INTERPRETATIVE

A PALYNOLOGICAL ANALYSIS OF FLYING FISH-1, GIPPSLAND BASIN

by
H.E. STACY

ESSO AUSTRALIA LIMITED
PALEONTOLOGY REPORT 1979/25

INTRODUCTION

Twenty-one cutting samples were collected from the Victorian Mines Department's core store and processed for palynology. Recovery was quite good and stratigraphic assignment could be made with confidence to all but one sample.

Zones and lithological/facies subdivison of the basal Lakes Entrance Formation and the Latrobe Groups are summarised below. All samples are summarised in Table 1 and each occurrence of the individual species is tabulated in the distribution charts.

SUMMARY

Unit/Facies Zone \quad Depth (Feet)

.	
Lakes Entrance	P. tuberculatus

Latrobe Group	Lower N. asperus	
	$\underline{\text { P. asperpolus }}$	$3900^{\prime}-4410^{\prime}$
		$4650^{\prime}-5210^{\prime}$

\qquad

Upper L. balmei	$5330^{\prime}-5620^{\prime}$
Lower L. balmei	$5750^{\prime}-5910^{\prime}$
T. longus	$6000^{\prime}-6520^{\prime}$ T.D.

GEOLOGICAL COMMENTS

1. The post-Eocene section immediately above the Latrobe is composed of shales and siltstones that grade upward into the more typical marl and limey lithology above 2500'. This more clastic sedimentation at the base of the \underline{P}. tuberculatus zone is considered due to the more shoreward position of this well.
2. Another indication of the shoreward position is the large number of coal beds and stringers interbedded with the coarse sands of the Latrobe section.
3. Latrobe lithology extends throughout the Eocene sediments. The younger section (\underline{N}. asperus zone) is not separated into the lithologically distinct glauconitic sandstone (Gurnard Formation) that is found in many of the more "seaward" wells.
4. Only one major unconformity is apparent: This cuts out all of the zones between the P. asperpolus zone and the Upper L. balmei zone, most of the Early Eocene time. This break in sedimentation is located somewhere in the unsampled interval between 5210' and 5330^{\prime}.
5. Upper and Middle N. asperus sediments were not recognised, however, these zones are known to be quite thin in the wells where they have been found and there is a large sample gap between the last sample with \underline{P}. tuberculatus at 3570' and the next sample, which contains Lower N. asperus fossils, from 3900'. Therefore, it is not possible, undex the present circumstances, to determine if the Upper and Middle N. asperus zones are missing, due either to non-deposition or deposited and subsequently removed; or if indeed these beds are present but are less than 330^{\prime} in thickness. The presence of a specimen of Triorites magnificus, the index for the Middle N . asperus zone, as a mud contaminant in the sample from 5610'-5620', suggests that some younger part of the N. asperus zone is present in the well section.

DISCUSSION OF ZONES

The presence and distribution of individual species is presented in the distribution sheets. The basis for zonation of this well is discussed below.

Tricolpites longus zone : 6000'-6520' (T.D.)

In addition to the nominate species, which was present in almost all of the samples from this section, the regular and present occurrence of such forms as Triporopollenites sectilis, Proteacidites clinei and Proteacidites reticuloconcavus also suggest basal L. balmei or lower.

Lower Lygistepollenites balmei zone : 5750'-5910'

Frequent and consistent occurrences of L. balmei combined with the presence of Australopolis obscurus and Proteacidites angularus and the lack of index forms from higher in the section indicate that samples from this section come from the Lower L. balmei zone.

Upper Lygistcgepollenites balmei zone : 5330'-5620'

The top of this zone is well marked by the first occurrence of the index species, Lygistegepollenites balmei. Both P. annularis and P. grandis extend downward to a depth of 5620'. These forms, which do not occur below the Upper L. balmei zone, are considered as indicative that the enclosing sediments are not stratigraphically lower than the upper part of the \underline{L}. balmei zone. Additional evidence for this stratigraphic placement of these samples is that proteacidites angularus, a Lower L. balmei marker, occurs regularly in all of the samples below this section, but is not found in this interval.

Proteacidites asperpolus zone : 4650'-5210'

The common occurrence of \underline{P}. asperpolus throughout this section demonstrates that these sediments are no older than P. asperpolus zone. The scattered but consistent. recurrence of such species as \underline{p}. grandis, s. prominatus and M. tenuis restricts these beds below the N . asperus zone.

Lower Nothofagus asperus zone : 3900'-4410'

Forms such as N. asperus, P. recavus and P. refleius demonstrate that this part of the section is in the N . asperus zone. At the same time, the occurrence of S. prominatus and \underline{P}. clarus shows that these sediments are not stratigraphically higher than the lower part of the zone.

Proteacidites tuberculatus zone : 3570'

The one sample taken above 3900 ' contained both Cyathidites anularus and Pyxidinopsis pontus, both of which are characteristic of the P. tuberculatus zone of the Oligo-Miocene:

Table 1: SUMMARY of PALEONOLOGICAL ANALYSIS, FLYING FISH-1, GIPPSLAND BASIN

SAMPLE	DEPTH (m)	DEPTH (ft.)	ZONE	AGE	CONFIDENCE RATING	YIELD	DIVERSITY	COMMENTS	
Ctngs	.1085-88	3560-70	P. tuberculatus	Oligo-Miocene	3	Fair	Moderate	C. annulatus	
"	1189-92	3900-10	Lower N. asperus	Middle Eocene	3	Good	Moderate	1	
"	1210-13	3970-80	Indeterminate	-	-	Very Low	Very Poor	Coal	
"	1253-56	4110-20	Lower N . asperus	Middle Eocene	3	Good	High	Coal	-
"	1301-04	4270-80	Lower N. asperus	Middle Eocene	3	Good	High	Coal	
"	1341-44	4400-10	Lower. N. asperus	Middle Eocene	3	Good	High	Coat	
1	1417-20	4650-60	P. asperopolis	Middle Eocene	3	Good	High	Coal	
"	1472-75	4830-40	P. asperopolis	Middle Eocene	3	Good	High		
"	1512015	4960-70	P. asperopolis	Middle Eocene	3	Good	High		
1	1542-45	5060-70	P. asperopolis	Middle Eocene	3	Good	High		
"	1585-88	5200-10	P. asperopolis	Middle Eocene	3	Good	High		
"	1625-28	5330-40	Upper L. balmei	Upper Paleocene	3	Good	Moderate	.	
"	1661-64	5450-60	Upper L. balmei	Upper Paleocene	3	Good	Moderate	Coal	
1	1710-13	5610-20	Upper L. balmei	Upper Paleocene	3	Good	High	Coal	
1	1753-56	5750-60	Lower L. balmei	Upper Paleocene	3	Fair	Moderate	Coal	
"	1798-1801	5900-10	Lower L. balmei	Upper Paleocene	3	Fair	Moderate		
1	1829-32	6000-10	T. longus	Lower Paleocene	3	Good	Moderate		
"	1853-56	6080-90	T. longus	Lower Paleocene	3	Fair	Moderate		
"	1899-1902	6230-40	T. longus	Lower Paleocene	3	Fair	Moderate		
"	1917-20	6290-6300	I. longus	Lower Paleocene	3	Good	Moderate		
"	1884-87	6510-20	T. longus	Lower Paleocene	3	Fair	Moderate		

B AS IN：GIPPSLAND＿\quad ELEVATION： $\mathrm{KB}: \quad 32$ feet GL：86 fect

$\begin{aligned} & \text { M } \\ & 0 \\ & \text { A } \end{aligned}$	PALYNOLOGICAL ZONES	HIGHEST D ATA					L OWEST DATA				
		Preferred Depth	Rtg	Alternate Depth	Rtg	$\begin{gathered} \text { Two Way } \\ \text { Time } \end{gathered}$	Preferred Depth．	Rtg	Alternate Depth	Rtg	Two Way Time
$\begin{aligned} & \text { 岂 } \\ & \text { 岁 } \\ & \text { 岂 } \end{aligned}$	T．pleistocenicus										
	M．lipsis										
	C．bifurcatus										
	T．bellus										
$\begin{aligned} & \text { 岂 } \\ & \text { 岂 } \\ & \text { 勾 } \\ & \text { 4 } \end{aligned}$	P．tuberculatus	3560^{\prime}	3			－	$3570{ }^{\prime}$	3			
	Upper N．asperus										
	Mid N．asperus										
	Lower N ．asperus．	3910＇	3				4410^{\prime}	3			
	P．asporopolus	4650 ＇	3				5210^{\prime}	3			
	Upper M ．diversus										
	Mid M．diversus										
	Lower M．diversus										
	Upper L．balmei	53301	3				5620＇	3			
	Lower L．balmei	5750＇	3				59101	－			
	T．longus	600＇	3								
	T．1illiei										
	N ．senectus										
	U．T．pachyexinus										
	L．T．pachyexinus										
	C．triplex			：							
	A．distocarinatus										
$\begin{aligned} & \text { 芻 } \\ & \text { U } \\ & \text { H } \\ & \text { 岂 } \\ & \hline \end{aligned}$	C．paradoxus										
	C．striatus						．				
	F ．asymmetricus										
	F．wonthaggiensis										
	C．australiensis										
PRE－CRETACEOUS				．							

COMMENTS：Stratigraphy entiraly from cuttings．All depths in feet

CONFIDENCE RATING：

O：SWC or Core，Excellent Confidence，assemblage with zone species of spores，pollen and microplankton． 1：SWC or Core，Good Confidence，assemblage with zone species of spores and pollen or microplankton． SWC or Core，Poor Confidence，assemblage with non－diagnostic spores，pollen and／or microplankton． Cuttings，Fair Confidence，assemblage with zone species of either spores and pollen or microplankton， or both．
4：Cuttings，No Confidence，assemblage with non－diagnostic spores，pollen and／or microplankton．
NOTE：If an entry is given a 3 or 4 confidence rating，an alternative depth with a better confidence rating should be entered，if possible．If a sample cannot be assigned to onc particular zone，then no entry should be made， unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another．

* $C=$ core; $S=$ sidewall cors; $\boldsymbol{\gamma}=$ euttings.

* $\mathrm{C}=$ core; $\mathrm{S}=$ sidewall core; $\mathrm{T}=$ culings.

Well Name
FLYing FISH-1
Bosin GIPPSLAAD
Sheot No. 3_ot 4

SAMPLE TYPE *	H	1	-	-	-	-	-	-	-	-	-	-	\vdash		-	H	F	\vdash	-	-	-							
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \stackrel{0}{\dot{0}} \\ 0 \\ \mid \end{array}\right\|$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \stackrel{0}{8} \\ & \stackrel{e}{0} \end{aligned}$	$\begin{gathered} \stackrel{0}{\mathrm{O}} \\ \stackrel{0}{\mathrm{j}} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{1}{3} \\ & \underset{子}{2} \end{aligned}$	은 8	$\left.\begin{aligned} & 0 \\ & \hline 0 \\ & i \\ & \vdots \\ & \hline 0 \end{aligned} \right\rvert\,$	$\left\lvert\, \begin{gathered} \substack{\dot{1} \\ \dot{1} \\ \dot{\sim} \\ \dot{子} \\ \hline} \end{gathered}\right.$	$\begin{aligned} & \hline \stackrel{0}{1} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{4} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & 0 \\ & i ल 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{4}{6} \end{aligned}$	$\begin{gathered} 0 \\ \underset{y}{0} \\ \stackrel{0}{i} \\ i \end{gathered}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ i \\ i \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline ㅇ \\ \hline 8 \\ 8 \\ 6 \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \hline \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \stackrel{0}{2} \\ \dot{0} \\ 0 \\ \hline 0 \end{array} \right\rvert\,$	$\begin{aligned} & \stackrel{9}{1} \\ & \vdots \\ & i= \end{aligned}$							
P. rectomarginis																												
P. reflexus					,	7																						
P. reticulatus																												
P. reticuloconcavis														7		7	7			7								
P. reticuloscabratus $\quad \ddots$								1		\square																		
P. rugulatus																												
P. scitus																												
P. stipplatus																												
P. tenuiexinus $\quad \bullet$		\square				4		λ			-																	
P. truncatus $\quad \because$																												
P. tuberculatus $\quad \because \circ$																												
P. tuberculiformis																												
P. tuberculotumulatus																												
P. xestoformis (Prot.)																												
a. brossus																												
R. boxatus																												
R. stellatus																												
R. mallatus												7																
R. trophus																												
S. cainozoicus											\angle																	
S. rotundus																												
S. digitatoides																												
S. marlinensis								1							7													
S. rarus																												
S. meridianus								-		7				7			7											
S. prominatus		C									7			4														
S. uvatus																												
S. punctatus																7		-		7								
S. regium																				-								
T. multistrixus (CP4)																	4											
I, textus																												
T. verrucosus																7	7			2								
T_{1}, securus																												
T. Confessus (C3)																	3			C								
T. gillii																				\square								
T. incisus												7																
T. longus																cf		7		-								
T. phillipsii		7									7	7				,					4							
T. renmarkensis																												
T. sabulosus																												
T. simatus		ct.																										
T. thomasii																												
T. waiparaensis																												
T. adelaidensis (CP3)					\square																							
T. angurium										7																		
T. delicatus																												
T. geraniodes																												
T. leuros							7																					
T. hiliei																												
T. marginatus								,																				
T. moultonii				\square		7		1																				
T. paenestriatus																												
T. retequetrus																												
T. scabratus																												
T. sphaerica																												
T. magnificus (P3)														\square														
T. spinosus																												
T. ambigulus	cf.						2				4																	
T. chnosus																												
T. helosus																												
T. scabratus																												
T. sectilis																	4			\square								
V. attinatus																												
V. cristatus																												
V. kopukuensis																												
\cdots Prot. prepolus														7														
b Integricorpus sp.																7												
C Prot. gematus																	7											

