

OTWAY BASIN, VIC/P30

LA BELLA-1

WELL COMPLETION REPORT INTERPRETATIVE DATA

COMPILED BY: A. Locke Petroleum Geologist

70285.WCR

DATE: March 1994

BHP PETROLEUM PTY. LTD.

TABLE OF CONTENTS

Page

٠

		,•									
1	WELL INDEX SHEET	1									
2	WELL SUMMARY										
3	HYDROCARBONS 4										
4	STRUCTURE										
5	STRATIGRAPHY 6										
6	GEOPHYSICAL DISCUSSION	8									
	 6.1 Seismic Coverage 6.2 Post-Drill Mapping 6.3 Velocities 	8 8 8									
7	GEOLOGICAL DISCUSSION	9									
	 7.1 Previous Work	9 9 0									
Figure	es										
1	Location Map										
2	Stratigraphic Section										
3	Predicted vs Actual										
Appen	ndices										
1	Micropaleontological Report										
2	Palynological Report										
3	Petrology Report										
4	Geochemistry Report										
5	Petrophysics Report										
6	RFT Report										

Enclosures

- 1 Composite Log
- 2 La Bella-1, Near Base Territory, Time Structure Map

BHP PETROLEUM PTY. LTD. A.C.N. 006 918 832

GEOCHEMICAL EVALUATION OF LA BELLA-1

OTWAY BASIN

OFFSHORE VICTORIA AUSTRALIA

PREPARED BY: J. PRESTON SENIOR GEOCHEMIST

0392.rep

DATE: March, 1994

PETE

TABLE OF CONTENTS

		Page
1	INTRODUCTION	1
2	SOURCE ROCK CHARACTERISATION	. 2
2.1 2.1.1 2.1.2 2.2	Screening Analyses	· · 2 · · 2 · · 2 · · 3
3	FLUIDS CHARACTERISATION	. 4
3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.5 3.6 3.6.1 3.6.2	Whole-Oil GC AnalysisWhole-Extract GC AnalysisSaturate Fraction GC AnalysesGC-MS (Branched/Cyclics) AnalysisTerpane ParametersSterane ParametersGC-MS(Aromatics) AnalysisGas AnalysisChemical CompositionStable Carbon Isotopic Composition	4 4 5 6 6 7 9 10 10 10
4	CONCLUSIONS	11

APPENDIX

1	SIR GC-MS (B/C) Mass Fragmentograms: Condensates
2	SIR GC-MS (AROMS) Mass Fragmentograms: Condensates
3	SIR GC-MS (B/C) Mass Fragmentograms: Extracts
4	SIR GC-MS (AROMS) Mass Fragmentograms: Extracts

LIST OF FIGURES

.

Figure 1	TOC versus Depth
Figure 2	TOC versus HI
Figure 3	TOC versus S1+S2
Figure 4	HI versus OI
Figure 5	HI versus Tmax
Figure 6	Maceral Composition Data
Figure 7	Tmax versus Depth
Figure 8	PI versus Depth
Figure 9	VR and Coal Maceral Identification: histograms
Figure 10	Vitrinite Reflectance versus Depth
Figure 11	Whole-Oil GC traces (C_1-C_{33}) : 2072.8m and 2160.5m condensates
Figure 12	Whole-Oil GC traces (C_1-C_8) : 2072.8m and 2160.5m condensates
Figure 13	Whole-Oil GC data (normalised): 2072.8m and 2160.5m condensates
Figure 14	Whole-Oil GC data (normalised): comparative line-chart
Figure 15	Whole-Oil GC data: Paraffin Indices (cross-plot)
Figure 16	Total Extract Yield versus Depth
Figure 17a-d	Whole-Extract GC traces: extracts
Figure 18	Liquid Chromatography (separation) data
Figure 19	Saturates-GC traces: 2072.8m and 2160.5m condensates
Figure 20	Saturates-GC Data: normalised relative abundances
-	- 2072.8m and 2160.5m condensates
Figure 21	Saturates-GC Data: normalised relative abundances
-	- 2072.8m and 2160.5m condensates (comparative)
Figure 22a-c	Saturates-GC Traces: Extracts
Figure 23	Saturates-GC Data: normalised relative abundances
-	- Extracts
Figure 24	Saturates-GC Data: normalised relative abundances
	- Extracts (comparative)
Figure 25	Pristane/Phytane versus Depth
Figure 26	Pristane/nC ₁₇ versus Phytane/nC ₁₈
Figure 27	m/z 191 and m/z 217 biomarker traces: 2072.8m condensate
Figure 28	m/z 191 and m/z 217 biomarker traces: 2160.5m condensate
Figure 29	m/z 191 and m/z 217 biomarker traces: 2070m extract
Figure 30	m/z 191 and m/z 217 biomarker traces: 2097.7m extract
Figure 31	m/z 191 and m/z 217 biomarker traces: 2100-2110m extract
Figure 32	m/z 191 and m/z 217 biomarker traces: 2121m extract
Figure 33	m/z 191 and m/z 217 biomarker traces: 2159m extract
Figure 34a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191):
	2072.8m
Figure 34b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217):
	2072.8m
Figure 35a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191):
	2160.5m
Figure 35b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217):
	2160.5m

Figure 36a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191): 2070m
Figure 36b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217): 2070m
Figure 37a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191): 2097.7m
Figure 37b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217): 2097.7m
Figure 38a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191): 2100-2110m
Figure 38b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217): 2100-2110m
Figure 39a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191): 2121m
Figure 39b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217): 2121m
Figure 40a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191): 2159m
Figure 40b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217): 2159m
Figure 41a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191): condensates (comparison)
Figure 41b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217): condensates (comparison)
Figure 42a	Normalised Abundances/Calculated Parameters: Terpanes (m/z 191): extracts (comparison)
Figure 42b	Normalised Abundances/Calculated Parameters: Steranes (m/z 217): extracts (comparison)
Figure 43a	Facies Interpretation based on Sterane Abundances - (R Isomers only)
Figure 43b	Facies Interpretation based on Sterane Abundances - (S+R Isomers)
Figure 44a	Pristane/Phytane versus $C_{29}R/C_{27}R$
Figure 44b	Pristane/Phytane versus Hopane/Sterane (Ratio C)
Figure 45	$C_{29} 20S/(20S+20R)$ versus $C_{29} \beta\beta/(\beta\beta+\alpha\alpha)$
Figure 46a	MPI-1-derived Rc(a) versus Depth
Figure 46b	MPI-1-derived Rc(a) versus Depth
Figure 47a	Log (Retene/9-MP) versus Log $(1,7-DMP/X)$
Figure 4/b	Log (1-MP/9-MP) versus Log (1,2,5-1MIN/1,3,6-1MIN)
Figure 48a	Gas Analysis Data - Normalised Abundances
rigure 480	Gas Isotope Maturation Plot 1
Figure 49a	Cas Isotope Maturation Plot - 2
Figure 50	Gas Characterisation Plot
rigule JU	

LIST OF TABLES

Table 1	Geologic and General Data
Table 2	TOC/Rock-Eval Pyrolysis Data
Table 3	Vitrinite Reflectance and Coal Maceral Data
Table 4	Summary of Whole-Oil Analysis : 2072.8m Condensate
Table 5	Summary of Whole-Oil Analysis : 2160.5m Condensate
Table 6	Summary of Extraction and Liquid Chromatography (Sediments)
Table 7	Summary of Liquid Chromatography (Condensates)
Table 8	Summary of GC Data (Condensates) - Alkane Distributions
Table 9	Summary of GC Data (Sediments) - Alkane Distributions
Table 10	Summary of GC Data (Condensates) - Alkane Compositional Data
Table 11	Summary of GC Data (Sediments) - Alkane Compositional Data
Table 12-1	Saturate Fraction SIR GC-MS Data : 2072.8m Condensate
	- Detailed Compound Analysis
Table 12-2	Saturate Fraction SIR GC-MS Data : 2072.8m Condensate
	- Calculated Parameters
Table 13-1	Saturate Fraction SIR GC-MS Data : 2160.5m Condensate
	- Detailed Compound Analysis
Table 13-2	Saturate Fraction SIR GC-MS Data : 2160.5m Condensate
	- Calculated Parameters
Table 14-1	Saturate Fraction SIR GC-MS Data : 2070m Extract
	- Detailed Compound Analysis
Table 14-2	Saturate Fraction SIR GC-MS Data : 2070m Extract
	- Calculated Parameters
Table 15-1	Saturate Fraction SIR GC-MS Data : 2097.7m Extract
	- Detailed Compound Analysis
Table 15-2	Saturate Fraction SIR GC-MS Data : 2097.7m Extract
	- Calculated Parameters
Table 16-1	Saturate Fraction SIR GC-MS Data : 2100-2110m Extract
	- Detailed Compound Analysis
Table 16-2	Saturate Fraction SIR GC-MS Data : 2100-2110m Extract
	- Calculated Parameters
Table 17-1	Saturate Fraction SIR GC-MS Data : 2121m Extract
	- Detailed Compound Analysis
Table 17-2	Saturate Fraction SIR GC-MS Data : 2121m Extract
	- Calculated Parameters
Table 18-1	Saturate Fraction SIR GC-MS Data : 2159m Extract
	- Detailed Compound Analysis
Table 18-2	Saturate Fraction SIR GC-MS Data : 2159m Extract
	- Calculated Parameters

Table 19 Aromatic GC-MS Data : 20/2.8m Conden

- Table 20
 Aromatic GC-MS Data : 2160.5m Condensate
- Table 21
 Aromatic GC-MS Data : 2070m Extract
- Table 22Aromatic GC-MS Data : 2097.7m Extract
- Table 23Aromatic GC-MS Data : 2110m Extract
- Table 24
 Aromatic GC-MS Data : 2121m Extract
- Table 25
 Aromatic GC-MS Data : 2159m Extract
- Table 26Gas Analysis Data : 2072.8m Sample
- Table 27Gas Analysis Data : 2160.5m Sample
- Table 28Stable Carbon Isotope Data : 2072.8m and 2160.5m Gases

LIST OF ENCLOSURES

Enclosure 1 Geochemical Log

1 INTRODUCTION

Following completion of the La Bella-1 well, a programme was undertaken to evaluate the source rock character and thermal maturity of the drilled sequence, and the fluids recovered from it.

The evaluation of source rock character firstly involved analysis of nine sidewall cores for total organic carbon (TOC) content by Geotech, Perth. All the samples analysed yielded a TOC greater than 1.0%, and were accordingly pyrolysed by the Rock-Eval method.

In an attempt to evaluate the thermal maturity of the La Bella-1 section, vitrinite reflectance measurements were made on nine SWCs from the wells.

During petrographic analysis of a core sample (from 2095.15-2095.20m), Amdel, Adelaide, reported a trace of hydrocarbon. The sample was sent to Geotech, Perth, for solvent-extraction and whole-extract GC analysis to determine the nature of this trace. TOC/Rock-Eval pyrolysis was also performed on this sample.

A further seven samples (two core fragments, four SWCs and one cuttings sample), from four separate reservoir units and an intra-formational claystone, were solvent-extracted in an attempt to establish the presence of residual hydrocarbons. All of the resulting extracts were analysed by the whole-extract GC method; five extracts (from one core, three SWCs and one cuttings sample) were then separated by liquid chromatography, and analysed by saturate-fraction GC, SIR GC-MS (branched/cyclics), and SIR GC-MS (aromatics) techniques.

Two gas samples, recovered by RFT from 2072.8m and 2160.5m, were analysed by CSIRO, North Ryde, for their chemical and stable carbon isotopic compositions. Finally, in an attempt to gain more information relating to the source of the gases and their associated fluids, the RFT gas samples were subjected to cold-trapping by Petrolab, Adelaide, and two condensate samples isolated. These liquids were then analysed by whole-oil GC, separated, and analysed by the saturate fraction GC, GC-MS (branched/cyclics) and GC-MS (aromatics) techniques.

This report provides a compilation of the petroleum geochemistry data obtained from the La Bella-1 well, together with an interpretation of these data.

2 SOURCE ROCK CHARACTERISATION

2.1 Screening Analyses

2.1.1 Total Organic Carbon (TOC)

As indicated in Table 1-1, the ten samples analysed for total organic content (TOC) originated in the Late Cretaceous Sherbrook and Shipwreck Groups. Although 0.5% TOC is commonly used as the minimum requirement for a petroleum source rock, it is uncommon for sediments from the southern margin of Australia with less than 1.0% TOC to be significant petroleum sources. On the basis of ten samples, it is clear that the Late Cretaceous section in La Bella-1 contains significant potential petroleum source rocks, their TOC values ranging from 1.10-2.35% (Table 2, Figure 1 and Enclosure 1). Note that one sample, from 2540.5m, consisted of coal (TOC=73.30%).

2.1.2 Rock-Eval Pyrolysis

All ten samples (in which the TOC was found to exceed 1.0%) were pyrolysed using the Rock-Eval method. Nine of these samples from 1563-2528m, gave HI values of 94-183 and S1+S2 yields of 1.62-4.61 mg/g TOC (Figures 2 and 3), indicating fair to moderate generative potential for gas and condensate, with perhaps minor amounts of light oil. The data from the 2540.5m sample (HI=258) suggest that there is greater potential for liquids generation in the coals.

It is clear from the S1+S2 yields of the La Bella-1 samples that expulsion, if any, would be possible only at relatively high levels of thermal maturity. At such levels of thermal maturity, considerable secondary cracking of liquids to gas would occur, such that these source rocks would perhaps be more "gas prone" than indicated by the source character data.

The Rock-Eval pyrolysis data listed in Table 2 are summarised in the form of crossplots in Figures 4 and 5. Figure 4 reflects the overall quality of the kerogen in the samples analysed, in terms of their oil-prone or gas-prone character: most samples plot in the gas/condensate-prone Type II/III and Type III areas of the diagram (HI < 200). The more liquids-prone character of the coal sample is reflected in its more obvious Type II affinity. Figure 5 reflects the generative capacity of the samples, in terms of their overall quantitative potential; only the coal sample approaches the threshold of significant hydrocarbon generation and expulsion, the remainder failing due to thermal immaturity (the Tmax of the 2232m sample is regarded as anomalously high).

-

Maceral petrography associated with the vitrinite reflectance determinations shows that the organic matter in most of the samples is dominated by inertinite, followed by vitrinite (Figure 6). However, liptinitic/exinitic (Type II) macerals are identified in all samples except the 2540.5m coal (described as 100% vitrinite), confirming the presence of some liquidsprone components. In the Sherbrook Group, the Type II macerals are supplemented by oil-prone alginitic (Type I) macerals, a reflection of the perhaps marginal-marine affinity of these sediments.

2.2 Thermal Maturity

Rock-Eval parameters which are often used for maturity assessment are Tmax and Production Index (PI). A Tmax value of 435°C, and a PI value of 0.10, are regarded as marking the entrance to the oil-generative window.

As Table 2 and Figure 7 show, values of Tmax range from 423-440°C, with one anomalous value of 449°C. Values of PI (Figure 8) are less than 0.10 in the Shipwreck interval (below 2095m), but range from 0.13-0.21 in the overlying Sherbrook Group. There is therefore an agreement between the maturity estimates based on the PI and Tmax data in the Shipwreck Group, namely that this section is thermally immature to marginally mature.

Vitrinite reflectance measurements on nine samples from the 1563-2646.5m interval do not exceed 0.70% (see Table 3/ 3A and Figures 9 and 10). Values for five samples in the Shipwreck Group (2232-2646.5m) occupy the 0.62-0.67% range, concurring with the marginally mature estimate based on Rock-Eval data. With the exception of a value of 0.68% at 1979m, the Sherbrook Group can be considered to be thermally immature.

Because kerogens will generate products with markedly different compositions as thermal maturity progresses (Horsfield, 1989), it follows that certain analyses and the interpretation of their results will be fundamentally affected by maturity, in particular Rock-Eval pyrolysis data. The observation that the drilled interval has not attained thermal maturity means that this need not be a consideration in the interpretation of geochemical data from the La Bella-1 well. The poor source quality of parts of the drilled sequence cannot be attributed to advanced thermal maturity.

3 FLUIDS CHARACTERISATION

3.1 Whole-Oil GC Analysis

Two condensate samples from the La Bella-1 well were analysed by the whole-oil GC method. These samples were obtained by the cold-trapping of gas samples from 2072.8m and 2160.5m.

The whole-oil GC data for these two samples are presented in Tables 4 and 5; the corresponding whole-oil GC traces are shown in Figure 11 ($C_1 - C_{33}$ range), Figure 12 (C_1 - C_8 gasoline range), and Figure 13 (normalised plots). Compound abundances normalised from the whole-oil GC data are compared in Figure 14.

Paraffin Index data from the two condensates are plotted in Figure 15, and suggest (if taken at face value) that the condensates were expelled from their source rocks at about 135°C.

3.2 Whole-Extract GC Analysis

During petrographic analysis of a core sample (2095.15 - 2095.20m), Amdel Laboratories, Adelaide, reported a trace of hydrocarbon. The sample was sent to Geotech, Perth, for solvent-extraction and whole-extract GC analysis to determine the nature of this trace. A further seven samples (two core fragments, four SWCs and one cuttings sample), from four separate reservoir units and an intra-formational claystone, were solventextracted in an attempt to establish the presence of residual hydrocarbons. The resulting extract yields are listed in Table 6, and summarised in Figure 16. All the extracts were analysed by the whole-extract GC method, the GC traces being shown in Figures 17a-d.

As Figure 16 shows, the extract yields ranged from 244-784 ppm. These results, combined with the character of the whole-extract GC traces, suggest that the extracts are unlikely to represent residual saturations of mature migrated hydrocarbons, but instead appear to represent small amounts of indigenous, or very locally migrated, immature hydrocarbons. However, a more detailed evaluation of the extracts was warranted to confirm their character, and to determine any similarities between the compositions of the extracts and those of known migrated fluids (see below).

3.3 Saturate Fraction GC Analyses

Both condensate samples, and five of the eight sediment extracts, were separated into their constituent fractions by liquid chromatography, the separation data being listed in Tables 6 and 7, and summarised in Figure 18.

.

•

ŝ

فلاليدف فيسد

The saturate fraction of each condensate, and of each of the five extracts, was analysed by the saturate fraction GC method. The resulting saturate GC traces of the condensates are shown in Figure 19; the n-alkane distribution data are reported in Table 8, normalised in Figure 20, and compared in Figure 21. The saturate GC traces for the five sediment-extracts are shown in Figure 22a-c; the n-alkane distribution data are reported in Table 9, normalised in Figure 23, and compared in Figure 24.

The n-alkane compositional data for the condensates and sediment-extracts are listed in Tables 10 and 11 respectively, and summarised in Figures 25 and 26. The condensates and extracts alike contain Pr/Ph ratios over 4.0, and ratios of Pr/nC_{17} to Ph/nC_{18} greater than 2.3, suggesting that the extracts were derived from higher land-plant-derived organic material within source sediments deposited in oxic, terrestrial environments.

While the 2070m, 2097.7m and 2159m extracts each contain high molecular weight, odd-preferenced waxy components within their n-alkane distributions, the 2100-2110m and 2121m extracts show different characters. The 2100-2110m extract displays a conical hump of unresolved compounds in its higher molecular weight range, characteristic of a component of contamination in the extract. The 2121m extract contains proportionally few higher molecular weight compounds, though a subtle waxy hump is evident.

3.4 GC-MS (Branched/Cyclics) Analysis

The branched and cyclic compounds were isolated from the saturate fractions of the two condensates and five extracts and analysed by the SIR GC-MS technique. Selected m/z 191 (triterpane) and m/z 217 (sterane) biomarker distributions are given in Figures 27-33; full suites of mass fragmentograms are provided in this report as Appendices 1 and 3.

Detailed compound abundances and calculated parameters are listed in Tables 12 to 18; normalised compound abundances and values for calculated parameters for the m/z 191 ions (terpanes) are summarised in Figures 34a-40a, and for the m/z 217 ions (steranes) in Figures 34b-40b. Figures 41 and 42 compare normalised compound abundances and values of calculated parameters for the condensates and extracts.

3.4.1 Terpane Parameters

The relative abundance of C_{27} triterpanes, $18\alpha(H)$ -hopane (Ts) and $17\alpha(H)$ hopane (Tm), is theoretically useful for the maturity assessment of medium to high maturity oils. With increasing maturity, more of the maturable C_{27} triterpane (Tm) is converted to the stable C_{27} triterpane (Ts). The relative amounts of Ts and Tm in the extracts show a strong predominance of maturable (Tm) over stable (Ts) (Ts/Ts+Tm = 5-17%), suggesting that they are thermally immature. By contrast, there is only a slight predominance of Tm in the condensates, implying greater thermal maturity. However, the Ts/Ts+Tm parameter is lithofacies-dependent, and should be used with some caution as an absolute indicator of thermal maturity (it is best used as a maturity indicator of oils from a common source of consistent organic facies).

Moretanes are diastereomers of the hopanes, and, being less stable than the latter, are destroyed more rapidly with increasing maturity. The moretane/hopane ratio decreases from about 0.80 in immature bitumens to values of 0.15-0.05 in mature source rocks and oils. The relative abundances of the C_{29} and C_{30} moretanes and hopanes in the extracts revealed a predominance of hopanes (moretane/hopane = 0.16-0.24), implying that they are perhaps marginally mature. Values of 0.06-0.12 in the condensates reflect their greater maturity. (Note that, like Ts/Ts+Tm, the moretane/hopane parameter is to some extent lithofacies-dependent, its value, for example, being higher in Tertiary source rocks.)

The $C_{31}22S$ -hopane/ $C_{31}22R$ -hopane ratio can be used to assess thermal maturity. As maturity increases, the proportion of the 22S isomer increases at the expense of the biologically produced 22R isomer, until equilibrium is reached, at which point the 22S isomer accounts for about 60% of the mixture. This is achieved soon after the onset of oil generation (at about 0.60% VR, before significant oil generation has occurred), limiting the use of this parameter at higher levels of maturity. In the extracts and condensates, the 22S isomer accounts for 55-59% of the mixture, implying that isomeric equilibrium has been reached, and that the source rocks in both cases were thermally matured at least to the point of initial oil-generation. Note that the 22S isomer of the C_{32} hopanes forms 55-60% of the isomeric mixture, concurring with the C_{31} hopane data.

 C_{28} 25,30 and 28,30-bisnorhopanes (BNH) are present in the extracts (Tables 14-1 to 18-1, and Figures 29-33), but are not reported for the condensates. While high concentrations of BNH are typical of petroleum from highly reducing to anoxic depositional environments (Peters and Moldowan, 1993), its presence in the La Bella-1 extracts is more likely the

0392.rep March, 1994

ì

RURDENS - H

result of its derivation from the original (post-digenetic) free bitumen (S_0) in the source claystones. Concentrations of BNH from such a source are likely to fall during thermal maturation, which may explain the absence of BNH in the more mature condensates.

3.4.2 Sterane Parameters

The relative proportion of the geological 20S and biological 20R isomers of the C_{28} and $C_{29}\alpha\alpha\alpha$ (normal) steranes, expressed as the 20S/20S+20R ratios, is perhaps the most reliable biomarker maturity parameter (it is not greatly influenced by lithofacies variations). Equilibrium, when the 20S isomer forms about 52-55% of the mixture, is reached at, or around, 0.80% vitrinite reflectance. In the La-Bella-1 condensates the 20S isomer forms 51-53% of the C_{29} mixture, suggesting expulsion of the oil from its source sediment at, or beyond, 0.80% vitrinite reflectance, in contrast to the extracts in which the 20S isomer forms only 27-38% of the C_{29} mixture (reflecting their relative immaturity).

The relative proportions of C_{29} normal ($\alpha\alpha\alpha$) and iso-($\beta\beta\alpha$) steranes can be effective in assessing the thermal maturity of source rocks and oils. The normal ($\alpha\alpha\alpha$) steranes, produced biologically, become less dominant relative to the iso-steranes ($\beta\beta\alpha$) with increasing maturity, until equilibrium is reached at a value of $\beta\beta\alpha/(\beta\beta\alpha + \alpha\alpha\alpha)$ of about 67-71% (VR=0.90%). In the La Bella-1 condensates, the iso-steranes dominate the normal steranes ($\beta\beta\alpha/\alpha\alpha\alpha + \beta\beta\alpha = 58-60\%$), suggesting that the source rock was matured to 0.8-0.9% VR at the time they were expelled. The lower values of 37-40% in the extracts is a further reflection of their relative immaturity.

Diasterane/sterane ratios are affected by both thermal maturity and inorganic (lithological) characteristics of the source rock. Conversion of steranes to diasteranes is catalysed by clay minerals, so that diasterane/sterane ratios are typically low (less than 0.30) in carbonate source rocks and derived oils. A high-Eh (oxidising) depositional environment and increasing thermal maturity can each result in a high diasterane/sterane ratio. C_{29} diasteranes constitute 36-41% of the C_{29} normal/iso-/diasterane mixture in the La Bella-1 condensates, compared with 22-28% in the extracts, further reflecting the greater maturity of the condensates. It is difficult to make a better estimate of the absolute level of thermal maturity at which the condensates and extracts were expelled from their respective sources (the proportion of diasteranes in the extracts being partly dependent on lithofacies).

The general assumption about triterpane/sterane ratios is that steranes are derived mainly from algae and higher plants, whereas triterpanes come mainly from bacteria. However, the relationship between organic facies and triterpane/sterane ratio is complex, and cannot always be used with confidence. When absolute concentrations of biomarkers are high, high triterpane/sterane ratios are taken to indicate a high degree of microbial input; where concentrations are low, high ratios are taken to indicate greater contribution from land-plants than from algae. Low triterpane/sterane ratios together with high absolute biomarker concentrations, are associated with coals, shales and oils (eg. South East Asia and New Zealand); low ratios in conjunction with low absolute abundances may indicate a dominance of higher-plant and fungal material (Waples et al., 1991). Triterpane/sterane ratios as expressed by Ratio C in Figures 41b, 42b and 44b are low in the La Bella-1 condensates (0.34-0.62), and higher in the extracts (2.5-3.5), suggesting a dominance of higher land-plant material in the source sediments of the extracts.

Figures 43a and 43b, triangular plots of C_{27} , C_{28} and C_{29} normal steranes, show a dominance of C_{27} compounds, the data plotting within the marginal marine field. Note that S isomers of the normal steranes were reported for four of the extracts, and neither of the condensates, so that Figures 43a and 43b are constructed accordingly.

Figure 44a shows a crossplot of Pr/Ph ratios versus $C_{29}R/C_{27}R$ sterane ratios for the condensates and extracts, confirming the relatively oxic environment of deposition of the source sediments, but again reflecting lower-than-expected values for the sterane ratio.

Plots of $\beta\beta/(\beta\beta+\alpha\alpha)$ versus 20S/(20S+20R) for the C₂₉ steranes are effective in describing and comparing the thermal maturity of source rocks or oils; data for any oils which plot away from the maturity trend-line in such plots should be re-examined in the light of the disagreement between the two parameters (Peters and Moldowan, 1993). As Figure 45 shows, data for the condensates plot together, high on a maturity trend-line which passes close to the 2097.7m extract to the origin; the other extract data, while confirming the relative immaturity of the extracts, are somewhat scattered (notably the 2070m and 2100-2110m samples), though this, in the light of the extract yield data, may be as much a function of analytical error and/or poor sample quality as true geochemical character.

A note of caution should be made regarding the use of biomarker data from condensates. Condensates are formed either from source rocks under high thermal stress or by phase-separation from an oil, and exist in the subsurface in the gas phase. These processes usually result in a significant variation in the values of important biomarker ratios and parameters in condensates compared with co-genetic oils. Although it is possible to compensate for the effect of maturity by selecting parameters which are relatively insensitive to maturity, it is very difficult to compensate for

0392.rep March, 1994

phase-change effects (Woodhouse, 1991). However, the biomarker data for the La Bella-1 condensates, notwithstanding these effects, differ from the biomarker data from the extracts to such a degree that it is unlikely that the two sets of fluids are co-genetic.

3.5 GC-MS(Aromatics) Analysis

The aromatics fractions from the 2072.8m and 2160.5m condensates from La Bella-1, together with those from five extracts, were analysed by the SIR GC-MS technique. Full suites of mass fragmentograms are provided in this report as Appendices 2 and 4. Detailed compound abundances, and parameters calculated from them, are listed in Tables 19-25.

The primary application of these data is for maturity assessment. Perhaps the most widely used parameter is the Methylphenanthrene Index (MPI-1), due to its better calibration against the vitrinite reflectance scale, equivalent values of which can be calculated (Radke et al, 1982). Figure 46a shows a plot of MPI-derived vitrinite reflectance values, $R_e(a)\%$, versus depth for the La Bella-1 condensates and extracts. The condensates give disparate values, the 2160m value (0.96%) being considered the more reliable in the context of other parameters. The extracts give values in the 0.71-0.80% early mature range; however, if MPI-1 values are converted according to a formula more consistent with Australian coals (Boreham et al, 1988), the $R_c(a)$ values fall within the 0.58-0.69% marginally mature range (Figure 46b), consistent with the measured vitrinite reflectance values over the same depth interval (see Figure 10). Note that this approach has the concomitant effect of reducing the $R_e(a)$ values for the condensates to maturity levels inconsistent with other observations (see Gas Analysis Data).

Maturity estimates based on the TNR-1 (Trimethylnaphthalene Ratio) lie in the marginal-to-early mature range in the extracts (consistent with the MPI-1 and other data), and also in the condensates (inconsistent with other data). The MPR-1 (methylphenanthene ratio) parameter gives a late-oil mature estimate for the condensates and extracts alike (inconsistent with other maturity estimates for the extracts).

The relative abundances of certain aromatic compounds can be applied to source input assessment, particularly the degraded diterpanes, such as 1,2,5-TMN, 1,7-DMP, 1-MP and retene, which are thought to be derived from resin precursors in conifers (such as Araucariaceae, Cupressaceae and Podocarpaceae in the Jurassic to Lower Cretaceous of Australia). Source sediments which pre-date the appearance of such conifers in the Late Triassic will display different distributions of degraded aromatic compounds, so that the data provide a useful correlation tool. Figures 47a and 47b show crossplots of ratios involving these compounds, and show separate groupings of the condensates and extracts, implying different sources. This is consistent with the earlier inference that the extracts are indigenous to their depth interval, whereas the condensates represent migrated fluids.

3.6 Gas Analysis

Two gas samples, recovered by RFT from 2072.8m and 2160.5m in La Bella-1 were analysed by CSIRO, North Ryde for their chemical and stable carbon isotopic compositions. (Condensates isolated by cold-trapping these gases were analysed separately, the results of this work having already been discussed.)

3.6.1 Chemical Composition

The chemical compositions of the RFT gases are summarised in Tables 26 and 27, normalised in Figure 48a, and compared in Figure 48b. As expected, the gases are chemically very similar, containing 76-77% methane and 4.5-4.8% ethane by volume, together with 12-13% carbon-dioxide and 3.4-3.9% nitrogen.

3.6.2 Stable Carbon Isotopic Composition

The stable carbon isotope data for the two gases are listed in Table 28, and values for individual hydrocarbon species cross-plotted in Figures 49a and 49b. As these figures show, the carbon isotope compositions of the gases are very similar, leaving their co-genetic origin in little doubt. In addition, these figures indicate that the gases were expelled from their source rocks at thermal maturities equivalent to about 1.30-1.35% VR, early in the wet-gas-generative window.

Figure 50 is an attempt to characterise the gases in terms of the isotopic compositions of their methane components and the relative amounts of their C_2 + components. This plot suggests that the gases are non-associated (ie. they were not generated along with oil, but produced by the thermal cracking of oils) and that they were migrated from moderate depth. The plot also infers that their source may have been marine rather than humic.

4 CONCLUSIONS

Nine SWC samples, from the Late Cretaceous Sherbrook and Shipwreck Groups, were analysed for their TOC content. All these samples yielded values greater than 1.0%, and were accordingly analysed by Rock-Eval pyrolysis. A core sample from 2095.15-2095.20m was similarly analysed. The resulting data revealed a predominance of Type II/III to Type III, mainly gas/condensate-prone organic matter with HI values less than 200, with the exception of one coal sample (2540.5m) characterised by a more strongly Type II, liquids-prone organic facies. While liptinitic/exinitic (Type II) macerals were identified in most samples (supplemented by a sparse alginitic component in the Sherbrook Group), suggesting some liquids potential, it is clear from the S1+S2 yields that expulsion from these samples would be possible only at relatively advanced levels of thermal maturity; at such levels, secondary cracking of liquids to gas would occur, such that these source rocks would, in the event, become more gas-prone than indicated by the source character data.

Thermal maturity data, namely Tmax, PI and vitrinite reflectance measurements, suggest that the Sherbrook Group is thermally immature and the Shipwreck Group marginally mature. The generative potential of the source rocks discussed above has therefore not been realised at the La Bella-1 location. A further inference is that the quality of these source rocks can in no way be linked to advanced maturity, their relative leanness being more a function of the preservation state of their contained organic matter.

A trace of hydrocarbon was reported during petrographic analysis of the 2095.15-2095.20m core sample. The sample was therefore solventextracted to determine the character of any contained hydrocarbons. A further seven samples (two core fragments, four SWCs, and one cuttings sample), from four separate reservoir units and one intra-formational claystone, were solvent-extracted in an attempt to identify any residual hydrocarbons (namely, any hydrocarbons which represent the remains of an earlier saturation displaced by the existing gas accumulation).

The resulting extract yields were low (less than 800ppm). Each was analysed by the whole-extract GC method, and the nature of the GC traces, taken together with the low extract yields, did not offer any strong indication that the extracts represented residual hydrocarbon saturations. However, to be certain of this, five of the extracts were subjected to more detailed analysis, namely saturate-GC, GC-MS (branched/cyclics) and GC-MS (aromatics). Two condensates, acquired from the cold-trapping of the 2072.8m and 2160.5m RFT gases, were subjected to the same analytical sequence to determine any similarity between the compositions of the extracts and those of known migrated fluids. The condensates and extracts alike revealed Pr/Ph ratios, and ratios of Pr/nC_{17} to Ph/nC_{18} , typical of land-plant derived organic matter in sediments deposited under relatively oxic conditions. However, the saturate-GC traces of the extracts showed significant variation. Three of the extracts contained high molecular-weight, odd-preferenced, waxy components within their alkane distributions (consistent with derivation from land-plants), while in a fourth only a subtle waxy hump was evident; the fifth showed a symmetrical hump of unresolved compounds typical of contamination.

The characters of the saturates-GC traces of the extracts compared with those of the condensates support the view that the extracts do not represent thermally mature, migrated hydrocarbons. GC-MS analysis of the branched/cyclic alkanes revealed fundamental differences in the biomarker distributions of the extracts and condensates which appear to be due more to differences in maturity than to differences in organic facies (though these may exist). In particular, C_{28} -bisnorhopanes, thought to be derived from post-diagenetic free bitumens in thermally immature claystones, are present in the extracts but not the condensates. Maturity estimates based on MPI-1 values from GC-MS analysis of the aromatic fractions of the extracts appear to concur with other maturity indicators from the interval, indicating the marginal maturity of the Shipwreck Group.

The analytical data, taken together, therefore suggest that the La Bella-1 extracts do not represent a residuum of thermally mature migrated fluids, but are instead indigenous to, or very locally migrated within, the marginally mature Shipwreck Group.

Two gas samples were recovered by RFT from 2072.8m and 2160.5m, consisting of 76-77% methane, 4.5-4.8% ethane, 12-13% carbon-dioxide, and 3.4-3.9% nitrogen. Interpretation of stable carbon isotope data from the gases suggests that they were expelled from their source rocks at thermal maturities equivalent to about 1.30-1.35% VR, early in the wet-gas-generative window, having been generated by the thermal cracking of liquids rather than in association with them.

REFERENCES

BOREHAM, C.J., CRICK, I.H., and POWELL, T.G., 1988, "Alternative Calibration of the Methylphenanthrene Index Against Vitrinite Reflectance: Application to Maturity Measurements on Oils and Sediments" Org. Geochem., 12, 289-294.

PETERS, K.E., and MOLDOWAN, J.M., 1993, "The Biomarker Guide" (Prentice Hall, 363pp).

RADKE, M., WELTE, D.H., and WILLSCH, H., 1982, "Geochemical Study on a Well in the Western Canada Basin: Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter" Geoch. Cosomochim. Acta, 46, 1-10.

WAPLES, D.W., and MACHIHARA, T., 1991, "Biomarkers for Geologists : A Practical Guide to the Application of Steranes and Triterpanes in Petroleum Geology" (AAPG Mettrods in Exploration, No. 9, 91pp).

'IABLE 1-1

GEOLOGIC & GENERAL DATA - SEDIMENTS

WELL NAME = LA BELLA-1 COUNTRY = Australia BASIN = Otway

.

1

DEPTH 1	DEPTH 2	GEOLOGIC	GEOLOGIC	FORMATION	PRIMARY	PERCENT	SECONDARY	PERCENT	SAMPLE	SAMP
		PERIOD/EPOCH	AGE		LITHOLOGY	PRIMARY	LITHOLOGY	SECONDARY	TYPE	QUAL
1563.00	1563.00	L.CRET	-	SHERGP	-	-	-	-	SWC	-
1692.00	1692.00	L.CRET	-	SHERGP	-	-	-	-	SWC	-
1865.00	1865.00	L.CRET	-	SHERGP	-	-	-	-	SWC	-
1979.00	1979.00	L.CRET	-	SHERGP	-	-	-	-	SWC	-
2070.00	2070.00	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2071.20	2071.20	L.CRET	-	SHIPGP	-	-	-	-	COR	-
2095.15	2095.20	L.CRET	-	SHIPGP	-	-	-	-	COR	-
2097.70	2097.70	L.CRET	-	SHIPGP	-	-	-	-	COR	-
2100.00	2110.00	L.CRET	-	SHIPGP	-	-	-	-	CUT	-
2102.50	2102.50	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2121.00	2121.00	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2159.00	2159.00	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2232.00	2232.00	L.CRET	-	SHIPGP	-	· _	-	-	SWC	-
2309.00	2309.00	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2454.00	2454.00	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2528.00	2528.00	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2540.50	2540.50	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
2646.50	2646.50	L.CRET	-	SHIPGP	-	-	-	-	SWC	-
-						1				

N.B. Code definitions at end of table - = No data

CODE DEFINITIONS FOR TABLE 1

1

GEOLOGICAL PERIOD CODES GEOLOGICAL AGE CODES FORMATION CODES ------------L.CRET = Late Cretaceous SHERGP = Sherbrook Group SHIPGP = Shipwreck Group

> SAMPLE TYPE CODES SAMPLE QUALITY CODES CONTRA(------------COR = Conventional Core GTS = Geote

CUT = Cuttings

SWC = Sidewall Core

INBLE 1-2

GEOLOGIC & GENERAL DATA - FLUIDS

WELL NAME = LA BELLA-1 COUNTRY = Australia BASIN = Otway

DEPTH 1	DEPTH 2	SAMPLE DESCRIPTION	GEOLOGIC PERIOD/EPOCH	GEOLOGIC AGE	FORMATION	SAMPLE TYPE	SAMPLE
2072.80 2072.80	2072.80 2072.80	GAS RFT SAMPLE	L.CRET L.CRET		SHIPGP SHIPGP	GAS CON	
2160.50	2160.50	GAS RFT SAMPLE	L.CRET L.CRET	-	SHIPGP SHIPGP	GAS Con	

N.B. Code definitions at end of table - = No data

CODE DEFINITIONS FOR TABLE 1

GEOLOGICAL PERIOD CODES

GEOLOGICAL AGE CODES

FORMATION CODES

SHIPGP = Shipwreck Group

L.CRET = Late Cretaceous

SAMPLE TYPE CODES

.

SAMPLE QUALITY CODES

CONTRACTOR CODES

CSI = C.S.I.R.O GTS = Geotechnical Servics

ĩ

CON = Condensate GAS = Gas

TABLE 2

TOC AND ROCK-EVAL PYROLYSIS DATA - SEDIMENTS

WELL NAME = LA BELLA-1 COUNTRY = Australia BASIN = Otway

DEPTH 1	DEPTH 2	TOC	TMAX	S0	S1	S2	S 3	S1+S2	S2/S3	PI	PC	HI	01
1563.00	1563.00	1.90	423		.73	2 82		3 55	8 55	21		148	
1692.00	1692.00	1.50	424	-	.50	2.21	.28	2.71	7.89	.18	.22	140	1
1865.00	1865.00	1.55	433	-	. 30	1.85	.57	2.15	3.25	.14	.18	119	3
1979.00	1979.00	1.45	438	-	.23	1.56	.63	1.79	2.48	.13	.15	108	Ŭ,
2095.15	2095.20	2.05	440	-	.18	1.92	.77	2.10	2.49	.09	.17	94	3
2232.00	2232.00	1.25	449	-	.18	1.90	2.01	2.08	.95	.09	.17	152	16
2309.00	2309.00	2.35	434	-	. 31	4.30	3.27	4.61	1.31	.07	. 38	183	13
2454.00	2454.00	1.60	440	-	.20	2.27	3.41	2.47	.67	.08	.21	142	21
2528.00	2528.00	1.10	440	-	.12	1.50	1.88	1.62	. 80	.07	.13	136	17
2540.50	2540.50	73.30	428	-	7.00	188.97	2.61	195.97	72.40	.04	16.27	258	

TOC = Total organic carbonTMAX = Max. temperature S2S0 = Volatile gaseous HC'sS2 = HC generating potentialS3 = Organic carbon dioxidePI = Production indexHI = Hydrogen indexOI = Oxygen index- = no data

CODE DEFINITIONS FOR TABLE 2

INSTRUMENT CODES

RE2 = Rock-Eval II

SAMPLE TYPE CODES

COR = Conventional Core CUT = Cuttings SWC = Sidewall Core CONTRACTOR CODES

GTS = Geotechnical Servics

Figure 1

FIGURE 9

VITRINITE REFLECTANCE AND COAL MACERAL INDENTIFICATION WELL: LA BELLA-1 CLIENT: BHP PETROLEUM SAMPLE TYPE: SWC SAMPLE ID: 1563.0 METRES DATE: MAY 1993 (Total No. of Readings=25) 0.30 0.32 0.33 0.36 0.37 0.38 0.39 0.39 0.40 0.40 0.40 0.41 0.41 0.42 0.43 0.44

SAMPLE ID: 1692.0 METRES

SAMPLE TYPE: SWC

(Total No. of Readings=25) 0.42 0.43 0.44 0.45 0.47 0.47 0.48 0.50 0.50 0.51 0.52 0.52 0.52 0.52 0.53 0.53 0.53 0.53 0.54 0.54 0.55 0.56 0.58 0.60 0.65

VITRINITE	REFLECTANCE	
* * * * * * * * * * * * *		

- MACERAL IDENTIFICATION -

POPULA	TION	No. of	Mean	Min	Max	STD	Comments	7	7	7	7
Number	7	Readings	RO (%)	RO (%)	RO (%)	Dev (%)		Vitrinite	Inertinite	Uptinite	Bitumen
1	100.0	25	0.52	0.42	0.65	0.05	INDIGENOUS(+)	15.20	45.50	36.40	2.90

VITRINITE REFLECTANCE AND COAL MACERAL INDENTIFICATION WELL: LA BELLA-1 CLIENT: BHP PETROLEUM SAMPLE TYPE: SWC SAMPLE ID: 1865.0 METRES DATE: MAY 1993 (Total No. of Readings=26) 0.46 0.47 0.53 0.53 0.54 0.55 0.56 0.56 0.57 0.57 0.58 0.59 0.60 0.60

SAMPLE ID: 1979.0 METRES

SAMPLE TYPE: SWC

(Total No. of Readings=26) 0.56 0.59 0.60 0.60 0.60 0.61 0.61 0.62 0.63 0.65 0.68 0.68 0.68 0.68 0.69 0.69 0.69 0.70 0.71 0.72 0.74 0.76 0.76 0.78 0.81 0.84

	VITRINITE REFLECTANCE OPULATION No. of Readings Mean Ro (\$\vec{x}) Max Ro (\$\vec{x}) STD Dev (\$\vec{x}) Comments 1 100.0 26 0.68 0.56 0.84 0.07 INDIGENOUS(+) 20	MACERAL IDENTIFICATION									
POP Num	ULATION ber %	No. of Readings	Mean Ro (%)	Min Ro (%)	Max Ro (%)	STD Dev (%)	Comments	ズ Vitrinite	7 Inertinite	% ∐ptinite	% Bitumen
1	100.0	26	0.68	0.56	0.84	0.07	INDIGENOUS(+)	5.90	73.60	17.60	2.90
NU	20]										
M B E R	15										
0 F	10										
R E A D I N	5 -			+ + + + # # +							
G S	0 1 0)		₩ <u>₩</u> ₩₩ <u>₩₩</u> ₩₩ <u>₩</u> ₩₩₩₩₩ ▼ -	+ 1	VITRINIT	E REFLECTANCE	2	- 8 - 8 1	GEOTE	3 CH

 VITRINITE
 REFLECTANCE
 AND
 COAL
 MACERAL
 INDENTIFICATION

 WELL:
 LA BELLA-1
 CLIENT:
 BHP
 PETROLEUM
 SAMPLE
 TYPE:
 SWC

 SAMPLE
 ID:
 2232.0
 METRES
 DATE:
 MAY
 1993

 (Total No. of Readings=27)
 0.57
 0.57
 0.58
 0.59
 0.60
 0.61
 0.61
 0.63
 0.64
 0.65
 0.65
 0.67
 0.69
 0.70
 0.70

SAMPLE ID: 2309.0 METRES

SAMPLE TYPE: SWC

· · · · · · · · · · · · · · · · · · ·	- VITRINII	TE REFL	MACERAL IDENTIFICATION							
POPULATION	No. of	Mean	Min	Max	STD	Comments	%	7	%	7
Number %	Readings	Ro (%)	Ro (%)	Ro (%)	Dev (%)		Vitrinite	Inertinite	∐ptinite	Bitumen

 VITRINITE
 REFLECTANCE
 AND
 COAL
 MACERAL
 INDENTIFICATION

 WELL:
 LA
 BELLA-1
 CLIENT:
 BHP
 PETROLEUM
 SAMPLE
 TYPE:
 SWC

 SAMPLE
 ID:
 2454.0
 METRES
 DATE:
 MAY
 1993

 (Total No. of Readings=27)
 0.58
 0.59
 0.59
 0.60
 0.60
 0.61
 0.61
 0.62
 0.62
 0.63
 0.64
 0.64
 0.65
 0.65

 0.67
 0.68
 0.68
 0.70
 0.72
 0.74
 0.74
 0.78

SAMPLE ID: 2540.5 METRES

SAMPLE TYPE: SWC

(Total No. of Readings=27) 0.53 0.53 0.55 0.55 0.57 0.58 0.59 0.59 0.60 0.61 0.62 0.62 0.62 0.63 0.63 0.64 0.65 0.65 0.65 0.66 0.66 0.67 0.68 0.71 0.72

		VITRINI	re refl	ECTANC	E			MA	CERAL IDE	NTIFICATI	ON
POPUL	ATION r %	No. of Readings	Mean Ro (%)	Min Ro (%)	Max Ro (%)	STD Dev (%)	Comments	% Vitrinite	7 Inertinite	7 Uptinite	% Bitumen
1	100.0	27	0.62	0.53	0.72	0.05	INDIGENOUS(+)	99.90	0.10	0.00	0.00
N U	20]										
B E R	15										
O F	10										
E A D	5			++							
N G S	0 +		++ ₩+ 		1	VITRINIT	E REFLECTANCE	2		GEOTE	 3 ICH

VITRINITE REFLECTANCE AND COAL MACERAL INDENTIFICATION WELL: LA BELLA-1 CLIENT: BHP PETROLEUM SAMPLE TYPE: SWC SAMPLE ID: 2646.5 METRES DATE: MAY 1993 (Total No. of Readings=26) 0.52 0.54 0.58 0.60 0.60 0.62 0.62 0.63 0.63 0.65 0.65 0.65 0.66 0.67 0.68 0.68

GEOTECH

TABLE 3

VITRINITE REFLECTANCE AND COAL MACERAL DATA - SEDIMENTS ALL MACERAL POPULATIONS

WELL NAME = LA BELLA-1 COUNTRY = Australia BASIN = Otway

.

1

DEPTH 1	DEPTH 2	POPULATION TYPE	MEAN % REFL.	MINIMUM % REFL.	MAXIMUM % REFL.	NUMBER READINGS	STANDARD DEVIATION	% ALGINITE	MACERAL C % EXINITE
1563.00	1563.00	v	. 41	. 30	.50	25	.05	0.00	4 . 30
1692.00	1692.00	v	. 52	. 42	.65	25	.05	18.80	18.80
1865.00	1865.00	v	. 58	.46	.68	26	.05	16.20	10.80
1979.00	1979.00	v	.68	. 56	.84	26	.07	9.10	9.10
2232.00	2232.00	v	.67	.57	. 79	27	.07	0.00	2.60
2309.00	2309.00	v	. 62	. 52	• 75	28	.06	1.80	7.30
2454.00	2454.00	v	. 65	. 58	. 78	27	.06	0.00	5.70
2540.50	2540.50	v	.62	.53	.72	27	.05	0.00	0.00
2646.50	2646.50	v	.66	. 52	. 79	26	.06	5.60	5.60

-

CODE DEFINITIONS FOR TABLE 3

1

1

POPULATION TYPE CODES

V = VITRINITE

CONTRACTOR CODES GTS = Geotechnical Servics 27

JOB NO. 1916A, LA BELLA - 1 OTWAY BASIN

Sample No(s)	Depth(m)/ Sample type	R max V (%)	Range (%)	N	Description Including Liptinite Fluorescence Characteristics
v7733	1563 SWC8	0.41	0.30-0.50	25	Rare cutinite and liptodetrinite, yellow to orange, rare sporinite, bright yellow to orange, rare telalginite, bright yellow. (Silty claystone. Dom abundant, I>>V>L. Inertinite abundant, vitrinite and liptinite sparse. Oil drops rare, greenish yellow. Mineral fluorescence pervasive, faint green. Iron oxides sparse. Pyrite abundant.)
v7734	1692 SWC4	0.52	0.42-0.65	25	Common lamalginite and liptodetrinite, greenish yellow to orange. (Calcareous claystone. Dom common, I>L>V. Inertinite and liptinite common, vitrinite sparse. Bitumen rare, yellow. Mineral fluorescence pervasive, moderate green to yellowish orange. Iron oxides sparse. Glauconite sparse. Pyrite abundant.)
v7735	1865 SWC 147	0.58	0.46-0.68	26	Common lamalginite, greenish yellow to orange. Sparse liptodetrinite, greenish yellow to orange. (Calcareous silty claystone. Dom abundant, I>L>V. Inertinite abundant, liptinite common, vitrinite sparse. Bitumen rare, yellow. Mineral fluorescence pervasive, moderate green to greenish yellow. Iron oxides sparse. Glauconite rare. Pyrite abundant.)
v7736	1979 SWC143	0.68	0.56-0.84	26	Sparse lamalginite and liptodetrinite, yellow to orange, rare sporinite, orange to dull orange. Clayey siltstone>>sandstone. Dom abundant, 1>L>V. Inertinite abundant, liptinite common, vitrinite sparse. Bitumen rare, yellow. Mineral fluorescence pervasive, moderate green to greenish yellow. Iron oxides sparse. Glauconite rare. Pyrite abundant.)
v7737	2232 SWC103	0.66	0.57-0.79	27	Rare cutinite, lamalginite and liptodetrinite, yellow to orange, rare resinite, yellow orange. (Siltstone. Dom abundant, I>V>L. Inertinite abundant, vitrinite common, liptinite sparse. Oil drops rare, greenish yellow. Mineral fluorescence pervasive, yellow to dull orange. Iron oxides sparse. Pyrite common.)
v7738	2309 SwC93	0.62	0.52-0.75	28	Sparse cutinite, yellow to orange, sparse lamalginite bright yellow to orange, rare resinite greenish yellow to orange, rare liptodetrinite and sporinite, yellow to orange. (Siltstone>sandstone. Dom abundant, 1>V>L. Inertinite and, vitrinite abundant, liptinite common. Bitumen rare, greenish yellow to orange. Oil drops rare, greenish yellow. Mineral fluorescence pervasive, faint green to dull orange. Iron oxides abundant. Pyrite common.)
v7739	2454 SWC81	0.65	0.58-0.78	27	Sparse cutinite, yellow to orange, rare lamalginite, sporinite and liptodetrinite, yellow to orange. (Siltstone. Dom abundant, I>V>L. Inertinite and vitrinite abundant, liptinite sparse. Bitumen rare, orange. Mineral fluorescence pervasive, faint green to dull orange. Iron oxides common. Pyrite

sparse.)

. .

JOB NO. 1916A, LA BELLA - 1 OTWAY BASIN

-

.

•

.

.

Sample No(s)	Depth(m)/ Sample type	R max V (%)	Range (%)	N	Description Including Liptinite Fluorescence Characteristics
v7740	2540.5 SWC-74	0.62	, 0.53-0.72	27	Fluorescing liptinite absent. Coal, V>>I. Vitrite only. Mineral-free maceral group composition of the coal: vitrinite - 100%, inertinite - <<0.1%, liptinite - absent. Iron oxides rare. Pyrite rare.)
v7741	2646.5 SWC-65	0.66	0.52-0.79	26	Sparse cutinite, yellow to orange, rare telalginite and lamalginite, bright yellow to orange, rare sporinite and liptodetrinite, yellow to orange. (Carbonate>calcareous sandstone>claystone. Dom common, I>L>V. Inertinite common, liptinite and vitrinite sparse. Bitumen rare, yellow to orange. Mineral fluorescence pervasive, faint green to orange. Iron oxides common. Pyrite sparse.)

.

SUMMARY OF WHOLE OIL ANALYSIS

-

.

WELL		LA BELLA-1	DEPTH	1 =	2072.80	DEPTH U	NIT	=	Metre	s
COUNTRY	=	Australia	DEPTH	2 =	2072.80	DATE OF	JOB	=	Sept	93
BASIN	=	Otway								

DESCRIPTION : RFT SAMPLE

COMPOSITION BY CA	ARBON NUMBER	COMPOSITION OF C4-C8 FRACTION	
Data Type = ALL (CMPDS	***************************************	
Carbon Number	Rel. Wt %	Compound Rel. Wt %	
$ \begin{array}{r} 1 & - & 3 \\ 4 & 5 \\ 6 & 7 \\ 8 & 9 \\ 9 & 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ \end{array} $	0.02 0.50 6.34 24.70 30.05 11.57 6.51 7.51 4.22 2.87 1.88 1.37 0.88 0.36 0.65 0.15 0.08 0.04 0.02 0.07 0.14 0.02 0.07 0.14 0.01 0.02 0.07 0.14 0.01 0.02 0.01 0.001 0.001	<pre>isobutane (A) 0.10 n-butane (B) 0.40 isopentane (C) 2.70 n-pentane (D) 3.13 2,2-dimethylbutane (E) 0.42 cyclopentane (F) 0.51 2,3-dimethylbutane (G) 0.87 2-methylpentane (I) 2.40 n-hexane (J) 5.27 methylcyclopentane (K) 4.77 2,4-dimethylpentane (L) 0.58 benzene (M) 0.39 cyclohexane (N) 6.33 1,1-dimethylcyclopentane (O) 0.81 2-methylhexane (P) 2.04 3-methylhexane (P) 2.04 3-methylhexane (Q) 3.16 1 cis-3-dimethylcyclopentane (R) 1.00 1 trans-3-dimethylcyclopentane (S) 1.68 1 trans-2-dimethylcyclopentane (T) 0.13 n-heptane (U) 4.34 methylcyclopentane (W) 0.34 n-toluene (X) 1.19 n-octane (Y) 3.16 ethylbenzene (Z) 0.51 M+P-xylene (AA) 0.69 0_xylene (BB) 0.25</pre>	
CALCULATED DATA -	C12+ FRACTION	CALCULATED DATA - C4-C8 FRACTION	
Pristane/Phytane Pristane/n-C17 Phytane/n-C18 TMTD/Pristane (C21+C22)/(C28+C2	8.38 2.66 0.52 0.78 9) 7.33	Paraffin Index I 1.85 Paraffin Index II 12.65 N/K (Maturity) 1.33 C/D (Maturity) 0.86 J/K (Maturity) 1.10 I/M (Water Washing) 6.18 I/J (Biodegradation) 0.45	
TMTD = Trimethylt - = Below dete or not mea	ridecane ction limit sured	Paraffin Index I = (P+Q) / (R+S+T) Paraffin Index II = %U in all compounds N to V and including 2,2-DiMeC6 and 2,3-DiMeC	C5

SUMMARY OF WHOLE OIL ANALYSIS

..

	,	
WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway	DEPTH 1 = 2160.50 DEPTH 2 = 2160.50	DEPTH UNIT = Metres DATE OF JOB = Sept 93
•		

DESCRIPTION : RFT SAMPLE

COMPOSITION BY CA	RBON NUMBER	COMPOSITION OF C4-C8 FRAG	CTION
Data Type = ALL C	CMPDS		
Carbon Number	Rel. Wt %	Compound	Rel. Wt %
1 - 3	0.13	isobutane (A)	0.45
4	1.87	n-butane (B)	1.42
5	10.78	isopentane (C)	4.21
6	30.57	n-pentane (D)	5.55
7	38.41	2,2-dimethylbutane (E)	0.57
8	8.05	cyclopentane (F)	1.03
9	3.30	2,3-dimethylbutane (G)	0.44
10	2.98	2-methylpentane (H)	4.64
11	1.25	3-methylpentane (I)	2.53
12	0.89	n-hexane (J)	5.47
13	0.48	methylcyclopentane (K)	5.84
14	0.37	2,4-dimethylpentane (L)	9.42
15	0.22	benzene (M)	1.26
16	0.12	cyclohexane (N)	9.82
17	0.18	1.1-dimethylcyclopentane (0)	0.60
18	0.08	2-methylbexane (P)	1.72
19	0.06	3-methylbexape (0)	2.45
20	0.05	1 cis-3-dimethylcyclopentane (B)	0.80
21	0.04	1 trans-3-dimethylcyclopentane (S)	1 39
22	0.03	1 trans-2-dimethylcyclopentane (T)	0 10
23	0.02	n-hentane (II)	3 00
24	0.06	methylcyclobeyane (V)	14 86
25	0.02	1 cis-2 - dimethyl cyclopentane (W)	0 22
26	0.01	n-toluene (X)	3 76
27	0.01	n = octane (X)	1 66
28	0.01	athulhonzono (7)	0 51
29	0.00	M+P-yylene (AA)	1 85
30	0.00	0 vulene (BR)	
31	0.00	O_AJIENE (DD)	0.44
32	0.00		
33	-		
55			
CALCULATED DATA -	C12+ FRACTION	CALCULATED DATA - C4-C8 FRA	ACTION
Pristane/Phytane	4.91	Paraffin Index I 1.82	
Pristane/n-C17	0.83	Paraffin Index II 8.88	
Phytane/n-C18	0.21	N/K (Maturity) 1.68	
TMTD/Pristane	0.85	C/D (Maturity) 0.76	
(C21+C22)/(C28+C2	9) 7.50	J/K (Maturity) 0.94	
		I/M (Water Washing) 2.00	
		I/J (Biodegradation) 0.46	
TMTD = Trimethylt - = Below dete or not mea	ridecane ction limit sured	Paraffin Index I = (P+Q) / (R+S+T) Paraffin Index II = %U in all compo N to V and inc 2 2-DiMeC6 and	unds luding 2 3-DiMaC5

.

1994902

FIGURE 12

GEOTECHNICAL SERVICES PTY LTD

C4-C8 Compounds

Α	isobutane
8	n-butane
С	isopentane
D	n-pentane
Ε	2,2-dimethylbutane
F	cyclopentane
G	2,3-dimethylbutane
н	2-methylpentane
1	3-methylpentane
J	n-hexane
κ	methylcyclopentane
L	2,4-dimethylpentane
М	benzene
N	cyclohexane
0	1,1-dimethylcyclopentane
Ρ	2-methylhexane
Q	3-methylhexane
R	1 cis-3-dimethylcyclopentane
S 1 1	trans-3-dimethylcyclopentane
T11	trans-2-dimethylcyclopentane
U	n-heptane
v	methylcyclohexane
W	1 cis-2-dimethylcyclopentane
х	toluene
Y	n-octane
Z	ethylbenzene
AA	M + P-xylene
BB	O-xylene

TABLE 6

SUMMARY OF EXTRACTION AND LIQUID CHROMATOGRAPHY - SEDIMENTS

WELL NAME = LA BELLA-1 COUNTRY = Australia BASIN = Otway

DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1	DEPTH 2	WEIGHT OF ROCK EXTD (grams)	TOTAL EXTRACT (ppm)	LOSS ON COLUMN (ppm)	% REC.	SATURATES (ppm)	AROMATICS (ppm)	POLARS (ppm)	SATURATES (rel %)	AROMATICS (rel %)	POLARS (rel %)	EOM(mg)/ TOC(g)	SAT(mg)/ TOC(g)	SAT/ Arom	HC/ non-HC
2070.00	2070.00	18.70	332.4	-	_										
2071.20	2071.20	49.70	376.0	-	-	_	-	-	-	-	-	-	-	-	-
2095.15	2095.20	97.10	244.0	-	-	_	_	_	-	-	-	-	-	-	-
2097.70	2097.70	81.40	443.4	-	-	_	-	-	-	-	-	11.9	-	-	-
2100.00	2110.00	74.80	344.8	37.4	89.2	116.3	96.2	<u>a/</u> a	27 8	21 2	20 0	-	-		
2102.50	2102.50	10.60	783.8	-	•,•=	-	,0.2	J J	51.0	51.5	30.9	-	-	1.21	2.24
2121.00	2121.00	13.50	665.2	-	-	_	-	-	-	-	-	-	-	-	-
2159.00	2159.00	10.60	511.4	-	-	-	-	-	-	-	-	-	-	-	-

-

GEOTECHNICAL SERVICES PTY LTD

-

•

TABLE 7

SUMMARY OF LIQUID CHROMATOGRAPHY - CONDENSATES

٠

WELL NAME COUNTRY BASIN	= LA BELLA-1 = Australia = Otway				DEPTH UNIT DATE OF JOB	= Metres = Oct 93
DEPTH 1	DEPTH 2	SATURATES (REL %)	AROMATICS (REL %)	POLARS (REL %)	SAT/ Arom	HC/ non-HC
2072.80	2072.80					
2160.50	2160.50	-	-	-	-	-

t

-----SAT = Saturated compounds AROM = Aromatic cor runds HC = Hydrocarbon

- = no data

GEOTECHNICAL SERVICES PTY LTD

TABLE 8

SUMMARY OF GAS CHROMATOGRAPHY DATA - CONDENSATES ALKANE DISTRIBUTIONS

DEPTH UNIT = Metres DATE OF JOB = Oct 93

WELL NAME = LA BELLA-1 COUNTRY = Australia BASIN = Otway

DEPTH 1	DEPTH 2	nC12 nC13	nC14	TMTD	nC15	nC16	iC18	nC17	1C19	nC18	1020	nC19	nC20	nC21	nC22	nC23	nC24	nC25	nC26	nC27	nC28	nC29	nC30	nC31	nC32	nC33
2072.80 2160.50	2072.80 2160.50	21.6 16.1 19.5 13.3	11.2 9.7	6.1 3.0	8.2 7.3	5.4 5.8	3.1 1.8	4.2	10.7 4.1	2.9 4.7	1.3	2.6	1.7	1.3	1.0 2.9	.8 2.5	.6 2.2	.5 2.0	.4 1.3	.3 1.1	.2 .6	0.0	0.0	0.0	0.0	0.0

4

n = normal TMTD = Trimethyltridecane - = no data

N.B. Values are relative 🗶

-

GEOTECHNICAL SERVICES PTY LTD

- .

٢

12 |

GEOTECHNICAL SERVICES PTY LTD

•

.

TABLE	9
-------	---

SUMMARY OF GAS CHROMATOGRAPHY DATA - SEDIMENTS ALKANE DISTRIBUTIONS

DEPTH UNIT = Metres DATE OF JOB = Oct 93

WELL NAME	-	LA BELLA-1
COUNTRY	=	Australia
BASIN	=	Otway

DEPTH 1	DEPTH 2	nC12	nC13	nC14	TMTD	nC15	nC16	iC18	nC17	1019	nC18	iC20	nC19	nC20	nC21	nC22	nC23	nC24	nC25	nC26	nC27	nC28	nC29	nC30	nC31	nC32	nC33
2070.00	2070.00	3.9	5.8	6.3	3.0	6.8	6.0	3.0	6.0	9.2	5.3	1.6	5.1	4.4	3.8	3.3	2.7	3.1	3.1	2.9	3.2	3.4	2.7	2.1	1.4	.8	1.0
2095.15	2095.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2097.70 2100.00	2097.70 2110.00	2.7	3.0 3.8	3.6 4.4	2.6	7.4 5.8	5.4	2.3	2.9	8.1	2.2	1.1	2.4	2.8	3.4	3.7	4.1	4.2	4.9	4.6	5.6	4.7	5.7	3.8	4.5	1.8	2.3
2102.50	2102.50	-	10 2	-	-		-	-		-	-	-	-	-	-	-	-	-	J.U -	J.1 -	-	J.2 -	J.J -	-	-	-	-
2159.00	2159.00	4.9	4.7	9.9 4.2	3.0 2.6	6.4 3.8	ь.2 3.8	3.1 2.5	5.6 4.4	5.5 8.3	4.2 5.3	1.3	3.2 5.6	2.6 5.2	2.2 4.4	2.1 3.9	2.0 3.3	1.8 3.5	1.8 3.6	1.5 3.8	1.5 4.4	$1.4 \\ 4.1$	1.1 4.2	.8 2.6	.7 2.6	.3 1.2	.4 1.5

1

n = normal - = no data TMTD = Trimethyltridecane N.B. Values are relative 🗶

.

TABLE 10

SUMMARY OF GAS CHROMATOGRAPHY DATA - CONDENSATES Alkane compositional data

WELL NAME COUNTRY BASIN	8 = LA BELLA- = Australia = Otway	1						DEPTH DATE	UNIT = Metres OF JOB = Oct 93
DEPTH 1	DEPTH 2	ANALYSIS TYPE	PRISTANE/PHYTANE	PRISTANE/n-C17	PHYTANE/n-C18	TMTD/PRISTANE	CPI(I)	CPI(II)	(C21+C22)/(C28+C29)
2072.80 2160.50	2072.80 2160.50	SF SF	8.26 5.56	2.54 0.82	0.44 0.16	0.57 0.72	0.95	0.95	13.49 6.32

CPI = Carbon preference index TMTD = Trimethyltridecane - = > data SF = Saturate fraction WE = Whole extract

•
TABLE 11

SUMMARY OF GAS CHROMATOGRAPHY DATA - SEDIMENTS ALKANE COMPOSITIONAL DATA

.

WELL NAME = LA BELLA-1 COUNTRY = Australia BASIN = Otway

;

.

DEPTH 1	DEPTH 2	ANALYSIS TYPE	PRISTANE/PHYTANE	PRISTANE/n-C17	PHYTANE/n-C18	TMTD/PRISTANE	С
							-
2070.00	2070.00	SF	5.70	1.53	0.30	0.33	
2071.20	2071.20	WE	-	-	-	-	
2095.15	2095.20	WE	-	-	-	-	
2097.70	2097.70	SF	7.54	2.78	0.48	0.32	
2100.00	2110.00	SF	4.93	1.31	0.24	0.35	
2102.50	2102.50	WE	-	-	-	-	
2121.00	2121.00	SF	4.38	0.97	0.30	0.55	
2159.00	2159.00	SF	5.56	1.91	0.28	0.31	

CPI = Carbon preference index TMTD = Trimethyltridecane - = no data SF = Saturate fraction WE = Whole extract

m/z 191 and m/z 217 biomarker traces: 2072.8m condensate

.

m/z 191 and m/z 217 biomarker traces: 2160.5m condensate

FIGURE 28

m/z 191 and m/z 217 biomarker traces: 2097.7m extract

m/z 191 and m/z 217 biomarker traces: 2100-2110m extract

m/z 191 and m/z 217 biomarker traces: 2121m extract

FIGURE 33

m/z 191 and m/z 217 biomarker traces: 2159m extract

TABLE 12-1

SATURATE FRACTION SIR GC/MS DATA - OILS DETAILED COMPOUND ANALYSIS

WELL = LA BELLA-1 COUNTRY = AustraliaDESCRIPTION : RFT SAMPLEBASIN = OtwayDEPTH 1 = 2072.80DEPTH 2 = 2072.80

•

DEPTH UNIT = Metres DATE OF JOB = Oct 93

-

COMPOUND	ION	RELATIVE AMOUNT	COMPOUND	ION	RELATIVE AMOUNT
C23 Tricyclic	191	1953.0	C24 Tricyclic	191	1336.0
C25 Tricyclic	191	814.0	C26 Tricyclic	191	1122.0
C28 Tricyclic	191	1268.0	C29 Tricyclic	191	1073.0
C24 Tetracyclic	191	803.0			
C27 Hopane (Ts)	191	766.0	C27 Hopane (Tm)	191	834.0
C27 Hopane (17B)	191	-	• • •		
C28 Hopane (25,30)	191	-	C28 Hopane (28,30)	191	-
C29 Hopane	191	1686.0	C29 Moretane	191	217.0
- C29 Demeth. Hopane	191	-	C29 Hopane (BB)	191	
C30 Hopane	191	2284.0	C30 Moretane	191	151.0
C30 Hopane (BB)	191	-			
C31S Hopane	191	715.0	C31R Hopane	191	496.0
C31S+R Hopane (BB)	191	-	C31S+R Moretane	191	_
C32S Hopane	191	342.0	C32B Honane	191	267.0
C32S+R Hopane (BB)	191	-	C32S+R Moretane	191	-
C33S Hopane	191	-	C33R Hopane	191	-
Gammacerane	191	-	0 leanane (18a)	191	_
Unknown 1	191	-	Unknown 2	101	151 0
Unknown 3	191	461.0		101	239 0
C27 Demeth. Hopane	177	-	C28 Demeth Hopene	177	433.0
C29 Hopane	177	-	C29 Demeth Hopene	177	-
C29 Moretane	177	-	(29 Honane (BB)	177	_
Unknown 3	177	_	CZ/ NOPANE (DD)	111	-
C30 2-Methylhopane	205	-	C31 2-Methylbonane	205	_
C31S Hopane	205	-	C31R Honane	205	-
C31S+R Moretane	205	-	C31S+R Honane (BB)	205	_
C21 Sterane	217	-	C22 Sterane	203	_
C27S Normal Sterane	217	-	C27P Normal Sterane	217	1034 0
C27S Isosterane	217	-	C27R Teosterane	217	1034.0
C27S Diasterane	217	-	C27R Dissterane	217	-
C28S Normal Sterane	217	168 0	C28R Normal Sterane	217	204 0
C28S Isosterane	217	-	C28R Teosterspe	217	374.0
C28S Diasterane	217	_	C28P Dissterance	217	-
C29S Normal Sterane	217	880 0	C20R Normal Sterane	217	-
C29S Isosterane	217	1281 0	C29R Teosterane	217	792.0
C29S Diasterane	217	1770 0	C29R Dissterance	217	1231.0
C27S+R Isosterane	218	3773 0		217	11/6.0
C29S+R Isosterane	218	4153 0	CZOSTR ISOSLEIANE	210	1856.0
C275 Disstarane	250	1101 0			504 0
C28S Discterane	259	672 0	C27R Diasterane	259	581.0
C295 Dissterane	259	920.0	C20R Diasterane	259	486.0
16a Phyllogladano	122	720.0	CZFR Diasterane	259	645.0
Beverene	123	354 0	lob Phyliocladane	123	/1/.0
Fichtelite	172	334.0	Labdane	123	-
Nortetracuclano	123	-	Rimuane	123	-
Isopimorano	122	434.0	Pimerane Vousee	123	-
Nonicopimerane	123	-	Kaurane	123	-
Drimane	123	03/.U	Unknown 1	123	
Primane Rearranged Duirans 1	123	4473.U	Homodrimane	123	7358.0
Fudermane	122	0903.V	Rearranged Drimane 2	123	3201.0
	123	-		_	
C13 AIRYICYCIONEXANE	83	-	C17 Alkylcyclohexane	83	-
C21 Alkylcyclohexane	83	-	C22 Alkylcyclohexane	83	-
	دة 		C29 Alkylcyclohexane	83	-

- = no data IUPAC names corresponding to common names used here are shown at the end of the tables

SATURATE FRACTION SIR GC/MS DATA - OILS

CALCULATED DATA

DESCRIPTION : RFT SAMPLE

WELL	-	LA BELLA-1	DEPTH	1(m)	=	2072.80	DEPTH	I UN	IIT	=	Metr	es
COUNTRY	=	Australia	DEPTH	2(m)		2072.80	DATE	OF	JOB	=	Oct	93
BASIN	=	Otway										

----- TERPANE PARAMETERS -----

PARAMETER	ION(s)	VALU
TS / (TS + Tm)	191	47.8
* C29 M / (C29 H + C29 M)	191	11.4
* C30 M / (C30 H + C30 M)	191	6.2
% C31S H / (C31S H + C31R H)	191	59.0
C31S H / (C31S H + C31R H)	205	-
* C32S H / (C32S H + C32R H)	191	56.1
¥ U1-U4 / (U1-U4 + C30 H)	191	-
* U1 / (U1 + C30 H)	191	-
$\frac{1}{2}$ U2 / (U2 + C30 H)	191	6.2
* U3 / (U3 + C30 H)	191	16.7
* U4 / (U4 + C30 H)	191	9.4
* C29 H / (C29 H + C30 H)	191	42.4
% C31 2-MeH / (C31 2-MeH + C30 H)	191, 205	-
* C29 BB / (C29 BB + C 29H + C29 M)	191	-
% C29 DeMe / (C29 DeMe + C29H)	177	-
% C28 H's / (C28 H's + C30 H)	191	-
% (Ts + Tm + C28 H's) / C29(H + M) + C30(H + M)	191	-
% Oleanane (18a) / (Oleanane + C30H)	191	-
% Drimane / Homodrimane	123	61.0
% Rea. Drimanes / (Drimane + Homodrimane)	123	85.9
C22 Alkycyclohex. / C30 H	83, 191	-
<pre>% C29 Alkycyclohex. / C30 H</pre>	83, 191	-
C23-C29 Tricyclics / C30 H	191	331.2
k (C30 H + C30 M) / (C29(NS's + IS's + DS's)	191, 217	34.1
STERANE PARAMETERS		
PARAMETER	ION(s)	VALU
* C27 ST's / (C27 + C28 + C29) ST's	217	-
% C28 ST's / (C27 + C28 + C29) ST's	217	-
* C29 ST's / (C27 + C28 + C29) ST's	217	-
* C27S NS / (C27S NS + C27R NS)	217	-
* C28S NS / (C28S NS + C28R NS)	217	29.8
C29S NS / (C29S NS + C29R NS)	217	52 6
C27 NS's / C29 NS's	217	-
C27 IS's / C29 IS's	217	_
C27 DS's / C29 DS's	217	-
C27 DS's / C27 ST's	217	_
C28 DS's / C28 ST's	217	_
k C29 DS's / C29 ST's	217	A1 2
C27 IS's / (C27 IS's + C27 NS's)	217	****
k C28 IS's / (C28 IS's + C28 NS'e)	217	-
k (29) TS's / ((29) TS's + (20) NS's)	<u>4</u> ⊥/	-
,, 10 2 / (027 13 5 + 027 N3 8)	21/ 	60.0-
2S : H = Hopane M = Moretane Me = Meth	yl NS = Norr	mal Sterane
IS = Iso Sterane DS = Dia Sterane ST = NS +	IS + DS U = Unkno	own
- = no data available		

TABLE 13-1

SATURATE FRACTION SIR GC/MS DATA - OILS DETAILED COMPOUND ANALYSIS

WELL = LA BELLA-1 COUNTRY = AustraliaDESCRIPTION : RFT SAMPLEBASIN = OtwayDEPTH 1 = 2160.50DEPTH 2 = 2160.50

DEPTH UNIT = Metres DATE OF JOB = Oct 93

COMPOUND	ION RELATIVE AMOUNT		COMPOUND	ION	RELATIVE AMOUNT
C23 Tricyclic	Tricyclic 191		C24 Tricyclic	191	541.0
C25 Tricyclic	191	329.0	C26 Tricyclic	191	5698.0
C28 Tricyclic	191	604.0	C29 Tricyclic	191	495.0
C24 Tetracyclic	191	373.0			47510
C27 Hopane (Ts)	191	479.0	C27 Hopane (Tm)	191	684.0
C27 Hopane (17B)	191	-			
C28 Hopane (25.30)	191	-	C28 Hopane (28.30)	191	-
C29 Hopane	191	1738.0	C29 Moretane	191	190 0
C29 Demeth Honane	191		C29 Hopane (BB)	191	
C30 Hopane	191	2184 0	C30 Moretane	191	308 0
C30 Hopene (BB)	191	-		171	500.0
C315 Hopane	101	877 0	C31P Nonana	101	649 0
C31S+P Hopene (PP)	101	-	C315.B Monotono	101	646.0
C32S Hopene (BB)	101	470 0	C315+R Moretane	191	-
C32S+P Hopene (PP)	101	4/0.0	C226 · P Monotone	101	319.0
C335 Nopane (BB)	101	_	C22D Nemone	101	-
Comma company	101	-	Classes (18a)	101	-
	101	-	Uleanane (16a)	191	-
	101	-	Unknown 2	191	169.0
Cor Deseth Wasses	191	3/4.0	Unknown 4	191	301.0
C27 Demeth. Hopane	1//	-	C28 Demeth. Hopane	177	-
C29 Hopane	177	-	C29 Demeth. Hopane	177	-
C29 Moretane	177	-	C29 Hopane (BB)	177	-
Unknown 3	177	-			
C30 2-Methylhopane	205	-	C31 2-Methylhopane	205	-
C31S Hopane	205	-	C31R Hopane	205	-
C31S+R Moretane	205	-	C31S+R Hopane (BB)	205	-
C21 Sterane	217	-	C22 Sterane	217	-
C27S Normal Sterane	217	-	C27R Normal Sterane	217	418.0
C27S Isosterane	217	-	C27R Isosterane	217	-
C27S Diasterane	217	-	C27R Diasterane	217	-
C28S Normal Sterane	217	107.0	C28R Normal Sterane	217	201.0
C28S Isosterane	217	-	C28R Isosterane	217	-
C28S Diasterane	217	-	C28R Diasterane	217	-
C29S Normal Sterane	217	559.0	C29R Normal Sterane	217	527.0
C29S Isosterane	217	753.0	C29R Isosterane	217	737.0
C29S Diasterane	217	886.0	C29R Diasterane	217	550.0
C27S+R Isosterane	218	1323.0	C28S+R Isosterane	218	926.0
C29S+R Isosterane	218	2438.0			
C27S Diasterane	259	350.0	C27R Diasterane	259	202.0
C28S Diasterane	259	255.0	C28R Diasterane	259	219.0
C29S Diasterane	259	417.0	C29R Diasterane	259	263.0
16a Phyllocladane	123	-	16B Phyllocladane	123	1860.0
Beyerene	123	1099.0	Labdane	123	-
Fichtelite	123	-	Rimuane	123	-
Nortetracyclane	123	994.0	Pimerane	123	-
Isopimerane	123	-	Kaurane	123	-
Norisopimerane	123	1357.0	Unknown 1	123	-
Drimane	123	14592.0	Homodrimane	123	26253.0
Rearranged Drimane 1	123	18008.0	Rearranged Drimane 2	123	10134.0
Eudesmane	123	-			
C15 Alkylcyclohexane	83	-	C17 Alkylcyclohexane	83	-
C21 Alkylcyclohexane	83	• -	C22 Alkylcyclohexane	83	-
C25 Alkylcyclohexane	83	-	C29 Alkylcyclohexane	83	-

- = no data IUPAC names corresponding to common names used here are shown at the end of the tables

TABLE 13-2

SATURATE FRACTION SIR GC/MS DATA - OILS

CALCULATED DATA

DESCRIPTION : RFT SAMPLE

WELL	=	LA BELLA-1	DEPTH	1(m)	-	2160.50	DEPTI	i Ul	TI	=	Metr	es
COUNTRY	=	Australia	DEPTH	2(m)	-	2160.50	DATE	OF	JOB	-	0ct	93
BASIN	=	Otway										

----- TERPANE PARAMETERS ------

TERPANE PARAMETERS		
PARAMETER	ION(s)	VALUE
	**	
*TS / (TS + Tm)	191	41.19
% C29 M / (C29 H + C29 M)	191	9.85
* C30 M / (C30 H + C30 M)	191	12.36
* C31S H / (C31S H + C31R H)	191	57.51
$\frac{1}{3}$ C31S H / (C31S H + C31R H)	205	-
$\frac{1}{3}$ C32S H / (C32S H + C32R H)	191	59.57
$\frac{1}{1}$ U1-U4 / (U1-U4 + C30 H)	191	-
$\frac{1}{1}$ U1 / (U1 + C30 H)	191	-
* U2 / (U2 + C30 H)	191	7.18
* U3 / (U3 + C30 H)	191	14.62
* U4 / (U4 + C30 H)	191	12 11
$C_{29} H / (C_{29} H + C_{30} H)$	191	44 31
k C31 2-MeH / (C31 2-MeH + C30 H)	191 205	-
* C29 BB / (C29 BB + C 29H + C29 M)	191	_
$k C_{29} D_{eMe} / (C_{29} D_{eMe} + C_{29}H)$	177	_
k C28 H' e / (C28 H' e + C30 H)	101	_
$k (T_{R} + T_{m} + C_{28} H'_{R}) / C_{29}(H + M) + C_{30}(H + M)$	101	-
(13, 13, 13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	191	_
* Drimane / Homodrimane	123	55 59
* Rea. Drimanes / (Drimane + Homodrimane)	123	68 90
* C22 Alkycycloher / C30 H	83 101	-
k C29 Alkycyclohev / C30 H	82 101	
k (23-C29) Tricyclica / C30 H	101	-
$\mathbf{F} = (C30 \text{ H} + C30 \text{ M}) / (C30 \text{ MS}^2 + TS^2 + DS^2 \text{ m})$	101 217	390.96
STERANE PARAMETERS ·	 TON (g)	1781 115
* C27 ST's / (C27 + C28 + C29) ST's	217	-
% C28 ST's / (C27 + C28 + C29) ST's	217	-
% C29 ST's / (C27 + C28 + C29) ST's	217	-
* C275 NS / (C275 NS + C27R NS)	217	-
* C285 NS / (C285 NS + C28R NS)	217	34.74
% C2 9S NS / (C29S NS + C29R NS)	217	51.47
% C27 NS's / C29 NS's	217	-
% C27 IS's / C29 IS's	217	-
* C27 DS's / C29 DS's	217	-
* C27 DS's / C27 ST's	217	-
¥ C28 DS's / C28 ST's	217	-
* C29 DS's / C29 ST's	217	35.79
* C27 IS's / (C27 IS's + C27 NS's)	217	-
* C28 IS's / (C28 IS's + C28 NS's)	217	_
* C29 IS's / (C29 IS's + C29 NS's)	217	57 84
	<i>41 '</i>	J7.04
ES : H = Hopane M = Moretane Me = Met	hyl NS = Nor	mal Sterane
IS = Iso Sterane DS = Dia Sterane ST = NS	+ IS + DS U = Unkn	own
- = no data available		

TABLE 14-1

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS DETAILED COMPOUND ANALYSIS

WELL = LA BELLA-1

DEPTH UNIT = Metres DATE OF JOB = Oct 93

-

WELL = LA BELLA-1		DETAILED COMP	OUND ANALYSIS	DEPTH	UNIT = Metres
COUNTRY = Australia				DATE O	F JOB = Oct 93
BASIN = Otway	1	DEPTH 1 = 2070.00	DEPTH 2 = 2070.00		
COMPOUND	ION	RELATIVE AMOUNT	COMPOUND	ION	RELATIVE AMOUNT
C23 Tricyclic	191	1225 0	C24 Tricyclic	191	788 0
C25 Tricyclic	101	-	C24 Tricyclic	101	,00.0
C28 Tricyclic	101	_	C20 Tricyclic	101	_
C24 Tetragualia	101	-		171	-
C24 Tetracyciic	191	1545 0	C27 Honore (Tm)	101	17000 0
C_{27} Hopping (17)	101	1971 0	C2/ hopane (1m)	171	17000.0
C27 Hopene (178)	191	10/1.0	C29 Verse (29 30)	101	0197 0
(20, Hopse)	101	20220 0	(20, 30)	101	5107.0
C29 Demoth Honono	101	20220.0	C29 Norecane	101	1110 0
C20 Nopane	101	25141 0	C30 Moretane	101	9219 0
C30 Hopene (BB)	101	1315 0	CSV Moretane	191	0210.0
C315 Honene	101	12576 0	C21P Honora	101	0609 0
C315+P Hopene (BB)	101	12570.0	C315+P Moretane	101	3501.0
C32S Nopane (BB)	101	4974 0	C32P Hopene	101	4004 0
C325+P Hopane (PP)	101			101	2004.0
C325 Vopane (BB)	101	-	C32B Nessee	101	2048.0
Company Company	101	-	C35K Hopane	191	-
Gammacerane	191	-	Oleanane (18a)	191	-
Unknown 1	191	-	Unknown 2	191	-
Unknown 3	191	2121.0	Unknown 4	191	1413.0
C27 Demeth. Hopane	177	-	C28 Demeth. Hopane	177	-
C29 Hopane	177	-	C29 Demeth. Hopane	177	-
C29 Moretane	177	-	C29 Hopane (BB)	177	-
Unknown 3	177	-			
C30 2-Methylhopane	205	-	C31 2-Methylhopane	205	-
C31S Hopane	205	-	C31R Hopane	205	-
C31S+R Moretane	205	-	C31S+R Hopane (BB)	205	-
C21 Sterane	217	-	C22 Sterane	217	-
C27S Normal Sterane	217	668.0	C27R Normal Sterane	217	1424.0
C27S Isosterane	217	-	C27R Isosterane	217	-
C27S Diasterane	217	-	C27R Diasterane	217	-
C28S Normal Sterane	217	132.0	C28R Normal Sterane	217	784.0
C28S Isosterane	217	-	C28R Isosterane	217	-
C28S Diasterane	217	-	C28R Diasterane	217	-
C29S Normal Sterane	217	1094.0	C29R Normal Sterane	217	2985.0
C29S Isosterane	217	1107.0	C29R Isosterane	217	1276.0
C29S Diasterane	217	1420.0	C29R Diasterane	217	887.0
C27S+R Isosterane	218	1059.0	C28S+R Isosterane	218	1101.0
C29S+R Isosterane	218	2927.0			
C27S Diasterane	259	374.0	C27R Diasterane	259	286.0
C28S Diasterane	259	477.0	C28R Diasterane	259	344.0
C29S Diasterane	259	660.0	C29R Diasterane	259	445.0
16a Phyllocladane	123	-	16B Phyllocladane	123	3482.0
Beyerene	123	2062.0	Labdane	123	-
Fichtelite	123	-	Rimuane	123	-
Nortetracyclane	123	2923.0	Pimerane	123	-
Isopimerane	123	-	Kaurane	123	1617.0
Norisopimerane	123	3323.0	Unknown 1	123	-
Drimane	123	4908.0	Homodrimane	123	12849.0
Rearranged Drimane 1	123	4892.0	Rearranged Drimane 2	123	2730.0
Eudesmane	123	-			
C15 Alkylcyclohexane	83	-	C17 Alkylcyclohexane	83	-
C21 Alkylcyclohexane	83	-	C22 Alkylcyclohexane	83	-
C25 Alkylcyclohexane	83	-	C29 Alkylcyclohexane	83	-
***************************************			-		**************

IUPAC names corresponding to common names used here are shown at the end of the tables - = no data

TABLE 14-2

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS

CALCULATED DATA

WELL		LA BELLA-1	DEPTH	1(m)	•	2070.00	DEPTH	I UN	IIT	-	Metr	es
COUNTRY	-	Australia	DEPTH	2(m)	=	2070.00	DATE	OF	JOB	=	0ct	93
BASIN	=	Otway										

----- TERPANE PARAMETERS -----

..

PARAMETER	ION (2)	VALUE
* Ts / (Ts + Tm)	191	8.33
% C29 M / (C29 H + C29 M)	191	20.93
% C30 M / (C30 H + C30 M)	191	24.64
* C31S H / (C31S H + C31R H)	191	56.69
* C31S H / (C31S H + C31R H)	205	-
* C32S H / (C32S H + C32R H)	191	55.40
* U1-U4 / (U1-U4 + C30 H)	191	-
* U1 / (U1 + C30 H)	191	-
% U2 / (U2 + C30 H)	191	-
* U3 / (U3 + C30 H)	191	7.78
* U4 / (U4 + C30 H)	191	5.32
% C29 H / (C29 H + C30 H)	191	44.58
% C31 2-MeH / (C31 2-MeH + C30 H)	191, 205	-
* C29 BB / (C29 BB + C 29H + C29 M)	191	4.19
% C29 DeMe / (C29 DeMe + C29H)	177	-
% C28 H's / (C28 H's + C30 H)	191	-
<pre>% (Ts + Tm + C28 H's) / C29(H + M) + C30(H + M)</pre>	191	-
<pre>% Oleanane (18a) / (Oleanane + C30H)</pre>	191	-
* Drimane / Homodrimane	123	38.20
% Rea. Drimanes / (Drimane + Homodrimane)	123	42.92
* C22 Alkycyclohex. / C30 H	83, 191	-
* C29 Alkycyclohex. / C30 H	83, 191	-
* C23-C29 Tricyclics / C30 H	191	-
* (C30 H + C30 M) / (C29(NS's + IS's + DS's)	191, 217	380.42
STERANE PARAMETERS -		
PARAMETER	ION(S)	VALUE
% C27 ST'в / (C27 + C28 + C29) ST's	217	-
* C28 ST's / (C27 + C28 + C29) ST's	217	-
% C29 ST's / (C27 + C28 + C29) ST's	217	-
* C27S NS / (C27S NS + C27R NS)	217	31.93
* C285 NS / (C285 NS + C28R NS)	217	14.41
* C29S NS / (C29S NS + C29R NS)	217	26.82
% C27 NS's / C29 NS's	217	51.29
% C27 IS's / C29 IS's	217	-
% C27 DS's / C29 DS's	217	-
% C27 DS's / C27 ST's	217	-
% C28 DS's / C28 ST's	217	-
% C29 DS's / C29 ST's	217	26.31
% C27 IS's / (C27 IS's + C27 NS's)	217	-
* C28 IS's / (C28 IS's + C28 NS's)	217	-
% C29 IS's / (C29 IS's + C29 NS's)	217	36.88
ES : H = Hopane M = Moretane Me = Met	hyl NS = Nor	mal Sterane
IS = Iso Sterane DS = Dia Sterane ST = NS	+ IS + DS U = Unkn	own
no data available		

TABLE 15-1

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS DETAILED COMPOUND ANALYSIS

DEPTH UNIT = Metres DATE OF JOB = Oct 93

-

COUNTRY = Australia				DATE OF	JOB = Oct 93
BASIN = Otway	1	DEPTH 1 = 2097.70	DEPTH 2 = 2097.70		
COMPOUND	ION	RELATIVE AMOUNT	COMPOUND	ION	RELATIVE AMOUNT
C23 Tricyclic	191	4129.0	C24 Tricyclic	 191	3441.0
- C25 Tricyclic	191	-	C26 Tricyclic	191	-
C28 Tricyclic	191	-	C29 Tricyclic	191	-
C24 Tetracyclic	191	23829.0	_		
C27 Hopane (Ts)	191	5432.0	C27 Hopane (Tm)	191	97739.0
C27 Hopane (17B)	191	-			
C28 Hopane (25,30)	191	10292.0	C28 Hopane (28,30)	191	60394.0
C29 Hopane	191	106276.0	C29 Moretane	191	30551.0
C29 Demeth. Hopane	191	-	C29 Hopane (BB)	191	4249.0
C30 Hopane	191	212896.0	C30 Moretane	191	40210.0
C30 Hopane (BB)	191	3710.0			
C31S Hopane	191	53915.0	C31R Hopane	191	38899.0
C31S+R Hopane (BB)	191	-	- C31S+R Moretane	191	16678.0
C32S Hopane	191	14831.0	C32R Hopane	191	12292.0
C32S+R Hopane (BB)	191	-	C32S+R Moretane	191	7596.0
C33S Hopane	191	-	C33R Hopane	191	-
Gammacerane	191	-	Oleanane (18a)	191	-
Unknown 1	191	-	Unknown 2	191	-
Unknown 3	191	6217.0	Unknown 4	191	7235.0
C27 Demeth. Hopane	177	-	C28 Demeth. Hopane	177	_
C29 Hopane	177	-	C29 Demeth. Hopane	177	-
C29 Moretane	177	-	C29 Hopane (BB)	177	-
Unknown 3	177	-	017 Hopfiel (50)		
C30 2-Methylhopane	205	-	C31 2-Methylhonane	205	_
C31S Hopane	205	-	C31R Honane	205	_
C31S+R Moretane	205	-	C31S+R Honane (BB)	205	_
C21 Sterane	217	-	C22 Sterane	217	_
C27S Normal Sterane	217	3882.0	C27R Normal Sterane	217	8136 0
C27S Isosterane	217	-	C27R Isosterane	217	0130.0
C27S Diasterane	217	-	C27R Diasterane	217	_
C28S Normal Sterane	217	1403.0	C28R Normal Sterane	217	6043 0
C28S Isosterane	217	-	C28R Isosterane	217	-
C28S Diasterane	217	-	C28R Diasterane	217	_
C29S Normal Sterane	217	9118.0	C29R Normal Sterane	217	22714 0
C295 Isosterane	217	9383.0	C29R Isosterane	217	10811 0
C29S Diasterane	217	12370.0	C29R Diasterane	217	7715 0
C27S+R Isosterane	218	3552.0	C28S+R Isosterane	218	7523.0
C29S+R Isosterane	218	21162.0		210	/ 525.0
C27S Diasterane	259	2191.0	C27R Diasterane	259	1448 0
C28S Diasterane	259	3034.0	C28R Diasterane	259	2679 0
C29S Diasterane	259	8457.0	C29R Diasterane	259	5293 0
16a Phyllocladane	123	-	16B Phyllocladane	122	28228 0
Beverene	123	11362 0	Labdane	123	20320.0
Fichtelite	123	_	Bimusne	172	-
Nortetracyclane	123	17431 0	Dimerene	122	-
Teonimerane	123	-	Yaurane	123	-
Norisonimerane	172	-	linknorm 1	123	10422.0
Drimana	123	- 27275 A		123	-
Rearranged Drivers 1	122	10361 A		123	07435.0
Fudeemane	172	- 19301.0	Neatrangeu Drimane 2	123	9839.0
C15 Alkyleveloberane	223 29	-	C17 Blinstene 1-1	-	
C21 Alkylevelebenes	60 62	-	C1/ AIKYLCYCIONEXANE	50	-
C25 Albulanalabanaa	03 07	-	C20 Aller and the same	83	-
	ده 	-	C27 AIKYICYCIONEXANE	83	-

WELL = LA BELLA-1

- = no data IUPAC names corresponding to common names used here are shown at the end of the tables

TABLE 15-2

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS

CALCULATED DATA

WELL	=	LA BELLA-1	DEPTH	1(m)	=	2097.70	DEPTH	I UN	IIT	-	Metr	es
COUNTRY		Australia	DEPTH	2(m)	=	2097.70	DATE	OF	JOB	=	0ct	93
BASIN	-	Otway										

----- TERPANE PARAMETERS -----

5.27 22.33 15.89 58.09 - 54.68 - - - 2.84 3.29 33.30 - 3.01 - 24.93 44.59
5.27 22.33 15.89 58.09 - 54.68 - - - 2.84 3.29 33.30 - 3.01 - 24.93 44.59
22.33 15.89 58.09 - 54.68 - - - 2.84 3.29 33.30 - 3.01 - 24.93 44.59
15.89 58.09
58.09 - 54.68 - - 2.84 3.29 33.30 - 3.01 - 24.93 44.59
- 54.68 - - 2.84 3.29 33.30 - 3.01 - 24.93 44.59
54.68 - - 2.84 3.29 33.30 - 3.01 - 24.93 44.59
- 2.84 3.29 33.30 - 3.01 - 24.93 44.59
- 2.84 3.29 33.30 - 3.01 - 24.93 44.59
- 2.84 3.29 33.30 - 3.01 - 24.93 44.59
2.84 3.29 33.30 - 3.01 - 24.93 44.59
3.29 33.30 - 3.01 - 24.93 44.59
33.30 - 3.01 - 24.93 44.59
- 3.01 - 24.93 44.59
3.01 - 24.93 44.59
- 24.93 44.59
24.93 44.59
44.59
-
39.28
30.19
. –
-
-
350.99
VALUE
-
-
-
32.30
18.84
28.64
37.75
-
-
-
-
27.85
-
-
38.82
38.82

TABLE 16-1

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS DETAILED COMPOUND ANALYSIS

.

WELL = LA BELLA-1

COUNTRY = Australia

DEPTH UNIT - Metres DATE OF JOB - Oct 93

...

BASIN = Otway	Ľ	EPTH 1 = 2100.00	DEPTH 2 = 2110.00		
COMPOUND	ION	RELATIVE AMOUNT	COMPOUND	ION	RELATIVE AMOUNT
C23 Tricyclic	 191	6907.0	C24 Tricyclic	 191	4137.0
C25 Tricyclic	191	3003.0	C26 Tricyclic	191	39197.0
- C28 Tricyclic	191	7757.0	C29 Tricyclic	191	6800.0
C24 Tetracyclic	191	7996.0	-		
C27 Hopane (Ts)	191	12288.0	C27 Hopane (Tm)	191	23783.0
C27 Hopane (17B)	191	-	• • •		
C28 Hopane (25,30)	191	4117.0	C28 Hopane (28,30)	191	8372.0
C29 Hopane	191	39526.0	C29 Moretane	191	10634.0
- C29 Demeth. Hopane	191	9274.0	C29 Hopane (BB)	191	3448.0
C30 Hopane	191	52839.0	C30 Moretane	191	11603.0
C30 Hopane (BB)	191	3999.0			
C31S Hopane	191	19836.0	C31R Hopane	191	16027.0
- C31S+R Hopane (BB)	191	-	C31S+R Moretane	191	4484.0
C32S Hopane	191	9758.0	C32R Hopane	191	7717.0
C32S+R Hopane (BB)	191	-	C32S+R Moretane	191	_
C33S Hopane	191	-	C33B Honane	191	-
Gammacerane	191	-	Oleanane (18a)	191	_
Unknown 1	191	-	Unknown 2	101	_
Unknown 3	191	9956 0		101	3967 0
C27 Demeth Hopane	177	-	C28 Demeth Monane	177	5907.0
C29 Honane	177	_	C20 Demeth Hopane	177	-
C29 Moretane	177	-	C29 Nepere (PP)	177	-
Unknown 3	177	_	CZ9 NOPANE (BB)	1//	-
C30 2-Methylbonane	205	-	C21 2 Mathulbaras	205	
C315 Honene	205	-	C31 Z-Methylhopane	205	-
C31S+R Moretane	205	-	C315 B Monane (BB)	205	-
C21 Sterano	203	-	C31S+R Hopane (BB)	205	-
C276 Normal Storang	217	-	C22 Sterane	217	-
C275 Rorman Sterane	217	-	C27R Normal Sterane	217	5150.0
C275 Dissterane	217	-	C27R Discharge	217	-
C28S Normal Sterane	217	1195 0	C2/R Diasterane	217	-
C285 Teosterane	217	1105.0	C20R Normal Sterane	217	3217.0
C285 Diasterano	217	-		217	-
C205 Diasterane	217	-	C26R Diasterane	217	-
C295 Rolmai Sterane	217	4043.0	C29R Normal Sterane	217	6468.0
C295 Isosterane	217	5528.0	CZ9R Isosterane	217	5303.0
C275 Diasterane	21/	6004.0	C29R Diasterane	217	4796.0
C2/S+R ISOSterane	218	11559.0	C28S+R Isosterane	218	10116.0
C295+R ISOSterane	218	15060.0			
C275 Diasterane	259	4067.0	C27R Diasterane	259	2587.0
C285 Diasterane	259	4102.0	C28R Diasterane	259	2814.0
C295 Diasterane	259	3516.0	C29R Diasterane	259	2474.0
loa Phyllocladane	123	-	16B Phyllocladane	123	7075.0
Beyerene	123	2815.0	Labdane	123	-
Fichtelite	123	-	Rimuane	123	-
Nortetracyclane	123	4104.0	Pimerane	123	-
Isopimerane	123	-	Kaurane	123	-
Norisopimerane	123	-	Unknown 1	123	-
Drimane	123	6384.0	Homodrimane	123	17699.0
Rearranged Drimane 1	123	4154.0	Rearranged Drimane 2	123	2615.0
Eudesmane	123	-			
C15 Alkylcyclohexane	83	-	C17 Alkylcyclohexane	83	-
C21 Alkylcyclohexane	83	-	C22 Alkylcyclohexane	83	-
C25 Alkylcyclohexane	83	-	C29 Alkylcyclohexane	83	-

- = no data IUPAC names corresponding to common names used here are shown at the end of the tables

TABLE 16-2

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS

CALCULATED DATA

WELL	-	LA BELLA-1	DEPTH	1(m)	-	2100.00	DEPTH	UN	IT	•	Metr	es
COUNTRY	-	Australia	Depth	2(m)	-	2110.00	DATE	OF	JOB	=	Oct	93
BASIN	=	Otway										

TERPANE PARAMETERS		
PARAMETER	ION(s)	VALUE
***-		
¥ Ts / (Ts + Tm)	191	34.07
% C29 M / (C29 H + C29 M)	191	21.20
¥ C30 M / (C30 H + C30 M)	191	18.01
<pre>% C31S H / (C31S H + C31R H)</pre>	191	55.31
<pre>% C31S H / (C31S H + C31R H)</pre>	205	-
% C32S H / (C32S H + C32R H)	191	55.84
% U1-U4 / (U1-U4 + C30 H)	191	-
% U1 / (U1 + C30 H)	191	-
% U2 / (U2 + C30 H)	191	-
* U3 / (U3 + C30 H)	191	15.85
% U4 / (U4 + C30 H)	191	6.98
% C29 H / (C29 H + C30 H)	191	42.79
% C31 2-MeH / (C31 2-MeH + C30 H)	191, 205	-
* C29 BB / (C29 BB + C 29H + C29 M)	191	6.43
% C29 DeMe / (C29 DeMe + C29H)	177	-
% C28 H's / (C28 H's + C30 H)	191	19.12
<pre>% (Ts + Tm + C28 H's) / C29(H + M) + C30(H + M)</pre>	191	42.37
<pre>% Oleanane (18a) / (Oleanane + C30H)</pre>	191	-
<pre>% Drimane / Homodrimane</pre>	123	36.07
% Rea. Drimanes / (Drimane + Homodrimane)	123	28.11
<pre>% C22 Alkycyclohex. / C30 H</pre>	83, 191	-
* C29 Alkycyclohex. / C30 H	83, 191	-
* C23-C29 Tricyclics / C30 H	191	128.32
* (C30 H + C30 M) / (C29(NS's + IS's + DS's)	191, 217	200.49

-

----- STERANE PARAMETERS ------

PARAMETER	ION(s)	VALUE
<pre>% C27 ST's / (C27 + C28 + C29) ST's</pre>	217	-
% C28 ST's / (C27 + C28 + C29) ST's	217	-
% C29 ST's / (C27 + C28 + C29) ST's	217	-
* C27S NS / (C27S NS + C27R NS)	217	-
* C28S NS / (C28S NS + C28R NS)	217	26.92
* C295 NS / (C295 NS + C29R NS)	217	38.46
% C27 NS's / C29 NS's	217	· –
% C27 IS's / C29 IS's	217	-
% C27 DS's / C29 DS's	217	-
ት C27 DS's / C27 ST's	217	-
* C28 DS's / C28 ST's	217	-
* C29 DS's / C29 ST's	217	33.60
<pre>% C27 IS's / (C27 IS's + C27 NS's)</pre>	217	-
<pre>% C28 IS's / (C28 IS's + C28 NS's)</pre>	217	-
% C29 IS's / (C29 IS's + C29 NS's)	217	50.75
	Ma - Mathul NS - Nor	
TES : n = nopane $M = Moretane$	me = metny + ms = more	mai Stefaile
15 = 180 Sterane DS = DIA Sterane	51 = 107 + 15 + 05 = 01000	OWII

- = no data available

TABLE 17-1

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS DETAILED COMPOUND ANALYSIS

-

WELL = LA BELLA-1 COUNTRY = Australia	LA BELLA-1 DETAILED COMPOUND ANALYSISAustralia		DEPTH UNIT = Metres DATE OF JOB = Oct 93			
BASIN = Otway		DEPTH 1 =	2121.00	DEPTH 2 = 2121.00		
COMPOUND	ION	RELATIVE	AMOUNT	COMPOUND	ION	RELATIVE AMOUNT
C23 Tricyclic	191	1807	.0	C24 Tricyclic	191	1037.0
C25 Tricyclic	191	3857	.0	- C26 Tricyclic	191	-
C28 Tricyclic	191	-		C29 Tricyclic	191	-
C24 Tetracyclic	191	2319	.0	-		
C27 Hopane (Ts)	191	1712	.0	C27 Hopane (Tm)	191	8361.0
C27 Hopane (17B)	191	-				
C28 Hopane (25,30)	191	1048	.0	C28 Hopane (28,30)	191	4492.0
C29 Hopane	191	12019	.0	C29 Moretane	191	2895.0
C29 Demeth. Hopane	191	-		C29 Hopane (BB)	191	697.0
C30 Hopane	191	14411	.0	C30 Moretane	191	4011.0
C30 Hopane (BB)	191	744	.0			
C31S Hopane	191	6998	.0	C31R Hopane	191	5210.0
C31S+R Hopane (BB)	191	-		C31S+R Moretane	191	1631.0
C32S Hopane	191	2986	.0	C32R Hopane	191	2184.0
C32S+R Hopane (BB)	191	-		C32S+R Moretane	191	927.0
C33S Hopane	191	-		C33R Hopane	191	-
Gammacerane	191	-		Oleanane (18a)	191	-
Unknown 1	191	-		Unknown 2	191	-
Unknown 3	191	1773	.0	Unknown 4	191	855.0
C27 Demeth. Hopane	177	-		C28 Demeth. Hopane	177	-
C29 Hopane	177	-		C29 Demeth. Hopane	177	-
C29 Moretane	177	-		C29 Hopane (BB)	177	-
Unknown 3	1//	-		CO1 O Mathevillanana	205	
C315 Verses	205	-		C31 2-Metnyinopane	205	-
C315-P Moretane	205	-		C318 Hopane	205	-
	203	-		C315+K Hopane (BB)	205	-
C275 Normal Sterane	217	1149	0	C27P Normal Storano	217	-
C275 Isosterane	217	-	-	C27R Teosterane	217	24/0.0
C27S Diasterane	217	-		C27R Dissterane	217	-
C28S Normal Sterane	217	288	. 0	C28R Normal Sterane	217	671 0
C28S Isosterane	217			C28R Isosterane	217	-
C28S Diasterane	217	-		C28R Diasterane	217	_
C29S Normal Sterane	217	1117	.0	C29R Normal Sterane	217	2216 0
C29S Isosterane	217	1101	.0	C29R Isosterane	217	1111.0
C29S Diasterane	217	1149	.0	C29R Diasterane	217	702.0
C27S+R Isosterane	218	1606	.0	C28S+R Isosterane	218	1531.0
C29S+R Isosterane	218	2787	.0			
C27S Diasterane	259	500	.0	C27R Diasterane	259	302.0
C28S Diasterane	259	602	. 0	C28R Diasterane	259	376.0
C29S Diasterane	259	576	.0	C29R Diasterane	259	385.0
16a Phyllocladane	123	-		16B Phyllocladane	123	2368.0
Beyerene	123	1941.	.0	Labdane	123	-
Fichtelite	123	-		Rimuane	123	-
Nortetracyclane	123	1989.	.0	Pimerane	123	-
Isopimerane	123	-		Kaurane	123	-
Norisopimerane	123	-		Unknown 1	123	-
Drimane	123	10405.	.0	Homodrimane	123	28997.0
Rearranged Drimane 1	123	11043.	.0	Rearranged Drimane 2	123	6958.0
Eudesmane	123	-				
C15 Alkylcyclohexane	83	-		C17 Alkylcyclohexane	83	-
C21 Alkylcyclohexane	83	-		C22 Alkylcyclohexane	83	-
C23 AIRYICYClohexane	83	- 		C29 Alkylcyclohexane	83	-

- = no data IUPAC names corresponding to common names used here are shown at the end of the tables

TABLE 17-2

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS

CALCULATED DATA

WELL	= LA BELLA-1	DEPTH 1(m) = 2121	.00 DEPTH UNIT	= Metres
COUNTRY	(= Australia	DEPTH 2(m) = 2121	.00 DATE OF JOB	= Oct 93
BASIN	= Otway			

----- TERPANE PARAMETERS -----

-

PARAMETER	ION(s)	VALUE
* TS / (TS + Tm)	191	17.00
% C29 M / (C29 H + C29 M)	191	19.41
% C30 M / (C30 H + C30 M)	191	21.77
% C31S H / (C31S H + C31R H)	191	57.32
<pre>% C31S H / (C31S H + C31R H)</pre>	205	-
<pre>% C32S H / (C32S H + C32R H)</pre>	191	57.76
★ U1-U4 / (U1-U4 + C30 H)	191	-
% U1 / (U1 + C30 H)	191	-
% U2 / (U2 + C30 H)	191	-
* U3 / (U3 + C30 H)	191	10.96
* U4 / (U4 + C30 H)	191	5.60
% C29 H / (C29 H + C30 H)	191	45.47
% C31 2-MeH / (C31 2-MeH + C30 H)	191, 205	-
<pre>% C29 BB / (C29 BB + C 29H + C29 M)</pre>	191	4.46
% C29 DeMe / (C29 DeMe + C29H)	177	-
% C28 H's / (C28 H's + C30 H)	191	27.77
<pre>% (Ts + Tm + C28 H's) / C29(H + M) + C30(H + M)</pre>	191	46.84
<pre>% Oleanane (18a) / (Oleanane + C30H)</pre>	191	-
<pre>\$ Drimane / Homodrimane</pre>	123	35.88
% Rea. Drimanes / (Drimane + Homodrimane)	123	45.69
<pre>\$ C22 Alkycyclohex. / C30 H</pre>	83, 191	
<pre>% C29 Alkycyclohex. / C30 H</pre>	83, 191	-
* C23-C29 Tricyclics / C30 H	191	-
<pre>% (C30 H + C30 M) / (C29(NS's + IS's + DS's)</pre>	191, 217	249.08
STERANE PARAMETERS -		
PARAMETER	ION(s)	VALUE
% C27 ST's / (C27 + C28 + C29) ST's	217	-
% C28 ST's / (C27 + C28 + C29) ST's	217	-
% C29 ST's / (C27 + C28 + C29) ST's	217	-
* C27S NS / (C27S NS + C27R NS)	217	31.70
* C28S NS / (C28S NS + C28R NS)	217	30.03
* C29S NS / (C29S NS + C29R NS)	217	33.51
% C27 NS's / C29 NS's	217	108.76
% C27 IS's / C29 IS's	217	-
% C27 DS's / C29 DS's	217	-
* C27 DS's / C27 ST's	217	-
% C28 DS's / C28 ST's	217	-
% C29 DS's / C29 ST's	217	25.03
<pre>% C27 IS's / (C27 IS's + C27 NS's)</pre>	217	-
% C28 IS's / (C28 IS's + C28 NS's)	217	-
% C29 IS's / (C29 IS's + C29 NS's)	217	39.89
NTES : H = Hopane M = Moretane Me = Met	hyl NS - Nor	mal Sterane
IS = Iso Sterane DS = Dia Sterane ST = NS	- + IS + DS U = Unkn	own
- = no data available		

TABLE 18-1

•

WELL = LA BELLA-1

COUNTRY = Australia

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS DETAILED COMPOUND ANALYSIS

DEPTH UNIT - Metres DATE OF JOB = Oct 93

-

COUNTRY = Australia BASIN = Otway	1	DEPTH 1 = 2159.00	DEPTH 2 = 2159.00	DATE U.	F J U B = U C C 93
COMPOUND	ION	RELATIVE AMOUNT	COMPOUND	ION	RELATIVE AMOUNI
C23 Tricyclic	191	3610.0	C24 Tricyclic	191	1628.0
C25 Tricyclic	191	-	C26 Tricyclic	191	-
C28 Tricyclic	191	-	C29 Tricyclic	191	-
C24 Tetracyclic	191	5313.0			
C27 Hopane (Ts)	191	4224.0	C27 Hopane (Tm)	191	27697.0
C27 Hopane (17B)	191	-			
C28 Hopane (25,30)	191	2324.0	C28 Hopane (28,30)	191	16309.0
C29 Hopane	191	33200.0	C29 Moretane	191	7406.0
C29 Demeth. Hopane	191	-	C29 Hopane (BB)	191	1770.0
C30 Hopane	191	37631.0	C30 Moretane	191	10221.0
C30 Hopane (BB)	191	1606.0			
C31S Hopane	191	16332.0	C31R Hopane	191	11850.0
C31S+R Hopane (BB)	191	-	C31S+R Moretane	191	3773.0
C32S Hopane	191	6637.0	C32R Hopane	191	4842.0
C32S+R Hopane (BB)	191	-	C32S+R Moretane	191	2226.0
C33S Hopane	191	-	C33R Hopane	191	-
Gammacerane	191	-	Oleanane (18a)	191	-
Unknown 1	191	-	Unknown 2	191	-
Unknown 3	191	3860.0	Unknown 4	191	2368.0
C27 Demeth. Hopane	177	-	C28 Demeth. Hopane	177	-
C29 Hopane	177	-	C29 Demeth. Hopane	177	-
C29 Moretane	177	-	C29 Hopane (BB)	177	-
Unknown 3	177	-	-		
C30 2-Methylhopane	205	-	C31 2-Methylhopane	205	-
C31S Hopane	205	-	C31R Hopane	205	-
C31S+R Moretane	205	-	C31S+R Hopane (BB)	205	-
C21 Sterane	217	· _	C22 Sterane	217	-
C27S Normal Sterane	217	1729.0	C27R Normal Sterane	217	2280.0
C27S Isosterane	217	-	C27R Isosterane	217	-
C27S Diasterane	217	-	C27R Diasterane	217	-
C28S Normal Sterane	217	589.0	C28R Normal Sterane	217	1778.0
C28S Isosterane	217	-	C28R Isosterane	217	
C28S Diasterane	217	_	C28R Diasterane	217	-
C29S Normal Sterane	217	3181 0	C29R Normal Sterane	217	5740 0
C29S Isosterane	217	2828 0	C29R Teosterane	217	3122 0
C29S Diasterane	217	2504 0	C29P Dissterane	217	1654 0
C27S+R Isosterane	218	3826 0	C285+P Trostorane	217	2147 0
C29S+R Isosterane	218	7063 0	CZUSTA ISUSLEIANE	210	3147.0
C275 Diasterane	259	1108 0	C27P Diasterano	250	754 0
C285 Diasterane	259	1002.0	C27R Diasterane	259	754.0
C205 Diasterane	259	1002.0	C20R Diasterane	259	980.0
16 Declarate	209	1507.0	CZ9R Diasterane	259	1069.0
loa Phyllocladane	123	-	16B Phyllocladane	123	4837.0
Beyerene	123	2334.0	Labdane	123	-
Fichtelite	123	-	Rimuane	123	-
Nortetracyclane	123	3241.0	Pimerane	123	-
Isopimerane	123	-	Kaurane	123	1832.0
Norisopimerane	123	-	Unknown 1	123	-
Drimane	123	10082.0	Homodrimane	123	23234.0
Rearranged Drimane 1	123	8163.0	Rearranged Drimane 2	123	4610.0
Eudesmane	123	-			
C15 Alkylcyclohexane	83	-	C17 Alkylcyclohexane	83	-
C21 Alkylcyclohexane	83	-	C22 Alkylcyclohexane	83	-
C25 Alkylcyclohexane	83	-	C29 Alkylcyclohexane	83	-

- = no data IUPAC names corresponding to common names used here are shown at the end of the tables

TABLE 18-2

SATURATE FRACTION SIR GC/MS DATA - SEDIMENTS

CALCULATED DATA

WELL	-	LA BELLA-1	DEPTH	1(m)	-	2159.00	DEPTH	UN	IIT	-	Metr	es
COUNTRY	-	Australia	DEPTH	2(m)	-	2159.00	DATE	OF	JOB	*	Oct	93
BASIN	-	Otway										

----- TERPANE PARAMETERS -----

PARAMETER	ION(s)	VALUE
* Ts / (Ts + Tm)	191	13.23
* C29 M / (C29 H + C29 M)	191	18.24
¥ C30 M / (C30 H + C30 M)	191	21.36
* C31S H / (C31S H + C31R H)	191	57.95
<pre>% C31S H / (C31S H + C31R H)</pre>	205	-
<pre>% C32S H / (C32S H + C32R H)</pre>	191	57.82
* U1-U4 / (U1-U4 + C30 H)	191	-
% U1 / (U1 + C30 H)	191	-
% U2 / (U2 + C30 H)	191	-
¥ U3 / (U3 + C30 H)	191	9.30
¥ U4 / (U4 + C30 H)	191	5.92
¥ C29 H / (C29 H + C30 H)	191	46.87
* C31 2-MeH / (C31 2-MeH + C30 H)	191, 205	-
% C29 BB / (C29 BB + C 29H + C29 M)	191	4.18
% C29 DeMe / (C29 DeMe + C29H)	177	-
* C28 H's / (C28 H's + C30 H)	191	33.12
<pre>% (Ts + Tm + C28 H's) / C29(H + M) + C30(H + M)</pre>	191	57.15
<pre>% Oleanane (18a) / (Oleanane + C30H)</pre>	191	-
<pre>% Drimane / Homodrimane</pre>	123	43.39
¥ Rea. Drimanes / (Drimane + Homodrimane)	123	38.34
* C22 Alkycyclohex. / C30 H	83, 191	-
* C29 Alkycyclohex. / C30 H	83. 191	-
<pre>% C23-C29 Tricyclics / C30 H</pre>	191	-
<pre>% (C30 H + C30 M) / (C29(NS's + IS's + DS's)</pre>	191, 217	251.47
STERANE PARAMETERS		
PARAMETER	TON(s)	VATUE

.

ION(S)	VALUE
	*
217	-
217	-
217	-
217	43.13
217	24.88
217	35.66
217	44.94
217	-
217	-
217	-
217	-
217	21.85
217	-
217	-
217	40.01
Me = Methyl NS = Norma	al Sterane
ST = NS + IS + DS U = Unknow	wn
	217 217 217 217 217 217 217 217 217 217

FIGURE 34a

FIGURE 34b

FIGURE 35a

FIGURE 36a

FIGURE 38a

ST C27/(C27+C28+C29) ST C28/(C27+C28+C29) ST C29/(C27+C28+C29) C27 NS S/(S+R) C28 NS S/(S+R) Calculated Parameter C29 NS S/(S+R) C27 NS/C29 NS C27 IS/C29 IS C27 DS/C29 DS C27 DS/C27 S1 C28 DS/C28 S1 C29 DS/C29 S1 C27 IS/(IS+NS C28 IS/(IS+NS C29 IS/(IS+NS Ratio (

Ratio C = (C30 H+C30 M)/(C29

FIGURE 38b

FIGURE 39a

FIGURE 40a

FIGURE 40b

.1.

FIGURE 41a

FIGURE 41b

FIGURE 42a

FIGURE 42b

Figure 44a

Figure 44b

Figure 45

DI & TRI NUCLEAR AROMATIC GC/MS DATA - OILS

DESCRIPTION : RFT SAMPLE

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1 = 2072.80

DEPTH 2 = 2072.80

A. DETAILED COMPOUND ANALYSIS

COMPOUND	ION	RELATIVE AMOUNT
1,5-Dimethylnaphthalene	156	302133.0
1,6-Dimethylnaphthalene	156	1339397.0
1,8-Dimethylnaphthalene	156	-
2,6-Dimethylnaphthalene	156	1583932.0
2,7-Dimethylnaphthalene	156	-
1,4+2,3-Dimethylnaphthalene	156	797040.0
1,2,5-Trimethylnaphthalene	170	846495.0
1,2,7-Trimethylnaphthalene	170	-
1,3,6-Trimethylnaphthalene	170	568754.0
1,3,7-Trimethylnaphthalene	170	454682.0
2,3,6-Trimethylnaphthalene	170	370439.0
1,3,5+1,4,6-Trimethylnaphthalene	170	488349.0
Phenanthrene	178	720813.0
1-Methylphenanthrene	192	112514.0
2-Methylphenanthrene	192	167823.0
3-Methylphenanthrene	192	148815.0
9-Methylphenanthrene	192	146469.0
1,7-Dimethylphenanthrene	206	51699.0
Compound X $(1,3 + 3,9 + 2,10 + 3,10-DMP)$	206	98442.0
Retene	219	33205.0
Cadalene	198	-
Eudalene	184	· –

B. CALCULATED DATA

PARAMETER	ION	VALUE
DNR-1 = (2,6-DMN + 2,7-DMN) / 1,5-DMN	156	-
DNR-2 = 2,7-DMN / 1,8-DMN	156	-
DNR-5 = 1,6-DMN / 1,8-DMN	156	-
DNR-6 = ((2,6-DMN + 2,7-DMN) / 1,4+2,3-DMN)*0.91	156	-
TNR-1 = (2,3,6-TMN / 1,3,5+1,4,6-TMN)*0.82	170	0.62
TNR-5 = (1,2,5-TMN / 1,3,6-TMN)*0.75	170	1.12
TNR-6 = 1,2,7-TMN / 1,3,7-TMN	170	-
MPR-1 = (2-MP + 3-MP) / 1-MP	192	2.81
$MPI-1 = (1.5 \times (2-MP + 3-MP)) /$		
(0.667*Ph + 1-MP + 9-MP)	178,192	0.64
$MPI-2 = (3 \times 2-MP) / (0.667*Ph + 1-MP + 9-MP)$	178,192	0.68
$Rc(a) = (0.6 \times MPI-1) + 0.4$	na	0.78
$Rc(b) = (-0.6 \times MPI-1) + 2.3$	na	1.92
1,7-Dimethylphenantrene / Compound X	206	0.53
Retene / 9-Methylphenantrene	192,219	0.23
1-Methylphenanthrene / 9-Methylphenanthrene	192	0.77
Notes : DMN - Dimothulperhthelene TMN - T-i++	7	

DI & TRI NUCLEAR AROMATIC GC/MS DATA - OILS

DESCRIPTION : RFT SAMPLE

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway

DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1 = 2160.50

DEPTH 2 = 2160.50

A. DETAILED COMPOUND ANALYSIS

COMPOUND	ION	RELATIVE AMOUNT
1.5-Dimethylnaphthalene	156	426542.0
1.6-Dimethylnaphthalene	156	1918194.0
1.8-Dimethylnaphthalene	156	-
2.6-Dimethylnaphthalene	156	2637244.0
2.7-Dimethylnaphthalene	156	-
1.4+2.3-Dimethylnaphthalene	156	947912.0
1.2.5-Trimethylnaphthalene	170	991316.0
1.2.7-Trimethylnaphthalene	170	-
1.3.6-Trimethylnaphthalene	170	801792.0
1.3.7-Trimethylnaphthalene	170	658611.0
2.3.6-Trimethylnaphthalene	170	521846.0
1.3.5+1.4.6-Trimethylnaphthalene	170	672860.0
Phenanthrene	178	612065.0
1-Methylphenanthrene	192	188200.0
2-Methylphenanthrene	192	274914.0
3-Methylphenanthrene	192	227624.0
9-Methylphenanthrene	192	215570.0
1.7-Dimethylphenanthrene	206	150174.0
Compound X $(1,3 + 3,9 + 2,10 + 3,10-DMP)$	206	215928.0
Retene	219	57243.0
Cadalene	198	-
Eudalene	184	-

B. CALCULATED DATA

PARAMETER	ION	VALUE
DNR-1 = (2,6-DMN + 2,7-DMN) / 1,5-DMN	156	-
DNR-2 = 2,7-DMN / 1,8-DMN	156	-
DNR-5 = 1,6-DMN / 1,8-DMN	156	-
DNR-6 = ((2,6-DMN + 2,7-DMN) / 1,4+2,3-DMN)*0.91	156	-
TNR-1 = (2,3,6-TMN / 1,3,5+1,4,6-TMN)*0.82	170	0.64
TNR-5 = (1,2,5-TMN / 1,3,6-TMN)*0.75	170	0.93
TNR-6 = 1,2,7-TMN / 1,3,7-TMN	170	-
MPR-1 = (2-MP + 3-MP) / 1-MP	192	2.67
$MPI-1 = (1.5 \times (2-MP + 3-MP)) /$		
(0.667*Ph + 1-MP + 9-MP)	178,192	0.93
$MPI-2 = (3 \times 2-MP) / (0.667*Ph + 1-MP + 9-MP)$	178,192	1.02
$Rc(a) = (0.6 \times MPI-1) + 0.4$	na	0.96
$Rc(b) = (-0.6 \times MPI-1) + 2.3$	na	1.74
1,7-Dimethylphenantrene / Compound X	206	0.70
Retene / 9-Methylphenantrene	192,219	0.27
1-Methylphenanthrene / 9-Methylphenanthrene	192	0.87

Notes : DMN = Dimethylnaphthalene TMN = Trimethylnaphthalene - = no data MP = Methylphenanthrene Ph = Phenanthrene na = not applicable

DI & TRI NUCLEAR AROMATIC GC/MS DATA - SEDIMENTS

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway

DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1 = 2070.00 DEPTH 2 = 2070.00

A. DETAILED COMPOUND ANALYSIS

1,5-Dimethylnaphthalene 156 45478.0 1,6-Dimethylnaphthalene 156 196868.0 1,8-Dimethylnaphthalene 156 - 2,6-Dimethylnaphthalene 156 - 2,6-Dimethylnaphthalene 156 - 2,7-Dimethylnaphthalene 156 - 1,4+2,3-Dimethylnaphthalene 156 - 1,2,5-Trimethylnaphthalene 170 202302.0 1,2,7-Trimethylnaphthalene 170 - 1,3,6-Trimethylnaphthalene 170 73654.0 1,3,7-Trimethylnaphthalene 170 46669.0 2,3,6-Trimethylnaphthalene 170 62410.0 1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	COMPOUND	ION	RELATIVE AMOUNT
1,5-Dimethylnaphthalene 156 45478.0 1,6-Dimethylnaphthalene 156 196868.0 1,8-Dimethylnaphthalene 156 - 2,6-Dimethylnaphthalene 156 - 2,6-Dimethylnaphthalene 156 - 2,7-Dimethylnaphthalene 156 - 1,4+2,3-Dimethylnaphthalene 156 143772.0 1,2,5-Trimethylnaphthalene 170 202302.0 1,2,7-Trimethylnaphthalene 170 - 1,3,6-Trimethylnaphthalene 170 73654.0 1,3,7-Trimethylnaphthalene 170 62410.0 1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0			
1.6-Dimethylnaphthalene156196868.01.8-Dimethylnaphthalene156-2.6-Dimethylnaphthalene156212318.02.7-Dimethylnaphthalene156-1.4+2.3-Dimethylnaphthalene156143772.01.2.5-Trimethylnaphthalene170202302.01.2.7-Trimethylnaphthalene170-1.3.6-Trimethylnaphthalene170-1.3.7-Trimethylnaphthalene17046669.02.3.6-Trimethylnaphthalene17062410.01.3.5+1.4.6-Trimethylnaphthalene17061120.0Phenanthrene1781939544.01-Methylphenanthrene192267460.02-Methylphenanthrene192286048.09-Methylphenanthrene19234884.0	1,5-Dimethylnaphthalene	156	45478.0
1.8-Dimethylnaphthalene156-2.6-Dimethylnaphthalene156212318.02.7-Dimethylnaphthalene156-1.4+2,3-Dimethylnaphthalene156143772.01.2,5-Trimethylnaphthalene170202302.01.2,7-Trimethylnaphthalene170-1.3,6-Trimethylnaphthalene17073654.01.3,7-Trimethylnaphthalene17046669.02.3,6-Trimethylnaphthalene17062410.01.3,5+1,4,6-Trimethylnaphthalene17061120.0Phenanthrene1781939544.01-Methylphenanthrene192267460.02-Methylphenanthrene192286048.09-Methylphenanthrene192334884.0	1,6-Dimethylnaphthalene	156	196868.0
2,6-Dimethylnaphthalene156212318.02,7-Dimethylnaphthalene156-1,4+2,3-Dimethylnaphthalene156143772.01,2,5-Trimethylnaphthalene170202302.01,2,7-Trimethylnaphthalene170-1,3,6-Trimethylnaphthalene17073654.01,3,7-Trimethylnaphthalene17046669.02,3,6-Trimethylnaphthalene17062410.01,3,5+1,4,6-Trimethylnaphthalene17061120.0Phenanthrene1781939544.01-Methylphenanthrene192267460.02-Methylphenanthrene192286048.09-Methylphenanthrene192334884.0	1,8-Dimethylnaphthalene	156	_
2,7-Dimethylnaphthalene1561,4+2,3-Dimethylnaphthalene1561,2,5-Trimethylnaphthalene1701,2,7-Trimethylnaphthalene1701,3,6-Trimethylnaphthalene1701,3,7-Trimethylnaphthalene1701,3,7-Trimethylnaphthalene1702,3,6-Trimethylnaphthalene1701,3,5+1,4,6-Trimethylnaphthalene1701,3,5+1,4,6-Trimethylnaphthalene1701-Methylphenanthrene192267460.02-Methylphenanthrene1923-Methylphenanthrene192286048.09-Methylphenanthrene192334884.0	2,6-Dimethylnaphthalene	156	212318.0
1,4+2,3-Dimethylnaphthalene156143772.01,2,5-Trimethylnaphthalene170202302.01,2,7-Trimethylnaphthalene170-1,3,6-Trimethylnaphthalene17073654.01,3,7-Trimethylnaphthalene17046669.02,3,6-Trimethylnaphthalene17062410.01,3,5+1,4,6-Trimethylnaphthalene17061120.0Phenanthrene1781939544.01-Methylphenanthrene192267460.02-Methylphenanthrene192424921.03-Methylphenanthrene192286048.09-Methylphenanthrene192334884.0	2,7-Dimethylnaphthalene	156	_
1,2,5-Trimethylnaphthalene 170 202302.0 1,2,7-Trimethylnaphthalene 170 - 1,3,6-Trimethylnaphthalene 170 73654.0 1,3,7-Trimethylnaphthalene 170 46669.0 2,3,6-Trimethylnaphthalene 170 62410.0 1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	1,4+2,3-Dimethylnaphthalene	156	143772.0
1,2,7-Trimethylnaphthalene 170 - 1,3,6-Trimethylnaphthalene 170 73654.0 1,3,7-Trimethylnaphthalene 170 46669.0 2,3,6-Trimethylnaphthalene 170 62410.0 1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 424921.0 3-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	1,2,5-Trimethylnaphthalene	170	202302.0
1,3,6-Trimethylnaphthalene 170 73654.0 1,3,7-Trimethylnaphthalene 170 46669.0 2,3,6-Trimethylnaphthalene 170 62410.0 1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 424921.0 3-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	1,2,7-Trimethylnaphthalene	170	
1,3,7-Trimethylnaphthalene 170 46669.0 2,3,6-Trimethylnaphthalene 170 62410.0 1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 424921.0 3-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	1,3,6-Trimethylnaphthalene	170	73654.0
2,3,6-Trimethylnaphthalene 170 62410.0 1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 424921.0 3-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	1,3,7-Trimethylnaphthalene	170	46669.0
1,3,5+1,4,6-Trimethylnaphthalene 170 61120.0 Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 424921.0 3-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	2,3,6-Trimethylnaphthalene	170	62410.0
Phenanthrene 178 1939544.0 1-Methylphenanthrene 192 267460.0 2-Methylphenanthrene 192 424921.0 3-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	1,3,5+1,4,6-Trimethylnaphthalene	170	61120.0
1-Methylphenanthrene192267460.02-Methylphenanthrene192424921.03-Methylphenanthrene192286048.09-Methylphenanthrene192334884.0	Phenanthrene	178	1939544 0
2-Methylphenanthrene192424921.03-Methylphenanthrene192286048.09-Methylphenanthrene192334884.0	1-Methylphenanthrene	192	267460 0
3-Methylphenanthrene 192 286048.0 9-Methylphenanthrene 192 334884.0	2-Methylphenanthrene	192	424921 0
9-Methylphenanthrene 192 334884 0	3-Methylphenanthrene	192	286048 0
	9-Methylphenanthrene	102	334884 0
1.7-Dimethylphenanthrene 206 0/722.0	1.7-Dimethylphenanthrene	206	0//722 0
Compound X $(1,3+3,9+2,10+3,10-DMP)$ 206 138400 0	Compound X $(1.3 + 3.9 + 2.10 + 3.10 - DMP)$	206	138/100 0
Retene 210 /// // // ///// ///////////////////	Retene	210	
Cadalene 108	Cadalene	108	
Eudalene	Eudalene	184	-

B. CALCULATED DATA

PARAMETER	ION	VALUE
DNR-1 = (2,6-DMN + 2,7-DMN) / 1,5-DMN	156	-
DNR-2 = 2,7-DMN / 1,8-DMN	156	-
DNR-5 = 1,6-DMN / 1,8-DMN	156	-
DNR-6 = ((2,6-DMN + 2,7-DMN) / 1,4+2,3-DMN)*0.91	156	-
TNR-1 = (2,3,6-TMN / 1,3,5+1,4,6-TMN)*0.82	170	0.84
TNR-5 = (1,2,5-TMN / 1,3,6-TMN)*0.75	170	2.06
TNR-6 = 1,2,7-TMN / 1,3,7-TMN	170	-
MPR-1 = (2-MP + 3-MP) / 1-MP	192	2.66
$MPI-1 = (1.5 \times (2-MP + 3-MP)) /$	-	
(0.667*Ph + 1-MP + 9-MP)	178,192	0.56
$MPI-2 = (3 \times 2-MP) / (0.667*Ph + 1-MP + 9-MP)$	178,192	0.67
$Rc(a) = (0.6 \times MPI-1) + 0.4$	na	0.74
$Rc(b) = (-0.6 \times MPI-1) + 2.3$	na	1.96
1,7-Dimethylphenantrene / Compound X	206	0.68
Retene / 9-Methylphenantrene	192,219	0.13
1-Methylphenanthrene / 9-Methylphenanthrene	192	0.80
Notes : DMN = Dimethylnaphthalene TMN = Trimethy	 Inaphthalene	 - = no data

MP = Methylphenanthrene Ph = Phenanthrene na = not applicable

.

DI & TRI NUCLEAR AROMATIC GC/MS DATA - SEDIMENTS

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway

.

DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1 = 2097.70 DEPTH 2 = 2097.70

A. DETAILED COMPOUND ANALYSIS

COMPOUND	ION	RELATIVE AMOUNT
1.5-Dimethylnaphthalene	156	54693.0
1.6-Dimethylnaphthalene	156	193238.0
1.8-Dimethylnaphthalene	156	
2,6-Dimethylnaphthalene	156	199834.0
2,7-Dimethylnaphthalene	156	-
1,4+2,3-Dimethylnaphthalene	156	147645.0
1,2,5-Trimethylnaphthalene	170	286469.0
1,2,7-Trimethylnaphthalene	170	-
1,3,6-Trimethylnaphthalene	170	59786.0
1,3,7-Trimethylnaphthalene	170	34132.0
2,3,6-Trimethylnaphthalene	170	43655.0
1,3,5+1,4,6-Trimethylnaphthalene	170	55547.0
Phenanthrene	178	2812541.0
1-Methylphenanthrene	192	314650.0
2-Methylphenanthrene	192	513940.0
3-Methylphenanthrene	192	365237.0
9-Methylphenanthrene	192	373188.0
1,7-Dimethylphenanthrene	206	92128.0
Compound X $(1,3 + 3,9 + 2,10 + 3,10-DMP)$	206	137357.0
Retene	219	48435.0
Cadalene	198	-
Eudalene	184	-

B. CALCULATED DATA

PARAMETER	ION	VALUE
		~~~~~
DNR-1 = (2,6-DMN + 2,7-DMN) / 1,5-DMN	156	-
DNR-2 = 2,7-DMN / 1,8-DMN	156	-
DNR-5 = 1,6-DMN / 1,8-DMN	156	-
DNR-6 = ((2,6-DMN + 2,7-DMN) / 1,4+2,3-DMN)*0.91	156	-
TNR-1 = (2,3,6-TMN / 1,3,5+1,4,6-TMN)*0.82	170	0.64
TNR-5 = (1,2,5-TMN / 1,3,6-TMN)*0.75	170	3.59
TNR-6 = 1,2,7-TMN / 1,3,7-TMN	170	-
MPR-1 = (2-MP + 3-MP) / 1-MP	192	2.79
$MPI-1 = (1.5 \times (2-MP + 3-MP)) /$		
(0.667*Ph + 1-MP + 9-MP)	178,192	0.51
$MPI-2 = (3 \times 2-MP) / (0.667*Ph + 1-MP + 9-MP)$	178,192	0.60
$Rc(a) = (0.6 \times MPI-1) + 0.4$	na	0.71
$Rc(b) = (-0.6 \times MPI-1) + 2.3$	na	1.99
1,7-Dimethylphenantrene / Compound X	206	0.67
Retene / 9-Methylphenantrene	192,219	0.13
1-Methylphenanthrene / 9-Methylphenanthrene	192	0.84

#### DI & TRI NUCLEAR AROMATIC GC/MS DATA - SEDIMENTS

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1 = 2100.00

DEPTH 2 = 2110.00

#### A. DETAILED COMPOUND ANALYSIS

COMPOUND	ION	RELATIVE AMOUNT
1.5-Dimethylnaphthalene	156	186383.0
1.6-Dimethylnaphthalene	156	694738.0
1,8-Dimethylnaphthalene	156	-
2,6-Dimethylnaphthalene	156	741372.0
2,7-Dimethylnaphthalene	156	-
1,4+2,3-Dimethylnaphthalene	156	499720.0
1,2,5-Trimethylnaphthalene	170	803246.0
1,2,7-Trimethylnaphthalene	170	-
1,3,6-Trimethylnaphthalene	170	206484.0
1,3,7-Trimethylnaphthalene	170	131183.0
2,3,6-Trimethylnaphthalene	170	152578.0
1,3,5+1,4,6-Trimethylnaphthalene	170	187535.0
Phenanthrene	178	6977850.0
1-Methylphenanthrene	192	797780.0
2-Methylphenanthrene	192	1286611.0
3-Methylphenanthrene	192	939844.0
9-Methylphenanthrene	192	981828.0
1,7-Dimethylphenanthrene	206	232311.0
Compound X $(1,3 + 3,9 + 2,10 + 3,10-DMP)$	206	351441.0
Retene	219	114034.0
Cadalene	198	-
Eudalene	184	-

#### B. CALCULATED DATA

PARAMETER	ION	VALUE
DNR-1 = (2,6-DMN + 2,7-DMN) / 1,5-DMN	156	-
DNR-2 = 2,7-DMN / 1,8-DMN	156	-
DNR-5 = 1,6-DMN / 1,8-DMN	156	-
DNR-6 = ((2,6-DMN + 2,7-DMN) / 1,4+2,3-DMN)*0.91	156	-
TNR-1 = (2,3,6-TMN / 1,3,5+1,4,6-TMN)*0.82	170	0.67
TNR-5 = (1,2,5-TMN / 1,3,6-TMN)*0.75	170	2.92
TNR-6 = 1,2,7-TMN / 1,3,7-TMN	170	-
MPR-1 = (2-MP + 3-MP) / 1-MP	192	2.79
$MPI-1 = (1.5 \times (2-MP + 3-MP)) /$		
$(0.667^*Ph + 1-MP + 9-MP)$	178,192	0.52
$MPI-2 = (3 \times 2-MP) / (0.667*Ph + 1-MP + 9-MP)$	178,192	0.60
$Rc(a) = (0.6 \times MPI-1) + 0.4$	na	0.71
$Rc(b) = (-0.6 \times MPI-1) + 2.3$	na	1.99
1,7-Dimethylphenantrene / Compound X	206	0.66
Retene / 9-Methylphenantrene	192,219	0.12
1-Methylphenanthrene / 9-Methylphenanthrene	192	0.81

DI & TRI NUCLEAR AROMATIC GC/MS DATA - SEDIMENTS

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1 = 2121.00

DEPTH 2 = 2121.00

#### A. DETAILED COMPOUND ANALYSIS

COMPOUND	ION	RELATIVE AMOUNT
		*
1,5-Dimethylnaphthalene	156	31870.0
1,6-Dimethylnaphthalene	156	144307.0
1,8-Dimethylnaphthalene	156	-
2,6-Dimethylnaphthalene	156	208309.0
2,7-Dimethylnaphthalene	156	-
1,4+2,3-Dimethylnaphthalene	156	85659.0
1,2,5-Trimethylnaphthalene	170	172092.0
1,2,7-Trimethylnaphthalene	170	-
1,3,6-Trimethylnaphthalene	170	57697.0
1,3,7-Trimethylnaphthalene	170	36897.0
2,3,6-Trimethylnaphthalene	170	43224.0
1,3,5+1,4,6-Trimethylnaphthalene	170	45758.0
Phenanthrene	178	1836398.0
1-Methylphenanthrene	192	294102.0
2-Methylphenanthrene	192	485813.0
3-Methylphenanthrene	192	320017.0
9-Methylphenanthrene	192	331511.0
1,7-Dimethylphenanthrene	206	107813.0
Compound X $(1,3 + 3,9 + 2,10 + 3,10-DMP)$	206	157359.0
Retene	219	44941.0
Cadalene	198	-
Eudalene	184	-

#### B. CALCULATED DATA

PARAMETER	ION	VALUE
DNR-1 = (2,6-DMN + 2,7-DMN) / 1,5-DMN	156	-
DNR-2 = 2,7-DMN / 1,8-DMN	156	-
DNR-5 = 1,6-DMN / 1,8-DMN	156	-
DNR-6 = ((2,6-DMN + 2,7-DMN) / 1,4+2,3-DMN)*0.91	156	-
TNR-1 = (2,3,6-TMN / 1,3,5+1,4,6-TMN)*0.82	170	0.77
TNR-5 = (1,2,5-TMN / 1,3,6-TMN)*0.75	170	2.24
TNR-6 = 1,2,7-TMN / 1,3,7-TMN	170	-
MPR-1 = (2-MP + 3-MP) / 1-MP	192	2.74
$MPI-1 = (1.5 \times (2-MP + 3-MP)) /$		•
(0.667*Ph + 1-MP + 9-MP)	178,192	0.65
$MPI-2 = (3 \times 2-MP) / (0.667*Ph + 1-MP + 9-MP)$	178,192	0.79
$Rc(a) = (0.6 \times MPI-1) + 0.4$	na	0.79
$Rc(b) = (-0.6 \times MPI-1) + 2.3$	na	1.91
1,7-Dimethylphenantrene / Compound X	206	0.69
Retene / 9-Methylphenantrene	192,219	0.14
1-Methylphenanthrene / 9-Methylphenanthrene	192	0.89
		-
***************************************		

#### DI & TRI NUCLEAR AROMATIC GC/MS DATA - SEDIMENTS

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway DEPTH UNIT = Metres DATE OF JOB = Oct 93

DEPTH 1 = 2159.00

DEPTH 2 = 2159.00

#### A. DETAILED COMPOUND ANALYSIS

COMPOUND	ION	RELATIVE AMOUNT
1,5-Dimethylnaphthalene	156	65169.0
1,6-Dimethylnaphthalene	156	222579.0
1,8-Dimethylnaphthalene	156	-
2,6-Dimethylnaphthalene	156	214085.0
2,7-Dimethylnaphthalene	156	-
1,4+2,3-Dimethylnaphthalene	156	159479.0
1.2.5-Trimethylnaphthalene	170	382812.0
1.2.7-Trimethylnaphthalene	170	26325.0
1.3.6-Trimethylnaphthalene	170	74897-0
1.3.7-Trimethylnaphthalene	170	38606.0
2.3.6-Trimethylnaphthalene	170	56571 0
1.3.5+1.4.6-Trimethylnaphthalene	170	74529 0
Phenanthrene	178	2114964 0
1-Methylphenanthrene	102	2114904.0
2-Methylphenenthrone	102	622551 0
2-Mothulphononthrono	192	225551.0
	192	390093.0
9-metnyipnenantnrene	192	481887.0
1,7-Dimethylphenanthrene	206	175463.0
Compound X $(1,3 + 3,9 + 2,10 + 3,10-DMP)$	206	219856.0
Retene	219	71339.0
Cadalene	198	-
Eudalene	184	· _

#### B. CALCULATED DATA

PARAMETER	ION	VALUE
DNR-1 = (2,6-DMN + 2,7-DMN) / 1,5-DMN	156	-
DNR-2 = 2,7-DMN / 1,8-DMN	156	-
DNR-5 = 1,6-DMN / 1,8-DMN	156	-
DNR-6 = ((2,6-DMN + 2,7-DMN) / 1,4+2,3-DMN)*0.91	156	-
TNR-1 = (2,3,6-TMN / 1,3,5+1,4,6-TMN)*0.82	170	0.62
TNR-5 = (1,2,5-TMN / 1,3,6-TMN)*0.75	170	3.83
TNR-6 = 1,2,7-TMN / 1,3,7-TMN	170	0.68
MPR-1 = (2-MP + 3-MP) / 1-MP	192	2.73
$MPI-1 = (1.5 \times (2-MP + 3-MP)) /$		
(0.667*Ph + 1-MP + 9-MP)	178,192	0.67
$MPI-2 = (3 \times 2-MP) / (0.667*Ph + 1-MP + 9-MP)$	178,192	0.83
$Rc(a) = (0.6 \times MPI-1) + 0.4$	na	0.80
$Rc(b) = (-0.6 \times MPI-1) + 2.3$	na	1.90
1,7-Dimethylphenantrene / Compound X	206	0.80
Retene / 9-Methylphenantrene	192,219	0.15
1-Methylphenanthrene / 9-Methylphenanthrene	192	0.78

Figure 46a



Figure 46b







GAS ANALYSIS DATA

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway DEPTH UNIT = Metres DATE OF JOB = Oct 93

DESCRIPTION : RFT SAMPLE

DEPTH 1(m) = 2072.80

DEPTH 2(m) = 2072.80

COMPOUND	% by VOLUME			
Methane	77.10			
Ethane	4.52			
Propane	1.61			
IsoButane	.27			
n-Butane	.26			
IsoPentane	.08			
n-Pentane	.07			
C6+	.05			
Carbon Dioxide	12.04			
Nitrogen	3.89			
Hydrogen Sulphide	-			
Oxygen	.10			
Hydrogen	-			
Helium	-			
Argon	-			

_____

- . · ·

NOTES : - = not reported

GAS ANALYSIS DATA

•

WELL = LA BELLA-1 COUNTRY = Australia BASIN = Otway

DEPTH UNIT = Metres DATE OF JOB = Oct 93

DESCRIPTION : RFT SAMPLE

#### DEPTH 1(m) = 2160.50

DEPTH 2(m) = 2160.50

.

COMPOUND	% by VOLUME			
Methane	76.39			
Ethane	4.78			
Propane	1.74			
IsoButane	.28			
n-Butane	.30			
IsoPentane	.09			
n-Pentane	.08			
C6+	.07			
Carbon Dioxide	12.79			
Nitrogen	3.37			
Hydrogen Sulphide	-			
Oxygen	.11			
Hydrogen	-			
Helium	-			
Argon	-			

NOTES : - = not reported

FIGURE 48a



FIGURE 48b



4

Ŧ

÷

# CARBON ISOTOPE ANALYSIS DATA - GAS

WELL NAME Country Basin	= LA BELLA-1 = Australia = Otway	······································				DEPTH UNIT = Metres DATE OF JOB = Oct 93			
DEPTH 1	DEPTH 2	METHANE	ETHANE	PROPANE	delta C	VALUES	I SO - DENTANE		CARBON DIOXIDE
2072.80 2160.50	2072.80 2160.50	-40.70 -40.90	-29.20 -28.90	-27.10 -26.90		-27.20 -26.80		-26.20 -26.30	-9.70 -8.80

All values permil relative to PDB - = no data

---------



FIGURE 49a

),

LABL1

1PE900368

1P231

(



FIGURE 49b

