

C O N T E N T S

)

)

	1.	ABSTRACT
	11.	INTRODUCTION
	111.	ROCK-STRATIGRAPHIC NOMENCLATURE
	IV.	GEOLOGICAL COMMENTS
	ν.	MICROPALAEONTOLOGY
		(A) Calcareous Nannoplankton Biostratigraphy.
		(B) Planktonic Foraminiferal Biostratigraphy.
		(C) Environment of Deposition.
	VI.	PALYNOLOGY
		(A) Palynostratigraphy
		(B) Environment of Deposition
	V11.	SOURCE ROCK POTENTIAL AND MATURITY
	V111.	REFERENCES
,	FIGURE 1	
	Summary Cl	nart, Comley-1.
	FIGURE 2	
	Tentative	chronostratigraphic correlation between Comley-1,
	Fairhope-1	and Paynesville-1.
	FIGURE 3	
	Spores and	pollen recorded in Comley-1.
	FIGURE 4	
	Dinoflagel	lates and acritarchs in Comley-1.

APPENDIX 1

Glossary of semiquantitative source rock parameters recorded using palynological techniques.

APPENDIX 2

Vitrinite reflectance results on samples from Comley-1.

ENCLOSURE 1

Micropalaeontological distribution chart for Comley-1.

TABLE 1

1

Summary of the source rock and maturity data from Comley-1.

1. ABSTRACT

)

Comley-1 was drilled to 529m KB in Permit PEP 98, onshore Gippsland Basin. Sidewall core samples from 161.0 to 486.0m have been examined for calcareous nannoplankton, foraminifera and palynomorphs.

DEPTH (m)	UNIT	ZONE	AGE
161	Gippsland Limestone	<u>T. bellus</u> or younger	Middle Miocene or younger
178.3	Gippsland Limestone	D	Middle Miocene
347.5-379	Gippsland Limestone	NN4-NN5, G-F	Upper Early Miocene
412.5-438	Gippsland Limestone	NN2-NN3, H1-G	Early Miocene
447.5-465	Lakes Entrance Fm. ('upper member')	NN1, I1-H1	Lower Early Miocene
473	Lakes Entrance Fm. ('upper member')	NP25	Late Oligocene
478.5-480	Lakes Entrance Fm. ('lower member')	NP23-24, P. tuberculatus	Oligocene
486.5	Lakes Entrance Fm. ('lower member')	P. tuberculatus	Oligocene

The sequence from 161m to 478.5m was deposited in inner to middle neritic conditions. A marine environment is also indicated from 480m to 486.5m.

No significant source rocks were observed in the well. Spore colours of light yellow, white fluorescence and vitrinite reflectance of 0.24%-0.27% indicates the interval penetrated was immature.

11. INTRODUCTION

)

)

ECL Geological Laboratory was contracted by Ampol Exploration Ltd to undertake laboratory studies of sidewall core samples of the well Comley-1. The well is located in onshore exploration Permit PEP 98, Gippsland Basin, Victoria, and was drilled to a total depth of 529m KB.

Sidewall core samples from the interval 161.0 to 486.0m were analysed for calcareous nannoplankton, foraminifera, palynomorphs, source rock potential and maturity. The objective of this study was to provide biostratigraphic zonations, interpretation of depositional environment and information on hydrocarbon habitat for geological evaluation of the well section.

111. ROCK-STRATIGRAPHIC NOMENCLATURE

)

)

(A) Lakes Entrance Formation (Lower Member)

In this investigation Early-Late Oligocene glauconitic sandstone, oxidized glauconitic sandstone-siltstone and glauconitic marl, are referred to informally as the "lower member" of the Lakes Entrance Formation. The "lower member" includes the following formal onshore stratigraphic units : Colquhoun Sandstone Member, Cunninghame Greensand Member, Metung Marl Member, Giffard Sandstone Member and Seacombe Marl Member.

(B) Lakes Entrance Formation (Upper Member)

In this investigation Late Oligocene-Early Miocene marls are referred to informally as the "upper member" of the Lakes Entrance Formation.

(C) Gippsland Limestone

In Comley-1 Early-Middle Miocene clean skeletal limestone and calcarenites with common bryozoan fragments are referred to as the Gippsland Limestone.

IV. GEOLOGICAL COMMENTS

)

)

On the basis of wireline log character a disconformity is inferred at 481m (See Figure 2). The sonic kick between 481m and 482m is interpreted to represent an oxidized horizon. The interval 481-486.5m is definitely no older than Early Oligocene (no older than <u>P. tuberculatus</u>) and more likely to be Early Oligocene in age. The occurrence of common dinoflagellates at 486.5m indicates that the interval 481-486.5m represents part of the 'lower member' of the Lakes Entrance Formation. The section from 486.5m to basement (497m) was not examined palynologically but is tentatively interpreted to also represent 'lower member' of the Lakes Entrance Formation.

A mid-Oligocene hiatus is inferred at 481m although this cannot be demonstrated on palaeontological evidence. The oxidized horizon between 481m and 482m in Comley-1 is considered to correlate with oxidized horizons between 536-537m in Fairhope-1 and 576-577m in Paynesville-1 (See Figure 2). The oxidized horizon formed during Zone NP23-NP24 time (based on biostratigraphic evidence in Fairhope-1) and is interpreted to have formed during and after the major mid-Oligocene global fall in sea-level (30Ma event) proposed by Vail <u>et</u>. <u>al</u>. (1977). This event has certainly resulted in a widespread mid-Oligocene disconformity in offshore Gippsland Basin wells (unpublished data).

A 5m thick glauconitic sandy marl of Early/Late Oligocene (Zone NP23-NP24) age is inferred to rest on the mid-Oligocene disconformity surface in Comley-1. The top of this sequence is

ŧ

A REAL AND A REAL AND A

defined by another oxidized horizon between 476-478m (defined by sonic kick). The sidewall core sample at 476.5m penetrated a highly oxidized siltstone. A second and younger intra-Lakes Entrance Formation disconformity is inferred at 476m with 'upper member' marls of Late Oligocene (Zone NP25) age resting on 'lower member' oxidized glauconitic facies of Zone NP23/24 age. The oxidized horizon has also been recorded in Fairhope-1 between 530.5m and 534m, and in Paynesville-1 between 569m and 570.5m (see Figure 2).

)

)

)

The boundary between the Gippsland Limestone and the Lakes Entrance Formation has been selected at the log break at 438.5m. The sidewall core sample immediately above the log break at 438.0m is a bryozoan rich calcarenite.

V. MICROPALAEONTOLOGY

)

Ì

)

A total of 14 sidewall core samples from the interval 161.0-486.5m were analysed for foraminifera and calcareous nannoplankton. Calcareous microfossil species identified in the well section, interpreted zonation and depositional environment subdivision have been plotted on the micropalaeotological distribution chart (Enclosure 1).

The planktonic foraminiferal letter zonal scheme of Taylor (in prep.) and the NP-NN calcareous nannoplankton letter scheme of Martini (1971) are used in this investigation. Foraminiferal studies by Carter (1964) and Jenkins (1971), and calcareous nannoplankton investigations by Edwards (1971) and Siesser (1979), have also been consulted.

- (A) Calcareous Nannoplankton Biostratigraphy
- i) 161.0m-178.3m : Indeterminate
 The low yielding and poorly preserved calcareous nannofossil assemblages at 161.0m and 178.3m are not age diagnostic.
- ii) 347.5m-379.0m
 : Zones NN4-NN5 (Upper Early Miocene-Lower Middle Miocene)

The occurrence of <u>Sphenolithus</u> <u>heteromorphous</u> in the interval indicates a Zone NN4 to NN5 age.

iii) 412.5m-438.0 : Zones NN2-NN3 (Early Miocene)
The downhole extinction of <u>Sphenolithus heteromorphous</u> at 412.5m and the uphole appearance of <u>Discoaster druggii</u> at 438.0 indicates that the interval is NN2 to NN3 in age.

ECL AUSTRALIA PTY ITD

iv) 447.5m-465.0m : Zone NN1 (basal Early Miocene)
 The association of <u>Helicosphaera cf. cartieri</u> without
 <u>Zygrhablithus bijugatus</u> (extinction marker that
 approximates the top of the Oligocene in the Gippsland Basin
 and New Zealand) and <u>Discoater druggii</u> (defining event for
 base of Zone NN2) indicates that the rich nannofossil
 assemblage in the interval is assignable to the upper part
 of Zone NN1.

)

)

)

- v) 473.0m : Zone NP25 (Late Oligocene) The common occurrence of <u>Dictyococcites bisectus</u> without <u>Chiasmolithus oamaruensis</u> indicates that the sample at 473.0m is Zone NP25 in age. The nannofossil assemblage equates with the <u>Discoaster deflandre</u> Zone of Edwards (1971).
- vi) 476.5m : Indeterminate
 The moderate yielding nannofossil assemblage at 476.5m
 comprises mainly downhole contaminants from the Early
 Miocene section higher in the well. The absence of
 Oligocene marker species indicates that <u>in situ</u> nannofossils
 are absent or rare.

vii) 478.5m-480.0m : Zones NP23-NP24 (Early/Late Oligocene boundary).

The uphole extinction of <u>Chiasmolithus oamaruensis</u> at 478.5m defines the top of Zone NP24 in the well (= top of <u>Syrocosphaera clathrata</u> Zone of Edwards, 1971). The absence of <u>Reticofenestra umbilica</u> (= <u>R</u>. <u>placomorpha</u> of Edwards 1971) indicates that the nannofossil assemblage in the interval is no older than Zone NP23. The base of Zone NP23

4

correlates with the base of the <u>Cyclococcolithus</u> <u>neogammation</u> and the top of the <u>Reticulofenestra</u> <u>placomorpha</u> Zones of Edwards (1971).

B) Planktonic Foraminiferal Biostratigraphy

)

)

- i) 161.0m : Indeterminate
 The very low yielding planktonic foraminiferal assemblage at
 161.0m is not age-diagnostic.
- ii) 178.3m : Zone D (Middle Miocene)
 The association of <u>Orbulina universa</u> and <u>Globorotalia mayeri</u>
 at 178.3m is indicative of Zone D.
- iii) 347.5m : Zone F (Early Miocene) The occurrence of <u>Globigerinoides sicanus</u> without the <u>Orbulina-Praeorbulina</u> group indicates that the sample at 347.5m is Zone F in age.
- iv) 352.0m-424.0m : Zone G (Early Miocene)
 The uphole appearance of <u>Globigerinoides trilobus</u> at 424.0m
 defines the base of Zone G in the well.
- v) 438.0m : Zone H1 or younger (Early Miocene)
 The moderately high yielding assemblage at 438.0m is
 dominated by <u>Globigerina praebulloides</u>. The occurrence of
 <u>Globorotalia obesa</u> indicates an age no older than Zone H1
 (based on range of species in New Zealand as defined by
 Jenkins, 1971).

- vi) 447.5m : Zone H1 (Early Miocene)
 The occurrence of <u>Globigerina woodi connecta</u> without
 Globigerinoides trilobus at 447.5m indicates a Zone H1 age.
- vii) 465.0m : No older than 11 (no older than Late Oligocene)

The presence of <u>Globoquadrina</u> <u>dehiscens</u> at 465.0m indicates an age no older than Zone I1. The high yielding planktonic foraminiferal assemblage is dominated by juveniles, turborotalids and globigerinids.

viii) 473.0m-478.5m : Indeterminate.

Samples at 473.0 and 476.5m contain planktonic foraminiferal assemblages which are not age-diagnostic while the sample at 478.5m is barren.

C) Environment of Deposition

)

)

i) 161.0m-178.3m : Inner neritic
 An inner neritic benthonic foraminiferal assemblage
 comprising a moderately diverse calcareous benthonic fauna
 including common <u>Elphidium crassatum</u> is represented in the
 interval. The abundance of bryozoan fragments in the

ii) 347.5m : Inner/middle neritic
 The common occurrence of bryozoan fragments, the very low
 yield of planktonic foraminifera, and the presence of
 moderate numbers of <u>Cassidulina subglobosa</u> and <u>Brizalina</u>
 spp, indicates that the sample at 347.5m was deposited in an
 inner to middle neritic environment.

interval confirms an inner neritic environment of deposition.

ECL AUSTRALIA PTYITO

11

iii) 352.Om : Middle Neritic

The sample at 352.0m comprises approximately 10% planktonic foraminifera with a rich calcareous benthonic foraminiferal assemblage including high numbers of <u>Brizalina</u> spp. and moderate numbers of <u>Uuvigerina</u> spp. This foraminiferal assemblage is typical of a middle neritic environment.

iv) 379.0m - 424.0m : Inner neritic

An inner neritic environment of deposition for the interval is reflected by the low yield of planktonic foraminifera, very low numbers of <u>Brizalina</u> spp and <u>Euvigerina</u> spp. and the common occurrence of bryozoan fragments.

v) 438.0m : Inner/middle neritic The sample at 438.0m comprises approximately 15% planktonic foraminifera, lacks <u>Euvigerina</u> spp. and <u>Brizalina</u> spp., but contains moderate numbers of <u>Sphaeroidina</u> <u>bulloides</u>. Bryozoan fragments represent a common constituent of the fossil assemblage in the sample. The foraminifera and associated macrofossil debris are indicative of an inner to middle neritic environment of deposition.

vi) 447.5-473.0m : Middle neritic

The interval contains moderately high numbers of planktonic foraminifera dominated by juveniles, turborotalids and globigerinids. The planktonic foraminiferal percentage ranges between 10 and 25%. The benthonic foraminiferal assemblage in the interval is very diverse with moderate to high numbers of <u>Sphaeroidina bulloides</u> and <u>Euvigerina</u> spp. Bryozoan fragments are lacking. The toraminiferal

1.

assemblage in the interval is indicative of a middle neritic environment.

vii) 478.5m : Inner neritic

The common occurrence of <u>Parrellina crespinae</u> together with the lack or absence of <u>Brizalina</u> spp., <u>Euvigerina</u> spp., <u>Sphaeroidina</u> <u>bulloides</u> and planktonic foraminifera, indicate that the sample at 478.5m was deposited in an inner neritic environment.

viii) 480.0m : Marine

)

Only calcareous nannoplankton was scrutinized for the sample at 480.0m. The occurrence of common nannofossils in the sample indicates a marine environment of deposition.)

}

)

ammercarias

Four samples, three between 478.5m and 486.5m inclusive, and one at 161.0m, were palynologically analysed. The upper two samples were low to moderate in organic and palynomorph contents while the lower two were rich on both accounts. The following palynological zones are recognised:

A) Palynostratigraphy

 i) 161.0m : <u>Triporopollenites</u> <u>bellus</u> Zone or younger (Miocene)

The sample is not older than the <u>Triporopollenites bellus</u> Zone of Early-Middle Miocene as indicated by <u>Rugulatisporites micraulaxus</u> which has its base occurrence in the zone. The dinoflagellate cyst <u>Operculodiunium</u> <u>giganteum</u> occurring in the sample is known to be restricted to the Miocene.

ii) 478.5m - 486.5m : <u>Proteacidites tuberculatus</u> Zone (Oligocene).

The interval is correlated with the <u>Proteacidites tuberculatus</u> Zone of Oligocene age on account of the following evidence: <u>Cyathidites subtilis</u>, <u>Foveotriletes crater</u> and <u>Proteacidites</u> <u>symphyonemoides</u> have their basal occurrences in the zone; and <u>Nothofagidites asperus</u>, <u>Parvisaccites catastas</u> and <u>Proteacidites stipplatus</u> have their top occurrences in the same zone. Also, the dinoflagellate cyst <u>Hystrichokolpoma</u> <u>rigaudae</u> occurring in all samples has its known top in the Oligocene.

B) Environment of Deposition

.

)

)

)

All samples examined contain abundant and diverse dinoflagellate cysts and common foraminiferal chamberlinings indicating deposition in a marine environment.

)

Two samples at 480.0m and 486.5m were examined for source rock potential and organic maturity. The results are given in Tables 1A, 1B and 1C, and the methods and terms used are explained in Appendix No. 1.

Both samples yielded less than 0.5ml/10g organic matter suggesting a poor source-rock potential countered slightly by moderate liptinite and fluorescing liptinite percentages. The spore colours varied from light yellow through yellow to light orange and gave white and yellow fluorescence colours. These data are indicative of immaturity to early oil generating capabilities.

Vitrinite reflectance determinations were made on both the samples (Appendix 2). At 480m the 12 readings indicate a mean reflectance of 0.24% with a range of 0.19% to 0.32%. At 486.5m 27 readings gave a mean of 0.27% with a range of 0.19% to 0.34%. These confirm the immaturity of the section.)

)

CARTER, A.N., 1964. Tertiary foraminifera from Gippsland, Victoria and their stratigraphic significance. <u>Geol. Surv. Vict.</u>, Mem. 23.

EDWARDS, A.R., 1971. A calcareous nannoplankton zonation of the New Zealand Paleogene. In : FARINACCI, A. (Ed). <u>2nd plank.</u> <u>Conf.</u>, Roma 1970., Proc. 1 : 381-419.

JENKINS, D.J., 1971. New Zealand Cenozoic foraminifera. <u>N.Z.</u> Geol. Surv. Bull 42 : 278p.

MARTINI, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In : FARINACCI, A., (Ed.). <u>2nd plank.</u> <u>Conf., Roma 1970., Proc</u>. : 739-785.

RAINE, J.I., 1984. Outline of a palynological zonation of Cretaceous to Paleocene terrestrial sediments in West Coast Region, South Island, New Zealand. <u>N.Z. Geol. Surv.</u>, Report No. 109.

SIESSER, W.G., 1979. Oligocene-Miocene calcareous nannofossils from the Torquay Basin, Victoria, Australia. <u>Alcheringa</u>, 3 : 159-170.

STOVER, L.E., and PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceus spores and pollen from the Gippsland Basin, Southeastern Australia. <u>Proc. R. Sol. Vic.</u>, 85(2) : 237-286. TAYLOR, D.J., (in prep). Observed Gippsland biostratigraphic sequences of planktonic foraminiferal assemblages.

VAIL, P.R., MITCHUM R.M, AND THOMPSON, S., 1977. Global cycles of relative changes of sea level. In PAYTON, C.E. (Editor), Seismic Stratigraphy – Applications to Hydrocarbon Exploration. <u>Am. Assoc. Pet. Geol., Mem.</u>, 26 : 83-97.

)

FIGURE 1 : (MARY CHART, CONLEY-1

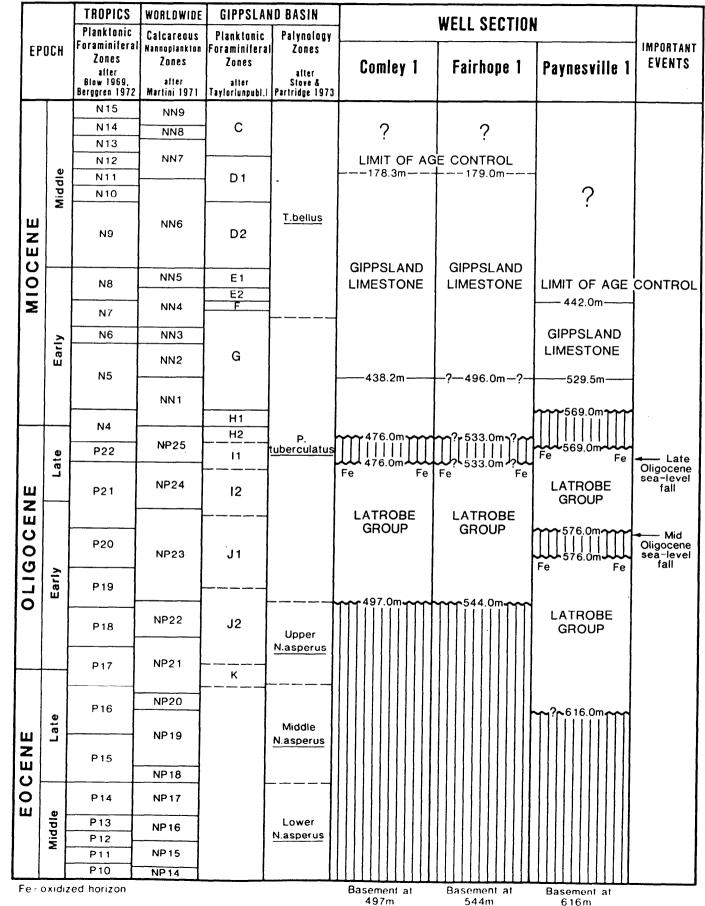
QEPTH (mkB)	LITHOLOGY *	UNIT	NANNOFOSSIL ZONE	PLANK Foram Zone	PALYNOLOGY ZONE	AGE	ENVIRONMENT
151.0	Calcarenite		Indeterm.	Indeterm.	T. bellus or or younger	Upper Early Miocene or younger	Inner neritic
178.3	Calcarenite		Indeterm.	D	Not studied	Middle Miocene	Inner neritic
347.5	Calcarenite		NN4-NN5	F	Not studied	Upper Early Miocene	Inner-middle neri
152.0	Calcisiltite	Gippsland	NN4-NN5	G	Not studied	Upper Early Miocene	Middle neritic
379.0	Calcarenite	Limestone	NN4-NN5	G	Not studied	Upper Early Miocene	Inner neritic
412.5	Calcarenite		NN2-NN3	G	Not studied	Early Miocene	Inner neritic
424.0	Calcarenite		NN2-NN3	G	Not studied	Early Miocene	Inner neritic
-38. 1	Calcarenite		NN2-NN3	H1 or younger	Not studied	Early Miocene	Inner/middle neri
				log break at 438.5	1		
447.5	Marl	Lakes	NN 1	Н1	Not studied	Lower Early Miocene	Middle neritic
465.0	Marl	Entrance	NN 1	No older than I1	Not studied	Lower Early Miocene	Middle neritic
473.0	Marl	Formation (upper member)	NP25	Indeterm.	Not studied	Late Oligocene	Middle neritic
				log break at 476.0	N		
#476.5	Oxidized siltstone		Indeterm.	Indeterm.	Not studied		Indeterm.
478.5	Sandy glauconitic marl	Lakes Entrance	NP23-NP24	Indeterm.	P. tuberculatus	Early/Late Oligocene	Inner meritic
480.0	?	Formation (lower member)	NP23-NP24	Not studied	P. tuberculatus		+ Marine
				log break at 481.0	M		
485.5	?		Not studied	Not studied	P. tuberculatus	Early Oligocene	+ Marine

* Lithology based on washed residue

 \smile

Downhole contamination noted.

+ Environment based on palynomorph data.


 \smile

Process Process <t< th=""><th></th><th></th><th>TROPICS</th><th>WORLDWIDE</th><th>GIPPSLA</th><th>ND BASIN</th><th colspan="7">WELL SECTION</th></t<>			TROPICS	WORLDWIDE	GIPPSLA	ND BASIN	WELL SECTION						
Image Product Instruction Instruction N15 NN83 C ? ? N15 NN84 C ? ? N13 NN7 C ? ? N11 N11 DI	EPOCH		Foraminiferai Zones	Nannoplankton	Foraminiferai	Zones	COMLEY-1	FAIRHOPE -1	PAYNESVILLE - I				
NIA NIA <td>Biow 1969,</td> <td></td> <td>after Taylor (unpubl)</td> <td>Stover 6</td> <td></td> <td></td> <td></td> <td></td>			Biow 1969,		after Taylor (unpubl)	Stover 6							
NIS NN7 NN7 Di NI NN7 Di Tables P NO NN6 D2 Glapstad Blapstad U NS NN2 G Glapstad Blapstad U NS NN2 G Glapstad Class Estress Fm. Class Estress Fm. Class Estress Fm. (Super math") P22 NP24 I2 Estress Fm. Class V P20 NP23 J1 Fe discord mode Fe fe fe	5		N15	NN9									
U N12 N17 O NI NI O O To Sum 170 Dm 770 Dm 442 Om	Τ,		N14	NNB	с		?	?					
U NN NN Di NS NN6 D2 0 ipplicad 0 ipplicad 0 ipplicad NS NN6 D2 0 ipplicad 0 ipplicad 0 ipplicad 0 ipplicad NS NN6 D2 0 ipplicad 0 ipplicad 0 ipplicad 0 ipplicad NS NN6 D2 0 ipplicad Umestore 0 ipplicad Implicad NS NN2 G 430.5 m			}	NN7									
U W NHG D2 N NHG D2 0 ippalend 0 ippalend N NHG NNA E2 0 ippalend 0 ippalend N NHG NNA E2 0 ippalend 0 ippalend N NHG NNA E2 0 ippalend 1 impatework N NH NH E2 0 ippalend 1 impatework NHG NHZ 0 ippalend 1 impatework 1 impatework NH NHZ NH 1 ippalend 1 impatework NH NHZ NHZ 1 ippalend 1 ippalend NH NHZ NHZ 1 ippalend 1 ippalend NHZ NHZ 1 ippalend		L	·					179.0m					
W N9 NN6 Tability 0 N9 NN6 02 0 ippaiend 0 ippaiend 0 N8 NN5 E1 0 ippaiend Uppaiend 0 N8 NN5 E1 0 ippaiend Uppaiend 1 N6 NN3 0 0 ippaiend Uppaiend 1 N6 NN3 0 0 ippaiend Uppaiend 1 N6 NN3 0 0 0 ippaiend 1 N1 E1 0 ippaiend Unational 1 N2 G 0 0 ippaiend Unational 1 N1 H1 0					וט				2				
N9 D2 N8 NN5 El N8 NN5 El N8 NN2 G N8 NN2 G N8 NN2 G N9 D2 Glipsiend Linestene N8 NN2 G Glipsiend Linestene N8 NN2 G Glipsiend Linestene N9 N2 G G Glipsiend Linestene N9 N2 G Glipsiend Linestene Linestene N1 H1 H1 Glipsiend Linestene Linestene U1 P21 N25 H2 Glipsiend Linestene Linestene U2 P21 NP24 I2 P10				NNG		<u>T. bellus</u>			•				
U N8 NN5 E1 N7 NN4 E2 N7 NN4 E2 N7 NN4 E2 N7 NN4 E2 N8 NN7 E1 N8 NN2 6 N8 NP25 I1 P12 NP24 I2 P20 NP23 J1 F F S00 I F E1 case Encore Fractore Frac	1		N9	NNO	D2								
NB NN5 E1 N7 N4 E2 N7 N4 E2 N7 N6 NN3 N6 NN3 G N5 NN1 Carriere Fm. Linestone Carriere Fm. Late Extranse Fm. Carriere Fm. Carriere Fm. <td>ω</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	ω									1			
Image: state in the s	1		NO	NN5	El								
N7 N8 Operation Operation N6 NN3 G 438.5m ? = 476.5m - ? 632.0m N5 NN1 Lake Lake Lake Lake Lake U N4 NP2 G 438.5m ? = 476.5m - ? Loke	-		NO				Limestone	Limeerone	440.0-				
Image: Second	X		N7	NN 4	F								
M NN2 G Also and the second secon		1	N6	NN 3									
N5 N1 Hi A38-8 m ? - 478-8 m ? - 478-8 m ? - 678-8 m ? - 678-6 m 688-8 m 6188-8 m 688-8 m				NN2	G				Limestone				
Later Later Constrained Fin. (upper number) (upper number)			N5	15		Ļ	438·5m						
N 4 HI ('upper member') ('upper member') ('upper member')) H2 NP25 II H2 Sold on the second secon									('upper member')				
u P22 NP25 H2 Fe Fe Fe Fe Fe Entrance Fe Lates u P21 NP24 I2 Entrance Fe Fe Entrance Fe Fe Entrance Fe Fe Entrance Fe Fe Fe Entrance Fe Fe Entrance Fe Fe Fe Fe Entrance Fe Fe <					ні								
1 1 P22 I1 Ptuberculatue Fe 476.0 m Fe Fe Lakes Lakes 1 P21 NP24 I2 Fe Fe Fe Fe Lakes Entrance Fm. (lower member) 1 P21 NP24 I2 Fe Fe Fe Fe Fe Lakes 1 P21 NP24 I2 Fe Fe Fe Fe Lakes 1 P20 NP23 J1 Fe Fe Fe SS6.0 m Fe 1 P19 Fe Fe Fe SS6.0 m Fe SS6.0 m Fe 1 P19 Fe Fe Fe SS6.0 m Fe SS6.0 m Fe Fe SS6.0 m Fe Fe SS6.0 m Fe Fe SS6.0 m Fe Fe Fe SS6.0 m Fe Fe Fe SS6.0 m Fe Fe Fe Fe SS6.0 m Fe Fe SS6.0 m Fe Fe SS6.0 m Fe SS6.0 m Fe SS6.0 m				NP25	H2	ŀ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
NP24 I2 Fe Fe Fe Fe Fe Fe Entrance Fn Lake Entrance Fn Class Entrance Fn Class <th< td=""><td>)</td><td>P22</td><td></td><td>II</td><td>tuberculatur</td><td></td><td>〜〜?よ530.6m~? ~↓</td><td>569.0m - Fa</td><td></td></th<>)		P22		II	tuberculatur		〜〜?よ530.6m~? ~↓	569.0m - Fa				
u P21 M.C.P. I2 Entrance Fm. Entranc	1			NP24									
w w			P21		12			-					
0 0 0 1 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>676.0</td> <td>Mid-Olisscere</td>	1								676.0	Mid-Olisscere			
0 120 NP23 J1 Fe 461:0 m Fe Fe 535:0 m Fe 7e 535:0 m Fe 7e 535:0 m Fe 7e 535:0 m Fe 7e 7e 535:0 m Fe 7e			P 20							-Sec-level			
Image: state of the state	1		120	NP23	JI			536.0m	?				
0 4	1	L	PIQ				Lakes Entrance Fm.	Lakes Entrance Fm.					
PIB NP22 J2 Upper H.asperus Lates Entrance Fm. (basal sandy mbr.) or PI7 NP21	0	۲			1			541·5m	Fe BTB. Om Fa				
Upper Upper Upper Or Control or PI7 NP21 K				NP22					Lakes Entrance Pm.				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			P18		JZ								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				NP2I		N.asperus							
W PI6 NP20 W NPI9 Middle NPI9 N.asperus W NPI8 W NPI8 W NPI8 PI3 NPI6 PI2 NPI5 PI0 NPI4			P17	L	ĸ				(doorse clastics)				
W Middle V P15 NP18 NP18 P14 NP17 V P13 NP16 P12 P10 NP14			PIG	NP20					·				
U J NPI9 N.asperus U PI5 NPI8 U PI4 NPI7 U PI3 NPI6 PI2 PI1 NPI5 PI0 NPI4						Middle							
	ω			NPI9		N. asperus							
PI4 NPI7 W PI3 NPI6 PI2 PI1 PI0 NPI5	z		P15										
W P13 NP16 P12 P11 NP15 P10 NP14	ш			NPIB	F								
PI3 NPI6 Lower PI2 PI1 NPI5 PI0 NPI4	ノ		P14	NPI7									
D PI2 N. 08004708 PI1 NP15 PI0 PI0 NP14	ω	2	P13	NPIG		Lower							
PII NPI5 PIO NPI4		MID	P12			N. asperus							
				NPI5									
e * oxidized horizon Basement at 497m Basement at 544m Basement at 66m or 626m				NPI4									

Fig 2 Tentative chronostratigraphic correlation between Comley-1, Fairhope-1, & Paynesville-1 wells, onshore Gippsland Basin

Tentative chronostratigraphic correlation between COMLEY 1, FAIRHOPE 1 & PAYNESVILLE 1 wells,

onshore Gippsland Basin - revised by Ampol Exploration Ltd

)

)

FIGURE 3

Spores and pollen recorded in Comley-1

KEY:

)

)

x present c common	E	ε	E	ε		
cf = compared with	0.	÷.,	3.5	ō.		
	161.0m	468.5m	478,5m	480.0m		
Alisporites varius	×			×		
Araucariacites australis		×	×	×		
Baculatisporites comaumensis		x	x			
Baculatisporites disconformis	×					
Cyathidites australis	×	×	x	x		
Cyathidites minor	×	×	c	x		
Cyathidites subtilis	×	×	×	x		
Cycadopites follicularis	×		×			
Dacrycarpites australiensis	×	×	×			
Gleicheniidites senonicus		×		x		
Haloragacidites harrisii	×	x	x	x		
Herkosporites elliottii		x	×	x		
Lacvigatosporites major	x	x	x	x		
Laevigatosporites ovatus	x	×	×			
Liliacidites lanceolatus	x					
Lygistepollenites florinii	×	×	×	×		
Malvacipollis subtilis		x	x	x		
Myrtaceidites eugenioides		×				
Myrtaceidites verrucosus				x		
Nothofagiditee brachyspinulosus		x	x			
Nothofagidites asperus		x	x			
Nothofagidites deminutus		x				
Nothofagidites emarcidus	×	×	×	×		
Nothofagidites falcatus		x				
Nothofagidites flemingii		x	x			
Nothofagidites goniatus		x				
Nothofagidites heterus		x	x	x		
Nothofagidites incrassatus	x	x	x			
Nothofagidites vansteenisii		x	x	x		
Osmundacidites wellmanii		×	x			
Parvisaccites catastus		x		x		
Phyllocladidites verrucatus	x	x	x	x	•	
Podocarpidites ellipticus	x	x	x	x		
Propylipollis beddoesii		x		x		
Proteacidites adenanthoides	×					
Proteacidites crassus			x			
Proteacidites granulatus	×	×		×		
Proteacidites incurvatus		x				
Proteacídites obscurus		x				
Proteacidites stipplatus			x	x		
Proteacidites symphyonemoides		x				
Proteacidites tenuiexinus			×			
Retitriletes austroclavatidites		×	x			
Rugulatisporites micraulaxus	×					
Tricolpites aspermarginis			×			
Tricolpites simatus		×	x			
Tricolporites paenestriatus		x				
Triletes tuberculiformis	×	x	×	x		
Verrucatosporites confragosus	••	x				

FIGURE 4

Dinoflagellates and acritarchs recorded in Comley-1

<u>KEY</u>:

)

)

<pre>x = present c = common cf = compared with</pre>	161,0m	468.5m	478.5m	480.0m
Chiropteridium sp.				x
Dapsilidinium pastielsii				х
Eatonicysta n.sp.				х
Hystrichokolpoma rigaudae		х	х	х
Kallosphaeridium biarmatum				х
Leiosphaeridia sp.	х	х	x	х
Lingulodinium siculum	х			
Micrhystridium sp.				х
Operculodinium bellulum		x	x	х
Operculodinium centrocarpum	x	x	x	x
Operculodinium giganteum	x			
Paucisphaeridium sp.			x	
Pentadinium taeniagerum				х
Polysphaeridium biformum			,	x
Pterodinium cingulatum		x		
Senoniasphaera n.sp.				x
Spiniferites bentorii	x			
Spiniferites membranaceous		x		
Spiniferites mirabilis	х		x	х
Spiniferites pachydermus	x		х	x
Spiniferites ramosus gracilis	x	x	х	х
Spiniferites ramosus granomembranaceous				х
Spiniferites ramosus multibrevis	х		x	x
Spiniferites ramosus ramosus	x	x	x	x
Spiniferites ramosus reticulatus				х
Spiniferites spp.	x	x	x	x
Tectatodinium pellitum			x	

TABLE 1

)

Summary of the source rock and maturity data from Comley-1

TABLE 1A

DEPTH (m)	PALYNOLOGICAL ZONE	AGE	ENVIRONMENT OF DEPOSITION	OIL POTENTIAL	MATURITY
480.0	P. tuberculatus	Early Oligocene	Marine	Poor	Immature
486.5	P. tuberculatus	Early Oligocene	Marine	? Moderate	Immature

TABLE 18

	DEPTH (m)	SAMPLE NO.	WEIGHT (g)	VOM (ml)		% MICRO- Plankton	PLANKTON	SPORE- POLLEN Y DIVERSITY	YIELC	I CUT-) ICLE (0-4)	-OGEN	-OGEN	SAPROPEL	AMORPHOUS Sapropel (0-4)
	480.0 486.5	7 6	10 10	0.4 0.3	3 3	20 90	2 4	4 4	1 2	1 1	3 3	3 3	2 2	2 2
	TABLE 1C													
)	DEPTH (=)	VOM m1/10g				CENT VOL. TES LIP1 micr	INITES	OIL GAS INDEX INDEX (0-4) (0-4)		PORE CO	DLDUR	FL	UV LIPTI UORESCENC	
		0.40 0.30	60 60	10 10		8 8	32 24			11-Yel] 11-Yel]			te - Yell te - Yell	

.

)