

APPENDIX 1

1 I I

FORAMINIFERAL ANALYSIS, YELLOWTAIL-2

GIPPSLAND BASIN

by J.P. Rexilius

Esso Australia Ltd., Palaeontology Report 1982/45

-

November 25, 1982

INTERPRETATIVE DATA

INTRODUCTION

SUMMARY TABLE

GEOLOGICAL COMMENTS

DISCUSSION OF ZONES

REFERENCES

FORAMINIFERAL DATA SHEET

TABLE-1: INTERPRETATIVE DATA - YELLOWTAIL-2

.

INTRODUCTION

Fifty six (56) sidewall core samples were processed for foraminiferal analysis in Yellowtail-2 from 845 to 2423 metres. Only the planktonic foraminifera have been scrutinized in detail. An agglutinated benthonic foraminiferal fauna has been noted at the base of the Lakes Entrance Formation and its palaeoenvironmental implications are discussed in the section dealing with geological comments. Adequate planktonic foraminiferal faunas occur in most samples with the exception of the Gippsland Limestone (in samples between 920 and 1560m), the lower most sample of the Lakes Entrance Formation (at 2413m) and the Gurnard Formation (between 2413.9 and 2423m). Preservation of planktonic foraminifera (if present) within these intervals is generally very poor owing to recrystallization.

Tables 1 and 2, provide a summary (Basic and Interpretive) of the palaeontological analysis in Yellowtail-2. A summary of the biostratigraphic breakdown of the stratigraphic units in Yellowtail-2 is given below.

DEPTH(m)			ZONE	AGE	UNIT		
845			A-4 to $B-2$	Mid Pliocene - Late Miocene	Gippsland Limestone		
920-1635			Indeterminate	-			
1710	-	1790	с	Mid Miocene			
1865	-	2090	D-l to D-2	Mid Miocene	Lakes		
2169	-	2258	F	Early Miocene	Entrance		
2271	-	2355	G	Early Miocene	Formation		
2365		2409	H-1	Early Miocene			
2410		2411	H-l to I-l	Late Oligocene/ Early Miocene			
2412	-	2413	Indeterminate	-			
2413.	9-	2423	Indeterminate	-	Gurnard Formation		

SUMMARY

- 3 -

- 4 -

GEOLOGICAL COMMENTS

- The Gurnard Formation in Yellowtail-2 has been strongly limonitized and is barren of foraminifera.
- 2) Two units are recognized within the base of the Lakes Entrance Formation in Yellowtail-2: a thin lower unit of calcareous siltstone (approximately 2m thick : 2412 to 2413m) and an upper foraminiferal biomicrite or planktonic foraminiferal The basal calcareous siltstone contains a foraminiferal ooze. fauna dominated by deep water, fine grained agglutinated benthonics including opaline Ammodiscus. There is a low yield of very poorly preserved planktonic foraminifera in the unit. The fauna is not age diagnostic. This calcareous siltstone has also been recognized in Yellowtail-1 where it is thicker (approximately 9 metres thick). This lithology is not represented on the erosional high intersected in Opah-1. The facies is tentatively interpreted as being a deep water turbidite which has been sourced from a north-northwest direction (Rexilius, in prep.).
- 3) The planktonic foraminiferal ooze which overlies the calcareous siltstone was also deposited in deep water (planktonic foraminiferal percentage 95-98 percent). The presence of pelletal glauconite (constituting about 10 percent of the unit) at the base of the unit indicates slow depositional rates. The glauconite content decreases upsection. The age of the base of the ooze in Yellowtail-2 (SWC 36 2410m) can be no older than Zone I-1 and from 2409 to 2365m is assignable to Zone H-1. The planktonic foraminiferal ooze has also been recognized in Yellowtail-1 (Taylor, 1982) where it overlies the calcareous siltstone facies and in Opah-1 where it overlies a sand.
- 4) There is evidence of reworking at the base of the Lakes Entrance Formation in Yellowtail-2. Foraminiferal faunas of Zone I-1 age and possibly Zone H-2 age have been reworked during Zone H-1 time as high as 2395m. Reworking of Early and Late Oligocene planktonic foraminiferal assemblages during the Early Miocene (Zone H-1 time) has also been recorded in Yellowtail-1 and Opah-1 (Rexilius, in prep.).

DISCUSSION OF ZONES

The Tertiary biostratigraphy in Yellowtail-2 is based on the Gippsland Basin planktonic foraminiferal zonal scheme of Taylor (in prep.). Studies by Jenkins (1960, 1971), Blow (1969, 1970), Postuma (1971), Stainforth et al (1975) and Hornibrook (1982) have also been consulted.

ZONES A-4 to B-2: 845m

The association of <u>Globorotalia</u> acostaensis with <u>G. miozea</u> conoidea and <u>G. scitula</u> indicates that SWC 153 at 845m can be assigned to zones A-4, B-1 or B-2.

INDETERMINATE INTERVAL : 920 - 1635m

The poor preservation and low to moderate yield of planktonic foraminifera in the Gippsland Limestone between 920 and 1560m hampers biostratigraphic determinations. Although the lowermost sample of Gippsland Limestone in Yellowtail-2 (SWC 140-1635m) contains a well preserved planktonic foraminiferal assemblage, there are no biostratigraphically useful species present. The sporadic occurrence of Globorotalia conomiozea within the interval 920 - 1635m would normally indicate assignment to Zone B-1 or younger using the planktonic foraminiferal zonal scheme of Taylor (in prep.). Taylor's zonal scheme defines the base of Zone B-1 (6MA - latest Late Miocene) by the first uphole appearance of Globorotalia conomiozea. However in Yellowtail-2, Globorotalia conomiozea is associated with Globorotalia mayeri, a species whose extinction defines the top of Zone C. Recent work by Hornibrook (1982) on faunas from DSDP site 258 off the western coast of New Zealand, indicates that conical forms of Globorotalia miozea conoidea, which are indistinguishable from Globorotalia conomiozea, are common in the Tongaporutuan New Zealand stage (6 - 12MA). The use of Globorotalia conomiozea as a defining event for the base of Zone B-1 at 6MA is now considered invalid. In Yellowtail-2 there is good evidence that the species makes its first appearance earlier within Zone C.

- 5 -

ZONE C : 1710 - 1790m

The base of Zone C is defined by the extinction of <u>Globorotalia</u> <u>miozea miozea</u> which abruptly vanishes uphole at 1865m. The top of the zone in Yellowtail-2 is defined by the extinction of Globorotalia mayeri at 1710m.

ZONES D-1 to D-2 : 1865 - 2090m

The appearance of <u>Orbulina universa</u> uphole at 2090m and the extinction uphole of <u>Globorotalia miozea</u> at 1865m defines the interval as Zone D-1 to D-2 in age.

ZONE F : 2169 - 2258m

The interval is assigned to Zone F on the basis of the presence of <u>Globigerinoides bisphericus</u> and the absence of the <u>Praeorbulina</u> - <u>Orbulina</u> plexus.

ZONE G : 2271 - 2355m

The appearance uphole of <u>Globigerinoides</u> <u>trilobus</u> at 2355m defines the base of Zone G in Yellowtail-2. The top of the zone is defined by the evolutionary appearance uphole of <u>Globigerinoides</u> <u>bisphericus</u> from <u>G. trilobus</u> at 2258m. Zone G planktonic foraminiferal faunas in Yellowtail-2 are diverse and very well preserved.

ZONE H-1 : 2365 - 2409m

The appearance uphole of <u>Globigerina woodi connecta</u> at 2409m defines the base of Zone H-l in Yellowtail-2. The top of Zone H-l in Yellowtail-2 is defined by the uphole first appearance of <u>Globigerinoides trilobus</u> at 2355m. There is evidence of reworking of Zone I-l and possibly Zone H-2 faunas during Zone H-l time. This is confirmed by the common occurrence of <u>Globigerina euapertura</u> in SWC 40 at 2406m and sporadic occurrences of <u>Globorotalia opima</u> and <u>Globigerina tripartita</u> between 2395 and 2409m. ZONES H-1 to I-1 : 2410 - 2411m

1

The interval contains very poorly preserved (recrystallized) planktonic foraminifera. The presence of <u>Globoquadrina</u> dehiscens sl. indicates an age no older than Zone I-1.

INDETERMINATE INTERVAL : 2412 - 2423m

The lowermost record of planktonic foraminifera in Yellowtail-2 is at 2412m where only rare indeterminate globigerinids were recovered. The lowermost sample of Lakes Entrance Formation (2413m) contains only agglutinated foraminifera. No foraminifera were found in the Gurnard Formation between 2413.9 and 2423m.

REFERENCES

- BLOW, W.H., 1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. <u>Internatl</u> <u>Conf</u>. <u>Planktonic Microfossils</u>, <u>lst</u>, <u>Geneva</u>, <u>Proc</u>., Vol. 1, p. 199-422.
- BLOW, W.H., 1979. The Cainozoic Globigerinida, Vols, I, II and III. E.J. Brill, Leiden
- HORNIBROOK, N. De B., 1982. Late Miocene to Pleistocene <u>Globorotalia</u> (Foraminiferida) from DSDP Leg 2d, Site 284, Southwest Pacific N.Z. J. <u>Geol. Geophy</u>., Vol. 25, pp. 83-99.
- JENKINS, D.G., 1960. Planktonic foraminifera from the Lakes Entrance oil shaft, Victoria, Australia. <u>Micropalaeontology</u>, Vol. 1, No. 4, pp. 345-71.
- JENKINS, D.G., 1971. New Zealand Cenozoic planktonic foraminifera. N.Z. Geol. Surv. Palaeont. Bull., No. 42, 178p.
- POSTUMA, J.A., 1971. <u>Manual of Planktonic Foraminifera</u>, Elsevier Pub. Comp., Amsterdam, 420p.
- REXILIUS, J.P., (in prep.). Analysis of the base of the Lakes Entrance Formation, Yellowtail Prospect.
- STAINFORTH, R.M., LAMB, J.L., LUTERBACHER, H., BEARD, J.H. & JEFFORDS, R.M., 1975. Cenozoic planktonic foraminiferal zonation and characteristics of index forms. <u>Univ. Kansas</u> <u>Paleont. Contrib.</u>, Art. 62, 425p.
- TAYLOR, D.J., (in prep). Observed Gippsland biostratigraphic sequences of planktonic foraminiferal assemblages.

1

A	SI	N: <u>GI</u>	PPSLAND	 2			ELEVA	ATION: KB	: _2	<u>1M</u> GL:	78M	
E L.			HTC			а т	A		4	ST D	АТ	A
A	ΞE	FORAM. ZONULES	Preferred	Rto	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time
INE		A ₁										
		A ₂										
		A ₃										
ENE		A4	845	2								
	щ	^B 1										
	LAT	<u> </u>								845	2	
н Ц Ц	ш		1710							1790	1	
	Ц	D	1865							2000		
ы		 E			· ····································					2090	· U	
5 D	H M	E ₂										
τ Σ		F	2169	0						2258	0	
	ARLY	G	2271	0						2355	0	
	ы Ш	^H 1	2365	1						2409	1	
	ш	<u> </u>			_	<u> </u>						
I I I I I I I I I I I I I I I I I I I	A T	<u> </u>										
Э Э	<u>н</u> к									<u></u>		
or	ARL	J ₂		<u> </u>								
) G	-84	ĸ	1									
ENIT		Pre-K										
`O\	INTEN	TS Them	. ic ouido		£ novoniti		£ T 1	- 1 911 9 - 1			_ : _ : .	
01		fauna	as in Zone	H-1	$\frac{1}{10}$ to 239	<u>ng 0</u> 5 me	tres.	Preservati	on o	f faunas	in th	ierai
		inte	rval 2410 t	to 24	11 m. is	very	poor,	however, t	he p	resence o	£	
		Globe	oquadrina d	lehis	scens s.	1 in	dicates	an age no	old	er than Zo	one l	-1.
		The	lower most	samp	oles of La	kes	Entranc	<u>e Formatio</u>	<u>n (2</u>	<u>412-2413m</u>) <u>co</u> r	itain
		fora	niniferal	fauna	as dominat	ed b	y agglu	tinated be	ntho	nics. Ve:	ry ra	re and
		very	poorly pro	eserv	ved plankt	onic	s are r	estricted	<u>to 2</u>	412 m. and	<u>d no</u>	age
ON	FIDE	assi NCE O	gnment 15] SWC or (DOSSI Core -	ble. The Complete a	<u>Gur</u> ssemb	nard Fo: lage (verv	rmation be	<u>twee</u> ce).	<u>n 2413.9 a</u> barren (<u>and 2</u> of	<u>'423 m.</u> i
R.	ATIN	G: 1:	SWC or (Core -	- Almost com	plete	assemblag	e (high confid	ence).	foramin	ifera	ι.
		2:	Cuttings	ore -	- Close to zon - Complete a	ssemb	lage (low o	onfidence).	et (lov	v confidence)	•	
		4 :	Cuttings	-	 Incomplete depth suspic 	assem ion (v	iblage, nex very low co	(t to uninterpro nfidence).	etable	or SWC with		
от	E:	If an entry	/ is given a 3 c	or 4 co	nfidence ratin	g, an	alternativ	e depth with a	bette	r confidence		
		rating sho	uld be entered	, if po	ssible. If a sa	mple	cannot be	assigned to or	e part	icular zone ,		

•

TABLE - 1

SUMMARY OF PALAEONTOLOGICAL ANALYSIS

YELLOWTAIL-2, GIPPSLAND BASIN

INTERPRETATIVE DATA

NATURE	DEPTH	MICRO-				**************************************	· · · · · · · · · · · · · · · · · · ·
OF	(METRES)	FOSSIL	PRESERVATION	DIVERSITY	ZONE	RATING	AGE
SAMPLE		YIELD					
SWC 153	845	High	Good	Moderate	A-4 to B-1	2	Mid Pliocene
							- Late Miocene
SWC 152	920	Moderate	Poor	Low	Indeterminate	-	_
SWC 151	995.1	Moderate	Moderate	Low	Indeterminate	_ .	-
SWC 150	1070	Low	Poor	Very Low	Indeterminate	-	-
SWC 149	1145	Low	Poor	Very Low	Indeterminate	-	_
SWC 148	1219.9	Low	Poor	Very Low	Inderterminate	-	-
SWC 147	1295	Moderately Low	Poor	Low	Indeterminate		_
SWC 146	1367.9	Low	Poor	Very Low	Indeterminate	_	_
SWC 145	1376	Moderately Low	Poor	Very Low	Indeterminate	-	-
SWC 144	1381	Low	Poor	Low	Indeterminate	-	-
SWC 143	1409.9	Low	Poor	Low	Indeterminate	-	-
SWC 142	1485	Moderate	Poor	Low	Indeterminate	_	_
SWC 141	1560	Moderate	Moderately Poor	Moderate	Indeterminate	-	_
SWC 140	1635	High	Good	Moderate	Indeterminate	_	-
SWC 139	1710	High	Good	Moderate	С	1	Mid Miocene

·····

TABLE - 1 (2)

SUMMARY OF PALAEONTOLOGICAL ANALYSIS

YELLOWTAIL-2, GIPPSLAND BASIN

INTERPRETATIVE DATA

NATURE OF SAMPLE	DEPTH (METRES)	MICRO- FOSSIL P YIELD	RESERVATION	DIVERSITY	ZONE	RATING	AGE
SWC 138	1790	High	Good	High	С	1	Mid Miocene
SWC 137	1865	High	Moderately Good	l Moderate	D-1/D-2	1	Mid Miocene
SWC 136	1940	High	Moderately Good	l High	D-1/D-2	1	Mid Miocene
SWC 84	2014.9	Moderately High	Moderate	Low	D-1/D-2	0	Mid Miocene
SWC 135	2090	Low	Moderate-Poor	Low	D-1/D-2	0	Mid Miocene
SWC 134	2169	Moderately High	Moderate	Moderate	F	0	Early Miocene
SWC 133	2258	High	Good	Moderate	F	0	Early Miocene
SWC 132	2271	Moderate	Moderate-Poor	Moderate	G	0	Early Miocene
SWC 131	2283	High	Good	High	G	0	Early Miocene
SWC 129	2305	High	Good	High	G	0	Early Miocene
SWC 128	2315	High	Moderate	Moderate	G	0	Early Miocene
SWC 127	2324.9	Moderate	Moderate-Poor	Moderate	G	0	Early Miocene
SWC 126	2335	High	Moderate	Moderate	G	0	Early Miocene
SWC 125	2345	High	Moderate	Moderate	G	0	Early Miocene
SWC 47	2355	High	Good	High	G	0	Early Miocene

TABLE - 1 (3) SUMMARY OF PALAEONTOLOGICAL ANALYSIS

YELLOWTAIL-2, GIPPSLAND BASIN

INTERPRETATIVE DATA

NATURE	DEPTH	MICRO-					
OF	(METRES)	FOSSIL	PRESERVATION	DIVERSITY	ZONE	RATING	AGE
SAMPLE		YIELD					
SWC 46	2365	Low	Poor	Low	H-1	1	Early Miocene
SWC 124	2370	High	Good	High	H-1	1	Early Miocene
SWC 45	2375	High	Good	High	H-1	1	Early Miocene
SWC 123	2380	High	Moderate	Moderate	H-1	1	Early Miocene
SWC 44	2385	High	Moderate	Moderate	H-1	1	Early Miocene
SWC 122	2390	Moderate	Moderate	Moderate	H-l	1	Early Miocene
SWC 43	2395	Moderate	Moderate	Low	H-l	1	Early Miocene *
SWC 121	2400	High	Moderate-Poor	Moderate	H-1	1	Early Miocene *
SWC 41	2405	Moderate	Poor	Low	H-1	1	Early Miocene *
SWC 40	2406	High	Moderate	Moderate	H-1	1	Early Miocene *
SWC 39	2407	High	Moderate	Moderate	H-1	1	Early Miocene *
SWC 38	2408	High	Poor	Low	H-1	1	Early Miocene *
SWC 37	2409	High	Moderate-Poor	Moderate	H-1	1	Early Miocene *

* = Reworking of Late Oligocene (Zone I-1) and ?Early Miocene (Zone H-2) planktonic foraminifera.

.

TABLE -1 (4)

SUMMARY OF PALAEONTOLOGICAL ANALYSIS

YELLOWTAIL-2, GIPPSLAND BASIN

INTERPRETATIVE DATA

NATUR OF SAMPL	E	DEPTH (METRES)	MICRO- FOSSIL YIELD	PRESERVATION	DIVERSITY	ZONE	RATING	AGE
SWC	36	2410	High	Poor	Low	I-l or younger	2	Early Miocene/
								Late Oligocene
SWC	35	2411	Low	Very Poor	Very Low	I-l or younger	2	Early Miocene/
								Late Oligocene
SWC	34	2412	Low	Very Poor	Very Low	Indeterminate	-	-
SWC	33	2413	N.F.F.	-	-	-	-	-
SWC	32	2413.9	N.F.F.	-	-	-	-	-
SWC 1	20	2415.9	N.F.F.	-	-	-	-	-
SWC 1	19	2417	N.F.F.	-	-	-	_	-
SWC 1	18	2418	N.F.F.	-	-	-	-	-
SWC 1	17	2419	N.F.F.	-	-	_	_	-
SWC 1	16	2419.9	N.F.F.	-	-	-	-	_
SWC 1	15	2421	N.F.F.	-	-	-	-	-
SWC 1	14	2421.9	N.F.F.	-	· _	-	-	-
SWC 1	13	2423	N.F.F.	-	-	-	_	_

N.F.F. = No foraminifera found (planktonics).

1

BASIC DATA

TABLE - 2 : FORAMINIFERAL DATA - YELLOWTAIL - 2. RANGE CHART : TERTIARY PLANKTONIC FORAMINIFERA.

| ·

- 14 -

,

TABLE - 2

FORAMINIFERAL DATA

YELLOWTAIL - 2, GIPPSLAND BASIN

BASIC DATA

SAMPLE	DEPTH	MICRO FOSSIL	PRESERVATION	DIVERSITY
No.	(Metres)	YIELD		
SWC 153	845	High	Good	Moderate
SWC 152	920	Moderate	Poor	Low
SWC 151	995.1	Moderate	Moderate	Low
SWC 150	1070	Low	Poor	Very Low
SWC 149	1145	Low	Poor	Very Low
SWC 148	1219.9	Low	Poor	Very Low
SWC 147	1295	Moderately Low	Poor	Low
SWC 146	1367.9	Low	Poor	Very Low
SWC 145	1376	Moderately Low	Poor	Very Low
SWC 144	1 3 8 1	Low	Poor	Low
SWC 143	1409.9	Low	Poor	Low
SWC 142	1485	Moderate	Poor	Low
SWC 141	1560	Moderate	Moderately Poor	Moderate
SWC 140	1635	High	Good	Moderate
SWC 139	1710	High	Good	Moderate
SWC 138	1790	High	Good	High
SWC 137	1865	High	Moderately Good	Moderate
SWC 136	1940	High	Moderately Good	High
SWC 84	2014.9	Moderately High	Moderate	Low
SWC 135	2090	Low	Moderate-Poor	Low
SWC 134	2169	Moderately High	Moderate	Moderate
SWC 133	2258	High	Good	Moderate
SWC 132	2271	Moderate	Moderate-Poor	Moderate
SWC 131	2283	High	Good	High
SWC 129	2305	High	Good	High
SWC 128	2315	High	Moderate	Moderate
SWC 127	2324.9	Moderate	Moderate-Poor	Moderate
SWC 126	2335	High	Moderate	Moderate
SWC 125	2345	High	Moderate	Moderate
SWC 47	2355	High	Good	High
SWC 46	2365	Low	Poor	Low
SWC 124	2370	High	Good	High

TABLE - 2 (2)

FORAMINIFERAL DATA YELLOWTAIL - 2, GIPPSLAND BASIN

BASIC DATA

SAMPLE	DEPTH	MICRO FOSSIL	PRESERVATION	DIVERSITY
No.	(Metres)	YIELD		
SWC 45	2375	High	Good	High
SWC 123	2380	High	Moderate	Moderate
SWC 44	2385	High	Moderate	Moderate
SWC 122	2390	Moderate	Moderate	Moderate
SWC 43	2395	Moderate	Moderate	Low
SWC 121	2400	High	Moderate-Poor	Moderate
SWC 41	2405	Moderate	Poor	Low
SWC 40	2406	High	Moderate	Moderate
SWC 39	2407	High	Moderate	Moderate
SWC 38	2408	High	Poor	Low
SWC 37	2409	High	Moderate-Poor	Moderate
SWC 36	2410	High	Poor	Low
SWC 35	2411	Low	Very Poor	Very Low
SWC 34	2412	Low	Very Poor	Very Low
SWC 33	2413	N.F.F.	-	-
SWC 32	2413.9	N.F.F.	-	-
SWC 120	2415.9	N.F.F.	-	_
SWC 119	2417	N.F.F.	-	_
SWC 118	2418	N.F.F.	-	-
SWC 117	2419	N.F.F.	-	-
SWC 116	2419.9	N.F.F.	-	-
SWC 115	2421	N.F.F.	-	-
SWC 114	2421.9	N.F.F.	-	-
SWC 113	2423	N.F.F.	-	-

N.F.F. = No foraminifera found (planktonics)