SANTOS – BEACH PETROLEUM

COMPILED FOR

SANTOS LIMITED (A.B.N. 80 007 550 923)

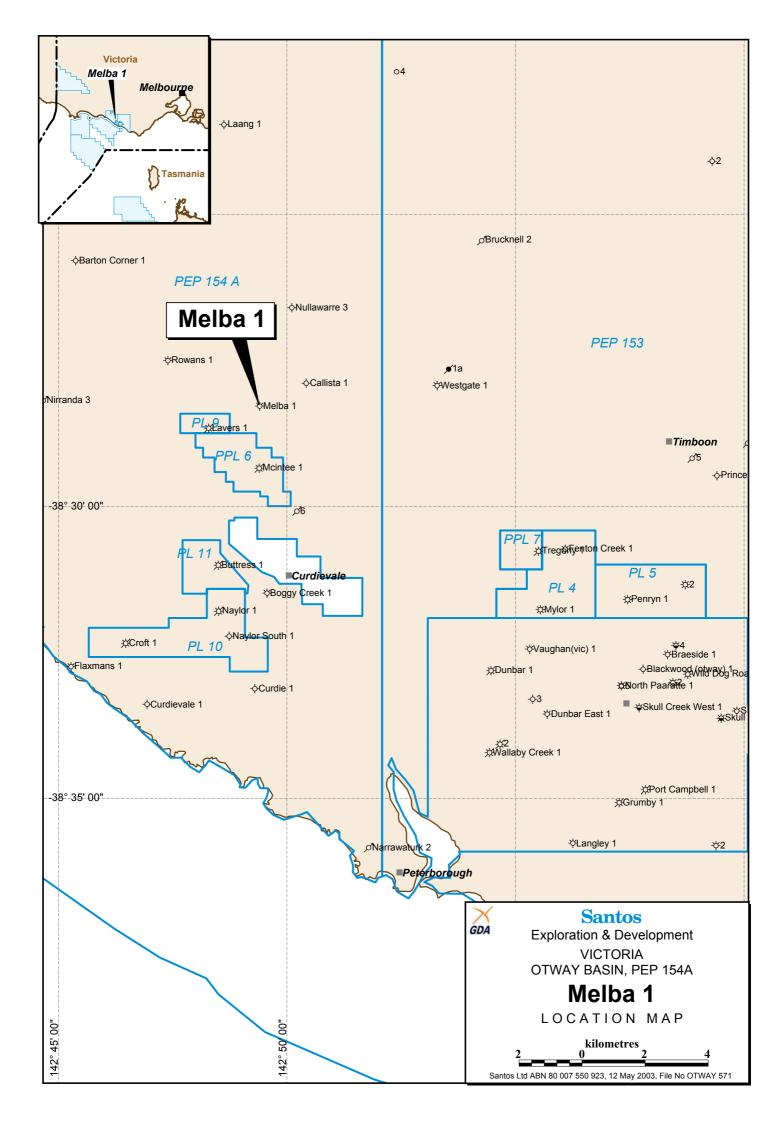
MELBA 1

WELL COMPLETION REPORT

Prepared By: J.PITMAN (Consultant) JULY, 2003

MELBA 1 TABLE OF CONTENTS

CONTENTS


PAGE

LOCATION MAP

WELL DATA CARD

WELL HISTORY	1. 2. 3.	General Data Drilling Data Drilling Summary	1 1 2
GEOLOGY	1. 2. 3. 4. 5.	 Pre-drilling Summary Drilling Rationale Results of Drilling (a) Stratigraphy (b) Geophysical Prognosis (c) Hydrocarbon Summary Summary References 	5 5 7 7 9 10 11 12
APPENDICES	I II III IV	Lithological Descriptions (a) Cuttings Descriptions (b) Hydrocarbon Show Reports (c) Sidewall Core Report Palynology Report Log Interpretation (a) Log Analysis (b) MDT Data Geothermal Gradient	
	V VI VII VIII IX	Deviation Report Drill Stem Test Data Well Location Survey Drilling and Casing Report Rig specifications	
ENCLOSURES	I II III IV	5" = 100' Composite Log 5" = 100' Mudlog Depth Structure Map Log Analysis Analogue Plot	

LOCATION MAP

WELL DATA CARD

WELL: MELBA 1	WELL CATEGORY: EXP. WELL INTENT: GAS		SPUD: 22/03/03 TD REACHED: 28/03/2003 RIG RELEASED: 31/03/2003 CMPLT:				
LAT: 38° 28' 16.58" S L	ONG: 142° 49' 24.36" E (GDA94)	RIG: CEN	TURY 11				
SEISMIC STATION: 2m S	W of line OCV00-2537 SP: 10238	STATUS: I	PLUGGED ANI	O ABANDONED			
ELEVATION GND: 71.2	M RT: 76.2 M	REMARKS	REMARKS : LOG ANALYSIS INDICATES NO GAS PAY.				
BLOCK/LICENCE: PEP 1	54 VIC						
TD 1668 M (Logr)	1668 M (Drlr)						
PBTD M (Logr)	M (Drlr)						
TYPE STRUCTURE: T	ILTED FAULT BLOCK	HOLE SIZE	CASING SIZE	SHOE DEPTH	TYPE		
TYPE COMPLETION:		9-7/8"	7-5/8"	456m	26.4# L80		
ZONE(S):							

AGE	FORMATION OR ZONE TOPS	DEPTH	I (m)	THICKNESS	HIGH (H)
		LOGGERS MDRT	TVD SS	TVD (m)	LOW (L)
RECENT TO MID – LATE	SURFICIAL SEDIMENTS AND				
MIOCENE	PORT CAMPBELL LIMESTONE	5	71.2	178	as prog
EARLY MIOCENE	GELLIBRAND MARL	183	-106.8	325.5	not prog
EARLY-LATE OLIGOCENE	CLIFTON FORMATION				
– EARLY AQUITANIAN		509	-432.3	15	9.3 L
LATE EOCENE	NARRAWATURK MARL	524	-447.3	44.5	4.3 L
MID EOCENE	MEPUNGA FORMATION	568	-491.8	80	11.8 L
EARLY – MID EOCENE	DILWYN FORMATION	648	-571.8	209.4	5.8 L
LATE PALEOCENE –	PEMBER MUDSTONE				
EARLY EOCENE		859	-781.2	44.7	3.2 L
EARLY – LATE	PEBBLE POINT FORMATION				
PALEOCENE		904	-825.9	29.7	14.9 L
LATE SENONIAN	PAARATTE FORMATION	934.5	-855.6	276.8	5.6 L
LATE SENONIAN	SKULL CREEK MUDSTONE	1222	-1132.4	93.8	22.4 L
LATE SENONIAN	NULLAWARRA SANDSTONE	1320	-1226.2	159.6	24.2 L
LATE SENONIAN	BELFAST MUDSTONE	1484.5	-1385.8	23.2	40.8 L
LATE SENONIAN	FLAXMAN FORMATION	1508.5	-1409	28.8	1 H
LATE SENONIAN	WAARRE SANDSTONE	1538.5	-1437.8	53.4	2.8 L
EARLY NEOCOMIAN	EUMERALLA FORMATION	1594	-1491.2	73	1.2 L
	TOTAL DEPTH	1668	-1564.2		24.2 L

LOG INTERPRETATION (Interval Averages)					PERFORATIONS (4 shots/ft)						
INTERVAL (m)	Ø %	SW %	INTERVAL (m)	Ø %	SW %	FORMATION		FORMATION INTER		NTERV	AL
No Conventional Pay was identified in this well.											
								CODES			
						FORM	NO.	CORES INTE	RVAL	CUT	REC

LOG	SUITE/	INTERVAL	BHT/TIME/	LOG	SUITE/	INTERVAL	BHT/TIME/
	RUN		REMARKS		RUN		REMARKS
PEX	1/1		60°C / 9.5 HOURS	MDT	1 / 2		Cancelled
H <u>GN</u> S							
GR		1641-surface		CST	1/3	1592 - 1495	18 bullets shot, 15
NGT		1641 - 1360					recovered, 1 lost bullet,
TNPH		1647 - 456					2 empty
H <u>RM</u> S							
RXOZ		1646 - 456					
RHOZ		1647 - 456					
HCAL		1646 - 456					
H <u>AL</u> S							
HLLD		1666 - 456					
HLLS		1666 - 456					
DSI		1660 - 456					
SP		1628 - 456					

FORMATION TESTS										
NO.	INTERVAL (ft)	FORMATION	FLOW (mins)	SHUT IN (mins)	BOTTOM GAUGE IP/FP (psia)	SIP	MAX SURF PRESS (psig)	FLUID TO SURF (mins)	TC/ BC	REMARKS

No drill stem tests were conducted at the Melba 1 location.

SUMMARY:

Melba 1 was drilled as an Otway Basin near field exploration wildcat well in the PEP 154 licence. The Melba structure is situated within the Port Campbell Embayment and the productive Waare Sandstone play fairway, immediately north of PPL 6. Melba 1 is 1.8 km NE of the Lavers 1 discovery and 2.0 km N of the McIntee gas field. Melba 1 was drilled as a directional well due to surface constraints on the well location.

Melba 1 was spudded on the 22^{nd} March 2003 utilising the drilling rig Century 11. A 9-7/8" hole was drilled to 457m and 37 joints of 7 5/8" 26.4 lb/ft casing run with the shoe set at 456m. The Blow Out Preventer was installed and pressure tested prior to drilling ahead. The $6\frac{3}{4}$ " drilling assembly was made up with a mud motor and run into the hole drilling the shoe track and 3m of new formation to 460m. The hole was displaced to KCl/PHPA/Polymer mud and a Leak Off Test conducted yielding an equivalent mud weight of 16.1 ppg. Drilling $6\frac{3}{4}$ " hole continued to kick-off point at 816m. The well was kicked-off utilising a combination of slide and rotary drilling with MWD directional surveys taken as required building the angle to 15 degrees. Drilling continued to 1184m where the bit was pulled from the hole due to rotational hours. The $6\frac{3}{4}$ " hole section was completed in two bit runs with total depth reached at 1668m on 28^{th} March 2003 at 21:30 hours. After reaching total depth Suite 1 wireline logs were conducted. Wireline results indicated no pay for the well. Abandonment plugs were set and the rig released at 02:00 hrs on 31^{st} March 2003.

Formation tops were intersected from 1m high for the Flaxman Formation to 41m low for the Belfast Mudstone. The Waarre Sandstone, the primary target for the well was intersected 2.8m low to prognosis.

Good gas shows were observed while drilling. Suite 1 wireline logs conducted at total depth consisted of Run 1 Pex-DSI-NGT and Run 3 CST (18 sidewalls attempted, 15 recovered, 2 empty and 1 lost bullet). Run 2 MDT was cancelled based on the results of Run 1 which indicated no gas pay. No drill stem tests were conducted at the Melba 1 location.

Due to surface constraints Melba 1 was drilled as a directional well. The well was drilled vertically to kick-off point at 816m. The well was kicked – off at 16° to the north-east with LWD surveys taken as instructed by the directional driller. At total depth the well was located at 212m to 45.13° .

After conducting wireline logs at total depth abandonment plugs were set and the rig was released on 31st March 2003 at 02:00 hours.

AUTHOR: J.PITMAN

DATE: JULY 2003

WELL HISTORY

1. <u>GENERAL DATA</u>

Well Name:	MELBA 1					
Well Classification:	Gas Exploration					
Block Voting Factor:	SANTOS Group. Beach Petroleum.	90.0% 10.0%				
Investment Factor:	SANTOS Group. Beach Petroleum.	90.0% 10.0%				
Block:	Former PSW Block South Australia					
License:	PEP 154 Victoria					
Operator:	SANTOS Limited					
Surveyed Location: (GDA94)	Latitude: 38° 28' 16.58" South Longitude: 142° 49' 24.36" East					
Surveyed Elevation: (AHD)	Ground Level: 71.2m Rotary Table: 76.2m					
Seismic Location:	2m SW of line OCV00-2537 SP: 10238					
Seismic Survey:	Curdievale 3D seismic					
Total Depth	Driller: 1668m Logger (Extrapolated): 1668m					
Status:	Plugged and Abandoned Dry Hole					

2. DRILLING DATA

Date Drilling Commenced:	14:30 Hours, 22 nd March 2003.
Date Drilling Completed:	21:30 Hours, 28 th March 2003.
Date Rig Released:	02:00 Hours, 31 st March 2003.
Contractor:	Century Resources
Rig:	CDL 11
Rig Specifications:	Refer to Appendix XII

3. DRILLING SUMMARY

(a) <u>Drilling Summary</u> (All Depths Driller's KB)

Melba 1 was drilled as an Otway Basin near field exploration wildcat well in the PEP 154 licence. Melba 1 was drilled as a directional well due to surface constraints on the well location.

Melba 1 was spudded on the 22nd March 2003 utilising the drilling rig Century 11. The 9-7/8" hole section was drilled in one bit run to 457m utilising a Hughes GT-C1. 37 joints of 7 5/8" 26.4 lb/ft casing were run with the shoe set at 456m. The Blow Out Preventer was installed and pressure tested prior to drilling ahead.

The 6³/₄" drilling assembly was made up with a mud motor and a Hughes STR09 bit. The shoe track and 3m of new formation were drilled to 460m. The hole was displaced to KCl/PHPA/Polymer mud and a Leak Off Test conducted yielding an equivalent mud weight of 16.1 ppg.

Drilling 6³/₄" hole continued to kick-off point at 816m. The well was kicked-off utilising a combination of slide and rotary drilling with MWD directional surveys taken as required building the kick-off angle to 15 degrees.

Drilling continued to 1184m where the bit was pulled from the hole due to increased rotational hours. The $6\frac{3}{4}$ " hole section was completed in two bit runs with total depth reached at 1668m on 28^{th} March 2003 at 21:30 hours.

After reaching total depth Suite 1 wireline logs were conducted and consisted of Run 1 Pex-DSI-NGT and Run 3 CST (18 sidewalls attempted, 15 recovered, 2 empty and 1 lost bullet). Run 2 MDT was cancelled based on the results of Run 1 which indicated no gas pay for the well.

Abandonment plugs were set and the rig released at 02:00 hrs on 31st March 2003.

Tables 1 and 2 below, summarise the major drilling operations in this hole. More comprehensive summaries are appended to this report (Appendix VIII: Drilling and Casing Report).

BIT SIZE	DEPTH	CASING SIZE	CASING DEPTH	JOINTS	CASING TYPE/	CEMENT
9-7/8" 7-5/8"	457m 1668m	7-5/8"	456m	37	26.4 lb/ft L80	Lead: 297 sacks class "G" cement with 1.5% bentonite and 63 bbls of mix water, mixed to a slurry weight of 13.5 ppg. Plugged and abandoned.

TABLE 1: CASING, HOLE AND CEMENT DETAILS

TABLE 2: SUMMARY OF MUD SYSTEMS

MUD TYPE	INTERVAL
Spud Mud	Surface to 457m (7-5/8" casing point)
KCl / PHPA	457m to 1668m (Total Depth)

(b) Lost Time

A time breakdown is included in Appendix VIII.

(c) <u>Water Supply</u>

The water supply was from the rig bore with a resistivity of 7.5 ohm.m @ 75°F.

(d) Mudlogging Services

Mudlogging services were provided by Geoservices (Unit 71). Samples were collected, washed and described at 10m intervals from spud to 987m and 3 and 6m intervals from 987m to TD at 1668m. All samples were checked for oil shows using ultraviolet fluorescence. Gas levels and compositions were monitored from surface to TD using F.I.D. total gas and chromatograph detectors. Other parameters monitored included rate of penetration, mud pit levels and pump strokes.

(e) <u>Testing</u>

No drill stem tests were conducted at the MELBA 1 location.

(f) <u>Coring</u>

No cores were cut on MELBA 1.

(g) <u>Electric Logging</u>

LOG	RUN	INTERVAL	BHT/TIME	OTHER
PEX	1 / 1		60°C / 9.5 HOURS	
H <u>GN</u> S				
GR		1641-surface		
NGT		1641 - 1360		
TNPH		1647 - 456		
H <u>RM</u> S				
RXOZ		1646 - 456		
RHOZ		1647 - 456		
HCAL		1646 - 456		
H <u>AL</u> S				
HLLD		1666 - 456		
HLLS		1666 - 456		
DSI		1660 - 456		
SP		1628 - 456		
MDT	1 / 2			Cancelled
CST	1/3	1592 - 1495		18 bullets shot, 15
				recovered, 1 lost
				bullet, 2 empty

One suite of electric logs were run as detailed below:

(h) <u>Geothermal Gradient</u>

A bottom hole temperature of 166°Fht was extrapolated from the logging run temperature data which enabled a geothermal gradient of $1.72^{\circ}F / 100'$ to be calculated. A surface temperature of 70°F was assumed. Temperature data used is listed in Appendix IV. The results are displayed graphically in Appendix IV.

(i) <u>Hole Deviation</u>

MELBA 1 was drilled as a deviated well due to surface constraints. Deviation was monitored during the 9-7/8" section utilising single shot directional surveys. Through the $6^{3}/4$ " hole section the well was drilled vertically to kick-off point at 816m. The well was kicked – off at 16° to the north-east with LWD surveys taken as instructed by the directional driller. At total depth the well was located at 212m to 45.13°. Deviation results are summarised in Appendix V and the Composite Log (Enclosure I).

(j) <u>Velocity Survey</u>

No velocity survey was conducted at MELBA 1.

(k) Casing and Completion Summary

A surface string of 7-5/8" casing was run to 456m. The well was drilled to a total depth of 1668m(D) and after logging the well was plugged and abandoned. Further details are appended to this report (Appendix VIII:- Drilling and Casing Report).

GEOLOGY

1. <u>PRE-DRILLING SUMMARY</u> (after Well Proposal – MELBA 1)

Melba 1 is proposed as an Otway Basin near field exploration wildcat well in the PEP 154 licence. The Melba structure is situated within the Port Campbell Embayment and the productive Waarre Sandstone play fairway, immediately north of PPL 6. The proposed well is 1.8 km NE of the Lavers 1 discovery, and 2.0 km N of the McIntee gas field (Figure 1).

The Melba Prospect is a tilted fault block closure defined by 3-D seismic with a Waarre Sandstone primary target, a proven play type in the area (Figure 2). The prospect is potentially a common pool with the Lavers 1 gas discovery, hence the risk of a high CO2 content is considered minimal.

The Melba Prospect is one of the largest remaining prospects currently mapped within PEP 154, with the highest mean prognosed (untruncated) success case raw gas (5.5 Bcf), and the highest risked mean expected reserves (2.2 Bcf raw gas). Melba has a probability of commercial success (Pc) of 40% (Attachment 1).

Melba 1 is also an attractive project as it is close to the gathering system at McIntee, enabling rapid tie-in in the success case with a flow-line of approximately 2.5 km (Figure 1).

Melba 1 is a critical test of a series of seismic attributes which are believed to be characteristic of Waarre gas accumulations in the Port Campbell Embayment, and if successful will provide new criteria to re-evaluate the remaining prospects within PEP 154.

2. <u>DRILLING RATIONALE</u> (after Well Proposal – MELBA 1)

2.1 Geological/Geophysical Summary

The Melba Prospect is up-dip of, and potentially a common pool with, the 10 metres of gas pay discovered in the Waarre Sandstone by the Lavers 1 well (Figure 3). The prospect is strongly supported by seismic amplitude anomalies. The up-thrown structural closure at Melba has a time consistent down-dip amplitude termination at 1228 milliseconds on the north and west side of the structure, which is coincident with the gas-water contact observed in the Lavers 1 well. The prospect is also consistent with the following five amplitude characteristics which are generally seen on 3-D seismic associated with other Port Campbell Embayment gas fields (Figures 2, 4, & 5):

Stronger peak amplitude at the top of the Waarre Sandstone,

Strong trough amplitude from the gas-water contact,

AVO (amplitude stronger on far offset ranges),

Frequency/amplitude shadow beneath the gas reservoir, and

Gas chimney effects above the anomaly causing amplitude deterioration in the crest of the structure and time sag relative to wells outside the gas chimney area.

Amplitudes in the south-eastern portion of the Melba structure are diminished by an apparent gas sand-type amplitude occurring in the lower part of the overlying Belfast Formation.

2.2 <u>Closure (Pcl = 0.90)</u>

The trap for Melba 1 is well-defined by 3-D seismic, and there are a number of nearby wells to provide good velocity control for depth conversion of the structure. Gas charging of the section overlying the Waarre Sandstone may cause velocity "sags" on the crests of structures, with many of the discoveries in the area coming in significantly high to prognosis at top reservoir.

2.3 <u>Reservoir (Prs = 0.90)</u>

Reservoir is present in all surrounding wells (Rowans 1, Lavers 1, Callista 1, and McIntee 1), and is not expected to be a major risk for Melba 1. However, the Waarre C primary target sand does thin somewhat and become poorer quality at Callista 1 (Figure 6), hence there is a slight risk on reservoir.

2.4 <u>Seal (Psl = 0.60)</u>

Cross-fault seal is the primary risk of the project. The Waarre Sandstone target in the footwall is potentially juxtaposed against Nullawarre Sandstone in the hangingwall of the main fault to the northeast. However, the fault appears on inspection of a 3-D seismic coherency volume to consist of multiple fault planes with smaller heaves, with the Belfast Shale/Flaxmans Formation within the fault sliver providing a seal for the pool. Alternatively, the fault zone may have sufficient fault smear to provide a seal to the pool.

The adjacent McIntee Field, as well as the recently drilled Seamer Field, are two Waarre Sandstone gas fields within the Port Campbell Embayment where similar cross-fault sand juxtapositions exist, and require a similar mechanism to Melba to provide a seal.

2.5 <u>Charge (Pch = 0.85)</u>

Charge is not considered a major risk at Melba, as Lavers and Melba appear to be a common pool. In addition, the Melba structure displays the majority of seismic attributes which are characteristic of adjacent hydrocarbon accumulations. The reservoir section has a high trough amplitude related to an inferred gas-water contact, the reflection displays a strong AVO effect, there is an amplitude/frequency shadow beneath the prospect, and there is a gas chimney effect above the prospect. The seismic peak occurring at the top of the reservoir does not have the characteristic high amplitude in the crest of the structure, but does have high amplitudes on the flanks of the structure down to the inferred gas-water contact. The absence of the peak amplitude over the crest of the field is believed to be due to the gas chimney effect decreasing the density/velocity contrast at the top of the reservoir.

If the saddle and/or fault between Lavers and Melba are not as mapped and do partition the pool, there is a slight risk that the seismic characteristics observed at Melba could be due to residual gas saturations.

High concentration of CO2 is not expected to be a major issue, as the gas is expected to have a similar composition to Lavers (0.47% CO2).

3. <u>RESULTS OF DRILLING</u>

(a) <u>Stratigraphy</u>

TABLE 2:- COMPARISON OF THE ACTUAL AND PROGNOSED STRATIGRAPHY OF MELBA 1

(RT = 76.2m)

AGE	FORMATION	ACTUAL	PROG	DIFF	ACTUAL	PROG	DIFF
	OR ZONE	DEPTH	DEPTH	HI/LO	THICK	THICK	+/-
RECENT TO MID -	SURFICIAL SEDIMENTS						
LATE	AND						
MIOCENE	PORT CAMPBELL LIMESTONE	71.2	71.2	as prog	178		
EARLY MIOCENE	GELLIBRAND MARL	-106.8	NP	not prog	325.5	NP	-
EARLY-LATE	CLIFTON FORMATION			1 0			
OLIGOCENE – EARLY		-432.3	-423	9.3 L	15	20	-5
AQUITANIAN							
LATE EOCENE	NARRAWATURK MARL	-447.3	-443	4.3 L	44.5	37	+7.5
MID EOCENE	MEPUNGA FORMATION	-491.8	-480	11.8 L	80	86	-6
EARLY – MID EOCENE	DILWYN FORMATION	-571.8	-566	5.8 L	209.4	212	-2.6
LATE PALEOCENE –	PEMBER MUDSTONE	-781.2	-778	3.2 L	44.7	33	+11.7
EARLY EOCENE	DEDDI E DONIT						
EARLY – LATE PALEOCENE	PEBBLE POINT FORMATION	-825.9	-811	14.9 L	29.7	39	-9.3
LATE SENONIAN	PAARATTE						
LATE SENONIAN	FORMATION	-855.6	-850	5.6 L	276.8	260	+16.8
LATE SENONIAN	SKULL CREEK MUDSTONE	-1132.4	-1110	22.4 L	93.8	92	+1.8
LATE SENONIAN	NULLAWARRA SANDSTONE	-1226.2	-1202	24.2 L	159.6	143	+16.6
LATE SENONIAN	BELFAST MUDSTONE	-1385.8	-1345	40.8 L	23.2	65	-41.8
LATE SENONIAN	FLAXMAN FORMATION	-1409	-1410	1 H	28.8	25	+3.8
LATE SENONIAN	WAARRE SANDSTONE	-1437.8	-1435	2.8 L	53.4	55	-1.6
EARLY NEOCOMIAN	EUMERALLA FORMATION	-1491.2	-1490	1.2 L	73	50	+13
	TOTAL DEPTH	-1564.2	-1540	24.2 L			

Drilling was terminated after penetrating 73m of the Eumeralla Formation (Early Cretaceous) which was intersected 1.2m low to prognosis. The formation consists of sandstone with thinly interbedded siltstone. Sandstones are clear, translucent and white, fine to medium grained, subangular to subrounded, moderately well sorted, with weak calcareous cement, abundant white argillaceous matrix and trace pyrite, mica and common to abundant volcanics. Porosity was poor to fair with no hydrocarbon fluorescence observed. Siltstones are grey brown, argillaceous and soft to firm. The Eumeralla was deposited in a low-energy fluviatile environment with occasional high energy channels.

The Sherbrook Group (Late Cretaceous) unconformably overlies the Eumeralla Formation. The Waarre Formation is the oldest formation of the group and consists of sandstone with interbedded claystone. Sandstones are clear, translucent, fine to coarse grained with weak siliceous cement and fair inferred porosity. Claystones are light grey, silty and dispersive. The Waarre Sandstone was deposited in a shallow marine environment.

The Waarre Sandstone is conformably overlain by the Flaxman Formation. At the Melba 1 location the Flaxman Formation is 28.8m thick and was intersected 1m high to prognosis. It consists of interbedded sandstone and claystone. Sandstones are translucent, clear, very fine to medium grained with moderately strong siliceous cement, common white argillaceous matrix and have trace glauconite and pyrite. Aggregates are hard and exhibit poor to fair porosity. Claystones are light to medium greenish grey, silty, with trace shell fragments, trace glauconite and pyrite and are soft to firm. The Flaxman Formation was deposited in a marine transgressive environment.

The Belfast Mudstone conformably overlies the Flaxman Formation. At Melba 1 the Belfast Mudstone is 23.2m thick and was intersected 41m low to prognosis. The Belfast Mudstone consists of claystone which is medium to dark grey, occasionally silty, with common glauconite and is soft to dispersive. The Belfast Mudstone was deposited in low-energy marine conditions, in a pro-delta environment.

The Nullawarre Formation conformably overlies the Belfast Mudstone and was penetrated 24.2m low to prognosis. The Nullawarre Formation at Melba 1 consists of sandstone with thin interbedded siltstones. Sandstones are clear, translucent, fine to medium grained with weak siliceous cement, trace pyrite and common glauconite, fair visual porosity and no fluorescence. Siltstones are brownish grey, argillaceous, with trace glauconite and are soft to dispersive. The Nullawarre Formation was deposited in a shallow water marine environment.

The Skull Creek Mudstone conformably overlies the Nullawarre Sandstone and was intersected 22.4m low to prognosis at 1222m. The formation at Melba 1 consists of pale to medium brownish grey siltstone. Accessories include pyrite, glauconite, carbonaceous specks and micro mica. The siltstone is soft to dispersive. The Skull Creek Mudstone was formed in a pro-delta environment of deposition.

The Paaratte Formation conformably overlies the Skull Creek Mudstone and was intersected 5.6m low to prognosis. The formation is 277m thick at Melba 1 and consists of interbedded sandstone and claystone. Sandstones are off white, clear, translucent, medium to very coarse grained with weak siliceous cement and exhibit good visual porosity. Pyrite nodules are common. The claystone is medium brownish grey, micro micaceous, soft and dispersive. The Paaratte Formation was deposited in a deltaic environment.

The Pebble Point Formation unconformably overlies the Paaratte Formation and is 29.7m thick at the Melba 1 location. The Pebble Point Formation consists of claystone with thin sandstone interbeds, The claystone is medium brown, micro micaceous with occasional carbonaceous specks, pyrite and id dispersive. The sandstone seen in the Pebble Point Formation is brown, clear to translucent, off white, medium to occasionally coarse, poorly sorted, subrounded to occasionally subangular. The Pebble Point Formation was deposited in a shallow water, nearshore, restricted marine environment with periodic influxes of coarse detrital material.

The Pember Mudstone conformably overlies the Pebble Point Formation. It consists of medium brown claystone which is micro micaceous, soft to dispersive. The Pember Mudstone is 44.7m thick at the Melba 1 location. The Pember Mudstone was deposited in a marine environment where there was restricted circulation and low energy conditions, probably below or close to storm wave base.

The Dilwyn Formation conformably overlies the Pember Mudstone and consists of interbedded sandstone and claystone. The sandstone is a light to medium brown, yellow brown, translucent, fine to medium with occasional coarse grains, calcareous cement and common grey brown argillaceous matrix. The claystone is light to medium brown, calcareous with trace fossil

fragments. It is soft to firm and amorphous. The Dilwyn Formation was deposited in a shallow marine environment with shore-face deposits of a coastal barrier system.

The Dilwyn Formation is disconformably overlain by the Mepunga Formation. The Mepunga Formation is 80m thick at the Melba 1 location and consists of sandstone with interbedded claystone. The sandstone is clear, translucent, fine to medium grained, predominantly unconsolidated with trace argillaceous matrix. Porosity is good and no hydrocarbon fluorescence was observed. The claystone is light grey brown, olive grey and is soft to dispersive.

The Narrawaturk Marl conformably overlies the Mepunga Formation. The formation is 44.5m thick at Melba 1 and consists of light to medium grey claystone with trace fossil fragments and is soft to dispersive. The Narrawaturk Marl was deposited in a shallow marine environment.

The Clifton Formation overlies the Narrawaturk Formation and consists of limestone deposited in a shallow marine environment. The limestone is pale to medium orange brown with common iron staining. Fossil fragments are common in the limestone.

The Gellibrand Marl conformably overlies the Clifton Formation and consists of pale to dark grey, brownish grey marl deposited in low-energy, continental shelf environment. Fossil fragments are common.

At Melba 1 the Port Campbell Limestone overlies the Gellibrand. The limestone is the upper formation in the Heytesbury Group and consists of limestone with thin sandstone interbeds. The limestone is off white to pale yellow, arenaceous with abundant fossil fragments. Sandstones are translucent, clear, loose with good inferred porosity. The Port Campbell Limestone is Middle to Late Miocene in age and was deposited in a moderate-energy, continental shelf environment.

(b) <u>Geophysical prognosis</u> (reproduced from the well program)

The Melba Prospect is up-dip of, and potentially a common pool with, the 10 metres of gas pay discovered in the Waarre Sandstone by the Lavers 1 well (Figure 3). The prospect is strongly supported by seismic amplitude anomalies. The up-thrown structural closure at Melba has a time consistent down-dip amplitude termination at 1228 milliseconds on the north and west side of the structure, which is coincident with the gas-water contact observed in the Lavers 1 well. The prospect is also consistent with the following five amplitude characteristics which are generally seen on 3-D seismic associated with other Port Campbell Embayment gas fields (Figures 2, 4, & 5):

Stronger peak amplitude at the top of the Waarre Sandstone,

Strong trough amplitude from the gas-water contact,

AVO (amplitude stronger on far offset ranges),

Frequency/amplitude shadow beneath the gas reservoir, and

Gas chimney effects above the anomaly causing amplitude deterioration in the crest of the structure and time sag relative to wells outside the gas chimney area.

Amplitudes in the south-eastern portion of the Melba structure are diminished by an apparent gas sand-type amplitude occurring in the lower part of the overlying Belfast Formation.

HORIZON	PROG	ACTUAL	HI/	McINTEE 1	HI/LO
	DEPTH	DEPTH	LO		
Port Campbell Lst	71.2	71.2	as prog		
Gellibrand Marl		-106.8	not prog		
Clifton Fm	-423	-432.3	9.3 L	-415	17.3 L
Narrawaturk Marl	-443	-447.3	4.3 L	-431	16.3 L
Mepunga Fm	-480	-491.8	11.8 L	-466	25.8 L
Dilwyn Fm	-566	-571.8	5.8 L	-558	13.8 L
Pember Mdst	-778	-781.2	3.2 L	-797	15.8 H
Pebble Point Fm	-811	-825.9	14.9 L	-840	14.1 H
Paaratte Fm	-850	-855.6	5.6 L	-860	4.4 H
Skull Creek Mdst	-1110	-1132.4	22.4 L	-1174	41.6 H
Nullawaarre Grnsnd	-1202	-1226.2	24.2 L	-1287	60.8 H
Belfast Mdst	-1345	-1385.8	40.8 L	-1383	2.8 L
Flaxmans Fm	-1410	-1409	1 H	-1457	48 H
Waarre Fm,	-1435	-1437.8	2.8 L	-1474	36.2 H
Eumeralla Fm	-1490	-1491.2	1.2 L	-1536	44.8 H
TD	-1540	-1564.2	24.2 L		

TABLE 3: COMPARISONS BETWEEN ACTUAL AND PROGNOSED DEPTHS FORMELBA 1 AND MCINTEE 1

(c) <u>Hydrocarbon Summary</u>

Ditch gas values were monitored and recorded in units (U) by F.I.D (flame ionisation detector) Total Gas detector, where one unit is equivalent to 200 ppm (parts per million) of methane gas in air. The ditch gas was also monitored for hydrocarbon gas composition by a F.I.D. chromatograph. Gas composition refers to percent components of the hydrocarbon alkane series: (methane, ethane, propane and butane). Ditch cuttings were tested for hydrocarbon fluorescence by using an ultra-violet fluoroscope. All depths quoted have been adjusted to correlate with electric log depths.

Surface to base Paaratte Formation

Hydrocarbon gas consisting of 100% C1 was first observed in the Paaratte Formation from 1100m and ranged from trace to 2 U. from 1150m background gas increased to 2 - 4 U (95/5) and remained within this range to the top of the Skull Creek Mudstone at 1222m. No other hydrocarbon indications were observed.

Skull Creek Mudstone

Background gas increased through the Skull Creek Mudstone reaching a maximum of 15 U (68/11/16/10). The primary lithology was argillaceous siltstone with a reduced average penetration rate of 10m/hr. C3 and C4 were first observed at 1280m. No other hydrocarbon indications were observed.

Nullawarre Formation to base Belfast Mudstone

Upon penetrating the sandstones of the top Nullawarre Formation gas peaked at 180 U (58/16/15/9/2). The sandstone was translucent, clear, fine to medium grained with weak siliceous cement and fair visual porosity. No hydrocarbon fluorescence was observed. Background gas quickly decreased after the initial peak at the top of the Nullawarre Formation and ranged from trace to 10 U (96/4/trace) through the remainder of the formation. Penetration rate averaged 25m/hr. No other hydrocarbon indications were observed.

Background gas remained low through the claystones of the Belfast Mudstone reaching a maximum of 8 U (85/7/5/3).

Flaxman Formation

The Flaxman Formation was 28.8m thick at Melba 1. Background gas ranged from 10 - 25 U (90/5/3/2). A thin sandstone stringer at 1512m MDRT liberated a gas peak of 140 U (73/8/7/8/4). No other indications of hydrocarbons were observed.

Waarre Sandstone

The Waarre Sandstone was the primary target for the well. The formation was 53.4m thick at Melba 1 and was intersected 2.8m low to prognosis at 1538.5m MDRT (-1437.8m TVDSS).

Gas peaked at 400 U (89/7/3/1) upon penetrating the Waarre Sandstone. Sandstones were clear, translucent, fine to coarse grained with weak siliceous cement and predominantly loose. Porosity was fair. Background gas ranged from 20 - 30 U (90/8/2) with peaks observed at 1565m (200 U 90/8/2), 1575m (600 U 90/6/3/1) and 1580m MDRT (300 U 90/7/2/1). No Carbon Dioxide was indicated.

No hydrocarbon fluorescence was observed. Log analysis indicated no pay for the Waarre Sandstone. The well was subsequently plugged and abandoned.

Eumeralla Formation

Upon penetrating the upper sandstones of the Eumeralla Formation gas peaked at 600 U (88/8/3/1). Sandstones were translucent, clear, white, fine to coarse grained with weak calcareous cement, abundant white argillaceous matrix and poor to fair inferred porosity. The formation was 73m thick at Melba 1. Through the remainder of the section background gas ranged from 20 to 40 U (88/8/3/1). No hydrocarbon fluorescence was observed. Log analysis indicates no pay for the Eumeralla Formation.

4. <u>SUMMARY</u>

Melba 1 was drilled as an Otway Basin near field exploration wildcat well in the PEP 154 licence. The Melba structure is situated within the Port Campbell Embayment and the productive Waare Sandstone play fairway, immediately north of PPL 6. Melba 1 is 1.8 km NE of the Lavers 1 discovery and 2.0 km N of the McIntee gas field. Melba 1 was drilled as a directional well due to surface constraints on the well location.

Melba 1 was spudded on the 22^{nd} March 2003 utilising the drilling rig Century 11. A 9-7/8" hole was drilled to 457m and 37 joints of 7 5/8" 26.4 lb/ft casing run with the shoe set at 456m. The Blow Out Preventer was installed and pressure tested prior to drilling ahead. The $6\frac{3}{4}$ " drilling assembly was made up with a mud motor and run into the hole drilling the shoe track and 3m of new formation to 460m. The hole was displaced to KCl/PHPA/Polymer mud and a Leak Off Test conducted yielding an equivalent mud weight of 16.1 ppg. Drilling $6\frac{3}{4}$ " hole continued to kick-off point at 816m. The well was kicked-off utilising a combination of slide and rotary drilling with MWD directional surveys taken as required building the angle to 15 degrees. Drilling continued to 1184m where the bit was pulled from the hole due to rotational hours. The $6\frac{3}{4}$ " hole section was completed in two bit runs with total depth reached at 1668m on 28^{th} March 2003 at 21:30 hours. After reaching total depth Suite 1 wireline logs were conducted. Wireline results indicated no pay for the well. Abandonment plugs were set and the rig released at 02:00 hrs on 31^{st} March 2003.

Formation tops were intersected from 1m high for the Flaxman Formation to 41m low for the Belfast Mudstone. The Waarre Sandstone, the primary target for the well was intersected 2.8m low to prognosis.

Good gas shows were observed while drilling. Suite 1 wireline logs conducted at total depth consisted of Run 1 Pex-DSI-NGT and Run 3 CST (18 sidewalls attempted, 15 recovered, 2 empty and 1 lost bullet). Run 2 MDT was cancelled based on the results of Run 1 which indicated no gas pay. No drill stem tests were conducted at the Melba 1 location.

Due to surface constraints Melba 1 was drilled as a directional well. The well was drilled vertically to kick-off point at 816m. The well was kicked – off at 16° to the north-east with LWD surveys taken as instructed by the directional driller. At total depth the well was located at 212m to 45.13°.

After conducting wireline logs at total depth abandonment plugs were set and the rig was released on 31st March 2003 at 02:00 hours.

5. <u>REFERENCES</u>

SANTOS, 2003	MELBA 1 Well Proposal, prepared for SANTOS Ltd, (unpublished).
PITMAN,J., 2003	MELBA 1 Raw Data Report, prepared for SANTOS Limited, (unpublished).
SANTOS, 2003	MELBA 1 Post Well Audit, prepared for SANTOS Limited, (unpublished)

APPENDIX I(a): LITHOLOGICAL DESCRIPTIONS

MELBA 1 - LITHOLOGICAL DESCRIPTIONS

SURFICIAL DEPOSITS AND PORT CAMPBELL LIMESTONE (Recent to Mid-Late Miocene)

From Spud to 183m Thickness: 178m

Spud to 183m LIMESTONE: off white, pale yellow, light grey brown, arenaceous, abundant fossil fragments, occasionally quartz fragments, hard aggregates, occasionally friable, good to tight inferred porosity, no fluorescence. SANDSTONE: clear, translucent, medium to coarse grained, well sorted, weak calcareous cement, loose quartz grains, trace lithic fragments, trace glauconite, good inferred porosity, no fluorescence.

GELLIBRAND MARL. (Early Miocene)

From 183 to 509m Thickness: 325.5m

- 183 to 457m MARL: pale to medium grey, grey brown in part, occasionally locally silty, trace carbonaceous specks, abundant fossil fragments, forams, echinoid spines, bryozoa, corals, shell fragments, dispersive, firm to very soft in part, amorphous, sub blocky.
- 457 to 509m MARL: pale to medium grey, grey brown in part, common fossil fragments, firm to dispersive, sub blocky, amorphous.

CLIFTON FORMATION. (Early – Late Oligocene – Early Aquitanian)

From 509 to 524m Thickness: 15m

509 to 524m Interbedded LIMESTONE MARL and SANDSTONE. MARL: as above, medium grey, common fossil fragments, dispersive in part, sub blocky. LIMESTONE: orange, orange brown, Fe stain, common fossil fragments, forams, shell fragments, friable, blocky. SANDSTONE: clear, translucent, medium to predominantly coarse grained, sub rounded, predominantly loose quartz grains, good inferred porosity, no show.

NARRAWATURK MARL. (Late Eocene)

From 524 to 568m Thickness: 44.5m

524 to 568m MARL with minor interbedded SANDSTONE. MARL: medium to dark brownish grey, olive brown, rare very fine carbonaceous specks, minor fossil fragments, trace fine grained glauconite, soft – dispersive, blocky to sub blocky. SANDSTONE: clear, medium grained, predominantly loose as above.

MEPUNGA FORMATION. (Mid Eocene)

From 568 to 648m Thickness: 80m

569 to 648m SANDSTONE with minor interbedded CLAYSTONE. CLAYSTONE: medium brownish grey, moderately calcareous, trace lithics, trace fine carbonaceous specks, trace micro micaceous, soft to dispersive. SANDSTONE: translucent, light orange – brown Fe stain, clear, medium to very coarse predominantly coarse grained, angular to predominantly sub rounded, moderately sorted, trace weak siliceous cement, trace pale grey argillaceous / silty matrix, predominantly loose quartz grains, good inferred porosity, no show.

DILWYN FORMATION (Early – Mid Eocene)

From 648 to 859m Thickness: 209.4m

- 648 to 720m SANDSTONE with interbedded CLAYSTONE. SANDSTONE: translucent, clear, yellow brown, light brown, fine to medium occasionally coarse grained, angular to predominantly sub rounded, weak calcareous cement, common brownish grey argillaceous matrix, trace black lithics, common yellow orange Fe stain, good inferred porosity, no show. CLAYSTONE: dark brownish grey, rare micro micaceous, trace fine carbonaceous specks, trace lithics, slightly calcareous, soft to firm.
- 720 to 859m CLAYSTONE with interbedded SANDSTONE. SANDSTONE: clear, translucent, pale brown, very fine to medium grained, moderately sorted, angular to sub rounded, weak siliceous cement, rare grey brown argillaceous matrix, predominantly loose, fair inferred porosity, no fluorescence, generally as above. CLAYSTONE: medium to dark greyish brown, medium to dark brown, non calcareous trace lithics, trace nodular pyrite, soft to firm.

PEMBER MUDSTONE. (Late Paleocene – Early Eocene)

From 859 to 904m Thickness: 44.7m

859 to 904m CLAYSTONE: medium to dark brown, grey brown in part, trace carbonaceous specks, trace micro micaceous, trace nodular pyrite, trace orange lithics, very soft – dispersive, amorphous.

PEBBLE POINT FORMATION. (Early – Late Paleocene)

From 904 to 934.5m Thickness: 29.7m

904 to 934.5m CLAYSTONE with minor interbedded SANDSTONE. SANDSTONE: translucent, clear, orange – brown in part, medium to occasionally very coarse grained, moderately sorted, sub angular to sub rounded, weak siliceous cement, trace light brown argillaceous / silty matrix, trace nodular pyrite, predominantly loose quartz grains, fair inferred porosity, no show. CLAYSTONE: medium to dark brown, trace fine carbonaceous specks, very soft - dispersive.

PAARATTE FORMATION. (Late Senonian)

From 934.5 to 1222m Thickness: 276.8m

- 934.5 to 970m Interbedded SANDSTONE and CLAYSTONE. SANDSTONE: translucent, clear, white, medium to very coarse grained, poor sorting, (pebbles of quartz to 1cm at shakers), sub rounded, predominantly loose quartz grains, rare nodular pyrite, good inferred porosity, no show. CLAYSTONE: medium to dark brown, medium to dark brown ish grey, trace micro carbonaceous specks, trace lithics, soft dispersive.
- 970 to 1011m SANDSTONE with interbedded CLAYSTONE. SANDSTONE: translucent, clear, white, medium to very coarse grained, poor sorting, sub rounded, predominantly loose quartz grains, minor pale grey silty matrix, rare nodular pyrite, fair to good inferred porosity, no show. CLAYSTONE: medium to dark grey brown, trace micro carbonaceous specks, trace lithics, soft dispersive.
- 1011 to 1155m Interbedded CLAYSTONE and SANDSTONE. SANDSTONE: white, translucent, clear, fine to very coarse, poor sorting, sub angular to predominantly sub rounded,

minor pale grey silty matrix, trace pyrite, trace carbonaceous flecks, predominantly loose, fair inferred porosity, no show. CLAYSTONE: medium to dark brownish grey, silty grading to argillaceous siltstone, minor carbonaceous flecks, trace very fine lithics, trace nodular pyrite, trace micro mica, soft, dispersive in part.

- 1155 to 1200m Interbedded SANDSTONE, CLAYSTONE and SILTSTONE. SANDSTONE: clear, translucent, white, very fine to occasionally coarse, predominantly medium grained, poor sorting, angular to predominantly sub rounded, rare grey silty matrix, trace pyritic cement, rare nodular pyrite, trace carbonaceous flecks, predominantly loose, good inferred porosity, no fluorescence. SILTSTONE: medium brownish grey, argillaceous grading to silty claystone, trace very fine lithics, soft, dispersive in part, blocky. CLAYSTONE: generally as above, grading to argillaceous siltstone.
- 1200 to 1215m Interbedded SANDSTONE, CLAYSTONE and SILTSTONE. SANDSTONE: clear, translucent, white, very fine to occasionally coarse, predominantly medium grained, poor sorting, angular to predominantly sub rounded, rare grey silty matrix, trace pyritic cement, rare nodular pyrite, trace carbonaceous flecks, predominantly loose, good inferred porosity, no fluorescence. SILTSTONE: medium brownish grey, argillaceous grading to silty claystone, trace very fine lithics, soft, dispersive in part, blocky. CLAYSTONE: generally as above, grading to argillaceous siltstone.
- 1215 to 1222m Interbedded SANDSTONE and SILTSTONE. SANDSTONE: clear, translucent, occasionally yellow Fe stain, white in part, very fine to fine grained, moderately well sorted, sub angular to sub rounded, trace well siliceous cement, rare light grey argillaceous matrix, minor nodular pyrite, trace carbonaceous flecks, predominantly loose, fair to good inferred porosity, no fluorescence. SILTSTONE: light to medium grey, brownish grey in part, trace lithics, trace carbonaceous flecks, soft to firm, blocky.

SKULL CREEK MUDSTONE. (Late Senonian)

From 1222 to 1320m Thickness: 93.8m

- 1222 to 1250m SILTSTONE with trace interbedded SANDSTONE. SILTSTONE: light to medium brownish grey, medium to dark grey, argillaceous, common carbonaceous specks, rare nodular pyrite, trace fine grained glauconite, soft, dispersive in part, amorphous. SANDSTONE: clear, translucent, white, very fine to fine occasionally medium grained, sub angular to sub rounded, minor pale grey argillaceous matrix, trace pyritic cement, trace fine grained glauconite, predominantly loose, poor inferred porosity, no show.
- 1250 to 1320m SILTSTONE: pale to medium grey, medium brownish grey, dark grey in part, argillaceous grading to silty claystone, occasionally finely arenaceous, minor fine carbonaceous specks, trace nodular pyrite, trace glauconite in part, soft to dispersive, amorphous.

NULLAWARRE SANDSTONE. (Late Senonian) From 1320 to 1484.5m Thickness: 159.6m

- 1321 to 1356m SANDSTONE: clear, translucent, yellow Fe stain in part, light green, fine medium occasionally coarse grained, sub angular to sub rounded, weak siliceous cement, common green silty / argillaceous matrix, trace white argillaceous matrix, minor fine grained glauconite, trace nodular pyrite, trace lithics, friable aggregates in part, predominantly loose, fair inferred porosity, no fluorescence.
- 1356 to 1434m SANDSTONE with interbedded SILTSTONE. SANDSTONE: greenish yellow, translucent, clear, fine to coarse grained, poor sorting, sub angular to sub rounded, weak siliceous cement, trace pyritic cement, minor light grey argillaceous / silty matrix, trace white argillaceous matrix, rare nodular pyrite, rare glauconite, trace carbonaceous specks, friable aggregates, predominantly loose, fair inferred porosity, no fluorescence. SILTSTONE: light to medium greenish grey, argillaceous grading to glauconitic claystone in part, minor fine grained glauconite, trace pyrite, soft, dispersive in part, blocky amorphous.
- 1434 to 1484.5m SANDSTONE with interbedded SILTSTONE. SANDSTONE: yellow, clear, translucent, fine coarse generally as above. SILTSTONE: medium greenish brown, argillaceous grading to claystone in part, rare fine grained glauconite, soft dispersive.

BELFAST MUDSTONE. (Late Senonian) From 1484.5 to 1508.5m Thickness: 23 2m

1484.5 to 1508.5m

CLAYSTONE: medium to predominantly dark brownish grey, medium to dark grey, silty in part, trace fine grained glauconite, trace micro carbonaceous specks, soft – dispersive.

FLAXMAN FORMATION. (Late Senonian)

From 1508.5 to 1538.5m Thickness: 28.8m

1508.5 to 1538.5m

CLAYSTONE: orange – brown, yellow-brown, rust yellow, slightly silty in part, trace fine glauconite, very soft – dispersive.

WAARRE SANDSTONE. (Late Senonian)

From 1538.5 to 1594m Thickness: 53.4m

1538.5 to 1558m SANDSTONE with interbedded CLAYSTONE. SANDSTONE: translucent, clear, white, yellow – brown in part, very fine to medium predominantly fine grained, trace coarse quartz shards, angular to predominantly sub rounded, trace moderately strong siliceous cement, minor white argillaceous matrix, trace nodular pyrite, trace very fine glauconite, locally with minor carbonaceous flecks / fragments, moderately hard aggregates, predominantly loose, poor to fair inferred porosity, no fluorescence. CLAYSTONE: light to predominantly medium grey, greenish grey, silty in part grading to argillaceous siltstone, very finely arenaceous, trace fossil fragments (shell fragments), trace nodular pyrite and fine grained glauconite, soft to firm, dispersive to blocky.

- 1558 to 1570m SANDSTONE with rare interbedded CLAYSTONE. SANDSTONE: clear, translucent, fine to very coarse grained, predominantly medium coarse, poor sorted, angular to sub rounded, minor shardy coarse quartz grains, trace pale grey argillaceous matrix, trace nodular pyrite, rare carbonaceous flecks, predominantly loose clean quartz, good inferred porosity, no fluorescence. CLAYSTONE: light to predominantly medium grey, silty in part, trace nodular pyrite, soft to firm.
- 1570 to 1583m SANDSTONE with minor interbedded CLAYSTONE. SANDSTONE: clear, translucent, fine to coarse grained, poor sorting, sub angular to sub rounded, weak siliceous cement in part, minor pale grey argillaceous matrix, trace nodular pyrite, trace carbonaceous specks, fair inferred porosity, no fluorescence. CLAYSTONE: pale to medium grey as above.
- 1583 to 1594m SANDSTONE with interbedded CLAYSTONE and SILTSTONE. SANDSTONE: translucent, clear, white in part, fine to coarse predominantly medium grained, fair sorting, sub angular to sub rounded, weak siliceous cement, minor white argillaceous matrix, trace pale grey argillaceous / silty matrix, trace nodular pyrite, trace carbonaceous flecks, poor inferred porosity, no fluorescence. CLAYSTONE: medium grey as above. SILTSTONE: argillaceous grading to silty claystone in part, medium brownish grey, medium grey, very fine arenaceous in part, firm.

EUMERALLA FORMATION. (Early Neocomian)

From 1594 to 1668m Thickness: 73m

1594 to 1668m SANDSTONE: multicoloured, white, translucent, clear, occasionally blue grey, light to dark green, orange, yellow, fine to coarse predominantly medium grained, angular to sub rounded, weak calcareous cement, abundant white argillaceous matrix, rare nodular pyrite, minor black volcanics, loose, friable in part, poor to fair inferred porosity, no fluorescence.

TOTAL DEPTH DRILLER 1668 m TOTAL DEPTH LOGGER (EXT.) 1668 m

APPENDIX I(b): HYDROCARBON SHOW REPORTS

No hydrocarbon fluorescence was observed at the Melba 1 location.

APPENDIX II: PALYNOLOGY REPORT

SANTOS STRATIGRAPHIC SERVICES EXPLORATION SERVICES DEPARTMENT

Palynology Report No. 2003/15

Authors:	R. HELBY
	G.R. WOOD
Date:	03/09/2003

PALYNOLOGICAL REPORT NO. 2003/15 PALYNOSTRATIGRAPHICAL ANALYSIS MELBA NO. 1

> Santos Ltd A.C.N. 007 550 923

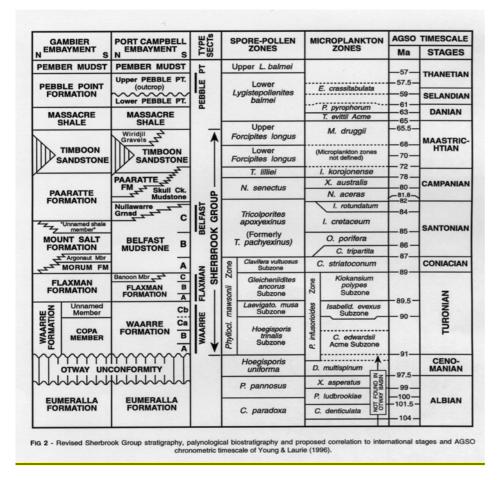
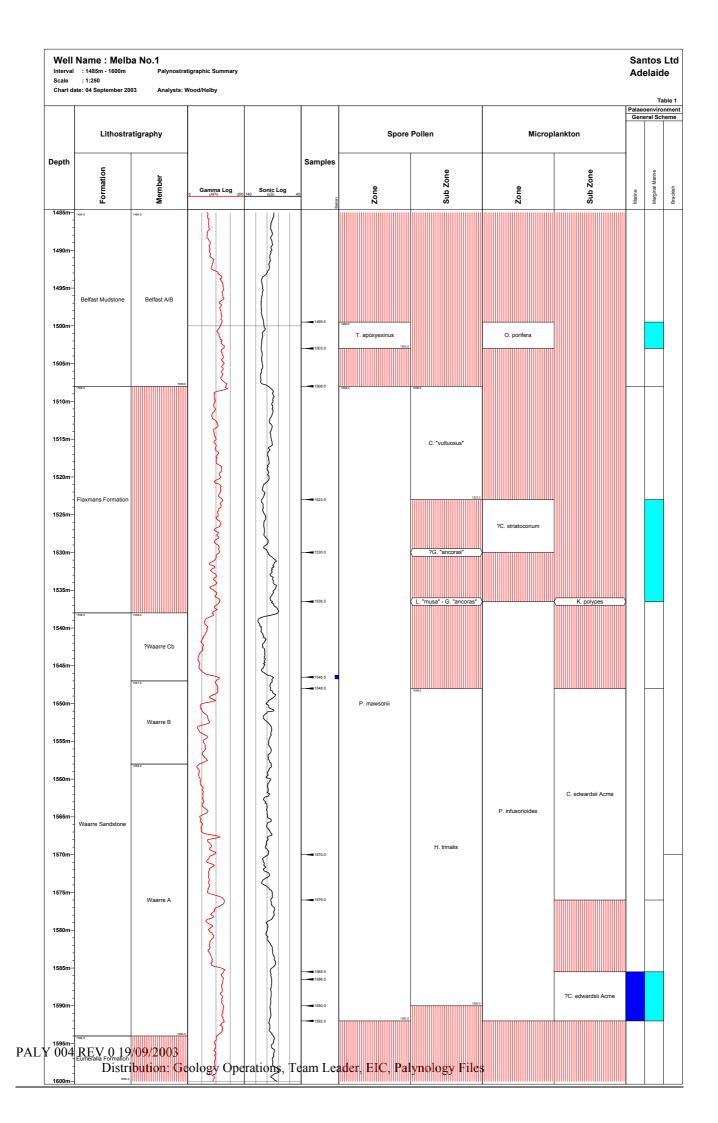
Introduction

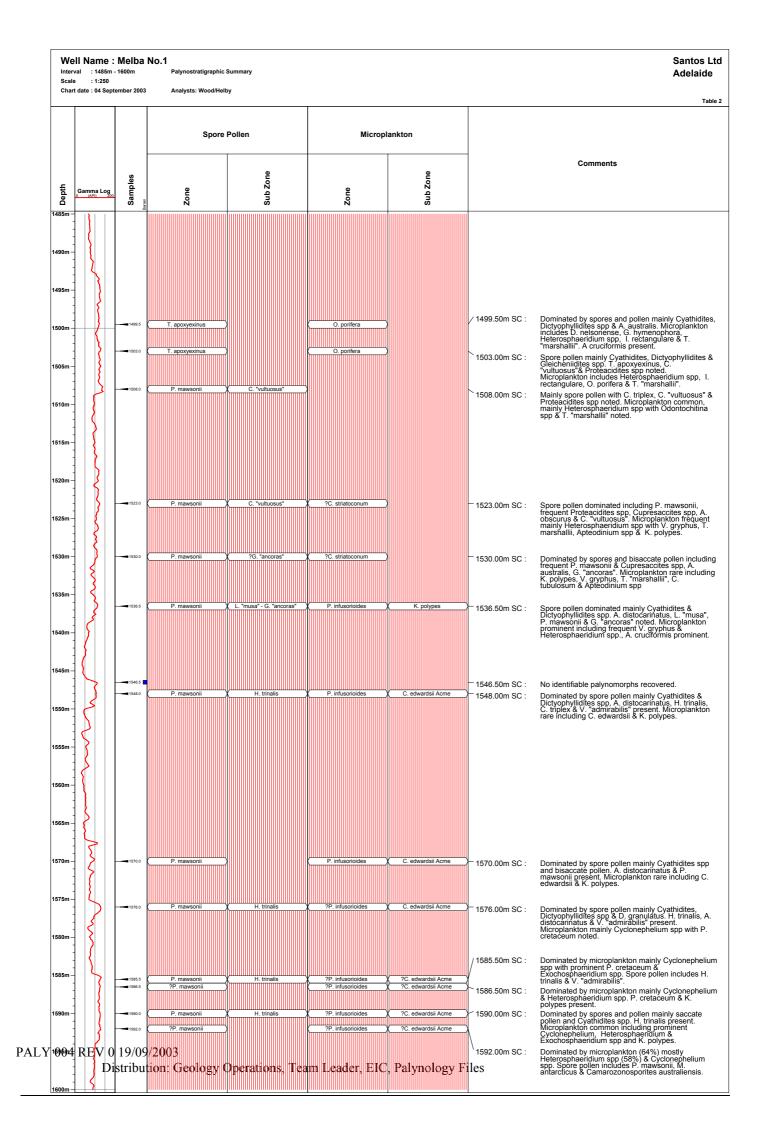
Fourteen sidewall core samples from Melba No. 1, Port Campbell Embayment, Victoria were examined palynologically to assess their palynostratigraphic position and palaeoenvironment.

A summary of the results of this study are presented on Table 1. Individual sample results and assemblage description are presented on Table 2. The palaeoenvironmental and quantitative palynological data is presented on Table 3. Range charts of the palynomorphs identified in this study are presented in Appendix 1.

Biostratigraphic Framework

During the 1980's most of the palynology undertaken in the Otway Basin was expressed either in terms of the eastern Australian Mesozoic zonation developed by the Minad/APG group (Peter Price and co-workers) or the pan-Australian HMP scheme (Helby, Morgan & Partridge, 1987). Both of these schemes relied on classical interval zone concepts and lacked resolution in the predominantly non-marine to marginal marine Waarre Sandstone and to a certain extent the underlying Eumeralla Formation. By the mid 1990's the Morgan group had begun to develop an event stratigraphy (Morgan& Hooker *in* LaBella WCR) and Partridge (2001 Fig.2)

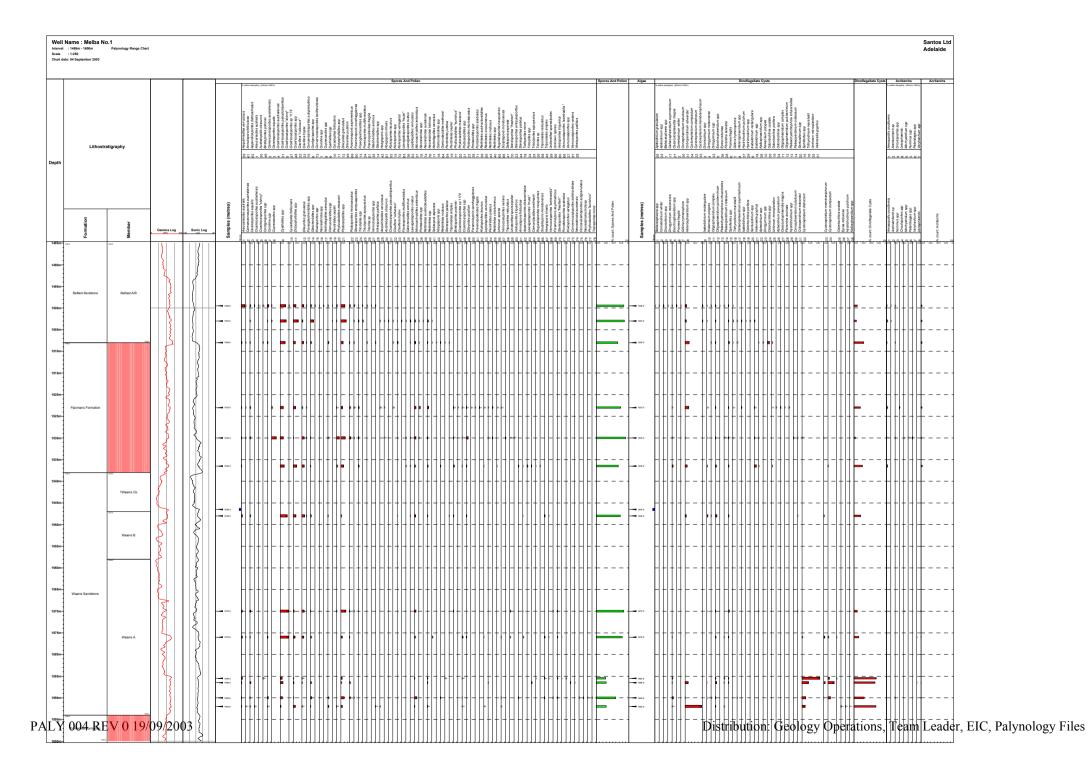

Figure 1 Otway Basin Palynostratigraphy (from Partridge 2001, p. 456.

published a review and substantial up-date of the Late Cretaceous part of the HMP scheme, introducing a number of subzones based on both interval zone criteria and event features (acmes). The Partridge (2001) Waarre subdivision was based primarily on Port Campbell Embayment on-shore sequences. The palynostratigraphic results in this report are referred to the general scheme outlined by Partridge (2001), however the definition of the C. striatoconum microplankton zone has been modified and now equates with the upper Flaxmans Formation to Belfast A units.

<u>Reference:</u>, Helby, R Morgan, R. & Partridge, A.D. (1987) A palynological zonation of the Australian Mesozoic. In: Studies in Australian Mesozoic Palynology (P.J. Jell, editor) Association of Australasian Palaeontologists Memoir 4, pp1 - 94

Partridge (2001) Revised Stratigraphy of the Sherbrook Group, Otway Basin. In: PESA Eastern Australian Basins Symposium pp455 - 465




Well Name : Melba No.1

: 1485m - 1600m : 1:250 Interval

Scale Chart : 04 Se Adelaide

Distribution: Geology Operations, Team Leader, EIC, Palynology Files

APPENDIX III: LOG INTERPRETATION

APPENDIX III(a): LOG ANALYSIS

MELBA 1

LOG ANALYSIS

MELBA 1 - LOG ANALYSIS

Melba 1 wireline logs were analysed over the Nullawaarre Greensand to Waarre Sandstone (1320m-1642m) interval. No conventional gas pay was identified in the Nullawaarre and Waarre Formations. Melba 1 was plugged and abandoned.

A 9 7/8" surface hole was drilled to 457 metres and 7 5/8" casing set at 455.75 metres. A 6 3/4" hole was then drilled with KCl/PHPA mud to 1668 metres (D). Wireline logging was carried out by Schlumberger (as described below).

Unless otherwise specified, all depths mentioned below are loggers depths referenced to the drill floor.

Logs Acquired

Run 1	NGT	1642m-Surface
	TNPH	1647m-Surface
	RXOZ	1647m-Surface
	RHOZ	1647m-Surface
	HCAL	1645m-Surface
	HALS	1666m-Surface
	DSI	1655m-Surface
	SP	1628m-Surface

Run 2 GR-MDT (cancelled by Ops Geology)

Run 3 GR-CST (Recovered 14 of 18 cut)

Mud Parameters

Mud Type	KCl/PHPA
Mud Density	9.05LB/G
KCl	3.9%
Rm	0.1931 ohmm @ 18.9°C
Rmf	0.1665 ohmm @ 18.9°C
Rmc	0.2330 ohmm @ 18.9°C
MRT	60°C from Run 1 at 1668.4m

Remarks

- Dt shear gained from dipole as monopole data intermittent.
- DSI run in Upper Diploe, Lower Dipole and P&S modes.
- 0.0% Barite in mud.

Log Processing

- A Pickett plot was used to derive the R_w used for this analysis.
- A BHT of 64.9°C was used for the analysis (Gradient of 24.5°C/km).

Interpretation Procedures and Parameters

An interpretation over the Nullawaarre and Waarre Sandstone intervals was conducted using Multimin. Water saturations were computed using the Dual-water Equation (Parameters used for the interpretation are detailed in Table 1). The parameters used in the Multimin model for this evaluation can be found in the report at the end of this document.

- The NGT from Run 1 was corrected for environmental effects such as mud-weight, KCl and borehole size using measurements made from the MCFL caliper.
- Borehole corrections for the HALS, HLLS and HLLD curves were applied. These are ratios used to emulate the algorithms illustrated in the Schlumberger chartbook.
- The invasion corrected R_T was derived using the Schlumberger laterolog invasion correction supplied with in Geolog.

Conclusions

- 1. No gas pay was identified in the Nullawaarre Greensand.
- 2. No gas pay was identified in the Waarre Formation.
- 3. The 76% water saturation found in the upper Waarre Formation sands is interpreted as residual gas.
- 4. Melba 1 was plugged and abandoned.

Attached is the well evaluation summary (WES) plot for Melba 1 (03.051) data/wes ot/melba1 03051.wes

TABLE 1Log Analysis Parameters

PARAMETERS	NULLAWAARRE GREENSAND	WAARRE C SANDSTONE	WAARRE A SANDSTONE
R _w (ohmm) @ 64°C	1.6	0.25	0.25
a	1	1	1
m	2	2	2
n	2	2	2

TABLE 2Conventional Pay Summary

No Conventional Pay was identified in this well

Cutoffs: Gross Sand > 2% PHIE, Net Sand > 10% PHIE, Net Pay > 10% PHIE & <70% Sw

I	MULTIMIN REPORT for well MELBA_1 inte Reported by exptxd on Analysed by exptxd on		Page 1 484.48 metres) Project PETRO_TXDM	
1	MODELS: Type Name Cond	l# Cutoff Expression		
	Primary MELBA_NULLA 4.09	08 10.0		
]	FORMATION FLUID PARAMETERS: Fluid properties option = DEPTH Oil Gravity Degrees API = 30.00 Rws = 1.6000 @ 64.00	dapi Gas specific gravity = 0.650 Cwbs = - @ -	Rmfs = 0.2330 @ 18.90	
]	BOREHOLE PARAMETERS: Mud base = WATER SHT = - Rms = 0.1930 @ 18.90	Mud density = 9.050 BHT = 59.00 Rmcs = 0.167 @ 18.90	KCl concentration of mud = 0.00 % Total depth = 1668.40 metres	
	Average temperature of 64 00 by	, method		

Average temperature of 64.00 by method. Average pressure of 17000.00 by method.

MULTIMIN REPORT f		A_1 interval	NULLAWAF	RE GREEN	ISAND (13	20.01 -	1484.48	metres)		Project	PETRO_TX	IDM
	factor m = 1	.650 water is enak		ation ex	ponent n	= 2.000		Linea	r dual-w	vater w =	1.80	
	Error of	Component prediction	QUARTZ 0.0314	PYRITE 0.0110	GLAUCON 0.0399	 0.0340	KAOLIN 0.0318	0.0016	XGAS 0.0207	XFREWAT 0.0288	UGAS 0.0419	UFREWAT 0.0393
EQUATION RESPONSES:												
Log	Method	Uncertainty										
Formation density RHO COR	[G/C3] Linear		2.645		•					•		
Neutron $[V/V]$	Non-linear		-0.050 									
Sonic transit tim		1.0000	I I	37.6	49.4	85.3	85.3	95.8	250.0	189.0	0.0	0.0
Photoelectric abs	orption [B/C	3] 0.4000		82.22	17.42	11.73	5.38	490.94	0.02	0.59	0.00	0.00
Total gamma [GAPI	-	3.0000	12.0	5.0	150.0	265.0	104.0	2800.0	0.0	0.01	0.0	0.0
Spectral thorium		0.2500	 1.0	0.0	4.0	22.0	19.3	20.0	0.0	0.0	0.0	0.0
Spectral potassiu		0.1000	 0.1500	0.0000	6.0000	7.5000	0.0800	20.0000	0.0000	0.0000	0.0000	0.0000
Unflushed conduct		0.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.58
Flushed conductiv	Archie linea ity [MH/M] Archie linea	0.1000	0.00	0.00	0.00	0.00	0.00		0.00	11.87	0.00	0.00
CONSTRAINTS:	Value Type	Uncertainty										
<prog unity=""></prog>	1.000 Tool		1.000	1.000	1.000	1.000	1.000		0.000	0.000	1.000	1.000
<prog porosity=""></prog>	0.000 Tool	0.0100	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	-1.000	-1.000
<pre><prog mud="" water=""></prog></pre>	0.000 <=	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	-1.000
<user constr1=""></user>	0.000 Tool		 0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000

PROPERTIES AND BOUNDS:

Mineral grain density										0.0001
Mineral cation exchange capacity	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lower Bound	 0.000	0.0001	0.000	0.000	0.000	0.000	0.000	0.0001	0.000	0.0001
Upper Bound	1.000									

	ELBA_1 interval BELFAST MUDSTONE (1484.50 - 15 on 17-Apr-2003 at 10:46 on at	Page 3 Project PETRO_TXDM
MODELS: Type Name	Cond# Cutoff Expression	
Primary MELBA_BELFAS	ST 2.969 10.0	
FORMATION FLUID PARAMETERS: Fluid properties optic Oil Gravity Degrees AF Rws = 1.6000 @ 64.00	on = DEPTH	0 Rmfs = 0.2330 @ 18.90
BOREHOLE PARAMETERS: Mud base = WATER SHT = - Rms = 0.1930 @ 18.90	Mud density = 9.050 BHT = 59.00 Rmcs = 0.167 @ 18.90	KCl concentration of mud = 0.00 % Total depth = 1668.40 metres
Average temperature of	f 64 00 by method	

Average temperature of 64.00 by method. Average pressure of 17000.00 by method.

				ation ex	ponent r	n = 2.000)	Linea:	_ r dual-water w = 2.00
	Error of p	Component prediction	0.0594	0.0638	0.0517	0.0496	0.0124	0.0154	
EQUATION RESPONSI Log		ncertainty							
Neutron [V/V]			-0.050	0.500	0.300	0.451	0.971	0.000	
Sonic transit tir		2.0000	 50.4	49.4	85.3	85.3	189.0	0.01	
DT Total gamma [GAP]		3.0000	 12.0	150.0	265.0	104.0	0.0	0.0	
Spectral thorium		0.2500	1.0	4.0	22.0	19.3	0.0	0.0	
Spectral potassi		0.1000		6.0000	7.5000	0.0800	0.0000	0.0000	
Unflushed conduct	_	0.0200	0.00	0.00	0.00	0.00	0.00	0.60	
Flushed conductiv	Archie linear vity [MH/M] Archie linear	0.2000	0.00	0.00	0.00	0.00	12.21	0.001	
	Value Type Ur	ncertainty							
<prog unity=""></prog>	1.000 Tool		1.000	1.000	1.000	1.000	0.000	1.000	
<prog porosity=""></prog>	0.000 Tool	0.0100	0.000	0.000	0.000	0.000	1.000	-1.000	
<user constr1=""></user>	0.000 Tool			0.000	0.000		0.000	0.000	
PROPERTIES AND BO	OUNDS:								
Mineral grain der	nsity		3	3	3	3	0	0	
Mineral cation es	Mineral cation exchange capacity					0.000	0.000	0.0001	
Lower Bound			• •	0.000	0.000	0.000	0.000	0.0001	

Project PETRO_TXDM

Upper Bound

Reported by exptxd	nterval FLAXMANS FORMATION (1508.51 - 1538 on 17-Apr-2003 at 10:46 on at `	Page 5 .48 metres) Project PETRO_TXDM
MODELS: Type Name C	ond# Cutoff Expression	
туре маше с	ond# cutori Expression	
Primary MELBA_WAARRE 4	.738 10.0	
FORMATION FLUID PARAMETERS: Fluid properties option = DEP Oil Gravity Degrees API = 30. Rws = 1.6000 @ 64.00		Rmfs = 0.2330 @ 18.90
BOREHOLE PARAMETERS: Mud base = WATER SHT = - Rms = 0.1930 @ 18.90	Mud density = 9.050 BHT = 59.00 Rmcs = 0.167 @ 18.90	KCl concentration of mud = 0.00 % Total depth = 1668.40 metres
Average temperature of 64 00		iotal depth - 1000.40 metres

Average temperature of 64.00 by method. Average pressure of 17000.00 by method.

Cementation facto Expansion of clay												
F	Error of	Component prediction	0.0740	PYRITE 0.0128	GLAUCON 0.0886	ILLITE 0.0705	KAOLIN 0.0656	SPCMIN2 0.0016	XGAS 0.0214		UGAS 0.0416	UFREWA1 0.0386
EQUATION RESPONSES: Log Metho	od U	Incertainty										
Formation density [G/C	-		2.645									
RHO_COR Linea Neutron [V/V]		0.0400		-0.019	0.380	0.300	0.451	-0.010	0.304	0.971	0.000	0.000
TNPH_COR Non-J Sonic transit time [US DT Linea	S/F]	2.0000	 50.4 	37.6	49.4	85.3	85.3	95.8	250.0	189.0	0.0	0.0
Photoelectric absorption	Lon [B/C3	8] 0.4000	4.78	82.22	17.42	11.73	5.38	490.94	0.02	0.59	0.00	0.00
U Linea Total gamma [GAPI] GR COR Linea		3.0000	 12.0 	5.0	150.0	265.0	104.0	2800.0	0.0	0.0	0.0	0.0
Spectral thorium [PPM]		0.2500	1.0	0.0	4.0	22.0	19.3	20.0	0.0	0.0	0.0	0.0
THOR_COR Linea Spectral potassium [%] POTA COR Linea		0.1000	0.1500	0.0000	6.0000	7.5000	0.0800	20.0000	0.0000	0.0000	0.0000	0.0000
Unflushed conductivity	/ [MH/M]	0.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.61
Flushed conductivity	le linear [MH/M] Le linear	0.1000	 0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
CONSTRAINTS: Valu	ıe Туре (Incertainty										
<pre><pre>PROG UNITY> 1.00</pre></pre>)0 Tool		1.000	1.000	1.000	1.000	1.000	1.000	0.000		1.000	1.000
<pre><pre>PROG POROSITY> 0.00</pre></pre>)0 Tool	0.0100	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	-1.000	-1.000
<pre><pre>PROG WATER MUD> 0.00</pre></pre>)0 <=			0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	-1.000
<user constr1=""> 0.00</user>)0 Tool	0.0100										

PROPERTIES AND BOUNDS:

Page 6

Mineral grain density										0.0001
Mineral cation exchange capacity	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lower Bound	 0.000	0.0001	0.000	0.000	0.000	0.000	0.000	0.0001	0.000	0.0001
Upper Bound	1.000									

MULTIMIN REPORT for well MELBA_1 Reported by exptxd Analysed by exptxd	interval WAARRE FORMATION (1538.50 - 1593. on 17-Apr-2003 at 10:46 on at	Page 7 98 metres) Project PETRO_TXDM
MODELS:		
Type Name	Cond# Cutoff Expression	
Primary MELBA_WAARRE	4.737 10.0	
FORMATION FLUID PARAMETERS: Fluid properties option = DE Oil Gravity Degrees API = 30		
Rws = 0.2500 @ 64.00	Cwbs = - 0 -	Rmfs = 0.2330 @ 18.90
BOREHOLE PARAMETERS:		
Mud base = WATER SHT = -	Mud density = 9.050 BHT = 59.00	KCl concentration of mud = 0.00 $\%$
Rms = 0.1930 @ 18.90	Rmcs = 0.167 @ 18.90	Total depth = 1668.40 metres
Average temperature of 64 00	by method	

Average temperature of 64.00 by method. Average pressure of 17000.00 by method.

Cementation fac	RIMARY MODEL MELBA_WAARRE: Cementation factor m = 1.650 Expansion of clay bound water is ena					Saturation exponent n = 2.000 Linear dual-water w = 1.80 ed.							
	Error of	Component prediction	0.0740	PYRITE 0.0128	GLAUCON	ILLITE 0.0704	KAOLIN 0.0655	SPCMIN2 0.0016	XGAS 0.0212	XFREWAT 0.0281	UGAS 0.0218	UFREWAT 0.0151	
EQUATION RESPONSES: Log Me	thod (Incertainty											
Formation density [-		2.645										
RHO_COR Lin Neutron [V/V] TNPH COR Non		0.0400	 -0.050 	-0.019	0.380	0.300	0.451	-0.010	0.302	0.970	0.000	0.000	
Sonic transit time	[US/F]	2.0000	50.4	37.6	49.4	85.3	85.3	95.8	250.0	189.0	0.0	0.0	
DT Lin Photoelectric absorp U Lin		3] 0.4000	 4.78 	82.22	17.42	11.73	5.38	490.94	0.02	0.59	0.00	0.00	
Total gamma [GAPI]		3.0000	12.0	5.0	150.0	265.0	104.0	2800.0	0.0	0.0	0.0	0.0	
Spectral thorium [P]	-	0.2500	1.0	0.0	4.0	22.0	19.3	20.0	0.0	0.0	0.0	0.0	
THOR_COR Lin Spectral potassium POTA COR Lin		0.1000	 0.1500 	0.0000	6.0000	7.5000	0.0800	20.0000	0.0000	0.0000	0.0000	0.0000	
Unflushed conductiv:	ity [MH/M]	0.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.92	
Flushed conductivity	chie linear y [MH/M] chie linear	0.1000	0.00	0.00		0.00	0.00	0.00	0.00	12.46	0.00	0.00	
CONSTRAINTS: Va	alue Type (Jncertainty											
<pre><prog unity=""> 1</prog></pre>	.000 Tool		1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000	1.000	1.000	
<pre><pre>PROG POROSITY> 0</pre></pre>	.000 Tool	0.0100	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	-1.000	-1.000	
<pre><pre>PROG WATER MUD> 0</pre></pre>	.000 <=		0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	-1.000	
<user constr1=""> 0</user>	.000 Tool	0.0100											

PROPERTIES AND BOUNDS:

MULTIMIN REPORT for well MELBA 1 interval WAARRE FORMATION (1538.50 - 1593.98 metres) Project PETRO TXDM

Mineral grain density										0.0001
Mineral cation exchange capacity	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lower Bound	 0.000	0.0001	0.000	0.000	0.000	0.000	0.000	0.0001	0.000	0.0001
Upper Bound	1.000									

MULTIMIN REPORT for well MELBA_1 Reported by exptxd Analysed by exptxd		Page 9 Project PETRO_TXDM
MODELS: Type Name	Cond# Cutoff Expression	
Primary MELBA_WAARRE	4.735 10.0	
FORMATION FLUID PARAMETERS: Fluid properties option = D Oil Gravity Degrees API = 3 Rws = 0.2500 @ 64.00		Rmfs = 0.2330 @ 18.90
BOREHOLE PARAMETERS: Mud base = WATER SHT = - Rms = 0.1930 @ 18.90	Mud density = 9.050 BHT = 59.00 Rmcs = 0.167 @ 18.90	KCl concentration of mud = 0.00 % Total depth = 1668.40 metres
Auerace temperature of 64 0	0 by mothod	

Average temperature of 64.00 by method. Average pressure of 17000.00 by method.

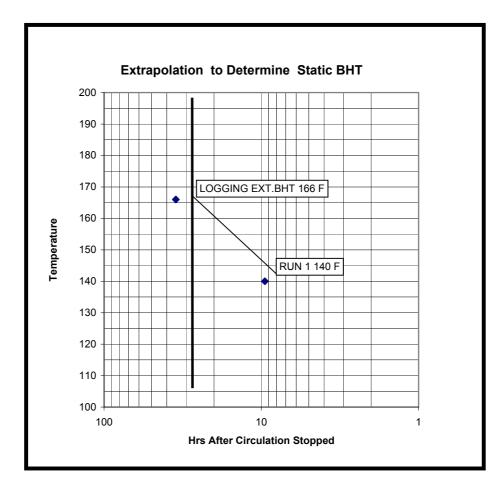
PRIMARY MODEL MELBA_WAA Cementation factor Expansion of clay 1	m = 1.650	abled.									
Er	Component ror of prediction	QUARTZ 0.0739	PYRITE 0.0128	GLAUCON 0.0883	ILLITE 0.0703	KAOLIN 0.0654	SPCMIN2 0.0016	XGAS 0.0211		UGAS 0.0216	UFREWAT 0.0150
EQUATION RESPONSES:											
Log Method	Uncertainty										
Formation density [G/C3 RHO COR Linear	-	2.645							 1.016 		
Neutron [V/V]	0.0400	-0.050	-0.019	0.380	0.300	0.451	-0.010	0.300	0.969	0.000	0.000
TNPH_COR Non-li Sonic transit time [US/ DT Linear		50.4	37.6	49.4	85.3	85.3	95.8	250.0	 189.0 	0.0	0.0
Photoelectric absorption	n [B/C3] 0.4000	4.78	82.22	17.42	11.73	5.38	490.94	0.02	0.58	0.00	0.00
U Linear Total gamma [GAPI] GR COR Linear		 12.0 	5.0	150.0	265.0	104.0	2800.0	0.0	 0.0	0.0	0.0
Spectral thorium [PPM]	0.2500	1.0	0.0	4.0	22.0	19.3	20.01	0.0	0.01	0.0	0.0
THOR_COR Linear Spectral potassium [%]						· ·	1				
POTA COR Linear	0.1000										
Unflushed conductivity		0.00									
CT Archie Flushed conductivity [M CXO Archie	H/M] 0.1000		0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
CONSTRAINTS: Value	Type Uncertainty										
<prog unity=""> 1.000</prog>	Tool 0.0100	1.000	1.000	1.000	1.000	1.000	1.000	0.000		1.000	1.000
<prog porosity=""> 0.000</prog>	Tool 0.0100	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	-1.000	-1.000
<prog mud="" water=""> 0.000</prog>	<=	0.000	0.000	0.000	0.000	0.000	0.000	0.000	• •	0.000	-1.000
<user constr1=""> 0.000</user>	Tool 0.0100	0.000									

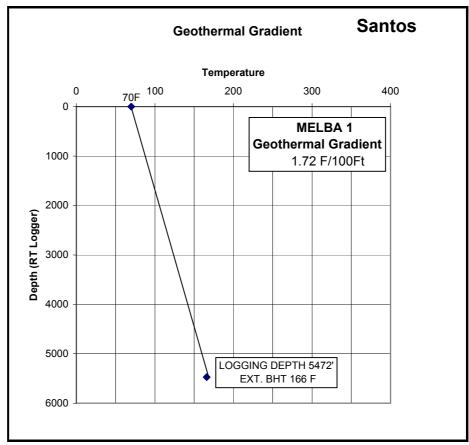
PROPERTIES AND BOUNDS:

Mineral grain density										0.0001
Mineral cation exchange capacity	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lower Bound	 0.000	0.0001	0.000	0.000	0.000	0.000	0.000	0.0001	0.000	0.0001
Upper Bound	1.000									

~ ~ ~ /	* * * * * * * * * * * * * * * * * * * *	^ '
*		7
*	MULTIMIN REPORT	7
*		7
*	*** End of Report ***	7
*		7
*	Project : PETRO TXDM	7
*	User id : exptxd	7
*	Date : 17-Apr-2003 10:46:24	7
*	Pages : 10	7

APPENDIX III(b): MDT DATA

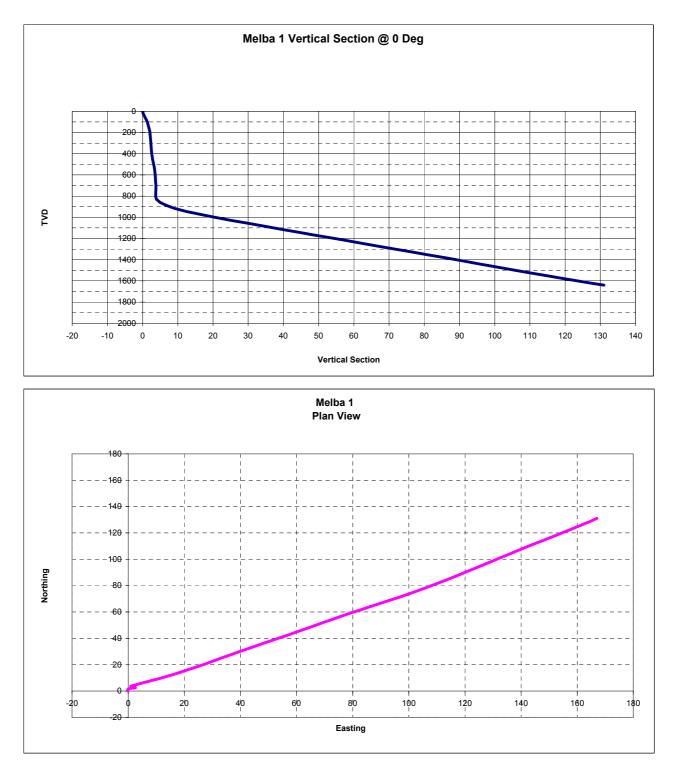

No MDT survey was conducted at the Melba 1 location..


APPENDIX IV: GEOTHERMAL GRADIENT

GEOTHERMAL GRADIENT

A bottom hole temperature of 166°Fht was prognosed for the well based on off-set well information. Temperature readings from wireline logging results were only obtained for Run 1 Pex-DSI where a temperature of 60°C (140°Fht). Extrapolating this information enabled a geothermal gradient of 1.72°Fht/100' to be calculated. A surface temperature of 70°F was assumed. Temperature data used is listed below. The results are displayed graphically overleaf.

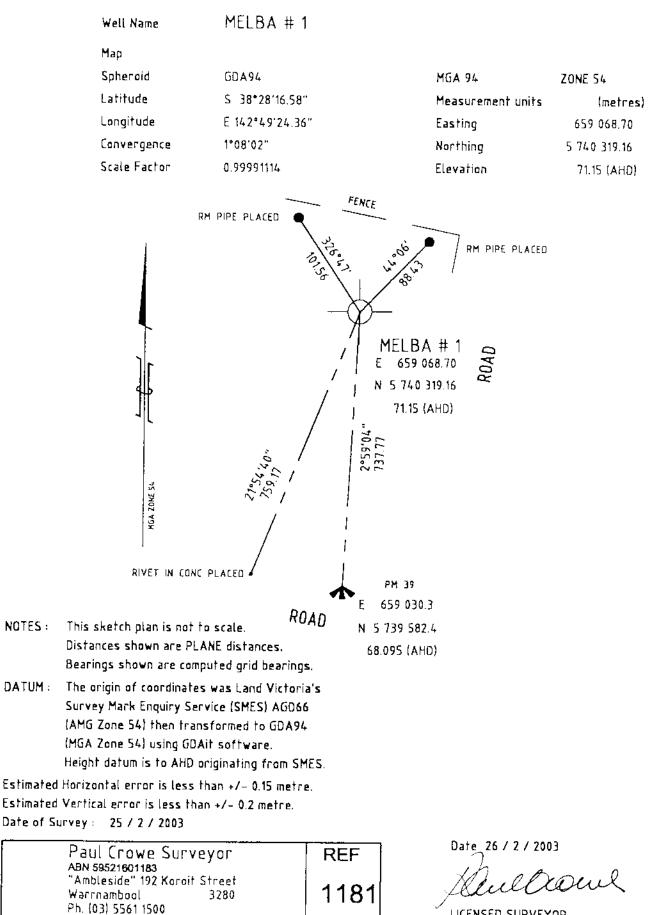
Logging Run	Temperature	Time since Circulation	Depth
Suite 1 Run 1	60°C	9 hours 30 minutes	1668m
Suite 1 Run 2		Cancelled	
Suite 1 Run 3		No thermometers run.	


APPENDIX V: DEVIATION REPORT

Due to surface constraints Melba 1 was drilled as a directional well. Deviation was monitored during the 9-7/8" section utilising single shot directional surveys. Through the $6\frac{3}{4}$ " hole section the well was drilled vertically to kick-off point at 816m. The well was kicked – off at 16° to the north-east with LWD surveys taken as instructed by the directional driller. At total depth the well was located at 212m to 45.13°.

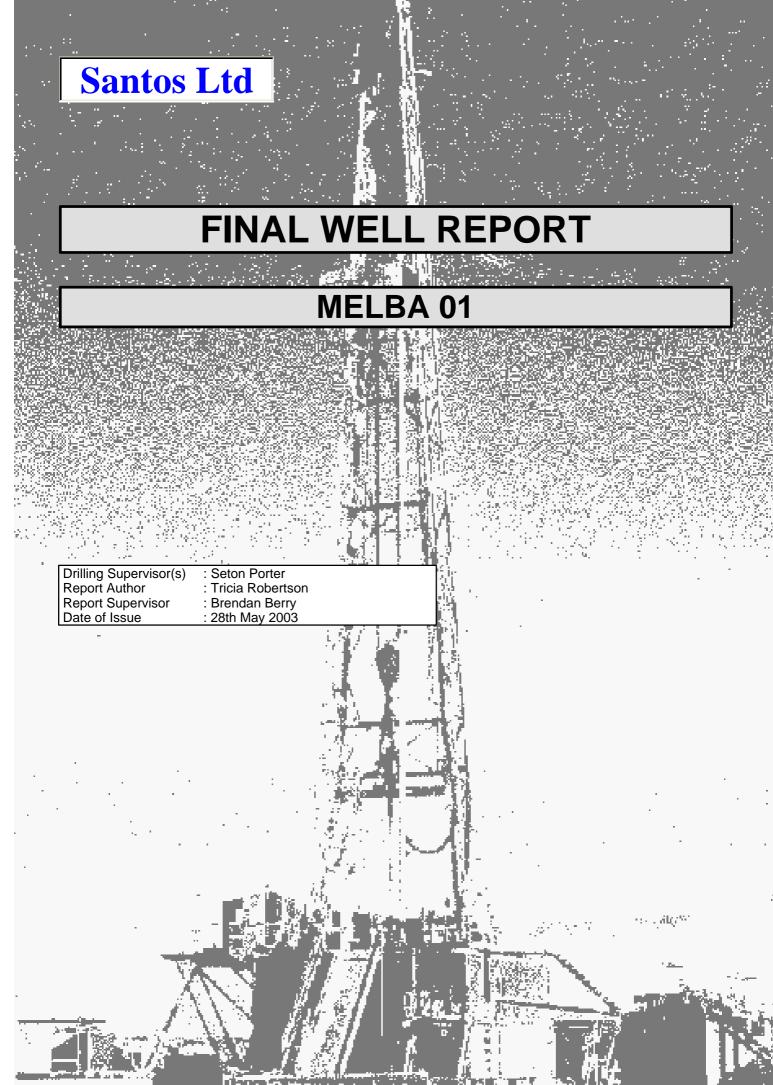
DEPTH	INCLIN	Azimuth	TVD	TVD	Northing	Easting	Q	Vert	Vert	Displ	Directio n
m	DEG	DEG	m	S/S m	north	east	DEG	Sect	Plane	Dispi	True
0	0.00	0.00	0.00	-76.20	0.00	0.00	0.00000	0.00	0	0.00	0.00
23	1	352.80	23.00	-53.20	0.20	-0.03	0.01744	0.20	0.1991	0.20	352.80
98	0.75	5.80	97.99	21.79	1.34	-0.06	0.00556	1.34	-1.337	1.34	357.53
191	0.75	80.80	190.98	114.78	2.04	0.60	0.01593	2.04	-2.04	2.13	16.52
288	1	77.80	287.97	211.77	2.32	2.06	0.00442	2.32	-2.32	3.10	41.59
375	0.25	280.80	374.97	298.77	2.52	2.61	0.02152	2.52	2.516	3.63	46.10
452	0.5	326.80	451.97	375.77	2.83	2.27	0.00649	2.83	2.8286	3.62	38.69
521.03	0.38	20.47	521.00	444.80	3.30	2.18	0.00718	3.30	-3.295	3.95	33.49
549.78	0.25	59.80	549.75	473.55	3.42	2.27	0.00428	3.42	-3.416	4.10	33.58
578.81	0.37	32.26	578.77	502.57	3.53	2.37	0.00327	3.53	-3.527	4.25	33.93
608.17	0.37	277.41	608.13	531.93	3.62	2.33	0.01087	3.62	3.6195	4.30	32.76
637.53	0.24	285.50	637.49	561.29	3.65	2.18	0.00240	3.65	3.6482	4.25	30.82
665.84	0.52	285.05	665.80	589.60	3.70	2.00	0.00487	3.70	3.6974	4.20	28.35
693.05	0.46	292.35	693.01	616.81	3.77	1.77	0.00152	3.77	3.771	4.17	25.20
732.88	0.43	250.57	732.84	656.64	3.78	1.49	0.00556	3.78	-3.782	4.06	21.45
762.07	0.59	271.42	762.03	685.83	3.75	1.23	0.00422	3.75	3.7493	3.95	18.20
788.21	0.37	261.8	788.17	711.97	3.74	1.01	0.00409	3.74	3.7406	3.88	15.17
800.92	0.52	239.6	800.88	724.68	3.71	0.92	0.00393	3.71	-3.706	3.82	14.00
829.8	2.45	61.26	829.75	753.55	3.94	1.35	0.05182	3.94	-3.936	4.16	18.96
858.93	5.79	60.09	858.80	782.60	4.97	3.17	0.05829	4.97	-4.968	5.89	32.56
888.24	8.19	58.43	887.89	811.69	6.80	6.23	0.04201	6.80	-6.799	9.22	42.51
917.41	11.01	62.7	916.65	840.45	9.16	10.48	0.05071	9.16	-9.165	13.92	48.83
947.12	13.58	55.19	945.68	869.48	12.46	15.87	0.05273	12.46	-12.46	20.17	51.86
975.75	14.7	55.64	973.44	897.24	16.43	21.62	0.01962	16.43	-16.43	27.16	52.78
1003.94	14.02	53.87	1000.75	924.55	20.46	27.33	0.01414	20.46	-20.46	34.14	53.19
1032.77	15.86	50.80	1028.61	952.41	25.01	33.21	0.03493	25.01	-25.01	41.57	53.02
1061.66	15.95	54.11	1056.39	980.19	29.83	39.48	0.01591	29.83	-29.83	49.49	52.93
1091.41	15.87	53.18	1085.00	1008.80	34.66	46.05	0.00467	34.66	-34.66	57.64	53.03
1120.70	16.15	54.69	1113.15	1036.95	39.42	52.58	0.00875	39.42	-39.42	65.72	53.14

DEPTH	INCLIN	Azimuth	TVD	TVD	Northing	Easting	Q	Vert	Vert	Displ	Directio n
m	DEG	DEG	m	S/S m	north	east	DEG	Sect	Plane		True
1149.56	16.21	53.69	1140.87	1064.67	44.12	59.10	0.00497	44.12	-44.12	73.76	53.26
1166.59	16.22	52.45	1157.22	1081.02	46.98	62.90	0.00605	46.98	-46.98	78.51	53.24
1168.86	16.27	52.80	1159.40	1083.20	47.37	63.41	0.00191	47.37	-47.37	79.15	53.24
1197.98	16.13	53.04	1187.37	1111.17	52.27	69.89	0.00272	52.27	-52.27	87.27	53.21
1226.99	16.23	53.85	1215.23	1139.03	57.08	76.38	0.00430	57.08	-57.08	95.36	53.23
1256.12	16.68	54.90	1243.16	1166.96	61.89	83.09	0.00940	61.89	-61.89	103.60	53.32
1285.43	16.74	55.16	1271.24	1195.04	66.72	90.00	0.00166	66.72	-66.72	112.03	53.45
1314.41	17.01	55.95	1298.97	1222.77	71.47	96.93	0.00617	71.47	-71.47	120.44	53.60
1343.41	15.29	50.9	1326.83	1250.63	76.26	103.42	0.03875	76.26	-76.26	128.49	53.59
1372.49	15.7	51.41	1354.85	1278.65	81.13	109.47	0.00752	81.13	-81.13	136.26	53.46
1401.12	15.47	49.44	1382.43	1306.23	86.03	115.40	0.01008	86.03	-86.03	143.94	53.29
1430.12	13.85	48.76	1410.48	1334.28	90.83	120.95	0.02845	90.83	-90.83	151.26	53.09
1459.33	14.07	48.58	1438.83	1362.63	95.49	126.24	0.00390	95.49	-95.49	158.28	52.90
1488.39	14.15	48.82	1467.01	1390.81	100.16	131.56	0.00172	100.16	-100.2	165.35	52.72
1517.49	14.58	47.96	1495.20	1419.00	104.96	136.96	0.00836	104.96	-105	172.55	52.53
1546.83	15.25	49.88	1523.55	1447.35	109.92	142.65	0.01451	109.92	-109.9	180.09	52.38
1575.87	15.13	50.23	1551.58	1475.38	114.80	148.48	0.00265	114.80	-114.8	187.69	52.29
1605.25	15.22	48.95	1579.93	1503.73	119.79	154.34	0.00605	119.79	-119.8	195.37	52.18
1633.85	15.79	50.05	1607.49	1531.29	124.75	160.15	0.01118	124.75	-124.8	203.01	52.08
1652.03	15.86	47.3	1624.98	1548.78	128.03	163.88	0.01314	128.03	-128	207.96	52.00
1668	15.91	45.13	1640.34	1564.14	131.05	167.03	0.01040	131.05	-131.1	212.31	51.88



APPENDIX VI: DRILL STEM TEST DATA

No drill stem tests were conducted at the Melba 1 location.


APPENDIX VII: WELL LOCATION SURVEY

VICTORIA PROPOSED GAS WELL LOCATION **REFERENCE MARKS SKETCH PLAN EXPLORATION LICENCE PEP 154**

LICENSED SURVEYOR

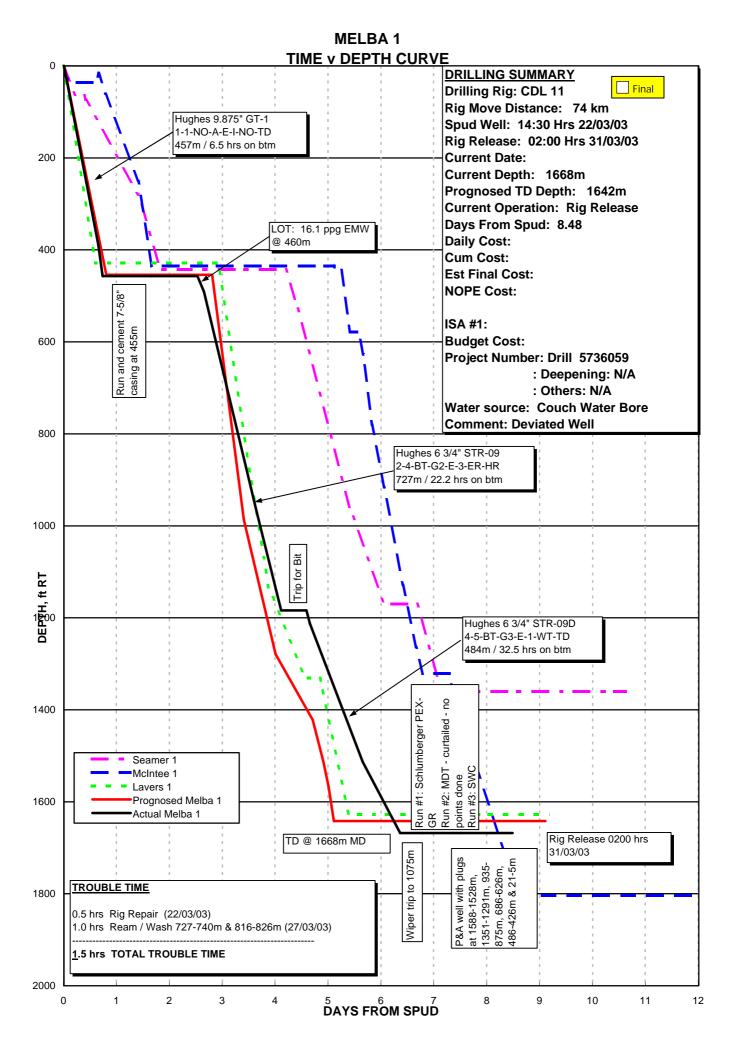

APPENDIX VIII: DRILLING AND CASING REPORT

Table of Contents

ction 1 – Well Summary
Time vs Depth Curve
ction 2 – Well History
Well History Report
ction 3 - Drilling Data
Bit Record
FIT/LOT Report
ction 4 – Casing and Cementing
Casing and Cementing Report/s
Wellhead Installation Report/Plug and Abandonment Report

Section 1 – Well Summary Time vs Depth Curve

Section 2 – Well History Well History Report

MELBA 01

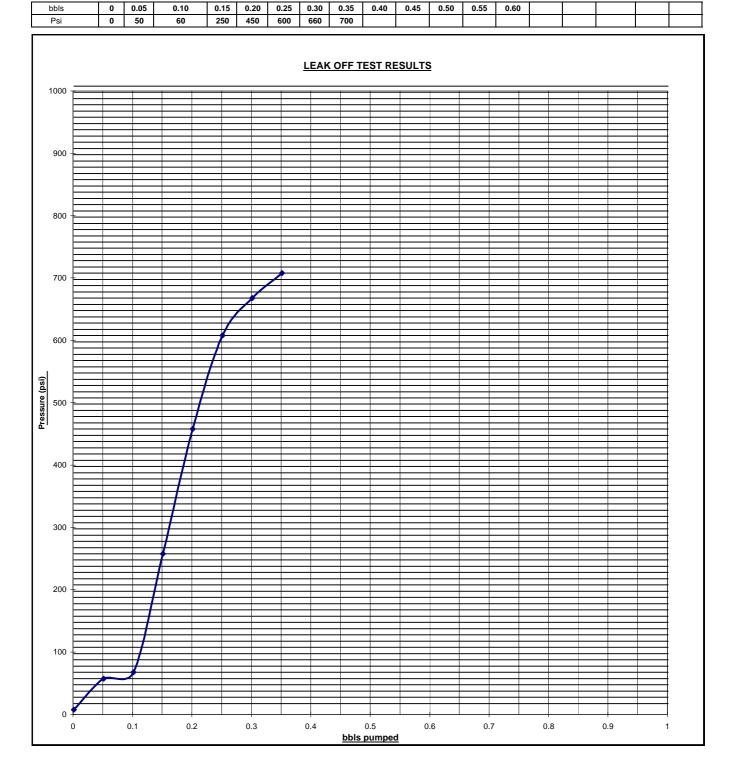
Drilling Co.: Century

 RT above GL: 5 m
 Lat
 : 38 deg
 28 min
 16.58 sec
 Spud Date: 22/03/2003
 Release Date: 31/03/2003

 GL above MSL : 71 m
 Long : 142 deg
 49 min
 24.36 sec
 Spud Time: 14:30:00
 Release Time: 2:00:00

Well History

#	DATE	DEPTH	WELL HISTORY (24 Hr Summary)
1	17/03/2003		Hold Ice-Breaker safety meeting in Brisbane with all crew & service hands
2	18/03/2003		Crew travelled from Brisbane to Warrnambool
3	19/03/2003		Move & set up camp. Move part of the rig from Warrnambool to Melba 1. Full crew on site. DSV travelled from Brisbane to site
4	20/03/2003		Moved balance of rig on site. Rigging up. Raised lower section of mast. Camp & rig 100% moved. Camp 100% rigged up. Rig 40% rigged up
5	21/03/2003		Rigging up. Crew worked till 2100 hrs, other crew finished at 1400 hrs to come back at midnight. Geoservices crew & Mud Engineer arrived. Halliburton brought in the cement unit.
6	22/03/2003	232	Rig up, drill & set Rat & Mouse holes. Spud in at 14:30 hrs & drill ahead with MSS surveys
7	23/03/2003	232	Drilled 9-7/8" hole to 457m. Condition hole, hoist laying out 6.5" DC's & 4.5" HWDP. Run casing & cement at 455m. Wait on cement
8	24/03/2003	232	Wait on cement. Slack off & install Bradenhead. NU & test BOPE. Make up Directional Drilling Assembly & run in hole
9	25/03/2003	865	Run in hole picking up HWDP. Drill out shoe track & 3m of new hole. Run L.O.T to 16.1ppg EMW & drill ahead to kick-off point at 816m. Slide drill to commence kick-off
10	26/03/2003	1,184	Drilled 6-3/4" hole from 865 to 1184m. KOP at 816m, built angle & continued drilling to 1184m. Total K-Revs on bit, 376. Trip for bit.
11	27/03/2003	1,450	Run in hole, reaming 2 tight spots. Drill from 1184 to 1450 m with DH motor & MWD
12	28/03/2003	1,668	Drill 6-3/4" hole from 1450 to 1668m with DH motor & MWD. Circulate hole clean & begin wiper trip
13	29/03/2003	1,668	Hoist, run PEX & SWC logs with Schlumberger. Run in to lay out BHA
14	30/03/2003	1,668	Lay out BHA. Run in open-ended & run 5 abandonment plugs. Lay out pipe. Tag cement at 411m up inside casing. Lay out pipe. Nipple up BOP's
15	31/03/2003	1,668	Remove Bradenhead & release rig at 02:00 hrs, 31-3-03. Run 16m surface cement plug & attach well sign to casing


Section 3 – Drilling Data Bit Record FIT/LOT Report

MELBA 01								D	Drilling Co.: Century						Rig: Century #11											
GL abov	RT above GL: 5 mtrsLat: 38 deg28 min16.58 secSpud Date: 22/03/2003Release Date: 31GL above MSL : 71 mtrsLong : 142 deg49 min24.36 secSpud Time: 14:30:00Release Time: 23																									
BIT RE	ECO	RD																								
DATE	BIT#	SIZE	IADC	SER	MFR	TYPE	JETS	D.IN mtrs	D.OUT mtrs	MTRG	HRS o/b	SPP psi	FLW gpm	WOB k-lbs	RPM	MW ppg	TFA sq.in	VEL mps	HHP /sq"	ROP m/hr	IC)1 [) L	В	G O2	2 R
23/03/2003 26/03/2003 29/03/2003	2	9.88 6.75 6.75	437	5020202	HUGHES HUGHES HUGHES	STR 09	3x16 3x13 3x13	0 457 1,184	457 1,184 1,668	457 727 484	6.5 22.2 32.2	1198 1200 1571	502 252 253	10.0 10.0 10.7	110 120 120	8.8	0.589 0.389 0.389	63	2.27 1.35 1.40	70.3 32.7 15.0	2 4	В	T G	E 2 E 3 E	3 ER	D TD R HR T TD

Santos

DRILLING SERVICES LEAK OFF TEST RESULTS

WELL:	Melba 01	<u>RIG:</u>	Century	/ Resources - 11		25-Mar-03	
CAS	ING SIZE: 9-5/8"	SANTOS SUPER	VISOR:	Seton Porter			
B. HO C. SH D. LE E. EC	UD DENSITY IN USE: DLE DEPTH: HOE DEPTH: EAK-OFF PRESSURE (GRAPH): QUIVALENT DENSITY: LEAK-OFF PRES. (D) (psi) HOE DEPTH (C) (m) × 0.1706	SITY IN USE (A) (r	(pag		8.40 460 456 600 <u>16.1</u>	ppg m m Psi (ppg) (EMW)	
F. M/ G. VC	HOE DEPTH (C) (m) x 0.1706 AXIMUM PRESSURE RECORDED: DLUME PUMPED: DLUME REGAINED:					psi bbls bbls	

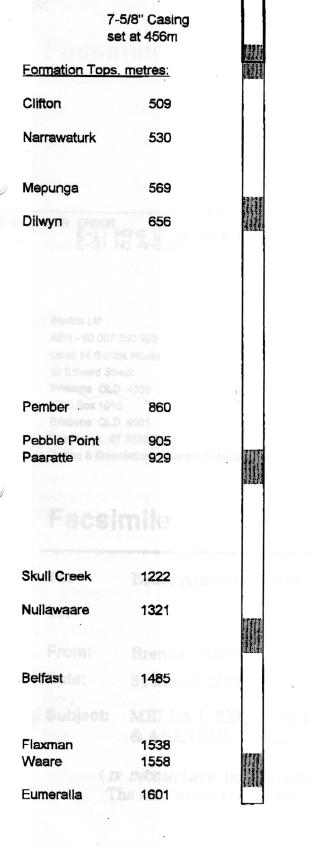
Section 4 – Casing and Cementing Casing and Cementing Report/s Wellhead Installation Report/Plug and Abandonment Report

San	tos	SAN	TOS C	ASING AN	ND CEME	ENTING R	EPORT	DQMS F-2
	WELI	L:	<u>Melba 01</u>			DATE:	23-Mar-03	
	ELEVATIONS:		RT:	63.71 m		T.D:	457 m	
	CASING BOW STRING TYPE	-	GL: 11" 5K x 7- Surface	58.51.0 m 5/8" API BTC W	G-22-L	PBTD: SERIES:	443 m 5000	
	1					И ВОТТОМ ТО ТОГ		•
SIZE	WEIGHT	GRADE	No. of	THREAD	LENGTH	FROM	то	REMARKS
OD.	lb/ft	1.80	JOINTS	BTC	0.27	455.62	456.00	Float Shoe
7-5/8"	-	L-80		-	0.37	455.63	456.00	Float Shoe
7-5/8"	26.4	L-80	1	BTC	12.25	443.38	455.63	Floor Oolloo
7-5/8"		L-80		BTC	0.31	443.07	443.38	Float Collar
7-5/8"	26.4	L-80	36	BTC	438.01	5.06	443.07	
7-5/8"	26.4	L-80		BTC	7.04	-1.98	5.06	Landing Joint
							-1.98	Stick up
		TOTAL JOINTS	37					
				TALLY TOTAL	457.98			
					C	ASING LANDED A	T: 456.0	0 m
					RT TO TOP	OF BRADEN HEAD	D: 4.7	'0 m
				CENTRALIZERS L	OCATED AT - RT	.		
453	394	296						
430	369	17						
418	333							
410	555							
REFLUSH	Dam Water							
olume:	20		Density:	8.4	Additives:	Water only		
EAD CEMENT					Additives:			
					Additives:	Water only		
					Additives:	Additives	%	Amount Used
		Class:		No. sx:	Additives:		%	Amount Used
lixwater:		Slurry Vol:					%	Amount Used
lixwater:				No. sx:	Additives:		%	Amount Used
lixwater: als/Sack		Slurry Vol:		No. sx:	Additives:	Additives		
lixwater: aals/Sack AIL CEMENT	480	Slurry Vol: Yield:		No. sx: Density:		Additives	%	Amount Used
arand: lixwater: Gals/Sack AIL CEMENT Grand:	ABC	Slurry Vol: Yield: Class:	G	No. sx: Density: No. sx:	297	Additives		
lixwater: ials/Sack AIL CEMENT rand: lixwater:	63 bbls	Slurry Vol: Yield: Class: Slurry Vol:	89.6 bbls	No. sx: Density: No. sx: Density:	297 13.5 ppg	Additives Additives Bentonite	% 1.5	Amount Used 327 lbs
lixwater: aals/Sack AIL CEMENT rand: lixwater: aals/Sack	63 bbls 8.87	Slurry Vol: Yield: Class:		No. sx: Density: No. sx: Density:	297 13.5 ppg	Additives Additives Bentonite	%	Amount Used 327 lbs
lixwater: bals/Sack AIL CEMENT drand: lixwater: bals/Sack IISPLACEMEN	63 bbls 8.87 T	Slurry Vol: Yield: Class: Slurry Vol:	89.6 bbls 1.66 cu.ft/sac	No. sx: Density: No. sx: Density: ck Ceme	297 13.5 ppg int volume calcula	Additives Additives Bentonite ted at 50% on hole	% 1.5 volume, no caliper av	Amount Used 327 lbs
lixwater: als/Sack AIL CEMENT rand: lixwater: als/Sack ISPLACEMEN luid:	63 bbls 8.87 T Water	Slurry Vol: Yield: Class: Slurry Vol:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: ck Ceme cement:	297 13.5 ppg int volume calcula 68.4 bbls	Additives Additives Bentonite ted at 50% on hole Plug Bump:	% 1.5 volume, no caliper av Yes	Amount Used 327 lbs
lixwater: als/Sack AIL CEMENT rand: lixwater: als/Sack ISPLACEMEN luid:	63 bbls 8.87 T	Slurry Vol: Yield: Class: Slurry Vol:	89.6 bbls 1.66 cu.ft/sac	No. sx: Density: No. sx: Density: ck Ceme cement:	297 13.5 ppg int volume calcula	Additives Additives Bentonite ted at 50% on hole	% 1.5 volume, no caliper av	Amount Used 327 lbs
ixwater: als/Sack AIL CEMENT rand: ixwater: als/Sack ISPLACEMEN luid: ensity:	63 bbls 8.87 T Water	Slurry Vol: Yield: Class: Slurry Vol: Yield:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: ck Ceme cement:	297 13.5 ppg int volume calcula 68.4 bbls 69.5 bbls	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back:	% 1.5 volume, no caliper av Yes	Amount Used 327 lbs vailable.
ixwater: als/Sack AIL CEMENT rand: ixwater: als/Sack ISPLACEMEN uid: ensity:	63 bbls 8.87 T Water 8.4	Slurry Vol: Yield: Class: Slurry Vol: Yield: E:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: kk Ceme cement: acement:	297 13.5 ppg int volume calcula 68.4 bbls 69.5 bbls Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back:	% 1.5 volume, no caliper av Yes 0.5 bbls	Amount Used 327 lbs vailable.
ixwater: als/Sack AIL CEMENT rand: ixwater: als/Sack ISPLACEMEN uid: ensity:	63 bbls 8.87 T Water 8.4 STARTED IN HOL	Slurry Vol: Yield: Class: Slurry Vol: Yield: LE: ING CASING:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: ck Ceme cement: acement: 15:50	297 13.5 ppg int volume calcula 68.4 bbls 69.5 bbls Hr. Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC	Amount Used 327 lbs vailable. ATED DURING
ixwater: als/Sack AIL CEMENT rand: ixwater: als/Sack ISPLACEMEN uid: ensity:	63 bbls 8.87 T Water 8.4 STARTED IN HOL FINISHED RUNNI	Slurry Vol: Yield: Class: Slurry Vol: Yield: LE: ING CASING: TING:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: ck Ceme cement: acement: 15:50 16:00	297 13.5 ppg int volume calcula 68.4 bbls 69.5 bbls Hr. Hr. Hr. Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC CEN	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC. ULATING:	Amount Used 327 lbs vailable. ATED DURING Yes
ixwater: als/Sack AIL CEMENT rand: ixwater: als/Sack ISPLACEMEN uid: ensity:	63 bbls 8.87 T Water 8.4 STARTED IN HOL FINISHED RUNNI START CIRCULA	Slurry Vol: Yield: Class: Slurry Vol: Yield: LE: ING CASING: TING: ING:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: ck cement: acement: 15:50 16:00 18:30	297 13.5 ppg Int volume calcula 68.4 bbls 69.5 bbls Hr. Hr. Hr. Hr. Hr. Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC CEN	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC. ULATING: IENTING:	Amount Used 327 lbs vailable. ATED DURING Yes Yes Yes Yes
ixwater: als/Sack AIL CEMENT rand: ixwater: als/Sack ISPLACEMEN uid: ensity:	63 bbls 8.87 T Water 8.4 STARTED IN HOL FINISHED RUNNI START CIRCULA STOP CIRCULAT	Slurry Vol: Yield: Class: Slurry Vol: Yield: LE: ING CASING: TING: ING: NG:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: k Ceme cement: acement: 15:50 16:00 18:30 20:45	297 13.5 ppg Int volume calcula 68.4 bbls 69.5 bbls Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC CEM DISE	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC. ULATING: IENTING: PLACING:	Amount Used 327 lbs vailable. ATED DURING Yes Yes Yes Yes
ixwater: als/Sack AIL CEMENT rand: ixwater: als/Sack ISPLACEMEN luid: ensity:	63 bbls 8.87 T Water 8.4 STARTED IN HOL FINISHED RUNNI START CIRCULAT STOP CIRCULAT START CEMENTI	Slurry Vol: Yield: Class: Slurry Vol: Yield: LE: ING CASING: TING: ING: NG: NG: NG:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: k Ceme cement: acement: 15:50 16:00 18:30 20:45 21:10	297 13.5 ppg Int volume calcula 68.4 bbls 69.5 bbls Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC CEN DISI	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC. ULATING: IULATING: PLACING: WIPER PL	Amount Used 327 lbs vailable. ATED DURING Yes Yes Yes Yes UGS
lixwater: als/Sack AIL CEMENT rand: lixwater: als/Sack ISPLACEMEN luid: ensity:	63 bbls 8.87 T Water 8.4 STARTED IN HOL FINISHED RUNNI START CIRCULAT STOP CIRCULAT START CEMENTI FINISH CEMENTI	Slurry Vol: Yield: Class: Slurry Vol: Yield: LE: ING CASING: TING: ING: NG: NG: NG: EMENT:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: k Ceme cement: acement: 15:50 16:00 18:30 20:45 21:10 21:35	297 13.5 ppg Int volume calcula 68.4 bbls 69.5 bbls Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC CEN DISI	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC, ULATING: ULATING: PLACING: WIPER PL TOP:	Amount Used 327 lbs vailable. ATED DURING Yes Yes Yes UGS Yes
lixwater: ials/Sack AIL CEMENT rand: lixwater: ials/Sack ISPLACEMEN luid: ensity: IME:-	63 bbls 8.87 T Water 8.4 STARTED IN HOL FINISHED RUNNI START CIRCULAT STOP CIRCULAT START CEMENTI FINISH CEMENTI START DISPLACI FINISH DISPLACI	Slurry Vol: Yield: Class: Slurry Vol: Yield: LE: ING CASING: TING: ING: ING: NG: NG: EMENT: EMENT:	89.6 bbls 1.66 cu.ft/sac Calc. Displa	No. sx: Density: No. sx: Density: k Ceme cement: acement: 15:50 16:00 18:30 20:45 21:10 21:35 21:37	297 13.5 ppg Int volume calcula 68.4 bbls 69.5 bbls Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr.	Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC CEN DISF	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC. ULATING: PLACING: PLACING: WIPER PL TOP: DTTOM:	Amount Used 327 lbs vailable. ATED DURING Yes Yes Yes UGS Yes Yes Yes
EMENT JOB E	63 bbls 8.87 T Water 8.4 STARTED IN HOL FINISHED RUNNI START CIRCULAT STOP CIRCULAT STOP CIRCULAT START CEMENTI FINISH CEMENTI START DISPLACI FINISH DISPLACI	Slurry Vol: Yield: Class: Slurry Vol: Yield: Vield: LE: ING CASING: TING: ING: NG: NG: NG: EMENT: EMENT: S:-	89.6 bbls 1.66 cu.ft/sac Calc. Displa Actual Displ	No. sx: Density: No. sx: Density: :k Ceme : cement: acement: 15:50 16:00 18:30 20:45 21:10 21:35 21:37 21:55	297 13.5 ppg Int volume calcula 68.4 bbls 69.5 bbls Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr. Hr.	Additives Additives Additives Bentonite ted at 50% on hole Plug Bump: Bleed Back: CIRC CEN DISI BC Drilling	% 1.5 volume, no caliper av Yes 0.5 bbls CASING RECIPROC, ULATING: ULATING: PLACING: WIPER PL TOP:	Amount Used 327 lbs vailable. ATED DURING Yes Yes Yes UGS Yes Yes Yes Seton Porter

Topped up conductor annulus with 2 cu.m of ready-mix concrete.

RT - top of Bradenhead = 4.70m

Surface Plug No 6, 21 - 5m 12 sacks 'G' cement


Plug No 5, 486 - 426m 55 sacks of 'G' cement

Plug No 4, 686 - 626m 55 sacks of 'G' cement

Plug No 3, 935 - 875m 52 sacks of 'G' cement

Plug No 2, 1351 - 1291m 45 sacks of 'G' cement

Plug No 1, 1588 - 1528m 39 sacks of 'G' cement Total Depth, 1668m

Y TY.

APPENDIX IX: RIG SPECIFICATIONS

RIG SPECIFICATIONS

CENTURY RIG 11

<u>RIG INVENTORY FOR RIG # 11</u>

CARRIER:	Cooper LTO 750 Carrier with triple front and rear axles 54,000lb front and 70,000lb rear. All necessary highway equipment. Unit levelled with hydraulic jacks when stationary
SUBSTRUCTURE:	17' floor height – 14' below table beams with plates in base
DRAWWORKS:	Cooper 750 HP Double Drum Drawworks 3000 metres $\frac{9}{16}$ sandline
ENGINES:	Driven by 2 each Caterpillar 3406 TA Diesel Engines
BRAKE:	Parmac V80 Hydromatic
ROTARY TABLE:	National Rotary Table Model C-175
DERRICK:	Cooper Derrick Model 118-365. Ground height 118' Maximum rated static hook load 35,0000 lbs with 10 lines Mast raised, lowered and telescoped hydraulically
CROWN BLOCK:	Cooper Crown Block with 4 working sheaves. Fast line sheave and dead line sheave. All grooved for $1^{1}/_{8}$ " line. Sandline sheave grooved for $9'_{16}$ " line. National Hook Block Model 435 G-175. 175 ton capacity 4 - 35" sheaves grooved for $1^{1}/_{8}$ " line.
SWIVEL:	P-200 National
SLUSH PUMPS:	2 Gardner Denver PZ-7 Triplex Pumps driven by Cat 379TA Diesel Engines Rated 550 HP each. Liner sizes 5 $1/2$ ° and 6°.
MUD SYSTEM:	2×300 bbl tanks incorporating 80 bbl pill tank and 54 bbl trip tank.
SHAKERS:	2x Triton NNF Screening Machine (Linear Motion).
DEGASSER:	Drilco Atmospheric Degasser Standard Pit. $7^{1}/_{2}$ HP 60 Hz, 230v.
MUD / GAS SEPARATOR	Minimum 36" separator with 10ft. maximum mud seal.
VENT LINE:	Minimum 6" vent line from Separator to flare pit, 200 ft. length.
DESANDER:	Demco Model 122. Two, 12" cone with Warman 6" \times 4" Centrifugal pump driven by 50 HP Electric Motor.
DESILTER:	Pioneer Economaster Model T12-E4. 12 \times 4" cones with Warman 6" \times 4" Centrifugal pump, driven by a 50 HP Electric Motor.
MUD MIXING PUMP:	Warman 6" \times 4" Centrifugal pump driven by a 50 HP Electric Motor
MUD AGITATORS:	4 only Brandt Mud Agitator Model MA 7.5
BOP's & ACCUMULATOR:	Annular: 11" 5,000psi Shaffer Spherical 11" 5,000psi Shaffer Double Gate Model 'LWS' Complete with $2^3/_8$ ", $2^7/_8$ ", $3^1/_2$ ", $4^1/_2$ ", $5^1/_2$ ", 7" and Blind Rams Accumulator: Koomey Model 100-11S

CHOKE MANIFOLD:	Cameron 5,000 psi, as per attached drawing but with hydraulic choke fitted and pressure tested with remote control panel
KELLY COCK: (Upper)	Packard 5000 PSI upper kelly cock with 6 $^{5}/_{8}$ " reg. LH connections.
KELLY COCK: (Lower)	Packard 5000 PSI upper kelly cock with 4" IH connections
DRILL PIPE SAFETY VALVE:	1 x 4" IF Inside BOP (Gray) 1 x 4" IF full Operating Stab Valve
SPOOL:	1-11" 5,000psi Flanged Drilling Spool with $3^{1}/_{8}$ " 5,000psi Flanged Choke Line out and $2^{1}/_{16}$ " 5,000 psi Kill Line Outlet 1-11" 5,000 psi to 11" 3,000psi Kill Line Double Studded Adaptor 1-11" 5,000 psi to $7^{1}/_{16}$ " 5,000 psi Double Studded Adaptor
KILL LINE VALVES:	2-2 ¹ / ₁₆ " 5,000psi Manual Flanged Valves
CHOKE LINE VALVES:	$1-3^{1}/_{8}$ " 5,000psi Manual Flanged Valve $1-3^{1}/_{8}$ " 5,000 psi HCR Flanged Valve
INSTRUMENTATION:	Martin–Decker 6 pen Record-O-Graph Martin–Decker Weight Indicator Type FS Martin–Decker Mud Pressure Gauge Martin–Decker Rotary RPM Indicator Martin–Decker Pump Stroke Indicator (2 off) Martin–Decker Rota Torque Indicator Martin–Decker Tong Torque Indicator Martin–Decker Mud Flow Sensor Martin–Decker Mud Flow Fill System Martin–Decker Mud Volume Totaliser (MVT)
AUTOMATIC DRILLER:	Satellite Automatic Driller Model SA100-50-1500
KELLY SPINNER:	Foster Model K-77
KELLY:	1-5 ¹ / ₄ "Hex Kelly. 2 ¹³ / ₁₆ " ID × 40' long with 6^5 / ₈ " API Reg LH Box up 4" IF Pin Down
UPPER KELLY VALVE:	Upper Kelly Cock. 10,000 test 6 ⁵ / ₈ " API Reg LH Connections.
LOWER KELLY VALVE:	1 – Hydril Kelly Guard $6^{1}/_{4}$ " OD 10,000 psi, 4" IF (NC46) Pin and Box Connection
KELLY DRIVE BUSHING:	Varco Type 4 KRS Kelly Drive Bushing
DRILL PIPE AND TOOLS:	 6 joints 4¹/₂" Range II Hevi Wate Drill Pipe with 18⁰ Taper 4" IF (NC46) Connections. 10,000ft. 3 ¹/₂" 13.3lbs/ft Grade 'G" Drill Pipe 30 x 4 ³/₄" slick Drill collars 3 ¹/₂ " IF 1 x 4 ³/₄" pony collar, 3 ¹/₂" IF, 10 ft. long 9 x 3 ¹/₂" HWDP, 3 ¹/₂" IF 4 ¹/₄" Hexagonal Kelly, 6 ⁵/₈" Reg LH Box up, 3 ¹/₂" IF Pin Down 4 ³/₄" Inside BOP / Stabbing Valve, 3 ¹/₂" IF 4 ³/₄" Bit Sub, 3 ¹/₂" IF Box Up, 3 ¹/₂" Reg Box Down 3 ¹/₂" rotary slips 3 ¹/₂" elevators

	All cross-over, lifting and saver subs to match above tools 4 ³ / ₄ " drill collar slips
DRILL COLLARS:	4 - 8" Drill Collars, Range II, with $6^{5}/_{8}$ " Reg. Connections. 24 - $6^{1}/_{4}$ " Drill Collars, Range II, with 4" IF (NC46) Connections. 1 x 6 1/4" Monel Drill collar
FISHING TOOLS:	1 only Bowen $6^{1}/_{4}$ " OD Type Z Fishing Jar 1 only Bowen $8^{1}/_{8}$ " Series 150 FS Overshot 1 only Bowen $7^{7}/_{8}$ " Reverse Circulating Junk Basket 1 only Junk Sub $- 8^{1}/_{2}$ " Hole 1 only Flat Bottom Mill $- 8^{1}/_{2}$ " Hole
HANDLING TOOLS:	Elevators: 1 Set $9^{5}/8$ " Casing 1 Set 7^{9} Casing 1 Set $5^{1}/2$ " Casing 1 Set $9^{5}/8$ " Single Jt 1 Set 7^{9} Single Jt 1 Set 7^{9} Single Jt 2 Sets $4^{1}/2$ " DP 18 Degree 1 Set $3^{1}/2$ " Tubing Elevators 1 Set $2^{7}/8$ " Tubing Elevators 1 Set $2^{7}/8$ " Tubing Elevators 3 Set $2^{7}/8$ " Tubing Elevators Safety clamp 1 Safety clamp for 8" and 6 1/4" Drill Collars. Slips: 1 set $9^{5}/8$ " Casing 1 Set 7^{10} Casing 1 Set $5^{1}/2$ " Casing 2 Sets $4^{1}/2$ " Drill Pipe 1 Set $3^{1}/2$ " Tubing Slips 1 Set $3^{1}/2$ " Tubing Slips 1 Set $3^{1}/2$ " Tubing Slips 1 Set 6 1/4 DC Slips 1 Set 2 7/8 tubing slips 1 Set BJ Type 'B' Rotary Tongs 1 set BJ Type 'B' Rotary Tongs 1 set Farr Hydraulic Power Tongs Jaws to suit $5^{1}/2^{10}$, 7", $9^{5}/8$ " and $13^{3}/8$ "
PIPE SPINNER:	Varco SSW-10 Spinning Wrench
SUBS:	1 - $6^{5}/_{8}$ " Reg. X $6^{5}/_{8}$ " Reg. Bit Sub (Double Box) 2 - $4^{1}/_{2}$ " Reg. X 4" IF (NC46) Bit Subs 1 - $6^{5}/_{8}$ " Reg. X 4" IF (NC46) Crossover Sub (Pin x Box) 2 - 4" IF (NC46) Saver Subs (Pin x Box) 3 - $6^{5}/_{8}$ " Reg. Lift Nubbins 11 - 4" IF (NC46) Lift Nubbins
CASING / TUBING DRIFTS:	$\begin{array}{ll} 1 - 9^{5}/8^{"} & 36 \text{ lb/ft} \\ 1 - 7^{"} & 26 \text{ lb/ft} \\ 1 - 7^{"} & 23 \text{ lb/ft} \\ 1 - 5^{1}/2^{"} & 17 \text{ lb/ft} \\ 1 - 5^{1}/2^{"} & 15.5 \text{ lb/ft} \end{array}$
THREAD PROTECTORS:	$3 - 9^{5}/_{8}$ " Klampon Style 3 - 7" Klampon Style $3 - 5^{1}/_{2}$ " Klampon Style

WELDING EQUIPMENT:	Lincoln Electric Welder Model 400AS				
AIR COMPRESSORS:	Sullair compressor Package Model 10-30L - 100 cfm @ 125 psi Gardner Denver - 20 HP 80 cfm @ 110 psi.				
AC GENERATOR:	2 each Caterpillar 3408TA AC Generator Model SR-4. 1,800 rpm 60 hz 275 kw.				
FUEL TANKS:	2 each 10,000 litre - Skid Mounted				
WATER TANK:	400 BBL tank with two Warman 3×2 pumps driven by 24 HP electric motors				
PIPE RACKS:	5 sets 30ft in length				
CATWALKS:	2 piece Catwalk drill pipe construction 42" height				
COMMUNICATION:	Westinghouse Satellite Phone and Fax				
SURVEY UNIT:	Totco 8 ⁰ Deg. Recorder				
MUD LAB:	Baroid Rig Laboratory Model 821				
RATHOLE DRILLER:	Manufactured Rat Hole Driller for $5^{1}/_{4}$ " Kelly				
MUD SAVER:	Harrisburg Unit with $4^{1}/_{2}$ " Sealing Rubbers				
CELLAR PUMP:	1 only 3" Pacific Diaphragm Unit				
WATER PUMP:	1 only Centrifugal Pump Unit				
FIRE EXTINGUISHER:	1 lot as per State Mining Regulations for Rig and Camp				
PIPE BINS:	3 only 36' L × 10' W × 42" H				
CUP TESTER:	Cameron Type 'F' Cup Tester Mandrel with 4" IF Connections. 9 $^{5}\!/_{8}$ " 47- 36 lbs rubber for cup tester.				
PRESSURE TEST PUMP	1 "Nearwhich" 3000 psi test pump with chart recorder.				
HAMMER UNIONS:	Replace all 2" hammer unions with 1502 Welded Hammer Unions.				
TRANSPORTATION:	International 530 Payloader or equivalent				
RIG ACCOMMODATION:	Toyota 4 × 4 Pickup Toyota 4 × 4 Crew Vehicle 2 Skid-Mounted Rig Manager/Companyman Units 1 Communication Hut 40ft. X 10ft. which will accommodate Anadrill office requirements.				
FORKLIFT:	One (1)				
INTERCOM:	4 stations unit, borrowed from CDL 27 if possible.				
CAMP:	1–Camp Generator House 31' long \times 10' wide skid-mounted complete with 2 – 3304 T 80 Kw, 50 Hz, 200 – 400 volt generators, camp distribution panel. 6,794 litres fuel storage, 12,000 litres fresh water storage and 24,000 litres shower water storage.				

1-Kitchen/Dining Room	$40' \times 10' \times 10'$
1-Recreation Room	$40' \times 10' \times 10'$
1-Ablution/Laundry	$40' \times 10' \times 10'$
4-12 Man Bunkhouses	$40' \times 10' \times 10'$
1-Cooler/Freezer	$20' \times 8' \times 8'$
1-Female Ablution Block	20' x 8' x 8'

ENCLOSURE I: 5'' = 100' COMPOSITE LOG

ENCLOSURE II: 5" = 100' MUDLOG

ENCLOSURE III: DEPTH STRUCTURE MAP

ENCLOSURE IV: LOG ANALYSIS PLOT

