

0 1 MAY 1986 **Б**Б . . .

W919

PETROLEUM DIVISION

0 1 MAY 1986

BEACH PETROLEUM N.L.

WRIXONDALE NO. 1

WELL COMPLETION REPORT

PEP 107

GIPPSLAND BASIN, VICTORIA

BY: A. TABASSI, MARCH 1986. CONTENTS

			Page	Number
	SUMM	ARY		1
1.	INTRO	ODUCTION		2
2.	WELL	HISTORY		
	2.1	Location		3
	2.2	General Data		3
	2.3	Drilling Data		
		2.3.1 Drilling Contractor		7
		2.3.2 Drilling Rig		7
		2.3.3 Casing Details		7
		2.3.4 Drilling Fluid		8
		2.3.5 Water Supply		9
	2.4	Formation Sampling and Testing		
		2.4.1 Cuttings		9
		2.4.2 Cores		9
		2.4.3 Tests		11
	2.5	Logging and Surveys		
		2.5.1 Mudlogging		13
		2.5.2 Wireline Logging		13
		2.5.3 Deviation Survey		13
		2.5.4 Velocity Survey		14
3.	RESU	LTS OF DRILLING		
	3.1	Stratigraphy		15
	3.2	Lithological Descriptions		15
	3.3	Hydrocarbons		
		3.3.1 Mud Gas Readings		21
		3.3.2 Sample Fluorescence		21
4.	GEOL	OGY		
	4.1	Wrixondale Structure		22
	4.2	Maturation and Source Rock Analysis		22
	4.3	Relevance to Occurrence of Hydrocarbons		27

. مر FIGURES

Page Number

1.	Regional Location Map	4
2.	Detailed Location Map	5
3.	Prognosed and Actual Stratigraphy	16
4.	Time Structural Map of the	23
	Near Base Lakes Entrance Formation	
5.	Seismic Line GB83A-26	24
6.	Vitrinite Reflectance and	26
	Total Organic Carbon Profile	
7.	Latrobe Group Wireline Log Response	28

APPENDICES

- 1. Details of the Drilling Plant
- 2. Summary of the Drilling Operation
- 3. Drilling Fluid Recap
- 4. S.W.C. Descriptions
- 5. D.S.T. Reports
- 6. Velocity Survey
- 7. Source Rock Studies
- 8. Rock-Evaluation Analysis
- 9. Extraction and Determination of Hydrocarbon
- 10. Biostratigraphic Report
- 11. Petrological Studies

ENCLOSURES

- 1. Composite Well Log
- 2. Exlog Master Log
- 3. Schlumberger Wireline Logs
- 4. Synthetic Seismogram and Velocity Survey

SUMMARY

Wrixondale No. 1 was drilled as a wildcat exploration well in the PEP 107, Gippsland Basin, Victoria, approximately 40 km north west of Sale.

Drilling commenced on the 12th October 1985 and reached a total depth of 987.3 m (KB) on the 18th October 1985.

Participants in the well were Beach Petroleum N.L. (Operator), Gas and Fuel Exploration N.L., Australian Oil and Gas Corp. Ltd., TCPL Resources Ltd., Pan Pacific Petroleum N.L. and Lasmo Energy Australia Ltd.

The principal target horizon was the sand units within the Latrobe Group sediments.

The objective proved to be porous but water saturated.

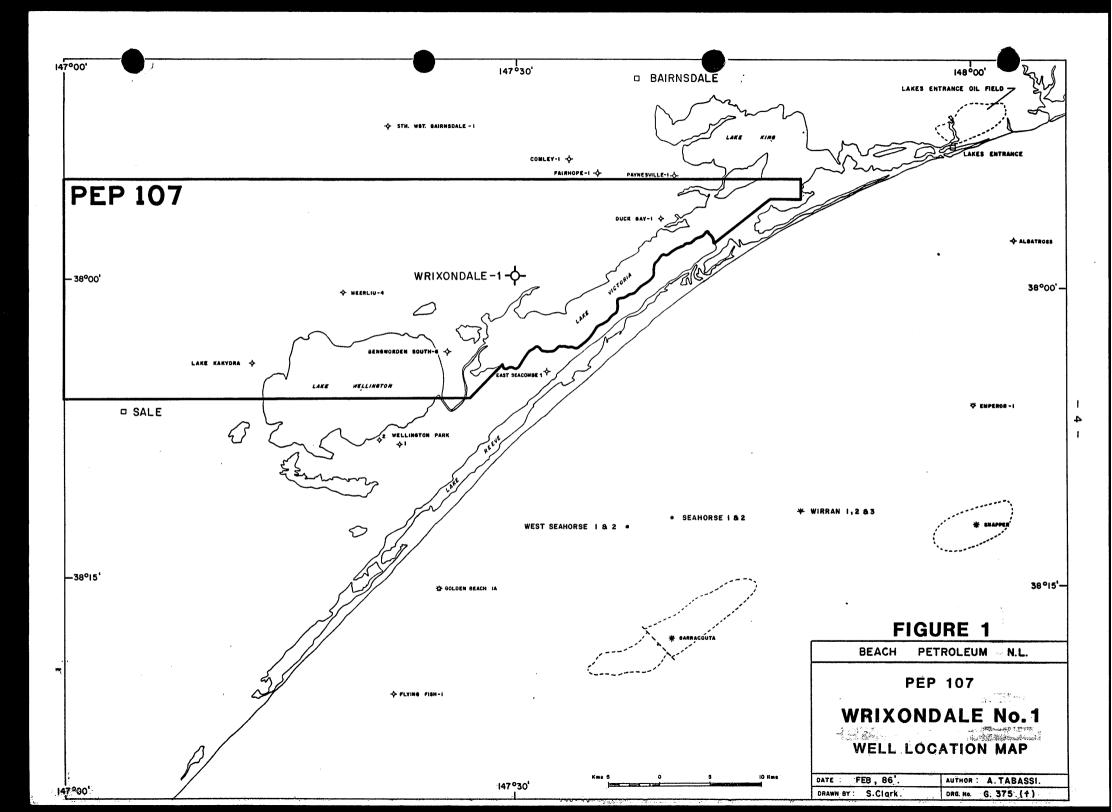
Minor hydrocarbon shows were encountered at the top of the principal target where DST No. 2 recovered 19 barrels of slight to moderately gas - cut formation water.

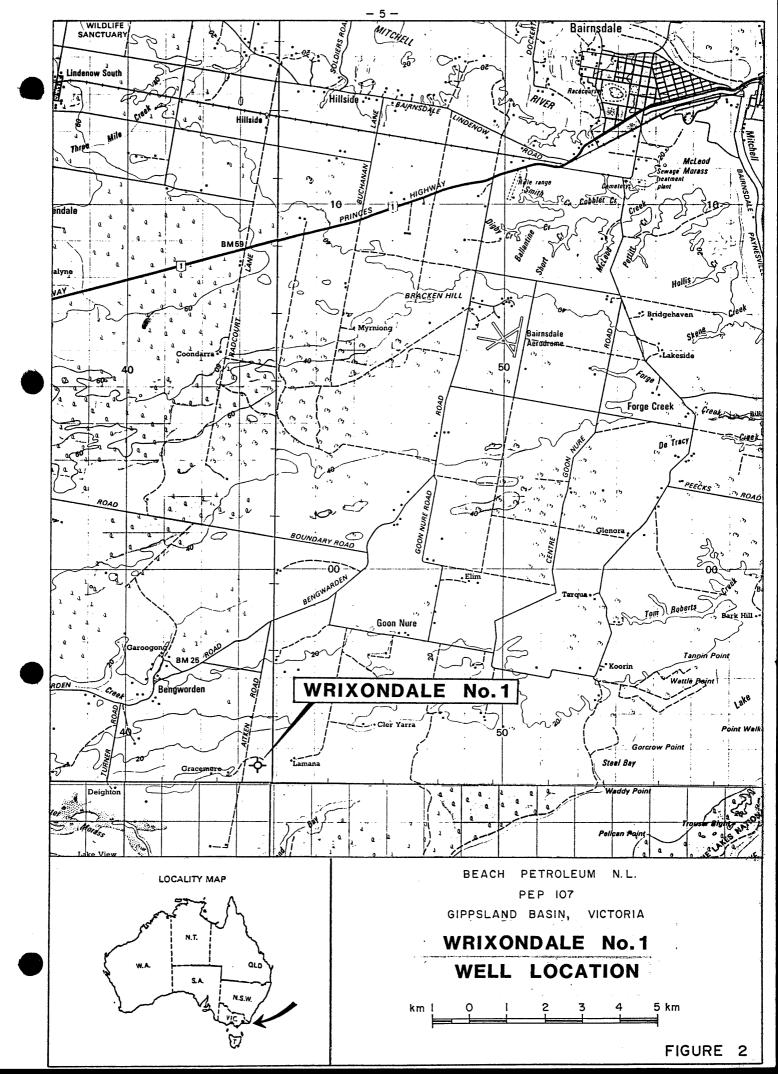
Prior to abandonment one wireline logging run comprising the DLL/MSFL, BHC/GR, LDL/CNL, CST and a WST was completed.

Wrixondale No. 1 was plugged and abandoned as a dry hole on the 19th October 1985.

1.

The Wrixondale prospect was identified by interpretation of the GB83A Bengworden Seismic Survey and subsquently confirmed by the BD85 Bengworden Detail Seismic Survey.


The structure was seismically defined as a small closure at the "Near Base Lakes Entrance Formation". The prospect is located to the south of the Lamana Trend; a structural/stratigraphic feature which trends north east to south west. Hydrocarbons were postulated to have been generated and to have migrated from the more deep seated Latrobe Group sediments up into the Lamana Trend via a number of prominent faults.


The prediction of the nature of reservoir and seal rocks was largely based on Duck Bay No. 1, drilled 15 km to the north east by Woodside (Lakes Entrance) Oil Company N.L. and Arco Ltd. in 1964 and Bengworden South No. 6 drilled 10 km to the south west by the Victorian Government in 1976. Reference was also made to the number of Government water bores in the area, in particular Goon Nure No. 9, drilled 12 km to the north east.

The well was designed as a test of the sand bodies within the Tertiary Latrobe Group sediments.

```
2. WELL HISTORY
```

```
2.1 Location (See Figure 1)
                                           37° 59' 42.8" S
     Co-ordinates:
                              Latitude:
                              Longitude: 147° 29' 48.1" E
                              Line GB 83A-26, Shot Point 230 (Approx.
     Geophysical Control:
                              100 m west), Bengworden Seismic Survey,
                              Beach Petroleum N.L.
                              Parish of Goon Nure
     Real Description
     Description:
                              Shire of Bairnsdale
                              County of Tangil
2.2 General Data (See Figure 2)
     Well Name & Number:
                              Wrixondale No. 1, PEP 107
     Operator:
                              Beach Petroleum N.L.,
                              685 Burke Road,
                              CAMBERWELL, VIC., 3124.
     Participants:
                              Beach Petroleum N.L.,
                              685 Burke Road,
                              CAMBERWELL, VIC., 3124.
                              Gas & Fuel Exploration N.L.,
                              171 Flinders Street,
                              MELBOURNE, VIC., 3000.
                              Australian Oil & Gas Corp. Ltd.,
                              Suite 1302, 388 George Street,
                              SYDNEY, N.S.W., 2000.
```


.

TCPL Resources Ltd., 6th Floor, Zurich House, 5 Blue Street, NORTH SYDNEY, N.S.W., 2060. Pan Pacific Petroleum N.L., 5th Floor, 169 Miller Street, NORTH SYDNEY, N.S.W., 2060. Lasmo Energy Australia Ltd., 15th & 16th Floors, 300 Queen Street, BRISBANE, QLD., 4000. Elevation: Ground Level 22.20 m Kelly Bushing 26.20 m (Unless otherwise stated, all depths refer to K.B.) Total Depth: Driller 987.30 m 987.50 m Logger Date Drilling Commenced: 12th October 1985 @ 0430 hrs. Date Total Depth Commenced: 18th October 1985 @ 0430 hrs.

Date Rig Released: 19th October 1985 @ 2130 hrs.

Drilling Time to Total Depth: 6 days

Status: Plugged and abandoned.

2.3 Drilling Data (See also Appendix 1 & 2)

2.3.1 Drilling Contractor

Atco - APM Drilling Pty. Ltd., 33 Barfield Crescent, ELIZABETH WEST, S.A., 5112.

2.3.2 Drilling Rig

Atco Rig No. 3

2.3.3 Casing Details

Conductor

A 20" conductor pipe was set @ 7 m K.B.

Surface Casing

Size:	9 ⁵ /8''
Weight:	36 lb/ft
Grade:	J-55
Connection:	STC
Centralizer:	One each @ 293 m, 275 m and 263 m.
Float Collar:	286.6 m
Shoe:	299.0 m
Cement:	Lead Slurry: 200 sacks Blue Circle Class
	"A" mixed with 2% Prehydrated gel.
	Tale Slurry: 225 sacks Blue Circle Class
	"A" neat.
Cemented to:	Surface
Method:	Displacement
Equipment:	Halliburton Skid Mounted Unit.

Cement Plugs

•

•

.

Plug No. 1			
Interval:	810.0 - 750.0 m		
Cement:	66 sacks Class "A" neat		
Method:	Balance		
Tested:	No		

Plug No. 2	
Interval:	306.0 - 246.0 m
Cement:	75 sacks Class "A" neat
Method:	Balance
Tested:	Tagged with 10,000 lb

<u>Plug No. 3</u> Interval: Surface

Incorvary	5411400
Cement:	25 sacks Class "A" neat
Method:	Hand mixed
Tested:	No

2.3.4 Drilling Fluid (See Appendix 3 for details)

12¼" Hole, 3.0 m to 302.0 m

The well was spudded with water. A high viscosity Milgel pill was pumped when very coarse sandstone of the Sale Group was penetrated below 55.0 m. The viscosity was built up from native solids and no further Milgel was used. The following properties were maintained throughout this section:

Mud Weight:	9.2 - 9.3 ppg
Viscosity:	36 - 43 seconds

8¹₂" Hole, 302.0 m to 987.3 m

The 8½" hole was also drilled with water only. Due to the mud making nature of Gippsland Limestone and Lakes Entrance Formation, large diluation rates were required prior to penetrating Latrobe sands. Water loss was controlled below 700 m by adding CMC. The following properties were maintained throughout this section:

Mud Weight:	8.9 - 9.1 ppg
Viscosity:	35 - 44 seconds

2.3.5 Water Supply

Fresh water was obtained from a bore drilled by Beach Petroleum N.L. adjacent to the wellsite.

2.4 Formation Sampling and Testing

2.4.1 Cuttings

Cutting samples were collected at 10 metre intervals to 650 metres and at 5 metre intervals from 650 metres to T.D. Each sample was washed, oven dried, divided into four splits and stored in labelled polythene bags. Three complete sets were distributed as follows: one each for Beach Petroleum N.L., Gas and Fuel Exploration N.L. and the Victorian Government. One spare set was retained by Beach Petroleum N.L.

2.4.2 <u>Cores</u>

(a) No conventional coring operations were performed.

- 9 -

(b) Thirty sidewall cores were attempted prior to plugging and abandoning the well. Twenty-nine were recovered, one was left in the hole. Listed below are the depths and recovery of sidewall cores. (See Appendix 4 for descriptions).

SWC No.	Depth	Recovery
	(m)	(mm)
1 V	980.0	40
2	965.0	35
3 VR	955.0	38
4 P	947.0	30
5	941.0	Ni1
6 P	937.5	35
7 P	932.0	40
8 VRB	925.0	45
9 P	922.5	25
10	915.5	45
11	913.0	35
12 VR	910.5	30
13 P	898.0	32
14 P	888.5	34
15 P	886.5	40
16 P	882.5	35
17 RB	875.5	40
18	872.5	40
19 P	685.0	36
20 PB	854.0	52
21 P	834.0	35
22 P	825.0	37
23 PB	815.0	45
24 PD	801.0	40
25 VPB	795.0	50
26 RB	790.0	50
27 B	772.0	50
28 B	768.0	55
29	759.0	30
30 V	751.0	40

<u>Note</u>:

- V Vitrinite Reflectance Data available, see Appendix 7.
- P Petrological Data available, see Appendix 11.
- D Determination of Presence of Hydrocarbons Data available, see Appendix 9.
- B Biostratigrahpic Data available, see Appendix 10.

2.4.3 Tests

Two drill stem tests were performed (see Appendix 5 for details).

Drill Stem Test No. 1

Interval Tested:	777.0 m - 795.0 m			
Formation Tested:	Latrobe			
Test Type:	Open hole.			
Packers Set At:	773.5 m and 777.0 m			
Cusion:	304.8 m of water			
Preflow:	15 minutes with a weak blow from			
	the top of the bucket.			
Initial Shut-in:	30 minutes			
Second Flow:	45 minutes with a very weak blow			
	decreasing to nil in 15 minutes.			
Final Shut-in:	45 minutes			
Processing Pocordad.				

Pressures Recorded:

	Guage	<u>e At</u>	<u>Gauge At</u>
	769	m	<u>793.7 m</u>
Initial Hydrostatic	1190	psi	1262 psi
Initial Flow (First)	368	psi	425 psi
Initial Flow (Final)	368	psi	458 psi
Initial Closed In	993	psi	1051 psi
Second Flow (First)	368	psi	490 psi
Second Flow (Final)	371	psi	490 psi
Final Closed In	993	psi	1034 psi
Final Hydrostatic	1174	psi	1230 psi

Recovery: Drilling fluid only. Assessment: Charts indicate plugging of the anchor pipe perforations during both flow periods.

Drill Stem Test No. 2

Interval Tested:	799.0 m - 807.0 m					
Formation Tested:	Latrobe					
Test Type:	Open Hole					
Packer Set At:	797.4 m and 799.0 m					
Cusion:	304.8 m of water					
Preflow:	No preflow was carried out.					
Initial Shut-in:	-					
Second Flow:	60 minutes with strong blow from					
	bottom of bucket, decreased to moderate					

Pressures Recorded:

	Gauge At	Gauge At
	792.2 m	805.6 m
Initial Hydrostatic	1223 psi	1236 psi
Initial Flow (First)	534 psi	1067 psi
Initial Flow (Final)	780 psi	1132 psi
Initial Closed In	1108 psi	1138 psi
Final Hydrostatic	1223 psi	1246 psi

blow before shut-in.

19 barrels (approx.) of slight to Recovery: moderately gas - cut formation water circulated (see reverse Formation Water Analysis report in Appendix 11). Charts indicate plugging of the anchor Assessment: pipe perforation during the flow period. This appears to be due to unconsolidated nature of Latrobe sands.

2.5 Logging and Surveys

2.5.1 <u>Mudlogging</u>

A standard skid-mounted Exlog unit was used to provide penetration rate, continuous mud gas monitoring, intermittent mud and cuttings gas analysis, pump rate and mud volume data. The Masterlog is included as Enclosure 2.

2.5.2 Wireline Logging

Wireline logging was performed by Schlumberger Seaco Inc. using a Cyber Service Unit. One run was performed and details are listed below:

Dual Laterolog 298.5 - 983.0 m (DLL/SP/Ca1/GR)

Micro-spherically 650.0 - 983.0 focused log (MSFL)

Sonic Log (BHC/GR) 298.5 - 985.8 m

Litho-density/ Compensated Neutron 298.5 - 986.8 m Log (LDL/CNL/GR)

These logs are included as Enclosure 3.

2.5.3 Deviation Surveys

A Totco double recorder was used to measure hole deviation, the results of which are listed below:

Depth	Deviation	Depth	Deviation
(m)	(o)	(m)	(o)
32	3/4	303	14
66	1	489	0
103	1	671	3/4
158	0	983	3/4
234	3/4		

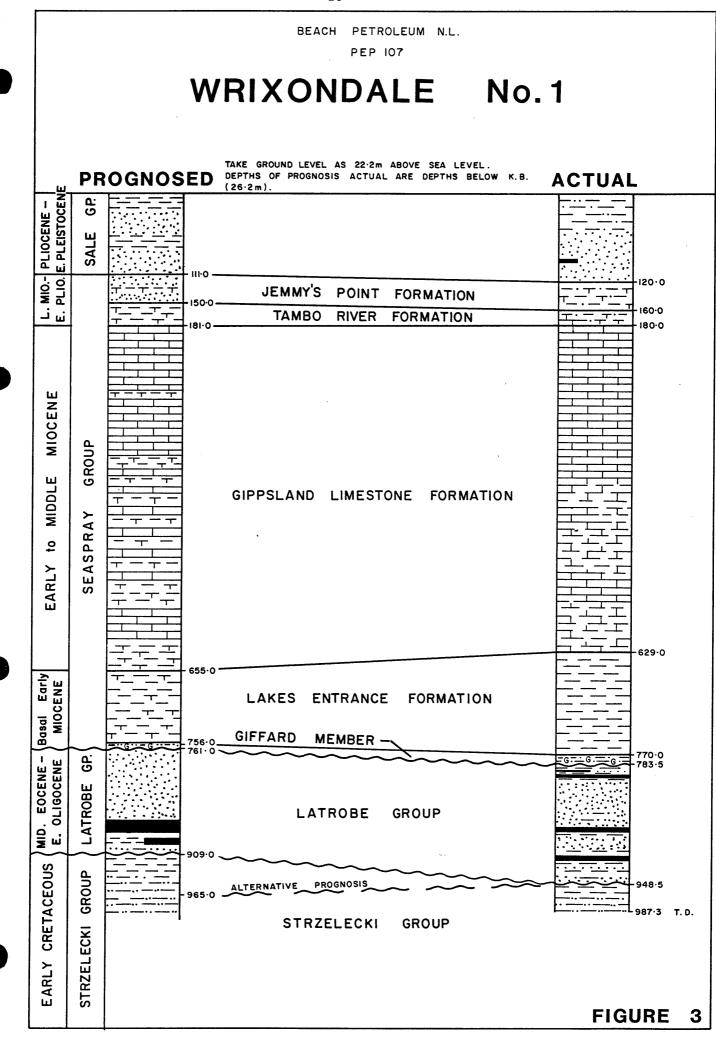
2.5.4 Velocity Survey

A velocity survey was carried out by Schlumberger Seaco Inc., the results of which are included as Appendix 6 and Enclosure 4.

3.1 Stratigraphy

The following stratigraphic intervals have been delineated using penetration rate, cuttings analysis and wireline log interpretation. All formations were present as predicted, although some formation tops differ marginally from prognosis (see also Figure 3).

Group	Formation	Depth	Depth	Thickness
		(K.B.)	(Subsea)	
Sale		Surface	+22.2	116.0
Seaspray	Jemmy's Point	120.0	-93.8	40.0
	Tambo River	160.0	-133.8	20.0
	Gippsland Limestone	180.0	-153.8	449.0
	Lakes Entrance	629.0	-602.8	141.0
	Giffard Member	770.0	-743.8	13.5
Latrobe		783.5	-757.3	165.0
Strzelecki		948.5	-922.3	38.8+
	T.D.	987.3	-961.1	


3.2 Lithological Descriptions

SALE GROUP (Surface - 120.0 m)

Surface to 55.0 m

SANDY CLAYSTONE, light to medium yellowish brown, soft, sticky, dispersive in part, abundant fine to medium quartz sand grains, common multi-coloured lithics.

From 55.0 m - 120.0 m <u>SANDSTONE</u>, light to medium grey, frosty to off white in part, loose, coarse to

- 16 -

pebble size becoming conglomeratic at base, dominantly very coarse, subrounded to rounded moderate to well sorted quartz, abundant multi-coloured lithics, trace excellent porosity, mica, visual with minor COAL, black, firm earthy, argillaceous in part.

SEASPRAY GROUP (120.0 m - 783.5 m)

Jemmy's Point Formation 120.0 to 160.0 m

<u>MARL</u>, medium to dark grey, soft, sticky, dispersive, extremely fossiliferous, trace fine carbonaceous detritus, trace fine quartz sand grains.

Tambo River Formation

on 160.0 - 180.0 m MARL, light grey, medium grey in part,

soft to firm, dispersive in part, extremely fossiliferous, moderately silty to very fine sandy, trace carbonaceous detritus, trace mica and lithic fragment.

Gippsland Limestone Formation

180.0 to 629.0 m

CALCARENITE, light o medium grey, light greyish brown in part, friable to firm, loose in part, very fine to fine becoming fine to medium with depth, trace light grey, dispersive clay matrix in part, common fine quartz sand grains and minor lithics, becoming silty with depth, trace carbonaceous detritus, abundantly fossiliferous, fair visual porosity, in part grading into COQUINA, light to medium grey, loose very coarse fossil fragment, excellent visual porosity. Calcarenite

grading into/interbedded with; <u>MARL</u>, light to medium grey, soft, sticky, very dispersive, trace glauconite, common fossil fragment, trace forams, trace silt and fine quartz sand grains.

Lakes Entrance Formation 629.0 to 770.0 m

medium greyish green, CLAYSTONE, light to medium brownish grey in part, soft to firm, slightly dispersive, subfissile to fissile in part, blocky in part, slightly silty and/or sandy in part, trace glauconite, trace fine multi-coloured lithic fragment, trace fossil fragment and foram, trace pyrite, trace recrystalline dolomite, rare limonite and/or hematite at the top, rare very light yellow, transparent resin towards the base, interbedded/interlaminated with minor MARLY CLAYSTONE, light orange grey, friable to firm, fine to coarse, recrystalline in part, trace brown dolomite, trace light to medium grey dispersive clay matrix.

Giffard Member

770.0 to 783.5 $\ensuremath{\mathtt{m}}$

GLAUCONITIC CLAYSTONE, light to medium brownish grey, light greenish grey in part, firm, sticky in part, massive, abundant fine to coarse, very coarse in light dark green part, to glauconite pellets, trace to common cryptocrystalline pyrite, trace micromica, trace dark grey lithics, rare medium to coarse well rounded quartz grains.

LATROBE GROUP

783.5 - 948.5 m

From 783.5 to 799.5 m

CLAYSTONE, light olive grey to light brownish grey, firm, soft in part slightly calcareous, subfissile to fissile, trace coal particle and carbonaceous detritus, trace very fine lithics and quartz sand grains, trace micromica, trace pyrite, glauconite (?) and/or chlorite rare interbedded with COAL, dark brown, dark brown to black in part, firm, slightly argillaceous in part, subfissile in part, subconchoidal fracture in part, dull and earthy lustre, trace pyrite.

From 799.5 to 862.0

SANDSTONE, very light grey to off white light to medium greyish brown in part, friable to loose, very fine to very coarse, pebble size in part, dominantly medium, subangular to subrounded, moderately sorted quartz, trace white to light grey clay matrix, trace calcite cement, rare silica cement, trace glauconite (?) at the top, trace disseminated pyrite in glauconite (?) at the top, trace lithic and coal fragment, good visual porosity, interbedded at the base with minor <u>CLAYSTONE</u>, as per 783.5 to 799.5 m.

From 862.0 to 948.5 m

<u>SANDSTONE</u>, as per 779.5 to 868.5 becoming extremely coarse to pebbly at the base, interbedded with <u>COAL</u>, dark brown, very dark brown to black, firm, hard in part, brittle, massive, subfissile in part,

luster, earthy subconchoidal fracture in part. The sandstone also interbedded with CLAYSTONE, medium to dark brownish grey, very dark grey in part, firm to hard, subfissile to fissile, moderately micromicaceous, slightly carbonaceous, trace fine lithic and quartz sand grains, grading in part to SILTSTONE, medium to dark brownish grey, in part becoming white to very light grey and light greenish

grey towards the base, firm, soft in part,

dispersive in part, trace micromicaceous, trace carbonaceous detritus, trace fine lithic and quartz sand grains, rare pyrite.

strongly

argillaceous,

to

STRZELECKI GROUP (948.5 - 987.3+ m)

948.5 to 987.3 m

moderately

CLAYSTONE, off white to light grey, pale greenish in grey part, soft, very dispersive, sticky, massive, trace to common disseminated pyrite, trace lithic, interbedded with SILTSTONE, white to light grey, light brownish grey and pale olive grey in part, firm to hard, moderately argillaceous in part, moderately micromicaceous, trace fine lithic and quartz sand grains, trace pyrite, towards the base interbedded with minor, SANDSTONE, light grey to light greenish grey, friable to firm, hard in part, very fine to fine, subangular to subrounded, moderately well sorted quartz and multi-coloured lithic, trace white to light grey clay matrix, trace partially altered feldspar, trace

biotite, rare muscovite, trace pyrite, rare fine carbonaceous detritus, rare hornblende (?), very poor to nil visual porosity.

3.3 Hydrocarbons

3.3.1 Mud Gas Readings

No significant background gas was noted until the first coal seam of the Latrobe group was penetrated at 787.0 m. From this depth a background gas of nil to 300 ppm C_1 was present to the top of the Strzelecki Group. These were associated with either coal seams and/or porous sandstones of the Latrobe Group with a high rate of penetration (maximum up to 500 metres per hour).

The background gas died out completely from the top of the Strzelecki Group to T.D.

3.3.2 Sample Fluorescence

The only oil fluorescence noted in this well was at the top of the major sand unit of the Latrobe Group at 799.6 m. The sandstone had 10% bright to moderate bright yellow calcite fluorescence, as well as 10% dull yellow pinpoint natural fluorescence with no cut or crush cut on wet or dry sample. The background total gas rose to a maximum of 2 units with 210 ppm C_1 only at 779.6 m.

The natural fluorescence gradually decreased to nil at 840.0 m (approximately).

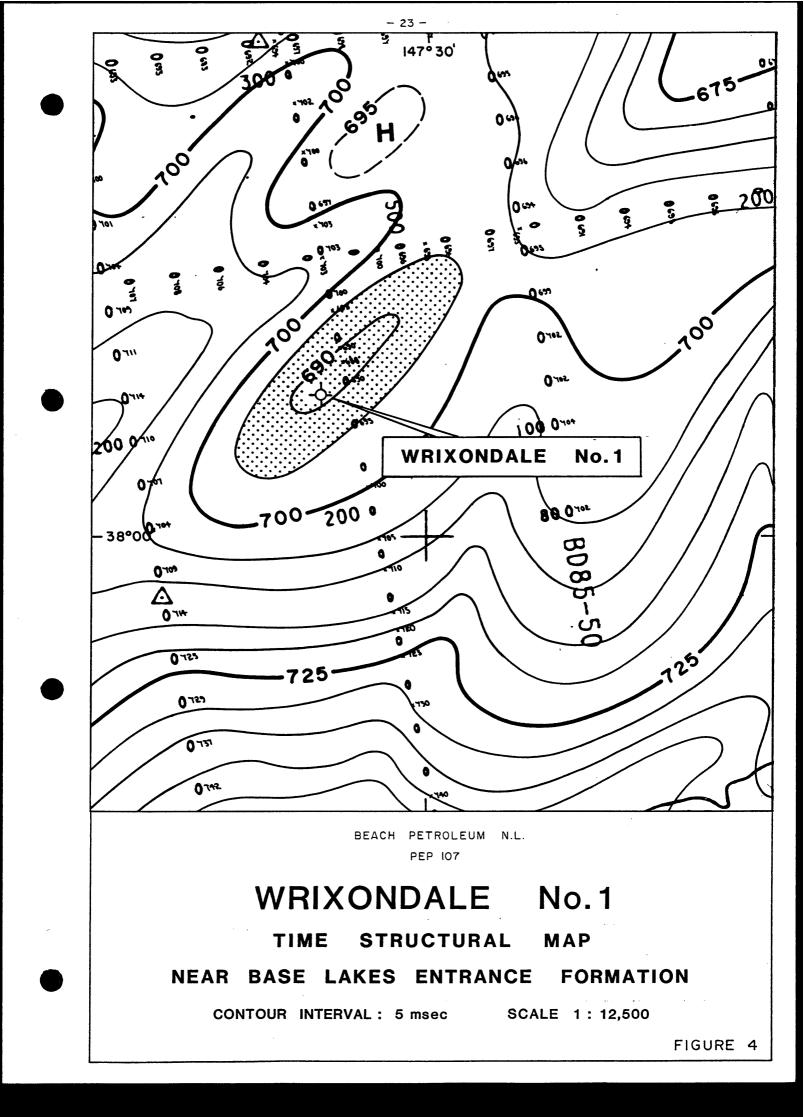
- 21 -

4. GEOLOGY

4.1 Wrixondale Structure

The Wrixondale structure was delineated after intepretating the GB83A Bengworden Seismic Survey and subsequently refined by the BD85 Bengworden Detail Seismic Survey.

Wrixondale No. 1 was designed as a test of the porous sands of the Tertiary Latrobe Group. The structure was mapped as a small time and depth closure at the "Near Base Lakes Entrance Formation" (see Figure 4). The feature is located at the southern end of NE-SW trending, Lamana structural/stratigraphic Trend. The main component of the Wrixondale feature was interpreted to be stratigraphic and consists of a late formed sand body developed along the seismically defined NW trending Lamana Trend.

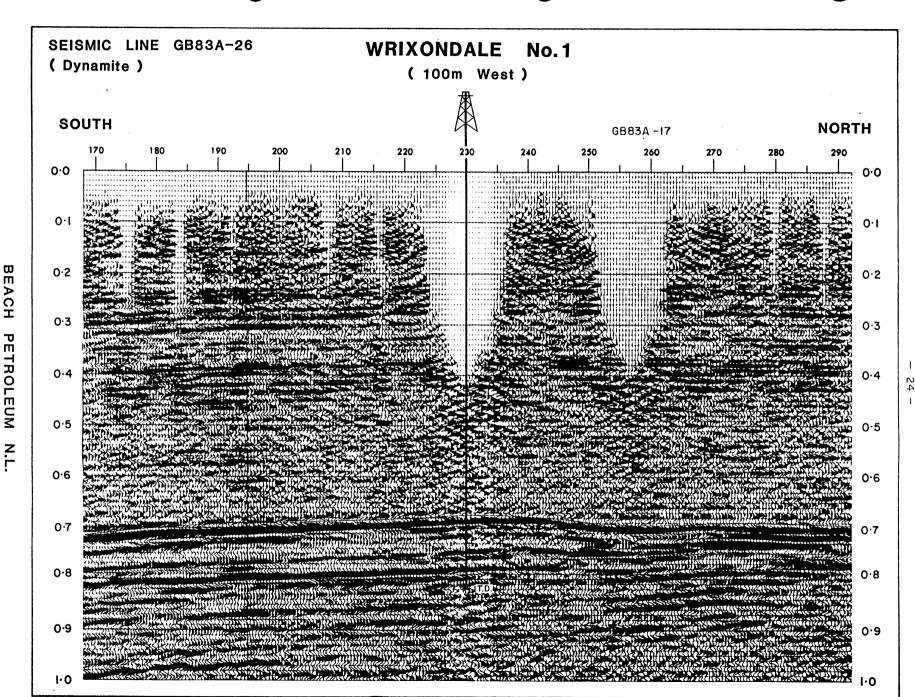

Drilling of Wrixondale No. 1 did not confirm or deny the validity of the structure. However, the lack of hydrocarbons in this well may suggest that the structure was not sealed properly.

Wrixondale No. 1 was drilled at 100 m west of Shot Point 230, Line GB 83A-26 to test the highest point of a depth mapped structure (see Figure 5) with the area of closure of 0.25 km² and vertical relief of 8 m.

4.2 Maturation and Source Rock Analysis

Vitrinite reflectance estimates (Rv maximum) and total organic carbon analysis (TOC) were carried out on three cutting and six sidewall core samples. Also six sidewall core samples were analysed using the Rock-Eval pyrolysis technique. Results of these two analysis are in Appendices 7 and 8.

As can be seen from Figure 6, the Rv maximum of the Seaspray Group samples range between 0.29% and 0.35%. This confirms that the



IGURE

OCATION **OF** WRIXONDALE No. **N** SEISMIC LINE

PEP 107

BEACH PETROLEUM

sediments of the mid-Tertiary sequence at the Wrixondale No. 1 are immature and could not be expected to have generated any hydrocarbons at this depth. Furthermore, the scarcity of the dispersed organic matter and very low total organic carbon in this interval are all indicative of a very poor to non potential source rock.

The Rv maximum of Latrobe Group samples range between 0.31% and 0.38% which indicates that this section is also immature. However its relative high TOC content and the right type of dominant maceral ranks the Latrobe Group sediments as a potential oil and gas prone By extrapolation, the Rv maximum of 0.9% to 1.0%, source rock. ie. the peak of maximum liquid hydrocarbon generation, would be reached at the depth of 1800m to 2000 m. This would certainly be achieved immediately offshore and possibly also in the Lake Wellington Depression, a minimum distance of 12 km to the south west. The presence of natural fluorescence at the top of the upper sand unit in this group (see 3.3.2) and weak brown and brilliant green oil fluorescence observed in the sidewall cores (see Appendix 7 for details) as well as the presence of minor extractable hydrocarbon in SWC No. 24 (see Appendix 9 for details) can all be attributed to the presence of migrated (residual) hydrocarbons.

The limited Strzelecki Group sediments drilled appear to be on the onset of thermal maturation. However, they have a low TOC content and have inertinite as their dominant maceral with exinite and vitrinite being sparse to rare. This sedimentary group as intersected can only be ranked as very poor to poor source rock. The presence of the "rare green fluorescing? oil droplets in setting medium" (see Appendix 7 for details) can only be due to minor in-situ generation within the claystone and/or siltstone of the Strzelecki Group sediments.

The Rv trend indicates that an unconformity exists between Strzelecki and overlying Latrobe Groups.

- 26 -

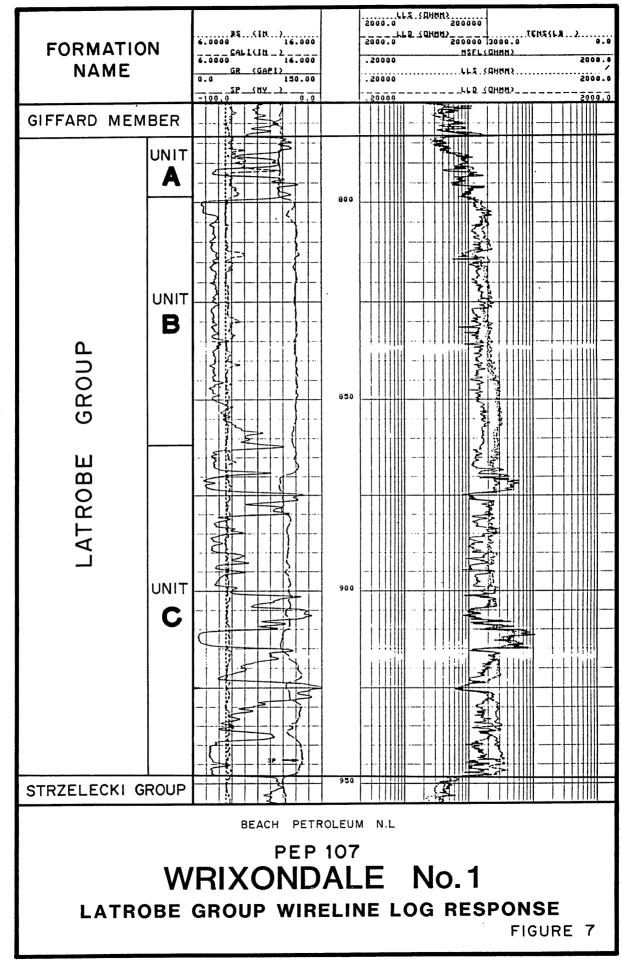
BEACH PETROLEUM N.L. PEP 107

WRIXONDALE No.1

VITRINITE REFLECTANCE AND TOTAL ORGANIC CARBON PROFILE

ENTRANCE GIPPSLAND LIMESTONE RMATION FORMATION 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	ow K.B. (m) 500 - 550 - 550 - 550 -	Linear S 0-1 0-2 0-3 0-4 0-5 Ctgs +↔ n = 2 Ctgs • n = 1	Scale 0.6 0.7 0.8 0.9	Logarithmic Scale 0;2 0;3 0;4 0;5	Carbon 9
ENTRANCE GIPPSLAND RMATION FORMA	550 - 500 - 550 -	-		H+H	-
ENTRANCE GIPPSLAND RMATION FORMA	500 - 550 -	-		He-1	-
ENTRANCE RMATION 9 - 9	550 -	Ctgs ● n=l			
ENTRANC RMATION		Ctgs ● n=1			[
E .	.00			•	F
	50 -	? SWC ⊷ n=2		H	
	00 -	SWC ⊨● n = 5			
	50 -				
LATROBE	00 -	SWC ⊢————————————————————————————————————	27		49.00%
	50 -	swc ⊢			

G 376


4.3 Relevance to Occurrence of Hydrocarbons

Wrixondale No. 1 was plugged and abandoned as a dry hole. The primary target of the Tertiary Latrobe Group appeared to be water wet although hydrocarbon indications were noted at the top of the sand unit.

DST No. 2 is considered to be a valid test of the top of the sand unit of the Latrobe Group sediments although no significant hydrocarbons were recovered from the test.

Listed below are some considerations for future hydrocarbon exploration in the area:

- 1. The Giffard Member of the Lakes Entrance Formation appears to be a glauconitic claystone in composition. Visual estimation under binocular microscope revealed that sand grains (quartz and glauconite pellets) constitute less than 50% of the lithology. As a result, the term "<u>Glauconitic Sandy Claystone</u>" for the Giffard Member at Wrixondale No. 1 is considered to be more appropriate than "Glauconitic Sandstone".
- 2. The Latrobe Group sediments are tentatively subdivided to three units at Wrixondale No. 1 (see Figure 7). These are:
 - Unit A. Top coal measure from 783.5 to 799.5 m and consists of coal and claystone.
 - Unit B. Upper sand unit from 799.5 to 862.0 m and consists of an almost uninterrupted porous sand body.
 - Unit C. Lower unit from 862.0 to 948.5 m including two more coal measures and a number of individual sand bodies.
- Provisional wireline log correlation between Wrixondale No.
 1 and neighbouring (both exploration and government) wells

- 28 -

revealed that the upper sand body (Unit B) of the Latrobe Group can be recognised further away from the Wrixondale No. 1 location in both basinwards and basin margin directions. The relatively rapid thinning of this unit towards the basin margin is also recognizable.

- 4. Due to lateral changes of environment of deposition, hence the change in lithofacies, the top coal measure (Unit A) in Wrixondale No. 1 can not be correlated with other wells on the basis of wireline log response. However biostratigraphic studies suggest that this unit of the Wrixondale No. 1 well can be chronostratigraphically correlated with the uppermost sandstone/claystone section of the Latrobe Group sediments in the Paynesville No. 1 (see Appendix 10 for details).
- 5. The wireline log response of the upper sand body (Unit B) appears to resemble the "flower pot profile" of a thick section of a barrier bar with its typical transitional base (bar foot) and abrupt top (see Figure 7). It may then be inferred that Unit A could be a lagoonal facies developed behind a seaward continuation of this barrier. These may suggest a barrier bar complex as an environment of deposition for the Latrobe Group sediments represented by Units A and B. The lack of any suggestion of marine conditions does slightly downgrade this inference.

The environment of deposition of Unit C can be considered as also associated in someway with a basinward barrier development or it could be a typical Latrobe Group non marine coal measure section.

In the absence of more convincing data, such as conventional core and/or a dipmeter log, it is not possible to elaborate on the environment of deposition any further. On the other hand the "low energy environment" and "non-marine environment" suggested by petrological reports respectively (see Appendices 10 and 11) should not be taken as being against the proposed model of the barrier bar complex. This is because the sediments of the barrier bar complex are so diverse that both marine and non-marine as well as low and high energy environments can exist within the complex.

6. The upper sand body of the Latrobe Group, the target horizons, exhibits excellent reservoir characteristics with the porosity, estimated from the wireline logs, between 20% and 37%. The 37% porosity was encountered in the uppermost section of Unit B which appears to be a reworked very clean sand section. DST No. 2 was conducted across this zone. However although the wireline logs indicate that the reservoir has very little to no clay content (see Cyberlook, Enclosure 3), petrological analysis indicates the presence of 15% - 35% clay matrix (see Appendix 11). It is possible that at least some of this clay content is due to contamination of samples during drilling and coring.

The reservoir appears to be 100% water saturated.

- 7. The maturation profile obtained from Wrixondale No. 1 suggests that the only potential source rock is the fine sediments of the Latrobe Group which are thermally immature. This means any expected hydrocarbons have to migrate both laterally and vertically from elsewhere.
- 8. The presence of natural fluorescence at the top of the sand body and minor condensate-like hydrocarbon extracted from SWC No. 24 (see Appendix 9) can only be indicative of migrated hydrocarbon. Some of its properties can be compared with oil recovered in West Seahorse No. 1 (see Appendix 8).
 - 9. It is not clear why the well was dry. Although the results of drilling did not confirm, or otherwise, the validity of the structure, it is still believed that a small structure

could be present near the base of the Lakes Entrance Formation. If this is the case the following should be considered factors contributing to lack of hydrocarbons in the reservoir:

- (a) A block tilting in the area which appears to have happened after initial structuring. In this case the reservoir was depleted and/or flushed. The present feature is therefore a limited remnant of an old structure. The presence of minor hydrocarbon indications and the freshness of the formation water would support this hypothesis.
- (b) The large distance between the reservoir and the source rock. If this is true, the presence of natural fluorescence in the cuttings and minor hydrocarbon extracted from the SWC No. 24 cannot, at the present time, be explained.
- 10. If the validity of structure is in doubt, then presence of minor hydrocarbons can be attributed to the intersection of an old migration path at the top of the upper sand unit of the Latrobe Group.

APPENDICES

APPENDIX 1

.

.

DETAILS OF DRILLING PLANT

DRILLING RIG:

Trailer mounted Franks Cabot drilling rig Mounted on a 12'8" wide x 47' long Goose Neck trailer Tandem Rear Axles: 16 - 11R 22.5 Radial Tyres Hydraulic support legs: Four Locknut Feature Dog House and Generator Set are mounted on trailer Trailer Weight: 20.857 tonnes Axle Loading: 28.0 tonnes

DRAWWORKS

Franks Cabot, Model 1287 - TD Single Drum Drawworks Hydromatic: 22" SR Parmac

DRAWWORKS MOTOR

G.E. Series SGE-76101 electric motor, complete with blower driven by a 5 h.p. electric motor.

HYDRAULIC SYSTEM

 $1\frac{1}{4}$ " x 2" hydraulic pump, driven by a 50 h.p. electric motor 575 volts, ID# 9002764-049, connected to a 270 gallon fluid reservoir.

S.C.R. SYSTEM

Manufactured by Integrated Power Systems Corporation

Ratings:	Input Voltage	:	600 VAC 30-3W
-	Output Voltage	:	0-750 VDC
	Input Current	:	600 ADC Cont
			1250 ADC Int

GENERATORS

Generators Nos. 1 and 2 E.M. Bemac Brushless Generator 500 KVA, 400 KW, 600 Volts, 60HZ/110V/220V Rig Supply Powered by a Caterpillar Model D-353E Diesel engine S.C.R. generator system fully inter-dependent

TABLE ROTARY MACHINE

Ideco Model C-175 Rotary Table Size: $17\frac{1}{2}$ " x 44" complete with split master bushings

SUBSTRUCTURE

Two Section Box Style Substructure Top Section : 11'W x 11'L x 9' high (BOP Rack) Pony Sub : 11'W x 11'L x 3'8" high Overall Size : 11'W x 11'L x 12'8" high

LIGHTING

Including: Mast Light Section, Flood Lights, Building Lighting

MAST

96' Two Section Telescoping Type Mast, manufactured by Greco Steel Corp. Dealing Anchor: Attached to Carrier Crown Blocks: Working Sheaves : 4 - 22" dia. - 1" grooving Fastline Sheaves : 1 - 32" dia. - 1" grooving

BLOCKS AND HOOK

Sowa Hook-Block Assembly, 150 ton capacity, Model 3630-4, S/n: 3896-1 with 4 - 30" sheaves, grooved for 1" drilling line.

SWIVEL

Oilwell Model No. SA-150 Swivel, Job No. 2048 Kelly Spinner, Foster Model 77, S/n: 77-1-412 complete with 2 - 1" x 60' Long Hydraulic Hoses.

KELLY, KELLY BUSHING, KELLY COCK AND STABBING VALVE

1 - $1\frac{1}{4}$ " x 40' long Kelly with $4\frac{1}{2}$ " XH pin & $6^{5}/8$ " Reg. box

- 1 Baash Ross 2RCS4 Kelly Bushings
- 1 Griffith Upper Kelly Cock, 5000 psi, S/N: 5139 452U-33
- 1 Hydril Stabbing Valve with $4\frac{1}{2}$ " XH pin and box
- 1 Grey Inside B.O.P. with $4\frac{1}{2}$ " XH pin and box

PUMPS - SLUSH NO. 1 AND 2

1 - TSM-500 Duplex Slush Pump, Size: $7\frac{1}{2}$ " x 16" Maximum Pump Speed: 65 S.P.M. Maximum Fluid End Test Pressure: 3000 psi Pumps loaded w/- $5\frac{1}{2}$ " liners Rated at 1902 psi @D 65 S.P.M. 5.31 Gallons (U.S.)/Stroke @ 90% effic.

PUMP NO. 1 PUMP ENGINE

G.E. Electric Motor, Model 5-GE-761-J1

PUMP NO. 2 PUMP ENGINE

Caterpillar Model D-353 Diesel Engine, 435 H.P.

TANKS - MUD AND MUD SYSTEM

Mud Tanks - Total Capacity 650 BBL

Tank 1 265 BBL capacity in 3 compartments with sand trap Low pressure mud system with 3 subsurface guns 2 Grey Agitators model 72-0-5 powered by 2 x 5 hp electric motors 1 Harrisburg double shale shaker powred by 5 h.p. electric motor 1 x 3 cone Desander complete sq header manifold and -overflow trough 1 Mission 5" x 6" centrifugal pump 1⁷/8 shaft powered by 50 HP 575 volt electric motor 1 x 16" Poorboy Degasser fed by 3" mud line

Tank 2 385 BBL capacity in two compartments (suction tank 342 BBL's and pill) tanks of 43 BBL's Connected to tank 1 via 10" suctions and 12" mud trough Low pressure mud systems with 4 subsurface guns Fitted with 2 - 4 x 2 standard mud mix hopper 1 Mission 5" x 6" centrifugal powered by 60 HP 575 volts electric motor 1 x 10 Cone Desilter (Swabco) @D 500 GPM

BLOWOUT AND WELL CONTROL EQUIPMENT

1 - Shaffer "Annular" Blowout Preventer 3000 psi, Assembly No.
5820
Trim: : Interval H₂S
Top Connection : Studded
Btm Connection : Flanged
Bore Size: : 11"

Cont'd.

1 - Cameron 3000 psi Double Gate Blowout Preventer, Type "SS" No. 165. Fitted with 4¹/₂" Rams x Blind Rams Bore Size : 11" Top and Bottom Connections : Studded Outlets: : 2 - 3" 3000 psi Flanged Extra Rams to Fit 2³/8", 2⁷/8", 5¹/₂" and 7"

HYDRAULIC FLUID ACCUMULATOR

1 - Wagner Model 5-80=IBN Hydraulic Fluid Accumulator Unit Four Station Control Manifold with 4 - 20 gallon bladder type Accumulator Bottles, hydraulic pump powered by a 5 HP electric motor
2 - 220 cu. ft. Nitrogen Bottle Back-up System
2 - CIW 3000 and 5000 PSI Hydro Poise Readout Gauges, A-B On/Off Switch panel
System is complete with Remote Control Panel, mounted in Dog House

B.O.P. SPOOLS AND VALVES

Including: 1 - 900 Series 11" Adaptor Spool with 2 - 3" Flanged Outlets 1 - 3" 3000 PSI McEvoy Gale Valve with Otis Actuator 2 - 3" McEvoy 3000 PSI Gate Valves 2 - 3" 3000 PSI National Ball Valves 1 - 3" 3000 PSI Check Valve

WELL CONTROL MANIFOLD

McEvoy 3" x 2" Well Control Manifold consisting of:

8 - 2" 3000 PSI Flanged McEvoy Gate Valves

2 - 3" 3000 PSI Falnged McEvoy Gate Valves

2 - 2" Three Way Block Connectors

2 - 3" x 3" x 2" Four Way Block Connectors

2 - Willis Multi-Orifice Chokes

1 - CIW, 300 PSI Pressure Gauge

1 - Marsh 3000 PSI Gauge complete with 100' ½" Hydraulic Hose

DRILL PIPE

90 - Joints (approx. 900M) $4\frac{1}{2}$ " 16.60# Grade "E" Range 2 Drill Pipe W/ $6\frac{1}{4}$ " ID 18 Deg. Reed $4\frac{1}{2}$ " XH Tool Joints. Drill Pipe is complete with Hardfacing, Series 200 inspected and internall coated with PA-2000.

10 - Joints $4\frac{1}{4}$ " XH Heavi-Wate Drill Pipe Range 2 with $4\frac{1}{2}$ " XH Box to pin complete ID Tube cote and Hardfacing Premium No. 1.

DRILL COLLARS

20 - $6\frac{1}{4}$ " OC Drill Collars, Hardbanded with $4\frac{1}{2}$ " Xh Connections 3 - 8" O.D. Drill Collars - Hardbanded - W/ $6^{5}/8$ " reg Connections

INSTRUMENTATION

Cameron Type "C" Weight Indicator, 180,000 LB.
 2 - 2" Gauges Int. Mud Gauges type "D" (Standpipe)
 1 - 2" Cameron Type "F" Pressure Gauge (Pump)

TOOL HOUSE

11'6" wide x 30' long x 8'4" high Broken Panel Steel Construction

DOG HOUSE

Mounted on Rig Carrier - Size: 12'W x 12'L x 7'H Dog House Contents: 1 - Knowledge Box 2 - NRL Light Fixtures recessed into roof of building

COMBINATION BUILDING

S.C.R. Building/Generator Room/Fuel Tank

Fuel Tank Size: $10'L \ge 6'6''H \ge 45''$ Deep (approx. 1500 gallons) or 6860 Overall Skid Size: $10'W \ge 38'L \ge 10'6''H$

CATWALK - PIPE RACKS

Catwalk - 8'W x 40'L 2 - Sets Pipe Racks built with 4" Square Tubing

PUMPS CENTRIFUGAL

Water Circulating: $1 - 2" \times 2"$ Centrifugal Pump driven by a 5 HP Lincoln Electric Motor.

Rig Wash Pump: Magikist Model 32-C Triplex pump driven by a 3HP Brook Electric Motor, 230-460 Volts Type "DP", S/N: X807080.

Fuel Transfer Pump: 1 - 1" x 1" Fuel Transfer Pump drive by $^{3}/_{4}$ HP Electric Motor.

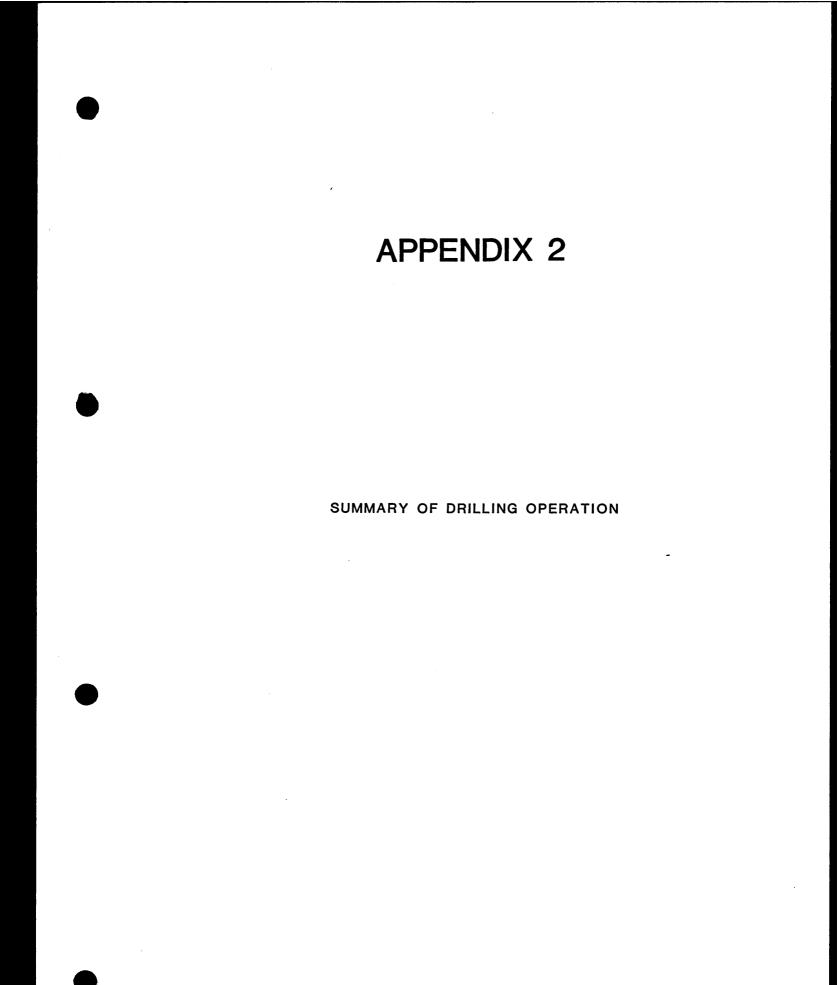
MATTING - RIG

4 - 8' Wide x 20' Long x 8" High Rig Mats

WINCHES

Gearmatic Pullmaster Model H-10 powered by a Commercial 1" x 1" Hydraulic motor, Model D230-154-2, S/n: C39-647, complete with approx. $300' - \frac{1}{2}"$ steel cables.

1 - Wireline Survey unit, powered by a Hydrailic motor and complete with 7000' of .092 Wire Line.


FISHING EQUIPMENT

1 - $8^1/8"$ OD S.H. Series 150 Overshot with $4\frac{1}{2}"$ FH Box Connection, complete with $4^3/8"$, $4\frac{1}{2}"$, $5^3/4"$, 6", $6^1/8"$, $6\frac{1}{4}"$ Basket Grapples and Mill Control Packers for each.

CAMP AND FACILITIES

1 - Toolpush Shack - fully furnished and airconditioned.

2 - Toyotas - four wheel drive (crewcab, ute).

The Wrixondale No. 1 drilling site was prepared by the earthmoving contractor Whelans of Swan Reach.

Prior to the rig arriving a 20" conductor pipe had been installed to 7.0 m KB.

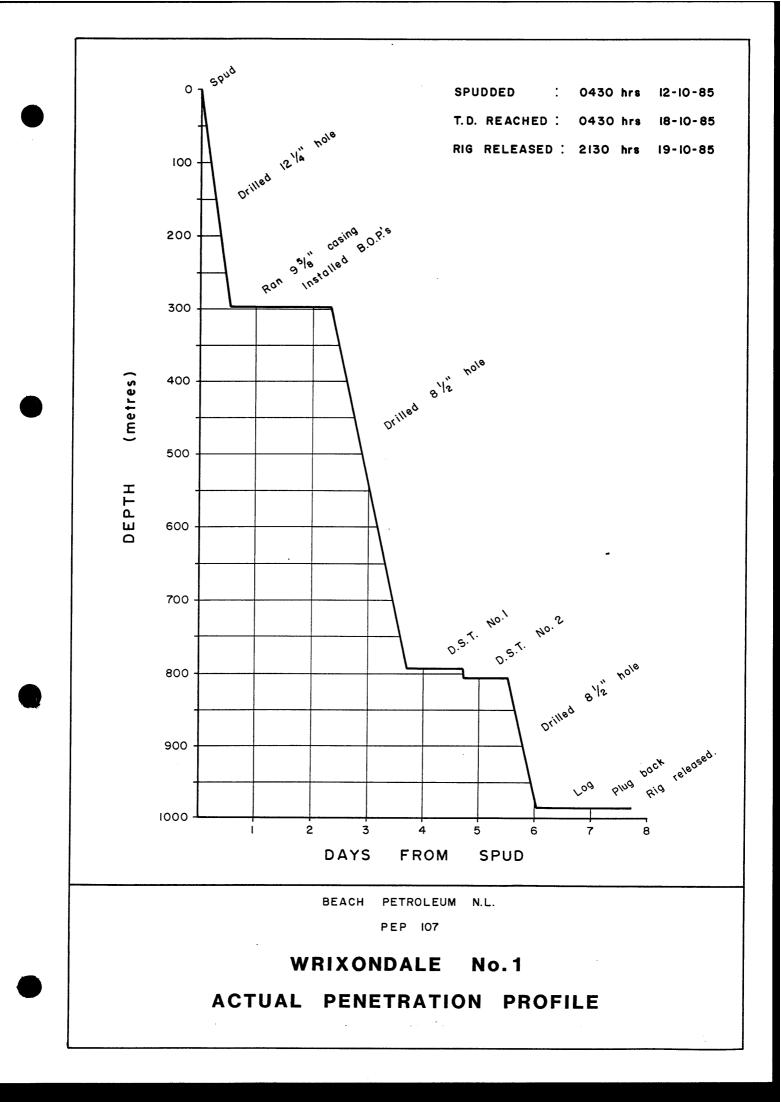
The Atco APM Rig A3 was rigged up and Wrixondale No. 1 was spudded at 0430 hours on the 12th October 1985.

A $12\frac{1}{4}$ " hole was drilled to 302 m and $9^{5}/8$ " casing was run and cemented to 299 m.

The BOP's were installed and all functions were tested to 1500 psi.

Drilling resumed with $8\frac{l_2}{2}$ " hole to 307 m and leak-off test established a formation integrity of 19.1 ppg. The $8\frac{l_2}{2}$ " hole was continued to 795.0 m.

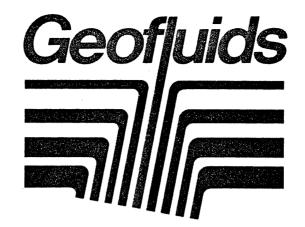
DST No. 1 was then performed over the interval 777 m to 795 m and recovered drilling fluid only.


The $8\frac{1}{2}$ " hole was continued to 807 m where DST No. 2 was carried out over the interval 795 m to 807 m and 19 bbls (approx.) of slight to moderately gas - cut formation water was recovered.

The $8\frac{1}{2}$ " hole was then continued to a total depth of 987.3 m, which was reached at 0430 hours on the 18th October 1985.

The following wireline logs were run prior to abandonment; DLL/MSFL, BHC/GR, LDL/CNL, CST AND a WST.

Cement plugs were then set over the intervals 810 - 750 m, 306-246 m after which a surface cement plug of 25 sacks and welded plate were put in place on the casing stub.


The rig was released at 2130 hours on the 19th October 1985.

APPENDIX 3

DRILLING FLUID RECAP

-

DRILLING FLUIDS REPORT FOR

BEACH PETROLEUM N.L.

WRIXONDALE #1

GIPPSLAND BASIN

VICTORIA

PREPARED BY :

A. SKUJINS J. DANIELS

DATE :

OCTOBER, 1985

Geofluids Pty Ltd Drilling Fluids A joint venture company with Milchem in Australia

443 Vincent Street, Leederville, Western Australia. Postal Address: Box T1746, G.P.O., Perth, W.A., 6001. Telephone (09) 382 1766 Telex AA93908

CONTENTS

- 1. SUMMARY OF OPERATIONS
- 2. RECOMMENDATIONS AND CONCLUSIONS

3. COST ANALYSIS

4. GRAPHS

- 4.1 Depth vs Days Depth vs Rotating Hours Depth vs Mud Cost
- 4.2 Depth vs Mud Weight Depth vs Viscosity Depth vs Filtrate
- 5. FLUID PROPERTIES SUMMARY
- 6. BIT RECORD
- 7. DRILLING FLUID REPORTS

SUMMARY OF OPERATIONS

1.

Wrixondale #1 was spudded on 12 October, 1985, and reached a total depth of 987m on 18 October, 1985.

12-1/4" surface hole was drilled initially with water. A high viscosity Milgel pill was pumped when coarse sands were penetrated. The viscosity built up from native solids and no further Milgel was required. At 302m a wiper trip was made. 9-5/8" casing was run and cemented, with good cement returns.

While blow out preventers were installed, the mud settling tanks were dumped and cleaned out, and 300 bbls of mud were salvaged for future use.

The cement was drilled out with water and 5m of open hole was drilled prior to running a leak off test. The water was dumped and the hole displaced with mud. Drilling continued with continuous water additions to lower viscosity through mud making formations.

At approximately 700m, CMC EHV additions were made to the mud to lower the fluid loss. At 795m a wiper trip was made prior to running a drill stem test. DST #1 was conducted with no hole problems.

After drilling a further llm to 806m, DST #2 was conducted, again with no hole problems. Drilling then continued to a total depth of 987m, where a wiper trip was made. Electric logs were run, and the hole was plugged and abandoned.

RECOMMENDATIONS FOR FUTURE WELLS

2.

Wrixondale #1 was drilled quickly and essentially trouble free. Good cement returns were obtained in the surface hole indicating a comparatively low amount of washout compared to some other wells drilled in the area. After spudding in with water a relatively high yield point mud was maintained after drilling the first coarse sand bed. This may have helped in reducing the amount of washout.

In the 8-1/2" hole large dilution rates were required due to very mud making formations. The major mud cost occurred in lowering the water loss before penetrating the Latrobe sands. The mud cost for this well was considerably lower than estimated due to the formations drilled being more mud making than anticipated. Due to the good hole conditions experienced in this well it appears that the fresh water - native solids polymer mud used is suitable for drilling in this area.

Geofluids

• <u>COST ANALYSIS</u>

HOLE SIZE : 12-1/4"

INTERVAL : 0 - 302m

MUD TYPE : FRESH WATER / NATIVE SOLIDS

PRODUCT	PACKAGE	UNIT <u>COST</u>	<u>UNITS</u>	<u>\$ COST</u>	<u> ३ Cost</u>
Milgel Caustic Soda	45.4 kg 50 kg	16.01 49.63	44 * 1	704.44 49.63	93.4 <u>6.6</u>
	TOTAL			754.07	100.0
	Cost Per 1 % Cost of		Interval	\$ 2.50 35.2%	

* 4 sacks Milgel used for cement job.

Geoffuids

COST ANALYSIS CONT'D

HOLE SIZE : 8-1/2"

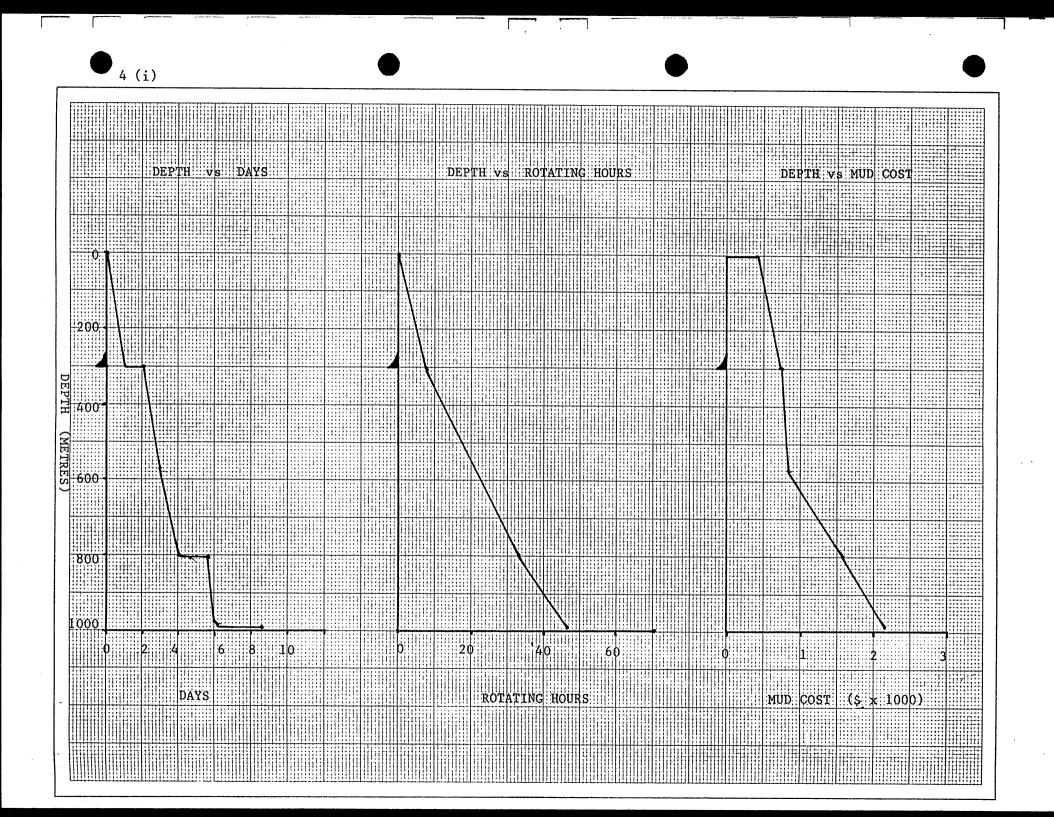
3.

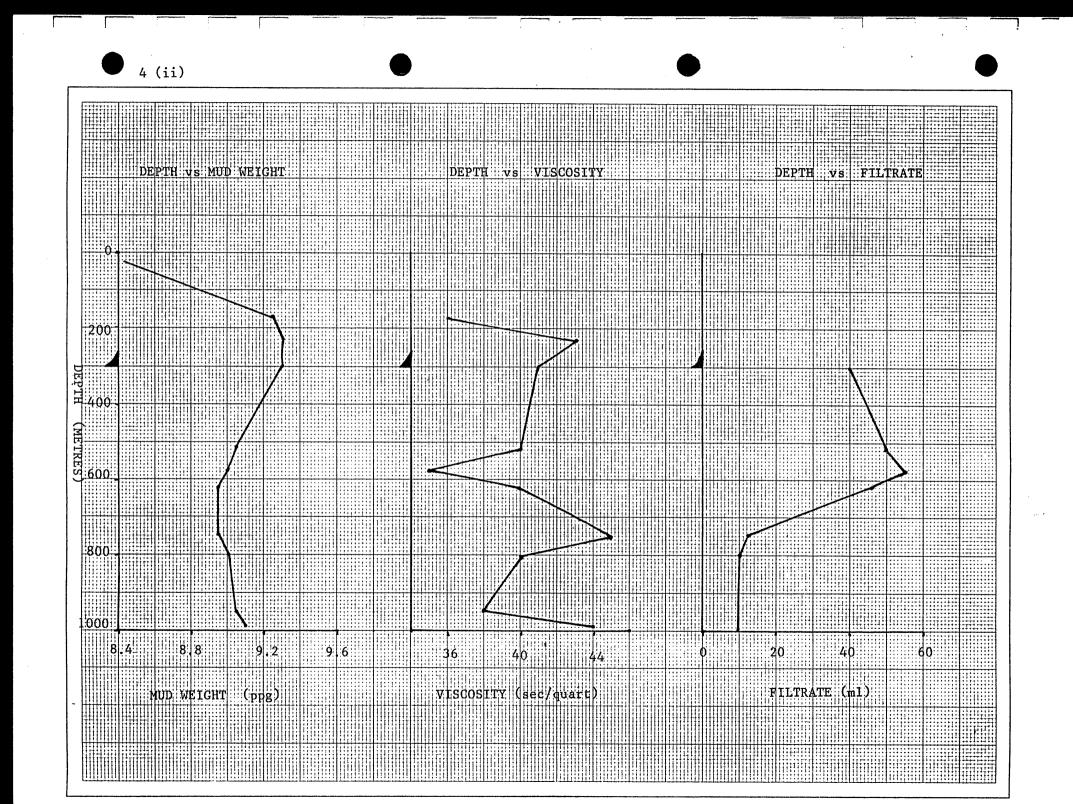
INTERVAL : 302 - 987m

MUD TYPE : FRESH WATER / NATIVE SOLIDS / CMC

PRODUCT	<u>PACKAGE</u>	UNIT <u>COST</u>	<u>UNITS</u>	\$ COST	8 COST
Milgel Caustic Soda Soda Ash CMC EHV Celpol Barytes	45.4 kg 50 kg 40 kg 25 kg 25 kg 40 kg TOTAL	16.01 49.63 20.45 62.17 110.00 10.38	2 3 1 14 2 9	$32.02 \\ 148.89 \\ 20.45 \\ 870.38 \\ 220.00 \\ 93.42 \\ 1385.16$	2.3 10.8 1.4 62.9 15.9 <u>6.7</u> 100.0
		Metre for	Interval	\$ 2.02	

Cost Per Metre for Interval\$ 2.02% Cost of Well64.8%



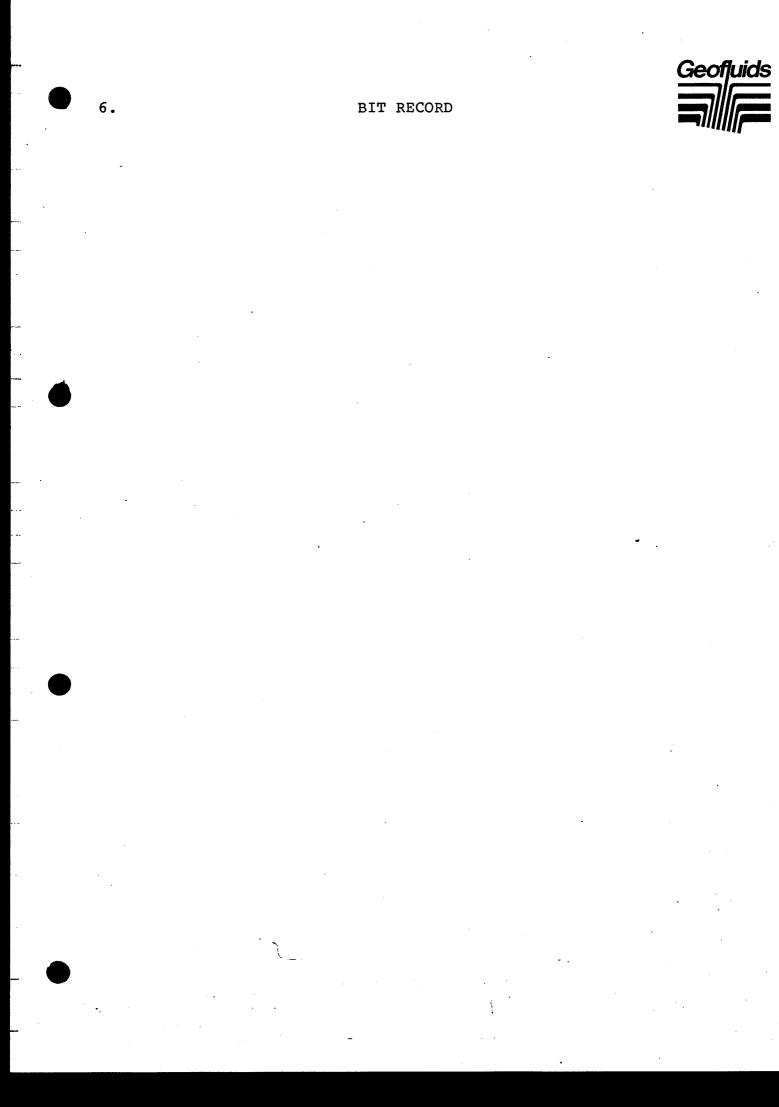

COST ANALYSIS CONT'D

TOTAL COST ANALYSIS

INTERVAL : 0 - 987m (T.D.)

PRODUCT	PACKAGE	UNIT COST	<u>UNITS</u>	<u>\$ COST</u>	<u> ३ COST</u>
Milgel Caustic Soda Soda Ash CMC EHV Celpol Barytes	45.4 kg 50 kg 40 kg 25 kg 25 kg 40 kg TOTAL	16.01 49.63 20.45 62.17 110.00 10.38	46 4 1 14 2 9	736.46198.5220.45870.38220.0093.422139.23	$ \begin{array}{r} 34.4 \\ 9.3 \\ 0.9 \\ 40.8 \\ 10.3 \\ \underline{4.3} \\ 100.0 \end{array} $
Total Cost Total Cost		for Well		\$ 2139.23 \$ 2.17	

FLUID PROPERTIES SUMMARY



INTERVAL : 0 - 700m 700 - 987m

FLUID PROPERTIES SUMMARY

MUD	TYPE	:	FRESH	WATER	i	NATIVE	SOLIDS			
			FRESH	WATER	1	NATIVE	SOLIDS	1	CHC	

															-						
DATE 1785 CCT,	DELLH	N.W. Ppg	ECD Þpg	V15 595	FV CD ·	7 <u>F</u> 117	<u>5ELS</u> 100ft	сH	W.L. Al		FLT deg i	Pt	Mi	2)- 296	Cerno pos	SAND X	501 λ	5217 <i>"</i>	611. %	NATER N	MPC 15/5tl
12	170	9.2		36											-						
~	234	9.3		43		6 5	15/55	6 A	30	-	24	тa	.15	750	40	. 25	7.0			9 7. S	
	302	5.3		41	9	- 29	15/20		40		44										-,
14	515	, 7 . 0		40	7	15	9/12	10.1	50	3:9:			.22	700	TE.	ĨŔ	5.0			95.0	26
15	575	7.0		35	7	11	5/9	°.3	55	3		, ()9	.19	5(i)	TR	TÑ	4.5			95.3	15
	629	8.9		40	9	15	12/14	9.4	÷6	3(5)	29	TR	.14	900	TR	TR	4.5			95.5	22.5
	248	3.9		45	12	13	o/17	7.4	12.3	2(7)		.08	.14	900	40	T5	4.5			95.3	:7.5
	308	9.0		40	10	10	5/20	9.1	10.0	1 (F)		73	.14	950	40	T5	4.5			95.5	15
	804	8.9		42	11	13	7/25	9.0	9.6	1(F)	35	TR	.10	900	40	78	4.0			96.0	
1ć	E05	8.9		41	10	12	5/32		9.6	1 (F)	32		.10	9 50	40	TR	4.0			96.0	
	812	9.0	-	40	10	12		8.8	10.5					1000	40	TR	4.5			95.5	
17															40	. 25	5.0			95.0	15
	955	9,0		38	12	13	7/38	9.9	9.3	1 (F)				950				-			
15	967	7.1		44	10	11	5/25	7.8	9.6	1(F)	37	.08	.22	1000	40	TR	5.5	•		94.5	12.5

.

Oper	ator (RENIS	Det	En E		•	Well N	0. j	e Csg به Cumulative Rotating Hours	Location	WRU	KONIA	LE		Su	pervisc	ors `	VINCE		SA	<u>170</u>	STEFANO)
Conti	ractor	N-		40.0 ·	<u> </u>		Rig No	. 3		Mud Pun	nps -	TSR	200		Dri	ill Pipe	412	IF	Drill	Col	ars	611	
Soud	Date	<u>r:</u> 1	100	TD Da	teją	. 61	25	Surfac	e Csg yr/	8 6.29	4 _M Int	er Csġ	-		Pro	od Csg	_		Mud	l Typ	e i	FW NAT	WE SULLING - LAL
Run	Bit	(lin c	<u>u 10</u>		Jets	Depth	Depth	Hours	Cumulative Rotating	WT	PPM	Vert.	Pump		Ann. Vel.	Mud Weight	Visc.	W.L.	Dul	B	nd G	Other	Formation
No.	No.	Size	Make	Туре	32nds	Out	Drilled	Drilling	Hours	- W.1.	nr.m	0°	600	12.9	11.2	4.3				2			
$\frac{1}{2}$						2022			33		10.5-10.7	5	125.			8.4		1		2			
2	2					79 <u>5</u> m				20		1.4				8.9		4.6		1	ī		
3	3					- Rein		12	332	$\frac{1}{2}$	110	3/42	1				44		t ₁	3	Ĩ		
4	RR3	86	Sec	\$335	3×10	497.	181	13	461/2	<u></u>	90	14	100	23	100	1-1-1	- 44	1,0	4		1		
	ļ																						
	ļ	 									-												· · · · · · · · · · · · · · · · · · ·
											ļ				ļ	<u> </u>							
												<u> </u>		<u> </u>									
															ļ								
	Τ														ļ				_		 		
]	_		ļ	<u> </u>		
						1.	1										<u> </u>						
		1				1													\square			<u> </u>	
	1	-	1	1																			
	/	1	1			1	·	1															
-	+-	+	1		1	1	1	1															
			1					1	1			1											
-				+			1	1	1			1								Γ			
								1					-		·	·		- <u> </u> ,	1	\top	\top		
			1		1			1															

•

•••

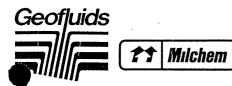
1.....

Remarks

•

.

DAILY DRILLING FLUID REPORTS


	Milchem		ofluids	-		Jonout		REPORT NC	·····		DATELLTH) a 8 5
	The	ע (_	riiin	g ri	ula r	Report	-	RIG NO.	3		SPUD DATE	
								DEPTH	<u>Om</u>	1	го	
PERATOR BEACH P	ETROLE	EUM			CONTRA	ACTOR A	500	Apm				
EPORT FOR VINLE	<u>_</u>	OSTEF	MID		REPORT	FOR	AXN		HAUS			
	TXOND		-1		FIELD O		1100	CATION	•	STA	ATE VIC.	
OPERATION			CASING			UD VOLUME	16	(PPSLAND	CIF		ION DATA	
resent Activity Daule RAT	Hank		Surface		Hole	Pits	Pur	np Size		Ann	ular Vel. (/٨	1in).
lit Size	No.	Inte	at ermediate		Total Circ	culating Volume	Pun	np Make	A		osite DP osite Collar	
rill Pipe Size	Tupa		at ction or Line				Mo	del Š	0	Rise	r	
	Туре		at			In Storage	-	1163	roke/Min	Pres	ulating sure	
rill Collar Size	Length	Mud Type	SAN	n M	JB/	WATER	GON	#Min			oms Up (Min.) . ems Total (Min.)	
ample from 🗍 Flowline	🗆 Pit	1					L		EQUIPM			
lowline Temperature		°C		PROPE	RIIES		SIZE	Hours			SIZE	Hours
Time Sample Taken						Centrifuge	_		Desil		_	
Depth	<u></u>				_		DR BOY	(Shak	er	B20/020	
Weight (S.G.)						Desander DAILY	5× 6"		CLINA	ULATIVE		
Mud Gradient (psi/ft) Funnel Viscosity (sec./qt) API a	+	°C		• • • • • • • • • • • • • • • • • • •		COST	416.2	6	COS		8646	26
Plastic Viscosity cps at			<u> </u>				М	UD PROPERT	IES SPE	CIFICAT		
Yield Point (lb/100 sq. ft.)						WEIGHT		PV/YP		FILTRAT	E	
Gel Strength (lb/100 sq.ft.) 10 sec/1) min.		<u> / </u>		1		PID		Mui			<u> </u>
pH □Strip □Mete				· · ·	1	BY AUTHORI		Operator's Writte Operator's Repre		Dri Dth	lling Contractor ter	
Filtrate API (ml./30 min.)		·······							FORMATI		····	
API HP-HT Filtrate (ml./30 min.)						TYPE		JETS	W.T.	R.P.M.	JET VEL.	BHH
Cake Thickness (mm) API	HP-	110										L
Alkalinity, Mud (Pm)			<u> </u>	<u>,</u>	<u> </u> .							
Alkalinity, Filtrate (Pf/Mf)	· · · · · · · · · · · · · · · · · · ·		/		1/	4		RECOM			IS	
Chloride (mg/l) Total Hardness	(ma/l)				+	/La LL		\mathbf{N}				11
Sand Content (% by Vol.)	(mg/l)		+			40 hh	L¥	Prehyd	TRAUQ	U	v w b	W)
Solids Content (% by Vol.)						tark	fm	fiture	<u>م ۸</u>		••••••	•••••
Oil Content (% by Vol.)										•••••	•••••	•••••
Water Content (% by Vol.)						1	••••••	••••••	•••••			•••••
Methylene Blue Capacity [] (ml/ml	mud) 🗆 (equi	v. #/bbl bent)]						••••••
K+ (mg/l)					1							
Nitrate (mg/l) /Sulphite (mg/l)			/	/	/		••••••					
						N		•	~ ~ ~ ~ ~		47	r
						Take	b A	Nater ;	UN U	proch	18(m
OST SUMMARY/24 HOURS ENDI	NG JL	-00 @	DEPTH		1	•		Vater :	DC	THE	~X~	MgU
Product/Package		Units	Unit Cos	st	Cost	1			v. T.	V		T
MILGEL		26	16.01		16.26			OPERATI	ONS S	UMM	ARY	
						Rug L	b					
						3	•					
										•••••		•••••
· · · · · · · · · · · · · · · · · · ·			···· · · ·			••••••	•••••			••••••		••••••
an,							•••••	••••••				••••••
					· · · · · · · · · · · · · · · · · · ·		•••••			•••••		••••••
······································							•••••	•••••		•••••	••••••	••••••
LIQUID ADD	ITIONS FOR	24 HOURS (BBL)									
Diesel Drill Water	Sea Water	Preh	ydrate									

- - -

CaractluIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto. GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment. THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is party or wholly attributable to any repared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report. ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Cake Thickness (mm) APJSE HP-HT 3 Htt Doc 3N3 3×U Void -15 Dou-140 3/1 3/87 Alkalinky, Mud (Pm) / / / / / / / / 3/87 / 3/87 / 3/87 / 3/87 / 3/87 / 3/87 / 3/87 / 3/87 / 3/87 / 3/87	Geofluids											
Image: The second sec			eofluid	s Pty I	⊨td		R	EPORT N	10. 2	C	DATE	N - '05
OPERATOR DEPTH Om TO NUM OPERATOR ÉCANTRACTOR ATCO Mark PRECORTOR MUNICE SANTU STEEPHUD PRECORTOR SEXTU MICHANUS VIELLAME AND NO. MARKYONTON LE CASING MACOVILME Demonstration STATE ML OPERATOR CORRATOR CASING MACOVILME Demonstration STATE ML OPERATOR CORRATOR CASING MACOVILME Demonstration Total Contract State Demonstration Total Contract State Demonstration Total Contract State Demonstration						Report			3			JU NO
OPERATOR DE ALLA PETRODUCATION ATTOS STREPHUD RECORT FOR NUNCE SATTOS STREPHUD RECORT FOR SATTOS STREPHUD RELINAME AND IN NULL SATTOS STREPHUD RECORT FOR SATTOS STREPHUD OPERATION Present Adimy JULY GAR ALLA Socializer INCOMANCE Num Strephul OPERATION ALLE OPERATION Present Adimy JULY GAR ALLA Socializer INTEGENES OPERATION INTEGENES OPERATION OPERATION OPERATION OPERATION OPERATION Num Strephul Mark OPERATION Num Strephul Mark OPERATION Num Strephul Mark OPERATION Num Strephul Mark N				•			D	EPTH (()			
PERCENTION VILLIANS State NUELNAS State WELL NAME AND NO. NOLLYGENTY CASING PRECOMPONENT CORPARION CASING MILLOW CASING CASING CASING CASING CASING<	OPERATOR BEACH PETGUL	FIM		 ,	CONTR/	ACTOR AT	A m	m	<u> 2m</u>		<u> </u>	<u>~</u>
WELL NAME AND/NO VISUXOND ALE I PROCESS VISUXAL CONTRACT STATE //// Present Addrey Auto VOLARE Mad VOLARE Auto VOLARE				+		1710					·	
UNELLYCOLD ULL	· · ·		<u>/</u>]	FIELD OF)H 9 1		ATION		T STA	TF • •	
Present Activity CARRING Multi Volume Circulation Circulation Circulation Bit Sole Like Mail Present Activity Part of Sole Like Circulation			21010)	BLOCK	NO.W.WICHT	Gpp	SIAND 1	JASIN		VIL	
Construction Line Image is a li					Hole		Pumr		CIF			(Min)
Drift Pro Bize Link Production or Line Production Production or Line <	WN 7.18 CSG.		at]	Total Cir	270		OK	- 10	Oppo	osite DP	e liv,
Dail Post Size Line Instance Multiple Specializing Composition Deal Coard Size Start Start Deal Start Start Start Deal Start Start Start Start Start Deal Start St	la rue		A			413	Model	el S	500	Riser	·	
Diff Cells Stag Strike Strike Strike Strike Bottoms by Muth Description Sample from C Rowins Strike MUD PROPERTIES Strike Bottoms by Muth Description Time Sample Taken David Mup Anopentities Strike Hours Strike Hours Time Sample Taken David Mup Anopentities Strike Hours Description Time Sample Taken David Mup Anopentities Strike Description Description <thdescription< th=""></thdescription<>	42 TF	Produc		ier	1	In Storage		Stroke St	Stroke/Min	i Circul	ulating	600
Flowline Temperature NUP PROPERTIES SIZE Hours SIZE Hours Time Samely Sizen 0.20 Vevol 0.30 Contridued Openator Sizen Disate Disate <td>Drill Collar Size 8" 15x64 Sq1 443</td> <td>Mud Type</td> <td>2</td> <td>5 1</td> <td>MUD</td> <td></td> <td>Sen /M</td> <td>/in</td> <td></td> <td> Pottor</td> <td>ms Up (Min.) .</td> <td></td>	Drill Collar Size 8" 15x64 Sq1 443	Mud Type	2	5 1	MUD		Sen /M	/in		Pottor	ms Up (Min.) .	
Time Sample Balen D., 20 Ver-30 Continues Processor Other Desiter Other Weight (16.6.) Set (2) 10.5 24 32 Departime 0 Statuer 20 Departime 0 Statuer 20.6 Departime 0 Statuer 20.6 Departime 0 Statuer 20.6 Departime 0 Statuer 20.6 Departime 20.6 Departime 20.6 Departime 20.6 Departime		4•c	MUL	D PROPE	RTIES	,	917E ·	Hour		ENT		Lours
Depth [1]0, 1, 2, 3, 4 30, 0egaser Port of the state of the s			<u></u>					T		lter	- SIZE	Hours
Weight: (5.6.) Berg. 9.24 9.3 9.3 Desarder 3.x% 1.0 Parted Viscosity (see./qt) API at			170m	284	302		TOR BOY	U			25/20	<u> </u>
Fund Cost Cost Cost MUD Properties Securizations Trade Park Viscosity cps at				93	9.3	Desander 3;	2×6°					I
Basic Viscosity op at							73:77	1			\$690	.03
Yield Point (bi/100 sq. it.) J J Gei Strength (bi/100 sq. it.) J J Multiple		<u> </u>	56	43		-	МИГ	D PROPEF				
Get Strength (br/00 sq.lt) 10 sec/10 min. / / / / SQ.01 Multiple pH DStrp SWMeter Q-O BY AUTHORITY December Writen Dolling Contractor PIItate AP(mL30 min.) 4.0 BY AUTHORITY Dollareadow Writen Dolling Contractor API HP-HT Fittate (mL30 min.) 4.0 BY AUTHORITY Dollareadow Writen Dolling Contractor API HP-HT Fittate (mL30 min.) 4.0 TYPE JETS W.T. RPA. JET VEL BH-H. Cale Thickness (mm) APIS HP-HT 3.11 3.27 Alkalinty. Mult (Pm) 3.11 3.27 Alkalinty, Kitate (MM) / / TKC Not (PK) 3.11 3.27 Alkalinty, Kitate (MM) / / TKC Not (PK) 3.11 3.27 Choice (MM (b by Vol.) 1 1.53 Solid Content (Hb by Vol.) 1.33 3.33 3.33 Mater Control (Hb by Vol.) 1 1.33 Ocramet (Hb by Vol.) 1 1.33 <t< td=""><td></td><td><u></u></td><td> '</td><td></td><td></td><td></td><td></td><td>PV/YP</td><td></td><td></td><td></td><td></td></t<>		<u></u>	 '					PV/YP				
pH DStrip SMeter Dependence Writer Dependence Writer Diffing Contractor Filtrate API (mL/30 min.) 430 BT AVTHORNY BT AVTHORNATION BT AVTHORNATION AAP H=H-HT Tittate (mJ/30 min.) - TYPE JETS WT RPM Cake Thickness (my) API B HPH-HT 3 HT Does 3 JI 33 J J 33 J J 33 J <td< td=""><td></td><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			+	+								
Fittate API (mL/30 min.) 40 90T INFORMATION API HP-HT Fittate (mL/30 min.) - TYPE JETS WC R.P.M. JETVEL BH-H Cake Thickness (mm) APISB HP-HTC 3 HYL Sx1U Up -st Up -utp JETS WC R.P.M. JETVEL BH-H Cake Thickness (mm) APISB HP-HTC 3 HYL Sx1U Up -st Up -utp JETS WC R.P.M. JETVEL BH-H Alkalimity, Hitrate (PR/M) / / / YE JETS WC RECOMMENDATIONS Stand Content (% by Vol.) - 35.0 RECOMMENDATIONS -	pH □Strip SeMeter		<u> </u>		9-0	BY AUTHONILL		perator's Rep	presentative	Other		-
Cake Thickness (mm) APISE HP-HT 3 HP-L 3 Loc Loc Loc Loc Loc Loc Loc Loc Lin Loc Lin Loc Lin Lin <thlin< th=""> Lin <thlin< th=""></thlin<></thlin<>			,'		40			BITI	INFORMATI	ION		
Alkalinity, Mul (Pm) /		'	·['									BHHP
Alkalinity, Filtrate (PMM) / / / / RECOMMENDATIONS Chioride (mg/t) 150 150 RECOMMENDATIONS 150 RECOMMENDATIONS Sand Content (% by Vol.) 120		<u></u>	<u> </u>			HTL OSLSA	<u>×< [5+</u>	<u>(10</u>	10-15	20 -140	311	1 28 1
Choide (mg/l) 150 RECOMMENDATIONS Ital Hardness Depm Br(mg/l) 400 Solids Content (% by Vol.) 100 Oil Content (% by Vol.) 100 Oil Content (% by Vol.) 100 Water Content (% by Vol.) 100 Mitrytene Blue Capacity © (mt/mt mud) © (equiv. #/bbi bent)		/	+	+		,			L			<u> </u>
Total Hardness Depm Br(mg/l) Sand Content (% by Vol.) 100 Solids Content (% by Vol.) 100 Oll Content (% by Vol.) 100 Oll Content (% by Vol.) 130 Water Content (% by Vol.) 130 Water Content (% by Vol.) 130 Water Content (% by Vol.) 130 Metrytene Blue Capacity D(mt/mt mud) D(equiv.#/bbl bent) - K* (mg/l) 7 Nitrate (mg/l) /Sulphite (mg/l) 7 Product/Package Units Units Unit Cost Cost 140 tost Mit LefsL 141 tost Cost 140 tost Mit LefsL 141 tost Water Scink 140 tost 41 tost 140 tost 42 tost 141 tost Cost 140 tost Mit LefsL 141 tost Cost 140 tost Mit LefsL 141 tost	Chloride (mg/l)		+	<u> </u>		1	F	RECOM	IMEND/	ATION	S	
Said Content (% by Vol.) 10 Solids Content (% by Vol.) 10 Oil Content (% by Vol.) 10 Water Content (% by Vol.) 13 0 Methylene Blue Capacity ((ml/ml mud)) (equiv. #/bbl bent) - K* (mg/l) / Nitrate (mg/l) /Sulphite (mg/l) / Product/Package Units Units Unit Otto Cost Mit Lefs 14/10 All S3 0 Product/Package Units Units 0 All S3 0 Mit Lefs 14/10 Value 1 Value 1 Units 0 All S3 1 Value 1	Total Hardness □epm 🖻 (mg/l)	,	<u> </u>	<u> </u>		1.			-			
Oil Content (% by Vol.) 93 0 Water Content (% by Vol.) 93 0 Methylene Blue Capacity () (ml/ml mud) () (equiv. #/bbl bent) - K* (mg/l) / Nitrate (mg/l) /Sulphite (mg/l) / Product/Package Units Units Unit Cost Cost Units Mult & 5L 1/4 LiQuid Package Units Units Unit Cost Cost Summary /24 HOURS ENDING LiQuid Package Units Units Unit Cost Cost Summary /24 HOURS ENDING LiQuid Package Units Units Unit Cost Cost Summary /24 HOURS ENDING LiQuid Package Units Units Unit Cost Cost Sum L Sum L Sum L Sum L Sum L Sum L Sum L Units Unit Cost Sum L Sum L Sum L Sum L Sum L Sum L Sum L Sum L Unit Sum L </td <td></td> <td></td> <td>· '</td> <td></td> <td>.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>••••••</td> <td></td>			· '		.25						••••••	
Water Content (% by Vol.) 13 0 Methylene Blue Capacity [] (ml/ml mud) [] (equiv. #/bbl bent)		I	Ĺ'					••••••				••••••
Methylene Blue Capacity 🗆 (ml/ml mud) 🗆 (equiv. #/bbl bent)		!	 '	 		4	••••••	•••••		••••••		•••••
K* (mg/l) / / / Nitrate (mg/l) /Sulphite (mg/l) / / / COST SUMMARY/24 HOURS ENDING 2 4,20 @ DEPTH 3224.00 Product/Package Units Unit Cost Cost M.IL & Ef. 14 16-03 324.00 CAUSTIL SCAN 1 44.03 44.63 MIL & Ef. 14 16-03 324.00 MALL & Ef. 14 16-03 324.00 Mark 1 44.03 44.63 Mark 16.00 10.00 5.02 Mark 1 44.03 10.00 Mark 1 10.00 10.00 Mark 10.00		#/bbl bent)	<u> </u>	 			••••••					•••••
Nitrate (mg/l) /Sulphile (mg/l) /			<u> </u>	t	+				••••••	•••••	,	
COST SUMMARY/24 HOURS ENDING 2 4.00 © DEPTH 3 2 1 m. Product/Package Units Unit Cost Cost Mit CEL 14 16-01 203+14 CAJSTIL SENA 1 49-63 49-63 Mit CEL 14 16-01 203+14 CAJSTIL SENA 1 49-63 49-63 Mit Wit Sena 49-63 49-63 Mit Water Sena 49-63 49-64 Mit Water Sena 40-64 40-64 Mit Water Sena 40-64 40-64 Mit Water Sena 40-64 40-64 Mit Water Sena 40-64 40-64 <t< td=""><td></td><td>+</td><td>1</td><td>/</td><td>+</td><td> </td><td>•••••</td><td></td><td></td><td>•••••</td><td>•••••</td><td>•••••</td></t<>		+	1	/	+		•••••			•••••	•••••	•••••
Product/Package Units Unit Cost Cost Mil E6L 14 16-01 224-14- OPERATIONS SUMMARY CAVISTIL SCM I 44/03 49/03 OPERATIONS SUMMARY Mil E6L V4 16-01 224-14- OPERATIONS SUMMARY CAVISTIL SCM I 44/03 49/03 OPERATIONS SUMMARY Mil E6L Mode Mode Mode Mode OPERATIONS SUMMARY Mode Mode Mode Mode OPERATIONS SUMMARY Mode Mode Mode Mode OPERATIONS SUMMARY Mode Mode Mode Mode OPERATIONS Summer Summe				· · · · · · · · · · · · · · · · · · ·	<u> </u>	1	••••••			••••••	·····	
Product/Package Units Unit Cost Cost Mil E6L 14 16-01 224-14- OPERATIONS SUMMARY CAVISTIL SCM I 44/03 49/03 OPERATIONS SUMMARY Mil E6L V4 16-01 224-14- OPERATIONS SUMMARY CAVISTIL SCM I 44/03 49/03 OPERATIONS SUMMARY Mil E6L Mode Mode Mode Mode OPERATIONS SUMMARY Mode Mode Mode Mode OPERATIONS SUMMARY Mode Mode Mode Mode OPERATIONS SUMMARY Mode Mode Mode Mode OPERATIONS Summer Summe					<u> </u>					••••••••••••••••		
Product/Package Units Unit Cost Cost Mil 66L 14 16-01 224-14 OPERATIONS SUMMARY CAVISTIL SCM I 44-03 49-03 Image: Strain of the st			<u> </u>	<u> </u>								
Mill 65L 14 16-01 224-14 OPERATIONS SUMMARY CAUSTIL SCOM 1 140-03 49-63 August to Sprid 213-77 213-77 August to Strike August to Strike 213-77 213-77 August to Strike						ł	•••••	•••••				
CAUSTIL Sam I IAIOS IAIOS IAIOS 21377 Interference 21377 Interference Interference 21377 Interference Interference Interference Interference 21377 Interfer						1	Ο'	PERAT	IONS S		RY	
LIQUID ADDITIONS FOR 24 HOURS (BBL) Diesel Diesel		1				1 Rich up	to Sc.	ιÛ	U 112	two		
dl > 11 Sp.d. in @ 08-30 Dr.M. D.Ar. ble to 3.0 m. if Survey. Diesel Diesel Diesel			k			1 Brill lo	at hole	Q Mos	re hole.	••••••		
LIQUID ADDITIONS FOR 24 HOURS (BBL)				di	,5.11	Sprd in		-30		•••••		·····
LIQUID ADDITIONS FOR 24 HOURS (BBL) Diesel Drill Water Sea Water Prehydrate LIQUID ADDITIONS FOR 24 HOURS (BBL)						Ditt HA	still, it	<u>to</u> 5	Dm ;	J- 51	/verys	•••••
LIQUID ADDITIONS FOR 24 HOURS (BBL) Diesel Drill Water Sea Water Prehydrate LiQUID ADDITIONS FOR 24 HOURS (BBL)		+	·			I WE TY	wel he	sle				•••••
LIQUID ADDITIONS FOR 24 HOURS (BBL) Diesel Drill Water Sea Water Prehydrate LiQUID ADDITIONS FOR 24 HOURS (BBL)						1 CZ	۴	•••••		••••••	••••••	•••••
LIQUID ADDITIONS FOR 24 HOURS (BBL) fingung and run 9518 csign Diesel Drill Water Sea Water Yerehydrate fugung						1 PUH	•••••		•••••	•••••		,
LIQUID ADDITIONS FOR 24 HOURS (BBL) Diesel Drill Water Sea Water Prehydrate			······································			1	with the	Q56	5 CSiza	·····		
Diesel Drill Water Sea Water Prehydrate						1		••••••	·····			••••••
Diesel Drill Water Sea Water Prehydrate		24 HOURS (F					•••••		, ,	••••••		•••••
<u>500</u> 40				, 		i			••••••	•••••		,
				·			•••••			·····		••••
	GEOFLUIDS ENGINEER ANDRE SK			j	HOME A		E. MOG		TELEPH		A. 195	ורי

aport is subject to the following terms and conditions: GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto. GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give any direction to any employee or the client as to his conduct or employment. THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report. ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geofluids Pty Ltd Drilling Fluid Report

REPORT NO. 💈	DATE BIN C. 1 85
RIG NO. 3	SPUD DATE) Di Qis
	TO

										<u></u>	600		5		
OPERATOR BEALH PE	TRUDEN	18.8			CONTRA	ACTOR	ATI	a A	1m		•				
		STEFANO			REPORT	FOR			Nif		<u>رم</u>	•			
					FIELD OF	3		LOCAT	ION			STAT	E		
WELL NAME AND NO.	NDALE	۳۱				NO. WILDLA	à	1-ipp	TWD	BR	٩.		11	<u> </u>	
OPERATION Present Activity			ASING			JD VOLUME			<u></u>		CIHC			4 4	
Present Activity NIPPLE V	P	qs/gn s	Surface at			Pits		Pump	Size	ς * × ΄	16,	Oppo	lar Vel. (F+ osite DP	/Min).	
Bit Size	No.	Inte	rmediate		Total Circ	ulating Volum	ne	Pump	Make J	SR	.	Орро	site Collar .		•••••
Drill Pipe Size 1. 7 *	Type	Produc	at wion or Lin	her		In Storager		Model	roke	Strok	e/Min	Circu		103	<u></u>
41	Typef		at			Storage JUC U	hp)	120	Ś	Strok	0	Press	ure		•••••
Drill Collar Size	Length	Mud Type						RBL/Mi					ms Up (Min.) ms Total (Mi		
Sample from Growline	🗆 Pit					T		IIV	V	EC	UIPME				
Flowline Temperature		°C	MUL	D PROPE	RHES		SI	ZE	Но				SIZE	н	lours
Time Sample Taken						Centrifuge			/	-	Desilte	r	\sim		
Depth			LA1			Degasser	Por	2 82	0		Shaker	r i	an /m		3
Weight 🗆 (S.G.) 🛛					_	Desander	3	<u>t</u>	2						
Mud Gradient (psi/ft)				l		DAILY COST	564	.Dü.			CUMUL	LATIVE	\$ 756	4.07	1
Funnel Viscosity (sec./qt) API at			<u> </u>						PROPE	ERTIES	SPECI	FICATI			L
Plastic Viscosity cps at				1		WEIGH	IT		PV/YP			ILTRATE			
Yield Point (lb/100 sq. ft.)		· · · · · · · · · · · · ·	<u> </u>	ļ,	,										
Gel Strength (Ib/100 sq.ft.) 10 sec/10	min.		<u> </u>	/	/	BY AUTHO	RITY		erator's W				ing Contractor	r	
pH Strip Meter		······································		¥		· · ·		□ Ope	erator's R				<u> </u>		P
API HP-HT Filtrate (ml./30 min.)		·····		<u> </u>		TYPE		JE		WI	RMATIO	R.P.M.	JET VEI		вннр
Cake Thickness (mm) APIC				L			-			V V.1	·	ri.r.ivi.			SHHP
Alkalinity, Mud (Pm)				F											
Alkalinity, Filtrate (Pf/Mf)				- L -			••••••		l						
Chloride (mg/l)				· '		ł .		R	ECO	MME	NDA	TION	S		
	ng/l)				-	1500		Rin	PHI	mid	- f	~	e in s	zyn	hele
Sand Content (% by Vol.)	3.7	<u></u>				1.1.4.000			.wm)		() .Y	N	£	به، ۵	
Solids Content (% by Vol.)					1	1)(10-		harts	~ <	haker		film 1	N Bbo	·····	•••••
Oil Content (% by Vol.)					γ_{-}		<u>(</u>)		(J		••••
Water Content (% by Vol.)				1	P	3) Dimo	in.	0 ()e	2 minu	2	any -	Mue	Shake	r tert	((
Methylene Blue Capacity [] (ml/ml m	nud) 🗆 (equiv	/. #/bbl bent)			1	an	72	Dexado	v Sri	tion -	tank.	11	Shaka		~~
K+ (mg/l)							•	-							
Nitrate (mg/l) /Sulphite (mg/l)			/	/	/										
	·······			ļ											
				ļ			•••••								· • • • • • • • • • • •
			DEPTH					••••••					•••••		•••••
COST SUMMARY/24 HOURS ENDING	G J4.		DEPTH	372	^				•••••		•••••			•••••	•••••
Product/Package		Units	Unit Co		Cost 64.04	4		0	PERA	TION	IS SU	IMMΔ	RY		
A MILIFL		- -	0.01	\	07.04	Q.,	956	1							
						hrul		5 005.7					•••••		••••
······································						(Partul)			7.		tusa à	~~~	n»	••••••	••••
						MOL.		9.2.2.		Y.C	winney.				••••
						Nipp	<u>م</u> د م	BOB	·····						•••••
							- V					•••••			•••••
······································							••••••		•••••						
															•••••
* Usul for centent is															
LIQUID'ADDI	FIONS FOR	24 HOURS (I	BBL)							•••••					·····
Diesel Drill Water	Sea Water	Preh	drate	ļ	+								••••••		•••••
					• - • • • • • • • • • • • • • • • • • • •										
GEOFLUIDS ENGINEER ANDR	ε <	SKUTINS			HOME	ADDRESS	AD	ELAIN	F	-	TELEPH	ONE ()	18 - 70	1210	ц,
eport is subject to the following terms and							<u> </u>		•						

ECPLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto. GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. In diversity and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report. ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geofluids	- Ge	ofluids	s Pty L	td			RE	PORTI	 NO.	4	DA	TE ILm	Our 85
Milchem			-		Report	•	RIC	G NO.	হ		SP	UD DATE	2mars
	~] 22444 -	3	91.00	lobe: -	,			322			> 568	STUTA
					OTOD			K		Sm_		508	<u>m</u>
OPERATOR BENCH PETHOLEU	<u>λ</u>			CONTRA		HT.		1.461	۸				
REPORT FOR VINCE SANT	STEFAN	<u>ງ</u>		REPORT	FOR K	Sar	NJ 1	ViEI		`	07176	<u></u>	
WELL NAME AND NO. WRXCHDAL	ENT			FIEI DOF BLOCK N	NOW IDEA	T	E.M.	ION I	BI	よう	STATE	VIL	
OPERATION	C.	ASING			JD VOLUME					CIRC	ULATIO		
Present Activity DRILLING	9.5/5° S	at 2	299m	Hale 140	Pits)	Pumps	Size S	<u>Ь</u> ~	16"		site DP	Min). RS
Bit Size 84 No2	Inte	rmediate		Total Circ	ulating Volum	e	Pump N Model	Vake 【	-33		Oppos Riser	site Collar	
Drill Pipe Size	Produc	ction or Lin	.er		In Storage		Str.		Stroj	œ/Min S℃	Circula Pressu	ating	1400
Drill Collar Size 6% Length	Mud Type	-ai	NM	INE S	, souros		-12.51 1354/Mji	n O		<u>عن</u> ای ⁹ ن	Bottom	ns Up (Min.) ns Total (Min.	
	Վ∘շ			RTIES		SI		Hou	E	QUIPMEN	NT	SIZE	Hours
Time Sample Taken		20-00	01-00		Centrifuge					Desilter			
Depth (MERCES)		515	575	620	Degasser	PUTR		0		Shaker	ß	20/1360	14
Weight□(S.G.) St fty	A	9.0+		8.91	Desander	3,	×6~	<u></u>		CUMU	ATRIC	V	<u> </u>
Mud Gradient (psi/ft) Funnel Viscosity (sec./qt) API at	<u>بر:</u> ℃	<u>BECER</u>	35	435.1	COST	<u>570</u>	1.08			CUMUL		\$ 824	.12
Plastic Viscosity cps at		- Q	7	4						S SPECI)NS	
Yield Point (lb/100 sq. ft.)		15	i	16	WEIGH			EV147		Fill 1		q.;	ph 9-5
Gel Strength (lb/100 sq.ft.) 10 sec/10 min.		9/12	5/9	12/14	BY AUTHO		DOpe	erator's W	ritten	<u>г</u>		g Contractor	<u> </u>
pH Strip SeMeter Filtrate API (ml./30 min.)		1.01	9.8	9.4			Se Ope	erator's Re		ntative ORMATION	Other	****	
API HP-HT Filtrate (ml./30 min.)		-	-	46	TYPE		JE		W		R.P.M.	JET VEL	ВННР
Cake Thickness (mm) API 🗗 HP-I		36)	3	34	SEL 533	5	3x	10	0		90	368	169
Alkalinity, Mud (Pm)	<u></u>		-										
Alkalinity, Filtrate (Pf/Mf) Chloride (mg/l)	•····•	-12/22 900	-38/-18 900				R	ECO	MM	ENDAT	IONS	;	
Total Hardness		TR	TR	TR	Contin	<u></u>	is in	liter		dition	, to	with	1 Visasi
Sand Content (% by Vol.)		TR	TR	TP.				•••••		•••••			
Solids Content (% by Vol.) Oil Content (% by Vol.)		5.0	4-5	4.5		•••••			••••••				
Water Content (% by Vol.)		95-0		95.5			•••••	•••••		••••••	•••••		•••••
Methylene Blue Capacity 🗆 (ml/ml mud) 😫 (equi		20	15	22%									
K+ (mg/l)			ļ,			•••••					•••••		•••••
Nitrate (mg/l) /Sulphite (mg/l)		° 4€	.47	1. iyly								•••••	•••••
- X		1.45	1-05	1.70		•••••	•••••	•••••	•••••	•••••		•••••	•••••
COST SUMMARY/24 HOURS ENDING	<u> </u>	DEPTH	508										••••••
COST SUMMARY/24 HOURS ENDING 24, 1	Units	Unit Co		Cost		•••••		•••••	•••••	•••••	•••••	•••••	••••••
CANSTIL SODA	1	49.6		4.03	1					NS SU			
SODA ASH		20.4		2,12,45							······		•••••••••
			$-+\overline{1}$	08-U	Trown	2te	n bo	0.	•••••	••••••			•••••
		<u> </u>		, 	Pressive				••••		•••••	•••••	••••••••••
					BTH .	JF.	Bis		••••••				
					freshr			···;·····					•••••
							Centor			••••••	••••••	••••••	•••••
	• • •				(indert		n copa ink ut	- Test	لا ۲	••••••	•••••		•••••
					DAN								
									•••••		••••••		•••••••••••
LIQUID ADDITIONS FOR Diesel Drill Water Sea Water		ydrate				•••••			•••••		••••••		•••••
300									••••••				
	いろろ			HOME	ADDRESS	AD	ELAN	YE.		TELEPHO	DNE ()	R-79;	2197
eport is subject to the following terms and conditions: GEOFLUIDS is engaged as adviser only and is not in control		e or any of th	he building	is or machine		÷		e		*************		<u> </u>	* .1

GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto. GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment. THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report. ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geof	luids	
		Milchem

OFERATOR

REPORT FOR

Present Activity

Drill Pipe Size

Drill Collar Size

Sample from

Depth

pН

Flowline Temperature .

Time Sample Taken

Weight 🗆 (S.G.)

Mud Gradient (psi/ft)

Yield Point (lb/100 sq. ft.)

□Strip

Filtrate API (ml./30 min.)

Cake Thickness (mm)

Sand Content (% by Vol.)

Solids Content (% by Vol.)

Water Content (% by Vol.)

Nitrate (mg/l) /Sulphite (mg/l)

COST SUMMARY/24 HOURS ENDING

Product/Package

EAV

Oil Content (% by Vol.)

CMI

Alkalinity, Mud (Pm) Alkalinity, Filtrate (Pf/Mf)

Chloride (mg/l)

Total Hardness

K+ (mg/l)

Bit Size

WELL NAME AND NO.

BEACH PETROLEUM

WRIXONDALE

DZI

Pon Ng

Type

Lengt

🗟 Pit

35 °C

HP-HT 🗆

4-00

Units

9

JANTIO STEPANO

1

95/2

Mud Type

CASING nSurface 299,

Intermediate

at

at

FW

Producti

or Liner

14.00 19.00

748

8.94

-48

45

()

77

6/17

9.4

128

0

900

40

TR

4-5

92.0

174

-5

@ DEPTH

Unit Cost

62.17

-08/.14 TR/.14

VINCE

OPERATION

5

6

Gel Strength (lb/100 sq.ft.) 10 sec/10 min.

□epm

1 metres

Š

□ Flowline

BIP-

Funnel Viscosity (sec./qt) API at°C

Plastic Viscosity cps at

Meter

API C

2(mg/l)

API HP-HT Filtrate (ml./30 min.)

Methylene Blue Capacity [] (ml/ml mud) 2 (equiv. #/bbl bent)

r

Puk Fur

Geofluids Pty Ltd Drilling Fluid

					,										
	s Pty Lt				RE	REPORT NO. 5					DATE ISTHOR'SS				
lin	g Flı	uid R	lepor	t	RIC	G NO.	3			SPUD	DATE	27.028			
-			-		DE	PTH	56	8m		то (<u>804</u>	<u></u>			
		CONTRA	CTOR	ATT	DA	PM		<u>`````````````````````````````````</u>			<u> </u>				
•		REPORT	FOR	Bari		2	HAV	×ر				_			
		FIELD CR	3 1.		LOCAT	FION			ST/	ATE V	1.				
G			JD VOLUME		GIPP	J-AU	0 131	CIF	RCULAT		ATA				
	99m	Hole	Pits 51		Pump	Size r	Y."× 1	6	Ann	ular Ve	1. (FY	Mini			
liate	17m	IQU Total Circ	ulating Volu		Pumpl		TSR 1	<u>.</u>		posite C	Collar	<u>316</u>			
or Lin	er		Sto In Storage	i	Model		500	ę/Min	Rise	ulating	<u> </u>	1221			
un			utorage		.1	<i>ī</i> d	Strok	<u>Q</u>	Pres	ssure .		122/1			
٦	NAT'N	<u>7.50121</u>	<u>v - M</u>	L	BAL/Mi	11) • •					p (Min.) otal (Min				
	PROPER							QUIPM	ENT						
20		22.35	Centrifuge		ZE	Ho	ours	Desil	er		IZE بنا×	Hours 15			
<u>3</u>	19.00	804	Degasser	Poor	R BUY	~	,	Desil Shak		-	×47 1860	24			
At.	9.0	8.9	Desander	<67	2	2				1	LONT				
ŪK	.41.5	-433	DAILY COST	6.04				ULATIVE r	*	\$1572.19					
t5	40	42		<u>~ 1</u> T		PROP	ERTIES	COS S SPE				<u> </u>			
<u>)</u> 3	2		WEIG			PV/YP			FILTRAT	E	1	rH =			
5/17	5/20	7/25	8.8-		10-15		- cz	৭	- 15		٩.,	3-9.5			
ių.	Q.j	9.0	BY AUTH	∪н!!Y		erator's V erator's R	Represen				ontractor				
ß	102	9.6				В	IT INFO	RMATI							
[9]	175	ĪLA	TYF SEL S	2E	ا جرح	TS AV	<u>.</u> س		R.P.M W.S	. .	JET VEL	BHPP			
<u>(س</u> س	LUP -		sir >	222	×c		<u></u>		<u>, </u>		368	- 102			
- /•[4	TR/.14	TR/10)ECC									
<u>_</u>	950	910			R		IVINE	SIND/	ATION	Сr					
<u>رم</u>	40	ilO TR					•••••	-							
3	TR	4.0				•••••	•••••				•••••				
	~				•••••		•••••		·····		•••••				
5	95.5	96.0			•••••		••••••	· · · · · · · · · · · · ·							
172	15											••••••			
/	/	<u>⊢,</u> -										•••••			
	158	· 57					•••••	•••••		•••••	••••••				
8	· <u>5</u> 2	-60	,	·····			•••••				·····				
					••••••••				•••••••••		•••••••••				
Г Н	Sulym							•••••		••••••	••••				
it Co		Cost tb-1)4				PERA		15 e	UMM	۸ev					
<u>ر، ا</u>		U U4	<u>)</u> ~4	1 4.	741										
					······································		·····	·····		•••••	••••••••••••••••••••••••••••••••••••••				
			10nd	· 10	735	750	m	·····			·····				
	1					•						••••••			
				<u>برب د</u>	ind lor	y W	n)	•••••							
			C Prvil	10 10 1	sid lor	<u>m</u>									
 			Drvil Drvil RIH	to to to	stud	<u>m</u>	reh. Liri								
•			D-M P-M FLH	274 C to 374 1	stud	<u>m</u>									

....

					DAI to SUIL	
					Cru.	
					But Wiper trip.	
	LIQUID AD	DITIONS FOR 24	HOURS (BBL)		, line ,	
Diesel	Drill Water	Sea Water	Prehydrate		Gyu.	
	Cui			•	Roth .	
EOFLUIDS ENG	GINEER AND	NE SKUZ	SINTS		HOME ADDRESS ANELANE TELEPHONE OR 195 W2	
			· · · · · ·			

eport is subject to the following terms and conditions: CEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto. GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give any direction to any employee or the client as to his conduct or employment. THE client agrees that in consideration of the foregoing GEOFLUIDS shall no be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report perared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person ansing out of any terop repart of GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geofluids				_			i			1			
	iem			s Pty L		S		REPORT	'NO.	6		te Ibta	UT 85
		ט נ	riiin			Report		RIG NO.	3		SPI	JD DATE	12mug
		•	· · · · · · · · · · · · · · · ·					DEPTH ·	295	im	ТО	806m	.
OPERATOR BEAUS PETR	NIF	MUE			CONTR/	ACTOR AT	w	Apm					
		STEFAN	าย		REPORT	-	KX Pt.		HAV.	(
						NOWLDLAR	110	OCATION	0		STATE	Mr.	
OPERATION		<u> </u>	CASING					(PR)LAUE	DP	SIN CIBC	ULATION		
Present Activity NAME VE TOZS				299		Pits	P	ump Size 🦿		1.	Annula	r Vel. (F+/	Min).
Bit Size		1 18 Inte	at ermediate		Total Circ	culating Volume	Pi	ump Make	JSR	<u></u>		te DP te Collar	173
Drill Pipe Size		Produ	at ction or Lii	ner		In Storage		odel -/Stroke	S		Riser Circula	and the second se	
42 TI	<u> </u>	/	at					1265		40	Pressur		NUL
Drill Collar Size	<u>b</u> '	Mud Type	FW	WATW	re Sol	405 - CML	5	L/Min			System	s Total (Min.)) I Ŭ
Sample from 🗆 Flowline 🕼 Pit	2)	**	ми	D PROPE	RTIES					QUIPMEN	1T		
Flowline Temperature Time Sample Taken			·	10 20	1	Centrifuge	SIZE	Ho	ours	Desilter	11:	SIZE	Hours U
Depth (METRES)			·	19-12		· · · · · · · · · · · · · · · · · · ·	in fa	31 1)	Shaker		10 10 m	2
Weight□ (S.G.) 🖼 🎧				8.9		Desander	3~	<u>n</u> 0					
Mud Gradient (psi/ft)			•	*8653		DAILY COST	-			CUMUL		1570.	.19
Funnel Viscosity (sec./qt) API at		<u>~C</u>	·	41	<u> </u>	-		MUD PROP	PERTIE				<u> </u>
Yield Point (lb/100 sq. ft.)			÷	10		WEIGHT		PV/YP	•		TRATE		CH4
Gel Strength (Ib/100 sq.ft.) 10 sec/10 min.			1	6/32		8-8-9. BY AUTHORI		Doperator's	2-18		10 il	Contractor	5-9-5
pH ⊡Strip SarMeter				9.0				Operator's	Represe		Other	Gunnacion	•
Filtrate API (ml./30 min.) API HP-HT Filtrate (ml./30 min.)				9.0		TYPE		JETS	BIT INFO		N R.P.M.	JET VEL	. ВННР
Cake Thickness (mm) API&	HP-HT		·	ila	+	SEL 5333		3×10	2			294	
Alkalinity, Mud (Pm)						000 3.00		22.0		-			
Alkalinity, Filtrate (Pf/Mf)			/	TR/-K) /	1		RECO		ENDAT	IONS		
Chloride (mg/l) Total Hardness		. <u> </u>		950		Note:	Dear						ند اه د
Sand Content (% by Vol.)		· · ·		4W TR			95m	r wyia	7.02		WINYS.	II WALL	NT. OCAN
Solids Content (% by Vol.)				4.0				•					
Oil Content (% by Vol.)]							
Water Content (% by Vol.)				96.0]	•••••						
Methylene Blue Capacity (ml/ml mud) K+ (mg/l)	(equiv.	#/bbl bent)					•••••				•••••		•••••
Nitrate (mg/l) /Sulphite (mg/l)				+	1		•••••		•••••				••••••
							······						
<u></u>													
COST SUMMARY/24 HOURS ENDING	n 1.		DEDTU	SUL,			•••••	••••••					•••••
Product/Package	24-1	Units	DEPTH Unit Co		Cost		•••••		••••		••••••	•••••	•••••
(ALL EAV						- -		OPER	ATIO	NS SU	MMAF	Y Y	
						VVOSK -	to br	Ŋ	514	rūll,	·····		
						Cur		•••••		•••••			•••••
						I'OH	c To	- 7-1	••••••			••••••	•••••
						Ruth	F 10	in Ino.	••••••				
						lindert	DST	ΨI					••••••
						PON	-						
						Break,	anni	Tools				•••••	••••••
						Dian W	- Di	n- 806		····*		••••••	•••••
						Cite.	···•		.11.54			••••••	•••••
LIQUID ADDITIONS						Fort.	<u>.</u>	·····					
	Water	Preh	ydrate			Muhe .	rbto	st Tools				•••••	•••••
	-			1	LIONE			N		TEI CDI 16			
Beport is subject to the following terms and condition		SUISI		· · · · · · · · · · · · · · · · · · ·			ADEL	MOE		TELEPHO		8 192	5102
T LUDC a condition the ronowing terms and condition	una.												

L.

٢. Į

FUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto. FUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give any direction in any employee or the client as to his conduct or employment. THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person anising out of any act or omission on the part of GEOFLUIDS. The divice or report. ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Image: Product Section Drilling Fluid Report Product Section Product Section Product Section Presented BEALA ETKALSEMA CONTRACTOR ATLO Net Presented Section Section Reconstruction Net Presented Contractor AtLo Net Net Presented Contractor AtLo Contractor Net Presented Contractor AtLo Contractor Contractor Presented Contractor Contractor Contractor Contractor Contractor Presented Contractor Contractor Contractor Contractor Contractor Presented Contractor Contractor Contractor Contractor Contractor Contractor Presented Contractor Contractor Contractor Contractor Contractor Contractor Presented Contractor Contractor Contractor Contractor Contractor Contractor Contractor Contractor Contractor				ofluids					REPORT	NO.	7	D	ATENT	DG 85
DEPTH SUM TO 974 PREATOR BERALM CONTRACTOR ATLO MAIN PREATOR NULCE SANTE STREEMUD PREMITION ATLO MAIN PREATOR MULCE SANTE STREEMUD PREMITION ATLE MUL OPERATION MULANAL ANDIA CONTRACTOR ATLE MUL CONTRACTOR ATLE MUL OPERATION MULANAL CONTRACTOR MUL CONTRACTOR		licnem	_) D	rillin	g Fli	uid F	leport		RIG NO.	3				
DEFENCION CONTRACTOR ATCO NM ERPORT FOR VINCE SANTU STEERAND REPORT FOR SEXAL MURCHANS STRE VIL MELLIAMA AND NO MILLIAMA AND NO MILLIAMA STRE VIL CASING MILLIAMA STRE VIL CASING MILLIAMA STRE VIL CASING MILLIAMA CASING CASING MILLIAMA CASING CASING CASING CASING MILLIAMA CASING					-		-	F	DEPTH	80	<i>h</i> m			
BEROM FOR VINCE SAND ERROR FOR BUNCH AND NO VINCE SAND TARE Lic OPERATION CASING MILE VINCE CHEMAN CHEM	PERATOR BEACH VET	T.S. FUX	<u>л</u>			CONTRA	CTOR ATE	·\	•	<u> </u>	V 1.		<u>.</u>	
OPERATION CASING ELOCKNOWLINE CERCINICATION DATA OPERATION OPERATION CASING MUD VOLUME Fundo Size V.K. U Annual Yell (Private Private Priva	11		••••••		REPORT				A. N. 12					
OPENING CASING MULTICALLER Casing Insert Adamy DRULLINIL Graduation Participation Participation Casing Participation Participat			-	/		FIELD OF	8		ATION			. STAT		
Image: Addivity Display Data Called in the second								15	PPLAN	DK	CIB CIB			
Inscrete Other Charge Mark Ot	resent Activity	esent Activity Nous un Stan S					Pits	Pur		y hx		Annul	ar Vel. (-/Min)
NIII POS 262 Light State Product/An or Liner In Storage Fight Storage Diglicity Sto	Bit Size AV N	No.	Inte	at 🔨	MAW		ulating volume	Pun			10			173
Int Caltar Size Ltd Ltd Ltd Ltd Pressure Pressure Ltd Pressure Ltd Pressure Pressure Ltd Pressure	YAL III Pine Size			at	~		tobs	Mo	del 🔮	500		Riser		<u></u>
UN NATIVE State Number of the state State Number of the state State Hours State							in Storage	1.	265			Press	ure	
Elample Term EQUIPMENT Time Sample Taken 16 00 23,40 04.20 Centritige	rill Collar Size 62	Length	Mud Type	FW	NATIN	E Sú	N - CML	PSPL S	/Min					
Lowine Semperature TV Issue Hours SIZE Hours SIZE Hours SIZE Hours Destin \$12,955 \$13,10 Operation	ample from 🛛 Flowline	RT DIA	٦	1						EC		ENT		
Depth St1 95.5 91.1 Depasser Constant St2 92.1 Weight (S.6.) 3 9.0 <td></td> <td><u> </u></td> <td>] °C</td> <td></td> <td></td> <td>18/12</td> <td></td> <td>SIZE</td> <td>Ho</td> <td>ours</td> <td></td> <td>13</td> <td></td> <td>Hours</td>		<u> </u>] °C			18/12		SIZE	Ho	ours		13		Hours
Weight (S.G.) B 9.0 9.0 9.1 Desander 3.6 9 1 Runel Viscosity (sec./qt) API at														
Mud Gradient (ps/kf)	······							2K DO	<u>४ </u>)	Ulland	(120 1800	+
Master viscosity (css at		<u></u>) <u>.</u>		`			at :c.i.	• •
Planet IO IA IO IIO IO III IIII IIIIII Conting Contractor Regression IO IIIIII Conting Contractor Regression IO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Funnel Viscosity (sec./qt) API at .		°C				COST 4539			EDTIE				4.16
Yield Pont (b/00 sq.t) L 13 L 14 14 14 14 <	Plastic Viscosity cps at			10		10	WEIGHT			ERITE				Lia
Lab Strev B Line X E / 24 7/2 5 / 2 5 7 7 7 7 5 / 2 7 7 7 7 7 7 7 7 7		·····				11		10		10				
Filtrate API (mL/30 min.) BIT INFORMATION API HP-HT Filtrale (mL/30 min.) - - TYPE JETS WT. RPM. JET VEL B Cake Thickness (mm) API B HP-HTC I(P) I(P) Set S33S 3x10 3.0 3.0 3.94 I/: Alkalinity, Filtrate (P/MI) TR / 10 I/2								Y PS	Operator's V	Vritten		Drilli	ng Contracto	
APH-HT Filtrale (mL/30 min.) - - - TYPE JETS WT RPM. JETVEL B Cake Thickness (mm) APIE HP-HT 1(£) U.£) N(£) SEC S335 3x00 3x0 QO Q94 Lix Alkalinity, Multidle (Pm) TR2/+02 j2/-34 65/-32 Chorde (mg/l) 1000 QS QO Q94 Lix Chorde (mg/l) 1000 QS Logo QS QS <td></td> <td>·····</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>r</td> <td>· · · · · · · · · · · · · · · · · · ·</td>		·····						1					r	· · · · · · · · · · · · · · · · · · ·
Cake Thickness (mm) APIS HP-HT I(F) I(F) I(F) SEC S335 3×0 20 $29 +$ Ii Alkalinity, Mud (Pm) TR 12×12 , $42 \times 162/22$ RECOMMENDATIONS Chlorde (mg/l) 1000 90 600 90 600 Sand Content (% by Vol.) TR 25×17 TR 35×10^{-10} 35×10^{-10} 35×10^{-10} Oild Content (% by Vol.) TR 25×17 TR 35×10^{-10} 35×10^{-10} 35×10^{-10} Oild Content (% by Vol.) TR 25×15^{-10} 50×10^{-10} 35×10^{-10} 35×10^{-10} 35×10^{-10} Water Content (% by Vol.) The start sta				10.0							T			L. BHHP
Alkealinty, Mud (Pm)		HP-H	IT 🗆	1101	ł		· · · · · · · · · · · · · · · · · · ·							
Chloride (mg/l) 1000 950 1000 RECOMMENDATIONS Total Hardness 0 pm 25(mg/l) 4x3 5x3 6x3							366 2333							
Chloride (mg/l) 1000 95 1000 RECOMMENDATIONS Total Hardness 0 pm 21(mg/l) 403 403 403 403 Sand Content (% by Vol.) TR 35 0 5 3 5 3 5 3 5 3 Old Content (% by Vol.) 47.5 5 70 5 3 5 3 5 3 5 3 Old Content (% by Vol.) - - - - - - - Water Content (% by Vol.) - </td <td>Alkalinity, Filtrate (Pf/Mf)</td> <td></td> <td></td> <td>TR/-10</td> <td>-12/-24</td> <td>.08/22</td> <td></td> <td> I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Alkalinity, Filtrate (Pf/Mf)			TR/-10	-12/-24	.08/22		I						
Total Hardness Dem #(mg/l) 4x0 4y0 4y0 4y0 4y0 Sand Content (% by Vol.) TR .3.5 TR .3.5 TR Solids Content (% by Vol.) 44.5 S-0 S-5 S-5 Oil Content (% by Vol.) 9.5-5 9.7-6 9.4-6 9.4-5 Wethylene Blue Capacity ((mt/mti mud) B (equiv. #/bbl bent) - - - Ntrate (mg/l) / / / / Ntrate (mg/l) /Sulphile (mg/l) / / / / OST SUMMARY/24 HOURS ENDING 24.000 @ DePTH 91/txm Cost OPERATIONS SUMMARY CEL Pol 2 /////// /////////// ////////////////////////////////////	Chloride (mg/l)			1000	9.50	1000] .							- 11 -
Sand Content (% by Vol.) TR X.5 TK Solids Content (% by Vol.) 4S S S Water Content (% by Vol.) 9S.2 9S.2 9S.3 Water Content (% by Vol.) 9S.2 9S.2 9S.3 Water Content (% by Vol.) 9S.2 9S.3 9S.3 Water Content (% by Vol.) 9S.2 9S.3 9S.3 Nitrate (mg/l) /Sulphile (mg/l) / / / Nitrate (mg/l) /Sulphile (mg/l) / / / V SS.4 S.1 S.4 Product/Package Units Unit Cost Cost C1AL EAN 1 S.2 S.2 C1AL EAN 1 S.2 S.2 C1AL FONL 2 S.2 S.3 CAL FONL 1 S.2 S.2 S.3 CAL FONL 1 S.2 S.3 S.3 CAL FONL 1 S.2 S.3 S.3 Mather Sore 1 S.3 S.3 S.3 <t< td=""><td></td><td>ng/l)</td><td>······</td><td></td><td></td><td>40</td><td>Lost a</td><td></td><td>70</td><td>ppli</td><td>Mind</td><td>dur</td><td>ing</td><td>ST #2.</td></t<>		ng/l)	······			40	Lost a		70	ppli	Mind	dur	ing	ST #2.
Oil Content (% by Vol.) 9.5.2 9.5.4 Water Content (% by Vol.) 9.5.2 9.5.4 Metrylene Blue Capacity [] (ml/ml mud) (B (equiv. #/bbl bent) - 1.5 K* (mg/l) / / Nitrate (mg/l) / Sulphite (mg/l) / / Nitrate (mg/l) / Sulphite (mg/l) / / Nitrate (mg/l) / Sulphite (mg/l) / / Notestand (Mathematication (Mathematicatio				TR		· · · · · · · · · · · · · · · · · · ·		•••					<u> </u>	
Water Content (% by Vol.) 95-5 95-6 94-5 Methylene Blue Capacity [] (ml/ml mud) [2] (equiv. #/bbl bent) - 1.5 1.5 K* (mg/l) / / / Nitrate (mg/l) / / / Nitrate (mg/l) / / / Nitrate (mg/l) / / / Notate (mg/l) / / / Notate (mg/l) / / / Nitrate (mg/l) / / / Notate (mg/l) / / / State State State State OST SUMMARY/24 HOURS ENDING Que, too @ @ Product/Package Units Unit Cost Cost CEL Fold Q (10-20 22.6.70 Number (100 Stote) CM State State State Number (100 Stote) Number (100 Stote) CM State State State State Number (100 Stote) Number (100 Stote) CEL Fold Q State State State Number (100 Stote) Number (·/				•••••			••••••	••••••		•••••
Methylene Blue Capacity □ (ml/ml mud) 38 (equiv. #/bbl bent) - 1.5 1.5 1.5 1.5 Nitrate (mg/l) / / / / / Nitrate (mg/l) / / / / Nitrate (mg/l) / / / / Nitrate (mg/l) / / / / Notestand (mg/l) / / / / State (mg/l) / / / / Notestand (mg/l) / / / / OST SUMMARY/24 HOURS ENDING 2.4,000 @ DEPTH 974m @ Product/Package Units Unit Cost Cost OPERATIONS SUMMARY CEL Fold 2 110-30 2.26-30 Nth Teat tools to shee Nth Nf Teat tools to shee UNISS CODE 2 393.97 Nth Nf Teat tools to shee Nth Nf Teat tools to shee UNISS CODE 3 93.97 Nth Nf Teat tools to shee Nth Nf Teat tools to shee UNISS CODE 3 3 3 1.4 1.4 1.4 UNISS CODE 3 <				1				•••••			••••••			•••••
K* (mg/l) / / / / Ntrate (mg/l) /Sulphile (mg/l) / / / / N $\cdot S_U$ $\cdot S_U$ $\cdot S_U$ $\cdot S_U$ N $\cdot S_U$ $\cdot S_U$ $\cdot S_U$ $\cdot S_U$ OST SUMMARY/24 HOURS ENDING 2_U $\cdot S_U$ $\cdot S_U$ $\cdot S_U$ Product/Package Units Unit Cost Cost OPERATIONS SUMMARY CALL EAN 2 $1_U \cdot \cdots \otimes 2_U \cdot \cdots \otimes$		ud) 🔀 (equiv	. #/bbl bent)	-	15			•••••			•••••		•••••	•••••
N Site Site Site K -Site -Site V -Site -Site V -Site -Site V -Site -Site Product/Package Units Unit Cost CAL ENN 2 CAL ENN 2 CAL Product/Package Units Units Unit Cost Cost CAL ENN 2 CAL Product/Package N/T CAL Product/Package Units Units Units Units CAL Product/Package Units CAL Product/Package Units CAL Product/Package Units CAL Product/Package Units CAL Product Product Product Product Product Product Product Product Product Product Product Product Product Product Product<											•••••		•••••	
K · & X · Z OST SUMMARY/24 HOURS ENDING Q.L. · UV @ DEPTH 974m Product/Package Units Unit Cost Cost CILL ENV Q U.L. 17 J.Zu. 34 (EL Col Q 10 - 30 2.2u. 90 CAV STL SODA 1 44 t.3 49 t.3 VINT SODA 1 47 t.3 Not VINT SODA 1 1 Not VINT SODA 1 1 1 VINT <td< td=""><td>Nitrate (mg/l) /Sulphite (mg/l)</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td>·····</td><td></td><td></td><td></td></td<>	Nitrate (mg/l) /Sulphite (mg/l)			1	1	1					·····			
OST SUMMARY/24 HOURS ENDING 24.00 @ DEPTH 974m Product/Package Units Unit Cost Cost CHAL ENV 2 i2.17 j24.34 OPERATIONS SUMMARY CELBOL 2 ID-30 220.00 Number of the stress of the stres														
Product/Package Units Unit Cost Cost Chi Env 2 12.17 124.34 OPERATIONS SUMMARY CELPOL 2 110-20 220-20 Number of the stress of the	K			· 87	- 31	.70					••••••			••••••
Product/Package Units Unit Cost Cost Chi Env 2 12.17 124.34 OPERATIONS SUMMARY CELPOL 2 110-30 220-30 Number of the stress of the	OST SUMMARY/24 HOURS ENDING	3 71.	111 M	DEPTH	() 7 ()	L		•••••			••••••			•••••
CHIL ENV 2 i.2.17 j.24.34 OPERATIONS SUMMARY CELFOL 2 110-30 220-00 Rite WF Tear tools to shoe. CANSTL SODA 1 49-63 Nint on Daylingtt.		<u>- 24</u> .									•••••		•••••	••••••
CELPOL 2 10-20 220-00 Rut with Text tools to show. CANSTIL SOPA 1 44.63 49.63 Name on Daylight. Rut 393.97 Induct DST H2 Barrie Litruition 90H Liquid Additions for 24 Hours (BBL) 1			2						OPERA	IOITA	NS SI	UMMA	RY	
UNSTL SODA 1 UP 63 UP 63 UP 63 393.97 ANA: ANA: ANA: DST P2					1		FUH WF	Test	toils -	to sh	UL_			
393.97 Nut Boxerse Circulato Bay Aur. tots R1H Lay Circul Abort R1H Liquid Additions For 24 Hours (BBL) Circul Abort						49-63	Warr c	m Da	ylight.					
LIQUID ADDITIONS FOR 24 HOURS (BBL)		<u>.</u>			AVA.		1 3			••••••				
Image: Control of the second secon					30	15.91	R .	57 62	·		••••••			••••••
LIQUID ADDITIONS FOR 24 HOURS (BBL)								indu	<i>ww</i>	•••••			••••••	•••••
LIQUID ADDITIONS FOR 24 HOURS (BBL)														
LIQUID ADDITIONS FOR 24 HOURS (BBL)														
LIQUID ADDITIONS FOR 24 HOURS (BBL)									•••••	•••••	•••••		•••••	•••••
														•••••••••••••••••••••••••••••••••••••••
					~ ~~~									
	Diesel Drill Water	Sea Water	Preh	ydrate					•••••	•••••	••••••		•••••	
OFLUIDS ENGINEER ANDRE SKUJINS HOME ADDRESS ADELAIDE TELEPHONE ÜS 795102	······································						N							

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment. THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS will advice or report. ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Diesel	LIQUID AD	DITIONS FOR Sea Wate		(BBL)													
k Usal p 2 Broke	revisionsly by h	ot recorder	<u>ل</u> م:			- \ *		for Loy									
** BARLITE 9 * CAUSTIL SUNA 1			10-38 49-63		-	(3.42 44.63 5.07	liviper Cic	o 987m. Wp to shoe					••••••				
& MUL		ING dien	Units	DEPTH Unit C	1		Cost え・ひみ			0 0.7-7	PER	ATIO	NS SL	JMM	ARY		
																	•••••
K+ (mg/l) Nitrate (mg/l)	/Sulphite (mg/l)			/		/	/										•••••
Methylene B	lue Capacity [] (ml/m	l mud) 🗆 (equi	v. #/bbl bent)					1		••••••							•••••
Oil Content (Water Conte										••••••	•••••				· · · · · · · · · · · · · · · · · · ·		•••••
	nt (% by Vol.)																••••••
Sand Conter		- (····9/1)							•••••	•••••	•••••	•••••		·····			••••••
Chloride (mg Total Hardne] (mg/l)						4		n		- 141141					
Alkalinity, Filt				/	/	/	/			R	RECO	OMM		TION	IS	-	
Alkalinity, ML			· · · · · · · · · · · · · · · · · · ·			(02				~			. <u> </u>	
API HP-HT Fi Cake Thickn	Itrate (ml./30 min.)		нта	<u> </u>		1		SEL S		JE 3x	ts la	2		R.P.M.			BHHP
	(ml./30 min.)											· · · · · ·					
	Strip				Ľ	<u></u>		BY AUTHO	DRITY		erator's ' erator's	Written Represe	ntative	Dri Dth	lling Contra	ctor	
Yield Point (I Gel Strenath	o/100 sq. ft.) (Ib/100 sq.ft.) 10 sec/1	10 min.	ur	1	87	/	/	8-8-1	9.2	10-	- 1 M	L-13	K	10u		93	9-5
Plastic Visco	sity cps at							WEIGH	IT		PV/YP		F	ILTRAT	E		:lA
Funnel Visc	osity (sec./qt) API	at	°C					COST .	P (12		PROF	ERTIE	COST	IFICAT		39 -	25
Mud Gradie	ent (psi/ft)			++				DAUX	-	-07	.	I	CUMU	LATIVE	\$ 21	20	12
Depth Weight 🗆 (S	.G.) 🗆							Degasser Desander		e buy br	 		Shake	r	<u> Bitites</u>	2	4
Time Sample	e Taken						ļ	Centrifuge	-	-		-	Desilte		10x 4		2 4
-	erature		°C	MU	D PRC)PEF	RTIES		SIZ	Έ	Н	ours			SIZE		Hours
Sample from	U €_ □ Flowline	St Pit	1		NATU			<u>y - Cru</u>			<u>.</u>		QUIPME	<u> </u>	ems Total	(10111.)	.
orill Collar Size	<u> </u>	Length	Mud Type	at	i (m		C	N-CML		.U.G R.M.M.	5			Botto	oms Up (N		
rill Pipe Size	44.	TYPEF	Produ	iction or Li	ner	+		In Storage		W.L/Sti	roke	Stro	ke/Min	Circu	ulating sure	11	Ś
it Size	842	No.63	Int	ermediate at	<u> </u>		Total Circ	ulating Volum	ne	Pump I Model	Make	ACT		Opp	osite Colla r		<u>n</u> 3
resent Activity	nt Activity LOG 9518 at 29.9m						Hole	Pits		Pump	Size	λ, ×	It.		ular Vel. (in). VN
	OPERATION	MUNY	T	CASING				JD VOLUME	<u>.</u>						ON DATA	_	
VELL NAME AN	DNO.		121				FIELD OF	NIL NO	T	LOCAT	ION	-	312	STA		Ĺ	
REPORT FOR	VINSCE		TEFANO				REPORT	FOR	BRY	NU I	NIE	HANS	ò				
PERATOR	BEACH PET	ROLEIM					CONTRA	CTOR	ATI	Ω	ACM	I					L
						<u>`</u>				DE	PTH	97	4m	٦	ro q ÿ	lm	
۳]/////				rillin	ng F	-11		lepor		RIC	G NO.	5		8			NOU 8
		Milchem		eofluid								NO.	8	L	DATE	m Ü	5 4 7
/// <i>_</i> _																	

The report is subject to the following terms and conditions: GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto. GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used. GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment. THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report. ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

APPENDIX 4 SIDEWALL CORE DESCRIPTIONS

WRIXONDALE NO. 1

SIDEWALL CORES

<u>S.W.C.</u> <u>No.</u>	Depth (m)	Recovery (mm)	Descriptions
1	980.0	40	<u>Silty Claystone</u> , medium to dark grey, med greenish grey in part, firm to hard, massive, trace micromicaceous, trace very fine carbonaceous detritus, trace fine multi-coloured lithics and quartz sand grains, grading to <u>Siltstone</u> in part.
2	965.0	35	Sandstone, light to medium grey, light greenish grey in part, firm to hard, very fine to fine, subangular to subrounded, moderately to well sorted quartz and multi-coloured lithics including some volcanogenic lithics, common white to light grey clay matrix, slightly dispersive, silty in part, trace to common partially altered feldspar, trace very fine carbonaceous detritus, poor to none visual porosity.
3	955.0	38 .	Silty Claystone, as per S.W.C. No. 1.
4	947.0	30	Sandstone, pale brownish grey, friable, loose in part, very fine to pebble size, dominantly medium to very coarse, subangular to subrounded, dominantly subrounded, poorly sorted quartz, trace to common white to light grey kaolinitic? clay matrix, soft, dispersive, silty in part, trace fine to medium grain multi-coloured lithics, trace very fine carbonaceous material, fair to good visual porosity.
5	941.0	0	No recovery.
6	937.5	35	<u>Siltstone/Sandstone</u> , light brownish grey, light grey in part, firm, massive, common micromica, trace to common light grey clay, trace very fine disseminated and streak of carbonaceous material, trace to common very fine, fine in part, quartz sand grains and minor lithics, grading into very fine <u>Sandstone</u> in part, poor to none visual porosity.

Cont'd.

	<u>S.W.C.</u> <u>No.</u>	Depth (m)	Recovery (mm)	Descriptions
	7	932.0	40	Sandstone, off white to light grey, friable to loose, fine to very coarse, dominantly medium to coarse, subangular to subrounded poor to moderately sorted quartz, trace light grey to white dispersive clay matrix, trace medium grain dark grey to black lithics, good visual porosity.
	8	925.0	45	<u>Claystone</u> , medium brownish grey, firm to hard, blocky, subfissile in part, trace micromica, trace fine multi-coloured lithics, rare carbonaceous detritus.
	9	922.5	25	Sandstone, light to medium brownish grey, friable to loose, fine to coarse, dominantly medium, subangular to subrounded, well sorted quartz, trace light grey, dispersive clay matrix, rare very dark grey to black medium to coarse lithics, very good visual porosity.
,	10	915.5	45	<u>Claystone</u> , light to medium grey, soft to firm, sticky, blocky in part, subfissile in part, slightly calcareous, trace to rare fine quartz grains, trace fine mica flakes, rare fine multi-coloured lithics.
	11	913.0	35	<u>Coal</u> , very dark brownish black to black, firm, subfissile in part, earthy luster, trace - rare silt to very fine quartz sand grains.
	12	910.5	30	<u>Coal</u> , very dark brown to very dark orange brown, firm, hard in part, subfissile to fissile, earthy luster.
	13	898.0	32	Sandstone, as per S.W.C. No. 7.
	14	888.5	34	Sandstone, as per S.W.C. No. 7, Pebble size in part, very good visual porosity.
	15	886.5	40	<u>Sandstone</u> , as per S.W.C. No. 7, very good visual porosity.
	16	882.5	35	Sandstone, as per S.W.C. No. 7

Cont'd.

- 2 -

<u>S.W.C.</u> <u>No.</u>	<u>Depth</u> (m)	Recovery (mm)	Descriptions
17	875.5	40	<u>Claystone</u> , medium grey, medium brownish grey in part, soft to firm, sticky, dispersive in part, subfissile in part, common micromicaceous, rare fine lithics.
18	872.5	40	<u>Coal</u> , very dark brown to black, very dark orange brown in part, firm, subfissile in part, apparently argillaceous (extremely low G - Ray reading), earthy luster.
19	865.0	36	<u>Sandstone</u> , as per S.W.C. No. 7, dom medium to very coarse, very good visual porosity.
20	854.0	52	Sandstone, light to medium grey, firm, hard in part, very fine to coarse, dominantly medium to coarse, subangular to subrounded, poorly sorted quartz, common light grey claystone, extremely silty in part, trace mica, trace medium to dark grey lithics, trace very coarse quartz overgrowth, poor to fair visual porosity.
21	834.0	35	Sandstone, light grey to frosty, light brownish grey in part, loose, friable in part, very fine to very coarse, dominantly fine to coarse, subangular to subrounded, dominantly subrounded, poor to fairly sorted quartz, trace to rare light grey dispersive clay matrix, trace medium to dark grey, medium to coarse grained lithics, rare glauconite, trace frosty, coarse to pebble size, rounded quartz overgrowth, excellent visual porosity.
22	825.0	37	Sandstone, medium brown, medium to dark orange brown, loose to friable, very fine to pebble size, dominantly fine to medium and very coarse to pebble size (bimodal distribution), subangular to rounded, dominantly subrounded, poorly sorted quartz, majority of quartz grains are light to medium brown iron-stained, trace to common medium brown and white kaolinitic clay matrix, very silty in part, trace silica cement in part, trace to common multi-coloured and multi-sourced, medium to pebble size lithics, rare glauconite, pyrite and mica, very rare altered to partially altered feldspar, poor visual porosity.

- 3 -

Cont'd.

<u>s.w.c.</u> <u>No.</u>	Depth (m)	Recovery (mm)	Descriptions
23	815.0	45	Sandstone, medium to dark brownish grey, loose to friable, silt size to pebble size, dominantly very fine to fine and coarse to pebble size (bimodal distribution), subangular to rounded, dominantly subrounded to rounded, very poorly sorted quartz, commonly iron-stained, common medium to dark brown to brownish grey clay matrix, very silty? in part, common multi-coloured and multi-sourced lithics, common fine to medium black coal particles, common dark brown, black and dark grey inclusions in coarse, very coarse, pebble size quartz grains, most of the coarse to pebble size quartz grains are frosty, very poor to poor visual porosity.
24	801.0	40	<u>Sandstone</u> , clear, off-white to frosty (washed sample), medium brown, medium greyish brown in part (unwashed sample), fine to medium, subangular to subrounded, well sorted quartz, trace iron-staining on some quartz grains, common, medium brown, dispersive argillaceous matrix, rare light grey to white clay matrix in part, trace lithics, fair visual porosity.
			The Sandstone has 5 - 10% dull yellow pinpoint fluorescence with no cut or crush cut.
25	795.0	50	<u>Claystone</u> , medium brownish grey, firm, sticky in part, very slightly calcareous. Subfissile in part, trace coal particles, trace carbonaceous detritus and streaks, trace micromica, rare lithics.
26	790.0	50	<u>Claystone</u> , as per S.W.C. No. 25.
27	772.0	50	<u>Claystone</u> , light to medium brownish grey, light greenish grey in part, firm, sticky in part, massive, abundant fine to coarse, very coarse in part, light to medium green glauconite, trace to common cryptocrystalline pyrite, trace to common micromica, trace lithics, rare medium to coarse well rounded quartz grains.
28	768.0	55	<u>Claystone</u> , medium brownish grey, light brownish grey in part, firm, dispersive in part, trace micromica, trace fine multi-coloured lithics, rare fine quartz sand grains, rare glauconite, rare cryptocrystalline pyrite.

- 4 -

Cont'd.

<u>S.W.C.</u> <u>No.</u>	Depth (m)	Recovery (mm)	Descriptions
29	759.0	30	<u>Claystone</u> , light to medium grey, medium brownish grey in part, soft, firm in part, sticky, massive, slightly calcareous, trace multi-coloured lithics, rare micromica, glauconite and fine quartz sand grains, rare crypocrystalline pyrite and broken shell fragments.
30	751.0	40	<u>Claystone</u> , firm, soft in part as per S.W.C. No. 29.

-

•

.

.

•

APPENDIX 5

D.S.T. REPORTS

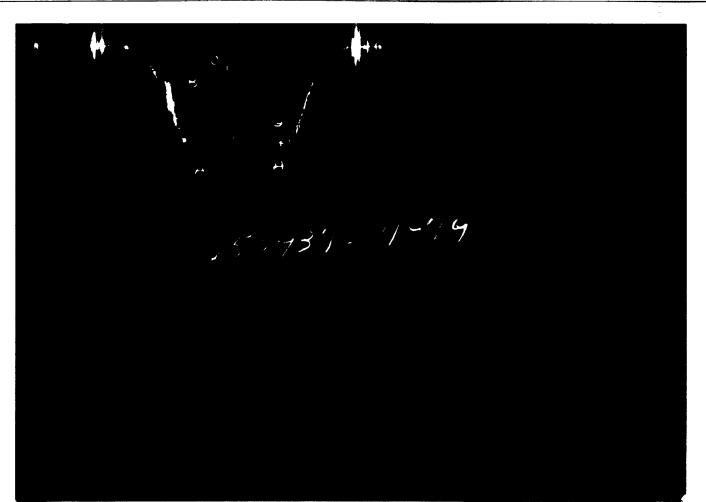
NOMENCLATURE

В	= Formation Volume Factor (Res Vol / Std Vol)
Ct	= System Total Compressibility
DR	= Damage Ratio
h	= Estimated Net Pay Thickness Ft
k	= Permeability md
m {	 (Liquid) Slope Extrapolated Pressure Plot (Gas) Slope Extrapolated m(P) Plot MM psi² cp cycle
m(P*)	= Real Gas Potential at P* MM psi ² cp
m(P _f)	= Real Gas Potential at P _f MM psi ² cp
AOF_1	= Maximum Indicated Absolute Open Flow at Test Conditions MCFD
AOF_2	= Minimum Indicated Absolute Open Flow at Test Conditions MCFD
P*	= Extrapolated Static Pressure Psig
P_f	= Final Flow Pressure Psig
Q	= Liquid Production Rate During Test BPD
Q ₁	= Theoretical Liquid Production w Damage Removed BPD
Q_g	= Measured Gas Production Rate MCFD
r _i	= Approximate Radius of Investigation Ft
r _w	= Radius of Well Bore Ft
S	= Skin Factor
t	= Total Flow Time Previous to Closed-in Minutes
Δt	= Closed-in Time at Data Point Minutes
Т	= Temperature Rankine R
φ	= Porosity
μ	= Viscosity of Gas or Liquid cp
Log	= Common Log

PE906539

This is an enclosure indicator page. The enclosure PE906539 is enclosed within the container PE902366 at this location in this document.

The enclosure PE906539 has the following characteristics: ITEM_BARCODE = PE906539 CONTAINER_BARCODE = PE902366 NAME = DST 1 Photo, 1 of 2 BASIN = GIPPSLAND PERMIT = PEP107 TYPE = WELL SUBTYPE = DSTDESCRIPTION = DST 1 Photo, 1 of 2, Wrixondale-1 REMARKS = $DATE_CREATED = 13/12/85$ DATE_RECEIVED = $W_NO = W919$ WELL_NAME = WRIXONDALE-1 CONTRACTOR = HALLIBURTON ENERGY SERVICES CLIENT_OP_CO = BEACH PETROLEUM NL


(Inserted by DNRE - Vic Govt Mines Dept)

PE906540

This is an enclosure indicator page. The enclosure PE906540 is enclosed within the container PE902366 at this location in this document.

The enclosure PE906540 has the following characteristics: ITEM_BARCODE = PE906540 CONTAINER_BARCODE = PE902366 NAME = DST 1 Photo, 2 of 2 BASIN = GIPPSLAND PERMIT = PEP107 TYPE = WELL SUBTYPE = DSTDESCRIPTION = DST 1 Photo, 2 of 2, Wrixondale-1 REMARKS = $DATE_CREATED = 13/12/85$ DATE_RECEIVED = W_NO = W919 WELL_NAME = WRIXONDALE-1 CONTRACTOR = HALLIBURTON ENERGY SERVICES CLIENT_OP_CO = BEACH PETROLEUM NL

(Inserted by DNRE - Vic Govt Mines Dept)

GAUG	E NO: 7979 DEPTH: 2523.5	BLANK	KED OFF:	NO HOUR	OF CLOCK	: _24
ID	DESCRIPTION	PRE	SSURE CALCULATED	TIM	TYPE	
A	INITIAL HYDROSTATIC	1190	1185.1			
В	INITIAL FIRST FLOW	368	364.4	15.0	15.1	F
С	FINAL FIRST FLOW	368	368.9	10.0	15.1	
С	INITIAL FIRST CLOSED-IN	368	368.9	30.0	28,5	С
D	FINAL FIRST CLOSED-IN	993	1012.0	50.0	20.5	C
E	INITIAL SECOND FLOW	368	371.6	45.0	46.8	F
F	FINAL SECOND FLOW	371	380.1	40.0	40.0	
F	INITIAL SECOND CLOSED-IN	371	380,1	45.0	44.6	С
G	FINAL SECOND CLOSED-IN	993	997.5	45.0	44.0	
Н	FINAL HYDROSTATIC	1174	1183.4			

_

97E

LEGAL LOCATION SEC. - TWP. - RNG.

SEE REMARKS

FIELD

GIPPSLAND

COUNTY

VICTORIA

STATE AUSTRALIA

Б

WRIXONDALE

VELL

NO.

TEST NO.

2546.3 - 2607.0 TESTED INTERVAL

LEASE OWNER/COMPANY NAME

TICKET NO. 25093700 13-DEC-85 SALE

FORMATION TESTING SERVICE REPORT

 $\langle \$

1+ ++++ + C B H 250131- 8818

GAUG	E NO: <u>8818</u> DEPTH: <u>2604.0</u>		KED OFF:Y	<u>es</u> hour	OF CLOCK	: 24
ID	DESCRIPTION	PRE	SSURE CALCULATED	T I REPORTED	ME	TYPE
A	INITIAL HYDROSTATIC	1262	1241.5		01200211120	
В	INITIAL FIRST FLOW	425	434.3			
С	FINAL FIRST FLOW	458	436.3	15.0	15.1	F
С	INITIAL FIRST CLOSED-IN	458	436.3	20.0	00 F	
D	FINAL FIRST CLOSED-IN	1051	1042.7	30.0	28.5	C
E	INITIAL SECOND FLOW	490	489.5		10.0	-
F	FINAL SECOND FLOW	490	479.2	45.0	46.8	F
F	INITIAL SECOND CLOSED-IN	490	479.2		11.0	
G	FINAL SECOND CLOSED-IN	1034	1036.2	45.0	44.6	
н	FINAL HYDROSTATIC	1230	1240.2			

ż.

	EQUIPMENT & HOLE DATA	
	FORMATION TESTED: LA TROBE	TICKET NUMBER: <u>25093700</u>
	NET PAY (ft]:	DATE: 10 10 05 TEOT
	OROSS TESTED FOULAGE: 60.7	DATE: <u>10-16-85</u> TEST NO: <u>1</u>
	ALL DEPTHS MEASURED FROM: KELLY BUSHING	TYPE DST:OPEN HOLE
	CHSING PERFS. (ft):	
	HOLE ON CHOING SIZE $\lfloor \{n\}$: 8.500	HALLIBURTON CAMP:
	ELEVHIION (ft):	SALE
	TOTAL DEPTH (ft): <u>2607.0</u> PACKER DEPTH(S) (ft): <u>2539. 2546</u> FINAL SURFACE CHOKE (tn):	
	PACKER DEPTH(S) (ft): 2539, 2546	TESTER: R. W. BLANTON
	FINAL SURFACE CHOKE (in):	D. IHPLIN
	DUTTUM HULE CHOKE (in): 0.750	V. SANTOSTEFANO
	MUD WEIGHT (lb/gal): 8.90	WITNESS:
	MUD WEIGHT [Ib/gal]: <u>8.90</u> MUD VISCOSITY (sec): <u>42</u> ESTIMATED HOLE TEMP. [°F]:	
	ESTIMATED HOLE TEMP. (°F):	DRILLING CONTRACTOR:
┢	ACTUAL HOLE TEMP. (°F): <u>152</u> @ <u>2603.0</u> ft	ATCO #3
	FLUID PROPERTIES FOR	
	RECOVERED MUD & WATER	SAMPLER DATA
Ì	SOURCE RESISTIVITY CHLORIDES	Psig AT SURFACE:
	6¢F ppm 6¢F ppm	cu.ft. OF GAS:
.	0 ppm 0 Ppm	cc OF OIL:
-		cc OF WATER:
-	6°Fppm	cc OF MUD:
Ŀ	6 °F ppm	TOTAL LIQUID cc:
	HYDROCARBON PROPERTIES	
0	IL GRAVITY (°API): @°F	CUSHION DATA
1 ×	NOVOIL NINIU (CU.II. ner bb/).	TYPE AMOUNT WEIGHT
	AS GRAVITY:	WATER (FEET) 1000.08.40
R	ECOVERED:	
	NO REPORTED RECOVERY	δų
		AL X
		RED R
		MERSURED FROM
		Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.Ξ.
	EMARKS:	
LE	EGAL LOCATION: LAT. 37 DEG., 59', 42.8"S; LO	NG. 147 DEG 201 40 195
C 1		
PF	HARTS INDICATE PLUGGING OF THE ANCHOR PIPE PE RIODS.	ERFORATIONS DURING BOTH FLOW
, L		

nia matalariari di kiana di kimata di kara di s

CHOKE	SURFACE	COC							
SIZE	PRESSURE PSI	GAS RATE MCF	LIQUID RATE BPD	REMARKS					
				MADE UP TOOLS					
				RAN IN HOLE					
				HEAD UP					
				SET PACKERS WITH 30000#					
0	0			OPENED TOOL WITH WEAK BLOW					
				WEAK BLOW					
.50				OPENED TO .50" CHOKE WITH WEAK					
				BLOW					
				VERY WEAK BLOW					
		· · · · ·		CLOSED TOOL					
0	0			OPENED TOOL WITH SLIGHT BLOW					
				SLIGHT BLOW					
				SLIGHT BLOW					
		······		DEAD					
				DEAD					
				DEAD					
				CLOSED TOOL					
				PULLED FREE					
				BROKE DOWN HEAD					
				PULLED OUT OF HOLE					
				BROKE DOWN TEST HEAD					
		· ·		TOOLS OUT OF HOLE					
<u> </u>									
	-								
		· · ·							
· · ·									
	. 50	. 50	.50	.50					

6.3

		NO: 2	2509370 8189 H	OUR: 24	— (н		URTO	N) -	GAUGE NO: DEPTH: 252			
REF		MINUTES	PRESSURE	ΔP	$\frac{\mathbf{t} \times \Delta \mathbf{t}}{\mathbf{t} + \Delta \mathbf{t}}$	log <u>t+∆t</u>	REF	MINUTE	S PRESSURE	ΔΡ	<u>t×∆t</u> t+∆t	log <u>t+∆</u>
			FIRST	FLOW								
B C	1 2	0.0 15.1	364.4 368.9	4.5								
		F	IRST CL	OSED-IN								
C	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 28.5	862.6 897.4 924.4 945.1 959.3 973.9 984.1 994.8 1003.0	212.1 323.6 400.6 457.0 493.7 528.5 555.5 576.2 590.4 605.0 615.2 625.9 634.1 643.1	1.8 3.1 4.3 5.2 6.0 6.7 7.3 7.8 8.2 8.6 8.9 9.3 9.5 9.9	0.925 0.681 0.546 0.460 0.398 0.353 0.317 0.288 0.264 0.243 0.227 0.212 0.199 0.184						
~			SECONE) FLOW								
E F	1 2	0.0 46.8		8.5								
		S	ECOND C	LOSED-II	N							
F	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	39.0 42.0	669.3 756.1 807.4 848.2 979.0 901.3 918.7 934.8 948.7 960.3 969.8 978.9 978.9 985.6 992.5	289.2 376.0 427.3 468.1 498.9 521.2 538.6 554.7 568.6 580.2 589.7 598.8 605.5 612.4 617.4	2.9 5.5 7.8 10.1 12.1 14.0 15.7 17.3 18.8 20.2 21.5 22.7 23.9 25.0 25.9	0.898 0.789 0.710 0.646 0.597 0.554 0.517 0.485 0.458 0.458 0.434 0.412 0.393						

_

TICKET NO. 25093700

		-	0.0.	I.D.	LENGTH	DEPTH
1	h	DRILL PIPE	4.500	3.826	1866.8	
4	T A	FLEX WEIGHT	4.500	2.875	184.4	
3		DRILL COLLARS	6.250	2.875	422.3	
50	Ð	IMPACT REVERSING SUB	6.000	3.000	1.0	2474.0
5		CROSSOVER	6.250	2.875	29.9	
5		CROSSOVER	5.750	2.250	1.0	
5		CROSSOVER	5.000	2.200	1.0	
12	9	DUAL CIP VALVE	5.000	0.870	4.9	
97		SAMPLE CHAMBER	5.000	2.500	4.9	8512.4
33	•	DRAIN VALVE	5.000	2.200	1.0	
60	ð	HYDROSPRING TESTER	5.000	0.750	5.3	2521.4
80		AP RUNNING CASE	5.000	2.250	4.1	2523.5
15		JAR	5.000	1.750	5.0	
16	v	VR SAFETY JOINT	5.000	1.000	2.8	
70		OPEN HOLE PACKER	5.000	1.530	5.8	2538.5
18	0	DISTRIBUTOR VALVE	5.000	1.580	2.0	
70		OPEN HOLE PACKER	5.000	1.530	5.8	2546.3
19		ANCHOR PIPE SAFETY JOINT	5.000	1.500	4.3	
20		FLUSH JOINT ANCHOR	5.000	2.370	5.0	
5		CROSSOVER	6.250	2.250	1.0	
3		DRILL COLLARS	6.250	2.875	30.7	
5		CROSSOVER	6.250	2.250	1.0	
20		FLUSH JOINT ANCHOR	5.000	2.370	13.0	
81	0	BLANKED-OFF RUNNING CASE	5.000		4.1	2604.0

TOTAL DEPTH

2607.0

EQUIPMENT DATA

-

	1.16787	25093700				URTO	\mathbf{N}	<u> </u>	JGE NO:			
CLOCK	NO: 3	0343 H	DUR: 24		AZRVI		ン	DEF	PTH: 26	04.0		
REF	MINUTES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	log <u>t+∆t</u> ∆t	REF	MINU	ITES	PRESSURE	ΔP	<u>t×∆</u> t+∆	$\frac{t}{t}$ log $\frac{t+\Delta}{\Delta t}$
		FIRST	FLOW									
B 1 C 2	0.0 15.1	434. 3 436. 3	2.0									
	F	IRST CL	DSED-IN									
C 1	0.0	436.3										
2	2.0	623.6	187.4	1.8	0.934	:						
3	4.0	729.9	293.6	3.2	0.678							
4 5	6.0 8.0	796.0 849.7	359.7 413.4	4.3 5.2	0.548 0.460							
- 6	10.0	891.5	455.3	6.0	0.399							
7	12.0	924.0	487.7	6.7	0.353							
8	14.0	949.7	513.4	7.3	0.318							
9 10	16.0 18.0	970.0 986.9	533.7 550.6	7.8 8.2	0.288 0.264							
11	20.0	1002.9	566.7	8.6	0.244							
12	22.0	1014.3	578.1	8.9	0.226							
13	24.0	1024.8	588.5	9.3	0.211							
14 D 15	26.0 28.5	1035.0 1042.7	598.7 606.4	9.5 9.9	0.199 0.184							
		SECOND	FLOW									
E 1 F 2	0.0	489.5						-				
F 2	46.8	479.2	-10.3									
	SI	ECOND CL	.OSED-IN									
F 1	0.0	479.2										
~ 2	3.0	706.9	227.6	2.8	1.338							
3 4	6.0 9.0	792.3 845.8	313.1 366.6	5.4 7.9	1.056 0.896							
4 5	12.0	885.5	406.2	10.0	0.789							
6	15.0	915.0	435.8	12.1	0.709							
7	18.0	937.7	458.5	13.9	0.647							
8 9	21.0 24.0	956.1 972.8	476.8 493.6	15.7 17.3	0.596 0.553							
9 10	24.0	986.1	495.0 506.9	18.8	0.517							
11	30.0	997.1	517.9	20.2	0.486							
12	33.0	1006.2	526.9	21.5	0.459							
13 14	36.0 39.0	1015.1 1023.0	535.9 543.7	22.8 23.9	0.434 0.413							
14	42.0	1030.6	551.4	25.0	0.393							
G 16	44.6	1036.2	556.9	25.9	0.378		~					
~						L						

EQUATIONS FOR DST LIQUID WELL ANALYSIS

Transmissibility	$\frac{kh}{\mu} = \frac{162.6 \text{ QB}}{\text{m}}$	md-ft cp
Indicated Flow Capacity	kh = $\frac{kh}{\mu}$ μ	md-ft
Average Effective Permeability	$k = \frac{kh}{h}$	md
Skin Factor	S = 1.151 $\int \frac{P^* - P_f}{m} = LOG\left(\frac{k(t)}{\phi \mu}\right)$	$\left(\frac{60}{c_{1}r_{w}^{2}}\right) + 3.23$
Damage Ratio	$DR = \frac{P^{\bullet} - P_{f}}{P^{\bullet} - P_{f} - 0.87 \text{ mS}}$	
Theoretical Potential w Damage Removed	Q1 - QDR	BPD
Approx. Radius of Investigation	$r_r = 0.032 \sqrt{\frac{k(t/60)}{b\mu c_t}}$	ft

EQUATIONS FOR DST GAS WELL ANALYSIS

Indicated Flow Capacity	$kh = \frac{1637 Q_g T}{m}$	md-ft
Average Effective Permeability	$k = \frac{kh}{h}$	md
Skin Factor	$S = 1.151 \left[\frac{m(P^*) - m(P_f)}{m} - LOG\left(\frac{k(t/60)}{\frac{1}{2}\mu - c_1 r_w^2}\right) + 3.23 \right]$] —
Damage Ratio	$DR = \frac{m(P^*) - m(P_f)}{m(P^*) - m(P_f) - 0.87 \text{ mS}}$	
Indicated Flow Rate (Maximum)	$AOF_1 = \frac{Q_g m(P^*)}{m(P^*) - m(P_f)}$	MCFD
Indicated Flow Rate (Minimum)	$AOF_2 = Q_g \sqrt{\frac{m(P^*)}{m(P^*) - m(P_f)}}$	MCFD
Approx. Radius of Investigation	$r_i = 0.032 \sqrt{\frac{k(t/60)}{\phi\mu c_t}}$	ft

• .

FORMATION TESTING SERVICE REPORT

NOMENCLATURE

В	= Formation Volume Factor (Res Vol Std Vol)
Ct	= System Total Compressibility (Vol Vol) psi
DR	= Damage Ratio
h	= Estimated Net Pay Thickness Ft
k	= Permeability md
m	<pre>{ = (Liquid) Slope Extrapolated Pressure Plot psi cycle (Gas) Slope Extrapolated m(P) Plot MM psi²</pre>
m(P*	^r) = Real Gas Potential at P [*] MM psi ² cp
m(P _f)	MM psi ² cp
AOF	MCFD
AOF ₂	2 = Minimum Indicated Absolute Open Flow at Test Conditions MCFD
P*	= Extrapolated Static Pressure Psig
P _f	= Final Flow Pressure Psig
Q	= Liquid Production Rate During Test BPD
Q ₁	= Theoretical Liquid Production w Damage Removed BPD
Q_g	Measured Gas Production Rate MCFD
r _i	Approximate Radius of Investigation Ft
r _w	= Radius of Well Bore Ft
S	= Skin Factor
t	= Total Flow Time Previous to Closed-in Minutes
Δt	= Closed-in Time at Data Point Minutes
Т	= Temperature Rankine R
φ	= Porosity
μ	= Viscosity of Gas or Liquid cp
Log	= Common Log

PE906541

This is an enclosure indicator page. The enclosure PE906541 is enclosed within the container PE902366 at this location in this document.

	6541 has the following characteristics:
ITEM_BARCODE =	PE906541
CONTAINER_BARCODE =	PE902366
NAME =	DST 2 Photo, 1 of 2
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	DST
DESCRIPTION =	DST 2 Photo, 1 of 2, Wrixondale-1
REMARKS =	
DATE CREATED =	13/12/85
DATE_RECEIVED =	
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	HALLIBURTON ENERGY SERVICES
CLIENT_OP_CO =	BEACH PETROLEUM NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE906542

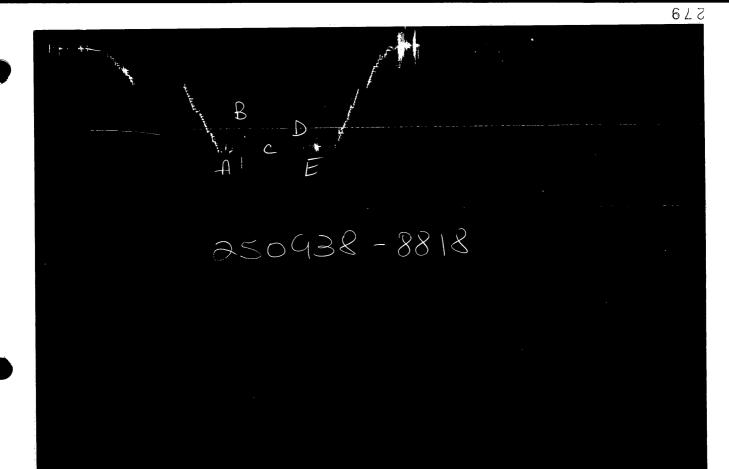
This is an enclosure indicator page. The enclosure PE906542 is enclosed within the container PE902366 at this location in this document. 5

The enclosure PE906542 has the following characteristics: ITEM_BARCODE = PE906542CONTAINER_BARCODE = PE902366 NAME = DST 2 Photo, 2 of 2 BASIN = GIPPSLAND PERMIT = PEP107TYPE = WELLSUBTYPE = DSTDESCRIPTION = DST 2 Photo, 2 of 2, Wrixondale-1 REMARKS = $DATE_CREATED = 13/12/85$ DATE_RECEIVED = W_NO = W919 WELL_NAME = WRIXONDALE-1 CONTRACTOR = HALLIBURTON ENERGY SERVICES CLIENT_OP_CO = BEACH PETROLEUM NL

(Inserted by DNRE - Vic Govt Mines Dept)

+ i		

(GAUG	E NO: <u>7979</u> DEPTH: 2599.2	BLANK	KED OFF:_!	<u>HOUR</u>	OF CLOCK	:24
	ID	DESCRIPTION		SSURE	TI	ME	TYPE
	A	INITIAL HYDROSTATIC	1223	1241.5	REFORTED	CHECOEHIED	
	В	INITIAL FIRST FLOW	534	554.8	60.0	59.4	F
	С	FINAL FIRST FLOW	780	795.7	00.0	55.4	
	С	INITIAL FIRST CLOSED-IN	780	795.7	60.0	60.6	C
	D	FINAL FIRST CLOSED-IN	1108	1113.8	00.0		U
	Ε	FINAL HYDROSTATIC	1223	1211.6			


1.0

TICKET NO. 25093800 13-DEC-85 SALE

FORMATION TESTING SERVICE REPORT

á ...

1

Ĵ,

GAUG	E NO: <u>8818</u> DEPTH: <u>2643.0</u>	BLAN	KED OFF: <u>Y</u>	<u>es</u> hour	OF CLOCK	: 24
ID	DESCRIPTION	PRE	SSURE CALCULATED	T I REPORTED	ME	TYPE
A	INITIAL HYDROSTATIC	1236				
В	INITIAL FIRST FLOW	1067	1087.1	<u> </u>		F
С	FINAL FIRST FLOW	1132	1141.5	60.0	59.4	
С	INITIAL FIRST CLOSED-IN	1132	1141.5	60.0	60.6	C
D	FINAL FIRST CLOSED-IN	1138	1141.5	00.0	00.0	L
E	FINAL HYDROSTATIC	1246	1243,6			

EQUIPMENT & HOLE DATA	TICKET NUMBER: <u>25093800</u>	
FORMATION TESTED: LATROBE NET PAY (ft):	DATE: <u>10-17-85</u> TEST NO: _	
GROSS TESTED FOOTAGE: 24.0 ALL DEPTHS MEASURED FROM: KB	TYPE DST:OPEN HOLE	
CASING PERFS. (ft): HOLE OR CASING SIZE (tn): <u>8.500</u> ELEVATION (ft):	HALLIBURTON CAMP: SALE	
TOTAL DEPTH (ft): <u>2646.0</u> PACKER DEPTH(S) (ft): <u>2614, 2622</u>	TESTER: R.W. BLANTON B. TAPLIN	
FINAL SURFACE CHOKE (in): BOTTOM HOLE CHOKE (in): <u>0.750</u> MUD WEIGHT (lb/gal): <u>8.90</u>	WITNESS:	
MUD VISCOSITY (sec): <u>41</u> ESTIMATED HOLE TEMP. (°F): <u>152</u> ACTUAL HOLE TEMP. (°F): <u>130</u> @ <u>2642.0</u> ft	DRILLING CONTRACTOR: ATCO #3	
RECOVERED: 19 BBLS. OF FORMATION WATER 1000 FEET OF WATER CUSHION		MEASURED FROM TESTER VALVE
REMARKS: CHARTS INDICATE PLUGGING OF THE ANCHOR PIPE THE FLOW PERIOD.	PERFORATIONS DURING	
LEGAL LOCATION: LAT. 37 DEGREES – 59' – 42. LONG. 147 DEGREES – 29' – 4		

- - -

!

÷

TICKET NO. 25093800

		-	Q.D.	I.D.	LENGTH	DEPTH
1		DRILL PIPE	4.500	3.826	1912.5	
4		FLEX WEIGHT	4.500	2.875	184.4	
3		DRILL COLLARS	6.250	2.875	451.5	
0	ð	IMPACT REVERSING SUB	6.000	3.000	1.0	2548.9
		DRILL COLLARS	6.250	2.875	30.7	
		CROSSOVER CROSSOVER	5.750 5.000	2.250 2.500	1.0	
2	Ð	DUAL CIP VALVE	5.000	0.870	4.9	
7		SAMPLE CHAMBER	5.000	2,200	4.9	2587.1
3	0	DRAIN VALVE	5.000	2.500	1.0	
0	D	HYDROSPRING TESTER	5.000	0.750	5.3	2597.1
0		AP RUNNING CASE	5.000	2.250	4.1	2599.2
5		JAR	5.000	1.750	5.0	
5	v	VR SAFETY JOINT	5.000	1.000	2.8	
C		OPEN HOLE PACKER	5.000	1.530	5.8	2614.2
3	0	DISTRIBUTOR VALVE	5.000	1.580	2.0	
0		OPEN HOLE PACKER	5.000	1.530	5.8	2622.0
9		ANCHOR PIPE SAFETY JOINT	5.000	1.500	4.3	
0		FLUSH JOINT ANCHOR	5.000	2.370	14.0	
1	0	BLANKED-OFF RUNNING CASE	5.000		4.1	2643.0

TOTAL DEPTH

•

1 · ·

:

. . 2646.0

EQUIPMENT DATA

			1			++ ^+			1		1 + v A+	1
RE	F	MINUTES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	log <u>t+∆t</u> ∆t	REF	MINUTES	PRESSURE	۵P	<u>t×∆t</u> t+∆t	log
			FIRST	FLOW								
B	1 2 3 4 5 6 7	0.0 10.0 20.0 30.0 40.0 50.0 59.4	554.8 621.1 694.8 738.2 767.4 785.1 795.7	66.4 73.6 43.4 29.2 17.7 10.7								
		F	IRST CL	OSED-IN								
C	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 20.0 30.0 40.0 50.0 60.6	795.7 1110.0 1111.6 1112.8 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.4 1113.8	314.3 315.9 317.0 317.7 317.7 317.7 317.7 317.7 317.7 317.7 317.7 317.7 317.7 317.7 317.7 317.7 318.0	1.0 2.9 3.8 4.6 5.4 6.3 7.0 7.8 8.6 15.0 19.9 23.9 27.1 30.0	1.794 1.481 1.314 1.197 1.108 1.038 0.977 0.926 0.880 0.840 0.599 0.475 0.395 0.340 0.297						

TIC	KE	T NO:	2509380	0	\neg			GF	AUGE NO:	8818		
CLO	СК	NO: 3	0343 H	OUR: 24	」(H	ALLIB	ÜRTO		PTH: 264	13.0		
REF		MINUTES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	log <u>t+∆t</u> ∆t	REF	MINUTES	PRESSURE	ΔP	t×∆t t+∆t	$log \frac{t+\Delta t}{\Delta t}$
			FIRST	FLOW								
В	1 2 3 4 5	0.0 10.0 20.0 30.0 40.0	1087.1 1127.2 1136.0 1138.6 1140.4	40.1 8.8 2.6 1.8								
С	6 7	50.0 59.4	1141.0 1141.5	0.7 0.5								
		F	IRST CL	.OSED-IN								
C D	1 2	0.0 60.6	1141.5 1141.5	0.0	30.0	0.297						
			×									
REM	ĀRK	(S:										

ITE & JI	ZE MEMOUR	ING DEVICE:		1		TICKET ND: 250938
TIME	CHOKE SIZE	SURFACE PRESSURE PSI	GAS RATE MCF	LIQUID RATE BPD	REM	ARKS
10-16-85	••••••••••••••••••••••••••••••••••••••					a na guna da falla da como con a parte da como con con
2350					MADE-UP TOOLS	
10-17-85						
0000	·				RUN IN HOLE	
0445					HEAD UP	
0512					SET PACKERS WITH 25,	000#
0518					OPENED TOOL - STRONG	G BLOW
0520	.50"				OPENED MANIFOLD - DE	CREASING
	· · · · · · · · · · · · · · · · · · ·				TO WEAK BLOW.	
0525	.50"				VERY WEAK BLOW	
528	5/16"				CHANGED TO 5/16" CHO	JKE
0530	11				WEAK BLOW	at de sen en ante de
0540	11				٦	
0545	Π		·····		۳۱	
0548					CLOSED MANIFOLD - IN	ICREASING
					TO STRONG BLOW.	
0550					STRONG BLOW	
0555		1			n	
0600					STRONG BLOW DECREASI	ING
0605					11	
0610					n	
0615					MODERATE BLOW	
618					CLOSED TOOL - WEAK E	BLOW
0718					PULLED FREE	
0725					DROPPED BAR TO REVER	RSE
			· · · · · · · · · · · · · · · · · · ·		CIRCULATE.	
0730			·		ND SIGN	
0735					LAID DOWN HEAD AND F	PULLED 1
	a				STAND.	
0745					RELOADED HEAD AND HE	AD UP
0753					DROPPED BAR	
0755					SHEARED PIN AND BEGF	AN TO
					REVERSE CIRCULATE.	
0820					STOPPED CIRCULATING	AND BREAK
					OUT HEAD.	· · · · ·
830	, ,				PULLED OUT OF HOLE	
1100	- 4		· · · · ·		BREAK DOWN TOOLS	

58J

TYPE & SI	ZE MEASUR	ING DEVICE:	•	6" CERA	MIC CHOKE	
TIME	CHOKE SIZE	SURFACE PRESSURE PSI	GAS RATE MCF	LIQUID RATE BPD	RE	MARKS
1130					TOOLS OUT OF HOLE	analanan di aliku iliku ina ana ana ana ana ana ana ana ana ana
•••••••••••						
						· · · · · · · · · · ·
				***		· · · · · · · · · · · · · · · · · · ·
_						
-						
-						

· •

• _____

.

;

EQUATIONS FOR DST LIQUID WELL ANALYSIS

Transmissibility	$\frac{kh}{\mu} = \frac{162.6 \text{ QB}}{m}$	md-ft cp
Indicated Flow Capacity	$kh = \frac{kh}{\mu} \mu$	md-ft
Average Effective Permeability	$k = \frac{kh}{h}$	md
Skin Factor	$S = 1.151 \left[\frac{P^* - P_f}{m} - LOG\left(\frac{k(t/60)}{\frac{d}{\omega} \mu c_t r_w^2}\right) + \right]$	3.23
Damage Ratio	$DR = \frac{P^* - P_f}{P^* - P_f + 0.87 \text{ mS}}$	
Theoretical Potential w∉Damage Removed	Q ₁ - Q DR	BPD
Approx. Radius of Investigation	$r_{i} = 0.032 \sqrt{\frac{k(t/60)}{d\mu c_{t}}}$	ft

EQUATIONS FOR DST GAS WELL ANALYSIS

Indicated Flow Capacity	kh - <u>1637</u> Q _g T m	md-ft
Average Effective Permeability	k - <mark>kh</mark>	md

Skin Factor
$$S = 1.151 \left[\frac{m(P^*) - m(P_f)}{m} - LOG\left(\frac{k(t/60)}{b \mu c_t r_w^2}\right) + 3.23 \right]$$

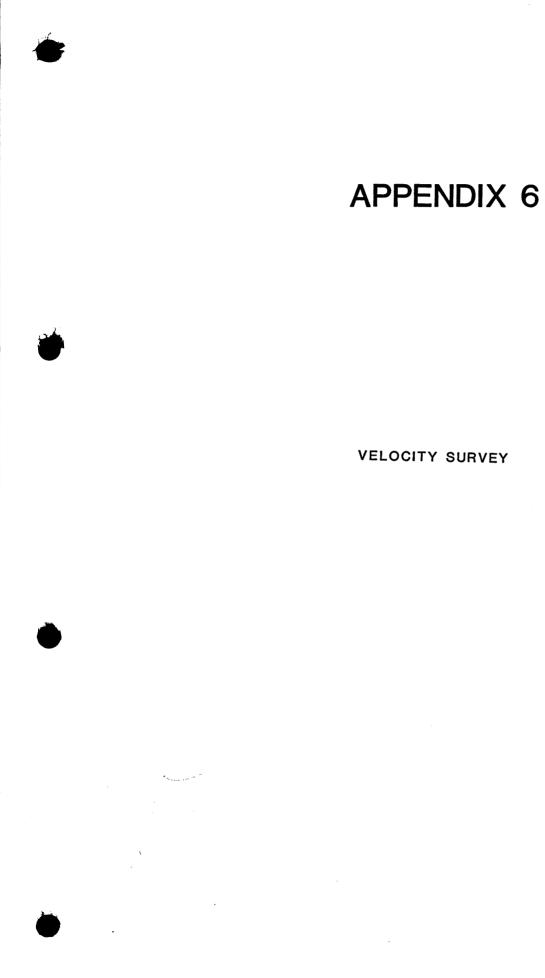
Damage Ratio

$$DR = \frac{m(P^*) - m(P_f) - 0.87 \text{ mS}}{m(P^*) - m(P_f) - 0.87 \text{ mS}}$$

 $m(P^{\star}) - m(P_{f})$

$$AOF_1 = \frac{Q_g m(P^*)}{m(P^*) - m(P_f)} MCFD$$

$$AOF_2 = Q_g \sqrt{\frac{m(P^*)}{m(P^*) - m(P_f)}} MCFD$$


$$r_{i} = 0.032 \sqrt{\frac{\kappa(t/60)}{\phi\mu c_{t}}} \qquad ft$$

Indicated Flow Rate (Minimum)

Indicated Flow

Rate (Maximum)

Approx. Radius of Investigation

Schlumberger

BEACH PETROLEUM N.L. GEOGRAM PROCESSING REPORT

WRIXONDALE - 1

FIELD	•	WILDCAT
COUNTRY	:	AUSTRALIA
COORDINATES	:	037° 59' 42.8" S 147° 29' 48.1" E
PERMIT	:	PEP - 107
DATE OF SURVEY	:	19-OCTOBER-1985
REFERENCE NO.	:	540421

1

CONTENTS

- 1 Introduction
- 2 Data Acquisition
- 3 Check Shot Data
- 4 Sonic Calibration
- 5 Sonic Calibration Processing
- 6 Geogram Processing

Additions

Fig. 1 : Wavelet polarity convention

Fig. 2 : Stacked checkshot data

Fig. 3 : Stacked weathered zone data

Fig. 4 : Weathered zone survey - velocity analysis

Gun geometry sketch

Colour Velocity Profile

ł

1.0 INTRODUCTION

A velocity check shot survey was conducted in the WRIXONDALE - 1 well on 19-October-1985. Twenty two levels from 26.2 metres (SRD) to 965 metres below KB were shot using an airgun source. Seventeen of these levels have been used in the calibration of the sonic log.

The shot times and calibrated sonic times have been corrected to a nominal Mean Sea Level Datum.

2.0 DATA ACQUISITION

 Table 1 : Field Equipment and Survey Parameters

	· · · · · · · · · · · · · · · · · · ·
Elevation SRD	Mean Sea Level
Elevation KB	26.2 metres AMSL
Elevation DF	26.0 metres AMSL
Elevation GL	22.2 metres AMSL
No. of Levels	22
Well Deviation	Nil
Total Depth	987.5 metres below KB
Energy Source	Bolt airgun, 200 cu.in.
Source Offset	40 metres
Source Depth	1.8 metres below GL
Source Azimuth	245°
Reference Sensor	Accelerometer
Sensor Offset	40 metres
Sensor Depth	1.8 metres below GL
Sensor Azimuth	245°
Downhole Geophone	Geospace HS-1
(WST Tool)	High Temp. $(350^{\circ}F)$
	Coil Resist. $225\Omega \pm 10 \%$
	Natural Freq. 8-12 Hz
	Sensitivity 0.45 V/in/sec
	Maximum tilt angle 60°

Recording was made on the Schlumberger Computerized Service Unit (CSU) using LIS format.

2.1 Survey Details

The survey was shot as a standard onshore velocity survey. A weathering survey was conducted near the wellhead in order to esitmate the near surface velocity. No major problems were noted during the survey.

3.0 CHECK SHOT DATA

A total of 22 check levels were shot during the survey. The transit times picked for the levels above 100 metres give unacceptable values for the corresponding interval velocities. The offsetdepth ratio is high and hence because of refraction effects a linear ray path model is not valid.

The first breaks are breaking upwards for the top two shots. An explanation is that the seismic energy has a high horizontal component and the tool is responding predominantly to these components. The data quality of all levels below and including 65 metres is good. No shots above 165 metres have being included in the seismic calibration.

The levels at 185 and 633 were shot going into the well and were repeated coming out. There is good correlation with the repeated shots and all good shots have been included in the final stack. A plot of the stacked check shot data is displayed in figure 2.

Level Depth (m below KB)	Stacked Shots	Rejected Shots	Quality	Comments
26.2	5	0	Poor	Omitted (SRD)
28	6	0 ·	Poor	Omitted
35	2	0	Poor	Omitted
45	4	0	Poor	Omitted
65	10	0	Good	Omitted
105	3	0	Good	Omitted
125	3	0	Good	Omitted
165	3	0	Good	
185	6	0	Good	Shot going down
185	2	1	Good	
405	2	0 ·	Good	
450	7	0	Good	
510	4	0	Good	
633	4	1	Good	Shot going down
633	3	0	Good	
770	8	0	Good	
788.5	3	0	Good	
805	2	0	Good	
865	3	1	Good	
880	3	0	Good	
905	2	0	Good	
930	3	0	Good	
953	6	1	Good	
965	5	1	Good	

Table 2

Eleven shots were recorded on the surface at offsets of 3 metres to 33 metres to estimate the surface velocity (see figures 3 and 4).

4.0 SONIC CALIBRATION

A 'drift' curve is obtained using the sonic log and the vertical check level times. The term 'drift' is defined as the seismic time (from check shots) minus the sonic time (from integration of edited sonic). Commonly the word 'drift' is used to identify the above difference, or to identify the gradient of drift verses increasing depth, or to identify a difference of drift between two levels.

The gradient of drift, that is the slope of the drift curve, can be negative or positive.

For a negative drift $\frac{\Delta drift}{\Delta depth} < 0$, the sonic time is greater than the seismic time over a certain section of the log.

For a positive drift $\frac{\Delta drift}{\Delta depth} > 0$, the sonic time is less than the seismic time over a certain section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic or an indication of the amount of correction required on the sonic to have the TTI of the corrected sonic match the check shot times.

Two methods of correction to the sonic log are used.

1. Uniform or block shift This method applies a uniform correction to all the sonic values over the interval. This uniform correction is applied in the case of positive drift and is the average correction represented by the drift curve gradient

expressed in $\mu sec/ft$.

2. ΔT Minimum In the case of negative drift a second method is used, called Δt minimum. This applies a differential correction to the sonic log, where it is assumed that the greatest amount of transit time error is caused by the lower velocity sections of the log. Over a given interval the method will correct only Δt values which are higher than a threshold, the Δt_{min} . Values of Δt which are lower than the threshold are not corrected. The correction is a reduction of the excess of Δt over Δt_{min} , $\Delta t - \Delta t_{min}$.

 $\Delta t - \Delta t_{min}$ is reduced through multiplication by a reduction coefficient which remains constant over the interval. This reduction coefficient, named G, can be be defined as:

$$G = 1 + rac{drift}{\int (\Delta t - \Delta t_{min}) dZ}$$

Where drift is the drift over the interval to be corrected and the value $\int (\Delta t - \Delta t_{min}) dZ$ is the time difference between the integrals of the two curves Δt and Δt_{min} , only over the intervals where $\Delta t > \Delta t_{min}$.

Hence the corrected sonic: $\Delta t = G(\Delta t - \Delta t_{min}) + \Delta t_{min}$.

5.0 SONIC CALIBRATION PROCESSING

5.1 Open Hole Logs

Both the sonic and density logs used have been edited prior to input into the WSC chain. The log quality was generally good. An anomalous peak in the density log at 912 metres has been removed.

Density log interval:300 to 987 metres below KBSonic log interval:300 to 987 metres below KB

5.2 Weathered Zone Survey

A weathered zone survey was run near the wellhead using the airgun and a surface geophone placed at offsets of 3 to 33 metres from the gun. Results from this survey are displayed at figures 3 and 4 and indicate a near surface velocity of 660 metres/sec.

A shot was recorded in the well at SRD with a transit time of 55 millisecs. Using a direct raypath length of 44.9 metres from gun to geophone a velocity of 816 metres/sec can be calculated. A linear raypath model, however, is not valid in the surface layers at high angles of incidence. The seismic energy may be refracted through deeper higher velocity layers to arrive at the downhole geophone earlier than the direct ray. Subsequently, this shot has not been used to determine the surface velocity.

5.3 Correction to Datum

Seismic Reference Datum (SRD) is at Mean Sea Level. The airgun was positioned 1.8 metres below GL. The transit time of the shot at SRD (26.2 metres) has not been used and a value of 68 millisecs has been calculated by assuming a surface velocity of 660 metres/sec.

The final transit times are the vertical transit times to SRD and are corrected for source offset.

5.4 Imposed Shots

Two imposed shots were used in addition to the checkshot data to calibrate the sonic log.

- 1. SRD : depth 26.2 below KB, surface velocity 660 metres/sec
- 2. Top sonic : depth 300 metres below KB. The velocities above and below this level were chosen to maintain a linear sonic drift curve from this level down to lower check levels.

5.5 Sonic Calibration Results

The top of the sonic log (300 metres below KB) is chosen as the origin for the calibration drift curve. The drift curve indicates a number of corrections to be made to the sonic log. A list of shifts used on the sonic data is given below.

Depth Interval (m below KB)	Block Shift µsec/ft	Δt_{min} $\mu sec/ft$	Equiv Block Shift µsec/ft	
300-490	5.61	-	5.61	
490-660	7.57	-	7.57	
660-799	3.68	-	3.68	
799-990	0.08	-	0.08	

The adjusted sonic curve is considered to be the best result using the available data.

6.0 GEOGRAM PROCESSING

GEOGRAMS were generated using 50 and 100 herts ricker wavelets. A time variant butterworth filter with the following parameters has been applied after convolution.

0-500 msec	22,28 - 95,105 hertz
500-1000 msec	18,24 - 95,105 hertz
1000-3000 msec	18,24 - 95,105 hertz

The GEOGRAM processing produces synthetic seismic traces based on reflection coefficients generated from sonic and density measurements in the well-bore. The steps in the processing chain are the following:

Time to depth conversion Generate reflection coefficients Generate attenuation coefficients Choose a suitable wavelet Convolution Output.

6.1 Time to Depth Conversion

(

Open hole logs are recorded from the bottom to top with a depth index. This data is converted to a two-way time index and flipped to read from the top to bottom in order to match the seismic section.

6.2 Primary Reflection Coefficients

Sonic and density data are averaged over chosen time intervals (normally 2 or 4 millisecs). Reflection coefficients are then computed using:

$$R = \frac{\rho_2 . \nu_2 - \rho_1 . \nu_1}{\rho_2 . \nu_2 + \rho_1 . \nu_1}$$

where

- ρ_1 = density of the layer above the reflection interface
- ρ_2 = density of the layer below the reflection interface
- $\nu_1 =$ compressional wave velocity of the layer above the reflection interface
- $\nu_2 = \text{compressional wave velocity of the layer below}$ the reflection interface

This computation is done for each time interval to generate a set of primary reflection coefficients without transmission losses.

6.3 Primaries with Transmission Loss

Transmission loss on two-way attenuation coefficients are computed using:

$$A_n = (1 - R_1^2) \cdot (1 - R_2^2) \cdot (1 - R_3^2) \cdot (1 - R_n^2)$$

A set of primary reflection coefficients with transmission loss is generated using:

$$Primary_n = R_n A_{n-1}$$

6.4 Primaries plus Multiples

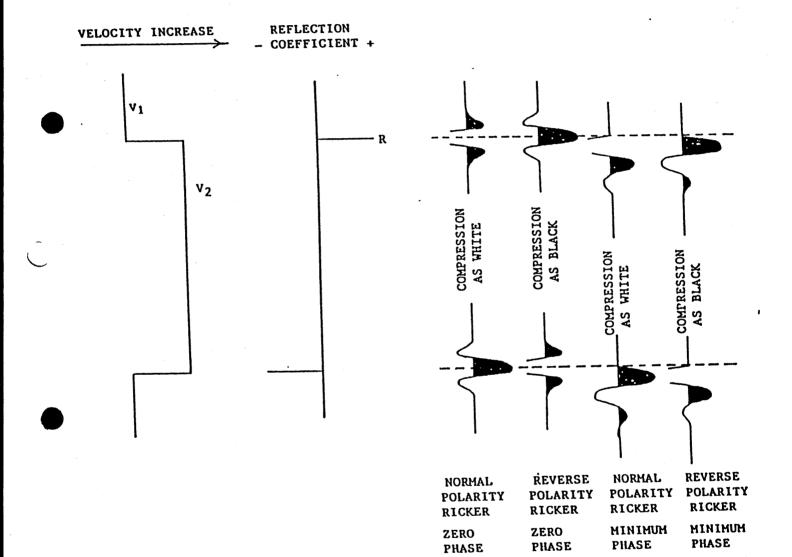
Multiples are computed from these input reflection coefficients using the transform technique from the top of the well to obtain the impulse response of the earth. The transform outputs primaries plus multiples.

6.5 Multiples Only

By subtracting previously calculated primaries from the above result we obtain multiples only.

6.6 Wavelet

A theoretical wavelet is chosen to use for convolution with the reflection coefficients previously generated. Choices available include:

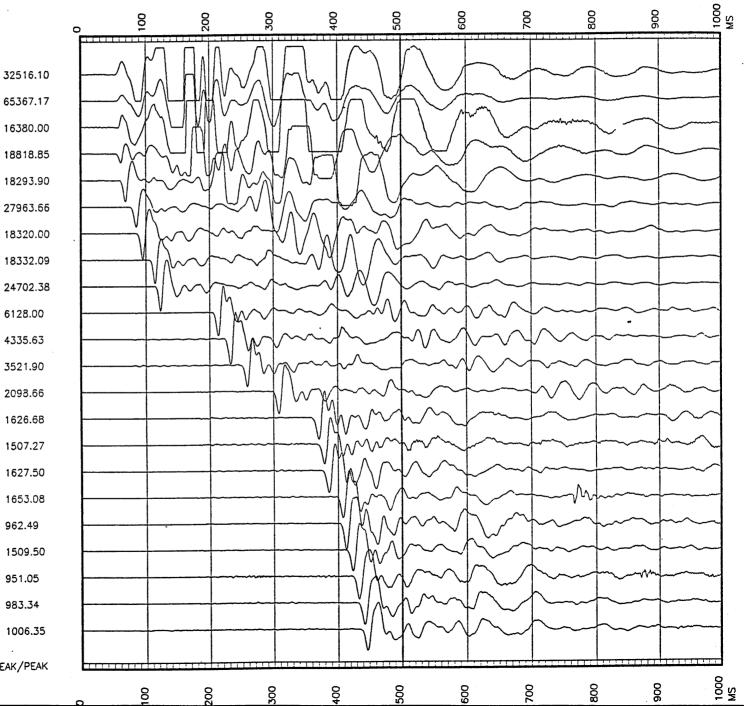

Klauder wavelet Ricker zero phase wavelet Ricker minimum phase wavelet User defined wavelet.

All wavelets can be chosen with or without butterworth filtering and with user defined centre frequencies. Polarity conventions are shown in Figure 1. These GEOGRAMS were generated using zero and minimum phase ricker wavelets followed by a butterworth filter.

6.7 Convolution

Standard procedure of convolution of wavelet with reflection coefficients. The output is the synthetic seismogram.

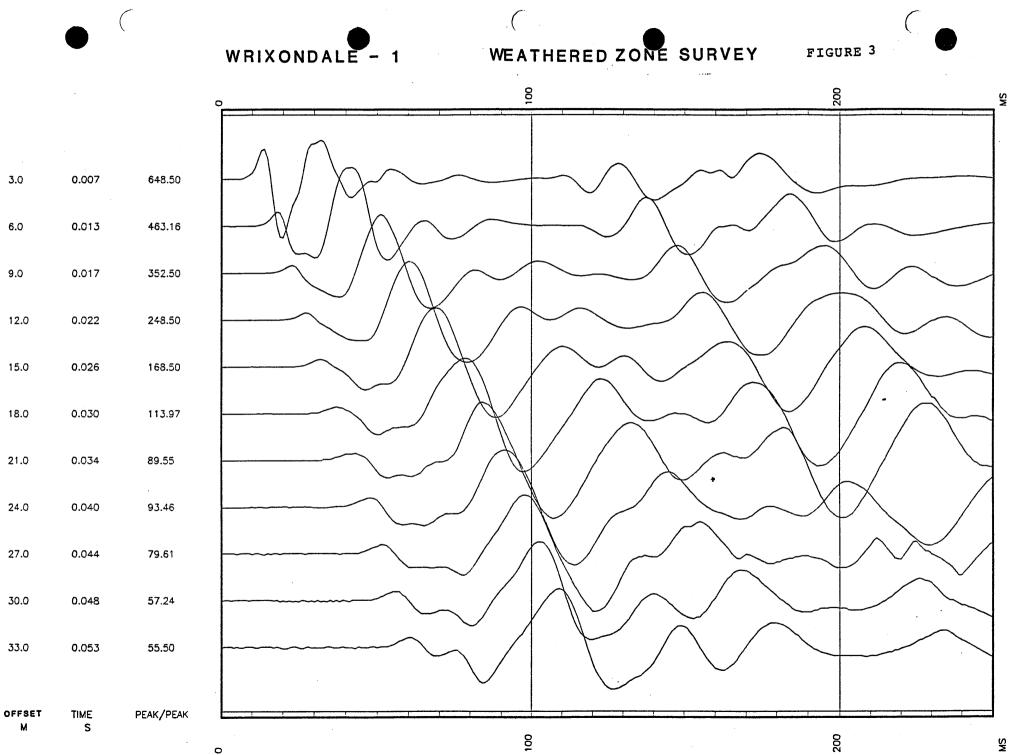
SCHLUMBERGER WAVELET POLARITY CONVENTION



NOTE: WAVELET DISPLAYED UNDER GEOGRAMS ARE FOR A REFLECTION COEFFICIENT OF -0.5

WRIXONDALE - 1

STACKED CHECKSHOT DATA


FIGURE 2

25 26.2 0.055 23 28.0 0.056 65367.17 0.058 16380.00 20 35.0 45.0 0.055 18818.85 19 18293.90 0.062 18 65.0 17 105.0 0.078 27963.66 18320.00 125.0 880.0 16 18332.09 15 165.0 0.108 24702.38 14 185.0 0.117 0.207 6128.00 13 405.0 0.225 4335.63 450.0 12 3521.90 0.252 11 510.0 633.0 0.302 2098.66 10 1626.68 · 770.0 0.363 9 1507.27 8 788.5 0.371 1627.50 7 805.0 0.378 1653.08 6 865.0 0.401 962.49 880.0 0.406 5 1509.50 905.0 0.416 4 3 930.0 0.426 951.05 983.34 953.0 0.435 2 1006.35 965.0 0.439 1 PEAK/PEAK TIME LEVEL DEPTH

s

М.

WEATHERED ZONE SURVEY WRIXONDALE - 1 Velocity Analysis

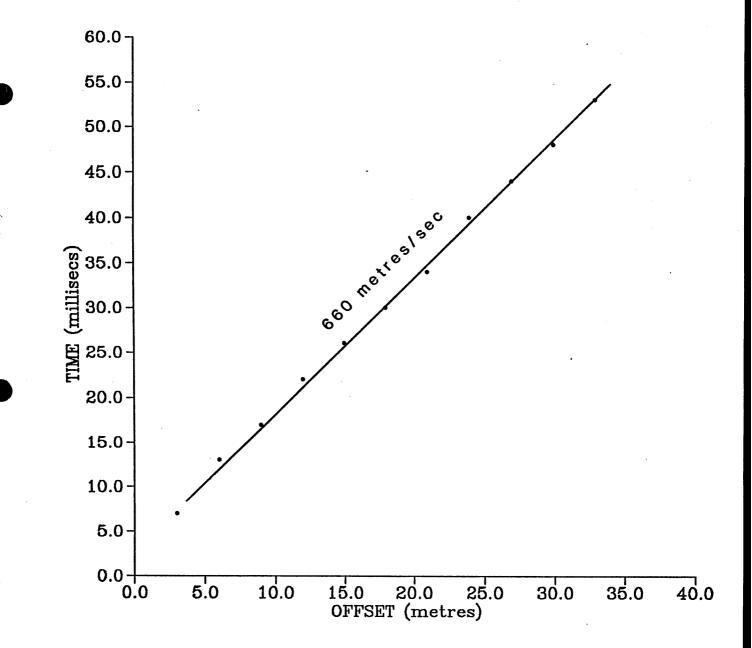
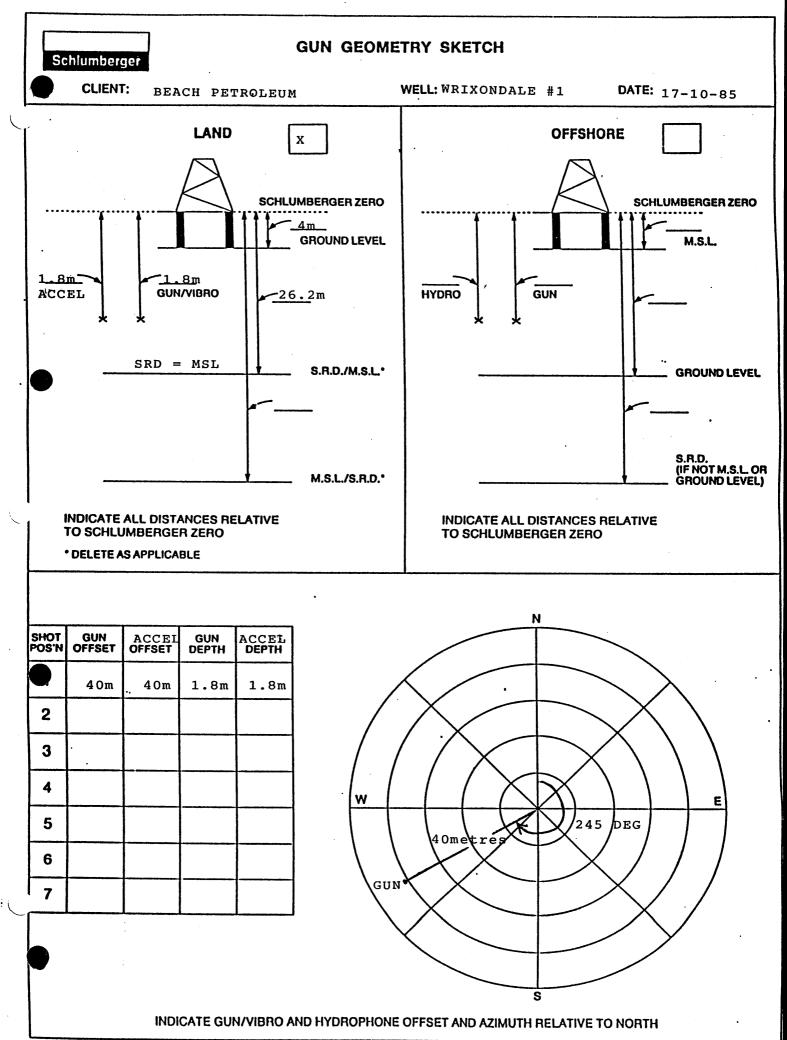



FIGURE 4

. .

***	********	***
×		*
*		*
*		*
***	*****	***
×		*
*	SCHLUMBERGER	*
*	ooneon benden	*
***	*****	***

GEOPHYSICAL AIRGUN REPORT

COMPANY	: BEA	CH PETROLEUN	1 N.L.
WELL	: WRI	XONDALE - 1	
FIELD	: WIL	DCAT	
PERMIT	: PEP	-1Ø7	
STATE	: VIC	TORIA	•
COUNTRY	: AUS	TRALIA	
REFERENC	: 54Ø	,421	

.

PAGE	1
------	---

LONG DEFINITIONS
GLOBAL B - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL SRD - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL EKB - Elevation of Kelly Bushing GL - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD VELHYD - VELOCITY OF THE MEDIUM BETWEEN THE SOURCE AND THE HYDROPHONE VELSUR - VELOCITY OF THE MEDIUM BETWEEN THE SOURCE AND THE SRD
MATRIX GUNELZ - SOURCE ELEVATION ABOVE SRD (ONE FOR THE WHOLE JOB; OR ONE PER SHOT) GUNEWZ - SOURCE DISTANCE FROM THE BOREHOLE AXIS IN EW DIRECTION (CF. GUNELZ) GUNNSZ - SOURCE DISTANCE FROM THE BOREHOLE AXIS IN NS DIRECTION (CF. GUNELZ) HYDELZ - HYDROPHONE ELEVATION ABOVE SRD (CF. GUNELZ) HYDEWZ - HYDROPHONE DISTANCE FROM THE BOREH AXIS IN EW DIRECTION (CF GUNELZ) HYDNSZ - HYDROPHONE DISTANCE FROM THE BOREH AXIS IN NS DIRECTION (CF GUNELZ) HYDNSZ - HYDROPHONE DISTANCE FROM THE BOREH AXIS IN NS DIRECTION (CF GUNELZ) TRTHYD - TRAVEL TIME FROM THE HYDROPHONE TO THE SOURCE TRTSRD - TRAVEL TIME FROM THE SOURCE TO THE SRD DEVWEL - DEVIATED WELL DATA PER SHOT : MEAS. DEPTH, VERT. DEPTH, EW, NS
SAMPLED SHOT.GSH - Shot number - MEASURED DEPTH FROM KELLY-BUSHING DSN.GSH - Depth from SRD DGL.GSH - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE) TIMO.GSH - VERTICAL TAVEL TIME FROM HYDROPHONE TO GEOPHONE TIMV.GSH - VERTICAL TRAVEL TIME FROM THE SOURCE TO THE GEOPHONE SHTM.GSH - VERTICAL TRAVEL TIME FROM THE SOURCE TO THE GEOPHONE SHTM.GSH - Shot time (WST) AVGV.GSH - Average seismic velocity DELZ.GSH - DEPTH INTERVAL BETWEEN SUCCESSIVE SHOTS DELT.GSH - TRAVEL TIME INTERVAL BETWEEN SUCCESSIVE SHOTS INTV.GSH - Internal velocity, average
(GLOBAL PARAMETERS) (VALUE)

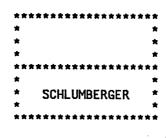
ELEV OF KB AB. MSL (WST)	KB	:	26.2000	М
ELEV OF SRD AB. MSL(WST)	SRD	:	ø	M
Elevation of Kelly Bushi	EKB	:	26.2000	M
ELEV OF GL AB. SRD(WST)	GL	:	22.2000	M
VEL SOURCE-HYDRO(WST)	VELHYD	:	1500.00	M/S
VEL SOURCE-SRD (WST)	VELSUR	:	66Ø.319	M/S

(MATRIX PARAMETERS)

COMPANY : BEACH PETROLEUM N.L. WELL

PΑ	GE	

	SOURCE ELV	SOURCE EW	SOURCE NS M	HYDRO ELEV , M	HYDRO EW M	HYDRO NS M
1	20.40	-36.25	-16.9Ø	20.40	-36.25	-16.90
	TRT HYD-SC MS	TRT SC- MS	SRD			
1	Ø	-30	.89			
	MD @ KB M	VD @ KB V M	D @ SRD E-W CO M M	DORD N-S COORD M		
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	26.20 165.00 185.00 300.00 405.00 633.00 770.00 788.50 805.00 805.00 880.00 905.00 930.00 953.00	185.00 1 300.00 2 405.00 3 450.00 4 510.00 4 633.00 6 770.00 7 788.50 7 805.00 7 865.00 8 880.00 8 905.00 8 930.00 9	Ø 38.80 58.80 73.80 78.80 23.80 83.80 06.80 43.80 62.30 78.80 53.80 78.80 93.80 26.80 38.80	Ø Ø Ø Ø		


COMPANY : BEACH PETROLEUM N.L.

•

: WRIXONDALE - 1

	MEASUR DEPTH FROM KB M	VERTIC DEPTH FROM SRD M	VERTIC DEPTH FROM GL M	OBSERV TRAVEL TIME HYD/GEO MS	VERTIC TRAVEL TIME SRC/GEO MS,	VERTIC TRAVEL TIME SRD/GEO MS	AVERAGE VELOC SRD/GEO M/S	DELTA DEPTH BETWEEN SHOTS M	DELTA TIME BETWEEN SHOTS MS	INTERV VELOC BETWEEN SHOTS M/S
1	26.2Ø	Ø	22.20	68.ØØ	30.89	Ø				
2	165.ØØ	138.80	161.00	108.00	104.74	73.85	1879	138.8Ø	73.85	1879
3	185.ØØ	158.8Ø	181.00	117.00	114.19	83.3Ø	19Ø6	20.00	9.45	2117
4	300.00	273.80	296.ØØ	163.7Ø	162.21	131.31	2Ø85	115.00	48.Ø2	2395
· 5	405.00	378.80	401.00	207.00	205.97	175.Ø7	2164	105.00	43.76	2399
6	450.00	423.8Ø	446.00	225.00	224.Ø9	193.2Ø	2194	45.00	18.12	2483
7	510.00	483.8Ø	506.00	252.00	251.21	220.32	2196	60.00	27.12	2213
8	633.00	6Ø6.8Ø	629.00	302.00	3Ø1.39	270.49	2243	123.00	50.18	2451
9	770.00	743.80	766.00	363.00	362.50	331.61	2243	137.00	61.12	2242
10	788.5Ø	762.30	784.5Ø	371.00	370.52	339.62	2245	18.50	8.Ø1	23Ø9
11	805.00	778.80	801.00	378.00	377.53	346.63	2240	16.5Ø	7.Ø1	2353
12	865.00	838.80	861.00	401.00	400.57	369.67		60.00	23.Ø4	26Ø4
13	880.00	853.8Ø	876.00	406.00			2269	15.00	5.Ø1	2994
14	905.00	878.8Ø	901.00		405.58	374.68	2279	25.ØØ	10.01	2497
- 1 4 - 15	930.00	903.80		416.00	415.59	384.69	2284	25.ØØ	10.01	2497
			926.00	426.00	425.60	394.71	229Ø	23.ØØ	9.Ø1	2552
16	953.00	926.8Ø	949.00	435.00	434.61	4Ø3.72	2296	12.00	4.Ø1	2995
17	965.00	938.8Ø	961.00	439.00	438.62	407.72	23Ø3			

WELL

DRIFT COMPUTATION REPORT

COMPANY :	BEACH PETROLEUM N.L.
WELL :	WRIXONDALE - 1
FIELD :	WILDCAT
PERMIT :	PEP-107
STATE :	VICTORIA
COUNTRY :	AUSTRALIA
REFERENCE:	54Ø,421

COMPANY : BEACH PETROLEUM N.L.

LONG DEFINITIONS

GLOBAL .В - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL SRD EKB - Elevation of Kelly Bushing GL - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD XSTART - TOP OF ZONE PROCESSED BY WST XSTOP - BOTTOM OF ZONE PROCESSED BY WST GADØØ1 - RAW SONIC CHANNEL NAME USED FOR WST SONIC ADJUSTMENT UNFDEN - UNIFORM DENSITY VALUE ZONE LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; Ø=UNIFORM; 1=UNIFORM+LAYER LAYDEN - USER SUPPLIED DENSITY DATA SAMPLED SHOT - Shot number - MEASURED DEPTH FROM KELLY-BUSHING DKB DSRD - Depth from SRD - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE) DGL - Shot time (WST) - Raw Sonic (WST) - DRIFT AT SHOT OR KNEE - BLOCK SHIFT BETWEEN SHOTS OR KNEE SHTM RAWS Sh Bľ (GLOBAL PARAMETERS) (VALUE) ELEV OF KB AB. MSL (WST) KB : 26.2000 M ELEV OF SRD AB. MSL(WST) SRD ELEV UF SKU AB. FISL(#317 Elevation of Kelly Bushi ELEV OF GL AB. SRD(WST) TOP OF ZONE PROCD (WST) OT OF ZONE PROCD (WST) 1 а M EKB 1 26.2000 Μ GL 22.2000 . Μ XSTART ø Μ 1 XSTOP 1 Ø Μ RAW SONIC CH NAME (WST) GADØØ1 : DT.ØØ3.FUN.FLP.* UNIFORM DENSITY VALUE UNFDEN 2.30000 G/C3 : (ZONED PARAMETERS) (VALUE) (LIMITS) LAYER OPTION FLAG DENS LOFDEN : 1.000000 3Ø479.7 Ø

:-999.25ØØ G/C3

3Ø479.7

-

Ø

USER SUPPLIED DENSITY DA LAYDEN

PAGE

COMPANY : BEACH PETROLEUM N.L. WELL : WRIXONDALE - 1

EVEL MBER	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FROM SRD M	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEO MS	INTEGRATED RAW SONIC TIME MS	COMPUTED DRIFT AT LEVEL MS	COMPUTED BLK-SHFT Correction US/F
1	26.20	Ø	22.20	ø	ø	Ø	Ø
2	165.ØØ	138.8Ø	161.00	73.85	73.85	Ø	Ø
3	185.00	158.8Ø	181.00	83.3Ø	83.3Ø	Ø	Ø
4	300.00	273.8Ø	296.00	131.31	131.31	Ø	Ø
5	405.00	378.80	401.00	175.Ø7	173.31	1.76	5.12
6	450.00	423 . 8Ø	446.00	193.20	191.77	1.43	-2.29
7	510.00	483 . 8Ø	506.00	220.32	215.82	4.49	15.59
8	633.00	606.80	629.00	270.49	263.Ø6	7.44	7.29
9	770.00	743.8Ø	766.00	331.61	323.67	7.94	1.11
1Ø	788.50	762.30	784.50	339.62	330.84	8.79	13.98
11	805.00	778.8Ø	801.00	346.63	337.61	9.Ø3	4.45
12	865.00	838.80	861.00	369.67	359.73	9.94	4.63
13	880.00	853.8Ø	876.00	374.68	365.97	8.71	-24.98
14	905.00	878.8Ø	901.00	384.69	375.18	9.51	9.77
 15	930.00	903.80	926.00	394.71	385.49	· 9.22	-3.56
16	953.00	926 . 8Ø	949.00	4Ø3.72	393.83	9.89	8.92
17	965.00	938 . 8Ø	961.ØØ	407.72	398.33	9.40	-12.53
18	989.99	963.79	985.99	415.9Ø	406.50	9.40	Ø

 \subseteq

SONIC ADJUSTMENT PARAMETER REPORT

COMPANY	:	BEACH PETROLEUM N.L.
WELL	:	WRIXONDALE - 1
FIELD	:	WILDCAT .
PERMIT	:	PEP-1Ø7
STATE	:	VICTORIA
COUNTRY	:	AUSTRALIA
REFERENCE	:	54Ø,421

PAGE	1
	-

LONG DEFINITIONS

•

GLOBAL SRCDRF - ORIGIN OF ADJUS CONADJ - CONSTANT ADJUSTI UNERTH - UNIFORM EARTH VI	MENT TO AUTOMATI	C DELTA-T MININ)	1UM = 7.6 US/F			
ZONE ZDRIFT - USER DRIFT AT BU ADJOPZ - TYPE OF ADJUSTM ADJUSZ - DELTA-T MINIMUM LOFVEL - LAYER OPTION FLA LAYVEL - USER SUPPLIED VI	NENT IN THE DRIF USED FOR ADJUST AG FOR VELOCITY:	TZONE : Ø=DELT MENT IN THE DRI	FT ZONE			
SAMPLED SHOT - Shot number VDKB - VERTICAL DEPTH RELATIVE TO KB DSRD - Depth from SRD DGL - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE) KNEE - Knee BLSH - BLOCK SHIFT BETWEEN SHOTS OR KNEE DTMI - VALUE OF DELTA-T MINIMUM USED COF - DELTA-T MIN COEFFICIENT USED IN THE DRIFT ZONE - GRADIENT OF DRIFT CURVE						
(GLOBAL PARAMETERS)		(VALUE)				
ORIG OF ADJ DATA (WST) CONS SONIC ADJST (WST) UNIFORM EARTH VELOCITY	CONADJ :	2.00000 7.50000 US/F 2133.60 M/S				
(ZONED PARAMETERS)		(VALUE)	(LIMITS)			
USER DRIFT ZONE (WST)	9 7	.450000 MS .400000 .720000 .500000 Ø	990.000 - 799.000 799.000 660.000 660.000 490.000 490.000 300.000 300.000 0			
ADJUSMNT MODE (WST) USER DELTA-T MIN (WST) LAYER OPTION FLAG VELOC USER VELOC (WST)	ADJUSZ :-9 LOFVEL : 1 LAYVEL : 2 2	99.2500 99.2500 US/F .000000 395.000 M/S 117.000 879.000	3Ø479.7 - Ø 3Ø479.7 - Ø 3Ø479.7 - Ø 3Ø0.000 - 185.000 185.000 165.000 165.000 26.2000			

COMPANY : BEACH PETROLEUM N.L.

: WRIXONDALE - 1

PAGE 2

KNEE NUMBER		VERTICAL DEPTH FROM KB M	VERTICAL DEPTH FROM SRD M	VERTICAL DEPTH FROM GL M	DRIFT AT KNEE MS	BLOCKSHIFT USED US/F	DELTA-T MINIMUM USED US/F	REDUCTION EQUIVALENT FACTOR G BLOCKSHIFT US/F
						Ø		Ø
	2	300.00	273 . 8Ø	296.00	ø	5.61		5.61
	3	490.00	463.8Ø	486.ØØ	3.50	ľ		
	4	660.00	633.8Ø	656.00	7.72	7.67		7.57
	-					3.68		3.68
	5	799.ØØ	772.8Ø	795.00	9.40	.Ø8		.Ø8
	6	990.00	963 . 8Ø	986.ØØ	9.45			

WELL

ANALYST: M. SANDERS

SCHLUMBERGER ******** * ÷

VELOCITY REPORT

COMPANY :	BEACH PETROLEUM N.	L.
WELL :	WRIXONDALE - 1	
FIELD :	WILDCAT	
PERMIT :	PEP-1Ø7	
STATE :	VICTORIA	
COUNTRY :	AUSTRALIA	
REFERENCE :	540,421	

COMPANY : BEACH PETROLEUM N.L.

PAGE 3

LONG DEFINITIONS

.

SRD - EKB - GL -	GLOBAL ELEVATION OF THE ELEVATION OF THE Elevation of Ke ELEVATION OF USE UNIFORM EARTH VE	E SEISMIC REF 11y Bushing ER'S REFERENC	ERENCE DATU	M ABOVE	E MSL OR N	
LOFVEL - LAYVEL -	ZONE LAYER OPTION FLA USER SUPPLIED VE	AG FOR VELOCI ELOCITY DATA	TY: -1=NONE	;Ø=UN]	IFORM; 1=L	JNIFORM+LAYER
DKB - DSRD - DGL - SHTM - ADJS - SHDR - REST -	SAMPLED Shot number MEASURED DEPTH F Depth from SRD VERTICAL DEPTH F Shot time (WST) ADJUSTED SONIC DRIFT AT SHOT OF RESIDUAL TRAVEL Internal velocit	RELATIVE TO G IRAVEL TIME R KNEE TIME AT KNEE	GROUND LEVEL	(USER)	'S REFEREN	NCE)
(GLOBA	L PARAMETERS)		(VALUE)			
ELEV OF Elevatio ELEV OF	KB AB. MSL (WST) SRD AB. MSL(WST) n of Kelly Bushi GL AB. SRD(WST) EARTH VELOCITY	SRD	26.2000 2000 26.2000 22.2000 2133.60	M M M M/S	·	
C (ZONED	PARAMETERS)		(VALUE)		(L)	IMITS)
	TION FLAG VELOC OC (WST)	LOFVEL LAYVEL	: 1.000000 : 2395.000 2117.000 1879.000	M/S	30479.7 300.000 185.000 165.000	- 185.000

COMPANY : BEACH PETROLEUM N.L. WELL

•

WELL : WRIXONDALE - 1

PAGE

_	•
	EVEL
NH IN	
NUN	1BER

ER	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FROM SRD M	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEOPH MS,	INTEGRATED ADJUSTED SONIC TIME MS	DRIFT SHOT TIME - RAW SON MS	RESIDUAL SHOT TIME - ADJ SON MS	ADJUSTED INTERVAL VELOCITY M/S
1	26.20	Ø	22.20	Ø	Ø	Ø	ø	188Ø
2	165.00	138.8Ø	161.00	73.85	73.84	Ø	.Ø1	2119
3	185.00	158 . 8Ø	181.00	83 . 3Ø	83.28	ø	, . Ø2	2395
4	300.00	273.8Ø	296.00	131.31	131.30	Ø	.Ø1	239Ø
6	405.00	378.8Ø	401.00	176.Ø7	175.23	1.76	16	2333
6	450.00	423 . 8Ø	446.00	193.20	194.52	1.43	-1.32	2373
7	510.00	483.8Ø	606.00	220.32	219.80	4.49	.51	2373
8	633.00	606.80	629.00	270.49	270.09	7.44	.40	2446
9	770.00	743.8Ø	766.00	331.61	332.71	7.94	-1.1Ø	
1Ø	788.50	762.30	784.5Ø	339.62	340.10	8.79	47	25Ø4
11	805.00	778.8Ø	801.00	346.63	346.99	9.Ø3	36	2392
12	865.00	838.8Ø	861.ØØ	369.67	369.14	9.94	.54	271Ø
13	880.00	853.80	876.00	374.68	375.38	8.71	7Ø	24Ø3
14	905.00	878.8Ø	901.00	384.69	384.6Ø	9.51	.10	2712
15	930.00	903.80	926.00	394.71	394.91	9.22	20	2425
16	953.ØØ	926.8Ø	949.00	4Ø3.72	4Ø3.25	9.89	.47	2757
17	965.ØØ	938.8Ø	961.00	407.72	407.76	9.40	Ø3	2665
18	989.99	963.79	985.99	415.9Ø	415.93	9.40	Ø3	3Ø57

ANALYST: M. SANDERS

18-DEC-85 14:49:51

TIME CONVERTED VELOCITY REPORT

COMPANY		BEACH PETROLEUM	N.L.
WELL	:	WRIXONDALE - 1	
FIELD	:	WILDCAT	
PERMIT	ŧ	PEP-107	
STATE	:	VICTORIA	
COUNTRY	:	AUSTRALIA	
REFERENCE	:	540,421	

**

COMPANY . BEACH PETROLEUM N.L.

LONG DEFINITIONS

GLOBAL

- ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD KB SRD GL UNERTH - UNIFORM EARTH VELOCITY (GTRFRM) UNFDEN - UNIFORM DENSITY VALUE MATRIX MVODIS - MOVE-OUT DISTANCE FROM BOREHOLE ZONE LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER LAYVEL - USER SUPPLIED VELOCITY DATA LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; 0=UNIFORM; 1=UNIFORM+LAYER LAYDEN - USER SUPPLIED DENSITY DATA SAMPLED TWOT - TWO WAY TRAVEL TIME (RELATIVE TO THE SEISMIC REFERENCE - MEASURED DEPTH FROM KELLY-BUSHING DKB DSRD - DEPTH FROM SRD

WELL

AVGV - AVERAGE SEISMIC VELOCITY RHSV - ROOT MEAN SQUARE VELOCITY (SEISMIC) MVOT - NOPMAL MOVE-OUT MVOT - NORMAL MOVE-OUT MVOT - NORMAL MOVE-OUT INTV - INTERNAL VELOCITY, AVERAGE (GLOBAL PARAMETERS) (VALUE)

ELEV OF KB AB. MSL (WST) ELEV OF SRD AB. MSL(WST) 26,2000 KB M SRD М n 1 22.2000 ELEV OF GL AB. SRD(WST) UNIFORM EARTH VELOCITY GL м : UNERTH M/S : UNIFORM DENSITY VALUE UNFDEN 2,30000 G/C3 2

(MATRIX PARAMETERS)

	MVOUT DIST	
123	914.4 1371.6 1828.8	

COMPANY BEACH PETROLEUM N.L.	WELL ;	WRIXONDALE - 1
(ZONED PARAMETERS)	(VALUE)	(LIMITS)
LAYER OPTION FLAG VELOC LOFVEL USER VELOC (WST) LAYVEL	: 1,000000 : 2395,000 M/S 2117,000 1879,000	30479.7 = 0 300.000 = 185.000 185.000 = 165.000 165.000 = 26.2000
LAYER OPTION FLAG DENS LOFDEN USER SUPPLIED DENSITY DA LAYDEN	1879.000 :-1.000000 :-999,2500 G/C3	165,000 26,2000 30479,7 - 0 30479,7 - 0

PAGE

COMPANY : BEACH PETROLEUM N.L.

: WRIXONDALE - 1

PAGE

TWO-WAY TRAVEL TIME FROM SRD	MEASURED Depth From KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST Normal Moveout	SECOND Nurmal Moveout	THIRD NORMAL MOVEOUT	INTERVAL Velocity
MS	Ň	M	M/S	M/S	MS	MS	MS	M/S
0	26.22	.02	. ´					2134
2.00	28,08	1,88	1879	1859	489,93	735,89	981.85	1859
4,00	29,96	3.76	1879	1869	485.21	729.81	974,40	1879
6,00	31,84	5.64	1879	1873	482,34	726,47	970.62	1879
8,00	33,72	7,52	1879	1874	479,92	723,82	967,74	1879
10,00	35,60	9,40	1879	1875	477.69	721.44	965,22	1879
12,00	37,48	11.28	1879	1876	475,55	719.21	962.89	1879
14.00	39,36	13.16	1879	1877	473,48	717.05	960,66	1879
16,00	41.24	15.04	1879	1877	471,45	714,95	958,50	1879
18,00	43,12	16,92	1879	1877	469,44	712.89	956.38	1879
20.00	44.99	18.79	1879	1877	467,45	710.85	954,31	1879
22.00	46,87	20.67	1879	1878	465,50	708.83	952,25	1879
24,00	48.75	22,55	1879	1878	463,55	706.84	950.22	1879
26,00	50,63	24,43	1879	1878	461.62	704.85	948,20	1879
28,00	52,51	26,31	1879	1878	459,70	702.88	946,20	1879
30,00	54,39	28,19	1879	1878	457,80	700,92	944.21	1879
32,00	56,27	30.07	1879	1878	455,90	698,98	942,23	1879
34,00	58.15	31,95	1879	1878	454,02	697.04	940.25	1879
36,00	60.03	33,83	1879	1878	452.14	695.11	938,29	1879
38,00	61,91	35,71	1879	1878	450,28	693,18	936.34	1879
40,00	63,79	37,59	1879	1878	448.42	691.27	934,39	1879
42,00	65,67	39,47	1879	1879	446,58	689,36	932,45	1879
44,00	67.55	41,35	1879	1879	444.74	687,46	930,51	1879
46,00	69,43	43,23	1879	1879	442.92	685,57	928,58	1879

- 3

COMPANY : BEACH PETROLEUM N.L. WELL

: WRIXONDALE - 1

PAGE

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE Velocity Srd/geo	RMS VELOCITY	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	· INTERVAL Velocity
MS	Ň	M	M/S	M/S	MS	MS	MS	MIS
48.00	71.31	45.11	1879	1879	441,10	683,68	926,66	1879
50,00	73.19	46,99	1879	1879	439,29	681,81	924,74	1879
52,00	75,07	48.87	1879	1879	437,49	679,93	922.83	1879
54,00	76,95	50,75	1879	1879	435.70	678,07	920,93	1879
56,00	78.83	52,63	1879	1879	433.92	676,21	919.02	1879
58,00	80.70	54,50	1879	1879	432,14	674,35	917.13	1879
60,00	82,58	56.38	1879	1879	430,38	672,50	915,24	1879
62.00	84.46	58,26	1879	1879	428,62	670,66	913,35	1879
64,00	86,34	60.14	1879	1879	426,87	668.83	911.47	1879
66,00	88,22	62,02	1879	1879	425,13	667,00	909,59	1879
68,00	90.10	63,90	1879	1879	423,40	665,17	907,72	1879
70.00	91,98	65.78	1879	1879	421,68	663,35	905,85	1879
72,00	93,86	67.66	1879	1879	419,96	661.54	903.99	1879
74,00	95.74	69,54	1879	1879	418,26	659,73	902.13	1879
76,00	97,62	71,42	1879	1879	416.56	657,93	900,28	1879
78,00	99,50	73,30	1879	1879	414.86	656,14	898.43	1879
80,00	101,38	75,18	1879	1879	413,18	654,35	896,58	1879
82,00	103,26	77.06	1879	1879	411.51	652,56	894.74	1879
84,00	105,14	78,94	1879	1879	409.84	650,78	892,91	1879
86.00	107,02	80,82	1879	1879	408.18	649.01	891.07	1879
88.00	108,90	82,70	1879	1879	406,53	647.24	889.25	1879
90,00	110,78	84,58	1879	1879	404,89	645,48	887.42	1879
92,00	112.66	86,46	1879	1879	403,25	643,72	885,60	1879
94,00	114,54	88.34	1879	1879	401.63	641.97	883,79	1879

COMPANY BEACH PETROLEUM N.L.

WELL

: WRIXONDALE -1 PAGE

					,			
INTERVAL Velocity	THIRD Normal Moveout	SECOND Normal Moveout	FIRST Normal Moveout	RMS Velocity	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	TWO-WAY TRAVEL TIME FROM SRD
M/S	MS	MS	MS	M/S	M/S	M	N -	MS
1879	881.98	640,23	400,01	1879	1879	90.22	116.42	96,00
1879	880,17	638,49	398,40	1879	1879	92,09	118,29	98,00
1879	878,37	636,75	396,79	1879	1879	93,97	120,17	100,00
1879	876.57	635,02	395,20	1879	1879	95.85	122,05	102.00
1879	874.78	633,30	393,61	1879	1879	97.73	123,93	104,00
1879	872,99	631,58	392,03	1879	1879	99,61	125,81	106.00
1879	871,21	629,87	390,46	1879	1879	101.49	127,69	108,00
1879	869,42	628,16	388,89	1879	1879	103.37	129,57	110,00
1879	867.65	626,46	387.34	1879	1879	105.25	131,45	112,00
1879	865,88	624,76	385,79	1879	1879	107.13	133.33	114.00
1879	864,11	623,07	384,24	1879	1879	109.01	135,21	116,00
187	862,34	621,39	382.71	1879	1879	110,89	137.09	118,00
187	860,58	619,71	381,18	1879	1879	112,77	138,97	120,00
187	858,83	618,03	379,67	1879	1879	114.65	140,85	122,00
187	857,07	616,36	378,15	1879	1879	116.53	142.73	124.00
187	855,33	614,70	376,65	1879	1879	118.41	144,61	126.00
1879	853,58	613.04	375,15	1879	1879	120,29	146,49	128,00
1879	851.84	611,39	373,67	1879	1879	122.17	148,37	130.00
1879	850.11	609,74	372.18	1879	1879	124,05	150,25	132,00
1879	848.38	608,09	370,71	1879	1879	125,93	152,13	134.00
1879	846,65	606,46	369,24	1879	1879	127.80	154,00	136,00
1879	844,92	604,82	367.78	1879	1879	129,68	155,88	138,00
1879	843,21	603,20	366,33	1879	1879	131,56	157,76	140,00
1879	841.49	601,57	364,89	1879	1879	133.44	159,64	142.00

COMPANY	BEACH PET	ROLEUM N.L	•	WELL	: WRIXON	DALE - 1
TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE Velocity Srd/geo	RMS VELOCITY	FIRST Normal Moveout	SECOND Normal Moveout
FROM SRD MS	KB	SRD	M/S	M/S	MS	MS
144.00	161,52	135,32	1679	1879	363,45	599,96
146.00	163,40	137.20	1879	1879	362,02	598,34
148,00	165,33	139.13	1880	1880	360,43	596,48
150,00	167.45	141.25	1883	1883	358,18	593,60
450 00	1/0 67	1 4 3 3 7	1004	1007	255 07	500 77

	1.1.3.0.0						•	· •	1
	146.00	163,40	137.20	1879	1879	362,02	598,34	838,07	1
	148,00	165,33	139.13	1880	1880	360,43	596,48	836,02	2
	150,00	167.45	141.25	1883	1883	358,18	593,60	832,60	2
	152.00	169,57	143.37	1886	1887	355,97	590,77	829,25	2
	154.00	171.68	145.48	1889	1890	353,80	587,98	825.95	2
	156,00	173,80	147.60	1892	1893	351,66	585.24	822,70	
	158,00	175,92	149.72	1895	1896	349.55	582.54	819.51	
	160,00	178,04	151.84	1898	1899	347.47	579,88	816.37	
	162,00	180,15	153,95	1901	1902	345.42	577.26	813,27	
	164.00	182,27	156.07	1903	1904	343,39	574,67	810,22	
	166,00	184,39	158,19	1906	1907	341.40	572,12	807.22	
	168,00	186.72	160.52	1911	1913	338,72	568,51	802.77	•
	170,00	189,12	162.92	1917	1919	335,89	564.65	797.99	:
	172,00	191,51	165.31	1922	1925	333,12	560.87	793.32	
	174,00	193,91	167.71	1928	1931	330,41	557.18	788,75	
	176,00	196,30	170.10	1933	1937	327.75	553,56	784.28	:
	178,00	198,70	172.50	1938	1943	325.15	550.02	779.91	
•	180,00	201,09	174.89	1943	1949	322,60	546.54	775.63	;
	182,00	203,49	177.29	1948	1954	320,10	543,14	771.43	
	184.00	205,88	179.68	1953	1959	317,64	539,80	767.32	
	186.00	208,28	182.08	1958	1965	315,23	536,52	763,29	•
	188,00	210,67	184.47	1962	1970	312,87	533,30	759,33	
	190,00	213.07	186.87	1967	1975	310,54	530,14	755,45	
			····· •						

PAGE

INTERVAL VELOCITY

M/S

1879

1879

THIRD Normal Moveout

MS

839,78

COMPANY : BEACH PETROLEUM N.L.

: WRIXONDALE - 1

TWG-WAY Travel Time From Srd	MEASURED DEPTH FROM KB	VERTICAL DEPIH FROM SRD	AVERAGE Velocity Srd/geo	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL VELOCITY
MS	M	M	MIS	M/S	MS	MS	MS	M/S
192,00	215,46	189,26	1971	1979	308,26	527,03	751,64	2395
194,00	217,86	191.66	1976	1984	306,02	523,98	747,89	2395
196,00	220,25	194,05	1980	1989	303,81	520,98	744.21	2395
198,00	222,65	196,45	1984	1993	301,64	518.02	740,59	2395
200,00	225.04	198.84	1988	1998	299,51	515.12	737.04	2395
202,00	227,44	201.24	1992	2002	297,41	512,26	733,54	2395
204,00	229,83	203,63	1996	2006	295,34	509,44	730.09	2395
206.00	232,23	206.03	2000	2010	293,31	506,67	726,70	2395
208,00	234,62	208,42	2004	2014	291.31	503,94	723,36	2395
210,00	237.02	210.82	2008	2018	289,34	501,25	720,08	2395
212.00	239,41	213.21	2011	2022	287.39	498,60	716,84	2395
214.00	241.81	215.61	2015	2026	285.48	495,99	713.65	2395
216.00	244.20	218.00	2019	2030	283,59	493.41	710,50	2395
218,00	246.60	220,40	2022	2033	281.73	490,87	707.40	2395
220,00	248,99	222.79	2025	2037	279,90	488.36	704.34	2395
222.00	251,39	225.19	2029	2041	278.09	485.89	701.32	2395
224,00	253,78	227,58	2032	2044	276,31	483.44	698,34	2395
226.00	256.18	229,98	2035	2047	274.55	481.03	695,40	2395
228,00	258,57	232.37	2038	2051	272,82	478.65	692.50	2395
230.00	260,97	234.77	2041	2054	271,10	476,30	689,63	2395
232,00	263.36	237.16	2044	2057	269,41	473,98	686,80	2395
234,00	265.76	239.56	2047	2060	267.75	471.69	684,00	2395
236,00	268,15	241,95	2050	2063	266,10	469,42	681,24	2395
238,00	270,55	244.35	2053	2066	264,48	467.18	678,51	2395

.

COMPANY : BEACH PETROLEUM N.L. WELL

: WRIXONDALE - 1

TWO-WAY TRAVEL TIME FROM SRD	MEASURED Depth From Kb	VERTICAL DEPTH From Srd	AVERAGE VELOCITY SRD/GEU	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERV Veloci
MS	Ň	M	MIS	M/S	MS	MS	MS	M/S
240.00	272,94	246.74	2056	2069	262.87	464,97	675,81	23
242,00	275,34	249.14	2059	2072	261.29	462,78	673.15	23
244.00	277,73	251,53	2062	2075	259,72	460.61	670,51	2
246,00	280.13	253,93	2064	2078	258,17	458,47	667,90	2
248,00	282,52	256.32	2067	2081	256,65	456,36	665,32	2
250,00	284,92	258,72	2070	2083	255.14	454.26	652,77	2
252,00	287,31	261.11	2072	2086	253,64	452.19	660,24	2
254.00	289,71	263,51	2075	2089	252.17	450,15	657,75	2
256.00	292,10	265,90	2077	2091	250.71	448,12	655,27	2
258,00	294,50	268,30	2080	2094	249,27	446.11	652,82	2
260,00	296.89	270,69	2082	2096	247.85	444.12	650,40	2
262,00	299,29	273.09	2085	2099	246.44	442.16	648,00	2
264,00	301.63	275.43	2087	2100	245,13	440.35	645,81	2
266,00	303,98	277.78	2089	2102	243.81	438,51	643,59	2
268,00	306.31	280.11	2090	2104	242,55	436.77	641.48	2
270,00	308,60	282.40	2092	2106	241.34	435.11	639,50	2
272.00	310,88	284,68	2093	2107	240.16	433.49	637,56	23
274.00	313,13	286.93	2094	2108	239,05	431,97	635,75	2
276.00	315,34	289.14	2095	2109	237,99	430,54	634.06	2
278,00	317,56	291.36	2096	2110	236,92	429,08	632,33	2
280,00	319,86	293,66	2098	2111	235,76	427,48	630,41	23
282.00	322,15	295.95	2099	2112	234.63	425,90	628,52	23
284,00	324,50	298.30	2101	2114	233,41	424.19	626,43	2
286,00	326,95	300,75	2103	2117	232,08	422,29	624,09	24

PAGE		DALE - 1	: WRIXON	WELL		ROLEUM N.L	BEACH PET	COMPANY :
INTERVAL Velocity	THIRD Normal Moveout	SECOND Normal Moveout	FIRST Normal Moveout	RMS Velocity	AVERAGE Velocity Srd/geo	VERTICAL Depth From	MEASURED DEPTH From	TWO-WAY TRAVEL TIME
M/S	MS	MS	MS	M/S	M/S	SRD	KB M	FROM SRD MS
2401	621.90	420,52	230,83	2119	2105	303,15	329,35	288.00
2374	619.82	418,81	229,63	2121	2107	305,52	331,72	290,00
2446	617,54	416.97	228,35	2123	2109	307,97	334,17	292.00
2412	615,38	415.21	227.12	2125	2111	310.38	336,58	294,00
2397	613.28	413,51	225,93	2127	2113	312,78	338,98	296,00
2413	611,15	411.78	224.72	2129	2115	315,19	341,39	298.00
2435	608,98	410.02	223.51	2131	2117	317.62	343,82	300,00
2420	606,87	408.31	222,32	2133	2120	320.04	346.24	302,00
2502	604.54	406.45	221.04	2136	2122	322,55	348,75	304,00
2470	602.32	404.67	219,82	2138	2124	325,02	351,22	306.00
2488	600,07	402,87	218.59	2141	2127	327,50	353,70	308,00
2476	597,88	401.11	217,39	2143	2129	329,98	356.18	310.00
2479	595,70	399.37	216.19	2145	2131	332,46	358,66	312,00
2551	593,34	397,49	214,93	2148	2134	335,01	361.21	314.00
2575	590,93	395,59	213,64	2151	2137	337,59	363,79	316,00
2492	588,78	393,87	212.48	2154	2139	340,08	366,28	318,00
2377	586,94	392.37	211.45	2155	2140	342,45	368,65	320,00
2498	584,80	390.67	210.29	2157	2143	344,95	371.15	322,00
2397	582,94	389,17	209,26	2159	2144	347,35	373,55	324.00
2422	581.03	387,63	208,21	2161	2146	349,77	375,97	326,00
2481	578,99	386.00	207,11	2163	2148	352,25	378,45	328,00
2489	576,94	384.37	206,01	2165	2150	354.74	380,94	330,00
2424	575,07	382,86	204.99	2167	2152	357,17	383,37	332,00
2356	573,37	381,49	204,05	2168	2153	359,52	385,72	334,00

-

•

(

ş

.

.

(

	(Ň		·	<u> </u>				
COMPANY	BEACH PET	ROLEUM N.L	•	WELL	: WRIXON	DALE -1		PAGE	10
TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL Depth From	AVERAGE Velocity Srd/geo	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity	
FROM SRD MS	KB M	SRD	MIS	M/S	MS	MS	MS	MIS	
336,00	388,13	361,93	2154	2169	203,06	380,04	571.57	2408	
338.00	390,44	364.24	2154	2109	202.18	378,75	569,99	2312	
340,00	392,70	-					•	2263	
		366,50	2156	2171	201.35	377,56	568,54	2356	
342.00	395.06	368,86	2157	2172	200.44	376.22	566,88	2328	
344,00	397,39	371.19	2158	2173	199,56	374,93	565,30	2311	
346,00	399,70	373,50	2159	2174	198,71	373.68	563,76	2378	
348,00	402,08	375.88	2160	2175	197,79	372.33	562.09	2351	
350,00	404,43	378.23	2161	2176	196,92	371.03	560,48	2285	
352,00	406.71	380,51	2162	2176	196,10	369.85	559,02	2289	
354,00	409.00	382.80	2163	2177	195,29	368,66	557,56	2437	-
356,00	411,44	385.24	2164	2179	194,36	367,25	555.79	2372	
358,00	413.81	387.61	2165	2180	193.49	365,95	554,18		
360,00	416,20	390,00	2167	2181	192,61	364.64	552.53	2390	
362,00	418.41	392,21	2167	2181	191,89	363,60	551.27	2210	
364,00	420,96	394.76	2169	2183	190,88	362,05	549,29	2549	
366,00	423,30	397,10	2170	2184	190.07	360,83	547,77	2343	
368,00	425,60	399.40	2171	2185	189,30	359,69	546,36	2294	
370,00	427,87	401.67	2171	2185	188,55	358,57	544.99	2277	
372,00	430,13	403.93	2172	2186	187.82	357,50	543.67	2253	
374,00	432,57	406.37	2173	2187	186,94	356.16	541,96	2448	
376,00	434,94	408.74	2174	2188	186,14	354,95	540,45	2361	
378,00	437,14	410,94	2174	2188	185,46	353,95	539,23	2208	•
380,00	439,54	413,34	2175	2189	184.65	352,71	537,67	2393	
382,00	441.96	415,76					536.06	2419	
302.00	447*20	#13#10	2177	2191	183.82	351.44	222.00		

TRAVEL TIME FROM SRD 384.00 386.00 388.00	MEASURED DEPTH FROM KB M 444.30 446.68 448.87 451.11	VERTICAL DEPTH FROM 418.10 420.48 422.67	AVERAGE VELOCITY SRD/GEO M/S 2178 2179	RMS VELOCITY M/S 2192	FIRST NORMAL MOVEOUT MS	SECOND Normal Moveout Ms	THIRD Normal Moveout MS	INTERVAL Velocity M/S
MS 384,00 386,00 388,00	M 444,30 446,68 448,87	M 418.10 420.48	2178		,	MS	MS	M/S
386,00 388,00	446,68 448,87	420,48		2192	,			
386,00 388,00	446,68 448,87	420,48		£ 1 7 L	181 05	350,28	534,60	2347
388,00	448.87		21/3	2193	183.05 182.27	349.09	533,10	2374
	-	424.0/						2188
	431.11	474 04	2179	2192	181,63	348,14	531,95	2247
390,00		424.91	2179	2193	180,96	347.13	530,69	2414
392,00	453,53	427.33	2180	2194	180,16	345,90	529,14	2373
394,00	455,90	429.70	2181	2195	179.40	344,74	527,66	2483
396,00	458,38	432.18	2183	2196	178,57	343,44	525,99	2457
398,00	460,84	434.64	2184	2198	177.76	342,18	524.38	2335
400,00	463.18	436,98	2185	2199	177.05	341.09	523,00	2263
402.00	465,44	439,24	2185	2199	176.39	340,09	521.76	2436
404,00	467,87	441.67	2187	2200	175.61	338,88	520,21	
406.00	470,27	444.07	2188	2201	174,88	337.74	518,75	2392
408,00	472,73	446.53	2189	2202	174.10	336,51	517,17	2461
410,00	475.15	448.95	2190	2204	173,34	335,34	515,67	2427
412.00	477.63	451,43	2191	2205	172,57	334.11	514.09	2473
414,00	480,05	453.85	2193	2206	171.83	332,96	512,60	2427
416.00	482,29	456,09	2193	2206	171.23	332,04	511.45	2232
418,00	484.54	458,34	2193	2206	170,62	331,10	510,28	2252
420,00	486.63	460.43	2193	2206	170,11	330,34	509,36	2090
422,00	488.91	462.71	2193	2206	169,49	329,38	508,15	2279
424,00	491,07	464.87	2193	2206	168,94	328,55	507.12	2165
								2291
426,00	493,36	467.16	2193	2206	168,32	327,59	505,90	2418
428.00 430.00	495,78 498,18	469,58 471,98	2194 2195	2208	167,62 166,94	326,48 325,40	504,47 503,09	2396

.

									(
COMPANY :	BEACH PET	ROLEUM N.L		WELL	: WRIXON	DALE - 1		PAGE	12
TWO-WAY Travel Time From Srd	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE Velocity Srd/geo	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRÓ Normal Moveout	INTERVAL Velocity	!
MS	K B M	SRD M	MIS	M/S	MS	MS	MS	MIS	
432.00	500.63	474.43	2196	2210	166,23	324,27	501.62	2450	
434.00	503.07	476.87	2198	2210	165,53	323,15	500.17	2446	
436,00	505,55	479.35	2199	2212	164.81	322,01	498.67	2474	
438.00	508.00	481.80	2200	2213	164.12	320.89	497,22	2454	
440.00	510,47	484.27	2201	2214	163,41	319,76	495,75	2473	
442.00	513.09	486.89	2203	2216	162,62	318,47	494,04	2619	
444.00	515.54	489.34	2204	2218	161,94	317.38	492,62	2452	
446,00	517,95	491.75	2205	2218	161,30	316,35	491,28	2406	
448.00	520,36	494.16	2206	2219	160,66	315,32	489,94	2408	
450,00	522,87	496,67	2207	2221	159,96	314,19	488,45	2509	
452,00	525,32	499.12	2209	2222	159,30	313,12	487,06	2456	-
454,00	527,68	501.48	2209	2222	158,70	312,17	485,83	2353	
456.00	530,18	503,98	2210	2224	158,03	311.07	484,38	2501	
458,00	532,49	506,29	2211	2224	157.47	310.17	483.22	2312	•
460,00	534,80	508,60	2211	2224	156,91	309,29	482.08	2307	
462.00	537,20	511,00	2212	2225	156,31	308,31	480.80	2402	
464.00	539,57	513,37	2213	2226	155,72	307,36	479.57	2372	
466,00	541,93	515,73	2213	2226	155,15	306.44	478,37	2359	
468,00	544,17	517,97	2214	2227	154,64	305,63	477,33	2244	
470,00	546,47	520,27	2214	2227	154,11	304,78	476,23	2295	
472,00	548,77	522.57	2214	2227	153,58	303,92	475,12	2301	
474.00	551,28	525,08	2216	2228	152,94	302,87	473,72	2506	
476,00	553,82	527.62	2217	2230	152,28	301,78	472.28	2540	
478,00	556,28	530,08	2218	2231	151,67	300,78	470,95	2468	

..

COMPANY :	BEACH PET	ROLEUM N.L	1	WELL	: WRIXON	DALE - 1		PA
TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL Depth From	AVERAGE Velocity Srd/geo	RMS VELOCITY	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL VELOCITY
FROM SRD MS	K B M	SRD	MIS	M/S	MS	MS	MS	M/S
480.00	558,83	532,63	2219	2232	151.03	299,70	469,51	2547
482.00	561.29	535.09	2220	2233	150.43	298.72	468,21	2460
484,00	563,85	537.65	2222	2235	149.79	297,65	466.78	2556
486,00	566.14	539,94	2222	2235	149,29	296,84	465,72	2292
488.00	568,53	542.33	2223	2236	148,74	295,93	464,53	2394
490.00	571.02	544,82	2224	2237	148.15	294.95	463,22	2483
492,00	573,40	547.20	2224	2237	147.61	294,07	462,05	2387
494,00	575,77	549.57	2225	2238	147.09	293,20	460,92	2367
496,00	578,14	551,94	2226	2238	146,57	292.34	459,78	2371
498,00	580,59	554,39	2226	2239	146,01	291,41	458,54	2453
500,00	582,99	556,79	2227	2240	145,48	290.54	457.38	2399
502,00	585,38	559,18	2228	2241	144.96	289,67	456.23	2390
504,00	587,80	561,60	2229	2241	144.43	288,79	455,05	2413
506.00	590.25	564.05	2229	2242	143.88	287,87	453,83	2459
508,00	592.63	566.43	2230	2243	143,38	287.04	452.72	2378
510,00	595,33	569,13	2232	2245	142,72	285,90	451,17	2698
512 00	507 96	571 56	2223	2246	142 15	794 04	AAO 07	2531

2233

2234

2235

2236

2238

2239

2240

2241

WELL : WRIXONDALE - 1

PAGE

5

13

571.66

574.16

576.61

579.12

581.82

584.44

586,96

589.42

512,00

514,00

516.00

518,00

520,00

522,00

524,00

526,00

597,86

600,36

602.81

605,32

608.02

610,64

613.16

615,62

142.15

141,60

141.07

140.52

139,89

139,30

138,76

138,25

284.94

284.01

283,13

282,20

281.10

279.17

278.31

280,09 .

449,87

448,62

447.44

446,18

444.68

443.30

442,05

440,89

2246

2247

2248

2249

2251

2252

2253

2254

2500

2451

2514

2694

2619

2518

2464

COMPANY :	BEACH PET	ROLEUM N.L	•	WELL	: WRIXON	DALE - 1		PAGE
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE Velocity Srd/geo	RMS VELOCITY	FIRST Normal Moveout	SECOND NORMAL MOVEOUT	THIRD Normal Moveout	INTERVAL VELOCITY
MS	K B M	SRD M	M/S	M/S	MS	MS	MS	MIS
528,00	618,18	591,98	2242	2255	137,70	277,37	439,61	2557
530,00	620,84	594,64	2244	2257	137,10	276,34	438,20	2663
532,00	623,39	597,19	2245	2258	136,56	275,42	436,94	2554
534,00	625,93	599,73	2246	2259	136.04	274,51	435,70	2539
536,00	628,18	601,98	2246	2259	135,64	273,84	434,82	2247
538,00	630,46	604,26	2246	2259	135,22	273.15	433,90	2284
540,00	632,76	606.56	2247	2260	134.81	272,44	432,96	2301
542,00	635,28	609,08	2248	2261	134.30	271.57	431.77	2518
544,00	637,96	611.76	2249	2262	133,73	270.57	430.39	2675
546,00	640,53	614.32	2250	2263	133,21	269,67	429.16	2568
548,00	643,07	616.87	2251	2265	132,70	268,79	427,95	2549
550,00	645,53	619,33	2252	2265	132.23	267,99	426,86	2457
552,00	647,97	621.77	2253	2266	131,78	267,21	425,80	2438
554,00	650,32	624.12	2253	2266	131,36	266.50	424.83	2354
556,00	652,64	626.44	2253	2266	130,96	265.82	423,92	2312 2327
558,00	654.96	628,76	2254	2267	130,55	265.13	422,99	2372
560,00	657,33	631,13	2254	2267	130.14	264,41	422.01	2372
562,00	659,63	633,43	2254	2267	129.75	263.74	421,12	2225
564.00	661,86	635,66	2254	2267	129.39	263.14	420.31	2218
566,00	664.08	637,88	2254	2267	129,03	262.53	419,51	2416
568,00	666.49	640.29	2255	2267	128,61	261,80	418,50	2419
570.00	668,91	642.71	2255	2268	128.18	261.06	417,49	2263
572,00	671.18	644,98	2255	2268	127.82	260,44	416.65	2241
574.00	673.42	647.22	2255	2268	127,46	259,83	415,84	AL 47 7 #

. ,

COMPANY BEACH PETROLEUM N.L.

: WRIXONDALE - 1

15

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE Velocity Srd/geo	RMS VELOCITY	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity	
MS	M	M	M/S	M/S	MS	MS	MS	MIS	
576,00	675,70	649.50	2255	2268	127.10	259,20	414,99	2280	
578,00	677,92	651,72	2255	2268	126.75	258,61	414.20	2217	
580,00	680,08	653.88	2255	2267	126,43	258,06	413,47	2166	
582,00	682,18	655,98	2254	2267	126.13	257,56	412,80	2097	
584.00	684.33	658,13	2254	2266	125,81	257.02	412.08	2150	
586.00	686,56	660,36	2254	2266	125,47	256,43	411.28	2236	
588,00	688,62	662,42	2253	2266	125.19	255,95	410.66	2054	
590.00	690,73	664,53	2253	2265	124,89	255.44	409,98	2111	
592,00	692,81	666.61	2252	2264	124,60	254,96	409.34	2076	
594,00	695,04	668.84	2252	2264	124.26	254.37	408,55	2237	
596,00	697,23	671.03	2252	2264	123,95	253,83	407.81	2186	
598.00	699.35	673,15	2251	2264	123,65	253.32	407.14	2119	
600,00	701,54	675.34	2251	2263	123,33	252,77	406.40	2188	
602,00	703,67	677,47	2251	2263	123.03	252,26	405.71	2134	
604.00	705.79	679.59	2250	2263	122,74	251.76	405.04	2121	
606.00	707,95	681.75	2250	2262	122,43	251,23	404.33	2164	
<u>608.00</u>	710,10	683,90	2250	2262	122.14	250,72	403.64	2143	
610,00	712.15	685,95	2249	2261	121.87	250,26	403.03	2050	
612,00	714.16	687,96	2248	2260	121.61	249,83	402,46	2009	
614.00	716,24	690,04	2248	2260	121.34	249,35	401.82	2083	
616.00	718,28	692 . 08	2240	2259	121,07	248,90	401.22	2044	
618,00	720,34	694.14	2247	2259	120.81	248.45	400.62	2054	
620,00	720.54	696.33	2246	2259	120.51	248,43	399.89	2192	
622,00	724,53	698.39	2246	2258	120.30	247.46	399,28	2058	
022.00	162007	030833	4470	~~) 0	16444	471 470	322460		

(

	e de la companya de l						-	
COMPANY	BEACH PET	ROLEUM N.L	,	WELL	: WRIXON	DALE - 1		PAGE
TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE Velocity Srd/geo	RMS VELOCITY	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity
FROM SRD MS	KB M	SRD	MIS	M/S	MS	MS	MS	M/S
624,00	726,57	700.37	2245	2257	120,00	247,05	398,74	1983
626,00	728,62	702.42	2244	2256	119,73	246,60	398,13	2056
628,00	730,70	704.50	2244	2256	119.47	246,14	397,52	2071
630.00	732,84	706.64	2243	2255	119,18	245.64	396,84	2142
632.00	734,97	708.77	2243	2255	118,90	245.15	396.18	2137
634,00	737.04	710,84	2242	2254	118.64	244,70	395,57	2069
636,00	739,23	713.03	2242	2254	118,35	244.18	394,86	2184
638.00	741,41	715.21	2242	2254	118,06	243,67	394,16	2184
640.00	743.53	717.33	2242	2254	117.78	243,20	393,51	2115
642,00	745.56	719.36	2241	2253	117,54	242.77	392.94	2035
644,00	747,66	721,46	2241	2252	117.27	242,30	392,31	2100
646,00	749,85	723,65	2240	2252	116,98	241,80	391,61	2187
648,00	751.89	725.69	2240	2252	116.74	241.37	391.03	2039
650.00	753,94	727,74	2239	2251	116,49	240,93	390,44	2054
652.00	755,99	729,79	2239	2250	116,24	240.50	389,86	2048
654.00	758,06	731.86	2238	2250	115,99	240,06	389.26	2072
656.00	760,17	733,97	2238	2250	115,73	239,60	388,64	2108
658.00	762,28	736.08	2237	2249	115,47	239,15	388.01	2112
660.00	764.33	738,13	2237	2249	115.23	238,72	387.43	2053
662.00	766.45	740,25	2236	2248	114,97	238,26	386.79	2120
664,00	768,51	742.31	2236	2248	114.72	237,83	386,21	2056
666,00	770,71	744,51	2236	2247	114.44	237,33	385,52	2196
668,00	773,04	746,84	2236	2248	114,12	236,76	384,71	2335
670,00	775,51	749.31	2237	2248	113,77	236,11	383,79	401

16

COMPANY	BEACH PET	ROLEUM N.L		WELL	: WRIXON	DALE - 1		PAG
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity
MS	Ň	M	MIS	M/S	MS	MS	MS	州/S
672,00	778,22	752.02	2238	2250	113,34	235,31	382,64	2717
674,00	780,74	754.54	2239	2251	112,97	234.64	381,68	2512
676,00	783,71	757,51	2241	2253	112,45	233,68	380,27	2973
678,00	786,12	759.92	2242	2254	112,13	233,08	379,42	2411
680,00	788.30	762.10	2241	2254	111,86	232,61	378,77	2174
682,00	790,80	764.60	2242	2254	111,51	231,96	377,84	2505
684.00	792,75	766.55	2241	2253	111,31	231,60	377.36	1951
686.00	794,78	768,58	2241	2253	111.08	231.21	376,81	2033
688,00	797,21	771.01	2241	2253	110,76	230,61	375,97	2423
690.00	799,56	773,36	2242	2254	110,45	230,06	375,18	2354
692.00	802,25	776.05	2243	2255	110,05	229,31	374,10	2689
694,00	805,02	778,82	2244	2257	109,63	228,52	372,95	2769
696,00	807,65	781.45	2246	2258	109.25	227.83	371,93	2627
698,00	810.21	784,01	2246	2259	108,90	227,17	370,98	2565
700.00	812.85	786.65	2248	2260	108,52	226.47	369,97	2638
702.00	815,55	789,35	2249	2261	108,13	225.74	368,91	2699
704.00	818,27	792.07	2250	2263	107.74	225.01	367,84	2721
706,00	820,85	794,65	2251	2264	107,39	224,35	366.89	2580
708.00	823,60	797.40	2253	2265	106,99	223.60	365,80	2757
710,00	826,40	800.20	2254	2267	106,58	222.84	364.67	2794
712.00	829.01	802.81	2255	2268	106.23	222.18	363,72	2611
714.00	831.72	805,52	2256	2269	105,85	221,47	362,68	2713
716.00	834,40	808.20	2258	2271	105.48	220.78	361,67	2677
718,00	837,16	810,96	2259	2272	105,10	220,05	360,60	2760

•

ĺ

17 AGE

с. С. ,

COMPANY :	BEACH PET	ROLEUM N.L	•	WELL	: WRIXON	DALE - 1	-
TWO-WAY Travel Time From Srd	MEASURED Depth From KB	VERTICAL DEPIH FROM SRD	AVERAGE Velocity Srd/geo	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout
MS	M	M	M/S	M/S	MS	MS	- MS
720.00	839.84	813.64	2260	2273	104.74	219,37	359,61
722,00	842.63	816,43	2262	2275	104.35	218,64	358,53
704 00	046 37	040 47	0000	0076	4 4 5 4 7	047 04	

720.00	839.84	813,64	2260	2273	104.74	219,37	359,61	2
722,00	842.63	816.43	2262	2275	104.35	218,64	358,53	2
724,00	845,37	819,17	2263	2276	103,97	217,94	357,50	2
726,00	848.13	821.93	2264	2278	103,60	217,22	356,45	2
728,00	850,90	824.70	2266	2279	103,22	216.51	355,40	2
730,00	853.70	827.50	2267	2281	102.84	215.79	354.33	2
732.00	856,51	830,31	2269	2282	102,46	215,07	353,26	2
734.00	859,17	832,97	2270	2284	102.12	214.42	352.32	
736,00	861,85	835,65	2271	2285	101.77	213.78	351,37	
738,00	864,62	838.42	2272	2286	101.41	213,09	350,36	2
740.00	867,40	841.20	2274	2288	101.05	212.39	349.33	:
742.00	870,00	843,80	2274	2289	100.73	211.81	348.46	
744,00	872.03	845,83	2274	2288	100,55	211,47	347,99	
746.00	874,04	847.84	2273	2287	100.37	211.14	347.53	
748.00	876,36	850,16	2273	2287	100.12	210,69	346.87	
750,00	879.05	852,85	2274	2289	99,79	210,06	345,95	
752,00	881,68	855,48	2275	2289	99.48	209,46	345,07	1
754.00	884.34	858,14	.2276	2291	99.16	208,85	344.17	
756,00	887.17	860,97	2278	2292	98.80	208,16	343.14	
758,00	889,89	863,69	2279	2293	98.47	207.53	342,20	
760,00	892.68	866,48	2280	2295	98.12	206,87	341.22	
762.00	895,30	869,10	2281	2296	97,82	206,30	340.38	
764,00	898,01	871,81	2282	2297	97,50	205,68	339,46	
766.00	900,80	874.60	2284	2298	97,16	205,03	338.49	

PAGE 18

INTERVAL Velocity

M/S

COMPANY	BEACH	PETROLEUM	N.L.		W

: WRIXONDALE - 1

19

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM K8	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity
MS	M	M	M/S	M/S	MS	MS	MS	M/S
768,00	903,48	877.28	2285	. 2299	96,85	204,44	337.61	2684
770.00	905.97	879,77	2285	2300	96,58	203,94	336,87	2489
772,00	908,13	881,93	2285	2300	96,39	203,58	336,36	2156
774,00	910,20	884.00	2284	2299	96.21	203,25	335,89	2071
776.00	912,22	886,02	2284	2298	96.04	202,94	335,45	2026
778,00	914,24	888,04	2283	2298	95,88	202,63	335,01	2019
780,00	916,88	890,68	2284	2299	95,59	202.07	334,18	2634
782.00	919,81	893,61	2285	2300	95,22	201,37	333,13	2930
784,00	922.50	896.30	2286	2302	94,92	200,79	332,26	2697
786,00	924,96	898.76	2287	2302	94.67	200,32	331,57	2458
788.00	927,51	901.31	2288	2303	94.41	199.81	330,82	2545
790,00	930,25	904.05	2289	2304	94.10	199.22	329,93	2743
792,00	933,03	906,83	2290	2305	93.79	198.61	329.02	2778 2958
794,00	935,98	909,78	2292	2307	93,43	197,92	327,98	2951
796.00	938,94	912.74	2293	2309	93,08	197.24	326,95	2749
798,00	941.68	915,48	2294	2310	92,78	196.66	326,07	2863
800.00	944,55	918.35	2296	2312	92.45	196.03	325,12	2675
802.00	947.22	921.02	2297	2313	92.17	195.48	324.31	2614
804.00	949,84	923,64	2298	2313	91.91	194,97	323,54	2498
806,00	952,33	926,13	2298	2314	91.67	194.51	322.86	2438
808,00	955,01	928.81	2299	2315	91,39	193,98	322.05	2651
810,00	957,66	931,46	2300	2316	91.12	193,45	321,27	2585
812,00	960,24	934,04	2301	2316	90,87	192,96	320,54	2585
814,00	962,89	936,70	2301	2317	90,60	192,45	319.77	2001

	$\left(\begin{array}{c} \end{array} \right)$				$\left(\begin{array}{c} \\ \end{array} \right)$	-	·	<i>.</i>	(
OMPANY	BEACH PET	ROLEUM N.L	•	WELL	: WRIXON	DALE - 1		PAGE	20
TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL Depth From	AVERAGE Velocity Srd/geo	RMS VELOCITY	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity	
FROM SRD MS	KB	SRD	M/S	M/S	MS	MS	MS	M/S	
816.00	965,69	939,49	2303	2319	0.0 71	191.87	348 00	2793	
					90,31		318,90	2687	
818,00	968.38	942,18	2304	2320	90.04	191,35	318.11	2875	
820,00	971,25	945.05	2305	2321	89,73	190,74	317.19	·	
822.00	974.21	948.01	2307	2323	89.40	190.10	316,22	2961	
	-				-			3200	
824.00	977.41	951.21	2309	2325	89.02	189,35	315,07	3031	
826,00	980,44	954.24	2311	2327	88,68	188.69	314.06		
828.00	983.46	957,26	2312	· 2329	88.35	188.04	313,06	3022	
830,00	986.74	960,54	2315	2332	87,96	187.27	311,88	3280	
000,00	200011	200.04	2313	2332	u/ • 90	101411	211400	,	

.

•

.

ċ

19-DEC-85 08:27:41 PROGRAM: GTRFRM 007,E08.

**********	****
*	*
¥	*
*	¥
********	****
*	*
* SCHLUMBERGER	*
*	*
*****	****

SYNTHETIC SEISMOGRAM TABLE

COMPANY	ţ	BEACH PETROLEUM N.L.
WELL	:	WRIXONDALE - 1
FIELD	:	WILDCAT
PERMIT	;	PEP-107
STATE	:	VICTORIA
COUNTRY	:	AUSTRALIA
REFERENCE	:	540,421

COMPANY - BEACH PETROLEUM N.L.

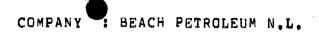
PAGE

THE HEADINGS AND FLAGS SHOWN IN THE DATA LIST ARE DEFINED AS FOLLOWS:

IGEOFL- FLAG INDICATING MODE OF PROCESSING IGEOFL = 0 #ST DATA AVAILABLE AND PROCESSED IGEOFL = 1 #ST DATA NOT AVAILABLE

LOG INPUT DATA : GRF001- CHANNEL NAME FOR INPUT DENSITY LOG DATA GTR001- CHANNEL NAME FOR INPUT SONIC LOG DATA GCURVE- CORRELATION LOG NAMES

USER DEFINED MODELING


LOFVEL- LAYER OPTION FLAG FOR VELOCITY LOFDEN- LAYER OPTION FLAG FOR DENSITY LAYVEL- LAYERED VELOCITY VALUES FOR USER SUPPLIED ZONE LIMIT WITH RESPECT TO SONIC LOG DATA LAYDEN- LAYERED DENSITY VALUES FOR USER SUPPLIED ZONE LIMITS WITH RESPECT TO SUNIC LOG DATA UNERTH- UNIFORM EARTH VELOCITY UNFDEN- UNIFORM EARTH DENSITY SRATE SAMPLING RATE IN MS INIDEP START DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM WITH RESPECT TO SONIC LOG DATA STOP DEFTH FUR COMPUTING SYNTHETIC SEISMOGRAM IGESIP WITH RESPECT TO SONIC LUG DATA TWO WAY TRAVEL TIME FROM TOP SONIC TO SRD INITAU EKB ELEVATION OF KELLY BUSHING WITH RESPECT TO MEAN SEA LEVEL SRDGEO SEISMIC REFERENCE DEPTH WITH RESPECT TO MEAN SEA LEVEL ICOP FLAG FOR COMPUTING RESIDUAL MULTIPLES CDPTIM TWO WAY TIME INTERVAL FOR COMPUTATION OF RESIDUAL MULTIPLES SCRTIM SURFACE REFLECTOR TWO WAY TIME ABOVE INITAU SCREFL SURFACE REFLECTION COEFFICIENT

- RČMAX REFLECTION CCEFFICIENTS THAT ARE EQUAL TO OR GREATER THAN THIS VALUE SHALL BE FLAGGED
- *NOTE* IN CASE OF MODELING A SYNTHETIC SEISMOGRAM WITHOUT SONIC LOG DATA ,THE DEPTH REFERENCES SHALL BE USER DEFINED

OUTPUT DATA

RMSVWE ROOT MEAN SQUARE VELOCITY FOUND FOR THE WELL SRDTIM TRO WAY TRANSIT TIME BETWEEN INIDEP AND SRDGEO

CHANNNEL NAMES

WELL

(VALUE)

: WRIXONDALE - 1

PAGE

2

TWOT- TWO WAY TRAVEL TIME DSRD- DEPTH OF COMPUTED DATA WITH RESPECT TO SRD INTV- INTERVAL VELOCITY ON A TIME SCALE RHOT- INTERVAL DENSITY ON A TIME SCALE REFL- REFLECTION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES ATTE- ATTENUATION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES PRIM- SYNTHETIC SEISMOGRAM - PRIMARIES MULT- SYNTHETIC SEISMOGRAM - PRIMARIES + MULTIPLES MUON- MULTIPLES CNLY

CHANNEL NAMES

CHAN	1	-	TNOT.	GMU.	.002.	*
CHAN	2	-	DSRD.	GRE	006	*
CHAN	3	-	INTV	GRE	007	*
CHAN	4	-	RHOT	GRE	001	*
CHAN	- 5	-	REFL	GRE	001	*
CHAN	6	-	ATTE.	GRF	001	*
CHAN	7	-	PRIM.	GRF	001	*
CHAN	8	-	MULT	GMU	001	*
CHAN	9	-	MUON			

(GLOBAL PARAMETERS)

MODE OF PROC (GEOGRAM) INITIALIZE CDP LOGIC CDP TIME TIME SAMPLING (WST) TOP DEPTH OF PROCESSING BOTTOM DEPTH OF PROCESSI INITIAL T+O WAY TRAVEL T SRD FOR GEOGRAM ELEVATION OF KELLY BUSHI SRD TIME SURFACE COEFFICIENT OF R SURFACE COEFFICIENT OF R REFLECTION COEFF MAXIMUM	IGEOFL ICDP CDPTIM SRATE INIDEP IGESTP INITAU SRDGEO EKB SRDTIM SCRTIM SCREFL RCMAX	0 200000 2.00000 273.800 963.000 .262620 -30479.7 0 0 -1.00000 .300000	S M M M S M M S M M S S M M S S
			M/S M/S G/C3

COMPANY BEACH PETROLEUM N.L.

PAGE

(MATRIX PARAMETERS)

1 GR* 2 CALI,CUR,LOG,006,*

(ZONED PARAMETERS)

(ZONED PARAMETERS)		(VALUE)		(L	IMJ	TS)
LAYER OPTION FLAG DENS LAYER OPTION FLAG VELOC USER SUPPLIED DENSITY DA USER VELOC (*S1)	LOFDEN LOFVEL LAYDEN LAYVEL	-1,000000 1,000000 -999,2500 2395,000 2117,000 1879,000	G/C3 M/S	30479.7 30479.7 30479.7 300.000 185.000 165.000	-	0 0 185,000 165,000 26,2000

COMPANY	BEACH PETR	OLEUM N.L.		WELL	: WRIXONDAL	E - 1		PAGE	4
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY Atten. Coeff.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	
MS 264.6 268.6 270.6 272.6 274.6 276.6 278.6 280.6 282.6 284.6 286.6 288.6	M 276.16 278.48 280.77 283.06 285.35 287.59 289.80 292.03 294.35 296.64 299.01 301.45 303.86	2358 2323 2286 2296 2281 2241 2215 2231 2317 2295 2369 2441 2406	2,085 2,076 2,092 2,102 2,087 2,077 2,059 2,066 2,091 2,089 2,086 2,114 2,101	-,009 -,004 ,005 -,007 -,011 -,010 ,005 ,025 -,005 ,015 ,021 -,010 -,012	.999991 .99989 .99987 .99982 .99970 .99959 .99956 .99895 .99892 .99869 .99824 .99813 .99797	00943 00436 .00470 00691 01117 01030 .00531 .02485 00499 .01511	00943 00445 .00462 00684 01126 01059 .00508 .02492 00454 .01494 .02119 00934 01199	0 00009 00008 .00007 00009 00029 00023 .00006 .00045 00018 00015 .00092 .00047	
290.6 292.6 294.6 296.6 298.6 300.6 302.6 304.6 306.6 308.6 310.6	306.23 308.69 311.10 313.50 315.91 318.36 320.78 323.29 325.74 328.25 330.71	2367 2462 2415 2393 2413 2445 2423 2511 2449 2510 2465 2499	2.083 2.117 2.096 2.079 2.099 2.120 2.085 2.104 2.106 2.096 2.060 2.045	,028 -,015 -,009 ,009 ,012 -,013 ,023 -,012 ,010 -,018 ,003	.99720 .99698 .99690 .99682 .99668 .99651 .99600 .99586 .99576 .99545 .99544	.02785 01484 00860 .00895 .01180 01311 .02244 01206 .00997 01761 .00302	.02793 01407 00839 .00849 .01095 01332 .02293 01268	.00008 .00078 .00022 00046 00085 00021 .00049 00062 00119 .00195 00013	

,

.

-

.

· A

.

. -

,

. .

•

-

	(•	$\left(\right)$			(
COMPANY :	BEACH PETR	OLEUM N.L.	U	WELL	: WRIXONDAL	E - 1		PAGE
TWO WAY Travel Time Ms	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY Atten, Coeff,	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
MS 312,6 314,6 316,6 318,6 320,6 322,6 324,6 326,6 328,6 330,6	M 333.21 335.77 338.33 340.80 343.18 345.68 348.07 350.50 352.99 355.50	2557 2563 2471 2375 2499 2390 2427 2493 2515	2,081 2,142 2,110 2,086 2,102 2,072 2,089 2,097 2,112	.020 .016 026 025 .029 029 .012 .015 .008 036	.99503 .99478 .99412 .99347 .99262 .99177 .99163 .99140 .99134 .99004	.02018 .01568 02574 02530 .02905 02914 .01148 .01517 .00791 03594	.01848 .01750 02440 02926 .02946 02762 .01155 .01350 .00844 03723	00170 .00182 .00134 00396 .00041 .00152 .00007 00167 .00053 00129
332.6 334.6 336.6 338.6 340.6 342.6	357.89 360.23 362.63 364.92 367.20 369.57	2384 2343 2400 2292 2279 2369 2308	2,072 2,056 2,091 2,077 2,045 2,081 2,068	013 .020 026 010 .026 016	,98988 ,98946 ,98877 ,98866 ,98788 ,98762	-,01247	01164 .01805 02483 00717 .02484 01945	,00084 -,00220 ,00136 ,00318 -,00305 -,00348

-,010

,022

,013

-,052

.020

,026

.001

-,018

5

348.6 350,6

352.6

354.6

358,6

344.6

346.6

356.6

360,6

390,67

371.88

374.18

376,56

378,95

381,20

383,52

385,94

388,33

2340 2,051

2,068

2,035

2,048

2,099

2,018

2,024

2,052

2,080

2308

2298

2386

2391

2243

2328

2417

2392

-,010 .98277

,98751

.98704

.98686

,98423

.98384

,98319

.98319

,98288

-.01012

.02161

.01324

-,05096

.01967

,02527

.00141

-,01756

-,00995

-.00566

,02140

.00937

,02247

.02147

,00190

-.00961

-.04737

-,01498 -,00502

,00446

-,00020

-.00387

,00359

,00280

-,00380

,00049

,00795

COMPANY	BEACH PETR	OLEUM N.L.		WELL	: WRIXONDAL	E - 1		PAGE	6
TWO WAY TRAVEL TIME MS	DEPTH From Srd (or Top) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN COEFF.	SYNTHETIC SEISMO PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	. *
110	ž*t .								
362,6	392,94	2270	2,072	.070	,97796	.06878	.06414	-,00464	
364,6	395.47	2524	2,144	-,062	.97419	-,06074	-,05624	,00449	
366,6	397.77	2300	2,078	.009	.97411	.00873	.01454	,00581	
368,6	400.10	2332	2,086	-,029	.97329	02822	03773	-,00952	
370.6	402.34	2245	2,045	,002	.97329	.00170	.00424	.00254	
372,6	404.65	2307	1,997	,038	.97185	.03746	,04200	.00454	
374,6	407.06	2413	2,062	-,022	.97138	02136	02302	-,00166	
376,6	409.39	2325	2,048	-,014	.97120	=.01318	-,01895	00577	
378,6	411.67	2277	2,036	,036	.96992	.03522	.03417	00105	
380,6	. 414.04	2378	2.096	-,014	.96972	-,01403	-,00700	.00702	
382,6	416.46	2415	2.005	-,008	.96966		-,00936	00164	
384.6	418,80	2344	2,032	,009	.96959	.00833	.00642	-,00190	
386.6	421,19	2388	2,030	-,086	.96239	08356	08106	.00250	
388,6	423.30	2105	1,937	,077	.95666	.07421	.07270	00151	
390,6	425,59	2297	2.072	,036	,95541	.03459	.03241	00217	
392,6	428.05	2455	2,084	-,022	,95495	02097	01652		
394.6	430,39	2346	2,087	.047	•95495 •95288	.04451		-	
396,6		2545	2,112				•04435	00015	
	432,94	2405	2,090	-,034	.95181	-,03194	-,03088	.00107	
398,6	435,34	2291	2,106	-,020	.95141	-,01949	-,02555	00606	
400,6	437,63	2336	2,051	004	.95140	-,00341	.00002	,00343	
402,6	439,97	2424	2,066	.022	,95093	.02107	.02938	,00831	
404,6	442,39	2408	2,117	.009	.95085	.00863	.00389	-,00474	
406.6	444,80	2459	2,126	,012	,95071	.01179	.00253	-,00926	
408,6	447.26	2445	2,065	017	,95042	-,01634	,00063	.01697	·

.

ĺ

COMPANY : BEACH PETROLEUM N.L.

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (or top) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO." PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
410.6	449.71	0 A C 1	D 111	.013	,95027	.01220	-,00204	-,01424
412.6	452.16	2451	2,114	-,028	,94953	-,02654	03150	-,00496
414,6	454.56	2407	2,036	-,028	.94876	02705	01419	,01286
416.6	456,80	2236	2,070	-,008	,94869	00763	01280	-,00516
418.6	459,01	2205	2,066	-,063	.94495	-,05957	06372	-,00415
420,6	461.05	2043	1,966	,108	.93392	.10211	.09989	-,00222
422,6	463,40	2355	2,119	083	.92743	07788	-,06964	.00824
424.6	465.52	2121	1,990	.071	.92275	.06583	.05058	01525
426.6	467.87	2344	2.077	.026	,92212	.02420	.03222	.00803
428.6	470,30	2430	2,110	003	,92211	-,00275	.00433	.00707
430.6	472,72	2416	2,110	.005	.92209	.00465	,00052	00413
432.6	475,16	2446	2,105	.001	.92209	,00053	,00582	.00530
434.6	477,60	2441	2,112	,001	.92209	.00127	.00630	,00503
436.6	480,06	2458	2.104	.005	,92205	.00496	.00845	.00349
438,6	482,55	2489	2,100	•005 •016		.01458		
440.6		2516	2.144	-	,92183		.01245	-,00214
-	485.07	2574	2,150	•013	,92168	.01184	.00846	00338
442.6	487,64	2396	2,107	-,046	.91973	04236	04929	-,00693
444.6	490.04	2487	2,147	,028	.91901	02581	.03394	.00813
446,6	492.52	2406	2,130	021	.91862	-,01884	02647	-,00763
448.6	494.93	2472	2,130	,013	.91845	,01240	.01327	,00087
450.6	497.40	2362	2,103	-,029	.91767	02683	-,00933	.01750
452.6	499,76	2434	2,165	,030	,91686	.02718	.00864	-,01853
454,6	502.20	2434	2,138	,008 -	,91680	.00768	.00625	-,00144
456,6	504.70	200	2,113	-,049	,91458	-,04511	-,05167	-,00656

,014

2,113

2298

458,6

507.00

WELL

: WRIXONDALE - 1

.91441

.01249

.02680

,01431

PAGE

7

COMPANY	BEACH PETR	OLEUM N.L.	•	WELL	: WRIXONDAL	•E - 1		PAGE	8
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M ·	INTERVAL VELOCITY M/S	INTERVAL Density G/C3	REFLECT, COEFF,	TWO WAY ATTEN. Coeff.	SYNTHETIC SEISMO, PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	-
MS 460.6 462.6 464.6 466.6 468.6 470.6 472.6 474.6 476.6 478.6 480.6 480.6 482.6 484.6 484.6 486.6 488.6 490.6	M · 509.33 511.74 514.12 516.41 518.68 521.02 523.39 525.80 528.28 530.84 533.37 535.77 538.36 540.67 543.05 545.49 547.87	 M/S 2334 2407 2376 2296 2265 2337 2373 2416 2477 2561 2528 2402 2584 2308 2387 2437 2382 2368 	G/C3 2.138 2.171 2.128 2.115 2.115 2.152 2.139 2.153 2.153 2.189 2.200 2.184 2.161 2.241 2.143 2.177 2.175 2.138 2.114	,023 -,017 -,020 -,006 ,024 ,005 ,012 ,019 -,010 -,031 ,055 -,079 ,025 ,010 -,020 -,009	.91393 .91368 .91331 .91327 .91276 .91274 .91261 .91222 .91188 .91179 .91092 .90821 .90261 .90266 .90197 .90161 .90155	.02102 01510 01835 00557 .02161 .00423 .01105 .01895 .01746 00917 02809 .04974 07133 .02223 .00880 01804 00771	.01155 00824 01130 01799 .02252 .01168 .00017 .01527 .03369 01181 02194 .04008 06425 .02641 01935 00136 01420	00947 .00686 .00705 01242 .00091 .00746 01088 00368 .01623 00264 .00615 00966 .00708 .00418 02815 .01668 00649	·
494.6 496.6 498.6 500.6 502.6 504.6 506.6	550,24 552,63 555,14 557,54 559,92 562,29 564,77	2389 2508 2401 2383 2365 2479 2451	2.095 2.191 2.117 2.172 2.156 2.261 2.192	0 .047 039 .009 008 .047 021	.90155 .89959 .89823 .89816 .89811 .89610 .89570	-,00002 .04203 -,03493 .00802 -,00679 .04249 -,01895	.00207 .05336 04655 .02284 01821 .03613 00719	.00209 .01133 01162 .01482 01142 00636 .01176	

.

.

.

-

.

-

COMPANY BEACH PETROLEUM N.L. WELL : WRIXONDALE -TWO WAY REFLECT. DEPTH FROM SRD INTERVAL VELOCITY INTERVAL TWO WAY SYNTHETIC PRIMARY MULTIPLES COEFF. ATTEN. TRAVEL DENSITY SEISMO. ONLY MULTIPLES TIME (OR TOP) COEFF. PRIMARY G/C3 M/S MS М 508.6 567.22 .051 .89333 .04601 .07028 .02428 2642 2.253 510.6 569.86 -.027 .89268 -.03800 -.02421 -.06221 2,229 2530 512.6 572,39 -.004 .89266 -.00354 .02023 .02377 2.232 2508 514.6 574,90 -.022 .89225 -.01003 -.01924 .00922 2444 2.193 516.6 577,34 .03743 .042 .89068 -.01892 .01851 2593 2.248 518.6 579.94 .021 .89028 .01879 .03057 .01178 2689 2.261 520.6 582.62 -.020 .88992 -.01302 -.03695 -,01892 2623 2.226 522.6 585 .01592 587 524.6 -,03061 526.6 590 ,01824 528.6 592 .02333

556.6

627,11

585.25	0430		049	.88782	04317	02724	
587.69	2438	2,173	.009	.88776	.00755	-,02306	
590,15	2464	2,188	.055	.88511	.04847	.06671	
592.81	2659	2,261	-,015	.88492	01287	.01046	
595.40	2592	2,253	021	.88453	01863	04160	
597.91	2515	2,226	004	.88452	00366	-,00189	
600.43	2514	2.209	114	.87301	10091	09573	
602.57	2141	2,062	.101	.86413	.08800	.05909	

530,6	595.40	2374	29233	-,021	.88453	01863	04160	02297
532.6	597.91	2515	2,226	004	.88452	-,00366	-,00189	.00177
534.6	600.43	2514	2.209	-,114	.87301	-,10091	09573	.00518
536,6	602,57	2141	2,062	,101	.86413	.08800	.05909	02891
538.6	604.99	2420	2,233	-,064	.86058	05543	03367	.02176
540.6	607.28	2287	2,079	,106	.85098	.09088	.07478	-,01610
542.6	609.94	2660	2,209	035	.84994	-,02978	.00056	.03034
544.6	612,48	2541	2,156	.037	.84878	.03141	.02834	00307
546.6	615.10	2617	2,254	026	.84821	02192	03299	01107
548.6	617.63	2531	2,214	020	.84657	02192 03737	03533	,
550,6	-	2346	2.187		•	-	-	,00204
•	619,97	2489	2.250	,044	,84494	.03715	,06169	,02454
552,6	622.46	2385	2,225	-,027	.84432	-,02286	-,04818	-,02532
554.6	624,85	2045	2 1 2 6	-,049	.84233	-,04101	-,05058	-,00957

.033

.84142

.02764

2265

2,126

PAGE

.01865

,04628

g

COMPANY :	BEACH PETR	OLEUM N.L.	•	WELL I	WRIXONDAL	E - 1		PAGE 1	10
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (or top) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO PRIMARŸ	PRIMARY MULTIPLES	MULTIPLES ONLY	
	••								
558,6	629.46	2345 2389	2,193	.009	.84135	.00745	-,00704	-,01450	
560,6	631.84			033	.84044	02775	-,03332	-,00557	
562,6	634.12	2271 2153	2.157 2.052	-,052	.83820	-,04337	-,03526	,00811	•
564,6	636.27			.089	.83160	.07436	,06543	-,00894	
566,6	638.68	2410 2341	2,190 2,126	-,029	.83089	-,02426	02115	,00311	
568,6	641.02			.002	.83089	,00138	01253	01392	
570,6	643.35	2325 2290	2,148 2,153	-,007	.83086	-,00552	.01144	.01696	
572,6	645,63			,018	.83057	.01535	.00328	-,01207	
574,6	647,99	2353 2164	2,174	- .070	.82650	05815	04382	.01434	
576.6	650,15			.034	.82553	,02836	.03152	,00316	
578.6	652,39	2239 2167	2,127 2,085	-,026	.82496	02159	03350	-,01192	-
580,6	654.56			-,049	.82294	-,04082	04390	-,00308	
582.6	656.61	2052 2216	1,994	,063	.81967	.05187	.06018	,00832	
584,6	658.83			-,020	.81936	01606	.00782	,02387	
586.6	660.99	2165 2057	2,062 1,999	041	.81797	03371	-,06840	-,03469	
588,6	663,05			.029	,81728	.02378	.03217	.00839	
590 <u>.</u> 6	665.17	2124 2094	2,052 2,042	-,010	.81721	00784	01354	-,00571	
592.6	667.27			,046	.81546	.03778	.03128	00650	
594.6	669,48	2216 2186	2,117 2,082	-,015	.81528	01225	.00227	,01452	
596,6	671,67			010	.81519	00832	.00246	.01077	
598,6	673,82	2157	2,068	.005	.81517	.00443	01209	-,01652	
600,6	675.99	2167	2,081	-,003	,81516	-,00216	.01127	.01343	
602,6	678,15	2160	2,076	-,010	.81508	00833	02328	-,01494	
604,6	680.28	2125 2106	2.067 2.041	-,011	.81498	-,00890	01420	-,00530	

(

IMPANY :	BEACH PETR	OLEUM N.L.	•	WELL	: WRIXONDAL	E - 1		PAGE 1
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY Atten. Coeff.	SYNTHETIC SEISMO PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
606,6	682,38			.007	.81494	.00587	.02359	,01772
608,6	684,51	2128	2,049	-,021	.81459	01681	05374	-,03693
610,6	686,57	2058	2,033	-,022	81419	-,01798	.01254	.03052
612.6	688,56	1992	2,010	.049	.81220	.04029	.02644	-,01384
614.6	690,68	2118	2.087	-,021	.81184	01718	.00243	.01962
616.6	692.74	2059	2,058	,012	.81171	.01008	-,01107	02116
618.6	694.81	2074	2,094	,016	.81149	.01338	.01938	.00600
620.0	696,94	2129	2.109	-,032	.81068	-,02557	00633	.01924
622.6	698,99	2051	2,056	014	,81054	01095	04475	03381
624.6	701.00	2009	2.043	,005	.81052	.00405	.03446	.03040
626.6	703.03	2029	2,043	.022	.81013	.01773	.00910	00863
628,6	705,10	2074	2,088	.037	.80899	.03033	.03128	.00095
630,6	707,28	2179	2,142	-,033	.80810	02690	00984	.01706
632,6	709.40	2115	2.064	.008	.80805	.00630	.01028	.00399
634.6	711,50	2109	2,103	.027	,80745	.02201	00183	-,02384
636,6	713,68	2174	2,154	-,007	.80741	-,00538	03045	-,02507
638,6	715,84	2157	2,142	-,013	.80727	-,01060	.04759	.05820
640,6	717.95	2110	2,133	033	,80640	02649	08612	-,05963
642.6	719,98	2032	2,075	.060	.80353	.04812	.07355	.02543
644,6	722.17	2189	2.170	-,038	.80236	-,03068	03896	-,00827
646.6	724,27	2098	2,097	-,026	.80183	-,02072	-,01336	.00736
648.6	726,31	2042	2.047	.011	.80173	.00885	-,00753	01639
650,6	728.38	2071	2,063	-,015	,80154	01221	00702	,00520
652,6	730,42	2038	2.033	,019	.80127	.01488	.03173	.01685
654.6	732.50	2080	2,068	,013	.80113	.01043	.00164	00879

•

1

COMPANY	BEACH PETR	OLEUM N.L.		WELL	: WRIXONDAL	E = 1		PAGE 12	2
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY Atten. Coeff.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + Multiples	MULTIPLES ONLY	•
TIME MS 656.6 658.6 660.6 662.6 664.6 666.6 668.6 670.6 672.6 674.6 676.6	(OR TOP) 734.62 736.71 738.77 740.88 742.94 745.20 747.53 750.17 752.82 755.38 758.23			-,004 -,012 ,006 -,005 ,068 ,018 ,092 -,011 -,020 ,081 -,122	COEFF, .80112 .80100 .80097 .80095 .79720 .79694 .79021 .79011 .78981 .78457 .77288	PRIMARÝ -,00286 -,00998 ,00444 -,00413 ,05483 ,01435 ,07321 -,00900 -,01544 ,06430 -,09579	01044 01787 .02554 00109 .06262 .01276 .07668 00843 .00088 .05940 08780	00758 00789 .02110 .00303 .00779 00159 .00346 .00057 .01632 00490 .00799 -	-
678.6 680.6 682.6 684.6 686.6 688.6 690.6 692.6 694.6 696.6 698.6 700.6 702.6	760.62 762.81 765.22 767,15 769.23 771.77 774.13 776.88 779.62 782.20 784.80 787.41 790.16	2188 2417 1930 2080 2533 2365 2751 2742 2577 2602 2612 2745 2666	1,940 2,050 1,445 1,934 2,227 2,038 2,076 2,129 2,079 2,128 2,052 2,130 2,094	-,110 ,077 -,280 ,181 ,167 -,079 ,085 ,011 -,043 ,016 -,016 ,043 -,023	.76351 .75898 .69965 .67672 .65774 .65368 .64898 .64898 .64890 .64772 .64754 .64737 .64615 .64581	-,08509 ,05883 -,21219 ,12668 ,11332 -,05170 ,05543 ,00703 -,02771 ,01061 -,01053 ,02808 -,01494	-,10667 ,06093 -,22544 ,05414 ,16832 -,00317 ,00067 ,03192 -,01433 ,03863 -,00639 ,04359 -,02302	02158 .00210 01325 07255 .05500 .04854 05476 .02489 .01338 .02802 .00414 .01551 00809	

BEACH PETROLEUM N.L. WELL : WRIXONDALE - 1

COMPANY

752.6

856,23

TWO WAY DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC PRIMARY MULTIPLES FROM SRD TRAVEL VELOCITY ATTEN. COEFF. SEISMO. PRIMARY DENSITY COEFF. ONLY MULTIPLES TIME (OR TOP) MS G/C3 M/S 704.6 792.82 -.003 .64580 -.00194 -.01044 -.00850 2627 2,112 706.6 795.45 .038 .64486 .02472 .02749 .00277 2779 2.156 708.6 798.23 -.010 .64479 -,00651 -.02865 -.02214 2740 2,142 710.6 800,97 -.027 .64433 -.01732 .00263 .01996 2640 2,107 712,6 803.61 .010 .64426 .00662 .00063 -.00599 2690 2.111 714.6 806.30 .00639 .010 .64419 -.01040 -.01679 2718 2.131 716.6 809.02 .64413 .010 .00634 .01913 .01279 2742 2.155 718.6 811.76 -.018 .64391 -,01189 -.00404 .00785 2677 2,127 720.6 814.44 .029 .64336 .01879 .02390 .00510 2788 2,165 722.6 817,22 -.006 .64334 -.00418 -.02551 -.02133 2753 2.164 724.6 819,98 .005 .64332 .00296 .03313 .03017 2766 2.174 726.6 822.74 -.007 .64329 -.00474 -.00707 -.00234 2753 2,152 728.6 825,50 .020 .64304 .01256 -.01825 -.03081 2832 2.176 730.6 828.33 -.014 .64292 -.00894 .03807 .04701 2772 2.162 732.6 831.10 -.029 .64237 -.01881 -.03297 -.01417 2656 2.128 734.6 833,76 .00564 .009 .64232 -.01080 -,01643 2678 2.147 736.6 836.43 .025 .64191 .01618 .02040 .00422 2804 2,157 ,006 738.6 839.24 .64189 ,00379 -,01025 -.01404 2848 2.149 740.6 842.09 -,216 .61190 -.13873 -.10481 .03392 2339 1.687 742.6 844.42 .57790 -.236 -.14424 -,23283 -.08859 2023 1.206 744.6 846.45 ,065 .57550 .03728 .02548 -,01180 2014 1,378 ,335 746.6 848,46 .51110 .19251 .18126 -.01125 2498 2,228 748.6 850,96 .034 .51052 .01727 .11069 .09342 2629 2,266 750.6 853,59 -,026 .51017 -.02716 -.01332 -.04047 2641 2,141

.027

.50981

.01364

-,03129

-.04493

PAGE

13

COMPANY	BEACH PETR	OLEUM N.L.		WELL	WRIXONDAL	E - 1		PAGE 1	14
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY Atten. Coeff.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	-
754,6 756,6 758,6	859.01 861.76 864.53	2779 2750 2770	2,146 2,122 2,148	011 .010 008	.50975 .50970 .50967	-,00551 ,00494 -,00407	.05321 .01516 .00293	.05872	
760,6 762,6 764,6	867,26 869,88 872,62	2731 2618 2741	2,144 2,043 2,115	-,008 -,045 ,040 -,005	.50862 .50779 .50777	02314 .02052 00266	-,00599 .04621 -,02582	.00699 .01715 .02568 02316	
766,6 768,6 770,6	875,30 878,07 680,46	2682 2766 2387	2.139 2.260 2.177	.043 092 182	.50684 .50253 .48580	•02175 •04673 •09169	.04089 05410 11082	.01914 -,00738 -,01913	
772.6 774.6 776.6	882.55 884,61 886.63	2098 2062 2016 2040	1.713 1.484 1.424	080 032 077	.48269 .48219 .47933	-,03890	04762 04541 02808	00872 02995 .00908	
778.6 780.6 782.6	888.67 891.56 894.43	2891 2870 2619	1,206 2,344 2,235 2,094	.467 -,027 078	.37462 .37434 .37205	.22404 01024 02924	.16337 .01975 01382	06066 .02999 .01542	
784,6 786,6 788,6 790,6	897.05 899.44 902.14 904.86	2392 2693 2721	2.191 2.233 2.175	023 .069 008 .017	.37186 .37010 .37008 .36997	00849 .02556 00293 .00635	-,05410 ,08388 ,05121 -,02722	-,04561 .05832 .05414 -,03357	
792.6 794.6 796.6	907,65 910.70 913.54	2790 3050 2847 2782	2,196 2,268 2,210 2,140	•061 -•047 -•028	.36861 .36779 .36751	.02242 01742 01014	.11183 02204 12110	,08941 -,00461 -,11096	
798,6 800,6	916 .33 919 . 16	2832 2723	2,189	.020 017	.36736 .36725	,00733 -,00637	.05688 01029	,04954 -,00393	

COMPANY	BEACH PETR	OLEUM N.L.		WELL	: WRIXONDAL	E - 1		PAGE	15
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO PRIMARY	PRIMARY HULTIPLES	MULTIPLES ONLY	
MS 802,6 804,6 806,6 808,6 810,6 812,6 814,6 816,6 818,6 820,6 822,6 824,6 824,6 826,6 824,6 834,6 834,6 834,6 834,6 834,6 840,6 844,6	M 921.88 924.37 926.92 929.60 932.23 934.82 937.55 940.35 943.04 945.89 948.90 952.13 955.12 958.10 961.55 965.02	M/S 2488 2546 2685 2629 2591 2731 2793 2692 2854 3012 3231 2987 2984 3443 3477	G/C3 2,295 2,314 2,346 2,301 2,269 2,273 2,314 2,344 2,383 2,432 2,420 2,419 2,314 2,450 2,436	-,024 ,016 ,033 -,020 -,014 ,027 ,020 -,012 ,037 ,037 ,037 ,033 -,039 -,023 ,100 ,002 0	.36705 .36695 .36655 .36639 .36632 .36605 .36590 .36584 .36534 .36483 .36483 .36445 .36388 .36369 .36006 .36006 .36006	00870 .00579 .01226 00746 00521 .00996 .00742 00440 .01364 .01359 .01186	.05607 .09628 08524 .04625 07174 00682 .00859 .03203 02420 .04030 .03899 00903 01673 .01919 00297 .01111 .06171 .04379 09851 .06797 .01751 04307 .00653 01132	.06477 .09049 09750 .05371 06653 01678 .00117 .03644 03784 .02671 .02713 .00534 00847 01713 00374 .01111 .06171 .04379 09851 .06797 .01751 04307 .00653 01132	-
848.6 850.6							-,02648	01132	

 $\int_{-\infty}^{\infty}$

i.

COMPANY	BEACH PETR	ROLEUM N.L.		WELL	WRIXONDAI	GE - 1		PAGE 16
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
852,6							.04423	.04423
854,6							.01522	.01522
856,6							-,02399	- ,02399
858,6							00743	-,00743
860,6							,06193	,06193
862,6							06805	-,06805
864.6							,00244	.00244
866.6							-,02122	02122
868,6				·			,09377	.09377
870,6							01336	-,01336
872,6							-,02931	-,02931 _
874,6							.01706	,01706
876.6							03563	-,03563
878,6							-,08180	-,08180
880.6							.05205	,05205
882,6							00481	-,00481
884,6							-,03066	-,03066
886,6							.05742	.05742
888,6							.00950	,00950
890,6							.02844	,02844
892.6							00316	-,00316
894.6							-,08430	08430
896,6							,02705	.02705
898.6							-,01155	-,01155

(

٠

.

	$\left(\begin{array}{c} \\ \end{array} \right)$,		•	$\left(\begin{array}{c} \end{array} \right)$				(****
COMPANY	BEACH PETR	OLEUM N.L.		WELL	WRIXONDA	LE - 1 🔴		PAGE	17
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	·
900,6					•		.06284	.06284	!
902,6							.02360	,02360	
904.6							.01284	,01284	
906,6							00373	-,00373	
908.6							-,05796	-,05796	1
910.6			· ,				.05026	,05026	•
912,6							03354	-,03354	
914.6							-,01908	-,01908	
916,6							.04231	.04231	
918.6							-,01813	-,01813	
920,6		•					06853	-,06853	-
922.6							.02995	,02995	-
924.0							.02088	.02088	
926.6							03292	-,03292	
928.6							.03187	,03187	
930.6							03943	-,03943	
932,6							.02804	,02804	
934,6							.01478	.01478	
936,6							-,01086	-,01086	
938,6							.06314	,06314	
940.6							01003	-,01003	
942.6							.02864	.02864	
944.6							-,07930	-,07930	
946.6	•						.03688	,03688	
948,6	· .						.00470	,00470	

COMPANY	BEACH PETR	OLEUM N.L.		WELL :	WRIXONDAI	LE - 1 🛡		PAGE 18
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF,	TWO WAY Atten. Coeff.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
950,6				•			-,08564	-,08564
952,6							.02342	,02342
954.6							.00441	.00441
956,6	,						.02905	.02905
958.6							.04725	.04725
960,6							00787	00787
962,6							-,02958	-,02958
964.6							-,00865	-,00865
966.6							02703	-,02703
968,6							03549	-,03549
970,6							.01693	.01693
972,6						•	.04841	.04841
974,6							-,04538	-,04538
976.6		1					02926	.02926
978.6							.02475	,02475
980,6							00621	-,00621
982.6							.00103	.00103
984.6							.04552	,04552
986.6							.03654	.03654
988.6							03370	-,03370
990 . 0							02720	02720
992.6							.01576	,01576
994.6					-		-,07135	-,07135
996.6		•				. 	.03579	.03579

	((· · ·		ж. ж.	
COMPANY .	BEACH PETR	OLEUM N.L.	•	WELL	: WRIXONDAL	JE - 1		PAGE 19	
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF,	TWO WAY Atten. Coeff.	SYNTHETIC / SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES	
998,6	. •						-,01813	-,01813	
1000.6							-,08064	-,08064	
1002,6							.02033	,02033	
1004.6							.05287	,05287	
1006.6							.02705	,02705	
1008.6							.03856	,03856	
1010.6							01968	-,01968	
1012.6							-,05975	-,05975	
1014.6							.02344	.02344	
1016.6							.03286	.03286	
1018,6							00579	-,00579	
1020,6							.03455	,03455 -	
1022.6							.01466	.01466	
1024.6							-,05593	-,05593	
1026,6							.00380	.00380	
1028,6							02608	- ,02608	
1030.6							,01354	,01354	
1032.6							05390	-,05390	
1034.6							.00005	.00005	
1036.6							,03944	.03944	
1038.6							,02273	.02273	,
1040.6							01596	-,01596	
1042.6							-,07398	-,07398	
1044,6							.01074	.01074	
1046,6				•			,06597	,06597	

~

•

COMPANY	BEACH PETR	OLEUM N.L.		WELL	: WR	IXONDAI	LE - 1 🔴		PAGE 20)
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	A	O WAY TTEN. OEFF,	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	
1048.6								,01012	.01012	
1050,6								00302	00302	
1052,6								.03271	.03271	
1054.6	•							-,01405	01405	
1056,6								04642	-,04642	
1058,6								.01079	.01079	
1060.6								02287	02287	
1062.6								.05831	.05831	
1064.6								-,00639	00639	
1066,6								-,08653	08653	
1068.6								02046	02046	
1070.6							•	,06025	.06025	
1072.6								.01734	.01734	
1074,6								01988	01988	
1076.6								00117	-,00117	
1078.6						•		.00637	.00637	
1080,6								03437	03437	
1082.6								00004	00004	
1084,6								.08592	,08592	
1086.6								04926	-,04926	
1088,6								,01975	.01975	
1090.6								,02351	.02351	
1092.6								-,01626	-,01626	
1094.6						,		.01826	.01826	

(

.

.

.

	$\left(\right)$				\int				يىلىمى ا
COMPANY	BEACH PETR	OLEUM N.L.	۲	WELL	: WRIXONDAL	e = 1 🍊		PAGE	21
TWO WAY Travel Time Ms	DEPTH From Srd (or Top) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY Atten. Coeff.	SYNTHETIC SEISMO. PRIMARŸ	PRIMARY MULTIPLES	MULTIPLE ONLY	S
1096.6							-,03877	-,0387	7
1098.6							-,06195	-,0619	5
1100.6							.02382	,0238	2
1102.6							.01589	,0158	9
1104.6							.03513	,0351	3
1106.6							.05077	,0507	7
1108.6							.00642	.0064	2
1110.6							-,05819	-,0581	9
1112,6							01572	-,0157	2
1114,6							.00133	,0013	3
1116,6							,03547	,0354	7

٠

٠

.

.

1

-

·

APPENDIX 7

SOURCE ROCK STUDIES

;

1

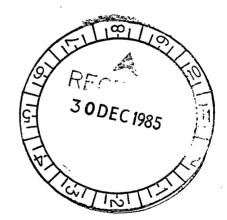
ţ

TELEPHONE : 042-299843 INTERNATIONAL : 61-42-299843

D.G. Langton EXPLORATION DIRECTOR Beach Petroleum No Liability P.O.Box 360 CAMBERWELL VICTORIA 3124

23.12.85

Dear Doug


Please find enclosed Vitrinite Reflectance results sheets and Total Organic Carbon data for 5 samples from Wrixondale No. 1 (x4050-x4054) and an account on Invoice No. 879.

Yours sincerely

joarbooz

Joan Cook

Encl

AT

7 DALLAS STREET, KEIRAVILLE, N.S.W. AUSTRALIA, 2500

TELEPHONE : 042-299843 INTERNATIONAL : 61-42-299843

Dr. A. Tabasi Beach Petroleum No Liability 4th Floor 685 Burke Road CAMBERWELL VICTORIA 3124

3.2.86

7 DALLAS STREET, KEIRAVILLE, N.S.W. AUSTRALIA, 2500

Dear Mr. Tabassi

Please find enclosed Vitrinite Reflectance results sheets and Total Organic Carbon data for 4 samples from Wrixondale No. 1 (x4055-4058)) and an account on Invoice No. 908. $f_{\rm E}$ (Let 4/2)

Yours sincerely

book

Joan Cook

Encl

					ARTAUNDALE NU.
K.K. No.	Depth (m)	₽ R _v max	Range	N	Description Including Exinite Fluorescence
•					Gippsland Limestone
×4050	470 Ctgs	-	-	-	No exinite fluorescence. (Limestone>>pyrite=mud additive. Dom absent. Pyrite abundant, partly framboidal.)
x4051	550 Ctgs R I	0.31 1.35	0.30-0.32 -	2 1	Rare ?phytoplankton, yellow to yellow orange. (Limestone>>pyrite. Dom very rare, E>>l=V. Exinite rare, trace of inertinite and vitrinite. Shell fragments present. Framboidal pyrite abundant.)
				Lak	es Entrance Formation
×4052	650 Ctgs R I	0.35 0.83	- 0.67-0.98		Rare ?phytoplankton, yellow to yellow orange. (Limestone>>sandstone=pyrite. Dom very rare, E>I>V. Exinite very rare, trace of inertinite and vitrinite. Rare small oval patches of greenish yellow fluorescing oil/bitumen. Shell fragments and foraminifers present. Framboidal pyrite abundant.)
×4053	751 SWC	?0 . 29	0.28-0.29	2	Rare phytoplankton, yellow, trace of sporinite, yellow orange. (Limestone>calcareous siltstone>calcareous claystone>sandstone>pyrite. Dom rare, E>I=I. Exinite rare, trace of vitrinite and inertinite. Framboidal pyrite abundant.)
					Latrobe Group
×4054	795 SWC R I	0.31 0.98	0.26-0.35 0.62-1.35	5 10	Common phytoplankton, yellow, sparse sporinite, yellow to yellow orange, rare ?dinoflagellates, yellow. (Claystone>coal. Coal common, V only. Vitrite. Dom common, E>>I>V. Exinite common, inertinite rare, vitrinite rare. Vitrinite in coal is texto-ulminite showing weak brown primary fluorescence and weak ?oil cut. ?Oil present in mounting resin. Pyrite sparse.)
x4055	910.5 SWC	0.38	0.34-0.44	27	Abundant sporinite, greenish yellow to yellow, abundant suberinite, dull orange to weak brown, abundant lipto- detrinite, greenish yellow to yellow, common fluorinite/ resinite, greenish yellow. (Coal. Coal dominant, V>>E>I. Exinite approximately 10% Latrobe Valley facies. Weak green oil haze emitted by coal. Dom absent. All three maceral groups absent as dom. Vitrinite is commonly micrinitized.)
×4056	925 SWC	0.35	0.31-0.38	5	Rare ?sporinite, yellow. (Claystone. Dom rare, V>?E. Vitrinite and ?exinite rare, inertinite absent. Brilliant green fluorescing ?oll globules rare in claystone. Iron oxides sparse. Pyrite rare.)
				S	trzelecki Formation
×4057	955 SWC R		0.47-0.80 0.96-2.12		Sparse sporinite, yellow to orange, rare liptodetrinite, yellow to orange. (Sandstone. Dom sparse to common, I>E>V. Inertinite sparse to common, exinite sparse, vitrinite rare. Some reworked coal, R>1.0%, present. Pyrite rare.)
×4058	980 SWC	0.58	0.52-0.64	4	Rare sporinite and liptodetrinite, yellow to orange. (Siltstone. Dom sparse, I>>E>V. Inertinite sparse, exinite
	R I	1.56	1.00-2.10	20	and vitrinite rare. Rare green fluorescing ?oil droplets in setting medium. Sparse pyrite.)

WRIXONDALE NO. 1

A1/1

WRIXONDALE NO. 1

KK No. Depth (m) TOC **x4**050 470 0.07 x4051 550 0.09 x4052 650 0.16 x4053 751 0.44 x4054 795 0.95 x4055 910.5 49.00 x4056 925 0.59 x4057 955 0.77 x4058 980 0.29

APPENDIX 8

ROCK EVALUATION ANALYSIS

Telex AA82520

Hineral Development Laboratories Flemington Street, Frewville, South Australia 5063 Phone Adelaide (08) 79 1662

> Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

12 March 1986

F 3/944/0 F 6350 (Addendum)

Beach Petroleum Pty Limited 685 Burke Road CAMBERWELL VIC 3124

Attention: Dr A. Tabassi

REPORT F 6350 - Addendum

YOUR REFERENCE: Letter dated 7 February 1986 from D.G. Langton

TITLE: Notes on the significance of hydrocarbons extracted from a sidewall core, Wrixondale-1, onshore Gippsland Basin

MATERIAL: Sidewall cores

LOCALITY: WRIXONDALE-1

IDENTIFICATION: SWC-24, 26, 17, 12, 8 and 3

DATE RECEIVED: 10 February 1986

WORK REQUIRED: Total organic carbon. Rock-Eval pyrolysis. Interpretation

Investigation and Report by: Dr David McKirdy and Teresa O'Leary

Manager-Petroleum Services Section: Dr Brian G. Steveson

Bri Stene

for Dr William G. Spencer General Manager Applied Sciences Group

сар

Head Office: Flemington Street, Frewville South Australia 5063 Telephone (08) 79 1662 Telex: Amdel AA82520 **Pilot Plant: Osman Place** Thebarton, S.A. Telephone (08) 43 5733 Telex: Amdel AA82725 Branch Laboratories: Melbourne, Vic. Telephone (03) 645 3093 Perth, W.A. Telephone (09) 325 7311 Telex: Amdel AA94893 Sydney, N.S.W. phone (02) 439 7735 elex: Amdel AA20053 Townsville Queensland 4814 Telephone (077) 75 1377 NOTES ON THE SIGNIFICANCE OF HYDROCARBONS EXTRACTED FROM SWC 24, WRIXONDALE-1, ONSHORE GIPPSLAND BASIN

- 1. Rock-Eval Tmax data indicate that Latrobe Group sediments from 790-925 metres depth in Wrixondale-1 are thermally immature (VR < 0.5% : Fig. 1).
- 2. The lack of significant odd/even predominance displayed by the C_{23+} <u>n</u>-alkanes extracted from SWC 24 (801.0 metres) (Fig. 3) suggests that these hydrocarbons are not indigenous.
- 3. However, staining of SWC 24 by *migrated* hydrocarbons (as suggested by fluorescence noted in cuttings) would be expected to give rise to a higher production index ($S_1/S_1+S_2 > 0.2$) than obtained for this sample (Table 1).
- Moreover, hydrocarbons (saturated plus aromatic) comprise only
 6.4% of the SWC extract. This is atypically low for a non-biodegraded residual oil.
- 5. The extracted hydrocarbons have a pristane/phytane ratio (pr/ph = 5.1) which is similar to that of the West Seahorse-1 crude (pr/ph = 5.2) measured from Fig. 1 in Alexander *et al.*, 1983). The West Seahorse-1 oil has been biodegraded to a *minor* extent. Such biodegradation is not evident in the Wrixondale-1 SWC 24 extract (see e.g. pristane/ \underline{n} - C_{17} = 0.42; cf. West Seahorse-1, pristane/ \underline{n} - C_{17} = 3.4).

CONCLUSION

Hydrocarbons isolated from SWC 24, Wrixondale-1, display certain gross similarities with the West Seahorse-1 crude (e.g. pr/ph ~5). However, the low Rock-Eval production index of this sample and the low hydrocarbon content of its solvent extract are inconsistent with the presence of residual oil. The possibility of low-level contamination cannot be ruled out.

REFERENCES

ALEXANDER, R., KAGI, R.I., WOODHOUSE, G.W., and VOLKMAN, J.K., 1983 - The geochemistry of some biodegraded Australian oils. *APEA Journal*, <u>23</u>(1), 53-63.

TABLE 1

AMDEL

ROCK-EVAL PYROLYSIS

Page

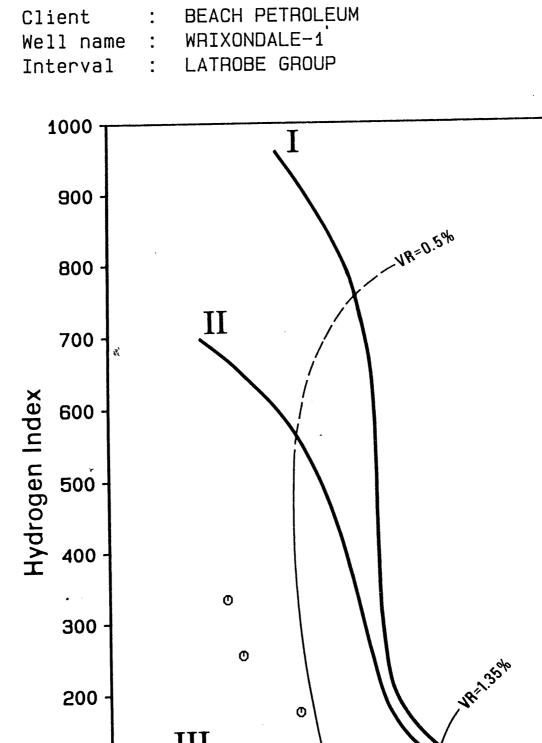
06/03/86

Client	BEACH P	ETROLEUM									
Well	WRIXOND	ALE-1									
DEPTH	τ ΜΑΧ	S1	S2	\$3	S1+S2	PI	S2/S3	PĈ	TOC	HI	01
LATROBE	GROUP										
790.00	396	0.05	0.34	0.36	0.39	0.13	0.94	0.03	0.57	60	63
801.00	414	0.07	1.42	0.47	1.49	0.05	3.02	0.12	-	-	-
875.50	411	0.22	2.66	0.33	2.88	0.08	8.06	0.24	0.80	333	41
	415	13.03	140.26	11.33	153.29	0.09	12.37	12.77	55.20	254	21
910.50					1.08	0.08	2,47	0.09	0.57	174	70
925.00	430	0.09	0.99	0.40	1.00	0.00	2.71	0.05			
STRZELEC	KI GROUP										~
955.00	443	0.04	0.94	0.25	0.98	0.04	3.76	0.08	1.04	90	24

¢,

KEY TO ROCK-EVAL PYROLYSIS DATA SHEET

PARAMETER


T max	position of S_2 peak in temperature program (^o C)
S ₁	kg hydrocarbons (extractable)/tonne rock
S ₂	kg hydrocarbons (kerogen pyrolysate)/tonne rock
S ₃	kg CO ₂ (organic)/tonne rock
$S_1 + S_2$	Potential Yield
PI	Production Index $(S_1/S_1 + S_2)$
PC	Pyrolysable Carbon (wt. percent)
TOC	Total Organic Carbon (wt. percent)
HI	Hydrogen Index (mg h'c (S2)/g TOC)

OI Oxygen Index (mg CO₂(S₃)/g TOC)

SPECIFICITY

Maturity/Kerogen type Kerogen type/Maturity/Migrated oil Kerogen type/Maturity Kerogen type/Maturity * Organic richness/Kerogen type Maturity/Migrated Oil Organic richness/Kerogen type/Maturity Organic richness Kerogen type/Maturity *

*Also subject to interference by CO_2 from decomposition of carbonate minerals.

0 | 380

T max °C

FIGURE 1

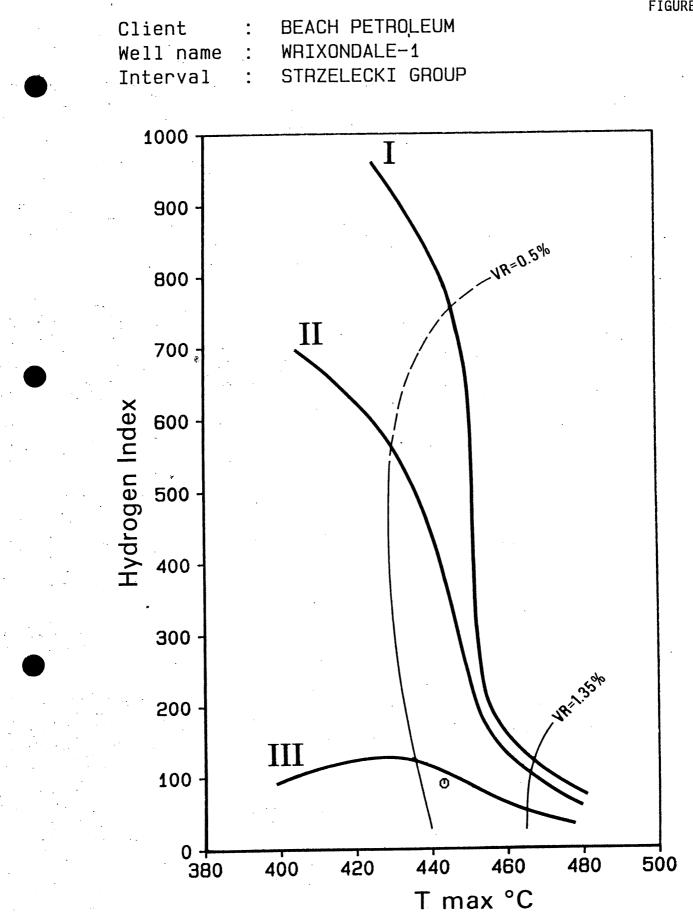
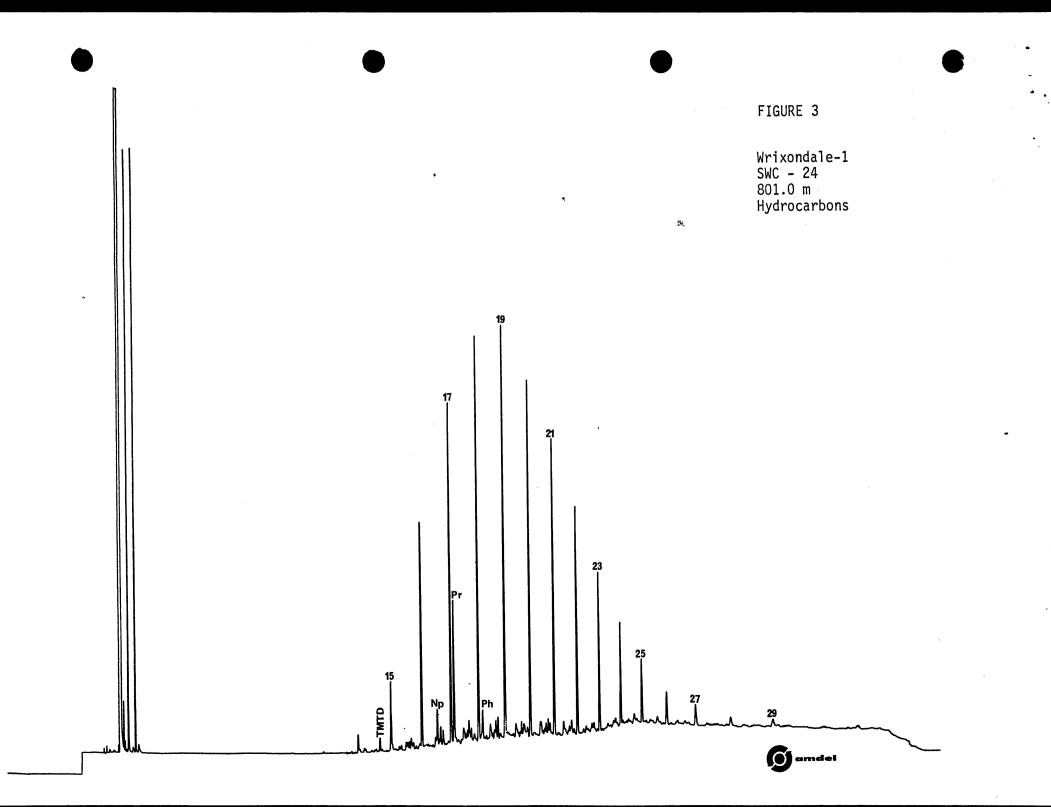



FIGURE 2

APPENDIX 9

EXTRACTION AND DETERMINATION OF HYDROCARBONS

-

The Australian Mineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide (08) 79 1662 Telex AA82520

> Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

23 January 1986

3/944/0 - F6350/86

Beach Petroleum PO Box 360 CAMBERWELL VIC 3124

Attention: Dr Tabassi

REPORT: F6350/86

YOUR REFERENCE:

TITLE:

Letter dated 26 November 1985.

Determination of Presence of Hydrocarbons in SWC-24, Wrixondale-1.

SAMPLE IDENTIFICATION:

LOCALITY:

WORK REQUIRED:

Wrixondale-1.

SWC-24.

Extraction and determination of hydrocarbons.

Investigation and Report by: Teresa O'Leary. Chief, Petroleum Services: Dr Brian G Steveson.

Spener

for Dr William G Spencer General Manager Applied Sciences Group

sj

Head Office: Flemington Street, Frewville South Australia 5063 Telephone (08) 79 1662 Telex: Amdel AA82520 Pilot Plant: **Osman Place** Thebarton, S.A. Telephone (08) 43 5733 Telex: Amdel AA82725 **Branch Laboratories:** Melbourne, Vic. Telephone (03) 645 3093 Perth, W.A. elephone (09) 325 7311 Telex: Amdel AA94893 Sydney, N.S.W. Telephone (02) 439 7735 Telex: Amdel AA20053 Townsville

Townsville Queensland 4814 Telephone (077) 75 1377

DISCUSSION

- 1. The extractable organic matter contained a low yield of condensate like hydrocarbons, however, due to the presence of drilling mud, it is not possible to say whether the hydrocarbons present are indigenous to the sandstone or are contaminants from the mud.
- 2. The high pristane/phytane ratio suggests a terrigenous derivation for the hydrocarbons present in SWC-24 from Wrixondale-1.

sj:1

AMDEL

RESIDUAL OIL ANALYSIS

WELL: WRIXONDALE-1 SWC 24 SAMPLE: ψı

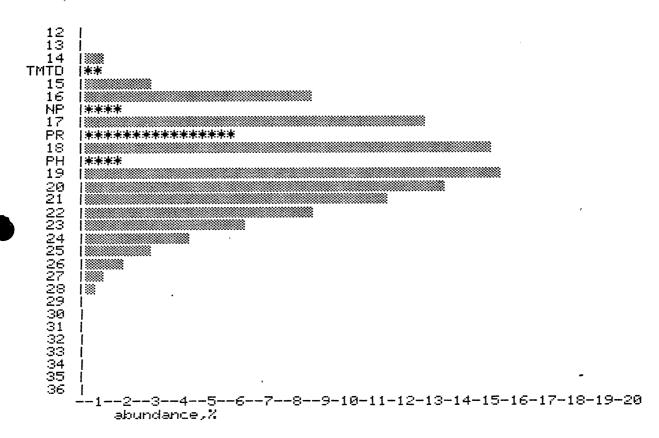
weight of	sample extracted	15.339 g
weight of	eom	69.2 mg
extracted	organic matter	4511 ppm

ANALYSIS OF EXTRACTED ORGANIC MATTER, (%)

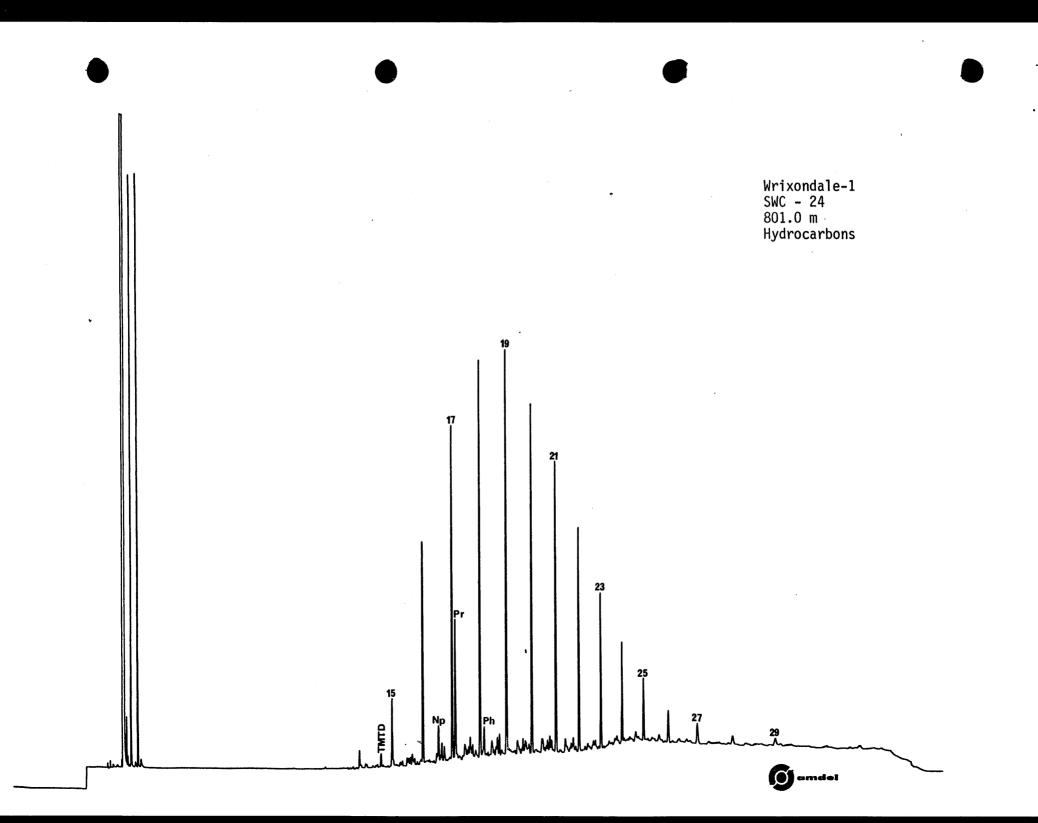
SATURATES AROMATICS AROMATICS 6.4 93.6 ASPHALTENES 1

N-ALKANE DISTRIBUTION OF SATURATES

C-N0.	z	C-NO. %	с-но.		C-NO.		с-но.	<u> </u>
12 13 14 15 16	.0 .07 2.5 8.1	17 12.3 18 14.6 19 14.9 20 12.9 21 10.8	22 23 24 25 26	8.3 5.7 3.7 2.4 1.4	27 28 29 30 31	1.0 .5 .0	32 33 34 35 36	.0 .0 .0 .0


ISOPRENOID DISTRIBUTION IN SATURATES

TMTD/pristane ratio	.09
norpristane/pristane ratio	.25
pristane/phytane ratio	5.05
pristane/c-17 ratio	.42
phytane/c-18 ratio	.07


ODD EVEN PREDOMINANCE

	C - 17 =	
0.E.P.	C - 19 =	1.02
	C-25 =	
0.E.P.	C-27 =	1.15

WRIXONDALE-1 SWC 24

HISTOGRAM OF N-ALKANE DISTRIBUTION OF SATURATES

APPENDIX 10 BIOSTRATIGRAPHIC REPORT

BIOSTRATIGRAPHIC REPORT, WRIXONDALE NO. 1, GIPPSLAND BASIN

.

February, 1986

ŝ,

J.P. Rexilius M.J. Dudgeon M.A. Islam ECL Australia Pty Ltd 16 Altona Street <u>WEST PERTH</u> WA 6005

.

I. SUMMARY

Eight sidewall cores from Wrixondale-1 (PEP 107) indicate the following stratigraphic subdivision:-

SAMPLE F	ORAM NA	ANNO ZONE	PALY ZONE	AGE	UNIT	ENVIRONMENT
SWC 28, 768.Om	H1	NN1	P. tuberculatus	basal E. Miocene	Lakes Ent. Fm ('upper mbr')	Middle Neritic
SWC 27, 772.0m	H1	NN1	<u>P. tuberculatus</u>	basal E. Miocene	Lakes Ent. Fm ('upper mbr')	Middle Neritic
SWC 26, 790.0m	Indet.	Indet.	Upper <u>N. asperus</u>	E. Oligocene	Latrobe Group	Non-marine
SWC 25, 795.0m	Not Studied	Not Studied	Middle <u>N. asperus</u>	L. Eocene	Latrobe Group	Non-marine
SWC 23, 815.0m	Not Studied	Not Studied	Middle N. asperus	L. Eocene	Latrobe Group	Non-marine
SWC 20, 854.0m	Not Studied	Not Studied	Indeterminate	Tertiary undiff.	Latrobe Group	Non-marine
SWC 17, 875.5m	Not Studied	Not Studied	Middle <u>N. asperus</u>	L Eocene	Latrobe Group	Non-marine
SWC 8, 925.0m	Not Studied	Not Studied	?lower <u>N. asperus</u>	?M. Eocene	Latrobe Group	Non-marine

II. INTRODUCTION

Eight sidewall cores from Wrixondale-1 were provided by Beach Petroleum NL for micropalaeontological and palynological analysis. Palynomorphs were recovered from all eight samples but only two of the three samples used for micropalaeontology contained any useful calcareous microfossils. The observed palynomorphs are listed in Enclosure 1 and the calcareous microfossils are listed in Appendix 1.

III. PALYNOLOGY

i) 768m

: *P. tuberculatus* Zone (Late Oligocene - Early Miocene)

The presence of Periporopollenites vesicus, Ischyosporites gremius and Foveotriletes lacunosus restricts this sample to the P. tuberculatus Zone.

Dinoflagellates are abundant and indicate an open marine environment and thus the assemblage comes from the Lakes Entrance Formation. ii) 772m : *P. tuberculatus* Zone (Late Oligocene - Early Miocene)

The sample is no older than mid *P. tuberculatus* Zone as indicated by the presence of *Foveotriletes lacunosus*. Most of the other spores/pollen also suggest a *P. tuberculatus* assignment. Dinoflagellates are abundant and the association is almost identical to the one in the sample at 768m.

iii) 790m : Upper N. asperus Zone (Early Oligocene)

The presence of Grandodiporites nebulosus restricts this sample to the Upper N. asperus Zone. Although not definite the assemblage may correlate with the lower part of this zone as suggested by the presence of Anacolosidites luteoides. The absence of dinoflagellates indicates that open marine conditions did not prevail and the absence of acritarchs indicates that brackish conditions were probably absent. This negative evidence suggests a freshwater depositional environment.

iv) 795m : Middle N asperus Zone (Late Eocene)

The pollen Liliacidites bainii and Tricolpites simatus limit the upper age of this sample and Triporopollenites chnosus the lower age to the Middle N. asperus Zone which is Late Eocene in age. The environmental interpretation is similar to that for 790m.

v) 815m : Middle N. asperus Zone (Late Eocene)

.Helciporites astrus limits the age of this sample to the Lower or Middle N. asperus Zones and as there are no forms present that are restricted to the Lower N. asperus Zone then a Middle N. asperus correlation is indicated. A nonmarine, possibly fluviatile, environment of deposition prevailed.

vi) 854m : Tertiary undifferentiated.

No age diagnostic species were identified from this sample but a Middle *N. asperus* Zone assignment is inferred.

vii) 875.5m : Middle N. asperus Zone (Late Eocene)

Santalumidites cainozoicus and Tricolipites simatus limit the upper range to the top of the Middle N. asperus Zone and the lack of older spores and pollen suggests a Middle N. asperus assignment.

viii) 925m : ?Lower N. asperus Zone (?Middle Eocene)

The pollen Tricolpites thomasii is only found in the Lower N. asperus or lowermost Middle N. asperus Zones (Stover & Partridge, 1973) while Gephyropollenites calathus is found in the uppermost Lower N. asperus Zone or higher in the Gippsland Basin. Based on the occurence of these two species in this sample one can infer that the assemblage correlates with the upper Lower N. asperus or lower Middle N. asperus Zones - probably the former.

ECL AUSTRALIA PTY. LTD.

IV. MICROPALAEONTOLOGY

A total of 3 sidewall core samples from the interval 768.0-790.0m were analysed for foraminifera and calcareous nannoplankton. Calcareous microfossil species identified in the well section, interpreted zonation and depositional environment subdivision have been plotted on the micropalaeontological distribution chart (Appendix 1).

The planktonic foraminiferal letter zonal scheme of Taylor (in prep.) and the NP-NN calcareous nannoplankton letter scheme of Martini (1971) are used in this investigation. Foraminiferal studies by Carter (1964) and Jenkins (1971), and calcareous nannoplankton investigations by Edwards (1971) and Siesser (1979) have also been consulted.

(A) Calcareous Nannoplankton Biostratigraphy

i) 768.0-772.0m : upper zone NN1 (basal Early Miocene)

The absence of Zygrhablithus bijugatus and Helicosphaera cartieri in a high yielding and well preserved nannofossil assemblage is indicative of an upper NN1 zonal assignment (= Reticulofenestra gartneri Zone of Edwards (1971).

ii) 790.0m : Indeterminate

The sample at 790.0m is barren of calcareous nannoplankton.

(B) Planktonic Foraminiferal Biostratigraphy

i) 768.0-772.0m : Zone H1 (basal Early Miocene)

The occurrence of *Globigerina woodi connecta* without *Globigerinoides trilobus* is indicative of Zone H1.

ii) 790.0m : Indeterminate

The sample at 790.0m contains minor caved planktonic foraminifera from the Seaspray Group.

(C) Environment of Deposition

i) 768.0-772.0m : Middle-outer neritic

A middle to outer neritic environment of deposition for the interval is indicated by a high yielding planktonic foraminiferal fauna, high yielding calcareous nannoplankton assemblage and a rich benthonic foraminiferal fauna including Sphaeroidina bulloides, Euvigerina miozea, Cassidulina laevigata, Globocassidulina subglobosa, Pullenia bulloides and Brizalina spp. The planktonic foraminiferal percentage ranges between 30 and 50%.

ii) 790.0m : Indeterminate

The sample at 790.0m contains juvenile planktonic foraminifera which are interpreted to be contaminants from the Seaspray Group. Palynological evidence suggests that the sample at 790.0m is Upper N. asperus in age and nonmarine.

ECL AUSTRALIA PTY. LTD.

V. CORRELATION WRIXONDALE-1 AND PAYNESVILLE-1

A chronostratigraphic correlation between Wrixondale-1 and Paynesville-1 is given in Fig. 1. Log correlation character between the two wells is good which compensates for the poor sample control across the Latrobe Group/Seaspray Group boundary in Wrixondale-1.

i) Latrobe Group

The shale member in the upper part of the Latrobe Group in both wells is interpreted to be time synchronous. The shale member is a similar thickness in both wells (15m in Paynesville-1, 17.5m in Wrixondale-1) and the overall log character comparable. There is a significant difference in sidewall core sample quality between the two wells in the upper part of the Latrobe Group. Tn Paynesville-1 mud contamination was significant down to 597m resulting in a broad palynological age assignment for the upper part of the Latrobe Group (Middle N. asperus-P. tuberculatus). Rich dinoflagellate assemblages were recorded in Paynesville-1 in this interval which suggested deposition in a marine environment. This data conflicted with wireline log and lithological character which suggested that the interval represented non-marine siliciclastics of the Latrobe Group. Because of the uncertainty whether the rich dinoflagellate assemblages in Paynesville-1 in the siliciclastic sequence between 576 and 597m were in situ, the siliciclastics were originally interpreted to represent a facies of the Latrobe Group or the lower part of the marine Seaspray Group (See page 5 in Paynesville-1 report). On the basis of evidence from Wrixondale-1, the dinoflagellates between 576 and 579m in Paynesville-1 are now considered to represent mud contaminants from the Seaspray Group.

Sidewall core sample quality in the shale member at the top of the Latrobe Group in Wrixondale-1 is excellent. Palynological evidence in Wrixondale-1 indicates that the shale member is nonmarine and ranges in age from Middle to Upper N. asperus. Since the top 7.5m of the Latrobe Group in Wrixondale has not been sampled it is possible that this section may be as young as P. tuberculatus in age although this seems unlikely. Log character indicates that this upper 7.5m probably represents non-marine Latrobe Group sediments.

ii) Lakes Entrance Formation ("lower member")

The top of the Latrobe Group in both Paynesville-1 and Wrixondale-1 is defined be oxidised horizons (sonic kicks). The top of Latrobe is defined at the top of the oxidized horizons (576.0m in Paynesville-1, 782.5m in Wrixondale-1). The "lower member" of the Lakes Entrance Formation is interpreted to be represented between 775.0m and 782.5m in Wrixondale-1. In Paynesville-1 the "lower member" occurs between 569.0 and 576.0m. The "lower member" is a comparable thickness in both wells (7m in Paynesville-1, 7.5m in Wrixondale-1). The top of the "lower member" is defined by oxidised horizons in both wells.

iii) Lakes Entrance Formation ("upper member")

Middle-outer neritic basal Early Miocene carbonates ("upper member" of the Lakes Entrance Formation) occurs above 569.0m in Paynesville-1 and 775.0m in Wrixondale-1. In Wrixondale-1 the interval from 770.0 to 775.0m is more glauconitic than the interval above 770.0m. Although the sidewall core sample at 772.0m in Wrixondale-1 is glauconitic, the lack of quartz and its age (Early Miocene) indicates that the sample probably represents the "upper member" rather than the "lower member" of the Lakes Entrance Formation.

V. REFERENCES

CARTER, A.N., 1964. Tertiary foraminifera from Gippsland, Victoria and their stratigraphic significance. <u>Geol. Surv.</u> Vict., Mem. 23.

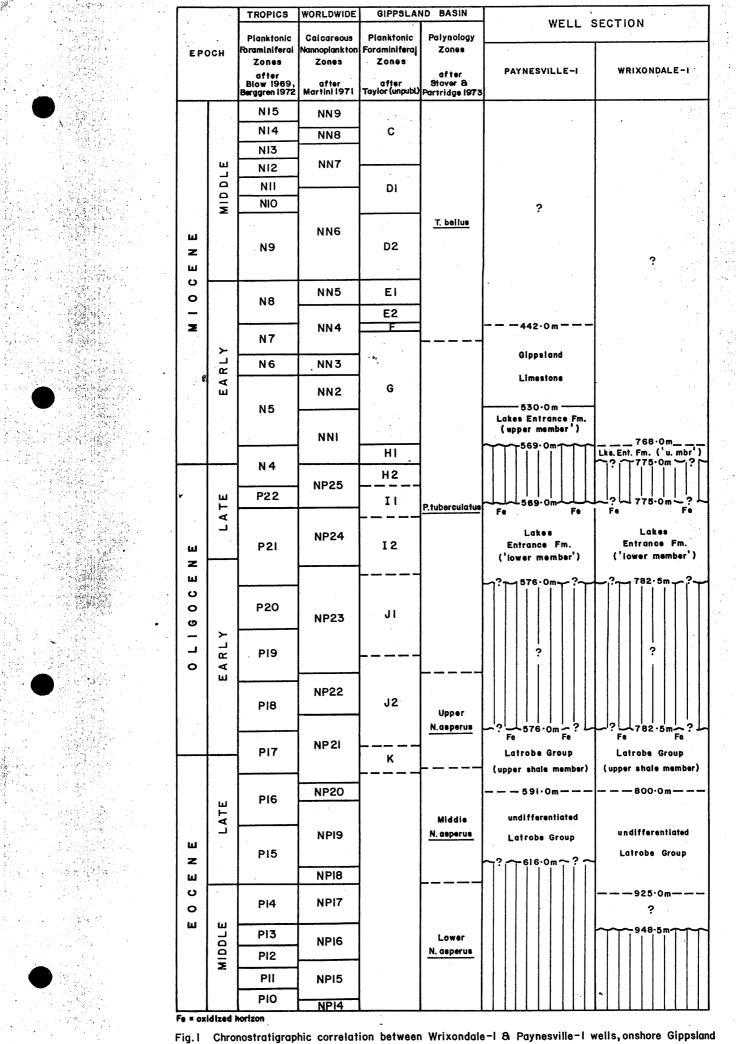
EDWARDS, A.R., 1971. A calcareous nannoplankton zonation of the New Zealand Paleogene. In : FARINACCI, A. (Ed). 2nd plank. Conf., Roma 1970., Proc. 1 : 381-419.

EVANS, P.R. 1971. Palynology. In Reynolds, M.A. (compiler) A review of the Otway Basin. Bureau of Mineral Resources, Australia, report 134: 31-35.

JENKINS, D.J., 1971. New Zealand Cenozoic foraminifera. N.Z. geol. Surv. Bull. 42 : 278p.

MARTINI, E., 1971 Standard Tertiary and Quaternary calcareous nannoplankton zonation. In : FARINACCI, A., (ED)., 2nd plank. conf., Roma 1970., Proc. :739-785.

PARTRIDGE, A.D. 1976: The geological expression of eustacy in the early Tertiary of the Gippsland Basin. APEA Journal 16: 73-79.


RAINE, J.I., 1984. Outline of a palynological zonation of Cretaceous to Paleocene terrestrial sediments in West Coast Region, South Island, New Zealand. <u>N.Z. Geol. Surv.</u>, Report No. 109.

SIESSER, W.G., 1979. Oligocene-Miocene calcareous nannofossils from the Torquay Basin, Victoria, Australia. <u>Alcheringa</u>, 3 : 159-170.

STOVER, L.E., and PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. <u>Proc. R. Soc. Vict.</u>, 85(2) : 237-286.

TAYLOR, D.J., (in prep). Observed Gippsland biostratigraphic sequences of planktonic foraminiferal assemblages.

ECL AUSTRALIA PTY. LTD.

Basin.

; correlation between wrixonaale-i & raynesville-i wells, onshore G

9 ⁸ .	4.
and the second	- i - i -
	· · ·
	1 - C
and the second	
	·
	1 - 1
	U
	£ .
	- C
	1
그는 것 같은 것 같	· ·
1	
· · · · · · · · · · · · · · · · · · ·	
	_
	1 ·
	1 · · ·
	1 × 1
4	

					۰.	- C.	3
			2		. 1	N	2
				1.		÷.	2
							٠.
						÷.,	
						1.12	
							÷
						1.1	۳.
							. 1
•					<u>^</u>		
		-					
					÷.		
					-	۰.	•
		÷					
	1.0					÷.,2	
			10			42.3	2
:*: (÷		- 1		Κ.	12.	١,
	- 2			÷ 1			,
	÷.			1.	14.1		

÷.,+

SAMPLE TYPE OR NO.	58 28	27	26																							
FOSSIL NAMES	Ę	ē	æ																	Ì						
FOSSIL NAMES	768.Om	772.0m	790.0m																							
					_			_			_	_									_	_				-2014/00
PLANKTONIC FORAMINIFERA	-							_	-																	
Globigerina praebulloides		•									-						-								-+	
Globigerina woodi connecta	0	0																					-			
Globigerina woodi woodi																								·		
Globorotalia nana group	•	•								_								_					<u> </u>			•
Globigerina spp.	•	•			_					_													ļ			
juvenile planktonics	•	•	С		 												_			•		ļ	ļ			
	-	┣—																					<u> </u>			
BENTHONIC FORAMINIFERA	-							\dashv	-		-					-	-									
Nonionella spp.	-																	-								
Lagena apiculata	17	-			-	-		-														1	+			
Sphaeroidina bulloides	0	•			 																		1 .			
Trifarina bradyi	0	•																								
Cassidulina laevigata	•	0			*.																					
Nodosaria spp	1					\bot												_			ļ	ļ				
Euvigerina miozea	•		<u> </u>	ļ	<u> </u>																ļ	ļ	ļ			
Gyroidinoides subzelandica	0	\downarrow				<u> </u>															_	·		<u> </u>		
Euvigerina cf. canariensis	$\frac{1}{7}$				_							_			<u> </u>						<u> </u>					
Lagena acuticostata	<u> '</u>	÷	-	-		┼																				
Pyrulina cylindroides Cibicides subhaidingeri	+	0			┢	\vdash	-		-																	
Globocassidulina subglobosa	17	ŀ	-		+	1								-						<u> </u>		1				
Anomalina planata	1	1			1-	†							1-								1	-	\square	1		
Guttelina problema	17	1		1		\uparrow							1									1	1-			-
Karreria maoria	•	1																								
Lenticulina spp.	•	1															L			Ľ.						
Cibicides cf. cygnorum	Ŀ	ŀ			ļ		ļ						_		_				<u> </u>	ļ	ļ					
Fissurina spp.	·	1/		ļ				┣_				-				-					-	<u> </u>		ļ.		
Lagena sulcata	ŀ	+7			+															-	-		-			┝
Pullenia quinqueloba Brizalina spp.	· 0		-	┼─	┼─	+				-	<u> </u>	-		+						┢	-	+	+		<u> </u>	┝
Brizalina anastomosa	17	\mathbf{f}	┢	┢	┼─									\vdash	┼──	-	-				\vdash	╈	┿	+		┝
Textularia spp.		17		+	+	+	+					1	1	<u> </u>							1	1	+	+		-
Almaena gippslandica	1	0	\top	1							1			1	\top	1				\top	1		1		-	F
Dentalina spp.		•																								
Pullenia bulloides		1	_	ļ	1_				ļ	ļ	<u> </u>	ļ						ļ	ļ	ļ	<u> </u>	1_			ļ	
Cibicides spp.		0			_		\vdash		<u> </u>	-	<u> </u>	_	-	-					<u> </u>	<u> </u> .		-	1	<u> </u>	<u> </u>	_
Cibicides vortex	_	ŀ	-	-			+									<u> </u>	–		<u> </u>					-		-
Guttelina segnenzana		÷	+	+-	+	+	+					-	+	+	+						+-	+	+	+		┝
CALCAREOUS NANNOPLANKTON		┼─	+	┼╴	┽╴		+-	-			+-		+	┢	+	┼──				-	+-	+	+	+	+	┝
CALCAREOUS NANNOPLANKION		+	+	╈	╈	+	+	+	┼─			+	-	1	+		+			+	+	+		+-	1-	┢
Cyclicargolithus floridanus			1	1-		1-	1-	1	\uparrow	1	1	\square	1		1-	+				1	+	1	\uparrow	ŀ	1	F
Discoaster deflandre	1		1						\square														1		ŀ	Γ
Coccolithus eupelagicus	0	•																								
Sphenolithus moriformis	0	1	1	<u> </u>		\downarrow		ļ	ļ												Į.			1		L
Pontosphaera spp.	1/		-	-			-	<u> </u>							1	 	 	<u> </u>	<u> </u>						ļ	L
Cyclococclithus spp.				+						<u> </u>				+	-	-	<u> </u>						-	+		┡
Braarudosphaera bigelowi	-1/	<u> </u>		+		-	-		-		+	\vdash	+		+					+		+	+			┝
Helicosphaera euphratis			+	+	+	+	+-	-			+	+	-		+		┝				+	≁	+		<u> </u>	⊢
juvenile coccoliths		R		+	+		+		+		+	+-			+					+		+-	+	+		
Dictyococcites bisectus		+	+	╋	╧	╈	+	1	+	1		+	+	+	+	\vdash	┢			\vdash	+	+-	+-			
		╈	\uparrow	1	╈	\uparrow		\uparrow	1	1	1	1	1-		1	1	1	-	1	\top	\uparrow	\top	1	1		Γ
			Si																						co	

.

• . . . ³⁴

PE900761

This is an enclosure indicator page. The enclosure PE900761 is enclosed within the container PE902366 at this location in this document.

	0761 has the following characteristics:
ITEM_BARCODE =	PE900761
CONTAINER_BARCODE =	PE902366
NAME =	Palynmorph Table
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	DIAGRAM
DESCRIPTION =	Palynmorphs Recorded in Wrixondale-1
REMARKS =	
$DATE_CREATED =$	
DATE_RECEIVED =	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	ECL AUSTRALIA
CLIENT_OP_CO =	BEACH PETROLEUM NL

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 11

PETROGRAPHICAL STUDIES

The Australian ineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide (08) 79 1662 Telex AA82520

> Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

andel

7 January 1986

F 3/0/0

Beach Petroleum N.L., P.O. Box 360, CAMBERWELL, VIC. 3124

ATT: DR. A. TABASSI

REPORT F 6350/86 - PART I (AMENDED)

YOUR REFERENCE:

IDENTIFICATION:

MATERIAL:

LOCALITY:

WORK REQUIRED:

Letter dated 26 November 1985

See report

Fifteen Sidewall Core Samples and one formation water sample

Wrixondale No. 1, Gippsland Basin

Petrography (15 Code MA1.3.2), Photomicrography, Water analysis (1 Code W2/1)

Investigation and Report by: Frank Radke

Chief - Petroleum Services Section: Dr Brian G Steveson

Head Office: Flemington Street, Frewville South Australia 5063 Telephone (08) 79 1662 Telex: Amdel AA82520 Pilot Plant: **Osman Place** Thebarton, S.A. Telephone (08) 43 5733 Telex: Amdel AA82725 Branch Laboratories: Melbourne, Vic. Telephone (03) 645 3093 Perth, W.A. Telephone (09) 325 7311 Telex: Amdel AA94893 Sydney, N.S.W. elephone (02) 439 7735 Telex: Amdel AA20053 Townsville Queensland 4814 Telephone (077) 75 1377

Brai flevere

for Dr William G Spencer Manager Mineral & Materials Sciences Division

bp

1. SUMMARY

Fifteen samples submitted for petrographic examination were given the following rock names.

SAMPLE & THIN	DEPTH	ROCK NAME
SECTION NO.	(m)	
Core 4: TSC46549	947.0	Granule Conglomerate
Core 6: TSC46550	937.5	Argillaceous, Fine Grained Sandstone
Core 7: TSC46551	932.0	Argillaceous Sandstone
Core 9: TSC46552	922.5	Argillaceous Sandstone
Core 13: TSC46553	898.0	Argillaceous Sandstone
Core 14: TSC46554	888.5	Argillaceous Sandstone
Core 15: TSC46555	886.5	Argillaceous Sandstone
Core 16: TSC46556	882.5	Argillaceous Sandstone
Core 19: TSC46557	865.0	Argillaceous Sandstone
Core 20: TSC46558	854.0	Argillaceous Sandstone
Core 21: TSC46559	834.0	Argillaceous Sandstone
Core 22: TSC46560	825.0	Argillaceous Sandstone
Core 23: TSC46561	815.0	Argillaceous Sandstone
Core 25: TSC46562	795.0	Claystone
Core 24: TSC46756	801.0	Argillaceous Sandstone

These samples consist mainly of fine to medium grained sandstones with a very weakly indurated character. The sandstones consist mainly of detrital quartz grains although minor amounts of other detritus are locally present. In most of the sandstones the quartz grains are not in contact with each other but are separated by interstitial voids and clay. Many of the samples have abundant void spaces and this is particularly true of the unconsolidated samples Core 14 and Core 15. It is thought that much of these voids have formed during coring and sample preparation making it difficult to determine the original porosity of these samples.

Most of these sample are fine to medium grained sandstones with a moderate clay component and are considered to be from an essentially low energy environment. Only the Core 4 sample (947.0 ft. depth) has coarser grained detrital material. It was suggested that these samples could come from a barrier bar environment but in general they appear to be from a lower energy environment.

2. INTRODUCTION

One Formation Water sample from DST No. 2 and fifteen Sidewall Core samples from the Wrixondale No. 1 Well were submitted for analysis. The formation water sample was submitted for routine formation water analysis (AMDEL Code W2/1). Fourteen of the sidewall core samples were submitted for petrographic examination including photomicrography and one sidewall core sample was submitted for confirmation of the presence of hydrocarbons. This report contains the petrography, photomicrography and water analysis. The testing for hydrocarbons will be reported separately. This amended report contains a petrographic description and photomicrography of the Core 24 sample as requested during a telephone conversation on December 20, 1985.

3. WATER ANALYSIS

The formation water analysis is given as an appendix to this report.

4. PETROGRAPHY

All of the thin sections described in this report have been stained with an alizarin red-S solution to distinguish calcite from other carboonates by staining it pink. In the petrographic descriptions calcite is used only for stained carbonate. Photomicrographs showing typical textures are given in plates 1 to 13.

SAMPLE: Core 4: TSC46549

Rock Name: <u>Granule Conglomerate</u>

Hand Specimen:

This is a friable rock containing large pale grey quartz grains up to about 8 mm long and one elongate, fine grained brown coloured clast up to 1.5 cm long cemented by an interstitial pale grey matrix.

Thin Section:

An optical estimate of the constituents gives the following :

	<u>~~</u>
Quartz	50
Clay/sericite	30
Calcite	Tr-1
Zircon	Tr
(?)Glauconite	Tr
Opaques	1
Voids	18

This sample consists mainly of detrital quartz grains cemented by an interstitial, argillaceous matrix. Most of the quartz grains have a size between 0.5 and several millimetres although some finer grained detrital quartz grains below 0.1 mm in size are locally intergrown with the argillaceous matrix. The quartz grains typically exhibit angular to subangular shapes although some of the larger grains have subrounded shapes. A small number of the larger quartz grains have highly fractured textures.

The interstitial argillaceous matrix consists mainly of weakly birefringent clay intergrown with small amounts of birefringent sericite. Within localised areas the fine sericite flakes exhibit a weakly developed lepidoblastic foliation which has a variable orientation through the rock. The interstitial areas between the detrital quartz grains also contain a significant proportion of voids as irregular patches up to about 0.5 mm wide. It is difficult to determine whether these voids are due to coring and thin section preparation or whether they represent original porosity and it is considered likely that they are a combination of both.

The thin section was cut to include the pale brown lithic clast noted in hand specimen. This clast consists mainly of weakly birefringent clay and finely divided sericite similar to the argillaceous matrix. Within the clast the sericite exhibits a strong lepidoblastic foliation which is also defined by very minor amounts of opaque material which forms elongate bodies with a subparallel orientation. This clast also contains minor amounts of silt-sized detrital quartz grains.

Traces of zircon were noted as small detrital grains up to 0.15 mm wide. The rock contains a few green pellets up to 0.1 mm wide which could represent glauconite pellets. Opaques are disseminated through the rock as anhedral grains and aggregates up to 0.3 mm wide which are generally intergrown with the argillaceous matrix.

This is a weakly sorted detrital sediment comprised mainly of detrital quartz grains with at least one large shale clast cemented by an argillaceous matrix.

SAMPLE: Core 6: TSC46550

Rock Name:

Argillaceous, Fine Grained Sandstone

Hand Specimen:

A grey coloured rock with a very fine grained, friable texture. The rock contains a few discontinuous darker coloured lamellae up to approximately 1 mm wide.

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	55
Clay/sericite	35
Muscovite	1
Tourmaline	Tr
Opaques and semi-opaques	4
Voids	5

This sample consists mainly of detrital quartz grains ranging up to 0.2 mm in size distributed through an argillaceous matrix. The rock has a discontinuous banded character produced by narrow lamellae up to approximately 1 mm wide comprised largely of argillaceous material. These lamellae have an elongate, lenticular character and typically contain concentrations of opaque to translucent iron oxides as very narrow, discontinuous lamellae.

The detrital quartz grains typically exhibit angular to subangular shapes although a few detrital grains with subrounded shapes are also present. The rock contains some relatively large muscovite flakes up to 0.5 mm long which are also thought to be of detrital origin. Traces of tourmaline form small detrital grains up to 0.15 mm wide.

The matrix consists mainly of weakly birefringent clay intergrown with smaller amounts of birefringent sericite. Locally the matrix contains concentrations of opaque to translucent iron oxides as very narrow, discontinuous lamellae. Some larger flakes of weakly birefringent clay believed to be kaolinite are also disseminated through the rock. The interstitial regions between the detrital quartz grains also locally contain irregular void spaces up to 0.1 mm wide. Voids also occur as fractures up to 0.3 mm wide. It is difficult to determine whether these voids represent original porosity and fracturing or loss of matrix produced by coring and thin section preparation.

This is a fine grained detrital sediment comprised mainly of fine sand-sized quartz-rich detritus distributed through an argillaceous matrix.

SAMPLE: Core 7: TSC46551

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a pale grey coloured rock with a friable, granular texture.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	50
Clay	25
Muscovite	1
Tourmaline	Tr-1
Zircon	Tr
Opaques and semi-opaques	3
Voids	20

This sample consists mainly of detrital quartz grains between 0.1 and 1.5 mm in size distributed through an argillaceous matrix. Most of the detrital quartz grains have angular shapes although a few subrounded detrital quartz grains are also present. The argillaceous matrix consists mainly of weakly birefringent clay intergrown with very small amounts of slightly more birefringent sericitic material.

Muscovite is disseminated through the rock as small flakes up to 0.2 mm long which tend to have a somewhat fibrous, degraded appearing texture. It is considered likely that these muscovite flakes are of detrital origin. The rock contains some detrital tourmaline grains up to 0.2 mm wide. A very small proportion of the detrital tourmaline exhibits very fine overgrowths which locally have an acicular texture. Traces of zircon were also noted as small detrital grains up to 0.1 mm wide. Although most of the clay in this rock occurs as an argillaceous matrix a small proportion of clay was noted as detrital clasts up to 0.5 mm wide which could represent small shale clasts.

The detrital quartz grains are generally not in contact with each other but are separated by either the argillaceous matrix or by irregular void spaces. Within localised areas the interstitial areas between the quartz grains consist mainly of voids. Some of these voids range up to 0.5 mm in size and it is difficult to determine whether they represent original porosity or areas where the argillaceous matrix has been lost by coring and thin section preparation.

Opaques are disseminated through the rock as anhedral grains and aggregates up to 0.15 mm wide. Locally the matrix contains concentrations of opaque to translucent iron oxides which imparts a dark reddish-brown colour to it.

This is a fine to medium grained detrital sedimentary rock comprised mainly of detrital quartz grains cemented by an argillaceous matrix.

SAMPLE: Core 9: TSC46552

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a fine to medium grained, highly friable sample with a pale tan colour.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	50
Clay/sericite	25
Zircon	\mathbf{Tr}
Biotite	Tr
Opaques and semi-opaques	1
Voids	25

This sample consists mainly of detrital quartz grains ranging up to 0.8 mm in size distributed through an argillaceous matrix. Most of the detrital quartz grains exhibit angular to subangular shapes although a few exhibit subrounded shapes. The argillaceous matrix consists mainly of weakly birefringent clay intergrown with smaller amounts of birefringent sericite. Within localised areas the matrix contains concentrations of sericitic material within patches up to 0.3 mm wide.

A small proportion of the detrital quartz grains consist of very finely granular, cherty material. Traces of biotite were noted as very small flakes up to 0.1 mm long which are totally included within some quartz grains. Traces of zircon form detrital grains up to 0.2 mm wide.

The detrital quartz grains are generally not in contact with each other but are separated by the argillaceous matrix and irregular voids. Within localised areas the interstitial regions consist mainly of void spaces which range up to about 1 mm in size. It is difficult to determine whether these voids represent original porosity or regions where the original clay matrix has been lost during coring and sample preparation.

Minor opaques are disseminated through the rock as small grains and aggregates up to 0.2 mm wide. Opaque to translucent, reddish-brown iron oxides are locally intergrown with the matrix as narrow bands up to 0.5 mm wide. Some bands consist mainly of interstitial opaque material.

This is a detrital sedimentary rock comprised of sand-sized, quartz-rich detritus and a clay-rich matrix.

SAMPLE: Core 13: TSC46553

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a pale grey coloured rock with a friable, granular texture.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	50
Clay/sericite	25
Tourmaline	Tr
Garnet	Tr
Zircon	Tr
Opaques and semi-opaques	1
Voids	25

This sample consists mainly of detrital quartz grains between 0.1 and 0.8 mm in size separated by an argillaceous matrix. Most of the detrital quartz grains have angular to subangular shapes although some subrounded grains are present. The argillaceous matrix consists mianly of weakly birefringent clay intergrown with smaller amounts of birefringent sericite. Within localised areas the matrix contains concentrations of fibrous textured sericite.

The detrital quartz grains are generally not in contact with each other but are separated by the argillaceous matrix and interstitial void spaces. These voids range up to 0.5 mm in size and it is difficult to determine whether they represent original porosity or areas where the argillaceous matrix has been lost.

Traces of tourmaline, garnet and zircon form small detrital grains up to 0.3 mm wide. Opaques are disseminated through the rock as anhedral grains and aggregates up to 0.2 mm wide. Opaque to translucent iron oxides are also locally intergrown with the matrix. Within localised areas the matrix has a weakly translucent iron stained colour.

This is a detrital sedimentary rock comprised mainly of sand-sized quartz grains in an argillaceous matrix.

SAMPLE: Core 14: TSC46554

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is an unconsolidated sample comprised of quartz grains weakly cemented by an argillaceous paste.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	45
Clay	15
Muscovite	1
Tourmaline	\mathbf{Tr}
Opaques and semi-opaques	1
Voids	40

This sample consists mainly of angular to subangular sand-sized grains typically between 0.1 and 1 mm in size. These grains consist mainly of quartz grains although a few argillaceous lithic clasts up to 0.5 mm in size are also present. A small number of quartz grains consist of finely granular, cherty textured clasts.

The detrital grains are separated mainly by voids which locally contain minor amounts of weakly birefringent clay. The clay tends to form irregular patches up to 0.3 mm wide or marginal intergrowths around detrital grains. Much of the clay has a translucent, reddish-brown iron stained colour. Some clay is also concentrated in what appear to be small shale clasts up to 0.5 mm wide which have subrounded shapes. These clasts consist of clay minerals which show a weakly developed foliation.

Traces of tourmaline were noted as small detrital grains up to 0.5 mm wide. Opaques are also disseminated through the thin section as small grains and aggregates up to 0.2 mm wide.

This is essentially an unconsolidated detrital sediment comprised mainly of quartz grains along with smaller amounts of clay.

SAMPLE: Core 15: TSC46555

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is an unconsolidated sample comprised mainly of sand-sized grains with some argillaceous material.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	45
Clay/sericite	20
Muscovite	1
Opaques and semi-opaques	1
Voids	35

This sample consists mainly of detrital grains between 0.15 and 1.5 mm in size. The detrital grains consist mainly of angular to subangular quartz grains. Some of the quartz grains consist of very finely granular, cherty textured mosaics. The rock also contains some detrital lithic clasts comprised of very fine grained quartz intergrown with an argillaceous matrix. These clasts range up to about 1 mm in size and tend to have subrounded shapes. The argillaceous matrix in these clasts consists of weakly birefringent clay and small amounts of birefringent sericite.

Most of the detrital grains are separated from each other by large void spaces up to approximately 1 mm in size. Locally the interstitial areas between the detrital grains are filled or partially filled with weakly birefringent clay. Some patches up to approximately 3 mm wide contain concentrations of interstitial clay. Minor clay also occurs as localised narrow rims or partial rims around some detrital grains. A. significant proportion of this clay has a translucent, reddish-brown iron stained colour.

Minor opaques are disseminated through the sample as small grains up to 0.1 mm wide which are generally intergrown with the clay. Minor muscovite was also noted as small flakes up to 0.1 mm long which occur both as individual flakes or as inclusions within detrital quartz grains.

This is an unconsolidated sandy sediment quite similar to sample Core 14 except that the detritus has a slightly coarser grain size.

SAMPLE: Core 16: TSC46556

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a largely unconsolidated to weakly consolidated sample comprised of sand along with irregular argillaceous bands which have a darker colour.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	45
Clay/sericite	30
Tourmaline	Tr
Opaques and semi-opaques	5
Voids	20

This is a somewhat variable rock comprised mainly of sand-sized detrital quartz grains intergrown with small amounts of an argillaceous matrix. The detrital quartz grains range between 0.1 and 0.5 mm in size and typically exhibit angular to subangular shapes. Some of the detrital quartz grains have very finely granular, cherty textures. The rock also contains a few detrital particles believed to represent lithic clasts which consist of very fine sand to silt-sized quartz grains in an argillaceous matrix.

The detrital quartz grains are generally not in contact with each other and the interstitial areas between the grains consist of either voids or smaller amounts of weakly birefringent clay. This birefringent clay tends to be concentrated within localised interstitial patches up to a few millimetres wide. The clay typically has a weakly translucent brown iron stained coloure which is locally better developed.

The rock also contains an irregular band or lense several millimetres wide comprised mainly of clay intergrown with smaller amounts of finer grained quartz-rich detritus. The quartz grains in this area have a typical grain size between 0.05 and 0.2 mm. Within localised areas this argillaceous lense also contains concentrations of opaque to translucent iron oxides as patches up to several millimetres in size which could represent intensely iron stained clay-rich patches.

Traces of tourmaline were noted as small detrital grains up to 0.2 mm wide. Minor opaques form small disseminated grains and aggregates up to 0.15 mm wide.

This is a detrital sediment comprised mainly of sand-sized quartz-rich detritus along with localised clay-rich areas.

SAMPLE: Core 19: TSC46557

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a very weakly consolidated rock comprised of sand grains weakly cemented by a pale brown, argillaceous matrix.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	55
Clay	20
Feldspar	2
Lithic clasts	1
Muscovite	1
Tourmaline	\mathbf{Tr}
Opaques and semi-opaques	1
Voids	20

This sample consists mainly of detrital quartz grains between 0.1 and 1 mm in size intergrown with much smaller amounts of interstitial clay. The quartz grains typically exhibit angular to subangular shapes although a few subrounded grains are also present. In addition to the quartz minor feldspar comprised mainly of untwinned potash feldspar is also present as angular detrital grains up to about 1.5 mm in size. A small proportion of detrital lithic clasts including some which exhibit remnant volcanic textures were also noted. Minor muscovite forms small flakes up to 0.2 mm long which are most likely of detrital origin and traces of tourmaline form small detrital grains up to 0.3 mm wide.

Most of the detrital grains are not in contact with each other but are separated by a clay matrix and voids. Within localised regions voids up to approximatley 1 mm wide are present and these voids tend to be concentrated in narrow bands with a parallel orientation. As with the previously described samples it is difficult to determine in what proportion these void spaces represent original porosity and what proportion is due to loss of the clay matrix during coring and thin section preparation.

The argillaceous matrix consists mainly of weakly birefringent clay which locally has a fibrous texture. Some lithic clasts comprised of argillaceous material intergrown with very fine detrital quartz grains are present in the rock and in some cases are difficult to distinguish from the argillaceous matrix. Locally the argillaceous matrix exhibits a reddish-brown iron stained colour or contains disseminated opaque to translucent iron oxides.

This is a detrital sedimentary rock comprised mainly of quartz grains very weakly cemented by an argillaceous matrix.

SAMPLE: Core 20: TSC46558

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a pale grey coloured rock with a friable, finely granular texture.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	50
Clay/sericite	40
Muscovite	4
Tourmaline	\mathbf{Tr}
Zircon	Tr
Opaques and semi-opaques	3
Voids	3

This sample consists mainly of detrital quartz grains disseminated through an argillaceous matrix. The rock has a very vague banded and foliated texture produced by a tendency for opaque to translucent iron oxides to be concentrated in vague, narrow lamellae with a parallel orientation as well as a preferred orientation of large muscovite flakes. The detrital quartz grains have a bimodal character with typical grain size ranging between 0.1 and 0.3 mm or between 0.5 and several millimetres. The banded character of the rock is further emphasized by a tendency for the coarser grained quartz to occur within localised vague lenses. The detrital quartz grains typically exhibit angular to subangular shapes.

The argillaceous matrix consists mainly of weakly birefringent clay intergrown with much smaller amounts of birefringent sericite which forms small finely divided flakes. In addition to the sericite the rock contains some large muscovite flakes up to 0.5 mm long which are considered to be of detrital origin. At least locally these muscovite flakes exhibit a preferred orientation.

Within localised areas minor voids which are generally below 0.2 mm wide are intergrown with the argillaceous matrix. Some very large voids up to 1.5 mm in size are also locally present.

A small proportion of the detrital quartz grains have very finely granular, cherty textures. Traces of tourmaline and zircon form small detrital grains up to 0.2 mm wide. Opaque to translucent iron oxides are concentrated as irregular patches and vague lamellae intergrown with the argillaceous matrix.

This is an immature detrital sedimentary rock comprised largely of detrital quartz grains cemented by an argillaceous matrix.

SAMPLE: Core 21: TSC46559

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a pale grey coloured rock with a friable, granular texture.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	55
Clay/sericite	20
Muscovite	2
Feldspar	Tr-1
Tourmaline	Tr
Zircon	\mathbf{Tr}
Opaques and semi-opaques	2
Voids	20

This sample consists mainly of detrital quartz grains between 0.1 and 1 mm in size weakly cemented by an argillaceous matrix. Most of the detrital quartz grains exhibit angular and subangular shapes although a few have subrounded shapes. A small proportion of the quartz grains exhibit very finely granular, cherty textures. The rock also contains a small proportion of detrital feldspar grains up to about 1 mm in size comprised of untwinned, potash feldspar.

The detrital grains are generally not in contact with each other but are separated by interstitial clay and void spaces. Locally the clay forms irregular patches up to 1.5 mm in size. Some of the void spaces range up to 1 mm in size. Most of the clay has a very weakly birefringent mineral although minor amounts of a fibrous, birefringent sericite are intergrown with it. The rock also contains some disseminated muscovite flakes up to 0.3 mm long which could be of detrital origin. Locally some irregular patches up to about 1 mm in size consist of clay containing finely granular quartz and these areas could represent small, argillaceous lithic clasts.

Traces of tourmaline and zircon form small detrital grains up to 0.2 mm wide. Opaques are disseminated through the rock as small grains and aggregates up to 0.1 mm in size which are generally intergrown with the argillaceous matrix.

This is a quartz-rich detrital sediment weakly cemented by an argillaceous matrix.

SAMPLE: Core 22: TSC46560

Rock Name:

Argillaceous Sandstone

Hand Specimen:

This is a pale grey, highly friable rock containing some relatively large milky grey quartz grains up to approximately 5 mm wide.

%

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	50
Clay	30
Muscovite	2
Tourmaline	\mathbf{Tr}
Opaques and semi-opaques	3
Voids	15

This sample consists mainly of detrital quartz grains disseminated through an iron stained, argillaceous matrix. The detrital quartz grains range up to several millimetres in size and tend to have a bimodal character with most being either above 1 mm in size or between 0.1 and 0.5 mm in size. Most of the detrital quartz grains exhibit angular to subangular shapes although some larger grains have subrounded shapes. A small proportion of the detrital quartz grains have very finely granular, cherty textures.

The detrital quartz grains are generally not in contact with each other but are separated by an argillaceous matrix and voids. The argillaceous matrix consists of weakly birefringent clay which typically has a reddish-brown iron stained colouring. This iron staining is somewhat variable locally producing a translucent character in the matrix. Some clay forms rounded appearing clasts up to 0.5 mm wide which appear to be of detrital origin. Within localised areas larger detrital quartz grains exhibit marginal rims of clay. Minor muscovite is also disseminated through the rock as fibrous textured flakes up to 0.4 mm long which are most likely of detrital origin.

Most of the voids are below 0.2 mm in size and have irregular shapes. It is difficult to determine whether these voids represent original porosity or areas where the interstitial clay matrix has been lost during sampling and thin section preparation.

Traces of tourmaline form small disseminated grains up to 0.1 mm wide some of which occur as inclusions within larger detrital quartz grains. Minor opaques form disseminated grains and aggregates up to 0.2 mm wide which are generally intergrown with the argillaceous matrix.

This is a weakly cemented detrital sediment containing an argillaceous matrix. This rock has a general slightly coarser grain size than most of the previously described argillaceous sandstones and also has a more iron stained argillaceous matrix.

SAMPLE: Core 23: TSC46561

Rock Name:

Argillaceous Sandstone

Hand Specimen:

A friable rock containing milky grey quartz grains up to approximately 3 mm wide cemented by a dark grey matrix.

0/

Thin Section:

An optical estimate of the constituents gives the following :

Quartz	55
Clay	20
Muscovite/sericite	1
Calcite	Tr
Opaques and semi-opaques	4
Voids	20

This sample consists mainly of detrital quartz grains intergrown with smaller amounts of iron stained clay. Most of the detrital quartz grains are between 0.3 and several millimetres in size and have angular to subangular shapes. A small proportion of finer grained detrital quartz with a grain size of about 0.1 mm is also present. Some of the detrital quartz grains have very finely granular, cherty textures and these typically exhibit somewhat more rounded shapes. Many of the large quartz grains also have polycrystalline, deformed textures.

The quartz grains are generally only weakly in contact with each other and are separated by interstitial clay and voids. The clay is a very weakly birefringent variety and forms localised patches up to a few millimetres in size. Some of these clay patches have irregular rounded shapes and could represent detrital argillaceous clasts. Interstitial iron stained clay with a translucent, reddish-brown colour occurs marginal to many quartz grains. Many of the interstices between the quartz grains consists of voids up to approximately 1 mm wide. Traces of calcite form small grains up to 0.1 mm wide intergrown with the clay.

The rock contains a small number of fibrous, muscovite flakes which are generally intergrown with the clay and could represent degraded detrital flakes. The rock also contains some clasts up to about 1 mm wide comprised of foliated muscovite flakes intergrown with granular quartz which are believed to represent low grade metamorphic rock clasts.

Opaque to translucent iron oxides form irregular patches up to 0.3 mm wide which are generally intergrown with clay.

This is a detrital sedimentary rock comprised mainly of quartz grains cemented by an iron stained, argillaceous matrix.

SAMPLE: Core 25: TSC46562

Rock Name: Claystone

Hand Specimen:

This is a pale grey, argillaceous rock with some narrow darker grey veinlets.

%

Thin Section:

An optical estimate of the constituents gives the following :

Clay			95
Quartz			2
Opaques	and	semi-opaques	3

This sample consists mainly of a weakly birefringent clay which forms a fibrous textured matrix exhibiting a weakly developed foliation. The clay typically has a translucent, reddish-brown iron stained colour and contains localised concentrations of translucent iron oxides as small disseminated grains and narrow, discontinuous lamellae. Iron oxides also locally form narrow fracture and vein fillings. Many of the iron oxides form weakly zoned areas around narrow fractures which appear to represent liesegang type structures.

Fine sand to silt-sized detrital quartz grains range up to 0.15 mm in size are are disseminated through the rock.

This is a well foliated argillaceous sediment containing a minor proportion of detrital quartz grains.

APPENDIX

FORMATION WATER ANALYSIS OF WRIXONDALE NO. 1, DST 2

CHEMICAL COMPOSITION				DERIVED DATA	
			ME/L	· · · · · · · · · · · · · · · · · · ·	MG/L
ATIONS					
	(CA)		1.45	! TOTAL DISSOLVED SOLIDS	
MAGNESIUM	(MG)	2.00		! A. BASED ON E.C.	959
SODIUM	(NA)	340		! B. CALCULATED (HCO3=CO3)	949
POTASSIUM	(K)	23.0	0.588	i	
				! TOTAL HARDNESS	80.6
				! CARBONATE HARDNESS	80.6
				! NON-CARBONATE HARDNESS	
ONS				! TOTAL ALKALINITY	418
YDROXIDE	(OH)			! (EACH AS CACO3)	
CARBONATE	(CO3)	22.6	0.754	Į.	
BICARBONATE	(HCO3)	465	7.61	1	
	(\$04)	24.0	0.500	I TOTALS AND BA	ALANCE
CHLORIDE	(CL)	276	7.79	!	
				CATIONS(ME/L) 17.0 DIFF=	0.331
				! ANIONS (ME/L) 16.7 SUM =	33.6
NITRATE	(NO3)	<4.0		! DIFF*100./SUM = 0.9	984%
				SODIUM / TOTAL CATION RATIO	87.1
				! ! REMARKS	
				!	
				! !	
				!	
•					
REACTION -	РН		8.7	: !	
CONDUCTIVIT	Y (E.C.)				
MICRO-S/CM			1700		
RESISTIVITY	онм.м Э	25C	5.88	!	
				! NOTE: MG/L = MILLIGRAMS PE	
				ME/L = MILLIEQUIVS.	PER LITR

STIFF DIAGRAM.

Sample: WRIXONDALE #1 DST 2 Scale is logarithm (base 10) of milli-equivalent values 1000 300 100 30 10 3 1 3 10 30 100 300 1000 | | | | | | | | | | | | | | | | Cl Na+K HC03 Сa . S O 4 Mg C03 Fe Br ΟН

.

service report

THE AUSTRALIAN MINERAL DEVELOPMENT LABORATORIES, FLEMINGTON STREET, FREWVILLE, SOUTH AUSTRALIA 5063

This is an enclosure indicator page. The enclosure PE906543 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6543 has the following characteristics:
ITEM_BARCODE =	PE906543
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 1
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 1, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
DATE_RECEIVED =	1/05/86
W_NO =	W919
	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(inserted by DNRE -	Vic Govt Mines Dept)

W·C·R

PETROLEUM DIVISION

0 1 MAY 1986

PLATE 1

 \mathbf{C}

(

(

(

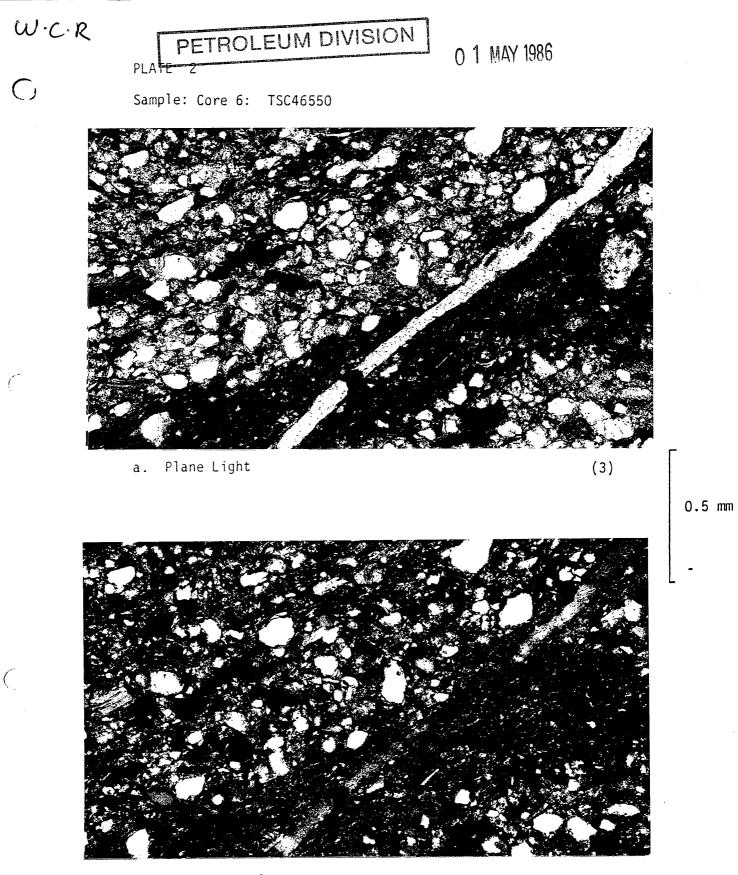
Sample: Core 4: TSC46549

a. Plane Light

(1)

0.5 mm

b. Crossed Nicols


Detrital quartz grains with interstitial pale brown, clay matrix and blue voids. The impregnation medium in all samples has been dyed blue producing blue coloured voids in this and all subsequent photomicrographs.

(2)

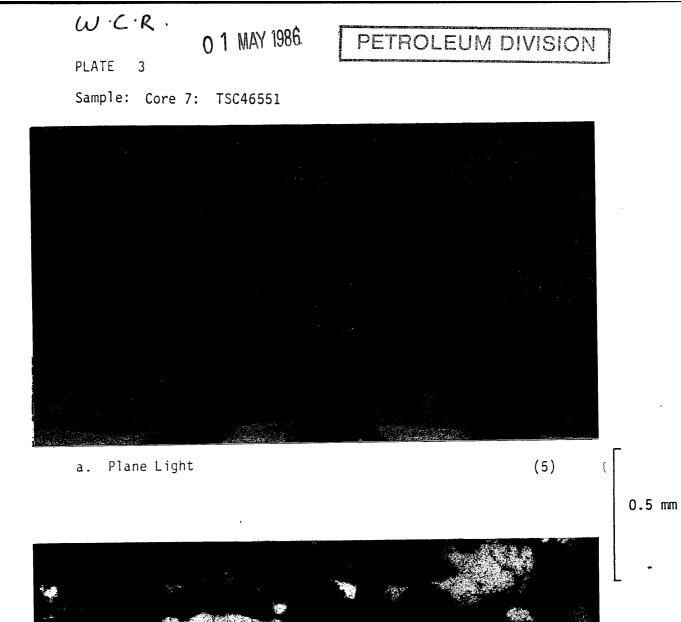
This is an enclosure indicator page. The enclosure PE906544 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6544 has the following characteristics:
ITEM_BARCODE =	PE906544
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 2
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 2, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
$DATE_RECEIVED =$	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

b. Crossed Nicols

()

(4)


Fine grained detrital quartz in a pale brown argillaceous matrix. The field includes a large discontinuous clay-rich band which has a much darker brown iron stained colour. The field is also transected by a fracture type void.



This is an enclosure indicator page. The enclosure PE906545 is enclosed within the container PE902366 at this location in this document.

The enclosure PE906	6545 has the following characteristics:
$ITEM_BARCODE =$	PE906545
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 3
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 3, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
$DATE_RECEIVED =$	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Incorted by DNPF -	Vic Cout Mines Dept)

(Inserted by DNRE - Vic Govt Mines Dept)

b. Crossed Nicols

(

(

(

Ċ

(6)

Detrital quartz grains with interstitial pale brown clay and blue voids.

This is an enclosure indicator page. The enclosure PE906546 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6546 has the following characteristics:
ITEM_BARCODE =	PE906546
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 4
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 4, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
DATE_RECEIVED =	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

W·C·R

PETROLEUM DIVISION

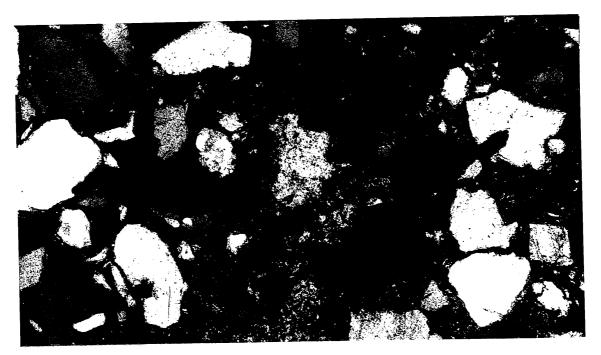
PLATE 4

 \bigcirc

ſ

ć

 \mathbf{C}


Sample: Core 9: TSC46552

0 1 MAY 1986

a. Plane Light

(7)

0.5 mm

b. Crossed Nicols

(8)

Detrital quartz grains in a pale brown, argillaceous matrix with abundant voids. Note presence of birefringent sericitic material in clay.

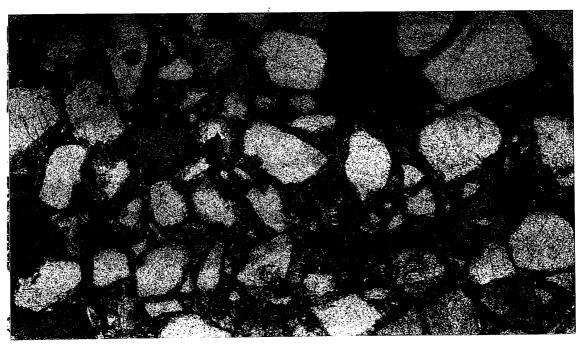
This is an enclosure indicator page. The enclosure PE906547 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6547 has the following characteristics:
ITEM_BARCODE =	PE906547
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 5
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 5, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
$DATE_RECEIVED =$	1/05/86
W_NO =	W919
$WELL_NAME =$	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

W·C·R

(

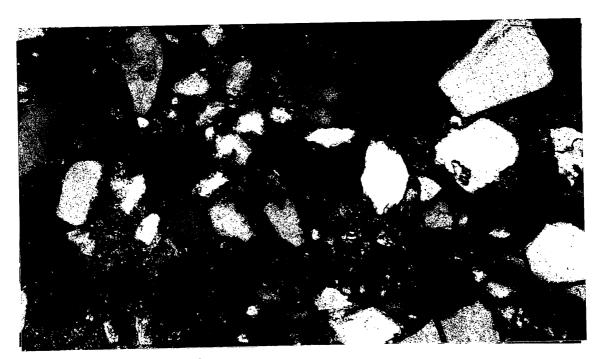
{


Ć

PETROLEUM DIVISION

0 J MAY 1986

PLATE 5

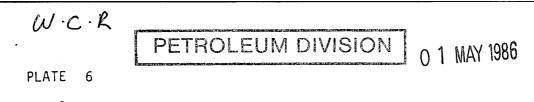

Sample: Core 13: TSC46553

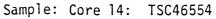
a. Plane Light

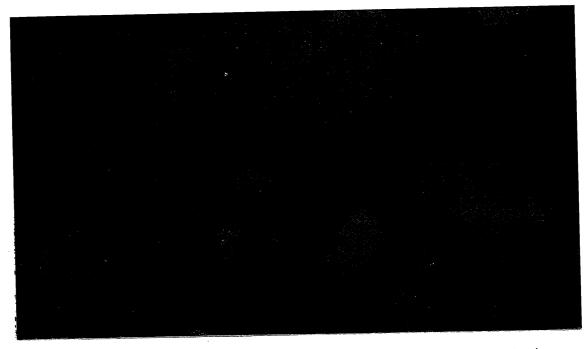
(9)

0.5 mm

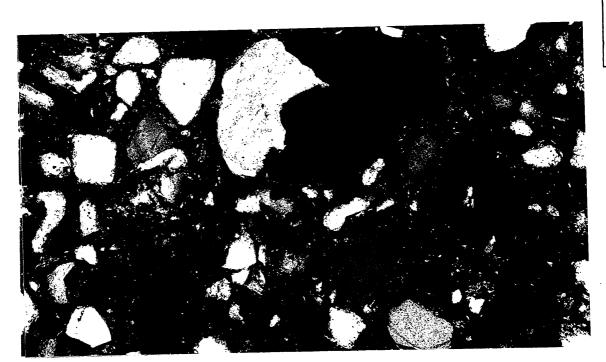
b. Crossed Nicols


(10)


Detrital quartz grains with a pale brown argillaceous matrix and irregular voids. Note detrital garnet grain with high relief and an isotropic character. The clay matrix of this rock also contains finely intergrown birefringent sericite.


This is an enclosure indicator page. The enclosure PE906548 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	06548 has the following characteristics:
ITEM_BARCODE =	= PE906548
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 6
BASIN =	GIPPSLAND
PERMIT =	= PEP107
TYPE =	· WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 6, App 11,
	Wrixondale-1
REMARKS =	:
DATE_CREATED =	7/01/86
DATE_RECEIVED =	1/05/86
WNO =	· W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)
(Inserved by DARE -	VIC GOVE MINES Dept)


 \mathbf{C}

a. Plane Light

(11)

0.5 mm

b. Crossed Nicols

(12)

Detrital quartz grains with minor amounts of interstitial clay and abundant interstitial voids.

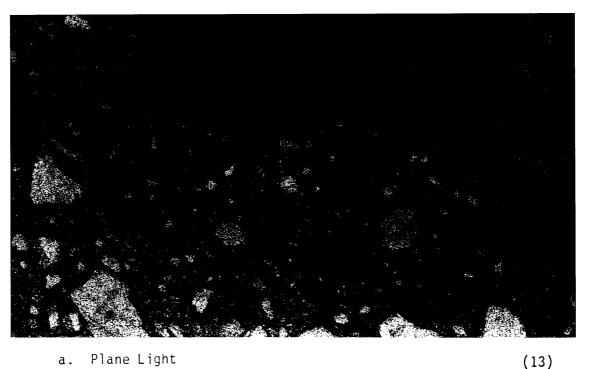
This is an enclosure indicator page. The enclosure PE906549 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6549 has the following characteristics:
ITEM_BARCODE =	PE906549
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 7
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 7, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
$DATE_RECEIVED =$	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

W.C.R

 $\left(\right)$

(


C

PETROLEUM DIVISION

0 1 MAY 1986

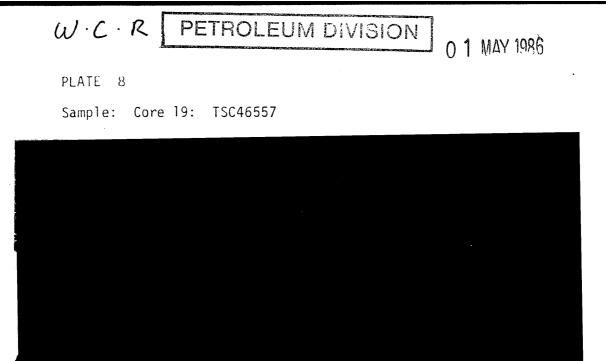
PLATE - 7

Sample: Core 16: TSC46556

a. Plane Light

b. Crossed Nicols

(14)


0.5 mm

Contact between a clay-rich band with finer grained detrital quartz grains and the coarser grained detrital area with an interstitial argillaceous matrix. The clay-rich band contains opaque to translucent reddish-brown iron oxide-rich patches. Also note vein-like structure of blue void spaces.

This is an enclosure indicator page. The enclosure PE906550 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6550 has the following characteristics:
ITEM_BARCODE =	PE906550
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 8
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 8, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
$DATE_RECEIVED =$	1/05/86
W_NO =	W919
$WELL_NAME =$	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

a. Plane Light

 \bigcirc

(

(

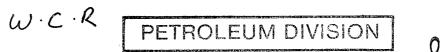
Ċ

b. Crossed Nicols

(16)

(15)

Detrital quartz grains with pale brown clay matrix and interstitial voids.



With the start of the

0.5 mm

This is an enclosure indicator page. The enclosure PE906551 is enclosed within the container PE902366 at this location in this document.

The enclosure PE906 ITEM_BARCODE = CONTAINER BARCODE =	
—	Microphotographs, Plate 9
	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 9, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
DATE_RECEIVED =	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

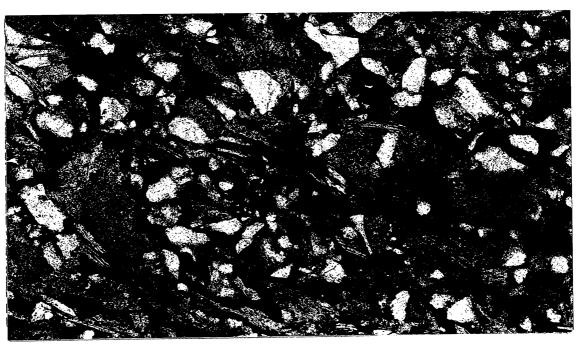

0 1 MAY 1986

PLATE 9

C

C

Sample: Core 20: TSC46558

a. Plane Light

(17)

0.5 mm

b. Crossed Nicols

(18)

A well foliated portion of the sample containing detrital quartz grains and relatively large muscovite flakes intergrown with pale brown clay. Both the muscovite flakes and opaque to translucent iron oxides exhibit a strong preferred orientation.

.

This is an enclosure indicator page. The enclosure PE906552 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6552 has the following characteristics:
$ITEM_BARCODE =$	PE906552
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 10
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 10, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
DATE_RECEIVED =	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

W·C·R

 $\left(\right)$


Ć

PETROLEUM DIVISION

0 1 MAY 1986

PLATE 10

Sample: Core 22: TSC46560

a. Plane Light

(19)

0.5 mm

b. Crossed Nicols

(20)

Detrital quartz grains with an interstitial argillaceous matrix which has a variable reddish-brown iron stained character. The sample also contains a significant proportion of interstitial voids.

This is an enclosure indicator page. The enclosure PE906553 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6553 has the following characteristics:
ITEM_BARCODE =	PE906553
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 11
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 11, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
$DATE_RECEIVED =$	1/05/86
W_NO =	W919
$WELL_NAME =$	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

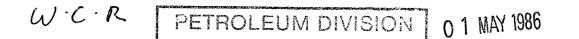


PLATE 11

 $\int_{\Omega} dx$

ĺ

C

Sample: Core 23: TSC46561

a. Plane Light

(21)

b. Crossed Nicols

Detrital quartz grains and brown argillaceous clast with abundant interstitial voids. Note small amount of very dark coloured iron stained clay located interstitially between detrital grains.

(22)

0.5 mm

١

This is an enclosure indicator page. The enclosure PE906554 is enclosed within the container PE902366 at this location in this document.

The enclosure PE90	6554 has the following characteristics:
ITEM_BARCODE =	PE906554
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 12
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 12, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
DATE_RECEIVED =	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

W·C·R

 \mathbf{C}

í

C

PETROLEUM DIVISION


0 1 MAY 1986

PLATE 12

Sample: Core 25: TSC46562

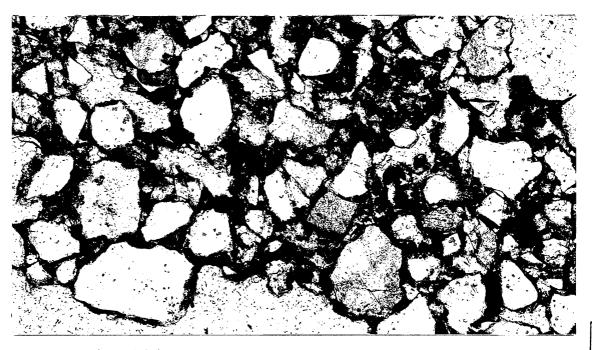
Plane Light a.

Crossed Nicols Ь.

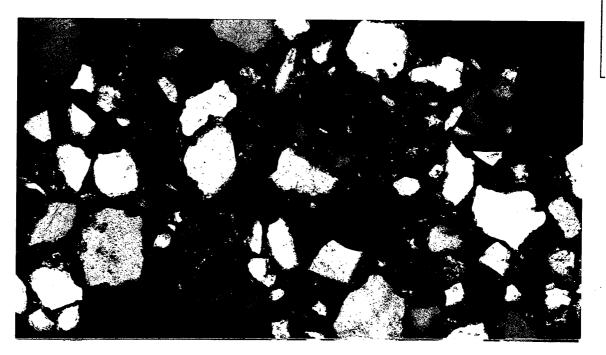
Foliated argillaceous matrix comprised mainly of fibrous sericite containing small amounts of disseminated fine sand to silt-sized quartz. Narrow fracture along field has a liesegang type rim of opaque to translucent iron oxides. Minor iron oxides also form very narrow discon-tinuous linings along foliation lamellae.

0.5 mm

This is an enclosure indicator page. The enclosure PE906555 is enclosed within the container PE902366 at this location in this document.


The enclosure PE90	6555 has the following characteristics:
ITEM_BARCODE =	PE906555
CONTAINER_BARCODE =	PE902366
NAME =	Microphotographs, Plate 13
BASIN =	GIPPSLAND
PERMIT =	PEP107
TYPE =	WELL
SUBTYPE =	PHOTOMICROGRAPH
DESCRIPTION =	Microphotographs, Plate 13, App 11,
	Wrixondale-1
REMARKS =	
$DATE_CREATED =$	7/01/86
DATE_RECEIVED =	1/05/86
W_NO =	W919
WELL_NAME =	WRIXONDALE-1
CONTRACTOR =	AMDEL
CLIENT_OP_CO =	BEACH PETROLEUM NL
(Inserted by DNRE -	Vic Govt Mines Dept)

W.C.R PETROLEUM DIVISION 01 MAY 1986


PLATE 13

C

Sample: Core 24: TSC46756

a. Plane Light

b. Crossed Nicols

Detrital quartz grains cemented by translucent, brown iron stained matrix.

- Sa

0.5 mm

Ċ