

÷

1

١

# APPENDIX 3.

# PALYNOLOGICAL ANALYSIS OF KINGFISH-8 GIPPSLAND BASIN

by

A.D. PARTRIDGE CONSULTANT

Biostrata Pty Ltd Palaeontological Report 1992/1

April 1992

## INTERPRETED DATA

INTRODUCTION SUMMARY OF RESULTS GEOLOGICAL COMMENTS BIOSTRATIGRAPHY REFERENCES TABLE-1: INTERPRETED DATA CONFIDENCE RATINGS

#### INTRODUCTION

Thirty-one sidewall cores in Kingfish-8 were examined, cleaned and split by author and then forwarded to Laola Pty Ltd in Perth for processing to extract organic microfossils (palynomorphs). All samples were examined by author for their contained spores, pollen and microplankton to derive the data and interpretations in this report.

Between 5 to 12g (8.5g average) of each sidewall core was processed for palynological analysis and low to high residue yields were recovered from the Latrobe Group coarse clastic section and overall low to very low yields from the overlying condensed greensand interval and basal Lakes Entrance Formation. Only moderate spore-pollen and microplankton diversities were recorded from the samples as a consequence of the low yields. Spore-pollen diversity averaged 18+ species per sample. Microplankton diversity was very low in the Latrobe coarse clastics section and low to moderate in marine greensand section and above where it averaged 8+ species per sample. Preservation varied from poor to good but overall was fair. Some degrading of the preservation was caused by the use of polyvinyl alcohol (PVA) and EUKITT mounting medium.

It was noticeable that the yield of palynomorphs from the sidewall cores and their preservation and presentation (for identification) was poorer than the results obtained from the adjacent Kingfish-7 which was processed in Esso's former Sydney Palynological laboratory in 1977 (Partridge, 1977). The reasons for this can be attributed to the limited experience of Laola Pty Ltd in processing Gippsland Basin samples, and the location of their laboratory in Perth which limited supervision by the palynologist of the quality of the processing. The poorer preparations resulted in lower diversity assemblages, difficulty in finding index species and lower confidence in zone identifications. Overall the results obtained from Kingfish-8 are not as precise as those obtained from Kingfish-7. The worst affected portion of the well is the lower portion of the condensed greensand interval samples between 2299.5 to 2324m. It also should be noted that aside from typical Gippsland Basin palynomorphs most palynological slides (and especially the low yield slides) contained laboratory contamination from modern pollen and/or Mesozoic spore, pollen and dinoflagellates typical of the Northwest Shelf sequences. These contaminants have not been recorded on the range charts to prevent confusion.

Lithological units and palynological zones from the base of the Lakes Entrance Formation to Total Depth are given in the following summary. The interpretative data with zone identification and Old and New Confidence

# PALYNOLOGICAL SUMMARY OF KINGFISH-8

| AGE                             |                  | UNIT/FACIES                                  | SPORE-POLLEN ZONES                                                                                                                                        | DEPTHS (mKB)                                                                  | DINOFLAGELLATE ZONES                                                                 | DEPTHS (mKB)                                       |
|---------------------------------|------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|
| OLIGOCENE                       | I                | akes Entrance<br>Formation                   | P. tuberculatus                                                                                                                                           | 2268.0                                                                        |                                                                                      |                                                    |
| LATE EOCENE<br>MIDDLE<br>EOCENE | LATROBE<br>GROUP | Gurnard<br>Formation<br>Unnamed<br>Greensand | Upper N. asperus<br>Middle N. asperus<br>Lower N. asperus<br>P. asperopolus<br>P. asperopolus<br>P. asperopolus<br>D. asperopolus to<br>Upper M. diversus | 2277.0<br>2280.0<br>2286.0-2297.0<br>2299.5<br>2305.5-2306.0<br>2308.0-2314.0 | P. comatum<br>C. incompositum<br>D. heterophlycta<br>A. australicum<br>K. thompsonae | 2277.0<br>2280.0<br>2286.0-2290.0<br>2293.5-2297.0 |
| EARLY EOCENE                    |                  | Undiff. marine<br>sands & shales             | Middle <i>M. diversus</i>                                                                                                                                 | 2325.5-2345.0                                                                 |                                                                                      |                                                    |
|                                 |                  | Coastal plain<br>sands, shales<br>& coals    | Lower M. diversus                                                                                                                                         | 2369.5-2410.0                                                                 |                                                                                      |                                                    |

- -

Ratings are recorded in Table-1 and basic data on residue yields, preservation and diversity are recorded on Tables-2 and 3. Nine samples between 2325.5m to 2410m contained sufficiently good assemblages that their palynomorphs were counted. Percentage data from these counts are recorded in Table-4. All species which have been identified with binomial names are tabulated on the accompanying range charts.

#### GEOLOGICAL COMMENTS:

- Kingfish-8 has intersected the same interval of "greensand" facies as 1. Kingfish-7. There is an Early Eccene portion (samples between 2305.5m to 2314m) equivalent in age to the Flounder Formation and a Middle to Late Eccene portion (samples between 2277m to 2299.5m) which is age equivalent to the Gurnard Formation. Within the Gippsland Basin it has been traditional to restrict the use of the term Gurnard Formation for those "greensands" which lie stratigraphically above the unconformity surface and its lateral extensions produced by the cutting of the Marlin Channel. The wells Kingfish-7 and 8 are the best wells currently drilled in the basin where sampling density and detailed palynology is available to demonstrate that in parts of the Gippsland Basin marine environments existed seemingly without interruption through the submarine channelling event that cut the Marlin Channel. Because of the importance of this event to regional stratigraphy in the summary the "greensand" facies in Kingfish-8 is split between the Gurnard Formation and a lower "Unnamed Greensand". The boundary between these units is placed at 2302.5m for the reasons outlined below.
- 2. Based on the occurrences and ranges of species of the acritarch *Tritonites*, Marshall & Partridge (1988) advanced the hypothesis that the most likely time of initiation of cutting of the Marlin Channel was the 49 5 Ma Sequence Boundary in the late Early Eocene. This

There is an anomaly with the earlier work as the FAD of Tritonites pandus at 2297m before the FAD of T. tricornus at 2295m conflicts with known stratigraphic ranges. This most likely reflects the low yields and therefore limited assemblages recorded from all samples from the Gurnard Formation, rather than a reversal of first appearances or an extension of the range of T. pandus. However, the absence of an interval in Kingfish-8 containing T. tricornus before the FAD of T. pandus suggests that part of the early Middle Eocene (approx. 44-48 Ma) is either missing or very condensed in Kingfish-8 (see fig.5 in Marshall & Partridge 1988). This particular part of the Middle Eocene is poorly documented or dated in nearly all wells in the Gippsland Basin.

6. The top of the Latrobe coarse clastics in Kingfish-8 is confidently assigned to the Middle M. diversus Zone. This contrasts with the results from Kingfish-7 where only the Lower M. diversus Zone has been recorded below the condensed greensand section. Because of this apparent extra section in Kingfish-8 the recorded assemblage lists in Kingfish-7 have been reviewed. Although no spore-pollen considered definitive of the Middle M. diversus Zone were identified two samples from core-3 at 7580ft and 7591ft (adjusted to electric logs as 7575ft and 7586ft; see table-1 in Partridge, 1977) contained very low diversity dinoflagellate assemblages similar to those found in the Middle M. diversus Zone samples in Kingfish-8. This similarity is reinforced by the general lack of dinoflagellates in the underlying Lower M. diversus Zone samples in Kingfish-7 as is the case with this latter zone in Kingfish-8.

In summary, there may be a short interval of Middle *M. diversus* Zone section in Kingfish-7 at the top of the Latrobe coarse clastics but re-examination of Kingfish-7 would be necessary to confirm this.

#### BIOSTRATIGRAPHY

Zone and age determinations are based on the spore-pollen zonation scheme proposed by Stover & Partridge (1973), partially modified by Stover & Partridge (1982) and Helby, Morgan & Partridge (1987), and a dinoflagellate zonation scheme which has only been published in outline by Partridge (1976). Other modifications and embellishments to both zonation schemes can be found in the many palynological reports on the Gippsland Basin wells drilled by Esso Australia Ltd. Unfortunately this work is not collated or summarised in a single report.

Author citations for most spore-pollen species can be sourced from Stover & Partridge (1973, 1982), Helby, Morgan & Partridge (1987) or other references cited herein. Author citations for dinoflagellates can be found in Lentin & Williams (1985, 1989). Species names followed by "ms" are unpublished manuscript names.

Lower Malvacipollis diversus Zone: 2369.5-2410.0 metres Early Eocene.

Seven of the deepest nine sidewall cores in Kingfish-8 were confidently assigned to this zone based principally on assemblage counts. These are dominated by angiosperm pollen (37-55%) or occasionally fungal spores and hyphae (up to 42%) expressed as a percentage of the total count. The key species (or species groups) amongst the angiosperms are *Casuarina* pollen (fossil species *Haloragacidites harrisii* and *H. trioratus*) with abundances of 5-17%; *Malvacipollis* spp. (modern affinity is with Euphorbiaceae) with range 1-12% and *Proteacidites grandis* (modern affinity suggested to coastal Proteaceae heath) with abundance range of 2-6%. The combined abundances of these three species groups clearly distinguish the assemblages from those in the underlying *L. balmei* Zone which was clearly not reached in Kingfish-8. Representative counts of palynomorph assemblages from the *L. balmei* Zone for comparison can be found in the palynological reports from Roundhead-1 (Partridge, 1989) and Sweetlips-1 (Partridge, 1990).

Although the majority of samples from the zone display moderate to high spore-pollen species diversity distinctive zone species are rare and most of species are long ranging forms which range beyond the zone. Aside from species mentioned above and counted the only other zone species recorded are *Tetracolporites multistrixus* ms (at 2376m, 2384m and 2410m) and *T. textus* ms (at 2382 and 2410m) which are typically not considered to range above the Lower *M. diversus* Zone. Single specimens of *Lygistepollenites balmei* were recorded at 2410m and 2413m. This species has been recorded very rarely in other wells in this zone.

Dinoflagellates recorded from three samples in this zone are all considered to be contaminants from the Lakes Entrance Formation and are indicative of

Proteacidites asperopolus Zone: 2299.5-2306.0 metres

Early-basal Middle Eocene.

#### and

Kisselovia thompsonae Zone: 2305.5-2306.0 metres Early Eocene.

The shallowest sample at 2299.5m can confidently be assigned to P. asperopolus Zone on the LAD (Last Appearance Datum) for Myrtaceidites tenuis in association with the index species Proteacidites asperopolus (single specimen) and Conbaculites apiculatus ms (several specimens) which do not range below this zone. The record of Proteacidites ornatus is a fragment of a specimen and may not be reliable. The microplankton in the sample was dominated by Systematophora tarphosus ms which is also common in the shallowest P. asperopolus Zone sample in Kingfish-7 at 7480ft (2279.9m). Overall the Kingfish-8 assemblage was reminiscent of samples containing the index acritarch Tritonites asteris (Marshall & Partridge, 1988) but although the available sides were searched twice under the microscope this latter species could not be found. It would still be worthwhile to reprocess the remaining samples from this sidewall core in an attempt to find T. asteris in Kingfish-8.

The two deeper samples at 2305.5m and 2306m are assigned to the *P. asperopolus* Zone principally because the samples contain the index species for the associated *K. thompsonae* dinoflagellate Zone. Significant spore-pollen are the presence of *M. tenuis* in both samples, the common occurrence of *Proteacidites pachypolus* at 2305.5m and presence of *Santalumidites cainozoicus* at 2306m.

*Kisselovia thompsonae* ms was identified from a single specimen in the sample at 2305.5m and from three specimens at 2306m. The other stratigraphically significant dinoflagellate is the presence of *Wetzeliella articulata* at 2305.5m.

The sidewall at 2303.5m within this zone interval gave only a very low yield which could not be assigned to either a spore-pollen or dinoflagellate zone.

Lower Nothofagidites asperus Zone: 2286.0-2297.0 metres Middle Eocene.

Five samples over 11 metres are confidently assigned to the Lower *N. asperus* Zone. Although key spore-pollen are sparsely identified over this interval the age dating is amply supported by moderate diversity microplankton assemblages with key zone species. The most significantly spore-pollen identified are: *Tricolporities leuros* at (2297.0m); *Nothofagidites falcatus* at 2286m, and *Tricolpites simatus* at 2286m, whose occurrence justify higher confidence ratings for those samples. Overall the spore-pollen assemblages are characterised by high *Nothofagidites* spp. to *Haloragacidites harrisii* ratios.

#### Proteacidites tuberculatus Zone: 2268.0 metres

Assigned to the *P. tuberculatus* Zone on associated microplankton assemblages which contains the Lakes Entrance Formation index dinoflagellate species *Protoellipsodinium simplex* ms and *Tectactodinium scabroellipticus* ms. Overall the sample is dominated by the dinoflagellate *Operculodinium centrocarpum* which also dominates the underlying sample at 2271m. Even though this latter sample lacks key species its assemblage has the overall character of samples from the Lakes Entrance Formation. The fact that the sample is significantly more calcareous than the underlying sidewall cores would support this interpretation.

Oligocene.

#### REFERENCES

- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1987. Chronology of fluctuating sea levels since Triassic. Science 235, 1156-1167.
- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Special Publication No. 42, 71-108.
- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. *Mem. Ass. Australas. Palaeontols* 4, 1-94.
- LENTIN, J.K. & WILLIAMS, G.L., 1985. Fossil Dinoflagellates: Index to genera and species, 1985 Edition. *Canadian Tech. Rep. Hydrog. Ocean Sci. 60,* 1-451.
- LENTIN, J.K. & WILLIAMS, G.L., 1989. Fossil Dinoflagellates: Index to genera and species, 1989 Edition. AASP Contribution Series No. 20, 1-473.
- MARSHALL, N.G. & PARTRIDGE, A.D., 1988. The Eocene acritarch *Tritonites* gen. nov. and the age of the Marlin Channel, Gippsland Basin, southeastern Australia. *Mem. Ass. Australas. Palaeontols 5*, 239-257.
- PARTRIDGE, A.D., 1976. The geological expression of eustacy in the early Tertiary of the Gippsland Basin. APEA J. 16 (1), 73-79.
- PARTRIDGE, A.D., 1977. Palynological analysis of Kingfish-7, Gippsland Basin. Esso Aust. Ltd. Palaeo. Rept. 1977/25, 15p (unpubl.).
- PARTRIDGE, A.D., 1989. Palynological analysis of Roundhead-1, Gippsland Basin. Esso Aust. Ltd. Palaeo. Rept. 1989/17, 26p. (unpubl.).
- PARTRIDGE, A.D., 1990. Palynological analysis of Sweetlips-1, Gippsland Basin. Esso Aust. Ltd. Palaeo. Rept. 1990/3, 22p. (unpubl.).
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. *Proc. R. Soc. Vict.* 85, 237-286.
- STOVER, L.E. & PARTRIDGE, A.D., 1982. Eocene spore-pollen from the Werillup Formation, Western Australia. *Palynology* 6, 69-95.

TABLE 1: Interpretative Palynological Data Kingfish-8, Gippsland Basin

| ' | hee | + 1      | l o | £  | 2 |
|---|-----|----------|-----|----|---|
| 0 | nee | <b>ل</b> | 0   | ÷. | 4 |

| SAMPLE<br>TYPE | DEPTH<br>(M) | SPORE-POLLEN ZONES                                   | *CR<br>OLD | *CR<br>NEW | DINOFLAGELLATE ZONE<br>(OR ASSOCIATION) | *CR<br>OLD | *CR<br>NEW | COMMENTS                                      |
|----------------|--------------|------------------------------------------------------|------------|------------|-----------------------------------------|------------|------------|-----------------------------------------------|
| SWC 32         | 2268.0       | P. tuberculatus                                      | 2          | в5         | (Operculodinium spp.)                   |            |            | Dinoflagellates dominate.                     |
| SWC 31         | 2271.0       | Indeterminate                                        |            |            | (Operculodinium spp.)                   |            |            | Similar to SWC-32.                            |
| SWC 29         | 2277.0       | Upper N. asperus                                     | 2          | в5         | P. comatum                              | 0          | в2         | P. comatum Acme                               |
| SWC 28         | 2280.0       | Middle N. asperus                                    | 2          | в4         | C. incompositum                         | 0          | B2         | FAD Tritonites spinosus                       |
| SWC 27         | 2286.0       | Lower N. asperus                                     | 1          | в2         | D. heterophlycta                        | 0          | B2         | FAD Tritonites inaequalis                     |
| SWC 26         | 2290.0       | Lower N. asperus                                     | 2          | в4         | D. heterophlycta                        | 1          | в3         |                                               |
| SWC 25         | 2293.5       | Lower N. asperus                                     | 2          | в4         | A. australicum                          | 0          | B2         | LAD Tritonites tricornus                      |
| SWC 24         | 2295.0       | Lower N. asperus                                     | 2          | в4         | A. australicum                          | 0          | в3         | FAD T. tricornus                              |
| SWC 23         | 2297.0       | Lower N. asperus                                     | 1          | в2         | A. australicum                          | 1          | в2         | FAD Tritonites pandus                         |
| SWC 22         | 2299.5       | P. asperopolus                                       | 1          | в2         | Indeterminate                           |            |            | LAD Myrtaceidites tenuis                      |
| SWC 21         | 2303.5       | Indeterminate                                        |            |            | Indeterminate                           |            |            |                                               |
| SWC 20         | 2305.5       | P. asperopolus                                       | 2          | в4         | K. thompsonae                           | 1          | в2         |                                               |
| SWC 19         | 2306.0       | P. asperopolus                                       | 2          | в4         | K. thompsonae                           | 1          | в3         |                                               |
| SWC 18         | 2308.0       | <i>P. asperopolus</i> to<br>Upper <i>M. diversus</i> |            |            | Indeterminate                           |            |            |                                               |
| SWC 17         | 2311.5       | <i>P. asperopolus</i> to<br>Upper <i>M. diversus</i> |            |            | Indeterminate                           | 1          |            |                                               |
| SWC 16         | 2314.0       | <i>P. asperopolus</i> to<br>Upper <i>M. diversus</i> |            |            | (H. tasmaniense)                        | 1          |            | <i>H. tasmaniense</i> acme                    |
| SWC 15         | 2322.0       | Indeterminate                                        |            |            |                                         |            |            | Virtually barren.                             |
| SWC 14         | 2324.0       | Indeterminate                                        |            |            |                                         |            |            | Virtually barren.                             |
| SWC 13         | 2325.5       | Middle <i>M. diversus</i>                            | 2          | в4         |                                         |            |            | <i>Polycolpites esobalteus</i> present.       |
| SWC 12         | 2341.5       | Middle <i>M. diversus</i>                            | 1          | в2         |                                         |            |            | <i>Proteacidites tuberculiformis</i> present. |
| SWC 11         | 2345.0       | Middle M. diversus                                   | 2          | в4         |                                         |            |            | P. esobalteus present.                        |

TABLE 1: Interpretative Palynological Data Kingfish-8, Gippsland Basin

.

| SAMPLE<br>TYPE | DEPTH<br>(M) | SPORE-POLLEN ZONES | *CR<br>OLD | *CR<br>NEW | DINOFLAGELLATE ZONE<br>(OR ASSOCIATION) | *CR<br>OLD | *CR<br>NEW | COMMENTS                   |
|----------------|--------------|--------------------|------------|------------|-----------------------------------------|------------|------------|----------------------------|
| SWC 10         | 2356.0       | Indeterminate      |            |            |                                         |            |            |                            |
| SWC 9          | 2369.5       | Lower M. diversus  | 1          | в2         |                                         |            |            | Proteacidites grandis 3%   |
| SWC 8          | 2376.0       | Lower M. diversus  | 1          | в2         |                                         |            |            | P. grandis 6%              |
| SWC 7          | 2382.0       | Lower M. diversus  | 1          | в2         |                                         |            |            | P. grandis 2%              |
| SWC 6          | 2384.0       | Lower M. diversus  | 1          | в2         |                                         |            |            | Some contamination         |
| SWC 5          | 2387.0       | Lower M. diversus  | 1          | в2         |                                         |            |            | P. grandis 6%              |
| SWC 4          | 2400.0       | Indeterminate      |            |            |                                         |            |            | Virtually barren           |
| SWC 3          | 2404.0       | Lower M. diversus  | 2          | в3         |                                         |            |            |                            |
| SWC 2          | 2410.0       | Lower M. diversus  | 2          | в3         |                                         |            |            | Fungal spores & hyphae 42% |
| SWC 1          | 2413.0       | Indeterminate      |            |            | `                                       |            |            | Virtually barren           |

\*CR = Confidence Ratings OLD & NEW

Sheet 2 of 2

#### CONFIDENCE RATINGS

The concept of Confidence Ratings applied to palaeontological zone picks was originally proposed by Dr. L.E. Stover in 1971 to aid the compilation of micropalaeontological and palynological data and to expedite the revision of the then rapidly evolving zonation concepts in the Gippsland Basin. The original or OLD scheme which mixes confidence in fossil species assemblage with confidence due to sample type has gradually proved to be rather limiting as additional refinements to existing zonations have been made. With the development of the STRATDAT computer database as a replacement for the increasingly unwieldy paper based Palaeontological Data Sheet files a NEW set of Confidence Ratings have been proposed. Both OLD and NEW Confidence Ratings for zone picks are given on Table 1, and their meanings are summarised below:

#### OLD CONFIDENCE RATINGS

- 0 SWC or CORE, <u>Excellent Confidence</u>, assemblage with zone species of spore, pollen <u>and</u> microplankton.
- 1 SWC or CORE, <u>Good Confidence</u>, assemblage with zone species of spores and pollen <u>or</u> microplankton.
- 2 SWC or CORE, <u>Poor Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton.
- 3 CUTTINGS, <u>Fair Confidence</u>, assemblage with zone species of either spore and pollen or microplankton, or both.
- 4 CUTTINGS, <u>No Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton.

NEW CONFIDENCE RATINGS

Alpha codes: Linked to sample type

- A Core
- B Sidewall core
- C Coal cuttings
- D Ditch cuttings
- E Junk basket
- F Miscellaneous/unknown
- G Outcrop

Numeric codes: Linked to fossil assemblage

- 1 **Excellent confidence:** High diversity assemblage recorded with key zone species.
- 2 Good confidence: Moderately diverse assemblage recorded with key zone species.
- 3 Fair confidence: Low diversity assemblage recorded with key zone species.
- 4 **Poor confidence:** Moderate to high diversity assemblage recorded without key zone species.
- 5 Very low confidence: Low diversity assemblage recorded without key zone species.

### BASIC DATA

| TABLE 2: | Basic Sample Data                              |
|----------|------------------------------------------------|
| TABLE 3: | Basic Palynomorph Data                         |
| TABLE 4: | Palynomorph Percentages<br>for samples counted |

### RANGE CHARTS

## RELINQUISHMENT LISTS

| SAMPLE<br>TYPE | DEPTH<br>(M) | LITHOLOGY           | SAMPLE<br>WT(g) | RESIDUE<br>YIELD |
|----------------|--------------|---------------------|-----------------|------------------|
| SWC 32         | 2268.0       | Calcisiltite        | 8.3             | Very low         |
| SWC 31         | 2271.0       | Cal. glauc. siltst. | 7.5             | Very low         |
| SWC 29         | 2277.0       | Glauconitic siltst. | 8.4             | Moderate         |
| SWC 28         | 2280.0       | Glauconitic sst.    | 10.2            | LOW              |
| SWC 27         | 2286.0       | Glauconitic siltst. | 10.4            | Low              |
| SWC 26         | 2290.0       | Glauconitic siltst. | 8.8             | Low              |
| SWC 25         | 2293.5       | Glauconitic siltst. | 11.2            | Moderate         |
| SWC 24         | 2295.0       | Glauconitic siltst. | 8.7             | Low              |
| SWC 23         | 2297.0       | Glauconitic sst.    | 8.7             | Moderate         |
| SWC 22         | 2299.5       | Glauconitic sst.    | 9.8             | Low              |
| SWC 21         | 2303.5       | Glauconitic sst.    | 11.8            | Very low         |
| SWC 20         | 2305.5       | Sandstone vf-f.     | 8.4             | Very low         |
| SWC 19         | 2306.0       | Pyritic sst.        | 10.3            | Low              |
| SWC 18         | 2308.0       | Glauconitic sst.    | 11.5            | Moderate         |
| SWC 17         | 2311.5       | Glauconitic sst.    | 11.4            | Low              |
| SWC 16         | 2314.0       | Glauconitic sst.    | 9.9             | Low              |
| SWC 15         | 2322.0       | Sandstone f-vf.     | 7.4             | Very low         |
| SWC 14         | 2324.0       | Sandstone f.        | 7.4             | Very low         |
| SWC 13         | 2325.5       | Sst/clay partings   | 7.0             | Low              |
| SWC 12         | 2341.5       | Sandstone f-med.    | 9.1             | High             |
| SWC 11         | 2345.0       | Sandstone f-crs.    | 7.0             | Low              |
| SWC 10         | 2356.0       | Sandstone f-vf.     | 6.6             | Low              |
| SWC 9          | 2369.5       | Siltstone/claystone | 6.9             | High             |
| SWC 8          | 2376.0       | Sandstone/siltst.   | 5.2             | High             |
| SWC 7          | 2382.0       | Mudstone            | 8.0             | High             |
| SWC 6          | 2384.0       | Sst f-vf/Siltst.    | 8.6             | High             |
| SWC 5          | 2387.0       | Siltstone           | 6.5             | High             |
| SWC 4          | 2400.0       | Sandstone vf-f.     | 4.8             | Very low         |
| SWC 3          | 2404.0       | Sandstone f.        | 8.6             | Low              |
| SWC 2          | 2410.0       | Siltstone           | 7.0             | High             |
| SWC 1          | 2413.0       | Sandstone vf-f.     | 8.1             | Very low         |

.

÷

р - - -Г - +

TABLE 2: Basic Sample Data Kingfish-8, Gippsland Basin.

|                |              | •                            |                             |                            |                                     |        |
|----------------|--------------|------------------------------|-----------------------------|----------------------------|-------------------------------------|--------|
| SAMPLE<br>TYPE | DEPTH<br>(M) | PALYNOMORPH<br>CONCENTRATION | PALYNOMORPH<br>PRESERVATION | NUMBERS<br>S-P<br>SPECIES* | MICROPLAN<br>ABUNDANCE &<br>SPECIES | NO. OF |
|                |              |                              |                             |                            |                                     |        |
| SWC 32         | 2268.0       | Moderate                     | Poor-fair                   | 14+                        | Abundant                            | 8+     |
| SWC 31         | 2271.0       | Moderate                     | Poor                        | 9+                         | Common                              | 6+     |
| SWC 29         | 2277.0       | High                         | Fair                        | 19+                        | Abundant                            | 5+     |
| SWC 28         | 2280.0       | High                         | Good                        | 35+                        | Abundant                            | 17+    |
| SWC 27         | 2286.0       | Moderate                     | Poor-good                   | 38+                        | Common                              | 15+    |
| SWC 26         | 2290.0       | Low                          | Poor                        | 16+                        | Common                              | 11+    |
| SWC 25         | 2293.5       | Moderate                     | Poor-fair                   | 23+                        | Abundant                            | 9+     |
| SWC 24         | 2295.0       | Moderate                     | Fair                        | 18+                        | Abundant                            | 7+     |
| SWC 23         | 2297.0       | Moderate                     | Fair                        | 25+                        | Common                              | 12+    |
| SWC 22         | 2299.5       | Moderate                     | Poor                        | 28+                        | Common                              | 6+     |
| SWC 21         | 2303.5       | Very low                     | Poor                        | 11+                        | Frequent                            | 6+     |
| SWC 20         | 2305.5       | High                         | Fair                        | 26+                        | Common                              | 9+     |
| SWC 19         | 2306.0       | Low                          | Fair-good                   | 19+                        | Low                                 | 6+     |
| SWC 18         | 2308.0       | Very low                     | Fair-good                   | 14+                        | Common                              | 3+     |
| SWC 17         | 2311.5       | Very low                     | Fair-good                   | 10+                        | Common                              | 8+     |
| SWC 16         | 2314.0       | Low                          | Fair                        | 7+                         | Common                              | 3+     |
| SWC 15         | 2322.0       | Very low                     | Poor                        | 2+                         |                                     | NR     |
| SWC 14         | 2324.0       | Very low                     | Poor                        | 5+                         | Rare                                | 1      |
| SWC 13         | 2325.5       | High                         | Good                        | 34+                        | Rare                                | 4+     |
| SWC 12         | 2341.5       | Low                          | Poor-fair                   | 16+                        | Rare                                | 2+     |
| SWC 11         | 2345.0       | Moderate                     | Fair                        | 31+                        | Rare                                | 5+     |
| SWC 10         | 2356.0       | Very low                     | Fair                        | 11+                        |                                     |        |
| SWC 9          | 2369.5       | High                         | Poor                        | 18+                        | (Very rare)                         | (1)    |
| SWC 8          | 2376.0       | Moderate                     | Poor                        | 23+                        |                                     |        |
| SWC 7          | 2382.0       | High                         | Good                        | 29+                        |                                     |        |
| SWC 6          | 2384.0       | Moderate                     | Poor-fair                   | 33+                        | (Rare)                              | (2+)   |
| SWC 5          | 2387.0       | Moderate                     | Poor                        | 20+                        |                                     |        |
| SWC 4          | 2400.0       | Very low                     | Poor                        | 4+                         |                                     |        |
| SWC 3          | 2404.0       | Low                          | Poor-fair                   | 11+                        |                                     |        |
| SWC 2          | 2410.0       | Low                          | Poor                        | 18+                        |                                     |        |
| SWC 1          | 2413.0       | Very low                     | Poor                        | 7+                         | (Rare)                              | (1+)   |
|                |              |                              |                             |                            |                                     |        |

TABLE 3: Basic Palynomorph Data Kingfish-8, Gippsland Basin

Microplankton shown in (brackets) = contamination.

| *Diversity: | Very Low  | = |       | species. |
|-------------|-----------|---|-------|----------|
| -           | Low       | = | 6-10  | species. |
|             | Moderate  |   |       | species. |
|             | High      | = | 26-74 | species. |
|             | Very High | = | 75+   | species. |
|             |           |   |       |          |

## TABLE-4: PALYNOMORPHS PERCENTAGES FOR KINGFISH-8

,

3

r" ,

, ----, ,

1.

Page 1 of 2

|                                  | 2325.5 m<br>SWC-13          | 2341.5m<br>SWC -12   | 2345.0m<br>SWC-11 | 2369.5m<br>SWC-9 | 2376.0m<br>SWC-8 |
|----------------------------------|-----------------------------|----------------------|-------------------|------------------|------------------|
| TRILETE SPORES undiff.           | 0.5%                        | 2.4%                 | 1.8%              | 1.4%             | 1.0%             |
| Baculatisporites spp.            | 0.0%                        | 2.470                | 1.070             | 2.1%             | 2.7%             |
| Cyathidites spp.                 | 6.7%                        | 7.1%                 | 8.3%              | 8.6%             | 2.7%             |
| Gleicheniidites/Clavifera spp.   | 8.1%                        | 4.8%                 | 13.7%             | 8.6%             | 14.1%            |
| Stereisporites spp.              | 1.9%                        | 4.0 <i>%</i><br>2.4% | 0.6%              | 1.4%             | 2.0%             |
| MONOLETE SPORES                  | 1.3 /0                      | 6.7 /0               | 0.070             | 1.77/0           | 2.070            |
| Laevigatosporites spp.           | 5.2%                        | 4.8%                 | 4.8%              | 0.7%             | 1.0%             |
| TOTAL SPORES                     | 22.4%                       | 4.0%<br>21.5%        | 29.2%             | 22.8%            | 23.5%            |
| TOTAL SPORES                     | <i>LL</i> . <del>4</del> /0 | 21.070               | 23.2 /0           | 22.0 %           | 20.070           |
| GYMNOSPERM POLLEN                |                             |                      |                   | 1.4%             |                  |
| Araucariacites australis         | 0.5%                        |                      | 2.4%              | 1.4%             | 2.0%             |
| Dilwynites spp.                  | 4.3%                        | 2.4%                 | 2.4%              | 9.2%             | 10.1%            |
| Lygistepollenites balmei         |                             |                      |                   |                  |                  |
| Lygistepollenites florinii       | 0.5%                        | 2.4%                 | 1.2%              |                  | 1.0%             |
| Phyllocladidites mawsonii (s.l.) |                             |                      | 5.9%              | 0.7%             |                  |
| Phyllocladus palaeogenicus       |                             |                      |                   |                  |                  |
| Podocarpidites spp.              | 1.9%                        | 2.4%                 | 0.6%              | 0.7%             | 3.4%             |
| Podosporites microsaccatus       | 2.4%                        | 2.4%                 | 1.8%              | 0.7%             | 0.7%             |
| TOTAL GYMNOSPERM POLLEN          | 9.6%                        | 9.6%                 | 14.3%             | 14.1%            | 17.2%            |
|                                  |                             |                      |                   |                  |                  |
| ANGIOSPERM POLLEN undiff.        | 0.9%                        |                      | 1.2%              | 0.7%             | 0.7%             |
| Basopollis spp.                  |                             |                      |                   |                  |                  |
| Casuarina (H. harrisii)          | 27.6%                       | 14.3%                | 15.5%             | 14.3%            | 12.8%            |
| Cupanieidites orthoteichus       |                             |                      |                   | 0.7%             |                  |
| Dicotetradites clavatus          | 3.8%                        |                      | 0.6%              |                  |                  |
| llexpollenites sp.               | 1.4%                        | 2.4%                 | 0.6%              | 1.4%             |                  |
| Malvacipollis spp.               | 8.1%                        | 4.8%                 | 2.4%              | 12.1%            | 12.1%            |
| Myrtaceidites spp.               |                             |                      | 0.6%              | 1.4%             |                  |
| Nothofagidites "brassi"          | 2.4%                        |                      | 0.6%              | 0.7%             | 0.7%             |
| Nothofagidites "fusca"           | 0.9%                        |                      | 1.8%              | 0.7%             |                  |
| Proteacidites grandis            | 4.3%                        | 4.8%                 | 11.9%             | 5.0%             | 6.0%             |
| Proteacidites spp.               | 12.9%                       | 38.1%                | 18.5%             | 20.0%            | 20.1%            |
| Tetracolporites spp.             |                             |                      |                   |                  | 1.0%             |
| Tricolp(or)ates undiff.          | 4.8%                        | 4.8%                 | 3.0%              | 6.4%             | 4.7%             |
| Triporopollenites spp. (small)   |                             |                      |                   |                  |                  |
| TOTAL ANGIOSPERM POLLEN          | 67.1%                       | 69.2%                | 56.7%             | 63.4%            | 58.1%            |
| TOTAL SPORES-POLLEN COUNT        | 210                         | 42                   | 168               | 140              | 149              |
| MAJOR CATEGORIES %               |                             |                      |                   |                  |                  |
| Spores %                         | 19.6%                       | 16.7%                | 22.8%             | 13.3%            | 21.2%            |
| Gymnosperm Pollen %              | 8.3%                        | 7.4%                 | 11.2%             | 7.9%             | 15.3%            |
| Angiosperm Pollen %              | 59.6%                       | 53.7%                | 44.2%             | 37.1%            | 51.2%            |
| TOTAL SPORE-POLLEN %             | 87.5%                       | 77.8%                | 78.2%             | 58.3%            | 87.7%            |
| Fungal Spores and Hyphae %       | 9.6%                        | 13.0%                | 14.9%             | 41.7%            | 12.4%            |
| Microplankton %                  | 2.9%                        | 9.3%                 | 7.0%              |                  |                  |
|                                  |                             |                      |                   |                  |                  |
| TOTAL COUNT                      | 240                         | 54                   | 215               | 240              | 170              |
|                                  |                             |                      |                   |                  |                  |

| TABLE-4: PALYNOMORPHS PERCEN     | ITAGES FO | RKINGFISH | -1-8 F  | age 2 of 2    |
|----------------------------------|-----------|-----------|---------|---------------|
|                                  | 2382.0m   | 2384.0m   | 2387.5m | 2410.0m       |
|                                  | SWC-7     | SWC-6     | SWC-5   | SWC-2         |
|                                  |           |           |         | -             |
| TRILETE SPORES undiff.           | 2.7%      | 1.9%      | 2.1%    | 2.3%          |
| Baculatisporites spp.            | 1.3%      |           | 2.8%    | 1.6%          |
| Cyathidites spp.                 | 2.2%      | 1.9%      |         | 3.9%          |
| Gleicheniidites/Clavifera spp.   | 18.8%     | 14.9%     | 19.7%   | 17.2%         |
| Stereisporites spp.              | 3.5%      | 2.8%      | 6.3%    | 5.5%          |
| MONOLETE SPORES                  |           |           |         |               |
| Laevigatosporites spp.           | 0.9%      | 2.3%      | 4.9%    | 1.6%          |
| TOTAL SPORES                     | 29.4%     | 23.8%     | 35.8%   | 32.1%         |
|                                  |           |           |         |               |
| GYMNOSPERM POLLEN                | ÷         |           |         |               |
| Araucariacites australis         | 0.4%      | 1.9%      | 1.4%    | 0.8%          |
| Dilwynites spp.                  | 3.1%      | 6.0%      | 6.3%    | 3.9%          |
| Lygistepollenites balmei         |           |           |         | 0.8%          |
| Lygistepollenites florinii       |           | 0.9%      |         |               |
| Phyllocladidites mawsonii (s.l.) | 3.5%      | 2.3%      | 2.1%    | 2.3%          |
| Phyllocladus palaeogenicus       |           | 0.9%      |         |               |
| Podocarpidites spp.              | 2.2%      | 3.3%      | 7.0%    | 4.7%          |
| Podosporites microsaccatus       | 2.7%      | 1.9%      | 0.7%    | 0.8%          |
| TOTAL GYMNOSPERM POLLEN          | 11.9%     | 17.2%     | 17.5%   | 13.3%         |
|                                  |           |           |         |               |
| ANGIOSPERM POLLEN undiff.        |           |           |         | 0.8%          |
| Basopollis spp.                  | 0.4%      | 3.3%      |         | 0.8%          |
| Casuarina (H. harrisii)          | 16.5%     | 5.1%      | 8.5%    | 4.7%          |
| Cupanieidites orthoteichus       |           | 0.5%      |         |               |
| Dicotetradites clavatus          |           | 0.9%      |         |               |
| llexpollenites sp.               | 0.4%      | 1.9%      |         |               |
| Malvacipollis spp.               | 0.9%      | 2.8%      |         | 0.8%          |
| Myrtaceidites spp.               | 0.4%      |           |         | 0.8%          |
| Nothofagidites "brassi"          | 2.7%      | 1.4%      | 3.5%    |               |
| Nothofagidites "fusca"           | 1.8%      | 1.9%      | 2.8%    |               |
| Penninsulapollis gillii          |           |           |         |               |
| Periporopollenites spp.          |           |           |         |               |
| Proteacidites grandis            | 1.8%      | 1.9%      | 6.3%    | 2.3%          |
| Proteacidites spp.               | 29.9%     | 34.4%     | 21.1%   | 39.1%         |
| Tetracolporites spp.             | 0.5%      | 0.5%      |         | 1.6%          |
| Tricolp(or)ates undiff.          | 3.1%      | 4.6%      | 4.2%    | 3.1%          |
| Triporopollenites spp. (small)   |           |           |         |               |
| TOTAL ANGIOSPERM POLLEN          | 58.4%     | 59.2%     | 46.4%   | 54.0%         |
| TOTAL SPORES-POLLEN COUNT        | 224       | 215       | 142     | 128           |
|                                  |           | 2.0       |         |               |
| MAJOR CATEGORIES %               |           |           |         |               |
| Spores %                         | 26.4%     | 21.3%     | 33.8%   | 1 <b>9.2%</b> |
| Gymnosperm Pollen %              | 10.8%     | 15.4%     | 16.6%   | 7.8%          |
| Angiosperm Pollen %              | 52.4%     | 52.9%     | 43.7%   | 31.5%         |
| TOTAL SPORE-POLLEN %             | 89.6%     | 89.6%     | 94.1%   | 58.5%         |
| Fungal Spores and Hyphae %       | 10.4%     | 10.4%     | 6.0%    | 41.5%         |
| Microplankton %                  |           |           |         | <u>.</u>      |
|                                  | ÷         |           |         |               |
| TOTAL COUNT                      | 250       | 240       | 151     | 219           |

.

.

### RELINQUISHMENT LIST - PALYNOLOGICAL SLIDES

| WELL NAME & NO: | KINGFISH-8     |
|-----------------|----------------|
| PREPARED BY:    | A.D. PARTRIDGE |
| DATE:           | May 1992       |

ţ

| SAMPLE                                         | DEPTH                                          | CATALOGUE                                | DESCRIPTION                                                                                               |
|------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| TYPE                                           | (M)                                            | NUMBER                                   |                                                                                                           |
| SWC 32                                         | 2268.0                                         | P195874                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 32                                         | 2268.0                                         | P195875                                  | Oxidized slide 1                                                                                          |
| SWC 32                                         | 2268.0                                         | P195876                                  | Oxidized slide 2                                                                                          |
| SWC 31                                         | 2271.0                                         | P195877                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 31                                         | 2271.0                                         | P195878                                  | Oxidized slide 2                                                                                          |
| SWC 29                                         | 2277.0                                         | P195879                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 29                                         | 2277.0                                         | P195880                                  | Kerogen slide unsieved                                                                                    |
| SWC 29                                         | 2277.0                                         | P195881                                  | Oxidized slide 2                                                                                          |
| SWC 28                                         | 2280.0                                         | P195882                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 28                                         | 2280.0                                         | P195883                                  | Kerogen slide unsieved                                                                                    |
| SWC 28                                         | 2280.0                                         | P195884                                  | Oxidized slide 2                                                                                          |
| SWC 27                                         | 2286.0                                         | P195885                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 27                                         | 2286.0                                         | P195886                                  | Kerogen slide unsieved                                                                                    |
| SWC 27                                         | 2286.0                                         | P195887                                  | Oxidized slide 2                                                                                          |
| SWC 26                                         | 2290.0                                         | P195888                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 26                                         | 2290.0                                         | P195889                                  | Kerogen slide unsieved                                                                                    |
| SWC 26                                         | 2290.0                                         | P195890                                  | Oxidized slide 2                                                                                          |
| SWC 25<br>SWC 25<br>SWC 25<br>SWC 25<br>SWC 25 | 2293.5<br>2293.5<br>2293.5<br>2293.5<br>2293.5 | P195891<br>P195892<br>P195893<br>P195894 | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3 |
| SWC 24                                         | 2295.0                                         | P195895                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 24                                         | 2295.0                                         | P195896                                  | Kerogen slide unsieved                                                                                    |
| SWC 24                                         | 2295.0                                         | P195897                                  | Oxidized slide 2                                                                                          |
| SWC 23                                         | 2297.0                                         | P195898                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 23                                         | 2297.0                                         | P195899                                  | Kerogen slide unsieved                                                                                    |
| SWC 23                                         | 2297.0                                         | P195900                                  | Oxidized slide 2                                                                                          |
| SWC 23                                         | 2297.0                                         | P195901                                  | Oxidized slide 3                                                                                          |
| SWC 22                                         | 2299.5                                         | P195902                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 22                                         | 2299.5                                         | P195903                                  | Kerogen slide unsieved                                                                                    |
| SWC 22                                         | 2299.5                                         | P195904                                  | Oxidized slide 2                                                                                          |
| SWC 21                                         | 2303.5                                         | P195905                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 21                                         | 2303.5                                         | P195906                                  | Oxidized slide 2                                                                                          |
| SWC 21                                         | 2303.5                                         | P195907                                  | Oxidized slide 3                                                                                          |
| SWC 20                                         | 2305.5                                         | P195908                                  | Kerogen slide sieved/unsieved fractions                                                                   |
| SWC 20                                         | 2305.5                                         | P195909                                  | Kerogen slide unsieved                                                                                    |
| SWC 20                                         | 2305.5                                         | P195910                                  | Oxidized slide 2                                                                                          |
| SWC 19                                         | 2306.0                                         | P195911                                  | Kerogen slide unsieved                                                                                    |
| SWC 19                                         | 2306.0                                         | P195912                                  | Oxidized slide 2                                                                                          |
| SWC 19                                         | 2306.0                                         | P195913                                  | Oxidized slide 3                                                                                          |
| SWC 18                                         | 2308.0                                         | P195914                                  | Kerogen slide unsieved                                                                                    |
| SWC 18                                         | 2308.0                                         | P195915                                  | Oxidized slide 2                                                                                          |
| SWC 18                                         | 2308.0                                         | P195916                                  | Oxidized slide 3                                                                                          |
| SWC 17                                         | 2311.5                                         | P195917                                  | Kerogen slide unsieved                                                                                    |
| SWC 17                                         | 2311.5                                         | P195918                                  | Oxidized slide 2                                                                                          |
| SWC 17                                         | 2311.5                                         | P195919                                  | Oxidized slide 3                                                                                          |

| WELL NAME & NO: | KINGFISH-8     |
|-----------------|----------------|
| PREPARED BY:    | A.D. PARTRIDGE |
| DATE:           | May 1992       |

| SAMPLE<br>TYPE                                           | DEPTH<br>(M)                                                       | CATALOGUE<br>NUMBER                                            | DESCRIPTION                                                                                                                                         |
|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| SWC 16<br>SWC 16<br>SWC 16<br>SWC 16<br>SWC 16           | 2314.0<br>2314.0<br>2314.0<br>2314.0                               | P195920<br>P195921<br>P195922<br>P195923                       | Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                                                  |
| SWC 15<br>SWC 15                                         | 2322.0<br>2322.0                                                   | P195924<br>P195925                                             | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 1                                                                                         |
| SWC 14<br>SWC 14                                         | 2324.0<br>2324.0                                                   | P195926<br>P195927                                             | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2                                                                                         |
| SWC 13<br>SWC 13<br>SWC 13                               | 2325.5<br>2325.5<br>2325.5                                         | P195928<br>P195929<br>P195930                                  | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2                                                               |
| SWC 12<br>SWC 12<br>SWC 12<br>SWC 12<br>SWC 12<br>SWC 12 | 2341.5<br>2341.5<br>2341.5<br>2341.5<br>2341.5<br>2341.5           | P195931<br>P195932<br>P195933<br>P195934<br>P195935            | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                       |
| SWC 11<br>SWC 11<br>SWC 11<br>SWC 11<br>SWC 11<br>SWC 11 | 2345.0<br>2345.0<br>2345.0<br>2345.0<br>2345.0<br>2345.0<br>2345.0 | P195936<br>P195937<br>P195938<br>P195939<br>P195940<br>P195941 | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3A<br>Oxidized slide 3B<br>Oxidized slide 4 |
| SWC 10<br>SWC 10<br>SWC 10<br>SWC 10                     | 2356.0<br>2356.0<br>2356.0<br>2356.0                               | P195942<br>P195943<br>P195944<br>P195945                       | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                                 |
| SWC 9<br>SWC 9<br>SWC 9<br>SWC 9<br>SWC 9<br>SWC 9       | 2369.5<br>2369.5<br>2369.5<br>2369.5<br>2369.5<br>2369.5           | P195946<br>P195947<br>P195948<br>P195949<br>P195950            | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                       |
| SWC 8<br>SWC 8<br>SWC 8<br>SWC 8<br>SWC 8<br>SWC 8       | 2376.0<br>2376.0<br>2376.0<br>2376.0<br>2376.0<br>2376.0           | P195951<br>P195952<br>P195953<br>P195954<br>P195955            | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                       |
| SWC 7<br>SWC 7<br>SWC 7<br>SWC 7<br>SWC 7<br>SWC 7       | 2382.0<br>2382.0<br>2382.0<br>2382.0<br>2382.0<br>2382.0           | P195956<br>P195957<br>P195958<br>P195959<br>P195959<br>P195960 | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                       |
| SWC 6<br>SWC 6<br>SWC 6<br>SWC 6<br>SWC 6<br>SWC 6       | 2384.0<br>2384.0<br>2384.0<br>2384.0<br>2384.0<br>2384.0           | P195961<br>P195962<br>P195963<br>P195964<br>P195965            | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                       |
| SWC 5<br>SWC 5<br>SWC 5<br>SWC 5<br>SWC 5<br>SWC 5       | 2387.0<br>2387.0<br>2387.0<br>2387.0<br>2387.0                     | P195966<br>P195967<br>P195968<br>P195969<br>P195970            | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                       |

2

. |

ł

### RELINQUISHMENT LIST - PALYNOLOGICAL SLIDES

| WELL NAME & NO: | KINGFISH-8     |
|-----------------|----------------|
| PREPARED BY:    | A.D. PARTRIDGE |
| DATE:           | May 1992       |
|                 |                |

ė

ġ.

1

| SAMPLE<br>TYPE | 3 | DEPTH<br>(M)                                             | CATALOGUE<br>NUMBER                                            | DESCRIPTION                                                                                                                   |
|----------------|---|----------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| SWC 4          |   | 2400.0                                                   | P195971                                                        | Kerogen slide sieved/unsieved fractions                                                                                       |
| SWC 4          |   | 2400.0                                                   | P195972                                                        | Oxidized slide 2                                                                                                              |
| SWC 3          | 3 | 2404.0                                                   | P195973                                                        | Kerogen slide sieved/unsieved fractions                                                                                       |
| SWC 3          |   | 2404.0                                                   | P195974                                                        | Oxidized slide 2                                                                                                              |
| SWC 3          |   | 2404.0                                                   | P195975                                                        | Oxidized slide 3                                                                                                              |
| 0.00 -         | 2 | 2410.0<br>2410.0<br>2410.0<br>2410.0<br>2410.0<br>2410.0 | P195976<br>P195977<br>P195978<br>P195979<br>P195979<br>P195980 | Kerogen slide sieved/unsieved fractions<br>Kerogen slide unsieved<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4 |
| SWC            | 1 | 2413.0                                                   | P195981                                                        | Kerogen slide sieved/unsieved fractions                                                                                       |
| SWC            | 1 | 2413.0                                                   | P195982                                                        | Oxidized slide 2                                                                                                              |
| SWC            | 1 | 2413.0                                                   | P195983                                                        | Oxidized slide 3                                                                                                              |

# RELINQUISHMENT LIST - PALYNOLOGICAL RESIDUES

.

| WELL NAME & NO: | KINGFISH-8     |
|-----------------|----------------|
| PREPARED BY:    | A.D. PARTRIDGE |
| DATE:           | May 1992       |

| SAMPLE<br>TYPE | DEPTH<br>(M)     | DESCRIPTION                         |
|----------------|------------------|-------------------------------------|
| SWC 19         | 2306.0           | Oxidized residue                    |
| SWC 18         | 2308.0           | Oxidized residue                    |
| SWC 17         | 2311.5           | Oxidized residue                    |
| SWC 16         | 2314.0           | Oxidized residue                    |
| SWC 11         | 2345.0           | Oxidized residue                    |
| SWC 9<br>SWC 9 | 2369.5<br>2369.5 | Kerogen residue<br>Oxidized residue |
| SWC 8          | 2376.0           | Oxidized residue                    |
| SWC 7<br>SWC 7 | 2382.0<br>2382.0 | Kerogen residue<br>Oxidized residue |
| SWC 5<br>SWC 5 | 2387.0<br>2387.0 | Kerogen residue<br>Oxidized residue |
| SWC 2<br>SWC 2 | 2410.0<br>2410.0 | Kerogen residue<br>Oxidized residue |

21 84

.

ate da

.