

Client: Australian Aquitaine Petroleum

Study: Kyarra No. 1 Well, Gippsland Basin

Aims: Determination of age and distribution of kerogen types

INTRODUCTION

No.

Í

3

ł

Thirty six sidewall cores from Kyarra No. 1 well drilled in the Gippsland Basin at Lat 38°40'51.9"S, Long 147°11'13.1"E in Vic P17 were processed by normal palynological procedures.

The basis for the biostratigraphy and consequent age determinations are based on Stover & Partridge (1973) and Partridge (1976) for the Tertiary sediments; and principally on Dettmann (1963), Dettmann & Playford (1969), with the modifications of Dettmann & Douglas (1976) and Burger (1973), for the Cretaceous sequence.

OBSERVATIONS AND INTERPRETATION

A. Biostratigraphy

Table I summarises the biostratigraphy and age determinations for the samples studied. Tables II to IV indicate the distribution of species identified in the Cretaceous and Tertiary sequences.

Preservation, and diversity data are indicated on Table 1. Most samples yielded reasonably well preserved and moderately diverse assemblages. Six samples were barren of plant microfossils.

1. Early Cretaceous, undifferentiated: 1257-1276 m.

In keeping with Early Cretaceous assemblages elsewhere in the Gippsland Basin, the assemblages from Kyarra No. 1 Well lack sufficient index forms to permit a confident correlation with accepted zonal schemes of this age. The presence of <u>D. speciosus</u> at 1276 m would suggest that that sample is no older than the <u>D. speciosus</u> zone but because of the low diversity there is little supportive evidence of this assignment. There is evidence of Triassic (e.g. <u>Aratrisporites</u> sp.) and Permian (striate bisaccate pollen) reworking in the lower samples from this interval. Otherwise there is nothing in the assemblage to indicate an age other than Early Cretaceous.

There are no marine indicators in the assemblage which is derived from a non-marine source.

2. <u>Upper Lygistepollenites balmei zone: - 1215 m</u>

Only one sample was recorded as belonging to this zone. The assemblage is characterised by <u>L. balmei</u> together with <u>K. papillatus</u>, <u>N. flemingii</u> <u>V. kopukuensis</u> and <u>C. orthoteichus</u>. The presence of the latter species suggests a position close to <u>L. balmei/M. diversus boundary</u>.

The absence of marine phytoplankton indicates deposition in a non-marine environment.

TABLE I

KYARRA NO. 1 WELL

SUMMARY OF PALYNOLOGICAL DATA

.

DEPTH (m)	SWC	PRESERVATION	DIVERSITY	SPORE POLLEN ZONE	DINOFLAGELLATE ZONE	CONFIDENCE LEVEL	ENVIRONMENT
980	59	Good	V. low	Oligo/Miocene	unamed	4	Marine
986.5	58	Good	V.low	Oligo/Miocene	unamed	4	Marine
991	57	Good	V. low	Oligo/Miočene	unamed	4	Marine
995.5	56	Good	V. low	Oligo/Miocene	unamed	4	Marine
1001	55	Good	V. Iow	Oligo/Miocene	unamed	4	Marine
1005.5	54	Good	V. low	Oligo/Miocene	unamed	4	Marine
1013	53	Good	Moderate	U.N. asperus	?P. coreoideum	5	Marginal marine
1017	30	Fair	Moderate	U.N. asperus	?P. coreaideum	5	Marginal marine
1020	29	Good	Moderate	U.N. asperus	?P. coreoideum	5	Marginal marine
1024	28	Good	Moderate	U.N. asperus	?P. coreiodeum	5	Marginal marine
1026.5	27	Good	Moderate	U.N. asperus	?P. coreiodeum	5	Marginal marine
1074	49	Good	Moderate	U.N. asperus	V. extensa	Š	Marginal marine
1095	46	V. pcor	· V. low	Indeterminate	-	-	
1098	45	Good	Moderate	U.N. asperus	V. extensa	5	Marginal marine
1100	44	Good	Moderate	U.N. asperus	-	5	Non marine
1106	43	Good	Moderate	U.N. asperus	V. extensa	5	Marginal marine
1118	41	Good	Moderate	U.N. asperus	-	5	Non marine
1122.5	40	Good	Moderate	U.N. asperus	V. extensa	5	Marginal marine
1127.5	39	Good	Moderate	U.N. asperus	-	Ś	Non marine
1131	38	Good	Moderate	U.N. asperus	-	Ś	Non marine
1148.5	35	Good	Moderate	M-U.N. asperus	V. extensa	5	Marginal marine
1164.5	34	Good	Moderate	M-U.N. asperus	-	5	Non marine
1166	33	Good	Moderate	M-U.N. asperus	-	5	Non marine
1172.5	32	Barren	-	-	•	•	-
1178	31	Barren	-	-	-	-	-
1182.5	19	Barren	•	-	-	•	-
1207	17	Barren	-	-	-	•	-
1210	16	Barren	-	-	-	-	-
1215	14	Good	Moderate	Upper L. balmei	-	5	Non marine
1253	7	Barren	-	-	· -	-	-
1257	6	Fair	V. law	Early Cretaceous	-	•	Non marine
1260	5	Fair	V. low	Early Cretaceous	-	-	Non marine
1265	4	Fair	V. low	Early Cretaceous	-	-	Non marine
1270	3 ·	Fair	V. low	Early Cretaceous	-	-	Non marine
1275	2	Fair	V. low	Early Crotaceous	-	-	Non marine
1276	1	Fair	V. low	Early Cretaceous	-	-	Non marine

E. U.F.		
11260M 1257M 1265M 1270M 1275M 1275M		Table II Kyarra # CHECKLIS
	AQUETRIRADITES SPINULOSUS ARATRISPORITES SP. BACULATISPORITES COMAUMENSIS CALLIALASPORITES COMAUMENSIS CALLIALASPORITES COMPIERI CERATOSPORITES EQUALIS CICATRICOSISPORITES AUSTRALIENSIS CINGUTRILETES CLAVUS COROLLINA SP. CORONATISPORA PERFORATA CYATHIDITES AUSTRALIS DICTYOTOSPORITES SPECIOSUS FALCISPORITES GRANDIS FALCISPORITES SIMILIS GLEICHENIIDITES SP. LYCOPODIUMSPORITES AUSTRALOCLAVATIDITES LYCOPODIUMSPORITES ROSENOODENSIS MICROCACHYRIDITES ANTARCTICUS PODOSPORITES SP. STEREISPORITES ANTIQUASPORITES VITREISPORITES PALLIOUS BOTRYOCCOCUS SP. GINKOCYCADOPHYTUS SP. ISCHYOSPORITES PUNCTATUS KLUKISPORITES SP. MATONISPORITES SP. MATONISPORITES SP. ROUSEISPORITES SP. ROUSEISPORITES ROI NEORAISTRICKIA TRUNCATA PODOCARPIDITES SP. ROUSEISPORITES RADIATUS STRIATE BISACCATE INDET. VERVHACHIUM SP. DICTYOPHYLLIDITES HARRISII LEPTOLEPIOITES VERRUCATUS STAPLINISPORITES CAMINUS CYCADOPITES SP.	[≇ 1 Cretaceous Spore /Pollen 3T DF FRESENCE/ABSENCE BY LOWEST AFFEARANCE

S