APPENDIX-1

ł

i

PE990802

PALYNOLOGICAL ANALYSIS OF SAWBELLY-1 GIPPSLAND BASIN.

by

A.D. PARTRIDGE ESSO AUSTRALIA LTD.

Esso Australia Ltd. Palaeontology Report 1990/11

June, 1990

INTERPRETED DATA

INTRODUCTION

SUMMARY OF RESULTS

GEOLOGICAL COMMENTS

BIOSTRATIGRAPHY

REFERENCES

TABLE-1: INTERPRETED DATA PALYNOLOGY DATA SHEET

; 1___

INTRODUCTION

Twenty-nine sidewall core samples were processed from Sawbelly-1 and examined for spores, pollen and microplankton. Although oxidized organic residue yields were mostly high the palynomorph concentrations were mostly moderate to low. Consequentially only moderate spores and pollen diversities were recorded from the majority of samples. Average diversity was 20.2 species per sample. A few samples from the Early Eocene section did, however, contain high diversity assemblages. Low spore-pollen diversity correlates directly to the poorer preserved samples. Microplankton, principally dinoflagellates cysts, were present in about two-thirds of the samples with the most diverse assemblages being identified from the Gurnard Formation. Microplankton diversity is mainly low. Preservation of all palynomorphs was mostly poor.

- 3 -

Lithological units and palynological zones from base of Lakes Entrance Formation to T.D. are given in the following summary. Interpretative data with indentification of zones and confidence ratings are recorded in Table-1 and basic data on residue yields, preservation and diversity are recorded in Table-2. All species which can be identified with binomial names are tabulated on the accompanying range chart. PALYNOLOGICAL SUMMARY OF SAWBELLY-1

AGE	UNIT/FACIES	SPORE-POLLEN ZONES (Dinoflagellate Zones)	DEPTH RANGE (mKB)		
Oligocene	Lakes Entrance	P. tuberculatus	1976.0-1983.0		
Late Eocene	Latrobe Group (Gurnard Fm.)	Middle N. asperus (G. extensa) (C. incompositum)	1989.0-1994.0 (1989.0) (1994.0)		
Middle Eocene	2015 5m	Lower N. asperus	2000.0		
Middle Eocene	Latrobe Group (Transition Beds)	Lower N. asperus	2023.0		
Early Eocene	Latrobe Group	P. asperopolus	2041.0-2116.8		
Early Eocene	(Coarse clastic	Upper M. diversus	2144.7-2223.0		
Early Eocene	facies)	Middle <i>M. diversus</i>	2275.0-2331.0		
Early Eocene		Lower M. diversus (A. hyperacanthum)	2417.0-2438.0 (2438.0)		
Paleocene		L. balmei (A. homomorphum)	2531.0-2639.5 (2531.0)		
Paleocene		Lower L. balmel	2838.0-3022.5		

;

- 4 -

GEOLOGICAL COMMENTS

1. The deepest palynological samples in Sawbelly-1, although poorly preserved and containing only meager assemblages, indicate that the well at total depth is still with in the Paleocene Lower L. balmei Zone. These deepest assemblages do not contain either T. longus Zone indicator species or the abundance of Gambierina rudata which is so characteristic of the top of the latter zone. Similarly no key dinoflagellates were recorded. On this evidence it is therefore suggested that no equivalents to the T-1 Shale which straddle the Cretaceous/Tertiary boundary were reached in Sawbelly-1.

- 5 -

 In the Conger-1 palynological report the Latrobe Group was sudivided into informal lithological units (Partridge, 1989). The equivalent units in Sawbelly-1 are as follows:

UNIT	SAWBI Depth	ELLY-1 Thickness	CONGER-1 Depth Thickne		
Gurnard Formation	1984m	31.5m	1814m	17m	
Transition beds	2015.5m	21.5m	1831m	13m	
Upper Sands	2037m	201m	1844m	181m	
Coal Measures	2238m	41m	2025m	30m	
Top Coastal Plain facies	2279m	601m	2279m	555m	
Lower Sands	2880m	188m+	2610m	269m	
Bottom Coastal Plain facies	NA		2879m	91m+	

NA = Not Penetrated

3. The top of the Gurnard Formation in Sawbelly-1 is picked at the sharp increase on the gamma-ray log at 1984m which also corresponds to an increased separation between the neutron porosity and bulk density logs compared to the overlying Lakes Entrance Formation. The base of the Gurnard Formation is picked at 2015.5m corresponding to a reduction on the gamma-ray log and a decrease in the separation between the neutron porosity and bulk density logs. The sidewall cores through this 31.5 metre thick unit all contain glauconite. As thus delimited it is equivalent to the Gurnard Formation as recognised in Conger-1 between 1814-1831m (Partridge, 1989), but only equivalent to Unit A of the Gurnard Formation in Swordfish-1 between 1998.9-2030.0m (6558-6660ft) of Partridge (1977). The microplankton assemblages present in the samples suggest that only part of the Lower and Middle N. asperus Zones are represented.

- 6 -

The unit between 2015.5-2037m is considered to represent "Transition Beds" between the Gurnard Formation with glauconite and the undifferentiated coarse reservoir facies of the Latrobe Group. These Transition Beds are characterised by lower gamma-ray log response and moderate but variable separation between the neutron porosity and bulk density logs. The lithology of the single sidewall recovered from this unit at 2023m was a iron stained silty sandstone suggestive of a oxidised "Gurnard facies". It contained a poor Lower N. asperus age flora. This unit is considered equivalent to the Transition beds in Conger-1 between 1831-1844m (see Partridge, 1977), and the lower Unit B of the Gurnard Formation in Swordfish-1 between 2030.0-2045.2m (6660-6710ft).

BIOSTRATIGRAPHY

Zone and age-determinations have been made using criteria proposed by Stover & Partridge (1973, 1982), Helby *et al.* (1987) and unpublished observations made on Gippsland Basin wells drilled by Esso Australia Ltd.

- 7 -

Author citations for most spore-pollen species can be sourced from Stover & Partridge (1973, 1982), Helby *et al.* (1987) and Dettmann & Jarzen (1988) or other references cited herein. Species names followed by "ms" are unpublished manuscript names. Author citations for dinoflagellates can be found in Lentin & Williams (1985, 1989).

Lower Lygistepollenites balmei Zone: 2838.0-3022.5 metres Paleocene.

The five samples assigned to this zone are all poorly preserved, and mainly as a consequence of this palynomorph concentrations are low. Key zone species are therefore rare and it proved difficult to estimate the relative abundance of the principal species in the assemblages. The absence of either species typical of the *T. longus* Zone, or any abundance of *Gambierina rudata*, are the main reasons for assigning the two deepest sidewall cores to the Lower *L. balmei* Zone, albeit with low confidence ratings. The sidewall core at 2977.0m is the deepest high confidence pick for the base of the zone based on the presence of *Proteacidites angulatus*. Other significant species are the common occurrence of *Australopollis obscurus* at 2860.0m, and the presence of fragmented specimens of dinoflagellate *Glaphrocysta retiintexta* at 2838.0m.

Lygistepollenites balmei Zone: 2531.0-2629.5 metres Paleocene. and

Apectodinium homomorphum Zone: 2531.0 metres

Paleocene.

The two samples in this interval although confidently *L*. balmei Zone in age cannot be definitively assigned to either the Upper or Lower subdivisions because of the lack of key spore-pollen species. The rare presence of the dinoflagellate *Apectodinium homomorphum* (short spined variety) in the shallower sample suggest that it most likely represents the Upper subdivision based on association of this dinoflagellate with key spore-pollen species of the Upper subdivision in other wells. The base of the zone is picked on an abundance of Malvacipollis diversus and the FADs (First Appearance Datums) of the spores Crassiretitriletes vanraadshoovenii and Polypodiaceoisporites varus ms, and the palm pollen Spinozonocolpites prominatus. These latter three species are all considered to be derived from plants growing in mangrove environments. Also present is a species of Spinozonocolpites characterised by gemmate rather than baculate ornament which has previously only been recorded in Australia from the Tertiary of northern Australia (eg. species recorded as Gemmamonocolpites sp. by Hekel 1972, pl.3, fig.23). The shallower samples assigned to the zone are all characterised by frequent Proteacidites grandis but rely on the of absence of key species characteristic of the next younger zone for their assignment to the Lower subzone. A rare but significant species is Myrtaceoipollenites australis Harris 1965, recorded from the sample at 2417.0m.

The deepest sample, at 2438.0m, also contains a microplankton assemblage referable to the *Apectodinium hyperacanthum* Zone. The key indicators for the zone are the eponymous species and *Fibrocysta bipolare*. The diversity of the assemblage is considerably higher than recorded, but unfortunately most of the species are too poorly preserved to be properly identified. The shallowest sample, at 2417.0m, also contained dinoflagellates but again poor preservation hampered full identification of the assemblage.

Middle Malvacipollis diversus Zone: 2331.0-2275.0 metres Early Eocene.

This interval is assigned to the Middle subdivision of the M. diversus Zone based on the FAD of Proteacidites tuberculiformis in the deepest sample. Other species whose usual FADs are in this zone are Polycolpites esobalteus identified at 2331.0m and 2275.0m and Proteacidites nasus Truswell & Owen 1988 identified at 2301.0m. The shallowest sample also contains the dinoflagellates association of common Homotryblium tasmaniense with abundant Apectodinium longispinosum which is generally considered typical of the younger Upper M. diversus and P. asperopolus Zones. However, after considerable searching neither of the key species Proteacidites pachypolus or Myrtaceidites tenuis could be found.

- 8 -

Upper Malvacipollis diversus Zone: 2144.7-2223.0 metres

The base of this zone is picked at the FAD of Poteacidites pachypolus at 2223.0m. The other key species used to indicate the base of this zone is Myrtaceidites tenuis whose FAD occurs in the shallowest sample at 2144.7m. The base of the P. pachypolus abundance or Acme is in the middle sample at 2156.0m. Abundant specimens of the dinoflagellate Apectodinium longispinosum also characterise the shallowest sample.

Proteacidites asperopolus Zone: 2041.0-2116.8 metres Early Eocene.

The lower boundary of this zone is placed at the FADs for Conbaculites apiculatus and Sapotaceoidaepollenites rotundus, below the FAD for Proteacidites asperopolus in the next deepest sample at 2066.8m. The upper boundary is placed at the LAD (Last Appearance Datum) for Myrtaceidites tenuis. Unlike in the adjacent Conger-1 well (Partridge, 1989) the P. pachypolus abundance or Acme does not extend to the top of the zone but is characteristic of the deeper two samples. Of considerable interest is the generally rare index species for the zone Bombacacidites bombaxoides at 2116.8m, Clavastephanocolporites meleosus ms at 2066.8m, and Triporopollenites simplis Truswell & Owen 1988 (- Triporopollenites spinosus ms) at 2041.0m and 2066.8m. Other interesting species in the samples, but of no zone significance, are the records of single specimens of the fresh-water megaspore Azolla sp. at 2116.8m, the distinctive pollen Anisotricolporites triplaxis at 2041.0m and a closely related species Anisotricolporites sp. cf. A. truncatus Pocknall & Mildenhall 1984, at 2066.8m.

The only significant dinoflagellate in the zone is the occurrence of rare specimens of Apectodinium longispinosum in the deepest sample.

Lower Nothofagidites asperus Zone: 2000.0-2023.0 metres Middle Eocene.

The base of the zone is picked at 2023.0m on the increase in abundance of Nothofagidites spp. above the LAD of M. tenuis. However, in the absence of key indicator species known to first occur in the Lower N. asperus Zone only a low confidence rating can be assigned to the sample. The shallower sample at 2000.0m although clearly no older than this zone based on the

Early Eccene.

FAD of Nothofagidites falcatus is also only given a low confidence rating because the associated microplankton assemblage has closer similarities to assemblages from the Middle rather than Lower subdivision of the N. asperus Zone. The dinoflagellates suggesting a younger age are the frequent to common occurrence of the species Operculodinium centrocarpum, Phthanoperidinium comatum and Areosphaeridium sp. cf. A. capricornum. Given the presence of the last species it is noted that no specimens which could be confidently identified as Areosphaeridium australicum ms (- Areosphaeridium sp. cf. A. diktyoplokus of Marshall & Partridge 1987) could be found in any of the palynological slides.

Middle Nothofagidites asperus Zone: 1989.0-1994.0 metres Late Eocene.

Two samples are assigned to this zone on their microplankton content as the associated spores and pollen while supportive are not particularly diagnostic of the zone. Key dinoflagellate species are *Corrudinium incompositum* and *Areosphaeridium* capricornum at 1994.0m and *Gippslandica extensa* associated with abundant *Tectactodinium* marlum ms at 1989.0m.

The Gippslandica extensa Zone was informally proposed (as the Deflandrea extensa Zone) in Partridge (1976). It is typically characterised by abundances of the nominated species in "coastal plain" environments, and is best developed in wells to the west and north of the Sawbelly-1 location. However, G. extensa is not characteristic of the coeval "shelfal marine" environments of the Gurnard Formation developed to the east and south of the Sawbelly-1 location and therefore the Corrudinium incompositum Zone has been used as an alternative name. The G. extensa and C. incompositum Zones have therefore been treated as time equivalent but representative of different environments. The occurrence of the G. extensa Zone above the C. incompositum Zone in Sawbelly-1 suggest the alternative interpretation that the "typical" development of the G.extensa Zone lies above the C. incompositum Zone.

Proteacidites tuberculatus Zone: 1976.0-1983.0 metres Oligocene.

The two samples are confidently assigned to the *P. tuberculatus* Zone based on the occurrence of the spore *Cyatheacidites annulatus* in both samples. Both assemblages are dominated by dinoflagellates consistent with the open marine environment of the Lakes Entrance Formation. Of particular interest is the first record in Australia of the unique dinoflagellate *Evittosphaerula paratabulata* Manum 1979 from the sample at 1983.Om. This dinoflagellate cyst is characterised by consisting solely of a parasutural network of wall material whose strands define a standard gonyaulacaecean paratabulation. The stratigraphic range of this species given in Manum (1979) is late Middle Oligocene to Early Miocene.

REFERENCES

- DETTMANN, M.E. & JARZEN, D.M., 1988. Angiosperm pollen from uppermost Cretaceous strata of southeastern Australia and the Antarctic Peninsula. Mem. Ass. Australas. Palaeontols 5, 217-237.
- HARRIS, W.K., 1965. Basal Tertiary microfloras from the Princetown area, Victoria, Australia. Palaeontographica B 115, 75-106.
- HEKEL, H., 1972. Pollen and spore assemblages from Queensland Teriary sediments. Publs geol. Surv. Qd 355, Palaeont. Papers 30, 1-33.
- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. Mem. Ass. Australas. Palaeontols 4, 1-94.
- LENTIN, J.K. & WILLIAMS, G.L., 1985. Fossil dinoflagellates: Index to genera and species, 1985 Edition. *Canadian Tech. Rep. Hydrog. Ocean Sci.* 60, 1-451.
- LENTIN, J.K. & WILLIAMS, G.L., 1989. Fossil dinoflagellates: Index to genera and species, 1989 Edition. AASP Contribution Series No. 20, 1-473.
- MANUM, S.B., 1979. Two new Tertiary dinocyst genera from the Norwegian Sea: Lophocysta and Evittosphaerula. Review Palaeobot. Palynol. 28, 237-248.
- MARSHALL, N.G. & PARTRIDCE, A.D., 1987. The Eocene acritarch Tritonites gen.nov. and the age of the Marlin Channel, Gippsland Basin, southeastern Australia. *Mem. Ass. Australas. Palaeontols 5*, 239-257.
- PARTRIDGE, A.D., 1976. The geological expression of eustacy in the early Tertiary of the Gippsland Basin. APEA J. 16(1), 73-79.

- PARTRIDGE, A.D., 1977. Palynological analysis of Swordfish-1, Gippsland Basin. Esso Australia Ltd. Palaeo. Rept. 1977/13, 18p.
- PARTRIDGE, A.D., 1989. Palynological analysis of Conger-1, Gippsland Basin. Esso Australia Ltd. Palaeo. Rept. 1989/19, 1-19.
- POCKNALL, D.T. & MILDENHALL, D.C., 1984. Late Oligocene-early Miocene spores and pollen from Southland, New Zealand. N.Z. geol. Surv. Paleo. Bull: 51, 1-66.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Vict. 85, 237-286.
- STOVER, L.E. & PARTRIDGE, A.D., 1982. Eccene spore-pollen from the Werillup Formation, Western Australia. *Palynology 6*, 69-95.
- TRUSWELL, E.M. & OWEN, J.A., 1988. Eocene pollen from Bungonia, New South Wales. Mem. Ass. Australas. Palaeontols 5, 259-284.

TABLE-1: INTERPRETATIVE PALYNOLOGICAL DATA SAWBELLY-1, GIPPSLAND BASIN

.

.

SAMPLE TYPE	DEPTH (metres)	SPORE-POLLEN ZONE	DINOFLAGELLATE ZONE	CONFIDENCE RATING	COMMENT
SWC 60	1976.0	P. tuberculatus		1	
SWC 59	1983.0	P. tuberculatus		0	Evittosphaerula paratabulata present.
SWC 58	1989.0	Middle <i>N. asperus</i>	G. extensa	2	Abundant Tectatodinium marlum ms.
SWC 57	1994.0	Middle N. asperus	C. incompositum	1	
SWC 56	2000.0	Lower N. asperus	-	2	
SWC 54	2011.0	Indeterminate			
SWC 53	2023.0	Lower N. asperus		2	LAD Proteacidites asperopolus
SWC 52	2041.0	P. asperopolus		1	LAD Myrtaceidites tenuis.
SWC 51	2066.8	P. asperopolus		1	Clavastephanocolporites meleosus ms present.
SWC 49	2116.8	P. asperopolus	(A. longispinosum)	1	Bombacacidites bombaxoides present.
SWC 48	2144.7	Upper M. diversus	(A. longispinosum)	2	Fossils badly pyrite pitted.
SWC 47	2156.0	Upper M. diversus		1	Base Proteacidites pachypolus Acme.
SWC 46	2223.0	Upper M. diversus		1	
SWC 43	2275.0	Middle M. diversus	(A. longispinosum)	2	Fossils badly pyrite pitted.
SWC 42	2301.0	Middle <i>M. diversus</i>	(A. longispinosum)	2	······································
SWC 41	2309.0	Indeterminate			Most fossils probably contaminants.
SWC 40	2331.0	Middle M. diversus		1	FAD Proteacidites tuberculifomis.
SWC 35	2417.0	Lower M. diversus		2	Mytaceoipollenites australis present.
SWC 34	2423.0	Lower M. diversus		1	
SWC 33	2431.0	Indeterimate			Virtually barren.
SWC 32	2438.0	Lower M. diversus	A. hyperacanthum	0	·
SWC 29	2531.0	L. balmei	A. homomorphum	1	
SWC 25	2639.5	L. balmei	· · · · · · · · · · · · · · · · · · ·	1	
SWC 16	2822.0	Indeterminate		-	
SWC 15	2838.0	Lower L. balmei	(G. retiintexta)	2	
SWC 14	2860.0	Lower L. balmei	······································	1	
SWC 5	2977.0	Lower L. balmei		1	Proteacidites angulatus present
SWC 2	3008.0	Lower L. balmei		2	reconcretes auguratus prosent.
SWC 1	3022.5	Lower L. balmei		2	

· · · ·

~

LAD - Last Appearance Datum FAD - First Appearance Datum

.

- 13 -

PALYNOLOGY DATA SHEET

вая	IN: <u>GIPPSLAND</u> ELEVATION: KB: +21.0m GL: -63.0m											
WELL	LL NAME: SAWBELLY-1 TOTAL DEPTH: 3068m											
ш	H PALYNOLOGICAL HIGHEST DATA			λ	LOWES T DATA							
U	ZONES		Preferred		Alternate		Two Way	Preferred		Alternate		Two Way
4				Rtg	Depth	Rtg	Time	Depth	Rtg	Depth	Rtg	Time
	T. plei	scocenicus										
H	M. lips	is									 	
3005	C. bifu	rcatus										
NE	T. bell	us										
	P. tube	rculatus	1976	1				1983	0		<u> </u>	
	Upper N	. asperus										
	Mid N.	asperus	1989	2				1994	1		ļ	
Ŕ	Lower N	. asperus	2000	2				2023	2			
	P. aspe	ropolus	2041	1				2116.8	1			
Ĕ	Upper M	. diversus	2144.7	2	2156	1		2223	1			
E E	Mid M.	diversus	2275	2				2331	1			
	Lower M	. diversus	2417	2	2423	1		2438	0			
	Upper L	. balmei										
	Lower L	. balmei	2838	2	2860	1		3022.5	2	2977	1	
	Upper I	'. longus	_									
sno	Lower 1	', longus										
ACE	T. 1111	ici										
RET	N. sene	ctus										
U	T. apox	yexinus										
H	P. maws	onii										
12	A. dist	ocarinatus										
	P. pann	osus										
нц	C. para	doxa									1	
បី	C. stri	atus				[[
검	C hugh	eci								· · · · · · · · · · · · · · · · · · ·	1	
EAR	F wont	haggieneie									1	
	C. aust	raliensis										
L	L				L	I	l	ll	L]		L	! <u> </u>
сом	IMENTS:	Dinoflage	llate Zone	8:	G. extens	<u>a</u> 1	989m;	C. incompo	situ	m 1994m;		
		<u>A.</u> hypera	canthum 2	4387	n; <u>A. hom</u>	omor	phum 2	531m; Top	ខណា	ple from 1	5 <u>.</u> be	ilmei
		Zone is a	t 2531m; ł	nt a	issignment	to	Upper o	r Lower su	bdiv	ision is 1	10t	
		possible.	All dept	h8 1	in metres.							
CON	FIDENCE	O: SWC or (Core, <u>Exceller</u>	nt Cor	fidence, asser	nblag	e with zon	e species of sp	ores, j	pollen and mi	cropla	ankton.
R/	TING	1: SWC or (Core, <u>Good Co</u>	onfide	nce, assembl	age w	ith zone sp	pecies of spore	and j	pollen or mic	roplan	kton.
		3: Cuttings,	Fair Confide	nnaer nce,	assemblage wi	age w ith zor	ne species	agnostic spores of either spores	, poir s and p	pollen or mic	roplan	ikton,
		or both.	N. C. 41									
1100	-	4: Cuttings	No Conliden	<u>ce</u> , a	ssemblage wit	n non	-diagnostie	spores, polle	n and/	or microplan	Kton.	
ют	E: -	If an entry is g entered, if pos	iven a 3 or 4 o sible. If a sai	confid mple	lence rating, : cannot be assi	m alt gned	ernative de to one pari	epth with a bet ticular zone, tl	ter co ien no	nfidence ratio entry should	ıg sho be m∶	uld be ade,
		unless a range	of zones is giv	ėn wł	ere the higher	t poss	ible limit	will appear in	one z	one and the lo	ow est	possible
		amit in anothe										
DAT	A RECORD	ED BY:	A.D. Partr	ridge	?		(DATE: Ju	ne 1	990.		
DAT	A REVISE	D BY:					I	DATE:				

. .

١

÷

BASIC DATA

TABLE-2: BASIC DATA RANGE CHART

- 15 -

SAMPLE TYPE	DEPTH (metres)	LAB. NO.	LITHOLOGY	RESIDUE YIELD	PALYNOMORPH CONCENTRATION	PRESERVATION	NO. OF S-P SPECIES*	MICROPLANKTON ABUNDANCE NO.	SPECIES*
SWC 60	1976.0	78352 H	Calcareous claystone	Very low	Low	Poor-good	9+	Low	4+
SWC 59	1983.0	78352 G	Calcareous claystone	Moderate	Moderate	Poor-good	15+	Moderate	8+
SWC 58	1989.0	78352 F	Glauconitic claystone	Low	Moderate	Poor-fair	21+	Moderate	4+
SWC 57	1994.0	78352 E	Glauconitic claystone	Moderate	Low	Fair	13+	Moderate	9+
SWC 56	2000.0	78352 D	Calc. quartz sst. (tr. glauc.)	Low	Moderate	Poor-fair	26+	Moderate	8+
SWC 54	2011.0	78352 B	Glauconític sandstone	Very low	Barren				
SWC 53	2023.0	78352 A	Oxidised brown sandstone	Low	High	Good	38+	Low	5+
SWC 52	2041.0	78351 Z	Mottled sandstone	High	Modertae	Fair-good	34+	Very low	2+
SWC 51	2066.8	78351 Y	Carbonaceous sandstone	Moderate	High	Good	57+		
SWC 49	2116.8	78351 W	Mottled sandstone	High	High	Good	、 36+	Moderate	5+
SWC 48	2144.7	78351 V	Laminated siltstone	High	Moderate	Poor-fair	19+	Moderate	1
SWC 47	2156.0	78351 U	Chocolate brown mudstone	High	High	Fair	26+		
SWC 46	2223.0	78351 T	Medium brown siltstone	High	Very low	Poor-fair	7+		
SWC 43	2275.0	78351 Q	Micaceous/carbonaceous sltst	High	Moderate	Poor	23+	Moderate	5+
SWC 42	2301.0	78351 P	Interbedded sst./siltst.	High	Moderate	Poor-fair	30+	Low	1
SWC 41	2309.0	78351 0	White-light grey sandstone	Low	Low	Fair	11+		
SWC 40	2331.0	78351 N	Siltstone	High	Moderate	Fair	32+		
SWC 35	2417.0	78351 I	Carbonaceous sandstone	Low	Moderate	Poor-good	28+	Very low	3
SWC 34	2423.0	78351 H	Massive pyritic mudstone	High	Moderate	Poor	20+	Low	3+
SWC 33	2431.0	78351 G	Very fine grained sandstone	Very low	Very low	Fair	3		
SWC 32	2438.0	78351 F	Massive mudstone	High	High	Poor-fair	20+	Abundant	6+
SWC 29	2531.0	78351 C	Interbedded sst./siltst.	High	Low	Poor	13+	Low	1
SWC 25	2639.5	78350 Y	Massive mudstone	High	Low	Poor	20+		
SWC 16	2822.0	78350 P	Siltstone	High	Very low	Poor	2+	Very low	1
SWC 15	2838.0	78350 0	Very fine grained sandstone	High	Very low	Very poor	7+	Low	2
SWC 14	2860.0	78350 N	Carbonaceous mudstone	High	Moderate	Poor-fair	13+		
SWC 5	2977.0	78350 R	Siltstone	High	Low	Very poor	18+		
SWC 2	3008.0	78350 B	Carbonaceous siltstone	High	Low	Very poor	13+		
SWC 1	3022.5	78350 A	Carbonaceous siltstone	High	Low	Very poor	12+		

1.00

/

TABLE-2: BASIC PALYNOLOGICAL DATA SAWBELLY-1, GIPPSLAND BASIN

* Diversity:

Very Low = 1-5 species Low = 6-10 species Moderate = 11-25 species High = 26-74 species Very High = 75+ species

(ADP279)