

PALYNOLOGY OF BEACH SQUATTER-1,

OTWAY BASIN, AUSTRALIA

)

PALYNOLOGY OF BEACH SQUATTER-1,

OTWAY BASIN, AUSTRALIA

BY

ROGER MORGAN

I SUMMARY 2
II INTRODUCTION 3
III PALYNOSTRATIGRAPHY 4
IV CONCLUSIONS 11
v REFERENCES 13
FIGURE l. ZONATION OUTLINE
FIGURE 2. MATURITY PROFILE, SQUATTER-1
APPENDIX I PALYNOMORPH OCCURRENCE DATA

I
SUMMARY

790m (cutts) : M. diversus Zone (possibly upper) : Early Eocene : very nearshore marine : immature

810m (cutts) : L. balmei Zone : Paleocene : nearshore marine : immature

820m (cutts) : mixed assemblage presumed L. balmei with minor reworked T. longus/M. druggii elements, but could be Late Cretaceous with extensive caving : presumed Paleocene with Maastrichtian reworking : marginally marine : immature

840 m (cutts) : T. longus/M.druggii Zones : Mastrichtian : marginal marine : immature

1000m (cutts) : T. pachyexinus/N. aceras Zones : Santonian Campanian : nearshore to marginal marine : immature
$1310 m$ (cutts) : C. triplex Zone : Turonian : nearshore marine : marginally mature for oil

1390m (cutts) - 1420 m (cutts) : A. distocarinatus/P. infusorioides Zones : Cenomanian : very nearshore marine : marginally mature for oil

1500m (cutts) : P. pannosus Zone : late Albian : presumed non-marine : marginally mature for oil

INTRODUCTION

Ten cuttings samples were examined from Beach Squatter-l for biostratigraphy and spore colour. No sidewall cores were available due to poor hole conditions. Yields were generally good. The samples are assigned to seven palynological zones on the basis of the supporting data presented here as Appendix I. The Cretaceous zonation used is basically that of Helby, Morgan and Partridge (1987), which draws on all previous work. The Tertiary zonation is that of Stover and Partridge (1973) and Stover and Evans (1973) as modified by Partridge (1976). Figure l shows the zonation framework.

Maturity data was generated on the Thermal Alteration Index (TAI) Scale of Staplin and plotted on Figure 2 as a Maturity Profile. The oil and gas windows on Figure 2 follow the general consensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (2.7) to dark brown (3.6) and would correspond to Vitrinite Reflectances of 0.6% to l.3\%. Geochemists, however, have not reached universal agreement on these values and argue variations based on kerogen type, basin type and basin history. The maturity interpretation is thus open to reinterpretation using the basic colour observations as raw data. However, the range of interpretation philosophies is not great, and would probably not move the oil window by more than 200 metres. Instrumental geochemistry offers quantitative and repeatable raw data.

AGE		SPORE - POLLEN
ZONES	DINOFLA GELLATE	
ZONES		

FIGURE 2 MATURITY PROFILE, SQUATTER-1
A. 790m (cutts) : M. diversus Zone (possibly upper)

Assignment to the Malvacipollis diversus Zone is clearly indicated at the top by the absence of younger indicators such as proteacidites asperopolus, Nothofagidites falcatus etc, and at the base by oldest Cupaneidites orthoteichus, Intratriporopollenites notabilis, Spinozinocolpites prominatus and Malvacipollis diversus without older indicators. Subzonal assignment is problematic, as the subzones are defined on oldest occurrences which are easily caved in cuttings samples. Oldest proteacidites clarus and P. kopiensis suggest middle M. diversus Zone or younger, and oldest Proteacidites pachypolus suggests upper M. diversus Zone or younger, but these taxa could all be caved from above. If all the taxa seen are in place, an upper M. diversus age would be indicated. Dilwynites and Proteacidites are dominant. Minor Cretaceous and Permian reworking were seen.

Dinoflagellates include frequent Muratodinium fimbriatum and rare Hafniasphera septata, consistent with the M. diversus assignment, but not sufficient to indicate a subzone.

Very nearshore marine environments are suggested by the low dinoflagellate content (10\% of palynomorphs) and their low diversity (5 species). Pollen and spores are dominant and diverse.

These features are normally seen in the Pember Member of the Dilwy Formation.

Light yellow spore colours indicate immaturity for hydrocarbon generation.
B. 810 m (cutts) : L. balmei Zone
at the top by youngest Gambierina edwardsii, G. rudata and L. balmei, and at the base by oldest L. balmei without older indicators. Proteacidites grandis and P. incurvatus are present and suggest the upper subzone, but they could be caved. Tetracolporites verrucosus is also present and suggests the lower subzone. However, only a single specimen was seen and so confidence is low (it could be reworked). Minor Cretaceous and Permian reworking were seen. Dilwyites, Falcisporites and Cyathidites are frequent.

Dinoflagellates are dominated by Deflandrea speciosa, suggesting a general Paleocene age. Other taxa include Isabelidinium bakeri (suggesting the lower L. balmei zone), and several obviously or probably caved taxa (Apectodinium hyperacantha, Deflandrea obliquipes, Wetzeliella articulata, Hafniasphaera septata and Muratodinium fimbriatum) and some obviously reworked taxa (Isabelidinium pellucidum). An unusual new reticulate Senoniasphaera was seen.

Nearshore marine environments are indicated by the moderate dinoflagellate content (20\%) and moderate diversity (although some of the diversity is caved).

These features are normally seen in the Pebble Point Formation.

Light yellow spore colours indicate immaturity for hydrocarbons.
C. 820m (cutts) : mixed assemblage presumed L. balmei with latest Cretaceous T. longus reworking.

Assignment of this sample is problematic. The majority of the assemblage is consistent with an L. balmei assignment (including dominant Haloragacidites harrisii with scarce Gambierina rudata and Jaxtacolpus peirensis. However, single specimens of Tricolpites sabulosus and Triporopollenites sectilis and six specimens of dinoflagellates suggest the latest Cretaceous T. longus Zone. Since late Cretaceous
specimens are rare, and many markers are missing, a Paleocene L. balmei Zone assignment is considered likely, with minor Late Cretaceous reworking. However, it is not impossible that the Cretaceous has been penetrated near the base of the cuttings interval. Obvious Eocene caving comprises about 5\% of the assemblage.

Dinoflagellates are very scarce and either long ranging or obviously caved Eocene or presumably reworked Cretaceous (Isabelidinium coronatum). Only D. speciosus, H. tubiferum and G. retiintexta may be in place, suggesting a general Paleocene age.

Marginally marine environments are indicated by the very scarce low diversity "in place" dinoflagellate assemblage, and the diverse and common pollen and spores.

The L. balmei Zone assignment is normally seen in the Pebble Point Formation, while a T. longus assignment is normally seen in the Timboon/Paaratte Formations.

Yellow spore colours indicate immaturity for hydrocarbons.
D. 840 m (cutts) : T. longus zone (M. druggii dinoflagellate Zone)

This sample is assigned to the Tricolpites longus Zone at the top on youngest T. longus, T. confessus, T. waiparaensis and Triporopollenites sectilis. T. longus in particular is relatively frequent and the numerous late Cretaceous indicators leave no doubt, in contrast to the sample above. At the base, oldest T. longus and Tetracolporites verrucosus indicate the assignment. Proteacidites and Phyllocladidites mawsonii are common.

Dinoflagellates include Manumiella coronata, clearly indicating assignment to the M. druggii Dinoflagellate Zone. Other significant taxa include Isabelidinium pellucidum and some specimens of I. pellucidum showing affinites towards I.
korojonense.

Marginal marine environments are indicated by the very rare (1%) of very low diversity (3 species) of dinoflagellates.

These features are normally seen in the Timboon/Paratte interval.

Spore colours of yellow indicate immaturity for hydrocarbon generation.
E. loo0m (cutts) : T. pachyexinus Zone (N. aceras Dinoflagellate Zone)

Assignment is indicated at the top by the absence of younger indicators such as Nothofagidites senectus, and at the base by oldest Tricolporites pachyexinus. The absence of Amosopollis cruciformis suggests the upper part of the zone, and is consistent with the dinoflagellate evidence. Proteacidites sp. dominate the samples, with frequent P. mawsonii and persistent Australopollis obscurus. Obvious Eocene caving comprises about 5% of palynomorphs.

Dinoflagellates include Nelsoniella aceras without Xenikoon australis and so indicate the N. aceras Dinoflagellate Zone, confirming the spore-pollen assignment. Heterosphaeridium heteracanthum and Trithyrodinium spp. dominate.

Nearshore to marginal marine environments are indicated by the dinoflagellate content (10% of palynomorphs) and their very low diversity (3 species).

These features are normally seen in the Paaratte Formation.

Yellow to yellow/light brown spore colours indicate immaturity for hydrocarbon generation.
F. l310m (cutts) : C. triplex Zone
)
Assignment to the Clavifera triplex Zone is indicated at the top on youngest Appendicisporites distocarinatus and at the base on oldest Clavifera triplex and p. mawsonii considered to be in place. Younger indicators include Nothofagidites senectus (suggesting the N. senectus or younger zones) and Ornamentifera sentosa (suggesting the T. pachyexinus or younger zones), but their light spore colours and the other evidence show that they are caved. Eocene caving comprises about 5\% of the assemblage, but inertinite dominates the sample. Gleicheniidites is common.
Dinoflagellates are not age diagnostic and are partly caved from younger horizons.
Nearshore marine environments are indicated by the low dinoflagellate content (10\%) and diversity (5 species).
These features are normally seen in the Belfast Mudstone and Flaxmans Formation.
Yellow/light brown spore colours indicate early marginal maturity for oil, and immaturity for gas/condensate.
G. 1390 m (cutts)-1420m (cutts) : A. distocarinatus Zone (P. infusorioides Dinoflagellate Zone)
Assignment to the Appendicisporites distocarinatus Zone is indicated at the top by the absence of younger indicators considered to be in place, a downhole influx of A. distocarinatus and A. tricornitatus, and the dinoflagellate evidence. C. triplex, A. obscurus and P. mawsonii in this interval show light spore colours, indicating their caved provenance. Gleicheniidites and Falcisporites are the most common forms. Eocene caving is generally rare, comprising 2-3\% of palynomorphs. At the base of the interval, a downhole increase of spore diversity (including the typically Early Cretaceous forms Cicatricosisporites australiensis, Trilobosporites trioreticulosus and Triporoletes reticulatus) suggests proximity to shoreline.

Dinoflagellates include a distinct downhole influx of Cribroperidinium edwardsii at the interval top, indicating penetration of the Palaeohystrichophora infusorioides Dinoflagellate Zone. The C. edwardsii/Chlamydophorella nyei association is a useful local assemblage. Other taxa are either caved or long ranging.

Very nearshore marine environments are indicated by the very low dinoflagellate content (5\% or less) and very low diversity (2-3 species considered in place).

These features are normally seen in the Flaxmans/Ware interval.

Light brown spore colours indicate marginal maturity for oil, and immaturity for gas/condensate.
H. l500m (cutts) : P. pannosus Zone

Assignment to the Phimopollenites pannosus Zone is indicated at the top by youngest Coptospora paradoxa, which is coincident with a major palynofacies change from inertinice domination above, to liptinite/vitrinite below, and a downhole increase in diversity and content especially of taxa like Balmeisporites holodictyus and Cicatricosisporites spp. Appendicisporites are notably absent. The zone base is defined by oldest P. pannosus, although this could conceivably be caved from the Late Cretaceous, and this sample belong to the upper C. paradoxa zone. In the absence of sidewall cores, these possibilities cannot be resolved. Cyathidites is dominant, with frequent Cicatricosisporites australiensis, Gleicheniidites and Microcachryidites antarcticus. Eocene caving comprises 38 and Late Cretaceous caving comprises 10\% of palynomorphs.

These features are normally seen in the topmost Eumeralla Formation.

Light brown spore colours indicate marginal maturity for oil, and immaturity for gas/condensate.
A. Geological

Given the \log picks supplied, there appears to be no major problem. Top Eumeralla at 1425 m is consistent, but major erosion of the Eumeralla cannot be demonstrated by palynology from the cuttings samples available. There is no obvious clean sand at the base of the Late Cretaceous, so no Waare Sandstone is identified, and the base Flaxmans Formation is therefore more subtle than usual. Top Flaxmans at 1352 m , top Belfast at 1297 m and top Paaratte/Timboon at 825 m are generally compatible with the palynology.

The sample at 820 m showing mixed latest Cretaceous and Tertiary suggests several possibilities. First, as discussed above, significant reworking of the Cretaceous into the basal Tertiary may have occurred. Second, the cuttings depths may not be exact against log depth, and the cuttings from 820 m may include rock material below 825 m . This seems unlikely, as the lithology below 825 m appears to be clean sandstone from logs, and would probably be barren of palynomorphs. Third, the top Late Cretaceous may be picked low, and could lie as high as 812 m (the palynology sample at 810 m lacks Late Cretaceous), with a terminal Cretaceous shale being present between $812-825 \mathrm{~m}$, characterised by the spikey sonic response. Overall, the first possibility may be the most likely.

Top Pebble Point at 792 or 795 m is consistent with the palynology, but as discussed above, the Pebble Point may comprise only the interval 795-812m (showing its typical high but relatively flat sonic response). The overlying Pember is also consistent, but in the absence of sidewall cores, the conformability or unconformability of the boundary cannot be determined. The existing data suggests that a sizable unconformity is possible.

These data do not radically alter palynological concepts regarding the known sequence.

The Paleocene samples do however, contain some significant information which hints at possible detailed subdivision of the Pebble Point interval. The section studied herein is probably from the lower L. balmei zone and appears to be dominated by Deflandrea speciosa types. The presence of Isabelidinium bakeri may also be a valid indicator of the lower part of the Pebble point Formation. There appears to be scope for a project to erect a palynological subdivision of this interval, if drilling priorities warrant a more detailed understanding of the Pebble Point.

Eocene samples from recent wells also suggest that there is potential for a dinoflagellate zonation of the Pember/topmost Pebble Point based on acme horizons. For example, 790m contains frequent M. fimbriatum while $810 m$ contains frequent Apectodinium spp. Such an acme based zonation could be worked easily in cuttings, and therefore overcome the problems of identifying the subdivisions of the M. diversus Zone (which are based on oldest occurrences).

C. Maturity

Spore Colours suggest marginal maturity at the well base, apparently in contrast to other data. Spore colour is a qualitative assessment made by eye. If other maturity data are instrumental and quantitative and therefore more repeatable, they would be favoured. However, those methods cannot distinguish between what is in place and what is caved in cuttings samples. A palynologist can determine what is in place and therefore assess the exent of caving, and account for it in his maturity evaluation.

REFERENCES

Helby, R.J., Morgan, R.P. and Partridge, A.D. (1987) A Palynolgical Zonation of the Australian Mesozoic In Studies in Australian Mesozoic Palynology Australas. Assoc. Palaeot., Mem. 4

Partridge, A.D. (1976) The geological expression of eustacy in the Early Tertiary of the Gippsland Basin Aust. Pet. Explor. Assoc. J., 16 : 73-79

Stover, L.E. and Evans, P.R. (1973) Upper Cretaceous-Eocene spore-pollen zonation, offshore Gippsland Basin, Australia Spec. Publ. geol. Soc. Austr. $4: 55-72$

Stover, L.E. and Partridge, A.D. (1973) Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, South-eastern Australia Proc. R. Soc. Vict., 85 : 237-286
)

APPENDIX I

PAL YNOMORPH OCCURRENCE DATA

)

SQUATTEF: *1

DESCFIFTION:

FALYNOLOGICAL INTEFFFETATION OF DATA FOF EEACH FETFOLEUM BY ROGEF MOFGAN. ALL SAMFLES AFE CUTTINGS AND DEFTHS ARE IN METFES.

* INDICATED DINOFLAGELLATE *

WOFK COMFLETED NOVEMEEF 1987.

CHECKLIST OF GFiAFHIC AEUNDANCE EY HIGHEST AFFEAFiANCE

= Abundant
= Common
= Few
= Rare
= Very Fiare
? = Guestionaily Fresent
= Not Fresent

$$
\begin{aligned}
& \text {) }
\end{aligned}
$$

AFTEODIHIUH AUSTRAL. IEHSE H

H COEDGOSFHAEFICIUH MULTISPIBOSUH H \# CIEFLAHDEEA OILHYHENSIS H
* deflardieea megcalfil \#
\% Deflardirea aeliguifes \%
* Deflardorea speciosus m
* DEFLAMCREA STRIATA H
H FIEROCYSTA Eifolare y
* GLAFHYRGCYSTA RETIIHTESTA \#
\# HYETRICHOEFHAERICIUM TUEIFERUM
H I SAEELIGIHIUH EAKERI H
\# I EAEELIDIMIUM PELLUCIDUM \#
H OFERECULGOIHIUH CEHTROCARPUH H
\# apekiculoginiuh sf. Pr
\% SEMOHIASFHAERA SF. \#
+ HETZELIELLA artigulata \#
AMGEDFGLLIS GRUCIFORHIS
DACRYEARFITES AUSTRALIEHSIS
DILHYHITES TUBERCULATUS
FALCISFORITES SIMILIS
GAMEIERINA EDHARDSII
gatibierima rugata
HERKOSPORITES ELLISTTII
LATROEOEFORITES GRASSUS
LYGISTEFGLLEHITES EHLHEI
HOTHOFAGIDITES BEACHYSPIHULOSUS PERGHOHOLITES UELLOSUS
Fh\%lloclatiaites reticulosfaccatus
FHYLLOCLADIGITES VERRUCOSUS
FOLISFGRITES MIGROSACLATUS
TEACICIITES FALISALIUS

0790.0 CUTTS
0810.0 CUTTS
0820.0 CLTTS
0840.0 CUTTS
1000.0 CUTTS
1310.0 CLTTS
1350.0 CUTTS
. 10.0 CUTTS
1420.0 CUTTS
1500.0 CUTTS

			－	$\begin{aligned} & 0 \\ & \stackrel{y y}{0} \\ & \stackrel{y}{x} \end{aligned}$	
	简芦品	$\stackrel{\otimes}{w}$			
0770.0 Cutts					
0810.0 Cutts					
0820.0 cutts					
0840.0 Cutts					
1000.0 CuTts					
1310.0 Cutts					
1390.0 Cutts					
1410.0 Cutts					
1420.0 Cutts					
1500.0 Cutts	1	111			

SFECIES LDCATION INDEX

) Inde: numbers are the columns in which species appear.

INDEX
NUMEEF SFECIES

```
    \Xi1 * AFECTODINIUH HDMOMOFFHA (L.) *
    32 * AFECTODINIUM HOMOMOFFHA (SH.) *
    3.S * AFECTODINIUM HYFERCANTHA *
    112 * AFTEA FOLYMORFHA *
    34 * AFTEODINIUM AUSTFALIENSE *
    69 * AFEOLIGERA COFONATA *
    1 * AFEOLIGEFA SENONENSIS *
    113 * CHLAMYDOFHOFELLA NYEI *
    114 * CLEISTOSFHAEFIDIUM SF. *
    70 * CORDOSFAEFIDIUM INDDES *
    35 * CORDOSFHAERIDIUM MULTISFINOSUM
    115 * CRIEFOFERIDINIUM EDWAFDSI *
    116 * CYCLONEFHELIUM COMFACTUM *
    36 * DEFLANDFEA DILWYNENSIS *
    37 * DEFLANDFEA MEDCALFII *
    38 * DEFLANDFEA OELIQUIFES *
    39 * DEFLANDFEA SFECIOSUS *
    40 * DEFLANDFEA STRIATA *
    41 * FIEFOCYSTA BIFOLARE *
    42 * GLAFHYFIDCYSTA FETIINTEXTA *
        2 * HAFNIASFHAEFIA SEFTATA *
        84 * HETEFOSFHAEFIDIUM
        4\Xi * HYSTFICHOSFHAERIDIUM TUEIFEFUM *
            44 * ISAEELIDINIUM EAKEFI *
            117 * ISABELIDINIUM EALMEI *
            118 * ISABELIDINIUM COOKSDNIAE *
            45 * ISAEELIDINIUM FELLUCIDUM *
            71 * MANUMIELLA CORONATA *
            \Xi * MUFATODINIUM FIMERIATUM *
            85 * NELSONIELLA ACERAS *
            78 * NUMMUS MONOCULATUS *
            100 * ODONTOCHITINA OFEFCULATA *
            101 * OLIGOSFHAEFIDIUM COMFLEX *
            40 * OFEFCULODINIUH CEINTROCAFFUM
            47 * OFEFICULODINIU| SF. *
            48 * SENONIASFHAEFIA SF. *
            119 * SFINIFENITES FiARIOSUS
            * TFITHYFODINIUM "FETICULATA" *
            * wETZELIElLA AFiticulata *
            AMIOSOFOLLIS CFUCIFOFMIS
            120 ANNULISFOFITES FOLLICULOSA
            1.37 ANTULSFOFIITES VAFIIGRANULATUS
            102 AFFENDICISFOFITES DISTOCARINATUS
```

```
) 121
    AFFENDICISFORITES TRICOFNITATUS
    128 AFAAUCARIACITES AUSTRALIS
        4 AUSTFALOFOLLIS OBSCUFUS
        87 EALMEISFOFITES HOLODICTYUS
    129 CALLIALASFOFITES DAMFIEFI
    138 CAMEFOZZONOSFOFITES EULLATUS
        8B CAMEFIOZONOSFOFITES OHAIENSIS
        72 CEFATOSFORITES EQUALIS
        89 CICATFICOSISFOFITES AUSTFALIENSIS
        9O CICATFICOSISFOFITES CUNEIFOFMIS
        91 CICATFICOSISFORITES HUGHESI
        92 CICATRICOSISFOFITES LUDEROOKIAE
    103 CINGUTFILETES CLAVUS
        5 CLAVIFEFA TFIFLEX
    131 CONTIGNISFORITES COOKSONIAE
    139 COFTOSFORA F'ARADOXA
        9% COFOLLINA TOFOSUS
    132 CORONATISFOFA FEFFOFATA
        94 CFiYBELOSFORITES STFIATUS
        6 CUFANIEIDITES OFTHOTEICHUS
    104 CYATHIDITES AUSTKALIS
    105 CYATHIDITES MINDF
        7 CYATHIDITES SFLENDENS
        8 CYATHIDITES SFF.
    106 CYCADOFITES FOLLICULAFIS
        5 1 ~ D A C F Y C A F F I T E S ~ A U S T F A L I E N S I S ~
    122 DICTYOTOSFORITES COMFLEX
        9 DILWYNITES GFANULATUS
        52 DILWYNITES TUEEFCLLATUS
        10 EFICIFITES SCABFAATUS
    140 FALCISFORITES GRANDIS
        5.3 FALCISFOFITES SIMILIS
    141 FORAMINISFORIS ASYMMETRICUS
    107 FORAMINISFORIS DAILYI
    123 FORAMINISFORIS WONTHAGGIENSIS
        54 GAMEIERINA EDWAFDSII
        55 GAMBIEFINA FUDATA
        11 GLEICHENIIDITES
        12 HALOFAGACIDITES HAFRRISII
        56 HEFKOSFOFITES ELLIOTTII
        1.3 INTFATFIFOROFOLLENITES NOTABILIS
        14 ISCHYOSFORITES GFEMIUS
    13S ISCHYOSFOFITES FUNCTATUS
        73 JAXTACOLFUS FEIFAATUS
    1J4 KLLKKISFOFITES SCABEFIS
        57 LATROBOSFOFITES CFASSUS
        15 LATFOEOSFOFITES OHAIENSIS
    142 LEFTOLEFIDITES MAJOF
    13O LEFTOLEFIDITES VEFFUCATUS
    124 LYCOFODIACIDITES ASFEFATUS
```

	58	LYGISTEFOLLENITES EALMEI
	10	LYGISTEFOLLENITES FLOFINII
)	17	MALVACIFOLLIS DIVEFSUS
	18	MALUACIFOLLIS SUBTILIS
	108	MICFOCACHFYIDITES ANTAFCTICUS
	109	NEOFAISTFIICKIA TFUNCATA
	57	NOTHOFAGIDITES EFACHYSPINULOSUS
	79	NOTHDFAGIDITES ENDUFUS
	80	NOTHOFAGIDITES SENECTUS
	110	OFINAMENTIFERA SENTOSA
	95	OSMUNDACIDITES WELLMANII
	111	FEFINOFOLLENITES ELATOIDES
	19	FEFIFOFOFOLLENITES FOLYOFATUS
	60	FEFOMONOLITES VELLOSUS
	125	FEFROTRILETES JUEATUS
	126	FEROTRILETES SF.
	96	FHIMOFOLLENITES FANNOSUS
	61	FHYLLOCLADIDITES MAWSONI I
)	62	FHYLLOCLADIDITES FiETICULOSACCATUS
	6.3	FHYLLOCLADIDITES VEFFUCOSUS
	64	FODOSFOFITES MICFOSACCATUS
	20	FFOTEACIDITES ANNULAFIS
	21	FFioteacidites clafus
	22	FFOTEACIDITES GFANDIS
	23	FROTEACIDITES INCURVATUS
	24	FROTEACIDITES KOFIENSIS
	25	FFOTEACIDITES FACHYPOLUS
	65	FFOTEACIDITES FALISADUS
	26	FFiOTEACIDITES SFF.
	66	FFOTEACIDITES TENUIEXINUS
	74	FFOTEACIDITES TUEEFCLILIFOFMIS
	27	FETITFILETES AUSTFIOCLAVATIDITES
	97	FETITFILETES CIFCOLUMENUS
	143	FETITFILETES FACETUS
	28	SFINIZONOCOLFITES FROMINATUS
	29	STEFEISFOFITES (TKIFUNCTISFORIS) SFP.
	30	STEFEISFOFITES ANTIQUASFOFITES
	75	STEFEISFOFITES FEGIUM
	67	TETFACOLFORITES VEFFUCOSUS
	81	TFIICOLFITES CONFESSUS
	82	TFICOLFITES LONGUS
	76	TFiICOLFITES SAEULOSUS
	8.3	TFIICOLFITES WAIFAFAENSIS
	98	TFICOLFOFITES PACHYEXINUS
	127	TFILLETES TUEEFCULIFDFIIS
	144	TFILOBOSFOFITES FURUEFULENTUS
	135	TRILOBOSFGFITES TFIORETICULOSUS
	1.36	TFIFOFIOLETES FIADIATUS
	97	TFiFOFIOLETES FETICULATUS
)	145	TFIFOROLETES SIMFLEX
	77	TFIFAFOOFOLLENITES SECTILIS
	08	VEFFIUCOSISFORITES トOFUKUENSIS

