PALYNOLOGICAL ANALYSIS OF PALMER-1

GIPPSLAND BASIN

by

HOWARD E. STACY

PART I

INTERPRETATIVE DATA

Introduction
Summary Table
Geological Comments
Comments on Age Zones

Table 1: Interpretative Data
Palynological Data Sheet

INTRODUCTION:

Thirty five (35) sidewall core samples were processed and examined for palynomorphs. Recovery, in general, was poor to fair from most samples. One sample was barren of identifiable microfossils, and the yield from six others so poor that they could not be assigned to a stratigraphic zone with confidence.

Palynological zones and lithologic-facies subdivisions for this well section, from the lower part of the Lakes Entrance Formation to the bottom of the well is summarized below. Results of this palynological study are summarized for the individual samples in Table 1 and the occurrence and distribution of each species is tabulated in the accompanying check charts.

SUMMARY

UNIT/FACIES	ZONE	DEPTH (metres)
Lakes Entrance Fm	P. tuberculatus Upper N. asperus	$\begin{aligned} & 1106-1184 \\ & 1188-1190 \end{aligned}$
Gurnard Formation	Middle N . asperus	1192-1236.5
	Lower $\mathrm{N}^{\text {. asperus }}$	1260-1331.2
Latrobe Group "Coarse Clastics"	Upper M. diversus	1376
	Middle M. diversus	1449
	Upper L. balmei	1478-1502
	Lower L , balmei	1545-1668

GEOLOGICAL REMARKS:

1) Only one major stratigraphic break is evident in this section. That is the hiatus between the Middle M. diversus sediments at 1449 metres and the Upper \underline{L}. balmei deposits at 1479 metres. Smaller, less obvious disruptions in sedimentation are possible between the lowest lower N. asperus Zone sidewall core at 1331 metres and the Middle M. diversus zone sample at 1449 metres.
2) A thin wedge of Upper N. asperus Zone (basal Oligocene to Uppermost Eocene) is shown by the two samples from 1188 metres and 1190 metres. Although not recorded from Perch-1, the lack of identification could easily be accounted for by the wider sidewall core spacing in this earlier well. This Upper N. asperus assemblage probably could not be distinguished from the overlying P. tuberculatus flora on the basis of cutting samples only.
3) It is of interest to note that the sediments with the Upper N. asperus flora (1188 and 1190 metres) are strongly calcareous and are lithologically similar to the overlying Lakes Entrance Formation, rather than the less calcareous Gurnard Formation or facies of Middle N. asperus Zone age 'which occur below 1192 metres.
4) The original pick, from the electric logs, for the Gurnard Formation (1155 to 1181 metres) is now shown to be too high, based on palynology. This section is entirely within the Oligocene, P . tuberculatus Zone. Based on the highest occurrence of an Eocene flora (the Middle N. asperus Assemblage), the top of the Gurnard is now considered to be at 1192 metres. The base of the Gurnard, selected from electric log and lithologic characters is placed 1219 metres, although the Middle N. asperus flora extends down through 1236.5 metres.
5) Vozzhenikova (al Deflandrea) extensa, the dinoflagellate marker for the Middle N. asperus Zone was identified in the sample from 1192 metres. This compares well with the occurrence of V. extensa reported in core samples from 1143 to 1161 metres $(=3750$ to 3808 feet) in Perch-1.
6) Assemblages of undoubted Upper L. balmei Zone age were encountered in the section between 1478 and 1545 metres. Below this, however a generalised L. balmei flora was found in the samples from 1602 to 1668.5 metres, and below this only a poorly developed microflora with an overall Paleocene or older aspect.

DISCUSSION OF ZONES

Lower Lygistepollenites balmei Zone: 1545 to 1668.5 metres. The common occurrence of Lygistepollenites balmei, combined with the presence of Gambierina edwardsii, G. rudata and Australopollis obscurus confirm that these samples are Paleocene or older. The abundance of \underline{L}. balmei is indicative of the \underline{L}. balmei Zone, while the absence of any specimens of Cyathidites gigantis, Proteacidites grandis, Verrucosisporites kopukiensis or other species from the Upper part of the zone suggests that these sediments are probably from the Lower part of the \underline{L}. balmei Zone. Samples below 1668.5 metres were barren of diagnostic fossils.

Upper Lygistepollenites balmei Zone: 1478 to 1502 metres. Abundant specimens of \underline{L}. balmei continue through this section and the presence, although rare, of Tetracolporites textus suggests that these sediments should be assigned to the Upper part of the L. balmei zone.

Middle Malvacipollis diversus Zone: 1449 metres.
The single sample from 1376 metres yielded a large, well
developed assemblage of Middle M. diversus Zone age. Index species includes Malvacipollis diverus, Banksieacidites arcuatus, polycolpites esobalteus, Periporopollenites demarcatus and Triporopollenites ambiguus. In addition to the Early Eocene species there was a number of reworked specimens from the \underline{L}. balmei Zone.

Upper Malvacipollis diversus Zone: 1376 metres. The presence in this large flora of Proteacidites pachypolus, Myrataceidites tenuis and Santalumidites cainozoicus show that this assemblage is Upper M. diversus Zone or younger. A count of the flora demonstrated that \underline{P}. pachypolus was much less than 5\% of the total assemblage and that Casuarina (H. harrisii) significantly exceeded the amount of Nothofagus pollen, both of which are associated with an Upper \underline{M}. diversus rather than a \underline{P}. asperopolus, Zone assemblage.

Lower Nothofagidites asperus Zone: 1260 to 1331.2 metres. In addition to the occurrence of Areosphaeridium dictyoplokus at 1300 metres and Rhombodinium glabrum at 1285 metres, the scattered presence of Proteacidites asperopolus, P. pachypolus and Nothofagidites falcatus, as well as the absence of Myrataceidites tenuis, place these samples in the Lower Nothofagidites asperus zone. The sidewall core from 1257 metres yielded a poor N. asperus assemblage, without specific markers that allowed further subdivision.

Middle Nothofagidites asperus Zone: 1192 to 1236.5 metres. Triorites magnificus is the principal marker for this zone and it occurred in both the 1.192 and 1236.5 metre samples. Vozzhenikova? (al Deflandrea) extensa marks a marine influence

Upper Nothofagidites asperus Zone: 1188 to 1190 metres. The flora from these samples is similar to the overlying ${ }^{\text {P. }}$ tuberculatus Zone assemblage, except that no specimens of Cyatheacidites annulatus or Protoellipsodinium simplex are found and several uppermost Eocene dinoflagellates, such as Systematophora placacantha and Phthanoperidinium eocenicum are present.

Proteacidites tuberculatus Zone: 1106 metres.
Regular and consistent occurrence of \underline{C}. annulatus and \underline{P}. simplex mark these samples as coming from the P . tuberculatus Zone.

TABLE 1 - INTERPRETATIVE DATA
SUMMARY OF PALAEONIOLOGICAL ANALYSIS, PALMER-1, GIPPSLAND BASIN

SAMPLE	$\begin{aligned} & \hline \text { DEPTH } \\ & \text { METRES } \end{aligned}$	$\begin{aligned} & \text { DEPTH } \\ & \text { FEET } \end{aligned}$	ZONE	CONFIDENCE			SPORE-POLLENDIVERSITY	DINO.	
				AGE	RATING	YIELD		DIVERSITY	COMMENTS
Snic 74	1106	3628.5	P. tuberculatus	Oligocene	1	Poor	Low	Moderate	
Sric 73	1118	3668	P. tuberculatus	Oligocene	1	Fair	Moderate	High	
STE 72	1130	3707	\underline{p}. tuberculatus	Oligocene	0	Good	High	Fair	C. annulatus
SWC 68	1144	3753	\underline{p}. tuberculatus	Oligocene	0	Fair	Low	Moderate	$\underline{\text { Con }}$ annulatus
SWC 65	1156	3792.5	P. Euberculatus	Oligocene	2	Poor	Moderate	Moderate	
SWC 63	1154	3819	P. tuberculatus	Oligocene	2	Poor	Moderate	Moderate	
Snic 61	1170	3838.5	\underline{P}. tuberculatus	Oligocene	1	Fair	Low	Moderate	
SNC 55	1184	3884.5	$\underline{\text { P }}$. tuberculatus	Oligocene	0	Fair	Moderate	High	C. annulatus
SNO 53	1188	3897.5	Upper N. asperus	Late Eocene	1	Fair	Moderate	Moderate	
SWC 52	1190	3904	Upper \bar{N}. asperus	Late Eocene	1	Fair	Low	Moderate	
SWC 51	1192	3911	Middle N . asperus	Late Eocene	0	Good	High	Low	D. extensa, T. magnificus
SNC 42	1217	3993	Indeterminate	-	-	Poor	Low	Low	
Sric 41	1233	4045	Indeterminate	-	-	Very Poor	None	Low	
SNC 40	1236.5	4057	Middle N. asperus	Late Eocene	1	Poor	Moderate	None	T. magnificus
SWC 37	1257	4124	N. asperus	Middle Eocene	2	Poor	Moderate	None	
SWC 36	1260	4134	Lower N. asperus	Middle Eocene	1	Fair	Moderate	None	
Stre 31	1280	4199.5	Lower \bar{N}. asperus	Middle Eocene	2	Poor	Low	None	
SWC 30	1286	4219	Lower $\overline{\mathrm{N}}$. asperus	Miđdle Eocene	1	Fair	Moderate	Moderate	
SWC 28	1300	4265	Lower $\overline{\mathrm{N}}$. asperus	Middle Eocene	0	Fair	Moderate	Low	A. dictyoplokus
SwC 27	1331.2	4367.5	Lower $\overline{\mathrm{N}}$. asperus	Middle Eocene	2	Good	Moderate	None	
STC 25	1348.5	4424	Indeterminate	-	-	Poor	Moderate	None	
SWC 24	1369	4491.5	Indeterminate	-	-	Poor	Moderate	None	
Snc 23	1376	4514.5	Upper M. diversus	Early Eocene	1	Good	high	None	
STiC 21	1423.5	4670	Indeterminate	-	-	Poor	Moderate	None	
SWC 20	1449	4754	Middle M. diversus	Early Eocene	1	Good	High	None	
SWC 18	1478	4849	Upper LI. balmei	Late Paleocene	1	Fair	Moderate	None	
SWC 17	1500	4921	Indeterminate	-	-	Very Poor	Low	None	
SWC 16	1502	4928	Upper L. balmei	Late Paleocene	1	Fair	High	None	
Sirc 13	1545	5069	Lower L. Ealmei	Paleocene	2	Fair	High	None	
Sric 8	1602	5256	Lower L. $\overline{\text { Oalmei }}$	Paleocene	2	Poor	Low	none	
SHC 7	1607	5272	Lower L. balmei	Paleocene	2	Poor	Moderate	None	
SNC 6	1627.5	5339.5	Lower L. balmei	Paleocene	2	Poor	Moderate	None	
SWC 4	1668.5	5474	Lower L. balmei	Paleocene	2	Poor	Low	None	
$\operatorname{sric} 3$	1690	5544.5	Indeterminate	-	-	Barren	-	-	
SNC 1	1715	5626.5	Indeterminate	-	-	Poor	Low	None	

$\begin{aligned} & \omega \\ & 0 \\ & \alpha \end{aligned}$	PALYNOLOGICAL zONES	H I GHEST DATA					L OWEST DATM				
		Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rts	Alternate Depth	Rtg	Two Way Time
$\begin{aligned} & \text { 炭 } \\ & \text { 岂 } \\ & \text { 吕 } \end{aligned}$	T．pleistocenicus										
	M．lipsis										
	C．bifurcatus										
	T．bellus										
$\begin{aligned} & \text { 号 } \\ & \text { H } \\ & \text { 品 } \\ & \text { a } \end{aligned}$	P．tuberculatus	1106	1				1184	0	，		
	Upper N．asperus	1188	1				1190	1			
	Mid N．asperus	1192	0				1236.5	1			
	Lower N ．asperus	1260	1				1331.2	2	1300	0	
	P．asperopolus										
	Upper M．diversus	1376	1				1376	1			
	Mid M．diversus	1449	1				1449	1			
	Lower M．diversus										
	Upper L．balmei	1478	1				1502	1			
	Lower L．balmei	1545	2				1668.5	2			
n0004400	T．longus										
	T．1illiei										
	N ．senectus										
	U．T．pachyexinus										
	L．T．pachyexinus										
	C．triplex										
	A．distocarinatus										
岂	C．paradoxus										
	C．striatus										
	F．asymmetricus										
	F．wonthaggiensis										
	C．australiensis										
	PRE－CRETACEOUS										

COMMENTS：D．extensa $=1192$ metres；A．dictyoplokus $=1300$ metres

CONFIDENCE O：SWC or Core，Excellent Confidence，assemblage with zone species of spores，pollen and microplankton． RATING：1：SWC or Core，Good Confidence，assemblage with zone species of spores and pollen or microplankton． SWC or Core，Poor Confidence，assemblage with non－diagnostic spores，pollen and／or microplankton． Cuttings，Fair Confidence，assemblage with zone species of cither spores and pollen or microplankton， or both．
4：Cuttings，No Confidence，assemblage with non－diagnostic sporcs，pollen and／or microplankton．
NOTE：If an entry is given a 3 or 4 confidence rating，an alternative depth with a better confidence rating should be entered，if possible．If a sample camot be assigned to one particular zone，then no entry should be made， unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another．

PART II

BASIC DATA

Table-l: Basic Data
Range Charts

TABLE 1 - BASIC DATA
SUMMARY OF PALAEONTOLOGICAL ANALYSIS, PALMER-1, GIPPSLAND BASIN

SAMPLE	$\begin{aligned} & \hline \text { DEPTH } \\ & \text { METRES } \end{aligned}$	$\begin{aligned} & \text { DEPTH } \\ & \text { FEET } \end{aligned}$	YIELD	SPORE-POLLEN DIVERSITY	$\begin{gathered} \text { DINO. } \\ \text { DIVERSITY } \end{gathered}$
SWC 74	1106	3628.5	Poor	Low	Moderate
SWC 73	12118	3668	Fair	Moderate	High
SWC 72	1130	3707	Good	High	Fair
SWC 68	1144	3753	Fair	Low	Moderate
SWC 65	1156	3792.5	Poor	Moderate	Moderate
SWC 63	1164	3819	Poor	Moderate	Moderate
SWC 61	1170	3838.5	Fair	Low	Moderate
SWC 55	1184	3884.5	Fair	Moderate	High
SWC 53	1188	3897.5	Fair	Moderate	Moderate
SWC 52	1190	3904	Fair	Low	Moderate
SWC 51	1192	3911	Good	High	Low
SWC 42	1217	3993	Poor	Low	Low
SWC 41	1233	4045	Very Poor	None	Low
SWC 40	1236.5	4057	Poor	Moderate	None
SWC 37	1257	4124	Poor	Moderate	None
SWC 36	1260	4134	Fair	Moderaste	None
SWC 31	1280	4199.5	Poor	Low	None
SWC 30	1286	4219	Fair	Moderate	Moderate
SWC 28	1300	4265	Fair	Moderate	Low
SWC 27	1331.2	4367.5	Good	Moderate	None
SWC 25	1348.5	4424	Poor	Moderate	None
SWC 24	1369	4491.5	Poor	Moderate	None
SWC 23	1376	4514.5	Good	High	None
SWC 21	1423.5	4670	Poor	Moderate	None
SWC 20	1449	4754	Good	High	None
SWC 18	1478	4849	Fair	Moderate	None
SWC 17	1500	4921	Very Poor	Low	None
SWC 16	1502	4928	Fair	High	None
SWC 13	1545	5069	Fair	High	None
SWC 8	1602	5256	Poor	Low	None
SWC 7	1607	5272	Poor	Moderate	None
SWC 6	1627.5	5339.5	Poor	Moderate	None
SWC 4	1668.5	5474	Poor	Low	None
SWC 3	1690	5544.5	Barren	-	-
SWC 1	1715	5626.5	Poor	Low	None

