WCQ PORT CAMPBELL-4 BURE LINES &

DEPT. NAT. RES & ENV PE903901

ナるナア

80 Pagis

FROME-BROKEN HILL COMPANY PTY. LTD. + ENCLOSURES

WELL COMPLETION REPORT - PORT CAMPBELL NO. 4 SOUTHWEST VICTORIA

bу

S. Benedek

Melbourne

November, 1964

CONTENTS

													Page
I	SUMMA	RY	••	• •	• •	• •	• • •	••	• •	• •	••	••	l
II	INTRO	DUCTION	• •	••	••	• •	• •	••	••	• •	••	••	2
III	WELL	HISTORY	• •	••	••	• •	• •	• •	• • •	• •	• • .	• •	3
	1.	General	Data	• •	• •	• •	• •	••	••	• •	••	••	3
	2.	Drillin	g Data	ι	• •	• •	• •	• •	••	••	••	••	4
	3•	Logging	and I	Cestin	ng	••	••	••	••	• •	••	• •	8
IV	GEOLO	GY	••	••	••	• • •	••	••	••	• •	• • .	• •	11
	1.	Summary	of Pr	eviou	ıs Woı	rk	••	••	••	• • •	• •	• • .	11
	2.	Summary	of th	ne Reg	giona:	l Geol	logy	••	• •	• •		••	12
	3•	Stratig	raphic	: Tabl	Le	• •	••	••	• • •	••	••	• •	14
	4.	Stratig	raphy	••	• • •	• •	• • •	••	• • •	• • •	••	• •.	14
	5•	Structu	re	• •	••	• • •	••	• • •	• •	• • •	••	• •	17
	6.	Relevan	ce to	0ccur	rence	of F	Petro]	eum	• • •	• • •	• •	• • .	17
	7.	Porosity	y and	Perme	eabili	ity of	: Sedi	ments	Pene	etrate	∍d	• •, ,	18
	8.	Contribution Dri			ologi	ical (Concep	ots Re	sulti	ing	••	• •	18
V	REFER	ENCES											
VI	APPEN	DICES											
	1.	Palaeont	cologi	cal R	deport	s							
	2.	Gas Anal	Lyses										
	3•	Core Des	cript	ions	and A	nalys	sis						
	4.	Summary						age i	~ CO ¥	eri es			
	5•	Mud Data	?										
	6.	Bit Usag	ge ?										
	7.	VELOCI	7Y S	weve	y A	Eron	T	(SEP	ARATE	AT	TACH	neut)	
	8.	heoc He	micac			::: ~\$UE			(**	**)	
	9.	PETRO	LOGY	N.	eron:	ī			(• •	م)	
	10.	PETRE	CRAP	4 ×	ų				(u	·)		

ILLUSTRATIONS (in pocket)

- 1. Geological and Locality Map Port Campbell Embayment.
 - 2. Stratigraphic Column Prior to Drilling.
 - 3. Geological Cross Sections Before and After Drilling.
 - 4. Composite Well Log.
- 5. A graphical representation of all operations, including drilling and testing;

.

CORE ANALYSIS REPORT

FOR

MINORA RESOURCES NL

09 JAN 1989 ORT CAMPBELL 4

PETROLEUM DIVISION

ADDED TO WER

BY NOE

12/8/99

3 PACIES

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom; and for whose exclusive and confidential use; this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories Australia PTY., LTD. (all errors and omissions excepted); but Core Laboratories Australia PTY., LTD. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or formation in connection with which such report is used or relied upon.

1st August 1988

Minora Resources NL 7th Floor Colonial Mutual Building 55 St. George's Terrace Perth W.A. 6000

Attention: Mr T. Scholefield

Subject : Core Analysis
Well : Port Campbell #4

File : WA-CA-407

Dear Sir,

Core Laboratories received 4 samples from the subject well for analysis.

One-inch diameter plug samples were drilled from the core pieces using tap water as the bit lubricant. These plugs were dried at 115°C to constant weight. Permeability to air, helium injection porosity and grain density were then determined.

Core Laboratories thanks Minora Resources NL for the opportunity to have been of service.

Yours faithfully, CORE LABORATORIES

Peter Lane

Petrophysical Laboratory Supervisor

PRL:jc:7

CORE LABORATORIES AUSTRALIA PTY., LTD.

Company : MINORA RESOURCES NL

: PORT CAMPBELL 4 Well

Location:

Country : AUSTRALIA

Field

Formation Coring Fluid : Elevation :

File No.: WACA407

Date: 1-AUG-88

API No. :

Analysts: PL

CORE ANALYSIS RESULTS

SAMPLE NUMBER	DEPTH ft	PERMEABILITY (HORIZONTAL) Kair	POROSITY (HELIUM)	GRAIN DENSITY gm/cc	DESCRIPTION
1	7183.0- 92.0	0.03	11.5	2.70	SST: grn- gry,vf gr,hd,wl srt,ang SST: grn- gry,f gr,hd,wl srt,ang SST: grn- gry,f gr,hd,wl srt,ang SST: grn- gry,f gr,hd,wl srt,ang
2	7690.0- 10.0	0.29	11.6	2.65	
3	7889.0- 07.0	0.13	9.2	2.67	
4	8279.0- 99.0	0.01	10.3	2.71	

Received 15/3/95 \$
BA/16M

9 March, 1995

Department of Agriculture, Energy and Minerals Petroleum Operations Branch 3rd Floor, 115 Victoria Parade FITZROY VIC 3065

ATTENTION:

Kathy Hill

General Manager

Dear Kathy,

Please find enclosed por/perm measurements and petrology studies for the core chips from Port Campbell-4 sampled by GFE late last year.

Due to an inconsistency in labelling, one depth is given in metres while the others are given in feet. The samples were taken from cores 16, 24 and 25.

Yours sincerely,

you sterd

ADDED

BY NRE

12/8/99

3 PACES

NOEL NEWELL
SENIOR EXPLORATIONIST

PETROLEUM DIVISION

NN/aj:j3475

15 MAR 1995

CORE ANALYSIS

GFE RESOURCES LTD PORT CAMP 4 CORE

21-Nov-94 FILE NO:CAP-94-15

Sample Depth	Helium Porosity %	Summation of Fluids Porosity	Grain Density gm/cc	Air Perm. md KH	Ajt Perm md KV	Residual SATS % pore vol Oil	Residual SATS % pore vol Water
2349.70m 5456-5458 7895-7897 7900-7902	8.2		2.68 2.69 2.65 2.66	0.16 2.5 0.10 0.45			·

CORE ANALYSIS

GFE RESOURCES LTD PORT CAMP 4 CORE

21-Nov-94 FILE NO:CAP-94-15

Sample Depth	Helium Porosity %	Summation of Fluids Porosity	Grain Density gm/ca	Air Perm. md KH	Air Perm md KV	Residual SATS % pore vol Oil	Residual SATS % pore vol Water
2349.70m	11.6		2.68	0.16			
5456-5458	19.8	}	2.69	2.5			
7895-7897	8.2		2.65	0.10	_		
7900-7902	11.6		2.66	0.45			<u> </u>

Date: 24th February 1965

CORE AMALYSIS RESULTS

Notes:- (i) Unless otherwise stated, the perceities and permeabilities were determined on two small plugs (V & H) cut at right angles from the core or sample. Ruska perceimeter and permeameter were used, with mercally at 750 p.s.i.g. and dry nitrogen, respectively, as the saturating and flowing media. (ii) Residual cil and water saturations were determined using Somhlet type apparatus. (iii) Acetone test precipitates and fluorescence of solvent after extraction are recorded as, nil, trace, fair, strong or very strong.

Well or Area	Ccre or Sample	Depth in ft. From:-	Lithology	Effect Poros in % Vol	by	Absolu Permeat in Millida	oility	Avg. de in gms./c	1	Fluid Saturat in % Po Space	ion re	Acct To	one es t	Solvent after Extract		Remarks
11100	No.	To:-		v	Н	V	Н	Dry Bulk	Appare Grain	nt Water	Oil	Colour	Precip- itate	Colour	Fluor.	
Port Campbell	1	2555 ' 2575 '	INSUFFICIENT	SAI	IPLE		REMAI	NING	FO	R T	ESTING					
No. 4	2	2894 ¹ 2896 ¹	Sandstone,	35	35	702	803	1.72	2.65	2.	Nil	Nil	Nil	Nil	Nil	
11	3	3206¹ 3226¹	Sand grains on	ly rem	ainin	g. UN	SUITABI	E FO	R TE	STING						
22	4	3232 ¹ 3234 ¹	Sandstone, friable	35	N.D	3,100	N.D.	1.70	2.63	Nil	Nil	Nil	Nil	Nil	Nil	Horiz. plug disintegrated
· · · · · · · · · · · · · · · · · · ·	5	3518° 3519°	Sandstone, siliceous	N.D	3	N.D.	Nil	2.66	2.75	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	Insufficient sample for Vert. plug
i ii	6	3519' 3521'	Siltstone & sandstone	25	25	2	31	2.08	2.77	9	Nil.	Nil	Nil	Nil	Trace	
H	7	3835' 3837'	Siltstone	27	25	Nil	1	2.13	2.86	23	Nil	Pale Yello	Nil	Trace	Trace	•
11	8	4112'	Sandstone (dark green)	35	33	22	17	1.96	2.95	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	File No. 62/399

Additional Information:

General File No. 62/399 Well File No. 64/4063 Date: 24th February, 1965

CORE ANALYSIS RESULTS

Notes:- (i) Unless otherwise stated, the perceities and permeabilities were determined on two small plugs (V & H) cut at right angles from the core or sample. Ruska perosimeter and permeameter were used, with mercity at 750 p.s.i.g. and dry nitrogen, respectively, as the saturating and flowing media. (ii) Residual cil and water saturations were determined using Southlet type apparatus. (iii) Acetone test precipitates and fluorescence of solvent after extraction are recorded as, nil, trace, fair, strong or very strong.

Well Or Area	Core or Sample	Depth in ft. From:-	Lithology	Enlective Perosity in % by Vol.		•		1		Saturation in % Pore Space						Remarks
	No.	To:-		ν	Н	V	Н	Dry Bulk	Apparen Grain	t Water	Oil	Colour	Precip- itate	Colour	Fluor.	
Port Campbell	8	4122 ' 4124 '	Sandstone (dark green)	19	20	Nil	Nil	2.47	3.07	99	Nil	Nil	Nil	Nil	Nil	
No4	8	4126' 4128'	As above	18	18	Nil	Nil	2.63	3.19	N.D.	N.D.	N.D.	N.D.	N.D.	ND.	
11	9	42731 42751	Sandstone, friable	2	8	, N	.D.	1.99	2.78	11	11	11	. 11	11	11	Sample too friable to obtain plugs
11	9	4283 ' 4284 '	As above	2	9	1	.D.	2.03	2.86	Nil	Nil	Nil	Nil	Nil	Nil	As above
. 11	10	4580' 4600'	Shale		INS	UFFICI	ENT	SAME	Æ	REMAINI	NG	FOR	TESTING			٠.
; H	11	4600¹ 4602¹	Shale	2	26		N.D.	2.20	2.96	N.D	. N.D	N.D.	N.D.	N.D.	N.D.	Broken shale, pieces only.
11	12	4894 ' 4896 '	Shale	22	2 2'	7 Nil	Nil	2.32	3.0	3 "	. 11	11	. 11	11	11	
11	13	4977 ' 4985 '			NI	T _i			CORE	RE	COVER	Y				File No. 62/399

General File No. 62/399
Well File No. 64/4063

Date: 24th February, 1965

CORE AMALYSIS RESULTS

Motes:— (i) Unless otherwise stated, the perceities and permeabilities were determined on two small plugs (V & H) cut at right angles from the core or sample. Ruska perosimeter and permeameter were used, with mercuty at 750 p.s.i.g. and dry nitrogen, respectively, as the saturating and flowing media. (ii) Residual cil and water saturations were determined using Sozhlet type apparatus. (iii) Acetone test precipitates and fluorescence of solvent after extraction are recorded as, nil, trace, fair, strong or very strong.

Well or Arca	Ccre or Sample	Depth in ft. From:-	Lithology	ETTec Poros in % Vol	ity b y	Absol Permea in Millid	bility	Avg. de in gms./c	Ì	Fluid Saturati in % Po Space	ion re		tone est	Solvent after Extract		Remarks
	No.	To:-		ν	н	V	Н	Dry Bulk	Apparen Grain	t Water	Oil	Colour	Precip- ita t e	Colour	Fluor.	
Port Campbell	14	4985 ' 4987 '	Sandstone, carbonaceous	22	21	34	426	2.06	2.62	5	Trac only		y Fair	Yellow	strong	-
No . 4	14	4993 ¹ 4995 ¹	Shale	2	2		N.D.	2.28	2.92	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
11	15	5154 ' 5156 '	Sandstone	25	23	264	302	2.00	2.64	1	Nil	Nil	Nil	Nil	Nil	
\$ \$	16	5460 · 5462 ·	Sandstone	22	22	8	4	2.14	2.73	23	p#	11	i	11	11	
11	17	5756 ' .5758 '	Sandstone and siltstone	21	23	Nil	2	2.16	2.78	36	"	Pale Yellow	11	ŧt	Fair	
<u>:</u> 11	18	6078 '	Sandstone	20	20	2	. 5	2.17	2.71	. 8	11	Nil	tt	11	Nil	••
. 11	19	1	Siltstone	19	18	Nil	Nil	2.30	2.82	22	Trace	1	Faint trace	1	Strong	
11	20	66651	Siltstone	16	17	Nil	Nil	2.36	5, 2, 82	N.D.	N.D	N.D.	N.D.	N.D.	N.D.	(0/200

General File No. 62/399
Well File No. 64/4063

Date: 24th February

CORE AMALYSIS RESULTS

Notes:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V & H) cut at right angles from the core or sample. Ruskin perosimeter and permeameter were used, with moreovery at 750 p.s.i.g. and dry nitrogen, respectively, as the saturating and flowing media. (ii) Residual oil and water saturations were determined using Soxhlet type apparatus. (iii) Acetone test precipitates and fluorescence of solvent after extraction are recorded as, nil, trace, fair, strong or very strong.

Well or Arca	Core or Sample	Depth in ft.	Lithology	Eriec Poros in % Vol	ity by	Absolu Permeat in Millida	oility	Avg. de in gms./c		Fluid Saturat in % Po Space	ion re		tone est	Solvent after Extract		Rema r ks
. ALCa	Nc.	To:-	2 - 1	Ŋ	Н	V	Н	Dry Bulk	Appa rer Grain	t Water	Oil	Colour	Precip- itate	Colour	Fluor.	
Port Camp- bell No. 4	21	7051 ' 7067'		NII	J		CO	RE	I	ECOVERY						
11	22	7187 ' 7189 '	Siltstone and sandstone	18	25	N.D.	Nil	2•29	2.92	57	Trace only	Pale Yellow	· Faint		stron	
11	23	7692 ' 7694 '	Sandstone	11	11	Nil	H	2.34	2.64	11	Nil	Nil	Nil	Nil	Nil	
. 17	23	7700 ' 7702 '	Sandstone	12	12	11	11	2.36	2.69	N.D.	N.I	N.D.	N.D.	N.D.	N.D.	
: 11	23	7708' 7710'	Sandstone	12	14	"	11	2.35	2.70	11	11	11		<u> </u>		
11	24	7895 ¹ 7897 ˚	Sandstone	9	11	11	"	2.41	2.67	15	Ni:	Nil	Nil	Nil	Nil	
	25	7907 '		9	9	"	11	2.43	2.67	16	11	- "-			Trace	
11	26	82791		11	. 11		11	2.51	2.81	42	11	- 11	11	11	Nil	File No. 62/399

General File No. 62/399
Well File No. 64/4063

Date: 24th February, 1965

CORE ANALYSIS RESULTS

Notes:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V & H) cut at right angles from the core or sample. Ruska porosimeter and permeameter were used, with mercury at 730 p.s.i.g. and dry nitrogen, respectively, as the saturating and flowing media. (ii) Residual cil and water saturations were determined using Soxhlet type apparatus. (iii) Acetone test precipitates and fluorescence of solvent after extraction are recorded as, nil, trace, fair, strong or very strong.

Well	Core or ·	Depth in ft. From:-	Lithology	Effect Poros in % Vol	by		ability n	Avg. de in gms./c		Fluid Saturat in % Po Space	tion ore	•	etone Pest	Solvent after Extract		Remarks
Area :	No.	To:-		v	Н	v	Н	Dry Bulk	Apparer Grain	nt Water	Cil	Colour	Precip- itate	Colour	Fluor.	
Port Campbell	26	8297¹ 8299¹	Shale	11	10	Nil	Nil	2.52	2 2.82	2 N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
No. 4	27	8500 ' 8502 '	Shale	. 8	9	11	11	2.53	3 2.76	6 "	"	11		n	11	
. #	27	8504 ' 8506 '	Sandstone	10	10	, ,,	11	2.47	7 2.74	4 25	N ₅	 	Nil	Nil	Nil	
1	27	8516' 8517'	Shale and Siltstone	5	i9	N-D	N-I	D 2.57	7 2.76	6 N.D	D N-1	.D. N.D.	N.D.	N.D.	No De	
							,									
					 											
*	2			+	+			 								
							1					1			Canana	7 File No. 62/399

General File No. 62/399
Well File No. 64/4063

Date: JULY 15/64

CORE ANALYSIS RESULTS

Notes:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V & H) cut at right angles from the core or sample. Ruska porosimeter and permeameter were used, with mercury at 700 p.s.i.g. and dry nitrogen, respectively, as the saturating and flowing media. (ii) Residual oil and water saturations were determined using Southlet type apparatus. (iii) Acetone test precipitates and fluorescence of solvent after extraction are recorded as, nil, trace, fair, strong or very strong.

Well or Area	Ccre cr Sample	Depth in ft. From:-	Lithology		ity by	Absolu Permeal in Millid	oility	Avg. de in gms./c		Fluid Saturat in % Po Space	ion re		tone est	Solvent after Extrac		Rema rks
Alea,	Nc.	Tos-		V	Н	V	Н	Dry Bulk	Grain	Water	Oil	Colour	Precip- itate	Colour	Fluor.	
Port Campbell	23	7690 7710	Sandstone-Medium Grain, Arkosic, Firm, Silty Matrix	14.3	13.9	Nil	Nil	2.35	2.73	72	Nil	Nil	Nil	Ni.1	Trace	,
<u> </u>	24A)	7889	Sandstone as Above		11.1	Nil	Nil	2.43	2.73	51	Nil	Nil	Nil	Nil	Trace	
The state of the s	24B)	7907	11	10.8	10.4	Nil	Nil	2.39	2.68	55	Nil	Nil	Nil	Nil	Trace	
								,							3	
					İ			general security only, any additional assembly desired for the security of								
<u> </u>																
						and the same of the same		er tuden understandig general, er zw. 360 v. deta								
1					-			and week of the sufficiency of t			-					
1						:		editorial inducerous school har har had	normanitus phonos a consistence of	man sinem nemer ne a seme o				ter i i i i i i i i i i i i i i i i i i i	Conora	File No. 62/399

Additional Impormation: CORE 23 WAS A PRESERVED (TINNED) SAMPLE CORE 24 (TWO PIECES) WAS NOT PRESERVED

General File No. 62/399
Well File No.