

Palynological analysis of cuttings samples from Great White-1, offshore Gippsland Basin.

by

Alan D. Partridge

Biostrata Pty Ltd A.C.N. 053 800 945

Biostrata Report 1997/6

28 February 1997

Palynological analysis of cuttings samples from Great White-1, offshore Gippsland Basin.

by Alan D. Partridge

Table of Contents

INTERPRETATIVE DATA

Introduction		1
Palynological Summary of Great White-1		1
Geological Comments		2
Biostratigraphy		3
References	~	7
Table-1: Interpretative Palynological Data for	Great White-1	8
Confidence Ratings	••••••	9

BASIC DATA

Table-2: Basic Sample and Palynomorph Data for Great White-1	10
Table-3: Species List for Great White-1, Gippsland Basin	11
RELINQUISHMENT LIST — PALYNOLOGY SLIDES	16

INTERPRETATIVE DATA

Introduction

Twenty-six cuttings samples between 3030m and 3470m from across the top of Latrobe in Great White-1 have been analysed to determine the age of the sequence. The following table summarises the results.

AGE	UNIT/FACIES	SPORE-POLLEN ZONES (MICROPLANKTON ZONES)	DEPTHS mKB
MIOCENE TO OLIGOCENE	SEASPRAY GROUP	P. tuberculatus (Operculodinium Superzone) (F. leos Zone)	3030 – 3190 (3030 – 3190) (3190)
MIDDLE EOCENE	LATROBE GROUP Turrum Formation equivalent	Lower N. asperus (D. heterophlycta)	3220 – 3240 (3220–3240)
MAASTRICHTIAN	LATROBE GROUP Undifferentiated	Undifferentiated T. longus Upper T. longus Lower T. longus	3300–3470 3310–3340 3430–3470

Palynological Summary of Great White-1

T.D. 3472m

An average of 12.5 grams of cuttings were collected and forwarded to Laola Pty Ltd in Perth on 28 January 1997 for processing to prepare the palynological slides for analysis. The material was returned on 6 February and initial provisional results provided on 10 February. The interpretative data with zone identification and Confidence Ratings are recorded in Table 1 and basic data on residue yields, preservation and diversity are recorded on Tables 2.

The residue yields recovered from the cuttings were mostly very low to low from both the Seaspray and Latrobe Groups. Less than one third of the samples gave moderate or high yields. Principally because of the low yields palynomorph concentrations on the slides was low to very low in the Latrobe Group increasing to moderate and high in the shallower samples examined from the Seaspray Group. Preservation of palynomorphs was generally poor to fair. Average sporepollen diversity was 14+ species per sample and average microplankton diversity was 8+ species per sample. All species which have been identified with binomial names are tabulated on Table 3. The relinquishment list for palynological slides is provided at the end of the report. No palynological residues remained after preparation of the slides.

Geological Comments

- The cuttings analysed from Great White-1 between 3030-3470m have provided confident age dating of the basal Seaspray Group and underlying ~250 metres of the Latrobe Group notwithstanding the low assemblage yields and masking of the Latrobe Group assemblages by cavings from the overlying Seaspray Group.
- 2. The assemblages clearly indicate two major breaks or unconformities. The older separates a Maastrichtian age section of undifferentiated Latrobe coarse clastics from a Middle Eocene glauconitic facies equivalent in age to the Turrum and Gurnard Formations. The younger unconformity separates the Middle Eocene from the deep distal marine facies of the basal Seaspray Group which at its base is Early Oligocene in age.
- 3. Two additional breaks or unconformities are probably present in the section. However, the presence of these breaks are suggested with more caution and much less confidence as the changes the palynological assemblages are more subtle and obscured by cavings in the cuttings. The older of these breaks is between the Upper and Lower *T. longus* Zones. In the cuttings it lithologically separates sandy and possibly glauconitic sediments from the shallowest occurrences of carbonaceous shales and coaly fragments below 3430m. The younger of the two breaks is in the Seaspray Group and separates probable Early Miocene sediments from basal Oligocene sediments of the "Early Oligocene wedge" which has been previously found in nearby wells Blackback-3 and Gudgeon-1 (Partridge; 1994, 1995a).
- 4. Absent from the cuttings assemblages are any spores, pollen or microplankton considered diagnostic of Paleocene and Early Eocene ages represented by the *L. balmet, M. diversus* and *P. asperopolus* Zones or any microplankton considered restricted to the Late Eocene. Stratigraphic sections of these ages have been removed at the postulated unconformities.
- 5. A feature of the palynological assemblages from the cuttings is a biased towards larger palynomorphs compared to palynological preparations on equivalent sidewall cores. This is most clearly expressed by the consistent and common occurrence of the large and robust spore *Cyatheacidites annulatus* in nearly all samples. Although this spore is a conspicuous component of most sidewall core samples from the Seaspray Group it is

seldom common. The difference in character is interpreted as due to the removal of the finer and softer clay lithologies in the sediments when the drilling mud has been washed from the cuttings. As well as increasing the abundance of the larger and heavier palynomorphs it tends to remove the smaller index species. This is evident in Great White-1 by the rarity of the microplankton *Fromea leos* ms and the fact that none of the key *Tritonites* acritarch species were recorded.

Biostratigraphy

Zone and age determinations are based on the spore-pollen zonation scheme proposed by Stover & Partridge (1973), subsequently modified by Stover & Partridge (1982) and Helby, Morgan & Partridge (1987), and a dinoflagellate zonation scheme which has only been published in outline by Partridge (1975, 1976).

S. .

Author citations for most spore-pollen species can be sourced from Stover & Partridge (1973, 1982), Helby, Morgan & Partridge (1987) and Mildenhall & Pocknall (1989) or other references cited herein. Author citations for dinoflagellates can be found in the index of Lentin & Williams (1993) or other references cited herein. Species names followed by "ms" are unpublished manuscript names.

Proteacidites tuberculatus Spore-Pollen Zone: 3030–3190 metres Miocene to Early Oligocene.

The seven samples assigned to this zone all contain numerous specimens of the key index species *Cyatheacidites annulatus*. Other index species are rare consisting of *Acaciapollenites myriosporites* and *Foveotriletes lacunosus* at 3090m. Provided these species are not caved they suggest a latest Oligocene to Early Miocene age for the shallowest three samples. Overall the assemblages are of moderate diversity dominated by the long ranging spores *Cyathidites palaeospora*, *Ischyosporites irregularis* ms, *Matonisporites ornamentalis*, *Laevigatosporites* spp. and *Stereisporites antiquisporites* and the widely distributed gymnosperm pollen *Araucariacites australis* and *Podocarpidites* spp. The angiosperm pollen are likewise relatively non-diagnostic being dominated by *Nothofagidites* spp. and *Haloragacidites harristi*.

Operculodinium Microplankton Superzone:

3030–3190 metres Oligocene-Miocene.

All samples analysed from the Seaspray Group are dominated by dinoflagellates characteristic of the *Operculodinium* Superzone which has a broad Oligocene to Miocene age range. The assemblages are mostly dominated by *Spiniferites* spp. and *Operculodinium centrocarpum*. Unfortunately, many of the key species in the microflora are still undocumented and are identified by manuscript names. These include *Nematosphaeropsis rhizoma* ms, *Pyxidinopsis pontus* ms, *Protoellipsodinium simplex* ms and *Tectatodinium scabroellipticus* ms, which are widespread in the basin and long-ranging. Other manuscript species are recorded less often and may have only local significance. Of potential stratigraphic importance are *Hexagonifera* n.sp. found here at 3030m but previously recorded from Smiler-1 between 2487-2501m (Partridge, 1995b) and *Protoellipsodinium mamilatus* ms recorded herein between 3030-3090m (with a probable caved occurrence at 3210m), and previously recorded from Blackback-3 between 2772.4-2798m (Partridge, 1994).

Within the superzone the cutting between 3030-3090m all gave moderate yields and are considered to have a Miocene (or possibly late Oligocene) age based on presence the presence of *Tuberculodinium vancampoae* at 3030m. In contrast the cutting between 3120–3190m all gave surprisingly low yields. This latter interval can be characterised by the more consistent and often common occurrence of *Crassosphaera concinnia, Dapsilidinium pseudocolligerum* and *Hystrichokolpoma rigaudae*. These species are often typical of but not necessarily restricted to the basal portion of the superzone. The identification of the *F. leos* Zone at the base of this lower interval suggests that part if not all of the lower part of the Superzone belongs to the "Early Oligocene wedge" and is Early Oligocene in age.

Fromea leos Microplankton Zone:

3190 metres basal Oligocene.

The *F. leos* Zone is the only formal zone currently established within the *Operculodinium* Superzone. It was first defined in Blackback-3 by Partridge (1994) as the interval above the acme of *Phthanoperidinium comatum* to the Last Appearance Datum (LAD) of *Fromea leos* ms. It is only identified in one sample in Great White-1 based on the rare occurrence of the eponymous species. This record confirms the presence of the "Early Oligocene wedge" which is also found in adjacent wells Blackback-3 and Gudgeon-1 (Partridge; 1994, 1995a).

Lower Nothofagidites asperus Spore-Pollen Zone: 3220-3240 metres Middle Eocene.

Cuttings between 3210–3240m have spore-pollen composition most similar to the broad *N. asperus* Zone. The three deeper samples are assigned to the Lower *N. asperus* Zone with very low confidence based largely on the associated microplankton assemblage. The only pollen species which could be considered diagnostic are *Proteacidites pachypolus* at 3220m and 3240m and *P. recavus* at 3230m. These species are more typical of the Lower rather than Middle or Upper *N. asperus* Zones. In contrast *Proteacidites rectomarginis* identified at 3210m and

3220m would normally be considered more typical of the Middle or Upper *N. asperus* Zones. This species however could just as easily be caved as it is often recorded from sidewall core samples at the base of the Seaspray Group.

No species that occur commonly in the Early Eocene, and therefore likely to be picked up in cuttings, such as *Proteacidites grandis*, *Myrtaceidites tenuis* or *Malvacipollis diversus* were recorded from Great White-1. It is therefore unlikely the older *P. asperopolus* or *M. diversus* Zones are present in the well.

Deflandrea heterophlycta Microplankton Zone:

3220-3240 metres late Middle Eocene.

A limited suit of Middle to Late Eocene microplankton are recorded in the cuttings between 3210–3240m. The samples between 3220-3240m are assigned to the *D. heterophlycta* Zone based on the common occurrence of the eponymous species and absence of microplankton index species of younger or older Eocene zones. The zone may extend to the deepest occurrence of *D. heterophlycta* at 3270m but this is considered unlikely as a change in the character of the cuttings occurs between 3240m and 3260m. Overall the microplankton assemblages is most reminiscent of this zone found in the Turrum Formation in Turrum-1 between 1955-2036m rather than assemblages from the sandy Eocene section in the Blackback wells.

The sample at 3210m could still be Eocene in age as it contains *Deflandrea phosphoritica, Impagidinium victorianum* and the youngest occurrence of frequent *Thalassiphora pelagica*. However, all these species occur in the underlying samples and there where no microplankton recorded which could be considered diagnostic of younger zones. Considering that the provisional log pick for the top of the Latrobe Group is about 3220m it is possible that the Eocene species could be reworked.

Tricolpites longus Spore-Pollen Zone:

3300–3470 metres Maastrichtian.

In the twelve cuttings examined between 3300–3470m the sporadic but consistent presence of pollen species which become extinct in the Maastrichtian provide a confident identification of the top of the *T. longus* Zone even though the overall assemblage diversity is low. The key species are *Tricolportes lillet* recorded in five samples, *Battenipollis sectilis* recorded in four samples, *Nothofagidites senectus* recorded in two samples and *Forcipites* (al. *Tricolpites*) *longus*, *Proteacidites reticuloconcavus* ms and *Quadraplanus* brossus all recorded from the deepest sample.

their recorded assemblages are simply too limited.

The samples at 3310m and 3340m are considered to belong to the Upper *T. longus* Zone based on the common occurrence of *Gambierina rudata*. The two best of the deeper samples at 3430m and 3470m are considered to belong to the Lower *T. longus* Zone based on the lack of any *G. rudata* abundance. These samples contain the highest occurrence of carbonaceous to coaly lithologies in Great White-1. All the other samples are best left as undifferentiated *T. longus* Zone as

The index dinoflagellate *Manumiella druggii* was recorded at 3430m but as it was only represented by two specimens no great significance can be attached to its stratigraphic position. Several poor specimens assigned to *Isabelidinium greenense* Marshall 1990 were also recorded from the deepest sample at 3470m. This species has been recorded as ranging to the top of the microplankton succession and top of the *T. lilliei* Zone in Pisces-1 (Marshall, 1990) so it is likely it can range into the *T. longus* Zone

References

- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. *Memoir Association Australasian Palaeontologists* 4, 1-94.
- LENTIN, J.K. & WILLIAMS, G.L., 1993. Fossil Dinoflagellates: Index to genera and species, 1993 Edition. AASP Contribution Series No. 28, 1-856.
- MARSHALL, N.G., 1990. Campanian dinoflagellates from southeastern Australia. Alcheringa 14, 1-38.
- MILDENHALL, D.C. & POCKNALL, D.T., Miocene-Pleistocene spores and pollen from Central Otago, South Island, New Zealand. New Zealand Geological Survey Palaeontological Bulletin 59, 12-128.
- PARTRIDGE, A.D., 1975. Palynological zonal scheme for the Tertiary of the Bass Strait Basin (Introducing Paleogene Dinoflagellate Zones and Late Neogene Spore-Pollen Zones). Geol. Soc. Aust. Symposium on the Geology of Bass Strait and Environs, Melbourne, November, 1975. Esso Aust. Ltd. Palaeo. Rept. 1975/17 (unpubl.).
- PARTRIDGE, A.D., 1976. The geological expression of eustacy in the early Tertiary of the Gippsland Basin. APEA Journal 16 (1), 73-79.
- PARTRIDGE, A.D., 1994. Palynological analysis of sidewall cores from Blackback-3, Gippsland Basin. *Biostrata Report* 1994/6, 1-23.
- PARTRIDGE, A.D., 1995a. Palynological analysis of sidewall cores between 3012.1m to 3057.1m in Gudgeon-1, Gippsland Basin. *Biostrata Report* 1995/10, 1-11.
- PARTRIDGE, A.D., 1995b. Palynological analysis of Smiler-1, Gippsland Basin. Biostrata Report 1995/17, 1-15.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. *Proceedings Royal Society of Victoria 85*, 237-286.
- STOVER, L.E. & PARTRIDGE, A.D., 1982. Eocene spore-pollen from the Werillup Formation, Western Australia. *Palynology* 6, 69-95.

Table-	1: Int	erpretative Pa	lyno	logical Data Gre	eat V	White-1
Sample type	Depth (m)	Spore-Pollen Zone	*CR	Microplankton Zone	*CR	Key Species and Comments
Cuttings	3030	P. tuberculatus	D2	Operculodinium spp.	D2	Hexigonifera n.sp. and Tuberculodinium vancompoae suggest Miocene age.
Cuttings	3060	P. tuberculatus	D2	Operculodinium spp.	D2	Common Cyatheacidites annulatus and rare Foveotriletes crater.
Cuttings	3090	P. tuberculatus	D2	Operculodinium spp.	D2	Frequent Protoellipsodinium mamilatus ms with specimens of Acaciapollenites myriosporites and Foveotriletes lacunosus .
Cuttings	3120	P. tuberculatus	D5	Operculodinium spp.	D5	Low yield—assemblage substantially caved.
Cuttings	3150	P. tuberculatus	D2	Operculodinium spp.	D2	Assemblage largely caved. Presence of Alisocysta ornata hints at Eocene reworking?
Cuttings	3170	P. tuberculatus	D2	Operculodinium spp.	D2	Assemblage largely caved.
Cuttings	3190	P. tuberculatus	D2	F. leos	D2	Rare Fromea leos ms confirms basal Oligocene section present.
Cuttings	3210	P. tuberculatus or N. asperus		Indeterminate		Highest occurrences of Impagidinium victorianum and Deflandrea phosphoritica indicates top of Eocene.
Cuttings	3220	Lower N. asperus	D4	D. heterophlycta	D3	Highest occurrence of Deflandrea heterophlycta confirms top of Eocene.
Cuttings	3230	Lower N. asperus	D4	D. heterophlycta	D3	Common Deflandrea heterophlycta with pollen Proteacidites pachypolus and P. recavus.
Cuttings	3240	Lower N. asperus	D4	D. heterophlycta	D3	Common D. heterophlycta.
Cuttings	3260	Indeterminate				Virtually barren.
Cuttings	3270	P. tuberculatus and N. asperus		Operculodinium spp. and D. heterophlycta		Mixed assemblage interpreted as largely caved.
Cuttings	3290	Indeterminate				Virtually barren.
Cuttings	3300	T. longus	D5			Highest occurrence of consistent Gambierina rudata.
Cuttings	3310	Upper T. longus	D3			Frequent G. rudata with highest occurrence of Tricolporites lilliei.
Cuttings	3320	Indeterminate				Low yield assemblage with mostly caved fossils.
Cuttings	3340	Upper T. longus	D2			Frequent G. rudata with T. lilliel and Battenipollis sectilis.
Cuttings	3350	T. longus	D4			B. sectilis present.
Cuttings	3360	T. longus	D4			Tetradopollis securus ms present.
Cuttings	3370	T. longus	D4			Proteacidites wahooensis ms and Tricolpites confessus present.
Cuttings	3390	Indeterminate				Virtually barren.
Cuttings	3410	Indeterminate				Virtually barren.
Cuttings	3430	Lower T. longus	D2			Placed in lower subzone on absence of G. rudata abundance.
Cuttings	3440	T. longus	D4			Low yield sample.
Cuttings	3470	Lower T. longus	D1			Forcipites (al. Tricolpites) longus and Proteacidites reticuloconcavus ms present.
			*CR =	Confidence Rating		

-

;

Page 8

_ ·

Confidence Ratings

The concept of Confidence Ratings applied to palaeontological zone picks was originally proposed by Dr. L.E. Stover in 1971 to aid the compilation of micropalaeontological and palynological data and to expedite the revision of the then rapidly evolving zonation concepts in the Gippsland Basin. The original scheme which mixed confidence in fossil species assemblage with confidence due to sample type gradually proved to be rather limiting as additional refinements to existing zonations were made. With the development of the STRATDAT computer database as a replacement for the increasingly unwieldy paper based Palaeontological Data Sheet files a new format for the Confidence Ratings was proposed. These are given for individual zone assignments on Table 1, and their meanings are summarised below:

Alpha codes: Linked to sample type

- A Core
- **B** Sidewall core
- C Coal cuttings
- **D** Ditch cuttings
- E Junk basket
- F Miscellaneous/unknown
- **G** Outcrop

Numeric codes: Linked to fossil assemblage

1	Excellent confidence:	High diversity assemblage recorded with
		key zone species.
2	Good confidence:	Moderately diverse assemblage recorded
		with key zone species.
3	Fair confidence:	Low diversity assemblage recorded with
		key zone species.
4	Poor confidence:	Moderate to high diversity assemblage
		recorded without key zone species.
5	Very low confidence:	Low diversity assemblage recorded without
		key zone species.

1

. . .

Table-	2: Basi	c San	ple	and Pa	lynom	orph Data f	or Great W	Thite-1	
Sample type	Depth (m)	Wt	Vom (cc)	O/Yield	Visual Yield	Palynomorph Concentration	Preservation	Number SP Species	Number MP Species
Cuttings	3030	16.4	1.9	0.115	Moderate	High	Fair	21	15
Cuttings	3060	18.8	2.40	0.127	Moderate	Moderate	Poor-good	23	18
Cuttings	3090	16.0	0.80	0.050	Moderate	High	Poor-good	24	17
Cuttings	3120	12.4	0.1	0.008	Very low	Low	Poor-fair	5	7
Cuttings	3150	12.6	0.1	0.007	Very low	Low	Poor-fair	16	12
Cuttings	3170	12.5	0.2	0.016	Low	Moderate	Poor-fair	16	14
Cuttings	3190	9.6	0.4	0.041	Low	Low	Poor-fair	26	14
Cuttings	3210	12.4	0.4	0.032	Low	Moderate	Poor-fair	26	20
Cuttings	3220	10.9	0.3	0.027	Low	Moderate	Poor-good	20	14
Cuttings	3230	10.5	0.2	0.019	Low	Moderate	Poor-fair	26	22
Cuttings	3240	12.5	0.3	0.024	Moderate	Moderate	Poor-good	25	17
Cuttings	3260	12.9	0.05	0.003	Low	Very low	Poor	NR	1
Cuttings	3270	10.8	0.1	0.009	Very low	Low	Poor	12	14
Cuttings	3290	13.9	0.1	0.003	Very low	Very low	Poor-fair	2	2
Cuttings	3300	10.8	0.05	0.004	Very low	Very low	Poor-fair	6	1
Cuttings	3310	10.2	0.1	0.009	Low	Low	Poor-good	11	1
Cuttings	3320	12.4	0.1	0.008	Low	Low	Poor-fair	12	3
Cuttings	3340	10.1	0.3	0.029	Low	Low	Poor-fair	19	3
Cuttings	3350	11.5	0.2	0.017	Moderate	Low	Poor-fair	13	3
Cuttings	3360	11.0	0.3	0.027	Moderate	Low	Fair-poor	17	NR
Cuttings	3370	13.8	0.1	0.007	Low	Very low	Poor-fair	10	1
Cuttings	3390	13.4	0.05	0.003	Very low	Very low	Poor	NR	1
Cuttings ·	3410	12.3	0.01		Low	Very low	Poor-fair	2	1
Cuttings	3430	11.5	0.01		Very low	Low	Poor-fair	16	8
Cuttings	3440	11.4	0.1	0.008	Low	Low	Poor-fair	8	4
Cuttings	3470	13.2	0.4	0.030	High	Low	Poor-good	29	5
Averages:		12.5						14.8	8.4
	Abbrevia	tions							
	Wt.	=	Weigh	t of samp	les in gran	າຣ			
	Vom (cc) =	Volum	e of aque	ous suspe	nsion of kerogen	residue recove	red by Laola	Pty Ltd
	O/Yie	ld =	Volum	ie (cc) div	ided by We	ight (grams)			

Biostrata Report 1997/6

.

1

Table-3: Species List for Grea	t Wb	lite-	. 1 , G	ipps	lan	d Ba	sin.																
Затріс Ватріс	ш0£0£	m090E	ш060Е	3120m	m0716	m 0816	ш0126	ш0226	ш0626 	ш0 5 26 ш0526	m 0726	3290m	ш00££	3310m	3320m	щ046£	3320m	ш0966	m0755	m0655	m0£4£	m0448	m0745
SPORE-POLLEN SPECIES		[╞					╞	┠							T		╞					
Acaciapollenites myriosporites			×									 				1			-	-			
Araucariacites australis	×	×		×	×	×	×	×	X	×						×	-			-	×		υ
Baculatisporites spp.		×	×			×		$\left \right $	-							×					×	ļ	×
Battenipollis sectilis			-					$\left \right $		-						×	×	H		-			×
Bluffopollis scabratus						×					-						-		-				
Camarozonosporttes heskermensis	×		┝		×			-			×							×	-	-			
Cicatricosisporites australiensis RW		\vdash	-	-		RW						 				1		-		-			
Cyatheacidites annulatus	с U	0	0	0 C	U U	×	ပ	×	х Х	×	F	×			×		×		E.	-	×		
Cyathidites australis					 			┢											-		-	×	
Cyathidites minor																							υ
Cyathidites paleospora	×		х х	K X	U С	×	υ	U U	X	×		ļ				×	-	×			×	-	
Cyathidites splendens	RW	 .	ŕ	X V					Ĕ	0	×		×	×	×	×		×			-		×
Dacrycarpites australiensis						×	×	×								\square							
Densolsporites velatus									R.	A							×						
Dictyophyllidites arcuatus		×	\vdash	 	×						×					† –				-	-		
Dilwynites granulatus		×	X			×	×	×	ĥ	×											 	 	×
Dilwynites tuberculatus		-	-			×			X							1				-			
Ericipites scabratus						×	×		Ê	×												-	×
Forcipites longus									-	-						+	-			-		-	×
Foveotriletes balteus	×				<u> </u>					-	_									<u> </u>		_	
Foveotriletes crater		×						-			-							-		-			
Foveotriletes lacunosus		\vdash	×		 	 				 							\vdash			-			
Foveotriletes palaequetrus			×				×																
Gambierina edwardsli																					×		×
Gambierina rudata									R R	A			×	υ	×	υ	×	×	×	-	Ŀ,	×	×
Gleicheniidites circinidites				×		×	×									×							×
Granulatisporites trisinus RW		R	M																	-			
Haloragacidites harrisii	с U	×	ပ ပ	×	×	E.	œ,	X	X X	×										-	×		
Herkosporites elliottii			×					×	X							×							×
lschyosporites gremius							×	×	x		×												
lschyosporites irregularis ms	X	×	×	×	X	X	x	x	X X	×													
Kuylisporites waterbolki		×			×														$\left - \right $		×		
Laevigatosporites major		×	×				×		$\frac{2}{x}$	<u> </u>			×		×				×				×

Page 11

;

ı

۲

Table-3: Species List for Great	t Wb	ite-	1, G	ipps	lanc	l Ba	sin.												-				
Depths Sample	m0E0E	ш090£	3090m	m0216	m0716	W061E	m012E	ш0225	ш0525	ш0 4 26 ш0326	m072£	m 062£	3300m	3310m	ш0266	3340m	ш035бш	3360т	m0855	m0145	3430 ™	m0445	m 0748
Laevigatosporites ovatus	×	×	U U					×	<u> </u>	×	×				Ŀ.	×		×	Ŀ	-	×		υ
Latrobosporites amplus									2	M				×									G.
Latrobosporites marginis				×							×					-		-					
Latrobosporites ohiensis														×	×			-					
Leptolepidites verrucatus RW		24	M																				
Lycopodiumsportes/Retitriletes spp.	×	×	×			×	×		X	~					×	E.			-				×
Lygistepollenites balmei																		-	-	-			×
Lygistepollenites florinii	×	×		×	×	×	×	×	X		×			×				×					×
Malvacipollis subtills	ŀ	×							F	~							-	-					
Matonisporites ornamentalis	×	×	Ŀц	×		×	×	×	×						×			-	-				
Microcachryidites antacticus			-	_			ſr.									-	×						
Nothofagidites asperus	×									_													
Nothofagidites brachyspinulosus				-	 																		×
Nothofagidites deminutus	×	Ĥ	×				×	×	X		 				-			-					
Nothofagidites emarcidus/heturus	×	U U	<u></u> о	×	×	υ	υ	υ	X		×		×					-					Γ
Nothofagidites endurus					·											X	н	x		-			ſ.
Nothofagidites falcatus	×	<u> </u>	×	-		×					×					-		-	-		-		
Nothofagidites flemingli						X		×	X	~								-					
Nothofagidites senectus																×		×	_				
Nothofagidites vansteenisii						Х	X	x				<u>, , , , , , , , , , , , , , , , , , , </u>											
Peninsulapollis gillii											 				×	-		Ŀн			×		×
Phyllocladidites mawsonii	x		ſ±,	×			х	с С	Г Х	67				×	G.	×	×	Ľ.	×	×	×	×	ſ.
Pilosisporites notensis RW								4	ŚW								M						
Plicatipollenites spp. RW		R	M	RV	~		RW	F	W														
Podocarpidites spp.	X	x	х х	x V	×	X	х	х	X	2				×	x	×	×	ĹТЧ	×		ſ.		×
Podosporites microsaccatus	-	×				×											x		×				
Polypodiidites perverrucatus	X								x x	>											S		
Proteacidites otwayensis ms									R	З				×				×			×		×
Proteacidites pachypolus									х Х	~													
Proteacidites pseudomoides									Х														
Proteacidites recavus			 						×														
Proteacidites recticuloconcavus ms																							×
Proteacidites rectomaginis							×	×												_			
Proteacidites spp.	×	_	<u> </u>	×	×		×		×	_	×		×		×	υ υ	<u> </u>	ີ ບ	Y	×	×	Ŀ	υ

Table-3: Species List for Grea	at u	Thit	6-1.	Gp	psla	I pu	Jasi i	đ																
Sample Depths	3030 ^m	ш090£	3090m	m021E	3120m	m0718	۳0165 	3220m	3230m	3240m	m082E	m 072£	ш062£	ш005£	ш0166	ш0755	3320m	3360m	m 0755	3380m	m0146	m0£45	m0446	m0748
Proteacidites wahooensis ms							-						┢		┢	┞	-		×	<u> </u>				
Protohaploxypinus spp. RW	RW	RW				SW			RW	/														
Quadraplanus brossus															$\left - \right $				-					×
Stereisporttes antiquisporites		ſĿ,	×		×	×	E.	X	×	×		×	ſĿ,	×		r	X	E.						×
Stereisporites (Tripunctisporis) sp.							ļ		×							-		-						
Tetradoplits securus ms									 					\vdash	-			×						
Tricolpites confessus							<u> </u>							+	×		-	×	×	-				
Tricolpites waiparaensis								╞							$\left \right $	ſ	X		-					
Tricolporites lilliei						$\left \right $		-						+	X			-		-			×	Ŀ
Tricolporites paenestriatus			RW		-		\vdash							\vdash	-	-	 		-					
Tubulifloridites antipodica							-						L	+-	-	L		-	-	-		T		
Verrucatosporites attinatus ms							×																	
Verrucosisporites cristatus			×			F	2								╞─					-				
Verrucosisporites kopukuensis	×				×	-	~	X	×	×							 >			-				
															-						_			
MICROPLANKTON SPECIES																			L					
Achomosphaera alcicornu	×	×	x	x																				
Achomosphaera ramulifera		x			x		~							-										
Alisocysta ornatum					ſz,		if.																	
Apectodinium sp.			×				2						<u>ka</u>		-		-	_	-					
Apteodinium australiense						X								-			-							
Apteodinium sp.														-		-								
Cooksonidium capricornum							×	×						-		┝	-							
Crassosphaera concinnia				υ	υ	EL L	X	×	×					×		-			U					
Cyclopsiella vieta	×	×						×	×							-	-							
Cymatisphaera spp.							×			×					-		-					×		
Dapsilidinium pseudocolligerum			ርጫ			×	×	×	×							┝	-							
Deflandrea flounderensis							$\left - \right $				£	<u> </u>		\vdash		┣	-			 			ŀ	
Deflandrea heterophlycta								×	ပ	υ		Ŀ.					2	-						Γ
Deflandrea phosphoritica							×		×							$\left - \right $								
Deflandrea truncata												×		$\left - \right $										
Deflandrea sp. indent.										ပ		×		$\left - \right $		$\left - \right $								
Diphyes ariensis ms									×															
Enneadocysta spp.												×				-								

;

Table-3: Species List for Gre	sat 1	Mar	[]	G	ppsl	and	Bas	in.						╞		-					-	-	-
Sample	3030m	m 0 9 0£	ш080Е	m 0218	3120m	31201	ш0615	3210m		3240m	ш0926	3270m	ш062£	ш00££	m 0166		3320m	ш09££	3370m	3390m	m0146	ш0£4£	3420m
Fromea leos ms							×	-	-	-			╎	1	┢	-	-						-
Hexagonifera n.sp.	×		_				<u> </u>		-	-				┢	+	+					2		
Homotryblium tasmaniense		_								RW			+	+	-	-					;	+	
Hystrichokolpoma bullatus	 						×	┢╌	-				1	-		-							+
Hystrichokolpoma rigaudae	-		ſĿ,		×	υ	υ	X	G	-				+	_							+	_
Impagidinium dispertitum	-					-		+	×					┢	+	-						_	+-
Impagidinium leos ms		×	×				-	-	-	-			╋	+	┼╴	-					+		_
Impagidinium spp.		×	×	×	×	×			-			×	-	ť	N	-	-				Ť	2	 >
Impagidinium victorianum							\vdash	X	X	 											1	<u>}</u>	
Isabelidinium greenense									-	-			$\left \right $		$\left \right $		-			1			×
Lejeunecysta sp.							×	×		_				$\left \right $	+	-	-				-		
Lingulodinium machaerophorum	×	×				-	×	X	XX	×			\uparrow	\uparrow	-	-				+	-	+	
Lingulodinium solarum					×	F	×		×			T	+	┢	 		-				+	+-	+-
Manumiella druggi												-		-	+-	-						×	
Nematosphaeropsis delicata ms									×					<u> </u>		<u> </u>	-	-				+	+-
Nematosphaeropsis rhizoma ms	X	×	×			×		X	X X	×			$\left \right $	+-	-								
Operculodinium centrocarpum	A	ပ	A	×	×	υ	υ	X	Х G.	×		×			_	-	ß			S		N N	D N
Operculodinium tabulatum ms							\vdash	×	×			×					S				-		
Pentadinium laticinctum		×		×				X	X X	×						-	<u> </u>					-	
Protoellipsodinium clavatus ms							$\left \right $		-	-		×			-							+	_
Protoellipsodinium mamilatus ms.	×	×	υ			-	F	×						╞	-	-					+-	+	-
Protoellipsodinium n.sp.						1			-	×			+		-		-				-		
Protoellipsodinium simplex ms.	X	×	×	X	ſ.	×	×	л х	X X	S		ß				<u>C</u> V						N C	5
Pyxidinopsis beta ms	X	×	×		Ŀ,		×	х Х	X	×			×	\vdash								Þ.	ß
Pyxidinopsis pontus ms	с С	ပ	×	Ŀ	×	×		л Х	×	×			G.			 >						N C	N N
Pyxidinopsis waipawaensis										×		ŀ	+	-	+	-				1-		-	_
Rottnestia borussica			×			 								-		-					-		
Samlandia reticulifera						 	-	r	X	×			+	+	-		-			+-	+	-	
Selemophemphix nephroides		×				\vdash		x x				-				-	-				+		
Spiniferites spp.	A	A	A			с U	υ	С 0	X	×		T		┝	╞	-	_			+	-	×	×
Systematophora placacantha	×	×	×			x	·	X X	~			 		\vdash			ļ			$\left \right $	-		-
Tasmanites sp.						 			<u> </u>			×			╞	×	╞					+-	╞
Tectatodinium ovatum ms		×	×												<u> </u>		╞			-	+	╞	-
Tectatodinium pellitum	_							H X	×					$\left \right $						<u>}</u>		-	-

;

	m 0746								×	:		×	:					T		
	m0446																		1	
	3430m	Ŋ	5									Ľ	-				1	1		
	m0146																	1		
	ш0666		T				T												-	
Γ	m 076£	Τ																1	1	
	3360т										×	E.						1	-	
	3320m			×	T		T												1	
	m04 66							T					×		Γ				1	
	3320m	S						T								Τ		-	1	
	ш016£								×									Ţ		
	ш00ЕЕ	Γ	Τ												Γ	T			- 274	
	ш0826																			9
	3270m	×	×									Ŀ		Ī	Γ					
	3260m				Ι										Γ	Γ		T		
	3240m	×	X			×			×			म				ц		E		
	m0£2 £		×		S				×		×	×				natic	P	with		
	m022E		E								×	н			ŋ	tami	orke	pare		
sin.	m012E		E		S				×	×		Ŀ,			Cave	Con	Rew	Con		
Ba	m 061£	×							×	×	×	ы	×		11	"	11	"		
and	m 0718	×							×			υ	×		S	f	RW	ઝ	-	
psl	3150m											υ			Ħ					
GI	m 021£														ndar	LINOI	uen	ent		
e-1,	3090m									X	×	F	×		Abu	U U U U	Free	Pres		
Thit	ш090£	×									×	υ			11	11	11	H		
at W	3030ш	x			×					×	×	ပ			A	ပ	E4	×		
Ire	Depths Bample	SUC																		
0 10		I SN			ae															
st 1		iptic			npo			S				_								
52 1		roel	gica	tum	anca	nda		RPH		lies	phae	iner								
ğ		scat	pela	lirsu	ន ម	rotu		OWC	Ъ.	Å	Å by	ral								
Š		Ę	ora	E E	iniu	ova		XXX.	15 3	tting	Ires (inife	ß							
တ္ပံ		inib	siph	hutu	polu	nnik		S PAI	Nocci	Ę	spo	ram	nob							
able		ctatc	alas	lcho	per	zzhe		HEH	E YO	ngal	ngal	crofo	oleco							
Ĥ		Ē	립	Ę	2	S		δ	å	F	ደ	Wi	Š							

.

RELINGUISHMENT LIST — PALYNOLOGY SLIDES

WELL NAME & NO:	GREAT WHITE-1
PREPARED BY:	A.D. PARTRIDGE
DATE:	25 February 1997

Sheet 1 of 2

Sample Type	Depth (m)	Catalogue Number	Description
Cuttings	3030	P197127	Kerogen slide filtered/unfiltered fractions
Cuttings	3030	P197128	Oxidised slide 2
Cuttings	3030	P197129	Oxidised slide 3
Cuttings	3030	P197130	Oxidised slide 4 - 1/2 cover slip
Cuttings	3060	P197131	Kerogen slide filtered/unfiltered fractions
Cuttings	3060	P197132	Oxidised slide 2
Cuttings	3060	P197133	Oxidised slide 3
Cuttings	3060	P197134	Oxidised slide 4 - 1/2 cover slip
Cuttings	3090	P197135	Kerogen slide filtered/unfiltered fractions
Cuttings	3090	P197136	Oxidised slide 2
Cuttings	3090	P197137	Oxidised slide 3
Cuttings	3120	P197138	Kerogen slide filtered/unfiltered fractions
Cuttings	3150	P197139	Kerogen slide filtered/unfiltered fractions
Cuttings	3170	P197140	Kerogen slide filtered/unfiltered fractions
Cuttings	3170	P197141	Oxidised slide 2 - 1/4 cover slip
Cuttings	3190	P197142	Kerogen slide filtered/unfiltered fractions
Cuttings	3190	P197143	Oxidised slide 2 - 1/2 cover slip
Cuttings	3210	P197144	Kerogen slide filtered/unfiltered fractions
Cuttings	3210	P197145	Oxidised slide 2
Cuttings	3220	P197146	Kerogen slide filtered/unfiltered fractions
Cuttings	3220	P197147	Oxidised slide 2 - 1/2 cover slip
Cuttings	3230	P197148	Kerogen slide filtered/unfiltered fractions
Cuttings	3230	P197149	Oxidised slide 2 - 1/2 cover slip
Cuttings	3240	P197150	Kerogen slide filtered/unfiltered fractions
Cuttings	3240	P197151	Oxidised slide 2
Cuttings	3240	P197152	Oxidised slide 3
Cuttings	3260	P197153	Kerogen slide filtered - 1/2 cover slip
Cuttings	3270	P197154	Kerogen slide filtered/unfiltered fractions
Cuttings	3290	P197155	Kerogen slide filtered/unfiltered fractions
Cuttings	3300	P197156	Kerogen slide filtered/unfiltered fractions
Cuttings	3310	P197157	Kerogen slide filtered/unfiltered fractions
Cuttings	3320	P197158	Kerogen slide filtered/unfiltered fractions
Cuttings	3340	P197159	Kerogen slide filtered/unfiltered fractions
Cuttings	3340	P197160	Oxidised slide 2
Cuttings	3350	P197161	Kerogen slide filtered/unfiltered fractions
Cuttings	3350	P197162	Oxidised slide 2
Cuttings	3350	P197163	Oxidised slide 3

.

,

Page 17

,

RELINGUISHMENT LIST — PALYNOLOGY SLIDES

WELL NAME & NO:	GREAT WHITE-1
PREPARED BY:	A.D. PARTRIDGE
DATE:	25 February 1997

Sheet 2 of 2

Sample Type	Depth (m)	Catalogue Number	Description
Cuttings	3360	P197164	Kerogen slide filtered/unfiltered fractions
Cuttings	3360	P197165	Oxidised slide 2
Cuttings	3360	P197166	Oxidised slide 3
Cuttings	3360	P197167	Oxidised slide 4
Cuttings	3370	P197168	Kerogen slide filtered/unfiltered fractions
Cuttings	3370	P197169	Oxidised slide 2 - 1/2 cover slip
Cuttings	3390	P197170	Kerogen slide filtered - 1/2 cover slip
Cuttings	3410	P197171	Kerogen slide filtered/unfiltered fractions
Cuttings	3430	P197172	Kerogen slide filtered/unfiltered fractions
Cuttings	3440	P197173	Kerogen slide filtered/unfiltered fractions
Cuttings	3470	P197174	Kerogen slide filtered/unfiltered fractions
Cuttings	3470	P197175	Oxidised slide 2
Cuttings	3470	P197176	Oxidised slide 3
Cuttings	3470	P197177	Oxidised slide 4