670 SUBSIDY REPORT MARLIN A-24 DEPT. NAT. RES & ENV

PE902334

WCR (SUBSIDY REPORT) MARLIN A-27 (W670)

COMPLETED 28 6 7400 73 10.12 ARLIN -A 24 EXPLORATION STARTED 6450' T. D. 11,005 Esse VIC. 4/3 WILDCAT TV D 8,947 IES Run 1 + 2 2 4800 - 11,005 12,90 5 245 6466 - 11005. · 2 £ `` FOC/CNL/GG 4800 -11002 (el 4100 142 **5**ິ C. is et e ٢, Č. i 245 6460 -11002 ·· 2 " 1 Zesto 1-5 FOLDER - INTLAPRETIVE DATE ONSUBSIDIZED WELLS IS NOT FIT " 6-12 RELATE A SUL WITHOUT OF PERMITTEE. 10 · 2 ... 3 · 13-22 SNP/GR/CAL 2" 4800-11002 11+2. 5. le ce U 2"45" 6460 - 11002. 2 5100-10816 funt. 5". GR/CCL EXPLORATION'S MUDLOG 6460'-10,988' APPENDIX TO MUDLOG 6700'-10,900'. LOG CONVERTED TO VERTICAL DEPTH 5400 5400 -11000 ٠. 5450 - 11000. FIT TEST RESULTS 1-22 *ANGEW-GO-WESTERN. SUBSURFACE PRESSURES AMERADO.Q CORE ANALYSIS RESULTS CORES 1-3 (CORE LAB.) $(1 - 4 \cdot (B \cdot M \cdot R))$ د . 1. ٤. 1-4 . (EXPLORATION LO 41 DISCRIPTIONS . (EXPLORATION LOGGING) и CUTTINGS DESCRIPTIONS. 5140-10 988. STEAM STILL CHROMATOGRAPHY RESULTS. MD-TND CONVERSIONS * CORES & CUTTING RECEIVED INTO STORE IES TVD Long 5" WELL COMPOSITE LOG. * WELL LOG ANALYSIS REPORT. FOC/ERTVO log 5". K WELL HISTORY CHART. KSTRATIGRAPHIC SECT CHART, HYDROCARBON DISTRIBUTION. DESCRIPTIONS. 6460'- 10988' 11 K KRALYNOLOGICAL REPORT by LE STOVER PLUS REVISION. KNATA RESULTS OF A.P.I. GRAVITY OF FIT'S 13,1642 " S.G. A.S.T.M. D1070-67. OF FIT. 74 21 SEISMIC GRAPHS STILE-514 STRUCTURE MAP A-6 OIL SAND HORIZON. WEEKLY REPORTS. 6458 begins subsidered portion REPORT & PLAN OF SUB-SURFACE SUBSIDY REPORT. * with a

Page 1 9 56 670

SUBSIDY REPORT MARLIN A-24 VICTORIA, AUSTRALIA

By J.R. Black C.N. Curnow W.W. Fraser

Esso Exploration & Production Inc.

October, 1973

CONTENTS

SUMMARY	

(1)	Drilling
(2)	Geological

II. INTRODUCTION

1.

IV.

v.

VI.

III. WELL HISTORY

- General Data (1)
- (2)Drilling Data
- (3) Location
- (4) Sampling

(5) Logging and Surveys

(6) Testing

🕊 🐔 GEOLOGY

Summary of Previous Work (1)

- (2)Regional Geology
- Stratigraphic Table (3)
- (4) Stratigraphic Description
- (5) Structure
- (6) Hydrocarbon Occurrence

Composite Well Log

Correlation Section

IES Log 5" and 2"/100' FDC-GR Log 5" and 2"/100' SNP Log 5" and 2"/100'

IES True Vertical Depth Log

FDC-GR True Vertical Depth Log "Exploration Logging" Drilling Log

Structure Map

- Relevance and Geological Concepts (7)
- Porosity and Permeability (8)

REFERENCES

ENCLOSURES

(1)

(2)

(3)

(4) (5)(6) (7)

(8)

(9)

- (10)Gamma Ray/CCL F.I.T. Pressure Logs (11)

APPENDICES

- Mud Log (Inserted by DNRE 30/08/99) Mud Log data sheets (30/08/94) (12)(13)
- (1)Palynological Report
- (2)Gas and Oil Analyses
 - (To be provided when reports available)
- (3) Description of Cuttings Samples
- (4) Core Description and Analyses
- (5) Log Analysis and Table Converting Measured
- Net Sand Thickness to True Thicknesses
- (6) Formation Interval Tests .
- (7) Well History Chart
- (8) MD-TVD Conversions

(9) Pressure build up survey (inserted by DNRE 30/08/99)

(14) Seismic Interpretation Inserted (30/08/99)

1. SUMMARY

(1) Drilling

Marlin A-24 was drilled to a measured depth T.D. of 11,003 ft. (8,946' TVD) at an average angle of 40° 30' from the Marlin platform using Shelf Drilling's rig, M-2. The upper part of the hole was drilled as a Marlin gas development well to a depth of 6458' measured depth. Protective 9-5/8" casing was set across the Marlin upper pay zone at 6458' and cemented with 800 sacks of cement. The subsidized portion of the hole begins at 6458'. The well commenced drilling on 19 May 1973 and was plugged back as a Marlin gas producer from the upper zone on 28 June 1973. The exploratory portion of the hole required 30.94 rig days.

Casing was set at 2140.3' (13-3/8" in $17\frac{1}{2}$ " hole); at 6457.56' (9-5/8" in $12\frac{1}{2}$ " hole) and at 10,985.76' ($5\frac{1}{2}$ liner in $8\frac{1}{2}$ " hole, hanger at 6141').

The exploratory part of the well was plugged at seven intervals between 10,984' and 5950'. Tubing was run, christmas tree installed and well was completed as a Marlin gas development well producing from the upper zone.

(2) Geological

The normal sequence of Miocene to Recent marls, limestones, mudstones and calcarenites was encountered above the Marlin Latrobe producing horizons. The Eocene and Paleocene sediments were found to consist of interbedded sandstones, shales and coals as anticipated.

The well encountered hydrocarbons in the upper Marlin pay zone and at various intervals as shown on the completion log in the exploratory part of the hole. For the most part the hydrocarbon bearing sands have good porosity and permeability.

II. INTRODUCTION

-2-

The exploratory part of the Marlin A-24 well was programmed to test the Paleocene section in fault block "D" immediately to the south of the platform. The planned depth was sufficient to test the section stratigraphically equivalent to the Marlin A-6 oil sand found in the Marlin 1, 2 and A-6 wells. The target at TVD was a 500' circle centered 6200' from the platform on bearing 211°.

ESSO STANDARD OIL (AUSTRALIA) LTD.

COMPLETION REPORT

I MELL DATA RECORD

TOTAL RIG DAYS

CLASSIFICATION

40.38

LAHEE WELL

Date 28.9.73

TYPE COMPLETION

SINGLE TUBING

G.A. SHORT Geologist

,		LOC	CATION			
					· · · ·	
WELL NAME	STATE	PERMIT or LI	ICENCE	GEOLOGICAL E	ASIN FIELD	
MARLIN A-24	VIĊ. (offshor	re) VIC. L	/3	GIPPSLAND	MARLIN	
CO-ORDINATES Latitude: 38 ⁰ 1 Longitude: 148 ⁰ 1 Bottom Hole 5824S3		'S X 606,731 'E Y 5,767,738 AMG ZONE 55	MAP PROJECT	GEOGRAPH ION DESCRIP 65 miles Sale, Vi	TION ESE of	
•		ELEVATIO	ONS & DEPTHS			
ELEVATIONS	WATER	DEPTH	TOTAL D	EPTH	Avg.Angle	
. MSL			M.D.	10988'	40 [°] 30'	
KB 90'		200	T.V.D.	8946'	•	
RT 88' 5"	· PLUG H	BACK DEPTH	REASONS	FOR P.B.		
Braden Head 49'		5976	CE	CEMENT PLUG		
Top Deck Platform (55'			EXPLORATION	HOLE)	
· ·		DA	ATES			
MOVE IN	R	LIG UP		SPUDDED	<u></u>	
19.5.73		19.5.73		19.5	.73	
RIG DOWN COMPLETE	F	IGRELEASED		PROD.UNIT - S	tart Rigging Up	
28.6.73		28.6.73			2	
PROD.UNIT - Rig Dow	n Complet	e	I.P. ESTAB	LISHED		
		MISCI	ELLANEOUS			
OPERATOR	PERMIT	TEE or LICENCEE	ESSO	INTEREST	OTHER INTEREST	
ESSO AUSTRALIA LTD	HEMAT	CITE PETROLEUM ·		50%	2½% L.G. WEEKS	
CONTRACTOR .		RIG NAME		EQUIPMENT TY	PE -	
SHELF DRILLING PTY	LTD	м - 2		110 DE		

DRILLING AFE NO.

013-004 & 233-103

Before Drilling

After Drilling

COMPLETION NO.

GAS PRODUCER

ORIGINAL

DEVELOPMENT/DEEP POOL WILDCAT

August 10, 1973

- Established

市、業務であ

IV	CASING-LINER-TUBING RECORD							
Туре	Size	Weight	Grade	Thread	No. Joints	Amount	Depth	
CASING	HÉAD ELEVA	TÌON	•			41,00	41.00	
	13-3/8"	<u>.54,5</u> #	J55	Butt	57 + Float Shoe & Float Collar	2099.30	2140.30	
CASING	HEAD ELEVA	TION				41.00	41.00	
	<u>9+5/8"</u>	47#	N-80	Butt	166+Float Shoe & Float Collar	6416.56	6457.56	
KB TO	LÌNER HANGE	R				6141.00	6141.00	
	5 ¹ _"	17∦	N-80	LT&C	Liner Hanger + 119 joints	4800.10	10941.10	
		17#	N-80	LT&C	Landing Collar +1Joint+Shoe	44.66	10985.76	
KB TO	HBA_ HANGER			•		39.00	39.00	
)	412"			EUE	13+Flow Cplgs & Weldment	413.88	452.88	
	<u> </u>	23#	Ĵ=55	LT&C	118 + Crossovers	4574.73	5027.61	
	4 ¹ _1''	<u>12.75</u> #	Č-75	ÈUE	1 + Sliding Side Door Assembly	35.62	5063.23	
	4 ¹ 2 ¹¹	12.75#_	<u> </u>	ËUE	1 + Bridging Plug & Packer	37.30	5100.53	
	4 ¹ 2 ¹¹	_ <u>12.75</u> #_	<u> </u>	EUE	1 + Crossover & 'N' Nipple	32.85	5133.38	
					·			

♥	CEMENT RE	CORD	
String	13-3/8"	9-5/8"	
Type of Cement	1380 sx Aust N + 12% gel tailed w/480 sx neat + 2%_CaCl2	800 sx Aust N + 6% gel	1000 sx 12% gel cemer 1.5% Halad-9,1.5% CFF
Number of FT ³	3589	1352	2190
Average Weight of Slurry	12.6/15.6 ppg	13.7 ppg	12.6 ppg
Cement Top	Cellar Deck	3950'	6141'
Casing Tested with	3000 psi	2000 psi	···· 1500 psi
Number of Centralizers	48	110	113
Number of Scratchers	· ·	-	_
Stage Collar, etc.	<u>-</u>	-	-
Remarks	turns. Reciprocated Casing while dis-		Liner wiper plug fail to bump. Reversed du 126 bbls cement slúrr Required squeeze job
	bbls. Grouted annulus w/ 100 sx neat + 2% CaCl ₂ .		top of liner.
• • •		2	W. Chiver Engineer

ESSO STANDARDIAL (AUSTRALIA) LTD

SUBSURFACE COMPLETION EQUIPMENT

WELL NAME: MARLIN A-24

DATE COMPLEXEED August 10,197

Schematic	Equipment Description	Length	Depth
	KB to HBA hanger	39.00	39.00
	1/8"	-	
	<u>13 joints tubing 4½" 12.75# C-75 EUE with 1/8"</u> control line strapped externally (OD 4½" coupling		
	5,563". OD $1/8$ " coupling 0.625")	404.66	443,66
	· .		
	Flow coupling Otis 4140 EUE	3.60	447.26
	Weldment 4½" Otis landing nipple for XOE ball valve	2.02	449.28
	Flow coupling Otis 4140	3.60	452.8
	Crossover Esso 4 ¹ 2" EUE x 7" LT&C	3.92	456.8
	118 joints tubing 7" 23# J-55 LT&C	4566.79	5023.5
	Crossover Esso 7" LT&C x 45" EUE	4.02	5027.6
	<u>1 joint tubing 4½" 12.75# C-75 EUE</u>	30.85	5058.4
	Coupling 4 ¹ / ₂ " EUE	0.52	5058.9
	Coupling 42 Bon		
	Otis sliding sleeve assembly 4½"	4.25	5063.2
	1 joint tubing 4½" 12.75# C-75 EUE	31.30	5094.5
T	J-latch Otis	0.50	5095.0
	J-Ialch OLIS	<u></u> _	
	Otis Permatrieve packer 9-5/8" x 3.91" ID	5.50	5100.5
		·	[
	1 joint tubing 4½" 12.75# C-75 EUE	30.52	5131.0
		0.90	5131.9
	Crossover 4 ¹ ₂ " EUE x 4 ¹ ₂ " Butt.	0.20	
	Otis 'N' landing nipple 4.5" x 3.812"	1.43	5133.3
x x			
		-	·
P.B. 5976'			[
111111111111111111111111111111111111111	/8"	_	
e illintintintintin 9-5	457'		
	*		

NELL MARLIN A-24

ABOVE	AMPLES, CONVENTI 5460 SEE SUBSIDY R	DNAL CORES, SW CO	DRES	
TYPE	RECOVERED	INTERVAL	TYPE	RECOVERED
Cuttings				
			•	
•				
· ·				
•				
•				
			· ·	
· .				
	•			
	·			
)	
	From To		cale	From To
	6463 4800 6463 4800 to 4100 6463 4800			
				•
х. Х				- -
			5 C	
	•			
	ABOVE (TYPE Cuttings	ABOVE 6460 SEE SUBSIDY RI TYPE RECOVERED Cuttings WIRELINE LOGS AND S - see subsidy report for below From To 6463 4800 6463 4800	ABOVE 6460 SEE SUBSIDY REPORT FOR BELOW TYPE RECOVERED INTERVAL Cuttings WIRELINE LOGS AND SURVEYS Incl. FIT - See subsidy report for below 6460) From To Type & S 6463 4800 6463 4800	TYPE RECOVERED INTERVAL TYPE Cuttings

G.A. SHORT Geologist

A CARD

WELL MARLIN A-24

ALL STREET, ST

Ť.

IX	1	FORM	ATION TOPS/Zones			
	То	ps	gross	Net	Pay (ft).	REMARKS
NAME	M.D.	Sub-sea	Interval (ft)	Gas	011	KLINK
LATROBE	5191	-4481	61	41		
N-1.2 N-1.3	5191 5330	-4481	120	120		
N-1.4	5537	-4756	41	41		
N-1.5.2	5668	-4862	54	54		
M-1 .	6037	-5149	51			
	•					
	1					
••						
, 1				-		
				in in a la constitui in a print de la constitui in a constitui in a constitui in a constitui in a constitui in		(
		****	•		lts)	
PRE-DRILL:	wildcat	well purpose.	ned to fulfill a Firstly,it was	designed to	roduction - o provide	
PRE-DRILL:	wildcat primary	well purpose. /secondary com	Firstly,it was pletions within	designed to	roduction - o provide	
PRE-DRILL:	wildcat primary sandstor	well purpose. /secondary com ne units respe	Firstly,it was pletions within	designed to the N-1.4 an	roduction - o provide ad N-1.2	
PRE-DRILL:	wildcat primary sandstor Secondly	well purpose. /secondary com ne units respe y, the well wa	Firstly,it was pletions within ctively.	designed to the N-1.4 an e undrilled	roduction - o provide d N-1.2 Paleocene	
<u>PRE-DRILL</u> :	wildcat primary sandstor Secondly	well purpose. /secondary com ne units respe y, the well wa	Firstly,it was pletions within ectively. as to evaluate the	designed to the N-1.4 an e undrilled	roduction - o provide d N-1.2 Paleocene	
	wildcat primary sandstor Secondl section	well purpose. /secondary com ne units respe y, the well wa within the fa	Firstly,it was apletions within ectively. as to evaluate the ault block South o	designed to the N-1.4 an e undrilled of the "A" p	roduction - o provide d N-1.2 Paleocene latform.	
PRE-DRILL: POST-DRILL:	wildcat primary sandston Secondly section The Mar.	well purpose. /secondary com ne units respe y, the well wa within the fa lin A-24 well	Firstly,it was pletions within ectively. as to evaluate the	designed to the N-1.4 an e undrilled of the "A" p e-drill geol	oduction - provide d N-1.2 Paleocene latform.	
	wildcat primary sandston Secondly section The Mar. prognos: predicto	well purpose. /secondary com ne units respe y, the well wa within the fa lin A-24 well is and encount ed depths. Ow	Firstly, it was poletions within ectively. as to evaluate the nult block South of confirmed the pro- ered the N-1 reso ing to the dolom	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature,	oduction - provide d N-1.2 Paleocene latform. ogical at the and	
	wildcat primary sandston Secondly section The Mar prognos: predicto subseque	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom voir quality of	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa	oduction - provide d N-1.2 Paleocene latform. ogical at the and undstone	
	wildcat primary sandston Secondly section The Mar prognos: predicto subsequo unit, th	well purpose. /secondary com ne units respe y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ving to the dolom: voir quality of a pletion interval	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa	oduction - provide d N-1.2 Paleocene latform. ogical at the and undstone	
	wildcat primary sandston Secondly section The Mar prognos: predicto subseque unit, th 54' TVT	well purpose. /secondary com ne units respe y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser	Firstly, it was apletions within ectively. as to evaluate the nult block South of ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit.	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit	oduction - provide d N-1.2 Paleocene olatform. ogical at the and undstone hin the	
	wildcat primary, sandston Secondly section The Mar, prognos: predicto subseque unit, th 54' TVT The N-1.	well purpose. /secondary com ne units respectively, the well way within the far lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai	Firstly, it was apletions within ectively. as to evaluate the pult block South of ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n	roduction - o provide d N-1.2 Paleocene olatform. ogical at the and undstone hin the et gas	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser 2 unit contai ne, in which t	Firstly, it was poletions within ectively. as to evaluate the nult block South of confirmed the pro- ered the N-1 reso ing to the dolom voir quality of poletion interval voir quality of poletion interval voir unit. ns 41' TVT of goo he well will be not	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was poletions within ectively. as to evaluate the nult block South of confirmed the pro- ered the N-1 reso ing to the dolom voir quality of poletion interval voir quality of poletion interval voir unit. ns 41' TVT of goo he well will be not	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	
	wildcat primary, sandston Secondly section The Mar. prognos: predicto subseque unit, th 54' TVT The N-1, sandston out of t The geo.	well purpose. /secondary com ne units respe- y, the well wa within the fa lin A-24 well is and encount ed depths. Ow ent poor reser ne primary com N-1.5.2 reser .2 unit contai ne, in which t the N-1.5.2 un logical analys	Firstly, it was apletions within ectively. as to evaluate the ult block South of confirmed the pro- ered the N-1 reso ing to the dolom: voir quality of apletion interval voir unit. ns 41' TVT of goo he well will be a dit. is of the well fi	designed to the N-1.4 an e undrilled of the "A" p e-drill geol ervoir units itic nature, the N-1.4 sa will be wit od quality n recompleted indings belo	oduction - provide d N-1.2 Paleocene latform. ogical at the and indstone hin the et gas on watering w 6460' MD	

A.K. SVALBE. Geologist

.*

III. WELL HISTORY

(1)	General	Data
	(i)	Well Name and Number:
		MARLIN A-24
	(ii)	Operator and Address:
<i>.</i>	· .	Esso Exploration and Production Australia Inc., C/- Price Waterhouse Nominees (Victoria) Pty Ltd, The National Mutual Centre, 447 Collins Street, MELBOURNE. VICTORIA. 3000.
•		
	(iii)	Title Holder and Address
		Hematite Petroleum Pty Ltd, 459 Little Collins Street, ~ Esso MELBOURNE. VICTORIA. 3000.
	(iv).	Petroleum Title
		Petroleum Production Licence Vic. L/3
	(v)	District
		AMG Zone 55
		٤
	(vi)	Location
		Conductor #9 Latitude 38 [°] 13' 54.79"S Longitude 148 [°] 13' 10.12"E T.D. is located at S 35 [°] 20' W, 5824' from spud location
	(vii)	Elevation
		(a) -200' Seafloor
		(a) -200 Sealiton. (b) $+90'$ KB
	(viii)	Total Depth
	()	(a) 11,003' Measured Depth
		(b) 8,946' True Vertical Depth
•	(ix)	Spud Date
		19 May, 1973 30 May, 1973 started drilling exploratory part of hole (8½" at 6460 Measured Depth KB)
	(x)	Date T.D. Reached
		16 June, 1973

WELL HISTORY (Cont'd)

(xi) Date of Completion
27 June, 1973

(xii) <u>Rig Released</u> 28 June, 1973

(xiii) Drilling Time

Development Portion = 9.52 days. Exploration Portion = 30.94 days. Total = 40.46 days.

- (xiv) <u>Status</u> Shallower Pool gas producer (Plugged back to 5950 MD) Abandoned Deeper Pool Gas/Oil Discovery

(2) <u>Drilling Data</u>

(iv)

(i) Name and Address of Drilling Contractor

Shelf Drilling Pty Ltd, P.O. Box 309, Sale, Victoria, 3850.

(ii) Drilling Plant Make: Type: Rated Capacity with Drill Pipe used: Motors: Make: Type: B.H.P.:

National 110 UE Unitized Electric

15,000' with 5" drill pipe

K

Caterpillar D399 Marine Diesel 3 x 1200

(iii) <u>Derrick</u> Make: Type: Rated Capacity (1b)

> Pumps Make:

Type:

Size:

Pump Motors:

Make:

Type: B.H.P.: Lee C. Moore 142 feet Jack-knife derrick 1,000,000

National x 2 N-1300 1300 HP each

General Electric DC Electric 750 - 2 per pump

1500-5000 psi working pressure

(v) Blowout Preventer Equipment
Make:
Type:
Cameron, Hydril
Cameron ram-type preventer
Hydril bag-type preventer
Size:
13-5/8" for 5" drill pipe

API Series:

-4-

WELL HISTORY (Cont'd)

(vi) Hole Sizes and Depths

Exploration Hole:

812" from 6460' KB to 11,003' KB

(vii) Casing and Liner Cementing Details

Size:	5 ¹ 2 ¹¹
Weight:	17 lb/ft
Grade:	N-80
Range:	3
Depth Set:	10,986' KB
	Top 6141' KB
Position of Float Collar:	Top of bottom joint
Position of Float Shoe:	Bottom of string
Position of Plugs:	
No. of Centralizers:	113
Position of Centralizers:	2 on first joint
	1 on joints #2 to #103
	1 on joints #112 to #120
No. of Scratchers	—
Position of Scratchers	-
Cement Used	1000 sx
Top of Cement	6141'
Method Used (plug, multi-	
stage, etc.)	Plug

(viii) Drilling Fluid

Type: Average Weight: Brief details of treatment, average weekly analysis:

List of types and quantity of mud material and chemical consumed

Fresh	wate	r lig	nosulpl	nonate	mud			
10.1	ppg							
Mud pumped over shale shaker and								
through desander and desilter.								
Thinn	Thinning accompanied by addition							
	-		-	-	CC-16.			
WT	FV	WL	FILT	pН	SAND			
10.1	45	4.2	2/32	10.2	Trace			
Barit	es		3955	sx				
Ge1			734	sx				
Q-Bro	xin		332	SX				
Caust	ic		5940	lbs				
Soda	Ash		20	SX				
Al.sS	tear	ate	- 6	sx				
Bicar	bona	te	6	SX				
CMC			58	sx				
CC-16			621	sx				

405 ЪЪ1

(ix) <u>Water Supply</u>

Barry Beach tap water transported by workboats

(x)

Perforation & Shooting Record

F.I.T.	Depth
1	10,720'
2	10,640'
squeeze perf.	10,612-14'
3	10,605'
13.R.R.	10,600'
4	10,596'
5	10,578'
14	10,443'
6	10,420'
19	10,380'
8	10,360'
1.8	10,359'
7	10,220'

Diesel

(Cont'd)

(xi)

<u>F.I.T</u> .		Depth
9		10,072'
10		9,957'
11		9,825'
. 12	;	9,514
13 & 15	`	9,220'
16	•	8,862'
17		8,758'

(a) Plugging Back Cementation Jobs

	<u> </u>	<u>Z</u>	3
Length of Plug:	188'	270'	300'
Type of Plug:	15.6 ррд	15.6 ppg	15.6 ppg
No. of Sacks Used:	40 sx		35 sx
Method Used:	Displaceme	nt through d	lrillpipe
Satisfactorily Tested?	Yes	-	-
	10,984-796'	10,750-480'	10,470-170'
<u>4</u>	<u>5</u>	<u>6</u>	7
400 '	400'	300'	200
15.6 ppg	15.6 ppg	15.6 ppg	15.6 ppg
47 sx	47 sx	35 sx	70 sx
Displacement	through dri	11 pipe	
· _		-	Yes
10,100-9700'	95509150 '	8900-8600'	6150-5950'

1

(xi)

(b) Squeeze Cementation Jobs

	<u>1</u>	<u>2</u>
Depth:	6140'	10,612-614'
Slurry Density:	15.6 ppg	15.6 ppg
No. of Sacks	150 sx	29 sx
Job Description:	RTTS Tool -	RTTS Tool -
	squeeze top	squeeze thru
	of liner.	perforations.

(xii) Fishing Operations Nil

(xiii) Side-tracked Hole Nil

(3) Location

(i) Site Investigations Carried Out Not applicable

(ii) Anchoring Methods Not applicable

(iii) Transportation

- 1. Helicopters from Longford.
- 2. Workboats from Barry Beach and Lakes Entrance

(4) <u>Sampling</u>

(i) <u>Ditch Cuttings</u>

From beneath the 9-5/8" intermediate casings at 6460', five sets of washed and dried samples at 10' intervals were collected to T.D. as well as one set of unwashed, bagged samples every 10' and one composite canned sample every 100'. All samples were logged and caught off a standard shale shaker by "Exploration Logging of Australia" personnel under the supervision of an Esso wellsite geologist.

A set of washed and dried samples was taken for Hematite, Victorian Mines Department and the Bureau of Mineral Resources -Subsidy Section. (The latter sample was taken in B.M.R. plastic envelopes - 85 grams.) Esso retained two sets, one for paleontological processing and the other for storage. For descriptions see Appendix 3.

(ii) Coring

Core No.	Interval Cored	Footage Cut	Recovery in Feet	Percentage
1	8739 - 8770	31'	31'	100%
2	8770 - 8801	31'	31'	100%
3	8801 - 8836	35'	35'	100%
4	10467 -10505	38'	38'	100%

For a full description of the cores see Appendix 4.

(iii) Sidewall Sampling

No sidewall samples were taken due to the high angle of deviation of Marlin A-24.

(5) Logging and Surveys

(i) <u>Electric Logging</u>

Log	Interval	Scale
IES FDC/Gamma SNP/GR/Caliper Gamma Ray /CCL	11005 - 6460 $11002 - 6460$ $11002 - 6460$ $10816 - 5100$	2" & 5" 2" & 5" 2" & 5" 2" & 5" 5"

Copies of all logs (including TVD of above MVD logs) are in Enclosures 4-8 & 10.

(ii) Penetration Rate and Gas Logging

Full records of penetration rates, chromatographic gas analyses and total gas measurements were made from 6460 to T.D. (See Enclosure 9).

(iii) <u>Temperature Surveys</u>

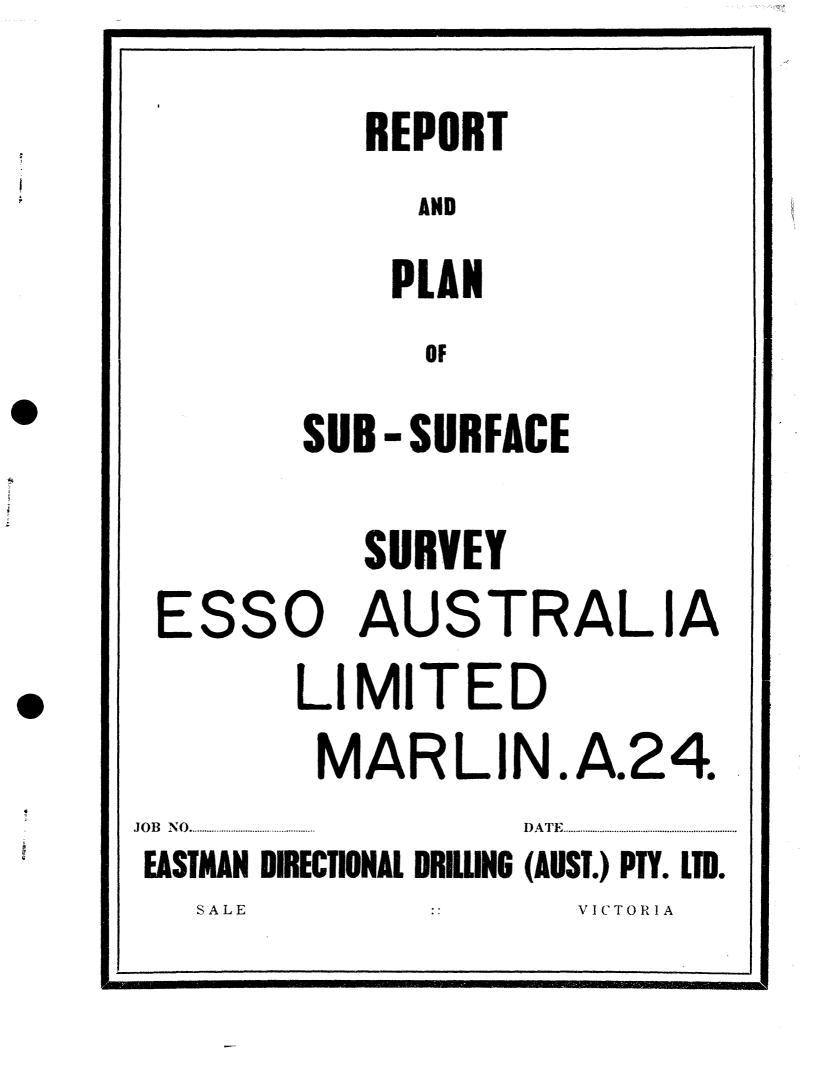
Bottom hole temperatures were recorded by Schlumberger for each logging run and F.I.T. Maximum temperatures recorded are on each log header. A maximum BHT of 244[°]F was reached on the SNP/GR/CAL log 9 hours after breaking circulation.

(iv) Other Well Surveys

Nil

(v) <u>Deviation Surveys</u>

Deviation surveys were run and conversions of True Vertical Depth (TVD) from Measured Depth (MD) are listed in Appendix (8).


(6) <u>Testing</u>

(i) Formation Testing

.

Twenty-two wireline Formation Interval Tests were run by Schlumberger inside the $5\frac{1}{2}$ " liner in Marlin A-24 to test the numerous oil and gas bearing sands. Details of these tests are given in Appendix 6.

(ii) No production tests were run.

RECORD OF SURVEY

MARLIN A-24

JOB NO. Conductor #9

DATE June 1973

	MEASURED	DRIFT	TRUE VERTICAL	COURSE	DRIFT	RE	ECTANGULAR	COORDINATE	S	
	DEPTH	ANGLF	DEPTH	DEVIATION	DIRECTION	NORTH	SOUTH	EAST	WEST	REMARKS
1 2	50 - 100 -	30' 12'	50 - 1 0 0 -	44 18	S 87 E N 81 E	01	02	44		
3	150 - 200 -	0° 12'	150 -	-	00	01		6 2 6 2		
5	250 -	12 0°	200 - 250 -	18 -	S 52 E 00		10 10	76 76		
6 7 8 9	300 - 350 - 400 -	0° 12' 15'	300 - 350 - 400 -	- 18 22	00 N 34 W N 57 W	05 17	10	76 66 48	:	
10	450 - 500 - 573 -	48 ' 1 ° 20 '	450 - 499 99	70 1 16	N 58 E S 83 E	54 40		1 07 2 22		
12 13 14 15	573 - 603 - 634 - 665 - 696 -	1° 1° 2° 1°45' 1°	572 98 602 97 633 96 664 94 695 93	1 49 53 81 1 01 74	S 74 E N 05 E N 30 W 32 20	10 40 1 20 2 07 2 73		3 68 4 11 3 93 3 41 3 09		
16 17 18 19 20	727 - 758 - 790 - 821 - 884 -	1° 1°30' 1°15' 1° 2°	726 92 757 91 789 90 820 89 883 86	54 68 77 61 1 65	N 74 W S 89 W 68 27 S 28 E	2 73 3 06 3 15 3 00 2 61 96		3 09 2 74 2 07 1 33 91 94		

RECORD OF SURVEY

MARLIN A-24

DATE June 1973

JOB NO. Conductor #9

	MEASURED	DRIFT	TRUE VERTICAL	COURSE	DRIFT	R	ECTANGULAR	COORDINATI	ËS	
	DFPTH	ANGLE	DEPTH	DEVIATION	DIRECTION	NORTH	SOUTH	EAST	WEST	REMARKS
21	939 -	2°	938 83	1 92	S 05 W	-	92	1 31	<u> </u>	
22	1002 -	3°	1001 77	2 74	09		3 64	98		
23	1065 -	4°15'	1064 64	3 98	27		7 38		23	
24	1127 -	6°	1126 39	5 54	27		12 32		2 7 5	
25	1190 -	7°30'	1188 95	740	23		19 02		5 88	
2 6	1251 -	9°15'	1249 29	8 88	s 24 W		27 16		942	
27	1314 -	~~	1311 30	11 07	27		37 14	i .	14 18	
2 8	1376 -	13°	1371 93	12 88	27		48 61		20 02	
29	1438 -		1432 15	14 74	23		61 96		26 25	
30	1562 -	17°	1551 46	33 65	21		93 16		3 8 8 6	
31	1687 -	19°15'	1670 24	38-89	s 24 W	l. L	129 08		53 74	
32	1812 -	23°15'	1786 68	45 28	2 5	1	170 28		72 52	
33	1968 -	27°4 5	1927 38	67 11	2 6		230 85		101 41	
34	2124 -	32°30'	2062 20	78 23	27		300 86		136 32	
35	2488 -	34°	23 66 57	199 58	27		478 68		22 6 92	
36	2989 -	34°45'	2780 05	282 86	S 28 W		729 58		357 54	
37	3488 -	34 ° 45 '	3190 03	284 43	30		978 31		495 43	
38	3990 -	35°15'	3601 22	287 95	31		1226 41		641 56	
39	4492 -	3 6°	4009 24	292 41	32	i -	1475 71		794 34	
40	4987 -	36°45'	4407 81	293 58	35		1720 44		956 33	
				,						

2/

RECORD OF SURVEY

MARLIN A-24

DATE June 1973

3/

JOB NO. Conductor # 9

	MEASURED	DRIFT	TRUE	COURSE	DRIFT	R	ECTANGULAR	COORDINAT	ĒS	
	DFPTH	ANGLF	VERTICAL DEPTH	DEVIATION	DIRECTION	NORTH	SOUTH	EAST	WEST	REMARKS
41	5230 -	37°15'	4601 89		S 35 W	1	1840 24	i	1040 21	
42	5607 -	37°45'	4901 -		35		2028 26		1171 86	
43	5800 -	37°45'	5053 60		3 6		2124 44		1240 46	
44	6090 -	3 9°	5280 93		3 6		2270 08	k	1346 28	
45	6460 -	41°	5564 31	237 79	37		2461 21		1487 71	
46	6756 -	42°45'	5784 63		S 37 W		2619 00		1606 61	
47	6842 -	43°30'	5847 45)	3 5		2 666 56		1641 16	
48	6943 -	43°45'	5 92 0 56	69 69	32		2724 65		1679 61	
49	7227 -	45°	6123 56	198 60	34	1	2891 18		1787 77	
50	7350 -	44°45'	6210 73	86 78	31		2964 34		1834 38	
51	7676 -	45°	6441 76	1	S 34 W		3158 26		1957 92	
52	7983 -	4 6°	6656 93		33	1	3340 84		2078 75	
53	8323 -	47°30'	6889 89		33	-	3548 51		2213 60	
54	8415 -	47°15'	6 952 19	67 69	32		3605 60		2249 97	
55	8583 -	45°45'	7067 82	121 85	35	1	3707 17		2317 21	
56	8822 -	44°45'	7236 08	169 74	S 35 W		3846 22	1	2414 57	
57	9072 -	44°	7414 78	174 85	37		3987 66	1	2517 33	
58	9318 -	42°45'	7593 57	168 95	39	E.	4120 78		2621 34	
59	9694 -	37°45'	7880 27	242 71	44		4302 38	1	2782 01	
60	9950 -	35°45'	8085 38	153 14	52		4404 60		2895 55	
								l.		
L	<u>.</u>	L	1	1	L		· · · · · · · · · · · · · · · · · · ·		•	1

t OF SERVICE		JOB NO	Conductor	#9 	MARLIN A-24		DATE	June 19	73	
	MEASURED	DRIFT	TRUE	COURSE	DRIFT	R	ECTANGULAR	COORDINATI	ES	
	DEPTH	ANGLE	VERTICAL DEPTH	DEVIATION	DIRECTION	NORTH	SOUTH	EAST	WEST	REMARK
61 62 63 64	10200 - 10457 - 10586 - 10988 -		8289 86 8502 91 8610 48 8945 71	143 71	S 55 W 48 S 56 W S 56 W	1	4490 14 4579 44 4623 16 4747 22		3011 13 3123 40 3179 36 3363 28	
					CLOSURE: 5817.80 S 35°19' W	-		•		
		1	NETIC INTE SURED DEPI		E FROM ME TAL 89ft	PARTICLE	S EXPERIE	NCED FROM		

) (

,

•

» r

PE905647

一年四年到前回前部部部部的後年一個美國盛麗的原語一日的海拔的一個一個一個一個一個人的美國國際的一個人的一個人的美國國際的一個人的一個人的發展的

This is an enclosure indicator page. The enclosure PE905647 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90 ITEM BARCODE =	5647 has the following characteristics: PE905647
CONTAINER_BARCODE =	PE902334
NAME =	Vertical Section and Plan Veiw Graphs
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	DIAGRAM
DESCRIPTION =	Vertical Section and Plan Veiw Graphs
	(enclosure from WCR) for Marlin-A24
REMARKS =	
$DATE_CREATED =$	
$DATE_RECEIVED =$	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	EASTMAN DIRECTIONAL DRILLING (AUST) PTY
	LTD.
CLIENT_OP_CO =	ESSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

MARLIN A-24

BOTTOM HOLE LOCATION CALCULATIONS USING RADIUS OF CURVATURE

Ó

C

 \bigcirc

<u>}</u>

 \bigcirc

 \odot

Ó

Ó

0

0

0

. O

. O

0

Ô

: O

0

(, 0

1	COURSE LENGTH	MEA SURED DEPTH	TRUE VERTICAL DEPTH	INCLINATION DEG MIN	DIRECTION	RECTANGULAR North/South	COORDINATS EAST/WEST	TOTAL CU Top	PVATURE BOTTOM		
		• 0.	0.			0	•			•	
	50.	50.	50.	0. 30.	S 87. E	0. -0.13 S	0. 0.14 E	1 00	2 (0		
	50.	100.	100.	0. 12.	N 81. E	-0.12 S	0.45 E	1.00	3.40		1.00
	50.	150.	150.	0. 1.	N O.E	-0.05 S	0.50 E	0.67	0.60 0.37		1
	50.	200.	200.	0. 12.	S 52 E	-0.09 S	0.57 E	0.37	1.68	•	<u></u> .
	50.	250.	250.	0. 1.	N C.E	-0.05 S	0.64 E	1.68	0.37		
	50.	300.	300.	0. 1.	N 0.E	-0.04 S	0.64 E	0.0	0.0		ſ.,
	50.	350.	350.	0. 12.	N 54. W	0.04 N	0.60 E	0.37	0.78		· -
	50.	400.	400.	0. 15.	N 57. W	0.15 N	0.44 E	0.10	C.10		
	. 50.	450.	450.	0. 48.	N 58. E	0.54 N	0.44 E	1.20	5.01		•
	50.	500.	500.	1. 20.	S 83. E	0.34 N	1.33 E	1.34	2.51	-	• •
	73.	573.	573.	1. 0.	S 74. E	0.05 N	2.79 E	0,56	0.49		
	30.	603.	603.	1. 0.	N 5.E	0.31 N	3.16 E	5.88	5.88	•	\sim
•	31.	634.	634.	2. 0.	N 30. E	1.07 N	3.41 E	3.36	4.95		
•	21.	655.	655,	1. 45.	N 32. W	1.73 N	3.40 E	11.06	8,50		
	41.	696.	696.	1. 0.	N 20. W ·	2.61 N	2.96 E -	2.15	1.87		. 0
	31.	727.	727.	1. 0.	N 24. W	3.11 N	2.76 E	0.23	0.23		•
	31.	758.	758.	1. 30.	S 89. W	2.77 N	2.22 E	3.42	6.98		•
	32.	790.	790	1. 15	S 68. W	2.62 N	1.48 E	2.03	1.52		C
	31.	821.	821.	1. 0.	S 27. W	2.21 N	1.04 E	3.31	2.20		
	63.	884,	884.	2. 0.	S 28. E	0.63 N	1.05 E	1.88	4.36		•
	.55.	939.	939.	2. 0.	S 5. W	-1.23 S	0.67 E	2.09	2.09		C
	63.	1002.	1002.	3. 0.	S 9. W	-3.95 S	0.34 E	1.60	1.64		
	63.	1065.	1065.	4. 15.	S 27. W	-7.73 S	-0.89 W	2.34	3.18		
	62.	1127.	1126.	6. 0.	S 27. W	-12.66 S	-3.40 W	2.82	2.82		C
	. 63.	1190.	1189.	7. 30.	S 23. W	-19.37 S	-6.53 W	2.45	2.55	•	
	61.	1251.	1249.	9. 15.	S 24. W	-27.52 S	-10.07 W	2.88	2.88		
	63.	1314.	1311.	11. 0.	S 27. W	-37.51 S	-14.84 W	2.86	2.95	. 9	C
	62.	1376.	1372.	13. 0.	S 27. W	-49.00 S	-20,69 W	3.23	3.23		
	62.	1438.	1432.	14. 30.	S 23. W	-62.35 S	-26.92 W	2.78	2.96	•	~
	124. . 125.	1562.	1552.	17. 0.	S 21. W	-93.55 S	-39.53 W	2.05	2.08		
	125.	1687. 1812.	1670. 1787.	19. 15. 23. 15.	S 24. W	-129.47 S	-54.40 W	1.92	1.99		
	156.	1968.	1928.	23, 15. 27. 45.	S 25. W S 26. W	-170,69 S	-73.19 W	• 3.21	3.22		0
	156.	2124.	2062.	32. 30.	S 27. W	-231.29 S -301.34 S	-102.09 W	2.89	2.90		i t
	. 364.	2488.	2367.	34. 0.	S 27. W	-479.16 S	-137.02 W -227.62 W	3.06	3.07		1
	501.	2989	2780.	34. 45.	S 28. W	-730.06 S	-358.23 W	0.41	0.41		r
	499.	3488.	3190.	34. 45.	S 30° W	978.82 S	-496.12 W	C.19	0.19		. _
	502.	3950.	3602.	35. 15.	S 31. W	-1226.91 S	-642.25 W	0.23 0.15	0.23 0.15		
	502.	4492.	4010.		S 32. W	-1476.22 S	-795.03 W	0.19	0.19		C
	495.	4987.	4408.	36• 0• "	S 35. W	-1.720.99 S	-957.04 W	0.38	C•40	•	C
	243.	5230.	4602.	37. 15.	S 35. W	-1.840.78 S	-1040.92 W	C.21	0.21	•	
	377.	5607.	4901.	37. 45.	S 35. W	-2028.78 S	-1172.56 W	0.13	0.13		C
	193.	5800.	5054.	37. 45.	S 36. W	-2124.97 S	-1241.17 W	0.32	0.32		C
	292.	6092.	5283.	39. 0.	S 36. W	-2271.62 S	-1347.72 W	0.43	0.43		
	368.	6460.	5565.	41. 0.	S 37. W	-2461.76 S	-1488.41 W	0.57	0.57		· · · · ·
	296.	6756.	5785.	42. 45.	S 37. W	-2619,55 S	-1607.31 W	0.59	0.59		· (
	86.	6842.	5848.	43. 30.	S 35. W	-2667.11 S	-1641.87 W	1.79	1.83	· • .	· · · ·
•	101.	6943.	5921.	43. 45.	S 32. W	-2725.21 S	-1680.32 W	2.05	2.07		. C
	284.	7227.	6124.	45. 0.	S 34. W	-2891.77 S	-1788.49 W	0,65	C.67	•	· •

MARLIN A-24

 \bigcirc

Ô

0

Ο

 \bigcirc

BOTTOM HOLE LOCATION CALCULATIONS USING RADIUS OF CURVATURE

()

()

 \odot

O.

()

 \bigcirc

 \mathbf{C}

 \mathbf{O}

 \bigcirc

:)

	COURSE	MEASURED	TRUE		INATION		DIRECT	ION		COORDINATES	TOTAL	
	LENGTH	DEPTH	DEPTH	DE	G MIN		DEG		NORTH/SOUTH	EAST/WEST	TOP	BOTTOM
)	123.	73 50.	6211.	44.	45• ·	S	31. W	1		-1835.11 W	1.74	1.73
	326.	7676.	6442.	45.	0.	S	34. W		-3158.93 S	-1958.69 W	0.65	0.66
	307.	7983.	6657.	46.	0.	S	33. W		-3341.52 S	-2079.54 W	0.40	C.40
	340.	8323.	6890.	47.	30.	S	33. W	1	-3549.20 S	-2214.41 W	0.44	0.44
	. 92.	8415.	6953.	47.	15.	S	32. W	1	-3606.29 S	-2250.78 W	0.85	0.84
	168.	8583.	7068.	45.	45.	S	35. W		-3707.90 S	-2318.03 W	1.60	1.55
	239.	8822.	7236.	44.	45.	S	35. W		-3846.94 S	-2415.39 Ŵ	0.42	0.42
	250.	9072.	7415.	44.	0.	S	37. W		-3988.37 S	-2518.15 W	C.64	0.63
	. 246.	9318.	7594.	42.	45.	S	39. W		-4121.49 S	-2622.15 W	0.76	0.75
)	376.	9694	7881.	37.	45.	S	44. W		-4303.33 S	-2783.03 W	1.63	1.54
	256.	9950.	8086.	35.	45.	S	52. W	i -	-4405.73 S	-2896.76 W	2.11	1.95
	· 250.	10200.	8290.	34.	30.	S	55. W		-4491.28 S	-3012.37 W	0.87	C.84
)	257.	10457.	8503.	33.	30.	S.	48. W		-4580.68 S	-3124.77 W	1.61	1.53
	129.	10586.	8611.	33.	30.	S	56. W		-4624.48 S	-3180.83 W	3.42	3.42
)	402.	10988.	, 8943.	35.	0.	S	56. W	l.	-4750.99 S	-3368.39 W	0.37	0.37

1:1

HORIZONTAL DEPARTURE = 5824. FEET AT SOUTH 35.DEG., 20. MIN. WEST (GRID)

11005

8957 TD

· .		· .					
4 4 4	•					•	
2			MADEIN	1 1-24 (1	(2) (2)	09-5-73)	
	LOG	HOLE	HOLE	VERTICAL		. (-)- / ()	ΤΟΤΛΙ
4	DEPTH	ANGLE	DIRECTION	DEPTH	NORTH	FAST	DRIFT
1	50.0	0-30	83.	49.9	0.1	0.1	0.2
1	100.0	0 - 12	81.	99.9 149.9	0.1	0.4	0.4 0.5
	150.0 200.0	$ \begin{array}{c} 0 - 0 \\ 0 - 12 \end{array} $	81. 128.	199.9	0.1	0.5	0.5
1	250.0	0-10	128.	249.9	0.0	0.7	0.7
	300.0	0-0	128.	299.9	0.0	0.7	0.7
	350.0	0 - 12	326.	349.9	0.1	0.7	0.7
1	400.0	0 - 15	303.	399.9	0.2	0.5	0.6
	450.0 500.0	0-48 1-20	58. 97.	449.9 499.9	0.6	0.6	0.9
	573.0	1-0	106.	572.9	0.5	3.0	3.0
	603.0	1- 0	5.	602.9	0.8	3.3	7 . li
	634.0	2 - 0	330.	633.9	. 1.6	3.1	3.5
	665.0	1-45	328.	664.9	2.4	2.6	3.6
	696.0 727.0	1 - 0 1 - 0	340. 286.	695.9 726.9	3.1 3.4	2.3	3.9
	758.0	1-30	269.	757.9	3.5	1.2	3.7
	790.0	1-15	266.	789.9	3.5	0.5	3.5
	821.0	1- 0	207.	820.9.	3.2	0.0	3.2
	884.0	2-0	152.	883.8	1.6	0.1	1.6
	939.0	2 - 0	185.	938.8	-0.2	0.5	0.5
	1002.0 1065.0	3- 0 4-15	189. 207.	<u>1001.</u> 7 1064.6	-2.9 -6.7	$0.1 \\ -1.1$	2.9 6.8
	1127.0	6-0	207.	1126.4	-11.6	-3.6	12.2
a fa ga an	1190.0	7-30	203.	1188.9	-18.4	-6.7	19.6
1	1251.0	9-15	204.	1249.3	-26.5	-10.3	28.5
ale ale ale	1314.0 1376.0	11 - 0 13 - 0	207. 207.	1311.3 1371.9	-36.5 -48.0	-15.0 -20.9	39.5 52.4
	1438.0	14-30		1432.1	-61.4	-27.1	67.1
	1563.0	17- 0	201.	1552.4	-92.9	-39.8	101.1
	1687.0	19-15	254.	1670.3	<u>-117.7</u>	-67.6	135.7
1	1812.0	23-15	205.	1786.7	-146.8	-100.5	177.9
	1968.0 2124.0	27-45 32-30	206. 207.	1927.5 2062.3	-207.4 -277.5	-129.5 -164.4	244.5 322.6
	2488.0	34 - 0	207.	2366.7	-455.3	-255.1	521.9
-	2989.0	34-45	208.	2780.2	-706.2	-385.7	804.7
	3488.0	34-45	210.	3190.2	-955.0	-523.6	1080.1
	3990.0	35-15	211.	3601.4	-1203.0	-669.7 -822.5	1376.9 1669.1
1 1 7	4492.0 4987.0	36-0 36-45	212.	4009.5 4408.0	-1452.3 -1697.1	-984.6	1962.0
	5230.0	37-15	215.	4602.1	-1816.9	-1068.4	2107.8
	5607.0	37-45	215.	4901.2	-2004.9	-1200.1	2336.6
;	5800.0	37-45	216.	5053.8	-2101.1	-1268.7	2454.4
	6090.0	39-0	216.	5281.1	-2246.7	-1374.5	2633.9
1	6460.0 6500.0	41 - 0 41 - 0	217. 217.	5564.5 5594.7	-2437.9 -2458.9	- <u>1516.0</u> - <u>1531.8</u>	2870.9 2897.0
	0500.0	4.L- U	411.	シンロキャイ	-2420.7	,* ω? - ? , ⊕ Ο	2037.0

GEOLOGY

IV.

-9-

(1) Summary of Previous Work

Exploration for oil and gas in the Gippsland Basin has been in progress since 1924 when oil and gas shows were encountered during the drilling of a water well near Lakes Entrance. A large number of wells were subsequently drilled by government agencies and private firms, all of which met with discouraging results (K.A. Richards, B.M. Hopkins, 1969).

The modern exploration phase commenced onshore in 1954, when geophysical methods were used to delineate drilling targets. None of those prospects drilled encountered significant hydrocarbon accumulations.

Offshore exploration began in 1960, when the Broken Hill Pty Ltd conducted an aeromagnetic survey over their offshore lease. In 1962 Hematite Petroleum (a wholly owned subsidiary of B.H.P.) shot 1005 miles of singlefold, analog seismic data.

In 1964, an agreement between Esso and B.H.P. was ratified for the exploration of the Gippsland Basin. Later that year Esso conducted the "EG" seismic survey (722 miles) and on June 5, 1965 completed the first Gippsland offshore well as a gas discovery (Barracouta-1, previously known as EGS-1)

Subsequent Esso/BHP seismic surveys are as follows:

1966	ET Survey
1967	EX Survey
	EC Survey
1968	EH Survey
	G69A Survey
1969	G69A Survey
	G69B Survey
1970	G69B Survey
	G70A Survey
1971	G71A Survey
	G71B Survey
1972	G72A Survey
1973	G73A Survey

Including the initial discovery, the drilling program to date has totalled 51 exploratory and stepout wells.

(2) <u>Regional Geology</u>

The Gippsland Basin occupies a portion of onshore Tasmania and South East Australia. Sedimentation has been continuous in some part of the basin from early Cretaceous to Recent time.

The Lower Cretaceous lacustrine and fluviatile greywackes of the Strzelecki Group were deposited within an east-west rift system, the north and south boundaries of which were created by the limits of extensional faulting.

Upper Cretaceous through Eocene rocks (the Latrobe Group) represent a continuation of the lacustrine-fluviatile environment except that the quartz sandstones are more mature and develop better reservoir characteristics. From early Paleocene through Eocene, the non-marine depositional environment had a laterally equivalent marginal marine and marine edge, primarily in the southeast portion of the basin. A substantial portion of the Eocene depositional patterns are attributed to a complex system of channel cut and fill and associated marine incursions, (E.A. James, P.R. Evans, 1971).

Rocks of Oligocene age are mainly fine grained marine mudstones which had slow depositional rates. The site of coarse clastic deposition was confined to the hinterland along a narrow zone in the Yallourn Valley in the north west portion of the onshore Basin area.

9

Sedimentation during Early Miocene was similar to that of the Oligocene whereas very rapid deposition of marls, bryozoal-skeletal limestones and calcarenites occurred during Late Miocene through Pliocene. Submarine channelling and gross scour and fill features dominate the depositional characteristics and the resulting bedding configuration. The loading effect of this rapid deposition resulted in severe isostatic adjustment of the central to eastern portion of the offshore Gippsland Basin, with considerable tilting and change of the original Basin form.

Major oil and gas deposits have been discovered in the basin, most of which are found in either anticlinal culminations or combined anticlinalpaleotopographic closures at the top of the Latrobe Group.

(3) Stratigraphic Table

Marlin A-24 was drilled as a development well through the upper part of the Latrobe Group to 6460 MD (5558' True Vertical Depth). The stratigraphy below this is summarized as follows:-

Age	Formation	Top	Subsea	Thickness
Eocene	Latrobe Group	5191 MD 4571 TVD	4477 TVD	1935'
Paleocene		7770 MD 6506 TVD	6412 TVD	2437' plus

(4) <u>Stratigraphic Description</u>

6460-7770

Mainly interbedded brown pyritic siltstone and grey to dark grey, carbonaceous, fissile to soft, shale with scattered interbeds of light brown, poorly sorted sandstone ranging from fine to very coarse grained. Coal beds up to ten feet thick occur throughout this interval. The section is more pyritic in the lower part.

7770-8610

Interbedded light to dark brown micaceous, carbonaceous siltstone and fine to very fine grained well sorted sandstone with scattered coarse grains and minor pyrite and glauconite. Minor interbeds of dark brown to black carbonaceous shale and a few thin coal beds.

8610-10860

Interbedded, brown, slightly carbonaceous siltstone, grey, carbonaceous shale, and medium to coarse grained sandstone. Numerous coal beds occur throughout the interval. Sands become finer grained in lower part of interval. Sands are gas bearing down to 10410, oil bearing from 10410 to 10610 and water bearing below that.

10860-10988

Interbedded brown shaley micaceous pyritic siltstone and light brown, fine grained, silty, clay choked, tight sandstone.

(5) <u>Structure</u>

At the intra Latrobe level of the Paleocene sands the Marlin structure has been mapped as consisting of four distinct fault blocks. In the "C" Block the Marlin-1 well found 72' of net gas in the Paleocene sands in the interval 7370'to 7610'subsea and the Marlin A-6 well located in the same major fault block intersected 142' of net gas in the interval 7448' to 8434' TVD subsea. This well also encountered 20' of net oil sand in the interval 8456' to 8496' TVD subsea.

Marlin A-24, a deviated well drilled from the Marlin Platform, was deepened below the productive horizons of the Marlin Field to test the Paleocene sands in the "D" Block. The well encountered the first Paleocene gas sand at 7090' TVD subsea. This sand was not present in the other wells. The horizon marking the top of the Paleocene gas in the A-6 well was found in A-24 at 7565' TVD subsea which was 135 low to A-6 but 235 feet higher than predicted. The top of the A-6 oil sand which is the mapped horizon, came in at 8510' TVD subsea, 25' low to A-6 and 390 feet high to prediction. Following the drilling of A-24 a detailed study of the seismic control was made to identify the reasons for the marker horizons being substantially high to prediction. The resulting structure map, which is enclosed, shows that the fault pattern has remained essentially unchanged and that the A-24 well was drilled on a locally closed high. This high does not show on the seismic lines since they pass between half a mile and a mile from the well.

(6) Hydrocarbon Occurrence

Marlin A-24 encountered 252 feet (True Vertical Thickness) of net gas sands in 15 zones in the interval 7090' TVD subsea to 8224' TVD subsea. In the interval 8375' to 8591' TVD subsea it also encountered a 5 foot gas cap and 53 feet (True Vertical Thickness) of net oil sand. No water bearing sands were found throughout the interval from 7090' to 8541' TVD subsea. The oil water contact occurs at 8541' TVD subsea.

(7) <u>Relevance to Occurrence of Petroleum</u>

Marlin A-24 confirmed the presence of both gas and oil in the "D" Fault Block. As illustrated on the enclosed stratigraphic section the hydrocarbons occur in the same gross stratigraphic interval in each well although the correlation of individual sands is not apparent.

Since the gas and oil in A-24 occurs over approximately the same depth interval as in A-6 it cannot be determined if the reservoirs in the "C" and "D" Fault Blocks are actually separated by the fault or not.

The regional geological concepts have not changed as a result of Marlin A-24.

(8) Porosities and Permeabilities

Porosities through the gas zone averaged 19 percent and water saturations 17 percent. In the oil column porosities averaged 17 percent and water saturations 25 percent.

The detailed lcg analysis is included in Appendix 5 together with a table converting the measured thicknesses of the net gas and oil sands as taken from the electric logs to true vertical thicknesses. James, E.A., Evans, P.R.

"The Stratigraphy of Offshore Gippsland Basin, Australia", APEA March, 1971

Richards, K.A., Hopkins, B.M.

"Exploration in the Gippsland, Bass & Otway Basins, Australia", ECAFE, 1969.

APPENDIX 1

PALYNOLOGICAL REPORT MARLIN A-24 VICTORIA, AUSTRALIA

October, 1973

ESSO PRODUCTION RESEARCH COMPANY

AGE INTERPRETATION FOR CORE 1 AT 10,484 TO 10,505 FEET, MARLIN A-24 WELL, GIPPSLAND BASIN, AUSTRALIA

Lewis E. Stover

Stratigraphic Geology Division

EPR.69ES.73

August, 1973

ESOA Paleontology Report 1973/11

AGE INTERPRETATION FOR CORE 1 AT 10,484 TO 10,505 FEET, MARLIN A-24 WELL, GIPPSLAND BASIN, AUSTRALIA

by

Lewis E. Stover

The palynomorph assemblage from samples at 10,484, 10,491, and 10,505 feet in the Marlin A-24 well are interpreted as Early Paleocene and as from the *Tricolpites longus* zone.

Spore-pollen from the separate samples are sufficiently similar that they can be regarded as representing a single assemblage. Associated with the indigenous spore-pollen are extremely rare microplankton and redeposited Early Cretaceous spore-pollen. The latter are readily recognizable and distinguishable from the indigenous forms because the recycled forms are (1) better preserved, (2) darker in color and (3) represented by fewer and different species.

In-place spore-pollen are very poorly preserved, so much so that the majority of the specimens are identifiable at the generic rather than the specific level. The combined occurrence of *Dilwynites granulatus*, *Gambierina rudata*, *Lygistepollenites balmei* and *Stereisporites punctatus* indicates the assemblage is Paleocene. This association of species is not precise enough to distinguish between *L. balmei* and *T. longus* zone assemblages. The presence of *Trithyrodinium evittii*, however, confirms the assignment of the assemblage to the *T. longus* zone. Previous records of this species are from the *T. longus* zone in Flounder-1 and from the Early Paleocene (Danion) of California, U. S. A. (Drugg, 1967). The paucity of specimens of *Nothofagidites* spp. is additional evidence for the *T. longus* zone assignment. Palynomorphs identified from core 1 are listed below.

Palynomorphs from Marlin A-24, 10,484 to 10,505 feet.

Spore-pollen

Alisporites sp. Cyathidites splendens Cyathidites spp. Dilwynites granulatus Ericipites sp. (probably E. scabratus) Gambierina rudata Gleicheniidites spp. Laevigatosporites spp. Latrobosporites Sp. (probably L. amplus) Lygistepollenites balmei Nothofagidites Sp. (probably N. endurus) Phyllocladidites mawsonii Podocarpidites Spp. Podosporites microsaccatus Periporopollenites polyoratus Proteacidites Sp. (probably P. angulatus) Proteacidites Sp. (probably P. tenuiexinus) Proteacidites Sp. (frequent specimens) Rugulatisporites Sp. Stereisporites antiquasporites Stereisporites gillii Tricolpites gillii

Dinoflagellates

Hystrichosphaeridium tubiferum Trithyrodinium evittii

Redeposited Cretaceous Spores

Biretisporites spectibilis Cicatricosisporites australiensis Kuylisporites lunaris Lycopodiacidites asperatus

Large reticulate grain (might be *Klukisporites scaberis*, but specimen is folded and no germinal structure was detected, not a specimen of *Schizosporis reticulatus*).

REFERENCE

Drugg, W. S., 1967, Palynology of the Upper Moreno Formation (Late Cretaceous-Paleocene) Escarpado Canyon, California: Palaeontographica B, v. 120, pp. 1-71.

BASIN GIPPSLAND			`	DAT	E				<u></u>		
WELL	NAME MARLIN	V A-24			ELE	VATION			•		
WELL NAME MARLIN A -24 PLATFORM WELL HIGHEST DATA					LOWEST DATA					1	
A GE	PALYNOLOGIC ZONES	Preferred		Alternate Depth	Rtg.	2 way time	Preferred Depth		Alternate	Rtg.	2 way time
-91.	<u>P</u> . <u>tuberculatus</u>										
μ	U. <u>N</u> . <u>asperus</u>										
	M. <u>N</u> . <u>asperus</u>										
	L. <u>N</u> . <u>asperus</u>										
NE	P. <u>asperopolus</u>										
EOCENE	U. <u>M</u> . <u>diversus</u>										
	M. <u>M</u> . <u>diversus</u>						·				i
	L. <u>M. diversus</u>										
NE	U. <u>L</u> . <u>balmei</u>										
PA L, E OCENE	L. <u>L. balmei</u>	10,4 8 4	/				10,505	1			
PAJ	<u>T. longus</u>										
	<u>T. lilliei</u>										
SUOS	<u>N. senectus</u>										
L T T CRET A DOUS	<u>C. trip./T.pach</u>	•								· · · · ·	·
	<u>C</u> . <u>distocarin</u> .										
	<u>T. pannosus</u>								•		
EA	ARLY CRETACEOUS										
	E-CRETACEOUS										

COMMENTS:

Trithyrodinium evittii Dinoflagellate Zone 10,484-(1) to 10,50.5 (1, Only three samples examined. Depths quoted are drilled depths and are uncorrected for deviation.

RATINGS:

0; SWC or CORE, EXCELLENT CONFIDENCE, assemblage with zone species of spores, pollen and microplankton.

1;	SWC or	CORE,	GOOD	CONFIDENCE,	assemblage	with	zone	species	ot	spores	and	
	pollen	or mic	cropla	ankton.								

- 2; SWC or CORE, POOR CONFIDENCE, assemblage with non-diagnostic spores, pollen and/or microplankton.
- 3; CUTTINGS, FAIR CONFIDENCE, assemblage with zone species of either spore and pollen or microplankton, or both.
- 4; CUTTINGS, NO CONFIDENCE, assemblage with non-diagnostic spores, pollen and/or microplankton.
- NOTE: If a sample cannot be assigned to one particular zone, then no entry should be made. Also, if an entry is given a 3 or 4 confidence rating, an alternate depth with a better confidence rating should be entered, if possible.

DATA	RECORDED	BY:	L.E.Stover	
ካለ ምለ	DEVISED	RV •	A.D. Partridge	
DATA N	No R 315 12/72			•
2 K M 1	10 K 31J 14,72			

.

DATE_	August 1973.	<u>,</u>
DATE_	February 1975	

APPENDIX 2

GAS AND OIL ANALYSES (TO BE PROVIDED WHEN REPORTS AVAILABLE) MARLIN A-24

VICTORIA, AUSTRALIA

October, 1973

W670.

Gevelen

26 JUN 1987

MARLIN A24 MLN-A24

			Gig	psland	Basin		38 13	s. 1at.	143	13 e.	lorıg.		
	+	м	FT	% I…C	%0…C	ZN	Z11	S1	52	TMAX	ΡI	111	GP
-	1	2052	6730	2.5	40.60	0.62	3.15	3.20	138.7	466	0.02	342	141.9
	2	2061	6760	1.1	43.47	0.64	3.47	3.13	141.3	465	0.02	325	144.4
	3	2070	6790 -	0.6	50.43	0.70	3.70	4.96	170.2	460	0.03	333	175.2
-	4	2101	6890	0.1	64.00	0.99	4.82	5.66	157.5	457	0.03	246	163.1
	5	2149	7050	p91	67.00	1.10	4.63	7.67	195.6	466	0.04	393	203.2
	6	2159	7080	6d1	70.00	1.13	4.99	13.34	317.7	455	0.04	454	331.1
-	7	2201	7220	0.1	71.09	1.12	5.16	10.37	229.1	458	0.04	355	239.5
í		2305	7560	3.6	31.27	0.49	2.86	3.72	76 🧿	457	0.05	244	80.0
ζ.	11	2473	8110	7.3	9.42	0.13	1.15	2.43	10.0	436	0.12	199	21.3
-	12	2540	8330	7.6	27.19	0.40	2.56	23.31	79.2	462	0.23	291	102.5
	13	2713	8900	0.3	53.37	0.37	4.19	11.45	169.7	460	0.06	313	181.2
	14	2756	9040	0.5	65.94	0.97	4.27	7.00	206.4	466	0.03	313	213.4
~	15	2845	9330	6d1	73.20	1.15	4.65	11.76	205.5	460	0.05	231	217.3
	16	2893	9490	1.1	58.06	0.88	3.64	9.44	174.2	439	0.05	300	183.6
	17	2899	9510	2.7	39.28	0.61	2.61	5.15	116.3	460	0.04	296	121.4
-	18	2973	9750	0.9	17.00	0.29	1.71	3.58	60.9	416	0.06	358	64.5
	19	3012	9880	1.6	65.31	0.93	3.93	9.33	163.4	504	0.05	243	172.7
	20	3055	10020	0.6	70.22	0.92	4.30	10.94	177.8	461	0.06	253	188.8
	21	3140	10300	0.7	70.72	0.94	4.32	10.28	191.7	437	0.05	271	202.0
	22	3146	10320	0.6	57.53	0.77	3.85	7.69	174.7	461	0.04	304	182.4
	23	3168	10390	3.6	45.17	0.56	3.25	12.04	172.1	460	0.07	331	184.1
	24	3210	10530	bd1	72.39	0.99	4.77	25.55	292.4	434	30.0	404	317.9
	25	3277	10750	0.3	45.97	0.57	2.99	7.38	144.6	459	0.05	315	152.5
	26	3329	10920	0.8	22.10	0.39	2.07	9.39	99.1	470	0.09	448	108.5

Pyrolysis run with CDS Pyroprobe and modified interface: TMAX inaccurate. M is sample depth in meters. FT is sample depth in feet.

I-C.is inorganic carbon as % calcium carbonate in rock.

-C is organic carbon as % carbon in rock.

×.

XN is X nitrogen in rock.

%H is % hydrogen in rock.

- (____

SI is pyrolysis free-hydrocarbon signal (mg hydrocarbons/g rock). S2 is pyrolysis kerogen signal (mg S2 hydrocarbons/g rock). PI is production index [S1/(S1+S2)].

TMAX is temperature at which 52 signal is maximum (deg C). HI is hydrogen index (mg hydrocarbons/g D-C).

GP is genetic potential (kg hydrocarbons/ton rock) (S1+S2). 'bdl' means 'below detection limit'; '---' means 'not determined'. 'ndm' means 'no definitive maximum'.

APPENDIX 3

DESCRIPTION OF CUTTINGS SAMPLES MARLIN A-24 VICTORIA, AUSTRALIA

SAMPLE DESCRIPTIONS - MARLIN A-24

- .

	σ;	
DEPTH	%	DESCRIPTION
5140-5150	10 70 20	Limestone, light grey to white, micritic, massive, weakly shaly <u>Calcareous marly shale</u> , light grey green, fossiliferous, pyritic <u>Marl</u> , grey green, very abundant fossiliferous hash, forams, etc, pyritic. Trace carbonaceous shale? - black
5150-5160	20 70 10	Limestone, micritic as above <u>Calcareous, marly shale</u> as above <u>Sandstone</u> , grey, medium to fine grained, angular to rounded, moderately well sorted, quartzose, dolomitic and glauconitic matrix - although friable and non cemented in part.
5160-5170	20 60 20	<u>Limestone</u> as above <u>Calcareous</u> marly mudstone as above <u>Sandstone</u> as above
5170-5180	70 30	<u>Calcareous marly mudstone</u> as above <u>Sandstone</u> as above, glauconitic, dolomitic, pyritic, medium to coarse grained, angular to rounded.
5180-5190	90 10	<u>Sandstone</u> , grey to white, medium to coarse grained, friable, moderately well sorted, angular to rounded, quartzose <u>Sandstone</u> , grey, dolomitic, glauconitic, cemented
5190-5200	100	Sandstone as above
5200-5210	100	Sandstone
5210-5220	100	<u>Sandstone</u> as above
5220-5230	100	<u>Sandstone</u> as above Trace pyrite - no dolomite cementation
5230-5240) 5240-5250)	100	<u>Sandstone</u> as above
5250-5260	80 20	<u>Sandstone</u> as above <u>Carbonaceous shale</u> , black to dark brown
5260-5270	70 30	<u>Sandstone</u> - no dolomite <u>Coal</u> and shaly coal
5270-5280	100	<u>Coal</u> , black bituminous
5280-5290	100	<u>Coal</u> , black as above :
5290-5300	70 20 10	<u>Coal</u> as above <u>Carbonaceous shale</u> as above <u>Sandstone</u> as above, grey, medium to coarse grained, fairly well sorted, angular to rounded, non dolomitic
5300-5310) 5310-5320)	40 50 10	<u>Sandstone</u> - no dolomite <u>Coal</u> <u>Shaly coa</u> l
5320-5330	40 20 40	<u>Shaly coal</u> as above <u>Coal</u> as above <u>Sandston</u> e as above
5330-5340	40 30 30	<u>Sandstone</u> , dolomitic <u>Coal</u> <u>Shaly coal</u>
5340-5350	50 30 20	<u>Sandstone</u> as above - dolomitic in part <u>Shaly</u> coal <u>Coal</u> 2/
		··/

.

10f.6

-

20f C

DEPTH	%	DESCRIPTION
5350-5360	90 10	Sandstone, as above. 10% dolomite, friable Coal and shaly coal
5360-5370	90 10	Sandstone as above <u>Coal</u> as above
5370-5380	100	Sandstone as above, dolomite % = 10-20
5380-5390	100	Sandstone as above, 20% dolomite
5390-5400	100	Sandstone as above. 10-20% dolomite
5400-5410	100	Sandstone as above, 30% dolomitic
5410-5420	100	<u>Sandstone</u> . 50% dolomitic - indirectly - all quartz highly angular probably mashed during slowdrilling - due dolomite.Some cemented aggregates.
5420	100	<u>Sandstone</u> , dolomitic
5430-5440	100	<u>Sandstone</u> , dolomitic
5440-5450) 5450-5460) 5460-5470)	100	<u>Sandstone</u> as above
5470-5480	100	Sandstone, dolomitic - 10%
5480-5490	60 40	<u>Sandstone</u> as above <u>Coal</u>
5490-5500 sau	10 50 40	<u>Sandstone</u> <u>Carbonaceous shale</u> , light to dark brown, coaly, locally silty <u>Coal</u> , black, brown-black.
5500-5510 tupundan		<u>Sandstone</u> , highly dolomitic <u>Coal</u> <u>Shaly coal</u>
5510-5520 5520-5530 5520-5530	60 30	<u>Sandstone</u> , dolomitic <u>Coal</u> <u>Shaly coal</u>
5520-5530 5520-5530 1000		<u>Sandstone</u> , dolomitic <u>Shaly coal</u> <u>Coal</u>
5530-5540	60 40	<u>Sandstone</u> , dolomitic <u>Shaly coal</u> , dark brown, brown, subfissile
5540-5550) 5550 - 5560)	60 40	<u>Sandstone</u> , dolomitic <u>Shaly coal</u> as above
5560-5570	80 20	Sandstone, dolomitic Shaly coal + coal. Trace brown carbonaceous shale
5570-5580) 5580-5600)	90 10	<u>Sandstone</u> , dolomitic and also friable <u>Shaly coal</u>
5600-5610	50 50	<u>Sandstone</u> - dolomitic and friable <u>Shaly coal</u> , trace shale
5610-5620	100	<u>Coal</u> as above
5620 - 5630 ·	100	Coal

-2-

-3-

DEPTH	%	DESCRIPTION
5630-5640	80 20	<u>Coal</u> <u>Sandstone</u> , dolomitic
5640-5650) 5650-5660)	100	<u>Coal</u>
5660-5670	70 20 10	<u>Coal</u> <u>Sandstone</u> – dolomitic <u>Shale</u> , dark brown, carbonaceous
5670-5680	80 20	<u>Sandstone</u> , friable, trace dolomite <u>Shaly coal</u>
5680-5690	90 10	<u>Coal</u> <u>Sandstone</u> , friable
5690 5700	80 20	<u>Sandstone</u> as above <u>Coal</u> as above
5700-5710	100	Sandstone, friable, trace dolomite
5710-5720) 5720-5730) 5730-5740)	100	Sandstone
5740-5750) 5750-5760)	90 10	<u>Sandstone</u> , friable - 20 % dolomitic <u>Shaly coal</u>
5750-5760) 5760-5770) 5780-5790)	100	<u>Coal</u> .
5790-5800	90 10	<u>Coal</u> as above <u>Sandstone</u> as above
580 810	100	<u>Coal</u> as above
5810-5820	100	<u>Coal</u> as above
5820-5830	80 10	<u>Coal</u> , black, as above <u>Siltstone</u> , light brown, carbonaceous, shaly, micaceous flecks, dolomitic.
	10	Sandstone, grey, white to light brown (if dolomitic), friable to consolidated by cementation.
5840-50	70 30	<u>Coal</u> , black as above <u>Siltstone</u> as above
5850-5860	60 40	<u>Coal</u> as above <u>Siltstone</u> , dolomitic in part as above
5860-5870	70 30	<u>Coal</u> as above <u>Siltstone</u> as above Trace sandstone, medium to coarse grained, friable
5870-5880	60 40	<u>Coal</u> as above <u>Siltstone</u> as above, partly dolomitic, trace pyrite Trace sandstone
5880-5890	80 20	<u>Coal</u> <u>Shaly siltstone</u> as above
5890-5900	80 20 ⁻	<u>Coal</u> as above <u>Shaly siltstone</u> as above
•		

, .			4076
· / ·		-4-	
		· · · · · · · · · · · · · · · · · · ·	
DEPTH	%	DESCRIPTION	
5900-5910	50 50	<u>Coal</u> <u>Siltstone</u> - sandy, light to buff, dolomitic, hard, w carbonaceous flecks, pyritic. Trace sandstone	ell cemented,
5910-5920	60 40	<u>Coal</u> as above <u>Siltstone</u> as above	
5920-5930	50 50	<u>Coal</u> as above .	
5930-5940	70 30	<u>Coal</u> <u>Siltstone</u> , shaly	
5940-5950	60 40 ₁	<u>Coal</u> as above <u>Siltstone</u> as above:	
5950-5960	60 40	<u>Coal</u> as above <u>Siltstone</u> as above	
5960-5970) 5970-5980)	50 50	<u>Coal</u> as above <u>Siltstone</u> as above	
5980-5990	60 40	<u>Coal</u> as above <u>Siltstone</u> as above	
5990-6000) 6000-6010)	80 20	<u>Coal</u> <u>Siltstone</u> as above, trace dolomite Trace medium to coarse grained sandstone	
6010-6020	60 30 10	<u>Coal</u> , black <u>Siltstone</u> as above <u>Sandstone</u> , grey to buff	
6020-6030) 6030-6040)	70 30	<u>Coal</u> as above <u>Siltstone</u> as above	
604 050	30 20 50	<u>Coal</u> as above <u>Siltstone</u> as above <u>Sandstone</u> , grey, white, friable, nondolomitic	
6050-6060	30 70	<u>Sandstone</u> , as above, dolomitic in part. <u>Coal</u> , as above	•
6060-6070	60 40	<u>Sandstone</u> as above, trace pyrite <u>Coal</u> às above	
6070-6080	50 40 10	<u>Sandstone</u> as above <u>Coal</u> <u>Shaly siltstone</u> - also dolomitic in part	
6080-6090	- .	NO SAMPLE - NEW BIT AT 6090.	
6090-6100	60 30 10	<u>Coal</u> as above <u>Sandstone</u> as above <u>Shaly siltstone</u> as above	
6100 - 6110	80 10 10	<u>Coal</u> as above <u>Shaly siltstone</u> as above <u>Siltstone</u> - cark brown, carbonaceous, as above	
6110-6120	60 30 10	<u>Coal</u> S <u>haly siltstone</u> <u>Shale -</u> carbonaceous, dark brown	
			5/

-5-

• /		
		-5-
DEPTH	%	DESCRIPTION
6120-6130	70 20 10	<u>Coal</u> , black, as above <u>Shaly siltstone</u> and siltstone <u>Shale</u> - dark brown - carbonaceous Trace sandstone.
6130-6140	80 20	<u>Coal</u> as above <u>Siltstone</u> - light brown, shaly matrix, dolomitic, sandy with fine grained associated sandstone.
6140-6150	60 20 20	<u>Coal</u> <u>Shale</u> , locally silty <u>Sandstone</u> , grey, medium coarse grained, angular to rounded, friable, weakly dolomitic.
6150-6160	70 30	<u>Coal</u> Shaly siltstone
61606170	90 10	<u>Coal</u> as above <u>Shale</u> - carbonaceous
6170-6180	80 20	<u>Coal</u> as above <u>Shale</u> as above
6180-6190	70 20 10	<u>Coal</u> as above <u>Shale</u> as above <u>Sandstone</u>
6190-6200	50 40 10	<u>Coal</u> <u>Sandstone</u> with associated siltstone <u>Shale</u> as above
6200-6210	50 30 20	<u>Coal</u> as above <u>Siltstone</u> as above <u>Sandstone</u> , grey, medium to fine grained, in parts dolomitic
6210-6220) 62(6230)	50 50	<u>Coal</u> as above <u>Sandstone</u> as above
6230-6240	70 30	<u>Sandstone</u> , grey, medium to coarse grained, angular to rounded, mildly dolomitic, friable. <u>Shaly coal</u> , as above
6240-6250) 6250-6260) 6260-6270)	90 10	<u>Coal</u> as above <u>Shale</u> as above
6270–6280	80 10 10	<u>Coal</u> , black <u>Siltstone</u> as above <u>Shale</u> , dark brown, as above
6280-6290) 6290-6300) 6300-6310)	100	<u>Coal</u>
6310-6320	100	Coal
6320-6330) 6330-6340)	80 20	Coal Shaly coal
6340-6350) 6350-6360)	80 20	<u>Coal</u> <u>Shale coal</u> Trace siltstone
		6/

6 of 6

-6-

DEPTH	%	DESCRIPTION	
、 6360-6370)	100	Coal as above	
6370-6380)	100		
6380-6390	50 40	<u>Coal</u> <u>Sandstone</u> , grey, friable, medium to coarse grained, angular to	. .
	10	rounded, moderately well sorted Silty shale	
6390-6400	70 30	<u>Coal</u> as above . <u>Sandstone</u> as above .	
6400-6410	80 20	<u>Coal</u> as above <u>Sandstone</u> as above, dolomitic	
6410-6420) 6420-6430)	90 10	<u>Coal</u> as above ; <u>Sandstone</u> as above - dolomitic	
643 440	80 10	<u>Coal</u> <u>Sandstone</u> - dolomitic	
	10	Shale - coaly	
6440-6450	100	Coal	
6450-6460	80 20	<u>Coal</u> <u>Siltstone</u> - shale	
		· ·	

SAMPLE DESCRIPTIONS

•

.

			<u>MARLIN A-24</u> 1 to 4.6.1973 J. DAVIDSON
	DEPTH	%	DESCRIPTION
	6470-6480	40	Sandstone, medium to fine grained, poorly sorted, light brown, carbonaceous streaks, odd loose coarse grains, subangular.
		40 .	Siltstone, brown, pyritic.
		20	Coal, black, vitreous, conchoidal fracture, blending gas,
	· 1	<u>.</u>	pyritic.
	6480-6490	10	Sandstone as above, mainly loose grains.
		50	Siltstone as above
		40	Coal as above
	6490-6500		As above
	6500-6510	10	Sandstone as above
		20	Siltstone as above .
		30	Shale, grey, fissile to soft
		40	Coal
	6510-6520	10	Shale as above
		90	Coal
_			
	6520-6530	10 20	Siltstone as above Shale as above
0	•	70	Coal as above
	6530-6540	10	Siltstone, light brown, very pyritic
		60	Shale as above, pyritic
		30	Coal, pyritic
	6540-6550	60	Siltstone as above
		20	Shale as above
		20	Coal as above
	6550-6560	30	Siltstone as above
	0550-0500	20	Shale as above - some becoming carbonaceous
		50	Coal as above
		5.0	
	6560-6570	50	Sandstone, coarse to very coarse, loose grains, rounded to subrounded, some pyrite coating on grains.
		10	Siltstone as above
	·. ·	20	Shale as above
\bigcirc		20	Coal as above
	6570-6580	20	Condatana na abava
	00/0-0000	20	Sandstone as above Siltstone as above
		30	Shale as above
		30	Coal as above
	(500 (500	10	
	6580-6590	10 10	Sandstone as above • Siltstone as above
		30	Shale as above
		50	Coal as above
	6500 ((00	10	
	6590-6600	10	Coarse to very coarse sandstone as above, also coarse sandstone, rounded to subrounded, white clay and pyrite cemented
		10	Siltstone as above
		60	Grey shale as above
		20	Coal as above
	6600-6610	20	Sandstone as above
	0000 0010	20 50	Siltstone as above
	-	10	Shale as above
		20	Coal as above
		10	Condetene en eleve
		10	Sandstone as above
	6610-6620	40	I Silfefone ac above
	6610-6620	40 30	Siltstone as above Shale as above
	6610-6620	40 30 20	

	DE PTH	8	-2- DESCRIPTION
	6620-6630	50	Sandstone, rare, very coarse grains as above, mostly medium
		30	to coarse grained, well sorted sandstone, minor clay and pyrite matrix, well rounded. •Siltstone as above
		10 10	Shale as above Coal as above
. [.]	6630-6640	10 20	Sandstone as above Siltstone as above, less pyritic
		40 30	Grey shale as above Coal as above
.:	6640-6650	. 10 20 50 20	Sandstone as above Siltstone as above Shale as above Coal as above
•	6650-6660	10 60 30	Sandstone as above Shale as above Coal as above
•	6660-6670	10 60 30	Siltstone, dark brown and carbonaceous Shale, grey as above, some carbonaceous streaks Coal, little pyrite
	667 0-6680	10	Sandstone, medium to fine, well rounded, dominantly loose grains - rare samples medium sand grade rounded glauconite in a white clay matrix
· • .		50 40	Grey shale as above Coal as above
	6680–6690	10 20 50 20	Sandstone as above Siltstone, light brown Shale as above Coal as above
	6690-6700		As above
	6700-6710	10 90	Carbonaceous shale Coal, black, vitreous, bleeding gas
	6710-6720	30 70	Carbonaceous shale and grey shale, friable Coal as above
	6720-6730	10 90	Carbonaceous shale Coal
	6730-6740		As above
	6740-6750		As above
	6750-6760	10 20 70	Siltstone, light brown and carbonaceous Shale, light grey, friable Coal as above
	6760-6770	20 20 60	Siltstone as above, pyritic Shale as above Coal as above
	6770-6780	10 40 50	Siltstone as above Shale as above Coal as above
	6780-6790	10 60 30	Siltstone as above Shale, very carbonaceous Coal as above
	6790-6800	30 70	Carbonaceous shale as above Coal as above
	6800-6810	40 60	Shale, grey and friable and carbonaceous shale Coal as above

and a second

	DE PTH	%	DESCRIPTION	
	6810-6820	10 20 70	Light brown and carbonaceous siltstone Shale as above, very little light grey component, fissile Coal	
	6820-6830		As above	
•	6830-6840		As above	
	6840-6850	Trip S 20 80	ample Shale as above, pipe dope etc. Coal as above	
	6850-6860	20 20 60	Siltstone as above Shale as above Coal as above	
·	6860-6870	20 20 60	Trace medium grained loose sandstone, rounded Siltstone as above Shale as above Coal as above	
	6870-6880		As above	
	6880-6890	10 20 20 50	Sandstone, fine, white with brown matrix, poorly sorted Siltstone as above Shale as above Coal as above	•
	6890-6900	100	Coal. Traces of pyrite	•
	6900-6910	20 10 70	Siltstone, black, carbonaceous Shale, black and carbonaceous Coal as above	
	6910-6920		As above	
	6920-6930	40 20 40	Siltstone as above Shale as above Coal	•
	6930-6940	Trip s 40 20 40	ample Siltstone, brown and as above Shale, brown and as above, fissile Coal as above	•
نەر	6940-6950	30 10 60	Siltstone, black, carbonaceous Shale, black, carbonaceous Coal	
	6950-6960		As above	
	6960-6970	20 10 70	Siltstone as above Shale as above Coal as above	
	6970-6980		As for 6940-6950	
·	6980-6990		As above	
	6990-7000	10 20 70	Siltstone as above. Some light brown pieces Shale as above Coal - rare amber fluorescence	
	7000-7010	10 30 60	Sandstone, medium to fine, white dolomite fluorescence, bleeding from water, subangular Carbonaceous shale as above Coal as above, amber fluorescence	
	7010-7020	40 40 20	Siltstone as above Shale as above Coal as above	
•				

.

a and sports the sec

DEPTH	• %	DESCRIPTION
7020-7030	10 40	Siltstone as above Shale as above
• <u>.</u>	50	Coal as above
7030-7040	20 20	Siltstone as above Shale as above
	20 60	Coal as above
7040 7050		As above
7050-7060	20 60	Siltstone as above Shale as above
	. 20	Coal as above
7060-7070	30	Shale as above
	70	Coal as above
7070-7080 .		As above
7080-7090	20	Shale as above
	80	Coal as above
7090-7100	:	As above
7100-7110	•	As above
-	•	AS above
7110-7120	20 30	Siltstone as above Shale as above
	50	Coal as above
7120-7130	Trace	sandstone, medium, angular, loose grains
	30	Siltstone as above
	2 0 50	Shale as above Coal as above
7130-7140		As above, no sandstone
7140-7150		As above
7150-7160	30 20	Dominantly carbonaceous siltstone as above, some brown fragmer Shale as above
	50	Coal as above
7160-7170	10	Siltstone as above
	40 50	Shale as above
		Coal as above
7170-7180	20 80	Shale as above Coal as above
	00	
7180-7190		As above
7190-7200	30	Shale as above
	70	Coal as above
7200-7210		As above
7210-7220		As above
7220-7230	40	Shale as above
	60	Coal as above
7230-7240	30	Shale as above
	70	Coal as above
7240-7250	40	Shale as above, some light grey fragments
	60	Coal as above
7250-7260	60	Shale as above, dominantly light grey to brown fragments
	40	Coal as above
7040 7070	100	Coal
7260-7270	•	

	1 T		
DEPTH	%	DESCRIPTION	
7270-7280	40 60	Trace fine sandstone, dirty, angular Shale, dark brown to black, very carbonaceous Coal as above	
7280-7290	10 90	Shale as above Coal as above	
7290-7300	•	As above	
7300-7310	10 20 70	Siltstone, dark brown to black, carbonaceous Shale as above Coal as above	
7310-7320	10 10 80	Siltstone as above Shale as above Coal as above	
7320-7330	20 80	Shale as above Coal as above	
7330-7340		As above	
73 40∞7350		As above	
7350-7360	30	Trace medium loose sandstone grains, subrounded. Siltstone, light brown, micaceous and carbonaceous,and	
	30	dark brown to black carbonaceous siltstone as above. Shale, brown and black (carbonaceous) varieties, about equal proportions	
70 (0 70 70 70	40	Coal as above	
7360-7370	10 60 20 10	Sandstone, medium to fine grained, subrounded to angular poorly sorted forams and muscovite flakes and glauconiti Siltstone, light brown, micaceous as above Shale as above Coal as above	
7370-7380	10 40 40 10	Sandstone as above Siltstone as above Shale as above Coal as above	
7380-7390	20 60 10 10	Sandstone as above. Loose coarse angular grains Siltstone as above Shale as above Coal as above	v
7390-7400		As above	
7400-7410	10 70 10 10	Sandstone as above, and loose angular grains, few forams Siltstone as above Shale as above Coal as above	5
7410-7420		As above	
74 20-7430	30 ⁻ 20 50	Trace sandstone as above Siltstone as above Shale as above Coal as above	
7430-7440	70 20 10	Trace sandstone as above Siltstone as above Shale as above Coal as above	
7440-7450	60 20 20	Trace sandstone as above Siltstone as above Shale as above Coal as above	
7450-7460		As above	
7460-7470	•	As above6/	•

D	EPTH	%	DESCRIPTION
74	70-7480		Trace sandstone as above
		30	Siltstone as above
		20	Shale as above
		50	Coal as above
		10	
14	480-7490	10	Siltstone as above
		20.	Shale, light brown and carbonaceous types
		70	Coal as above
71	490-7500	20	Sandstone, fine to very fine, white, subrounded to angular
14	+90-7500	20	Siltstone as above
		30	Shale as above
		30	Coal as above
. •			
75	500-7510	10	Sandstone as above
		30	Siltstone as above
		30	Shale as above
	1	30	Coal as above
	Ĩ		
75	510-7520	10	Sandstone as above
	÷	60	Siltstone as above
	1	20	Shale as above
		10	Coal as above
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- 1	
<b>6</b> 75	520-7530		As above
75	530-7540	-	As above
75		10	Condetene es eterre
15	540-7550	10 70	Sandstone as above Siltstone as above
		10	Shale as above
· ·	-	10	Coal as above
		10	
75	50-7560		As above
		4	
75	60-7570	10	Fine sandstone as above, no fossils
		30	Siltstone, dark brown, micaceous and carbonaceous
		-30	Shale, dark brown and black, carbonaceous
		30	Coal as above
·			
75	570-7580	20	Sandstone as above
		20	Siltstone as above
		10	Shale as above
$\bigcirc$		50	Coal as above
05	80-7590		As above
90	00-1330		
75	90-7600	10	Sandstone as above
		30	Siltstone as above
		40	Shale as above
		20	Coal as above
76	600-7610	20	Sandstone, fine as above, half loose coarse medium grains
		10	Siltstone as above
		40	Shale as above
		30	Coal as above
	<b>.</b>		
76	510-7620	40	Sandstone as above .
		30	Siltstone as above
		20	Shale as above
		10	Coal. Cas in 4' sand at 7615-20.
76	20-7630		As above
. 70	10JU .		
76	30-7640	30	Sandstone, fine, very dirty, some loose grains, still the
,0			odd glauconite pellet
		30	Siltstone as above
•		30	Shale as above
		10	Coal as above
76	40-7650		As above
70		1 1	

	DEPTH	%	-7- DESCRIPTION
chief.	7650-7660	Trip s	ample
-	1050-1000	10	Sandstone as above
* - 2		20	Siltstone as above
* 977 28		10	Shale as above
		60	Coal as above
	7660-7670	30	Sandstone, coarse to very coarse, angular, loose grains
1 1 2		30	Siltstone as above
		10	Shale as above
· 동 고		30	Coal as above
	7670-7680	10	Sandstone as above plus fine subrounded sandstone, sorted, white clay matrix
1 7	•	50	Siltstone as above, little carbonaceous content
5 2		20	Shale as above
		20	Coal as above
1	7680-7690	10	Sandstone as above, very minor glauconite fragments
1	·	40	Siltstone as above
itumita		30	Shale as above
alter effe		. 20	Coal as above
	7690-7700	40	Sandstone, fine to very fine, subrounded, well sorted,
· · ·			white clay matrix
$\sim$		40	Siltstone as above
		10 10	Shale as above Coal as above
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	7700-7710	10	Sandstone as above
		40	Siltstone as above
		40	Shale as above
a circuit de la comparación de la compa		10	Coal as above
, monthe and	7710-7720	30	Sandstone as above
1		50	Siltstone as above
-	•	10	Shale as above
and a second		10	Coal as above
and the second	7720-7730	10	Sandstone as above
		80	Siltstone as above
1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		10	Coal as above
	7730-7740	10	Sandstone as above plus coarse loose grains
		20	Siltstone as above
		40	Shale as above
		30	Coal as above
e et viete a.	7740-7750	80	Sandstone, coarse loose grains, angular
	-	10	Siltstone as above
ビーキック 		10	Shale as above
	7750-7760	- 60	Sandstone, fine to very fine as above and odd coarse grains
umendar o		20	Siltstone as above
and the second		10	Shale as above
a de la facer insula		10	Coal as above
442 <b>4</b> 42 9	7760-7770	30	Sandstone as above
		30	Siltstone as above
tu nititu u		30	Shale as above
7773 		10	Coal as above
	7780-7790		Trace sandstone as above
		80	Siltstone(increasing amount of pyrite) as above
		10	Shale as above
n en altra e		10	Coal as above
- and the first	7790-7800	10	Sandstone, fine to very fine, as above
. <b>De</b> eu.		50	Siltstone as above
P25, 50 A.		20	Shale as above
hur ready		20	Coal as above
	7800-7810	10	Sandstone as above
2	,000-7010	20	Siltstoneas above
An electronic de la constante		30	Shale asabove 40% Coal as above8/
t Ne transmissioner		· · · ·	

Gyantinta ging a ta <b>patripa</b> a	DE PTH	%		
	7810-7820	80 10 10	Trace sandstone as above Siltstone as above Shale as above Coal as above	
	7820-7830 `	60 10 30 ·	Trace sandstone as above Siltstone as above Shale as above Coal as above	
	<b>7830-78</b> 40		As above	
	7840-7850	20 40 20 20	Sandstone as above – friable – porosity probably high Siltstone as above Shale as above Coal as above	
	7850-7860	10 30 40 20	Sandstone as above Siltstone as above Shale as above Coal as above	:
	7860-7870	50 40 10	Trace sandstone as above Siltstone as above Shale as above Coal as above	
	<b>7870-788</b> 0	80 20	Trace fine sandstone as above Siltstone as above Shale as above Trace coal as above	
	7880-7890	30 60 10	Sandstone, fine to very fine, dirty, trace pyrite Siltstone as above Shale as above	
	7890-7900	10 60 30	Sandstone as above Siltstone as above Shale as above	
	<b>7900-7910</b>	80 20	Trace sandstone as above Siltstone as above Shale as above	•
	<b>7910-</b> 7920		As above	
	7920-7930	70 30	Trace sandstone Siltstone as above Shale as above	
	7930-7940	10 80 10	Sandstone as above Siltstone as above Shale as above	•
	7940-7950	80 20	Trace sandstone as above, some loose coarse grains Siltstome as above Shale as above	
	7950-7960	10 90	Sandstone as above Siltstone as above	•
	7960-7970	10 50 20 20	Sandstone as above Siltstone as above Shale as above Coal as above	•
	7970-7980	80 10 10	Sandstone, medium to fine, subrounded, well sort <b>ed.</b> Siltstone as above Coal as above	
	7980-7990	40 40 10 10	Sandstone as above Siltstone as above Shale as above Coal as above	.9/

7000 0000	1 T		
7990-8000		Trip sample	
	10	Sandstone as above	
•	50 30	Siltstone as above	
	10	Shale as above Coal as above	
8000-8010	10		
0000-0010		Sandstone, medium to very fine, dirty, poorly sorted, subrounded to angular	
	60	Siltstone, brown to dark brown, low carbon content, micaceous as above	
	30	Shale as above	
8010-8020	. 70	Sandstone as above	
	10	Siltstone as above	
	10 10	Shale as above Coal as above	
8020-8030	10	Sandstone as above	
	30	Siltstone as above. Some cuttings more carbonaceous	
	30	Shale as above	
	30	Coal as above	
8030-8040	30	Sandstone as above	
	30 20	Siltstone as above Shale as above	
	20	Coal as above	
8040 8050			
0040-0050	10 60	Sandstone as above Siltstone as above	
	30	Coal as above	
8050-8060	10	Sandstone as above	
	40	Siltstone as above	
	20 30	Shale as above Coal as above	
8060-8070	20	Sandstone as above and clean medium to fine sandstone, subrounded and well sorted, some loose very coarse grains,	
		rounded.	
	50 10	Siltstone as above	
	20	Shale as above Coal as above	
8070-8080	20	Sandstone as above	
	30	Siltstone as above	
	20	Shale as above	
	30	Coal as above	
8080-8090		As above	
8090-8100	30	Clean medium sandstone as above	
	30 10	Siltstone as above	
	30	Shale as above Coal as above	
8100-8110	20	Clean medium sandstone as above and dirty fine to very	
		fine sandstone	
	60 20	Siltstone as above Coal as above	
8110-8120	20	Trace sandstone as above Siltstone as above	
	70	Shale as above	
	10	Coal as above	
8120-8130	10	Sandstone as above	
	60	Siltstone as above	
	10 20	Shale as above	
	20	Coal as above	
		10/	
1			

	•	
DEPTH	8	-10- DESCRIPTION
	1	
8130-8140	50 40	Sandstone as above plus loose coarse grains Siltstone as above
	10	Coal as above
8140-8150	20	Sandstone as above
	20 50	Siltstone as above Shale as above
• · ·	10	Coal as above
0150 0160	0.0	
8150-8160	20 50	Sandstone as above Siltstone as above
	30	Shale as above
01/00 0170		
8160-8170	70 30	Sandstone, loose grains, coarse, subangular to subrounded Siltstone as above
	50	Gas shows with this sandstone and others above - probably
		3-5' sands.
8170-8180	30	Sandstone as above plus medium sandstone as above and dirty
0170 0100		fine, very fine as above
	40	Siltstone as above
	30	Shale as above.
8180-8190	40	Sandstone as above
	40	Siltstone as above
<b>(</b> ).	20	Shale as above
		Trace coal as above
8190-8200	10	Sandstone, medium to fine sandstone as above
	80	Siltstone as above
··	10	Coal as above
8200-8210	20	Sandstone as above plus loose coarse subrounded grains
	80	Siltstone as above
8210-8220	50	Sandstone as above
	30	Siltstone as above
	10	Shale as above
	10	Coal as above
8220-8230	30	Sandstone as above
	70	Siltstone as above
8230-8240	10	Sandstone as above
	80	Siltstone as above
	10	Shale as above
8240-8250	50	Sandstone as above
	40	Siltstone as above
	10	Shale as above
8250-8260		As above
8260-8270	10	Sandstone as above
	70 20	Siltstone as above
	20	
<b>8270∞828</b> 0	20	Sandstone as above
	40 40	Siltstone as above Shale as above
	40	
8280-8290	20	Sandstone, medium, well sorted, subangular
	60 20	Brown siltstone, micaceous Dark brown to black shale as above
	20	bark brown to brack share as above
8290-8300		As above
8300-8310	40	Sandstone, very fine to fine, clean, white clay matrix
	40	Siltstone as above
	10	Shale as above
	10	Coal as above
		11 /

		07	
ī Š	DE PTH 8310-8320	<u>%</u> 50	DESCRIPTION Sandstone as above
	0310-0320	40 10	Sandstone as above Siltstone as above Coal as above
	8320-8330	10	Trip sample
		10 70 20	Sandstone as above Siltstone as above Shale as above
	8330-8340	40	
• • • • • • •	6330-6340	40 40 20	Sandstone as above. Loose quartz and mica grains, Siltstone as above. Shale as above
	8340-8350	20 70 10	Sandstone as above Siltstone as above Shale as above
	8350-8360		As above
	8360-8370	80 20	Sandstone, medium grained, well sorted, subangular Siltstone as above
	<b>8370-83</b> 80	50 40 10	Sandstone as above Siltstone as above Shale as above
	8380-8390	20 50 30	Sandstone as above Siltstone as above Shale as above
	<b>83</b> 90-8400	30 60 10	Sandstone as above . Some loose very coarse grains Siltstone as above Shale as above
	8400-8410		As above
	8410-8420	10 70 10 10	Sandstone as above. No loose coarse grains Siltstone as above Shale as above Coal as above
	8420-8430		As above
	8430-8440	10 50 40	Sandstone as above Siltstone as above Shale as above
	8440-8450	70 20 10	Sandstone, medium to fine, some very dirty and carbonaceous Light brown micaceous siltstone as above Coal as above
•	8450-8460	10 40 50	Trace sandstone as above Siltstone as above Shale as above Coal as above
	84608470	10 60 30	Siltstone as above Shale as above Coal as above
	8470-8480	20 50 20 10	Sandstone as above Siltstone as above Shale as above Coal as above
	8480-8490	10 70 20	Sandstone as above Siltstone as above Shale as above
	8490-8500		As above
			12 /
			••1~-/
	and the second		

	-	1	
	DEPTH	%	DESCRIPTION
	8500-8510	70 30	Trace sandstone as above Siltstone as above, also a trace of lateritic siltstone Shale
•	8510-8520	80	Trace sandstone as above Siltstone as above (half of it lateritic - the hematite affected the Eastman survey at 8509 - made it read S60 odd W instead of S30 odd W (unconformity?)) Shale as above
		20	Share as above
	8520-8530	10 50 40	Sandstone as above Siltstone as above Shale as above
·	8530-8540	60 40	Trace sandstone as above Siltstone as above (about 초 lateritic siltstone) Shale, grey to dark brown, friable to fissile
	8540-8550	40 40 20	Siltstone as above (no lateritic siltstone) Shale as above Coal as above
	8550-8560	40 30 30	Siltstone as above Shale as above Coal a's above
	8560-8570	100	Coal as above
	8570-8580	50 50	Black carbonaceous shale Coal as above
	85808590	10 60 20 10	Trip sample Sandstone as above Siltstone as above (some lateritic siltstone) Shale as above Coal as above
. · · ·	8590-8600	30 30 40	Trace sandstone as above Siltstone as above (no lateritic siltstone) Shale as above (more dark to black component) Coal as above
	8600-8610	10 50 30 10	Sandstone as above Siltstone as above Shale as above Coal as above
	8610-8620	70 10 10 10	Sandstone, coarse to very coarse loose grains, rounded to subangular Siltstone as above Shale as above Coal as above
	8620-8630	50 30 40 10	Sandstone as above Siltstone as above Shale as above Coal as above
	8630-8640	70 10 20	Sandstone, coarse to very coarse, angular Siltstone as above Coal as above
	. 8640-8650	40 10 10 40	Sandstone as above and medium to fine sorted subangular Siltstone Shale as above Coal
			13/

-12-

-13-
------

and a state of the second s	ан сайтаан ал		-13-			
1	DEPTH	%	DESCRIPTION		•	
	8650-8660	30 30 20 20	sandstone as above Siltstone as above Shale as above Coal as above			
•	8660-8670	30 70	Shale as above Coal as above			
	8670-8680	20 40 20 20	Sandstone as above Siltstone as above Shale as above Coal as above			· ·
		STERV MONET TO SAME AN ART COMMAN	•	·		
		rrveda Dicipita Berlinadi Ligip di Li divaziti Lu di				
		demonstrative solution as a solution of		·		•
		Anna an Anna an Anna Anna Anna Anna Ann				
						¢,
			· •			• •
				•		
			· ·		•	۰.

#### J. MEBBERSON

### 5/11 June, 1973

#### SAMPLE DESCRIPTIONS

### MARLIN A-24

	DE PTH	%	DESCRIPTION
	8680 <b>-</b> 8690	20 50 20 10	Sandstone, as before. Siltstone, as above. Shale, as above. Coal, as above.
	8690 - 8700 /	Trace 50 40 10	Sandstone, coarse, to very coarse, angular. Siltstone, as above. Shale as above. Coal, as above.
•	8700 - 8710	Trace 80 10 10	<u>Sandstone</u> , as above. <u>Siltstone</u> , as above. <u>Shale</u> , as above. <u>Coal</u> , as above.
	8710 - 8720	10 30 30 30	Sandstone, as above. Siltstone, as above. Shale, as above. Coal, as above.
	8720 - 8730	40 40 20	<u>Siltstone,</u> as above. <u>Shale</u> , as above. <u>Coal</u> , as above.
	8730 – 8740	100	Mud, coarse grained, sandstone, loose grains, subrounded to subangular.
		RIH Cut	Core 1 8739 - 8770 100% Recovery sandstone. Córe 2 8770 - 8801 100% Recovery sandstone Core 3 8801 - 8836 100% Recovery sandstone
	8836 - 8840	60 40	Sandstone, as above, white-clear, generally medium to occasionally coarse, well sorted, loose, well rounded, no fluorescence. Coal and Shale, probably cavings.
Ć	3840 - 8850	100 Trace	Sandstone, as above. fine to medium grained, generally medium. Coal, as above.
	8850 <b>-</b> 8860	100 Trace	Sandstone, as above. Coal and Shale, as above.
	8860 - 8870	60 30 10	Sandstone, as above. Shale, silty, brown, non calcareous, slightly carbonaceous. Coal, as above.
	8870 - 8880	80 20	Sandstone, as above. Shale and Coal, as above.
	8880 - 8890	60 40	Sandstone, as above. Siltstone, as above, trace brown mineral fluorescence, firm.
	8890 - 8900	100	<u>Coal</u> , black, brittle.
	8900 - 8910	100 Trace Trace	<u>Siltstone</u> , as above. <u>Carbonaceous Shale and Coal</u> , as above. <u>Sandstone</u> , as above.
	8910 - 8920	90 10	<u>Coal</u> , as above. <u>Siltstone</u> , as above

MARLIN A-24

DEPTH	%	DESCRIPTION
8920 - 8930 `	60 20 20 .	Siltstone, as above. Sandstone, as above, no show. Carbonaceous Shale,as above.
8930 - 8940	50 30	Siltstone, as above. Sandstone, generally as above, some very fine grained, silty, carbonaceous.
	20	Carbonaceous Shale, as above
8940 - 8950	90 10	<u>Siltstone</u> , brown, firm, as above. <u>Carbonaceous Shale</u> , as above.
8950 - 8960	90 10	<u>Siltstone</u> , as above. <u>Shale</u> , as above.
8960 - 8970	100	<u>Siltstone</u> , as above.
8970 - 8980	100 Trace	Siltstone, as above. Sandstone, silty as above and fine grained as above.
J980 ~ 8990	40	Sandstone, very fine silty, white, friable, hard, carbonaceous, subangular to rounded, very faint dull brown fluorescence in some sand, no cut, possible mineral fluorescence in cement.
	40 20	<u>Siltstone</u> , as above. <u>Shale</u> , as above.
8990 - 9000	80	Sandstone, as above, dull brown, mineral fluorescence, possibly dolomitic cement.? Siltstone, as above, carbonaceous.
9000 - 9010	70 10 20	<u>Siltstone</u> ,as above. <u>Coal</u> , black, dull-shiny, brittle <u>Sandstone</u> , as above.
9010 - 9020	90 10	Siltstone, as above. Shale and Coal.
9020 - 9030	80 20	<u>Siltstone</u> , as above. <u>Sandstone</u> , as above.
<b>9</b> 030 - 9040	100	Coal, black, brittle.
9040 - 9050	40 60 Trace	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Sandstone</u> and <u>Shale</u> , as above.
9050 - 9070	20 40 40	<u>Coal</u> , as above. <u>Sandstone</u> , as above. <u>Siltstone</u> , as above.
9070 - 9080	70 20 10	Coal, as above. Siltstone, as above. Sandstone, as above.
9080 - 9090	70 20 10	Siltstone, as above. Sandstone, as above. Coal, as above.
9090 - 9100	100 Trace	Siltstone, as above. Sandstone and Coal, as above.
9100 - 9110	100 Trace	Siltstone, as above. <u>Coal</u> , as above.
9110 - 9120	100	<u>Coal</u> , black, brittle.
9120 - 9130	100	<u>Coal</u> , as above.
		/16

-15-

J. Mebberson 5/11 June, 1973

#### SAMPLE DESCRIPTION cont'd

%

MARLIN A-24

DEPTH

J. Mebberson 5/11 June, 1973

<b>9130 –</b> 9140	100	<u>Coal</u> , as above.
9140 - 9150	40 40 20	<u>Siltstone</u> , as above. <u>Sandstone</u> , as above. <u>Coal</u> , as above.
9150 - 9160	50 50 Trace	Sandstone, as above. Siltstone, as above. Coal, as above.
9160 - 9170	50 30 20	<u>Siltstone</u> , as above. <u>Sandstone</u> , as above. <u>Coal</u> , as above.
9170 - 9180	70 30	<u>Coal</u> , as above. <u>Siltstone</u> , as above.
9180 - 9190	50 50 Trace	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Sandstone</u> , as abov
9190 - 9200	70 30 Trace	<u>Siltstone</u> , as above. <u>Coal</u> , as above. <u>Sandstone</u> , as above
9200 - 9210	100	<u>Siltstone</u> , as above.
9210 - 9220	60 40	<u>Sandstone</u> , medium,generally medium, subangular, fractured, well sorted, clear, loose, trace dull gold fluorescence, no cut. Siltstone, as above.
9220 - 9230	80 20	Sandstone, generally as above, some spotty,fluorescences, gold in scattered grains, no cut. May be dead oil? residue. Grains with fluorescence are slightly brown stained. Siltstone, as above.
9230 - 9240	70 30	<u>Sandstone</u> , us above: <u>Sandstone</u> , very fine to medium (fine, well cemented), loose, subangular to angular, moderate staining, occasional spotty, gold fluorescence, no cut as above. <u>Siltstone</u> , as above.
<b>9240 – 9250</b>	30 50 20	Sandstone, very fine grained, occasional medium graines, very rare fluorescence, as above. Siltstone, as above. Coal, as above.
9250 - 9260	20 60 20	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Sandstone</u> , as above, no shows.
9260 - 9270	70 20 10	<u>Siltstone</u> , as above. <u>Sandstone</u> , as above. <u>Coal</u> , as above.
<u>9270 -</u> 9280	100 Trace	<u>Siltstone</u> , as above. <u>Coal</u> , as above.
9 <u>2</u> 80 - 9290	100 Trace	Siltstone, as above. Coal, as above.
9290 - 9300	100	Coal, black, brittle, shiny.
9300 - 9310	100	<u>Coal</u> , as above.
9 <b>3</b> 10 - 9320	50 50 Trace	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Sandstone</u> , as above.
ļ		<b>הורו</b>

DESCRIPTION

•

-17-

· •

• . •

MARLIN A-24

DE PTH	%	DESCRIPTION
9320 - 9330	100	<u>Coal</u> , as above.
9330 - 9340	80 20	<u>Coal</u> , as above. <u>Siltstone</u> , brown, firm, as above, trace sandstone as above.
<b>93</b> 40 - 9350	70 30	<u>Coal</u> , as above. <u>Sandstone</u> , very fine grained, as above, no show.
9350 - 9360	40 50 10	<u>Coal</u> , as above. <u>Sandstone</u> , very fine grained to medium grained, generally medium, angular, clear to white, moderate staining. Siltstone, brown, as above.
9360 - 9370	30 60 10	<u>Coal</u> , as above. <u>Sandstone</u> , as above, becoming predominantly fine grained. <u>Siltstone</u> , as above.
9370 - 9380	70 30 Trace	Sandstone, as above, occasional spotty gold fluorescence, no cut. Coal, as above. Siltstone, as above.
9380 - 9390	50 30 20	Sandstone, as above. Siltstone, as above. Coal, as above.
9390 - 9440	80 20	<u>Siltstone</u> , as above. <u>Sandstone</u> , as above.
9440 <b>-</b> 9450	100	<u>Coal</u> , black, brittle, shiny.
9450 <b>-</b> 9480	100	<u>Coal</u> , as above
9480 - 9500	100	<u>Coal</u> , as above.
9500 - 9510	70 20	<u>Coal</u> , as above. <u>Sandstone</u> , very fine to medium grained, spotty gold fluorescence, no cut.
	10	<u>Siltstone</u> , as above.
●)510 <b>-</b> 9520	70 30	<u>Coal</u> , as above. <u>Sandstone</u> , as above, abundant dull, gold fluorescence, no cut??
9520 - 9530	50 40 10	<u>Coal</u> , as above. <u>Sandstone</u> , as above. <u>Siltstone</u> , as above.
9530 - 9540	100	<u>Coal</u> , as above.
9540 <b>-</b> 9550	60 30 10	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Sandstone</u> , as above, scattered gold fluorescence, no cut.
9550 <b>-</b> 9560	60 30 10	<u>Coal</u> , as above. <u>Sandstone</u> , as above, scattered gold fluorescence, no cut. <u>Siltstone</u> , as above.
9560 – 9570	50 20	<u>Coal</u> , as above. <u>Sandstone</u> , loose, medium-coarse, subrounded, clear to white, no show.
	10 20 `	no snow. <u>Sandstone</u> , very fine grained, cemented, dull straw fluorescence, no cut (interstitial?) Siltstone, as above.
9570 - 9590	40 50 10	<u>Coal</u> , as above. <u>Sandstone</u> , as above mixture of 2 types. <u>Siltstone</u> , as above.
	Le al tra	/18

•

•

MARLIN A-24

DE PTH	%	DESCRIPTION
9590 - 9600	80	Sandstone, clean, subængular to well rounded, well sorted,
	20	medium to coarse grained, white - clear, no show. <u>Coal</u> , as above.
9600 - 9610	100	<u>Coal</u> , as above, approximately 40% very carbonaceous shale.
9610 - 9620	40 60	Carbonaceous Shale, black grey, fissile. Coal, as above.
9620 - 9630	20 20 60	<u>Coal</u> , as above. <u>Siltstone</u> , brown, slightly sandy, firm. <u>Carbonaceous Shale</u> , as above.
<b>9630 -</b> 9640		<u>Coal</u> , as above.
<b>9640 -</b> 9650	100	<u>Coal</u> , shaley in part.
9650 - 9660	70 30	<u>Coal</u> , as above. <u>Carbonaceous Shale</u> , as above.
9660 - 9670	90 10	<u>Siltstone</u> , brown-grey, carbonaceous, firm. <u>Carbonaceous Shale</u> , as above.
9670 - 9680	100	<u>Siltstone</u> , as above.
9680 - 9690	50 50	<u>Coal</u> , as above. <u>Siltstone</u> , as above.
9690 - 9700	70 30 Trace	<u>Siltstone</u> , as above. <u>Carbonaceous Shale</u> , as above. <u>Sandstone</u> , as above.
9700 - 9710	30 50 20	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Sandstone</u> , as above,
9710 - 9720	50 30 20	Carbonaceous shale, as above, some coal. Siltstone, as above. Sandstone, as above.
9720 - 9730	60 40	Carbonaceous Shale, as above. Coal, as above.
9730 - 9740	10 30 60	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Carbonaceous Shale</u> , as above.
9740 - 9750	30 40 30 Trace	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Carbonaceous Shale</u> , as above. <u>Sandstone</u> , generally fine to medium, cemented, no shows.
9750 - 9760	30 70 Trace	Sandstone as above, no shows. Siltstone, as above. Coal and <u>Carbonaceous Shale</u> , as above.
9760 - 9770	40 30 30	Sandstone, as above. Siltstone, as above. Coal, as above.
9770 - 9780	10 20 70	Sandstone, as above. Coal, as above. Siltstone, as above.
9780 - 9790	90 10	Siltstone, as above, brown, firm. Coal, as above (probably cavings)

### MARLIN A-24

.

DEPTH	%	DESCRIPTION
9790 <b>-</b> 9800	100	<u>Siltstone</u> , as above.
9800 - 9810	60	Sandstone, subangular to rounded, clear, loose, medium,
	40	occasionally coarse, no show. Carbonaceous Shale and Coal.
9810 - 9820	100	Sandstone, coarse - medium grained, generally coarse, white to grey subangular to subrounded, loose, well sorted, no shows.
9820 - 9860	100	Sandstone, as above. No show.
9860 - 9870	30 70	<u>Coal, black, dull.</u> <u>Sandstone</u> , as above.
9870 - 9890	100	<u>Coal</u> , as above.
9890 - 9900	50 50	<u>Coal</u> , as above. <u>Carbonaceous Shale</u> , grey, slightly silty, fissile.
900 - 9910	100	Carbonaceous Shale, as above, silty.
9910 - 9920	30 70	<u>Coal</u> , as above. <u>Carbonaceous Shale</u> , silty.
9920 - 9930	10 30 60	<u>Coal</u> , as above. <u>Siltstone</u> , as above. <u>Carbonaceous Shale</u> , as above.
9930 <b>-</b> 9940	70 30	<u>Sandstone</u> , white-clear, angular, medium - occasionally coarse. <u>Carbonaceous Shale</u> , as above.
9940 - 9950	90 10	Sandstone, as above. Carbonaceous Shale, as above.
9950 - 9960	90 10	Sandstone, as above. $\underline{Coal}$ , as above.
960 - 9970	100	Sandstone, as above, no show.
9970 - 9980	100	Sandstone, as above.
9980 - 9990	90 10	Sandstone, as above. Carbonaceous Shale, as above
9900 - 10,000	90 10	Sandstone, as above. Coal and Carbonaceous Shale, as above.
10,000-10,010	100	<u>Coal</u> , as above.
10,010-10,020	100	<u>Coal</u> , as above.
10,020-10,030	100	<u>Coal</u> , as above.
10,030-10,040	30 70	<u>Coal</u> , as above. <u>Siltstone</u> ,as above.
10,040-10,050	100	<u>Siltstone</u> , as above.
10,050-10,060	80 20	Sandstone, white, medium-coarse grained, well sorted, loose, angular no show. Siltstone, as above.
10,060-10,070	100	Sandstone, as above, trace pyrite.
	-	/20

J.Mebberson 5/11 June

•

.

•

1

-20-

.

.

.

MARLIN A-24

	DEPTH	%	DESCRIPTIONS
	10,070-10,080	100	Sandstone, as above.
	10,080-10,120	100	Sandstone, as above, becoming more well rounded, no shows.
	10,120-10,130	80 20	<u>Sandstone</u> , as above. <u>Coal</u> , as above.
	10,130-10,140	40 20 40	Sandstone, as above. Siltstone, as above. Coal, as above, black, dull-shiny, brittle, occasionally shaley,
	10,140-10,150	50 40 10	Carbonaceous Shale and trace Coal. Sandstone, as above. Siltstone, as above.
	10,150-10,160	70 30 Trace	Carbonaceous Shale, as above. Siltstone, as above. Sandstone, as above.
(	10,160-10,170	100	Carbonaceous Shale and trace Coal, as above.
	10,170-10,180	100	<u>Coal</u> , as above.
	10,180-10,190	50 50	<u>Coal</u> , as above <u>Carbonaceous Shale</u> ,as above.
	10,190-1,200	40 30 30	Carbonaceous Shale and Coal. Siltstone, as above. Sandstone, as above, no shows.
	10,200-10,210	- 30 70	Mostly cavings. <u>Coal</u> , as above. <u>Siltstone</u> , trace sandstone, as above.
	10,210-10,220	100	Sandstone, subangular-rounded, white, medium to coarse, well sorted, loose, no shows.
	10,220-10,230	100	<u>Sandstone</u> , as above.
	10,230-10,240	80 20	<u>Sandstone</u> , as above. <u>Coal</u> , as above.
	10,240-10,250	80 20	Sandstone, becoming more coarse, no show. Carbonaceous Shale, and Coal, as above.
	•		•
	•		

#### SAMPLE DESCRIPTIONS

### MARLIN A-24

-21-

.

DEPTH	%	DESCRIPTION
10250-60	70	Sandstone, coarse, moderately sorted, subrounded to well rounded, with No show.
	30	Carbonaceous Shal & Coal, as above.
10260-70	60 30 10	Sandstone, as above. <u>Siltstone</u> , clayey, grey-white, soft. <u>Carbonaceous Shale and Coal</u> , as above.
10270-80	40 20	Sandstone, as above, coarse, white, rounded, loose, no show. Sandstone, very fine grained, silty, carbonaceous, friable, white, no show.
	20 10	Siltstone, brown, firm, occasionally clayey. Carbonaceous Shale and Coal, as above.
10280-90	80 10 10	<u>Coal</u> , black, shiny, brittle. <u>Siltstone</u> , brown firm. <u>Sandstone</u> , as above.
10290-10300	100	<u>Coal</u> , as above.
10300-10	30 70	Coal, as above. Siltstone, brown - light brown, slightly sandy, carbonaceous, firm.
	Trace	Sandstone, no show
10310-20	100	<u>Coal</u> , as above.
10320-30	30 70	<u>Coal</u> , as above. <u>Siltstone</u> , as above.
10330-40	10 90	Sandstone, very fine grained, silty, friable, white, slightly carbonaceous, no show. Siltstone, as above.
10340-50	10 40 50	Sandstone, as above. Coal, as above. Siltstone, as above.
10350-60	30 30 40	<u>Coal</u> , black, brittle. <u>Siltstone</u> , grey brown - brown, slightly shaley, in part. Carbonaceous, slightly soft - moderately hard. <u>Sandstone</u> , very fine to fine, occasionally medium, white, mostly friable - slightly consolidated, white clay matrix, ho fluorescence.
10360-70	Trace 30 70	<u>Coal</u> <u>Siltstone</u> , shaley. <u>Sandstone</u> , fine friable - moderately friable, with common medium to coarse loose quartz grains, white clay matrix, fair porosity and permeability, no show. Trace pyrite.
10370-80	10 90	<u>Siltstone</u> , as above. <u>Sandstone</u> , micaceous, as above.
10380-90	100	<u>Coal</u> , trace sandstone, siltstone.
10390-10410	60	Sandstone, fine to very coarse, friable - unconsolidated, subangular - subrounded, pyritic, light brown - white, dolomitic, minor fluorescence.
	40	Siltstone, carbonaceous.
10410-20	90%	Sandstone, fine to coarse, angular to subrounded, unconsolidated
		/22

#### June 12/15, 1973

J. Mebberson

Bruce McKay

#### SAMPLE DESCRIPTIONS cont'd

• * *

-22-

· · ·

MARLIN A-24

-

10	410-20 con 420-30	·10 20	to moderately hard, cemented in part, trace dolomite. . <u>Siltstone</u> , as above.
	420 <b>-</b> 30	1	
10		80	Siltstone, dark brown-brown, shaly in part, very sandy in part. Sandstone, silt - medium, occasionally coarse, friable,cemented, occasionally loose, trace dolomite, mineral fluorescence. Scattered spotty, yellow, pin point fluorescence with minor milky white cut.
- <b>L</b> O	430-40	100	Sandstone, fine to coarse, subrounded, fair to good sorting, unconsolidated, weakly cemented, pyritic. Spotty fluorescence in grain fractures, pale milky, yellow cut, yellowish fluorescence sheen in mud.
10	440-50	80 20	Sandstone, as above, scattered fluorescence, weak cut. Siltstone, coaly in part.
			Circulated at 10,462'.
10	450-60	75 25	Sandstone, medium to coarse, subangular to subrounded, fair to good sorting, bright pinpoint yellow fluorescence (more than previously), very faint weak milky white cut (very poor). Siltstone, as above.
			Circulate B.U. at 10,467'.
10	460-70	10 90	<u>Siltstone</u> , as above. <u>Sandstone</u> , medium to coarse with minor very fine cemented aggregates tending silty, subangular to subrounded, fair to good sorting, clean, friable - unconsolidated, pyritic, pinpoint yellow fluorescence in fractures, slow crush cut.
and the second se			Survey, POOH to cut Core #4.
			Core #4, 10,467 - 10,505' Cut 38' Recovered 38' (100%)
()			RIH with J-33: BOB drilling 2130 hours, June 13, 1973.
• 10	505-10520	50 50 Trace	<u>Siltstone</u> , brown to dark grey brown, carbonaceous, slightly pyritic, non calcareous, shaly in part. <u>Coal</u> , black, brittle, shiny. <u>Sandstone</u> , fine, cemented with some loose grains.
· 10	520-40	100	<u>Coal</u> , bleeding gas.
10	540-50	10 90	<u>Coal</u> , <u>Siltstone</u> .
10	550-60	60	Sandstone, fine to medium, moderately well sorted, subangular,
		30 10	pyritic, mineral fluorescence. <u>Siltstone</u> . <u>Coal</u> .
10	560-70	70	Sandstone, fine to medium, subangular, cemented, slightly pyritic, micaceous, trace yellow fluorescence, no cut, probably mineral.
		30	Siltstone and Coal.
10.	570-80	60 40	Sandstone, yellow fluorescence, no cut. Siltstone.
10.	580-90	80	Sandstone, unconsolidated - cemented, fluorescence in white cement(?) material.
		10 10	Siltstone Coal
			/23

### SAMPLE DESCRIPTIONS cont'd

•

-23-

.

# MARLIN A-24

	DEPTH	%	DESCRIPTION
			GRAB SAMPLE 10,597 100% <u>Coal</u> .
	10590-10610	70 20 10	<u>Sandstone</u> , fine to medium, angular to subrounded, unconsolidated, moderate sorting, trace yellow fluorescence, no cut. <u>Siltstone</u> . <u>Coal</u> .
	10610-20	70	Sandstone, very fine to medium, cemented aggregates, occasional green mineral, tight, yellow fluorescence in some grains, cut nil - weak.
		30	Siltstone & Coal.
	10620-30	100	Sandstone, clear to white, fine to medium, subangular, unconsolidated with very fine - fine cemented aggregates, trace yellow fluorescence, moderately bright, mostly in white grains or portions of aggregates, occasional faint crush cut.
	10630-40	100	Sandstone, silt to medium, cemented aggregates becoming dirty, not as much fluørescence.
•	10640-50	80 10 10	Sandstone. Siltstone Coal
		1 1	GRAB SAMPLE 10,654 100% Coal
· .	10650-60	90 10	<u>Coal</u> , trace streaming cut from rare coal grains. <u>Sandstone</u>
	10660-70	80 10 10	Coal, shaley <u>Sandstone</u> , pyritic. <u>Siltstone</u> .
	10670-80	70 20 10	Coal, shaley. Sandstone Siltstone
	10680-90	100	Sandstone, fine to medium, cemented, pyrite, slightly micaceous rare fluorescence.
	10690-10720	100	Sandstone, fine to medium, subangular, very clean, no fluorescence.
	10720-40	100	Sandstone, fine to medium, angular to subangular, appears fractured clean, probably hard, cemented, micaceous, rare fluorescence.
	10740-50	100	Coal
	10750-60	90 10	Coal Sandstone
	10760-80	70 30	Sandstone <u>Coal</u> , silty and <u>Siltstone</u> , carbonaceous
·	10780-90	80 10 10	Sandstone Coal Siltstone
	10790-10800	70 20 10	Sandstone . Coal Siltstone
	10800-10	80 10 10	Sandstone Coal Siltstone
		1	/24

## SAMPLE DESCRIPTION cont'd

~

-24-

• •

.

### MARLIN A-24

.

a magnete

•	DEPTH	%.	DESCRIPTION
	10810-20	60 30 10	Sandstone, Siltstone, brown, sandy <u>Coal</u> .
	10820-30	20	Sandstone, very fine to medium, subangular to angular, cemented, firm, slightly friable, no fluorescence, pyritic, Siltstone
	10830-40	60 40	Sandstone Siltstone, trace Coal
•	10840-60	90 10	Sandstone, pyritic. Siltstone, trace Coal
	10860-70	70 30	Sandstone, very fine to medium, becoming siltier, more clay matrix, pyritic. Siltstone, slightly sandy, very pyritic.
	10870-80	60	Sandstone, silty - fine, occasional loose medium quartz, argillaceous, firm - hard, tight, pyritic.
	10880-90	40 50 50	Siltstone, brown, pyritic. <u>Sandstone</u> , clay choked, pyritic, interbedded. <u>Siltstone</u> .
	10890-10900	70 20 10	<u>Siltstone</u> , brown, pyritic. <u>Sandstone</u> , silty - fine, occasional loose medium clay choked, argillaceous, pyritic, no fluorescence, tight. <u>Coal</u>
	10900-10910	80 20	Siltstone, shaley, micaceous. Sandstone, clay choked, silty, argillaceous.
• •	10910-20	80 20	Coal Siltstone
	10920-30	70 20 10	<u>Siltstone</u> , firm to moderately hard, micaceous, pyritic, shaley. <u>Coal</u> <u>Sandstone</u>
	10930-40	70 30	<u>Siltstone</u> , with minor coal <u>Sandstone</u> , silty - fine, clay choked, tight.
		ĺ	Very little sample coming over shaker
	10940-50	90 [·] 10	Siltstone, brown, shaley in part and light grey brown, trending sandy, carbonaceous, interbedded. Sandstone, very silty, argillaceous.
	10950-60	60 40	Sandstone, silty to fine, clay choked, firm to moderately hard, tight, white to light brown clay matrix, pyritic, micaceous. Siltstone, brown, shaley in part, carbonaceous, pyritic.
	- 10960-70	20 20 60	<u>Coal</u> <u>Siltstone</u> <u>Sandstone</u> , clay choked.
			10971 HW gas units 240 units (10' Sandstone) 10988 Pick up; check for flow Circulate bottoms up
	10970-80	80 20	Sandstone, clay choked, tight, micaceous, pyritic interbedded. Siltstone, carbonaceous, micaceous, interbedded.
			/25
	-		

## SAMPLE DESCRIPTION cont'd

MARLIN A-24

.

.

DEPTH	%	DESCRIPTION
10980-88	_80 20	<u>Sandstone</u> , as above. <u>Siltstone</u> , as above.
· · · · · · · · · · · · · · · · · · ·		19083 HW gas units 95 units (1' sandstone)
•		After Bottoms up HW 30 units at least 35 mins. up to 40 units for 20 mins.
		Raised mudweight to 10.3 then 10.6 #/ga1.
		Gas dropped back to 15 units
•		Made wiper trip (20 stds) Trip Gas 110 units Raised MW to 10.9#/gal. Made Wiper trip (10 stds) Trip Gas 35 units
		TOTAL DEPTH 10,988'.
,		

-25-

.

#### APPENDIX 4

#### CORE DESCRIPTION AND ANALYSES MARLIN A-24 VICTORIA, AUSTRALIA

## ESSO STANDARD OIL (AUSTRALIA) LTD.

# CORE DESCRIPTION

		Core	No. 1				
					WELL:	Marlin A-20	4
Interval Cored 8739'-8	770' 👫.,	Cut	., Recovered	31	ft., ( ¹⁰⁰ %	) Fm. Latrobe	
Bit Type	, Bit Siz	e 8 ^{15/32}	in., Dosc. by	A.J. Mebb	e son Date	5-6-73	
Depth & Coring Rate (min./ft.) Graphic (1" = 5"	Shows	Interval (ff.)			Descriptive I	ithology	
C 5 9729 40 40 40 40 40 40 40 40 40 40			uetzose, greu edum grami ofriable, w allonaccous yen. sand in ind cleanne aloundant Strong ga fluorescen	y to white, ad, subangue ell sorted, streaks, s macos, ie os of sand clay cemor seous odou	fine to ned ler to rounde micacessis, a shale streak to fam fly increases at, good vice	ithology um graméd e d mod conso parts zum bedded. Gran core, no cut	iidahed is, duicky asi ze Occ.
<- Full core saw	ples for	core analysis (	EPR(0)			-	
- Overburden							
			······································				

# ESSO STANDARD OIL (AUSTRALIA) LTD.

# CORE DESCRIPTION

Core	No	2

		W	ELL:	M	orlin	A-24	,
Interval	Cored 8770-8801 ft., Cut 31 ft., Recovered 31 ft.,	(	60)	%)	Fm.	Latrobe	ى
Bit Typ	C-20, Bit Size B 15/32 in, Desc. by A.J. Mebberso	<u>n</u>	Da	 ato	5-	6-73	

100

•

Depth Coring R (min./f	ate	Graphic (1" = 5')	Shows	interval (ft.)	Descriptive Lithology
0 6 10 15	Marcana Secondari			8770-8801 (31	
┠╂╂╾╄╾╄		• • • •	*	SANOSTONE :	
. ┠┼┼─┼─┼		• • • •	« '		
		. 1	<u>-</u>	<u>pour cose</u>	greybrown to white nedwin to coarsegramed
			*	P-11	n to well rounded, consolidated to occ
			4. ·	trable n	oderately well sorted, micacious, several
-A+	+		<u>e</u>	Venz thin	coal streaks, rare shale streak
	+		←  -	clay cene	ut generally in medium granned sections, ds relatively clean. No indications of
	40	· · ·	e -	Coane le	do relatively clean. No indications of
A				graded hed	ding Goodnisille provosity Strong
	$\downarrow$	· · · · ·	«	Gaseous	sdour elineant, no cut or fluorescence.
	+-1	·· · ·	~  -		,
	+	· · ·			
	+	-	←		
		·	- [		
			- F	······································	
		· · · · [			
┠┼┼╌┼╌	90		, ,		ł
┣╫┿╍┼╾┼╾		·	-  -		
			-  -		-
		· • • • • • • •	-  -		
		· _ · . K	- L		^
			_		
	]	· · ' · · · · · · · · · · · · · · · · ·	- Г		
$\left[ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		· · · · · · · · · · · · · · · · · · ·	- 1		
	800	· · · · · 4	-1		
	-		<u> </u>		
┠╌┼╌┼╌┼					
┠╌┼╌┼╌┼					
┠╌┼╌┼╌┼					
	1		Γ		
REMARKS:					
← (	Fuller	one sour al	. 1. 20	core analysis (EPRC	
	Our	buch	and ter	ine analysto (EPRC	o)
	- 141	vurdien co	re anal.	isis sample	
			·····		

# ESSO STANDARD OIL (AUSTRALIA) LTD.

4

CORE DESCRIPTION

Core No. 3

Depth & Coring Rate (min./ft.)	Graphic (1" = 5')	Shows	Interval (ft.)	Descriptive Lithology
5 (° 830) 	Α Α Α Α Α Α Α Α Α Α Α Α Α Α		gravid opre to wold row macies alundout e shale strea beds of var 8821-2.5' d coape heds gaseous o	Puetrose, browngreng to white, vf-coa ally fine to wedium granied, subargu- led consulidated moderately sorted clang and zelica natrix. Trace of cloke him coal hands, occassional carlinas les. Grannic is vegically sorted into adule ethileness. Very hard section as to silica + clan cansent diltil and moderately finalite. Strong down ethicits. albundant plantren of to poor in bord zones.

# ESSO STANDARD OIL (AUSTRALIA) LTD.

CORE DESCRIPTION

Core No. 4

					WELL: MARLIN	' A-24
Interval	Cored 10467-10505 ft.,	, Cut	., Recovered	38 <b>ft.</b> ,	( <i>100</i> %) Fm. <i>La</i>	trobe
Bit Type	Christensen C-20, Bit Si	ize	in., Desc. by	Broce MCKa	Y Date June	13, 1973

Depth & Coring Rate (min./ft.)	Graphie (1" = 5')	Shows	Interval (ft.)	Descriptive Lithology
O 5 10 15 1046 ⁷			10467 - 82 1/2	15% INTERBEDDED SILTSTONE AND SANDSTON
	~~ <u>~</u> *			thinly bedded, maximum individual sandstone
1 10070-	~~~ °?≈		$\sim$	6" thick between 10479 and 10480,
				rally lenticular sandstone, wavy,
	~~=		<b>U</b>	ontinuous bedding, burrowed, some
	~~ ♥ ℃			tortad badding.
	<u>~~</u>			stona; brown to grey, shaly, carbonaceous,
	$\wedge \wedge \wedge = \frac{1}{2}$			y mica ceous
	$m \perp$		Sar	ndstone; light gray, silt-fine, well sorted,
······································	·^^ �℃			d, subangular - subrounded, white day
10480			mai	trix slightly dolomitic (mineral fluorescence)
	~~~~ <b>?</b>		mic	accous slightly pyritic, poor porosity and
	<u>.^^^</u>		pan	meability, no fluorescence except for
				d mineral fluorescence, no cut
	_7			
			10482 1/2 - 10.	500 171/2 SHALE with thin coal streaks,
			dark	k gray. massiva, hard, pyritic, carbonaceous
10490 -			mic	aceous, badding plane cleavage.
	<u>ه ا</u>			5 5 INTERBEDDED SILTSTONE AND SANDSTONE
			Ý V	y thinly badded as above, not as sandy as
			<u> </u>	ova, no show.
			Cora blag	ding slightly from coaly streaks.
				t steep dip due to deviated hole
─ <u>┼</u> ╫┼┼┨ <u></u> ═				I STEEP UP GOE TO GEVIEILE TOTE.
10500 -				
<u>/_</u>	× · · · ·			
	~ V_			
	vvv 📚			
10505		·		
REMARKS:]		***************************************

•

۶

CORE#1

EXPLORATION LOGGING OF AUGTRALIA, INC.

A Geological-Engineering Service

PERTH ADDRESS: 69 GREAT EASTERN HIGHWAY, VICTORIA PARK, WESTERN AUSTRALIA PHONE: 61 4437 CABLE: EXLOGG PERTH

	CORE	ANALYSIS	REPORT
--	------	----------	--------

.

COMPANY ESSO/BHP
WELL MARLIN A-24
LOCATION/FIELD GIPPSLAND BASIN/MARLIN
COUNTY OFFSHORE STATE VICTORIA
COUNTRYAUSTRALIA
REMARKS SANDSTONE, FINE TO MEDIUM, SUBANGULAR TO
ROUNDED, MICACEOUS, ARGILLACEOUS, CARBONACEOUS
IN PART, FRIABLE. TRACE PINK MINERAL
FLUORESCENCE.GAS ODOUR ON BREAKING.

DATE	6/6/73			
	8739FT	TO	8770FT	
GEO-EN	GINEER MICH	HELMORE		

•••	SAND
	SILTY SAND
====	SILTST.
	SHALE

0000	LI/
0000	С

ANALYSIS GRAPH

ME ONGL.

TABULAR DATA

SAMPLE NUMBER	DEPTH FEET	AIR PERM.	POROSITY	FLUID SAT % PORE	URATION VOLUME	GRAVITY OIL °API		REMARKS			ле <i>4</i>) ()	\ві 0			۸D. Q				Ċ) [.]	W		ER 00			RA'	60 60		% 40		RE (-c
SA NU	FEE1	MD.	I EKGENT	OIL	WATER	°API	DEN- SITY		PC	DRO		TY	% 30	<u>×-</u>	20	×	- 2 10) · _		0 -	01		AT 0		411 20	ON	40		OR 60		(8(x 0 1	10
1	8740	56	22.5	0	40	,	2•16												þ	.•.	• •	•							þ				
2	8755	25	17.4	TR	34		2+30			Π	T			T	Ţ	X	#	╂	FQ	•	• •	•	Ħ		Π				Ħ	ķ		Ħ	Ħ
3	8770	2370	27.8	ΤR	39		2 - 01		ļļ¢	Ϋ́́Η	\ddagger	Í	\square							•	• '0	٠			Ш				þ		Ш		
																							Ц.		\parallel						Щ		
										$\downarrow\downarrow$		1		$\downarrow\downarrow$	11			Щ					ļļ.		$\downarrow\downarrow$	1			1	Ш	Щ	\prod	
	NOTE:		R REC					DN:		\downarrow	\parallel	_					\parallel	1	┝┝				_		\prod	\parallel	Ш		#		μļ	#	\downarrow
			RMINA		HAD	A YEL	LOW			+	$\left \right $			+		\square							\mid		╢				++	$\left \right $	┝╟╀	⋕	Ц.
	<u></u>	FLUO	RESCE	NCE.					$\left \right $	+	#	+		\parallel	4		╢	╢					╟	++	$\left \right $				#	+++	╟╢	\prod	
									┝┿┼	\mathbf{H}	╢	+		+	╟	+-	╫	╫	┼┼				╟	╫	╫	╢			++	$\left\{ + \right\}$	┝┼┽	╫	
									$\left \right \right $	╂	+			+			╫	╁┼╴					┝┼	┥┽	╫	╫	$\left \right $		++	++	H	╫	+
										+	+						╈	\dagger	Ħ	╞──			İŤ		\parallel	╫	H		++	╋╋┥		++	\dagger
											\dagger			11	++-		+	Ħ	Ħ						\parallel		Ħ					Ħ	
											11			11			\dagger			Ì			Ħ		\dagger	1						Ħ	
										\prod	Π				Π			Π					\square			Π	\prod		Ш	\prod	\square	Π	Π
										Ш							Ш														Ш	Ш	
									Щ	4				\parallel	Ц		\parallel	∐.	Ш				\parallel		\parallel	Ц				Ш	Ш	Щ	Ц
											\parallel			\parallel	μ.		4	Ц.	Щ	ļ			μ.		-				Ш.	Ш	Щ	Щ	Ц
										$\left \right $				\parallel	4	Ц	4	Ц.	Щ				μ		\parallel				\square	Ш	Щ	#	\parallel
										\prod	$\downarrow\downarrow$					Ц	\parallel		Щ				μ	\square	\parallel				#	Ш	Ĥ	$\downarrow\downarrow$	Ц
									╟╟╽	$\left \right $	╢			#		_	44	₩	Щ				\parallel	++	\parallel	\parallel			++	+++	╟╟	#	H
									$\left \right $	╢	\parallel	$\left \right $	+	╢	╟		┼┼	╢	$\left \right $				╟	+	╢	╢	$\left \right $		++	$\left \right $	╟╢	╫	4
									$\left \right $	╢	╂			++	╟		╂	╢	Щ	ł			╟	╉	╢	╢	H		₩	╫╢	┢┿╂╋	╫	₩
									+	╂	╫	H	╟╢	╢	╟╟	4	╫	╢	Н				╟	++	╢	₩.	╟╢		++	$\left \right $	┟┼╂	₩	H
									╘	╢	╫			#	╟╋		╫	╫	$\left \right $				╟	╫	╢	╢	$\left \right $	$\left \right $	\mathbf{H}	$\left \right $	┟┼┟	╬	\mathbf{H}
										\ddagger	$^{++}$	$\left \right $	$\left \right $	+	╟╋	+	+	╢	\mathbb{H}				╟	╈	\ddagger	╢		+	+	H		++-	#
									++	\ddagger	†				+		\ddagger	╫	H				Ħ		\parallel	\parallel			$\uparrow\uparrow$			\ddagger	Ħ
										$\dagger \dagger$	Ħ			\ddagger			\ddagger	\parallel	H	1					††							Ħ	Ħ
									11	Ħ	tt				İŤ			Ħ		1			Ħ		\parallel	\parallel			Ť	Ħ	T	I	Π
									\prod	\prod	\prod			\prod									Π	\prod	Π				Π	\square	Ш	Π	Π

CORE#2

exploration logging of australia, inc.

-A Geological-Engineering Service

PERTH ADDRESS: 69 GREAT EASTERN HIGHWAY, VICTORIA PARK, WESTERN AUSTRALIA PHONE: 61 4437 CABLE: EXLOGG PERTH

CORE ANALYSIS REPORT

	ESSO/BHP MARLIN A-24	·
	FIELD GIPPSLAND BASIN/MARLIN	• •
COUNTY	OFFSHORE STATE VICTORIA	
	AUSTRALIA	
REMARKS R	Recd 100% SANDSTONE, WHT-LT GRY, F	-MED,
SUBANG	-SUBRNDD, FRI-MOD HD, W SRID, ARGIL	LAC,
MICAC, O	DCC CARB STRKS.	

DATE	6TH JUNE	,1973		
DEPTH 8	3770	TO	8801FT	
	ER ASHTON			
	- 1			

SAND 0000 LIME •••• SILTY SAND CONGL. 0000 SILTST. $\Xi \equiv \Xi$ SHALE ٦ Γ

UNIT AND PODESTY HUD ANVALUEN WY WOULD COUNTY PEAKES WY PE				TAB	ULAR [DATA												A	VA		151	S	GI	۲A	P۲	ł						
oit wate DEFNS 55 56 6 0 10 40 60 10 1 8771 392 23.4 0 36.0 2.08 SDST 11 14 10 11 10	AMPLE UMBER	DEPTH	PERM.	POROSITY PERCENT	FLUID SA % PORE	TURATION YOLUME	GRAVITY OIL • API	DRY	REMARKS		2(0,0	0		1	00	00			0			100)	80		60	•	40	}	20	1
2 8786 1402 26.7 0 30.8 1.97 SDST SS	νŻ		<i>mU</i> .		OIL	WATER					OR	0S X 40		% 30	× -	20	X	X 10		lo X		OIL										
2 8786 1402 26.7 0 30.8 1.97 SDST SDST	1	8771	392	23.4	0	36.0		2.08	Sdst									K	5				¥						ļķ	5		
3 8801 427 23.4 TR 44.0 2.06 Sost	2	8786	1/102	26.7	0	30.8		1.07	SDET	+	╢		+		1	∦	Ť.			#			-		╢		╢	┥┥┥	╫		+++	
TRACE OIL FROM SATURATION ANALYSIS AT 8801FT, BLUE WHITE FLUORESCENCE.		0700	1402	2007	0	5000		1.97	0031												••	••	X							扪		
TRACE OL FROM SATURATION ANALYSIS AT \$801FT, BLUE WHITE FLUORESCENCE.	3	8801	427	23.4	TR	44.0		2.06	Sdst	\parallel									2		• •	• •	Ť				++-		1		┼┼┥	
			+							\parallel										╢			Î				╫					
ANALYSIS AT 8801FT, BLUE								 		$\prod_{i=1}^{n}$	1												╞		$\frac{1}{1}$				+		$\left \right $	
			1 1	1	1	1				╢	╫									+			F		\parallel		\parallel					
			1 1							\prod										Ţ			-		┦							
				<u> </u>						╫	╢			$\left \right $		╢	$\left \right $		++	H			+		╢		╢		++	╎┼┼		
																\prod				Ţ					\prod				<u></u> ↓ ↓	\prod	Щ	Щ
										╢	╢					╢				$\left \right $			┝		╢	$\left \right $	╢	$\left \right $		$\left \right $		
										\prod	1					\prod				Ħ			-			Щ			H-	Щ		Щ.
										╢	╢					╢				+			+		╢			┼┼┥	$\left \right $	┼┼┽	╫	
			ļ								1									1									\prod			
										╢	╢		++-			╋				╫					╫		++-	┼┼┥	╟	╫		
										1							Ш			1						Ш		Ш	₩ 			Щ
										╢	╢					┼┼	$\left \right $			+			+		╢		+	$\left \right $				
	[#									╢			_							<u></u> ↓↓↓ ↓↓↓	┿╋┙ ┥╋╸	
	 									\parallel	╢					+				+			╞		$\left \right $			$\left \right $		┼┼┤	#	
			<u> </u>								#																		<u></u>			ЩТ.
			ļ							+						$\left \right $			╟╢	H			┝				$\left \right $			╁╫┥	╫	

COR	£	*3

ENPLORATION LOGGING OF AUSTRALIA, INC.

A Geological-Engineering Service

PERTH ADDRESS: 69 GREAT EASTERN HIGHWAY. VICTORIA PARK. WESTERN AUSTRALIA PHONE: 61 4437 CABLE: EXLOGG PERTH

CORE ANALYSIS REPORT

WELL MARLIN A-24 DEPTH 88	<u>7тн June,1973</u> 301 то
LOCATION/FIELD GIPPSLAND BASIN/MARLIN GEO-ENGIN	EER MICHELMORE
COUNTY OFFSHORE STATE VICTORIA	
COUNTRY_AUSTRALIA	
REMARKS RECOVERED 100% SANDSTONE, WHITE TO LIGHT	SAND
GREY, FINE TO COARSE, ANGULAR TO SUBROUNDED, MOD	SILTY SAND
FRIABLE TO HARD, SILICA CEMENT IN PT, CLAY MATRIX	SILTST.
HYDROCARBON ODOUR.COMMON THIN COAL LAMELLAE.	SHALE

8836FT

LIME

CONGL.

0000

0000

			TAB	ULAR I	DATA													A	N	A	LY	S	IS	C	GR	A	P۲	ł									
SAMPLE NUMBER	DEPTH FEET	AIR PERM. MD.	POROSITY	FLUID SA % PORE	TURATION	GRAVITY OIL °API	DRY BULK	REMARKS			ме 24	10		L	1	2	0	(:	C	(0		W		ER 00		1TU 80			101 so	N	% 4			E (20		~
AS AS	FEET	MD.	TERCEINT	OIL	WATER	*API	TOTAL CH OF DEN SITY		P	OR	80S 8 40	ידו	Y 9 3	% 6 0	x —	` 4 20	¢	2 1(5		0		011		A1 C	UF	20			% 40	P	10 6				x	iC
1	8802	95	20.1	0	50		2.09	Sdst		\prod		Π				Π	ð	Π	\prod			•	•	• ;	Ţ	Π	Π	Π	Π	Π	d	Π		Π	Π	\prod	Γ
									Π	T	T	Π				T	Ň		T	11	T				Ħ	T	Ħ	Ħ	Ħ	╢	T	\square	T	П		IT	F
2	8820	69	17.2	0	56	· ·	2.18	Sdst	\prod	T	IT	T				ļ		6	Ti	Ţ	٦.	•	•	• :	Π	11	Ħ	Ħ	11	11	Ħ	ģ	T	П		IT	ſ
							1		\prod					F	7	7		11	\parallel	\parallel					П	Ħ	Ħ	Ħ	Ħ	11	Ħ		T	П	T	T	ſ
3	8836	302	22.2	0	41		2.08	SDST	þ-	Ŧ	T				X	Π	Π	T	T	11	٦.	• •	•	• :	Æ	TT	Ħ	Π	Ħ	Ħ		q		П		Π	ľ
							1		11	Π		\prod				Π		11	\uparrow						Ħ	TT	Ħ	Ħ		tt	Ťİ		T	П	Ħ	П	ŀ
									T	T		T		Π					T		T				\prod	Ħ	IT	Ħ	ŤŤ	Ħ	Ħ	\parallel				T	
		[1				T	T		Π			T	11	Π	ŤÌ	ŤÌ	Ħ	1				Ħ	Ħ	11	Ħ	Ħ	\prod	Ħ	\uparrow	T	Щ		lt-	
					[1			11		IT				T		11	Ti	11	1				Ħ	Ħ	İŤ	Ħ		Ħ	Ħ	\dagger	Τ	П		T	Ì
	<u> </u>					1			T	Ħ	††					11	\parallel	11	\dagger	11	1				Ħ	Ħ	Ħ	Ħ	Ħ	11	Ħ	\dagger	1	ſĦ	Ħ		-
									$\uparrow \uparrow$	tt		П				Ħ	11	Ħ	Ħ	11					Ħ	Ħ	İŤ	Ħ	Ħ	tt	†	\dagger	\parallel	Π	H	H	ľ
		1							\dagger	IT					11	\dagger	Ħ	11	\dagger	11	\uparrow				Ħ	Ħ	Ħ	H-	$\dagger \dagger$	Ħ	††		+	\uparrow	H	t t	1
[\dagger		tt					\dagger	\dagger	\dagger	$\dagger \dagger$	##	1				H	Ħ	╟	╎┤	╫	╂╊	$\dagger \dagger$	\dagger		++	Ŧ		6
		†							\dagger	†					\dagger	\dagger	\parallel	\dagger	11	††	1				Ħ	Ħ	╢	Ħ	╢	╟	\dagger	\dagger	\dagger	+		+	ł
									\ddagger	\ddagger				\square	11	\dagger	$\dagger \dagger$	\dagger	††	††	1				H	Ħ	╟	Ħ	╢	††	\dagger		+			H	F
									\dagger	Ħ		\square			╫	$\dagger \dagger$	Ħ	\dagger	¢†	††	1				Ħ	╫	ť-	İ	İt	†	Η	\dagger	+	H		H	ŀ
									††	\parallel	$ \uparrow $				+	\parallel	\dagger	\dagger	\ddagger	††	+				╫	╎┼	╟	H	╫	$^{+}$	$^{++}$	+	+	+	+	H	ŀ
									\dagger	Ħ		H			++	╫	+	\dagger	╈	+	1				H	††		╟╋	╫	†	╢	†	+	+	+	H^{+}	r I
									╢	╢					╢	\dagger	╁╂	╢	††	$\dagger \dagger$	1				H	Ħ	┟┼╴	H	╂╂	╟	╁	†	+	+		H	ŀ
									-∔- - 	††				+	++	╢	\mathbf{H}	╁╋	╁┼	$^{++}$	1				╟	╫	$\left \right $	++-	╀	╂┨-	╂╂	$^{++}$	╉	+	+	H	ł
									ŤŤ	╢	$\left \right $	+			╫	╫	╫	╫	╫	╫	1				╟	╢		$\left + \right $	ił	╂┤	╢	╢	H	+	+	H	L
									╂┼	$^{+-}$	$\left \right $			╫	††	╫	\mathbf{H}	╫	†	++	┼─		<u> </u>		╟	╫	H	┢╋┥	╢	╟	╢	††	╫	╫	+		L
									╂┼╴	╟					╫	+	+	╫	╂┼	╫	1				╟	╟	H	h	╟	╟	╫	╢	╢	╢	+		ſ
								<u></u>	╂┼	╟	$\left \right $		+	╉	\mathbf{H}	╂╊	╢	+	╫	╉╉	1				╟	╟	\mathbb{H}	Н	╟╟	╟	₩	╢	╢	+	+	+	-
				· · •					╁┼	┼┼		++	+	++	╢	╫	╢	╢	╫	╂╂	{				╟	╢		H		╟	┼┼	╢	╫	╢	+	++	-
									╂┼╴	╢		+	+	+	╢	╢	+	┼┼	╢	╢	$\left\{ \right.$				╟	╟	Щ	+		╟	\mathbb{H}	\parallel	╢	╢	$\left\{ \right\}$	╫	-
	· · · · · · · · · · · · · · · · · · ·								$\left \right $	╟	₩	+	\parallel	╢	\parallel	╫	╢	╢	╢	╢	+				╟	╟	4	\mathbb{H}	$\left \right $	╟	╢	╢	┼┼	$+\!\!+$	H	+	-
									₩	_		Щ		+	+	╢	╢	╢	╢	\parallel	{				\parallel	H	+	+	Щ	╟	H	$\left \right $	$\left\{ \right\}$	\parallel	$\left\{ \right\}$	+	
									H			+	+	+	\parallel	╢	\parallel	$\left \right $	\parallel	\prod	$\left\{ \right.$				\parallel	\mathbb{H}	4	+	Щ	4	$\left \right $	\parallel	\parallel	Н	\parallel	\parallel	
							<u> </u>	· · · · · · · · · · · · · · · · · · ·	\parallel		Щ	\parallel	\parallel	+	\parallel	\parallel	$\left \right $	╢	\parallel	\parallel	$\frac{1}{1}$				\parallel	╟	Щ	4	Щ	μ-	$\left \right $	\prod		\parallel	$\left \right $	\parallel	
								·····	$\left\{ \right\}$	$\ $		\parallel	\parallel	\parallel	\parallel	\parallel	$\downarrow\downarrow$	$\left \right $	\parallel	\parallel	$\left\{ \right.$				\parallel	μ	Щ	4	Щ			\prod	\prod	\parallel	#	$+\!\!+$	
		I							11								11			11	1							. []					11		11		

CORE#4

exploration logging of australia, inc.

A Geological-Engineering Service

PERTH ADDRESS: 69 GREAT EASTERN HIGHWAY, VICTORIA PARK, WESTERN AUSTRALIA CABLE: EXLOGG PERTH

CORE ANALYSIS REPORT

COMPANYESSO/BHP	DATE	
WELL MARLIN A-24	DEPTH 10,467FT TO 10,505FT	
LOCATION/FIELD GIPPSLAND BASIN/MARLIN	GEO-ENGINEER ASHTON	
COUNTY OFFSHORE STATE VICTORIA		
COUNTRY_AUSTRALIA		
REMARKS RECD 100% INTBDD SHALE/SLST/SDST.	SAND I DOOD LIME	
10467-82 SLTST, M GRY, MOD HD, MIC, LAMINATED W/	SILTY SAND CONGL.	
SDST.WH-LT GRY.VF-F.SUBANG-SUBRND.CLY MTX.SL	==== SILTST.	

DOL,LOC V PYR, CARB, MOD HD, 10482 - 500 SHALE.DK GRY, HD, MIC, SLTY, CARB, 10500-05 INTBDD SDST/SLST A/A. TABULAR DATA

ANALYSIS GRAPH

PLE BER	DEPTH	AIR	POROSITY	FLUID SA % PORE	TURATION VOLUME	GRAVITY OLL *API			PERMEABILITY MD. 0-0 POROSITY % x x 8 6 4 2 40 30 20 10								W		ER DO		TUF BO		T10 60		% 40		RE 20		-c			
SAMPLE NUMBER	DEPTH FEET	AIR PERM. MD.	PERCENT		I	*API	EZ BE	REMARKS	PC	ORC	SIT	ry e	%	x	- x		~			01	L S.	AT	UR	ATI	ON	1 %	6 P	'OR	E)	x	x	
				OIL	WATER		DENS		L	4	10 8		ŝ		20		2 10		000		(2		20		40		60) 	8(0 1	10
1	10,480	0	11.6	0	90.5		2.58	Sdst pyr & carb.												••	•											
								CARB.															Ш		Ш			Ш				
																		ŀ					Ш									
2	10,480	0	7.0				2.30	SDST									Ш			• •	•		Ш	\prod	\prod		Ш	Ш		Ш		
[Ш						Ш	Ш	\prod	Ш.	Ш	Ш	\prod	Ш		Ш
															\prod		Ш						Ш	Ш				Ш			Ш	
									IJ	\prod	Ц.		11										Ш	Ш	Ш		Ш	Ш		Ш	Ш	Ц
									\prod	Ш			Ш	Ш		Щ						Ш	Ш	\parallel	Ш		Ш	Щ	1		\square	Ц
		L							ļļļ	$\downarrow\downarrow$	Щ		\prod	[]]	1		11						Щ	Щ	$\downarrow\downarrow$		Ш	Щ	Щ	Ш	Щ	Ľ
							ļ		Ш	11			11		Ш		Щ					Ш	Щ	$\downarrow\downarrow$	Щ		Ш	Щ	Щ	Ш	1	ļ:
									Ш	Ш.			11	Щ	Ш.		11					Ш	Щ	1	$\downarrow\downarrow$		Ш	Щ	Щ.	Ш	Щ	
	<u> </u>						ļ						Ш		ļļ		Щ					Щ	Ш	$\downarrow\downarrow$	Ш			Ш	Щ	$\downarrow\downarrow\downarrow$	4	
							ļ						\parallel		\parallel		Ц.	Щ				Щ	Ш	Щ	Ш		Ш	Ш	Щ	Щ	1	1
L										\parallel			\parallel			Ш	Щ	Ш					Ш	Щ	$\downarrow\downarrow$		Ш	Щ	$\downarrow\downarrow$]]]	#	Ŀ
L							ļ		$\left \right \right $	11					Щ				Ц			Ш	Щ	ļļ	ļļ			Ш	Ш.	┤┤╿	Щ.	Ļ
							<u> </u>		Ш		11		\parallel		\parallel		\parallel		Ц_				Ш	Ш	Щ	1	Ш	Щ	$\downarrow\downarrow$	Щ	Ш	Ļ
										$\downarrow \downarrow$			$\downarrow\downarrow$		Ш		Ш.	Ш					┆╽╽	Щ	Ш.	11	Ш		↓	┶┼┽	4	
ļ	[\prod	$\downarrow \downarrow$	1		\parallel	Щ	$\downarrow \downarrow$		Щ	Ш				4	Щ	Щ	Щ.	Щ.	Ш	Ш	Щ	Щ		+
L					l	l	ļ		$\left \right \right $	$\downarrow\downarrow$			11				Щ	Ш				μ.			Ш.	_	\prod		Щ.	Щ	4	Ļ
L						ļ	_		11	Щ			Ш				Ш	Ш					Ш	4	ļį	1	Ш	Щ	$\downarrow\downarrow$	Щ	4	
Ĺ						ļ	ļ		ļ	Ш	1	Ш	11		4							\prod		4	Щ.	1	Ш	Щ	Щ	$\downarrow\downarrow\downarrow\downarrow$	Щ	
L										Ш	11	Ш	11		Щ		Ш	Ш	Ц			Ц	Ш	Ш	Ш	1	Ш	Ш	\prod	Ш	4	L.
						Į			Ш	\parallel	\prod		11				$\downarrow \downarrow$	Ш	Ц			\square	Ш	Ш	Щ		Ш	Ш	1	Ш	Щ.	4
L													Ш		Ш	Ш		Ш	Ц			Ц	Ш	Ш	Ш	Ш.	Ш	Щ	Ш	Ш	Щ	\downarrow
							L			$\downarrow\downarrow$			Ш.		\parallel		Ш		Ц								Ш	Ш	\prod		\parallel	Ľ
					L						Ш	Ш	Ш	Ш			Ш	Ш						Ш	\prod		Ш		1	Щ	Ц.	4
							ļ	ļ	Ш	\prod					\parallel		\square	Ш	Ц			\parallel	Ш	Ш	Щ	Щ.		Ш	$\downarrow \downarrow$	Щ	4	Ц
											\parallel		\prod	\prod					Ц				Ш	Ш	\prod			Ш	1	\prod	$\downarrow\downarrow$	
																	\prod		Ц		•	Ц.	Ш			\prod	Ш	Ш	\parallel	Щ		Ľ
									Ш		\prod		\prod				\downarrow		Ц			Щ	Ш	Ш	Щ	\parallel		<u> </u>	11	Ш	4	1
									\prod	Ш	\prod				\prod			\square				\prod	Ш	Ш			Ш	\prod	\prod	Ш	\square	Ŀ

Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

CORE ANALYSIS RESULTS

NOTE: (i) Unless otherwise stated, porosities and permeabilities were determined on two plugs (V&H) cut vertically and horizontally to the axis of the core. Ruska porosimeter and permeameter were used with air and dry nitrogen as the saturating and flowing media respectively. (ii) Oil and water saturations were determined using Soxhlet type apparatus. (iii) Acetone test precipitates are recorded as Neg., Trace, Fair, Strong or Very Strong.

WELL- NAME AND NO. MARLIN A-24

DATE ANALYSIS COMPLETED

AUGUST 1973

Core No.	Samp] Deptl	h		Effective	Absolu Permea (Milli	bility	(gm/	ity :c.)	Fluid Saturat (% pore	ion	Core Water Salinity	Acetone	of freshly broken	Sample "cut" in tetrachloretylene
	From	To		two plugs (% Bulk Vol.	v	н		Apparent Grain	Water	011	(p.p.m. NaCl)	Test	core	
3	8825 '	882510"	Quartzite	3.0	N.D.	<u><0.1</u>	2.69	2.77	22		N.D.	Nil	Spotted dul: yellow	Nil
3	8833 12 "	88341	Sst; f.gr. carb lam	16.8	1.9		2.23	2,68	12	0.26	N.D	trace	even yellow	<u></u>
4	1046 7'		Slst; carb shly	7.2	K0.1	50.71	2.51	_2.70	32	2.0	NoDo		spotted yellow	Nil
4	10473 '	10473 *6 *	Slst; aren, shly carb	9.2	N.D.	<u> </u>	2.46	2.72	27	1.7	N.D.	trace	Nil .	Trace
4	10484 *6 "	10485'	Sh	7.1	0.2	0.11	2.33	2.51	24	_2.0	NaD.	trace	<u>Nil</u>	Nil
4	10493 '8"	10494	Sh; pyr	6.2	N.D.	<u>< 0.1</u>	2.66	2.83	17	1.2	N.D.	trace	<u>Nil</u>	
4	10504 '0"	10504:4"	Sl st; shly	10,0	N_D_	المعالم	2.48	2,75	22	1.0	N.D.	fair	Nil	Nil

Remarks: -

General File No. 72/2914 Well File No.

Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

CORE ANALYSIS RESULTS

NOTE: (i) Unless otherwise stated, porosities and permeabilities were determined on two plugs (V&H) cut vertically and horizontally to the axis of the core. Ruska porosimeter and permeameter were used with air and dry nitrogen as the saturating and flowing media respectively. (ii) Oil and water saturations were determined using Soxhlet type apparatus. (iii) Acetone test precipitates are recorded as Neg., Trace, Fair, Strong or Very Strong.

WELL NAME AND NO. MARLIN A-24

DATE ANALYSIS COMPLETED AUGUST 1973

MERLIN. QUY mof 2.

Core Vo.	Samp1 Dept1	h		Effective Porosity	-	te bility darcy)	(gm/0	ity cc.)	Fluid Saturat (% pore		Core Water Salinity	Acetone	Acetone	Acetone	Acetone	Fluorescence of freshly broken	Sample "cut" in tetrachloretylene
	From	To		two plugs (% Bulk Vol.	٧	Н		App <i>a</i> rent Grain	Water	011 -	(p.p.m. NaCl)	lest	core				
1	8739 '	8739*9"	Sst; m.gr. carb.	16.8	27	0.84	2.27	2.75	61	4.5	N.D.	fair	<u>Nil</u>	Nil			
1	8742 19"	8743 '	Sst; f.gr. to m.gr.	24.4	5 3 0.	1 <u>7</u> 0	2.04	2.69	19	3.2	N.D.	fair	Nil	<u>Nil</u>			
1	874818"	8749	Sst; m.gr.	24.1	501	740	2.02	2:66	34	1.6	N.D.		Nil	NiJ			
1	8754 16 1	8755 •	Sst; f.gr.t m.gr. slty	17.3	69	15	2.23	2.70			N.D.	trace	Nil				
1	8760*	8761'	Sst; m.gr	2 3. 7	915	519	2.04	2.67	36	0.86	N.D.	strong	Nil	<u> </u>			
1	876618"	8767*	Sst; f.gr. to m.gr.	22.7	1825	239	2.07	2.67	11	0.63	N.J.	trace	spotted dull yellow	Nil			
	8772 10"	بر من من من من من من من من من من من من من 	Sst: m.gr.	20.7	368	170	2,15	2.73	26	NIL	N.D.	Nil	very dull spotted yello	w Nil			
2	8 7 76	8776 10"	Sst; f.gr. m.gr sl slt	10	364	T		2,68	42	1.2	N.D.	Tr	spotted dull yellow	N11.			

Remarks: -

General File No. 72/2914 Well File No. Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

CORE ANALYSIS RESULTS

NOTE: (i) Unless otherwise stated, porosities and permeabilities were determined on two plugs (V&H) cut vertically and horizontally to the axis of the core. Ruska porosimeter and permeameter were used with air and dry nitrogen as the saturating and flowing media respectively. (ii) Oil and water saturations were determined using Soxhlet type apparatus. (iii) Acetone test precipitates are recorded as Neg., Trace, Fair, Strong or Very Strong.

WELL NAME AND NO. _____MARLIN A-24

DATE ANALYSIS COMPLETED _____AUGUST 1973____

Core No.	Samp Dept	h	1	Effective	Absolu Permea (Milli	bility	Avera Densi (gm/d	ity c.)	Fluid Saturat (% pore		Core Water Salinity	Acetone	Fluorescence of freshly broken	Sample "cut" in tetrachlorethylene
	From	To		two plugs (% Bulk Vol.	٧	н	1	Apparent Grain	Water	011	(p.p.m. NaCl)	Test	core	
2	87821	8782 •8"	Sst; f.gr. m.gr. slty	o 22.0	177_	148	2,10	2,69	40	.4.3	N.D.	Strong	<u>Nil</u>	NJ
3	8788 *		Sst; f.gr. m.gr. carb.		7.2	432	2.14	2.75	28	0.95	N.D.	Strong	<u>Nil</u>	. <u>Nij</u>
3	87 <u>9</u> 4 '	8794 ' 10"	Sst; m.gr.	22,1	396	257	2.11	2.70_	15	Nil	N.D.		Nil	Nil
3	8800'	8801'	Sst; f.gr. to m.gr.	22.1	84	189	2.09	2.68	17	0.68	N.D.	Fair	Nil.	Ni.1
3	8804 •	8804 *8"	As above carb slty	20.7	68	172	2.13	2.69	46	4.0	N.D.	Strong	<u>Nil</u>	Nil.
3	<u>8810'</u>	8810 ' 11"	Sst; f.gr. m.gr. slty	to 15.0	32	38	2.30	2.70	46	0.56	N.D.	Fair	Nil ⁱ	Nil
3	8815 '	881517"	Sst; f.gr. slty carb.		1.5	0.65	2.34	2,70	35	1.6	<u>N.D.</u>	Fair	<u>Nil</u>	Nil
3	8819'	8819'9"	Sst; m.gr. carb.	14.8	32	102	2.19	2.57	38	0.31	N.D.	Fair	Nil	Nil

Remarks: -

General File No. 72/2914 Well File No.

APPENDIX 5

LOG ANALYSIS AND TABLE CONVERTING MEASURED NET SAND THICKNESS TO TRUE THICKNESSES

MARLIN A-24

VICTORIA, AUSTRALIA

October, 1973

WELL LOG ANALYSIS REPORT

Form R167 6/70 Page 1

WELL FILE - c.c. W.W. Fraser (2), W.F. Threlfall

OPERATOR

ESSO AUSTRALIA LTD

WELL MARLIN A-24

DATE 30 JULY 1973

90' KB STATE VICTORIA ELEV. POROSITY WATER SAT. **DEPTH INTERVAL** REMARKS ESTIMATE ESTIMATE 13-15 Gas Productive 8742-45 (3 21-22 8745-48 (3 14 - 1711 12.5-13.5 11 23-24 8-9 8748-52 (4 11 13-15 8752-56 (4 17-18 20-21 14 11-13 8756-62 (6 11 13-15 8762-66 (4 18.5-19.5 11 8766-69 (3 16-17 13-15 18.5-19.5 11 8769-72 11-14 (3 8772-75 11 19.5-21 10-13 (3 8775-78 (3 18.5-19.5 10-13 20-21 9-10 8778-84 (6 11 8784-86 (2 15-16.5 . 14-17 8786-90 (4 14-15 21-24 17.5-18.5 ., 790-96 (6 13-15 20.5-21.5 8796-98 (2 13-14 11 (3 16-19 8798-01 17-18.5 8801-05 (4 19.5-20.5 13-15 11 11 8805-08 (3 18-19 15-17 11 19-22 16-17 8808-11 (3 14-17 19-20 ... 8811-18 (7 11 (3 17-18.5 20-23 8818-21 15 8821-23 (2 15.5-16.5 25-28 31-34 Shaley, gas productive 8823-25 (2 13-14 8825-28 (3 15-16 26-29 Gas productive 13.5-14.5 8828-32 (4 22-25 tt 8837-39 (2 15-16 22-24 11 (3 8839-42 19.5-21 15-18 11 8842-47 (5 17-18 16 - 18** 8847-51 19.5-20.5 (4 13-15 11 8851-53 {2 18-19 16 - 1911 8853-57 (4 15 - 1621 - 2411 857-60 (3 17-18.5 12-15 860-65 (5 22.5-23.5 10-11 8865-68 21-22.5 15 - 17(3 11 8868-71 (3 22-23.5 12-14 8871-74 (3 11 20.5-22 13-16 11 8890-97 (7 15.5-17 26 - 30TESTS: FORMATION: LOGS: Paleocene Latrobe IES, FDC-GR, SNP-GR

COMMENTS:

This report completes the coverage of the prospective hydrocarbon producing section of the Paleocene. Revision of these reports may be made in light of continued evaluation drilling.

R B Bang BY

TO

-2-

1

•

1		-2-	R 167 6/70 Page 2
~ ·			WELL MARLIN A-24
DEPTH INTERVAL	POROSITY ESTIMATE	WATER SAT. ESTIMATE	REMARKS
9216-21 (5 9508-11 (3 9511-18 (7 9593-01 (8 9681-84 (3 9760-64 (4 9764-68 (4 9813-24 (11 9824-28 (4 9828-33 (5 9833-36 (3 9836-38 (2 9838-42 (4 9842-45 (3 9845-48 (3 9949-55 (6 9955-61 (6 9961-64 (3 9979-83 (4 0983-90 (7 9990-96 (6 9996-04 (8 10065-76 (11 10076-83 (7 10085-95 (10 10095-01 (6 10106-13 (7 10013-17 (4 10117-22 (5 10122-26 (4 10126-28 (2 10135-37 (2 10137-41 (4 10212-14 (2 10221-25 (4 10225-29 (4)	14.5-15.5 $12.5-13.5$ $16-17$ $23-24$ $15-16.5$ $13-14$ $15.5-16.5$ $19.5-21$ $20.5-21.5$ $19.5-21$ $21-22.5$ $16.5-18$ $21-22$ $19.5-21$ $18-19$ $16.5-17.5$ $19-20$ $17-18.5$ $15-16.5$ $13.5-14.5$ $16-17$ $15-16$ $14.5-16$ $17.5-18.5$ $19.5-21$ $18.5-19.5$ $16-17$ $19-20$ $17-18.5$ $19.5-21$ $18.5-19.5$ $16-17$ $19-20$ $17-18.5$ $14.5-16$ $14.5-16$ $17.5-18.5$ $19.5-21$ $18.5-19.5$ $16-17$ $19-20$ $17-18.5$ $14.5-16$ $16.5-18$ $17-18.5$ $12-23$ $22-23$ $22.5-24$ $19.5-21$	$\begin{array}{c} 23-25\\ 29-34\\ 19-22\\ 8-9\\ 29-33\\ 38-41\\ 34-37\\ 10-13\\ 7-8\\ 9-11\\ 9-11\\ 12-15\\ 8-10\\ 14-17\\ 23-26\\ 18-20\\ 12-14\\ 22-26\\ 18-20\\ 12-14\\ 22-26\\ 18-20\\ 20-24\\ 27-32\\ 38-41\\ 19-22\\ 21-24\\ 22-26\\ 17-20\\ 12-14\\ 14-17\\ 15-18\\ 14-16\\ 20-24\\ 18-21\\ 19-21\\ 16-19\\ 8-9\\ 7-8\\ 14-16\end{array}$	Gas productive Shaley, gas productive Gas productive Shaley, gas productive Gas productive """"""""""""""""""""""""""""""""""""
June 19, 1973 Induction measured depths * 9568-71 (3	19-20	20-23	"RBT.

WELL LOG ANALYSIS REPORT

WELL FILE.

c.c. W.W. Fraser(2) W.F. Threlfall

Form R 167 6/70 Page 1

OPERATOR ESSO AUSTRALI	A LTD.	WELL MARLIN	A-24	DATE June 19, 1973	،
		STATE VICTORIA		ELEV. KB 90'	
	l'	1			
DEPTH INTERVAL	POROSITY	WATER SAT.		REMARKS	
	ESTIMATE	. ESTIMATE	· ·		
	16 - 17	18-19	Probably gas pro	oductive.	
10417-22 (5	16 - 17	25-26	Probably oil pro	oductive	
10422-25 (3 10439-41 (2	14.5 - 15.5	31-34 27-30	Probably oil pro		
10439-41 (2 10441-47 (6	14.5 - 15.5 17.5 - 18.5	21-23	Probably oil pro Probably oil pro		
10464-67 (3	16.5 - 17.5	24-26	Probably oil pro	oductive	
10467-71 (4	13 - 14 12.5 - 13.5	33-36	Probably oil pro		
10560-62 (2 10562-66 (4	12.5 = 13.5 15 = 16	48-53 40-43	Probably not eff Possibly oil pro		
10574-81 (7	17.5 - 18.5	20-22	Probably oil pro	oductive	
10581-88 (7	18.5 - 19.5 15 - 16	22-24 26-27	Probably oil pro		
10588-93 (5 0593-99 (6	15 - 16 17 - 18	26-27 17-19	Probably oil pro Probably oil pro		
10599-605 (6	20 - 21	17-18	Probably oil pro	oductive	
10605-10 (5 10623-30 (7	18.5 - 19.5 15.5 - 16.5	25-26 46-49	Probably oil pro Formation water		
10637-44/(7	15 - 16	44 - 48	Formation water		
INDUCTION MEASURED D	EPTHS				
			-		
				•	
			- ?		
				• .	
STS:				· · · ·	
			•		
				· .	
			-		
RMATION:				LOGS:	
					~
PALEOCENE LATRO	OBE			IES, FDC-GR, SNP-	GR
			•		
considered in	ective oil product this effort. Norn esponses noted in	nal shale correct			, -
			\mathcal{O}_{Λ}		

.

BY) R.B. KING

TO

÷27

APPENDIX 6

FORMATION INTERVAL TESTS MARLIN A-24 VICTORIA, AUSTRALIA

2. たまり、影響の一般

October, 1973

<u>م</u>

LIST AND DESCRIPTION OF TESTS AND INTERPRETATION OF TEST RESULT

Twenty two FIT tests were performed in Marlin A-24 by Schlumberger. All tests were conducted inside $5\frac{1}{2}$ " cemented liner using shaped charge to penetrate the liner. In addition to the Schlumberger pressure gauges, dual Amerada gauges with rated capacities of 0-8,500 and 0-11,800 PSIG were run in some tests. Because the $5\frac{1}{2}$ " liner limits the outside diameter allowed on the FIT tool the Ameradas could not be run on the outside of the tool. Amerada pressures are only available on those tests that did not run a segregator.

Note: All depths are measured depths from the GR-FDC log. (Mud Rmf = $0.55 @ 60^{\circ}F$)

FIT #1 @ 10,720'

Recovery 9000 cc filtrate

(Segregator) None used

Properties Water C1- 5000PPM, Ph 8.5, Rest.0.560 at 70°F

Gas in solution (extracted by blendor)

C1	1,20'8PPM	89.82%
C2	88	6.54%
C3	49	3.64%

Pressures

Schlumberger

Agnew (Single Amerada)

Sampling pressure	3,875 psi	3484.4 psi
Final Shut-in	3,875 psi	3496.6 psi
Hydrostatic	5,000 psi	4566.2 psi
Sampling Time Shut-in Time	8 min 3 min	•

FIT #2 @ 10,640'

Recovery 9000 cc filtrate

(Segrator) None used

Properties Water C1- 6000PPM, Ph 10.5, Rest.0.532 @ 70°F

Gas in solution (extracted by blendor)

C1	585PPM	27.56%
C2	525	24.73%
С3	617	29.06%
C4 C5	132 264	6.22% 12.43%

Pressures

Schlumberger		Agnew	(Dual	Amera	adas)	
Sampling pressure Final Shut-in	3,800 4,300	-		psi, psi,		•
Hydrostatic	5,000	•		psi,		-
Sampling Time	10	min				
Shut-in Time	4	min				

FIT #3 @ 10,605'

Recovery 9000 cc mud

(Segregator) Only mud recovered

Properties Water C1- 7000PPM, Ph 12.0, Rest. 0.66 at 70°F

<u>Gas</u> in solution (extracted by blendor)

C1	1,720PPM	59.97%
C2	508	17.71%
C3	475	16.56%
C4	53	1.85%
C5	112	3.91%

Pressures

Schlumberger			Agnew	
Sampling pressure Final Shut-in Hydrostatic Sampling Time Shut-in Time	4,850 4,900 13	psi	None	used

FIT #4 @ 10,545'

Recovery 11,500 cc mud (Mud Run)

(Segregator) Not opened (Mud Run)

Pressures

Schlumberger			
Sampling pressure Final Shut-in	4	psi -	
Hydrostatic	4,850	psi	
Sampling Time		-	
Obsets the Diamo			

Agnew

None used

bampring Freeboure	т	Por
Final Shut-in		-
Hydrostatic	4,850	psi
Sampling Time		-
Shut-in Time		

FIT #5 @ 10,578'

Recovery Full chamber of Mud (11,500 cc) Mud Run

(Segregator) Not opened

Pressures

Schlumberger

Hydrostatic only 4,500 psi

None used

..3/

Agnew

NOTE: Due to results of FIT's #3,4 and 5, the liner was perforated and cement squeezed.

FIT #6 @ 10,420'

Recovery 3.8 CF gas 4100 cc muddy water

(Segregator) Failed to open after main chamber sealed.

Properties Water C1- 3000PPM, Ph 10.0, Resist. of filtrate 0.54 at 70°F Resist. of gas cut mud 9.4 at 70°F.

Gas

C1	109,251PPM	63.7%
C2	33,320	19.4%
С3	22,022	12.9%
C4	4,277	2.5%
C5	2,572	1.5%

Pressures

Schlumberger

Agnew

Sampling Pressure Final Shut-in Hydrostatic Sampling Time	3,800 3,800 4,800	psi	None	used
Shut-in Time	-	m+11		

FIT #7 @ 10,220'

Recovery 54.6 CF 2,000 cc muddy filtrate

(Segregator) #3 Monel not opened

Properties Filtrate C1- 4500PPM, Ph 8.0, Resist. 0.45 at 70°F

Gas

C1	111,042PPM	66.1%
C2	38,318	22.8%
C3	15,246	9.1%
C4	1,974	1.2%
C5	1,470	0.9%

FIT #8 @ 10,360'

Recovery 7,700 cc filtrate 1,300 cc mud cake

(Segregator) None used (Ran Ameradas)

Properties Filtrate C1- 3000PPM, Ph 12.0, Resist. 0.583 at 70°F

<u>Gas</u> in solution (extracted by blendor)

C1	1,240PPM	59.9%
C2	217	10.5%
C3	288	13.9%
C4	105	5.1%
C5	220	10.6%

Pressures

Schlumberger		Agnew (Dual Ameradas)
•		
Sampling pressure	3,500 psi	3603 psi, 3607 psi
Final Shut-in	3,650 psi	3629 psi, 3681 psi
Hydrostatic	4,750 psi	4646 psi, 4664 psi
Sampling Time	11 min	
Shut-in Time	4.5 min	

FIT #9 @ 10,072'

Recovery	22.5	cu ft. Gas
	6500	Filtrate

(Segregator) Malfunction - failed to close

Properties Filtrate C1- 3500, Ph 8.0, Resist. 0.658 at 70°F

Gas

C1	111,042PPM	60.8%
C2	40,817	22.3%
С3	22,022	12.1%
C4	3,619	2.0%
C5	5,145	2.8%

Pressures

Schlumberger

Agnew (Amerada)

None used

Sampling pressure	3,550 psi
Final Shut-in	3,760 psi
Hydrostatic	4,500 psi
Sampling Time	2 min
Shut-in Time	5 min

FIT #10 @ 9957'

Recovery	49.5	cu.	ft.	Gas	3		
	3900	cc	Gas	cut	filtrate	and	mud

(Segregator) #17 not opened

Properties Filtrate C1- 3000PPM, Ph 8.0, Resist. GCM 1.90 at 70°F Resist. of GC Filtrate 0.54 at 70°F

Gas

C1 .	112 [,] 833 PPM	64.3%
C2	33,320	19.0%
СЗ	20,328	11.6%
C4	4,606	2.6%
C5	4,410	2.5%

3,500 psi

3,575 psi

4,650 psi

1.5 min

8.5 min

Pressures

<u>Schlumberger</u>

Agnew (Ameradas)

None used

FIT	#11	0	9,823'	

Recovery	ry 42.8 cu. ft. ga		gas	S				
	6000	cc	gas	cut	mud	and	filtrate	

Sampling pressure

Final Shut-in

Hydrostatic

Sampling Time

Shut-in Time

(Segregator) #24 not opened

<u>Properties</u> <u>Filtrate</u> C1-5500PPM, Ph 7.5, Resist. GCMF 2.47 at 70°F Resist. of filtrate 0.41 at 70°F

Gas

112,833PPM	59.4%
37,485	19.7%
26,257	13.8%
5,922	3.1%
7,350	3.9%
	37,485 26,257 5,922

Pressures

Schlumberger

Agnew (Ameradas)

None used

Sampling pressure 3,550 psi Final Shut-in 3,750 psi Hydrostatic 4,650 psi Sampling Time 2-3/4 min Shut-in Time 2-3/4 min

FIT #12 @ 9514'

Recovery 2.2 cu. ft. gas 11,750 cc mud slightly gas cut

(Segregator) None used

Properties Filtrate C1-5000PPM, Ph 12.0, Resist. mud 0.95 at 70°F Resist filtrate 0.43 at 70°F

Gas

107,460PPM 25,823 21,175 5,922	63.8% 15.3% 12.6% 3.5%
8,085	4.8%
	25,823 21,175 5,922

Pressures

Schlumberg	er	Agnew (Ameradas)		
Sampling pressure Final Shut-in	3,400 psi 3,750 psi	3628.8 psi,	3380.6 psi 3631.0 psi	
Hydrostatic	4,300 psi	4645.8 psi,	4664.2 psi	
Sampling Time	7½ min	,		
Shut-in Time	$2\frac{1}{4}$ min			

FIT #13 @ 10,600'

26.8 cu. ft. gas Recovery 7,300 cc. oil

(Segregator) #5 not opened

Properties 011 41.7°API Gravity at 70°F, Pour point 84°F

Gas	•		
	C1	104,554PPM	59.1%
	C2	38,400	21.7%
	C3	23,274	13.2%
	C4	3,570	2.0%
	C5	7,196	4.1%

..6/

Pressures

Schlumberger

Sampling pressure Final Shut-in	3,700 psi 3,550 psi
Hydrostatic	4,650 psi
Sampling Time	1 min
Shut-in Time	12 min

FIT #14 @ 10,445'

Recovery 16.4 cu. ft. gas 11,000 cc. water, mud and oil emulsion

Properties Resist. of Fluid 11.4 at 70°F, <u>Oil</u> 41.1°API Gravity at 70°F Pour point 71°F

Gas

C1	107,982PPM	50.3%
C2	46,400	21.6%
С3	40,514	18.9%
C4	10,714	5.0%
C5	9,090	4.2%

Pressures

Agnew (Ameradas) Schlumberger 3,600 psi 3701.4 psi, 3698.2 psi Sampling pressure 3716.5 psi 4560.1 psi Final Shut-in 3,600 psi 3718.5 psi, 4,250 psi Hydrostatic 4568.8 psi, Sampling Time Shut-in Time NA 11½ min

FIT #15 @ 9220'

Recovery 19.4 cu. ft. gas 7000 cc. filtrate with trace mud, trace condensate

(Segregator) None used

Properties Filtrate C1- 3000PPM, Ph 11.5, Resist. mud/water 0.614 at 70°F Resist. filtrate 0.52 at 70°F Condensate API Gravity 59° @ 70°F

Gas

C1	106,268PPM	62.4%
C2	35,200	20.7%
C3	22,412	13.2%
C4	2,975	1.8%
C5	3,333	2.0%

Pressures

Schlumberger		<u>Agnew (Ameradas</u>)		
Sampling pressure Final Shut-in Hydrostatic Sampling Time Shut-in Time	3,300 psi 3,350 psi 4,000 psi 1 ¹ / ₂ min 9 min	3333.6 psi, 3319.5 psi 3342.2 psi, 3337.8 psi 4047.5 psi, 4040.3 psi		

Agnew (Ameradas)

None used

FIT #16 @ 8862'

Recovery	49.1 cu. ft. gas
	200 cc. condensate
,	180 cc. mud

(Segregator) #16

Properties Condensate 59°API Gravity at 70°F

~			
14	9	G	

C1	101,983PPM	63.0%
C2	32,800	20.3%
С3	19,826	12.3%
C4	2,677	1.7%
C5	4,545	2.8%

-7-

Pressures

Schlumberger

Agnew (Ameradas)

Not used

FIT #17 @ 8758'

Recovery 15.7 cu. ft. gas 12,000 cc. mud

(Segregator) Lost segregator sample

C1 C2 C3 C4 C5

Sampling Time

Shut-in Time

Properties Filtrate C1-9000PPM, Ph 11.5, Resist. mud 0.90 at 70°F Resist. filtrate 0.314 at 70°F

Gas

104,554PPM	55.7%
35,200	18.8%
31,032	16.6%
6,247	3.3%
10,605	5.7%

Pressures

Schlumberger

Sampling pressure	3,550 psi
Final Shut-in	3,750 psi
Hydrostatic	3,850 psi

2½ min

9 min

Amou	(Ameradas)
Agnew	(Ameradas)

Not used

<u>FIT #18 @ 10,359'</u>

Recovery Full chamber of mud, went to hydrostatic straight away.

(Segregator) Not opened.

Pressures

Schlumberger

Agnew (Ameradas)

Hydrostatic only 4,350 psi

None used

FIT #19 @ 10,383'

Recovery	Main chamber 1.4 cu. ft. gas
	7,250 cc. water and mud
	Segregator 15 cu. ft. gas
	150 cc. condensate

(Segregator) Used but dumped

Ga	S

C1	106,268PPM	71.9%
C2	25,600	17.3%
С3	12,499	8.5%
C4	1,488	1.0%
C5	1,894	1.3%

Pressures

Schlumberger

Sampling pressure 2,150 psi Final Shut-in 3,500 psi Hydrostatic 4,350 psi Sampling Time Shut-in Time 10 min $7\frac{l_2}{2}$ min

FIT #20 @ 10,585'

Recovery	Main chamber	9,250 cc	filtrate
	Segregator	2,250 cc	filtrate

(Segregator) Used but dumped

Properties Filtrate Main chamber C1- 3000PPM, Ph 10.5, Resist. 0.75 at 70°F Filtrate Segregator C1- 3500PPM, Ph 11.0, Resist. 0.72 at 70°F (gas in solution extracted with blendor)

Agnew (Ameradas)

Agnew (Ameradas)

..9/

Not used

Not used

Gas	

C1 C2 C3 C4	600PPM 88 65 11	75.6% 11.1% 8.2% 1.4%
C5	30	3.8%

Pressures

Schlumberger

Sampling pressure Final Shut-in	3,650 psi 3,650 psi
Hydrostatic	4,100 psi
Sampling Time	NA
Shut-in Time	5+ min

FIT #21 @ 8796'

Recovery 52.7 cc. ft. gas 100 cc. condensate 1300 cc. filtrate/mud

(Segregator) #2 not opened

-8-

• <u>Properties</u>

Gas

<u>Filtrate</u> C1-3500PPM, Ph 7.5, Resist. 0.55 at 70°F <u>Mud/Filtrate</u> Resist.0.78 at 70°F

		×.
	•	
C1	104,554PPM	55.8%
C2	39,200	20.9%
C3	29,308	15.7%
C4	5,058	2.7%
C5	9,090	4.9%
		•

Pressures .

<u>Schlumberger</u>

Agnew (Ameradas)

None used

-
1
L
-

FIT #22 @ 10,465'

<u>Recovery</u> 36.3 cu. ft. gas 5,500 cc. oil 1,000 cc. filtrate (muddy)

(Segregation) #1 (Monel)

<u>Properties</u>

 $\begin{array}{c} \underline{Filtrate} \\ \underline{Mud} \\ \underline{011} \\ \end{array} \begin{array}{c} C1-4000PPM, Ph \ 7.5, Resist. \ 0.60 \ at \ 70^{\circ}F \\ Resist. \ 0.85 \ at \ 70^{\circ}F \\ 45^{\circ}API \ Gravity, pour point \ 63^{\circ}F \\ GOR \ 1,051.1 \end{array}$

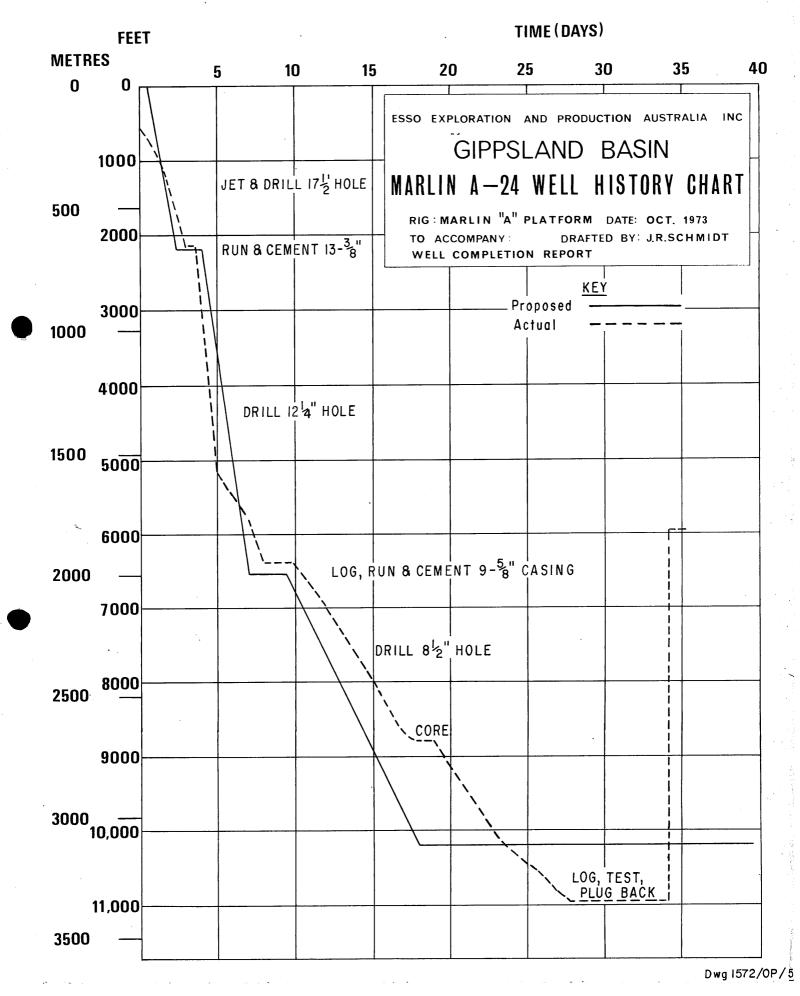
Gas

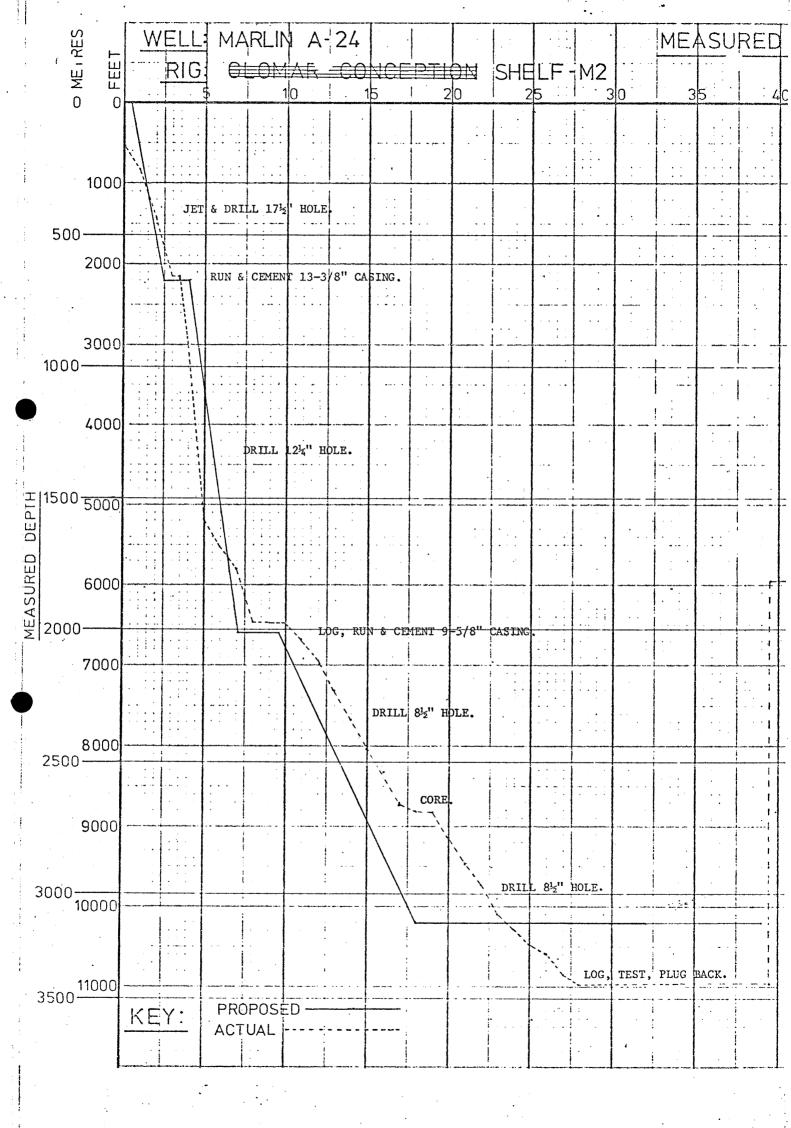
C1 C2	106,268PPM	64.1%
C2 C3	37,600 18,102	22.7% 10.9%
C4	2,380	1.4%
C5	1,515	0.9%

Pressures

Schlumberger

Agnew (Ameradas)


None used


APPENDIX 7

WELL HISTORY CHART MARLIN A-24 VICTORIA, AUSTRALIA

October, 1973

MEASURED DEPTH

APPENDIX 8

MD-TVD CONVERSIONS MARLIN A-24 VICTORIA, AUSTRALIA

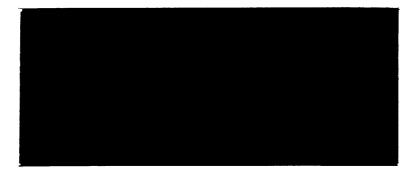
October, 1973

	MARLI	N 4-24		-					
•				M HOLE LOCATIC	IN CALCULATION	S USING RADIUS	OF CURVATURE		
•	COUR SE L ENGTH	MEA SURED DEPTH	TRUE VERTICAL DEPTH	INCLINATION DEG MIN	DIRECTION DEG	RECTANGULAR	COURDINATES	TOTAL C TOP	BOTTOM
)	50.	0. 50.	0. 50.	0. 30.	S 87. E	0. -0.13 S	0. 0.14 E 0.45 E	1.00	3.40 0.60
	50. 50. 50. 50.	100. 150. 200. 250.	100. 150. 200. 250.	0. 12. 0. 1. 0. 12. 0. 1.	N 81. E N 0. E S 52. E N 0. E	-0.12 S -0.05 S -0.09 S -0.05 S	0.49 E 0.50 E 0.57 E 0.64 E	1.10 0.37 1.68	0.37 1.68 0.37
)	50. 50. 50.	300. 350. 400.	300. 350. 400.	0. 1. 0. 12. 0. 15.	N 0.E N 54.W N 57.W	-0.04 S 0.04 N 0.15 N	0.64 E 0.60 E 0.44 E	0.0 0.37 0.10	0.0 0.78 0.10
)	50. 50. 73. 30.	450. 500. 573. 603.	450. 500. 573. 603.	0. 48. 1. 20. 1. 0. 1. 0.	N 58.E S 83.E S 74.E N 5.E	0.54 N 0.34 N 0.05 N 0.31 N	0.44 E 1.33 E 2.79 E 3.16 E	1.20 1.34 0.56 5.88	5.01 2.51 0.49 5.88
9	31. 21. 41.	634. 655. 696.	634. 655. 696.	2. 0. 1. 45. 1. 0.	N 30. E N 32. W N 20. W	1.07 N 1.73 N .2.61 N	3.41 E 3.40 E 2.96 E	3.36 11.06 2.15	4.95 8.50 1.87
	31. 31. 32.	727. 758. 790.	727. 758. 790. 821.	1. 0. 1. 30. 1. 15. 1. 0.	N 24. W S 89. W S 68. W S 27. W	3.11 N 2.77 N 2.62 N 2.21 N	2.76 E 2.22 E 1.48 E 1.04 E	0.23 3.42 2.03 3.31	0.23 6.98 1.52 2.20
	31. 63. 55. 63.	821. 884. 939. 1002.	884. 939. 1002.	1. 0. 2. 0. 2. 0. 3. 0.	S 28. E S 5. W S 9. W	0.63 N -1.23 S -3.95 S	1.05 E 0.67 E 0.34 E	1.88 - 2.09 1.60	4.36 2.09 1.64
° 🌰	63. 62. 63.	1065. 1127. 1190.	1065. 1126. 1189.	4. 15. 6. 0. 7. 30.	S 27. W S 27. W S 23. W	-7.73 S -12.66 S -19.37 S	-0.89 W -3.40 W -6.53 W	2•34 2•82 2•45	3.18 2.82 2.55 2.88
	61. 63. 62. 62.	1251. 1314. 1376. 1438.	1249. 1311. 1372. 1432.	9. 15. 11. 0. 13. 0. 14. 30.	S 24. W S 27. W S 27. W S 23. W	-27.52 S -37.51 S -49.00 S -62.35 S	-10.07 W -14.84 W -20.69 W -26.92 W	2•88 2•86 3•23 2•78	2.00 2.95 3.23 2.96
)	124. 125. 125.	1562. 1687. 1812.	1552. 1670. 1787.	17. 0. 19. 15. 23. 15.	S 21. W S 24. W S 25. W	-93.55 S -129.47 S -170.69 S	-39.53 W -54.40 W -73.19 W	2.05 1.92 3.21	2.08 1.99 3.22 2.90
9	156. 156. 364. 501.	1968. 2124. 2488. 2989.	1928. 2062. 2367. 2780.	27. 45. 32. 30. 34. 0. 34. 45.	S 26• W S 27• W S 27• W S 28• W	-231.29 S -301.34 S -479.16 S -730.06 S	-102.09 W -137.02 W -227.62 W -358.23 W	2.89 3.06 0.41 0.19	3.07 0.41 0.19
b	499. 502. 502.	3488. 3990. 4492.	3190. 3602. 4010.	34. 45. 35. 15. 36. 0.	S 30. W S 31. W S 32. W	-978.82 S -1226.91 S -1476.22 S	-496.12 W -642.25 W -795.03 W -957.04 W	0.23 0.15 0.19	0.23 0.15 0.19
3	495. 243. 377. 193.	4987. 5230. 5607. 5800.	4408. 4602. 4901. 5054.	36. 45. 37. 15. 37. 45. 37. 45.	S 35.W S 35.W S 36.W	-1720.99 S -1840.78 S -2028.78 S -2124.97 S	-1C40.92 W -1172.56 W -1241.17 W	0.38 0.21 0.13 0.32	0.40 0.21 0.13 0.32
0	292. 368. 296. 86.	6092. 6460. 6756. 6842.	5283. 5565. 5785. 5848.	39. 0. 41. 0. 42. 45. 43. 30.	S 36. W S 37. W S 37. W S 35. W	-2271.62 S -2461.76 S -2619.55 S -2667.11 S	-1347.72 W -1488.41 W -1607.31 W -1641.87 W	0.43 0.57 0.59 1.79	C.43 O.57 O.59 1.83
)	101. 284.	6943. 7227.	5921. 6124.	43. 45. 45. 0.	S 32. W S 34. W	-2725.21 S -2891.77 S	-1680.32 W -1788.49 W	2.05 0.65	2.07 0.67
8 - 8									
	MARLI	IN A-24				·			÷.
0				M HOLE LOCATIO	N CALCULATION	S USING RADIUS I	DF CURVATURE		
2	COURSE LENGTH	MEA SURED DEPTH	TRUE VERTICAL DEPTH	INCLINATION DEG MIN	DIRECTION DEG	RECTANGULAR	COOFDINATES	TOTAL C TOP	URVATURE
8	123. 326.	7350. 7676.	6211. 6442.	44. 45. 45. 0.	S 31. W S 34. W S 33. W	-2964.96 S -3158.93 S -3341.52 S	-1835.11 W -1958.69 W -2079.54 W	1.74	1.73 0.66 0.40
6	307. 340. 92. 168.	7983. 8323. 8415. 8583.	6657. - 6890. 6953. 7068.	46. 0. 47. 30. 47. 15. 45. 45.	S 33.W S 32.W S 35.W	-3549.20 S -3606.29 S -3707.90 S	-2214.41 W -2250.78 W -2318.03 W	0.40 0.44 0.85 1.60	0.44 0.84 1.55
9	239. 250. 246. 376.	8822. 9072. 9318. 9694.	7236. 7415. 7594. 7881.	44. 45. 44. 0. 42. 45. 37. 45.	S 35. W S 37. W S 39. W S 44. W	-3846.94 S -3988.37 S -4121.49 S -4303.33 S	-2415.39 W -2519.15 W -2622.15 W -2783.03 W	0.42 C.64 C.76 1.63	0.42 0.63 0.75 1.54
9 9-	256. 250. 257.	9950. 10200. 10457.	8086. 8290. 8503.	35. 45. 34. 30. 33. 30.	S 52.W S 55.W S 48.W	-4405.73 S -4491.28 S -4580.68 S	-2896.76 W -3012.37 W -3124.77 W	2.11 0.87 1.61	1.95 0.84 1.53
0	129. 402.	10586. 10988. HORIZONTAL	8611. 8943. DEPARTURE =	33. 30. 35. 0. 5824. FEET AT	S 55. W S 56. W South 35.dec	-4624.48 S -4750.99 S G., 20. MIN. WES	-3180.63 W -3368.39 W ST (GRID)	3.42 0.37	3.42 0.37
8	TD	11003	8946						
C.		· .	· · ·			4			
8				. '	4				

÷.,

rsan⊉.

Land and the second states


. . .

e dia Mandrida Seret OIL and GAS DIVISION

ł.

Ę.

- 8 MAR 1982

GEARHART PTY LTD

ESSO AUSTRALIA LIMITED

MARLIN A-24

February 24, 1982

P.O. Box 380 Sale, Victoria 3850 Telephone 051 443 044 Telex 55254

GEARHART AUSTRALIA PTY.LTD. P.O. BOX 380 SALE VICTORIA 3850

ESSO AUSTRALIA LIMITED

Britatilas

MARLIN A-24 February 7 1982

OPERATION SCHEDULE DATE AND HOURS REMARKS February 7 1982 1800 Rig up A24 2000 Pressure lubricator to 20,000 kPa 2100 Run in hole 2200 Repair measuring head on wireline unit 2350 Run in hole February 8 1982 0055 Hang at 1728 m 0215 Hang at 1689 m 1st gradient 0250 Hang at 1651 m 2nd gradient 0330 Come out of hole 0500 Rig down A24

.

12

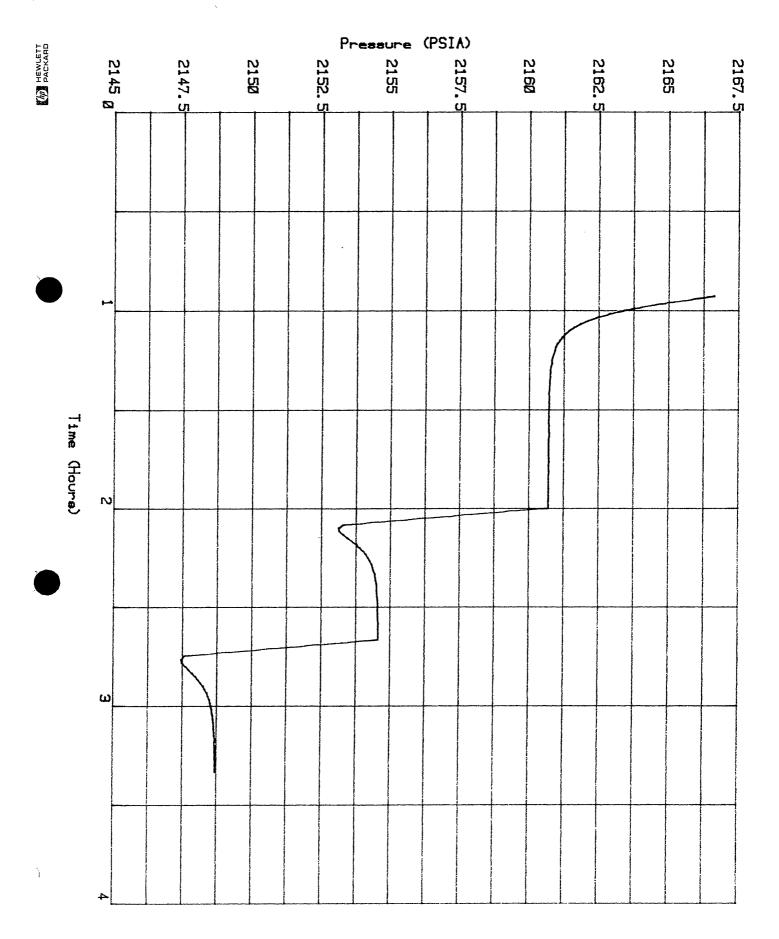
والمعادية مراجب

Well Name: MARLIN A-24 Date:080282 Company:ESSO AUSTRALIA LIMITED

Tool Positioned at a depth of:

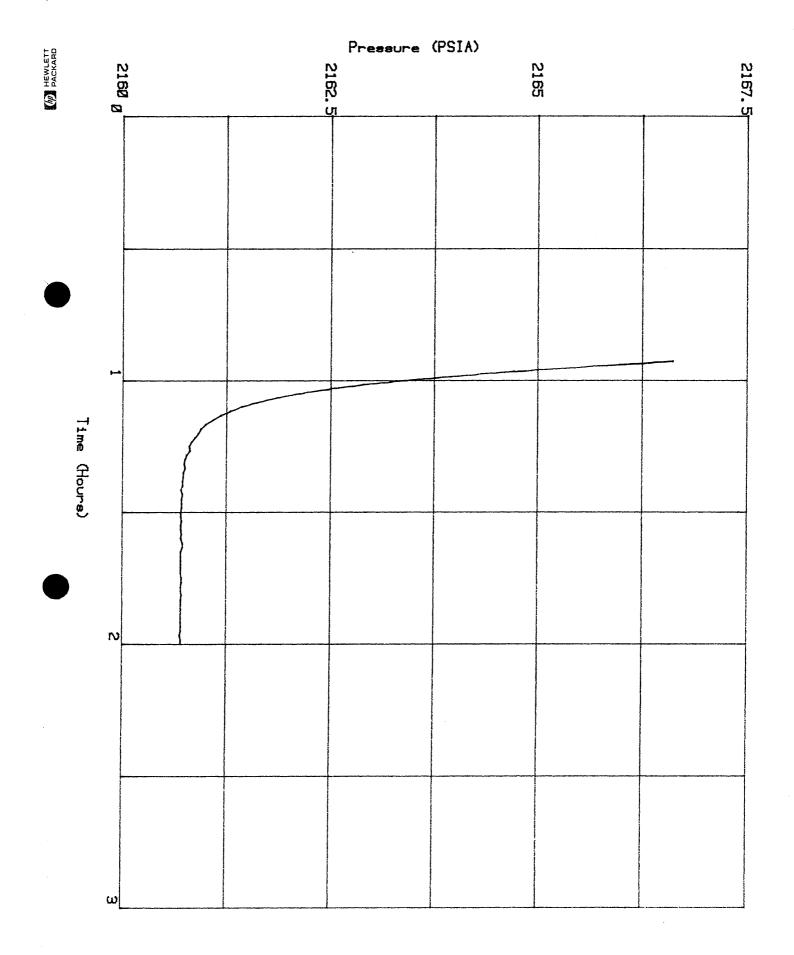
TIME	PRESSURE	TEMP.	TIME	PRESSURE	TEMP.	TIME	PRESSURE	TEMP.
00:55:36	2166.61	182.1	00:55:38	2166.58	182.0	00:55:40	2166.56	182.0
00:55:42	2166.54	182.0	00:55:44	2166.52	182.0	00:55:46	2166.52	182.1
00:55:48	2166.47	182.0	00:55:50	2166.43	182.0	00:55:52	2166.42	182.0
00:55:54	2166.39	182.0	00:55:56	2166.37	182.0	00:55:58	2166.35	182.1
00:56:00	2166.33	182.1	00:56:04	2166.28	182.1	00:56:06	2166.25	182.1
00:56:08	2166.23	182.1	00:56:10	2166.20	182.1	00:56:12	2166.19	182.1
	2166.15	182.1	00:56:16	2166.11	182.1	00:56:18	2166.09	182.1
00:56:14 00:56:20	2166.06	182.1	00:56:22	2166.04	182.1	00:56:24	2166.01	182.1
	2165.98	182.0	00:57:50	2164.85	182.1	00:57:52	2164.82	182.1
00:56:26		182.2	00:57:56	2164.78	182.2	00:57:58	2164.75	182.1
00:57:54	2164.82		00:59:22	2163.79	182.2	00:59:24	2163.75	182.2
00:58:00	2164.71	182.1				01:01:00	2162.88	182.3
00:59:26	2163.74	182.2	01:00:00	2163.40	182.2 182.3	01:04:00	2161.84	182.3
01:02:00	2162.47	182.2	01:03:00	2162.13			2161.29	182.3
01:05:00	2161.62	182.3	01:06:00	2161.43	182.3	01:07:00		182.3
01:08:00	2161.18	182.4	01:09:00	2161.09	182.4	01:10:00	2161.00	
01:00	2160.94	182.4	01:12:00	2160.91	182.4	01:13:00	2160.87	182.4
01:14:00	2160.83	182.4	01:15:00	2160.80	182.4	01:16:00	2160.81	182.5
01:17:00	2160.77	182.5	01:18:00	2160.75	182.5	01:19:00	2160.74	182.4
01:20:00	2160.75	182.5	01:21:00	2160.73	182.5	01:22:00	2160.73	182.5
01:23:00	2160.72	182.5	01:24:00	2160.72	182.5	01:25:00	2160.70	182.4
01:26:00	2160.72	182.5	01:27:00	2160.71	182.5	01:28:00	2160.71	182.5
01:27:00	2160.71	182.5	01:30:00	2160.70	182.5	01:31:00	2160.70	182.5
01:32:00	2160.71	182.5	01:33:00	2160.70	182.5	01:34:00	2160.70	182.5
01:35:00	2160.71	182.5	01:36:00	2160.70	182.5	01:37:00	2160.72	182.6
01:38:00	2160.72	182.6	01:39:00	2160.70	182.5	01:40:00	2160.70	182.5
01:41:00	2160.70	182.5	01:42:00	2160.70	182.5	01:43:00	2160.70	182.5
01:44:00	2160.70	182.6	01:45:00	2160.71	182.5	01:46:00	2160.71	182.6
	2160.70	182.5	01:48:00	2160.70	182.6	01:49:00	2160.71	182.6
01:47:00			01:51:00	2160.70	182.6	01:52:00	2160.70	182.6
01:50:00	2160.70	182.5		2160.70	182.6	01:55:00	2160.70	182.6
01:53:00	2160.70	182.6	01:54:00		182.6	01:58:00	2160.69	182.5
01:56:00	2160.70	182.6	01:57:00	2160.70		02:05:04	2153.32	181.6
01:59:00	2160.70	182.6	02:00:00	2160.70	182.6		2153.28	181.6
02:05:06	2153.29	181.5	02:05:08	2153.28	181.6	02:05:10		
02:05:12	2153.26	181.5	02:06:00	2153.12	181.6	02:07:00	2153.14	181.6
02:00	2153.27	181.6	02:09:00	2153.42	181.6	02:10:00	2153.58	181.5
02:11:00	2153.75	181.6	02:12:00	2153.86	181.6	02:13:00	2153.99	181.6
02:14:00	2154.10	181.6	02:15:00	2154.17	181.5	02:16:00	2154.24	181.5
02:17:00	2154.31	181.6	02:18:00	2154.34	181.5	02:19:00	2154.38	181.5
02:20:00	2154.43	181.6	02:21:00	2154.44	181.5	02:22:00	2154.46	181.5
02:23:00	2154.49	181.5	02:24:00	2154.50	181.6	02:25:00	2154.50	181.6
02:26:00	2154.51	181.6	02:27:00	2154.52	181.6	02:28:00	2154.53	181.6
02:29:00	2154.54	181.5	02:30:00	2154.54	181.6	02:31:00	2154.53	181.6
02:32:00	2154.54	181.6	02:33:00	2154.54	181.5	02:34:00	2154.54	181.5
02:35:00	2154.56	181.6	02:36:00	2154.55	181.5	02:37:00	2154.55	181.6
02:38:00	2154.56	181.6	02:39:00	2154.56	181.6	02:40:00	2154.55	181.6
02:38:00	2147.60	180.6	02:44:50	2147.58	180.6	02:45:00	2147.53	180.5
02:46:00	2147.45	180.6	02:47:00	2147.48	180.5	02:48:00		180.5
02:49:00	2147.72	180.5	02:50:00	2147.84	180.6	02:51:00		180.5
02:52:00	2148.06	180.5	02:53:00	2148.16	180.5	02:54:00		180.5
		180.5	02:56:00	2148.39	180.6	02:57:00		180.5
02:55:00	2148.31		02:59:00	2148.51	180.5	03:00:00		180.5
02:58:00	2148.48	180.6	02107100	بلاقت ∎ فتا ۲۳ بد ستد			ann an 2 ber 2 bar "an"	

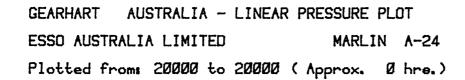
Page: 2

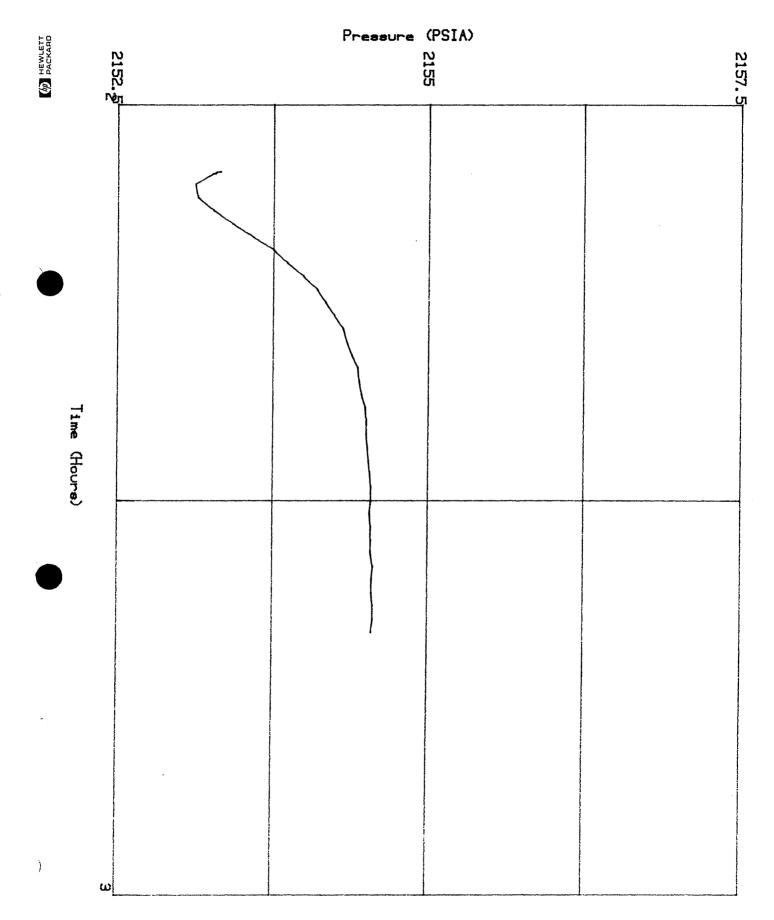

• :

Well Name: MARLIN A-24 Date:080282 Company:ESSO AUSTRALIA LIMITED

Tool Positioned at a depth of:

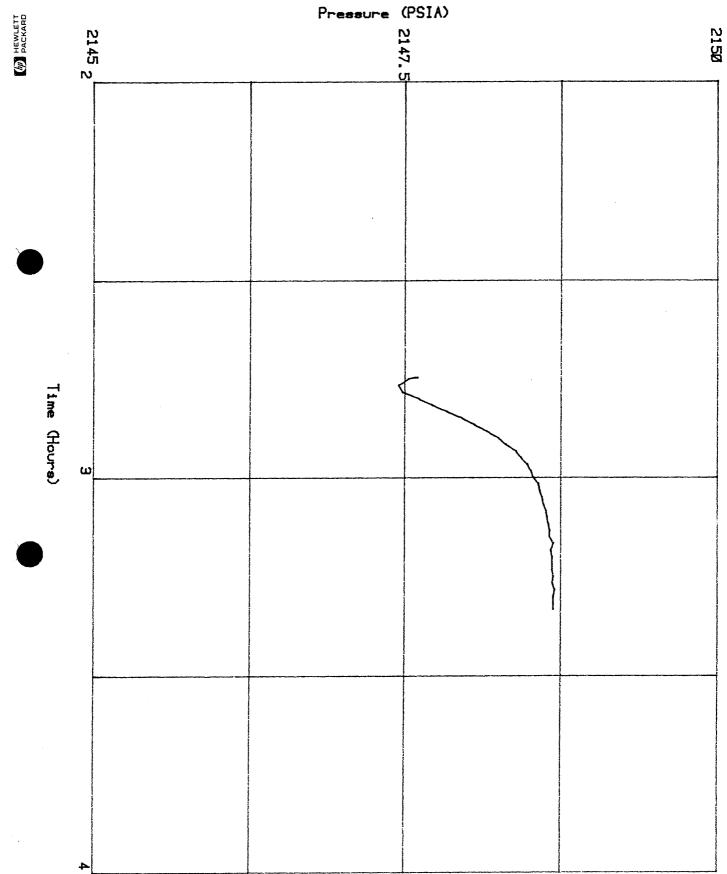

PRESSURE	TEMP.	TIME	PRESSURE	TEMP.	TIME	PRESSURE	TEMP.
2148.57	180.6	03:02:00	2148.58	180.5	03:03:00	2148.60	180.5
2148.61	180.5	03:05:00	2148.63	180.6	03:06:00	2148.64	180.5
2148.65	180.6	03:08:00	2148.66	180.5	03:09:00	2148.66	180.5
2148.69	180.6	03:11:00	2148.67	180.5	03:12:00	2148.68	180.6
2148.68	180.5	03:14:00	2148.68	180.5	03:15:00	2148.69	180.5
2148.68	180.5	03:17:00	2148.70	180.5	03:18:00	2148.69	180.5
2148.69	180.5	03:20:00	2148.69	180.5			· · · ·
	2148.57 2148.61 2148.65 2148.69 2148.68 2148.68	2148.57 180.6 2148.61 180.5 2148.65 180.6 2148.69 180.6 2148.68 180.5 2148.68 180.5	2148.57 180.6 03:02:00 2148.61 180.5 03:05:00 2148.65 180.6 03:08:00 2148.69 180.6 03:11:00 2148.68 180.5 03:14:00 2148.68 180.5 03:17:00	2148.57 180.6 03:02:00 2148.58 2148.61 180.5 03:05:00 2148.63 2148.65 180.6 03:08:00 2148.64 2148.65 180.6 03:108:00 2148.64 2148.69 180.6 03:11:00 2148.67 2148.68 180.5 03:14:00 2148.68 2148.68 180.5 03:17:00 2148.70	2148.57 180.6 03:02:00 2148.58 180.5 2148.61 180.5 03:05:00 2148.63 180.6 2148.65 180.6 03:08:00 2148.66 180.5 2148.65 180.6 03:08:00 2148.66 180.5 2148.69 180.6 03:11:00 2148.67 180.5 2148.68 180.5 03:14:00 2148.68 180.5 2148.68 180.5 03:17:00 2148.70 180.5	2148.57 180.6 03:02:00 2148.58 180.5 03:03:00 2148.61 180.5 03:05:00 2148.63 180.6 03:06:00 2148.65 180.6 03:08:00 2148.66 180.5 03:09:00 2148.69 180.6 03:11:00 2148.67 180.5 03:12:00 2148.68 180.5 03:14:00 2148.68 180.5 03:15:00 2148.68 180.5 03:17:00 2148.70 180.5 03:18:00	2148.57 180.6 03:02:00 2148.58 180.5 03:03:00 2148.60 2148.61 180.5 03:05:00 2148.63 180.6 03:06:00 2148.64 2148.65 180.6 03:08:00 2148.66 180.5 03:07:00 2148.64 2148.65 180.6 03:08:00 2148.66 180.5 03:07:00 2148.64 2148.69 180.6 03:11:00 2148.67 180.5 03:12:00 2148.68 2148.68 180.5 03:14:00 2148.68 180.5 03:15:00 2148.69 2148.68 180.5 03:17:00 2148.70 180.5 03:18:00 2148.69

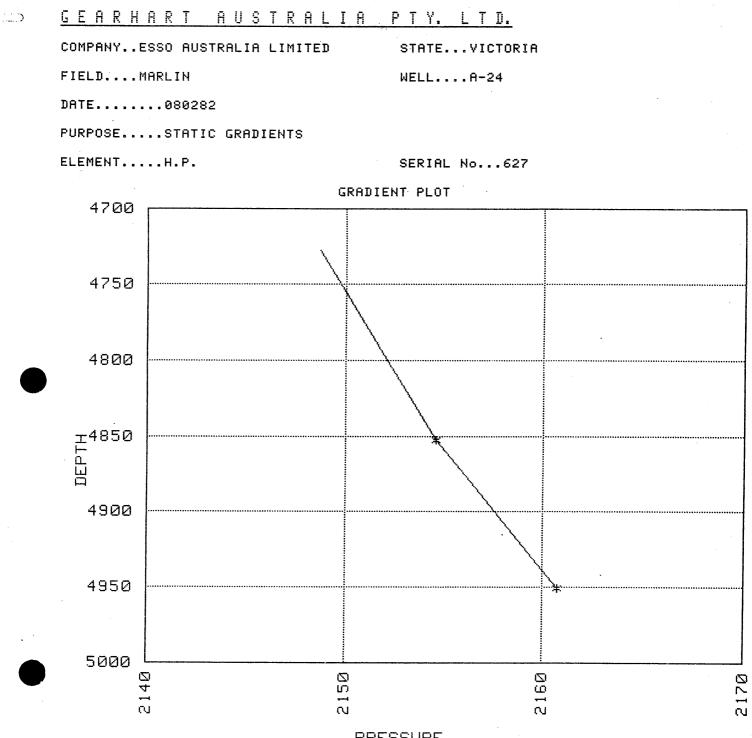

GEARHART AUSTRALIA - LINEAR PRESSURE PLOT ESSO AUSTRALIA LIMITED MARLIN A-24 Plotted from: 0 to 30000 (Approx. 3 hre.)



)

GEARHART AUSTRALIA - LINEAR PRESSURE PLOT ESSO AUSTRALIA LIMITED MARLIN A-24 Plotted from: Ø to 20000 (Approx. 2 hre.)





)

GEARHART AUSTRALIA - LINEAR PRESSURE PLOT ESSO AUSTRALIA LIMITED MARLIN A-24 Plotted from: 20000 to 30000 (Approx. 1 hrs.)

)

PRESSURE

DEPTH (TVD)FT	PRESSURE (\$ 5 m)	GRADIENT (PSI/FT.)
4727.6 165/mad	2148.69	· · · ·
4852.3 /689 mm	2154.55	.047
4950.7 1728 mm	2160.70	.062

ENCLOSURES

w. 1

بحبتها الكلي

This is an enclosure indicator page. The enclosure PE604020 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60 ITEM_BARCODE =	4020 has the following characteristics: PE604020
CONTAINER_BARCODE =	PE902334
NAME =	Well Composite Log
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	COMPOSITE_LOG
DESCRIPTION =	Well Composite log (from
-	WCRenclosure1) for Marlin-A24
REMARKS =	
DATE_CREATED =	28/06/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	
CLIENT_OP_CO =	ESSO EXPLORATION AND PRODUCTION
	AUSTRALIA INC.
	Win Grant Minar Daut)

This is an enclosure indicator page. The enclosure PE604022 is enclosed within the container PE902334 at this location in this document.

	022 has the following characteristics:
$ITEM_BARCODE = I$	
CONTAINER_BARCODE = I	PE902334
NAME = V	Well Completeion log
BASIN = 0	GIPPSLAND
PERMIT = N	VIC/L3
TYPE = V	WELL
SUBTYPE = 0	COMPLETION_LOG
DESCRIPTION = V	Well Completion log (from
ν	WCRenclosure1) for Marlin-A24
REMARKS =	
DATE CREATED = 2	28/06/73
$DATE_RECEIVED =$	
$W_NO = V$	<i>w</i> 670
WELL NAME = M	MARLIN-A24
CONTRACTOR =	
CLIENT OP CO = H	ESSO EXPLORATION AND PRODUCTION
	AUSTRALIA INC.

This is an enclosure indicator page. The enclosure PE905648 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90	5648 has the following characteristics:
ITEM_BARCODE =	PE905648
CONTAINER_BARCODE =	PE902334
NAME =	Structure Map
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	SEISMIC
SUBTYPE =	HRZN_CNTR_MAP
DESCRIPTION =	Structure Map on the A-6 Oil Sand
	Horizon (from WCRenclosure 2) for
	Marlin-A24
REMARKS =	
$DATE_CREATED =$	30/09/73
$DATE_RECEIVED =$	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	
CLIENT_OP_CO =	ESSO EXPLORATION AND PRODUCTION
	AUSTRALIA INC.
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE905649 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90	5649 has the following characteristics:
ITEM_BARCODE =	PE905649
CONTAINER_BARCODE =	PE902334
NAME =	Stratigraphic Section
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	CROSS_SECTION
DESCRIPTION =	Stratigraphic Cross-section Showing
	Hydrocarbon Distribution in
	Marlin-Turrum Paleocene (from
	WCRenclosure 3) for Marlin-A24
REMARKS =	
DATE CREATED =	30/09/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	
CLIENT_OP_CO =	ESSO EXPLORATION AND PRODUCTION
	AUSTRALIA INC.
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604019 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60	4019 has the following characteristics:
ITEM_BARCODE =	PE604019
CONTAINER_BARCODE =	PE902334
NAME =	Induction Electrical Log
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Induction Electrical Log, 2"" & 5"",
	(from WCRenclosure 4) for Marlin-A24
REMARKS =	The scale Changes between shot 1 (1"" =
	50') and shot 2 (1"" = 20')
$DATE_CREATED =$	16/06/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	SCHLUMBERGER
$CLIENT_OP_CO =$	ESSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

...

This is an enclosure indicator page. The enclosure PE604029 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60	4029 has the following characteristics:
$ITEM_BARCODE =$	PE604029
CONTAINER_BARCODE =	PE902334
NAME =	Formation Density Log
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Formation Density Log, 1:200, (from
	WCRenclosure 5) for Marlin A24
REMARKS =	
DATE CREATED =	17/06/73
$DATE_RECEIVED =$	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	SCHLUMBERGER
CLIENT_OP_CO =	ESSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604032 is enclosed within the container PE902334 at this location in this document.

		4032 has the following characteristics:
ITEM_BARCODE	Ξ	PE604032
CONTAINER_BARCODE	=	PE902334
NAME	=	Sidewall Neuron Porosity Log
BASIN	=	GIPPSLAND
PERMIT	=	VIC/L3
TYPE	=	WELL
SUBTYPE	=	WELL_LOG
DESCRIPTION	=	Sidewall Neuron Porosity Log,
		1:500,(from WCRenclosure 6) for
		Marlin-A24
REMARKS	=	
DATE_CREATED	=	17/06/73
DATE_RECEIVED	=	
W_NO	=	W670
WELL_NAME	=	MARLIN-A24
CONTRACTOR	=	SCHLUMBERGER
CLIENT_OP_CO	=	ESSO AUSTRALIA LTD
(Incorted by DNPE		Via Court Minor Dopt)

This is an enclosure indicator page. The enclosure PE604027 is enclosed within the container PE902334 at this location in this document.

The enclosure PE6	04027 has the following characteristics:
ITEM_BARCODE =	= PE604027
CONTAINER_BARCODE :	= PE902334
NAME =	= Induction Electrical Log (IES/TVD)
BASIN :	= GIPPSLAND
PERMIT :	= VIC/L3
TYPE =	= WELL
SUBTYPE =	= WELL_LOG
DESCRIPTION =	= Induction Electrical Log IESTVD (from
	WCRenclosure 8) for Marlin-A24
REMARKS =	=
DATE_CREATED =	=
DATE_RECEIVED =	=
W NO =	= W670
WELL NAME =	= MARLIN-A24
CONTRACTOR =	=
CLIENT OP CO =	ESSO EXPLORATION AND PRODUCTION
	AUSTRALIA INC.

4

33

This is an enclosure indicator page. The enclosure PE604028 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604028 has the following characteristics: ITEM_BARCODE = PE604028
CONTAINER_BARCODE = PE902334
NAME = Formation Log (IDC/GR/TVD)
BASIN = GIPPSLAND
PERMIT = VIC/L3
TYPE = WELL
SUBTYPE = WELL_LOG
DESCRIPTION = Formation Log IDC/GR/TVD (from
WCRenclosure 8) for Marlin-A24
REMARKS =
DATE_CREATED =
DATE_RECEIVED =
$W_{NO} = W670$
WELL_NAME = MARLIN-A24
CONTRACTOR =
CLIENT_OP_CO = ESSO EXPLORATION AND PRODUCTION AUSTRALIA INC.

This is an enclosure indicator page. The enclosure PE604031 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60	4031 has the following characteristics:
ITEM_BARCODE =	PE604031
CONTAINER_BARCODE =	PE902334
NAME =	Well Site Rock Log/Drilling Log
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Drilling Log/Well Site Rock Log (from
	WCRenclosure 9) for Marlin-A24
REMARKS =	
DATE_CREATED =	
DATE_RECEIVED =	
WNO =	W670
WELL NAME =	MARLIN-A24
CONTRACTOR =	
CLIENT_OP_CO =	ESSO EXPLORATION AND PRODUCTION
	AUSTRALIA INC.
	III a Grant Miner Death)

This is an enclosure indicator page. The enclosure PE604023 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604023 has the following characteristics: ITEM_BARCODE = PE604023CONTAINER_BARCODE = PE902334 NAME = Gamma Ray Log BASIN = GIPPSLAND PERMIT = VIC/L3 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Gamma Ray Log (from WCR--enclosure 10) for Marlin-A24 REMARKS = DATE_CREATED = 21/06/73DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = SCHLUMBERGER CLIENT_OP_CO = ESSO AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604024 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604024 has the following characteristics: ITEM_BARCODE = PE604024 CONTAINER_BARCODE = PE902334 NAME = Formation Tester Log BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Formation Tester Log, Run 2, (from WCR--enclosure11) for Marlin-A24 REMARKS = Test no. 6 DATE_CREATED = 24/06/73DATE_RECEIVED = $W_{NO} = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = SCHLUMBERGER CLIENT_OP_CO = ESSO AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604025 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60	4025 has the following characteristics:
ITEM_BARCODE =	PE604025
CONTAINER_BARCODE =	PE902334
NAME =	Formation Tester Log
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Formation Tester Log, Run 1, (from
	WCRenclosure11) for Marlin-A24
REMARKS =	Test no. 1
$DATE_CREATED =$	24/06/73
DATE_RECEIVED =	
WNO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	SCHLUMBERGER
CLIENT_OP_CO =	ESSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604026 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60	4026 has the following characteristics:
ITEM_BARCODE =	PE604026
CONTAINER_BARCODE =	PE902334
NAME =	Formation Tester Log
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	WELL_LOG
DESCRIPTION =	Formation Tester Log, Run 3, (from
	WCRenclosure11) for Marlin-A24
REMARKS =	Test no. 13
$DATE_CREATED =$	24/06/73
$DATE_RECEIVED =$	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	SCHLUMBERGER
$CLIENT_OP_CO =$	ESSO AUSTRALIA LTD

al contact in a more no secono secono contacto c . स. व्यक्ति आर व्यक्त इ. ज्याद्वी इ. ज्याद्वी

This is an enclosure indicator page. The enclosure PE906949 is enclosed within the container PE902334 at this location in this document.

The enclosure PE906949 has the following characteristics: ITEM BARCODE = PE906949CONTAINER_BARCODE = PE902334 NAME = Seismic Section of Marlin-A Platform with interpretation BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = SEISMIC SUBTYPE = SECTION DESCRIPTION = Seismic Section of Marlin-A Platform (enclosure from WCR) for Marlin-A24 REMARKS = Has transparent interpretive overlay DATE_CREATED = 31/01/72DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = GEOPHYSICAL SERVICES INTERNATIONAL CLIENT_OP_CO = ESSSO AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE906942 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90	6942 has the following characteristics:
ITEM_BARCODE =	PE906942
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log Data Set
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL .
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log Data Sheet/Drilling Rate and
	Data, sheet 1 of 7, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
$DATE_CREATED =$	30/05/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE906943 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90 ITEM_BARCODE =	6943 has the following characteristics: PE906943
CONTAINER_BARCODE =	
	Mud Log Data Set
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	
DESCRIPTION =	Mud Log Data Sheet/Drilling Rate and
	Data, sheet 2 of 7, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
DATE CREATED =	30/05/73
DATE_RECEIVED =	
W_NO =	W670
—	MARLIN-A24
	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

\$

e and perto Los and Second Second Second

This is an enclosure indicator page. The enclosure PE906944 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90	6944 has the following characteristics:
ITEM_BARCODE =	PE906944
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log Data Set
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log Data Sheet/Drilling Rate and
	Data, sheet 3 of 7, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
REMARKS = DATE_CREATED =	
	30/05/73
DATE_CREATED =	30/05/73
DATE_CREATED = DATE_RECEIVED =	30/05/73 W670
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME =	30/05/73 W670
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME = CONTRACTOR =	30/05/73 W670 MARLIN-A24
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME = CONTRACTOR =	30/05/73 W670 MARLIN-A24 EXPLORATION LOGGING

and a second sec

This is an enclosure indicator page. The enclosure PE906945 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90	6945 has the following characteristics:
ITEM_BARCODE =	PE906945
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log Data Set
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log Data Sheet/Drilling Rate and
	Data, sheet 4 of 7, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
REMARKS = DATE_CREATED =	
	30/05/73
DATE_CREATED =	30/05/73
DATE_CREATED = DATE_RECEIVED =	30/05/73 W670
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME =	30/05/73 W670
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME = CONTRACTOR =	30/05/73 W670 MARLIN-A24
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME = CONTRACTOR = CLIENT_OP_CO =	30/05/73 W670 MARLIN-A24 EXPLORATION LOGGING

This is an enclosure indicator page. The enclosure PE906946 is enclosed within the container PE902334 at this location in this document.

	6946 has the following characteristics:
ITEM_BARCODE =	PE906946
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log Data Set
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log Data Sheet/Drilling Rate and
	Data, sheet 5 of 7, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
REMARKS = DATE_CREATED =	30/05/73
	30/05/73
DATE_CREATED =	
DATE_CREATED = DATE_RECEIVED =	W670
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME =	W670
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME = CONTRACTOR =	W670 MARLIN-A24
DATE_CREATED = DATE_RECEIVED = W_NO = WELL_NAME = CONTRACTOR =	W670 MARLIN-A24 EXPLORATION LOGGING

- i - - <u>s</u>

el e. Sel da leg

> This is an enclosure indicator page. The enclosure PE906947 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90	6947 has the following characteristics:
ITEM_BARCODE =	PE906947
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log Data Set
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log Data Sheet/Drilling Rate and
	Data, sheet 6 of 7, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
$DATE_CREATED =$	30/05/73
$DATE_RECEIVED =$	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE906948 is enclosed within the container PE902334 at this location in this document.

The enclosure PE90	6948 has the following characteristics:
ITEM_BARCODE =	PE906948
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log Data Set
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log Data Sheet/Drilling Rate and
	Data, sheet 7 of 7, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
$DATE_CREATED =$	30/05/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD
(Inserted by DNRE -	

This is an enclosure indicator page. The enclosure PE604544 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604544 has the following characteristics: ITEM_BARCODE = PE604544 $CONTAINER_BARCODE = PE902334$ NAME = Mud Log (Cover Sheet) BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Mud Log cover sheet for 6457'-8350' (enclosure from WCR) for Marlin-A24 REMARKS = $DATE_CREATED = 30/05/73$ DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSSO AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604545 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604545 has the following characteristics: $ITEM_BARCODE = PE604545$ CONTAINER_BARCODE = PE902334 NAME = Mud Log (1 of 10)BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Mud Log, sheet 1 of 10, (enclosure from WCR) for Marlin-A24 REMARKS = $DATE_CREATED = 30/05/73$ DATE_RECEIVED = $W_{NO} = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSSO AUSTRALIA LTD

総議論議論

à

This is an enclosure indicator page. The enclosure PE604546 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60 ITEM_BARCODE = CONTAINER BARCODE =	
	Mud Log (2 of 10)
	GIPPSLAND
PERMIT =	
	- · · - •
TYPE =	
SUBTYPE =	
DESCRIPTION =	Mud Log , sheet 2 of 10, (enclosure
	from WCR) for Marlin-A24
REMARKS =	
$DATE_CREATED =$	30/05/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD

See.

This is an enclosure indicator page. The enclosure PE604547 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604547 has the following characteristics: ITEM_BARCODE = PE604547 $CONTAINER_BARCODE = PE902334$ NAME = Mud Log (3 of 10)BASIN = GIPPSLAND PERMIT = VIC/L3 TYPE = WELL SUBTYPE = MUD_LOG DESCRIPTION = Mud Log, sheet 3 of 10, (enclosure from WCR) for Marlin-A24 REMARKS = $DATE_CREATED = 30/05/73$ DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSSO AUSTRALIA LTD

This is an enclosure indicator page. The enclosure PE604548 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60	4548 has the following characteristics:
ITEM_BARCODE =	PE604548
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log (4 of 10)
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log, sheet 4 of 10, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
DATE_CREATED =	30/05/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604549 is enclosed within the container PE902334 at this location in this document. The enclosure PE604549 has the following characteristics: ITEM_BARCODE = PE604549 CONTAINER_BARCODE = PE902334 NAME = Mud Log (Cover Sheet) BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Mud Log, cover sheet for 8350'-10988' (enclosure from WCR) for Marlin-A24 REMARKS = DATE_CREATED = 30/05/73DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSSO AUSTRALIA LTD

This is an enclosure indicator page. The enclosure PE604550 is enclosed within the container PE902334 at this location in this document.

The enclosure PE6	04	1550 has the following characteristics:
ITEM_BARCODE	=	PE604550
CONTAINER_BARCODE	=	PE902334
NAME	=	Mud Log (5 of 10)
BASIN	=	GIPPSLAND
PERMIT	=	VIC/L3
TYPE	=	WELL
SUBTYPE	=	MUD_LOG
DESCRIPTION	=	Mud Log, sheet 5 of 10, (enclosure from
		WCR) for Marlin-A24
REMARKS	=	
DATE_CREATED	=	30/05/73
DATE_RECEIVED	=	
W_NO	=	W670
WELL_NAME	=	MARLIN-A24
CONTRACTOR	=	EXPLORATION LOGGING
CLIENT_OP_CO	=	ESSSO AUSTRALIA LTD

This is an enclosure indicator page. The enclosure PE604551 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604551 has the following characteristics: ITEM_BARCODE = PE604551 CONTAINER_BARCODE = PE902334 NAME = Mud Log (6 of 10) BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELL SUBTYPE = MUD_LOG DESCRIPTION = Mud Log cover sheet, sheet 6 of 10, (enclosure from WCR) for Marlin-A24 REMARKS = DATE_CREATED = 30/05/73DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSSO AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604552 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604552 has the following characteristics: ITEM_BARCODE = PE604552 CONTAINER_BARCODE = PE902334 NAME = Mud Log (7 of 10)BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Mud Log, sheet 7 of 10, (enclosure from WCR) for Marlin-A24 REMARKS = $DATE_CREATED = 30/05/73$ DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSSO AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604553 is enclosed within the container PE902334 at this location in this document.

The enclosure PE60	4553 has the following characteristics:
ITEM_BARCODE =	PE604553
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log (8 of 10)
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log, sheet 8 of 10, (enclosure from
	WCR) for Marlin-A24
REMARKS =	
$DATE_CREATED =$	30/05/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD

5. - 5. - 5.

1999 - 1997 - 1999 1999 - 1997 - 1997 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997

> This is an enclosure indicator page. The enclosure PE604554 is enclosed within the container PE902334 at this location in this document.

The enclosure PE604554 has the following characteristics: ITEM_BARCODE = PE604554CONTAINER_BARCODE = PE902334 NAME = Mud Log (9 of 10) BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELL SUBTYPE = MUD_LOG DESCRIPTION = Mud Log, sheet 9 of 10, (enclosure from WCR) for Marlin-A24 REMARKS = DATE_CREATED = 30/05/73DATE_RECEIVED = $W_NO = W670$ WELL_NAME = MARLIN-A24 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSSO AUSTRALIA LTD

This is an enclosure indicator page. The enclosure PE604555 is enclosed within the container PE902334 at this location in this document.

	4555 has the following characteristics:
ITEM_BARCODE =	PE604555
CONTAINER_BARCODE =	PE902334
NAME =	Mud Log (10 of 10)
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	MUD_LOG
DESCRIPTION =	Mud Log , sheet 10 of 10, (enclosure
	from WCR) for Marlin-A24
REMARKS =	
$DATE_CREATED =$	30/05/73
DATE_RECEIVED =	
W_NO =	W670
WELL_NAME =	MARLIN-A24
CONTRACTOR =	EXPLORATION LOGGING
CLIENT_OP_CO =	ESSSO AUSTRALIA LTD