APPENDIX

PALYNOLOGICAL ANALYSIS

SNAPPER-6, GIPPSLAND BASIN

by
M.K. Macphail

INTERPRETATIVE DATA

INTRODUCTION
 SUMMARY TABLE
 GEOLOGICAL COMMENTS
 BIOSTRATIGRAPHY
 REFERENCES
 PALYNOLOGY DATA SHEET
 TABLE-1 INTERPRETATIVE DATA TABLE-2 BASIC DATA

Forty six sidewall cores were processed and the fossil spore-pollen and dinoflagellate extracts analysed. Although most assemblages were diverse, yields were usually low and preservation poor. Consequently many Early Eocene and Palaeocene dates are of low confidence.

Lithological units and palynological zones from the base of the Lakes Entrance Formation to Total Depth are summarized below. Interpretative data are given in Table 1. Basic data are given in Table 2.

SUMMARY

T.D. 3021 m

2771L:3

GEOLOGICAL COMMENTS

1. Snapper-6 contains essentially the same sequence of Late Cretaceous to: Tertiary zones as other wells in the Snapper and adjacent Whiting fields. In all wells a substantial time break, probably representing the entire 0ligocene Period, occurs between the top of the Latrobe Group and the base of the Lakes Entrance Formation.
2. As in Snapper-4 (Macphail 1984) and Snapper-5 (Partridge 1986), lithological and log data indicate the Gurnard Formation comprises two units: an upper glauconite unit between 1330.5 and 1346.0 m (See Hannah 1986) and a siltstone unit with relatively minor amounts of glaucontie between 1346.0 and 1349.0 m . The latter is characterized by a particularly strong kick out in the resistivity log. In Snapper-4 and Snapper-5 these subunits are dated as Late Eocene, Middle N. asperus Zone and Middle Eocene, Lower N. asperus Zone ages respectively. In Snapper-6, the lower unit is Lower N. asperus/A. diktyoplokus Zone in age, as in Snapper-4 and Snapper-5. The upper unit, which contains (?bioturbated) P. tuberculatus Zone species at 1331.0 m , is undatable.
3. Thick coals at 1465-1474m and $1641.5-1654 \mathrm{~m}$ form an excellent datum for correlating Snapper-6 with the other Snapper and Whiting wells. The depths of the equivalent coals in Snapper-5 are 1396.5-1405m and 1606-1621.5m respectively [Partridge 1986]. Although these coals fall within unsampled intervals in both wells, the Snapper-4 data indicate the upper one is \underline{P}. asperopolus Zone. It remains uncertain whether the lower coal is Upper or Middle \underline{M}. diversus Zone in age
4. A marked thickening of Paleocene and (?) Late Cretaceous sediments occurs between Snapper-5 and Snapper-6, a trend that continues to the southwest across the Whiting Field. The most likely explanation is that the Snapper wells, including Snapper-5 and Snapper-6 and Snapper-1 and Snapper-4 (Macphail 1984), are separated by a series of growth faults which had ceased development by the end of the Paleocene.
5. Prior to the development of open marine conditions across Snapper-6 during the Middle Eocene, the well was sited within a coastal plain environment that was relatively unaffected by Paleocene-Early Eocene marine transgressions. Marine-influenced sediments occur at 1516.0 m , 2099.0 and 2462.0 m (A. homomorphum Zone), and 2396.0 m (?A. homomorphum Zone). Sediments deposited during the A. hyperacanthum Zone marine transgression occur at 1834.5 m in Snapper-5 but have not been identified
in Snapper-6. Log data indicates the most likely equivalent facies in Snapper-6 is the shale unit at 1862-1872m. Sidewall core 33 (1870.0 m) shot in this unit contains very rare dinoflagellates, the only marine = organisms recorded within the Lower M. diversus Zone in Snapper- 6 .
6. Because of anomalously young occurrences of the typically Paleocene species Lygistepollenites balmei, it is not clear whether the Upper L. balmei - Lower M. diversus Zone boundary lies between 2099.0 and 1915.0 m or between 1915.0 and 1870.0 m . If the former, then the "L-1" coal, at approx. 1890 m and the $\underline{\underline{L}}$. balmei seismic marker some metres above this coal lie within the Early Eocene, Lower M. diversus Zone interval.

BIOSTRATIGRAPHY

Zone boundaries have been established using the criteria of Stover and Partridge (1973) and subsequent proprietary revisions.

Upper Tricolpites longus Zone: 2744-2946.0m.

Samples within this interval contain Stereisporites punctatus associated with frequent Gambierina and, usually, Proteacidites spp. that typically range no higher than this zone, e.g. P. otwayensis, P. reticuloconcavus. One specimen of Tricolpites longus was recorded, at 2786.0 m . The basal sidewall core, at 2998.0 m lacks \underline{S}. punctatus and is tentatively assigned to the Lower I. longus Zone.

Lower Lygistepollenites balmei Zone: 2274.0-2517.0m.

Palynofloras within this interval are dominated by gymnosperm pollen, usually including frequent Lygistepollenites balmei. Most samples include
Polycolpites langstonij or Integricorpus antipodus, species first appearing in this zone. The lower boundary is provisionally placed at 2517.0 m , based on occurrences of Tetracolporites verrucosus with frequent to common L. balmei. Occurrences of Verrucosisporites kopukuensis and Integricorpus antipodus indicate this sample is relatively high within the Lower L. balmei Zone. The upper boundary is picked at 2274.0 m , the highest sample lacking Malvacipollis spp.

Upper Lygistepollenites balmei Zone: 1976.0-2211.0m.

The lower boundary is placed at 2211.Om, the first occurrence of Malvacipollis subtilis. Both Gamblerina rudata and Polycolpites langstonij are present at this depth. The sample at 2153.5 m contains the first record of Haloragacidites harrisii and that at 2099.0m, the lowest record of Proteacidites annularis. The upper boundary is provisionally placed at 1976.0m, the highest sample containing frequent Lygistepollenites balmei. Malvacipollis subtilis and Gambierina rudata occur in this sample.

Lower Malvacipollis diversus Zone: 1787.0-1915.0m.

All palynofloras in the above interval are dominated by fern spores - species of Cyathidites, Clavifera, Gleichenildites, Laevigatosporites, Stereisporites and, less commonly, Ischyosporites, Rugulatisporites and Verrucosisporites. The next most common palynomorphs were gymnosperm pollen - Podocarpidites ssp. and Phyllocladidites mawsonif. Although isolated spore-dominated palynofloras occur in the majority of Gippsland wells, the persistence of this dominance over an approx. 130 m section is unusual. The evidence indicates a stable floodplain swamp-forest, vegetation that possibly include rare (Eocene) occurrences of Lygistepollenites balmei [1845.0m, 1915.0m]. L. balmei pollen also occurs in time-equivalent sediments in Snapper-5 [see Partridge 1986]. Although the diversity of angiosperm pollen was often high, most species were long-ranging. The base of the zone is placed at 1915.0 m , a very sparse assemblage containing single specimens of Crassiretitriletes vanraadshoovenii and Proteacidites obscurus. Since the same flora also contains three specimens of Lygistepollenites balmei, the data is of low confidence. The upper boundary is provisionally placed at 1787.0 m , a sample containing a general \underline{M}. diversus Zone palynoflora which includes a very rare (for Gippsland Basin) Eocene record of Integricorpus antipodus.

Middle Malvacipollis diversus Zone: $1704.0 \mathrm{~m}-1726.0 \mathrm{~m}$.

Two samples are assigned to this zone. Both contain species that range no lower than the Middle M. diversus Zone: Proteacidites tuberculiformis at 1726.0 m and Anacolosidites rotundus at 1704.0 m . Species ranging no higher than this zone were not recorded.

Upper Malvacipollis diversus Zone: 1605.Om.

One sample is assigned to this zone, based on occurrences of Myrtaceidites tenuis, Santalumidites cainozoicus and frequent Malvacipollis subtilis and Proteacidites pachypolus. No species diagnostic of the \underline{P}. asperopolus Zone were recorded.

Proteacidites asperopolus Zone: 1516.0-1557.Om.

The two samples within this interval contain species which first appear in the zone, e.g. Proteacidites asperopolus, Tricolpites incisus and Sapotaceoidaepollenites rotundus, as well as species which range no higher than this zone, e.g. Intratriporopollenites notabilis, Myrtaceidites tenuis. Proteacidites ornatus, P. plemmelus and \underline{P}. tuberculiformis. Clavastephanocolporites meleosus occurs at 1516.0 m . Both age-determinations are of high confidence.

Lower Nothofagidites asperus Zone: 1348.0-1433.5m.

The base of this zone is defined by the occurrence of Proteacidites asperopolus in an assemblage dominated by Nothofagidites pollen. Nothofagidites falcatus pollen first occurs at 1412.5 m and Triporopollenites delicatus at 1348.0 m . The latter sample, which contains Tritonites pandus and I. tricornus associated with Areosphaeridium diktyoplokus, is picked as the upper boundary. This sample represents the first evidence for an overlap in the ranges of Tritonites pandus and I. tricornus.

Proteacidites tuberculatus Zone: 1325-1331.Om.

Occurrences of Cyatheacidites annulatus confirm a $\underline{\text { P. tuberculatus Zone age for }}$ the samples at 1325.0 m and if in situ, at 1331.0 m .

REFERENCES

MACPHAIL, M.K. 1984. Palynological analysis, Snapper-4, Gippsland Basin. Esso Australia Ltd. Palaeontological Report 1984/8.

PARTRIDGE, A.D. 1986. Palynological analysis, Snapper-5, Gippsland Basin. Esso Australia Ltd. Palaeontological Report 1986/9.

STOVER, L.E. \& PARTRIDGE, A.D. (1973). Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. Proc. R. Soc. Vict., 85: 237-286.

B ASIN： WELL NAME：	：GIPPSLAND				ELEVATION： TOTAL DEPTH			$\frac{+21.0 \mathrm{~m}}{3021 \mathrm{~m}}$		$\begin{gathered} -55.0 \mathrm{~m} \\ \mathrm{~s} \end{gathered}$	
	SNAPPER－6										
μ	PALYNOLOGICAL． ZONES	H I GHEST DATA					L OWES T		D A T		
\checkmark		Freferred Depth	Rtg	Alternate Depth	Rtg	$\begin{array}{\|c\|} \hline \text { Two Way } \\ \text { Time } \end{array}$	Preferred Depth	Rtg	Alternate Depth	Rtg	$\begin{gathered} \text { Two Way } \\ \text { Time } \end{gathered}$
号岁岸	T．pleistocenicus										
	M．lipsis										
	C．bifurcatus										
	T．bellus										
	P．tuberculatus	1325.0	0				1331.0	0			
	Upper N ．asperus										
	Mid N ．asperus										
	Lower N ．asperus	1348.0	0				1433.5	1			
	P．asperopolus	1516.0	0				1557.0	0			
	Upper M．diversus	1605.0	2				1605.0	2			
	Mid M．diversus	1704.0	2				1726.0	1			
	Lower M．diversus	1787.0	2				1915.0	2	1870.0	1	
	Opper L．balmei	1976.0	2				2211.0	2			
	Lower L．balmei	2274.0	2	－			2517.0	1.			
	Upper T．longus	2744.0	1				2946.0	2	2905.0	1	
	Lower T．longus	2998.0	2				2998.0	2			
	T．Lilliei										
	N ．senectus										
	T．apoxyexinus										
	P，mawsonii										
	A．distocarinatus										
$\begin{aligned} & \text { 嶌 } \\ & \text { 岂 } \\ & \text { y } \\ & \text { 岂 } \\ & \end{aligned}$	P．pannosus										
	C．paradoxa										
	C．striatus										
	C．hughesi						$:$				
	F．wonthaggiensis										
	C．australiensis										

COMMENTS：
Dinoflagellate Zones：
A．diktyoplokus 1348.0 m
A．homomorphum：2099．0， 2462.0 m
Sample or fossils at 1331．Om may not be in situ．

NOTE： SWC or Core，Excellent Confidence，assemblage with zone species of spores，pollen and microplankton． SWC or Core，Good Confidence，assemblage with zone species of spores and pollen or microplankton． SWC or Core，Poor Confidence，assemblage with non－diagnostic spores，pollen and／or microplankton． Cuttings，Fair Confidence，assemblage with zone species of either spores and pollen or microplankton， or both．
4：Cuttings，No Confidence，assemblage with non－diagnostic spores，pollen and／or microplankton．
If an entry is given a 3 or 4 confidence rating，an alternative depth with a better confidence rating should be entered，if possible．If a sample cannot be assigned to one particular zone，then no entry should be made， unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another．

TABLE 1: SUMMARY OF INTERPRETATIVE PALYNOLOGICAL DATA

SNAPPER-6

SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	DINÓFLAGELLATE ZONE	AGE	CONF IDENCE RATING	COMMENTS
SWC 60	1325.0	P. tuberculatus	-	Early-Middle Miocene	0	F. crater, C. annulatus, P. simplex
SWC 59	1331.0	P. tuberculatus	-	Olligocene-Miocene	0	C. annulatus, F. lacunosus, P. simplex
SWC 58	1337.0	N. asperus	-	?Middle Eocene	-	N. falcatus. No older than Lower N. asperus Zone
SWC 57	1342.0	I ndetermi nate	$\because-$	-	-	Negligible yleld
SWC 56	1348.0	Lower N. asperus	A. diktop lokus	Middle Eocene	0	P. asperopolus, abund. Nothofagidites, I. dellcotus A. diktyop lokus, I. pandus, T. tricornus
SWC 55	1351.5	I ndeterm 1 nate	-	-	-	Barren
SWC 54	1357.5	I indetermi nate	-	-	-	Negligible yleld
SWC 52	1407.7	Lower N. asperus	-	MIddle Eocene	1	P. asperopolus, freq. Nothofagidites
SWC 51	1410.0	Lower N. asperus	-	Middle Eocene	1	P. asperopolus, abund. Nothof agidites
SWC 50	1410.5	Lower N. asperus	-	Middle Eocene	1	P. asperopolus, abund. Nothofagidites
SWC 49	1411.5	Lower N. asperus	\cdots	Middle Eocene	1	Freq. P. asperopolus, abund. Nothofagidites
SWC 48	1412.5	Lower N. asperus	-	Middle Eocene	1	P. asperopolus, common Nothofagidites
SWC 46	1433.5	Lower N. asperus	-	Middle Eocene	1	P. asperopolus, abund. Nothof agidites
SWC 45	1475.0	Indetermi nate	-	-	-	Barren
SWC 44	1516.0	P. asperopolus	-	Early Eocene	0	P. asperopolus, M. tenuls, C. meleosus, S. rotundus

$\left.\begin{array}{llllll}\hline \begin{array}{c}\text { SAMPLE } \\ \text { NO. }\end{array} & \begin{array}{c}\text { DEPTH } \\ (\mathrm{m})\end{array} & \begin{array}{c}\text { SPORE-POLLEN } \\ \text { ZONE }\end{array} & \begin{array}{c}\text { DINOFLAGELLATE } \\ \text { ZONE }\end{array} & \text { CONFIDENCE } \\ \text { RATING }\end{array}\right]$
$\left.\begin{array}{lllllll}\hline \begin{array}{c}\text { SAMPLE } \\ \text { NO. }\end{array} & \begin{array}{c}\text { DEPTH } \\ (\mathrm{m})\end{array} & \begin{array}{c}\text { SPORE-POLLEN } \\ \text { ZONE }\end{array} & \begin{array}{c}\text { DINOFLAGELLATE } \\ \text { ZONE }\end{array} & \text { AGE } & \text { CONFIDENCE } \\ \text { RATING }\end{array}\right]$

2271L: 8-10
(G1:218IL:1)

\cdots	SNAPPER-6									
							$\begin{gathered} \text { DIVERSITY - } \\ \text { S \& P } \\ \text { D } \end{gathered}$	$\begin{aligned} & \text { low } \\ & \text { less than } 10 \\ & 1-3 \end{aligned}$	medium 10-30 3-10	p. 1 of 3 high greater than 30 10
SAMPLE NO.	DEPTH(m)	YIELO		diversity		PRESERVATION	LITHOLOGY	PYRIZATION	COMMENTS	
		SPORE-POLLEN	DINOS	SPORE-POLLEN	DINOS					
SWC 60	1325.0	Low	Falr	Low	Medium	Good	Calcilutite	-		
SWC 59	1331.0	Low	Fair	Medium	Medium	v. good	SIst.,calc,	glauc. -		
SWC 58	1337.0	v. Low	Low	Med Ium	Low	Fair	SIst.	-		
SWC 57	1342.0	Negl.	-	Low	-	Fair	Sist.	-		
SWC 56	1348.0	Falr	Low	High	Med I um	Good	Sst.	-		
SWC 55	1351.5	-	-	-	-	-	Sst.	-		
SWC 54	1357.5	Negl.	-	Low	-	Fair	Sst.	-		
SWC 52	1407.7	v. low	Neg.	Medium	Low	Good	Sst.	-		
SWC 51	1410.0	Low	v. low	Medlum	Low	Fair	Sst.	-		Hydrocar bon-affected?
SWC 50	1410.5	Low	v. Iow	Medlum	Low	Falr	Sst.	-		
SWC 49	1411.5	Low	-	Medium	-	Fair	Sst.	-		
SWC 48	1412.5	Low	-	-3. Medium	-	Falr	Sst.	mi nor		
SWC 46	1433.5	Good	-	Medium	-	Fair	Sst.	-		Hydrocar bon-affected?
SWC 45	1475.0	Good	-	-	-	-	Sst.	-		
SWC 44	1516.0	Good	Fair	HIgh	Medium	Fair	Sst.	minor		

227IL: II

227IL: 12

DIVERSITY	low	medium	high
S \& P	less than 10	$10-30$	greater than 30
D	$1-3$	$3-10$	10

SAMPLE NO.	DEPTH (m)	YIEL̇		diversity		Preservation	LITHOLOGY	PYRIZATION	COMMENTS
		SPORE-POLLEN	DINOS	SPORE-POLLEN	DINOS				
SWC 27	2211.0	Fair	v. low	Medium	Low	V. poor	Ss.	Strong	
SWC 26	2274.0	Low	-	Medium	-	Poor	Clyst, carbon.	-	
SWC 25	2337.0	Fair	-	Medium	-	Poor	Clyst.	-	
SWC 24	2396.0	v. good	Good	Med lum	Med Ium	V. poor	Slst., carb.	Strong	
SWC 22	2435.2	-	-	-	-	-	Sst.	-	
SWC 21	2462.0	Low	Low	Med Ium	Med Ium	Poor	Slst.	Minor	
SWC 20	2484.8	v. low	-	Medium	-	Poor	Sst.	-	
SWC 19	2517.0	Fair	-	Medium	-	Poor	SIst., carb.	-	
SWC 18	2580.0	Negl.	-	Low	-	Good	Clyst.	-	
SWC 17	2636.0	-	-	-	-	-	Slst., carb.	-	
SWC 12	2744.0	Low	-	Medium	-	Poor	SIst., carb.	-	
SWC 10	2786.0	Low	-	Medium	-	Poor	SIst., carb.	-	
SWC 7	2865.3	V. low	-	Low	-	Poor	Sst.	-	
SWC 5	2905.0	Fair	-	Medium	-	V. poor	Sst. carb.	-	
SWC 4	2946.0	Negl.	-	Low	-	Poor	Coal	-	
SWC 2	2988.0	v. low	-	Low	-	Poor	Coal	-	

2271L: 12-13
G1- $71811 / 3$,

