

PART-1
INTERPRETATIVE DATA

INTRODUCTION
CEOLOC:ICAL COMMENTS
BIOSTRATICRAPHY
INTERPRETATIVE DATA
DATA SHEET

INTRODUCTION

The datable marine sediments in Sunfish-2 range in age from Early Miocene (Zone G) to Late Miocene/earliest Pliocene (Zone Bl). The top of the Latrobe Group occurs at 1615.5 m and is a significant unconformity (Early-Mid Eocene sediments overlain by Early Miocene). Late Miocene/Early Pliocene age sediments (Zones C to Bl) are well developed in the well, reaching a thickness of 318 m .

Fifty-six sidewall cores were processed and examined.

GEOLOGICAL COMMENTS

(a) Top of the Latrobe Group

The boundary between the Latrobe Group and the Lakes Entrance Formation in Sunfish-2 is an unconformity surface. It is placed at the \log break which occurs at 1615.5 m .

The 30MA unconformity documented by vail et al, usually sits within the basal part of the Lakes Entrance Formation, separating sediments of Early Miocene/Late Oligocene age from carbonates of earliest Oligocene/Late Eocene age. In this case the boundary between the Latrobe Group and the Lakes Entrance Formation is not an unconformity but a condensed interval represented by the greensands of the Gurnard Formation.

In Sunfish-2, however, the 30 MA unconformity has apparently cut down into and removed both the Gurnard Formation and the upper part of the Latrobe Group. This results in the Early Miocene zone G sediment immediately overlying the \underline{P}. asperopolus age (Early Eocene) sediment.
(b) Comparison with Sunfish-1

Comparisons between Sunfisn-1 and 2 are almost impossible due to (1) poor

TABLE l - GEOLOGICAL SUMMARY

AGE	FORMATION	ZONATION
\ldots	SEA FLOOR-
PLEISTOCENE		
		\ldots
PLIOCENE		B1
		(950.5-1160.7)
		B2
	GIPPSLAND	
LATE	LIMESTONE	(1199.0-1234.0)
MIOCENE		
		$\begin{gathered} C \\ (1251.0) \end{gathered}$
		…..............
		(1268.0-1409.8)
MID		D2
MIOCENE	1457.5 m	(1425.2-1477.7)
	LAKES	
	ENTRANCE	E2
	FORMATION	(1514.5)
		F
		(1530.0-1590.0)
EARLY		G
MIOCENE		(1598.8-1613.9)
	1615.5 m	
EARLY/MID	LATROBE	(p. asperopolus
EOCENE	GROUP	(1615.7-1634.6)
$\cdots \ldots$	D. 2647.5 m	-1...-n-...

TABLE 2 - SUNFISH-2 INTERPRETATIVE DATA

SIDEWALL CORE NO.	DEPTH (M)	MICROFOSSIL YIELD	MICROFOSSIL PRESERVATION	PLANKTON DIVERSITY	ZONE	AGE
141	810.0	V. Low	Poor	Moderate	?	Indeterminate
140	821.0	Moderate	Poor	Moderate	?	Indeterminate
139	831.0	Moderate	Poor	Low	?	Indeterminate
138	840.1	Low	Poor	Low	?	Indeterminate
137	850.5	Low	V. Poor	Low	$?$	Indeterminate
136	860.7	V. Low	V. Poor	Low	?	Indeterminate
135	870.5	V. Low	V. Poor	Low	?	Indeterminate
134	881.2	Barren	-	-	?	Indeterminate
133	890.6	v. Low	V. Poor	Low	?	Indeterminate
132	903.0	Low	V. Poor	Low	?	Indeterminate
131	925.7	Low	V. Poor	Low	?	Indeterminate
130	950.3	Moderate	Poor	Moderate	81	Late Miocene/Early Pliocene
129	973.3	Moderate	Moderate	Moderate	B1	Late Miocene/Early Pliocene
128	1007.4	Moderate	Moderate	Poor/Mod	81	Late Miocene/Early Pliocene
127	1039.1	High	cood	High	Bl	Late Miocene/Early Pliocene
12ϵ	1059.2	High	Cood	Moderate	Bl	Late Miocene/Early Pliocene
125	1089.3	Moderate	V. Poor	High	Bl	Late Miocene/Early Pliocene
124	1118.3	Moderate	V. Poor	Moderate	81	Late Miocene/Early Fliocene
123	1139.3	Moderate	Foor	High	81	Late Miocene/Early Pliocene

SIDEWALL CORE NO.	DEPTH (M)	MIOROFOSSIL YIELD	MICROFOSSIL PRESERVATION	PLANKTON DIVERSITY	ZONE	PGE
81	1160.7	Moderate	V. Poor	High	B1	Late Miocene/Early Pliocene
79	1199.0	High	Good	Moderate	B2	Late Miocene
78	1216.4	Moderate	V. Poor	High	B2	Late Miocene
77	1234.0	Moderate	Poor	High	B2	Late Miocene
76	1251.0	Moderate	Poor	High	C	Late Miocene
75	1268.0	Moderate	Poor	High	D1	Mid. Miocene
74	1283.0	Low	Poor	Moderate	D1	Mid. Miocene
73	1300.0	Moderate	Poor	High	D1	Mid. Miocene
72	1314.9	Low	Poor	Moderate	D1	Mid. Miocene
71	1330.2	High	Good	High	D1	Mid. Miocene
70	1345.2	High	Moderate	High	D1	Mid. Niocene
68	1369.9	Moderate	Moderate	Moderate	D1	Mid. Miocene
122	1409.8	Moderate	Good	High	Dl	Mid. Miocene
121	1425/2	Moderate	Cood	High	02	Mid. Niocene
120	$1443 . .7$	Moderate	cood	High	D2	Mid. Niccene
119	1460.4	High	Cood	High	D2	Mid. Miccene
102	1477.7	High	Moderate	Moderate	D2	Mid. Miccene
100	1514.5	Higr	Moderate	High	12	Mid. Viocene

The appearance of Globigerinoides quadrilobatus trilobus without Globigerinoides sicanus in the lowest sample from the Lakes Entrance Formation is indicative of an Early Miocene, Zone G age.

The assemblage obtained from this zone is fairly sparce with diversity increasing upsection with the addition of various species of Globorotalia notably mayeri and miozea.

Reworking of the Late Eocene-Early Oligocene species, Globigerina linaperta, and Globorotalia postcretacea occurs in the basal three samples from the zone SWC's 88, 90, 118 , at $1613 \mathrm{~m}, 1610.0 \mathrm{~m}$ and 1608.8 m respectively.

ZONE F: EARLY MIOCENE (1590.0m to 1530.0m)

The base of Zone F is marked by (a) the first appearance, upsection of Globigerinoides sicanus and (b) a sharp increase in species diversity. Although this relatively high level of species diversity decreases upsection it is always higher than in the preceeding zone. Coincident with this slight decrease in diversity is a rapid deterioration in the quality of preservation.

ZONE E2: MIDDLE MIOCENE 1514.5m
The presence of Praeorbulina glomerosa in SWC 100 at $1514.5 m$ without either form of Oerbulina indicates a zone E2 age for the sample.

COMMENTS: 1 . The absence of Zone El is probably due to a sample gap.
2. Samples above 950.3 m are indeterminate due to very poor preservation.
\qquad
\qquad
\ldots

CONFIDENCE O SWC or Core - Complete assemblage (very high confidence).
RATING:
SWC or Core - Almost complete assemblage (high confidence).
SWC or Core - Close to zonule change but able to interpret (low confidence).
Cuttings - Complete assemblage (low confidence).
Cuttings - Incomplete assemblage, next to uninterpretable or SWC with depth suspicion (very low confidence).

NOTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone. then no entry should be made; unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another.

DATA RECORDED BY:	MICHAEL HANNAH	DATE : $\quad 2 / 4 / 84$
DATA REVISED BY:		

PART-2 BASIC DATA

BASIC DATA
RANGE CHART

