

PALYNOLOGY OF PETROFINA AYU-1, GIPPSLAND BASIN, AUSTRALIA

BY

ROGER MORGAN BOX 161 MAITLAND 5573 SOUTH AUSTRALIA PH (088) 322795 FAX (088) 322658 REF:DW.GIPP.AYU1

for PETROFINA EXPLORATION AUSTRALIA SA

••

:

APRIL 1990

PALYNOLOGY OF PETROFINA AYU-1

I	SUMMARY	З
II	INTRODUCTION	4
III	PALYNOSTRATIGRAPHY	5
IV	CORRELATION WITH ROUNDHEAD-1	12
v	REFERENCES	16

FIG 1 ZONATION FRAMEWORK

CONTENTS

FIG	2	MATURITY	PROFILE,	AYU-1
110	2	ULTOKTTT.	TROTTOOL	MTO T

FIG 3	MAASTRICHTIA	AN - PALH	EOCENE	ZONA	AL.
	CORRELATION	BETWEEN	AYU-1	AND	ROUNDHEAD-1

•

PAGE

.

I SUMMARY

- 1730m (swc) 1740m (swc) : age indeterminate : offshore
 marine : immature
- 2146m (swc) 2490m (swc) : lower <u>P. tuberculatus</u> Zone or younger : Early Oligocene or younger : offshore marine : immature : very lean, especially at 2482m and below. 2491.5m (swc) : barren and indeterminate
- 2529.0m 2558m (swc) : lower <u>L. balmei</u> Zone (not assignable to any dinoflagellate Zone) : Paleocene : nearshore to marginally marine : immature
- 2560.8m (swc) 2575.8m (swc) : lower <u>L. balmei</u> Zone (E. <u>crassitabulata</u> Dinoflagellate Zone) : nearshore marine : immature
- 2617.8m (swc) 2697.2m (swc) : lower <u>L. balmei</u> Zone (not assignable to any dinoflagellate Zone) : nearshore to offshore marine : marginally mature for oil
- 2700m (swc) : lower <u>L. balmei</u> Zone (<u>T. evittii</u> Dinoflagellate Zone) : offshore marine : marginally mature : Paleocene
- 2708m (swc) : upper <u>T. longus</u> Zone (<u>M. druggii</u> Dinoflagellate Zone) : nearshore marine : marginally mature : Maastrichtian
- 2730m (swc) : upper <u>T. longus</u> Zone (not assignable to any dinoflagellate Zone) : brackish : marginally mature : Maastrichtian

- 3 -

II INTRODUCTION

Twenty five samples were submitted by Nick Grollmann of Petrofina for palynology. Raw data is presented in Appendix I.

The palynostratigraphic framework for the Cretaceous is most recently reviewed by Helby, Morgan and Partridge (1987). In the Tertiary, the zonal scheme was most recently published by Partridge (1976), but significant new data exists in privately circulated studies, in Harris (1985), Morgan (1988), and in Marshall and Partridge (1988). The zonal scheme used here is shown in Fig. 1 and is a combination of Helby, Morgan and Partridge (1987) and Partridge (1976). The data is easily discussed against this framework.

Organic maturity data was generated in the form of the Spore Colour Index and plotted on Fig. 2. The oil and gas windows follow the general consensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (2.7) to dark brown (3.6). This would correspond to Vitrinite Reflectance values of 0.6% to 1.3%. Howeve, factors such as detailed kerogen type, basin type, basin history and heating curves all affect precise interpretation, and analytical machine-based maturity parameters are probably more reliable.

	AGE	SPORE - POLLEN ZONES	DINOFLAGELLATE ZONES
i	Early Oligocone	P. tuberculatus	· · · · · · · · · · · · · · · · · · ·
	Late Eocene	upper N. asperus	P. comatum
		middle N. asperus	V. extensa
			D. heterophiycta
	Middle Eocene	lower N. asperus	W. echinosuturata
		P. asperopolus	W. edwardsii W. thempsones
2		upper M. diversor	W. ornatz
i a			W. waipawaensis
5	Early Eocene	middle M. diversus	
		lower M. diversus	W. hyperacantha
Ę			
Ш		upper L. balmei	A. homomorpha
	Delesson		
	Paleocene	lower to between	E. crassitabulata
		· · · · · · · · · · · · · · · · · · ·	M devogij
	Maa steichtige	T. longus	with the stagg m
	Maasticitian		
			· · · · · · · · · · · · · · · · · · ·
		T. lillei	l.korojonense
800	Campanian		
990		N. senectus	X. australis
ta			N. aceras
S S	Santonian	T. pachyexinus	0. porifera
6	Coniacian		
at	Turreire	C. triplex	C. striatoconus
-	, i uroman		P. infunctioides
	Cenomanian	A. distocarinatus	· ·
	Genomanian		
	Late	P. pannosus	
	Albian Middle	upper C. paradoxa	
		lower C. paradoxa	1
	Early	C. striatus	· ·
BN0	· · · · · · · · · · · · · · · · · · ·		
0 C		upper C. hughesi	
ta	Aptian		
5		iower C. hughesi	
 			
arl		F. wonthaggiensis	
Ш	Hauterivian		
	Valanginian	upper C. australiansis	
	Bensississ		
6	Derriasian	IDWOR C. AUSTRALIENSIS	
n 18	Tithonian	R. watherocensis	-

FIGURE 1

ZONATION FRAMEWORK

		DE			im	matur	е		m	atur	е	dr	y gas		GAS/ CONDENSATE
>	ZC	PTI		ia	mmat	ure		marg -inal	matur	е	pos	st m	ature		OIL
GE	NE	(tho					yellov	V	brov	vn \d	ark	\ \	blad	ck	COLOUR
		us.n	0	.5	1,0	1.5	2.0	2.5	3.0	3,	5 4	, 0	4,5	5,0	TAI
	1	<u> </u> 					1		<u>+</u>	ł.			4		·
		-	1												
		-													
		-													
		1													
		_													
		-													
		-													
Indet		-				•									
		2													
ļ	2						•								
cene	P tuber unger	-					•				Y 				
olige or y	lower or yo	-					3								
balmei	Paleo	-					•	N							
longus	Maast	_						76							
		3													
		_													
		-													
						•									
		-													
		4													
		_													
		-													
		-													
		-													
		5									<u> </u>				

FIGURE 2 MATURITY PROFILE AYU 1

III PALYNOSTRATIGRAPHY

A 1730m (swc) - 1740m (swc) : indeterminate These two samples are extremely lean and contain too few age diagnostic taxa for zonal assignment. <u>Cyatheacidites annulatus</u> occurs at 1740m, but its total range is Oligocene to Pliocene. <u>Nothofagidites</u> and <u>Cyathidites</u> are present but rare.

Dinoflagellates dominate both samples, comprising 80% and 95% of palynomorphs. Diversity is low, with <u>Operculodinium</u> spp and <u>Spiniferites ramosus</u> abundant, and age diagnostic taxa absent.

Environments are clearly offshore marine, with the abundant but low diversity dinoflagellates dominant.

Colourless palynomorphs indicate immaturity for hydrocarbon generation.

2146m (swc) - 2490m (swc) : lower P. tuberculatus Zone В or younger Assignment to the lower part of the Proteacidites tuberculatus Zone is indicated at the base by oldest Cyatheacidites annulatus, and at the top by youngest Beaupreadites verrucosus, confirmed by youngest Granodiporites nebulosus at 2394m. These are, however, single specimens, and if they are reworked, the samples can be assigned no more precisely than to the Oligocene to Pliocene. Hopefully, micropalaeontology will provide more definite ages. All samples are quite lean, with Falcisporites, Stercesporites, Cyathidites, Cyatheacidites, Haloragacidites harrisii and Nothofagidites intermittently frequent. Diversity is quite low.

Dinoflagellates dominate all samples, comprising 80 to 90% of palynomorphs. <u>Operculodinium</u> spp dominate with <u>Spiniferites</u>, <u>Systematophora</u>, <u>Cerebrocysta</u> and an undescribed <u>Millioudodinium "frilly</u>" intermittently common. <u>Lingulodinium machaerophorum</u> and <u>Cordosphaeridium</u> are present in many samples. These features are consistent with assignment to the <u>P</u>. tuberculatus or younger spore-pollen zones.

Offshore marine environments are indicated by the dominance of low diversity dinoflagellates over the subordinate and low diversity spores and pollen.

These features are normally seen in the Lakes Entrance Formation.

Colourless to light yellow spore colours indicate immaturity for hydrocarbon generation.

C 2491.5m (swc) : indeterminate

This sample was almost completely barren, containing only minor scattered inertinite and a single specimen of the dinoflagellate <u>Spiniferites ramosus</u>. Marine environments are therefore indicated, and the colourless palynomorph indicates immaturity for hydrocarbon generation.

D 2529m (swc) - 2558m (swc) : lower <u>L. balmei</u> Zone (no dinoflagellate zone) Assignment to the lower part of the <u>Lygistepollenites</u> <u>balmei</u> Zone is indicated at the top by youngest <u>Gambierina edwardsii</u> and <u>Lygistepollenites balmei</u> without younger indicators, and at the base by oldest L. balmei without older indicators.

Dinoflagellates are very rare in this interval, and

forms diagnostic of the established dinoflagellate zones were absent. <u>Spinidinium</u> spp, <u>Deflandrea</u> <u>speciosa</u> and <u>Palaeocystodinium</u> are the most consistent taxa.

Nearshore to marginally marine environments are indicated by the very low dinoflagellate content (1 to 5%) and their low diversity. Dominance of moderately diverse spores and pollen and common plant debris especially cuticle, confirm these palaeoenvironments.

These features are normally seen in the upper Latrobe Group, significantly below its youngest top. Notably, the upper <u>L. balmei</u> Zone and its correlative <u>A.</u> homomorphum Dinoflagellate Zone were not seen.

Yellow spore colours indicate immaturity for hydrocarbons. <u>D. speciosa</u> and <u>Palaeocystodinium</u> spp show their characteristically darker colours, but are not considered representative of the assemblage as a whole.

E 2560.8m (swc) - 2575.8m (swc) : lower <u>L. balmei</u> Zone (E. crassitabulata Dinoflagellate Zone).

The presence of <u>L. balmei</u> and <u>G. rudata</u> without younger or older markers indicates the spore-pollen zonal assignment. <u>Falcisporites</u>, <u>Dilwynites</u>, <u>Phyllocladidites mawsonii</u> and <u>Australopollis obscurus</u> are frequent forms in moderate diversity assemblages.

Eisenackia crassitabulata is rare but present in both samples and indicates the zonal assignment. Otherwise, the two samples are quite different. The shallower one contains rare dinoflagellates (10% of palynomorphs) moderate diversity, common Spinidinium spp and includes oldest <u>Alisocysta rugolirata</u>. The deeper one contains dominant microplankton (70% of palynomorphs), low diversity, and common <u>D. speciosa</u> and <u>Paralecaniella</u> <u>indentata</u>, and contains youngest <u>Alisocysta</u> circumtabulata.

Nearshore marine environments are indicated by the low to moderate diversity microplankton, despite the high content at 2575.8m. The moderate diversity spores and pollen support this interpretation.

These features are normally seen in the upper Latrobe Group.

Yellow to yellow-brown spore colours indicate immaturity for hydrocarbons, although <u>D. speciosa</u> displays its usual anomolous darker colour.

F 2617.8m (swc) - 2697.2m (swc) : lower L. balmei Zone (no Dinoflagellate Zone)

Stratigraphic position and the intermittent continued presence of <u>G. rudata</u> and <u>L. balmei</u> indicates the zonal assignment of these extremely lean samples. In the better yielding samples, <u>A. obscurus</u>, <u>F. similis</u>, <u>P. mawsonii</u> and <u>Proteacidites</u> spp are the most common forms.

Dinoflagellates are also scarce in the lean samples of this interval, and markers of the formal zones were absent. <u>Spinidinium</u> spp dominate the lower two samples (2668.5 and 2697.2m) while the upper sample (2617.8m) is dominated by <u>Cordosphaeridium</u> spp. <u>Alisocysta</u> <u>circumtabulata</u> accurs in the top sample and Palaeoperidinium pyrophorum occurs in the basal one. Environments are all marine, but proximity to shoreline is not constant throughout the interval. At the base, moderate dinoflagellate content (50% of palynomorphs) and low diversity suggest nearshore conditions. The middle part of the section (2643.5-2658m) is virtually barren due to the clean sandstone lithologies. At the top, a nearshore sample at 2629m (low dinoflagellate content 5% and diversity with dominant and diverse spores and pollen) pass to offshore environments (high dinoflagellate content 95% and moderate diversity with no spore pollen in a very lean sample).

These features are normally seen in the Paleocene part of the Latrobe Group.

Yellow to yellow-brown spore colours indicate immaturity for hydrocarbon generation

G 2700m (swc) : Lower L. balmei Zone (<u>T. evittii</u> Dinoflagellate Zone) Spore-pollen zonal assignment is based on the continued presence of <u>G. rudata</u> and <u>L. balmei</u> without older indicators. <u>Proteacidites</u> spp and <u>P. mawsonii</u> are frequent in a moderate diversity assemblage.

Dinoflagellates dominate the assemblage (80%), with Spinidinium spp the most common and the presence of Trithyrodinium evittii indicates the Dinoflagellate zonal assignment.

Offshore marine environments are indicated by the dominance of moderately diverse dinoflagellates, and the subordinate moderately diverse spores and pollen. Amorphous sapropel and <u>Pterospermella</u> spp suggest anoxic bottom conditions.

- 9 -

These features are normally seen in a shale peak at the base of the Paleocene part of the Latrobe Group.

Light brown spore colours indicate marginal maturity for oil, but immaturity for gas/condensate.

H

2708m (swc) : upper <u>T. longus</u> Zone (<u>M. druggii</u> Dinoflagellate Zone) Assignment to the upper part of the <u>Tricolpites longus</u> Zone is indicated at the top by youngest <u>Tricolpites</u> <u>confessus</u>, <u>T. longus</u>, <u>T. waiparaensis</u> and <u>Tricolporites</u> <u>lillei</u>, and at the base by oldest <u>Tripunctisporis</u> <u>punctatus</u> and frequent <u>G. rudata</u>. Overall, <u>Proteacidites</u> is dominant, with frequent Cyathidites and G. rudata.

Dinoflagellates include <u>Manumiella druggii</u> and <u>M.</u> <u>conorata</u> which indicate assignment to the <u>M. druggii</u> Dinoflagellate Zone. In a low diversity assemblage, <u>M.</u> conoratum is the most common.

Nearshore marine environments are indicated by the low content (25% of palynomorphs) and diversity of dinoflagellates, and the common and diverse spores and pollen.

These features are normally seen in a thin shale peak at the top of the Maastrichtian part of the Latrobe Group.

Light brown spore colours indicate marginal maturity for oil but immaturity for gas/condensate.

I 2730m (swc) : upper <u>T. longus</u> Zone (no Dinoflagellate Zone) Spore-pollen zonal assignment is based in the continued range overlap of <u>T. punctatus</u> with <u>T. longus</u>. <u>G.</u> <u>rudata</u> continues to be more frequent than <u>Nothofagidites endurus</u>. <u>Proteacidites</u> spp dominate the assemblage. No age diagnostic microplankton were seen.

Brackish marine environments are indicated by the very rare spiny acritarchs seen amongst the dominant and diverse spores and pollen. The freshwater alga Botryococcus indicates some lacustrine influence.

These features are normally seen a little below the top Maastrichtian part of the Latrobe Group.

Light brown spore colours indicate marginal maturity for oil, but immaturity for gas/condensate.

REFERENCES

Harris, W.K. (1985) Middle to Late Eocene Depositional Cycles and Dinoflagellate Zones in Southern Australia Spec. Publ., S. Aust. Dept. Mines and Energy 5 : 133-144

Helby, R.J., Morgan, R.P., and Partridge A.D., (1987) A palynological Zonation of the Australian Mesozoic Australas. Assoc. Palaeont., Mem. 4

Marshall, N.G. (1988) A Santonian dinoflagellate assemblage from the Gippsland Basin, Southeastern Australia Australas, Assoc, Palaentols. Mem. 5, 195-213

Marshall, N.G. and Partridge A.D. (1988) The Eocene acritarch <u>Tritonites</u> gen. nov. and the age of the Marlin Channel, Gippsland Basin, Southeastern Australia Australas. Assoc. Palaentols. Mem. 5, 239-257

Morgan, R.P. (1988) Petrofina Gippsland Cretaceous palynology project report 7 : regional synthesis <u>unpubl</u>. rpt. for Petrofina

Partridge A.D. (1976) The Geological Expression of Eustacy in the Early Tertiary of the Gippsland Basin Aust. Pet. Explor. Assoc. J., 16 : 73-79

v

AYU#1

BDX 161, MAITLAND, SOUTH AUSTRALIA, 5573 PHONE (088) 322795 FAX (088) 322658 C L I E N T: W E L L: AYU#1 F I E L D / A R E A: S E C T I O N: T O W N S H I P: S T A T E: K B K B E L E V A T I O N: T O T A L D A T'E : A N A L Y S T: ROGER MORGAN N O T E S: ALL DEPTHS IN METRES	ROGER MORGAN : PALYNOLDO	BY CONSULTANT
PHONE (088) 322795 FAX (088) 322658 C L I E N T: W E L L: AYU#1 F I E L D / A R E A: S E C T I O N: T O W N S H I P: R A N G E: C U N T Y: K B E L E V A T I O N: A N A L Y S T: RDGER MORGAN D A T'E : APRIL 90 N O T E S: ALL DEPTHS IN METRES	BOX 161, MAITLAND, SOUTH	AUSTRALIA, 5573
C L I E N T: W E L L: AYU#1 F I E L D / A R E A: S E C T I O N: T O W N S H I P: R A N G E: C O U N T Y: K B E L E V A T I O N: A N A L Y S T: RDGER MORGAN N D T E S: ALL DEPTHS IN METRES	PHONE (088) 322795 FAX	(088) 322658
C L I E N T: W E L L: AYU#1 F I E L D / A R E A: S E C T I O N: T O W N S H I P: C O U N T Y: S T A T E: K B E L E V A T I O N: A N A L Y S T: RDGER MORGAN N O T E S: ALL DEPTHS IN METRES		
W E L L: AYU#1 F I E L D / A R E A: S E C T I O N: T O W N S H I P: R A N G E: C O U N T Y: K B E L E V A T I O N: A N A L Y S T: RDGER MORGAN D A T E : APRIL 90 N O T E S: ALL DEPTHS IN METRES	CLIENT:	
FIELD/AREA: SECTION: TOWNSHIP: RANGE: COUNTY: STATE: KBELEVATION: TOTAL DEPTH: ANALYST: RDGER MORGAN DATE: APRIL 90 NOTES: ALL DEPTHS IN METRES	W E L L: AYU#1	
SECTION: TOWNSHIP: RANGE: COUNTY: STATE: KBELEVATION: TOTAL DEPTH: ANALYST: ROGER MORGAN DATE: APRIL 90 NOTES: ALL DEPTHS IN METRES	FIELD/AREA:	
COUNTY: STATE: KBELEVATION: TOTAL DEPTH: ANALYST: RDGER MORGAN DATE: APRIL 90 NDTES: ALL DEPTHS IN METRES	SECTION: TOWNSH	IP: 'RANGE:
KB ELEVATION: TOTAL DEPTH: ANALYST: RDGER MORGAN DATE: APRIL 90 NOTES: ALL DEPTHS IN METRES	C O U N T Y:	STATE:
A N A L Y S T: ROGER MORGAN D A T'E : APRIL 90	KB ELEVATION:	TOTAL DEPTH:
N D T E S: ALL DEPTHS IN METRES	A N A L Y S T: ROGER MORGAN	D A T'E : APRIL 90
	N D T E S: ALL DEPTHS IN METRES	
	·	

RANGE CHART OF GRAPHIC ABUNDANCES BY LOWEST APPEARANCE: Dino, S/P

Key to Symbols

- = Very Rare = Rare

, [.]

.

- = Few
- = Common = Abundant
- = Questionably Present
 = Not Present ?

		MICHRYTRIDIUM	CVCLOPSIELLA UIETA	I ISABELIDINIUM BAKERI	II MANUMIELLA CONDRATUM 1	I MANUMIELLA ORUGGII	I DEFLANDREA SPECIOSOS	HYSTRICHOSPHAERIDIUN TUBIFERUN	I FTEROSFERMELLA	SPINIDINIUM SPI	SPINIOINIUM SP2	TRITHYRODINIUN EVITTII	PALAEOCYSTODINIUM GOLZOWENSE	I PALAEOPERIDINIUN PYROPHORUM	CORDOSFHAERIJIUM INODES	I CORDNIFERA DCEANICA	I GLAPHVROCVSTA RETLINIEXTA	MILLIQUOODINIUM TENUITABULATUS	SENEGALINIUH DILUYNENSE	I SPINIFERITES RAMOSUS	I SURTILISPНАЕРА I	UERVINGUINM	П НЕТЗОСТАТИ КОЛОСТКИТИ 	II DEFLANDREA MEDCALFII	I PARALEUNATELLA INDENTATA	i alisoevsia aireenialuala u	I FIRPOCYSIA BIRQLARE	II HETERNULADATZSTA PARTITA 	RENERVIA SP	DEERCULUDINIUN SPP	PALAEDOYSTURINTUM AUSTRALINUM	ILLERIDSPHARES SP	DEFLANDREA OF DILUVNENSIS
		-	N	M	ন	ທີ່	0 1	œ	0	01	11	12	13	+ 1	15	16	17	18	6]	5Ú	2	N 0	n N	÷.	50 (N	26	N	ē.	2	28	N.,	25	n. M
1730.0 1740.0 2146.0 2345.0 2345.0 2394.0 2451.5 2482.0 2485.0 2490.0 2491.5 2529.0 2552.0 2558.0 2558.0 2558.0 2643.5 2629.0 2643.5 26458.0 2648.5 2697.2 2700.0 2730.0	322222222118765431 111198765431			· · · · · · · · · · · · · · · · · · ·																		· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·

•

• • · · · ·

. . .

	EISENACKIA CRASSITABULATA SPINIFERITES CF CRASSIPELLIS CASSIDIUM FRAGILE DEFLANDREA STRIATA DEFLANDREA STRIATA PALAEOCVSTOOINIUM SP PALAEOCVSTOOINIUM SP PALAEOCVSTOOINIUM SP AREOLIGERA SENONENSIS HAFNIASPHAERA SEPTATA LINGULODINIUM HACHAEROFHORUM OPERCULODINIUM CENTRCCARCUM SVSTEMATOPHORA PLACACANTHA HYSTRICHOSPHAERIDIUM SP MICROFORANS	MICROFORANS ACHOHÓSPHAERA RAMULIFERA AFTEODINIUN AUSTRALIENSE CEREBROCVSTA SP HYSTRICHOKOLPOMA EISENNCKEII KOLPOMACVSTA SP NEMAIOSPHAEROPSIS BALCOMBIANA TEOTATODINIUM SP NEMAIOSPHAEROPSIS BALCOMBIANA TEOTATODINIUM SP INPAGIDINIUM SP INPAGIDINIUM SP MILLIQUDODINIUM FRILLV SCHENATOPHORA SP ACHOHÔSPHAERIDIUM SP MILLIQUDODINIUM FRILLV SCHENATOPHORA SP ACHOHÔSPHAERI ALICORNU INPAGIDINIUM GISPERITIUM HICPÓFORANINFERA CHOHÔSPHAERI ALICORNU INPAGIDINIUM SP ACHOHÔSPHAERI ALICORNU INPAGIDINIUM SP ACHOHÔSPHAERI ALICORNU INPAGIDINIUM SP ACHOHÔSPHAERI ALICORNU CREATOSPORITES EQUALIS CERATOSPORITES EQUALIS
	4 IO 40 N 00 00 00 00 00 00 00 00 00 00 00 00	••••••••••••••••••••••••••••••••••••••
1730.0 SWC 30 1740.0 SWC 29 2146.0 SWC 27 2165.0 SWC 26 2345.0 SWC 25 2394.0 SWC 24 2451.5 SWC 23 2482.0 SWC 20 2485.0 SWC 19 2490.0 SWC 19 2490.0 SWC 18 2491.5 SWC 17 2529.0 SWC 16 2558.0 SWC 14 2560.8 SWC 13 2575.8 SWC 11	WC 30 . <th></th>	

-

. .

.____

•

													•																	
. .													PUNCTATUS																	
			ACRYCARPITES AUSTRALIENSIS	ALCISPORITES SIMILIS Ambierina Eduarosii	AMBIERINA RUDATA	.VGISTEPOLLENITES BALHEI	VUISTEPULLENTTES FLUKINII DTHOFAGIDITES ENDURUS	ERIPOROPOLLENITES POLYORATUS	HVLLOCLADIDITES MANSONII	ODOSPORITES MICROSACCATUS	ROTEACIDITES SCABORATUS	ROTEACIDITES SP Gettern etes Austraci Aualinites	TEREISPORITES (TRIPUNCTISPORIS)	TEREISPORITES ANTIQUISPORITES	TEREISPORITES REGIUM	RICOLPITES GILLII	RICOLPITES LONGUS	RICOLPITES SABULOSUS	CHHERUZONOSPURITES CHHERUZUSIS Steremiinites cipcininites	HERKOSPORTIES ELLIDITII	ILCROCACHRVIDITES ANTARCTICUS	RICOLPITES CONFESSUS	RICULFITES UNIPARAENSIS	RICOLPORITES LILLIEI	USTRALOPOLLIS OBSCURUS	VALATOLIES GIGANTIS	HULHVNJTES GRANULATUS	HYLLUCLADIDIIES VERRUCOSUS	ALORAGACIDITES HARRISII	AFIGATOSPARITES Ricolpites Phillipsii
		*****	6 7 7	6 6 8 6 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	20110	2			75	76 1 7	77				82	8 8 8 8 8 8		58			1 68 8	06	0, 	0 () ()	с к. С	- 	ມ ສຸດ ສຸດ	2 2 2 2		
	1730.0 Si 1740.0 Si 2146.0 Si 2146.0 Si 2145.0 Si 2394.0 Si 2451.5 Si 2485.0 Si 2485.0 Si 2490.0 Si 2491.5 Si 2552.0 Si 2558.0 Si 2558.0 Si 2558.0 Si 2643.5 Si 2643.5 Si 2643.5 Si 2643.5 Si 2643.5 Si 2643.0 Si 2643.0 Si 2643.0 Si 2643.5 Si 2643.0 Si 2643.0 Si 2643.0 Si 2643.0 Si 2643.5 Si 2643.0 Si 26458.0 Si 26458.0 Si 2647.0 Si 2700.0 Si	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW							· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·												
•			•																											

--

			NOTHOFAGIDITES BRACHYSPINULOSUS	PEROTRILETES MORGANII	TRICOLPITES SP	TRICOLPORITES	HHUSUFULLIS GROCIFORNIS CLAVIFERA TRIPLEX	OSMUDACIDITES WELLMANII	DILUYNITES TUBERCULATUS	CVATHIDITES SPLENDENS	CVATHEACIDITES ANNULATUS	NOTHOFAGIDITES EMARCIDUS/HETERUS	NOTHOFAGIDITES FALCATUS	TRILETES TUBERCULIFORMIS	GRANODIPORIIES NEBULOSUS	RUGULATISPORITES MALLATUS	POLVFODIISPORITES SPP	BEAUFREADITES VERRUCOSUS	NOTHOFAGIDITES ASPERUS	DICTOPHYLLIDITES SPP	BOTRVOCOCCUS		
:			100	101	102	1103	102	1106	107	108	109	110	111	112	113	114	115	116	117	11 18	1119		
	1730.0 1740.0 2146.0 2145.0 2345.0 2394.0 2451.5 2482.0 2485.0 2485.0 2490.0 2491.5 2529.0 2552.0 2552.0 2558.0 2558.0 2560.8 2617.8 2629.0 2643.5 2658.0 2643.5 2658.0 2668.5 2697.2 2700.0 2730.0	SWC 3 SWC 2 SWC 1 SWC	0976543098765432198765431		· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••					· · · · · · · · · · · · · · · · · · ·									1730.0 1740.0 2146.0 2145.0 2345.0 2394.0 2451.5 2482.0 2485.0 2490.0 2491.5 2529.0 2558.0 2558.0 2540.8 2647.8 2629.0 2643.5 2658.0 2648.5 2697.2 2700.0 2708.0 2730.0	3976543098765432198765431

•

.

-

.

•• •

Index	numbers are the columns in which species appear.
INDEX NUMBER	SPECIES
59	ACHOMOSPHAERA ALICORNIL
47	ACHOMOSPHAERA RAMULTERA
26	
23	ALISOCYSTA RUGOLIRATA
104	AMOSOPOLLIS CRUCIFORMIS
48	APTEODINIUM AUSTRALIENSE
64	ARAUCARIACITES AUSTRALIS
40	AREOLIGERA SENONENSIS
93	AUSTRALOPOLLIS OBSCURUS
116	BEAUPREADITES VERRUCOSUS
119	BOTRYDCOCCUS
86	CAMEROZONOSPORITES OHAIENSIS
.36	CEDATDEDODITED SOLAR AD
	CEREBROCVETA CD
105	
15	
54	CORDOSPHAERIDIUM MULTISPINOSUM
16	CORONIFERA DCEANICA
62	CRIBROPERIDINIUM SP
107	CYATHEACIDITES ANNULATUS
94	CYATHIDITES GIGANTIS
108	CYATHIDITES SPLENDENS
66	CYATHIDITES SPP
2	CYCLOPSIELLA VIETA BACRYCARDITER AVOTRA ETVOLO
0/ रर	DELANDREA DE DILLIVAENDIO
24	DEFLANDREA MEDCALETT
6	DEFLANDREA SPECIOSUS
7	DEFLANDREA SPP
37	DEFLANDREA STRIATA
118	DICTOPHYLLIDITES SPP
95	DILWYNITES GRANULATUS
107	DILWYNITES TUBERCULATUS
34	EISENACKIA CRASSITABULATA
68	FALCISPURITES SIMILIS
21	CAMPIERINA EDWARDELA
70	GAMBIERINA PUDATA
17	GLAPHYROCYSTA RETIINTEYTA
87	GLEICHENIIDITES CIRCINIDITES
113	GRANDDIPORITES NEBULDSUS
41	HAFNIÄSPHAERA SEPTATA
97	HALDRAGACIDITES HARRISII
88	HERKOSPORITES ELLIOTTII
28	HETERAULACACYSTA PAXILLA
45	HISTRICHURULPUMA EISENAUKEII HVSTRICHURUPUMA EISENAUKEII
8	HYSTRICHOSPHAERIDIUM SP
60	IMPAGIDINIUM DISPERTITUM
55	IMPAGIDINIUM SP
63	IMPAGIDINIUM SPP
56	IMPLETOSPHAERIDIUM SP
. 3	ISABELIDINIUM BAKERI
29	KENLEYIA SP
51	KULPUMACYSTA SP
45	
74	LINGOLUDINIUM MACHAEKUPHURUM
72	LYGISTEPOLIENTES ELOPINIT
4	MANUMIELLA CONDRATUM
5	MANUMIELLA DRUGGII
1	MICHRYTRIDIUM

SPECIES LOCATION INDEX

•

•

.

.

۰[.]

· • •

.

89 MICROCACHRYIDITES ANTARCTICUS 61 MICROFORAMINIFERA 46 MICROFORAMS 57 MILLIOUDODINIUM FRILLY MILLIOUDODINIUM TENUITABULATUS 18 52 NEMATOSPHAEROPSIS BALCOMBIANA 117 NOTHOFAGIDITES ASPERUS 100 NOTHOFAGIDITES BRACHYSPINULOSUS NOTHOFAGIDITES EMARCIDUS/HETERUS 110 NOTHOFAGIDITES ENDURUS 73 NOTHOFAGIDITES FALCATUS 111 43 OPERCULODINIUM CENTRCCARCUM OPERCULODINIUM SPP 30 106 OSMUDACIDITES WELLMANII PALAEOCYSTODINIUM AUSTRALINUM 31 13 PALAEDCYSTODINIUM GOLZOWENSE 38 PALAEDCYSTODINIUM SP 14 PALAEOPERIDINIUM PYROPHORUM 25 PARALECANIELLA INDENTATA PERIPOROPOLLENITES POLYORATUS 74 • 14 101 PEROTRILETES MORGANII PHYLLOCLADIDITES MAWSONII PHYLLOCLADIDITES VERRUCOSUS 75 96 76 PODOSPORITES MICROSACCATUS 115 POLYPODIISPORITES SPP 77 PROTEACIDITES SCABORATUS PROTEACIDITES SP 78 9 PTEROSPERMELLA PTEROSPERMELLA AUREOLATA 39 79 RETITRILETES AUSTROCLAVATIDITES 114 RUGULATISPORITES MALLATUS 58 SCHEMATOPHORA SP 19 SENEGALINIUM DILWYNENSE 10 SPINIDINIUM SP1 SPINIDINIUM SP2 11 35 SPINIFERITES CF CRASSIPELLIS SPINIFERITES RAMOSUS 20 STEREISPORITES (TRIPUNCTISPORIS) PUNCTATUS 80 81 STEREISPORITES ANTIQUISPORITES 82 STEREISPORITES REGIUM 21 SUBTILISPHAERA 44 SYSTEMATOPHORA PLACACANTHA 53 TECTATODINIUM SP 90 TRICOLPITES CONFESSUS 83 TRICOLPITES GILLII 84 TRICOLPITES LONGUS 99 TRICOLPITES PHILLIPSII TRICOLPITES SABULOSUS 85 102 TRICOLPITES SP TRICOLPITES WAIPARAENSIS 91 103 TRICOLPORITES 92 TRICOLPORITES LILLIEI 112 TRILETES TUBERCULIFORMIS 12 TRITHYRODINIUM EVITTII 32 TURBIOSPHAERA SP 22 VERYHACHINM