

APPENDIX-1

PALYNOLOGICAL ANALYSIS OF ROUNDHEAD-1 GIPPSLAND BASIN.

 $\tilde{S} V_{n^{\prime}}$

<u>.</u>...

by

A.D. PARTRIDGE ESSO AUSTRALIA LTD.

Esso Australia Ltd. Palaeontology Report 1989/17 •

INTERPRETED DATA

2.

- 2 -

INTRODUCTION

SUMMARY OF RESULTS

S. . .

GEOLOGICAL COMMENTS

BIOSTRATIGRAPHY

REFERENCES

TABLE-1: INTERPRETED DATA

PALYNOLOGY DATA SHEET

INTRODUCTION

Fourty-one sidewall core samples were processed and examined for spores, pollen and microplankton. As part of this analysis thirty-two of the samples which gave sufficient yields of palynomorphs were also counted to determine the variation in percentages and ratios of the principal spore-pollen and microplankton species. Both oxidised organic yield and palynomorph concentration were mainly high in the non-marine coastal plain facies in the Late Cretaceous part of the Latrobe Group, but were quite variable in the overlying sandy marine section which is mostly Paleocene in age. Recorded spore-pollen diversity is moderate to high in 80% of the samples and is clearly inversely proportional to residue yield and palynomorph concentration. Dinoflagellates were recorded from 60% of the samples and their diversity ranged from low to high reflecting variation in marine influence. This is interpreted to relate directly to the influence of the sea-level cycles.

- 3 -

Lithological units and palynological zones, from base of Lakes Entrance Formation to T.D., are given in the following summary. Interpreted data with zone indentifications and confidence ratings are recorded in Table-1 and basic data on residue yields, preservation and diversity are recorded in Table-2. Palynomorph counts and percentages are recorded in Tables-3 and 4, while all species that can be identified with bimomial names are tabulated on the accompanying range chart.

GEOLOGICAL COMMENTS

1. The Latrobe Group penetrated in Roundhead-1 is readily separated into two distinct lithological units. These are a mainly non-marine coastal plain facies between 2845.5m to 3021.0m (T.D.) comprised predominantly of the finer grained lithologies such as coals and shales, and a marine facies dominated by sands which extends to the top of the Group. This environmental interpretation of the lithological subdivision is based on microplankton, mostly dinoflagellate cysts, which are present, and often abundant, in the majority of productive samples above 2845.5m and virtually absent in samples below that depth.

2. Roundhead-1 is one of the few wells in the Gippsland Basin which shows clear lithological evidence of marine influence in the "coarse clastics" or undifferentiated Latrobe Group. Glauconite is recorded in sidewall cores from three separate levels and these samples also yielded the highest microplankton abundances.

PALYNOLOGICAL SUMMARY OF ROUNDHEAD-1

AGE ·	UNIT/FACIES	SPORE-POLLEN ZONES	DEPTH (mKB)	DINOFLAGELLATE ZONES	DEPTH (mKB)
Oligocene - UNCONFORMITY	Lakes Entrance Fm.	P. tuberculatus	2373.0		
Eocene?	L A Gurnard Fm.?	(Barren of fossils)			
- UNCONFORMITY Early Eocene - UNCONFORMITY	T 2380.1m R O Undifferentiated B sands & shales E 2437.5m	Lower M. diversus	2418.1		
Palaeocene	G Undifferentiated R marine sands O and shales	Upper L. balmei Lower L. balmei	2442.5-2445.8 2484.0-2808.0	A. homomorphum E. crassitabulata	2445.8 2509.1-2535.8
K/T Boundary	U P 2811.0m			T.,evittii	2801.5-2808.0
Maastrichtian	Condensed sequence shale overlying shoreface sand	Upper T. longus	2812.0	M. druggii	2812.0
- Sequence Boundary -	2845.5m				
Maastrichtian	Coastal plain sands, shales and coals	Upper T. longus	2855.5-2952.0		
L	T.D. 3021.0m			<u></u>	<u> </u>

- 4 -

These sidewall cores and their corresponding microplankton percentages are listed below:

SAMI	PLE	DEPTH	MICROPLANKTON %	
SWC	54	2442.5m	28.2%	
SWC	53	2445.8m	28.6%	
SWC	46	2540.Om	8.5%	
			a the second	
SWC	22	2789.Om	0.8%	
SWC	21	2793.3m	3.7%	
SWC	20 ·	2801.5m	32.2%	
SWC	19	2804.5m	16.1%	
SWC	18	2808.Om	40.5%	
SWC	17	2812.Om	63.7%	

3. Glauconite is also present in the two highest sidewall cores in the Latrobe Group at 2378.5m and 2380.0m, which unfortunately were barren of palynomorphs. On lithology and stratigraphic position this section is correlated with the Gurnard Formation in the palynological summary even though an age for the interval could not be obtained from the palynological analysis.

4. Samples were counted in an attempt to use palynology to identify Condensed Sections as defined by Loutit *et al.* (1988). In addition it was hoped to identify High-stand, Low-stand and Transgressive System Tracts as well as the Condensed Sections by repetitive changes in the dinoflagellate and spore-pollen assemblage composition.

5. Based on high abundance and diversity of microplankton, mostly dinoflagellate cysts species three major condensed intervals and two minor or more diffuse condensed intervals are proposed at the following sample depths:

MAJOR CONDENSED INTERVALS

A. 2442.5-2445.8m with 28-29% microplankton.

- B. 2535.8-2540.0m with 8-16% microplankton.
- C. 2801.5-2812.0m with 16-64% microplankton.

MINOR CONDENSED INTERVALS

- a. 2505.9-2515.2m with 3-5% microplankton.
- b. 2678.0-2679.1m with 10-13% microplankton.

The major three are also the intervals in the Latrobe Group containing glauconite in hand specimen. This mineral and its close relatives are typical of Condensed Sections (Loutit *et al.*, 1988).

Note that the intervals quoted above are the depth limits of the sidewall cores with high microplankton abundances. It may be more correct to interpret the entire shale packages containing these samples as the Condensed Sections.

The spore-pollen spectra from the counts was more difficult to analyse 6. and only a few general observations can be made. Firstly, the three major interpreted Condensed Sections can be characterised by high abundances of Araucariacites australis and Dilwynites ganulatus/tuberculatus. Their combined abundances ranged from 17% to 23.5%. In contrast the abundances of these species in all other samples counted ranged from <1% to 10%. It is noteworthy that the two intervals interpreted as minor Condensed Sections lacked a similar increase in these species. The second observation is that the samples from the coastal plains facies below 2845.5m can be characterised by "one off" abundances of species, as would be expected of the variable vegetational mosaic growing on the shifting micro-environments of a coastal plain (e.g. see discussion in Anderson & Muller, 1975). Some of the most conspicuous isolated abundance peaks are Phyllocladidites mawsonii (26% at 2936.5m), Podosporites microsaccatus (14.9% at 2936.5m), Proteacidites reticuloconcavus (1.1% at 2936.5m and 4.4% at 2891.0m), P. clinei ms (3.4% at 2929.0m) and Tricolpites waiparaensis (15% at 2900.5m). The high but variable abundance of Gambierina spp. through this interval is also a reflection of fluctuating microenvironments.

7. The abrupt change at 2845.5m from coastal plain environment to a massive sand of probable shoreface environment, which is in turn overlain by a marine shale at 2813.5m, is interpreted to represent the "downward shift" associated with the 67 Ma Sequence Boundary. This Sequence Boundary can be confidently correlated with the sequence charts of Haq *et al.*(1987, 1988) because it is the first possible sequence boundary in Roundhead-1 below the Ctetaceous/Tertiary (K/T) boundary which also lies within the Upper T. longus Zone.

- 6 -

8. The K/T Boundary is picked in Roundhead-1 at 2811.0m between the *M. druggii* and *T. evittii* dinoflagellate Zones. It lies in the lower part of a Condensed Section at a point where there is a slight change on the dip-meter log.

9. The A. hyperacanthum Zone was not found in Roundhead-1. In this, Roundhead-1 resembles the sequence intersected in East Kingfish-1, which like Roundhead-1 is relatively closely sampled (Marshall, 1985), and supports the interpretation for a local unconformity near the top of the Latrobe Group. The other nearby wells Kingfish-1, 5 and 6 neither support or contradict this interpretation as they contain too few productive samples over this interval. The A. hyperacanthum Zone is present however in Bonita-1A which is located along the palaeodepositional strike about 8km to the north-east of Roundhead-1. It is suggested that the Lower M. diversus Zone sample at 2418.1m is from the youngest part of the zone and therefore lies above the 53 Ma sequence boundary (Haq et al., 1987, 1988). The unconformity at this sequence boundary is considered to have eroded down through the A. hyperacanthum Zone and the upper part of the Upper L. balmei Zone.

BIOSTRATIGRAPHY

Zone and **age-determinations** have been made using criteria proposed by Stover & Partridge (1973), Helby *et al.* (1987) and unpublished observations made on Gippsland Basin wells drilled by Esso Australia Ltd.

Author citations for most spore-pollen species can be sourced from Stover & Partridge (1973), Helby *et al.* (1987) and Dettmann & Jarzen (1988) or other references cited herein. Species names followed by "ms" are unpublished manuscript names. Zone names have not been altered to conform with recent nomenclature changes like *Forcipites* (al. *Tricolpites*) *longus* (Stover & Evans) Dettman and Jarzen 1988. Author citations for dinoflagellates can be found in Letin and Williams (1985, 1989) and Wilson (1988).

Upper Tricolpites longus Zone: 2812.0-2952.0 metres Maastrichtian.

Samples are assigned to the Upper subdivision of the zone on the consistent and characteristic presence of common *Gambierina* spp. (which has an average abundance of 14%), and the sporadic presence of *Stereisporites (Tripunctisporis) spp.*, a species complex not known to occur below the Upper

• 1

subdivision. Although individual samples have moderate diversity the zone overall has a high diversity with over 60 species of spores and pollen identified on the range chart. Fourteen species recorded from the assemblages are not known to extend above the *T. longus* Zone but most of these are only recorded from one or two samples. The indicator species occurring in most samples and therefore most characteristic of the zone are Forcipites (al. Tricolpites) longus, Nothofagidites senectus, Proteacidites clinei ms, P. reticuloconcavus ms, and Quadraplanus brossus. Of these Proteacidites clinei ms is the only indicator species for an age no younger than the *T. longus* Zone which occurs in the highest sample assigned to the zone. The age of this latter sample is based more confidently on its dinoflagellate content.

Manumiella druggii Zone: 2812.0 metres

Maastrichtian.

The sample is dominated by acritarchs mostly represented by small simple spheres <15 microns in size, and a small *Micrhystridium* sp. which is characterised by very fine but proportionally long and flexible spines. The larger dinoflagellates in the assemblage are mostly fragmented and therefore are under-represented in both the assemblage count and their overall diversity. Nevertheless, the sample is confidently assigned to the zone on the presence of both *Manumiella druggii* and *M. seelandica*.

Lower Lygistepollenites balmei Zone: 2484.0-2808.0 metres Paleocene.

The counts of the assemblages on Tables 3 and 4 best display the characteristic change to the Lower L. balmei Zone from the underlying Upper T. longus Zone. This is an increase in overall abundance of gymnosperm pollen from an average of 26% in the Upper T. longus Zone to an average of 49% in the Lower L. balmei Zone. Most conspicuous of all the species increasing in abundance in this group is the eponymous species Lygistepollenites balmei which increases from not registering in the count to a maximum of 16.8% in the sample at 2515.2m. The other characteristic change in the category Triporopollenites spp. (small). Both the increase in gymnosperm pollen and the increase in small angiosperm pollen is a reflection of a change to wind pollinated plants (as reflected by the palynological record) in the vegetation of the Paleocene. This change is believed to be another manifestation of the extinction events which occur at the Cretaceous/Tertiary boundary.

- 8 -

As is often typical of the zone, key species whose first appearance datums (FADs) can be used to identify the base of the zone, are delayed in the stratigraphic record relative to the extinction horizon of those species which characterise the *T. longus* Zone. Key species which fall into this category in Roundhead-1 are *Proteacidites angulatus* (FAD at 2793.3m), *Tetracolporites multistrixus* ms (FAD at 22746.0m), *Haloragacidites harrisii* (FAD at 2535.8m), and *Polycolpites langstonii* (FAD at 2509.1m). In Roundhead-1 this situation of delayed appearances of pollen species is partially a facies problem related to the marine environment characteristic of the whole zone. It is the dinoflagellates associated with this marine facies which allows the high confidence pick for the base of the zone.

Trithyrodinium evittii Zone: 2801.5-2808.0 metres Basal Danian.

Three samples are assigned to this zone on the common to abundant occurrence (5.7% to 23%) of the eponymous species *Trithyrodinium evittii*. None of the other dinoflagellates identified can be considered diagnositic of the zone. The species *Senegalinim dilwynense* (sensu lato), Deflandrea speciosus and frequent to common *Spinidinium* spp. may however be considered as having 'local' FADs within this zone.

Palaeoperidinium pyrophorum Association: 2793.3 metres Danian?

The occurrence of or acme of *Palaeoperidinium pyrophorum* above the acme of *Trithyrodinium evittii* has been observed in several wells. It is recorded here as a potential correlation point.

Alisocysta circumtabulata Association: 2657.5-2678.0 metres.

Alisocysta circumtabulata is the only dinoflagellate in Roundhead-1 restricted to the dinoflagellate abundance peak, and possible Condensed Section recorded in the counts (Table-4) between 2657.5-2679.1m. Although A. circumtabulata is known to have an earlier FAD (Helby *et al.* 1987, fig.40) its acme may be within this later condensed interval. This interpretation needs to be verified and tested in additional wells.

Eisenackia crassitabulata Zone: 2509.1-2535.8 metres Mid Paleocene.

The original concept of this zone was the total range of the indicator species *Eisenackia crassitabulata*, and this is how it is recognised in

Roundhead-1 where *E. crassitabulata* occurs in the shallowest and deepest samples in a sequence of three consecutive samples. However, the absence of *E. crassitabulata* in the middle sample highlights the difficulty of consistently correlating this zone. In the absence of the indicator species the associated dinoflagellates in the assemblages are not found frequently enough for consistent correlation.

Upper Lygistepollenites balmei Zone:

2442.5-2445.8 metres Late Paleocene.

÷.,

The two samples are assigned to the Upper subdivision of the *L. balmei* Zone on the presence of the indicator species *Malvacipollis subtilis* and *Banksieaeidites elongatus* (at 2442.5m only). This interpretation is supported in the absence of other indicator species by a conspicuous increase in the abundance of *Myrtaceidites parvus/mesonesus* (3-4%) and *Haloragacidites harrisii* (6.7% at 2445.8m). The increase in abundance of *Dilwynites granulatus* and *D. tuberculatus* is not of age significance but instead parallels the increse in abundance of dinoflagellates and is also observed with the high dinoflagellate abundances in the *M. druggii* and *T. evittii* Zones.

Apectodinium homomorphum Zone: 2445.8 metres

Late Paleocene.

This zone can only be confidently identified in the deepest of the two samples referred to the Upper L. balmei Zone based on the presence of the eponymous species. The higher sample although it contains a relatively high dinoflagellate count does not contain any particularly diagnostic dinoflagellate species.

Lower Malvacipollis diversus Zone: 2418.1 metres Early Eocene.

The single sample is assigned to the zone on the presence of *Proteacidites* grandis, Malvacipollis diversus and M. subtilis and absence of indicator species of the underlying L. balmei Zones. The assemblage from the sample is characterized by the very common occurrence of Myrtaceidites spp. (18.9%) and Proteacidites spp. (20.1%), the later mostly represented by small nondescript specimens. Only fragments of dinoflagellates were identified and it is the absence of distinctive dinoflagellates which suggests strongly that the sample is younger than the A. hyperacanthum dinoflagellate Zone which occurs consistently in other wells at the base of the Lower M. diversus Zone.

Proteacidites tuberculatus Zone: 2373.0 metres

Oligocene.

1.

The presence of spores *Cyatheacidites annulatus* (4 specimens in count) and *Cyathidites subtilis* (1 specimen) in a marine sample from the base of the Lakes Entrance Formation allow confident assignment to this zone. The dinoflagellates are typical of the formation but none are stratigraphically restricted to this unit or particularly diagnostic.

REFERENCES

- ANDERSON, J.A.R. & MULLER, J., 1975. Palynological study of a Holocene peat and Miocene coal deposit from N.W. Borneo. *Review Palaeobot*. *Palyn*. 19, 291-351.
- DETTMANN, M.E. & JARZEN, D.M., 1988. Angiosperm pollen from uppermost Cretaceous strata of southeastern Australia and the Antarctic Peninsula. *Mem. Ass. Australas. Palaeontols 5*, 217-237.
- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156-1167.
- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Special Publication No. 42, 71-108.
- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. *Mem. Ass. Australas. Palaeontols* 4, 1-94.
- LENTIN, J.K. & WILLIAMS, G.L., 1985. Fossil dinoflagellates: Index to genera and species, 1985 Edition. Canadian Tech. Rep. Hydrog. Ocean Sci. 60, 1-451.
- LENTIN, J.K. & WILLIAMS, G.L., 1989. Fossil dinoflagellates: Index to genera and species, 1989 Edition. AASP Contrib. Series No. 20, 1-473.
- LOUTIT, T.S., HARDENBOL, J. & VAIL, P., 1988. Condensed sections: The key to age determination and correlation of continental margin sequences. SEPM Special Publication No. 42, 183-213.
- MARSHALL, N.G., 1985. Palynological analysis of East Kingfish-1 Gippsland Basin, Victoria. Esso Australia Ltd. Palaeontology Report 1985/13 (unpubl.).
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Vict. 85, 237-286.
- WILSON, G.J., 1988. Paleocene and Eocene dinoflagellate cycts from Waipawa, Hawkes Bay, New Zealand. N.Z. geol. Surv. Paleont. Bull. 57, 1-96.

TABLE 1: INTERPRETATIVE PALYNOLOGICAL DATA ROUNDHEAD-1, GIPPSLAND BASIN

Sheet 1 of 2

1

SAMPLE TYPE	DEPTH (METRES)	SPORE - POLLEN ZONE	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONFIDENCE RATING	COMMENT
SWC 60	2373.0	P. tubercalatus		0	Nothofagidites spp. dominant.
SWC 58	2378.5	Indeterminate			
SWC 57	2380.0	Indeterminate			
SWC 56	2407.1	Indeterminate			
SWC 55	2418.1	Lower M. diversus		1	Myrtaceidites spp. & Proteacidites spp. dominan
SWC 54	2442.5	Upper L. balmei		1	Characterised by Parecaniella indentata
SWC 53	2445.8	Upper L. balmei	A. homomorphum	0	A diverse marine sample
SWC 52	2484.0	Lower L. balmei		1	Coastal plain association
SWC 51	2487.1	Lower L. balmei		1	Coastal plain association
SWC 50	2505.9	Lower L. balmei		0	
SWC 49	2509.1	Lower L. balmei	E. crassitabulata	0	Early Cretaceous reworking present
SWC 48	2515.2	Lower L. balmei		0	
SWC 47	2535.8	Lower L. balmei	E. crassitabulata	0	A diverse marine assemblage
SWC 46	2540.0	Lower L. balmei		1	A marine assemblage
SWC 45	2546.8	Indeterminate			Low yield marine assemblage
SWC 43	2612.0	L. balmei		NA	Low yield marine assemblage
SWC 42	2614.0	Lower L. balmei		2	- 3 ²
SWC 41	2618.5	L. balmei		NA	Costal plain association
SWC 40	2639.0	Indeterminate			
SWC 38	2657.5	Lower L. balmei	(A. circumtabulata) 0	
SWC 37	2678.0	Lower L. balmei	(A. circumtabulata) 0	Low diversity marine assemblage
SWC 36	2679.1	Lower L. balmei		0	Low diversity marine assemblage
SWC 34	2693.5	L. balmei		NA	
SWC 33	2701.0	Indeterminate			
SWC 28	2731.3	Indeterminate			
SWC 26	2746.0	Lower L. balmei		1	
SWC 22	2789.0	Lower L. balmei		1	
SWC 21	2793.3	Lower L. balmei	(P. pyrophorum)	0	
SWC 20	2801.5	Lower L. balmei	T. evittii	0	A diverse marine assemblage
SWC 19	2804.5	Lower L. balmei	T. evittii	0	A diverse marine assemblage
SWC 18	2808.0	Lower L. balmei	T. evittii	0	A diverse marine assemblage

TABLE 1: INTERPRETATIVE PALYNOLOGICAL DATA ROUNDHEAD-1, GIPPSLAND BASIN (Cont.)

<u>Sheet 2 of 2</u>

SAMPLE TYPE	DEPTH (METRES)	SPORE - POLLEN ZONE	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONFIDENCE RATING	COMMENT
SWC 17	2812.0	Upper T. longus	M. druggii	0	Dominated by acritarchs
SWC 17 SWC 13	2855.5	Upper T. longus		1	Gambierina spp. 27%
SWC 12	2862.5	Upper T. longus		1	
SWC 11	2871.5	Indeterminate		_	
SWC 10	2879.5	Upper T. longus		1	0 hi
SWC 9	2891.0	Upper T. longus		1	Gambierina spp. 26%
SWC 8	2900.5	Upper T. longus		1	Tricolpites waiparensis 15%
SWC 5	2929.0	Upper T. longus		1	
SWC 4	2936.5	Upper T. longus		1	
SWC 3	. 2952.0	Upper T. longus		1	

1.

- 15 -

PALYNOLOGY DATA SHEET

вая	5 I N:	GIPPSLAN	D			EL	EVATION	: КВ: <u>+</u>	21.0	m GL:	<u>-81</u>	<u>0 m</u>
WELL	NAME :	ROUNDHEA				TO	TAL DEP	тн: <u>2</u>	845.	5 m		
щ	PALY	NOLOGICAL	HIG	ΗE	ST D	A T	A	LOI	ΝE	ST DA	T	
U		ZONES	Preferred	Γ	Alternate		Two Way	Preferred		Alternate	Γ	Two Way
A			Depth	Rtg	Depth	Rtg	Time	Depth	Rtg	Depth	Rtg	Time
	T. ple:	istocenicus										
뛷	M. lip:									- 		
NEOGENE		urcatus		ļ								
Ŭ.	T. bel.											
	P. tube	erculatus						2373	0		 	
		V. asperus										
	Mid N.	asperus										
ė	Lower 1	V. asperus										
ы В	P. asp	eropolus						÷				
PALEOGENE	Upper /	M. diversus										
E E	Mid M.	diversus									ļ	
	Lower I	M. diversus	2418.1	1				2418.1	1			
	Upper 1	L. balmei	2442.5	1				2445.8	0			
	Lower 1	L. balmei	2484	1				2808	0		•	
	Upper H	R. longus	2812	0				2952	1			
SUC	Lower I	R. longus										
ACE	T. 111	liei										
CRETACEOUS	N. sene	ectus						,				
1	T. apor	vyexinus										
LATE	P. maws											
13	A. dis	tocarinatus										
	P. pani	nosus	·									
CRET.	C. para											
ប	C. str:											
ų	C. hugi	hesi										
EARL		thaggiensis										
		raliensis										
L	L				·	L		a.				
сом	IMENTS:	DINOFLAC	`		omomorphun	-	2445.					<u></u>
		ZONES			rassitabul	ata		1 - 2535.8				
					<u>vittii</u>			.5 - 2808.0	Jm			
					lruggii		2812					
	FIDENCE ATING:							e species of spore				
	AT INC:	2: SWC or (Core, <u>Poor Co</u>	nfide	nce, assembl	age w	ith non-di	agnostic spores	, poll	en and/or mie	cropla	nkton.
			, <u>Fair Confide</u>	nce,	assemblage wi	th zor	e species	of either spore	and	pollen or mic	oplan	kton,
		or both. 4: Cutthigs	, <u>No Confiden</u>	<u>ce</u> , a	ssemblage wit	h non	-diagnostic	spores, poller	n and	or microplan	kton.	
NOT	`E :	If an entry is g	iven a 3 or 4	confid	lence rating, a	in alt	ernative de	epth with a bet	ter co	nfidence ratir	ig sho	uld be
		entered, if pos										
		unless a range limit in anothe		en wi	iere the uignes	r bo s	iore rimit	"ILL appear in	one I	one and the IC	m GJL	Lowing
D 3 	DECOP		A.D. PARTE	ימתו	-		г	DATE: S	EPTF	MBER 1989		
DAT	'A RECORI		N.V. FARIN	1000								<u> </u>
DAT	A REVISI	ED BY:					C	DATE:				

BASIC DATA

TABLE-2: BASIC DATA TABLE-3: PALYNOMORPH COUNTS TABLE-4: PALYNOMORPH PERCENTAGES

RANGE CHART

7 • •

TABLE 2: BASIC PALYNOLOGICAL DATA ROUNDHEAD-1, GIPPSLAND BASIN

Sheet 1 of 2

.

SAMPLE TYPE	DEPTH (M)	LAB NO.	LITHOLOGY	RESIDUE YIELD	PALYNOMORPH CONCENTRATION	PRESERVATION	NUMBER S-P SPECIES	DINOFLAGELLATE ABUNDANCE	NO. SPECIES
SWC 60	2373.0	·78240 H	Calcareous claystone	Moderate	Moderate	Poor-fair	19+	High	6+
SWC 58	2378.5	78240 F	Glauconitic sandstone	Negligible	Barren				
SWC 57	2380.0	78240 E	Glauconitic sandstone	Negligible	Barren				
SWC 56	2407.1	78240 D	Qtz sst with tr. glauconite	Very low	Very low	Poor	3+		
SWC 55	2418.1	78240 C	Sandstone	High	Low	Fair-good	29+		1+
SWC 54	2442.5	78240 B	Glauconitic sandstone	Low	Moderate	Fair	24+	High	8+
SWC 53	2445.8	78240 A	Glauconitic sandstone	High	High	Good	31+	High	9+
SWC 52	2484.0	78203 Z	Siltstone	High	High	Poor-fair	32+		
SWC 51	2487.1	78203 Y	Siltstone	High	High	Fair	27+	Very low	1
SWC 50	2505.9	78203 X	Siltstone	High	Moderate	Poor-fair	29+	Moderate	6+
SWC 49	2509.1	78203 W	Siltstone	Moderate	Moderate	Fair-good	26+	Moderate	5+
SWC 48	2515.2	78203 V	Silty sandstone	Moderate	Moderate	Poor	22+	Moderate	4+
SWC 47	2535.8	78203 U	Sandstone	Moderate	High	Poor	33+	High	8+
SWC 46	2540.0	78203 T	Glauconitic sandstone	Moderate	Moderate	Poor-fair	11+	Moderate	4+
SWC 45	2546.8	78203 S	Calcareous siltstone	Very low	Low	Poor-fair	6+	Low	2+
SWC 43	2612.0	78203 Q	Slightly calc. siltstone	Very low	Low	Poor	18+	Low	2
SWC 42	2614.0	78203 P	Silty sandstone	Moderate	Low	Poor	14+	Low	3
SWC 41	2618.5	78203 0	Calcareous siltstone	Low	Low	Poor	11+	Low	2
SWC 40	2639.0	78203 N	Fine sandstone	Very low	Barren	e gelenin			
SWC 38	2657.5	78203 L	Medium grn. sandstone	High	High	Poor-fair	28+	Moderate	8+
SWC 37	2678.0	78203 K	Calcareous siltstone	High	Low	Fair	33+	High	3+
SWC 36	2679.1	78203 J	Sandy siltstone	Moderate	High	Fair	18+	High	4+
SWC 34	2693.5	78203 H	Medium grn. sandstone	Very low	Low	Fair	10+	Low	1
SWC 33	2701.0	78203 G	Fine grn. sandstone	Very low	Very low	Poor	4+		
SWC 28	2731.3	78203 B	Fing grn. sandstone	Negligible	Barren				
SWC 26	2746.0	78202 Z	Fine - v. coarse sandstone	Low	High	Fair-good	28+	Low	2+
SWC 22	2789.0	78202 V	Sandstone with tr. glauconite	High	Low	Fair	19+	Low	2+
SWC 21	2793.3	78202 U	Glauconitic sandstone	High	Low	Fair	29+	Low	5+
SWC 20	2801.5	78202 T	Glauconitic siltstone	High	High	Poor-fair	24+		7+
SWC 19	2804.5	78202 S	Glauconitic siltstone	Low	High	Fair	23+	-	8+
SWC 18	2808.0	78202 R	Glauconitic siltstone	High	High	Poor-fair	13+		10+

.

. , .

.

								-
	2373.0m		2442.5m			2487.1m		2509.1m
	SWC 60	SWC 55	SWC 54	SWC 53	SWC 52	SWC 51	SWC 50	SWC 49
TRILETE SPORES undiff.	8	10	5	5	5	2	4	3
Cyatheacidites annulatus	4							
Cyathidites spp.	19	11	1	6	4	7	2	4
Gleicheniidites spp.		14	10	4	8	9	5	5
Herkosporites elliottii	_				_			
Stereisporites spp.	2	11		1	2		1	
MONOLETE SPORES		-				-		
Laevigatosporites spp.	6	7	3	4	14	5 3	11	13
Peromonolites spp.	1				3		1	4
Verrucatosporites spp. TOTAL SPORES	40	53	19	20	36	27	24	30
TUTAL SPORES	40	22	19	20	30	21	24	30
GYMNOSPERM POLLEN								
Araucariacites australis	1	4	5	1	1		4	5
Dilwynites spp.	12	25	32	61	15	13	16	12
Dacrycarpites australiensis								
Lygistepollenites balmei			11	8	21	28	18	18
Lygistepollenites florinii	7	3	5	6	2	2	5	2
Microcachryidites antarcticus		2	10	7	2	2	3	1
Parvisaccatus catastus		•	,	3		50		1
Phyllocladidites mawsonii	27	8 1	4	5	58	50	51	42 1
Phyllocladus paleogenicus Podocarpidites spp.	17	21	18	30	, 45	45	51	51
Podosporites microsaccatus		4	10	50	·· 75	3	3	6
TOTAL GYMNOSPERM POLLEN	64	68	85	121	149	143	151	139
TOTAL ATTRIOUTERT FOLLER	•••							107
ANGIOSPERM POLLEN undiff.	2	8	3	6	1	1	5	2
Australopollis obscurus				·4	. 2	1	3	1
Casuarina (H. harrisii)	6	7	1	18	2	1	1	_
Dicotetradites clavatus		1	3	5	1	1	1	2
Gambierina rudata/edwardsii			1	3			3	
Liliacidites spp.			7	9				
Myrtaceidites spp.	14 39	60	12	17	1 23	. 14	15	24
Nothofagidites 'brassii' type		1	4	10	3	2	2	24
Nothofagidites 'fusca' type Penninsulapollis gillii			-	10	2	2	1	2
Periporopollenites spp.		4		10	ĩ	1	3	5
Proteacidites angulatus		-			•	•	-	-
Proteacidites clinei								
Proteacidites grandis		2						
Proteacidites reticuloconcavus								
Proteacidites spp.	1	62	17	5	61	41	27	38
Tricolpites confessus								
Tricolpites waiparensis						•		
Tricolpites spp.		4	2		1	2	1	1
Tricolporites lilliei Tricolporites spp.	4	41	3	29	5	11	17	10
Triporopollenites spp. (small)		7	ן 1	11	5	46	19	10
TOTAL ANGIOSPERM POLLEN	67	197	54	127	108	121	98	95
	•••							
TOTAL SPORES & POLLEN	171	318	158	268	293	291	273	264
FUNGAL SPORES	47	31	5	19	29	5	- 4	18
ALGAE				-				
Amosopollis cruciformis				3				
Dinoflagellates undiff.	20	3	17	24			9	5
		-						-

• ;

Page 2 of 4

	2515.2m SWC 48	2535.8m SWC 47	2540.0m SWC 46	2612.0m SWC 43	2614.0m SWC 42	2618.5m SWC 41	2657.5m SWC 38	2678.0m S₩C 37
TRILETE SPORES undiff. Cyatheacidites annulatus	2		4	4	5		6	1
Cyathidites spp.	7	3	2	3	2	2	3	4
Gleicheniidites spp. Herkosporites elliottii	3	7	3		2	1	1	1
Stereisporites spp. MONOLETE SPORES		1			1		1	3 2
Laevigatosporites spp. Peromonolites spp.	4	13 1	1	2 1		2	12	4
Verrucatosporites spp. TOTAL SPORES	16	1 26	10	10	10	5	23	16
GYMNOSPERM POLLEN Araucariacites australis	1							
Dilwynites spp.	17	6 50	1 16	1	4	1	4	1
Dacrycarpites australiensis		2	_			-	1	
Lygistepollenites balmei Lygistepollenites florinii	30 2	16 4	3 5	1	7	1	6	4
Microcachryidites antarcticus	2	6	3	3	2	5	3	1
Parvisaccatus catastus Phyllocladidites mawsonii	18	70	45	47	40			
Phyllocladus paleogenicus	10	30 1	15	17 ⊚2	12	21	37	20 1
Podocarpidites spp.	31	26	12	11 1	16	25	40	31
Podosporites microsaccatus TOTAL GYMNOSPERM POLLEN	101	6 147	2 57	1 70	. 1	2	1	1
	101	147	51	39	46	59	92	60
ANGIOSPERN POLLEN undiff. Australopollis obscurus	. 3	3	2	27	1	3 3	3 7	1
Casuarina (H. harrisii)	1						•	
Dicotetradites clavatus Gambierina rudata/edwardsii	1	1		1				
Liliacidites spp.	•			•				
Myrtaceidites spp. Nothofagidites 'brassii' type	7	19	1				•	-
Nothofagidites 'fusca' type	6	7	3	1	1		2	3
Penninsulapollis gillii	_1	1	3	1	1	5	9	1
Periporopollenites spp. Proteacidites angulatus		9	3	1	1	1	1	
Proteacidites clinei					r .			
Proteacidites grandis								
Proteacidites reticuloconcavus Proteacidites spp.	26	39	9	28	18	37	50	77
Tricolpites confessus	20	37	,	20		31	20	33
Tricolpites waiparensis	_							•
Tricolpites spp. Tricolporites lilliei	5	12	1		3	2	3	4
Tricolporites spp.	2	15	3	10	12	13	34	7
Triporopollenites spp. (small) TOTAL ANGIOSPERM POLLEN	9 62	15 121	2	6	20	17	20	
TOTAL SPORES & POLLEN	179	294	33 100	57 106	59 115	81 145	131 246	49 125
		2/4						
FUNGAL SPORES Algae	1		8	6	9	3	32	10
ALUAE Amosopoilis cruciformis	1						1	
Dinoflagellates undiff.	4	30	2	1	1		5	4
Areoligera spp. Deflandrea spp.								
Eisenackia/Alisocysta complex	2	1					2	1
Glaphrocysta spp.	_							•
Manumiella druggii complex Operculodinium centrocarpum								
Parecaniella indentata	1							
Senegalinium dilwynensis		14	5					
Spinidinium spp. Spiniferites spp.	1	25	1	1	1	1		11
Trithyrodinium evittii								
DINOFLAGELLATES TOTAL	8	70	8	2	2	1	7	16
ACRITARCHS Microplankton total	8	15 85	2 10	2	57	1 2	5 12	16
TOTAL COUNT	189	379	118	114	131	_		
	107	317	110	114	131	150	291	151

.

Page 3 of 4

TABLE-3: FALINGHORFN COUNTS P	NON NOOND	ILAU-1.					rage 5 01	-	
	2679.1m SWC 36	2746.0m SWC 26	2789.0m SWC 22	2793.3m SWC 21	2801.5m SWC 20	2804.5m SWC 19	2808.0m SWC 18	2812.0m SWC 17	
TRILETE SPORES undiff. Cyatheacidites annulatus	5	11	13	9	6	2	1	3	
Cyathidites spp. Gleicheniidites spp.	6 3	2 3	1	2 1	1	5 1	1 2	10 1	
Herkosporites elliottii Stereisporites spp.	1		6	3	2	6	4	2	
MONOLETE SPORES Laevigatosporites spp.	4	8	1 19	1 17	2	8	3		
Peromonolites spp. Verrucatosporites spp. TOTAL SPORES	19	1 25	40	1 34	11	22	11	16	
GYMNOSPERM POLLEN		•••	1	-		1			
Araucariacites australis Dilwynites spp.	1	4	9	7	2 43	1 40	1 34	1 9	
Dacrycarpites australiensis	8	10	1	- 2	1				
Lygistepollenites balmei Lygistepollenites florinii	3	12	ż	6	13	1	3	1	
Microcachryidites antarcticus	10	6	5	3	5	4	4	i	
Parvisaccatus catastus Phyllocladidites mawsonii	38	53	32	21	8	4	4	2	
Phyllocladus paleogenicus		1		<u>_</u> 1	1	1			
Podocarpidites spp.	72	62 7	51	63	61 1	13	53 1	7	
Podosporites microsaccatus TOTAL GYMNOSPERM POLLEN	4 136	155	10 111	6 109	135	66	100	21	
ANGIOSPERM POLLEN undiff.	5	5	1	3	2	3	5	1	
Australopollis obscurus (* Casuarina (H. harrisii)		1	·			-	Ī	1	
Dicotetradites clavatus Gambierina rudata/edwardsii	1				1	1	1		
Liliacidites spp. Myrtaceidites spp.									
Nothofagidites 'brassii' type	3	2	2	2	1	5			
Nothofagidites 'fusca' type Reprincipality gilli	1 8	4	2 12	8	17	1 15	1 23	2	
Penninsulapollis gillii Periporopollenites spp.	3	4	2	2	5	1	3	2	
Proteacidites angulatus	6	4	2						
Proteacidites clinei Proteacidites grandis									
Proteacidites reticuloconcavus		*0	/ 5	2/	45	20	10		
Proteacidites spp. Tricolpites confessus Tricolpites uninconsis	52	19	45	24	15	20	10	8.	
Tricolpites waiparensis Tricolpites spp.	4	16	4	7	4	8	2	1	
Tricolporites lilliei Tricolporites spp.	2	7	6	24	16	11	23	Z	
Triporopollenites spp. (small)		13	16	21	9	26	15	2	
TOTAL ANGIOSPERM POLLEN	91	× 75	92	91	70	91	84	17	
TOTAL SPORES & POLLEN	246	255	243	234	216	179	195	54	
FUNGAL SPORES	2	2	12		1	3	9	16	
ALGAE Amosopollis cruciformis				2	4				
Dinoflagellates undiff.	5	2	1	2	18	16	26	16	
Areoligera spp. Deflandrea spp.	8				4		4	15 1	
Eisenackia/Alisocysta complex						3			
Glaphrocysta spp. Manumiella druggii complex						2		8	
Operculodinium centrocarpum Parecaniella indentata		· 1		1	32		1		
Senegalinium dilwynensis				•	-	3	9		
Spinidinium spp. Spiniferites spp.	23	1	1		68	3 1	12 2		
Trithyrodinium evittii			-	_	6	5	32		
DINOFLAGELLATES TOTAL ACRITARCHS	36 1	4	2	36	101 4	31 4	86 53	40 83	
MICROPLANKTON TOTAL	37	4	2	9	105	35	139	123	
TOTAL COUNT	285	261	257	245	326	217	343	193	

• :

.

Page 4 of 4

•

							-	
	2855.5m SWC 13	2862.5m SWC 12	2879.5m SWC 10	2891.0m SWC 9	2900.5m SWC 8	2929.0m SWC 5	2936.5m SWC 4	2952.0m SWC 3
TRILETE SPORES undiff. Cyatheacidites annulatus	7	9		10	3	1	2	8
Cyathidites spp. Gleicheniidites spp.	5 1	6	5	10 2	3	5		13 4
Herkosporites elliottii Stereisporites spp.		4	2	11	8	3		6
MONOLETE SPORES Laevigatosporites spp.	7	3	3	5	9	10	7	10
Peromonolites spp. Verrucatosporites spp. TOTAL SPORES	20	22	10	38	23	19	9	41
GYMNOSPERM POLLEN		_						1
Araucariacites australis Dilwynites spp. Dacrycarpites australiensis		2	2	1 2	1	1	2	1
Lygistepollenites balmei				1				
Lygistepollenites florinii	1					1	10	5
Microcachryidites antarcticus	1		1	1	1	1	6	2
Parvisaccatus catastus Phyllocladidites mawsonii Phyllocladus paleogenicus	11	20	31	20	47	46	70 1	32
Podocarpidites spp.	4	3	9	18	10	12	30	17
Podosporites microsaccatus	2	. 2	4	2	11	6	40	6
TOTAL GYMNOSPERM POLLEN	19	27	47	45	70	67	159	64
ANGIOSPERM POLLEN undiff. Australopollis obscurus	. 5			5	1	2	11	7
Casuarina (H. harrisii) Dicotetradites clavatus			1					
Gambierina rudata/edwardsii Liliacidites spp.	40 2	22	29	70	27 11	24	12	16
Myrtaceidites spp.								
Nothofagidites 'brassii' type Nothofagidites 'fusca' type				1	1	1		1
Penninsulapollis gillii	5	8	4	18	5	10	3	7
Periporopollenites spp. Proteacidites angulatus		1	2	•				
Proteacidites clinei				2		8		
Proteacidites grandis Proteacidites reticuloconcavus		1		12			3	
Proteacidites spp. Tricolpites confessus	56	84	105 _ 5	75	69	91	44	100
Tricolpites waiparensis			-	1	44	_		•
Tricolpites spp. Tricolporites lilliei	1	1	11	3	28 6	5	1	9
Tricolporites spp.	1	4	1		9	6	27	4
Triporopollenites spp. (small) TOTAL ANGIOSPERN POLLEN	110	121	158	187	201	1 148	101	145
TOTAL SPORES & POLLEN	149	170	215	270	294	234	269	250
FUNGAL SPORES	2	16	17	10	11	2	2	4
ALGAE Amosopollis cruciformis					5			
Dinoflagellates undiff.				1				
Areoligera spp. Deflandrea spp.								
Eisenackia/Alisocysta complex Glaphrocysta spp. Manumiella druggii complex								
Operculodinium centrocarpum Parecaniella indentata Senegalinium dilwynensis								
Spinidinium spp. Spiniferites spp.				1				
Trithyrodinium evittii DINOFLAGELLATES TOTAL				2				
ACRITARCHS MICROPLANKTON TOTAL	0	0	0	2	2	0	0	0
TOTAL COUNT	151	186	232	282	312	236	271	254
, THE OVER!							_···	

1

۰.

TABLE-4: PALTNONORPH PERCENT	GES FROM	KOONDHEAD					rage i vi	4
	2373.0m SWC 60	2418.1m SWC 55	2442.5m SWC 54	2445.8m SWC 53	2484.0m SWC 52	2487.1m SWC 51	2505.9m SWC 50	2509.1m SWC 49
TRILETE SPORES undiff.	4.7% 2.3%	3.1%	3.2%	1.9%	1.7%	0.7%	1.5%	1.1%
Cyatheacidites annulatus Cyathidites spp. Claicheniidites spp	11.1%		0.6% 6.3%	2.2% 1.5%	1.4% 2.7%		0.7% 1.8%	
Gleicheniidites spp. Herkosporites elliottii	1 74		0.38	0.4%			0.4%	
Stereisporites spp. MONOLETE SPORES	1.2%	3.5%	1.9%	1.5%			4.0%	
Laevigatosporites spp. Peromonolites spp.	0.6%	2.2*	1.78	1.58	1.0%		0.4%	
Verrucatosporites spp. TOTAL SPORES	23.4%	16.7%	12.0%	7.5%	12.3%		8.8%	
GYMNOSPERM POLLEN Araucariacites australis	0.6%	1.3%	3.2%	0.4%	0.3%	0.0%	1.5%	1.9%
Dilwynites spp. Dacrycarpites australiensis	7.0%	7.9%	20.3%	22.8%	5.1%	4.5%	5.9%	4.5%
Lygistepollenites balmei Lygistepollenites florinii	4.1%	0.9%	7.0% 3.2%	3.0X 2.2X			6.6% 1.8%	
Microcachryidites antarcticus Parvisaccatus catastus		0.6%	6.3%	2.6% 1.1%		0.7%	1.1%	0.4% 0.4%
Phyllocladidites mawsonii Phyllocladus paleogenicus	15.8%	2.5% 0.3%	2.5%	1.9%		17.2%	18.7%	
Podocarpidites spp.	9.9%	6.6% 1.3%	11.4%	11.2%	15.4%		18.7% 1.1%	19.3%
Podosporites microsaccatus TOTAL GYMNOSPERM POLLEN	37.4%		53.8%	45.1%			55.3%	
ANGIOSPERM POLLEN undiff. Australopollis obscurus	1.2%	2.5%	1.9%	2.2%	0.3% 0.7%		1.8X 1.1X	
Casuarina (H. harrisii)	3.5%	2.2%	0.6%	6.7%	0.7%	0.3%		
Dicotetradites clavatus Gambierina rudata/edwardsii		0.3%	1.9% 0.6%	1.9% 1.1%		0.3%	1.1%	
Liliacidites spp. Myrtaceidites spp.	8.2%	18.9%	4.4%	3.4%	0.3%			
Nothofagidites 'brassii' type Nothofagidites 'fusca' type	22.8% 0.6%	0.3%	7.6% 2.5%	6.3% 3.7%	7.8% 1.0%		5.5% 0.7%	
Penninsulapollis gillii Periporopollenites spp.		1.3%		3.7%	0.7% 0.3%		0.4%	
Proteacidites angulatus Proteacidites clinei								
Proteacidites grandis Proteacidites reticuloconcavus		0.6%						
Proteacidites spp.	0.6%	19.5%	10.8%	1.9%	20.8%	14.1%	9.9%	14.4%
Tricolpites confessus Tricolpites waiparensis		1.3%	1.3%		0.3%	0.7%	0.4%	0.4%
Tricolpites spp. Tricolporites lilliei				10.0*				
Tricolporites spp. Triporopollenites spp. (small)		2.2%	1.9%	10.8%	1.7%	15.8%	7.0%	3.8%
TOTAL ANGIOSPERM POLLEN	39.2%		34.2%	47.4%	36.9% 293	41.6X 291	35.9% 273	36.0% 264
TOTAL SPORES & POLLEN COUNT	171	318	158	268	293	291	213	204
DINOFLAGELLATES undiff. Areoligera spp.	28.6%	100.0%	26.6%	20.7%			60.0%	
Deflandrea spp. Eisenackia/Alisocyst complex			18.8%				20.0%	22.2%
Glaphrocysta spp. Manumiella druggii complex							6.7%	
Operculodinium centrocarpum Parecaniella indentata	18.6%		28.1%	4.3%				
Senegalinium dilwynensis Spinidinium spp.			12.5% 6.3%	3.4% 0.9%		100.0%	6.7%	
Spiniferites spp. Trithyrodinium evittii	40.0%			5.2%			6.7%	
DINOFLAGELLATES TOTAL ACRITARCHS	87.1% 12.9%		92.2% 7.8%			100. 0%	100.0%	88.9% 11.1%
TOTAL MICROPLANKTON COUNT	70	3	64	116	0	1	15	9
PERCENTAGES FOR MAJOR CATEGOR	IES							
Spores % Gymnosperm Pollen %	13.9% 22.2%		8.4X 37.4X	4.9% 29.8%				
Angiosperm Pollen X TOTAL Spore-Pollen X	23.3%	56.0%	23.8%	31.3X 66.0X	33.5%	40.7%	33.6%	32.6%
Fungal Spores X Algae X	16.3%		2.2%	4.7% 0.7%	9.0%			
Dinoflagellate %	21.2%	0.9%	26.0%	9.9%		0.3%	. 5.1%	2.7%
Acritarch X TOTAL Microplankton X	3.1%		2.2%	18.7% 28.6%		0.3%		0.3%
TOTAL COUNT	288	352	227	406	322	297	292	291

TABLE 4. TACTHOROATH TERCENT		NOOND II CAD	••					-
	2515.2m SWC 48	2535.8m SWC 47	2540.0m SWC 46	2612.0m SWC 43	2614.0m SWC 42	2618.5m SWC 41	2657.5m SWC 38	2678.0m SWC 37
TRILETE SPORES undiff. Cyatheacidites annulatus	1.1%		4.0%	3.8%	4.3%		2.4%	0.8%
Cyathidites spp. Gleicheniidites spp.	3.9X 1.7X		2.0% 3.0%	2.8%	1.7% 1.7%			0.8%
Herkosporites elliottii Stereisporites spp. MONOLETE SPORES		0.3%			0.9%		0.4%	2.4%
Laevigatosporites spp. Peromonolites spp.	2.2%	0.3%	1.0%	1.9% 0.9%		1.4%	4.9%	3.2% 0.8%
Verrucatosporites spp. TOTAL SPORES	8.9%	0.3% 8.8%	10.0%	9.4%	8.7%	3.4%	9.3%	12.8%
GYMNOSPERM POLLEN Araucaríacites australis	0.6%	2.0%	1.0%			0.7%		
Dilwynites spp. Dacrycarpites australiensis	9.5%		16.0%	0.9%	3.5%	1.4%	1.6%	
Lygistepollenites balmei	16.8%	5.4%	3.0%	0.9%	6.1%		2.4%	3.2%
Lygistepollenites florinii Microcachryidites antarcticus	1.1%		5.0% 3.0%	2.8% 2.8%	3.5% 1.7%			0.8%
Parvisaccatus catastus Phyllocladidites mawsonii Phyllocladus palaosepicus	10.1%	10.2% 0.3%	15.0%	16.0%	10.4%	14.5%	15.0%	16.0X 0.8X
Phyllocladus paleogenicus Podocarpidites spp.	17.3%	8.8%	12.0%	10.4%	13.9%	17.2%		24.8%
Podosporites microsaccatus TOTAL GYMNOSPERM POLLEN	56.4%	2.0% 50.0%	2.0% 57.0%	0.9% 36.8%	0.9% 40.0%	1.4% 40.7%		
ANGIOSPERM POLLEN undiff.	1.7%	1.0%	2.0%	1.9%	0.9%			0.8%
Australopollis obscurus Casuarina (H. harrisii)	0.6%			6.6%	0.9%	2.1%	2.8%	
Dicotetradites clavatus Gambierina rudata/edwardsii	0.6% 0.6%			0.9%				
Liliacidites spp. Myrtaceidites spp.			1.0%					
Nothofagidites 'brassii' type	3.9%	6.5%	6.0%	0.9%	0.9%		0.8%	2.4%
Nothofagidites 'fusca' type Penninsulapollis gillii	3.4% 0.6%		3.0% 3.0%	0.9%	0.9%	3.4%	0.8% 3.7%	0.8%
Periporopollenites spp.	0.04	3.1%	3.0%	0.9%	0.9%	0.7%		
Proteacidites angulatus Proteacidites clinei								
Proteacidites grandis								
Proteacidites reticuloconcavus Proteacidites spp.	14.5%	13.3%	9.0%	26.4%	15.7%	25.5%	20.3%	26.4%
Tricolpites confessus								
Tricolpites waiparensis Tricolpites spp.	2.8%	4.1%	1.0%		2.6%	1.4%	1.2%	3.2%
Tricolporites lilliei			7	.	40.78	0.0*	13.8%	5.6%
Tricolporites spp. Triporopollenites spp. (small)	1.1%	5.1% 5.1%	3.0%	9.4% 5.7%	10.4% 17.4%	9.0% 11.7%		
TOTAL ANGIOSPERM POLLEN	34.6%		33.0%	53.8%	51.3%			
TOTAL SPORES & POLLEN COUNT	179	294	100	106	115	145	246	125
DINOFLAGELLATES undiff. Areoligera spp.	50.0%	35.3%	20.0%	50.0%	14.3%		41.7%	25.0%
Deflandrea spp. Eisenackia/Alisocysta complex	25.0%	1.2%					16.7%	6.3%
Glaphrocysta spp. Manumiella druggii complex	·							
Operculodinium centrocarpum Parecaniella indentata	12.5%							
Senegalinium dilwynensis		16.5%	50.0%					
Spinidinium spp. Spiniferites spp.	12.5%	29.4%	10.0%	50.0%	14.3%	50.0%		68.8%
Trithyrodinium evittii DINOFLAGELLATES TOTAL	100.0%	82.4%	80.0%	100.0%	28.6%	50.0%	58.3%	100.0%
ACRITARCHS		17.6%	20.0%		71.4%	50.0%	41.7%	
TOTAL MICROPLANKTON COUNT	8	85	10	2	7	2	12	16
PERCENTAGES FOR MAJOR CATEGORI	ES							
Spores X	8.5%		8.5% 48.3%	8.8%	7.6%	3.3X 39.3X		10.6% 39.7%
Gymnosperm Pollen % Angiosperm Pollen %	53.4% 32.8%	31.9%	28.0%	50.0%	45.0%	54.0%	45.0%	32.5%
TOTAL Spore-Pollen %	94.7%	77.6%	84.7%	93.0%	87.8%	96.7%	84.5%	82.8%
Fungal Spores X Algae X	0.5% 0.5%		6.8%	5.3%	6.9%	2.0%	11.0X 0.3X	6.6%
Dinoflagellate %	4.2%	18.5%	6.8%	1.8%	1.5%	0.7%	2.4%	10.6%
Acritarch %		4.0%	1.7%	1.8%	3.8%	0.7%	1.7%	10.6%
TOTAL Microplankton %	4.2%							
TOTAL COUNT	189	379	118	114	131	150	291	151

3

.

.

• 1

TABLE-4: PALTNOMORPH PERCENTA	AGES FROM ROUNDHEAD-1.				Page 5 of 4					
	2679.1m SWC 36	2746.0m SWC 26	2789.0m SWC 22	2793.3m S₩C 21	2801.5m SWC 20	2804.5m SWC 19	2808.0m SWC 18	2812.0m SWC 17		
TRILETE SPORES undiff. Cyatheacidites annulatus	2.0%	4.3%	5.3%	3.8%	2.8%	1.1%	0.5%	5.6%		
Cyathidites spp. Gleicheniidites spp.	2.4% 1.2%	0.8% 1.2%	0.4%	0.9% 0.4%		2.8% 0.6%	0.5% 1.0%	18.5% 1.9%		
Herkosporites elliottii Stereisporites spp.	0.4%		2.5%	1.3%	0.9%	3.4%	2.1%	3.7%		
MONOLETE SPORES Laevigatosporites spp. Peromonolites spp.	1.6%	3.1% 0.4%	0.4% 7.8%	0.4% 7.3% 0.4%	0.9%	4.5%	1.5%			
Verrucatosporites spp. TOTAL SPORES	7.7%	9.8%	16.5%	14.5%	5.1%	12.3%	5.6%	29.6%		
GYMNOSPERM POLLEN Araucariacites australis			0.4%		0.9%	0.6% 0.6%	0.5%	1.9%		
Dilwynites spp. Dacrycarpites australiensis	0.4%	1.6%	3.7%	3.0%	19.9%	22.3%	17.4%	16.7%		
Lygistepollenites balmei	3.3%	3.9%	0.4%	0.9%	0.5%					
Lygistepollenites florinii	1.2%	4.7%	0.8%	2.6%	6.0%	0.6%	1.5%	1.9%		
Microcachryidites antarcticus	4.1%	2.4%	2.1%	1.3%	2.3%	2.2%	2.1%	1.9%		
Parvisaccatus catastus Phyllocladidites mawsonii	15.4%	20.8%	13.2%	9.0%	3.7%	2.2%	2.1%	3.7%		
Phyllocladus paleogenicus	12.44	0.4%	13.24	0.4%	0.5%	0.6%	2.18	5.1%		
Podocarpidites spp.	29.3%	24.3%	21.0%	26.9%	28.2%	7.3%	27.2%	13.0%		
Podosporites microsaccatus	1.6%	2.7%	4.1%	2.6%	0.5%	0.6%	0.5%			
TOTAL GYMNOSPERM POLLEN	55.3%	60.8%	45.7%	46.6%	62.5%	36.9%	51.3%	38.9%		
	-	3	A /**	4		معدد ا	• • • •			
ANGIOSPERM POLLEN undiff. Australopollis obscurus Casuarina (H. harrisii)	2.0%	2.0% 0.4%	0.4%	1.3%	0.9%	1.7%	2.6% 0.5%	1.9% 1.9%		
Dicotetradites clavatus Gambierina rudata/edwardsii Liliacidites spp.	0.4%				0.5%	0.6%	0.5%			
Myrtaceidites spp. Nothofagidites 'brassii' type	1.2%	0.8%	0.8%	0.9%	0.5%	2.8%				
Nothofagidites 'fusca' type	0.4%	1.6%	0.8% 4.9%	3.4%	7.9%	0.6%	0.5%	7 79		
Penninsulapollis gillii Periporopollenites spp.	3.3%	1.6%	4.9%	0.9%	2.3%	0.6%	11.8%	3.7%		
Proteacidites angulatus	2.4%	1.6%	0.8%	0.98	2.3%	0.04	1.54			
Proteacidites clinei	E. 74	1.04	0.04							
Proteacidites grandis										
Proteacidites reticuloconcavus										
Proteacidites spp.	21.1%	7.5%	18.5%	10.3%	6.9%	11.2%	5.1%	14.8%		
Tricolpites confessus										
Tricolpites waiparensis								•		
Tricolpites spp.	1.6%	6.3%	1.6%	3.0%	1.9%	4.5%	1.0%	1.9%		
Tricolporites lilliei										
Tricolporites spp.	0.8%	2.7% 5.1%	2.5% 6.6%	10.3%	7.4% 4.2%	6.1% 14.5%	11.8%	3.7% 3.7%		
Triporopollenites spp. (small) TOTAL ANGIOSPERM POLLEN	37.0%	29.4%	37.9%	38.9%	32.4%	50.8%	43.1%	31.5%		
TOTAL SPORES & POLLEN COUNT	246	255	243	234	216	179	195	54		
DINOFLAGELLATES undiff. Areoligera spp.	13.5%	50.0%	50.0 %	22.2%	17.1%	45.7 %	18.7%	13.0% 12.2%		
Deflandrea spp.	21.6%				3.8%		2.9%	0.8%		
Eisenackia/Alisocysta complex Glaphrocysta spp.						8.6%				
Manumiella druggii complex					2.9%			6.5%		
Operculodinium centrocarpum Parecaniella indentata Senegalinium dilwynensis		25.0%		11.1%	1.9%	8.6X	0.7% 6.5%			
Spinidinium spp. Spiniferites spp.	62.2%	25.0 %	50.0%		64.8%	8.6X 2.9X	8.6X 1.4X			
Trithyrodinium evittii					5.7%	14.3%	23.0%	_		
DINOFLAGELLATES TOTAL ACRITARCHS	97.3% 2.7%	100.0%	100.0%	33.3% 66.7%	96.2% 3.8%	88.6% 11.4%	61.9% 38.1%	32.5% 67.5%		
TOTAL MICROPLANKTON COUNT	37	4	2	9	105	35	139	123		
PERCENTAGES FOR MAJOR CATEGORII	ES									
Spores X	6.7%	9.6%	15.6%	13.9%	3.4%	10.1%	3.2%	8.3%		
Gymnosperm Pollen X	47.7%	59.4%	43.2%	44.5%	41.4%	30.4%	29.2%	10.9%		
Angiosperm Pollen X	31.9%	28.7% 97.7%	35.8% 94.6%	37.1% 95.5%	21.5% 66.3%	41.9% 82.5%	24.5%	8.8%		
TOTAL Spore-Pollen %	86.3%	71.1%	74.04	73.34	00.3%	02.34	56.9%	28.0%		
Fungal Spores X	0.7%	0.8%	4.7%		0.3%	1.4%	2.6%	8.3%		
Algae X				0.8%	1.2%					
Dinoflagellate %	12.6%	1.5%	0.8%	1.2%	31.0%	14.3%	25.1%	20.7%		
Acritarch %	0.4%			2.4%	1.2%	1.8%	15.5%	43.0%		
TOTAL Microplankton %	13.0%	1.5%	0.8%	3.7%	32.2%	16.1%	40.5%	63.7%		
TOTAL COUNT	285	261	257	245	326	217	343	193		
	200	201			520					

Page 4 of 4

TABLE 4. FALTAGORFIT FERCENTA			••					•	
	2855.5m swc 13	2862.5m swc 12	2879.5m swc 10	2891.0m SWC 9	2900.5m SWC 8	2929.0m SWC 5	2936.5m swc 4	2952.0m SWC 3	
TRILETE SPORES undiff. Cyatheacidites annulatus	4.7%	5.3%		3.7%	1.0%	0.4%	0.7%	3.2%	
Cyathidites spp. Gleicheniidites spp.	3.4% 0.7%		2.3%	3.7% 0.7%	1.0%	2.1%		5.2% 1.6%	
Herkosporites elliottii Stereisporites spp.		2.4%	0.9%	4.1%	2.7%	1.3%		2.4%	
MONOLETE SPORES Laevigatosporites spp. Peromonolites spp.	4.7%	1.8X	1.4%	1.9%	3.1%	4.3%	2.6%	4.0%	
Verrucatosporites spp. TOTAL SPORES	13.4%	12.9%	4.7%	14.1%	7.8%	8.1%	3.3%	16.4%	
GYMNOSPERM POLLEN Araucariacites australis		1.2%	0.9%	0.4%		0.4%		0.4%	
Dilwynites spp. Dacrycarpites australiensis			••••	0.7%	0.3%		0.7%	0.4%	
Lygistepollenites balmei Lygistepollenites florinii	0.7%			0.4%		0.4%			
Microcachryidites antarcticus Parvisaccatus catastus Phyllocladidites mawsonii	0.7% 7.4%		0.5%	0.4% 7.4%					
Phyllocladus paleogenicus				5			0.4%		
Podocarpidites spp. Podosporites microsaccatus	2.7% 1.3%		4.2% 1.9%	6.7% 0.7%	3.4% 3.7%	5.1% 2.6%			
TOTAL GYMNOSPERN POLLEN	12.8%		21.9%	16.7%	23.8%	28.6%			
ANGIOSPERM POLLEN undiff. Australopollis obscurus	3.4%			1.9%	0.3%	0.9%	4.1%	2.8%	
Casuarina (H. harrisii) Dicotetradites clavatus			0.5%						
Gambierina rudata/edwardsii Liliacidites spp.	26.8X 1.3X		13.5%	25.9%	9.2% 3.7%	10.3%	4.5%	6.4%	
Myrtaceidites spp. Nothofagidites 'brassii' type Nothofagidites (fumae) type				0.4%	0.3%	0.4%		0.4X 0.4X	
Nothofagidites 'fusca' type Penninsulapollis gillii Periporopollenites spp.	3.4%	4.7% 0.6%	1.9% 0.9%	6.7%	1.7%	4.3%	1.1%		
Proteacidites angulatus Proteacidites clinei				0.7%		3.4%			
Proteacidites grandis Proteacidites reticuloconcavus		0.6%		4.4%			1.1%		
Proteacidites spp. Tricolpites confessus	37.6%		48.8% 2.3%	27.8%	23.5%	38.9%	16.4%		
Tricolpites waiparensis Tricolpites spp.	0.7%	0.6%	5.1%	0.4% 1.1%	15.0% 9.5%	2.1%	0.4%	3.6%	
Tricolporites lilliei Tricolporites spp.	0.7%	2.4%	0.5%		2.0% 3.1%	2.6%	10.0%	1.6%	-
Triporopollenites spp. (small) ANGIOSPERN POLLEN TOTAL	73.8%	71.2%	73.5%	69.3%	68.4%	0.4% 63.2%	37.5%	58.0%	
TOTAL SPORES & POLLEN COUNT	149	170	215	270	294	234	269	250	
DINOFLAGELLATES undiff. Areoligera spp.				50.0%					
Deflandrea spp.									
Eisenackia/Alisocysta complex Glaphrocysta spp.									
Manumiella druggii complex Operculodinium centrocarpum Parecaniella indentata									
Senegalinium dilwynensis Spinidinium spp.				50.0%					
Spiniferites spp.									
Trithyrodinium evittii DINOFLAGELLATES TOTAL ACRITARCHS				100.0%	100.0%				
TOTAL NICROPLANKTON COUNT	0	0	0	2	2	0	0	0	
PERCENTAGES FOR MAJOR CATEGORI	ES								
Spores %	13.2%		4.3%	13.5%	7.4%	8.1%	3.3%		
Gymnosperm Pollen % Angiosperm Pollen %	12.6% 72.8%		20.3% 68.1%	16.0% 66.3%	22.4% 64.4%	28.4% 62.7%	58.7% 37.3%	25.2% 57.1%	
TOTAL Spore-Pollen %	98.7%		92.7%	95.7%	94.2%	99.2%	99.3%		
Fungal Spores % Algae %	1.3%	8.6%	7.3%	3.5%	3.5% 1.6%	0.8%	0.7%	1.6%	
Dinoflagellate %				0.7%					
Acritarch % TOTAL Microplankton %				0.7%	0.6% 0.6%				
TOTAL COUNT	151	186	232	282	312	236	271	254	

<u>.</u>,