PAGE 1 OF 188.

Western Underground Gas Storage Pty. Ltd.

WELL COMPLETION REPORT

Iona Obs-2

PPL2 ONSHORE OTWAY BASIN, VICTORIA

VOLUME 1 OF 2
TEXT, TABLES, FIGURES, APPENDICES
& ENCLOSURES 1-3

October 1999

Copy 3 of 6

Western Underground Gas Storage Pty. Ltd.

WELL COMPLETION REPORT

Iona Obs-2

PPL2 ONSHORE OTWAY BASIN, VICTORIA

VOLUME 1 OF 2
TEXT, TABLES, FIGURES, APPENDICES
& ENCLOSURES 1-3

October 1999

Copy 3 of 6

Western Underground Gas Storage Pty Ltd

PPL 2 ONSHORE OTWAY BASIN, VICTORIA

WELL COMPLETION REPORT

Iona Obs-2

October 1999

VOLUME 1

CONTENTS

APPENDICES	5
1.0 INTRODUCTION	7
2.0 WELL HISTORY	7
2.1 LOCATION DATA	7
2.2 GENERAL DATA	.10
2.3 WELL SUMMARY	.11
2.4 OVERALL PROJECT TIMING	.11
2.5 CONTRACTORS	.13
3.0 DRILLING DATA	.14
3.1 WELL STATUS	.14
3.2 OPERATIONAL SUMMARY	
3.2.1 Logistics and Planning	.14
3.2.2 Site Preparation	
3.2.3 Mobilisation	
3.2.4 Pre Spud	.18
3.2.5 8 ½" Hole Section	
3.2.6 6" Hole section	
3.2.7 4 ½" Production String	
3.2.8 Clean up and Perforate	
3.2.9 Completion	
3.3 DAILY OPERATIONS	
3.3.1 Daily Drilling Reports	
3.3.2 Time Depth curve	
3.3.3 Definitive Survey	
3.3.4 Directional Drilling	
3.3.5 Iona Obs-2 Time Performance	
3.3.6 Time Analysis	
3.5 CASING AND CEMENTING REPORT	
3.5.1 8 1/2" Hole Section: 7" Surface Casing (Surface to 739 m RT)	
3.5.2 6" Hole Section: 4 1/2" Production Casing (Surface to 1568 m RT).	
3.5.3 4½" Production Casing Cement Details	
3.6 DRILLING FLUID RECAP	
3.6.2 6" Production Hole Section: 629 m to 1355 m (15 to 19 May 1999)	
3.6.3 6" Completion Section: 726 m (20 to 23 May 1999)	
3.7 COMPLETION SUMMARY	
3.8 LESSONS LEARNED	34
4.0 INFORMATION SAMPLING AND TESTING	34

4.1 CUTTING	GS	35
4.2 CORES		35
4.2.1 Conve	entional Core	35
4.2.2 Sidew	vall Cores	35
4.3 TESTING	Ĵ	35
	ANALYSIS	
	G AND SURVEYS	
	Logging	
	NE LOGGING	
	7	
•		
5.1 STRATIC	GRAPHY	37
	OGY	
5.2.1 Heyte	esbury and Nirranda Groups (Surface – 321.1 metres)	<i>38</i>
	pell Limestone 38	
	Marl / Clifton Limestone/ Narrawaturk Marl 38	
	ormation (277.8 – 321.1 m) 38	20
	gerrip Group (321.1 – 653.5 m)	38
	mation (321.1 – 510.0 m) 38 dstone (510.0 – 581.0 m) 38	
	dstone (510.0 - 581.0 m) 38 at Formation (581.0 - 653.5 m) 38	
5.2.3 Febble Folia 5.2.3 Sheri	brook Group (653.5 – 1355.0 m)	30
	rmation (653.5 – 999.0 m) 39	
	Mudstone (999.0 – 1130.0 m) 39	
	Greensand (1130.0 – 1216.0 m)39	
	dstone (1216.0 – 1269.0 m) 40	
	Formation (1269.0 – 1293.7 m) 40	
	rre Formation	40
	93.7 – 1327.1 m) 40	
	27.1 – 1342.0 m) 40	
5.2.4.3 Unit A (134	42.0 – 1355.0 m TD) 41	
6.0 VELOCITY	Y SURVEY	42
6.1 SEISMIC	CALIBRATION AND RESULTS	42
6.2 DATA C	ORRECTIONS	42
6.2.1 Corre	ection for shot and geophone geometry	42
	ection for datum	
	S	
	YSICS	
7.1 DATABA	ASE	46
	YSICAL MODEL	
	Analysis Results	
777 FAST	T – Striplog Description	49

FIGURES

Figure 1.1	Locality Diagram Iona Field
Figure 1.2	Locality Diagram Iona Obs-2
Figure 2.1	Iona Project Schedule
Figure 3.1	Wellhead Diagram
Figure 3.2	Completion Diagram
Figure 3.3	Handover Certificate
Figure 3.4	Time Depth Curve
Figure 3.5	Performance Charts
Figure 3.6	Iona Obs-2 Completion Time Performance
Figure 6.1	Comparison of Velocity Depth plots for Iona-1, 2 and Obs-2
Figure 7.1	Petrophysics analysis of Iona Obs-2
TABLES	
Table 2.1	Well Summary
Table 2.2	Contractors
Table 3.1	Time Summary .
Table 3.2	BHA Record
Table 3.3	Bit Record
Table 3.4	7" Surface Casing Tally
Table 3.5	Surface Casing Cement details
Table 3.6	4 1/2" Production Casing Tally
Table 3.7	Production Casing Cement details
Table 3.8	8 ½ "Hole Mud details and properties
Table 3.9	6" Hole Mud details and properties
Table 3.10	6" Hole Interval Completion Section details

TABLES (continued)

Table 3.11 Completion Times

Table 3.12 Incident Report No 1

Table 4.1 Wireline log enclosure numbers

Table 4.2 Details of Wireline Logs run

Table 5.1 Stratigraphic Section Iona Obs-2

APPENDICES

Appendix 1. Daily Drilling Reports by Kelly Down Pty Ltd

Appendix 2. Definitive Survey by Sperry Sun/Gyrodata

Appendix 3. Cuttings Descriptions

Appendix 4 Well Seismic Edit and Geogram Report by Schlumberger Seaco

Appendix 5 SHDT Processing and Interpretation Report by Schlumberger

VOLUME 1

ENCLOSURES

Enclosure 1. Formation Evaluation Log (mudlog) by Halliburton

Enclosure 2. Well Composite Log by PetroVal Australasia Pty Ltd

Enclosure 3. Well Composite Log - Reservoir Section by

PetroVal Australasia Pty Ltd

VOLUME 2

ENCLOSURES

Enclosure 4a. Field Logs – BHC Sonic -GR 1:200

Enclosure 4b. Field Logs – BHC Sonic-GR 1:500

Enclosure 5a. Field Logs - PEX - HALS 1:200 Resistivity Curves

Enclosure 5b. Field Logs - PEX - HALS 1:500 Resistivity Curves

Enclosure 5c. Field Logs - PEX - HALS 1:200 Nuclear Curves

Enclosure 5d. Field Logs - PEX - HALS 1:500 Nuclear Curves

Enclosure 6a Field Logs-Dipmeter (SHDT) 1:200

Enclosure 6a Processed Logs-Dipmeter (SHDT) 1:200

Enclosure 7. Field Logs - Check Shot Survey

Enclosure 8a. Field Logs - CBL - CCL -GR 1:200

Enclosure 8b. Field Logs - CBL - CCL -GR 1:500

Enclosure 9a. Field Logs - Perforation Record 1:200

Enclosure 9b Field Logs-Production packer setting depth

Enclosure 10. Composite Well logs Measured Depth 1:200 - Validated Log Data Set

- Platform Express and BHC-GR

Enclosure 11 Synthetic seismogram seismic tie through Iona Obs-2

1.0 INTRODUCTION

Iona Obs-2 was designed as an appraisal well for the Iona Gas-field. The location of the Iona field is shown on Figure 1.1. It was planned to complete the well and use the well-bore as an observation well for the purpose of monitoring reservoir pressure and gas/water contact movement during gas injection and withdrawal cycles. The well was also to be equipped to handle the disposal of produced water.

The well was located at the northern edge of the field and was intended to monitor water influx from the east and west along, and adjacent to the northern bounding fault. The location of the well on the Iona site is shown on Figure 1.2. Iona Obs-2 was designed to be drilled as a vertical well to intersect the Waarre C1 sand in the depleted section of the reservoir.

The well was designed to be cased, completed and suspended with tubing to surface and a permanent well-head installed. A packer was to be set between the Waarre C1 and Waarre B sandstones to enable monitoring of the C1 and water disposal into the B sand. There was no intention to inject gas or withdraw gas from the well-bore.

On drilling the well the objective was achieved and the Waarre C1 Sandstone was intersected and the top 1.5 m of sand was gas filled and the current gas/water contact was clearly visible on the logs. Clean sand of the Waarre Formation was intersected below the gas/water contact and the current swept zone was also clearly visible on the logs. Having achieved its objective the well was perforated at the bottom of the swept zone from 1302.0 to 1303.5 m MDKB to enable monitoring of the C1 reservoir pressure. The well was also perforated from 1327.5 to 1332.5 m MDKB to allow disposal of produced water through perforations into the Waarre B Sandstone during withdrawal cycles.

2.0 WELL HISTORY

2.1 LOCATION DATA

Lease: PPL-2

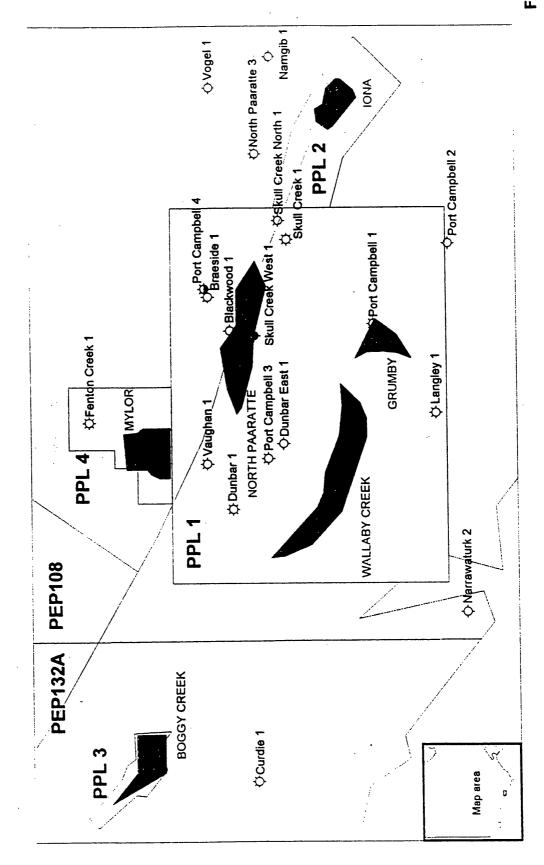
Basin:

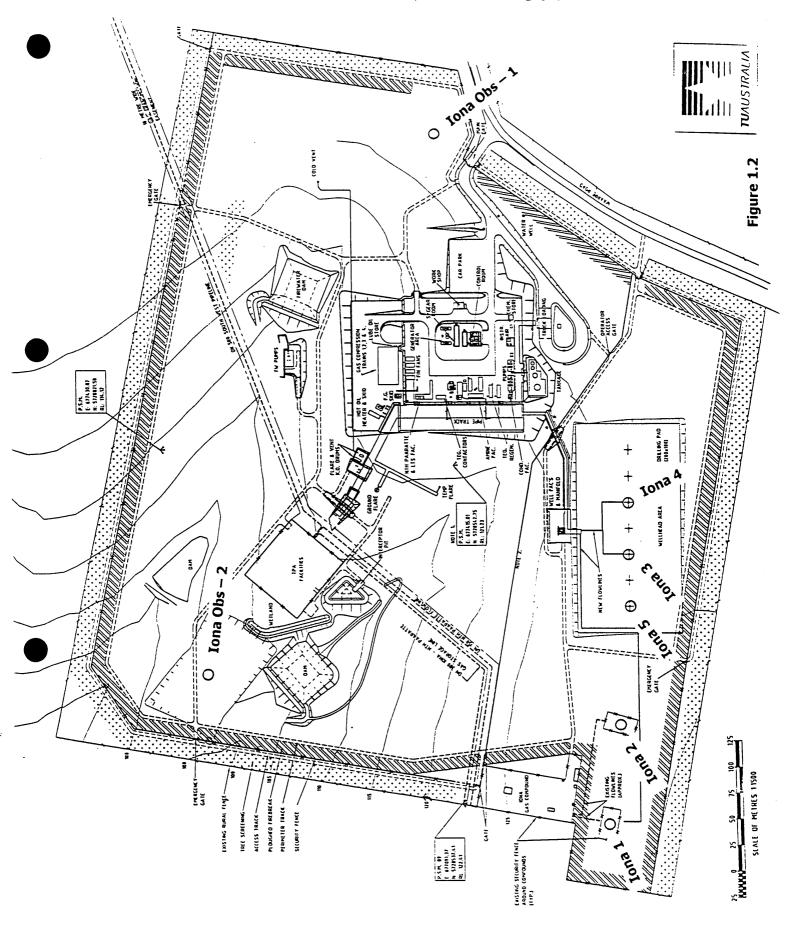
Surface 5728778.2 metres north Coordinates: 677216.0 metres east

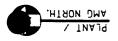
Surface Ground Level (GL): 104.5 metres AHD
Elevation: Kelly Bushing (KB): 109.5 metres AHD (Datum)

(All depths relative to KB unless otherwise stated)

(All depths relative to KB unless otherwise stated)


Otway, onshore western Victoria


Bottom Hole 5728775.56 metres north Coordinates: 677210.43 metres east


Coordinate system Australian Map Grid 66, Zone 54

Central Meridian: 141 East

OTWAY BASIN - GAS FIELD LOCATION MAP

2.2 GENERAL DATA

Well Name:

Iona Obs-2

Classification:

Observation Well/Water disposal well for the Western

Underground Gas Storage Project

Operator:

Western Underground Gas Storage Pty Ltd ("WUGS")

Property

Owner:

Western Underground Gas Storage Pty Ltd

Nearest Town:

The coastal township of Port Campbell, approximately 7 km

south of the Gas Field.

Nearest Well:

Iona-1 located approx.0.3 km from surface location.

Final Total

Depth:

Driller: 1355 m

Logger: 1355 m

Spud date:

10:00 hrs on 12 May 1999.

TD reached:

19:45 hrs on 19 May 1999.

Days

to Drill:

7.41 days

Date well

completed:

24:00 hrs on 23 May 1999

Rig Released:

24:00 hours May 23, 1999

Well Status:

Suspended Observation Well/Water Injection well

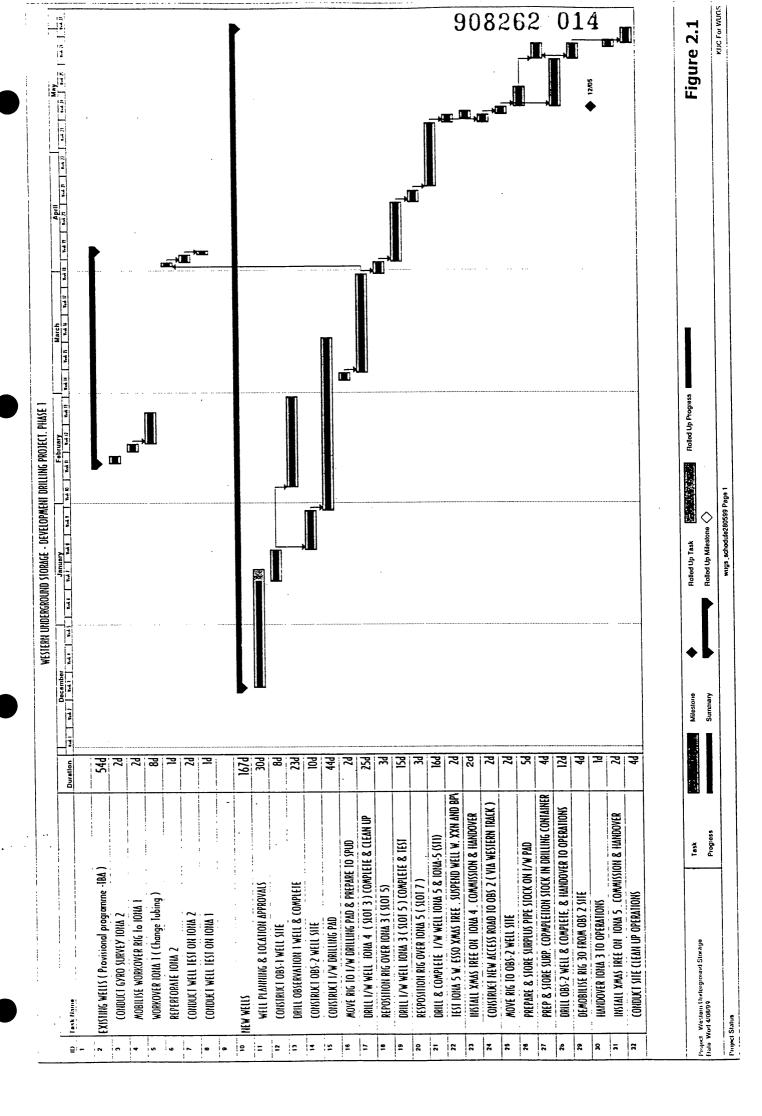

2.3 WELL SUMMARY

Table 2.1 Well Summary

1 dote 2.1 Well builling	_							
WELL NAME	Iona Obs-2							
DESIGNATION	Observation	Observation/Water Disposal Well						
BASIN	Otway							
OPERATIONS BASE		n Consultants, St. Leonard'						
FIELD OPERATIONS BASE	On site @ I	ona, Waarre Rd, Port Cam	pbell, Vic.					
DRILLING CONTRACTOR	OD&E							
RIG	Rig 30							
RT to GL	4.98 m							
GL to MSL	104.5 m	·						
TOTAL DEPTH (M DKB)		B (driller depth)						
RIG MOBILISED	10 May 199							
SPUD DATE		@ 10:00 hrs						
8 1/2" HOLE SECTION TD Depth/Time		4:45 hrs 13 May 99						
6" HOLE SECTION TD Depth/Time		19:45 hrs 19 May 99						
SPUD TO TOTAL DEPTH TIME		7 Days 9.75 hrs						
COMPLETION INSTALLED		23 May 99 @ 2400 hrs						
SPUD TO WELL SUSPENDED	11 Days 14	.0 hrs						
CASING STRINGS	13 3/8 "	Conductor	10 m					
	7 "	Surface Casing	626 m					
	4 1/2 "	Production Casing	1355 m					
FINAL WELL STATUS	Suspended	Suspended with a single string 2 3/8" Vam Ace						
	13% Chron	13% Chrome Tubing completion, with a 4 ½" BWB						
	Packer.							
	Perforation	Perforations – 1302.0 m to 1303.5 m						
		1327.5 m to 1332.5 m						

2.4 OVERALL PROJECT TIMING

The overall project schedule and timing is shown on Figure 2.1 and shows the actual performance times for the major activities over the entire project, from site construction activity, through drilling and workover to completion, clean up and well handover.

2.5 CONTRACTORS

Table 2.2 Contractors

14010 2.2	
PROJECT MANAGERS	Kelly Down Consultants Pty Ltd
DRILLING	OD&E
LOCATION SURVEY	T. G Freeman and Associates
SITE CONSTRUCTION	Walter Mellis
WATER SUPPLY	Trucked in by Walter Mellis
FUEL SUPPLY	Supplied by Drilling Contractor
SUPPLY BASE	Max Nelson Storage yard (Cobden)
CEMENTING	Halliburton
MUD SYSTEM	
- Drilling Fluids	Baroid
- Solids Control	Via Drilling Contractor
MUD LOGGING	Halliburton
ELECTRIC LOGGING	Schlumberger
DRILLING TOOLS	Tasman Oil Tools
DIRECTIONAL DRILLING	Sperry/Halliburton
GYRO SERVICES	Gyrodata via Halliburton
MWD	Halliburton
CASING SERVICES	Premium Casing
CORING	Corepro
CASING & TUBING	Marubeni/Sumitomo
WELLHEADS	
- Drilling Spools	- Wood Group/Gearhart
- Xmas Trees	- Wood Group/Keamey Engineering
- Miscellaneous Flanges/Xovers	- Gearhart & Baker Oil Tools
COMPLETION SERVICES	
- Slickline	- Halliburton
- Completion components	- Halliburton
- TCP perforating	- Schumberger
- Lubricator	- Expertest
WELL TESTING	Halliburton
ENVIRONMENTAL	
- Waste Disposal	Timboon Plumbing
FUEL SUPPLY	
RIG CAMP	Camp Cooriemungle
TRUCKING	Max Nelson Transport (Cobden)
CRANE SERVICES	Timboon Engineering
COMMUNICATIONS	<u> </u>
- Landlines	- Telstra
- E Mail/Internet	- Big Pond

3.0 DRILLING DATA

3.1 WELL STATUS

The following figures illustrate the suspended condition of the wellhead, completion, and other pertinent data at the time of well handover from drilling to production. Figure 3.1 is the Wellhead Diagram, Figure 3.2 is the Completion Diagram and Figure 3.3 is the Handover Certificate.

3.2 OPERATIONAL SUMMARY

3.2.1 Logistics and Planning

Kelly Down Consultants ("KDC") managed the drilling and completion of the Iona Obs-2 well on behalf of WUGS as part of the project to drill and complete three injector/withdrawal wells, two observation wells, and the re-completion of the two existing wells.

Materials and logistics were managed out of the KDC Sydney offices with the input of the rig site team. Periodic visits to the well site by the materials and logistics coordinator ensured that inventory and service records were managed properly.

Mud and cement chemicals were supplied by Halliburton, from their Cheltenham facility. Directional drilling surveying and ("MWD") equipment was provided by Halliburton from a number of locations mainly Perth and Darwin. The large distances and subsequent mobilisation times meant that it was often economically attractive to leave equipment on stand by in between jobs (such as casing running equipment) rather than truck equipment back and forth to the site.

The first site visit to assess lease building requirements took place on 21 December 1998. The Iona gas field site is set in a rural part of South West Victoria, approximately seven kilometers north of the township of Port Campbell. Two existing wells, Iona 1 and Iona 2, had commenced production at the site in 1992 and 1994 respectively. The new facilities for gas production/injection and processing were to be built on a large site encompassing the existing wells. The overall site area for the WUGS gas plant is approximately 0.5 km x 0.6 km. All the new wells and the two existing wells have their surface locations within the security fence at the perimeter of the site.

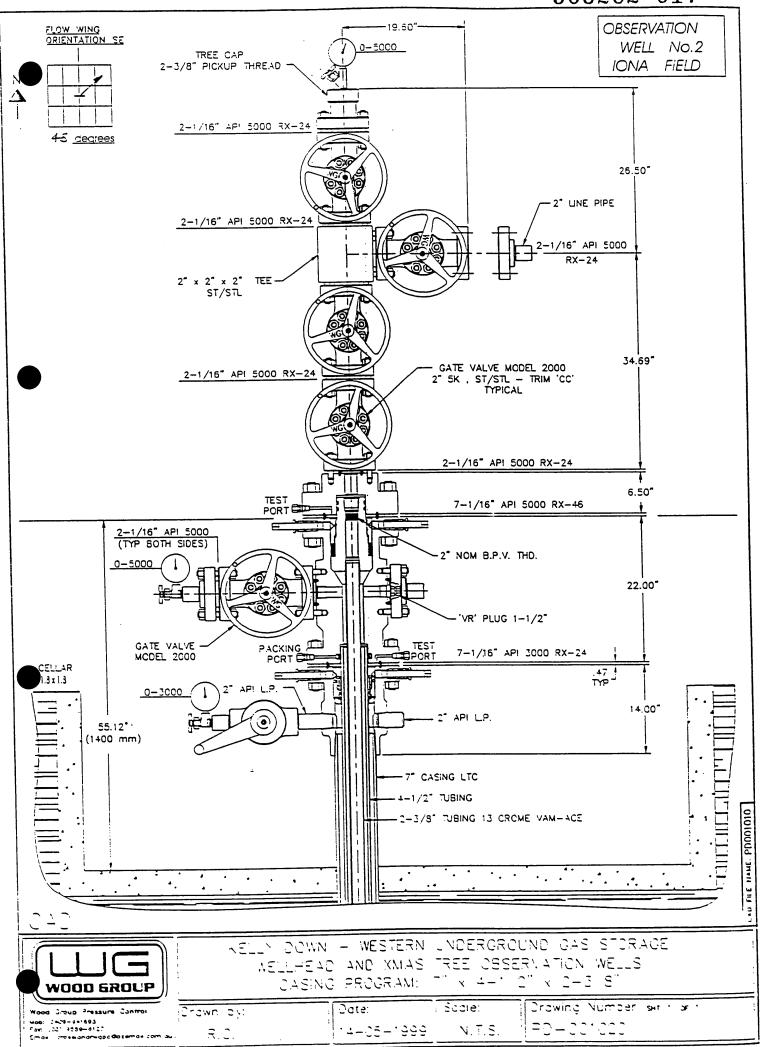


Figure 3.1

Australian Completions

WELL: Iona Observation Well #2

DATE: 22nd May 1999

2	Dep	th	Length	No.	DESCRIPTION	O.D.	I.D.	PART / No
2			· · · · · · · · · · · · · · · · · · ·				<u>i</u>	
			4.12		Elevation			
	4.1	2	0.15	1	Woodgroup Tubing Hanger - 2 3/8" EUE x 2 3/8" Vam Ace BxB			
				<u> </u>	Compression 12,000 Lbs			
	4.2	27	1.70	2	Pup Jt - 2 3/8" 4.6 ppf Vam Ace 13 Cr	2.375	1.995	
	5.9	97	2.50		Pup Jt - 2 3/8" 4.6 ppf Vam Ace 13 Cr	2.375	1.995	
	8.4	47	4.63		Pup Jt - 2 3/8" 4.6 ppf Vam Ace 13 Cr	2.375	1.995	
	13.	10	1279.43	3	Tubing - 2 3/8" 4.6 ppf Vam Ace 13 Cr	2.375	1.995	
	129	2.53	1.24	5	SSD - 2 3/8" Vam Ace P x P w/ 1.875 profile 9 Cr	3.250	1.875	621 XD 18701
					[Open Down - Flow area 2.770 sq in]			
					[Positioning Tool - 42 BO 116]			
	129	3.77	9.61	6	Tubing - 2 3/8* 4.6 ppf Vam Ace 13 Cr	2.375	1.995	
				7	Seal Assembly - consisting of :			
3	130	3.38	0.37		J-slot locator - 2 3/8" Vam Ace B x 2 1/14 " 12 UN P	3.094	1.920	212 J 25503-B
	130	3.75	0.35		Seal Unit - RTR - 2 1/4" -12 UN B x P 13 Cr	2.573	1.920	812RTR 25501-
	130	4.10	0.12		Mule Shoe Guide - 2 1/4" - 12 UN B 13 Cr	2.520	1.920	212 G 25501-F
	130	4.22			End of tubing			
	130	3.59	0.67	8	Packer - 4 1/2" BWB - 13 CR - 13.5 - 15.1 #	3.640	2.555	812 BWB 4510
	130	04.26	2.44	9	Millout Extension - 3 1/8° 10UNS-2 B x B 13 Cr	3.640	2.750	812 MOE 2550
1	130	1306.70 0.09 10 Crossover - 3 1/8" 10 UNS-2 P x 2 3/8" Vam Ace P 13 Cr			3.640	1.956	892 PPC 3200	
4	130	06.79	0.34	111	XN' Nipple - 2 3/8" Vam Ace B x P 13 Cr	2.726	1.791	811 XN 18757
5	-		<u> </u>		[1.875* Packing Bore]			
	13	07.13	0.19	12	Wireline Reentry Guide - 2 3/8° Vam Ace B 13 C:	3.530	1.994	812 M 1004
6		07.32		_	End Of Tubing	1		
7	-					i		
		•			Perforations at 1302.0m to 1303.5m			
8	<u> </u>		<u> </u>		Perforations at 1327.5m to 1332.5m	:	1	
¥ !	-		!		Perforation Gun type and detail:2 7/8* HSD Casing guns, 6SPF,		İ	
] 9	$\cdot \vdash$		<u> </u>		60deg phasing, 15.5 gram J RMX charges		1	
1	1 -		1	<u>!</u>	codeg pressing, tere great	:		!
1:	2					!	i	!
\			 			:	.	<u> </u>
	-		1	_	Nacco		:	
P			· <u>·</u>		Notes: Tubing Pick Up Weight: 25,000 lb. Slack Off Weight: 25,000 lb			:
								:
				_ :	Block Weight: 7,000 lb			····
	<u> </u>							
2*								<u> </u>

WELL HANDOVER & STATUS RECORD

Time STRAGE

YESTERN UNDERGROUND BAS STORAGE

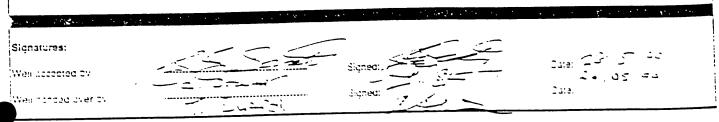
	lescription			Diamoution	:
Datan			emsl/	. Campany	
Fleid : Countrii	rona - Australia		Bary Scott	WLGS	
Weil No:	Cbs-2			TU -ustralia	
Weil Surface Co-proinates:	15728778.2 N: 377216.0 E		Kun Matheson	:Wonew Becnter	
'Veil TO Co-proinates:	Fried C.1. notice - max deviation 1.0 ded)	1	Cavid Hessa		
Maximum inclination:	11.0 deg -⊉ 4881139 m MDRKE		Coiin Stuart	KDC	
Weil Orilled by :	ICD3E Fig 30 - Oniling Management 3	CC ita	Jim Slater	IKEC	
Rig Ficer Elevations:	IKE to GL: 4.38 m GL to	o MSL: 104.5 m <u>l</u>			
Weil TZ:PBTD	TD: 1055 m MDRKB PST	D: 1341 m MDEKB I			
Weil Type:	Single Completion water discosavoose	ervation			
Princese of handover	Handing new well to Production Coera	tions !			
Handover from:	WUG3 Oniling •				
Handover to:	Wugs Coerations -				
HANDOVER DATE:	May 27 1999				

		or only of the growing despites a section of the	era i karan da karenga ka	in the first of the factors and the factors	নামেলার দুর্বনার করে। তার বিশ্ববিদ্যালয় করে জনজিন জন্মনীর
100	THE CONTRACTOR OF THE PARTY OF THE PARTY.	WELL STATUS (A	I depths MDRK3 unless	s stated otherwise)	
		Status at handover	Pressure Status	Sizetvoerating	Comments / Remarks
em	Description		Eled to Zero above EPV	12 1/16° 5.000 psi	Wood Group T Tree
	Xmas Tree		0 csi acove/below	12 1/15" AP! 5.000 osi	
	Swap Varve	Cicaca	O esi	12 1/16" API 5.000 csi	1
<u> </u>	Tree upper master valve 1	Cicaca	O DSI above/below	12 1/16" AP! 5.000 csi	
<u> </u>	Tree lower master valve	0,0000	O csi acove/below	12 1/16" API 5.000 psi	
	Fish wing valve	Cicaca	O osi acove/ceicw	12 1/16° AP! 5.000 csi	1
	KII Wing Valve	Cicaed		1	<u> </u>
3	Tree 3PV	instailed	O osi acove/celow	· · · · · · · · · · · · · · · · · · ·	15.000 csi daude installed
7	:Tree cap	instailed	·		15.000 csi cauce installed
3	A annulus vaive	Cicsea	<u> </u>		i
Э	A annuius vaive cuter	Not instailed	<u> </u>		15.000 csi gauge installed
10	E annuius vaive	Clased	!		IWeil ampieted below GWC.
11	:Last rec.:low / FTHP	I AF	1		Tives Sincipled Salew Ciro.
12	Weil fluid	3nne	0 csi	2001	CC 1 T 27 12 Roman inninger
:3	: A Annuius	1 3.5 cca 3% KCL innibited crine	: 0 csi	12 X 208 Litre crums innibitor	ICCAT 2748 Barcic Innibiter
7.1	Wireline clucs installed?	No No	<u> </u>		10
- 5		Coen	1	11525 m to 1535 m	12 7.31 HSD guns 60 deg. 3 sct. 34am
	In ection Tubing	1 2 2/8° 4.8 pp: L30-12Cr VAM ACE	:	ID: 1.395° Onit: 1.301°	1
	Niccie Profile	I XN 3 1307 m	1	IID: 1.791*	
	Slicing Sleeva	2 3/8° SSD @ 1293 m	i	IID: 1.375*	
	- Production Packer	4 1/2° BWB @ 1304 m	:	ID: 2.555°	1
20		4 1/2° 13.5 cot N80 LTC		D: 3.920" Onit: 3.795"	;
Α.	Minimum restriction	1 XN mode (1.791 D) 3 1307 m	:	1	1
		7° x 4-1.2° x 2-3/8°	5.000 osi rated		(Wood Broup Slip & Seal Tirde
	Weilhead Tyce	1 1 1 2 1 2 1 2 3 2 3 3			

Remarks:

Well hanced to WUGS Operations following completion of chilling program.

Tree cap installed on Xmas tree.


Steel Cellar installed, with ground level grating.

Handwheels locked with occedionain. Lower Masters

Temporary protective steel page installed around well.

Name Plate installed on page.

Caliar arain not installed to avoid run of into farmers (Moxensie's) dam.

3.2.2 Site Preparation

Site construction for Iona Obs-2 commenced in early February 1999. The lease area was on a sloping paddock to the north of the main drilling pad . A construction contractor was appointed to cut and fill the site, and lay down a 600 mm limestone/sandstone base for the drilling rig with an access road off the main site gate. Rig crew accommodation facilities were provided remote from the site at Camp Cooriemungle, approximately seven kilometers north of Iona. Site construction included the installation of a 1.8m x 1.8m x 1.8m deep cellar and 5m of 13 3/8" conductor pipe cemented in place.

Of particular concern throughout construction was adherence to the environmental management plan for the project, which stressed the minimisation of noise and dust levels. This necessitated the spraying of water, which had to be trucked into site from nearby water sources, as dam water on the WUGS site itself was reserved for gas plant construction requirements. A turkeys nest or small dam was eventually built to store trucked water for mud mixing. A water well was planned to be drilled on site by the gas plant construction group but this was delayed and as a result, water was trucked into the drilling site.

A schematic of the overall site showing the location of Iona Obs-1 within the site boundary is shown on Figure 1.2 below.

3.2.3 Mobilisation

OD&E Rig 30 was mobilised from Sale in eastern Victoria on January 21, 1999 where it had been used to drill a well for Roma Petroleum NL. Iona Obs-2 was the final well drilled in the five well program and was drilled after Iona-5.

Rig 30 is an Ideco H-725-D electric rig with four 600 kW generators powered by four CAT 3412 PCTA diesel engines. The generators were replaced with quiet generators for the duration of the project to meet noise guidelines provided in the environmental management plan.

The rig is a triple rig with a Dreco floor-mounted cantilever mast with a nominal hook gross load capacity of 510,000 lbs. The limiting performance factor of the rig was the mud pumps. Only two Gardner Denver PZ-8 (800 HP) pumps provided by the drilling contractor.

Iona Obs-2 was drilled during May as the last in a sequence of 5 new wells. The rig was moved from the main drilling/injector pad to the Iona Obs-2 site via an access track around the site perimeter.

3.2.4 Pre Spud

The Iona Obs-2 pre-spud meeting was held at the rig site on May 12, 1999. All key drilling and subsurface personnel attended at the rig site meeting, which focused on lessons learned from Iona Obs-1 and other wells.

3.2.5 8 1/2" Hole Section

After a full safety briefing with the rig crews, Iona Obs-2 was spudded at 10:00 hrs on May 12, 1999. An 8 ½" hole was drilled using a KCL/PHPA/Polymer fresh water mud system. The PHPA was used to inhibit the reactive clays present within the Tertiary and Late Cretaceous claystones, i.e. in the Gellibrand marl, Pember mudstone and Paaratte Formation.

Drilling proceeded without incident to 629 m. The 7" casing was run and cemented with a lead slurry of 160 sx G cement with 2.5 percent Bentonite and 0.05 gals/sx CFR-3, followed by a tail slurry of 150 sx G neat at 15.8 ppg, back to surface. A slip and seal weld type 7 1/16" Wood Group casing head was run with the 7" casing. After installing and testing the Braden-head, the blow out preventers ("BOP's") were rigged up and tested to 3000 psi.

3.2.6 6" Hole section

The 6" hole was drilled vertically to intersect the interpreted gas water contact. The section was drilled without incident to 1043 m where tight hole on a connection warranted a short trip to the shoe. On pulling to the shoe several loose connections were noted in the string, therefore the bit was pulled to surface and changed out enabling the rest of the string to be inspected. The section was then drilled to 1302 m when a further precautionary trip was made to check the drill string. The section was drilled to a final total depth of 1355 m, and an EMS (multi-shot) survey was dropped prior to tripping out of the hole.

Logging of the 6" hole went without incident.

3.2.7 4 ½" Production String

A 4 ½" 13.5 lb/ft N80 LTC production string was run to 1355 m and cemented in place with a 12.8 ppg lead slurry and 15.8 ppg class G tail. The top plug was bumped at 2500 psi, held pressure for 10 minutes, and the floats tested by bleeding back 1 bbl. After waiting on cement the BOP's were lifted and the Wood Group slip and seal casing hanger installed. The tubing head was then landed and pressure tested to 3000 psi. The BOP's were then re-installed and tested in preparation for running the 2 3/8" completion string.

3.2.8 Clean up and Perforate

A 4 ½" casing scraper and 3 ¾" junk mill was run on a dedicated 2 3/8" tubing work string to ensure the cased hole was clean and circulated to brine prior to running the completion. A 3% KCL brine was circulated at total depth preceded by a clean up sweep. After tripping with the work string, a cement bond log ("CBL/VDL") confirmed good cement bond and isolation across the Waarre sandstones.

After installing a shooting nipple across the BOP's, the intervals 1327.5 m to 1332.5 m and 1302 to 1303.5 m were perforated using 2 7/8" high shot density ("HSD") 60° phasing, 6 shots per foot, 34 gm charge guns, in an 8.7 ppg density brine.

3.2.9 Completion

A 4 ½" Otis BWB packer and tailpipe assembly was run on electric line and after depth correlation was set at 1304 m using a Baker type explosive setting tool. The 2 3/8" 4.6 lb/ft L80 13% Chrome tubing was run with a J slot locater on the bottom, to the top of the packer. After circulating the well to inhibited brine, the tubing was spaced out and latched onto the packer. The tubing hanger was landed and locked down, and annulus, tubing, and hanger seals tested. After recovery of the tubing landing joint, a back pressure valve ("BPV") was set in the tubing hanger, and the BOP's nippled down.

A 2 1/16" bore Wood Group composite Xmas tree was installed on the tubing head spool and tested to 3000 psi and the back pressure valve recovered from the well. The well was completed at 2400 hrs on May 23, 1999.

3.3 DAILY OPERATIONS

3.3.1 Daily Drilling Reports

The details of the daily activities during rig up and drilling operations for the Iona Obs-2 well are presented in the Daily Drilling Reports in Appendix 1.

3.3.2 Time Depth curve

The daily cost estimates can be found in graphical format in the time depth curve in Figure 3.4.

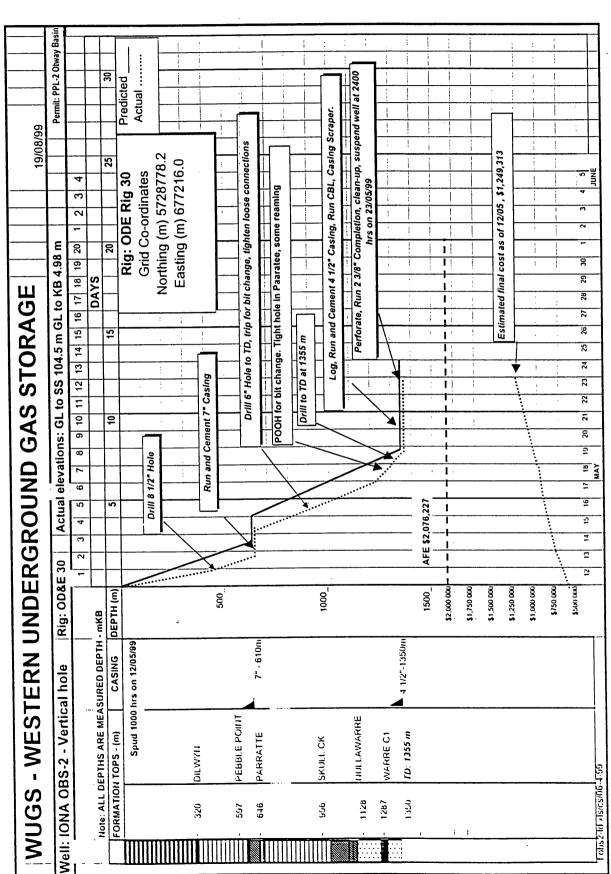
3.3.3 Definitive Survey

An electronic multishot ("EMS") survey was dropped through drillpipe at final total depth. The results are presented as the definitive survey for the well in Appendix 2.

3.3.4 Directional Drilling

Iona Obs-2 encountered no angle problems.

3.3.5 Iona Obs-2 Time Performance


Iona Obs-2 was spudded at 10:00 hrs on May 12, 1999, with OD&E Rig 30. This was the last well drilled in the 1999 drilling program and was the second observation well. The well was drilled and completed in 11 days and 14 hours.

The following charts illustrate the time performance.

3.3.6 Time Analysis

Table 3.1 Time Summary

ACTIVITY	HOURS	DAYS
Rig move	48.00	2.00
Rig up	10.00	0.42
Drilling	90.00	3.75
Bit Trip	23.00	0.96
Wiper trip	17.00	0.71
Survey	2.50	0.10
Circulate and condition	10.00	0.42
Change BHA	4.50	0.19
Casing & Cementing	23.50	0.98
Wellhead & BOP's	24.50	1.02
Coring	0.00	0.00
Logging	21.50	0.90
Wash & Ream	12.00	0.50
Fishing	0.00	0.00
Rig Repairs	2.00	0.08
Completion	37.00	1.54
Miscellaneous	7.00	0.29
TOTAL	336	14.00

Time Performance Charts

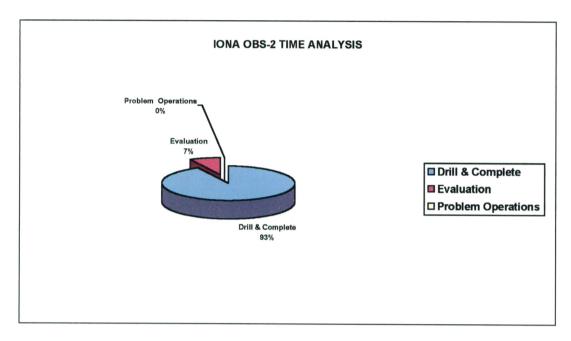


FIGURE 3.5a - OVERALL PERFORMANCE CHART

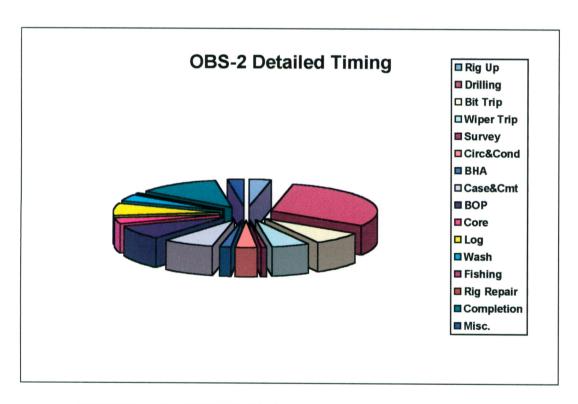


FIGURE 3.5b - DETAILED PERFORMANCE CHART

3.4 BHA SUMMARY

Table 3.2 presents the BHA's run in Iona Obs-2 well and Table 3.3 summarizes the Bit record.

Table 3.2 BHA Summary

Hole Size	BHA Description	Length (m)	Depth in (m)	Depth out
8 1/2"	8 ½" Tricone Bit + B/S + 2 x 6 ½" DC + 1 x X/O + 1 x SS + 1 x X/O + 9 x 6 ½" DC + 1 x X/O + 6 x 4 ¾" DC.	163.19	10	629
6"	6" Tricone Bit + 1 x NBS + 1 x Pony DC + 1 x SS + 1 x 4 "DC + 1 x SS + 5 x 4 "" DC + 20 HWDP + 1 x JAR + 10 x HWDP	348.4	629	1043
6"	6" Tricone Bit + 1 x NBS + 1 x Pony DC + 1 x SS + 1 x 4 "" DC + 1 x SS + 5 x 4 "" DC + 20 HWDP + 1 x JAR + 10 x HWDP	348.4	1043	1302
6"	6" Tricone Bit + 1 x NBS + 1 x NM DC + 1 x SS + 6 x 4 34" DC + 20 HWDP + 1 x JAR + 10 x HWDP	345.0	1302	1355

BIT RECORD

The Table shown below provides details of the drill bits used to drill Iona Obs-2

10	<i>i,</i> T		ુ ર	į	T	 T	-			_	_		<u>-</u>					
Remarks	47.50		POOH to check loose tool joints															
	РОН	TD	TH	Œ														. 2
	орс	WT	WT	WT													Logs	Condition Mud Core Point Drill Plug Casing Point Miscellaneous
ture	IJ	91/1	_	-													Run Logs Rie Repai	Cond Core Drill Casin Misc
Struc	B/S	Е	ш .	Ξ														CP CP CSG CSG MSC
Cutting Structure	70T	Α	A	Ą														>
0	DC	WT	WT	WT													ž	Washout - Drillstring Sashout - Drillstring Change Bottomhole Assy Downhole Motor Failure Drillstring Failure Drill Stem Test Downhole tool failure
	0	1	2	2											П		Twist Off Weather Conditions	Washout - Continuous Washout - Drillstring Change Bottomhole A Downhole Motor Failt Drillstring Failure Drill Stem Test Downhole tool failure
	(1 %	2	5	2												LLE	Off	Washout - Drills Change Bottom Downhole Mott Drill String Failu Drill Stem Test
Ver. Dev	(deg)	0.25	0.5	0.5												N PU	Twist Off	
MW	(ppg)	6.8	6.8	9.1												REASON PULLED	T.W.	WO WO BIIA DMF DSF DST
Pump	(gpm)	400	367	320													l	
Press	(psi) (gpm) (ppg) (deg) 1 O DC LOC B/S	1800	1800	1800													Change	Bit Bit Ssure on Rate
WOB RPM Press Pump MW Dev		90/140	120/140	90/120													Formation Change	Hours on Bit Hours on Bit Footage Pump Pressure Penetration Rate Total Depth
WOB 1000		8/15	8/15	10/20													ΣΞ	######################################
ROP	(m/hr) (dbs)	34.7	91	7.3														
H IS		21	26	35.5														
Drilled	Œ	619	414	312														Wear
Depth Out	Œ	629	1043	1355													Plugged Nozzle	Kounded Gauge Ring Out Shirtail Damage Self-Sharpening Wear Tracking Mit Wash Out in Bit
Jets	32nds	12,12,12	<u> </u>	14,14,14												·		<u>.</u>
- •	(1)		4	-					-	-	-	+	-	<u> </u>	-	, LI	₹.	S S S S S S S S S S S S S S S S S S S
Serial No.		A68KB	N92YX 14.14.14	N93YX												SIZERIS.		cd Wear king age le le
IADC Code		1.1.5	4.3.7	4.3.7												TARAC	Erosion	Flat Crested Wear Heat Checking Junk Damage Lost Cone Lost Nozzle Lost Teeth/Culters
Type		1-1.5	STR09	STR-09												DILL CHARACTERISTICS	ž	
Make		ILIC	DIJI	HTC														Broken Teethe uitters Balled Up Cracked Cone Cone Dragged Cone Interference
Size	(jus)		9	9													Broken Cone	Broken Teethefur Balled Up Cracked Cone Cone Dragged Cone Interference
BIT	Š.	+-	2	_					İ		İ		-					
		1	!	1	<u>. </u>	1	!	!	1	1	1	!	1			1	<u>×</u>	<u> </u>

3.5 CASING AND CEMENTING REPORT

3.5.1 8 1/2" Hole Section: 7" Surface Casing (Surface to 739 m RT)

Table 3.4 7" Surface Casing Tally

WELL NAME:	Iona Obs-2	DATERUN:	13/05/99
ELEVATIONS:	R.T.: 4.98 m	M.S.L: 109.5 m T.D. ;	629 m
STRING TYPE:	7" Surface	RKB TO TOP OF LAST SPOOL:	

SURFACE CASING & EQUIPMENT RECORD AS RUN FROM TOP TO BOTTOM

Size O.D. (ins)	Weight (lb/ft)	No. of Joints	Thread Type	Length (m)	From— (m)		Remarks
7"	26	1	LTC	0.39	626.25	625.86	Shoe Joint
7"	26	2	LTC	24.0	625.86	601.58	Shoe Track
7"	26	1	LTC	0.28	601.58	601.3	Float Collar
7'	26	1	LTC	602.52	601.3	-1.22	7" Casing
		Т	ally Total :	627.19	Casing Land	ed at :	626.25m

CASING SPOOL TYPE:	WG	SIZE:	7" x 4 ½" x 2 3/8"			
CENTRALISERS AT: 2 on shoe joint, 1ea on joints 2-7 and 1 per second joint to 41 m below KB.						
SCRATCHERS AT:	Cement bas	sket located at	50m			

Table 3.5 Surface Casing cement details

DRILLING FLUID PRIOR TO CEMENTING:	9.1ppg Weighted KCL / PHPL
PREFLUSH, SPACER DETAILS:	30 bbl, 8.3 ppg Drill Water ahead of cement.

CLASS	No. SX	ADDITIVE	FUNCTION	QUANTITY OF ADDITIVE (lbs/gal)	%	HOW ADDED BLEND OR MIX WATER	
,G,	161	Aquagel CFR-3L NF-1	Gel Extender Friction Reducer Anti-Foam	415 lb 10 gal 10 gals	2.5 2gals/10 bbl 1	Blend Mix Water Mix Water	Lead Slurry.
ʻG'	150	CaCl	Accelerator	141 lb	0.35	Mix Water	Tail Slurry – no losses

THEORETICAL TOP	Surface	AVERAGE SLURRY	Lead	12.8		
OF CEMENT (m):		WEIGHT (ppg) :	Tail	15.8		
DISPLACEMENT FLUID:	8.3 ppg Fresh water	DISPLACEMENT RATE (bbl/min):	6.2 (Rig pumps)			
PLUG BUMPED	Bumped – 2500	DISPLACEMENT	Calculated	76		
WITH (psi) :		VOLUME (bbl):	Actual	77		
REMARKS:	Good returns – 21 bbs returns at surface, floats held.					

3.5.2 6" Hole Section: 4 1/2" Production Casing (Surface to 1568 m RT)

Table 3.6 4 1/2" Production Casing Tally

WELL NAME:	Iona Obs-2	DATE RUN	8/02/99
ELEVATIONS:	R.T.: 4.98 m	M.S.L.: 109.5 m T.D.:	1355 m
STRING TYPE:	4 1/2" Production	RKB TO TOP OF LAST SPOOL:	4.90m

SURFACE CASING & EQUIPMENT RECORD AS RUN FROM TOP TO BOTTOM

Size O.D (ins)	Weight (lb/ft)	No. of Joints	Thread Type	Length (m)	From (m)	To (m)	Remarks
4 1/2"	13.5	1	LTC	0.6	1354.8	1354.20	Shoe
4 1/2"	13.5	1	LTC	12.07	1354.2	1342.13	Shoe Track
4 1/2"	13.5	1	LTC	0.61	1342.13	1341.52	Float Collar
4 1/2"	13.5	112	LTC	1350.43	1341.52	-8.91	7" Joints
		Tally Total :		1363.71	Casing 1	Landed at:	1354.8

CASING SPOOL TYPE:	WG SIZE: 7" x 4 ½" x 2 3/8"
CENTRALISERS AT:	1353/1350/1342/1305/1281/1258/1232/1208/1164/1160/1112/1088/1064/ 1040
	1003/955/919/883/847/811/775
SCRATCHERS AT:	Nil.

3.5.3 4½" Production Casing Cement Details

Table 3.7 Production Casing Cement Details

DRILLING FLUID PRIOR TO CEMENTING: 9.0ppg Weighted KCL / PHPL									
PREFL	PREFLUSH, SPACER DETAILS: 20 bbl, 8.5 ppg Mudflush.								
CLASS	No. SX	ADDITIV	E FUNCTION	OF A	ANTITY ADDITIVE bs/gal)	%	B	OW ADDED LEND OR IX WATER	196 7 2 3
'G'	84	Econolit HR-6-L MF-1			48 gal 2 gal 165 lbs	.55 gals/sx .03 gals/sx 0.5 lb/8.5 bbl	ļ	Mix Water Mix Water Mix Water	Lead Slurry.
,	101	Halad 413	Water loss control	1			Mix Water		Tail Slurryno losses
1	RETICA MENT (1	×	Surface			GE SLURRY I (ppg) :		Lead Tail	12.5 15.8
DISPLACEMENT FLUID:		8.3 ppg Fresh v	8.3 ppg Fresh water		DISPLACEMENT RATE (bbl/min):		5.0 (Rig pumps)		
PLUG BUMPED WITH (psi):			Bumped – 25	Bumped – 2500		DISPLACEMENT VOLUME (bbl):		Calculated 67.5 Actual 68	
REMA	REMARKS: Good returns, spacer at surface when plug bumped.								

3.6 DRILLING FLUID RECAP

The tables in this section outline the mud properties used in the various hole sections.3.6.1 8 ½" Surface Hole Section: 10.1 to 629 m (12 to 13 May 1999).

The 8 ½ "hole section was drilled using freshwater with a KCL/EZ-MUD / Polymer mud system. EZ-MUD (PHPA) was used to stabilise the borehole wall and inhibit clay gumbo rings from forming. This proved effective and no downtime was lost due to dealing with gumbo. Some downhole seepage losses were seen across the Dilwyn sands, which were controlled with the addition of Barofibre. A centrifuge was run continuously in the section, in combination with the rig's linear motion shakers and did an adequate job of solids removal. No hole problems occurred during running and cementing of the 7" casing.

Table 3.8 8 1/2 " Hole Mud details and properties

8 ½ " Hole	Section De	tails
Bit Size	Ø	8 1/2"
Depth	m	629
Casing Size	Ø	7"
Depth	m	627
Drilled metres	m	624
Days		2

Volume used	bbls	579	
Dilution rate	bbl/m	0.07	
Consumption rate	bbl/m	0.8	
Mud Cost/bbl	A\$	24.24	
Mud Cost/m	A\$	19.62	
Interval mud cost	A\$	12,243	

8 1/2 " Hole Interval Mud Properties – KCL/Polymer.							
Days		1	2	3			
Date		12/05/99	13/5/99	14/5/99			
Depth	M	433	629	629			
Density	Ppg	8.9	8.9	8.9			
Funnel viscosity	Sec/lt	43	42	50			
Plastic Viscosity	Cps	9	10	10			
Yield Point	Lbs/100ft ²	13	16	19			
Gels 10" / 10'	Lbs/100ft ²	4/8	6/11	7/14			
Filtrate API	Ml/30 min	8.6	8.2	8.0			
Cake	32 nd in	1/0	1/0	1/0			
PH		9	8.7	8.3			
Sand	%	0.7	0.35	0.25			
Solids	%	2.9	2.9	2.8			
MBT	Me/ml mud	7.0	8.0	8.0			
Temperature	°C	32	37	18			

	8	½" Hole Interv	al Mud Products		
Mud Products	Function	Unit Size	Unit Quantity	Total Cost US\$	Cost % of Total
BARACOR 129	Sulfide Remover	25 Kg Sx	. 3	194.94	1.6
BARITE	Weighting agent	25 kg Sx	62	443.92	3.6
BAROFIBRE	Lost Circ. Material	25 LB bag	6	346.74	2.8
CITRIC ACID	Acid	25 Kg bag	4	248.20	2.0
EZ MUD	Shale stabiliser	50 Lb bag	10	1754.40	14.0
PAC-R	Filtration control	25 Kg bag	7	1328.81	10.9
Potassium Chloride	Shale inhibition	25 Kg bag	145	1885.00	15.4
Potassium Hydroxide	Shale inhibitor	20 Kg Pail	3	131.85	1.1
XCD Polymer	Viscosity & suspension	25 Kg bag	12	5673.12	46.3
Soda Ash	Alkalinity	25 Kg bag	1	15.00	0.1
Sodium Bicarbonate	Viscosity	25 Kg bag	4	68.40	0.5
Walnut Fine	Lost circulation	25 Kg bag	5	152.60	1.25
			Total:	\$12,243.22	100.00

3.6.2 6" Production Hole Section: 629 m to 1355 m (15 to 19 May 1999)

The same mud system used in the 8 ½" section was carried over to the 6". The section was drilled using freshwater with a KCL/EZ-MUD / Polymer mud system. EZ-MUD (PHPA) was used to stabilise the borehole wall and inhibit the shales of the Paaratte Formation. Mud properties were maintained by the addition of new premixed mud. LCM sweeps were pumped to clear a bald bit. Mud properties for the drilling phase are shown below.

Table 3.9 6" Hole Mud details and properties

6 " Hole Section Details				
Ø	6"			
m	1355			
Ø	4 ½ "			
m	1355			
m	726			
Days (drilling/coring) 4				
	Ø m			

6" Hole Mud Details					
Volume used	bbls	974.0			
Dilution rate	bbl/m	0.63			
Consumption rate	bbl/m	1.34			
Mud Cost/bbl	A\$	56.68			
Mud Cost/m	A\$	27.79			
Interval mud cost	A\$	20,177.21			

6" Hole Interval Mud Properties - KCL/Polymer					
Days		4	5	6	7
Date		15/05/99	16/05/99	17/05/99	18/05/99
Depth	M	782	1043	1228	1302
Density	Ppg	9.0	8.9	9.0	9.2
Funnel viscosity	Sec/lt	43	46	45	49
Plastic Viscosity	Cps	9	12	10	11
Yield Point	Lbs/100ft ²	15	21	21	24
Gels 10" / 10'	Lbs/100ft ²	5/13	7/14	7/14	9/20
Filtrate API	Ml/30 min	7.0	6.0	5.8	6.2
Cake	32 nd in	1/2	1/2	1/2	1/2
PH		9.1	9.0	9.0	9.0
Sand	%	0.25	0.20	0.20	0.05
Solids	%	3.6	2.5	3.5	4.5
MBT	Me/ml mud	7	8	8	8
Temperature	°C	27	39	39	41

6" Hole Interval Mud Properties – KCL/Polymer					
Days		8	9		
Date		19/05/99	20/05/99	Section TD reached on 19 May. Well suspended on 2:	
Depth	M	1355	1355		
Density	Ppg	9.2	9.2	May.	
Funnel viscosity	Sec/lt	50	52	7	
Plastic Viscosity	Cps	13	13		
Yield Point	Lbs/100ft ²	26	26		
Gels 10" / 10'	Lbs/100ft ²	10/20	10/20		
Filtrate API	Ml/30 min	6.0	6.0		
Cake	32 nd in	1/2	1/2		
PH		8.9	8.9		
Sand	%	0.05	0.05		
Solids	%	4.7	4.7		
MBT	Me/ml mud	8	8		
Temperature	°C	39	39		

6 " Hole Interval Mud Products					
Mud Products	Function	Unit Size	Unit Quantity	Total Cost US\$	Cost % of Total
ALDACIDE G	Biocide	25 l. Can	2	362.88	1.8
BARACARB 100	Lost Circ. Material	25 Kg bag	48	570.72	2.8
BARACARB 25	Lost Circ. Material	25 Kg bag	130	1384.50	6.9
BARACARB 600	Lost Circ. Material	25 Kg bag	5	31.50	0.20
BARACIDE	Sulfide Remover	25 Kg can	1	181.44	0.90
BARACOR 129	Lost Circ. Material	25 Kg can	7	454.86	2.30
BARITE	Weighting agent	25 kg Sx	163	1167.08	5.80
BAROFIBRE	Lost Circ. Material	25 LB bag	29	1675.91	8.3
EZ- MUD DP	Shale stabiliser	50 Lb bag	12	2105.28	10.40
PAC-R	Filtration control	25 Kg bag	6	1138.98	6.10
Potassium Chloride	Shale inhibition	25 Kg bag	185	2405.00	11.90
Potassium Hydroxide	Shale inhibitor	20 Kg Pail	2	30.00	1.30
XCD Polymer	Viscosity & suspension	25 Kg bag	16	7564.16	37.50
Soda Ash	Alkalinity	25 Kg bag	2	30.00	0.10
Sodium Bicarbonate	Viscosity	25 Kg bag	1	17.16	0.08
Walnut Fine	Lost circulation	25 Kg bag	27	824.00	4.00
			Total:	\$20177.21	100.00

3.6.3 6" Completion Section: 726 m (20 to 23 May 1999)

After reaching total depth at 1355 m. the hole was logged and preparations made for running the 4 ½" production casing. This was run and installed without problems. A simple completion brine of 3% KCL was used. A Baraklean (detergent) pill was pumped to ensure hole was clean prior to running the completion. Prior to setting the completion a fresh volume of 3% KCL mixed with Coat 2748 corrosion inhibitor was circulated to the well.

Table 3.10 6" Hole Interval Completion Section details

6" Hole Interval Completion Section – Mud Costs					
Mud Products	Function	Unit Size	Unit Quantity	Total Cost US\$	Cost % of Total
BARAKLEAN FL	Detergent	180 Kg drum	2	2903.90	55.70
KCL -TECH	Salt	25 Kg sack	98	137.94	26.40
Potassium Hydroxide	Increase pH	20 Kg pail	2	87.90	1.70
Coat 2748	Inhibitor	208 Litre drums	1	850.00	16.20
			Total:	\$5216.74	100.00

3.7 COMPLETION SUMMARY

The details of the completion for Iona Obs-2 are shown in the completion status diagram. The completion primary function was to facilitate the monitoring of the gas water interface in the reservoir. This was to be achieved through pressure observations of the 2 3/8" tubing x 4 ½" production casing annulus, and other logging methods, based on perforations positioned at the original gas water contact, at the base of the swept zone. The secondary function of the well was to facilitate produced water disposal down the tubing and into the aquifer.

Completion times achieved were as follows:

Table 3.11 Completion Times

Activity	Hours
Run Scraper	21.0
Circulate Completion Brine	1.0
Repair BOP's	0.0
Test BOP's	3.0
Run Cement Bond Log	3.0
Perforate	4.0
Set Packer on wireline	3.0
Prepare to rum completion	2.5
Run Tubing	7.5
Spaceout/Land & test tubing	1.0
Nipple down BOP's, install Xmas Tree	4.0

Two scraper runs were performed, before and after perforating. The completion performance was 20% faster than on the deviated Iona Obs-1 well. The completion was handed over with the back pressure valve removed and the xmas tree valves closed.

■ Activity Times (hours) Seal ISSEULIDOS CIA FIGURE 3.6: OBS-2 COMPLETION TIME PERFORMANCE IONA OBS 2 COMPLETION TIMING - 52 23 5 нопи

3.8 LESSONS LEARNED

Table 3.12 Incident Report No 1

Western Underground	INCIDENT REPORT/LESSON
Gas Storage	

Report No: 1	Date: 22 May 1999	Prepared By: Colin			
		Stuart			
Well: Iona Obs-2	Operator: WUGS	Rig: OD&E Rig 30			
INCIDENT/LESSON					
Performance improvement					
WELL DATA/OPERATIONS PR	ECEEDING INCIDENT/LESSON				
ENLAT HATERON OF INCIDENTS (C	1/	10)			
EVALUATION OF INCIDENT (C	Cause, were procedures/orders followe	a <i>!)</i> ,			
A substantial improvement in drilling	g and completion performance was ac	hieved on Iona Obs 2			
	achieved by the team learning from the				
1, documenting the lessons learned,		tic experiences on Iona Gos-			
1, documenting the lessons learned, (and their apprying them.				
·					
REMEDIAL WORK CARRIED O	DUT	·			
RECOMMENDATIONS					
<u>-</u>					
		-			

4.0 FORMATION SAMPLING AND TESTING

4.1 CUTTINGS

Cuttings were collected at three metre intervals from surface to TD. Detailed cuttings descriptions are presented in Appendix 3.

4.2 CORES

4.2.1 Conventional Core

No conventional cores were cut.

4.2.2 Sidewall Cores

No sidewall cores were acquired in Iona Obs-2.

4.3 TESTING

No drill stem tests or wireline formation tests were carried out in Iona Obs-2.

4.4 SAMPLE ANALYSIS

No palynological, petrography or geochemical analyses were carried out on samples from Iona Obs-2.

4.5 LOGGING AND SURVEYS

4.5.1 Mud Logging

A standard Halliburton skid mounted unit for continuous recording of depth, penetration rate, mud gas, pump rate, and mud volume data as well as mud chromatographic analysis was operated from surface to total depth. Rate of penetration, total gas and chromatography were recorded and plotted on the Formation Evaluation Log (Mud Log) and are presented in Enclosure 1.

4.6 WIRELINE LOGGING

Wireline logging was carried out by Schlumberger Seaco using a standard truck mounted MAXIS unit. The logging suite consisted of two logging runs and a velocity check shot survey as follows.

Table 4.1 Wireline Logging Enclosure Numbers

LOG	Interval (mKB)	Enclosure No.
Run-1 PEX (HALS)-BHC-GR	25.0 to 1355	4&5
1:200 and 1:500		
Run-2 Dipmeter (SHDT)1:200 and 1:500	1050 to 1355	6
Run-3 Check Shot Survey	25 to 1355	7
CBL-CCL-GR 1:200	250 to 1337.5	8
Perforation record/ Packer Setting	1250 to 1337.5	9

Details of the log depth intervals for each log run are as follows:

Table 4.2 Details of Wireline Logs run

LOG	Logging/	Depth	Depth	Top Log	Bottom	Max
	Processing	Logger	Driller	Interval	Log	Temp
	Date	(mKB)	(mKB)		Interval	Deg. C
Resistivity Curves	20/05/99	1355	1355	25	1355	51,52
HLLD, HLLS,	20/05/99					
RXOZ, SP, GR,						
Caliper: 1:200 &						
1:500						
BHC SONIC:	20/05/99	1355	1355	25	1355	51,52
1:200 & 1:500	20/05/99					
NUCLEAR	20/05/99	1355	1355	25	1355	51,52
CURVES	20/05/99					
Neutron (TNPH),						
Density (RHOZ), Pe						
(PEFZ), GR, Caliper:			ļ			,
1:200 & 1:500						
CBL – VDL – GR –	22/05/99	1337.5	1355	250	1337.5	53
CCL: 1:500,1:200	22/05/99					
PRODUCTION	23/05/99	1337.5	1355	1250	1337.5	
PACKER SETTING:	23/05/99		1			
1:200						
PERFORATION	22/05/99	1337.5	1355	1250	1337.5	
RECORD: 1:200	22/05/99					
DIPMETER: 1:200	20/05/99	1355	1355	1050	1355	51,52
(SHDT)	20/05/99					
OFFSET	20/05/99	1355	1355	25	1355	51,52
CHECKSHOT	20/05/99		,			
SURVEY						

5.0 GEOLOGY

5.1 STRATIGRAPHY

The stratigraphic section penetrated in Iona Obs-2 is shown in Table 5.1. Formation tops were picked on the basis of cuttings descriptions, rate of penetration and wireline logs and by correlation to Iona-1 and Iona-2. Unless otherwise stated all depths are referenced to the Kelly Bushing MDKB and based on the original field logs.

Table 5.1 Stratigraphic section Iona Obs-2

to the second second second second second second second second second second second second second second second		Depth		Thickness
Stratigraphic Unit	MDKB (m)	TVDKB:; (m)	TVDSS (m)	%; -} (m) +⊹
Ground Level	4.98	4.98	-109.5	
Heytesbury and Nirranda				321.1
Groups (undifferentiated)				
Narrawaturk Marl	176.8	176.8	67.3	101
Mepunga Formation	277.8	277.8	168.3	43.3
Wangerrip Group				325.9
Dilwyn Formation	321.1	321.1	211.6	188.9
Pember Mudstone	510.0	510.0	400.5	71.0
Pebble Point Formation	581.0	581.0	471.5	66.0
Sherbrook Group				708.0
Paaratte Formation	653.5	653.5	544.0	352.5
Skull Creek Member	999.0	999.0	889.5	131.0
Nullawarre Greensand	1130.0	1130.0	1020.5	86.0
Belfast Mudstone	1216.0	1216.0	1106.5	53.0
Flaxman Formation	1269.0	1269.0	1159.5	24.7
Top C1 sand	1293.7	1293.7	1184.2	10.0
Base C1 sand	1303.7	1303.7	1194.2	0.8
Top C2 sand	1304.5	1304.5	1195.0	16.5
Base C2 sand	1321.0	1321.0	1211.5	6.1
Top B sand	1327.1	1327.1	1217.6	14.9
Base B sand	1342.0	1342.0	1232.5	13.0
Total Depth (Driller)	1355.0	1355.0	1245.5	
Total Depth (Logger)	1355.0	1355.0	1245.5	

5.2 LITHOLOGY

Detailed descriptions of each interval sampled are included in Appendix 3 and a summary of each interval is included on the mudlog in Appendix 1. The core petrography report is included in Appendix 4 and Core chip descriptions described on site are included in Appendix 6. The following is a summary of the lithological units observed in Iona Obs-2.

5.2.1 Heytesbury and Nirranda Groups (Surface – 321.1 metres)

5.2.1.1 Port Campbell Limestone

No Port Campbell Limestone was recorded in the well.

5.2.1.2 Gellibrand Marl / Clifton Limestone/ Narrawaturk Marl

From the surface to 292.8 metres the lithology was predominantly marl and the contact between the Gellibrand Marl and the Narrawaturk Marl was difficult to determine. A probable top from the gamma ray log was picked at 176.8 metres. The predominant lithology observed was

<u>Marl:</u> medium greenish grey to brownish grey, very soft, sticky, occasionally silty, common to abundant fossil fragments, massive with trace pyrite and coaly fragments towards the base. The Cilfton Limestone could not be identified or was not present and the boundary between the Gellibrand Marl and the Narrawaturk Marl could not be positively identified on logs.

5.2.1.3 Mepunga Formation (277.8 – 321.1 m)

Sandstone: medium to dark brownish grey, fine to coarse, dominantly coarse, poorly sorted, subangular to subrounded, dominantly subrounded quartz, common iron oxide and limonite coating of grains, rare glauconite, trace pyrite, trace mica, nil to moderate calcareous cement, fair visual porosity.

5.2.2 Wangerrip Group (321.1 – 653.5 m)

5.2.2.1 Dilwyn Formation (321.1 - 510.0 m)

<u>Sandstone:</u> off white to translucent, fine to coarse, dominantly coarse, poorly to moderately sorted, subangular to subrounded, dominantly subrounded quartz, common brown and orange iron oxide stain, occasional pyrite, occasional glauconite, trace mica, good intergranular porosity, interbedded with

<u>Claystone:</u> medium to dark brownish grey, abundant silt, micromicaceous, massive, soft, dispersive.

5.2.2.2 Pember Mudstone (510.0 – 581.0 m)

<u>Clavstone:</u> medium to dark brownish grey to grey, nil to moderately silty, trace to common glauconite, trace pyrite, micromicaceous, massive, soft, dispersive.

5.2.2.3 Pebble Point Formation (581.0 - 653.5 m)

<u>Sandstone:</u> light grey to light brownish grey, clear to translucent grains, unconsolidated to friable, predominantly medium to coarse grains, occasionally granule, dominantly coarse, sub angular to sub rounded occasionally rounded, common iron oxide and iron stained quartz, moderate sphericity, moderate to well

sorted quartz, nil to common argillaceous matrix, trace to rare nodular pyrite, rare to minor skeletal fragments, friable to firm, good to excellent inferred porosity, interbedded with.

<u>Claystone:</u> medium to dark grey to brownish black in part, soft, dispersive, common to abundant quartz silt to fine sand, grading to arenaceous claystone, nil to trace carbonaceous specks, minor to common glauconite pellets oxidised in part, trace pyrite, trace to rare mica, slightly calcareous, massive, firm to moderately hard..

5.2.3 Sherbrook Group (653.5 – 1355.0 m)

5.2.3.1 Paaratte Formation (653.5 – 999.0 m)

<u>Sandstone</u>: light grey to light brownish grey, clear to translucent grains, unconsolidated to friable, predominantly medium occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, nil to common multicoloured, orange, yellow, greyish blue hard lithic volcanic and siliceous grains, trace to rare nodular pyrite, nil to trace calcareous, moderate to good inferred porosity, interbedded with

<u>Claystone:</u> light to medium grey, soft to firm, dispersive, fissile, laminated, abundant argillaceous matrix, common to abundant very fine sand, common to abundant carbonaceous specks, common mica, trace pyrite, grading to Silty Claystone

Coal: trace to rare specks and laminae, black, soft to firm

5.2.3.2 Skull Creek Mudstone (999.0 – 1130.0 m)

<u>Siltstone:</u> light to grey to brownish grey interbedded with greyish white laminations in part, soft to firm, dispersive, abundant argillaceous matrix, abundant very fine sand, common to abundant coal specks and laminae, minor mica, trace pyrite, grading to Clayey Siltstone, interbedded with minor to common

<u>Sandstone</u>: very light grey to white, soft, friable, very fine to fine, sub angular to sub rounded, poorly sorted, abundant clay matrix grading to argillaceous sandstone, rare mica, trace to rare pyrite, trace orange lithics, nil to poor visible porosity grading to

<u>Sandstone:</u> light grey to light brownish grey to white, clear to translucent grains, unconsolidated to friable, predominantly fine to coarse occasional very coarse to pebble grains, predominantly angular to sub rounded occasionally rounded, poor to moderate sphericity, moderately sorted, trace to rare pyrite cement, moderate to good inferred porosity.

5.2.3.3 Nullawarre Greensand (1130.0 – 1216.0 m)

Sandstone: light brownish grey to dark yellowish green, clear to translucent grains commonly coated with glauconite, unconsolidated to friable, predominantly fine to medium occasionally coarse, predominantly angular to sub rounded, occasionally rounded and polished grains, poor to moderate sphericity, moderately sorted, common to

abundant glauconite grains, rare skeletal fragments, trace foraminifera infilled with glauconite, trace to rare pyrite nodules, good inferred porosity.

5.2.3.4 Belfast Mudstone (1216.0 – 1269.0 m)

<u>Claystone:</u> medium to dark grey to greenish black to occasionally yellowish grey in part, soft to firm, dispersive, rare to minor quartz silt, minor to common, occasionally abundant disseminated and nodular glauconite, rare coal specks, rare mica, trace pyrite

5.2.3.5 Flaxmans Formation (1269.0 - 1293.7 m)

<u>Claystone:</u> medium to dark grey to greenish black to occasionally yellowish grey in part, soft to firm, dispersive, rare to minor quartz silt, minor to common, occasionally abundant disseminated and nodular glauconite, rare coal specks, rare mica, trace pyrite

Sandstone: light brownish grey to greyish brown to dark yellowish green in part, clear to translucent grains commonly coated with glauconite, unconsolidated to friable, predominantly fine to medium occasionally coarse, predominantly angular to sub rounded, occasionally rounded and polished grains, poor to moderate sphericity, moderately sorted, common to abundant glauconite grains, rare skeletal fragments, trace foraminifera infilled with glauconite, trace to rare pyrite nodules, good inferred porosity.

5.2.4 Waarre Formation

5.2.4.1 Unit C (1293.7 – 1327.1 m)

<u>Sandstone:</u> light brownish grey to very light grey, fine to coarse, dominantly medium, moderately to well sorted, subangular to subrounded, firm to friable, predominantly loose and unconsolidated, trace pyrite, good to excellent visual porosity.

<u>Claystone:</u> medium to dark grey, soft to firm, dispersive, rare to minor carbonaceous laminations and specks, trace pyrite, trace resin

Coal: black, moderately hard, conchoidal fracture, vitreous.

5.2.4.2 Unit B (1327.1 – 1342.0 m)

<u>Calcareous Sandstone:</u> very light grey to white, fine to coarse occasionally very coarse, fair sphericity, moderately to well sorted, subangular to subrounded, firm to friable, predominantly loose and unconsolidated, 30 to 40 percent calcareous matrix, trace pyrite, common white to very light grey argillaceous matrix, trace carbonaceous fragments, grading to.

<u>Sandstone:</u> light brownish grey to very light grey, fine to coarse, dominantly medium, moderately to well sorted, subangular to subrounded, firm to friable, predominantly loose and unconsolidated, trace pyrite, good visual porosity

Claystone: medium to dark grey, soft to firm, dispersive, rare to minor carbonaceous laminations and specks, trace pyrite, trace resin

5.2.4.3 Unit A (1342.0 – 1355.0 m TD)

<u>Sandstone:</u> light brownish grey to very light grey, fine to coarse, dominantly medium, moderately to well sorted, subangular to subrounded, firm to friable, predominantly loose and unconsolidated, trace pyrite, good visual porosity

<u>Claystone:</u> medium to dark grey, soft to firm, dispersive, rare to minor carbonaceous laminations and specks, trace pyrite, trace resin

6.0 VELOCITY SURVEY

6.1 SEISMIC CALIBRATION AND RESULTS

A velocity or checkshot survey was carried out by Schlumberger as part of the open hole-logging program in Iona-Obs-2. The source used for the survey was an airgun, with shots fired into the mud pit used during the drilling of the well.

A total of 19 levels including one at sea level datum was acquired in the survey. A single shot was used where a good first break was encountered on the records. Additional shots were fired at locations where the signal was poor. The data was then enhanced by stacking the shots together to obtain an acceptable first break on the record. Quality of the data obtained was generally good except for the records from near the surface casing shoe and at the sea level datum where casing and surface noises masked good records.

The data was processed by Schlumberger at their Melbourne processing centre. First breaks were picked from the edited data and corrections applied to obtain a set of time versus depth values below the seismic reference datum which was mean sea level.

6.2 DATA CORRECTIONS

The corrections applied consisted of the following:

6.2.1 Correction for shot and geophone geometry

The mud pit where the source was located is offset from the well head so the travel path of the wave as it travels from the source point is not vertical. A correction was made to the travel time values of the checkshot data to account for the non-vertical path so as to obtain a corrected vertical time from source for each checkshot.

6.2.2 Correction for datum

The checkshot survey was acquired at a near surface location. The reference datum for the Iona 3D Seismic Survey is sea level. The travel time from the surface source to datum has to be subtracted from the corrected vertical time derived above to match the datum used in the seismic survey. The datum correction consists of two components:

A weathering or statics component, which is the delay in time as a result of the seismic wave travelling in the weathered zone near the surface. The weathered zone generally has a lower velocity than the sub-weathered zone.

An elevation component, which takes into account the elevation above the datum where the source is located and the sub-weathered zone velocity.

For ease of computation, the static and elevation correction is replaced by a term called the replacement velocity, which represents the average velocity of the energy from the source travelling to datum.

The shot acquired at datum was used for correcting the checkshot data. This yielded a datum correction of 63.8 msec for the well that was used in the generation of Schlumberger's Geogram. An uphole was also acquired after completion of the drilling of Iona-Obs-2. The uphole yielded a sea level correction of 67.8 msec from the surface.

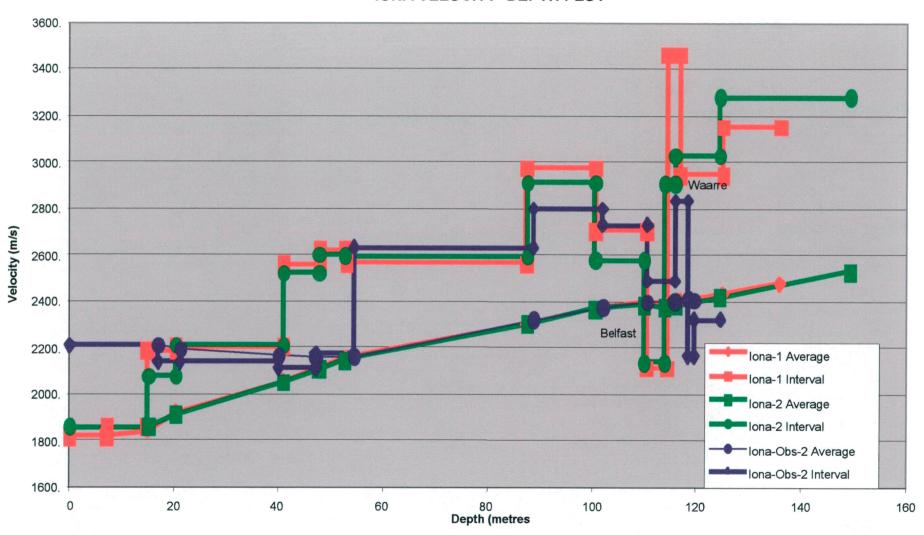
The corrected checkshot data was used to calibrate the sonic logs processed from the BHCS logging run in the well. A vertical impedance log was then derived from the calibrated sonic and the depth corrected density log recorded. Three Ricker wavelets with predominant frequencies of 25, 30 and 35 Hertz respectively were convolved with the impedance log to produce the synthetic seismograms. Further details of the calibration, checkshot corrections and synthetic seismogram generation can be found in the accompanying Schlumberger Well Seismic Edit and Geogram Report. (Appendix 4)

6.3 RESULTS

The derived synthetic seismogram matched the seismic data very well at the bottomhole location of the Iona Obs-2 well. The match at the shallower horizons is not as good but this is not unexpected because the frequency content of the synthetic has not been optimised to match the shallower horizons. Enclosure 11 shows the synthetic seismogram spliced onto the seismic section through the well annotated with the tops encountered. The synthetic confirmed that the event mapped as the Top Waarre C was an accurate tie to the 3D seismic.

Table 6.1 compares the Prognosed Depths and the Actual Well Depths for the main horizons encountered in the well. At the Waarre C horizon, the actual depth in Iona Obs-2 is slightly deeper than predicted. Two reasons can be postulated for the incorrect prognosis. The original prognosis was made on the assumption that there was no velocity gradient over the field and that the average velocity in Iona-1 and Iona-2 was representative of the total field area. The results of the well indicate this assumption to be incorrect and showed that a velocity gradient occurs between Iona -1 & 2 and Iona Obs-2. The average velocity to the top of the Waarre C horizon is slightly greater over the Iona Obs-2 location than that measured at Iona-1 & 2. Another reason could be the statics in the area may not have been resolved with sufficient accuracy. It should be noted that the error in estimating the top of the Waarre C is about 7 metres, which must be considered within the limit of accuracy of the seismic technique.

There is a scatter in the difference between the actual and predicted depths for the shallower horizons. The errors are not considered here to be of importance as they are not zones of interest in the well and have not been rigorously mapped. No sonic log was recorded in the shallow section in the well.


Table 6.1 Comparison of Prognosed and Actual Depths

Formation Tops	Original Prognosis(metres TVD subsea)	Actual Depth (metres TVD subsea)	Difference				
Heytesbury Group	Surface	Surface					
Narrawaturk Marl	73	67.3	-5.7				
Mepunga Formation	157	168.3	11.3				
Dilwyn Formation	210	211.6	1.6				
Pember Mudstone	418	400.5	-17.5				
Pebble Point Formation	487	471.5	-15.5				
Paaratte Formation	536	544.0	8				
Skull Creek Member	886	889.5	3.5				
Nullawarre Greensand	1018	1020.5	2.5				
Belfast Mudstone	1114	1106.5	-7.5				
Waare Formation							
D unit	1154	1159.5	5.5				
Top C1 Sand	1177	1184.2	7.2				
Base C1 Sand	NP*	1194.2					
Top C2 Sand	1186	1195.0	9				
Base C2 Sand	NP	1211.5					
Top B Sand	NP	1217.6					
Base B Sand	NP	1232.5					
Total Depth	1240	1245.5	5.5				
NP* Depth not prognosed							

Figure 6.1 is a plot that compares the measured average velocities and interval velocities from the Iona-1, 2 and Iona Obs-2 wells. The figure shows a very similar average velocity trend to the top Waarre C, but marginally higher at Iona Obs-2 compared to Iona-1 & 2. The interval velocities encountered are also very similar except towards the base of the Tertiary and within the Belfast Formation. The interval velocity in the Belfast is higher in Iona Obs-2 compared to Iona 1 & 2.

FIGURE 6.1

IONA VELOCITY- DEPTH PLOT

7.0 PETROPHYSICS

7.1 DATABASE

Field logs were acquired by Schlumberger using the Platform Express equipment. Tool measurements included, nuclear, resistivity and sonic. Schlumberger carried out a number of post-logging services including:

- Borehole environment corrections;
- Shoulder bed corrections (except for Iona-1);
- Estimation of true formation resistivity, Rt (except for Iona-1);
- Conversion to true vertical depth, KB datum; and,
- Data re-sampling to a consistent 0.1 metre depth step.

The processed log data was supplied in LAS format. This data was loaded into the *G-Pick* software system for subsequent display and interpretation.

The ambient and overburden core data, including measurement of porosity, permeability and grain density were key punched and also loaded into the system. The core data matches log depth within an acceptable tolerance. A psuedo log, 'PHIO', was created by correcting the ambient core porosity to overburden conditions using the calibration provided by the limited core measurements at overburden pressures.

To evaluate the Waarre Formation a normalised gamma ray log, 'GRN', was calculated as the percentage deflection between the cleanest reservoir and the shale between Waarre B and C sandstones. This corrects for the distortion provided by KCl mud systems and different hole diameters and provides a log comparable with other Iona wells. Thereafter, a 'GRHB' log was calculated as the product of GRN times RHOB with the objective that this may better highlight the transition between reservoir and non-reservoir.

The photo-electric log is distorted due to the effect of barite in the mud system and the sonic log shows a significant gas effect. Both logs were rejected for quantitative analysis.

7.2 PETROPHYSICAL MODEL

The petrophysics were modelled using the *FAST* (Formation Analysis using Statistical Techniques) computer program which is typical of current log analysis technology based upon inverse, statistical algorithms.

The mineral model was constructed using Illite, Kaolinite, Quartz and Silt which is consistent with the core petrology. The logging tool responses for mineral endpoints were selected from chartbook tables. The clay minerals are defined as the dry clay endpoints and the bound water content is calculated dependent upon the salinity and temperature of the reservoir formation water. Wet clay endpoints are re-computed within the software. The endpoint parameters for the clay minerals expressed as GRHB were determined at first by conversion of average chartbook GR and RHOB and then by trial and error. The parameters for Silt were based on general empirical

evidence that "shales" comprise clay minerals and silt with the latter a mixture of quartz, carbonates, micas and etcetera. The endpoints are generally taken to be between those of quartz and limestone but with an intermediate GR level. The hypothetical "shale" endpoint assumed ~67% wet clays and 33% silt. This provides a reasonable solution of the neutron log.

The Dual Water saturation equation was selected since this is the default for Schlumberger's ELAN software.

The cementation exponent, m^0 , was calculated using the equation of Goode and Sen (1988) and this provides a dynamic solution at each data level dependent upon the porosity and CEC. This equation includes a small correction to m^* for the bound water layer in order that the cementation exponent is consistent with principles of the Dual Water equation.

The resistivity of formation water was accepted as 1.0 ohmm at 75 deg.F following analysis of all Iona wells.

7.2.1 Log Analysis Results

The results of the log analysis are shown on the striplog on figure 7.1 and a description of the mnemonics is included below.

There has been production of 8.4 Bcf prior to field shutin at December 1997. The current gas/water contact can be observed at 1,294.5 mTVD-KB (-1,185 metres subsea). There is evidence of residual gas down to 1,305.5 mTVD-KB. A summary of the petrophysics is tabulated as follows:

Iona Observation-2 : Petrophysics Summary							
Unit	Thickness (metres)	Porosity %	Water Saturation %				
Flaxman	1.2	26.0	53.1				
C - unswept	1.7	26.5	39.2				
C - gross	27.6	24.3	-				

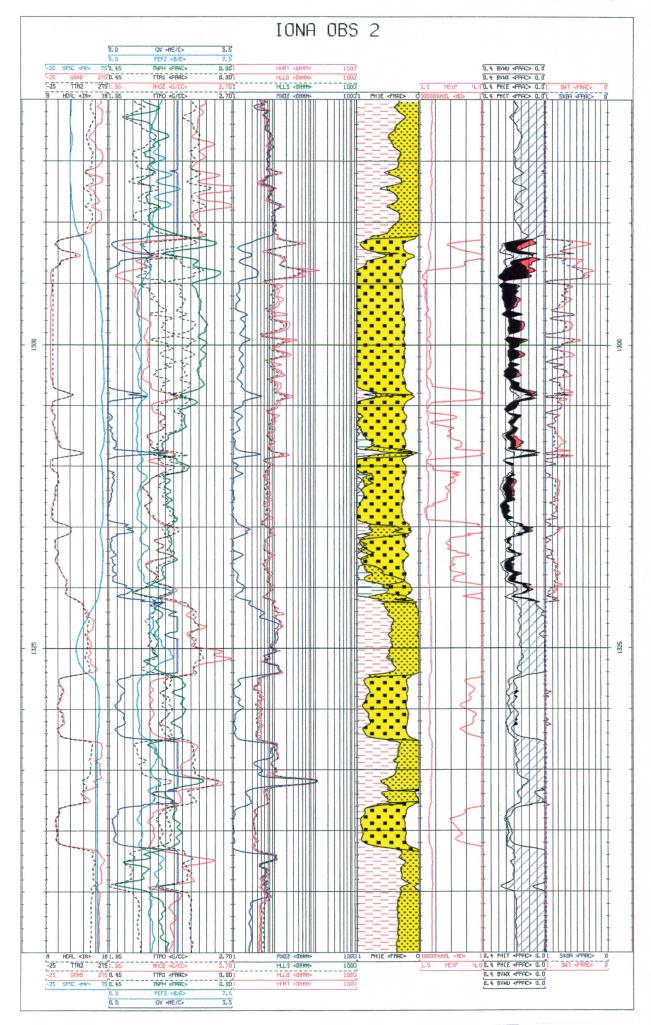


Figure 7.1

7.2.2 FAST – Striplog Description

Track 1:

depth scale in metres TVD-KB

Track 2:

CALI / CALS / HCAL

TTR2 GRHB SP

gamma ray % deflection x density – solid line, red spontaneous potential – solid line, cyan

theoretical gamma ray/density - short dash, black

spontaneous potential – solid line, cya

Track 3:

TTRO

RHOZ / RHOB

TTRI

TNPH / NPHI PEFZ / PEF / PEF

Qv

theoretical density - short dash, black

density - solid line, red

caliper - short dash, black

theoretical neutron - short dash, black

neutron environment corrected – solid line, green photoelectric environment corrected – solid line, cyan cation exchange capacity per unit pore volume – solid

line, dark blue

Track 4:

RXOZ / MSFL / RXO

HLLS / SLLC / LLS

TIELS / SELC / LLS

HLLD / DLLC / LLD

HART/RT

micro-laterolog - solid line, dark blue

shallow laterolog environment corrected - short dash,

green

deep laterolog environment corrected - solid line, red

true resistivity - solid line, magenta

Track 5:

wet Illite wet Kaolinite

Silt Quartz

Phie

green mudstone pattern siltstone pattern

pink clay pattern

coarse sandstone pattern

effective porosity (white space to left of right margin)

Track 6:

KHOL

permeability from Goode & Sen equation - solid line,

red; scale: 10 D to 1 mD

MEXP cementation m^0 exponent calculated from ϕ_T and Qv -

solid line, magenta

Track 7:

PHIO

PHIE

core porosity (ambient data corrected to overburden) -

cyan box symbols

PHIT total porosity (bound water porosity plus effective

porosity)

- separation between curves indicates bulk volume of

bound water or ϕ_{RW}

- shown as diagonal blue hatch

effective porosity

- separation between curves indicates residual

hydrocarbons coloured black

BVWX bulk volume of water in the flushed zone

- separation between curves indicates moveable oil

coloured red

BVWU bulk volume of water in the unflushed zone

separation between curves indicates far water (free

water and capillary water)

Track 8:

SXO

water saturation in the flushed zone - short dash, dark

blue

SWT total water saturation in the unflushed zone total porosity

- solid line, red

Track 9:

depth scale in metres TVD-KB

APPENDIX 1
Daily Drilling Reports by Kelly Down Pty. Ltd.

DAILY DRILLING REPORT

RIG: OD & E 30

DATE:	10-May-9
REPORT No:	1
D.F.S:	
CHUE EIT.	

		PERMIT : PPL-2 OTWAY BASIN						<u> </u>
TUAUSTRALIA	WUGS Wes	tern Underground Sto				D.F.S: SHOE F.I.T:		
WELL NAME:	IONA	OBS 2	STATUS @ 24	00 HRS:	Wait on daylig	ht		
DEPTH - 2400 HRS	e. [¬	FORMATION:			KB - GL (m):	4.98	
DEPTH - PREVIOUS		m	HOLE SIZE:			SHOE DEPTH:	4.90	
		 	ACCIDENTS:	NIL		LAST CASING:		
24 HR PROGRESS SAFETY MEETINGS	<u> </u>	m	ACCIDENTS.	INIL			/ENTORY	
MUDPRO		ADDITIVES	en	IDS CONTRO		BARITE	705	ev.
***************************************	FERRIES	AUDITIVES	UNIT		UF/OF	GEL	703	
DENSITY (ppg)				GPM/HRS	UFTOF	CEMENT	650	SX
VISCOSITY			DESILTER			<u> </u>	650	
pH			DESANDER MUDCLEANER		<u> </u>	SALT		sx
PV / YP				1		DOULINATED		SX
GELS 0/10			CENTRIFUGE	L	<u> </u>	DRILLWATER	0.000	bbl
WL API / FC (cc)			SHAKER SCREENS:			DIESEL FUEL	9,000	its
SOLIDS %			PUMPS		2	F1.51		
SAND %						LAST BOP DRIL	LLS / BOPS	*
CHLORIDES			TYPE	PZ-8 8"	PZ-8 8"			! :
KCL (% WT)			STROKE	6"	6"	LAST FIRE DRIL		<u> </u>
MBT (ppb)			LINER	0	B	LAST ABN.RIG		
Pm Pm/Mf			SPM			LAST BOP TEST		
TEMP (degC)			PRESSURE			NEXT BOP TEST		
HOLE VOL (bbls)			GPM	-	ļ	DAYS SINCE LA	STLTA	93
SURFACE VOL (b			AV (DP - ft/min)					•
HOLE LOSSES (b			AV (DC - ft/min)			***************************************	E ANALYSI	~~~~
MUD CO	Baroid		SPR			1. MOVE RIG		18
MUD ENGINEER	T. Aung		SPR PRESS	<u> </u>	<u> </u>	2. RIG UP		ļ
						3. DRILLING		
	BIT DATA			SURVEYS	Τ	4. BIT TRIP		
BIT No.			DEPTHS	Inc (deg) Azimuth	5. WIPER TRIP		
SIZE (ins)			MD/(TVD)			6. SURVEY		
TYPE						7. CIRC / CONE		
IADC CODE						8. CHANGE BH		
SERIAL No.				<u> </u>	•	9. CASE & CEN	MENT	
NOZZLES						10. WELLHEAD		
OUT (m)				<u> </u>	<u> </u>	11. BOP'S		<u> </u>
IN (m)						12. L.O.T.		
DRILLED (m)						13. CORING		
HOURS						14. LOGGING		
CONDITION			FC	RMATION D	ATA	15. REAM / WA	SH	
AVG ROP (m/hr)			TRIP GAS (%)			16. FISH / STU	CK	
WOB (x1000 lbs)			CONN.GAS (%)			17. LOSS CIRC		
RPM			B.GAS (%)		.,,	18. KICK CONT	ROL	
JET VEL (ft/sec)			P.PRESS (ppg)			19 COMPLETION	ON	
HHP @ BIT			ECD (ppg)			20. REP. SUBS	URFACE	
<u> </u>						21. REP. SURF	ACE	
BHA.: # 4						22. WELL TEST		
			••••••			23. W.O. WEAT	HER	
	***************************************				***************************************	24. WAIT - dayi	ight.	6
	,	***************************************			***************************************	25. ABANDON		
BHA WEIGHT	:	lbs	STRING WT.:		lbs	26. RIG DOWN		
			•	-		27. W.O. CEME		
DP RATING :		lbs - 'G' Grade	MARGIN :		lbs @ 75%	28. DRILL CEM		
DP RATING :		lbs - 'S' Grade	MARGIN:		lbs @ 75%	29. RIG SERVI		
TORQUE ON BTI		amps	DRAG UP :		lbs	30. SLIP & CUT		+
TORQUE OFF BI		amps	DRAG DOWN:		lbs	TOT		24
LOUGUE OF I. BI		ampa	DIVIG DOTTIN.		.55		·	47

DAILY DRILLING REPORT RIG: OD & E 30

10-May-99 DATE: REPORT No:

1 D.F.S:

WELL NAME: A LIONA OBS 2

PERMIT: PPL-2 OTWAY BASIN STATUS @ 2400 HRS: Wait on daylight.

TUAUS IRALIAL									
FROM	то	888 2		Ź	24 HOUR SU	UMARY			
00:00	18:00	18	Rig down and co	mmenced to mo	ve to OBS # 2)			
		+ ' '	g						
18:00	24:00	6	Wait on daylight						
10.00	21.00	+ -	rrait on Layingin						
		 							
-			· · · · · · · · · · · · · · · · · · ·	_					
		 	Note: on 9/5/99	9 lona # 5 stk 1 :	· well flow				
10:50	13:20	2.5	Flowed well thro						
10.50	10.20		FTHP : 1388ps						
			UCP : 1204p						
	-	-	UCT : 36 de						
		+	GASQ : 54.7	7MMscfd (Estimat	ted rate acros	s choke.			
			C/10Q : 07.77	100000 (200000					
		+		1.00					·
		-	·						
		 							
		-							
		-							
				.,,					
			 					 	
		-							
		+							
							DOV	VNHOLE TO	ni s
	 						Hours	Serial No.	Tool
		+					110013	Cenarito.	1001
		-							
		-	Incidents in last	24 Hours V/N					
		- 	(If yes see sep						
	-	_	(ii yes see sep	arate report)					
		-	 						
			 					<u> </u>	
									
		-	-						
			- Weather :	Cold.					
								<u> </u>	
FORMATION TO	OPS:								
OPERATION TO	0600 HRS	: Wait o	on day light.						

						••			
PROGRAM - NE	XT 24 HRS	S: Rig m	ove & ng up.						
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				***************************************	***************************************	***************************************	
	ANSPORT	ATION		PERSON		DAULY:		ME COSTS	
TRANSPORT-1				CONTRACTOR	20	DAILY Aus		ļ	
TRANSPORT-2				OPERATOR	3	CUMULAT	VE Aus\$:		
TRANSPORT-3				SERVICE CO	10				
FORKLIFT						REPORTE		Colin Stuart	
WATER HAULER		12				REPORTE	D BY :	 	n / J. Lambert
CRANE	1			TOTAL:	33			END	OF REPORT

TORQUE OFF BTM:

DAILY DRILLING REPORT

DATE: 11-May-99

			RIG : OD	& E 30	•		REPORT No:	2
•		PERM	MIT: PPL-2 O	TWAY BAS	IN		D.F.S:	
TUAUSTRALIA	WUGS Weste	ern Underground St	orage Project				SHOE F.I.T:	
WELL NAME:	IONA	OBS 2	STATUS @ 2400 HRS: Rigging up					
WELL IMMIE.	IONA	063 2	314103@24	ou nks.	Rigging up		<u></u>	
DEPTH - 2400 HRS:		m	FORMATION:			KB - GL (m):	4.98	
DEPTH - PREVIOUS:		m	HOLE SIZE:		j	SHOE DEPTH:		
24 HR PROGRESS:		m	ACCIDENTS:	NIL		LAST CASING:		
SAFETY MEETINGS:	Running casing	g				IN.	VENTORY	
MUD PROPE	RTIES	ADDITIVES	SOL	IDS CONTRO)L	BARITE	705	sx
DENSITY (ppg)			UNIT	GPM / HRS	UF / OF	GEL		sx
VISCOSITY			DESILTER			CEMENT	650	sx
pH			DESANDER			SALT		sx
PV / YP			MUDCLEANER					sx
GELS 0/10		·	CENTRIFUGE		<u> </u>	DRILLWATER		bbl
WL API / FC (cc)			SHAKER SCREENS:			DIESEL FUEL	7,500	lts
SOLIDS %	<u> </u>							
SAND %			PUMPS	1	2	***************************************	ILLS / BOPS	}
CHLORIDES			TYPE	PZ-8	PZ-8	LAST BOP DRII		
KCL (% WT)	·		STROKE	8"	8"	LAST FIRE DRI	LL	
MBT (ppb)			LINER	6"	6"	LAST ABN.RIG	DRILL	
Pm Pm/Mf			SPM			LAST BOP TES	ST .	
TEMP (degC)			PRESSURE			NEXT BOP TES	ST	
HOLE VOL (bbls)			GPM	·		DAYS SINCE L	AST LTA	94
SURFACE VOL (bbls))		AV (DP - ft/min)					
HOLE LOSSES (bbls))		AV (DC - ft/min)			TIM	IE ANALYSI	5
MUD CO	Baroid		SPR			1. MOVE RIG		18
MUD ENGINEER	T. Aung		SPR PRESS			2. RIG UP		
						3. DRILLING		
	BIT DATA			SURVEYS		4. BIT TRIP		
BIT No.			DEPTHS	Inc (deg) Azimuth	5. WIPER TRII	Р	
SIZE (ins)			MD/(TVD)			6. SURVEY		
TYPE						7. CIRC/CON	ID	
IADC CODE						8. CHANGE B	HA	
SERIAL No.						9. CASE & CE	MENT	
NOZZLES						10. WELLHEAD	D	
OUT (m)						11. BOP'S		
IN (m)						12. L.O.T.		
DRILLED (m)						13. CORING		
HOURS						14. LOGGING		
CONDITION			FC	RMATION D	ATA	15. REAM / W/	ASH	1
AVG ROP (m/hr)			TRIP GAS (%)			16. FISH / STU	ICK	
WOB (x1000 lbs)			CONN.GAS (%)			17. LOSS CIRC	3	
RPM			B.GAS (%)		•	18. KICK CON		†
JET VEL (fl/sec)			P.PRESS (ppg)			19 COMPLET		
HHP @ BIT			ECD (ppg)			20. REP. SUBS		1
	.L	<u></u>				21. REP. SURI		
BHA.: # 4						22. WELL TES		
				***************************************	***************************************	23. W.O. WEA		1
				***************************************	***************************************	24. WAIT - day		6
					***************************************	25. ABANDON		
BHA WEIGHT :		lbs	STRING WT.:		lbs	26. RIG DOWN		†
			-			27. W.O. CEM		
DP RATING :		lbs - 'G' Grade	- MARGIN :		lbs @ 75%	28. DRILL CEN		1
DP RATING:		lbs - 'S' Grade	MARGIN:		lbs @ 75%	29. RIG SERV		+
TOROUE ON BIM		amns	DRAG LIP		lbs @ 75%	30 SUP & CU		

DRAG DOWN:

amps

lbs

TOTAL

DAILY DRILLING REPORT RIG: OD & E 30

DATE: REPORT No: 11-May-99 2

WELL NAME: LIA IONA OBS 2

PERMIT : PPL-2 OTWAY BASIN STATUS @ 2400 HRS: Rigging up

D.F.S:

FROM	то	888 2			24 HOUR SUI	UMARY			
00:00	6:00		Wait on daylight				***************		
6:00	24	18	Completed Rig	move, 80% rigge	d up	71.12.4			
									
	ļ								
	}								
	ļ	-							
		 							
							· · · · · · · · · · · · · · · · · · ·		
		-							
	 	1							
	· ·								
									
	<u> </u>								
		<u> </u>							
	1							VNHOLE TO	
		-					Hours	Serial No.	Tool
		-							i
		 							
	+	+	Incidents in last	24 Hours Y/N					
		+	(If yes see sep						
	+		(" you don dop	arato roporty					
	<u> </u>								
		 	<u> </u>	·					
	1								
			- Weather :	Clear & cold.					**
FORMATION 1	OPS:								
OPERATION T	O 0600 HRS	: Contin	ued to rig up, D	rilling Rat hole.					
							•		
DD00D414	EVE 04 LIDO	. 0 :							
PROGRAM - N	IEXT 24 HRS	: Dnii st	Irface noie			***************************************			
	RANSPORTA	TION		PERSO	inici	-	POCEAL	IME COSTS	
TRANSPORT-1	MUNCHA	VICTORY.		CONTRACTOR	20	DAILY Aus\$			
TRANSPORT-1	+	-		OPERATOR	3	CUMULATIV			
TRANSPORT-2	+			SERVICE CO	10	COMODATIV	∟ ∧u3⊕ .	 	
FORKLIFT	+			32,1102 00		REPORTED	TO ·	Colin Stuart	
WATER HAULER	1	2				REPORTED		·	n / J. Lambert
CRANE	<u> </u>			TOTAL:	33		· · · · · · · · · · · · · · · · · · ·		OF REPORT

DAILY DRILLING REPORT

RIG: OD & E 30 PERMIT: PPL-2 OTWAY BASIN

DATE:	12-Ma
REPORT No:	3
D.F.S:	0.5
SHUE EIT.	

TUALISTRALIA

WUGS Western Underground Storage Project

IUAUSTRALIA	11000 11000	0110211111						
WELL NAME:	IONA	OBS 2	STATUS @ 2	400 HRS:	Drilling			
DEPTH - 2400 HRS:	433	m	FORMATION:	laystone & sar	nd	KB - GL (m):	4.98	
DEPTH - PREVIOUS:	0	¬m	HOLE SIZE:	8 1/2"		SHOE DEPTH:		
24 HR PROGRESS:	433	m	ACCIDENTS:	NIL		LAST CASING:		
SAFETY MEETINGS:	Running casin	ng				IN	VENTORY	
MUD PROPE	RTIES	ADDITIVES	SOI	IDS CONTR	OL	BARITE	705	SX

SAFETY MEETINGS:	Running casing			
MUD PROPE	RTIES	ADDITIVES		
DENSITY (ppg)	8.9	baracor X 2		
VISCOSITY	43	EZ-mud X 8		
pН	9.0	Pac-R X 6		
PV / YP	9 / 13	xcd X 10		
GELS 0/10	4/8	Pot chlor X 125		
WL API / FC (cc)	8.6	Pot hydro X 1		
SOLIDS %	2.9			
SAND %	0.7			
CHLORIDES	18,500			
KCL (% WT)	3.2			
MBT (ppb)	7			
Pm Pm/Mf	.081.4			
TEMP (degC)	32			
HOLE VOL (bbls)	81			
SURFACE VOL (bbis)	396			
HOLE LOSSES (bbis)	0			
MUD CO	Baroid			
MUD ENGINEER	T. Aung			

UNIT	GPM/HRS	UF/OF
DESILTER	12	
DESANDER		
MUDCLEANER		
CENTRIFUGE	13	
SHAKER SCREENS:	110	110
PUMPS	1	2
TYPE	PZ-8	PZ-8

PUMPS	1	2
TYPE	PZ-8	PZ-8
STROKE	8"	8"
LINER	6"	6"
SPM	70	70
PRESSURE		1500
GPM	200	200
AV (DP - ft/min)	163	
AV (DC - ft/min)	326	
SPR		
SPR PRESS		

	BIT DATA	
BIT No.	1	
SIZE (ins)	8 1/2"	
TYPE	GT 1	
IADC CODE	1/01/05	
SERIAL No.	A68KB	
NOZZLES	3 X 12	
OUT (m)		
IN (m)		
DRILLED (m)	433	
HOURS	12.5	
CONDITION	IN	
AVG ROP (m/hr)	34.70	
WOB (x1000 lbs)	8 - 15	
RPM	90 - 140	
JET VEL (ft/sec)		
HHP @ BIT		

SURVEYS						
DEPTHS	Inc (deg)	Azimuth				
MD/(TVD)						
50	0					
153	0.50					
298	0.25					

FC	RMATION DATA
TRIP GAS (%)	
CONN.GAS (%)	
B.GAS (%)	
P.PRESS (ppg)	
ECD (ppg)	I.

BHA.: # 4			
:			
BHA WEIGHT :	34,000 lbs	STRING WT.:	54,000 lbs
DP RATING :	lbs - 'G' Grade	MARGIN:	lbs @ 75%
DP RATING :	lbs - 'S' Grade	MARGIN:	lbs @ 75%
TORQUE ON BTM:	amps	DRAG UP :	58 lbs
TORQUE OFF BTM :	amps	DRAG DOWN :	52 lbs

SHOE DEPTH.	!
LAST CASING:	
IN	VENTORY
BARITE	705 sx
GEL	SX
CEMENT	650 sx
SALT	sx
	SX
DRILLWATER	bbl
DIESEL FUEL	25,000 lts

DRILLS / BOPS	3
LAST BOP DRILL	
LAST FIRE DRILL	
LAST ABN.RIG DRILL	
LAST BOP TEST	
NEXT BOP TEST	
DAYS SINCE LAST LTA	95

TIME ANALYSIS	
1. MOVE RIG	
2. RIG UP	10
3. DRILLING	12.5
4. BIT TRIP	
5. WIPER TRIP	
6. SURVEY	1.5
7. CIRC / COND	
8. CHANGE BHA	
9. CASE & CEMENT	
10. WELLHEAD	
11. BOP'S	
12. L.O.T.	
13. CORING	
14. LOGGING	
15. REAM / WASH	
16. FISH / STUCK	
17. LOSS CIRC	
18. KICK CONTROL	
19 COMPLETION	
20. REP. SUBSURFACE	
21. REP. SURFACE	
22. WELL TEST	
23. W.O. WEATHER	
24. WAIT - daylight.	
25. ABANDON / SUSP	
26. RIG DOWN	
27. W.O. CEMENT	
28. DRILL CEMENT	
29. RIG SERVICE	
30. SLIP & CUT LINE	
TOTAL	24

DAILY DRILLING REPORT
RIG: OD & E 30

DATE: REPORT No: D.F.S: 12-May-99 3 0.55

WELL NAME: ALLA IONA OBS 2

PERMIT : PPL-2 OTWAY BASIN STATUS @ 2400 HRS: Drilling

TUAUSTRALIA		***********	•	_		***************************************			
FROM	то	888 2 888 2			24 HOUR SU	MMARY			
00:00	10:00	10		up, drilled Rat & l	Mouse hole				
10:00	12:00	2	Drilled to60 m.	ар, аттостисто				····	
12:00	12:30		Wire line survey	,					
12:30	16:00	3.5	Drilled to 165 m						
16:00	16:30		Wire line survey						
16:30	20:00		Drilled to 309 m						
20:00	20:30		Wire line survey						
20:30	24:00	3.5	Drilled to 433 m						
20.50	24.00	3.5	Dilled to 455 II	·					

						······································			
	 	 			· · · · · · · · · · · · · · · · · · ·				
				· · ·			······································		
		-						·· ·· · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		 	1				 		
	 								1
	-								
		 	-						
		 							
	-	<u> </u>					กกง	VNHOLE TO	ini s
		 					Hours	Serial No.	Tool
	1							5511411161	
							12.5	47686	String Stab.
								11000	ouning otab.
	 	†	Incidents in last	24 Hours Y/N					
			(If yes see sep						
		İ						ļ	
		<u> </u>							
	 								
				· · · · · · · · · · · · · · · · · · ·					
		<u> </u>							
		 							
	 	 			······································				
		 	- Weather :	Clear & cold.			· · · · · · · · · · · · · · · · · · ·		
		-		0.00. 0 00.0.	· · · · · · · · · · · · · · · · · · ·				
FORMATION T	OPS:	·						l	
		*************			******************************				***************************************
OPERATION T	O 0600 HRS	Drilling	at 558 m.				**		
			·····	***************************************	***************************************	***************************************		~~~~	
		***************************************				***************************************	***************************************	***************************************	
PROGRAM - N	EXT 24 HRS	Drill su	urface hole, run	7" casing					
				······································	_	***************************************		•••••••••••••••••••••••••••••••••••••••	······
TF	RANSPORTA	TION		PERSON	NEL		PROGRAN	ME COSTS	
TRANSPORT-1				CONTRACTOR	20	DAILY Aus\$			
TRANSPORT-2				OPERATOR	3	CUMULATI		t	-
TRANSPORT-3				SERVICE CO	13			<u> </u>	
FORKLIFT						REPORTE	O TO :	Colin Stuart	
WATER HAULER	12)				REPORTE			n / J. Lambert
CRANE				TOTAL:	36			*	OF REPORT

DAILY DRILLING REPORT

RIG: OD & E 30

PERMIT: PPL-2 OTWAY BASIN

DATE: 13-May-99

REPORT No: 4

D.F.S: 1.55

SHOF FIT:

TUAUSTRALIA

WUGS Western Underground Storage Project

11000 1103	0.1021					
IONA	OBS 2	STATUS @ 2	400 HRS: [Running 7" casing.		
629	m	FORMATION:	laystone & sand	KB - GL (m):	4.98	
433	m	HOLE SIZE:	8 1/2"	SHOE DEPTH:		
196	m	ACCIDENTS:	NIL	LAST CASING:		
	629 433	10NA OBS 2 629 m 433 m	629 m FORMATION: 433 m HOLE SIZE:	IONA OBS 2 STATUS @ 2400 HRS: 629 m FORMATION: laystone & sand 433 m HOLE SIZE: 8 1/2"	IONA OBS 2 STATUS @ 2400 HRS: Running 7" casing. 629 m FORMATION: laystone & sand KB - GL (m): 433 m HOLE SIZE: 8 1/2" SHOE DEPTH: 196 m ACCIDENTS: NIL LAST CASING:	IONA OBS 2 STATUS @ 2400 HRS: Running 7" casing.

SAFETY MEETINGS:	Running casing	
MUD PROPE	RTIES	ADDITIVES
DENSITY (ppg)	8.9	baracor X 1
VISCOSITY	42	EZ-mud X 8
рН	8.7	Pac-R X 1
PV / YP	10 / 16	xcd X 2
GELS 0/10	6 / 11	Soda ash X 1
WL API / FC (cc)	8.2	Pot hydro X 2
SOLIDS %	2.9	barafibre X 6
SAND %	0 . 35	Wallnut F X 5
CHLORIDES	18,500	Barite X 62
KCL (% WT)	3.2	Citric acid X 4
MBT (ppb)	8	
Pm Pm/Mf	.03 / .10	
TEMP (degC)	37	
HOLE VOL (bbls)	76 h2o	
SURFACE VOL (bbls)	402	
HOLE LOSSES (bbls)	0	
MUD CO	Baroid	
MUD ENGINEER	T. Aung	

	IDS CONTRO	***************************************
UNIT	GPM/HRS	UF/OF
DESILTER	24	
DESANDER		
MUDCLEANER		
CENTRIFUGE	24	
SHAKER SCREENS:	110	110

PUMPS	•	2
TYPE	PZ-8	PZ-8
STROKE	8"	8"
LINER	6"	6"
SPM	70	70
PRESSURE		1800
GPM	200	200
AV (DP - ft/min)	163	
AV (DC - ft/min)	326	
SPR		
SPR PRESS		

	BIT DATA	
BIT No.	1	
SIZE (ins)	8 1/2"	
TYPE	GT 1	
IADC CODE	1/01/05	
SERIAL No.	A68KB	
NOZZLES	3 X 12	
OUT (m)		
IN (m)		
DRILLED (m)	629	
HOURS	21	
CONDITION	2-1-E-1/16	
AVG ROP (m/hr)	30.00	
WOB (x1000 lbs)	8 - 15	
RPM	120 - 140	
JET VEL (ft/sec)	360	
HHP @ BIT	278.00	

SURVEYS					
DEPTHS	Inc (deg)	Azimuth			
MD/(TVD)					
628	0.25				

FO	RMATION DATA
TRIP GAS (%)	
CONN.GAS (%)	
B.GAS (%)	
P.PRESS (ppg)	
ECD (ppg)	

BHA.: #1	Bit, BS, 2 X 6/12"dc, XO, STAB, XO, 9 X6 1/2"dc, XO, 6 X 4 3/4" dc					
BHA WEIGHT :	34,000 lbs	STRING WT.:	65 lbs			
_	0 1,000 100	<u> </u>				
DP RATING :	lbs - 'G' Grade	MARGIN:	lbs @ 75%			
DP RATING :	lbs - 'S' Grade	MARGIN:	lbs @ 75%			
TORQUE ON BTM :	amps	DRAG UP :	70 lbs			
TORQUE OFF BTM:	amps	DRAG DOWN :	60 lbs			

	1.00
SHOE DEPTH:	
LAST CASING:	
IN	VENTORY
BARITE	643 sx
GEL	42 sx
CEMENT	650 sx
SALT	sx
	sx
DRILLWATER	bbl
DIESEL FUEL	23,000 Its

DRILLS / BOP	S
LAST BOP DRILL	
LAST FIRE DRILL	1
LAST ABN.RIG DRILL	
LAST BOP TEST	
NEXT BOP TEST	
DAYS SINCE LAST LTA	96

TIME ANALYSIS	
1. MOVE RIG	
2. RIG UP	
3. DRILLING	8.5
4. BIT TRIP	
5. WIPER TRIP	5.5
6. SURVEY	
7. CIRC / COND	2
8. CHANGE BHA	4
9. CASE & CEMENT	4
10. WELLHEAD	
11. BOP'S	
12. L.O.T.	
13. CORING	
14. LOGGING	
15. REAM / WASH	
16. FISH / STUCK	
17. LOSS CIRC	
18. KICK CONTROL	
19 COMPLETION	
20. REP. SUBSURFACE	
21. REP. SURFACE	
22. WELL TEST	
23. W.O. WEATHER	
24. WAIT - daylight.	
25. ABANDON / SUSP	
26. RIG DOWN	
27. W.O. CEMENT	
28. DRILL CEMENT	
29. RIG SERVICE	
30. SLIP & CUT LINE	
TOTAL	24

FROM

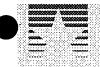
DAILY DRILLING REPORT RIG: OD & E 30

DATE: REPORT No:

D.F.S:

13-May-99 4 1.55

OBS 2


888*2*

то

PERMIT: PPL-2 OTWAY BASIN STATUS @ 2400 HRS: Running casing

24 HOUR SUMMARY

### Research Programme Pro	00:00	7:30	7.5	Drilled fr 433 to						
10:30 12:00 13:00 1 Ran in to 269 m. 12:00 13:00 1 Ran in to 597 m. 14:00 15:00 1 Dilled to 629 m. 15:00 16:00 1 Circulated hole clean, dropped survey, flow checked well. 15:00 20:00 4 Pulled out of hole, lied out all 6 1/2" drill collars. 20:00 21:30 15 Rigade up to run 7" casing. 21:30 24:00 2.5 Run 7" casing. 21:30 24:00 2.5 Run 7" casing. DownHole:Tools.	7:30	8:30	1	Circulated hole	clean.					
12:00	8:30	10:30				rip.				
13:00	10:30	12:00	1.5	Ran in to 269 n	n.					
14:00	12:00	13:00	1	Ran in to 274 r	n, ream tight hole t	o 309 m.				
15:00	13:00	14:00	1	Ran in to 597 r	n					
16:00 20:00 4 Pulled out of hole, laid out all 6 1/2" drill collars.	14:00	15:00	1	Drilled to 629 m	n.					
20:00 21:30 1.5 Rigged up to run 7" casing. 21:30 24:00 2.5 Run 7" casing. DOWNHOLE TOOLS Hours Serial No. Tool	15:00	16:00	1	Circulated hole	clean, dropped su	rvey, flow che	ecked well.			
21:30	16:00	20:00	. 4	Pulled out of ho	ole, laid out all 6 1/3	2" drill collars	•			
DGWNHOLE TOOLS	20:00	21:30	1.5	Rigged up to ru	ın 7" casing.					
DOWNHOLE TOOLS	21:30	24:00	2.5	Run 7" casing.						
DOWNHOLE TOOLS										
DOWNHOLE TOOLS										
Hours Serial No. Tool										
Hours Serial No. Tool								<u>.</u>		
Hours Serial No. Tool										
Hours Serial No. Tool										
Hours Serial No. Tool										
Hours Serial No. Tool										
Hours Serial No. Tool		1							·	
Hours Serial No. Tool			1							
Hours Serial No. Tool										
21								DOV	NNHOLE TO	OOLS
Incidents in last 24 Hours Y/N (If yes see separate report) - Weather: Clear & cold. FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORT-1 TRANSPORT-1 TRANSPORT-2 TRANSPORT-3 FORKUIFT WATER HAULER 12 Incidents in last 24 Hours Y/N			†					Hours	Serial No.	Tool
Incidents in last 24 Hours Y/N (If yes see separate report) - Weather: Clear & cold. FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORT-1 TRANSPORT-1 TRANSPORT-2 TRANSPORT-3 FORKUIFT WATER HAULER 12 Incidents in last 24 Hours Y/N										
Incidents in last 24 Hours Y/N (If yes see separate report) - Weather: Clear & cold. FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORT-1 TRANSPORT-1 TRANSPORT-2 TRANSPORT-3 FORKUIFT WATER HAULER 12 Incidents in last 24 Hours Y/N								21	47686	String Stab.
(If yes see separate report) - Weather: Clear & cold. FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back, float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORT-1 TRANSPORT-1 TRANSPORT-2 TRANSPORT-2 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 OPERATOR SERVICE CO REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert										
(If yes see separate report) - Weather: Clear & cold. FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back, float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORT-1 TRANSPORT-1 TRANSPORT-2 TRANSPORT-2 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 OPERATOR SERVICE CO REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert				Incidents in las	t 24 Hours Y/N					
- Weather: Clear & cold. FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORT-1 TRANSPORT-1 TRANSPORT-2 TRANSPORT-2 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 PROGRAMME COSTS DAILY Aus\$: CONTRACTOR 20 OPERATOR 2 SERVICE CO 6 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert				(If ves see se	parate report)					
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert			†	1	'		·			
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert			 	+				1		
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert			+							<u> </u>
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert	' <u> </u>		1					l		
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert			+	 			-	l		
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert			<u> </u>	 			·	1	 	
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert			 	+				 	 	
FORMATION TOPS: OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION PERSONNEL CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert			+	- Meather:	Clear & cold			 	 	
OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION TRANSPORT-1 TRANSPORT-2 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 DAILY Aus\$: CUMULATIVE Aus\$: REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert		 	-	- vvedulei .	Clear & Cold.			 	 	
OPERATION TO 0600 HRS: Cemented 7"casing shoe at 626.25 m. 21 bbls cement returns 12.4 ppg. Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION TRANSPORT-1 TRANSPORT-2 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 DAILY Aus\$: CUMULATIVE Aus\$: REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert	EORMATION T	OBS :	1			 		<u>II</u>		
Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION TRANSPORT-1 TRANSPORT-2 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PERSONNEL CONTRACTOR 20 DAILY Aus\$: CUMULATIVE Aus\$: CUMULATIVE Aus\$: REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert	FURMATION	UP3 :		······································			•			
Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PROGRAM - NEXT 24 HRS: Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION TRANSPORT-1 TRANSPORT-2 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER Bumped plug to 2500psi, held 10 minutes, bled back ,float & shoe ok. 05:00 WOC. PERSONNEL CONTRACTOR 20 DAILY Aus\$: CUMULATIVE Aus\$: CUMULATIVE Aus\$: REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert	ODEDATION	0.0600 UDC		ntod 7"assins -	han at 626 25 1	1 bble com-	nt returne 10 4	l nnc		
PROGRAM - NEXT 24 HRS : Run & cement 7" casing, WOC, nipple up & test BOP. TRANSPORTATION TRANSPORT-1 TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER PERSONNEL PERSONNEL DAILY Aus\$: CONTRACTOR 20 OPERATOR 2 SERVICE CO 6 REPORTED TO : Colin Stuart REPORTED BY : W.Westman / J. Lambert	OPERATION I	O UDUU HKS	. ceme	inted / casing s	inci held 10 minute	s hied hack	float & shoe	r ppg.	OC	
TRANSPORTATION PERSONNEL PROGRAMME COSTS TRANSPORT-1 CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 OPERATOR 2 CUMULATIVE Aus\$: TRANSPORT-3 SERVICE CO 6 REPORTED TO : Colin Stuart WATER HAULER 12 REPORTED BY : W.Westman / J. Lambert			Биптр	eu plug to 2000	pai, neid to mindle	o, Dieu Dack	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JR. UJ.UU YV	<u> </u>	
TRANSPORTATION PERSONNEL PROGRAMME COSTS TRANSPORT-1 CONTRACTOR 20 DAILY Aus\$: TRANSPORT-2 OPERATOR 2 CUMULATIVE Aus\$: TRANSPORT-3 SERVICE CO 6 REPORTED TO : Colin Stuart WATER HAULER 12 REPORTED BY : W.Westman / J. Lambert	BB00B414 111	EVT 04 1100		2	ing 14/00 =i==l=	in 8 toot BO	5			
TRANSPORT-1 CONTRACTOR 20 DAILY Aus\$: CUMULATIVE Aus\$: TRANSPORT-3 SERVICE CO 6 REPORTED TO : Colin Stuart WATER HAULER 12 REPORTED BY : W.Westman / J. Lambert	PROGRAM - N	EXT 24 HRS	: Kun &	. cement / cas	ing, vvoc, nippie i	ih a iesi pOi	- .	***************************************		
TRANSPORT-1 CONTRACTOR 20 DAILY Aus\$: CUMULATIVE Aus\$: TRANSPORT-3 SERVICE CO 6 REPORTED TO : Colin Stuart WATER HAULER 12 REPORTED BY : W.Westman / J. Lambert		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-				
TRANSPORT-2 TRANSPORT-3 FORKLIFT WATER HAULER 12 OPERATOR SERVICE CO 6 REPORTED TO: Colin Stuart REPORTED BY: W.Westman / J. Lambert	***************************************	CANSPORTA	HON		***************************************		DAILLE		AME CUSIS	
TRANSPORT-3 SERVICE CO 6 FORKLIFT REPORTED TO : Colin Stuart WATER HAULER 12 REPORTED BY : W.Westman / J. Lambert									-	
FORKLIFT REPORTED TO: Colin Stuart WATER HAULER 12 REPORTED BY: W.Westman / J. Lambert							CUMULAT	IVE Aus\$:	ļ	
WATER HAULER 12 REPORTED BY: W.Westman / J. Lambert					SERVICE CO	6			ļ	
										
CRANE TOTAL: 28 END OF REPORT		1	2				REPORTE	D BY :		
	CRANE				TOTAL:	28			ENL	O OF REPORT

DAILY DRILLING REPORT

RIG: OD & E 30

DATE:	14-May-99
REPORT No:	5
D.F.S:	2.55
CHUE E I T	

	•	PERM	NT : PPL-2 O	TWAY BAS	iN		D.F.S:	2.55
TU AUSTRALIA	WUGS Weste	ern Underground St		WAT BAC			SHOE F.I.T:	2.55
WELL NAME:	IONA	OBS 2	STATUS @ 24	00 HRS:	Testing BOP			
DEPTH - 2400 HRS:]m	FORMATION:			KB - GL (m):	4.98	
DEPTH - PREVIOUS:	629	վ <u>ա</u>	HOLE SIZE:	6"	T	SHOE DEPTH:	626	
24 HR PROGRESS:	020	m	ACCIDENTS:	NIL	1	LAST CASING:	7"	<u> </u>
	Cementing cas		ACCIDENTO.	7110	1		VENTORY	
MUD PROPE		ADDITIVES	901	DS CONTRO	31	BARITE	643	cv
DENSITY (ppg)	8.9		UNIT	GPM/HRS	UF / OF	GEL		SX
VISCOSITY	50	-	DESILTER	5		CEMENT		SX
pH	8.3		DESANDER			SALT	- 55	sx
PV / YP	10 / 19		MUDCLEANER			57.21		sx
GELS 0/10	7 / 14		CENTRIFUGE	10		DRILLWATER		bbl
WL API / FC (cc)	8.0		SHAKER SCREENS:	110	110	DIESEL FUEL	21,000	
SOLIDS %	2.8					D.120221 022	21,000	11.0
SAND %	0.25		PUMPS		2	DR	ILLS / BOP!	S
CHLORIDES	21,000		TYPE	PZ-8	PZ-8	LAST BOP DRIL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
KCL (% WT)	3.7		STROKE	8"	8"	LAST FIRE DRII		
MBT (ppb)	8	 	LINER	6"	6"	LAST ABN.RIG		
Pm Pm/Mf	.021.75		SPM			LAST BOP TES		<u> </u>
TEMP (degC)	18		PRESSURE			NEXT BOP TES		
HOLE VOL (bbis)	76 h2o		GPM			DAYS SINCE LA		98
SURFACE VOL (bbls)			AV (DP - ft/min)					1
HOLE LOSSES (bbls)			AV (DC - ft/min)			TIM	E ANALYSI	S
MUD CO	Baroid		SPR			1. MOVE RIG		
MUD ENGINEER	T. Aung		SPR PRESS			2. RIG UP		
						3. DRILLING		
	BIT DATA			SURVEYS		4. BIT TRIP		
BIT No.	2		DEPTHS	inc (deg	Azimuth	5. WIPER TRIP	5	
SIZE (ins)	6"	T	MD/(TVD)			6. SURVEY		
TYPE	STR-09					7. CIRC / CON	D	0.5
IADC CODE	437					8. CHANGE BI	HA	
SERIAL No.	N92YX					9. CASE & CE	MENT	4.5
NOZZLES	3 x 14					10. WELLHEAD)	1.5
OUT (m)						11. BOP'S		10.5
IN (m)	629					12. L.O.T.		
DRILLED (m)						13. CORING		
HOURS						14. LOGGING		
CONDITION			***************************************	RMATION D	ATA	15. REAM / WA	\SH	
AVG ROP (m/hr)			TRIP GAS (%)			16. FISH / STU	CK	
WOB (x1000 lbs)			CONN.GAS (%)			17. LOSS CIRC	;	
RPM			B.GAS (%)			18. KICK CON	TROL	T
JET VEL (ft/sec)			P.PRESS (ppg)			19 COMPLETI	ON	
HHP @ BIT			ECD (ppg)			20. REP. SUBS	SURFACE	
						21. REP. SURF	FACE	
BHA.: # 2	Bit, nb stab,p	ony dc, s stab, 1 x 4	3/4"dc, s stab, 5	x 4 3/4"dc,		22. WELL TES	Т	
	20 x 4 3/4"hw	dp, Jars, 10 x 4 3/4"	hwdp			23. W.O. WEA	THER	
					••••••	24. WAIT - cen	nent	7
						25. ABANDON	/ SUSP	
BHA WEIGHT :		lbs	STRING WT.:		ibs	26. RIG DOWN	1	
			-			27. W.O. CEM	ENT	
DP RATING :		lbs - 'G' Grade	MARGIN:		lbs @ 75%	28. DRILL CEN	MENT	
DP RATING :		lbs - 'S' Grade	MARGIN:		lbs @ 75%	29. RIG SERV	ICE	
TORQUE ON BTM :		amps	DRAG UP :	70	0 lbs	30. SLIP & CU	T LINE	
TOROUE OFF BTM .		amns	DRAG DOWN ·	6	0 lbs	TOT	ΓΔΙ	24

TRANSPORT-3

WATER HAULER

FORKLIFT

CRANE

DAILY DRILLING REPORT RIG: OD & E 30

DATE: REPORT No: 14-May-99

PERMIT: PPL-2 OTWAY BASIN

D.F.S:

2.55

YEJ ALYSYFALIA	IONA	OBS 2	STATUS	@ 2400 HRS:	Testing BOP.				
FROM	то	888 ž			24 HOUR SU	MMARY			
00:00	3:00			Wash to bttm. C	hange out last	ioint for short	erioint Sho	e at 626 25m	1
3:00	3:30	1/2	Circulate casin			,	jo 0.10	5 Gt 525,2511	•
3:30	5:00			o. Test lines 300	0 psi. Pump 2	Obbis Freshwa	ater spacer fo	ollowed by Le	
				.5% Bentonite an					
			Howco displac	e w/ 76 bbls fresh	water. 21 bbls	cmt returns.	Bump plug 2	2500 psi 10 r	nins OK.
···		1	Float Equipme						
5:00	12:00	7	Wait on Ceme	nt. Cut conducto	r. Do 14 bbl To	p job.			
12:00	. 13:30	1.5	Back out landir	ng joint and nipple	up Bradenhea	ad.			
13:30	22:00	8.5	Nipple up BOP	•					
22:00	24:00	2	Make up cup te	ester, rigged ul H	alco, commenc	ed to test BO	Р.		
		 							
		1							
									
	1	 							
		 							
		-							-
		+		-				<u> </u>	
		+							· · · · · · · · · · · · · · · · · · ·
		+		 					
		1					אמת	VNHOLE TO	ni s
	 	 					Hours	Serial No.	Tool
								3123	NB Stab
								914	S Stab
								A384	S Stab
		1	Incidents in las	t 24 Hours Y/N				1400-1074	Drlg Jars
			(If yes see se	parate report)				-13:1-1	
		1							
			- Weather :	Heavy rain					
FORMATION T	OPS:				***************************************		***************************************	*******************************	
OPERATION T	O 0600 HRS	: Test E	OP, run in Mak	ing up 6" bha.	***************************************	***************************************	·····		
					······································	······································	***************************************	***************************************	
22005		-	200 / "						
PROGRAM - N	EXT 24 HRS	: Test E	3OP, drill ahead			***************************************	***************************************		
	RANSPORTA	(HUN		PERSO		DAILVA		ME COSTS	
TRANSPORT-1	-			CONTRACTOR	20	DAILY Aus			
TRANSPORT-2	1		1	IUPERATUR	1 4 1	I CUMULAT	IVE AUS5	1	

SERVICE CO

TOTAL:

8

30

REPORTED TO:

REPORTED BY:

Colin Stuart

W.Westman / J. Lambert

END OF REPORT

DAILY DRILLING REPORT

RIG: OD & E 30

PERMIT: PPL-2 OTWAY BASIN

DATE: 15-May-99 REPORT No: 6 D.F.S: 3.55 SHOE F.I.T: 14.4

> > 14-May-99

14-May-99 22-May-99 99

> 4.5 3

> 1.5

0.5 4.5 1

2

TORQUE OFF BTM:

amps

WUGS Western Underground Storage Project

TUAUSTRALIA	WUGS Weste	ern Onderground Sid	orage Project			8	SHOE F.I.1:	
WELL NAME:	IONA	OBS 2	STATUS @ 24	00 HRS:	Drilling			
DEPTH - 2400 HRS:	782]m	FORMATION:	Claystone,	sandstone	KB - GL (m):	4.98	
DEPTH - PREVIOUS:	629	m	HOLE SIZE:	6"		SHOE DEPTH:	626	
24 HR PROGRESS:	153	m	ACCIDENTS:	NIL	1	LAST CASING:	7"	٠
SAFETY MEETINGS:	Pressure testin	9				INV	ENTORY	
MUD PROPI	ERTIES	ADDITIVES	SOL	IDS CONTRI)L	BARITE	643	sx
DENSITY (ppg)	9.0	baracor x 2	UNIT	GPM/HRS	UF/OF	GEL	42	sx
VISCOSITY	43	Barofibre x 10	DESILTER	8	3	CEMENT	50	sx
pН	9.1	EZ-mud x 6	DESANDER			SALT		SX
PV / YP	9 / 15	Pac - R x 2	MUDCLEANER					sx
GELS 0/10	5 / 13	Wall nut - f x 5	CENTRIFUGE		7	DRILLWATER		bbl
WL API / FC (cc)	7.0	XCD x 6	SHAKER SCREENS:	140 / 110	140	DIESEL FUEL	17,000	Its
SOLIDS %	3.6	Pot Chlor x 70						
SAND %	0.25	Pot Hydro x 2	PUMPS	•	2		LLS / BOP:	9
CHLORIDES	19,000		TYPE	PZ-8	PZ-8	LAST BOP DRILL	•	14
KCL (% WT)	3.3		STROKE	8"	8"	LAST FIRE DRILI	<u>.</u>	_
MBT (ppb)	7		LINER	6"	6"	LAST ABN.RIG D	RILL	
Pm Pm/Mf	. 07 / . 6		SPM		125	LAST BOP TEST	·	14
TEMP (degC)	27		PRESSURE		1600	NEXT BOP TEST		22
HOLE VOL (bbls)	82		GPM		367	DAYS SINCE LA	ST LTA	
SURFACE VOL (bbls	`	ļ	AV (DP - ft/min)		369			
HOLE LOSSES (bbls	· · · · · · · · · · · · · · · · · · ·		AV (DC - ft/min)		651		ANALYSI	\$
MUD CO	Baroid		SPR	45	45	1. MOVE RIG		
MUD ENGINEER	T. Aung		SPR PRESS	340	340	2. RIG UP		
				*************		3. DRILLING		<u> </u>
	BIT DATA			SURVEYS		4. BIT TRIP		↓_
BIT No.	2		DEPTHS	Inc (deg) Azimuth	5. WIPER TRIP		_
SIZE (ins)	6"		MD/(TVD)	ļ	-	6. SURVEY		┿
TYPE	STR-09					7. CIRC / COND		ـ
IADC CODE	4-3-7					8. CHANGE BH.		┼
SERIAL No.	N92YX					9. CASE & CEM		₩
NOZZLES	3 x 14					10. WELLHEA	w/ bushing	╄
OUT (m)						11. BOP'S		\bot
iN (m)	629				 	12. L.O.T.		+
DRILLED (m)	153	+	L		<u> </u>	13. CORING		+-
HOURS	7		E0	ID WAS ELONGO		14. LOGGING	N.I.	┼
AVG ROP (m/hr)	IN	-	***************************************	RMATION D	AIA	15. REAM / WAS		┿
WOB (x1000 lbs)	22.00		TRIP GAS (%)			16. FISH / STUC	K	+-
RPM	8 - 15		CONN.GAS (%)			17. LOSS CIRC	201	+
	120 - 140	-	B.GAS (%)			18. KICK CONTI		+-
JET VEL (fl/sec)	300		P.PRESS (ppg)			19 COMPLETIC		+-
HHP @ BIT	150	<u> </u>	ECD (ppg)	L		20. REP. SUBSI		+-
BHA.: # 2	Dit ab stab a	ony dc, s stab, 1 x 4	2/4"de e etch 5 v	4 A 2/A"do		21. REP. SURF		+
DHA # 2				x 4 3/4 uc,		22. WELL TEST		┿
	20 X 4 3/4 NW	dp, Jars, 10 x 4 3/4"	nwap			23. W.O. WEAT		+-
		······································	·······			24. WAIT - ceme		+
PHA MEIOUT	20.00	O lho	CTDING MAT	EC 00	O lbo	25. ABANDON /	2025	+
BHA WEIGHT :	30,00	UIUS	STRING WT.:	56,00	כטו ט	26. RIG DOWN	N/T	+
DR BATING		lbo 'C' Cd-	. MARCINI		lbc @ 750/	27. W.O. CEME		+-
DP RATING :		lbs - 'G' Grade	MARGIN:	 	lbs @ 75%	28. DRILL CEMI		+
DP RATING : TORQUE ON BTM :		lbs - 'S' Grade	MARGIN:	59.00	lbs @ 75%	29. RIG SERVIC		+
TORQUE ON BIM:		amps	DRAG UP:	58,00	O IUS	30. SLIP & CUT		+

DRAG DOWN:

TOTAL

55,000 lbs

WATER HAULER

CRANE

12

DAILY DRILLING REPORT RIG: OD & E 30

DATE: REPORT No:

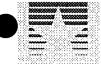
D.F.S:

15-May-99 6 3.55

WELL NAME: , , , IONA OBS 2

PERMIT: PPL-2 OTWAY BASIN STATUS @ 2400 HRS: Drilling

HAUSTRALIA	LIONA	OBS 2	STATUS (@ 2400 HRS:	Drilling	····			
FROM	то	888 2 888 2			24 HOUR SUI	MARY			
00:00	4:30		Test BOP & all	surface equipme	ent as per progr	am, 300 psi	low 5min, 250	00psi hihg 15	min.
4:30	5:00		Installed wear b						
5:00	9:30	4.5	Made up 6" BH	A , ran in & laid o	ut 21 singles of	dp.Ran in to	588 m.		***************************************
9:30	10:30	1		attempt to circula				m hwdp, no	success.
10:30	13:00	2.5	Pulled out clear	ed scale out of de	c.cleaned bit , r	nade up, ran	in to 348 m.	·····	
13:00	13:30			circulated, racke		···			150
13:30	14:00		Continued to ru						
14:00	16:00	2	Drilled cement,	float cement & sl	hoe from 601 t0	626 m. Cle	aned to botto	m at 629, dri	lled 3 new
				Drilled cement wi					
16:00	17:00	1		to balanced mud		r. EMW 14.4	ppg.		
17:00	24:00	7		rom 631 to 782m			11.0		
		 			· · · · · · · · · · · · · · · · · · ·				
					V				
							· · · · · · · · · · · · · · · · · · ·		
······································	†					-			
		1					· · · · · · · · · · · · · · · · · · ·		
		1							
	 	+							
	-	 				· · · · · · · · · · · · · · · · · · ·			
						····	DOV	VNHOLE TO	OLS
		-					Hours	Serial No.	Tool
		 			······		7	3123	NB Stab
		 					7	914	S Stab
		1			·	No.	7	A384	S Stab
	†		Incidents in last	t 24 Hours Y/N			7		
	-	_	(If yes see sep					V.00 .00 .	J.i.g ca.c
 	+		() cc ccc ccp	arato roporty					
	1	 					1		
	 	 				· · · · · ·			
	+								
	 	-							
		 	<u> </u>						
	 			<u> </u>					
	<u> </u>		100				-	<u> </u>	
			- Weather :	Heavy rain		 .			
ODMATIC: -	i one :		<u> </u>				1	L	L
ORMATION T	UPS:	Paara	tte 647 m.				······································	***************************************	·····
									
PERATION T	O 0600 HRS	: Drilling	at 888 m.						
						······································			
PROGRAM - N	IEXT 24 HRS	: Drill a	head			······································			
				100000000000000000000000000000000000000			***************************************	***************************************	
	RANSPORTA	ATION		PERSO				ME COSTS	
RANSPORT-1				CONTRACTOR	20	DAILY Aus			
RANSPORT-2	}			OPERATOR	2	CUMULAT	IVE Aus\$:		
RANSPORT-3				SERVICE CO	8				
ORKLIFT					T	REPORTE	D TO :	Colin Stuar	t
									


TOTAL:

30

REPORTED BY:

W.Westman / J. Lambert

END OF REPORT

TORQUE OFF BTM:

DAILY DRILLING REPORT

RIG: OD & E 30

DATE: 16-May-99
REPORT No: 7
D.F.S: 4.55
SHOF FIT: 14 4

			RIG : OD	& E 30			REPORT No:	7
		PERM	IIT : PPL-2 O	TWAY BAS	SIN		D.F.S:	4.55
TU AUSTRALIA	WUGS Weste	rn Underground Sto	orage Project				SHOE F.I.T:	14.4
WELL NAME:	IONA	OBS 2	STATUS @ 24	00 HRS:	Wiper trip			
DEPTH - 2400 HRS:	1,043	m	FORMATION:	Claystone,	sandstone	KB - GL (m):	4.98	
DEPTH - PREVIOUS:	782	m	HOLE SIZE:	6"		SHOE DEPTH:	626	
24 HR PROGRESS:	261	m	ACCIDENTS:	NIL	1	LAST CASING:	7"	
SAFETY MEETINGS:	Pressure testing	9				in.	VENTORY	
MUD PROPE	RTIES	ADDITIVES	SOL	IDS CONTRO	DL	BARITE	598	sx
DENSITY (ppg)	8.9	baracor x 2	UNIT	GPM/HRS	UF/OF	GEL	42	sx
VISCOSITY	46	Barofibre x 11	DESILTER	24		CEMENT	50	sx
рН	9.0	EZ-Mud x 2	DESANDER			SALT		SX
PV / YP	12 . 21	Pac - R x 2	MUDCLEANER					sx
GELS 0/10	7 / 17	Barite x 45	CENTRIFUGE	2/		DRILLWATER		bbl
WL API / FC (cc)	6.0	XCD x 6	SHAKER SCREENS:	140 x 110	140	DIESEL FUEL	13,000	its
SOLIDS %	2.5	Pot Chlor x 65	BIOMB					
SAND %	0.2	Pot Hydro x 2 Soda ash x 1	PUMPS TYPE	D7_8	2 PZ-8	LAST BOP DRI	ILLS / BOPS	•
CHLORIDES	29,000 5.00	Soua asn X I	STROKE	PZ-8 8"	8"	LAST BOP DRI		16-May-99
KCL (% WT) MBT (ppb)	5.00	 	LINER	6"	6"	LAST FIRE DRI		
			SPM	0	125			14-May-99
Pm Pm/Mf TEMP (degC)	.1/.8		PRESSURE		1800	NEXT BOP TES		14-May-99 22-May-99
HOLE VOL (bbls)	112		GPM		367	DAYS SINCE L		100
SURFACE VOL (bbls)		 	AV (DP - ft/min)		411	DATO SINCE L	AUI LIA	1 100
HOLE LOSSES (bbls)			AV (DC - ft/min)		728	TIN	E ANALYSI	
MUD CO	Baroid		SPR	45	45	1. MOVE RIG		
MUD ENGINEER	T. Aung		SPR PRESS	400	400	2. RIG UP		
Vancous Control of the Control of th		<u></u>				3. DRILLING		19
	BIT DATA			SURVEYS		4. BIT TRIP		1.5
BIT No.	2		DEPTHS	Inc (deg) Azimuth	5. WIPER TRI	Р	
SIZE (ins)	6"		MD/(TVD)			6. SURVEY		1
TYPE	STR-09					7. CIRC / CON	ID	0.5
IADC CODE	4-3-7		943	0.50		8. CHANGE B		
SERIAL No.	N92YX					9. CASE & CE		
NOZZLES	3 x 14					10. WELLHEA	w/ bushing	
OUT (m)	1,043					11. BOP'S		
IN (m)	629				ļ	12. L.O.T.		
DRILLED (m)	414		L	<u> </u>		13. CORING		
HOURS	26	ļ				14. LOGGING		
CONDITION	5-2-E-IN			RMATION D	AIA	15. REAM / W/		2
AVG ROP (m/hr)	16.00		TRIP GAS (%)			16. FISH / STU		ļ
WOB (x1000 lbs)	10 - 20	<u> </u>	CONN.GAS (%)			17. LOSS CIRC		
RPM	120 - 140	-	B.GAS (%)			18. KICK CON		
JET VEL (fl/sec)	300		P.PRESS (ppg)	<u></u>		19 COMPLET		-
HHP @ BIT	150	1	ECD (ppg)	l		20. REP. SUB 21. REP. SUR		
BHA.: # 2	Rit inhietah na	ony dc, s stab, 1 x 4	3/4"do e etab 5	x 4 3/4"dc		21. KEP. SUK 22. WELL TES		ļ
υ (π π. Δ		dp, Jars, 10 x 4 3/4"	·····	~ ~ U/T UU,		23. W.O. WEA		
	A 7 0/7 11W		<u>ab</u>			24. WAIT - cer		
						25. ABANDON		
BHA WEIGHT :	30,00	0 lbs	STRING WT.:	63,00	0 lbs	26. RIG DOWN		
				32,00		27. W.O. CEM		
DP RATING :		lbs - 'G' Grade	MARGIN:		lbs @ 75%	28. DRILL CE		
DP RATING :		lbs - 'S' Grade	MARGIN:		lbs @ 75%	29. RIG SERV		
TORQUE ON BTM :		amps	DRAG UP :	90,00		30. SLIP & CU		
L			•					+

DRAG DOWN:

amps

40,000 lbs

TOTAL

DAILY DRILLING REPORT RIG: OD & E 30


DATE: REPORT No: D.F.S:

16-May-99 7 4.55

WELL NAME ALIA IONA OBS 2

PERMIT: PPL-2 OTWAY BASIN STATUS @ 2400 HRS: Wiper trip

FROM	ТО	8883		7	24 HOUR SU	UMARY			
00:00	0.20		Drilled from 78	2 to 0.46 m					
	9:30			mpted to survey, b	orroll bung up	in hudn			
9:30	10:00				arrell hung up	in riwap.			
10:00	11:00 11:30		Drilled to 955 n						
11:00					•				
11:30	20:00		Drilled to 1043		-11		-1-4-1- 001		
20:00	20:30			sweep circulated h					
20:30	22:30			hole, Laying out si				<u> </u>	
22:30	24:00	1.5		20 k over pull. Fou	ina loose conf	rection on ariii	pipe, Contin	ue to pull ou	
			to check the re	est of drill string.					
<u>.</u>									
		-							
-	ļ								
						· · · · · · · · · · · · · · · · · · ·			
		+			······			<u> </u>	
		-							
	-								
		 							
		 			•				
									
	ļ	ļ							

	ļ							VNHOLE TO	
	ļ						Hours	Serial No.	Tool
	ļ						26	3123	NB Stab
	ļ						26	914	S Stab
	<u> </u>						26	A384	S Stab
., .	<u> </u>	1		t 24 Hours Y/N			26	1400-1074	Drlg Jars
	<u> </u>		(If yes see se	parate report)					
	ļ	_							<u> </u>
									
			- Weather :	Dry Cold.					
RMATION T	OPS:	Paara	te 647 m.						
PERATION T	O 0600 HRS	: Trip ou	ıt to check pipe	, changed bit ran ir	n & wash & re	am to bottom	from 955 m.	drilling at 10	147 m.
ROGRAM - N	EXT 24 HRS	: Drill a	nead						
					-				,
T	RANSPORT	ATION		PERSON	INEL		PROGRAN	ME COSTS	
ANSPORT-1				CONTRACTOR	20	DAILY Aus			
				OPERATOR	2	CUMULATI			
ANSPORT-2	•							<u> </u>	
ANSPORT-2 ANSPORT-3				ISERVICE CO	11				
ANSPORT-3				SERVICE CO	11	REPORTE	D TO :	Colin Stuar	<u></u>
,	1	12		SERVICE CO	11	REPORTE REPORTE		Colin Stuar	t n / J. Lambe

DAILY DRILLING REPORT

RIG: OD & E 30

PERMIT: PPL-2 OTWAY BASIN

DATE: 18-May-99 REPORT No: D.F.S: SHOE F.I.T:

9 6.55 14.4

TUAUSTRALIA

WUGS Western Underground Storage Project

WELL NAME:	IONA	OBS 2	STATUS @ 2400 HRS:		Pulling out for	Bit change & wp	er trip.
DEPTH - 2400 HRS:	1,302	¬m	FORMATION:	Claystone,		KB - GL (m):	4.98
DEPTH - PREVIOUS:	1,228	m	HOLE SIZE:	6"		SHOE DEPTH:	626
24 HR PROGRESS:	74	m	ACCIDENTS:	NIL	1	LAST CASING:	7''
SAFETY MEETINGS:	working tight h	nole.				IN	VENTO

ON LITTINGE INCO.	Working tight no	· · · · · · · · · · · · · · · · · · ·
MUD PROPE	RTIES	ADDITIVES
DENSITY (ppg)	9.2	baracor x 2
VISCOSITY	49	Baracarb x130
pН	9.0	Baracarb x 48
PV / YP	11 / 24	Baracor 129 x 2
GELS 0/10	9 / 20	Wallnut-F x 7
WL API / FC (cc)	6.2	Barite x 25
SOLIDS %	4.5	Pot Chlor x 40
SAND %	0.05	Pot hydro x 2
CHLORIDES	29,500	
KCL (% WT)	5.3	
MBT (ppb)	8	
Pm Pm/Mf	.17.85	
TEMP (degC)	41	
HOLE VOL (bbis)	136	
SURFACE VOL (bbls)	367	
HOLE LOSSES (bbis)	0	
MUD CO	Baroid	
MUD ENGINEER	T. Aung	
-		

SOL	IDS CONTRO	L
UNIT	GPM/HRS	UF/OF
DESILTER	21	
DESANDER		
MUDCLEANER		
CENTRIFUGE	24	
SHAKER SCREENS:	140 x 110	140

PUMPS	1	2
TYPE	. PZ-8	PZ-8
STROKE	8"	8"
LINER	6"	6"
SPM		125
PRESSURE		1900
GPM		367
AV (DP - ft/min)		325
AV (DC - ft/min)		573
SPR	35	35
SPR PRESS	440	440

	BIT DATA	
BIT No.	3	
SIZE (ins)	6"	
TYPE	STR-09	
IADC CODE	4-3-7	
SERIAL No.	N93YX	
NOZZLES	3 x 14	
OUT (m)	1,302	
IN (m)	1,043	
DRILLED (m)	259	
HOURS	35.5	
CONDITION	tripping	
AVG ROP (m/hr)	7.3	
WOB (x1000 lbs)	10 - 20	
RPM	90 - 120	
JET VEL (ft/sec)	256	
HHP @ BIT	56.00	

	SURVEYS	
DEPTHS	inc (deg)	Azimuth
MD/(TVD)		
	!	

FO	RMATION DATA
TRIP GAS (%)	
CONN.GAS (%)	
B.GAS (%)	
P.PRESS (ppg)	
ECD (ppg)	

BHA.: #2	Bit, nb stab,pony dc, s stab, 1 x 4 3/4"dc, s stab, 5 x 4 3/4"dc, 20 x 4 3/4"hwdp, Jars, 10 x 4 3/4"hwdp			
BHA WEIGHT :	30,000 lbs	STRING WT.:	75,000 lbs	
DP RATING :	lbs - 'G' Grade	MARGIN:	lbs @ 75%	
DP RATING :	lbs - 'S' Grade	MARGIN:	lbs @ 75%	
TORQUE ON BTM:	amps	DRAG UP :	80,000 lbs	
TORQUE OFF BTM:	amps	DRAG DOWN:	74,000 lbs	

SHOE DEPTH:	626	
LAST CASING:	7"	
IN	VENTORY	
BARITE	573	sx
GEL	42	SX
CEMENT	50	SX
SALT		SX
		sx
DRILLWATER		bbl
DIESEL FUEL	24 000	Its

4.98

DRILLS / BO	P 17/05/99
LAST BOP DRILL	16-May-99
LAST FIRE DRILL	
LAST ABN.RIG DRILL	
LAST BOP TEST	14-May-99
NEXT BOP TEST	22-May-99
DAYS SINCE LAST LTA	101

1. MOVE RIG 2. RIG UP 3. DRILLING 4. BIT TRIP	17.5 5.5
3. DRILLING	
4. BIT TRIP	5.5
5. WIPER TRIP	
6. SURVEY	
7. CIRC / COND	1
8. CHANGE BHA	
9. CASE & CEMENT	
10. WELLHEA w/ bushing	
11. BOP'S	
12. L.O.T.	
13. CORING	
14. LOGGING	
15. REAM / WASH	
16. FISH / STUCK	
17. LOSS CIRC	
18. KICK CONTROL	
19 COMPLETION	
20. REP. SUBSURFACE	
21. REP. SURFACE	
22. WELL TEST	
23. W.O. WEATHER	
24. WAIT - cement	
25. ABANDON / SUSP	
26. RIG DOWN	
27. W.O. CEMENT	
28. DRILL CEMENT	
29. RIG SERVICE	
30. SLIP & CUT LINE	
TOTAL	24

FORKLIFT

CRANE

WATER HAULER

12

DAILY DRILLING REPORT RIG: OD & E 30

DATE: REPORT No: 18-May-99

PERMIT: PPL-2 OTWAY BASIN

D.F.S:

9 6.55

WELL USMFALIA	IONA	OBS 2	STATUS (@ 2400 HRS:	Pulling out for E	Bit change & v	wiper trip.		0.00
FROM		0869			24 HOUR SUN				
		888 2 888 2			24 11001000				
00:00	3:30		Drilled from 122						
3:30	4:00	0.5	Circulated to cle			··			
4:00	18:00	14	Drilled to 1302						
18:00	18:30		Circulated hole						
18:30	24:00	5.5		236 m, circulate	& work pipe in ti	ght hole, rear	n & pull to10	78 m, laying	out
			19 singles of dr	ill pipe.		· · · · · · · · · · · · · · · · · · ·			
									· · · · · · · · · · · · · · · · · · ·
		ļ					·		
		 			·			-	
		<u> </u>							
		ļ	<u> </u>		<u> </u>				
		 							
		<u> </u>				- "			
		 			· · · · · · · · · · · · · · · · · · ·				
		 							
		 							
		 							
		 							· · · · · · · · · · · · · · · · · · ·

		 					DOV	/NHOLE TO	OLS
	,						Hours	Serial No.	Tool
		1					61.5	3123	NB Stab
		1					61.5	914	S Stab
							61 . 5	A384	S Stab
			Incidents in last	24 Hours Y/N			61 . 5	1400-1074	Drig Jars
			(If yes see sep	arate report)					
					_				
			- Weather :	Dry Cold.					
FORMATION T	OPS:	Paara	tte 647 m. Sc	ull Creek 1006m	n, Nullawarre 1	1130 m.			
OPERATION T	O 0600 HRS						by singles.		
		38 joir	nts pumped out ,	able to pull last	7 stands into sh	oe.			
PROGRAM - NI	EXT 24 HRS	: Run ir	Drill to TD pull	out, Log.		***************************************			
		~~~							
	ANSPORTA	TION		PERSO	NNEL			ME COSTS	
TRANSPORT-1				CONTRACTOR	20	DAILY Aus			
TRANSPORT-2				OPERATOR	2	CUMULATI	VE Aus\$ :		
TRANSPORT-3				SERVICE CO	16				<del></del>

TOTAL:

38

REPORTED TO:

REPORTED BY:

Colin Stuart

W.Westman / J. Lambert

END OF REPORT



# DAILY DRILLING REPORT

RIG: OD & E 30

**PERMIT: PPL-2 OTWAY BASIN** 

UNIT

DESILTER

DESANDER MUDCLEANER CENTRIFUGE

SHAKER SCREENS:

DATE: 19-May-99 REPORT No: D.F.S:

10 7.55 SHOE F.I.T: 14.4

WELL NAME:	IONA	OBS 2	STATUS @ 24	100 HRS:	Pulling out to Log
DEPTH - 2400 HRS:	1,355	m m	FORMATION:	Claystone,	KE
DEPTH - PREVIOUS:	1,302	m	HOLE SIZE:	6"	SH
24 HR PROGRESS:	53	m _m	ACCIDENTS:	NIL	LA
SAFETY MEETINGS:	working tight	nole.		-	

WUGS Western Underground Storage Project

07 T E 1 1 III E E 1 II 1 G G .		
MUD PROPE	RTIES	ADDITIVES
DENSITY (ppg)	9.2	Barafibre x 8
VISCOSITY	50	EZ - Mud x 2
рН	8.9	Pac - R x 1
PV / YP	13 / 26	Wallnut -F x 5
GELS 0/10	10 / 20	Barite x 45
WL API / FC (cc)	6.0	
SOLIDS %	4.7	
SAND %	0 . 05	
CHLORIDES	27,000	
KCL (% WT)	4.9	
MBT (ppb)	8	
Pm Pm/Mf	.17.85	
TEMP (degC)	39	
HOLE VOL (bbls)	139	
SURFACE VOL (bbls)	367	
HOLE LOSSES (bbls)	0	
MUD CO	Baroid	
MUD ENGINEER	T. Aung	

U. 3.33		
PUMPS	1	2
TYPE	PZ-8	PZ-8
STROKE	8"	8"
LINER	6"	6"
SPM		125
PRESSURE		1800
GPM		320
AV (DP - ft/min)		300
AV (DC - ft/min)		520
SPR	35	35
SPR PRESS	440	440

SOLIDS CONTROL

GPM/HRS

140 x 110

24

24

UF/OF

140

	BIT DATA	
BIT No.	3	3 RR
SIZE (ins)	6"	6"
TYPE	STR-09	STR-09
IADC CODE	4-3-7	4/03/07
SERIAL No.	N93YX	N93YX
NOZZLES	3 x 14	3 X 14
OUT (m)	1,302	1,355
IN (m)	1,043	1,302
DRILLED (m)	259	53
HOURS	35.5	7.5
CONDITION	tripping	2-4-E-IN
AVG ROP (m/hr)	7.3	7.00
WOB (x1000 lbs)	10 - 20	15
RPM	90 - 120	100
JET VEL (ft/sec)	256	215
HHP @ BIT	56.00	49

	SURVEYS	
DEPTHS	Inc (deg)	Azimuth
MD/(TVD)		

FC	RMATION DATA
TRIP GAS (%)	
CONN.GAS (%)	
B.GAS (%)	
P.PRESS (ppg)	
ECD (ppg)	

BHA.: # 2 Bit, bs, xo, nmdc, stab,6 x 4 3/4"dc,						
20 x 4 3/4"hwdp, Jars, 10 x 4 3/4"hwdp						
BHA WEIGHT :	30,000 lbs	STRING WT.:	76,000 lbs			
		<u> </u>				
DP RATING :	lbs - 'G' Grade	MARGIN:	lbs @ 75%			
DP RATING :	lbs - 'S' Grade	MARGIN:	lbs @ 75%			
TORQUE ON BTM:	amps	DRAG UP :	lbs			
TORQUE OFF BTM:	amps	DRAG DOWN:	lbs			

KB - GL (m):	4.98	
SHOE DEPTH:	626	
LAST CASING:	7"	
IN	VENTORY	
BARITE	528 9	SX
GEL	42 9	SX
CEMENT	50 s	SX
SALT		SX
		SX
DRILLWATER	I	obl
DIESEL FUEL	21,000	ts

DRILLS / BO	P 17/05/99
LAST BOP DRILL	19-May-99
LAST FIRE DRILL	
LAST ABN.RIG DRILL	
LAST BOP TEST	14-May-99
NEXT BOP TEST	22-May-99
DAYS SINCE LAST LTA	102

TIME ANALYSIS	
1. MOVE RIG	
2. RIG UP	
3. DRILLING	7.5
4. BIT TRIP	7.5
5. WIPER TRIP	
6. SURVEY	
7. CIRC / COND	1
8. CHANGE BHA	0.5
9. CASE & CEMENT	
10. WELLHEA w/ bushing	
11. BOP'S	
12. L.O.T.	
13. CORING	
14. LOGGING	
15. REAM / WASH	7
16. FISH / STUCK	
17. LOSS CIRC	
18. KICK CONTROL	
19 COMPLETION	
20. REP. SUBSURFACE	
21. REP. SURFACE	
22. WELL TEST	
23. W.O. WEATHER	
24. WAIT - cement	
25. ABANDON / SUSP	
26. RIG DOWN	
27. W.O. CEMENT	
28. DRILL CEMENT	
29. RIG SERVICE	0.5
30. SLIP & CUT LINE	
TOTAL	24



TRANSPORT-2

TRANSPORT-3

WATER HAULER

FORKLIFT

CRANE

**DAILY DRILLING REPORT** RIG: OD & E 30

DATE: REPORT No:

D.F.S:

19-May-99 10 7.55

OBS 2 STATUS @ 2400 HRS: Pulling out to Log.

**PERMIT: PPL-2 OTWAY BASIN** 

FROM	************************	888 2 888 2			4 HOUR SUI	MA	MARY			
00:00	5:00	5		ımp out of hole,rea	ming & circula	ati	na to 819 m	, hole tight a	all the way.	
5:00	7:30			ontinued to pull out to shoe.						
7:30	8:00		Serviced Rig.							
8:00	8:30		Pickup new BH.	A.						
8:30	12:30	4		n, wash & ream to	1302 m.					
12:30	20:00	7.5	Drilled from 130							
20:00	20:30	0.5	Circulated hole	clean.				·	*	
20:30	21:00			lown EMS survey.						<del> </del>
21:00	22:30			m, pumped out &	ream from 13	330	upto 1248	m.		
22:30	24:00	1.5		1 m, hole in good			· · · · · · · · · · · · · · · · · · ·			<u>.                                    </u>
				<del></del>						
				<del></del>						
		1								
		1								
								DOV	VNHOLE TO	OLS
					·			Hours	Serial No.	Tool
		<u> </u>						69	3123	NB Stab
		<u> </u>			<del></del>			69	914	S Stab
								69	A384	S Stab
			Incidents in last	t 24 Hours Y/N				69	1400-1074	Drlg Jars
			( If yes see sep	parate report)						
			- Weather :	Dry Cold.						
ORMATION T	OPS:	Paara	tte 647 m. Sc	ull Creek 1006m,	Nullawarre	11	30 m.Belfas	st 1215,	L.,	
		Top C	1 sand, 1290.		***************************************		***************************************	***************************************	***************************************	
OPERATION T	O 0600 HRS			ged up Schlomber	ger, commen	се	d to log.			
				······································						·····
					***************************************		***************************************	***************************************	······	
PROGRAM - N	EXT 24 HRS	: Log ,	Run in,circulate,	lay out drill string	prepare to rui	n 4	4 1/2" casin	<del></del>		
			······································		_		······································	<del></del>		
TI	RANSPORTA	TION		PERSON	NEL	88		PROGRAM	MECOSTS	
RANSPORT-1	T			CONTRACTOR	20	۴	DAILY Aus			
	<del> </del>					-			ļ	

OPERATOR

SERVICE CO

TOTAL:

2

16

38

CUMULATIVE Aus\$:

Colin Stuart

W.Westman / J. Lambert

END OF REPORT

REPORTED TO:

REPORTED BY:



DP RATING:

DP RATING:

TORQUE ON BTM:

TORQUE OFF BTM:

## DAILY DRILLING REPORT

RIG: OD & E 30

**PERMIT: PPL-2 OTWAY BASIN** 

DATE: 20-May-99 REPORT No: D.F.S: SHOE F.I.T:

11 8.55 14.4

**WELL NAME:** IONA OBS 2 **STATUS @ 2400 HRS:** Pulling out laying down drill pipe FORMATION: **DEPTH - 2400 HRS:** 1,355 m **DEPTH - PREVIOUS:** HOLE SIZE: 6" m 24 HR PROGRESS: ACCIDENTS: NIL m SAFETY MEETINGS: MUD PROPERTIES ADDITIVES SOLIDS CONTROL DENSITY (ppg) 9.2 Aldacide x 1 UNIT GPM/HRS UF / OF EZ - Mud x 2 DESILTER VISCOSITY 52 8.8 Baracarb x DESANDER рΗ PV / YP 12/24 Barite x MUDCLEANER 48 GELS 0/10 8 / 18 Soda ash x 1 CENTRIFUGE 140 x 110 140 6.0 Bicarb soda x 1 WL API / FC (cc) SHAKER SCREENS: SOLIDS % 4.9 SAND % 0.05 PUMPS 1 2 CHLORIDES 26,500 TYPE PZ-8 PZ-8 8" KCL (% WT) 4.8 STROKE 8" 6" LINER 6" MBT (ppb) 8 Pm Pm/Mf .17.85 SPM 30 PRESSURE TEMP (degC) HOLE VOL (bbls) 139 **GPM** SURFACE VOL (bbls) 313 AV (DP - ft/min) AV (DC - ft/min) HOLE LOSSES (bbls) 0 MUD CO SPR 35 35 Baroid MUD ENGINEER T. Aung SPR PRESS 440 440 SURVEYS BIT DATA BIT No. 3 RR **DEPTHS** Inc (deg) Azimuth SIZE (ins) 6" MD/(TVD) **STR-09** TYPE IADC CODE 4-3-7 SERIAL No N93YX NOZZLES 3 x 14 OUT (m) 1,355 IN (m) 1,043 DRILLED (m) HOURS FORMATION DATA CONDITION TRIP GAS (%) AVG ROP (m/hr) WOB (x1000 lbs) CONN.GAS (%) B.GAS (%) RPM JET VEL (ft/sec) P.PRESS (ppg) HHP @ BIT ECD (ppg) BHA.: BHA WEIGHT: STRING WT.: lbs lbs

lbs - 'G' Grade

lbs - 'S' Grade

amps

amps

MARGIN:

MARGIN:

DRAG UP:

**DRAG DOWN:** 

lbs @ 75%

lbs @ 75%

lbs

lbs

WUGS Western Underground Storage Project

SHOE DEPTH:	626	
LAST CASING:	7"	
IN	VENTORY	
BARITE	480	sx
GEL	42	sx
CEMENT	50	sx
SALT		SX
		sx
DRILLWATER		bbl
DIESEL FUEL	19,000	Its

4.98

KB - GL (m):

DRILLS / BO	P 17/05/99
LAST BOP DRILL	19-May-99
LAST FIRE DRILL	
LAST ABN.RIG DRILL	
LAST BOP TEST	14-May-99
NEXT BOP TEST	22-May-99
DAYS SINCE LAST LTA	103

TIME ANALYSIS	
1. MOVE RIG	
2. RIG UP	
3. DRILLING	
4. BIT TRIP	
5. WIPER TRIP	8.5
6. SURVEY	
7. CIRC / COND	1
8. CHANGE BHA	
9. CASE & CEMENT	
10. WELLHEA w/ bushing	
11. BOP'S	
12. L.O.T.	
13. CORING	
14. LOGGING	14.5
15. REAM / WASH	
16. FISH / STUCK	
17. LOSS CIRC	
18. KICK CONTROL	
19 COMPLETION	
20. REP. SUBSURFACE	
21. REP. SURFACE	
22. WELL TEST	
23. W.O. WEATHER	
24. WAIT - cement	
25. ABANDON / SUSP	
26. RIG DOWN	
27. W.O. CEMENT	
28. DRILL CEMENT	
29. RIG SERVICE	
30. SLIP & CUT LINE	
TOTAL	24



DAILY DRILLING REPORT RIG: OD & E 30

DATE:
REPORT No:
D.F.S:

20-May-99 11 8.55

WELL NAME ALIA IONA OBS 2

PERMIT: PPL-2 OTWAY BASIN

STATUS @ 2400 HRS: Pulling out laying down drill pipe.

FROM		888 2 888 2			24 HOUR SU	MMARY			
00:00	1:30		Continued to pu	ull out of hole.					
1:30	16:00			mberger. Run # 1	hals - peks -	bhc. 3:00 to 6	6:00 hrs		
	<del> </del>			7:00 to 10:00 hrs					
				10:15 to 15:30 hrs		• • • • • • • • • • • • • • • • • • • •			
16:00	19:00	3	Run in to 1315	m.					
19:00	19:30	0.5		rom 1315 to 1355	m. 2m of fill.		·	<del></del>	
19:30	20:30	1	Circulated hole	clean, conditioned	l mud.				
20:30	24:00	3.5	Pull out laying o		·				
								·····	
		<u> </u>							
/	ļ	ļ							
		<u> </u>							
	1				<del> </del>	<del></del>			
		1			<del></del>			<del></del>	
		<b>}</b>							
			<u> </u>						
	<del> </del>					<del></del>			
					· · · · · · · · · · · · · · · · · · ·				
	<del> </del>	-					D.C.	VNHOLE TO	31.5
							Hours	Serial No.	Tool
	<del>†</del>	<del>                                     </del>			a		110013	Geriai ito.	1001
	<del> </del>	<del> </del>	<u> </u>						
		<del> </del>						l	
		<del>                                     </del>	Incidents in las	t 24 Hours Y/N					
· · · · · · · · · · · · · · · · · · ·		<del> </del>	( If yes see ser						
		1	,				i		<del></del>
		1							
	Ť	1							
			- Weather :	Dry Cold.					
FORMATION T	OPS:								
OPERATION T	O 0600 HRS	:							
						•••••			
PROGRAM - N	EXT 24 HRS	: Run 8	cement 4 1/2"	casing.		······	***************************************	······································	
	***************************************			100000000000000000000000000000000000000			***************************************	***************************************	
	RANSPORTA	TION		PERSON				MECOSTS	
TRANSPORT-1	-			CONTRACTOR	20	DAILY Aus			
TRANSPORT-2				OPERATOR	2	CUMULATI	VE Aus\$ :		
TRANSPORT-3	<del> </del>			SERVICE CO	16	2555==		<u> </u>	
FORKLIFT	<u> </u>					REPORTE		Colin Stuart	····
WATER HAULER						REPORTE	D BY :		/ J. Lambert
CRANE	Ì		ļ	TOTAL:	38			FND	OF REPORT



TORQUE OFF BTM:

### **DAILY DRILLING REPORT**

RIG: OD & E 30

DATE:	21-May-99
REPORT No:	12
D.F.S:	9.55
SHOE ELT:	

			MIT : PPL-2 O	TWAY BAS	IN		D.F.S:	9.55
TUAUSTRALIA	WUGS West	ern Underground St	orage Project				SHOE F.I.T:	
WELL NAME:	IONA	OBS 2	STATUS @ 24	100 HRS:	Nipple up BOF	<b>D</b>		
DEPTH - 2400 HRS:	1,355	m	FORMATION:			KB - GL (m):	4.98	
DEPTH - PREVIOUS:		m	HOLE SIZE:	6"		SHOE DEPTH:		
24 HR PROGRESS:		¬m	ACCIDENTS:	NIL		LAST CASING:	4 1/2"	
SAFETY MEETINGS:						i)	IVENTORY	
MUD PROP	ERTIES	ADDITIVES	SOL	IDS CONTRO	)L	BARITE	480	SX
DENSITY (ppg)			UNIT	GPM/HRS	UF/OF	GEL	42	sx
VISCOSITY		Aldacide x 1	DESILTER			CEMENT		sx
pН			DESANDER			SALT		sx
PV / YP			MUDCLEANER					SX
GELS 0/10			CENTRIFUGE			DRILLWATER		bbl
WL API / FC (cc)			SHAKER SCREENS:	140 x 110	140	DIESEL FUEL	17,000	Its
SOLIDS %							· · · · · · · · · · · · · · · · · · ·	
SAND %			PUMPS	1	2	DF	ULLS / BOP	17/05/99
CHLORIDES			TYPE	PZ-8	PZ-8	LAST BOP DRI	LL	19-May-99
KCL (% WT)			STROKE	8"	8"	LAST FIRE DR	ILL	
MBT (ppb)	1		LINER	6"	6"	LAST ABN.RIG		
Pm Pm/Mf		1	SPM			LAST BOP TES		14-May-99
TEMP (degC)			PRESSURE			NEXT BOP TE		22-May-99
HOLE VOL (bbls)	66		GPM			DAYS SINCE L		104
SURFACE VOL (bbls			AV (DP - ft/min)					
HOLE LOSSES (bbis			AV (DC - ft/min)			TIN	ME ANALYSI	S
MUD CO	Baroid		SPR			1. MOVE RIG		
MUD ENGINEER	T. Aung		SPR PRESS			2. RIG UP		
	1	<u>. I </u>	J (	·	<u> </u>	3. DRILLING	<del> </del>	
	BIT DATA			SURVEYS		4. BIT TRIP		
BIT No.			DEPTHS	Inc (deg)	Azimuth	5. WIPER TRI	Р	
SIZE (ins)			MD/(TVD)			6. SURVEY		
TYPE						7. CIRC / CON	ND	1.5
IADC CODE						8. CHANGE B	HA .	
SERIAL No.						9. CASE & CE	MENT	15
NOZZLES			] [			10. WELLHEA	w/ bushing	2
OUT (m)						11. BOP'S		5.5
IN (m)						12. LO.T.		
DRILLED (m)						13. CORING		
HOURS				-		14. LOGGING		
CONDITION			FC	RMATION D	ATA	15. REAM / W.	ASH	
AVG ROP (m/hr)			TRIP GAS (%)			16. FISH / STU	JCK	
WOB (x1000 lbs)			CONN.GAS (%)			17. LOSS CIR	С	
RPM			B.GAS (%)			18. KICK CON	TROL	
JET VEL (ft/sec)			P.PRESS (ppg)			19 COMPLET	NOF	
HHP @ BIT			ECD (ppg)			20. REP. SUB	SURFACE	
		•	J			21. REP. SUR		
BHA.:						22. WELL TES	ST	
		***************************************			***************************************	23. W.O. WEA	THER	1
					•••••••••••••••••••••••••••••••••••••••	24. WAIT - cer		
	***************************************	······································			***************************************	25. ABANDON		
BHA WEIGHT :		lbs	STRING WT.:		lbs	26. RIG DOW		1
			-			27. W.O. CEM		1
DP RATING :		lbs - 'G' Grade	- MARGIN :		lbs @ 75%	28. DRILL CE		1
DP RATING :		lbs - 'S' Grade	MARGIN:		lbs @ 75%	29. RIG SERV		+
TORQUE ON BTM :	:	amps	DRAG UP :		lbs	30. SLIP & CL		1
							- · · <del>-</del>	,

DRAG DOWN:

amps

lbs

TOTAL



CRANE

**DAILY DRILLING REPORT** RIG: OD & E 30

DATE:

21-May-99

OBS 2

PERMIT: PPL-2 OTWAY BASIN STATUS @ 2400 HRS: Nipple up BOP.

12 REPORT No: 9.55 D.F.S:

END OF REPORT

FROM	то	888 2 888 2		2	4 HOUR SU	MMARY			
00:00	1:00			call Kelly connection	ns, rack bac	k.		·····	
1:00	3:00	2		ıll out & lay down E					
3:00	4:00	1	Laid out Kelly.						
4:00	5:00	1	Rigged up to ru	4 1/2" casing.					
5:00	5:30		Pulled wear bus					<del> </del>	
5:30	12:00		Ran casing to 1					<del></del>	
12:00	13:30			circulated casing.	<del></del>				
13:30	14:30	1		, rigged up HOWC	O cementing	lines			
14:30	16:30	2		nes to 3000 psi, ce			ting report	<del></del>	
16:30	22:00	5.5		et slip & seal asse				anding loint	Nipple
10.00	22.00	0.5	down BOP.	et sup a sear asse	inbly, redugit	001 4 172 003	ing, laid out i	anding John,	Mipple
22:00	23:30	1.5		sing stump, nipple	p B section	energize & pr	essure test t	o 2000 psi	
23:30	24:00	0.5		nipple up BOP.		опотуше и рг	0000,0 (00)	0 2000 psi.	
	2	1		mppio up Doi :	4				
								· · · · · · · · · · · · · · · · · · ·	
				···				·····	
				· · · · · · · · · · · · · · · · · · ·					
		<del></del>						<del></del>	
		<del> </del>					<del></del>		
		<del> </del>							
		<del> </del>					nav	VNHOLE TO	ni e
		<del> </del>					Hours	Serial No.	Tool
		<del>                                     </del>					110013	ochai ito.	1001
		<del> </del>	Incidents in last	24 Hours Y/N					
ļ <del> </del>		<del> </del>	( If yes see sep						
		<del> </del>	( 1. ) 00 000 00	arato roporty			·		
		<b></b>						-	
		<del> </del>							
		<b>-</b>							
	-	<del> </del>							
	<del> </del>	<del> </del>							
	<del> </del>	-						,	
	<del>                                     </del>	-	- Weather :	Dor Cold					
		-	- vveaulei .	Dry Cold.					
FORMATION T	OPS :	<u></u>	1			·	L	L	
FORWATION	UPS:		***************************************	***************************************		······		······································	
OBERATION T	O OCOO HES	Ninnla	un BOB Bun in	with coronar					<del></del>
OPERATION T	ט טטטט חאס :	ирріе	up BOP. Run in	with scraper.	***************************************	***************************************			······································
			***************************************		<del></del>	***************************************			
DDOCDAM N	EVE 04 UDO	A // /	200 6						
PROGRAM - N	EXI 24 HKS	ivippie	up BOP Scrape	er runs , run coi,		***************************************	······································		
			ı						
	CANSPORTA	IUN		PERSON				ME COSTS	
TRANSPORT-1				CONTRACTOR	20	DAILY Aus			
TRANSPORT-2				OPERATOR OPERATOR	2	CUMULATI	VE Aus\$ :		
TRANSPORT-3	ļ			SERVICE CO	14			ļ	
FORKLIFT						REPORTE		Colin Stuart	
WATER HAULER	<u> </u>					REPORTE	D BY :	W.Westman	n / J. Lambert

TOTAL:

36

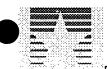


TORQUE OFF BTM:

### **DAILY DRILLING REPORT**

RIG: OD & E 30

DATE:	22-May-99
REPORT No:	12
D.F.S:	9.55
CHOE ELT:	


		PERM	IIT : PPL-2 O	IWAY BAS	SIN		D.F.S:	9.55
<b>TU</b> AUSTRALIA	WUGS Weste	ern Underground Sto	rage Project				SHOE F.I.T:	
WELL NAME:	IONA	OBS 2	STATUS @ 24	100 HRS:	Run in with scr	aper		
DEPTH - 2400 HRS:	1,355	]m	FORMATION:			KB - GL (m):	4.98	
DEPTH - PREVIOUS:	<u> </u>	m	HOLE SIZE:			SHOE DEPTH:	1,355	
24 HR PROGRESS:		d _m	ACCIDENTS:	NIL	1	LAST CASING:	4 1/2"	
SAFETY MEETINGS:		J		<u> </u>	<del>'                                    </del>		VENTORY	
MUD PROPE	RTIES	ADDITIVES	901	IDS CONTRI	3)	BARITE	480	SY
DENSITY (ppg)	8.7	Baraklean x 2	UNIT	GPM/HRS	UF / OF	GEL	42	
VISCOSITY	27	Coat-2748 x 1	DESILTER	0	<del>                                     </del>	CEMENT		sx
pH		KCL x 98	DESANDER		<del> </del>	SALT		SX
PV / YP		Pot hydrx x 2	MUDCLEANER		<del>                                     </del>	OAL!	-	SX
GELS 0/10		r ottiyuix x 2	CENTRIFUGE	<u>1</u>		DRILLWATER		bbl
				140 x 110	140	DIESEL FUEL	15.000	
WL API / FC (cc) SOLIDS %		<del> </del>	SHAKER SCREENS:	140 X 110	140	DIESEL FUEL	15,000	its
SAND %			PUMPS	1	2	7.72	ILLS / BOP	17/05/99
CHLORIDES	<b>-</b>		TYPE	PZ-8	PZ-8	LAST BOP DRI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************
	<del> </del>		STROKE	8"	8"			19-May-99
KCL (% WT)	<u> </u>			6"	6"	LAST FIRE DRI		
MBT (ppb)	<u> </u>		LINER	, b	Ь.	LAST ABN.RIG		44.14 00
Pm Pm/Mf			SPM			LAST BOP TES		14-May-99
TEMP (degC)			PRESSURE		-	NEXT BOP TES		22-May-99
HOLE VOL (bbis)	66		GPM			DAYS SINCE L	AST LTA	105
SURFACE VOL (bbls)			AV (DP - ft/min)		-	000000000000000000000000000000000000000	ó	••••
HOLE LOSSES (bbis)			AV (DC - ft/min)			***************************************	IE ANALYSIS	3
MUD CO	Baroid		SPR			1. MOVE RIG		
MUD ENGINEER	T. Aung		SPR PRESS	<u> </u>		2. RIG UP		
	SEE DATA			SURVEYS		3. DRILLING		
DIT N	BIT DATA	T	DEPTHS	***************************************		4. BIT TRIP		
BIT No.	ļ			Inc (deg	) Azimuth	5. WIPER TRI	<u> </u>	
SIZE (ins)			MD/(TVD)	ļ	+	6. SURVEY		ļ
TYPE				ļ	<del>-</del>	7. CIRC / CON		1
IADC CODE	ļ	<del>                                     </del>				8. CHANGE B		
SERIAL No.				ļ	ļ	9. CASE & CE		
NOZZLES		ļ				10. WELLHEA	w/ bushing	
OUT (m)	<u> </u>	ļ			-	11. BOP'S		3
IN (m)				ļ		12. L.O.T.		
DRILLED (m)	ļ			<u> </u>		13. CORING		
HOURS						14. LOGGING		7
CONDITION			FC	RMATION D	ATA	15. REAM / W/	ASH	
AVG ROP (m/hr)			TRIP GAS (%)			16. FISH / STU	ICK	
WOB (x1000 lbs)			CONN.GAS (%)			17. LOSS CIRC	3	
RPM			B.GAS (%)			18. KICK CON	TROL	
JET VEL (ft/sec)			P.PRESS (ppg)			19 COMPLET	ION	13
HHP @ BIT			ECD (ppg)			20. REP. SUB	SURFACE	
		•				21. REP. SUR	FACE	
BHA.:	•					22. WELL TES	T	
	***************************************			***************************************		23. W.O. WEA		
						24. WAIT - cer		<u> </u>
						25. ABANDON		
BHA WEIGHT :		lbs	STRING WT.:	<del></del>	lbs	26. RIG DOW		
			J			27. W.O. CEM		
DP RATING :	<del> </del>	lbs - 'G' Grade	MARGIN:		lbs @ 75%	28. DRILL CEI		-
DP RATING :		lbs - 'S' Grade	MARGIN:		lbs @ 75%	29. RIG SERV		<del>                                     </del>
TOPOUE ON DIM		ius - 3 Graue	DDAC UD		100 (0 / 0 / 0	29. RIG SERV		+

DRAG DOWN:

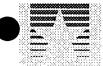
amps

lbs

TOTAL



**DAILY DRILLING REPORT** RIG: OD & E 30


DATE: REPORT No: D.F.S:

22-May-99 13 10.55

PERMIT: PPL-2 OTWAY BASIN

STATUS @ 2400 HRS: Run in with scraper.

WELL US MEALIA	IONA	OBS 2	STATUS (	@ 2400 HRS:	Run in with sc	craper.
FROM	то	888 2			24 HOUR SU	JMMARY
00:00	3:00		Nipple up BOP.			
3:00	4:30	I	Prepare & mea			
4:30	12:00	7.5				FC at 1341m. work scraper over packer setting area.
12:00	13:00	1		of detergent, Dis		prine.
13:00	16:30	3.5	Pulled out laying	g down 2 3/8" tul	oing.	
16:30	19:30	3	Rigged up Schl			
19:30	23:30	4	Perforate with s	chlumberger @	1327.5 to 133	32.5, @ 1302 to 1303.5. Rigged down schlum.
23:30	24:00	0.5	Make up mill &	scraper, run in P	icking up 2 3/8	8" tubing.
	·					
	<u> </u>					
		<u> </u>				
		<u> </u>				
		<u> </u>			~~	
		<u> </u>				
	<u> </u>					DOWNHOLE TOOLS
		ļ				Hours Serial No. Tool
	ļ	<u> </u>				
	ļ					
			Incidents in last			
			( If yes see sep	arate report)		
	<u>'</u>	<u> </u>				
		1				
	<u> </u>	1				
		1				
			- Weather :	Rain		
FORMATION T	OPS:					
OPERATION T	O 0600 HRS	: Pulling	scraper.	***************************************		
PROGRAM - N	EXT 24 HRS	: Comp	lete scraper run,	run completion.		
TI	RANSPORTA	TION		PERSO	NNEL	PROGRAMME COSTS
TRANSPORT-1				CONTRACTOR	20	DAILY Aus\$ :
TRANSPORT-2				OPERATOR	2	CUMULATIVE Aus\$:
TRANSPORT-3				SERVICE CO	12	
FORKLIFT						REPORTED TO: Colin Stuart
WATER HAULER						REPORTED BY: W.Westman / J. Lambert
CRANE				TOTAL:	34	END OF REPORT



### **DAILY DRILLING REPORT**

RIG: OD & E 30

**PERMIT: PPL-2 OTWAY BASIN** 

DESANDER MUDCLEANER CENTRIFUGE

SHAKER SCREENS:

DATE:	23-May-99
REPORT No:	14
D.F.S:	11.55
SHOF FIT:	

TUAUSTRALIA

WELL NAME: IONA OBS 2 **STATUS @ 2400 HRS:** Rig released. DEPTH - 2400 HRS: 1,355 FORMATION: m DEPTH - PREVIOUS: HOLE SIZE: m 24 HR PROGRESS: ACCIDENTS: m NIL SAFETY MEETINGS: SOLIDS CONTROL GPM/HRS UNIT UF/OF DESILTER

WUGS Western Underground Storage Project

MUD PROPE	RTIES	ADDITIVES
DENSITY (ppg)		
VISCOSITY		
pH		·
PV / YP		
GELS 0/10		
WL API / FC (cc)		
SOLIDS %		
SAND %		
CHLORIDES		
KCL (% WT)		
MBT (ppb)		
Pm Pm/Mf		
TEMP (degC)		
HOLE VOL (bbis)		
SURFACE VOL (bbls)		
HOLE LOSSES (bbls)		
MUD CO	Baroid	
MUD ENGINEER	T. Aung	

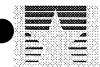
PUMPS	1	2
TYPE	PZ-8	PZ-8
STROKE	8"	8"
LINER	6"	6"
SPM		
PRESSURE		
GPM		
AV (DP - ft/min)		
AV (DC - ft/min)		
SPR		
SPR PRESS		

140 x 110

140

		BIT DATA	
	BIT No.		
	SIZE (ins)		
	TYPE		
	IADC CODE		
	SERIAL No.		
	NOZZLES		
)	OUT (m)		
	IN (m)		
	DRILLED (m)		
	HOURS		
	CONDITION		
	AVG ROP (m/hr)		
	WOB (x1000 lbs)		
	RPM		
	JET VEL (ft/sec)		
	HHP @ BIT		

	SURVEYS	
DEPTHS	inc (deg)	Azimuth
MD/(TVD)		


FO	RMATION DATA
TRIP GAS (%)	
CONN.GAS (%)	
B.GAS (%)	
P.PRESS (ppg)	
ECD (ppg)	

BHA.:			
•••			
•••			
•••			
BHA WEIGHT :	lbs	STRING WT.:	lbs
-			
-			
DP RATING :	lbs - 'G' Grade	MARGIN:	lbs @ 75%
DP RATING :	lbs - 'S' Grade	MARGIN :	lbs @ 75%
TORQUE ON BTM :	amps	DRAG UP :	lbs
TORQUE OFF BTM :	amps	DRAG DOWN:	lbs

KB - GL (m):	4.98
SHOE DEPTH:	1,355
LAST CASING:	4 1/2"
IN	VENTORY
BARITE	SX
GEL	sx
CEMENT	SX
SALT	SX
	SX
DRILLWATER	bbl
DIESEL FUEL	15,000 Its

DRILLS / BOI	17/05/99
LAST BOP DRILL	19-May-99
LAST FIRE DRILL	
LAST ABN.RIG DRILL	
LAST BOP TEST	14-May-99
NEXT BOP TEST	22-May-99
DAYS SINCE LAST LTA	106

TIME ANALYSIS	3
1. MOVE RIG	
2. RIG UP	
3. DRILLING	
4. BIT TRIP	
5. WIPER TRIP	
6. SURVEY	
7. CIRC / COND	
8. CHANGE BHA	
9. CASE & CEMENT	
10. WELLHEA w/ bushing	
11. BOP'S	
12. L.O.T.	
13. CORING	
14. LOGGING	
15. REAM / WASH	
16. FISH / STUCK	
17. LOSS CIRC	
18. KICK CONTROL	
19 COMPLETION	
20. REP. SUBSURFACE	
21. REP. SURFACE	
22. WELL TEST	
23. W.O. WEATHER	
24. WAIT - cement	
25. ABANDON / SUSP	
26. RIG DOWN	
27. W.O. CEMENT	
28. DRILL CEMENT	
29. RIG SERVICE	
30. SLIP & CUT LINE	
TOTAL	
CONTI	NUED 12



DAILY DRILLING REPORT RIG: OD & E 30

DATE: REPORT No:

D.F.S:

23-May-99 14 11.55

WELL NAME ALIA IONA OBS 2

**PERMIT: PPL-2 OTWAY BASIN** STATUS @ 2400 HRS: Rig released

FROM	TO	888 <i>2</i>		2	4 HOUR SU	MMARY							
00:00	8:00	8		craper run, work scraper from 1340 upto 1292 m. pulled out laying down pipe.									
8:00	11:00	3		icked up & made up completion packer assembly, Rigged up and ran in with schlumberger.									
		<u> </u>	Set packer at 1	t packer at 1304 m. Pulled out rigged down schlumberger.									
11:00	3:30	2.5		vam completion st			7						
3:30	20:00	6.5		o completion tubing, spaced out, latched in & landed with 12000 lbs compression.									
			Installed B.P.V.										
20:00	23:00	3	Nippled down B	OP.									
23:00	24:00	1		nass tree, pressure	e tested seal	s to 3000 psi.	RELEASED	RIG 24:00 h	nrs.				
								<del></del> -					
	·												
							DOV	VNHOLE TO	OLS				
							Hours	Serial No.	Tool				
<del></del>													
			Incidents in last										
	<u> </u>	ļ	( If yes see sep	arate report)									
				···									
		ļ											
	<u> </u>						ļ						
··· ·													
·	ļ	ļ	<u> </u>										
	<b></b>		- Weather :	Rain									
		<u> </u>	1				L						
FORMATION 1	TOPS:				••••••	***************************************	<del></del>						
OPERATION 1	TO 0600 HRS	Riggin	g down		······································	***************************************	······································	······					
						***************************************		***************************************	······································				
						<del></del>							
PROGRAM - N	IEXT 24 HRS	: Rig re	leased.										
				_		800000000000000000000000000000000000000							
	RANSPORTA	TION		PERSON				ME COSTS					
TRANSPORT-1	<del> </del>			CONTRACTOR	20	DAILY Aus							
TRANSPORT-2	_			OPERATOR	2	CUMULAT	VE Aus\$ :						
TRANSPORT-3				SERVICE CO	15								
FORKLIFT	1					REPORTE		Colin Stuart					
WATER HAULER						REPORTE	D BY :	<del></del>	n / J. Lambert				
CRANE	l		i	TOTAL:	37			END	OF REPORT				

# **APPENDIX 2 Definitive Survey by Sperry Sun/Gyrodata**

Continued..



# Sperry-Sun Drilling Services

Survey Report for Iona Obs #2 : Definitive EMS Survey Definitive Survey Report

Surveys from 620.40m to 1351.50m MD were Electronic Multishot surveys. Surveys down to 620.40m MD were recorded as inclination only surveys.

Iona Obs #2

Comment

### Western Underground Gas Storage Pty. Ltd.

Vertical Section (m)	0.00	-0.11	-0.18	-0.25	-0.30	-0.39	-0.43	-0.49	-0.55	-0.61	-0.69	-0.76	-0.80	-0.83	-0.87	-0.92	-0.98	-1.11	-1,10	-1.03	90 0	0.90	-0.82	-0.62	-0.32	-0.04
Dogleg Rate (*/30m)		0.167	0.104	0.000	0.104	0.000	0.000	0.104	0.00	0.000	0.104	0 208	0.000	0.104	0.208	0.208	0.052	0.104	0.564	0.148	9	0.149	0.260	0.357	0.112	0.133
rdinates Eastings (m)	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216 00 E	677216.00 E	677215.96 E	677215.89 E	7 60	5//215.63 E	677215.69 E	677215.51 E	677215.27 E	677215.04 E
Global Coordinates Northings Eastin (m) (m)	5728778.20 N	5728778.45 N	5728778.63 N	5728778.78 N	5728778.90 N	5728779.11 N	5728779.21 N	5728779.33 N	5728779.48 N	5728779.64 N	5728779.81 N	5728779.96 N	5728780.06 N	5728780.14 N	5728780.24 N	5728780 34 N	5728780 49 N	5728780 79 N	5728780 87 N	5728780.84 N		5728/80.81 N	5728780.77 N	5728780.68 N	5728780.47 N	5728780.33 N
dinates Eastings (m)	0.00 E	0 00 E	0.00 E	H 00 0	о 1 и	0.00	0.00	0.11 W		0.17 W	0.31 W	0.49 W	0.73 W	0.96 W												
Local Coordinates Northings Eastii (m) (m	0.00 N	0.25 N	0.43 N	0.58 N	0.70 N	N 16.0	1.01 N	1.13 N	1.28 N	1.44 N	1.61 N	1.76 N	1 86 N	N 76 L	2.04 N	N 77 C	7 7 7	N 67.7	N 29 C	2.67 N	i	2.61 N	2.57 N	2.48 N	2.27 N	2.13 N
Vertical Depth (m)	00.00	72.00	100.90	129.80	158.60	216.30	245.20	274.10	302.90	331.80	360 60	389.50	418.40	447.20	476.10	00 70	504.09	502.09	640.39	678 09	5	706.99	735.79	762.69	795 49	822.39
Sub-Sea Depth (m)	-109.48	-37.48	-8.58	20.32	49.12	106.82	135.72	164 62	193.42	222.32	251 12	280.02	308.02	337.72	366.62	100	395.41	453.21	500.91	539.71 568.61	- 0.00	597.51	626.31	653.21	686.01	712.91
Azim.	0.000	0000	0000	0000	0.00	000	000.0	000.0	000	000.0	000	000.0	000.0	000.0	0.000	0	0.000	0.000	0.00.0	234.603	670.003	234.003	264.603	224 803	232 203	243.603
Incl.	0000	0.400	300	0300	0.200	0000	0.200	0.300	0.300	0.300	007	0.400	0.200	0.200	0.300		0.100	0 200	0.400	0.200	20-0	0.200	0.400	0.500	0.000	0.600
Measured Depth (m)	00 0	72.00	100 90	129.80	158 60	216 30	246.20	243.20	202 90	331.80	00000	380.60	369 30	416.40	447.20		504.90	562.70	620.40	649 20	01879	707 00	735 RO	76.2.70	705.50	822 40

Continued...

# Sperry-Sun Drilling Services

Survey Report for Iona Obs #2 : Definitive EMS Survey

Definitive Survey Report

Surveys down to 620.40m MD were recorded as inclination only surveys. Surveys from 620.40m to 1351.50m MD were Electronic Multishot surveys.

Iona Obs #2

estern Underground Gas Storage Pty. Ltd.	
Wes	long

Comment			Top C1 Top C2	D Extrapolation to TD
Vertical Section (m)	0.28 0.54 1.00 1.29 2.29	2.64 3.03 3.45 4.32 4.75	5.28 5.58 T 5.61 5.70 T 5.86	5.90 D 6.13 6.17 E
Dogleg Rate (*/30m)	0.173 0.368 0.125 0.115	0.111 0.245 0.280 0.062 0.212	0.469 0.313 0.313 0.001	0.106 0.106 0.000
ordinates Eastings (m)	677214.76 E 677214.57 E 677214.24 E 677214.01 E 677213.23 E	677213.00 E 677212.73 E 677212.43 E 677211.86 E 677211.59 E	677211.21 E 677210.93 E 677210.91 E 677210.83 E 677210.69 E	677210.66 E 677210.46 E 677210.43 E
Global Coordinates Northings Eastin (m) (m)	5728780.15 N 5728779.95 N 5728779.58 N 5728779.39 N 5728778.68 N	5728778.36 N 5728778.03 N 5728777.66 N 5728776.84 N 5728776.41 N	5728775.99 N 5728775.85 N 5728775.84 N 5728775.79 N 5728775.72 N	5728775.70 N 5728775.58 N 5728775.56 N
rdinates Eastings (m)	1.24 W 1.43 W 1.76 W 1.99 W	3.00 W 3.27 W 3.57 W 4.14 W	4.79 W 5.07 W 5.09 W 5.17 W 5.31 W	5.34 W 5.54 W 5.57 W
Local Coordinates Northings Eastir (m)	1.95 N 1.75 N 1.38 N 1.19 N 0.48 N	0.16 N 0.17 S 0.54 S 1.36 S 1.79 S	2.21 S 2.35 S 2.36 S 2.41 S 2.48 S	2.50 S 2.62 S 2.64 S
Vertical Depth (m)	851.29 880.09 937.88 966.68	1082.07 1110.97 1139.87 1197.56 1226.35	1264.85 1291.20 1293.75 1304.30	1327.10 1351.44 1354.94
Sub-Sea Depth (m)	741.81 770.61 828.40 857.20 944.00	972.59 1001.49 1030.39 1088.08	1155.37 1181.72 1184.27 1194.82	1217.62 1241.96 1245.46
Azim.	231.803 211.503 227.203 237.803 219.603	212.003 226.503 211.303 218.103 206.403	243.403 241.064 240.703 240.666 240.603	240.225. 238.503 238.503
Incl.	0.700 0.400 0.600 0.600 0.800	0 800 0.900 1.000 1.000	0.800 0.526 0.500 0.500 0.500	0.515 0.600 0.600
Measured Depth (m)	851 30 880.10 937.90 966.70	1082 10 1111.00 1139.90 1197.60 1226.40	1264.90 1291.25 1293.80 1304.35 1322.70	. 1327.15 1351.50 1355.00



# Sperry-Sun Drilling Services

Survey Report for Iona Obs #2 : Definitive EMS Survey

Definitive Survey Report

Surveys down to 620.40m MD were recorded as inclination only surveys. Surveys from 620.40m to 1351.50m MD were Electronic Multishot surveys.

Iona Obs #2

Western Underground Gas Storage Pty. Ltd.

ona

All data is in metres unless otherwise stated. Directions and coordinates are relative to Grid North. Vertical depths are relative to RTE. Northings and Eastings are relative to Well.

Grid Convergence at Surface is -1.269° Magnetic Convergence at Surface is -12.203° (25-May-99) Coordinate System is UTM Zone 54S on Australian Datum 1984, Meters.

The Dogleg Severity is in Degrees per 30m.

Vertical Section is from Well and calculated along an Azimuth of 244.632° (Grid).

Based upon Minimum Curvature type calculations, at a Measured Depth of 1355.00m., The Bottom Hole Displacement is 6.17m., in the Direction of 244.632° (Grid).

,

Continued...



Iona Obs #2

# Sperry-Sun Drilling Services

Survey Report for Iona Obs #2 : Definitive EMS Survey

Definitive Survey Report Surveys down to 620.40m MD were recorded as inclination only surveys. Surveys from 620.40m to 1351.50m MD were Electronic Multishot surveys.

### Western Underground Gas Storage Pty. Ltd.

rdinates	Eastings (m)	677216.00 E	6//216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677216.00 E	677215.96 E	677215.89 E	677215.83 E	677215.69 E	677215.51 E	677215.27 E	677215.04 E										
Global Coordinates	Northings (m)	5728778.20 N	5728778.45 N	5728778.63 N	5728778.78 N	5728778.90 N	5728779.11 N	5728779.21 N	5728779.33 N	5728779.48 N	5728779.64 N	5728779.81 N	5728779.96 N	5728780.06 N	5728780.14 N	5728780.24 N	5728780.34 N	5728780.49 N	5728780.79 N	5728780.87 N	5728780.84 N	5728780.81 N	5728780.77 N	5728780.68 N	5728780.47 N	5728780.33 N
oordinates	Longitude	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143,03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03426° E	143.03425° E	143.03425° E	143.03425° E	143.03425° E	143.03425° E	143.03425° E
Geographic Coordinates	Latitude	38.57166°S	38.57166°S	38.57166°S	38.57165°S	38.57165°S	38.57165° S	38.57165° S	38.57165° S	38.57165° S	38.57165° S	38.57165° S	38.57164° S	38.57164° S	38 57164° S	38.57164° S	38 57164° S	38 57164° S	38.57164° S	38.57164° S	38.57164° S	38.57164° S	38.57164° S	38.57164° S	38.57164° S	38.57164°S
dinates	Eastings (m)	0 00 E	0.00 E	0.00 E	0.00 E	0.00 E	0.00 E	3000	3000	000	0.00 E	3000	3 00 O	H 00 0	1 00 0	0.00 E	7000	о 1 и	1 00 C	0 04 W	0.11 W	0 17 W	0.31 W	0 49 W	0 73 W	0.96 W
Local Coordinates	Northings (m)	N 00.0	0.25 N	0.43 N	0.58 N	N 02.0	N 16 C	N 10 1	1 × 1	1 28 N	1.44 N	Z	7 25 K	1.0.1 N.0.1	1 20 F	2.04 N	2.2	N 00 C	N 63.7	2.53 N	2.64 N	N 19 C	2 57 N	2.48 N	2.7 N	2.13 N
Vertical	Depth (m)	0.00	22 00	100.90	129.80	158.60	216 30	245.30	27.27	302.00	331.80	09 096	380.60	369.30	4 10.40	447.20	00 703	204.09	507.09	640.40	678.09	206 90	735 79	762.69	705.49	822.39
	Azim.	0000	0000	0000	0000	0.000	000	000.0	000.0	000.0	0000		0.000	000.0	0.000	000.0		0.000	0.000	0.000	276.603	234.003	254.003	204.003	227.303	243.603
	Incl.	000	0.400	300	0300	0.200		0.200	0.700	0.00	0.300		0.400	0.200	0.200	0.100		00.100	0.200	0.400	0.200		0.200	0.400	0000	0.600
	Depth (m)	000	23.00	100.90	129.80	158.60	000	216.30	245.20	202.00	331.80		360.60	389.50	418.40	447.20		504.90	562.70	620.40	649.20 678.10	000	00.707	755.80	0/79/	795.50 822.40

Continued.



# Sperry-Sun Drilling Services

Survey Report for Iona Obs #2 : Definitive EMS Survey Definitive Survey Report

Surveys from 620.40m to 1351.50m MD were Electronic Multishot surveys. Surveys down to 620.40m MD were recorded as inclination only surveys.

Iona Obs #2

### Western Underground Gas Storage Pty. Ltd.

inates Eastings (m)	577214.76 E 577214.57 E 577214.24 E 577214.01 E	577213.00 E 577212.73 E 577212.43 E 577211.86 E	577211.21 E 577210.91 E 577210.69 E 577210.46 E
ordinate Eas'	6772 6772 6772 6772 6772	6772 6772 6772 6772 6772	6772 6772 6772 6772 6772
Global Coordinates Northings Eastin (m) (m)	5728780.15 N 5728779.95 N 5728779.58 N 5728779.39 N 5728778.68 N	5728778.36 N 5728778.03 N 5728777.66 N 5728776.84 N 5728776.41 N	5728775.99 N 5728775.84 N 5728775.72 N 5728775.78 N 5728775.58 N
oordinates Longitude	143.03424° E 143.03424° E 143.03424° E 143.03423° E 143.03422° E	143.03422° E 143.03422° E 143.03422° E 143.03421° E 143.03421° E	143.03420° E 143.03420° E 143.03420° E 143.03419° E
Geographic Coordinates Latitude Longitu	38.57164° S 38.57164° S 38.57165° S 38.57165° S 38.57166° S	38.57166° S 38.57166° S 38.57167° S 38.57167° S 38.57168° S	38.57168° S 38.57168° S 38.57168° S 38.57168° S 38.57169° S
rdinates Eastings (m)	1.24 W 1.43 W 1.76 W 1.99 W 2.77 W	3.00 W 3.27 W 3.57 W 4.14 W 4.41 W	4.79 W 5.09 W 5.31 W 5.54 W 5.57 W
Local Coordinates Northings Eastin (m)	1.95 N 1.75 N 1.38 N 1.19 N	0.16 N 0.17 S 0.54 S 1.36 S 1.79 S	2.21 S 2.36 S 2.48 S 2.62 S 2.64 S
Vertical Depth (m)	851.29 880.09 937.88 966.68 1053.48	1082.07 1110.97 1139.87 1197.56 1226.35	1264.85 1293.75 1322.65 1351.44 1354.94
Azim.	231.803 211.503 227.203 237.803 219.603	212.003 226.503 211.303 218.103 206.403	243.403 240.703 240.603 238.503 238.503
Incl.	0.700 0.400 0.600 0.600 0.800	0.800 0.900 1.000 1.000	0.800 0.500 0.500 0.600 0.600
Measured Depth (m)	851.30 880.10 937.90 966.70 1053.50	1082.10 1111.00 1139.90 1197.60 1226.40	1264.90 1293.80 1322.70 1351.50 1355.00

All data is in metres unless otherwise stated. Directions and coordinates are relative to Grid North. Vertical depths are relative to RTE. Northings and Eastings are relative to Well.

Grid Convergence at Surface is -1.269° Magnetic Convergence at Surface is -12.203° (25-May-99) Coordinate System is UTM Zone 54S on Australian Datum 1984, Meters.

Based upon Minimum Curvature type calculations, at a Measured Depth of 1355.00m., The Bottom Hole Displacement is 6.17m., in the Direction of 244.632" (Grid)

- 5



# Sperry-Sun Drilling Services

Survey Report for Iona Obs #2 : Definitive EMS Survey

Definitive Survey Report

Surveys down to 620.40m MD were recorded as inclination only surveys. Surveys from 620.40m to 1351.50m MD were Electronic Multishot surveys.

Iona Obs #2

Western Underground Gas Storage Pty. Ltd. Iona

### Comments

	Comment		Extrapolation to TD
inates	Eastings	(E)	5.57 W
Station Coordinates	Northings	(m)	2.64 S
Sta	TVD	(E)	1354.94
Measured	Depth	(m)	1355 00

### Formation Tops

Formation Name	Top C1 Top C2 D
	5.07 W 5.17 W 5.34 W
Northings (m)	2.35 S 2.41 S 2.50 S
Sub-Sea Depth (m)	1181.72 1194.82 1217.62
Vertical Depth (m)	
Measured Depth (m)	1291.25 1304.35 1327.15

APPENDIX 3
Cuttings Descriptions

Depth (mRT)	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
(,	(75)	Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
640	90	ARENACEOUS CLAYSTONE: medium to dark greenish grey to brownish grey in part, firm to moderately hard, abundant quartz silt to fine sand, nil to trace carbonaceous specks, minor to common glauconite pellets oxidised and ferruginised in part, trace to minor nodular pyrite, trace to rare mica flakes, trace skeletal fragments, slightly calcareous.
	10	SANDSTONE: light grey to light brownish grey, clear to translucent grains, unconsolidated, loose, predominantly medium to coarse grains, sub angular to sub rounded occasionally rounded and polished with ferruginous staining, low to moderate sphericity, moderate to well sorted quartz, trace to rare nodular pyrite, good to excellent inferred porosity. No shows.
		Note: 10 percent cement contamination
650	70	ARENACEOUS CLAYSTONE: as above
	30	SANDSTONE: as above
		Note: 10 percent cement contamination
654	80	SANDSTONE: light grey to light brownish grey, clear to translucent grains, unconsolidated to friable, predominantly medium occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, rare to minor multicoloured, orange, blue, hard lithic volcanic? and siliceous grains, trace to rare nodular pyrite, nil to trace calcareous, moderate to good inferred porosity. No fluorescence.
	20	ARENACEOUS CLAYSTONE: as above
657	70	SANDSTONE: as above
	30	<u>CLAYSTONE:</u> medium to light grey to brownish grey, very soft, dispersive, minor to common silt, minor very fine sand, minor pyritized coal specks, trace to rare mica
663	80	SANDSTONE: as above, predominantly very coarse, minor to common (>15 percent) lithics
	20	CLAYSTONE: as above
670	90	SANDSTONE: as above
1.	10	CLAYSTONE: as above
	tr	COAL: black, soft
680	80	SANDSTONE: as above, 10 percent multicoloured volcanic lithics
1	20	CLAYSTONE: as above

Depth (mRT)	Lithol. (%)	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
690	90	<b>SANDSTONE:</b> as above, 10 to 15 percent multicoloured volcanic lithics
	10	CLAYSTONE: as above
700	90	SANDSTONE: light grey to light brownish grey, clear to translucent grains, unconsolidated to friable, predominantly coarse grains grading to granule, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, trace to rare multicoloured, orange, blue, hard lithic volcanic? and siliceous grains, trace to rare nodular and cement pyrite, trace to rare brown mica, nil to trace calcareous, moderate to good inferred porosity. No fluorescence.
	10 tr	<u>CLAYSTONE</u> : medium to light grey to brownish grey, very soft, dispersive, minor to common silt, minor very fine sand, minor pyritized coal specks, trace to rare mica
		COAL: black, soft, pyritized
710	80	SANDSTONE: as above, grading to granule, abundant multicoloured grains
	20	CLAYSTONE: as above
720	90	<b>SANDSTONE:</b> as above, grading to granule, minor multicoloured grains
	10	CLAYSTONE: as above
730	90	SANDSTONE: as above, grading to granule, 30 percent multicoloured grains
	10	CLAYSTONE: as above
740	70	<b>SANDSTONE:</b> as above, grading to granule, minor pyrite cement, 10 percent multicoloured grains
	30	CLAYSTONE: as above
750	100	<b>SANDSTONE:</b> as above, grading to granule, trace multicoloured grains
	tr	CLAYSTONE: as above
760	90	SANDSTONE: as above
	10	CLAYSTONE: as above
		COAL: black, soft
770	80	SANDSTONE: as above, 10 percent multicoloured lithics
	20	CLAYSTONE: as above
780	90	<b>SANDSTONE:</b> as above, nil to trace multicoloured lithics

Depth (mRT)	Lithol. (%)	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
	10	CLAYSTONE: as above, grading to white in part with thin carbonaceous laminations
790	80	SANDSTONE: as above
	20	CLAYSTONE: as above
800	100	SANDSTONE: light grey to light brownish grey, clear to translucent grains, unconsolidated to friable, predominantly coarse grains grading to granule, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, trace to rare nodular and cement pyrite, trace to rare brown mica, moderate to good inferred porosity. No fluorescence.
	tr	<u>CLAYSTONE:</u> medium to light grey to brownish grey, very soft, dispersive, minor to common silt, minor very fine sand, minor pyritized coal specks, trace to rare mica
810	80	SANDSTONE: as above
	20	CLAYSTONE: as above
820	70	SANDSTONE: as above, trace to rare siliceous cement
	30	CLAYSTONE: as above
830	90	SANDSTONE: as above
	10	CLAYSTONE: as above
840	80	SANDSTONE: as above
	20	CLAYSTONE: as above
850	70	SANDSTONE: as above
	30	<u>CLAYSTONE</u> : as above
850	70	SANDSTONE: as above
1	30	<u>CLAYSTONE</u> : as above
860	80	SANDSTONE: as above
	20	<u>CLAYSTONE</u> : as above
870	90	SANDSTONE: as above occasional granule to pebble
	10	CLAYSTONE: as above
880	80	SANDSTONE: as above, to occasional granule to pebble
	20	CLAYSTONE: as above

Depth (mRT)	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
	tr	COAL: black, firm, pyritized
890	70	SANDSTONE: as above, minor nodular pyrite
	30	CLAYSTONE: as above
900	60	SANDSTONE: light grey to light brownish grey, clear to translucent grains,
	40	unconsolidated to friable, predominantly coarse grains grading to granule, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to
	tr	moderately sorted quartz, trace to rare nodular and cement pyrite, trace to rare brown mica, moderate to good inferred porosity. No fluorescence.
		<u>CLAYSTONE:</u> medium to light grey to brownish grey, very soft, dispersive, minor to common silt, minor very fine sand, minor pyritized coal specks, trace to rare mica
		COAL: black, firm, pyritized
910	80	SANDSTONE: as above.
	20	CLAYSTONE: as above
920	70	SANDSTONE: as above
	30	CLAYSTONE: as above
	tr	COAL: black, firm, pyritized
930	70	SANDSTONE: light grey to light brownish grey, clear to translucent grains, unconsolidated to firable to firm in part, predominantly very fine to medium occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, minor to common white argillaceous and siliceous matrix, trace to rare nodular and cement pyrite, trace to rare brown mica, moderate to good inferred porosity. No fluorescence.
	30	CLAYSTONE: as above
940	70	SANDSTONE: as above
	30	CLAYSTONE: as above
950	70	SANDSTONE: as above
	30	CLAYSTONE: as above
960	60	SANDSTONE: as above
	40	CLAYSTONE: as above
970	60	<b>SANDSTONE:</b> as above, grading to granule

Depth (mRT)	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
		Well: lona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
	40	CLAYSTONE: as above
	tr	COAL: as above
980	70	SANDSTONE: as above, predominantly medium
	30	CLAYSTONE: as above
986	40	SANDSTONE: as above
Spot	60	CLAYSTONE: as above
988	70	SANDSTONE: as above, grading to granule
spot	30	CLAYSTONE: as above
990	40	SANDSTONE: light grey to light brownish grey, clear to translucent grains, unconsolidated to friable to firm in part, predominantly very fine to medium occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, minor to common white argillaceous and siliceous matrix, common nodular and cement pyrite, trace to rare brown mica, moderate to good inferred porosity. No fluorescence.
	60	CLAYSTONE: medium to light grey to brownish grey, very soft, dispersive, minor to common silt, minor very fine sand, minor pyritized coal specks, trace to rare mica
992 spot	60	SANDSTONE: light grey to light brownish grey, clear to translucent grains, firm to hard, predominantly very fine to fine occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, minor to common white argillaceous, common siliceous matrix, common nodular and cement pyrite, trace to rare brown mica, poor to moderate inferred porosity. No fluorescence.
	40	CLAYSTONE: as above
1000	50	SANDSTONE: as above
	50	CLAYSTONE: as above
1004	30	SANDSTONE: as above
spot	70	CLAYSTONE: as above
1006	80	CLAYSTONE: as above
spot	20	SANDSTONE: as above
1008	80	CLAYSTONE: as above

Depth (mRT)	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
spot	20	SANDSTONE: as above
1010	80	CLAYSTONE: as above
	20	SANDSTONE: as above, very fine with minor dolomitic cement, trace glauconite
1020	100 tr	CLAYSTONE: medium to light grey to brownish grey, very soft, dispersive, minor to common silt, common to abundant very fine to fine sand grading to Sandy Claystone in part, minor pyritized coal specks, trace to rare mica flakes
1020	100	SANDSTONE: as above
1030	100	SANDSTONE: as above
1040	tr	CLAYSTONE: as above
1040	100	<u>CLAYSTONE</u> : medium to light grey to brownish grey, very soft, dispersive, minor to common silt, common to abundant very fine to fine sand grading to Sandy Claystone in part, minor pyritized coal specks, trace to rare mica flakes, trace glauconite
	trace	SANDSTONE: light grey to light brownish grey, clear to translucent grains, firm to hard, predominantly very fine to fine occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, minor to common white argillaceous, common siliceous matrix, common nodular and cement pyrite, trace to rare brown mica, trace poor to moderate inferred porosity. No fluorescence.
1050	100	CLAYSTONE: as above
	tr	SANDSTONE: as above
		Note: common pipe scale contamination
1060	80	CLAYSTONE: as above
	20	SANDSTONE: as above
1070	90	CLAYSTONE: as above, common (10 percent) pyrite
	10	SANDSTONE: as above
1080	70	CLAYSTONE: as above, common (10 percent) pyrite
	20	SANDSTONE: as above
	10	<b>DOLOMITE:</b> yellowish brown to medium grey, hard, blocky, trace pyrite, trace carbonaceous, trace glauconite

Depth (mRT)	Lithol. (%)	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
1090	90	<b>CLAYSTONE:</b> as above, common (10 percent) pyrite, cavings as above
	10	<b>SANDSTONE:</b> as above, grading to medium to coarse, trace to rare glauconite
	tr	<b>DOLOMITE:</b> as above
1100	90	CLAYSTONE: as above, common (10 percent) pyrite
	10	SANDSTONE: as above
	tr	DOLOMITE: as above
1106 spot	40	<u>CLAYSTONE:</u> medium to light grey to brownish grey to greenish grey, very soft, dispersive, minor to common silt, common to abundant very fine to fine sand grading to Sandy Claystone in part, minor pyritized coal specks, trace to rare mica flakes, abundant light green dispersed glauconite
	60	SANDSTONE: light grey to light brownish grey, clear to translucent grains, firm to hard, predominantly very fine to fine occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, minor to common white argillaceous, common siliceous and dolomitic matrix, minor nodular and cement pyrite, rare glauconite, trace to rare brown mica, poor to moderate inferred porosity. No fluorescence.
1108 spot	70	CLAYSTONE: medium to light grey to brownish grey to greenish grey, very soft, dispersive, minor to common silt, common to abundant very fine to fine sand grading to Sandy Claystone in part, minor pyritized coal specks, trace to rare mica flakes, abundant light green dispersed glauconite
	30	SANDSTONE: light grey to light brownish grey, clear to translucent grains, firm to hard, predominantly very fine to fine occasionally coarse grains, sub angular to sub rounded occasionally rounded, moderate sphericity, poorly to moderately sorted quartz, minor to common white argillaceous, common siliceous and dolomitic matrix, minor nodular and cement pyrite, rare glauconite, trace to rare brown mica, poor to moderate inferred porosity. No fluorescence.
1110	90	<b>SANDY CLAYSTONE:</b> as above, light grey to greenish grey to white
spot	10	SANDSTONE: as above
1112	90	CLAYSTONE: as above, up to 40 percent white sandy claystone
spot	10	SANDSTONE: as above
1114	90	<b>CLAYSTONE:</b> as above, up to 10 percent white sandy claystone
spot	10	SANDSTONE: as above
1116	90	<b>CLAYSTONE:</b> as above, up to 20 percent white sandy claystone

Geologist: R. Blake

Danakh	1 :411	Cuttings Description Sheet
Depth (mRT)	Lithol. (%)	Western Underground Gas Storage Pty Ltd
-		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
spot	10	SANDSTONE: as above
1118	100	CLAYSTONE: as above
spot	tr	SANDSTONE: as above
1120	100	CLAYSTONE: as above
spot	tr	SANDSTONE: as above
1122	100	CLAYSTONE: as above
spot	tr	SANDSTONE: as above
1124	100	CLAYSTONE: as above, up to 20 percent white sandy claystone
	tr	SANDSTONE: as above
1126	90	CLAYSTONE: as above, up to 20 percent white sandy claystone
	10	SANDSTONE: as above
1128	90	CLAYSTONE: as above, up to 20 percent white sandy claystone
	10	SANDSTONE: as above
1130 spot	90	SANDSTONE: light greenish grey to light brownish grey grading to white, clear to translucent grains, loose to friable to sub blocky in part, predominantly very fine to fine, sub angular to sub rounded, moderate sphericity, well sorted quartz, minor to common white argillaceous matrix, nil to trace calcareous cement, common to abundant disseminated glauconite, trace to rare nodular pyrite cement, poor to moderate inferred porosity. No fluorescence.
	10	<u>CLAYSTONE</u> : medium to light grey to brownish grey to greenish grey, very soft, dispersive, minor to common silt, common to abundant very fine to fine sand grading to Sandy Claystone in part, minor pyritized coal specks, trace to rare mica flakes, abundant light green dispersed glauconite
1133	90	SANDSTONE: as above
spot	10	CLAYSTONE: as above
1140	100	SANDSTONE: as above
1150	100	SANDSTONE: as above, grading to yellowish brown
1160	100	SANDSTONE: as above
1170	100	SANDSTONE: as above
1180	90	SANDSTONE: as above, occasional coarse to granule

Depth (mRT)	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
	, ,	Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
	10	CLAYSTONE: as above, common glauconite
1190	100	SANDSTONE: as above, nil to minor argillaceous matrix
1200	100	SANDSTONE: as above, grading to glauconitic sandstone
1210	100	SANDSTONE: as above
1220	60	SANDSTONE: as above
	40	CLAYSTONE: medium to light grey to brownish grey, very soft, dispersive, minor to common silt, common to abundant very fine to fine sand grading to Sandy Claystone in part, minor pyritized coal specks, trace to rare mica flakes, trace glauconite
1222	80	CLAYSTONE: as above
spot	20	SANDSTONE: as above
1224	80	CLAYSTONE: as above
spot	20	SANDSTONE: as above
1228	90	CLAYSTONE: as above, abundant glauconite nodules
spot	10	SANDSTONE: as above
1230	70	CLAYSTONE: dark grey to brownish grey, very soft, dispersive, minor to common silt, abundant (20 to 30 percent) glauconite
	30	SANDSTONE: light greenish grey to light brownish grey grading to white, clear to translucent grains, loose to friable to sub blocky in part, predominantly very fine to fine, sub angular to sub rounded, moderate sphericity, well sorted quartz, minor to common white argillaceous matrix, nil to trace calcareous cement, common to abundant disseminated glauconite, trace to rare nodular pyrite cement, poor to moderate inferred porosity. No fluorescence.
1240	60	CLAYSTONE: as above
	40	SANDSTONE: as above
1248	80	<b>CLAYSTONE:</b> as above, grading to light brownish grey
	20	SANDSTONE: as above
		Note: change to 3 metre samples
1251	100	CLAYSTONE: as above, abundant glauconite
	tr	SANDSTONE: as above

Depth (mRT)	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd
		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
1254	100	CLAYSTONE: as above, abundant glauconite
	tr	SANDSTONE: as above
1257	100	CLAYSTONE: as above, abundant glauconite
	tr	SANDSTONE: as above
1260	100	CLAYSTONE: as above, abundant glauconite
	tr	SANDSTONE: as above
1263	100	CLAYSTONE: as above, abundant glauconite
1266	90	CLAYSTONE: as above, abundant glauconite
	10	SANDSTONE: as above
1269	80	CLAYSTONE: as above, abundant glauconite
	20	SANDSTONE: as above
1272	60	CLAYSTONE: as above, abundant glauconite
	40	SANDSTONE: as above
1275	70	CLAYSTONE: as above, abundant glauconite
	30	SANDSTONE: as above, predominantly very fine to fine
1278	70	CLAYSTONE: dark grey to brownish grey, very soft, dispersive, minor to common silt, abundant (20 to 30 percent) glauconite
	30	SANDSTONE: light greenish grey to light brownish grey grading to white, clear to translucent grains, loose to friable to sub blocky in part, predominantly very fine to fine, occasionally rounded, polished, very coarse to granule, sub angular to sub rounded, moderate sphericity, well sorted quartz, minor to common white argillaceous matrix, nil to trace calcareous cement, common to abundant disseminated glauconite, trace to rare nodular pyrite cement, poor to moderate inferred porosity. No fluorescence.
1281	60	CLAYSTONE: as above, abundant glauconite
	30	SANDSTONE: as above
	10	<b>DOLOMITE:</b> greyish orange to dark yellowish orange, hard, cemented, conchoidal fracture
1284	70	CLAYSTONE: as above, abundant glauconite
	20	SANDSTONE: as above

Donth	Lithal	Cuttings Description Sheet
Depth (mRT)	Lithol. (%)	Western Underground Gas Storage Pty Ltd
		Well: Iona Obs-2 Permit: PPL-2
		6" Hole Section (629 – 1355 mRT)
	10	<b>DOLOMITE:</b> as above
1287	90	CLAYSTONE: as above, abundant glauconite
	10	SANDSTONE: as above
	tr	DOLOMITE: as above
1290	80	CLAYSTONE: as above, abundant glauconite
	20	SANDSTONE: light brownish grey to very light grey, fine to coarse, dominantly medium clear quartz, moderately to well sorted, subangular to subrounded, firm to friable, predominantly loose and unconsolidated, trace pyrite, excellent porosity, No shows.
	tr	COAL: black, moderately hard, brittle, abundant pyrite
1291 spot	60	SANDSTONE: light brownish grey to very light grey, fine to coarse, dominantly medium clear quartz, moderately to well sorted, subangular to subrounded, firm to
		friable, predominantly loose and unconsolidated, trace pyrite, excellent porosity
	20	Fluorescence: 5 percent, light blue, no cut, associated with coal fragments
	20	CLAYSTONE: medium to dark grey, firm, minor to common silt, minor to common coal specks, rare mica flakes, rare to minor pyrite
	20	COAL: black, moderately hard, brittle, abundant pyrite
1293	60	SANDSTONE: light brownish grey to very light grey, fine to coarse, dominantly medium clear quartz, moderately to well sorted, subangular to subrounded, firm to friable, predominantly loose and unconsolidated, trace pyrite, excellent porosity, No shows.
	30	<u>CLAYSTONE:</u> medium to dark grey, firm, minor to common silt, minor to common coal specks, rare mica flakes, rare to minor pyrite
	10	COAL: black, moderately hard, brittle, abundant pyrite
1296	90	<b>SANDSTONE:</b> as above, grading to very coarse to granule
	10	CLAYSTONE: as above
	tr	COAL: as above
1297	90	<b>SANDSTONE:</b> as above, grading to very coarse to granule
spot	10	CLAYSTONE: as above
	tr	COAL: as above
1299	90	SANDSTONE: as above, grading to very coarse to granule

Geologist: R. Blake

Depth	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd		
(mRT) (%)		Western Onderground Gas Storage Tty Ltd		
		Well: Iona Obs-2 Permit: PPL-2		
		6" Hole Section (629 – 1355 mRT)		
	10	CLAYSTONE: as above		
1301	100	SANDSTONE: as above, grading to very coarse to granule		
spot	tr	CLAYSTONE: as above		
1302	90	SANDSTONE: as above, grading to very coarse to granule		
B.U.	10	CLAYSTONE: as above		
1305	90	SANDSTONE: as above, grading to very coarse to granule		
	10	CLAYSTONE: as above		
1308	30	SANDSTONE: as above, grading to very coarse to granule		
	70	CLAYSTONE: as above, common carbonaceous laminations		
1311	70	SANDSTONE: as above		
	30	<u>CLAYSTONE</u> : medium light grey to dark greenish grey to white to firm, rare to minor quartz silt, minor to common very fine sand, laminated with Arenaceous Claystone, white with black carbonaceous laminations, trace to rare disseminated and nodular glauconite, common coal specks, rare mica, trace to minor nodular pyrite		
1314	60	SANDSTONE: as above, abundant white argillaceous matrix		
	40	CLAYSTONE: as above,		
1317	60	SANDSTONE: light brownish grey to very light grey, fine to coarse, dominantly medium clear quartz, moderately to well sorted, subangular to subrounded, firm to friable, predominantly loose and unconsolidated, trace pyrite, poor to moderate porosity, No shows.		
	40	<u>CLAYSTONE:</u> medium light grey to dark grey to white, firm, rare to minor quartz silt, minor to common very fine sand, laminated with Arenaceous Claystone, white with black carbonaceous laminations, trace to rare disseminated and nodular glauconite, common coal specks, rare mica, trace to minor nodular pyrite		
1320	50	<b>SANDSTONE:</b> as above, with abundant white argillaceous matrix		
	50 CLAYSTONE: as above grading to SILTY CLAYSTONE			
1323	30	SANDSTONE: as above		
	70	SILTY CLAYSTONE: as above		
1326	20	SANDSTONE: as above		

Depth (mRT)	Lithol.	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd		
(	(75)	Well: Iona Obs-2 Permit: PPL-2		
		6" Hole Section (629 – 1355 mRT)		
	80	SILTY CLAYSTONE: as above		
1329	80	SANDSTONE: as above, rare to minor argillaceous matrix, excellent inferred porosity		
	20	SILTY CLAYSTONE: as above		
1332	20	SANDSTONE: as above		
	80	SILTY CLAYSTONE: as above		
1335	20	SANDSTONE: as above		
	80	SILTY CLAYSTONE: as above		
1338	40	SANDSTONE: as above		
	60	SILTY CLAYSTONE: as above		
1341	10	SANDSTONE: as above		
	90	SILTY CLAYSTONE: as above, abundant carbonaceous laminations		
1344	20	SANDSTONE: as above		
	80	SILTY CLAYSTONE: as above		
1347	10	SANDSTONE: as above		
	90	SILTY CLAYSTONE: as above, predominantly white with argillaceous matrix		
1350	10	SANDSTONE: as above		
	90	SILTY CLAYSTONE: as above, predominantly white with argillaceous matrix		
1353	60	SANDSTONE: as above, predominantly fine to medium		
	40	SILTY CLAYSTONE: as above, predominantly white with argillaceous matrix		
1355	40	SANDSTONE: as above		
B.U.	60	SILTY CLAYSTONE: as above, predominantly white with argillaceous matrix		

Geologist: R. Blake

Depth (mRT)	Lithol. (%)	Cuttings Description Sheet Western Underground Gas Storage Pty Ltd				
		Well:	Iona Obs-2	Permit:	PPL-2	
		6" Hole Sec	tion (629 – 1355 mRT)			

TD of 6" hole section 1355 mRT reached at 19:45 hrs 19 May 1999

A DDENINIV A
APPENDIX 4  Well Seismic Edit and Geogram Report by Schlumberger Seaco

### Schlumberger GeoQuest

### WESTERN UNDERGROUND GAS STORAGE IONA OBS-2 REPORT

### WELL SEISMIC EDIT AND GEOGRAM

FIELD : IONA

COUNTRY: AUSTRALIA

COORDINATES : 143 20 '3.3684 " E

38 34'25.1724" S

LOCATION : VICTORIA

DATE OF VSP SURVEY : 20-MAY-1999

REFERENCE NO. : 561291

August 1999

### IONA OBS-1 Borehole Seismic

INTRODUCTION	4
DATA ACQUISITION	5
WELL SEISMIC EDIT	6
DATA QUALITY	6
TRANSIT TIME MEASUREMENT	
CORRECTION TO DATUM	6
SONIC CALIBRATION PROCESSING	7
SONIC CALIBRATION	/ 8
OPEN HOLE LOGS	
SONIC CALIBRATION OUTPUT	10
GEOGRAM PROCESSING	
DEPTH TO TIME CONVERSION	11
PRIMARY REFLECTION COEFFICIENTS	11
PRIMARIES WITH TRANSMISSION LOSS	11
PRIMARIES PLUS MULTIPLES	12
MULTIPLES ONLY	12
WAVELET	12
POLARITY CONVENTION	12
CONVOLUTION	12
A Summary of Geophysical Listings	13
A duffilliary of Goophiyologi Eletingerini	

### IONA OBS-2 Borehole Seismic

### **List of Figures**

Figure 1 Polarity Convention

### **List of Enclosures**

Plot 1	Z Median Stack
Plot 2	Composite Display (Normal Polarity)
Plot 3	Composite Display (Reversed Polarity)
Plot 4	Velosity Crossplot
Plot 5	Drift corrected Sonic
Plot 6	Composite Display (Normal Polarity 1s : 50 cm)
Plot 7	Composite Display (Reversed Polarity 1s: 50 cm)

### **Summary of Geophysical Listings**

Well Seismic Report
Drift & Sonic Adjustment
Time to Depth Report
Velocity Report

### IONA OBS-2 Borehole Seismic

### Introduction

Checkshot data was acquired with the Seismic Acquisition Tiool (SAT-A) in the IONA OBS-2 vertical onshore well on the 20th of MAY 1999. The IONA OBS-2 well is operated by **WESTERN UNDERGROUND GAS STORAGE**. A SM4 was used as the downhole geophone and the air gun (200 cu. in) was used as the source.

Processing of the data consisted of loading the raw data, editing bad shots, picking transit times, stacking and then applying corrections to Seismic Reference Depth (SRD) which in this case is at Mean Sea Level (MSL).

### CONVENTION.

In the plots, each processing step is displayed according to the SEG normal polarity convention (1976) whereby an upgoing compressional wave, reflected by an increase of acoustic impedance with depth, is displayed as a white trough.

### **Data Acquisition**

### Table 1. Survey Parameters

Elevation of KB Elevation of DF Elevation of GL	109.48m above MSL 109.18 m above MSL 104.5 m above MSL
Level Interval Energy Source Source Offset Source Depth Reference Sensor Hydrophone Offset Hydrophone Depth Source & Hyd. Azimuth	109.5-1355.0 VD MSL Air gun 21m 101.5 m above MSL Reference hydrophone 21 m 102 m above MSL 263 Degrees
Tool Type Tool Combination Number of Axis Geophone Type Sampling Rate Recording Time	200 cu. in. air gun Stand Alone 3 SM-4 1.0 ms 3.0 s
Acquisition Unit Recording Format	DLIS

### WELL SEISMIC EDIT

Each shot of the raw geophone data was evaluated and edited as necessary.

The good shots at each level were stacked, using a median stacking technique, to increase the signal to noise ratio of the data. The transit time of each trace was recomputed after stacking. Stacked Z component is displayed in Plot 1.

### Data Quality

The overall quality of the data is good.

### Transit Time Measurement

The transit time measured, Delta t, corresponds to a difference between arrivals recorded by surface and downhole sensors. The reference time (zero time) is the physical recording of the source signal by accelerometers (fire pulse) on the gun or sensors positioned near the source (reference hydrophone and surface geophone). In this case, the reference hydrophone was used as the reference. First break picking algorithms were used on both the reference hydrophone and the downhole geophone.

### Correction to Datum

Seismic Reference Datum (SRD) is at Mean Sea Level (MSL).

The source was positioned in the pit at 21 m, 263 degrees from the wellhead. elevation is 101.5 m above MSL. The surface velocity (1617 m/s) from the gun to MSL was calculated using an uphole survey, supplied by the client.

### Geophysical Airgun Report

The Geophysical Airgun Report listing contains all downhole seismic measurements obtained by analyzing stacked shots.

The level number, corresponding KB and SRD depth, observed (non-vertical) transit times and corrected (vertical) transit times from the source and from SRD are listed. Also included are average velocities between SRD and geophone together with level separation and corresponding transit times and finally interval velocities between levels. Vertical transit times have been corrected for the effects of geometry. The interval velocities listed are those computed from corrected (i.e. vertical) transit times.

### **Sonic Calibration Processing**

### Sonic Calibration

The aim of the sonic calibration is to reconcile seismic (checkshot) times and integrated sonic times for any given depth in a well. In the presence of checkshot data with scatter, the calibration always adjusts the sonic integrated times to match smoothed checkshot times.

A drift curve is determined by comparing an integrated sonic log transit time and vertical check shot times. The term drift is defined as the seismic time (from check shots) minus the sonic time (from integration of edited sonic). Commonly the word drift is used to identify the difference between sonic and seismic measurements either between two or more levels or over different zones in a well.

For a negative drift,  $\frac{\Delta Drift}{\Delta Depth}$  < 0 the sonic time is greater than the seismic time over a certain section of the log.

For a positive drift,  $\frac{\Delta Drift}{\Delta Depth} > 0$  the sonic time is less than the seismic time over a certain section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic or an indication of the amount of correction required on the sonic to have the TTI of the corrected sonic match the check shot times.

Two methods of correction to the sonic log are used.

- 1. Uniform or block shift. This method applies a uniform correction to all the sonic values over the interval. This uniform correction is applied in the case of positive drift and is the average correction represented by the drift curve gradient expressed in usec/ft.
- 2.  $\Delta T$  Minimum. In the case of negative drift a second method is used, called  $\Delta T$  minimum. This applies a differential correction to the sonic log, where it is assumed that the greatest amount of transit time error is caused by the lower velocity sections of the log. Over a given interval the method will correct only  $\Delta t$  values which are higher than a threshold, the  $\Delta t_{min}$ . Values of  $\Delta t$  which are lower than the threshold are not corrected. The correction is a reduction of the excess of  $\Delta t$  over  $\Delta t_{min}$ .  $\Delta t$   $\Delta t_{min}$ .

 $\Delta t$  -  $\Delta t_{\text{min}}$  is reduced through multiplication by a reduction coefficient which remains constant over the interval. This reduction coefficient, named G, can be defined as:

$$G = 1 + \frac{Drift}{\int (\Delta t - \Delta t_{\min}) dz}$$

Where Drift is the drift over the interval to be corrected and the value  $\int (\Delta t - \Delta t_{min}) dz \text{ is the time difference between the integrals of the two curves } \Delta t \text{ and } \Delta t_{min} \text{ only over the intervals where } \Delta t > \Delta t_{min}.$ 

Hence the corrected sonic:  $\Delta t = G(\Delta t - \Delta t_{min}) + \Delta t_{min}$ .

#### Open Hole Logs

The following table summarizes the availability of the sonic and density logs.

Log Type Interval

Sonic Sonic data 602-1358mKB

Density Density data 602-1358 mKB

Both sonic and density have been depth matched. Density log was edited for washout in the interval 1037-1041 mKB and extended to the SRD level using constant value of 2.27 g/cc.

The gamma ray, deep resistivity and caliper logs have been included as correlation curves where they were available.

#### Sonic Calibration Output

#### Zone Set Data

This listing shows the depth of selected knees from KB and SRD together with the measured drift. The amount of sonic adjustment and the type of correction (block shift or Delta T Minimum) plus the corresponding reduction factor G if applicable are all printed out.

#### Sonic Adjustment Data

The Drift & Sonic Adjustment Report contains the basic comparison of raw seismic and edited sonic integrated times at checkshot levels.

The level number, measured depth and vertical depth for all levels, vertical checkshot times adjusted to SRD and corresponding integrated sonic times are compiled in the listing. The drift between two adjacent checkshot levels is listed in milliseconds and

the corrections to be applied to the sonic log in  $\,\mu sec/m\,$  are also listed for all intervals between two adjacent levels

#### **Drift Corrected Sonic Plot**

The effect of the shifts listed in the Drift & Sonic Adjustment Report on the edited sonic log and the results of sonic adjustment for drift are graphically displayed on the Drift Corrected Sonic (Plot 5).

#### Velocity Report

The Average, RMS and interval velocities between two adjacent checkshot levels computed from corrected (adjusted) sonic log are listed in the Velocity Report with the sampling rate 2 ms.

#### Velosity Crossplot

Three velocities - Average, Interval, and Root Mean Square together with Time vs. Depth curve are computed for all checkshot levels. The results are plotted as a function of depth on the Velosity Crossplot.

Interval velocities  $(v_{int})$  are those computed between two adjacent checkshot levels from corrected sonic logs and listed in the Velocity Report. Interval velocity is defined as

$$v_{int} = z_n - z_{n-1}$$
 over  $t_n - t_{n-1}$ 

where  $z_n$  is the depth of nth layer and  $t_n$  its corresponding integrated sonic time.

Average velocities  $(v_{ave})$  are computed by dividing SRD depth of checkshots and their corresponding integrated sonic times from corrected sonic log.

$$v_{ave} = \frac{\sum v_n t_n}{\sum t_n}$$

Root Mean Square Velocity  $(v_{ms})$  is computed from calibrated sonic logs by

$$v_{rms} = \sqrt{\frac{\sum v_n^2 t_n}{\sum t_n}}$$

where  $\,v_n\,$  is an interval velocity over some specific time increment Delta  $t_n\,$  of calibrated sonic log.

The Time vs. Depth Curve is the result of integration of the calibrated sonic log and is plotted as two way time (TWT) against depth.

#### Time to Depth Report

This listing is obtained from the calibrated sonic log. The results are listed against two way time (TWT) together with corresponding seismic datum (SRD) depths. Sampling rate is 1 ms.

#### Sonic Calibration Results

Plot 4, Velosity Crosssplot is a display of the sonic calibration output in 34" format.

Top of the sonic log was chosen as the start of the drift comutation.

The calculated drift was small and well defined exhibiting very little scatter. The drift curve as expected increases steadily to a cumulative value of 7.4 msec at TD.

Knees are selected from the raw drift curve and lithological boundaries marked by the well logs. The depths of the knees define the zones for the adjustment. The selected drift at the knees, defines the amount of time adjustment to the sonic log in each zone.

#### **Geogram Processing**

Composite Display plots 2, 3 ( Normal and Reversed Polarities correspondinly at scale 1 s: 20 cm ) and 6 and 7 ( normal and Reversed Polarities at scale 1s: 50 cm ) were generated using 25, 30 and 35 Hz zero phase Ricker wavelets (the sonic log used to generate the Geograms was calibrated using first break transit-times).

GEOGRAM processing produces synthetic seismic traces based on reflection coefficients generated form sonic and density measurements in the well-bore. The steps in the processing chain are described below.

#### **Depth to Time Conversion**

Open hole logs are recorded from the bottom to top with a depth index. These data are converted to a two-way time index in order to match the seismic section.

#### **Primary Reflection Coefficients**

Sonic and density data are averaged over chosen time intervals (normally 2 or 4 milliseconds). Reflection coefficients are then computed using:

$$R = \frac{\rho_2 v_2 - \rho_1 v_1}{\rho_2 v_2 + \rho_1 v_1}$$

where:

 $\rho_1$  = density of the layer above the reflection interface

 $\rho_2$  = density of the layer below the reflection interface

 $v_1$  = compressional wave velocity of the layer above the reflection interface

 $v_2$  = compressional wave velocity of the layer below the reflection interface

This computation is done for each time interval to generate a set of primary reflection coefficients without transmission losses.

#### Primaries with Transmission Loss

Transmission loss on two-way attenuation coefficients is computed using:

$$A_n = (1 - R_1^2).(1 - R_2^2).(1 - R_3^2)...(1 - R_n^2)$$

A set of primary reflection coefficients with transmission loss is generated using:

#### $Primary_n = R_n \cdot A_{n-1}$

#### Primaries plus Multiples

Multiples are computed from these input reflection coefficients using the transform technique from the top of the well to obtain the impulse response of the earth. The transform outputs primaries plus multiples.

#### Multiples Only

By subtracting previously calculated primaries form the above result we obtain multiples only.

#### Wavelet

A theoretical wavelet is chosen to use for convolution with the reflection coefficients previously generated. Choices available include:

Klauder wavelet Ricker zero phase wavelet Ricker minimum phase wavelet Butterworth wavelet User defined wavelet

Time variant Butterworth filtering can be applied after convolution.

#### Polarity Convention

Throughout this report the following polarity convention is used. An increase in acoustic impedance gives a positive reflection coefficient, is written to tape as a negative number and is displayed as a white trough under normal polarity. This is displayed in figure 1.

#### Convolution

The standard procedure of convolving the wavelet with reflection coefficients is performed; the output is the synthetic seismogram.

Geograms were generated with zero phase Ricker wavelets with central frequencies of 25 Hz, 30 Hz and 35 Hz. They are displayed in Plots 2, 3 and 6,7.

#### A Summary of Geophysical Listings

Four geophysical data listings are appended to this report. Following is a brief description of the format of each listing.

#### Well Seismic Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth form SRD: dsrd, the depth in metres from seismic reference datum.
- 3. Measured depth from KB: dkb, the depth in metres from kelly bushing.
- 4. Observed travel time HYD to GEO: *tim*0, the transit time picked form the stacked data by subtracting the surface sensor first break time from the downhole sensor first break time.
- 5. Vertical travel time SRD to GEO: shtm, is timv corrected for the vertical distance between source and datum.
- 6. Delta depth between shots:  $\Delta depth$ , the vertical distance between each level.
- 7. Delta time between shots:  $\Delta time$ , the difference in vertical travel time (shtm), between each level.
- 8. Interval velocity between shots: the average seismic velocity between each level,  $\Delta depth/\Delta time$
- 9. Average velocity SRD to GEO: the average seismic velocity from datum to the corresponding checkshot level, dsrd . shtm

#### **Drift & Sonic Adjustment**

#### **Zone Set Data**

- 1. Knee number: the knee number starting from the highest knee. (The first knees listed will generally be at SRD and the top of sonic. The drift imposed at these knees will normally be zero.)
- 2. Measured depth from KB: the depth in metres from kelly bushing
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum.

- 4. Selected Drift at knee: the value of drift imposed at each knee.
- 5. Shift: the change in drift divided by the change in depth between any two levels.
- 6. Delta-T: see section 4 of report for an explanation of  $\Delta$  tmin.
- 7. Reuction factor G: see section 4 of report.
- 8. Selected Drift Gradient: the gradient of the imposed drift curve.

#### Sonic Adjustment Data

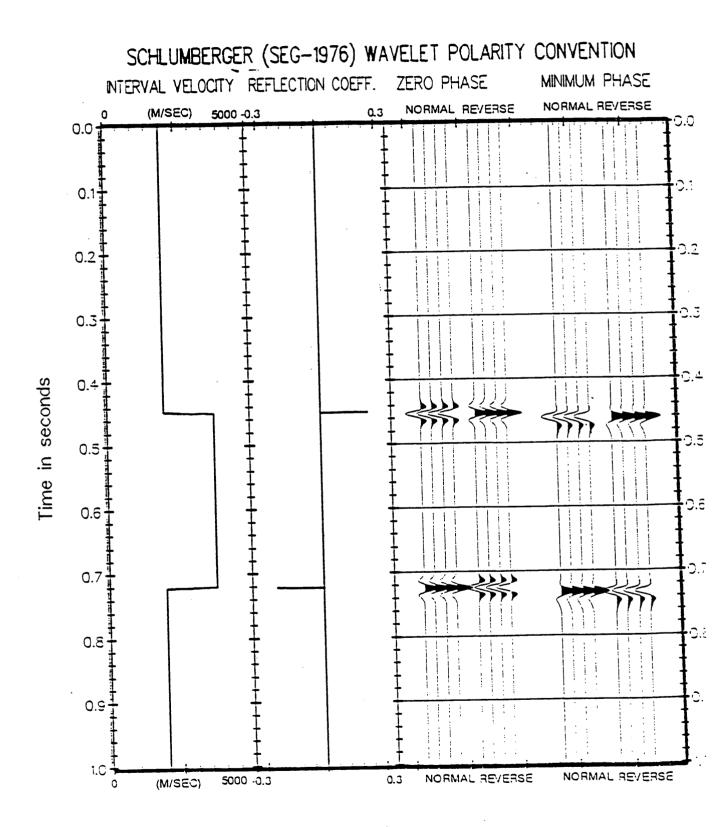
- 1. Measured depth from KB: the depth in metres from kelly bushing
- 2. Vertical depth from SRD: the depth in metres from seismic reference datum.
- 3. Vertical shot time SRD to GEO: the calculated vertical travel time from datum to downhole geophone.
- 4. Adjusted Sonic Time.
- 5. Computed drift at level: the checkshot time minus the integrated raw sonic time.
- 6. Residual Shot Time Adjusted Sonic Time.
- 7. Adjusted Interval Velocity.
- 8. Adjusted RMS Velocity.
- 9. Adjusted Average Velocity.

#### Velocity Report

The data in this listing has been resampled in time.

- 1. Two way travel time from SRD: this is the index for the data in this listing. The first value is at SRD (0 millisecs) and the sampling rate is 2 millisecs.
- 2. Measured depth from KB: the depth from KB at each corresponding value of two way time.
- 3. Vertical depth from SRD: the vertical depth from SRD at each corresponding value of two way time.

- 4. Average velocity SRD to GEO: the vertical depth from SRD divided by half the two way time.
- 5. RMS velocity: the root mean square velocity from datum to the corresponding value of two way time.


$$v_{rms} = \sqrt{s_1}^n v_i^2 t_i / s_1^n t_i$$

where vi is the velocity between each 2 millisecs interval.

6. Interval velocity: the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.002. It is equivalent to column 9 from the Velocity Report.

#### Time to Depth

- 1. Two Way Sonic Time from SRD
- 2-11. Depth at Time 0-9 ms: moveout times every 1 ms





# GEOGRAM+ Well Seismic Report

DATE 8/3/99

#### **Client and Well Information**

Country

**AUSTRALIA** 

State

**VICTORIA** 

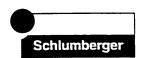
Logging Date

Company

Field

IONA

Well


IONA OBS #2

#### **Check Shot Data**

LEVEL NUMBER	DEPTH FROM	MEASURED DEPTH FROM KB	TRAVEL TIME	Vertical Transit Time-SRD	DELTA DEPTH	DELTA TIME	ACOUSTIC INTERVAL VELOCITY	ACOUSTIC AVERAGE VELOCITY
	SRD m	m	(owt) s	(owt) s	m	s	m/s	m/s
1	0.0	109.5	0.0648	0.0010				1900
T. West					158.5	0.0869	1824	::
2	158.5	268.0	0.1509	0.0879				1803
					56.0	0.0265	2112	
3	214.5	324.0	0.1773	0.1145				1874
					186.0	0.0824	2258	
4	400.5	510.0	0.2595	0.1968				2035
					90.5	0.0377	2399	
5	491.0	600.5	0.2972	0.2346				2093
					52.5	0.0193	2726	
6	543.5	653.0	0.3164	0.2538				2141
					100.4	0.0375	2676	
7	643.9	753.4	0.3539	0.2913				2210
					66.1	0.0277	2386	
8	710.0	819.5	0.3816	0.3190				2226
)	<del> </del>				124.5	0.0443	2809	

© 1994 Schlumberger

2




# **GEOGRAM+**

## Well Seismic Report

## **Check Shot Data (Continued)**

LEVEL NUMBER	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	OBSERVED TRAVEL TIME (owt)	Vertical Transit Time-SRD (owt)	DELTA DEPTH	DELTA TIME	ACOUSTIC INTERVAL VELOCITY	ACOUSTIC AVERAGE VELOCITY
	m	m	s	· s	m	S	m/s	m/s
9	834.5	944.0	0.4259	0.3634				2297
					55.5	0.0215	2578	
10	890.0	999.5	0.4474	0.3849				2312
					45.9	0.0170	2704	
11	935.9	1045.4	0.4644	0.4019				2329
					11.6	0.0045	2583	
12	947.5	1057.0	0.4689	0.4063				2332
	·			e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	73.0	0.0251	2907	
13	1020.5	1130.0	0.4940	0.4315				2365
					85.5	0.0306	2791	
14	1106.0	1215.5	0.5246	0.4621				2393
					29.5	0.0111	2649	
15	1135.5	1245.0	0.5357	0.4732				2399
					29.0	0.0108	2676	
16	1164.5	1274.0	0.5466	0.4841				2406
					17.2	0.0057	3014	
17	1181.7	1291.2	0.5523	0.4898				2413
					29.8	0.0099	3008	
18	1211.5	1321.0	0.5622	0.4997				2425
					34.0	0.0110	3080	
19	1245.5	1355.0	0.5732	0.5107				2439

© 1994 Schlumberger



#### **Drift & Sonic Adjustment**

DATE 8/3/99

#### Client and Well Information

Country

**AUSTRALIA** 

State

**VICTORIA** 

Logging Date

Company

Field

IONA

Well

IONA OBS #2

#### Knee and Zone Data



Raw Drift is computed at each shot level as

Shot Time - Sonic Time

From the raw drift curve, knees are selected. Knee depths define the zones for adjustment. Selected drift values define the amount of time adjustment to the sonic log in each zone.

When the gradient versus depth of the selected drift is POSITIVE, sonic velocities are deemed too fast. Sonic transit times are increased by a constant shift, the value of the selected drift gradient:

Adjusted DT = DT + Shift

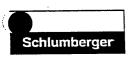
hen the gradient is NEGATIVE, sonic velocities are deemed too low. The excess sonic transit time over a threshold DT_Minimum is reduced by a constant reduction factor, G:

When DT < DT_Minimum

Adjusted DT = DT

When DT > DT_Minimum

Adjusted  $DT = G *(DT - DT_Minimum) +$ 


DT_Minimum

## AFTER THE ADJUSTMENT OF THE SONIC LOG:

Residual is computed at each shot level as

Shot Time - Adjusted Sonic Time

It indicates how closely the adjustment has followed the shot times



# GEOGRAM+ Drift & Sonic Adjustment

## **Zone Set Data**

MEASURED DEPTH FROM KB	DEPTH FROM SRD	DRIFT AT KNEE	SHIFT	DELTA_T MINIMUM	REDUCTION FACTOR G	SELECTED DRIFT GRADIENT US/M
m	m	ms	US/IVI	US/M		
652.3	542.9	-0.0004			<u> </u>	
rings of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec			8.4			8.4
658.6	549.1	-0.0003				
				350.7	0.66	-13.8
749.6	640.2	-0.0044				
Ç +2.			23.0			23.0
767.0	657.5	-0.0031				
	31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		33.1			33.1
807.6	698.1	0.0014				
			20.5			20.5
823.7	714.2	0.0024				
				331.3	0.63	-16.0
862.7	753.2	0.0004				
				331.3	0.58	-16.0
879.0	769.6	-0.0005				
				331.3	0.63	-16.0
939.7	830.2	-0.0037				
-			6.9			6.9
948 5	839.0	-0.0035				
1 710.5			28.9			28.9
999 9	890.5	0.0014				
777.7	370.0		4.7			4.7
1016 9	037 3	0.0021				
	DEPTH FROM KB m 652.3 658.6 749.6 767.0	DEPTH FROM KB m         DEPTH FROM SRD m           652.3         542.9           658.6         549.1           749.6         640.2           807.6         698.1           823.7         714.2           862.7         753.2           879.0         769.6           939.7         830.2           948.5         839.0           999.9         890.5	DEPTH FROM KB m         DEPTH FROM SRD m         DRIFT AT KNEE ms           652.3         542.9         -0.0004           658.6         549.1         -0.0003           749.6         640.2         -0.0044           807.6         698.1         0.0014           823.7         714.2         0.0024           862.7         753.2         0.0004           879.0         769.6         -0.0005           939.7         830.2         -0.0037           948.5         839.0         -0.0035           999.9         890.5         0.0014	DEPTH FROM KB m         DEPTH FROM SRD m         DRIFT AT KNEE ms         US/M           652.3         542.9         -0.0004         8.4           658.6         549.1         -0.0003         23.0           767.0         657.5         -0.0031         33.1           807.6         698.1         0.0014         20.5           823.7         714.2         0.0024         34.7           862.7         753.2         0.0004         37.0         6.9           939.7         830.2         -0.0037         6.9         39.0         -0.0035         28.9           999.9         890.5         0.0014         4.7         4.7	DEPTH FROM KB m   DEPTH FROM SRD m   DEPTH KNEE ms   US/M   US/M   US/M	DEPTH FROM KB m



## Drift & Sonic Adjustment

## **Zone Set Data (Continued)**

KNEE NUMBER	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	SELECTED DRIFT AT	SHIFT	DELTA_T MINIMUM	REDUCTION FACTOR G	SELECTED DRIFT GRADIENT
	KB m	I III		US/M		US/M	
				13.1			13.1
13	1056.0	946.5	0.0025				
					320.4	0.78	-7.0
14	1132.3	1022.8	0.0008				
				8.0			8.0
15	1213.2	1103.7	0.0029				
				16.2			16.2
16	1229.9	1120.4	0.0038				
				18.9			18.9
17	1291.8	1182.4	0.0076				
				63.1			63.1
18	1341.3	1231.8	0.0179				
		;		114.1			114.1
19	1358.2	1248.8	0.0242				

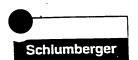
## Sonic Adjustment Data

MEASURE D DEPTH FROM KB m	VERTICAL DEPTH FROM SRD m	VERTICAL SHOT TIME ms	ADJUSTED SONIC TIME ms	DRIFT	SHOT -	INTERVAL	RMS	ADJUSTED AVERAGE VELOCITY m/s
109.5	0.0	0.0						
<u>,</u>			·			2141		
109.5	0.0	1.0						
						2141		



## **Drift & Sonic Adjustment**

# Sonic Adjustment Data (Continued)


MEASURE D DEPTH FROM KB m	VERTICAL DEPTH FROM SRD m	VERTICAL A SHOT TIME ms	ADJUSTED SONIC TIME ms	RAW DRIFT SHOT - SONIC ms	SHOT -	ADJUSTED INTERVAL VELOCITY m/s	RMS	AVERAGE
268.0	158.5	87.9					2210	2203
208.0	156.5	07.5				2800		
324.0	214.5	114.5					2220	2213
324.0	214.5	114.5			200	2411		
5100	400.5	196.8					2274	2262
510.0	400.5	170.0				2790		
	491.0	234.6	<u> </u>				2303	2289
600.5	491.0	254.0		·		2787		
(52.0	542.5	253.8	253.8	-0.0	-0.0		2317	2302
653.0	543.5	233.8	255.0			3003		
752.4	(12.0	291.3	291.6	-1.4	-0.3	<u> </u>	2334	2318
753.4	643.9	291.3	251.0	1		2559		
212.5	710.0	319.0	319.0	0.8	0.0		2347	2330
819.5	710.0	319.0	319.0			2574		
	2215	262.4	262.6	-1.2	-0.2	-	2381	2362
944.0	834.5	363.4	363.6	-1.2	-0.2	2822	-	
			205.0	0.4	-0.1		2397	2376
999.5	890.0	384.9	385.0	0.4	-0.1	2860	2371	
			102.0	0.6	-0.1	2300	2404	2384
1045.4	935.9	401.9	402.0	0.6	-0.1	2776	2404	
					0.1	2770	2406	2385
1057.0	947.5	406.3	406.4	0.8	-0.1	2400	2406	7303
						2490	2416	3206
1130.0	1020.5	431.5	431.6	0.2	-0.1		2416	2396
						2559		
1215.5	1106.0	462.1	462.2	0.9	-0.1		2426	2405



## Drift & Sonic Adjustment

## Sonic Adjustment Data (Continued)

MEASURE D DEPTH FROM KB	VERTICAL DEPTH FROM SRD	VERTICAL SHOT TIME	ADJUSTED SONIC TIME	RAW DRIFT SHOT - SONIC	SHOT - ADJUSTED SONIC	INTERVAL VELOCITY	RMS VELOCITY	ADJUSTED AVERAGE VELOCITY m/s
m	m	ms	ms	ms 	ms	m/s	m/s	IIVS
	8. 5.					3058		
1245.0	1135.5	473.2	473.4	1.4	-0.1		2434	2412
						2558		
1274.0	1164.5	484.1	484.5	1.7	-0.4		2436	2415
						2616		
1291.2	1181.7	489.8	489.9	2.3	-0.1		2437	2416
		-			·	2529		
1321.0	1211.5	499.7	501.4	2.6	-1.7		2441	2420
						2729		
1355.0	1245.5	510.7	508.9	7.4	1.8			2450
1333.0			+					



# GEOGRAM+ Time To Depth Report

DATE 8/3/99

## Client and Well Information

Country

**AUSTRALIA** 

State

**VICTORIA** 

Logging Date

Company

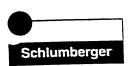
Field


IONA

Well

IONA OBS #2

## Time To Depth Data


TWO WAY SONIC	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME
TIME FROM	+0 ms	+1 ms	+2 ms	+3 ms	+4 ms	+5 ms	+6 ms	+7 ms	+8 ms	+9 ms
SRD ms	m	m	m	m	m	m	m	m	m	m
0	1.0	2.0	3.1	4.2	5.2	6.3	7.4	8.4	9.5	10.6
10	11.6	12.7	13.8	14.8	16.0	17.1	18.2	19.2	20.3	21.4
20	22.4	23.5	24.6	25.6	26.7	27.8	28.8	29.9	31.0	32.0
30	33.1	34.2	35.2	36.3	37.4	38.4	39.5	40.6	41.6	42.7
40	43.8	44.8	45.9	47.0	48.0	49.1	50.2	51.2	52.3	53.4
50	54.4	55.5	56.6	57.6	58.7	59.8	61.0	62.1	63.1	64.2
60	65.3	66.3	67.4	68.5	69.5	70.6	71.7	72.7	73.8	74.9
70	75.9	77.0	78.1	79.1	80.2	81.3	82.3	83.4	84.5	85.5
80	86.6	87.7	88.7	89.8	90.9	91.9	93.0	94.1	95.1	96.2
90	97.3	98.3	99.4	100.5	101.5	102.6	103.7	104.9	106.0	107.0
100	108.1	109.2	110.2	111.3	112.4	113.4	114.5	115.6	116.6	117.7
110	118.8	119.8	120.9	122.0	123.0	124.1	125.2	126.2	127.3	128.4
120	129.4	130.5	131.6	132.6	133.7	134.8	135.8	136.9	138.0	139.0
130	140.1	141.2	142.2	143.3	144.4	145.4	146.5	147.6	148.6	149.8
) 140	150.9	152.0	153.0	154.1	155.2	156.2	157.3	158.4	159.4	160.5



## Time To Depth Report

# Time To Depth Data (Continued)

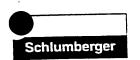
TWO WAY SONIC	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME
TIME FROM	+0 ms	+1 ms	+2 ms	+3 ms	+4 ms	+5 ms	+6 ms	+7.ms	+8 ms	+9 ms
SRD ms	m	m	m	m	m	m	m	m	m	m
150	161.6	162.6	163.7	164.8	165.8	166.9	168.0	169.0	170.1	171.2
160	172.2	173.3	174.4	175.4	176.5	177.6	178.6	179.7	180.8	181.8
170	182.9	184.0	185.1	186.1	187.2	188.3	189.3	190.4	191.5	192.5
180	193.6	194.8	195.9	196.9	198.0	199.1	200.1	201.2	202.3	203.3
190	204.4	205.5	206.5	207.6	208.7	209.7	210.8	211.9	212.9	214.0
200	215.1	216.1	217.2	218.3	219.3	220.4	221.5	222.5	223.6	224.7
210	225.7	226.8	227.9	228.9	230.0	231.1	232.1	233.2	234.3	235.3
220	236.4	237.5	238.7	239.8	240.8	241.9	243.0	244.0	245.1	246.2
230	247.2	248.3	249.4	250.4	251.5	252.6	253.6	254.7	255.8	256.8
240	257.9	259.0	260.0	261.1	262.2	263.2	264.3	265.4	266.4	267.5
250	268.6	269.6	270.7	271.8	272.8	273.9	275.0	276.0	277.1	278.2
260	279.2	280.3	281.4	282.4	283.6	284.7	285.8	286.8	287.9	289.0
270	290.1	291.1	292.2	293.3	294.3	295.4	296.5	297.5	298.6	299.7
280	300.7	301.8	302.9	303.9	305.0	306.1	307.1	308.2	309.3	310.3
290	311.4	312.5	313.5	314.6	315.7	316.7	317.8	318.9	319.9	321.0
300	322.1	323.1	324.2	325.3	326.3	327.5	328.6	329.7	330.7	331.8
310	332.9	333.9	335.0	336.1	337.1	338.2	339.3	340.3	341.4	342.5
320	343.5	344.6	345.7	346.7	347.8	348.9	349.9	<del></del>		353.1
330	354.2	355.3	356.3	357.4	358.5	359.5	360.6			363.8
340	364.9	365.9	367.0	368.1	369.1	370.2	371.3			374.6
350	375.7	376.8	377.8	378.9	380.0	381.0	382.1		<del></del>	385.3
360	386.4	387.4	388.5	389.6	390.6	391.7	392.8			396.0
370	397.0	398.1	399.2	400.2	401.3	402.4	403.4			
<del>)</del> 380	407.7	7 408.8	409.8	410.9	412.0	413.0	414.1	415.2	2 416.2	417.5



## Time To Depth Report

# Time To Depth Data (Continued)

TWO WAY SONIC	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME
TIME FROM	+0 ms	+1 ms	+2 ms	+3 ms	+4 ms	+5 ms	+6 ms	+7 ms	+8 ms	+9 ms
SRD ms	m	m	m	m	m	m	m	m 	m	m
390	418.5	419.6	420.7	421.7	422.8	423.9	424.9	426.0	427.1	428.1
400	429.2	430.3	431.3	432.4	433.5	434.5	435.6	436.7	437.7	438.8
410	439.9	440.9	442.0	443.1	444.1	445.2	446.3	447.3	448.4	449.5
420	450.5	451.6	452.7	453.7	454.8	455.9	456.9	458.0	459.1	460.1
430	461.3	462.4	463.5	464.5	465.6	466.7	467.7	468.8	469.9	470.9
440	472.0	473.1	474.1	475.2	476.3	477.3	478.4	479.5	480.5	481.6
450	482.7	483.7	484.8	485.9	486.9	488.0	489.1	490.1	491.2	492.3
460	493.3	494.4	495.5	496.5	497.6	498.7	499.7	500.8	501.9	502.9
470	504.0	505.1	506.3	507.4	508.4	509.5	510.6	511.6	512.7	513.8
480	514.8	515.9	517.0	518.0	519.1	520.2	521.2	522.3	523.4	524.4
490	525.5	526.6	527.6	528.7	529.8	530.8	531.9	533.0	534.0	535.1
500	536.2	537.2	538.3	539.4	540.4	541.5	542.6	543.6	545.0	546.4
510	547.6	548.8	550.0	551.4	552.9	554.3	555.8	557.2	558.6	559.9
520	561.3	562.7	564.1	565.4	566.8	568.2	569.4	570.8	572.1	573.7
530	575.0	576.4	577.8	579.1	580.5	581.9	583.3	584.6	586.0	587.4
540	588.7	590.1	591.6	593.0	594.4	595.8	597.1	598.8	600.2	601.5
550	602.9	604.3	605.7	607.0	608.4	609.8	611.1	612.5	613.9	615.3
560	616.6		619.7	621.2	622.6	623.9	625.2	626.5	627.9	629.4
570	630.7			634.9	636.1	637.5	638.9	640.3	641.5	642.5
580	643.8			647.3	648.3	649.4	650.6	651.7	652.9	654.0
590	655.0			658.4	659.5	660.5	661.6	662.7	663.7	664.9
600	666.0			669.4	670.3	671.3	672.4	673.5	674.7	675.8
610				680.0	681.1	682.2	2 683	684.6	685.8	686.9
) 620				691.3	692.5	693.	6 694.8	695.9	9 696.9	698.0

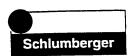

© 1994 Schlumberger



## Time To Depth Report

# Time To Depth Data (Continued)

TWO WAY SONIC	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME
TIME FROM	+0 ms	+1 ms	+2 ms	+3 ms	+4 ms	+5 ms	+6 ms	+7 ms	+8 ms	+9 ms
SRD ms	m	m	m	m	m	m	m	m	m	m
630	699.2	700.4	701.5	702.7	704.0	705.2	706.4	707.6	709.0	710.4
640	711.6	712.9	714.3	715.7	717.2	718.6	720.3	721.6	723.2	724.5
650	726.1	727.6	728.9	730.5	731.8	733.4	734.7	736.3	737.6	739.2
660	740.7	742.1	743.6	744.9	746.5	747.8	749.4	750.7	752.3	753.8
670	755.2	756.7	758.2	759.7	761.3	762.8	764.2	765.7	767.2	768.6
680	770.1	771.6	773.0	774.5	775.9	777.4	778.9	780.5	781.8 ⁻	783.4
690	784.7	786.2	787.6	789.1	790.5	792.0	793.4	794.9	796.5	797.8
700	799.4	800.7	802.2	803.8	805.1	806.7	808.2	809.6	811.1	812.5
710	814.0	815.5	816.9	818.4	819.8	821.3	822.7	824.2	825.7	827.1
720	828.6	830.0	831.4	832.6	833.8	835.6	837.0	838.2	839.4	840.5
730	841.9	843.2	844.5	845.7	846.9	848.1	849.2	850.6	851.8	853.0
740	854.2	855.3	856.5	857.7	858.9	860.2	861.4	862.6	864.0	865.0
750	866.3	867.5	868.5	869.6	870.8	872.0	873.1	874.3	875.4	876.6
760	877.8	878.9	880.1	881.3	882.4	883.9	885.2	886.2	887.4	888.5
770	889.7	890.9	892.3	893.5	894.9	896.3	897.5	899.0	900.2	901.6
780	902.8	904.2	905.4	906.6	908.0	909.2	910.6	912.0	913.3	914.7
790	915.9	917.3	918.5	919.9	921.3	922.6	924.0	925.2	926.8	928.1
800	929.3	930.7	932.1	933.5	934.8	936.2	937.6	938.8	940.0	941.2
810	942.6	943.8	945.0	946.3	947.6	949.2	950.5	951.9	953.4	954.8
820	956.3	957.7	959.2	960.6	962.1	963.6	965.2	966.7	968.1	969.6
830	970.9	972.5	974.0	975.5	977.0	978.6	980.1	981.6	983.1	984.7
840	986.2	987.6	989.1	990.6	992.1	993.5	995.0	996.6	998.1	999.6
850	1001.	1 1002.5	1004.0	1005.5	1007.1	1008.6	5 1010.0	1011.5	1012.9	1014.4
; 860	1015.	8 1017.3	1018.8	1020.3	1021.7	1023.4	1024.7	7 1026.3	1027.6	1029.0




# GEOGRAM+ Time To Depth Report

# Time To Depth Data (Continued)

TWO WAY SONIC	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME	DEPTH AT TIME
TIME FROM	+0 ms	+1 ms	+2 ms	+3 ms	+4 ms	+5 ms	+6 ms	+7 ms	+8 ms	+9 ms
SRD ms	m	m	m	m	m	m	m	m	m	m
870	1030.2	1031.6	1033.0	1034.3	1036.0	1037.4	1038.9	1040.4	1042.1	1043.6
880	1045.0	1046.4	1047.6	1048.8	1050.2	1051.4	1052.8	1054.0	1055.4	1056.7
890	1058.1	1059.3	1060.7	1062.2	1063.6	1064.8	1066.2	1067.6	1068.9	1070.3
900	1071.7	1073.1	1074.4	1075.8	1077.2	1078.4	1079.6	1080.8	1082.0	1083.4
910	1084.6	1085.9	1087.1	1088.3	1089.8	1091.0	1092.4	1093.8	1095.2	1096.5
920	1097.9	1099.4	1100.8	1102.2	1103.5	1104.9	1106.3	1107.5	1108.9	1110.1
930	1111.5	1112.7	1114.0	1115.3	1116.6	1117.9	1119.1	1120.3	1121.5	1122.7
940	1124.1	1125.3	1126.4	1127.6	1128.8	1130.4	1131.6	1132.8	1134.0	1135.4
950	1136.6	1137.8	1139.0	1140.3	1141.3	1142.5	1143.8	1145.0	1146.2	1147.4
960	1148.6	1149.9	1151.1	1152.3	1153.5	1154.7	1156.0	1157.2	1158.4	1159.8
970	1161.3	1162.5	1164.0	1165.4	1166.8	1168.3	1169.8	1171.2	1172.7	1174.2
980	117,5.8	1177.3	1178.8	1180.3	1181.9	1182.9	1184.0	1185.1	1186.1	1187.2
990	1188.3	1189.3	1190.4	1191.6	1192.7	1193.8	1194.8	1196.0	1197.1	1198.3
1000	1199.4	1200.6	1201.7	1202.9	1204.0	1205.0	1206.2	1207.5	1208.5	1209.8
1010	1210.8	1211.9	1213.1	1214.2	1215.4	1216.6	1217.7	1218.9	1220.0	1221.0
1020	1222.1	1223.3	1224.5	1225.6	1227.0	1228.2	1229.3	1230.5	1231.5	

© 1994 Schlumberger



# GEOGRAM+ Velocity Report

v Report

## Client and Well Information

Country

**AUSTRALIA** 

State

**VICTORIA** 

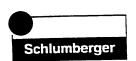
Logging Date

Company

IONA

Field Well

IONA OBS #2


## **Velocity Data**

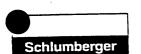
TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
					1617
0	110.4	1.0	1622	1621	
					1617
2	112.6	3.1	1630	1630	
					2141
4	114.7	5.2	1638	1639	
<u> </u>					2141
6	116.8	7.4	1645	: 1647	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<u> </u>					2141
8	119.0	9.5	1652	1656	
					2141
10	121.1	11.6	1659	1663	
					2141
12	123.2	13.8	1666	1671	
12					2141



## Velocity Report

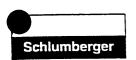
TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
14	125.5	16.0	1673	1679	
					2141
16	127.7	18.2	1679	1686	
					2141
18	129.8	20.3	1686	1693	
					2141
20	131.9	22.4	1692	1700	
					2141
22	134.1	24.6	1698	1706	Allerton States
					2141
24	136.2	26.7	1703	1713	
					2141
26	138.3	28.8	1709	1719	
<u> </u>					2141
28	140.5	31.0	1714	1725	
<u>,                                    </u>					2141
30	142.6	33.1	1720	1731	
	·				2141
32	144.7	35.2	1725	1736	
					2141
34	146.9	37.4	1730	1742	
					2141
36	149.0	39.5	1735	1747	
					2141




## **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
38	151.1	41.6	1740	1752	
					2141
40	153.3	43.8	1744	1757	
10		·			2141
42	155.4	45.9	1749	1762	
72			· · · · · · · · · · · · · · · · · · ·		2141
44	157.5	48.0	1753	1767	
<del> </del>		Maria de Calendaria			2141
46	159.7	50.2	1758	1772	
	<b>137.</b> (8)	A Section of Section 1997			2141
· 48	161.8	52.3	1762	1776	
					2141
50	163.9	54.4	1766	1781	
30	10013		<u> </u>		2141
52	166.1	56.6	1770	1785	
32					2141
54	168.2	58.7	1774	1789	
					2141
56	170.5	61.0	1779	1794	
					2141
58	172.6	63.1	1782	1798	
					2141
60	174.7	65.3	1786	1802	
					2141




## **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m KB	m	m/s	m/s	m/s
62	176.9	67.4	1790	1806	
					2141
64	179.0	69.5	1794	1809	
					2141
66	181.1	71.7	1797	1813	
					2141
68	183.3	73.8	1801	1817	
06					2141
70	185.4	75.9	1804	1820	
prika ayan da karana da karana da karana da karana da karana da karana da karana da karana da karana da karana					2141
*** <b>72</b>	187.5	78.1	1807	1824	
					2141
. 74	189.7	80.2	1811	1827	
					2141
76	191.8	82.3	1814	1830	
					2141
78	193.9	84.5	1817	1833	
					2141
80	196.1:	86.6	1820	1837	
					2141
82	198.2	88.7	1823	1840	
					2141
84	200.4	90.9	1826	1843	
					2141



## Velocity Report

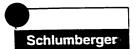
TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m KD	m	m/s	m/s	m/s
86	202.5	93.0	1829	1846	
<u> </u>					2141
88	204.6	95.1	1832	1849	
					2141
90	206.8	97.3	1834	1852	
<u>.                                    </u>					2141
92	208.9	99.4	1837	1854	
					2141
94	211.0	101.5	1840	1857	
Marian de C					2141
96	213.2	103.7	1843	1860	:
					2141
98	215.4	106.0	1845	1863	
<u> </u>					2141
100	217.6	108.1	1848	1865	
				:	2141
102	219.7	110.2	1850	1868	
					2141
104	221.8	112.4	1853	1870	
					2141
106	224.0	114.5	1855	1873	
					2141
108	226.1	116.6	1858	1875	
					2141



## **Velocity Report**

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms	m	m	m/s	m/s	m/s
110	228.2	118.8	1860	1877	
					2141
112	230.4	120.9	1862	1880	
					2141
114	232.5	123.0	1865	1882	
					2141
116	234.6	125.2	1867	1884	
110					2141
118	236.8	127.3	1869	1886	
		<u> </u>			2141
120	238.9	129.4	1871	1889	
120		·			2141
122	241.0	131.6	1873	1891	
122					2141
124	243.2	133.7	1876	1893	
					2141
126	245.3	135.8	1878	1895	
<u> </u>	<del> </del>				2141
128	247.4	138.0	1880	1897	
<u> </u>					2141
130	249.6	140.1	1882	1899	
					2141
132	251.7	142.2	1884	1901	
					2141

Schlumberger


## **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
134	253.8	144.4	1886	1903	·
					2141
136	256.0	146.5	1887	1905	
					2141
138	258.1	148.6	1889	1907	
					2141
140	260.4	150.9	1891	1909	
<u> </u>					2141
142	262.5	153.0	1893	1910	
****					2141
144	264.7	155.2	1895	1912	
					2141
146	266.8	157.3	1897	1914	
)					2141
148	268.9	159.4	1899	1916	
					2141
150	271.1	161.6	1900	1917	·
					2141
152	273.2	163.7	1902	1919	2141
				1001	2141
154	275.3	165.8	1904	1921	2141
				1000	2141
156	277.5	168.0	1905	1922	2141
1.					2141



## Velocity Report

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m m	m	m/s	m/s	m/s
158	279.6	170.1	1907	1924	
	:				2141
160	281.7	172.2	1909	1925	
					2141
162	283.9	174.4	1910	1927	1 14 14 12 14 14
					2141
164	286.0	176.5	1912	1929	
104					2140
166	288.1	178.6	1913	1930	
100		<u> </u>			2141
168	290.3	180.8	1915	1932	
100					2141
170	292.4	182.9	1916	1933	
170					2141
172	294.5	185.1	1918	1934	
172					2141
174	296.7	187.2	1919	1936	
· · · · · · · · · · · · · · · · · · ·	,				2141
176	298.8	189.3	1921	1937	
					2141
178	300.9	191.5	1922	1939	
					2141
180	303.1	193.6	1923	1940	
100					2141



## **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m m	m/s	m/s	m/s
182	305.4	195.9	1925	1941	
					2141
184	307.5	198.0	1926	1943	
					2141
186	309.6	200.1	1928	1944	
					2141
188	311.8	202.3	1929	1945	
100					2141
190	313.9	204.4	1930	1947	
		PROCESSING FEBRUARY STATE			2141
192	316.0	206.5	1932	1948	
, % <b>-&gt; -</b>					2141
194	318.2	208.7	1933	1949	
•					2141
196	320.3	210.8	1934	1950	
					2141
198	322.4	212.9	1935	1952	
			:		2141
200	324.6	215.1	1937	1953	
					2141
202	326.7	217.2	1938	1954	
					2141
204	328.8	219.3	1939	1955	
					2141



## Velocity Report

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
206	331.0	221.5	1940	1956	
					2141
208	333.1	223.6	1942	1957	
					2141
210	335.2	225.7	1943	1959	
					2141
212	337.4	227.9	1944	1960	
212					2141
214	339.5	230.0	1945	1961	
OMOS CONTRACTOR CONTRACTOR					2141
216	341.6	232.1	1946	1962	
					2141
. 218	343.8	234.3	1947	1963	
					2140
220	345.9	236.4	1948	1964	
					2140
222	348.2	238.7	1949	1965	
					2140
224	350.3	240.8	1951	1966	
					2141
226	352.4	243.0	1952	1967	
					2141
228	354.6	245.1	1953	1968	
					2140



## **Velocity Report**

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms ms	m.	m	m/s	m/s	m/s
230	356.7	247.2	1954	1969	
					2140
232	358.8	249.4	1955	1970	
					2140
234	361.0	251.5	1956	1971	
					2140
236	363.1	253.6	1957	1972	
					2141
238	365.2	255.8	1958	1973	
					2141
240	367.4	257.9	1959	1974	
					2141
242	369.5	260.0	1960	1975	
<u>)</u>					2141
244	371.6	262.2	1961	1976	
					2141
246	373.8	264.3	1962	1977	
					2141
248	375.9	266.4	1963	1978	
					2141
250	378.0	268.6	1964	1979	
	_				2141
252	380.2	270.7	1964	1979	
					2141

## **GEOGRAM+** 908262 141

## Velocity Report

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
254	382.3	272.8	1965	1980	
	;				2141
256	384.4	275.0	1966	1981	
					2141
258	386.6	277.1	1967	1982	
					2141
260	388.7	279.2	1968	1983	
1881 1					2141
262	390.8	281.4	1969	1984	
· · · · · · · · · · · · · · · · · · ·					2141
264	393.1	283.6	1970	1985	
					2141
266	395.3	285.8	1971	1985	
					2141
268	397.4	287.9	1972	1986	
·					2141
270	399.5	290.1	1972	1987	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					2141
272	401.7	292.2	1973	1988	
					2141
274	403.8	294.3	1974	1989	
					2141
276	405.9	296.5	1975	1989	
					2141

Schlumberger

Velocity Report

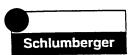
# **Velocity Data (Continued)**

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m KB	m	m/s	m/s	m/s
278	408.1	298.6	1976	1990	
					2141
280	410.2	300.7	1977	1991	·
					2141
282	412.3	302.9	1977	1992	
					2141
284	414.5	305.0	1978	1992	A A A A
284					2141
286	416.6	307.1	1979	1993	
					2141
288	418.7	309.3	1980	1994	
					2141
290	420.9	311.4	1980	1995	
3					2141
292	423.0	313.5	1981	1995	
2,2					2141
294	425.1	315.7	1982	1996	
					2141
296	427.3	317.8	1983	1997	
					2141
298	429.4	319.9	1983	1997	
					2141
300	431.5	322.1	1984	1998	
300					2141

© 1994 Schlumberger

# Schlumberger

## **GEOGRAM+**


## **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
302	433.7	324.2	1985	1999	
					2141
304	435.8	326.3	1986	1999	
	·				2140
306	438.1	328.6	1986	2000	
					2140
308	440.2	330.7	1987	2001	
					2141
310	442.4	332.9	1988	2002	
310		Security Company of Company			2140
312	444.5	335.0	1988	2002	
					2141
314	446.6	337.1	1989	2003	
					2140
316	448.8	339.3	1990	2003	
					2140
318	.450.9	341.4	1990	2004	
					2141
320	453.0	343.5	1991	2005	
					2141
322	455.2	345.7	1992	2005	
					2141
324	457.3	347.8	1992	2006	
327					2141



## **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
326	459.4	349.9	1993	2007	
					2141
328	461.6	352.1	1994	2007	
					2141
330	463.7	354.2	1994	2008	
					2141
332	465.8	356.3	1995	2008	
					2141
334	468.0	358.5	1996	2009	er en skriver (d. 1821) Starte en skriver
					2141
336	470.1	360.6	1996	2010	
					2141
338	472.2	362.7	1997	2010	
					2141
340	474.4	364.9	1998	2011	1 1 1 1 1 1
					2141
342	476.5	367.0	1998	2011	
					2141
344	478.6	369.1	1999	2012	
					2141
346	480.8	371.3	1999	2012	
					2141
348	483.0	373.6	2000	2013	
					2141



#### Velocity Report

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms	m	m	m/s	m/s	m/s
350	485.2	375.7	2001	2013	
					2141
352	487.3	377.8	2001	2014	
					2141
354	489.4	380.0	2002	2015	
					2141
356	491.6	382.1	2002	2015	
	:				2141
358	493.7	384.2	2003	2016	
	1.16				2141
360	495.8	386.4	2003	2016	
Sewilaci (1917)					2141
362	498.0	388.5	2004	2017	
**	<u> </u>				2141
364	500.1	390.6	2004	2017	
					2141
366	502.2	392.8	2005	2018	
					2141
368	504.4	394.9	2006	2018	
					2141
370	506.5	397.0	2006	2019	
					2141
372	508.6	399.2	2007	2019	
					2141

## Schlumberger

#### **GEOGRAM+**

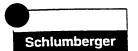
#### **Velocity Report**

## **Velocity Data (Continued)**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m m	m	m/s	m/s	m/s
374	510.8	401.3	2007	2020	
					2141
376	512.9	403.4	2008	2020	
			·		2141
378	515.0	405.6	2008	2021	
dia -					2141
380	517.2	407.7	2009	2021	
	·				2141
382	519.3	409.8	2009	2022	
					2140
384	521.4	412.0	2010	2022	
					2140
386	523.6	414.1	2010	2023	
<u> </u>					2141
388	525.7	416.2	2011	2023	
			:		2140
390	528.0	418.5	2011	2024	
					2140
392	530.1	420.7	2012	2024	
					2140
394	532.3	422.8	2012	2024	
					2140
396	534.4	424.9	2013	2025	
					2141

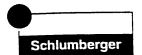


#### Velocity Report


TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms	m m	m	m/s	m/s	m/s
398	536.5	427.1	2013	2025	
					2141
400	538.7	429.2	2014	2026	
	·				2141
402	540.8	431.3	2014	2026	
					2141
404	542.9	433.5	2015	2027	
404					2141
406	545.1	435.6	2015	2027	
					2141
408	547.2	437.7	2016	2028	
		****			2141
410	549.3	439.9	2016	2028	
No. of the second second					2141
412	551.5	442.0	2017	2028	
					2141
414	553.6	444.1	2017	2029	
J. M. China					2141
416	555.7	446.3	2017	2029	
					2141
418	557.9	448.4	2018	2030	
					2141
420	560.0	450.5	2018	2030	
					2141



#### Velocity Report


#### Velocity Data (Continued)

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m	m	m/s	m/s	m/s
422	562.1	452.7	2019	2031	
					2141
424	564.3	454.8	2019	2031	
					2141
426	566.4	456.9	2020	2031	
V-					2141
428	568.5	459.1	2020	2032	
					2141
430	570.8	461.3	2021	2032	
					2141
432	573.0	463.5	2021	2033	
					2141
434	575.1	465.6	2021	2033	·
,					2141
436	577.2	467.7	2022	2033	
					2141
438	579.4	469.9	2022	2034	
					2141
440	581.5	472.0	2023	2034	
					2141
442	583.6	474.1	2023	2035	
					2141
444	585.8	476.3	2024	2035	
					2141



**Velocity Report** 

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
446	587.9	478.4	2024	2035	
	,				2141
448	590.0	480.5	2024	2036	
					2141
450	592.2	482.7	2025	2036	
100					2141
452	594.3	484.8	2025	2036	
732					2141
454	596.4	486.9	2026	2037	
	* tu/V.	A State Works			2141
456	598.6	489.1	2026	2037	
					2141
458	600.7	491.2	2026	2037	
					2141
460	602.8	493.3	2027	2038	
					2141
462	605.0	495.5	2027	2038	
					2141
464	607.1	497.6	2027	2039	
					2141
466	609.2	499.7	2028	2039	
					2141
468	611.4	501.9	2028	2039	
					2140



#### Velocity Report

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
470	613.5	504.0	2029	2040	
					2140
472	615.8	506.3	2029	2040	
ì					2141
474	617.9	508.4	2029	2040	
					2140
476	620.0	510.6	2030	2041	
					2141
478	622.2	512.7	2030	2041	
					2140
480	624.3	514.8	2030	2041	
					2140
482	626.4	517.0	2031	2042	
402					2141
484	628.6	519.1	2031	2042	A A Angam
101					2141
486	630.7	521.2	2032	2042	
100					2141
488	632.8	523.4	2032	2043	
100					2141
490	635.0	525.5	2032	2043	
470					2141
492	637.1	527.6	2033	2043	
772					2141

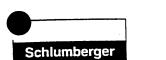
# Schlumberger

#### **GEOGRAM+**

#### Velocity Report

#### Velocity Data (Continued)

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
494	639.2	529.8	2033	2044	· ·
					2141
496	641.4	531.9	2033	2044	
					2141
498	643.5	534.0	2034	2044	21.5
<u> </u>					2141
500	645.6	536.2	2034	2045	
500					2141
502	647.8	538.3	2034	2045	
302		the Billion Medical Co. 102			2141
504	649.9	540.4	2035	2045	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
					2141
506	652.0	542.6	2035	2045	
506					2139
508	654.5	545.0	2036	2047	
					2139
510	657.1	547.6	2038	2049	
<u> </u>		· · · · · · · · · · · · · · · · · ·			2648
512	659.5	550.0	2039	2050	
					2482
514	662.4	552.9	2042	2053	
					2720
516	665.3	555.8	2044	2056	
310					2870


# Schlumberger

#### **GEOGRAM+**

#### **Velocity Report**

#### **Velocity Data (Continued)**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
518	668.0	558.6	2046	2059	
	· .				2733
520	670.8	561.3	2048	2061	
· · · · · · · · · · · · · · · · · · ·					2850
522	673.5	564.1	2051	2064	
		4: 1.1 FPM - 1		·	2729
524	676.3	566.8	2053	2066	
321					2740
526	678.9	569.4	2055	2068	
		Sent 1 September 1 September 1			2703
528	681.6	572.1	2057	2071	
					2716
530	684.5	575.0	2059	2073	
					2770
532	687.3	577.8	2061	2076	
NATION TO THE					2716
534	690.0	580.5	2063	2078	
					2946
536	692.7	583.3	2065	2080	
<u> </u>					2733
538	695.5	586.0	2067	2083	
					2769
540	698.2	588.7	2069	2085	
					2686



#### Velocity Report

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m	m	m/s	m/s	m/s
542	701.1	591.6	2072	2088	
					2743
544	703.9	594.4	2074	2090	
					2775
546	706.6	597.1	2076	2092	
					2761
548	709.7	600.2	2079	2096	***
Market Co.					3141
550	712.4	602.9	2081	2098	
Sweet and the second					2743
552	715.1	605.7	2083	2100	
· · · · · · · · · · · · · · · · · · ·					2743
554	717.9	608.4	2085	2103	
					2733
556	720.6	611.1	2087	2105	
					2884
558	723.4	613.9	2088	2107	
					2701
560	726.1	616.6	2090	2109	
					2769
562	729.2	619.7	2093	2112	
					2932
564	732.1	622.6	2095	2115	
					2736

Schlumberger

#### **Velocity Report**

#### **Velocity Data (Continued)**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
566	734.6	625.2	2097	2117	
					2700
568	737.4	627.9	2099	2119	
					2677
570	740.1	630.7	2101	2121	
<u> </u>					2742
572	743.0	633.5	2103	2123	
572	1 ,				2675
574	745.6	636.1	2104	2125	
3/4			gent of Allenda		2714
576	748.4	638.9	2106	2127	
370					2727
578	751.0	641.5	2107	2128	
376	701.0		<u>'</u>		2797
580	753.2	643.8	2108	2128	
					2265
582	755.5	646.0	2108	2129	
		· · · · · · · · · · · · · · · · · · ·			2346
584	757.8	648.3	2109	2129	
					2338
586	760.1	650.6	2109	2130	
					2213
588	762.4	652.9	2110	2130	
					2258

Schlumberger

#### **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
590	764.5	655.0	2110	2130	
					2230
592	766.8	657.3	2110	2131	
					2155
594	768.9	659.5	2110	2131	:
					2213
596	771.1	661.6	2110	2131	
	·				2153
598	773.2	663.7	2111	2131	
					2178
600	775.5	666.0	2111	2131	
					2205
602	777.8	668.3	2111	2132	
					2250
604	779.8	670.3	2111	2131	
**					2097
606	781.9	672.4	2111	2131	
					2080
608	784.2	674.7	2111	2132	:
					2111
610	786.3	676.8	2112	2132	
					2139
612	788.4	679.0	2112	2132	
-					2135

Schlumberger

#### Velocity Report

## Velocity Data (Continued)

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
614	790.6	681.1	2112	2132	`
					2178
616	792.9	683.4	2112	2132	
					2200
618	795.3	685.8	2113	2133	
* .	1				2513
620	797.4	688.0	2113	2133	
					2332
622	799.7	690.2	2114	2133	
					2178
624	802.0	692.5	2114	2134	
The Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the C					2165
626	804.3	694.8	2114	2134	
<u>,                                     </u>		· · · · · · · · · · · · · · · · · · ·			2286
628	806.4	696.9	2115	2134	
					2214
630	808.7	699.2	2115	2135	
<u> </u>					2274
632	811.0	701.5	2116	2135	
					2367
634	813.4	704.0	2116	2136	
					2334
636	815.9	706.4	2117	2137	
					2509

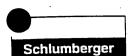
Schlumberger

#### **Velocity Report**

#### **Velocity Data (Continued)**

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms	m	m	m/s	m/s	m/s
638	818.5	709.0	2118	2138	
:					2420
640	821.1	711.6	2120	2139	
					2589
642	823.8	714.3	2121	2141	
					2532
644	826.7	717.2	2123	2143	
***************************************					3008
646	829.7	720.3	2126	2146	
Dennis, videos i s					2947
648	832.6	723.2	2128	2148	
					2892
650	835.5	726.1	2130	2151	
7					2934
652	838.4	728.9	2132	2153	
					2946
654	841.3	731.8	2134	2155	
· · · · · · · · · · · · · · · · · · ·					2868
656	844.2	734.7	2136	2158	
<u> </u>					2917
658	847.1	737.6	2138	2160	
					2917
660	850.2	740.7	2140	2162	
					2932

Schlumberger


#### Velocity Report

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
662	853.1	743.6	2142	2164	
					2902
664	856.0	746.5	2143	2167	
	·				2883
666	858.8	749.4	2145	2169	
· .					2936
668	861.7	752.3	2147	2171	
					2878
670	864.6	755.2	2149	2173	
<u> </u>					2914
672	867.7	758.2	2151	2176	
- 072					2956
674	870.7	761.3	2154	2178	
0/4	+				3051
676	873.6	764.2	2156	2181	
					2909
678	876.7	767.2	2158	2183	3.0
070					2944
680	879.6	770.1	2160	2185	
000	0.5.5				2944
682	882.5	773.0	2161	2187	
002	002.3				2920
684	885.4	775.9	2163	2189	
004	003.7				2904

Schlumberger

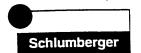
#### **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
686	888.4	778.9	2165	2192	:
					2924
688	891.3	781.8	2167	2194	
					2961
690	894.2	784.7	2169	2196	
					2936
692	897.1	787.6	2171	2198	
692					2878
694	900.0	790.5	2172	2200	
		Man Christ			2862
696	902.9	793.4	2174	2202	
					2927
698	905.9	796.5	2176	2204	
New York Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t					2920
700	908.8	799.4	2178	2206	
					2927
702	911.7	802.2	2180	2208	
					2907
704	914.6	805.1	2181	2210	
					2937
706	917.7	808.2	2183	2212	·
					2939
708	920.6	811.1	2185	2214	
					2937



#### Velocity Report

#### **Velocity Data (Continued)**


TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms	m	m	m/s	m/s	m/s
710	923.5	814.0	2187	2216	
					2916
712	926.4	816.9	2189	2218	
					2930
714	929.3	819.8	2190	2220	
					2919
716	932.1	822.7	2192	2221	
					2921
718	935.2	825.7	2194	2223	
	* 34.4 3 444.0 (1964)	8 (4) (4) (1945 (4) (5) (5)			2891
720	938.1	828.6	2195	2225	
.20			<u> </u>		2932
722	940.8	831.4	2197	2227	
					2930
724	943.3	833.8	2198	2227	
<u> </u>					2553
726	946.5	837.0	2200	2230	
					2528
728	948.9	839.4	2200	2231	
.20					2557
730	951.4	841.9	2201	2231	
, 50					2266
732	953.9	844.5	2202	2232	
132					3539

Schlumberger

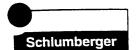
#### Velocity Report

## **Velocity Data (Continued)**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m RB	m	m/s	m/s	m/s
734	956.4	846.9	2202	2233	
·					2417
736	958.7	849.2	2203	2233	
					2366
738	961.3	851.8	2204	2234	
William I					2311
740	963.7	854.2	2204	2234	
	·				2332
742	966.0	856.5	2204	2235	
**************************************	1				2293
744	968.4	858.9	2205	2235	
					2397
746	970.9	861.4	2205	2235	
<u> </u>					2436
748	973.4	864.0	2206	2236	100 电影
· ·					2378
750	975.7	866.3	2206	2237	
					2514
752	978.0	868.5	2206	2237	
:					2473
754	980.3	870.8	2207	2237	
					2258
756	982.6	873.1	2207	2237	
					2332



Velocity Report


TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	m	m/s	m/s	m/s
758	984.9	875.4	2207	2237	
					2323
760	987.3	877.8	2207	2237	
<b>A</b>					2323
762	989.6	880.1	2208	2238	
	·		^		2298
764	991.9	882.4	2208	2238	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA
70.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2328
766	994.6	885.2	2209	2239	
,,,,					2311
768	996.9	887.4	2209	2239	
					2266
770	999.2	889.7	2209	2239	
170		to the control of the control of			2320
772	1001.8	892.3	2210	2240	
		1			2225
774	1004.4	894.9	2211	2241	
					2581
776	1007.0	897.5	2212	2242	
					2730
778	1009.7	900.2	2213	2243	
					2673
780	1012.3	902.8	2214	2244	
					2680



Velocity Report

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms ms	m	m	m/s	m/s	<b>m</b> /s
782	1014.9	905.4	2215	2245	
					2501
784	1017.5	908.0	2215	2245	
					2594
786	1020.1	910.6	2216	2246	
					2530
788	1022.8	913.3	2218	2248	
766			·		2772
790	1025.4	915.9	2218	2248	
7,70					2656
792	1028.0	918.5	2219	2249	
					2513
794	1030.7	921.3	2220	2250	
2 W - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					2580
796	1033.5	924.0	2221	2251	, e Nega
					2699
798	1036.2	926.8	2222	2253	
×					2748
800	1038.8	929.3	2223	2254	:
					2767
802	1041.6	932.1	2225	2255	
					2761
804	1044.3	934.8	2226	2256	
					2713





© 1994 Schlumberger

#### **Velocity Report**

#### **Velocity Data (Continued)**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m M	m	m/s	m/s	m/s
806	1047.1	937.6	2227	2257	
					2724
808	1049.5	940.0	2227	2257	
					2466
810	1052.1	942.6	2228	2258	
				,	2473
812	1054.5	945.0	2228	2258	. <del></del>
					2509
814	1057.1	947.6	2229	2259	
Section 18 - A sept. 18 - Aug.					2473
816	1060.0	950.5	2231	2261	
					2879
818	1062.9	953.4	2232	2262	
9		***************************************			2824
820	1065.8	956.3	2233	2264	
					2881
822	1068.7	959.2	2235	2265	
141, "*					2939
824	1071.6	962.1	2236	2267	
					2912
826	1074.6	965.2	2238	2269	
					3006
828	1077.5	968.1	2239	2270	
					2978

35



#### **Velocity Report**

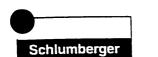
## **Velocity Data (Continued)**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
830	1080.4	970.9	2241	2272	
					2930
832	1083.5	974.0	2242	2274	
					2966
834	1086.5	977.0	2244	2276	
					3044
836	1089.6	980.1	2246	2277	
300					3028
838	1092.6	983.1	2247	2279	
636 1072.3	10020	1	Maria de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya		3141
840	1095.7	986.2	2249	2281	
840	10,50.				3008
842	1098.6	989.1	2250	2283	
<b>1</b>					3017
844	1101.6	992.1	2252	2284	in the same of
		1 Martin 2 1			3051
846	1104.5	995.0	2253	2286	
					2946
848	1107.6	998.1	2255	2288	
					3005
850	1110.6	1001.1	2256	2289	
					2997
852	1113.5	1004.0	2258	2291	
					2999



#### Velocity Report

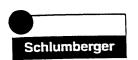
#### **Velocity Data (Continued)**


TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m m	m	m/s	m/s	m/s
854	1116.5	1007.1	2259	2293	
					2999
856	1119.4	1010.0	2261	2294	
					2978
858	1122.3	1012.9	2262	2295	10,0
(180)		:			2922
860	1125.2	1015.8	2263	2297	
					2892
862	1128.3	1018.8	2265	2298	
					2973
864	1131.2	1021.7	2266	2300	
3/11/2					2941
866	1134.2	1024.7	2268	2302	
A					3155
868	1137.1	1027.6	2269	2303	:
					2952
870	1139.7	1030.2	2270	2304	
					2588
872	1142.5	1033.0	2270	2304	
					2639
874	1145.5	1036.0	2272	2306	
					2748
876	1148.4	1038.9	2273	2308	
					2968

Schlumberger

#### **Velocity Report**

#### **Velocity Data (Continued)**


TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms	m	m	m/s	m/s	m/s
878	1151.6	1042.1	2275	2310	
					3073
880	1154.5	1045.0	2276	2311	
					3035
882	1157.1	1047.6	2277	2312	
1 1					2469
884	1159.5	1050.0	2277	2312	
004					2470
886	1162.3	1052.8	2278	2313	
er Marie George			·		2462
888	1164.9	1055.4	2279	2313	
**************************************				·	2596
890	1167.6	1058.1	2280	2314	
					2501
892	1170.2	1060.7	2280	2315	
, p. 10.					2645
894	1173.1	1063.6	2281	2316	
0,74					2975
896	1175.7	1066.2	2282	2317	
					2682
898	1178.4	1068.9	2283	2318	
					2828
900	1181.2	1071.7	2284	2319	
					2637



#### Velocity Report

## Velocity Data (Continued)

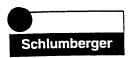
TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m RB	m	m/s	m/s	m/s
902	1183.9	1074.4	2285	2320	
					2658
904	1186.6	1077.2	2286	2320	
					2749
906	1189.1	1079.6	2286	2321	
					2613
908	1191.5	1082.0	2286	2321	
\$6000 B0000 F4					2454
910	1194.1	1084.6	2287	2321	
					2550
912	1196.6	1087.1	2287	2322	
					2479
914	1199.3	1089.8	2288	2322	
<b>)</b>					2473
916	1201.9	1092.4	2289	2323	
					2612
918	1204.6	1095.2	2289	2324	
					2733
920	1207.4	1097.9	2290	2325	
					2879
922	1210.3	1100.8	2291	2326	
					2796
924	1213.0	1103.5	2292	2327	
					2764



#### Velocity Report

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
ms	m	m	m/s	m/s	m/s
926	1215.8	1106.3	2293	2328	
					2682
928	1218.3	1108.9	2294	2328	
					2328
930	1220.9	1111.5	2294	2329	
					2517
932	1223.5	1114.0	2295	2329	
) J 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		La Carrier Marian Maria			2633
934	1226.1	1116.6	2295	2330	
	<u></u>	Fig. 15 streetward to each	· · · · · · · · · · · · · · · · · · ·		2600
936	1228.6	1119.1	2296	2330	
, , , , , , , , , , , , , , , , , , ,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2543
938	1231.0	1121.5	2296	2330	
					2447
940	1233.6	1124.1	2296	2331	
7.0					2525
942	1235.9	1126.4	2297	2331	
					2493
944	1238.3	1128.8	2297	2331	
					2414
946	1241.1	1131.6	2297	2332	
					2512
948	1243.5	1134.0	2298	2332	
7-10	-				2427




**Velocity Report** 

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	KB m	SRD m	m/s	m/s	m/s
950	1246.1	1136.6	2298	2332	
					2492
952	1248.5	1139.0	2299	2333	,
					2427
954	1250.8	1141.3	2299	2333	
					2413
956	1253.2	1143.8	2299	2333	
www.r.					2341
958	1255.7	. 1146.2	2299	2333	
					2419
960	1258.1	1148.6	2299	2333	
					2418
962	1260.6	1151.1	2300	2333	
<u> </u>					2391
964	1263.0	1153.5	2300	2333	
					2457
966	1265.4	1156.0	2300	2334	
					2459
968	1267.9	1158.4	2300	2334	
					2493
970	1270.8	1161.3	2301	2335	
					2527
972	1273.5	1164.0	2302	2336	
					2711

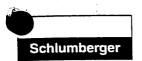
#### **GEOGRAM+** Schlumberger

#### **Velocity Report**

TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m	m	m/s	m/s	m/s
974	1276.3	1166.8	2303	2337	
					2833
976	1279.3	1169.8	2304	2338	
					3159
978	1282.2	1172.7	2305	2339	
					2985
980	1285.1	1175.6	2307	2341	
········					2971
982	1288.3	1178.8	2308	2342	
e Managarana da Taran da					2958
984	1291.3	1181.9	2309	2344	
<u> </u>					3139
986	1293.5	1184.0	2309	2343	
····					2822
988	1295.6	1186.1	2309	2343	
			·		2115
990	1297.7	1188.3	2309	2343	
					2102
992	1299.9	1190.4	2308	2342	
					2176
994	1302.2	1192.7	2308	2342	
					2220
996	1304.3	1194.8	2308	2342	
					2141



#### **Velocity Report**


TWO WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	INTERVAL VELOCITY
FROM SRD ms	m	m	m/s	m/s	m/s
998	1306.6	1197.1	2308	2342	
					2351
1000	1308.9	1199.4	2308	2342	
					2411
1002	1311.2	1201.7	2308	2342	
: '					2285
1004	1313.4	1204.0	2308	2341	
Heli giliye					2208
1006	1315.7	1206.2	2308	2341	
S As of each or					2245
1008	1318.0	1208.5	2308	2341	
					2293
1010	1320.3	1210.8	2308	2341	
					2233
1012	1322.6	1213.1	2307	2341	
					2214
1014	1324.9	1215.4	2307	2341	
					2331
1016	1327.2	1217.7	2308	2341	
					2299
1018	1329.4	1220.0	2307	2341	
-					2318
1020	1331.6	1222.1	2307	2341	
					2225



#### Velocity Report

#### Velocity Data (Continued)

TWO WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD m	AVERAGE VELOCITY SRD/GEO m/s	RMS VELOCITY m/s	INTERVAL VELOCITY m/s
ms	m		2307	2340	
1022	1334.0	1224.5	2307	2340	2233
					2233
1024	1336.5	1227.0	2308	2341	
					2357
1026	1338.7	1229.3	2308	2341	
	· · · · · · · · · · · · · · · · · · ·				2433
1028	1341.0	1231.5	2307	2341	



# GEOGRAM+ Velocity Report

45

This is an enclosure indicator page.

The enclosure PE605514 is enclosed within the container PE908262 at this location in this document.

```
The enclosure PE605514 has the following characteristics:
    ITEM_BARCODE = PE605514
CONTAINER_BARCODE = PE908262
            NAME = Iona Obs-2 : Vertical Seismic Profile
            BASIN = OTWAY
        ONSHORE? = Y
       DATA_TYPE = WELL
   DATA_SUB_TYPE = SYNTH_SEISMOGRAM
     DESCRIPTION = Iona Obs-2 Vertical Seismic Profile,
                    Z-Axis Processing Steps, (Enclosure
                    from: Appendix 4, Plot 1, Iona Obs-2
                    WCR vol.1). Western Underground Gas
                    Storage Pty. Ltd/Schlumberger.
          REMARKS =
     DATE_WRITTEN = 31-OCT-1999
   DATE_PROCESSED =
    DATE_RECEIVED =
    RECEIVED_FROM = Western Underground Gas Storage Pty Ltd
        WELL_NAME = Iona Obs-2
       CONTRACTOR = Western Underground Gas Storage Pty Ltd
           AUTHOR =
       ORIGINATOR = Western Underground Gas Storage Pty Ltd
        TOP_DEPTH = 0
     BOTTOM_DEPTH = 0
   ROW_CREATED_BY = PC00_SW
```

This is an enclosure indicator page.

The enclosure PE605515 is enclosed within the container PE908262 at this location in this document.

```
The enclosure PE605515 has the following characteristics:
     ITEM_BARCODE = PE605515
CONTAINER_BARCODE = PE908262
            NAME = Iona Obs-2 : Vertical Seismic Profile
            BASIN = OTWAY
         ONSHORE? = Y
        DATA_TYPE = WELL
    DATA_SUB_TYPE = SYNTH_SEISMOGRAM
      DESCRIPTION = Iona Obs-2 : Vertical Seismic Profile,
                    Composite Display Normal Polarity,
                    (Enclosure from: Iona Obs-2 WCR vol.1,
                    Appendix 4, Plot 2). Western
                    Underground Gas Storage Pty.
                    Ltd/Schlumberger.
          REMARKS =
     DATE_WRITTEN = 31-OCT-1990
   DATE_PROCESSED =
    DATE_RECEIVED =
    RECEIVED_FROM = Western Underground Gas Storage Pty Ltd
        WELL_NAME = Iona Obs-2
       CONTRACTOR = Western Underground Gas Storage Pty Ltd
           AUTHOR =
       ORIGINATOR = Western Underground Gas Storage Pty Ltd
        TOP\_DEPTH = 0
     BOTTOM_DEPTH = 0
   ROW_CREATED_BY = PC00_SW
```

This is an enclosure indicator page.

The enclosure PE605516 is enclosed within the container PE908262 at this location in this document.

```
The enclosure PE605516 has the following characteristics:
     ITEM_BARCODE = PE605516
CONTAINER_BARCODE = PE908262
            NAME = Iona Obs-2 : Vertical Seismic Profile
            BASIN = OTWAY
         ONSHORE? = Y
        DATA_TYPE = WELL
    DATA_SUB_TYPE = SYNTH_SEISMOGRAM
      DESCRIPTION = Iona Obs-2 : Vertical Seismic Profile,
                    Composite Display Reversed Polarity,
                    (Enclosure from: Iona Obs-2 WCR vol.1,
                    Appendix 4, Plot 3). Western
                    Underground Gas Storage Pty.
                    Ltd/Schlumberger.
          REMARKS =
     DATE_WRITTEN = 31-OCT-1990
   DATE_PROCESSED =
    DATE_RECEIVED =
    RECEIVED_FROM = Western Underground Gas Storage Pty Ltd
        WELL_NAME = Iona Obs-2
       CONTRACTOR =
           AUTHOR =
       ORIGINATOR = Western Underground Gas Storage Pty Ltd
        TOP_DEPTH =
     BOTTOM_DEPTH =
   ROW_CREATED_BY = PC00_SW
(Inserted by DNRE - Vic Govt Mines Dept)
```

This is an enclosure indicator page.

The enclosure PE908914 is enclosed within the container PE908262 at this location in this document.

The enclosure PE908914 has the following characteristics: ITEM_BARCODE = PE908914 CONTAINER_BARCODE = PE908262 NAME = Iona Obs-2 Check Shot Survey Plot BASIN = OTWAY ONSHORE? = Y DATA_TYPE = WELL DATA_SUB_TYPE = VELOCITY_CHART DESCRIPTION = Iona Obs-2 Check Shot Survey Velocity Cross-plot Appendix 4 Plot 4 REMARKS = DATE_WRITTEN = DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Western Underground Gas Storage Pty Ltd WELL_NAME = Iona Obs-2 . CONTRACTOR = Western Underground Gas Storage Pty Ltd AUTHOR = ORIGINATOR = Western Underground Gas Storage Pty Ltd TOP_DEPTH = BOTTOM_DEPTH = ROW_CREATED_BY = DN07_SW

This is an enclosure indicator page. The enclosure PE605561 is enclosed within the container PE908262 at this location in this document.

The enclosure PE605561 has the following characteristics: ITEM_BARCODE = PE605561 CONTAINER_BARCODE = PE908262 NAME = Iona Obs-2 Drift Corrected Sonic Plot BASIN = OTWAY ONSHORE? = YDATA_TYPE = WELL DATA_SUB_TYPE = WELL_LOG DESCRIPTION = Iona Obs-2 Drift Corrected Sonic, Geoframe Processed Interpretation Appendix 4 Plot 5 REMARKS = DATE_WRITTEN = DATE_PROCESSED = 31-MAY-1999 DATE_RECEIVED = RECEIVED_FROM = Western Underground Gas Storage Pty Ltd WELL_NAME = Iona Obs-2 CONTRACTOR = Western Underground Gas Storage Pty Ltd AUTHOR = ORIGINATOR = Western Underground Gas Storage Pty Ltd  $TOP_DEPTH = 0$ BOTTOM_DEPTH = 1250

(Inserted by DNRE - Vic Govt Mines Dept)

ROW_CREATED_BY = DN07_SW

This is an enclosure indicator page.

The enclosure PE908915 is enclosed within the container PE908262 at this location in this document.

The enclosure PE908915 has the following characteristics: ITEM_BARCODE = PE908915 CONTAINER_BARCODE = PE908262 NAME = Iona Obs-2 Vertical Seismic Profile BASIN = OTWAY ONSHORE? = YDATA_TYPE = WELL DATA_SUB_TYPE = SYNTH_SEISMOGRAM DESCRIPTION = Iona Obs-2 Vertical Seismic Profile, Composite Display Normal Polarity 1s:50cm Appendix 4 Plot 6 REMARKS = DATE_WRITTEN = DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Western Underground Gas Storage Pty Ltd WELL_NAME = Iona Obs-2 CONTRACTOR = Western Underground Gas Storage Pty Ltd AUTHOR = ORIGINATOR = Western Underground Gas Storage Pty Ltd TOP_DEPTH = BOTTOM_DEPTH = ROW_CREATED_BY = DN07_SW

This is an enclosure indicator page.

The enclosure PE908916 is enclosed within the container PE908262 at this location in this document.

```
The enclosure PE908916 has the following characteristics:
    ITEM_BARCODE = PE908916
CONTAINER_BARCODE = PE908262
            NAME = Iona Obs-2 Vertical Seismic Profile
            BASIN = OTWAY
        ONSHORE? = Y
       DATA_TYPE = WELL
   DATA_SUB_TYPE = SYNTH_SEISMOGRAM
     DESCRIPTION = Iona Obs-2 Vertical Seismic Profile,
                    Composite Display Reversed Polarity
                    1s:50cm Appendix 4 Plot 7
          REMARKS =
    DATE_WRITTEN =
   DATE_PROCESSED =
   DATE_RECEIVED =
   RECEIVED_FROM = Western Underground Gas Storage Pty Ltd
       WELL_NAME = Iona Obs-2
       CONTRACTOR = Western Underground Gas Storage Pty Ltd
           AUTHOR =
       ORIGINATOR = Western Underground Gas Storage Pty Ltd
        TOP_DEPTH =
     BOTTOM_DEPTH =
   ROW_CREATED_BY = DN07_SW
```

# **APPENDIX 5** SHDT Processing and Interpretation Report by Schlumberger

# Western Underground Gas Storage Iona OBS-2

#### **SHDT Processing & Interpretation Report**

Thomas J. Neville

Schlumberger GeoQuest

#### **DISCLAIMER**

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not guarantee the accuracy or correctness of any interpretations, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretations made by any of our officers, agents, or employees. These interpretations are also subject to Clause 4 of our General Terms and Conditions as set out in our current Price Schedule.

#### **Acquisition**

Dipmeter data was acquired in the Iona OBS-2 well on May 20, 1999 using an SHDT tool. The main pass was recorded with an emex gain of 2 and offset of 0. The repeat section was recorded with an emex gain of 3 and offset of 1. Table 1 summarises borehole conditions at the time of logging.

Rm @ temperature	0.178 Ωm @ 11° C
Rmf @ temperature	0.160 Ωm @ 11° C
Rmc @ temperature	0.081 Ωm @ 12° C
Maximum recorded temperature	52° C
Mud type	KCl/PHPA/polymer
Mud density	1.08 g/cm ³
Bit size	6 in

Table 1 - Borehole Conditions

#### **Processing**

Original format copies of field acquisition data were loaded into GeoFrame, Schlumberger's geotechnical computing environment, for processing. Following loading, the data was processed through the following steps:

#### **Borehole Geology Formatter**

Data loaded in compressed field acquisition format was converted to a format appropriate for further processing.

#### **GPIT Survey**

Using knowledge of well location (latitude and longitude) and logging data, IGM geomagnetic components (magnetic field strength, inclination, declination, and acceleration due to gravity) were computed. These were then used in conjunction with raw accelerometer and magnetometer measurements to recompute tool inclinometry values. GPIT data was also quality checked at this time. A GPIT LQC Display is included in the accompanying prints.

#### **BorEID**

BorEID represents the central processing step in dip and image processing. For SHDT data, BorEID processing includes GPIT based speed correction, emex voltage correction to recorded button conductivities, and equalisation of button conductivities. GPIT based speed correction was conducted using explicit sticking detection. The results of GPIT based speed correction are presented in the Tool Dynamics Display included in the accompanying prints.

#### **BorDip**

Automated dip computation was conducted within the BorDip module. Three different dip computation methods were used.

Firstly, a two-pass MSD processing technique was used. In the first pass, the data was processed using a 4'x2'x60° correlation, with a correlation cutoff of 0.5. The search window was focussed normal to the tool axis ("California" option). Then, the results of this first pass were used in variable plane focusing for a second pass of MSD computation, with a 4'x2'x20° correlation. This two-pass technique has proved very useful in maximising the number of high quality dips obtained from the MSD technique. The primary aim of the MSD processing was evaluation of structural and large-scale sedimentary features.

Secondly, the results of the second MSD pass were used to guide focusing of CSB processing. This processing was conducted using a 6"x2"x30° correlation, with the aim of imaging small-scale sedimentary features.

Finally, the SHDT data were processed using the Local Dip technique with a derivative length of 21 samples and derivative threshold of 0.1. Again, the outputs of the second MSD pass were used to focus the search region for this processing. Local Dip processing is an event based correlation technique, as opposed to the interval based correlation techniques used in MSD and CSB computation, and is designed to detect and correlate very fine scale features.

The results of each of these processings are presented in the Automated Dip Computation display included in the accompanying prints.

#### **Interpretation**

Fluvial environments are characterised by five main groups of sedimentary features that may be recognised on dipmeters: current bedding, lateral accretion, downstream accretion, erosional surfaces, and compaction features. From dipmeter data, these features are primarily identified using dip patterns. It is important when evaluating dip patterns to remember that all automated dip computation methods rely on the assumption that the events to be correlated are planar. On the scale of the borehole, this assumption holds true for many but not all sedimentary features.

Lateral and downstream accretion features are the most easily recognisable features on dip plots, as the sedimentary bedforms are essentially planar. Current bedding is more difficult to recognise, particularly in high-energy environments where trough cross bedding dominates. In this environment, it is impossible for automatic dip computation algorithms to identify bedding features as they are not planar, even on the scale of the borehole. This is the primary reason for the generally poor performance of automatic dip computations in fluvial environments. Erosional surfaces can also be difficult to recognise, as they are typically only represented by a single dip, which is impossible to interpret in the absence of other supporting information. Compaction features are only useful in low energy environments where inter-channel shale deposits are preserved. In high energy, sand prone environments, compaction features are not commonly preserved due to erosion of inter-channel shales.

An expanded scale display of the automated dip computation results over the reservoir interval, annotated with interpretation comments, is presented as the Interpretation Display in the accompanying prints.

From a review of the computed dips available, the most apparent feature is a blue pattern from 1310 to 1310.5 metres with average dip azimuth of 110 degrees overlain by a red pattern from 1309.6 to 1310 metres with average dip azimuth of 110 degrees. This signature of a red pattern overlying a blue pattern with the same dip azimuth is characteristic of lateral accretion units deposited in longitudinal bars. In this situation, the dip azimuth of the dip signature indicated the position of the channel thalweg with respect to the borehole, in this case 110 degrees. The channel orientation is perpendicular to this orientation, in this case the channel axis is oriented 20 degrees – 200 degrees. From a lateral accretion signature alone, it is impossible to identify the direction of current flow. A similar lateral accretion signature can be identified at 1320.5 metres (average dip azimuth 120 degrees). Truncated lateral accretion signatures (blue pattern only) have also been identified at 1296.5 metres (average dip azimuth 130 degrees), 1305.8 metres (average dip azimuth 130 degrees), and 1309.5 metres (average dip azimuth 140 degrees).

Definitive current bedding signatures (characterised by a well developed blue pattern) are rare in this data set. Only two have been identified in the reservoir interval, from 1321 to 1322 metres (average dip azimuth 30 degrees) and from 1329.5 to 1330 metres (average dip azimuth 40 degrees).

Although limited by the quality of the available dip data, the most likely interpretation based on the dip patterns described above, is that the sands of the reservoir interval in the Iona OBS-2 well were deposited by a high energy (braided?) stream system with a general northeast-southwest trend, flowing towards the northeast (approximately 35-40 degrees).

This is an enclosure indicator page.

The enclosure PE605562 is enclosed within the container PE908262 at this location in this document.

```
The enclosure PE605562 has the following characteristics:
     ITEM_BARCODE = PE605562
CONTAINER_BARCODE = PE908262
            NAME = Iona Obs-2 Mudlog
            BASIN = OTWAY
        ONSHORE? = Y
       DATA_TYPE = WELL
   DATA_SUB_TYPE = MUD_LOG
     DESCRIPTION = Iona Obs-2 Formation Evaluation Mudlog
                    Scale 1:200 Enclosure 1
         REMARKS =
    DATE_WRITTEN =
  DATE_PROCESSED =
   DATE_RECEIVED =
   RECEIVED_FROM = Western Underground Gas Storage Pty Ltd
       WELL_NAME = Iona Obs-2
       CONTRACTOR = Western Underground Gas Storage Pty Ltd
           AUTHOR =
       ORIGINATOR = Western Underground Gas Storage Pty Ltd
        TOP_DEPTH = 280
     BOTTOM_DEPTH = 1355
   ROW_CREATED_BY = DN07_SW
```

This is an enclosure indicator page.

The enclosure PE605563 is enclosed within the container PE908262 at this location in this document.

```
The enclosure PE605563 has the following characteristics:
    ITEM_BARCODE = PE605563
CONTAINER_BARCODE = PE908262
            NAME = Iona Obs-2 Composite Well Log
            BASIN = OTWAY
        ONSHORE? = Y
       DATA_TYPE = WELL
   DATA_SUB_TYPE = COMPOSITE_LOG
     DESCRIPTION = Iona Obs-2 Composite Well Log Enclosure
          REMARKS =
    DATE_WRITTEN =
   DATE_PROCESSED =
   DATE_RECEIVED =
   RECEIVED_FROM = Western Underground Gas Storage Pty Ltd
        WELL_NAME = Iona Obs-2
       CONTRACTOR = Western Underground Gas Storage Pty Ltd
           AUTHOR =
       ORIGINATOR = Western Underground Gas Storage Pty Ltd
        TOP_DEPTH =
     BOTTOM_DEPTH =
   ROW_CREATED_BY = DN07_SW
```

This is an enclosure indicator page. The enclosure PE605564 is enclosed within the container PE908262 at this location in this document.

```
The enclosure PE605564 has the following characteristics:
     ITEM_BARCODE = PE605564
CONTAINER_BARCODE = PE908262
            NAME = Iona Obs-2 Composite Well Log
            BASIN = OTWAY
         ONSHORE? = Y
       DATA_TYPE = WELL
   DATA_SUB_TYPE = COMPOSITE_LOG
     DESCRIPTION = Iona Obs-2 Composite Well Log,
                    Reservoir Section, Scale 1:200
                    Enclosure 3
          REMARKS =
     DATE_WRITTEN = 31-AUG-1999
   DATE_PROCESSED =
   DATE_RECEIVED =
    RECEIVED_FROM = Western Underground Gas Storage Pty Ltd
        WELL NAME = Iona Obs-2
       CONTRACTOR = Western Underground Gas Storage Pty Ltd
           AUTHOR =
       ORIGINATOR = Western Underground Gas Storage Pty Ltd
        TOP_DEPTH =
     BOTTOM_DEPTH =
   ROW_CREATED_BY = DN07_SW
```