

PE990065

4

SOME TRILETE SPORES FROM UPPER MESOZOIC DEPOSITS IN THE EASTERN AUSTRALIAN REGION

By Isabel C. Cookson* and Mary E. Dettmann* [Read 12 December 1957]

Abstract

Twenty-nine trilete microspore species are recorded; twenty-one of these are new types.

New occurrences for four megaspores species are recorded, twenty-one of these are new types. New occurrences for four megaspores species are noted. Evidence indicating a Lower Cretaceous (Albian) age for several Victorian deposits, three of which have previously been referred to the Lower Jurassic, is brought forward. A correlation is established between the lower section of the Robe Bore and the Wonthaggi Coal Measures. It is suggested that the age of both deposits is Lower Cretaceous (Neocomian-Action) Aptian).

Introduction

This paper is the outcome of early work on a long-term project which has for its ultimate aim the dating of the freshwater Mesozoic deposits of south-eastern Australia and Tasmania by palynological means. It is concerned partly with the identification and description of some of the more distinctive types of trilete microspores that occur in certain eastern Australian Upper Mesozoic sediments and partly with the stratigraphical implications to which they have given rise.

Until comparatively recently a Jurassic age has been accepted for all the freshwater Mesozoic deposits occurring in Victoria (the Triassic beds of the Bacchus Marsh area excepted) and the adjoining area of south-eastern South Australia. This age determination was originally based on the macroscopic plant remains which are frequently abundant in such Victorian deposits. In 1904, Seward compared the flora of the coal measures of these deposits with that of the Rajmahal Hills in India, while Medwell (1954a) after a re-examination of the flora as a whole came to the conclusion that it was of Lower Jurassic age.

The first intimation of the occurrence of Cretaceous deposits in Victoria was made by Kenley (1954) following the discovery of fragmentary dicotyledonous leairemains in the mudstone of the Runnymede Formation in south-western Victoria. The flora of this Formation was assigned to the Lower Cretaceous by Medwell (1954b.).

Concurrently, on palynological grounds, Cookson (1953, 1954) suggested a probable Cretaceous age for the lower section of the Birregurra Bore, 1,073-90 ft., and the sediments in the Comaum Bore, 651-708 it., and soon afterwards Baker and Cookson (1955) recognized Upper Cretaceous sediments in the Nelson Bore of south-western Victoria, 5,782-6,192 ft.

On the evidence of megaspores, Cookson and Dettmann (1958) have suggested a Lower Cretaceous (Albian) rather than a Jurassic age for certain additional de-posits in Victoria and South Australia. Some of the megaspores are referable to species which occur in Lower Cretaceous deposits in the Netherlands and England, others permit correlations with Australian deposits known, by their microplankton content, to be Lower Cretaceous.

* Botany Department, University of Melbourne.

The individual microspore types and microspore assemblages to be considered below give added support to the Lower Cretaceous age-determinations previously mentioned, and clearly indicate a more extensive distribution of Cretaceous sediments in Victoria than was previously recognized. Furthermore, they suggest that for the Victorian black coal measures, mentioned

Furthermore, they suggest that for the Victorian black coal measures, mentioned above, and beds of similar stratigraphic position, a Lower Cretaceous (Neocomian-Aptian) age.

......

٠

a state from product a state of the

(

It

ç

;

.....

į

a starter of

Consideration has been restricted to trilete forms and the system of nomenclature suggested by Potonié (1956) for form-genera of such types has been followed throughout.

Unless otherwise specified, the polar dimensions included in the descriptions have been derived from at least ten examples.

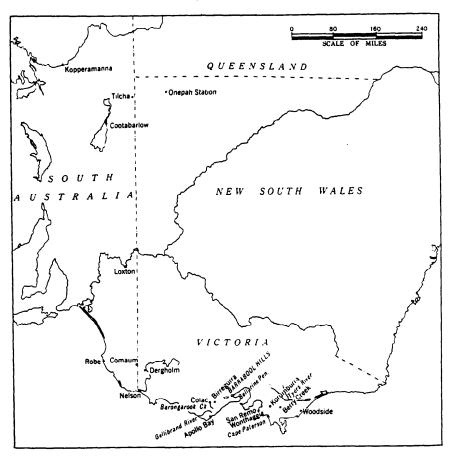
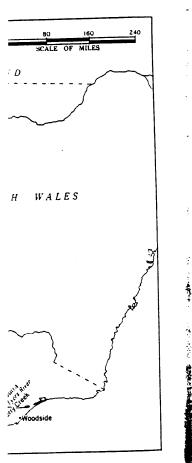


FIG. 1.—Map of south-eastern Australia, showing location of deposits in which the Upper Mesozoic spore associations have been found. (Prepared by the Geological Survey of Victoria.)


ETTMANN:

semblages to be considered e-determinations previously bution of Cretaceous sedi-

k coal measures, mentionea er Cretaceous (Neocomian-

the system of nomenclature h types has been followed

ided in the descriptions have

of deposits in which the Upper te Geological Survey of Victoria.)

SOME TRILETE SPORES, EASTERN AUSTRALIAN REGION

Location and Age of Sediments

WESTERN AUSTRALIA. Carnarvon Basin, Exmouth Gulf area, Gearle Siltstone (lower part). West Australian Petroleum Pty. Ltd., Rough Range Well No. 1 at 2,750 ft. Age: Lower Cretaceous (Albian Cookson and Eisenack 1958. Perth Basin, Moora Bore 86-170 ft. Age: Lower Cretaceous (Albian) Cookson and Eisenack 1958. Canning Basin, Broome No. 1 Artesian Bore at 977 ft. Age: Upper Jurassic Cookson (unpublished).

South Australian Oil Wells (No Liability), Bore No. 1. (a) 1,400-2630 ft. Age: Lower Cretaceous (Albian) Cookson and Dettmann 1958. (b) 2,630-3,500 ft. Age: Jurassic (Ward 1917), Lower Cretaceous (Albian) authors. (c) 3,860-4,300 ft. Age: Jurassic (Ward 1917), Lower Cretaceous (Albian) authors. (c) 3,860-4,300 ft. Age: Jurassic (Ward 1917), Lower Cretaceous (Neocomian-Aptian) authors. Cootabarlow near Lake Frome, Bore No. 2 (a) at 581 ft. and 810 ft. Age: Lower Cretaceous (Albian) Cookson and Eisenack 1958. (b) at 1,354 ft. Age: Lower Cretaceous (Albian) Cookson and Eisenack 1958. (c) at 1,465 ft. Age: Lower Cretaceous (Neocomian-Aptian) authors. Kopperamanna near Lake Frome, Bore No. 1 at 2,970 ft. Age: Lower Cretaceous (Neocomian-Aptian) Woodard 1955. Tilcha Bore near Lake Frome, at 460 ft. and 1,040 ft. Age: Lower Cretaceous (Albian) Cookson and Dettmann 1958. Loxton near Renmark, Australian Oil and Gas Corporation Ltd., Bore No. 1. at 1,410 ft. and 1,470 ft. Age: Lower Cretaceous (Albian) N. H. Ludbrook, South Australian Department of Mines Palaeontological Report—14/56, 1956 unpublished. Comaum, Hundred of Comaum, Bore No. 1, at 651 ft. and 708 ft. Age: Lower Cretaceous (possibly Albian) Cookson and Dettmann 1958.

VICTORIA. Nelson. Parish of Glenelg. Carbonaceous sediments from Victorian Department of Mines Bore at 4,782 ft., 6,233 ft., and 6,485-7 ft. Age: Upper Cretaceous Baker and Cookson 1955. Parish of Dergholm. Victorian Department of Mines Dergholm Bore No. 1 at 532 ft. and 582 ft. Age: Lower Cretaceous authors. Dergholm Bore No. 2 329-31 ft. Age: Lower Cretaceous (possibly Albian) Cookson and Dettmann 1958. Barongarook Creek, SW. of Colac. Age: Lower Cretaceous (Albian) Cookson and Dettmann 1958. Birregurra, Parish of Birregurra, carbonaceous sediments from Victorian Department of Mines Bore 1,070-80 ft., 1089-90 ft., and 1,101-2 ft. Age: Lower Cretaceous Cookson 1954. SE. of mouth of Gellibrand River, E. side of Devil's Kitchen, mudstone from near Mesozoic-Paleocene unconformity. Age: Lower Cretaceous (Albian) authors. Apollo Bay, shale containing *Cladophlebis denticulata*. Age: Lower Jurassic Medwell 1954, Lower Cretaceous (Neocomian-Aptian) authors. Bellarine Peninsula, near Geelong, Little's Shaft No. 2 38-47 ft. Age: Lower Cretaceous (Albian) Cookson and Dettmann 1958. Barrabool Hills, 1 m. SW. Fyansford, Geelong. Sample from outcrop along Barwon River. Age: Lower Jurassic Medwell 1954, Lower Cretaceous (?Albian) authors. San Remo Peninsula. Shale containing *Taeniopteris hislopi* taken from above Coal Measures. Age: Lower Jurassic Medwell 1954, Lower Cretaceous (Neocomian-Aptian) authors. Cape Paterson, W. of Inverloch. Shore platform outcrop. Age: Lower Jurassic Medwell 1954, Lower Cretaceous (Neocomian-Aptian) authors. Cupe Paterson, W. of Inverloch. Shore platform outcrop. Age: Lower Jurassic Medwell 1954, Lower Cretaceous (Neocomian-Aptian) authors. Wonthaggi State Coal Mine Area. (a) Victorian Department of Mines Bore No. 175 at 760 ft. Shale containing *Equisetites wonthaggiensis* (N.M.V. P12893). (b) Shale containing *Coniopteris hymenophylloides*. (c) West Area Mine. (1) Carbonaceous seam, west dip section, 400 ft., below sea level. (2)

97

Carbonaceous mudstone immediately above bottom seam. (3) Mudstone cuttings from floor of bottom coal seam. (d) No. 20 shaft. Carbonaceous mudstone from above top coal seam. (e) Kirrak Area. (1) Main coal seam, 103 ft. below sea level. (2) Mudstone from floor of coal seam. Age: Lower Jurassic Medwell 1954, Lower Cretaceous (Neocomian-Aptian) authors. Korumburra, Sunbeam Collieries. (a) Coal taken from seam at 350 ft. (b) Shale above coal seam. Age: Lower Jurassic Medwell 1954, Lower Cretaceous (Neocomian-Aptian) authors. Alberton, Parish of Alberton West. Victorian Department of Mines Bore No. 137, 174-8 ft., and Bore No. 159, 250-65 ft. Age: Jurassic Victorian Department of Mines Boring Records, 1951-2, published 1955, Lower Cretaceous (?Albian) authors. Berry Creek, Parish of Mardan, Victorian Department of Mines Bore No. 7, samples 10, 17, 18, 19, 65 and 68, and Bore No. 18 at 278 ft. Age: Lower Cretaceous (Neocomian-Aptian) authors. Tyers River, Latrobe Valley. Victorian Department of Mines Bore No. 2 850-1,200 ft. Age: Lower Cretaceous (Neocomian-Aptian) authors. Tyers River, Latrobe Valley. Victorian Department of Mines Bore No. 2 850-1,200 ft. Age: Lower Cretaceous (Neocomian-Aptian) authors. Tyers River, Latrobe Valley. Victorian Department of Mines Bore No. 2 850-1,200 ft. Age: Lower Cretaceous (Neocomian-Aptian) authors. Tyers River, Latrobe Valley. Victorian Department of Mines Bore No. 2 850-1,200 ft. Age: Lower Cretaceous (Neocomian-Aptian) authors. Uside (Lakes Entrance) Oil Company (No Liability), 4,114-27 ft., 4,251-7 ft., and at 6,402 ft. Age: Lower Cretaceous (Albian) authors. Hedley, near Lakes Entrance. Hedley Well No. 1 sunk by Woodside (Lakes Entrance) Oil Company (No Liability) at 1,460 ft., 2,099 ft., and 2,132 ft. Age: Lower Cretaceous (Albian) authors. The second se

199.49

ţ,

é

3

New South WALES. Onepah Station near Tibooburra. Soft fine-grained sandstone dug from a well at an unspecified depth. Age: Lower Cretaceous (Albian) Cookson and Eisenack 1958.

QUEENSLAND. Styx Coal Measures. Carbonaceous shales from Queensland Geological Survey's Bore No. 21, at 327 ft., and Bore No. 20, at 454 ft., sunk in the Tooloombah Creek area. Age: Lower Cretaceous (Albian) Walkom 1919, Cookson and Dettmann 1958. Near Weipa Mission, Albatross Bay, Gulf of Carpentaria. Zinc Corporation's Weipa No. 1 Bore, 2,022-41 ft. Age: Aptian authors.

NEW GUINEA. Omati. Papua, Island Exploration Co.'s Bore, Samples 1 and 2. Age: Lower Cretaceous (Albian) Cookson and Eisenack 1958.

Systematic Descriptions

TURMA TRILETES Reinsch (1881) emend Potonié and Kremp 1954 Subturma Azonotriletes Luber 1935

Infraturma LAEVIGATI Bennie and Kidston 1886 Genus Divisisporites Thomson 1952

Divisisporites euskirchenensis Thomson

(Pl. XIV, fig. 1)

Occurrence. South Australia-Robe Bore, at 1.400 ft.: Tilcha Bore, at 460 ft. Victoria-Birregurra Bore No. 1, at 1,102 ft.: Woodside Well No. 2, at 4,251 ft.

Geological Range in Australia. Lower Cretaceous (probable Albian). Comments. This species was described by Thomson in Thomson and Pflug (1952) from Middle European Tertiary deposits (Paleocene) and subsequently recorded by Delcourt and Sprumont (1955) from the Wealden of Hainaut. The occurrence of Dicisisporites euskirchenensis in Australian Lower Cretaceous sediments is therefore of interest.

D. euskirchenensis strongly resembles the Lower Cretaceous species Cingulatisporites euskirchensoides described by Delcourt and Sprumont (1955) from the nt and, to a lesser extent, ling the type, the exinous (Pl. XVIII, figs. 9, 10, n the Apollo Bay deposit ed and the apices merely

nd River deposit (Devil's sits.

ies Zonalisporites acusus Z. acusus differs in the tetrad-scar.

1956

tra)

Pl. III, fig. 11). 55. Mem. Soc. Belg. Geol. n.s.

23 . 68

Dijkstra) by Cookson and veral additional localities. , the only variation being ribution of M. marginatus e Bore, at 1,400 ft., 1,780 Comaum Bore, at 708 ft.; garook Creek; Dergholm Area, localities (b), (e²).

ian and Albian.

uatorial flange; tetrad-scar nt in the form of spineous ce.

in Queensland, in certain

eferred to the Infraturma of the membranous nature eement can be established

ł

1

ì

orites bears the closest requitriradites Delcourt and se genera in the restriction e of the laesurae and from coximal surface.

Ζ. 6,7)) it. Victoria-Wonthaggi

Description. Spore trilete, subtriangular to subcircular; equatorial flange membranous $5-9\mu$ wide with a serrated margin; tetrad-scar prominent, laesurae extend-ing to the periphery of the spore-body. Exine thin, proximal surface smooth, distal surface ornamented by rather widely-spaced conical spines or more usually straightsided blunt projections, which broaden slightly at the base. Dimensions. Overall equatorial diameter $54-62\mu$; equatorial diameter of spore-

body $43-49\mu$; length of exinous projections 7-9 μ . Geological Range. A rare type which appears to be restricted to deposits of

Neocomian-Aptian age.

Styxisporites majus sp. nov.

(Pl. XIX, figs. 10-14; holotype, fig. 10)

Occurrence. Western Australia—Gearle Siltstone (lower part)—West Australian Petroleum Co.'s Rough Range Well No. 1, at 2,750 ft.; Moora Bore, 86-170 ft. South Australia—Tilcha Bore, at 460 ft. and 1,040 ft.; Cootabarlow Bore No. 2, at 581 ft.; Robe Bore, at 1,400 ft. Victoria-Birregurra Bore No. 1, at 1,089 ft. and 1,102 ft. New South Wales-Onepah Station Well. Queensland-Styx Coal Measures Bore No. 21, at 327 ft., Bore No. 20, at 450 ft.

Description. Spore trilete with a subtriangular to subcircular amb; the equatorial flange is relatively wide with a finely scabrate surface and serrated margin. The laesurae of the tetrad-scar are straight and extend to the periphery of the sporebody. The exine is about 1 5μ thick, smooth on the proximal surface and ornamented on the distal surface by rather widely-spaced conical spines or occasionally blunt straight-sided projections which usually arise from low ridges running parallel to the equatorial contour of the spore-body. Occasionally, as in the specimen shown

in Pl. XIX, fig. 12, the ridges are more prominent and jagged and the spines reduced. Dimensions. Overall equatorial diameter $60-79\mu$, equatorial diameter of sporebody 45-58µ, flange 9-16µ, length of spines 4-7µ.

Geological Range. Lower Cretaceous (Albian). Comments. A few of the specimens from the Tilcha Bore and all those from Little's Shaft in the Bellarine Peninsula have smaller and more numerous spines than typical examples of Styrisporites majus (Pl. XIX, fig. 14). While it seems likely that they represent a distinct type too few of them have been recovered to justify specific separation.

S. majus differs from S. linearis in its larger size and in the presence of the low ridges from which the spines arise.

Spore Assemblages

As stated earlier, only a relatively small number of the trilete spore types present in the various deposits analysed have been described and classified. The lists included in this section give little idea of the microfloras as a whole and are included only as records and for comparative purposes.

A. LOWER CRETACEOUS (NEOCOMIAN-APTIAN)

1. South Australia (a) Robe Bore at 4,300 ft.

Microspores-

Ceratosporites equalis Dictyotosporites speciosus Granulatisporites dailyi Ischyosporites scaberis Leptolepidites verrucatus Lycopodiumsporites circolumenus Lycopodiumsporites austroclavatidites Neoraistrickia truncatus Pilosisporites notensis Radiatisporites hughesi

Sac 12

(b) Robe Bore at 3,860 ft.

116

Microspores-Apiculatisporis wonthaygiensis Ccratosporites equalis Cicutricosisporites australiensis Cirratriradites spinulosus Cirratriradites tilchaensis Dictyotosporites speciosus Dictyotosporites complex Granulatisporites dailyi Ischyosporites scaberis Leptolepidites verrucatus Megaspores-Mincrisporites marginatus (c) Kopperamanna Bore at 2,970 ft. Microspores-Ceratosporites equalis Cirratriradites spinulosus Dictyotosporites speciosus Dictyotosporites complex Ischyosporites scaberis Ischyosporites punctatus Leptolepidites verrucatus (d) Cootabarlow Bore No. 2 at 1,465 ft. Microspores-Ceratosporites equalis Dictyctosporites speciosus Dictyotosporites species Dictyotosporites complex Ischyosporites punctatus Leptolepidites verrucatus Megaspores-Minerisporites marginatus 2. Victoria (a) Apollo Bay Microspores-Apiculatisporis wonthaggiensis Ceratosporites equalis Cicatricosisporites australiensis Cirratriradites spinulosus Dictyotosporites speciosus (b) San Remo Microspores-Ceratosporites equalis

Ischyosporitės scaberis Leptolepidites verrucatus (c) Cape Paterson

Microspores-

Ceratosporites equalis Cicatricosiporites australiensis Cirratriradites spinulosus Dictyotosporites speciosus Granulatisporites dailyi Ischvosporites scaberis Leptolepidites verrucatus

Lycospora mollis Lycopodiumsporites austroclavatidites Lycopodiumsporites circolumenus Neoraistrickia truncatus Osmundacidites comaumensis Pilosisporites notensis Radiatisporites hughesi Styxisporites linearis

Lycopodiumsporites austroclavatidites Lycopodiumsporites circolumenus Lycospora mollis Neoraistrickia truncatus Osmundacidites comaumensis Radiatisporites hughesi

Lycopodiumsporites austroclavatidites Lycopodiumsporites circolumenus Neoraistrickia truncatus Osmundacidites comaumensis Radiatisporites hughesi

Ischyosporites scaberis Leptolepidites verrucatus Lycospora mollis Neoraistrickia truncatus Osmundacidities comaumensis Pilosisporites notensis

Lycopodiumsporites circolumenus Neoraistrickia truncatus Osmundacidites comaumensis

Lycopodiumsporites austroclavatidites Neoraistrickia truncatus Osmundacidites comaumensis Pilosisporites notensis Radiatisporites hughesi

TTMANN:

cospora mollis copodiumsporites iustroclavatidites copodiumsporites circolumenus oraistrickia truncatus :mundacidites comaumensis losisporites notensis idiatisporites hughesi yxisporites linearis

ycopodiumsporites austroclavatidites ycopodiumsporites circolumenus ycospora mollis eoraistrickia truncatus smundacidites comaumensis adiatisporites hughesi

ycopodiumsporites austroelavatidites ycopodiumsporites circolumenus eoraistrickia truncatus smundacidites comaumensis adiatisporites hughesi

schyosporites scaberis eptolepidites verrucatus ycospora mollis eoraistrickia truncatus 'smundacidities comaumensis 'ilosisporites notensis

ycopodiumsporites circolumenus eoraistrickia truncatus Ismundacidites comaumensis 5

veopodiumsporites austroclavatidites Teoraistrickia truncatus Osmundacidites comaumensis Vilosisporites notensis Zadiatisporites hughesi

SOME TRILETE SPORES, EASTERN AUSTRALIAN REGION

 (d) Wonthaggi State Coal Mine Area, localities (a), (b), (c³), (c²) Microspores—

> Apiculatisporis wonthaggiensis localities (c³), (e²) only Ceratosporites equalis Cicatricosisporites australiensis Cirratrivadites spinulosus localities (a), (b), (e²) only Dictyotosporites speciosus Dictyotosporites complex Granulatisporites dailyi Ischyosporites punctatus locality (b) only Ischyosporites scaberis Kuylisporites (b), (e²) only

(e) Whitelaw Railway Station Microspores— Apiculatisporis wonthaggiensis Ceratosporites equalis Cicatricosisporites australiensis Dictyotosporites speciosus Granulatisporites dailyi Ischyosporites scaberis

Leptolepidites verrucatus

(f) Berry Creek Bore at 278 ft., Bore 7, sample 18

Microspores— Ceratosporites equalis Cicatricosisporites australiensis Cirratiradites spinulosus Ischyosporites scaberis Leptolepidites verrucatus Lycopodiumsporites austroclavatidites

(g) Tyers Bore No. 2 at 860 ft. Microspores— Ceratosporites equalis Cicatricosisporites australiensis Cirratriradites spinulosus Dictyotosporites speciosus Granulatisporites dailyi

(h) Korumburra, shale above coal Microspores— Apiculatisporites wonthaggiensis Ceratosporites equalis Cicatricosisporites australiensis Dictyotosporites speciosus Granulatisporites dailyi Leptolepidites verrucatus Leptolepidites verrucatus Lycopodiumsporites austroclavatidites Lycopodiumsporites circolumenus localities (a), (b) only Lycospora mollis locality (b) only Neoraistrickia truncatus Osmundacidites comaumensis Ridiatisporites nughesis localities (a), (b), (c³) only Styxisporites (a), (b), (c²) only S. Salar

117

Lycopodiumsporites austraclavatidites Lycopodiumsporites circolumenus Neoraistrickia truncatus Osmundacidites comaumensis Radiatisporites hughesi

Lycopodiumsporites circolumenus Neoraistrickia truncatus Osmundacidites comaumensis Pilosisporites notensis Radiatisporites hughesi

Ischyosporites scaberis Kuylisporites lunaris Leptolepidites verrucatus Neoraistrickia truncatus Osmundacidites comaumensis

Lycopodiumsporites austroclaratidites Osmundacidites comaumensin Pilosisporites notensis Radiatisporites hughesi

B. LOWER CRETACEOUS (APTIAN AND ALBIAN)

1. South Australia (a) Robe Bore

> (i) 3,500 ft. Microspores-Ceratosporites equalis Cicatricosporites australiensis Cingulatisporites cuskirchensoides Ischyosporites scaberis Leptolepidites verrucatus

(ii) 3,325 ft. Microspores-

Apiculatisporis asymmetricus Ceratosporites cqualis Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cirratriradites spinulosus Megaspores-

Minerisporites marginatus

(iii) 2.630 ft. Microspores-

Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites paradoxus Cingulatisporites simplex Cirratriradites spinulosus Ischyosporites scaberis

Megaspores-

Balmeisporites holodictyus (iv) 2,325 ft.

Microspores-

Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites paradoxus Cirratriradites spinulosus Cirratriradites verrucosus

(v) 1.780 ft.

Microspores-

Cicatricosisporites australiensis Cingulatisporites cuskirchensoides Cingulatisporites paradoxus Cirratriradites spinulosus Cirratriradites verrucosus

Megaspores-

Balmeisporites holodictyus

(vi) 1.400 ft.

Microspores-Apiculatisporis asymmetricus Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites euskirtnens Cingulatisporites simplex Cirratriradites spinulosus Cirratriradites verrucosus

Lycopodiumsporites austroclavatidites Neoraistrickia truncatus Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis

Ischyosporites scaberis Leptolepidites verrucatus Neoraistrickia truncatus Perotrilites striatus

Lycopodiumsporites austroclavatidites Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis

Lycopodiumsporites austroclavatidites Osmundacidites australiensis Perotrilites striatus Pilosisporites notensis

Lycopodiumsporites austroclavatidites Osmundacidites comaumensis Perotrilites striatus Pilosisporites notcusis Trilobosporites trioreticulosus

Minerisporites marginatus

Cirratriradites tilchaensis Divisisporites euskirchenensis Perotrilites striatus Pilosisporites notensis Styxisporites majus Trilobosporites trioreticulosus

"TMANN:

tan)

opodiumsporites astroclavatidites rraistrickia truncatus nundacidites comaumensis otrilites striatus osisporites notensis

hyosporites scaberis ptolepidites verrucatus praistrickia truncatus potrilites striatus

copodiumsporites ustroclavatidites mundacidites comaumensis rotrilites striatus losisporites notensis

'copodiumsporites austroclavatidites smundacidites australiensis 'rotrilites striatus 'losisporites notensis

ycopodiumsporites austroclavatidites smundacidites comaumensis crotrilites striatus ilosisporites notensis rilobosporites trioreticulosus 1.11

Ş

いいたちろうろろろう

1.65

[inerisporites marginatus

irratriradites tilchaensis Divisisporites euskirchenensis erotrilites striatus 'ilosisporites notensis 'tyxisporites majus 'rilobosporites trioreticulosus

SOME TRILETE SPORES, EASTERN AUSTRALIAN REGION

Megaspores— Pyrobolospora hexapartita Pyrobolospora reticulata Pyrobolospora nuda

(b) Tilcha Bore No. 1, 460-1,040 ft. Microspores— Apiculatisporis asymmetricus 460 ft. Cicatricosisporites australiensis Cingulatisporites euskirchensoides 1,040 it. Cingulatisporites simplex 1,040 ft. Cirratriradites spinulosus 460 ft.

Megaspores— Balmeisporites holodictyus Balmeisporites tridictyus Pyrobolospora hexapartita 460 ft.

 (c) Cootabarlow Bore No. 2

 (i) 1,354 ft.
 Microspores—
 Ceratosporites equalis Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites paradoxus Dictyotosporites speciosus Ischyosporites punctatus Leptolepidites verrucatus

> (ii) 581 ft.
> Microspores—
>
> Apiculatisporis asymmetricus Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites paradoxus Cirratriradites spinulosus
>
>
> Megaspores—

Balmeisporites holodictyus

 (d) Loxton Bore, 1,410-70 ft. Microspores— Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cirratriradites spinulosus Ischvosporites punctatus 1,410 ft.

Megaspores-

Balmeisporites holodictyus 1,410 ft. Minerisporites marginatus 1,410 ft. Balmeisporites holodictyus Balmeisporites tridictyus Minerisporites marginatus

Cirratriradites tilchaensis 400 ft. Djæisisporites cuskirchenensis 460 ft. Osmundacidites comaumensis Perotrillies striatus Pilosisporites notensis Styzisporites majus Trilobosporites trioreticulosus

Pyrobolospora nuda 460 ft. Pyrobolospora reticulata 1,040 ft.

Lycopodiumsporites circolumenus Lycopodiumsporites austroclavatidites Neoraistrickia truncatus Osmundacidites comaumensis Pilosisporites notensis

Cirratriradites verrucosus Perotrilites striatus Pilosisporites notensis Styzisporites majus Trilobosporites trioreticulosus

Pyrobolospora reticulata

Ischyosporites scaberis Leptolepidites verrucatus Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis

Pyrobolospora reticulata 1,410 ft. 119

Carting

120

ISABEL C. COOKSON AND MARY E. DETTMANN:

(e) Comaum Bore at 708 ft.

Microspores— Ceratosporites equalis Cicutricosisporites australiensis Cirratriradites spinulosus Dictyotosporites speciosus Ischyosporites scaberis Leptolepidites verrucatus

Megaspores— Minerisporites marginatus

2. Victoria

٢.

(a) Dergholm Bore No. 1 at 532 ft. Microspores—

Apiculatisporis asymmetricus Cicatricosisporites australiensis Cingulatisporites euskirchensvides Cingulatisporites paradoxus Cingulatisporites simplex Cirratriradites spinulosus

Megaspores— Pyrobolospora reticulata

(b) Dergholm Bore No. Z at 329 ft. Microspores— Apiculatisporis asymmetricus Cicatricosisporites australiensis Cingulatisporites cuskirchensoides Megaspores—

Minerisporites marginatus

(c) Gellibrand River (Devil's Kitchen) Microspores— Apiculatisporis asymmetricus Cicatricosisporites australiensis Cingulatisporites euskirchensuides

(d) Birregurra Bore No. 1, 1,102-1079 ft.

Microspores— Apiculatisporis asymmetricus 1,102-1,089 ft. Cicatricosisporites australiensis Cingulatisporites euskirchensoides 1,089-1,102 ft. Cingulatisporites paradoxus Cingulatisporites simplex 1,102-1,089 ft. Divisisporites euskirchenensis 1,102 ft. Megaspores— Balmeisporites holodictyus 1,102-1,089 ft. Lycopodiumsporites austroclavatidites Neoraistrickia truncatus Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis Radiatisporites hughesi

Cirratriradites verrucosus Ischyosporiles scaberis Leptolepidites verrucatus Osmundacidites comaumensis Perotrilites striatus

Cirratriradites spinulosus Leptolepidites verrucatus Perotrilites striatus

Pyrobolospora reticulata

Cirratriradites spinulosus Perotrilites striatus Trilobosporites trioreticulosus

Leptolepidites verrucatus 1,102 ft. Lycopodiumsporites austroclavatidites 1,102-1,089 ft. Lycospora mollis 1,102-1,089 ft. Osmundacidites comaumensis Pcrotrilites striatus Styzisporites majus Trilobosporites trioreticulosus **FTMANN:**

opodiumsporites ustroclavatidites praistrickia truncatus nundacidites comaumensis otrilites striatus sisporites notensis liatisporites hughesi

ratriradites verrucosus hyosporites scaberis stolepidites verrucatus nundacidites comaumensis rotrilites striatus

ratriradites spinulosus ptolepidites verrucatus rotrilites striatus

probolospora reticulata

rratriradites spinulosus rilobosporites trioreticulosus

ptolopidites verrucatus 1,102 ft. vcopodiumsporites austroclavatidites 1,102-1,089 ft. ycospora mollis 1,102-1,089 ft. smundacidites comaumensis crotrilites striatus tyxisporites majus 'rilobosporites trioreticulosus

......

SOME TRILETE SPORES, EASTERN AUSTRALIAN REGION (e) Barongarook Creek Microspores-Cicatricosisporites australiensis Cingulatisporites euskirchensvides Cingulatisporites paradoxus Cingulatisporites simplex Megaspores-Balmeisporites holodictyus (f) Barrabool Hills Microspores-Cicatricosisporites australiensıs Cingulatisporites paradoxus Granulatisporites dailyi Ischyosporites scaberis Kuylisporites lunaris Leptolcpidites verrucatus Lycopodiumsporites austroclavatidites Megaspores-Balmeisporites holodictyus (g) Little's Shaft, Bellarine Peninsula Microspores-Apiculatisporis asymmetricus Ccratosporites equalis Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites paradoxus Cingulatisporites simplex Cirratriradites spinulosus Kuvlisporites lunaris Leptolepidites verrucatus Megaspores-Balmeisporites holodictyus (h) Woodside Well No. 2 at 4,251 ft. and 6,402 ft. Microspores-Apiculatisporis asymmetricus Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites paradoxus 4,251 ft. Cirratriradites spinulosus Divisisporites euskirchenensis 4,251 ft. Ischyosporites scaberis Leptolepidites verrucatus 3. New South Wales Onepah Station Well Microspores-Cicatricosisporites australiensis Cingulatisporites euskirchensoides Cingulatisporites paradoxus Cirratriradites spinulosus Cirratriradites verrucosus Cirratriradites tilchaensis Megaspores-Balmeisporites holodictyus Minerisporites marginatus

Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis Trilobosporites trioreticulosus

Mincrisporites marginatus

Lycospora mollis Neoraistrickia truncatus Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis Trilobosporites trioreticulosus

Lycopodiumsporites austroclavatidites Lycopodiumsporitas circolumenus Neoraistrickia truncatus Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis Styxisporites majus Trilobosporites trioreticulosus

Pyrobolospora reticulata

Lycopodiumsporites circolumenus 6,402 it. Lycospora mollis 4,251 ft. Osmundacidites comaumensis Perotrilites striatus 6,402 it. Pilosisporites notensis 4,251 it.

Osmundacidites comaumensis Osmunation activities comannensis Perotrilites striatus Pilosisporites notensis Styxisporites majus Trilobosporites trioreticulosus

Pyrobolospora hexapartita Pyrobolospora reticulata

4. Queensland

122

Styx Coal Measures, Bore 21 at 327 ft., Bore 20 at 454 ft.

Microspores— Ceratosporites equalis 327 ft. Cicatricosisporites australiensis Cingulatisporites euskirchensoides 454 ft. Cirratriradites spinulosus Cirratriradites vernucosus

Cirratriradites tilchaensis 327 ft.

Balmeisporites holodictyus

Ischyosporites scaberis 454 ft. Leptolepidites verrucatus 327 ft. Osmundacidites comaumensis Perotrilites striatus Pilosisporites natensis Styxisporites majus Trilobosporites trioreticulosus eu.

lat:

Ar

spe sec

58. No

Sh

the and

rep

as (Dic

ofv

sug

of t

stri

cos:

Cre (19

Rob

of t

and

froi

asso

thag

Mid

Me[,]

occi

We: of th

the

was

of N

com

Pate

as p

Wes

micr

oi th

in th with

33500

unde c

またいとうないたちのでいったいろう

1. Or West 1. 1.

ź

2

よいい ざいぶんちゅう

E

è

11.1.1

.

States -

1

5. Papua

Omati Bore, samples 1 and 2

Megaspores-

Microspores— Apiculatisporis asymmetricus (2) Cicatricosisporites australiensis Cingulatisporites cuskirchensoides (2)

Leptolepidites verrucatus Perotrilites striatus

Megaspores---

Balmeisporites holodictyus

Stratigraphical Implications

The samples from which the spores recorded above were recovered were portions of bore cores and outcrops of both fresh- and salt-water origin. The age of the saltwater deposits is known by the contained foraminifera, mollusca, and microplankton to be Lower Cretaceous; the freshwater sediments have been referred to the Jurassic on the basis of their macroscopic plant remains.

Although only a small proportion of the spores contained in both kinds of sediments have been considered in this contribution, it has been found that some of them are restricted to particular deposits while others are common to most, it not all of them. Thus it seems possible to distinguish between "long" and "short-range" species and by means of the latter, to correlate the dated salt-water samples with the less reliably dated freshwater deposits, and to correlate individual freshwater deposits with one another.

The only continuous sequence available for study, has been the conformable succession of freshwater sediments intersected by the Robe Bore, 1,400-4,300 ft. In this section, a marked change in spore composition is noticeable above 3,500 ft., the sediments below this depth containing a different assemblage from that at or above it. It seems probable therefore that this change was coincident with a change in age which resulted in the passing out of older types and the incoming of newer ones in the vicinity of this level.

The Lower Cretaceous salt-water deposits comprise those from the Cootabarlow Bore at 581 ft. and 1,354 ft., the Tilcha Bore at 460 ft. and 1,040 ft., the Loxton Bore at 1,410 ft. and 1,470 ft., the Tooloombah Creek Bore No. 21 at 327 ft., and the Onepah Station Well. All these deposits are of Albian age, with the exception of the one at 1,354 ft. from the Cootabarlow Bore which is Aptian on the basis of foraminifera (N. H. Ludbrook, South Australian Department of Mines) and microplankton (Cookson and Eisenack 1958).

SOME TRILETE SPORES, EASTERN AUSTRALIAN REGION

The short-range spores which occur in the Albian deposits are: Divisisporites cuskirchenensis, Cingulatisporites cuskirchensoides (Wealden in Belgium). Cingulatisporites paradoxus, Cingulatisporites simplex, Trilobosporites triorcticulosus, Apiculatisporis asymmetricus, Perotrilites striatus, Pyrobolospora reticulata, Balmeisporites holdictyus. A comparable association (Fig. 1) has been found in the upper section of the Robe Bore, 1,400-3,500 ft.; Dergholm Bore No. 1, at 532 ft. and 582 ft., Dergholm Bore No. 2, 329-31 ft.; Barongarook Creek; Birregurra Bore No. 1, 1,079-1,102 ft.; Gellibrand River (Devil's Kitchen): Barrabool Hills; Little's Shaft, Bellarine Peninsula, and Woodside Well No. 2, 4.257-6,402 ft. It appears therefore that the age of these deposits is Lower Cretaceous (approximately Albian) and not Lower Jurassic as was suggested for some of them by Medwell (1954a).

The spore association taken as typifying the lower portion of the Robe sequence represented by the samples taken at 3,860 ft. and 4,300 ft. comprises species such as Granulatisporites dailyi, Apiculatisporis wonthaggiensis, Radiatisporites hughesi, Dictyotosporites speciosus, Dictyotosporites complex and Styxisporites majus, none of which appear to be present in the Albian sediments. This difference in composition suggests that the age of the lower portion is almost certainly pre-Albian. The number of spore types common to both the Albian and pre-Albian sediments

The number of spore types common to both the Albian and pre-Albian sediments of the Robe Bore for example, *Pilosisporites notensis, Ceratosporites equalis, Neoraistrickia truncatus, Lycospora mollis, Cirratriradites spinulosus, Cirratriradites verucosus,* indicates that the older sediments approximate more closely to a Lower Cretaceous (pre-Albian) age than to the Jurassic age suggested for them by Ward (1917).

A comparable spore association to that found in the pre-Albian section of the Robe Bore occurs in deposits from the Wonthaggi State Coal Mine Area, and some of the same types occur in the deposit from the Kopperamanna Bore at 2,970 ft., and Cootabarlow Bore No. 2 at 1,465 ft., along with others that appear to be absent from the Robe sediments. The general agreement between these respective spore associations suggests that all are of approximately the same age, and that the Won-thaggi deposits are probably Lower Cretaceous (pre-Albian) rather than Lower-Middle Jurassic as suggested by Seward (1904) or Lower Jurassic as suggested by the occurrence of the megaspore *Minerisporites marginatus*, a type which occurs in the Wealden of the Netherlands Dijkstra (1951), and in England in the Ashdown Sands of the Wealden formation (Valanginian, Hughes 1958, p. 43).

of the Wealden formation (Valanginian, Hughes 1958, p. 43). When Seward compared the macroflora of the Wonthaggi Area with that of the Inferior Oolite of England and Rajmahal Hills of India. the age of the latter was considered to be Lower Jurassic. However, as the result of Dr. Spath's discovery of Neocomian ammonites in the Rajmahal Formation, a Lower Cretaceous (Neocomian) age has now been suggested for this formation (Arkell 1956).

A similar age for the sediments from bores and outcrops at Wonthaggi, Cape Paterson, Berry Creek and Tyers River would conform with the spore content as as present known. Mr. B. E. Balme, who has investigated the Upper Mesozoic of Western Australia, has remarked upon the greater resemblance of the Wonthaggi microflora to that of the West Australian Lower Cretaceous than to the microfloras of the Upper Jurassic of the same area.

The South Australian deposits in the Cootabarlow No. 2 Bore at 1,465 ft. and in the Kopperamanna Bore at 2,970 ft., contain microflora assemblages comparable with those found in the Robe Bore, 4,300-3,860 ft., and in the Wonthaggi coals and associated shales. The sandstones, 3,000-2,810 ft., in the Kopperamanna Bore which undelie marine Cretaceous sediments were assigned by Whittle and Chebotarev c

DETTMANN:

54 ft.

Ischyosporites scaberis 454 ft. Leptolepidites verrucatus 327 ft. Osmundacidites comaumensis Perotrilites striatus Pilosisporites notensis Styxisporites majus Trilobosporites trioreticulosus

ないためというない

COLUMN STREETS

ł

Leptolepidites verrucatus Perotrilites striatus

ons

were recovered were portions ter origin. The age of the saltt, mollusca, and microplankton re been referred to the Jurassic

ontained in both kinds of sedihas been found that some of s are common to most, if not, veen "long" and "short-range" dated salt-water samples with orrelate individual freshwater

has been the conformable suc-Robe Bore, 1,400-4,300 ft. In is noticcable above 3,500 ft., nt assemblage from that at or was coincident with a change res and the incoming of newer

se those from the Cootabarlow and 1,040 ft., the Loxton Bore bre No. 21 at 327 ft., and the ian age, with the exception of is Aptian on the basis of foraurtment of Mines) and micro-

- 5

124

_

ISABEL C. COOKSON AND MARY E. DETTMANN:

(1952, Fig. 2) to the Jurassic. More recently Woodard (1955, p. 15) suggested that "Interbedded coarse sandstones and subordinate clay shales underlying lower Cretaceous marine beds and regarded by Whittle (1952) as Jurassic, more probably represent the basal Cretaceous Blythesdale Sandstones".

Ì

•.

;

ŀ.

.....

「「「「「」」」

1

1] !

1 ,

t I (: : : : : : : : : : :

v (

The H

-

C ----

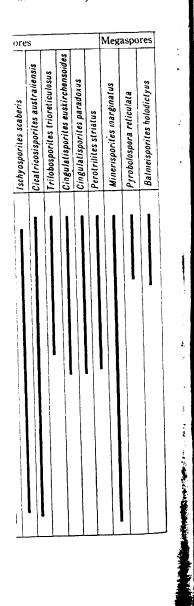
C L

L

E

. Ľ

There is thus some evidence for a Lower Cretaceous (pre-Albian) age for the Mesozoic deposits in the Wonthaggi State Coal Mine Area of Victoria and the lower sediments of the Robe Bore, 3,860-4,300 ft. These beds are tentatively referred to


					TA	BLE	1												
					Microspores												Megaspores		
		LOCATI	ON OF SEDIMENTS	Dictyotosporites complex	Dictyotosporites speciosa	Granulatisporites dailyi	Radiatisporites hughesi	Lycopodiumsporites circolumenus	Pilosisporites notensis	Leptolepidites verrucatus	Ischyosporites scaberis	Cicatricosisporites australiensis	Trilobosporites trioreticulosus	Cingulatisporites euskirchensoides	Cingulatisporites paradoxus	Perotrilites striatus	Minerisporites marginatus	Pyrobolospora reticulata	Balmeisporites holodictyus
		Robe Bore							}										
5			Cootabarlow 581ft. Onepah Dergholm No.1 532ft. Tilcha 460ft. Bellarine Peninsula Styx No.21 327ft. Barongarook Creek Birregurra 1079-1102ft.																
	Aptian ? Albian	2630ft.	Barrabool Hills Comaum 708ft.																
		3500ft.	Cootabarlow 1354ft.																
		3860ft.	Wonthaggi Whitelaw Cape Paterson Apollo Bay Berry Creek																
	Neoc	4300ft.	Cootabarlow 1465ft. Kopperamanna 2970ft.																

125

TTMANN:

1955, p. 15) suggested that ales underlying lower Creis Jurassic, more probably

s (pre-Albian) age for the a of Victoria and the lower are tentatively referred to

SOME TRILETE SPORES, EASTERN AUSTRALIAN REGION

the Lower Cretaceous (Neocomian-Aptian). However, the possibility of an age older than Lower Cretaaceous, but younger than Lower Jurassic, must not be overlooked.

The sediments in the Comaum Bore, 651-708 ft., are of interest in containing a spore assemblage "intermediate" between typical Albian and Neocomian-Aptian microfloras. The presence of the microspore *Perotrilites striatus*, a species that has been invariably present in all the Albian deposits examined, leaves no doubt as to the Lower Cretaceous age of these deposits.

The spore assemblage of the Aptian deposit at 1,354 ft. in the Cootabarlow Bore No. 2, is closely similar to that of typical Albian deposits, but neither the microspore Perotrilites striatus nor the megaspores Pyrobolospora reticulata, and Balmeisporites holodictyus have been observed in it.

Acknowledgements

We wish to acknowledge our indebtedness for rock samples to the Directors of the Mines Department of South Australia, Victoria and Queensland; Dr. A. B. Edwards, Mineragraphic Section, C.S.I.R.O.; Dr. G. Baker, Mineragraphic Section, C.S.I.R.O.; Mr. E. D. Gill, Curator of Fossils, National Museum of Victoria; Mr. A. Coulson, Geelong; Mr. A. Baker, Geology Department, University of Melbourne; The Manager, Woodside (Lakes Entrance) Oil Co. N.L.; Mr. J. Montgomery, Australiation Petroleum Co. Ptv. 1td. and especially to Dr. B. Deily for the import Australasian Petroleum Co. Pty. Ltd., and especially to Dr. B. Daily for the impor-

tant samples collected by Mr. H. F. Kessall from the Robe Bore. Mr. B. E. Balme, University of Western Australia, has kindly read and helpfully commented upon the typescript, and Mr. E. D. Gill and Dr. G. Baker have given advice on palaenotological and stratigraphical problems respectively.

This work was made possible by generous financial assistance from the Commonwealth Scientific and Industrial Research Organization, and the State Electricity Commission of Victoria.

References

ARKELL, W. J., 1956. Jurassic Geology of the World. Oliver & Boyd, London. BAKER, G., and Cookson, Isabel C., 1955. "Age of the Nelson Bore Sediments." Aust. J. Sci. 17: 133-4.

BAKER, G., and COOKSON, ISABEL C., 1955. "Age of the Nelson Bore Sediments." Aust. J. Sci. 17: 133-4.
BALME, B. E., and HENNELLY, J. P. F., 1956. "Trilete Sporomorphs from Australian Permian Sediments." Aust. J. Bot. 4: 240-60.
______, 1957. "Spores and Pollen Grains from the Mesozoic oi Western Australia." C.S.I.R.O. Coal Research Section, T.C. 25.
COOKSON, ISABEL C., 1953. "Differences in Microspore Composition of some Samples from a Bore at Comaum, South Australia." Aust. J. Bot. 1: 462-73.
______, 1954. "A Palynological Examination of No. 1 Bore, Birregurra, Victoria." Proc. Roy. Soc. Vic. 66: 119-28.
______, and DETTMANN, MARY E., 1958. "Cretaceous 'Megaspores' and a Closely Associated Microspore from the Australian Region." Micropaleontol. 4.
_______, and EISENACK. A., 1958. "Microplankton from Australian and New Guinea Upper Mesozoic Sediments." Proc. Roy. Soc. Vic. 70.
COUPER, R. A., 1953. "Upper Mesozoic and Cainozoic Spores and Pollen Grains from New Zealand." NZ. Geol. Sur. Paleontolog, Bull. 22.
DELCOURT, A., and SPRUMONT, G., 1955. "Les Spores et Grains de Pollen du Wealdien du Hainaut." Mem. Soc. belge. geol. 5: 1-73.
DIJKSTRA, S. J., 1951. "Wealden Megaspores and their Stratigraphical Value." Meded. geol. Sticht, 5: 7-21.
DUIGAN, SUZANNE L., and COOKSON, ISABEL C., 1957. "The Occurrence of Azolla filiculoides L.

STICH, S. 7-21.
 DUIGAN, SUZANNE L., and COOKSON, ISABEL C., 1957. "The Occurrence of Azolla filiculoides L. and Associated Vascular Plants in a Quaternary Deposit in Melbourne, Australia." Proc. Roy. Soc. Vic. 69: 5-13.
 ERDTMAN, G., 1943. An Introduction to Pollen Analysis. Chronica Botanica Co., U.S.A. HUGHES, N. F., 1958. "Palaeontological Evidence for the age of the English Wealden." Geol. Mag. 95: 41-9.

126

うぞうし

ŧ,

1.1.5

Ĩ

ŧ

23: 1-103.
 And KREMP, G., 1954. "Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie." Geol. Jb. 69: 111-94.
 SCHOPF., J., WILSON, L., and BENTALL, RAY, 1944. "Annotated Synopsis of Paleozoic Fossil Spores and the Definition of Generic Groups." Geol. Surv. Illinois. Rep. Inv. 91: 1-66.
 SEWARD, A. C., 1904. "On a Collection of Jurassic Plants from Victoria." Vic. Geol. Surv. Rcc. 1: 155-87.
 TURDERT, F. 1938. "Die Pollenflore der Neiderlausitzer Braunkohle." Ib. Arause cool.

1: 155-87.
 THIERGART, FR., 1938. "Die Pollenflora der Neiderlausitzer Braunkohle." Jb. prcuss. gcol. 58: 282-351.
 THOMSON, P. W., and PFLUG, H., 1952. "Die alttertiäre Braunkohle der Tongrube Zievel." Neues. Jb. Geol. Pal. 96: 1-26.
 WALKOM, A. B., 1919. "Mesozoic Floras of Queensland, Parts 3 and 4. The Burrum and Styx River Seves." Pub. Gcol. Surv. Qsld. 263: 1-76.
 WARD, L. K., 1917. "Report on the Prospects of Petroleum by Boring in the vicinity of Robe and elsewhere in the South-Eastern Portion of South Australia." South Aust. Min. Rev. 23: 45-54.
 WHITTLE, A. W. G., and CHEBOTAREV, NINA, 1952. "Stratigraphic Correlations by Petrographic Methods applied to Artesian Bores in the Lake Frome area." Univ. Adelaide, Sir Douglas Mawson Anniversary.

Matuson Anniversary. WOODARD, G. D., 1955. "The Stratigraphic Succession in the Vicinity of Mount Babbage Station. South Australia." Trans. Roy. Soc. S. Aust. 78: 8-17.

Explanation of Plates

All the figures are from untouched negatives. Registered numbers in the palaeobotanical collection of the National Museum of Victoria are given.

PLATE XIV

Fig. 1.—Divisisporites euskirchenensis Thomson. Robe Bore, S.A., at 1,400 ft. × c. 580.
Figs. 2. 3.—Granulatisporites dailyi sp. nov. Proximal and distal surfaces of holotype. Won-thaggi State Coal Mine Area, Vic., locality (c³). × c. 590. P17605.
Fig. 4.—Granulatisporites dailyi. Paratype. Comaum Bore, S.A., at 708 ft. × c. 560.
Fig. 5.—Leptolepidites verrucatus Couper. Wonthaggi State Coal Mine Area, Vic., locality (b).

× c. 650.

Fig. 6.—Leptolepidites verrucatus. Apollo Bay, Vic. × c. 650.
Figs. 7, 9, 10.—Apiculatisporis wonthaggiensis sp. nov. Paratypes. Wonthaggi State Coal Mine Area, Vic., locality (c³). Fig. 7, × c. 840; Fig. 9, × c. 570; Fig. 10, × c. 620.
Fig. 8.—Apiculatisporis wonthaggiensis. Holotype. Wonthaggi State Coal Mine Area, Vic., locality (c³). × c. 610. P17606.

locality (c³). × c. 610. P17606.
Fig. 11.—Apiculatisporis asymmetricus sp. nov. Holotype. Birregurra Bore No. 1, Vic. at 1.102 ft. × c. 590. P17607.
Fig. 12.—Apiculatisporis asymmetricus. Paratype. Dergholm Bore No. 1, Vic. at 532 ft. × c. 590.
Fig. 13.—Osmundacidites comaumensus (Cookson). Holotype. Comaum Bore, S.A. at 674 ft. × c. 550. P17608.
Fig. 14.—Neoraistrickia truncatus (Cookson). Holotype. Comaum Bore, S.A. at 708 ft. × c 600.
Fig. 15.—Neoraistrickia truncatus. Paratype. Comaum Bore, S.A. at 708 ft. × c 600.
Fig. 16.—Neoraistrickia truncatus. Showing the small processes of the proximal surface. Won-thaggi State Coal Mine Area, Vic., locality (b). × c. 870.
Figs. 17-19.—Ceratosporites equalis sp. nov. Proximal. sectional and distal views of holotype. Wonthaggi State Coal Mine Area, Vic., locality (b). × c. 640. P17609.