

PALYNOLOGY REPORT

ON LOY YANG-1A GIPPSLAND BASIN

FOR

CAPITAL ENERGY N.L.

D.P.C. HOS

JANUARY, 1995

FILE LOYANGRA.DOC

INTERNATIONAL STRATIGRAPHIC CONSULTANTS PTY LTD ACN 009 183 555

> UNIT 7, 21 McCABE STREET NORTH FREMANTLE 6159 WESTERN AUSTRALIA PHONE 4308460 FAX 4308465

CONTENTS

I <u>SUMMARY</u>

T

- II INTRODUCTION
- III <u>PALYNOLOGY</u>
- IV <u>REFERENCES</u>
- TABLE 1List of samples examined.
- FIGURE 1 Palynology distribution chart for Loy Yang-1A.

I <u>SUMMARY</u>

A summary of the biostratigraphic and environmental subdivision for Loy Yang-1A is given below.

DEPTH (m)	PALYNOLOGICAL ZONE	AGE	ENVIRONMEN <u>T OF</u> DEPOSITION
805 DC	C. hughesi (?Upper C. hughesi – Dettmann)	Early Aptian	Non-marine
907 DC	Indeterminate	Indeterminate	Non-marine
1006 DC, 1100 DC,	Upper F. wonthagiensis (?Mid C. hughesi – Dettmann)	Barremian	Non-marine
1210-1216 DC	Upper F. wonthagiensis (Lower C. hughesi – Dettmann)	Barremian	Non-marine
1378 DC	Indeterminate		Non-marine
1453 DC, 1489 DC, 1534 DC	mid F. wonthagiensis (Lower C. hughesi –Dettmann)	Hauterivian – Valanginian	Non-marine

II INTRODUCTION

A suite of 9 cuttings samples from Loy Yang-1A was submitted by Capital Energy NL for biostratigraphic analysis. A list of the samples examined is shown in Table 1.

III <u>PALYNOLOGY</u>

The palynological analyses were undertaken by D.P.C. Hos. The palynological zonation scheme used in this study follows that of Helby et al. (1987) and the scheme of Dettmann (1986) has also been applied. As the samples are all cuttings samples, the presence or possibility of cavings makes it difficult to assess the value of first (stratigraphic) appearances of key species. There are also some differences between the two schemes which have not yet been fully resolved (Burger, 1982). The palynomorphs recorded in the samples are shown in Figure 1.

The palynological preparation method used follows the standard maceration and heavy liquid separation techniques to concentrate the kerogen. A kerogen slide, a filtered kerogen slide and two oxidised and filtered (10 micron mesh) slides were prepared for each sample where there was sufficient residue.

DEPTH	ZONE	AGE	ENVIRONMENT OF DEPOSITION	
805m DC	C. hughesi Zone (?Upper C. hughesi Zone – Dettmann)	Early Aptian	Non-marine	
	The presence of Cyclosporit poris assymetricus suggests the zones.	The presence of fresh water algal cysts and an absence of any marine in- dicators suggests a non- marine environment.		
907m DC	Indeterminate	Indeterminate	Non-marine	
	The sample was too lean and enable an assignment.	No marine indicators are present.		
1006m DC	Upper F. wonthagiensis Zone (?Mid C. hughesi Zone – Dettmann)	Barremian	Non-marine	
	The presence Cyclosporites speciosus and Pilosisporites absence of Foraminisporis a possible correlation to the m Dettmann and this is probabl part of the F. wonthagiensis	No marine indicators are present.		

1100m DC	Upper F. wonthagiensis Zone (?Mid C. hughesi Zone – Dettmann)	Barremian	Non-marine			
	Cyclosporites hughesi is app Foraminisporis assymetricus correlation to the lower C. h which is probably equivalen wonthagiensis Zone of Helb species observed in the under present at this level thus a pr Zone (Dettmann) is suggester					
1210– 1216m DC	Upper F. wonthagiensis Zone (Lower C. hughesi Zone – Dettmann)	Barremian	Non-marine			
	The presence of several new florida Assemblage') is taken lower C. hughesi Zone (Dett species include Contignispon muratus, Cooksonites variab lanosii and Staplinisporites of sample appears to record the of Foraminisporis wonthagin recycling event resulting in t Polycingulatisporites crenul baculatus is uncertain.	Only non-marine palynomorph species are present.				
1378m DC	Indeterminate		Non-marine			
	The sample was very inertin and oxidised yield. Insufficie were present.	Only non-marine palynomorph species are present.				
1453m DC, 1489m DC, 1534m DC	mid <i>F. wonthagiensis</i> Zone (Lower <i>C. hughesi</i> Zone – Dettmann)	Hauterivian – Valanginian	Non-marine			
	The assemblages are similar with the continued presence Dictyotosporites speciosus a wonthagiensis suggesting a p Zone (Dettmann) assignmen mid F. wonthagiensis Zone o	Only non-marine palynomorph species are present.				

Γ

C

IV <u>REFERENCES</u>

Burger, D., 1982.

Palynology of the Eromanga Basin and its applications. in Moore, P.S., & Mount, T.J., (Compilers), Eromanga Basin Symposium, summary papers. Geol. Soc. Aust. & Pet. Explor. Soc. Aust., Adelaide, pp 174–183.

Dettmann, M.E., 1986.

Early Cretaceous palynoflora of subsurface strata correlative with the Koonwarra Fossil Bed, Victoria. <u>in</u> Jell, P.A., & Roberts, J., (Eds), Plants and invertebrates from the Lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria. Memoir 3, Association of Australasian Palaeontologists, Sydney, pp 79–110.

Helby, R., Morgan, R., & Partridge, A.D., 1987

A palynological zonation of the Australian Mesozoic. in Jell, P.A., (Ed.), Studies in Australian Mesozoic Palynology. Memoir 4, Association of Australasian Palaeontologists, Sydney, pp 1–94.

Table 1. List of samples examined in Loy Yang-1A

DEPTH (m)	SERVICE			
805 DC	P			
907 DC	P			
1006 DC	P			
1100 DC	P			
1210-1216 DC	Р			
1378 DC	P			
1453 DC	P			
1489 DC	P			
1534 DC	P			
	P			

Total Number of Palynology

= 9

	Τ								
DEPTH (m) SPECIES	805	907	1006	1100	1216	1378	1453	1489	1534
Acanthotriletes sp.								+	+
Acquitriradites acusus					+	+	+	+	+
Acquitriradites hispidus	cf		cf	+		ļ	ļ		
Acquitriradites sp.	<u> </u>			+	+		ļ	+	
Alisporites grandis	.	+			+			+	÷
Alisporites similus						+		+	-
Araucariacites australis	<u> </u>			+			 		
Biretisporites spectabilis						+	ļ		
Cadargasporites baculatus					+	ļ	ļ		
Callialasporites dampieri	<u> </u>						+		
Camarozonosporites clivosus	+			÷					
Ceratosporites equalis	+			+	+		+		
Cicatricosiporites australiensis	+		-		+	-	+	+	+
Classopollis torosus	+				÷		⊢	<u> </u>	
Concavissimisporites sp.	 	+							
Concavissimisporites penolaensis	 					<u> </u>			
Contignisporites cooksonieae					+	<u> </u>		÷	+
Contignisporites multimuratus					c		+ ->	,	+
Cooksonites variabilis	cf		cť		+		<u> </u>		+
Couperisporites tabulatus				"					
Crybelosporites sp. Cvathidites australis	+		÷		+	 		<u> </u>	<u> </u>
Cvathidites minor		<u> </u>	-	+	+	+			
Cycadopites follicularis	+				+	+			
Cyclosporites hughesi	+ +								
Dictyophyllidites harrisii				+					_
Dicvotosporites speciosus					+			÷	
Foraminisporis asymetricus	+	•						· · ·	
Foraminisporis daylii	+								
Foraminisporis wonthagiensis					+		÷		
Klukisporites scaberis	+	÷	+	+	•7		÷		.
Leptolepidites major				_	· ·	÷	+		
Leptolepidites verrucatus	+		_	÷	÷			-	-
Microcachrvidites antarcticus	+	÷		÷.		÷			+
Neoraistrickia truncata							+		
Osmundacidites wellmanii	-	÷		+	+		÷	÷	+
Perinopollenites sp.									
Pilosisporites notensis	+		+		2		+	÷	֥
Pilosisporites parvispinosus									
Pinuspollenites parvisaccatus		÷	-	-	+		÷		
Podosporites castellanosii	1				÷				
Polycinulatisporites crenulatus					÷				
Polypodiidites sp.	1	-					-		
Retitriletes austroclavatidites	+			+			+		
Retitriletes circolumenus		+							÷
Retitriletes eminulus	+.		÷			-	÷		
Retitriletes facetus			+						÷
Retitriletes nodosus	+					+	-		
Retitriletes reticulumsporites	÷	÷	÷		÷		+	÷	÷
Retitriletes semimuris							cť		÷
Semiretisporites denmeadii			?^	• ?					?
Staplinisporites caminus					+				
Stereisporites antiquasporites			+	+			÷		
Trilobosporites trioreticulosus				?!					
MICROPLANKTON									
Leiosphaeridia sp.	С			+	÷				
Schizosporis reticularus	+	÷	+	cť					