19 MAR 1986 2 REPORTS

CORKLAB

HYDROCARBON BOX

ESSO AUSTRALIA LIMITED

TUNA #4, SET 2

RESERVOIR FLUID STUDY

PRODUCTION TEST 4 ('R' RESERVOIR)

18th November, 1985

CORE LABORATORIES

Petroleum Reservoir Engineering

ESSO AUSTRALIA LIMITED, 127 Kent Street, SYDNEY, N.S.W. 2000

Attention : A.K. Khurana

: Reservoir Fluid Study Subject

Well : Tuna #4, Set 2 File : AFL 85035

Dear Sir,

Gas and liquid separator samples were collected from the subject well and submitted to our laboratory for use in a reservoir fluid study. Presented in the following report are the results of this study as requested by Esso Australia Limited.

As requested, a saturation pressure was determined at the separator temperature of 130°F. At 130°F the fluid sample was found to have a bubble point pressure of 95 psig. These results are reported on page two and depicted graphically on page eight.

They hydrocarbon composition of the separator gas sample was measured through undecanes plus using routine gas chromatography. These results are reported on page three.

The hydrocarbon composition of the separator liquid was measured through hexanes plus and further broken down through undecanes plus by high temperature distillation. This compositional analysis, together with the hexanes plus properties, is reported on pages four and five.

The producing gas/liquid ratio was used with the compositions of the separator products to calculate the well stream composition. The calculated well stream through undecanes plus is reported on page six.

The separator gas and liquid were then physically recombined and a portion of the fluid was charged to a high pressure visual cell. The sample was thermally expanded to the reported reservoir temperature of 252°F and subjected to a constant composition expansion during which a bubble point of 3705 psig was observed. The volumetric and pressure data is reported on page seven and depicted graphically on page nine.

We thank Esso Australia Limited for the opportunity to be of service with this report. If you have any questions, please do not hesitate to contact us.

Your

Manager.

JB/kd/dc

Petroleum Reservoir Engineering

Page: 1 of 10 File: AFL 85035

Company: Esso Australia Limited

Date Sampled:

Well: Tuna #4, Set 2

: Tuna

State : Victoria

Country

: Australia

FORMATION CHARACTERISTICS

Formation Name:

Date First Well Completed:
Original Reservoir Pressure:
Original Produced Gas-Oil Ratio:

Production Ratio :

Separator Pressure and Temperature :

Liquid Gravity @ 60°F:

Datum:

Field

WELL CHARACTERISTICS

Elevation:

Total Depth:

Producing Interval: Tubing Size and Depth: Open Flow Potential: Last Reservoir Pressure:

Date:

Reservoir Temperature :

Status of Well: Pressure Gauge:

SAMPLING CONDITIONS

Flowing Tubing Pressure:

Flowing Bottom Hole Pressure:

Primary Separator Pressure: 100 psig Primary Separator Temperature: 130°F

Secondary Separator Pressure:

Secondary Separator Temperature : Field Stock Tank Liquid Gravity :

Primary Separator Gas Production Rate: 1483 MSCF/Day

Pressure Base: 14.696
Temperature Base: 60°F
Compressibility Factor (Fpv): 1.0099
Gas Gravity (Laboratory): 0.971
Gas Gravity Factor (Fg): 1.015

Liquid Production Rate @ °F: 1683 STB/Day

Primary Separator Gas/ Liquid Ratio: 881.646

or:

Sampled by : REMARKS :

Petroleum Reservoir Engineering

Page : 2 of 10 File : AFL 85035

Well: Tuna #4, Set 2

QUALITY CHECK OF SAMPLE RECEIVED IN THE LABORATORY

Cylinder #:

OT067T

Opening Pressure:

psig @ °F

cm ³ Mercury Injected	Pressure, psig
0	80
1	85
2	88
3	90
4	90
5	93
6	220
7	548
8	862
9	1170
10	1492

Psat = 95 psig @ 130°F

Petroleum Reservoir Engineering

Page: 3 of 10 File: AFL 85035

Well: Tuna #4, Set 2

HYDROCARBON ANALYSIS OF SEPARATOR GAS SAMPLE TO UNDECANES PLUS

Cylinder #:	A	1 8638
Component	Mol Percent	<u>GPM</u>
Hydrogen Sulphide	0.00	
Carbon Dioxide	30.03	
Nitrogen	0.07	
Methane	56.02	
Ethane	7.13	1.902
Propane	3.69	1.013
iso-Butane	0.61	0.199
n-Butane	1.11	0.349
iso-Pentane	0.31	0.113
n-Pentane	0.32	0.116
Hexanes	0.23	0.094
Heptanes	0.25	0.217 (C7+)
Octanes	0.19	
Nonanes	0.03	
Decanes	0.01	
Undecanes plus	Trace	
	100.00	4.003
Gas gravity (Air = 1.000):	0	.971
Gross heating value (BTU		

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no werranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or send in connection with which such report is used or relied upon.

904

per cubic foot of dry gas @ 14.696 psia and 60°F):

Petroleum Reservoir Engineering

Page: 4 of 10 File: AFL 85035

Well: Tuna #4, Set 2

HYDROCARBON ANALYSIS OF SEPARATOR LIQUID SAMPLE TO UNDECANES PLUS

Cylinder #:

OT067T

Component	Mol Percent	Weight Percent
Hydrogen Sulphide	0.00	0.00
Carbon Dioxide	1.54	0.33
Nitrogen	0.01	Trace
Methane	1.41	0.11
Ethane	0.89	0.13
Propane	1.42	0.30
iso-Butane	0.58	0.16
n-Butane	1.52	0.43
iso-Pentane	1.10	0.38
n-Pentane	1.63	0.57
Hexanes	4.72	2.03
Heptanes	4.39	2.05
Octanes	6.44	3.20
Nonanes	5.94	3.21
Decanes	3.80	2.33
Undecanes plus	64.61	84.77
	100.00	100.00

Properties of Hexanes plus

API gravity @ 60°F Density, gm/cc @ 60°F Molecular weight 39.1 0.8288 225

CORE LABORATORIES
Petroleum Reservoir Engineering

Page: 5 of 10 File: AFL 85035 Well: Tuna #4, Set 2

HIGH TEMPERATURE DISTILLATION OF HEXANES PLUS FRACTION OF RESERVOIR FLUID SAMPLE TO UNDECANES PLUS

*API Mol		64.8 89	53.8 97	47.7 103	44.5	44.8 127	37.4 272	
Density, gm/cc @ 60°F		0.7202	0.7630	0.7888	0.8031	0.8018	0.8370	
Volume Percent		2.39	2.29	3.45	3.40	2.47	86.00	
Weight Percent		2.08	2.10	3.28	3.29	2.39	86.86	
Mol Percent		5.25	4.88	7.16	6.61	4.23	71.87	
Cut Temp C	IBP 49	84	112	138	162	185	FBP 185	
Component		Hexanes	Heptanes	Octanes	Nonanes	Decanes	Undecanes plus	

Petroleum Reservoir Engineering

Page 10 of 10 File AFL 85035

Petroleum Reservoir Engineering

Page: 6 of 10 File: AFL 85035

Well: Tuna #4, Set 2

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS AND CALCULATED WELL STREAM TO UNDECANES PLUS

Cylinder #:

OT067T

A8638

	Separator Liquid	Separator Gas	Well Stream
Component	Mol Percent	Mol Percent	Mol Percent
Hydrogen Sulphide	0.00	0.00	0.00
Carbon Dioxide	1.54	30.03	19.15
Nitrogen	0.01	0.07	0.05
Methane	1.41	56.02	35.16
Ethane	0.89	7.13	4.75
Propane	1.42	3.69	2.82
iso-Butane	0.58	0.61	0.60
n-Butane	1.52	1.11	1.27
iso-Pentane	1.10	0.31	0.61
n-Pentane	1.63	0.32	0.82
Hexanes	4.72	0.23	1.94
Heptanes	4.39	0.25	1.83
Octanes	6.44	0.19	2.58
Nonanes	5.94	0.03	2.29
Decanes	3.80	0.01	1.46
Undecanes plus	64.61	Trace	24.67
	100.00	100.00	100.00
Properties of Heptanes p	lus		
API gravity @ 60°F	39.1		39.4
Density om/cc @ 60°F	በ ደንደደ		Λ 027

API gravity @ 60°F	39.1	39.4
Density, gm/cc @ 60°F	0.8288	0.827
Molecular weight	225	224

Calculated separator gas gravity (air = 1.000) = 0.971Calculated gross heating value for separator gas per cubic foot of dry gas @ 14.696 psia and $60^{\circ}F$ = 904 BTU

Primary separator gas collected @ 100 psig and 130°F Primary separator liquid collected @ 100 psig and 130°F

Primary separator gas/separator liquid ratio: 833 SCF/Bb1 @ 130°F
Primary separator liquid/stock tank liquid ratio: 1.058 Bb1s @ 130°F/Bb1
Primary separator gas/well stream ratio: 618.11 MSCF/MMSCF
Stock tank liquid/well stream ratio: 701.6 Bb1s/MMSCF

Petroleum Reservoir Engineering.

Page: 7 of 10 File: AFL 85035

Well: Tuna #4, Set 2

PRESSURE - VOLUME RELATIONS @ 252°F

Pressure,psig	Relative Volume (1)	Compressibility x 10 (2)	Y Function (3)
5000	0.9786	15.69	
4500	0.9864	16.11	
4100	0.9929	16.97	
4000	0.9946	17.32	
3900	0.9964	17.79	
3800	0.9982	18.44	
<u>3705</u> *	1.0000	19.68	
3684	1.0028		
3669	1.0047		2.067
3640	1.0077		2.312
3550	1.0160		2.713
3370	1.0357		2.769
3142	1.0647		2.757
2882	1.1052		2.701
2589	1.1651		2.595
2299	1.2446		2.484
2029	1.3439		2.384
1781	1.4671		2.293
1546	1.6289		2.199
1294	1.8746		2.106
1028	2.2833		2.000
794	2.8852		1.909
577 `	3.8991		1.823

* Saturation Pressure

- (1) Relative volume: V/Vsat is barrels @ indicated pressure per barrel @ saturation pressure.
- (2) Instantaneous Compressibility = $-\frac{dV}{VdP}$
- (3) Y Function = $\frac{(Psat P)}{(Pabs) (V/Vsat-1)}$

PRESSURE: POUNDS PER SQUARE INCH GAUGE

ESSO AUSTRALIA LIMITED

TUNA #4, SET 3

RESERVOIR FLUID STUDY

PRODUCTION TEST 4
('R' RESERVOIR)

18th November, 1985

CORE LABORATORIES

Petroleum Reservoir Engineering

ESSO AUSTRALIA LIMITED, 127 Kent Street, SYDNEY, N.S.W. 2000

Attention: A.K. Khurana

Subject : Reservoir Fluid Study

Well : Tuna #4, Set 3
File : AFL 85036

Dear Sir,

Gas and liquid separator samples were collected from the subject well and submitted to our laboratory for use in a reservoir fluid study. Presented in the following report are the results of this study as requested by Esso Australia Limited.

As requested, a saturation pressure was determined at the separator temperature of 139°F. At 139°F the fluid sample was found to have a bubble point pressure of 82 psig. These results are reported on page two and depicted graphically on page eight.

They hydrocarbon composition of the separator gas sample was measured through undecanes plus using routine gas chromatography. These results are reported on page three.

The hydrocarbon composition of the separator liquid was measured through hexanes plus and further broken down through undecanes plus by high temperature distillation. This compositional analysis, together with the hexanes plus properties, is reported on pages four and five.

The producing gas/liquid ratio was used with the compositions of the separator products to calculate the well stream composition. The calculated well stream through undecanes plus is reported on page six.

The separator gas and liquid were then physically recombined and a portion of the fluid was charged to a high pressure visual cell. The sample was thermally expanded to the reported reservoir temperature of 252°F and subjected to a constant composition expansion during which a bubble point of 3558 psig was observed. The volumetric and pressure data is reported on page seven and depicted graphically on page nine.

We thank Esso Australia Limited for the opportunity to be of service with this report. If you have any questions, please do not hesitate to contact us.

Jan Bon,

Manager.

JB/kd/dc

Petroleum Reservoir Engineering.

Page: 1 of 10 File: AFL 85036

Company : Esso Australia Limited

Date Sampled:

Well: Tuna #4, Set 3

State : Victoria

Field : Tuna

Country : Australia

FORMATION CHARACTERISTICS

Formation Name:

Date First Well Completed:
Original Reservoir Pressure:
Original Produced Gas-Oil Ratio:

Production Ratio:

Separator Pressure and Temperature :

Liquid Gravity @ 60°F:

Datum:

WELL CHARACTERISTICS

Elevation:

Total Depth:

Producing Interval:

Tubing Size and Depth: Open Flow Potential:

Last Reservoir Pressure :

Date:

Reservoir Temperature :

Status of Well:

Pressure Gauge :

SAMPLING CONDITIONS

Flowing Tubing Pressure:

Flowing Bottom Hole Pressure:

Primary Separator Pressure: 100 psig Primary Separator Temperature: 139°F

Primary Separator Temperature : Secondary Separator Pressure :

Secondary Separator Temperature :

Field Stock Tank Liquid Gravity:

Primary Separator Gas Production Rate: 1490 MSCF/Day

Pressure Base: 14.696
Temperature Base: 60°F

Compressibility Factor (Fpv):

Gas Gravity (Laboratory): 0.979
Gas Gravity Factor (Fg): 1.011

Liquid Production Rate @ °F: 1683 STB/Day

Primary Separator Gas/ Liquid Ratio: 885.324

or:

Sampled by : REMARKS :

Petroleum Reservoir Engineering

Page: 2 of 10 File: AFL 85036

Well: Tuna #4, Set 3

QUALITY CHECK OF SAMPLE RECEIVED IN THE LABORATORY

Cylinder #:

OT054T

cm ³ MercuryInjected	Pressure, psig
0	80
1	82
2	82
3	82
4	82
5	93
6	372
7	670
8	960
9	1252
10	1530
11	1815

Psat = 82 psig @ 139°F

Petroleum Reservoir Engineering

Page: 3 of 10 File: AFL 85036

Well: Tuna #4, Set 3

HYDROCARBON ANALYSIS OF SEPARATOR GAS SAMPLE TO UNDECANES PLUS

Cylinder #:	A1:	1572
Component	Mo1 Percent	<u>GPM</u>
Hydrogen Sulphide	0.00	
Carbon Dioxide	30.07	
Nitrogen	0.11	
Methane	55.64	
Ethane	7.11	1.897
Propane	3.71	1.018
iso-Butane	0.62	0.202
n-Butane	1.15	0.362
iso-Pentane	0.33	0.121
n-Pentane	0.37	0.134
Hexanes	0.28	0.114
Heptanes	0.30	0.276 (C7+)
Octanes	0.24	
Nonanes	0.05	
Decanes	0.01	
Undecanes plus	0.01	
	100.00	4.124
Gas gravity (Air = 1.000):	0.	979
Gross heating value (BTU per cubic foot of dry gas	ć	315

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

915

@ 14.696 psia and 60°F):

Petroleum Reservoir Engineering.

Page: 4 of 10 File: AFL 85036

Well: Tuna #4, Set 3

HYDROCARBON ANALYSIS OF SEPARATOR LIQUID SAMPLE TO UNDECANES PLUS

Cylinder #:

OT054T

Component	Mol Percent	Weight Percent
Hydrogen Sulphide	0.00	0.00
Carbon Dioxide	1.45	0.30
Nitrogen	Trace	Trace
Methane	1.32	0.10
Ethane	0.84	0.12
Propane	1.32	0.27
iso-Butane	0.54	0.15
n-Butane	1.41	0.38
iso-Pentane	0.90	0.30
n-Pentane	1.28	0.43
Hexanes	3.47	1.38
Heptanes	4.98	2.23
Octanes	5.74	2.79
Nonanes	6.01	3.17
Decanes	4.99	3.00
Undecaneș plus	65.75	85.38
	100.00	100.00

Properties of Hexanes plus

API gravity @ 60°F	38.6
Density, gm/cc @ 60°F	0.8312
Molecular weight	233

CORE LABORATORIES
Petroleum Reservoir Engineering

Page : 5 of 10 File : AFL 8503t Well : Tuna #4, Set 3

HIGH TEMPERATURE DISTILLATION OF HEXANES PLUS FRACTION OF RESERVOIR FLUID SAMPLE TO UNDECANES PLUS

Mol Weight		98	6	105	114	130	281	
°API @ 60°F		61.3	52.9	47.7	8.44	9.44	37.1	
Density, gm/cc @ 60°F		0.7332	0.7665	0.7890	0.8020	0.8027	0.8385	
Volume Percent		1.60	2.47	3.00	3,35	3.17	86.41	100.00
Weight Percent		1.41	2.28	2.84	3.23	3.06	87.18	100.00
Mol Percent		3.82	5.48	6.31	09.9	5.49	72.30	100.00
Cut Temp°C	IBP 49	84	112	138	162	185	FBP 185	
Component		Hexanes	Heptanes	Octanes	Nonanes	Decanes	Undecanes plus	

Petroleum Reservoir Engineering

Page: 6 of 10 File: AFL 85036

633.24 MSCF/MMSCF

715.3 Bb1s/MMSCF

Well: Tuna #4, Set 3

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS AND CALCULATED WELL STREAM TO UNDECANES PLUS

Cylinder #:	OT054T	A11572	
Component	Separator Liquid Mol Percent	Separator Gas Mol Percent	Well Stream Mol Percent
Hydrogen Sulphide	0.00	0.00	0.00
Carbon Dioxide	1.45	30.07	19.57
Nitrogen	0.00	0.11	0.07
Methane	1.32	55.64	35.71
Ethane	0.84	7.11	4.81
Propane	1.32	3.71	2.83
iso-Butane	0.54	0.62	0.59
n-Butane	1.41	1.15	1.25
iso-Pentane	0.90	0.33	0.54
n-Pentane	1.28	0.37	0.70
Hexanes	3.47	0.28	1.45
Heptanes	4.98	0.30	2.02
Octanes	5.74	0.24	2.26
Nonanes	6.01	0.05	2.24
Decanes	4.99	0.01	1.84
Undecanes plus	65.75	0.01	24.12
	100.00	100.00	100.00
Properties of Heptanes p	<u>lus</u> 38.6		
Density, gm/cc @ 60°F	0.8312		0.829
Molecular weight	233		231
Calculated separator gas Calculated gross heating per cubic foot of dry gas	value for separator ; s @ 14.696 psia and 60	gas O°F = 915 BTU	
Primary separator gas	collected @ 100 psig	and 139°F	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Primary separator gas/separator liquid ratio: 819 SCF/Bb1 @ 139°F
Primary separator liquid/stock tank liquid ratio: 1.080 Bb1s @ 139°F/Bb1

Primary separator liquid collected @ 100 psig and 139°F

Primary separator gas/well stream ratio :

Stock tank liquid/well stream ratio:

Petroleum Reservoir Engineering

Page: 7 of 10 File: AFL 85036

Well: Tuna #4, Set 3

PRESSURE - VOLUME RELATIONS @ 252°F

Pressure,psig	Relative Volume (1)	Compressibility x 10 (2)	Y Function (3)
5000	0.9769	14.67	
4500	0.9842	15.21	
4000	0.9921	16.63	
3900	0.9938	17.12	
3800	0.9955	17.68	
3700	0.9973	18.36	
3600	0.9992	19.12	
<u>3558</u> *	1.0000	19.54	
3534	1.0024		
3513	1.0045		
3401	1.0160		2.879
3218	1.0374		2.812
2989	1.0694		2.728
2748	1.1110		2.642
2448	1.1781		2.530
2169	1.2619		2.428
1892	1.3751		2.329
1658	1.5065		2.242
1438	1.6755		2.160
1198	1.9385		2.073
952	2.3613		1.980
726	3.0122		2.899
527	4.0626		1.826

* Saturation Pressure

(1) Relative volume: V/Vsat is barrels @ indicated pressure per barrel @ saturation pressure.

(2) Instantaneous Compressibility =
$$-\frac{dV}{VdP}$$

(3) Y Function =
$$\frac{(Psat - P)}{(Pabs) (V/Vsat-1)}$$

CORE LABORATORIES Petroleum Reservoir Engineering

Page ____9 of __10 File ____ AFL 85036

丑 4500

PRESSURE: POUNDS PER SQUARE INCH GAUGE

2500

3500

0.01111 500

1500

CORE LABORATORIES Petroleum Reservoir Engineering

Page 9 of 10 File AFL 85036

PRESSURE: POUNDS PER SQUARE INCH GAUGE

