

SUNFISH-1 WELL COMPLETION REPORT

G.B.

1 Eqlic No	Tolero ta	a Sizelare	 A Restation Reflection Reflection Profiles 1. 	a Billion Púlica	2 Referent to	3 Date	4 Clearing Officiers
							Initiars
· · · · · ·							
	· · · ·						
					4		
						•	

SUNFISH-1

WELL COMPLETION REPORT

1.F. CRISS
L.J. BROOKS
April, 1974.

WELL COMPLETION REPORT

SUNFISH-1

(Not Applicable)

(Not Applicable)

LIST OF CONTENTS

SECTION

- 1. Well Data Record
- 2. Initial Production Record
- 3. Perforating Record
- 4. Casing Record
- 5. Cement Record
- 6. Subsurface Completion Equipment (Not Applicable)
- 7. Samples, Conventional Cores, Sidewall Cores
- 8. Wireline Logs and Surveys
- 9. Formation Tops/Zones
- 10. Geological Analysis

APPENDICES

- 1. Sample Descriptions
- 2. Sidewall Core Descriptions
- 3. Palaeontological Data Summary
- 4. Palynological Report
- 5. Well Log Analysis
- 6. Core Descriptions
- 7. Formation Test Results

PLATES

- 1. Structure Map Top Latrobe
- II. Structure Map Intra Latrobe
- III. Structure Map Top Upper Cretaceous
- IV. Well Completion Log
- V. Cross Section A-A'
- VI. Time-Depth Curve
- VII. Mud Log
- VIII Formation Tester

Added by 31/5/99 DNRE

1

ESSO STANDARD OIL (AUSTRALIA) LTD.

COMPLETION REPORT

I WELL DATA RECORD

4

LOCATION

Date April 23,1974

679.

NOVE IN PLUG BACK DEPTH REASONS FOR P/B. Braden Head 300' Abandonment Top Deck Platform DATES Abandonment MOVE IN RIG UP February 6, 1974 February 7, 1974 February 6, 1974 February 6, 1974 February 7, 1974 MOVE IN RIG RELEASED PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 PROD.UNIT - Start Rigging Up March 3, 1974 I.P. ESTABLISHED MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE ESSO INTEREST OTHER INTEREST So% So% So% Hematite So% Hematite CONTRACTOR PERMITTEE or LICENCEE EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE GLOMAR CONCEPTION Floating Drilling Vessel TOTAL RIG DAYS 701AL RIG DAYS PRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 New Field Wildcat TYPE						. · · ·
CO-ORDINATES Lat. Long. PROJECTION GEOGRAPHICAL Surface 188° 08' 25.836''S PROJECTION ANG 2.55 m.NW. of Turrum-1 Bottom Hole X= 607,533 m.E Y= 5,777.869 m.N ANG 2.55 m.NW. of Turrum-1 9.25 m.NW. of Turrum-1 Bottom Hole X= 607,533 m.E Y= 5,777.869 m.N Turrum-1 9.25 m.NW. of Turrum-1 9.25 m.NW. of Turrum-1 ELEVATIONS WATER DEPTH TorAL DEPTH Avg.Angle Ground 194' T.V.D. 8175' Straight Hole. RT PLUG BACK DEPTH REASONS FOR PTB. Straight Hole. Braden Head 300' Abafidonment Straight Hole. Top Deck Platform SPUDDED February 7, 1974 February 7, 1974 MOVE IN RIG BOWN COMPLETE RIG BELESEED PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 I.P. ESTABLISHED So% Hematite OPERATOR PERMITTEE or LICENCEE ESSO INTEREST DTHER INTEREST So% Hematite So% So% Hematite So% Hematite COMTRACTOR PERMITTEE or LICENCEE ESSO INTEREST DTHER INTEREST So% Hematit	WELL NAME	STATE	PERMIT OF LICEN	ICE	GEOLOGICAL BASI	IN FIELD
Lat. Long. Surface 38° 08' 5.836' 5' 148° 13' 37.577' E Bottom Hole X= 607,533 m.E Y= 5,777,869 m.N AMG 2.5 m NNM of Turum-1 Zone 55 9.25 m NNM of Turum-1 20.2 m NNM of Turum-1 21.2 m NNM of Turum-1 <td>SUNFISH-1</td> <td>VICTORIA</td> <td>Vic/P1</td> <td>· .</td> <td>Gippsland</td> <td></td>	SUNFISH-1	VICTORIA	Vic/P1	· .	Gippsland	
Surface 1480 13' 37,577' H AWS 5 4.55 m KNW, 64 INFRUE-1 Bottom Hole X= 607,533 m.E Y= 5,777,869 m.N 9.25 m KNW, 64 INFRUE-1 Surface X= 607,533 m.E Y= 5,777,869 m.N 9.25 m KNW, 64 INFRUE-1 ELEVATIONS ELEVATIONS & DEPTHS 5.3 m. from 24'' pipeline from Marin pipeline Ground I94' TOTAL DEPTH Avg.Angle KB 32' N.N. Straight Hole. RT FLUG BACK DEPTH TOTAL DEPTH Avg.Angle Braden Head 300' Abatdonment Straight Hole. Top Deck Platform NOVE IN RIG UP February 6, 1874 February 7, 1974 Probuy 6, 1974 February 6, 1874 February 7, 1974 February 7, 1974 March 1, 1974 March 3, 1974 February 50'' Start Rigging Up March 1, 1974 March 3, 1974 FESSO INTEREST OTHER INTEREST Start Lawe MISCELLANEOUS S0''' S0''' S0''' OPERATOR PERMITTEE or LICENCEE ESSO INTEREST S0''' S0''' Start Lawe GLOMAR CONCEPTION Floating Drilling Vessel S0''' <td></td> <td>Long.</td> <td>-</td> <td></td> <td>1</td> <td></td>		Long.	- 		1	
ELEVATIONS WATER DEPTH TOTAL DEPTH Avg.Angle Ground 194' N.D. Straight Hole. RT FLUG BACK DEPTH REASONS FOR F/B. Straight Hole. Braden Head 300' Abandonment Operation Top Deck Platform DATES MOVE IN RIG UP February 6, 1974 February 6, 1974 RIG UP February 7, 1974 February 7, 1974 RIG DOWN COMPLETE RIG RELEASED PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 FESTABLISHED MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE ESSO INTEREST OTHER INTEREST OTHER A/Asia Pty.Ltd RIG NAME GLOMAR CONCEPTION Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 New Field Wildcat CLOBAR CONCEPTION	Surface 148	0 13' 37.577'		i	5 9.25 m WN	W of Tuna-2
Ground KB 32' RT PLUG BACK DEPTH Braden Head Top Deck Platform MOVE IN February 6, 1974 RIG UP February 6, 1974 RIG UP February 6, 1974 RIG RELESSE MOVE IN February 6, 1974 RIG RELESSE March 1, 1974 PROD.UNIT - Rig Down Complete MISCELLANEOUS OPERATOR COMTRACTOR Global Marine A/Asia Pty.Ltd RIG NAME GLOMAR CONCEPTION 25.9 234-101 LAHEE WELL Before Drilling New Field Wildcat CLOSSE Straight Hole. New Field Wildcat Straight Hole. Straight Hole			ELEVATIONS	& DEPTHS	and the second sec	
KB 32' 194' T.V.D. 8175' Straight Hole. RT FLUG BACK DEPTH REASONS FOR P/B. 300' Abandonment Top Deck Platform 300' Abandonment Abandonment MOVE IN RIG UP February 6, 1974 February 7, 1974 February 6, 1974 RIG RELEASED PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 PROD.UNIT - Start Rigging Up OPERATOR PERMITTEE or LICENCEE ESSO INTEREST OTHER INTEREST So% 50% Hematite 50% 50% Hematite CONTRACTOR PERMITTEE or LICENCEE ESSO INTEREST 50% Hematite Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 New Field Wildcat	ELEVATIONS	WATER DEP	TH	TOTAL DE	PTH	Avg.Angle
RT PLUG BACK DEPTH REASONS FOR P(B. Braden Head 300' Abandonment Top Deck Platform 300' Abandonment MOVE IN RIG UP SPUDDED February 6, 1974 February 6, 1874 February 7, 1974 RIG DOWN COMPLETE RIG RELEASED PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 PROD.UNIT - Start Rigging Up MISCELLANEOUS MISCELLANEOUS MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE ESSO INTEREST DTHER INTEREST Solobal Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 New Field Wildcat		194'			8175 A 19	Straight Hole.
Braden Head 300' Abandonment Top Deck Platform 300' Abandonment MOVE IN RIG UP SPUDDED February 6, 1974 February 6, 1874 February 7, 1974 RIG DOWN COMPLETE RIG RELEASED PROD.UNIT - Start Rigging Up March 1, 1974 Warch 3, 1974 I.P. ESTABLISHED PROD.UNIT - Rig Down Complete I.P. ESTABLISHED MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE ESSO INTEREST DTHER INTEREST S0% S0% S0% S0% Hematite CONTRACTOR PERMITTEE or LICENCEE ESSO INTEREST DTHER INTEREST Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE Floating Drilling Vessel TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 LAHEE WELL Before Drilling New Field Wildcat	RT	PLUG BACK	DEPTH	REASONS	A second s	
February 6, 1974 February 6, 1874 February 7, 1974 RIG DOWN COMPLETE RIG RELEXSED PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 I.P. ESTABLISHED MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE ESSO INTEREST DO% PERMITTEE or LICENCEE ESSO INTEREST S0% S0% Hematite CONTRACTOR PERLING AFE NO. COMPLETION Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 LAHEE WELL Before Drilling New Field Wildcat				A A A A A A A A A A A A A A A A A A A	later -	
February 6, 1974 February 6, 1874 February 7, 1974 RIG DOWN COMPLETE RIG RELEASED PROD.UNIT - Start Rigging Up March 1, 1974 March 3, 1974 PROD.UNIT - Start Rigging Up March 3, 1974 March 3, 1974 I.P. ESTABLISHED MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE ESSO INTEREST ONTHER INTEREST SO% Hematite CONTRACTOR Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd COMPLETION NO. TYPE COMPLETION 25.9 234-101 New Field Wildcat LAHEE WELL Before Drilling	MOVE TH		PATES			inferind at inter-faith and the Contract of the
March 1, 1974 March 3, 1974 PROD.UNIT - Rig Down Complete I.P. ESTABLISHED MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE Esso Australia Ltd. Hematite CONTRACTOR PILLING AFE NO. Global Marine A/Asia Pty.Ltd RIG NAME GLOMAR CONCEPTION EQUIPMENT TYPE Floating Drilling Vessel TOTAL RIG DAYS 25.9 234-101 LAHEE WELL Before Drilling			and the second	5.		1974
MISCELLANEOUS OPERATOR PERMITTEE or LICENCEE ESSO INTEREST OTHER INTEREST Esso Australia Ltd. Hematite 50% 50% Hematite CONTRACTOR Hematite 50% 50% Hematite Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE GLOMAR CONCEPTION Floating Drilling Vessel TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. 25.9 234-101 New Field Wildcat	March 1, 1974	Market		P	ROD.UNIT - Star	t Rigging Up
OPERATOR PERMITTEE or LICENCEE ESSO INTEREST OTHER INTEREST Esso Australia Ltd. Hematite 50% 50% Hematite CONTRACTOR Hematite 50% EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd RIG NAME EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd GLOMAR CONCEPTION Floating Drilling Vessel TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 New Field Wildcat New Field Wildcat	PROD.UNIT - Rig Dow	n Complete	I.	P. ESTABL	ISHED	
Esso Australia Ltd. Hematite 50% 50% Hematite CONTRACTOR Global Marine A/Asia Pty.Ltd RIG NAME GLOMAR CONCEPTION EQUIPMENT TYPE Floating Drilling Vessel TOTAL RIG DAYS 25.9 DRILLING AFE NO. 234-101 COMPLETION NO. TYPE COMPLETION LAHEE WELL Before Drilling New Field Wildcat	. · · · ·	and the second s	MISCELLA	NEOUS		
CONTRACTOR RIG NAME EQUIPMENT TYPE Global Marine A/Asia Pty.Ltd GLOMAR CONCEPTION Floating Drilling Vessel TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 Before Drilling New Field Wildcat	OPERATOR	PERMITTEE	or LICENCEE	ESSO II	NTEREST OTH	ER INTEREST
Global Marine A/Asia Pty.Ltd GLOMAR CONCEPTION Floating Drilling Vessel TOTAL RIG DAYS DRILLING AFE NO. COMPLETION NO. TYPE COMPLETION 25.9 234-101 Before Drilling New Field Wildcat		Hemat	ite	50%	50	% Hematite
25.9 234-101 LAHEE WELL Before Drilling New Field Wildcat		Pty.Ltd.RIG				ling Vessel
LAHEE WELL Before Drilling New Field Wildcat	TOTAL RIG DAYS	DRILLING AFE	NO. COMPLI	ETION NO.	TYPE CO	MPLETION
CLAREFICIA WINCAL	25.9	234-101	-			
CLASSIFICATION After Drilling Abandoned with shows of Hydrocarbon	LAHEE WELL	Before	Drilling	New Fi	eld Wildcat	
	CLASSIFICATION	After	Drilling			of Hydrocarbons

L.J. BROOKS

WELL

.

II		INITIAI	. PRODUCTION TE:	ST			
Date	WELL C Oil We	OMPLETION A	S:	Well	Dry	Hole	
Choke size, i	nch	1999-999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1	· · · · · · · · · · · · · · · · · · ·	Calcula	ted P.I.		
Length of Tes	t	na anna ann an tha ann an tha ann an tha ann an tha ann ann an tha ann ann an tha ann ann an tha ann ann an tha		Calcula	ted A.O.F	•	
Oil, BPD		an a		Perfora	tions		
Water, BPD				Shut-In	BHP		
Gas, MCFD				Flowing	BHP		
Gas Liquids,B	SPD			Shut-In	Tubing Press		
Gas-Oil Ratio				Flowing			
Gravity, API				Flowing	Temper- ature		
	1			<u>z 1 7 /</u>	ىشىدىكەر بەك ەسەب بىدىكە تەرىخە 	L	
				\$∠_		يتبرج ومعروبين وعميتهم	
III INTERVAL	PERFORAT II	NG RECORD (TOTAL SHOTS	Prod.test, con SERV. CO.	DIFF. PRESS.		IION.	SIZE ANI TYPE GUI
		TOTAL		DIFF.	T, FIT)	IION.	SIZE AN TYPE GUI
		TOTAL SHOTS	SERV. go.	DIFF.	T, FIT)	IION.	SIZE AN TYPE GUI

2

Engineer

WELL: SUNFISH-1

IV	······		CASI	NG-LINER-J	UBING RECORD		
Туре	Size	Weight	Grade	Thread	No. Joints	Amount	Depth
KB ELB	VATION ABOV	E CASIN	G HEAD	/		217.00	217.00
	24"	PILE	JOINT			36.30	253.30
	20"	129#	X-52	JVxCC	1	23.55	276.85
	20''	94#	X-52	JV	8	320.66/	597.51
	20"	129#	<u> </u>	JV	1 + Float Shoe	₩s24,95	622.46
KB ELE	VATION ABOV	E HANGE	R			223.00	223.00
	13-3/8"	72∦	N-80	Butt	y ×/	352.22	575.22
	13-3/8"	6.8#	J- 55	Butt	54 + Ploat Collar	2105.32	2680,54
	13-3/8"	72#	N-80	Butt	1 A Bloat Shoe	42.68	2723.22
					/		
					7/		
				1		•	
		e mare e e	State of the second	27/		• • • • •	•
V				CEMENT RI	ECORD		
ring	······			2 0''	13-3/8"		
Type of	Cement			st N + 350 + 2% CaCl;			
Number (of FT ³			180	826		
Average	Weight of	Slurry	15.6 ppg		15.6 ppg		
Cement Top			Sea floor		1200'		
Casing Tested with					1500 psi		
Number of Centralizers			6	10			
Number (Number of Scratchers						19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -
	of Scratche:	rs	Stage Collar, etc.				
Number d		····			— 		

Engineer

3,

•

WELL

VI

SUBSURFACE COMPLETION EQUIPMENT

DATE COMPLETED

4

S	Schematic	Equipment Description	Length	Depth (
	• • • •			
•				
			<u>10.000</u>	
			1201	
				-
	· · · ·		87/	
			2	-
	ч. Т			
	х		· · · · · · · · · · · · · · · · · · ·	
	· · ·	+0+		
	4	/ <u>} / </u>		
		¥		
		· · ·		-
			<u></u>	
	•			
H				

		SAMPLES, CONVENT	IONAL CORES, SW C	CORES		
INTERVAL	TYPE	RECOVERED	INTERVAL	TYPI	E RECO	VERED
720-8175	5 sets wa & dried samples	shed Every 10 feet.		····		
720-8175	l set un- washed samples	Every 10 feet.		Ser Martin		
720-8175	Canned sa	mples Every 100 fee	t.	A and the		
	Sidewall (cores 29 ex 30	and the second			
7360-7386 7386-7416'7" 8128-8158	Core 1 Core 2 Core 3	26 ft.(100%) 30'7" (100%) 30ft.(100%)		- Andrew Contraction		
			0			
·						
III		WIRELINE LOGS AND	SURVEYS Incl. FI	r)		11-, ··, , · , , · , · , · , · , · , · , ·
Type & Scale		From To	Type & S	Scale	From	То
		18901	1			
Caliper SF-SP 2" DC/CNL/GR 2" arm dipmeter HCS 2" HCS 2" SF-SP 2"	& 5'' & 5'' & 5'' 10''=100' & 5'' & 5'' & 5'' & 5'' & 5''	2784 - 622 BHCS 2784 - 194 GR 2784 - 622 7559 -2786 7564 -5300 7564 -2620 GR 7521 -5300 7513 -2786 8167 -7300 8156 -7250 8175 -7156 7500- 3026	FIT 10 FIT 11 FIT 12 FIT 13 FIT 14 FIT 15 FIT 16 FIT 17 FIT 18 FIT 19 FIT 20 FIT 21		$\begin{array}{c} 6191 \\ 7349 \\ 5187 \\ 5618 \\ 6572 \\ 6514 \\ 6439 \\ 6036 \\ 6098 \\ 5975 \\ 8113 \\ 8117 \end{array}$	

Geologist

S

6 IX FORMATION TOPS/Zones .: Tops Net Pry (Et). Gross NAME RE: SARKS H.D. Sub-sea Interval (ft) Gas 0il 194' 5289' Gippsland Fm. MIOCENE Latrobe Group EOCENE Lower M.diversus 4' 5515' 5483' 237' PALEOCENE 200 17' L. balmei 5752' 5720' 690**'** T. longus 6442**'** 6410' 903' UPPER CRETACEOU T.lilliei 7345' 7313' 425' 34' 21' N.senectus 7770' 7738' 155 LOWER CRETACEOUS Strzelecki Gp 7925' 7893' 2824 1 х

GEOLOGIC ANALYSIS (Pre Drilling prognosis Vs actual results)

Pre-Drill

WELL

Sunfish-1 was proposed to test the intra Latrobe Paleocene and upper Upper Cretaceous section in a compressional anticlinal structure north of Marlin Field, and west of Tuna field.

Significant thinning of Eocene and Paleocene section over the Sunfish structure created optimum conditions for entrapment/of any early migrating hydrocarbons.

The structural similarity and timing of the north bounding fault at Sunfish to that at Emperor suggested that the Sunfish fault had a very good chance of affording a lateral seal, therebygreatly increasing the maximum vertical closure of the prospect.

Good quality reservoir sands and interbedded siltstones were expected to provide adequate intra Latrobe seals. Sunfish-1 was proposed to test the stratigraphic section equivalent Marlin A-6 oil pay, to the a) 6 m. S.

- **b**) Turrum gas pays, 4.5 m. SSE
- Tuna T-1 oil pay, 9.25 m. ESE. c)

Post-Drill

Sunfish-1 intersected the Latrobe Group at -5483' and penetrated some 2410 feet of Latrobe sediments before reaching a T.D. at -8143' in Lower Cretaceous Strzelecki sediments. Numerou hydrocarbon shows were detected within the whole Latrobe sequence.

The well intersected the Top Latrobe some 157 feet above the predicted depth of -5640'; the well velocity survey subsequently proved the average velocity to top of Latrobe to be some 250 ft./sec. slower than predicted.

The Latrobe sequence comprises interbedded sandstones, siltstones and minor coals. The gross interval from Top Latrobe to T.D. (8175'KB) contains at least five separate hydrocarbon zones totalling 221 ft., of net gas and 55 ft., of net oil. Many of the gas sands are rich in condensate and the hydrocarbon zones are separated by water bearing sands. A 50 ft., (Upper Paleocene L.balmei) gas sand at -6118' exhibits good correlation both from seismic and log analysis with the 55 ft., net gas sand at 7391' (subsea) in Turrum-1.

The most significant oil sand, a 34' net pay at -7313' assigned palynologically to <u>T.lilliei</u>,

is trapped beneath some highly weathered volcanics. This oil sand has been re-interpreted to be stratigraphically equivalent to the T-1 oil reservoir in the Tuna field.

GEOLOGIC ANALYSIS (Pre Drilling prognosis vs actual results)

Post-Drill (Cont'd)

Further indications of hydrocarbons were identified from log analysis in the basal Upper Cretaceous <u>N.senectus</u> zone. Gas kicks were also detected from within the Lower Cretaceous Strzelecki group, but an F.I.T. test proved the formation tight.

Ι.

Sand porosity throughout the Latrobe was good, ranging from the high twenties in L.balmei Latrobe sands to an average of 17% for the upper Cretaceous oil sands.

The drilling of Sunfish-1 confirmed the pre-drill concept of a compressional structure against an east-west trending right lateral shear system. The gross Latrobe sequence shows considerable thinning over the crest of Sunfish especially in Lower Eocene <u>M.diversus</u> time. Faulting was most active during Upper Eocene time. A large splinter fault associated with the main Sunfish shear, and situated immediately to the south of Sunfish separates the structure from the now downthrown Paleocene anticlinal axis.

The gross column in some of the hydrocarbon systems appears to exceed the structural closure mapped, suggesting the shear fault acts as a seal.

Because of the complexity and number of separate hydrocarbon systems, a stepout well will probably be required to help to accurately define recoverable reserves.

Х

SUMMARY OF HYDROCARBON OCCURRENCES IN SUNFISH-1 WELL

The well intersected the Top of the Latrobe Group at 5515 ft. KB and penetrated interbedded sandstones, siltstone and minor coal to TD (8175 ft. KB). Numerous hydrocarbon shows were reported while drilling this section.

The oil and gas occurrences in the well have been grouped into five zones, totalling 221 ft. of net gas and 55 ft. of net oil

Zone 1 contained 4' of net oil from 5616 ft. to \$620/ft. KB.

Zone 2 includes 12 discreet sands between 5887 ft. and 6352 ft. KB totalling 83 ft. net gas. Condensate was recovered from some of these sands. Two shaley 5 ft. oil sands occur near 5800 ft. KB and a 7' net oil sand from 6360 ft. to 6367 ft. KB occurs at the base of the zone.

Zone 3 includes 11 gas sands from 6435 ft. to 6793 ft. KB totalling 117' net gas.

Zone 4 comprises 34'net oil sand at the top of the Upper Cretaceous beneath a volcanic section.

Zone 5, lying just above the Strzelecki Group, consists of 6 thin gas sands totalling at least 21 ft. het pay.

Hydrocarbon shows were also present at TD. A washed out hole prevented interpretation.

SUNFISH-1 WELL COMPLETION REPORT APPENDIX I

SAMPLE DESCRIPTIONS

missing 31/5/99

ø

SUNFISH-1

£

(

WELL COMPLETION REPORT

APPENDIX I

SAMPLE DESCRIPTIONS

<u>₹/2/74</u> SAMPLE DESCRIPTION

SUNFISH-1

Maughan, Hordern Karner

• •

. م

DEPTH	- %	SAMPLE DESCRIPTION
		26" hole to 680' 20" casing to 629'
720- 750		Cement
750- 780	90 10	Cement Fossil fragments - coral,etc., and red cherty volcanic fragments, light grey when dry.
780- 810 ·	80 20	Cement Fossil fragments - bivalves, forams, and abundant red cherty volcanic (?) fragments with white inclusions. Trace of calcarenite
810- 840		As above, and some gastropods, no calcarenite
<u>し</u>)- 870		As above, with coral
(💭 00		As above, with trace grey micrite, trace plant remains
900- 930	90 10	Cement Fossil fragments, some red volcanics (chert)
930- 960	90 <u>.</u> 10	Cement, Fossil shell and coral fragments. Occasional fragments, red chert, rare yellow limonite. Rare plant fragments. Trace of pyrite, micrite
960- 990	80 10 10	Cement, Calcarenite, Occasional fragments red chert; Trace glauconite Fossil fragments
99 0- 1020	40 10 50	Cement Fossil fragments. Occasional fragments red chert; limestone; Trace pyrite Calcarenite with glauconite
1້ບ≊ປ−1050 (60 40	Calcarenite, fine grained, with glauconite inclusions; trace pyrite, mica. Abundant fossil fragments and chert; trace micrite Cement
1050 80	30	Calcarenite, fine grained with trace glauconite. Abundant fossil fragments
	20 50	(forams, coral, spicules) and some chert Marl, light grey, slightly calcareous, moderately soft, silty Cement
1080-1110	50	Calcarenite, fine to medium grained, light grey, firm, trace glauconite inclusions. Trace plant remains. Some chert and fossil fragments, marl
	50	Cement
1110-1140	60 40	Calcarenite - as above with some calcite Marl - light grey, moderately firm Abundant cement cavings
1140-1170	100	Calcarenite - fine grained, light grey, firm with dark inclusions, trace fossi fragments. Abundant cement cavings
1170-1200	80 20	Calcarenite - as above Marl, silty, grey,with fossil fragments,moderately soft; cement cavings
1200-1230	90 10	Calcarenite – as above with trace pyrite, micrite Fossil fragments(coral, forams, etc); some chert and calcite
1230-1260		as above with some marl (silty)
•		

÷

ę.

.

x

a. .

ر

÷ .,

SUNFISH-1

DEPTH	~ %	SAMPLE DESCRIPTION
1260-1290		As above, with some marl and cement cavings
1290-1320	80	Calcarenite, medium grained, firm, light grey with dark (glauconite) inclusio and some chert, pyrite
	20	Fossil fragments - as above
1320-1350	80 20	Calcarenite - as above; and pyrite Fossil fragments, coral, gastropods, etc., and some chert. Cement cavings
1350-1380	80 20	Calcarenite as above with pyrite Fossil fragments (gastopod, clams, etc.,) Occasional fragments red chert, quar coal, limonite and cement cavings
380-1410		Poor Samples, Fossil fragments and cement. Formation probably very soft marl and some calcarenite
410-1440		As above
44 1470		As above
470-1500		As above
500-1530		Poor Sample - unconsolidated fine grained, calcareous light grey (very soft marl?)
530-1560		As above and some fossil fragments
560-1590		As above and fossil fragments and chert - fine grains as above with dark inclusions(calcarenite grains?)
590-1620		Good Sample Quality, fine grains of light grey (with dark inclusion)calcarenit unconsolidated; Fossil fragments, coral shells, etc. Trace light brown, sligh calcareous silt
620-1650	.	As above
65(680		As above
580-1710	·	As above
710-1740	100	very fine to fine grained, light grey unconsolidated calcarenite; fossil fragments, forams, shells, etc.; trace glauconite
740-1770		As above. Fossil fragments including corals, shells, and rare plant remains; trace glauconite in calcarenite; trace pyrite. Cement cavings
70-1800	100	Fine grained, calcarenite, fossil fragments, cephalopods, etc., trace glauconite, occasional ooid. Cement cavings.
800-1830		As above, trace glauconite, cement cavings, trace red chert
30-1860		Very fine grain to fine grained, calcarenite, fossil fragments — brachiopods, gastropods, some glauconite. Cement cavings
60-1890	100 0	Calcarenite - as above, with fossils and calcite and cement cavings
90-1920	c c	Calcarenite - as above, with glauconite and fossil fragments - coral, shell, spicules, etc., and some calcite and red chert.

DEPTH	%	SAMPLE DESCRIPTION
		·
1920-1950		As above - calcarenite - white to light grey
1950-1980		Calcarenite - white to light grey, dark inclusions with quite abundant glauconite, firm. Some very soft marl, light grey. Abundant fossil fragments (and some whole cephalopods), cement cavings
1980-2010		As above but with some isolated quartz fragments, (clear and milky, subangula and some with xtal. faces). No marl
2010-2040		As above
2040-2070	100	<u>Calcarenite</u> - fine grained, light grey with dark inclusions and quite abundant glauconite, soft to firm. Minor extremely soft marl - white. Fossil fragments and occasional whole fossils (cephalopods). Rare quartz grain, some cement cavings
2070-2100		As above with some yellow (stained?) limestone; platy calcite as well. Fossil fragments
21 - 2130		As above, few fossil fragments
2130-2160	100	Calcarenite - light grey, firm with abundant black and glauconite inclusions. Traces of milky quartz and dark silt. Some fossil fragments
2160-2190		As above with coral, spicules and other fossils
2190-2220		As above with some light green limestone - fossils, cephalopods, bryozoa, cora Some soft white calcareous material
2220-2250		As above; abundant galuconite; fossils, corals, cephalopods
2250-2280		As above
2280-2310	100	Calcarenite - light grey to white with abundant glauconite and dark inclusions some large light to dark green grains of limestone. Abundant fossils - coral, bryozoa, etc., shell fragments
2310-2340	/ /	As above
234-2370		As above
2370-2400	100	Calcarenite, fine grained, light grey, firm; abundant large light to dark green grains of limestone; fossils - cephalopods, bryozoa
2400-2430		As above; soft white marl; fossils - cephalopods, corals, etc.; abundant glauconite
2430-2460		As above,calcarenite very light to light grey; Green limestone grains are fewer Isolated quartz grains - clear, subangular; Fossils; marl - soft, white
2460-2490	1 1	As above; fossils - gastropods, brachiopods; abundant glauconite. No quartz
2490-2520	100	C <u>alcarenite</u> - white and light grey, fine to medium grained with black and glauconite inclusions. Some fossil fragments. Some green fine grained limestor
2520-2550	((As above with some light grey moderately soft marl
2550-2580		As above and some calcite - calcarenite very fine grained
2580-2610	90	Calcarenite - light grey, very fine grained, few dark, glauconite inclusions;
C10 06/0		Marl -white to grey, soft
1610-2640 NUDDING UP	100	Calcarenite - as above - soft to moderately firm

x x

X, 7 JI

.

•

×

,

1

SUNFISH-1

•

DEPTA	%	
	1	SAMPLE DESCRIPTION
2640-2670	90	<u>Calcarenite</u> - fine to medium grained with abundant black and glauconite inclusions, white to light grey, firm
2670-2700	10	Marl - as above As above very fine grained calcarenite
2700-2730	80	Medium grey, fine grained calcarenite, half of that present having dark
	20	inclusions and glauconite Extremely soft,very light to medium light grey marl; occasional fragments of green (glauconite - rich) limestone. Some fossil fragments. Trace of pyrite (present on calcarenite)
2730-2760	90 10	Calcarenite - very fineto fine grained with black and glauconite inclusions in the larger grain sizeportion (30%). Fossil fragments Marl, as above
2760-2780	70 30	Calcarenite - as above Marl - light grey, very soft
		POH @ 2784' TO RUN LOGS & CASING
1		13-3/8" CASING TO 2725'
2780-2790	-	Cement
2790-2820		Cement
2820-2850		Calcarenite - light grey with glauconite and black inclusions, soft to firm; an cavings cement, etc.
2850-2880		As above; some fossil fragments
2880-2910		As above
2910-2940		Calcarenite as above with some very soft very light to light grey marl; some fossilsand fragments of fossils; and cement. Also some white translucent lime-stone with glauconite inclusions
2949-2970		Fossiliferous limestone - bryozoa, coral, etc., some with glauconite replaceme Some calcarenite, marl, and cement, shoe cavings:
		POH @ 2983' - CHANGE BIT
2970-3 000		As above
3000-3030		Limestone - translucent to very light grey, abundant glauconite inclusions wit occasional glauconite grains, fossiliferous (coralline); some glauconite replacement of fossil fragments.
3030-3060	80 20	Limestone as above; Fossil fragments Marl - light grey, very soft
3060-3090	100	Marl - as above; occasional trace of glauconitic limestone, fossil fragments
3090-3120	100	Marl - as above. Trace of glauconitic limestone
3120-3150	. 100	Marl
3150-3180	100	Marl - very soft to fairly firm, very light to light grey, the very soft varie seems to be the lighter coloured
3180-3210	100	Marl - as above, <u>very</u> rare fossil fragments, calcarenite (cavings?)
3210-3240	100	Marl - very light to light grey; very soft to moderately firm

Ŧ

淹

×

3

 e^{i}

.1

SUNFISH-1

DEPTH	73	
*		SAMPLE DESCRIPTION
3240-3270		As above - some fine grained sand size, rounded calcareous grains (calcite?) contained within some lumps of marl. Rare fragments(elongate) of oval shaped in cross-section, light grey to grey limestone with <u>non</u> -calcareous black coat
3270-3300	100	Marl - very light to light grey, soft to firm. Occasional fragments of clear limestone with glauconite inclusions. Fragments black-coated limestone as ab
3300-3330	100	Marl - as above. Rare fragments glauconitic limestone as above. Some fossil (cephalopods). Fragments of black-coated limestone as above. Some fine grained calcareous grains in <u>some</u> marl lumps.
3330-3360	100	Marl - as above, some of the calcareous "grains" appear to be microfossils - white coloured marl is very soft
3360-3390	100	Marl as above
3390-3420	100	Marl - soft to firm, white to light grey, containing fine to medium sized calcareous grains. Some fragments of fossils, semi-transparent limestone, an black coated limestone.
3420-3450	100	Marl - light grey verysoft; some micritic grey limestone and trace red lime- stone; fossils
3450-3480	100	Marl - 50% light grey - grey very soft 50% medium grey, moderately firm, silty, becoming fissile at times Trace micritic limestone, grey, very firm
3480-3510	. 90	Marl - 50% medium grained, moderately firm, very silty, becoming fissile 40% light grey to grey
	10	Limestone - micritic, light grey to buff, very firm
3510 - 3540	70 30	Marl - as above Limestone - as above - trace pyrite veins in limestone
3540-3570	60 40	Marl - as above Limestone - as above and some white and grey limestone
357 3600	80 20	Marl - 50% very light grey, soft)Some of each containing calcareous 50% light to medium grey, firm)grains Limestone - micritic, buff colour, subconchoidal fracture. Some fossils (coral, cephalopod). Rare fragments of black-coated white limestone
3600-3630	95	<pre>Micritic limestone - as above Marl - 50% very light grey, soft containing fossils (fine to medium sand</pre>
3630-3660	60 40	Marl - light grey, very soft;- trace limonite Very silty marl - grey, moderately firm, occasionalyfissile (calcareous shale)
3660-3690	70	Marl — as above Very silty marl — as above
3690-3720		As above
3720-3750		As above
3750-3780	80 20	Marl - as above with trace buff micritic limestone Very silty marl, grey moderately firm
• 3780-3810		As above - trace fossil

x

٦.

t + 1

× '

•

SUNFISH-1

DEPTH	7,	SAMPLE DESCRIPTION
3810-3840	60	Marl - light grey, very soft; trace buff micritic limestone; light grey calcarenite; fossils
	40	Very silty marl, medium grey, moderately firm, occasional fissile form
3840-3870	60 [.] 40	Marl - as above - trace laminate, fossil Very silty marl - as above
3870-3900		As above
3900-3930	30 70	Marl - white, very soft, occurs as lumps, containing calcareous grains (microfossils). Occasional limestone fragments Marl - light to medium grey, firm, occurs in platy ("fissile") form
3930-3960	50	Platy marl (=calcareous "shale") - light to medium grey, moderately soft
	50	to firm Soft marl - very light grey, very soft to moderately firm, with calcareous "grains"
3960-3990	30	"calcareous shale" (platy marl) as above
K	30 40	Marl - as above Limestone - translucent, colourless to white, fossiliferous, some replacem by pyrite (appears framboidal)
3990-4020	60 40	Soft marl - as above)Some fossils; some limestone - colourless to Calcareous shale - as above)to grey, some fossiliferous, showing occasion replacement by pyrite. Rare fragments of tran parent, colourless, SG>3 mineral
4020 ~ 4050	` 60 40	Calcareous shale - as above Soft light grey marl - as above. Trace limestone - some fossiliferous; transparent mineral, SG≥3; pyrite; micritic limestone
4050-4080	70 30	Shale - calcareous, medium grey, moderately firm Marl - light grey, very soft; traces micritic limestone
4080-4110	60 40	Shale - as above - has been becoming progressively less calcareous Marl - as above - with pyrite. Some fossils and grey micrite
41 -4140	70 30	Shale - as above Marl - as above. Some fossils and buff limestone
4140-4170	60 40	Shale - calcareous, grey, moderately firm to firm Marl - light grey, very soft; pyrite; fossils
4170-4200	80 20	Shale - as above Marl - light grey; abundant fossils
200-4230	90 10	Shale - as above Marl - as above
230-4260	90 · 10	Shale - as above Marl - as above; trace buff micritic limestone; abundant fossils
260-4290	90 10	Shale - light grey to grey, moderately soft to moderately firm, very calcareous
200 4000		Marl - as above with abundant fossils
290-4320		As above
320-4350	70	As above
350-4380	70 30	Shale - grey, calcareous, moderately firm Marl -light grey to grey, soft to firm ; abundant fossils
	. 	

2 2			
· · • · · ·			
	DEPTH	5	SAMPLE DESCRIPTION
	4380-4410	80 20	Shale - as above Marl - as above - abundant fossils, trace pyrite intergrown with calcite
	4410-4440	90 10	Shale - as above Marl -light grey to grey, mainly moderately firm, abundant fossil, cephalopods, stems. Some black, non-calcareous, moderately firm grains
	4440-4470	70 30	Shale —as above Marl — as above
	4470-4500		As above
	4500-4530		As above - with occasional black, non-calcareous grains
	4530-4560	90 10	Shale - medium grey, firm, calcareous Marl - light grey, soft, occasional fossil (stem)
•	•		POH @ 4602' - CHANGE BIT
	C		
	-		
_			
	(·		
			· · · · · · · · · · · · · · · · · · ·
•			

.

SUNFISH-1

د

١

1 .

SAMPLE DESCRIPTIONS

n,

	[
DEPTH	*	SAMPLE DESCRIPTION.
4560-4590	30 70	Marl, light grey, very soft, fossiliferous. Shale, Medium grey, moderately firm, very calcareous. Traces buff micritic limestone, cement cavings.
4590-4620	20 80	Marl, as above, pyrite overgrowing/replacing fossil. Shale, as above Abundant lignite, black, soft, (drilling mud?)
4620-4650	70 . 30	Shale, as above <u>Mar1</u> , with calcareous grains embedded (calcisphere(?), fossils). Embedding may simply be due to softness of Mar1. Trace pyrite and fossil fragments. Abundant black, brittle, non calcareous carbonaceous material(?). Trace colourless translucent to transparent mineral, with cleavage.
4650 - 4680	60 40	Shale, as above <u>Marl</u> , as above Trace fossils, colourless mineral, pyrite, limestone with black, non calcareou coating. Abundant black, lignite (?).
4800-4710		As above, abundant fossils and lignite. Fossils are sand-sized.
4710-4740		As above, abundant small fossils, trace pyrite, abundant black lignite.
4740-4770	70 30	<u>Shale</u> , light to medium grey, moderately firm, very calcareous. <u>Marl</u> , white to very light grey, small fossils and calcareous grains are embedded. Some black lignite. Abundant small calcareous grains (some are fossils). Trace pyrite, yellow limestone.
4770-4800	70 30	<u>Shale</u> , as above <u>Marl</u> , as above, some fossils, lignite, trace pyrite, colourless mineral.
4800-4830	60 40	Shale, as above Marl, abundant calcareous grains and some fossils, lignite.
4830-4860 47)-4890	40 60 60 40	<u>Shale</u> , as above <u>Marl</u> , as above. Abundant small calcareous grains and fossils (medium sand sized); black, brittle, lignite. <u>Shale</u> , as above <u>Marl</u> , as above Trace black lignite, small fossil fragments.
4890-4920	100	Marl, as above grading to calcareous shale as above. Fossils, forams
4920-4950	100	Marl, as above to calcareous shale, as above. Fossils, forams
4950-4980	100	Marl, as above to calcareous <u>shale</u> , as above. Trace pyrite, trace coal (very fine cuttings)
4980-5010	100	Calcareous shale, as above, slightly firmer, to marl, as above
5010-5040	100	Calcareous shale, quite firm, as above, to marl as above
5040-5070	100	Calcareous <u>mudstone</u> , mid grey with minor fine-sand-sized shell fragments, soft to firm (70%) to marl, light grey, soft, as above (30%) fossiliferous pyritic.
5070-5100	100	Calcareous shale, as above, 60% to marl, as above, 40%.
5100-5130	100	Calcareous shale, as above, rarely carbonaceous fragments, 40%, to marl
5130-5160	100	as above 60%. Rare glauconite, fossils, pyrite Calcareous <u>Shale</u> , as above (50%) to marl as above (50%).
5160-5190	100	Calcareous Shale,(80%) to Marl (20%)
		•

SUNFISH-1

æ

x

*

1 ...

D. Maughan/M. Hordern

•••

12.2.74

·

DEPTH	7.	SAMPLE DESCRIPTION
5190-5220	100	Calcareous Shale (40%) to Marl (60%)
5220-5230	100	Calcareous <u>Shale</u> (50%) to <u>Marl</u> (50%) Trace limestone, micritic, buff, fine to very fine, pyritic, tight.
5250-5280	50 50	Calcareous <u>Shale</u> to <u>Marl</u> , becoming partly silty, trace limestone as above.
5280-5010	70 30	Calcareous <u>Shale</u> to <u>Marl</u> as above
5310-5340	90 10	Calcareous <u>Shale</u> to <u>Marl</u> as above, trace limestone
5340-5370	90 10	Calcareous <u>Shale</u> to <u>Marl</u> as above, trace limestone as above
5370 - 5400	90 10	Calcareous <u>Shale</u> to Marl as above, trace limestone as above.
54 -5430	100	Calcareous <u>shale</u> , trace <u>marl</u> as above Trace limestone, micritic, buff, fine, tight, glauconite, as above
5430-5460	100	Calcareous Shale, trace marl, as above
5460-5490	100	Calcareous shale, trace marl, as above
5490-5520	50 50	Calcareous <u>shale</u> , trace <u>marl</u> , as above, pyrite. Limestone, buff, micritic, crystalline, glauconitic, pyritic.
5520-5530	100	<u>Coal</u> , black, bright, bleeding gas, Trace very dark brown, carbonaceous <u>shale</u> , bleeding gas.
		C ₁ 1900, C ₂ 400, HW 65.
5530-5540	50 30 20	<u>Coal</u> , black as above Calcareous <u>shale</u> , trace <u>marl</u> , as above Sandstone, white, medium to coarse grained, subangular to subrounded, fair sorting, unconsolidated, no shows.
540 - 5550	50 20	Calcareous <u>shale</u> , trace <u>marl</u> , as above Sandstone, fine to coarse, white, angular to subrounded, moderately sorted, unconsolidated, no shows.
	20 10	Limestone, micritic, crystalline, glauconitic, pyritic, as above. <u>Coal</u> , black, as above
5550-5560	80 10 10	Calcareous <u>shale</u> , trace <u>marl</u> , as above <u>Sandstone</u> , fine to coarse, white, a s above. <u>Limestone</u> , micritic, crystalline, as above Trace <u>coal</u>
5560-5570	80 10 10	Calcareous <u>shale</u> , trace <u>marl</u> as above <u>Sandstone</u> , fine to coarse, as above <u>Linestone</u> , as above Trace <u>coal</u> , abundant pyrite.
570-5580	80 15 5	<u>Coal</u> , black to carbonaceous <u>shale</u> , pyrite. Calcareous <u>shale</u> , as above <u>Sandstone</u> , fine to coarse, as above
		HW 75, C ₁ 11,000 C ₂ 1200, C ₃ 400.
580-5590	90 10	Calcareous <u>shale</u> , as above <u>Coal</u> Trace <u>sandstone</u> , fine to coarse, as above
590~5595	90	Calcareous shale, as above

SUNF IS H-1

.

....

D.Maughan/M. Hordern 12/2/74

•

•

DEPTH	7	
		SAMPLE DESCRIPTION
		micritic, crystalline, as above
5595-5600	90 10	Calcareous <u>shale</u> , as above <u>Coal</u> Trace <u>sandstone</u> , fine to medium sand sized, calcareous cement; pyrite ; <u>glauconitic limestone</u> ; fossils; minor <u>mudstone</u> - buff, moderately firm, non calcareous.
5600-5610	100	Calcareous <u>shale</u> , as above Trace <u>coal</u> ; <u>sandstone</u> , both clean white variety ^{&} buff to light brown, occasionally with carbonaceous remains, very fine to fine sand sized; and <u>mudstone</u> , non calcareous, buff, very firm, pyritic
5 610-5 620	80 20	Calcareous <u>shale</u> , as above <u>Sandstone</u> , light grey, slightly calcareous (?dolomitic) rare bright yellow fluorescence, excellent bright yellow cut. Sandstone fine, angula to subrounded, moderately sorted, hard,tight. HW 30
56 5630	50 30 10 10	Calcareous <u>shale</u> as above <u>Coal</u> , black as above <u>Sandstone</u> , calcareous, fine, as above,some fluorescence <u>Siltstone</u> , very dark brown, carbonaceous, pyritic
· · ·		HW 90, C ₁ 6000, C ₂ 600.
630-5640	70 15 10 5	<u>Coal</u> , black as above <u>Siltstone</u> , brown, carbonaceous, pyritic Calcareous <u>shale</u> , as above <u>Sandstone</u> , calcareous, fine, as above
5640-5650	50 25 15 10	Coal, black as above HW 135 C ₁ 8000, C ₂ 500, C ₃ 100 Siltstone, brown, carbonaceous, pyritic, Sandstone, fine to very fine to siltstone, white, interlaminated with siltstone, brown carbonaceous; clayey matrix, poor porosity, no shows. Calcareous shale, as above
5650 - 5660 (50 25 15 10	<u>Coal</u> , black as above <u>Siltstone</u> , brown, carbonaceous, as above <u>Sandstone</u> , white, fine to very fine, as above, no shows Calcareous <u>shale</u> , as above
		5665' 100% Coal, HW 70, C1 1400, C2 200.
660-5670	50 25 15 10	Calcarecus shale, as above. <u>Coal</u> , black as above <u>Siltstone</u> , brown, as above <u>Sandstone</u> , as above, some fine, calcareous, white (5%).
670-5680	90 5 5	<u>Coal</u> , black to carbonaceous: <u>shale</u> , as above <u>Siltstone</u> , as above <u>Sandstone</u> , as above
680-5690	85 10 5	<u>Coal</u> , black to carbonaceous <u>shale</u> , as above <u>Siltstone</u> , as above <u>Sandstone</u> , as above
690-5700	75 20 5	<u>Coal</u> , black to carbonaceous <u>shale</u> , as above <u>Siltstone</u> , as above, grading to buff siltstone, as above <u>Sandstone</u> , as above
700-5710	50 30 15 5	Siltstone, light to dark brown, carbonaceous, pyritic, as above Coal, black to shale, carbonaceous black, as above Calcareous, shale, cavings Sandstone, fine to very fine, white, tight, soft,no shows

r

SUNFISH-1

ų

×

1 ...

13.2.74

.

DEPTH	<u> </u>	SAMPLE DESCRIPTION
5710-5720	50.	Siltstone, brown, carbonaceous, pyritic
J/ 40	40	Coal
	10	Sandstone, very fine, white, tight.
5720-5730	70	Siltstone, brown, carbonaceous, pyritic.
	20	Coal
	10	Sandstone, fine to very fine, white, tight, as above and coarse, angular, unconsolidated, cut.
5730 - 5740	60	Siltstone, brown, carbonaceous, pyritic.
J	20	Coal
	20	Sandstone, fine to very fine, white, as above, coarse, unconsolidated as above; abundant pyrite.
5740-5750	80	Coal
	10 10	Siltstone Sandstone, fine to very fine, white, as above & coarse, unconsolidated, as
		above; abundant pyrite.
0-5760	50	Coal
٤	30 15	Siltstone, brown - black, (carbonaceous to very carbonaceous)
	5	Sandstone, coarse, white, angular, unconsolidated, as above. Sandstone, fine to very fine, white, as above
5760-5770	60	Coal
	20	Siltstone, brown-black, as above
	10 10	Sandstone, coarse, white, unconsolidated as above Sandstone, fine to very fine, white, as above
5770-5780	40 45	Coal Siltstone, brown-black, with carbonaceous as above
	15	Sandstone, fine to very fine, frequently bright yellow fluorescence,
		Excellent cut, high C5+.
	5	Sandstone, medium to coarse, white as above
5780-5790	60	Coal
	25 10	Siltstone, brown-black, carbonaceous, as above Sandstone, fine to very fine, white, as above, rare shows, as above
 1	5	Sandstone, coarse, white, as above.
5790-5800	80	Siltstone, brown-black, carbonaceous, as above, bleeding gas.
J7 J0- J000	10	Coal
	5	Sandstone, fine to very fine, white, no shows.
	5	Sandstone, as above, coarse
	.	HW 220, C ₁ 24,000, C ₂ 2600, C ₃ 1200, C ₄ 100.
5800-5810	50	Coal, black, very pyritic.
	40	Siltstone, buff-brown, carbonaceous, pyritic Sandstone, fine to very fine, tight, white, no shows.
E010 E010	40	
5810-5820	50	<u>Coal</u> , black, pyritic. <u>Siltstone</u> , buff to light grey to brown, carbonaceous
	10	Sandstone, white to very light buff colour, mostly tight. Rare fluorescence and cut.
		HW 150, C ₁ 17,500, C ₂ 2,200 C ₃ 1,200.
5820-5830	15	Coal, black, bright
	70 15	Siltstone, buff to brown, some very carbonaceous Sandstone, white, tight, fine grained, rare coarse grained, white
		sandstone fragments. Rare fluorescence and cut. Trace pyrite-some well crystallised.
5830-5840	30	<u>Coal</u> , black, bright very pyritic
	1 1	

• . _

SUNFISH-1

13/2/74 DEPTH % SAMPLE DESCRIPTION 5830-5840 60 Siltstone, buff, calcareous, firm. continued 10 Sandstone, pale yellow, brown, dirty, tight, to rare white sandstone Fluorescence and cut; abundant pyrite - associated withcoal and occasionally with sandstone 5840-5850 80 Siltstone, buff to brown to medium dark grey, very carbonaceous, brittle to very firm. 10 Sandstone, very fine, white to buff, to very light grey, tight, occasionally carbonaceous, fluorescence and cut. Coal as above, some vuggy limonite, pyrite. 10 5850-5860 85 Siltstone, mainly grey to brown; Rest (light coloured) are probably cavings (splintery) 10 Coal as above 5 Sandstone, white to pale brown, fine. 5860-5870 80 Siltstone to shaley siltstone, buff to brown, carbonaceous, occasionally pyritic. 20 Coal, as above Trace sandstone, buff to pale brown, tight, fine grained Abundant pyrite. 5870-5880 90 Siltstone to shaley siltstone, medium grey to brown, carbonaceous occasionally pyritic. 10 Coal, as above 5880-5890 851 Siltstone to shaley, carbonaceous, pyritic, grey to brwon Sandstone, white to pale brown, fine grained, carbonaceous, very 10 tight, firm, poor fluorescence and cut. 5 Coal 5890-5900 75 Siltstone, carbonaceous grey to brown, sometimes pyritic 20 Sandstone, white to buff, very fine to fine grained, often carbonaceous, very poor fluorescence. 5 Coal, sometimes pyritic 5900-5910 100 Siltstone, buff to brown, carbonaceous, grading to sandstone, white to pale yellow brown, carbonaceous, very fine to fine. (Actual fragments show interbedding). ŧ Trace coal; sandstone - white, medium grained; some pyrite. Trace quartz fragments - translucent, colourless. 5910-5920 95 Siltstone, as above grading to sandstone, as above 5 Coal, black, bright. Some pyrite. 70 5920 Siltstone, light brown to pale brown Sandstone, buff to pale brown, often carbonaceous, good fluorescence and cut. 20 10 Mudstone, carbonaceous, brown Trace pyrite; quartz - translucent, white. HW 150, C₁ 17,500, C₂ 2,200, C₃ 1,200, C₄ 300, C₅ 400. 5930-5940 70 Siltstone, as above 20 Sandstone, carbonaceous, white to buff, very fine to fine. Moderately good fluorescence and cut. 5 Carbonaceous Mudstone 5 Coal C₁ 2,600, C₂ 500. 5940-5950 90 Siltstone to shaley siltstone, as above 10 Sandstone, as above Trace coal 5950-5960 90 Siltstone, buff to pale brown, trace carbonaceous shaley mudstone, brown grading to 10% sandstone, buff, very fine grained, carbonaceous. 10 some pyrite often associated with siltstone. Trace Coal

7 ...

.

SUNFISH-1

13/2/74

DEPTH	%	SAMPLE DESCRIPTION
5960-5970 continued	10	Sandstone, very fine grained, light brown, some carbonaceous. No shows; Trace <u>sandstone</u> -white,fine grained.
5970-5980	70	Siltstone buff to pale brown & brown to black, verycarbonaceous, micaceous, moderately firm.
	30	Sandstone, white to pale brown, carbonaceous, very fine to fine, no shows. Trace coal; quartz fragments, translucent, colourless to white; pyrite; vuggy limonite; reddish brown, pock marked where once existed pyrite and non calcareous grains
5980-5990	90	Siltstone, buff to pale brown, micaceous, carbonaceous, moderately firm, grading to
·	10	Sandstone, as above. Trace <u>Coal</u> , quarz, limonite, as above Rare grains of dirty sandstone showed fluorescence and cut
5990-6000	60 10 20 10	Siltstone, buff to light brown, micaceous, some carbonaceous. Sandstone, white to buff, very fine, micaceous, carbonaceous. Mudstone, shaley, very carbonaceous, brown Coal, black, bright, hard.
(80	Siltstone, white to light brown, micaceous, carbonaceous, very pyritic
	10 5	Coal, to very carbonaceous mudstone Sandstone, very fine, white to buff, micaceous, tight
	5	Sandstone, coarse, angular, moderately sorted, unconsolidated
6010-6020	80 5 '	<u>Siltstone</u> , buff to brown, micaceous, carbonaceous, very pyritic . <u>Sandstone</u> , fine to very fine, white to buff, micaceous,tight
	10 5	Coal, Black to very carbonaceous shale Sandstone, coarse, white, unconsolidated.
6020-6030	70 10	Siltstone, buff to brown, micaceous, carbonaceous, very pyritic
	10 10 10	<u>Coal</u> , black, bright, to <u>shale</u> , very carbonaceous <u>Sandstone</u> , fine to very fine, white to buff, tight, micaceous <u>Sandstone</u> . coarse, white, unconsolidated
6030-6040	70 20	Siltstone, buff-brown, micaceous, carbonaceous, very pyritic Coal, carbonaceous shale
4	10	Sandstone, fine to very fine, white to buff, micaceous, tight.
∔0 - 6030	80 10 10	Siltstone, buff to brown, micaceous, carbonaceous very pyritic Coal, tarbonaceous shale Sandstone, very fine to fine, coarse, unconsolidated, as above
6050-6060	60	Coal, carbonaceous shale
	20 10	Siltstone, buff to brown, carbonaceous, micaceous, very pyritic Sandstone, very fine to fine
	10	Sandstone, coarse, unconsolidated
6060-6070	70 10	<u>Siltstone</u> , buff-brown, carbonaceous, micaceous, very pyritic <u>Coal</u> , to carbonaceous <u>shale</u>
	10 10	Sandstone, very fine to fine Sandstone, coarse, unconsolidated
6070-6080	80	<u>Siltstone</u> , as above
	10 10	Sandstone, fine to very fine, rarely dolomitic aggregates Sandstone, coarse, unconsolidated
6080-6090	60 20	<u>Siltstone</u> , as above Sandstone, fine to very fine, white to grey, part dolomitic, tight
	10 10	Sandstone, coarse, unconsolidated Coal, - shale carbonaceous
6090-6100	50 30	Siltstone, bufz-brown, micaceous, carbonaceous, pyritic Sandstone, fine to very fine, white to grey, part dolomitic, tight
	10 10	Sandstone, coarse, unconsolidated Coal, as above

. •

SUNFISH-1

2 ==

13.2.74

DEPTH	73	SAMPLE DESCRIPTION
6100-6110	60 30 10	<u>Coal</u> , as above <u>Siltstone</u> , buff-brown, micaceous, carbonaceous <u>Sandstone</u> , fine to very fine; and coarse
6110-6120	60 30 10	Siltstone, as above $\frac{Sandstone}{Coal}$, fine to very fine, white to grey, tight $\frac{Coal}{Coal}$, as above
6120 - 6130	40 40 20	<u>Coal</u> , as above <u>Siltstone</u> , as above <u>Sandstone</u> , as above
6130-6140	50 30	Siltstone, buff-brown, carbonaceous, grading to carbonaceous shale brown to black. Coal, black, bright. Trace pyrite.
	20	Sandstone, white to huff, very fine grained, no shows
6140-6150	50 40	<u>Siltstone</u> - buff to light brown, micaceous,slightly carbonaceous,to pale brown to brown, very carbonaceous. Coal, as above
C	10	Sandstone, as above, no shows; some pyrite
6150 - 6160	40 30 5	<u>Coal,</u> as above <u>Siltstone</u> , buff to dark, very carbonaceous, shaley <u>Sandstone</u> , light brown to buff, some carbonaceous
	25	Sandstone, moderately abundant quartz grains translucent, white, medium to coarse, no fluorescence.
6160-6170	50	Sandstone, angular to subrounded, normally individual grains, translucent, white, no fluorescence.
	30 20	<u>Siltstone</u> , an above, grading to fine sandstone, buff to light brown carbonaceous. <u>Coal</u> , as above
6170 - 6180	40 .	Sandstone, coarse, individual grains, translucent to white to colourless subangular to subrounded, poor to moderately spherical occasionally crystalline faces, no shows. Siltstone, as above grading to buff sandstone carbonaceous, fine as above
(20	Coal as above
,		HW 50, C1 2900.
6180-6190	70 20 10	Sandstone, coarse, as above, no shows. Siltstone, brown, carbonaceous, micaceous, as above. Coal, as above
6190-6200	60	Siltstone, white to light brown, slightly carbonaceous grading to mudstone shaley, brown, very carbonaceous
	20	Sandstone, coarse grained, subangular to subrounded, moderately spherical transparent to translucent, colourless to white, as above, no shows, some
	20	crystalline faces. <u>Coal</u> , as above
6200-6210	60	Siltstone, white to pale brown, grading to sandstone, very fine grained buff, carbonaceous and to mudstone, shaley, brown, very carbonaceous
	30 10	<u>Coal</u> , black, bright <u>Sandstone</u> , coarse, individual grains, as above, no shows STILL GETTING VERY ABUNDANT CALCAREOUS SHALE CAVINGS.
6210-6220	75	Shaley siltstone, as above grading to fine sandstone and shaley carbonaceous mudstone
	20 5	Coal, as above Sandstone, coarse transparent to translucent, white to colourless, as above no shows.

.

٠

.

SUNFISH-1

÷

• •

13/2/74

	1	
DEPTH	<u> %</u> 	SAMPLE DESCRIPTION
6220-6230	30 40 20 10	Sandstone, very fine to fine, white to buff, carbonaceous Siltstone, buff to brown, to dark gray, slight to very carbonaceous Coal, black, bright, some pyrite Sandstone, coarse, transparent to translucent, as above. Trace pyrite
6230-6240	70 25 5	<u>Coal</u> , black, bright, pyrite, sub-conchoidal fracture <u>Siltstone</u> , buff, to <u>siltstone</u> , very shaley, brown, carbonaceous <u>Sandstone</u> , white very fine to fine Trace <u>sandstone</u> , translucent, white as above, coarse
6240-6250	40 30 20 10	Siltstone, buff, brown, carbonaceous, pyritic, micaceous Sandstone, fine to very fine, white to buff, tight Coal, carbonaceous <u>shale</u> , pyritic Sandstone, coarse, white, unconsolidated
6250-6260	60 30 10	Coal, black to carbonaceous <u>shale</u> , pyrite <u>Siltstone</u> , buff to brown, micaceous, carbonaceous, pyritic <u>Sandstone</u> , white to grey, fine to very fine, tight
50-6270	50 40 10	Siltstone, buff-brown, micaceous, carbonaceous, pyrite. Sandstone, white to grey, fine to very fine, tight. Coal, carbonaceous shale
6270-6280	50 25 25	<u>Siltstone</u> , buff-brown, micaceous, carbonaceous <u>Coal</u> , carbonaceous <u>shale</u> <u>Sandstone</u> , fine to very fine, white to grey, 95% MIOCENE CAVINGS
6280~6290	50 40 10	Siltstone, buff to brown, micaceous, carbonaceous. Coal, carbonaceous shale Sandstone, fine to very fine, white to grey, no show
6290-6300	80 10 10	<u>Coal</u> <u>Siltstone</u> , buff-brown, carbonaceous micaceous <u>Sandstone</u> , fine to very fine, white to grey, no show
6300-6310 (40 30 30	Siltstone, buff to brown Sandstone, fine to very fine, white to grey, no show Coal
		6315 HW 55, 6320 HW 125, C ₁ 12,000, C ₂ 1,000 C ₃ 200. Minor fluorescence in fine to very fine sandstone with coaly streak (rare); sandstone fine to very fine 15-20% porosity, subangular to subrounded, well sorted, soft, no fluorescence.
6310-6320	60 30 10	<u>Coal</u> <u>Sandstone</u> , fine to very fine, buff, white, rare fair porosity <u>Siltstone</u> , brown, carbonaceous
6320-6330	60 30 10	<u>Coal</u> <u>Siltstone,</u> brown, carbonaceous <u>Sandstone</u> , fine to very fine, buff-white, rare fairporosity
6330-6340	50 20	Sandstone, coarse, white, angular to subrounded, well sorted, rare fair fluorescence, good yellow cut; unconsolidated. Sandstone, fine grey, porosity 15-20%, common fair fluorescence excellent cut, yellow; soft.
6340-6350	30 70 20	Siltstone, buff to brown, HW 90, C ₁ 6000 C ₂ 1200 C ₃ 300 Sandstone, coarse white, subangular to subrounded, well sorted, no shows Coal

SUNFISH-1

2

2

•

14/2/74 .

٠

. •

DEPTH	7	SAMPLE DESCRIPTION
6350-6360	90 10	Sandstone, medium to coarse, white, as above, unconsolidated, faint yellow fluorescence, fair cut. HW 60, C1 4000, C2 700, C3 200. Coal
6360-6370	95	Sandstone, medium to coarse, as above, unconsolidated, faint pinpoint fluorescence (blue).
	5	Coal
6270-6379	7 <u>9</u> 0	Sandstone, medium to coarse, white as above, unconsolidated, rare pinprick fluorescence
	20 10	Siltstone, buff to brown, as above Coal
6379-6380	60 20 20	Siltstone, buff to brown, as above, grading to sandstone fine, carbonaceous Sandstone, medium to coarse, white, as above. Coal
6380-6390	70	<u>Siltstone</u> , buff-brown, as above Coal
• •	10	Sandstone, coarse, white, as above
6390-6400	90 10	<u>Siltstone</u> , buff to light brown, as above <u>Coal</u> , black, bright, firm to carbonaceous <u>shale</u> , brown to black Trace <u>sandstone</u> , coarse, white, as above; abundant pyrite
6400-6410	60 20	Siltstone, buff to light brown, some medium grey,carbonaceous as above. Coal, black, as above
	20	Sandstone, white to light brown, tight, very fine, often carbonaceous, no show; trace pyrite
6410-6420	70 15	<u>Coal</u> , as above Silty Shale, very carbonaceous, brown
	10 5	Siltstone, buff to brown, as above Sandstone, white to very pale brown, micaceous, carbonaceous, very tight, dolomitic', fine.
6420-6430	75 25	<u>Siltstone</u> , as above, buff, firm to brown, very carbonaceous, shaley. <u>Coal</u> , as above
30-6440	60 20	Siltstone, as above
	10 10	Silty shale, brown, carbonaceous, bleeding gas. <u>Coal</u> , as above <u>Sandstone</u> , white to palebrown, tight, fine, subangular to subrounded, dolomitic cement.
6440-6450	50	Sandstone, fine to medium, white, angular to subrounded, porosity = $0-5\%$,
	30 20	tight,dolomitic cement, some brown, carbonaceous, micaceous. Silty <u>shale</u> , very carbonaceous, as above. <u>Siltstone</u> , buff - brown, as above Trace <u>coal</u> ; pyrit ^e .
6450-6460	80	Coal, black, bright, subconchoidal fracture
	10 10	Sandstone, fine to medium, white to pale brown, tight, dolomitic, porosity = 0-10%, subangular to subrounded. Siltstone, buff to brown, shaley, carbonaceous
6460-6470	30	Coal
	40	Silty shale, brown, carbonaceous
	20 10	<u>Siltstone</u> , buff <u>Sandstone</u> , as above, porosity 0-10% , tight.
6470-6480	80	Siltstone (70% is buff to light brown, as above, micaceous, carbonaceous 30% brown, very carbonaceous silty shale, bleeding gas)
•	15	Coal, as above
	5	Sandstone, as above, porosity 0-10% tight.

SAMPLE DESCRIPTIONS SUNFISH-1

10

Coal

á.

DEPTH Z SAMPLE DESCRIPTION 6480-6490 As above, sandstone, fine to medium, tight, porosity 0-10%, tight, subangular dolomitic. 6490-6500 30 Siltstone, buff to light brown, carbonaceous 30 Silty shale, brown, carbonaceous, bleeding gas. 40 Coal, as above, trace sandstone, as above, trace pyrite. 6500-6510 65 Siltstone, buff to brown, as above Carbonaceous shale to silty carbonaceous shale - brown, micaceous, carbonaceo 20 10 Coal 5 Sandstone, fine, white to pale brown, dolomitic, tight, porosity 0-5%. 6510-6520 60 Siltstone, buff to pale brown, as above

110 Shale, carbonaceous, silty, brown, carbonaceous, bleeding gas 20 Coal, as above Sandstone, white to buff, very fine to medium, no shows, tight, porosity 10 0-5% 6520-6530 30 Siltstone, as above 30 Shale, carbonaceous, silty, brown , bleeding gas 30 Sandstone, very fine to fine, buff to light brown, carbonaceous (interlaminated or fragments of carbonaceous remains) tight, porosity 0-5%, non calcareous sement. 10 Coal 6530-6540 50 Siltstone, as above, buff to brown 20 Shale, silty, carbonaceous, brown, as above 20 Sandstone, very fine, as above

6540-6550 50 Siltstone, buff to brown, carbonaceous, as above 20 Shale, silty carbonaceous, brown, as above 25 Coa1 5 Sandstone, white to buff, very fine to fine grained, tight, porosity 0=5% dolomitic; trace pyrite.

6550-6560 65 Siltstone, buff to brown, 20 Sandstone, white to buff to pale borwn, very fine to medium, carbonaceous (interlaminated or fragments) tight, dolomitic, no shows. 5 Shale, carbonaceous, silty, brown 10 Coal, abundant pyrite.

6560-6570 50 Siltstone, buff to brown, carbonaceous Sandstone, fine to medium, buff to pale brown, carbonaceous plus 20 Rare sandstone (several grains) white, translucent, medium to coarse, one with fluorescence (yellow - moderate) and cut. 15 Shale, carbonaceous, brown, silty as above, bleeding 15 Coal plus pyrite 6570-6580 30 Siltstone, brown, as above 25

Shale, carbonaceous Sandstone, fine to medium, white to pale brown, often pyritic, carbonaceous. 25 20 Coal 6580-6590 75 Sandstone, coarse, translucent, unconsolidated, white, no show. 5 Sandstone, fine to medium, white to buff. 10 Siltstone, brown, as above 10

Carbonaceous shale, to coal 6590-6600 60 Sandstone, fine, grey, hard, tight, no shows 20 Sandstone, coarse, white, unconsolidated, porosity 25%. 10 Siltstone, brown to buff, as above 10 Carbonaceous shale to coal.

6600-6610 50 Sandstone, coarse, white, unconsolidated, as above porosity 25%+ 20 Sandstone, fine, grey, hard, tight . 1: 10 Silustone, brown to buff, as above 10 Carbonaceous shile to coal

SUNFISH-1

14/2/74

	,	7	
	DEPTH		SAMPLE DESCRIPTION
	6610-6620	95	Sandstone, coarse, white, unconsolidated, as above, porosity 75%, permeability excellent, no show.
		5	Siltstone, brown to buff, as above
	6620-6630	90 10	Sandstone, coarse, white, unconsolidated, as above, porosity $>25\%$, no show. Siltstone, brown to buff, as above
	6630-6640	100	Sandstone, coarse, white, unconsolidated, as above, porosity>25%, no show. Trace pyrite (common).
	6640-6650	70 20 10	Sandstone, coarse, white, unconsolidated as above porosity >25%, no show. Sandstone, fine grey, hard, tight, as above, no show Siltstone, brown, as above Trace pyrite
	6650-6660	50 30 10 10	Sandstone, fine, grey, hard, carbonaceous, tight, as above, no show Sandstone, coarse, white, unconsolidated, as above, porosity >25%, no show. Siltstone, brown, as above Coal, carbonaceous shale
	÷560-6670	40 30 20 10	Sandstone, fine, grey, hard, carbonaceous, tight, as above, no show Sandstone, coarse, white, unconsolidated, as above porosity >25%, no show Siltstone, buff to brown, carbonaceous, as above Coal, carbonaceous shale
	6670-6680	40 20 30 10	Shale, black, carbonaceous Coal Siltstone, brown to dark brown, carbonaceous, pyritic Sandstone, coarse, white, unconsolidated, as above porosity >25%.
·	6680-6690	30 30 30 10	Sandstone, coarse, white, unconsolidated, as above porosity >25%, no show Sandstone, fine, grey to buff, soft to firm, tight, as above Siltstone, buff to brown, carbonaceous, micaceous, as above Carbonaceous shale to coal.
	6690-6700 (40 20 20 20	Sandstone, coarse, white, unconsolidated, as above. Porosity >25%. Sandstone, fine, grey to buff, soft to firm, tight, no show Siltstone, buff - brown, carbonaceous, as above Carbonaceous shale to coal
	!		6700 80% Sandstone, coarse, as above HW 65
	6700-6710	40 30 20 10	Siltstone, buff-brown, carbonaceous Sandstone, fine, grey, tight, no show Sandstone, coarse, white, unconsolidated. Coal to carbonaceous shale
	6710-6720	40 40 10 10	Siltstone, buff to brown, carbonaceous, as above Sandstone, fine, grey - brown, carbonaceous, no show, tight Sandstone, coarse, white, unconsolidated, as above, porosity≥25% Coal to carbonaceous shale
	6720-6730	60 30 10	Sandstone, fine, grey, tight, hard, carbonaceous, no show Siltstone, buff to brown, carbonaceous Coal to carbonaceous shale
	6730-6735	7:0 20 10	Sandstone, fine to medium grey, becoming porous (10-15-20%) downwards HW 95ma Siltstone, as above Coal to carbonaceous shale, as above

1 .

. .

SUNFISH-1

٠

-4

,

1 .

15/2/74

.

...

		15/2//4
DEPTH	×	SAMPLE DESCRIPTION
ъ735-6740	80	<u>Sandstone</u> , firm to medium, grey, porous tight (15-0%). Dull gold fluorescer good bright yellow cut in 5% of sandstone.
	20	Siltstone, as above
6740-6745 C.O.	70 20 10	Sandstone, fine, grey, carbonaceous, tight, hard, faint fluorescence. Siltstone, brown, as above. Sandstone, coarse, white, unconsolidated, as above
6745-6750	40 30 30	<u>Siltstone</u> , brown-buff, carbonaceous <u>Sandstone</u> , fine, grey, carbonaceous, tight, hard, no show <u>Coal</u> - carbonaceous <u>shale</u>
6750-6760	80 20	Sandstone, fine, grey, carbonaceous, soft to hard, tight to 15%, no show Siltstone, brown-buff, carbonaceous
6760-6770	80	Sandstone,coarse, white, subangular to subrounded, unconsolidated, no show, porosity >25% .
	10 10	Sandstone, fine, grey, carbonaceous, tight, no show, as above <u>Siltstone</u> , brown, carbonaceous
6780-0 (90 10	Sandstone, coarse, white, unconsolidated, as above, no show, porosity>25% Coal
6780-6790	40 20	Sandstone, coarse, white, unconsolidated, as above no show, porosity>25%
	20 20	Sandstone, fine, grey. tight, no show Siltstone, brown, carbonaceous
6790-6800	60 30 10	<u>Coal</u> , to carbonaceous <u>shale</u> <u>Sandstone</u> , coarse, white, unconsolidated, as above, no show, porosity >25% <u>Sandstone</u> , fine, tight, grey.
6800-6810	40 40 10 10	<u>Coal</u> <u>Siltstone</u> , buff-brown, carbonaceous <u>Sandstone</u> , coarse, white, unconsolidated, as above, no show porosity >25% <u>Sandstone</u> , fine, tight, grey
6810-6820 (40 40 20	<u>Coal</u> to silty carbonaceous <u>shale</u> , bleeding gas. <u>Siltstone</u> , buff to brown, carbonaceous, micaceous <u>Sandstone</u> , white to light brown, very fine to medium, angular to subrounded, dolomite, tight, no show. Trace <u>sandstone</u> , white coarse, unconsolidated, subangular to subrounded porosity > 20%, trace pyrite.
6820-6830	30 20 20 30	Sandstone, light grey to brown, tight, fine grained, dolomite porosity 0 - 10%. Sandstone, coarse, white, unconsolidated, porosity >20%. No shows. Coal to carbonaceous <u>shale</u> Siltstone, buff to pale brown, trace pyrite
6830-6840	70 20 10	Coal to carbonaceous shale, black, bleeding gas, as above Siltstone, buff to light brown, as above Sandstone, fine to very fine, buff, tight, as above
6840-6850	50 10 10 30	Sandstone, medium to coarse, angular to subangular, white, lemon to blue fluorescence from cement - evenly distributed throughout tray in "dotted" fashion, poor cut, tight, porosity 0-5%, calcareous, dolomitic, slightly hard. Sandstone, very fine to fine, grey, no show Coal to black carbonaceous shale Siltstone, as above Also fluorescent calcareous fragments.
		6853 70% Sandstone, white to buff, consolidated and hard, dolomitic, mineral fluorescence only, poor cut, blue-white, medium grained very tight. 10%, Coal 20% Siltstone

.

SUNFISH-1

SUNFISH-1	1	. 15/2/74	
DEPTH	7.	SAMPLE DESCRIPTION	
6850-6860	80 15 5	Sandstone, as above, dolomitic, calcareous cement, this is causing the fluorescence, lemon to faint white-blue, moderately abundant dotted thru tray, porosity 0-5, very tight, hard, not good cut. Coal to carbonaceous shale brown to black Siltstone, buff to pale brown, carbonaceous	
6860-6870	40 30 20 10	Sandstone, medium to coarse, white, hard and consolidated, as above. No show, calcareous, slightly dolomitic, cement, very tight. Coal, black to carbonaceous shale, black, as above. Siltstone, as above Sandstone, fine, grey - brown, tight.	
6870-6880	60 20 10 10	Siltstone, buff to grey to brown Sandstone, white, consolidated, medium, very tight, porosity 0-5, dolomitic cement. No show - dolomite fluorescence only. Sandstone, fine, buff to brown, as above, tight. Coal, trace pyrite	
6880-6890 (50 30 10 10	Carbonaceous <u>shale</u> - brown to black, occasional bleeding gas <u>Sandstone</u> , medium to coarse, white, consolidated, dolomitic cement, tight, porosity 0-5, angular to subrounded. <u>Coal</u> <u>Siltstone</u> , buff to pale brown, as above	• .
6890-6900	90 10	Sandstone, medium to coarse, white, very tight, dolomitic, as above Siltstone, brown to pale brown, carbonaceous. Trace pyrite	
6900-6910	90 10	Sandstone, as above Siltstone, as above. Pyrite	
6910-6920	60 30 10	Sandstone, fine to medium to very coarse, white, dolomitic. No shows, some pyrite. Siltstone, pale brown to brown, carbonaceous, as above Sandstone, buff, fine, carbonaceous, tight, pyrite.	
6920- 6930	30 50 20	Very abundant cavings <u>Sandstone</u> , medium to coarse, white, porosity 0-5, tight as above <u>Siltstone</u> , brown, carbonaceous Carbonaceous <u>shale</u> , brown to black	
c.30-6940	80 10 5 5	Sandstone, fine to coarse, white, consolidated and tight, dolomitic cement, as above, lemon fluorescence from cement only, no cut. Shale, very carbonaceous, black Coal, black Siltstone, brown, as above	
6940-6950	60 30 10	<u>Sandstone</u> , as above, medium to coarse, white, tight, no shows <u>Siltstone</u> , as above, buff to brown Carbonaceous - <u>shale</u> to <u>coal</u> - black	
6950-6960	30 20 30 20	<u>Coal</u> - black <u>Shale</u> , very carbonaceous, black to brown <u>Sandstone</u> , white, medium to coarse, tight. No shows <u>Siltstone</u> , buff to brown, carbonaceous.	
6960-6970		Very contaminated	
6970-6980	30 30 40	Siltstone, black to brown, carbonaceous <u>Coal</u> , carbonaceous <u>shale</u> <u>Sandstone</u> , fine, dolomitic, white, tight, no show Very contaminated after trip.	

2 41

SUNFISH-1

DEPTH Ζ SAMPLE DESCRIPTION 6980-6990 60 Siltstone, brown, carbonaceous, micaceous, pyritic 20 Sandstone, medium to coarse, white, dolomtic, tight ł 20 Coal - carbonaceous shale 6990-7000 80 Siltstone, brown, carbonaceous, micaceous 10 Sandstone, fine to medium, white, dolomitic, tight, no show 10 Coal, carbonaceous shale 7000-7010 90 Siltstone, buff to brown, carbonaceous 10 Sandstone, fine to medium, white, dolomitic, tight, no show 7010-7020 80 Sandstone, fine to medium, white, dolomitic, porosity 0-?8%, dull orange fluoresence, good bright yellow cut, 5% of sandstone, no gas kick. 20 Siltstone, buff, carbonaceous, as above 7020-7030 95 Sandstone, fine to coarse, white, dolomitic, tight, common yellow mineral fluorescence, no cut. No show Siltstone, buff, carbonaceous, as above 5 ž 0**-**7040 90 Sandstone, coarse, white, unconsolidated, porosity >25%, no show. 10 Sandstone, fine to medium, white, dolomitic, hard, tight, no show. 7040-7050 40 Sandatone, coarse, unconsolidated, porosity >25%, no show 30 Sandstone, fine to medium, white, dolomitic, hard, tight, no show 30 Siltstone, brown, carbonaceous 7050-7060 50 Sandstone, fine to medium, white, dolomitic, hard, tight, no show. 30 Siltstone, brown, carbonaceous 20 Sandstone, coarse, white, unconsolidated, porosity >25% , no show. 7060-7070 90 Sandstone, fine to coarse, white, dolomitic, hard, tight, fairly sorted, no show. 10 Siltstone, brown, carbonaceous, very pyritic. 7070-7080 80 Sandstone, fine to coarse, white, dolomitic, hard, tight, fairly sorted, no show, dolomitic cement completely fills pore space and is approx 25% of rock. 20 Siltstone, brown, carbonaceous, pyritic { Abundant pyrite, often crystalline (up to 5% sample). 7080-7090 70 Sandstone, fine to coarse, white, dolomitic, tight, as above Very rate faint gold fluorescence, rarer bright yellow cut. 30 Siltstone, brown, carbonaceous, sandy, as above Abundant pyrite. 7090-7100 Sandstone, fine to coarse, white, dolomite, hard, tight, grained, 100 angular to subrounded, fairly sorted, cement up to 25%. Trace pyrite, trace siltstone, brown, carbonaceous 7100-7110 100 Sandstone, fine to coarse, white, dolomitic, hard, tight, common light yellow mineral fluorescence, no cut. 7110-7120 100 Sandstone, fine to coarse, white, dolomite, hard, tight, rare (1%) yellow fluorescence with good yellow cut. Trace coal, black, pyrite, siltstone. 7120-7130 100 Sandstone, fine to coarse, white, dolomitic, hard, tight 7130-7140 90 Sandstone, fine to coarse, white, dolomitic, hard, tight, no show 10 Coal, black to carbonaceous shale 7140-7150 Siltstone, buff to brown, carbonaceous 4C one, fine to coarse, white, dolomitic, hard, tight, no show. track to carbonaceous shale + trace pyrite 40 20 Sandstone. Coul.,

15.2.74

.

•

SUNFISH	-1	16/2/74
DEPTH	73	SAMPLE DESCRIPTION
7150-7150	70 30	Sandstone, fine to coarse, white, dolomitic, tight, no show, as above Siltstone, brown, carbonaceous Trace carbonaceous shale, black, trace sandstone, fine, brown to pale brown, no shows.
7160-7170		Poor sample, almost all cavings, cannot interpret, lithologiespresent are <u>sandstone</u> , white, fine to coarse,, dolomitic as above. <u>Siltstone</u> brown, carbonaceous to buff, carbonaceous <u>shale</u> and <u>coal</u> , trace.
7170-7180	80 10 10	Sandstone, white, fine to medium, dolomitic, tight, no shows Siltstone, buff to brown, carbonaceous Coal, black, bright, hard to carbonaceous <u>shale</u> , brown, pyritic
7180-7190	90	Sandstone, white, medium to very coarse dolomitic porosity 0 15%
Contraction of the second s	10	(cs.grains), no show. <u>Coal</u> , black, bright, bleeding gas to carbonaceous <u>shale</u> , black to brown. <u>Trace pyrite</u> . <u>Sandstone</u> has increased % of very coarse to coarse grains which often occur individually (i.e. with little or no cement and other grains
°. 7190-7200	90	ducting).
· - · - · - ·	10	Sandstone, white, fine to coarse, dolomitic, tight, No show, (1 grain mineral fluorescence, no cut).
	10	Siltstone, buff-brown, carbonaceous plus pyrite.
		 7205 90% carbonaceous shale to carbonaceous siltstone, brown to black bleeding gas. 10% Sandstone, white, fine to coarse, dolomitic, as above Trace coal, pyrite
7205-7210	30	Siltstone, brown, carbonaceous, some bleeding gas
	70	Sittstone, brown, carbonaceous, some bleeding gas Sandstone, fine to medium, white, dolomitic, no shows. Trace carbonaceous <u>shale</u>
7210-7220	10 20	Sandstone, fine to medium, white, dolomitic, very tight Volcanic(?) altered to white <u>claystone</u> , "fibrous" appearance, sometimes fissile, non calcareous, soft to hard, green, grey, when fresh, i.e. basic volcanic.
Ć	60 10	Siltstone, brown to black, to carbonaceous shale Very fine conglomerate with silty matrix, brown, (i.e. siltstone, as above with larger siliceous fragments of volcanic(?)).
7220-7225	100	Altered volcanic, acicular crystals (plagioclase?) now chloritic, in altered cryptocrystalline to glassy groundmass, nowclay, rock buff - greenish grey occasionaly bright green, some flow structure, rarely vuggy (vesicles filled with siliceous material). honey brown, subrounded to rounded grains. Vesicular to Augen material. Pyrite, some coarse, well crystallised.
7225-7230	50	Altered volcanics, buff to green, aphanitic, with flow structure, pyrite as above.
	40	Clay — very altered volcanics, very soft white containing volcanics
4	10	pyritic, dolomitic, as above. Siltstone, medium grey, brown, carbonaceous.
7230-7240	100	Volcanics, as discreet moderately firm fragments to very soft clay alteration product as above, white.
7240-7250	30	Ferruginous volcanics, red, acicular crystals (Plagioclase) in clayey white ground mass.
	50 20	White ground mass. Volcanic fragments to clayey mass of volcanic and vesicular material as above. Siltstone and carbonaceous shale
7250-7260	25	Volcanics, white to green, acicular crystals in white ground mass as above with cavity fillings - siliceous white green (chloritic) and honey brown some banded agate-like concentric arrangement. Acicular crystals mainly altered to chlorite green. Ferruginous volcamids as above

•

.a ∎o

. .

SUNFISH-1

DEPTH X SAMPLE DESCRIPTION 7260-7270 As above, but with increased amount of cavity filling material-honey brown, White, siliceous, often banded and agate-ring-like, also green plus honey brown, banded cavity fill silica. Volcanic, buff to green, aphanitic chrystalline as above 7270-7280 50 40 Ferruginous volcanic, red to rust brown, with green (chloritic?) cavity fill 10 Siltstone, brown, slightly carbonaceous. 7280-7290 100 Altered volcanic, variable, buff to green to red to brown, microcrystalline to finely granular, cavity fillings. 7290-7300 100 Altered volcanics, as above 7300-7310 100 As above 7310-7320 100 Volcanics as above, trace dolomitic sandstone 7320-7330 100 Volcanics, as above, mainly buff, often quite pyritic. 7330-7340 100 Volcanics as above, buff, quite pyritic. -0-7347) 40 Volcanics, as above, pyritic. 40 Sandstone, coarse, probably part of fine to medium sandstone, dolomitic grain angular, porosity > 25%. 20 Sandstone, fine to medium, dolomitic, hard, tight, spotty (50%)yellow fluorescence, fair yellow cut (25%). quartz very coarse to angular, may be quite possibly associated with base of volcanic). 7340-7350 60 Sandstone, coarse to very coarse, angular as above porosity >25% 2.0 Sandstone, fine to medium, dolomitic, 50% spotty fluorescence, 25% fair cut. 20 Volcanic, as above (7350-7355) 100 Sandstone, coarse to very coarse, angular to subrounded, well sorted, porosity >25% , HW 40, 75% spotty fluorescence, 10% fair cut. Trace volcanics, trace dolomitic sandstone. 7350-7360 90 Sandstone, coarse to very coarse, as above porosity > 25%, 80% fluorescence, 20% fair cut. 5 Sandstone, fine to medium, dolomitic, as above 5 Volcanic, as above Trace coal, (bleeding gas). P.O.H. for Core #1. 7360-7386 75 Sandstone, light grey, fine to medium to very coarse, quartzose, clayey, slightly dolomitic, angular to subrounded, moderately sorted, hard, CORE # 1 tight, porosity 15-20%, excellentyellow fluorescence and bluish yellow cut. 20 Shale, dark grey, silty, carbonaceous Sandstone, fine to medium grained, clayey porosity low. 5 7386-7416 70 Shale, grey to dark grey, silty, very hard, carbonaceous to coally Trace pyrite. Sandstone, white to light grey, very fine to very coarse, subangular to CORE # 2 20 subrounded, moderately well sorted, carbonaceous, micaceous, quartzose, slightly dolomitic, porosity 13-16% permeability 0.1 - 128. bluish white fluorescence, milky blue cut. 10 Shale, white to light grey, finely interlaminated with shale, black, micaceous carbonaceous, 7416-7420 70 Siltstone, brown, carbonaceous to carbonaceous shale 30 Sandstone, fine to coarse, white to buff, subangular to subrounded, Poor dolomitic, some pyrite. Abundant pyrite. samples very 7420-7430 90 Siltstone, as above abundant 10 Sandstore, as above cavings Abundant pyrite volcanic & marls.

16/2/74

SAMPLE DESCRIPTION

, **•**

SUNFISH-1

17/2/74

2		
DEPTH	%	SAMPLE DESCRIPTION
7430-7440	50 30	Siltstone, dark brown, carbonaceous, quartzose, Sandstone, coarse, quartzose, white, unconsolidated, porosity >25%, subangular to subrounded, moderately sorted, no show.
	20	Sandstone, fine to coarse, quartzose, white, dolomitic, hard, tight, no show
7440-7450	60	Sandstone, coarse to very coarse, quartzose, white, unconsolidated porosity $> 25\%$, no show.
	20.	Sandstone, fine to medium, quartzose, dolomitic, firm to hard, tight to 10%, no show.
	20	Siltstone, dark brown, carbonaceous, as above
7450-7460	60	Sandstone, coarse, quartzose, white, unconsolidated, porosity >25%, rare mineral fluorescence, no show.
	30 10	Sandstone, fine to medium, quartzose, dolomitic, hard, tight, no show <u>Coal</u> to carbonaceous <u>shale</u> , bleeding gas Trace <u>siltstone</u> , brown, carbonaceous
7460-7470	80 10	Sandstone, coarse, quartzose, white, unconsolidated, porosity >25%, no show. Sandstone, fine to medium, quartzose, dolomitic, hard, tight, no show.
	10	Coal to carbonaceous shale, bleeding gas
7470-7480	90 10	Sandstone, coarse, quartzose, white, unconsolidated, porosity>25%, no show Sandstone, fine to medium, quartzose, dolomitic, hard, tight, no show
7480-7490	50 20 30	Sandstone, coarse, quartzose, white, unconsolidated, porosity >25%,no show. Sandstone, fine to medium, dolomitic,hard, tight, no show Siltstone, dark brown, micaceous, carbonaceous
7490-7500	70 20 10	Sandstone, fine to medium, dolomitic, hard, tight, no show. Sandstone, coarse, unconsolidated, porosity >25%, no show \dots Siltstone, dark brown, micaceous, carbonaceous
7500-7510	30 30 40	Sandstone, fine to medium, dolomitic, hard, tight, no show. Sandstone, coarse, unconsolidated, porosity >25%, no show. Siltstone, dark brown, micaceous, carbonaceous.
7510-7520 {	40 40 20	Sandstone, fine to medium, dolomitic, hard, tight, no show Sandstone, coarse, unconsolidated, porosity >25%, no show Coal to carbonaceous shale. Trace siltstone
7520-7530	70 10 15 5	Sandstone, coarse, unconsolidated porosity > 25%, no show Sandstone, fine to medium, dolomitic, hard, tight, no show Coal to carbonaceous <u>shale</u> Siltstone, dark brown, carbonaceous micaceous
7530-7540	80 10 10	Sandstone, coarse to very coarse, unconsolidated, white, porosity > 25%, no show Sandstone, fine to medium, dolomitic, hard, tight, no show Coal to carbonaceous shale
7540-7550 •	70 20 10	Sandstone, coarse to very coarse, unconsolidated, white, porosity >25% Sandstone, fine to medium, dolomitic, hard, tight Siltstone, dark brown, carbonaceous
7550-7560	80 10 10	Sandstone, coarse to very coarse, unconsolidated porosity>25%, as above no she Sandstone, medium, white, slightly dolomitic, tight, no show Coal and carbonaceous shale, black to dark brown, plus pyrite
7560-7565	90 10	Sandstone, coarse to very coarse, white, unconsolidated, porosity>25%.as abov Siltstone, brown, carbonaceous, plus pyrite.
		POH @ 7565' for intermediate logging.
1		· ·
, ,	1 1	

• •

• .

4

¥_

(a

-

	•	
		SUNFISH-1
	T	
DEPTH	%	SAMPLE DESCRIPTION
7590-7600	70 30	Sandstone -clear to white, medium to coarse grained, subrounded, well sorted, loose, no show Cavings
7600-7610	40 20 40	S <u>andstone</u> - as above - no show <u>Shale</u> - medium grey, slightly silty, subfissile Cavings
7610-7620	50 25 25	<u>Sandstone</u> – as above no show <u>Shale</u> – as above Cavings
7620-7630	25 30 45	<u>Sandstone</u> - as above no show <u>Shale</u> - fine grained, silty, subfissile Cavings.
7630-7640	5 30 15	Sandstone - as above, no show Shale, medium grey, silty, subfissile Siltstone - brown grey, medium grained, subrounded, fairly sorted loose
	Trace 50	Coal, carbonaceous shale Cavings
7640-7650	70	Sandstone - clear to white, medium grained, subrounded, well sorted loose, no show
	10 20	Shale, medium grey, slightly silty, subfissile Cavings, trace coal
7650-60	20	Sandstone - clear to white, coarse grained, subrounded, fair sorted, aggregates, no show Shale - as above
•	10	Cavings, trace coal
7660-7670	5 10	Sandstone - clear to white, medium grained, subrounded, fairly sorted, loose, and aggregates, no show Shale, medium grey, slightly silty, sub-fissile
	75 5 5	Siltatone - brown, medium grained, subrounded, loose
761 -7680		
/r -/000	5 88	Sandstone - clear to white, medium grained, subrounded, well sorted, loose Shale, medium grey, slightly silty, subfissile Coal, carbonaceous shale Siltstone, brown, medium to coarse grained, subrounded, poorly sorted, loose Trace pyrite
7680-7690	2 98	<u>Shale</u> , medium grey, slightly silty, subfissile <u>Siltstone</u> , brown, subangular to subrounded, fairly sorted, loose Trace coal, trace pyrite, trace sandstone, clear to white, medium grained rounded loose
7690-7700	85	S <u>hale</u> , medium grey, slightly silty, subfissile <u>Siltstone</u> , brown, firm, sandy Trace coal, trace sandstone, as above
7700-7710	30 65	Shale, medium grey, slightly silty, subfissile Siltstone, brown, firm sandy Coal, carbonaceous shale
7710-7720	20 75 3	<u>Shale</u> , as above <u>Siltstone</u> , brown, firm, sandy/carbonaceous <u>Coal</u>
		<u>Pyrite</u> Trace sandstone, as above

.

•

DEPTH	<u> </u>	SAMPLE DESCRIPTION
7720-7730	30	Shale, as above
	20	Siltstone, as above
	50	Dolomite, white to grey, hard
		Trace coal .
7730-7740	15	Shale, as above
	60	Dolomite, as above
	25	Volcanic, angular, dark grey, green and red alterations
		Trace coal
7740-7750	60	Volcanics, as above
	30	Shale, as above
	10	Sandstone, white, subangular, medium to coarse grained, poorly sorted, lo
7750-7760	100	Volcanics, dark grey, angular, quartz, green to red alterations
		indee doromite, nard, white
		Trace shale, medium grey, subfissile, slightly silty
776 -7770	90	
- 7		Volcanics, dark grey to green and white with acicular dark xtals alteration green and red
	5	Dolomite, hard, white
	5	Shale, medium grey, silty, subfissile
		Trace siltstone, light grey and brown, submassive Trace pyrite
7770-7774	60	· · · · ·
(GAS)	60 10	Volcanics, as above Dolomite, as above
	20	Trace medium to light grey, subfissile shale
	10	Mari, grey to brown, slightly sandy
		Trace Coal
		Trace pyrite
7774-7775	25	Volcanics, as above including few vuggy grains
(GAS)	60	Dolomite, white, hard
	10	Marl, light grey, slightly sandy Shale, medium grey, subfissile
	_	Trace Coal, trace quartz - reworked
7773-7780	0	
111.5-1160	25	Dolomite, white, hard, some translucent
	10	Marl, light grey, slightly sandy Volcanics, as above, alteration green to red
	3	Quartz - reworked red to white grains
	2	Shale - grey to brown subfissile
		Trace coal
7780-7790	50	Dolomite, as above
	15 20	Volcanics as above
	10	Marl, light grey to medium grey, slightly sandy
	5	Quartz, opalline material (fluorescence) and trace of reworked quartz as a <u>Siltstone</u> , medium brown, submassive, slightly sandy
		Trace coal, trace pyrite
790-7800	30	Siltstone, medium to dark brown submassive
	15	Shale - grey to brown fissile
	20	Limestone which micritic, fossiliferous
	15 10	Marl, as above Dolomite, hard, white
	8	Volcanics as above
	2	Quartz, opalline and reworked, as above
		Trace Coal, trace pyrite
800-7802	35	Marl, as above
	30	Siltstone, light brown, massive
		Dolomite, as above
	110	Quartz, opalline and reworked and coarse grained rounded sand

*. *

.

4

'a

	1	· · ·
DEPTH	7%	SAMPLE DESCRIPTION
7802-7805 (GAS)	30 30 30 10	<u>Marl</u> , as above <u>Siltstone</u> , medium brown and white, massive <u>Dolomite</u> , hard, white chips <u>Sandstone</u> , white, silty and loose grains Trace coal, trace pyrite, trace volcanics
7805-7810 (GAS)	50 30 20	Sandstone and loose quartose grains Siltstone white and light brown, as above Marl, as above Trace volcanics, trace coal
7810-7820	50 10 10 20 10	Sandstone, clear loose quartz grains Sandstone, medium grained- silty Siltstone, light grey massive Dolomite, white hard Marl, as above Trace coal, volcanics, pyrite
7ኛ `-7830	30 20 30 15 5	Sandstone, white to light brown, fine grained, silty Sandstone, sub-angular to sub-rounded, loose grains Siltstone, white to light brown, slightly sandy massive Dolomite, white, hard Shale, dark brown, subfissile Trace coal, trace volcanics, trace opalline quartz
7830-7840	45 10 15 5 25	Sandstone, which, medium to coarse grained, subrounded, well sorted, loose <u>Dolomite</u> , white, hard, aslitic <u>Shale</u> , medium grey, fissile <u>Volcanics</u> <u>Siltstone</u> , brown, firm, slightly sandy
7840-7850	15 25 5 55	Sandstone, as above Shale, as above <u>Coal</u> , carbonaceous shale <u>Siltstone</u> , as above
7850-7860	85	Sandstone, clear to white, medium to coarse grained, subangular to subrour
(· · ·	10 5 a	well sorted, loose Shale, as above
7860-7865 (GAS)	35 10 25 30	Sandstone, as above Shale, as above Siltstone, as above Volcanics, dark grey, angular, red and green alterations Trace coal
7865–7870	25 25 45 5	Sandstone, white, coarse grained, sub-angular, fairly sorted, loose Shale, as above Siltstone, as above Volcanics
7870-7880	50 25 25	Sandstone, white, very coarse to gritty, subangular to angular, fairly son as above, no show Siltstone, as above, carbonaceous Shale, as above
7880-7890	35 30 35	<u>Sandstone</u> , white, very coarse, angular, fairly sorted, loose, no show <u>Shale</u> , medium grey, fissile <u>Siltstone</u> , brown, gritty, firm Trace dolomite, trace volcanics
7890-7900	5 30 55	Sandstone, as above Shale, medium grey, slightly silty, sub-fissile Siltstone, as above

DEPTH % SAMPLE DESCRIPTION 7900-7905 90 Shale, carbonaceous, dark grey, subfissile 10 Siltstone, light grey, massive, slightly sandy Trace dolomite, trace volcanics, trace sand grains and quartz granules 7905-7910 50 Shale, carbonaceous, as above 40 Siltstone, white, light grey, and medium brown, massive, slightly sandy 5 Dolomite, white and hard 5 Sand, coarse grained sandstone and loose grains Trace volcanics, as above, trace coal, trace marl 7910-7920 50 Shale, medium to dark grey, fissile, hard 20 Marl, soft, fissile, light to medium grey Siltstone, white, light grey and brown, massive, slightly sandy, hard 25 5 Sandstone, medium to coarse grained, fairly sorted, good rounding, slightly silty, loose grains Trace volcanics, trace coal, trace dolomite 7920-7930 80 Marl, medium grained, carbonaceous, subfissile, strongly calcareous, soft 20 Siltstone, light grey and light brown, massive, as above Trace dolomite, trace quartz, loose grains, trace coal . . 7930-7940 50 Marl, medium grey, as above, subfissile 40 Shale, medium to dark grey, carbonaceous, fissile 10 Silistone, white, light brown, massive, hard Trace volcanics, as above, colitic limestone (fluorescent), trace sandstonefew loose quartz grains, trace coal 7940-7950 60 Marl, as above 20 Shale, as above, subfissile 20 Siltstone, as above Trace volcanics, trace sandstone-few loose quartz grains, trace coal, trace pyrite 7950-7960 50 Marl, as above 20 Shale, as above Siltstone, white to light brown, and light grey, massive, slightly sandy Sandstone, rounded, loose quartz grains 25 5 Trace volcanics, as above, trace dolomite 796 1970 40 Marl, as above 40 Shale, dark to medium grained fissile, carbonaceous 15 Siltstone, as above 5 Sandstone, white, coarse grain, indurated, well sorted, well rounded, and loose grains of quartz Trace coal, volcanics, pyrite, dolomite 7970-7980 50 Shale, as above, slightly silty 40 Marl, as above 10 Siltstone, as above Trace sandstone, loose grains of quartz, trace volcanics, as above, trace dolomite

7980-799060Shale, dark grey, carbonaceous fissile, non-silty20Marl - as above20Siltstone, as above20Trace sandstone and few loose grains, trace coal, dolomite, volcanics7990-80003030Shale, medium to dark grey, subfissile, slightly silty70Siltstone, brown to grey, soft, gritty

Trace sandstone, coal

DEPTH	%	SAMPLE DESCRIPTION
8000-8010	30 70	<u>Shale,</u> as above <u>Siltstone</u> , as above Trace coal
8010-8020	25 75	Shale, as above Siltstone, as above Trace coal, dolomite
8020-8030	60 10 20 10	Siltstone, (marl), calcareous, soft, fossiliferous (forams), medium to lig grey Siltstone, non-calcareous, white to light brown, massive, slightly sandy Shale - carbonaceous, dark grey fissile, slightly silty Cavings Trace sandstone, volcanics, coal
8030-8040 ¢	40 50 10	<u>Shale</u> , dark grey, carbonaceous as above <u>Siltstone</u> , white to medium grey, slightly calcareous, slightly sandy, mass soft to firm Cavings Trace sandstone - medium loose grains and granules, trace dolomite, coal, volcanics
8040-8050	30 40 30	<u>Shale</u> , as above <u>Siltstone</u> - calcareous, soft, medium grey <u>Siltstone</u> - non-calcareous, slightly sandy, massive, light brown Trace sandstone, coarse grained, white, poor sorting and rounding, trace c trace volcanics
8050-8060	30 20 50	<u>Shale</u> , carbonaceous, dark grey, subfissile <u>Calcareous Siltstone</u> (Marl), as above <u>Siltstone</u> , as above Trace coal, sandstone, volcanics
8060 - 8070	60 20 20	Siltstone, non-calcareous massive firm, light brown to grey, slightly sand Siltstone - calcareous (marl), soft, massive, light grey Shale - dark grey carbonaceous fissile to subfissile, hard = Trace sandstone - coarse grained, white, fair sorting and rounding, Trace volcanics, coal
80,0-8080	7ð 20 10	<u>Siltstone</u> , brown to grey, carbonaceous, firm, massive <u>Shale</u> , as above <u>Marl</u> , light grey, probably caved
8080-8090	80 15 5	<u>Siltstone,</u> as above <u>Shale</u> , as above <u>Marl</u> , as above
3090-8100	15 15 70	<u>Shal</u> e, as above <u>Marl</u> , as above <u>Siltstone</u> , as above
8105-8110 (GAS)	20 20 60	<u>Shale</u> , as above <u>Marl</u> , as above <u>Siltstone</u> , as above Trace sandstone, clear to white, fine grained, fairly sorted, cemented, no mineral fluorescence
110-8120 (GAS)	80 15 5	<u>Sandstone</u> , as above <u>Shale</u> , as above <u>Marl,</u> light grey, probably caved

* r.t. »,

وهد هور الا

.

• • S 🔉

	1	
DEPTH	%	SAMPLE DESCRIPTION
8120-8130	80	Sandstone, dirty grey, very fine to fine grained, variable (generally poor sorting, subangular to rounded, quartose but includes rock fragments? feld carbonaceous clasts, reworked glauconite or chamosite and fossils (forams, spines). Grain size~0.05 - 3 mm (quartz). Floury (?clayey), cement. S blue-ink fluore scence, slow cut.
	15 5	<u>Shale</u> , as above <u>Silty Marl</u> , as above
8128-8158 CORE 3	80	Sandstone, very fine to fine grained poorly control area and
	20	matrix, composed of quartz, feldspar, rock fragments, micas, carbonaceous c Shale, carbonaceous, finely laminated on massive units up to 3" thick with stringers of fine sand.
	50 50	Shale, carbonaceous, as above Sandstone, as above
8158-8160	40 40	Shale, grey, firm, subfissile, slightly carbonaccoup
	20	Siltstone, grey brown, firm, no porosity Sandstone, grey brown, fine grained, poorly sorted, angular, extremely imma quartzose, feldspar, lithic, clay choked, glauconite, pyrite, slightly dol in parts with a trace of mineral fluorescence
8160-8170	30 10 50 10	<u>Shale</u> , as above <u>Siltston</u> e, as above <u>Sandstone</u> , as above <u>Volcanics</u> , basic light grey green, highly chloritic, abundant fime feldspar laths, probably from above (cavings)
3170-8175	20	Shale
	20 40 20	Siltstone Sandstone Volcanic
<i>ъ</i> т.		
İ		
ļ		
	1	

.

WELL COMPLETION REPORT

Ę.

APPENDIX 2

SIDEWALL CORE DESCRIPTIONS

ч egi	영 번 17 5940 1-38 Sst. Quartzose non Wh - non 1t.gr	5 O 16 6140 2 S1st Quartzose Mod wh.	<u>M.</u>	HC	RDE MA 15 6320 12 Sst. Quartzose non Wh.	ERGE	14 6510 12 Siltst Sl. micac. V Bry-V	13 6720 12 Siltst Silty, mica S1. Lt.gry	12 6880 LLA shale Silty, mica Mod Lt.gry	11 6900 NO RECOVERY	S R 10 7150 7/8 Slst. rk.frags. Sl. Lt.brn	2 9 7330 1-18 Volcs Acicular feid wir-par		Real 8 7430 1 Sh. S1. mica non v.lt.	SCRÌÌ	ртіо	z 2 7 7795 3/4 Slst. slty. non Brn.	6 7850 1-18 Sst. mineral grnnon Wh.	5 7857 3/4 Sst. qtzs, rare rk wh-buff		AT 4 7870 ½ Sst. Carb.qtz.rk - gry	⁻¹ 3 7895 3/4 Sh Mod gry	3 2 8000 1 Sh. Silty V gry.		1 8114 1 Sst.		2 NO. DEPTH REC TYPE CAL COLOR
YF1 rm	Friab. f Mod	Fitm			Friable f-m Mod		Fírm	Firm	Soft- Firm		Firm	Hard -		firm			friab. Poor	friab m-cs Well	friab f-m Mod		v.frblcs-f	hard	S I F		riab.f-m	G D .	DEG SIZE SR
	1. sa 15				od sa 25 -				E								or 25+	11 Sa- 11 Sr 15 -	$d \cdot \frac{sa}{sr} 25 -$		$P \begin{bmatrix} a \\ sa \end{bmatrix} 25 =$				P a - 15- sr 20 -	10 11	SRTG RND CLAY STAIN
1	1	3			80 Even dull .bl		1	1	l		8	 of Min. to breht		I				I	I						90 Even dull b	RK 14 15	% DISTE INITEN
					.wh dull bl.wh							 old no cut													1-wh Bright b1-wh	16 17 18	INITCH
					light clear														 						1	19 20	
					GC cond															-					o 011		CORE WORK
n va	C1 100	S1. gas odour (C1 1100. C2 400	C1 400, C2 200, 1900,C4 4400,C5	chromatograph (C	V.strong gas od: Massive High	C3 800.	Gas odour subfit	Gas odour, subfit C1 400, C, 100	Gas odour, subfi; C1 400, C2 200		Gas odour. C1 10 C2 400. C3 100	Strong Gas odou: C1 300, C2 100	C1 500, C ₂ 300	Some dark grey of shale in con-	C1 1800, C2 700 C3 200	ch mud	ssile lt and	C ₁ 500, C ₂ 200			c ₁ 500, c ₂ 100.	ł	Fissile, marly,	C3 1100, C4 120		23	

•

		WEL GEO									•		SH	DEW	ALL I	CORI	<i>RAI</i> E DES	SCRI	PTIO	NS				۶ ب	PAGE	E	2 30		OF RE(: 	2 29	
		SER	VICE	e co	·	SCH	LUM	BER	GEF	ξ.		IE	S RL	JN N	0				swc	RUN	I NO]	L	C	ΑΤΕ	1	/3/	74				
										-		Ι					30	29	28	27	26			23		21			19	1 a	NO.	٦
	1				Ī												2900	3270	3700	4100	4500	4900	5200	5400	5500	5510		5517	5580		DEPTH	
									1		-	1	+				3/4	. 101-		3/4	11/8	н	H NC	2	 			1 1	- 12 12	12	REC !	-
								+									Sst.	1.	Mar1	- h	Silty Shale	Shale		Marl.	Calca	Mar1	& Sst	SLEY Mudst	Slst	<u> </u>	FOCK TYPE	
			<u> </u>				 										Quar	Quar	Sili frag	frag	y V	{U	y V	<u>v</u>	3) (S				•	<u> </u>	A	
																	Quartzose		Siliceous fragments	ments					grn.minei Mauc.)					4	MODIFIERS	
																	Non	Non	Mod	V	Mod	Mod	4	4	v v	V		ν V	non	5	CAL	
																	wn - buff	Wh- buff	gry & wh	gry-wh	gry	gry.	M.gry	M.gry	wh-buf	gry.	- wh	lt.gry	lt.gry	6	COLOR	
																	Friab	Friab	Friab			Firm	Soft		f Fri	s N	Friab	· ·		7	DEG	
																		f-m							f-cs	Ħ.		j-j∧	=	60	GRAIN	
																	Mod	Mođ							mod			Mod		g	SALG	
•																	sa- sr	sa. sr	2					•••••	sa			00 11 1		5	RND	
																	20	20												=	DISS	
•																												·		12	STAIN	
	·																1	I							60	1		1	1	₽Ŗ≧	<u></u>	
																									Mod. even	-				14	FLOU	
																									Dull					115 IS	FLOURESCENCE	
																		···· ·							yell							
																									· No					11 EN	CUT	
																[Ċut					18	<u> </u>	
																···														19	 >	••••
													·						·											20		
																															SHOW	
																														-	PROB	
				-						-				recuies			<u></u>		F7	Mag		<u>.</u>	- C1	nS.	Mi	<u>.</u>	4 N L	Unit		neine e		
																			Massive Siliceous	ssive white		100	1 100	fissi 400		c1 200.	wh. sst. in core.	it of gry.silt		23	BEMARKS - GAS	

CORE DESCRIPTION SUNFISH-1

CORE NO	D. DEPTH	RECOVERY	DESCRIPTION
1	8114	1" (50%)	SANDSTONE - quartz, feldspar, rock frag. bearing, dark brown rock frags., clay matrix 25%; buff, very fine to
			coarse grained, angular to subrounded, very poorly sorte friable when wet, firm to hard when dry; dolomitic cemen Rare very fine ferruginous (?) red frags. Grain of brig green mineral (glauconite?). — dull blue to white fluorecence, evenly distributed over 90% of rock. Bright blue to white cut. No residue — Chromatograph: C ₁ 500
· · · ·			C_2 300, C_3 1100 C_4 1200, C_{5+} 600.
2	8000	1" (50%)	SHALE - silty; med. grey, dolomitic; hard when dry. Soft- firm when wet; subfissile - breaks into chips; tiny
3	7895		carbonaceous frags. Chromatog: C ₁ 1100, C ₂ 400
	7695	3/4" (37%)	INDURATED SHALE - medium dark grey; non-fissile, sub- conch. fracture; non-calcareous; hard. — No gas
4	7870	¹ 2" (25%)	<u>SANDSTONE</u> - quartzose, carbonaceous frags; carb. shale laminae; fine-rare granules; very poorly sorted; non-
			calcareous; angular to subrounded; 25% clay maxtrix; light grey; friable; no shows — Chromatog: C ₁ 500 C ₂ 100.
5	7857	3/4" (37%)	SANDSTONE - quartzose, black sh. or carb. frags; white to
			light grey; fine to medium grained mainly (very rare granules); moderately sorted; friable; sub-angular to sub-rounded, non-calcareous; 25% clay; no shows — Chromatog: No gas
6	7850	1-1/8" (56%)	SANDSTONE - quartzose; minor black rock frags; rare green mineral; buff; medium to coarse grained; well sorted; sub-angular to sub-rounded; slightly calcareous; 15% clay matrix; no share Frachler;
7	7795	3/4" (37%)	10^{-100} matrix, no shows.FriableChromatog. $C_1 500 C_2 200$
			<u>SILTY SHALE</u> - dark brown; pyrite bands and occasional white non-calcareous bands ("sugary" silt-sized grains) cavity filling (?); soft; carbonaceous; - Chromatog: C_1 1800, C_2 700, C_3 200
8	7430	1" (50%)	<u>SHALE</u> - light olive grey; silty; mica; carbonaceous plant remains; non-calcareous; firm. — Chromatog: C ₁ 500, C ₂ 300
9	7330	1-1/8" (56%)	WEATHERED VOLCANICS - Acicular feldspars in ground-mass
			Very calcareous covering "paste" that hides igneous texture - removed by acid. Rock highly fractured but
			individual frags. hard. Spotty dull to bright yellow mineral fluorecence over 20% of rock. No cut. Strong gas odour. C ₁ 300, C ₂ 100.
10	7150	_ /	
10	7150	7/8" (44%)	<u>SILTSTONE</u> - quartz, mica, carb. rock frags; medium to light grey; slightly calcareous; gas odour. C_1 1000, C_2 400, C_3 100
			- 3
nora o change			

Page 2

CORE DESCRIPTION SUNFISH-1

CORE NO.	DEPTH	RECOVERY	DESCRIPTION
11	6900	NO RECOVERY	
12	6880	1-1/8" (^{56%})	<u>SHALE</u> - silty; medium grey; micaceous; slightly calcar- eous, subfissile; soft - C ₁ 400, C ₂ 200
13	6720	14" (62%)	
		- 4 (02.57	<u>SILTSTONE</u> - laminae of light grey siltstone, smaller one of medium dark grey siltstone; minor carbonaceous frags micaceous; subfissile; quartz silt; breaks up easily; slightly calcareous. — C ₁ 400, C ₂ 100
14	6510	1½" (62%)	<u>SILTSTONE</u> - medium grey; slightly micaceous; firm; bedde shows lmm. thick laminae of sst-v.f., white. No shows - C ₁ 5900, C ₂ 2600, C ₃ 800.
15	6320	1½" (75%)	<u>SANDSTONE</u> - quartzose, minor black rock frags; white; fine to medium grained; moderately sorted; subangular,
٢			non-calcareous; 5-10% clay; friable; dull blue white fluorecence, evenly distributed over 80% rock; dull blue white cut with light quantity of clear residue; massive sst. — very strong gas odour — C_1 400,
			$C_2 200, C_3 1900, C_4 4400, C_{5+} 2400$
16	6140	2" (100%)	<u>CLAYSTONE</u> - white, slightly to non-calcareous, containin large frags. of <u>siltstone</u> - medium dark grey, very
			calcareous, mica, and some carb. plant remains. Firm $- C_1 1100, C_2 400, C_3 200$
17	5940	1-3/8" (69%)	SANDSTONE - fine to medium grained, light grey; 60%
			quartz, 40% dark rock frag. grains; fine grained pyrite disseminated throughout; angular to subangular; 15% clay; friable; moderately sorted; slightly calcareous,
			breaks up in acid. Carb. stringer being replaced by pyrite cuts across core $-C_1$ 100. No shows
18	5790	1½" (75%)	SILTY SHALE - light grey to brown; slightly micaceous very fine stringers of white silty shale indicate beddin:
			is laminated; very calcareous $-C_1 900, C_2 600, C_3 600$
19	5580	1 ¹ 2" (75%)	SILTSTONE - medium to light grey, interlaminated with very light grey layers; firm; non-calcareous — No gas
20	5517	1½" (75%)	MUDSTONE - medium light grey, hard, extremely calcareous silty and <u>SANDSTONE</u> - white, very fine to fine, quartz
			and rock frags., moderately sorted, subangular-subround dolomitic, very tight and probably clay choked, No show - C ₁ 300, C ₂ 100
01	5510 (M 34)	111 (50%)	
21	5510 (<u>1</u> 678 ₄)	1" (50%)	MARL - medium grey, very calcareous, soft — C $_1$ 200.
22	5500	1" (50%)	<u>CALCARENITE</u> - white, fine to coarse grained, very cal- careous, subangular-subrounded, poorly sorted, moderate
			abundant green glauconite present (elongate grains); highly fractured rock - <u>breaks</u> into pieces, dissolves in acid into grains; trace pyrite dull yellow fluor (mineral fluor.) over 60% of rock evenly. No cut-No gas

Page 3

CORE DESCRIPTION SUNFISH -1

.

CORE NO. DEPTH	RECOVERY	DESCRIPTION
23 5400	2" (100%)	MARL - medium grey, very calcareous, subfissile, firm to hard. — C ₁ 1700, C ₂ 400.
24 5200	1½" (75%)	$\frac{MARL}{soft} - medium grey, very calcareous rarely micaceous,soft C1 100.$
25 4900	1" (50%)	SHALE - dark grey, moderately calcareous, subfissile, fir $- C_1$ 100
26 4500	1-1/8" (56%)	SHALE - silty, micaceous, dark grey; moderately calcar- eous, subfissile, firm. No gas
27	3/4" (37%)	SILICEOUS BANDS - highly fractured <u>quartz</u> vein (?) layer central to core - white, no grains - adjacent dark grey
		silicified shale, highly fractured, plus opposing band of calcarenite - calcareous, with blue green grains (altered glauconite?) — No gas.
28 3700	1" (50%)	ASSORTMENT OF : (no cylindrical core shape remains) - massive, highly fractured, white quartz - indurated shale frags black - fine very coarse sand grains, slightly calcareous - extremley weak and friable mixture
29 3270	¹ 2" (25%)	— C ₁ 100 <u>SANDSTONE</u> - quartzose, minor black rock frags; fine to
		medium grained, moderately sorted, subangular-subrounded 15% clay, white to buff, non-calcareous, friable, No sho No gas.
30 2900	3/4" (37%)	SANDSTONE - very light grey to buff, very fine to fine grained, subangular, moderately sorted, minor carb. frags, clay 25%, very tight, non-calcareous, No shows,
		No gas

WELL COMPLETION REPORT

APPENDIX 3

PALAEONTOLOGICAL DATA SUMMARY

FORAMINIFERAL BIOSTRATIGRAPHY AND ENVIRONMENTAL ANALYSIS IN SUNFISH-1

by David Taylor

24-7-74.

?MID MIOCENE PROXIMAL CANYON FACIES - 4900' - 2900'.

Of the eleven side wall cores examined only four contained biostratigraphically diagnostic fauna and even these were heavily affected by diagenesis making specific designation difficult. No foraminifera were found in side wall cores at 2900', 3270', 4100' and 4500'. Residues of side wall cores at and above 4900' were composed dominantly of angular fine to coarse quartz of obviously terrestrial origin, especially as coal fragments were present at 3700' and black slate fragments (?Lower Palaeozoic) at 4100'. No biostratigraphic or environmental comment can be made for this aranaceous interval from 4900' upwards, save that it may have been the proximal end of a mid Miocene submarine canyon which are distally calcareous in Gippsland. Barracoota-1 contains terrestrial detritus in the mid Miocene which is believed to represent a proximal canyon facies. Samples below 4900' (e.g. 5200') are definitely early Miocene.

OLIGOCENE TO EARLY MIOCENE - 5517' - 5200'

The side wall core at 5517' possibly contains an early Oligocene Zone J fauna but the diagenetic obliteration of surface texture make the recognition of *Globigerina angioporoides* tenuous. There is a distinctive late Oligocene Zone I-1 fauna at 5510' but identification relies on shape as surface texture is either obliterated or encrusted. Only a thick walled, sparsely perforate benthonic fauna was recovered in the heavily recrystallized micrite at 5500', which may imply that the more delicate planktonic foraminifera were removed during diagenesis. Side wall cores at both 5400' and 5200' contained early Miocene Zone H-1 faunas.

It is difficult to appraise environmentally the Oligocene-early Miocene interval as certain species may have been destroyed. The dominance of planktonics and the benthonic fauna at 5500' could indicate a position on a continental slope anywhere from the shelf/slope break to the base of the slope. Size and shape sorting at the early Miocene indicates high energy shelf edge or down slope currents which are less evident in the Oligocene.

One must emphasise the confusion caused by diagenesis in the Sunfish-1 section and the need for detailed study, especially in the light of its effects on sonic velocity as has been recently demonstrated by Packham & Lingen (1973, Initial Rep. Deep Sea Drilling Project, Vol. XXI, 495-521) from S.E.H. studies of deep sea core.

BASI	N GIPPSLAND		BY	I	David Taylor	-	
WELL	NAME SUNFISH	- <u>1</u>	DA'l	E <u>10-</u>	-7-74 EL	EV	
Fora	m Zonules					ملا خ	
		Highest Data	Quality	2 Way Time	Lowest * Data	Quality	2 Way Time
	A <u>Alternate</u>			·	······		
	B Alternate						
	C Alternate		1				
	D ₁ Alternate		<u>.</u>		·····		
	D ₂ Alternate	****					
NE	E Alternate				·····		
MIOCENE	F Alternate		-				
A.	G Alternate	5200	1 7		5400	0	
	H ₁ Alternate						
	H ₂ Alternate	5510	0		5510	0	
ित्व	I Alternate						
OLIGOCENE	I Alternate	5517*	2		5517*	2	
OLIG	J ₁ Alternate J ₂ Alternate			 			
	K Alternate						
EOC.	Pre K		*	,			

Form R 193 3/71

No Fauna found in S.W.C.s. 2900, 3270, 4100 & 4500.

Non diagnostic faunas present in S.W.C.s at 3700, 4900 & 5500.

*All specimens show signs of diagenesis which is extreme at 5517 making zonal designation difficult.

COMMENTS:

Note: If highest or lowest data is a 3 or 4, then an alternate 0, 1, 2 highest or lowest data will be filled in if control is available.

If a sample cannot be interpreted to be one zonule, as apart from the other, no entry should be made.

WELL COMPLETION REPORT

*

APPENDIX 4

PALYNOLOGICAL REPORT

The report which has not yet been completed, will be forwarded as soon as possible.

ed and muched

Cables have been enclosed.

"Palynological results for Sunfish-1 are as follows: SWC at 5517' contains marine post Latrobe assemblage. SWC at 5580' from lower <u>M.diversus</u> zone with common dinoflagellates. SWC 18 at 5790', SWC 17 at 5940' and SWC 16 at 6140' assigned to <u>L.balmei</u> zone. SWC 15 at 6320' indeterminant, practically barren; SWC 14 at 6510', SWC 13 at 6720', SWC 12 at 6880' and SWC 10 at 7150' are interpreted as <u>T.longus</u> zone. Cores 1 and 2° plus SWC 8 at 7430' from <u>T.lilliei</u> zone. SWC 7 at 7795', SWC 5 at 7857' and SWC 3 at 7995' life, Cretaceous pre-<u>T.lilliei</u>, probably <u>N.senectus</u> at 7795' and 7857' with no zone assignment for sample at 7995'. SWC 2 at 8000', SWC 1 at 8114' and Core 3 are early Gretaceous. Confidence ratings high for samples down to 7410' and from 8000' to 8152' and low in intervening sample. Dinoflagellates present in samples down to 5510' No dinoflagellates in Sunfish cores'

PALYNOLOGICAL INTERPRETATIONS FOR SUNFISH-1, GIPPSLAND BASIN, AUSTRALIA

Lewis E. Stover

SUMMARY

5517 feet 5580 feet 5790 - 6140 feet 6510 - 7150 feet 7371 - 7430 feet 7795 - 7895 feet 8000 - 8152 feet

Post-Latrobe Lower M. diversus L. balmei T. longus T. lilliei Indeterminate C. paradoxa?

Probably Oligocene Early Eocene Paleocene Late Cretaceous Cretaceous Early Cretaceous

8000

DISCUSSION

1. The highest sample from Sunfish-1 at 5517 feet is post-Latrobe, probably Oligocene, but the lack of diagnostic spore-pollen preclude a definitive zone assignment. Sample contains mainly a marine assemblage dominated by dinoflagellates.

2. A Lower *Malvacipollis diversus* assemblage with spore-pollen and dinoflagellates was recovered from 5580 feet; assignment to the *M. diversus* zone is made with very high confidence.

3. Zone diagnostic spore-pollen were identified in assemblages from the *Lygistepollenites balmei*, *Tricolpites longus* and *Tricolpites lilliei* zones, consequently, high confidence ratings are given to these zone assignments (5790 to 7430 feet).

4. Samples from 7795 to 7895 feet yielded inconclusive palynological data; the assemblages are placed provisionally and with low confidence into the *Nothofagidites senectus* zone. The interval, however, could be older.

5. Early Cretaceous palynomorphs occur from 8000 to 8152 feet, and the epoch-level determination can be accepted with confidence. The *Coptospora paradoxa* zone assignment, however, is much less certain and should be regarded as tenuous. Of possible significance is the presence of rare acritarchs in the Early Cretaceous section. The occurrence of these palynomorphs suggests marginal marine deposition.

6. Recycled Early Cretaceous forms are present in the L. balmei and T. longus zones and also in the interval between the T. lilliei zone and the Early Cretaceous. This latter interval also has rare Permian pollen.

7. Dinoflagellates are common in the post Latrobe and Lower M. diversus samples and rare in some L. balmei and the highest T. longus sample.

PALYNOLOGICAL INTERPRETATIONS FOR SUNFISH-1, GIPPSLAND BASIN, AUSTRALIA

Lewis E. Stover

SUMMARY

5517 feet 5580 feet 5790 - 6140 feet 6510 - 7150 feet 7371 - 7430 feet 7795 - 7895 feet 8000 - 8152 feet

Post-Latrobe Lower M. diversus L. balmei T. longus T. lilliei Indeterminate C. paradoxa?

Probably Oligocene Early Eocene Paleocene Paleocene Late Cretaceous Cretaceous Early Cretaceous

DISCUSSION

Post-Latrobe - The palynomorph assemblage from SWC 20 at 5517 feet consists mostly of dinoflagellates with Spiniferites ramosus and Operculodinium centrocarpum being the commonly occurring species. Other dinoflagellates include Lingulodinium machaerophorum, Leptodinium sp., Nematosphaeropsis sp. and numerous "dinospheres." Spore-pollen are rare and no species indicative of post-Latrobe spore-pollen zones was found.

Lower Malacipollis diversus Zone -The assemblage from SWC 19 at 5580 feet contains a sparse spore-pollen assemblage in which specimens of M. diversus are common and those of Spinizonocolpites prominatus are frequent. In comparison, the species listed below are rare:

Banksieaeidites arcuatus Cupanieidites orthoteichus Cyathidites gigantis C. spendens Ephedripites notensis

Haloragacidites harrisii Lygistepollenites florinii Polypodiaceoisporites varus Proteacidites parvus Tricolpites gillii

Dinoflagellates are common at 5580 feet and although their preservation is poor, it is possible to identify most specimens to the generic level and occasional specimens to the species level. Collectively, the dinoflagellates represent a typical association of Early Eocene forms including Wetzeliella homomorpha, Adnatosphaeridium sp., Cordosphaeridium sp., Diphyes colligerum, Fibracysta bipolare, Muratodinium fimbriatum and Trichodinium sp.

Lygistepollenites balmei Zone - Species indicative of this zone were obtained from SWC 18 at 5790 feet, SWC 17 at 5940 feet and SWC 16 at 6140 feet, and include:

Australopollis obscurus Gambierina edwardsii Gambierina rudata Lygistepollenites balmei Peromonolites densus Polycolpites langstonii (5790 and 5940 feet) Proteacidites angulatus (6140 feet only)

Rare dinoflagellates are present at 5790 feet (Spiniferites spp.); a single specimen of Ginginodinium sp. was found at 5940 feet and microplankton were not identified at 6140 feet. Recycled Early Cretaceous spores occur at 5790 feet. In addition to the zone diagnostic species the following spore-pollen are present in the L. balmei zone in Sunfish-1.

Cyathidites splendens Haloragacidites harrisii Ceratosporites equalis Latrobosporites ohaiensis Lygistepollenites florinii Nothofagidites brachyspinulosus N. emarcidus N. endurus N. flemingii Periporopollenites polyoratus Phyllocladidites mawsonii P. reticulosaccatus

Proteacidites parvus Stereisporites punctatus Tricolpites phillipsii 5790 feet only

5790 feet only

5940 feet only 5790 and 5940 feet

5790 feet only

<u>Tricolpites longus Zone</u> - The highest sample with species diagnostic of this zone is SWC 14 at 6510 feet from which specimens of *Proteacidites cleinei*, *Tricolpites confessus* and *T. waiparaensis* were recovered. *Tricolpites longus*, *Triporopollenites sectilis* and *Proteacidites amolosexinus* appear in SWC 13 at 6720 feet. *Tricolporites lilliei* and *Tetradopollis securus* are present in the lowest sample from the *T. longus* zone (SWC 10 at 7150 feet).

Specimens of Nothofagidites spp. are very rare between 6510 and 6880 feet and rare at 7150 feet; on the other hand, specimens of Gambierina spp. are common between 6720 and 7150 feet. Very poorly preserved dinoflagellates are associated with the well preserved spore-pollen at 6510 feet. Although specific identifications were not possible, the following dinoflagellate genera were recognized with reasonable certainty: Achomosphaera, Adnatosphaeridium, Areoligera, Fibracysta and Kenleyia. Listed below are the sporepollen species recovered from the T. Longus zone in Sunfish-1.

-2-

Cyathidites splendens Gambierina edwardsii G. ruđata Ceratosporites equalis Latrobosporites amplus L. ohaiensis Lygistepollenites balmei Nothofagidites emarcidus N. senectus Periporopollenites polyoratus Phyllocladidites mawsonii Proteacidites amolosexinus P. angulatus P. cleinei P. palisadus P. parvus P. pseudomoides P. reticuloconcavus Simplicepollis meridianus Stereisporites punctatus Tetradopollis securus Tricolpites confessus T. gillii T. longus T. waiparaensis Tricolporites lilliei Iriporopollenites sectilis

6720 feet only 7150 feet only all samples 6880 and 7150 feet 6720 to 7150 feet 6880 feet only 6510, 6720, 7150 feet 6510 and 7150 feet 7150 feet only 6510 and 6720 feet all samples 6720 feet only 6510 feet only 6510 feet only 6720 feet only 6510 and 6720 feet 6510 feet only 6880 and 7150 feet 6510 and 6880 feet 6720 and 6880 feet 7150 feet only all samples all samples 6720 and 7150 feet 6510 and 7150 feet 7150 feet only 6720 to 7150 feet

<u>Tricolporites lilliei Zone</u> - Samples from conventional cores 1 and 2 (7371.7-7385.5 feet and 7386.0-7410.5 feet, respectively) and SWC 8 at 7430 feet are assigned to the *T. lilliei* zone. Placement of these samples in the *T. lilliei* zone is based on the increased abundance of Nothofagidites spp. coupled with the occurrence of Cicatricosisporites australiensis, Densoisporites velatus, Gephyrapollenites wahoensis, Ornamentifera sentosa, Phyllocladidites verucosus, Sterisporites regium, Tricolpites pachyexinus, and *T. renmarkensis*. None of these forms was found in the overlying *T. longus* zone in Sunfish-1. Specimens of *D. velatus* are frequent in some preparations from cores 1 and 2 where it is commonly associated with well preserved spores of the Camerozonosporites/Latrobosporites complex. A very sparse spore-pollen assemblage was recovered from SWC 8 at 7430 feet which is placed in the *T. lilliei* zone because of the occurrence of *Tricolpites confessus* and *Tetradopollis securus*. No microplankton present in samples from the *T. lilliei* zone. Spore-pollen from the zone in Sunfish-1 include:

Camerozonosporitės/Latrobosporites amplus C./H. ohaiensis Ceratosporites equalis Cicatricosisporites australiensis Densoisporites velatus Gambierina rudata

-3-

Gephyrapollenites wahooensis Nothofagidites emarcidus N. senectus Ornamentifera sentosa Phyllocladidites mawsonii P. verrucosus Proteacidites cleinei P. palisadus P. parvus Stereisporites regium Tetradopollis securus Tricolpites confessus T. gillii T. longus T. pachyexinus T. renmarkensis T. waiparaensis Tricolporites lilliei Triporopollenites sectilis

<u>Samples from 7795 to 7895 feet</u> - Palynomorph assemblages from SWC 7 at 7795 feet, SWC 5 at 7857 feet and SWC 3 at 7895 feet provide inconclusive determinations. SWC 7 was poorly fossiliferous with mainly broken specimens. The presence to small proteaceous pollen suggests the sample is probably from the *N. senectus* zone, but confirming evidence is lacking.

SWC 5 contains a mixture of contaminants, recycled Early Cretaceous spores, and a rather limited indigenous assemblage. At least some of the proteaceous pollen and specimens of Nothofagidites appear to be in place, and if this is true, then the sample is from the N. senectus zone. Obvious recycled Early Cretaceous forms are Contignisporites sp., and Rouseisporites reticulatus; a specimen provisionally identified as Krauselisporites sp. may represent Permian reworking.

SWC 3 has common, poorly preserved gymnosperm pollen, abundant inaperturate grains (of which some might be marine cysts). It also has some well preserved Early Cretaceous spore-pollen, such as *Rouseisporites radiatus*, and *Classopollis* sp. as well as Permian bisaccate pollen (*Striatites* sp.), and Tertiary dinoflagellates (contaminants). Zone diagnostic species are lacking, therefore no reliable age interpretation is possible.

<u>Early - Cretaceous</u> - SWC 2 at 8000 feet, SWC 1 at 8114 feet and conventional core 3 at 8138 - 8152 feet contain common and reasonably well preserved Early Cretaceous spore-pollen. Also present are very rare acritarchs (core 3 and SWC 2) whose presence suggests marginal marine depositional conditions. Based on the presence of *Dictyotosporites speciosus* and *Trilobosporites trioreticulosus*, the assemblages are assigned with low confidence to the *Coptospora paradoxa* zone; the nominate species was not identified. Spore-pollen from the Early Cretaceous interval in Sunfish-1 are:

-4-

Alisporites grandis Araucariacites australis Baculatisporites comaumensis Cicatricosisporites australiensis C. hughesii Cinquitriletes clavus Ceratosporites equalis Classopollis sp. Cycadopites sp. Cuathidites australis C. minor Dictuotosporites speciosus Foraminisporis asymmetricus F. dailyi Gleicheniidites sp. Klukisporites scaberis Krauselisporites sp. Laevigatosporites sp. Leptolepidites major L. verrucatus Lycopodiacidites asperatus Lycopodiumsporites austraclavatidites L. eminulus L. nodosus Microcachryidites antarcticus Neoraistrickia truncata Osmundacidites wellmanii Podosporites microsaccatus Rouseisporites radiatus Sterisporites antiquasporites Trilobosporites trioreticulosus Triporites sp. (very small, single specimen) Tsugaepollenites segmentatus

CONCLUSIONS

1. The highest sample from Sunfish-1 at 5517 feet is post-Latrobe, probably Oligocene, but the lack of diagnostic spore-pollen preclude a definitive zone assignment. Sample contains mainly a marine assemblage dominated by dinoflagellates.

2. A Lower *Malvacipollis diversus* assemblage with spore-pollen and dinoflagellates was recovered from 5580 feet; assignment to the *M. diversus* zone is made with very high confidence.

3. Zone diagnostic spore-pollen were identified in assemblages from the *Lygistepollenites balmei*, *Tricolpites longus* and *Tricolpites lilliei* zones, consequently, high confidence ratings are given to these zone assignments (5790 to 7430 feet).

-5-

4. Samples from 7795 to 7895 feet yielded inconclusive palynological data; the assemblages are placed provisionally and with low confidence into the *Nothofagidites senectus* zone. The interval, however, could be older.

5. Early Cretaceous palynomorphs occur from 8000 to 8152 feet, and the epoch-level determination can be accepted with confidence. The *Coptospora paradoxa* zone assignment, however, is much less certain and should be regarded as tenuous. Of possible significance is the presence of rare acritarchs in the Early Cretaceous section. The occurrence of these palynomorphs suggests marginal marine deposition.

6. Recycled Early Cretaceous forms are present in the L. balmei and T. longus zones and also in the interval between the T. lilliei zone and the Early Cretaceous. This latter interval also has rare Permian pollen.

7. Dinoflagellates are common in the post Latrobe and Lower M. diversus samples and rare in some L. balmei and the highest T. longus sample.

LIST OF SAMPLES

D D D D

D

A

A

A

	SWC	20	5515'	post-Latrobe	probably Oligocene
	SWC	19	5580'	Lower M. diversus	Early Eocene
	SWC	18	57901	L. balmei	Paleocene
	SWC	17	5940'		
	SWC	16	6140'	8t 01	68
	SWC	15	6320'	indeterminate	
	SWC	14	6510'	T. longus	Paleocene
	SWC	13	6720'	H II	
	SWC	12	6880'	.\$\$ UB	51 · · ·
	SWC	10	7150'	-86 48 🗸	88
	CORE	1	7371.7	T. lilliei	Late Cretaceous
		•	7383'	n n	
•	· * .		7385.5	11 at	38 88
	CORE	2	7395'	93 80	- 10 IC
		· -	7398'	48 48	11 11
	1 A. A. A. A.		7407'	10 · · · · · · · · · · · · · · · · · · ·	91 UR
	÷.,		7410.5'	11 99	PR 01
	SWC	8	7430'	88 90	96 BE
^	SWC	7	7795'	N. senctus?	Late Cretaceous
	SWC	5	7857'	" " ?	3) 8)
	SWC	3	7895'	indeterminate	Late Cretaceous?
	SWC .	2	8000'	C. paradoxa?	Early Cretaceous
	SWC	1	8114'	n n n	
	CORE	3	8138'	43 45 EE	29 28
	OONE	~	8147'		88 88
			8152'	88 - 68 BE	41 89
			0106		

D = dinoflagellates A = acritarchs

BASIN

GIPPSLAND

DATE <u>APR</u>

<u>APRIL 1974</u>

WELL NAME SUN

SUNFISH-1

ELEVATION _____

AGE	PALYNOLOGIC		HIC	GHEST DATA		 LOWEST DATA				
	ZONES	Preferred Depth	Rtg	Alternate Depth	Rtg	Preferred Depth	Rtg.	Alternate Depth	Rtg.	2 way time
DLI GO- MI OC.	<u>T. bellus</u>									
0LIG0- MI 0C.	<u>P. tuberculatus</u>									
	<u>U. N. asperus</u>									
떠	<u>L. N. asperus</u>									
EOCENE	<u>P. asperopolus</u>									
E	U. M. diversus									
	L. <u>M</u> . <u>diversus</u>	5580	0			5580	0			
EO- CENE	<u>L. balmei</u>	5790	1			6140	1			
	<u>T</u> . <u>longus</u>	6510	1			7150	1			
	<u>T</u> . <u>lilliei</u>	7371	1			7430	1			
CEOUS	<u>N. senectus</u>	7795	2			7895	2			
LATE CRETACEOUS	<u>C. trip./T.pach</u> .									
G	<u>C</u> . <u>distocarin</u> .									1
	<u>T</u> . <u>pannosus</u>									
	<u>C</u> . <u>paradoxa</u>	8000	2			 8152	2			
Y EOUS	<u>C. striatus</u>									
EARLY CRETACEOUS	U. <u>C. hughesii</u>									
	L. <u>C</u> . <u>hughesii</u>									
	<u>C</u> . <u>stylosus</u>									
Pre-	Cretaceous									
COMM	ENTS									· · · · · · · · · · · · · · · · · · ·

COMMENTS:

RATINGS: 0; SWC or CORE, <u>EXCELLENT CONFIDENCE</u>, assemblage with zone species of spores, pollen and microplankton.
 1; SWC or CORE, <u>GOOD CONFIDENCE</u>, assemblage with zone species of spores and

- pollen or microplankton.
 2; SWC or CORE, POOR CONFIDENCE, assemblage with non-diagnostic spores, pollen
 and/or microplankton.
- CUTTINGS, <u>FAIR CONFIDENCE</u>, assemblage with zone species of either spores and pollen or microplankton, or both.
- 4; CUTTINGS, <u>NO CONFIDENCE</u>, assemblage with non-diagnostic spores, pollen and/or microplankton.
- NOTE: If a sample cannot be assigned to one particular zone, then no entry should be made. Also, if an entry is given a 3 or 4 confidence rating, an alternate depth with a better confidence rating should be entered, if possible.

DATE RECORDED BY: L. E. STOVER

DATE APRIL 1974

DATE

Ę

4

BASIN <u>GIPPSLAND</u>

WELL NAME SUNFISH-1

DATE

ELEVATION K.B. + 32 FEET

AGE	PALYNOLOGIC	HIGHEST DATA				LOWEST DATA					
	ZONES	Preferred Depth	Rtg.	Alternate Depth	Rtg.	2 way time	Preferred Depth	l Rtg	Alternate Depth	Rtg.	2 w tim
.IG-	<u>P. tuberculatus</u>	5517	/				5517	1			
}	U. <u>N</u> . <u>asperus</u>										
	M. <u>N. asperus</u>										
	L. <u>N. asperus</u>							1		1	1
INE	<u>P</u> . <u>asperopolus</u>										
EOCENE	U. <u>M. diversus</u>										
	M. <u>M</u> . <u>diversus</u>							1			
	L. <u>M</u> . <u>diversus</u>	5580	1				5580	1			
NF	U. <u>L. balmei</u>	5790	1				5790	1			
PALEOCENE	L. <u>L. balmei</u>	5940	2				6140	1	. •		
PAL	T. longus	6510	/				7150	1			
	<u>T. lilliei</u>	7371	1				7430	1			
EOUS	<u>N</u> . <u>senectus</u>	7795	2				7895	2			- <u></u> ;;
I E CRET., EOUS	<u>C. trip./T.pach</u>										
CRI	<u>C</u> . <u>distocarin</u> .										
	T. pannosus										
L EAR	LY CRETACEOUS										
	aradoxa C-CRETACEOUS	8000	2				8152	2			
	-CRETAGEOUS										
	DINOFLAG	SELLATE	ZON	IES:			l l			· .	
COMME	Wetzeli	ella hyp			5580						
		iella ha				o(i)					
		<u>drea dr</u> chs are			6510 in		. paradox	Zan	a interio		
				al marine				2011	e mierve	//	•
RATIN	GS: 0; SWC or 0 pollen a l; SWC or 0	ORE, EXCEI and micropl	LENT ankto CONFI	CONFIDENCE n. DENCE, ass	, ass	emblage					
	2; SWC or C	or micropla ORE, POOR	CONFI		embla	ge with	non-diagno	ostic	spores, p	ollen	L .
	and/or m 3; CUTTINGS	icroplankt, FAIR CON	on. FIDEN	<u>CE</u> , assembi			ne species				
	pollen o 4; CUTTINGS micropla	r micropla , <u>NO CONFI</u>	nkton	, or both.					• •		
NOTE: If a sample cannot be assigned to one particular zone, then no entry should be made Also, if an entry is given a 3 or 4 confidence rating, an alternate depth with a better confidence rating should be entered, if possible.							e.				
DATA	RECORDED BY: <u>∠</u> . <u>E</u>		5	a se encete		-	<u> 1971. 197</u>	4		7	
	REVISED BY: $A.C.$						Tan. 1975				•
	R 315 12/22	<u> </u>			1	<u>~</u>	~			i	-

WELL COMPLETION REPORT

1.

APPENDIX 5

WELL LOG ANALYSIS

WELL LUG ANALYSIS REPORT

 \checkmark

W.W. FRASER (2), C.N. CURNOW, P.C. HALL

Form R 167 6/70 Pege 1

ł

сс.

то

OPERATOR ESSC

WELL FILE

ESSO AUSTRALIA

WELL SUNFISH-1

DATE 20th February, 197

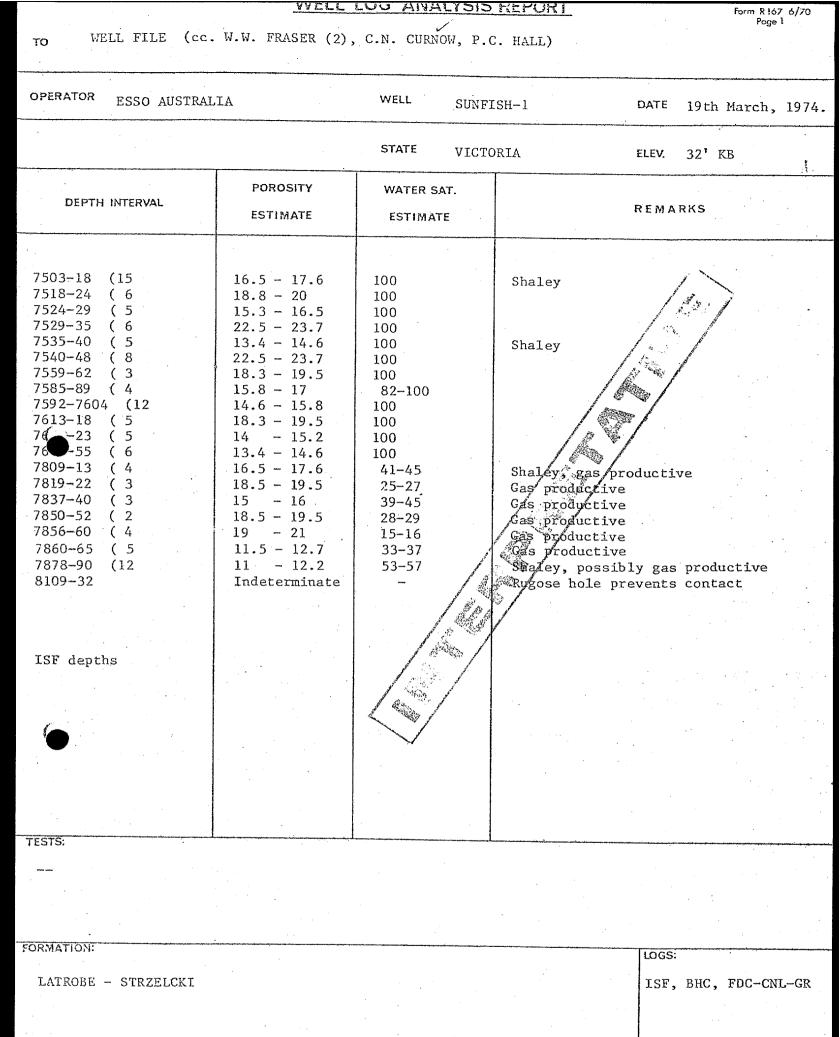
STATE VICTORIA

32'KB

ELEV.

DEPTH INTERVALPOROSITYWATER SAT. ESTIMATEREMARKS5520-27 (725.5-26.7100Formation water productive formation water productive5540-56 (727.3-29.7100Formation water productive productive5541-45 (420.6-21.8100Formation water productive productive5645-56 (724.3-25.5100Formation water productive productive5625-30 (528.0-29.7100Formation water productive productive5722-28 (620.0-21.2100Formation water productive productive5722-33 (523.7-25.0100Formation water productive productive5815-20 (520.6-21.834-37Shalf of 10 productive for any productive5832-37 (518.2-19.540-44Shalf of 10 productive fas productive598-6002 (417.6-18.939-42Shalf of 28 productive fas productive598-6002 (417.6-18.939-42Shalf of 28 productive fas productive6034-39 (522.5-24.5 - 22.5-24.5 -12-23Gas productive fas productive6136-61 (524.0-26.011Gas productive fas productive6136-73 (522.5-24.5 - 10-2119-31Gas productive fas productive6136-61 (524.0-26.011Gas productive fas productive6136-73 (522.5-24.5 - 11-13Gas productive Gas productive6136-73 (522.5-24.5 - 11-13Gas productive Gas productive6316-61 (524.0-26.011632-26 (620.0-21		······		
ESTIMATE ESTIMATE ESTIMATE 5520-27 (7 25.5-26.7 100 Formation water productive 5527-34 (7 27.3-29.7 100 Formation water productive 5541-45 (4 20.6-21.8 100 Formation water productive 5645-56 (7 24.3-25.5 100 Formation water productive 5625-30 (5 28.5-20.7 100 Formation water productive 5722-28 (6 20.0-21.2 100 Formation water productive 5722-33 (5 23.7-25.0 100 Formation water productive 5815-20 (5 20.6-21.8 34-37 Shalfs, cill productive 5832-37 (5 18.2-19.5 40-44 Shalfs, cill productive 5972-77 (5 22.0-24.0 16-18 Ga productive 5972-77 (5 22.0-24.5 21-23 Gras productive 5972-77 (5 22.0-24.5 16-18 Ga productive 6034-39 (5 22.5-24.5 21-23 Gras productive 6168-56 (8 21.2-22.5 19-21 Gas productive 6168-56 (6 21.2		POROSITY	WATER SAT.	
5520-27(725.5-26.7100Formation water productive5527-34(727.3-29.7100Formation water productive5541-45(420.6-21.8100Formation water productive5545-30(724.3-25.5100Formation water productive5616-20. (428.5-30.329-3101productive5722-38(620.0-21.2100Formation water productive5722-38(620.0-21.2100Formation water productive5722-38(523.7-25.0100Formation water productive5742-38(520.6-21.834-37Shalew cit productive5742-37(518.2-19.540-44Shalew cit productive5815-20(522.6-21.835.38Shalew cit productive5932-37(518.2-19.540-44Shalew cit productive5932-39(223.0-24.328-30Car productive5932-6002(417.6-18.939-42Shalew cit productive5932-6002(417.6-18.939-36Car productive6032-39(522.5-24.5 -21-23Gas productive6032-39(522.5-24.5 -21-23Gas productive6168-61(524.0-26.01146168-73(522.0-26.04Gas productive6168-62(623.0-24.326/286168-73(522.0-26.0116168-63(320.0-21.227-296313-1	DEPTH INIERVAL	ESTIMATE	ESTIMATE	REMARKS
5527-34(727.3-29.7100Formation water productive formation water pro		· · · · · · · · · · · · · · · · · · ·		· · · · ·
5527-34(727.3-29.7100Formation water productive formation water pro	5520-27 (7	25.5-26.7	100	Formation waton productive
5541-45 (420.6-21.8100Formation water productive5549-56 (724.3-25.5100Formation water productive5616-20. (428.5-30.329-31100Formation water productive5625-30 (528.0-29.7100Formation water productive5722-28 (620.0-21.2100Formation water productive5722-28 (620.0-21.2100Formation water productive5740-48 (824.3-25.5100Formatif water productive5815-20 (520.6-21.834-37Shale of 1 productive5835-30 (521.0-24.328-30Gappedutive9-22 (3.20-24.328-30Gappedutive9-22 (3.20-24.016-18Shale of 1 productive998-6002 (417.6-18.939-42998-6002 (417.6-18.939-42998-6002 (417.6-18.939-426034-39 (522.5-24.521-23604-59 (313.2-19.535-386142-56 (821.2-22.519-2123-366156-61 (524.0-26.01129.26156-61 (524.0-26.06161-68 (724.0-26.0618-59 (924.0-26.0618-59 (924.0-26.0618-51 (320.0-21.223.0-24.326/286316-52 (623.0-24.3634-52 (623.0-24.3634-52 (623.0-24.3635-63 (326.2-28.0726.287-71 (63-5621.0-21.2723.0-24.326/2826.2 </td <td></td> <td></td> <td>1 1</td> <td></td>			1 1	
5549-56 (724, 3-25, 5100Formation water froductive $5616-20.$ (428, 5-30. 329-31011productive $5625-30.$ (528, 0-29, 7100Formation water productive $5722-28.$ (620, 0-21. 2100Formation water productive $5722-33.$ (523, 7-25, 0100Formation water productive $5740-48.$ (824, 3-25, 5100Formation water productive $5740-48.$ (824, 3-25, 5100Formation water productive $5815-20.$ (520, 6-21, 834-37Shalfer, dar productive $5832-37.$ (518, 2-19, 540-44Shalfer, dar productive $693-79.$ (2, 2)20, 6-21, 835, 38Shalfer, dar productive $972-77.$ (522, 0-24, 016-18Gas productive $992.2.$ (3 -20, 6-21, 835, 38Shalfer, dar productive $6034-39.$ (522, 5-24, 521-23Shalfer, dar productive $6034-39.$ (522, 5-24, 521-23Shalfer, dar productive $6036-69.$ (321, 8-23. 032-34Gas productive $6148-56.$ (821, 2-22. 519-21Gas productive $6148-56.$ (821, 2-22. 519-21Gas productive $6151-68.$ (724, 0-26. 011Gas productive $6154-56.$ (621, 2-29. 714-13Gas productive $6154-56.$ (623, 0-24. 326-28011 $615-68.$ (720, 0-21. 227-29Gas productive $6342-46.$ (423, -29. 714-15Gas productive </td <td></td> <td></td> <td></td> <td>Formation water productive</td>				Formation water productive
5616-20. (428.5-30.329-31Oil productive5625-30. (528.0-29.7100Formation vater productive5722-28. (620.0-21.2100Formation vater productive5728-33. (523.7-25.0100Formation vater productive5740-48. (824.3-25.5100Formation vater productive5815-20. (520.6-21.834-37Shale oil productive5835-37. (518.2-19.540-44Shale oil productive9-22. (3. 20.6-21.835.38Syare, dar productive9-72. (3. 20.6-21.8)35.38Syare, dar productive972-77. (522.0-24.016-18972-77. (522.5-24.5 -21-236034-39. (522.5-24.5 -21-236034-39. (522.5-24.5 -21-236036-62. (220.0-21.233-366148-56. (621.2-22.599-8. 6002. (417.6-18.939-4.235-386148-56. (621.2-22.599-3135-386148-56. (724.0-26.06146-56. (724.0-26.06161-68. (724.0-26.06186-97. (524.0-26.06313-16. (320.0-21.26312-16. (320.0-21.26346-52. (623.0-24.36346-52. (623.0-24.36346-52. (623.0-24.36346-52. (623.0-24.36346-52. (623.0-24.36346-52. (623.0-24.36346-52. (623.0-24.36346-52. (623.0-24.36346-52. (623.0-24.3<			1	
5625-30 (5 $28.0-29.7$ 100 Formation water productive $5722-28$ (6 $20.0-21.2$ 100 Formation water productive $5728-33$ (5 $23.7-25.0$ 100 Formation water productive $5740-48$ (8 $24.3-25.5$ 100 Formation water productive $5813-20$ (5 $20.6-21.8$ $34-37$ Shale, oil productive $5832-37$ (5 $18.2-19.5$ $40-44$ Shale, oil productive $9-22$ (3 - $20.6-21.8$ 35.38 Shale, oil productive $9-22$ (3 - $20.6-21.8$ 35.38 Shale, oil productive 9922 (3 - $20.6-21.8$ 35.38 Shale, oil productive 9922 (3 - $20.6-21.8$ 35.38 Shale, for formation water productive 9922 (3 - $20.6-21.8$ 35.38 Shale, for formation water 9922 (3 - $20.6-21.8$ 35.38 Shale, for formation water 9922 (3 - $20.6-21.8$ 35.38 Shale, for formation water $5972-77$ (5 $22.0-24.0$ $16-18$ Shale, for formation water $6060-62$ (2 $20-21.2$ $33-36$ Gas productive $6148-56$ (6 $21.2-22.5$ $19-21$ Gas productive $6186-73$ (5 $24.0-26.0$ 11 Gas productive $6316-22$ (6 $24.0-26.0$ $17-16$ Gas productive $6316-22$ (6 $24.0-26.0$ $17-16$ Gas productive $6346-56$ (3 2024.3 $26-28$ 01 $6346-52$ (6 $24.0-26.0$ $17-16$ Gas productive $6346-52$ (6 $24.0-26.0$			1 1	
5722-28 (6 $20.0-21.2$ 100 Formation vater productive $5722-33$ (5 $23.7-25.0$ 100 Formation vater productive $5740-48$ (8 $24.3-25.5$ 100 Formation vater productive $5815-20$ (5 $20.6-21.8$ $34-37$ Shale, oil productive $5815-20$ (5 $20.6-21.8$ $34-37$ Shale, oil productive $5832-37$ (5 $18.2-19.5$ $40-44$ Shale, oil productive $9-22$ (3 $20.6-21.8$ 35.38 Shale, oil productive $9-22$ (3 $20.6-21.8$ 35.38 Shale, oil productive $9-22$ (4 $17.6-18.9$ $9-42$ Shale, oil productive $9-22$ (5 $22.0-24.0$ $16-18$ Ga productive $6034-39$ (5 $22.5-24.5 21-23$ Gas productive $6034-39$ (5 $22.5-24.5 21-23$ Gas productive $6096-99$ (3 $21.8-23.0$ $32-34$ Gas productive $6148-56$ (8 $21.2-22.5$ $19-21$ Gas productive $6156-61$ (5 $24.0-26.0$ 11 Gas productive $6168-73$ (5 $22.5-24.5$ $11-13$ Gas productive $618-73$ (5 $22.5-24.5$ $11-13$ Gas productive $618-56$ (6 $20.0-21.2$ $27-29$ Gas productive $618-67$ (24.0-26.0 11 Gas productive $618-73$ (5 $22.5-24.5$ $11-13$ Gas productive $633-16$ (3 $20.0-21.2$ $27-29$ $6346-52$ (6 $23.0-24.3$ $26-28$ $6346-52$ (6 $23.0-24.3$ $26-28$ $6346-52$ (6 </td <td></td> <td>1</td> <td>1 6</td> <td></td>		1	1 6	
5728-33(523.7-25.0100Formation water productive5740-48(824.3-25.5100Formation water productive5815-20(520.6-21.834-37Shaley oil productive5832-37(518.2-19.540-44Shaley oil productive9737-89(223.0-24.328-30Cas productive972-77(522.0-24.016-18Gas productive972-77(522.0-24.016-18Gas productive6034-39(522.5-24.5 -21-23Gas productive603-99(321.8-23.032-34Gas productive6123-26(313.2-19.535-38Shaley, Bas productive6148-56(821.2-22.519-21Gas productive6166-61(524.0-26.011Gas productive6186-95(924.0-26.010-11Gas productive6186-95(924.0-26.010-11Gas productive6346-52(623.0-24.326-72Gas productive6346-52(623.0-24.326-72Shaley, Gas productive6346-52(623.0-24.326-72Shaley, Gas productive6346-52(623.0-24.326-72Shaley, Gas productive6346-52(623.0-24.326-72Shaley, Gas productive6346-52(623.0-24.326-72Shaley, Gas productive6346-52(623.0-24.326-72Shaley, Gas productive6346-52(623.0-		,	1 7	Formation water productive
5740-48 (8 $24.3-25.5$ 100Formative after productive $5815-20$ (5 $20.6-21.8$ $34-37$ Shales oil productive $5832-37$ (5 $18.2-19.5$ $40-44$ Shales oil productive $587-89$ (2 $23.0-24.3$ $28-30$ Cas productive $9-22$ (3 $20.6-21.8$ 35.38 Shales oil productive $9-72-77$ (5 $22.0-24.0$ $16-18$ Gas productive $5998-6002$ (4 $17.6-18.9$ $9-42$ Shales gas productive $6034-39$ (5 $22.5-24.5 21-23$ Gas productive $6060-62$ (2 $20.0-21.2$ $33-36$ Cas productive $6123-26$ (3 $13.2-19.5$ $35-38$ Shales gas productive $6148-56$ (8 $21.2-22.5$ $19-21$ Cas productive $6161-68$ (7 $24.0-26.0$ 11Fas productive $6168-73$ (5 $22.5-24.5$ $11-13$ Gas productive $618-73$ (5 $22.5-24.5$ $11-13$ Gas productive $6131-16$ (3 $20.0-21.2$ $27-29$ Cas productive $6342-46$ (4 $27.3-29.7$ $14-15$ Gas productive $6342-46$ (6 $23.0-24.3$ $26-28$ Shaley, gas productive $6342-46$ (4 $27.3-29.7$ $4-29.7$ Gas productive $6342-46$ (4 $27.3-$		1 1	1	Pormation water productive
5815-20 (5 $20.6-21.8$ $34-37$ $10.10.200000000000000000000000000000000$	•	1	1	Formation and ductive
5832-37 (5 $18.2-19.5$ $40-44$ $5hales, oil productive9-22 (3 -23.0-24.328-30Gas productive9-22 (3 -20.6-21.835.38Shales, fas productive5972-77 (522.0-24.016-18Gas productive5998-6002 (417.6-18.939-42Shaley, fas productive6030-362 (220.0-21.233-36Gas productive6060-62 (220.0-21.233-36Gas productive6060-65 (318.2-19.535-38Shaley, gas productive6123-26 (318.2-19.535-38Shaley, gas productive6148-56 (821.2-22.519-21Gas productive6161-68 (724.0-26.011Gas productive6168-73 (522.5-24.511-13Gas productive6186-95 (924.0-26.010-11Gas productive6186-95 (924.0-26.08Gas productive6316-22 (624.0-26.08Gas productive6342-46 (427.3-29.714-15Gas productive6342-62 (623.0-24.326/28Shaley, gas productive6346-52 (623.0-24.326/28Shaley, gas productive636-67 (420.0-21.832.37Gas productive6346-52 (623.0-24.326/28Shaley, oil productive636-67 (420.0-21.832.37Gas productive636-67 (420.0-21.832.37Gas produc$		1	1	Chaladon waker productive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 I		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	1 1		
5972-77 (5 $22.0-24.0$ $16-18$ $5ap$ productive $5998-6002$ (4 $17.6-18.9$ $39-42$ $5ap$ productive $6034-39$ (5 $22.5-24.5 21-23$ $5ap$ productive $6060-62$ (2 $20.0-21.2$ $33-36$ Gas productive $6096-99$ (3 $21.8-23.0$ $32-34$ Gas productive $6123-26$ (3 $13.2-19.5$ $35-38$ $Shaley$, gas productive $6148-56$ (8 $21.2-22.5$ $19-21$ Gas productive $6156-61$ (5 $24.0-26.0$ 11 Gas productive $6161-68$ (7 $24.0-26.0$ 4 Gas productive $6186-73$ (5 $22.5-24.5$ $11-13$ Gas productive $6186-73$ (5 $22.5-24.5$ $11-13$ Gas productive $6186-73$ (5 $22.5-24.5$ $11-13$ Gas productive $6313-16$ (3 $20.0-21.2$ $27-29$ Gas productive $6346-52$ (6 $24.0-26.0$ $17-18$ Gas productive $6346-52$ (6 $23.0-24.3$ $26/28$ $Shaley$, gas productive $6346-52$ (6 $23.0-24.3$ $26/28$ $Shaley$, gas productive $6346-53$ (3 $26.2-28.0$ $26-28$ 011 productive $637-71$ (4 $20.0-21.8$ 43.47 $Shaley$, $oil productive637-71 (420.0-21.843.47Shaley, oil productive638-50 (217.6-19.533-37Gas productive6566-70 (416.5-18.229-33Gas productive$		1	1 1 1	
5998-6002 (4 $17.6-18.9$ $39-42$ Shiley gas productive $6034-39$ (5 $22.5-24.5 21-23$ $3a-36$ as productive $6060-62$ (2 $20.0-21.2$ $33-36$ as productive $6096-99$ (3 $21.8-23.0$ $32-34$ as productive $6123-26$ (3 $13.2-19.5$ $35-38$ as productive $6148-56$ (8 $21.2-22.5$ $19-21$ Gas productive $6156-61$ (5 $24.0-26.0$ 11 as productive $6161-68$ (7 $24.0-26.0$ 4 Gas productive $6168-73$ (5 $22.5-24.5$ $11-13$ Gas productive $6175-86$ (11 $24.0-26.0$ 4 Gas productive $6313-16$ (3 $20.0-21.2$ $27-29$ Gas productive $6346-52$ (6 $23.0-24.3$ $26-28$ Gas productive $6346-52$ (6 $23.0-24.3$ $26-28$ Gas productive $635-67$ (4 $20.0-21.8$ $26-28$ Gas productive $635-71$ (4 $20.0-21.8$ $43-7$ $Shaley, gas$ productive $635-67$ (4 $20.0-21.8$ $43-7$ $Shaley, oil productive635-67 (420.0-21.843-7Shaley, oil productive635-67 (420.0-21.843-75a-87635-67 (420.0-21.843-75a-87635-67 (420.0-21.843-7635-67 (420.2-26.732-876566-70 (416.5-18.229-336as productive6as productive636-67 (416.5-18.229-3$				Sharey, gas productive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•	sas productive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · ·			Shaley, gas productive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	1	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3 5	Charaductive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1 2 1 1	Fas productive
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·		Gas productive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		111-13 / 8 /	Gas productive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·		8 100 Con 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1 8 4.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7 20 5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		Ail productive
0 25.5-26.7 82-87 Formation water productive 6435-41 (6 21.2-23.0 18=20 Gas productive 6510-16 (6 23.0-24.3 19-20 Gas productive 6548-50 (2 17.6-19.5 33-37 Gas productive 6566-70 (4 16.5-18.2 29-33 Gas productive		20.0-21.8		
6435-41 (6 21.2-23.0 18=20/ Gas productive 6510-16 (6 23.0-24.3 19-20 Gas productive 6548-50 (2 17.6-19.5 33-37 Gas productive 6566-70 (4 16.5-18.2 29-33 Gas productive	5 07-71 (4			
6510-16 (6 23.0-24.3 19-20 Gas productive 6548-50 (2 17.6-19.5 33-37 Gas productive 6566-70 (4 16.5-18.2 29-33 Gas productive	•	21.2-23.0		
6548-50 (2 17.6-19.5 33-37 Gas productive 6566-70 (4 16.5-18.2 29-33 Gas productive		23.0-24:3	4. 7	
6566-70 (4 16.5-18.2 29-33 Gas productive		17.6-19.5		
	6566-70 (4.			
	- 200	1		

TESTS:


F.I.T. program in progress

FORMATION: Latrobe Logs: ISF,FDC-CNL-GR

The sands listed in the interval 6800'to 7340' are those with low to nil dolmite content All sands in this interval appear to be water bearing.

B in G

· · · · · · · · · · · · · · · · · · ·	<u> </u>	PAGE 2		R1676/70 Page 2
······································	S	UNFISH-1	WELL	
	POROSITY	WATER SAT.		
DEPTH INTERVAL	ESTIMATE	ESTIMATE	REMARKS	
	<u></u>			
6570-73 (3	21.2-22.5	20-21	Gas productive	· · · ·
6573-78 (5 6580-83 (3	16.5-18.2 17.6-18.9	30-33	Gas productive Gas productive	
6583-90 (7	18.0-20.0	11-12	Gas productive	
6603-06 (3 6606-11 (5	20.0-21.8	23-26	Gas productive Gas productive	
6611-19 (8	13.0-15.0	22-26	Gas productive	
6619-28 (9 6634-37 (3	20.0-22.0 20.0-21.2	10-11 23-24	Gas productive Gas productive	
6637-45 (8	21.0-23.0	17–19	Gas productive	
6645-48 (3 6658-60 (2	17.6-18.9 17.0-18.2	28-30 36-39	Gas productive Gas productive	
6668-70 (2	24.3-25.5	23-24	Gas productive	
6690-92 (2 6694-97 (3	18.9-20.6 23.7-25.0	31-34 24-26	Gas productive Gas productive	
6730-34 (4	18.8-20.6	2730	Gas productive	
6734-39 (5 6739-45 (6	21.5-23.5 21.2-22.5	17-19 27-29	Gas productive Gas productive	
6768-82 (14	21.5-23.5	16-18	Gas productive	
6 - 3 - 93 (4 6 - 64 (4	17.6-18.8	39-42 100	Shaley, gas productive Formation water productiv	•
7002-08 (6	13.4-15.3	100	Formation water productive	
7016-26 (10 7136-41 (5	17.6-18.8 17.0-18.2	100 100	Formation water productiv	
7170-75 (5	15.8-17.0	100	Formation water productive Formation water productive	
7175-82 (7 7345-52 (7	17.6-18.8 Dolomitic		Formation water productiv	
7352-56 (4	14.5-15.8	33-37	Possibly oil productive Oil productive	
7356-64 (8 7364-74 (10	18.2-20.0 14.5-16.4	25-28 26-31	Oil productive	
7374-82 (8	16.4-17.6	28-730	0il productive 0il productive	
7407-11 (4 7421-23 (2	15.8-17.0 Dolomitic	36-40-32	Oil productive	
7435-44 (9	17.0-18.8	/77=88	No show in core Formation water productiv	re
7444-56 (12 7456-71 (15	15.0-17.0 17.0-18.8	400	Formation water productiv	
	11.0 10.0 2	reg /	Formation water productiv	e
SF. depth-				
		sativity change		•
•	? marked	her of reitren		
		unistivity change i oil rectren 20 to 10		
· · · ·				
			· · ·	
•				

COMMENTS:

1000

WELL COMPLETION REPORT

APPENDIX VI

CORE DESCRIPTIONS

ESSO STANDARD OIL (AUSTRALIA) LTD. CORE DESCRIPTION

.

			CORE DESCRIPTION
	. •		Core No. 1 (ONE)
			WELL: SUNFISH -1
nterval Core	17360-738	36 11 .,	Cut 26 A., Recovered 26 A., (100 %) Fm. LATROBE
			20 8 15/32 in., Dose by S.D. GILES Date 18-2-1974
Depth 3 Coring Rate (min./ft.)	Graphic (1" = 5')	Shows	Interval (ft.) Descriptive Lithology
7360'0"	>	1	7360'0" - 7364'10' SANDSTONE 1. gy., a to vice to granule, grasse
	>	0	with minor littice, clayey matr, sl. dol. Grains
Rolling			ang. to s-rd, mad sold. Bads different-
6.5 - 1		3+	isted into cl., w. arth., ca. sat., and ca., mad
	⇒	Jellow callent	sold al. dayey ast. Crossbadding 5-25
	⇒ <u> </u>	10	rare ang. sh. clasts to 2".
		ing	Por 15-20%. Ex. even 1. ylur. fluor, ex.
	≥	ندلج م	bluish-ylu cut, which disappears rapidly
●┼╌┼┤∓		Mer.	after evopin of solvent.
	3	1.1	7364'10" - 7365'0" SANDATONE, 1. gy., f-m, hd, th, grad.
		200	contact to adj. bods. Bod angle 30°
	3	11-1-	
	-	100	73650 - 7367 4" SANDSFORE ligy n-cs, grose, hd., low
		e Lo	7367'4" - 7370'4" Source to 20°
	► 	0	7367'4" - 7370'4" SANDSTONE, 1.94 CS., 92050, hd., H.
			Crossbeds 10-15" Porosity moderate Cody. 7370'4" - 7371'8" Sourcesting 1
╈			7370'4" - 7371'8" SANDSTONE, 1.97., CS., as abuse, crossbuds
			15°. Porosity moderate to good. Fluor: as about 7371'8' - 7371'10" Sugge dark ar star eraril as in a two carbo
			the second se
┼╌┼╌┼┦╌┼			7371'10" - 7373'0" SAMDATORE , with 1" of elements of
			7373'0" - 7373'4" SANDSTONE y a to amagle and la
17386	END OF CORE		and the second sec
			porosity, vgd. spotty fluor, vgd. cut., ac abo
			7373'4" - 7377'10" SANDSTONE fm. many this wavy carb.
╅╍┾╌┾╌┼			beds. Becane sat, a below 7376'0" Brosity
			low to mod (below 7376'). Fluor + cut as abo
			st. who cot. Dal crossbeds to 25°
+-+-+			1377'10' - 7378'0" SANDSTONE from gr., clayey Porosity x low
			7378'0" - 7382'0" SHALE dk. gy. silly
			7382'0" - 7384'6" SHALE v. dk. gy; carb., silty Freq. Hain waty
			stringers of coalified plant remains to 0.50
		-	7384'6" - 7385'8" Share dk.g. silly.
EMARKS:			
Daoly	fore and		Sont Baroid Sont Resid hydrocarb. Perm.
7361	19.45 2		
	19.32 9	37	THEIN CLOSE SHOELES
7363			REP SION BRIN EPRCO LOCE ->
7363	23.017	30	747 7.689 1361.66
·	23.027	30.	
7370	23.027 19.217 19.377	43.	$\frac{747}{927} = \frac{7.637}{6.357} = \frac{1364.66}{517} = \frac{1364.66}{517} = \frac{1364.66}{517} = \frac{1364.66}{517} = \frac{136}{517} = \frac{136}{5$

ESSO STANDARD OIL (AUSTRALIA) LTD. CORE DESCRIPTION

.

.

Core No. 2

•

					•		• •	WELL SUNFISH - 1
	Inter	wal (Cored.	7386 - 74	.16 s.,	Cut 30	ft., Recovered 30	A., (100 %) Fm. LATROBE GP.
	Bit 1	Гура.	(20	, Bit Si	8 ¹⁵ /32	in., Dase. by M.HORD	ERN Date 18/2/1974
	C.	Depti oring min./	1 & Rate	Graphic (1" = 5)		Interval (ft.)		Descriptive Lithology
3 3 - - - -		8 - /	2 :5				Stringers (relic rootlets, plant rem Xtalline (acicular xtals) pyrite (12"-: 7400'-7401' sectn. Occas. disrupt Coaly filaments prominent at sha	
95-						7401 - 7405	mod.well srtd, quartzose, minor lith K<0.1-128; Some shaled coal lam	at top, mainly medv.cs, wh-lt.gry, saSr, ics, consolidated with mod.dolom.cement, \$13-16 inations + rootlets; inclined (20°) parallel lamin's rong bluish wh.fluorescence overall, exc.milky.
9-5- 05-							filaments - For bluich who fluore has no fluor- 2': SHALE - gry silty some con	-sr, v. slightly dolon, interlaminated with shale scence at top only of unit - no cut. Remainder th. & coal (leaf + stem remains, rootlets) ase (7411-7412). Very CS. Sand grains scattered 1407'.
							Silt margases to sand, down sects "": SANDSTONE - v.f-f, 1t.gr	ely interlaminated with SHALE - blk, micac, Shale laminae decrease in frequency s on towards : - y, well std, sa-sr, sl. dolom.; decreasingly shale - bik, v. earb, micac. No fluor. or cut.
ىرىيە بىرىكىيە بىرىكىيە بىرىيەت بىرىيەن بىرىيە بىرىيەت بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە بىرىيە	REMA							
- - -				LCCY SAME				
-								

2550 STANDARD OIL (AUSTRALIA) LTD.

.

core description

Core No. 3

	їуре.		-20	, Big Si	$8\frac{15}{32} \times 4$ in., Desc. by Ford	i., (_loo_%) Fm Dal o 27.2.74
C.	Depil bring min./	n & Rate-	Graphic (1" = 5')	Shews		Descriptive Lithology
بسجم				1	3123	
T			+		Sand (80%) v.ff. gr, poorl	a sorted, arey sands with
T				trace	dayey matrix Composed of	late fild you'r fiant mit
Ì			1	Lucar .		
					carbonaceous chips; max q	3r. Size 1.Smon Longinsi
T				frace	Massive bads to 10" Kick, 9	arely show grading but was
Ţ				1 while	bourgeneous Depusited a	resively an shales "Frende-
1				cut.	to "esteband foundary	
T				1	3135-5-1 discust data la company	- mana may
	1	ill				sasal sand glitte contain
T	· ·					herial.
T					Shale (20%) as carbonac.	www.figeli lamination
l					massive mile ut 1 2" IL	
Í	1				1 h	ick, with fews stringers
1					- Jon und 1-2 mm this	
1						
1		11			Shale (Sod) carbonaces	is a a junit when he are
1					with the second in the second	
-				محولنع		in a said Sails frid
1				floor.	Silty in parts & unay grad	Lind sand Coal clast
						at travest days and 31
\downarrow						a second a s
1		<u> </u>				y even les preus; mare
					intimately assaciated	with shales Sharp t eno
4		ļ.,			to be ensented with the ensented	but gradiational contra
1					Clasks + Ask	as of carb millise some
-						
\downarrow					por por signation for	mational conglemente
1					the base of sand bec	<u>\.</u>
+]	the second system of a second	
Ļ		<u> </u>	-		\$15 3	
4		-	.			
+		<u> -</u>				
+			-			
					4" waxpades for EPRCo at 8129, 30	2, 32, 33, 34, 35 0
$\frac{1}{1}$			-		Palymalogy 39- Hes B129, 33, 3	
╀		1			Core lob sharing our	
+			-		Core lab specimens 8132, 8157	
╉		<u> </u>			Pacasity samples 8129, 32, 35,	55.
		1	1			
À	ARX	5:				
				•		

Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberg

 Δ_{-}

CORE ANALYSIS RESULTS

KE Sof (i) Unless otherwise stated, porosities and permeabilities were determined on two plugs (V&H) cut vertically and horizontally to th the core. NOTE: Ruska porosimeter and permeameter were used with air and dry nitrogen as the saturating and flowing media respectively. (ii) Oi-L and water saturations were determined using Soxhlet type apparatus. (iii) Acetone test precipitates are recorded as Neg., Irace, Fair, Strong or Very Strong.

WELL NAME AND NO. Sunfish No. 1 DATE ANALYSIS COMPLETED

28/4/76

•

ECEIVE

1 4 MAY 1976

BASIC

10.	Sampl Depth feet			Effective	Absolut Permeab (Millid	ility	(gm/c	ty c.)	Fluid Saturat (% pore		Core Water Salinity		Fluorescence of freshly broken	Sample "cut" in tetrachlorethylene
	From	To		two plugs (Z Bulk Vol.	V	H		Apparent Grain	Water	011	(p.p.m. NaCl)	1est	core	
	7361'2"	7361'11"	Sst;m gr. to v.c. gr.	14.2	122	579	2.27	2.65	14	5.9	N.D.	Good	Dull yellow spotted	Trace
1	 7364 1 6#	736513	As above	15.4	105	468	2.24	2.64	5	9.4	N.D.	Good	Bright yello spotted	Fair
' 1	736915*		Sst; f.gr. to m.gr.		9.7	180	2.16	2.64	6	3,6	N.D	Good	Fair spotted yellow	Fair
	7371111	7372'9	Sst;v.f.gr. to f.gr.ca		1.3	3.2	2.24	2.64	5	3.2	N.D.	Goed	<u>As above</u> Trace spotte	<u>Fair</u>
1	737513*	7376*3*		16.7	20	2.5	2.2	2.65	6	6.8	<u> N.D.</u>	Good	vellow	<u>Trace</u>
2	7392 ' 0"	7392'10"	Shale dk grey	5.6	< 0.1	<0.1	2.4	2.64	53	7.4	N.D.	N11	NI1 Bright	<u>Hil</u>
2	7402"6"	740315#	Sst;m.gr. šl. carb	14.4	7.1	136	2.2	2.63	9	4.4	N.D.	Fair	yellow Poor yellow	Fair
3	8134*3"	8135 4"	Sst; f.gr. slty sl.	11.0	<0.1	0.16	2.4	2 2.72	6	6.4	N.D.	Fair	orange	N11

Remarks: -

General File No. 74/1076

Well File No.

 $\mathbf{1}_{F}$

ž

Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geochysics, Canberga

CORE ANALYSIS RESULTS

NOTE: (i) Unless otherwise stated, porosities and permeabilities were determined on two plugs (V&H) cut vertically and horizontally to the prise of the corre. Ruska porosimeter and permeameter were used with air and dry nitrogen as the saturating and flowing media respectively. (ii) Oil and water saturations were determined using Soxhlet type apparatus. (iii) Acetone test precipitates are recorded as Neg., Trace, Fair, Strong or Very Strong.

1 raile

WELL NAME AND NO. _____ Sunfish No. 1

129

DATE ANALYSIS COMPLETED ______ 28/3/76

1.1

CEIVE

1 4 MAY 1976

Ē

Core No.	Samp1 1 Dept1 feet	1	Lithology	Effective Porosity	Absolu Permea (Milli	bility	Avera Densi (gm/d	ity c.)			Core Water Salinity	Acetone	- I	Sample cut in tetrachlorethylene
	From	To		two plugs (% Bulk Vol.	· · v	н		Apparent Grain	Water	011	(p.p.m. NaCl)	Test	core	
3	8141'0"	8142*1*	Sist;aren calc.	9.1	<0.1	<0.1	2_64	2.90	18	2.6	N.D.	Trace	NT 1	Ni 1
3	8155*4#	815614"	Sist; aren.	11.0	< 0.1	< 0.1	2.48	2.77	24	1.9	N.D.	Trace	N1 1	Ni 1
									_					•
					_	 			 					
							`	 	 					
	-		6		 	 		 	 		 			

Remarks: -

General File No. 74/1076 Well File No.

. .

1

2/2

DEPTH LITHOLOGY PERM. md. POROS- ITY % SATURATIONS %PORE SPACE % GAS BULK VOL. 7361' SAND 91 19 8·6 39 10 7363' " 82 19 8·0 38 10 7370' " 1364 23 7·7 31 14	WELL LOGON TRACK	COMPANY: ESSO (AUST.) L WELL: SUNFISH NO.1 FIELD: GIPPSLAND BASIN					STA	BASIC BASIC JNTY: OFFSHORE ITE : VICTORIA C-20 DIAMETER 8:46
7361' SAND 91 19 8-6 39 10 7363' " 82 19 8-0 38 10 7370' " 1364 23 7.7 31 14 7372' " - 19 6-3 44 10 TOO FRIABLE FOR PERM 7372' " - 19 6-3 44 10 TOO FRIABLE FOR PERM 7378' " - 19 6-3 43 10 7378' " 73 21 7-5 40 11 7402' " 50 14 5-0 46 7 7405' " 128 16 7-9 55 6 7405' " (1 13 7-1 56 5 8129' " 11 0 56 5 8132' " 11 0 43 8 8135' " 11 8 43 5 <th></th> <th></th> <th>PERM.</th> <th>POROS-</th> <th>SATURA %PORE</th> <th>AT IONS SPACE</th> <th>% GAS BULK</th> <th></th>			PERM.	POROS-	SATURA %PORE	AT IONS SPACE	% GAS BULK	
$7363'$ " 82 19 8.0 38 10 $7370'$ " 1364 23 7.7 31 14 $7372'$ " - 19 6.3 44 10 TOO FRIABLE FOR PERM $7372'$ " - 19 6.3 44 10 TOO FRIABLE FOR PERM $7375'$ " 1.3 20 6.3 43 10 $7378'$ " 73 21 7.5 40 11 $7402'$ " 50 14 5.0 46 7 $7405'$ " 128 16 7.9 55 6 $7415'$ " $\zeta 1$ 13 7.1 56 5 $8129'$ " $\zeta 1$ 11 0 56 5 $8132'$ " $\zeta 1$ 14 0 43 8 $8135'$ " $\zeta 1$ 11 8 43 5	7361'	SAND	91	19	ł		10	
7370' " I364 23 $7 \cdot 7$ 31 14 7372' " - 19 $6 \cdot 3$ 44 10 TOO FRIABLE FOR PERM 7372' " - 19 $6 \cdot 3$ 44 10 TOO FRIABLE FOR PERM 7375' " 1-3 20 $6 \cdot 3$ 43 10 7378' " 73 21 $7 \cdot 5$ 40 11 7402' " 50 14 $5 \cdot 0$ 46 7 7405' " 128 16 $7 \cdot 9$ 55 6 7415' " $\langle 1$ 13 $7 \cdot 1$ 56 5 8129' " $\langle 1$ 13 $7 \cdot 1$ 56 5 8132' " $\langle 1$ 14 0 43 8 8135' " $\langle 1$ 11 8 43 5			+		8.0	38	10	· · · · · · · · · · · · · · · · · · ·
$7372'$ " - 19 $6\cdot3$ 44 10 TOO FRIABLE FOR PERM $775'$ " $1\cdot3$ 20 $6\cdot3$ 43 10 $7378'$ " 73 21 $7\cdot5$ 40 11 $7402'$ " 50 14 $5\cdot0$ 46 7 $7405'$ " 128 16 $7\cdot9$ 55 6 $7405'$ " 128 16 $7\cdot9$ 55 6 $7415'$ " 11 13 $7\cdot1$ 56 5 $8129'$ " 41 11 0 56 5 $8132'$ " 41 14 0 43 8 $8135'$ " 41 11 8 43 5		88	1364	23	. 7.7	31	14	¢-
1-3 20 $6-3$ 43 10 $7378'$ " 73 21 $7-5$ 40 11 $7402'$ " 50 14 $5-0$ 46 7 $7405'$ " 128 16 $7-9$ 55 6 $7415'$ " 128 16 $7-9$ 55 6 $7415'$ " 11 13 $7-1$ 56 5 $8129'$ " $(1$ 11 0 56 5 $8132'$ " $(1$ 14 0 43 8 $8135'$ " $(1$ 11 8 43 5		e N	-	19	6.3	44	10	TOO FRIABLE FOR PERM
$7378'$ " 73 21 $7\cdot5$ 40 11 $7402'$ " 50 14 $5\cdot0$ 46 7 $7405'$ " 128 16 $7\cdot9$ 55 6 $7415'$ " 11 13 $7\cdot1$ 56 5 $8129'$ " <1 11 0 56 5 $8132'$ " <1 14 0 43 8 $8135'$ " <1 11 8 43 5		81	I·3	20	6 ∙3	43	10	
7402 50 14 50 46 7 $7405'$ " 128 16 $7 \cdot 9$ 55 6 $7415'$ " $\zeta 1$ 13 $7 \cdot 1$ 56 5 8129^1 " $\zeta 1$ 11 0 56 5 $8132'$ " $\zeta 1$ 14 0 43 8 $8135'$ " $\zeta 1$ 11 8 43 5		10	73	21	7.5	40	11	
$7405'$ " $I28$ $I6$ $7 \cdot 9$ 55 6 $7415'$ " $\langle 1$ $I3$ $7 \cdot 1$ 56 5 $8I29^1$ " $\langle 1$ $I1$ 0 56 5 $8I32^1$ " $\langle 1$ $I4$ 0 43 8 $8I35'$ " $\langle 1$ $I1$ 8 43 5	7402	li li	50	14	5.0	46	7	
7415 $\langle 1 13 71 56 5 $ $8 29^1$ " $11 0 56 5 $ $8 32^1$ " $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $ $11 10 56 5 $		11	128	16	7.9	55	6	
8132 ¹ " <1	7415'	18	<1	13	7.1	56	5	н.
8135' " <1 11 8 43 5	8129	11	<۱	11	Ö	56	5	
	8132'	18	۲۱	14	0	43	8	
8155 ¹ " (1 5 0 - - • • • • • • • • • • • • • • • • • •	8135'	ŧi	۲۱	11	8	43	5	۵۵ - ۵۵ ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ -
	8155'	18	(1	5	0	-	`	
							_	
							ļ	
				ł				
	, <u>ar · cratter</u> ,							
	.						 	
		,						
	BR-1886	PRINTED IN USA		Ι		I		

SUNFISH-1

1

WELL COMPLETION REPORT

APPENDIX 7

FORMATION TEST RESULTS

Carlos States

SUNFISH-1 (F.I.Tests)

F.I.T.	<u>1 7361</u> '						
	Recovered	· .		cf.g		API	
	Pressure Gas Properties	(חחת)	3234 C	psi C.	C _	C,	C ₅
		(P P)		2 130,000			-
	· · · · · · · · · · · · · · · · · · ·	• •	100,000	190,000	11,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
F.I.T.	2 6773'						
	Recovered		230			ce. stud te, 52	API
	Pressure		3000	psi	C	C	C
	Gas Properties	(ppm)					с ₅
			172,000	130,000	14,200	6,600	1000
F.I.T.	3 6738'						
	Recovered		108 2500		;as :ondensa e water		
	Pressure		2895	psi			
	Gas Properties	(ppm)	C ₁	с ₂	C ₃	C4	· ^C 5
			142,000	129,000	15,300	7,600	1,30
F.1.T.	4 6643'						
	Recovered		124.1 2300	cc. (., gas condensa	te id water	
	Pressure		2955	psi	e mud ai	la water	•
<u>F.I.T.</u>	<u>5 7450</u> '						
	Recovered		2.5 2100		., gas water		
			8900	ppm	c1 ⁻		
	Pressure		50 3317	ppm psi	^{NO} 3		
F.I.T.	6 7350 '						
	TEST TOOL FAIL	ED TO	SEAL				
F.I.T.							
<u>r.1.1.</u>				Trac	e gas		
	Recovered		21000 5700		water		
			62.5	ppm	503 1		
	Pressure		3084.5	psi	-		
<u>F.I.T</u>	<u>. 8 6363</u> '			•			
•	Recovered		62.6 17000	c.ft cc.	., gas oil		
	Pressure		2778.5				

,

1073

. .

			SUNFISH - 1	2. 073.
- 		-2-		
F.I.T.	9 6320'			•
	Recovered	122.5	c.ft., gas	
 	Pressure	1000 2766.3	ne, rondensate, trace water psi	
F.I.T.	<u>10 6191</u> '			÷.,
	Recovered	127.6	c.ft., gas	. •
•	Pressure	200 2747.9	cc. condensate psi	
Condens by hydi	sates are light rometer and conf	brown, translucer irmed by refracto	nt, with 48-52.5 ⁰ API gravity ometer.	measured
<u>F.I.T.</u>	11 7349'			
	Tight Test	4750 5500 56.2	cc gas cut muddy water ppm Cl ppm NO ₃	
F.I.T.	12 5817'		J	
	Tight Test	3250 5750 68.75	cc muddy water ppm Cl ⁻	
стт	13 5618'	00.75	ppm NO ₃	· · · · ·
<u>F.I.T.</u>	Recovered	66.9	C.	
	Pressure	14500 2460.3	c.ft., gas cc. oil, 46° API psi	
F.I.T.				
	Recovered	55.8	c.ft., gas	-
	Pressure	1000 29 30	cc. gas cut muddy water psi	· •
F.I.T.				
	Recovered	58.8	c.ft., gas	
	Pressure	2000 2950	cc. gas cut muddy water psi	
E T T		2330	49 I	
<u>F.I.T.</u>		110	o ft. 2-5	
	Recovered	41.8	c.ft., gas cc. water at	
T ¹ T	Pressures	2944	psi	
<u>F.I.T.</u>			C.	
	Recovered	58.5 55 100	c.ft., gas cc. condensate cc. mud at	
	Pressure	2682	psi	
<u>F.I.T.</u>	18 6098'			
• •	Recovered	38.8 3000	c.ft., gas cc. water at	
	Pressure	2693	psi	
<u>F.I.T.</u>	19 5975'			•
	Recovered	57.5 74	c.ft., gas cc condensate	
	Pressure	100 2663	cc. mud at psi	· · · · · · · · · · · · · · · · · · ·
	· · ·		арана алана ал Алана алана алан	

2 0 3.

.

F.I.T. 20 8113'

Section 1

FAILED TO SEAL

F.I.T. 21 8117'

NO PRESSURE BUILD-UP - TIGHT FORMATION.

the second second

-3-

SAMPLING TIME - 55 MINUTES.

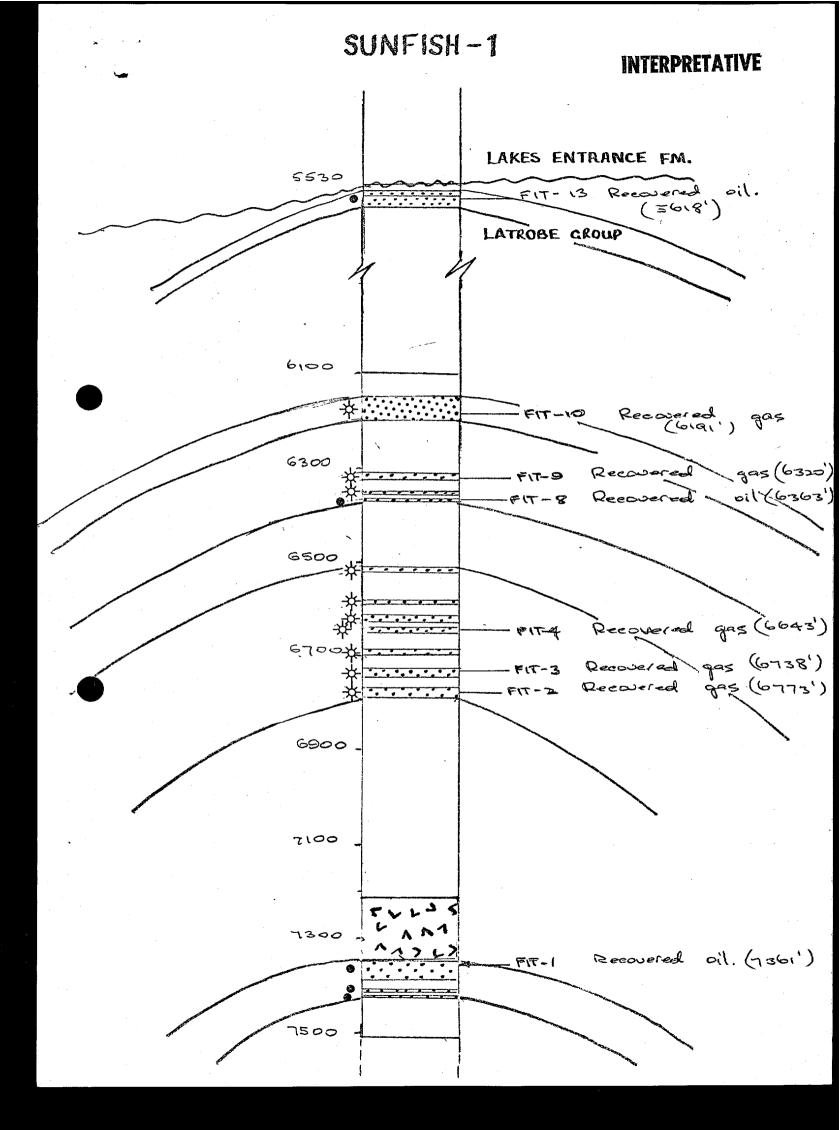
SUNFISH-1

٠.

.

1

ï


Enter.

2"Coly logi

FORMATION INTERVAL TESTS

SUMMARY

	FIT Number	$\frac{\text{Depth}}{(\text{K.B.})}$	Recovery
	1	7361′	14,250 c.c. oil. 60.4 cu. ft. gas
	· 2	6773	127.6 cu. ft. gas 230 c.c. condensate 200 c.c. mud
	. 3	6738	108 cu. ft. gas 2500 c.c. condensate
	. 4	6643′	124.1 cu. ft. gas 2300 c.c. condensate trace mud and water
-	5	7450'	2.5 cu. ft. gas 21,000 c.c. water
	6	7350'	no recovery.
5	7	7020'	trace gas. 21,000 c.c. water
	` 8	6363'	62.6 cu. ft. gas 17,000 c.c. oil
	· 9	6320′	122.5 cu. ft. gas 1000 c.c. condensate trace water.
,	. 10	6191	127.6 cu. ft. gas 200 c.c. condensate
	11	7349	4750 c.c. gas cut muddy water
	· 12	5817	3250 c.c. muddy water.
	13	5618	66.9 cu. ft. gas 14,500 c.c. oil
	14	6572	55,3 CU.Ft. GAS 1000 CC MUDDY WATER
	15	6514	58-8 au ft. GAS 2000 ec water
	16	6439	41-8 cc ft. GAS 2450 cc water
· ~	17	6036	58.5 cu. ft. GAS 150 cc (APPRER) CONDENSATE

AGNEW-GO-WESTERN PTY. LTD. 582 ST. KILDA ROAD MELBOURNE, VICTORIA 3004

ESSO AUSTRA	ALIA LIMITED	SUNFIS	H SUNFISH No.1 (VILDCAT) FEBRUARY 19, 1974
PURPOSE: Tools used:	ANDEM WITH	-800 PSI FLEMEN	WITH AMERADA GAUGES RUN IN RMATION INTERVAL TESTER. T SERIAL NO. 3282 12 HOUR CLO
	I AMERADA 8	1,900 PSI ELEMEN	T SERIAL NO. 9390 12 HOUR CLO
HOURS		PS1G 8,900	REMARKS
•2059 2154 2155	3911	3931.8	RUN IN HOLE Set Packer - Initial hydrostatic
2156 2157 2206 2207 2208 2209 2212 2213 2213 2217	3133.4 3170.1 3225.2 3231.3 3231.3 3237.5	3130.7 3130.7 3209.5 3241.9 3237.3 3237.3 3241.9 3241.9 3241.9	OPEN TOOL AND SAMPLE Seal main sampler - Open Segregator Seal Segregator
2218 2219		3885.6	RELEASE TOOL Final Hydrostatic
			Note: Maximum temperature 200°F @ 7361'
	<u>F.</u>	I.T. TEST No. 2	<u>9 6773' M.D.</u>
HOURS		PS1G 8,900	REMARKS
2324 0017 0018	3629.3	3626.3	RUN IN HOLE Set packer - Initial hydrostatic
0019 0020 0035 0036 0037 0038	2998.8 2998.8 2998.8	3001.1 3001.1 2991.8 2996.5 3001.1	OPEN TOOL AND SAMPLE Seal main sampler - Open segregator
0041		3001.1	SEAL SEGREGATOR

SEAL SEGREGATOR RELEASE TOOL FINAL HYDROSTATIC

ESSO AUSTRALIA LIMITED

0042 0043

3623.6

3617.1

SUNFISH

1.

All Dam Dam

ESSO AÚSTRALIA LIMITED

SUNFISH

SUNFISH No. 1 (WILDCA February 20, 1974

1

PURPOSE: OBTAIN SUBSURFACE PRESSURES WITH AMERADA GAUGES RUN IN TANDEM WITH SCHLUMBERGER FORMATION INTERVAL TESTER.

Tools used: 1 Amerada 11,800 psi element Serial No. 8282 1 Amerada 8,900 psi element Serial No. 9390 12 Hour clock

F.I.T. TEST No. 3 @ 6738' M.D..

	FSIG	PSIG	
10URS	11,800	8,900	REMARKS
201			RUN IN HOLE
0304			SET PACKER - INITIAL HYDROSTATIC
0305	3610,9	3593.9	
0307			OPEN TOOL AND SAMPLE
0314			F.I.T. TOOL PLUGGED Fire shaped charge
0315	2882.5	2394.7	CIRE SHAPED CHARGE
0316	2894.8	2394.7	
0325	2894.8	2894.7	SEAL MAIN CHAMBER - OPEN SEGREGATOR
0326 0328	2974.3 2974.3	2982.6 2982.6	Schl. 0000001000
0330	- フ!+ + ノ	2 Y U 2 + U	SEAL SEGREGATOR Release tool
0331	3604,8	3598.5	FINAL HYDROSTATIC
	· · · ·	F.I.T. TEST No.	4 @ 6643' M.D.
			an an Marin San Jung an an an Anna an Ang Bala an Ang Bala an Anna an Ang Bala.
0	PSIG	•	
IOURS	11,800		REMARKS
1501		•	RUN IN HOLE
1553		•	SET PACKER - INITIAL HYDROSTATIC
1554	3555.8		
1555 1556	2919.2		OPEN TOOL AND SAMPLE
1606	2919.2		
1607	2955.4		
1608	2955.4		SEAL MAIN CHAMBER - OPEN SEGREGATOR
160 <u>9</u> 1610	2925.4 2937.6		
1612	2937.6	e A	SEAL SEGREGATOR
1613			RELEASE TOOL
1614	3531.3		FINAL HYDROSTATIC
			NOTE: ELEMENT No. 9390 (0-8,900 PSI)
			WAS RUN IN TANDEM WITH THIS
			GAUGE

STYLUS WAS BROKEN (No. 1)

-RESULTS UNABLE TO BE READ.

AGNEW-GO-WESTERN FTY. LTD. 582 ST.KILDA ROAD MELBOURNE, VICTORIA 3004.

ESSO AUSTRALIA LIMITED

SUNF 1SH

SUNFISH No.1 (WILDCAT) FEBRUARY 20, 1974

FURPOSES

OBTAIN SUBSURFACE PRESSURES WITH AMERADA GAUGES RUN IN TANDEM WITH SCHLUMBERGER FORMATION INTERVAL TESTER.

Tools used: 1 Amerada 11,800 psi element Serial No. 8282 1 Amerada 8,900 psi element Serial No. 9390 12 HOUR CLOCK 12 HOUR CLOCK

F.I.T. TEST No. 5 @ 7450' M.D. .

HOURS	PSIG 11,800	PS1G 8,900	REMARKS
1745 1822 1832	3978.4		RUN IN HOLE Set packer - Initial hydrostatic
1825 1842 1843 1846 1847	3286.4 3286.4 3317		OPEN TOOL AND SAMPLE F.I.T. TOOL PLUGGED Fire shaped charge
1848 1850 1851	3317 3947.8		SEAL MAIN CHAMBER Release tool Final hydrostatic

NOTE: ELEMENT No. 9390 (0-8,900) WAS RUN IN TANDEM WITH THIS GAUGE STYLUS WAS BROKEN AGAIN (No. 2) RESULTS UNREADABLE.

F.1.T. TEST No. 6 @ 7350' M.D. - MUD RUN

INITIAL	HYDROSTATIC:	3924	PSIG
FINAL	HYDROSTATIC:	3911	PSIG

AGNEW-GO-WESTERN PTY. LTD. 582 ST.KILDA ROAD Melbourne, Victoria 3004

ESSO AUSTRALIA LIMITED

SUNFISH

SUNFISH No. 1 (WILDCAT) FEBRUARY 21, 1974

Į.

OBTAIN SUBSURFACE PRESSURES WITH AMERADA GAUGES RUN IN TANDEM WITH SCHLMBERGER FORMATION INTERVAL TESTER. PURPOSE:

lools	USED:	1	Amerada	11,800	PSI	ELEUENT	SERIAL NO.	8282	10	
· · ·		1	AHEBANA	ຂົດດດ	001		SERIAL NO.	0202		
		•	CALCUNDA	0,900	PS	ELEMENT	SERIAL NO.	9390	12 HOUR	CLOCK

F.I.T. TEST No. 7 3 7020: M.D. .

HOURS	PSIG 11,800	PS1G 8,900	REMARKS
0024 0057 0058	3757.9	- The Source -	RUN IN HOLE Set Packer - Initial Hydrostatic
0059 0100	· · · · · · · · · · · · · · · · · · ·		OPEN TOOL AND SAMPLE
0100 0101 0104 0105	2087.1 2093.2 2093.2 2087.1		
0106	2087.1		
0107 0113	2080,9 2080,9	· ·	
0114 0115 0116	2521.5 2527.6 3084.5		
0120 0121	3084.5		SEAL MAIN CHAMBER
0122	3727.3		RELEASE TOOL Final Hydrostatic
			Note: Element No. 9390 (0-8,900 psi) was run in tandem with No. 8282 (0-11,800 psi) Element No. 9390 damaged.
		F.I.T. TEST No.	<u>8 @ 6363' M.D.</u>
HUURS	PSIG 11,800	PSIG 8,900	REMARKS
0235 0305 0306	3408.7		RUN IN HOLE Set packer - Initial hydrostatic
0307 0308 0309 0318 0319	2760.1 2766.3 2766.3		OPEN TOOL AND SAMPLE
0325	2778.5 2778.5		SEAL MAIN CHAMBER
0323 0327	3339.9		RELEASE TOOL Final hydrostatic

FINAL HYDROSTATIC

NOTE: ELEMENT No. 9390 (0-8,900 PSI) RUN IN TANDEM WITH THE ABOVE ELEMENT

		•	AGNE J-GO-WESTE 582 St.Kile Melbourne, Vic	A ROAD	
	ESSO AUSTI	RALIA LIMITED	SUNF 1	ЭН -	SUNFISH No. 1 (WILDCAT) February 21, 1974
	FURPOSE:	TANDEM WITH	irface pressure Schlumberger Fo	RMATION INTERV	VAL TESTER.
	TOOLS USE	d: 1 Amerada 11 1 Amerada 8	1,800 PSI ELEMEN 3,900 PSI ELEMEN	T SERIAL NO. 8	B282 12 hour clock 9390 12 hour clock
		• •	F.I.T. TEST No	<u>9063201 M</u>	<u>.D</u> .
- -	HOURS	PSIG 11,800	PSIG 8,900	REMARKS	
	0443 0514 0515	3396.6		RUN IN HOLE	- INITIAL HYDROSTATIC
	0516 0517 0526 0527 0533 0534 0535	2705.1 2705.1 2766.3 2766.3 3359.9		OPEN TOOL AN Seal Main Ch Release tool	IAMBER
		JJJ9•9	F.I.T. TEST No	run in tande Damaged.	ENT NO. 9390 (0-8.900PSF) EM WITH THE ABOVE -
	-	PSIG	PSIG	a 10 9 01911 N	
	HOURS	<u>\$1,800</u>	8,900	REMARKS	
	0642 0710 0711	, 3347.6			- INITIAL HYDROSTATIC
(0712 0715 0726	2754 2754	₹.	OPEN TOOL AN SEAL MAIN CH	ID SAMPLE IAMBER - OPEN SEGREGATOR
	0727 0728 0732 0734	2741.8 2747.9 2747.9		Seal Segrega	TOR
	0735	3329.3		Release tool Final hydros	
				RUN IN TANDE HAD BEEN DAM	NT NO. 9390 (0-8,900 PSI) M WITH THIS ELEMENT BUT AGED IN A PREVIOUS TEST WERE INCORRECT.
			F.I.T. TEST N	0. 11 @ 7349 M	
		INITIAL HYDRO FINAL HYDRO	STATIC: 3911.	O PSIG 9 PSIG	Angenera.
			F. I.T. TEST No	<u>, 12 @ 5817' k</u>	i.D.
		INITIAL HYDRO FINAL HYDRO	STATIC: 3164 STATIC: 3145		
			- -	•	

ESSO AUSTRALIA LIMITED

SUNFISH

SUNFISH No. 1 (Wildcat) February 21, 1974

PURPOSE:

SE: OBTAIN SUBSURFACE PRESSURE WITH AMERADA GAUGES RUN IN TANDEM WITH SCHLUMBERGER FORMATION INTERVAL TESTER.

Tools used: 1 Amerada 11,800 psi element Serial No. 8282

12 HOUR CLOCK

F.I.T. TEST No. 13 @ 5618' M.D.

HOURS	PSIG 11,800	REMARKS
1403 1435 1436 1437	3011	RUN IN HOLE Set packer - Initial hydrostatic
1438 1446 1447 1455	2454.2 2454.2 2460.3	OPEN TOOL AND SAMPLE
1457 1458	2460.3 2968.2	SEAL CHAMBER Release tool Final hydrostatic
		NOTE: Tree was

NOTE: TEST NOT RUN IN TANDEM.

F.I.T. TEST No. 14 @ 6572' M.D.

Tools used: 1 Amerada 11,800 psi element Serial No. 8282 1 Amerada 10,300 psi element Serial No. 9403

12 HOUR CLOCK 12 HOUR CLOCK

0852 0922 0923	PSIG <u>11,800</u>	PSIG 10,300	<u>REMARKS</u> Run in hole Set packer — Initial Hy	
0924 0925 0926 0927 0928 0929 0930	3574.2 3574.2 2301.2 2301.2 2301.2 2301.2 2301.2 2301.2 2301.2	3552.6 3552.6 3552.6 1427.2 1427.2 1670.9 2154.5 2580.3	OPEN TOOL AND SAMPLE	DROZIATIC
0931 0932 0933 0934 0935 0936 0937	2864.2 2663.4 2864.2 2855.6 2864.2 2881.6 2925.4 2897.2 2925.4 2918 2925.4 2923.2 2931.5 2928.4	SEAL CHAMBER		
0938 0939 0940	3549.7	3536.9	RELEASE TOOL FINAL HYDROSTATIC	

ESSO	AUSTRA	ALIA	LINI	FED

2925.4

2925.4

2925.4

2925.4

2925.4 2943.7 2943.7

2943.7

2943.7

3470.1

1250 1251

1252

1253

1254

1255 1256 1257

125ε

1301

1302

SUNFISH

SUNFISH No. 1 (WILDCAT) February 23, 1974

1

PURPOSE:

÷.

Obtain subsurface pressure with Amerada gauges run in tandem with Schlumberger Formation Interval Tester.

Tools used:1 Amerada 11,800 psi element Serial No. 828212 hour clock1 Amerada 10,300 psi element Serial No. 940312 hour clock

F.I.T. TEST No. 15 @ 6515' M.D.

HOURS	PSIG 11,800	P31G 10,300	REMARKS	
1027 1055 1056	3519.1		Run in hole Set packer - Initial	HYDROSTATIC
1057 1059	2919.2		OPEN TOOL AND SAMPLE	
1100 1101 1102	2925.4 2925.4 2925.4			
1103 1104 1105	2925.4 2949.8 2949.8			
1106 1107	2949.8 2949.8 2949.8	• * •	SEAL CHAMBER	
1108 1109	3512.9		Release tool Final hydrostatic	
			Note: Stylus broken 1No. 9403 — Chart Not	IN ELEMENT READABLE.
		F.I.T. TEST No.	<u>16 @ 6439' M.D</u> .	
HOURS	PSIG 11,800	FSIG 10,300	REMARKS	
1200 1246			RUN IN HOLE Set packer - Initial	HYDROSTATIC
1247 1248	3488,4		OPEN TOOL AND SAMPLE	

FINAL HYDROSTATIC Note: Element No. 9403 (0-10,300 ps RUN IN TANDEM - NO RESULTS AS STYLUS BROKEN.

SEAL CHAMBER

RELEASE TOOL

ES30 AUSTRALIA LIMITED

SUNFISH

SUNFISH No. 1 (WILDCA February 23, 1974

PURPOSE: OBTAIN SUBSURFACE PRESSURE WITH AMERADA GAUGE RUN IN TANDEM WITH SCHLUMBERGER FORMATION INTERVAL TESTER. TOOLS USED: 1 AMERADA 11,800 PSI ELEMENT SERVICE NO. 8282

TOOLS USED: 1 AMERADA 11,800 PSI ELEMENT SERIAL No. 8282 1 Amerada 10,300 psi element Serial No. 9403 12 Hour clock

F.I.T. TEST No. 17 @ 6036 M.D.

HOURS	PSIG <u>11,300</u>	PSIG 10,300	REMARKS
1350 1421 1422	3274.2	3255.9	Run in hole Set packer - Initial hydrostatic
1432 1424 1425 1425	3274.2 3274.2 3274.2	3255.9 3255.9 3255.9	OPEN TOOL AND SAMPLE F.I.T. TOOL PLUGGED
1427 1428 1429 1434	2650 2680.6 2680.6	2647.8 2684.2 2684.2	FIRE SHAPED CHARGE Seal chamber
1435 1437	3219.1	3224.7	RELEASE TOOL Final hydrostatic

F.I.T. TEST No. 18 @ 6098' M.D.

• • • • • • • • • • • • • • • • • • •			
HOURS	PSIG 11,800	PSIG 10,300	REMARKS
1530 5553 554	3298.7		RUN IN HOLE Set packer - Initial hydrostatic
1555 1556 1557 1558 1559	2692.8 2692.8		OPEN TOOL AND SAMPLE F.I.T. TOOL PLUGGED Fire shaped charge
1504 1605 1607	2692.3 3286.4		SEAL CHAMBER Release tool Final hydrostatic
			Note: Stylus broken – chart unreadable

1

AGNEW-GO-WESTERN PTY. LTD. 582 ST_KILDA ROAD MELBOURNE, VICTORIA 3004

ESSO AUSTRALIA LIMITED

SUNFISH

SUNFISH No. 1 (WILDCAT) February 23, 1974

PURPOSE:

OBTAIN SUBSURFACE PRESSURES WITH AMERADA GAUGE RUN IN TANDEM WITH SCHLUMBERGER FORMATION INTERVAL TESTER.

i.

Tools used: 1 Amerada 11,800 psi element Serial No. 8282 1 Amerada 10,300 psi element Serial No. 9403 12 HOUR CLOCK 12 HOUR CLOCK

SET PACKER - INITIAL HYDROSTATIC

OPEN TOOL AND SAMPLE

•		F.I.T. TEST	No. 19 @ 5975' M.D.
LIOURS	PSIG 11,800	PSIG 10,300	REMARKS
705 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1746 1747	3249.7 2656.1 2662.2 2662.2 2662.2 2662.2 2662.2 2662.2 2662.2 2662.2 2662.2 2662.2 2662.2	3229.9 2653 2663.4 2663.4 2663.4 2663.4 2663.4 2663.4 2663.4 2663.4 2663.4 2663.4 2663.4	RUN IN HOLE SET PACKER - INI Open tool and sa Seal chamber Release tool Final hydrostati

SEAL CHAMBER RELEASE TOOL FINAL HYDROSTATIC

10 in a star war a star in $\sim 10^{-10}$ e nationalisti Magnetic . Contraction (Contraction) Constraint and the state and the second state of the No al prime a Sec. na na sana na s Na sana n - Arapitan in Marine a series and the series of the s المراجع المراجع - Constant and a second 144 4 6 6 and a statistical states and the second - There is a andre and the second of the second New York and the second seco in the state and a sugar to set the set of a a set of a No. PE902307

This is an enclosure indicator page. The enclosure PE902307 is enclosed within the container PE905173 at this location in this document.

The enclosure PE90	02307 has the following characteristics:
ITEM_BARCODE :	= PE902307
CONTAINER_BARCODE =	= PE905173
NAME =	= Structure Map Upper Paleocene
	Unconformity Post Drilling
BASIN :	= GIPPSLAND
PERMIT :	=
TYPE =	= SEISMIC
SUBTYPE =	= HRZN_CONTR_MAP
DESCRIPTION =	= Structure Map Upper Paleocene
	Unconformity Post Drilling
REMARKS =	=
DATE_CREATED =	= 1/04/74
DATE_RECEIVED =	=
W_NO =	= W679
WELL_NAME =	= Sunfish-1
CONTRACTOR =	= ESSO
CLIENT_OP_CO =	= ESSO
(Inserted by DNRE –	- Vic Govt Mines Dept)

- Although Produktive to 21 and a share for the set S. C. Marshall $= \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1$ ъĤ 2. magnates in the second and frank and a set of the factor of the Sector of the factor of the Stations and the The second stand and the second of the second stand and the second second second second second second second se Same in the and the second s and the second second second beautiful and the second second second second second second second second second s al day in a second s Second naharlilar Andrikana, wa kwa ban kwa Madaramanana a aka . Sec. Sec. topical adaptation and stand and a stand and the second PE902308 a service a This is an enclosure indicator page. The enclosure PE902308 is enclosed within the

container PE905173 at this location in this document.

The enclosure PE902308 has the following characteristics: ITEM_BARCODE = PE902308 CONTAINER_BARCODE = PE905173 NAME = Structure Map Top Latrobe Post Drilling Sunfish Prospect BASIN = GIPPSLAND PERMIT = TYPE = SEISMIC SUBTYPE = HRZN_CONTR_MAP DESCRIPTION = Structure Map Top Latrobe Post Drilling Sunfish Prospect REMARKS = $DATE_CREATED = 1/04/74$ DATE_RECEIVED = $W_NO = W679$ WELL_NAME = Sunfish-1 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$ (Inserted by DNRE - Vic Govt Mines Dept)

ú¢.

PE902309

.

i,

1 11 W ake

The first sector with the sector of the sect

and the second of the second of the second of the second of the second second second second second second second

A AND AND A

and the product of the second
This is an enclosure indicator page. The enclosure PE902309 is enclosed within the container PE905173 at this location in this document.

小学 起来的过去式

· A State of the S

1.5 Salar Salar した。自該内心職 We wanter El A Second Second in a land the state of the a me all a la said

The enclosure PE902309 has the following characteristics: TIRM BARCODE - PE902309 CONTAINER_BARCODE = PE905173 NAME - Sunfish Prospect Structure Map Top Upper Cretaceous BASIN = GIRPSLAND PERMIT ~= TYPE = SEISMIC SUBTYPE = HRZN_CONTR_MAP DESCRIPTION = Sunfish Prospect Structure Map Top Upper Cretaceous REMARKS = DATE CREATED = 1/04/74DATE_RECEIVED = $W_{\rm NO} = W679$ WELL_NAME = Sunfish-1 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$

PE601434

.

Sample share the second second state of the second
Marine Carrier & Carlos Carrier Carrier Carlos And Carlos Marine Carlos Carlos Carlos Carlos Carlos

1. 1. 1. S. S. S. And and a second C. S. L. E. Late was shall be all The second with the second

Same and in the second
and a supering the second

This is an enclosure inglicator page. The enclosure PE601434 is enclosed within the container PE905173 at this location in this document.

The enclosure PE601434 has the following characteristics: ITEM_BARCODE = PE601434 CONTAINER_BARCODE = PE905173 NAME = Well Completion Log BASIN = GIPPSLAND PERMIT = TYPE = WELL SUBTYPE = COMPLETION_LOG DESCRIPTION = Well Completion Log REMARKS = DATE CREATED = 3/03/74DATE_RECEIVED = $W_NO = W679^\circ$ WELL_NAME = Sunfish-1 CONTRACTOR = ESSO $CLIENTOP_CO = ESSO$

PE902310

e de la com

the start of the second

, in the Sec

تجار المؤرم الان

32

2. 2

1.70.71

t water Arithmetic

and a start of the second s Second s

This is an enclosure indicator page. The enclosure PE902310 is enclosed within the container PE905173 at this location in this document.

The enclosure PE902310 has the following characteristics: ITEM_BARCODE = PE902310 CONTAINER_BARCODE = PE905173 NAME = Geological Cross Section A-A' BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = CROSS_SECTION DESCRIPTION = Geological Cross Section A-A' REMARKS = $DATE_CREATED = 1/04/74$ DATE_RECEIVED = $W_NO = W679$ WELL_NAME = Sunfish-1 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$

This is an enclosure indicator page. The enclosure PE902311 is enclosed within the container PE905173 at this location in this document.

 $\sum_{i=1}^{n} (a_i a_i)$

and the second
PE902311

a the second of the second second

. Kalipan Seria ina mpinana mpina Kalipan pinana mpinana m

n sense and a sense of the sense An and the sense of t

and and a share was the second standing of the state of the second state of the second state of the second second

a fall and the second second

and the production of the second

a the sector

Million Alter

a film of the Property of the State of the second state of the second state of the second state of the second s

771 42 4

1.1

ا الجانية ₩r.iniⁿ

1 M 1 M 1 1 2 1 1 Section 1. $\mathbb{R}^{(1)}$ ين معلمون والأرونيون من الأرونيون and the 1 Cal Carlos Star

t in the second seco

u ijustikasi

A STATISTICS

CONTRACTOR

1. Salada Sa

- S. All Milder Sta

. Selection

The enclosure PE902311 has the following characteristics: ITEM_BARCODE = PE902311 $CONTAINER_BARCODE = PE905173$ NAME = Time Depth Curve BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = VELOCITY_CHART DESCRIPTION = Time Depth Curve REMARKS = $DATE_CREATED = 22-23/3/74$ DATE_RECEIVED = $W_NO = W679$ WELL_NAME = Sunfish-1 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$

This is an enclosure indicator page. The enclosure PE604651 is enclosed within the container PE905173 at this location in this document.

PE604651

4:000

A.S. A

152.5-5

S. (48)

15.335

at it will be

The enclosure PE604651 has the following characteristics: ITEM_BARCODE = PE604651 CONTAINER_BARCODE = PE905173 NAME = Mud Log BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Mud Log for Sunfish-1 REMARKS = DATE_CREATED = 1/03/74DATE_RECEIVED = W NO = W679WELL_NAME = SUNFISH-1 CONTRACTOR = BAROID WELL LOGGING SERVICE CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

es he at a an da All Lange Land n water a start water a mading particip · Ar lag Margar Light action of 501.045 en de la composition Al constant anterne Sec. 4 a terrer de la calega de la caleg Construction of the second and a start st Start star and the second and the and the second second and the second second ALVER and the second second a presidente de ₹. PE904243 - Managara San An

This is an enclosure indicator page. The enclosure PE904243 is enclosed within the container PE905173 at this location in this document.

The enclosure PE904243 has the following characteristics: ITEM_BARCODE = PE904243 CONTAINER_BARCODE = PE905173 NAME = Formation Tester Data BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELLSUBTYPE = FITDESCRIPTION = Formation Tester Data for Sunfish-1 REMARKS = $DATE_CREATED = 19/02/74$ DATE_RECEIVED = $W_NO = W679$ WELL_NAME = SUNFISH-1 CONTRACTOR = SCHLUMBERGERCLIENT_OP_CO = ESSO AUSTRALIA LIMITED