PE990895

APPENDIX-5

PALYNOLOGICAL ANALYSIS, TARWHINE-1,

GIPPSLAND BASIN

by

M.K. Macphail

Esso Australia Ltd Palaeontology Report 1982/20

13 May 1982.

INTRODUCTION:

Seventy six (76) sidewall cores and two core samples were processed and examined for spore-pollen. The recovery of microfossils was good to fair for most samples except in the <u>Lygistepollenites balmei</u> Zone. Preservation was usually poor and relatively few samples contained zone species of spores and pollen. Age determinations are supported by an analysis of the dinoflagellate assemblages by A.D. Partridge.

Palynological zones and lithological facies subdivisions from the base of the Lakes Entrance Formation to the total depth of the well are given below. Table 1 represents a summary of the palynological analyses. The occurrence of each spore and pollen type is tabulated in the accompanying range chart.

UNIT/FACIES	ZONE	DEPTH (metres)
LAKES ENTRANCE FORMATION	<u>P. tuberculatus</u>	1310
GURNARD FORMATION	Upper <u>N. asperus</u> Middle <u>N. asperus</u>	1345-1348 1351-1381
LATROBE GROUP COARSE CLASTICS	Middle <u>N. asperus</u> Lower <u>N. asperus</u> <u>P. asperopolus</u> Upper <u>M. diversus</u> Middle to Lower <u>M. diversus</u> Upper <u>L. balmei</u> Lower <u>L. balmei</u> <u>T. longus</u> <u>T. lilliei</u>	1392-1405 1412-1591 1643-1656 1666-1727 1818-1892 1911-1932 2026-2391 2420-2934 2940-2949

SUMMARY

2955 T.D.

GEOLOGICAL COMMENTS:

- 1. The Tarwhine-1 well contains a continuous sequence of zones from the Late Cretaceous <u>T. lilliei</u> Zone to the Early Oligocene <u>P. tuberculatus</u> Zone. Although spore-pollen assemblages were not sufficiently diverse to separate the Middle and Lower <u>M. diversus</u> Zones, it is probable both are represented in the well.
- 2. The Gurnard Formation, recognised by glauconitic sediments from 1345 to 1386 metres, contains both Middle and Upper <u>N</u>. <u>asperus</u> spore-pollen and dinoflagellate assemblages. The Upper <u>N</u>. <u>asperus</u> Zone is represented in sidewall cores at 1345 and 1348 metres. The lower of the two also contains foraminiferal faunas referable to the Late Eocene Zone K (Hannah 1982). The Gurnard Formation, initially picked on cutting lithology at the time of drilling as occurring between 1370 to 1386 metres, is clearly Middle <u>N</u>. <u>asperus</u> in age.
- 3. The Middle <u>N</u>. <u>asperus</u> Zone extends down into the coarse clastics below the Gurnard Formation, demonstrating that there is no significant unconformity at this lithological boundary. Dinoflagellates remain common across the boundary to 1412 metres, top of the Lower <u>N</u>. <u>asperus</u> Zone. This is close to the uppermost occurrence of coal at 1407 metres and consistent with a change from a terrestrial/fluvial to an open marine environment during the Middle Eocene.
- 4. The presence of Upper <u>N</u>. <u>asperus</u> age sediments in the Tarwhine-1 well strengthens the probability (Partridge 1977) that the unsampled interval between 1040 to 1045 metres in

- 3 -

the Barracouta-4 well is also Upper <u>N</u>. <u>asperus</u> in age, i.e., that there is no unconformity between the Middle <u>N</u>. <u>asperus</u> Gurnard Formation and the <u>P</u>. <u>tuberculatus</u> Lakes Entrance Formation at Barracouta-4. A similar sequence of time-rock units at the two well sites is consistent with a Middle Eocene shoreline parallel to the present-day coastline.

- 5. Although no major periods of non-deposition and/or erosion are evident, mean sedimentation rates show a sustained decrease from greater than 80 metres per million years in the <u>T. longus</u> Zone to less than 30 metres per million years in the Middle <u>N. asperus</u> Zone. This may reflect a shift (northwards) in the depositional centre of the basin away from the Tarwhine area. Anomalously low deposition rates calculated for the Upper <u>N. asperus</u> and <u>P. asperopolus</u> Zones suggest that minor periods of erosion/non-deposition have occurred. Alternatively, portions of the undated interval between 1644 and 1591 metres may also be <u>P. asperopolus</u> in age.
- 6. There is no evidence in the form of dinoflagellate cysts for any marine transgression at the Tarwhine-1 well site before the top of the Lower N. asperus Zone at 1412 metres.

7. The Thermal Alteration Index for all samples is less than 2.

DISCUSSION OF ZONES.

Zone boundaries have been established using the criteria of Stover and Evans (1973), Stover and Partridge (1973) and subsequent revisions (A.D. Partridge per comm.).

- 4 -

<u>Proteacidites tuberculatus</u> Zone - above 1310 metres. The zone is recognised on the presence of <u>Cyatheacidites annulatus</u> at 1250 metres and 1310 metres. The other sample at 1280 metres contains <u>Quintinia psilatispora</u> Martin. This is the lowest stratigraphical record of this taxon in the Gippsland Basin to date.

- 5 -

Upper Nothofagidites asperus Zone: 1345 - 1348 metres This zone is identified by the absence of spore-pollen indicator species of the underlying zone (e.g., <u>Triorites magnificus</u>) and the overlying zone (e.g., <u>Cyatheacidites annulatus</u>). The agedetermination is supported by (i) <u>Pthanoperidinium comatum</u> being the dominant dinoflagellate species in both samples, (ii) <u>Proteacidites rectomarginis</u> being the most common large proteaceous pollen and (iii) <u>Nothofagidites flemingii</u> being a common element in the lowermost sample.

Middle Nothofagidites asperus Zone and Vozzkenikova extensa

Dinoflagellate Zone: 1351.1 - 1405 metres. The top of the zone is based on the highest occurrence of the pollen taxa Triorites magnificus and Proteacidites adenanthoides, and the dinoflagellates V. extensa and Corrudinium incompositum, at 1351.1 metres. The base of the zone is placed at the lowest occurrence of <u>V</u>. extensa, in samples at 1405.44 metres (core) and 1401.8 metres (sidewall core). Spore-pollen diagnostic of the zone appear later in the zone: Anacolosidites sectus at 1392 metres and Triorites magnificus at 1380.9 metres (base of the Gurnard Formation). The late appearance of diagnostic species is attributed to poor concentration and poor preservation of spore-pollen in samples from the hydrocarbon column at the top of the coarse clastics. Although these samples are rich in terrestrially-derived organic matter, oxidation tends to destroy all forms of organic material except for the highly resistant dinoflagellate cysts.

Lower <u>Nothofagidites asperus</u> Zone: 1411.8 - 1591 metres. The base of the zone is placed at the marked increase in <u>Nothofagidites</u> spp. abundance, from less than 1% at 1643.5 metres to 33% at 1591 metres. <u>Nothofagidites asperus</u> is recorded at the base but other zone species are recorded higher within the zone, e.g., <u>N. falcatus</u> at 1426.6 metres, and <u>Rugulatisporites trophus</u> at 1542.4 metres. The top of the zone is picked by the absence of indicator species of the overlying zone, i.e., <u>Triorites magnificus</u> and <u>V. extensa</u>. The two lowermost samples, at 1542.4 metres and 1591 metres, contain abundant <u>Proteacidites asperopolus</u> pollen. This phenomenon has been previously noted for Lower <u>N. asperus</u> age samples in the Barracouta-4 well (Partridge 1977).

Proteacidites asperopolus Zone: 1643.5 - 1656 metres. Two sidewall core samples are identified as belonging to this zone. Confidence in the age-determination of the uppermost, at 1643.5 metres, is good due to the first appearance here of Sapotaceoidaepollenites rotundus, the occurrence of Myrtaceidites tenuis, a species which ranges no higher than the P. asperopolus Zone, and the dominance of proteaceous pollen, particularly P. pachypolus, P. reticuloscabratus and P. xestoformis. Although none of these species is restricted to the P. asperopolus Zone, the marked difference in composition between these samples, the overlying Nothofagidites spp. -dominant and underlying Malvacipollis -dominant palynofloras is typical of the zone. The lower of the two samples, 1656 metres, contains M. tenuis. The remainder of this spore-pollen assemblage consists of long-ranging taxa and the sample is assigned a P. asperopolus age on the basis that it is more similar to sample 1643.5 metres than those in the underlying M. diversus Zone.

- 6 -

Upper <u>Malvacipollis diversus</u> Zone: 1666.4 - 1727 metres. The top of the zone is identified by the first occurrence of abundant <u>M. diversus</u> pollen and also contains the first appearance of <u>Myrtaceidites tenuis</u>. The occurrence of abundant <u>M. diversus</u>, <u>Proteacidites pachypolus</u> and <u>Milfordia homeopunctata</u> pollen confirm an Upper <u>M. diversus</u> age for samples at 1715.5 and 1727 metres. The quartz-rich sediments between 1727 and 1818.5 metres were barren or contained reworked spore-pollen only. e.g., <u>Gambierina</u> <u>rudata</u>.

Middle-Lower Malvacipollis diversus Zone: 1818.5 - 1892.5 metres. The base of the zone is picked at the first occurrence of M. diversus pollen, at 1892.5 metres. The species is relatively common in this sample and at 1882.1 metres but is absent from samples between 1818.5 and 1882.1 metres. The top of the zone, at 1818.5 metres is based on the absence of indicator species of the Upper M. diversus Zone, e.g., Proteacidites pachypolus. However this sample cannot be definitely assigned to the Middle M. diversus Zone due to the absence of Middle M. diversus indicator species such as Proteacidites ornatus, P. tuberculiformis and P. xestoformis. The variable occurrences of Cupanieidites orthoteichus, Ischyosporites irregularis, Proteacidites lapis, P. obscurus, Tricolporites adelaidensis, T. paenestriatus and Triporopollenites helosus demonstrate the interval is no older than M. diversus age but the low yields and generally poor spore-pollen diversity make it impossible to make a more detailed subdivision.

Upper Lygistepollenites balmei Zone: 1911 - 1932 metres. The top of the zone is identified by the first appearance of <u>L</u>. balmei (abundant) with <u>Verrucosisporites kopukuensis</u>. The presence of <u>Gambierina edwardsii</u>, <u>Nothofagidites endurus</u> and <u>Phyllocladidites verrucosus</u> demonstrate the sample is no younger

- 7 -

The top of the zone is defined by the occurrence of <u>Grapnelispora</u> <u>evansii</u> sp. nov. at 2420 metres. The highest occurrence of <u>T</u>. <u>longus</u> is at 2431 metres. <u>Quadraplanus brossus</u> which is diagnostic of the zone occurs lower down, at 2445 metres. The base of the zone is picked on the simultaneous first appearances of <u>T</u>. <u>longus</u>, <u>Proteacidites otwayensis</u> amd <u>P</u>. <u>reticuloconcavus</u> at 2934.5 metres. There is currently some uncertainty as to the exact stratigraphic range of these Palaeocene <u>Proteacidites</u> spp. and subsequent work may show the first appearance of <u>Stereisporites</u> (<u>Tripunctisporis</u>) <u>punctatus</u> at 2699.3 metres represents the base of the <u>T</u>. <u>longus</u> Zone.

<u>Tricolporites lilliei</u> Zone: 2939.8 - 2948.5 metres. The zone is characterised by a marked increase in <u>Nothofagidites</u> <u>endurus</u> relative to other spore-pollen species (Stover & Evans 1973). These authors distinguish the base of the overlying <u>T</u>. <u>longus</u> Zone by the virtual absence of <u>Nothofagidites</u> spp. and a marked increase in <u>Triorites edwardsii</u> (= <u>Gambierina rudata</u>) pollen. On these criteria, the age of the sediment at 2934.5 metres is equivocal since <u>G</u>. <u>rudata</u> is abundant and <u>N</u>. <u>endurus</u> frequent.

The top of the zone is picked at 2939.8 metres, the highest sample in which <u>N</u>. <u>endurus</u> is clearly more abundant than <u>G</u>. <u>rudata</u>. <u>T</u>. <u>lilliei</u> is also present. The basal sample, at 2948.5 metres, contains a mixed late Cretaceous, Paleocene and Eocene spore-pollen assemblage, lacking <u>T</u>. <u>lilliei</u>. The sample has been contaminated by cavings but is obviously no older than the <u>T</u>. <u>lilliei</u> Zone due to the presence of <u>G</u>. <u>rudata</u> and <u>Triporopollenites</u> <u>sectilis</u>.

- 9 -

than Upper L. balmei in age. V. kopukuensis at 1926 metres confirms an Upper L. balmei age for this sample. The base of the zone is picked at 1932 metres due to, (i) the absence of indicator species of the Lower L. balmei Zone, e.g., <u>Tetracolporites</u> <u>verrucosus</u>, and (ii) an abundance of <u>Australopollis obscurus</u>. Occurrences of <u>Dryptopollenites semilunatus</u> at 1911 metres and 1932 metres and <u>Periporopollenites demarcatus</u> at 1932 metres and 2496.1 metres represent extensions in the range of these taxa into the Paleocene and late Cretaceous respectively.

Lower Lygistepollenites <u>balmei</u> Zone: 2026.6 - 2391.5 metres. The zone falls within an interval in which most samples are either barren or contain spore-pollen assemblages of low diversity and limited stratigraphic usefulness. The top of the zone, 2026.6 metres, is identified by the highest occurence of <u>Tetracolporites</u> <u>verrucosus</u> and the first occurrence of <u>Proteacidites annularis</u>. The base of the zone is picked at 2391.5 metres on the lowermost occurrence of an <u>L. balmei</u> and (abundant) <u>Gambierina rudata</u> assemblage lacking indicator species of the <u>T. longus</u> Zone. Spore-pollen diagnostic of sediments no older then <u>L. balmei</u> were recorded higher in the zone, e.g., <u>Basopollis mutabilis</u> at 2346 metres, <u>Haloragacidites harrisii</u> and <u>Malvacipollis subtilis</u> at 2036 metres.

<u>Tricolpites longus</u> Zone: 2420 - 2934.5 metres. The zone is characterised by spore-pollen assemblages that are more diverse than in the overlying <u>L</u>. <u>balmei</u> Zone. <u>Gambierina rudata</u> and gymnosperms are the dominant taxa but many samples also contain <u>T</u>. <u>longus</u> and species which first appear in the <u>T</u>. <u>longus</u> zone, e.g., <u>Tetracolporites verrucosus</u>. <u>Triporopollenites sectilis</u> and <u>Tricolporites lilliei</u> occur in most samples.

- 8 -

HANNAH, M.J., 1982. Micropalaeontological analysis of Tarwhine-1, Gippsland Basin, Victoria. <u>Esso Australia Ltd</u>, Palaeontological Report: 1982/18.

- PARTRIDGE, A.D., 1977. Palynological Analysis Barracouta-4, Gippsland Basin. Esso Australia Ltd, Palaeontological Report: 1977/16.
- STOVER, L.E., & EVANS, P.R., 1973. Upper Cretaceous spore-pollen zonation, offshore Gippsland Basin, Australia. <u>Special</u> <u>Publication Geological Society of Australia 4</u>: 55-72.
- STOVER, L.E., & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. <u>Proceedings of the Royal</u> <u>Society of Victoria, 85</u>: 237-86.

BASIC DATA

Table-1: Palynological Data Range Chart - Dinoflagellates Range Chart - Spore Pollen PALYNOLOGY DATA SHEET

BA	SIN: GIPPSLAND	EVATION	: ^{кв} : _	21m	GL:	-48r	n				
WELL	NAME: TARWHINE-	TAL DEP	rh:	295	5 metres	5					
щ	PALYNOLOGICAL	HIG	ΗE	ST D	АТ	A	LO	WE	ST D	A T 2	Ą
A G	ZONES	Preferred Depth	Rıg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Altern ate Depth	Rtg	Two Way Time
	T. pleistocenicus										
ω	M. lipsis										
GEN	C. bifurcatus										
NEO	T. bellus										
 	P. tuberculatus	1250.0	0				1310.0	0			
	Upper N. asperus	1345.0	1				1348.0	1			
	Mid N. asperus	1351.1	0				1405.4	2	1392.0	1	
ы	Lower N. asperus	1411.8	• 2				1591.0	2	1542.4	1	
GEN	P. asperopolus	1643.5	2				1656.0	2			
LEO	Upper M. diversus	1666.4	1				1727.0	1			
PA	Mid M. diversus	1818.5	2								
	Lower M. diversus						1892.5	1			
1	Upper L. balmei	1911.0	0				1932.0	2	1926.0	0	
	Lower L. balmei	2026.6	1				2391.5	2	2346.0	1	
	T. longus	2420.0	0				2934.5	2	2699.3	1	
Snot	T. lilliei	2939.8	1				2948.5	2	2939.8	1	
ACE	N. senectus								_		
RET	U. T. pachyexinus										
0	L. T. pachyexinus										
ATE	C. triplex										
	A. distocarinatus										
	C. paradoxus										
RET	C. striatus										
U.	F. asymmetricus										
RLY	F. wonthaggiensis										
EA	C. australiensis										
	PRE-CRETACEOUS										
сом	MENTS: It has not	been pos	sib1	e to subd	ivide	e the Mi	ddle and i	Lower	M. diver	sus	Zones
	due to poo	r diversi	ty a	nd poor p	resei	vation	of spore-	20116	en.		

CONFIDENCE RATING: O: SWC or Core, Excellent Confidence, assemblage with zone species of spores, pollen and microplankton.

1: SWC or Core, Good Confidence, assemblage with zone species of spores and pollen or microplankton.

SWC or Core, <u>Poor Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton.
Cuttings, <u>Fair Confidence</u>, assemblage with zone species of either spores and pollen or microplankton,

or both.

4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton.

NOTE:

If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zoncs is given where the highest possible limit will appear in one zone and the lowest possible limit in another.

DATA	RECORDED BY:	M.K. Macphail & A.D. Partridge	DATE:	May 4, 1982.
DATA	REVISED BY:		DATE :	

TABLE-1

PALYNOLOGICAL DATA

BASIC DATA

SAMP	LE	DEPTH		DIVERSITY
NC).	(Metres)	YIELD	SPORE POLLEN
SWC	139	1250	Good	Low
SWC	138	1280	Good	Low
SWC	137	1310	Good	Low
SWC	135	1345	Good	Moderate
SWC	134	1348	Good	High
SWC	133	1351.1	Good	High
SWC	132	1353	Good	High
SWC	130	1359	Good	Moderate
SWC	127	1367.1	Fair	Moderate
SWC	123	1375.1	Good	High
SWC	120	1380.9	Good	Moderate
SWC	116	·1392	Good	Moderate
SWC	113	1401	Good	High
Core	2	1405.44	Good	Low
Core	2	1411.8	Good	Moderate
SWC	101	1422.1	Low	Poor
SWC	99	1426.6	Good	Moderate
SWC	92	1503	Good	Moderate
SWC	89	1542.4	Good	Moderate
SWC	86	1591	Good	Moderate
SWC	82	1643.5	Good	Moderate
SWC	81	1656	Low	Low
SWC	107	1666.4	Good	Moderate
SWC	78	1693	Nil	-
SWC	76	1715.5	Fair	Moderate
SWC	75	1727	Good	High
SWC	73	1754	Nil	-
SWC	69	1807	Nil	-
SWC	68	1818.5	Good ,	Moderate
SWC	67	1836	Good	Moderate
SWC	65	1860	Fair	Low
SWC	64	1882.1	Low	Low
SWC	62	1892.5	Low	Low
SWC	61	1900	Very Low	Very Low
SWC	60	1911	Good	High
SWC	59	1926	Fair	Low
SWC	58	1932	Good	Moderate
SWC	57	1955	Nil	-
SWC	51	2003.1	Very Low	Very Low
SWC	49	2026.6	Good	Moderate
SWC	48	2036	Fair	Moderate
SWC	41	2115.7	Fair	Low
SWC	38	2163	Fair	Low
SWC	36	2196.2	Nil	-
SWC	35	2204.9	Fair	LOW
SWC	33	2230.9	Nil	-
SWC	32	2241.1	Very Low	Very Low
SWC	31	2255.1	Nil	-
SWC	29	2273	Nil	-
SWC	28	2290.1	Very Low	Very Low
SWC	27	2304	Low	Low
SWC	26	2315	Fair	Low
SWC	24	2346	Fair	Low
SWC	23	2352.5	Nil	-

SAMPLE	DEPTH		DIVERSITY				CONFIDENCE	
NO.	(Netres)	YTELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	COMMENTS
110.	necres/							
STAT 139	1250	Good	Low	Marl	P. tuberculatus	Oligocene	0	Cvatheacidites annulatus
SHC 139	1200	Cood	Low	Marl	P tuberculatus	Olicocene	ñ	Quintinia psilatomora
5%C 130	1210	GOOD	LOW Low	C lut	P. tuborquistus	Oligocene	ñ	Cysthoscidites acculatus
SWC 137	1310	GOOD	LOW	C. IUC.	P. Luberculacus	Tato Forcene	2	Diverse Vetrefogidites
SWC 135	1345	Good	Nocerate	Clyst, calc, glauc.	opper N. asperus	Late Docene	. 4	assemblage
SWC 134	1348	Good	High	Clyst, calc, glauc.	Upper N. asperus	Late Eocene	1	Proteacidites rectomarginis and Phthanoperidinium common.
SEC 133	1351 1	Corr	High	Clyst, calc.	Middle N. asperus	Late Eocene	0	Triorites magnificus
SILC 133	1321.1	Cood	ligh	Clyst, Calc	Middle N asperus	Late Eccene	ň	Triorites magnificus.
SWC 132	1222	GOOD	. nign		Moore <u>n</u> . <u>asperus</u>		Ū	Aglaoreidis cualumis, Proteacidites pachypolus, Simplicepollis meridianus
SWC 130	1359	Good	Moderate	Clyst, tr. glauc.	Middle N. asperus	Late Eocene	2	Proteacidites rectomarginis common
CVC 127	1367 1	Fair	Moderate	Clyst, calc, tr.glauc,	Middle N. asperus	Late Eccene	2	Rugulatisporites trophus
SNC 127	1275 1	Cood	High	Clyst calc glauc	Middle N asperus	Late Eocene	ñ	Triorites magnificus
5/0 123	12/2.1	GOOG	nign Mederato	Ciyse, care, gidue.	Middle N accorus	Late Focene	ĭ	Aglaoreidia qualumis.
SWC 120	1380.9			Sist, glauc.	Midule <u>N.</u> <u>aspelus</u>	nate potene	1	Triporopollenites ambiguus, Proteacidites recavus
SWC 116	1392	Good	Moderate	Sltst, calc, carb.	Middle <u>N.</u> asperus	Late Eocene	1	Anacolosidites sectus, Protezcidites crassus
SWC 113	1401	Good	High	Sst, clay-rich	Middle <u>N</u> . <u>asperus</u>	Late Eccene	1	Dryptopollenites semilunatus, Schizocolpus marlinensis, Proteacidites crassus
Core 2	1405.44	Good	Low		Middle <u>N.</u> asperus	Middle Eocene	2	Malvacipollis robustus. Sample from oil column.
Core 2	1411.8	Good	Moderate)	Lower N. <u>asperus</u>	Middle Eocene	2	Malvacipollis robustus, Proteacidites pachypolus,. Sample from oil column.
SWC 101	1422.1	Low	Poor				-	
5530 99	1426.6	Good	Moderate	Sst, carb. lens	Lower N. asperus	Middle Eocene	2	Nothofagidites falcatus
SWC 92	1503	Good	Moderate	Sst, carb.	Lower N. asperus	Middle Eocene	2	Proteacidites asperopolus, P. pachypolus

1

f

TABLE-1 SUMMARY OF PALYNOLOGICAL ANALYSIS, TARWHINE-1, GIPPSLAND BASIN INTERPRETATIVE DATA

SAPLE	DEPTH		DIVERSITY				CONFIDENCE	0011/2322
NO.	(Metres)	YIELD S	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	COMMENTS
SWC 89 SWC 86	1542.4 1591	Good Good	Moderate Moderate	Clyst Clyst	Lower N. asperus Lower N. asperus	Middle Eocene Middle Eocene	1 0	Rugulatisporites trophus Rugulatisporites trophus, Proteacidites asperopolus & P. rugulatus common
SWC 82	1643.5	Good	Moderate	Clyst, carb.	P. asperopolus	Middle Eocene	1	Sapotaceoidaepollenites rotundus, Myrtaceidites tenuis, abundant Proteacidites
SWC 81	1656	Low	Low	Sst, carb. lens	Indeterminate		-	Nothofagidites spp. rare, Myrtaceidites tenuis
SWC 107	1666.4	Good	Moderate	Sst, carb. stringers	Upper <u>M</u> . <u>diversus</u>	Early Eocene	1	<u>M. diversus</u> dominant; Proteacidites pachypolus
SMC 78 SMC 76	1693 1715.5	Nil Fair	- Moderate	Clyst Ss	Indeterminate Upper <u>M. diversus</u>	Early Eocene	- 2	M. diversus dominant, P. pachypolus
SWC 75	1727	Good	High	Slst	Upper <u>M</u> . <u>diversus</u>	Early Eocene	1	Proteacidites pachypolus, P. tuberculiformis
SWC 73	1754	Nil	-	Sst	Indeterminate		. –	
SWC 69 SWC 68	1807 1818.5	Nil Good	- Moderate	Clyst Sst, carb. lens	Middle-Lower	Early Eocene	1	Tricolporites moultonii
SWC 67 SWC 65 SWC 64 SWC 62	.1836 1860 1882.1 1892.5	Cood Fair Luw Low	Moderate Low Low Low	Clyst Sltst Sst, carb. Sst	M-L M. <u>diversus</u> M-L M. <u>diversus</u> M-L M. <u>diversus</u> M-L M. <u>diversus</u> Laderenningte	Early Eocene Early Eocene Early Eocene Early Eocene	2 2 1	Proteacidites lapis Proteacidites leightonii Infrequent M. diversus M. diversus frequent.
SWC 61 SWC 60 SWC 59	1900 1911 1926	Good Fair	High Low	Sst, carb.	Upper <u>L. balmei</u> Upper <u>L. balmei</u>	Late Paleocene Late Paleocene	e 0 e 0	L. <u>balmei</u> frequent L. <u>balmei</u> frequent Verrucosisporites <u>kopukuensis</u>
SWC 58	1932	Good	Moderate	Clyst	Upper L. balmei	Late Paleocene	e 2	Australopollis <u>obscurus</u> abundant, L. <u>balzei</u> , Polycolpites largstonii
SWC 57	1955	Nil	-		Indeterminate		-	
SWC 51 SWC 49	2003.1 2026.6	Very Low Good	w Very Low Moderate	Ss - Slst	Indeterminate Lower <u>L. balmei</u>	Early-Middle Paleocene	ī	Haioragacidites harrisii Tetracolporites verrucosus, Proteacidites annularis

TABLE-1 Cont. 2

منصري مديرينا ومسترينا والم

						<u> </u>	NETDENCE	
SAMPLE	DEPTH		DIVERSITY		TONE	AGE	RATING	COMMENTS
NO. SWC 48	(Metres) 2036	Fair	Moderate	Sltst	Lower L. balmei	Early-Middle Paleocene	1	Tetracolporites verrucosus
SWC 41	2115.7	Fair	Low	Clyst	Lower L. <u>balmei</u>	Early-Middle Paleocene	2	L. balmei, Nothofagidites
SWC 38	2163	Fair	Low	Shale	Lower L. <u>balmei</u>	Early-Middle Paleocene	2	L. balmei common
SWC 36	2196.2	Nil	-	Shale	Indeterminate		-	
SVIC 35 SVIC 33	2204.9 3230.9	Fair Nil	Low -	Shale Clyst	L. <u>balmei</u> Indeterminate	Paleocene	2-	Australopollis obscurus abundant
SWC 32 SWC 31	2241.1 2255.1	Very Low Nil	Very Low	Ss Shale	Indeterminate Indeterminate Indeterminate		-	
SVC 29 SVC 28 SVC 27	2273 2290.1 2304	Very Low	- Very Low Low	Slst Clyst	Indeterminate Indeterminate	 	- - 2	Latrobosporites cf. ohaiensis
SWC 26	2315	Fair	Low	Clyst	Lower L. balmei	Paleocene	2 .	frequent
SWC 24 SWC 23	2346 2352.5	Fair Nil	Low -	Slst Ss	L. balmei Indeterminate	Paleocene	1	Basopollis mutabilis Amorphous substrates
SMC 20 SMC 17	2362 2374	Low Low	Very Low Low	Ss, Carb. fragments Clyst	L. <u>balmei</u>	Paleocene	.2	Gambierina rudata frequent, Stereisporites (Tripunctisporis) punctatus
SWC 13	2391.5	Low	Low	Clyst	<u>L. balmei</u>	Paleocene	2	Gambierina rudata (common), L. balmei
SWC 11	2401.2	Nil	- Ma Jawaha	Clyst	Indeterminate	Late Cretaceous	-	Amorphous substrates Grappelispora evansii
SWC 10 SWC 9	2420 2431	Low Good	Moderate	Shale	T. longus	Late Cretaceous	1	T.longus, Tetracolporites verrucosus
SWC 52	2445	Good	High	 Cleat carb	T. longus	Late Cretaceous	0	Quadraplanus brossus
SNC 1 SNC 6	2457.2	rair Fair	row Very row	Finely bdd argil. mtx	Indeterminate		-	Gambierina rudata only.
SWC 3 SWC 245	2496.1 2571.8	Fair Fair	Low Low	Clyst Ss, trace coal	T. longus T. longus	Late Cretaceous Late Cretaceous	2 0	Tetracolporites vertucosus Quadraplanus brossus with abundant Gambierina rudata
SWC 240	2608.3	Fair	Very Low	Slst	Indeterminate		-	<u>Tricolporites</u> <u>lilliei</u>

TABLE-1 Cont. 3

; .

.

4

• :

Ħ

SAMPLE	DEPTH		DIVERSITY			α	ONFIDENCE	2
NO.	(Metres)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	COMMENTS
STATE 232	2646.5	Fair	Moderate	Slst, some coal	<u>T</u> . <u>longus</u>	Late Cretaceous	1	T. longus, Proteacidites reticuloconcavus, Stereisporites (Tripunctisporis) punctatus
SWC 217	2699 .3	Fair	Low	Slst, carb.	<u>T. longus</u>	Late Cretaceous	1 ·	Lowest occurrence of <u>Stereisporites</u> (<u>Tripunctisporis</u>) <u>punctatus</u>
<i>S</i> WC 194	2776	Fair	Low	Ss, some coal	T. longus	Late Cretaceous	2	Proteacidites reticuloconcavus, Tricolporites lilliei, common Gambierina rudata
SWC 187	2799	Fair	Moderate	Ss, some coal	T. longus	Late Cretaceous	2	Proteacidites reticuloconcavus, P. amalosexinus, P. angulatus
5WC 185 SWC 177	2807 2658.5	Very Low Good	Very Low Moderate	Ss Ss	Indeterminate T. <u>longus</u>	Late Cretaceous	- 2	Proteacidites otwayensis, Tetracolporites verrucosus
SWC 175 SWC 166	2868.4 2901.5	Very Low Fair	Very Low Moderate	Ss Sltst	Indeterminate Indeterminate	·	-	Mud contamination Gambierina rudata common, Tricolporites lilliei
<i>s</i> wc 157	2934.5	Good	Moderate	Slst	<u>I longus</u>	Late Cretaceous	2	Proteacidites otwayensis, P. reticuloconcavas, T. longus Gambierina rudata common, Nothofagidites endurus frequent
SWC 156	2939.8	Low	Low	Sltst	<u>T. lilliei</u>	Late Cretaceous	1	Nothofagidites endurus, N. senectus more common than Gambierina rudata, T. lilliei
SWC 154	2948.5	Fair	Moderat e	Ss	<u>T. lilliei</u>	Late Cretaceous	2 .	Contaminated sample but no older than <u>T. lilliei</u> due to occurrence of <u>Gambierina</u> <u>rudata, Triporopollenites</u> sectilis

TABLE-1 Cont. 4