

Chart **Gen-2** is used to derive formation temperatures by extrapolation from a known depth and temperature, assuming constant geothermal gradient. It is based on the equation:

$$T_{f} = T_{ms} + G \times D/100$$

where:
$$G = \frac{T_f - T_{ms}}{D} \times 100$$

and D is depth, G the geothermal gradient, $T_{\mbox{ms}}$ the mean surface temperature, and $T_{\mbox{f}}$ the formation temperature.

Example: Depth = 2000 m $T_{ms} = 20^{\circ}C$ $T_{f} = 64^{\circ}C$

From the chart, G = 2.2 °C /100 m. Formation temperature at 3600 m is 99° C.

Temperature gradient conversions: $1^{\circ}F/100 \text{ ft} = 1.823^{\circ}C/100 \text{ m}$ $1^{\circ}C/100 \text{ m} = 0.549^{\circ}F/100 \text{ ft}$

Gen - 2

Estimation of Rmf and Rmc

Applicability: Water based muds. Rm in the range 0.1 to 10 ohm-m at $24^{\circ}C$ ($75^{\circ}F$). Not applicable to lignosulphate muds.

Mud filtrate resistivity Rmf and mud cake resistivity Rmc may be predicted from the mud resistivity R_m using the following functions:

$$R_{mf} = K_m (R_m)^{1.07}$$
$$R_{mc} = 0.69 R_{mf} (R_m / R_{mf})^{2.65}$$

The value of the constant K_m depends on mud weight:

Mud V		
lb/gal	gm/cc	Km
10	1.20	0.847
11	1.32	0.708
12	1.44	0.584
13	1.56	0.488
14	1.68	0.412
16	1.92	0.380
18	2.16	0.350

Gen - 3

Formation factor, F, is defined as R_0/R_w , where R_0 is the resistivity of a formation fully saturated with water of resistivity Rw. It is related to formation porosity Φ via a number of empirical relationships of the form

$$F = \frac{a}{\Phi^m}$$

where m is the cementation exponent and **a** is sometimes called the Archie constant. F is used to compute water saturation in the Archie equation: $S_w^n = FR_w/R_t$

The chart allows F to be generated from porosity for values of m between 1.4 and 2.8 assuming \mathbf{a} to be 1.0. For soft formations, the Humble formula is sometimes used in which \mathbf{a} is 0.62 and m is 2.15.

Gen - 5

Chart Gen - 7 is used to estimate the resistivity of NaCl equivalent solutions when the solids concentration is known, and also to convert resistivity from one temperature to another.

It is based on the Hilchie equation:

$$R(T) = R(1) [T(1) + x] / (T+x)$$

where

 $x = 10^{-(0.340396 \log_{10} R(1) - 0.641427)}$

and R(T) is the water resistivity at temperature T in degrees F and R(1) is the initial water resistivity at initial temperature T(1) degrees F.

For solutions other than NaCl use the multipliers in **Gen - 6** to obtain equivalent concentrations. Then:

Total NaCl equivalent = $\sum_{i=n}^{i=1} K_i$ (solids concentration)

where n is the number of components. The multiplier for NaCl is 1.0

© Reeves Technologies

Applicability: NaCl solutions at 20°C.

Applicability: For saturation calculations from Thermal Decay Sonde (TDS) logs.

Applicability: Clean formations. Predominantly NaCl muds and formation waters.

Applicability: 8 inch (203 mm) diameter holes.

SP - 3

Applicability: 95 mm (3³/₄ inch) diameter tools. KCl free muds.

Compact Systems

Applicability: Compact Series (MCG & MGS) tools. KCl free muds.

Applicability: AIS series tools. Processing models 1, 2 and 4.

Field logs are normally corrected for standoff, bit size and nominal Rm.

Ind - 1a

Applicability: AIS series tools. Processing models 1, 2 and 4.

Field logs are normally corrected for standoff, bit size and nominal Rm.

Ind - 2a

Applicability:All 95 mm (3³/₄ inch) AIS tools.Thick beds. Use borehole corrected data.

Applicability: All 95 mm (3³/₄ inch) AIS tools. Thick beds. Use borehole corrected data.

Applicability:All 95 mm (3³/₄ inch) AIS tools.Thick beds. Use borehole corrected data.

Applicability: All 95 mm (3³/₄ inch) AIS tools. Thick beds. Use borehole corrected data.

Compact Systems

Applicability: Compact Series (MAI) tools.

Compact Systems

Applicability: Compact Series (MAI) tools.

Compact Systems

Applicability: Compact Series (MAI) tools.

Applicability: All 95 mm ($3^{3/4}$ inch) diameter AIS tools. Use VECTAR processed data.

Applicability: DLS series tools.

Thick beds, 8 inch (203 mm) hole, step invasion profile. Use borehole corrected data.

Compact Deep Laterolog Borehole Correction

Compact Systems

Applicability: Compact Series (MDL) tools, Operating Mode A.

Standard condition is 13 mm (0.5 inch) standoff in a 200 mm (8 inch) well, Ra/Rm = 20.

Compact Shallow Laterolog Borehole Correction

Compact Systems

Applicability: Compact Series (MDL) tools, Operating Mode A. Standard condition is 13 mm (0.5 inch) standoff in a 200 mm (8 inch)

well, Ra/Rm = 20.

© Reeves Technologies

Compact Dual Laterolog Tornado Chart

Applicability: Compact Series (MDL) tools. Operating Mode A.

Thick beds, 8 inch (203 mm) hole, step invasion profile, Rxo/Rm = 50. Use Borehole corrected data.

Compact Systems

Applicability: Compact Series (MFE) tools.

Applicability: MRS series tools with 8 inch (203 mm) pad profile.

Por - 1

$$\Phi = 1 - \left(\frac{\Delta t_{ma}}{\Delta t}\right)^{1/x}$$

where x = 1.60 for Sandstones, 1.76 for Limestones, and 2.00 for Dolomites.

Enter the chart with a Travel Time (Δt) value and move vertically to the appropriate characteristic line. Now move horizontally to intersect the Porosity scale at the appropriate Fluid Travel Time value (Δt_f). For Raiga-Clemenceau lines, use the Δt_f = 190 scale.

Applicability: CNS and MDN series tools.

Neutron porosity logs are recorded in Limestone units (curve mnemonic NPRL) and may also be displayed in Sandstone (mnemonic NPRS) or Dolomite units (mnemonic NPRD). Charts Npor-1a and Npor-5 show the magnitude of these transforms.

Use charts Npor-2a to Npor-4, and Npor-5 to Npor-8 to determine the magnitude of environmental corrections. Compact tool field logs may be corrected automatically for any of the environmental perturbations - refer to the correction parameter values listed in the log tail to determine whether a particular correction has been applied (indicated by departure from standard conditions).

CNS series tools are normally corrected for hole size, borehole fluid salinity and formation matrix cross section. Hole size correction uses caliper or bit size logs (if bit size has been used, an asterisk appears next to the BIT parameter in the Logging Constants part of the log tail). The borehole fluid salinity correction is controlled by the MDNACL parameter (NaCl concentration in kppm), also listed in Logging Constants.

Standard conditions are:

CaCO ₃ with 7.10 cu capture cross section
8.0 inches (203 mm)
fresh water
0.0 inches (0.0 mm)
8.345 lb/US gallon (1000 Kg/m ³)
68°F (20°C)
0 kpsi (0 Mpa)
fresh water with 22.2 cu capture cross section

Standard Sandstone matrix is SiO_2 with 4.26 cu capture cross section. Standard Dolomite matrix is $CaMg(CO_3)$ with 4.70 cu capture cross section.

If a correction was not applied during acquisition, or if alternative parameter values are established, the charts allow a new nett correction to be computed. The raw Apparent Limestone porosity curve NPOR is provided for this purpose.

Corrections are applied in a specific order. Using chart Npor-6 for illustration, begin with NPOR, and draw a line vertically from the uppermost porosity entry point through to the second porosity scale. A correction is computed from each nomogram by following the correction curves from the actual condition to the standard condition. A multiplier is applied to the corrections for borehole fluid salinity and standoff if the hole size is not 8 inches. The total correction is the arithmetic sum of the individual corrections. Next, transform the resulting porosity into the appropriate matrix units using Chart Npor - 5, before applying Σ_{ma} and formation fluid salinity corrections in charts Npor - 7 and Npor - 8. Finally, return to chart Npor - 6 to perform formation temperature and pressure corrections.

Neutron Porosity Matrix Transforms

Npor - 1a

Applicability: Open hole logs from CNS series tools with Type 5 processing.

Applicability: CNS tools with Type 5 processing. Porosity (Φ) in pu. Range: as Chart Npor - 2a.

Borehole Size

Field logs are corrected automatically using a caliper or bit size log. To compute a correction based on an alternative measure of hole size, use the following equations applied to the raw Apparent Limestone Porosity curve (mnemonic NPOR):

 $\Delta \Phi = f(\Phi) \cdot f(c)$

where

c = (caliper - 8.0) inches f(Φ) = 0.000009 Φ^3 - 0.00037165 Φ^2 + 0.26433 Φ + 1.7216 f(c) = -0.00055c³ + 0.01865c² - 0.25813c

Borehole Fluid Salinity

Field logs are corrected automatically for borehole fluid salinity. To compute a correction for an alternative value of salinity, use the following equation applied to the raw Apparent Limestone Porosity curve (mnemonic NPOR):

$$\Delta \Phi = k \cdot (0.2 \Phi + 0.64) MDNACL / 250$$

where:

k = (caliper - 3.75)/4.25 inches MDNACL = NaCl equivalent salinity in kppm

Standoff

 $\Delta \Phi = k \cdot f(\text{ standoff}) \cdot f(\Phi)$

where:

k = (caliper - 3.75)/4.25 inches f(standoff) = 1.113 s² - 4.719 s f(Φ) = 0.000515 Φ ²- 0.021 Φ + 1.0 s = standoff / k inches

Mud Weight

```
Natural Muds
```

 $\Delta \Phi = (0.0143 \Phi + 0.1786) \cdot (w - 8.345)$ Barite Muds

Dante Muus

```
\Delta \Phi = (0.0057 \Phi + 0.0714) \cdot (w - 8.345)
```

where:

w = mud weight in lbs/US gallon

Borehole Temperature

 $\Delta \Phi = (0.000464 \, \Phi + 0.002982) \cdot (\circ F - 68)$

Formation Pressure

 $\Delta\Phi$ = (0.04 - 0.0085 Φ) kpsi

Applicability: Open hole logs from 95 mm (3³/₄ inch) diameter CNS series tools.

Npor - 3a

Applicability: Open hole logs from CNS Series tools.

Neutron Porosity Matrix Transforms

Applicability: Compact Series (MDN) tools. Σ_{fl} value: 22.2 cu.

Compact ^{Ap} Systems Σ_m

 Σ_{ma} values: Silica 4.26 cu Limestone 7.10 cu Dolomite 4.70 cu

Enter the apparent limestone porosity and move vertically to the appropriate matrix line. Read the true porosity from the vertical axis.

The transforms are described by the following equations:

$$\Phi_{\text{sand}} = 0.000075 \Phi_{\text{lim}}^{3} - 0.012 \Phi_{\text{lim}}^{2} + 1.43 \Phi_{\text{lim}} + 1.76$$

$$\Phi_{\text{dol}} = 0.000025 \Phi_{\text{lim}}^{3} - 0.0022 \Phi_{\text{lim}}^{2} + 0.982 \Phi_{\text{lim}} - 0.88$$

When formation $\Sigma_{\rm ma}$ values depart significantly from standard conditions, use chart Npor - 7 to make additional corrections.

Npor - 5

Applicability: Open hole logs from Compact Series (MDN) tools.

Applicability: Compact Series (MDN) tools.

Porosity (Φ) in pu. Range: as Chart Npor - 6.

General

To determine whether a particular environmental correction was applied during acquisition, refer to the correction parameter value recorded on the log tail; if it is equal to the standard condition value, then no correction was applied. Corrections are additive.

To compute corrections for borehole size, borehole fluid salinity, standoff and mud weight based on alternative parameter values, use the relevant equations applied to the raw Apparent Limestone Porosity curve (mnemonic NPOR). Temperature and pressure corrections should be applied after matrix and formation fluid salinity corrections have been made.

Borehole Size

 $\Delta \Phi = f(\Phi) \cdot f(c)$

where:

c = (caliper - 8.0) inches f(Φ) = -0.00231 Φ^2 + 0.214 Φ + 2.1 f(c) = -0.00034 c³ + 0.01313c² - 0.167c

Borehole Fluid Salinity

$$\begin{split} \Delta \Phi &= k \cdot (\ 0.05 \ \Phi + 1.0 \) \text{MDNACL} \ / \ 250 \end{split}$$
 where: $k &= (\ \text{caliper} - 2.25 \) \ / \ 5.75 \ \text{inches} \\ \text{MDNACL} &= \text{NaCl equivalent salinity in kppm} \end{split}$

Standoff

$$\begin{split} \Delta\Phi &= \mathsf{f}(\;\mathsf{standoff}\,){\cdot}\mathsf{f}(\Phi){\cdot}(\mathsf{caliper^2/128+caliper/16})\\ \text{where:} \\ &\mathsf{f}(\;\mathsf{standoff}\,) = 0.8s^2 - 4.4\;\mathsf{s} \\ &\mathsf{f}(\Phi) = -0.0005\,\Phi^2 {+}0.034\;\Phi + 0.6\\ &\mathsf{s} &= \;\mathsf{standoff}\,/\;\mathsf{k} \quad \mathsf{inches} \\ &\mathsf{k} &= (\;\mathsf{caliper}\,-2.25\;)/5.75\;\;\mathsf{inches} \end{split}$$

Mud Weight

Natural Muds $\Delta \Phi = (0.0143 \Phi + 0.1786) \cdot (w - 8.345)$ Barite Muds $\Delta \Phi = (0.0057 \Phi + 0.0714) \cdot (w - 8.345)$ where: w = mud weight in lbs/US gallon

Borehole Temperature

 $\Delta \Phi = (0.0007 \Phi + 0.001) \cdot (°F - 68)$

Pressure

 $\Delta \Phi = (0.02 - 0.004 \Phi) \cdot \text{kpsi}$

Applicability: Open hole logs from Compact Series (MDN) tools.

Sigma corrections associated with variations in formation fluid salinity are specified in Chart Npor - 8. Matrix sigma corrections are given by:

 $\begin{array}{lll} \mbox{sand} & \Delta \Phi = (-2.51a^2 + 11.34a - 8.83) \cdot (0.08 \, \Phi \exp(-0.04 \, \Phi) + 0.05) \\ \mbox{lime} & \Delta \Phi = (-1.37a^2 + 8.78a - 7.41) \cdot (0.08 \, \Phi \exp(-0.045 \, \Phi) + 0.25) \\ \mbox{dolomite} & \Delta \Phi = (-7.09a^2 + 16.98a - 9.89) \cdot (0.11 \, \Phi \exp(-0.06 \, \Phi) + 0.20) \\ \mbox{where:} & \Phi = \mbox{borehole corrected neutron porosity in appropriate matrix units} \\ \mbox{and} & a = \sum_{ma(std)} / \sum_{ma} \\ \mbox{and} & \sum_{ma(std)} = 4.26, \ 7.10 \ \mbox{and} \ 4.70 \ \mbox{cu respectively for standard sand, lime and dolomite.} \end{array}$

Npor - 7

Reeves

Applicability: Open hole logs from Compact Series (MDN) tools.

Npor - 8

Applicability: CNS tools with Type 5 processing, environmentally corrected. Formation fluid density = 1.0 gm/cm^3 (Mg/m³).

Applicability: CNS tools with Type 5 processing, environmentally corrected. Formation fluid density = 1.19 gm/cm³ (Mg/m³).

Applicability: CNS tools with Type 5 processing, environmentally corrected. Formation fluid density = 1.0 gm/cm^3 (Mg/m³).

Applicability: CNS tools with Type 5 processing, environmentally corrected. Formation fluid density = 1.19 gm/cm³ (Mg/m³).

Applicability:CNS tools with Type 5 processing, environmentally corrected.Formation fluid slowness = 189 microseconds/ft (620 microseconds/m).Formation fluid salinity = 0 kppm.

Applicability: Formation fluid density = 1.0 gm/cm^3 (Mg/m³).

Formation fluid slowness = 189 microseconds/ft (620 microseconds/m). Sonic porosity from time average equation.

Applicability: PDS and MPD series tools.

Fresh water filled formations, fluid density = 1.0 gm/cm^3 (Mg/m³).

Applicability: PDS and MPD series tools.

Salt water filled formations, fluid density = 1.19 gm/cm^3 (Mg/m³).

The M and N parameters are insensitive to variations in porosity, and are used in the crossplot to help identify mineral mixtures in clean gas-free formations. They are defined as:

$$M = \frac{\Delta t_f - \Delta t}{\rho_b - \rho_f} \times 0.01 \text{ (Imperial)} \qquad M = \frac{\Delta t_f - \Delta t}{\rho_b - \rho_f} \times 0.003 \text{ (Metric)} \qquad N = \frac{(\Phi_N)_f - \Phi_N}{\rho_b - \rho_f}$$

The silica points correspond to pure quartz ($\Delta t_{ma} = 51 \mu s/ft$, 167 $\mu s/m$) and to a typical zero porosity clean sandstone ($\Delta t_{ma} = 56 \mu s/ft$, 184 $\mu s/m$).

Lith - 1a

Chart Lith - 2 is used to identify matrix components in mixed lithology formations. Input data are density, Pe and total porosity computed, for example, from a density - neutron crossplot.

The apparent matrix grain density ρ_{maa} , and the apparent matrix volumetric cross section U_{maa} are computed as:

$$\rho_{\text{maa}} = \frac{\rho_{\text{log}} \cdot \Phi_t \rho_f}{1 \cdot \Phi_t} \quad \text{and} \quad U_{\text{maa}} = \frac{P_e \rho_e \cdot \Phi_t U_f}{1 \cdot \Phi_t}$$

where Φ_t is total porosity, ρ_f is formation fluid density, U_f is formation fluid volumetric cross section, and ρ_e is the formation electron density given by:

Lith - 2

Gas

1.33ρ_{gas}- 0.19 0.12 ρ_{gas}

Name	Chemical Formula	$\frac{\Sigma Z}{M}$	ρ _{log} (gm/cm³)	P _e (barn/elct)	U (barn/cm ³)	Φ _N p.u.	∆t _c μs/ft	∆ts µs/ft
Oueste	sio	0.400	0.05	1.01	4.0	4.4	50	00
Quartz		0.499	2.65	1.81	4.8	-1.4	56	88
		0.500	2.71	5.08	13.8	0.0	46	89
Dolomite		0.498	2.87	3.14	9.0	1.0	42	11
Anhvdrite	CaSO ₄	0.499	2.98	5.05	15.0	-1.5	51	98
Barite	BaSO ₄	0.446	4.11	266.80	1096.1	-1.5	69	133
Gvpsum	CaSO ₄ .2H ₂ O	0.511	2.35	3.99	9.4	58.0	52	
Halite	NaCl	0.479	2.03	4.65	9.4	-3.3	67	120
Sylvite	KCI	0.483	1.86	8.51	15.8	-2.5	74	140
			1	I				
Siderite	FeCO ₃	0.483	3.89	14.69	57.1	12.0	44	85
Hematite	Fe ₂ O ₃	0.476	5.18	21.48	111.3	11.0	44	74
Magnetite	Fe ₃ O ₄	0.475	5.08	22.24	113.0	9.0	72	155
Goethite	FeO(OH)	0.484	4.30	19.02	81.8	60+		
Pyrite	FeS ₂	0.483	5.00	16.97	84.5	-2.0	39	62
.								
Orthoclase	KAISI3O8	0.496	2.52	2.86	7.2	-2.0	69	
Anorthoclase	(Na,K)AISi ₃ O ₈	0.496	2.59	2.86	7.4	-1.0		
Albite	NaAlSi ₃ O ₈	0.496	2.60	1.68	4.4	-1.0	47	98
Anorthite	CaAl ₂ Si ₂ O ₈	0.496	2.74	3.13	8.6	-1.0	45	
Muscovite	KAI ₂ (AISi ₃)O ₁₀ (OH) ₂	0.497	2.82	2.40	6.8	20.0	47	79
Biotite	K(Mg,Fe) ₃ AlSi ₃ O ₁₀ (OH) ₂	0.493	3.00	6.27	18.8	21.0	49	82
			I I	I	I	 	I	1
Kaolinite	Al ₄ Si ₄ O ₁₀ (OH) ₈	0.504	2.41	1.83	4.4	40.0	212	328
Montmorillonite	Al ₄ (Si ₄ O ₁₀) ₂ .nH ₂ O	0.502	2.10	2.04	4.3	47.0		
Illite	KyAl4(Si _{8-y} Aly)	0.499	2.52	3.45	8.7	35.0		
	O ₂₀ (OH) ₄							
Bituminous Coal	CH-N-O	0 527	1.91	0.17	0.2	60 <i>±</i>	120	
Anthracite		0.527	1.51	0.17	0.2		105	
Lignito		0.013	1.04	0.10	0.0	40 54	160	
LIGHILE	UTn Nx Uy	0.525	1.20	0.20	0.3	54		

Lith - 3a

Use this chart to compute porosity and gas saturation in gas-filled holes from a combination of density - neutron or density - resistivity logs. If all three logs are used, oil saturation may also be found. The chart assumes gas density and gas hydrogen index to be zero.

Enter the chart either with a neutron porosity value (corrected for shale and matrix effects) or an R_t/R_w ratio, and move vertically to intersect the density porosity. Move diagonally down to read the saturation corrected porosity, and diagonally up to read the gas saturation. Note that the density porosity may be computed by projecting a line from the matrix density graticule through the bulk density to the vertical axis.

To compute oil saturation as well, enter the chart with density and neutron porosity values, note the gas saturation, then move parallel to the corrected porosity lines to the intersection with the Rt/Rw ratio. This gives the total hydrocarbon saturation from which the oil saturation is computed as (hydrocarbon saturation - gas saturation).

Sw - 1

Use chart CBL -1 to determine the strength of the cement bond between casing and formation.

Begin by computing the CBL amplitude as a percentage of the free pipe signal. Enter the chart with this value on the left hand side and move parallel to the sloping lines to intersect the appropriate casing size. Now move horizontally to the attenuation axis, and project a line through the appropriate casing thickness to the strength axis and read the result.

Note that casing thickness is a function of casing size and weight, and may be obtained from Chart Misc - 5 by computing the difference between the quoted inner and outer diameters.

Example: Amplitude is 6.5 millivolts in 7 inch, 26 lb/ft casing. Free pipe amplitude is 65 millivolts.

From Chart Misc - 5, casing thickness is 0.362 inches. CBL Amplitude as a percentage of free pipe signal is 10%, and the cement compressive strength is therefore 1000 psi.

Applicability: Centralised tools with 3 foot (0.91 m) transmitter - receiver spacing.

	Ng/III	I.D.(mm)	Diam**	mm	Kg/m	I.D.(mm)	Diam**	mm	Kg/m	I.D.(mm)	Diam**
101.6	17.26	87.1	83.9	177.8	25.30	166.1	162.9	254.0	49.11	238.4	234.4
114.3	14.14	103.9	100.7		32.74	162.5	159.3				
	17.26	101.6	98.4		34.23	161.7	158.5	273.1	48.74	258.9	254.9
	20.09	99.6	96.4		35.72	160.9	157.8		59.53	255.4	251.4
120.7	23.81	103.7	100.5		38.69 41.67 43.16	159.4 157.8 157.1	156.2 154.7 153.9		60.27 66.97 67.71	255.3 253.0 252.7	251.3 249.0 248.8
127.0	17.11	115.8	112.6		44.65	156.3	153.1		71.43	251.5	247.5
	19.35	114.1	111.0		47.62	154.8	151.6		75.90	250.2	246.3
	22.32	112.0	108.8		52.09	152.5	149.3		80.36	248.5	244.6
	26.34	109.2	106.0		56.55	150.4	147.2		82.60	247.9	243.9
26.7	26.79	108.6	105.4		59.53	148.2	145.1				
	31.25	105.5	102.3								
				193.7	29.76	181.0	177.8	298.5	56.55	283.2	279.2
139.7	19.35	128.1	124.9		35.72	178.4	175.3		62.50	281.5	277.6
	20.83	127.3	124.1		39.29	177.0	173.8		69.95	279.4	275.4
	22.32	126.3	123.1		44.20	174.6	171.4		80.36	276.4	272.4
	23.07	125.7	122.6		50.15	1/1.8	168.7		89.29	273.6	269.6
	25.30	124.3	121.1		58.04	168.3	165.1				
	29.76	121.4	118.2	010.1	05 70	005 7	000 F	204.0	50 50	000 0	005.0
	34.23	110.0	115.4	219.1	JJ 67	200.7	202.5	304.0	59.55	209.2	200.2
1/6 1	20.92	124 4	121.0		41.07	203.0	109.0				
140.1	25.30	131.8	128.7		53 58	198.8	195.6	330.2	59 53	315.9	312.0
	29.02	129.3	126.1		56 55	197.5	194.3	000.2	00.00	010.0	012.0
	33.48	126.7	123.8		59.53	196.2	193.0				
	00.10	120.7	120.0		63.99	196.2	193.0	339.8	71.43	323.0	319.0
152.4	22.32	140.3	137.1		65.48	193.7	190.5	00010		02010	0.010
	23.81	139.7	136.5		72.92	190.8	187.6				
	26.79	137.8	134.6					406.4	81.85	390.5	385.7
	29.76	135.9	132.8	228.6	50.60	210.6	207.4				
	34.23	133.1	129.9		56.55	208.2	205.0				
					59.53	207.0	203.8	473.1	116.08	453.5	448.7
168.3	25.30	155.8	152.7		66.97	204.0	200.8				
	29.76	153.6	150.5		81.85	198.4	195.2				
	32.74	152.1	148.9					508.0	133.94	487.4	482.6
	35.72	150.4	147.2	244.5	43.60	230.2	226.2				
	38.69	148.7	145.5		48.07	228.6	224.7	546.1	137.66	526.0	521.3
	39.88	148.2	145.1		53.58	226.6	222.6		153.28	523.5	518.7
	41.67	147.1	143.9		59.53	219.3	220.4		169.65	521.0	516.2
	43.16	146.3	143.2		64.74	222.4	218.4				
	47.00		1110		00.05	000 5	010 5	000.0	140 50	000.0	F00 F

* Weight is given for plain pipe (no threads or couplings).

** Drift diameter is the guaranteed minimum internal diameter of any part of the casing. Use drift diameter to determine the largest diameter equipment that can be safely run inside the casing. Use nominal diameter (I.D.) for volume capacity calculations.

Misc - 4

O.D. inches	Weight* per ft	Nominal I.D.	Drift Diam**	O.D. inches	Weight* per ft	Nominal I.D.	Drift Diam**	O.D. inches	Weight* per ft	Nominal I.D.	Drift Diam**
4	11.60	3.428	3.303	7	17.00 20.00	6.538 6.456	6.413 6.331	10	33.00	9.384	9.228
4 ¹ / ₂	9.5 11.60 13.5	4.090 4.000 3.920	3.965 3.875 3.795		22.00 23.00 24.00 26.00	6.398 6.366 6.336 6.276	6.273 6.241 6.211 6.151	10 ³ / ₄	32.75 40.00 40.50	10.192 10.054 10.050	10.036 9.898 9.894
4 ³ / ₄	16.00	4.082	3.957		28.00	6.214 6.184	6.089		45.00	9.960	9.804 9.794
5	11.50 13.00 15.00 17.70 18.00	4.560 4.494 4.408 4.300 4.276	4.435 4.369 4.283 4.175 4.151		30.00 32.00 35.00 38.00 40.00	6.154 6.094 6.004 5.920 5.836	6.029 5.969 5.879 5.795 5.711		48.00 51.00 54.00 55.50	9.902 9.850 9.784 9.760	9.746 9.694 9.628 9.604
5 ¹ / ₂	13.00 14.00 15.00 15.50 17.00	5.044 5.012 4.974 4.950 4.892	4.919 4.887 4.849 4.825 4.767 4.652	7 ⁵ /8	20.00 24.00 26.40 29.70 33.70 39.00	7.125 7.025 6.969 6.875 6.765 6.625	7.000 6.900 6.844 6.750 6.640 6.500	11 ³ / ₄	38.00 42.00 47.00 54.00 60.00	11.150 11.084 11.000 10.880 10.772	10.994 10.928 10.844 10.724 10.616
	20.00	4.670	4.545	8 ⁵ / ₈	24.00	8.097 8.017	7.972	12	40.00	11.384	11.228
5 ³ / ₄	14.00 17.00 19.50 22.50	5.290 5.190 5.090 4.990	5.165 5.065 4.965 4.875		32.00 36.00 38.00 40.00	7.921 7.825 7.775 7.725	7.796 7.700 7.650 7.600	13	40.00	12.438	12.282
6	15.00	5.524	5.399		43.00 44.00	7.725 7.625	7.600 7.500	13 ³ / ₈	48.00	12.715	12.559
	16.00 18.00 20.00	5.500 5.424 5.352	5.375 5.299 5.227	9	49.00 34.00	7.511 8.290	7.386 8.165	16	55.00	15.375	15.187
6 ⁵ / ₈	23.00 17.00	5.240 6.135	5.115 6.010		38.00 40.00 45.00	8.196 8.150 8.032	8.071 8.025 7.907	18⁵/ ₈	78.00	17.855	17.667
	20.00 22.00	6.049 5.989	5.924 5.864		55.00	7.812	7.687	20	90.00	19.190	19.002
	24.00 26.00 26.80 28.00	5.921 5.855 5.837 5.791	5.796 5.730 5.712 5.666	9°/ ₈	29.30 32.30 36.00 40.00	9.063 9.001 8.921 8.635	8.907 8.845 8.765 8.679	21 ¹ / ₂	92.50 103.00 114.00	20.710 20.610 20.510	20.522 20.422 20.322
	29.00 32.00	5.761 5.675	5.550		43.50 47.00 53.50	8.755 8.681 8.535	8.599 8.525 8.379	24 ¹ / ₂	100.50 113.00	23.750 23.650	23.562 23.462

* Weight per foot (in pounds) is given for plain pipe (no threads or couplings).

** Drift diameter is the guaranteed minimum internal diameter of any part of the casing. Use drift diameter to determine the largest diameter equipment that can be safely run inside the casing. Use nominal diameter (I.D.) for volume capacity calculations.

Misc - 5

		Tubing Sizes	s and Weigh	its		
Outside Diameter		Nor Internal	ninal Diameter	Weight		
inches mm		inches mm		lb/ft	Kg/m	
21/16	52.4	1.751	44.5	3.30	4.90	
2 ³ / ₈	60.3	2.041 1.995 1.867	51.8 50.7 47.4	4.00 4.60 5.80	5.95 6.85 8.63	
27/8	73.0	2.441 2.259	62.0 57.4	6.40 8.60	9.52 12.80	
3 ¹ / ₂	88.9	3.068 2.992 2.922 2.750	77.9 76.0 74.2 69.9	7.70 9.20 10.20 12.70	11.46 13.69 15.18 18.90	
4	101.6	3.548 3.476	90.1 88.3	9.50 11.00	14.14 16.37	
4 ¹ / ₂	114.3	3.958	100.5	12.60	18.75	

Drill Pipe Sizes and Weights

Outside Diameter		Nom Internal D	iinal Diameter	Weight		
inches	mm	inches	mm	lb/ft	Kg/m	
2 ³ / ₈	60.3	1.815	46.1	6.65	9.90	
2 ⁷ / ₈	73.0	2.441 2.151	62.0 54.6	6.85 10.40	10.19 15.48	
31/2	88.9	2.992 2.764 2.602	76.0 70.2 66.1	9.50 13.30 15.50	14.14 19.79 23.07	
4	101.6	3.476 3.340	88.3 84.8	11.85 14.00	17.63 20.83	
4 ¹ / ₂	114.3	3.958 3.826 3.640	100.5 97.2 92.5	13.75 16.60 20.00	20.46 24.70 29.76	
5	127.0	4.408 4.276 4.000	112.0 108.6 101.6	16.25 19.50 25.60	24.18 29.02 38.10	
5 ¹ / ₂	139.7	4.778 4.670	121.4 118.6	21.90 24.70	32.59 36.75	
6 ⁵ / ₈	168.3	5.965	151.5	25.20	37.50	

Misc - 6