbox.   Circulate hole at 170 gpm with flushes of 300 gpm and rotate string a few revolutions every four hours with kelly spinner while waiting on shaft for gearbox.   Install new gearbox shaft, re-fit panels and hydraulic oil tank.   Install new gearbox shaft, re-fit panels and hydraulic oil tank.   Wiper trip to casing shoe before drilling ahead. Work tight hole at 795m - 15000 lbs of over-pull. Seven metres of fill.   O330 - 0530   2   Drill 8½" hole from 1080 to 1099m.   Circulate and survey at 1085m.   O600 - 1230   6½   Drill 8½" hole from 1090 to 1156m.   O710   ½   Circulate and survey at 1143m.   O710   2030   3½   Drill 8½" hole from 1185 to 1185m.   O710   2030   3½   Drill 8½" hole from 1185 to 1185m.   O710   2400   3   Drill 8½" hole from 1185 to 1214m.   O710   2030   3½   Drill 8½" hole from 1240 to 1242m.   Drill 8½" hole from 1241 to 1230m.   Drill 8½" hole from 1242 to 1247m.   O730 - 0730   ½   Drill 8½" hole from 1242 to 1247m.   O730 - 0730   ½   Drill 8½" hole from 1242 to 1247m.   O730 - 0730   ½   Drill 8½" hole from 141 to 1236m.   O730 - 1030   ½   Drill 8½" hole from 142 to 1247m.   O730 - 1030   %   Drill 8½" hole from 141 to 1236m.   O730 - 1030   %   Drill 8½" hole from 1242 to 1247m.   O730 - 1030   %   Drill 8½" hole from 1242 to 1247m.   O730 - 1030   %   Drill 8½" hole from 1242 to 1247m.   O730 - 1030   %   Drill 8½" hole from 1242 to 1247m.   O730 - 1030   %   Drill 8½" hole from 1242 to 1247m.   O730 - 1030   %   Drill 8½" hole from 1242	2230			-	Slip and cut drilling line.
at 367m.   Drill 8½" hole from 1039 to 1080m.					
1000 - 2400	0000	- 0530	5½	-	
connection   Clutch OK   check drive line back to gear-box   broken shaft. Remove shaft and send to Adelaide for duplicating. Continue circulating hole at 170 gpm with periodic flushes at 300 gpm. Turn string a few rotations every two hours with kelly spinner.    17/05/95	0530	- 1000	$4\frac{1}{2}$	-	Drill 8½" hole from 1039 to 1080m.
17 / 05 / 95   0000 - 0600	1000	- 2400	14	-	connection. Clutch OK - check drive line back to gear-box - broken shaft. Remove shaft and send to Adelaide for duplicating. Continue circulating hole at 170 gpm with periodic flushes at 300 gpm. Turn
13		17 / 05	/ 95		
revolutions every four hours with kelly spinner while waiting on shaft for gearbox.  1900 - 2400	0000	- 0600	6	-	Continue circulating and turning string while waiting on shaft for gearbox.
18 / 05 / 95   0000 - 0030	0600	- 1900	13	-	revolutions every four hours with kelly spinner while waiting on shaft for
0000 - 0030	1900	- 2400	5	-	Install new gearbox shaft, re-fit panels and hydraulic oil tank.
0030 - 0330   3		18/05	/ 95		
15000 lbs of over-pull. Seven metres of fill.	0000	- 0030	1/2	-	Re-fit panels and fill hydraulic oil tank with oil.
0530 - 0600       ½       - Circulate and survey at 1085m.         0600 - 1230       6½       - Drill 8½" hole from 1099 to 1156m.         1230 - 1300       ½       - Circulate and survey at 1143m.         1300 - 1630       3½       - Drill 8½" hole from 1156 to 1185m.         1630 - 1700       ½       - Circulate and survey at 1172m.         1700 - 2030       3½       - Drill 8½" hole from 1185 to 1214m.         2030 - 2100       ½       - Circulate and survey at 1201m.         2100 - 2400       3       - Drill 8½" hole from 1214 to 1230m.         19 / 05 / 95       - Drill 8½" hole from 1230 to 1242m.         0200 - 0230       ½       - Circulate and survey at 1229m.         0230 - 0300       ½       - Drill 8½" hole from 1242 to 1247m.         0300 - 0530       2½       - Pull out of hole for BHA change.         0530 - 0600       ½       - Service rig at casing shoe.         0600 - 0630       ½       - Continue to pull out of hole for BHA change.         0630 - 0730       1       - Break down 8½" stiff assembly and make up 8½" pendulum assembly.         0730 - 1030       3       - Run in hole to top of fill at 1236m.	0030	- 0330	3	-	<b>=</b>
0530 - 0600	0330	- 0530	2	-	
0600 - 1230   6½   - Drill 8½" hole from 1099 to 1156m.     1230 - 1300   ½   - Circulate and survey at 1143m.     1300 - 1630   3½   - Drill 8½" hole from 1156 to 1185m.     1630 - 1700   ½   - Circulate and survey at 1172m.     1700 - 2030   3½   - Drill 8½" hole from 1185 to 1214m.     2030 - 2100   ½   - Circulate and survey at 1201m.     2100 - 2400   3   - Drill 8½" hole from 1214 to 1230m.     19 / 05 / 95	1			_	Circulate and survey at 1085m.
1300 - 1630   3½   - Drill 8½" hole from 1156 to 1185m.     1630 - 1700   ½   - Circulate and survey at 1172m.     1700 - 2030   3½   - Drill 8½" hole from 1185 to 1214m.     2030 - 2100   ½   - Circulate and survey at 1201m.     2100 - 2400   3   - Drill 8½" hole from 1214 to 1230m.     19 / 05 / 95       0000 - 0200   2   - Drill 8½" hole from 1230 to 1242m.     0200 - 0230   ½   - Circulate and survey at 1229m.     0230 - 0300   ½   - Drill 8½" hole from 1242 to 1247m.     0300 - 0530   2½   - Pull out of hole for BHA change.     0530 - 0600   ½   - Service rig at casing shoe.     0600 - 0630   ½   - Continue to pull out of hole for BHA change.     0630 - 0730   1   - Break down 8½" stiff assembly and make up 8½" pendulum assembly.     0730 - 1030   3   - Run in hole to top of fill at 1236m.	0600	- 1230	61/2	_	Drill 8½" hole from 1099 to 1156m.
1300 - 1630   3½   - Drill 8½" hole from 1156 to 1185m.     1630 - 1700   ½   - Circulate and survey at 1172m.     1700 - 2030   3½   - Drill 8½" hole from 1185 to 1214m.     2030 - 2100   ½   - Circulate and survey at 1201m.     2100 - 2400   3   - Drill 8½" hole from 1214 to 1230m.     19 / 05 / 95       0000 - 0200   2   - Drill 8½" hole from 1230 to 1242m.     0200 - 0230   ½   - Circulate and survey at 1229m.     0230 - 0300   ½   - Drill 8½" hole from 1242 to 1247m.     0300 - 0530   2½   - Pull out of hole for BHA change.     0530 - 0600   ½   - Service rig at casing shoe.     0600 - 0630   ½   - Continue to pull out of hole for BHA change.     0630 - 0730   1   - Break down 8½" stiff assembly and make up 8½" pendulum assembly.     0730 - 1030   3   - Run in hole to top of fill at 1236m.	1230	- 1300	1/2	_	Circulate and survey at 1143m.
1700 - 2030   3½   - Drill 8½" hole from 1185 to 1214m.	1		31/2	_	Drill 8½" hole from 1156 to 1185m.
1700 - 2030   3½   - Drill 8½" hole from 1185 to 1214m.	1630	- 1700	1/2	_	Circulate and survey at 1172m.
2030 - 2100	B			-	•
2100 - 2400   3   - Drill 8½" hole from 1214 to 1230m.   19 / 05 / 95     0000 - 0200   2   - Drill 8½" hole from 1230 to 1242m.   0200 - 0230   ½   - Circulate and survey at 1229m.   0230 - 0300   ½   - Drill 8½" hole from 1242 to 1247m.   0300 - 0530   2½   - Pull out of hole for BHA change.   0530 - 0600   ½   - Service rig at casing shoe.   0600 - 0630   ½   - Continue to pull out of hole for BHA change.   0630 - 0730   1   - Break down 8½" stiff assembly and make up 8½" pendulum assembly.   0730 - 1030   3   - Run in hole to top of fill at 1236m.	j.			-	Circulate and survey at 1201m.
19 / 05 / 95  0000 - 0200	1			-	•
0000 - 0200       2       - Drill 8½" hole from 1230 to 1242m.         0200 - 0230       ½       - Circulate and survey at 1229m.         0230 - 0300       ½       - Drill 8½" hole from 1242 to 1247m.         0300 - 0530       2½       - Pull out of hole for BHA change.         0530 - 0600       ½       - Service rig at casing shoe.         0600 - 0630       ½       - Continue to pull out of hole for BHA change.         0630 - 0730       1       - Break down 8½" stiff assembly and make up 8½" pendulum assembly.         0730 - 1030       3       - Run in hole to top of fill at 1236m.			/ 95		
0200 - 0230	0000			_	Drill 8½" hole from 1230 to 1242m.
0230 - 0300       ½       - Drill 8½" hole from 1242 to 1247m.         0300 - 0530       2½       - Pull out of hole for BHA change.         0530 - 0600       ½       - Service rig at casing shoe.         0600 - 0630       ½       - Continue to pull out of hole for BHA change.         0630 - 0730       1       - Break down 8½" stiff assembly and make up 8½" pendulum assembly.         0730 - 1030       3       - Run in hole to top of fill at 1236m.	i			-	Circulate and survey at 1229m.
0300 - 0530       2½       - Pull out of hole for BHA change.         0530 - 0600       ½       - Service rig at casing shoe.         0600 - 0630       ½       - Continue to pull out of hole for BHA change.         0630 - 0730       1       - Break down 8½" stiff assembly and make up 8½" pendulum assembly.         0730 - 1030       3       - Run in hole to top of fill at 1236m.	1			-	•
0530 - 0600    ½	0300	- 0530	21/2	-	Pull out of hole for BHA change.
0600 - 0630    ½	0530	- 0600	1/2	-	
0630 - 0730 1 - Break down 8½" stiff assembly and make up 8½" pendulum assembly. 0730 - 1030 3 - Run in hole to top of fill at 1236m.	0600	- 0630	1/2	-	
<u> </u>	0630	- 0730	1	-	
1030 - 1100 ½ - Break circulation and wash to bottom at 1247m.	0730	- 1030	3	-	Run in hole to top of fill at 1236m.
	1030	- 1100	1/2	-	Break circulation and wash to bottom at 1247m.

Page:

3 of 8

TIME

HOURS OPERATIONS

1100 - 1130	1/2		Survey at 1236m prior to drilling ahead.
1130 - 1130	$\frac{72}{6\frac{1}{2}}$	-	Drill 8½" hole from 1247 to 1260m.
1800 - 1830	1/2	-	01 1 1 1000
1830 - 2130	3	-	Drill 8½" hole from 1260 to 1269m.
2130 - 2200	1/2	_	G: 1
2200 - 2400	2	_	Drill 8½" hole from 1269 to 1276m.
		-	Dim 8/2 hole from 1209 to 1270m.
20 / 05 /	95		
0000 - 3000	3	-	Drill 8½" hole from 1276 to 1288m.
0300 - 0400	1	-	Circulate and survey at 1285m - one misrun.
0400 - 0830	$4\frac{1}{2}$	-	Drill 8½" hole from 1288 to 1307m.
0830 - 0900	1/2	-	Circulate and survey at 1304m.
0900 - 1030	11/2	-	Drill 8½" hole from 1307 to 1317m.
1030 - 1100	1/2	-	Circulate and survey at 1313m.
1100 - 1130	1/2	-	Service rig.
1130 - 1530	4	-	Drill 8½" hole from 1317 to 1336m.
1530 - 1600	1/2	-	Circulate and survey at 1333m.
1600 - 2000	4	-	Drill 8½" hole from 1336 to 1355m.
2000 - 2030	1/2	-	Circulate and survey at 1352m.
2030 - 2400	31/2	_	Drill 8½" hole from 1355 to 1373m.
21/05/	95		
0000 - 0200	2	_	Drill 8½" hole from 1373 to 1384m.
0200 - 0230	1/2	_	Circulate and survey at 1381m.
0230 - 0900	61/2	_	Drill 8½" hole from 1384 to 1413m.
0900 - 0930	1/2	_	Circulate prior to survey and wiper trip.
0930 - 1000	1/2	_	Survey at 1409m.
1000 - 1100	1	_	Wiper trip to 1170m - hole good. Run in hole to 1409m. Wash to bottom
1000 1100	•		(3.3m of fill).
1100 - 1330	21/2	_	Drill 8½" hole from 1413 to 1422m.
1330 - 1400	1/2	_	Circulate and survey at 1419m.
1400 - 1700	3	-	Drill 8½" hole from 1422 to 1432m.
1700 - 1730	1/2	-	Circulate and survey at 1428m.
1730 - 2030	3	_	Drill 8½" hole from 1432 to 1442m.
2030 - 2100	1/2	_	Circulate and survey at 1438m.
2100 - 2400	3	_	Drill 8½" hole from 1442 to 1451m.
22 / 05 / 0000 - 0030	95 ½		Circulate and survey at 1447m.
0000 - 0030	$\frac{7_2}{2^{1/2}}$	-	Drill 8½" hole from 1451 to 1460m.
0300 - 0330	$\frac{272}{\frac{1}{2}}$	-	Circulate and survey at 1457m.
0300 - 0330	$\frac{72}{1\frac{1}{2}}$	-	Drill 8½" hole from 1460 to 1468m.
0500 - 0730	$\frac{17_2}{2\frac{1}{2}}$	-	Flow-check, pull two stands and circulate geological sample at 1468m.
0730 - 1030	3	-	Run in hole 2 stands - no fill. Pull out of hole - strap pipe.
1030 - 1100	1/2	-	Slip 10.7m of drilling line at casing shoe.
1100 - 1200	1	_	Continue to pull out of hole. Lay out stabiliser, jars, shock sub and bit.
1100 - 1200	1	-	Tight hole at 1122m.
1200 - 1230	1/2	_	Pressure test pipe rams, all choke manifold valves, HCR, manual valve
1200 - 1230	/2	-	and kill-line valves to 2000 psi and Hydril and flare line to 1500 psi.
1230 - 1430	2	_	Make up test tool.
1430 - 1630	2	_	Run in hole with test tool.
1630 - 1700	1/2	_	Head up surface equipment.
1700 - 1730	1/2	_	Pressure test surface lines to 2000 psi.
1,00 1,30			a recommendation and the post

HOURS OPERATIONS

Page:

4 of 8

JOHAL .	HOURS		ERATIONS 1 age. 3 of 8
1500 0400			G . 1 1 DOT !!! C . 1460 . 1460 . !! D ! . O!! M !
1730 - 2400	6½	-	Set packer and run DST #1 from 1460 to 1468m with Baker Oil Tools.
23 / 05 /	95		
0000 - 0100	1	-	Run DST #1 - Final shut-in.
0100 - 0300	2	-	Pull free, drop bar and reverse circulate contents of string - string
			plugged off three times.
0300 - 0430	$1\frac{1}{2}$	-	Circulate conventionally.
0430 - 0500	1/2	-	Rig down surface equipment.
0500 - 0830	31/2	-	Pull out of hole with test tool.
0830 - 1100	$2\frac{1}{2}$	-	Break and lay out test tools.
1100 - 1430	31/2	-	Make up 8½" stiff BHA and run in hole. Break circulation at 1458m and
			clean to bottom. Two meters of fill.
1430 - 2400	$9\frac{1}{2}$	-	Drill 8½" hole from 1468 to 1485m. Bit suspected of being balled-up
			because of low penetration rate. Try various methods in attempt to un-
			ball bit - unsuccessful.
24 / 05 /	95		<del></del>
0000 - 0530	51/2	_	Drill 8½" hole from 1485 to 1489m with continued attempts to un-ball bit.
0530 - 0600	1/2	-	Survey at 1487m prior to pulling out of hole for inspection of bit.
0600 - 0930	3½	_	Pull out of hole to check bit. Work tight hole at 682m.
0930 - 1000	1/2	_	Break bit and remove knock-out plug (from Baker's test tool drop-bar sub)
0730 - 1000	72	_	from between apices of bit cones.
1000 - 1030	1/2		Service rig.
į.	1	-	Make up Bit #5RR and run in hole with 8½" stiff assembly to casing shoe.
1030 - 1130		-	•
1130 - 1200	1/2	-	Slip 7m of drilling line.
1200 - 1300	1	-	Run in hole.
1300 - 1330	1/2	-	Pick up kelly and break circulation at 1477m. Tag bottom without
1000 0000	-		rotating.
1330 - 2030	7	-	Drill 8½" hole from 1489 to 1519m.
2030 - 2100	1/2	-	Circulate and survey at 1515m.
2100 - 2400	3	-	Drill 8½" hole from 1519 to 1531m.
25 / 05 /			
0000 - 0400	4	-	Drill 8½" hole from 1531 to 1548m.
0400 - 0500	1	-	Circulate and survey at 1544m.
0500 - 0930	$4\frac{1}{2}$	-	Drill 8½" hole from 1548 to 1577m.
0930 - 1000	1/2	-	Circulate and survey at 1573m.
1000 - 1030	1/2	-	Service rig.
1030 - 1530	5	-	Drill 8½" hole from 1577 to 1601m.
1530 - 1700	11/2	-	Flow-check, pull two stands and circulate geological sample at 1601m.
1700 - 1730	1/2	-	Drill 8½" hole from 1601 to 1605m.
1730 - 1800	1/2	-	Circulate and survey at 1602m.
1800 - 2030	$2\frac{1}{2}$	-	Drill 8½" hole from 1605 to 1634m.
2030 - 2100	1/2	-	Circulate and survey at 1630m.
2100 - 2400	3	-	Drill 8½" hole from 1634 to 1663m.
26 / 05 /	95		
0000 - 0030	1/2	-	Circulate and survey at 1659m.
0030 - 0200	11/2	-	Drill 8½" hole from 1663 to 1692m.
0200 - 0230	1/2	-	Circulate and survey at 1688m.
0230 - 0400	11/2	-	Drill 8½" hole from 1692 to 1721m.
0400 - 0430	1/2	-	Circulate and survey at 1717m.
0430 - 0700	21/2	-	Drill 8½" hole from 1721 to 1740m.
0700 - 0730	1/2	-	Circulate prior to wiper trip.
0730 - 0830	1	_	Wiper trip back to 1487m. Work tight hole at 1388m and 1640m.
·			

Page:

5 of 8

TIME

HOURS OPERATIONS

0830 - 0900	1/2	-	Break circulation and wash to bottom. One metre of fill.
0900 - 1000	1	_	Drill 8½" hole from 1740 to 1749m.
1000 - 1130	1½	_	Flow-check, pull 2 stands and circulate geological sample at 1749m. Run
1000 - 1150	172	_	in hole 2 stands.
1130 - 1200	1/2	_	Survey at 1745m.
1200 - 1230	1/2	_	•
1230 - 1630	4		- and one are an arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged appropriate the second arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged arranged a
1		-	
1630 - 1730	1	-	Make up Bit #6 and run in hole to casing shoe.
1730 - 1830	1	-	Slip 9m and cut 26m of drilling line.
1830 - 2000	1½	-	Run in hole.
2000 - 2030	1/2	_	Break circulation and clean to bottom.
2030 - 2100	1/2	-	Drill 8½" hole from 1752 to 1759m - total loss of circulation - lost
			approximately 140 bbls. Fluid visible in annulus.
2100 - 2400	3	-	Mix and pump 55 bbls of LCM at 45 ppb. Displace to annulus at 2.6 bpm.
			Observe annulus for stability, then circulate and condition mud.
27 / 05 /	95		
0000 - 0230	$2\frac{1}{2}$	-	
0230 - 0300	1/2	-	Work bit gently on bottom. Bit #5RR missing 3 inserts.
0300 - 0400	1	-	Drill 8½" hole from 1759 to 1771m.
0400 - 0530	11/2	-	Work bit gently on bottom - high rotary torque. Attempt to drill while
			ensuring no junk on bottom.
0530 - 0600	1/2	_	Drill 8½" hole from 1771 to 1778m.
0600 - 0630	1/2	-	Circulate and survey at 1774m.
0630 - 0900	21/2	_	Drill 8½" hole from 1778 to 1807m.
0900 - 0930	1/2	_	Service rig.
0930 - 1000	1/2	_	Survey at 1803m.
1000 - 1230	$2\frac{1}{2}$	_	Drill 8½" hole from 1807 to 1836m.
1230 - 1300	1/2	_	Circulate and survey at 1832m.
1300 - 1630	31/2	-	Drill 8½" hole from 1836 to 1864m.
1630 - 1700	1/2	_	Circulate and survey at 1861m.
1700 - 2030	31/2	_	Drill 8½" hole from 1864 to 1893m.
2030 - 2100	1/2	_	Circulate and survey at 1890m.
2100 - 2400	3	_	Drill 8½' hole from 1893 to 1905m.
28 / 05 /	=		
0000 - 0400	4	_	Drill 8½" hole from 1905 to 1922m.
0400 - 0430	1/2	_	Circulate and survey at 1918m.
0430 - 0600	1½	_	Drill 8½" hole from 1922 to 1932m.
0600 - 0800	2	_	Flow-check, pull 2 stands and circulate geological sample at 1932m. Run
0000 - 0000	2		in hole 2 stands.
0800 - 0830	1/2	_	Service rig.
0830 - 1200	$\frac{7^{2}}{3\frac{1}{2}}$	-	Drill 8½" hole from 1932 to 1951m.
1200 - 1330	$\frac{372}{1\frac{1}{2}}$	_	
1330 - 1700	$\frac{172}{3\frac{1}{2}}$	-	Flow-check, pull 3 stands and circulate geological sample at 1951m.  Winer trip to 1132m. Break circulation at 1611m to unplug jet. Pup in
1220 - 1700	372	-	Wiper trip to 1132m. Break circulation at 1611m to unplug jet. Run in hole to 1937m, break circulation and clean to bottom. Two metres of fill.
1700 - 1830	11/2	-	Circulate 5 minutes, pull 3 stands and circulate.
1830 - 1900	1/2	-	Run to bottom and survey at 1947m.
1900 - 1930	1/2	-	Circulate 5 minutes, pull 3 stands and circulate.
1930 - 2200	21/2	-	Pull out of hole for DST #2 - strap pipe.
2200 - 2230	1/2	-	Slip 9m of drilling line at casing shoe.
2230 - 2400	11/2	-	Pull out of hole. Lay out jars, stabilisers and near bit reamer.
L			

Page:

6 of 8

**OPERATIONS** 

TIME

HOURS

TIME HOURS	<b>OPERATIONS</b>	Page: 7 of 8
20.107.107		
29 / 05 / 95	D' 1	
0000 - 0100 1	<ul> <li>Pick up cup-tester and pressure test BOF HCR, manual valve and kill-line valve line to 1500 psi.</li> </ul>	•
0100 - 0300 2	- Pick up and make up test tools.	
0300 - 0700 4	- Run in hole slowly with test tool.	
0700 - 0730 1/2	- Head-up surface equipment.	
0730 - 0800 1/2	- Pressure test surface DST lines to 2000 p	osi.
0800 - 0830 1/2	- Work test-string free - stuck at 1944m.	
0830 - 1130 3	- Set packer, open tool and run DST #2 fro Tools.	om 1920 to 1951m with Baker Oil
1130 - 1530 4	- Pull out of hole with test tool. Recovere oil.	d 1.28 bbls of mud with trace of
1530 - 1730 2	- Break and lay out test tools.	
1730 - 1900 11/2	- Make up 8½" stiff BHA and run in hole	to casing shoe.
1900 - 1930 ½	- Slip 5.1m of drilling line.	
1930 - 2200 2½	- Continue to run in hole to 1937m.	
2200 - 2230 ½	- Break circulation and clean to bottom. P drilling ahead.	rump fresh mud spacer before
2230 - 2400 1½	- Drill 8½" hole from 1951 to 1955m.	
30 / 05 / 95		
0000 - 0600 6	- Drill 8½" hole from 1955 to 1980m.	
0600 - 0630 ½	- Circulate and survey at 1976m.	
0630 - 0700 ½	- Service rig.	
0700 - 1330 61/2	- Drill 8½" hole from 1980 to 2008m.	
1330 - 1400 ½	- Circulate and survey at 2004m.	
1400 - 2300 9	- Drill 8½" hole from 2008 to 2036 m.	
2300 - 2330 ½	- Circulate and survey at 2033m.	
2330 - 2400 ½	- Drill 8½" hole from 2036 to 2037m.	
31 / 05 / 95		
0000 - 2330 231/2	- Drill 8½" hole from 2037 to 2088m (T.D	·.).
2330 - 2400 ½	- Wiper trip to 1000m.	
1/06/95		
0000 - 0300 3	- Wiper trip to 1000m and run in hole - hol	le good - no fill.
0300 - 0400 1	- Circulate hole prior to logging.	
0400 - 0500 1	- Survey at 2081m. Lubricate sand-line.	
0500 - 0930 4½	- Pull out of hole to log - strap pipe - lay or jars.	ut near bit reamer, stabilisers and
0930 - 2400 141/2	- Rig up BPB and run logs. Run #1 DLL-1 CNL-LDL-GR (tool failed).	MLL-Cal-BHS-GR. Run #2
2 / 06 / 95		
0000 - 0600 6	<ul> <li>Continue to attempt Run #2, abandon after main tool and failure of back-up tool. P Survey.</li> </ul>	• •
0600 - 1930 131/2	- Run logs with BPB. Run #3 Velocity sur Cal. Run #4 Sidewall Cores (48).	rvey. Re-run #2 CNL-PDS-GR-
1930 - 2000 ½	- Make up BHA and run in hole.	
2000 - 2030 ½	- Slip 9.7m of drilling line.	
2030 - 2230 2	- Lay out BHA.	
2230 - 2400 1½	- Run in hole with open ended drill pipe.	

3/06/	95		
0000 - 0100	1	-	Continue run in hole with open ended drill pipe.
0100 - 0200	1	_	Head up and circulate bottoms up.
0200 - 0330	1½	-	Pressure test lines and run cement plug #1 from 1950 to 1890m with 71 sacks of Class A cement.
0330 - 0400	1/2	-	Pull back to 1490m.
0400 - 0500	1	-	Head up and run cement plug #2 from 1490 to 1430m with 78 sacks of Class A cement.
0500 - 0600	1	-	Pull back 6 stands and circulate to balanced mud prior to laying down drill pipe.
0600 - 0800	2	_	Lay out 54 joints of drill pipe.
0800 - 0930	11/2	-	Run in hole and tag plug #2 at 1428m.
0930 - 1330	4	-	Lay out drill pipe.
1330 - 1400	1/2	· -	Run plug #3 from 380 to 283m with 180 sacks of Class A cement.
1400 - 1430	1/2	-	Pull back 7 stands and break circulation.
1430 - 1530	1	-	Break kelly, recover kelly spinner and kelly bushing while waiting on cement.
1530 - 1600	1/2	-	Pull out of hole.
1600 - 1830	21/2	-	Lay out kelly and swivel.
1830 - 1900	1/2	-	Run in hole - tag plug #3 at 333m with 15,000 lbs.
1900 - 2000	1	-	Run cement plug #4 at 300 to 333m with 40 sacks of Class A cement.
2000 - 2030	1/2	-	Pull back to 300m, and displace hole to inhibited mud.
2030 - 2130	1	-	Lay out drill pipe.
2130 - 2200	1/2	-	Pressure test plug #4 to 500 psi.
2200 - 2400	2	-	Tear out BOP's.
4/06/	95		
0000 - 0200	2	-	Tear out BOP's.
0200 - 0300	1	-	Run surface plug by hand. Clean casing bowl and finish cleaning mud tanks. Release rig.

HOURS OPERATIONS

TIME

Page:

8 of 8

Release Rig at 0300 hours, 4 June 1995.

# · APPENDIX 4

#### **GFE RESOURCES LTD**

# **APPENDIX 4**

## LITHOLOGICAL DESCRIPTIONS

4A. CUTTINGS DESCRIPTIONS
4B. LITHOLOGICAL DESCRIPTIONS
FROM DAILY REPORTS

**DIGBY-1** 

### **APPENDIX 4A**

# **CUTTINGS DESCRIPTIONS**



# **CUTTINGS DESCRIPTION**

WELL NAME: PEP 134 Digby-1

DATE:

6 October, 1995

**GEOLOGIST:** 

Dave Horner

PAGE:

1 of 40

Interval (m)	%	Description		
6-10	100	<u>Claystone</u> : off white to medium orange brown, trace yellow to red, slightly to occasionally very silty, trace black carbonaceous material, non calcareous, firm, non fissile.		
10-20	50	<u>Claystone</u> : medium olive grey, non to occasionally very silty, trace black carbonaceous flecks, occasionally trace black coaly detritus, non calcareous, firm, non-fissile.		
	30	Sandstone: medium orange to dark orange brown, very fine to fine, occasionally medium to coarse grains, subangular, poorly sorted, weak silica cement, moderate iron oxide cement, common to dominantly abundant medium orange to brown argillaceous and silt matrix, common light brown partially altered feldspar grains, friable to moderately hard, very poor visual porosity, no oil fluorescence.		
	20	Claystone: as for 6 to 10m.		
20-30	70	Sandstone: medium grey, very fine to fine, occasionally medium grains, dominantly fine, subangular, poorly sorted, weak silica cement, abundant medium grey argillaceous and silt matrix, abundant black coal detritus and flecks, common pyrite, trace partially altered feldspars, trace grey green and red lithics, friable, very poor visual porosity, no oil fluorescence.		
	30	<u>Claystone</u> : medium grey, very silty, often very fine to finely arenaceous grading to silty sandstone, common very fine to fine partially altered feldspar grains, common to abundant black carbonaceous flecks and detritus, trace pyrite, firm, non-fissile.		
30-40	90	Sandstone: medium grey, very fine to medium, dominantly fine, subangular, poor to moderately sorting, weak silica cement, abundant medium olive grey to medium brown argillaceous and silt matrix, abundant off white to green to grey to red lithics, common black coaly detritus, trace pyrite, very poor visual porosity, no oil fluorescence.		
	10	Claystone: as for 20 to 30m.		
40-50	100	Sandstone: medium olive grey, very fine to medium, dominantly medium, subangular to subrounded, moderately sorted, weak silica cement, common to abundant medium olive grey argillaceous and silt matrix, abundant white to green to grey to red lithics, trace green mica flakes, common black coal detritus, trace pyrite, friable, very poor to poor inferred porosity, no oil fluorescence.		
50-60	60	Sandstone: as for 40 to 50m.		
	40	<u>Claystone</u> : medium grey to medium olive grey to medium brown grey, very silty, often very arenaceous grading to sandstone, common black carbonaceous flecks and detritus, trace pyrite, firm, non-fissile.		
60-70	60	Claystone: as for 50 to 60m.		
	40	Sandstone: medium olive grey, very fine to medium, dominantly medium, subangular to subrounded, moderately sorted, weak silica cement, common to abundant medium olive grey argillaceous and silt matrix, abundant white to green to grey to red lithics, trace green mica flakes, common black coal detritus, trace pyrite, friable, very poor to poor inferred porosity, no oil fluorescence.		

Interval (m)	<u></u> %	<b>Description</b> PAGE: 2 of 40			
70-80	70	Claystone: light to dominantly medium grey, common medium green grey, occasional medium brown grey, slightly to occasionally very silty, occasionally very fine to finely arenaceous, common very fine to fine off white partially altered feldspar grains, trace black to brown carbonaceous flecks and detritus, slightly calcareous in part, trace pyrite, trace micromica, firm, non-fissile.			
	30	Sandstone: medium olive grey, very fine to medium, dominantly medium, subangular to subrounded, moderately sorted, weak silica cement, common to abundant medium olive grey argillaceous and silt matrix, abundant white to green to grey to red lithics, trace green mica flakes, common black coal detritus, trace pyrite, friable, very poor to poor inferred porosity, no oil fluorescence.			
80-90	90	<u>Claystone</u> : light to medium grey, medium green grey, medium brown grey, slightly to occasionally very silty, occasionally very fine to finely arenaceous, common very fine to fine off white partially altered feldspar grains, trace black to brown carbonaceous flecks and detritus, slightly calcareous in part, trace pyrite, trace micromica, firm, non-fissile.			
	10	Sandstone: as for 70 to 80m.			
90-110	100	<u>Claystone</u> : medium grey to medium green grey to medium brown grey, moderately to very silty, slightly calcareous in part, common black carbonaceous flecks and detritus, common very fine quartz and partially altered feldspar grains in part, trace micromica, rare pyrite, firm, non to slightly subfissile.			
110-120	100	<u>Claystone</u> : medium grey to medium green grey to medium brown grey, moderately to very silty, slightly calcareous in part, common black carbonaceous flecks and detritus, common to abundant very fine quartz and partially altered feldspar grains in part, rare very fine red lithics where arenaceous, trace micromica, rare pyrite, firm, non to slightly subfissile.			
120-130	90	Claystone: as for 110 to 120m.			
	10	Sandstone: medium grey, very fine to medium, dominantly fine, subangular to subrounded, poorly sorted, weak silica and calcareous cements, abundant medium grey argillaceous and silt matrix, abundant grey brown, off white, green and red lithics, common black carbonaceous detritus, friable to occasionally moderately hard, no visual porosity, no oil fluorescence.			
130-140	100	Claystone: medium grey to medium green grey to medium brown grey, slightly to moderately silty, slightly calcareous in part, common black carbonaceous flecks and detritus, trace very fine quartz and partially altered feldspar grains in part, rare very fine re lithics in part, trace micromica, rare pyrite, firm, non to slightly subfissile.			
140-150	100	Claystone: medium grey to medium green grey, slightly to moderately silty, slightly calcareous in part, common black carbonaceous flecks and detritus, trace very fine quartz and partially altered feldspar grains in part, rare very fine red lithics in part, trace micromica, rare pyrite, firm, non to slightly subfissile.			
150-170	100	Claystone: medium grey to medium green grey to medium brown grey, very silty, slightly calcareous in part, common black carbonaceous flecks and detritus, often abundant very fine quartz and partially altered feldspar grains in part, rare very fine red lithics in part, trace micromica, rare pyrite, firm, non to slightly subfissile.			
170-180	80	Claystone: as for 150 to 170m.			
	20	Sandstone: medium grey, very fine to medium, dominantly fine to medium, subangular to subrounded, poorly sorted, weak silica and calcareous cements, abundant medium grey argillaceous and silt matrix, abundant grey brown, off white, green and red lithics, common black carbonaceous detritus, rare pyrite, friable, no visual porosity, no oil fluorescence.			
180-220	100	<u>Claystone</u> : medium grey to medium green grey to medium brown grey, moderately to ver silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace very fine multicoloured lithics in part, common black carbonaceous detritus and flecks, trace coarse green and brown mica flakes, rare pyrite, trace micromica, firm, slightl subfissile.			

Interval (m)	%	<b>Description</b> PAGE: 3 of 40		
220-230	80	Claystone: medium grey to medium green grey, occasionally medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace very fine multicoloured lithics in part, common black carbonaceous detritus and flecks, trace coarse green and brown mica flakes, rare pyrite, trace micromica, firm, slightly subfissile.		
	20	Sandstone: light green grey, very fine to medium, dominantly fine to medium, subangular, moderately sorted, moderately strong calcareous cement, common to abundant white to light brown argillaceous matrix, abundant green grey lithics, trace red lithics, common to abundant light brown partially altered feldspar grains, trace coarse brown and green mica flakes, trace pyrite, trace to common black carbonaceous detritus, hard, no visual porosity, no oil fluorescence but trace dull yellow orange calcite fluorescence, no cut.		
230-240	100	Claystone: as for 220 to 230m.		
	Trace	Sandstone: as for 220 to 230m.		
240-250	90	Claystone: as for 220 to 230m.		
	10	Sandstone: as for 220 to 230m.		
250-280	100	Claystone: light to medium grey, medium green grey, occasionally medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace very fine multicoloured lithics in part, common black carbonaceous detritus and flecks, trace coarse green and brown mica flakes, rare pyrite, trace micromica, firm, slightly subfissile.		
280-310	100	<u>Claystone</u> : light to medium green grey, medium grey, light to medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace very fine multicoloured lithics in part, common black carbonaceous detritus and flecks, rare pyrite, trace micromica, firm, slightly subfissile.		
	Trace	Sandstone: light green grey, very fine to medium, dominantly fine to medium, subangular, moderately sorted, moderately strong calcareous cement, common to abundant white to light brown argillaceous matrix, abundant green grey lithics, trace red lithics, common to abundant light brown partially altered feldspar grains, trace to common black to dark brown carbonaceous detritus, hard, no visual porosity, no oil fluorescence but trace dull yellow orange calcite fluorescence, no cut.		
310-320	100	Claystone: as for 280 to 310m.		
320-342	100	<u>Claystone</u> : light to medium green grey, light to medium brown grey, light to medium grey, moderately to very silty, slightly calcareous in part, occasionally very finely arenaceous with quartz and partially altered feldspar grains, common very fine to fine multicoloured lithics in part, trace to common black carbonaceous detritus and flecks, trace micromica, firm, slightly subfissile.		
	Trace	Sandstone: light green grey to light brown grey, occasionally off white, very fine to medium, dominantly fine to medium, subangular, moderately sorted, moderately strong calcareous cement, common to abundant white to light brown argillaceous matrix, abundant green grey lithics, trace red lithics, common to abundant light brown partially altered feldspar grains, trace to common black to dark brown carbonaceous detritus, hard, no visual porosity, no oil fluorescence but trace dull yellow orange calcite fluorescence, no cut.		
342-350	100	Claystone: light to medium brown grey, medium brown, occasionally light to medium green grey, moderately to very silty, occasionally very fine to finely arenaceous with quartz altered feldspar and multicoloured lithic grains, trace to common black carbonaceous detritus, trace coarse brown and green mica flakes, firm, slightly subfissile with abundant cement contamination.		

interval (m)	<b>%</b>	<b>Description</b> PAGE: 4 of 40
350-355	90	Claystone: light to medium brown grey, medium brown, occasionally light to medium green grey, moderately to very silty, occasionally very fine to finely arenaceous with quart altered feldspar and multicoloured lithic grains, trace to common black carbonaceous detritus, trace coarse brown and green mica flakes, firm, slightly subfissile.
	10	Sandstone: light to medium green grey, very fine to medium, dominantly medium, subangular, moderately sorted, strong calcareous cement, abundant light brown argillaceous matrix, abundant light brown partially altered feldspar grains, abundant grey green lithics, common orange to red lithics, trace to common black carbonaceous detritus, trace fine mic flakes, moderately hard, very poor visual porosity, no oil fluorescence but trace dull yellow orange calcite mineral fluorescence, no cut.
355-365	100	Claystone: as for 350 to 355m.
	Trace	Sandstone: light to medium green grey, very fine to medium, dominantly fine, subangular moderately sorted, strong calcareous cement, abundant light brown argillaceous matrix, abundant light brown partially altered feldspar grains, abundant grey green lithics, common orange to red lithics, trace to common black carbonaceous detritus, trace fine mica flakes, moderately hard, very poor visual porosity, no oil fluorescence but trace dull yellow orange calcite mineral fluorescence, no cut.
365-370	100	Claystone: light to medium brown grey, often light to medium green grey, moderately to very silty, occasionally very fine to finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace to common black carbonaceous detritus, trace coarse brown and green mica flakes, firm, slightly subfissile.
370-380	100	Claystone: as for 365 to 370m.
	Trace	Sandstone: as for 355 to 365m.
380-390	100	Claystone: light to medium brown grey, common light to medium green grey, moderately to very silty, occasionally very fine to finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace to common black carbonaceous detritus, trace coarse brown and green mica flakes, firm, slightly subfissile.
	Trace	Sandstone: as for 355 to 365m.
390-400	100	Claystone: light to medium brown grey, common light to medium green grey, common medium to dark brown in part, moderately to very silty, occasionally very fine to finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace to common black carbonaceous detritus, trace coarse brown and green mica flakes, firm, slightly subfissile.
400-405	100	Claystone: as for 390 to 400m.
	Trace	Sandstone: light to medium green grey, very fine to medium, dominantly fine, subangular moderately sorted, strong calcareous cement, abundant light brown argillaceous matrix, abundant light brown partially altered feldspar grains, abundant grey green lithics, common red lithics, trace to common black carbonaceous detritus, trace fine to coarse green and brown mica flakes, hard, very poor visual porosity, no oil fluorescence but trace dull yellow orange calcite mineral fluorescence, no cut.
405-420	100	Claystone: as for 390 to 400m.
420-425	100	<u>Claystone</u> : light to medium brown grey, light to medium green grey, moderately to very silty, occasionally very finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace black to brown carbonaceous detritus and flecks, trace micromica, slightly to occasionally moderately calcareous, minor slickensides, firm, slightly subfissile.
	Trace	Sandstone: light to medium grey, very fine, subangular, moderately to well sorted, strong
	Trace	to very strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, very poor inferred porosity, no oil fluorescence.

120 115	100	Claustones light to medium horses and light to medium	
430-445	100	Claystone: light to medium brown grey, light to medium green grey, moderately to very silty, occasionally very finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace black to brown carbonaceous detritus and flecks, trace micromica, slightly to occasionally moderately calcareous, firm, slightly subfissile.	
445-450	90	<u>Claystone</u> : light to medium brown grey, light to medium green grey, moderately to very silty, occasionally very finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace black to brown carbonaceous detritus and flecks, trace micromica, slightly to occasionally moderately calcareous, firm, slightly subfissile.	
	10	Calcite: (fracture infilling) white to light brown, macrocrystalline, hard.	
		Fluorescence: The claystone has trace moderately bright to bright patchy to solid golden orange fluorescence giving a bright light yellow white slow streaming cut fluorescence, n natural cut colour, moderate to thick ring residue.	
450-455	100	Claystone: light to medium brown grey, light to medium green grey, very silty, occasionally very finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace black to brown carbonaceous detritus and flecks, trace micromica, slightly to occasionally moderately calcareous, firm, slightly subfissile.	
	Trace	Calcite: (fracture infilling) white to light brown, macrocrystalline, hard.	
		Fluorescence: The claystone has trace moderately bright to bright patchy to solid golden orange fluorescence giving a bright light yellow white slow streaming cut fluorescence, n natural cut colour, moderate to thick ring residue.	
455-460	100	<u>Claystone</u> : light to medium brown grey, light to medium green grey, occasionally dark brown and very carbonaceous, very silty, occasionally very finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace black to brown carbonaceous detritus and flecks, trace micromica, slightly to occasionally moderately calcareous, firm, slightly subfissile.	
460-465	100	<u>Claystone</u> : light to medium brown grey, light to medium green grey, very silty, occasionally very finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace black to brown carbonaceous detritus and flecks, trace micromica, slightly to occasionally moderately calcareous, firm, slightly subfissile.	
	Trace	Sandstone: light to medium grey, very fine, subangular, moderately to well sorted, strong to very strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey greet lithics, trace red and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, very poor inferred porosity.	
		Fluorescence: The sandstone has trace moderately bright to bright patchy to solid golden orange fluorescence giving a bright light yellow white slow streaming cut fluorescence, no natural cut colour, moderate to thick ring residue.	
465-470	100	Claystone: as for 460 to 465m.	
	Trace	Sandstone: light to medium grey, very fine, subangular, moderately to well sorted, strong to very strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix grading to arenaceous claystone, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine blat to brown carbonaceous matter, hard, no visual porosity, very poor inferred porosity, no oif fluorescence.	
470-475	100	<u>Claystone</u> : light to medium brown grey, light to medium grey, occasionally light to medium green grey, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, slightly calcareous, trace brown to black carbonaceou detritus, trace to common micromica, firm, slightly subfissile.	
	Trace	Sandstone: as for 465 to 470m.	

Interval (m)	%	<b>Description</b> PAGE: 6 of 40		
475-480	80	Claystone: as for 470 to 475m.		
	20	Sandstone: light to medium grey, very fine, subangular, moderately to well sorted, strong to very strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, very poor inferred porosity, no oil fluorescence.		
480-485	80	<u>Claystone</u> : light to medium brown grey, light to medium grey, occasionally light to medium green grey, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, slightly calcareous, trace brown to black carbonaceous detritus, rare pyrite, trace to common micromica, firm, slightly subfissile.		
	20	Sandstone: as for 475 to 480m.		
485-490	95	Claystone: light to medium brown grey, light to medium grey, occasionally light to medium green grey, trace medium to dark brown and very carbonaceous, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, slightly calcareous, trace brown to black carbonaceous detritus, trace to common micromica, firm, slightly subfissile.		
	5	Sandstone: as for 475 to 480m.		
490-500	100	Claystone: light to medium brown grey, light to medium grey, occasionally light to medium green grey, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, slightly calcareous, trace brown to black carbonaceous detritus, rare pyrite, trace to common micromica, firm, slightly subfissile.		
	Trace	Sandstone: light to medium grey, very fine, subangular, moderately to well sorted, strong to very strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, no oil fluorescence.		
500-505	70	Claystone: as for 490 to 500m.		
	30	Sandstone: light to medium grey, very fine to fine, subangular, moderately to well sorted, strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, no oil fluorescence.		
505-510	60	<u>Claystone</u> : light to medium brown grey, light to medium grey, occasionally light to medium green grey, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, slightly calcareous, trace brown to black carbonaceous detritus, rare pyrite, trace to common micromica, firm, slightly subfissile.		
	40	Sandstone: as for 500 to 505m.		
510-515	90	Claystone: as for 505 to 510m.		
	10	Sandstone: as for 500 to 505m.		
515-520	100	Claystone: as for 505 to 510m.		
	Trace	Sandstone: as for 500 to 505m.		
520-530	100	Claystone: light to medium brown grey, light to medium green grey, occasionally light to medium grey, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, slightly calcareous, trace brown to black carbonaceous detritus, trace to common micromica, firm, slightly subfissile.		

Interval (m)	%	Description	PAGE:	7 of 40
530-540	90	Claystone: as for 520 to 530m.		
	10	Sandstone: light to medium grey, very fine to occasionally fir well sorted, strong calcareous cement, common to abundant of argillaceous and silt matrix, abundant partially altered feldspar lithics, trace red and brown lithics, trace very fine black to brown hard, no visual porosity, no oil fluorescence.	ff white to mediung grains, common	n grey grey green
540-545	100	Claystone: light to medium brown grey, light to medium gree medium grey, very silty, often very finely arenaceous with qua and multicoloured lithics, slightly calcareous, trace brown to b trace to common micromica, firm, slightly subfissile.	artz, partially alter	red feldspars
	Trace	Calcite: (fracture infilling) white to light brown, macrocrystal	line, hard.	
545-550	100	Claystone: as for 540 to 545m, but with common carbonaceo	us detritus.	
	Trace	Sandstone: light to medium grey, very fine to occasionally fir well sorted, strong calcareous cement, common to abundant of argillaceous and silt matrix, abundant partially altered feldspar lithics, trace red and brown lithics, trace very fine black to brown hard, no visual porosity, no oil fluorescence.	ff white to medium grains, common	n grey grey green
550-555	90	<u>Claystone</u> : light to medium brown grey, light to medium gree medium grey, very silty, often very finely arenaceous with qua and multicoloured lithics, slightly calcareous, trace brown to b trace to common micromica, firm, slightly subfissile.	artz, partially alte	red feldspars
	10	Sandstone: as for 545 to 550m.		
555-560	100	Claystone: light to medium green grey, light to medium brow silty, often abundant very fine to occasionally fine quartz, alter multicoloured lithic sand grains, trace black to brown carbonac calcareous, trace to common micromica, firm, slightly subfissi	red feldspar and ceous detritus, ve	
	Trace	Sandstone: as for 545 to 550m.		
560-565	70	Claystone: as for 555 to 560m.		
	30	Sandstone: off white to very light brown, very fine to occasion moderately sorted, weak to moderate calcareous cement, abundantrix (matrix supported) common multicoloured lithics, abundance black to brown carbonaceous flecks and detritus, friable porosity, no oil fluorescence.	dant off white arg idant altered felds	gillaceous spar grains,
565-570	50	Claystone: as for 555 to 560m.		
	50	Sandstone: as for 560 to 565m.		
570-575	90	Claystone: light to medium green grey, light to medium brow grey, moderately to very silty, often abundant very fine to occ feldspar and multicoloured lithic sand grains, trace black to br very slightly calcareous, trace to common micromica, firm, sli	asionally fine qua	artz, altered
	10	Sandstone: as for 560 to 565m.		
575-580	100	Claystone: as for 570 to 575m.		
	Trace	Sandstone: as for 560 to 565m.		
580-585	100	Claystone: as for 570 to 575m.		

Interval (m)	%	<b>Description</b> PAGE: 8 of 40
585-590	100	Claystone: light to medium green grey, light to medium brown grey, common medium grey, very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
	Trace	Sandstone: as for 560 to 565m.
590-595	60	Claystone: light to medium green grey, light to medium brown grey, light to medium grey, very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
	40	Sandstone: light to medium grey, very fine to fine, subangular, moderately to well sorted, strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine black to brown carbonaceous detritus, hard, no visual porosity, no oil fluorescence.
595-600	95	Claystone: as for 590 to 595m.
	5	Sandstone: off white to very light brown, very fine to occasionally fine, subangular, moderately sorted, weak to moderate calcareous cement, abundant off white argillaceous matrix (matrix supported), common multicoloured lithics, abundant altered feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to moderately hard, no visual porosity, no oil fluorescence.
600-605	100	Claystone: light to medium brown grey, off white to light grey, trace light to medium green grey, very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
	Trace	Sandstone: as for 595 to 600m.
605-610	90	Claystone: as for 600 to 605m.
	10	Sandstone: as for 595 to 600m.
610-615	95	Claystone: as for 600 to 605m.
	5	Sandstone: as for 595 to 600m, but with very strong calcareous cement.
615-620	90	Claystone: as for 600 to 605m.
	10	Sandstone: off white to very light brown, very fine to occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant off white argillaceous matrix (matrix supported), common multicoloured lithics, abundant altered feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to moderately hard, no visual porosity, no oil fluorescence but trace to 30% dull yellow orange mineral fluorescence, no cut.
	Trace	Calcite: off white to light brown, macrocrystalline, hard, probable fracture infilling.
620-625	70	<u>Claystone</u> : light to medium brown, occasionally off white, light to medium brown grey, moderately to very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
	30	Sandstone: as for 615 to 620m.

Interval (m)	%	<b>Description</b> PAGE: 9 of 40
625-630	80	Claystone: as for 620 to 625m.
	20	Sandstone: light to medium grey, very fine to fine, subangular, moderately to well sorted, strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine black to brown carbonaceous detritus, hard, no visual porosity, no oil fluorescence but 30% dull yellow orange mineral fluorescence, no cut.
630-635	60	Claystone: as for 620 to 625m.
	40	Sandstone: off white to very light brown, very fine to fine, minor medium grains, subangular, moderately sorted, moderate to very strong calcareous cement, abundant off white argillaceous matrix (matrix supported in part), common green grey and trace red brown lithics, abundant altered feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to moderately hard, no visual porosity, no oil fluorescence but 20% dul yellow orange mineral fluorescence, no cut.
635-640	70	<u>Claystone</u> : light to medium brown, occasionally off white, light to medium brown grey, moderately to very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
	30	Sandstone: as for 630 to 635m.
640-645	60	Claystone: as for 635 to 640m.
	40	Sandstone: off white to very light brown, very fine to fine, subangular, moderately sorted moderate to very strong calcareous cement, abundant off white argillaceous matrix (matrix supported in part), common green grey and trace red brown lithics, abundant altered feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to moderately hard, no visual porosity, no oil fluorescence but trace to 10% dull yellow orange mineral fluorescence, no cut.
645-650	80	Claystone: as for 635 to 640m.
	20	Sandstone: as for 640 to 645m.
650-655	90	<u>Claystone</u> : light to medium brown, occasionally off white, light to medium brown grey, moderately to very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
	10	Sandstone: as for 640 to 645m.
655-660	70	Claystone: as for 650 to 655m.
	30	Sandstone: off white to very light brown, very fine to fine, dominantly very fine, subangular, moderately sorted, moderate to very strong calcareous cement, abundant off white argillaceous matrix (matrix supported in part), common green grey and trace red brown lithics, abundant altered feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to hard, no visual porosity, no oil fluorescence but trace to 5-10% dull yellow orange mineral fluorescence, no cut.
660-665	100	Claystone: as for 650 to 655m.
	Trace	Sandstone: as for 655 to 660m.
665-670	60	Claystone: as for 650 to 655m.
	40	Sandstone: off white to very light brown, very fine to fine, dominantly very fine, subangular, moderately sorted, moderate to very strong calcareous cement, abundant off white argillaceous matrix (matrix supported in part), common green grey and trace red brown lithics, abundant altered feldspar grains, trace coarse brown mica flakes, trace black to brown carbonaceous flecks and detritus, friable to hard, no visual porosity, no oil fluorescence but trace to 5-10% dull yellow orange mineral fluorescence, no cut.

Interval (m)	%	<b>Description</b> PAGE: 10 of 40
670-680	70	Claystone: off white to medium brown, light to medium brown grey, moderately to very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains grading to argillaceous sandstone, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
	30	Sandstone: as for 665 to 670m.
680-685	95	Claystone: as for 670 to 680m.
	5	Sandstone: as for 665 to 670m.
685-690	90	Claystone: as for 670 to 680m.
	10	Sandstone: as for 665 to 670m.
	Trace	Calcite: (fracture infilling) white to light brown, macrocrystalline, hard.
690-695	70	Sandstone: off white to very light brown, very fine to fine, dominantly very fine, subangular, moderately sorted, moderate to very strong calcareous cement, abundant off white argillaceous matrix (matrix supported), common green grey and trace red brown lithics, abundant altered feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to hard, no visual porosity, no oil fluorescence but trace to 5-10% dull yellow orange mineral fluorescence, no cut.
	30	<u>Claystone</u> : off white to medium brown, light to medium brown grey, moderately to very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains grading to argillaceous sandstone, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
695-700	90	Claystone: as for 690 to 695m.
	10	Sandstone: as for 690 to 695m.
	Trace	Coal: (detrital) very dark brown to black, platy fracture, earthy texture, moderately argillaceous, rare disseminated pyrite in part, hard, brittle.
700-710	100	Claystone: off white to medium brown, light to medium brown grey, moderately to very silty, occasionally abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, slightly calcareous, trace to common micromica, firm, slightly subfissile.
710-720	100	Claystone: as for 700 to 710m.
	Trace	Sandstone: off white to very light brown, very fine to fine, dominantly very fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant off white argillaceous matrix (matrix supported), common green grey and trace red brown lithics, abundant altered feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to hard, no visual porosity, no oil fluorescence.
720-725	100	Claystone: off white to medium brown, light to medium brown grey, occasionally medium grey, dominantly light brown, moderately to very silty, often abundant very fine quartz, altered feldspar and multicoloured lithic sand grains, trace black to brown carbonaceous detritus, moderately calcareous, trace to common micromica, firm, slightly subfissile.
725-730	90	Claystone: as for 720 to 725m.
	10	Sandstone: off white to very light brown, very fine to occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant off white argillaceous matrix (matrix supported), common green grey and trace red brown lithics, abundant alterefeldspar grains, trace black to brown carbonaceous flecks and detritus, friable to hard, no visual porosity, no oil fluorescence.
730-735	100	Claystone: as for 720 to 725m, but with minor medium brown cryptocrystalline dolomite

Interval (m)	%	<b>Description</b> PAGE: 11 of 40		
735-740	100	Claystone: as for 720 to 725m.		
740-745	90	Claystone: as for 720 to 725m.		
	10	Sandstone: as for 725 to 730m.		
745-750	100	<u>Claystone</u> : off white to medium brown, dominantly light brown, occasionally light to medium grey, moderately to very silty, often abundant very fine quartz, altered feldspar a multicoloured lithic sand grains, trace black to brown carbonaceous detritus, moderately calcareous, trace medium brown cryptocrystalline dolomite in part, trace to common micromica, firm, slightly subfissile.		
	Trace	Sandstone: as for 725 to 730m.		
750-755	100	Claystone: as for 745 to 750m.		
755-760	100	Claystone: as for 745 to 750m.		
	Trace	Sandstone: as for 725 to 730m.		
760-770	100	Claystone: as for 745 to 750m.		
	Trace	Sandstone: off white to very light brown, very fine to occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant off white argillaceous matrix (matrix supported), common green grey and trace red brown lithics, abundant alter feldspar grains, trace black to brown carbonaceous flecks and detritus, friable to hard, no visual porosity, no oil fluorescence.		
770-775	100	Claystone: light to medium brown grey, occasionally off white, occasionally light to medium brown, moderately silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains and trace grey green lithics, trace black to dark brow carbonaceous detritus and flecks, slightly calcareous, trace micromica, firm, subfissile.		
775-780	80	Claystone: as for 770 to 775m.		
	20	Sandstone: off white to light brown grey to light grey, very fine, subangular, moderately well sorted, weak to occasionally strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green lithics, trace very fine black to brown carbonaceous detritus, friable to occasionally hard, no visual porosity, no oil fluorescence but trace dull yellow orange mineral fluorescence, no cut.		
780-785	100	Claystone: as for 770 to 775m.		
	Trace	Sandstone: as for 775 to 780m.		
785-790	100	Claystone: off white to dark brown, medium grey, dominantly dark brown and moderate carbonaceous, moderately silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains and trace grey green lithics, trace black to dark brow carbonaceous detritus and flecks, slightly calcareous, trace micromica, firm, subfissile.		
	Trace	Sandstone: as for 775 to 780m.		
790-795	100	<u>Claystone</u> : light to medium brown grey, occasionally off white, occasionally light to medium brown.		
795-800	70	Claystone: as for 790 to 795m.		
	30	Sandstone: off white to light brown grey to light grey, very fine, subangular, moderately well sorted, weak to dominantly strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green lithics, trace very fine black to brown carbonaceous detritus, friable to occasionally hard, no visual porosity, no oil fluorescence but trace dull yellow orange mineral fluorescence, no cut.		

Interval (m)	%	<b>Description</b> PAGE: 12 of 40
800-805	100	Claystone: off white to medium brown grey, occasionally light to medium brown grey, moderately silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains and trace grey green lithics, trace black to dark brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile.
	Trace	Sandstone: as for 795 to 800m.
805-810	100	Claystone: off white to medium brown grey, occasionally light to medium brown grey, medium olive grey in part, moderately silty, trace crystalline calcite (fracture infilling), occasionally very finely arenaceous with quartz and off white partially altered feldspar grains and trace grey green lithics, trace black to dark brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile.
	Trace	Sandstone: as for 795-800m.
810-815	90	Claystone: as for 805 to 810m, but dominantly medium to dark brown grey.
	10	Sandstone: off white to light brown grey to light grey, very fine, subangular, moderately to well sorted, weak to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green lithics, trace very fine black to brown carbonaceous detritus, friable to occasionally hard, no visual porosity, no oil fluorescence but trace dull yellow orange mineral fluorescence, no cut.
815-820	100	Claystone: as for 810 to 815m.
	Trace	Sandstone: as for 810 to 815m.
820-825	100	Claystone: off white to medium grey, light to medium brown grey, light to medium brown, occasionally medium olive grey, moderately silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains and trace grey green lithics, trace black to dark brown carbonaceous detritus and flecks, slight to moderately calcareous, trace micromica, firm, subfissile.
	Trace	Sandstone: as for 810 to 815m.
825-830	50	Claystone: as for 820 to 825m.
	50	Sandstone: off white to light brown grey to light grey, very fine, subangular, moderately to well sorted, moderate calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green lithics, trace very fine black to brown carbonaceous detritus, friable to occasionally hard, no visual porosity, no oil fluorescence but trace dull yellow orange mineral fluorescence, no cut.
830-835	70	Sandstone: off white to light grey, very fine to dominantly fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, very poor inferred porosity.
		Fluorescence: The sandstone has trace patchy bright orange-gold fluorescence giving a moderately bright slow streaming to crush light yellow white cut fluorescence, no natural cut colour, moderate ring residue.
	30	<u>Claystone</u> : light to medium brown grey, light to medium grey, occasionally off white, occasionally light to medium olive grey, moderately silty, occasionally very finely arenaceous with quartz and altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile.

Interval (m)	%	<b>Description</b> PAGE: 13 of 40			
835-840	100	Claystone: as for 830 to 835m.			
	Trace	Sandstone: off white to light grey, very fine to fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, no oil fluorescence but trace to 20% dull yellow orange mineral fluorescence, no cut.			
840-845	70	Claystone: as for 830 to 835m.			
	30	Sandstone: as for 835 to 840m.			
845-850	100	Claystone: medium brown grey, off white to medium brown, light to medium grey, moderately silty, occasionally very finely arenaceous with quartz and altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile.			
	Trace	Sandstone: as for 835 to 840m.			
850-855	90	Claystone: as for 845 to 850m.			
	10	Sandstone: as for 835 to 840m.			
855-860	90	Claystone: as for 845 to 850m.			
	10	Sandstone: off white to light grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, no oil fluorescence but trace to 20% dull yellow orange mineral fluorescence, no cut.			
860-865	70	<u>Claystone</u> : medium brown grey, off white to medium brown, light to medium grey, moderately silty, occasionally very finely arenaceous with quartz and altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, slight to moderately calcareous, trace micromica, firm, subfissile.			
	20	Sandstone: as for 855-860m.			
	10	<u>Coal</u> : black to dark brown, earthy texture, platy fracture, slightly to dominantly very argillaceous, hard and brittle.			
865-870	100	Claystone: as for 860 to 865m.			
870-875	100	Claystone: as for 860 to 865m.			
	Trace	Sandstone: as for 855 to 860m.			
875-885	100	<u>Claystone</u> : medium brown grey, off white to medium brown, light to medium grey, moderately to very silty, occasionally very finely arenaceous with quartz and altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile.			
	Trace	Sandstone: as for 855 to 860m.			

Interval (m)	%	Description PAGE: 14 of 40			
885-890	95	Claystone: as for 845 to 850m.			
	5	Sandstone: off white to light grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, no oil fluorescence but trace to 20% dull yellow orange mineral fluorescence, no cut.			
890-895	90	Claystone: medium brown grey, off white to medium brown, occasionally light to medium grey, moderately to very silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, rare pyrite, slight to moderately calcareous, trace micromica, firm, subfissile.			
	10	Sandstone: as for 885 to 890m.			
895-900	80	Claystone: as for 890 to 895m.			
	20	Sandstone: as for 885 to 890m.			
900-910	100	<u>Claystone</u> : off white to medium brown grey, light to medium grey, occasionally medium olive grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace green grey lithics, trace black to brown carbonaceous detritus and flecks, slightly calcareous, trace micromica, subfissile.			
	Trace	Sandstone: as for 885 to 890m.			
910-915	100	<u>Claystone</u> : off white to medium brown grey, light to medium grey, common medium olive grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace green grey lithics, trace black to brown carbonaceous detritus and flecks, slightly calcareous, trace micromica, subfissile.			
	Trace	Sandstone: off white to light grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, no oil fluorescence but trace to 20% dull yellow orange mineral fluorescence, no cut.			
915-925	100	<u>Claystone</u> : off white to medium brown grey, light to medium grey, common medium olive grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace green grey lithics, common black to brown carbonaceous detritus and flecks, slightly calcareous, trace micromica, subfissile.			
	Trace	Sandstone: as for 910 to 915m.			
925-950	100	<u>Claystone</u> : medium olive grey, common off white to medium brown grey, light to medium grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace green grey lithics, common black to brown carbonaceous detritus and flecks, slightly calcareous, trace micromica, subfissile.			
950-955	100	<u>Claystone</u> : medium olive grey, common off white to medium brown grey, light to medium grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace green grey lithics, common black to brown carbonaceous detritus and flecks, slightly calcareous, trace micromica, subfissile.			
	Trace	Sandstone: off white to light grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, no oil fluorescence but trace to 20% dull yellow orange mineral fluorescence, no cut.			

Interval (m)	%	<b>Description</b> PAGE: 15 of 40	0		
955-960	90	Claystone: as for 950 to 955m, but often medium brown grey.			
	10	<u>Coal</u> : black to medium brown, often very argillaceous, earthy texture, platy fracture, hard, brittle.			
960-965	100	Claystone: medium brown grey, common off white to light brown grey, light to medium olive grey, moderately to very silty, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace green grey lithics, common to abundant black to brown carbonaceous detritus and flecks, slightly calcareous, trace micromica, subfissile.			
	Trace	Sandstone: as for 950 to 955m.			
965-975	965-975  80  Claystone: medium brown grey, common off white to light brown grey, light to olive grey, moderately to very silty, occasionally very finely arenaceous with que partially altered feldspar grains, trace green grey lithics, common black to brown carbonaceous detritus and flecks, slightly calcareous, trace medium brown crypted dolomite, trace micromica, subfissile.				
	20	Sandstone: off white to light grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, trace grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, hard, no visual porosity, no oil fluorescence but trace to 10% dull yellow orange mineral fluorescence, no cut.			
975-980	90	Claystone: as for 965 to 975m.			
	10	Sandstone: as for 965 to 975m.			
980-985	Claystone: off white to medium grey, light to medium olive grey, light to medium grey, moderately silty, often very finely arenaceous with quartz and off white par altered feldspar grains, trace very fine grey green and red brown lithics where are slightly calcareous, trace to common black to brown carbonaceous flecks and det very fine brown and clear mica flakes, trace to common micromica, firm, subfissi		s,		
	10	<u>Sandstone</u> : off white to light brown, very fine, occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant partially altered feldspar grains, trace grey green, red and brown lithics, common black to brown carbonaceous detritus in part, friable to hard, no visual porosity, no oil fluorescence but trace to 5% dull yellow orange mineral fluorescence, no cut.	K		
	Trace	<u>Coal</u> : black to dark brown, non to occasionally very argillaceous, earthy texture, platy fracture, hard, brittle.			
985-990	90	Claystone: as for 980 to 985m.			
	10	Sandstone: as for 980 to 985m.			
990-995	90	<u>Claystone</u> : off white to medium grey, light to medium olive grey, light to medium brown grey, moderately silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, trace very fine grey green and red brown lithics where arenaceous slightly calcareous, common medium brown cryptocrystalline dolomite and ankerite, trace to common black to brown carbonaceous flecks and detritus, trace very fine brown and clear mica flakes, trace to common micromica, firm, subfissile.	s,		
	10	Sandstone: as for 980 to 985m.			
995-1000	90	<u>Claystone</u> : off white to medium brown grey, medium olive grey, light to medium grey, moderately silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, trace very fine grey green and red brown lithics where arenaceous, slightl calcareous, trace medium brown cryptocrystalline dolomite, trace to common black to brown carbonaceous flecks and detritus, trace very fine brown and clear mica flakes, trace to common micromica, firm, subfissile.	-		
	10	Sandstone: as for 980 to 985m.			

Interval (m)	%	<b>Description</b> PAGE: 16 of 40	
1000-1005	60	Claystone: as for 995 to 1000m, but in part dark grey and very carbonaceous.	
	30	Coal: black to dark brown, dominantly very argillaceous grading to dark grey to dark brown carbonaceous Claystone, earthy texture, platy fracture, hard, brittle.	
	10	Sandstone: off white to light brown, very fine, occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant partially altered feldspar grains, trace grey green, red and brown lithics, common black to brown carbonaceous detritus in part, friable to hard, no visual porosity, no oil fluorescence but trace to 5% dull yellow orange mineral fluorescence, no cut.	
1005-1010	80	Claystone: as for 995 to 1000m.	
	20	Sandstone: as for 980 to 985m.	
1010-1015	. 80	Claystone: off white to light brown, trace medium olive grey, trace medium grey, moderately silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, trace very fine grey green and red brown lithics where arenaceous, slightly calcareous, trace to common black to brown carbonaceous flecks and detritus, trace very fine brown and clear mica flakes, trace to common micromica, firm, subfissile.	
	20	Sandstone: as for 980 to 985m.	
	Trace	<u>Coal</u> : black to occasionally very dark brown, non to occasionally slightly argillaceous, earthy to slightly subvitreous texture, platy to slightly subconchoidal fracture, hard and brittle.	
1015-1020	70	Claystone: as for 1010 to 1015m.	
	30	Sandstone: off white to light brown, very fine, occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant partially altered feldspar grains, trace grey green, red and brown lithics, common black to brown carbonaceous detritus in part, friable to hard, no visual porosity, no oil fluorescence but trace to 5% dull yellow orange mineral fluorescence, no cut.	
1020-1025	100	Claystone: dominantly medium brown grey, often off white to light brown, trace medium olive grey, trace medium grey, moderately silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, trace very fine grey green and red brown lithics where arenaceous, slightly calcareous, trace to common black to brown carbonaceou flecks and detritus, trace very fine brown and clear mica flakes, trace to common micromica, firm, subfissile.	
	Trace	Sandstone: as for 1015 to 1020m.	
1025-1030	80	Claystone: as for 1020 to 1025m.	
	10	Sandstone: as for 1015 to 1020m.	
	10	<u>Coal</u> : black to occasionally very dark brown, non to occasionally slightly argillaceous, earthy to occasionally subvitreous texture, platy to occasionally subconchoidal fracture, hard and brittle.	
1030-1035	90	<u>Claystone</u> : off white to light brown, often medium brown grey, trace medium olive grey, trace medium grey, moderately silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, trace very fine grey green and red brown lithics where arenaceous, slightly calcareous, trace to common black to brown carbonaceous flecks and detritus, trace very fine brown and clear mica flakes, trace to common micromica, firm, subfissile.	
	10	Sandstone: as for 1015 to 1020m.	

Interval (m)	%	Description	PAGE:	17 of 40	
1035-1040	95	Claystone: as for 1030 to 1035m.			
	5	Sandstone: off white to light brown, very fine, occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant partially altered feldspar grains, trace grey green, red and brown lithics, common black to brown carbonaceous detritus in part, friable to hard, no visual porosity, no oil fluorescence but trace to 5% dull yellow orange mineral fluorescence, no cut.			
1040-1045	70	Sandstone: off white to light brown grey, very fine to occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), trace grey green and brown lithics, abundant off white partially altered feldspar grains, trace brown mica flakes, trace black to brown carbonaceous detritus and flecks, friable to hard, no visual porosity.			
	30	Claystone: off white to medium brown grey, light to med brown, moderately silty, often very finely arenaceous with grains, trace multicoloured lithics where arenaceous, sligh to common black to brown carbonaceous detritus and flectirm, subfissile.	n quartz and altered to tly to moderately ca	feldspar lcareous, trace	
1045-1050	90	Claystone: off white to medium brown grey, light to med brown, dominantly medium grey to medium brown grey, arenaceous with quartz and altered feldspar grains, trace marenaceous, slightly to moderately calcareous, trace to concarbonaceous detritus and flecks, trace to common micron	moderately silty, often nulticoloured lithics nmon black to brown	en very finely where 1	
	10	Sandstone: as for 1040 to 1045m.			
	Trace	Coal: black, earthy to subvitreous texture, platy to subcor	nchoidal fracture, ha	rd, brittle.	
1050-1055	90	Claystone: as for 1045 to 1050m.			
	10	Sandstone: as for 1040 to 1045m.			
1055-1060	100	Claystone: as for 1045 to 1050m.			
	Trace	Sandstone: as for 1040 to 1045m.			
1060-1065	100	Claystone: off white to medium brown grey, light to med brown, dominantly medium brown grey, moderately silty, quartz and altered feldspar grains, trace multicoloured lith moderately calcareous, trace to common black to brown catrace to common micromica, firm, subfissile.	often very finely are ics where arenaceou	enaceous with s, slightly to	
1065-1070	100	Claystone: as for 1060 to 1065m.			
	Trace	Sandstone: off white to light brown grey, very fine to occ moderately sorted, moderate to strong calcareous cement, matrix (matrix supported), trace grey green and brown lith altered feldspar grains, trace brown mica flakes, trace blac and flecks, friable to hard, no visual porosity.	abundant white argi	llaceous nite partially	
1070-1080	100	Claystone: off white to medium brown grey, light to med brown, dominantly medium grey, moderately silty, often vand altered feldspar grains, trace multicoloured lithics who moderately calcareous, trace to common black to brown catrace to common micromica, firm, subfissile.	very finely arenaceou ere arenaceous, sligh	is with quartz tly to	
	Trace	Sandstone: as for 1065 to 1070m.			

nterval (m)	%	Description	PAGE:	18 of 40
1080-1085	100	<u>Claystone</u> : off white to medium grey, light to medium brown grey, dominantly medium grey, moderately to very silty, occasionally abundant very fine altered feldspar and quartz grains with trace multicoloured lithics, slightly calcareous, trace to common brown to black carbonaceous flecks and detritus, trace to common micromica, firm, subfissile.		
	Trace	Sandstone: as for 1065 to 1070m.		
1085-1090	90	Claystone: as for 1080 to 1085m.		
	10	Sandstone: off white to occasionally light brown grey, very fir grains, subangular, moderately to well sorted, moderate to stron abundant white argillaceous matrix (matrix supported), trace grabundant off white partially altered feldspar grains, trace brown and brown carbonaceous detritus, friable to hard, no visual porce	g calcareous co ey green and ba mica flakes, to	ement, rown lithics, race fine bla
1090-1095	70	Claystone: as for 1080 to 1085m.		
	30	Sandstone: as for 1085 to 1090m.		
1095-1100	80	Sandstone: very light grey, very fine to medium, dominantly fit sorted, weak to moderate calcareous and silica cements, commo argillaceous matrix, common to abundant off white partially alto common grey green, yellow and red lithics, trace fine black coal moderately hard, very poor visual porosity, poor inferred porosity.	n to abundant ered feldspar g l detritus, friab	white rains, le to
	20	<u>Claystone</u> : off white to medium grey, light to medium brown g grey, moderately to very silty, occasionally abundant very fine a grains with trace multicoloured lithics, slightly calcareous, trace carbonaceous flecks and detritus, trace to common micromica, f	ltered feldspar to common br	and quartz own to blac
1100-1105	60	<u>Claystone</u> : off white to medium green grey, light to medium gr brown grey, dominantly medium green grey, moderately to very abundant very fine altered feldspar and quartz grains with trace slightly calcareous, trace to common brown to black carbonaceo to common micromica, firm, subfissile.	silty, occasion multicoloured	ially lithics,
	40	Sandstone: off white to occasionally light brown grey, very fin grains, subangular, moderately to well sorted, moderate to strong abundant white argillaceous matrix (matrix supported), trace gree abundant off white partially altered feldspar grains, trace brown and brown carbonaceous detritus, friable to hard, no visual poros	g calcareous ce y green and br mica flakes, tr	ment, own lithics, ace fine bla
1105-1110	90	<u>Claystone</u> : medium grey to medium olive grey to medium brow silty, occasionally abundant very fine altered feldspar and quartz multicoloured lithics, slightly calcareous, trace to common brow flecks and detritus, trace to common micromica, firm, subfissile.	grains with train to black carb	ace
	10	Sandstone: as for 1100 to 1105m, but with common fine quartz	grains.	
1110-1115	90	Claystone: as for 1105 to 1110m.		
	10	Sandstone: off white to medium green grey, very fine with occasubangular, moderately to well sorted, moderate to strong calcar white to medium green argillaceous matrix (matrix supported), to lithics, abundant off white partially altered feldspar grains, trace flakes, trace fine black and brown carbonaceous detritus, friable no oil fluorescence.	eous cement, a race grey greer to common br	bundant and brown own mica
1115-1125	100	<u>Claystone</u> : light to medium brown grey, medium grey to medium very silty, occasionally abundant very fine altered feldspar and qualticoloured lithics, slightly calcareous, trace to common brow flecks and detritus, trace to common micromica, firm, subfissile.	uartz grains w n to black carb	ith trace
	· I			

Interval (m)	%	<b>Description</b> PAGE: 19 of 40			
1125-1130	100	Claystone: as for 1115 to 1125m.			
	Trace	Sandstone: off white to medium grey, very fine with occasional fine grains, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), trace grey green and brown lithics, abundant off white partially altered feldspar grains, trace to common brown mica flakes, trace fine black and brown carbonaceous detritus, friable to hard, no visual porosity, no oil fluorescence.			
1130-1140	100	Claystone: light to medium brown grey, medium grey to medium olive grey, moderately to very silty, occasionally abundant very fine altered feldspar and quartz grains with trace multicoloured lithics, slightly calcareous, trace to common brown to black carbonaceous flecks and detritus, trace to common micromica, occasionally common fine brown mica flakes, firm, subfissile.			
	Trace	Sandstone: as for 1125 to 1130m.			
1140-1145	90	Claystone: as for 1130 to 1140m.			
	10	Sandstone: off white to light brown, occasionally light grey to light green grey, very fine to occasionally fine grained, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white to light brown argillaceous matrix (matrix supported), trace grey green and brown lithics, abundant off white partially altered feldspar grains, trace to common brown mica flakes, trace fine black and brown carbonaceous detritus, friable to hard, no visual porosity, no oil fluorescence.			
1145-1150	80	<u>Claystone</u> : off white to medium grey, light to medium brown grey, occasionally medium olive grey, moderately to very silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
	20	Sandstone: off white to light grey to light brown grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace fine brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.			
1150-1155	100	Claystone: as for 1145 to 1150m.			
	Trace	Sandstone: as for 1145 to 1150m.			
1155-1160	90	Claystone: as for 1145 to 1150m.			
	10	Sandstone: as for 1145 to 1150m.			
1160-1165	100	<u>Claystone</u> : light to medium green grey, off white to medium grey, light to medium brown grey, moderately to very silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
1165-1170	100	Claystone: as for 1160 to 1165m.			
	Trace	Sandstone: off white to light grey to light brown grey, light to medium green grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace fine brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.			
1170-1175	90	Claystone: as for 1160 to 1165m.			
	10	Sandstone: as for 1165 to 1170m.			

Interval (m)	%	<b>Description</b> PAGE: 20 of 40
1175-1180	60	Claystone: as for 1160 to 1165m.
	40	Sandstone: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace fine brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.
1180-1185	90	Claystone: light to medium brown grey, off white to medium grey, light to medium green grey, moderately to very silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.
	10	Sandstone: as for 1175 to 1180m.
1185-1190	90	Claystone: light to medium brown, off white to medium grey, light to medium green grey, moderately to very silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.
	10	Sandstone: as for 1175 to 1180m.
1190-1195	80	Claystone: as for 1185 to 1190m.
	20	Sandstone: as for 1175 to 1180m.
1195-1200	70	Claystone: as for 1185 to 1190m.
	30	Sandstone: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, common coarse brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.
1200-1210	100	Claystone: light to medium brown, off white to medium grey, occasionally light to medium green grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.
	Trace	Sandstone: as for 1195 to 1200m.
1210-1215	100	Claystone: as for 1200 to 1210m.
1215-1220	100	Claystone: as for 1200 to 1210m.
	Trace	Sandstone: as for 1195 to 1200m.
1220-1225	100	Claystone: light to medium brown, off white to medium grey, occasionally light to medium green grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.

Interval (m)	%	<b>Description</b> PAGE: 21 of 40			
1225-1230	100	Claystone: as for 1220 to 1225m.			
	Trace	Sandstone: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, common coarse brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.			
1230-1235	100	Claystone: light to medium brown, off white to medium grey, light to medium green grey, dominantly medium brown to medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
	Trace	Sandstone: as for 1225 to 1230m.			
1235-1240	100	Claystone: light to medium brown, off white to medium grey, light to medium green grey, dominantly medium grey to medium green grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
	Trace	Sandstone: as for 1225 to 1230m.			
1240-1245	100	Claystone: light to medium brown, off white to medium grey, light to medium green grey, dominantly medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
1245-1250	100	Claystone: light to medium brown, off white to medium grey, light to medium green grey, light to medium brown grey, dominantly medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
	Trace	Sandstone: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace coarse brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.			
1250-1255	80	Claystone: as for 1245 to 1250m.			
	20	Sandstone: as for 1245 to 1250m.			
1255-1260	70	Claystone: as for 1245 to 1250m, but dominantly light brown grey.			
	30	Sandstone: as for 1245 to 1250m.			

Interval (m)	%	<b>Description</b> PAGE: 22 of 40			
1260-1265	60	Claystone: light to medium brown, off white to medium grey, light to medium green grey, light to medium brown grey, dominantly light to medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspargrains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
	40	Sandstone: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace coarse brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.			
1265-1270	100	Claystone: as for 1260 to 1265m, but dominantly light to medium brown grey to medium grey.			
	Trace	Sandstone: as for 1260 to 1265m.			
1270-1275	100	Claystone: as for 1260 to 1265m.			
1275-1280	100	Claystone: light to medium brown, off white to medium grey, light to medium green grey, light to medium brown grey, dominantly medium green grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
1280-1285	60	Claystone: as for 1275 to 1280m.			
	40	Sandstone: off white to light brown grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.			
1285-1290	50	Claystone: as for 1275 to 1280m.			
	50	<u>Claystone</u> : medium brown, moderately silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, moderately carbonaceous, trace brown to black carbonaceous detritus and flecks, trace micromica, firm, subfissile.			
	Trace	Sandstone: as for 1280 to 1285m.			
1290-1295	90	Claystone: light to medium brown, off white to medium grey, light to medium green grey, light to medium brown grey, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
	10	Sandstone: as for 1280 to 1285m.			
1295-1300	100	Claystone: light to medium brown, off white to medium grey, light to medium green grey, light to medium brown grey, dominantly medium grey to medium brown grey, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.			
	Trace	Sandstone: off white to light grey to light brown grey, very fine to occasionally fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.			

Interval (m)	%	Description PAGE: 23 of 40	
1300-1305	95	Claystone: as for 1295 to 1300m, but with trace dark brown grey and moderately carbonaceous.	
	5	Sandstone: as for 1295 to 1300m.	
1305-1310	60	Claystone: as for 1300 to 1305m.	
	40	Sandstone: off white to light brown grey, very fine to fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace to common grey green and brown lithics, trace brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.	
1310-1315	50	Claystone: off white to medium grey, light to medium green grey, light to medium brown grey, light to medium brown, dominantly medium grey to medium brown grey, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.	
	50	Sandstone: as for 1305 to 1310m.	
1315-1320	100	Claystone: off white to medium grey, light to medium green grey, light to medium brown grey, light to medium brown, dominantly off white to light brown, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.	
	Trace	Sandstone: as for 1305 to 1310m.	
1320-1325	100	Claystone: off white to medium grey, light to medium green grey, light to medium brown grey, light to medium brown, dominantly medium grey, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.	
	Trace	Sandstone: as for 1305 to 1310m.	
1325-1330	60	Claystone: off white to medium grey, light to medium green grey, light to medium brown grey, light to medium brown, dominantly off white to medium grey, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.	
	40	Sandstone: off white to light brown grey, very fine to fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace to common grey green and brown lithics, trace brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.	
1330-1335	60	Sandstone: as for 1325 to 1330m.	
	40	<u>Claystone</u> : off white to medium grey, light to medium green grey, light to medium brown grey, light to medium brown, dominantly medium grey to off white, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile.	
1335-1340	90	Sandstone: off white to very light brown grey, very fine to fine, subangular, moderately sorted, weak calcareous cement, abundant white argillaceous matrix (matrix supported). abundant off white altered feldspar grains, trace grey green lithics, trace brown mica flakes, trace very fine brown to black carbonaceous detritus, friable, no visual porosity, no oil fluorescence.	
	10	Claystone: as for 1330 to 1335m.	

Interval (m)	%	Description PAGE:	24 of 40		
1340-1345	100	Claystone: off white to medium brown grey, light to medium green grey, light to medium grey, light to medium brown, dominantly light brown grey, occasionally abundant very fine quartz and partially altered feldspar grains, slightly calcareous in part, trace black carbonaceous flecks and detritus, trace micromica, firm, slightly subfissile.			
	Trace	Sandstone: off white to light brown grey, very fine to fine, subangular, mod sorted, moderate to strong calcareous cement, abundant white argillaceous m supported), abundant off white partially altered feldspar grains, trace to command brown lithics, trace brown mica flakes, trace to common black to brown detritus and flecks, friable to moderately hard, no visual porosity, no oil fluor	atrix (matrix non grey green carbonaceous		
1345-1350	90	Claystone: as for 1340 to 1345m.			
	10	Sandstone: as for 1340 to 1345m.			
1350-1355	90	<u>Claystone</u> : off white to medium brown grey, light to medium green grey, light to medium brown, dominantly off white to light green grey, occas abundant very fine quartz and partially altered feldspar grains, slightly calcar trace black carbonaceous flecks and detritus, trace micromica, firm, slightly	ionally eous in part,		
	10	Sandstone: as for 1340 to 1345m.			
1355-1360	60	Claystone: as for 1350 to 1355m, but dominantly medium green grey.			
	40	Sandstone: off white to light brown grey, very fine to fine, subangular, modesorted, moderate to strong calcareous cement, abundant white argillaceous m supported), abundant off white partially altered feldspar grains, trace to command brown lithics, trace brown mica flakes, trace to common black to brown detritus and flecks, friable to moderately hard, no visual porosity, no oil fluor	atrix (matrix non grey green carbonaceous		
1360-1365	100	<u>Claystone</u> : off white to medium brown grey, light to medium green grey, light to medium brown, dominantly light brown grey, occasionally abu quartz and partially altered feldspar grains, slightly calcareous in part, trace be carbonaceous flecks and detritus, trace micromica, firm, slightly subfissile.	ndant very fine		
	Trace	Sandstone: as for 1355 to 1360m.			
1365-1370	95	Claystone: as for 1360 to 1365m.			
	5	Sandstone: as for 1355 to 1360m.			
1370-1375	90	<u>Claystone</u> : off white to medium brown grey, light to medium green grey, light to medium brown, dominantly medium grey to medium brown grey abundant very fine quartz and partially altered feldspar grains, slightly calcar trace black carbonaceous flecks and detritus, trace micromica, firm, slightly	ey, occasionally eous in part,		
	10	Sandstone: off white to light brown grey, very fine to fine, subangular, mod sorted, moderate to strong calcareous cement, abundant white argillaceous m supported), abundant off white altered feldspar grains, trace to common grey brown lithics, trace brown mica flakes, trace to common black to brown carb detritus and flecks, friable to moderately hard, no visual porosity, no oil fluor	atrix (matrix green and onaceous		
1375-1380	100	<u>Claystone</u> : as for 1370 to 1375m, but with common dark brown and modera carbonaceous.	itely		
	Trace	Sandstone: as for 1370 to 1375m.			
1380-1385	100	Claystone: as for 1370 to 1375m.			
	Trace	Sandstone: as for 1370 to 1375m.			
1385-1390	90	Claystone: as for 1370 to 1375m, but dominantly medium green grey.	i		
	10	Sandstone: as for 1370 to 1375m.			

Interval (m)	%	<b>Description</b> PAGE: 25 of 40
1390-1395	95	Claystone: off white to medium brown grey, light to medium green grey, light to medium grey, light to medium brown, dominantly medium grey, occasionally abundant very fine quartz and partially altered feldspar grains, slightly calcareous in part, trace black carbonaceous flecks and detritus, trace light brown crystalline calcite - fracture infill, trace micromica, firm, slightly subfissile.
	5	Sandstone: as for 1370 to 1375m.
1395-1400	90	Claystone: off white to medium brown grey, light to medium green grey, light to medium grey, light to medium brown, dominantly medium green grey, occasionally abundant very fine quartz and partially altered feldspar grains, slightly calcareous in part, trace black carbonaceous flecks and detritus, trace micromica, firm, slightly subfissile.
	10	Sandstone: off white to light brown grey, very fine to fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white altered feldspar grains, trace to common grey green and brown lithics, trace brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.
1400-1405	100	<u>Claystone</u> : off white to medium brown grey, light to medium green grey, light to medium grey, light to medium brown, dominantly medium grey, occasionally abundant very fine quartz and partially altered feldspar grains, slightly calcareous in part, trace black carbonaceous flecks and detritus, trace micromica, firm, slightly subfissile.
	Trace	Sandstone: off white to light brown grey, very fine to fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white altered feldspar grains, trace to common grey green and brown lithics, trace brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.
1405-1410	100	Claystone: as for 1400 to 1405m.
1410-1420	90	<u>Claystone</u> : off white to medium grey, medium brown grey, medium green grey, trace very fine partly altered feldspar grains in part, trace black to brown carbonaceous flecks and detritus, trace to common micromica and fine brown mica flakes, slightly calcareous in part, occasionally very finely arenaceous grading to sandstone, firm to moderately hard, subfissile.
	10	Sandstone: off white to light brown grey, very fine, subangular, moderately to well sorted, moderate silica and calcareous cements, common to abundant white argillaceous matrix, common partly altered feldspar grains, trace grey and brown lithics, common fine brown mica flakes in part, trace black carbonaceous detritus, hard, no visual porosity, no oil fluorescence.
1420-1425	100	Claystone: as for 1410 to 1420m, but dominantly medium brown grey.
	Trace	Sandstone: as for 1410 to 1420m.
1425-1430	100	Claystone: off white to medium grey, medium brown grey, light to medium green grey, dominantly light green grey, trace very fine partly altered feldspar grains in part, trace black to brown carbonaceous flecks and detritus, trace to common micromica and fine brown mica flakes, slightly calcareous in part, occasionally very finely arenaceous grading to sandstone, firm to moderately hard, subfissile.
	Trace	Sandstone: as for 1410 to 1420m.
1430-1435	100	Claystone: as for 1425 to 1430m.
	Trace	Sandstone: as for 1410 to 1420m.

Interval (m)	%	<b>Description</b> PAGE: 26 of 40
1435-1440	95	Claystone: off white to medium grey, medium brown grey, light to medium green grey, dominantly medium grey, trace very fine partly altered feldspar grains in part, trace black to brown carbonaceous flecks and detritus, trace to common micromica and fine brown mica flakes, slightly calcareous in part, occasionally very finely arenaceous grading to sandstone firm to moderately hard, subfissile.
	5	<u>Sandstone</u> : off white to light brown grey, very fine, subangular, moderately to well sorted moderate silica and calcareous cements, common to abundant white argillaceous matrix, common partly altered feldspar grains, trace grey and brown lithics, common fine brown mica flakes in part, trace black carbonaceous detritus, hard, no visual porosity, no oil fluorescence.
1440-1450	100	Claystone: as for 1435 to 1440m.
1450-1455	100	Claystone: as for 1435 to 1440m.
	Trace	Sandstone: off white to light brown grey, very fine, subangular, moderately to well sorted moderate silica and calcareous cements, common to abundant white argillaceous matrix, common partly altered feldspar grains, trace grey and brown lithics, common fine brown mica flakes in part, trace black carbonaceous detritus, hard, no visual porosity, no oil fluorescence.
1455-1460	100	Claystone: off white to medium grey, medium brown grey, light to medium green grey, dominantly medium grey, trace very fine partly altered feldspar grains in part, trace black t brown carbonaceous flecks and detritus, trace to common micromica and fine brown mica flakes, slightly calcareous in part, occasionally very finely arenaceous grading to sandstone firm to moderately hard, subfissile.
	Trace	<u>Sandstone</u> : off white to light brown grey, very fine, subangular, moderately to well sorted moderate silica and calcareous cements, common to abundant white argillaceous matrix, common partly altered feldspar grains, trace grey and brown lithics, common fine brown mica flakes in part, trace black carbonaceous detritus, hard, no visual porosity, no oil fluorescence.
1460-1465	80	Sandstone: light grey, very fine to medium, dominantly fine, angular to subrounded, dominantly subangular, poor to moderately sorted, moderate silica and calcareous cement, common to abundant white argillaceous matrix, trace red garnet, trace fine black carbonaceous detritus, trace brown mica flakes, moderately hard, nil to very poor visual porosity, very poor inferred porosity.
	20	Claystone: as for 1455 to 1460m.
		Fluorescence: The sandstone has 60% dull to bright pinpoint to patchy very pale yellow white to milky white fluorescence with dull milky white crush cut, thin ring residue.
1465-1468	100	Sandstone: light grey, very fine to coarse, dominantly fine, angular to subrounded, dominantly subangular, poorly sorted, moderate silica and weak calcareous cement, common to dominantly abundant white argillaceous matrix, trace red garnet, trace black carbonaceous detritus, trace brown and green mica flakes, friable to hard, nil to poor visual porosity, poor inferred porosity.
		Fluorescence: The sandstone has 70% dull to bright pinpoint to patchy very pale yellow white to milky white fluorescence, giving dull very pale yellow to milky white crush cut, no natural cut colour, no natural oil stain, thin ring residue, no free oil in drilling but trace pinpoint bright milky white fluorescence from a cuttings/water mix.
1468-1470	80	Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angula to subrounded, dominantly subangular, poorly sorted, moderate silica and weak calcareous cements, common white argillaceous matrix, trace to common red garnet, trace black coal detritus, friable to occasionally hard, poor to fair visual porosity.
		Fluorescence: The sandstone has 25% dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
	20	<u>Claystone</u> : off white to medium grey, medium green grey, occasionally medium brown grey, moderately to very silty, slightly calcareous in part, occasionally very finely arenaceous with quartz and partially altered feldspar grains, trace black coal detritus, common micromica, moderately hard, subfissile.

Interval (m)	%	Description PAGE: 27 of 40
1470-1475	50	Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, common to abundant white argillaceous matrix, trace red garnet, trace green lithics, trace black coaly detritus, friable to hard, very poor visual porosity.
		Fluorescence: The sandstone has 30% dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
	30	Claystone: (kaolinite) white, structureless sticky clay.
	20	<u>Claystone</u> : medium to dark grey, dominantly medium grey, very silty, common micromica, hard, subfissile.
1475-1480	40	Claystone: (kaolinite) white, structureless sticky clay.
	30	<u>Claystone</u> : medium to dark grey, dominantly medium grey, very silty, common micromica, hard, subfissile.
	30	Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, abundant white argillaceous matrix grading to kaolinite, trace red garnet, trace green lithics, trace black coaly detritus, friable to hard, very poor visual porosity.
		Fluorescence: The sandstone has 30% dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
1480-1485	80	Claystone: (kaolinite) white, structureless sticky clay.
	20	Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, abundant white argillaceous matrix grading to kaolinite, trace red garnet, trace green lithics, trace black coaly detritus, friable to hard, very poor visual porosity.
	Trace	<u>Claystone</u> : medium to dark grey, dominantly medium grey, very silty, common micromica, hard, subfissile.
		Fluorescence: The sandstone has 50% dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
1485-1489	70	Claystone: (kaolinite) white, structureless sticky clay.
	20	Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate to occasionally very strong silica cement, trace weak calcareous cement, abundant white argillaceous matrix grading to kaolinite, trace to common red garnet, trace green lithics, trace black coaly detritus, friable to hard, very poor visual porosity.
	10	<u>Claystone</u> : medium to dark grey, dominantly medium grey, very silty, common micromica, hard, subfissile.
		Fluorescence: The sandstone has 50% dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
1489-1490	90	<u>Claystone</u> : (kaolinite) white, trace very fine to fine dispersed quartz sand grains in part, structureless sticky clay.
	10	<u>Claystone</u> : medium to dark grey, dominantly medium grey, very silty, common micromica, hard, subfissile.
	Trace	Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate to occasionally very strong silica cement, trace weak to occasionally moderate calcareous cement, abundant white argillaceous matrix grading to kaolinite, trace to common red garnet, trace green lithics, trace black coaly detritus, friable to hard, very poor visual porosity.
		Fluorescence: The sandstone has trace dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.

Interval (m)	%	<b>Description</b> PAGE: 28 of 40
1490-1495	70	<u>Claystone</u> : (kaolinite) white, trace very fine to fine dispersed quartz sand grains in part, structureless sticky clay.
	30	Sandstone: light grey, very fine to coarse, dominantly fine, angular to subrounded, dominantly subangular, moderately sorted, moderate calcareous and silica cements, trace to abundant white argillaceous matrix, trace garnet, trace grey lithics, trace black coaly detritus, trace brown mica flakes, friable, fair inferred porosity.
		Fluorescence: The sandstone has trace moderately bright solid light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
1495-1500	70	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	30	Sandstone: light grey, very fine to coarse, dominantly fine, angular to subrounded, dominantly subangular, moderately sorted, moderate calcareous and silica cements, trace to abundant white argillaceous matrix, trace garnet, trace grey lithics, trace black coaly detritus, trace brown mica flakes, friable, fair inferred porosity.
		Fluorescence: The sandstone has trace moderately bright solid light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
1500-1505	70	Claystone: medium grey, very silty, trace very fine partially altered feldspar grains, trace dark grey and very carbonaceous grading to coal, trace black carbonaceous flecks, trace very fine brown mica flakes in part, trace micromica, moderately hard, subfissile.
	20	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	5	Coal: black, earthy texture, platy fracture, slightly to very argillaceous, hard and brittle.
	5	Sandstone: as for 1495 to 1500m.
1505-1510	95	<u>Claystone</u> : light to medium grey, moderately to very silty, trace to occasionally common very fine partially altered feldspar grains, trace dark brown - very carbonaceous and grading to coal, trace to common black carbonaceous flecks, nil to common very fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
	5	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	Trace	Sandstone: as for 1495 to 1500m.
1510-1515	70	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	20	Claystone: light to medium grey, moderately to very silty, trace to occasionally common very fine partially altered feldspar grains, trace dark brown - very carbonaceous and grading to coal, trace to common black carbonaceous flecks, nil to common very fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
	10	Sandstone: off white, very fine to fine, dominantly very fine, angular to dominantly subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix grading to claystone (matrix supported), trace garnet, trace green grey lithics, common black carbonaceous material, friable to moderately hard, no visual porosity, no oil fluorescence.
1515-1520	95	<u>Claystone</u> : medium grey, moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile.
	5	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	Trace	Sandstone: as for 1510 to 1515m.

Interval (m)	%	<b>Description</b> PAGE: 29 of 40
1520-1525	50	Claystone: medium grey, moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile.
	50	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	Trace	Sandstone: as for 1510 to 1515m.
1525-1530	50	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	45	<u>Claystone</u> : medium grey to occasionally medium green grey, moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile.
	5	Sandstone: off white, very fine to fine, dominantly very fine, angular to dominantly subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix grading to claystone (matrix supported), trace garnet, trace green grey lithics, common black carbonaceous material, friable to moderately hard, no visual porosity, no oil fluorescence.
	Trace	Coal: black, earthy texture, platy fracture, slightly to very argillaceous, hard and brittle.
1530-1535	60	Claystone: medium grey to occasionally medium green grey, moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile
	20	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	20	Sandstone: off white, very fine to fine, dominantly very fine, angular to dominantly subangular, moderately sorted, strong calcareous and silica cements, common to abundant white argillaceous matrix grading to claystone (matrix supported), trace garnet, trace green grey lithics, trace black carbonaceous material, hard, very poor inferred porosity.
		Fluorescence: The sandstone has 70% patchy dull to moderately bright light yellow fluorescence giving dull pale yellow white crush cut, thin yellow ring residue.
1535-1540	100	Claystone: medium grey to occasionally medium green grey, trace medium brown grey, slight to very dominantly moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile.
	Trace	Sandstone: off white, very fine to fine, dominantly very fine, angular to dominantly subangular, moderately sorted, strong calcareous and silica cements, common to abundant white argillaceous matrix grading to claystone (matrix supported), trace garnet, trace green grey lithics, trace black carbonaceous material, hard, very poor inferred porosity.
		Fluorescence: The sandstone has 70% patchy dull to moderately bright light yellow fluorescence giving dull pale yellow white crush cut, thin yellow ring residue.
1540-1545	40	Claystone: (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
	30	Claystone: medium grey to occasionally medium green grey, trace medium brown grey, slight to very dominantly moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile.
	30	Sandstone: off white, very fine to fine, dominantly very fine, angular to dominantly subangular, moderately sorted, strong calcareous and silica cements, common to abundant white argillaceous matrix grading to claystone (matrix supported), trace garnet, trace green grey lithics, trace black carbonaceous material, hard, very poor inferred porosity.
		Fluorescence: The sandstone has 10% patchy dull to moderately bright light yellow fluorescence giving dull pale yellow white crush cut, thin yellow ring residue.

Interval (m)	%	Description	PAGE:	30 of 40
1545-1550	40	Claystone: medium grey to occasionally medium green greslight to very dominantly moderately silty, trace black coaly partially altered feldspar grains in part, trace carbonaceous fluoderately hard, subfissile.	detritus, trace ver	ry fine
	30	<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant quartz sand grains in part, structureless sticky clay, occasions	very fine to fine ally calcareous.	dispersed
	30	Sandstone: off white, very fine to fine, dominantly very fine subangular, moderately sorted, strong calcareous and silica white argillaceous matrix grading to claystone (matrix suppogrey lithics, trace black carbonaceous material, hard, very pofluorescence.	cements, commor orted), trace garne	to abundant t, trace green
1550-1555	90	Sandstone: light grey, very fine to medium, dominantly fine moderately to well sorted, weak silica and trace weak calcare dominantly common white argillaceous matrix, trace garnet, lithics, trace brown mica flakes, trace black coaly detritus, fri	eous cements, trac trace brown, grey	e to abundant and green
	10	<u>Claystone</u> : medium grey to occasionally medium green grey slightly to very dominantly moderately silty, trace black coal partially altered feldspar grains in part, trace carbonaceous fluoderately hard, subfissile.	y detritus, trace v	ery fine
_		Fluorescence: The sandstone has trace dull to moderately be giving dull pale yellow white crush cut, trace residue.	right light yellow	fluorescence
1555-1560	95	Sandstone: light grey, very fine to granular, dominantly coa poorly sorted, weak silica and calcareous cements, trace whit brown and green grey lithics, trace black coaly detritus, trace friable with dominantly loose grains in sample, good inferred	e argillaceous ma brown and clear	trix, trace red
	5	Claystone: medium grey to occasionally medium green grey slightly to very dominantly moderately silty, trace black coal partially altered feldspar grains in part, trace carbonaceous flemoderately hard, subfissile.	y detritus, trace ve	ery fine
		Fluorescence: The sandstone has 5% dull solid medium yell weak very dull yellow crush cut, trace residue.	ow fluorescence	giving very
1560-1565	80	<u>Claystone</u> : medium grey to occasionally medium green grey slight to very dominantly moderately silty, trace black coaly of partially altered feldspar grains in part, trace carbonaceous fle moderately hard, subfissile.	detritus, trace ver	y fine
	20	Sandstone: light grey, very fine to granular, dominantly coar very poorly sorted, weak silica and calcareous cements, trace trace red, brown and green grey lithics, trace black coaly detrimica flakes, friable with dominantly loose grains in sample, g	white argillaceou	s matrix, and clear
		Fluorescence: The sandstone has trace dull pinpoint to solid very weak dull yellow crush cut, trace residue.	yellow fluorescen	nce giving
1565-1570	50	<u>Claystone</u> : medium grey, occasionally medium brown grey to silty, trace very fine partially altered feldspar grains, trace bla detritus, trace fine brown mica flakes, trace to common micro subfissile.	ck carbonaceous	flecks and
	30	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occavery fine to fine quartz sand grains, structureless and sticky.	sionally abundan	t dispersed
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	20	Sandstone: off white, very fine to dominantly fine, angular to sorted, moderate silica and weak calcareous cements, common trace to common brown green and grey lithics, trace brown m detritus, hard, no visual porosity.	n white argillaced	us matrix,
		Fluorescence: The sandstone has trace dull pinpoint to solid very weak dull yellow crush cut, trace residue.	yellow fluorescer	nce giving

Interval (m)	%	Description PAGE: 31 of 40
1570-1575	50	Claystone: medium grey, occasionally medium brown grey to medium green grey, very silty, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
	40	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
	10	Sandstone: off white, very fine to dominantly fine, angular to subangular, moderately sorted, moderate silica and weak calcareous cements, common white argillaceous matrix, trace to common brown green and grey lithics, trace brown mica flakes, trace black coaly detritus, hard, no visual porosity.
		Fluorescence: The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.
1575-1580	50	<u>Claystone</u> : medium grey, occasionally medium brown grey to medium green grey, very silty, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
	40	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
	10	Sandstone: off white, very fine to dominantly fine, often very silty, angular to subangular, moderately sorted, moderate silica and weak calcareous cements, common white argillaceous matrix, trace to common brown green and grey lithics, trace brown mica flakes, trace black coaly detritus, hard, no visual porosity.
		Fluorescence: The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.
1580-1585	50	<u>Claystone</u> : medium grey, occasionally medium green grey, very silty, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
	40	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
	10	<u>Sandstone</u> : off white, very fine to dominantly fine, angular to subangular, moderately sorted, moderate silica and weak calcareous cements, common white argillaceous matrix, trace to common brown green and grey lithics, trace brown mica flakes, trace black coaly detritus, hard, no visual porosity.
		<u>Fluorescence</u> : The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.
1585-1590	80	<u>Claystone</u> : medium grey, occasionally medium green grey, very silty, in part grading to siltstone, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
	20	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
	Trace	Sandstone: as for 1580 to 1585m.
		<u>Fluorescence</u> : The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.

Interval (m)	%	<b>Description</b> PAGE: 32 of 40
1590-1595	80	Claystone: medium grey, occasionally medium green grey, very silty, in part grading to siltstone, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
	10	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
	10	Sandstone: off white, very fine to dominantly fine, angular to subangular, moderately sorted, moderate silica and weak calcareous cements, common white argillaceous matrix, trace to common brown green and grey lithics, trace brown mica flakes, trace black coaly detritus, hard, no visual porosity, no oil fluorescence.
1595-1600	50	Sandstone: light grey, very fine to coarse, dominantly fine, angular to subangular, poor to moderately sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace to common brown green and grey lithics, trace garnet, trace black coaly detritus, friable, fair inferred porosity, no oil fluorescence.
	40	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
	10	<u>Claystone</u> : medium grey, occasionally medium green grey, very silty, in part grading to siltstone, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
1600-1605	60	Sandstone: light grey, very fine to coarse, dominantly fine, angular to subangular, poor to moderately sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace to common brown green and grey lithics, trace garnet, trace black coaly detritus, friable, fair inferred porosity, no oil fluorescence.
	40	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
1605-1610	100	Sandstone: off white to light grey, very fine to very coarse, dominantly fine to medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace black coaly detritus, friable, fair visual porosity.
		Fluorescence: The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.
1610-1615	70	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.
	30	Sandstone: off white to light grey, very fine to very coarse, dominantly fine to medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity.
		Fluorescence: The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.
1615-1620	70	Sandstone: off white to light grey, very fine to very coarse, dominantly medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cement, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.
	30	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.

Interval (m)	<u>%</u>	<b>Description</b> PAGE: 33 of 40		
1620-1625	70	Sandstone: off white to light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity.		
	20	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.		
	10	<u>Claystone</u> : medium grey, occasionally medium green grey, very silty, in part grading to siltstone, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.		
		Fluorescence: The sandstone has trace dull pinpoint to patchy yellow fluorescence giving very weak dull yellow crush cut, trace residue.		
1625-1630	80	Sandstone: off white to light grey, medium brown, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements common strong brown dolomite cement, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable, very poor to fair visual porosity.		
	20	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.		
		Fluorescence: The sandstone has trace dull pinpoint to patchy yellow fluorescence giving very weak dull yellow crush cut, trace residue.		
1630-1635	80	Sandstone: off white to light grey, trace medium brown, very fine to very coarse, dominantly medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, trace strong brown dolomite cement, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace brown mica flakes trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.		
	20	<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, structureless and sticky.		
1635-1640	70	Sandstone: off white to light grey, very fine to very coarse, dominantly medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.		
	30	Claystone: as for 1630 to 1635m.		
1640-1645	90	Sandstone: as for 1635 to 1640m.		
	10	Claystone: as for 1630 to 1635m.		
1645-1650	80	Sandstone: off white to light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace red brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.		
	20	Claystone: as for 1630 to 1635m.		
1650-1660	100	Sandstone: off white to light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, abundant white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.		
1660-1665	100	Sandstone: off white to light grey, very fine to very coarse, dominantly medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, trace to common white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.		

Interval (m)	%	<b>Description</b> PAGE: 34 of 40	
1665-1675	100	Sandstone: off white to light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, abundant white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.	
1675-1680	100	Sandstone: off white to light grey, very fine to very coarse, dominantly medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, common white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.	
	Trace	<u>Claystone</u> : medium grey, occasionally medium green grey, very silty, in part grading to siltstone, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.	
1680-1695	100	Sandstone: off white to light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, abundant white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.	
1695-1700	100	Sandstone: off white to light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, trace to commowhite argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.	
1700-1710	100	Sandstone: off white to light grey, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, trace white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.	
1710-1720	100	Sandstone: off white to light grey, medium brown in part, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, strong brown dolomite cement in part, trace to common white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes trace black coaly detritus, friable, fair visual porosity, no oil fluorescence	
1720-1725	100	Sandstone: off white to light grey, very fine to very coarse, dominantly coarse, angular to subangular, very poorly sorted, weak silica and trace weak calcareous cements, common to abundant white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity.	
		Fluorescence: The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.	
1725-1730	100	Sandstone: off white to light grey, very fine to very coarse, dominantly medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cements, abundant white argillaceous matrix, trace red brown and green lithics, rare garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity.	
		Fluorescence: The sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.	
	Trace	<u>Claystone</u> : medium grey to medium brown, occasionally medium green grey, very silty, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.	
1730-1740	100	Sandstone: light grey, very fine to very coarse, dominantly medium, angular to subangular poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor to fair inferred porosity.	
		Fluorescence: The sandstone has 5% bright pinpoint to patchy pale yellow white fluorescence giving dull milky white crush cut, thin ring residue.	

iterval (m)	%	<b>Description</b> PAGE: 35 of 40	
1740-1745	100	Sandstone: light grey, very fine to very coarse, dominantly medium to coarse, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor to fair inferred porosity.	
		Fluorescence: The sandstone has 3% bright pinpoint to patchy pale yellow white fluorescence giving dull milky white crush cut, thin ring residue.	
1745-1750	100	Sandstone: light grey, very fine to very coarse, dominantly medium, angular to subangular poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor to fair inferred porosity.	
		Fluorescence: The sandstone has trace bright pinpoint to patchy pale yellow white fluorescence giving dull milky white crush cut, thin ring residue.	
1750-1755	90	<u>Sandstone</u> : light grey, very fine to very coarse, dominantly fine, angular to subangular. poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor to fair inferred porosity.	
	10	<u>Claystone</u> : medium grey to medium green grey, trace medium brown grey, moderately to very silty, trace black carbonaceous flecks, trace micromica, moderately hard, subfissile.	
		Fluorescence: The sandstone has trace bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.	
1755-1760		No sample - total loss of returns occurred from 1757m - pump LCM to partially cure same	
1760-1770	100	Sandstone: light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor inferred porosity, no oil fluorescence.	
1770-1775	100	Sandstone: light grey, very fine to very coarse, dominantly fine, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor to fair inferred porosity, no oil fluorescence.	
1775-1780	90	Sandstone: light grey, very fine to very coarse, dominantly coarse, angular to subangular poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
	10	<u>Claystone</u> : medium grey to medium green grey, trace medium brown grey, moderately to very silty, trace black carbonaceous flecks, trace micromica, moderately hard, subfissile.	
1780-1785	100	Sandstone: light grey, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1785-1790	100	Sandstone: light grey, very fine to very coarse, dominantly medium, angular to subangular poorly sorted, moderate silica cement, trace weak calcareous cement, common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
	Trace	<u>Claystone</u> : medium grey, occasionally medium green grey to medium brown grey, moderately silty, trace black coaly detritus and flecks, trace micromica, moderately hard, moderately dispersive, subfissile.	
1790-1800	100	Sandstone: light grey, very fine to very coarse, dominantly coarse, angular to subangular poorly sorted, moderate silica cement, trace weak calcareous cement, common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1800-1815	100	Sandstone: light grey to light green grey, very fine to very coarse, dominantly medium, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cemer common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	

Interval (m)	%	<b>Description</b> PAGE: 36 of 40	
1815-1820	100	Sandstone: light grey to light green grey, very fine to very coarse, dominantly medium to coarse, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1820-1825	100	Sandstone: very light green grey, very fine to occasionally granular, dominantly medium to coarse, angular, very poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, rare garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1825-1830	100	Sandstone: very light green grey, very fine to very coarse, dominantly fine, angular, very poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, rare garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1830-1835	100	Sandstone: as for 1825 to 1830m.	
	Trace	<u>Claystone</u> : medium grey, moderately to very silty, trace black carbonaceous flecks, common micromica, moderately hard, moderately dispersive, subfissile.	
1835-1840	100	Sandstone: very light green grey, very fine to occasionally granular, dominantly coarse, angular, very poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, rare garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1840-1845	100	Sandstone: very light green grey, very fine to occasionally granular, dominantly medium, angular, very poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, rare garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1845-1850	100	Sandstone: very light green grey, very fine to occasionally granular, dominantly medium to coarse, angular, very poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, rare garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
	Trace	<u>Claystone</u> : medium grey, moderately to very silty, trace black carbonaceous flecks, common micromica, moderately hard, moderately dispersive, subfissile.	
1850-1860	100	Sandstone: very light green grey, very fine to very coarse, dominantly fine, angular, poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, trace garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
	Trace	Claystone: medium to dark grey, slightly to moderately carbonaceous, slightly to moderately silty, trace to common micromica, moderately hard, subfissile.	
1860-1865	100	Sandstone: very light green grey, very fine to very coarse, dominantly fine, angular, poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, common garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1865-1870	90	Sandstone: very light green grey, very fine to very coarse, dominantly fine, angular, poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, trace garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence but 10% dull yellow orange mineral fluorescence.	
	10	<u>Claystone</u> : off white to dark grey, dominantly medium grey, occasionally medium green grey to medium brown grey, moderately to very silty, moderately carbonaceous where dark grey, trace to common black carbonaceous flecks, trace to common micromica, moderately hard, subfissile.	

	<del></del>		
1870-1875	90	Sandstone: as for 1865-1970, but common dull orange yellow mineral fluorescence.	
	10	<u>Claystone</u> : off white to dark grey, dominantly medium grey, occasionally medium green grey to medium brown grey, moderately to very silty, in part grading to siltstone, moderately carbonaceous where dark grey, trace to common black carbonaceous flecks, trace to common micromica, moderately hard, subfissile.	
1875-1880	100	Sandstone: very light green grey, very fine to very coarse, dominantly fine, angular, poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, common garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1880-1885	100	Sandstone: very light green grey, very fine to very coarse, dominantly fine to medium, angular, poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, common garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
	Trace	Claystone: as for 1870 to 1875m.	
1885-1890	100	Sandstone: very light green grey, very fine to very coarse, dominantly medium, angular, poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, common garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
1890-1895	100	Sandstone: very light green grey, very fine to very coarse, dominantly fine, angular, poo sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, common garnet, trace brown, grey and green lithics, trace black coally detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
	Trace	<u>Claystone</u> : medium to dominantly dark brown grey, moderately silty, moderately to very carbonaceous, trace to common micromica, firm to moderately hard, subfissile.	
1895-1900	80	Sandstone: very light green grey, very fine to very coarse, dominantly medium, angular, poorly sorted, moderate silica and trace weak calcareous cements, trace to dominantly common white argillaceous matrix, common garnet, trace brown, grey and green lithics, trace black coaly detritus, moderately hard, fair inferred porosity, no oil fluorescence.	
	20	<u>Claystone</u> : medium to dominantly dark brown grey, moderately silty, moderately to very carbonaceous, trace to common micromica, firm to moderately hard, subfissile.	
		The claystone has no fluorescence but gives dull moderately bright pale yellow crush cut, thin yellow ring residue.	
1900-1905	100	<u>Claystone</u> : very dark grey, slightly to moderately silty, moderately to very carbonaceous common micromica, moderately hard, subfissile.	
		The claystone has no fluorescence but gives dull moderately bright pale yellow crush cut, thin yellow ring residue.	
1905-1910	100	Claystone: as for 1900 to 1905m.	
	Trace	Sandstone: as for 1895 to 1900m.	
1910-1920	100	<u>Claystone</u> : very dark grey to dark brown, slightly to moderately silty, moderately to very carbonaceous, common micromica, moderately hard, subfissile.	
		The claystone has no fluorescence but gives dull moderately bright pale yellow crush cut, thin yellow ring residue.	
1920-1925	50	Claystone: as for 1910 to 1920m.	
	50	Sandstone: light brown grey, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, moderate silica and trace weak calcareous cements, moderately strong light brown cement giving dull yellow mineral fluorescence, trace white to light brown argillaceous matrix, friable to hard, very poor to poor visual porosity, poor to fair inferred porosity.	

Interval (m)	%	<b>Description</b> PAGE: 38 of 40
1925-1932	50	Claystone: as for 1910 to 1920m.
	50	Sandstone: light brown grey, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, moderate silica and trace weak calcareous cements, moderately strong light brown cement giving dull yellow mineral fluorescence, trace white to light brown argillaceous matrix, friable to hard, very poor to poor visual porosity, poor to fair inferred porosity.
		Fluorescence: The sandstone has 100% dull to moderately bright pinpoint to solid yellow gold fluorescence giving dull pale yellow crush cut, thin yellow ring residue.
1932-1935	60	<u>Claystone</u> : very dark grey to grey black, very dark brown grey, very carbonaceous grading to coal, slightly to moderately silty, common micromica, moderately hard, subfissile.
		The claystone has no fluorescence but gives dull to moderately bright pale yellow crush cut.
	30	Sandstone: light brown grey, very fine to very coarse, dominantly coarse, angular to subangular, very poorly sorted, moderate to strong silica cement, moderately strong brown cement with dull orange mineral fluorescence, trace light brown argillaceous matrix, occasionally abundant very dark brown grey argillaceous matrix, hard, very poor visual porosity, poor inferred porosity.
	10	Coal: black, earthy texture, platy fracture, non to very argillaceous and grading to carbonaceous claystone, common micromica where argillaceous, hard and brittle.
		The coal has no fluorescence but gives dull to moderately bright pale yellow crush cut.
		Fluorescence: The sandstone has 70% dull pinpoint to patchy yellow gold fluorescence giving dull pale yellow crush cut, thin ring residue.
1935-1940	90	Sandstone: light grey to light brown grey, fine to very coarse, dominantly very coarse, angular to subangular, moderately sorted, weak silica cement, trace weak calcareous cement, moderately strong brown cement having moderately bright orange mineral fluorescence, trace to common white argillaceous matrix, trace black coal detritus, friable with dominantly loose grains in sample, poor visual porosity, fair to good inferred porosity.
	10	Claystone: as for 1932 to 1935m.
	Trace	<u>Coal</u> : as for 1932 to 1935m.
		Fluorescence: The sandstone has 90% moderately bright pinpoint to solid yellow gold fluorescence giving dull to moderately bright light yellow crush cut, light straw natural cut colour, thin yellow ring residue, no free oil in drilling mud, trace weak brown oil stain in some aggregates.
1940-1945	40	Sandstone: light grey to light brown grey, fine to very coarse, dominantly medium, angular to subangular, moderately sorted, weak silica cement, trace weak calcareous cement, moderately strong brown cement having moderately bright orange mineral fluorescence, trace to common white argillaceous matrix, trace black coal detritus, friable to moderately hard with dominantly loose grains in sample, poor visual porosity, poor to fair inferred porosity.
	30	Claystone: as for 1932 to 1935m.
	30	<u>Coal</u> : as for 1932 to 1935m.
		Fluorescence: The sandstone has 70% moderately bright pinpoint to solid yellow gold fluorescence giving dull to moderately bright light yellow crush cut, light straw natural cut colour, thin yellow ring residue, no free oil in drilling mud, trace weak brown oil stain in some aggregates.

Interval (m)	%	Description	PAGE:	39 of 40
1945-1951	50	Claystone: very dark grey to grey black, very dark brown g to coal, slightly to moderately silty, common micromica, mo		
		The claystone has no fluorescence but gives dull to moderat	ely bright pale yel	low crush cut.
	30	Sandstone: light brown, fine to very coarse, dominantly me moderately sorted, moderate silica cement, trace weak calca strong brown cement having moderately bright orange mine common white argillaceous matrix, trace black coal detritus poor visual porosity, poor to fair inferred porosity.	reous cement, moeral fluorescence, t	derately race to
	20	<u>Coal</u> : black, earthy texture, platy fracture, non to very argil carbonaceous claystone, common micromica where argillac	_	_
		The coal has no fluorescence but gives dull to moderately be	right pale yellow o	rush cut.
		Fluorescence: The sandstone has 70% moderately bright p fluorescence giving dull to moderately bright light yellow colour, thin yellow ring residue, no free oil in drilling mud, some aggregates.	rush cut, light stra	w natural cut
1951-1955	100	Claystone: very dark grey to very dark brown grey to grey carbonaceous occasionally grading to argillaceous coal, slig calcareous, common micromica, moderately hard, subfissile	htly to moderately	
		The claystone has no fluorescence but gives very weak pale	yellow white crus	h cut.
1955-1985	100	Claystone: dark brown grey to very dark grey, moderately moderately silty, non calcareous, common micromica, mode		
		The claystone has no fluorescence but gives very weak pale	yellow white crus	h cut.
1985-1990	100	<u>Claystone</u> : dark brown grey to very dark grey to grey black carbonaceous, slightly to moderately silty, non calcareous, chard, subfissile.		
		The claystone has no fluorescence but gives very weak pale	yellow white crus	h cut.
1990-1995	100	Claystone: as for 1985 to 1990m, but dominantly very dark	k brown grey.	
1995-2000	100	<u>Claystone</u> : dark brown grey to very dark grey, moderately moderately silty, non calcareous, trace angular coarse clear common micromica, moderately hard, subfissile.	•	
		The claystone has no fluorescence but gives very weak pale	yellow white crus	h cut.
2000-2015	100	Claystone: as for 1955-1985.		
2015-2020	100	Claystone: dark brown grey to very dark grey, moderately moderately silty, rare very coarse dispersed quartz sand grai micromica, moderately hard, subfissile.		
		The claystone has no fluorescence but gives very weak pale	yellow white crus	h cut.
2020-2025	70	Claystone: as for 2015 to 2020m.		
	20	<u>Claystone</u> : medium brown grey, very silty grading to siltste calcareous, angular fracture, occasional slickenside surfaces ankerite/calcite, trace vein quartz and calcite, soft to modera	often lined with	
	10	Sandstone: possibly reworked volcanics (?), mottled brown to very coarse grading to very fine to silt, quartz grains weld mafic and other minerals, hard, no visual porosity, dull oran	led in with altered	feldspars,
-	Trace	Quartz grains: loose, medium to very coarse, clear to trans	slucent, angular to	subrounded.
		Fluorescence: The sandstone especially where more quartz pinpoint fluorescence giving weak dull pale yellow white cr		

Interval (m)	%	Description PAGE: 40 of 40	
2025-2030	100	Shale: medium brown to medium grey brown, moderately silty, non calcareous, trace to common micromica, trace crystalline angular quartz fragments - fracture infill, trace slickensides, moderately hard, angular fragments, subfissile.	
		Fluorescence: The fracture infill material often has bright yellow fluorescence with weak instant dull pale yellow white cut, trace residue.	
2030-2035	100	Shale: medium to dark brown grey, occasionally grey black and moderately carbonaceous, moderately to very silty, common micromica, slightly dolomitic, moderately hard, subfissile, 50% dull orange mineral fluorescence.	
2035-2040	100	Shale: light to dark brown grey, dominantly medium brown grey, occasionally dark grey, trace black carbonaceous detritus in part, trace micromica, slightly dolomitic, moderately hard, subfissile, 50% dull orange mineral fluorescence.	
2040-2045	100	Shale: medium brown grey, occasionally dark brown grey, very silty, trace black carbonaceous detritus, common very fine off white lithics in part, trace to common very fine brown regrown crystals in part, slightly dolomitic, trace micromica, hard, angular fracture possible contact metamorphic (?).	
2045-2050	100	Sandstone: off white, very fine to very coarse, dominantly fine, angular, poor to moderately sorted, very strong silica cement, no visual matrix, trace green brown and black lithics, very hard, no visual porosity.	
		Fluorescence: The sandstone has trace pinpoint moderately bright medium yellow fluorescence giving very weak dull light yellow crush cut, trace residue.	
2050-2055	80	<u>Volcanics</u> (?): mottled green, grey, off white and red brown, diffuse grain boundaries, fine to medium grained, very calcareous, hard, possibly partially weathered.	
	10	Shale: as for 2035 to 2040m - probable cavings.	
	10	Sandstone: as for 2045 to 2050m - probably cavings.	
2055-2060	100	Volcanics: mottled medium green, microcrystalline to occasionally finely crystalline, medium to dark green ground mass with very fine off white and black grains in part, in part altered to red brown to white clay, very calcareous, trace calcite veining, hard.	
2060-2065	100	Volcanics: as for 2055 to 2060m, but with decreasing red brown clay - becoming less altered.	
2065-2070	100	<u>Volcanics</u> : medium to dark green, finely crystalline, off white, light green and black minerals embedded in a dark green ground mass - possibly pyroxene, olivine and feldspar, very calcareous, common calcite infilled fractures, trace slickensides, trace altered to red brown clay, hard.	
2070-2075	100	Volcanics: as for 2065 to 2070m, but generally becoming fresher with depth.	
2075-2085	100	Volcanics: medium to dominantly dark green, finely crystalline, off white, light green and black minerals embedded in a dark green ground mass - possibly pyroxene, olivine and feldspar, very calcareous, common calcite infilled fractures, trace slickensides, hard.	
2085-2088 TD	100	<u>Volcanics</u> : medium to dominantly dark green, finely crystalline, off white, light green and black minerals embedded in a dark green ground mass - possibly pyroxene, olivine and feldspar, very calcareous, trace altered to red brown shale, common calcite infilled fractures, trace slickensides, hard.	

#### **APPENDIX 4B**

# LITHOLOGICAL DESCRIPTIONS

# FROM DAILY REPORTS

**DIGBY-1** 



## **GEOLOGICAL SUMMARY**

#### **DIGBY-1**

Permit:

DIGBY JV

Spud Date:

14 / 02 / 1995

Rig:

Century Rig 11

GFE Rep:

K. Smith

Geologist:

D. Horner

(m)	(m/hr)	Lithological and Fluorescence Description
6-19	12-20 (Av. 18)	<u>Claystone</u> : off white to medium orange brown, trace yellow to red, slightly to occasionally very silty, trace black carbonaceous material, non-calcareous, firm, non-fissile, grading with depth to
		Sandstone: medium orange to dark orange brown, very fine to fine, occasionally medium to coarse grains, subangular, poorly sorted, weak silica cement, moderate iron oxide cement, common to dominantly abundant medium orange to brown argillaceous and silt matrix, common light brown partially altered feldspar grains, friable to moderately hard, very poor visual porosity, no oil fluorescence.
19-67	12-50 (Av. 27)	Sandstone: medium olive grey, very fine to medium, dominantly medium, subangular to subrounded, moderately sorted, weak silica cement, common to abundant medium olive grey argillaceous and silt matrix, abundant white to green to grey to red lithics, trace green mica flakes, common black coal detritus, trace pyrite, friable, very poor to poor inferred porosity, no oil fluorescence, grading to
		<u>Claystone</u> : medium grey to medium olive grey to medium brown grey, very silty, often very arenaceous (grading to sandstone), common black carbonaceous flecks and detritus, non-calcareous, trace pyrite, firm, non-fissile.
67-136	15-130 (Av. 40)	<u>Claystone</u> : medium grey to medium green grey to medium brown grey, moderately to very silty, slightly calcareous in part, common black carbonaceous flecks and detritus, common to abundant very fine quartz and partially altered feldspar grains in part, rare ver fine red lithics where arenaceous, trace micromica, rare pyrite, firm, non to slightly subfissile, grading in part to and with minor interlaminated and finely interbedded
		Sandstone: medium grey, very fine to medium, dominantly fine, subangular to subrounded, poorly sorted, weak silica and calcareous cements, abundant medium grey argillaceous and silt matrix, abundant grey, brown, off white, green and red lithics, common black carbonaceous detritus, friable to occasionally moderately hard, no visual porosity, no oil fluorescence.
136-342	3-110 (Av. 45)	<u>Claystone</u> : light to medium green grey, light to medium brown grey, light to medium grey, moderately to very silty, very slightly calcareous in part, occasionally very finely arenaceous with quartz and partially altered feldspar grains, common very fine to fine multicoloured lithics in part, trace to common black carbonaceous detritus and flecks, trace micromica, firm, slightly subfissile, with minor interbedded
		Sandstone: light green grey, very fine to medium, dominantly fine to medium, subangular, moderately sorted, moderately strong calcareous cement, common to abundant white to light brown argillaceous matrix, abundant green grey lithics, trace red lithics, common to abundant light brown partially altered feldspar grains, trace to commo black to dark brown carbonaceous detritus, hard, no visual porosity, no oil fluorescence, but trace dull yellow orange calcite mineral fluorescence, no cut.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 2 of 10
342-445	5-60 (Av. 30)	Claystone: light to medium brown grey, common light to medium green grey, moderately to very silty, occasionally very finely to finely arenaceous with quartz, altered feldspar and multicoloured lithics grains, trace to common black carbonaceous detritus, trace coarse brown and green mica flakes, firm, slightly subfissile, interlaminated and occasionally finely interbedded with minor
		Sandstone: light to medium green grey, very fine to medium, dominantly fine to medium subangular, moderately sorted, strong calcareous cement, abundant light brown argillaceous matrix, abundant light brown partially altered feldspar grains, abundant grey green lithics, common orange to red lithics, trace to common black carbonaceous detritus, trace fine mica flakes, moderately hard, very poor visual porosity, no oil fluorescence but trace dull yellow orange calcite mineral fluorescence, no cut.
445-470	5-60 (Av. 20)	<u>Claystone</u> : light to medium brown grey, light to medium green grey, very silty, occasionally very finely arenaceous with quartz, altered feldspar and multicoloured lithic grains, trace black to brown carbonaceous detritus and flecks, trace micromica, slightly to occasionally moderately calcareous, firm, slightly subfissile, interlaminated and grading t minor
		Sandstone: light to medium grey, very fine, subangular, moderately to well sorted, strong to very strong calcareous cement, common to abundant off white to medium grey argillaceous and silt matrix, abundant partially altered feldspar grains, common grey greet lithics, trace red and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, very poor inferred porosity, with
		Calcite: (fracture infilling) white to light brown, macrocrystalline, hard.
		Fluorescence: The claystone and occasionally sandstone have trace to 10% moderately bright to bright patchy to solid golden orange fluorescence giving a bright light yellow white slow streaming cut fluorescence, no natural cut colour, moderate to thick ring residue.
470-538	3-60 (Av. 27)	<u>Claystone</u> : light to medium brown grey, light to medium grey, occasionally light to medium green grey, trace medium to dark brown and very carbonaceous, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, trace brown to black carbonaceous detritus, trace to common micromica, firm, slightly subfissile, with minor interlaminated and interbedded
		Sandstone: light to medium grey, very fine to fine, subangular, moderately to well sorted strong calcareous cement, common to abundant off white to medium grey argillaceous an silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace red and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, very poor inferred porosity, no oil fluorescence.
538-597	8-60 (Av. 27)	Claystone: light to medium brown grey, light to medium grey, occasionally light to medium green grey, trace medium to dark brown and very carbonaceous, very silty, often very finely arenaceous with quartz, partially altered feldspars and multicoloured lithics, trace brown to black carbonaceous detritus, trace to common micromica, firm, slightly subfissile, with minor interlaminated and interbedded
		Sandstone: light to medium grey, very fine to fine, subangular, moderately to well sorted strong calcareous cement, common to abundant off white to medium grey argillaceous an silt matrix, abundant partially altered feldspar grains, common grey green lithics, trace rea and brown lithics, trace very fine black to brown carbonaceous matter, hard, no visual porosity, very poor inferred porosity, no oil fluorescence.

(AJ/GFE:F87) S:DIGBY/WCR/wcr-geol.doc

(m)	(m/hr)	Lithological and Fluorescence Description Page: 3 of 10
597-694	6-55 (Av. 24)	<u>Claystone</u> : off white to medium brown, light to medium brown grey, moderately to very silty, often abundant very fine to occasionally fine quartz, altered feldspar and multicoloured lithic sand grains grading to argillaceous sandstone, trace black to brown carbonaceous detritus, slightly calcareous, trace white macrocrystalline calcite fracture infilling in part, trace to common micromica, firm, slightly subfissile, interbedded with
		Sandstone: off white to very light brown, very fine to fine, dominantly very fine, subangular, moderately sorted, moderate to very strong calcareous cement, abundant off white argillaceous matrix (matrix supported in part), common green grey and trace red brown lithics, abundant altered feldspar grains, trace coarse brown mica flakes, trace black to brown carbonaceous flecks and detritus, friable to hard, no visual porosity, no oil fluorescence, but trace to 5-10% dull yellow orange mineral fluorescence, no cut.
694-828	1.5-60 (Av. 20)	Claystone: off white to medium grey, light to medium brown grey, light to medium brown, occasionally medium olive grey, moderately silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains and trace grey green lithics, trace black to dark brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile, with minor interlaminated and occasionally interbedded
		Sandstone: off white to light brown grey to light grey, very fine, subangular, moderately to well sorted, weak to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green lithics, trace very fine black to brown carbonaceous detritus, friable to occasionally hard, no visual porosity, no oil fluorescence, but trace dull yellow orange mineral fluorescence, no cut.
828-832	3-12 (Av. 7.5)	Sandstone: off white to light grey, very fine to fine, subangular, moderately to well sorted, moderately strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, very poor inferred porosity, interbedded with
		<u>Claystone</u> : light to medium brown grey, light to medium grey, occasionally off white to light to medium olive grey, moderately silty, occasionally very finely arenaceous with quartz and altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile.
832-838	5-12 (Av. 7.5)	Sandstone: off white to light grey, very fine to dominantly fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, very poor inferred porosity, interbedded with
		<u>Claystone</u> : light to medium brown grey, light to medium grey, occasionally off white, occasionally light to medium olive grey, moderately silty, occasionally very finely arenaceous with quartz and altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile.
		Fluorescence: the sandstone has trace patchy bright orange gold fluorescence giving a moderately bright light yellow white slow streaming to crush cut fluorescence, no natural cut colour, moderate ring residue.

Interval ROP (Av.)

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 4 of 10
838-981	1.5-21 (Av. 12)	Claystone: medium brown grey, off white to medium brown, light to medium grey, moderately silty, occasionally very finely arenaceous with quartz and altered feldspar grains, rare multicoloured lithics, trace to occasionally common black to brown carbonaceous detritus and flecks, slightly to moderately calcareous, trace micromica, firm, subfissile, with minor interlaminated and interbedded
		Sandstone: off white to light grey, very fine to fine, dominantly very fine, subangular, moderately to well sorted, very strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant altered feldspar grains, common grey green lithics, rare red brown lithics, trace black to brown carbonaceous matter, trace coarse brown mica flakes, trace pyrite, hard, no visual porosity, no oil fluorescence, but trace to 20% dull yellow orange mineral fluorescence, no cut, and minor interlaminated
		Coal: black to dark brown, earthy texture, platy fracture, slightly to dominantly very argillaceous, hard and brittle.
981-1044	5-75 (Av. 8)	Claystone: off white to medium brown grey, medium olive grey, light to medium grey, moderately silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, trace very fine grey green and red brown lithics where arenaceous, slightly to occasionally moderately calcareous, trace medium brown cryptocrystalline dolomite and ankerite in part, trace to common black to brown carbonaceous flecks and detritus, trace very fine brown and clear mica flakes, trace to common micromica, firm, subfissile, interlaminated and interbedded with
		Sandstone: off white to light brown, very fine, occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant partially altered feldspar grains, trace grey green, red and brown lithics, common black to brown carbonaceous detritus in part, friable to hard, no visual porosity, no oil fluorescence, but trace to 5% dull yellow orange mineral fluorescence, no cut, with minor detrital and laminar
		<u>Coal</u> : black to occasionally very dark brown, non to occasionally very argillaceous, earthy to occasionally subvitreous texture, platy to occasionally subconchoidal fracture, hard and brittle.
1044-1080	6-25 (Av. 12)	Claystone: off white to medium brown grey, medium olive grey, light to medium grey, moderately silty, often very finely arenaceous with quartz and off white partially altered feldspar grains, trace very fine grey green and red brown lithics where arenaceous, slightly to occasionally moderately calcareous, trace medium brown cryptocrystalline dolomite and ankerite in part, trace to common black to brown carbonaceous flecks and detritus, trace very fine brown and clear mica flakes, trace to common micromica, firm, subfissile, interlaminated and interbedded with
		Sandstone: off white to light brown, very fine, occasionally fine, subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant partially altered feldspar grains, trace grey, green, red and brown lithics, common black to brown carbonaceous detritus in part, friable to hard, no visual porosity, no oil fluorescence, but trace to 5% dull yellow orange mineral fluorescence, no cut, with minor detrital and laminar
		<u>Coal</u> : black to occasionally very dark brown, non to occasionally very argillaceous, earthy to occasionally subvitreous texture, platy to occasionally subconchoidal fracture, hard and brittle.

S:DIGBY/WCR/wcr-geol.doc (AJ/GFE:F87)

1080-1099	9-15 (Av. 12)	<u>Claystone</u> : off white to medium grey, light to medium brown grey, dominantly medium grey, moderately to very silty, occasionally abundant very fine altered feldspar and quartz grains with trace multicoloured lithics, slightly calcareous, trace to common brown to black carbonaceous flecks and detritus, trace to common micromica, firm, subfissile, interlaminated and finely interbedded with
		<u>Sandstone</u> : off white to occasionally light brown grey, very fine with occasional fine grains, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), trace grey green and brown lithics abundant off white partially altered feldspar grains, trace brown mica flakes, trace fine black and brown carbonaceous detritus, friable to hard, no visual porosity, no oil fluorescence.
1099-1102	20-40 (Av. 27)	Sandstone: very light grey, very fine to medium, dominantly fine, subangular, moderately sorted, weak to moderate calcareous and silica cements, common to abundant white argillaceous matrix, common to abundant off white partially altered feldspar grains, common grey green, yellow and red lithics, trace fine black coal detritus, friable to moderately hard, very poor visual porosity, poor inferred porosity, no oil fluorescence.
1102-1247	5.5-40 (Av. 8.5)	Claystone: light to medium brown, off white to medium grey, light to medium green grey, light to medium brown grey, dominantly medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile, with minor laminated
		Sandstone: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, common coarse brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.
1247-1297	1-5.5 (Av. 4)	Claystone: light to medium brown, off white to medium grey, light to medium green grey, dominantly light to medium brown grey, moderately to very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace to common micromica, firm, subfissile, with minor
		<u>Claystone</u> : medium brown, moderately silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, moderately carbonaceous, trace brown to black carbonaceous detritus and flecks, trace micromica, firm, subfissile, laminated and finely interbedded with
		Sandstone: off white to light grey to light brown grey, light to medium green grey, dominantly light to medium brown, very fine to fine, dominantly very fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white partially altered feldspar grains, trace grey green and brown lithics, trace coarse brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 6 of 10
1297-1400	3-18 (Av. 5.5)	Claystone: off white to medium grey, light to medium green grey, light to medium brown grey, light brown, dominantly medium grey to medium green grey, occasionally medium brown and moderately carbonaceous, very silty, occasionally very finely arenaceous with quartz and off white partially altered feldspar grains, trace to common brown to black carbonaceous detritus and flecks, slightly calcareous, trace fine brown mica flakes, trace medium brown crystalline calcite in part - fracture infill, trace to common micromica, firm, subfissile, laminated and thinly interbedded with
		Sandstone: off white to light brown grey, very fine to fine, subangular, moderately to well sorted, moderate to strong calcareous cement, abundant white argillaceous matrix (matrix supported), abundant off white altered feldspar grains, trace to common grey green and brown lithics, trace fine brown mica flakes, trace to common black to brown carbonaceous detritus and flecks, friable to moderately hard, no visual porosity, no oil fluorescence.
1400-1463	2-7.5 (Av. 4)	<u>Claystone</u> : off white to medium grey, medium brown grey, light to medium green grey, dominantly medium grey, trace very fine partly altered feldspar grains in part, trace black to brown carbonaceous flecks and detritus, trace to common micromica and fine brown mica flakes, slightly calcareous in part, occasionally very finely arenaceous grading to sandstone, firm to moderately hard, subfissile, interlaminated with
		Sandstone: off white to light brown grey, very fine, subangular, moderately to well sorted, moderate silica and calcareous cements, common to abundant white argillaceous matrix, common partly altered feldspar grains, trace grey and brown lithics, common fine brown mica flakes in part, trace black carbonaceous detritus, hard, no visual porosity, no oil fluorescence.
1463-1468	4-30 (Av. 18)	Sandstone: light grey, very fine to coarse, dominantly fine, angular to subrounded, dominantly subangular, poorly sorted, moderate silica and weak calcareous cements, common to dominantly abundant white argillaceous matrix, trace red garnet, trace black carbonaceous detritus, trace brown and green mica flakes, friable to hard, nil to poor visual porosity, poor inferred porosity.
		Fluorescence: the sandstone has 70% dull to bright pinpoint to patchy very pale yellow white to milky white fluorescence, giving dull very pale yellow white to milky white crush cut, no natural cut colour, no natural oil stain, thin ring residue, no free oil in drilling, but trace pinpoint bright milky white fluorescence from a cuttings/water mix.
1468-1489	0.4-10	Claystone: (kaolinite) white, structureless sticky clay, with minor
	(Av. 2)	<u>Claystone</u> : medium to dark grey, dominantly medium grey, very silty, common micromica, hard, subfissile, with minor laminated
		Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate to occasionally very strong silica cement, trace weak to occasionally moderate calcareous cement, abundant white argillaceous matrix grading to kaolinite, trace to common red garnet, trace green lithics, trace black coaly detritus, friable to hard, very poor visual porosity.
		Fluorescence: The sandstone has 25-50% dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description Page: 7 of 10
1489-1502	1-20 (Av. 4)	<u>Claystone</u> : (kaolinite) white, structureless sticky clay, occasionally very calcareous, occasionally abundant dispersed very fine to fine quartz sand grains, with trace
	(==::-)	<u>Claystone</u> : medium to dark grey, dominantly medium grey, very silty, common micromica, hard, subfissile, with minor laminated
		Sandstone: off white to light grey, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, moderate to occasionally very strong silica cement, trace weak to occasionally moderate calcareous cement, abundant white argillaceous matrix grading to kaolinite, trace to common red garnet, trace green lithics, trace black coaly detritus, friable to hard, very poor visual porosity.
		Fluorescence: The sandstone has trace to 50% dull to moderately bright pinpoint to patchy light yellow fluorescence giving dull pale yellow white crush cut, trace residue.
1502-1548	3-18 (Av. 4.3)	<u>Claystone</u> : medium grey, moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile, interbedded with
		<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous, with minor finely interbedded
		<u>Coal</u> : black, earthy texture, platy fracture, slightly to very argillaceous, hard and brittle, and occasionally interlaminated
		Sandstone: off white, very fine to occasionally medium, dominantly fine, angular to dominantly subangular, moderately sorted, moderate to strong calcareous cement, abundant white argillaceous matrix grading in part to claystone (matrix supported), trace garnet, trace green grey lithics, common black carbonaceous material, friable to hard, nil to very poor visual porosity.
		Fluorescence: From 1530 to 1545m the sandstone has 10-70% patchy, dull to moderately bright, light yellow fluorescence giving dull pale yellow white crush cut and thin yellow ring residue from very tight sandstone laminae.
1548-1553	5-12 (Av. 9)	Sandstone: off white, very fine to medium, dominantly very fine, angular to dominantly subangular, moderately sorted, moderate calcareous cement, common to abundant white argillaceous matrix, trace garnet, trace green grey lithics, trace black carbonaceous material, friable with abundant loose grains in sample, very poor to fair inferred porosity, no oil fluorescence, interbedded with
		<u>Claystone</u> : medium grey to occasionally medium green grey, trace medium brown grey, slightly to very dominantly moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile, with minor
		<u>Claystone</u> : (kaolinite) white, trace to occasionally abundant very fine to fine dispersed quartz sand grains in part, structureless sticky clay, occasionally calcareous.
1553-1560	5-20 (Av. 10)	Sandstone: light grey, very fine to granular, dominantly fine at top becoming dominantly coarse at base, angular to subangular, very poorly sorted, weak silica and calcareous cements, trace white argillaceous matrix, trace red, brown, green and grey lithics, trace black coaly detritus, trace brown and clear mica flakes, friable with dominantly loose grains in sample, good inferred porosity, interbedded with
		<u>Claystone</u> : medium grey to occasionally medium green grey, trace medium brown grey, slightly to very dominantly moderately silty, trace black coaly detritus, trace very fine partially altered feldspar grains in part, trace carbonaceous flecks, common micromica, moderately hard, subfissile.
		Fluorescence: the sandstone has trace to 5% dull to moderately bright light yellow fluorescence giving dull pale yellow white crush cut, trace residue.

(AJ/GFE:F87) S:DIGBY/WCR/wcr-geol.doc

(m)	(m/hr)	
1560-1598	4-10 (Av. 4.5)	<u>Claystone</u> : medium grey, occasionally medium green grey, very silty, in part grading to siltstone, trace very fine partially altered feldspar grains, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile, interbedded with
		<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, sticky and structureless, with minor interlaminated
		Sandstone: off white, very fine to dominantly fine, angular to subangular, moderately sorted, moderate silica and weak calcareous cements, common to abundant white argillaceous matrix, trace to common brown, green and grey lithics, trace brown mica flakes, trace black coaly detritus, hard, no visual porosity.
		Fluorescence: the sandstone has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.
1598-1731	3.5-60 (Av. 22)	Sandstone: off white to light grey, very fine to very coarse, dominantly fine to medium, angular to subangular, poorly sorted, weak silica and trace weak calcareous cement, rare strong dolomite cement, trace to abundant white argillaceous matrix, trace red, brown and green lithics, trace garnet, trace brown mica flakes, trace black coaly detritus, friable, fair visual porosity, grading to and interbedded with
		<u>Claystone</u> : (kaolinite) white, slightly calcareous in part, occasionally abundant dispersed very fine to fine quartz sand grains, sticky and structureless, with minor interbedded
		<u>Claystone</u> : medium grey to medium brown, occasionally medium green grey, very silty, trace black carbonaceous flecks and detritus, trace fine brown mica flakes, trace to common micromica, moderately hard, subfissile.
		Fluorescence: (from tight aggregates only) The sandstone from 1605 to 1615m, 1620 to 1630m and 1720 to 1730m has trace dull pinpoint to solid yellow fluorescence giving very weak dull yellow crush cut, trace residue.
1731-1778	2.7-20 (Av. 12)	Sandstone: light grey, very fine to very coarse, dominantly fine to coarse, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor to fair inferred porosity, with very minor finely interbedded
		<u>Claystone</u> : medium grey to medium green grey, trace medium brown grey, moderately to very silty, trace black carbonaceous flecks, trace micromica, moderately hard, subfissile.
		Fluorescence: from 1730 to 1750m the sandstone has trace to 5% bright pinpoint to patchy pale yellow white fluorescence giving dull milky white crush cut, trace to thin ring residue.
1778-1899	4-30 (Av. 13)	Sandstone: light grey, very fine to very coarse, dominantly fine to coarse, angular to subangular, poorly sorted, moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace garnet, trace brown, red, grey and green lithics, trace black coaly detritus, moderately hard, poor to dominantly fair inferred porosity, with very minor finely interbedded
		<u>Claystone</u> : medium grey to medium green grey, trace medium brown grey, occasionally dark grey and moderately carbonaceous, moderately to very silty, trace black carbonaceous flecks, trace micromica, moderately hard, subfissile.
1899-1922	3-6 (Av. 4.5)	<u>Claystone</u> : very dark grey to dark brown, slightly to moderately silty, moderately to very carbonaceous, common micromica, moderately hard, subfissile. The claystone has no fluorescence but gives dull moderately bright pale yellow crush cut, thin yellow ring residue.

Lithological and Fluorescence Description

ROP (Av.)

Interval

Page: 8 of 10

1922-1932	5-20 (Av. 12)	Sandstone: light brown grey, very fine to very coarse, dominantly coarse, angular to subangular, poorly sorted, moderate silica and trace weak calcareous cements, moderately strong light brown cement giving dull yellow mineral fluorescence, trace white to light brown argillaceous matrix, friable to hard, very poor to poor visual porosity, poor to fair inferred porosity, interbedded with
		<u>Claystone</u> : very dark grey to dark brown, slightly to moderately silty, moderately to very carbonaceous, common micromica, moderately hard, subfissile. The claystone has no fluorescence, but gives dull moderately bright pale yellow crush cut, thin yellow ring residue.
		Fluorescence: The sandstone has 100% dull to moderately bright pinpoint to solid yellow gold fluorescence giving dull pale yellow crush cut, thin yellow ring residue.
1932-1951	4-27 (Av. 10)	Sandstone: light brown, fine to very coarse, dominantly medium to very coarse, angular to subangular, moderately sorted, weak to moderate silica cement, trace weak calcareous cement, moderately strong brown cement having moderately bright orange mineral fluorescence, trace to common white argillaceous matrix, trace black coal detritus, friable to moderately hard, poor visual porosity, poor to fair with some possibly good inferred porosity, interbedded with
		<u>Claystone</u> : very dark grey to grey black, very dark brown grey, very carbonaceous grading to coal, slightly to moderately silty, common micromica, moderately hard, subfissile. The claystone has no fluorescence, but gives dull to moderately bright pale yellow crush cut. Grading to and interbedded with
		<u>Coal</u> : black, earthy texture, platy fracture, non to very argillaceous and grading to carbonaceous claystone, common micromica where argillaceous, hard and brittle. The coal has no fluorescence, but gives dull to moderately bright pale yellow crush cut.
		Fluorescence: The sandstone has 70 to 100% moderately bright pinpoint to solid yellow gold fluorescence giving dull to moderately bright light yellow crush cut, light straw natural cut colour, thin yellow ring residue, no free oil in drilling mud, trace weak brown oil stain in some aggregates.
1951-1980	3.3-7 (Av. 4.5)	<u>Claystone</u> : dark brown grey to very dark grey, moderately to very carbonaceous, slightly to moderately silty, non-calcareous, common micromica, moderately hard, subfissile. The claystone has no fluorescence, but gives a very weak pale yellow white crush cut.
1980-2022	3.3-7.5 (Av. 5)	<u>Claystone</u> : dark brown grey to very dark grey, moderately to very carbonaceous, slightly to moderately silty, non-calcareous, trace angular coarse clear quartz - possibly fracture infill, common micromica, moderately hard, subfissile. The claystone has no fluorescence, but gives very weak pale yellow white crush cut.
2022-2045	2.2-4.5 (Av. 3)	Shale: medium brown grey, very silty, grading to siltstone in part, common micromica, non-calcareous, angular fracture, occasional slickenside surfaces often lined with ankerite/calcite, trace vein quartz and calcite, soft to moderately hard, subfissile, grading towards base to
		<u>Shale</u> : medium brown grey, occasionally dark brown grey, very silty, trace black carbonaceous detritus, common very fine off white lithics in part, trace to common very fine brown crystals in part, slightly dolomitic, trace micromica, hard, angular fracture possible contact metamorphic (?).
		Fluorescence: The fracture infill material often has bright yellow fluorescence with weak instant dull pale yellow white crush cut, trace residue.
2045-2050	4-4 (Av. 4)	Sandstone: off white, very fine to very coarse, dominantly fine, angular, poor to moderately sorted, very strong silica cement, no visual matrix, trace green brown and black lithics, very hard, no visual porosity.
		Fluorescence: The sandstone has trace pinpoint moderately bright medium yellow fluorescence giving very weak dull light yellow crush cut, trace residue.

Lithological and Fluorescence Description

Page: 9 of 10

ROP (Av.)

Interval

S:DIGBY/WCR/wcr-geol.doc (AJ/GFE:F87)

Interval (m)	ROP (Av.) (m/hr)	Lithological and Fluorescence Description	Page: 10 of 10
2050-2056	2.2-3.8 (Av. 3)	Volcanics (?): mottled green, grey, off white and red brown, difine to medium grained, very calcareous, hard, possibly partially	<u> </u>
2056-2088 (T.D.)	1.7-2.5 (Av. 2)	<u>Volcanics</u> : medium to dark green, finely crystalline, off white, minerals embedded in a dark green ground mass (possibly pyrovery calcareous, common calcite infilling fractures, trace slicked top to red brown to white clay - decreasing with depth, hard.	xene), olivine and feldspar,
} <del>.</del>	Total Depth	: 2088m (driller) reached at 2330 hrs on 31st May	y, 1995.

S:DIGBY/WCR/wcr-geol.doc (AJ/GFE:F87)

# APPENDIX 5

**GFE RESOURCES LTD** 

# **APPENDIX 5**

# SIDEWALL CORE DESCRIPTIONS

**DIGBY-1** 



# DIGBY-1 SIDEWALL CORE DESCRIPTION

WELL NAME:

Digby-1

DATE:

5 June 1995

**GEOLOGIST:** 

Dave Horner

PAGE:

1

		V					
		0					

DEPTH REC'D (mm)

DESCRIPTION

#### Cut 48 Recovered 44 2 Misfire 2 No recovery

1	2076.2	26	Basalt?: weathered, medium to dark green, finely crystalline, composed of green, off white and black minerals, very calcareous, firm.
2	2069.2	26	Basalt?: weathered, medium green, finely crystalline, composed of green, off white and black minerals, very calcareous, firm.
3	2048.2	25	<u>Claystone</u> : medium brown grey, very silty, trace dispersed very fine to fine quartz grains, non-calcareous, firm, non-fissile.
4	2028.2	25	Claystone: dark brown grey, moderately silty, non-calcareous, firm, non-fissile.
5	2017.2	23	Siltstone: dark brown, occasionally brown black and very carbonaceous, very finely arenaceous, trace black coaly detritus, firm, fissile, interbedded with
			Sandstone; light brown, very fine to dominantly fine, angular, moderately sorted, moderate silica cement, common white to light brown argillaceous matrix, trace black coaly detritus, friable, very poor visual porosity, common dull orange mineral fluorescence, no oil fluorescence.
6	2002.0	26	Siltstone: dark brown grey, very argillaceous, moderately carbonaceous, non-calcareous, firm, subfissile.
7	1779.2	0	No recovery.
8	1954.7	0	Misfire.
9	1949.3	18	Silty Sandstone: medium brown, very fine, angular to subangular, moderately to well sorted, weak silica cement, abundant medium to dark brown grey argillaceous and silt matrix, trace to common black carbonaceous laminae, detritus and flecks, firm, no visual porosity, common dull orange mineral fluorescence, no oil fluorescence.
10	1948.1	20	Claystone: medium to dark brown grey to grey black, very carbonaceous in part, non-calcareous, common dispersed very fine quartz sand gains in part, common black coal laminae in part, trace micromica, firm, non-fissile with minor laminated  Sandstone: light brown, very fine, angular to subangular, moderately to well sorted, weak silica cement, common off white to light brown argillaceous matrix, friable, no visual porosity, common dull orange mineral fluorescence, no oil fluorescence.
11	1946.3	20	Sandstone: medium brown, very fine to coarse, dominantly fine to medium, weak silica cement, common light brown argillaceous matrix, in part abundant medium brown to black argillaceous and carbonaceous matrix, common black carbonaceous detritus in part, friable, very poor visual porosity. <i>Fluorescence</i> ; the sandstone has trace patchy bright yellow fluorescence giving bright slow to moderately fast streaming pale yellow cut fluorescence, thick ring residue, 100% dull orange mineral fluorescence.

SWC No.	DEPTH (m)	REC'D (mm)	DESCRIPTION PAGE: 2
12	1945.9	28	Sandstone: light brown, very fine to coarse, dominantly fine to medium, angular, poorly sorted, moderate silica cement, common to abundant off white to light brown argillaceous matrix, intermixed with 50% large black coaly inclusions, friable, very poor visual porosity. Fluorescence; the sandstone has 70% dull orange mineral fluorescence and trace pinpoint bright yellow fluorescence giving weak light yellow crush cut, trace residue.
13	1944.2	27	<u>Coal</u> : black, earthy to slightly subvitreous texture, platy fracture, slightly argillaceous in part, moderately hard, brittle.
14	1940.8	28	Sandstone: off white to light grey, very fine to grit, dominantly coarse, angular, poorly sorted, weak silica cement, trace to abundant white argillaceous matrix, trace green lithics, trace black carbonaceous detritus, friable, poor visual porosity. <i>Fluorescence</i> ; the sandstone has 70% dull to bright patchy to solid yellow fluorescence giving dull to bright slow streaming to crush pale yellow cut fluorescence, trace to thick ring residue.
15	1938.7	22	Sandstone: very fine to grit, dominantly fine and very coarse - bimodal, angular, poorly sorted, weak silica cement, trace to common white to light brown argillaceous matrix, trace black coaly detritus, friable, very poor visual porosity. The sandstone has 80% dull orange mineral fluorescence, no oil fluorescence, no cut.
16	1936.4	27	Claystone: very dark brown grey to brown black, very carbonaceous grading to argillaceous coal, trace micromica, firm to hard, slightly subfissile.
17	1931.3	24	Sandstone: very fine to grit, dominantly fine and very coarse (bimodal), angular, poorly sorted, weak silica cement, trace to common white to light brown argillaceous matrix, trace black coaly detritus, friable, very poor visual porosity. <i>Fluorescence</i> ; the sandstone has 80% dull orange mineral fluorescence, no oil fluorescence, no cut. Laminated with
			Coal: black, earthy to slightly subvitreous texture, platy fracture, slightly argillaceous in part, moderately hard, brittle, laminated with  Sandstone: dark brown grey, very fine to grit, dominantly fine to medium, poorly sorted, angular, weak to moderate silica cement, common dark grey argillaceous coaly matrix and detrital coal, friable, very poor visual porosity. Fluorescence; the sandstone has 5 to 10% bright patchy yellow white fluorescence giving moderately bright white crush cut, thin to moderate ring residue.
18	1926.4	15	Sandstone: mottled off white to black, very fine to grit, dominantly coarse, angular, very poorly sorted, weak silica cement, trace altered feldspar grains, trace to abundant black coaly detritus, friable, very poor visual porosity. <i>Fluorescence</i> ; the sandstone has 50% dull orange mineral fluorescence, trace dull pinpoint medium yellow fluorescence giving weak dull to moderately bright pale yellow crush cut, thin ring residue.
19	1923.9	15	Sandstone: medium brown, very fine to coarse, dominantly medium, angular, poorly sorted, moderate to strong silica cement, common medium brown argillaceous matrix, trace black coaly detritus, hard, very poor visual porosity, no oil fluorescence but trace dull white crush cut, trace residue, 10% dull orange mineral fluorescence.
20	1920.2	0	Misfire.
21	1914.2	26	Claystone: dark brown black, non-silty, non-calcareous, very carbonaceous grading to argillaceous coal, common micromica, moderately hard, subfissile.
22	1903.2	28	<u>Claystone</u> : very dark brown grey to brown black, very carbonaceous, slightly silty, non-calcareous, very carbonaceous, common micromica, firm to moderately hard, subfissile.
23	1872.7	21	Sandstone: off white, very fine to dominantly fine, angular to subangular, moderately to well sorted, weak silica cement, common to abundant white argillaceous and silt matrix, trace garnet, trace grey and green lithics, trace black coaly detritus, friable, very poor visual porosity, no oil fluorescence, but trace dull orange mineral fluorescence.

SWC No.	DEPTH (m)	REC'D (mm)	DESCRIPTION PAGE: 3
24	1837.2	28	Silty Sandstone: medium grey, very fine, angular to subangular, moderately sorted, weak silica cement, abundant medium grey argillaceous and silt matrix (matrix supported), common black coaly laminae, trace very fine partially altered feldspars, friable, no visual porosity, no fluorescence.
25	1739.7	0	No recovery.
26	1608.2	25	Sandstone: light grey, fine to coarse, dominantly medium, angular to subangular, moderately sorted, weak silica cement, abundant white argillaceous matrix (matrix supported), trace brown and black lithics, friable and sticky, no visual porosity, no fluorescence.
27	1591.0	19	<u>Claystone</u> : medium green grey, non-silty, very slightly calcareous, trace black carbonaceous flecks, trace micromica, firm, slightly subfissile.
28	1564.0	24	Siltstone: light grey, common very fine quartz sand grains, very argillaceous, non-calcareous, trace to common black to brown carbonaceous flecks, firm, non-fissile.
29	1536.4	22	<u>Claystone</u> : medium grey, moderately silty, non-calcareous, trace black carbonaceous flecks, trace micromica, firm, slightly subfissile.
30	1506.2	26	<u>Claystone</u> : medium grey, moderately to very silty, slightly calcareous, trace black carbonaceous flecks, trace very fine dispersed quartz sand grains, trace micromica, firm, slightly subfissile.
31	1496.2	20	Sandstone: light green grey, very fine to dominantly fine, angular to subangular, moderately to well sorted, weak silica cement, trace weak calcareous cement, common to abundant off white argillaceous matrix, trace garnet, trace brown lithics, trace very fine black carbonaceous detritus, friable, no visual porosity, no fluorescence.
32	1473.7	21	Sandstone: light green grey, very fine to dominantly fine, angular to subangular, moderately to well sorted, weak silica cement, trace weak calcareous cement, common to abundant off white argillaceous matrix, trace garnet, trace brown lithics, trace very fine black carbonaceous detritus, friable, very poor visual porosity. <i>Fluorescence</i> ; the sandstone has 100% dull to bright patchy light yellow fluorescence giving dull to moderately bright milky white crush cut, thin ring residue.
33	1468.2	33	<u>Sandstone</u> : off white to very light brown, very fine to coarse, dominantly fine to medium, poor to moderate sorting, very weak silica cement, trace white argillaceous matrix, trace grey green lithics, friable, fair visual porosity. <i>Fluorescence</i> ; the sandstone has trace patchy moderately bright light yellow fluorescence giving dull milky white crush cut, trace residue.
34	1465.7	24	Sandstone: light grey, very fine to medium, dominantly fine, angular to subangular, moderately to well sorted, weak silica cement, trace weak calcareous cement, common light brown argillaceous matrix, common black coaly detritus, common partly altered feldspars, friable, very poor visual porosity. <i>Fluorescence</i> ; the sandstone has trace dull patchy yellow fluorescence giving weak dull milky white crush cut, trace residue.
35	1464.4	26	Sandstone: light grey, very fine to medium, dominantly medium, angular to subangular, moderately sorted, weak silica and trace weak calcareous cements, common off white argillaceous matrix, trace grey green and brown lithics, trace black carbonaceous flecks and detritus, friable, very poor visual porosity. <i>Fluorescence</i> ; the sandstone has trace bright pinpoint yellow fluorescence giving trace dull milky white crush cut, trace residue.
36	1457.5	25	<u>Claystone</u> : medium grey, slightly silty, non-calcareous, trace micromica, firm, slightly subfissile.
37	1445.2	27	Siltstone: medium grey, very argillaceous, non-calcareous, common black coaly laminae, trace black carbonaceous flecks, trace dispersed very fine quartz and partially altered feldspar grains, trace black carbonaceous flecks, trace micromica, firm to hard, slightly subfissile.

Digby-1 Well Completion Report

Appendix 5

SWC No.	DEPTH (m)	REC'D (mm)	DESCRIPTION PAGE: 4						
38	1414.6	32	<u>Claystone</u> : medium grey, non-silty, non-calcareous, trace black carbonaceous flecks, trace micromica, firm, non-fissile.						
39	1364.4	41	<u>Claystone</u> : medium to dark grey, slightly silty, non-calcareous, trace micromica, moderately hard, slightly subfissile.						
40	1338.2	22	Sandstone: very light grey, very fine, angular, well sorted, weak calcareous cement, abundant white argillaceous and silt matrix, trace black carbonaceous flecks, trace green grey and red lithics, friable, very poor visual porosity, no fluorescence.						
41	1318.1	20	<u>Claystone</u> : medium grey, slightly silty, non-calcareous, rare black carbonaceous flecks, trace micromica, firm, slightly subfissile.						
42	1220.8	22	<u>Claystone</u> : medium brown grey, moderately silty, non-calcareous, trace very fine partially altered feldspars, trace black carbonaceous flecks, firm, non-fissile.						
43	1096.8	26	<u>Claystone</u> : medium grey, moderately silty, very slightly calcareous, trace black carbonaceous flecks, trace micromica, rare very fine partially altered feldspar grains, firm, non-fissile.						
44	1025.5	13	Sandstone: light grey, very fine, subangular, well sorted, moderate calcareous cement, abundant white argillaceous matrix, trace grey green and brown lithics, trace very fine black carbonaceous grains, friable, no visual porosity, no fluorescence.						
45	983.8	15	Sandstone: off white to very light brown, very fine, subangular, well sorted, weak to moderate calcareous cement, abundant white argillaceous matrix, common partially altered feldspar grains, trace very fine black carbonaceous grains, friable to moderately hard, no visual porosity, no fluorescence.						
46	849.0	20	Sandstone: off white to very light brown, very fine, subangular, well sorted, strong calcareous cement, abundant white argillaceous matrix, common partially altered feldspar grains, trace very fine black carbonaceous grains, moderately hard, no visual porosity, no fluorescence.						
47	735.6	28	<u>Claystone</u> : medium grey, slightly silty, non-calcareous, trace black carbonaceous flecks, trace micromica, firm, slightly subfissile.						
48	229.2	41	<u>Claystone</u> : medium green grey, slightly silty, non-calcareous, common brown to black carbonaceous detritus, firm, non-fissile.						

#### BPB WIRELINE SERVICES

#### SCG - CORE GUN SHOT REPORT

CLIENT: (FE RESOURCES	DATE: 02-JUN-95	
F1ELD:	UNIT:	
VELL: DIGBY-1	ENGINEER	
LOCATION:	EQUIP. SERIAL NOS:	

(EQUIPMENT TYPE: - CCR. B PLUS CBA. C PLUS CBA. B)

ORE NO.	CORE DEPTHS M.	DEPTH CORRNS M.	SHOOTING DEPTHS M.	ROCK TYPE	TRANSIT TIML	BULLET TYPE	CUTTER RING	POWDER LOAD	PULL (POUNDS)	RECOVERY (INCHES)	SOLD	FIR STA F	rus	REMARKS
1	2076.2	6.0	بر 2070.2	/_					200	2.5	1			
2	2069.2	5.9	2063.3	7					50	2.5				
3	2048.2	5.9	2042.3	/					<i>~</i>	2.5				
4	2028.2	5.8	2022.4	X					50	2.5				
5	2017.2	5.7	2011.5	×					250	2.5				
6	2002.0	5.7	1996.3	V.					200	2.5				
7	1979.2	5.6	1973.6	V					50	125	N			
8	1954.7	5.6	1949.1	*							N			MISFIRE
9	1949.3	5.5	1943.8							1.5				
10	1948.1	5.4	1942.7	1					50	2.0	<u> </u>			
11	1946.3	5.4	1940.9	V,						2,0				
12	1945.9	5.3	1940.6	1					-	3.0				
13	1944.2	5.2	1939.0	<b>K</b> .	<del></del>				100	3-0				
11	1940.0	5.2	1935,6	*					50	2.5				
15	1938.7	5.1	1933,6						50	2.5				
16	1936.4	5.0	1931.4							3.0				
17	1931.3	5.0	1926.3	/						3.5				
18	1926.4	4.9	1921.5							115	ļ ———			
19	1923.9	1.9	1919.0	×					20	1.0				
20	1920.2	4.8	1915.4	K					20		N			MISFIRE
21	1914.2	4.7	1909.5						700	3.0	1.4			- W. W. W. C. C. C. C. C. C. C. C. C. C. C. C. C.
22	1903.2	4.7	1898.5						800	3-0				
23	1872.7	1.6	1868.1	k						200				
24	1837.2	4.5	1832.7	/					50	2.5				
	24 49 ATTEMPTED								i	21 Jan RECOVERED	SOLD	21	• • • • • • • • • • • • • • • •	

NOTES: (A) DEPTH CORRECTIONS ASSUME TOOL IS ZEROED ON THE CAMMA RAY MEASURE POINT AND THE CORRELATION LOC IS RUN AT 5 M/MIN.

⁽B) ROCK TYPE AND POROSITY ESTIMATED FROM LOGS.

#### BPB WIRELINE SERVICES

#### SCG - CORE GUN SHOT REPORT

CLIENT: GFE RESOURCES	. DATE:	02-JUN-95
FIELD:	UNIT:	• • • • •
VELL: DIG BY-1	ENGINEER	
LOCATION	EQUIP. SERIAL	NOS:

(EQUIPMENT TYPE: - CCR. B PLUS CBA. C PLUS CBA. B)

	ORE NO.		DEPTH CORRNS M.	SHOOTING DEPTHS M.	ROCK TYPE	TRANSIT TIME	BULLET TYPE	CUITER RING	POWDER LOAD	PULL (POUNDS)		SOLD	FIR STA F	TUS	REMARKS
,  -	25	1739.7	3.1	1736.6 >	k					56	Man	N			
1	26	1608.2	3.0	1605.2 7					t	50	2.5				
3 1	27	1591.0	3.0	1588.0 *	×					,	2.0				
٠ 4	28	1564.0	2.9	1561.1					,		2.5				
5	29	1536.4	2.8	1533.6 %	*				,	50	2.5				
6	30	1506.2	2.8	1503.4)	<b>k</b>					20	3.0				
7	31	1496.2	2.7	1493.5	//						1.5				
6	32	1473.7	2.6	1471.1	/					20	1.5				
9	33	1468.2	2.6	1465.6	V.					·—	3.5				·
10	34	1465.7	2.5	1463.2	/						2,5				
"	35	1464.4	2.4	1462.0	7					50	z.5				
17	36	1457.5	2.4	1455.1 ^	7					100	3.0				
13	37	1445.2	2.3	1442.9 /	<u> </u>					20	3.0				
14	38	1414.6	2.3	1412.3	V					20	3.0				
15	39	1364.4	2.2	1362.2	/					200	4.0				
16	40	1338.2	2.1	1336.1	*					20	1-5				
17	41	1318.1	2.1	1316.0	Y	:				20	2-0				
18	42	1220.8	2.0	1218.8	×					20	2.5				
19	43	1096.8	1.9	1094.9	K				ì	20	3.0				
20	11	1025.5	1.9	1023.6	/					70	1.0				,
21	<b>4</b> 5	983.8	1.8	982.0 ~	7					20	1-0				,
22	46	849.0	1.7	847.3	*						2.0				
23	47	735.6	1.7	733.9	K										
24	48	449.2	1.6	447.6						30		<u> </u>	<u> </u>		
		24 attempted				-					23 RECOVERED	23 SOLD			

NOTES: (A) DEPTH CORRECTIONS ASSUME TOOL IS ZEROED ON THE CAMMA RAY MEASURE POINT AND THE CORRELATION LOG IS RUN AT 5 M/MIN.

# APPENDIX 6

#### **GFE RESOURCES LTD**

# **APPENDIX 6**

# DRILL STEM TEST DATA

6A. DST-1

6B. DST-2

**DIGBY-1** 

## **APPENDIX 6A**

# DST-1

**DIGBY-1** 

#### **DST REPORT**

ONE Well: **DIGBY-1** Permit: DIGBY JV DST No.: Date: 22/5/95 1460-1467.9mKB 1467.9 mKB **Pretty Hill** Total Depth: Interval: Formation: Conventional Bottom Hole Test Type: TEST Co.: **Baker Oil Tools** 

FLUID PI	ROPERTIES	TIME	:S	NUMBER OF SAMPLES TAKEN		
SOURCE	RESISTIVITY	FIRST FLOW	5 mins.	GAS	-	
MAKE-UP WATER		FIRST SHUT-IN	60 mins.	Otland	-	
MUD		SECOND FLOW	180 mins.	WATER	11	
RECOVERY		SECOND SHUT-IN	180 mins.	MUD		
Bottom sample	2.0 ohm m at 18.9°C	TOTAL FLOW	185 mins.	GAS SPECIFIC GRAVITY	-	
Sample chamber	1.2 ohm m at 18.9°C			OIL GRAVITY (°API)	-	
		FORM. TEMP.	82.2°C	MUD WEIGHT	9.5 ppg	
		FORM. DEPTH	1463 m	MUD VISCOSITY (Sec./qt.)	50	

GAUGE POSITION	Outside	Inside
TYPE & SERIAL No.	Mech. 21149	Panex 1588
DEPTH (mKB)	1462.44	1451.92
INITIAL HYDROSTATIC	2361	2381
START FIRST FLOW	1642	954
END FIRST FLOW	N.A.	999
FIRST SHUT-IN	1959	2008
START SECOND FLOW	1295	1135
END SECOND FLOW	1857	1898
SECOND SHUT-IN	1934	1947
FINAL HYDROSTATIC	2361	2363

FIRST OPENING BLOW DESCRIPTION: Shut in at floor manifold.

SECOND OPENING BLOW DESCRIPTION:

Shut in at floor manifold for 1 minute, then medium blow diminishing over duration of flow period.

воттом сноке	MANIFO	LD CHOKE	ORIFICE PLATE	FLOWING TIME	FINAL FLOW PERIOD DATA		
SIZE (inches):	SIZE & F	PRESSURE	SIZE & PRESSURE	(minutes)	TIME (mins.)	PRESSURE(psig	
END FIRST FLOW	closed	0.5 psig	n/a	5 mins.	1	1.0	(closed)
FINAL FLOW - START	closed	1.0 psig	n/a	1 min.	5	3.0	(closed)
	1/4"	3.5 psig	n/a	10 mins.	6	3.25	(¼"choke)
FINAL FLOW - MIDDLE	1/2"	1.0 psig	n/a	60 mins.	10	3.5	(¼"choke)
FINAL FLOW - END	1/2"	<1.0 psig	n/a	180 mins.	15	1.0	(½"choke)
RECOVERY: 54 b	bls of for	mation wate	er and slightly oil cu	t rathole mud.	30	1.0	(½"choke)
					90	<1.0	(½"choke)
REMARKS:					120	<1.0	(½"choke)
an industrial for the second					180	<1.0	(½"choke

### **DST OPERATIONS SHEET**

DIGBY JV DIGBY-1 DST No.: ONE Permit: Date: 22/5/95 Well: Pretty Hill Total Depth: 1467.9 mKB Interval: 1460 - 1467.9mKB Formation: TEST Co.: **Baker Oil Tools** Test Type: **Conventional Bottom Hole** 

		F	LOOR MAI	NIFOLD	PROVER				
TIME	EVENT	CHOKE (inches)	PRESSURE (psig)	TEMPERATURE (°C)	PLATE (inches)	PRESSURE (psig)	TEMPERATURE (°C)		
1747	Open Tool	Shut-in a	at Floor Manif	fold					
1747 15	Initial Flow	0 psig	(shut-in at flo	oor manifold)					
1747 30	Initial Flow	0 psig	(shut-in at flo	oor manifold)		•			
1747 45	Initial Flow	0 psig	(shut-in at flo	or manifold)		-			
1748	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1748 15	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1748 30	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1748 45	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1749	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1749 15	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1749 30	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1749 45	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1750	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1750 15	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1750 30	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1750 45	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1751	Initial Flow	0 psig	(shut-in at flo	or manifold)					
1751 15	Initial Flow	0.5 psig	(shut-in at flo	or manifold)					
1751 30	Initial Flow	0.5 psig	(shut-in at flo	or manifold)					
1751 45	Initial Flow	0.5 psig	(shut-in at flo	oor manifold)					
1752	Shut Tool	1.0 psig	(shut-in at flo	oor manifold)					
1753	Initial Shut-In	1.5 psig	(shut-in at flo	oor manifold)					
1754	Initial Shut-In	1.5 psig	(shut-in at flo	oor manifold)					
1755	Initial Shut-In	1.5 psig	(shut-in at flo	oor manifold)					
1756	Initial Shut-In	1.5 psig	(shut-in at flo	oor manifold)					

#### **DST OPERATIONS SHEET**

Well: DIGBY-1 Permit: DIGBY JV DST No.: Date: **ONE** 22/5/95 Pretty Hill Formation: Total Depth: 1467.9 mKB 1460-1467.9mKB Interval: **Baker Oil Tools** TEST Co.: Test Type: **Conventional Bottom Hole** 

		FLOOR MANIFOLD PROVER
TIME	EVENT	CHOKE PRESSURE TEMPERATURE PLATE PRESSURE TEMPERATURE (inches) (psig) (°C) (inches) (psig) (°C)
1757	Initial Shut-In	1.5 psig Open manifold to bubble hose. Strong blow.
1850	Initial Shut-In	Open manifold to flare-line to blow down.
1851	Open Tool	Shut-In at floor manifold
1852	Final Flow	1.0 psig Shut-In at Floor Manifold
1853	Final Flow	1 psig Shut-In at Floor Manifold
1854	Final Flow	2 psig Shut-In at Floor Manifold
1855	Final Flow	2.5 psig Shut-In at Floor Manifold
1856	Final Flow	3.0 psig Shut-In at Floor Manifold
1857	Final Flow	3.25 psig Open to ¹ / ₄ " choke
1858	Final Flow	3.0 psig Open to ¼" choke
1859	Final Flow	3.5 psig Open to ¼" choke
1900	Final Flow	3.5 psig Open to ¹ / ₄ " choke
1901	Final Flow	3.5 psig Open to ¼" choke
1903	Final Flow	1.75 psig Open Manifold to flare-line
1906	Final Flow	1.0 psig Open to ½" choke
1911	Final Flow	1.0 psig Open to ½" choke
1916	Final Flow	1.0 psig Medium blow, weakening - elevate hose to monitor strength of blow
1921	Final Flow	1.0 psig
1926	Final Flow	1.0 psig Weakening blow ½" choke
1931	Final Flow	1.0 psig Weakening blow ½" choke
1936	Final Flow	1.0 psig Weakening blow ½" choke
1941	Final Flow	1.0 psig Weakening blow ½" choke
1946	Final Flow	1.0 psig Weakening blow ½" choke
1951	Final Flow	1.0 psig Weakening blow ½" choke
2006	Final Flow	1.0 psig Weakening blow ½" choke

# **DST OPERATIONS SHEET**

Well: DIGBY-1	Permit: DI	Permit: DIGBY JV DST No.: ONE				
Formation: Pretty Hill	Total Depth:	1467.9 mKB	Interval: 146	60-1467.9mKB		
TEST Co.: Baker Oil To	Test Type: Co	onventional Bott	om Hole			

		FLOOR MANIFOLD PROVER
TIME	EVENT	CHOKE PRESSURE TEMPERATURE PLATE PRESSURE TEMPERATURE (inches) (psig) (°C) (inches) (psig) (°C)
2016	Final Flow	1.0 psig Blow weakening - elevate hose to monitor strength of blow
2021	Final Flow	<1.0 psig
2036	Final Flow	<1.0 psig Bubbles stopped - elevate hose to monitor strength of blow
2051	Final Flow	<1.0 psig
2106	Final Flow	<1.0 psig Weakening blow ½" choke
2121	Final Flow	<1.0 psig Weakening blow ½" choke
2136	Final Flow	<1.0 psig Weakening blow ½" choke
2151	Final Flow	<1.0 psig Very veak blow from just below water surface in bubble bucket
· · · · · · · · · · · · · · · · · · ·		
÷		



#### AMDEL LABORATORIES LTD (ACN 009 076 555)

508 City Road South Melbourne Vic. 3205 Telephone: (03) 9699 8333 Facsimile: (03) 9699 9695

**DATE:** 26 May 1995

**REPORT NUMBER:** M952620

Your Reference: 4116

**CLIENT: GFE Resources** 

Level 6, 6 Riverside Quay,

SOUTH MELBOURNE, VICTORIA, 3070.

Attention: Mr K Lanigan

**SAMPLING:** One water sample was received for analysis.

**DATE RECEIVED:** 

24 May 1995

DATE COMMENCED:

26 May 1995

#### **PARAMETER**

**METHOD** 

Water analysis
 Conductivity

WA-10-01 WA-11-08

#### **RESULTS:**

All samples were analysed as received. Please refer to attached page(s) for results.

Report by:

Authorised by:

Stephen Rasdell

S R-oll

Chemist

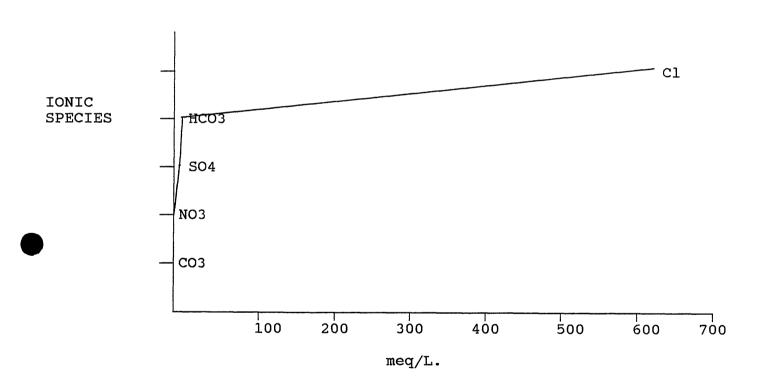
Mr John F Leeder

Manger - Environmental Services



Water Analysis Report Job No. M952620

Method WAT 2 Page 1


Sample ID. WATER SAMPLE

Sample ID.	WATER	SAMPLE			===
	Chemic	cal Comp	osition	Derived Data	
		mg/L	me/L	mg/	'L
Magnesium	(Mg) (Na) (K) (OH) (CO3)	64.0 9500.0 440.0	413.22 11.25	Total Hardness 725 Carbonate Hardness 718 Non-Carbonate Hardness 718	16 55 71
Chloride			590.59	Totals and Balance	
Nitrate	(NO3)	<0.1		Cations (me/L) 569.5 Diff= 23.2 Anions (me/L) 592.7 Sum = 1162.	. 2
Other Analy	ses:			ION BALANCE (Diff*100/Sum) = 2.0  Sodium / Total Cation Ratio 72.	
Reaction - Conductivit (micro Resistivity	cy (E.C -S/cm a	at 25°C)	6.5 45900 : 0.22	mg/L = Milligrams per litre   me/L = MilliEqivs.per litre	




#### STIFF DIAGRAM

JOB No.M952620 SAMPLE ID. WATER SAMPLE PAGE 2



# DIGBY NO. 1 DST NO. 1 1460-1467.9 mKB PANEX GAUGE @ 1451.92 mKB



## ORIGINAL

G.F.E. RESOURCES

Page 1

PRESSURE

DST #: 1 DIGBY # 1 4790.2 ft - 4816.1 ft

Location: PEP134 & PEP126

Recorder Number: 1783

Test Type: DUAL CONVENTIONAL BOTTOM HOLE

Recorder Depth: 4798 ft

Formation: PRETTY HILLS

Test Date: 22/05/95

1 14 14

# psia 1)Initial Hydrostatic: 2383.7 2)Start of 1st Flow: 1885.0 3)End of 1st Flow: 1648.7 4)End of 1st Shut-in: 2025.0 5)Start of 2nd Flow: 1273.7 6)End of 2nd Flow: 1906.2 7)End of 2nd Shut-in: 1980.0 14)Final Hydrostatic: 2382.5

TEST TIMES (MIN)

1st FLOW : 3.00 SHUTIN: 59.00

2nd FLOW : 171.00

SHUTIN: 181.00

#### BLOW DESCRIPTION:

PRE-FLOW: - THE TOOL WAS OPENED AT 17:47 HRS WITH A CLOSED CHOKE. AFTER 4 MINS 1 PSIG ON SURFACE GAUGE. CLOSED TOOL AT 17:53. OPENED CHOKE DURING SHUT-IN. FINAL FLOW: - THE TOOL WAS RE-OPENED AT 18:53 HRS WITH A STRONG AIR BLOW AND CLOSED CHOKES. A 0.25 INCH CHOKE WAS OPENED AFTER 6 MINS (3 PSIG) AFTER A THER 6 MINS OPENED TO A 0.5 INCH CHOKE (1.75 PSIG). THE BLOW DECREASED TO WEAK. TOOL WAS CLOSED AT 21:53 HRS. (TIMES ARE TAKEN FROM THE CHART ENVELOPE).

#### LIQUID RECOVERY:

THE TOTAL LIQUID RECOVERY WAS 50 BBLS OF FORMATION WATER.
THE RECOVERY DATA WAS OBTAINED DURING REVERSE CIRCULATION.
THE DOWNHOLE SAMPLER CONTAINED WATER. THE SAMPLE VENTED ON RIG FLOOR.

#### REMARKS AND TEST SUMMARY:

A MECHANICALLY SUCCESSFUL TEST WAS CONDUCTED. ALL THE PRESSURES REPORTED FROM THE DOWNHOLE RECORDERS ARE PSIA (ie PLUS 14.7). THE FLOW AND SHUT IN TIMES REPORTED ARE TAKEN FROM THE DOWNHOLE ELECTRONIC MEMORY RECORDER (DMR 1783 THE PANEX GAUGE WAS RUN AT DIFFERENT INTERVALS AS REQUESTED BY G.F.E. THEREFORE NO PLOTS FOR THIS GAUGE ARE INCLUDED. THE DMR AND PANEX TIMES DIFFER SLIGHTLY. THE PACKER SETTING DEPTHS WERE CALCULATED USING THE DRILLER'S TALLY.

DST #: 1

DIGBY # 1

4790.2 ft - 4816.1 ft

PRESSURE RECORDER NUMBER: 1783

DEPTH: 4798.10 ft LOCATION : OUTSIDE

TYPE : DMR CAPACITY: 5000.00 psia **** TEMPERATURE AT RECORDER DEPTH = 184.0 F

#### PRESSURE psia

Page 2

1) Initial Hydrostatic: 2383.7 2)Start of 1st Flow 1885.0 3)End of 1st Flow : 4)End of 1st Shut-in : 1648.7 2025.0 5)Start of 2nd Flow : 1273.7 6) End of 2nd Flow 1906.2 7) End of 2nd Shut-in : 1980.0 14) Final Hydrostatic :

TEST TIMES (MIN)

1st FLOW : 3.00

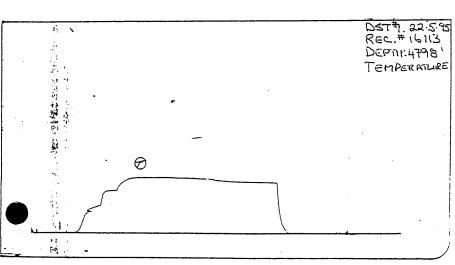
> SHUTIN: 59.00

2nd FLOW: 171.00

> SHUTIN: 181.00

> > PRESSURE

PRESSURE RECORDER NUMBER: 1588


____

DEPTH : 4763.60 ft LOCATION : INSIDE

TYPE : PANEX CAPACITY: 10000.00 psig ***** TEMPERATURE AT RECORDER DEPTH = 186.0 F

## DST#1. 22:5.95 REC.# 16113 DEP11:4798' TEMPERATURE

psia 1) Initial Hydrostatic: 2381.0 2)Start of 1st Flow : 954.0 3)End of 1st Flow :
4)End of 1st Shut-in : 999.0 2008.0 5)Start of 2nd Flow 1135.0 6) End of 2nd Flow 1898.0 7) End of 2nd Shut-in: 1947.0 14) Final Hydrostatic : 2363.0



Page 3

DST #: 1 DIGBY # 1

4790.2 ft - 4816.1 ft

PRESSURE RECORDER NUMBER: 21149

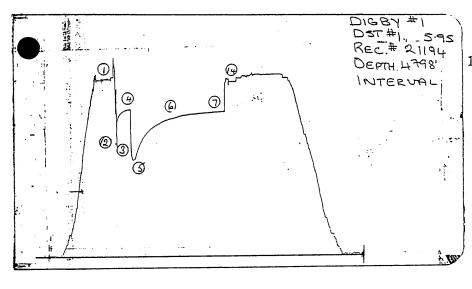
DEPTH: 4798.10 ft

LOCATION : OUTSIDE

TYPE : K-3

CAPACITY: 3000.00 psig

PRESSURE psia


1) Initial Hydrostatic: 2372.1 2)Start of 1st Flow : 1641.2

3)End of 1st Flow 1641.2 4) End of 1st Shut-in: 1971.7

5)Start of 2nd Flow 6) End of 2nd Flow 1861.3

7) End of 2nd Shut-in: 1929.9

14) Final Hydrostatic : 2370.7



TEST TIMES (MIN)

3.00 1st FLOW :

SHUTIN: 59.00 171.00 2nd FLOW:

> SHUTIN: 181.00

PRESSURE RECORDER NUMBER: 9987

EPTH: 4752.80 ft

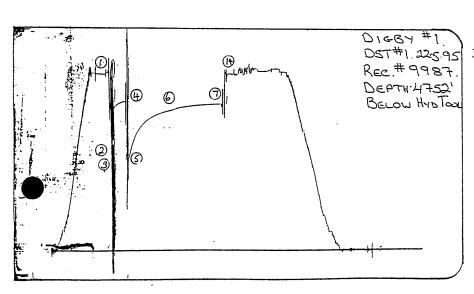
LOCATION : INSIDE

YPE : K-3 CAPACITY: 3000.00 psig

PRESSURE

psia

1) Initial Hydrostatic: 2356.8 2)Start of 1st Flow : 1531.2


3)End of 1st Flow 1533.1

4) End of 1st Shut-in: 1996.9 5)Start of 2nd Flow : 1217.0

6)End of 2nd Flow 1884.2

7) End of 2nd Shut-in: 1955.9

OST#1 12595 14) Final Hydrostatic : 2357.8



DST #: 1

DIGBY # 1

4790.2 ft - 4816.1 ft

PRESSURE RECORDER NUMBER: 14172

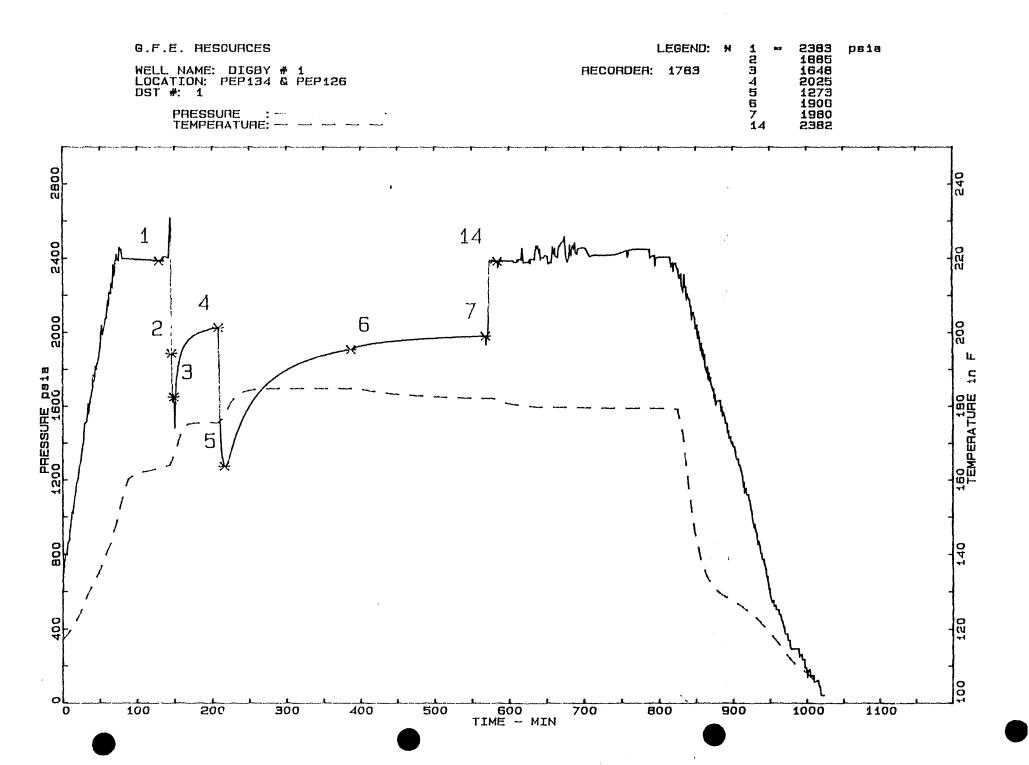
DEPTH : 4731.20 ft LOCATION : INSIDE TYPE : K-3 CAPACITY : 3000.00 psig

#### PRESSURE

Page 4

		psia
1) Initial Hydrostatic	::	14.7
2)Start of 1st Flow	:	14.7
3)End of 1st Flow	:	485.6
4)End of 1st Shut-in	:	485.6
.5)Start of 2nd Flow	:	485.6
6)End of 2nd Flow	:	1862.3
7) End of 2nd Shut-in	:	1867.8
14) Final Hydrostatic	:	2332.7
		. •

	Blank	DIGBY = 1. DEPTH: 12.31' RECOUERY.
		DEPTH: 12731'
3 0	\	
	,	

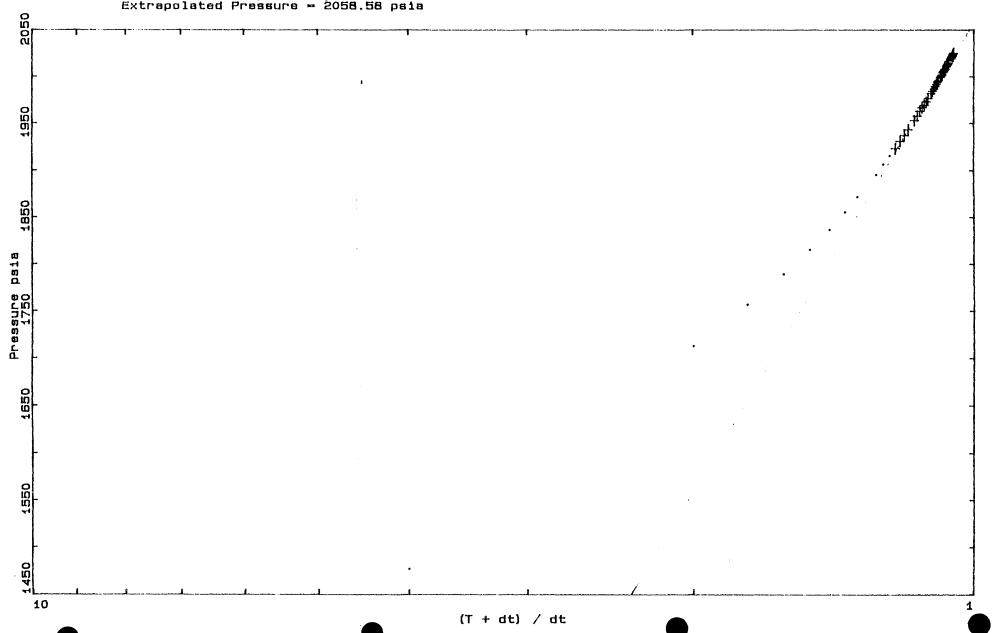

TEST TIMES (MIN)

1st FLOW: 3.00

CHUTTN: 59.00

SHUTIN: 59.00 2nd FLOW: 171.00

SHUTIN: 181.00

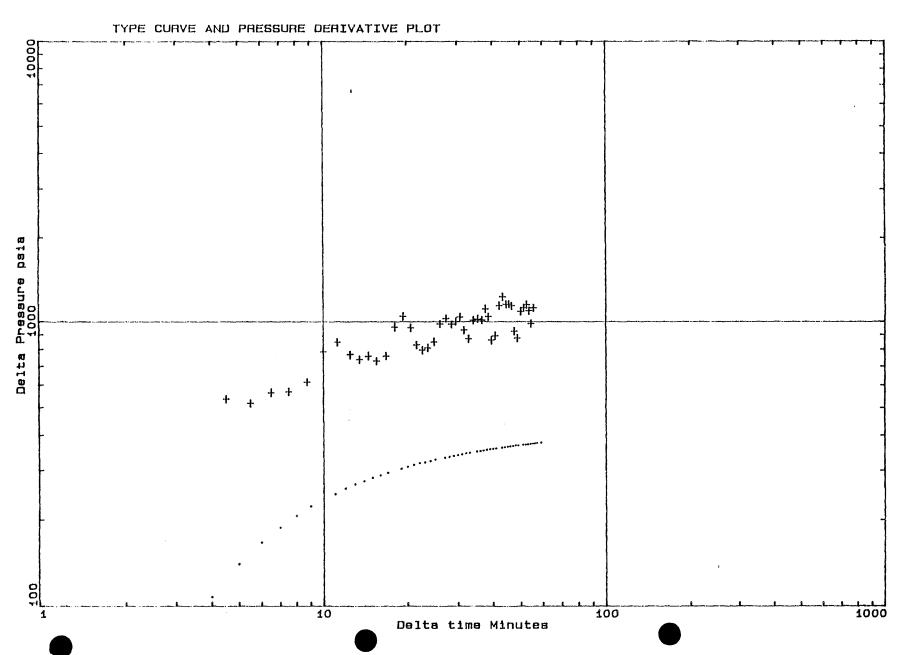



SHUT-IN #1

G.F.E. RESOURCES

WELL NAME: DIGBY # 1 LOCATION: PEP134 & PEP126 UST #: 1

DST #: 1 Slope = 1653.84 psia / cycle Extrapolated Pressure = 2058.58 psia RECORDER: 1783

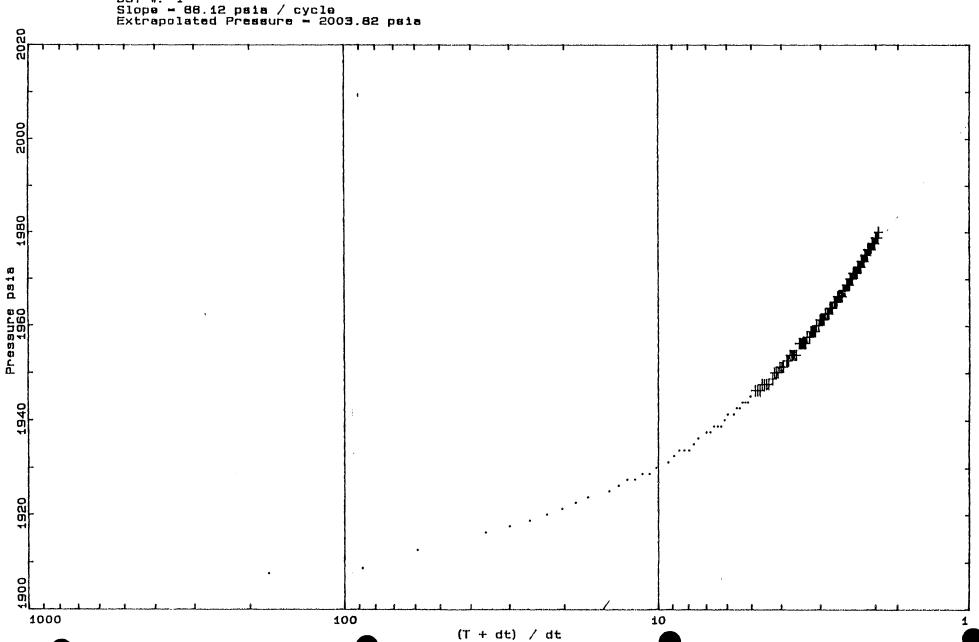



SHUT-IN #1 (Liquid)

G.F.E. RESOURCES

WELL NAME: DIGBY # 1 LOCATION: PEP134 & PEP126 DST #: 1

RECORDER: 1783

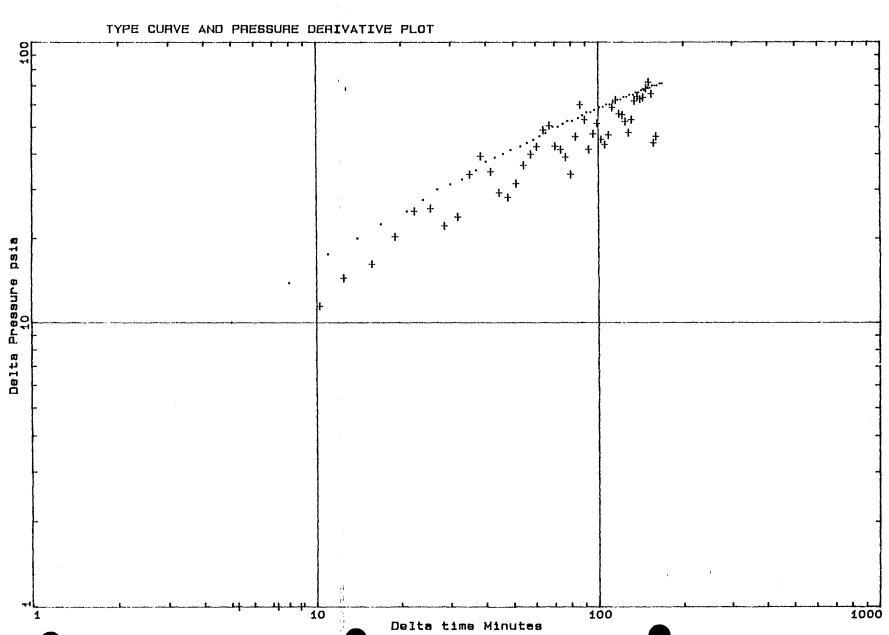



SHUT-IN #2

RECORDER: 1783

G.F.E. RESOURCES

WELL NAME: DIGBY # 1 LOCATION: PEP134 & PEP126 DST #: 1




SHUT-IN #2 (Liquid)

G.F.E. HESOURCES

WELL NAME: DIGBY # 1 LOCATION: PEP134 & PEP126 DST #: 1

RECORDER: 1783





A	Baker	Huches	company
_	Canci	031160	CONTINUE IN

TEST TOOL & PIP	E RECORD				
Well Name & No.	Digby # 1				
Date	22/05/95				
Ticket No.	1021				
Interval Tested	From:	4790	To:	4816	
Total Depth.	4816	Total Int	ervai	26	
Test No.	One				

DESCRIPTION	I.D. No.	I.D.	0.D	Length	Depth	
Stick Up					-14.67	
Drill Pipe				4023.35	4008.68	}
Pup Joint				4.60	4013.28	-
Hevi-wate Drill Pipe				180.75	4194.03	
Drill Collars				468.38	4662.41	
Pump Out Reversing Sub	832	3 1/16	6 9/32	1.37	4663.78	ŀ
Drill Collars				31.56	4695.34	
Impact Reversing Sub	833	2 7/8	6.	1.37	4696.71	
Drill Collars				29.15	4725.86	
Cross Over Sub	857	2 17/32	6 1/8	0.87	4726.73	F
Inside Recorder Carrier	911		4 7/8	4.50	4731.23	
Rotary Shut in Tool	353		5	8.45	4739.68	-
Positive Control Sampler	405		5	3.40	4743.08	
Hydraulic Shut in Valve	304		4 7/8	4.90	4747.98	
Inside Recorder Carrier	912		4 7/8	4.50	4752.48	
Panex Recorder				11.00	4763.48	-
Hydraulic Jars	202		5	6.60	4770.08	(:
Safety Joint	931	2 7/16	4 3/4	2.27	4772.35	$\vdash$
Packer Stick Up			5	8.25	4780.60	
Packer Stick Down			5	1.20	4781.80	-
Packer Stick UP			5 5/8	8.25	4790.05	-
Packer Seal Depth					4790.05	-
Packer Stick Down				1.20	4791.25	_
Outside Recorder Carrier				6.75	4798.00	
Perforated Spacing				15.00	4813.00	H
Anchor Shoe (Total Depth)	970		4 3/4	3.00	4816.00	۲.

٩	Pump Out Reversing Sub
	Drill Collar
•	Impact Reversing Sub
	Drill Collar
$\exists$	Cross-over Sub
$ \downarrow $	Inside Recorder Carrier
4	Rotary Shut in Tool
}	Sampler
	Hydraulic Shut In Tool
	Inside Recorder Carrier
	Panex Recorder Carrier
-{	Hadaarii taa
Ⅎ	Hydraulic Jars
$\exists$	Saftey Joint

Drill Collar

j	
	Conventional Packer
$\vec{\exists}$	**PACKER SEAL DEPTH
}	Perferated Spacing
a l	

Outside	Recorder	Carrier

Conventional Packer

Pipe Tally	Length	Description	Depth
Below Packer Seal	25.95		Depth
Jars etc	0.00		
Drill Pipe	4023.35		
Pup Joint	4.60	P.O.S.	4662.41
Hevi-wate Pipe	180.75	D.B.S.	4695.34
Drill Collars Above Interval	529.09	Rec. Recorder	4731.23
Tools above Interval	66.93	Inside Recorder	4752.48
TOTAL STRING	4830.67	Panex Recorder	4763.48
TOTAL DEPTH	4816.00	Outside Recorder	4798.00
Top Single Above Table	14.67		

Service Engineer Grant Foyster

Oil Co. Rep. Ken Smith

Perferated Spacing
Anchor Shoe



TEST TOOL & PIF	PE RECORD					
Well Name& No. Digby # 1						
Date	22/05/9	5		<del></del>		
Ticket No.	1021					
Interval Tested	From:	4790	To:	4816		
Total Depth.	4816					
Test No.	One					

Drill Collars		Drill Collars		Hevi-wate Pi	pe	Drill Pipe		Drill Pipe	
Joint	Length	Joint	Length	Joint	Length	Stand	Length	Stand	Length
1	29.15	11	27.82	1	180.75	1		11	<u></u>
2	31.56	12	30.27	2		2		12	
3	29.26	13	29.83	3		3		13	
4	30.53	14	28.17	4		4		14	
5	30.62	15	28.25	5		5		15	
6	29.61	16	28.17	6		6		16	
7	31.23	17	29.85	7		7		17	
8	28.37	18	28.00	8		8		18	
9	30.28	19		9		9		19	
10	28.12	20		10		10		20	
1st Total	298.73	2nd Total	230.36	3rd Total	180.75	4th Total	0.00	5th Total	0.0

Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe	
Stand	Length	Stand	Length	Stand	Length	Stand	Length	Stand	Length
21		31		41		51		61	
22		32		42		52		62	
23		33		43		53		63	
24		34		44		54		64	
25		35		45		55		65	
26		36		46		56		66	
27		37		47		57		67	
28		38		48	, , , , , , , , , , , , , , , , , , , ,	58		68	
29		39		49		59		69	
30		40		50		60		70	
6th Total	0.00	7th Total	0.00	8th Total	0.00	9th Total	0.00	10th Total	0.00

Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe	
Stand	Length	Stand	Length	Stand	Length	Stand	Length	Stand	Length
71		81		91		101		111	
72		82		92		102		112	
73		83		93		103		113	
74		84		94		104		114	
75		85		95		105		115	
76		86		96		106		116	
77		87	·	97		107		117	
78		88		98		108		118	
79		89		99		109		119	
80		90		100		110		120	• • • • • • • • • • • • • • • • • • • •
11th Total	0.00	12th Total	0.00	13th Total	0.00	14th Total	0.00	15th Total	0.00
							D.: II OI		1 . 41.

						Drill Clrs	No.	Length
Before Test In Derric	k		Total	D.C. in the	Interval	Interval		0.00
Drill Collars 18		No.	Length	Blw DBS		29.15		
Drill Pipe		128			Blw POS		31.56	
While Testing	in	Out	Total			Abv POS		468.38
Drill Collars	18	-	18			Abv Jars		
Drill Pipe	128		128			Abv intvi		529.09
				Total	0.00	Total		529.09

Conventional Pipe Tally	Length	Inflate Pipe Tally	Length
Jars		Jars, etc.	
Pup Joint, etc.	4.60	Pup Joint	
Below Bottom Packer Seal	25.95	Tool Above Interval	
Between Packer Seals		Drill Collars Above Interval	
Tool Above Packer Seal	66.93	Hevi-wate Pipe Above Interval	
Drill Collars Above Packer Seal	529.09	Drill Pipe Above Interval	
Hevi-wate Pipe Above Packer Seal	180.75	Total Strings Above Interval	
Drill Pipe Above Packer Seal	4023.35	Top Of Interval	
Total String	4830.67	Top Single Above Table	
Total Depth	4816.00		
Top Single Above Table	14.67	1	

						·
TEST DATA	TEST No	ONE	US. TEST No. O. NE.	GENERAL INFO	RMATION	
FORMATION T	ESTEDIKCTT	Y HILLS	T.D.8614, 1457	An COMPANY GF	E RESOURCES	
INTERVAL TES	TED: From斗 だ	10 (1460 m)	10 1467.94 4816' NET PAY 5 M	ADDRESS CO	IEL 6, 6 RIVERS	UNT 3205
TOTAL INTERV	AL TESTED 959.	#1.km	NET PAY			
INFLATE STRAI	DOLE G	DUAL CONV.	STRADDLE BY-PASS STRADDLE BLANK OFF SBTM. HOLE S	WELL NAME DI	GBY#1	
CASING TEST		DUAL CONV.	BTM. HOLE	LOCATION PE	P 134 & PEP 1	λρ
			AMOUNT	K.B. 145	GROUND ELET	N. 15 BM
			NED TOOL 17: HT. HRS	COMPANY REP	EN SMITH	
TEGT TIMES	w 5		•	TESTER:	DRANT FOYST	<b>X</b>
	w		AL SHUT-IN MIN nd Shut-IN MIN		Box PUMP No.:	~
FINAL FLO	W 180	MIN FIN.	AL SHUTIN 180 MIN	CONTRACTOR CE	WTURY DRILLING	RIG No.: 1
			7:47 W CHOKES	TICKET No. 100	DATE: Yr.	95 Mo. S. Day 22
			es 17510n e 1753 u/10si	MUD & HOLE D	ATA	
CHOKES !	OPENED!	ouring <	HUT IN .	HOLE CONDITION		
FINAL FLOW B	LOW DESCRIP	TION: TO @	18:53 W/S A.B.W	EXCELLENT	GOOD 5 FAIR D PO	
6/3PS1.	12 MINS.	OPEN TO	1/4" NETER 6 MIN 1/2" W/175 PSI.	WAS HOLE CONDIT	IONED PRIOR TO TEST: YI PRIOR TO TEST: YES 🗆	
		1		THE OF OALH END	оg: sно	RT ARM 🗆 LONG ARM 🖨
GAS MEAS	JREMENTS			CALIPERED HOLES	IZE @ TEST DEPTH	<b>MAX</b>
				WEIGHT 9.5	PHPA POLYMER VISCOSITY 54	WATER LOSS 5:4
RISER SIZE:		SII		FILTER CAKE Y3	LOG TEMPE	RATURE
			TOT TUBE (	DRILL PIPE SIZE: O	2 LOG TEMPE D. 4/4 LD 3 820 D. 6/4 LD 27/	WEIGHT 16.628 F
	SURFACE	READING		DRILL COLLARS: O. MAIN HOLE OR CAS	ING SIZE 8/2"	и ни <del>мъж</del> / У.).
	CHOKE いちらり	O PSI T.O		RATHOLE OR LINES	SIZE CHOKE SIZE PERFERAT	No. OF
17:51	11	1 651		BOTTOM HOLE OR	CHOKE SIZE YERFORAT	EN LIPE.
19:53	<i>y</i>	1 PSI T.C		SURFACE CHOKE S PACKER RUBBER SI	ZE: DIAM. IN 7/2"	LENGTH IN 36"
18:59	74"	3 PSI				
19:05	72"	1.75 PSI M. A.B.		_ REMARKS	STRAPPED ON T	DIP OUT OF HOLE
20:00		W.A.B		- 1.4.3' SHO	RTER	
21:53		" T.C		- DRILLERS	TALLY USED?	TO CALCULATE.
				- YACKER SE	TTING DEPTHS.	RIOR TO TEST
				_		
NAME OF OU	ICTOMED CON	TAOT		· BOTH PACK	ers recovered	FI HOLE IN
NAME OF CU	ISTOMER CON	IACI		GOOD CONT	MOTION.	
				- SAMPLE C	HAMBER CONTR VENTED ON RIG	TINED WATER
RECOVER		ERY VERIFICATI I Co. Representa	ON SIGNATURE:	· BAKER SU	JRFACE EQUI	PHENT WAS
				PRESSURE	TESTED TO 20	000 psi prior
TOTAL FLUID	RECOVERED.	30 MOTTON	CONSISTING	of: 10 CONDU	cting test	
KESISTI	VITY OF SI	MPLE C	HAMBER ROCK.			TO:
	OF ./	YES D NO	5 00 7 F			т то: т то:
TEST WAS HE	VERSED OUT:	TES MOL	CLOCK # BATT	CLOCK # \ 8422	CLOCK #21042	CLOCK # 18169
CLOCK II	PANEX -	boyster	No. INSIDE	No. INSIDE	No. INSIDE	- NO
No.	OUTSIDE O		TABB OUTSIDE V	CAP. 3000 PSI	CAP. 3000 PS1	CAP. BOODPSI
11-22		SSURE 1451-3m	DEPTH 4798-13	DEPTH 4798·/3	DEPTH 4752.85	DEPTH 4731.2
, , ,	63.68	1.1.21.14	,	•	i :	4
	2381		1 2383-7	¹ 2372·1	12356.8	14.1
	954		²⁸ /885.0	²⁸ 1641·2	²⁸ /531·2	
26			²⁶ /648·7	²⁶ 1641·2	^{2b} /533·1	^{2b} 57.4
			³ 2025· t	³ 1971·7	³ 1996.9	³ 485·6
	2008		4a	4a	48	48
4n		00F	46 184°F	4b	4b	4b
	או ה				4c	4c
415	186 F	Q_F.	4c	4c		
10 1c	186 F	9. F.	4c			5 1100/
10	186 F	Q	4c 5 /273·7	⁵ /300·2	⁵ /217·0	5 485.6
1c	186 F - 1/35 =	Q	^{4c} ⁵ /273·7 ⁶ /906·2	⁵ 1300·2 ⁶ 1861·3	⁵ /217·0 ⁶ /884·2	° 1862.3
5 6	186 F - 1/35 - 1898 -	Q	4c 5 /273·7	⁵ /300·2	⁵ /217·0	
5 6	186 F 1/35 - 1898 - 1947 -	Q F .	^{4c} ⁵ /273·7 ⁶ /906·2	⁵ 1300·2 ⁶ 1861·3 ⁷ 1929·9	⁵ /217·0 ⁶ /884·2	° 1862.3
5 6	186 F - 1/35 - 1898 -	Q F.	^{4c} ⁵ /273·7 ⁶ /906·2 ⁷ /980·0 ⁸ 2382·5	⁵ 1300·2 ⁶ 1861·3	⁵ /217·0 ⁶ /884·2 ⁷ /955·9	⁶ 1862.3 ⁷ 1867.8 ⁸ 2332.7
5 6 7	186 F 1/35 1898 1947 2363	Q F.	^{4c} ⁵ /273·7 ⁶ /906·2 ⁷ /980·0 ⁸ 2382·S	5 1300 · 2 6 1861 · 3 7 1929 · 9 8 2370 · 7 TS REQUIRED:	⁵ /217·0 ⁶ /884·2 ⁷ /955·9 ⁸ 2357·8 TIME INCREMEN	⁶ 1862.3 ⁷ 1867.8 ⁸ 2332.7
1 — 2a — 2b — 3 — 3 — 3	186 F  1/35  1898  1947  2363  INITIAL HYD. PRE-FLOW INITIAL SHUT-IN		^{4c} ⁵ /273·7 ⁶ /906·2 ⁷ /980·0 ⁸ 2382·5	5 1300 · 2 6 1861 · 3 7 1929 · 9 8 2370 · 7 TS REQUIRED:	⁵ /217·0 ⁶ /884·2 ⁷ /955·9 ⁸ 2357·8	⁶ 1862.3 ⁷ 1867.8 ⁸ 2332.7
1 — 2a — 2b — 3 — 4a — 4b — 4b — 4c	186 F  1/35  1898  1947  2363  INITIAL HYD. PRE-FLOW  INITIAL SHUT-IN 2nd INITIAL FLOV		^{4c} ⁵ /273·7 ⁶ /906·2 ⁷ /980·0 ⁸ 2382·S	5 1300 · 2 6 1861 · 3 7 1929 · 9 8 2370 · 7 TS REQUIRED:	⁵ /217·0 ⁶ /884·2 ⁷ /955·9 ⁸ 2357·8 TIME INCREMEN	⁶ 1862.3 ⁷ 1867.8 ⁸ 2332.7
1 — 2a — 2b — 3 — 4a — 4b — 4c — 5 — 5	186 F  //35  /898  /947  2363  INITIAL HYD. PRE-FLOW INITIAL SHUT-IN INITIAL FLO	SW W	^{4c} ⁵ /273·7 ⁶ /906·2 ⁷ /980·0 ⁸ 2382·S	5 1300 · 2 6 1861 · 3 7 1929 · 9 8 2370 · 7 TS REQUIRED:	⁵ /217·0 ⁶ /884·2 ⁷ /955·9 ⁸ 2357·8 TIME INCREMEN	⁶ 1862.3 ⁷ 1867.8 ⁸ 2332.7

### **APPENDIX 6B**

## DST-2

**DIGBY-1** 

#### **GFE Resources Ltd**

### **DST REPORT**

**DIGBY-1 DIGBY JV** Well: Permit: DST No.: TWO Date: 29/5/95 **Pretty Hill** Formation: Total Depth: 1951 mKB 1920-1951 mKB Interval: TEST Co.: **Baker Oil Tools** Test Type: **Conventional Bottom Hole** 

FLUID PROPERTIES	TIMES		NUMBER OF SAMPLES TAKEN		
SOURCE RESISTIVITY	FIRST FLOW	7 mins.	GAS	-	
MAKE-UP WATER	FIRST SHUT-IN	45mins.	OIL	-	
MUD 0.23 ohm.m at 20 °C	SECOND FLOW	60mins.	WATER		
RECOVERY	SECOND SHUT-IN	30 mins.	MUD	6	
Bottom sample   0.28 ohm m at 20 °C	TOTAL FLOW	65 mins.	GAS SPECIFIC GRAVITY	-	
			OIL GRAVITY (°API)	-	
	FORM. TEMP.	90.5 °C	MUD WEIGHT	9.1	
	FORM. DEPTH	1922 m	MUD VISCOSITY (Sec./qt.)	41	

DOWNHOLE	PRESSURE DATA	(psig)
GAUGE POSITION	Outside	Inside
TYPE & SERIAL No.	Mech. 21665	Panex 1588
DEPTH (mKB)	1922.3	1911.78
INITIAL HYDROSTATIC	3034	3035
START FIRST FLOW	61	35
END FIRST FLOW	49	51
FIRST SHUT-IN	2576	2566
START SECOND FLOW	85	54
END SECOND FLOW	122	118
SECOND SHUT-IN	1907	1901
FINAL HYDROSTATIC	3034	3036

FIRST OPENING BLOW DESCRIPTION: No blow.

SECOND OPENING BLOW DESCRIPTION: No blow.

SURFACE FLOW	DATA	FINAL F	LOW: Nil				
воттом сноке	MANIFOLI	CHOKE	ORIFICE PLATE	FLOWING TIME	FINAL FLO	N PER	IOD DATA
SIZE (inches):	SIZE & PR	ESSURE	SIZE & PRESSURE	(minutes)	TIME (mins.)	PRE	SSURE(psig)
END FIRST FLOW	closed	nil	n/a		1	0	(closed)
FINAL FLOW-START	closed	nil	n/a		5	0	(closed)
FINAL FLOW-MIDDLE,	closed	nil	n/a		10	0	(closed)
FINAL FLOW-END	closed	nil	n/a		20	0	(closed)
RECOVERY: 1.28 bbls slightly oil-cut mud.					30	0	(closed)
					40	0	(closed)
REMARKS: Too	did not ap	pear to be	open from surface i	indications, but	50	0	(closed)
cha	rts confirm	ed valid to	est.		60	0	(closed)


#### GFE Resources Ltd

## **DST OPERATIONS SHEET**

Well: DIGBY-1	Permit: DIC	GBY JV DST No.: TWO		Date: 29/5/95		
Formation: Pretty Hill	Total Depth:	Total Depth: 1951 mKB		Interval: 1920-1951 mKB		
TEST Co.: Baker Oil To	Test Type: Conventional Bottom Hole					

		FLOOR MANIFOLD	PROVER
TIME	EVENT	CHOKE PRESSURE TEMPERATURE (inches) (psig) (°C)	PLATE PRESSURE TEMPERATURE (inches) (psig) (°C)
0822	Open Tool	Closed at floor manifold - open to bubb	le hose
0822 15	Initial Flow	0 psig - no bubble	
0822 30	Initial Flow	0 psig - no bubble	
0822 45	Initial Flow	0 psig - no bubble	-
0823	Initial Flow	0 psig - no bubble	
0823 15	Initial Flow	0 psig - no bubble	
0823 30	Initial Flow	0 psig - no bubble	
0823 45	Initial Flow	0 psig - no bubble	
0824	Initial Flow	0 psig - no bubble	
0824 15	Initial Flow	0 psig - no bubble	
0824 30	Initial Flow	0 psig - no bubble	
0824 45	Initial Flow	0 psig - no bubble	
0825	Initial Flow	0 psig - no bubble	
0826	Initial Flow	0 psig - no bubble	
0827	Initial Flow	0 psig - no bubble - tool does not app	ear to be open
0829	Close Tool	Start Initial Shut-In	
0914	Open Tool	Start Final Flow	
0949	Pick-up and	Pull string weight, then pull 50k over an	d un-seat.
	re-set tool		
0954	2nd Final Flow	Closed to manifold, open to bubble hose	- better opening reaction.
1026	Close Tool	0 psig - no bubble - End Flow period	od
1055	Final Shut-In	0 psig - no bubble	
1056	Pull Free		

DIGBY NO. 1 DST NO. 2 1920.0-1951.0 mKB (PANEX GAUGE)



DST #: 2 DIGBY # 1

6299.5 ft - 6401.2 ft

Location: PEP134 & PEP126 Recorder Number: 1588
Test Type: DUAL CONVENTIONAL BOTTOM HOLE Recorder Depth: 6272 ft

Formation: PRETTY HILLS

Test Date: 29/05/95

PRESSURE

psia

TEST TIMES (MIN)

#### BLOW DESCRIPTION:

PROFILOW: TOOL WAS OPENED AT 08:24 HRS WITH NO BLOW, CLOSED MANIFOLD. O PSIG ON SURFACE GAUGE. CLOSED TOOL AFTER 6 MINS WITH NO CHANGE. FINAL FLOW: THE TOOL WAS RE-OPENED AT 09:55 WITH CLOSED CHOKE. NO BLOW THROUGHOUT THE FLOW. PART WAY INTO THE SECOND FLOW, THE TOOL WAS PULLED FREE (EQUALIZED) AND RE-OPENED TO CONFIRM TOOL WAS OPEN. THE DOWNHOLE PRESSURE RECORDERS SHOW TOOL OPEN AND NO PLUGGING WAS APPARENT.

#### LIQUID RECOVERY:

THE TOTAL LIQUID RECOVERY WAS 1.28 BBLS OF SLIGHTLY OIL CUT MUD. THE SAMPLE CHAMBER VENTED ON RIG FLOOR. THE SAMPLE CHAMBER CONTAINED MUD.

#### REMARKS AND TEST SUMMARY:

A MECHANICALLY SUCCESSFUL TEST WAS CONDUCTED.

THERE ARE NO PLOTS INCLUDED IN THIS REPORT DUE TO THE PANEX GAUGE BEING RUN AT DIFFERENT INTERVALS AS REQUESTED BY G.F.E. AND THE FAILURE OF THE DMR.

THE PACKER SETTING DEPTHS WERE CALCULATED USING THE DRILLER'S TALLY.

BOTH PACKERS RECOVERED FROM HOLE IN GOOD CONDITION.

FOR THE REPORTING OF THE KUSTER CHARTS THE START OF THE SECOND FLOW HAS BEEN READ AFTER THE EQUALISING OF THE TOOL.

Page 2

#### G.F.E. RESOURCES

DST #: 2 DIGBY # 1 6299.5 ft - 6401.2 ft

PRESSURE RECORDER NUMBER: 1588

DEPTH : 6272.50 ft

_____

LOCATION: INSIDE

CAPACITY: 10000.00 psig TYPE : PANEX **** TEMPERATURE AT RECORDER DEPTH = 195.0 F

#### PRESSURE

PRESSURE

	psia
1) Initial Hydrostatic	: 3035.0
2)Start of 1st Flow	: 35.0
3)End of 1st Flow	: 51.0
4)End of 1st Shut-in	: 2566.0
	: 86.0
6)End of 2nd Flow	: 118.0
7) End of 2nd Shut-in	: 1901.0
14) Final Hydrostatic	: 3036.0

TEST TIMES (MIN)

PRESSURE RECORDER NUMBER: 21665

DEPTH: 6307.00 ft LOCATION: OUTSIDE

TPE : K-3 CAPACITY: 6000.00 psig

DIGBY #1 DST#2. 29/5/95. Rec. # 21665. DEPTH FT.) 6306.7° DEPTH (M) 1922 3 m INTERVAL ..

psia 1) Initial Hydrostatic: 3040.2 2)Start of 1st Flow : 75.7 3)End of 1st Flow 71.3 4) End of 1st Shut-in: 2562.5 5)Start of 2nd Flow : 126.9 131.1 6) End of 2nd Flow 7) End of 2nd Shut-in: 1902.9 3044.9 14) Final Hydrostatic :

Page 3

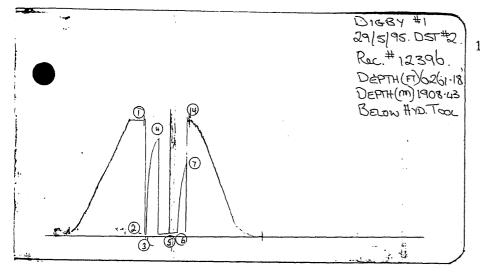
DST #: 2 DIGBY # 1

6299.5 ft - 6401.2 ft

PRESSURE RECORDER NUMBER: 12396

DEPTH: 6261.40 ft

LOCATION : INSIDE


TYPE : K-3

CAPACITY: 6000.00 psig

PRESSURE

psia

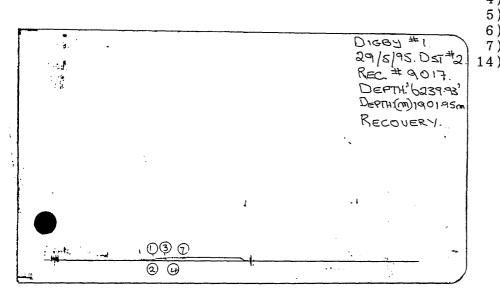
1)Initial Hydrostation	: c	3053.6
2)Start of 1st Flow	:	57.7
3)End of 1st Flow	:	48.7
4)End of 1st Shut-in	:	2571.3
5)Start of 2nd Flow	:	94.2
6)End of 2nd Flow	:	112.7
7)End of 2nd Shut-in	:	1923.6
14)Final Hydrostatic	:	3051.9



TEST TIMES (MIN)

PRESSURE RECORDER NUMBER: 9017

DEPTH : 6240.10 ft


TYPE : K-3

LOCATION : INSIDE CAPACITY : 6000.00 psig

PRESSURE

psia

1)Initial Hydrostatic	c:	14.7
2)Start of 1st Flow	:	14.7
3)End of 1st Flow	:	109.1
4) End of 1st Shut-in		
5)Start of 2nd Flow	:	109.1
6)End of 2nd Flow	:	109.1
7) End of 2nd Shut-in	:	109.1
4) Final Hydrostatic	:	14.7





-				
Α	Baker	Hughe	s com	panv

Well Name & No.	Digby # 1				
Date	29/05/95				
Ticket No.	1022				
Interval Tested	From:	6299	To:	6400	
Total Depth.	6400	Total Int	erval	101	
Test No.	Two				

DESCRIPTION	I.D. No.	I.D.	O.D	Length	Depth		
Stick Up					-13.66		Drill Collar
Drill Pipe				5596.35	5582.69	$\vdash$	
Pup Joint				0.00	5582.69	٢	Pump Out Reversing Sub
Hevi-wate Drill Pipe				180.75	5763.44		Drill Collar
X/O 4 IF P x 4.5 IF B					5763.44		Dilli Collai
Drill Collars				0.00	5763.44	0	Impact Reversing Sub
Drilling Jars				0.00	5763.44		p
Drill Collars				408.59	6172.03		Drill Collar
Pump Out Reversing Sub	832	3 1/16	6 9/32	1.37	6173.40	$\vdash \dashv$	Conner over Corb
Drill Collars				30.53	6203.93	aggregation	Cross-over Sub
Impact Reversing Sub	833	2 7/8	6	1.37	6205.30		Inside Recorder Carrier
Drill Collars				29.26	6234.56	}_{	
Cross Over Sub	857	2 17/32	6 1/8	0.87	6235.43		Rotary Shut In Tool
Inside Recorder Carrier	911		4 7/8	4.50	6239.93	$\vdash$	·
Rotary Shut In Tool	353		5	8.45	6248.38		Sampler
Positive Control Sampler	405		5	3.40	6251.78	}{	
Hydraulic Shut in Valve	304		4 7/8	4.90	6256.68	] ! {	Hydraulic Shut In Tool
Inside Recorder Carrier	912		4 7/8	4.50	6261.18	}-{	
Panex Recorder			ļ	11.00	6272.18		Inside Recorder Carrier
Hydraulic Jars	202		5	6.60	6278.78	إل	
Safety Joint	931	2 7/16	4 3/4	2.27	6281.05	$\vdash$	
Packer Stick Up			5	8.25	6289.30		Panex Recorder Carrier
Packer Stick Down			5	1.20	6290.50		
Packer Stick UP			5 5/8	8.25	6298.75	} - {	Hydraulic Jars
Packer Seal Depth					6298.75		•
Packer Stick Down				1.20	6299.95		Saftey Joint
Outside Recorder Carrier				6.75	6306.70		Commenter of Books
Spacing				13.00	6319.70		Conventional Packer
X/O 3 1/2FH Box 4 IF Pin	859	2 7/16	6 1/32	0.73	6320.43		Conventional Packer
Orill Collars				60.71	6381.14		
X/O 4 IF Box 3 1/2 FH pin	858	2 1/2	6 1/16	0.86	6382.00	• }	<b>↓→</b> PACKER SEAL DEPTH
Perferated Spacing				15.00	6397.00		Perferated Spacing
Anchor Shoe (Total Depth)	970		4 3/4	3.00	6400.00	بنا	, •
							Outside Recorder Carrier
	<del></del>		r			<del>  •</del>	
Pipe Tally		Length	Description		Depth		Spacing
Below Packer Seal		101.25					Opacing
Jars etc		0.00	<del></del>				Cross-over Subs
Drill Pipe		5596.35					D :11 O 11
Pup Joint			P.O.S.		6172.03		Drill Collars
Hevi-wate Pipe		180.75	<del></del>		6203.93	ر	Cross-over Sub
Drill Collars Above Interval			Rec. Recorder		6239.93		Perferated Spacing
Tools above Interval			Inside Recorde		0201.10	$\Box$	Anchor Shoe
TOTAL STRING			Panex Records			<b>}</b> * }	- AIGHOLOGIOG
TOTAL DEPTH Top Single Above Table		6400.00	Outside Recor	aer	6306.70		



A Baker	·Hu	ohes	com	oam

Top Single Above Table

Total String Total Depth

TEST TOOL & PIF	E ILLOUID			
Well Name& No.	Digby #	1		
Date	29/05/95	5		
Ticket No.	1022			
Interval Tested	From:	6299	To:	6400
Total Depth.	6400			<del></del>
Test No.	Two			

Drill Collars		Drill Collars		Hevi-wate Pi	ре	Drill Pipe		Drill Pipe	
Joint	Length	Joint	Length	Joint	Length	Stand	Length	Stand	Length
1	29.15	11	27.82	1	180.75	1		11	
2	31.56	12	30.27	2		2		12	
3	29.26	13	29.83	3		3		13	
4	30.53	14	28.17	4		4		14	
5	30.62	15	28.25	5		5		15	
6	29.61	16	28.17	6		6		16	
7	31.23	17	29.85	7		7		17	
8	28.37	18	28.00	8		8		18	
9	30.28	19		9	-	9		19	
10	28.12	20		10		10		20	
1st Total	298.73	2nd Total	230.36	3rd Total	180.75	4th Total	0.00	5th Total	0.00

Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe	
Stand	Length	Stand	Length	Stand	Length	Stand	Length	Stand	Length
21		31		41		51		61	
22		32		42		52		62	
23		33		43		53		63	
24		34		44		54		64	
25		35		45		55		65	
26		36		46		56		66	
27		37		47		57		67	
28		38		48		58		68	
29		39		49		59		69	
30		40		50		60		70	
6th Total	0.00	7th Total	0.00	8th Total	0.00	9th Total	0.00	10th Total	0.0

Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe		Drill Pipe	
Stand	Length	Stand	Length	Stand	Length	Stand	Length	Stand	Length
71		81		91		101		111	
72		82		92		102		112	
73		83		93		103		113	
74	************	84		94		104		114	
75		85		95		105		115	
76		86		96		106		116	
77		87		97		107		117	
78		88		98		108		118	
79		89		99		109		119	
80		90		100		110		120	
11th Total	0.00	12th Total	0.00	13th Total	0.00	14th Total	0.00	15th Total	0.00
							Drill Clrs	No.	Length
Before Test In Derrick			Total	D.C. in the	Interval	Interval		61.07	
Drill Collars			0.18	No.	Length	Blw DBS		29.26	
Drill Pipe				1.88	1	29.51	Blw POS		30.53
While Testin	g	ln	Out	Total	2	31.56	Abv POS		408.59
Drill Collars		18	-	18			Abv Jars		
Drill Pipe		188		188			Abv Intvi		468.38
					Total	61.07	Total		529.45
Conventiona	l Pipe Tally			Length	Inflate Pipe		Length		
Jars					Jars, etc.				
Pup Joint, e	tc.				Pup Joint				
Below Botto	m Packer Se	eal		101.25	Tool Above				
Between Pag	ker Seals				Drill Collars	Above Inter	val		
Tool Above	Packer Seal			66.93	Hevi-wate P				
Drill Collars					Drill Pipe At				
Hevi-wate Pi					Total Strings Above Interval				
Drill Pipe Ab	ove Packer	Seal			Top Of Inter				
Total String					Top Single	Above Table			
Total Depth				6400.00	i				

6400.00

13.66

FORMATION TESTED RETTY HIL	LS S.S. INASIM/640	GENERAL INFO	PRMATION RESCURCES	ix: Course
INTERVAL TESTED: From 1920 m. / C TOTAL INTERVAL TESTED 30-7 m. /	NET PAY	ADDRESS CC V	TH MELBOGRINE	Vic 3205
TEST TYPE: INFLATE STRADDLE [ DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL   DUAL	CONV. STRADDLE BY PASS CONV. STRADDLE BLANK OFF CONV. BTM. HOLE	WELL NAME DE	16BY # 1	26
OTHER		m1 1 7 L1	TON GROUND ELE	VICTORIA
STARTED IN HOLE @ O.3. QO. HR	S. OPENED TOOL 08:24 HI	RS COMPANY REP	KEN SMITH SRANT FOYS	TER
	INITIAL SHUTIN 45	IN.		
second flow MIN.  FINAL FLOW 31 MIN.	2nd SHUT-IN M		BOX DRILLIN	
PRE-FLOW BLOW DESCRIPTION: T.O.	. @ 08:24 W/NO BU	ILCKET NO 10	22 DATE: Y	95 Mo. 5 Day 29
MANIFOLD CLOSED IN. BANGE. CLOSE TOO W/ NO CHANGE	- AFTER GMIN.	MUD & HOLE D		
FINAL FLOW BLOW DESCRIPTION: T.S.	) @ 04:55-CHOKE 1 THROUGHOUT	EXCELLENT	GOOD FAIR PRIOR TO TEST:	OOR .
FLOW . T. C. @ 10:2	6	CALIPER LOG RUN	PRIOR TO TEST: YES	NO W
GAS MEASUREMENTS MEAS	SURED WITH:		.OG: SHO	DRT ARM LONG ARM MAX.
	CRITICAL FLOW PROVER	MILL TYPE K-CL	BHBB BOUNN	ER.
RISER SIZE:	ORIFICE WELL TESTER SIDE STATIC	WEIGHT	VISCOSITY LOS TEMP	WATER LOSS 7
	PITOT TUBE	DRILL PIPE SIZE: C	10.4/2" 10.3.82	" WEIGHT 16 6#
TIME SURFACE READI	OTHER	DRILL COLLARS: C	D. 4. 1/2" I.D. 3.8 2 D. 6 /4" I.D. 2 7 SING SIZE 8 /2"	/8" RUN529-09"
CHOKE READI		RATHOLE OR LINE	CHOKE SIZE PERFER	No. OF
			··~ /~ "	
		PACKER RUBBER S	IZE: DIAM. IN 7/2"	LENGTHIN 36."
		REMARKS		
			TALLY LISED.	
		- · BOTH (	ACKERS RECO	WERED FIHOLE
		= 1N 6001	CHAMBER	VIENTED CAL
· · · · · · · · · · · · · · · · · · ·				
NAME OF CUSTOMER CONTACT			DR. CONTAIN T MAINFRONT	
Phone No.		WAS RAISE	D, CLOSING DO	WINHOLE VALUE
	ICATION SIGNATURE:	- AND THEN	1. KEO BENEZ	TO CONFIRM
(Oil Co. Repre		· BAKER	SURFACE EQU	PLUGGING.
1286BLS OF SLIGHT	CONSISTING	0005 OT . G	SPORCES PROGRAM	SSURE TESTED 6 PRESSURE 6 TIME TEST
RESISTIVITY OF MUD R	reached.	BTM. H. SAMPLER #	,	
	_	GAS BOMB. #		
TEST WAS REVERSED OUT: YES []	CLOCK # BATT	No. OF FLUID SAMP	CLOCK # 21042	CFOCK # 18164
TESTER Trant Doyst	No. INSIDE VIEW OUTSIDE V	No. INSIDE	No. INSIDE V	No INSIDE TO
FIELD READINGS, REC. NO.	CAP. 5000 PS1	CAP. 6000 PSI	CAP. 6000 PSI	CAP 6000 PSI
PRESSURE PRESSURE PANEX #1588 6272	DEPTH 6307. O	DEPTH 6307. 0	DEPTH 6261.4	DEPTH 6240.1
3035 1 1911 +81	1	1 3040:2	1 3053.6	1 14.7
35 ^{2a}	2a	^{2a} 75:7	^{2a} 57.7	2a 14.7
51 2b	2b	^{2b} 71.3	^{2b} 48·7	1. POI ds
2566 3	DMR 3	3 2562.5	3 2571.3	3 109:1
54 48	FAILES	4a	4a	4a
94 46	4b	4b	4b	4b
TEMP 40 1950F	4c	4c	4c	4c
86 5	5	5 126.9	5 94.2	5
118 6	6	6 131.1	6 112:7	6
1901 7	7	7 1902.9	' 1923.6	7 109.1
3036 8	8	⁸ 3о44 9	83051.9	8 14.7
NUMBER KEY:	No. OF REPOR	TS REQUIRED:		TS:
1 — INITIAL HYD. 2a — PRE-FLOW	MAIL TO:		OMPLETE ANALYSIS:	
2b — 3 — INITIAL SHUT-IN 4a — 2nd INITIAL FLOW				
4b — 2nd FINAL FLOW 4c — 2nd SHUTIN 5 — 3rd INITIAL FLOW				
6 — FINAL FLOW 7 — FINAL SHUTIN	••••			
8 - FINAL HYD.				

## • APPENDIX 7

**GFE RESOURCES LTD** 

## **APPENDIX 7**

## TABULATED MUD GAS DATA

**DIGBY-1** 

DIGBY-1
Total Gas and Chromatography

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)	C5 (ppm)
604.0	1.0	1				
605.0	1.0	21				
610.0	1.0	14				
615.0	1.0	21				
620.0	1.0	21				
625.0	1.0	21				
630.0	1.0	51				
635.0	1.0	87				
640.0	1.0	140				
645.0	1.0	100				
647.0	1.0	74				
650.0	1.0	154				
652.0	1.0	120				
653.0	1.0	140				
654.0	1.5	301				
655.0	1.0	144				
656.0	1.0	79				
660.0	1.0	61				
665.0	1.0	54				
670.0	1.0	42				
675.0	1.0	79				
680.0	1.0	80				
685.0	1.0	82				
690.0	1.0	154		•		
695.0	1.0	73				
700.0	1.0	96				
705.0	1.0	103				
710.0	1.0	130				
715.0	1.0	82				
720.0	1.0	61				
735.0	1.0	68				
740.0	1.0	130				
745.0	1.0	44 54				
750.0 755.0	1.0 1.0	5 <del>4</del> 86				
760.0	1.0	89				
765.0	1.0	123				
770.0	1.0	89				
775.0	1.0	115				
780.0	1.0	144				
785.0	1.0	115				
790.0	1.0	175				
795.0	1.0	147				
800.0	1.0	112				
805.0	1.0	189				
810.0	1.0	133				
815.0	1.0	84				

C5 (ppm)

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)
(111)	(unit)	(ppiii)	(ppiii)	(ppiii)	(ppiii)
820.0	1.0	133			
825.0	1.0	80			
830.0	1.0	77			
835.0	1.0	21			
840.0	1.0	63			
845.0	1.0	63			
846.0	1.0	98			
848.0	1.6	329			
849.0	1.2	298			
850.0	1.0	77			
854.0	1.0	77			
855.0	1.0	77			
856.0	1.5	298			
857.0	1.0	70			
860.0	1.0	80			
861.5	1.0	70			
862.0	1.2	224			
862.5	1.0	70			
863.5	1.0	70			
864.0	1.0	175			
864.5	1.0	77 			
865.5	1.0	77			
866.0	1.5				
866.5	1.0	140			
867.0	1.0	140			
868.0	1.0	84			
870.0	1.0	84			
875.0	1.0	27			
880.0	1.0	109			
885.0 890.0	1.0	82 06			
895.0	1.0 1.0	96 94			
896.0	1.0	9 <del>4</del> 115			
900.0	1.0	168			
905.0	1.0	130			
910.0	1.0	124			
915.0	1.0	130			
916.0	2.2	434			
917.0	1.2	240			
918.0	1.2	240			
919.0	1.5	308			
920.0	1.0	168			
921.0	1.0	132			
922.0	1.0	110			
925.0	1.0	103			
930.0	1.0	96			
935.0	1.0	206			
940.0	1.0	140			
945.0	1.0	100			
950.0	1.0	154			
955.0	1.0	144			
958.5	1.0	144	1	1	

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)	C5 (ppm)
050.0	7.0	1300	29	14		
959.0				14		
959.5	1.1	233	1 53			
960.0	9.0	1646		15 1		
960.5	1.2	233	1 .	1		
963.5	1.2	233	1	1		
964.0	8.0	1463	47	14		
964.5	1.5	288	5	1		
966.0	1.0	178	1	1		
970.0	1.0	196				
975.0	1.2	224	4	4		
980.0	1.0	164	1	1		
982.0	1.0	164	1	1		
983.5	26.0	4884	103	37		
984.0	1.1	219	8	1		
986.0	1.1	210	1			
990.0	1.1	210	1			
995.0	1.0	182				
1000.0	1.0	179 185	4			
1004.5	1.0	185	1			
1005.0	5.0	953	24	4		
1005.5	4.0	762	19 20	1 7		
1006.0	6.0	1143	29			
1006.5	1.0	200	1	1		
1009.5	1.0	200	1	1		
1010.0	5.0	953	24	4		
1010.5	2.0	300	9	1		
1011.0	2.0	300	9	1		
1011.5	5.0	929	46	9		
1012.0	1.0	199	1	1		
1015.0	1.0	197	1	a a	4	
1025.5	1.0	187	1	1	1	
1026.0	34.0	4695	713	252	1	
1027.5	2.0	353	1	1	1	
1030.0	1.7	340	1	1	1	
1030.5	5.0	833	22	19	1	,
1031.5	1.0	197	1	1	1	
1034.0	1.0	187	1	1	1	
1035.0	3.0	547	12	8		
1037.0	4.0	702	25	16		
1040.0	1.1	240	8	4		
1045.0	1.0	224	5	4	1	
1046.0	4.0	738	38	24	1	
1047.0	3.0	481	11 5	7 3	1	
1049.0	2.0	250 1613			1	
1050.0	9.0	1613 487	82 10	52 5	ĺ	
1051.0	3.0	487 487	10 10	5 5		
1054.0	3.0	487 487	10 10	5 <del>5</del>		
1055.0	3.0	487 450	10	5		
1057.0	3.0	450 450	11 11	6		
1058.0	3.0	450	11	6 35		
1058.5	17.0	3112	91 10	35 7		
1059.0	3.0	469	10	7		

Depth TOTAL GAS C1 C2 C3 C4 (m) (unit) (ppm) (ppm) (ppm) (ppm)	C5 (ppm)
1064.0 3.0 472 11 6	
1064.0 3.0 472 11 6	
1073.0 8.0 1476 75 48	
1074.0 3.0 580 15 9	
1075.0 3.0 580 15 9	
1080.0 3.0 551 17 10	
1085.0 1.0 70 1 1	
1090.0 1.0 70	
1095.0 1.0 82	
1099.5 1.0 88	
1100.5 3.0 600	
1101.5 1.0 95	
1105.0 1.0 89	
1110.0 1.0 95	
1115.0 1.0 60	
1120.0 1.0 82	
1125.0 1.0 63	
1130.0 1.0 95	
1135.0 1.0 95 1140.0 1.0 40	
1140.0 1.0 40 1145.0 1.0 71	
1150.0 1.0 71	
1155.0 1.0 44	
1160.0 1.0 69	
1164.0 1.0 88	
1165.0 1.6 171	
1166.0 1.0 108	
1170.0 1.0 113	
1177.0 1.0 108	
1178.0 1.2 162	
1179.0 1.0 138	
1180.0 1.0 100	
1184.0 1.0 100	
1185.0 1.0 151	
1186.0 1.0 56	
1190.0 1.0 38	
1195.0 1.0 31	
1204.0 1.0 22	
1205.0 1.0 84	
1206.0 1.0 44	
1215.0 1.0 56	
1219.0 1.0 78 1	
1220.0 4.0 532 5	
1221.0 1.0 57 1	
1225.0 1.0 91	
1230.0 1.0 108	
1235.0 1.0 63	
1237.0 1.0 63 1	
1238.0 5.0 985 22	

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)	C5 (ppm)
				,	,	,
1239.0	1.0	63	1			
1240.0	1.0	63				
1243.0	1.0	63				
1250.0	1.0	37				
1255.0	1.0	44				
1260.0	1.0	44				
1265.0	1.0	32				
1270.0	1.0	60 57				
1275.0	1.0					
1280.0	1.0	70 73				
1285.0 1290.0	1.0	73 76				
1290.0	1.0 1.0	76 89				
1300.0	1.0	70				
1300.0	1.0	70 70				
	2.5	500				
1304.0	2.5 1.0	82				
1305.0 1309.0	1.0	82	1	1		
1310.0	2.0	209	5	2		
1310.0	1.0	108	1	1		
1311.0	1.0	108	1	1		
1319.0	1.0	84	1	1		
1319.0	3.5	609	15	13		
1321.0	1.5	108	1	1		
1325.0	1.0	120	1	1		
1326.0	1.0	72	•	•		
1329.0	1.0	75	1	1		
1330.0	1.5	111	3	1		
1331.0	1.0	84	1	1		
1335.0	1.0	84	1	1		
1337.0	1.0	95	1	1		
1338.0	4.0	665	50	12		
1339.0	2.0	132	5	2		
1341.0	1.2	132	1	1		
1345.0	1.2	128	1	1		
1350.0	1.0	54	1	1		
1352.0	1.0	78	1	1		
1353.0	1.5	141	15	1		
1354.0	1.0	84	1	1		
1355.0	1.0	84	1	1		
1360.0	1.0	64	1	1		
1365.0	1.0	65	1	1		
1370.0	1.0	52	1	1		
1374.0	1.0	52	1	1		
1375.0	1.0	100	6	4		
1376.0	1.0	82	2	1		
1385.0	1.0	63	2	1		
1390.0	1.0	38	1	1		
1395.0	1.0	89	2	1		
1400.0	1.0	86	2	1		
1405.0	1.0	101	2	1		
1410.0	1.0	76	2	1		

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)	C5 (ppm)
1415.0	1.0	63	1	1		
1420.0	1.0	72				
1425.0	1.0	41	1	1		
1430.0	1.0	66	1	1		
1435.0	1.0	38	1	1		
1440.0	1.0	25	1	1		
1445.0	1.0	44	1	1		
1450.0						
1455.0	1.0	60	1	1		
1460.0	1.0	82	1	1		
1462.0	1.0	82	1	1		
1463.0	1.0	114	5	3		
1465.0	1.0	114	5	3		
1468.0	1.0	100	4	2		
1470.0	1.0	37	1	1		
1475.0	1.0	48	1	1		
1480.0	1.0	10	1	1		
1485.0	1.0	8	1			
1490.0	1.0	9	1			
1494.0	1.0	9	1	1		
1495.0	1.2	72	1	1		
1496.0	1.0	12	1	1		
1500.0	1.0	18	1	1		
1503.5	1.0	15	1	1		
1504.0	2.0	343	17	7		
1504.4	1.0	15	1	1		
1506.7	1.0	14	1	1		
1507.0	1.8	327	15	2		
1507.2	1.0	13	1	1		
1510.0	1.0	18	1	1		
1515.0	1.0	21	1	1		
1520.0	1.0	24	1	1		
1525.0	1.0	18	1	1		
1530.0	1.0	31				
1535.0	1.0	33	4	4		•
1540.0	1.0	10	1	1 1		
1542.5	1.0	10	1			
1543.0	2.0	279	26	23 1		
1543.5	1.0 1.0	30 30	1	1		
1545.0 1549.0	1.0	30 30	1	1		
1549.0	2.0	279	26	23		
1549.5	1.0	24	1	1		
1555.0	1.0	24	1	1		
1559.0	1.0	24	1	1		
1560.0	1.0	92	ı	ı		
1561.0	1.0	13				
1565.0	1.0	13				
1574.0	1.0	18				
1575.0	1.0	38				
1576.0	1.0	13				
1585.0	1.0	13				

C5 (ppm)

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)
1590.0	1.0	11			
1595.0	1.0	13			
1600.0	1.0	16	1	1	
1605.0	1.0	18	1	1	
1610.0	1.0	20	1	1	
1615.0	1.0	9	1	1	
1620.0	1.0	10	1	1	
1625.0	1.0	9			
1630.0	1.0	8			
1635.0	1.0	10			
1640.0	1.0	6			
1645.0	1.0	7			
1650.0	1.0	6			
1655.0	1.0	5			
1660.0	1.0	15			
1665.0	1.0	6			
1670.0	1.0	10			
1675.0	1.0	12			
1680.0	1.0	15			
1685.0	1.0	13			
1690.0	1.0	15 24			
1695.0	1.0 1.0	24 13			
1700.0	1.0	18			
1705.0 1710.0	1.0	15			
1710.0	1.0	10			
1713.0	1.0	12			
1725.0	1.0	10			
1730.0	1.0	10			
1735.0	1.0	12			
1739.0	1.0	12			
1740.0	1.0	129			
1741.0	1.0	18			
1745.0	1.0	18			
1750.0	1.0	20			
1755.0	1.0	18			
1757.0	1.0	1			
1762.0	1.0	1			
1765.0	1.0	10			
1770.0	1.0	12 18			
1775.0	1.0 1.0	20			
1780.0 1785.0	1.0	24			
1790.0	1.0	20			
1795.0	1.0	24			
1800.0	1.0	30			
1805.0	1.0	32			
1810.0	1.0	61			
1815.0	1.0	34			
1820.0	1.0	24			
1825.0	1.0	24			
1830.0	1.0	25			

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)	C5 (ppm)
1835.0	1.0	92				
1840.0	1.0	37				
1845.0	1.0	34	1	1	1	1
1850.0	1.0	22	1	1	1	1
1855.0	1.0	35	1	1	1	1
1860.0	1.0	32	1	1	1	1
1865.0	1.0	15	1	1	1	1
1870.0	1.0	21	1	1	1	1
1875.0	1.0	18	1	1	1	1
1880.0	1.0	40	1	1	1	1
1885.0	1.0	61	1	1	1	1
1890.0	1.0	40	1	1	1	1
1895.0	1.0	31	1	1	1	1
1900.0	0.2	31	1	1	1	1
1905.0	1.0	37	10	20	18	3
1910.0	2.4	62	20	47	51	6
1912.0	5.3	159	61	120	88	15
1915.0	4.9	111	46	93	104	17
1919.0	4.9	111	46	93	104	17
1919.5	4.9	111	46	93	104	17
1920.0	2.8	62	25	67	52	6
1922.5	2.8	62	25	67	52	6
1923.0	2.8	62	25	67	52	6
1923.5	8.9	264	106	207	140	23
1924.0	2.8	62	25	67	52	6
1924.5	2.8	62	25	67	52	6
1925.5	10.0	295	106	213	176	30
1926.0	3.5	117	46	87	52	6
1927.5	3.5	117	46	87	52	6
1928.0	7.1	228	91	167	104	17
1928.5	4.4	123	51	100	72	12
1929.5	4.4	123	51	100	72	12
1930.5	11.2	406	142	254	160	28
1931.0	3.3	129	43	80	44	4
1932.0	3.3	129	43	80	44	4
1932.5	13.6	503	197	321	193	17
1933.0	3.3	129	43	80	44	4
1935.0	3.3	129	43	80	44	4
1935.5	8.7	326	182	247	72	5
1936.0	3.3	129	43	80	44	4
1939.5	3.3	129	43	80	44	4
1940.0	12.5	419	140	292	214	15
1940.5	3.3	129	43	80	44	4
1943.0	3.3	129	43	80	44	4
1943.5	36.7	2734	290	651	477	33
1944.0	3.3	129	43	80	44	4
1945.5	6.6	240	106	180	76	5
1947.5	6.6	240	106	180	76	5
1948.0	13.2	498	197	334	167	15
1948.5	3.3	129	43	80	44	4
1949.5	3.3	129	43	80	44	4
1950.0	3.3	129	43	80	44	4

Depth (m)	TOTAL GAS (unit)	C1 (ppm)	C2 (ppm)	C3 (ppm)	C4 (ppm)	C5 (ppm)
1951.0	3.3	129	43	80	44	4
1955.0	11.0	337	207	240	127	13
1960.0	8.0	265	114	236	109	14
1965.0	7.0	184	81	187	105	10
1970.0	8.0	256	107	224	122	13
1975.0	8.0	215	116	193	104	18
1980.0	8.0	296	102	240	120	18
1985.0	8.0	216	122	266	152	13
1990.0	10.0	318	138	288	127	22
1995.0	6.0	147	60	159	90	12
2000.0	9.0	247	113	270	144	18
2005.0	8.0	257	93	267	89	10
2010.0	11.0	291	120	275	189	18
2014.0	11.0	291	120	275	189	18
2015.0	14.0	393	164	332	227	27
2016.0	10.0	264	116	260	187	16
2020.0	10.0	211	101	240	187	13
2025.0	8.0	160	70	200	152	13
2028.0	8.0	160	70	200	152	13
2029.0	12.0	303	125	282	211	18
2030.0	10.0	270	112	240	208	13
2035.0	6.0	196	66	159	85	10
2040.0	6.0	200	61	163	98	8
2045.0	4.0	188	62	92	55	1
2050.0	1.0	55	10	20	1	1
2055.0	1.0	25	5	7	1	
2060.0	1.0	21	4	5		
2065.0	1.0	60	3	3		
2070.0	1.0	21	3	3		
2075.0	1.0	15	3	3		
2080.0	1.0	15	1	1	1	
2085.0	1.0	9				
2088.0	1.0	9				

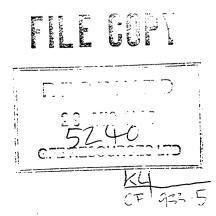
## · APPENDIX 8

**GFE RESOURCES LTD** 

## **APPENDIX 8**

## PETROGRAPHY REPORT

**DIGBY-1** 


#### WESTERN AUSTRALIAN SEDIMENTARY CONSULTANTS

#### **DIGBY-1**

PETROGRAPHIC ANALYSIS OF 16 SAMPLES FROM DIGBY-1

A. J. BUSWELL

Suite 17 The Russell Centre 159 Adelaide Terrace East Perth 6004 Western Australia



# INTRODUCTION

### Methods

A total of fourteen samples, all side wall cores, have been petrographically analysed within this report. All samples have been petrographically examined. Detailed descriptions have been carried out on five of the samples, while basic descriptions were carried out on the remaining nine samples.

All samples were impregnated with blue coloured resin and then ground to a thickness of 35 microns. After sectioning the samples were stained with Alizarin Red S and Potassium ferricyanide according to the Dickson (1966) method. This stain is used to distinguish between calcite (red), ferroan calcite (blue), dolomite (no stain), and ferroan dolomite (turquoise). Mineral percentages where obtained through visual estimate in the basic descriptions and through point counting four hundred points on the detailed descriptions (Table 1). Two photomicrographs per sample have been taken so as to highlight the main petrographic features within the thin sections.

DEPTH	Mineral Percentage Analysis Type	Sample Condition
1338.2m	Visual Estimate	Poor
1464.4m	Visual Estimate	Good
1465.7m	Point Count - 400 points	Poor
1468.2m	Visual Estimate	Poor
1496.2m	Point Count - 400 points	Poor
1608.2m	Visual Estimate	Poor
1872.7m	Visual Estimate	Poor
1923.9m	Visual Estimate	Poor
1931.3m	Point Count - 400 points	Poor
1938.7m	Point Count - 400 points	Poor
1945.9m	Point Count - 400 points	Good
1946.3m	Visual Estimate	Good
1949.3m	Visual Estimate	Good
2069.2m	Visual Estimate	Good
2076.2m	Visual Estimate	Good

Table 1. Sample condition and type of mineral percentage measurement analysis carried out

# RESULTS AND INTERPRETATIONS

### **Rock Types**

The samples have been named according to the compositional classification of sandstones according to Dott modified by Pettijohn et al (1973) (figure I).

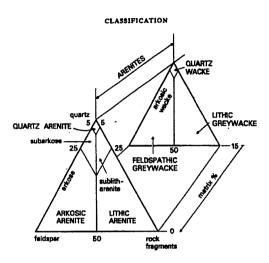



Figure I. Classification of sandstones (Pettijohn et al, 1973).

The samples can be divided into three main groups, the upper group extending from 1338.2m to 1608.2m, the second group from 1872.7m to 1949.3m and the lowest group from 2069.2m to 2076.2m.

The upper group is composed of quartz wackes, quartz arenites and litharenites. This zone is distinguished by high percentages of feldspar and volcanic fragments, and predominantly massive structure. This section is also rich in authigenic kaolinite, this is interpreted as having formed predominantly from the alteration of volcanic fragments.

The second group is defined by high percentages of bituminous material and authigenic dolomite and extends from 1872.7m to 1949.3m. The samples also display a variable intense lineation, defined by elongate stringers of bituminous material and a preferred orientation of the elongate axis of the detrital grains.

The lower group is composed of feldspathic volcanics and extends from 2069.2m to 2076.2m. The samples display a moderate to strong flow texture and are composed dominantly of feldspar, quartz and chlorite. The chlorite is interpreted as having formed from the in situ alteration of pyroxenes.

### **Diagenesis**

The diagenetic history of the upper group consists of the alteration of detrital micas to form chlorite and kaolinite and the formation of authigenic sericite from the alteration of detrital grains. The final phase of diagenesis was a minor phase of ferroan calcite emplacement. The ferroan calcite has probably formed within secondary porosity. The secondary porosity has formed due to partial leaching of the detrital feldspar grains.

Within the second group the diagenetic history is similar to that of the first group, with the addition of a phase of dolomitisation. The relative timing of the dolomite emplacement is difficult to determine, however it appears to post date the formation of kaolinite and chlorite.

# **Environmental Indicators**

The only sample with any environmental indicators is 1496.2m which contained a trace of glauconite. This would tend to indicate a marine origin for this sample.

# <u>REFERENCES</u>

Dickson, J.A.D. (1966): Carbonate identification and genesis as revealed by staining. J. Sed. Petrol.36/2, 491-505.

Pettijohn, F.J., Potter, P.E., & Siever, R. (1973): Sand and sandstone, p. 617. Springer-Verlag, Berlin.

Sample: Digby-1 SWC 40 1338.2m

Mineralogy:

villeralogy.		
Detrital	Quartz	50%
	Feldspar	10%
	Chert	5%
	Muscovite	2%
	Volcanic Fragments	20%
	Bituminous Material	5%
	Biotite	6%
	Zircon	Trace
	Garnet	Trace
	Tourmaline	Trace
Authigenic	Ferroan Calcite	1%
<b>C</b>	Chlorite	1%

NB: The sample is in a poor condition. It is completely disaggregated, making an accurate identification of the structure and fabric impossible.

### Description:

The sample appears to be a massive litharenite. It displays a weak lineation, defined by an alignment of the elongate axis of detrital framework grains. The sample is grain supported, with grain boundaries displaying weakly sutured contacts. Cementation appears to be moderate.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from coarse silt (0.02mm) to fine/medium sand (0.25mm), with an average of approximately fine sand (0.15mm). Sorting appears to be moderate to good. The grain shape varies from very angular to sub-rounded, with an average of sub-angular. No authigenic silica overgrowths are evident. The grains predominantly display a weakly undulose extinction.

Feldspar within the sample displays similar grain size and shape distribution as that of the quartz grains. Albite twinned, untwinned and polysynthetic twinned grains are evident, with albite twinned being dominant. A twin extinction angle of approximately 15° to 20° degrees has been measured, indicating an oligoclase composition.

Both chert and volcanic rock fragments are present, with volcanic fragments dominant. All rock fragments display similar average size and shape as that of the detrital quartz grains. The volcanic rock fragments are feldspathic. Sericitic and kaolinitic alteration of the feldspathic rock fragments is evident. A portion of the matrix material present may be the result of the disaggregation of partially altered and completely altered feldspathic volcanic fragments.

Ferroan calcite is present in a massive sparry form. The ferroan calcite is present infilling secondary porosity within feldspar grains. This is generally preferentially associated with the twin planes. Some completely replaced grains are also evident.

Both biotite and muscovite are present in the form of elongate laths, which are generally bent and broken. The biotite is commonly highly chloritised.

Dark bituminous material is present as staining on clays. The dark colour of the staining makes identification of the clays impossible. Authigenic pyrite is commonly associated with the organic material.

No porosity is present.

Sample: Digby-1 SWC 40 1338.2m continued

- 1. Seritisation of detrital grains
- 2. Chloritisation of biotite
- 3. Emplacement of ferroan calcite.

This is an enclosure indicator page. The enclosure PE905895 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905895 has the following characteristics:

ITEM_BARCODE = PE905895
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN

PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Massive

Lithic Arenite, figure 1, (from WCR

vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

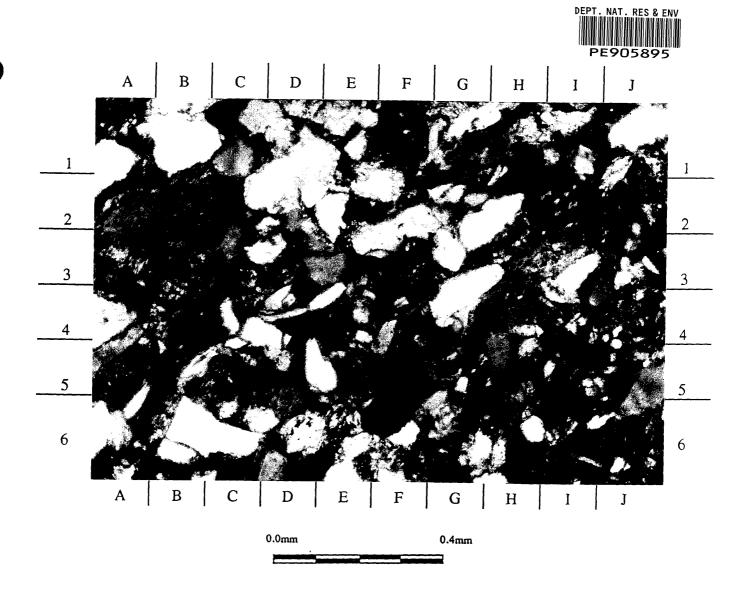



Figure 1. SWC 40 1338.2m x75.6 XPL Massive lithic arenite.

This is an enclosure indicator page. The enclosure PE905896 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905896 has the following characteristics:

ITEM_BARCODE = PE905896
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

vol. 1) for Digby-1

REMARKS =

DATE_CREATED = DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES



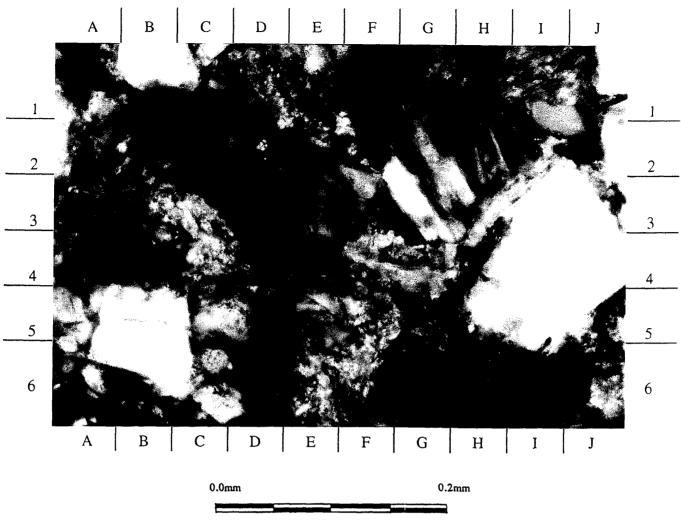



Figure 2. SWC 40 1338.2m x192 XPL Massive lithic arenite.

Sample: Digby-1 SWC 35 1464.4m

Mineralogy:

Quartz	41%
Feldspar	5%
Chert	Trace
Muscovite	5%
Volcanic Fragments	15%
Biotite	Trace
Tourmaline	Trace
Garnet	Trace
Zircon	Trace
Kaolinite	25%
Chlorite	8%
Ferroan Calcite	1%
Sericite	Trace
Silica	Trace
Pyrite	Trace
	Feldspar Chert Muscovite Volcanic Fragments Biotite Tourmaline Garnet Zircon Kaolinite Chlorite Ferroan Calcite Sericite Silica

# Description:

The sample is a massive litharenite. It appears to be predominantly grain supported, with grain contacts displaying concave/convex to sutured contacts. Cementation appears to be moderate to poor with compaction, clays and authigenic silica providing the main binding forces.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from very coarse silt (0.04mm) to coarse sand (0.70mm), with an average of approximately medium sand (0.40mm). Sorting appears to be moderate to good. The grain shape varies from angular to rounded, with an average of sub-angular. A trace of authigenic silica overgrowths are present. The overgrowths are generally thin and discontinuous. The grains predominantly display a weakly undulose extinction.

The feldspar present displays similar grain size and shapes as the detrital quartz grains. Albite twinned, untwinned and polysynthetic twinned grains are evident, with albite twinned being dominant. A twin extinction angle of 10° to 15° degrees has been measured indicating an albite to oligoclase composition. Minor leaching of the albite twinned grains is common.

Both chert and volcanic rock fragments are present. All rock fragments display a similar average size and shape as that of the detrital quartz grains. The volcanic rock fragments are both feldspathic and chloritic. The chloritic grains are interpreted as having formed as a result of the in situ alteration of the rock fragment. Sericitic and kaolinitic alteration of the feldspathic rock fragments is also evident.

Detrital muscovite is present as partially kaolinised laths and as granular traces within the kaolinite accumulations. The unaltered laths are generally bent and broken with some exfoliation on the ends of the grains. A trace of chloritised mica (biotite) are also evident.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas and volcanic rock fragments. Traces of mica and feldspars are still evident within the kaolinite accumulations.

Ferroan calcite is present in a massive sparry form within the kaolinite accumulations and within partially leached feldspars. The ferroan calcite displays highly corrosive contacts with the detrital feldspars.

Sample: Digby-1 SWC 35 1464.4m continued

No porosity is present.

- Chloritisation of the biotite and volcanic fragments
- Seritisation of detrital grains
   Kaolinisation of the micas and feldspars
- 4. Emplacement of ferroan calcite.

This is an enclosure indicator page. The enclosure PE905897 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905897 has the following characteristics:

ITEM_BARCODE = PE905897
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN

PERMIT = PEP/134 TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Massive Litharenite, figure 3, (from WCR vol.

1) for Digby-1

REMARKS =

DATE_CREATED = DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

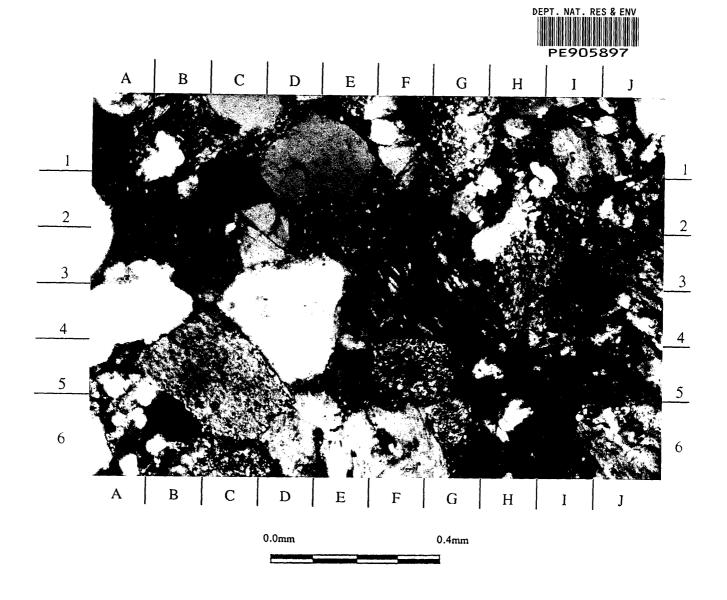



Figure 3. SWC 35 1464.4m x75.6 XPL Massive litharenite. Feldspathic volcanic fragments are evident at F3.

This is an enclosure indicator page.

The enclosure PE905898 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905898 has the following characteristics:

ITEM_BARCODE = PE905898
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Detrital Feldspar with Authigenic Kaoloinite compacted into pore space, figure 4,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED = DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD CLIENT_OP_CO = GFE RESOURCES



Figure 4. SWC 35 1464.4m x192 XPL Detrital feldspar with authigenic kaolinite compacted into pore space (H5).

Sample: Digby-1 SWC 34 1465.7m

#### Mineralogy:

micraiogy.		
Detrital	Quartz	45.00%
	Feldspar	4.25%
	Chert	Trace
	Muscovite	1.00%
	Volcanic Fragments	10.00%
	Bituminous Material	3.25%
	Biotite	0.50%
	Garnet	Trace
	Zircon	Trace
Authigenic	Kaolinite	35.50%
_	Sericite	0.50%
	Chlorite	Trace
	Ferroan Calcite	Trace

NB: The sample is a in poor condition. It is completely disaggregated making an accurate identification of the structure and fabric impossible.

### Description:

The sample appears to be a massive sub-lithic quartz wacke. The sample appears to be matrix supported. However, it is not possible to ascertain if the sample is truly matrix supported or an artefact of the side wall coring process. The matrix is supplied by authigenic kaolinite and muscovite fragments. The matrix material is interpreted as having formed from the mixing of authigenic kaolinite, sericite and detrital muscovite during the side wall coring process. Cementation appears to be poor.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from very coarse silt (0.05mm) to very coarse sand (1.20mm), with an average of approximately medium/coarse sand (0.50mm). Sorting appears to be moderate. The grain shape varies from angular to well rounded, with an average of sub-rounded. No authigenic silica overgrowths are evident. The grains predominantly display a weakly undulose extinction.

Feldspar grains within the sample have an average grain size of medium sand  $(0.35 \, \mathrm{mm})$  and a generally tabular grain shape. Albite twinned, untwinned and polysynthetic twinned grains are evident, with albite twinned being dominant. A twin extinction angle of approximately  $10^{\circ}$  to  $15^{\circ}$  degrees has been measured indicating an albite to oligoclase composition. The feldspars are commonly partially leached and or altered to sericite. Ferroan calcite is present infilling the secondary pore space produced within the leached feldspars.

Both chert and volcanic rock fragments are present. All rock fragments display similar average size and shapes as that of the detrital quartz grains. The volcanic rock fragments are feldspathic. Sericitic and kaolinitic alteration of the feldspathic rock fragments is evident. A portion of the matrix material present may be the result of the disaggregation of partially altered and completely altered feldspathic volcanic fragments.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas and volcanic rock fragments. Traces of mica and feldspars are still evident within the kaolinite accumulations.

Bituminous material is present in the form of elongate, discontinuous stringers.

Ferroan calcite is present in a massive sparry form within kaolinite accumulations and within partially leached feldspars. The ferroan calcite displays highly corrosive contacts with the detrital feldspars.

Sample: Digby-1 SWC 34 1465.7m continued

No porosity is present.

- Seritisation of detrital grains
   Kaolinisation of the micas and feldspars
   Emplacement of ferroan calcite.

This is an enclosure indicator page. The enclosure PE905899 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905899 has the following characteristics:

ITEM_BARCODE = PE905899
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN

PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Massive
Quartz Wacke, figure 5, (from WCR vol.

1) for Digby-1

REMARKS =

DATE_CREATED = DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

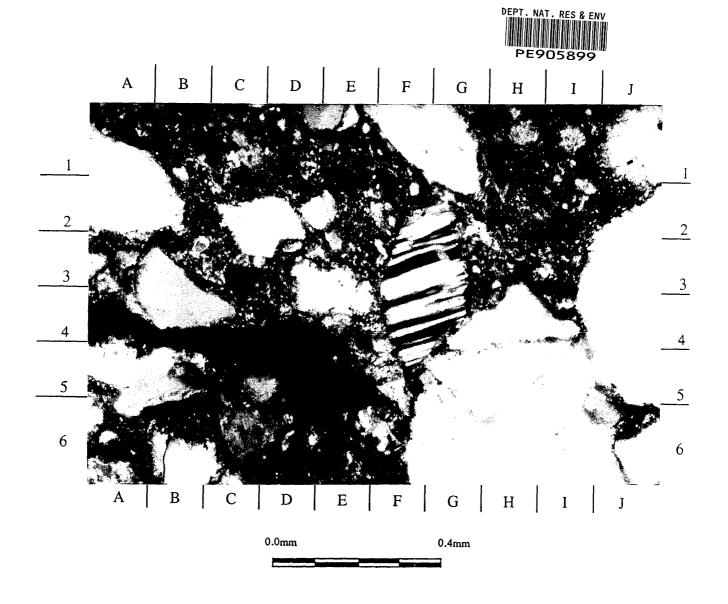



Figure 5. SWC 34 1465.7m x75.6 XPL Massive quartz wacke. The disaggregated nature of the sample is clearly evident. Bituminous material is present at C4.

This is an enclosure indicator page. The enclosure PE905900 is enclosed within the container PE900874 at this location in this document.  $^{\text{A}}$ 

The enclosure PE905900 has the following characteristics:

ITEM_BARCODE = PE905900
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Matrix

Material, figure 6, (from WCR vol. 1)

for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

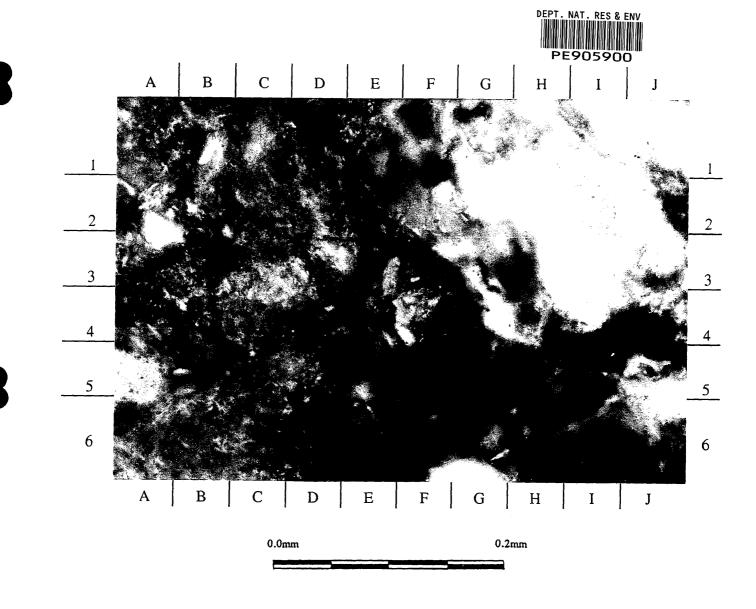



Figure 6. SWC 34 1465.7m x192 XPL Matrix material. The matrix appears to be composed of kaolinite, sericite and shattered volcanic fragments.

Sample: Digby-1 SWC 33 1468.2m

Mineralogy:

minutumo 5 j .		
Detrital	Quartz	60%
	Feldspar	10%
	Chert	5%
	Muscovite	2%
	Rock Fragments	10%
	Biotite	Trace
	Garnet	1%
	Rutile	Trace
Authigenic	Kaolinite	10%
Ŭ	Sericite	2%
	Chlorite	Trace

NB: The sample is in a poor condition. It is completely disaggregated making an accurate identification of the structure and fabric impossible.

# Description:

The sample appears to be a quartz arenite. No indication of the structure, fabric or cementation is evident.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from coarse silt (0.02mm) to coarse sand (0.95mm), with an average of approximately medium sand (0.38mm). Inaccuracies in the grain size may have occurred due to the shattered nature of the grains. Sorting appears to be moderate. The grain shape varies from very angular to rounded, with an average of subangular. No authigenic silica overgrowths are evident. The grains predominantly display a weakly undulose extinction.

Feldspar grains within the sample have an average grain size of medium sand (0.38mm) and a generally tabular grain shape. Albite twinned and polysynthetic twinned grains are evident, with albite twinning being dominant. A twin extinction angle of approximately 15° degrees has been measured, indicating an oligoclase composition. The feldspars are commonly partially leached and or altered to sericite.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas and volcanic rock fragments. Traces of mica and feldspars are still evident within the kaolinite accumulations.

Minor rock fragments are also present. These are general partially or completely altered to authigenic sericite, kaolinite and chlorite.

No porosity is present.

- 1. Seritisation of detrital grains
- 2. Kaolinisation of the micas, feldspars and rock fragments.

This is an enclosure indicator page.

The enclosure PE905901 is enclosed within the container PE900874 at this location in this document.

```
The enclosure PE905901 has the following characteristics:
     ITEM_BARCODE = PE905901
CONTAINER_BARCODE = PE900874
            NAME = Core Thinsection Photograph
           BASIN = OTWAY BASIN
          PERMIT = PEP/134
             TYPE = WELL
          SUBTYPE = PHOTOMICROGRAPH
     DESCRIPTION = Core Thinsection Photograph of Quartz
                   Arenite, figure 7, (from WCR vol. 1)
                    for Digby-1
          REMARKS =
    DATE_CREATED =
   DATE_RECEIVED =
            W_NO = W1130
       WELL_NAME = DIGBY-1
       CONTRACTOR = GFE RESOURCES LTD
     CLIENT_OP_CO = GFE RESOURCES
```

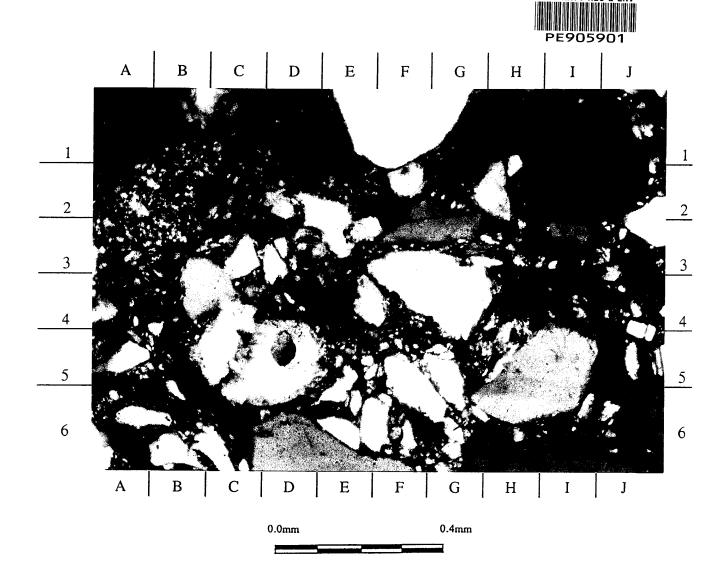



Figure 7. SWC 33 1468.2m x75.6 XPL Quartz arenite. The disaggregated and shattered nature of the sample is clearly evident. Authigenic kaolinite is present, compacted into the intergranular pore space.

This is an enclosure indicator page.

The enclosure PE905902 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905902 has the following characteristics:

ITEM_BARCODE = PE905902
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN

PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

W_NO = W1130

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

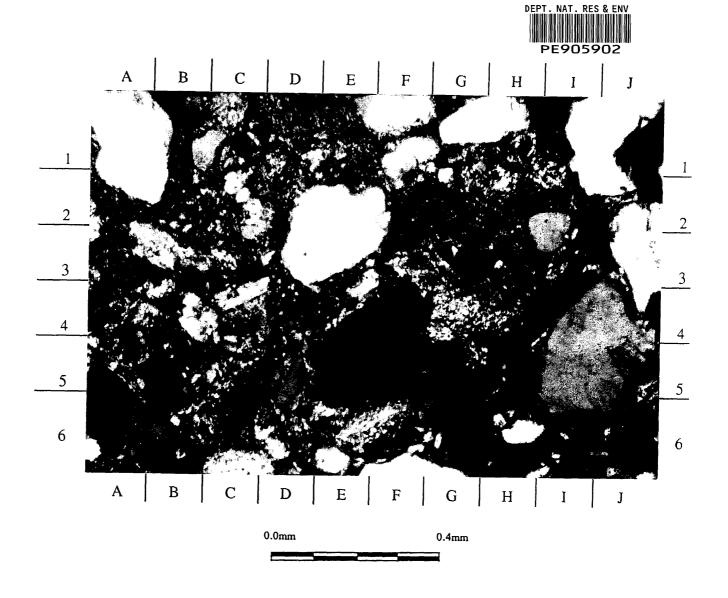



Figure 8. SWC 33 1468.2m x75.6 XPL Quartz arenite. The disaggregated and shattered nature of the sample is clearly evident. Authigenic kaolinite is present, compacted into the intergranular pore space.

Sample: Digby-1 SWC 31 1496.2m

Mineralogy:

Detrital	Quartz	59.00%
	Feldspar	3.25%
	Muscovite	2.50%
	Volcanic Fragments	25.5%
	Biotite	0.25%
	Glauconite	Trace
	Garnet	Trace
	Zircon	Trace
Authigenic	Kaolinite	6.25%
	Sericite	1.25%
	Dolomite	Trace
	Ferroan Calcite	Trace
	Pyrite	2%

NB: The sample is in a poor condition. It is completely disaggregated making an accurate identification of the structure and fabric impossible. A matrix material composed of shattered grains and clays is also present

# Description:

The sample appears to be a massive lithic quartz wacke. It is not possible to determine whether it is matrix or grain supported due to the poor condition of the sample. Cementation appears to be to poor, with clays providing the cement.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from coarse silt (0.03mm) to coarse sand (1.00mm), with an average of approximately medium sand (0.30mm). The apparent grain size may be misleading due to the shattered nature of the grains. Sorting appears to be poor. The grain shape varies from very angular to rounded, with an average of angular. No authigenic silica overgrowths are evident. The grains predominantly display a weakly undulose extinction.

Feldspar is also present in the form of a framework grain. It has a size range of coarse silt (0.02mm) to coarse sand (0.58mm), with an average of approximately medium sand (0.40mm) and a generally tabular grain shape. Albite twinned, untwinned and polysynthetic twinned grains are evident, with albite twinning being dominant. A twin extinction angle of approximately 10° degrees has been measured, indicating an albite/oligoclase composition. The feldspars are commonly partially leached and/or altered to sericite. Ferroan calcite is present infilling secondary pore space within leached feldspars.

Both chert and volcanic rock fragments are present. All rock fragments display similar average sizes and shapes as that of detrital quartz grains. The volcanic rock fragments are feldspathic. Sericitic and kaolinitic alteration of the feldspathic rock fragments is evident. A portion of the matrix material present may be the result of the disaggregation of the partially altered and completely altered feldspathic volcanic fragments.

Authigenic kaolinite in the form of massive matrix material is also present. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas and volcanic rock fragments. Traces of mica and feldspars are still evident within the kaolinite accumulations.

Ferroan calcite is present in a massive sparry form within both kaolinite accumulations and partially leached feldspars. The ferroan calcite displays highly corrosive contacts with the detrital feldspars.

No porosity is present.

Sample: Digby-1 SWC 31 1496.2m continued

- Seritisation of detrital grains
   Kaolinisation of the micas and feldspars and volcanic fragments
   Emplacement of ferroan calcite.

This is an enclosure indicator page.

The enclosure PE905903 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905903 has the following characteristics:

ITEM_BARCODE = PE905903
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Massive
Quartz Arenite, figure 9, (from WCR

vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES



Figure 9. SWC 31 1496.2m x75.6 XPL Massive quartz arenite. Volcanic rock fragments are evident at B5. Ferroan calcite displays corrosive contacts with detrital quartz and feldspar grains at F1.

This is an enclosure indicator page.

The enclosure PE905904 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905904 has the following characteristics:

ITEM_BARCODE = PE905904
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of
Authogenic Kaoloinite Infilling
Intergranular Pore Space, figure 10,
(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED = DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD CLIENT_OP_CO = GFE RESOURCES

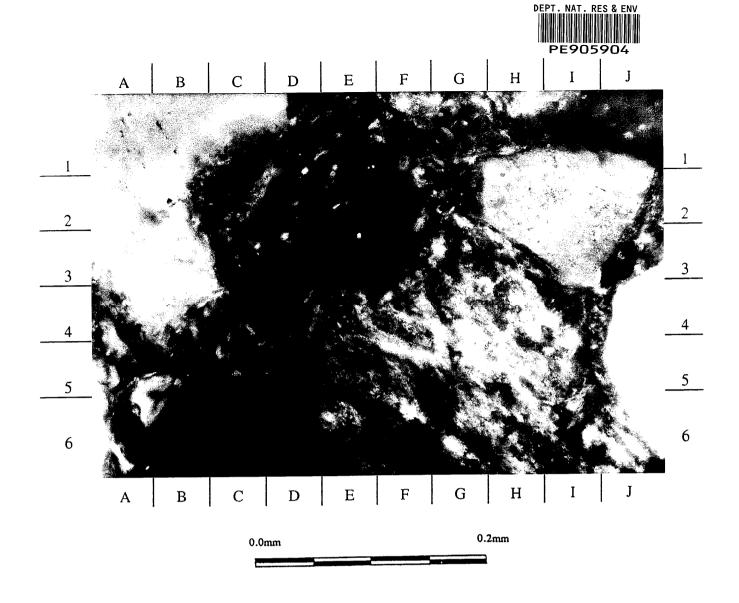



Figure 10. SWC 31 1496.2m x192 XPL Authigenic kaolinite infilling intergranular pore space. A volcanic rock fragment is evident at H5.

Sample: Digby-1 SWC 26 1608.2m

### Mineralogy:

Detrital	Quartz	59%
	Feldspar	2%
	Chert	1%
	Muscovite	1%
	Volcanic Fragments	1%
	Biotite	Trace
	Rock Fragments	3%
Authigenic	Kaolinite	30%
<b>C</b>	Chlorite	3%
	Sericite	Trace
	Ferroan Calcite	Trace
	Pyrite	Trace
	•	

NB: The sample is in a generally poor condition. The sampling process has resulted in most of the sample being disaggregated and many grains being shattered.

# Description:

The sample is a massive quartz wacke. It appears to be predominantly matrix supported, with authigenic kaolinite providing the matrix. It is unclear whether the sample is truly matrix supported rather than a result of sample deformation. Cementation appears to be very poor with compaction and clays providing the main binding forces.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from very coarse silt (0.06mm) to coarse sand (0.90mm), with an average of approximately coarse sand (0.55mm). The minimum grain size may be misleading due to the shattered nature of the sample. Sorting appears to be moderate to good. The grain shape varies from angular to well rounded, with an average of rounded. No authigenic silica overgrowths are evident. The grains predominantly display weakly undulose extinctions.

Feldspar within the sample displays similar grain sizes as detrital quartz grains. The grains tend to be sub-angular in shape. Polysynthetic twinned and albite twinned varieties are evident. No accurate twin extinction angle could be obtained from the albite twinned grains. Leaching of the albite twinned grains is common.

Detrital muscovite is present as partially kaolinised laths and as granular traces within the kaolinite accumulations. The unaltered laths are generally bent and broken with some exfoliation on the ends of the grains. A trace of chloritised micas are also evident.

Both chert and volcanic rock fragments are evident. The volcanic fragments are commonly heavily altered and are interpreted as having formed the majority of the kaolinitic matrix. Authigenic sericite is also associated with both the chert and volcanic rock fragments.

Authigenic chlorite is present as in situ alteration of detrital micas (biotite) and as very thin fibrous coatings on the rims of quartz grains. This fibrous rim coating may have formed as a result of the in situ alteration of detrital clays, which may have accumulated on the outside of detrital grains prior to deposition. Some of the authigenic chlorite is also due to the alteration of volcanic fragments.

Authigenic kaolinite is also present, in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars, rock fragments and micas. Traces of mica and feldspars are still evident within the kaolinite accumulations. Compaction and disruption during the side wall coring process has led to the kaolinite forming the matrix material.

Sample: Digby-1 SWC 26 1608.2m continued

Ferroan calcite is present in a massive sparry form within the kaolinite accumulations and within partially leached feldspars. The ferroan calcite displays highly corrosive contacts with the detrital feldspars.

No porosity is present.

- 1. Chloritisation of the biotite
- 2. Seritisation of detrital grains
- 3. Kaolinisation of the micas and feldspars
- 4. Emplacement of ferroan calcite.

This is an enclosure indicator page. The enclosure PE905905 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905905 has the following characteristics:

ITEM_BARCODE = PE905905
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN

PERMIT = PEP/134 TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Massive
Quartz Wacke, figure 11, (from WCR vol.

1) for Digby-1

REMARKS = DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

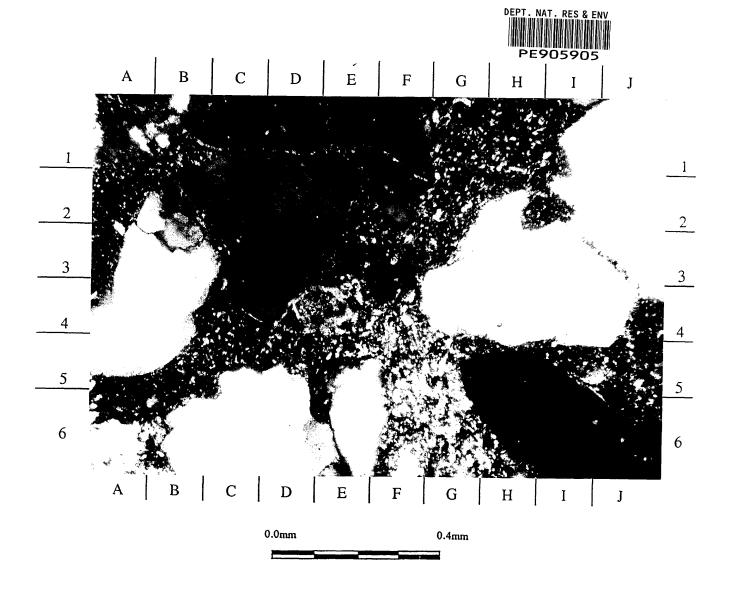



Figure 11. SWC 26 1608.2m 75.6 XPL Massive quartz wacke. Detrital quartz grains within an authigenic kaolinite matrix. A partially kaolinised muscovite grains is present at G6.

This is an enclosure indicator page. The enclosure PE905906 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905906 has the following characteristics:

ITEM_BARCODE = PE905906
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of
Authigenic Kaolinite Replacing a
Detrital Muscovite Grains, figure 12,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED = DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

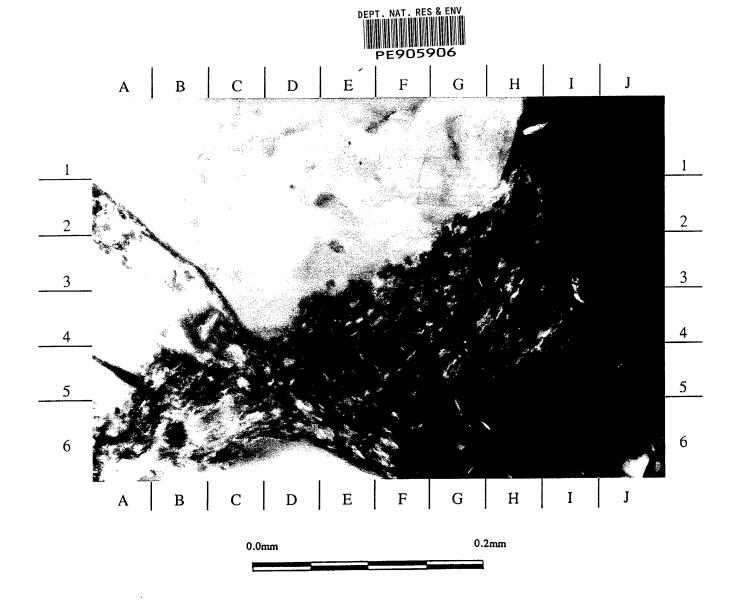



Figure 12. SWC 26 1608.2m 192 XPL Authigenic kaolinite replacing a detrital muscovite grains (B5). The kaolinite has been compacted into the intergranular pore space.

Sample: Digby-1 SWC 23 1872.7m

#### Mineralogy:

Detrital	Quartz	64%
	Feldspar	2%
	Chert	2%
	Muscovite	15%
	Rock Fragments	4%
	Biotite	Trace
	Rutile	Trace
	Garnet	Trace
	Zircon	Trace
Authigenic	Kaolinite	10%
	Chlorite	2%
	Sericite	5%
	Pyrite	Trace
	•	

NB: The sample is in a generally poor condition. Large portions of the sample are disaggregated and heavily shattered.

#### Description:

The sample is a quartz wacke. It displays a weak lineation, defined by the alignment of the elongate axis of detrital grains. The sample is predominantly grain supported, with grain boundaries displaying concave/convex contacts. Cementation appears to be moderate with authigenic silica providing the dominant visible cement.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from coarse silt (0.03mm) to medium sand (0.50mm), with an average of approximately medium sand (0.35mm). Sorting appears to be moderate to good. The grain shape varies from angular to rounded, with an average of sub-angular. A trace of authigenic silica overgrowths are present. The overgrowths are generally thin and discontinuous. The grains predominantly display a weakly undulose extinction.

The feldspar grains are present as minor framework grains. They display similar grain sizes as the detrital quartz grains, and are generally tabular in shape. Albite twinned and untwinned grains are evident, with untwinned grains being dominant. An accurate measurement of the twin extinction angle is not possible. Minor leaching of the albite twinned grains is common.

Detrital muscovite is present as partially kaolinised laths and as granular traces within the kaolinite accumulations. The unaltered laths are generally bent and broken with some exfoliation on the ends of the grains. A trace of chloritised mica (biotite) is also evident.

Both chert and volcanic rock fragments are present. All rock fragments display a similar average size and shape as that of the detrital quartz grains. The volcanic rock fragments are predominantly feldspathic. Sericitic and kaolinitic alteration of the feldspathic rock fragments is common.

A matrix of kaolinite and micaceous material is present within some portions of the sample. This is interpreted as having formed as a result of deformation of the sample during the side wall coring process.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars, volcanic rock fragments and micas. Traces of mica and feldspars are still evident within the kaolinite accumulations. Authigenic chlorite and sericite are also present, these are interpreted as having formed from the alteration of detrital volcanic fragments. The authigenic minerals have commonly pseudomorphed the rock fragments.

Sample: Digby-1 SWC 23 1872.7m continued

An unusually high percentage of heavy minerals, particularly rutile, is evident within this sample.

A trace of secondary porosity has been produced from the leaching of detrital feldspar. An accurate assessment of the percentage of this porosity is impossible due to the shattered nature of the sample. However, it is interpreted as being in trace amounts. No primary porosity is evident.

- 1. Silica cementation
- 2. Pyritisation?
- 3. Chloritisation of the biotite and volcanic fragments
- 4. Seritisation of detrital grains
- 5. Kaolinisation of the micas and feldspars

This is an enclosure indicator page.

The enclosure PE905907 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905907 has the following characteristics:

ITEM_BARCODE = PE905907
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN

PERMIT = PEP/134

 $\mathtt{TYPE} = \mathtt{WELL}$ 

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Quartz

Wacke, figure 13, (from WCR vol. 1) for

Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

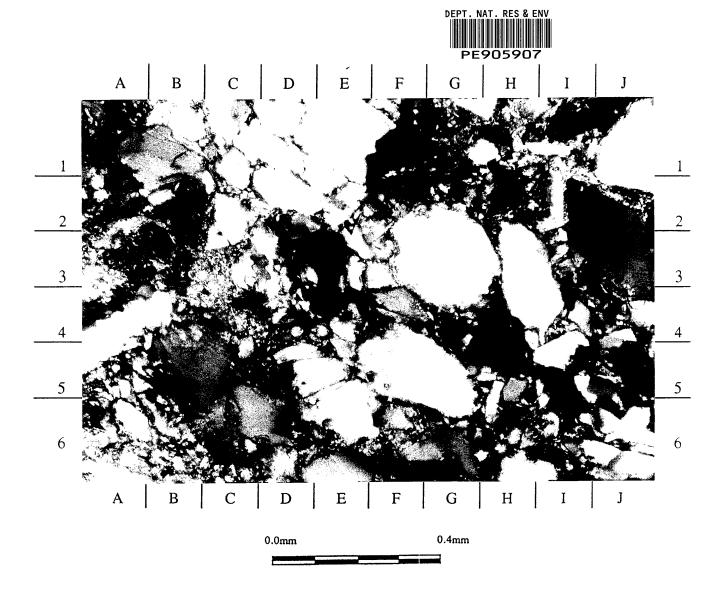



Figure 13. SWC 23 1872.7m x75.6 XPL Quartz wacke. The shattered and predominantly disaggregated nature of the sample is evident.

This is an enclosure indicator page. The enclosure PE905908 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905908 has the following characteristics:

ITEM_BARCODE = PE905908
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Detrital

Quartz with Sericitic and Kaolinitic Clays Compacted along the Margins of the Detrital Grains, figure 14, (from

WCR vol. 1) for Digby-1

REMARKS = DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

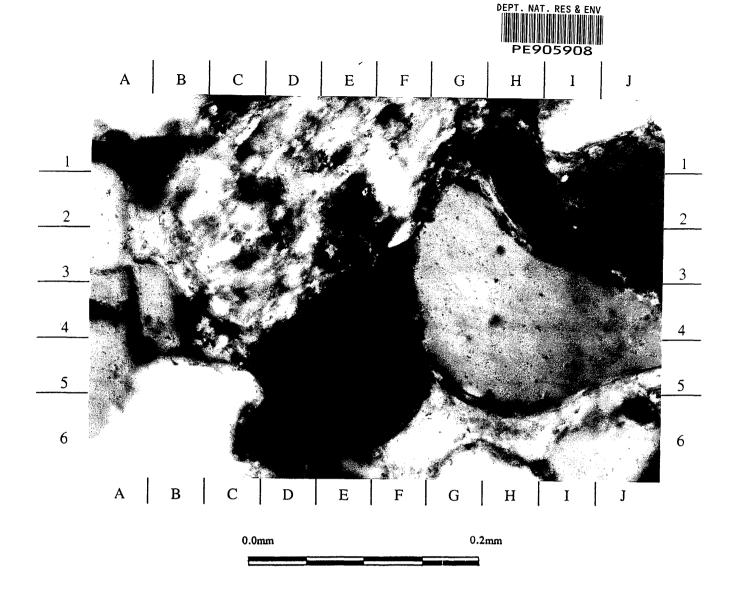



Figure 14. SWC 23 1872.7m x192 XPL Detrital quartz with sericitic and kaolinitic clays compacted along the margins of the detrital grains.

Sample: Digby-1 SWC 19 1923.9m

Mineralogy:

Detrital	Quartz	46%
	Feldspar	8%
	Chert	2%
	Muscovite	1%
	Bituminous Material	8%
	Tourmaline	Trace
	Garnet	Trace
Authigenic	Dolomite	10%
•	Ferroan Calcite	25%

NB: The sample is in a poor condition. It is completely disaggregated making an accurate identification of the structure and fabric impossible.

# Description:

The sample appears to be a dolomitic quartz arenite. It displays a strong lineation, defined by elongate dolomite accumulations and a weak alignment of the elongate axes of detrital grains. The sample is predominantly grain supported, with grain boundaries displaying concave/convex contacts. Cementation appears to be moderately good, with authigenic dolomite and ferroan calcite providing the cements.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from very coarse silt (0.04mm) to very coarse sand (1.55mm), with an average of approximately coarse sand (0.75mm). Sorting appears to be moderate. The grain shape varies from very angular to well rounded, with an average of sub-angular. No authigenic silica overgrowths are evident. The grains predominantly display a weakly undulose extinction.

Two coaly fragments are present. These display a strong cell structure. Dark, organic, probably bituminous, material is also present. The bituminous material occurs as elongate stringers aligned with the sample lineation.

Detrital muscovite laths are present bent and broken between the framework grains. The muscovite is generally partially kaolinised. Completely kaolinised muscovite is also present.

Authigenic dolomite is present in a micritic granular form, and appears to be replacing detrital muscovite. The dolomite has also completely replaced other detrital grains, no evidence as to the original grains remain. However, the shape of the accumulations tend to indicate the replacement of detrital clays. The dolomite also displays corrosive contacts with the quartz grains.

Ferroan calcite is present in a massive sparry form. It has completely replaced detrital grains. No evidence as to the original grain type remains. The ferroan calcite has also infilled all porosity within the partially dolomitised grains. Porosity within the coaly material has also been infilled by ferroan calcite.

No porosity is present.

- 1. Dolomitisation of micas and ?clays
- 2. Kaolinisation of the micas
- 3. Emplacement of ferroan calcite.

This is an enclosure indicator page.

The enclosure PE905909 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905909 has the following characteristics:

ITEM_BARCODE = PE905909
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

 $\mathtt{TYPE} = \mathtt{WELL}$ 

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Dolomitic Quartz Sandstone, figure 15,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

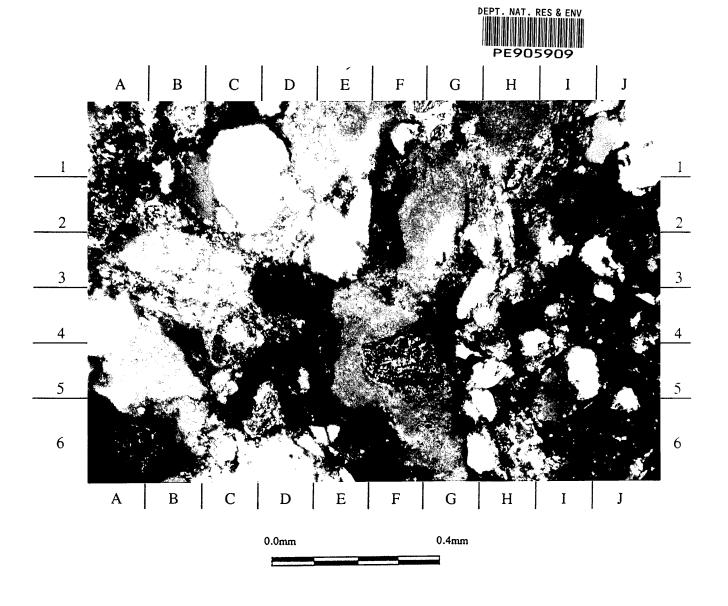



Figure 15. SWC 19 1923.9m x75.6 XPL Dolomitic quartz sandstone. Authigenic dolomite in a fine micritic form (eg. F2). Ferroan calcite (stained blue) occurs as a sparry replacement of detrital grains (eg. F4). Bituminous material is evident, running along the margin of the dolomite.

This is an enclosure indicator page.

The enclosure PE905910 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905910 has the following characteristics:

ITEM_BARCODE = PE905910
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Micritic dolomite, with Bitumous Material and a Detrital Muscovite Grain, figure 16,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

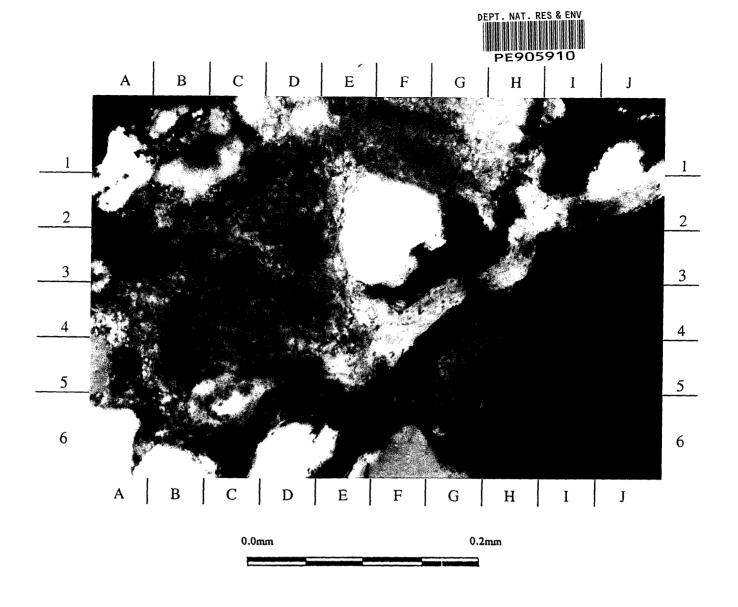



Figure 16. SWC 19 1923.9m  $\times$ 192 XPL Micritic dolomite, with bituminous material (F3) and a detrital muscovite grain. The dolomite displays corrosive contacts with the detrital quartz grains (eg. E2).

Sample: Digby-1 SWC 17 1931.3m

#### Mineralogy:

Detrital	Quartz	58.00%
	Muscovite	2.25%
	Bitumen	25.00%
	Biotite	1.00%
	Rock Fragments	0.75%
	Tourmaline	Trace
Authigenic	Dolomite	8.50%
	Kaolinite	1.00%
	Sericite	3.50%
	Chlorite	Trace

NB: The sample is in a very poor condition. The sampling process has resulted in the majority of the sample being disaggregated and many of the grains shattered.

# Description:

The sample is a dolomitic quartz arenite. It displays a strong lineation, defined by elongate bituminous stringers and dolomitised micas. The sample is predominantly grain supported, with grain boundaries displaying point to sutured contacts. The sutured contacts are preferentially associated with boundaries which have a bituminous coating. Cementation appears to be moderate, with bitumen providing the dominant cement.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from very fine sand (0.09mm) to granules (4.20mm), with an average of approximately coarse sand (0.90mm). Sorting is poor. The grain shape varies from very angular to rounded, with an average of sub-angular. No authigenic silica overgrowths are evident. The grains predominantly display weakly undulose extinctions.

Both muscovite and biotite laths are evident. The biotite laths display brown pleochroism. Chloritisation of the biotite is common and in many cases the laths have been completely chloritised. The majority of the micas have generally been partially or, more commonly, completely dolomitised. No conclusive evidence for the relative timing of the dolomitisation and chloritisation exists, however it is interpreted that the chlorite pre-dates the dolomite. The dolomite is present in a micritic granular form. Minor staining from the bituminous material is evident on the dolomite accumulations.

Authigenic dolomite is present in a micritic granular form, and appears to be replacing detrital muscovite. The dolomite has also completely replaced other detrital grains, no evidence as to the original grains remain. However, the shape of the accumulations tend to indicate the replacement of detrital clays. The dolomite also displays corrosive contacts with the quartz grains.

Authigenic sericite is present as completely replaced detrital grains.

Bituminous material is present in the form of discontinuous, elongate stringers. These display corrosive contacts with the detrital quartz grains.

No porosity is present.

- 1. Chloritisation of the biotite
- 2. Seritisation of detrital grains
- 3. Kaolinisation of the micas and feldspars
- 4. Dolomitisation of the micas and ?detrital clays

This is an enclosure indicator page. The enclosure PE905911 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905911 has the following characteristics:

ITEM_BARCODE = PE905911 CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Dolomitic Quartz Arenite, figure 17,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES



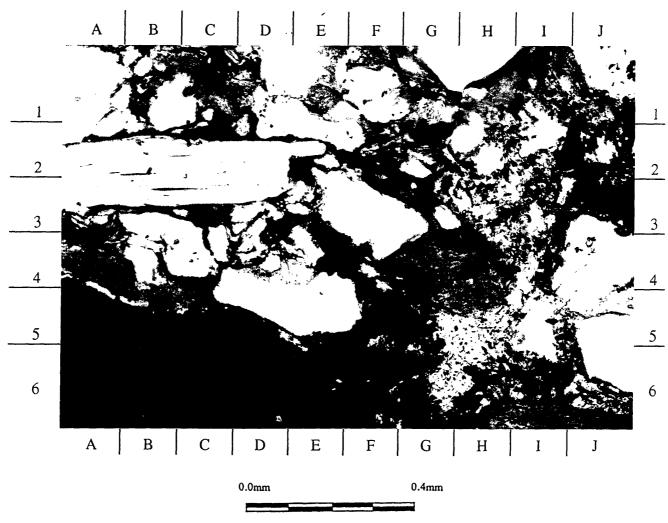



Figure 17. SWC 17 1931.3m x75.6 PPL Dolomitic quartz arenite. Authigenic dolomite is present as a replacement of detrital material and is in the form of elongate, micritic detrital stringers. The bituminous material occurs as elongate stringers wrapping around the detrital grains and authigenic dolomite accumulations.

This is an enclosure indicator page. The enclosure PE905912 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905912 has the following characteristics:

ITEM_BARCODE = PE905912
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN

PERMIT = PEP/134 TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Mcritic

Authenogenic Dolomite and Black

Bituminous Material, figure 18, (from

WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

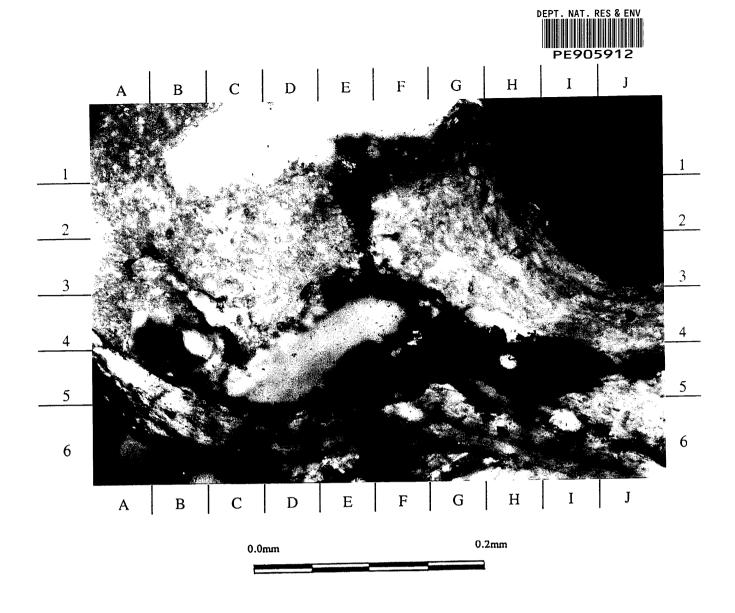



Figure 18. SWC 17 1931.3m x192 XPL Micritic authigenic dolomite (eg. F2) and black bituminous material. The dolomite is replacing a detrital muscovite grain at A5.

Sample: Digby-1 SWC 15 1938.7m

## Mineralogy:

Detrital	Quartz	61.25%
	Muscovite	3.50%
	Biotite	0.50%
	Rock Fragments	0.50%
	Feldspar	0.25%
Authigenic	Dolomite	11.00%
	Kaolinite	9.75%
	Sericite	7.75%
	Chlorite	1.75%
	Ferroan Calcite	3.75%
	Silica	Trace

NB: The sample is in a generally poor condition. The sampling process has resulted in most of the sample being disaggregated and many of the grains shattered.

## Description:

The sample is a massive quartz wacke. It appears to be predominantly matrix supported, with detrital and authigenic clays providing the matrix. Cementation appears to be very poor with compaction and clays providing the main binding forces.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from coarse silt (0.02)mm to coarse sand (1.00mm), with an average of approximately medium sand (0.40mm). The minimum grain size may be misleading due to the shattered nature of the sample. Sorting appears to be moderate to poor. The grain shape varies from very angular to rounded, with an average of subangular. No authigenic silica overgrowths are evident. Authigenic silica is present in the form of euhedral grains, which have grown in situ within an open pore spaces. The grains predominantly display weakly undulose extinctions.

Both muscovite and biotite laths are evident. The biotite laths display brown pleochroism. Chloritisation of the biotite is common and in many cases the laths have been completely chloritised. The muscovite laths are generally partially or completely altered to authigenic kaolinite. Dolomite replacement of both micas is evident.

Authigenic dolomite is present in a micritic granular form. The dolomite has partially or completely replaced many of the detrital micas and authigenic chlorite. Some of the completely dolomitised grains may have also been detrital clay accumulations. This is indicated by the shape of the dolomite accumulations.

Ferroan calcite is present in a massive sparry form and appears to be infilling both primary and secondary porosity. The primary porosity is in the form of a single cavity. The cavity is partially lined by euhedral quartz grains, which appear to have grown insitu. The authigenic silica crystals have also completely infilled one cavity. The ferroan calcite has completely infilled the pore space. No indication as to the original detrital mineral that has been removed to form the secondary pore space which has been infilled by the ferroan calcite.

Authigenic sericite is present and is associated with the matrix material. This is interpreted as having formed from the alteration of detrital minerals and then being distributed throughout the matrix by the disruption caused by the side wall coring process.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas. Traces of mica are still evident within the kaolinite. Compaction and disruption during the side wall coring process has led to the kaolinite forming the matrix material.

Sample: Digby-1 SWC15 1938.7m continued

No porosity is present. Traces of primary and secondary porosity was present, however, this has been completely filled by authigenic ferroan calcite.

- 1. Chloritisation of the biotite
- 2. Seritisation of detrital grains
- 3. Kaolinisation of the micas and feldspars
- 4. Dolomitisation of the micas and ?detrital clays
- 5. Formation of secondary porosity due to grain leaching
- 6. Emplacement of ferroan calcite.

This is an enclosure indicator page.

The enclosure PE905913 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905913 has the following characteristics:

ITEM_BARCODE = PE905913
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Massive

Quartz Wacke, figure 19, (from WCR vol.

1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

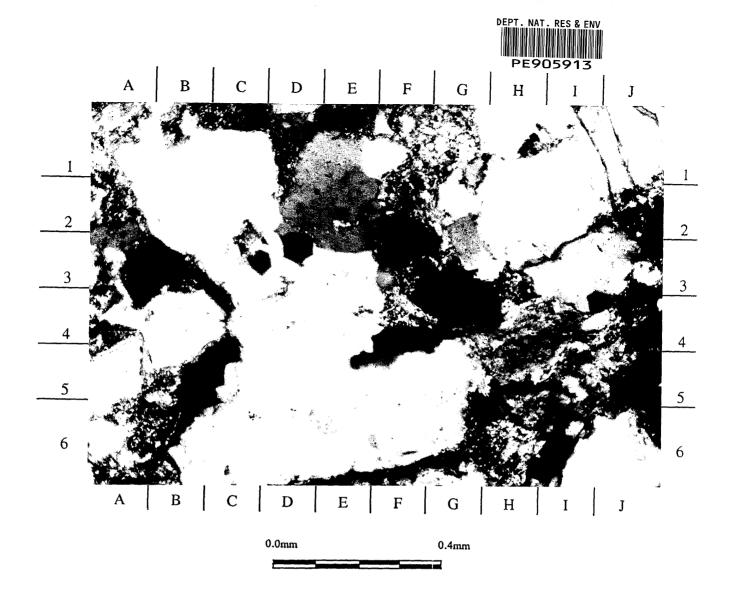



Figure 19. SWC 15 1938.7m x75.6 XPL Massive quartz wacke. Authigenic kaolinite and detrital micas are infilling the intergranular pore space (eg. G1).

This is an enclosure indicator page.

The enclosure PE905914 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905914 has the following characteristics:

ITEM_BARCODE = PE905914
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Quartz
Wacke with Ferroan Calcite Infilling
Cavity Pore Space, figure 20, (from WCR

vol. 1) for Digby-1

REMARKS = DATE_CREATED = DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

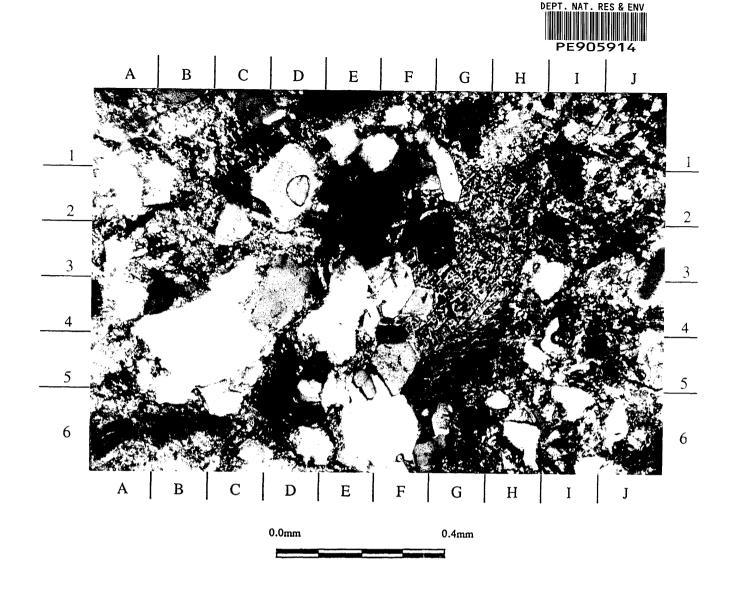



Figure 20. SWC 15 1938.7m x75.6 XPL Quartz wacke with ferroan calcite (stained blue) (G3) infilling cavity pore space. Euhedral quartz grains line one side of the cavity (eg. F4).

Sample: Digby-1 SWC 12 1945.9m

Mineralogy:

Detrital	Quartz	47.17%
	Feldspar	0.73%
	Chert	Trace
	Muscovite	2.46%
	Bituminous Material	27.27%
	Clay?	6.14%
	Biotite	1.47%
	Rock Fragments	3.44%
	Zircon	Trace
Authigenic	Kaolinite	4.91%
	Dolomite	4.67%
	Chlorite	0.27%
	Sericite	1.47%

## Description:

The sample is a dolomitic and micaceous quartz wacke. A strong lineation is evident, defined by the presence of continuous and discontinuous bituminous laminations. An alignment of the elongate axis of the detrital grains is also evident. The sample is predominantly grain supported, with concave/convex and sutured contacts being present. The samples appear to be more heavily sutured where micas or bitumens are located along the grain boundaries. Cementation appears to be moderate to poor.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from very coarse silt (0.05mm) to very coarse sand (1.80mm), with an average of approximately coarse sand (0.52mm). Sorting appears to be moderate to poor. The grain shape varies from very angular to rounded, with an average of angular. No authigenic silica overgrowths are evident. The grains predominantly display weakly undulose extinctions.

Detrital muscovite and biotite are present as bent and broken laths compacted between the framework grains and within bituminous laminations. Kaolinisation of the muscovite is common. Dolomite replacement of the micas is evident.

The dolomite is present in a granular micritic form. It has completely and partially replaced detrital micas. Some of the completely dolomitised grains do not display a tabular form, as may be expected from a micas, indicating another possible source. The material replaced may have been a detrital clay.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas and volcanic rock fragments. Traces of mica are evident within the kaolinite accumulations.

Bituminous material is present in the form of continuous and discontinuous laminations. Dolomite, quartz and micas are interstitial to the bituminous material. The bitumen also displays highly corrosive contacts with the detrital material. Dark bituminous staining appears to have occurred in partially altered micas. Within the bituminous laminations are several lithic fragments which are composed of a biotite quartzite and a micaceous siltstone. Minor possible detrital clays are also associated with the bituminous material.

No porosity is present.

Sample: Digby-1 SWC 12 1945.9m continued

- 1. Bitumen emplacement
- Kaolinisation of the micas and feldspars.
   Dolimitisation of the micas and ?clays

This is an enclosure indicator page. The enclosure PE905885 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905885 has the following characteristics:

ITEM_BARCODE = PE905885
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Dolomitic Quartz Wacke , figure 21,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES



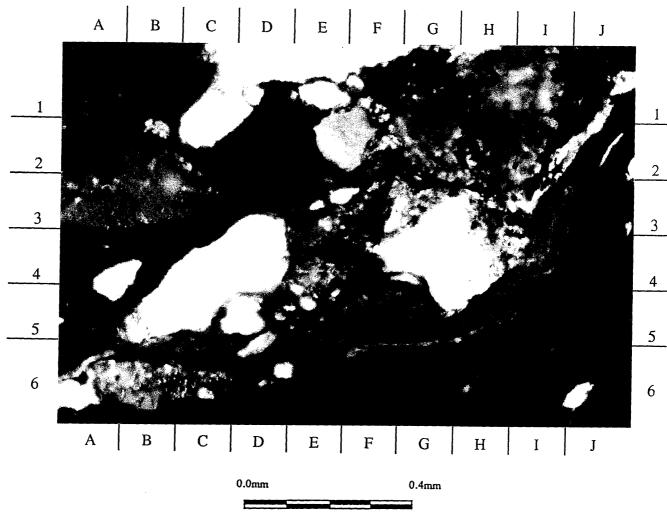



Figure 21. SWC 12 1945.9m x75.6m XPL

Dolomitic quartz wacke. Authigenic dolomite and bituminous material is present as elongate stringers. The dolomite is in a micritic granular form (eg. F5) and displays corrosive contacts with the quartz grains.

This is an enclosure indicator page.

The enclosure PE905886 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905886 has the following characteristics:

ITEM_BARCODE = PE905886
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Detrital

Micas and Athigenic Clays, figure 22,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

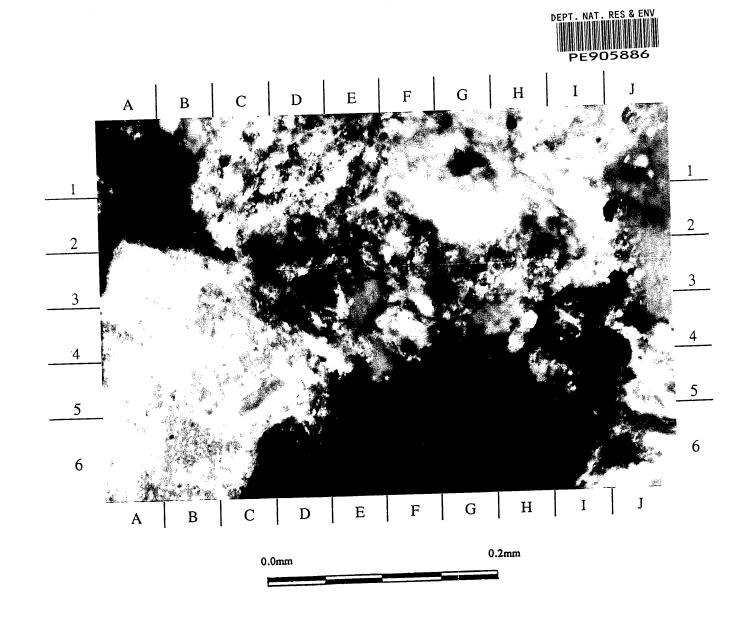



Figure 22. SWC 12 1945.9m x192 XPL Bituminous material has stained the detrital micas (E3) and authigenic clays (G5).

Sample: Digby-1 SWC 11 1946.3m

Mineralogy:

Detrital	Quartz	43%
	Feldspar	2%
	Chert	Trace
	Muscovite	10%
	Bituminous Material	10%
	Biotite	5%
	Zircon	Trace
Authigenic	Kaolinite	15%
_	Dolomite	15%

## Description:

The sample is a dolomitic quartz wacke. A strong lineation is evident, defined by the presence of continuous and discontinuous bituminous laminations. An alignment of the elongate axis of the detrital grains is also evident. The sample is predominantly grain supported, with concave/convex and sutured contacts being present. Cementation appears to be moderate to poor.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from medium silt (0.01mm) to very coarse sand (1.51mm), with an average of approximately coarse sand (0.60mm). The finer grained fraction is preferentially associated with the bituminous laminations. Sorting appears to be moderate to poor. The grain shape varies from very angular to rounded, with an average of sub-rounded/sub-angular. Traces of authigenic silica are present. The grains predominantly display weakly undulose extinctions.

Detrital muscovite and biotite are present. They occur as bent and broken laths compacted between the framework grains and within the bituminous laminations. Kaolinisation of the muscovite is common. Dolomite replacement of the micas is evident.

The dolomite is present in a granular micritic form and has completely and partially replaced detrital micas. Some of the completely dolomitised grains do not display a tabular form, as may be expected from a micas, indicating another possible source. The detrital material replaced may have been a detrital clay.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas and volcanic rock fragments. Traces of mica are evident within the kaolinite accumulations.

Bituminous material is present in the form of continuous and discontinuous laminations. The laminations are generally <0.1mm thick. Dolomite, quartz and micas are interstitial to the bituminous material. The bitumen also displays highly corrosive contacts with the detrital material. The bitumen is also preferentially associated with the fine grained portion of the sample.

No porosity is present.

- 1. Bitumen emplacement
- 2. Kaolinisation of the micas and feldspars
- 3. Dolimitisation of the micas and ?clays.

This is an enclosure indicator page.

The enclosure PE905887 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905887 has the following characteristics:

ITEM_BARCODE = PE905887
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Dolomitic Quartz Wacke, figure 23,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

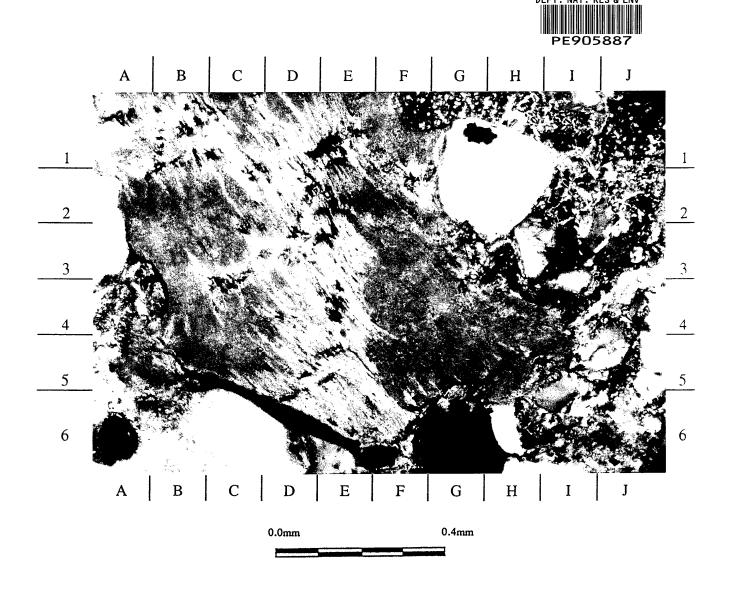



Figure 23. SWC 11 1946.3m x75.6 XPL Dolomitic quartz wacke. Micritic, authigenic dolomite has partially replaced a detrital muscovite grain (D4). Authigenic kaolinitic replacement of detrital micas has also occurred (H1).

This is an enclosure indicator page.

The enclosure PE905888 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905888 has the following characteristics:

ITEM_BARCODE = PE905888
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of
Authigenic Kaolinite Replacing a
Detrital Muscovite Grain , figure 24,

(from WCR vol. 1) for Digby-1

REMARKS = DATE_CREATED =

DATE_RECEIVED = W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

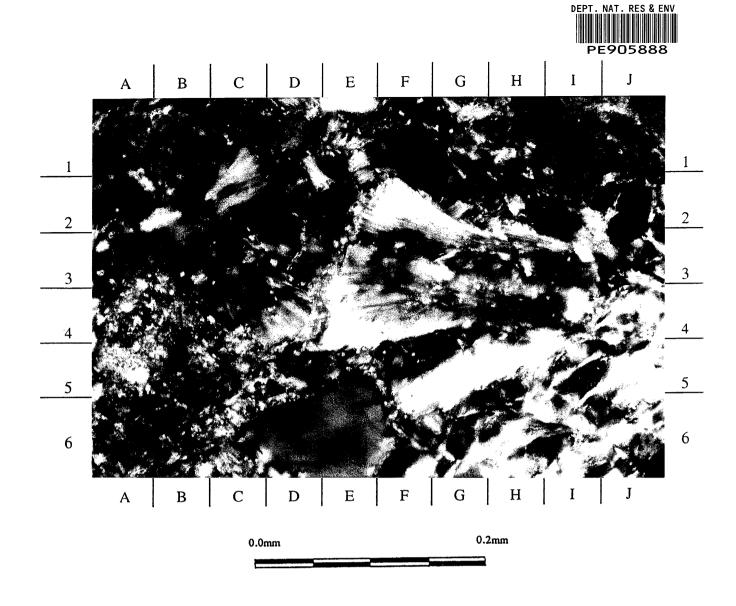



Figure 24. SWC 11 1946.3m x192 XPL Authigenic kaolinite replacing a detrital muscovite grain. A trace of dolomite replacement has also occurred (E3).

Sample: Digby-1 SWC 9 1949.3m

Mineralogy:

uncialogy.		
Detrital	Quartz	60%
	Muscovite	5%
	Biotite	2%
	Chert	4%
	Bitumen	5%
	Tourmaline	Trace
	Volcanic Fragments	Trace
Authigenic	Dolomite	21%
	Kaolinite	2%
	Pyrite	1%
	Sericite	Trace
	Chlorite	Trace

# Description:

The sample is a dolomitic quartz arenite. It displays a strong lineation, defined by bituminous stringers, elongate dolomite accumulations, and a preferred orientation of the elongate axis of the detrital grains. The sample is predominantly grain supported, with grain boundaries displaying weakly sutured contacts. Cementation appears to be moderate, with authigenic dolomite providing the dominant cement.

The dominant framework mineral is detrital quartz. Visual grain size estimates range from coarse silt (0.02mm) to coarse sand (0.60mm), with an average of approximately fine sand (0.17mm). Sorting is good. The grain shape varies from very angular to rounded, with an average of sub-angular. A trace of authigenic silica overgrowths are evident. The grains predominantly display weakly undulose extinctions.

Both muscovite and biotite laths are evident. They generally occur as thin, bent and broken laths with approximately the same size distribution as that of the detrital quartz grains. Micas are also present as shattered grains compacted between the framework grains. Chloritisation of the biotite is common, in many cases the laths have been completely chloritised. The muscovite laths are generally partially or completely altered to authigenic kaolinite. Dolomite replacement of both micas is evident.

Authigenic dolomite is present in a micritic granular form and has partially or completely replaced the majority of detrital micas and authigenic chlorite. Bitumen staining of the dolomite is commonly present.

Authigenic kaolinite is present in the form of massive matrix material. The kaolinite is interpreted as having formed as a result of the complete alteration of detrital grains, such as feldspars and micas. Traces of mica are still evident within the kaolinite.

Bituminous material is present as thin (generally less than <0.06mm), discontinuous stringers. Some pyritisation of the bituminous material is apparent. The bitumen also displays corrosive contacts with the quartz grains.

No porosity is present.

- 1. Chloritisation of the biotite
- 2. Seritisation of detrital grains
- 3. Kaolinisation of the micas
- 4. Dolomitisation of the micas

This is an enclosure indicator page.

The enclosure PE905889 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905889 has the following characteristics:

ITEM_BARCODE = PE905889
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Dolomitic Arenite, figure 25, (from WCR

vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

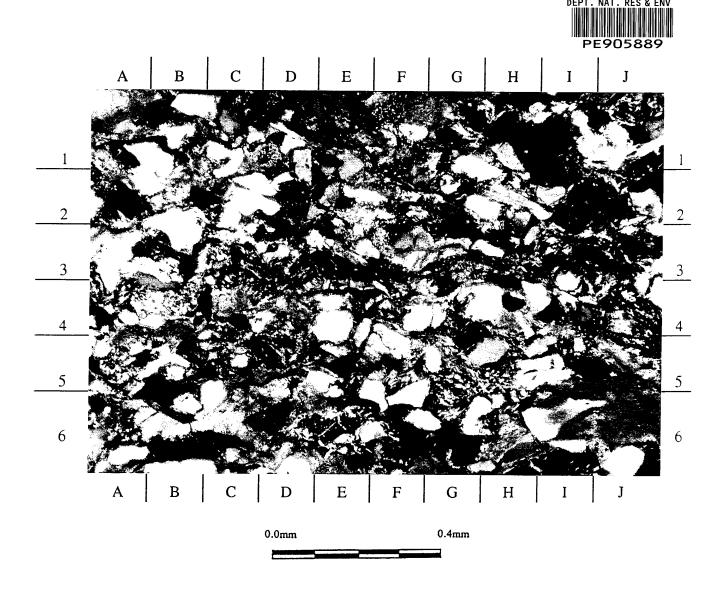



Figure 25. SWC 9 1949.3m x75.6 XPL Dolomitic arenite. Authigenic, micritic dolomite has replaced detrital micas. The dolomite displays highly corrosive contacts with the quartz grains.

This is an enclosure indicator page. The enclosure PE905890 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905890 has the following characteristics:

ITEM_BARCODE = PE905890
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Authenogenic Dolomite Replacement of Detrital Micas, figure 26, (from WCR

vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES



Figure 26. SWC 9 1949.3m  $\times$ 192 XPL Authigenic dolomite replacement of detrital micas (eg. G2). Some kaolinisation of the detrital micas has also occurred (eg. D3).

Sample: Digby-1 SWC 2 2069.2m

Mineralogy:

Detrital	Quartz	33%
	Feldspar	40%
Authigenic	Chlorite	20%
	Pyrite	5%
	Ferroan Calcite	2%

## Description:

The sample is a feldspathic volcanic trachyte. It displays a moderate flow texture, defined by the tabular feldspar grains.

The dominant mineral appears to be feldspar. It occurs as elongate tabular laths, visual size estimates range from 0.10mm to 0.60mm, with an average of approximately 0.20mm. Both untwinned and albite twinned grains are evident. A twin extinction angle of approximately 10° to 15° indicates an oligoclase composition.

Quartz is present in the form of a fine grained groundmass. The quartz is commonly partially obscured due to the feldspars and chlorite.

Chlorite comprises the groundmass and occurs in both massive and fibrous forms. The chlorite is interpreted as having formed as a result of the in situ alteration of biotite and amphiboles.

Authigenic pyrite is present in the form of fine disseminated cubes within the chlorite. The pyrite is interpreted as having formed during the chloritisation of the mafic minerals.

Ferroan calcite is present in a massive sparry form. It appears to infill secondary pore space. No evidence as to what mineral has been leached out to form the secondary porosity is evident.

No porosity is present or inferred.

## Diagenesis

- 1. Chloritisation of mafic minerals and formation of pyrite
- 2. Formation of secondary porosity through the leaching of unknown mineral
- 3. Emplacement of ferroan calcite.

This is an enclosure indicator page. The enclosure PE905891 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905891 has the following characteristics:

ITEM_BARCODE = PE905891
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Feldspathic Volcanic Rock, figure 27,

(from WCR vol. 1) for Digby-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

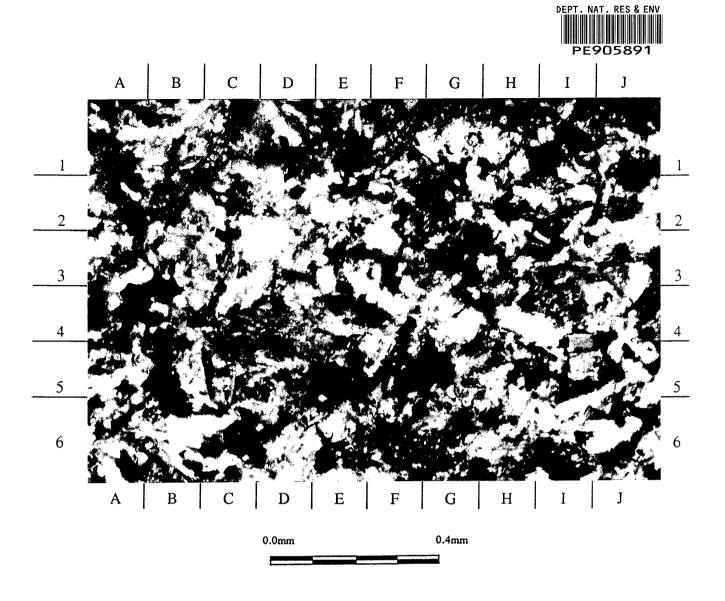



Figure 27 SWC 2 2069.2m x75.6 XPL Feldspathic volcanic rock. An alignment of the feldspar is present running east-west.

This is an enclosure indicator page.

The enclosure PE905892 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905892 has the following characteristics:

ITEM_BARCODE = PE905892
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134 TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of Authenigenic Chlorite and Pyrite, figure 28, (from WCR vol. 1) for

Digby-1

REMARKS =
DATE_CREATED =
DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD CLIENT_OP_CO = GFE RESOURCES

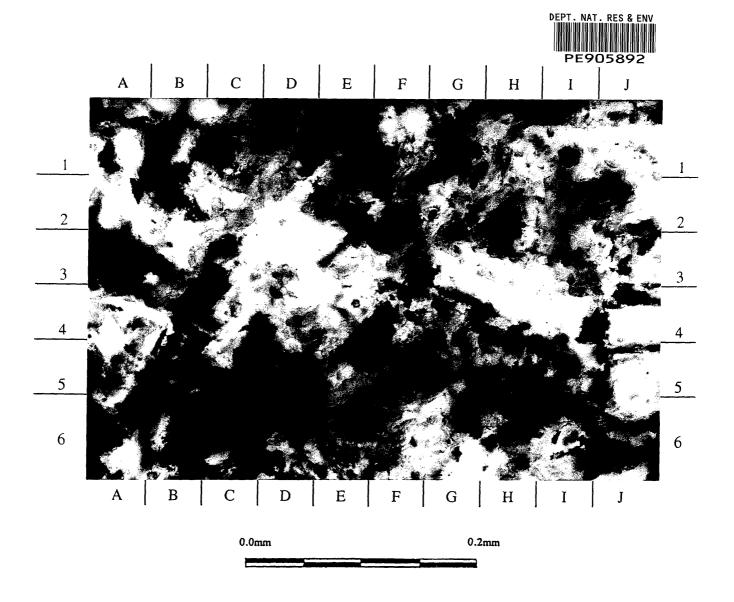



Figure 28 SWC 2 2069.2m x192 PPL Authigenic chlorite and pyrite. Minor authigenic ferroan calcite (stained blue) is also present (E5).

Sample: Digby-1 SWC 1 2076.2m

### Mineralogy:

	Quartz	15%
	Feldspar	44%
Authigenic	Chlorite	30%
	Pyrite	10%
	Ferroan Calcite	1%

## Description:

The sample is a feldspathic volcanic trachyte. It displays a strong flow texture, defined by the tabular feldspar grains.

The dominant mineral appears to be feldspar. It occurs as elongate tabular laths, visual size estimates range from 0.10mm to 0.60mm, with an average of approximately 0.20mm. Both untwinned and albite twinned grains are evident. A twin extinction angle of approximately 10° to 15° indicate an oligoclase composition.

Quartz is present in the form of a fine grained groundmass, and is commonly partially obscured due to the feldspars and chlorite.

Chlorite is present as a groundmass and occurs in both massive and fibrous forms. The chlorite is interpreted as having formed as a result of the in situ alteration of biotite and amphiboles.

Authigenic pyrite is present in the form of fine disseminated cubes within the chlorite. The pyrite is interpreted as having formed during the chloritisation of the mafic minerals.

Ferroan calcite is present in a massive sparry form and appears to infill secondary pore space. No evidence as to what mineral has been leached out to form the secondary porosity is evident.

No porosity is present or inferred.

# Diagenesis:

- 1. Chloritisation of mafic minerals and formation of pyrite
- 2. Formation of secondary porosity through the leaching of unknown material
- 3. Emplacement of ferroan calcite.

This is an enclosure indicator page.

The enclosure PE905893 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905893 has the following characteristics:

ITEM_BARCODE = PE905893
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Feldspathic Volcanic Rock Displaying a Strong Flow Texture and a Chloritic Groundmass, figure 29, (from WCR vol.

1) for Digby-1

REMARKS = DATE_CREATED =

DATE RECEIVED =

 $W_NO = W1130$ 

WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD

CLIENT_OP_CO = GFE RESOURCES

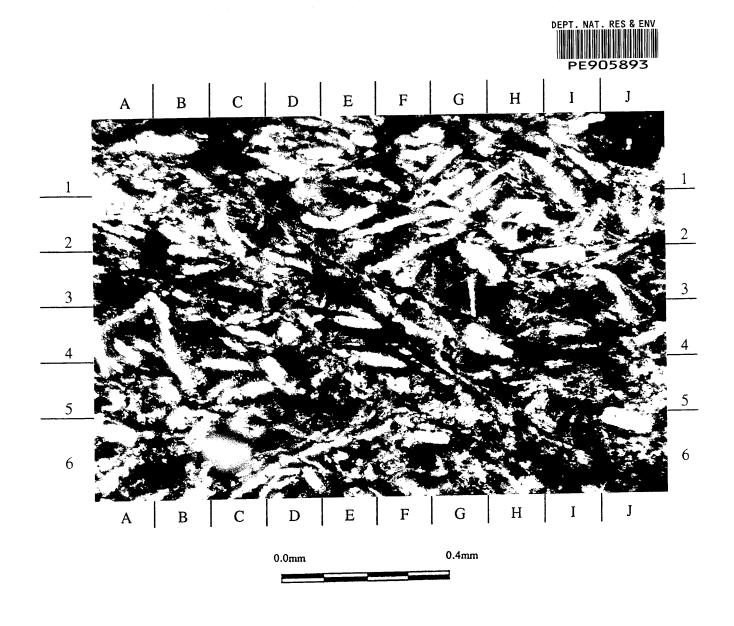



Figure 29. SWC 1 2076.2m x75.6 PPL Feldspathic volcanic rock displaying a strong flow texture and a chloritic groundmass.

This is an enclosure indicator page.

The enclosure PE905894 is enclosed within the container PE900874 at this location in this document.

The enclosure PE905894 has the following characteristics:

ITEM_BARCODE = PE905894
CONTAINER_BARCODE = PE900874

NAME = Core Thinsection Photograph

BASIN = OTWAY BASIN PERMIT = PEP/134

TYPE = WELL

SUBTYPE = PHOTOMICROGRAPH

DESCRIPTION = Core Thinsection Photograph of

Feldspathic Volcanic Rock Displaying a Strong Flow Texture and a Chloritic Groundmass, figure 30, (from WCR vol.

1) for Digby-1

REMARKS =

DATE_CREATED = DATE_RECEIVED =

W_NO = W1130 WELL_NAME = DIGBY-1

CONTRACTOR = GFE RESOURCES LTD CLIENT_OP_CO = GFE RESOURCES



Figure 30. SWC 1 2076.2m x75.6 XPL Feldspathic volcanic rock displaying a strong flow texture and a chloritic groundmass.