SANTOS – STRIKE OIL

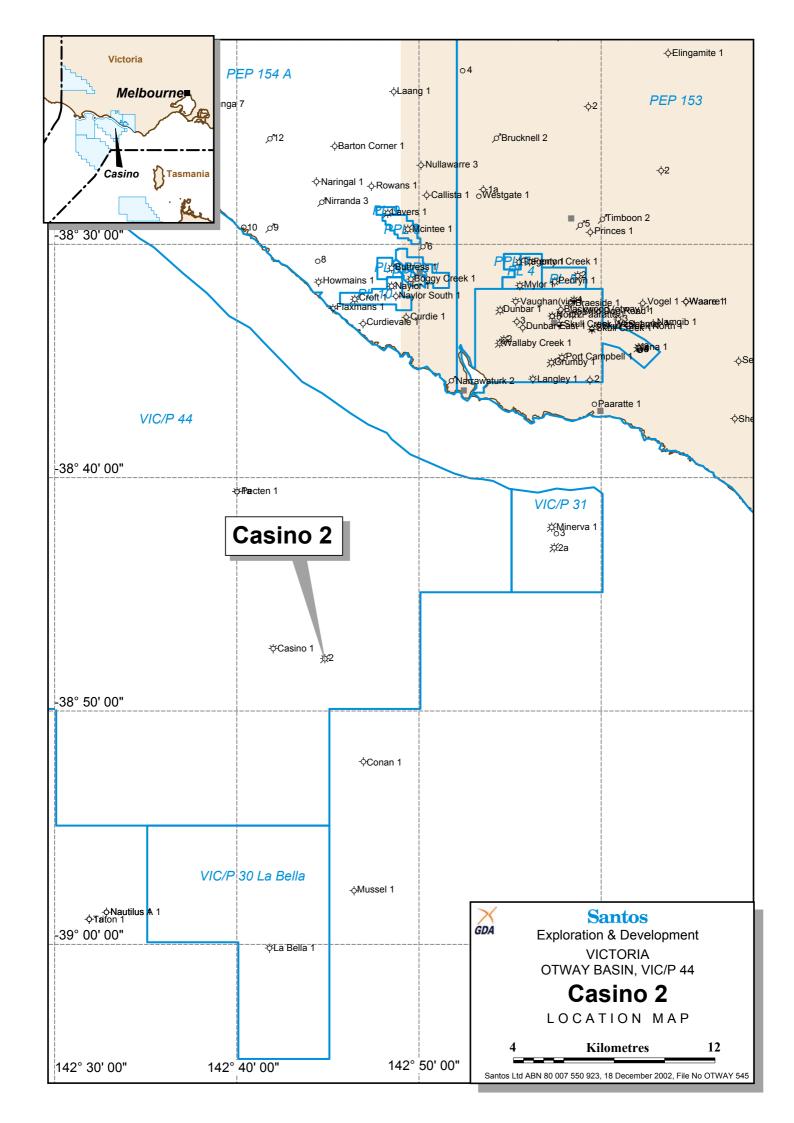
COMPILED FOR

SANTOS LIMITED

(A.B.N. 80 007 550 923)

CASINO-2 BASIC DATA REPORT

PREPARED BY: R. Subramanian (Consultant) October 2002


CASINO-2

BASIC DATA REPORT

TABLE OF CONTENTS

		AGE
LOCATION MAP		
SECTION 1:	1.2 General Data	1 1 2
SECTION 2:	LITHOLOGICAL DESCRIPTIONS: 2.1 Cuttings Descriptions 2.2 Sidewall Cores Descriptions 2.3 Catalogue of Wellsite Samples	
SECTION 3:	WIRELINE LOGGING REPORTS 3.1 LOGGING ORDER FORM 3.2 ELECTRIC LOGGING TIME SUMMARY 3.3 FIELD ELECTRIC LOGGING REPORT 3.4 MDT PRESSURE SURVEY RESULTS 3.5 MWD/LWD END OF WELL REPORT (Anadrill)	
SECTION 4:	PRODUCTION TEST REPORTS	
SECTION 5:	DAILY GEOLOGICAL REPORTS	
SECTION 6:	DAILY DRILLING REPORTS	
SECTION 7:	TIME / DEPTH CURVE	
SECTION 8:	BHA SUMMARY	
SECTION 9:	BIT RECORD AND PERFORMANCE SUMMARY	
SECTION 10:	DRILLING FLUIDS REPORT	
SECTION 11:	CASING & CEMENTING SUMMARY	
SECTION 12:	MUDLOGGING WELL REPORT (including Mudlog 1:500 & D - Exponent Log)	
SECTION 13:	RIG POSITIONING REPORT	
SECTION 14:	WELL ABANDONMENT AND PLUG REPORTS	
SECTION 15:	DEVIATION SUMMARY	

LOCATION MAP

SECTION 1:- WELL HISTORY

1.1 <u>INTRODUCTION</u>

Casino-2 was drilled as an Otway Basin gas exploration well in the offshore VIC/P44 licence and was designed to test a sand that is interpreted to be absent at the proposed Casino-1 location. The well is contingent on the Casino-1 wildcat exploration well confirming that significant full stack amplitude and AVO anomalies indicate the presence of hydrocarbons within the prospect area. The Surface Location is Latitude: 38° 47' 43.887" S Longitude: 142° 44' 50.746" E (GDA94), Northing: 5704463.79m Easting: 651752.63m (MGA-94). The Seismic Reference is Inline 6136, CDP 2400. The Casino-2 location is 4.2km ESE of the proposed Casino-1 well and lies approximately 29 km south west of the town of Port Campbell, 21 km SW of the Minerva gas field and 23 km North of the LaBella gas field. The Casino structure is situated towards the western limit of the productive Waarre Sandstone play fairway of the Port Campbell Embayment. The water depth at the well location was 67.8m.

The VIC/P44 licence is held 50% Santos (Operator) and 50% Strike Oil NL. The Casino structure is a tilted fault block closure defined by the 2001 Casino 3D seismic dataset and the proposed location will test the eastern flank of the structure. The stratigraphic column for the Otway Basin is shown in Figure 2. The primary objective in the well is the Waarre Sandstone. The critical risk on the prospect prior to the drilling of Casino 1 was related to the nature of updip cross fault seal, however this was mitigated from success at the Casino-1 location. The main risks are now associated with the extent and quality of the reservoir. The prospect exhibits a significant full stack amplitude anomaly at the Waarre Sandstone with significant increase in amplitude with offset over the prospect. The prospect is interpreted as containing 2 separate Waarre sands. The Casino-2 well is placed to intersect the younger Waarre Sand (prognosed as being absent in Casino-1) in an up-dip location and appraise the older "non-amplitude" Waarre Sand in a down-dip location (relative to its proposed intersection in Casino-1). The aims of the Casino-2 well are:

- 1. Intersect the younger Waarre sand at its highest location on the structure and confirm the presence of hydrocarbons;
- 2. To obtain pressure data to confirm column height and gas samples to determine composition;
- 3. Provide an production point for any gas accumulation in the younger Waarre Sand;
- 4. To confirm the GWC in the older sand indicated by pressure measurements in Casino-2, correlated with Casino-1.

A successful hydrocarbon discovery at Casino-2 could confirm an economic gas accumulation in the Casino structure. This could lead to a further development well at the crest of the structure to produce gas reserves in the older Waarre Sand.

Casino-2 was drilled by the semi-submersible drilling rig "Diamond Offshore Ocean Bounty".

1.2 GENERAL DATA

Well Name: CASINO-2

Well Classification: Offshore Gas Exploration

Interest Holders: Santos Ltd 50%

Strike Oil NL 50%

Participating Interests: Santos Ltd 50%

Strike Oil NL 50%

Operator: Santos Ltd.

Location: Offshore Victoria – Otway Basin VIC/P44.

Surveyed Location Latitude: 38° 47' 43.887" South

(GDA94) Longitude: 142° 44' 50.746" East

Northing: 5704463.79m Easting: 651752.63m

Seismic Location: Inline 6136, CDP 2400

Seismic Survey: 2001 Casino 3D

Elevations: Water Depth -67.8m AHD (Australian Height Datum)

Rotary Table +25.0m LAT

Total Depth: Driller: 2112m RT

Logger: 2108m RT

Status: Plugged and Abandoned

License: VIC/P44 Offshore Victoria

Date Drilling Commenced: 09:30 hours on 24th September 2002.

Date Drilling Completed: 23:15 hours on 3rd October 2002.

Date Rig Released: 20:30 hours on 11th October 2002.

Total Well Time: 17½ days

Contractor: Diamond Offshore

Rig: Ocean Bounty (semi-submersible)

1.3 **DRILLING SUMMARY**

(a) Drilling Summary (All Depths Driller's RT)

Casino-2 was spudded at 09:30 hrs on 24th September 2002 utilising the semi-submersible drilling facility "Ocean Bounty".

Bit 1, a 660mm (26") Smith DSJC, run in conjunction with a 914mm (36") hole opener, was used to drill the 914mm (36") phase from seafloor at 92.76m to section total depth at 140m. Returns were to the seafloor. A string of 762mm (30") (461 kg/m X56) casing was run and set at 137m. The casing running tool and 914mm (36") BHA were laid out.

Bit 2, a Smith MGSSH-C was run in hole to tag the cement top at 124.5m and was used to drill the entire 445mm (17.5") hole section from 140m to 700m. The hole was circulated clean and displaced with gel. Operations were suspended for 7.5 hours due to adverse weather conditions. A wiper trip was performed prior to running casing. A string of 340mm (13.375") (101 kg/m L80) casing was run and set at 691m. The casing running tool was released and laid out along with the cement head. The blowout preventers were installed on the marine riser and function tested. The 445 mm (17.5") BHA was laid out.

Thereafter, the 311 mm (12.25") BHA with Bit 3, HTC MX-03DX was run in hole along with MWD/LWD tools, to tag top of cement at 630m. The cement plugs, cement, casing shoe, rathole

and 3m of new hole from 700m to 703m were drilled. The hole was displaced to 1.05 SG PHPA mud system and circulated clean. A Leak-off Test was performed to 1.22 SG EMW. The 311mm (12.25") hole was then drilled from 703m to 1384m with partial losses which varied between 4.7 to 95.3 m³/hr (30 to 900 bbls/hr). The mud loss situation was remedied with LCM to obtain complete returns. Drilling continued from 1384m to 1646m where poor penetration rates required a bit change. Some tight hole was encountered on the bit trip which required minor remedial backreaming. Bit #4, Hycalog DSX195-DGUW was run in hole to drill from 1646m to core point in the Waarre Formation. However, the MWD/LWD tools failed at 1686m, 1686m and were unavailable for the critical picking of the core-point. It was decided to continue drilling to core point at 1763m. The bit was pulled out of hole. A core Bit #5, a Security CD-93, and core barrel assembly was run in hole and a 21m core was cut to 1784m and retrieved. Recovery was 19.3m (92%). Bit #6, a re-run Hycalog DSX195-DGUW was run in hole to drill ahead 311 mm (12.25") hole from 1763m to total depth at 2112m. Total depth was reached at 23:15hrs on 3/10/02. The 311mm (12 $\frac{1}{4}$ ") section from 700m to 2112m was logged while drilling with Anadrill Schlumberger MWD/LWD CDR/Isonic tools to record Gamma Ray, Resistivity, Sonic and Deviation Survey data. . However, the MWD/LWD tools failed at 1686m and were unavailable for the critical picking of the core-point. The section with the lost data was re-logged on a subsequent bit trip.

At Total Depth, the hole was circulated clean and the drillstring was pulled out of hole to run wireline logs. Baker Atlas was rigged up and wireline logs were run as summarised in Table 1. After rigging down Baker Atlas, a cement stinger was run in the hole to set cement abandonment plugs as per program, Plug 1: 2100m-1825m, Plug 2: 1825m-1550m, Plug 3: 720m-640m and Plug 4: 177m-127m.

The rig was released at 20:30 hours on October 11, 2002.

(b) <u>Mudlogging Services</u>

Mudlogging services were provided by Baker Hughes Inteq Unit 503 with the following parameters monitored:

- 1. Total Gas
- 2. Chromatographic Gas Breakdown
- 3. Hydrogen Sulphide Levels
- 4. Depth/Rate of Penetration.
- 5. Pipe Speed/Block Position
- 6. Top drive RPM
- 7. Top drive Torque
- 8. Hook Load/Weight On Bit
- 9. Standpipe Pressure
- 10. Casing Shut-in Pressure
- 11. Mud Pump Rate (3 pumps)
- 12. Mud Flow Out
- 13. Mud Pit Levels (6 pits)
- 14. Mud Weight In and Out
- 15. Mud Temperature In and Out
- 16. Carbon Dioxide Detectors

Ditch cuttings were collected in the 311mm (12-1/4") phase at 5m intervals from 700m to 1700m. However very fast drilling rates required the sampling interval to be increased to 10m when necessary. In the zone of interest (1700m to total depth of 2112m), sampling was done at

3m intervals. In addition to microscopic examination of all drilled cuttings, samples were subjected to fluoroscope examination. Since no significant carbonate section was intersected in the 311mm (12-1/4") phase, calcimetry was not performed on a regular basis, but as required.

A catalogue of all wellsite samples is found in Section 4.3.

(c) MWD Data

Measurement while drilling (MWD) was acquired by Anadrill-Schlumberger in Casino-2. The CDR / Powerpulse was used in the 311mm (12.25") section from 700m to 2112m. Gamma Ray, Resistivity and Deviation Surveys data were acquired in this phase in 3 runs. However, the MWD/LWD tools failed at 1686m and were unavailable for the critical picking of the corepoint. The section with the lost data was re-logged on a subsequent bit trip. Anadrill Schlumberger's detailed report is attached in Section 3.5: MWD/LWD END OF WELL REPORT

(d) <u>Testing</u>

No production tests were conducted at the Casino-2 location.

(e) <u>Coring</u>

One cores were cut in the Waarre Sandstone from 1762.9m to 1784m. Recovery was 19.3m. A detailed report from the core laboratory will be presented in the Interpreted Data Report for Casino-2, if not available earlier.

(f) <u>Biostratigraphy</u>

Micro-palaeontology studies were not conducted in Casino-2.

(g) Electric Logging

Electric Logging Services were provided by Schlumberger Wireline Services. One suite of electric logs were attempted at Casino-2 as follows:

TABLE 1

LOG	SUITE/	INTERVAL	BHT/TIME	OTHER
	RUN			
PEX-DSI	1 / 1		79.5°C / 9.0 hrs	
GR		TD to 93		
Spectral GR		TD to 1650		
Resistivity		TD to 690		
SP		TD to 690		
HCAL		TD to 690		
Sonic (Upper Dipole)		TD to 1650		
Dt (Full waveforms)		TD to Signal Loss	* recorded to surface	
Neutron-Density		TD to 690		

MDT-GR (TOTAL : 32, 13 Good, 14 Curtailed/Tight, 3 Lost Seals, 2 Unstable, 3 samples collected)	1/2	1753.7 to 1944.5	
CST-GR (26 of 30 shots recovered)	1/3	1016 to 2076	

(h) MDT Pressure Data

An MDT pressure survey was conducted at the Casino-2 location. A total of 32 pre-tests were attempted of which 13 were good tests, 14 were curtailed or tight, 3 were lost seals, 2 were unstable. In addition 6 samples were collected of which 2 PVT samples and one 1-gallon sample were accepted for purchase. Two sample chambers were sent for PVT analysis while one chamber was opened at the rigsite. The MDT Pressure Survey data are presented in Section 3.4: MDT PRESSURE SURVEY RESULTS

(i) <u>Hole Deviation</u>

Casino-2 was drilled as a vertical hole. Deviation Surveys were recorded using MWD/LWD tools in most of the 311mm (12.25") section while drilling, with the last survey being recorded at 2085.35m. Survey data are presented in Section 18: Deviation Surveys.

At Total Depth, the estimated displacement was 24m towards 251°T direction with the estimated TVD of 2111.63m.

(j) <u>Velocity Surveys</u>

A planned Velocity Survey was not cancelled. No velocity survey was conducted at the Casino-2 location.

(k) <u>Casing & Cementing Summary</u>

The following Table-2 summarises casing sizes, depths and cementing details for Casino-2. Casing and Cementing Reports for each casing run are detailed in Section 11: CASING & CEMENTING SUMMARY.

TABLE 2

HOLE SIZE	DEPTH	CASING SIZE	CASING DEPTH	JOINTS	CASING TYPE		CEMENT
914mm (36")	140m	762mm (30")	137m	3	461 kg/m HD90	X56	1040 sacks class "G" cement of total volume 34.4 bbl, mixed to a slurry weight of 1.89sg.
445mm (17.5")	700m	340 mm (13.375")	691m		101kg/m BTC	L80	Lead: 736 sacks class "G" cement of total volume 46.5m3, mixed to a slurry weight of 1.5sg. Tail: 637 sacks class "G" cement of total volume 21m3, mixed to a slurry weight of 1.89sg.

Santos	Well Completion Report Volume 1 Basic
	SECTION 2:- LITHOLOGICAL DESCRIPTIONS

SECTION 2.1: CUTTINGS DESCRIPTIONS

2.1 <u>CASINO-2 - LITHOLOGICAL DESCRIPTIONS</u> (Drillers depths)

From (m)	<u>To (m)</u>	<u>%</u>	Description
700	705	100	SANDSTONE: Medium brown, medium yellow brown, minor clear to translucent, medium to very coarse grained, poorly sorted, subrounded, occasionally rounded, partly subangular, weak siliceous cement, common Fe-staining, trace fossil (bryozoa?) fragments, loose in part, friable in part, moderately hard in part, fair to good inferred porosity, no hydrocarbon fluorescence.
705	710	100	SANDSTONE: Medium brown, medium yellow brown, minor clear to translucent, medium to very coarse grained, poorly sorted, subrounded, occasionally rounded, partly subangular, weak siliceous cement, common Fe-staining, trace fossil (bryozoa?) fragments, loose in part, friable in part, moderately hard in part, fair to good inferred porosity, no hydrocarbon fluorescence.
710	715	100	SANDSTONE: Medium to dark brown, medium yellow brown, medium to very coarse grained, moderately sorted, subrounded to rounded, minor subangular, weak siliceous cement, abundant Fe-staining, friable in part, generally loose, minor moderately hard aggregates, fair to good inferred porosity, no hydrocarbon fluorescence.
715	720	100	SANDSTONE: Medium to dark brown, medium yellow brown, medium to very coarse grained, moderately sorted, subrounded to rounded, minor subangular, weak siliceous cement, abundant Fe-staining, friable in part, generally loose, minor moderately hard aggregates, fair to good inferred porosity, no hydrocarbon fluorescence.
720	725	100	SANDSTONE: Medium to dark brown, medium yellow brown, medium to very coarse grained, increasing coarse to very coarse grained, poorly sorted, subrounded to rounded, minor subangular, weak siliceous cement, abundant Fe-staining, friable in part, generally loose, minor moderately hard aggregates, fair to good inferred porosity, no hydrocarbon fluorescence.
		Trace	CLAYSTONE: Medium to dark grey to minor grey brown, moderately hard, calcareous, grading to marl, trace quartz grains, subblocky to blocky, minor amorphous.
725	730	100	SANDSTONE: Medium to dark brown, medium yellow brown, medium to very coarse grained, increasing coarse to very coarse grained, poorly sorted, subrounded to rounded, minor subangular, weak siliceous cement, abundant Fe-staining, friable in part, generally loose, minor moderately hard aggregates, trace lithic fragments, fair to good inferred porosity, no hydrocarbon fluorescence.

		Trace	CLAYSTONE: Medium to dark grey to minor grey brown, moderately hard, calcareous, grading to marl, trace quartz grains, subblocky to blocky, minor amorphous.
730	735	100	SANDSTONE: Medium to dark brown, medium to dark yellow brown, medium to very coarse grained, increasing coarse to very coarse grained, poorly sorted, subrounded to rounded, minor subangular, moderate strong siliceous cement, trace dark brown Fe-rich argillaceous matrix, common to locally abundant Festaining, friable in part, generally loose, minor moderately hard aggregates, trace lithic fragments, fair to good inferred porosity, no hydrocarbon fluorescence.
735	740	100	SANDSTONE: As above
		Trace	CLAYSTONE: Medium to dark grey to minor grey brown, moderately hard, calcareous, grading to marl, trace quartz grains, subblocky to blocky, minor amorphous.
740	745	100	SANDSTONE: Medium brown, occasionally dark brown, medium to dark yellow brown, predominantly medium to coarse grained, moderately well sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Festaining, common very dark brown to black brown rounded lithic fragments (5%), rare pyrite, friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
745	750	100	SANDSTONE: Generally as above, medium to very coarse grained, poorly sorted, minor white to light grey fine to medium aggregates with poor porosity, no hydrocarbon fluorescence.
750	755	100	SANDSTONE: Medium brown, occasionally dark brown, medium to dark yellow brown, predominantly medium to coarse grained, moderately well sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Festaining, trace to common very dark brown to black brown rounded lithic fragments (5%), friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
755	760	100	SANDSTONE: Medium brown, occasionally dark brown, medium to dark yellow brown, predominantly medium to coarse grained, moderately well sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Festaining, trace to common very dark brown to black brown rounded lithic fragments (5%), friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
760	765	100	SANDSTONE: Medium brown, occasionally dark brown, medium to dark yellow brown, predominantly medium to coarse grained, moderately well sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Fe-

			staining, common very dark brown to black brown rounded lithic fragments (5%), friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
765	775	100	SANDSTONE: Medium brown, occasionally dark brown, medium to dark yellow brown, occasionally clear to translucent, predominantly medium to coarse grained, moderately well sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Fe-staining, common very dark brown to black brown rounded lithic fragments (5%), friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
775	785	100	SANDSTONE: Medium to occasionally dark brown, medium to dark yellow brown, occasionally clear to translucent, predominantly medium to very coarse grained, poorly sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Fe-staining, trace very dark brown to black rounded lithic fragments, friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
785	795	100	SANDSTONE: Medium to occasionally light brown, medium to dark yellow brown, occasionally clear to translucent, predominantly medium to very coarse grained, poorly sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Fe-staining, trace very dark brown to black rounded lithic fragments, friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
795	805	100	SANDSTONE: Medium to occasionally light brown, medium to dark yellow brown, light to medium grey in part, occasionally clear to translucent, predominantly medium to very coarse grained, poorly sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, locally common grey argillaceous matrix, common Fe-staining, trace very dark brown to black rounded lithic fragments, friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.
		Trace	CLAYSTONE: Medium grey, arenaceous, trace lithic fragments, soft, dispersive, amorphous in part.
805	815	90	SANDSTONE: Medium to occasionally light brown, medium yellow brown, light to medium grey in part, occasionally clear to translucent, predominantly medium to very coarse grained, poorly sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, locally common grey argillaceous matrix, common Fe-staining, trace very dark brown to black rounded lithic fragments, friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.

		10	CLAYSTONE: Medium grey, arenaceous grading to arenaceous claystone, trace lithic fragments, soft, dispersive, amorphous in part.
815	825	90	SANDSTONE: Light grey, clear to translucent, minor light yellow brown, predominantly medium to coarse grained, moderately sorted, subangular to subrounded, moderately strong siliceous cement in aggregates, minor grey argillaceous to silty matrix, trace lithic fragments, common loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	CLAYSTONE: Medium grey, arenaceous grading to arenaceous claystone, trace lithic fragments, trace disseminated pyrite, generally soft, occasionally moderate hard, dispersive to amorphous, subblocky in part.
825	835	80	SANDSTONE: Light to medium grey, clear to translucent, light grey brown, minor light yellow brown, predominantly medium to coarse grained, moderately sorted, subangular to subrounded, moderately strong siliceous cement in aggregates, minor grey argillaceous to silty matrix, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		20	CLAYSTONE: Medium grey, arenaceous grading to arenaceous claystone, trace lithic fragments, trace disseminated pyrite, generally soft, occasionally moderate hard, dispersive to amorphous, subblocky in part.
835	845	40	SANDSTONE: Light grey, clear to translucent, light grey brown, minor light yellow brown, predominantly medium to coarse grained, moderately sorted, subangular to subrounded, moderately strong siliceous cement in aggregates, minor grey argillaceous to silty matrix, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		60	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally moderate hard, dispersive to amorphous, subblocky in part.
845	850	50	SANDSTONE: Light grey, clear to translucent, light grey brown, minor light yellow brown, predominantly medium to coarse grained, moderately sorted, subangular to subrounded, moderately strong siliceous cement in aggregates, minor grey argillaceous to silty matrix, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		50	CLAYSTONE: Medium to dark grey brown, generally soft,

			occasionally firm, dispersive to amorphous, subblocky in part.
850	860	80	SANDSTONE: Light grey, clear to translucent, medium to very coarse grained, generally coarse to very coarse, poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous to silty matrix, trace rounded dark brown lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		20	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.
860	870	70	SANDSTONE: Light grey, clear to translucent, medium to very coarse grained, generally coarse to very coarse, poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous to silty matrix, trace pyrite, trace rounded dark brown lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		30	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.
870	880	90	SANDSTONE: Light yellow brown, clear to translucent, rare red brown, medium to very coarse grained, generally coarse to very coarse, poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous to silty matrix, trace pyrite, trace rounded dark brown lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.
880	890	90	SANDSTONE: Light yellow brown, clear to translucent, rare red brown, medium to very coarse grained, generally coarse to very coarse, poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous to silty matrix, trace pyrite, trace rounded dark brown lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.
809	900	90	SANDSTONE: Clear to translucent, pale yellow brown, medium to very coarse grained, generally medium to coarse, moderately poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous matrix, trace pyrite, trace carbonaceous specks, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.

		10	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.
900	910	90	SANDSTONE: Clear to translucent, pale yellow brown, medium to very coarse grained, generally medium to coarse, moderately poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous matrix, trace pyrite, trace carbonaceous specks, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.
910	920	90	SANDSTONE: Clear to translucent, pale to occasionally medium grey, pale yellow brown, medium to very coarse grained, generally medium to coarse, moderately poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous matrix, trace pyrite, trace carbonaceous specks, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.
920	930	100	SANDSTONE: Generally as above
930	940	70	SANDSTONE: As above, trace dolomite.
		30	CLAYSTONE: Medium to dark brown grey, soft to firm, dispersive, amorphous to subblocky in part.
940	950	90	SANDSTONE: As above
		10	CLAYSTONE: As above
950	960	80	SANDSTONE: As above, trace pyrite
		20	CLAYSTONE: As above
960	970	80	SANDSTONE: As above, trace pyrite
		20	CLAYSTONE: As above
970	980	80	SANDSTONE: As above.
		20	CLAYSTONE: As above
980	990	60	SANDSTONE: Clear to translucent, pale grey, medium to coarse, moderately sorted, subangular to predominantly subrounded, weak siliceous cement in aggregates, minor grey

			brown argillaceous matrix, trace calcite, trace pyrite, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		40	CLAYSTONE: As above
990	1000	90	SANDSTONE: Clear to translucent, pale grey, medium to coarse, moderately sorted, subangular to predominantly subrounded, weak siliceous cement in aggregates, minor grey brown argillaceous matrix, trace calcite, trace pyrite, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	CLAYSTONE: As above
1000	1005	90	SANDSTONE: Clear to translucent, pale grey, medium to coarse, moderately sorted, subangular to predominantly subrounded, weak siliceous cement in aggregates, minor grey brown argillaceous matrix, trace calcite, trace pyrite, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	CLAYSTONE: As above
1005	1010	40	SANDSTONE: As above
		60	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft to firm, minor moderately hard, dispersive, amorphous to subblocky
1010	1015	30	SANDSTONE: As above
		70	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft to firm, minor moderately hard, dispersive, amorphous to subblocky
1015	1025	10	SANDSTONE: As above
		90	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft to firm, minor moderately hard, dispersive, amorphous to subblocky
1025	1030	10	SANDSTONE: Clear, translucent, light grey, coarse to very coarse, medium in part, moderately sorted, subangular to predominantly subrounded, trace weak siliceous cement, generally loose, fair inferred porosity, no hydrocarbon fluorescence.
		90	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft, minor firm, dispersive, amorphous to subblocky
1030	1035	10	SANDSTONE: Clear, translucent, light grey, coarse to very coarse, medium in part, moderately sorted, subangular to

Dairos			Wen completion Report Volume 1 Basic
			predominantly subrounded, trace weak siliceous cement, generally loose, fair inferred porosity, no hydrocarbon fluorescence.
		90	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft, minor firm, dispersive, amorphous to subblocky
1045	1045	10	SANDSTONE: Clear, translucent, light grey, coarse to very coarse, medium in part, moderately sorted, subangular to predominantly subrounded, trace weak siliceous cement, generally loose, fair inferred porosity, no hydrocarbon fluorescence.
		90	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft, minor firm, dispersive, amorphous to subblocky
1045	1055	20	SANDSTONE: Clear, translucent, light grey, coarse to very coarse, medium in part, moderately sorted, subangular to predominantly subrounded, trace weak siliceous cement, generally loose, fair inferred porosity, no hydrocarbon fluorescence.
		80	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft, minor firm, dispersive, amorphous to subblocky
1055	1065	10	SANDSTONE: Clear, translucent, light grey, coarse to very coarse, medium in part, moderately sorted, subangular to predominantly subrounded, trace weak siliceous cement, generally loose, fair inferred porosity, no hydrocarbon fluorescence.
		90	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft, minor firm, dispersive, amorphous to subblocky
1065	1075	10	SANDSTONE: As above
		90	CLAYSTONE: As above
1075	1080	10	SANDSTONE: As above
		90	CLAYSTONE: As above
1080	1085	30	SANDSTONE: Clear, translucent, light grey, coarse to very coarse, medium in part, moderately sorted, subangular to predominantly subrounded, trace weak siliceous cement, generally loose, fair inferred porosity, no hydrocarbon fluorescence.
		70	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft, minor firm, dispersive, amorphous to

DULLUUD			Well completion report Volume 1 Basic
			subblocky
1085	1095	80	SANDSTONE: Clear to translucent, opaque in part, light grey, minor pale yellow brown, medium to very coarse grained, minor fine, poorly sorted, subrounded to rounded, occasionally subangular, trace pyrite, trace weak siliceous cement, generally loose, poor to fair inferred porosity, no hydrocarbon fluorescence.
		20	CLAYSTONE: Medium grey, dark grey in part, trace glauconite, trace pyrite, trace lithic fragments, soft, dispersive, amorphous.
1095	1105	100	SANDSTONE: As above
1105	1115	90	SANDSTONE: As above, trace well rounded pebbles.
		10	CLAYSTONE: Medium grey, dark grey in part, trace glauconite, trace pyrite, trace lithic fragments, soft, dispersive, amorphous.
1115	1125	90	SANDSTONE: As above, trace well rounded pebbles.
		10	CLAYSTONE: Medium grey, dark grey in part, trace glauconite, trace pyrite, trace lithic fragments, soft, dispersive, amorphous, grades to siltstone.
1125	1135	90	SANDSTONE: As above.
		10	CLAYSTONE: Medium grey, dark grey in part, trace glauconite, trace pyrite, trace lithic fragments, soft, dispersive, amorphous, grades to siltstone.
1135	1145	80	SANDSTONE: As above.
		20	SILTSTONE: Medium grey, dark grey in part, trace glauconite, trace pyrite, trace lithic fragments, soft, dispersive, amorphous, grades to siltstone.
1145	1155	60	SANDSTONE: Pale to medium grey, clear to translucent, off white, fine to medium grained, partly coarse grained, occasional very coarse polished bit-fractured quartz fragments, poorly sorted, subangular to minor angular, occasionally subrounded, common moderate strong siliceous and slightly calcareous cement, locally common white argillaceous matrix, occasional medium grey silty matrix, common disseminated pyrite, rare glauconite?, moderate hard to hard aggregates, occasionally very hard, no hydrocarbon fluorescence.
		40	SILTSTONE: Medium grey, medium to dark brown, arenaceous, trace carbonaceous specks, trace disseminated pyrite, soft to firm, occasionally moderately hard, subblocky
1155	1165	40	SANDSTONE: Pale to medium grey, clear to translucent, off white, fine to medium grained, partly coarse grained, occasional very coarse polished bit-fractured quartz fragments, poorly

			sorted, subangular to minor angular, occasionally subrounded, common moderate strong siliceous and slightly calcareous cement, locally common white argillaceous matrix, occasional medium grey silty matrix, common disseminated pyrite, rare glauconite?, moderate hard to hard aggregates, occasionally very hard, no hydrocarbon fluorescence.
		60	SILTSTONE: Medium grey, medium to dark brown, arenaceous, trace carbonaceous specks, trace disseminated pyrite, soft to firm, occasionally moderately hard, subblocky
1165	1175	40	SANDSTONE: Medium to dark grey to green grey in part, translucent, fine to very coarse, poorly sorted, subangular to predominantly subrounded, trace weak siliceous cement, common argillaceous matrix,
		60	SILTSTONE: Medium grey, medium to dark brown, arenaceous, trace carbonaceous specks, trace disseminated pyrite, soft to firm, occasionally moderately hard, subblocky
1175	1185	40	SANDSTONE: Medium to dark grey to green grey in part, translucent, fine to very coarse, poorly sorted, subangular to predominantly subrounded, trace weak siliceous cement, common argillaceous matrix, generally loose, poor visual porosity, no hydrocarbon fluorescence.
		60	SILTSTONE: Medium grey, medium to dark brown, arenaceous, trace carbonaceous specks, trace disseminated pyrite, soft to firm, occasionally moderately hard, subblocky
1185	1195	50	SANDSTONE: As above, rare red brown, increasing medium to coarse.
		50	SILTSTONE: As above.
1195	1205	60	SANDSTONE: As above, fine to medium, occasionally coarse, moderately sorted.
		40	SILTSTONE: As above.
1205	1215	60	SANDSTONE: As above, fine to medium, occasionally coarse, moderately sorted.
		40	SILTSTONE: As above.
1215	1225	70	SANDSTONE: Clear, translucent, opaque, pale grey, pale green grey, medium to coarse, minor fine grained, moderate poorly sorted, subangular to subrounded, moderate strong siliceous cement in aggregates, locally com white argillaceous matrix, trace rounded lithic fragments, occasionally grading to lithic sandstone, friable to moderately hard, poor visual porosity, no hydrocarbon fluorescence.
		30	SILTSTONE: Medium grey, medium to dark brown, arenaceous,

Dairos			Well Completion Report Volume 1 Basic
			trace carbonaceous specks, trace disseminated pyrite, soft to firm, occasionally moderately hard, subblocky
1225	1235	50	SANDSTONE: Clear, translucent, opaque, pale grey, pale green grey, medium to coarse, minor fine grained, moderate poorly sorted, subangular to subrounded, moderate strong siliceous cement in aggregates, locally common white argillaceous matrix, trace rounded lithic fragments, occasionally grading to lithic sandstone, friable to moderately hard, poor visual porosity, no hydrocarbon fluorescence.
		50	SILTSTONE: Medium grey, medium to dark brown, arenaceous, trace carbonaceous specks, trace disseminated pyrite, soft to firm, occasionally moderately hard, subblocky
1235	1245	50	SANDSTONE: Clear, translucent, opaque, pale grey, medium to coarse, moderately sorted, subangular to subrounded, weak siliceous cement in aggregates, trace rounded lithic fragments, friable to moderately hard, poor visual porosity, no hydrocarbon fluorescence.
		50	SILTSTONE: Medium grey, medium to dark brown, arenaceous, trace carbonaceous specks, trace disseminated pyrite, soft to firm, occasionally moderately hard, subblocky
1245	1255	40	SANDSTONE: As above
		60	SILTSTONE: As above
1255	1265	70	SANDSTONE: As above, trace pyritic cement.
		30	SILTSTONE: As above.
1265	1275	70	SANDSTONE: Clear, translucent, opaque, pale grey, minor pale yellow, medium to coarse, moderately sorted, subangular to subrounded, weak siliceous cement in aggregates, rare pyritic cement, trace lithic fragments, moderately hard to hard, poor visual porosity, no hydrocarbon fluorescence.
		30	SILTSTONE: As above
1275	1285	40	SANDSTONE: Clear to translucent, fine to medium grained, occasionally coarse, moderate sorted, predominantly subrounded, subangular in part, weak siliceous cement, trace pyrite cement, common light grey to off white calcareous matrix, friable to moderately hard, common loose, poor visual porosity, no hydrocarbon fluorescence.
		60	SILTSTONE: Medium to dark grey to green grey in part, brown grey in part, trace glauconite?, trace disseminated pyrite, firm to soft, occasionally moderately hard, subblocky to amorphous in part.
1285	1295	20	SANDSTONE: Clear to translucent, fine to medium grained,

			occasionally coarse, moderate sorted, predominantly subrounded, subangular in part, weak siliceous cement, trace pyrite cement, common light grey to off white calcareous matrix, friable to moderately hard, common loose, poor visual porosity, no hydrocarbon fluorescence.
		80	SILTSTONE: Medium to dark grey to green grey in part, brown grey in part, trace glauconite?, trace disseminated pyrite, firm to soft, occasionally moderately hard, subblocky to amorphous in part.
1295	1305	10	SANDSTONE: As above
		90	SILTSTONE: Medium to dark grey to brown grey, trace glauconite?, trace disseminated pyrite, firm to soft, occasionally moderately hard, subblocky to amorphous in part.
1305	1315	100	SILTSTONE: Medium to dark grey to brown grey, trace glauconite?, trace disseminated pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1315	1325	100	SILTSTONE: Medium to dark grey to brown grey, trace glauconite?, trace disseminated pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1325	1335	100	SILTSTONE: Medium to dark grey to brown grey, trace glauconite?, trace disseminated pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1335	1345	100	SILTSTONE: Medium to dark grey to brown grey, trace glauconite?, trace disseminated pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1345	1355	100	SILTSTONE: Medium green grey, medium grey to brown grey, glauconitic, trace disseminated pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1355	1365	100	SILTSTONE: Medium green grey, medium grey, light grey brown, trace glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1365	1375	100	SILTSTONE: Light grey brown, medium green grey, medium grey, trace glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1375	1395	100	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, trace glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1395	1405	100	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, trace glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
		Tr	SANDSTONE: Clear to translucent, medium to coarse grained,

Daires			Won completion weport volume 1 Busic
			subangular to subrounded, generally loose grains, poor visual porosity, no hydrocarbon fluorescence.
1405	1415	100	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, trace glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
		Tr	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, generally loose grains, poor visual porosity, no hydrocarbon fluorescence.
1415	1425	100	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, trace glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
		Tr	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, generally loose grains, poor visual porosity, no hydrocarbon fluorescence.
1425	1435	100	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, common glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1435	1445	100	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, common glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1445	1450	100	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, common glauconite, trace pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1450	1455	30	SANDSTONE: Clear, translucent, fine to medium grained, occasionally coarse, moderately well sorted, subrounded to rounded, nil to trace weak siliceous cement, locally common white argillaceous matrix, generally loose grains, trace lithic fragments, trace glauconite, no fluorescence.
		70	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, common glauconite, trace pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1455	1460	30	SANDSTONE: Clear, translucent, fine to medium grained, occasionally coarse, moderately well sorted, subrounded to rounded, nil to trace weak siliceous cement, locally common white argillaceous matrix, generally loose grains, trace lithic fragments, trace glauconite, no fluorescence.
		70	SILTSTONE: Light to medium grey brown, medium green grey, medium grey, common glauconite, trace pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.

Santos			Well Completion Report Volume 1 Basic
1460	1465	100	SILTSTONE: Light to medium brown to grey brown, medium green grey, medium grey, trace glauconite, rare pyrite, generally argillaceous, slightly arenaceous, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1465	1470	100	SILTSTONE: Light to medium brown to grey brown, medium green grey, medium grey, trace glauconite, rare pyrite, generally argillaceous, slightly arenaceous, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.
1470	1475	100	SILTSTONE: As above
1475	1480	100	SILTSTONE: As above
1480	1485	100	SILTSTONE: As above
1485	1490	100	SILTSTONE: As above
1490	1495	100	SILTSTONE: As above
1495	1500	100	SILTSTONE: Medium to dark grey, medium to dark olive grey, brown grey, trace glauconite, trace pyrite, arenaceous, trace carbonaceous specks, soft to firm, subblocky.
1500	1505	100	SILTSTONE: As above
1505	1510	30	SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly fine to medium, poorly sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, trace light grey silty matrix, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.
		70	SILTSTONE: As above
1510	1515	30	SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly fine to medium, poorly sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, trace light grey silty matrix, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.
		70	SILTSTONE: As above
1515	1520	30	SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly fine to medium, poorly sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, trace light grey silty matrix, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.
		70	SILTSTONE: As above
1520	1525	20	SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly coarse to very coarse, sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, nil to trace light grey silty matrix, trace

			r r r r
			lithic fragments, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.
		80	SILTSTONE: As above
1525	1530	10	SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly medium to coarse, sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, nil to trace light grey silty matrix, trace lithic fragments, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.
		90	SILTSTONE: As above
1530	1535	10	SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly medium to coarse, sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, nil to trace light grey silty matrix, trace lithic fragments, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.
		90	SILTSTONE: As above
1535	1540	trace	SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly medium to coarse, sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, nil to trace light grey silty matrix, trace lithic fragments, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.
		100	SILTSTONE: As above
1540	1545	100	SILTSTONE: Medium to dark brown, brown grey, occasionally green grey, arenaceous, trace glauconite, trace lithic fragments, trace carbonaceous specks, soft to firm, occasionally moderate hard, subblocky, amorphous.
1545	1550	100	SILTSTONE: Medium to dark brown, brown grey, occasionally green grey, arenaceous, trace glauconite, trace lithic fragments, trace carbonaceous specks, soft to firm, occasionally moderate hard, subblocky, amorphous.
1550	1560	100	SILTSTONE: Medium to dark brown, brown grey, occasionally green grey, arenaceous, trace glauconite, trace lithic fragments, trace carbonaceous specks, soft to firm, occasionally moderate hard, subblocky, amorphous.
1560	1570	100	SILTSTONE: Medium to dark brown, brown grey, occasionally green grey, arenaceous, trace glauconite, trace lithic fragments, trace carbonaceous specks, soft to firm, occasionally moderate hard, subblocky, amorphous.
1570	1575	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, trace glauconite, trace lithic fragments, trace carbonaceous

			specks, firm to moderately hard, subblocky, occasionally subfissile.
1575	1580	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, trace glauconite, trace lithic fragments, trace carbonaceous specks, firm to moderately hard, subblocky, occasionally subfissile.
1580	1585	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, trace glauconite, trace lithic fragments, trace carbonaceous specks, weakly calcareous in part, trace dolomite, soft to firm to moderately hard, subblocky, occasionally subfissile.
1585	1590	100	SILTSTONE: As above
1590	1595	100	SILTSTONE: As above
1595	1600	100	SILTSTONE: As above
1600	1605	100	SILTSTONE: As above
1605	1610	100	SILTSTONE: As above
1610	1615	100	SILTSTONE: As above
1615	1620	100	SILTSTONE: As above
1620	1625	100	SILTSTONE: As above.
1625	1630	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, trace glauconite, trace lithic fragments, trace carbonaceous specks, very weakly calcareous in part, trace calcite, rare dolomite, soft to firm to moderately hard, subblocky, occasionally subfissile.
1630	1635	100	SILTSTONE: As above
1635	1640	100	SILTSTONE: As above
1640	1645	100	SILTSTONE: As above.
1645	1650	100	SILTSTONE: As above.
1650	1655	100	SILTSTONE: As above.
1655	1660	100	SILTSTONE: As above.
1660	1665	100	SILTSTONE: As above.
1665	1670	100	SILTSTONE: As above.
1670	1675	100	SILTSTONE: As above.
1675	1680	100	SILTSTONE: As above.

1680	1685	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, olive brown, trace glauconite, trace lithic fragments, trace carbonaceous specks, very weakly calcareous in part, trace calcite, firm to moderately hard, minor hard, subblocky, occasionally subfissile.
		Trace	SANDSTONE: Clear, translucent ,opaque, pale grey, medium to very coarse, moderate poorly sorted, no visible cement or matrix, generally loose grained, trace lithic fragments, trace glauconite, poor porosity, no hydrocarbon fluorescence.
1685	1690	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, olive brown, trace glauconite, trace lithic fragments, trace carbonaceous specks, weakly calcareous in part, trace calcite, firm to moderately hard, minor hard, subblocky, occasionally subfissile.
1690	1695	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, olive brown, trace glauconite, trace lithic fragments, trace carbonaceous specks, weakly calcareous in part, trace calcite, firm to moderately hard, minor hard, subblocky, occasionally subfissile.
1695	1700	100	SILTSTONE: As above
1700	1703	100	SILTSTONE: As above, slight increase in glauconite
1703	1706	100	SILTSTONE: As above
1706	1709	100	SILTSTONE: As above
1709	1712	100	SILTSTONE: As above
1712	1715	100	SILTSTONE: As above
1715	1718	100	SILTSTONE: As above
1718	1721	100	SILTSTONE: As above
1721	1724	100	SILTSTONE: As above
1724	1727	100	SILTSTONE: Medium to dark brown grey, medium to dark grey, olive brown, trace to locally common, glauconite, trace lithic fragments, trace carbonaceous specks, weakly calcareous in part, trace calcite, moderately hard, minor hard, firm in part, subblocky, occasionally subfissile.
1727	1730	100	SILTSTONE: As above
1730	1733	100	SILTSTONE: As above
1733	1736	100	SILTSTONE: As above

Santos			Well Completion Report Volume 1 Basic
1736	1739	100	SILTSTONE: As above
1739	1742	100	SILTSTONE: As above
1742	1745	100	SILTSTONE: As above
1745	1748	90	SILTSTONE: As above
		10	SANDSTONE: Pale brown grey, pale grey, fine to coarse grained, poorly sorted, subangular to subrounded, occasionally rounded, trace moderate strong calcareous cement, trace siliceous cement, trace glauconite, com white to light brown grey argillaceous matrix, friable to moderately hard, poor visual porosity, no hydrocarbon fluorescence.
1748	1751	90	SILTSTONE: As above
		10	SANDSTONE: Pale brown grey, pale grey, fine to coarse grained, poorly sorted, subangular to subrounded, occasionally rounded, trace moderate strong calcareous cement, trace siliceous cement, trace glauconite, common white to light brown grey argillaceous matrix, friable to moderately hard, poor visual porosity, no hydrocarbon fluorescence.
1751	1754	90	SILTSTONE: Light to medium olive grey brown, locally common glauconite, firm to hard, trace carbonaceous specks, trace pyrite, blocky to subblocky
		10	SANDSTONE: Pale brown grey, pale grey, fine to coarse grained, predominantly fine to medium grained, moderately poorly sorted, subangular to subrounded, occasionally rounded, trace moderate strong calcareous cement, trace siliceous cement, trace glauconite, common white to light brown grey argillaceous matrix, friable to moderately hard, occasionally loose clear coarse, quartz sand, poor visual porosity, no hydrocarbon fluorescence.
1754	1757	40	SANDSTONE: Light brown grey, light grey, fine to coarse grained, predominantly fine to medium grained, moderately poorly sorted, trace weak siliceous cement, common white to light grey argillaceous matrix, trace glauconite, trace lithic fragments, friable to occasionally moderately hard, poor visual porosity, poor inferred porosity, no hydrocarbon fluorescence.
		60	SILTSTONE: Light to medium olive grey brown, locally common glauconite, firm to hard, trace to locally common carbonaceous specks, trace pyrite, trace dark lithic fragments, blocky to subblocky
1757	1760	50	SANDSTONE: Light brown grey, light grey, fine to very coarse grained, predominantly fine to medium grained, moderately poorly sorted, trace weak siliceous cement, common white to light grey argillaceous matrix, trace glauconite, trace pyrite,

Dairos			Well Completion Report Volume 1 Basic
			trace lithic fragments, common loose coarse quartz grains, friable to occasionally moderately hard, poor visual porosity, poor inferred porosity, no hydrocarbon fluorescence.
		50	SILTSTONE: Light to medium olive grey brown, locally common glauconite, firm to hard, trace to locally common carbonaceous specks, trace pyrite, trace dark lithic fragments, blocky to subblocky
1760	1763	50	SANDSTONE: Light brown grey, light grey, fine to very coarse grained, predominantly fine to medium grained, moderately poorly sorted, trace weak siliceous cement, common white to light grey argillaceous matrix, trace glauconite, trace pyrite, trace lithic fragments, common loose coarse quartz grains, friable to occasionally moderately hard, poor visual porosity, poor inferred porosity, no hydrocarbon fluorescence.
		50	SILTSTONE: Light to medium olive grey brown, locally common glauconite, firm to hard, trace to locally common carbonaceous specks, trace pyrite, trace dark lithic fragments, blocky to subblocky
1763	1766	20	SANDSTONE: As above, very fine to fine grained, well sorted.
		80	SILTSTONE: As above.
1766	1769	30	SANDSTONE: Clear, translucent, occasionally yellow brown Fe-stained, medium to coarse, occasionally very coarse, moderately poorly sorted, subangular to subrounded, weak siliceous cement, trace to locally common white argillaceous matrix, trace glauconite, trace pyrite, poor visual porosity, no hydrocarbon fluorescence.
		80	SILTSTONE: Light to medium grey to grey brown, locally common glauconite, soft to firm, trace pyrite, trace carbonaceous specks, firm to hard, blocky to subblocky
1769	1772	70	SANDSTONE: Generally as above, very fine to coarse, predominantly medium to coarse, moderately poorly sorted, trace siliceous cement, trace to locally common white argillaceous matrix, trace calcite, trace pyrite, poor visual porosity, no hydrocarbon fluorescence.
		30	SILTSTONE: As above.
1772	1775	90	SANDSTONE: Clear to translucent, pale grey, very fine to coarse grained, rare very coarse, poorly sorted, predominantly fine to medium, subangular to commonly subrounded, minor rounded, trace weak siliceous cement, trace to locally common light grey argillaceous matrix, trace to locally common pyrite, trace glauconite, trace calcite, trace lithic fragments, poor to fair visual and inferred porosity, no hydrocarbon fluorescence.
		10	SILTSTONE: As above.

1775	1770	00	
1775	1778	90	SANDSTONE: Clear to translucent, pale grey, very fine to coarse grained, rare very coarse, poorly sorted, predominantly fine to medium, subangular to commonly subrounded, minor rounded, trace weak siliceous cement, trace to locally common light grey argillaceous matrix, trace to locally common pyrite, trace to common glauconite, trace calcite, trace lithic fragments, moderately clean, poor to fair visual and inferred porosity, no hydrocarbon fluorescence.
		10	SILTSTONE: As above.
1778	1781	90	SANDSTONE: As above, fine to medium, moderate well sorted, fair inferred porosity, no hydrocarbon fluorescence.
		10	SILTSTONE: As above.
1781	1784	80	SANDSTONE: Clear to translucent, opaque, very fine to coarse grained, minor very coarse, predominantly medium to coarse, poorly sorted, subrounded to subangular, trace weak siliceous cement, trace calcareous cement, trace pyrite, trace glauconite, trace brown rounded polished lithic fragments, generally loose and clean, fair inferred porosity, no hydrocarbon fluorescence.
		20	SILTSTONE: As above.
1784	1787	20	SANDSTONE: Clear to translucent, opaque, very fine to fine grained, minor medium to coarse, moderately poorly sorted, subrounded to subangular, trace weak siliceous cement, trace calcareous cement, common white to light grey argillaceous matrix, trace pyrite, trace glauconite, poor visual porosity, no hydrocarbon fluorescence.
		70	SILTSTONE: As above
1787	1790	20	SANDSTONE: As above.
		70	SILTSTONE: As above, pale green, slightly calcareous.
1790	1793	30	SANDSTONE: As above.
		70	SILTSTONE: As above.
1793	1796	30	SANDSTONE: Pale brown, off white, fine to medium, occasionally loose coarse grained, moderately poorly sorted, subangular, trace weak siliceous cement, common calcareous cement, common off white argillaceous matrix, trace pyrite, trace lithic fragments, friable to moderately hard aggregates, poor visual porosity, no hydrocarbon fluorescence.
		80	SILTSTONE: As above.
1796	1799	20	SANDSTONE: As above.

		80	SILTSTONE: Light brown, light green brown, off white, very finely arenaceous, trace carbonaceous specks, firm to occasionally moderately hard, subblocky.
1799	1802	10	SANDSTONE: As above.
1777	1002		
		90	SILTSTONE: Light brown, light green brown, off white, very finely arenaceous, trace carbonaceous specks, trace pyrite, firm to occasionally moderately hard, subblocky.
1802	1805	Trace	SANDSTONE: As above.
		100	SILTSTONE: Light brown, light green brown, off white, very finely arenaceous, trace carbonaceous specks, trace pyrite, firm to occasionally moderately hard, subblocky.
1805	1808	20	SANDSTONE: As above, very fine to fine grained, moderate well sorted, poor visual porosity, no hydrocarbon fluorescence.
		80	SANDSTONE: As above
1808	1811	100	SILTSTONE: Light brown to medium brown, pale green brown, common carbonaceous specks, trace glauconite, argillaceous, firm to occasionally moderate hard, subblocky.
1811	1814	100	SILTSTONE: As above
1814	1817	100	SILTSTONE: As above
1817	1820	100	SILTSTONE: As above
1820	1823	100	SILTSTONE: As above
1823	1826	100	SILTSTONE: As above
1826	1829	100	SILTSTONE: As above, arenaceous, grades into very fine sandstone in part.
1829	1832	80	SANDSTONE: Pale brown grey, off white, translucent, opaque in part, fine to medium, minor coarse grained, moderately well sorted, subangular, common calcareous cement, common to locally abundant white argillaceous matrix, trace pyrite, trace glauconite, friable to moderately hard, occasionally hard, poor visual porosity, no hydrocarbon fluorescence.
		30	SILTSTONE: As above, arenaceous, grades into very fine sandstone in part.
1832	1835	70	SANDSTONE: Pale brown grey, off white, translucent, opaque in part, fine to medium, moderately well sorted, subangular, common calcareous cement, common to locally abundant white argillaceous matrix, trace pyrite, trace glauconite, friable to moderately hard, occasionally hard to rarely very hard, poor visual porosity, no hydrocarbon fluorescence.

		50	SILTSTONE: As above, arenaceous, grades into very fine sandstone in part.
1835	1838	20	SANDSTONE: As above.
		90	SILTSTONE: Medium brown, trace green brown, very finely arenaceous in part, generally argillaceous, dispersive in part, soft to firm, com carbonaceous specks, slightly micro-micaceous, subblocky to amorphous.
1838	1841	30	SANDSTONE: as above, very fine to fine grained, grades to very finely arenaceous siltstone, poor porosity, no hydrocarbon fluorescence.
		70	SILTSTONE: as above.
1841	1844	60	SANDSTONE: as above, very fine to fine grained, grades to very finely arenaceous siltstone, micro-micaceous, poor porosity, no hydrocarbon fluorescence.
		40	SILTSTONE: as above.
1844	1847	40	SANDSTONE: as above, very fine to fine grained, grades to very finely arenaceous siltstone, micro-micaceous, poor porosity, no hydrocarbon fluorescence.
		60	SILTSTONE: as above.
1847	1853	50	SANDSTONE: as above, very fine to fine grained, grades to very finely arenaceous siltstone, micro-micaceous, poor porosity, no hydrocarbon fluorescence.
		50	SILTSTONE: as above.
1853	1859	60	SANDSTONE: as above, very fine to fine grained, grades to very finely arenaceous siltstone, micro-micaceous, poor porosity, no hydrocarbon fluorescence.
		40	SILTSTONE: as above.
1859	1965	70	SANDSTONE: Light grey, pale brown, clear to translucent, fine to medium grained, minor coarse grained, moderately well sorted, subangular to subrounded, trace moderate strong calcareous cement, siliceous cement in part, common white argillaceous matrix, friable to moderately hard, trace carbonaceous specks locally grading to coal, poor visual porosity, no hydrocarbon fluorescence.
		30	SILTSTONE: As above.
1865	1871	60	SANDSTONE: Light grey, pale brown, clear to translucent, fine to medium grained, minor coarse grained, moderately well sorted, subangular to subrounded, trace moderate strong

			calcareous cement, siliceous cement in part, common white argillaceous matrix, friable to moderately hard, trace carbonaceous specks and minor micro-laminations, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence.
		40	SILTSTONE: As above.
1871	1877	60	SANDSTONE: As above.
		40	SILTSTONE: As above.
1877	1883	70	SANDSTONE: As above.
		30	SILTSTONE: As above.
1883	1889	50	SANDSTONE: As above, grades to arenaceous siltstone in part.
		50	SILTSTONE: As above.
1889	1895	50	SANDSTONE: Off white to pale brown, translucent, fine to medium grained, rare coarse, moderately well sorted, common calcareous cement, common argillaceous matrix, silty in part, trace carbonaceous specks, friable, moderate hard, poor visual porosity, no hydrocarbon fluorescence.
		50	SILTSTONE: As above.
1895	1901	90	SANDSTONE: White to light grey brown, colourless to translucent, fine to medium grained, moderately well sorted, subangular to subrounded, weak siliceous cement, common white to light grey brown argillaceous matrix, trace carbonaceous specks, trace glauconite grains, friable aggregates, poor visual porosity, no hydrocarbon fluorescence.
1901	1907	10 90	SILTSTONE: As above.
1901	1907	10	SANDSTONE: As above with light grey clay matrix and common white calcareous matrix. SILTSTONE: As above.
1907	1913	80	SANDSTONE: As above but with abundant white calcareous matrix
		20	SILTSTONE: Medium to dark grey, argillaceous, common carbonaceous fragments, hard, subblocky.
1913	1919	90	SANDSTONE: As above.
		10	SILTSTONE: As above.
1919	1925	60	SANDSTONE: As above.
		30	CLAYSTONE: Off white to pale grey, light grey in part, trace carbonaceous micro-specks, firm to locally hard, subblocky.

α	
->9	ntag

			1 1
		10	SILTSTONE: As above.
1925	1931	80	CLAYSTONE: Light grey, light green, grades to SILTSTONE in part, glauconitic in part, trace carbonaceous specks, trace white lithic fragments, trace pyrite, firm to moderately hard, locally very hard, subblocky.
		20	SANDSTONE: Colourless to translucent, minor dark brown, trace pink to orange grains, fine to occasionally medium, moderately well sorted, subangular to subrounded, weak calcareous cement, minor white argillaceous matrix, friable to loose, fair visual porosity, no hydrocarbon fluorescence.
1931	1937	50	CLAYSTONE: As above.
		30	SANDSTONE: As above.
		10	SILTSTONE: As above.
1937	1943	90	SANDSTONE: Colourless to translucent, white to light green, light grey, fine to predominantly medium, well sorted, subrounded, weak calcareous cement, locally common white argillaceous matrix, common pyrite fragments, trace pyrite coated grains, common red lithic fragments and carbonaceous fragments, trace dolomite, friable to loose, poor visual and fair inferred porosity, no hydrocarbon fluorescence.
		10	SILTSTONE: As above.
1943	1949	70	SANDSTONE: As above.
		30	SILTSTONE: As above.
1949	1955	70	SANDSTONE: As above, but medium to coarse grained, common yellow and pink fragments, common dolomite.
		30	SILTSTONE: Light to medium grey, occasionally dark grey, grey brown in part, argillaceous, common carbonaceous fragments, trace micro-micaceous, moderately hard to hard, subblocky to blocky.
1955	1961	80	SANDSTONE: As above.
		20	SILTSTONE: As above.
1961	1967	60	CLAYSTONE: Light grey, light grey brown, light grey green, light to medium grey, argillaceous grading to SILTSTONE, minor arenaceous grading to very fine SANDSTONE, trace carbonaceous micro-specks, trace white lithic fragments, moderately hard to hard, subblocky to blocky.
		40	SANDSTONE: Colourless to translucent, white, fine, well sorted, subrounded, weak calcareous cement, minor white argillaceous matrix, common pyrite fragments, trace pyrite

-			. .
			coated grains, common red lithic fragments and carbonaceous fragments, friable to generally loose, poor visual and fair inferred porosity, no hydrocarbon fluorescence.
1967	1973	70	CLAYSTONE: As above.
		30	SANDSTONE: As above.
1973	1979	50	CLAYSTONE: As above.
		50	SANDSTONE: As above.
1979	1985	60	CLAYSTONE: As above.
		40	SANDSTONE: As above.
1985	1991	80	CLAYSTONE: As above.
		20	SANDSTONE: As above.
1991	1997	90	CLAYSTONE: As above but dominantly light grey to light green
		10	SANDSTONE: As above.
1997	2003	50	CLAYSTONE: Pale grey, grey green to light green, trace carbonaceous micro-specks and white lithic fragments, firm to moderately hard, subblocky to blocky.
		30	SANDSTONE: As above.
		20	SILTSTONE: Light to medium grey, light grey brown, occasional dark grey, argillaceous locally grading to CLAYSTONE, com carbonaceous specks and microlaminations, soft to firm, subblocky.
2003	2009	80	SILTSTONE: As above but with calcareous bands and common pyrite.
		20	SANDSTONE: As above.
2009	2015	80	SANDSTONE: White to off white, light grey, colourless to translucent, medium to coarse, moderate sorting, subrounded, weak calcareous cement, common to locally abundant white matrix, trace to common carbonaceous fragments and red and yellow lithic fragments, friable to loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		20	SILTSTONE: As above.
2015	2021	80	SANDSTONE: White to off white, light grey, light green, colourless to translucent, minor red to orange and yellow grains, medium to coarse, moderate sorting, subrounded, weak calcareous cement, common to locally abundant white matrix,

Dailos			Well completion report Volume 1 Basic
			trace to common carbonaceous fragments, common glauconite grains, friable to loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		20	SILTSTONE: As above.
2021	2027	80	SANDSTONE: As above but with increasing green glauconitic grains, minor very coarse quartz fragments, dark red banded and purple lithic fragments (chert?), common disseminated pyrite coated grains.
		20	SILTSTONE: Purple, light to medium grey, dark grey brown, argillaceous, locally grading to CLAYSTONE, common carbonaceous specks and white lithic fragments, trace glauconite, moderately hard, subblocky.
2027	2033	80	SANDSTONE: As above.
		20	SILTSTONE: As above.
2033	2039	70	SANDSTONE: As above.
		30	SILTSTONE: As above.
2039	2045	70	SANDSTONE: As above.
		30	SILTSTONE: Light grey, light grey green to light green, medium to dark grey, occasionally black and purple, argillaceous grading to CLAYSTONE, trace carbonaceous specks and white lithic fragments, firm to moderately hard, subblocky to blocky.
2045	2051	70	SANDSTONE: As above.
		30	SILTSTONE: As above.
2051	2057	80	SANDSTONE: As above plus trace pyritic cement, trace Fe staining
		20	SILTSTONE: As above.
2057	2063	70	SANDSTONE: As above.
		30	SILTSTONE: Light grey, light grey green to light green, light grey brown to light brown, occasionally medium to dark grey, minor purple, argillaceous grading to CLAYSTONE in part, trace carbonaceous specks and white lithic fragments, rare micro-micaceous, firm to moderately hard, locally hard, subblocky to blocky.
2063	2069	90	SANDSTONE: As above.
		10	SILTSTONE: As above.
2069	2075	70	SANDSTONE: As above.

		30	SILTSTONE: As above.
2075	2081	70	SANDSTONE: White to off white, light grey, light green, colourless to translucent, minor red to orange and yellow grains, trace to common Fe staining, medium to coarse, occasionally very coarse quartz fragments, fine in part, moderate sorting, subrounded, weak calcareous cement, common to locally abundant white matrix, common glauconite grains, trace to common carbonaceous fragments, friable to loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		30	SILTSTONE: As above, siliceous in part.
2081	2087	90	SANDSTONE: White to off white, light grey, light green grey, colourless to translucent, minor red to orange and yellow grains, trace Fe staining, predominantly medium to coarse, occasionally fine, moderate sorting, subangular to subrounded, weak calcareous cement, common to locally abundant white to light grey argillaceous matrix, trace glauconite grains, trace carbonaceous fragments, trace pyrite, friable to loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		10	SILTSTONE: Light grey, light grey green to light green, light grey brown to light brown, occasionally medium to dark grey, minor purple, argillaceous grading to CLAYSTONE in part, trace carbonaceous specks and white lithic fragments, siliceous in part, rare micro-micaceous, firm to moderately hard, locally hard, subblocky to blocky.
2087	2093	80	SANDSTONE: White to off white, light to medium grey, light green grey, colourless to translucent, minor red to orange and yellow grains, trace Fe staining, fine to predominantly medium grained, occasionally coarse, moderate sorting, subangular to subrounded, weak calcareous cement, common white to light grey argillaceous matrix, trace glauconite grains, trace carbonaceous specks, trace pyrite, friable to loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence.
		20	SILTSTONE: Light grey, light grey green to light green, light grey brown to light brown, occasionally medium to dark grey, minor purple, argillaceous grading to CLAYSTONE in part, trace carbonaceous specks and white lithic fragments, siliceous in part, rare micro-micaceous, firm to moderately hard, locally hard, subblocky to blocky.
2093	2099	50	SANDSTONE: As above.
		50	SILTSTONE: As above.
2099	2105	80	SANDSTONE: As above.
		20	SILTSTONE: As above.

Q.	nto	~
, 7 , 3	nto	•

2105 2112 80 SANDSTONE: As above.

20 SILTSTONE: As above.

TOTAL DEPTH DRILLER: 2112m TOTAL DEPTH LOGGER: 2108m

Santos	Well Completion Report Volume 1 Basic
	SECTION 2.2:- SIDEWALL CORES DESCRIPTIONS

SANTOS LIMITED

SIDEWALL CORE DESCRIPTION

WELL:	CASINO-2	DATE	05-10-02	PAGES	8
GUN NO.:	1	SHOTS FIRED	30	SHOTS PURCHASED	26
		GEOLOGIST:	M. D'Cruz / Subra		

CORE NO.	DEPTH (m)	REC. (cm)	PALYN. EVAL. REJECT	LITH.	COLOUR	GRAI N SIZE	HYDR. INDIC. (Y/N)	SUPPLEMENTARY INFORMATION
30	1016		N	CLYST	Med to dk brn	-	N	CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, firm to moderately hard, dispersive, amorphous to subblocky
29	1060	4.5	N	CLYST	Dk gry	-	N	CLAYSTONE: Dark grey, firm to moderately hard, subblocky
28	1101	3.5	N	SST CLYST	Lt gy Dk gy	med to occ coarse	N	SANDSTONE: Light grey, pale brown, medium grained, rare coarse, moderately well sorted, subrounded to subangular, trace weak siliceous cement, poor to fair inferred porosity, no hydrocarbon fluorescence. CLAYSTONE: Dark grey, moderately hard, subblocky.

27	1152	4.0	N	SST SLTST	gry	fine	N	SANDSTONE: Pale to medium grey, very fine to fine grained, well sorted, grades to siltstone, white argillaceous matrix, occasional medium grey silty matrix, common disseminated pyrite, moderate hard to hard aggregates, no hydrocarbon fluorescence. SILTSTONE: Medium grey, arenaceous, trace carbonaceous specks, firm, occasionally moderately hard, subblocky
26	1303	2.5	N	SLTST	Med to dk gry to brn gry	-	N	SILTSTONE: Medium to dark grey to brown grey, firm to moderately hard, subblocky.
25	1500	2.25	N	SLTST	Med to dk gry to brn gry	-	N	SILTSTONE: Medium to dark grey to brown grey, soft to firm, subblocky.
24	1555	4.5	N	SLTST	Med brn gry	-	N	SILTSTONE: Medium brown grey, arenaceous, trace glauconite, soft to firm, grades to claystone, subblocky.
23	1700	3.5	N	SLTST	Med to dk brn gy	Arg	N	SILTSTONE: Medium to dark brown grey, medium to dark grey, olive brown, trace glauconite, trace lithic fragments, trace carbonaceous specks, moderately hard to hard, subblocky, occasionally subfissile.

22	1751	2.25	N	SLTST	Med brn gry	Arg	N	SILTSTONE: Medium brown grey, medium to dark grey, olive brown, very finely arenaceous, trace to locally common glauconite, trace lithic fragments, trace carbonaceous specks, moderately hard to hard, subblocky.
21	1810	2.5	N	SLTST	Lt grn gry	Arg	N	SILTSTONE: Light green, pale green grey, pale green brown, common carbonaceous specks, glauconitic, slightly very finely arenaceous, partly argillaceous, firm to occasionally moderate hard, subblocky.
20	1823	3	N	SLTST	Med gry brn	Arg	N	SILTSTONE: Medium grey brown, very finely arenaceous in part, generally argillaceous, dispersive in part, soft to firm, com carbonaceous specks, slightly micro-micaceous, subblocky to amorphous.
19	1836	2.5	N	SST 90% SLTST 10%	Wh	Fine	N	SANDSTONE: White to off white, very fine to fine grained, grades to arenaceous siltstone in part, well sorted, subangular to subrounded, weak strong calcareous cement, abundant white argillaceous matrix, friable to moderately hard, thin siltstone interbeds, trace carbonaceous specks, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence. SILTSTONE: Medium grey brown, argillaceous, common carbonaceous fragments and micro-laminations, firm to moderately hard, subblocky.

18	1838	2.0	N	SLTST	Med gry brn	Arg	N	SILTSTONE: Medium grey brown, common thin light grey interbeds, argillaceous, common carbonaceous fragments and micro-laminations, firm to moderately hard, subblocky.
17	1845	2.5	N	SST	Wh	Fine	N	SANDSTONE: White to off white, very fine to fine grained, grades to arenaceous siltstone in part, well sorted, subangular to subrounded, weak strong calcareous cement, abundant white argillaceous matrix, friable to moderately hard, trace carbonaceous specks, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence.
16	1854	2 (broken)	N	SLTST	Lt gry	Arg	N	SILTSTONE: Light grey, argillaceous, common carbonaceous fragments, firm to moderately hard, subblocky.
15	1857	2.5	N	SST	Wh to lt gry	Fine to medium	N	SANDSTONE: White to light grey, fine to medium grained, moderately well sorted, subangular to subrounded, moderately strong calcareous cement, siliceous cement in part, common white argillaceous matrix, friable to moderately hard, trace carbonaceous specks and minor micro-laminations, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence.

14	1866	2.5	N	SST	Wh to lt gry	Fine to medium	N	SANDSTONE: White to light grey, fine to medium grained, moderately well sorted, subangular to subrounded, moderately strong calcareous cement, siliceous cement in part, common white argillaceous and calcareous matrix, friable to moderately hard, trace carbonaceous specks and minor microlaminations, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence.
13	1871	2.5	N	SST	Wh to lt gry	Fine to medium	N	SANDSTONE: White to light grey, fine to medium grained, moderately well sorted, subangular to subrounded, moderately strong calcareous cement, siliceous cement in part, common white argillaceous and calcareous matrix, friable to moderately hard, trace carbonaceous specks and minor microlaminations, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence.
12	1880.5	2 (broken)	N	SST	Wh to lt gry	Fine to medium	N	SANDSTONE: White to light grey, fine to medium grained, moderately well sorted, subangular to subrounded, moderately strong calcareous cement, siliceous cement in part, common white argillaceous and calcareous matrix, friable to moderately hard, trace carbonaceous specks and minor microlaminations, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence.
11	1887	Empty	-	-	-	-	-	

10	1890	3	N	SLTST	Lt to med gry	Arg	N	SILTSTONE: Light to medium grey, argillaceous, common white calcareous lithics, common carbonaceous fragments soft to firm, subblocky.
9	1894	4.5	N	SLTST	Lt to med gry	Arg	N	SILTSTONE: Light to medium grey, argillaceous, common carbonaceous fragments and lithics, soft to firm, subblocky.
8	1901	2	N	SST	Wh to It gry	Fine	N	SANDSTONE: White to light grey, colourless to translucent, fine to occasionally medium grained, moderately well sorted, subangular to subrounded, weak siliceous cement, common white to light grey argillaceous and calcareous matrix, trace carbonaceous specks, trace glauconite grains, friable aggregates, poor visual porosity, no hydrocarbon fluorescence.
7	1917	2	N	SST	Wh to It gry	Fine	N	SANDSTONE: White to light grey, colourless to translucent, fine to occasionally medium grained, moderately well sorted, subangular to subrounded, weak siliceous cement, common white to light grey argillaceous and calcareous matrix, trace carbonaceous specks, trace glauconite grains, friable aggregates, poor visual porosity, no hydrocarbon fluorescence.
6	1922	Empty	-	-	-	-	-	-
5	1925	Empty	-	1	-	-	-	-

4	1958	Empty	-	-	-	-	-	
3	1963	3	N	SLTST	Lt gry grn	Arg	N	SILTSTONE: Pale grey, grey green to light green, argillaceous, minor very fine arenaceous, trace carbonaceous micro-specks and white lithic fragments, firm to moderately hard, subblocky to blocky.
2	2000	3	N	SLTST	Lt gry grn	Arg	N	SILTSTONE: Pale grey, grey green to light green, argillaceous, minor very fine arenaceous, trace carbonaceous micro-specks and white lithic fragments, firm to moderately hard, subblocky to blocky.
1	2076	4.5	N	SLTST	Lt gry grn	Arg	N	SILTSTONE: Light grey, light grey green to light green, argillaceous grading to CLAYSTONE in part, trace carbonaceous specks and white lithic fragments, rare micromicaceous, firm to moderately hard, subblocky to blocky.

COMMENTS:

30 sidewall cores were attempted. 26 were recovered.

3 correlation passes were performed.

Santos	Well Completion Report Volume 1 Basic
	SECTION 2.2:- CATALOGUE OF WELLSITE SAMPLES

Shipping Manifest

Santos: Casino-2 From: BHI Unit 503

Location: *Ocean Bounty*Telephone: 08 8218 5740

Shipped in Container No: 26690

SAMPLE TYPE	No.	COMPOSITION		PACKING DETAILS	
	Of	Sample		terval (m)	
	Sets	Box No.	From	To	
Sets A,B,C: Washed & Air Dried	3	1	705	835	Small boxes 1 – 8 packed in
Samples (100 g)		2	835	965	large box 1 of 2
		3	965	1100	
		4	1100	1230	
		5	1230	1320	
		6	1320	1460	
		7	1460	1590	
		8	1590	1718	
		9	1718	1802	Small boxes 9 – 13 packed
		10	1802	1871	in large box 2 of 2
		11	1871	1949	
		12	1949	2030	
		13	2030	2112	
Sets D,E: Washed & Air Dried	2	1	705	800	Small boxes $1 - 8$ packed in
Samples (200 g)		2	800	930	large box 1 of 2
		3	930	1030	
		4	1030	1115	
		5	1115	1210	
		6	1210	1300	
		7	1300	1420	
		8	1420	1535	
		9	1535	1670	Small boxes 9 – 16 packed
		10	1670	1754	in large box 2 of 2
		11	1754	1823	
		12	1823	1886	
		13	1886	1946	
		14	1946	2009	
		15	2009	2075	
		16	2075	2112	
Set F: Samplex Trays	1	1	700	2112	1 wooden box.
Set G: Samplex Trays	1	1	700	1205	4 small boxes in 1 large
		2	1205	1700	box.
		3	1700		
		4		2112	
Set H: Mud Samples	1	1	700	2112	1 box.
Set I: Misc paper work, logs and charts (Casion1 and Casino 2	1	1	-	-	2 Large boxes

Note: Mud samples taken at 760, 1703, 1752, 1763, 1771, 1825, 1834, 2112. Schlumberger MDT Sample from 1764m also packed in same container.

DISTRIBUTION	Destination & Address	Attention of:
Set A and B: Santos Washed & Dried (100g)	C/- Santos Core Library Ascot Transport Francis Street	Attn: Troy Prosser (Santos Core Librarian)
	Gillman SA 5013	
Set C: Strike Oil	C/- Santos Core Library	Attn: Troy Prosser (Santos
Washed & Dried (100g)	Ascot Transport	Core Librarian)
	Francis Street	,
	Gillman SA 5013	
Set D: Vic DRNE	C/- Santos Core Library	Attn: Troy Prosser (Santos
Washed & Dried (200g)	Ascot Transport	Core Librarian)
, ,	Francis Street	,
	Gillman SA 5013	
	Fwd to Vic DNRE	
Set E: Geoscience	C/- Santos Core Library	Attn: Troy Prosser (Santos
Australia	Ascot Transport	Core Librarian)
Washed & Dried (200g)	Francis Street	,
	Gillman SA 5013	
	Fwd to AGSO	
Set F, G: Santos and	C/- Santos Core Library	Attn: Troy Prosser (Santos
Strike	Ascot Transport	Core Librarian)
Samplex Trays	Francis Street	
	Gillman SA 5013	
	Fwd to AGSO	
Set H:	C/- Santos Core Library	Attn: Troy Prosser (Santos
Mud Samples	Ascot Transport	Core Librarian)
	Francis Street	
	Gillman SA 5013	
	Fwd to AGSO	
Set I: Misc paper work,	C/- Santos Core Library	Attn: Attn: Troy Prosser
logs and charts	Ascot Transport	(Santos Core Librarian)
	Francis Street	
	Gillman SA 5013	
	Fwd to AGSO	

C -		
7 8	ntag	

SECTION 3: WIRELINE LOGGING REPORTS

Santos	Well Completion Report Volume 1 Basic
	SECTION 3.1:- SUITE 1 - LOGGING ORDER FORM

Santos

A.C.N. 007 550 923

LOGGING ORDER

COMPANY:	SANTOS – STRIKE OIL			
WELL:	CASINO-2	FIELD:	CASINO	
RIG:	OCEAN BOUNTY	STATE:	VICTORIA	
LOCATION:	OTWAY BASIN	BLOCK:	VIC/P44	
LATITUDE:	38° 47' 43.887" S	LONGITUDE:	142° 44' 50.74	16" E
ELEVATIONS:	Water Depth: 67.8m RT-Seabed: 92.8m	RT:	25.0m LAT	DF : <u>25.0m</u>
914mm HOLE:	140m	762mm CSG:	137m	_
445mm HOLE:	700m	340mm CSG:	690.55m	
311mm HOLE:	2112m	244mm CSG:	-	<u>.</u>
216mm HOLE:		178mm Liner:	-	
152mm HOLE:		TD (Logr.):		_
MUD SYSTEM:	KCl / PHPA / GLYCOL	CIRCULATION	STOPPED: 04:1:	5 hrs 04-10-02
0	TISC: 57 PV/YP: 21 / 23 and report for mud properties	PH : 9.5 FLU	ID LOSS: 5.2	CHL: 31500
GEOLOGIST: R. Subramanian / M. D'Cruz				
INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS.				

HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) Good hole conditions expected.

Barite in mud = 58.9 ppb

DRILL STEM TESTS/CORED INTERVALS:

No DSTs were conducted.

One open hole core was cut 1763m to 1784m (D).

COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET)

LOGS:

PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 07:30 hrs ON 04-10-02
--

PROGRAM VARIES FROM PRE-SPUD NOTES:	YES:	NO:	

LOG	INTERVAL	REPEAT SECTION /
		Comments
RUN 1: PEX-DSI		
Resistivity-Caliper-SP	TD to casing shoe	No repeat section required, check
Sonic (P&S WFT)	TD to loss of signal in casing	repeatability with down log.
Sonic (Dipole shear)	TD to 1650m	
Neutron Density	TD to casing shoe	
Spectral Gamma	TD to 1650m	
GR	TD to Seafloor	
RUN 2: MDT-GR	Points to be advised	
	Sampling contingent. PVT module with	
	resistivity monitoring required.	
	7	
<u>RUN 3</u> : VSP	Zero offset.	Contingent
	TD to top of cement	
	20m levels.	
DIN A CWG	20	
<u>RUN 4</u> : SWC	30 cores. Points to be advised	Second gun contingent

REMARKS: (ALL OPERATIONS AS PER CURRENT SANTOS OPERATING PROCEDURES)

- 1. TENSION CURVE TO BE DISPLAYED ON LOG FROM T.D. TO CASING SHOE.
- 2. ALL CALIBRATIONS IN CASING MUST BE VERSUS DEPTH.
- 3. ALL THERMOMETER READINGS TO BE RECORDED ON LOG
- 4. ALL SCALES AND PRESENTATIONS TO CONFIRM TO STANDARDS UNLESS OTHERWISE ADVISED.
- 5. THE FIELD/EDIT TAPE MUST BE A MERGED COPY OF ALL LOGS RUN. SEPARATE TAPES ARE ONLY ACCEPTABLE AS AN INTERIM MEASURE.
- 6. ANY CHANGE FROM STANDARD PROCEDURES/SCALES TO BE NOTED IN REMARKS SECTION.
- 7. RM, RMF, RMC AND BHT MUST BE ANNOTATED ON FAXED LOGS. FAXED LOGS SHOULD ALSO INDICATE IF ON DEPTH OR NOT.
- 8. LOG DATA IS TO BE TRANSMITTED AS SOON AS POSSIBLE AFTER ACQUISITION. IF ANY DELAYS ARE LIKELY OR IF DATA TRANSMISSION WILL ADVERSELY EFFECT THE OPERATION THEN THE WELLSITE GEOLOGIST MUST BE IMMEDIATELY INFORMED.
- 9. THE WELLSITE GEOLOGIST MUST BE INFORMED IMMEDIATELY OF ANY TOOL OR HOLE PROBLEMS, LOST TIME OR ANY OTHER EVENT WHICH MAY AFFECT THE LOGGING OPERATIONS.

Santos	Well Completion Report Volume 1 Basic
SECTION 3.2:- SUITE 1 - 	ELECTRIC LOGGING TIME SUMMARY

ELECTRIC LOGGING TIME SUMMARY

LOGGING UNIT:	OSU-25
START DATE:	04-10-02
END DATE:	05-10-02
DEPTH DRILLER:	2112
DEPTH LOGGER:	2108

LEFT BASE:	02-10-02
ARRIVED AT THE WELLSITE:	02-10-02
INITIAL RIG UP:	04-10-02
FINAL RIG DOWN:	05-10-02
RETURN TO BASE:	

WELL NAME:	Casino-2
TRIP NUMBER:	1
WELLSITE GEOLOGIST:	R.Subra / M.D'Cruz
LOGGING ENGINEER:	Meshary / Hayman
PAGE / DATE:	1A 05/10/2002

DATE / TIME	RIG UP / DOWN	TOOL	RIH / POOH	LOGGING	DATA TX	LOST TIME SLB	I. O.	WIPER TRIP	LOST TIME OTHERS	OTHERS	COMMENT	TS / REMARKS
0:00				Х								
.00				X							Pretest @ 1780.5m	
:30				X								
1:00				X								
				Х							Pretest @ 1836.7m	
:30				Х								
				X								
2:00				X								
:30				X							Pretest @ 1872m	
				X								
3:00				Х								
				X							Pretest @ 1906.5m	
:30				X								
4:00				X							Finish tests at 04:15 hrs	
4.00				X							Sampling @ 1764m.	,
:30				Х							Start pumpout @ 04:35	hrs
				Х								
5:00				X								
:30				X								
.50				X								
6:00				Х							Sampling @ 1764m. 1 g	al chamber
				Х								
:30				X								
7:00			х	X							Finish sampling @ 06:5 PULL OUT OF HOLE	5
7.00			X								FULL OUT OF HOLE	
:30			X									
			Х								Tool at surface 07:45an	1
8:00												
:30	X										Rig down MDT-GR run	
.00	X										RUN 3: CST-GR	Safety Meeting
9:00	X										NO. CO. CO.	outory informing
			Х									
:30			X									
10:00			X									1
10:00			X					<u> </u>				1
:30				Х				†			Correlate at 2100m prio	r to SWC
				Х							Start SWC	
11:00				X								
.20				X							Correlate after 1810m S	WC
:30				X							Correlate after 1500m S	wc
				-				-			WSG (SIGN)	ENGINEER(SIGN)
					тот	ALS						
TOTAL											_	
8.75	0.75		1.00	7.00						-	TOOLS RUN:	MDT-GR
3.25	0.50		1.25	1.50							TOOLS RUN:	CST-GR
											TOOLS RUN:	
								1			IOOLO KON.	·L

LOGGING UNIT: OSU-25 WELL NAME: Casino-2 PAGE: 1B 05/10/2002 RIG UP / DOWN WIPER TRIP DATA TX COMMENTS / REMARKS Continue SWC @ 1303m End of SWC run Х :30 РООН Rig down 13:00 Х Х Complete wireline operations @ 14:00 hrs 14:00 :30 15:00 16:00 :30 17:00 :30 18:00 :30 19:00 20:00 :30 21:00 22:00 :30 23:00 :30 TOTALS TOTAL TOOLS RUN: CST-GR 2.00 1.00 0.50 0.50 TOOLS RUN: TOOLS RUN: SERVICE QUALITY SUMMARY CLIENT WSG ENGINEER 3 PROMPTNESS TOOL & SURFACE SYSTEM PERFORMANCE ATTITUDE & CO-OPERATION WELLSITE PRODUCTS / LOG QUALITY COMMUNICATIONS / TX PERFORMANCE OTHER (PLEASE SPECIFY) 1: Excellent - 2 - 3: Normal - 4 - 5: Very Poor

Santos	Well Completion Report Volume 1 Basic
SECTION 3.3:- SUITE 1 -	- FIELD ELECTRIC LOGGING REPORT

SANTOS LIMITED

FIELD ELECTRIC LOG REPORT

WELL: Casino-2 GEOLOGISTS: R. Subramanian and

M. D'Cruz

LOGGING M. Al-Ayed / P.

ENGINEERS: Hayman

RUN NO: Suite 1 / Run 1 to 3 DATE LOGGED: 04-10-02 to 05-10-

02

DRILLERS DEPTH: 2112m LOGGERS DEPTH: 2108m

ARRIVED ON SITE: 02-10-02

ACTUAL LOG TIME: 16 hrs 15 mins LOST TIME 0 hrs 45 mins

LOGGER:

TOTAL TIME: 27 hrs 45 mins LOST TIME OTHER: -

TYPE OF LOG	PEX-DSI (Run 1)	MDT-GR (Run 2)	CST-GR (Run 3)	
TIME CIRC. STOPPED	04:15 04/10/02	04:15 04/10/02	04:15 04/10/02	
TIME TOOL RIG UP	10:15 04/10/02	17:00 04/10/02	08:45 05/10/02	
TIME TOOL RIH	11:30 04/10/02	20:15 04/10/02	09:15 05/10/02	
TIME TOOL RIG DOWN	17:00 04/10/02	08:45 05/10/02	14:00 05/10/02	
TOTAL TIME	6 hrs 45 mins	15 hrs 45 mins	5 hrs 15 mins	

TYPE OF LOG	FROM (m)	TO (m)	REPEAT SECTION	TIME SINCE LAST CIRC	ВНТ
PEX-DSI GR Spectral GR Resistivity SP HCAL Sonic (Upper Dipole) Dt (Full waveforms) Neutron-Density	TD	93 1650 690 690 690 1650 Loss of signal	Down log * recorded to surface	9.0 hrs	79.5°C
MDT-GR	1753.7	1944.5		-	-
(TOTAL : 32, 13 Good, 14 Curtailed/Tight, 3 Lost Seals, 2 Unstable, 3 samples collected)					
CST-GR (26 of 30 shots recovered)	1016	2076		-	-

MUD SYSTEM: KCl – PHPA – GLYCOL WEIGHT: 1.24 SG

HOLE CONDITIONS: Good

WELLSITE LOG QUALITY CONTROL CHECKS

LOG ORDER	О	MUD SAMPLE	OK	TOOL NO. / CODE	OK
FORM	K	RESISTIVITY		CHECK	
OFFSET WELL	О	CABLE DATA CARD	OK	LOG SEQUENCE	OK
DATA	K			CONFIRM.	

LOG TYPE	Run 1 PEX- HALS	Run 2 MDT	Run 3 CST-GR	REMARKS
CASING CHECK	Y			
SCALE CHECK	Y			
DEPTH Casing	Y			L=690.2m D=690.6m
CALIBRATIONS OK	Y		Y	
REPEATABILITY	Y			
LOGGING SPEED	1700/300			
	0			
OFFSET WELL	Y			Compares with MWD/LWD
REPEATABILITY				
NOISY/MISSING DATA	Y			
CURVES/LOGS Depth	Y	Y		
Matched				
Rm MEASUREMENT	Y			
LLS/LLD/CHECK	Y			
PERF/RHOB CHECK	Y			
LOG HEADER/TAIL	Y			OK
PRINT/FILM QUALITY				To be sent from town
CORRELATION		Y	Y	OK
PASSES				

COMMENTS:

Run 1 PEX-HALS: Logger TD: 2108m vs Drillers TD 2112m

Run 2 MDT: Tool had problems powering up. 45 mins downtime.

2 x PVT samples forwarded to town for analysis.

1 x 1-gal chamber opened at the site.

(Note: A total of 5 PVT samples and one 1-gallon sample were collected. The first two PVT samples (collected at low resistivity) were collected as per directions of reservoir engineer in town. Additional 3 samples (at high resistivity) were collected by Schlumberger Engineer on his own initiative. The first two PVT samples (collected at low resistivity) were rejected on instructions of DOG. When discarding contents, found to contain approx. 50% sand, 50% water and small amount of gas. Only two PVT samples (collected at high resistivity) were accepted for purchase and forwarded to town for analysis.

Run 3 CST. 26 of 30 shots recovered.

ENGINEERS COMMENTS (If this report has not been discussed with the Engineer state reason)

Santos	Well Completion Report Volume 1 Basic
	SECTION 3.4: MDT PRESSURE SURVEY RESULTS

Santos

PRESSURE SURVEY - RUSH

WELL: Casino 2 RT: 25.0 metres Gauge Type: Quartz Page: 1 OF 2

WITNESS: M. D'Cruz / R Subramanian Time since last circ : 18.0 hrs Probe/Packer Type : Standard Date : 4/10/02 - 5/10/02

	FORMATION	DEPTH	DEPTH	EXPECT	EXPECT	FILE		TEST R	ESULTS			INTE	RPRETATI	ON	COMMENTS
		RT	SUBSEA	FORM	TEMP	NO	HYDRO	FORM	HYDRO	TEMP	D/D	TYPE	TYPE	DEPL	FLUID TYPE
		MD		PRESS			BEFORE	PRESS	AFTER		MOB	D/D	BUILD	S/C	
		m	m	PSIA	deg C		PSIA	PSIA	PSIA	deg C	MD/CP		UP		
															CORRELATION
1	Waarre Cb	1753.7	1728.7			54	3146.30	-	-	71.5	-	N	Slow		Curtailed
2	Waarre Cb	1757.8	1732.8			55	3153.60	2827.50	3152.80	72.5	N/A	N	Slow		Good
3	Waarre Cb	1757.8	1732.8			55	3152.80	2826.95	3152.50	73.1	135.9	N	Rapid		Reset, Good
4	Waarre Cb	1760.0	1735.0			56	3155.60	2827.71	3156.03	73.6	313.7	N	Slow		Good
5	Waarre Cb	1765.5	1740.5			57	3161.50	2828.35	3160.57	73.9	953.1	N	Slow		Good
6	Waarre Cb	1762.5	1737.5			58	3167.58	2829.84	3166.11	74.3	669.9	N	Rapid		Good
7	Waarre Cb	1768.5	1743.5			59	3173.30	2829.10	3171.88	74.5	N/A	N	Rapid		Good
8	Waarre Cb	1768.5	1743.5			59	3171.88	-	3172.20	74.7	2.80	N	Slow		Reset, Curtailed
9	Waarre Cb	1773.5	1748.5			60	3181.79	2830.14	3181.20	75.0	157.40	N	Fast		Good
															CORRELATION
10	Waarre Cb	1777.5	1752.5			62	3189.50	2831.05	3188.70	75.2	865.70	N	Rapid		Good
11	Waarre Cb	1780.5	1755.5			63	3194.70	2831.26	3194.43	75.5	109.50	N	Rapid		Good; Plugging ??
12	Waarre Cb	1785.3	1760.3			65	3203.79	2832.16	3202.95	75.8	176.60	N	Good		Good
13	Waarre Ca	1832.7	1807.7			66	3291.70	-	3287.15	76.9	0.60	N	Slow		Curtailed
14	Waarre Ca	1834.5	1809.5			67	3291.12	(2836)	3290.45	77.7	3.40	N	Slow		Curtailed
15	Waarre Ca	1836.7	1811.7			68	3294.78	-	3294.58	78.0	3.20	N	Slow		Curtailed
16	Waarre Ca	1844.8	1819.8			69	3311.04	2832.08	3309.03	78.5	9.30	N	Slow		Curtailed
17	Waarre Ca	1857.0	1832.0			70	3333.86	-	3331.09	78.3	-	N	Slow		Curtailed
18	Waarre Ca	1859.5	1834.5			71	3335.79	1831.41	3335.33	79.3	7.50	N	Slow		Curtailed
19	Waarre Ca	1862.3	1837.3			72	3340.84	2830.60	3340.53	79.1	14.60	N	Slow		Tight
20	Waarre Ca	1881.5	1856.5			73	3378.23	2853.66	3374.49	79.7	12.50	N	Slow		Tight
21	Waarre Ca	1872.0	1847.0			74	3359.00	-	-	79.9	-	N	Slow		Unstable
22	Waarre Ca	1872.0	1847.0			74	3359.00	-	-	79.3	-	N	Slow		Unstable, Reset

Expected Temp Gradient: 0.04

Expected Water Gradient: 0.43

Mud Weight: 1.24 sg

Normal Drawdown: Pressure does not drop to zero Limited Drawdown: Pressure drops to zero Build Up types: Immediate, Rapid, Good, Slow.

Santos

PRESSURE SURVEY - RUSH

WELL: Casino 2 RT: 25.0 metres Gauge Type: Quartz Page: 2 OF 2

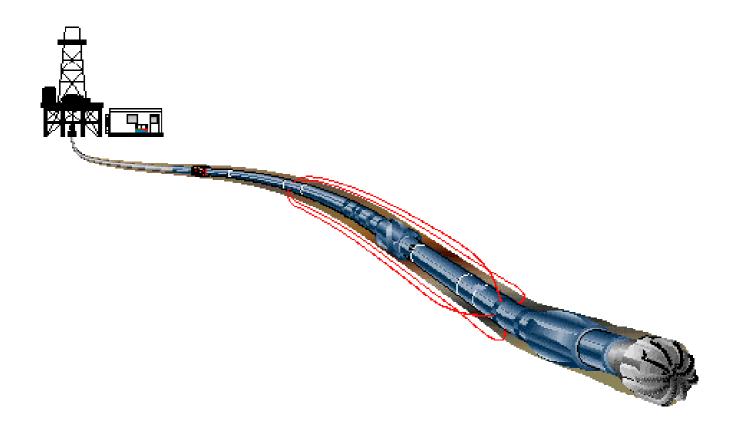
WITNESS: R Subramanian/ M. D'Cruz Time since last circ: 17.0 hrs Probe/Packer Type: Standard Date: 4/10/02 - 5/10/02

	FORMATION	DEPTH	DEPTH	EXPECT	EXPECT	FILE		TEST R	ESULTS			INTE	RPRETATI	ON	COMMENTS
		RT	SUBSEA	FORM	TEMP	NO	HYDRO	FORM	HYDRO	TEMP	D/D	TYPE	TYPE	DEPL	FLUID TYPE
		MD		PRESS			BEFORE	PRESS	AFTER		МОВ	D/D	BUILD	S/C	
		m	m	PSIA	deg C		PSIA	PSIA	PSIA	deg C	MD/CP		UP		
23	Waarre Ca	1872.0	1847.0			74	3357.81	2840.89	3357.84	79.90	12.80	N	Good		Good. Reset, 40cc/min d/d
24	Waarre Ca	1884.5	1859.5			75	3383.50	2860.29	3380.03	80.10	5.50	N	Good		Good
25		1906.5	1881.5			76	3422.20	ı	3419.20	80.30	-	Ν	-		Lost Seal
26		1906.5	1881.5			76	3419.20	ı	3418.20	80.40	1.80	Ν	Fast		Tight 30 cc/min.
27		1909.5	1884.5			77	3425.40	ı		80.50	-	1	-		Lost Seal
28		1909.5	1884.5			77	3425.40	ı		80.50	-	1	-		Lost Seal again
29		1909.3	1884.3			78	3425.20	(1430)	3424.40	80.50	5.70	N	Slow		Curtailed
30		1915.0	1890.0			79	3435.20	-	3434.33	80.70	2.20	N	Slow		Curtailed
31		1944.5	1919.5			80	3490.60	-	3486.80	89.90	21.00	N	Slow		Curtailed
															CORRELATION
	SAMPLING														
32	Waarre Cb	1764.0	1739.0			81	3165.00	2827.91	3167.50	77.00	(>1000)	N	Slow		Collected 4x450cc and 1 gallon
	TOTAL : 22	DDE TE	CTC: 4	2 Cood	21001	Sools	14 011	rtoilod/t	iaht 2 l	Inotobl	•				
	TOTAL: 32	PKE-IE	313: 1	3-G00a	, 3 LOST	Seals	, 14 CU	rtalled/t	ignt, 2 t	Jiistabi	e				

^{*} Note: Above readings noted real-time. Software picks could vary slightly. Refer final log presentation.

Expected Temp Gradient: 0.04 Normal Drawdown : Pressure does not drop to zero

Expected Water Gradient:0.43Limited Drawdown : Pressure drops to zeroMud Weight :1.24 sgBuild Up types: Immediate, Rapid, Good, Slow.

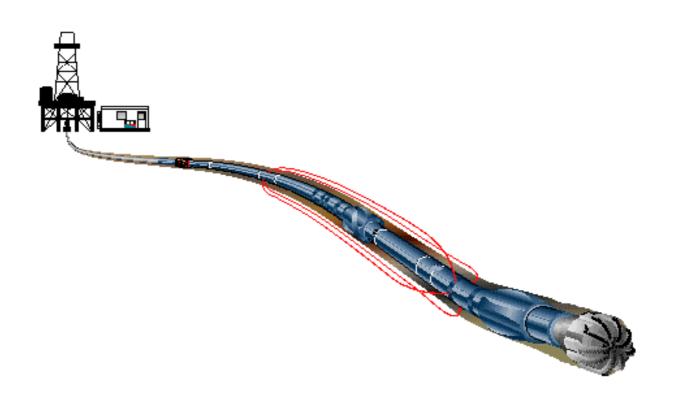

Q.	ntoa
~ 9	ntag

SECTION 3.5:- MWD – LWD END OF WELL REPORT (Anadrill Schlumberger)

Santos

Casino-2 MWD/LWD End of Well Report

End of Well Report for Casino-2


Contents

- General Information
- MWD / LWD Overview
- Geomagnetic and Survey Reference Criteria
- Survey Report
- MWD/LWD Run Summary
- Failure Report and Analysis

General Information

General Information

Well Name: Casino-2

Rig: DOGC Ocean Bounty

Field: Otway Basin

Location: Vic/P 44

Country: Australia

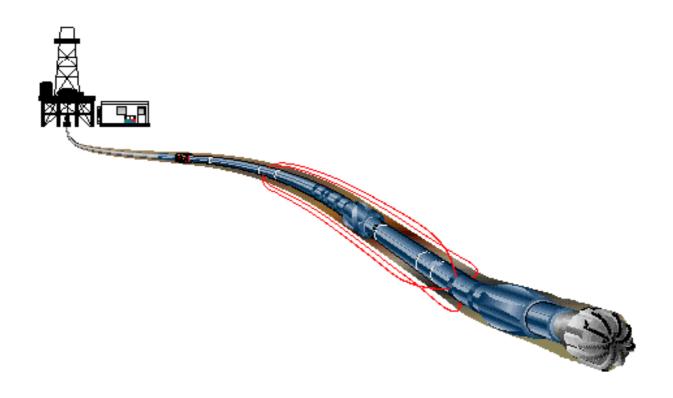
Cell Members: Antonino Abad MWD/LWD Engineer

Chu Mhin Tue MWD/LWD Engineer

Town Contact: Raymond Nanan Location Manager

Hrvoje Spoljaric Service Quality Coach
Go Ching Lian Field Service Manager

Alexandra Taxada DR Coardinator


Alex van den Tweel DD Coordinator

Company Representatives: Ron King Company Man

Gavin Othen Company Man
Steve Hodgetts Company Man
Ram Subramaniam Wellsite Geologist
Melroy D'Cruz Wellsite Geologist

MWD / LWD Overview

Logging Overview Casino - 2

Schlumberger Drilling and Measurements provided LWD and MWD services in the 12-% in. section of the Casino– 1 well.

In the 12-1/4 in. section, the following formation evaluation measurements were delivered in real time and memory modes:

Phase Shift Resistivity	(CDR)	
Attenuation Resistivity	(CDR)	
Formation Gamma Ray	(CDR)	
Phase Shift Resistivity	(ARC)	
Attenuation Resistivity	(ARC)	
Compressional Delta-T	(ISONIC)	

Furthermore survey data were transmitted in real time by the PowerPulse tool but not recorded in tool memory.

Run	Hole Size (in.)	Service	Start Depth (m)	Stop Depth (m)
1	12 1⁄4	PowerPulse / CDR / ISONIC	700	1646
2	12 1⁄4	PowerPulse / CDR / ISONIC	1646	1763
3	12 1⁄4	PowerPulse / CDR / ISONIC	1784	2112

12 1/4 in. Section (Runs 1 to 2, 700 to 1763 m MD):

The CDR / PowerPulse / ISONIC combination was used for formation evaluation in the drilling of Casino-2 well. CDR and ISONIC logs were also used to correlate formation evaluation logs from Casino-1 well that was drilled prior to this well. The MWD tool was programmed to transmit real time information at 6.4 bits per second and this allowed obtaining a good quality log in real time.

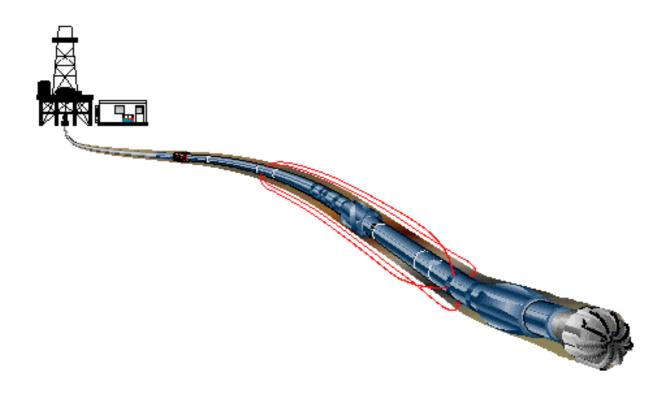
The ISONIC had been programmed to pick compressional Delta-T. Top interval of the ISONIC log from 700 meters to 900 meters measured depth has bad acoustic data due to high ROP and high level of shocks. Client was informed of high shocks and changed in drilling parameters were applied.

After making a connection at depth of 1696 meters in Run #2, the PowerPulse tools stopped transmitting data. Mud pumps were cycled a few times but without any success. Informed Company Man and Wellsite Geologist of the situation and a decision was made to continue drilling and keep on monitoring ROP for drilling break and gas return that would indicate coring point. Top of the Coring point was called at depth of 1763 meters.

After pulling out of hole, LWD recorded memory data were retrieved from the CDR and ISONIC tools. No problem was found in the LWD tools but PowerPulse MWD tool failed to communicate with the surface computers. Further failure analysis on root cause of failure will be conducted at the Repair and Maintenance (R&M) facility. Final result of failure analysis will be forwarded to the client as soon as possible.

12 1/4 in. Section (Run 3, 1784 m to 2112 m MD):

The back-up PowerPulse MWD tool was pick-up for run number 3 and CDR tool were laid down and replaced by the ARC tool. The CDR tool was laid out due to the fact that the back-up PowerPulse tool was originally set-up to run with the ARC tool.


Reaming operation was performed in real time and recorded mode from depth of 1745 meters to coring run TD of 1784 meters. Reaming was kept at 30 to 40 m/hr to get good LWD data quality.

ISONIC compressional Delta-T looks spiky when drilling through sandstones interbedded with siltstones. ISONIC compressional Delta-T response was correlating well with the formation being drilled.

This run resulted to Casino-2 well TD.

Geomagnetic and Survey Reference Criteria

Geomagnetic and Survey Reference Criteria

Geomagnetic Data

Magnetic Model: BGGM version 2001

Magnetic Date: 27-Sep-2002

Magnetic Field Strength: 1220.24 HCNT

Magnetic Declination: 10.89 degrees

Magnetic Dip: -70.02 degrees

Survey Reference Criteria

Reference G: 1000.08 mgal

Reference H: 1220.24 HCNT

Reference Dip: -70.02 degrees

G value Tolerance: 2.50 mgal

H value Tolerance: 6.00 HCNT

Dip Tolerance: 0.45 degrees

Survey Corrections Applied

Reference North: Grid North

Magnetic Declination: 10.89 degrees

Grid Convergence: -1.09 degrees

Total Azimuth Correction: 11.98 degrees

Vertical Section Azimuth: 0.00 degrees

Survey Reference Location

Casino-2 Final Coordinates

Datum: GDA94

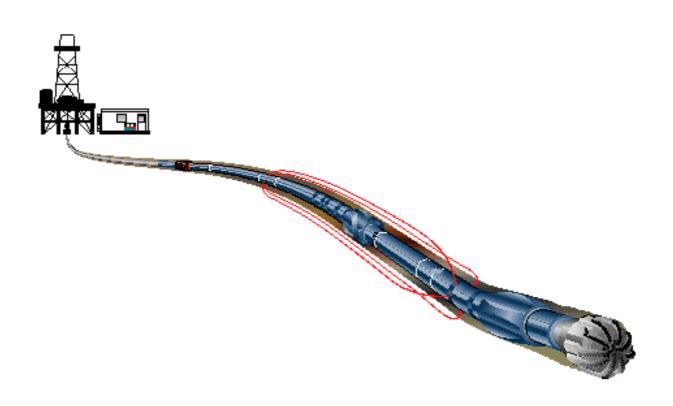
Latitude: 38 ° 47 ′ 43.887" South

Longitude: 142 ° 44 ′ 50.746″ East

Projections: MGA Zone 54, CM 141 ° East

Easting: 651 752.63 meters

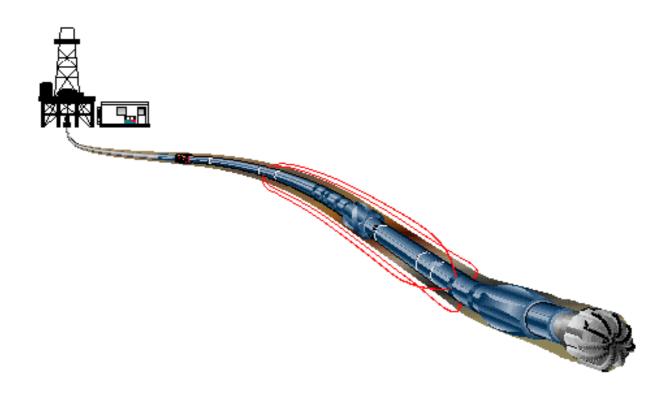
Northing: 5 704 463.79 meters


Note:

Data as per Thales Geosolution (Australia) Ltd. fax to Santos via Ole Moller, reference number F26927/3447A3 dated 26^{th} September 2002.

Survey Report

Casi no- 2_Surveys. TXT SCHLUMBERGER - D&M


Survey report

Client. : S Field. : : I			
Well (0) API number (1) Engi neer (2) RIG: (3)	A. Abad, C. Tue Ocean Bounty	Spud date	04-0ct-02 25 0.00 m
STATE:	thods	Geomagnetic data Magnetic model:	
Method for DLS ! Depth reference	Mason & Taylor	Magnetic date	27-Sep-2002 1220. 24 HCNT 10. 89 degrees
Permanent datum	- 68. 00 m 0. 00 m	Magnetic dip: MWD survey Reference Reference G:	Criteria
DF above permanent: Vertical section original	25. 00 m i n	Reference H	1220. 24 HCNT -70. 02 degrees (+/-) 2. 50 mGal
Latitude (+N/S-): Departure (+E/W-): Platform reference poi	0.00 m 0.00 m	Tol erance of H : Tol erance of Dip : Corrections	(+/-) 0. 45 degrees
Latitude (+N/S-): Departure (+E/W-): Azimuth from rotary table to	0. 00 m 0. 00 m	Magnetic dec (+E/W): Grid convergence (+E/W).: Total az corr (+E/W): (Total az corr = magnetic	10.89 degrees -1.09 degrees 11.98 degrees
		Sag applied (Y/N) :	No degree: 0.0

=== Seq	====== Measured	===== Incl	====== Azi muth	Course	TVD	====== Verti cal	Di spl	Di spl	Total	At	DLS	Srvy Tool
#	depth	angl e	angle	length	depth	section	+N/S-	+E/W-	di spl	Azim	(deg/	tool qual
-	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(m)	(deg)	10m)	type type
===	=======	======	======	======	=======	=======	=======			=======	=====	===== =====
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	TIP -
2	729. 86	0. 57	116. 39	729.86	729. 85	- 1. 61	- 1. 61	3. 25	3. 63	116. 39	0.01	MWD 6-axis
3	842. 72	0.61	203. 59	112.86	842. 70	- 2. 41	- 2. 41	3. 51	4. 26	124. 48	0. 07	MWD 6-axis
4	958. 13	0.69	268. 77	115. 41	958. 11	- 2. 99	- 2. 99	2. 57	3. 95	139. 29	0.06	MWD 6-axis
5	1074. 07	0. 52	252. 87	115. 94	1074. 04	- 3. 16	- 3. 16	1. 37	3. 45	156. 52	0.02	MMD 6-axis
6	1130. 64	0. 79	283. 25	56. 57	1130. 61	- 3. 15	- 3. 15	0. 75	3. 24	166. 63	0.08	MWD 6-axis
7	1161. 14	0.82	278. 20	30. 50	1161. 10	- 3. 07	- 3. 07	0. 33	3. 09	173. 91	0.03	MWD 6-axis
8	1188. 85	0.76	272. 62	27. 71	1188. 81	- 3. 03	- 3. 03	- 0. 05	3.03	180. 99	0.04	MWD 6-axis
9	1217. 68	0. 78	286. 97	28. 83	1217. 64	- 2. 97	- 2. 97	- 0. 43	3.00	188. 27	0.07	MWD 6-axis
10	1247. 53	0. 88	282. 51	29. 85	1247. 49	- 2. 86	- 2. 86	- 0. 85	2. 98	196. 55	0.04	MMD 6-axis
11	1277. 80	0.94	274. 80	30. 27	1277. 75	- 2. 79	- 2. 79	- 1. 32	3. 08	205. 41	0.05	MWD 6-axis
12	1364. 44	1.05	276. 88	86. 64	1364. 38	- 2. 63	- 2. 63	- 2. 82	3. 86	226. 98	0.01	MWD 6-axis
13	1421. 10	1.45	272. 46	56. 66	1421. 03	- 2. 54	- 2. 54	- 4. 05	4. 78	237. 93	0.07	MWD 6-axis
14	1450. 24	1. 55	270. 01	29. 14	1450. 16	- 2. 52	- 2. 52	- 4. 81	5. 43	242. 35	0.04	MWD 6-axis
15	1508. 96	1. 49	255. 36	58. 72	1508. 86	- 2. 72	- 2. 72	- 6. 35	6. 90	246. 84	0. 07	MMD 6-axis
16	1565. 71	1. 58	268. 16	56. 75	1565. 59	- 2. 93	- 2. 93	- 7. 84	8. 37	249. 53	0.06	MWD 6-axis
17	1622. 24	1. 67	265. 96	56. 53	1622. 09	- 3. 01	- 3. 01	- 9. 44	9. 91	252. 32	0.02	MWD 6-axis
18	1652. 08	1. 45	267. 41	29. 84	1651. 92	- 3. 06	- 3. 06	- 10. 25	10. 70	253. 40	0.07	MWD 6-axis
19	1796. 08	1. 43	253. 78	144. 00	1795. 88	- 3. 64	- 3. 64	- 13. 80	14. 27	255. 22	0.02	MWD 6-axis
20	1853. 43	1. 50	250. 23	57. 35	1853. 21	- 4. 10	- 4. 10	- 15. 19	15. 74	254. 91	0. 02	MMD 6-axis
21	1911. 17	1.48	243. 72	57. 74	1910. 93	- 4. 68	- 4. 68	- 16. 57	17. 22	254. 23	0.03	MWD 6-axis
22	1998. 68	1. 91	243. 21	87. 51	1998. 40	- 5. 84	- 5. 84	- 18. 89	19. 77	252. 82	0.05	MMD 6-axis
23	2028. 08	2.08	243. 11	29. 40	2027. 78	- 6. 30	- 6. 30	- 19. 80	20. 78	252. 35	0.06	MWD 6-axis
24	2085. 35	2.47	242.08	57. 27	2085. 01	- 7. 35	- 7. 35	- 21. 82	23. 02	251.39	0.07	MWD 6-axis
25	2112. 00	2. 47	242. 08	26. 65	2111. 63	- 7. 89	- 7. 89	- 22. 83	24. 16	250. 94	0.00	TD Pojection

MWD – LWD Bit Run Summary

1	Schlumber	ger	1				DR	ILLING 8	≩ M	EAS	UREN	/ENT	S - RU	JN SU	IMI	MAF	Ϋ́				
	Job Numbe AWA-02-1		SΔ	Co NTOS	mpany	Rep.		Date In 28-S	ep-02		Date Ou	t 80-Sep	-02	D&M Ru		mber 1		Rig Ri	un Num	ber 3	
		, hlumb	_			Grid Co	orr	Brief Run Su	•	,		ю-оер	-02	Bit Run				Cell M	/lanage	_	
		ean B						Good Run								3		Anto	nino A	bad	I
		sino-2 ss Str				Tot Co		Hole Depth From	700 r	_	То	16/	6 m	D&M Cr C. Tue	ew						
	Mapfile Da	33 Ju		g Dec		P Slo		Inclination (I		11	10	104	o III	Pumping	1 Hou	Irs		Belov	v Rotary	/ Tbi	Hrs
).57 c	deg	To	1.6	7 deg			19.6 h	rs.				hrs.
2	BPS	Frequ	ency	ı	Aod Ty	pe		Azimuth						Rotary H	lours)		Rotar	y Distai	100	
RUN INFORMATION	6.4	16			1PSK			From		deg	То		deg			3.55 h	rs.			946	m
RMA	Pump Type 12-P-160	Pump 603	Output		Pump S 12	trk Le		True Vertica l From	1 Depth 700 r		То	16/	6 m	Slide Ho	urs	0 h	re	Slide	Distanc		m
<u>F</u>	Pump Liner ID	Min D	LS		/lax DL	.S		Hole Size		/ater D		Air Ga		Drilling	Hour		3.	Drillir	ng Dista		""
I N	6							12.25 in		68	m	2	5 m			3.55 h	rs.		-	946	m
æ	Bent Sub Angle	Bent I	HSG A	-	epth l	/lax D	LS	RKB Height	G	round l	Elev.	Mod G	•	Reaming	J Hou			Ream	ing Dist		
	deg Pulse Ht Thresh	Min D	de ulse W	ŭ	Max Pu	n		Digit Time	-	/F Arc	m	0.1	2 in	On Botto	U	0 h	ſS.	Servi		0	m
	ruise ni Illiesii	WIIII F	uise w	rut i	VIAX FU	iise vv	uı	Diğit Tillie	"	FAIC	in	I/F AII	deq	OII BULL		3.55 h	rs.			ONI	C/IWW
	Conn Phase Ang	Rise C	Const	F	all Cor	nst		H2S In Well	D	amp Pı	ress	Signal	Streng.	Last Cas	sing						
	deg										psi	38		Size		375 i		Depth	69	90.5	m
	Directional Driller(s	;)						Turbine RPM	@ Mir	2812	1	07	0 anm	Turbine	RPM	@ Ma		1		con	anm
	Run Objective							RPM		2012	ILU	8/	0 gpm	RPM			220	FR FR		บฮป	gpm
	Equipment	Pump	Hrs	SW	/ 1	ool	Equipn	nent	Pump	Hrs	sw	Tool	Sensors			Real T	ime		Recor	ded '	Time
	Code	Start	Cum	Ver	_	_	Code		Start	Cum	Vers	Size	Code			Hrs	Fail	Drilled	Hrs	Fail	Drilled
	MDC-DC-231 RGS9-AA-9556	0		-	_								MDC-DC			49.6 49.6	屵	946 946			946
	SWD8-BA-829	0		-									SWD8-E			49.6	붐	946	1	H	946
AT/	SZR-PA-360716	0	49.6														ె			一	
IL																					
EQUIPMENT DATA																	므				
ВÖ																	屵			片	
						-											+			H	
	Surface Sys Version	L	L/SPN D7 OC		- <mark></mark>			<u> </u>													
	Manufacturer		D7_00_	.02	Stan	e Leng	ıth		m	Rit	to Bend [Dist		m	Rea	ring Ga	n In				
OTOR	Туре				Rubb					_	Mfr				_	ring Ga	•				
	Size				Sleev	e Pos	ition			RSS	S Туре				Rad	ial Bea	ring	Play			
H	Serial Number				-	e Size	•		in	_	Size				Thru	ıst Bea	ring	Play			
	Lobe Config.	-	7.00			r Fail		24.00	//		SSN	<u> </u>	000.00			٥	_		-		
D.	Max Circ Temp Min Circ Temp	_	7.00 (5.00 (Avg i Max			200.00	m/hr	_	Acti Flor		690.00 3258.00		-	Shock				9.41	sec.
9	End Mud Wt	_	0.00			Surf Ri	PM	200.00		_	pPres On		3800.00					CHECK	_		<u> </u>
OPERATING COND	End Funnel Vis	60	0.00 C	PS	Min f	RPM			110.0)O Pmj	pPres Off	Bot	3200.00	psi	Тур	9					
ERA	End Plastic Vis	_	3.00 C		Max	RPM				_	Surf WO)B	44.00	lbs	Dep	th					m
OP	End Yield Point End Mud Resist	29	9.00 C	O.188	-	FlowRa		787.00 870.00			Surf Tor x Shock L		6333.00	ft-lbs 3	Incli Azin	ination					deg deg
	Company	IDFS		0.100	PH			070.00			cent San		0.50		H	itives				_	ucg
0	Brand	IDIO			Chlor	ides			2200	_	cent Soli		8.90		Clea				_	〒	1
MUD	Туре	KCCII			Other	r				Per	cent Oil		0.00	%							
	LCM Type									LCN	/ Size				LCN	1 Conc	entat	tion			
	ВНА Туре	Othe	r		Tur R	otor P	rt#			Turi	bine Conf	fig			Surf	ace Sc	reer	1]
HA	Int TF Offset					r Prt #				_	ser Confi					Used]
B	Low Oil Flag DD Objectives Achi	oved			-	Low , why			hrs.	Stal	b Spacing	9		in	Forn	nation					
	Bit Type	Tri-c	on		Other															_	
	Manufacturer	Mode			_	Code		No. of Jets	;	Size	e of Jets		Bit TFA		Tota	ıl Revs		s	tick/Sli	p	
BIT	HTC		MX03D	Х		589D	C	3			16		0.5								
	Inner Row 8	Outer	Row 8		Dull (Char LT		Location A		Brn	g/Seals E		Gauge (1/ 1/		Uthe	er Char E	R	R	leason l	Pulle 15	a
щ	Trans Fail				Jamn				1	Clie	ent Inconv	٧.	Г	1	Surf	ace No					
FAILURE	Pres Incr @ Fail					ning T	ime		hrs.	-	t Time			hrs.		vn Hole		se		宣	
	Trip Due to D&M					Hours			hrs.		face Vib					ace Sy					
ARY	Good run. Exce caused bad zo		_						-			-			-			_			
SUMMARY	once the BHA				-	JIIUU	K WEI	o encount	eu u	urniy	unu dili	or utill	ing of life	, centell	c all	ս բոսկ	มนโ	SIUVVIY	ιιοαμ	heq	ıcu
S																					

Printed: 10/3/2002 9:34 PM v2.5.011 (c) 2001 Schlumberger

	D- 101 - 101																		Job I	Number			AWA-0	2-17	
	tilumberger	l				D	RILLI	NG 8	l MEA	\SUR	EME	NTS	- BHA	\ DA	ГА					Number			1		
																				Number					
	n	l., .			Serial	Fishing Ne		Stab	00	ID	Bot Conne		Top Conne					l 1	TIME/I	DEPTH DI		ı		II	_
em	Description	Vendor UNITS	Materia	<u> </u>	Number	OD in	Length m	OD in	OD in	in	Size in	Туре	Size in	Туре	Len m	Cum Len m	Date/Time	9/28/200	2	29-Sep	30	-Sep	4		5
1	Bit	HTC		į	589DC				12.25				6 5/8	Reg Pin	0.33	0.33	Field Engineer	A. Abad	A. Ab	ad	Chu				
2	Near bit roller reamer			(GU2151				12.25	3	6 5/8	Reg Box	6 5/8	Reg Box	2.44	2.77	Depth	117	3	1594		1617			
3	CDR	Schlumberger			955	6 10.125	4.68		9.4375	5.875	6 5/8	Reg Pin	7 5/8	H90 Box	7.54	10.31	Average ROP	6	0	7		5			
4	MWD	Schlumberger			23	1			8.375	5.875	7 5/8	H90 Pin	6 5/8	FH Box	8.38	18.69	Avg. Std. Pres.	278	6	3992		2997			
5	Inline Stab	Schlumberger				12.25	1.082	12.25	8.5	4.25	6 5/8	FH Pin	6 5/8	FH Pin	1.783	20.473	Desurger 1					2000			
6	Isonic	Schlumberger			82	9 9	1.785		8.375	4.25	6 5/8	FH Box	6 5/8	Reg Box	7.282	27.755	Desurger 2					2000			
7																	Tur. RPM @ FR	257	8	2812		2265			
8																	FR @ Tur. RPM	80	0	870		690			
9																	Avg. RPM	12	8	126		110			
10																	Max RPM	13	1	131		121			
11																	Total Shocks				208	8.729			
12																	Max Shock	7	0	10		1			
13																	Avg. Surf. WOB	3	0	50		51			
14																	Max Surf. WOB	5	0	54		55			
15																	Avg. DH WOB		-			_			
16																	Max DH WOB		-			_			
17																	Avg. Surf. Torq.	800	_	8000		3700			
18																	Max Surf. Torq.	900	0	9000		3880			
19																	Avg. DH Torq.		-			_			
20																	Max DH Torq.		-			_			
21																	Formation Type		-		Lime ston	ie			
22																	Friction		-					-	
23																	Drag Up		-					-	
24																	Drag Down		-					-	
								Hookload			lbs		elow Jars	76	lb		Mud Weight	8.	5	10		10.1		-	
								Pickup Wt			lbs	_	bove Jars		lb		Funnel Vis.		-			_			
PRE	DICTED BHA							Slack Wt.			lbs	Total A	Air Wt.		lb	S	Plastic Vis.		-					-	
1	ENDENCY																Circ. Temp	3	-	50		57		-	
																	Signal Strength	2	-	38		21			
																	Bit Deviation	3	8	38		1.6			
									1								Differential Pres.		1						
		Mid Pt To		BLADE 	1		GAUGE I	1	Bit To Read	Out Port	10.04 50		Bit To Measu	rement Po			BATTERY	Unloaded		Loaded (1	Run Hrs		um Hrs	
abiliz	er Description	Bit	Type	Length	Width	Length	In :_	Out	PPL		12.04 M		D&I PPL		14.43 M		Tool	Before	After	Before	After	BOT	AMP	BOT	AMI
	UNITS	m		in	in	in	in	in	CDR		6.21 M		GR PPL		13.82 M										
			-		1		-	1	ISONIC		_{25.25} m		GR LWD		8.53 M										
				-			1	1			m	;	RES LWD		5.05 M										
							-				m		SON LWD		25.65 m										
			-	-	1		1	1	.		m				m								\rightarrow		
											m				III										

Schlumberger

DRILLING & MEASUREMENTS - TIME/DEPTH COMMENTS PAGE 1

Job Number: AWA-02-17
Run Number: 1

27-Sep 02				Run Number: 1
21:20	Date	Time	Depth	Operating Details
21:20	27-Sep-02	19:45		CDR inits
23:55 28:00 Good SHT were performed at 700 GPM; SPT1 = 52.8 psi		21:20		
28-Sep-02 4:23 599.00 Hooked geograph during topdrive services. 4:41 630.70 Start pumping on top of cement, tools status are good. 5:15 663.00 Drill float. 7:51 703.70 Ideal reboot, trouble with SPM buffer. 10:21 770.00 Getting high shock due to sandy formation. 11:50 772.00 Decide to pull back to shoe to clean the hole. 13:03 772.00 Back to drilling. 30-Sep-02 10:00 1646.00 POOH to change bit. Rm=0.1888 @ 24.5 deg C 21:00 Tools ABT Dumped Isonic				
4:41 630.70 Start pumping on top of cement, tools status are good.			28.00	Good SHT were performed at 700 GPM; SPT1 = 52.8 psi
5:15 663.00 Drill float. 7:51 703.70 Ideal reboot, trouble with SPM buffer. 10:21 770.00 Getting high shock due to sandy formation. 11:50 772.00 Decide to pull back to shoe to clean the hole. 13:03 772.00 Back to drilling. 30-Sep-02 10:00 1646.00 POOH to change bit. Rm=0.1888 @ 24.5 deg C 21:00 Tools ABT Dumped Isonic	28-Sep-02		599.00	Hooked geograph during topdrive services.
7:51 703.70 Ideal reboot, trouble with SPM buffer. 10:21 770.00 Getting high shock due to sandy formation. 11:50 772.00 Decide to pull back to shoe to clean the hole. 13:03 772.00 Back to drilling. 30-Sep-02 10:00 1646.00 POOH to change bit. Rm=0.1888 @ 24.5 deg C 21:00 Tools ABT Dumped Isonic			630.70	Start pumping on top of cement, tools status are good.
10:21				
11:50				
13:03 772.00 Back to drilling. 30-Sep-02 10:00 1646.00 P0OH to change bit. Rm=0.1888 @ 24.5 deg C 21:00 Tools ABT 21:10 Dumped Isonic			770.00	Getting high shock due to sandy formation.
30-Sep-02 10:00 1646.00 P00H to change bit. Rm=0.1888 @ 24.5 deg C 21:00 Tools ABT 21:10 Dumped Isonic			772.00	Decide to pull back to shoe to clean the hole.
Rm=0.1888 @ 24.5 deg C 21:00 Tools ABT 21:10 Dumped Isonic		13:03	772.00	Back to drilling.
Rm=0.1888 @ 24.5 deg C 21:00 Tools ABT 21:10 Dumped Isonic	20 Can 02	10.00	1646.00	DOOL to change hit
21:00 Tools ABT 21:10 Dumped Isonic	30-3ep-02	10.00	1040.00	Rm-0 1888 @ 24 5 dea C
21:10 Dumped Isonic		21.00		
		_0.00		

Job Num				pany Rep.		Date In			Date Ou		_	D&M Ru				Rig R	un Num		
AWA-02			NTOS				ep-02			1-0ct-0)2	D'' D		2		0 11		4	
	chlumb Cean B			Grid C	corr	Brief Run Su Trans Failu						Bit Run I		ber 4			Manage onino <i>F</i>		Ч
	asino-2			Tot Co	orr	Hole Depth						D&M Cr		1		And	JIIIIO F	TDai	u
	Bass Str						1646 r	n	То	1763	3 m	C. Tue							
Mapfile		Мас	g Dec	PP SI	ot ID	Inclination (,					Pumping	j Hοι			Belo	w Rotar		
							1.67 c	leg	То	1.45	deg			9.1 h	rs.	_			hr
BPS	Frequ	ency		od Type PSK		Azimuth		log	то		dog	Rotary F	lours			Rota	y Dista	nce 117	· m
6.4 Pump Type	16 Pump	Output		ımp Strk Li	en	From True Vertica		leg	То		deg	Slide Ho	urs	6.4 h	15.	Slide	Distanc		1111
12-P-160	603	output	1:	•	J11.		1646 r		То	1763	3 m	Slide Ho	uis	0 hi	rs.	Silde	Distant) m
Pump Liner ID	Min D	LS	M	ax DLS		Hole Size	W	ater [Depth	Air Gap)	Drilling I	Hour	S		Drilli	ng Dista	ince	:
6						12.25 in			m		ō m			6.4 h	rs.			117	
Bent Sub Angle	Bent I	HSG An		epth Max [RKB Height	G	round		Mod Ga	•	Reaming	g Hοι			Rean	ning Dis		
deg	Min D	de	Ŭ		m	25 m	т.		m) in	O- D-#	11	0 h	rs.	C		0	m
Pulse Ht Thresh	IVIIN P	ulse W	at ivi	ax Pulse V	vai	Digit Time	17	F Arc	in	T/F Ang	deg	On Botto	om H	6.4 h	rs	Servi PP/(ce CDR/IS	ON	IC/
Conn Phase Ang	Rise C	onst	Fa	III Const		H2S In Well	D	amp P		Signal	3	Last Cas	ing	0.7 11	١٥.		DIVIS	OIV	10/
deg									psi	35	•	Size		375 ii	n	Depti	n 69	90.5	m
Directional Drille	r(s)					Turbine RPN	/ @ Mir			•		Turbine	RPM	l @ Ma					
						RPM		2382	FR	780) gpm	RPM			27:	34 FR		830	g
Run Objective																			
Equipment	Pump Start	Hrs Cum	SW Vers	Tool Size	Equipr Code	nent	Pump Start		SW Vers	Tool Size	Sensors	S		Real T	_		Recor	ded Fail	
MDC-DC-231	49.6	58.7	6.1 C00		code		Staft	ouin	vers	SILE	MDC-DO	C-231		Hrs 5		Drilled 6	_	rall	ווטו
RGS9-AA-9556	49.6	58.7	5.0B 05								RGS9-A			5	·	6	_	H	l
SWD8-BA-829	49.6	58.7	5.0B 10								SWD8-E			5		6	-		
SZR-PA-360716	49.6	58.7																	
0.1	IDEA	I/CE:	4							І.,									
Surface Sys Version	l	L/SPN 07_0C_0																	
Manufacturer	- "	00_1		Stage Len	ath		m	D:+	to Bend	Dist		m	Ros	ring Ga	an I-	1			
Туре				Rubber	yu1		m		S Mfr	Dist.		m		ring Ga	_				
Size				Sleeve Po	sition			_	S Type					ial Bea	•				
Serial Number				Sleeve Siz			in	_	S Size					ust Bea		, ,			
Lobe Config.				Motor Fail		Г			S SN							,			
Max Circ Temp	60	0.00 F		Avg ROP		18.28	m/hr		n Actl Flo	wRt	800.00	gpm	Max	(Shock	k Du	r	(0.00	SE
Min Circ Temp		0.00 F		Max ROP			m/hr	_	p PmpPre		3995.00			al DH S				0.00	
End Mud Wt	_	0.10		Avg Surf R	RPM			_	pPres On			psi				CHECK			
End Funnel Vis	_	7.00 C	_	Min RPM			110.0)() Pm	pPres Of	f Bot		psi	Тур	е					
End Plastic Vis	20	0.00 C	PS	Max RPM			130.0	00 Ανέ	g Surf W0	ОВ	40.00	lbs	Dep	th					m
End Yield Point	38	3.00 C	PS	Avg FlowF	Rate	800.00	gpm	Αv	Surf To	rq	8.00	ft-lbs	Incl	ination					d
End Mud Resist			0.132	Max Actl I	lowRt	830.00	gpm	Ma	x Shock	Lev		0	Azin	nuth					de
Company	IDFS			PH			9.0	00 Per	cent Sar	nd	0.10) %	Add	itives					
Brand				Chlorides			2300	00 Per	cent Soli	ids	10.40) %	Clea	an]
Туре	KCI			Other				Per	cent Oil			%						_	
LCM Type								LCI	√l Size				LCN	1 Conce	enta	ition			_
ВНА Туре	Bote	fy		Tur Rotor	Prt #			Tur	bine Con	ifig			Surf	face So	cree	n]
Int TF Offset				Stator Prt	#			Pul	ser Confi	ig			DFS	Used				Ī]
Low Oil Flag				Hrs @ Lov	/ Oil		hrs.	Sta	b Spacin	ıg			Forr	mation					
DD Objectives Ac	chieved			If not, why	/?														
Bit Type	Tri-c	on		Other															
Manufacturer	Mode			IADC Code		No. of Jet		Siz	e of Jets	E	Bit TFA		Tota	al Revs			Stick/Sli		
HTC		MX03D)	X	589	DC	Location			16		0.5		Cr.	or CI			005-	Yes	
Inner Row 1	Outer	Row 1		Dull Char C	Г	Location N	ı	Brn	ig/Seals X	(3auge (1/ 1/		Othe	er Char I	D.		Reason	Pulle 16	
	4					1	_	-			- 1/	_	C '	face No				-10	1
																			1
Trans Fail Pres Incr @ Fail		<u> </u>		Jamming Jamming	Time		hrs.	-	ent Incon t Time	V.	L	hrs.		vn Hole			-		<u>J</u> 1

Frinted: 10/5/2002 5:53 PM

Frinted: 10/5/2002 5:53 PM

From the tool memory and processed and given to wellsite geologist. Visual insspection of PowerPulse tool found no obvious reason on why the tool has failed.

(c) 2001 Schlumberger

0-	klk																	Job	Number			AWA-0	12-17	
20	klumberger					DRILL	ING 8	k MEA	4SUR	EMEN	NTS	- BHA	A DAT	ГА					Number			2		
	1						1			I- · -		I						_	Number					
	Danasiatian	Vandan	Matarial	Serial	Fishing OD		Stab OD	OD	ID	Bot Connec		Top Conne			C 1		I 1	TIME	DEPTH DE		11		II	-
Item	Description	Vendor UNITS	Material	Number	in	Length m	in	in	in	Size in	Туре	Size in	Туре	Len m	Cum Len m	Date/Time	10/1/20	002	2	3		4		5
	a	1		1			***	-										-						
1	Bit	Reed			3926		-	12.25					Reg Pin	0.31		Field Engineer	Chu						-	
2	Near bit roller reamer	+		GU2151	-			12.25			Reg Box		Reg Box	2.44		Depth	10	693					1	
3	CDR	Schlumberger			9556 10	125 4	.68	9.4375			Reg Pin		H90 Box	7.54		Average ROP		27						
4	MWD	Schlumberger			231			8.375		1	H90 Pin		FH Box	8.38		Avg. Std. Pres.		949					-	
5	Inline Stab	Schlumberger			1	2.25 1.	082 12.2	5 8.5	4.25	6 5/8	FH Pin	6 5/8	FH Pin	1.783	3 20.453	Desurger 1		600						
6	Isonic	Schlumberger			829	9 1.	785	8.375	4.25	6 5/8	FH Box	6 5/8	Reg Box	7.282	27.735	Desurger 2	20	600						
7	String Roller Reamer						12.2	5		6 5/8	Reg Pin	6 5/8	Reg Box	2.44	30.175	Tur. RPM @ FR	2!	578						
8																FR @ Tur. RPM	8	800						
9																Avg. RPM		120						
10																Max RPM		130						
11																Total Shocks		0						
12																Max Shock		0						
13																Avg. Surf. WOB		30					1	
14																Max Surf. WOB		35						
15																Avg. DH WOB		33					1	
16																Max DH WOB							1	
17							-					+						0					-	
		+														Avg. Surf. Torq.		8					-	
18		_					-		-			_			-	Max Surf. Torq.		10					-	
19																Avg. DH Torq.							-	
20								-	1						1	Max DH Torq.							-	
21																Formation Type								
22																Friction								
23																Drag Up								
24																Drag Down								
							Hookload				Wt. B	elow Jars				Mud Weight	1	0.1						
							Pickup W	t.			Wt. Al	bove Jars				Funnel Vis.								
							Slack Wt.				Total .	Air Wt.				Plastic Vis.								
	DICTED BHA ENDENCY															Circ. Temp		55						
'	EINDEINGT															Signal Strength		38						
																Bit Deviation		90					1	
																Differential Pres.		70					1	
			DI	LADE		CALIC	_	D# T- D			I	Dit To Mass		-4			Unloade	-100	1		Don Hee	(Norma I I man	
C1 - 1 - 11		Mid Pt To	1	LADE		GAUG I.	i	PPL	nd Out Port	12.04 M		Bit To Measu D&I PPL	ii ement Poi	14.43 m		BATTERY	Unloade	- ` 	Loaded (Run Hrs	-	Cum Hrs	
Stabiliz	er Description UNITS	Bit	Type Len	×	Length in	In in	Out			6.21 m				13.82 M		Tool	Before	After	Before	After	BOT	AMP	BOT	AMP
	UINITS	m		in in	ın	In	in	CDR				GR PPL												
			 					ISONIC		25.25 m		GR LWD		8.53 m										-
					-	_		1		m		RES LWD		5.05 m										
								1		m		SON LWD		_{25.65} m										
								<u> </u>		m				m										
										m				m										

Schlumberger

DRILLING & MEASUREMENTS - TIME/DEPTH COMMENTS PAGE 1

Job Number: AWA-02-17

			Run Number: 2
Date	Time	Depth	Operating Details
30-Sep-02	23:31		Re-inits ISONIC
	23:13		Re-inits CDR
	23:30		Tool BRT
01-Oct-02	1:00		Good SHT
			RIH
	4:45		Start pump and commence washing down.
	6:32		Flow check.
	9:50	1696.00	Lost signal from MWD tool after making connection. Cycle pump several times without success.
			Perform check of sensor and cables and found no reason of surface failure. SPT1 and SPT2 reading the
			same pump harmonicss. There are no signal trace coming from modulator. Company man decided to drill ahead with control ROP @ 20m/hr and monitor for drilling break and Gas return.
	14:00	1762.00	2-12%gas monitored by mud loggers. Flow check. Circulate cuttings and gas out.
	15:32		TD for the run. POOH and pick-up coring tool.
	10:30		Tool ART.
	10.50		Lay down tools.
	11:00		Dump CDR memory.
	11:30		Dump Isonic memory.
			All drilled interval logged in Recorded Mode.
			V
ı			

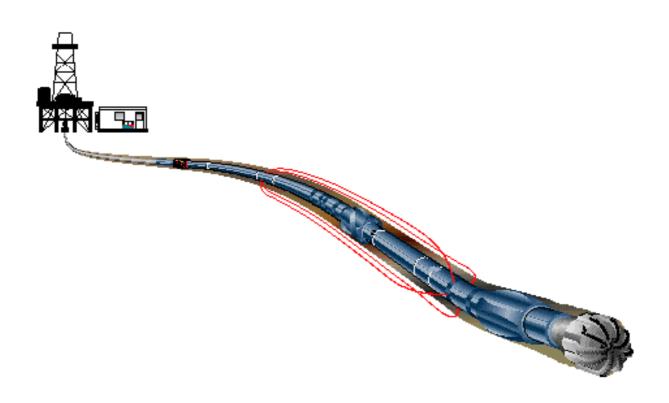
Job Numbe				mpany Rep.		Date In			Date Ou			D&M Ru				Rig R	ın Num		
AWA-02- Company Sc	17 hlumb		NTOS	Grid C	`orr	2-0 Brief Run Su	ct-02			4-0ct-	02	Bit Run l		3 her		Call N	lanage	6 r	
	ean B			Grid C	.011	Good Run	lfilliai y					DIL Run		ber 2			nino <i>l</i>		d
	sino-2			Tot Co	orr	Hole Depth						D&M Cr	ew						
	ss Str						784 r	n	То	211	2 m	C. Tue							
Mapfile		Mag	g Dec	PP SI	ot ID	Inclination (From	,		То	2.4	7 40.00	Pumping				Belov	/ Rotar		
BPS	Freque	encv	N	Nod Type		Azimuth	1.45 c	ieg	10	2.4	7 deg	Rotary H		21.7 hi	15.	Rotar	y Dista	36.5	HE
6	16 Hz			SK		From	c	leg	То		deg	notal j	.oui.	16 hi	rs.	rtotai	, 51514	328	m
Pump Type	Pump	Output	: P	ump Strk L	en.	True Vertica	l Depth	1				Slide Ho	urs			Slide	Distan	ce	
12-P-160	603			2		From 1	763 r		То	2085.0	1 m			0 <mark>.00</mark> hi	rs.			0.00	
Pump Liner ID	Min D	LS	N	Max DLS		Hole Size	W		Depth	Air Ga		Drilling I	Hour			Drillir	g Dista		
Bent Sub Angle	Rent H	ISG Ar	na D	epth Max [12.25 in RKB Height	G		B m Elev.	Mod G	5 m	Reaming	ı Hoı	16 hi	rs.	Ream	ing Dis	328	
deg	Sont	de	~		m	25 m	J		B m		ap 2 in	r.cumint	,	1.5 hi	rs.	Reall	9 213		m
Pulse Ht Thresh	Min P	ulse W	Ŭ	Max Pulse V	Vdt	Digit Time	T/	F Arc		T/F An	gle	On Botto	m H	ours		Servi	ce		
									in		deg			16 h	rs.	PP/C	DR/IS	ON	IC/
Conn Phase Ang	Rise C	onst	Fa	all Const		H2S In Well	D	amp F			Streng.	Last Cas	-					_	
deg	c)					Turbine RPM	1014) psi	32		Size Turbine		3.38 ii		Depth	690).55	m
Directional Driller(5)					Turbine RPN RPM		1 Flow 17.19		70	0 gpm	RPM	KPIV	ı @ Ma		76 FR		850	a
Run Objective							20	17.13		70	- akııı	101			J-T	. 5		550	9
Equipment	Pump	Hrs	SW	Tool	Equipn	nent	Pump	Hrs	SW	Tool	Sensors	6		Real T	ime		Recor	ded	Tim
Code		Cum	Vers	s Size	Code			Cum	Vers	Size	Code			Hrs		Drilled	Hrs	Fail	Dri
ARC8A-AA-8031	0	21.7	6.4B01	_							ARC8A-			21.7		349	36.5		L
MDC-DB-130	0	21.7	61C00	_							MDC-DE			21.7		349			L
SWD8-BA-829 SZR-PA-360716	58.7 58.7	80.4 80.4	5.0B 1								SWD8-E	sA-829		21.7		349	36.5		L
24κ-PH-30U/10	ეგ./	συ.4		8.25														분	
																			T
																			Г
										L									
Surface Sys	l	L/SPN																	
Version	I IC	07_0C_	υ2																
Manufacturer				Stage Len	gth		m	+	to Bend	uist.		m	_	ring Ga	•				
Type Size				Rubber Sleeve Po	sition			_	S Mfr S Type				_	ring Ga lial Bea	<u> </u>				
Serial Number				Sleeve Siz			in	_	S Size				_	ust Bea	_				
Lobe Config.				Motor Fail				_	S SN						9	, ,			
Max Circ Temp	70	0.00		Avg ROP			m/hr	-	n Actl Flo	wRt	700.00	gpm	Max	x Shock	k Du	r	(0.20	se
Min Circ Temp		0.00		Max ROP			m/hr	_	g PmpPre		3215.00			al DH S			_	3.32	_
End Mud Wt).30 I		Avg Surf R	PM			_	pPres Or		3186.00					CHECK	_		
End Funnel Vis	57	7.00 C	PS	Min RPM			120.0)() Pm	pPres Of	f Bot		psi	Тур	е					
End Plastic Vis	21	1.00 C	PS	Max RPM			160.0)() Av	g Surf W	OB	35.00		Dep	oth					m
End Yield Point	23	3.00 C		Avg FlowF		800.00	٠.	_	g Surf To		9.00	ft-lbs		ination					d
End Mud Resist		0	1.1459		lowRt	850.00	51	_	x Shock			0		nuth					d
Company	IDFS			PH				_	rcent Sar		0.50		_	litives				_	_
Brand	1/ 0:			Chlorides			3150	_	rcent Sol	ids	10.80		Clea	an					
Туре	KCI			Other				_	rcent Oil		0.00	%	1.01						_
LCM Type								+	M Size					/ Conce					
BHA Type	Better	^z y		Tur Rotor				_	rbine Con				_	face So	ree	n			<u>]</u>
Int TF Offset Low Oil Flag				Stator Prt Hrs @ Low			hrc	_	lser Confi ab Spacin	-			_	Used			Sand	L	J po
DD Objectives Ach	ieved			If not, why			hrs.	Siè	n Shacil	y			1101	πατιΟΠ			Sand	ວເປ	пe
Bit Type		on	Ш	Other															
Manufacturer	Model			IADC Code	e	No. of Jet:	s	Siz	e of Jets		Bit TFA		Tota	al Revs		c	tick/Sli	р	
Hycalog		SX195				6			15		0.5	52						Yes	
Inner Row	Outer	Row		Dull Char		Location		Bri	ng/Seals		Gauge (1/	16")	Oth	er Char		F	eason	Pulle	ed
0		4		В	ſ	А		┸	Х		1			J	D			16	_
Trans Fail				Jamming				Cli	ent Incon	٧.			Surf	face No	oise				
Pres Incr @ Fail Trip Due to D&M				Jamming '			hrs.	_	st Time			hrs.	_	vn Hole					<u> </u>
				Sync Hour			hrs.	-	rface Vib			1		face Sy	ю Го	**			1

Printed: 10/5/2002 5:59 PM (c) 2001 Schlumberger

0-	hlh				_													Job	Number			AWA-0	2-17	
26	hlumberger				L	RILLI	NG 8	v MEA	ASUR	EMEN	NIS	- BHA	A DA	IΑ					Number			3		
					In		la	1	I	In		- 0			1				Number					
Itom	Description	Vander	Material	Serial Number	Fishing N OD	leck Length	Stab OD	OD	ID	Bot Connect Size		Top Conn Size		Lon	Cum Len		I 1	TIME/	DEPTH DI	TAILS 3	П	4	I	5
Item	Description	Vendor UNITS	Ivialeriai	Nullibei	in	m	in	in	in	in	Туре	in	Туре	Len m	m	Date/Time	10/3/20	02	2 3-0ct	3		4		3
1	Bit	Reed		10	3926			12.25	-				8 Reg Pin	0.31			Chu		oad				1	
2		Reed			3920					1.510	D D .					Field Engineer	1						1	
	Near bit roller reamer			GU2151				12.25			Reg Box		8 Reg Box	2.44		Depth	18	36	2095.87				1	
3	ARC8	Schlumberger			9556 10.13	25 4.68	3	8.25			Reg Pin		8 FH	5.73		Average ROP		20	15				-	
4	MWD	Schlumberger			130			8.375		6 5/8		_	8 FH Box	8.42		Avg. Std. Pres.	31		3215				-	
5	Inline Stab	Schlumberger			12.:						FH Pin		8 FH Pin	1.783		Desurger 1	10		1000				-	
6	Isonic	Schlumberger			829	9 1.785		8.375			FH Box		8 Reg Box	7.282		Desurger 2	10		1000				-	
7	String Roller Reamer	-					12.25	5	- 3	6 5/8	Reg Pin	6 5/8	8 Reg Box	2.44	28.405	Tur. RPM @ FR	27		2812				-	
8																FR @ Tur. RPM	8	50	861				-	
9																Avg. RPM	1	55	160				1	
10																Max RPM	1	74	175				1	
11																Total Shocks		0	8.32				1	
12																Max Shock		0	0.2					
13																Avg. Surf. WOB		19	30					
14																Max Surf. WOB		21	35					
15																Avg. DH WOB								
16																Max DH WOB								
17																Avg. Surf. Torq.		9	9					
18																Max Surf. Torq.		10	10					
19																Avg. DH Torq.								
20																Max DH Torq.								
21																Formation Type	Silty Sand	Silty	Sand					
22																Friction							1	
23																Drag Up							1	
24										1						Drag Down							1	
24		L				ı	Hookload	l			W/+ D	elow Jars			I	Mud Weight	10) 1	10.1				1	
																	 '	J. 1	10.1				1	
							Pickup Wt	I				bove Jars				Funnel Vis. Plastic Vis.							1	
	DICTED BHA						Slack Wt.				Total	Air Wt.						_					1	
1	ENDENCY															Circ. Temp	1	70	70				-	
																Signal Strength	1	26	26.4				-	
																Bit Deviation		95	95				-	
																Differential Pres.	<u> </u>							
		Mid Pt To	В	LADE		GAUGE		Bit To Rea	d Out Port			Bit To Measi	urement Po			BATTERY	Unloade	. ,	Loaded	_	Run Hrs		um Hrs	
Stabiliz	er Description	Bit	Type Len	×	Length	In	Out	PPL		10.41 M		D&I PPL		12.76 m		Tool	Before	After	Before	After	BOT	AMP	BOT	AMP
	UNITS	m		in in	in	in	in	ARC		6.23 m		GR PPL		12.19 m										
								ISONIC		23.46 M	(GR LWD		5.09 m										
										m		RES LWD		5.11 m										
										m	9	SON LWD		23.86 M										
										m				m										
										m				m										

Schlumberger

DRILLING & MEASUREMENTS - TIME/DEPTH COMMENTS PAGE 1


Job Number: AWA-02-17

			Run Number: 3
Date	Time	Depth	Operating Details
02-Oct-02	19:54		ARC Inits.
	20:34		ISONIC Inits.
	22:00		Tool BRT.
	23:23		Good SHT. SPT1=42 psi @ 700 GPM.
03-Oct-02	2:45	1554.00	Hook-up Geolograph cable and Set depth to start logging of coring interval.
	3:00	1740.00	Start logging coring interval. ROP 30-40 m/hr to get good quality ISONIC data.
	4:30	1784.00	Tag bottom and commence drilling.
	22:58		Drilling ahead. ROP has slowd down from 20 m/hr to 16 m/hr.
	23:25	2112.46	Reached well TD. Cycle pumps to take survey.
			Commence circulate bottoms up.
04-Oct-02	10:30		Tools ART.
	11:00		Dump Isonic
	12:00		Dump ARC.
			All recorded data recovered from the tools including the coring interval
			Mud Sample: Rm=0.1459@21.7, Rmf=0.1285@22.8, Rmc=0.242@23.3

Failure Report and Analysis

2cuiui	mberger	DRILLING	J & IVI	LACONLINIE	NTS - FAILURE	REPORT
Company:	Schlumberger	Well:	Casino-	2	Job Number:	AWA-02-17
Rig Name:	Ocean Bounty	Location:	Bass St	rait	Run Number:	2
Cell Manager:	Antonino Abad	Fail. Date:		1-0ct-02	Failure Number:	1
Hrs BRT @ Fail	11 hr:	s. Pump Hrs @	Fail	5 hrs.	Drill Hrs @ Fail	4 hrs.
Service:	PP/CDR/ISONIC/IWW				Depth @ Fail	1696.0
Failed Equipment	MDC-DC-231					
	DESCRIPTION & m MWD tool after making			1696m.		
Severity ID:	n Co	ompleted By:	A. Abad	ı	Date:	1-Oct-02
REMEDIA	AL ACTION ATTEN	MPTED ON	LOCAT	ION		
pump harmon tool. Increase monitor for dr	surface sensors and cab lics from SPT1 and SPT2 ed flow rate and no succe filling break and gas retur ce present on the extend	indicating senso ess either. Decisi rn.On surface, at	ors are go on was n	ood. Cycle pumps nade to drill ahea	a few times but no sign d with constant drillin	gnal from MWD g parameters and
Lost Rig Time:	0.00 Co	ompleted By:	A. Abad		Date:	2-Oct-02
	0.00 Cc	ompleted By:	A. Abad		Date:	2-Oct-02
	ANALYSIS Failed?) did it fail?)	ompleted By:	A. Abad	While a failur that you apply instructions. events, sympland any other invaluable for	e is developing at a v y your location's failu It is critical at this st coms, tool snapshots diagnostic data. The proper failure follow	wellsite, ensure are handling age to record is will become v-up and for

SECTION 4:- PRODUCTION TEST REPORTS

No production tests were conducted at the Casino-2 location.

Santos

SECTION 5:- DAILY GEOLOGICAL REPORTS

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 27/09/02

REPORT NO: 1

DEPTH: 700 m **PROGRESS:** 0 m **DAYS FROM SPUD:** 2.63

(As at 2400 hours EST, 26/09/02)

OPERATION: RUNNING BLOWOUT PREVENTERS STACK

(0600 hours EST, 27/09/02)

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") RIG: OCEAN BOUNTY

RT – SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

PH: PV / YP: Type: (IN PITS) Wt: Vis: FL: KC1 C1Rmf. **MUD DATA** UNFLOC GEL (2400 Hours) 1.06 >100 10.0 25 / 65 Drilled No. Make Type Size (mm) Hours Condition **BIT DATA PRESENT** (2400 Hours) 2 SMITH MGSSH-C 445 12.6 560 2-2-NO-A-E-I-NO-TD LAST

SURVEYS: \underline{MD}_{700} (m) \underline{INC}_{0} \underline{AZIM}_{-}

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

WAIT ON WEATHER FOR 6.5 HRS. RUN IN HOLE FROM 137m TO 684m, WASH & REAM TO 700m. SWEEP HOLE WITH 16m3 (100BBLS) HI-VISCOSITY GEL MUD. DISPLACE HOLE WITH HI-VISCOSITY GEL MUD. PULL OUT OF HOLE TO RUN 340mm (13 3/8") CASING. RIG TO AND RUN 50 JOINTS OF 340mm (13 3/8") CASING. MAKE UP WELLHEAD ASSEMBLY & RUN IN HOLE WITH LANDING STRING. LAND WELLHEAD WITH CASING SHOE AT 690.6m. CONFIRM LATCHING WITH 23T (50 KIPS) OVERPULL. CIRCULATE CASING & HOLE CLEAN. PRESSURE TEST LINES. CEMENT CASING AS PER PROGRAM WITH 46.5 m3 (293BBLS) OF 1.5 SG (12.5PPG) LEAD SLURRY AND 21 m3 (132BBLS) OF 1.89 SG (15.8PPG) TAIL SLURRY. DISPLACE CEMENT WITH RIG PUMPS. UNABLE TO BUMP PLUG. FLOATS HELD OKAY. REMOVE CEMENT HOSE & RELEASE RUNNING TOOL.

00:00 - 06:00 HOURS 27/09/02:

LAYOUT CEMENT HEAD AND WELLHEAD RUNNING TOOL. PREPARE TO RUN BOP STACK. MAKE UP MARINE RISER. MOVE BLOWOUT PREVENTERS & LOWER MARINE RISER PACKAGE TO MOONPOOL, INSTALL GUIDE LINES. PERFORM FUNCTION TEST. MAKE UP DOUBLE JOINT OF MARINE RISER TO LOWER MARINE RISER PACKAGE.

ANTICIPATED OPERATIONS:

RUN & TEST BLOWOUT PREVENTERS STACK. PICKUP 311mm (12.25") BIT & BOTTOM HOLE ASSEMBLY. DRILL SHOE TRACK, PERFORM LEAK-OFF TEST, DRILL AHEAD 311mm (12.25") HOLE.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 27/09/02

REPORT NO: 1

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	06:30	6.50	W.O.W. Conditions @06:00hrs - Heave 5.4m / Pitch 2.5deg / Roll 2deg / Wind 30-35 /
			Swell 4.8m
06:30	08:00	1.50	RIH F /- 137m to 684m (Tagged fill @ 684m)
08:00	08:30	0.50	Washed and reamed F /- 684m to 700m
08:30	09:00	0.50	Pumped 16M3 (100 bbls) of Hi-vis and displaced hole with Unflocculated Gel
09:00	12:30	3.50	POOH F /- 700m (Hole good no drag)
12:30	13:00	0.50	Held JSA, rigged up to run casing.
13:00	17:30	4.50	Picked up and checked floats, installed Le-Fluer casing fill up tool. Ran 340mm (13-
			3/8") casing. (ROV observed stab in to well head)
17:30	20:00	2.50	Rigged down Le-Fluer and picked up 476mm (18-3/4") Well head assembly, RIH with
			landing string. Landed casing and confirmed with 50 Kips O-pull.
20:00	21:30	1.50	Circulated casing volume 1.5 times. (Returns observed at sea bed)
21:30	23:00	1.50	Pumped 1.6M3 (10 bbls) of sea water with dye, pressure tested lines to 24,133Kpa
			(3500psi) Released bottom plug & pumped 1.1M3 (7.4 bbls) to shear out plug with
			6895Kpa (1000psi) pumped .8M3 (5 bbls) of sea water. Mixed and pumped 46.5M3
			(293bbls) of Lead slurry (736sx) of 'G' cement @ 1.5sg (12.5ppg) with 36.5M3
			(230bbls) of mix water. Followed by 21M3 (132bbls) of Tail slurry (637sx) of 'G'
			cement @ 1.89sg (15.8ppg) with 12.7M3 (80bbls) of Sea water. Released top dart, and
			pumped 1.1M3 (7bbls) of Sea water.
23:00	23:30	0.50	Displaced cement with rig pumps. Unable to Bump plug, checked floats held OK.
23:30	24:00	0.50	Removed cement hose and released running tool.

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 27/09/02

FORMATION	TOPS:	MD RT	Subsea	H/L to Prognosis	H/L to Casino-1
	HYDROCARB	<u>ON SHOW SU</u>	MMARY		
INTERVAL	LITHOLOGY				GAS
	Nil				
	-				
	GEOLOGICAI	SUMMARY			
INTERVAL	LITHOLOGY				GAS

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 28/09/02

REPORT NO: 2

DEPTH: 700 m PROGRESS: 0 m DAYS FROM SPUD: 3.63

(As at 2400 hours EST, 27/09/02)

OPERATION: DRILLING SHOE TRACK.

(0600 hours EST, 28/09/02)

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") RIG: OCEAN BOUNTY

RT - SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

MUD DATA Type: (IN PITS) Wt: Vis: FL: PH: **KC1** C1: PV / YP: Rmf: (2400 Hours) PRE-HYD GEL 43200 42000 12 / 23 1.05 78 8.0

No. Make Size (mm) Hours Drilled Condition Type **BIT DATA PRESENT** 3 HTC MX03DX 311 (2400 Hours) 2 **SMITH** MGSSH-C 445 2-2-NO-A-E-I-NO-TD **LAST** 12.6 560

SURVEYS: \underline{MD}_{700} (m) \underline{INC}_{0} \underline{AZIM}_{-} (T)

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

LAYOUT CEMENT HEAD AND WELLHEAD RUNNING TOOL. PREPARE TO RUN BOP STACK. MAKE UP DOUBLE JOINT OF MARINE RISER. MOVE BLOWOUT PREVENTERS & LOWER MARINE RISER PACKAGE TO MOONPOOL, INSTALL GUIDE LINES. PERFORM FUNCTION TEST. MAKE UP DOUBLE JOINT OF MARINE RISER TO LOWER MARINE RISER PACKAGE. RUN BOP STACK, PRESSURE TEST CHOKE & KILL LINES. INSTALL SLIP JOINT. LAND BOP STACK & CONFIRM LATCH WITH 23T (50 KIPS) OVERPULL. PRESSURE TEST CONNECTOR. INSTALL DIVERTER. INSTALL WEAR BUSHING. PRESSURE TEST LOWER MARINE RISER PACKAGE CONNECTOR. LAYOUT 445mm (17.5") BOTTOM HOLE ASSEMBLY. MAKE UP 311mm (12.25") INSERT BIT & BOTTOM HOLE ASSEMBLY ALONG WITH MWD/LWD TOOLS. SHALLOW TEST MWD/LWD TOOLS – OKAY.

00:00 - 06:00 HOURS 28/09/02:

CONTINUE TO MAKE UP 311mm (12.25") BOTTOM HOLE ASSEMBLY. RUN IN HOLE TO TAG CEMENT @ 630m. WASH & REAM TO 663m. TOOK 5T (10 KIPS) WEIGHT (FIRM CEMENT). DRILL CEMENT & SHOE TRACK.

ANTICIPATED OPERATIONS:

DRILL SHOE TRACK AND 3m FORMATION TO 703m. DISPLACE HOLE TO MUD. CONDUCT LEAK-OFF TEST. DRILL AHEAD 311mm (12.25") HOLE.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 28/09/02

REPORT NO: 2

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	01:00	1.00	POOH and laid out running tool.
01:00	01:30	0.50	Service broke & laid out cement head.
01:30	02:30	1.00	Held JSA. Rigged up to run BOP.
02:30	03:00	0.50	Picked up and made up a double joint of riser.
03:00	05:30	2.50	Moved BOP and LMRP to moon pool, installed guide lines & conducted function test.
			(Skidded rig 25 ft to Starboard)
05:30	06:30	1.00	Made up double joint of riser to LMRP.
06:30	08:30	2.00	Ran BOP (Pressure tested choke & kill lines 1379Kpa / 34475Kpa (200 / 5000psi)
08:30	14:00	5.50	Picked up slip joint, installed choke & kill goose necks, installed rucker tensioners.
14:00	15:00	1.00	Landed BOP and confirmed with 50 Kips O-pull. Pressure tested connector 1379Kpa /
			34,475Kpa (200 / 3000psi)
15:00	17:30	2.50	Installed diverter and rigged down BOP handling equipment.
17:30	19:00	1.50	RIH set wear bushing & POOH. Test LMRP connector to 34475 Kpa (3000psi).
19:00	21:30	2.50	Laid out 445mm (17-1/2") B H A
21:30	24:00	2.50	Made up 311mm (12-1/4") B H A & Shallow test tools, OK.

Santos

A.C.N. 007 550 923

WELL PROGRESS REPORT **CASINO 2**

DATE: 28/09/02

REPORT NO: 2

FORMATION	TOPS:	MD RT	Subsea	H/L to Prognosis	H/L to Casino-1
				,	
	HYDROCAR	BON SHOW SUM	IMARY		
INTERVAL	LITHOLOGY	, -			GAS
	Nil				
				<u>l</u>	
	GEOLOGICA	L SUMMARY			
INTERVAL	LITHOLOGY	•			GAS

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 29/09/02

REPORT NO: 3

DEPTH: 1207 m PROGRESS: 507 m DAYS FROM SPUD: 4.63

(As at 2400 hours EST, 28/09/02)

OPERATION: DRILLING 311mm (12.25") HOLE IN THE BASAL SKULL CREEK FORMATION @

(0600 hours EST, 29/09/02) 1384m

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") **RIG: OCEAN BOUNTY**

RT – SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

MUD DATA	Type:	Wt:	Vis:	FL:	PH:	KCl	C1:	PV / YP:	Rmf:
(2400 Hours)	KCL/ PHPA/	1.06	60	1.2	9.0	32400	29000	15 / 29	
	POLY/ GLYCOL								

		No.	Make	Type	Size (mm)	Hours	Drilled	Condition
BIT DATA	PRESENT	3	HTC	MX03DX	311	8.7	507	-
(2400 Hours)	LAST	2	SMITH	MGSSH-C	445	12.6	560	2-2-NO-A-E-I-NO-TD

 SURVEYS:
 MD (m)
 INC
 AZIM (T)

 1364.4
 1.05°
 276.88°

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

CONTINUED MAKING UP AND RUNNING IN WITH 311mm (12-1/4") BHA TO TAG CEMENT @ 630m. WASH & REAM TO 663m. TOOK FIRM WEIGHT @ 663m. DRILLED CEMENT & SHOE TRACK TO 700m. DRILLED 311mm (12-1/4") HOLE FROM 700m TO 703m. PUMPED HI-VIS PILL AND CHANGED TO PHPA MUD SYSTEM. PERFORMED LEAK-OFF TEST WITH 1.05SG (8.8PPG) MUD WEIGHT, PRESSURE 1240KPA (180PSI), EQUIVALENT MUD WEIGHT=1.22SG (10.2PPG). DRILL 311mm HOLE FROM 703m TO 772m (MUD LOSSES UP TO 95.3m3/HR (600BBLS/HR). CIRCULATE HOLE CLEAN. WORK STRING @ 772-743m. PULL BACK TO CASING SHOE, CLEAN MUD PUMP STRAINERS DUE TO LCM BUILD UP, MIX EXTRA MUD DUE TO LOSSES - TOTAL MUD LOST 101m3 (640BBLS). RUN IN HOLE TO 772m. DRILL FROM 772m TO 1207m (MUD LOSSES REDUCED TO 5-6 m3/HR. (30-40BBLS/HR)

00:00 - 06:00 HOURS 29/09/02:

DRILL AHEAD 311mm (12.25") HOLE FROM 1207m TO 1384m.

ANTICIPATED OPERATIONS:

DRILL AHEAD 311mm (12.25") HOLE TO CORE POINT.

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 29/09/02

REPORT NO: 3

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	04:00	4.00	Continued making up BHA. RIH with 311mm (12-1/4") to 600m.
04:00	04:30	0.50	Serviced TDS
04:30	05:00	0.50	Continued RIH tag cement @ 630m (Washed and reamed with 5-10Kips down to 663m)
05:00	06:00	1.00	Took firm weight @ 663m. Drilled cement & shoe track to 700m.
06:00	06:30	0.50	Drilled 311mm (12-1/4") Hole F /- 700m to 703m
06:30	07:30	1.00	Pumped Hi-vis pill and changed to PHPA mud system. (Flushed Choke & kill lines)
07:30	09:00	1.50	Performed LOT With 1.05sg Mud weight Pressure 1240Kpa EQMW = 1.22sg. (8.8ppg
			180psi =10.2ppg)
09:00	10:30	1.50	Drilled 311mm Hole F /- 703m to 772m (Losses up to 95.3M3 (600bbls) Per hour)
10:30	12:00	1.50	Attempted to make connection @ 772m. Torque 10Kips, Excessive drag. Continued to
			circulate hole clean. Worked string F /- 772 m back to 743m.
12:00	13:00	1.00	POOH F /- 772 back to 690m (340mm Shoe) Cleaned strainers due to LCM build up,
			mixed extra mud due to losses. (Total mud lost 101M3 / 640bbls) RIH to 772m
13:00	24:00	11.00	Drilled F /- 772m to 1207m (Losses reduced to 4.7M3 / 6.3M3 per/hr. (30/40bbls)

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 29/09/02

FORMATION TOPS:	MD RT (m)	Subsea (m)	H/L to Prognosis	H/L to Casino-1
MEPUNGA FORMATION	687	662	31m High	87m High
DILWYN FORMATION	764	739	43m High	79m High
PEMBER MUDSTONE	1005	980	-	87m High
PEBBLE POINT	1080	1055	1m High	22m High
MASSACRE SHALE	1132	1107	13m Low	22m High
SKULL CREEK	1271	1246	14m High	12m Low
			_	

HYDROCARBON SHOW SUMMARY				
INTERVAL	<u>LITHOLOGY</u>	GAS		
	Nil			

	GEOLOGICAL SUMMARY	
INTERVAL (m/hr) 687-700m	LITHOLOGY MEPUNGA FORMATION Returns to seafloor. (MWD Gamma Ray Pick)	GAS
700-764m ROP: 9-150 Ave: 80	MASSIVE SANDSTONE INTERBEDDED WITH MINOR CLAYSTONE SANDSTONE: Medium to dark brown, medium yellow brown, medium to very coarse grained, increasing coarse to very coarse grained, poorly sorted, subrounded to rounded, minor subangular, weak siliceous cement, abundant Festaining, friable in part, generally loose, minor moderately hard aggregates, trace lithic fragments, fair to good inferred porosity, no hydrocarbon fluorescence. CLAYSTONE: Medium to dark grey to minor grey brown, moderately hard, calcareous, grading to marl, trace quartz grains, subblocky to blocky, minor amorphous.	1-2 units 100% C1
764-790 ROP: 45-260 Ave: 110	DILWYN FORMATION SANDSTONE: Medium brown, occasionally dark brown, medium to dark yellow brown, occasionally clear to translucent, predominantly medium to coarse grained, moderately well sorted, subrounded to subangular, trace weak to moderately strong siliceous cement, common Fe-staining, common very dark brown to black brown rounded lithic fragments (5%), friable in part, loose in part, moderately hard in part, poor to fair inferred porosity, no hydrocarbon fluorescence.	1-2 units 100% C1

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 29/09/02

	GEOLOGICAL SUMMARY	
INTERVAL (m/hr)	LITHOLOGY	GAS
790-834 ROP: 29-180 Ave: 100	INTERBEDDED SANDSTONE AND CLAYSTONE SANDSTONE: Light grey, clear to translucent, minor light yellow brown, predominantly medium to coarse grained, moderately sorted, subangular to subrounded, moderately strong siliceous cement in aggregates, minor grey argillaceous to silty matrix, trace lithic fragments, common loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence. CLAYSTONE: Medium grey, arenaceous grading to arenaceous claystone, trace lithic fragments, trace disseminated pyrite, generally soft, occasionally moderate hard, dispersive to amorphous, subblocky in part.	1 unit 100% C1
834-920 ROP: 8-200 Ave: 80	SANDSTONE INTERBEDDED WITH MINOR CLAYSTONE SANDSTONE: Light grey, clear to translucent, medium to very coarse grained, generally coarse to very coarse, poorly sorted, subangular to predominantly subrounded, moderately strong siliceous cement in aggregates, minor grey brown argillaceous to silty matrix, trace rounded dark brown lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence. CLAYSTONE: Medium to dark grey brown, generally soft, occasionally firm, dispersive to amorphous, subblocky in part.	1-2 unit 100% C1
920-1005 ROP: 7-250 Ave: 140	SANDSTONE INTERBEDDED WITH MINOR CLAYSTONE SANDSTONE: Clear to translucent, pale grey, medium to coarse, moderately sorted, subangular to predominantly subrounded, weak siliceous cement in aggregates, minor grey brown argillaceous matrix, trace calcite, trace pyrite, trace lithic fragments, commonly loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence. CLAYSTONE: Medium to dark brown grey, soft to firm, dispersive, amorphous to subblocky in part.	1-2 unit 100% C1
1005-1080 ROP: 12-50 Ave: 45	PEMBER MUDSTONE CLAYSTONE WITH MINOR SANDSTONE CLAYSTONE: Medium to dark brown, slightly arenaceous, silty, predominantly soft to firm, minor moderately hard, dispersive, amorphous to subblocky SANDSTONE: Clear, translucent, light grey, coarse to very coarse, medium in part, moderately sorted, subangular to predominantly subrounded, trace weak siliceous cement, generally loose, fair inferred porosity, no hydrocarbon fluorescence.	1-2 unit 100% C1

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 29/09/02

	GEOLOGICAL SUMMARY					
INTERVAL (m/hr)	<u>LITHOLOGY</u>	GAS				
1080-1132 ROP: 40-250 Ave: 120	PEBBLE POINT FORMATION COARSE SANDSTONE WITH CLAYSTONE INTERBEDS SANDSTONE: Clear to translucent, opaque in part, light grey, minor pale yellow brown, medium to very coarse grained, minor fine, poorly sorted, subrounded to rounded, occasionally subangular, trace pyrite, trace weak siliceous cement, generally loose, poor to fair inferred porosity, no hydrocarbon fluorescence. CLAYSTONE: Medium grey, dark grey in part, trace glauconite, trace pyrite, trace lithic fragments, soft, dispersive, amorphous.	1-6 units 100% C1				
1132-1180 ROP: 35-270 Ave: 80	MASSACRE SHALE (?? INCLUDING TIMBOON) INTERBEDDED SANDSTONE AND SILTSTONE SANDSTONE: Pale to medium grey, clear to translucent, off white, fine to medium grained, partly coarse grained, occasional very coarse polished bit-fractured quartz fragments, poorly sorted, subangular to minor angular, occasionally subrounded, common moderate strong siliceous and slightly calcareous cement, locally common white argillaceous matrix, occasional medium grey silty matrix, common disseminated pyrite, rare glauconite?, moderate hard to hard aggregates, occasionally very hard, no hydrocarbon fluorescence. SILTSTONE: Medium grey, medium to dark brown, arenaceous, grades to sandstone, carbonaceous in part, rare white argillaceous laminations, trace disseminated pyrite, moderately hard occasionally very hard, subblocky	1-4 units 100% C1				
1180-1271 ROP: 20-200 Ave: 100	SANDSTONE INTERBEDDED WITH SILTSTONE SANDSTONE: Clear, translucent, opaque, pale grey, pale green grey, medium to coarse, minor fine grained, moderate poorly sorted, subangular to subrounded, moderate strong siliceous cement in aggregates, locally com white argillaceous matrix, trace rounded lithic fragments, occasionally grading to lithic sandstone, friable to moderately hard, poor visual porosity, no hydrocarbon fluorescence. SILTSTONE: Medium grey, medium to dark brown, arenaceous, grades to sandstone, carbonaceous in part, rare white argillaceous laminations, trace disseminated pyrite, moderately hard occasionally very hard, subblocky	2-3 units 100% C1				

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 29/09/02

	GEOLOGICAL SUMMARY				
INTERVAL (m/hr)	LITHOLOGY	GAS			
1271-1299 ROP: 16-150 Ave: 40	SKULL CREEK FORMATION SILTSTONE: Light to medium brown to brown grey, medium green grey, argillaceous, arenaceous in part, slightly calcareous, trace carbonaceous specks, minor disseminated pyrite, soft to firm, amorphous to subblocky	1-2 units 100% C1			
1299-1360 ROP:10-110 Ave: 35	INTERBEDDED SILTSTONE AND MINOR SANDSTONE SILTSTONE: Medium to dark grey, medium to dark brown grey, soft to firm, moderately hard in part, argillaceous, slightly dispersive, subblocky. SANDSTONE: Clear to translucent, fine to coarse, poorly sorted, subrounded to rounded, trace weak siliceous cement, generally loose, poor visual porosity, no fluorescence.	1-3 units 100% C1			

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 30/09/02

REPORT NO: 4

PROGRESS: 403 m **DAYS FROM SPUD: 5.63 DEPTH:** 1610 m

(As at 2400 hours EST, 29/09/02)

DRILLING 311mm (12.25") HOLE IN THE BELFAST FORMATION @ 1638m (ROP: 3 m/hr) **OPERATION**:

(0600 hours EST, 30/09/02)

AFE COST **CUMULATIVE COST**

CASING DEPTH: 690.6m (340mm- 13 3/8") **RIG: OCEAN BOUNTY**

RT – SEAFLOOR: 92.8m

12.6

560

PROGRAMMED TD: 2274m **ROTARY TABLE:** 25m LAT WATER DEPTH: 67.8m

MUD DATA	Type:	Wt:	Vis:	FL:	PH:	KCl	C1:	PV / YP:	Rmf:
(2400 Hours)	KCL/ PHPA/	1.20	60	4.0	9.0	27000	22000	23 / 29	

No. Make Type Size (mm) Hours Drilled Condition HTCMX03DX 311 27.7 **BIT DATA PRESENT** 3 910 (2400 Hours) **SMITH** 445 2-2-NO-A-E-I-NO-TD

MGSSH-C

MD(m)<u>INC</u> AZIM (T) **SURVEYS**: 1.58° 268.16° 1565.7

2

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

POLY/ GLYCOL

LAST

DRILL AHEAD 311mm (12.25") HOLE FROM 1207m TO 1610m, GRADUALLY INCREASING MUD WEIGHT TO 1.2SG (10.0PPG). (WORKED FREE STUCK PIPE AT PIPE CONNECTION @ 1271m).

00:00 - 06:00 HOURS 30/09/02:

DRILL AHEAD 311mm (12.25") HOLE FROM 1610m TO 1638m AT 06:00HRS.

ANTICIPATED OPERATIONS:

DRILL AHEAD 311mm (12.25") HOLE TO CORE POINT. IF SLOW ROP PERSISTS, POSSIBLE BIT TRIP.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 30/09/02

REPORT NO: 4

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	24:00	24.0	Continued drilling 311mm (12- 1/4") Hole F/- 1207m to 1610m. No losses. (While reaming prior connection, String stuck @ 1271m. Worked free). Loggers calibrated hole with carbide to 355.5mm (14")

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 30/09/02

FORMATION TOPS:	MD RT (m)	Subsea (m)	H/L to Prognosis	H/L to Casino-1
MEPUNGA FORMATION	687	662	31m High	87m High
DILWYN FORMATION	764	739	43m High	79m High
PEMBER MUDSTONE	1005	980	-	87m High
PEBBLE POINT	1080	1055	1m High	22m High
MASSACRE SHALE	1132	1107	13m Low	22m High
SKULL CREEK	1271	1246	14m High	12m Low
PAARATTE FORMATION	1369	1344	2m High	82m Low
BELFAST FORMATION	1507	1482	7m High	55m Low

HYDROCARBON SHOW SUMMARY			
INTERVAL	<u>LITHOLOGY</u>	GAS	
	Nil		

GEOLOGICAL SUMMARY				
INTERVAL (m/hr)	LITHOLOGY	GAS		
1360-1369 ROP:55-90 Ave: 60	SILTSTONE: Medium green grey, medium grey, light grey brown, trace glauconite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.	10-12 units 100% C1		
1369-1460 ROP: 18-60 Ave: 30	PAARATTE FORMATION SILTSTONE WITH MINOR INTERBEDDED SANDSTONE SILTSTONE: Light to medium grey brown, medium green grey, medium grey, common glauconite, trace pyrite, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part. SANDSTONE: Clear, translucent, fine to medium grained, occasionally coarse, moderately well sorted, subrounded to rounded, nil to trace weak siliceous cement, locally common white argillaceous matrix, generally loose grains, trace lithic fragments, trace glauconite, no fluorescence.	11 -16 units 100% C1		
1460-1507 ROP: 7-22 Ave: 17	SILTSTONE: Light to medium brown to grey brown, medium green grey, medium grey, trace glauconite, rare pyrite, generally argillaceous, slightly arenaceous, firm to soft, occasionally moderately hard to hard, subblocky to amorphous in part.	9-18 units 100% C1		

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 30/09/02

GEOLOGICAL SUMMARY					
INTERVAL (m/hr)	LITHOLOGY DEL EACT FORMATION	GAS			
1507-1519 ROP: 30-70 Ave: 50	BELFAST FORMATION SANDSTONE: Clear to translucent, pale yellow, fine to very coarse, predominantly fine to medium, poorly sorted, subblocky to rounded, occasionally subangular, moderate strong siliceous cement, trace calcite, trace light grey silty matrix, friable to commonly loose, poor porosity, no hydrocarbon fluorescence.	12 – 20 units 100% C1			
1519-1550 ROP: 10-30 Ave: 20	SILTSTONE: Medium to dark brown, brown grey, occasionally green grey, arenaceous, trace glauconite, trace lithic fragments, trace carbonaceous specks, soft to firm, occasionally moderate hard, subblocky, amorphous.	12 – 20 units 100% C1			
1550-1630 ROP: 2-9 Ave: 4	SILTSTONE: Medium to dark brown grey, medium to dark grey, trace glauconite, trace lithic fragments, trace carbonaceous specks, weakly calcareous in part, trace dolomite, firm to moderately hard, subblocky, occasionally subfissile.	7 – 22 units 100/tr/tr %			

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 01/10/02 REPORT NO: 5

DEPTH: 1646 m **24 hr PROGRESS 0000-2400**: 36 m **DAYS FROM SPUD**: 6.63

(As at 2400 hours EST, 30/09/02)

DEPTH: 1646 m **24 hr PROGRESS 0600-0600**: 8 m

(As at 0600 hours EST, 01/10/02)

OPERATION: DRILLING AHEAD 311mm (12.25") HOLE IN THE BELFAST FORMATION

(As at 0600 hours EST, 01/10/02) FROM 1646m, HAVING RUN IN WITH NEW PDC BIT

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") **RIG: OCEAN BOUNTY**

RT – SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

Vis: PV / YP: **MUD DATA** Type: Wt: FL: PH: KC1 $C1 \cdot$ Rmf: (2400 Hours) KCL/ PHPA/ 1.24 72 4.4 9.0 27000 23000 26 / 41

POLY/GLYCOL

Make Type Size (mm) Hours Drilled Condition No. HYC DSX195 4 311 **BIT DATA PRESENT** HTC MX03DX (2400 Hours) LAST 3 311 36.4 946 8-8-LT-A-E-1/8-ER-PR

 SURVEYS:
 MD (m)
 INC
 AZIM (T)

 1622.24
 1.67°
 265.96°

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

DRILL AHEAD 311mm (12.25") HOLE FROM 1610m TO 1646m. PULL OUT OF HOLE TO 1543m. BACKREAM OUT OF TIGHT HOLE FROM 1543m TO 800m. PULL OUT OF HOLE FROM 800m. DOWNLOAD MWD/LWD TOOL. MAKE UP NEW PDC BIT, SHALLOW TEST MWD/LWD TOOLS, COMMENCE RUNNING IN HOLE.

00:00 - 06:00 HOURS 01/10/02:

RUN IN HOLE TO CASING SHOE. SLIP & CUT DRILLING LINE. CONTINUE TO RUN IN HOLE TO 1615m. WASH & REAM FROM 1615m TO BOTTOM AT 1646m.

ANTICIPATED OPERATIONS:

DRILL AHEAD 311mm (12.25") HOLE FROM 1646m TO CORE POINT IN THE TOP OF WAARRE FORMATION. PULL OUT HOLE. RUN IN HOLE WITH CORING ASSEMBLY TO CUT 27m OF CORE .

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 01/10/02

REPORT NO: 5

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	09:00	9.00	Continued Drilling 311mm (12-1/4") Hole F /- 1610m to 1646m
09:00	09:30	0.50	Flow checked well. POOH F /- 1646m to 1543m (50 Kips O-pull @1543m)
09:30	18:30	9.00	Backreamed F /- 1543m to 800m (Max hole drag 50 Kips O-pull, String torquing up
			12,000ft/lbs)
18:30	21:00	2.50	Continued POOH F /- 800m. Broke off bit.
21:00	23:30	2.50	Down loaded data from LWD & Process. Initialise tool. (Serviced TDS)
23:30	24:00	0.50	Made up bit & RIH

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 01/10/02

REPORT NO: 5

** PRELIMINARY FIELD PICKS

FORMATION TOPS: **	MD RT (m)	Subsea (m)	H/L to Prognosis	H/L to Casino-1
MEPUNGA FORMATION	687	662	31m High	87m High
DILWYN FORMATION	764	739	43m High	79m High
PEMBER MUDSTONE	1005	980	-	87m High
PEBBLE POINT	1080	1055	1m High	22m High
MASSACRE SHALE	1132	1107	13m Low	22m High
SKULL CREEK	1271	1246	14m High	12m Low
PAARATTE FORMATION	1369	1344	2m High	82m Low
BELFAST FORMATION	1507	1482	7m High	55m Low
WAARRE FORMATION			<u>-</u>	

	HYDROCARBON SHOW SUMMARY				
INTERVAL	<u>LITHOLOGY</u>	GAS			
	Nil				

	GEOLOGICAL SUMMARY	
INTERVAL (m/hr)	LITHOLOGY	GAS
1630-1646 ROP: 2-5 Ave: 3	SILTSTONE: Medium to dark brown grey, medium to dark grey, trace glauconite, trace lithic fragments, trace carbonaceous specks, very weakly calcareous in part, trace calcite, rare dolomite (1-2 grains), firm to moderately hard, subblocky, rarely subfissile.	7 – 22 units 100/tr/tr %

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 02/10/02 REPORT NO: 6

DEPTH: 1763 m **24 hr PROGRESS 0000-2400:** 117 m **DAYS FROM SPUD:** 7.63

(As at 2400 hours EST, 01/10/02)

DEPTH: 1763 m **24 hr PROGRESS 0600-0600**: 117 m

(As at 0600 hours EST, 02/10/02)

OPERATION: REAMING TO BOTTOM @ 1753m, PRIOR TO CUTTING CORE

(As at 0600 hours EST, 02/10/02)

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") **RIG: OCEAN BOUNTY**

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

MUD DATA Type: Wt: Vis: FL: PH: KCl Cl: PV/YP: Rmf:

 MUD DATA
 Type:
 Wt:
 Vis:
 FL:
 PH:
 KCl
 Cl:
 PV / YP:
 Rm:

 (2400 Hours)
 KCL/ PHPA/ POLY/ GLYCOL
 1.24
 57
 5.4
 9.5
 37800
 31000
 21 / 33

No. Make Type Size (mm) Hours Drilled Condition **CD93 BIT DATA PRESENT** 5 DBS 311 DSX195 1-1-CT-N-X-I-NO-CP (2400 Hours) LAST 4 HYC 311 6.4 117

SURVEYS: \underline{MD} (m) \underline{INC} AZIM (T)

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

DRILL AHEAD 311mm (12.25") HOLE FROM 1646m TO 1763m. CIRCULATE BOTTOMS UP FOR SAMPLE AND CONFIRM CORE POINT. PUMP OUT OF HOLE FROM 1763m TO 1620m. PULL OUT OF HOLE FROM 1620m TO PICK UP CORING ASSEMBLY. LAYOUT ANADRILL MWD/LWD TOOLS. MAKE UP CORE BARREL.

00:00 - 06:00 HOURS 02/10/02:

CONTINUE TO MAKE UP CORING ASSEMBLY, RUN IN HOLE TO 1708m, WORKING TIGHT SPOT @ 1140-1160m. PRECAUTIONARY WASH & REAM FROM 1708m TO 1730m. WASH & REAM FROM 1730m TO 1753m AT 06:00HRS (TAKING 10-15 KIPS TO REAM). TRIP GAS 935 UNITS.

ANTICIPATED OPERATIONS:

REAM TO BOTTOM. CUT 27m CORE. PULL OUT HOLE & RETRIEVE CORE. RUN IN HOLE WITH 311mm DRILLING ASSEMBLY AND DRILL AHEAD.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 02/10/02

REPORT NO: 6

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	01:30	1.50	Continued RIH to 690m (340mm Shoe)
01:30	03:00	1.50	Slipped & cut drilling line.
03:00	05:00	2.00	Continued RIH to 1615m (Took weight @ 1615m)
05:00	06:00	1.00	Wash and reamed F /- 1615m to 1646m (5-10 Kips Required to ream)
06:00	14:00	8.00	Drilled 311mm (12-1/4") Hole F /- 1646m to 1763m
14:00	15:30	1.50	Circulated sample to surface & confirmed correct core point.
15:30	21:00	5.50	Pumped out F /- 1763m to 1620m. Continued POOH F /- 1620m
21:00	22:00	1.00	Service broke LWD tool and laid out.
22:00	24:00	2.00	Held JSA, Picked up & made up core barrel assembly.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 02/10/02

REPORT NO: 6

** PRELIMINARY FIELD PICKS

FORMATION TOPS: **	MD RT (m)	Subsea (m)	H/L to Prognosis	H/L to Casino-1
WAARRE FORMATION (MWD PICK)	1746	1721	23m High	-
· · · · · · · · · · · · · · · · · · ·				

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY WAARRE FORMATION	GAS
1755-1763 Ave: 35	SANDSTONE: Pale brown grey, pale grey, translucent, opaque, very fine to very coarse grained, predominantly fine to medium grained, poorly sorted, subangular to subrounded, occasionally rounded, trace moderate strong calcareous cement, trace siliceous cement, trace glauconite, trace to locally common white to light brown grey argillaceous matrix, occasionally grades to arenaceous siltstone, friable to moderately hard, occasionally hard, common loose clear coarse quartz sand, poor visual porosity, no hydrocarbon	562 / 25 units 98/tr/1.5/tr/tr C02: 40 ppm

	GEOLOGICAL SUMMARY						
INTERVAL (m/hr)	LITHOLOGY	GAS					
1646-1746 ROP: 8-37 Ave: 25	SILTSTONE: Medium to dark brown grey, medium to dark grey, olive brown, trace to locally common, glauconite, trace lithic fragments, trace carbonaceous specks, weakly calcareous in part, trace calcite, moderately hard, minor hard, firm in part, subblocky, occasionally subfissile.	10 – 18 units 100/tr %					
1746-1763 ROP: 15-41 Ave: 35	WAARRE FORMATION SANDSTONE INTERBEDDED WITH SILTSTONE SANDSTONE: Pale brown grey, pale grey, translucent, opaque, very fine to very coarse grained, predominantly fine to medium grained, poorly sorted, subangular to subrounded, occasionally rounded, trace moderate strong calcareous cement, trace siliceous cement, trace glauconite, trace pyrite, trace to locally common white to light brown grey argillaceous matrix, occasionally grades to arenaceous siltstone, friable to moderately hard, occasionally hard, (appears to be cleaning up with depth), common loose clear coarse quartz sand, poor visual porosity, no hydrocarbon fluorescence. SILTSTONE: Light to medium olive grey brown, locally common glauconite, firm to hard, trace to locally common carbonaceous specks, trace pyrite, trace dark lithic fragments, blocky to subblocky	32 - 562 units 98/tr/1.5/tr/tr C02: 40 ppm					

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 03/10/02

REPORT NO: 7

DEPTH: 1784 m **24 hr PROGRESS 0000-2400:** 21 m **DAYS FROM SPUD:** 8.63

(As at 2400 hours EST, 02/10/02)

DEPTH: 1803 m **24 hr PROGRESS 0600-0600:** 40 m

(As at 0600 hours EST, 03/10/02)

OPERATION: DRILLING AHEAD 311mm (12 1/4") HOLE @ 18 M/HR

(As at 0600 hours EST, 03/10/02)

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") **RIG: OCEAN BOUNTY**

RT – SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

MUD DATA Type: Wt: Vis: FL: PH: KCl Cl: PV/YP: Rmf:

(2400 Hours) KCL/ PHPA/ 1.24 50 5.2 10.0 32400 31200 19 / 25

No. Make Type Size (mm) Hours Drilled Condition
BIT DATA PRESENT 6 (4RR) HYC DSX195 311 - - -

(2400 Hours) LAST 5 SEC CD93 311 4.6 21 1-1-CT-N-X-I-JD-TD

SURVEYS: MD (m) INC AZIM (T)

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

POLY/ GLYCOL

WASH & REAM FROM 1753m TO 1763m. CUT CORE FROM 1763m TO 1784m, UNABLE TO CORE FURTHER. CIRCULATE BOTTOMS UP. PULL OUT OF HOLE FROM 1784m. RETRIEVE CORE. TOTAL CORE CUT=21m, RECOVERED=19.3m, RECOVERY=92% (ASSUMING 2 x 9m CORE BARRELS ARE FULL). LAYOUT CORING ASSEMBLY. RUN IN HOLE WITH RE-RUN PDC BIT AND BOTTOM HOLE ASSEMBLY, AFTER SHALLOW TESTING ANADRILL MWD/LWD TOOLS.

00:00 - 06:00 HOURS 03/10/02:

CONTINUE TO RUN IN HOLE WITH RE-RUN PDC BIT. WASH & RECORD MWD/LWD DATA OVER CORE INTERVAL. DRILL AHEAD 311mm (12 1/4") HOLE FROM 1784m TO 1803m AT 06:00HRS.

ANTICIPATED OPERATIONS:

DRILL AHEAD 311mm HOLE.

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 03/10/02

REPORT NO: 7

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	00:30	0.50	Continued to Make up Core barrel
00:30	04:30	4.00	RIH to 1708m (Worked through tight spot @ 1120m, Wash and reamed 1140m to
			1160m)
04:30	05:00	0.50	Precautionary wash and reamed F /- 1708m to 1730m (Took weight @ 1730m)
05:00	07:00	2.00	Wash and reamed F /- 1730m to 1763m (Taking 10-15Kips to ream) Max gas 18.72%
07:00	07:30	0.50	Recorded up & down weights, dropped ball and monitored pressures. Took SCRs.
07:30	12:30	5.00	Cut core F /- 1763m to 1784m.
12:30	14:30	2.00	Circulated bottoms up. Max gas 5%
14:30	19:00	4.50	POOH F /- 1784m.
19:00	21:30	2.50	Held JSA. Laid out inner core barrel & Laid out outer barrels. (Cut 21m Recovered
			19.3m = 92%
21:30	24:00	2.50	Picked up and surface tested FEWD tools. RIH with BHA.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 03/10/02

REPORT NO: 7

** PRELIMINARY FIELD PICKS

FORMATION TOPS: **	MD RT (m)	Subsea (m)	H/L to Prognosis	H/L to Casino-1
WAARRE FORMATION	1746	1721	23m High	-

<u>INTERVAL</u> 1769-1784	LITHOLOGY WAARRE FORMATION SANDSTONE: Clear to translucent, note grow, years fine to cooked grained, rose	GAS 350 / 30 units
ROP: 5-38 Ave: 13	SANDSTONE: Clear to translucent, pale grey, very fine to coarse grained, rare very coarse, poorly sorted, predominantly fine to medium, subangular to commonly subrounded, minor rounded, trace weak siliceous cement, trace to	99/tr/1/tr/tr %
	locally common light grey argillaceous matrix, trace to locally common pyrite, trace to common glauconite, trace dolomite, trace calcite, trace lithic fragments, moderately clean, increasingly clean with depth, poor to fair visual and inferred porosity, no hydrocarbon fluorescence.	CO2: 20-40 ppm

	GEOLOGICAL SUMMARY	
INTERVAL (m/hr)	LITHOLOGY	GAS
1763-1784 ROP: 5-38 Ave: 13	SANDSTONE: Clear to translucent, pale grey, very fine to coarse grained, rare very coarse, poorly sorted, predominantly fine to medium, subangular to commonly subrounded, minor rounded, trace weak siliceous cement, trace to locally common light grey argillaceous matrix, trace to locally common pyrite, trace to common glauconite, trace dolomite, trace calcite, trace lithic fragments, moderately clean, increasingly clean with depth, poor to fair visual and inferred porosity, no hydrocarbon fluorescence. SILTSTONE: Light to medium grey to grey brown, locally common glauconite, soft to firm, trace pyrite, trace carbonaceous specks, firm to hard, blocky to subblocky.	25-350 units 99/tr/1/tr/tr % CO2: 20-40 ppm

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 04/10/02

REPORT NO: 8

DEPTH: 2112 m (TD) **24 hr PROGRESS 0000-2400:** 328 m **DAYS FROM SPUD:** 9.63

(As at 2400 hours EST, 03/10/02)

DEPTH: 2112 m (TD) **24 hr PROGRESS 0600-0600**: 309 m

(As at 0600 hours EST, 04/10/02)

OPERATION: PULLING OUT OF HOLE TO RUN WIRELINE LOGS

(As at 0600 hours EST, 04/10/02)

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") **RIG: OCEAN BOUNTY**

RT – SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

MUD DATA Type: Wt: Vis: FL: PH: KCl Cl: PV/YP: Rmf:

(2400 Hours) KCL/ PHPA/ 1.24 57 5.2 9.5 32400 31500 21 / 23

No. Make **Type** Size (mm) **Hours** Drilled Condition 6 (4RR) DSX195 **BIT DATA PRESENT** HYC 311 16.0 328 CD93 1-1-CT-N-X-I-JD-TD (2400 Hours) **LAST** 5 SEC 311 4.6 21

SURVEYS: MD (m) INC AZIM (T)

2028 2.08 243 2085 2.47 242

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

POLY/ GLYCOL

DRILL AHEAD 311mm (12 1/4") HOLE FROM 1803m TO 2112m. TOTAL DEPTH REACHED AT 23:15 HRS ON 03/10/02. CIRCULATE BOTTOMS UP.

00:00 - 06:00 HOURS 04/10/02:

PULL OUT OF HOLE ON WIPER TRIP TO 1755m (BACKREAM TIGHT HOLE 1895m-1794m). RUN BACK TO BOTTOM. CIRCULATE HOLE CLEAN. PULL OUT OF HOLE TO RUN WIRELINE LOGS.

ANTICIPATED OPERATIONS:

COMPLETE PULLING OUT OF HOLE. LAYOUT MWD/LWD. RIG UP SCHLUMBERGER & RUN WIRELINE LOGS AS PER PROGRAM.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 04/10/02

REPORT NO: 8

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	01:00	1.00	Continued RIH to 690m (340mm Shoe)
01:00	01:30	0.50	Serviced TDS
01:30	03:00	1.50	Continued RIH to 1745m
03:00	04:00	1.50	Logged hole F /- 1745m to 1784m at 30m/hr. Took SCR at 1784m.
04:00	23:15	18.75	Drilled 311mm (12-1/4") hole from 1784m to 2112m.
23:15	24:00	0.75	Circulated bottoms up at TD.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 04/10/02

REPORT NO: 8

** PRELIMINARY FIELD PICKS

FORMATION TOPS: **	MD RT (m)	Subsea (m)	H/L to Prognosis	H/L to Casino-1
WAARRE FORMATION	1746	1721	23m High	-

	HYDROCARBON SHOW SUMMARY						
INTERVAL	LITHOLOGY	GAS					
1830-1865 ROP: 13-41 Ave: 27	WAARRE FORMATION SANDSTONE: White to very light grey, rare pale brown, clear to translucent quartz grains, occasionally opaque, predominantly fine to medium grained, occasional coarse grains, moderately sorted, angular to occasionally subangular, common weak to moderately strong calcareous cement, common white to light grey argillaceous matrix, trace pyrite, trace glauconite, trace lithic fragments, predominantly loose, minor friable to moderately hard aggregates, poor visual and fair inferred porosity, no hydrocarbon fluorescence.	500 / 20 units 99/tr/1/tr/tr % CO2: 30-50 ppm					
1895-1919 ROP: 13-35 Ave: 20	SANDSTONE: White to light grey brown, clear to translucent, fine to medium grained, moderately well sorted, subangular to subrounded, weak siliceous cement, common to locally abundant white argillaceous matrix, calcareous matrix in part, trace carbonaceous specks, trace glauconite grains, friable aggregates, poor visual porosity, no hydrocarbon fluorescence.	100 / 20 units 99/tr/1/tr/tr % CO2: 20 ppm					
1937-1947 ROP: 4-42 Ave: 35	SANDSTONE: Clear to translucent, white to light green, light grey, fine to predominantly medium, well sorted, subrounded, weak calcareous cement, locally common white argillaceous matrix, common pyrite fragments, trace pyrite coated grains, common red lithic fragments and carbonaceous fragments, trace dolomite, friable to loose, poor visual and fair inferred porosity, no hydrocarbon fluorescence.	200 / 12 units 100/tr/tr %					

	GEOLOGICAL SUMMARY							
INTERVAL (m/hr)	LITHOLOGY	GAS						
1784-1830 ROP: 10-30 Ave: 20	SILTSTONE INTERBEDDED WITH SANDSTONE SILTSTONE: Light brown, light green brown, off white, very finely arenaceous, trace carbonaceous specks, firm to occasionally moderately hard, subblocky. SANDSTONE: Pale brown, off white, fine to medium, occasionally loose coarse grained, moderately poorly sorted, subangular, trace weak siliceous cement, common calcareous cement, common off white argillaceous matrix, trace pyrite, trace lithic fragments, friable to moderately hard aggregates, poor visual porosity, no hydrocarbon fluorescence.	12-50 units 100/tr/tr % CO2: 30-40 ppm						

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 04/10/02

REPORT NO: 8

	CEOLOCICAL SUMMADY						
	GEOLOGICAL SUMMARY						
INTERVAL (m/hr)	LITHOLOGY	GAS					
1830-1865 ROP: 13-41 Ave: 27	SANDSTONE INTERBEDDED WITH SILTSTONE SANDSTONE: White to very light grey, rare pale brown, clear to translucent quartz grains, occasionally opaque, predominantly fine to medium grained, occasional coarse grains, moderately sorted, angular to occasionally subangular, common weak to moderately strong calcareous cement, common white to light grey argillaceous matrix, trace pyrite, trace glauconite, trace lithic fragments, predominantly loose, minor friable to moderately hard aggregates, poor visual and fair inferred porosity, no hydrocarbon fluorescence. SILTSTONE: Medium brown, trace green brown, very finely arenaceous in part, generally argillaceous, dispersive in part, soft to firm, com carbonaceous specks, slightly micro-micaceous, subblocky to amorphous.	30-500 units 99/tr/1/tr/tr % CO2: 30-50 ppm					
1865-1895 ROP: 9-40 Ave: 25	INTERBEDDED SILTSTONE AND SANDSTONE SANDSTONE: Light grey, pale brown, clear to translucent, fine to medium grained, minor coarse grained, moderately well sorted, subangular to subrounded, trace moderate strong calcareous cement, siliceous cement in part, common white argillaceous matrix, friable to moderately hard, trace carbonaceous specks and minor micro-laminations, trace lithic fragments, poor visual porosity, no hydrocarbon fluorescence. SILTSTONE: Medium brown, trace green brown, very finely arenaceous in part, generally argillaceous, dispersive in part, soft to firm, com carbonaceous specks, slightly micro-micaceous, subblocky to amorphous.	15-30 units 100/0/tr %					
1895-1919 ROP: 13-35 Ave: 20	SANDSTONE: White to light grey brown, clear to translucent, fine to medium grained, moderately well sorted, subangular to subrounded, weak siliceous cement, common to locally abundant white argillaceous matrix, calcareous matrix in part, trace carbonaceous specks, trace glauconite grains, friable aggregates, poor visual porosity, no hydrocarbon fluorescence.	10 - 100 units 99/tr/1/tr/tr % CO2: 20 ppm					
1919-1957 ROP: 4-42 Ave: 35	SANDSTONE INTERBEDDED WITH CLAYSTONE AND SILTSTONE SANDSTONE: Clear to translucent, white to light green, light grey, fine to predominantly medium, coarse in part, well sorted, subrounded, weak calcareous cement, locally common white argillaceous matrix, common pyrite fragments, trace pyrite coated grains, common red lithic fragments and carbonaceous fragments, trace dolomite, friable to loose, poor visual and fair inferred porosity, no hydrocarbon fluorescence. CLAYSTONE: Light grey, light green, grades to siltstone in part, glauconitic in part, trace carbonaceous specks, trace white lithic fragments, trace pyrite, firm to moderately hard, locally very hard, subblocky. SILTSTONE: Medium to dark grey, argillaceous, common carbonaceous fragments, hard, subblocky.	10-200 units 100/tr/tr %					

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 04/10/02

REPORT NO: 8

	GEOLOGICAL SUMMARY						
INTERVAL (m/hr)	LITHOLOGY	GAS					
1957-2007 ROP: 15-50 Ave: 25	CLAYSTONE WITH MINOR INTERBEDDED SANDSTONE CLAYSTONE: Light grey, light grey brown, light grey green, light to medium grey, argillaceous grading to SILTSTONE, minor arenaceous grading to very fine SANDSTONE, trace carbonaceous micro-specks, trace white lithic fragments, moderately hard to hard, subblocky to blocky. SANDSTONE: Clear to translucent, white, fine, well sorted, subrounded, weak calcareous cement, minor white argillaceous matrix, common pyrite fragments, trace pyrite coated grains, common red lithic fragments and carbonaceous fragments, friable to generally loose, poor visual and fair inferred porosity, no hydrocarbon fluorescence.	8 – 20 units 100/0/tr %					
2007-2056 ROP: 15-35 Ave: 25	SANDSTONE INTERBEDDED WITH SILTSTONE SANDSTONE: White to off white, light grey, clear to translucent, medium to coarse, moderate sorting, subrounded, weak calcareous cement, common to locally abundant white matrix, trace to common carbonaceous fragments and red and yellow lithic fragments, friable to loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence. SILTSTONE: Light to medium grey, light grey brown, occasional dark grey, argillaceous locally grading to claystone, com carbonaceous specks and microlaminations, soft to firm, subblocky.	8-20 units 100% C1					
2056-2112 ROP: 14-30 Ave: 20	INTERBEDDED SANDSTONE AND SILTSTONE SANDSTONE: White to off white, light grey, light green, clear to translucent, minor red to orange and yellow grains, trace to common Fe staining, medium to coarse, occasionally very coarse quartz fragments, fine in part, moderate sorting, subrounded, weak calcareous cement, common to locally abundant white matrix, common glauconite grains, trace to common carbonaceous fragments, friable to loose, poor visual porosity, fair inferred porosity, no hydrocarbon fluorescence SILTSTONE: Light grey, light grey green to light green, light grey brown to light brown, occasionally medium to dark grey, minor purple, argillaceous grading to claystone in part, trace carbonaceous specks and white lithic fragments, siliceous in part, rare micro-micaceous, firm to moderately hard, locally hard, subblocky to blocky.	7-15 units 100% C1					

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 05/10/02

REPORT NO: 9

DEPTH: 2112 m (TD) **24 hr PROGRESS 0000-2400:** 0 m **DAYS FROM SPUD:** 10.63

(As at 2400 hours EST, 04/10/02)

DEPTH: 2112 m (TD) **24 hr PROGRESS 0600-0600**: 0 m

(As at 0600 hours EST, 05/10/02)

OPERATION: RUNNING WIRELINE MDT PRESSURE SURVEY.

(As at 0600 hours EST, 05/10/02)

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm- 13 3/8") **RIG: OCEAN BOUNTY**

RT – SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

MUD DATA Type: Wt: Vis: FL: PH: KCl Cl: PV/YP: Rmf:

(2400 Hours) KCL/ PHPA/ 1.24 57 5.2 9.5 32400 31500 21 / 23 POLY/ GLYCOL

No. Make **Type** Size (mm) **Hours** Drilled Condition 6 (4RR) DSX195 **BIT DATA PRESENT** HYC 311 16.0 328 CD93 1-1-CT-N-X-I-JD-TD (2400 Hours) **LAST** 5 SEC 311 4.6 21

SURVEYS: MD (m) INC AZIM (T) 2028 2.08 243 2085 2.47 242

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

PULL OUT OF HOLE ON WIPER TRIP TO 1755m (BACKREAM TIGHT HOLE 1895m-1794m). RUN BACK TO BOTTOM. CIRCULATE HOLE CLEAN. PULL OUT OF HOLE TO RUN WIRELINE LOGS. LAYOUT MWD/LWD. RIG UP SCHLUMBERGER & RUN WIRELINE LOGS AS PER PROGRAM. RUN 1: PEX-DSI. RIG UP RUN 2: MDT PRESSURE SURVEY.

00:00 - 06:00 HOURS 05/10/02:

CONTINUE TO RECORD MDT PRESSURE SURVEY.

ANTICIPATED OPERATIONS:

COMPLETE MDT PRESSURE SURVEY. RIG UP RUN 3: CST-GR, CUT 30 SIDEWALL CORES. RIG DOWN SCHLUMBERGER.

A.C.N. 007 550 923

WELL PROGRESS REPORT

CASINO 2

DATE: 05/10/02

REPORT NO: 9

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	01:00	1.00	Flow checked. Made wiper trip to 1755m. Worked tight hole from 1957m 20.5 tonne
			(45kip) overpull. Back reamed out of hole from 1895m to 1794m.
01:00	02:30	1.50	Worked tight hole from 1957m 20.5 tonne (45kip) overpull. Back reamed out of hole
			from 1895m to 1794m.
02:30	03:00	0.50	Run back to bottom, no problems, no fill.
03:00	04:30	1.50	Circulated bottoms up until clean. Boosted riser.
04:30	10:00	5.50	Flow checked well and POOH to log, hole good. Laid down LWD tools and broke out
			bit.
10:00	11:30	1.50	Held JSA and rigged up to run wireline logs.
11:30	18:00	6.50	Ran log #1 (PEX-HALS-DSI-HNGS). L/O tools.
18:00	19:00	1.00	Prepared to run log #2. Power problem during surface checks.
19:00	19:45	0.75	Resolved power problem, completed surface checks.
19:45	24:00	4.25	Ran log #2 (MDT).

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 05/10/02

REPORT NO: 9

FORMATION	TOPS: **	MD RT (m)	Subsea (m)	H/L to Prognosis	H/L to Casino-1
					<u> </u>
		011 011 011 011 01			
	HYDROCARB	ON SHOW SUMM	IARY		
INTERVAL	LITHOLOGY				GAS
	GEOLOGICAL	SUMMARY		•	
INTERVAL (m/hr)	LITHOLOGY				GAS

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 06/10/02

REPORT NO: 10

DEPTH: 2112 m (TD) **24 hr PROGRESS 0000-2400:** 0 m **DAYS FROM SPUD:** 11.63

(As at 2400 hours EST, 05/10/02)

DEPTH: 2112 m (TD) **24 hr PROGRESS 0600-0600:** 0 m

(As at 0600 hours EST, 06/10/02)

OPERATION: LAYING OUT EXCESS DRILLPIPE WHILE WAITING ON CEMENT PLUG #2:

(As at 0600 hours EST, 06/10/02) 1825-1550m.

AFE COST CUMULATIVE COST

CASING DEPTH: 690.6m (340mm-13 3/8") RIG: OCEAN BOUNTY

RT – SEAFLOOR: 92.8m

PROGRAMMED TD: 2274m ROTARY TABLE: 25m LAT WATER DEPTH: 67.8m

MUD DATA Type: Wt: Vis: FL: PH: KCl Cl: PV/YP: Rmf:

(2400 Hours) KCL/ PHPA/ 1.24 57 5.2 9.5 32400 31500 21/23

No. Make Type Size (mm) Hours Drilled Condition
BIT DATA PRESENT -

(2400 Hours) LAST 6 (4RR) HYC DSX195 311 16.0 328 0-4-BT-A-X-I-JD-TD

 SURVEYS:
 MD (m)
 INC
 AZIM (T)

 2085
 2.47
 242

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

POLY/ GLYCOL

COMPLETE WIRELINE LOGGING RUN #2: MDT-GR PRESSURE SURVEY (TOTAL 32 PRE-TESTS, 13 GOOD TESTS, 3 LOST SEALS, 14 TIGHT/CURTAILED, 2 UNSTABLE). RIG UP RUN #3: CST-GR & CUT 30 SIDEWALL CORES AS PER PROGRAM. PULL OUT OF HOLE AND RIG DOWN SCHLUMBERGER. UNLOAD SIDEWALL CORES (RECOVERED 26 OF 30 CORES). RIG DOWN ANADRILL MANIFOLD FROM STANDPIPE. MAKE UP 89mm (3.5") CEMENT STINGER, RUN IN HOLE TO BOTTOM ON DRILLPIPE. BREAK CIRCULATION AND SPOT 50 BBLS HI-VISCOSITY PILL ON BOTTOM.

00:00 - 06:00 HOURS 06/10/02:

PULL OUT OF HOLE TO 2000m. SET CEMENT PLUG #1: 2000m-1825m. PULL OUT OF HOLE SLOWLY TO 1825m. SET CEMENT PLUG #2: 1825m-1550m. PULL OUT OF HOLE SLOWLY TO 1520m. REVERSE CIRCULATE STRING DUMPING CONTAMINATED MUD. LAYOUT EXCESS DRILLPIPE WHILE WAITING ON CEMENT.

ANTICIPATED OPERATIONS:

CONTINUE TO LAYOUT EXCESS PIPE AND BOTTOM HOLE ASSEMBLY. CONTINUE WITH P&A PROGRAM, CEMENT PLUG #3: 720m-640m ACROSS CASING SHOE, SET BRIDGE PLUG @177m, SET CEMENT PLUG #4: 177m-127m.

A.C.N. 007 550 923

WELL PROGRESS REPORT CASINO 2

DATE: 06/10/02

REPORT NO: 10

SUMMARY OF OPERATIONS (0000 hours - 2400 hours):

FROM	TO	HRS	ACTIVITY DESCRIPTION
00:00	08:30	8.50	Continued running log #2 (MDT).
08:30	14:00	5.50	Ran log #3 (CST), shot 30, rec 26, empty 4, lost 0. Rigged down wireline.
14:00	17:00	3.00	Rigged down coflexip test lines and Anadrill 'T' manifold from standpipe.
17:00	23:00	6.00	Picked up 89mm (3.5") tubing cement stinger and RIH on DP.
23:00	24:00	1.00	Break circulation and spot 50bbl Hivis pill on bottom.

Q-	+	
<u>> 9</u>	ntag	

SECTION 6:- DAILY DRILLING REPORTS

SANTOS

Draft Report

DAILY DRILLING REPORT

DATE: Sep 23, 2002

FROM: R.King / G.Othen TO: Ole Moller

CASINO 2 CASINO 2

Well Data COUNTRY Australia FIELD Casino DRILL CO. Diamond Offshore RIG Ocean Bounty	M.DEPTH (m BRT) 0.0 TVD (m BRT) PROGRESS (m) DAYS FROM SPUD DAYS +/- CURVE	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT) FIT (sg) LOT (sg) 0.6	· ·	12,100,000 P&A \$484,453 \$484,453
RT ABOVE SL (m) 0.0 WATER DEPTH (m) LAT .0 RT TO SEABED (m) .0	CURRENT OP @ 0400 Anchor has PLANNED OP. Run Anch	andling. Replacing parted chain nors / Spud Casino #2 / Run & Ce	· ·	sing.

Summary of period 00:00 to 24:00 hrs

Rig move to Casino #2 Start Running Anchors.

FORMATION TOP(m BRT)

@23:22hrs / Start # 5 @23:30hrs. (Pacific Sentinel disconnected from

ACTIV	'ITY	FOR	PERI	OD 00:0	00 HRS	TO 24	:00 HRS	ON Sep 23, 2002
PHS	CL	RC	OP	FROM	то	HRS	DEPTH	ACTIVITY DESCRIPTION
PS	Р		MOV	12:00	17:30	5.50	0	Rig on tow to Casino #2 @ 12:00hrs. (Average speed 1.5 knots)
PS	Р		MOV	17:30	24:00	6.50		'Anchor handling' Dropped #6 on bottom @17:22hrs. Start #2 @18:00hrs finished @21:06hrs (Re-ran #2 from 810ft) / Start #7 @21:16hrs finished @ 22:14hrs / Start # 3 @22:28hrs finished

tow bridle @ 23:46hrs)

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Sep 24, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
PS PS	P		MOV	00:00 02:45	02:45 06:00	2.75 3.25	0	'Anchor handling' Finished #5 @00:20hrs / Start #4 @00:30hrs / Start #8 @00:37hrs / #8 Chain chaser parted @01:13hrs / Finished #4 @01:29hrs / Start #1 @ 01:44hrs finished #1 @ 02:42hrs. Passed 'J' Hook to P.Sentinel & skidded rig 500 ft Strb, paid out on #8 Anchor winch. P.Sentinel commenced to grapple for #8 anchor @04:20hrs / #8 Anchor on deck @ 04:30hrs. Changing out broken collar. (Commenced to skid rig back over location @04:55hrs)

Survey	(Method : Min Curvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool	Туре :	(mBRT)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic I	Declination: 0.00					(==9)	(***)				

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	483.4		483.4	Drill Water - Rig	МТ	469.0			469.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	SXS	901.0			901.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	SXS	670.0			670.0
Barite - Rig	SXS	2387.0		2387.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	1346.0		1346.0	Fuel Oil - Conqueror	МЗ	460.5	6.3		454.2
Drill Water - Conqueror	MT	640.0		640.0	Pot Water - Conqueror	MT	215.0	5.0		210.0
Cement 'G' - Conqueror	SXS			0.0	Cement HTB - Conquero	SXS				0.0
Bentonite - Conqueror	SXS			0.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	MT			0.0	Fuel Oil - Sentinel	МЗ	459.0	17.0		442.0
Drill Water - Sentinel	MT	620.0	20.0	600.0	Pot Water - Sentinel	MT	225.0	5.0		220.0
Cement 'G' - Sentinel	SXS	1338.0		1338.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	sxs	873.0		873.0	Barite - Sentinel	SXS	364.0			364.0

Brine - Sentinel

Draft Report

DAILY DRILLING REPORT #1

CASINO 2

Pur	mp Da	ata									
			Pump	Data - las	Slow Pump Data						
#		TYPE	LNR(mm)	SPM	EFF (%)	Flow (Ipm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 1	12-P-160	152		97	0	0	30	0		
2	Nat'l 1	12-P-160	152		97	0	0	40	0		
3	Nat'l 1	12-P-160	152		97	0	0	50	0		
			0			0	0	30	0		
			0			0	0	40	0		
			0			0	0	50	0		

Casing	Casing													
DIAM.	CSG OD	SHOE MD	SHOE TVD	LOT	FIT	COMMENT								
	(mm)	(plan/Actual)	(plan/Actual)	(pl/Act)	(pl/Act)									

Personnel : on Site =76

 2 Santos
 34 DOGC
 22 TMT (marine)
 2 DOGC (other)

 1 Anadrill
 2 BHI
 1 DrilQuip
 1 Halliburton

 1 IDFS
 3 TMT (ROV)
 4 Expro
 3 Surveyor

Safety, Inspection	ons and Drills	Summary
1 days since last	Fire and Abandon Ship Drill	
1819 days since last	Lost Workday Case	
52 days since last	Medical Treatment Case	
18 days since last	First Aid Case	
5 days since last	Weekly Safety Meeting	
9 days since last	Trip/Pit Drill	
0 days since last	BOP Test	Tested BOP on stump

Anchors	Anc 1 : Anc 6 :	0 0		Anc 2 : 0 Anc 7 : 0	Anc 3 Anc 8	Anc 4: 0 Anc 9: 0	Anc 5 : 0 Anc 10: 0		RIS. TENS. (MT): RISER ANGLE (deg):	0
Workboats			Rig Time)	Depart fr (Date)(1	U	atedArrival (Port) ate)(Time)	Weather VISIBILITY(nm):	14	STACK ANGLE(deg): V.D.L. (MT): AVE HEAVE (m):	1,915.C 0.0
Pacific Conquer Pacific Sentinel		9.02 9.02	22:30 20:00				WIND SP. (kts): WIND DIR (deg): PRES.(mbars): AIR TEMP (C):	30.0 100 1011 15.0	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):	0.0 1.0 1.5 0.5
COMMENTS:	Pax on/o	off F	lt #1 8/8	i					MAX ROLL (deg):	1.2

SANTOS

Draft Report

DAILY DRILLING REPORT

DATE: Sep 24, 2002

FROM: R.King / G.Othen TO: Ole Moller

CASINO 2 CASINO 2

Well Data		M.DEPTH (m BRT)	140.0	CUR.HOLE SIZE (mm)	914	AFE COST \$	12,100,000
COUNTRY	Australia			, ,	762	AFE BASIS :	P&A
FIELD	Casino	PROGRESS (m)	47.2	SHOE TVD (m BRT)	137	DAILY COST :	\$703,362
DRILL CO.	Diamond Offshore	DAYS FROM SPUD	0.63	FIT (sg)	0.00	CUM COST:	\$1,187,815
RIG	Ocean Bounty	DAYS +/- CURVE		LOT (sg)	0.00		
RT ABOVE SL (m) 25.0 WATER DEPTH (m) LAT 67.8 RT TO SEABED (m) 92.8		CURRENT OP @ 0400 PLANNED OP.	Ü	7-1/2" Hole. (06:00hrs Dep out 20' shoe. Drill 17-1/2"H	,		

Summary of period 00:00 to 24:00 hrs

Completed Anchor handling / Drilled 36" Hole / Ran and Cemented 30" Casing.

FORMATION TOP(m BRT)

<u>ACTIV</u>	CTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Sep 24, 2002												
PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION					
PS	Р		ANC	00:00	02:45	2.75	0	'Anchor handling' Finished #5 @00:20hrs / Start #4 @00:30hrs / Start #8 @00:37hrs / #8 Chain chaser parted @01:13hrs / Finished #4 @01:29hrs / Start #1 @ 01:44hrs finished #1 @ 02:42hrs.					
PS	U		ANC	02:45	08:00	5.25	0	Passed 'J' Hook to P.Sentinel & skidded rig 500 ft Strb, paid out on # 8 Anchor winch. P.Sentinel commenced to grapple for #8 anchor @04:20hrs / #8 Anchor on deck @ 04:30hrs. Changing out broken collar. (Commenced to skid rig back over location @04:55hrs)					
PS	Р		ANC	08:00	08:30	0.50	0	'Anchor handling' Start #8 @08:05 finished @09:10hrs (Completed cross tensioning anchors @09:00hrs) 'Final rig heading 242deg' Lat 38deg-47min-43.887sec / Long 142deg-44min-50.746sec (2.9m @012.3 deg True from intended location). ROV carried out Sea bed survey.					
SH	Р		TI	08:30	09:30	1.00	93	RIH with 660mm x 914mm (26"x36") BHA. Took survey 3m above sea bed 1/2deg. Tagged sea bed @ 92.76m					
SH	Р		D	09:30	13:00	3.50	140	Spudded Casino #2 Drilled F /- 92.76m to 140m. (TD Survey 1deg)					
SH	Р		CIR	13:00	13:30	0.50	140	Spotted 44.5M3 (280bbls) of Hi-vis Gel in hole.					
SH	Р		ТО	13:30	14:30	1.00	140	POOH F /- 140m (Hole good)					
SC	Р		RC	14:30	18:00	3.50	140	Held JSA. Rigged up and ran 762mm (30") Casing. Installed PGB and cemant stinger, made up running tool and landed casing. (No hole problems) Rigged up cement hose.					
sc	Р		CIR	18:00	19:30	1.50	140	Circulated 1.5 times casing volume. ROV to check bulleye reading 1deg forward.					
SC	Р		СМС	19:30	20:30	1.00	140	Pumped .8M3 (5bbls) of sea water with dye, tested cement line to 6895kpa (1000psi) Pumped .8M3 (5bbls) of sea water with dye. Mixed & pumped 34.4M3 (216.8bbls) of 'G' grade cement (1040sx) @ 1.89sg (15.8ppg) Displaced with 2.2M3 (14bbls) of sea water. Checked floats OK. ROV observed dye in returns at sea bed, continual returns through out cement job.					
SC	Р		WOC	20:30	22:00	1.50	140	Waited on cement samples to firm up. ROV Verified bulleye 3/4deg forward. (PGB Heading 240deg)					
sc	Р		то	22:00	22:30	0.50	140	Released running tool & POOH, laid out tool.					
sc	Р		ТО	22:30	24:00	1.50	140	Broke out 914mm (36") Hole opener and 660mm (26") Bit. Made up 445mm (17-1/2") Drilling assembly.					

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Sep 25, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
SC	Р		TI	00:00	02:00	2.00	140	RIH with 445mm (17-1/2") Drilling assembly, ROV assist stab in to
								well head. Continued RIH tagged cement @ 134m
SC	Р		DC	02:00	02:30	0.50	140	Drilled shoe track & rat hole F /- 134m to 140m (Firm cement)
IH1	Р		D	02:30	06:00	3.50	232	Drilled 445mm (17-1/2") Hole F /- 140m to 232m (Pumping Guar-
								Gum & PHG sweeps as required) "Maximum Survey 1 deg"

WBM Data COST	TODAY: \$14,334	CUM. WB	MUD COST: \$14,334	CUM. WBM+OBM COST: \$14,334						
FROM: F	VISCOCITY (sec/ltr): PV (Pa.s): YP (Pa.s): GEL10s/10m/100m (Pa.s): 28 Fann 3/6/100: 55	0 32 28 0	API FLUID LOSS (cm3/30min): FILTER CAKE (mm): HTHPFL (cm3/30min): HTHP CAKE (mm):	0	CI: K+C*1000: HARD/Ca: MBT (ppb): PM: PF:	1,400 80 28.0	SOLIDS (%vol): H2O (%vol): OIL (%vol): SAND: PH: PHPA (ppb):	3.4 96.5 10.0		

Bit Data for Bit #	1 IADC#	Wear	I 01 1 1	D NO	L A	B E	G	O2 NO	R TD		
SIZE ("):	26.00		•	NOZZLES	Drilled over th	ne last 24	4 hrs	. Calc	ulated o	over the	bit run
MANUFACTURER :	SM	AVE WOB (MT):	4	3 x 18	METERAGE (m	o) .	47			AGE (m)	
TYPE:	DSJC	AVE RPM:	65	3 x 22	ON BOTTOM H	,		l		τ. HRS :	
SERIAL #:	KP-2374	FLOW (lpm):	3,974	x 0	IADC DRILL. HI			CUM.I	-	_	3.5
DEPTH IN (mRT):	93	PUMP PRESS.(Kpa):	8,150	X 0	TOTAL REVS :	: 6	8.970	сим.т	OT. RE	EVS:	8,970
DEPTH OUT (mRT):	140	HSI (kW/cm2):	0.000	x 0	ROP (m/hr):		,	ROP (r			20.5

BHA # 1 Length (m):	83.6				D.C. (1) ANN. VELOCITY (mpm):	6					
WT BLW JAR (MT): 0	STRING WT (MT):	23	TRQE MAX (Nm):	3,390	D.C. (2) ANN VELOCITY (mpm):	7					
BHA WT (MT): 0	PICK UP WT (MT):	23	TRQE ON (Nm):	1,356	H.W.D.P. ANN VELOCITY (mpm):	6					
	SLK OFF WT (MT):	23	TRQE OFF (Nm):	1,356	D.P. ANN VELOCITY (mpm):	6					
BHA DESCRIPTION: 26"Bit,36"H	BHA DESCRIPTION: 26"Bit,36"Hole Opener,Bit sub,Anderdrift tool,3x9-1/2 DC,X/Over,5x8-1/4DC,X/Over,										
TOOL DESCRIPTION	LENGTH	OD I	D SERIAL#	HRS	COMMENT						
Anderdrift Survey Tool			ABN-905	4.0							

Survey	(Method : Min Curvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool	Туре :	(mBRT)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic	Declination: 0.00					ν σ,	. ,				

Bul	k
Sto	cks
On	Riq

STOCK TYPE & UNITS		START	USED	REC'D STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	479.2	14.3	464.9	Drill Water - Rig	МТ	464.0	711.0	1000.0	753.0
Pot Water - Rig	МТ	98.0		98.0	Cement 'G' - Rig	SXS	901.0	1042.0	1338.0	1197.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	sxs	670.0	690.0	873.0	853.0
Barite - Rig	SXS	2387.0		2387.0	Brine - Rig	МТ				0.0
Helifuel - Rig	ltr	1346.0	370.0	976.0	Fuel Oil - Conqueror	МЗ	454.2	8.0		446.2
Drill Water - Conqueror	МТ	640.0	620.0	20.0	Pot Water - Conqueror	МТ	210.0	5.0		205.0
Cement 'G' - Conqueror	SXS			0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	SXS			0.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	МТ			0.0	Fuel Oil - Sentinel	МЗ	442.0	10.4		431.6
Drill Water - Sentinel	МТ	600.0	380.0	220.0	Pot Water - Sentinel	МТ	220.0	5.0		215.0
Cement 'G' - Sentinel	SXS	1338.0	1338.0	0.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	SXS	873.0	873.0	0.0	Barite - Sentinel	SXS	364.0			364.0
Brine - Sentinel	МТ			0.0						

Pump Data

	-	Pump	Data - las		Slow Pump Data					
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (Ipm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152	86	97	1323	8150	30	0		
2	Nat'l 12-P-160	152	86	97	1323	8150	40	0		
3	Nat'l 12-P-160	152	86	97	1323	8150	50	0		
		0			0	0	30	0		
		0			0	0	40	0		
	0				0	0	50	0		

Draft Report

			Dian Nep	JOIL			CASINO			
Casing										
DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT			
30.0	762	137.1 137.1	137.1 137.	1		dye,presure (1000psi) Pu water with d 34.4M3 (216 (1040sx) @	3 (5bbls) of Sea water with tested lines to 6895kpa imped .8M3 (5bbls) of sea ye. Mixed and pumped is.8M3) of 'G' grade cement 1.89sg (15.8ppg) Displaced 14bbls) of sea water.			
	Т	YPE	LENGTH (m)	CSG ID (mm	WT (kg/m)	GRADE	THREAD			
	diate Joint diate Joint		11.92 11.56 11.53 11.15	686 686 711 711	459.8 459.8 459.8 459.8		HD-90 Box HD-90 Box HD-90 Box HD-90 Box			
Persor	nnel : on S	Site =77								
_	antos nadrill DFS	34 DC 2 BH 6 TM		1 [MT (marine) OrilQuip Veatherford	1	DOGC (other) Halliburton Surveyor			
Safety,	, Inspectio	ons and Drills	Sumr	mary						
2 da	ys since last	Fire and Abandon Ship	Drill							
1820 da	ys since last	Lost Workday Case								
53 da	ys since last	Medical Treatment Cas	е							
19 da	ys since last	First Aid Case								
6 da	ys since last	Weekly Safety Meeting								
10 da	ys since last	Trip/Pit Drill								
1 da	ys since last	BOP Test	Tested	BOP on stum	p					
Shakeı	rs, Volume	es and Losses Data	 a			ENGINEE	R Carl Jensen / Jasdeep Sir			
SHAKER		VOLUME AVAIL	ABLE (m3) =	393 LO	SSES (m3) =	115 COMME	NTS			
SHAKER SHAKER SHAKER	₹ 3 ₹ 4	ACTIVE 34	9.7 MIXING 3.7 SLUG	0.0 SU	WNHOLE 1 RF.+EQUIP MPED	0.00 Displace	ted Gel & Guar Gum sweeps. Id hole to Unflocculated Gel ning casing.			
Ancho	rs Anc 1	: 168 Anc 2:	172 Anc 3 : 12	27 Anc	4 : 143 And	5 : 132	RIS. TENS. (MT) :			
	Anc 6				9 : 0 And	10:0	RISER ANGLE (deg):			
Workb	oats		part from Rig Estate)(Time)	timatedArrival ((Date)(Time)	VISIBILITY(nm) : 14	STACK ANGLE(deg): V.D.L. (MT): 2,247.0 4 AVE HEAVE (m): 0.0			
Pacific C Pacific S	onqueror entinel 1	9.09.02 20:00 24.0	9.02 22:00 25	5.09.02 7:0	WIND SP. (WIND DIR (PRES.(mba	(deg): 300	MAX HEAVE (m) : 0. AVE PITCH (deg) : 0. MAX PITCH (deg) : 0.			

AIR TEMP (C):

Pax on/off Flt #1 7/6

COMMENTS:

0.4

0.6

AVE ROLL (deg):

MAX ROLL (deg):

15.0

SANTOS

Draft Report

DAILY DRILLING REPORT #

CASINO 2

DATE: Sep 25, 2002 FROM: R.King / G.Othen TO: Ole Moller.

CASINO 2

Well Data COUNTRY FIELD DRILL CO. RIG	Australia Casino Diamond Offshore Ocean Bounty	M.DEPTH (m BRT) TVD (m BRT) PROGRESS (m) DAYS FROM SPUD DAYS +/- CURVE	700.0 700.0 560.0 1.63	CASING OD (mm)	445 762 137 0.00 0.00	AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	13,024,000 P&A \$327,211 \$1,515,026
RT ABOVE SL (m) WATER DEPTH (m RT TO SEABED (m)	,	CURRENT OP @ 0400 PLANNED OP.		Niper trip, POOH & run 13-3	3/8" Casi	ng	

Summary of period 00:00 to 24:00 hrs

RIH with 17-1/2" Drilling assembly, drill to 700m POOH to shoe & Wait on weather.

FORMATION TOP(m BRT)

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Sep 25, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
SC	Р		TI	00:00	02:00	2.00	140	RIH with 445mm (17-1/2") Drilling assembly, ROV assist stab in to well head. Continued RIH tagged cement @ 134m
sc	Р		DC	02:00	02:30	0.50	140	Drilled shoe track & rat hole F /- 134m to 140m (Firm cement)
IH1	Р		D	02:30	20:00	17.50	700	Drilled 445mm (17-1/2") Hole F /- 140m to 700m (Pumping Guar-Gum & PHG sweeps as required) "Maximum Survey 1 deg"
IH1	Р		CIR	20:00	21:00	1.00	700	Swept 16M3 (100bbls) of Hi-vis PHG, and displaced hole to Unflocculated Gel.
IH1	Р		ТО	21:00	23:00	2.00	700	POOH F /- 700m to 137m (Tight sections from 600m - 590m / 508m - 488m / 458m - 450m) 40 Kips O-pull, Wiped sections clean.
IH1	U		wow	23:00	24:00	1.00	700	W.O.W. Weather deteriorated, making conditions unsuitable to run casing. Conditions @ Midnight Heave 4.5m / Pitch 2.8deg / Roll 2.5deg / Wind 30-60knots.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Sep 26, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH1	C		wow	00:00	06:00	6.00	l	W.O.W. Conditions @06:00hrs - Heave 5.4m / Pitch 2.5deg / Roll 2deg / Wind 30-40.

WBM Data	COST T	ODAY: \$13,346	CUM. WB MUD COST: \$27,680			CUM. WBM+OBM COST: \$27,680						
Type: FROM: TIME: WEIGHT (sg): TEMP (C):	Pit 22:00	VISCOCITY (sec/ltr): PV (Pa.s): YP (Pa.s): GEL10s/10m/100m (Pa.s): 19 Fann 3/6/100: 43	100 0 61 22 0 74 128	LITUD CAKE	0	CI: K+C*1000: HARD/Ca: MBT (ppb): PM: PF:	2,900 80 24.0	SOLIDS (%vol): H2O (%vol): OIL (%vol): SAND: PH: PHPA (ppb):	2.5 97.4 10.5			

Bit Data for Bit #	Bit Data for Bit # 2 IADC # 1 1 5					01	D	L	В	G	02	R
SIZE ("):	17.50			NOZZLES	Drilled o	over t	he last	24 hrs	, Calc	ulated o	over the	bit run
MANUFACTURER :	SM	AVE WOB (MT):	11	1 χ 18	METERA	GE (r	m) :	560	CUM.N	/FTFR	AGE (m)	: 560
TYPE :	MGSSHC	AVE RPM:	140	3 x 20	ON BOTT	,	,	12.6	l		т. HRS :	
SERIAL #:	MM0005	FLOW (lpm):	4,016	x 0	IADC DR	_	_	17.5		-	_	17.5
DEPTH IN (mRT):	140	PUMP PRESS.(Kpa):	16,665	X 0	TOTAL R	REVS	:	105,840	CUM.	ΓΟΤ. RI	EVS:	105,840
DEPTH OUT (mRT):	700	HSI (kW/cm2):	0.199	x 0	ROP (m/h	hr) :		44.4	ROP (m/hr) :		44.4

Draft Report

CASINO 2

BHA # 2 Length	ո (m): 261.5				D.C. (1) ANN. VELOCITY (mpm):	35	
WT BLW JAR (MT):	0	STRING WT (MT):	47	TRQE MAX (Nm):	8,135	D.C. (2) ANN VELOCITY (mpm):	38	ĺ
BHA WT (MT) :	0	PICK UP WT (MT):	48	TRQE ON (Nm):	2,034	H.W.D.P. ANN VELOCITY (mpm):	29	ĺ
, ,		SLK OFF WT (MT):	45	TRQE OFF (Nm):	1,356	D.P. ANN VELOCITY (mpm):	29	ĺ

 $BHA\ DESCRIPTION:\ Bit, NBStab, Anderdrift, Stab, 1x9-1/2"DC, Stab, 2x9-1/2"DC, X/O, 6x8"DC, Jars, 5x8"DC, X/O, 12xHWDP, Anderdrift, Stab, 1x9-1/2"DC, Stab, 2x9-1/2"DC, 2x9$

TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
Anderdrift Survey Tool				ABN-905	21.5	
Jars				DAH-3434	17.5	

Survey (Method : Min Curvatur	е) мо	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type : Anderd	Irift (mBRT)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic Declination: 0	473.0		0.00		(dog)	(111)	Join,			Anderdrift
	525.0		0.00							Anderdrift
	616.0		0.00							Anderdrift
	700.0		0.00							Anderdrift

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	464.9	13.2	451.7	Drill Water - Rig	МТ	753.0	92.0		661.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	sxs	1197.0			1197.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	SXS	853.0			853.0
Barite - Rig	sxs	2387.0		2387.0	Brine - Rig	МТ				0.0
Helifuel - Rig	ltr	976.0		976.0	Fuel Oil - Conqueror	МЗ	446.2			446.2
Drill Water - Conqueror	MT	20.0		20.0	Pot Water - Conqueror	MT	205.0			205.0
Cement 'G' - Conqueror	sxs			0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	sxs			0.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	MT			0.0	Fuel Oil - Sentinel	МЗ	431.6	8.8		422.8
Drill Water - Sentinel	MT	220.0		220.0	Pot Water - Sentinel	MT	215.0	5.0		210.0
Cement 'G' - Sentinel	sxs	0.0		0.0	Cement HTB - Sentinel	SXS				0.0
Bentonite - Sentinel	sxs	0.0		0.0	Barite - Sentinel	SXS	364.0			364.0
Brine - Sentinel	МТ			0.0						

Pump Data

		Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152	86	97	1391	16665	30	0		
2	Nat'l 12-P-160	152	86	97	1391	16665	40	0		
3	Nat'l 12-P-160	152	86	97	1391	16665	50	0		
		0			0	0	30	0		
		0			0	0	40	0		
		0			0	0	50	0		

Casing

DIA	M. CSG OD (mm)	SHOE MD (plan/Actual)																																						SHOE (plan/Ac	–	LOT (pl/Act)	FIT (pl/Act)	COMMENT
30.	762	137.1	137.1	137.1	137.1			Pumped .8M3 (5bbls) of Sea water with dye,presure tested lines to 6895kpa (1000psi) Pumped .8M3 (5bbls) of sea water with dye. Mixed and pumped 34.4M3 (216.8M3) of 'G' grade cement (1040sx) @ 1.89sg (15.8ppg) Displaced with 2.2M3 (14bbls) of sea water.																																				

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	11.92	686	459.8		HD-90 Box
Intermediate Joint	11.56	686	459.8		HD-90 Box
Intermediate Joint	11.53	711	459.8		HD-90 Box
Shoe Joint	11.15	711	459.8		HD-90 Box

Personnel: on Site =76

2 Santos	34 DOGC	22 TMT (marine)	1 DOGC (other)
1 Anadrill	4 BHI	1 DrilQuip	1 Halliburton
2 IDFS	6 TMT (ROV)	2 Weatherford	

COMMENTS :

Pax on/off Flt #1 2/3 (Pacific to stay in port Wait on weather conditions)

MAX ROLL (deg):

2.5

										JASINO
Safety, Inspect	ions a	nd Drills		Su	ımmary					
3 days since las	t Fire a	nd Abandon S	Ship Drill							
1821 days since las	t Lost V	/orkday Case								
54 days since las	t Medic	al Treatment	Case							
20 days since las	t First A	id Case								
0 days since las	t Week	y Safety Mee	ting	Hel	d Today					
11 days since las	t Trip/P	it Drill								
2 days since las	t BOP 1	est		Tes	ted BOP on	stump				
Shakers, Volun	nes an	d Losses I	Data					ENGINEE	R Carl Jensen / Jaso	deep Sing
SHAKER 1 SHAKER 2		VOLUME A	/AILABLE	: (m3) =	226	LOSSES	375 (m3) =	СОММЕ	NTS	
SHAKER 3 SHAKER 4		ACTIVE HOLE	127.2 98.4	MIXING SLUG	0.0	DOWNH SURF.+I		1	ted Gel & Guar Gum s ed hole to Unflocculate	
SHAKER 5		RESERVE	0.0	HEAVY	0.0	DUMPE			ning casing.	eu Gei
Anchors Anc	1: 14	1 Anc	2: 175	Anc 3	: 125	Anc 4: 1	13 Anc 5 : 1	20	RIS. TENS. (MT) :	0
Anc	6: 12	?7 Anc	7:98	Anc 8	: 93	Anc 9:0	Anc 10: 0		RISER ANGLE (deg):	
Workboats Arrived @ Rig (Date)(Time) Depart from F (Date)(Time)		J	EstimatedAr (Date)(T	, ,	Weather VISIBILITY(nm):	12	` '	2,118.C 4.C		
Pacific Conqueror Pacific Sentinel	19.09.02	20:00	24.09.02	22:00	25.09.02	7:00	WIND SP. (kts): WIND DIR (deg): PRES.(mbars):	55.0 280 1015	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg):	4.5 2.5 3.0 2.5
							AIR TEMP (C):	14.0	AVE ROLL (deg):	2

SANTOS

Draft Report

DAILY DRILLING REPORT #

CASINO 2

CASINO 2

DATE: Sep 26, 2002

FROM: R.King / G.Othen TO: Ole Moller.

Well Data COUNTRY FIELD DRILL CO.	Australia Casino Diamond Offshore	M.DEPTH (m BRT) TVD (m BRT) PROGRESS (m) DAYS FROM SPUD	700.0 560.0	SHOE TVD (m BRT)	445 340 691	AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	12,100,000 P&A \$532,824
RIG	Ocean Bounty		2.63	FIT (sg) LOT (sg)	0.00	COWI COST.	\$2,047,850
RT ABOVE SL (m) WATER DEPTH (m RT TO SEABED (m)	,	CURRENT OP @ 0400 PLANNED OP.	-	BOP. / Make up 12-1/4" Drilling a	assembly	/, RIH & Drill 12-1/4	1" Hole.

Summary of period 00:00 to 24:00 hrs

Waited on weather for 6-1/2hrs. Wiper trip, Ran 13-3/8"Casing & Cemented.

FORMATION	TOP(m BRT)

							:00 HRS	· · ·
PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH1	U		wow	00:00	06:30	6.50	700	W.O.W. Conditions @06:00hrs - Heave 5.4m / Pitch 2.5deg / Roll 2deg / Wind 30-35 / Swell 4.8m
IH1	Р		WT	06:30	08:00	1.50	700	RIH F /- 137m to 684m (Tagged fill @ 684m)
IH1	Р		RW	08:00	08:30	0.50	700	Washed and reamed F /- 684m to 700m
IH1	Р		CIR	08:30	09:00	0.50	700	Pumped 16M3 (100 bbls) of Hi-vis and displaced hole with Unflocculated Gel
IH1	Р		WT	09:00	12:30	3.50	700	POOH F /- 700m (Hole good no drag)
IH1	Р		RRC	12:30	13:00	0.50	700	Held JSA, rigged up to run casing.
IH1	Р		RC	13:00	17:30	4.50	700	Picked up and checked floats, installed Le-Fluer casing fill up tool. Ran 340mm (13-3/8") casing. (ROV observed stab in to well head)
IH1	Р		RC	17:30	20:00	2.50	700	Rigged down Le-Fluer and picked up 476mm (18-3/4") Well head assembly, RIH with landing string. Landed casing and confirmed with 50 Kips O-pull.
IH1	Р		CIC	20:00	21:30	1.50	700	Circulated casing volume 1.5 times. (Returns observed at sea bed)
IH1	P		СМТ	21:30	23:00	1.50	700	Pumped 1.6M3 (10 bbls) of sea water with dye, pressure tested lines to 24,133Kpa (3500psi) Released bottom plug & pumped 1.1M3 (7.4 bbls) to shear out plug with 6895Kpa (1000psi) pumped .8M3 (5 bbls) of sea water. Mixed and pumped 46.5M3 (293bbls) of Lead slurry (736sx) of 'G' cement @ 1.5sg (12.5ppg) with 36.5M3 (230bbls) of mix water. Followed by 21M3 (132bbls) of Tail slurry (637sx) of 'G' cement @ 1.89sg (15.8ppg) with 12.7M3 (80bbls) of Sea water. Released top dart,and pumped 1.1M3 (7bbls) of Sea water.
IH1	Р		CMT	23:00	23:30	0.50	700	Displaced cement with rig pumps. Unable to Bump plug, checked floats held OK.
IC1	Р		WH	23:30	24:00	0.50	700	Removed cement hose and released running tool.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Sep 27, 2002

710111	<u></u>	<u> </u>	: .:	<u> </u>	<u> </u>		<u>00 11110 </u>	514 OCP 27, 2002
PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
IH1	Р		ТО	00:00	01:00	1.00	700	POOH and laid out running tool.
IH1	Р		HT	01:00	01:30	0.50	700	Service broke & laid out cement head.
IH1	Р		BOP	01:30	02:30	1.00	700	Held JSA. Rigged up to run BOP.
IH1	Р		BOP	02:30	03:00	0.50	700	Picked up and made up a double joint of riser.
IH1	Р		BOP	03:00	05:30	2.50	700	Moved BOP and LMRP to moon pool, installed guide lines &
								conducted function test. (Skidded rig 25 ft to Starboard)
IH1	Р		BOP	05:30	06:00	0.50	700	Made up double joint of riser to LMRP.

Draft Report

DAILY DRILLING REPORT #4

CASINO 2

WBM Data	COST T	ODAY: \$37	CUM.	WB	MUD COST: \$27,716		CUM. WBM+OBM COST: \$27,716					
Type:	PHG	VISCOCITY (sec/ltr	r): 1	100	API FLUID LOSS (cm3/30min) : FILTER CAKE		CI: K+C*1000:	2,000	SOLIDS (%vol) : H2O (%vol) :	3.3 96.6		
FROM:		YP (Pa.s):		31	(mm) :	0	HARD/Ca:	80	OIL (%vol):			
TIME : WEIGHT (sg):		(/	24 25	0	HTHPFL (cm3/30min) :		MBT (ppb) : PM :	25.0	SAND : PH :	10.0		
TEMP (C):		Fann 3/6/100 :	50 60	75	HTHP CAKE	0	PF:	.3	PHPA (ppb):			

Bit Data for Bit #	# 2 IADC #	Wear	2	01	D NO	L	B	G	O2 NO	R TD		
SIZE ("): MANUFACTURER:	17.50 SM	AVE WOR (MT)		NOZZLES	Drille	ed over t	he last	24 hrs	Calc	ulated	over the	
TYPE:	MGSSHC	AVE WOB (MT) : AVE RPM :	14 110	1 x 18 3 x 20	1	RAGE (,		l		AGE (m) T. HRS :	
SERIAL#:	MM0005	FLOW (lpm) : PUMP PRESS.(Kpa):	4,542 16,665	x 0	IADC	DRILL. I	HRS :		сим.і	ADC DF	R. HRS:	17.5
DEPTH IN (mRT): DEPTH OUT (mRT):	140 700	HSI (kW/cm2) :	0.288	x 0	_	L REVS m/hr) :	:	0	1	TOT. RI m/hr) :	EVS:	83,160 44.4

BHA#2 Len	igtn (m): 261.5					D.C. (1) ANN. VELOCITY (mpm):	0
WT BLW JAR (MT):	0	STRING W	VT (MT):	47	TRQE MAX (Nm):	8,135	D.C. (2) ANN VELOCITY (mpm):	0
BHA WT (MT):	0	PICK UP V	VT (MT):	48	TRQE ON (Nm):	2,034	H.W.D.P. ANN VELOCITY (mpm):	0
, ,	l	SLK OFF \	WT (MT):	45	TRQE OFF (Nm):	1,356	D.P. ANN VELOCITY (mpm):	0
BHA DESCRIPTION :	Bit,NBSt	ab,Anderdrif	t,Stab,1x9-	1/2"DC,St	ab,2x9-1/2"DC,X/O,6	x8"DC,Jars,5	x8"DC,X/O,12xHWDP,	

TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
Anderdrift Survey Tool Jars				ABN-905 4890-C	21.5	Used to drill 12-1/4" Hole on Casino #1
Jais				1 030-0	27.0	Osed to drill 12-1/4 Tible off Casillo #1

Survey (Method : Min Curvature) Last Tool Type : Anderdrift	MD (mBRT)	TVD (mBRT)	INCL DEG	AZ (deg)	CORR. AZ (deg)	'V' SECT (m)	DOGLEG (deg/ 30m)	N/S (m)	E/W (m)	TOOL TYPE
Magnetic Declination: 0.00	473.0 525.0 616.0 700.0		0.00 0.00 0.00 0.00		(dog)	(,	Comy			Anderdrift Anderdrift Anderdrift Anderdrift

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED	REC'D STOC	K S	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	451.7	10.8	440	0.9	Drill Water - Rig	МТ	661.0	82.0		579.0
Pot Water - Rig	MT	98.0		98	3.0 C	Cement 'G' - Rig	SXS	1197.0	1578.0	1871.0	1490.0
Cement HTB - Rig	SXS			(0.0 E	Bentonite - Rig	SXS	853.0	222.0		631.0
Barite - Rig	SXS	2387.0		2387	7.0 E	Brine - Rig	МТ				0.0
Helifuel - Rig	ltr	976.0	296.0	680	0.0 F	Fuel Oil - Conqueror	МЗ	435.0	3.8		431.2
Drill Water - Conqueror	MT	535.0	535.0	(0.0 F	Pot Water - Conqueror	МТ	200.0	5.0		195.0
Cement 'G' - Conqueror	SXS	1871.0	1871.0	(0.0	Cement HTB - Conquerd	sxs				0.0
Bentonite - Conqueror	SXS	1692.0	1692.0	(0.0 E	Barite - Conqueror	sxs				0.0
Brine - Conqueror	MT			(0.0 F	Fuel Oil - Sentinel	М3	422.8	11.8		411.0
Drill Water - Sentinel	MT	220.0		220	0.0 F	Pot Water - Sentinel	МТ	210.0	5.0		205.0
Cement 'G' - Sentinel	SXS	0.0		(0.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	sxs	0.0		(0.0 E	Barite - Sentinel	sxs	364.0			364.0
Brine - Sentinel	МТ			(0.0						

Pump Data

	•	Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152		97	0	0	30	0		
2	Nat'l 12-P-160	152		97	0	0	40	0		
3	Nat'l 12-P-160	152		97	0	0	50	0		
		0			0	0	30	0		
		0			0	0	40	0		
		0			0	0	50	0		

Draft Report

							C	ASINO		
Casing										
DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT			
13.375	340	690.6	690.	6		tested surface Mixed and p slurry (736sx 132 bbls of T Released to	Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 132 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.			
	T	YPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD			
Well Heal Non cross Casing jo Float col Intermed Shoe join	s joint oints llar joint diate joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress Buttress			
Person	nel : on S	ite =80								
3 Santos 34 DOGC 22 TMT (marine) 1 DOGC (other 2 Anadrill 6 BHI 1 DrilQuip 1 Halliburton 2 IDFS 6 TMT (ROV) 2 Weatherford										
Safety,	Inspectio	ns and Drills	Sumi	mary						
•		Fire and Abandon Ship	o Drill							
•		Lost Workday Case								
•		Medical Treatment Cas	Se							
		First Aid Case Weekly Safety Meeting								
•		Trip/Pit Drill	J							
	rs since last	•	Tested	BOP on stump						
- C day		201 1001		DOI OII GIGINP						
Shaker SHAKER SHAKER SHAKER SHAKER SHAKER	1 1 2 2 3 4	HOLE 4			NHOLE 22 .+EQUIP	222 COMME 22.08 0.00 0.00	R Carl Jensen / Jasde NTS	eep Sin		
Anchor	S Anc 1 Anc 6					: 5 : 113 : 10: 0	RIS. TENS. (MT): RISER ANGLE (deg):	C		
Pacific Co Pacific Se	onqueror 2	- 3	part from Rig Es Date)(Time)	stimatedArrival (Poi (Date)(Time)	t) Weather VISIBILITY(I WIND SP. (I WIND DIR (I PRES.(IMBAR AIR TEMP (I	xts): 35.0 deg): 300 s): 1014	STACK ANGLE(deg): V.D.L. (MT): AVE HEAVE (m): MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):	1,956.0 4.0 4.5 2.0 3.5 2.0		

Pax on/off Flt #1 8/4

COMMENTS :

2.5

MAX ROLL (deg):

SANTOS

DAILY DRILLING REPORT

DATE: Sep 27, 2002 FROM: R.King / G.Othen TO: Ole Moller.

CASINO 2

CASINO 2

Well Data	M.DEPTH (m BRT)	700 0	CUR.HOLE SIZE (mm)	445	AFE COST \$	12,100,000	
COUNTRY Australia	TVD (m BRT)	700.0	CASING OD (mm)	340	AFE BASIS :	P&A	
FIELD Casino		560.0	SHOE TVD (m BRT)	691	DAILY COST :	\$393,887	
DRILL CO. Diamond Offshore	DAYS FROM SPUD	3.63	FIT (sg)	0.00	CUM COST:	\$2,441,737	
RIG Ocean Bounty	DAYS +/- CURVE	-1.50	LOT (sg)	0.00			
RT ABOVE SL (m) 25.0 WATER DEPTH (m) LAT 67.8	CURRENT OP @ 0400	Drilling sh	oe track.	•			
RT TO SEABED (m) 92.8	PLANNED OP. RIH Drill out cement, perform LOT. Drill 12-1/4" Hole.						

Summary of period 00:00 to 24:00 hrs

Ran BOP / Laid out 17-1/2" Drilling assembly / Make up & RIH with 12-1/4" Drilling assembly.

FORMATION	TOP(m BRT)

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Sep 27, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH1	Р		ТО	00:00	01:00	1.00	700	POOH and laid out running tool.
IH1	Р		HT	01:00	01:30	0.50	700	Service broke & laid out cement head.
IH1	Р		ВОР	01:30	02:30	1.00	700	Held JSA. Rigged up to run BOP.
IH1	Р		ВОР	02:30	03:00	0.50	700	Picked up and made up a double joint of riser.
IH1	Р		ВОР	03:00	05:30	2.50	700	Moved BOP and LMRP to moon pool, installed guide lines & conducted function test. (Skidded rig 25 ft to Starboard)
IH1	Р		ВОР	05:30	06:30	1.00	700	Made up double joint of riser to LMRP.
IH1	Р		ВОР	06:30	08:30	2.00	700	Ran BOP (Pressure tested choke & kill lines 1379Kpa / 34475Kpa (200 / 5000psi)
IH1	Р		ВОР	08:30	14:00	5.50	700	Picked up slip joint, installed choke & kill goose necks, installed rucker tensioners.
IH1	Р		ВОР	14:00	15:00	1.00	700	Landed BOP and confirmed with 50 Kips O-pull. Pressure tested connector 1379Kpa / 34,475Kpa (200 / 3000psi)
IH1	Р		ВОР	15:00	17:30	2.50	700	Installed diverter and rigged down BOP handling equipment.
IH1	Р		WH	17:30	19:00	1.50	700	RIH set wear bushing & POOH (Pressure tested LMRP Connector 1379Kpa / 34,475Kpa (200 / 3000psi)
IH1	Р		НВН	19:00	21:30	2.50	700	Laid out 445mm (17-1/2") BHA
IH1	Р		НВН	21:30	24:00	2.50	700	Made up 311mm (12-1/4") BHA & Shallow test tools, OK.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Sep 28, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
IH1	Р		TI	00:00	04:00	4.00	700	Continued making up BHA. RIH with 311mm (12-1/4") to 600m.
IH1	Р		RS	04:00	04:30	0.50	700	Serviced TDS
IH1	Р		DFS	04:30	05:00	0.50	700	Continued RIH tag cement @ 630m (Washed and reamed down to
IH1	Р		DFS	05:00	06:00	1.00		663m taking 10Kips) Took weight @ 663m firm cement, drilled shoe track. Firm cement
	·		DI 0	03.00	00.00	1.00	l	down to shoe.

WBM Data	COST T	ODAY: \$35,896	CUM	. WB	MUD COST: \$63,612		CUM. WB	м+овм со	ST: \$63,612	
Type: FROM: TIME:	Pit	VISCOCITY (sec/ltr) PV (Pa.s): YP (Pa.s): GEL10s/10m/100m		78 0 11	API FLUID LOSS (cm3/30min): FILTER CAKE (mm): HTHPFL	0	CI: K+C*1000: HARD/Ca: MBT (ppb):	42,000 43200 240	SOLIDS (%vol) : H2O (%vol) : OIL (%vol) : SAND :	.77 99.2
WEIGHT (sg): TEMP (C):		(Pa.s):	3 3 6 8	3 0 3 23	(cm3/30min) : HTHP CAKE (mm) :	0	PM: PF:	.0	PH: PHPA (ppb):	8.0 1.6

CASINO 2

Bit Data for Bit #	2 IADC#	1 1 5		Wear	1 O1 D L 2 2 NO A	B G O2 E I NO	R TD
SIZE ("): MANUFACTURER: TYPE: SERIAL #: DEPTH IN (mRT):	17.50 SM MGSSHC MM0005	AVE WOB (MT): AVE RPM: FLOW (lpm): PUMP PRESS.(Kpa):	14 110 4,542 16,665	NOZZLES 1 x 18 3 x 20 x 0 x 0	Drilled over the last 24 hrs METERAGE (m): ON BOTTOM HRS:	Calculated over the bi CUM.METERAGE (m): CUM. ON BOT. HRS: CUM.IADC DR. HRS: CUM.TOT. REVS:	
DEPTH OUT (mRT):	700	HSI (kW/cm2):	0.288	x 0	ROP (m/hr) :	ROP (m/hr) :	44.4

D.C. (1) ANN. VELOCITY (mpm): 0 47 | TRQE MAX (Nm): 8,135 D.C. (2) ANN VELOCITY (mpm): WT BLW JAR (MT): 0 STRING WT (MT): 0 48 TRQE ON (Nm): PICK UP WT (MT): 2,034 H.W.D.P. ANN VELOCITY (mpm): 0 BHA WT (MT): 45 TRQE OFF (Nm): 1,356 D.P. ANN VELOCITY (mpm): 0 SLK OFF WT (MT):

BHA DESCRIPTION: Bit,NBStab,Anderdrift,Stab,1x9-1/2"DC,Stab,2x9-1/2"DC,X/O,6x8"DC,Jars,5x8"DC,X/O,12xHWDP,

TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
Anderdrift Survey Tool				ABN-905 4890-C	21.5	Used to drill 12-1/4" Hole on Casino #1
Jars				4090-0	24.0	Used to drill 12-1/4 Hole off Casino #1

Survey (Method : Mi	n Curvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type :	Anderdrift	(mBRT)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic Declination :	0.00	473.0		0.00		(**3)	· ()	,			Anderdrift
		525.0		0.00							Anderdrift
		616.0		0.00							Anderdrift
		700.0		0.00							Anderdrift

Bul	k
Sto	cks
On	Rig

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	М3	440.9	7.2	433.7	Drill Water - Rig	MT	579.0	291.0	535.0	823.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	sxs	1490.0			1490.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	SXS	631.0			631.0
Barite - Rig	SXS	2387.0	364.0	2751.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	680.0	2820.0	3500.0	Fuel Oil - Conqueror	МЗ	431.2	8.2		423.0
Drill Water - Conqueror	MT	535.0	535.0	0.0	Pot Water - Conqueror	MT	195.0	5.0		190.0
Cement 'G' - Conqueror	SXS	0.0		0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	SXS	1692.0		1692.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	MT			0.0	Fuel Oil - Sentinel	МЗ	411.0	6.0		405.0
Drill Water - Sentinel	MT	220.0		220.0	Pot Water - Sentinel	MT	205.0			205.0
Cement 'G' - Sentinel	sxs	0.0		0.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	sxs	0.0		0.0	Barite - Sentinel	sxs	364.0	364.0		0.0
Brine - Sentinel	МТ			0.0						

Pump Data

		Pump	Data - las	st 24 hrs		Slow Pump Data				
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152		97	0	0	30	0		
2	Nat'l 12-P-160	152		97	0	0	40	0		
3	Nat'l 12-P-160	152		97	0	0	50	0		
		0			0	0	30	0		
		0			0	0	40	0		
		0			0	0	50	0		

Casina							ASINO
Casing	T				1		
DIAM. CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT	
13.375 340	690.6	690	0.6		tested surface Mixed and p slurry (736sx 637 bbls of T	obls sea water with dye ce lines,Released botto umped 293bbls of Le c) @ 1.5sg / Mixed & pu ail slurry 132sx @ 1.89 p plug and displaced c ump plug.	om plug. ad umped 9sg.
	TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD]
Well Head Non cross joint Casing joints Float collar joint Intermediate joint Shoe joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress Buttress	
Personnel : on	Site =78						
3 Santos 2 Anadrill 2 IDFS	34 DC 6 BH 6 TM		22 TM 1 Dril	T (marine) Quip		DOGC (other) Halliburton	
Safety, Inspect	ions and Drills	Sum	nmary				
5 days since las	Fire and Abandon Ship	Drill					
1823 days since las	Lost Workday Case						
56 days since las	Medical Treatment Cas	е					
22 days since las	First Aid Case						
2 days since las	Weekly Safety Meeting						
13 days since las	: Trip/Pit Drill						
4 days since las	BOP Test	Teste	d BOP on stump				
Shakore Volun	nes and Losses Data	3			FNOINE	'D. Carl Ianaar / Iaad	0:-
SHAKER 1 SHAKER 2 SHAKER 3 SHAKER 4 SHAKER 5	VOLUME AVAIL	ABLE (m3) = 22.6 MIXING 0 SLUG		NHOLE -+EQUIP	0 СОММЕ	R Carl Jensen / Jasd NTS 400 bbls of new mud.	eep oin
Anchors Anc					5 : 129 10: 0	RIS. TENS. (MT) : RISER ANGLE (deg):	O
Workboats Pacific Conqueror Pacific Sentinel	(Date) (Time) (D	ate)(Time)	estimatedArrival (Po (Date)(Time) 27.09.02 18:00	rt) Weather VISIBILITY(n WIND SP. (k WIND DIR (c PRES.(mbars	ts): 30.0 deg): 300 s): 1010	STACK ANGLE(deg): V.D.L. (MT): 1,956 AVE HEAVE (m): 4 MAX HEAVE (m): 4 AVE PITCH (deg): 2 MAX PITCH (deg): 3 AVE ROLL (deg): 4	
COMMENTS: Par	c on/off Flt #1 2/4				,	MAX ROLL (deg):	2.0 2.5

DAILY DRILLING REPORT

6

SANTOS

DATE: Sep 28, 2002 FROM: R.King / G.Othen TO: Ole Moller.

CASINO 2 CASINO 2

Well Data	M.DEPTH (m BRT)	1 207 0	CUR.HOLE SIZE (mm)	311	AFE COST \$	12,100,000		
	ralia TVD (m BRT) sino PROGRESS (m) hore DAYS FROM SPUD	1,207.0 507.0 4.63	CASING OD (mm) SHOE TVD (m BRT)	340 691 0.00 1.22	AFE BASIS: DAILY COST: CUM COST:	P&A \$369,048 \$2,810,785		
WATER DEPTH (m) LAT	25.0 CURRENT OP @ 040 67.8 PLANNED OP.	CURRENT OP @ 0400 Drilling 12-1/4" Hole (06:00 Depth 1384m) PLANNED OP. Continue to Drill 12-1/4" Hole to Core Point.						

Summary of period 00:00 to 24:00 hrs

M-up & RIH with 12-1/4" Drilling assembly / Drilled shoe track / LOT / Drill 12-1/4" Hole.

FORMATION	TOP(m BRT)
DILWYN FM	764
PEMBER	1,005
PEBBLE POINT FM	1,080
MASSACRE	1,132

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Sep 28, 2002

						10 10 2 1100 11110 011 000 20; 2002					
PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION			
IH1	Р		ΤI	00:00	04:00	4.00	700	Continued making up BHA. RIH with 311mm (12-1/4") to 600m.			
IH1	Р		RS	04:00	04:30	0.50	700	Serviced TDS			
IH1	Р		DFS	04:30	05:00	0.50	700	Continued RIH tag cement @ 630m (Washed and reamed with 5-10Kips down to 663m)			
IH1	Р		DFS	05:00	06:00	1.00	700	Took firm weight @ 663m. Drilled cement & shoe track to 700m.			
IH2	Р		D	06:00	06:30	0.50	703	Drilled 311mm (12-1/4") Hole F /- 700m to 703m			
IH2	Р		CIR	06:30	07:30	1.00	703	Pumped Hi-vis pill and changed to PHPA mud system. (Flushed Choke & kill lines)			
IH2	Р		LOT	07:30	09:00	1.50	703	Performed LOT With 1.05sg Mud weight Pressure 1240Kpa EQMW = 1.22sg. (8.8ppg 180psi =10.2ppg)			
IH2	Р		D	09:00	10:30	1.50	772	Drilled 311mm Hole F /- 703m to 772m (Losses up to 95.3M3 (600bbls) Per hour)			
IH2	Р		D	10:30	12:00	1.50	772	Attempted to make connection @ 772m. Torque 10Kips, Excessive drag. Continued to circulate hole clean. Worked string F /- 772 m back to 743m.			
IH2	Р		WT	12:00	13:00	1.00	772	POOH F /- 772 back to 690m (340mm Shoe) Cleaned strainers due to LCM build up, mixed extra mud due to losses. (Total mud lost 101M3 / 640bbls) RIH to 772m			
IH2	Р		D	13:00	24:00	11.00	1,207	Drilled F /- 772m to 1207m (Losses reduced to 4.7M3 / 6.3M3 per/hr. (30/40bbls)			

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Sep 29, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		D	00:00	06:00	6.00		Continued drilling 311mm (12-1/4") Hole F /- 1207m to 1384m. No losses. (While reaming prior connection, String stuck @1271m. Worked free) Loggers calibrated hole with carbide to 355.5mm (14")

WBM Data	COST T	ODAY: \$39,837	CUM.	WB	MUD COST: \$103,450		CUM. WB	м+овм со	ST: \$103,450	
Type:	PHG	VISCOCITY (sec/ltr) PV (Pa.s) :	:	60 0	API FLUID LOSS (cm3/30min) : FILTER CAKE	8	CI: K+C*1000:	29,000 32400	SOLIDS (%vol) : H2O (%vol) :	1.6 98.4
FROM:	Pit	YP (Pa.s):		14	-	1	HARD/Ca:	300	OIL (%vol):	
TIME:	22:00	GEL10s/10m/100m			HTHPFL		MBT (ppb):	3.0	SAND:	4
WEIGHT (sg):	1.06	(Pa.s):	4 5	0	(cm3/30min):		PM:		PH:	9.0
TEMP (C):	27	Fann 3/6/100 : 8	11	29	HTHP CAKE	0	PF:	.1	PHPA (ppb):	1.5
		•		'	•	Ū	•	'		

CASINO 2

Bit Data for Bit #	3 IADC#	1 1 5		Wear	I O1 D	L	B G O2	R
SIZE ("): MANUFACTURER:	12.25 OT	AVE WOB (MT) :	14	NOZZLES	Drilled over the last	24 hrs	Calculated over the b	oit run
TYPE:	MX-03DX	AVE RPM:	134	3 x 16 x 0	METERAGE (m): ON BOTTOM HRS:	507 8.7	CUM.METERAGE (m): CUM. ON BOT. HRS:	507 8.7
SERIAL # : DEPTH IN (mRT):	589 DC 700	FLOW (lpm) : PUMP PRESS.(Kpa):	3,066 15,596	x 0 x 0	IADC DRILL. HRS :	13.0	CUM.IADC DR. HRS:	13.0
DEPTH OUT (mRT):	700	HSI (kW/cm2) :	0.712	x 0	TOTAL REVS : ROP (m/hr) :	69,948 58.3	CUM.TOT. REVS : ROP (m/hr) :	69,948 58.3

BHA # 3 Lengt	:h (m): 311.7				D.C. (1) ANN. VELOCITY (mpm):	74
WT BLW JAR (MT):	34	STRING WT (MT):	64	TRQE MAX (Nm):	17	D.C. (2) ANN VELOCITY (mpm):	101
BHA WT (MT):	41	PICK UP WT (MT):	66	TRQE ON (Nm):	6	H.W.D.P. ANN VELOCITY (mpm):	48
, ,		SLK OFF WT (MT):	61	TRQE OFF (Nm):	3	D.P. ANN VELOCITY (mpm):	48

 $BHA\ DESCRIPTION:\ 12.25\ Bit, 12.25RR, CDR, Pulse\ tool, ILS, Sonic, 12.25RR, 12.25RR, 14x8"DC, 12.25RR, 14x8"DC, Market Mark$

TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
CDR				9556	17.0	
Pulse				231	17.0	
ILS				520	17.0	
ISonic				829	17.0	
Jars				WDAH-02872	17.0	

Survey (Method:	Min Curvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type:	FEWD	(mBRT)	(mBRT)	DEG	(deg)	AZ	SECT	(deg/	(m)	(m)	
Manus etia Daniin etian	. 0.00					(deg)	(m)	30m)			
Magnetic Declination	: 0.00	698.7		0.40	108.4	108.4					FEWD
		727.6		0.72	137.8	137.8					FEWD
		842.7		0.61	203.6	203.6					FEWD
		958.1		0.69	268.8	268.8					FEWD
		1074.1		0.52	252.9	252.9					FEWD
		1130.6		0.79	283.3	283.3					FEWD
		1161.1		0.82	278.2	278.2					FEWD
		1181.9		0.76	272.6	272.6					FEWD

Bul	k
Sto	cks
On	Rig

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	M3	433.7	10.8	422.9	Drill Water - Rig	МТ	823.0	312.0		511.0
Pot Water - Rig	МТ	98.0		98.0	Cement 'G' - Rig	sxs	1490.0			1490.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	SXS	631.0			631.0
Barite - Rig	SXS	2751.0		2751.0	Brine - Rig	МТ				0.0
Helifuel - Rig	ltr	3500.0		3500.0	Fuel Oil - Conqueror	М3	423.0	1.0		422.0
Drill Water - Conqueror	МТ	0.0		0.0	Pot Water - Conqueror	МТ	190.0	5.0		185.0
Cement 'G' - Conqueror	sxs	0.0		0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	sxs	1692.0		1692.0	Barite - Conqueror	sxs				0.0
Brine - Conqueror	MT			0.0	Fuel Oil - Sentinel	МЗ	405.0			405.0
Drill Water - Sentinel	MT	220.0		220.0	Pot Water - Sentinel	MT	205.0			205.0
Cement 'G' - Sentinel	SXS	0.0		0.0	Cement HTB - Sentinel	SXS				0.0
Bentonite - Sentinel	sxs	0.0		0.0	Barite - Sentinel	SXS	0.0			0.0
Brine - Sentinel	МТ			0.0						

Pump Data

		Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (Ipm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152	66	97	1021	15596	30	827	1032.0	1.05
2	Nat'l 12-P-160	152	66	97	1021	15596	40	1379	1032.0	1.05
3	Nat'l 12-P-160	152	66	97	1021	15596	50	1793	1032.0	1.05
		0			0	0	30	965	1032.0	1.05
		0			0	0	40	1379	1032.0	1.05
		0			0	0	50	1931	1032.0	1.05

CASINO 2

Casing	<u> </u>							ASINO	
DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)	COMMENT			
13.375	340	690.6	690.	-		tested surface Mixed and p slurry (736sx 637 bbls of T	obls sea water with dye be lines,Released botto unped 293bbls of Le c) @ 1.5sg / Mixed & pu ail slurry 132sx @ 1.8s p plug and displaced o ump plug.	om plug. ad umped 9sg.	
	-	ГҮРЕ	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD		
Well Head Non cross Casing just Float continued intermed Shoe join	ss joint oints llar joint diate joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress Buttress		
Person	nel : on	Site =78							
-	antos nadrill FS	6 B	OOGC BHI MT (ROV)	22 TMT 1 DrilG	(marine) Ruip		DOGC (other) Halliburton		
	-	ons and Drills Fire and Abandon Shi	Sumi	mary					
		Lost Workday Case	<u> </u>						
		Medical Treatment Ca	ıse						
		First Aid Case		man dislocated fin	ger.Finger back	in socket			
3 day	ys since last	Weekly Safety Meetin	g						
0 day	ys since last	Trip/Pit Drill							
5 day	ys since last	BOP Test	Tested	BOP on stump					
Shakar	ro Volum	and Lagge Do	40						
SHAKER SHAKER SHAKER	R 1 4x84 R 2 4x84 R 3 4x84 R 4 4x84	ACTIVE 8	ILABLE (m3) = 34.3 MIXING 94.0 SLUG 63.6 HEAVY	242 LOSSE 0.0 DOWN 0.0 SURF. 0.0 DUMPE	HOLE 251 +EQUIP 13	273 COMME	R Carl Jensen / Jasd NTS Desander & Desilter.	eep Sin	
Anchor	S Anc					: 118 0:0	RIS. TENS. (MT) : RISER ANGLE (deg):	105	
Workb	oats	- 3	epart from Rig Es (Date)(Time)	timatedArrival (Port) (Date)(Time)	Weather VISIBILITY(nm	n): 8	STACK ANGLE(deg): V.D.L. (MT) : AVE HEAVE (m) :	0.0 1,991.0 1.5	
Pacific Co Pacific So		26.09.02 11:30 27	7.09.02 12:30 27	7.09.02 18:00	WIND SP. (kts WIND DIR (de PRES.(mbars) AIR TEMP (C)	g): 210 : 1022	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):	2.4 1.0 1.5 1.0	
COMMEN	ITS: Pax	on/off Flt #1					MAX ROLL (deg) :	1.5	

DATE: Sep 29, 2002 FROM: R.King / G.Othen Ole Moller.

CASINO 2

Well Data	M.DEPTH (m BRT)	1.610.0	CUR.HOLE SIZE (mm)	311	AFE COST \$	12,100,000
COUNTRY Australia FIELD Casino	TVD (m BRT) PROGRESS (m)	1,610.0	CASING OD (mm)	340 691	AFE BASIS : DAILY COST :	P&A \$408,717
DRILL CO. Diamond Offshore RIG Ocean Bounty	DAYS FROM SPUD DAYS +/- CURVE	5.63	FIT (sg) LOT (sg)	0.00 1.22	CUM COST :	\$3,219,502
RT ABOVE SL (m) 25.0 WATER DEPTH (m) LAT 67.8 RT TO SEABED (m) 92.8	CURRENT OP @ 0400 PLANNED OP.	_	2-1/4" Hole (06:00 Depth 1 to Drill 12-1/4" Hole to Cor			

Summary of period 00:00 to 24:00 hrs Drilled 12-1/4" Hole F /- 1207m to 1610m.

l	FORMATION	TOP(m BRT)
l	MASSACRE	1,132
l	SKULL CREEK	1,271
l	PAARATE	1,369
I	BELFAST	1.507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Sep 29, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		D	00:00	24:00	24.00		Continued drilling 311mm (12-1/4") Hole F /- 1207m to 1610m. No losses. (While reaming prior connection, String stuck @1271m. Worked free) Loggers calibrated hole with carbide to 355.5mm (14")

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Sep 30, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		D	00:00	06:00	6.00	1,638	Continued Drilling 311mm (12-1/4") Hole F /- 1610m to 1638m

WBM Data	COST T	ODAY: \$60,818	CUM.	WB	MUD COST: \$164,268		CUM. WB	м+овм со	ST: \$164,268	
Туре :	PHG	VISCOCITY (sec/ltr) PV (Pa.s):	:	60 0	API FLUID LOSS (cm3/30min) : FILTER CAKE	4	CI: K+C*1000:	22,000 27000	SOLIDS (%vol) : H2O (%vol) :	8.9 91.1
FROM:		YP (Pa.s):		14		1	HARD/Ca:	360	OIL (%vol):	
TIME:		GEL10s/10m/100m			HTHPFL		MBT (ppb):	9.0	SAND:	.5
WEIGHT (sg):		/ 	6 7	2	(cm3/30min):	22	PM:		PH:	9.0
TEMP (C):	54	Fann 3/6/100 :	3 11	31	HTHP CAKE (mm):	0	PF:	.5	PHPA (ppb):	1.9

Bit Data for Bit #	Wear	I O1 D	L	B G O2	. R			
SIZE ("): MANUFACTURER:	12.25 HU	AVE WOR (MT)	-	NOZZLES	Drilled over the la	st 24 hrs	Calculated over t	ne bit run
TYPE:	MX-03DX	AVE WOB (MT) :	20 110	3 x 16 x 0	METERAGE (m):	403		· /
SERIAL #:	589 DC	FLOW (lpm) :	3,179	x 0	ON BOTTOM HRS		CUM. ON BOT. HR	·
DEPTH IN (mRT):	700	PUMP PRESS.(Kpa):	24,290	x 0	TOTAL REVS :		CUM.TOT. REVS :	182,820
DEPTH OUT (mRT):		HSI (kW/cm2):	0.899	x 0	ROP (m/hr) :	21.2	ROP (m/hr) :	32.9

BHA # 3 Len	gth (m): 311.7				D.C. (1) ANN. VELOCITY (mpm):	77
WT BLW JAR (MT):	34	STRING WT (MT):	73	TRQE MAX (Nm):	12	D.C. (2) ANN VELOCITY (mpm):	105
BHA WT (MT):	41	PICK UP WT (MT):	75	TRQE ON (Nm):	5	H.W.D.P. ANN VELOCITY (mpm):	50
		SLK OFF WT (MT):	73	TRQE OFF (Nm):	3	D.P. ANN VELOCITY (mpm):	50
BHA DESCRIPTION :	12.25 Bi	t,12.25RR,CDR,Pulse too	l,ILS,Sor	nic,12.25RR,1x8"DC,12.25	5RR,14x	8"DC,Jars,2x8"DC,X/O,12Xhwdp	

TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
CDR				9556	41.0	
Pulse				231	41.0	
ILS				520	41.0	
ISonic				829	41.0	
Jars				WDAH-02872	41.0	

Survey (Method : Min Curvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type :	(mBRT)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic Declination: 0.00	1130.6		0.79	283.3	` 0,	(111)	30111)			FEWD
	1161.1		0.82	278.2	278.2					FEWD
	1181.9		0.76	272.6	272.6					FEWD
	1217.7		0.78	287.0	287.0					
	1277.8		0.94	274.8	274.8					
	1421.1		1.45	272.5	272.5					
	1509.0		1.49	255.4	255.4					
	1565.7		1.58	268.2	268.2					

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED I	REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	422.9	22.7		400.2	Drill Water - Rig	МТ	511.0	113.0	519.0	917.0
Pot Water - Rig	MT	98.0			98.0	Cement 'G' - Rig	SXS	1490.0			1490.0
Cement HTB - Rig	SXS				0.0	Bentonite - Rig	SXS	631.0		238.0	869.0
Barite - Rig	SXS	2751.0	1374.0	3197.0	4574.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	3500.0			3500.0	Fuel Oil - Conqueror	М3	422.0	3.8		418.2
Drill Water - Conqueror	MT	0.0			0.0	Pot Water - Conqueror	MT	185.0	130.0		55.0
Cement 'G' - Conqueror	SXS	0.0			0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	SXS	1692.0			1692.0	Barite - Conqueror	sxs				0.0
Brine - Conqueror	MT				0.0	Fuel Oil - Sentinel	М3	396.0	5.5		390.5
Drill Water - Sentinel	MT	400.0	400.0		0.0	Pot Water - Sentinel	MT	237.0	2.0		235.0
Cement 'G' - Sentinel	SXS	0.0			0.0	Cement HTB - Sentinel	SXS				0.0
Bentonite - Sentinel	SXS	238.0			238.0	Barite - Sentinel	SXS	3197.0			3197.0
Brine - Sentinel	МТ				0.0						

Pump Data

		Pump	Data - las	t 24 hrs			Slow Pump Data				
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)	
1	Nat'l 12-P-160	152	66	97	1058	24290	30	1379	1610.0	1.20	
2	Nat'l 12-P-160	152	66	97	1058	24290	40	1655			
3	Nat'l 12-P-160	152	66	97	1058	24290	50	2413			
		0			0	0	30	1207	1610.0	1.20	
		0			0	0	40	1724			
		0			0	0	50	2413			

_	_ :		
	C I	ın	n

DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)	COMMENT
13.375	340	690.6	690.6	1.22		Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	10.70	319	107.1	N-80	Buttress
Non cross joint	12.11	319	107.1	N-80	Buttress
Casing joints	540.92	319	101.2	N-80	Buttress
Float collar joint	36.78	319	107.1	N-80	Buttress
Intermediate joint	24.49	319	107.1	N-80	Buttress
Shoe joint	12.41	321	107.1	N-80	Buttress

Ρ	ers	on	nel	:	on	Site	=75
---	-----	----	-----	---	----	------	-----

3 Santos	34 DOGC	22 TMT (marine)	1 DOGC (other)
2 Anadrill	6 BHI	1 Core Eng	1 Halliburton

2 IDFS 3 TMT (ROV)

Safety, Inspectio	ns and Drills S	ummary
0 days since last	Fire and Abandon Ship Drill	
1825 days since last	Lost Workday Case	
58 days since last	Medical Treatment Case	
1 days since last	First Aid Case De	errickman dislocated finger.Finger back in socket
4 days since last	Weekly Safety Meeting	
1 days since last	Trip/Pit Drill	
6 days since last	BOP Test Te	ested BOP on stump
SHAKER 1 4x145 SHAKER 2 4x145 SHAKER 3 4x145 SHAKER 4 4x115 SHAKER 5	VOLUME AVAILABLE (m3) = ACTIVE 79.5 MIXING HOLE 123.2 SLUG RESERVE 76.3 HEAVY	0.0 SURF.+EQUIP 70.42
Anchors Anc 1 Anc 6		3: 127 Anc 4: 111 Anc 5: 127 RIS. TENS. (MT): 105 8: 98 Anc 9: 0 Anc 10: 0 RISER ANGLE (deg): 0.0
Homboulo	rrived @ Rig Depart from Rig (Date)(Time) (Date)(Time)	EstimatedArrival (Port) Weather VISIBILITY(nm) : 10 AVE HEAVE (m) : 1.2
Pacific Conqueror Pacific Sentinel 29	29.09.02 15:50 0.09.02 11:46	20.09.02 21:00 WIND SP. (kts): 28.0 MAX HEAVE (m): 1.8 WIND DIR (deg): 210 AVE PITCH (deg): 0.8 PRES.(mbars): 1027 MAX PITCH (deg): 1.5 AIR TEMP (C): 15.0 AVE ROLL (deg): 0.5
COMMENTS: Pax o	n/off Flt #1 1/4	MAX ROLL (deg): 1.5

SANTOS

DATE: Sep 30, 2002 FROM: R.King / G.Othen TO: Ole Moller.

CASINO 2

CASINO 2

	Australia Casino nond Offshore Ocean Bounty	M.DEPTH (m BRT) TVD (m BRT) PROGRESS (m) DAYS FROM SPUD DAYS +/- CURVE	1,646.0 1,646.0 36.0 6.63 0.50	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT) FIT (sg) LOT (sg)	311 340 691 0.00 1.22	AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	12,100,000 P&A \$419,532 \$3,639,034
RT ABOVE SL (m) WATER DEPTH (m) LAT RT TO SEABED (m)	25.0 67.8 92.8	CURRENT OP @ 0600 PLANNED OP.	Ū	2-1/4" Hole F /- 1646m inue to drill to Core point.			

Summary of period 00:00 to 24:00 hrs

Drilled 12-1/4" Hole, POOH.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Sep 30, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		D	00:00	09:00	9.00	1,646	Continued Drilling 311mm (12-1/4") Hole F /- 1610m to 1646m
IH2	Р		DO	09:00	09:30	0.50	1,646	Flow checked well. POOH F /- 1646m to 1543m (50 Kips O-pull @1543m)
IH2	Р		ТОТ	09:30	18:30	9.00	1,646	Backreamed F /- 1543m to 800m (Max hole drag 50 Kips O-pull, String torquing up 12,000ft/lbs)
IH2	Р		ТО	18:30	21:00	2.50	1,646	Continued POOH F /- 800m. Broke off bit.
IH2	Р		S	21:00	23:30	2.50	1,646	Down loaded data from LWD & Process. Initialise tool. (Serviced TDS)
IH2	Р		ΤI	23:30	24:00	0.50	1,646	Made up bit & RIH

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 01, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		TI	00:00	01:30	1.50	1,646 Continued RIH to 690m (340mm Shoe)	
IH2	Р		SC	01:30	03:00	1.50	1,646	Slipped & cut drilling line.
IH2	Р		TI	03:00	05:00	2.00	1,646	Continued RIH to 1615m (Took weight @ 1615m)
IH2	Р		RW	05:00	06:00	1.00	1,646	Wash and reamed F /- 1615m to 1646m (5-10 Kips Required to
								ream)

WBM Data	Data COST TODAY: \$20,292 CUM. WB MUD COST: \$184,560						CUM. WBM+OBM COST: \$184,560			
Type:	PHG	VISCOCITY (sec/ltr) : PV (Pa.s) :	72	API FLUID LOSS (cm3/30min) :	4	CI: K+C*1000:	23,000 27000	SOLIDS (%vol) : H2O (%vol) :	10. 89.6	
FROM:		YP (Pa.s):	20		1	HARD/Ca:	280	OIL (%vol):		
TIME : WEIGHT (sg):		GEL10s/10m/100m (Pa.s): 6	7	HTHPFL (cm3/30min):	22	MBT (ppb) : PM :	12.0	SAND : PH :	.1 9.0	
TEMP (C):	40	Fann 3/6/100: 12	14 4	1 HTHP CAKE (mm):	0	PF:	.5	PHPA (ppb):	1.8	

Bit Data for Bit # 3 IADC # 1 1 5	Wea	1 O1 8 8 I	D L LT A	B G 1/8	O2 R ER PR
SIZE ("): 12.25	NOZZLI	S Drilled over the	last 24 hrs	. Calculated o	ver the bit run
MANUFACTURER: HU AVE WOE	(MT): 20 3 x 1	METERAGE (m)	. 36	CUM.METERA	
TYPE: MX-03DX AVE RPM	: 110 X			CUM. ON BOT	, ,
SERIAL #: 589 DC FLOW (Ipi	n): 2,948 X		_	CUM.IADC DR	
DEPTH IN (mRT): 700 PUMP PR	ESS.(Kpa): 25,042 x		57.420	CUM.TOT. RE	_
DEPTH OUT (mRT): 1646 HSI (kW/ci	m2): 0.717 x	1	- , -	,	26.0

BHA # 3 Length (m): 311.7

D.C. (1) ANN. VELOCITY (mpm): 77 WT BLW JAR (MT): STRING WT (MT): 73 TRQE MAX (Nm): 34 D.C. (2) ANN VELOCITY (mpm): 105 75 TRQE ON (Nm): H.W.D.P. ANN VELOCITY (mpm): PICK UP WT (MT): BHA WT (MT): 41 50

73 TRQE OFF (Nm): 3 D.P. ANN VELOCITY (mpm): 50 SLK OFF WT (MT):

BHA DESCRIPTION: 12.25 Bit,12.25RR,CDR,Pulse tool,ILS,Sonic,12.25RR,1x8"DC,12.25RR,14x8"DC,Jars,2x8"DC,X/O,12Xhwdp

TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
CDR				9556	59.0	
Pulse				231	59.0	
ILS				520	59.0	
ISonic				829	59.0	
Jars				WDAH-02872	59.0	

Survey (Method : Min Curvature) Last Tool Type :	MD (mBRT)	TVD (mBRT)	INCL DEG	AZ (deg)	CORR. AZ (deg)	'V' SECT (m)	DOGLEG (deg/ 30m)	N/S (m)	E/W (m)	TOOL TYPE
Magnetic Declination: 0.00	1130.6 1161.1 1181.9 1217.7 1277.8 1421.1 1509.0 1565.7		0.79 0.82 0.76 0.78 0.94 1.45 1.49 1.58	287.0 274.8 272.5 255.4	278.2 272.6 287.0 274.8 272.5 255.4					FEWD FEWD FEWD

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	400.2	13.2	387.0	Drill Water - Rig	МТ	917.0	136.0		781.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	SXS	1490.0			1490.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	SXS	869.0			869.0
Barite - Rig	SXS	4574.0	470.0	4104.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	3500.0		3500.0	Fuel Oil - Conqueror	МЗ	409.8	0.5		409.3
Drill Water - Conqueror	MT	200.0		200.0	Pot Water - Conqueror	MT	180.0			180.0
Cement 'G' - Conqueror	SXS	0.0		0.0	Cement HTB - Conquero	SXS				0.0
Bentonite - Conqueror	SXS	1692.0		1692.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	МТ			0.0	Fuel Oil - Sentinel	МЗ	390.5	5.8		384.7
Drill Water - Sentinel	МТ	0.0		0.0	Pot Water - Sentinel	MT	235.0	5.0		230.0
Cement 'G' - Sentinel	SXS	0.0		0.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	sxs	238.0		238.0	Barite - Sentinel	sxs	3197.0			3197.0
Brine - Sentinel	MT			0.0						

Pum	n E)ata

. ч.	np Bata									
		Pump	Data - las		Slow Pump Data					
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152	66	97	979	25042	30	1379	1610.0	1.20
2	Nat'l 12-P-160	152	66	97	979	25042	40	1655		
3	Nat'l 12-P-160	152	66	97	979	25042	50	2413		
		0			0	0	30	1207	1610.0	1.20
		0			0	0	40	1724		
		0			0	0	50	2413		

						C.	ASINO			
Casing										
DIAM. CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT				
13.375 340	690.6	690.0	6 1.22		tested surface Mixed and p slurry (736sx 637 bbls of 1	obls sea water with dyeste lines, Released botton umped 293bbls of Lead) @ 1.5sg / Mixed & pural slurry 132sx @ 1.89 p plug and displaced coump plug.	m plug. ad mped 9sg.			
٦	YPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD				
Well Head Non cross joint Casing joints Float collar joint Intermediate joint Shoe joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress Buttress				
Personnel : on S	Site =75									
3 Santos 2 Anadrill 2 IDFS	34 DO 6 BH 3 TM		22 TMT 1 Core	(marine) Eng		DOGC (other) Halliburton				
Safety, Inspecti	ons and Drills	Sumr	nary							
1 days since last	Fire and Abandon Ship	Drill								
1826 days since last	Lost Workday Case									
59 days since last	Medical Treatment Case)								
2 days since last	First Aid Case	Derrick	man dislocated fir	nger.Finger back	in socket					
5 days since last	Weekly Safety Meeting									
2 days since last	Trip/Pit Drill									
7 days since last	BOP Test	Tested	BOP on stump							
Shakers, Volum	es and Losses Data	<u> </u>			ENGINEE	R Carl Jensen / Jasde	eep Sin			
Shakers, Volumes and Losses Data ENGINEER Carl Jensen / Jasdeep Sin SHAKER 1 4x145 VOLUME AVAILABLE (m3) = 310 LOSSES (m3) = 32 COMMENTS SHAKER 3 4x145 ACTIVE 79.5 MIXING SHAKER 4 4x115 DOWNHOLE 5.40 HOLE 125.6 SLUG SURF.+EQUIP 4.77 RESERVE 104.9 HEAVY 50.0 DUMPED 22.26										
Anchors Anc					5 : 125 10: 0	RIS. TENS. (MT) : RISER ANGLE (deg):	105			
		art from Rig Es ate)(Time)	timatedArrival (Port (Date)(Time)	STACK ANGLE(deg): V.D.L. (MT): AVE HEAVE (m): MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg):	0.0 2,070.0 0.3 0.3 0.5 0.6					
COMMENTS: Pax	on/off Flt #1 4/4			AIR TEMP (C): 15.0	AVE ROLL (deg) : MAX ROLL (deg) :	0.3 0.3			

SANTOS

DATE: Oct 01, 2002 FROM: R.King / G.Othen TO: Ole Moller.

CASINO 2 CASINO 2

Well Data		M.DEPTH (m BRT)	1 763 0	CUR.HOLE SIZE (mm)	311	AFE COST \$	10,800,000	
COUNTRY	Australia	TVD (m BRT)	1,763.0	CASING OD (mm)	340	AFE BASIS :	P&A	
FIELD	Casino	PROGRESS (m)	117.0	SHOE TVD (m BRT)	691	DAILY COST :	\$370,829	
DRILL CO. Dia	mond Offshore	DAYS FROM SPUD	7.63	FIT (sg)	0.00	CUM COST:	\$4,009,863	
RIG	Ocean Bounty	DAYS +/- CURVE		LOT (sg)	1.22		* ,,	
RT ABOVE SL (m) WATER DEPTH (m) LA' RT TO SEABED (m)	25.0 T 67.8 92.8	CURRENT OP @ 0600 Reaming to bottom prior coring. Depth 1753m. PLANNED OP. RIH Cut Core / POOH / RIH Drill 12-1/4" Hole to TD						

Summary of period 00:00 to 24:00 hrs

Drilled 12-1/4" Hole to Core point / POOH & Made up Core barrel.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 01, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		TI	00:00	01:30	1.50	1,646	Continued RIH to 690m (340mm Shoe)
IH2	Р		sc	01:30	03:00	1.50	1,646	Slipped & cut drilling line.
IH2	Р		ΤI	03:00	05:00	2.00	1,646	Continued RIH to 1615m (Took weight @ 1615m)
IH2	Р		RW	05:00	06:00	1.00	1,646	Wash and reamed F /- 1615m to 1646m (5-10 Kips Required to ream)
IH2	Р		D	06:00	14:00	8.00	1,763	Drilled 311mm (12-1/4") Hole F /- 1646m to 1763m
IH2	Р		CIR	14:00	15:30	1.50	1,763	Circulated sample to surface & confirmed correct core point.
IH2	Р		ТО	15:30	21:00	5.50	1,763	Pumped out F /- 1763m to 1620m. Continued POOH F /- 1620m
IH2	Р		HT	21:00	22:00	1.00	1,763	Service broke LWD tool and laid out.
IH2	Р		НВН	22:00	24:00	2.00	1,763	Held JSA, Picked up & made up core barrel assembly.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 02, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		НВН	00:00	00:30	0.50	1,763	Continued to Make up Core barrel
IH2	Р		TI	00:30	04:30	4.00	1,763	RIH to 1708m (Worked through tight spot @ 1120m, Wash and
								reamed 1140m to 1160m)
IH2	Р		TI	04:30	05:00	0.50	1,763	Precautionary wash and reamed F /- 1708m to 1730m (Took weight
								@ 1730m)
IH2	Р		RW	05:00	06:00	1.00	1,763	Wash and reamed F /- 1730m to 1753m (Taking 10-15Kips to ream)
								Max gas 18.72%

PHG PV (Pa.s): 0 (cm3/30min): K+C*1000: 37800 H2O (%vol): 88.8 FROM: Pit YP (Pa.s): 16 (mm): 1 HARD/Ca: 160 OIL (%vol): SAND: .2 TIME: 22:00 GEL10s/10m/100m HTHPFL MBT (ppb): 12.0 SAND: .2 WEIGHT (sg): 1.24 (Pa.s): 5 9 2 (cm3/30min): 22 PM: PH: 9.5	WBM Data	COST T	ODAY: \$18,272	CUN	1. WB	MUD COST: \$202,832		CUM. WB	м+овм со	ST: \$202,832	
TIME: 22:00 GEL10s/10m/100m HTHPFL WEIGHT (sg): 5 9 2 (cm3/30min): 22 MBT (ppb): 12.0 SAND: .2 WEIGHT (sg): 9.5			PV (Pa.s):):	57 0	(cm3/30min):	5	K+C*1000:	37800	H2O (%vol) :	11. 88.8
WEIGHT (sg): 1.24 (Pa.s): 5 9 2 (cm3/30min): 22 PM: PH: 9.5	FROM:	Pit	YP (Pa.s):		16	(mm):	1	HARD/Ca:	160	OIL (%vol):	
TEMP (C): Fann 3/6/100: 8 10 33 HTHP CAKE 0 PF: .1 PHPA (ppb): 1.4			022:00,:0,:00		9 2		22	"'' /	12.0	_	.2 9.5
	TEMP (C):		Fann 3/6/100 :	8 1	33	HTHP CAKE	0	PF:	.1	PHPA (ppb):	1.4

Bit Data for Bit #	4 IADC#	1 1 5		Wear	1	01	D	L	В	G	02	R CP
SIZE ("): MANUFACTURER:	NOZZLES Drilled over the last 24 hrs Calculated over the bi											
TYPE: DS	HY X195DGUW	AVE WOB (MT): AVE RPM:	120	3 x 16 x 0	l	RAGE (,	117 6.4	l		GE (m) T. HRS :	: 117 6.4
SERIAL # : DEPTH IN (mRT):	103926 1646	FLOW (lpm) : PUMP PRESS.(Kpa):	2,975 27,545	x 0 x 0	_	DRILL. H L REVS	_	8.0 46,080	CUM.I	ADC DR		8.0 46,080
DEPTH OUT (mRT):	1763	HSI (kW/cm2):	0.761	x 0	ROP (m/hr) :		18.3	ROP (r	m/hr) :		18.3

Bit Data for Bit # IADC #	Wear	I	01	D	L	В	G	02	R		
SIZE ("): MANUFACTURER: TYPE: SERIAL #: DEPTH IN (mRT): DEPTH OUT (mRT):	AVE WOB (MT): AVE RPM: FLOW (Ipm): PUMP PRESS.(Kpa): HSI (kW/cm2):	0 0 0 0.000	NOZZLES	METE ON BO IADC I TOTA	ed over to RAGE (DTTOM DRILL. H L REVS m/hr):	HRS : HRS :	24 hrs 0	CUM.N CUM. CUM.I	METER/ ON BO ADC DF TOT. RI	over the AGE (m) T. HRS: R. HRS:) : :

BHA#4 Length (m): 311.7 D.C. (1) ANN. VELOCITY (mpm): 72 WT BLW JAR (MT): 34 STRING WT (MT): 82 | TRQE MAX (Nm): D.C. (2) ANN VELOCITY (mpm): 98 84 TRQE ON (Nm): H.W.D.P. ANN VELOCITY (mpm): PICK UP WT (MT): 47 BHA WT (MT): 41 79 TRQE OFF (Nm): 3 D.P. ANN VELOCITY (mpm): 47 SLK OFF WT (MT): BHA DESCRIPTION: 12.25 Bit,12.25RR,CDR,Pulse tool,ILS,Sonic,12.25RR,1x8"DC,12.25RR,14x8"DC,Jars,2x8"DC,X/O,12Xhwdp TOOL DESCRIPTION LENGTH OD ID SERIAL# HRS COMMENT CDR 9556 68.0 68.0 Pulse 231 ILS 520 68.0 **ISonic** 829 68.0

WDAH-02872

68.0

Survey (Method : Min Curvature) Last Tool Type :	MD (mBRT)	TVD (mBRT)	INCL DEG	AZ (deg)	CORR. AZ (deg)	'V' SECT (m)	DOGLEG (deg/ 30m)	N/S (m)	E/W (m)	TOOL TYPE
Magnetic Declination: 0.00	1130.6 1161.1 1181.9 1217.7 1277.8 1421.1 1509.0 1565.7		0.79 0.82 0.76 0.78 0.94 1.45 1.49	283.3 278.2 272.6 287.0 274.8 272.5 255.4 268.2	283.3 278.2 272.6 287.0 274.8 272.5 255.4	(111)	Som			FEWD FEWD FEWD

Bulk Stocks On Rig

Jars

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	387.0	14.3	372.7	Drill Water - Rig	МТ	781.0	73.0		708.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	sxs	1490.0			1490.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	sxs	869.0			869.0
Barite - Rig	SXS	4104.0	561.0	3543.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	3500.0		3500.0	Fuel Oil - Conqueror	МЗ	409.3	5.4		403.9
Drill Water - Conqueror	MT	200.0		200.0	Pot Water - Conqueror	MT	180.0	5.0		175.0
Cement 'G' - Conqueror	SXS	0.0		0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	SXS	1692.0		1692.0	Barite - Conqueror	sxs				0.0
Brine - Conqueror	MT			0.0	Fuel Oil - Sentinel	МЗ	384.7	2.5		382.2
Drill Water - Sentinel	MT	0.0		0.0	Pot Water - Sentinel	MT	230.0	5.0		225.0
Cement 'G' - Sentinel	SXS	0.0		0.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	SXS	238.0		238.0	Barite - Sentinel	SXS	3197.0			3197.0
Brine - Sentinel	MT			0.0						

Pump Data

		Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152	66	97	990	27545	30	1379	1966.0	1.23
2	Nat'l 12-P-160	152	66	97	990	27545	40	2137		
3	Nat'l 12-P-160	152	66	97	990	27545	50	2930		
		0			0	0	30	1379	1966.0	1.23
		0			0	0	40	2206		
		0			0	0	50	2930		

							CASIN	
Casing								
DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT	
13.375	340	690.6	690.0	6 1.22		tested surface Mixed and p slurry (736s) 637 bbls of	bbls sea water with dye, ce lines,Released bottom plug bumped 293bbls of Lead x) @ 1.5sg / Mixed & pumped Tail slurry 132sx @ 1.89sg. p plug and displaced cement ump plug.	
	٦	YPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD	
Well Head Non cross Casing just Float con Intermed Shoe join	ss joint oints llar joint diate joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress Buttress	
Person	nel : on s	Site =75						
_	antos nadrill IFS	34 D 6 B 3 Ti		22 TMT 1 Core	(marine) Eng		1 DOGC (other) 1 Halliburton	
Safety,	Inspecti	ons and Drills	Sumr	nary				
2 day	ys since last	Fire and Abandon Shi	p Drill					
1827 day	ys since last	Lost Workday Case						
60 day	ys since last	Medical Treatment Ca	se					
3 day	ys since last	First Aid Case	Derrick	man dislocated fir	nger.Finger back	in socket		
6 day	ys since last	Weekly Safety Meeting	g					
3 day	ys since last	Trip/Pit Drill						
8 day	ys since last	BOP Test	Tested	BOP on stump				
SHAKER SHAKER	R 1 4x145 R 2 4x145 R 3 4x145 R 4 4x115	HOLE 1		326 LOSSE 0.0 DOWN 0.0 SURF. 0.0 DUMP	HOLE 22 +EQUIP (ENGINEE 29 COMME 2.10 6.84 0.00	ER Carl Jensen / Jasdeep Si	
Anchor	S Anc			Anc 4 : Anc 9 :	Anc s		RIS. TENS. (MT) : RISER ANGLE (deg):	
Workboats Arri		·g	epart from Rig Esi Date)(Time)	timatedArrival (Port (Date)(Time)	VISIBILITY(nr WIND SP. (kt WIND DIR (dd PRES.(mbars	STACK ANGLE		

SANTOS

DATE: Oct 02, 2002 FROM: R.King / G.Othen
TO: Ole Moller.

CASINO 2

Well Data COUNTRY Australia FIELD Casino DRILL CO. Diamond Offshore RIG Ocean Bounty	PROGRESS (m) DAYS FROM SPUD	1,784.0 1,784.0 21.0 8.63	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT) FIT (sg) LOT (sg)	311 340 691 0.00 1.22	AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	10,800,000 P&A \$412,010 \$4,421,873
RT ABOVE SL (m) 25.0 WATER DEPTH (m) LAT 67.8 RT TO SEABED (m) 92.8	CURRENT OF @ 0600		2-1/4" Hole.(06:00hrs Deptil I 12-1/4" Hole to TD	h 1803m)	

Summary of period 00:00 to 24:00 hrs

Made up Core barrel, RIH / Cut Core / POOH / Prepared 12-1/4" BHA & RIH

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 02, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		НВН	00:00	00:30	0.50	1,763	Continued to Make up Core barrel
IH2	Р		TI	00:30	04:30	4.00	1,763	RIH to 1708m (Worked through tight spot @ 1120m, Wash and reamed 1140m to 1160m)
IH2	Р		TI	04:30	05:00	0.50	1,763	Precautionary wash and reamed F /- 1708m to 1730m (Took weight @ 1730m)
IH2	Р		RW	05:00	07:00	2.00	1,763	Wash and reamed F /- 1730m to 1763m (Taking 10-15Kips to ream) Max gas 18.72%
IH2	Р		CIC	07:00	07:30	0.50	1,763	Recorded up & down weights, dropped ball and monitored pressures. Took SCRs.
IH2	Р		COR	07:30	12:30	5.00	1,784	Cut core F /- 1763m to 1784m.
IH2	Р		CIR	12:30	14:30	2.00	1,784	Circulated bottoms up. Max gas 5%
IH2	Р		то	14:30	19:00	4.50	1,784	POOH F /- 1784m.
IH2	Р		HT	19:00	21:30	2.50	1,784	Held JSA. Laid out inner core barrel & Laid out outter barrels. (Cut 21m Recovered 19.3m = 92%)
IH2	Р		НВН	21:30	24:00	2.50	1,784	Picked up and surface tested FEWD tools. RIH with BHA.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 03, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		TI	00:00	01:00	1.00	1,784	Continued RIH to 690m (340mm Shoe)
IH2	Р		RS	01:00	01:30	0.50	1,784	Serviced TDS
IH2	Р		TI	01:30	03:00	1.50	1,784	Continued RIH to 1745m
IH2	Р		S	03:00	04:30	1.50	1,784	Logged hole F /- 1745m to 1784m @ 30m/hr
IH2	Р		D	04:30	06:00	1.50	1,803	Took SCRs. Drilled 311mm (12-1/4") Hole F /- 1784m to 1803m

WBM Data	COST T	ODAY: \$4,313	CUM. WB MUD COST: \$207,145				CUM. WBM+OBM COST: \$207,145					
Type: FROM: TIME: WEIGHT (sg): TEMP (C):	22:00	YP (Pa.s): GEL10s/10m/100m	3 5	50 0 12 2 24	API FLUID LOSS (cm3/30min): FILTER CAKE (mm): HTHPFL (cm3/30min): HTHP CAKE (mm):	5 1 23 0	CI: K+C*1000: HARD/Ca: MBT (ppb): PM: PF:	31,200 32400 160 11.0	SOLIDS (%vol): H2O (%vol): OIL (%vol): SAND: PH: PHPA (ppb):	11. 88.9 .3 10.0 1.4		

Bit Data for Bit #	5 IADC#			Wear	I O1 D T T T T T T T T T T T T T T T T T T	L N	B G O2 X I JD	R TD
SIZE ("): MANUFACTURER: TYPE: SERIAL #:	12.25 SE CD-93 7960859	AVE WOB (MT) : AVE RPM : FLOW (lpm) :	2 50 1,200	NOZZLES X 0 X 0 X 0	Drilled over the last 2- METERAGE (m): ON BOTTOM HRS: IADC DRILL. HRS:	4 hrs 21	Calculated over the b CUM.METERAGE (m) : CUM. ON BOT. HRS : CUM.IADC DR. HRS:	
DEPTH IN (mRT): DEPTH OUT (mRT):	1763 1784	PUMP PRESS.(Kpa): HSI (kW/cm2) :	7,929 0.000	x 0	TOTAL REVS: 1 ROP (m/hr):	3,800 4.6	CUM.TOT. REVS : ROP (m/hr) :	13,800 4.6

BHA#4 Length (m): 234.3 D.C. (1) ANN. VELOCITY (mpm): 29 WT BLW JAR (MT): 15 STRING WT (MT): 66 TRQE MAX (Nm): D.C. (2) ANN VELOCITY (mpm): 40 68 TRQE ON (Nm): H.W.D.P. ANN VELOCITY (mpm): PICK UP WT (MT): 19 BHA WT (MT): 25 64 | TRQE OFF (Nm): 7 D.P. ANN VELOCITY (mpm): 19 SLK OFF WT (MT):

BHA DESCRIPTION: 12.25 Core Head,12.218Stab,CoreBarrel,12.218Stab,

8"DC,Jars,2 x 8"DC,,X/O,12Xhwdp

	TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
JAR	S				WDAH-02872	75.0	

Survey (Method : Min Curvature) Last Tool Type :	MD (mBRT)	TVD (mBRT)	INCL DEG	AZ (deg)	CORR. AZ (deg)	'V' SECT (m)	DOGLEG (deg/ 30m)	N/S (m)	E/W (m)	TOOL TYPE
Magnetic Declination: 0.00	1130.6 1161.1 1181.9 1217.7 1277.8 1421.1 1509.0 1565.7		0.79 0.82 0.76 0.78 0.94 1.45 1.49	287.0 274.8 272.5	278.2 272.6 287.0 274.8 272.5 255.4					FEWD FEWD FEWD

Bulk **Stocks** On Rig

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	372.7	8.3	364.4	Drill Water - Rig	MT	708.0	77.0		631.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	sxs	1490.0			1490.0
Cement HTB - Rig	SXS			0.0	Bentonite - Rig	SXS	869.0			869.0
Barite - Rig	SXS	3543.0		3543.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	3500.0	705.0	2795.0	Fuel Oil - Conqueror	МЗ	403.9	7.5		396.4
Drill Water - Conqueror	MT	200.0		200.0	Pot Water - Conqueror	MT	175.0	5.0		170.0
Cement 'G' - Conqueror	SXS	0.0		0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	SXS	1692.0		1692.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	МТ			0.0	Fuel Oil - Sentinel	МЗ	382.2	5.9		376.3
Drill Water - Sentinel	MT	0.0		0.0	Pot Water - Sentinel	MT	225.0	5.0		220.0
Cement 'G' - Sentinel	SXS	0.0		0.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	SXS	238.0		238.0	Barite - Sentinel	SXS	3197.0			3197.0
Brine - Sentinel	MT			0.0						

Pump Data Pump Data - last 24 hrs **Slow Pump Data** DEPTH (m) MW (sg) **TYPE** LNR(mm) SPM EFF (%) Flow (Ipm) SPP (kPa) SPM SPP (kPa) Nat'l 12-P-160 152 401 7929 1931 66 97 30 1763.0 1.23 Nat'l 12-P-160 2 152 66 97 401 7929 40 2689 3 Nat'l 12-P-160 7929 50 152 66 97 401 3447 1763.0 1.23 0 0 0 30 1896 0 0 0 40 2689 0 0 0 50 3689

Casing	<u> </u>						CASINO
DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT
13.375	340	690.6	690.	1		tested surface Mixed and p slurry (736sx 637 bbls of 1	obls sea water with dye, be lines,Released bottom plug. umped 293bbls of Lead c) @ 1.5sg / Mixed & pumped Fail slurry 132sx @ 1.89sg. p plug and displaced cement ump plug.
	Т	YPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Hea Non cros Casing jo Float co Intermed Shoe joi	ss joint oints Ilar joint diate joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress Buttress
Person	nel : on S	Site =84					
· ·	antos nadrill FS	6 B	OGC HI MT (ROV)	1 Core	(marine) Eng umberger		2 DOGC (other) I Halliburton
3 day	ys since last	Fire and Abandon Shi Lost Workday Case Medical Treatment Ca		nary			
•		First Aid Case		man dislocated fin	ger.Finger bacl	k in socket	
0 day	ys since last	Weekly Safety Meeting	g				
4 day	ys since last	Trip/Pit Drill					
9 day	ys since last	BOP Test	Tested	BOP on stump			
Shaker	s. Volum	es and Losses Da	ta			ENGINEE	R Carl Jensen / Jasdeep Sin
SHAKER SHAKER SHAKER	R 1 4x145 R 2 4x145 R 3 4x145 R 4 4x115	VOLUME AVAI ACTIVE S HOLE 1		309 LOSSE 0.0 DOWNI 0.0 SURF 0.0 DUMPE	HOLE +EQUIP 1	16 COMME 4.61 1.60 0.00	•
Anchor	S Anc					5 : 127 10: 0	RIS. TENS. (MT): 105 RISER ANGLE (deg): 0.0
Pacific Copacific Se	onqueror : entinel :	· ·	Date)(Time)	timatedArrival (Port) (Date)(Time)	Weather VISIBILITY(n WIND SP. (k WIND DIR (d PRES.(mbars	ts): 30.0 leg): 320 s): 1015	STACK ANGLE(deg): 0.0 V.D.L. (MT): 20,640.0 AVE HEAVE (m): 0.9 MAX HEAVE (m): 1.2 AVE PITCH (deg): 0.4 MAX PITCH (deg): 0.6 AVE ROLL (deg): 0.3 MAX ROLL (deg): 0.3

SANTOS

DATE: Oct 03, 2002 FROM: R.King / S.Hodgetts TO: Ole Moller.

CASINO 2

Well Data		M.DEPTH (m BRT)	2 112 0	CUR.HOLE SIZE (mm)	51	AFE COST \$	12,100,000
COUNTRY	Australia	TVD (m BRT)	2,112.0	, ,	340	AFE BASIS :	P&A
FIELD	Casino		328.0	,	691	DAILY COST :	\$325,562
DRILL CO.	Diamond Offshore	DAYS FROM SPUD	9.63	FIT (sg)	0.00	CUM COST:	\$4,747,435
RIG	Ocean Bounty	DAYS +/- CURVE		LOT (sg)	1.22		
RT ABOVE SL (m) WATER DEPTH (m)	25.0) LAT 67.8	CURRENT OP @ 0600					
RT TO SEABED (m)	92.8	PLANNED OP.	Continued	d POOH. Rig & run wireling	e logs.		

Summary of period 00:00 to 24:00 hrs

Continued RIH to 1784m. Drilled 311mm (12.25") hole to TD at 2112m.

Circulated bottoms up.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 03, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		TI	00:00	01:00	1.00	1,784	Continued RIH to 690m (340mm Shoe)
IH2	Р		RS	01:00	01:30	0.50	1,784	Serviced TDS
IH2	Р		TI	01:30	03:00	1.50	1,784	Continued RIH to 1745m
IH2	Р		S	03:00	04:30	1.50	1,784	Logged hole F /- 1745m to 1784m at 30m/hr. Took SCR at 1784m.
IH2	Р		D	04:30	23:15	18.75	2,112	Drilled 311mm (12-1/4") hole from 1784m to 2112m.
IH2	Р		CS	23:15	24:00	0.75	2,112	Circulated bottoms up at TD.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 04, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		WT	00:00	01:00	1.00	2,112	Flow checked. Made wiper trip to 1755m. Worked tight hole from 1957m 20.5 tonne (45kip) overepull. Back reamed out of hole from 1895m to 1794m.
IH2	TP	TTE	WTH	01:00	02:30	1.50	2,112	Worked tight hole from 1957m 20.5 tonne (45kip) overepull. Back reamed out of hole from 1895m to 1794m.
IH2	Р		WT	02:30	03:00	0.50	2,112	Run back to bottom, no problems, no fill.
IH2	Р		CIR	03:00	04:30	1.50	2,112	Circulated bottoms up until clean. Boosted riser.
IH2	Р		TO	04:30	06:00	1.50	2,112	POOH to log, hole good.

00:00 TO 24:00 HRS ON :	3/10/2002	
Comments	Recommendations	Rig Requirements
Note correction to Barite and Gel figures on Sentinel now zero, transferred to rig 29/9/02 as per barge report.		

WBM Data	COST T	ODAY: \$21,313	CUM.	. WB	MUD COST: \$228,458		CUM. WB	м+овм со	ST: \$228,458	
Type: FROM: TIME: WEIGHT (sg): TEMP (C):	Pit 21:30 1.24	(* 55) .	5	57 0 11 2 25	API FLUID LOSS (cm3/30min): FILTER CAKE (mm): HTHPFL (cm3/30min): HTHP CAKE (mm):	5 1 20 2	CI: K+C*1000: HARD/Ca: MBT (ppb): PM: PF:	31,500 32400 160 12.0	SOLIDS (%vol): H2O (%vol): OIL (%vol): SAND: PH: PHPA (ppb):	10. 89.2 .5 9.5 1.5

Bit Data for Bit # 4	RR IADO	:#		Wear	I O1 D	L	B G O2	R
SIZE ("): MANUFACTURER:	12.25 HY	AVE MOD (MT)		NOZZLES	Drilled over the la	st 24 hrs	Calculated over the	bit run
	95DGUW	AVE WOB (MT) : AVE RPM :	3 175	5 x 15 x 0	METERAGE (m):		CUM.METERAGE (m)	
SERIAL #:	103926	FLOW (lpm) :	3,232	x 0	ON BOTTOM HRS IADC DRILL. HRS :		CUM. ON BOT. HRS : CUM.IADC DR. HRS:	16.0 18.0
DEPTH IN (mRT):	1763	PUMP PRESS.(Kpa):	21,932	X 0	TOTAL REVS :	168,000		168,000
DEPTH OUT (mRT):	2112	HSI (kW/cm2):	0.455	X 0	ROP (m/hr):	20.5	ROP (m/hr) :	20.5

BHA#6 Length (m): 310.0 D.C. (1) ANN. VELOCITY (mpm): 72 WT BLW JAR (MT): 34 STRING WT (MT): 159 | TRQE MAX (Nm): 14 D.C. (2) ANN VELOCITY (mpm): 80 161 TRQE ON (Nm): 10 H.W.D.P. ANN VELOCITY (mpm): BHA WT (MT): PICK UP WT (MT): 47 40 156 TRQE OFF (Nm): 5 D.P. ANN VELOCITY (mpm): 47 SLK OFF WT (MT):

BHA DESCRIPTION: 311mm (12.25") bit, 311mm (12.25")RR, ARC, Pulse t ool, ILS, Sonic, 311mm (12.25")RR, 1 x 203mm (8")DC, 311mmm (12.25")RR, 14 x 203mm (8")DC, Jars, 2 x 203mm (8")DC, x/o, 12 x HWDP

TOOL DESCRIPTION	LENGTH	OD	ID	SERIAL#	HRS	COMMENT
ARC				8031	21.0	
Pulse				130	21.0	
ILS				520	89.0	
ISonic				829	89.0	
Jars				WDAH-02872	96.0	

Survey (Method : M	in Curvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type:	FEWD	(mBRT)	(mBRT)	DEG	(deg)	AZ	SECT	(deg/	(m)	(m)	
						(deg)	(m)	30m)			
Magnetic Declination :	0.00	1622.2	1622.1	1.67	268.2	268.2	-2.1	0.0	-2.1	-12.4	FEWD
		1652.1	1651.9	1.45	253.8	253.8	-2.2	0.4	-2.2	-13.2	FEWD
		1796.1	1795.9	1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
		1853.4	1853.2	1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
		1911.2	1910.9	1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
		1998.7	1998.4	1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
		2028.1	2027.8	2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
		2085.4	2085.0	2.47	242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED	REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	364.4	14.5		349.9	Drill Water - Rig	МТ	631.0	87.0		542.0
Pot Water - Rig	MT	98.0	26.0	26.0	98.0	Cement 'G' - Rig	sxs	1490.0			1490.0
Cement HTB - Rig	sxs				0.0	Bentonite - Rig	sxs	869.0			869.0
Barite - Rig	sxs	3543.0	450.0		3093.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	2795.0			2795.0	Fuel Oil - Conqueror	МЗ	396.4			396.4
Drill Water - Conqueror	MT	200.0			200.0	Pot Water - Conqueror	MT	170.0			170.0
Cement 'G' - Conqueror	sxs	0.0			0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	sxs	1692.0			1692.0	Barite - Conqueror	sxs				0.0
Brine - Conqueror	МТ				0.0	Fuel Oil - Sentinel	МЗ	376.3	1.0		375.3
Drill Water - Sentinel	МТ	0.0			0.0	Pot Water - Sentinel	МТ	220.0	5.0		215.0
Cement 'G' - Sentinel	sxs	0.0			0.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	sxs	0.0			0.0	Barite - Sentinel	sxs	0.0			0.0
Brine - Sentinel	МТ				0.0						

Pump Data

		Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152	100	97	1610	22477	30	862	1784.0	1.25
2	Nat'l 12-P-160	152	100	97	1610	22477	40	1379		
3	Nat'l 12-P-160	152		97	0	0	50	2068		
		0			0	0	30	1034	1784.0	1.25
		0			0	0	40	1551		
		0			0	0	50	1896		

						<u> </u>	ASINO
Casing							
DIAM. CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT	
13.375 340	690.6	690.	6 1.22		tested surface Mixed and p slurry (736sx 637 bbls of 1	obls sea water with dyeste lines, Released botto umped 293bbls of Lead) @ 1.5sg / Mixed & putail slurry 132sx @ 1.8sp plug and displaced coump plug.	m plug. ad mped 9sg.
	TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD	
Well Head Non cross joint Casing joints Float collar joint Intermediate joint Shoe joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress Buttress	
Personnel : on	Site =86						
4 Santos 2 Anadrill 3 TMT (ROV)	34 DO 6 BH 7 Scl		1 Halli	(marine) burton DBS core		DOGC (other) IDFS	
Safety, Inspect	ions and Drills	Sumi	mary				
4 days since last	Fire and Abandon Ship	Drill					
1829 days since last	Lost Workday Case						
62 days since last	Medical Treatment Case	е					
5 days since last	First Aid Case	Derrick	man dislocated fir	nger.Finger back	in socket		
1 days since last	Weekly Safety Meeting						
5 days since las	Trip/Pit Drill						
10 days since last	BOP Test	Tested	BOP on stump				
Shakers, Volum	nes and Losses Data	 a			ENGINEE	R Carl Jensen / Jasde	eep Sin
SHAKER 1 4x145 SHAKER 2 4x145 SHAKER 3 4x145 SHAKER 4 4x115 SHAKER 5	VOLUME AVAIL ACTIVE 87	ABLE (m3) = .4 MIXING 9.4 SLUG	318 LOSSE 0.0 DOWN 0.0 SURF. 0.0 DUMP	HOLE 5	61 COMME 5.40 5.48 0.00		
Anchors Anc					5 : 122 10: 0	RIS. TENS. (MT) : RISER ANGLE (deg):	10:
Workboats	Og	part from Rig Es ate)(Time)	timatedArrival (Port (Date)(Time)	Weather VISIBILITY(ni	m): 12	STACK ANGLE(deg): V.D.L. (MT) : AVE HEAVE (m) :	0. 1,967. 1.
Pacific Conqueror Pacific Sentinel	30.09.02 21:30 3.10 29.09.02 11:46	.02 0:50 3.	7:00	WIND SP. (kt WIND DIR (d PRES.(mbars AIR TEMP (C	eg): 120): 1015	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):	1. 0. 0. 0.
COMMENTS: Pax	on/off Flt #1 6/4.			<u> </u>		MAX ROLL (deg) :	0.5

SANTOS

DATE: Oct 04, 2002 FROM: R.King / S.Hodgetts
TO: Ole Moller. CASINO 2

Well Data COUNTRY Australia FIELD Casino DRILL CO. Diamond Offshore RIG Ocean Bounty	TVD (m BRT) 2 PROGRESS (m) DAYS FROM SPUD	2,112.0 2,112.0 328.0 10.63	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT) FIT (sg) LOT (sg)	311 340 691 0.00 1.22	AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	12,100,000 P&A \$850,733 \$5,598,168	
RT ABOVE SL (m) 25.0 WATER DEPTH (m) LAT 67.8 RT TO SEABED (m) 92.8	CORRENT OF @ 0600 N	ŭ	vireline logs. wireline logging programme	e.			

Summary of period 00:00 to 24:00 hrs

Completed circulating bottoms up. POOH to log. Ran log #1 and commenced running log #2.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 04, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
IH2	Р		WT	00:00	01:00	1.00	2,112	Flow checked. Made wiper trip to 1755m. Worked tight hole from 1957m 20.5 tonne (45kip) overepull. Back reamed out of hole from 1895m to 1794m.
IH2	TP	TTE	WTH	01:00	02:30	1.50	2,112	Worked tight hole from 1957m 20.5 tonne (45kip) overepull. Back reamed out of hole from 1895m to 1794m.
IH2	Р		WT	02:30	03:00	0.50	2,112	Run back to bottom, no problems, no fill.
IH2	Р		CIR	03:00	04:30	1.50	2,112	Circulated bottoms up until clean. Boosted riser.
IH2	Р		ТО	04:30	10:00	5.50	2,112	Flow checked well and POOH to log, hole good. Laid dowm LWD tools and broke out bit.
E2	Р		LOG	10:00	11:30	1.50	2,112	Held JSA and rigged up to run wireline logs.
E2	Р		LOG	11:30	18:00	6.50	2,112	Ran log #1 (PEX-HALS-DSI-HNGS). L/O tools.
E2	Р		LOG	18:00	19:00	1.00	2,112	Prepared to run log #2. Power problem during surface checks.
E2	TP	LOG	LOG	19:00	19:45	0.75	2,112	Resolved power problem, completed surface checks.
E2	Р		LOG	19:45	24:00	4.25	2,112	Ran log #2 (MDT).

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 05, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
E2	Р		LOG	00:00	06:00	6.00	2,112	Continued running log #2 (MDT).

WBM Data	ODAY: (\$4,846)	JM.	WB	MUD COST: \$223,611	CUM. WBM+OBM COST: \$223,611						
Type:	KCL-PHPA	VISCOCITY (sec/ltr) PV (Pa.s):	:		57 0	API FLUID LOSS (cm3/30min) : FILTER CAKE	5	CI : K+C*1000 :	33,000 37800	SOLIDS (%vol) : H2O (%vol) :	10. 89.2
FROM:	Pit	YP (Pa.s):			11	(mm) :	1	HARD/Ca:	400	OIL (%vol):	
TIME : WEIGHT (sg):		GEL10s/10m/100m (Pa.s):	3	5	2	HTHPFL (cm3/30min) :	22	MBT (ppb) : PM :	13.0	SAND : PH :	.4 9.0
TEMP (C):		Fann 3/6/100 :	5	7	25	HTHP CAKE	2	PF:	.4	PHPA (ppb):	1.5
COMMENT:	COMMENT: negative daily cost due to stock correction.										

Bit Data for Bit # 4RR IADO	: #		Wear	0	01 4	D BT	L A	B X	G 1	O2 JD	R TD
SIZE ("): 12.25 MANUFACTURER: HY TYPE: DSX195DGUW SERIAL #: 103926 DEPTH IN (mRT): 1763	AVE WOB (MT): AVE RPM: FLOW (lpm): PUMP PRESS.(Kpa):	0 0 0	NOZZLES 5 X 15 X 0 X 0 X 0	METER ON BC	d over t	the last : m) : HRS :	24 hrs 0 .0	CUM.N	METERA ON BO	Over the AGE (m) F. HRS :	bit run
DEPTH OUT (mRT): 2112	HSI (kW/cm2): 0.0	000	X 0	ROP (r	m/hr) :			ROP (m/hr) :		20.5

Survey (Method : Min Cui	rvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type :	FEWD	(mBRT)	(mBRT)	DEG	(deg)	AZ	SECT	(deg/	(m)	(m)	
Magnetic Declination	0.00					(deg)	(m)	30m)			
Magnetic Declination:	0.00	1622.2	1622.1	1.67	268.2	268.2	-2.1	0.0	-2.1	-12.4	FEWD
		1652.1	1651.9	1.45	253.8	253.8	-2.2	0.4	-2.2	-13.2	FEWD
		1796.1	1795.9	1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
		1853.4	1853.2	1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
		1911.2	1910.9	1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
		1998.7	1998.4	1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
		2028.1	2027.8	2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
		2085.4	2085.0	2.47	242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED	REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	349.9	12.0		337.9	Drill Water - Rig	МТ	542.0	29.0		513.0
Pot Water - Rig	MT	98.0	23.0	23.0	98.0	Cement 'G' - Rig	SXS	1490.0			1490.0
Cement HTB - Rig	SXS				0.0	Bentonite - Rig	SXS	869.0			869.0
Barite - Rig	SXS	3093.0	34.0		3059.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	2795.0	198.0		2597.0	Fuel Oil - Conqueror	М3	396.4			396.4
Drill Water - Conqueror	MT	200.0			200.0	Pot Water - Conqueror	MT	170.0			170.0
Cement 'G' - Conqueror	SXS	0.0			0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	SXS	1692.0			1692.0	Barite - Conqueror	sxs				0.0
Brine - Conqueror	MT				0.0	Fuel Oil - Sentinel	М3	375.3	5.6		369.7
Drill Water - Sentinel	MT	0.0			0.0	Pot Water - Sentinel	MT	215.0	5.0		210.0
Cement 'G' - Sentinel	SXS	0.0			0.0	Cement HTB - Sentinel	SXS				0.0
Bentonite - Sentinel	SXS	0.0			0.0	Barite - Sentinel	SXS	0.0			0.0
Brine - Sentinel	МТ				0.0						

Pump Data

	ump 2000													
		Pump	Data - las	Slow Pump Data										
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)				
1	Nat'l 12-P-160	152		97	0	0	30	862	1784.0	1.25				
		0			0	0	40	1379						
		0			0	0	50	2068						
2	Nat'l 12-P-160	152		97	0	0	30	1034	1784.0	1.25				
		0			0	0	40	1551						
		0			0	0	50	1896						
3	Nat'l 12-P-160	152		97	0	0		0						

	•	

DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)			 COMMENT		
13.375	340	690.6	690.6	1.22	Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.		

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	10.70	319	107.1	N-80	Buttress
Non cross joint	12.11	319	107.1	N-80	Buttress
Casing joints	540.92	319	101.2	N-80	Buttress
Float collar joint	36.78	319	107.1	N-80	Buttress
Intermediate joint	24.49	319	107.1	N-80	Buttress
Shoe joint	12.41	321	107.1	N-80	Buttress

Personnel : on Site =85

4 Santos 34 DOGC 22 TMS (marine) 3 DOGC (other)

2 Anadrill 6 BHI 1 Halliburton 2 IDFS

3 TMT (ROV) 7 Schlumberger 1 Sec DBS core

Safety, Inspecti	ons and Drills	Summary
5 days since last	Fire and Abandon Ship Drill	
1830 days since last	Lost Workday Case	
63 days since last	Medical Treatment Case	
6 days since last	First Aid Case	Perrickman dislocated finger.Finger back in socket
2 days since last	Weekly Safety Meeting	
6 days since last	Trip/Pit Drill	
11 days since last	BOP Test	ested BOP on stump
SHAKER 2 4x145 SHAKER 3 4x145 SHAKER 4 4x115 SHAKER 5	VOLUME AVAILABLE (m3) = ACTIVE 79.5 MIXII HOLE 172.6 SLUC RESERVE 63.6 HEA	0.0 SURF.+EQUIP 1.59
Anchors Anc		3: 116 Anc 4: 100 Anc 5: 113 RIS. TENS. (MT): 10 8: 109 Anc 9: 0 Anc 10: 0 RISER ANGLE (deg): 0.
Workboats	Arrived @ Rig Depart from Rig (Date)(Time)	EstimatedArrival (Port)
	30.09.02 21:30 3.10.02 0:50 19.09.02 11:46	3.10.02 7:00 WIND SP. (kts): 30.0 MAX HEAVE (m): 1. WIND DIR (deg): 130 AVE PITCH (deg): 0. PRES.(mbars): 1017 MAX PITCH (deg): 0. AIR TEMP (C): 13.0 AVE ROLL (deg): 0.
		MAX ROLL (deg): 0.

SANTOS

DATE: Oct 05, 2002 FROM: R.King / S.Hodgetts
TO: Ole Moller. CASINO 2

Well Data COUNTRY Austral FIELD Casin DRILL CO. Diamond Offsho RIG Ocean Boun	TVD (m BRT) PROGRESS (m) DAYS FROM SPUD	2,112.0 C 328.0 S 11.63 F	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT) FIT (sg) .OT (sg)	311 340 691 0.00 1.22	AFE COST \$ AFE BASIS: DAILY COST: CUM COST:	12,100,000 P&A \$340,136 \$5,938,304
RT ABOVE SL (m) 25 WATER DEPTH (m) LAT 67 RT TO SEABED (m) 92	8 DIANNED OR	, ,	ubulars while waiting on ce & A programme.	ement	plug #2.	

Summary of period 00:00 to 24:00 hrs

Completed running log #2. Run Log #3. Rigged down Coflexip hose. RIH with 89mm tubing on DP. Prepare to set plug #1.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 05, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION	
E2	Р		LOG	00:00	08:30	8.50	2,112	Continued running log #2 (MDT).	
E2	Р		LOG	08:30	14:00	5.50	2,112	Ran log #3 (CST), shot 30, rec 26, empty 4, lost 0. Rigged down wireline.	
ABN	Р		НВН	14:00	17:00	3.00	2,112	Rigged down coflexip test lines and Anadrill 'T' manifold from standpipe.	
ABN	Р		ΤI	17:00	23:00	6.00	2,112	Picked up 89mm (3.5") tubing cement stinger and RIH on DP.	
ABN	Р		CIR	23:00	24:00	1.00	2,112	Break circulation and spot 50bbl Hivis pill on bottom.	

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 06, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		СМР	00:00	01:30	1.50	2,112	POOH to 2000m. Set cement plug #1 (452sx) from 2000 to 1825m.
ABN	Р		TO	01:30	02:00	0.50	2,112	POOH slowly to 1825m.
ABN	Р		CMP	02:00	03:00	1.00	2,112	Set cement plug #2 (904sx) from 1825 to 1550m.
ABN	Р		TO	03:00	04:00	1.00	2,112	POOH slowly to 1520m.
ABN	Р		CIR	04:00	05:00	1.00	2,112 Reverse circulated string clean dumping contaminated mud.	
ABN	Р		CIR	05:00	06:00	1.00	2,112	POOH laying out excess tubulars while waiting on cement.

WBM Data	COST TO	ODAY: \$2,441	CUM. WB MUD COST: \$226,052				CUM. WBM+OBM COST: \$226,052				
Type:	KCL-PHPA	VISCOCITY (sec/ltr) PV (Pa.s):	:	57 0	API FLUID LOSS (cm3/30min) : FILTER CAKE	5	CI : K+C*1000 :	33,000 37800	SOLIDS (%vol) : H2O (%vol) :	10. 89.2	
FROM:	Pit	YP (Pa.s):		11	(mm) :	1	HARD/Ca:	400	OIL (%vol):		
TIME : WEIGHT (sg):	23:00 1.24	GEL10s/10m/100m (Pa.s):	3 5	2	HTHPFL (cm3/30min):	22	MBT (ppb) : PM :	13.0	SAND : PH :	.4 9.0	
TEMP (C):		Fann 3/6/100 : 5	5 7	25	HTHP CAKE	2	PF:	.4	PHPA (ppb):	1.5	

Survey (Method: Min (Last Tool Type:	FEWD (mBRT)	TVD (mBRT)	INCL DEG	AZ (deg)	CORR. AZ (deg)	'V' SECT (m)	DOGLEG (deg/ 30m)	N/S (m)	E/W (m)	TOOL TYPE
Magnetic Declination :	0.00 1622.2 1652.1 1796.1 1853.4 1911.2 1998.7 2028.1	1651.9 1795.9 1853.2 1910.9 1998.4 2027.8	1.43 1.50 1.48 1.91 2.08	268.2 253.8 250.2 250.2 243.7 243.2 243.1 242.1	253.8 250.2 250.2 243.7 243.2 243.1	-2.1 -2.2 -3.3 -3.8 -4.4 -5.5 -6.0	0.0 0.4 0.0 0.0 0.1 0.1 0.2 0.2	-2.1 -2.2 -3.3 -3.8 -4.4 -5.5 -6.0 -7.1	-12.4 -13.2 -16.6 -18.0 -19.4 -21.7 -22.6 -24.6	FEWD FEWD FEWD FEWD

Bulk						
Sto	cks					
On	Rig					

STOCK TYPE & UNITS		START	USED	REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	337.9	4.8		333.1	Drill Water - Rig	MT	513.0	61.0		452.0
Pot Water - Rig	MT	98.0	22.0	22.0	98.0	Cement 'G' - Rig	SXS	1490.0			1490.0
Cement HTB - Rig	SXS				0.0	Bentonite - Rig	SXS	869.0			869.0
Barite - Rig	SXS	3059.0			3059.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	2597.0	209.0		2388.0	Fuel Oil - Conqueror	МЗ	342.9	8.3		334.6
Drill Water - Conqueror	MT	200.0		400.0	600.0	Pot Water - Conqueror	MT	170.0	5.0		165.0
Cement 'G' - Conqueror	SXS	0.0		971.0	971.0	Cement HTB - Conquero	SXS				0.0
Bentonite - Conqueror	SXS	1692.0			1692.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	MT				0.0	Fuel Oil - Sentinel	МЗ	369.7	9.6		360.1
Drill Water - Sentinel	MT	0.0			0.0	Pot Water - Sentinel	MT	210.0	5.0		205.0
Cement 'G' - Sentinel	SXS	0.0			0.0	Cement HTB - Sentinel	SXS				0.0
Bentonite - Sentinel	sxs	0.0			0.0	Barite - Sentinel	SXS	0.0			0.0
Brine - Sentinel	МТ				0.0						

Pump	Data
------	------

		Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152		97	0	0	30	862	1784.0	1.25
		0			0	0	40	1379		
		0			0	0	50	2068		
2	Nat'l 12-P-160	152		97	0	0	30	1034	1784.0	1.25
		0			0	0	40	1551		
		0			0	0	50	1896		
3	Nat'l 12-P-160	152		97	0	0		0		

SI	a

DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)	COMMENT
13.375	340	690.6	690.6	1,22		Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	10.70	319	107.1	N-80	Buttress
Non cross joint	12.11	319	107.1	N-80	Buttress
Casing joints	540.92	319	101.2	N-80	Buttress
Float collar joint	36.78	319	107.1	N-80	Buttress
Intermediate joint	24.49	319	107.1	N-80	Buttress
Shoe joint	12.41	321	107.1	N-80	Buttress

Personnel : on Site =81

4 Santos 33 DOGC 22 TMS (marine) 2 DOGC (other)

1 Anadrill 3 BHI 1 Halliburton 1 IDFS 3 TMT (ROV) 7 Schlumberger 3 Expro 1 DrilQuip

Safety	Inspections	and Drills

Summary

6 days since last Fire and Abandon Ship Drill

1831 days since last Lost Workday Case

64 days since last Medical Treatment Case

7 days since last First Aid Case Derrickman dislocated finger. Finger back in socket

3 days since last Weekly Safety Meeting

7 days since last Trip/Pit Drill

12 days since last BOP Test Tested BOP on stump

Shakers, Volu	mes and	d Losses	Data					E	NGINEER	R Carl Jensen	
SHAKER 1 4x14 SHAKER 2 4x14	-	VOLUME A	VAILABLI	E (m3) =	297	LOSSES	S (m3) =	0 0	COMMEN	ITS	
SHAKER 3 4x14 SHAKER 4 4x11 SHAKER 5	-	ACTIVE HOLE RESERVE	79.5 154.4 63.6	MIXING SLUG HEAVY	0.0 0.0 0.0	SURF.+	EQUIP	0.00 0.00 0.00			
	nc 1: 12		2 : 145 7 : 145	Anc 3 Anc 8		Anc 4 : 1 Anc 9 : 0		Anc 5 : 127 Anc 10: 0		RIS. TENS. (MT): RISER ANGLE (deg):	105 0.0
Workboats	Arrived (Date)	@ Rig (Time)	Depart fr (Date)(0	Estimated (Date)	Arrival (Port) Time)	Weat	her LITY(nm) :	10	STACK ANGLE(deg): V.D.L. (MT) : AVE HEAVE (m) :	0.0 1,840.1 0.9
Pacific Conqueror Pacific Sentinel	5.10.02 29.09.02	2:30 11:46	5.10.02	20:25	6.10.02	2:00	WIND I	SP. (kts) : DIR (deg) : mbars):	25.0 140 1015	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg):	1.5 0.5 0.8
COMMENTS: P	ax on/off	Flt #1 4/8.					AIR TE	MP (C) :	13.0	AVE ROLL (deg) : MAX ROLL (deg) :	0.3 0.7

SANTOS

DATE: Oct 06, 2002 FROM: R.King / S.Hodgetts
TO: Ole Moller. CASINO 2

Well Data COUNTRY FIELD	Australia Casino	PROGRESS (m)	2,112.0 2,112.0	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT)	311 340 691	AFE COST \$ AFE BASIS : DAILY COST :	12,100,000 P&A \$351,248
DRILL CO. RIG	Diamond Offshore Ocean Bounty	DAYS FROM SPUD	12.63	FIT (sg) LOT (sg)	0.00 1.22	CUM COST :	\$6,289,552
RT ABOVE SL (m)	25.0 n) LAT 67.8	CURRENT OF @ 0600) Laying ou	t remaining drill string.			
WATER DEPTH (m) LAT 67.8 RT TO SEABED (m) 92.8		DI ANNED OD	Continue anchors.	P & A programme. Pull B0	OP, reco	ver wellhead, back	load, pull

Summary of period 00:00 to 24:00 hrs

Set P & A cement plugs #1 & 2. Tagged #2, pulled out laying out excess tubulars. Set plug #3 across shoe. Continued laying out DP. Tagged plug #3.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 06, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		CMP	00:00	01:30	1.50	2,112	POOH to 2000m. Set 175m 1.9sg (15.8ppg) cement plug #1, 14.8 m3 (94bbl) slurry (452sx 'G' cement) from 2000 to 1825m.
ABN	Р		то	01:30	02:00	0.50	2,112	POOH slowly to 1825m.
ABN	Р		CMP	02:00	03:00	1.00	2,112	Set 275m 1.9sg (15.8ppg) cement plug #2, 29.7 m3 (187bbl) slurry (904sx 'G' cement) from 1825 to 1550m.
ABN	Р		то	03:00	04:00	1.00	2,112	POOH slowly to 1520m.
ABN	Р		CIR	04:00	05:00	1.00	2,112	Reverse circulated string clean dumping contaminated mud.
ABN	Р		LDP	05:00	11:30	6.50	2,112	POOH laying out excess tubulars while waiting on cement.
ABN	Р		TI	11:30	12:00	0.50	2,112	RIH and tagged TOC plug #2 at 1520m with 4.5 tonne (10 kip).
ABN	Р		LDP	12:00	14:30	2.50	2,112	POOH to780m. Laid out excess DP. Spotted (30bbl) hi vis pill. POOH to 720m.
ABN	Р		CMP	14:30	15:30	1.00	2,112	Set 80m 1.9sg (15.8ppg) cement plug #3, 720-640m, 12.7m3 (80bbbl) slurry (387sx 'G' cement).
ABN	Р		CMP	15:30	16:00	0.50	2,112	Pulled back to 605m and reverse circulated the 6.4m3 (40bbls) at 2.7 MPa (400psi).
ABN	Р		LDP	16:00	21:00	5.00	2,112	Laid out DP from 605 to 185m.
ABN	Р		CMP	21:00	22:00	1.00	2,112	RIH and tagged TOC plug #3 at 608m with 4.5 tonne (10 kip).
ABN	Р		LDP	22:00	24:00	2.00	2,112	POOH laying out 127mm (5") DP and 89mm (3.5") tubing stinger.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 07, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		LDP	00:00	01:00	1.00	2,112	Continued laying out 89mm (3.5") tubing stinger.
ABN	Р		ВОР	01:00	02:00	1.00	2,112	M/U wearbushing R/T, RIH. Latched wearbushing and pulled with
								27.2 tonne (60kip) overpull. POOH.
ABN	Р		CMP	02:00	03:30	1.50	2,112	M/U 340mm (13.3/8") bridge plug, RIH. Set packer at 177m, pulled
								back above packer and rigged to set cement plug.
ABN	Р		CMP	03:30	04:00	0.50	2,112	Pumped (5bbls) water ahead. Tested packer and cement lines to 6.9
								MPa (1000psi). Set 50m 1.9sg (15.8ppg) cement plug #4, 177-127m,
								3.9m3 (24.7bbbl) slurry (120sx 'G' cement).
ABN	Р		CIR	04:00	05:30	1.50	2,112	Pulled back to 120m and reverse circulated. Displaced hole to
								seawater, flushed lines.
ABN	Р		LDP	05:30	06:00	0.50	2,112	POOH laying out remaining tubulars.

Survey (Method : Min Cu	urvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type:	FEWD	(mBRT)	(mBRT)	DEG	(deg)	AZ (dog)	SECT	(deg/ 30m)	(m)	(m)	
Managatia Daalinatian	0.00					(deg)	(m)	30111)			
Magnetic Declination :	0.00	1622.2	1622.1	1.67	268.2	268.2	-2.1	0.0	-2.1	-12.4	FEWD
		1652.1	1651.9	1.45	253.8	253.8	-2.2	0.4	-2.2	-13.2	FEWD
		1796.1	1795.9	1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
		1853.4	1853.2	1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
		1911.2	1910.9	1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
		1998.7	1998.4	1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
		2028.1	2027.8	2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
		2085.4	2085.0	2.47	242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED	REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	333.1	9.7		323.4	Drill Water - Rig	МТ	452.0	58.0		394.0
Pot Water - Rig	MT	98.0	24.0	24.0	98.0	Cement 'G' - Rig	SXS	1490.0	1894.0	971.0	567.0
Cement HTB - Rig	sxs				0.0	Bentonite - Rig	SXS	869.0			869.0
Barite - Rig	sxs	3059.0			3059.0	Brine - Rig	МТ				0.0
Helifuel - Rig	ltr	2388.0	271.0		2117.0	Fuel Oil - Conqueror	М3	334.6	4.1		330.5
Drill Water - Conqueror	MT	600.0			600.0	Pot Water - Conqueror	MT	165.0	5.0		160.0
Cement 'G' - Conqueror	sxs	971.0			0.0	Cement HTB - Conquero	SXS				0.0
Bentonite - Conqueror	sxs	1692.0			1692.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	MT				0.0	Fuel Oil - Sentinel	МЗ	360.1	10.7		349.4
Drill Water - Sentinel	МТ	0.0			0.0	Pot Water - Sentinel	МТ	205.0	5.0		200.0
Cement 'G' - Sentinel	sxs	0.0			0.0	Cement HTB - Sentinel	SXS				0.0
Bentonite - Sentinel	sxs	0.0			0.0	Barite - Sentinel	sxs	0.0			0.0
Brine - Sentinel	MT				0.0						

Pump Data

<u> </u>	np Bata									
		Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152		97	0	0	30	862	1784.0	1.25
		0			0	0	40	1379		
		0			0	0	50	2068		
2	Nat'l 12-P-160	152		97	0	0	30	1034	1784.0	1.25
		0			0	0	40	1551		
		0			0	0	50	1896		
3	Nat'l 12-P-160	152		97	0	0		0		

	n	

DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)	COMMENT
13.375	340	690.6	690.6	1.22		Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	10.70	319	107.1	N-80	Buttress
Non cross joint	12.11	319	107.1	N-80	Buttress
Casing joints	540.92	319	101.2	N-80	Buttress
Float collar joint	36.78	319	107.1	N-80	Buttress
Intermediate joint	24.49	319	107.1	N-80	Buttress
Shoe joint	12.41	321	107.1	N-80	Buttress

Personnel : on Site =81

2 Santos 33 DOGC 22 TMS (marine) 3 DOGC (other)
2 BHI 1 Halliburton 6 TMT (ROV) 4 Schlumberger
5 Expro 1 DrilQuip 2 Smith

Safety, Inspec	ctions and Dri	lls	Sumr	mary					
0 days since la	ast Fire and Aban	ndon Ship Drill							
1832 days since la	ast Lost Workday (Case							
65 days since la	ast Medical Treat	ment Case							
0 days since la	ast First Aid Case		Rousta	bout bruising &	swelling o	n 2 fingers.			
4 days since la	ast Weekly Safety	Meeting							
8 days since la	ast Trip/Pit Drill								
13 days since la	ast BOP Test		Tested	BOP on stump					
	nc 1: 120 nc 6: 136	Anc 2 : 1338 Anc 7 : 143	Anc 3 : 11 Anc 8 : 95	-		Anc 5 : 109 Anc 10: 0		RIS. TENS. (MT) : RISER ANGLE (deg):	105 0.0
Workboats	Arrived @ Rig (Date)(Time)	Depart fro (Date)(Ti		timatedArrival (P (Date)(Time)	/ 1100	ather BILITY(nm):	5	STACK ANGLE(deg): V.D.L. (MT) : AVE HEAVE (m) :	0.0 1,720.4 1.2
Pacific Conqueror Pacific Sentinel	6.10.02 12:30 29.09.02 11:46		14:42 6.	10.02 19:20	WINE PRES	O SP. (kts): O DIR (deg): S.(mbars): FEMP (C):	30.0 350 1012 17.0	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):	1.5 0.7 0.7 0.5
								MAX ROLL (deg):	0.5

SANTOS

DATE: Oct 07, 2002 FROM: R.King / S.Hodgetts
TO: Ole Moller. CASINO 2

Well Data COUNTRY FIELD DRILL CO. RIG	Australia Casino Diamond Offshore Ocean Bounty	PROGRESS (m) DAYS FROM SPUD	2,112.0 2,112.0 13.63	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT) FIT (sg) LOT (sg)	311 340 691 0.00 1.22	AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	12,100,000 P&A \$323,726 \$6,613,278
RT ABOVE SL (m) WATER DEPTH (r RT TO SEABED (n	m) LAT 67.8	CURRENT OF @ 0600	•	62mm (30") wellhead. wellhead, PGB, TGB. Lay	out rema	aining tubulars. Ba	ckload, pull

Summary of period 00:00 to 24:00 hrs

L/O 89mm (3.5") tubing. Retrieved wearbushing. Ran & set bridge plug. Set cement plug #4. Displaced riser and pulled BOP. Commenced cutting wellhead housings.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 07, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		LDP	00:00	01:00	1.00	2,112	Continued laying out 89mm (3.5") tubing stinger.
ABN	Р		ВОР	01:00	02:00	1.00	2,112	M/U wearbushing R/T, RIH. Latched wearbushing and pulled with 27.2 tonne (60kip) overpull. POOH.
ABN	Р		CMP	02:00	03:30	1.50	2,112	M/U 340mm (13.3/8") bridge plug, RIH. Set packer at 177m, pulled back above packer and rigged to set cement plug.
ABN	Р		CMP	03:30	04:00	0.50	2,112	Pumped (5bbls) water ahead. Tested packer and cement lines to 6.9 MPa (1000psi). Set 50m 1.9sg (15.8ppg) cement plug #4, 177-127m, 3.9m3 (24.7bbbl) slurry (120sx 'G' cement).
ABN	Р		CIR	04:00	05:30	1.50	2,112	Pulled back to 120m and reverse circulated. Displaced hole to seawater, flushed lines.
ABN	Р		LDP	05:30	06:00	0.50	2,112	POOH laying out remaining tubulars.
ABN	Р		BOP	06:00	09:00	3.00	2,112	Held JSA, rigged to pull BOPand pulled diverter.
ABN	Р		ВОР	09:00	13:30	4.50	2,112	P/U landing joint & M/U to slip joint. Unlatched BOP, rigged down MRT's, pod line saddles, ruckers, C & K lines.
ABN	Р		ВОР	13:30	19:00	5.50	2,112	Pulled BOP, laid out landing joint, slip joint and riser. Landed BOP's on skid beams and secured. Split stack and stood back.
ABN	Р		WH	19:00	22:30	3.50	2,112	Picked up and made up 508/762mm (20"/30") casing cutter assembly, RIH and set to cut at 95m.
ABN	Р		WH	22:30	24:00	1.50	2,112	Made cut on 508/762mm (20"/30") casing at 95m with 9 tonne (20 kip) O/P. 110rpm & 6.2MPa (900psi).

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 08, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		WH	00:00	00:30	0.50	2,112	Pulled 476mm (18.3/4") wellhead housing free separated from
								762mm (30") housing. POOH.
ABN	Р		WH	00:30	01:00	0.50	2,112	Laid out 476mm (18.3/4") wellhead housing.
ABN	Р		WH	01:00	02:00	1.00	2,112	Changed out cutter assembly for 762mm (30") service.
ABN	Р		WH	02:00	02:30	0.50	2,112	RIH with cutting assembly and positioned to complete cutting.
ABN	Р		WH	02:30	06:00	3.50	2,112	Stabbed into housing, took 58.9 tonne (130kip) overpull and made cut
								on conductor (02:45) with 13.6 tonne (30kip) tension.

Survey (Method : Min Cu	urvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type:	FEWD	(mBRT)	(mBRT)	DEG	(deg)	AZ (dog)	SECT	(deg/ 30m)	(m)	(m)	
Managatia Daalinatian	0.00					(deg)	(m)	30111)			
Magnetic Declination :	0.00	1622.2	1622.1	1.67	268.2	268.2	-2.1	0.0	-2.1	-12.4	FEWD
		1652.1	1651.9	1.45	253.8	253.8	-2.2	0.4	-2.2	-13.2	FEWD
		1796.1	1795.9	1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
		1853.4	1853.2	1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
		1911.2	1910.9	1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
		1998.7	1998.4	1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
		2028.1	2027.8	2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
		2085.4	2085.0	2.47	242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED	REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	323.4	7.2		316.2	Drill Water - Rig	МТ	394.0	31.0		363.0
Pot Water - Rig	MT	98.0	23.0	23.0	98.0	Cement 'G' - Rig	SXS	567.0	397.0		170.0
Cement HTB - Rig	sxs				0.0	Bentonite - Rig	SXS	869.0			869.0
Barite - Rig	sxs	3059.0			3059.0	Brine - Rig	МТ				0.0
Helifuel - Rig	ltr	2117.0	388.0		1729.0	Fuel Oil - Conqueror	МЗ	330.5	23.9		306.6
Drill Water - Conqueror	MT	600.0			600.0	Pot Water - Conqueror	MT	160.0	5.0	30.0	185.0
Cement 'G' - Conqueror	sxs	0.0			0.0	Cement HTB - Conquero	SXS				0.0
Bentonite - Conqueror	sxs	1692.0			1692.0	Barite - Conqueror	SXS				0.0
Brine - Conqueror	MT				0.0	Fuel Oil - Sentinel	МЗ	349.4	5.4		344.0
Drill Water - Sentinel	МТ	0.0			0.0	Pot Water - Sentinel	МТ	200.0	5.0		195.0
Cement 'G' - Sentinel	sxs	0.0			0.0	Cement HTB - Sentinel	SXS				0.0
Bentonite - Sentinel	sxs	0.0			0.0	Barite - Sentinel	sxs	0.0			0.0
Brine - Sentinel	MT				0.0						

Pump Data

Tump Bata														
		Pump	Data - las		Slow Pump Data									
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)				
1	Nat'l 12-P-160	152		97	0	0	30	862	1784.0	1.25				
		0			0	0	40	1379						
		0			0	0	50	2068						
2	Nat'l 12-P-160	152		97	0	0	30	1034	1784.0	1.25				
		0			0	0	40	1551						
		0			0	0	50	1896						
3	Nat'l 12-P-160	152		97	0	0		0						

	•	

DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)	COMMENT
13.375	340	690.6	690.6	1.22		Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	10.70	319	107.1	N-80	Buttress
Non cross joint	12.11	319	107.1	N-80	Buttress
Casing joints	540.92	319	101.2	N-80	Buttress
Float collar joint	36.78	319	107.1	N-80	Buttress
Intermediate joint	24.49	319	107.1	N-80	Buttress
Shoe joint	12.41	321	107.1	N-80	Buttress

Personnel : on Site =74

3 Santos 34 DOGC 22 TMS (marine) 2 DOGC (other)
2 BHI 1 Halliburton 6 TMT (ROV) 1 Schlumberger

1 DrilQuip 2 Smith

Safety, Inspection	ons and Drills	Summary
1 days since last	Fire and Abandon Ship Drill	
1833 days since last	Lost Workday Case	
66 days since last	Medical Treatment Case	
1 days since last	First Aid Case	Roustabout bruising & swelling on 2 fingers.
5 days since last	Weekly Safety Meeting	
9 days since last	Trip/Pit Drill	
14 days since last	BOP Test	Tested BOP on stump
0 days since last	Incident	Dropped Object

Anchors	Anc 1 : Anc 6 :	118 150		Anc 2: 129 Anc 7: 132	Anc 3 : Anc 8 :		Anc 4: 13 Anc 9: 0	Anc 5 : 150 Anc 10: 0		RIS. TENS. (MT): RISER ANGLE (deg):	0 0.0
Workboats		ved @ ate)(Ti	0	Depart from Rig (Date)(Time)			edArrival (Port) e)(Time)	Weather VISIBILITY(nm):	5	STACK ANGLE(deg): V.D.L. (MT): AVE HEAVE (m):	0.0 1,696.9
Pacific Conquer Pacific Sentinel	or 7.10 29.0		10:30 11:46	7.10.02	10:30	7.10.02	2 20:00	WIND SP. (kts): WIND DIR (deg): PRES.(mbars): AIR TEMP (C):	45.0 300 998 12.0	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):	1.5 1.5 1.0
COMMENTS :	Pax on/o	off Flt	#1 8/	8, Flt #2 1/8.						MAX ROLL (deg) :	1.0

SANTOS

DATE: Oct 08, 2002 FROM: R.King / S.Hodgetts
TO: Ole Moller. CASINO 2

Well Data	M.DEPTH (m BRT)	2 112 0	CUR.HOLE SIZE (mm)	311	AFE COST \$	12,100,000		
COUNTRY Australia	TVD (m BRT)	2,112.0	CASING OD (mm)	340	AFE BASIS :	P&A		
FIELD Casino	PROGRESS (m)	, -	SHOE TVD (m BRT)	691	DAILY COST :	\$372,028		
DRILL CO. Diamond Offshore	DAYS FROM SPUD	14.63	FIT (sg)	0.00	CUM COST:	\$6,985,306		
RIG Ocean Bounty	DAYS +/- CURVE		LOT (sg)	1.22				
RT ABOVE SL (m) 25.0 WATER DEPTH (m) LAT 67.8	CURRENT OP @ 0600	Attemptin	g to recover 762mm (30") v	wellhead	I.			
RT TO SEABED (m) 92.8	PLANNED OP.	ANNED OP. Recover wellhead, PGB, TGB. Lay out remaining tubulars. Backload Sa and contractor equipment, pull anchors.						

Summary of period 00:00 to 24:00 hrs

Continued cutting wellhead housings. Replaced 2 sets of knives. Attempted overpull after positive indications without success. Release grapple and POOH. Continued to WOW to backload vessels.

l	FORMATION	TOP(m BRT)
ı	MASSACRE	1,132
١	SKULL CREEK	1,271
ı	PAARATE	1,369
١	BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 08, 2002

PHS	CL	RC	OP	FROM	то	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	P	1.0	WH	00:00	00:30	0.50	2,112	Pulled 476mm (18.3/4") wellhead housing free separated from 762mm (30") housing. POOH.
ABN	Р		WH	00:30	01:00	0.50	2,112	Laid out 476mm (18.3/4") wellhead housing.
ABN	Р		WH	01:00	02:00	1.00	2,112	Changed out cutter assembly for 762mm (30") service.
ABN	Р		WH	02:00	02:30	0.50	2,112	RIH with cutting assembly and positioned to complete cutting.
ABN	Р		WH	02:30	11:00	8.50	2,112	Stabbed into housing, took 58.9 tonne (130kip) overpull and made cut on conductor (02:45) with 13.6 tonne (30kip) tension.
ABN	Р		WH	11:00	12:00	1.00	2,112	Attempted to pull cut conductor with 91 tonne (200kip) overpull, without success. Released grapple and POOH.
ABN	Р		WH	12:00	13:00	1.00	2,112	Relpaced cutters, removed spacer sub and RIH.
ABN	Р		WH	13:00	18:00	5.00	2,112	Continued to cut casing.
ABN	Р		WH	18:00	24:00	6.00	2,112	Made several attempts to pull casing, 136 tonne (300kip) overpull. Continued to cut casing between attempts.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 09, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		WH	00:00	06:00	6.00		Pull cutting assembly, bent cutter arms, but cut out to 1117mm (44"). Attempted to recover casing with Housing running tool, without success pulled to max 136 tonne (300kip) overpull. Continued to WOW to backload AHSV.

Survey (Method : Min C	urvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type :	FEWD	(mBRT)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic Declination :	0.00					` 0,	, ,	<u> </u>			
Magnetic Declination.	0.00	1622.2	1622.1	1.67	268.2	268.2	-2.1	0.0	-2.1	-12.4	FEWD
		1652.1	1651.9	1.45	253.8	253.8	-2.2	0.4	-2.2	-13.2	FEWD
		1796.1	1795.9	1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
		1853.4	1853.2	1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
		1911.2	1910.9	1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
		1998.7	1998.4	1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
		2028.1	2027.8	2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
		2085.4	2085.0	2.47	242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bul	k
Sto	cks
On	Rig

STOCK TYPE & UNITS		START	USED	REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	316.2	8.3		307.9	Drill Water - Rig	МТ	363.0	19.0		344.0
Pot Water - Rig	MT	98.0	29.0	29.0	98.0	Cement 'G' - Rig	SXS	170.0			170.0
Cement HTB - Rig	SXS				0.0	Bentonite - Rig	sxs	869.0			869.0
Barite - Rig	SXS	3059.0			3059.0	Brine - Rig	MT				0.0
Helifuel - Rig	ltr	1729.0	710.0		1019.0	Fuel Oil - Conqueror	МЗ	306.6	4.8		301.8
Drill Water - Conqueror	MT	600.0			600.0	Pot Water - Conqueror	MT	185.0	5.0		180.0
Cement 'G' - Conqueror	SXS	0.0			0.0	Cement HTB - Conquero	sxs				0.0
Bentonite - Conqueror	SXS	1692.0			1692.0	Barite - Conqueror	sxs				0.0
Brine - Conqueror	MT				0.0	Fuel Oil - Sentinel	МЗ	344.0	13.4		330.6
Drill Water - Sentinel	MT	0.0		300.0	300.0	Pot Water - Sentinel	MT	195.0		45.0	240.0
Cement 'G' - Sentinel	SXS	0.0		1906.0	1906.0	Cement HTB - Sentinel	sxs				0.0
Bentonite - Sentinel	SXS	0.0			0.0	Barite - Sentinel	sxs	0.0			0.0
Brine - Sentinel	MT				0.0						

Pump	Data
------	------

		Pump	Data - las	Slow Pump Data						
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152		97	0	0	30	862	1784.0	1.25
		0			0	0	40	1379		
		0			0	0	50	2068		
2	Nat'l 12-P-160	152		97	0	0	30	1034	1784.0	1.25
		0			0	0	40	1551		
		0			0	0	50	1896		
3	Nat'l 12-P-160	152		97	0	0		0		

ına

DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)	COMMENT
13.375	340	690.6	690.6	1.22		Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	10.70	319	107.1	N-80	Buttress
Non cross joint	12.11	319	107.1	N-80	Buttress
Casing joints	540.92	319	101.2	N-80	Buttress
Float collar joint	36.78	319	107.1	N-80	Buttress
Intermediate joint	24.49	319	107.1	N-80	Buttress
Shoe joint	12.41	321	107.1	N-80	Buttress

Personnel : on Site =75

3 Santos 33 DOGC 22 TMS (marine) 4 DOGC (other) 2 BHI 2 Halliburton 3 TMT (ROV) 1 Schlumberger

1 DrilQuip 2 Smith 2 Telstra

Safaty	Inspections	and Drille	
Salety.	inspections	and Drills	

Summary

2 days since last Fire and Abandon Ship Drill

1834 days since last Lost Workday Case

67 days since last Medical Treatment Case

2 days since last First Aid Case Roustabout bruising & swelling on 2 fingers.

6 days since last Weekly Safety Meeting

10 days since last Trip/Pit Drill

15 days since last BOP Test Tested BOP on stump

1 days since last Incident Dropped Object

CASINO 2

Anchors	Anc 1:	122	Anc 2: 134	Anc 3	: 145	Anc 4: 10	9 Anc 5 : 138		RIS. TENS. (MT) :	0
	Anc 6:	141	Anc 7: 127	Anc 8	82	Anc 9:0	Anc 10: 0		RISER ANGLE (deg):	0.0
	Δ	ved @ Rig	Depart fro	D:	Fatings	tedArrival (Port)	1307		STACK ANGLE(deg):	0.0
Workboats		ate) (Time	•	J		ate)(Time)	Weather VISIBILITY(nm):	8	V.D.L. (MT) : AVE HEAVE (m) :	1,694.4
Pacific Conquer	or 7.10	.02 10:	30				WIND SP. (kts):	35.0	MAX HEAVE (m):	
Pacific Sentinel	8.10	.02 6::	25				WIND DIR (deg):	300	AVE PITCH (deg):	1.0
							PRES.(mbars):	1019	MAX PITCH (deg):	2.0
							AIR TEMP (C):	10.0	AVE ROLL (deg):	0.1
COMMENTS:	Pax on/o	off Flt #1	4/5, Flt #2 7/8, Fl	It #3 7/4.			l		MAX ROLL (deg):	2.5

SANTOS

DATE : Oct 09, 2002 FROM : Pat King
TO : Ole Moller

CASINO 2

Well Data COUNTRY Australia FIELD Casino DRILL CO. Diamond Offshore RIG Ocean Bounty	TVD (m BRT) 2,1 PROGRESS (m) DAYS FROM SPUD 1:	2,112.0 CUR.HOLE SIZE (mm) 2,112.0 CASING OD (mm) 0.0 SHOE TVD (m BRT) 15.63 FIT (sg)		AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	12,100,000 P&A \$371,457 \$7,356,763
RT ABOVE SL (m) 25.0 WATER DEPTH (m) LAT 67.8 RT TO SEABED (m) 92.8	CURRENT OP @ 0600 Atte	mpting to retrieve casing tinue attempts to retrieve casing	1.22		

Summary of period 00:00 to 24:00 hrs

Continued cutting wellhead housings. Further attempts to retrieve casing unsuccessful.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 09, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		WH	00:00	08:00	8.00	2,112	Pull cutting assembly, bent cutter arms, but cut out to 1117mm (44"). Attempted to recover casing with Housing running tool, without success pulled to max 136 tonne (300kip) overpull. Continued to WOW to backload AHSV.
ABN	Р		WH	08:00	09:00	1.00	2,112	POH laying out 203mm (8") DC
ABN	Р		WH	09:00	11:00	2.00	2,112	RIH 762mm (30") grapple. Attempt to pull 762mm (30") casing and PGB. Max O/P 300K. Unsuccessful. Circ S/W.
ABN	Р		WH	11:00	12:00	1.00	2,112	M/U Mule Shoe. RIH.
ABN	Р		WH	12:00	14:00	2.00	2,112	Continue to RIH mule shoe to jet PGB.
ABN	Р		WH	14:00	15:00	1.00	2,112	POH mule shoe.
ABN	Р		WH	15:00	17:00	2.00	2,112	B/O grapple. N/U marine swivel and cutter assembly.
ABN	Р		WH	17:00	18:00	1.00	2,112	Recut 762mm (30") casing @ 93.85 m
ABN	Р		WH	18:00	20:30	2.50	2,112	Pressure loss in cutting assembly (4,823 kPa / 700 psi). POH. Test cutting assembly. Reset flow tell and renew cutters. RIH.
ABN	Р		WH	20:30	24:00	3.50	2,112	Continue cut @ 93.85 m.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 10, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		WH	00:00	06:00	6.00	2,112	Attempt to retrieve casing with spear and circulation (some
								movement)

Survey (Method : Min Cu	urvature)	MD	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type :	FEWD	(mBRT)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic Declination :	0.00	1622.2	1622.1	1.67	268.2		-2.1	0.0	-2.1	-12.4	FEWD
		1652.1	1651.9	1.45	253.8		-2.2	0.4	-2.2	-13.2	FEWD
		1796.1	1795.9	1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
		1853.4	1853.2	1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
		1911.2	1910.9	1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
		1998.7	1998.4	1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
		2028.1	2027.8	2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
					242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bulk				
Sto	cks			
On	Rig			

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	307.9		307.9	Drill Water - Rig	MT	344.0			344.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	SXS	170.0			170.0
Cement HTB - Rig	SXS	0.0		0.0	Bentonite - Rig	SXS	869.0			869.0
Barite - Rig	sxs	3059.0		3059.0	Brine - Rig	MT	0.0			0.0
Helifuel - Rig	ltr	1019.0		1019.0	Fuel Oil - Conqueror	М3	301.8			301.8
Drill Water - Conqueror	MT	600.0		600.0	Pot Water - Conqueror	MT	180.0			180.0
Cement 'G' - Conqueror	SXS	0.0		0.0	Cement HTB - Conquero	SXS	0.0			0.0
Bentonite - Conqueror	SXS	1692.0		1692.0	Barite - Conqueror	SXS	0.0			0.0
Brine - Conqueror	MT	0.0		0.0	Fuel Oil - Sentinel	М3	330.6			330.6
Drill Water - Sentinel	MT	300.0		300.0	Pot Water - Sentinel	MT	240.0			240.0
Cement 'G' - Sentinel	sxs	1906.0		1906.0	Cement HTB - Sentinel	sxs	0.0			0.0
Bentonite - Sentinel	sxs	0.0		0.0	Barite - Sentinel	sxs	0.0			0.0
Brine - Sentinel	МТ	0.0		0.0						

Pump	Data
------	------

		Pump	Data - las		Slow	Pump Data				
#	TYPE	LNR(mm)	SPM	EFF (%)	Flow (lpm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)
1	Nat'l 12-P-160	152		97	0	0	30	862	1784.0	1.25
		0			0	0	40	1379		
		0			0	0	50	2068		
2	Nat'l 12-P-160	152		97	0	0	30	1034	1784.0	1.25
		0			0	0	40	1551		
		0			0	0	50	1896		
3	Nat'l 12-P-160	152		97	0	0		0		

ına	

DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)	COMMENT
13.375	340	690.6	690.6	1.22		Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.

TYPE	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD
Well Head	10.70	319	107.1	N-80	Buttress
Non cross joint	12.11	319	107.1	N-80	Buttress
Casing joints	540.92	319	101.2	N-80	Buttress
Float collar joint	36.78	319	107.1	N-80	Buttress
Intermediate joint	24.49	319	107.1	N-80	Buttress
Shoe joint	12.41	321	107.1	N-80	Buttress

Personnel : on Site =0

COMMENTS:

Safety, Inspections and Drills	Summary

Anchors	Anc 1:	122	Anc 2: 134	Anc 3	: 145	Anc 4:	10	9 Anc 5 : 138		RIS. TENS. (MT):	0
	Anc 6:	141	Anc 7: 127	Anc 8	82	Anc 9:	0	Anc 10: 0		RISER ANGLE (deg):	0.0
	A rri	ved @ R	tig Depart f	om Dia	Ectimot	edArrival (Por	rt\	Waathar		STACK ANGLE(deg):	0.0
Workboats		ate)(Tim		U		te)(Time)	'''	Weather		V.D.L. (MT):	1,694.4
	(D	ale)(IIII	ie) (Dale)(i iiiie)	(24	10)(10)		VISIBILITY(nm):	8	AVE HEAVE (m):	
Pacific Conquer	or 7.10	.02 1	0:30				_	WIND SP. (kts):	35.0	MAX HEAVE (m):	
Pacific Sentinel	8.10	.02	6:25					WIND DIR (deg):	300	AVE PITCH (deg):	1.0
								PRES.(mbars):	1019	MAX PITCH (deg):	2.0
								AIR TEMP (C):	10.0	AVE ROLL (deg):	0.1
COMMENTS :										MAX ROLL (deg):	2.5

SANTOS

DATE: Oct 10, 2002 FROM: Pat King
TO: Ole Moller

CASINO 2

Well Data COUNTRY FIELD DRILL CO. Dia RIG	Australia Casino amond Offshore Ocean Bounty	M.DEPTH (m BRT) TVD (m BRT) PROGRESS (m) DAYS FROM SPUD DAYS +/- CURVE	2,112.0 2,112.0 0.0 16.63	CUR.HOLE SIZE (mm) CASING OD (mm) SHOE TVD (m BRT) FIT (sg) LOT (sq)	311 340 691 0.00 1.22	AFE COST \$ AFE BASIS : DAILY COST : CUM COST :	12,100,000 P&A \$324,389 \$7,681,152
RT ABOVE SL (m) WATER DEPTH (m) LA RT TO SEABED (m)	25.0 AT 67.8 92.8	CURRENT OP @ 0600 PLANNED OP.	Offload P	to pull secondary anchors. acific Conqueror. With Pa			acific

Summary of period 00:00 to 24:00 hrs

Retrieved 762 mm (30") casing. Commenced pulling anchors.

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 10, 2002

								, ,
PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		WH	00:00	05:00	5.00	2,112	Continue to cut 762 mm (30") csg @ 94m
ABN	Р		WH	05:00	05:30	0.50	2,112	POH with 762mm (30") csg cut assembly.
ABN	Р		WH	05:30	06:30	1.00	2,112	M/U Stab & RIH with pull assembly.
ABN	Р		WH	06:30	10:30	4.00	2,112	Attempt to pull 762mm (30") csg and PGB. Work pipe and circ with S/W. Max O/P 400k. Pipe free.
ABN	Р		WH	10:30	12:00	1.50	2,112	POH 762mm (30") csg and PGB. Land on skid beams.
ABN	Р		WH	12:00	14:00	2.00	2,112	M/U 762mm (30") RT. L/O csg. Remove PGB from moonpool.
ABN	Р		WH	14:00	15:00	1.00	2,112	B/O & L/O casing cutting assembly.
ABN	Р		WH	15:00	19:30	4.50	2,112	B/O & L/O drill collars & drill pipe.
ABN	Р		ANC	19:30	22:30	3.00	2,112	Deballast rig to transit draft 9.8m (32 ft).
ABN	Р		ANC	22:30	24:00	1.50	2,112	Commence pulling anchors. (22:47) #1 pennent to Sentinel; (23:17) #1 anchor off bottom.

ACTIVITY FOR PERIOD 0000 HRS TO 06:00 HRS ON Oct 11, 2002

PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		ANC	00:00	06:00	6.00	,	Continue to recover anchors. (00:30) #1 anchor bolstered; (00:40) #1 pennant to OB; (01:32) #5 pennant to PS; (03:12) #5 anchor bolstered; (03:17) #5 pennant to OB; (03:45) #4 pennant to PS; (05:40) #4 anchor bolstered; (05:45) #4 pennant to OB; (06:00) #8 pennant to PS. ETD 1400 hrs.

Survey (Method : Min Cu Last Tool Type :	,	D TVD RT) (mBR1	INCL DEG	AZ (deg)	CORR.	'V' SECT	DOGLEG (deg/	N/S (m)	E/W (m)	TOOL TYPE
	0.00				(deg)	(m)	30m)			
Magnetic Declination:	0.00	22.2 1622.	1 1.67	268.2	268.2	-2.1	0.0	-2.1	-12.4	FEWD
	16	52.1 1651.	9 1.45	253.8	253.8	-2.2	0.4	-2.2	-13.2	FEWD
	17	96.1 1795.	9 1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
	18	53.4 1853.	2 1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
	19	11.2 1910.	9 1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
	19	98.7 1998.	4 1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
	20	28.1 2027.	3 2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
	20	85.4 2085.	0 2.47	242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bulk	STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Stocks	Fuel Oil - Rig	МЗ	307.9	15.5	292.4	Fuel Oil - Conqueror	МЗ	301.8	14.6		287.2
On Rig	Fuel Oil - Sentinel	М3	330.6	21.0	309.6						

Pu	Pump Data														
			Pump	Data - las		Slow	Pump Data								
#		TYPE	LNR(mm)	SPM	EFF (%)	Flow (Ipm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)				
1	Nat'l	12-P-160	152		97	0	0	30	862	1784.0	1.25				
			0			0	0	40	1379						
			0			0	0	50	2068						
2	Nat'l	12-P-160	152		97	0	0	30	1034	1784.0	1.25				
			0			0	0	40	1551						
			0			0	0	50	1896						
3	Nat'l	12-P-160	152		97	0	0		0						

Casing									
DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT		
13.375	340	690.6	690.	6 1.22		tested surfac Mixed and pu slurry (736sx 637 bbls of T Released top	Pumped 10 bbls sea water with dye, tested surface lines,Released bottom plug. Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumped 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced cement Unable to Bump plug.		
	٦	ГҮРЕ	LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD		
Well Head Non cross Casing just Float con Intermed Shoe join	ss joint oints llar joint diate joint		10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress		

Personnel	:	on	Site	=0
------------------	---	----	------	----

Safety, Inspections and Drills	Summary
Safety, inspections and Drills	Summary

Anchors	Anc 1 :	0 129		Anc 2 : 136 Anc 7 : 136	Anc 3 : Anc 8 :		Anc 4 : 10 Anc 9 : 0	00 Anc 5 : 127 Anc 10: 0		RIS. TENS. (MT): RISER ANGLE (deg):	0 0.0
Workboats	Arri	ived @ Fate)(Tir	Rig	Depart from (Date)(Tin	n Rig	Estima	tedArrival (Port)	Weather VISIBILITY(nm):	10	STACK ANGLE (deg): V.D.L. (MT): AVE HEAVE (m):	0.0 1,703.0 0.0
Pacific Conquer Pacific Sentinel			10:30 6:25					WIND SP. (kts): WIND DIR (deg): PRES.(mbars): AIR TEMP (C):	15.0 130 1029 12.0	MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):	2.0 4.0 0.5
COMMENTS :										MAX ROLL (deg):	1.0

SANTOS

DATE : Oct 11, 2002 FROM : Pat King
TO : Ole Moller

CASINO 2

Well Data AFE COST \$ M.DEPTH (m BRT) 2,112.0 CUR.HOLE SIZE (mm) 311 12,100,000 COUNTRY Australia TVD (m BRT) 2,112.0 AFE BASIS: P&A CASING OD (mm) 340 **FIELD** Casino PROGRESS (m) 0.0 SHOE TVD (m BRT) 691 DAILY COST: \$295,215 DRILL CO. Diamond Offshore DAYS FROM SPUD CUM COST: 17.63 FIT (sg) 0.00 \$7,976,367 RIG Ocean Bounty DAYS +/- CURVE LOT (sg) 1.22

RT ABOVE SL (m) 25.0 CURRENT OP @ 04:00 WATER DEPTH (m) LAT 67.8

RT TO SEABED (m) 92.8 PLANNED OP. Tow to New Zealand.

Summary of period 00:00 to 24:00 hrs

Continue pulling anchors. Rig Released 20:30 hrs 11/10/02

FORMATION	TOP(m BRT)
MASSACRE	1,132
SKULL CREEK	1,271
PAARATE	1,369
BELFAST	1,507

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON Oct 11, 2002

PHS	CL	RC	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
ABN	Р		ANC	00:00	09:00	9.00	2,112	Continue to recover anchors. (00:30) #1 anchor bolstered; (00:40) #1 pennant to OB; (01:32) #5 pennant to PS; (03:12) #5 anchor bolstered; (03:17) #5 pennant to OB; (03:45) #4 pennant to PS; (05:40) #4 anchor bolstered; (05:45) #4 pennant to OB; (06:00) #8 pennant to PS. (07:00) #8 off bottom, (08:40) #8 bolstered.
ABN	Р		ANC	09:00	11:00	2.00	2,112	Offload supplies from Conquerer, heavy lift (drilling line). (10:25) Sentinal on Tow bridle.
ABN	Р			11:00	20:30	9.50		Anchor handling. #3 pennant to Conquerer (11:11), #3 bolstered (13:20). #6 bolstered (15:22), #2 bolstered (18:52), Rig hauled in on #7, #7 bolstered 20:30. RIG RELEASED 20:30 hrs 11/10/02

ACTIVITY FOR PERIOD 00:00 HRS TO 06:00 HRS ON Oct 12, 2002

	PHS	CL	RC	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION
- 1								I	

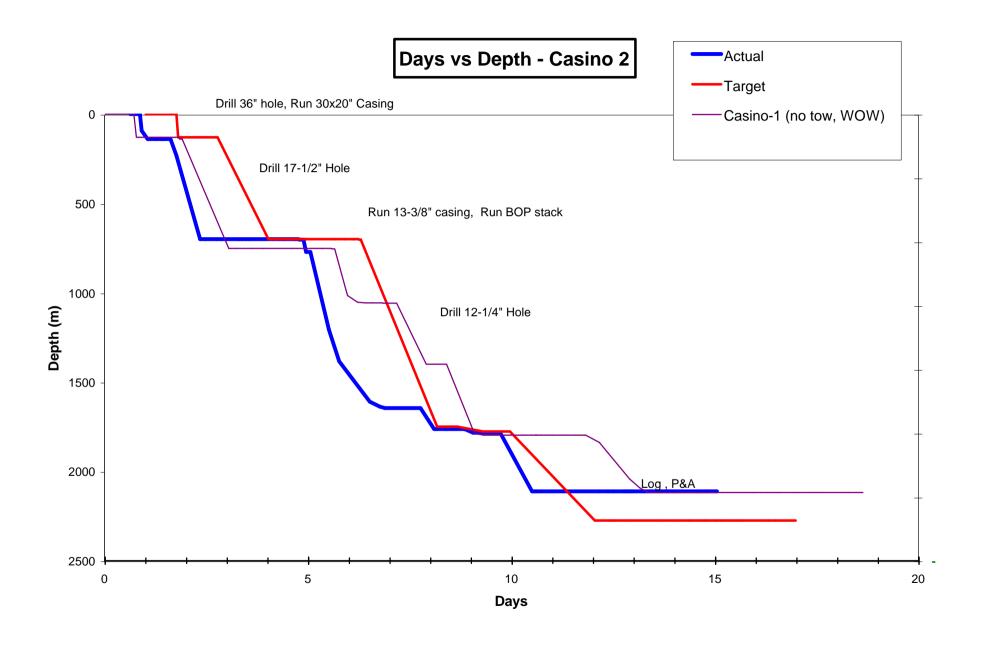
Survey (Method : Min Cur	, =	TVD	INCL	AZ	CORR.	'V'	DOGLEG	N/S	E/W	TOOL TYPE
Last Tool Type :	FEWD (mBR)	(mBRT)	DEG	(deg)	AZ (deg)	SECT (m)	(deg/ 30m)	(m)	(m)	
Magnetic Declination :	0.00	.2 1622.1	1.67	268.2	268.2	-2.1	0.0	-2.1	-12.4	FEWD
	1652	.1 1651.9	1.45	253.8	253.8	-2.2	0.4	-2.2	-13.2	FEWD
	1796	.1 1795.9	1.43	250.2	250.2	-3.3	0.0	-3.3	-16.6	FEWD
	1853	.4 1853.2	1.50	250.2	250.2	-3.8	0.0	-3.8	-18.0	FEWD
	1911	.2 1910.9	1.48	243.7	243.7	-4.4	0.1	-4.4	-19.4	FEWD
	1998	7 1998.4	1.91	243.2	243.2	-5.5	0.1	-5.5	-21.7	FEWD
	2028	.1 2027.8	2.08	243.1	243.1	-6.0	0.2	-6.0	-22.6	FEWD
	2085	.4 2085.0	2.47	242.1	242.1	-7.1	0.2	-7.1	-24.6	FEWD

Bulk Stocks On Rig

STOCK TYPE & UNITS		START	USED REC'D	STOCK	STOCK TYPE & UNITS		START	USED	REC'D	STOCK
Fuel Oil - Rig	МЗ	292.4	5.4	287.0	Drill Water - Rig	MT	310.0			310.0
Pot Water - Rig	MT	98.0		98.0	Cement 'G' - Rig	sxs	170.0			170.0
Bentonite - Rig	SXS	869.0		869.0	Barite - Rig	SXS	3059.0			3059.0
Helifuel - Rig	ltr	490.0		490.0	Fuel Oil - Conqueror	МЗ	287.2	12.1		275.1
Drill Water - Conqueror	MT	600.0		600.0	Pot Water - Conqueror	MT	170.0			170.0
Cement 'G' - Conqueror	SXS	0.0		0.0	Bentonite - Conqueror	SXS	1692.0			1692.0
Barite - Conqueror	SXS	0.0		0.0	Fuel Oil - Sentinel	М3	309.6	7.1		302.5
Drill Water - Sentinel	MT	300.0		300.0	Pot Water - Sentinel	MT	225.0			225.0
Cement 'G' - Sentinel	SXS	1906.0		1906.0	Bentonite - Sentinel	SXS	0.0			0.0
Barite - Sentinel	SXS	0.0		0.0						

CASINO 2

Pump Data												
	Pump Data - last 24 hrs							Slow Pump Data				
#		TYPE	LNR(mm)	SPM	EFF (%)	Flow (Ipm)	SPP (kPa)	SPM	SPP (kPa)	DEPTH (m)	MW (sg)	
1	Nat'l	12-P-160	152		97	0	0	30	862	1784.0	1.25	
			0			0	0	40	1379			
			0			0	0	50	2068			
2	Nat'l	12-P-160	152		97	0	0	30	1034	1784.0	1.25	
			0			0	0	40	1551			
			0			0	0	50	1896			
3	Nat'l	12-P-160	152		97	0	0		0			


Casing	l							
DIAM.	CSG OD (mm)	SHOE MD (plan/Actual)	SHOE TVD (plan/Actual)	LOT (pl/Act)	FIT (pl/Act)		COMMENT	
13.375	340	690.6	690).6 1.22	2	Pumped 10 bbls sea water with dye, tested surface lines,Released bottom p Mixed and pumped 293bbls of Lead slurry (736sx) @ 1.5sg / Mixed & pumpe 637 bbls of Tail slurry 132sx @ 1.89sg. Released top plug and displaced ceme Unable to Bump plug.		om plug. ad umped 9sg.
TYPE			LENGTH (m)	CSG ID (mm)	WT (kg/m)	GRADE	THREAD]
Well Head Non cross joint Casing joints Float collar joint Intermediate joint Shoe joint			10.70 12.11 540.92 36.78 24.49 12.41	319 319 319 319 319 321	107.1 107.1 101.2 107.1 107.1	N-80 N-80 N-80 N-80 N-80 N-80	Buttress Buttress Buttress Buttress Buttress Buttress	

Personnel: on Site =0

Safety, Inspections and Drills	Summary
--------------------------------	---------

Anchors	Anc 1 : Anc 6 :	Anc 2 : Anc 7 :	Anc 3 : Anc 8 :	Anc 4 : Anc 9 :	Anc 5 : Anc 10:	RIS. TENS. (MT): RISER ANGLE (deg):
Workboats	Arrived @ Rig (Date)(Time)	Depart from F (Date)(Time	9	matedArrival (Port) Date)(Time)	Weather VISIBILITY(nm): WIND SP. (kts): WIND DIR (deg): PRES.(mbars): AIR TEMP (C):	STACK ANGLE(deg): V.D.L. (MT): AVE HEAVE (m): MAX HEAVE (m): AVE PITCH (deg): MAX PITCH (deg): AVE ROLL (deg):
COMMENTS :					, ,	` 0/

SECTION 7:- TIME / DEPTH CURVE

SECTION 8:- BHA SUMMARY

#	LENGTH	ВНА	WT.	STRNG	P/UP	S/0FF	TRQE	TRQE	TRQE	HRS	BHA DESCRIPTION
		WT.	BELOW	WT.	WT.	WT.	MAX	ON BOT	OFF		
			JAR						BOT		
1	83.58			50	50	50	2,500	1,000	1,000		26"Bit,36"Hole Opener,Bit sub,Anderdrift tool,3x9-1/2 DC,X/Over,5x8-1/4DC,X/Over,
2	261.53			103	106	100	6,000	1,500	1,000		Bit,NBStab,Anderdrift,Stab,1x9-1/2"DC,Stab,2x9-1/2"DC,X/O,6x8"DC,Jars,5x8"DC,X/O,12xHWDP,
2	261.53			103	106	100	6,000	1,500	1,000		Bit,NBStab,Anderdrift,Stab,1x9-1/2"DC,Stab,2x9-1/2"DC,X/O,6x8"DC,Jars,5x8"DC,X/O,12xHWDP,
2	261.53			103	106	100	6,000	1,500	1,000		Bit,NBStab,Anderdrift,Stab,1x9-1/2"DC,Stab,2x9-1/2"DC,X/O,6x8"DC,Jars,5x8"DC,X/O,12xHWDP,
3	311.74	90	76	140	145	135	13	5	2		12.25 Bit,12.25RR,CDR,Pulse tool,ILS,Sonic,12.25RR,1x8"DC,12.25RR,14x8"DC,Jars,2x8"DC,X/O,12Xhwdp
3	311.74	90	76	162	165	160	9	4	3		12.25 Bit,12.25RR,CDR,Pulse tool,ILS,Sonic,12.25RR,1x8"DC,12.25RR,14x8"DC,Jars,2x8"DC,X/O,12Xhwdp
3	311.74	90	76	162	165	160	9	4	3		12.25 Bit,12.25RR,CDR,Pulse tool,ILS,Sonic,12.25RR,1x8"DC,12.25RR,14x8"DC,Jars,2x8"DC,X/O,12Xhwdp
4	311.72	90	76	180	185	175	8	3	2		12.25 Bit,12.25RR,CDR,Pulse tool,ILS,Sonic,12.25RR,1x8"DC,12.25RR,14x8"DC,Jars,2x8"DC,X/O,12Xhwdp
4	234.32	56	34	145	150	140	20	10	5		12.25 Core Head,12.218Stab,CoreBarrel,12.218Stab,CoreBarrel,12.218Stab,CoreBarrel,12.218Stab,X/O,Safety
6	309.95	88	74	350	355	345	10	7	4		311mm (12.25") bit, 311mm (12.25")RR, ARC, Pulse t ool, ILS, Sonic, 311mm (12.25")RR, 1 x 203mm

Santos	Well Completion Report Volume 1 Basic
SECTION 9:- BIT RECO	ORD & PERFORMANCE SUMMARY

BIT RECAP Well: CASINO 2

DATE	BIT#	SIZE	SER#	MF	IADC	TYPE	JETS	OUT	MTRG	HRS	HRS	SPP	FLW	WOB	RPM	VEL	HHP	ROP	I	01	D	L	В	G	O2	R
										o/b	IADC						sq"									
												psi	gpm	k-lbs		mps		m/hr								
24/09/2002	1	26.00	KP-2374	SM	111	DSJC	3x18, 3x22	140	47	2.3	3.5	1182	1050	8.0	65	55.1	0.000	20.5	1	1	NO	Α	Е	I	NO	TD
25/09/2002	2	17.50	MM0005	SM	115	MGSSHC	1x18, 3x20	700	560	12.6	17.5	2417	1061	25.0	140	88.5	1.722	44.4								
26/09/2002	2	17.50	MM0005	SM	115	MGSSHC	1x18, 3x20	700	0	.0	.0	2417	1200	30.0	110	100.1	2.491		2	2	NO	Α	Е	I	NO	TD
27/09/2002	2	17.50	MM0005	SM	115	MGSSHC	1x18, 3x20	700	0	.0	.0	2417	1200	30.0	110	100.1	2.491		2	2	NO	Α	Е	I	NO	TD
28/09/2002	3	12.25	589 DC	ΗU	517	MX-03DX	3x16		507	8.7	13.0	2262	810	30.0	134	134.1	6.157	58.3								
29/09/2002	3	12.25	589 DC	ΗU	517	MX-03DX	3x16		403	19.0	20.0	3523	840	45.0	110	139.1	7.774	21.2								
30/09/2002	3	12.25	589 DC	ΗU	517	MX-03DX	3x16	1,646	36	8.7	9.0	3632	779	45.0	110	129.0	6.407	4.1	8	8	LT	Α	E	1/8	ER	PR
1/10/2002	4	12.25	103926	ΗY	M423	DSX195DGUW	3x16	1,763	117	6.4	8.0	3995	786	11.0	120	130.1	6.582	18.3	1	1	CT	N	X	I	NO	CP
2/10/2002	5	12.25	7960859	SE		CD-93	3x16	1,784	21	4.6	5.0	1150	317	5.0	50	52.5	0.432	4.6	1	1	CT	N	X	I	JD	TD
3/10/2002	4RR	12.25	103926	ΗY		DSX195DGUW	5x15	2,112	328	16.0	18.0	3181	854	7.4	175	96.5	3.934	20.5								
4/10/2002	4RR	12.25	103926	ΗY		DSX195DGUW	5x15	2,112	0	.0	.0					.0	0.000		0	4	вт	Α	X	1	JD	TD

Sa	ntoe
אכו	ntos

SECTION 10:- DRILLING FLUIDS REPORT

WELL: CASINO 2 RIG: Ocean Bounty

MUD RECAP

R#	DATE	TYPE	DEPTH	TMP	MW	VIS	PV	ΥP	GEL	GEL	F.L.	CAKE	SOL	H2O	Oil	SND	MBT	PH	РМ	PF	CI	HARD	PHPA	KCI%	K+	COST
				С	ppg	cps	cps		10s	10M	API		%	%	%	%	ppb					/CA	ppb			
2	24/09/2002	PHG	140		1 1	135	19	67	58	59			3.4	96.5			28 በ	10 0		Λ	1 400	80				14 334
3	25/09/2002	PHG	700		1.0	100	17	128	40	45			2.5	97.4			24.0	10.5		0	2.900	80				13.346
4	26/09/2002	PHG	700		1.1	100	25	65	50	53			3.3	96.6			25.0	10.0		0	2.000	80				37
5	27/09/2002	PHG	700		1.1	78	12	23	6	6			.77	99.2				8.0		0	42.000	240	1.6	8	43.200	35.896
6	28/09/2002	PHG	1.207	27	1.1	60	15	29	9	10	7.8	1.2	1.6	98.4		4	3.0	9.0		0	29.000	300	1.5	6	32.400	39.837
7	29/09/2002	PHG	1.210	54	1.2	60	23	29	13	15	4.4	1.3	8.9	91.1		.5	9.0	9.0		1	22.000	360	1.9	5	27.000	60.818
8	30/09/2002	PHG	1.646	40	1.2	72	26	41	13	15	4.4	1.3	10.	89.6		.1	12.0	9.0		1	23.000	280	1.8	5	27.000	20.292
9	1/10/2002	KCL-PHPA	1.763		1.2	57	21	33	10	18	5.4	1.3	11.	88.8		.2	12.0	9.5		0	30.960	160	1.4	7	37.800	18.272
10	2/10/2002	KCL-PHPA	1.784		1.2	50	19	25	6	10	5.2	1.3	11.	88.9		.3	11.0	10.0		0	31.200	160	1.4	6	32.400	4.313
11	3/10/2002	KCL-PHPA	2.070	66	1.2	57	21	23	6	11	5.2	1.3	10.	89.2		.5	12.0	9.5		0	31.500	160	1.5	6	32.400	21.313
12	4/10/2002	KCL-PHPA	2.112		1.2	57	22	24	6	10	4.8	1.3	10.	89.2		.4	13.0	9.0		0	33.000	400	1.5	7	37.800	-4.846
13	5/10/2002	KCL-PHPA	2.112		1.2	57	22	24	6	10	4.8	1.3	10.	89.2		.4	13.0	9.0		0	33.000	400	1.5	7	37.800	2.441

DRILLING FLUID SUMMARY

FOR: SANTOS Ltd

WELL: CASINO #2

Otway Basin

Offshore Victoria

CONTENTS

- 1. Summary of Operations
- 2. Observations, Recommendations and Well Analysis
- 3. Interval Costs
- 4. Mud Materials Reconciliation
- 5. Fluid Properties Summary
- 6. Mud Volume Analysis
- 7. Graphs
- 8. Bit and Hydraulics Record
- 9. Solids Control Equipment
- 10. Key Polymer Concentrations
- 11.Engineering Log
- 13. Daily Mud Reports and Drilling Fluid Program

1. SUMMARY OF OPERATIONS

Casino 2 was an Offshore Victoria exploration well in Otway Basin, drilled to evaluate the gas bearing Waarre formation as a primary target. It lies 4.2 km ESE of Casino 1, 21 km SW of the Minerva gas field and 23 km North of LaBella gas field.

HOLE SIZE : 36"

MUD TYPE : Seawater Guar Gum/ Fresh Water Gel Sweeps

INTERVAL : 92.76 metres (Seabed) to 140 metres

CASING : 20" and 30"

The Ocean Bounty was towed on to location and anchors run on 23rd September 2002. Field analysis of the initial Drill Water supply showed the following results:

pH: 8.5 Chlorides: 1,200 mg/l Pf: 0.05 Total Hardness: 160 mg/l

Mf: 0.35

530 barrels of 25 ppb prehydrated bentonite, flocculated with 0.37 ppb lime and 235 barrels of 2.17 ppb Guar gum was prepared to sweep the 36" hole. 315 barrels of 32 ppb prehydrated bentonite was also prepared to displace to the hole prior to running the conductor.

The well was spudded at 0930 hours on the 24^{th} September 2002 with a 26 inch bit & 36 inch hole opener.

The 36inch hole was drilled to 140 m, using sea water with 2.17 ppb Guar Gum and 25 ppb Gel sweeps flocculated with 0.37 ppb Lime for hole cleaning. A total of 370 bbl of Floc Gel sweeps and 130 bbl of Guar Gum were pumped using the regime of two 50 bbl Gel sweeps and one 50 bbl Guar Gum sweep every 30 meters of hole drilled.

The interval cost was proportioned according to the volumes used.

At 140 m, the hole was swept and displaced with 280 bbl of 33 ppb unflocculated Gel mud. The string was pulled out and 30/20 inch conductor casing run to 137 m. It was cemented in place as per program. No hole problems were encountered.

Operator : **SANTOS** Well Casino 2 Rig **Ocean Bounty** 24th September 2002 Spud

HOLE SIZE : 17 ½"

: Seawater. Gel/Guar Gum Sweeps

MUD TYPE INTERVAL : 130 - 700 metres

: 13 3/8" @ 685 metres CASING

While waiting on cement, 1000 bbl of 25 ppb unfloculated gel was mixed and stored in the reserve pits.

17 ½ inch hole was drilled from the casing shoe to 700 metres at an average rate of penetration of 50-70 metres an hour.

Due to limited bentonite stock available on board, two 2 ppb Guar Gum of 25 bbl and one 25 bbl floc Gel sweeps were pumped for every 30 m of hole drilled. These volumes were built up regularly in the tanks.

At interval TD of 700 metres, 800 bbl of 25 ppb Gel mud was treated with 5 ppb Quick Seal as LCM. This was used to displace the hole volume prior to pulling out to the casing shoe to wait on weather for 8.00hrs.

After running in the hole, 16 metres of fill was washed to bottom using sea water and the hole swept with 100bbl, before spotting 750bbl of gel spud mud in the hole.

The casing was run and cemented without problem with the shoe at 690.5m. The cement was displaced with sea water and the drilling fluid for the next section was prepared and allowed to shear.

HOLE SIZE : 12.25"

MUD TYPE : KCl Polymer Glycol INTERVAL : 700 metres to 2275 metres

The BOP and riser were run, nippled up and tested. 1400 bbl of KCl – PHPA – POLYMER mud and 170bbl of 2.26ppb Xanthan Gum high viscosity sweep mud was prepared.

The 12 ¼" bottom hole assembly was run to tag cement at 630 metres. Sea water was used to wash to the float at 663 metres and the shoe track drilled to 690 metres. Three high viscosity Xanthan Gum sweeps at 25 bbl were used to ensure clean hole to 703 metres.

The hole was then swept with 100bbl Xanthan gum high viscosity sweep and displaced to the KCl – PHPA - POLYMER mud. A L.O.T. reported 10.2 mud weight equivalent.

As drilling commenced, severe and variable down hole losses ranging from 40-600 bbl/hr occurred. These were treated with Sandseal additions to the flow line and continued through the sand intervals to 1400m. Approximately 1,700 bbl of mud was lost to the hole during this short period of time.

A wiper trip to the shoe from 772m, with 20-40K drag, was made to check hole condition and rebuild surface volume. A further 1,900 bbl was built without KCl and PHPA (JK-261), to save time and conserve costs.

Mud losses reduced to 60-80 bbl/hr from 1000 to 1200m and were controlled with Sandseal/Quickseal sweeps at 10ppb and direct additions of Sandseal to the active. 52mesh shaker screens were used to avoid screening out the LCM.

Once the clays were encountered below the Pember Formation at 1005m, losses reduced and were eliminated by 1400m. The KCl to 6% and PHPA to 1.8ppb additions, recommenced and Glycol was added to 4%.

The shaker screens were reduced gradually to 145# and the desilter and desander utilised continuously. The sand content of the circulating system dropped from 4% to 0.1% gradually with the usage of the solids control equipment and the dilution rate to maintain surface volume.

Low penetration rates induced a bit change from 1646m, with severe drag requiring pumping out and back reaming from 1543 to 800m. At this stage the viscosity was high (Funnel Viscosity 72 sec/qt and Yield Point of 45 lb/100ft2) due to a build up of LGS and PHPA (1.85 ppb) in the system.

A 250 bbl premix of PAC LV and KCl was mixed while tripping. The sandtrap and shakers were cleaned and dumped during the trip. The HTC button tricone bit was severely damaged with no buttons remaining upon returning to surface.

A PDC bit was run with negligible drag to 1615m and washed to bottom at 1646m. Core point was selected at 1763m, with 11% gas on bottoms up. The string was circulated back through new hole to 1620m, to prevent swabbing and pulled without drag after that.

On running in with the core barrel, drag was encountered from 1120-1150m and the bottom hole assembly was washed 33m from 1730 to 1763m. Subsequent inspection showed junk damage to stabilisers and core barrel. Core #1 was cut from 1763 to 1784m with good core recovery.

Following a change in program, drilling continued to TD with 12 ¼" hole against the programmed intermediate casing run. TD was reached at 2112m on the 3rd October, 2002. A wiper trip through new hole to 1794m required back reaming from 1895 to 1794m. The return trip to bottom was clear and the string pulled for logging with Schlumberger.

The logs ran to bottom and the hole was logged without problem from 2110m as programmed.

Casino #2 was plugged with three cement plugs, a bridge plug and abandoned over three days from the 5^{th} to the 7^{th} of October, 2002.

Mud in the casing was treated with Cronox- 2100 corrosion inhibitor and retained adequate concentrations of Ideide-20.

IDFS was released from the rigsite on the 6th October 2002.

2. OBSERVATIONS, RECOMMENDATIONS AND WELL ANALYSIS

Casino 2 was drilled to 2112 metres for a total mud cost of \$236,668.32. A further \$1,395.00 was spent on post TD operations.

Barite cost for the well was \$42,168.35 Glycol cost for the well was \$47,200 KCl cost for the well was \$31,200

HOLE SIZE	INTERVAL	METERAGE	COST	COST / FT
36"	93 m – 140 m	47 m	\$ 14,334.00	\$ 102.39
17 ½"	140 m – 700 m	560 m	\$ 13,329.80	\$ 23.80
12 1/4"	700 m - 2112 m	1412 m	\$ 209,004.52	\$ 148.02
TOTAL DRI	ILLING COST	2112 m	\$ 236,668.32	\$ 112.06
Post TD o	costs (logging / completi	on)	\$ 1,395.00	
TOTAL	WELL COST		\$ 238,063.32	
	ELL COST FROM S IGHTING MATERI		\$ 194,499.97	\$ 92.09

36" Conductor Hole

No problems were encountered with this interval while drilling with sea water. The flocculated bentonite and pre-hydrated bentonite spotting fluid at +/-30ppb provided good hole cleaning and stability.

Increased Guar Gum sweeps were used to conserve rig stocks of bentonite in uncertain weather and supply conditions.

No changes are recommended for future wells for this interval.

17 ½" Surface Hole

As for the surface hole, Sea Water with Guar Gum and flocculated Bentonite sweeps provided a trouble free interval. No changes are recommended.

12 1/4" Production Hole

The interval was dominated by severe mud loss to the formation of 1,900bbl and tight hole due to wall cake build up across the permeable sands to 1005m.

Highly dispersive clays in the Pember (1005 to 1080m) and Belfast Formation (1507 to 1746m) also caused drag on trips as is normal on the first pass after 24hrs hydration time with water base drilling fluid.

After cementing the 13 3/8" casing, 1,400bbl of KCl-Polymer-PHPA mud was prepared to specification with 8% KCl, 1.14ppb Xanthan Gum, 1.57ppb JK-261 and 1.0ppb PAC-L. No Glycol was used until down hole losses were controlled below 1400m.

This provided strong inhibition and rheology with the Yield Point at 23lb/100sq.ft. The subsequent loss of 1,700bbl to the sands above the Pember clays rendered the inhibitive qualities of the mud an unnecessary expense.

The low solids mud was treated with Sandseal and Quickseal sweeps at 10ppb while losses continued.

Once the clays were encountered below 1200m and down hole losses were contained, microfine, low gravity solids, content built quickly from 3 to 12%. The mud originally formulated for <1% solids quickly developed excessive viscosity with Funnel Viscosity rising to 80 seconds /quart and Yield Point to 40lbs/100sq.ft. This was controlled with dilution and by allowing both Xanthan Gum and JK-261 concentrations to deplete.

PHPA (JK-261) at 1.8ppb excess was not possible to maintain within the range of viscosities required. With the higher concentrations of PHPA, high Plastic Viscosities result and ranged up to 26cps. This impaires drilling performance and unnecessarily increases in ECD. Aeration and solids removal become difficult to manage.

KCl and Glycol concentrations were maintained to specification once losses were controlled below 1400m

Solids Control and mixing equipment:

The Thule shakers were initially fitted with 10mesh scalpers and 4 x 52# screens. The coarse screens allowed newly mixed polymer and LCM material to re-circulate. As the losses were controlled below 1400m the screens were changed progressively to 115mesh and 145mesh by 1500m.

A three cone Desander and 20 cone desilter were utilised as surface volumes allowed. As a consequence of the coarse screens and down hole losses, the sand content built to 5% by 900m but was reduced to 0.1% by 1500m.

Intermittent use of the desilter provided adequate sand and weight control there after.

No centrifuge was available so that inhibition and dilution were the only options available for micro-fine solids control

Mud Weight

The 8% KCl-PHPA-Polymer mud was prepared to 8.8ppg mud weight. This depleted marginally to 8.7ppg with severe losses to 1000m.

By 1450m, the losses had been controlled and the mud weight was increased to 10.0ppg to aid wellbore stability as per the drilling fluid program, with negligible down hole losses, prior to entering the Belfast Formation at 1505m.

At 1635m the mud was weighted to 10.3ppg prior to entering the target sands.

The weight regime developed from Casino #1 experience proved correct with no influx or hole stability problems being observed on this well.

Bottoms up gas was 5% after coring to 1784m and cuttings gas reached 4.3% at 1867m.

Mud Losses:

Mud loss to the formation totalled 1,900bbl for the interval. Of this 1,700bbl were lost to the sands above 1200m with variable and intermittent losses above 1000m at up to 600bbl/hr.

From 1000 to1400m mud losses were variable at 30-60bbl/hr as new sands were drilled. Below 1400m (Top of the Paarate Formation at 1369m) down hole losses were negligible and largely the result of trips where the wall cake was reamed.

Mud losses to 1400m, were increased by fast drilling in sand, and combined with an inability to mix LCM fast enough. Sand Seal was applied through a 10mesh screen directly to the flowline at rates up to 500kg/hr. Quickseal fine was mixed as 10ppb pills and circulated as 25bbl sweeps.

After circulating down hole a negligible proportion of the LCM was screened out at the 52mesh shakers. A total of 2.05t of Sandseal and 0.625t of Quickseal were applied to 3,300bbl for 1.78ppb LCM average. Given initial losses the effective final concentration was in the range of 3 to 4ppb LCM which is well below the 10ppb written on the product data sheets for both of these products.

The use of Bentonite or the pre-treatment of low solids polymer mud with 5ppb LCM can be expected to greatly reduce whole mud losses and mud costs for this interval.

Mud Properties

After the losses were controlled below 1400m, mud properties were maintained as follows:

MW = 8.8 - 10.4ppg:

API Filtrate Loss = <6cc specified, ranged from 4.4 –5.4cc/30min

HT-HP Filtrate Loss = 20-24cc/30min.

KCl% = 6-8% specified, ranged from 5 to 7%. Supply delays due to weather and mud loss resulted in the lower figure.

Glycol = 4-6% specified, range as tested at 3.5 to 4%.

PHPA => 1.8ppb. Calculated concentrations ranged from 1.85 to 1.35. However with solids increasing from <1% to 12% after weighting up and drilling with LGS% at up to 4% high viscosities demanded reduced PHPA concentrations as stated earlier.

Yield Point ranged from 23 to 45lbs/100sqft to provide good hole cleaning.

Plastic Viscosity was too high for good hydraulics at 15 to 26cps.

Total Hardness was negligible in the Fresh Water system used at less than 400mg/lt.

Alkalinity was maintained at pH = 9.0 to 10.0 with Caustic Soda.

Sulphites for de-oxygenation were maintained in excess at 40 to 180ppm.

As previously discussed higher solids content is required, on future wells, to reduce mud loss to the formation particularly above 1400m in the 12 1/4" interval. The solids content ranged from 8.8 to 11.2% depending on mud density. Drill solids % was maintained below 4%.

After wiping each section of the hole once, the hole remained stable and drag free for subsequent trips and logging. The initial drag is possibly due to both wall cake build up above 1400m and clay hydration and washout in the lower hole sections.

Program Analysis

Several alternatives are available to reduce the mud cost on future wells and these include:

- Pre-treatment of the initial mud with 10pppb Quickseal. With fast drilling and mud loss at 300bbl/hr, pit room capacity is unable to cope with the mixing demands of new mud and LCM. Inhibition with KCl, JK-261, and Glycol should not commence until down hole losses have been controlled below 1000m.
- Mixing an inhibitive mud with 3-5ppb Pre-hydrated Bentonite. This will provide wall cake and may be enough to control down hole losses while inhibiting clays. Losses will subsequently be considerably cheaper if they do occur.
- The preferred and cheapest option is to drill to the top of the Pember clays at +/- 1000m with freshwater bentonite at 25-30ppb and 5-10ppb Sandseal. Then displace in open hole to the fully inhibitive system at the top of the Pember clays. The displacement should include a 10bbl sea water spacer to provide turbulence for wall cake removal. Any remaining bentonite will enhance API fluid loss. There is a strong possibility of further losses to the top of the Paarate at 1369m however pre-treatment of the inhibitive fluid with 5ppb Sandseal would control the final mud cost.

Safety & Environment

A thorough and serious approach to safety exists on the Ocean Bounty. This is strongly backed up with the proactive "Stop Card" regime. IDFS mud engineers actively participated in improving safety on the rig through the Stop Card system.

As the rig crew was new to IDFS products, they were told about the safe handling of various products at every stage. Material safety data sheets were made available and safe handling of chemical reference charts were displayed in prominent places.

A recommendation was made to fabricate a Bulk Bag, four point, and lifting star for use in transferring the bags from the pallets to the hopper with a chain block. This device reduces load on the webbing straps and will reduce the hazard of breaking or tearing of the bag straps. The wire strop in use was time consuming and unsafe.

All toxic laboratory reagents were collected in a separate container after each testing and transported to shore to dispose in an appropriate manner as per company's corporate environment policy.

There was one First Aid Treatment incidents that occurred while IDFS was on board with no LTI's. Due to large mixing volumes in 12 hours of major downhole losses, the sack room was quite slippery due to polymer coating. This made the boot soles slippery, as PHPA is sticky. As a result the derrick man fell over in the pump room and got one finger dislocated. It is strongly recommended that the floor must be cleaned frequently while mixing polymers.

Features of the IDFS chemical packaging were highlighted in so much that there was no metal strapping; witch is a regular cause of hand injuries. The cardboard and shrink-wrap packaging enabled the sack room to stay clean and tidy, and minimise damaged stock, and chemical spills.

CASINO 2	CO	NDUCTOR	SUR	FACE HOLE	PR	MAIN CODUCTION HOLE	CHE	EMENT MICALS & OST TD	TOTAL WELL
PROGRAMMED	\$	7,955.00	\$	20,226.00	\$	189,738.64	\$	-	\$ 217,919.64
ACTUAL	\$	14,334.00	\$	13,329.80	\$	209,004.52	\$	1,395.00	\$ 238,063.32
%VARIANCE		80.2 %		- 34.1 %		10.1 %			9.2 %

5. Fluid Properties Summary

cın	

								Rhe	ology			Fluid l	Loss Data	ı		Solie	İs						Water P	hase Che	emistry			
Date	Day	Mud Type	Temp.	Depth	Weight	Vis	PV	YP	10 sec	10 min	API	Cake	HPHT	@Temp	Solids	Water O	il Sand	MBT	pН	Pm	Pf	Mf	Cl-	Ca++	$SO_3^=$	K ⁺	KC1	PHPA
24-Sep-02	1	Floc Gel		100	8.7	> 100	19	118	38	50	NC				2.6	97.4		25	11	1.5	0.42	0.72	1660	40				
		Guar Gum		130	8.55	100	11	30	6	6	NC				0.2	99.8			7.5		0	0.25	21800	2400				
		UnFloc Gel		140	8.8	135	19	67	58	60	NC				3.4	96.6		28	10		0.3	0.5	1400	80				
25-Sep-02	2	Floc Gel		177	8.7	>100	19	108	40	48	NC				2.7	97.3		28	10	1.4	0.5	0.6	1500	40				
		Guar Gum		525	8.55	103	12	30	7	7	NC				0.3	99.7			7.5		0	0.25	21000	2400				
		Floc Gel		700	8.7	> 100	17	128	40	48	24				2.6	97.4		24	10.5	1.6	0.3	0.6	2900	80				
26-Sep-02	3	UnFloc Gel		700	8.8	>100	25	60	47	55	NC				3.4	96.6		25	10.5		0.3	0.6	2000	80				
		UnFloc Gel		700	8.8	>100	26	56	45	52	NC				3.4	96.6		24	10		0.27	0.55	2000	80				
		UnFloc Gel		700	8.8	>100	25	65	50	58	NC				3.4	96.6		25	10		0.25	0.55	2000	80				
27-Sep-02	4	KCl/PHPA/Polymer/Glycol		700	8.8	72	10	19	4	5	NC				0.8	99.2			8		0	0.8	42000	240		43200	8	1.5
		KCl/PHPA/Polymer/Glycol		700	8.8	74	11	23	6	6	NC				0.8	99.2			8		0	0.9	42000	240			8	1.55
		KCl/PHPA/Polymer/Glycol		700	8.8	78	12	23	6	6	NC				0.8	99.2			8		0	0.9	42000	240		43200	8	1.57
28-Sep-02	5	KCl/PHPA/Polymer/Glycol		700	8.8	78	12	23	6	6	NC				0.8	99.2			9.5	0.3	0.2	0.9	42000	240		43200	8	1.57
		KCl/PHPA/Polymer/Glycol		900	8.5	67	17	27	9	10	8				-0.4	100.4	5	2	9.5		0.13	0.7	25000	320		27000	5	0.9
		KCl/PHPA/Polymer/Glycol	80	1115	8.8	60	15	29	9	12	7.8	1:2	35	250	1.6	98.4	4	3	9		0.1	0.75	29000	300		32400	6	1.5
29-Sep-02	6	KCl/PHPA/Polymer/Glycol	110	1323	8.9	58	15	28	8	12	7	2	32	250	2.6	97.4	2	3	9.5	0.1	0.1	0.7	26000	400	180	29700	5.5	1.8
		KCl/PHPA/Polymer/Glycol	130	1506	10	55	18	27	9	12	4.8	1:3	24	250	8.8	91.2	1	6	9		0.05	0.75	22000	340	120	27000	5	1.7
		KCl/PHPA/Polymer/Glycol	130	1595	10	60	23	29	11	15	4.4	1:3	22	250	8.9	91.1	0.5	9	9		0.05	0.75	22000	360	100	27000	5	1.85
30-Sep-02	7	KCl/PHPA/Polymer/Glycol	141	1635	10.1	57	20	38	10	18	4.1	1	28	250	10.0	90.0	0.1	9	9.5	0.1	0.05	0.6	25000	480	100	28100	5.2	1.8
		KCl/PHPA/Polymer/Glycol	130	1635	10.2	80	23	45	14	20	4.6	1:3	24	250	10.0	90.0	0.1	10	9		0.05	0.75	23000	240	80	27000	5	1.78
		KCl/PHPA/Polymer/Glycol		1635	10.3	72	26	41	13	22	4.4	1:3	22	250	10.4	89.6	0.1	12	9		0.05	0.7	23000	280	40	27000	5	1.75
1-Oct-02	8	KCl/PHPA/Polymer/Glycol	ns	1635	10.3	68	24	40	12	21	4.4	1	24	250	10.4	89.6	0.1	12	9	0.1	0.05	0.7	24000	320	40	27000	5	1.75
		KCl/PHPA/Polymer/Glycol	140	1735	10.3	57	21	34	12	20	5	1:3	22	250	11.0	89.0	0.2	12	9.5		0.12	0.85	31000	160	100	37800	7	1.5
		KCl/PHPA/Polymer/Glycol		1763	10.3	57	21	33	10	20	5.4	1:3	22	250	11.2	88.8	0.2	12	9.5		0.13	1	30960	160	120	37800	7	1.38
2-Oct-02	9	KCl/PHPA/Polymer/Glycol	ns	1680	10.4	57	21	33	10	20	5.4	1:3	22	250	11.2	88.8	0.2	12	9.5	0.1	0.13	1	31000	160	120	35100	6.5	1.38
		KCl/PHPA/Polymer/Glycol	140	1778	10.3	50	19	26	7	18	5.2	1:2	23	250	11.1	88.9	0.25	11	10		0.15	1.1	31400	140	140	32400	6	1.38
		KCl/PHPA/Polymer/Glycol		1784	10.3	50	19	25	6	13	5.2	1:2	23	250	11.1	88.9	0.25	11	10		0.15	1.1	31200	160	120	32400	6	1.37
3-Oct-02	10	KCl/PHPA/Polymer/Glycol	ns	1771	10.3	51	19	23	6	14	5	1:2	24	250	11.0	89.0	0.2	11	9.5	0.1	0.1	1	32000	180	100	32400	6	1.35
		KCl/PHPA/Polymer/Glycol	150	1910	10.4	51	17	23	6	14	5.4	1:2	20	250	11.0	89.0	0.5	12	9.5		0.1	1	33000	140	100	37800	7	1.35
		KCl/PHPA/Polymer/Glycol	150	2070	10.3	57	21	23	6	15	5.2	1:2	20	250	10.8	89.2	0.5	12	9.5		0.12	1	31500	160	120	32400	6	1.5
4-Oct-02	11	KCl/PHPA/Polymer/Glycol	150	2112	10.3	58	22	25	7	14	5	1:2	22	250	10.6	89.4	0.5	12	9		0.05	0.85	33000	280	120	37800	7	1.5
		KCl/PHPA/Polymer/Glycol		2112	10.35	57	21	25	6	13	4.8	1:2	21	250	10.8	89.2	0.4	13	9		0.05	0.75	33000	360	80	37800	7	1.5
		KCl/PHPA/Polymer/Glycol		2112	10.35	57	22	24	6	13	4.8	1:2	22	250	10.8	89.2	0.4	13	9		0.04	0.74	33000	400	60	37800	7	1.5

Santos Ltd.

6.2 Mud Volume Analysis

Casino 2

17 1/2" Surface Hole

		Interval	Mtrs			Fluid B	uilt & Red	ceived				Fluid D	isposed				Sumi	nary	
	Hole				Fresh	Sump	Direct			De-	De-	Centrif	Down-						
Date	Size	From	To	Mud Type	Premix	Premix	Recirc	Water	Other	sander	silter	uge	hole	Dumped	Other	Initial	Received	Disposed	Final
25-Sep-02	17.50	140	700	Floc Gel	1300								2356			2475	1300	2356	1419
				Guar Gum															
				Floc Gel															
26-Sep-02	17.50	700	700	UnFloc Gel	310								923	30		1419	310	953	776
				UnFloc Gel															
				UnFloc Gel															
Sub Total				Gel Sweeps	1610								3279	30			1610	3309	

	Dilution Factors	5	
	Interval Length	Dilution Vol	Dilution Factor
17 1/2" Surface Hole	560 metres	310 bbls	0.55 bbls/metre

6.3 Mud Volume Analysis

Casino 2

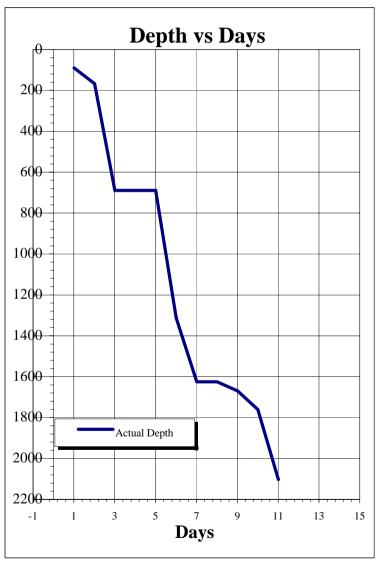
12 1/4" Main Production Hole

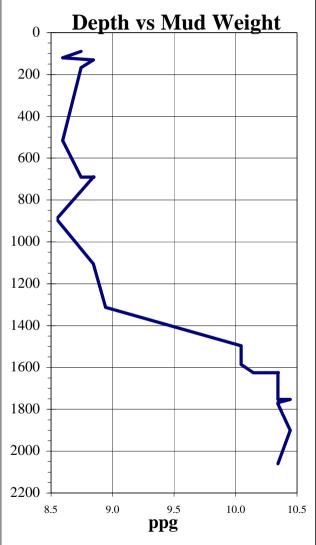
		Interval	Mtrs			Fluid B	ıilt & Rec	eived				Fluid Di	isposed				Sum	mary	
	Hole				Fresh	Sump	Direct			De-	De-	Centrif	Down-						
Date	Size	From	To	Mud Type	Premix	Premix	Recirc	Water	Other	sander	silter	uge	hole	Dumped	Other	Initial	Received	Disposed	Final
27-Sep-02	12.25	700	700	KCl/PHPA/Polymer/Glycol	1400												1400		1400
28-Sep-02	12.25	700	1210	KCl/PHPA/Polymer/Glycol	1900					86			1583	50	60	1400	1900	1779	1521
29-Sep-02	12.25	1210	1612	KCl/PHPA/Polymer/Glycol	750					21	321		73		100	1521	750	516	1755
30-Sep-02	12.25	1612	1646	KCl/PHPA/Polymer/Glycol	400								34	140	30	1755	400	204	1950
1-Oct-02	12.25	1646	1763	KCl/PHPA/Polymer/Glycol	280						43		139			1950	280	182	2049
2-Oct-02	12.25	1763	1784	KCl/PHPA/Polymer/Glycol							63		29		10	2049		102	1946
3-Oct-02	12.25	1784	2112	KCl/PHPA/Polymer/Glycol	440						309		34		40	1946	440	383	2003
4-Oct-02	12.25	2112	2112	KCl/PHPA/Polymer/Glycol									8		10	2003		18	1986
Sub Total					5170					107	736		1901	190	250	12624	5170	3184	14610

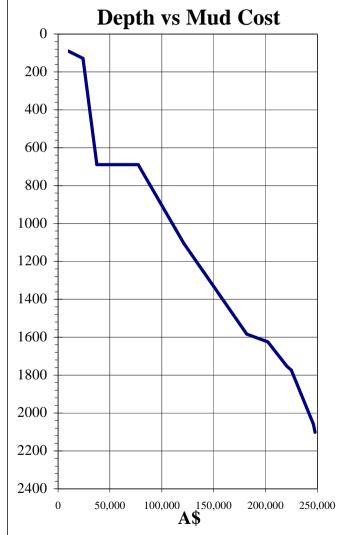
Di	Dilution Factors												
	Interval Length	Dilution Vol	Dilution Factor										
12 1/4" Main Production Hole	1412 m	3658 bbls	2.59 bbls/metre										

Santos Ltd.

6.1 Mud Volume Analysis

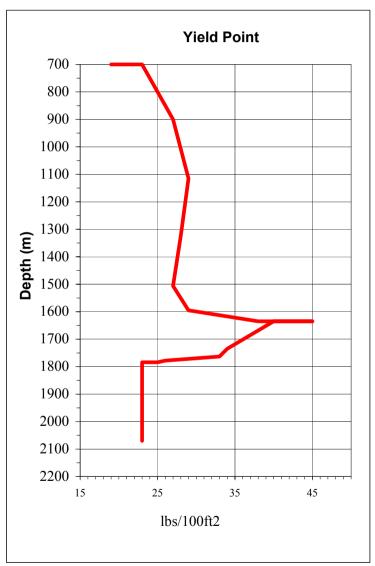

Casino 2

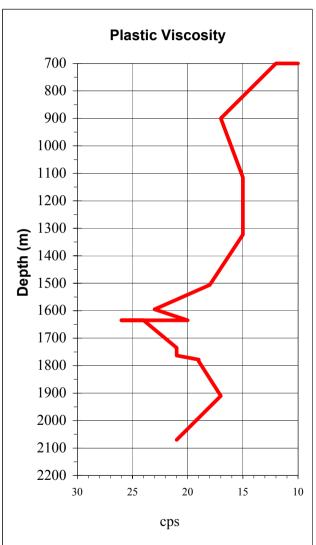

36" Conductor Hole

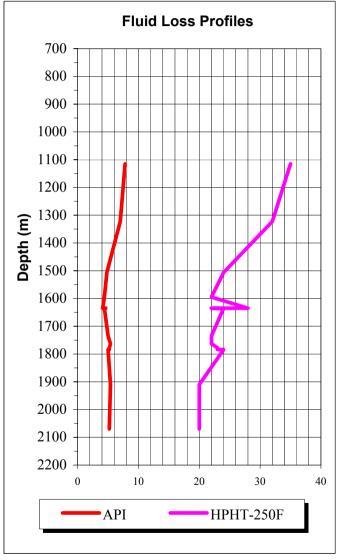

		Interval	Mtrs			Fluid B	uilt & Rec	eived		Fluid Disposed							mary		
	Hole				Fresh	Sump	Direct			De-	De-	Centrif	Down-						
Date	Size	From	To	Mud Type	Premix	Premix	Recirc	Water	Other	sander	silter	uge	hole	Dumped	Other	Initial	Received	Disposed	Final
24-Sep-02	36.00	Seabed	140	Floc Gel Guar Gum UnFloc Gel	3200								725				3200	725	2475
Sub Total	•			Gel Sweeps	3200								725				3200	725	

	Dilution Factor	s	
	Interval Length	Dilution Vol	Dilution Factor
36" Conductor Hole	140 metres		

7.1 Graphs

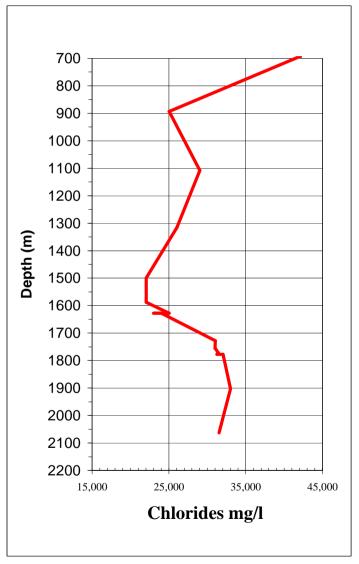


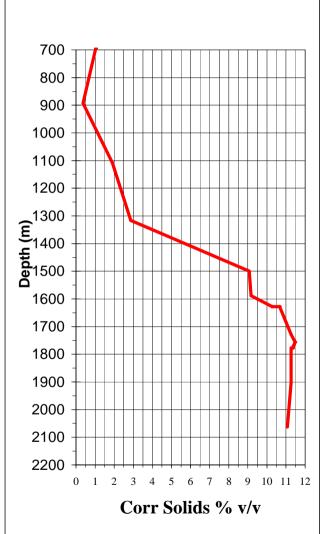


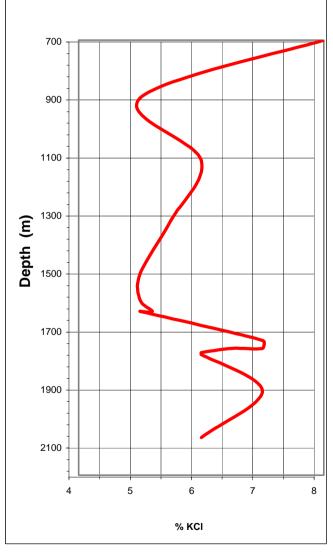


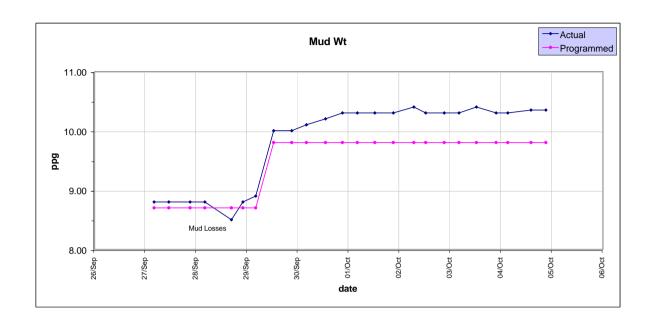
7.2 Graphs

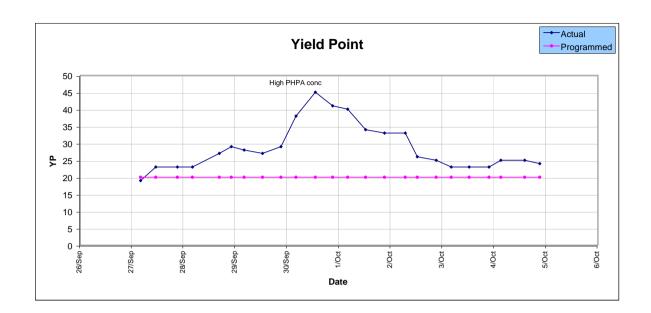
Santos Ltd.

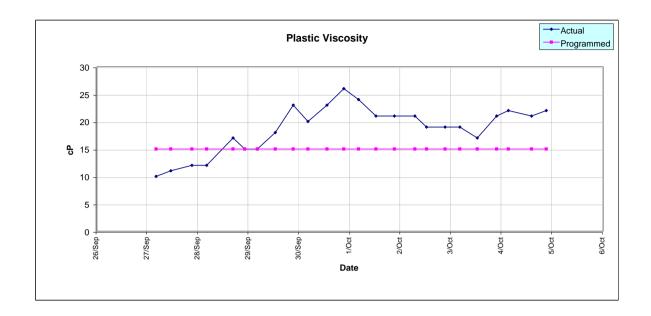


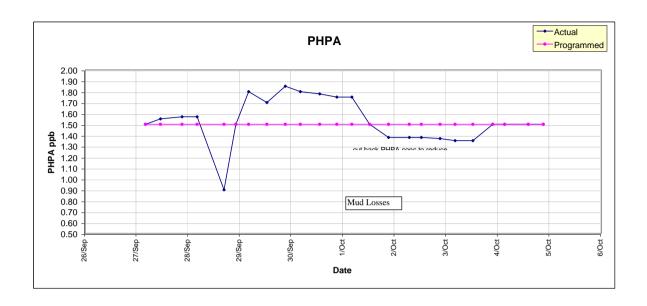


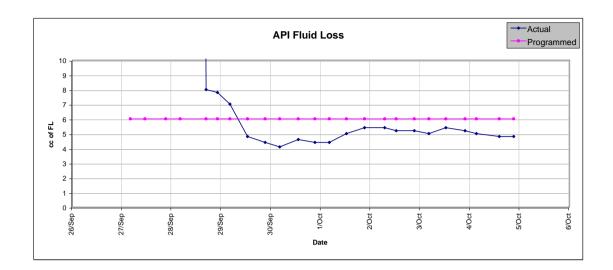

Casino 2

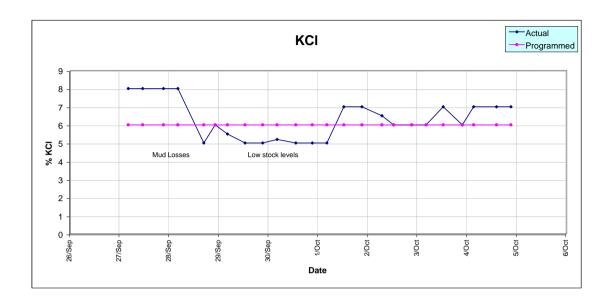

7.3 Graphs


Santos Ltd. Casino 2









8. Bit Record

Ope	erator: Santos Ltd. Well: Casino 2						tor :	DOGC	,	Superviso	pervisors: Ron King & Gavin Othen													
Spu	d Date :	: 24-Sep-02 TD Date :				Surface	Csg:	30"& @1.	2 20" 37m	Intermed	iate Cs	g :	13 3 @7	3/8" 43m				Product	tion Csg	g :				
																Α	nnular F	low Proj	perties					
Bit	Size				Reason	Depth	Depth		Cumm			Mud			Drill	Q CRIT		Drill	Q CRIT				HHP/	Impact
#	(in)	Make	Type	Jets (1/32)	Pulled	Out	Drilled	Hours	Hours	Gauge	GPM	Wt	n	0 300	Pipe			Collars		Flow	Jet Vel	HHP	in ²	Force
1	26.00	Varel	DSJC	18 18 18	CP	140	70	2.3	2.3	I	1111	8.43	0.29	86	5	9804	Laminar	9.5	9189	Laminar	477	1117	2.1	2314
2	17.50	SMITH	MGSSHC	20 20 20 18	CP	700	560	12.6	14.9		1129	8.43	0.16	145	5	7020	Laminar	9.5	5605	Laminar	309	477	2.0	1524
3	12.25	HUGHES	MX03DX	16 16 16	PR	1646	946	36.4	51.3		855	10	0.53	50	5	1132	Laminar	8	945	Laminar	464	968	8.2	2058
4	12.25	Hycalog	DSX195	12 12 12 12 12	Core Point	1763	117	6.4	57.7		795	10.3	0.47	55	5	1281	Laminar	8	1037	Laminar	461	912	7.7	1954
5	12.25	Security	Core Bit	22 22 22		1784	21	6	63.7		325	10.3	0.51	45	5	1064	Laminar	8	878	Laminar	93	15	0.1	162

CASINO #2

8a ECD HYDRAULICS

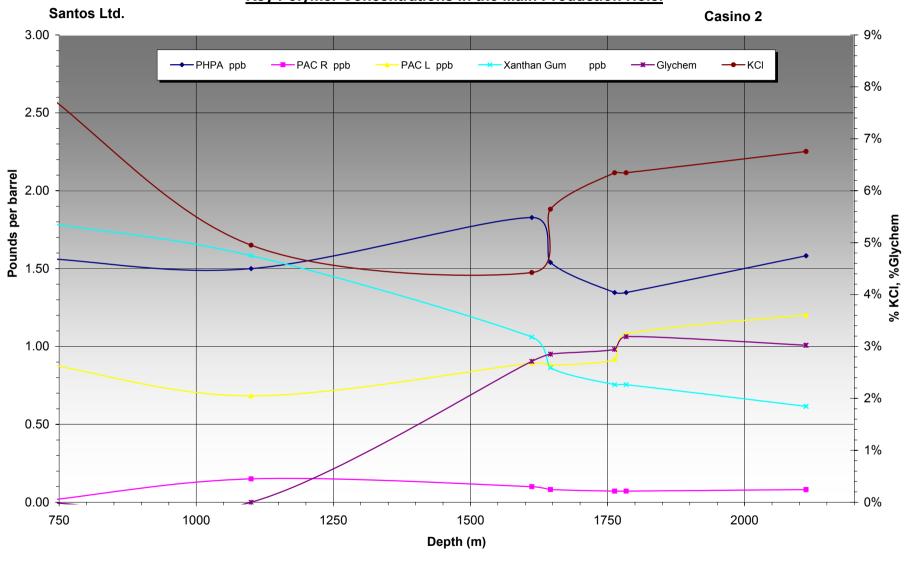
		Drilling Parameters													d Pr	opert	ies	Anı	nular Pr (If Lar		Joss	A		ressure ses			
																		psi					psi	ppg			
Date	Bbl/Stk @ 100%	%Eff	Total Stks	GPM	Hole Size	Casing ID	D/C size		Depth m	TVD m	Casing Depth m	Length D/C m		rpm 600	rpm 300	n	k (dynes)	LPr. Loss (dh-dc)	LPr loss (dcas-dc)	LPr loss (dh-dp)	LPr loss (dcas-dp)	Tu Pr loss (dh-dc)	Tu Pr loss (dcas-dc)	Tu pr loss (dh-dp)	Tu pr loss (dcas-dp)	Total Pressure loss	ECD
24-Sep-02	0.1049	97	260	1111	36.00		9	5	140	140		120	8.7	156	137	0.187	217.75	2.97		0.42						3.39	8.84
25-Sep-02	0.1049	97	264	1128	17.50	25	9	5	700	700	137.0	38	8.7	162	145	0.160	273.43	5.78		49.31	6.61					61.71	9.22
26-Sep-02	0.1049	97	260	1111	17.50	25	9	5	700	700	137.0	38	8.7	115	90	0.353	50.75	2.14		16.18	1.71					20.03	8.87
28-Sep-02	0.1049	97	200	855	12.25	12.347	8.5	5	1100	1100	690.0	200	8.8	61	44	0.471	11.92	19.06		6.07	19.38					44.51	9.04
29-Sep-02	0.1049	97	200	855	12.25	12.347	8.5	5	1612	1612	690.0	200	10.0	75	52	0.528	9.87	20.92		21.47	19.90					62.29	10.23
30-Sep-02	0.1049	97	200	855	12.25	12.347	8.5	5	1646	1646	690.0	200	10.3	93	67	0.473	17.95	28.96		33.13	29.39					91.48	10.63
1-Oct-02	0.1049	97	186	795	12.25	12.347	8.5	5	1763	1763	690.0	200	10.3	76	55	0.466	15.34	23.18		30.84	23.69					77.71	10.56
2-Oct-02	0.1049	97	76	325	12.25	12.347	8.5	5	1784	1784	690.0	123	10.3	64	45	0.508	9.69	6.99		16.06	11.08					34.13	10.41
3-Oct-02	0.1049	97	200	855	12.25	12.347	8.5	5	2112	2112	690.0	200	10.3	65	44	0.563	6.73	16.91		28.24	15.45					60.61	10.47

Santos Ltd.

9. Solids Control Equipment

 sina	

Date	Depth	Shal	ker 1	Shak	ker 4			Desa	nder					Des	ilter				Centrif	Degasser			
Date	Mtrs	Screens	Hours	Screens	Hours	Cone Size	Cone Nos	Hours	OF ppg	UF ppg	GPM	Cone Size	Cone Nos	Hours	OF ppg	UF ppg	GPM	Type	Hours	UF ppg	OF ppg	Type	Hours
24-Sep-02	140	4 x s84		4 x s84		6	3					2	20										
25-Sep-02	700	4 x s84		4 x s84		6	3					2	20										
26-Sep-02	700	4 x s84		4 x s84		6	3					2	20										
27-Sep-02	700	4 x s84		4 x s84		6	3					2	20										
28-Sep-02	1210	4 x 84	20	4 x 52	20	6	3	12	8.8	11	5	2	20										
29-Sep-02	1612	4 x 145	24	4 x 115	24	6	3	3	8.8	10.3	5	2	20	15	9.8	14	15						
30-Sep-02	1646	4 x 145	18	4 x 115	18	6	3					2	20										
1-Oct-02	1763	4 x 145	10	4 x 115	10	6	3					2	20	2	10.2	11.5	15						2
2-Oct-02	1784	4 x 145	9	4 x 115		6	3					2	20	4	10.3	11.6	11						2
3-Oct-02	2112	4 x 145	20	4 x 115		6	3					2	20	18	10.2	11.5	12						
4-Oct-02	2112	4 x 145	6	4 x 115		6	3					2	20										


10. KEY POLYMER CONCENTRATIONS

Santos Ltd. Casino 2

						Usag	je						Conc	entration p	pb		
Date	Depth metres	Initial Vol bbls	Vol Addition bbls	PHPA (55 lb Sx)	PAC R (55 lb Sx)	PAC L (55 lb Sx)	Glychem (200 Lit Drums)	KCI (BB) 1 Tons	Xanthan Gum (55 lb Sx)	Idcide (55 lbs Drums)	PHPA ppb	PAC R ppb	PAC L ppb	Glychem %	KCI %	Xanthan Gum ppb	ldcide ppb
27-Sep-02	700	0	1400	40		23		18	46	11	1.57	0.00	0.90	0.00%	8.08%	1.81	0.43
28-Sep-02	1100	1400	1900	34	9	18		8	49	17	1.50	0.15	0.68	0.00%	4.95%	1.58	0.47
29-Sep-02	1612	1521	750	34		18	49	4			1.83	0.10	0.89	2.71%	4.42%	1.06	0.31
30-Sep-02	1646	1755	400	2		6	11	7		2	1.54	0.08	0.88	2.85%	5.64%	0.86	0.31
1-Oct-02	1763	1950	280			6	8	5		2	1.35	0.07	0.92	2.95%	6.35%	0.76	0.32
2-Oct-02	1784	2049				6	4				1.35	0.07	1.08	3.19%	6.35%	0.76	0.32
3-Oct-02	2112	1946	440	21	1	14	8	6		9	1.58	0.08	1.20	3.02%	6.76%	0.62	0.47
4-Oct-02	2112	2003									1.58	0.08	1.20	3.02%	6.76%	0.62	0.47
										·							

^{*} No depletion (loss to formation, cuttings, degradation, temperature etc) of Polymers has been taken into account.

Key Polymer Concentrations in the Main Production Hole.

11.0 FIELD ENGINEERING LOG

CASINO #2

Previous Well: Casino 1

Rig Release date of:

Mud Engineer(s) on Rig Move 1st Engineer: Carl Jensen

2nd Engineer: Jasdeep Singh

Dates of Rig Move: Engineering Days on Rig Move

Day #	Date	Engineer(s) Name
Day 1	24-Sep-02	Carl Jensen / Jasdeep Singh
Day 2	25-Sep-02	Carl Jensen / Jasdeep Singh
Day 3	26-Sep-02	Carl Jensen / Jasdeep Singh
Day 4	27-Sep-02	Carl Jensen / Jasdeep Singh
Day 5	28-Sep-02	Carl Jensen / Jasdeep Singh
Day 6	29-Sep-02	Carl Jensen / Jasdeep Singh
Day 7	30-Sep-02	Carl Jensen / Jasdeep Singh
Day 8	1-Oct-02	Carl Jensen / Jasdeep Singh
Day 9	2-Oct-02	Carl Jensen / Jasdeep Singh
Day 10	3-Oct-02	Carl Jensen / Jasdeep Singh
Day 11	4-Oct-02	Carl Jensen / Jasdeep Singh
Day 12	5-Oct-02	Carl Jensen / Jasdeep Singh
Day 13	Rig Release - 6/10/2002	Carl Jensen
	TOTAL Engineering days:	Carl Jensen; 13 days, Jasdeep Singh; 12 days

A Division of Rheochem Pty Ltd

ACN 070 415 593

:			Date		24-Sep-02		
	Rig # Bounty		Spud Date		24-Sep-02		
	Total MD		0	to	140	_	
	Total VD			to	140		

Drilling Fluid Report **OPERATOR** Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Gavin Othen REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE Casino 2 **VIC - P - 44 Otway Basin** Victoria ВНА BIT TYPE CASING MUD VOLUME (BBL) CIRCULATION DATA JET SIZE BIT SIZE PLIMP SIZE 30 & 18 18 CONDUCT SET @ DSJC 275 2200 x 12 1200 36 PRESS psi % EFFICIENCY DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS ft 10 SIZE 5 s SET@ National 12-P-160 min IN STORAGE DRILL PIPE TYPE ength SURFACE PROD. or 0.1 SIZE HW 56 LNR Set @ 0.1018 260 то віт DRILL COLLAR TOTAL CIR 94 min 8 1/4 9 1/2 36 Floc Gel 26.46 1111 TIME MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS PITS PITS** Mud Wt 1.03-1.0 Glycol TIME SAMPLE TAKEN 10:00 12:00 13:00 Vis > 100 Yield Point рΗ 8-10 **FLOWLINE TEMPERATURE** KCI 0 F/0C PHPA excess Sulphites **TOTAL MEASURED DEPTH (TMD)** 100 **OBSERVATIONS** Feet 130 140 ppg / SG WEIGHT 8.70 1.04 8.55 1.03 8.80 1.06 Pumped a total of 370 bbl of 25 ppb + 0.37 ppb Lime FUNNEL VISCOSITY(sec/qt) API @ 16 °C 0 F 100 Flocculated Gel and 130 bbl of 2.1 ppb Guar Gum sweeps 60 > 100 135 49 °C RHEOLOGY 600:300 RPM 120 °F 156 137 105 during drilling for hole cleaning. 52 41 49 °C RHEOLOGY 200:100 RPM 120 °F 126 114 35 27 81 71 Displaced Hole with 280 bbl of 28 ppb Unflocculated Gel 49 °C 120 °F RHEOLOGY 6:3 RPM 62 42 8 5 57 55 before running casing. 49 °C PLASTIC VISCOSITY 120 °F 19 11 19 Drill Water: Ca 160 mg/lt; Pf/Mf 0.05/0.35; Cl 1200 mg/lt 49 °C pH 8.5 YIELD POINT (Ib/100FT²) 120 °F 118 30 67 38/45/50 GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 6/6/6 58/59/60 Volume in Storage for next section: 250 bbl Guar Gum (2.17 ppb); NC NC NC 450 bbl Floc Gel + 1500 bbl Un Floc Gel (25.27 ppb) API FILTRATE (cm³/30 min.) HPHT FILTRATE (cm³/30 min.) 0 F **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 11.0 10.0 7.5 Spudded well at 09:30 **ALKALINITY MUD** 1.5 Drilled with sea water monitoring & dumping returns ALKALINITY FILTRATE (Pf / Mf) 0.42 0.72 0.25 0.30 at sea bed using sea water coupled with Gel & Guar Gum 1400 CHLORIDE 1660 21800 sweeps to clean hole. Section TD at 140 m. (mg/L) **TOTAL HARDNESS** 40 2400 80 POOH (mg/L) SULPHITE (mg/L) Run 30 & 20 inch casing with PGB and cemented in place. PHPA (Calc ppb) WOC **GLYCOL CONTENT (% V/V)** K+ (mg/L) KCL (% by Wt.) **BARYTES (Calc ppb)** MUD ACCOUNTING (BBLS) METHYLENE BLUE CAPACITY (ppb equivalent) 25.0 28 0 FLUID BUILT FLUID DISPOSED Premix - Water INITIAL SOLIDS CONTENT (% by volume) Retort 2.64 0.20 3.41 ### S.C.E LIQUID CONTENT (% by volume) Calc 97.36 99.80 96.59 Premix - Recyc Dumped ⊦ Rcd 3,200 **CUTTINGS OIL RATIO (% oil)** 725 Drill Water 725 Downhole Lost SAND CONTENT (% by volume) 2.200 Other Other Surface PRODUCT USAGE RECEIVED ### LOST 725 FINAL 2,475 Received SOLIDS CONTROL EQUIPMENT Product Price Start Used Close SHALE SHAKERS Hrs 36.60 24 9 15 \$ 329.40 Caustic Soda \$ 125.00 80 15 65 \$ 1,875.00 #1 4 x s84 Desander 3 6 Centrifuge **Guar Gum** 80 7 73 \$ 54.60 #2 4 x s84 Desilter 20 2 Centrifuge _ime \$ Mud Cleaner 1 17.50 670 873 853 12.075.00 4 x s84 690 #3 Degassei Trugel-13A Bulk 4 x s84 Mud Cleaner 2 Overflow (ppg) Underflow (ppg) Output (Gal/Min.) Desander Desilter Λ Cleaner 1 Cleaner 2 0 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$14,334.00 \$14,334.00 I.D.F.S. Engineer: Office: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Telephone:

Page

IDFS

INDEPENDENT DRILLING FLUID SERVICES Report

A Division of Rheochem Ltd

ACN 070 415 593

Report # 2 Date 25-Sep-02 Rig # Ocean Bounty Spud Date 24-Sep-02 Total MD 140 to 700 Total VD 140 to 700

Drilling Fluid Report

				<u>9</u>	<u> </u>		ор					lotai	עט		140	το	700
	HYDRAULICS																
Annular Velocity Sh				Shear Rate Wall	Shear Rates at Wall		ress at Ve	locity at Wall	REYN NUME		Friction Factors		TICAL OCITIES		FLOW MINAR		F FLOW RBULENT
SECTION Metres/min F		Feet/min	Sec ⁻¹	Sec ⁻¹		ft 2	t/min				fee	t/min		psi		psi	
OPEN HOLE DRILL COLLA							61 5	93.89	80	6	0.05	67	9.29		5.78		
CASING - DRI COLLARS	CASING - DRILL COLLARS 15.50 51 20.99					444.8	80 2	119.42	19	9	0.09	64	2.97				
OPEN HOLE - 29.98 98 51.96						514.	16 9	89.55	6	1	0.06	65	6.91	4	19.31		
CASING - DRILL PIPE 14.05 46 15.22 4						422.	54 2	775.80	10	6	0.09	63	0.63		6.61		
	FLUID	PROP	ERTIES A	AND CON	STA	NTS		ANNU	ANNULAR PRESSURE DROP					62		psi	
n	0	.16		F		2.7	75	ECD							9.22		ppg
К	5	3.51		Z1		0.2	26	CASIN	IG SEA	T FRA	CTURE	PRESSU	IRE				psi
К	5	3.51		Z2		0.3	37	EQUIV	/ALEN	T MUD	WEIGH	IT					ppg
			AT THE	BIT				GAS K	CICK TO	OLERA	NCE						bbls
TFA				1.17			inch ²	SLIP \	/ELOC	ITY							Feet/min
JET VELO	CIY			309			feet/sec	% HOI	LE CLE	ANING	}						%
IMPACT F	ORCE			1572			lbf	PRES	SURE I	LOSS E	BEFOR	E BIT					psi
HHP at bit				492			Lbs	PRES	PRESSURE LOSS FROM MUD PUMP TO B					Т			psi
HHP/ inch	2			2.04			hp/inch ²	TOTA	L THEC	DRETIC	CAL PR	ESSURE	LOSS				psi
BIT PRESS	SURE LOSS	5		747			psi	% of F			ROP AT				28.7%		
SOLIDS ANALYSIS										WEIGH	ITING U	JP SCEN				le	
High Gravity	Solids		РРВ		%	·	25 kg Sack Required	(S 0.1 p	ISE MW og per bbls	TO R MW 1 p 100k	pg per	ppg CIRCUL VOLU	TO ATING	1 p CIRC	AISE MW opg TO ULATING DLUME	WITH	POTENTIAL I CURRENT STOCKS
Total LGS			23.34		2.5	6	Salt	1	3	13	34	17			1905		
Bentonite			24		2.6	4	KCI	1	3	13	34	17	3	1	1905	8.92	
Drilled Solid	s		-0.66		-0.0	07	CaCO ₃	1	4	15	54	20)	2	2186		
Salt			1.63		0.1	4	BARITE	1	0	10)6	14	5	1	1500		11.45
	PF	RODUC	CT CONC	ENTRATIO	ONS							DILUTIO		RS			
PRODUCT				N ACTIVE MU heoretical)	D	COST	\$/BARREL	Dilution section		ncluding	j Sump W	ater for this					bbls/foot
PHPA								Dilution Section		excluding	g Sump V	Vater for thi	5				bbls/foot
PAC R												TIBAE A	NALYSIS				
PAC L Glychem								DRILLIN	IG.			TIME	MALTOIS		17 1/2		hours
KCI								TRIPPIN							4		hours
Xanthan Gu	m							REAMIN	IG AND \	WASHING	G						hours
								TESTIN	G AND N	IIPPLING	UP BOP	s					hours
	20111015						14.00	MAKE U									hours
36" HOLE						14.33 2.13	-	ATE	NT, WOC	<u> </u>				1/2		hours	
			17.5" HOLE				2.13 40.43	LOGGING					1			hours	
			POST TD					NON PRODUCTIVE TIME (eg: Work tight hole))				hours	
			TOTAL WEL	L		_		OTHER					_		1		hours
I.D.F.S. Engi	neer:		Carl Jens			ep Singh		Office:		Brisbar			Telepl	none:	07 3	806-01	60
			Any opinion a	nd/or recommendati	on, expre	ssed orally or wri	itten herin, has been	prepared carefully	y and may be i	used if the use	er so elects, how	vever, no represent	ation or warranty				

Rig# Spud Date **Bounty** 24-Sep-02 A Division of Rheochem Pty Ltd ACN 070 415 593 **Total MD** 700 700 to Drilling Fluid Report Total VD 700 700

Report #

3 Date

26-Sep-02

OPERATOR Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Gavin Othen REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE Casino 2 **VIC - P - 44 Otway Basin** Victoria ВНА BIT TYPE CASING MUD VOLUME (BBL) CIRCULATION DATA JET SIZE PLIMP SIZE BIT SIZE SMITH 30 & CIII ATION 20 20 20 CONDUCT SET @ 17 1/2 MGSSHC 18 776 x 12 PRESS psi % EFFICIENCY DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS ft SIZE 5 s 438 SET@ National 12-P-160 min IN STORAGE DRILL PIPE TYPE ength. SURFACE PROD. or SIZE HW LNR Set @ 0.1018 то віт min DRILL COLLAR GAL / MIN TOTAL CIR 8 1/4 9 1/2 112 38 **UnFloc Gel** min MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS PITS PITS** Mud Wt 1.03-1.0 Glycol TIME SAMPLE TAKEN 09:00 12:00 17:00 Vis > 100 Yield Point 8-10 рΗ **FLOWLINE TEMPERATURE** KCI 0 F/0C PHPA excess Sulphites **TOTAL MEASURED DEPTH (TMD)** 700 700 700 **OBSERVATIONS** Feet ppg / SG WEIGHT 8.80 1.06 8.80 1.06 8.80 1.06 Mixed an additional 310bbl Gel for displacement FUNNEL VISCOSITY(sec/qt) API @ 16 °C 0 F >100 >100 Filled casing string with left over 170 bbl PHGel and 60 >100 49 °C RHEOLOGY 600:300 RPM 120 °F 110 108 115 90 remaining with Sea water. 85 49 °C RHEOLOGY 200:100 RPM 120 °F 80 70 78 68 82 75 Dump and clean surface pits. 49 °C 120 °F RHEOLOGY 6:3 RPM 55 45 51 44 60 50 49 °C PLASTIC VISCOSITY 120 °F 25 26 25 Drill Water: Ca 240 mg/l; Pf/Mf 0.03/0.27; CI 1360 mg/l; pH 8.3 49 °C YIELD POINT (Ib/100FT²) 120 °F 60 56 65 50/53/58 GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 47/50/55 45/50/52 NC NC NC API FILTRATE (cm³/30 min.) Gel figures adjusted as per Ballast Control as dips couldn't be HPHT FILTRATE (cm³/30 min.) 0 F aken yesterday due to rough seas **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 10.0 WOW. RIH 07:00hrs. 16m fill. Wash to TD. Circ Sea Water. 10.5 10.0 **ALKALINITY MUD** Sweep with 100bbl PHG. Displace hole with 750bbl PHGel. ALKALINITY FILTRATE (Pf / Mf) 0.30 0.60 0.27 0.55 0.25 POOH. Pick up and run 13 3/8"csg. Cement casing as per 2000 2000 CHLORIDE 2000 program with shoe at 690.5m. (mg/L) **TOTAL HARDNESS** 80 Displace cmt with sw (mg/L) 80 SULPHITE (mg/L) PHPA (Calc ppb) **GLYCOL CONTENT (% V/V)** K+ (mg/L) KCL (% by Wt.) **BARYTES (Calc ppb)** MUD ACCOUNTING (BBLS) METHYLENE BLUE CAPACITY (ppb equivalent) 25.0 24.0 25.0 FLUID BUILT FLUID DISPOSED Premix - Water SOLIDS CONTENT (% by volume) Retort 3.37 3.37 3.37 310 S.C.E ΙΔΙΤΙΜΙ 1419 LIQUID CONTENT (% by volume) Calc 96.63 96.63 96.63 Premix - Recyc Dumped 30 + Rcd 310 **CUTTINGS OIL RATIO (% oil)** 953 Drill Water Downhole 923 Lost SAND CONTENT (% by volume) Other Other Surface PRODUCT USAGE RECEIVED 310 LOST 953 FINAL 776 SOLIDS CONTROL EQUIPMENT Product Price Start Received Head Close SHALE SHAKERS Hrs 36.60 14 32 45 36.60 1 Caustic Soda #1 4 x s84 Desander 3 6 Centrifuge # 2 4 x s84 Desilter 20 2 Centrifuge Mud Cleaner 1 #3 4 x s84 Degassei #4 4 x s84 Mud Cleaner 2 Overflow (ppg) Underflow (ppg) Output (Gal/Min.) Desander Desilter Λ Cleaner 1 Cleaner 2 0 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$36.60 \$27,757.80 I.D.F.S. Engineer: Office: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Telephone:

A Division of Rheochem Pty Ltd

ACN 070 415 593

•	Date		27-Sep-02				
Rig # Bounty	Spud Date		24-Sep-02				
Total MD	700	to	700				
Total VD	700	to	700				

Drilling Fluid Report **OPERATOR** Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Gavin Othen REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE Casino 2 **VIC - P - 44 Otway Basin** Victoria ВНА **BIT TYPE** CASING MUD VOLUME (BBL) CIRCULATION DATA JET SIZE BIT SIZE PLIMP SIZE 30 & CONDUC SET @ 12 1/4 1400 x 12 20 PRESS psi % EFFICIENCY DRILL PIPE PUMP MODEL BOTTOMS 13 3/8 SURFACE 690 ft TOTAL CIRCULATING VOL SIZE 5 700 SET@ National 12-P-160 S min IN STORAGE DRILL PIPE TYPE ength. SURFACE SIZE HW LNR Set @ 0.1018 то віт min DRILL COLLAR GAL / MIN TOTAL CIR IUD TYPES 8 1/4 9 1/2 KCI/PHPA/Polymer/Glycol min MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS PITS PITS** Mud Wt 4%-6% API 9.1-10.8 Glycol >20 pH 8-10 TIME SAMPLE TAKEN 04:00 11:00 21:00 Vis 45-55 Yield Point 6%-8% **FLOWLINE TEMPERATURE** KCI PHPA excess >1.8 Sulphites 100 0 F/0C **TOTAL MEASURED DEPTH (TMD)** 700 700 **OBSERVATIONS** Feet 700 ppg / SG WEIGHT 8.80 1.06 8.80 1.06 8.80 1.06 Mixed 1400 bbl of new mud with 1.57 ppb PHPA, 0.9 ppb PAC L FUNNEL VISCOSITY(sec/qt) API @ 16 °C 0 F 1.14 ppb Xanthan Gum, 8% KCI treated with 0.43 ppb Idcide. 60 72 74 78 49 °C RHEOLOGY 600:300 RPM 120 °F 45 34 47 39 29 49 °C RHEOLOGY 200:100 RPM 120 °F 24 19 29 22 30 23 Also prepared 170 bbl of 2.26 ppb Xanthan Gum to be used 49 °C 120 °F RHEOLOGY 6:3 RPM 5 8 6 8 for sweeps while drilling cement & before displacement. 49 °C PLASTIC VISCOSITY 120 °F 10 11 12 Funnel Vis 45 & YP 26. 49 °C YIELD POINT (Ib/100FT²) 120 ° F 19 23 23 GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 4/5/5 6/6/6 6/6/6 Drill water received tested as: Ca 160 mg/l; Pf/Mf 0.02/0.3 NC NC NC CI 640 mg/l; pH 8.5 API FILTRATE (cm³/30 min.) HPHT FILTRATE (cm³/30 min.) ٥F **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 8.0 8.0 8.0 Lay out cmt assembly. Rig up and run BOP and riser. **ALKALINITY MUD** Test BOP. Make up 12 1/4" BHA. RIH. ALKALINITY FILTRATE (Pf / Mf) 0.80 0.90 CHLORIDE 42000 42000 42000 (mg/L) **TOTAL HARDNESS** 240 240 240 (mg/L) SULPHITE (mg/L) PHPA (Calc ppb) 1.5 1.6 1.6 **GLYCOL CONTENT (% V/V)** K+ (mg/L) 43200 43200 KCL (% by Wt.) 8.0 8.0 8.0 **BARYTES (Calc ppb)** MUD ACCOUNTING (BBLS) METHYLENE BLUE CAPACITY (ppb equivalent) FLUID BUILT FLUID DISPOSED Premix - Water INITIAL SOLIDS CONTENT (% by volume) Retort 0.77 0.77 0.77 ### S.C.E LIQUID CONTENT (% by volume) Calc 99.23 99.23 99.23 Premix - Recyc Dumped ⊦ Rcd 1,400 **CUTTINGS OIL RATIO (% oil)** Drill Water Downhole Lost SAND CONTENT (% by volume) 1.400 Other Other Surface PRODUCT USAGE RECEIVED ### LOST FINAL 1,400 Received SOLIDS CONTROL EQUIPMENT Product Price Start Head Close SHALE SHAKERS Hrs 103.00 62 \$ 1,133.00 73 11 Idcide-20 \$ 109.70 151 40 111 \$ 4,388.00 #1 4 x s84 Desander 3 6 Centrifuge JK-261 \$ 650.00 30 18 12 \$ 11,700.00 #2 4 x s84 Desilter 20 2 Centrifuge KCI BB Fine \$ 4 x s84 Mud Cleaner 1 168.00 106 3.864.00 129 23 #3 Degassei PAC-L 109 \$ 18,925.32 411.42 46 4 x s84 Mud Cleaner 2 Xanthan Gum P Overflow (ppg) Underflow (ppg) Output (Gal/Min.) Desander Desilter Λ Cleaner 1 Cleaner 2 0 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$40,010.32 \$67,768.12 I.D.F.S. Engineer: Office: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Telephone:

of Report

A Division of Rheochem Pty Ltd

ACN 070 415 593

	Date		28-Sep-02		
Rig # Bounty	Spud Date		24-Sep-02		
Total MD	700	to	1210		
Total VD	700	to	1210		

Drilling Fluid Report **OPERATOR** Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Gavin Othen REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE **VIC - P - 44 Otway Basin** Victoria Casino 2 BIT TYPE CASING MUD VOLUME (BBL) CIRCULATION DATA ВНА JET SIZE PLIMP SIZE BIT SIZE 30 & CONDUC SET @ 12 1/4 MX03DX 591 x 12 2900 20 530 PRESS psi DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS 13 3/8 SURFACE 690 ft 26 National 12-P-160 SIZE 5 s 899 SET@ min DRILL PIPE TYPE ength SURFACE 3.0 SIZE HW LNR Set @ 400 0.1018 200 то віт DRILL COLLA TOTAL CIR 75 min 8 1/4 200 KCI/PHPA/Polymer/Glycol 20.36 855 TIME MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS PITS PITS** 4%-6% API Mud Wt 9.1-10.8 Glycol >20 pH TIME SAMPLE TAKEN 04:00 16:30 22:00 Vis 45-55 Yield Point 8-10 **FLOWLINE TEMPERATURE** 80 27 KCI 6%-8% >1.8 Sulphites 100 0 F/0C PHPA excess **TOTAL MEASURED DEPTH (TMD)** 700 1115 **OBSERVATIONS** Feet 900 ppg / SG WEIGHT 8.80 1.06 8.50 1.02 8.80 1.06 Observed losses of upto 600 bbl/hr below shoe. Easing to FUNNEL VISCOSITY(sec/qt) API @ 21 °C 0 F 20-30 bbl/hr at 1030 m. Again lost 60-80 bbl/hr on shakers & 70 78 67 60 49 °C RHEOLOGY 600:300 RPM 120 °F 47 44 59 downhole between 1070m to 1110 m. Treated with 10 ppb 35 61 49 °C RHEOLOGY 200:100 RPM 120 °F 30 23 36 28 37 29 Sandseal & Quickseal 49 °C 120 °F RHEOLOGY 6:3 RPM 8 6 11 8 11 8 Intend to add Glychem once downhole losses stabilised as per 49 °C PLASTIC VISCOSITY 120 °F 12 17 DSV. Meanwhile building PHPA & KCI concentration back up. 15 49 °C YIELD POINT (Ib/100FT²) 120 ° F 23 27 29 Limitation of handling flow at shakers. Running Desander to control GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 6/6/6 9/10/10 9/10/12 NC 7.8 8.0 API FILTRATE (cm³/30 min.) Stopped adding Sandseal into active at 1030 m. Losses down to 121 °C HPHT FILTRATE (cm³/30 min.) 250 ° F 35.0 **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 1:2 9.0 9.5 9.5 RIH. Tag cement at 630m. Wash and ream to 663m. **ALKALINITY MUD** 0.3 Drill cement and float to 666m. Drl to shoe at 690m with SW, ALKALINITY FILTRATE 0.20 0.90 0.13 0.70 and HiVis sweeps. Displace to mud with 100bbl HiVis spacer. (Pf / Mf) 0.10 CHLORIDE 42000 25000 29000 LOT at 703m, 10,2EMW (mg/L) **TOTAL HARDNESS** 240 300 Drl to 772m with losses up to 600bbl/hr. 220-40k connection drag. (mg/L) 320 SULPHITE (mg/L) POOH to shoe. Build new mud. RIH. Drill to 1207m with losses PHPA (Calc ppb) 1.6 0.9 1.5 at 30-40bbl/hr **GLYCOL CONTENT (% V/V)** Changed screens to 52 mesh to handel LCM and new Polymer. K+ (mg/L) 43200 27000 32400 Changed two shakers back to 84 mesh at 900 m for sand %. (% by Wt.) 8.0 5.0 6.0 KCL Shakers handling flow just on edge **BARYTES (Calc ppb)** MUD ACCOUNTING (BBLS) METHYLENE BLUE CAPACITY (ppb equivalent) 2 0 3.0 FLUID BUILT FLUID DISPOSED S.C.F SOLIDS CONTENT (% by volume) Retort 0.77 -0.39 1.63 Premix - Water ### 86 ΙΝΙΤΙΔΙ 1400 1,900 LIQUID CONTENT (% by volume) Calc 99.23 100.39 98.37 Premix - Recyc Dumped 50 + Rcd **CUTTINGS OIL RATIO (% oil)** 1.779 Drill Water Downhole 1583 Lost SAND CONTENT (% by volume) 4.0 Other Other 60 Surface 930 PRODUCT USAGE RECEIVED LOST 1779 FINAL 1,521 ### Received SOLIDS CONTROL EQUIPMENT Product Price Start Head Close Hrs Hrs 36.60 45 39 \$ 219.60 6 Caustic Soda \$ 245.33 28 1 27 \$ 245.33 #1 4 x 84 20 Desander 3 6 12 Centrifuge Defoamer-A \$ 103.00 17 45 \$ 1,751.00 #2 4 x 84 20 Desilter 20 2 Centrifuge ldcide-20 \$ Mud Cleaner 1 \$ 109.70 111 77 3.729.80 4 x 52 34 #3 20 Degassei JK-261 \$ 4 x 52 650.00 12 8 4 5,200.00 20 Mud Cleaner 2 KCI BB Fine Overflow (ppg) Underflow (ppg) Output (Gal/Min.) 106 88 \$ \$ 168.00 18 3.024.00 PAC-L Desander 8.8 11.0 5.00 PAC-R 9 31 \$ 1,512.00 \$ 168.00 40 Desilter Λ \$ 1.175.00 Quik Seal \$ 47.00 125 25 100 Cleaner 1 32 \$ 6,860.00 Sandseal Fine 102 70 Cleaner 2 0 Sodium Sulphite \$ 25.02 43 3 40 \$ 75.06 Centrifuge1 Xanthan Gum P \$ 411.42 109 49 60 \$ 20,159.58 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$43,951.37 \$111,719.49 I.D.F.S. Engineer: 07 3806-0165 BRISBANE 07 3806-0160 Fax: Carl Jensen & Jasdeep Singh Office: Telephone:

Page

A Division of Rheochem Pty Ltd

ACN 070 415 593

Report # 6 Date 29-Sep-02 Rig# Spud Date **Bounty** 24-Sep-02 **Total MD** 1210 1612 to

Drilling Fluid Report Total VD 1210 1612 OPERATOR Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Gavin Othen REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE **VIC - P - 44** Casino 2 **Otway Basin** Victoria BIT TYPE CASING MUD VOLUME (BBL) CIRCULATION DATA ВНА JET SIZE PLIMP SIZE BIT SIZE 30 & CONDUC SET @ 12 1/4 MX03DX 775 500 x 12 4000 20 psi DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS 13 3/8 SURFACE 690 ft 34 SIZE 5 s 1301 SET@ National 12-P-160 min IN STORAGE DRILL PIPE TYPE ength SURFACE 4.1 SIZE HW LNR Set @ 480 0.1018 200 то віт min DRILL COLLA TOTAL CIR 86 min 8 1/4 200 KCI/PHPA/Polymer/Glycol 20.36 855 TIME MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS PITS** FL 4%-6% API Mud Wt 9.1-10.8 Glycol >20 pH 8-10 TIME SAMPLE TAKEN 04:00 12:30 21:00 Vis 45-55 Yield Point **FLOWLINE TEMPERATURE** 110 130 130 54 KCI 6%-8% >1.8 Sulphites 100 0 F/0C 54 PHPA excess **TOTAL MEASURED DEPTH (TMD)** 1323 1506 1595 **OBSERVATIONS** Feet ppg / SG WEIGHT 8.90 1.07 10.00 1.20 10.00 Commenced Glycol additions and weight up from 1400 to 1545m FUNNEL VISCOSITY(sec/qt) API @ 49 °C 120 °F 58 55 60 Weight up from 8.9 to 10.0ppg with no significant down hole loss 49 °C RHEOLOGY 600:300 RPM 120 °F 45 Adding PHPA as drilling progressed. 58 43 63 75 49 °C RHEOLOGY 200:100 RPM 120 °F 36 28 38 28 43 31 Changing shaker screens to 145# as conditions allow. 49 °C 120 °F RHEOLOGY 6:3 RPM 11 8 10 8 11 Running Desander/Desilter selectively 49 °C PLASTIC VISCOSITY 120 °F 15 18 23 KCl level down due to non-availability of stock. 49 °C YIELD POINT (Ib/100FT²) 120 ° F 28 27 29 GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 8/10/12 9/11/12 11/13/15 7.0 4.4 API FILTRATE (cm³/30 min.) 4.8 121 °C HPHT FILTRATE (cm³/30 min.) 250 ° F 32.0 24.0 22.0 Barite Figures adjusted as per Ballast Control **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 1:3 2 1.3 9.0 9.5 9.0 Drill sands to 1300m with intermittant losses **ALKALINITY MUD** 0.1 Drill clays to 1500m with no significant losses. ALKALINITY FILTRATE 0.10 0.05 0.75 Drill to 1610m. (Pf / Mf) 0.70 0.05 CHLORIDE 26000 22000 22000 (mg/L) **TOTAL HARDNESS** (mg/L) 400 340 360 SULPHITE (mg/L) 180 120 100 PHPA (Calc ppb) 1.8 1.7 1.9 Upgraded screens to 145/115 **GLYCOL CONTENT (% V/V)** 3.5 4.0 K+ (mg/L) 29700 27000 27000 (% by Wt.) 5.5 5.0 5.0 KCL **BARYTES (Calc ppb)** 54.6 MUD ACCOUNTING (BBLS) 53.1 METHYLENE BLUE CAPACITY (ppb equivalent) 3.0 6.0 9.0 FLUID BUILT FLUID DISPOSED Premix - Water SOLIDS CONTENT (% by volume) Retort 2.59 8.80 8.90 750 S.C.E 343 INITIAL 1521 LIQUID CONTENT (% by volume) Calc 97.41 91.20 91.10 Premix - Recyc Dumped Rcd 750 **CUTTINGS OIL RATIO (% oil)** 516 Drill Water Downhole 73 Lost SAND CONTENT (% by volume) 2.0 1.0 0.5 Other Other 100 Surface 980 PRODUCT USAGE RECEIVED 750 LOST 516 FINAL 1,755 SOLIDS CONTROL EQUIPMENT Product Price Start Received Head Close Hrs Hrs ### 1374 4574 20,293.98 14.77 Barite Bulk \$ 36.60 39 2 37 \$ 73.20 #1 4 x 145 24 Desander 3 6 Centrifuge Caustic Soda 3 \$ 245.33 27 2 25 \$ 490.66 #2 4 x 145 24 20 2 15 Centrifuge Defoamer-A \$ Mud Cleaner 1 28.910.00 4 x 145 590.00 80 49 31 #3 24 Degassei Glychem MC 43 \$ 109.70 34 3,729.80 4 x 115 24 Mud Cleaner 2 JK-261 Overflow (ppg) Underflow (ppg) Output (Gal/Min.) KCI BB Fine 650.00 \$ \$ 4 2.600.00 4 Desander 8.8 10.3 5.00 18 \$ 3,024.00 PAC-L \$ 168.00 70 Desilter 9.8 14 0 15 00 12 \$ 1.176.00 \$ 98.00 32 20 40 Sandseal Fine Cleaner 1 7 39 \$ 94.92 Soda Ash 13.56 275.22 Cleaner 2 0 Sodium Sulphite \$ 25.02 40 40 11 69 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$60,667.78 \$172,387.27 I.D.F.S. Engineer: Office: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Telephone:

of Report

A Division of Rheochem Pty Ltd

ACN 070 415 593

:	Rig # Bounty		Date		30-Sep-02
			Spud Date		24-Sep-02
	Total MD		1612	to	1646
	Total VD		1612	to	1646

Drilling Fluid Report OPERATOR Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Gavin Othen REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE **VIC - P - 44 Otway Basin** Victoria Casino 2 ВНА BIT TYPE CASING MUD VOLUME (BBL) CIRCULATION DATA JET SIZE PLIMP SIZE BIT SIZE 30 & CONDUC SET @ 12 1/4 MX03DX 790 500 x 12 4000 20 PRESS psi % EFFICIENCY DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS 13 3/8 SURFACE 690 ft 35 SIZE 5 s 1335 SET@ National 12-P-160 min DRILL PIPE TYPE ength SURFACE 4.2 SIZE HW LNR Set @ 660 0.1018 200 то віт DRILL COLLAR TOTAL CIR 96 min 8 1/4 200 KCI/PHPA/Polymer/Glycol 20.36 855 TIME MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS** FL **PITS** Mud Wt 4%-6% API 9.1-10.8 Glycol >20 pH 8-10 TIME SAMPLE TAKEN 04:00 13:00 21:00 Vis 45-55 Yield Point **FLOWLINE TEMPERATURE** 141 130 KCI 6%-8% >1.8 Sulphites 100 0 F/0C 61 54 PHPA excess **TOTAL MEASURED DEPTH (TMD)** 1635 1635 1635 **OBSERVATIONS** Feet ppg / SG WEIGHT 10.10 1.21 10.20 1.22 10.30 1.24 Prepaired 250 bbl 1.3 ppb PAC L 17.5% KCl to FUNNEL VISCOSITY(sec/qt) API @ 38 °C 100 °F 57 80 72 aise system KCI content and reduce viscosity 49 °C RHEOLOGY 600:300 RPM 120 °F 78 68 93 Mud weight increase from 10.1 to 10.3 while reaming out. 58 91 49 °C RHEOLOGY 200:100 RPM 120 °F 48 35 57 42 56 41 Increasing solids reporting high vis at 1.8ppb PHPA. 49 °C 120 °F RHEOLOGY 6:3 RPM 12 10 15 12 14 12 Reduce PHPA content to control viscosity 49 °C PLASTIC VISCOSITY 120 °F 20 23 26 49 °C 41 YIELD POINT (Ib/100FT²) 120 ° F 38 45 Depletion rate of KCI low. New stock received. GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 10/16/18 14/18/20 13/15/22 4.4 API FILTRATE (cm³/30 min.) 4.1 4.6 Dumped Sandtrap/Header Box. 121 °C HPHT FILTRATE (cm³/30 min.) 250 ° F 28.0 24.0 22.0 **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 1:3 1 1.3 9.0 9.5 9.0 Drill to 1646m, POOH due to low ROP **ALKALINITY MUD** 0.1 Tight hole from 1646 - 1543m, 50k o/p ALKALINITY FILTRATE (Pf / Mf) 0.05 0.60 0.05 0.75 Back ream 1543- 800m, 50k o/p. Hole OK 800m to shoe. 0.05 CHLORIDE 25000 23000 23000 Flow check at shoe OK, Slug, POOH, (mg/L) **TOTAL HARDNESS** 280 Downloaded MWD data (mg/L) 480 240 SULPHITE (mg/L) 40 100 80 R/I with PDC Bit is in progress PHPA (Calc ppb) 1.8 1.8 1.8 Used 5 x 145 mesh new screens. **GLYCOL CONTENT (% V/V)** 4.0 4.0 4.0 K+ (mg/L) 28100 27000 27000 KCL (% by Wt.) 5.2 5.0 5.0 **BARYTES (Calc ppb)** 48.3 64.5 MUD ACCOUNTING (BBLS) 59.3 METHYLENE BLUE CAPACITY (ppb equivalent) 9 0 10.0 12.0 FLUID BUILT FLUID DISPOSED 10.40 Premix - Water SOLIDS CONTENT (% by volume) Retort 10.00 10.00 400 S.C.E ΙΔΙΤΙΜΙ 1755 400 LIQUID CONTENT (% by volume) Calc 90.00 90.00 89.60 Premix - Recyc Dumped 140 + Rcd **CUTTINGS OIL RATIO (% oil)** 204 Drill Water 34 Downhole Lost SAND CONTENT (% by volume) 1,160 0.1 0.1 Other Other 30 Surface PRODUCT USAGE RECEIVED 400 LOST 204 FINAL 1,950 Received SOLIDS CONTROL EQUIPMENT Product Price Start Head Close Hrs Hrs ### 470 4104 \$ 6,941.90 14.77 Barite Bulk \$ 36.60 37 6 31 \$ 219.60 #1 4 x 145 18 Desander 3 6 Centrifuge Caustic Soda \$ 245.33 1 24 \$ 245.33 #2 4 x 145 18 20 2 Centrifuge Defoamer-A \$ Mud Cleaner 1 11 6.490.00 4 x 145 590.00 31 20 #3 18 Degassei Glychem MC \$ 618.00 103.00 45 6 39 4 x 115 18 Mud Cleaner 2 Idcide-20 Overflow (ppg) Underflow (ppg) Output (Gal/Min.) 109.70 43 77 \$ 219.40 JK-261 \$ 36 2 Desander KCI BB Fine 7 13 \$ 4,550.00 \$ 650.00 20 Desilter Λ \$ 80 \$ 1.008.00 PAC-L 168.00 70 6 144 Cleaner 1 Cleaner 2 0 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$20,292.23 \$192,679.50 I.D.F.S. Engineer: Office: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Telephone:

A Division of Rheochem Pty Ltd

ACN 070 415 593

8 Date Report # 1-Oct-02 Rig # Bounty Spud Date 24-Sep-02 **Total MD** 1646 to 1763

Drilling Fluid Repor							ort	10tal MD 1646			to		1763									
00504700								CONTRACTOR				Total VD 1646 to 1763										
OPERATOR				itos Ltd		041								DO			0.5: 1					
REPORT FOR		_	Ror	n King a	& Gavi	n Othen					ORT FO)R			ky Graha	ım	& Rick			ado		
WELL NAME	AND N	0	Cae	sino 2						FIELD		P - 44		LOCATION STATE Otway Basin Victoria								
BHA BIT	TYPE		JET SIZ	=		CASIN	IG		М	UD VOL				Otw		_	LATION D		Oria			
BIT SIZE HY	CALOG	12 1	12 12			CONDUCTOR	137	ft		OLE TOL		rits		PUMP S		-	LA HOR D	CIRCUL	ATION			
12 1/4 DS	SX195	12 1 ength	12 12		20	SET @	42	m		44		75	6	X			FICIENCY		ESS	410	0	psi
SIZE 5	s	-o.ig.i.	14	52 Mtrs		SURFACE SET @	690 210	ft m	TOTAL CI	RCULATING 14	119		Nation	мр мор al 12-		,	97		TOMS JP		40	min
		_ength				PROD. or		ft		IN STORAG				BBL/STK			TK / MIN		FACE		4.9	
SIZE 5 DRILL COLLAR SIZE (") HW	_ength	11	11 Mtrs	MUD TYPE	LNR Set @		m		6	30).1018 BBL/MIN			186 AL / MIN		BIT L CIRC.			min
8 1/4		200		Mtrs			KCI/PH	IPA/Poly	ymer/GI	ycol				18.94			795		ME		108	min
				MU	UD PRO	PERTIES									MU	DI	PROPERT	Y SPE	CIFIC	ATIONS		
SAMPLE FI	ROM							PI	TS	PI	TS	PI [*]	TS	Mud	Wt 9.1-1	3.0	Glycol	4	4%-6%	API		< 6
TIME SAME	LE TA	KEN						04:	00	12:	:15	21:	:00	Vis	45-55	,	Yield Poin	t	>20	рH		8-10
FLOWLINE	TEMP	ERAT	URE				⁰ F/ ⁰ C	ns	####	140	60			KCI	6%-8%		PHPA exce	ess	>1.8	Sulphit	es	100
TOTAL ME	ASURE	D DE	PTH (T	MD)			Feet	16	35	17	35	17	63				OBSEF	RVATIO	ONS			
WEIGHT			•			ppg /	SG	10.30	1.24	10.30	1.24	10.30	1.24	Diluti	ng system w	/ith	6% KCI/1.4	4 ppb F	PAC L	premixes	to	
FUNNEL VI	SCOSI	TY(se	c/at) A	PI @	43	°C 110	0 F	6	L	5			7	ł	ol viscosity.			P 1		,		
RHEOLOG				ఆ	49			88	64	76	55	75	ı	ł	ing PHPA to	r r	duce to co	ntral V	D and	viecocit.	with	
RHEOLOG					49			53	39	46	33	45		ł	•	, 16	.auce 10 60	ina Oi Ti	anu	•1000SILY	VV ILI I	
					49									ł	asing MBT.	117	m 0.0@40	77~ 4	550	1450		
RHEOLOGY								14	12	10	8	10	8		eys, 0.8@12			<i>i i</i> m. 1	.၁၁@	ı4ɔUſĤ.		
PLASTIC V					49			2		2			1	1.5@	1509m. 1.6	(@	1622m.					
YIELD POIN					49		۲F	4		3			3									
GEL STRE		•			0 min/3	0 min.		12/1		12/1				Cuttir	ngs falling ba	ack	underneat	h shak	ers.			
API FILTRA	TE (cm³/3	0 min.)			0		4.	4	5.	0	5.	.4	Avera	age Hole Dia	a (c	arbide Run	@ 16	39 m)	is 12.8 in	ches	
HPHT FILT	RATE (cm ³ /3	0 min.)		121	^O C 250	°F	24	.0	22	0	22	2.0	and 1	14" at 1350n	١.						
API : HPHT	(Cake	32nd	in.)					1		1:	:3	1:	:3			C	PERATIO	NS SU	MMA	RY		
PH								9.	0	9.	.5	9.	.5	RIH t	o 1615m wa	sh	to1646m. I	Drill to	1763 ı	m.		
ALKALINIT	Y MUD	(Pı	m)					0.	1					Circu	lated Btms ı	ıp '	11% gas.					
ALKALINIT	Y FILT	RATE	(Pf /	Mf)				0.05	0.70	0.12	0.85	0.13	1.00	P00	H for core. T	igh	nt from 176	3-1620	m, 30	-40 klbs o	verp	ull.
CHLORIDE	(mg/	L)						240	000	310	000	309	960	Pump	o out to 1620	Ͻm.	. Slug pipe	РООН	. Hole	OK.		
TOTAL HAI	RDNES	S (ı	mg/L)					32	20	16	60	16	60	Pick	up core asse	eml	bly. RIH.					
SULPHITE			<u> </u>					4	0	100 120												
PHPA (Ca		•						1.		1.5 1.4												
GLYCOL C			V/\/\					4.		4.			.5									
		(/0	V/V)									37800										
K+ (mg/L)								27000 37800 5.0 7.0				7.0										
KCL (% b	<u> </u>													MUD ACCOUNTING (RRI S)								
BARYTES (,							64.5 56.0 53.1 MUD ACCOUNTING (E													
METHYLEN					•	nt)		12	.0	+		12.0		FLUID BUILT		FLUI	FLUID DISPOSE		+		RY	
SOLIDS CC	NTEN	「(% b	y volu	me) Reto	ort			10.	40	11.00 11.		11.20		Prem	nix - Water		280 S.C.E		43	INITIAL		1950
LIQUID CO		•		ne) Calc				89.	60	89.	.00	88	.80	Prem	nix - Recyc		Dump	ed		+ Rcd		280
CUTTINGS														Drill	Water		Down	hole	139	- Lost		182
SAND CON	TENT (% by	volume	e)				0.	1	0.	2	0.	.2	Othe	r		Other			Surface)	1,205
				PR	ODUCT	USAGE								REC	EIVED	Ī	280 LOST		182	FINAL		2,049
Product	Pric	е	Start	Received	Damage	Used	Cle	ose		Cost				-	SOLIDS C	10:	NTROL EQ	UIPME	NT	•		
Barite Bulk	\$ 14	1.77 #	##			561	35	543	\$	8.	285.97	SHALE S	HAKERS	Hrs		į	# Size	Hrs				Hrs
	+		31			6		25	\$		219.60	# 1	4 x 145	10	Desander	\dashv	3 6		Centr	ifuge		
Caustic Soda	\$ 24		24			1		23	\$		245.33	# 2	4 x 145			+	20 2	2	Centr	-		
Defoamer-A	\$ 590	_	20			8		12	\$		720.00	# 3	4 x 145		Mud C	les		-	Dega	-		2
Glychem MC	-	_											1					-	+			
Idcide-20	\$ 10:	_	39			2		37	\$		206.00	# 4	4 x 115		Mud C		uner 2 Underflow	(ppg)	Poort	ooy Output (C	al/M	lin \
KCI BB Fine \$ 650.00 13 5						8	\$		250.00	Door	0 r	346	cinow (ppg	<u>'</u>		(PPG)	Ψ,	Juiput (C	aı/ IVI	,		
PAC-L							38	ψ 1,000.00		Desand			40.0	_		0			45.00			
Sodium Sulphite \$ 25.02 69 13					5	56	\$		325.26	Desilter		10.2			11.5		15.00					
										Cleaner					0							
										Cleaner	2				0		L					
									L	Centrifuge			-									
						_				Centrifu	ige2											
								CURRENC			RRENCY	NCY DAILY COST CUMULATIVE COST				ST.						
													AUD				.66					
I.D.F.S. Engineer:	1	Carl .	Jensen	& Jas	sdeep Si	ngh	Office:		BRISB	ANE			Telepho	one:			6-0160	Fax	•	07 3806		5
						-							P					. ,				-

A Division of Rheochem Pty Ltd

ACN 070 415 593

Report # 9 Date 2-Oct-02 Rig# Spud Date **Bounty** 24-Sep-02 **Total MD** 1763 1784 to

Drilling Fluid Report Total VD 1763 1784 **OPERATOR** Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Gavin Othen REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE **VIC - P - 44** Casino 2 **Otway Basin** Victoria **BIT TYPE** CASING MUD VOLUME (BBL) CIRCULATION DATA JET SIZE PLIMP SIZE BIT SIZE 30 & CONDUC SET @ 12 1/4 **CD93** 866 x 12 1100 20 600 psi % EFFICIENCY DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS 13 3/8 SURFACE 690 ft 96 SIZE 5 s 1550 SET@ National 12-P-160 min IN STORAGE DRILL PIPE TYPE ength. SURFACE 12.0 SIZE HW LNR Set @ 480 0.1018 79 то віт DRILL COLLAR TOTAL CIR 242 _{min} 8 1/4 123 KCI/PHPA/Polymer/Glycol 8.04 338 TIME MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS PITS PITS** Mud Wt 4%-6% API 9.1-10.8 Glycol >20 pH 8-10 TIME SAMPLE TAKEN 0:400 12:15 21:00 Vis 45-55 Yield Point **FLOWLINE TEMPERATURE** ns #### 140 60 KCI 6%-8% >1.8 Sulphites 100 0 F/0C PHPA excess **TOTAL MEASURED DEPTH (TMD)** 1680 1784 **OBSERVATIONS** Feet 1778 ppg / SG **WEIGHT** 10.40 1.25 10.30 1.24 10.30 1.24 Treated system with 0.22 ppb PAC LV. FUNNEL VISCOSITY(sec/qt) API @ 38 °C 100 °F 57 50 50 49 °C RHEOLOGY 600:300 RPM 120 °F 75 45 44 64 63 49 °C RHEOLOGY 200:100 RPM 120 °F 45 33 36 25 35 24 49 °C 120 °F RHEOLOGY 6:3 RPM 10 8 8 6 7 5 49 °C PLASTIC VISCOSITY 120 °F 21 19 19 49 °C YIELD POINT (Ib/100FT²) 120 ° F 33 26 25 GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 10/18/20 7/14/18 6/10/13 1 x 145 mesh screen used. 5.2 5.2 API FILTRATE (cm³/30 min.) 5.4 121 °C HPHT FILTRATE (cm³/30 min.) 250 ° F 22.0 23.0 23.0 **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 1:2 1.2 1.3 10.0 9.5 10.0 RIH with core barrel. 5k drag at1120-1150m W/ream. **ALKALINITY MUD** 0.1 RIH to1730m. 5k drag, W/ream to 1763m TD. ALKALINITY FILTRATE (Pf / Mf) 0.13 1.00 0.15 Cut core #1 to 1763 to 1784 m. Circ POOH gas 5% 1.10 0.15 POOH. Lay out core. RIH with 12 1/4" BHA. CHLORIDE 31000 31400 31200 (mg/L) **TOTAL HARDNESS** (mg/L) 140 160 SULPHITE (mg/L) 140 120 120 PHPA (Calc ppb) 1.4 1.4 1.4 **GLYCOL CONTENT (% V/V)** 3.5 4.0 4.0 K+ (mg/L) 35100 32400 32400 KCL (% by Wt.) 6.0 6.5 6.0 **BARYTES (Calc ppb)** 54.6 54.6 MUD ACCOUNTING (BBLS) 64.2 METHYLENE BLUE CAPACITY (ppb equivalent) 12.0 11.0 11.0 FLUID BUILT FLUID DISPOSED Premix - Water SOLIDS CONTENT (% by volume) Retort 11.20 11.10 11.10 SCF 63 INITIAL 2049 LIQUID CONTENT (% by volume) Calc 88.80 88.90 88.90 Premix - Recyc Dumped Rcd **CUTTINGS OIL RATIO (% oil)** Drill Water 102 Downhole 29 Lost SAND CONTENT (% by volume) 1,080 0.3 Other Other 10 Surface PRODUCT USAGE RECEIVED LOST 102 FINAL 1,946 Received SOLIDS CONTROL EQUIPMENT Product Price Start Used Close Hrs 36.60 25 23 \$ 73.20 2 Caustic Soda \$ 245.33 23 2 21 \$ 490.66 #1 4 x 145 9 Desander 3 6 Centrifuge Defoamer-A \$ 590.00 12 4 8 \$ 2,360.00 #2 4 x 145 9 20 2 4 Centrifuge Glychem MC \$ Mud Cleaner 1 103.00 37 2 206.00 4 x 145 2 35 #3 Degassei Idcide-20 132 \$ 1,008.00 168.00 138 6 4 x 115 Mud Cleaner 2 PAC-L Overflow (ppg) Underflow (ppg) Output (Gal/Min.) 25.02 56 9 47 \$ 225.18 \$ Sodium Sulphite Desander Desilter 10 3 11 6 11 00 Cleaner 1 Cleaner 2 0 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$4,363.04 \$215,302.70 I.D.F.S. Engineer: Office: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Telephone:

Page

A Division of Rheochem Pty Ltd

ACN 070 415 593

:	Ocean		Date	3-Oct-02		
			Spud Date		24-Sep-02	
	Total MD		1784	to	2112	
	Total VD		1784	to	2112	

Drilling Fluid Report **OPERATOR** Santos Ltd. CONTRACTOR DOGC REPORT FOR Ron King & Steve Hodgetts REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE **VIC - P - 44 Otway Basin** Victoria Casino 2 BIT TYPE CASING MUD VOLUME (BBL) CIRCULATION DATA ВНА JET SIZE PLIMP SIZE BIT SIZE HYCALOG 30 & CONDUC SET @ 15 15 15 12 1/4 DSX195 15 15 15 20 1003 x 12 3200 550 psi % EFFICIENCY DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS 13 3/8 SURFACE 690 ft 44 SIZE 5 s 1802 SET@ National 12-P-160 min DRILL PIPE TYPE ength SURFACE 5.6 SIZE HW LNR Set @ 450 0.1018 200 то віт min DRILL COLLA TOTAL CIR 98 min 8 1/4 199 KCI/PHPA/Polymer/Glycol 20.36 855 TIME MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS PITS PITS** 4%-6% API Mud Wt 9.1-10. Glycol >20 pH 8-10 TIME SAMPLE TAKEN 04:00 12:15 21:30 Vis 45-55 Yield Point **FLOWLINE TEMPERATURE** #### 150 150 66 KCI 6%-8% >1.8 Sulphites 100 0 F/0C ns 66 PHPA excess **TOTAL MEASURED DEPTH (TMD)** 1910 2070 **OBSERVATIONS** Feet 1771 ppg / SG **WEIGHT** 10.30 1.24 10.40 1.25 10.30 1.24 FUNNEL VISCOSITY(sec/qt) API @ 60 °C 140 °F 51 51 57 49 °C RHEOLOGY 600:300 RPM 120 °F 40 Controlled mud weight by adding unweighted premixes 61 42 57 65 49 °C RHEOLOGY 200:100 RPM 120 °F 35 24 33 23 36 25 of 1.5 ppb PAC L & 1.25 ppb PHPA. 49 °C 120 °F RHEOLOGY 6:3 RPM 7 5 5 Also added dry PHPA into active 49 °C PLASTIC VISCOSITY 120 °F 19 17 21 Added Glycol direct to system. 49 °C YIELD POINT (Ib/100FT²) 120 ° F 23 23 23 Added Idcide (100 kg) into system at TD while circulating. GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 6/10/14 6/10/14 6/11/15 5.4 5.2 API FILTRATE (cm³/30 min.) 5.0 121 °C HPHT FILTRATE (cm³/30 min.) 250 ° F 24.0 20.0 20.0 **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 1:2 1.2 1.2 9.5 9.5 9.5 R/I with bit to bottom **ALKALINITY MUD** 0.1 Drilled from 1784 m to 2112 m. TD ALKALINITY FILTRATE 0.10 1.00 0.10 Circ. bottoms up. (Pf / Mf) 0.12 CHLORIDE 32000 33000 31500 (mg/L) **TOTAL HARDNESS** (mg/L) 180 140 160 SULPHITE (mg/L) 120 100 100 PHPA (Calc ppb) 1.4 1.4 1.5 **GLYCOL CONTENT (% V/V)** 4.0 4.0 4.0 K+ (mg/L) 32400 37800 32400 (% by Wt.) 6.0 7.0 6.0 KCL **BARYTES (Calc ppb)** 56.0 67.1 58.9 MUD ACCOUNTING (BBLS) METHYLENE BLUE CAPACITY (ppb equivalent) 11.0 12.0 12.0 FLUID BUILT FLUID DISPOSED Premix - Water SOLIDS CONTENT (% by volume) Retort 11.00 11.00 10.80 440 S.C.E 309 ΙΔΙΤΙΜΙ 1946 440 LIQUID CONTENT (% by volume) Calc 89.00 89.00 89.20 Premix - Recyc Dumped Rcd **CUTTINGS OIL RATIO (% oil)** 383 Drill Water 34 Downhole Lost SAND CONTENT (% by volume) 1.000 0.2 0.5 0.5 Other Other 40 Surface PRODUCT USAGE RECEIVED 440 LOST 383 FINAL 2,003 Received SOLIDS CONTROL EQUIPMENT Product Price Start Head Close Hrs Hrs ### 450 3093 \$ 6,646.50 14.77 Barite Bulk \$ 36.60 23 2 21 \$ 73.20 #1 4 x 145 20 Desander 3 6 Centrifuge Caustic Soda \$ 590.00 8 \$ 4,720.00 #2 4 x 145 20 20 2 18 Centrifuge Glychem MC \$ Mud Cleaner 1 9 927.00 4 x 145 103.00 35 26 #3 20 Degassei Idcide-20 21 \$ 109.70 56 2,303.70 4 x 115 Mud Cleaner 2 JK-261 Overflow (ppg) Underflow (ppg) Output (Gal/Min.) KCI BB Fine 650.00 \$ \$ 8 6 2 3.900.00 Desander 14 118 \$ 2,352.00 PAC-L \$ 168.00 132 Desilter 10.2 11 5 12 00 \$ \$ 168.00 PAC-R 168.00 31 1 30 Cleaner 1 11 36 \$ 275.22 Sodium Sulphite Cleaner 2 0 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST** AUD \$21,365.62 \$236,668.32 I.D.F.S. Engineer: Office: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Telephone:

Page

Rig# Spud Date Bounty 24-Sep-02 A Division of Rheochem Pty Ltd ACN 070 415 593 **Total MD** 2112 2112 to Drilling Fluid Report Total VD 2112 2112

Report #

11 Date

4-Oct-02

OPERATOR Santos Ltd. CONTRACTOR DOGC REPORT FOR **Ron King & Steve Hodgetts** REPORT FOR Ricky Graham & Ricky Sepelvado WELL NAME AND No **FIELD** LOCATION STATE Victoria Casino 2 **VIC - P - 44 Otway Basin** CASING ВНА **BIT TYPE** MUD VOLUME (BBL) CIRCULATION DATA JET SIZE PLIMP SIZE BIT SIZE 30 & CONDUCTOR OF CONDU 12 1/4 1086 500 x 12 3200 20 psi % EFFICIENCY DRILL PIPE TOTAL CIRCULATING VOL PUMP MODEL BOTTOMS 13 3/8 SURFACE 690 ft 47 SIZE 5 SET@ National 12-P-160 min IN STORAGE DRILL PIPE TYPE ength. SURFACE 6.0 SIZE HW LNR Set @ 400 0.1018 200 то віт DRILL COLLAR TOTAL CIR **NUD TYPES** 98 min 8 1/4 KCI/PHPA/Polymer/Glycol 20.36 855 TIME MUD PROPERTIES MUD PROPERTY SPECIFICATIONS **SAMPLE FROM PITS** Mud Wt 4%-6% API 9.1-10.8 Glycol >20 pH 8-10 TIME SAMPLE TAKEN 03:00 14:00 21:00 Vis 45-55 Yield Point 6%-8% **FLOWLINE TEMPERATURE** 150 KCI >1.8 Sulphites 100 0 F/0C PHPA excess **TOTAL MEASURED DEPTH (TMD)** 2112 2112 **OBSERVATIONS** Feet 2112 ppg / SG **WEIGHT** 10.30 1.24 10.35 1.24 10.35 1.24 FUNNEL VISCOSITY(sec/qt) API @ 18 °C 0 F 65 58 57 57 49 °C RHEOLOGY 600:300 RPM 120 °F 46 46 47 67 68 49 °C RHEOLOGY 200:100 RPM 120 °F 38 26 37 25 37 25 49 °C 120 °F 7 RHEOLOGY 6:3 RPM 8 6 5 5 49 °C PLASTIC VISCOSITY 120 °F 22 21 22 49 °C YIELD POINT (Ib/100FT²) 120 ° F 25 25 24 GEL STRENGTH (lb/100ft²) 10 sec/10 min/30 min. 7/11/14 6/10/13 6/10/13 4.8 4.8 API FILTRATE (cm³/30 min.) 5.0 121 °C HPHT FILTRATE (cm³/30 min.) 250 ° F 22.0 21.0 22.0 **OPERATIONS SUMMARY** API: HPHT (Cake/32nd in.) 1:2 1.2 1.2 9.0 9.0 9.0 **ALKALINITY MUD** ALKALINITY FILTRATE (Pf / Mf) 0.85 0.05 0.75 0.04 0.74 0.05 33000 CHLORIDE 33000 33000 (mg/L) **TOTAL HARDNESS** 400 (mg/L) 280 360 SULPHITE (mg/L) 120 80 60 PHPA (Calc ppb) 1.5 1.5 1.5 **GLYCOL CONTENT (% V/V)** 3.5 3.5 3.5 K+ (mg/L) 37800 37800 37800 7.0 7.0 7.0 KCL (% by Wt.) **BARYTES (Calc ppb)** 64.5 MUD ACCOUNTING (BBLS) 61.8 64.5 METHYLENE BLUE CAPACITY (ppb equivalent) 12.0 13.0 13.0 FLUID BUILT FLUID DISPOSED Premix - Water INITIAL SOLIDS CONTENT (% by volume) Retort 10.60 10.80 10.80 SCF 2003 LIQUID CONTENT (% by volume) Calc 89.40 89.20 89.20 Premix - Recyc Dumped ⊦ Rcd **CUTTINGS OIL RATIO (% oil)** Drill Water 8 18 Downhole Lost SAND CONTENT (% by volume) 900 0.5 0.4 Other Other 10 Surface PRODUCT USAGE RECEIVED LOST 18 FINAL 1,986 Received SOLIDS CONTROL EQUIPMENT Product Price Start Used Clos Hrs 795.00 \$ 795.00 3 Cronox 2100 12.50 144 48 96 \$ 600.00 #1 4 x 145 6 Desander 3 6 Centrifuge Omy<u>acarb</u> 40 # 2 4 x 145 6 20 2 Centrifuge Mud Cleaner 1 #3 4 x 145 Degassei #4 4 x 115 Mud Cleaner 2 Overflow (ppg) Underflow (ppg) Output (Gal/Min.) Desander Desilter Λ Cleaner 1 Cleaner 2 0 Centrifuae1 Centrifuge2 CURRENCY **DAILY COST CUMULATIVE COST AUD** \$1,395.00 \$238,063.32 I.D.F.S. Engineer: 07 3806-0160 07 3806-0165 BRISBANE Fax: Carl Jensen & Jasdeep Singh Office: Telephone:

Santos	Well Completion Report Volume 1 Basic
	SECTION 11:- CASING & CEMENTING SUMMARY

13-3/8" CASING AND CEMENTING REPORT Santos WELL: DATE: 26/09/2002 Casino # 2 RT to seabed (m): 92.8 T.D (m): 700 RT to MSL (m): 25 SERIES: Dril Quip REPORT BY: Gavin Othen Surface Casing STRING TYPE: CASING AND EQUIPMENT RECORD AS RUN FROM BOTTOM TO TOP SIZE WEIGHT THREAD LENGTH FROM No. of то GRADE REMARKS OD. (mm) JOINTS (kg/m) (m) (m) (m) ?? 100.74 18 3/4" WH Housing/13 3/8" Swedge 476 140 1 Buttress 10.70 90.04 340 107 N-80 Buttress 12.11 100.74 112.85 13 3/8" Non cross coupling 1 13 3/8" Casing 72ppf & 68ppf 340 101 N-80 46 Buttress 540.92 112.85 653.77 340 101 N-80 **Buttress** 12.29 653.77 666.06 13 3/8" Float Collar Joint 340 101 N-80 Buttress 12.08 666.06 678.14 13 3/8" Intermediate Joint 1 340 101 N-80 Buttress 12.41 678.14 690.55 13 3/8" Shoe Joint TALLY TOTAL 600.51 CASING LANDED AT :-690.55 m RT TO TOP OF CONDUCTOR HOUSING:-90.04 m CENTRALIZER POSITION. 2 Cent's on Shoe, 1 Each over next 3 joints PREFLUSH: 1.03 Volume (m3): Density (SG): Seawater Additive: % Amount Used: Additive: % Amount Used CEMENT: LEAD SLURRY (mixed with seawater) Additive litre/sx Amount Used (litre) **Brand: Adelaide Brighton Cement** Class: G MT: ECONOLITE 2.3 1726 Mixwater litr/sk: 0.62 Yield litr/sk: Density sg: 1.5 Volume pumped 46.5 m Excess: % TAIL SLURRY (mixed with seawater) Additive litre/sx Amount Used (litre) **Brand: Adelaide Brighton Cement** Class: G MT: Nil Mixwater litr/sk: Yield litr/sk; 1.17 Seawater Density sq: 1.89 Volume pumped 20.9 m Excess: 50 % DISPLACEMENT Plug Bump: @ Fluid: Calc. Displacement (m3): kPa Pressure Tested to Seawater kPa 0.5 m3/min) Density sg: 1.03 Actual Displacement (m3): 45 at Rate: 2.3 m3/min Bleed Back: 0 m3 ACTIVITY 26/9/02 13:00 Start Running Casing Returns to Seabed: Yes None bbls cement Finish Running Casing 26/9/02 20:00 Reciprocate/Rotate Casing: 26/9/02 8:00 Start Circulating sacks of Class During: Circulating Top Up Job run: No Start Surface Eqpt. Pressure Test 26/9/02 21:22 Cementing 26/9/02 21:30 Pump Preflush Displacing Wiper Plugs: Start Mixing/Pumping Cement 26/9/02 21:40 Make Туре 26/9/02 22:55 Finish Mixing/Pumping Cement **Bottom Weatherford** Start Displacement 26/9/02 22:59 **Top Weatherford Cementing Contractor: Halliburton** Stop Displacement/Bump Plug 26/9/02 23:40 Top Up Job CEMENT JOB DETAIL/REMARKS Pumped 10 bbls of Sea water with dye, pressure tested lines to 3500 psi. Pumped 7.4 bbls and sheared out bottom plug with 1000 psi.

Mixed and pumped 293 bbls of Lead slurry (736sx) @ 1.5sg with 230 bbls of mix water.

Mixed and pumped 123 bbls of Tail slurry (637sx) @ 1.89sg with 80 bbls of Sea water.

Dropped dart and sheared out top plug with 5.8bbls Pumped an additional 7 bbls of Sea water.

Rig pumps displaced cement with 282 bbls (Did not Bump plug)

Santos SBU

CASING AND CEMENTING REPORT

WELL: DATE: ####### Casino 2 **ELEVATIONS:** RT to seabed (m): 95 T.D (m): 140

PBTD (m): RT to MSL (m): 25 **REPORT BY:** Steve Hodgetts SERIES: Dril Quip SS-10

STRING TYPE: Conductor Casing

CASING BOWL SIZE:

CACING AND FOURDMENT	F DECORD AS BUILDEDOM	DOTTOM TO TOD
CASING AND EQUIPMENT	RECORD AS RUN FROM	BOLLOWINGTOR

	CASING AND EQUIPMENT REGORD AS ROW FROM BOTTOM TO TOP													
SIZE OD. (mm)	WEIGHT (kg/m)	GRADE	No. of JOINTS	THREAD	LENGTH (m)	FROM (m)	TO (m)	REMARKS						
762	461	X52	1	HD90	11.92	93.50	105.42	30" Conductor Housing						
762	461	X52	1	HD90	11.57	105.42	116.99	30" Intermediate Joint						
508	140	X52	1	HD90	11.24	116.99	128.23	30" x 20" Shoe Joint						
								Davis Lynch shoe						

TALLY TOTAL

CASING LANDED AT:-139.66 m

RT TO TOP OF CONDUCTOR HOUSING:-93.50 m

CENTRALIZER PLACEMENT Nil.

PREFLUSH: Volume (m3): 0.795 Density (SG): 1.03

Additive: Fluroscene Dye Amount Used: Additive: % **Amount Used**

CEMENT:

NO LEAD SLURRY Additive litre/sx Amount Used (litre) Brand: Adelaide Brighton Cement Class: MT: Mixwater litr/sk: Yield litr/sk: Density sg:

Volume pumped m3 Excess: %

TAIL SLURRY (mixed with seawater) Additive litre/sx Amount Used (litre)

Brand: Adelaide Brighton Cement Class: G (1040 Sacks) MT: 1% BWOC CaCl2 21 sacks Mixwater litr/sk:

Yield litr/sk: Density sg: Dair 3000L 20

Volume pumped m3 Excess: 200 %

DISPLACEMENT

Plug Bump: @ Calc. Displacement (m3): kPa Pressure Tested to N/A kPa 0.5 m3/min)

Density sg: 1.03 Actual Displacement (m3): at Rate: 0.795 m3/min Bleed Back: m3

Time ACTIVITY Start Running Casing 24/9/02 14:30 Finish Running Casing 24/9/02 18:00 24/9/02 18:10 Start Circulating 4/9/02 18:15 Start Surface Eqpt. Pressure Test Pump Preflush 24/9/02 18:30 Start Mixing/Pumping Cement 24/9/02 18:35 Finish Mixing/Pumping Cement 24/9/02 20:15

Returns to Surface: Yes bbls cement Reciprocate/Rotate Casing: No

During; Circulating Top Up Job run: sacks of Class Cementing

Displacing

Wiper Plugs: Make Туре **Bottom** N/A

Start Displacement 24/9/02 20:25 Тор Stop Displacement/Bump Plug 24/9/02 20:30 Cementing Contractor: Halliburton

Top Up Job

CEMENT JOB DETAIL/REMARKS

Float OK. ROV observed dye in returns at seabed. Good returns througth cement job.

SECTION 12:- MUDLOGGING WELL REPORT

(Including Mudlog 1:500 & D-Exponent Log)

END OF WELL REPORT

SANTOS

Casino-2

24 September - 03 October 2002

by

BAKER HUGHES INTEQ

The information, interpretations, recommendations, or opinions contained herein are advisory only and may be rejected. Consultant does not warrant their accuracy or correctness. Nothing contained herein shall be deemed to be inconsistent with, nor expand, modify or alter consultant's obligation of performance as provided for in a written agreement between the parties, or, if none, in consultant's most recent price list.

Casino-2

Final Well Report

Section 1	Well Su	Well Summary							
Section 2	Drilling and Engineering 2.1 Bit Run Summaries 2.2 Casing and Cementing Summaries								
Section 3	Survey	Survey							
Section 4	Geolog 4.1 4.2	y and Shows Geology Summary and Shows Sampling Summary and Record	l of Distribution						
Section 5	Pressure Evaluation 5.1 Pore Pressure Evaluation 5.2 Fracture Pressure Evaluation								
Tables	•	le raulics Table epth Curve							
Appendices									
	Formation Evaluation Log 1:500 Drilling Data Plot 1:2000 Pressure Evaluation Plot 1:2000 Pressure Summary Plot Gas Ratio Plot 1:500								
	Jas No	ILIO I IOL	1.500						

SECTION 1

WELL SUMMARY

1.1 Well Summary

1 Well Data Summary

Well Name Casino-2

Rig Name: MODU Ocean Bounty

Rig Type: Semi-submersible

Drilling Contractor: Diamond Offshore General Company

Drilling Datum: Rotary Table

Drill Floor Elevation: 25.0m

Water Depth: 68.0m

Surface Coordinates:

038° 47' 43.887" S Lat 142° 44' 50.746" E Long

Block: VIC/P44

Well Type: Exploration/Appraisal

Spud Date: 24 September 2002

Total Depth: 2112m

TD Date: 03 October 2002

Well Status: Plugged & Abandoned

Baker Hughes INTEQ Crew:

Data Engineers: Jamie McLeod

Jeff Wilson Scott Curran

Logging Geologists: Elaine Spence

Tomasz Zelski Michael Gartrell Peter Morris 1.1 Well Summary

1.1 Well Summary

The well Casino-2 was located in VIC/P44, approximately 29km southwest of Port Campbell, 4.2km east southeast of Casino-1, 21km southwest of the Minerva gas field, 23km north of the LaBella gas field. The main objective of the well was to evaluate the hydrocarbon potential of the Waare Formation in a tilted fault block closure within the Casino Prospect Area.

- 1. Intersect the younger Waarre sand at its highest location on the structure and confirm the presence of hydrocarbons.
- 2. To obtain pressure data to confirm column height and gas samples to determine composition.
- 3. To confirm the GWC in the older sand indicated by pressure measurements in Casino-1.
- 4. Provide a production point for any gas accumulation in the younger Waarre Sand

All depths in this report unless otherwise stated refer to depths in metres below the rotary table – RT.

Casino-2 was spudded at 0930hrs on 24 September 2002, using a 26" bit with a 36" hole opening assembly. The 36" hole was drilled from the seabed at 93m to 140.0m using seawater and pre-hydrated gel mud. A 30" x 20" casing was run and set at 137.1mRT.

The 17.5" section was drilled using a Smith MGSSHC type bit. The cement tagged at 134m was drilled and the shoe track was cleaned out. New hole was drilled averaging 44m/hr during 17.5 hours of drilling time, reaching the casing point at 700m without problems. At section TD, the hole was circulated clean and displaced to 700bbls of gel mud. During the trip out, tight intervals were recorded from 628m to 425m. Operations were suspended once the bit was inside the 30" shoe due to inclement weather conditions. After waiting on weather for 8 hrs the bit was tripped back to bottom before pulling all the way out of the hole to run casing. The subsequent 13.375" casing run was conducted smoothly and the BOPs were run, landed and pressure-tested successfully.

Drilling of the 12.25" hole section commenced from 700m using a Hughes insert bit. The cement tagged at 663 m and the shoe track was drilled and cleaned out. The hole was then displaced to a KCI/PHPA/Glycol mud system initially weighted to 8.8ppg and three metres of new formation was drilled to 703m. A Leak Off Test (LOT) was attempted but no leak off could be recorded, due to the loose sands at TD. Drilling resumed with massive losses to the formation averaging 200-300 barrels per hour down to 772m. A short trip to shoe was made after excess drag at a connection, and the pump strainers were cleared of LCM. Drilling resumed from 772m with the losses reduced to 30-40 barrels per hour. The losses gradually reduced to zero as drilling continued. Penetration rates dropped under 10 metres per hour below 1550m and 1646m had dropped to 4 metres per hour and the mud weighted to 10.1ppg. At this point a bit trip was made, the hole was tight nearly all the way out with the bit having to be backreamed out from 1646m to 800m, with up to 50klbs of overpull recorded. NB#4, a PDC bit, was made up on the same BHA and run in to 1615m and reamed to bottom at 1646m. New 12.25" hole was drilled to 1763m where core point was confirmed. NB#4 was pulled out of hole to pick up the core barrel, the hole being tight up to 1620m on the trip out. CB#1 was made up along with a 27m core barrel and RIH. Core#1 was cut from 1763m to 1784m. The core was pulled out of hole and 19.3m (92%) of a 21m core was recovered. The MWD/LWD tools were picked up along with the previous PDC bit used prior to coring and run in hole to 1745m. The cored section was reamed at 30 m/hr to allow MWD data collection. New 12.25" hole was drilled from 1784m, a total depth of 2112m was reached at 23:15hrs on the 03 October 2002. The hole was circulated clean and, a wiper trip made to 1755m. Once back on bottom the hole was circulated clean and the bit pulled out of the hole. A suite of wireline logs was then run.

After the wireline logging was complete the decision was made to plug and abandon Casino-2. The MODU Ocean Bounty was towed off location on 9 October 2002.

SECTION 2

DRILLING & ENGINEERING

2.1 Bit Run Summaries

Casino-2

36" 914mm Hole Section 24 September 2002

Bit Run No. 1 Summary

Bit Number NB 1

Bit Size 26" 660mm

w/ Hole Opener

36" 914mm, 4 x 22 jets

Bit Type Smith DSJC S/N KP2374 Jets 3 x 18 Depth In (m) 93 Depth Out (m) 140 Metres Drilled 47 **Drilling Hours** 2.3 TBR (krevs) 10.1 Circulating Hours 3.5 Average ROP (m/hr) 20.4 **API** Condition Not Graded

Drilling Parameters

 WOB (klbs)
 1.9
 8.6

 RPM
 65
 84

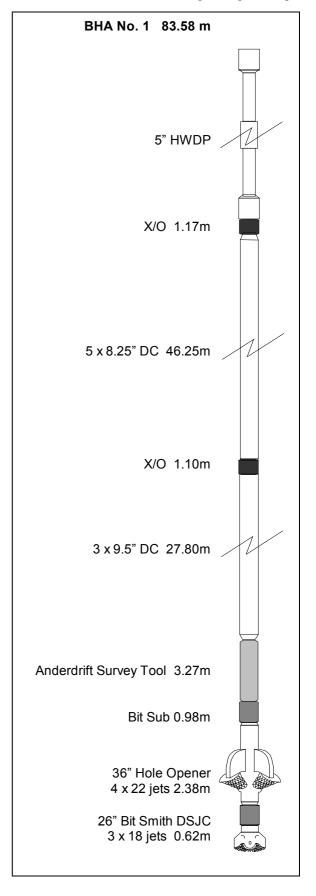
 Torque (kft-lbs)
 1.0
 2.3

 Pump Pressure (psi)
 444
 1474

 Flow In (gpm)
 300
 1197

Mud System

Seawater & hi-viscosity Gel 8.60ppg


Sweeps

Lithology

Returns to seabed

Drilling Summary

A 26" bit with a 36" hole opener was made up on a rotary BHA. The bit tagged seabed at 93mRT. Casino-2 was spudded at 0930hrs on 24th September 2002. The 36" hole was drilled to 140.0mRT with seawater and PHG sweeps pumped every 15 metres. The hole was displaced with 280bbls of gel mud before pulling the bit to surface. The hole was found to be in good condition. The BHA was racked in the derrick before running the 30"/20" 762mm /508mm conductor casing.

17.5" Hole Section 25 - 26 August 2002

Bit Run No. 2 Summary

Bit Number NB 2 Bit Size 17.5

Bit Type Smith MGSSHC S/N MM0005
Jets 3 x 20, 1 x 18

Depth In (m) 140
Depth Out (m) 700
Metres Drilled 560
Drilling Hours 12.6
TBR (krevs) 94.0
Circulating Hours 19.0
Average ROP (m/hr) 44.4

API Condition 2-2-NO-A-E-I-NO-TD

Drilling Parameters

 WOB (klbs)
 0.3
 - 38.5

 RPM
 66
 - 172

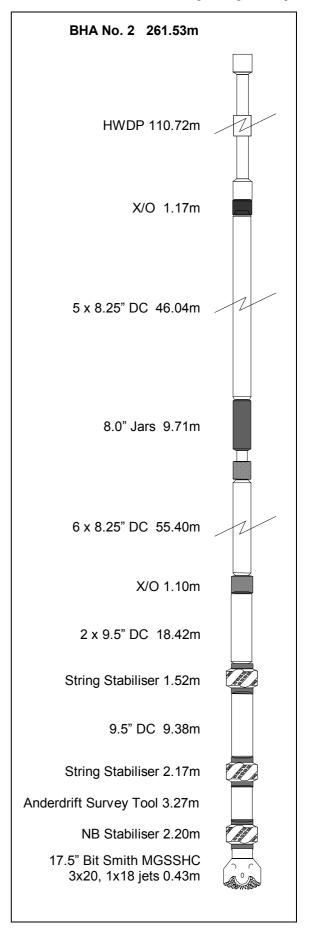
 Torque (kft-lbs)
 0.8
 - 4.3

 Pump Pressure (psi)
 887
 - 2800

 Flow In (gpm)
 779
 - 1216

Mud System

Seawater & hi-viscosity Gel 8.60ppg


Sweeps

Lithology

Returns to seabed

Drilling Summary

NB2, a 17.5" milled tooth tricone bit was made up on a rotary BHA and run in hole. Hard cement was tagged at 134m. The shoe track was cleaned out and the 20" casing shoe was drilled out at 137m. New formation was drilled from 140m using seawater. High-viscosity guar gum sweeps of 50bbls volume were pumped every 9 metres drilled, with 50bbls pre-hydrated gel (PHG) sweeps pumped prior to every connection. Returns at seabed were monitored by the ROV. Inclination surveys were taken with the in-string Anderdrift tool at each connection. At section TD of 700m, the hole was circulated clean and displaced with 750bbls PHG mud before pulling out of hole. The bit was tripped out with tight intervals encountered from 600 to 260m all causing about 40klbs of overpull. The Trip was suspended once the bit was inside the 30" casing shoe due to inclement weather conditions. After waiting on weather for 8 hours the bit was run back to bottom. The hole was displaced with 750bbls PHG mud before pulling out of hole and preparations were made to run the 13.375" casing.

12.25" Hole Section 28 - 30 September 2002

Bit Run No. 3 Summary

Bit Number NB 3 Bit Size 12.25

Bit Type Hughes MX 03DX

S/N S89DC Jets 3 x 16 Depth In (m) 700 Depth Out (m) 1646 Metres Drilled 946 **Drilling Hours** 26 TBR (krevs) 285.7 Circulating Hours 49.6 Average ROP (m/hr) 26.0

API Condition 8-8-LT-A-X-2-ER-PR

Drilling Parameters

 WOB (klbs)
 2.6
 61.2

 RPM
 20
 164

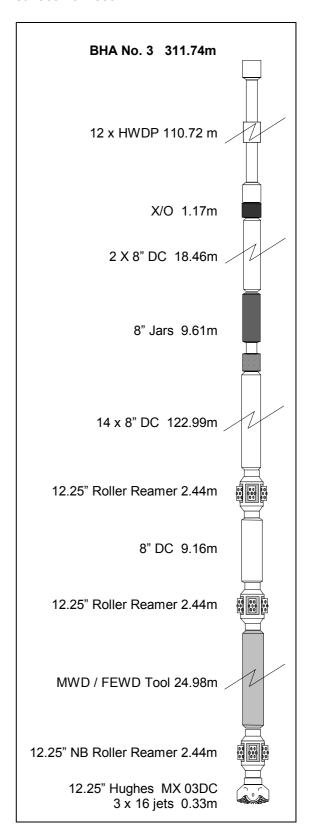
 Torque (kft-lbs)
 0.4
 12.5

 Pump Pressure (psi)
 1465
 4246

 Flow In (gpm)
 670
 887

Mud System

KCI / PHPA / Glycol 8.8–10.1 ppg


Lithology

Claystone, Siltstone & Sandstone

Drilling Summary

A 12.25" insert bit was made up to a packed drilling assembly with FEWD/MWD tools and run in hole. tagging cement at 663m. The float plugs, cement, shoe track and three metres of new formation were drilled out before the hole was displaced to a KCI/PHPA/ Glycol mud system, initially weighted at 8.8ppg. The bit was pulled back into the shoe at 690.55m and a Leak-Off Test (LOT) was subsequently conducted. The LOT was a failure with no test achieved. Drilling resumed at a fast penetration rate of about 100m/hr, down to 772m. Severe losses were taken drilling to 772m averaging 200-300 bbls/hr. LCM and quick seal was pumped to try and cure the losses. At 772m high drag (40klbs) was recorded whilst trying to make a connection, the pipe was worked and the hole circulated for 1.5 hours. The bit was then pulled back into the shoe to allow the pump suction strainers to be cleared of LCM and enable more mud to be mixed. Once this was complete the bit was run back to bottom and drilling ahead continued from 772m to 1207m with losses averaging 30-40 bbls/hr. As drilling continued from 1207m the losses healed up completely and drilling continued down to 1646m. The rate of penetration dropped below 10m/hr from 1555m and down to 4m/hr at 1646m where the decision was made to pull out of the hole for a bit change. The hole was

tight on the trip out with up to 50klbs overpull recorded. The bit was backreamed out from 1646m to 800m and pulled out of hole to surface from 800m.

01 October 2002

Bit Run No. 4 Summary

Bit Number NB 4
Bit Size 12.25
Bit Type Hycalog

DSX195DGUW

S/N 103926 Jets 5 x 12 Depth In (m) 1646 Depth Out (m) 1763 Metres Drilled 117 **Drilling Hours** 6.4 TBR (krevs) 58.7 Circulating Hours 9.1 Average ROP (m/hr) 18.3

API Condition 1-1-CT-N-X-I-NO-TD

Drilling Parameters

 WOB (klbs)
 11.6
 31.7

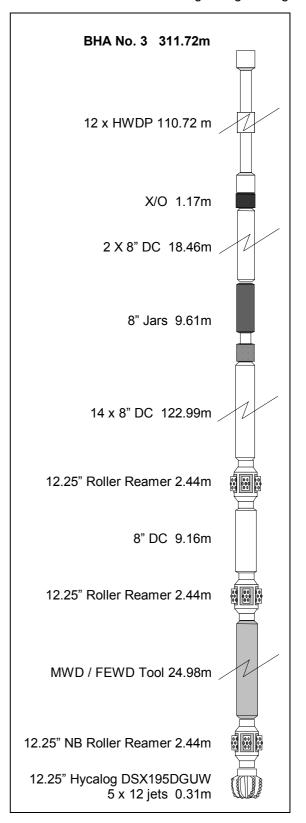
 RPM
 55
 - 190

 Torque (kft-lbs)
 1.5
 - 8.2

 Pump Pressure (psi)
 3845
 - 4147

 Flow In (gpm)
 745
 - 806

Mud System


KCI / PHPA / Glycol 10.3 ppg

Lithology

Siltstone & Sandstone

Drilling Summary

A 12.25" PDC bit was made up and run in hole on the same BHA. The bit was run in to 1615m where 5-10 klbs of weight was taken. Reaming commenced from this depth to bottom at 1646m, a trip gas of 32 units was recorded. Drilling continued from 1646m to 1763m where bottoms up was circulated from samples and gas. A gas peak of 562 units was recorded from 1759.6m. Core point was confirmed and after a flow check and the bit was pulled out of hole to pick up the core barrel. The hole was tight initially from 1763m to 1620m taking 30-40 klbs of overpull. No further tight spots were seen on the rest of the trip out.

2.1 Drilling & Engineering

02 October 2002

Bit Run No. 5 Summary

CB 1 Bit Number Bit Size 12.25 Bit Type DBS CD 93 7960859 S/N Jets TFA = 1.2"Depth In (m) 1763 Depth Out (m) 1784 Metres Drilled 21 **Drilling Hours** 4.6 TBR (krevs) 30.03 Circulating Hours 6.7

Average ROP (m/hr) 4.6

API Condition 1-1-CT-N-X-I-JD-TD

Drilling Parameters

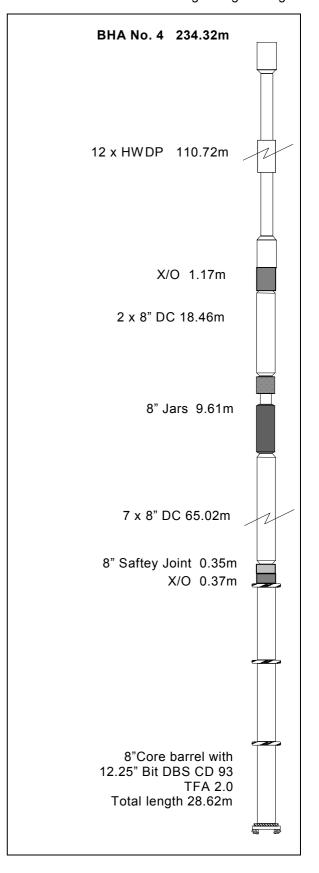
 WOB (klbs)
 3.2
 19.4

 RPM
 40
 101

 Torque (kft-lbs)
 0.74
 6.81

 Pump Pressure (psi)
 1069
 1218

 Flow In (gpm)
 303
 330


Mud System

KCI / PHPA / Glycol 10.3ppg

Siltstone & Sandstone

Drilling Summary

The core bit and core barrels were picked up and run in to 1730m. The bit was washed and reamed down from 1730m to bottom at 1763m. A trip gas of 936 units (18.72%) was recorded whilst reaming to bottom. The ball was dropped and pumped down to the core catcher. Core #1 was cut from 1763m to 1784m, bottoms up was circulated and the core pulled out of the hole. The core barrels were laid out and 19.3m (92%) of core was recovered.

2.1 Drilling & Engineering

03 October 2002

Bit Run No. 6 Summary

Bit Number RR 4.1
Bit Size 12.25
Bit Type Hycalog

DSX195DGUW

S/N 103926 Jets 5 x 15 Depth In (m) 1784 Depth Out (m) 2112 Metres Drilled 328 **Drilling Hours** 16.0 TBR (krevs) 166.2 Circulating Hours 21.7 Average ROP (m/hr) 20.5

API Condition 0-4-BT-A-X-I-JD-TD

Drilling Parameters

 WOB (klbs)
 10.6
 - 29.2

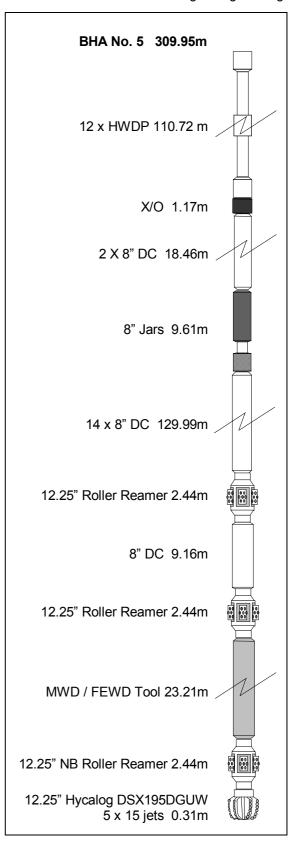
 RPM
 90
 - 206

 Torque (kft-lbs)
 3.7
 - 10.0

 Pump Pressure (psi)
 2900
 - 3316

 Flow In (gpm)
 841
 - 876

Mud System


KCI / PHPA / Glycol 10.3 - 10.3 ppg

Lithology

Siltstone & Sandstone

Drilling Summary

The previous PDC bit used prior to coring was was made up with MWD/LWD tools and the previous drilling assembly and run in hole. The bit was run in to 1745m were reaming commenced at 30 m/hr to allow the MWD tools to log the cored section. A trip gas of 75 units was recorded whilst reaming. New 12.25" hole was drilled from 1784m to a total depth of 2112m. Penetration rates averaged 20 m/hr over the bit run. A maximum gas peak of 536 units was recorded from a sand at 1835m. The hole was circulated clean at prior to a wiper trip to 1755m. The hole was tight and the bit backreamed out from 1895m to 1794m. The bit was run back to bottom and the hole circulated clean. After a flow check the bit was pulled out of the hole and preparations made for wireline logging.

2.2 Casing & Cementing

2.2 Casing / Cementing Summaries 30" Conductor

24 September 2002

Hole Size 36"

Depth 140.0mRT

Casing 1 30" x 20" Shoe joint

1 30" Intermediate Joint

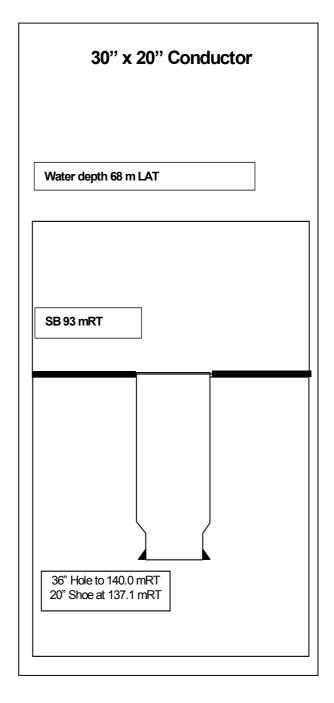
1 x 30" Well Head

ID 28" (18.75" on 20" casing)

Weight 310 lb/ft

Grade X-52 x 30", K55 x 20"

Shoe Depth 137.1mRT


Cement Details:

Sacks 1051 Type Class "G" Mix water 132 bbls Additives CaCl2

Weight 15.8 ppg Volume 219 bbls

Summary

Two joints of conductor casing, the swedged 30"/20" shoe joint and PGB were made up and landed on the seabed. The hole was circulated using 10bbls of seawater with good returns observed. Cement operation was then conducted as per Santos program. Good cement returns were noted throughout the procedure. After pressure was bled off, it was found that the float had held and the running tool was disengaged and pulled to surface.

2.2 Casing & Cementing

13.375" Casing

26 September 2002

Hole Size 17.5" Depth 700mRT

Casing 1 x Shoe Joint

1 x Intermediate Joint 1 x Float collar joint 47 x 13.375" Casing 1 x 18.75" WH"

ID 12.415 / 12.347" Weight 68 / 72 lb/ft, BTC

Grade N81

Shoe Depth 690.55mRT

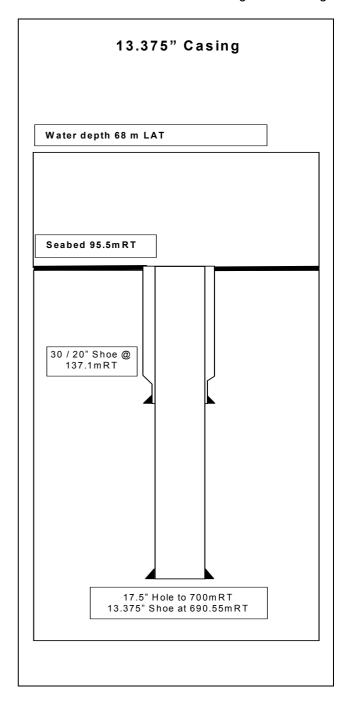
Cement Details:

Lead Slurry

Sacks 736 Type Class "G" Mix water seawater

Additives 2.3 ltr/sx Econolite

Weight 12.5 ppg (1.5 sg) Yield 2.23 ltr/sx Volume 293 bbls


Tail Slurry

Sacks 637
Type Class "G"
Mix water seawater
Additives Neat

Weight 15.8 ppg (1.89 sg) Yield 1.17 ltr/sx Volume 123 bbls

Summary

The 13.375" casing string was made up, landed and latched onto the wellhead in the 30" housing, and tested with 45klbs overpull. The casing was circulated clean and displaced with 450bbls of gel mud. The surface lines were tested ok to 3500psi. Cement operation was then performed, the plug was not bumped. The casing was pressure tested to 3000psi for 10 minutes and was bled out with the float held in place. The running tool was then released and pulled to surface.

SECTION 3

SURVEY

SANTOS SURVEY DATA Casino-2

Seq	Measured	Incl	Azimuth	Course	TVD	Vertical	Displ	Displ	Total	At	DLS	Survey	Tool
No.	depth	angle	angle	length	depth	section	+N/S-	+E/W-	displ	Azim	(deg/	Tool	Quality
	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(m)	(deg)	10m)	type	type
	` '	ν σ,	ν σ,	, ,	` ,	` ,	` ,	` ,	` ,	ν σ,	,	• •	,
1	0	0	0	0	0	0	0	0	0	0	0	TIP	-
2	729.86	0.57	116.39	729.86	729.85	-1.61	-1.61	3.25	3.63	116.39	0.01	MWD	6-axis
3	842.72	0.61	203.59	112.86	842.7	-2.41	-2.41	3.51	4.26	124.48	0.07	MWD	6-axis
4	958.13	0.69	268.77	115.41	958.11	-2.99	-2.99	2.57	3.95	139.29	0.06	MWD	6-axis
5	1074.07	0.52	252.87	115.94	1074.04	-3.16	-3.16	1.37	3.45	156.52	0.02	MWD	6-axis
6	1130.64	0.79	283.25	56.57	1130.61	-3.15	-3.15	0.75	3.24	166.63	0.08	MWD	6-axis
7	1161.14	0.82	278.2	30.5	1161.1	-3.07	-3.07	0.33	3.09	173.91	0.03	MWD	6-axis
8	1188.85	0.76	272.62	27.71	1188.81	-3.03	-3.03	-0.05	3.03	180.99	0.04	MWD	6-axis
9	1217.68	0.78	286.97	28.83	1217.64	-2.97	-2.97	-0.43	3	188.27	0.07	MWD	6-axis
10	1247.53	0.88	282.51	29.85	1247.49	-2.86	-2.86	-0.85	2.98	196.55	0.04	MWD	6-axis
11	1277.8	0.94	274.8	30.27	1277.75	-2.79	-2.79	-1.32	3.08	205.41	0.05	MWD	6-axis
12	1364.44	1.05	276.88	86.64	1364.38	-2.63	-2.63	-2.82	3.86	226.98	0.01	MWD	6-axis
13	1421.1	1.45	272.46	56.66	1421.03	-2.54	-2.54	-4.05	4.78	237.93	0.07	MWD	6-axis
14	1450.24	1.55	270.01	29.14	1450.16	-2.52	-2.52	-4.81	5.43	242.35	0.04	MWD	6-axis
15	1508.96	1.49	255.36	58.72	1508.86	-2.72	-2.72	-6.35	6.9	246.84	0.07	MWD	6-axis
16	1565.71	1.58	268.16	56.75	1565.59	-2.93	-2.93	-7.84	8.37	249.53	0.06	MWD	6-axis
17	1622.24	1.67	265.96	56.53	1622.09	-3.01	-3.01	-9.44	9.91	252.32	0.02	MWD	6-axis
18	1652.08	1.45	267.41	29.84	1651.92	-3.06	-3.06	-10.25	10.7	253.4	0.07	MWD	6-axis
19	1796.08	1.43	253.78	144	1795.88	-3.64	-3.64	-13.8	14.27	255.22	0.02	MWD	6-axis
20	1853.43	1.5	250.23	57.35	1853.21	-4.1	-4.1	-15.19	15.74	254.91	0.02	MWD	6-axis
21	1911.17	1.48	243.72	57.74	1910.93	-4.68	-4.68	-16.57	17.22	254.23	0.03	MWD	6-axis
22	1998.68	1.91	243.21	87.51	1998.4	-5.84	-5.84	-18.89	19.77	252.82	0.05	MWD	6-axis
23	2028.08	2.08	243.11	29.4	2027.78	-6.3	-6.3	-19.8	20.78	252.35	0.06	MWD	6-axis
24	2085.35	2.47	242.08	57.27	2085.01	-7.35	-7.35	-21.82	23.02	251.39	0.07	MWD	6-axis

SECTION 4

GEOLOGY & SHOWS

4.1 Geology and Shows

4.1 GEOLOGY AND SHOWS

Formation Evaluation for Casino-2 commenced from below the 339.72mm (13.375") casing shoe at 690.55mRT to the well's Total Depth of 2112mRT.

During the course of the well, all gas equipment was checked and calibrated before drilling. Carbide was run at 1350mRT to ensure lag times were correct.

The lithological units observed during the drilling of Casino-2 are described below. For more detailed descriptions, see Appendix-1, Formation Evaluation Log.

SAMPLING INTERVALS

Depth	Sampling Interval				
700-1700	5m				
1700-2108m	3m				
2108-2112	4m				

914mm (36") HOLE SECTION

Seabed to 140m: Returns to Seabed

445mm (17.5") HOLE SECTION

140m to 700m: Returns to Seabed

311mm (12.25") HOLE SECTION

700m to 790m: SANDSTONE

SANDSTONE: Predominantly pale yellowish, orange to moderately yellowish brown quartz grains, occasionally white to very light grey, clear to opaque, predominantly translucent to opaque, common iron staining. Medium to coarse grained, moderately well sorted, subrounded to occasionally subangular, weak siliceous cement, weak siderite cement, trace disseminated pyrite, trace lithic fragments, unconsolidated to trace consolidated. Fair to good inferred porosity, poor visual porosity.

There were no oil shows in this interval.

790m to 1000: SANDSTONE with minor interbedded CLAYSTONE

SANDSTONE: Predominantly pale yellowish, orange to dark yellowish brown quartz grains, common iron staining, translucent to opaque, rarely clear, frosted and occasionally milky. Medium to very coarse grained, predominantly coarse grained, well to very well sorted, predominantly subrounded to rounded, occasionally subangular, unconsolidated, rare moderately hard aggregates, weak siderite cement, trace silty matrix, trace pyrite nodules, trace to common lithic fragments, trace glauconite. Poor to good inferred porosity, poor to good visual porosity.

CLAYSTONE: Brownish black to dusky brown, medium dark grey. Soft, sticky to plastic, amorphous, dispersive in parts with trace disseminated pyrite, trace carbonaceous specks and trace glauconite,.

There were no oil shows in this interval.

4.1 Geology and Shows

1000m to 1090m: CLAYSTONE

CLAYSTONE: Brownish black, dusky brown to dusky yellowish brown, medium dark grey. Soft, sticky to plastic, amorphous, dispersive in parts with trace disseminated pyrite, trace carbonaceous specks and trace glauconite.

There were no oil shows in this interval.

1090m to 1140m: SANDSTONE

SANDSTONE: Clear to translucent quartz grains, occasionally milky, trace iron stained, trace pink. Fine to very coarse grained, predominantly coarse grained, rare granules, poorly sorted, predominantly subrounded to rounded, occasionally subangular, trace fractured grains, unconsolidated to trace consolidated, common argillaceous matrix, trace pyrite cement, trace weak siliceous cement, trace glauconite, trace disseminated and nodular pyrite, trace coal and trace black lithic fragments. Poor inferred porosity, poor visual porosity.

There were no oil shows in this interval.

1140m to 1305: SANDSTONE with interbedded SILTSTONE

SANDSTONE: White to very light grey, dark greenish grey, light greenish grey, clear to translucent quartz grains, occasionally milky, trace iron stained. Fine to very coarse grained, predominantly coarse grained, rare granules, poorly sorted, predominantly subrounded to rounded, occasionally subangular, trace fractured grains, unconsolidated to trace consolidated, common argillaceous matrix, trace pyrite cement, trace weak siliceous cement, trace glauconite, trace disseminated and nodular pyrite, trace coal and trace black lithic fragments. Poor inferred porosity, poor visual porosity.

SILTSTONE: Greyish black to dark grey, brownish black to brownish grey, olive black to olive grey. Soft, dispersive, sticky to plastic, amorphous, subblocky in parts, mottled texture in parts, trace nodular and disseminated pyrite, trace glauconite and trace black lithic fragments.

There were no oil shows in this interval.

1305m to 1748m SILTSTONE with minor SANDSTONE

SILTSTONE: Greyish black to dark grey, brownish black to brownish grey, olive black to olive grey, moderately yellowish brown. Soft to firm, occasionally moderately hard, subblocky, dispersive, sticky to plastic, mottled texture in parts, slightly calcareous at the base, rare to trace glauconite pellets, trace nodular and disseminated pyrite, trace very fine quartz grains, trace coal, trace black lithic fragments and trace dolomite.

SANDSTONE: White to very light grey, clear to translucent quartz grains, occasionally opaque, trace iron stained. Very fine to coarse grained, predominantly medium grained, poorly sorted, rounded to subangular, rarely angular, unconsolidated to trace consolidated, weak to moderately strong siliceous cement, argillaceous matrix with trace glauconite, trace disseminated and nodular pyrite and trace black lithic fragments. Poor inferred porosity, poor visual porosity.

There were no oil shows in this interval.

4.1 Geology and Shows

1748m to 1961m: SANDSTONE and with Interbedded SILTSTONE

SANDSTONE: Very light grey with pale grey, pale brown, opaque to translucent quartz grains, trace milky, trace iron staining. Very fine to very coarse grained, predominantly fine to medium grained, poorly sorted, subrounded to subangular, occasionally rounded. Friable to moderately hard aggregates, commonly loose with common to abundant white argillaceous and calcareous matrix, common calcareous cement, weak to moderately strong siliceous cement, trace hard dolomite cement, trace pyrite cement, trace pyrite nodules, trace lithic fragments, trace siderite, and trace glauconite. Fair to poor visual porosity and fair to poor inferred porosity.

SILTSTONE: Light grey to medium grey, light brownish grey to brownish grey, white to very light grey, olive grey. Soft to firm, occasionally moderately hard, subblocky to blocky, amorphous, dispersive in parts, slight to moderately calcareous, trace nodular and disseminated pyrite, trace carbonaceous material, trace very fine quartz grains and trace mica. Grading to a CALCAREOUS SILTSTONE in parts and grading to CLAYSTONE in parts.

There were no oil shows in this interval.

1961m to 2112m: SILTSTONE with interbedded SANDSTONE

SILTSTONE: Medium grey to olive grey, greenish grey. Very soft to soft, occasionally moderately hard, subblocky to blocky with rare to trace glauconite, trace carbonaceous specks, trace coal, trace pyrite and trace very fine quartz grains.

SANDSTONE: White to very light grey, with clear to pale grey quartz grains, trace pink, trace reddish brown, trace orange, trace iron staining and trace milky. Very fine to coarse grained, predominantly fine to medium, moderately well sorted, subangular to subrounded. Friable to hard aggregates, commonly unconsolidated, common calcareous matrix, trace white argillaceous matrix, common hard calcareous cement, common to rare weak silica cement, trace pyrite cement. Contains trace to common glauconite, rare lithic fragments trace mica flakes, trace dolomite, trace chert, trace pyrite nodules, and trace carbonaceous specks. Poor visual porosity, poor inferred porosity.

There were no oil shows in this interval.

4.1 Geology and Shows

Drillin	Drilling Rate Summary for All Lithology Intervals on Casino-1											
Depth Interval (m)	RATE	OF PENETRATION (m/h	ir)									
	Minimum Maximum											
700 - 790	9.0	401.5	116.9									
790 – 1000	7.5	328.5	113.0									
1000 – 1090	12.1	154.6	44.7									
1090 – 1140	15.2	245.1	126.0									
1140 - 1305	15.6	278.0	90.7									
1305 – 1748	1.8	110.0	24.9									
1748 – 1961	2.9	46.8	21.5									
1961 - 2112	13.4	46.4	23.4									

	<u>Su</u>	mmar	y of G	as Readin	gs Reco	rded	for All	Litholo	gy Inter	vals o	n Casin	<u>0–1</u>	
Interva	l (m)		Total	Gas (units)				Ch	romatogr	aph Ana	lysis (ppr	n)	
		Rar	nge	Max Gas	Av. Tota	d							
From	То	From	То	at (m)	Gas		C1	C2	C3	iC4	NC4	IC5	nC5
0	700	Returns to Seabed					-	-	-	-	-	-	-
700	790	0.0	0.2	700-790	0.2	Min	0	_	-	-	-	-	-
						Max	123	-	-	-	-	-	-
790	1000	0.1	2.5	899-917	1.5	Min	49	-	-	-	-	-	-
						Max	143	-	-				
1000	1090	1.2	2.2	1001	1.8	Min	74	-	-	-	-	-	-
						Max	205	-	-	-	-	-	-
1090	1140	1.7	7.0	1123	3.2	Min	179	-	-	-	-	-	-
						Max	374	-	-	-	-	-	-
1140	1305	0.7	3.6	1175	2.2	Min	59	-	-	-	-	-	-
						Max	424	-	-	-	-	-	-
1305	1748	1.3	47.5	1747	11.9	Min	149	0.0	0.0	0.0	0.0	0.0	0.0
						Max	11832	426	102	55	47	23	68
1748	1961	9.8	548.8	1762	132.5	Min	747	1	0.0	0.0	0.0	0.0	3
						Max	99408	558	498	70	516	74	515
1961	2112	5.2	19.8	2012	12.1	Min	568	0	0	-	-	-	0
						Max	3225	0	33	-	-	-	0

4.2 Geology and Shows

4.2 Sampling Summary

INTEQ

Santos: Casino-2 From: BHI Unit 503

Location: *Ocean Bounty* Telephone: 08 8218 5740

Shipped in Container No: 26690

SAMPLE TYPE	No.	C	OMPOSITIO	PACKING DETAILS			
	Of	Sample	Depth In	terval (m)			
	Sets	Box No.	From	То]		
Sets A,B,C: Washed & Air Dried	3	1	705	835	Small boxes 1 – 8 packed in		
Samples (100 g)		2	835	965	large box 1 of 2		
-		3	965	1100	_		
		4	1100	1230			
		5	1230	1320			
		6	1320	1460			
		7	1460	1590			
		8	1590	1718	0		
		9 0	1718	1802 1871	Small boxes 9 – 13 packed		
		10 11	1802 1871	1949	in large box 2 of 2		
		12	1949	2030			
		13	2030	2112			
Sets D,E: Washed & Air Dried	2	1	705	800	Small boxes 1 – 8 packed in		
Samples (200 g)		2	800	930	large box 1 of 2		
Campies (200 g)		3	930	1030	large box 1 of 2		
		4	1030	1115			
		5	1115	1210			
		6	1210	1300			
		7	1300	1420			
		8	1420	1535			
		9	1535	1670	Small boxes 9 – 16 packed		
		10	1670	1754	in large box 2 of 2		
		11	1754	1823			
		12	1823	1886			
		13	1886	1946			
		14	1946	2009			
		15	2009	2075			
Cat F. Compley Trave	1	16 1	2075 700	2112 2112	1 wooden box.		
Set F: Samplex Trays	ļ	'	700	2112	i wooden box.		
Set G: Samplex Trays	1	1	700	1205	4 small boxes in 1 large		
oct of campion rays		2	1205	1700	box.		
		3	1700		307		
		4		2112			
Set H: Mud Samples	1	1	700	2112	1 box.		
Cot la Miga papar work large and	1	1			2 Large boyes		
Set I: Misc paper work, logs and charts (Casion1 and Casino 2			<u>-</u>	_	2 Large boxes		

Note: Mud samples taken at 760, 1703, 1752, 1763, 1771, 1825, 1834, 2112. Schlumberger MDT Sample from 1764m also packed in same container.

4.2 Geology and Shows

DISTRIBUTION	Destination & Address	Attention of:				
Set A and B: Santos Washed & Dried (100g)	C/- Santos Core Library Ascot Transport Francis Street Gillman SA 5013	Attn: Troy Prosser (Santos Core Librarian)				
Set C: Strike Oil Washed & Dried (100g)	C/- Santos Core Library Ascot Transport Francis Street Gillman SA 5013	Attn: Troy Prosser (Santos Core Librarian)				
Set D: Vic DRNE Washed & Dried (200g)	C/- Santos Core Library Ascot Transport Francis Street Gillman SA 5013 Fwd to Vic DNRE	Attn: Troy Prosser (Santos Core Librarian)				
Set E: Geoscience Australia Washed & Dried (200g)	C/- Santos Core Library Ascot Transport Francis Street Gillman SA 5013 Fwd to AGSO	Attn: Troy Prosser (Santos Core Librarian)				
Set F, G: Santos and Strike Samplex Trays	C/- Santos Core Library Ascot Transport Francis Street Gillman SA 5013 Fwd to AGSO	Attn: Troy Prosser (Santos Core Librarian)				
Set H: Mud Samples	C/- Santos Core Library Ascot Transport Francis Street Gillman SA 5013 Fwd to AGSO	Attn: Troy Prosser (Santos Core Librarian)				
Set I: Misc paper work, logs and charts	C/- Santos Core Library Ascot Transport Francis Street Gillman SA 5013 Fwd to AGSO	Attn: Attn: Troy Prosser (Santos Core Librarian)				

SECTION 5

PRESSURE EVALUATION

5.1 Pressure Evaluation

5.1 Pore Pressure Evaluation

An average sea water density of 8.6 ppg was assumed as the normal saline pressure gradient for all calculations for Casino-2. Using real time data, such as the hydrocarbon gas trend, lithology, flowline temperature, corrected Drilling Exponent (Dxc) data for conventional roller bits, constant drilling fluid parameters, pore pressure estimates were made during the drilling of Casino-2. For more details, please refer to Appendix 3, "Pressure Summary Plot".

36" Hole Section

The 36" hole was drilled from 93mRT to 140.0mRT. The section was short, characterised largely by unconsolidated sediments with returns dumped at the seabed. With an average penetration rate of about 20m/hr and low weight-on-bit, the plotted Dxc data curve projected a leftward general trend consistent with bit jet washing action on soft, unconsolidated sediments. However, it is unlikely that pore pressure would have increased over this shallow interval. The pore pressure was estimated to have remained normal at 8.6 ppg EMW down to 140.0mRT.

17.5" Hole Section

The 17.5" hole was drilled riserless from 140.0mRT to 700.0mRT with returns dumped at the seabed. As in the 36" section, pore pressure estimates were based on the Dxc curve, penetration rate and the behaviour of available drilling parameters. The Dxc scatter from below the casing shoe to 400m was indicative of a probably more than gradual sediment consolidation. Below 400m to the section total depth of 685m, the trend was closer to vertical inferring a more consistent sediment consolidation with depth. The last 15m of the section saw a sharp leftward shift and larger scatter of the Dxc points. The large positive drill break that occurred at this point would suggest that this change is one of formation rather than pore pressure, with the bit having penetrated the Mepunga Sands slightly earlier than expected. The whole section however was estimated to have remained at normal 8.6ppg EMD down to 700mRT.

12.25" Hole Section

The 12.25" hole section was drilled using a KCI/PHPA/Glycol mud system initially weighted at 8.8ppg. After a unsuccessful leak off test (10.2ppg EMW) drilling progressed smoothly after initial mud loss problems averaging 26m per hour from 700m to 1664m and 20m per hour from 1797m to 2112m TD, excluding the slower cored interval. In anticipation of higher than normal formation pressure, the mud weight was incremented to 10.0ppg at about 1450m and then up to 10.3ppg at 1646m. An Insert bit used from the start of this section and drilled to 1646m. A "normal" Dxc trend could been seen in the Belfast Siltstone. No variation off this trend was seen down to 1646m where the bit was pulled. The hole was tight from bottom up to 800m with the bit backreamed out to that point. No evidence of overpressure in the temperature gradient was seen or any pressure cavings or connection gases. So it can be assumed that the formation pressure remained "normal" at around 8.6 ppg EMW down to 1646m. Drilling resumed with a PDC making so the Dxc data took on a new trend with this type of bit. No connection gases were seen or abundant pressure cavings observed whilst drilling to core point at 1763m. A maximum formation gas of 562 units was recorded from 1760m. Whilst PDC bit's are not ideal for Dxc trend analysis a normal trend can be interpreted from 1700m and leftward shift in this trend occurred at about 1730m. A pore pressure of 9.4ppg EMW can be obtained from this trend shift. MDT pressure data points from Casino-1 showed a pore pressure of 9.5 - 9.6 ppg EMW in the lower Belfast Siltstone and reservoir section. So it is probable that the formation pressure on Casino-2 for these formations is similar. No other increased pressure indicators were seen whilst drilling to 1763m but the mud weight was raised much earlier and higher on Casino-2 than on Casino-1. It is interpreted that an increase in formation pressure occurred at about 1730m to around 9.4-9.5 ppg EMW. A trip gas of 936 units was recorded prior to coring from 1763m - 1784m. The same PDC bit used before coring was re-used to drill the rest of the well from 1784m to 2112mTD. No further indications of overpressure were seen whilst drilling to TD and the formation pressure is believed to have remained at around 9.5ppg EMW.

Santos Casino-2 5.1.1

5.2 Pressure Evaluation

5.2 Fracture Pressure Evaluation

12.25" hole section

After drilling out the 13.375" casing shoe at 690.55m, rathole to 700m and three metres of 12.25" hole to 703mRT, a Leak Off Test (LOT) was performed. A good test was not obtained and the only result was an applied force of 190psi at the surface using mud weighted at 8.8ppg recorded an equivalent mud weight (EMW) of 10.2ppg formation strength at the casing shoe. Severe downhole mud losses were taken once drilling commenced, up to 600 bbls/hr. The bit was pulled back into the shoe after drilling to 772m. Once drilling resumed the losses reduced to around 30-40 bbls/hr and slowly reduced to zero losses. No further downhole losses were taken in this section even when the mud weight was raised to 10.3ppg. This section was drilled with a KCI/PHPA/Glycol mud system weighted from 8.8 to 10.3ppg. While drilling, an ECD range of 8.9 to 10.6ppg was recorded. The initial losses whilst drilling out the shoe were as a result of the casing being set in the weak Mepunga Sandstone. This suggests that the fracture pressure of 10.2 ppg EMW from the attempted leak off test is too low. Whilst heavy losses were initially taken initially the losses healed up relatively quickly. Also the fact that no losses occurred when the mud weight was raised to 10.3ppg and ECD'S as high as 10.6 resulted. This tells us that the actual fracture gradient of the Mepunga Sandstone is greater than 10.6ppg EMW. All other formations drilled in 12.25" section had fracture gradients much higher than ECD's reached whilst drilling.

The following is a summary of the Leak Off Test conducted in this well:

Hole Section	Hole MD	Casing	Shoe MD	Pressure	Mud Weight	EMW
12.25"	703 m	13.375"	690.55m190 psi	8.8 sg	10.2ppg	

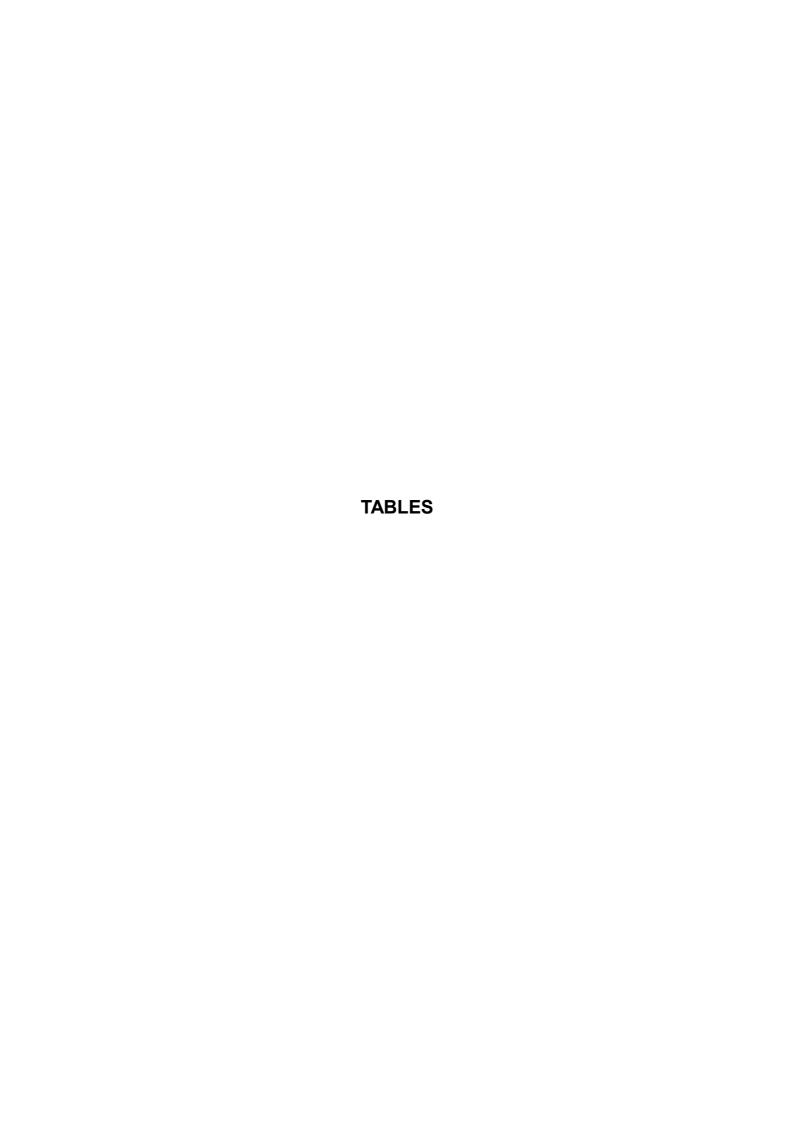
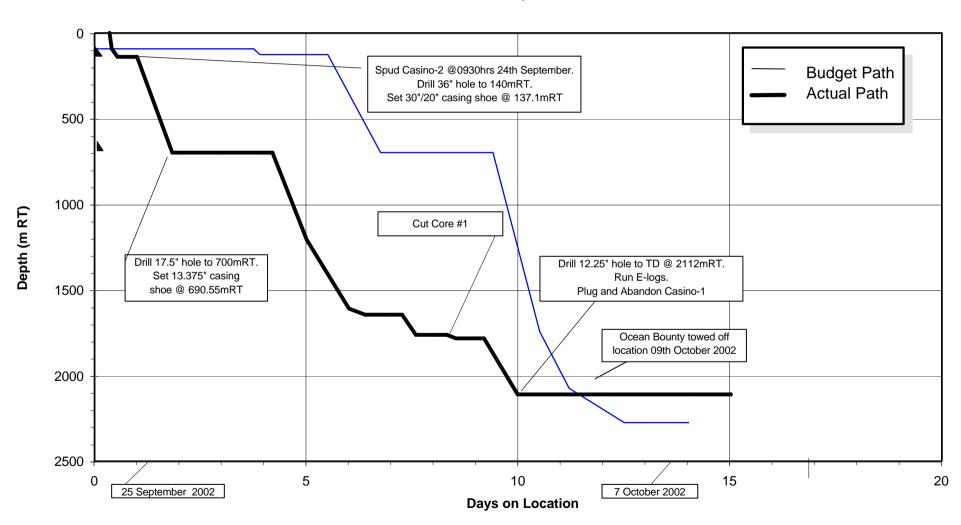
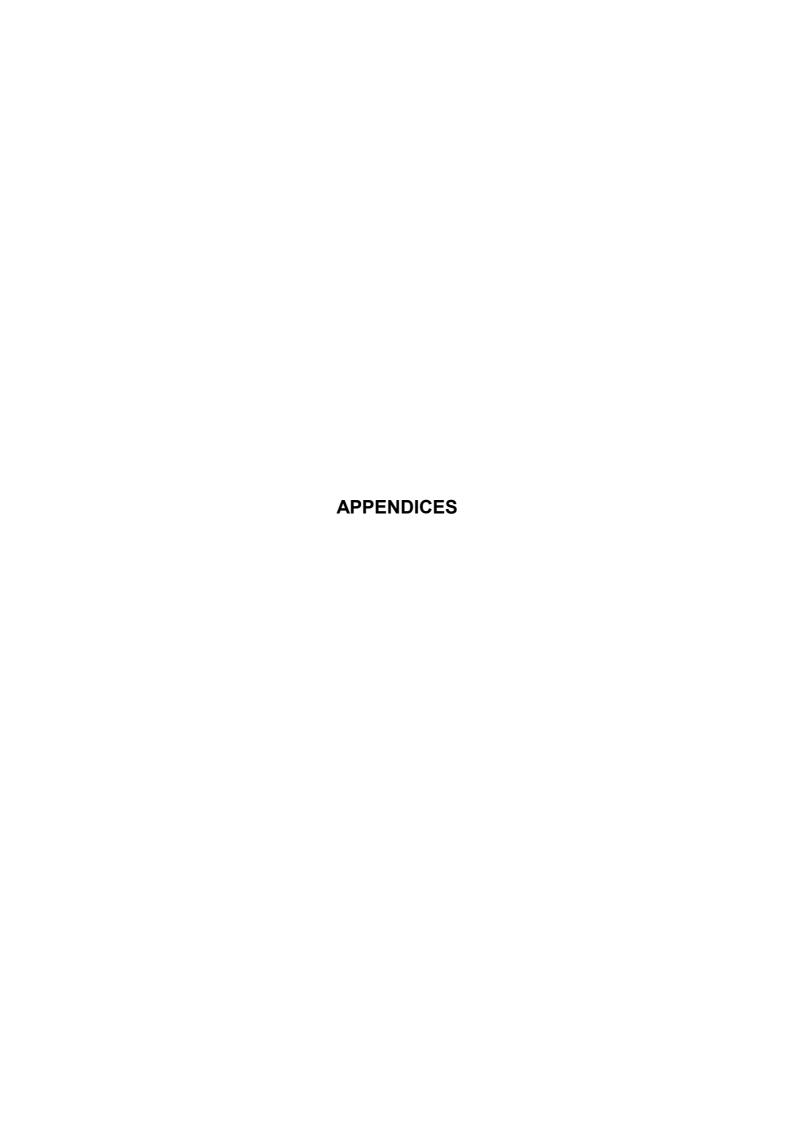


Table 1: Bit Run Summary


BA	KER UGHES							В	it F	Ruı	n S	um	ma	ry													Santos
perato	or	NTC	os			Well N	ame	Ca	asino	o-2			Location VI	C/P4	4	Drilling (r mon	d O	ffsł	ore	9		Rig		Ocean	Bounty
	Bit							On Btm					Drilling	paramet	er rang	je						Gr	ading				
Bit No.	Make, Type Serial No. / IADC Code	Bit Size	Jets x 1/32"	TFA in [*]	Depth In m	Depth Out m		Hours Drilled Hours	ROP Avg m/hr		WOB klbs	SPP psi	RPM	Flow gpm	Jet Vel m/sec	DC/OH Vel m/min	MD ppg	Hyd Power hhp	Bit Loss %	ıo	D	L	В	9 0	R		Remarks
	36" Hole Section											,	ı	Ji.			11.3						•	-		ı	
IB1	Smith DSJC w/ 36" Hole Opener	26	3 x 18 36" HO, 4 x 22 j	2.2304	93.0	140	47.0	2.3	20.4	10.1	1.9-8.6	1182	70	1050	52.5	7.4	8.6	159.0	39.2			Not	Grade	d		36" Hole Se	ction T.D.
	17.5" Hole Section		30 110, 4 x 22 j	CIO						1	ļ		Į		1			l	l .								
NB2	Smith MGSSHC 12.25" Hole Section	17.5	3 x 20, 1 x 18	1.1689	140	700	560	12.6	44.4	94.0	0.3-38.5	2417	66-172	1106	101.7	42.1	8.6	607.4	46.2	2 2	NO	Α	Е	NO	TD	17.5" Hole S	Section TD
√B3	Hughes MX 03DX	12.25	3 x16	0.5890	700	1646	946	36.4	26.0	285.7	2.6-61.2	2852	20-164	670-887	141.8	74.8	8.8 - 10.1	963.6	47.0	8 8		Α	X 2	2 ER	PR	MWD,FEW	D
B4	Hycalog DSX195DGUW		5 x 12	0.5522	1646	1763	117	6.4	18.3	58.7	11.6-31.7	3995	35 - 190	786	142.7	70.6	10.3	949.3	50.5	1 1	CT	N	Χ	l NO		MWD,FEW	D
B1		12.25	TFA	1.2000	1763	1784	21	4.6	4.6		3.2-19.4	1150	40-101	317	26.9	28.7	10.3	13.8	9.2	1 1	CT	Ν	X	JD		CORE#1	
4.1	Hycalog DSX195DGUW	12.25	5 x 15	0.8629	1784	2112	328	16.0	20.5	166.2	10.6-29.2	3181	90-206	854	99.3	76.7	10.3	499.1	27.3	0 4	BT	Α	X	I JD	TD	MWD,FEW	D

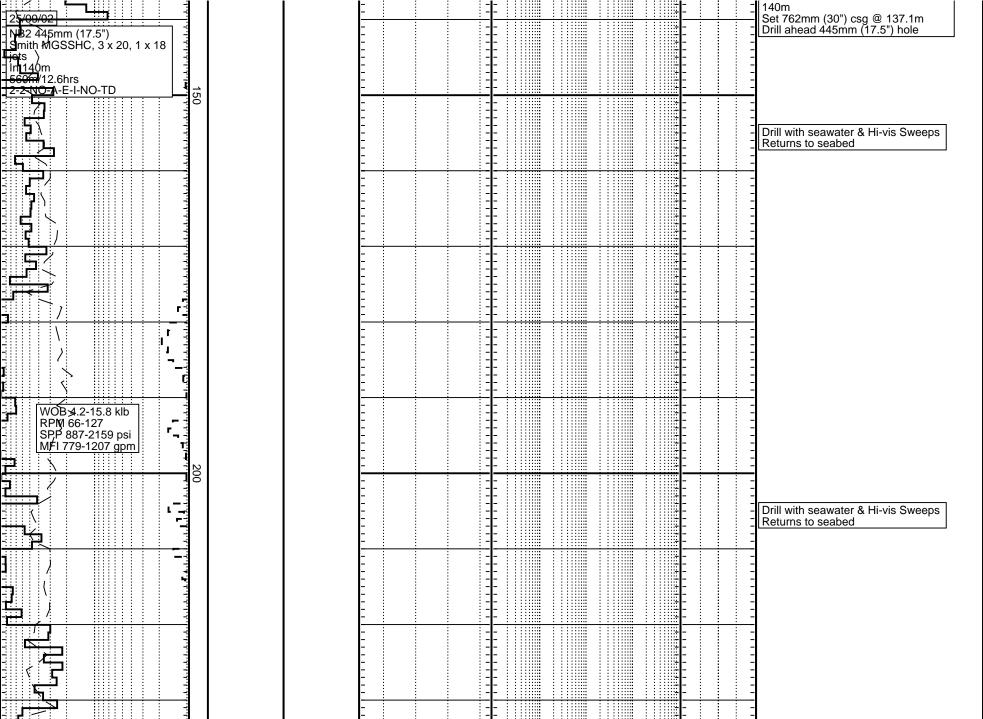

Table 2: Bit Hydraulics Summary

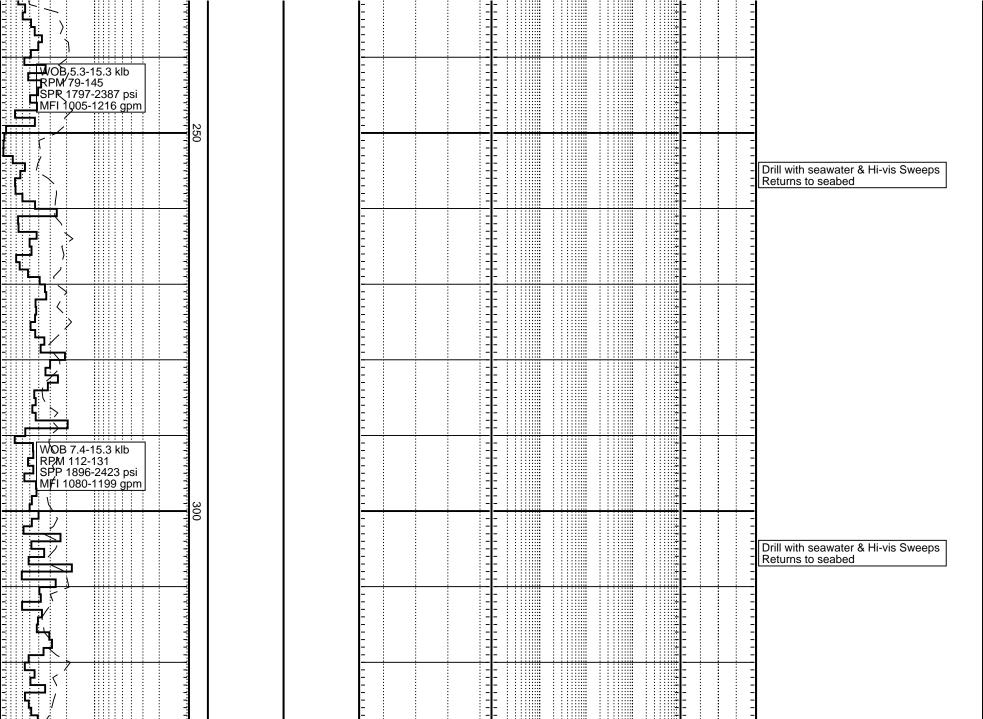
BA H INTEQ	KER UGHES	Bit Hydraulics Summary																Sar	nto	S
Operator		Well Name Location Drilling Contractor											Rig							
		SA	NTOS			Casin	0-2			VIC	/P44		Diamon	d Offs	hore			Ocean	Boun	ty
Drillstring	g Abbrevi	ations							Hydraul	lics Mode	els									-
	Normal MWD	P Positive Displacement Motor T Halliburton TRACS Tool Power Law Model used for drilling with Mud A Adjustable Gauge Stabilizer C Core Power Law Model used for coring and drilling with sea water																		
														Ann	ular Velo	ocities				
Bit	Depth	Hole	Jets	Drill	Mud	Mud		YP	Flow	Jet	Impact	Hydraulic	Power/	Bit	Bit	Pipe	ECD	DP	DC	DC
No.		Size		String	Type	Density	PV	lbs/100	Rate	Vel	Force	Power	Area	Loss	Loss	Loss		ОН	ОН	Critical
	(m)	in	x 1/32"	Type		ppg	сP	ft sq	gpm	m/sec	lbf	hhp	hp/sq in	Psi	%	Psi	ppg	m/min	m/min	m/min
	36" Hole	Section																		
NB1	140	36"	3 x 18, 4 x 22	N	SW/hi-vis sweeps	8.60	1	1	1197	52.5	918.2	159.1	0.3	228	39.2	296	8.60	-	7.4	25.2
	17.5" Ho	le Sectio	n																	
NB2	700	17.50	3 x 20, 1 x18	N	SW/hi-vis sweeps	8.60	1	1	1216	101.7	1808.1	607.4	2.6	857	46.2	979	8.60	32.4	42.1	25.5
	12.25" H	ole Section																		
NB3	1646	12.25"	3 x 16	М	KCL/PHPA/Glycol	8.8 - 10.1	23	29	854	141.8	2057.9	963.6	8.3	1936	47.0	2109	10.20	51.2	74.8	148.7
NB4	1763	12.25"	5 x 12	М	KCL/PHPA/Glycol	10.30	21	33	806	142.7	2013.9	949.3	8.2	2021	50.5	1858	10.50	48.3	70.6	156.3
CB1	1784	12.25"	TFA = 1.2"	М	KCL/PHPA/Glycol	10.30	19	25	330	26.9	155.3	13.8	0.1	72	9.2	515	10.60	19.8	28.7	128.0
RR4.1	2112	12.25"	5 x 15	М	KCL/PHPA/Glycol	10.30	21	23	876	99.3	1522.3	499.1	4.3	977	27.3	2476	10.50	52.5	76.7	125.7

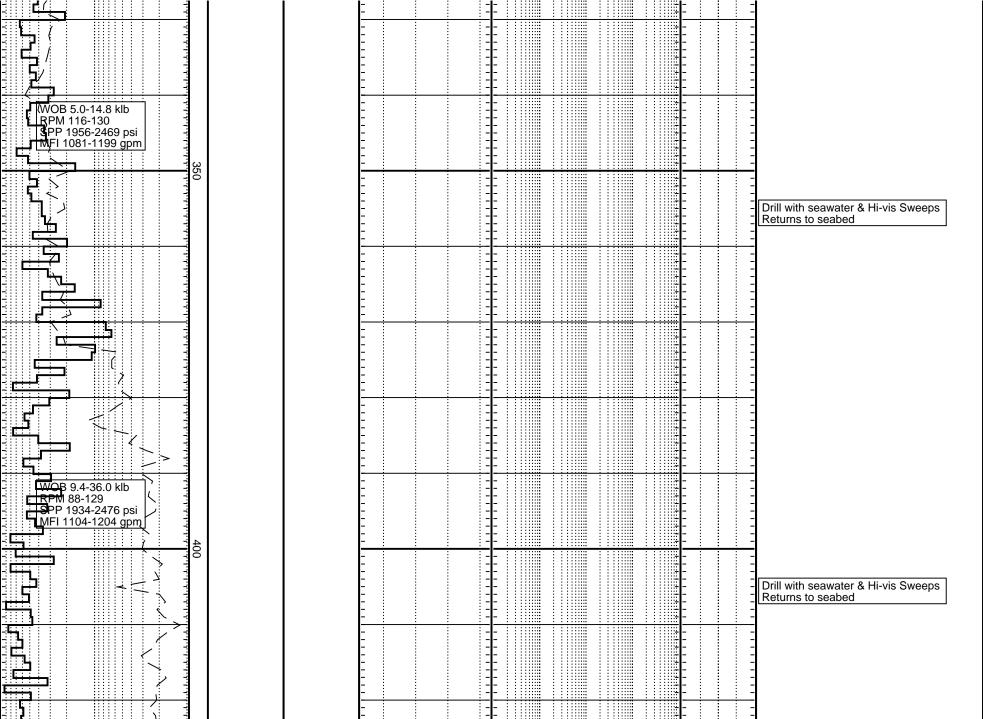
SANTOS
Casino-2
Time vs. Depth Curve

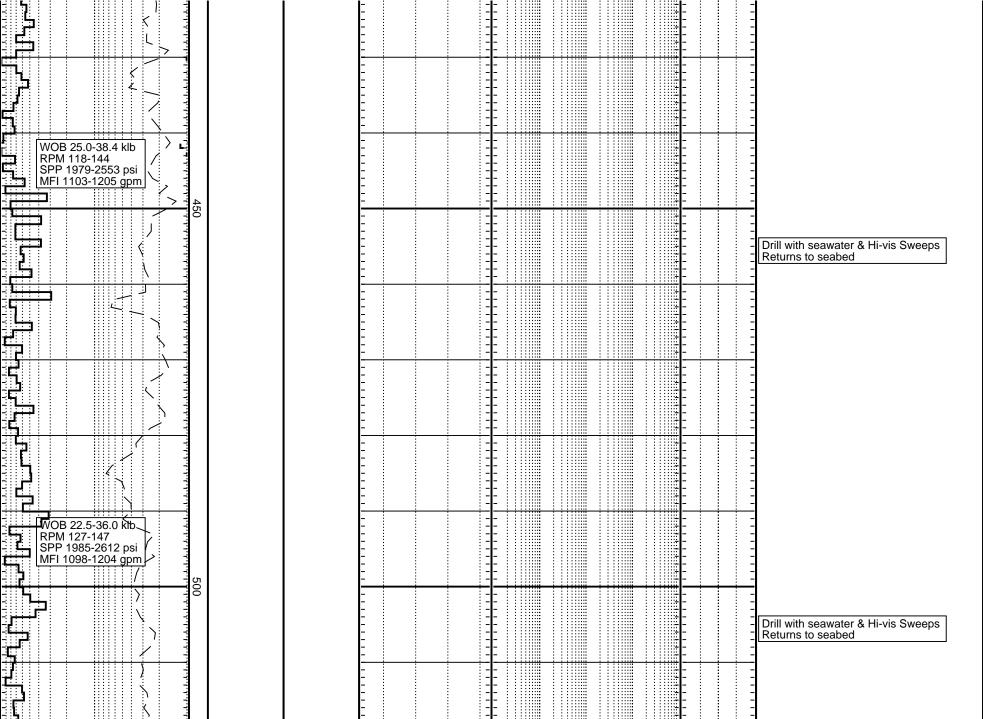
FORMATION EVALUATION LOG

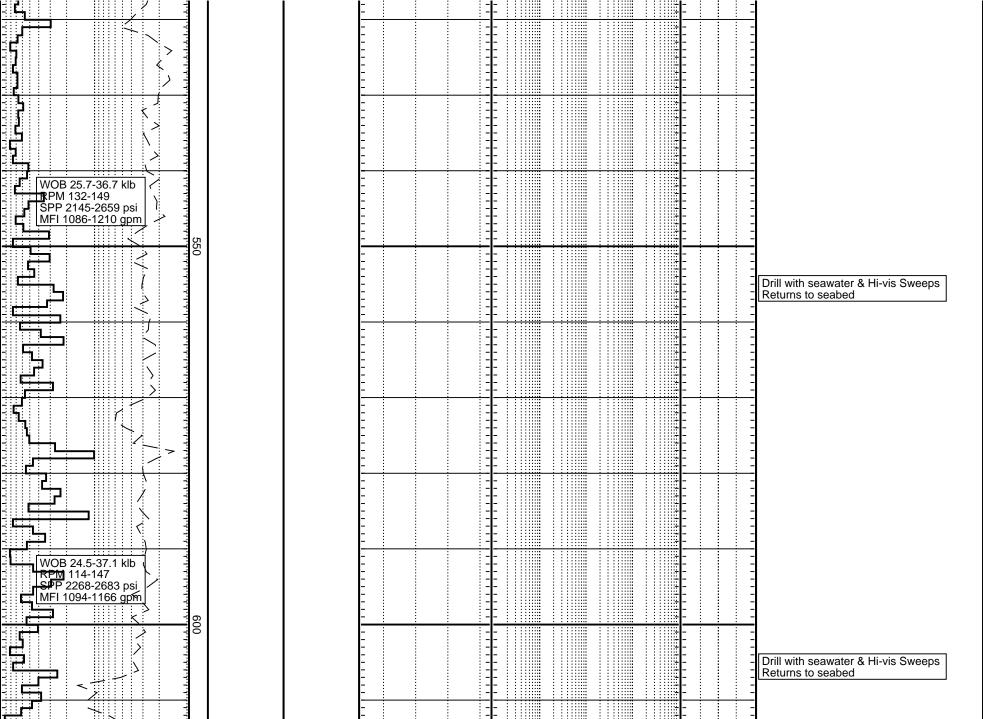
1:500

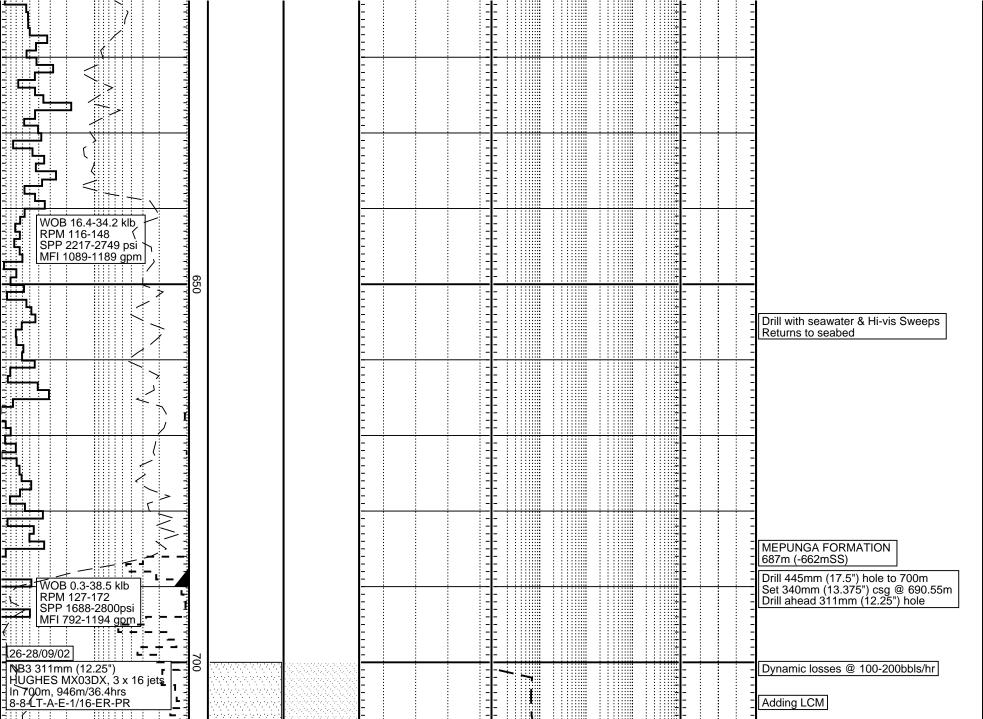


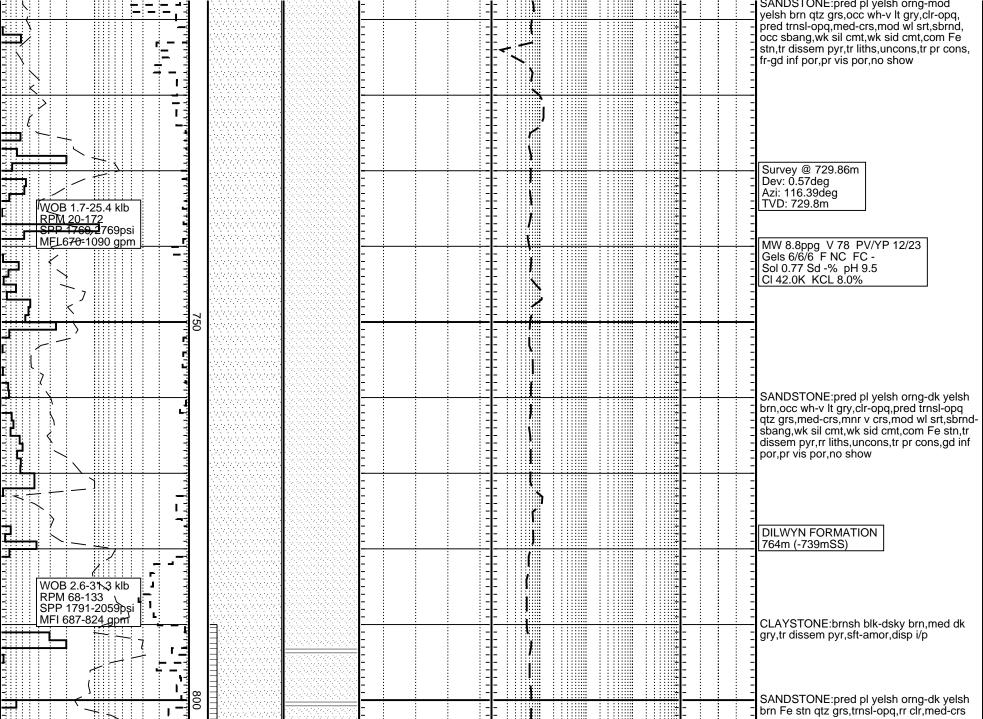

FORMATION EVALUATION LOG Casino-2

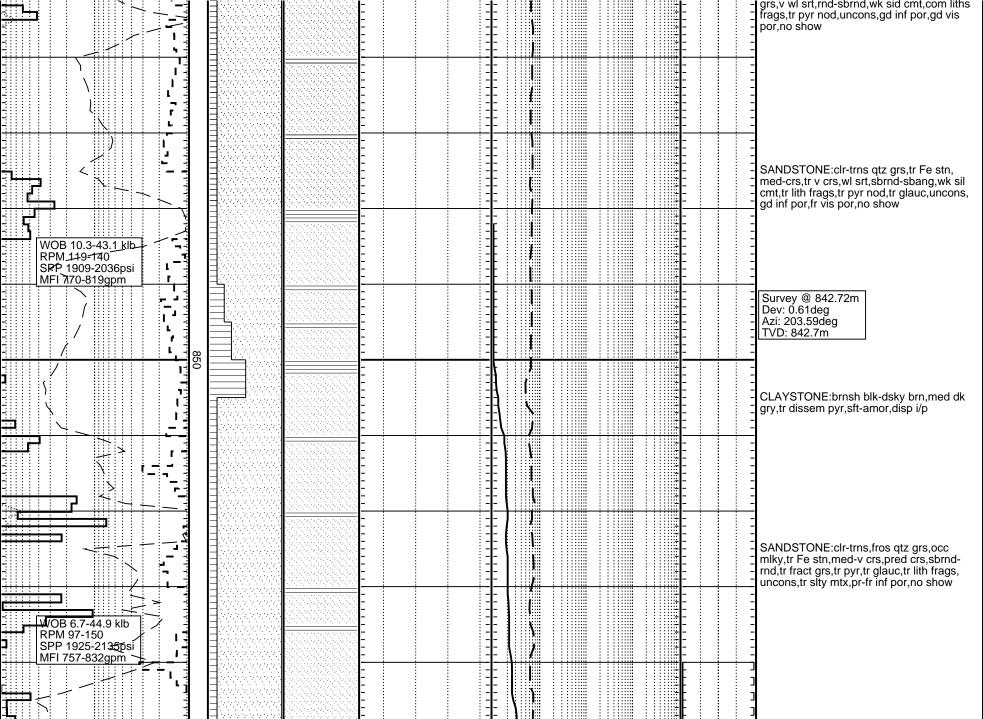

Santos

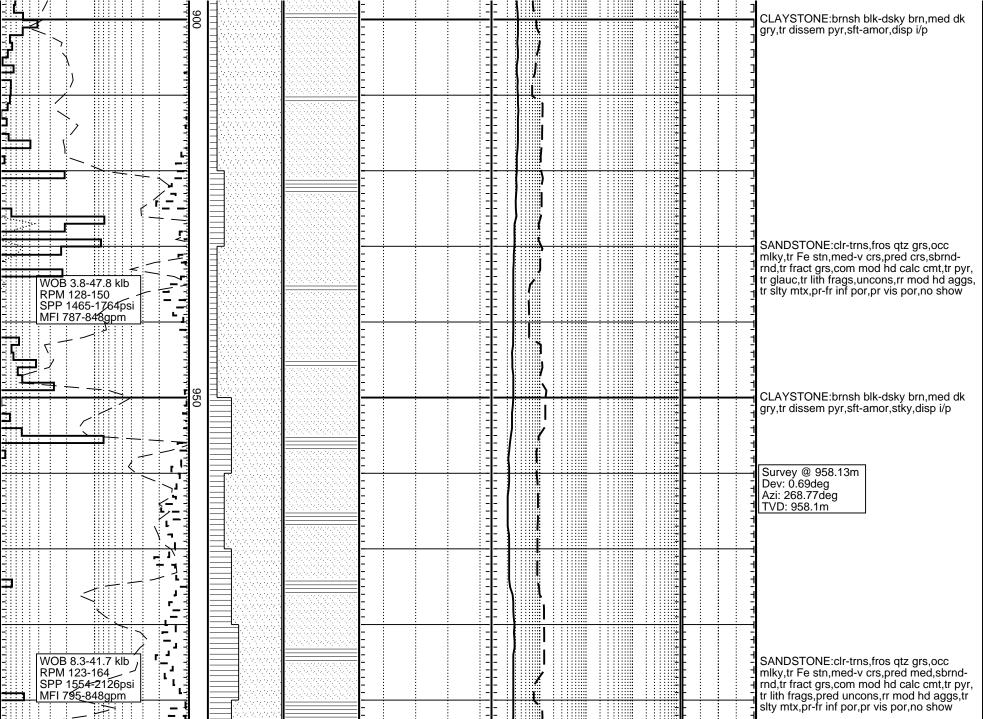

SCALE: 1:500

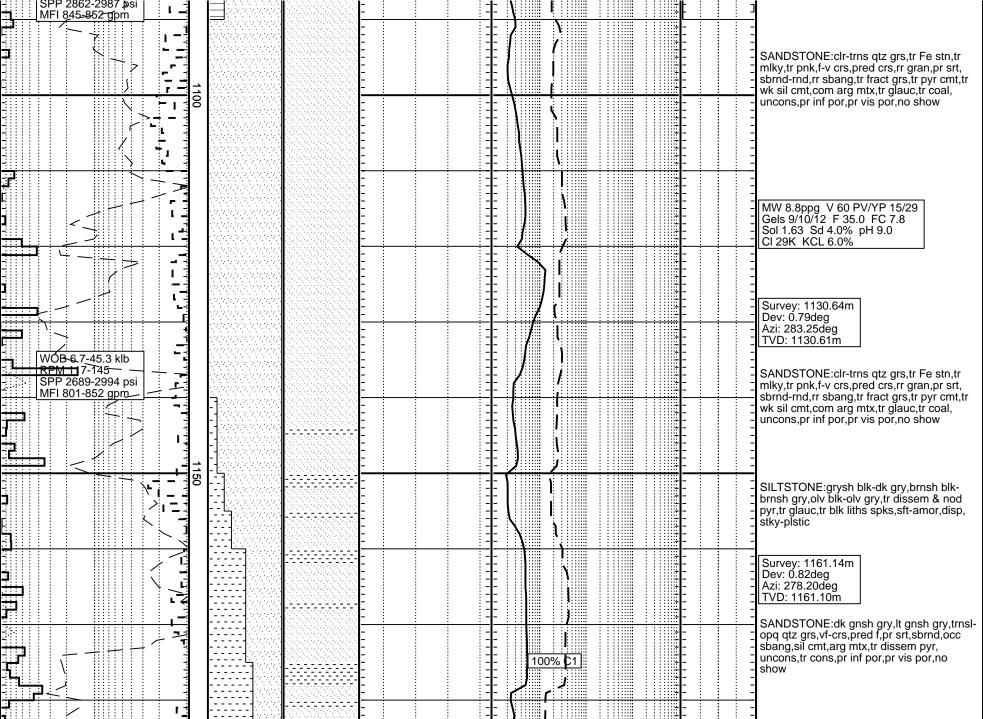

DATE OF DENETDATION	_	ı	-		EN UEN	<u> </u>		AL 0A0	NI LINUTO	0.47	OLLIETOS	d DEMARKS
RATE OF PENETRATION	딞	ဥ	ξ	RESIS	IIVIIY		101	AL GAS	IN UNITS	CAL	CIMETR'	/ REMARKS
GAMMA (API) 1	1 (m)	CUTTINGS LITHOLOGY	Ę .	SHALLOW 0.2 MEDIUM 0.2 DEEP (C	200 (<u>Ohm-m)</u> 200	_ 0 _ _	Is Nor	Methane Ethane (Propane o Butane mal Buta	opm) (ppm) (ppm) ne (ppm)	 	Calcite 50 100 colomite 50	
NB1 660mm (26") Smith DSJC, 3 x 18 jets 914r/m (36") H-O, 4 x 22 jets Ih 93/m 4/m/2.3hrs WOB 1-9-8-6 klb RPM 65-8-4 SPP 444-1474 psi MFI 300-1197 gpm	100											All depths refer to metres below the rotary table (RT) unless otherwise stated RT - Sealevel(LAT) = 25m Water Depth = 68m RT - Seabed = 93m Spud Casino-2 @ 09:30hrs on 24/09/02 Drill with seawater & Hi-vis Sweeps Returns to seabed Drill 914mm/660mm (36"/26") hole to

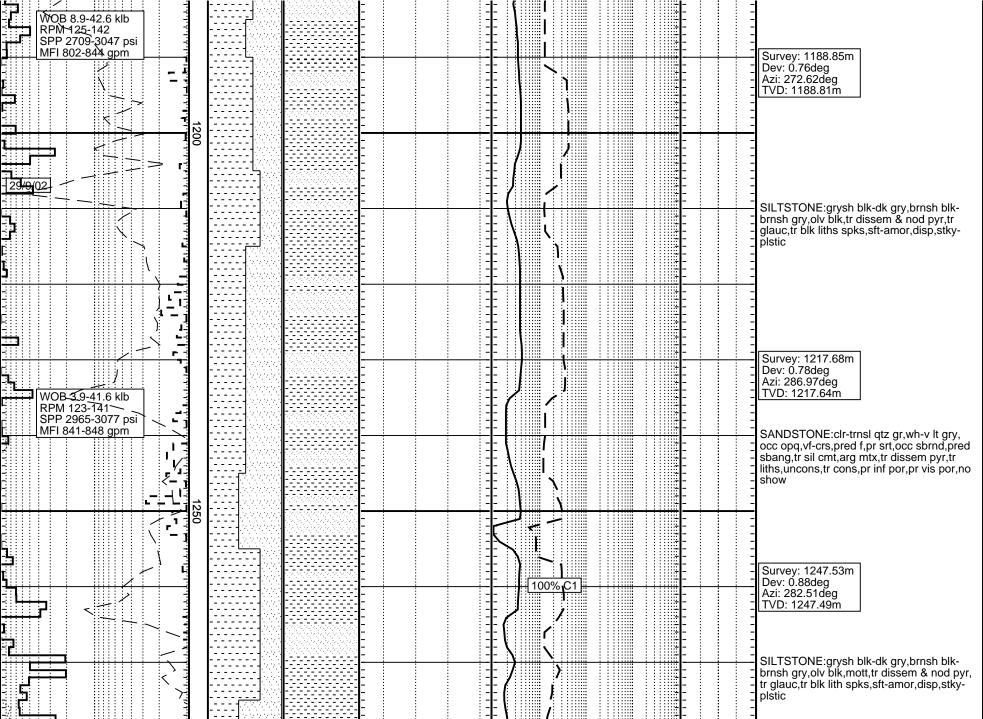


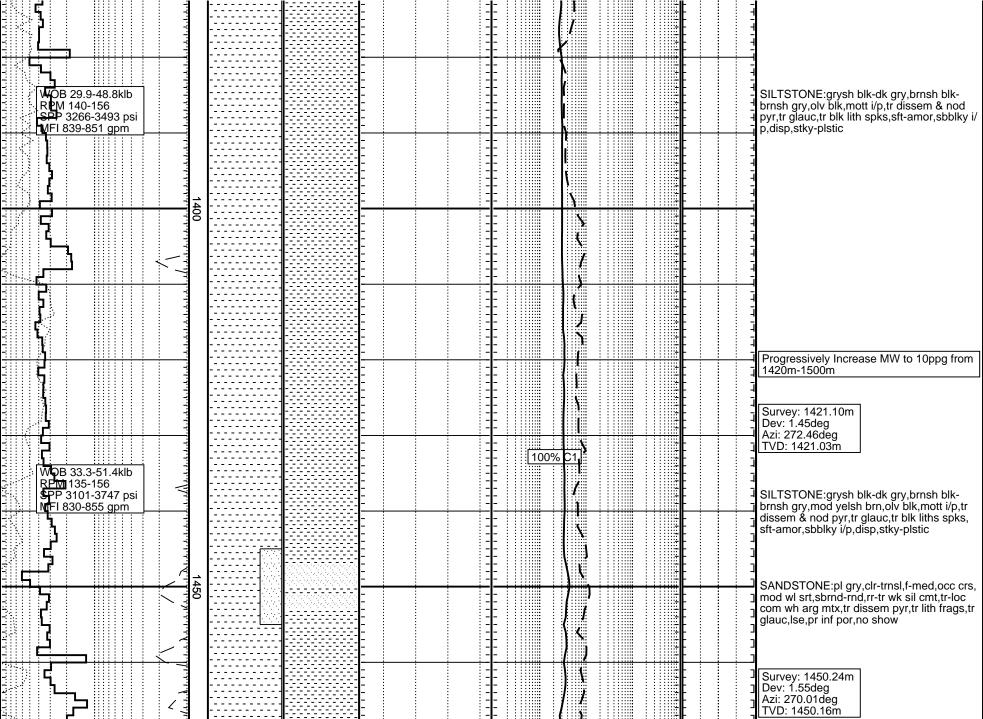


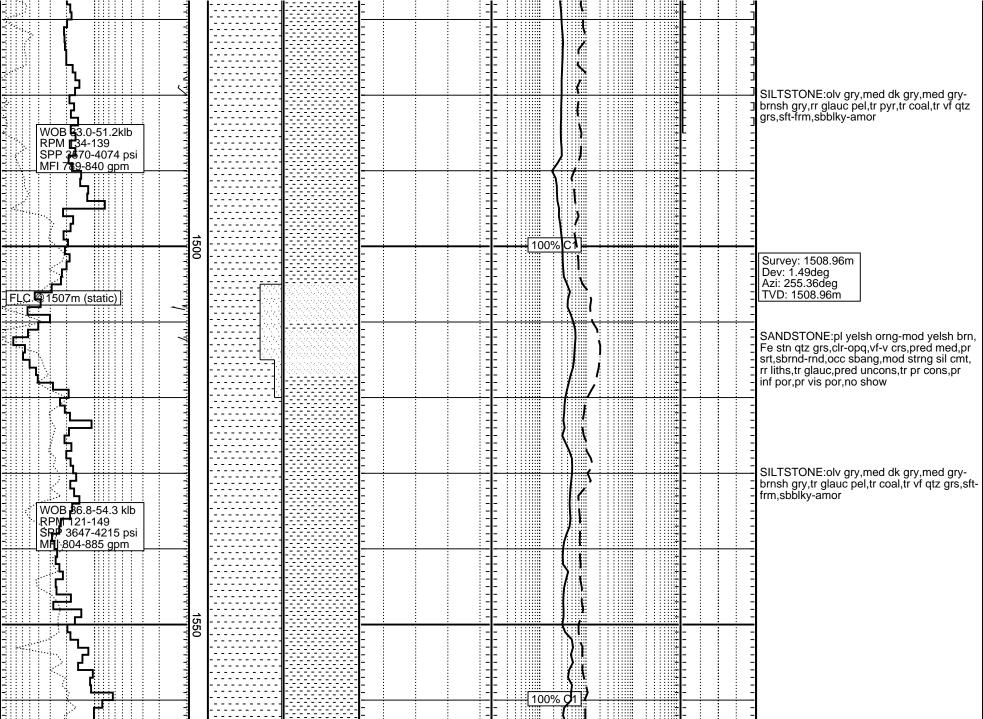


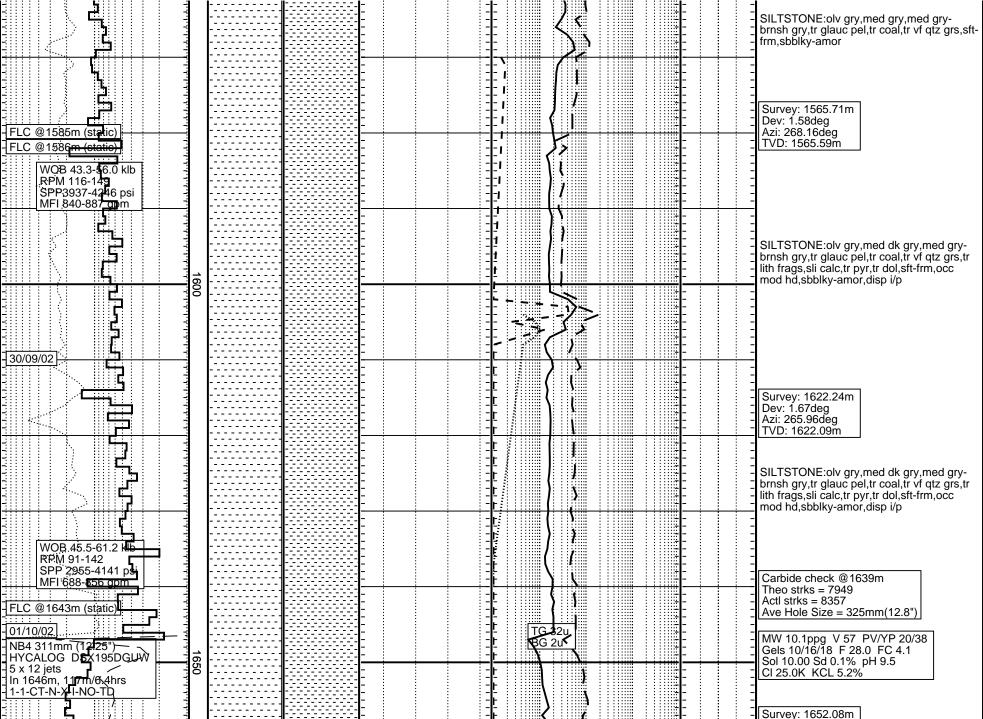


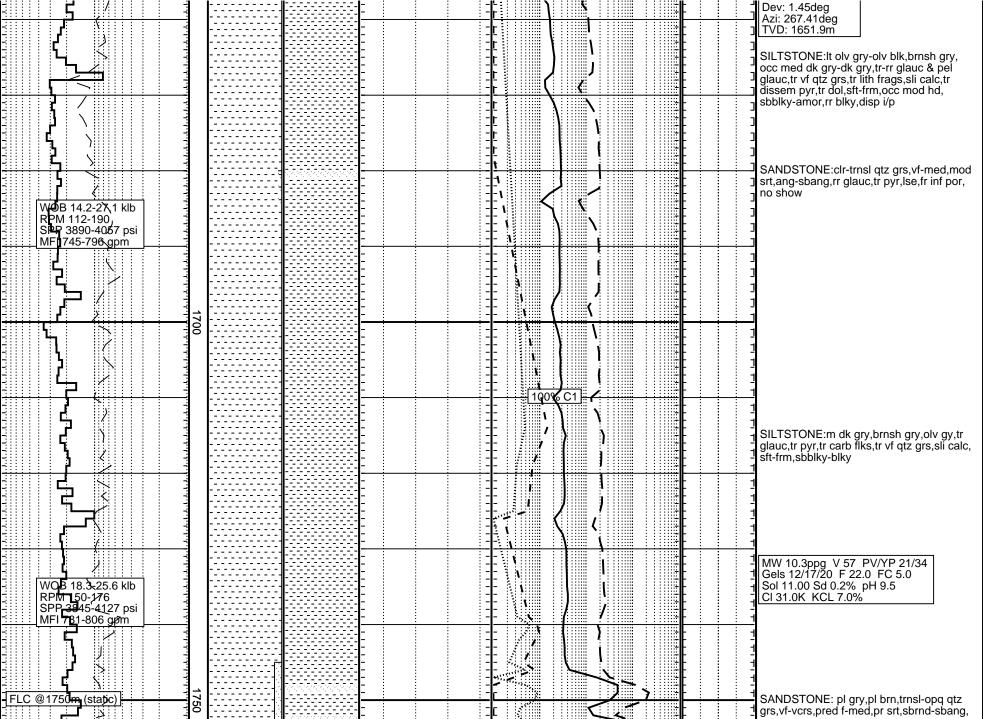


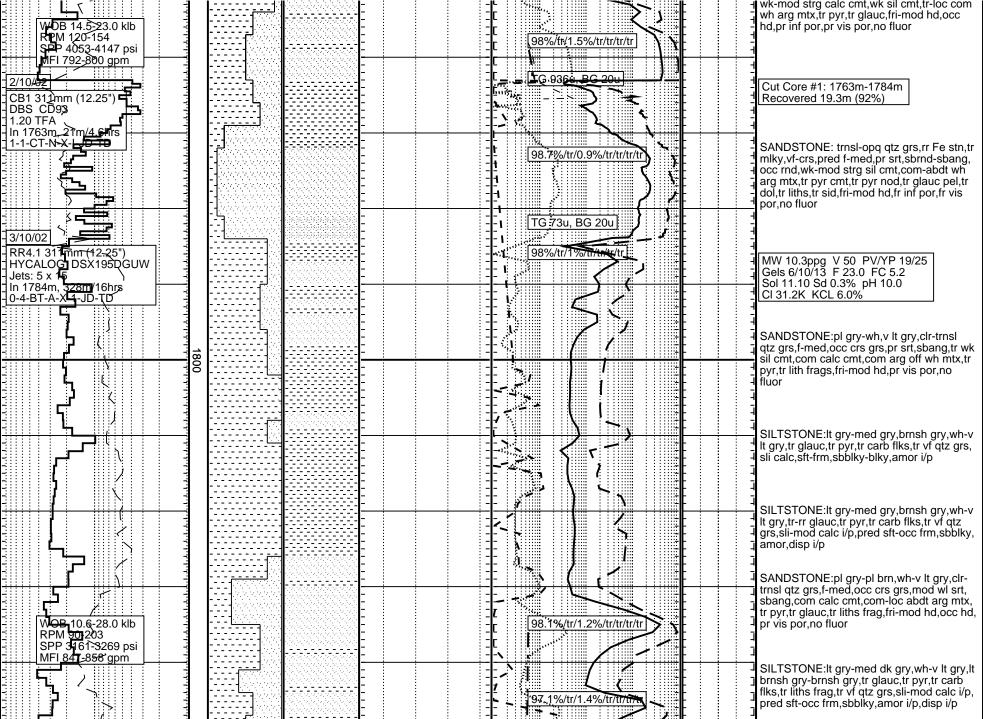


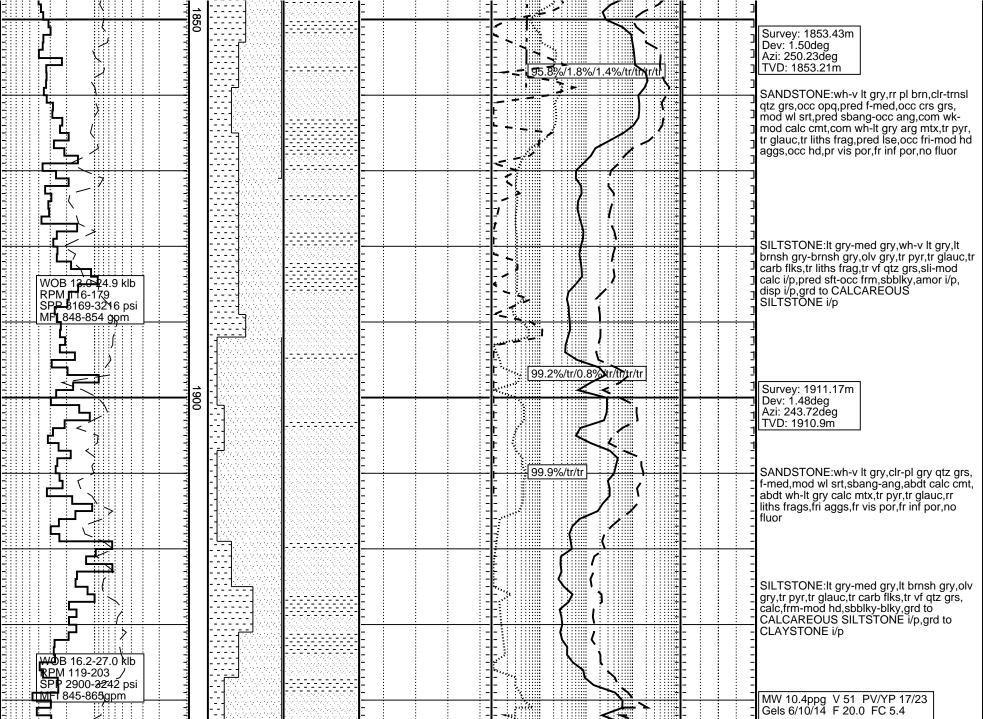


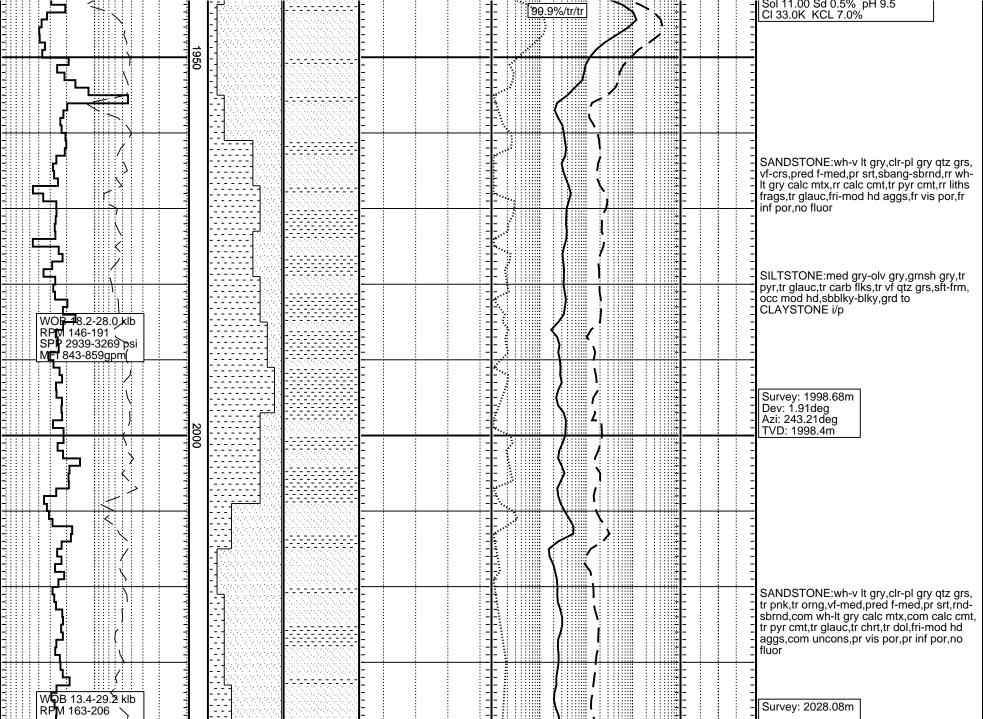


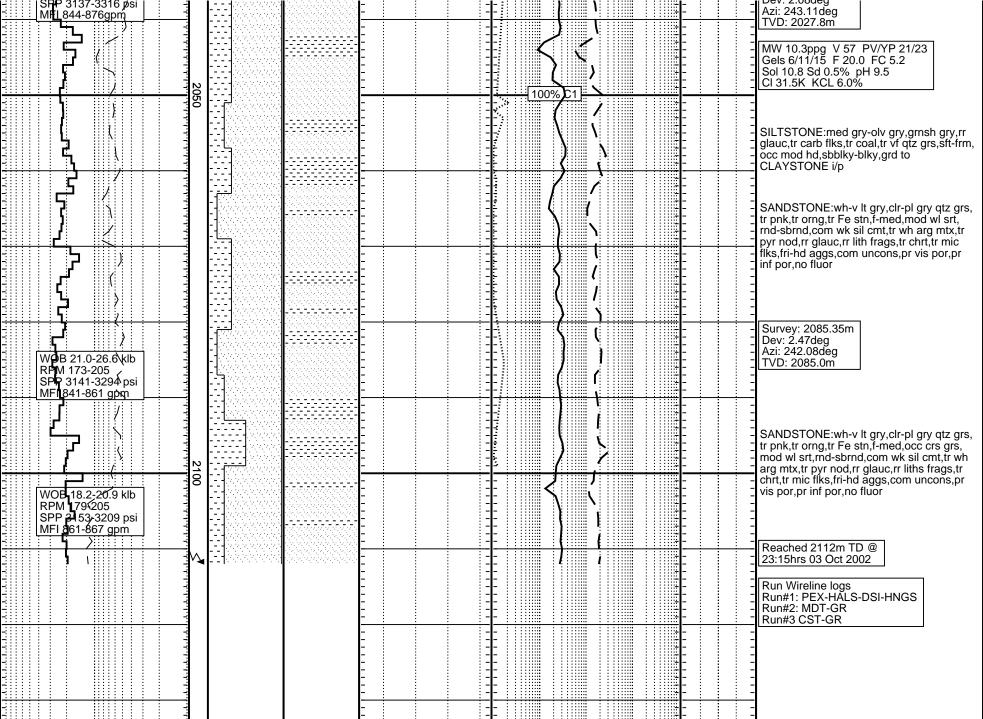






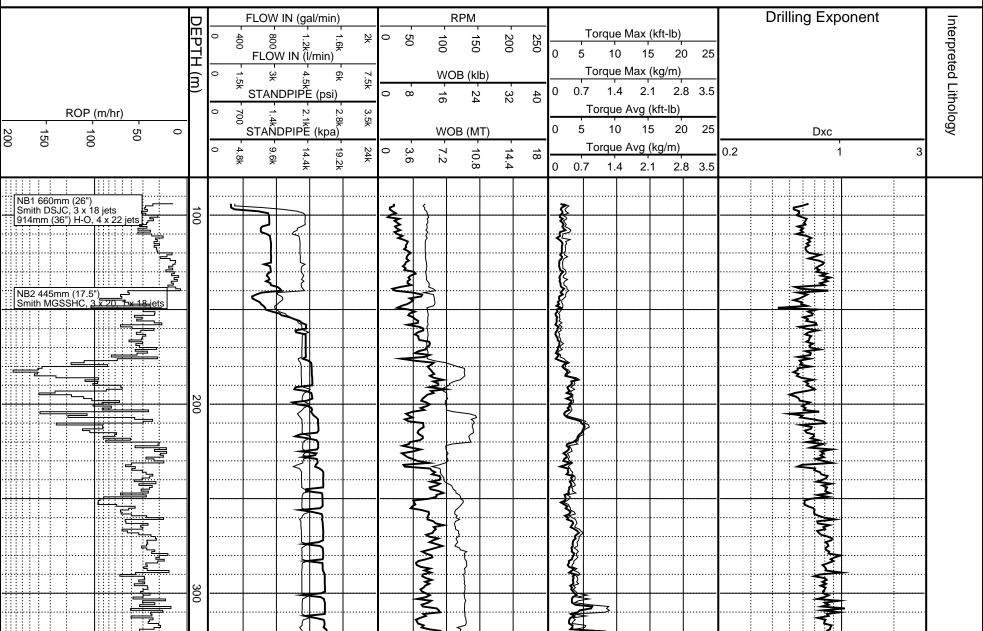


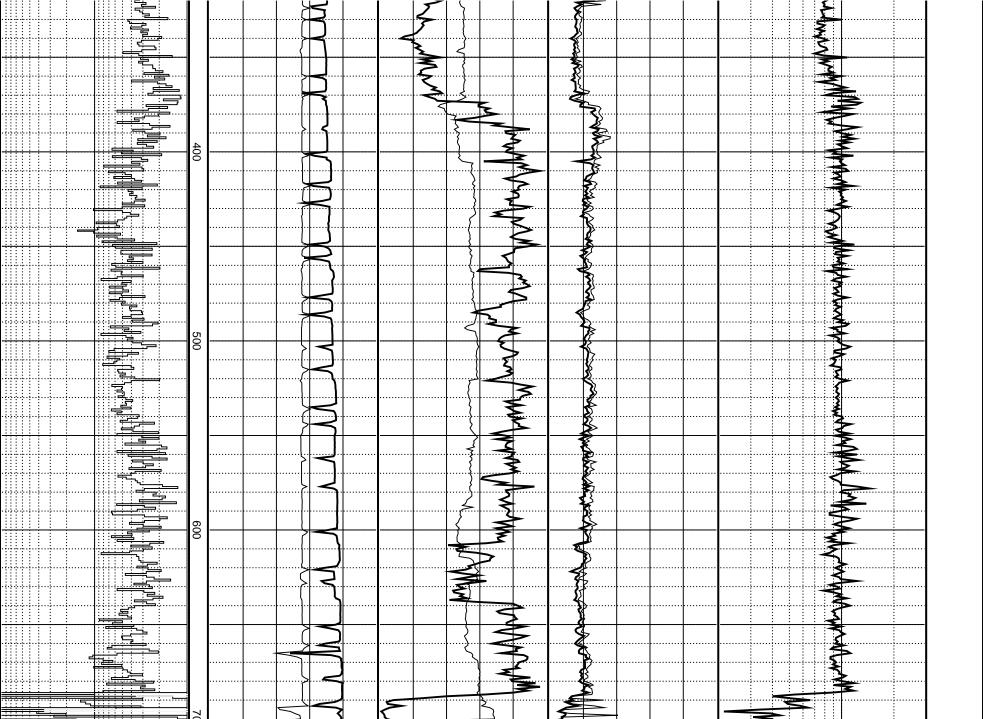


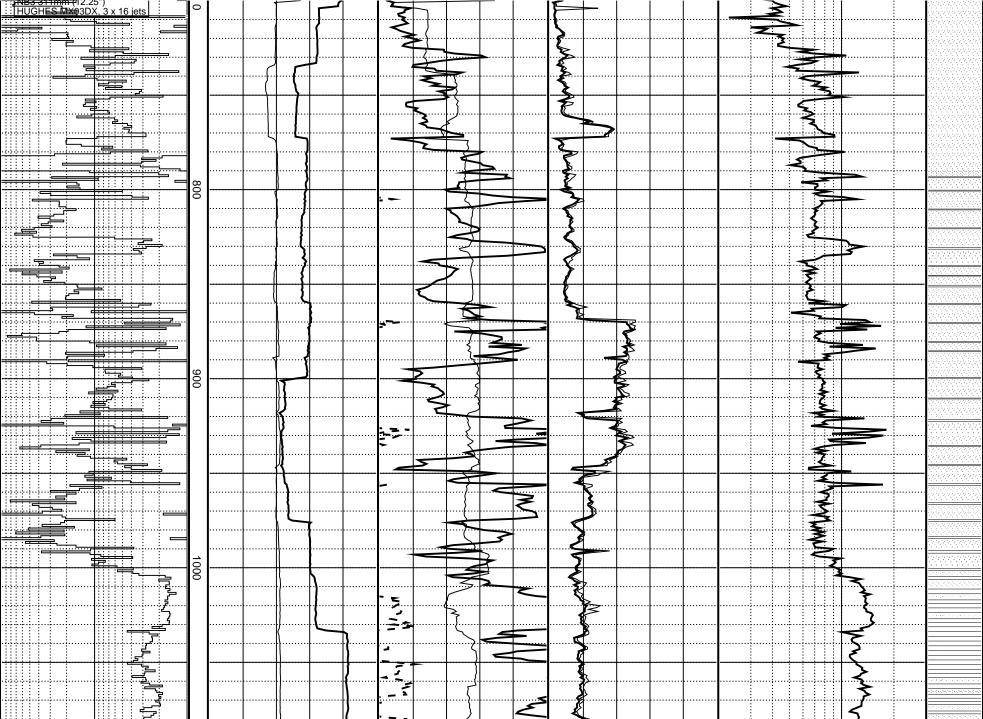


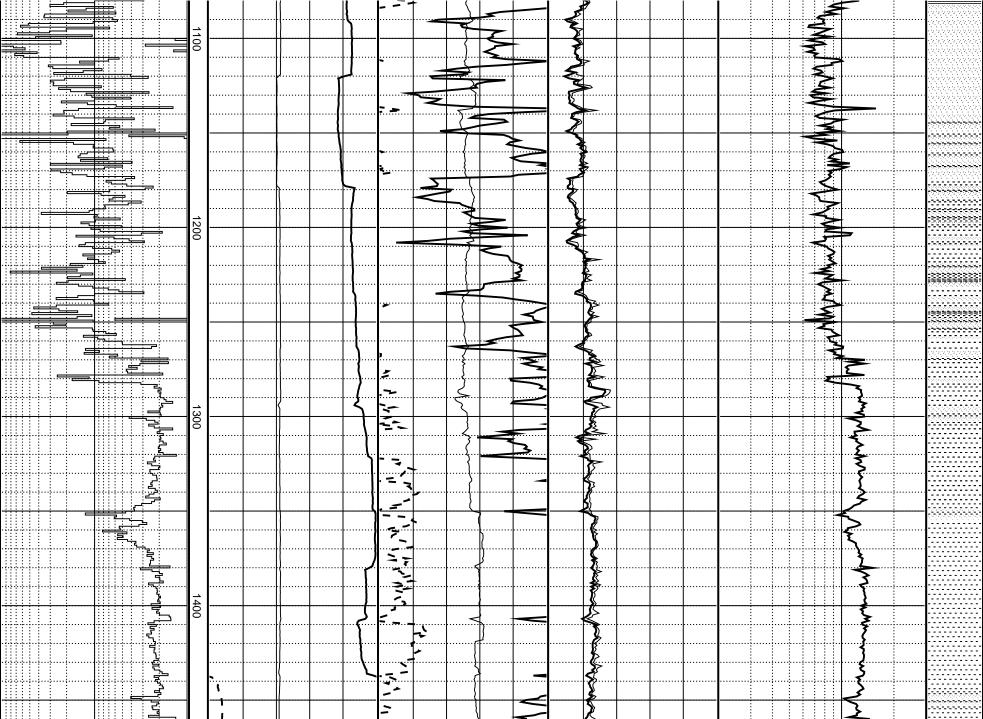
RATE OF PENETRATION GAMMA (API) WOB (MT) VOB (MT) VOB (klb) O 10 20 30 40 ROP (m/hr)	CUTTINGS LITHOLOGY	INTERPRETED LITHOLOGY	TOTAL GAS IN UNITS 1 10 100 1k	Calcite 0 50 100 Dolomite	REMARKS

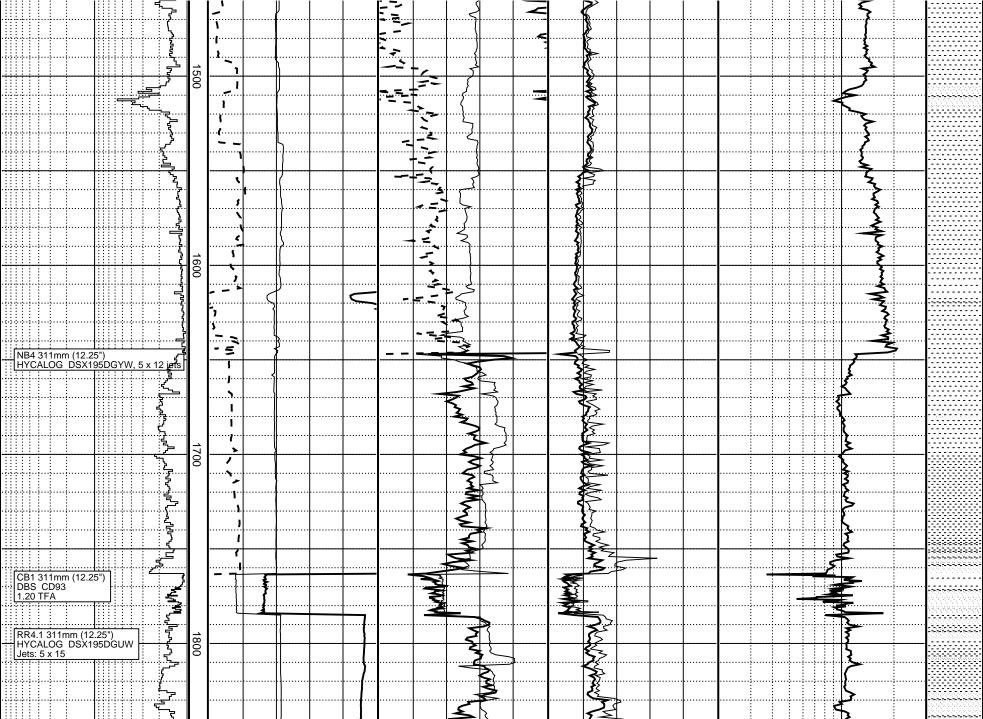
DRILLING DATA PLOT

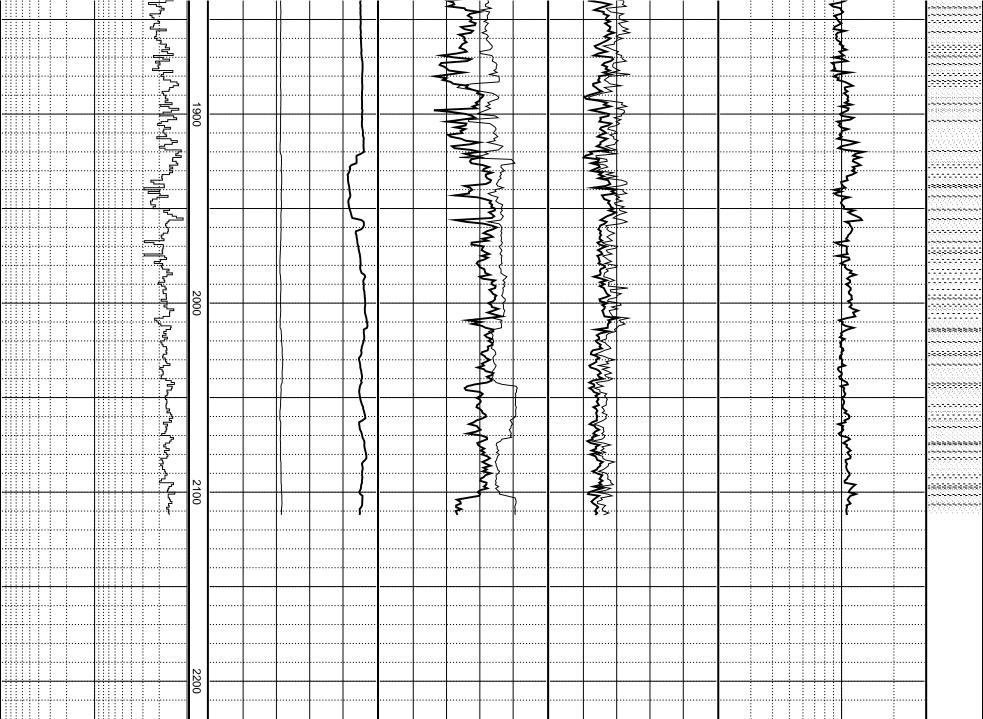

1:2000




Drilling Data Plot Casino-2

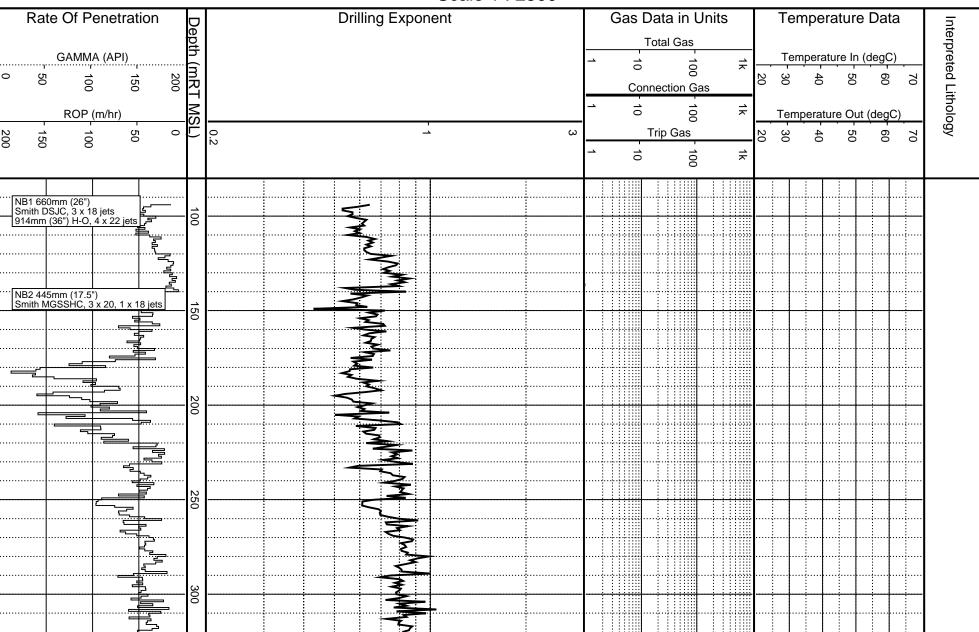

Santos

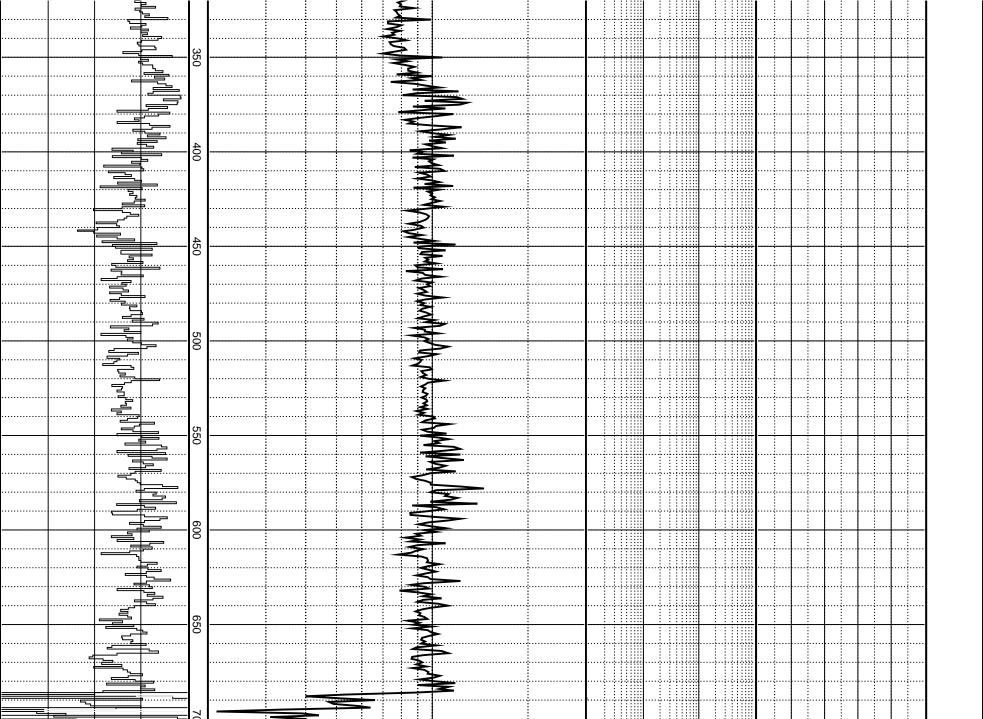

SCALE 1: 2000.0



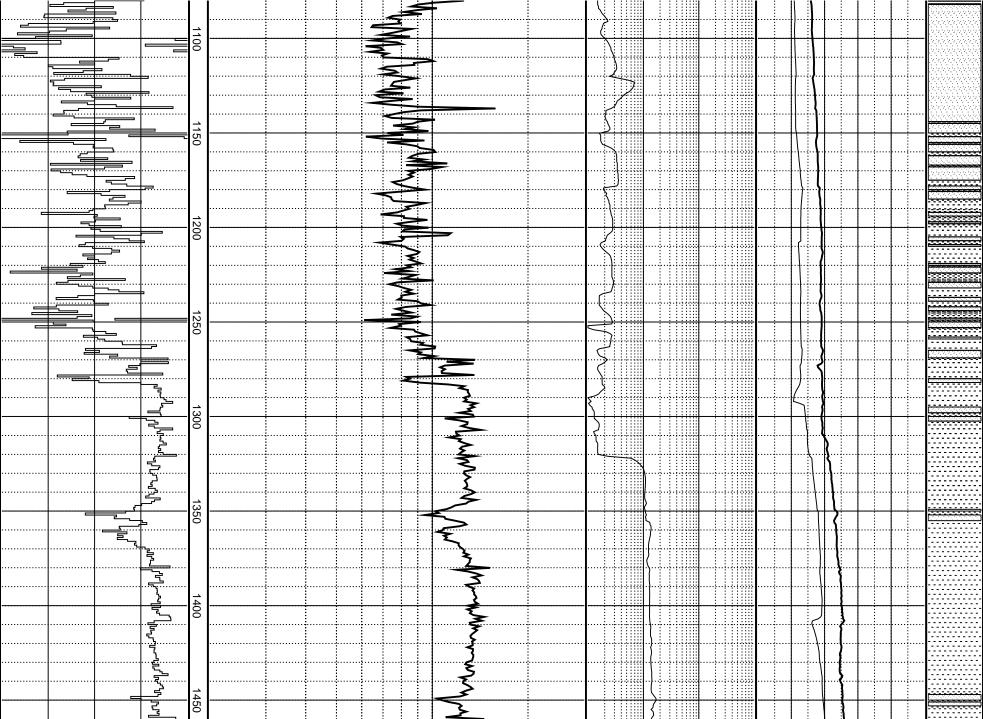
Interpreted Lithology	
3	
Drilling Exponent Dxc	
0.2	
3.5	
ax (kg/m) 2.1 2.8 vg (kft-lb) 15 20 vg (kg/m)	
10 orque N 1.4 orque A	
0 0.	
40 18	
- 200 - 32 - 14.4	
PM 150 (klb) 24 3 (MT) 10.8	
- 100 <u>W</u> - 16	
- 50 - 8 - 3.6	
0	
2k 7.5k in) si)	
OW IN (gal/n 1.2k (l/ 4.5k (p 1.2k (l/ 4.5k (p 1.2k (l/ 4.5k (p 1.2k (l/ 4.5k (p 1.2k (k 1.2k	
- 400 - 1.5k	
^э ТН (m)	
0	
nr) - 50	
ROP (m/hr	
- 150	
200	

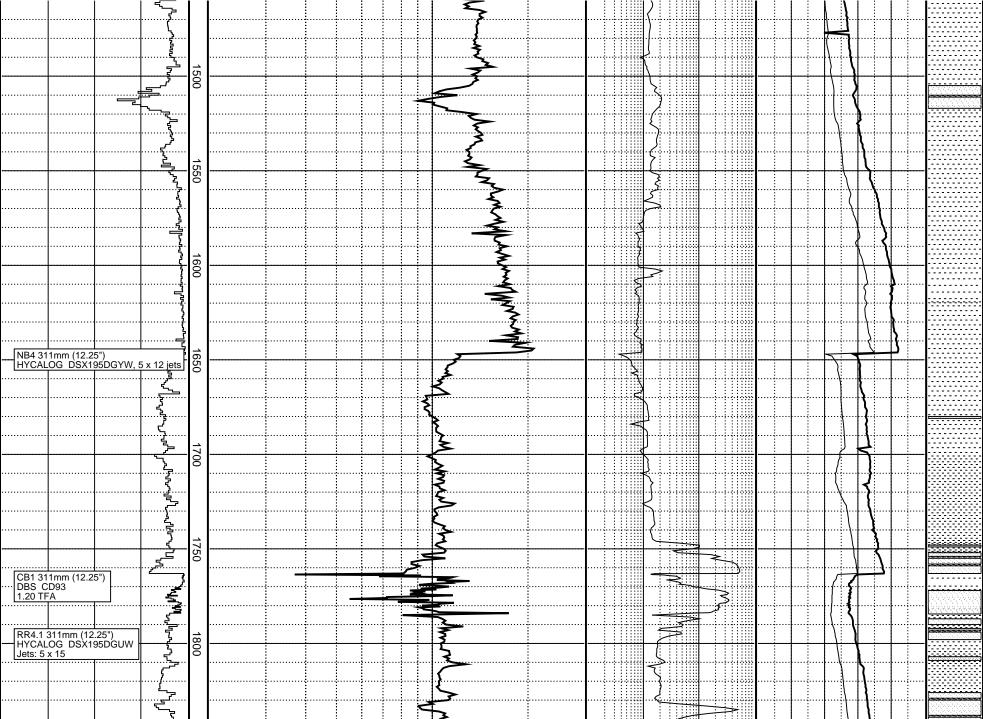
PRESSURE EVALUATION PLOT

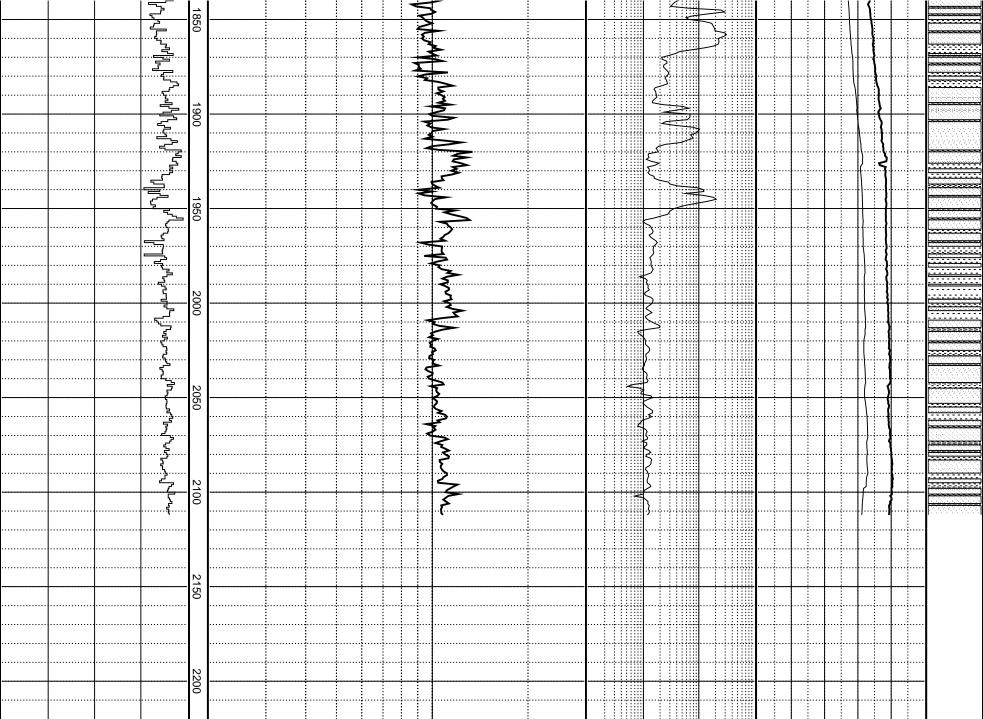

1:2000

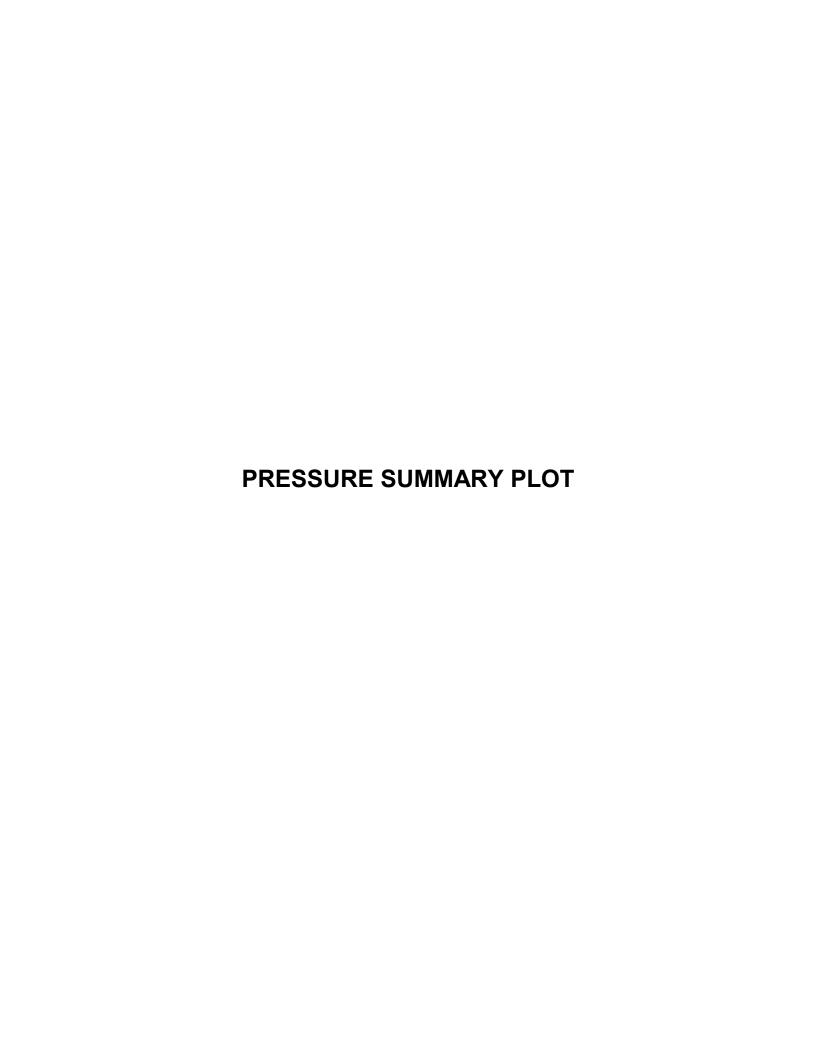


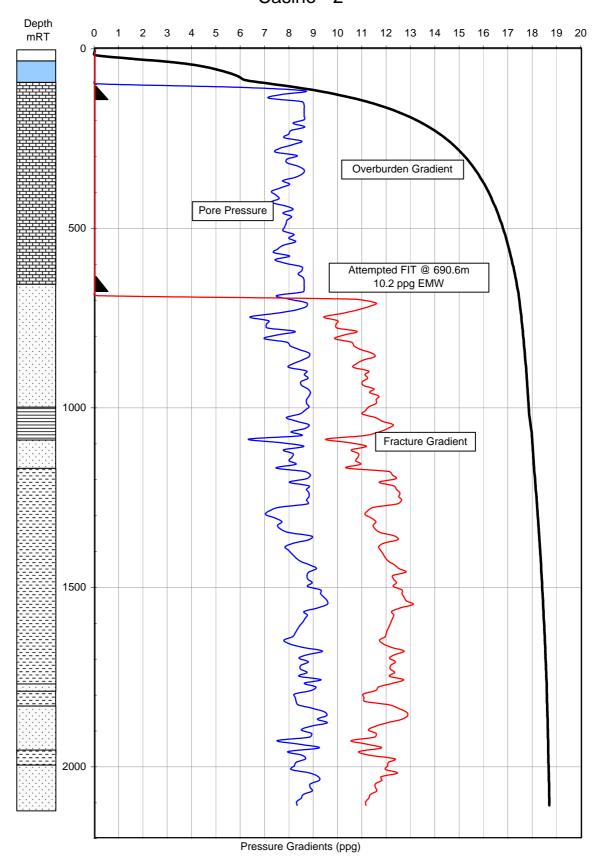
Pressure Data Plot Casino-2


Santos


Scale 1 : 2500




HUGHE	mm (12.25") S MX03DX, 3 x 16 jet	ts	0	<u></u>								
		_=							1	1	1	
				2								
				 				1.0.100				
			7:						17			
			750	4								
				7								
		Γ						1.0.100	15			
				2				1.0.100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
			8									
-		-	800						17	11		
=				₹								
		=		4				1-0-100			1 1	
-							 	1-0-1-02	1	1	1 1	
	==		8	₹								
			850								1 1	
	_								1			
				2		}		1	1			
									1			
		•	9	₹								
			900	₹		1						
				<u>\$</u>								
====						- {) \			
		=	9	<u></u>		7				ζ		
			950	<u> </u>		1						
==				₹		(
						5						
	=	=		-₹		1						
T			10							1		
			1000	*~		}				T	Π	
		{		· · · · · · · · · · · · · · · · · · ·					\ \ \ \ \ \	1		
		5		3					∷ ∶∖			
	=	,				}			``	1		
	5		10	3		}						
			1050	>							T	
		<u></u>		***		\: :	 	1-0-100		1		
					<	5				11	1	

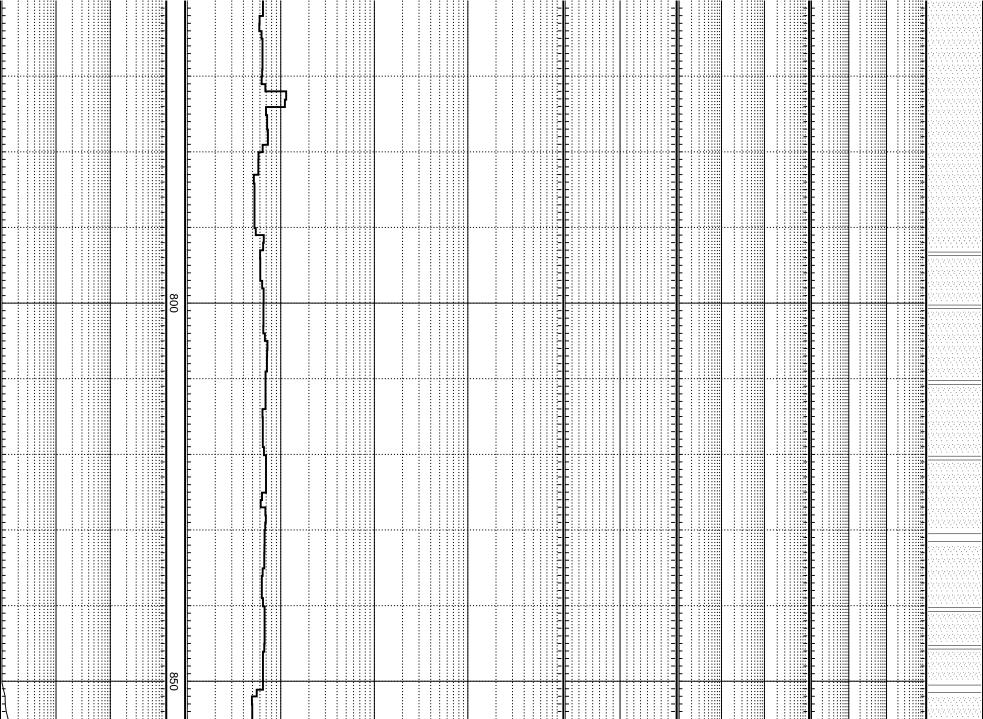


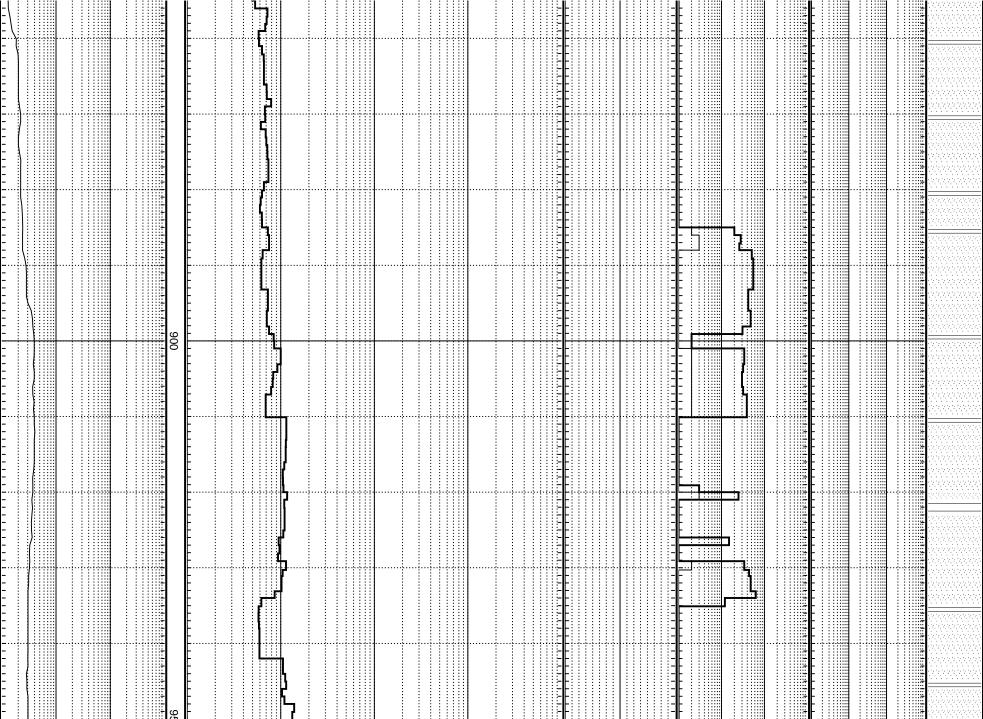
Rate Of Penetration			n	De	Drilling Exponent		Gas Data in Units		Tem	pera	ture l	Data		Into	
		SAMMA (A	API)		Depth (r		_	Total Gas	_		oeratui				Interpreted Lithology
0	50	100	150	200	(mRT		-	Connection Gas	20	30	40	50	60	70	id Lith
		ROP (m/h			<u>ISM</u>	o u	-	1 10 1 1	1-				degC)	_	ıolog
200	150	100	50	0		ο <u>-</u> ω	_	Trip Gas	20	30	40	50	60	70	<
					Н		+							4	

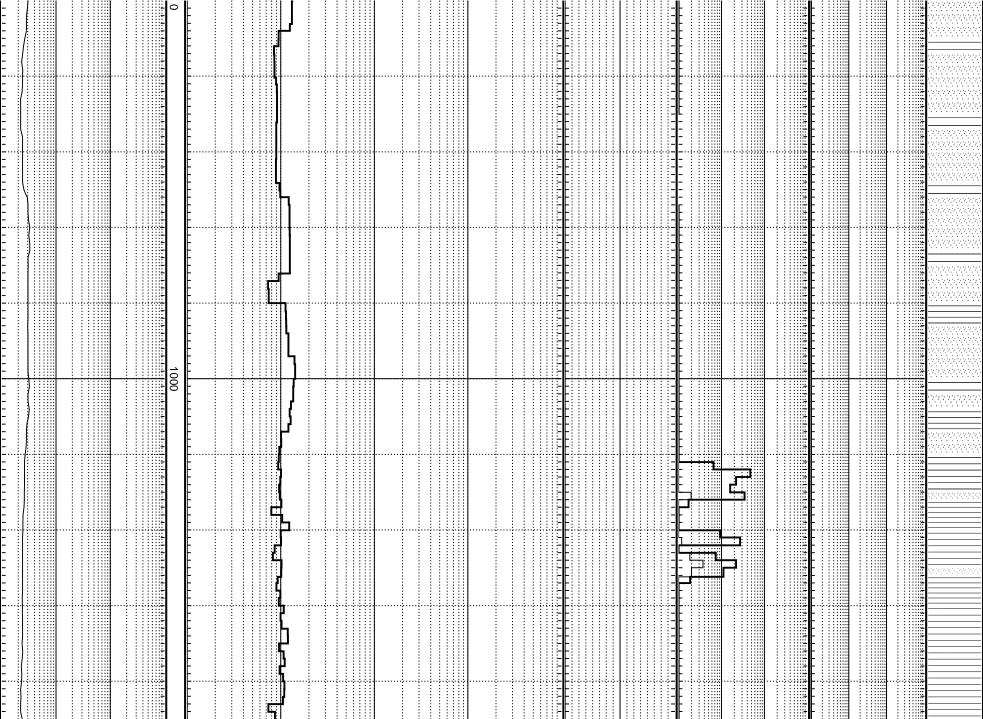
Pressure Summary Plot Casino - 2

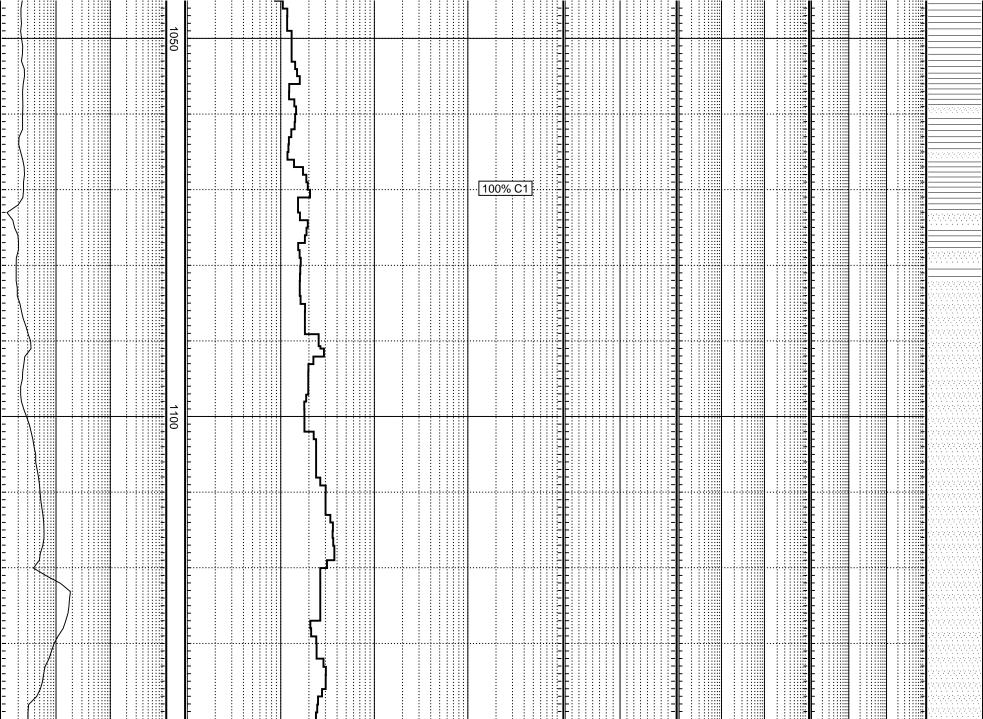
Santos Casino-2

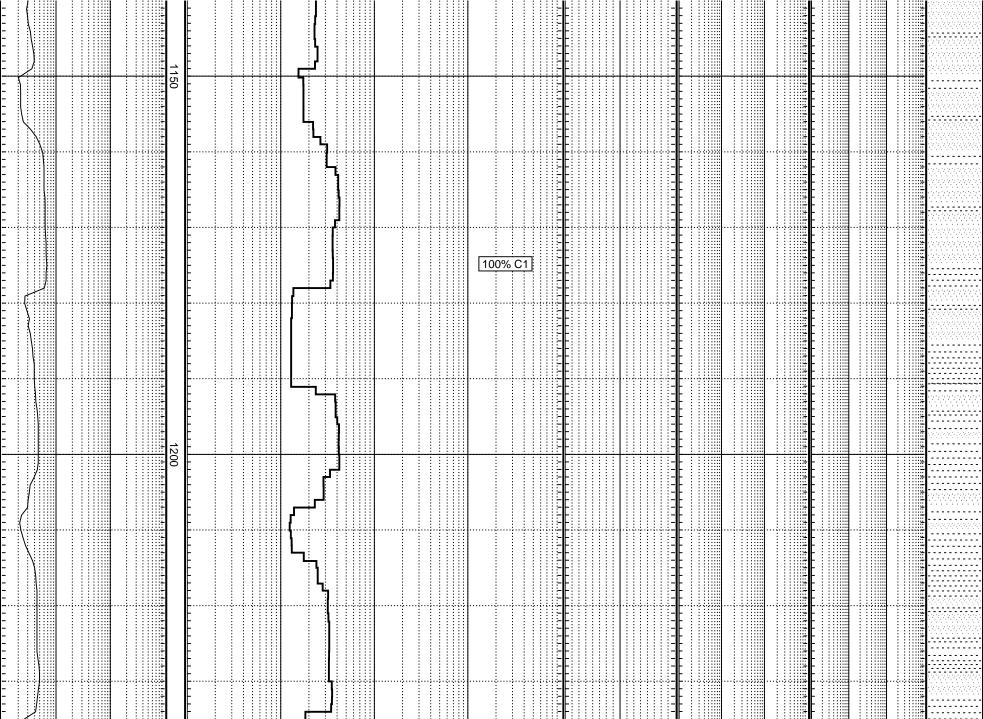
GAS RATIO PLOT

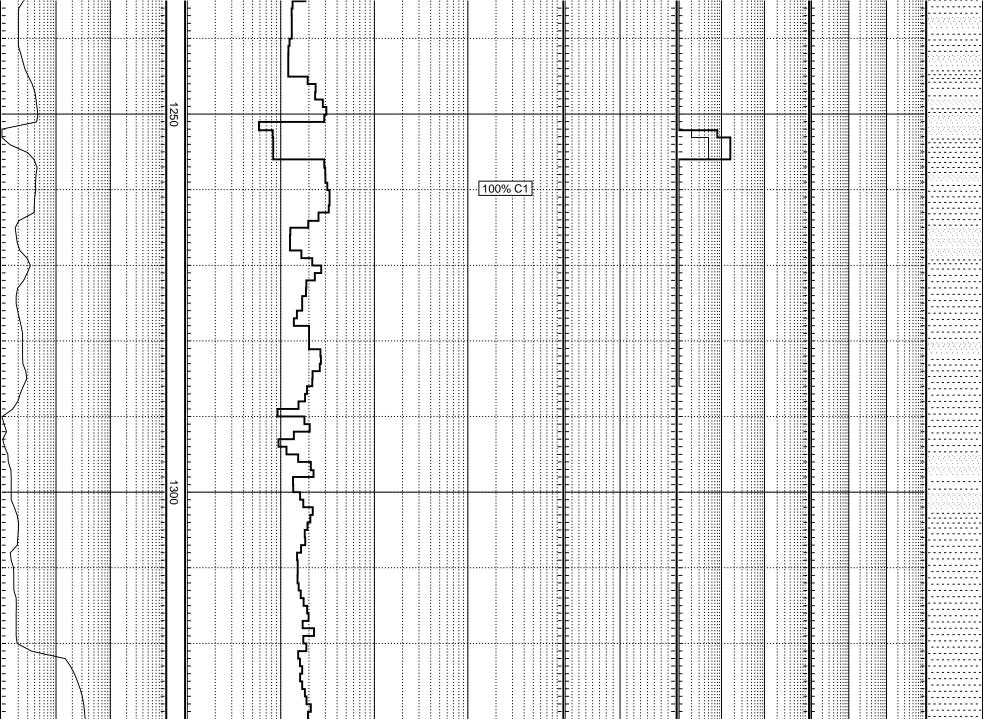

1:500

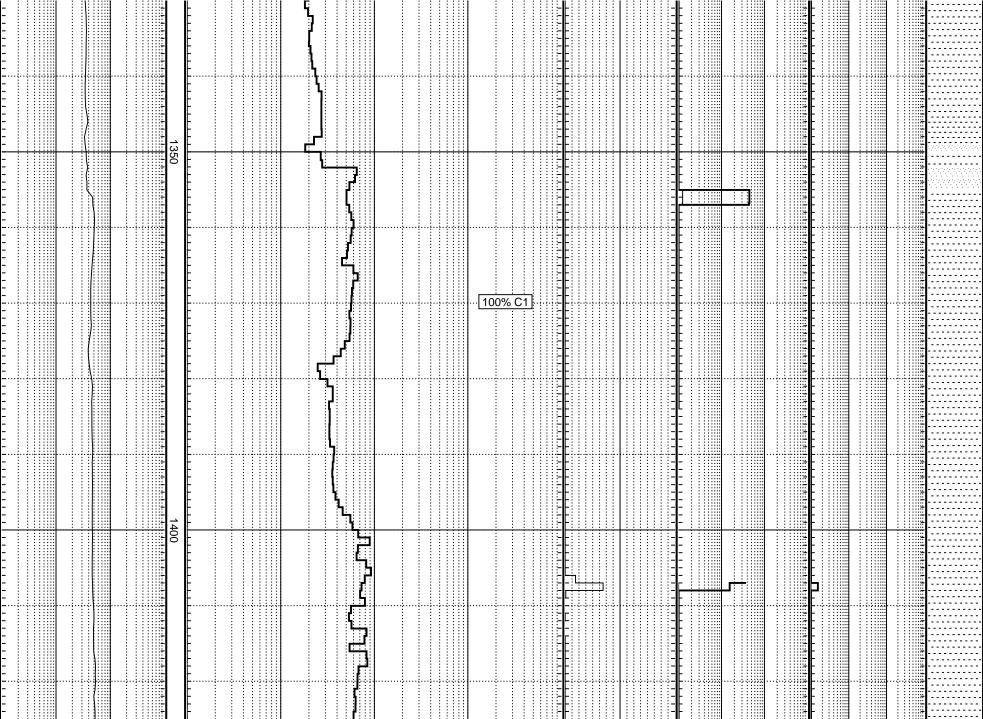


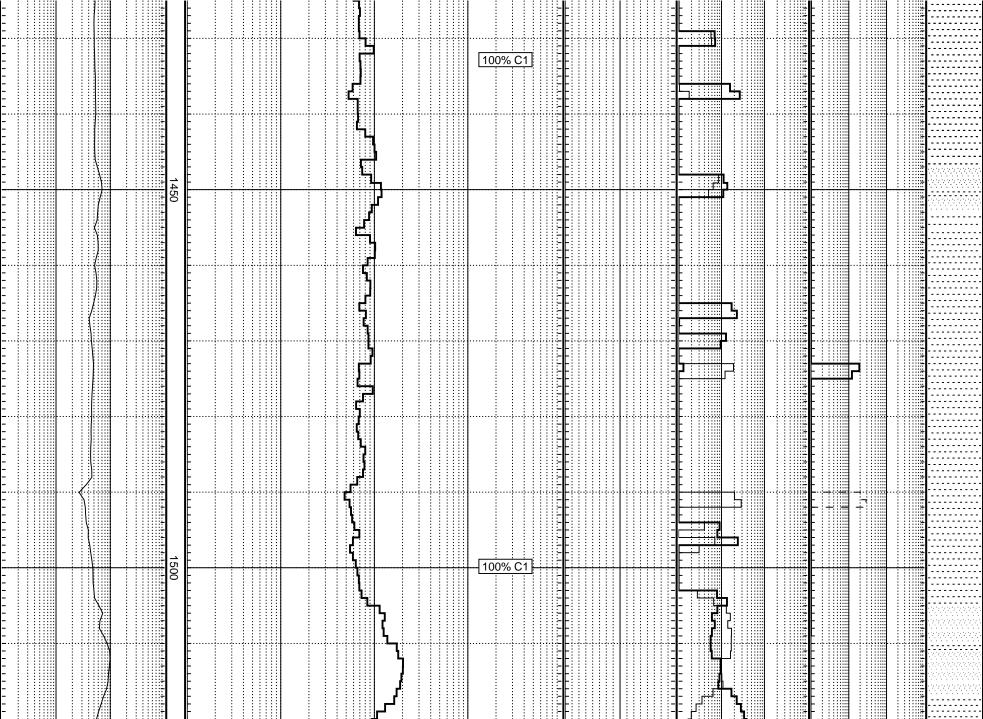

GAS RATIO ANALYSIS PLOT Casino-2


Santos

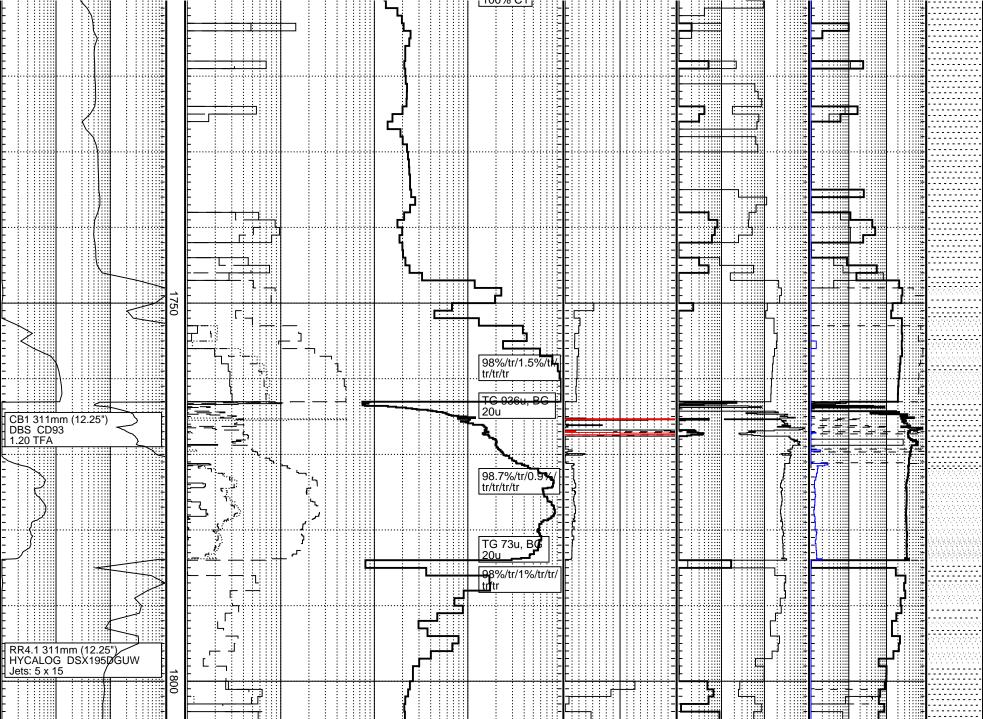

SCALE: 1:500 TOTAL GAS CHROMATOGRAPH ANALYSIS OCQ **RATIOS** C1/(C2+C3+C4) Pentane C5 (ppm) Butane nC4 (ppm) C1/C4 INTERPRETED LITHOLOGY Butane iC4 (ppm) Propane C3 (ppm) **GWR** C1/C3 Ethane C2 (ppm) C1/C2 Methane C1 (ppm) LHR Ditch Gas (unit) 10 矣 100 100 NB3 311mm (12.25") HUGHES MX03DX, 3 x 16 jets

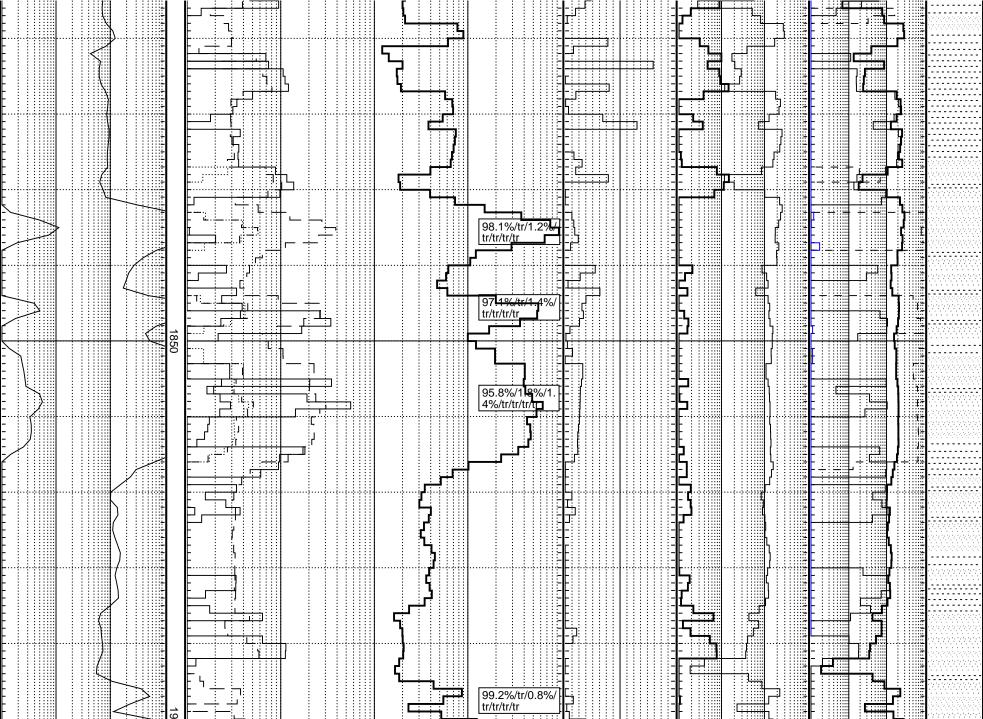


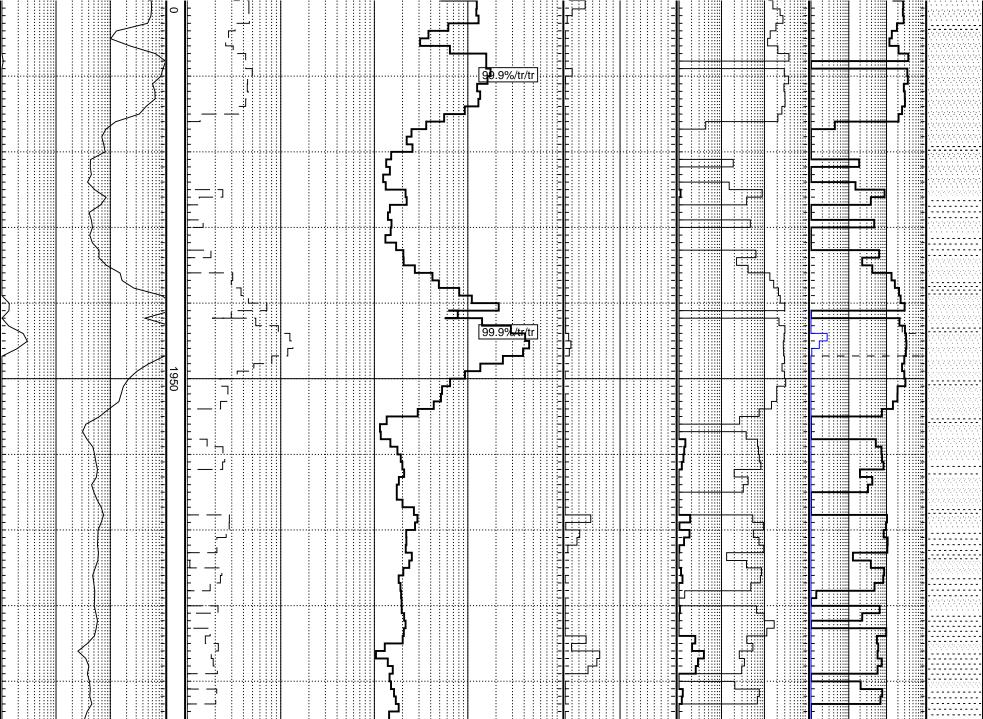


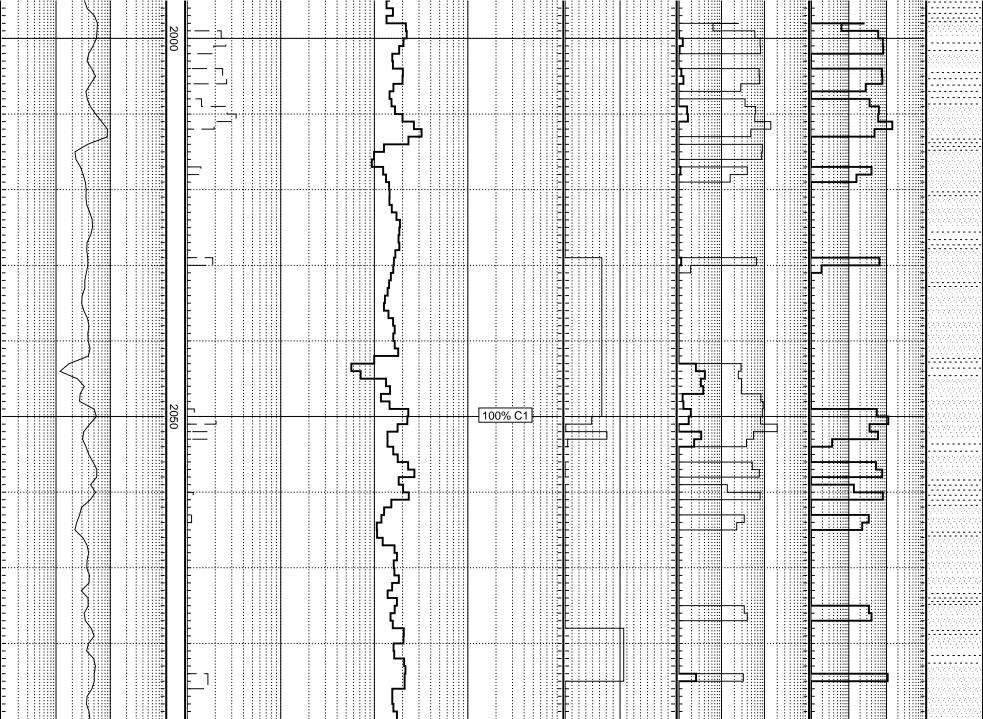














Ditch Gas (unit)	DEPTH (mRT MSL)	CHRC	MATOGRAPH AN Pentane C5 (ppm) Butane nC4 (ppm) Butane iC4 (ppm) Propane C3 (ppm) Ethane C2 (ppm) Methane C1 (ppm)	ALYSIS	100k	OCQ	GWR LHR 1 10 100	C1/(C2+C3+C4) C1/C4 C1/C3 C1/C2	
					<i>*</i>				

|--|

SECTION 13:- RIG POSITIONING REPORT

Prepared for Santos Offshore Pty Ltd

Report No: 3447A3

Thales GeoSolutions (Australasia) Limited

ABN 82 000 601 909

Hydrographic House

4 Ledgar Road

BALCATTA WA 6021

Tel: +61 (0) 8 9344 7166

Fax: +61 (0) 8 9344 7766

THALES

Thales GeoSolutions (Australasia) Limited ABN 82 000 601 909

Hydrographic House 4 Ledgar Road Balcatta WA 6021 Tel: + 61 (0) 8 9344 7166 Fax: + 61 (0) 8 9344 8783

Santos Santos SANTOS OFFSHORE PTY LTD

DOCUMENT TITLE : CASINO-2 POSITIONING REPORT OF THE

OCEAN BOUNTY

CLIENT : SANTOS OFFSHORE PTY LTD

LOCATION : OTWAY BASIN, BASS STRAIT

PERMIT : VIC-P-44

REPORT REF. : 3447A3

REPORT REV NO. : 0

REPORT ISSUE DATE: 7 OCTOBER 2002

SURVEY DATE : 22 – 25 AUGUST 2002

CONTENTS

Loca	tion Diagram	Page No.
Abst	ract	
1.	RESULTS 1.1 Final Differential GPS Position of the Ocean Bounty Drillstem at the	5
	1.1 Final Differential GPS Position of the Ocean Bounty Drillstem at the Casino-2 Location1.2 Ocean Bounty Anchor Positions	5 7
2.	SAFETY	8
3.	SUMMARY 3.1 Requirements 3.2 Summary of Events	9 9 10
4.	EQUIPMENT ANALYSIS 4.1 Equipment Performance	12 12
5.	EQUIPMENT CHECKS AND CALIBRATIONS 5.1 Differential GPS Check Fix 5.2 Gyrocompass Calibration	13 13 14
6.	GEODETIC PARAMETERS 6.1 Datums 6.2 Projection 6.3 Datum Transformation	15 15 15 15
7.	EQUIPMENT DESCRIPTIONS 7.1 GNS2 7.2 Global Positioning System (GPS) 7.3 SkyFix/SkyFix Spot Differential GPS (DGPS) 7.4 Trimble Series 4000 GPS Receiver 7.5 MultiFix 3 7.6 Tracs TDMA 7.7 S.G. Brown 1000S Gyrocompass	16 16 17 19 21 22 25 26
8.	PERSONNEL AND EQUIPMENT 8.1 Personnel 8.2 Equipment	27 27 28
9.	DISTRIBUTION	29

Document No.: a-report/3440-459/3447A3.doc **Revision:** \varnothing

APPENDICES

- A FINAL DIFFERENTIAL GPS DRILLSTEM POSITION AT CASINO-2
- B GNS2 STATIC DIFFERENTIAL GPS FIX GRAPHS
- C RUN LINE GRAPHICS OF ANCHOR HANDLING VESSELS
- D OCEAN BOUNTY ANCHOR PATTERN DETAILS AT CASINO-2
- E OCEAN BOUNTY ANCHOR CATENARY CALCULATIONS
- F GYROCOMPASS CALIBRATION REPORT
- G OCEAN BOUNTY OFFSET DIAGRAM
- H PACIFIC SENTINEL AND PACIFIC CONQUEROR OFFSET DIAGRAMS
- I GNS2 CONFIGURATION FILE PRINTOUT
- J DAILY REPORT SHEETS

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

LOCATION DIAGRAM

ABSTRACT

This report details the positioning services provided by Thales GeoSolutions (Australasia) Limited (Thales), prior to and during the positioning of the semi-submersible drilling rig Ocean Bounty at the Casino-2 location for Santos Offshore Pty Ltd (Santos).

Positioning of the Ocean Bounty during the approach to and at the Casino-2 location was provided by Thales' SkyFix/SkyFix Spot Differential GPS (Differential GPS) interfaced to Thales' Multifix 3 multiple reference station positioning software and Thales' GNS2 navigation software. The two anchor handling vessels (AHVs), Pacific Sentinel and Pacific Conqueror were positioned using Thales' Tracs/Tug Display Vessel Tracking System (VTS). The Ocean Bounty was positioned at the Casino-2 location at 1500 on 24 September 2002.

Intended Casino-2 Location

The co-ordinates of the intended Casino-2 location were provided by Santos as follows:

Datum: GDA94

Latitude : 38° 47' 43.980" South Longitude : 142° 44' 50.720" East

Projection: MGA Zone 54, CM 141° East

Easting : 651 751.95m Northing : 5 704 460.93m

Rig Positioning Tolerance: ± 25m

Intended Rig Heading : 240.0° (T)

Final Differential GPS Drillstem Position at the Casino-2 Location

The final Differential GPS Position of the Ocean Bounty drillstem at the Casino-2 location was computed from data observed between 1400 and 1500 on 24 September 2002. The final position is as follows:

Datum: GDA94

Latitude : 38° 47' 43.887" South Longitude : 142° 44' 50.746" East

Projection: MGA Zone 54, CM 141° East

Easting : 651 752.63m Northing : 5 704 463.79m

The final Differential GPS drillstem position is 2.94m on a bearing of 12.3° (T) from the intended Casino-2 location.

Final Rig Heading : 242.0° (T)

All times quoted in this report are Eastern Standard Time (UTC + 10.0 hours).

Document No.: a-report/3440-459/3447A3.doc

Revision: \emptyset

Survey Date: 22 – 25 August 2002

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 5 of 29

Client: SANTOS OFFSHORE PTY LTD

1. RESULTS

1.1 FINAL DIFFERENTIAL GPS POSITION OF THE OCEAN BOUNTY DRILLSTEM AT THE CASINO-2 LOCATION

The Ocean Bounty was positioned at the Casino-2 location at 1500 on 24 September 2002.

The final Differential GPS position of the Ocean Bounty drillstem at the Casino-2 location, was determined using Thales' MultiFix 3 positioning software interfaced to a Trimble 4000 DS GPS receiver, with differential corrections being provided by Thales' SkyFix Spot Differential GPS services.

The final fix routine, within Thales' GNS2 navigation software version 2.35, was used to compute the final Differential GPS position of the drillstem at the Casino-2 location. A total of 720 position fixes were recorded at 5 second intervals between 1400 and 1500 on 24 September 2002.

Refer to Appendix A for the GNS2 final Differential GPS position printouts at the Casino-2 location. Associated graphs are located in Appendix B.

Differential corrections from the SkyFix Spot reference stations in Melbourne, Sydney and Adelaide were used in the MultiFix 3 software computations to derive the final Differential GPS position.

The final surface co-ordinates for the Casino-2 Ocean Bounty drillstem location, determined from Differential GPS observations are as follows:

Total number of samples used = 720.

The computed antenna position is as follows:

GPS Antenna Position

Datum: WGS84

Latitude : 38° 47' 44.394" South (S.D. 0.35m) Longitude : 142° 44' 49.500" East (S.D. 0.42m) Ellipsoidal Height : 32.30m (S.D. 0.72m)

Transforming the above WGS84 co-ordinates to GDA94 co-ordinates using the parameters in section 6, gives the following antenna co-ordinates:

GPS Antenna Position

Datum: GDA94

Latitude : 38° 47' 44.394" South Longitude : 142° 44' 49.500" East Ellipsoidal Height : 32.30m

By applying a distance of 33.90m on a bearing of 62.5° (T) from the antenna position, the following drillstem co-ordinates are calculated:

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

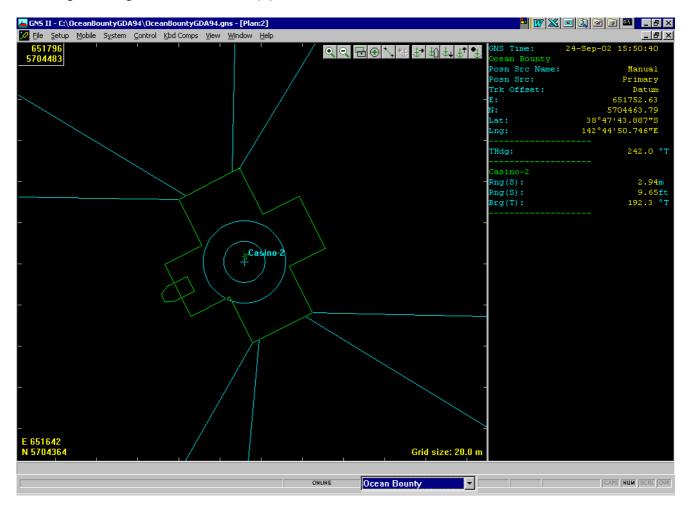
Survey Date: 22 – 25 August 2002

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 6 of 29

Client: SANTOS OFFSHORE PTY LTD

Final Differential GPS Position of the Drillstem at the Casino-2 Location

Datum: GDA94


Latitude : 38° 47' 43.887" South Longitude : 142° 44' 50.746" East

Projection: MGA Zone 54, CM 141° East

Easting : 651 752.63m Northing : 5 704 463.79m

This final Differential GPS position of the drillstem is 2.94m on a bearing of 12.3° (T) from the intended Casino-2 location.

Final Rig Heading : 242.0° (T)

Skyfix Spot Differential GPS Position and Intended Position at the Casino-2 Location

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Page No.: 7 of 29 SANTOS OFFSHORE PTY LTD Client:

1.2 OCEAN BOUNTY ANCHOR POSITIONS

Deployed anchor positions were derived from the computed anchor function within the GNS2 software. The function takes into account the length of anchor chain out, water depth, anchor tension and the wet weight of anchor chain to compute the deployed anchor positions. The final anchor positions are tabulated below:

Datum: GDA94 **Projection: MGA Zone 54, CM 141° East**

	Intended Anchor Position		Final Anchor Position		
Anchor	Easting (m)	Northing (m)	Easting (m)	Northing (m)	
Anchor 1	651 736.75	5 703 208.80	651 665.20	5 703 401.40	
Anchor 2	651 130.54	5 703 380.78	651 140.60	5 703 331.20	
Anchor 3	650 507.00	5 704 510.46	650 464.90	5 704 511.00	
Anchor 4	650 684.20	5 705 115.11	650 654.00	5 705 134.80	
Anchor 5	651 767.14	5 705 713.06	651 769.50	5 705 698.30	
Anchor 6	652 373.36	5 705 541.09	652 391.40	5 705 566.50	
Anchor 7	652 996.00	5 704 411.00	652 930.20	5 704 410.00	
Anchor 8	652 819.70	5 703 806.74	652 864.90	5 703 773.20	

Difference of final anchor positions from the intended anchor positions.

Anchor	Dropped by	Eastings (m)	Northings (m)
Anchor 1	P. Conqueror	+71.55	-192.60
Anchor 2	P. Conqueror	-10.06	+49.58
Anchor 3	P. Conqueror	+42.10	-0.54
Anchor 4	P. Conqueror	+30.20	-19.69
Anchor 5	P. Conqueror	-2.36	+14.76
Anchor 6	Ocean Bounty	-18.04	-25.41
Anchor 7	P. Conqueror	+65.80	+1.00
Anchor 8	P. Sentinel	-45.20	+33.54

Horizontal distance and bearing from the Ocean Bounty fairleads to the final anchor positions.

Anchor	Bearing (T)	Horizontal Distance (ft)
Anchor 1	184.2°	3366
Anchor 2	208.3°	4107
Anchor 3	269.8°	4119
Anchor 4	299.9°	4093
Anchor 5	0.0°	3918
Anchor 6	30.1°	4066
Anchor 7	90.2°	3758
Anchor 8	120.3°	4164

Ocean Bounty anchor details are located in Appendices C, D and E of this report.

Document No.: a-report/3440-459/3447A3.doc

Revision: \emptyset

Page No.: 8 of 29 Client: SANTOS OFFSHORE PTY LTD

2. SAFETY

A pre-rig move meeting was held at Thales' Perth offices on 17 September 2002. Thales personnel M. Karklin and R. Bright were present. During the meeting safety procedures were discussed including correct operation and handling of equipment. It was also confirmed that personnel had been issued with the appropriate safety equipment.

On arrival at the Ocean Bounty R. Bright attended a rig induction incorporating:

- Rig Safety
- Emergency Response
- General Management
- Rig Tour

All Thales personnel attended DOGC's daily pre-tour meetings.

Should an incident occur, Thales' procedures require the incident to be recorded on the appropriate forms and Thales' QA & Safety Manager to be notified immediately. The QA & Safety Manager will initiate a full and thorough investigation with corrective action being introduced to prevent further incidents.

There were no incidents involving Thales personnel during this project. Thales personnel carried out their duties at all times in accordance with Company and Statutory Regulations and Guidelines.

When demobilising the Ocean Bounty, all equipment was packed securely in the designated area where it would not cause obstructions. All heavy or fragile boxes were clearly labelled to avoid accidents during handling.

A project debrief was also held at Thales' Perth offices on 26 September 2002. During the meeting the safety procedures that had been undertaken were discussed and reviewed. It was noted that all personnel had taken due care and as a result there had been no incidents.

Document No.: a-report/3440-459/3447A3.doc

Revision: Ø

Survey Date: 22 - 25 August 2002

Project: Casino-2 Positioning Report of the Ocean Bounty

Page No.: 9 of 29

Client: SANTOS OFFSHORE PTY LTD

3. SUMMARY

3.1 REQUIREMENTS

Thales GeoSolutions (Australasia) Limited were contracted by Santos Offshore Pty Ltd to provide personnel and positioning equipment consisting of Thales' SkyFix/SkyFix Spot Differential GPS for the rig move of the Ocean Bounty to the Casino-2 location.

The project requirements were as follows:

- (a) Provide real-time positioning of the semi-submersible drilling rig Ocean Bounty and the anchor handling vessels Pacific Sentinel and Pacific Conqueror during the anchor recovery at the Casino-1 location.
- (b) Provide real-time positioning of the semi-submersible drilling rig Ocean Bounty and the anchor handling vessels Pacific Sentinel and Pacific Conqueror, during transit to the Casino-2 location.
- (c) Differential GPS Positioning of the Ocean Bounty at the Casino-2 location.
- (d) Real-time positioning (including GNS2 fixing/logging/streaming) of the Ocean Bounty, Pacific Sentinel and Pacific Conqueror during anchor deployment operations at the Casino-2 location.
- (e) Determine the final Differential GPS position of the Ocean Bounty drillstem at the Casino-2 location using a Multiple Reference Station Differential GPS solution.
- (f) The provision of a comprehensive positioning report containing the final Differential GPS position of the Ocean Bounty drillstem and anchors at the Casino-2 location.

The positioning requirements were as follows:

(a) Intended Casino-2 location:

Datum: GDA94

Latitude : 38° 47' 43.980" South Longitude : 142° 44' 50.720" East

Projection: MGA Zone 54, CM 141° East

Easting : 651 751.95m Northing : 5 704 460.93m

(b) Positioning tolerance : ± 25m

(c) Intended rig heading : 240.0° (T)

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Client: SANTOS OFFSHORE PTY LTD

3.2 SUMMARY OF EVENTS

All times quoted are in Eastern Standard Time (UTC + 10.0 hours).

22 September 2002

- 1515 Thales personnel depart Perth for Melbourne.
- 1840 Arrive Melbourne.
- 1950 Check in at Holiday Inn Hotel.

23 September 2002

- 0630 Thales personnel arrive at Bristow Heli Base.
- 0830 Depart Bristow Heli Base for Ocean Bounty.
- 0925 Arrive on board Ocean Bounty.
- 0940 Commenced Induction.
- 1050 Completed Induction.
- 1200 Commenced tow to new location, Casino-2.
- 1400 All equipment mobilised and operational. Checking System settings.
- 1515 Checked offsets. Agreed with previous measurements.
- 1650 Rig 1nm from ANC 6 drop location.
- 1721 ANC # 6 deployed by rig. E 652 385 N 5 705 556 (AGD 84 MGA Zone 54 CM 141°).
- 1800 ANC # 2 PCC passed to Conqueror.
- 1831 ANC # 2 on bottom, Conqueror.
- 2020 Conqueror recovered ANC # 2 to re-deploy.
- 2040 ANC # 2 on bottom. E 651 132 N 5 703 316 (AGD 84 MGA Zone 54 CM 141°).
- 2105 ANC # 2 PCC returned to rig.
- 2115 ANC # 7 PCC passed to Conqueror.
- 2147 ANC # 7 on bottom. E 652 974 N 5 704 409 (AGD 84 MGA Zone 54 CM 141°).
- 2215 ANC # 7 PCC returned to rig.
- 2228 ANC # 3 PCC passed to Conqueror.
- 2251 ANC # 3 on bottom. E 650 466 N 5 704 511 (AGD 84 MGA Zone 54 CM 141°).
- 2322 ANC # 3 PCC returned to rig.
- 2340 ANC # 5 PCC passed to Conqueror.
- 2350 Tow Bridle returned to rig by Sentinel.
- 2351 ANC # 5 on bottom. E 651 770 N 5705723 (AGD 84 MGA Zone 54 CM 141°).

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

THALES

Page No.: 10 of 29

Page No.: 11 of 29 Client: SANTOS OFFSHORE PTY LTD

24 September 2002

- 0035 ANC # 4 PCC passed to Conqueror.
- 0054 ANC # 4 on bottom. E 650 637 N 5 705 145 (AGD 84 MGA Zone 54 CM 141°).
- 0130 ANC # 4 PCC returned to rig.
- 0140 ANC # 1 PCC passed to Conqueror.
- 0215 ANC # 1 on bottom. E 651 655 N 5 703 290 (AGD 84 MGA Zone 54 CM 141°).
- 0240 ANC # 1 PCC returned to rig.
- 0259 Lowered ANC # 8 to seabed for J-Hook operations as PCC is faulty. Will use J-Hook to recover chain of ANC #8 for deployment. Recorded location: E 651 767 N 5 704 445 (AGD 84 MGA Zone 54 CM141°).
- 0630 Performed Gyro Calibration by means of sun obs. Result: +1.2°. Entered new c-o into
- 0715 Informed by Ron King (Company Rep) that all nav kit must be de-mobilised once positioning is complete.
- 0805 Sentinel, commenced running ANC # 8.
- 0812 ANC # 8 on bottom. E 652 857 N 5 703 778 (AGD 84 MGA Zone 54 CM 141°).
- 0905 Completed cross-tensioning.
- 0932 Spud operations commenced. J. Antao transfers to AHV's for demob of nav kit.
- 1400 Commenced Final Fix at Casino-2 location.
- 1500 Completed Final Fix. Result: Final Datum Position is 2.94m on a bearing of 12.3° True from intended location. Final Datum Position: E 651 752.63 N 5 704 463.79. Final Heading of 242.0° True (AGD 84 MGA Zone 54 CM 141°).
- 1515 Final Fix approved by Survey Rep.
- 1530 J. Antao returns to rig.
- 1815 Commenced demob of equipment on board rig.
- 2115 Completed demob. All equipment secure in container ready for transfer to AHV Conqueror.

25 September 2002

- 0830 Thales Personnel depart rig for transit to Essendon Airport.
- 1150 Depart Melbourne Airport for transit to Perth.
- 1550 Arrive Perth.

Document No.: a-report/3440-459/3447A3.doc

Revision: Ø

Survey Date: 22 - 25 August 2002

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 12 of 29

Client: SANTOS OFFSHORE PTY LTD

4. EQUIPMENT ANALYSIS

4.1 EQUIPMENT PERFORMANCE

During the positioning of the semi-submersible drilling rig Ocean Bounty from the Casino-1 location to the Casino-2 location, no significant problems were encountered with Thales' equipment or software.

One problem that did arise, was on the anchor handling vessel's (AHV) graphic displays, when deploying anchors at Casino-2 location a line showing run out of intended chain did not appear on the AHV's screens. The range and bearing to intended anchor position did appear, therefore giving the helmsman an indication of where the intended anchor drop location was.

This line from the fairlead to intended anchor position did appear on the main navigation system on board the Ocean Bounty. When necessary, verbal instructions were given to the AHV's via radio.

Due to Thales personnel arriving on board the rig shortly before tow commenced to Casino-2 and the rig move being a short distance, it was agreed by the client survey representative and offshore installation manager that transferring to AHV's wouldn't be necessary.

It should be noted that these issues caused no delays to the Casino-2 rig move.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

Project: Casino-2 Positioning Report of the Ocean Bounty Client: SANTOS OFFSHORE PTY LTD Page No.: 13 of 29

5. EQUIPMENT CHECKS AND CALIBRATIONS

5.1 DIFFERENTIAL GPS CHECK FIX

Due to the Ocean Bounty having departed Casino-1 location once the equipment was operational, a Differential GPS check fix was not possible.

The Thales surveyor and Santos' survey representative reviewed all geodetic parameters and antenna offsets, at which time Thales' equipment was accepted as operating correctly.

Document No.: a-report/3440-459/3447A3.doc

Revision: \emptyset

Client: SANTOS OFFSHORE PTY LTD

5.2 GYROCOMPASS CALIBRATION

The S.G. Brown 1000S gyrocompass installed onboard the Ocean Bounty was calibrated on 24 September 2002 using a marine sextant. A series of measurements of the horizontal angle between the centreline of the rig and the sun was observed while accurately recording local time at the instant of each observation. The gyrocompass heading was simultaneously recorded within GNS2 data files.

Thales' Solar Observation software was used to determine the azimuth of the sun for each observation. The observed horizontal angle was applied to the sun's azimuth to determine the true heading of the rig. Each Computed (C) true heading was then compared with the Observed (O) gyrocompass heading to determine the Computed minus Observed (C-O) value for the gyrocompass. The C-O value in GNS2 was set to zero prior to conducting the gyrocompass calibration.

Observation Date: 24 September 2002

Average Local Time (HMS)	Average Horizontal Angle	Azimuth Sun (DMS)	Azimuth RO (DMS)	Calculated (C) True Heading	Observed (O) True Heading	C-O (D.D)
, ,	(DMS)	, ,	, ,	(D.D)	(D.D)	` ,
06:28:00	030° 02' 12"	089° 08' 50"	059° 06' 38"	59.11°	57.70°	1.41°
06:29:30	030° 01' 12"	088° 54' 45"	058° 53' 33"	58.89°	57.70°	1.19°
06:30:30	029° 18' 48"	088° 45' 21"	059° 26' 33"	59.44°	58.20°	1.24°
06:31:00	029° 55' 00"	088° 40' 39"	058° 45' 39"	58.76°	58.20°	0.56°
06:31:30	029° 28' 48"	088° 35' 57"	059° 07' 09"	59.12°	57.70°	1.42°
06:32:00	029° 29' 24"	088° 31' 15"	059° 01' 51"	59.03°	57.70°	1.33°
06:32:30	029° 01' 36"	088° 26' 33"	059° 24' 57"	59.42°	58.00°	1.42°
06:33:00	029° 33' 48"	088° 21' 51"	058° 48' 03"	58.80°	57.30°	1.50°
06:33:30	029° 23' 12"	088° 17' 09"	058° 53' 57"	58.90°	57.50°	1.40°
06:34:00	029° 25' 12"	088° 12' 27"	058° 47' 15"	58.79°	58.00°	0.79°
06:34:30	029° 16' 36"	088° 07' 45"	058° 51' 09"	58.85°	58.00°	0.85°
06:35:00	028° 45' 00"	088° 03' 03"	059° 18' 03"	59.30°	58.00°	1.30°

Mean C-O = $+1.20^{\circ}$

The mean C-O of +1.20° was input into the GNS2 navigation software and used during the final fix routine at the Casino-2 location.

See Appendix F for the gyrocompass calibration results.

Note: All true headings displayed are reciprocal values of actual true heading.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

THALES

Page No.: 14 of 29

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 15 of 29

Client: SANTOS OFFSHORE PTY LTD

6. GEODETIC PARAMETERS

Co-ordinates listed in this report are referenced to the Geocentric Datum of Australia 1994 (GDA94). The Global Positioning System (GPS) is referenced to the World Geodetic System 1984 (WGS84).

6.1 DATUMS

Datum : Geocentric Datum of Australia 1994 (GDA94)
Spheroid : Geodetic Reference System 1980 (GRS80)

 Semi-major Axis (a)
 :
 6 378 137.000m

 Semi-minor Axis (b)
 :
 6 356 752.314m

 Eccentricity Squared (e²)
 :
 0.006 694 380

Eccentricity Squared (e^2) : 0.006 694 380 Flattening ($^{1}/_{f}$) : 298.257 222 101

Datum : ITRF92 (Epoch 1994.0) WGS84 G730 (WGS84)

Spheroid : World Geodetic System 1984 (WGS84)

Semi-major Axis (a) : 6 378 137.000m Semi-minor Axis (b) : 6 356 752.314m Eccentricity Squared (e^2) : 0.006 694 380 Flattening (1 /_f) : 298.257 223 563

The GRS80 and WGS84 ellipsoids have a very small difference in the inverse flattening. On a UTM projection this difference is at the centimetre level. WGS84 and GDA94 can be considered the same for most practical applications.

6.2 PROJECTION

Projection Name : Map Grid of Australia (MGA)

Projection Type : Universal Transverse Mercator (UTM)

MGA Zone : 54
Central Meridian (CM) : 141° East
Scale factor on the CM : 0.9996
False Easting : 500 000m
False Northing : 10 000 000m
Latitude of Origin : 0° (Equator)

Unit of Measure : International Metre

6.3 DATUM TRANSFORMATIONS

The following 7-parameter datum transformation was used by the GNS2 software to convert WGS84 co-ordinates to GDA94 co-ordinates:

Dx 0m Dy = 0m Dz 0m Rx = 0" = 0" Ry 0" Rz =

Scale = 0.0 p.p.m.

The sign convention in Thales' GNS2 survey software used is that used by the US Department of Defense where a positive rotation about the Z axis is an anti-clockwise movement of the X and Y axes (when viewed from the North Pole looking towards the center of the Earth).

Document No.: a-report/3440-459/3447A3.doc

Revision: \emptyset

Client: SANTOS OFFSHORE PTY LTD

7. EQUIPMENT DESCRIPTIONS

7.1 GNS2

GNS2 (General Navigation System) is Thales' third generation of On-line Navigation Survey Control software. It has been written by Thales' Software Support Group in C++ for operation under Windows® 95 or Windows® 98 or Windows® NT. GNS2 adheres to the operation and dialogue conventions of the Microsoft Windows® environment. Attention has been paid to preserving a consistent operator interface, while at the same time modifying individual dialogue boxes to reflect specific logical circumstances. It has been designed for operation with a pointing device such as a mouse or a tracker ball but control can still be effected in case of the absence or failure of such a device.

The program has the ability to accommodate a large number and variety of mobiles, including surface vessels/ships, anchor handling vessels, tugs, barges, ROVs, towfish, aircraft, vehicles and submersibles etc. The only limiting factors on the number of mobiles that can be tracked in GNS2 are the number of input/output serial communication ports available on the computer and the computer's memory.

For the input/output (I/O) of navigation and sensor data, GNS2 employs intelligent multi-channel serial communications boards to expand a computer's serial input/output facility. Currently GNS2 can support up to 26 communication (Comm) ports, which would consist of the computer's two internal Comm ports and three 8 channel serial communications boards fitted in the computer's internal expansion slots.

If Least Squares Computations (LSCs) are employed for positional calculations, whether two-dimensional (2D), three-dimensional (3D) or altitude aided, GNS2 uses standard iteration routines for the minimisation of residuals using 'variation of co-ordinate' algorithms. The number of positioning systems/computations that GNS2 can handle, is only limited by the number of I/O serial communication ports available on the computer and the computer's memory.

All input observables are accepted on interrupt. Screen updates and other internal triggers are paced to once per second but time critical activities occur at discrete moments as required.

The GNS2 application workspace can extend beyond the display area, which is normally restricted to a single monitor connected to the computer. By using one or more multiple VGA cards, an enlarged display area can spread across multiple monitors.

Currently GNS2 can display 14 different types of view windows. Several copies of the same type of view window can be invoked at any one time. This may be required when several mobiles are being tracked and a Plan, Helmsman's or Bullseye display are required for each one or when the data on several Comm ports are to be viewed simultaneously. Each window can be individually sized to optimise use of the available display area.

GNS2 can be operated in 2 modes; GNS2 Master or GNS2 Remote. GNS2 Master has the full functionality of GNS2. GNS2 Remote is run on a separate computer and allows independent configuration of the graphics display and its associated numeric information. GNS2 Remote is operated on Anchor Handling Vessels or anywhere where positional information is required. (eg. Vessel Masters, ROV Pilots, Winch Control Stations). The link between GNS2 Master and GNS2 Remote can be via a telemetry link or hard wired cable.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

THALES

Page No.: 16 of 29

Client: SANTOS OFFSHORE PTY LTD

7.2 GLOBAL POSITIONING SYSTEM (GPS)

System Description

The NAVSTAR GPS (Navigational Satellite Timing and Ranging Global Positioning System) is a USA Military all-weather, space-based positioning system that transmits signals from a constellation of satellites orbiting the Earth. It is capable of providing suitably equipped users worldwide with accurate three-dimensional positions on, or near, the Earth's surface. The accuracy of these determined positions can vary from a few millimetres to several 10's of metres depending on the GPS receiver and on the method of data acquisition and processing. System design consists of three integrated parts: the Ground Control Segment, the Space Segment and the User Segment.

The operational space segment consists of 24 production satellites and 3 active spares; the term Space Vehicle (SV) is used as a synonym for satellite. The satellites are in high orbits, at approximately 20,200km, having an orbit period of 12 hours. They are arranged in 6 orbital planes, inclined at 55 degrees with near circular orbits. The configuration provides complete 4-satellite (3D) coverage worldwide.

GPS Observations

There are two important types of GPS observations (observables): Pseudo-range and Carrier Phase. Carrier phase is sometimes also referred to as carrier beat phase. Pseudo-range techniques are generally used for navigation. In high-precision baseline surveying the carrier phase is used. Although the (undifferenced) phase can be used directly, it has become common practice, at least in surveying applications, to process certain linear combinations of the original carrier phase observations (double differences and triple differences).

Pseudo-ranges

The pseudo-range is a measure of the distance between the satellite and the receiver at the epochs of transmission and reception of the signals. The transit time of the signals is measured by comparing (correlating) identical pseudo-random noise (PRN) codes generated by the satellite and by the receiver. A code-tracking loop within the receiver shifts the internal replica of the PRN code in time until maximum correlation occurs. The codes generated at the receiver are derived from the receiver's own clock, and the codes of the satellite transmissions are generated by the satellite system of clocks. It follows that unavoidable timing errors in both the satellite and the receiver clock will cause the measured quantity (pseudo-range) to differ from the geometric distance.

Where instantaneous positions are required, pseudo-range is the preferred observable. Given the satellite ephemeris (i.e. the position of the satellite at the epoch of transmission), there are seven unknowns: two clock errors, three receiver co-ordinates and the ionospheric and tropospheric delays. The effect of the satellite clock error is negligible for the typical navigation solution, particularly considering that the time errors are indistinguishable from the ionospheric and tropospheric delays. The satellite clocks are constantly monitored and synchronised with GPS time as maintained by the control centre. Actual offsets of the satellite clocks are approximated by polynomials in time and transmitted as part of the navigation message to the user for the correction of the measured pseudoranges. The ionospheric and tropospheric delays can be computed on the basis of ionospheric and tropospheric models, thus there are four unknowns left X, Y, Z and receiver clock error. These can be determined from four pseudo-ranges measured simultaneously to four GPS satellites.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

THALES

Page No.: 17 of 29

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 18 of 29

Client: SANTOS OFFSHORE PTY LTD

Carrier Phase

The phase observable is the difference between the phase of the carrier signal of the satellite, measured at the receiver, and the phase of the local oscillator within the receiver at the epoch of measurement. This can be regarded as a biased range measurement of the satellite-receiver distance with the integer number of carrier waves being unknown. The wavelength of the L1 carrier is about 19cm. Because of the fraction of the carrier phase is measured, the term "interferometry" is often used to describe carrier phase techniques.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 19 of 29

Client: SANTOS OFFSHORE PTY LTD

7.3 SKYFIX/SKYFIX SPOT DIFFERENTIAL GPS (DGPS)

Differential GPS (DGPS)

GPS is primarily a USA Defence space-based positioning system capable of operating worldwide and in all weather conditions. The USA Military can degrade the accuracy of GPS with the use of Selective Availability (SA) to control the accuracy of Pseudo-range measurements. Essentially, the user is given a false Pseudo-range for each satellite so that the resulting measurement is in error by a controlled amount. On the 1 May 2000 SA was discontinued conditionally and coincided with the successful demonstration of the ability to selectively deny GPS signals on a regional basis. SA has been set to zero and can be reinstated during periods of heightened global tension.

GPS signals are affected by several sources of positional bias, the largest of which was SA. The remaining biases of the ionosphere, the troposphere, time, satellite ephemeris and inherent reciever noise also give rise to substantial bias of position.

Differential GPS is a means by which the civil user can improve the accuracy and quality of GPS to the 1-3 metre level. It requires a receiver be located at a precisely known point from which pseudorange corrections for each satellite can be determined and monitored. These pseudo-range corrections are then communicated by means of a telecommunications link to users at unknown locations. In the relative mode, most of the important systematic errors common to the known station and at the unknown location cancel out to improve the accuracy of the computed position.

SkyFix/SkyFix Spot Differential

SkyFix

Thales GeoSolutions (Australasia) Limited introduced its SkyFix Differential GPS System in Australia in February 1991, using the Inmarsat Pacific and Indian Ocean marine communications satellites as the differential data broadcast link. Extensive performance trials and projects undertaken to date have shown SkyFix to meet the best industry expectations in terms of quality of service and accuracy.

Satellite communications systems, particularly at the Inmarsat L-band frequencies of 1.5 GHz are reliable and free of the interference associated with the crowded MF/HF bands. This high data integrity gives users confidence that the corrections will be continuously received without interference.

The SkyFix Australian network comprises of reference stations at Dampier, Broome, Perth, Adelaide, Melbourne, Sydney, Cairns and Darwin.

SkyFix Spot

The SkyFix Spot Differential GPS System was launched in Australia in December 1994, using the OPTUS high powered focused communications satellite as the differential data broadcast link. Projects undertaken to date have shown SkyFix Spot to meet the industry expectations in terms of quality of service and accuracy.

The SkyFix Spot system has a link capacity of 1200 bits per second, similar to the SkyFix system but because it is only transmitting corrections from the Australian network an update rate of better than five seconds is achieved.

The OPTUS satellite uses the L-band frequencies of 1.5586 GHz and are very reliable and free of interference avoiding data loss associated with the crowded MF/HF bands.

Document No.: a-report/3440-459/3447A3.doc

Revision: \emptyset

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 20 of 29

Client: SANTOS OFFSHORE PTY LTD

The SkyFix Spot network comprises of reference stations at Dampier, Broome, Perth, Adelaide, Melbourne, Sydney, Cairns, Darwin, Alice Springs and also Ujung Pandang and Jakarta in Indonesia and Wellington, New Zealand.

The differential corrections generated at each reference station are brought via landline links to the data hub and control centre in Singapore, where the system is monitored for performance and quality. From there, a composite message containing full RTCM 104 version 2 formatted data from all reference stations are sent via dual redundant links to Satellite Earth Stations at Sentosa Island, Singapore, O.T.C. Perth, Western Australia and OPTUS, Perth, Western Australia, for uplink and broadcast over the Inmarsat Pacific and Indian Ocean Region satellites and the OPTUS Satellite.

The SkyFix/SkyFix Spot system includes a 24 hour monitoring facility to ensure the validity of data received at the control centre from the Differential GPS reference stations, and that the same data are received over the SkyFix/SkyFix Spot satellite data link.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Project: Casino-2 Positioning Report of the Ocean Bounty Page No.: 21 of 29

Client: SANTOS OFFSHORE PTY LTD

7.4 TRIMBLE SERIES 4000 GPS RECEIVER

The Trimble Series 4000 GPS receiver is designed for moderate precision static and dynamic positioning applications. The GPS receiver provides time and three-dimensional station co-ordinates at a once-per-second update rate.

The receiver receives the civilian coded signal (C/A) from the GPS NAVSTAR satellites. The receiver automatically acquires and simultaneously tracks GPS satellites and precisely measures code phase and computes position and velocity.

Latitude, longitude and height values are output on the World Geodetic System (WGS84) Earthcentred, Earth-fixed co-ordinate system.

The receiver is designed to measure the following observables:

- Coarse/Acquisition (C/A) code Pseudo-ranges
- Rate of change of Pseudo-range
- Integrated Carrier

C/A code correlation techniques measure the propagation time of the signal from the satellite to the antenna. Latitude, longitude, height and time can be determined from measurements made from at least 4 satellites, by a process similar to triangulation.

To determine speed and heading, the receiver calculates the rate of change of Range (the range-rate) by measuring the Doppler shift of the carrier.

It is capable of receiving and processing differential corrections from other reference sources using the standard format of the Radio Technical Commission for Maritime Services, Special Committee 104 (RTCM SC-104), Version 1.0 or 2.0 protocols.

The Trimble Series 4000 GPS receiver has several options available, including internal data logging memory, event marker logging etc. and therefore may be used alone or as part of a more extensive navigation system.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

Client: SANTOS OFFSHORE PTY LTD

7.5 MULTIFIX 3

7.5.1 System Overview

MultiFix 3 is Thales GeoSolutions third generation *multiple reference station* differential GPS (DGPS) real time position computation and quality control program. It is an integral part of the Thales SkyFix Premier service but can also be used with the standard SkyFix service. MultiFix 3 has more advanced features than its predecessor, MultiFix 2, including being able to use dual frequency receivers and form real time 'lono-Free DGPS position solutions'.

MultiFix 3 is one of a series of programs available under the group name Zero, which includes other tools and utilities with a similar user interface and layout structure, like static and dynamic position comparison programs, a correction monitor program, a terminal program and a replay utility.

MultiFix 3 takes in Almanac, Ephemeris and Raw Code and Carrier measurements from a single or dual frequency GPS receiver (or, for replay, from logged files). It takes in RTCM SC104 Version 2 differential correction messages from one or more RTCM correction delivery systems. It also takes in RTCM Type 15 or Thales Proprietary RTCM Type 55 Ionospheric range corrections generated at selected SkyFix Premier reference stations and broadcast via the Thales global network of high (SkyFix Spot-Optus) and low (SkyFix-Inmarsat) power satellite based L-Band beams.

Key features of the program are:

- No limit on the number of RTCM correction delivery systems (data links)
- No limit on the number of RTCM differential reference stations
- No limit on the number of computations (solutions)
- Each computation can employ corrections from any combination of reference stations available
- Computations are weighted least squares with statistical evaluation based upon the UKOOA recommendations
- No limit on the number of outputs
- No limit on the number of view windows
- View windows can be customised
- Extra NMEA outputs can be defined
- TCP/IP communication via sockets for GPS, RTCM and position data transfer between networked computers

MultiFix 3 has been designed in a modular fashion such that data is passed between modules as if over a computer network. The core module MultiFix 3 performs the computation of position. Additional modules are available and more will be made available in the future. While a single computer can be used, the various modules will equally be able to be run on different computers, provided there is a network interconnection.

MultiFix 3 uses the EGM96 geoid/spheroid separation model.

The RTCM corrections that are generated at reference stations are contaminated by a variety of error components, one of which is lonospheric delay. The lonospheric delay is currently more variable because of greater sun spot activity. MultiFix 2 and MultiFix 3's standard computation uses the Klobuchar lonospheric delay model. This model is updated periodically but is not responsive to the current short-term variability. MultiFix 3 has an additional calculation option when working with dual frequency receivers and in receipt of Type 15 or 55 RTCM messages. With dual frequency receivers, estimates can be made of the lonospheric delay by examining the differences between the measurements from the two frequencies. If the same procedure for estimation of lonospheric delay is performed at the reference stations and on the mobile, both the RTCM corrections and the pseudoranges can have the lonospheric delay removed, effectively providing an lono-Free DGPS position solution.

Document No.: a-report/3440-459/3447A3.doc

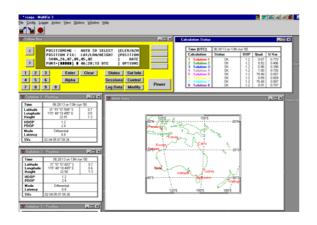
Revision: \varnothing

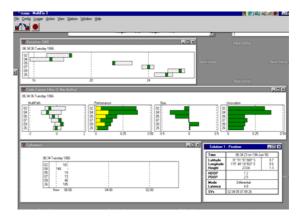
Survey Date: 22 – 25 August 2002

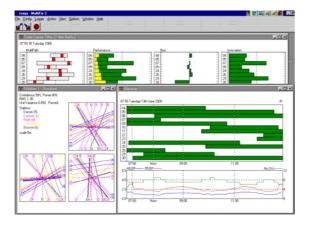
THALES

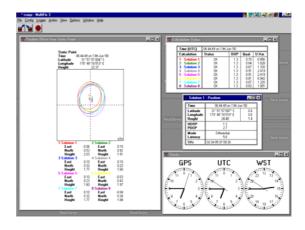
Page No.: 22 of 29

Client: SANTOS OFFSHORE PTY LTD


7.5.2 Hardware Requirements

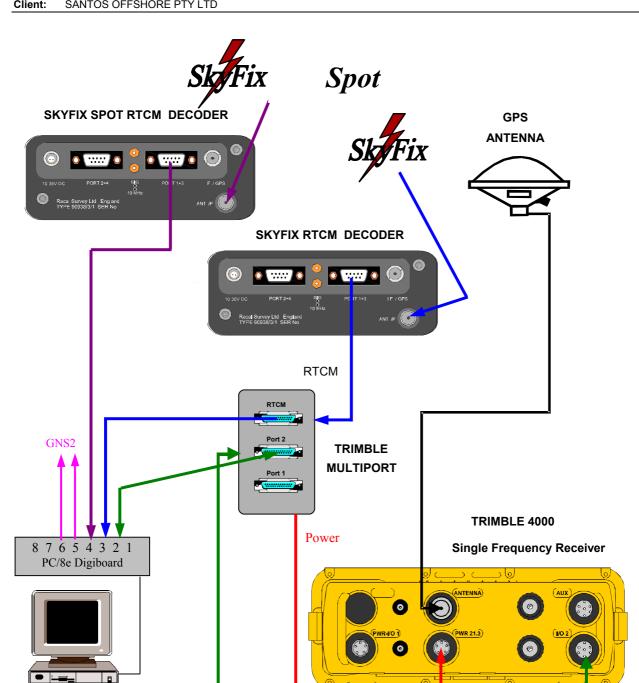

Optimum requirements for MultiFix 3 are:


- 350 MHz Pentium II computer
- 32 Mb RAM
- Windows 95, 98 or NT operating system
- Graphics resolution of at least 800 x 600 pixels
- Intelligent multi-port serial I/O board


7.5.3 Positioning and Quality Control Displays

MultiFix 3 has a large number of features to accommodate the user requirements of highly accurate positions with quality control (QC) information and outputs in different formats. MultiFix 3 runs in a Windows environment, which allows the user to design a preferred screen layout by opening, sizing and placing the numerous displays that are available. Examples of the various displays can be found below.

Document No.: a-report/3440-459/3447A3.doc


Revision: \varnothing

Survey Date: 22 – 25 August 2002

THALES

Page No.: 23 of 29

Project:Casino-2 Positioning Report of the Ocean BountyPage No.:24 of 29Client:SANTOS OFFSHORE PTY LTD

Typical MultiFix 3 Interconnection With Trimble 4000 GPS Receiver

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

MultiFix 3 Computer

Project: Casino-2 Positioning Report of the Ocean Bounty

Page No.: 25 of 29

Client: SANTOS OFFSHORE PTY LTD

7.6 TRACS TDMA

Tracs TDMA (Time Division Multiple Access) is a high speed, intelligent network radio datalink which can operate in the VHF or UHF bands to provide an addressable network with integrated position reporting from an integrated/internal GPS receiver. The standard Tracs units are fitted with a Trimble SK8 GPS receiver, or a Trimble DSM GPS receiver.

Each unit in the network is assigned a unique address (1 to 255) enabling messages can be specifically addressed to that unit. A broadcast address (0) is provided to allow multiple units to receive a message, for example RTCM corrections. The system manages the data bandwidth by dividing it into timeslots synchronised by means of GPS 1PPS (pulse per second) timing pulse from an internal GPS receiver.

The standard Tracs system has a frequency band of 455.0MHz to 465.0MHz (frequency module 53R). The channel frequencies can be selected in 25kHz steps and the units are equipped with the facility to pre-store 10 selected frequencies within the 10MHz band. Units for use in Australia are fitted with 471MHz radios.

There are four types of messages that can be transmitted in a Tracs network.

- Position Reports automatically generated from the SK8 or DSM GPS receiver as a NMEA type or Raw Pseudo Range information.
- Transparent messages used to send unformatted data across the network eg. RTCM corrections.
- Open messages used to provide a general-purpose data link between units. This format is used by GNS to transfer information.
- Configuration messages used for remote configuration of units using the Destination ID to identify which unit is being configured.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

Project: Casino-2 Positioning Report of the Ocean Bounty **Page No.:** 26 of 29

Client: SANTOS OFFSHORE PTY LTD

7.7 S.G. BROWN 1000S GYROCOMPASS

The S.G. Brown 1000S Gyrocompass is a compact, simple-to-operate master heading reference instrument employing the effect of gravity and the earth's rotation to produce a True North reference. This reference may be read off the compass card or from a digital display and can be interfaced to the GNS2 navigation system.

The normal starting cycle of the instrument is fully automatic and is initiated when the system power supply is switched on. A fail safe control circuit is incorporated which ensures that the compass is not damaged after a power failure when power is restored; the compass will restart automatically and carry out its normal settling program.

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

Project: Casino-2 Positioning Report of the Ocean Bounty Client: SANTOS OFFSHORE PTY LTD Page No.: 27 of 29

8. PERSONNEL AND EQUIPMENT

8.1 PERSONNEL

The following personnel were employed on this project:

For: Thales GeoSolutions (Australasia) Limited

R. Bright Surveyor/Team Leader

J. Antao Engineer

For: Santos Offshore Pty Ltd

J. Tighe Client Representative

Document No.: a-report/3440-459/3447A3.doc

Revision: \varnothing

Survey Date: 22 – 25 August 2002

Page No.: 28 of 29 SANTOS OFFSHORE PTY LTD Client:

8.2 EQUIPMENT

The following equipment was provided for this project:

Ocean Bounty

- 2 x Compaq Computer, inc monitor, keyboard (for GNS2 / MultiFix 3)
- 1 x Thales SkyFix Mini Rig Portable
- 3 x SkyFix/SkyFix Spot MK II Receivers
- 1 x Compaq Computer, inc. monitor, keyboard (for GNS2 Remote)
- 1 x S.G. Brown 1000S gyrocompass
- 1 x Uninteruptable Power Supply (UPS)
- 2 x Epson LX300 Printers
- 2 x SkyFix Spot Whip Antennae
- 1 x SkyFix Spot Antenna 90962/3/1
- 2 x Trimble 4000DS GPS Receivers
- 2 x SkyFix Spot Antennae
- 2 x Tracs Bricks
- 2 x Tracs Multiplexer
- 2 x UHF Antennae
- 1 x Marine Sextant

Pacific Sentinel and Pacific Conqueror (Each)

- 1 x Tracs Geopod
- 1 x Fluxgate compasses
- 1 x Tracs Box and Interface Box
- 1 x Compaq computer, inc. monitor, keyboard (GNS2 Tug Display)
- 1 x Uninteruptable Power Supply (UPS)

plus all associated software (GNS 2 version 2.35, MultiFix 3 version 1.24) c/w cables, consumables, software dongles etc.

Document No.: a-report/3440-459/3447A3.doc

Revision: Ø

Project: Casino-2 Positioning Report of the Ocean Bounty Client: SANTOS OFFSHORE PTY LTD Page No.: 29 of 29

9. DISTRIBUTION

Copies of this report have been distributed as follows:

Santos Offshore Pty Ltd : 3 copies

Attn: Ole Moller

Thales GeoSolutions (Australasia) Limited : 1 copy

Surveyor

Anthony Kerr Survey Manager

Document No.: a-report/3440-459/3447A3.doc

Revision: \emptyset

APPENDIX A

FINAL DIFFERENTIAL GPS DRILLSTEM POSITION AT CASINO-2

THALES Thales GeoSolutions Group Ltd

FINAL POSITION FIX – DIFFERENTIAL GPS

Job Description: Ocean Bounty to Casino-2

Job Number: 3447A3
Thales Surveyor: R. Bright
Client: Santos
Client Representative: J. Tighe

Sampling started: 24 Sep 2002 14:00:35 **Sampling end:** 24 Sep 2002 15:00:29

Ocean Bounty

Intended datum location

Datum: GDA94

Latitude: 38°47'43.980"S Longitude: 142°44'50.720"E

Projection: MGA Zone 54

Easting: 651751.95 m Northing: 5704460.93 m

Final Antenna Position (T1 Thales UKOOA):

Sample size: 720 fixes used out of a total of 720.

Antenna offset

X: 0.28m Y: 33.90m Z: 0.00m Range: 33.90m Rel Brg from datum to antenna: 0.5°

Datum: WGS 84

Latitude: 38°47'44.394"S Longitude: 142°44'49.500"E

Datum: GDA94

Latitude: 38°47'44.394"S Longitude: 142°44'49.500"E

Projection: MGA Zone 54

Easting: 651722.27 Northing: 5704448.7

Standard deviations

 Long or E:
 0.42m

 Lat or N:
 0.35m

 Height:
 0.72m

 Position:
 0.55m

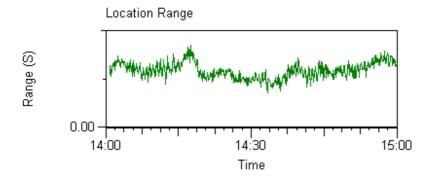
Final Datum Position
Datum: GDA94

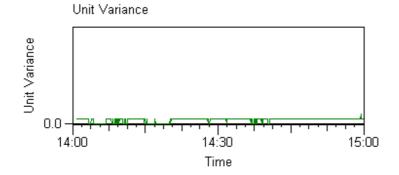
Latitude: 38°47'43.887"S Longitude: 142°44'50.746"E

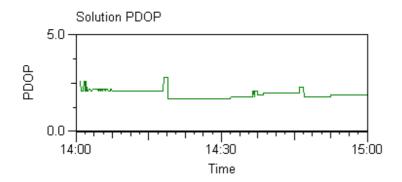
Projection: MGA Zone 54

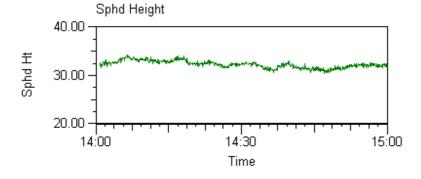
Easting: 651752.63 m Northing: 5704463.79 m

Mean corrected heading: 242.0°T SD heading: 0.2°T Intended heading: 240.0°T Difference from intended: 2.0° Gyro C-O: 1.2° Convergence: -1.10°

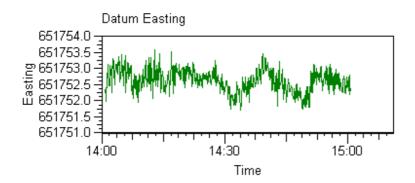

Final Datum Position is 2.94m on a bearing of 12.3°T (13.4°G) <u>from</u> the intended

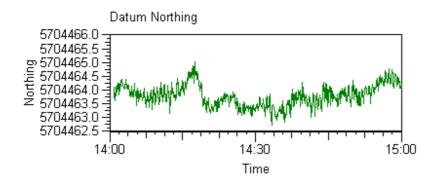

location.

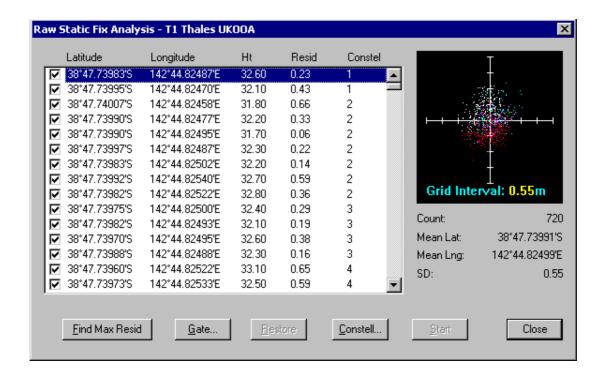

APPENDIX B


GNS2 STATIC DIFFERENTIAL GPS FIX GRAPHS

THALES Thales Geosolutions (Australasia) Limited Project: Casino-2 Positioning Report of the Ocean Bounty Santos Australia

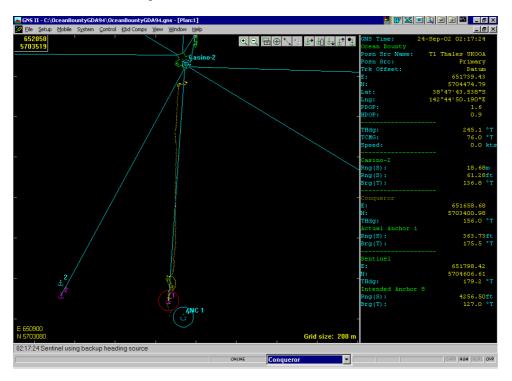






Project: Casino-2 Positioning Report of the Ocean Bounty Client: Santos Australia

Project: Casino-2 Positioning Report of the Ocean Bounty

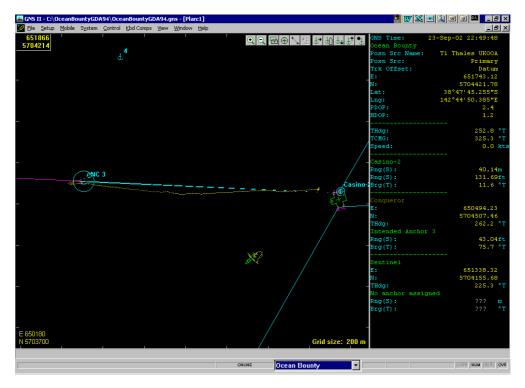

APPENDIX C

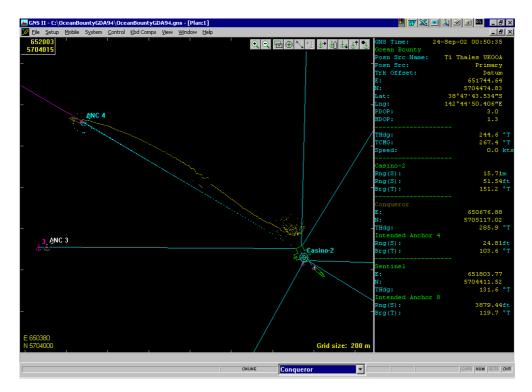
RUN LINE GRAPHICS OF ANCHOR HANDLING VESSELS

Project: Casino-2 Positioning Report of the Ocean Bounty

Client: Santos Australia

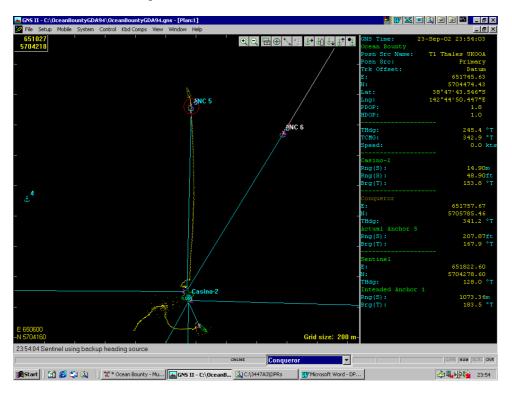
Anchor 1 – Pacific Conqueror


Anchor 2 – Pacific Conqueror


Project: Casino-2 Positioning Report of the Ocean Bounty

Client: Santos Australia

Anchor 3 - Pacific Conquerer



Anchor 4 – Pacific Conquerer

Project: Casino-2 Positioning Report of the Ocean Bounty
Client: Santos Australia

Anchor 5 – Pacific Conquerer

Anchor 6 – Ocean Bounty



Project: Casino-2 Positioning Report of the Ocean Bounty
Client: Santos Australia

Anchor 7 – Pacific Conquerer

Anchor 8 – Pacific Sentinel

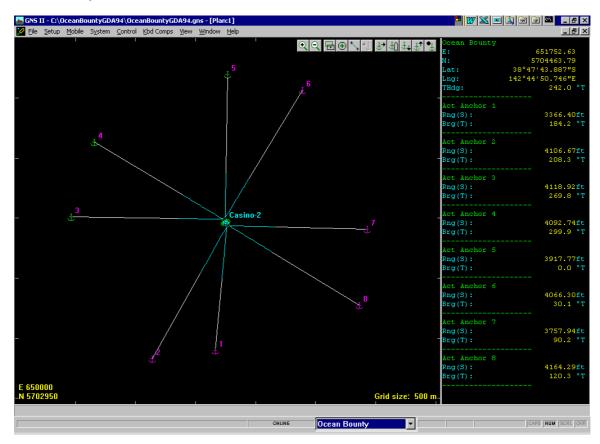
APPENDIX D OCEAN BOUNTY ANCHOR PATTERN DETAILS AT CASINO-2

THALES

OCEAN BOUNTY ANCHOR POSITIONS

24 Sep 2002 16:17

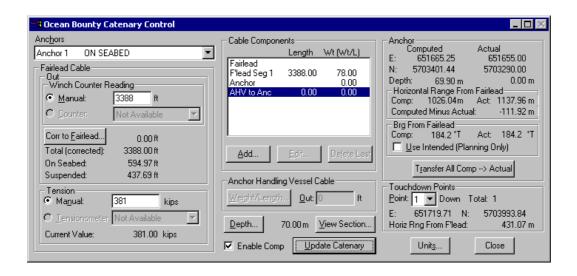
Datum: GDA94 Projection: MGA Zone 54, CM 141° East

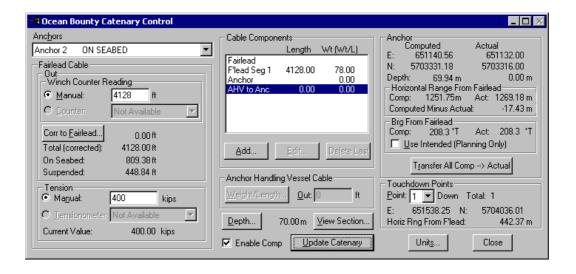

Main Anchors

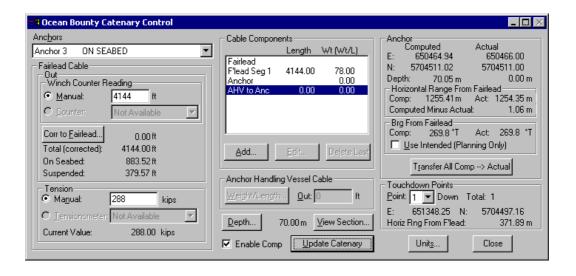
Name	Intended E	Intended N	Dropped E	Dropped N
Anchor 1	651736.75	5703208.80	651665.20	5703401.40
Anchor 2	651130.54	5703380.78	651140.60	5703331.20
Anchor 3	650507.00	5704510.46	650464.90	5704511.00
Anchor 4	650684.20	5705115.11	650654.00	5705134.80
Anchor 5	651767.14	5705713.06	651769.50	5705698.30
Anchor 6	652373.36	5705541.09	652391.40	5705566.50
Anchor 7	652996.00	5704411.00	652930.20	5704410.00
Anchor 8	652819.70	5703806.74	652864.90	5703773.20

Project: Casino-2 Positioning Report of the Ocean Bounty

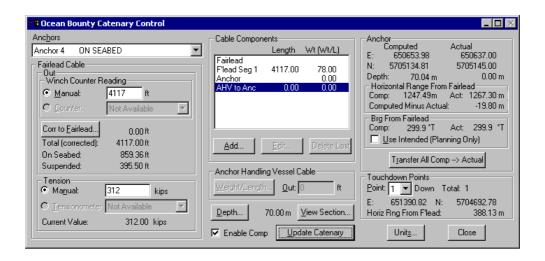
Client: Santos Australia

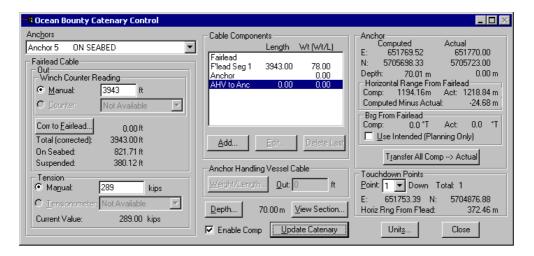

Ocean Bounty Anchor Pattern at Casino-2

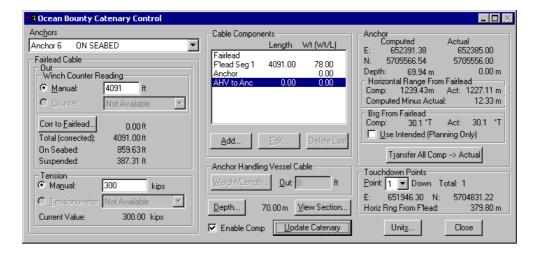


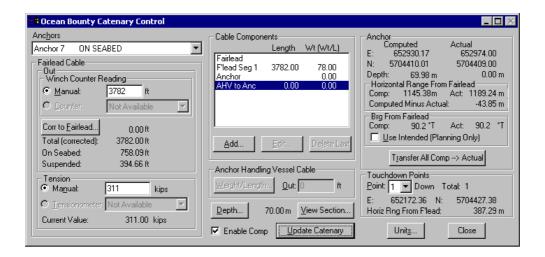

APPENDIX E

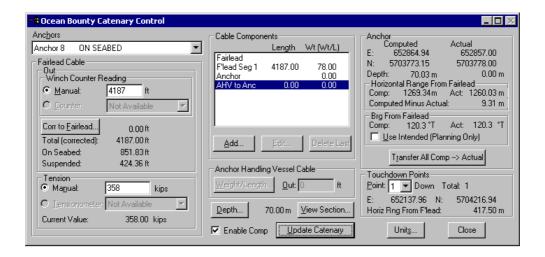
OCEAN BOUNTY ANCHOR CATENARY CALCULATIONS


Project: Casino-2 Positioning Report of the Ocean Bounty






Project: Casino-2 Positioning Report of the Ocean Bounty



Project: Casino-2 Positioning Report of the Ocean Bounty

APPENDIX F

GYROCOMPASS CALIBRATION REPORT

ABN 82 000 601 909

Solar Observation for Azimuth (Hour Angle) 2002

Thales Job Number: 3447A3

Job Description: Ocean Bounty Rig Move to Casino-2

Client: Santos
Party Chief: R. Bright
Surveyor: R. Bright
Rig Name: Ocean Bounty
Date: 24 September 2002

Control Point Co-ordinates

Datum: GDA94 Note: All True Hdg's displayed here are reciprocal values of actual True Hdg

Latitude (DMS): -038 47 44 Longitude (DMS): 142 44 50

UTC Correction (HMS): 10.00

Total Station Observations:

	Local Time		Observed		Observed			Observed (O)		
Face			iie	Direc	tion to	R.O.	Direc	ction to	Sun	True Heading
	(HMS)		(DMS)		(DMS)			(D.D)		
Left	06	28	00	000	00	00	030	02	12	57.70
Right	06	28	00	180	00	00	210	02	12	
Left	06	29	30	000	00	00	030	01	12	57.70
Right	06	29	30	180	00	00	210	01	12	
Left	06	30	30	000	00	00	029	18	48	58.20
Right	06	30	30	180	00	00	209	18	48	
Left	06	31	00	000	00	00	029	55	00	58.20
Right	06	31	00	180	00	00	209	55	00	
Left	06	31	30	000	00	00	029	28	48	57.70
Right	06	31	30	180	00	00	209	28	48	
Left	06	32	00	000	00	00	029	29	24	57.70
Right	06	32	00	180	00	00	209	29	24	
Left	06	32	30	000	00	00	029	01	36	58.00
Right	06	32	30	180	00	00	209	01	36	
Left	06	33	00	000	00	00	029	33	48	57.30
Right	06	33	00	180	00	00	209	33	48	
Left	06	33	30	000	00	00	029	23	12	57.50
Right	06	33	30	180	00	00	209	23	12	
Left	06	34	00	000	00	00	028	55	12	58.00
Right	06	34	00	180	00	00	209	55	12	
Left	06	34	30	000	00	00	028	46	36	58.00
Right	06	34	30	180	00	00	209	46	36	
Left	06	35	00	000	00	00	028	45	00	58.00
Right	06	35	00	180	00	00	208	45	00	

S	ia	ın	а	tι	ır	е
$\overline{}$			u		41	•

SURVEYOR/PARTY CHIEF

CLIENT SURVEY REPRESENTATIVE

ABN 82 000 601 909

Solar Observation for Azimuth (Hour Angle) 2002

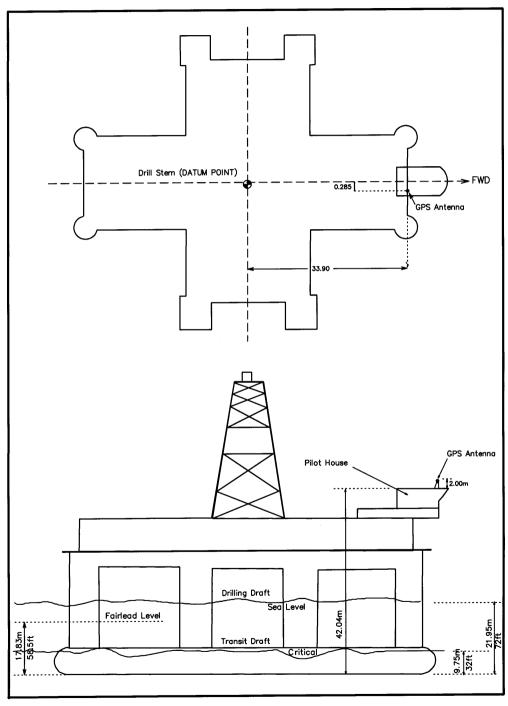
Thales Job Number: 3447A3

Job Description: Ocean Bounty Rig Move to Casino-2

Client: Santos
Party Chief: R. Bright
Surveyor: R. Bright
Rig Name: Ocean Bounty

Date: 24 September 2002

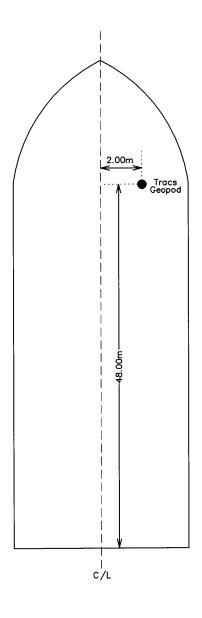
Datum: GDA94 Note: All True Hdg's displayed here are reciprocal values of actual True Hdg


	erage L me (HN		Averaç An	ge Hori gle (DN		Azimuth Sun (DMS)		Azimuth RO (DMS)		Calculated (C) True Heading (D.D)	Observed (O) True Heading (D.D)	C-O (D.D)		
06	28	0.00	030	02	12	089	08	50	059	06	38	59.11	57.70	1.41
06	29	30.0	030	01	12	880	54	45	058	53	33	58.89	57.70	1.19
06	30	30.0	029	18	48	880	45	21	059	26	33	59.44	58.20	1.24
06	31	0.00	029	55	00	880	40	39	058	45	39	58.76	58.20	0.56
06	31	30.0	029	28	48	880	35	57	059	07	09	59.12	57.70	1.42
06	32	0.00	029	29	24	880	31	15	059	01	51	59.03	57.70	1.33
06	32	30.0	029	01	36	880	26	33	059	24	57	59.42	58.00	1.42
06	33	0.00	029	33	48	880	21	51	058	48	03	58.80	57.30	1.50
06	33	30.0	029	23	12	880	17	09	058	53	57	58.90	57.50	1.40
06	34	0.00	029	25	12	088	12	27	058	47	15	58.79	58.00	0.79
06	34	30.0	029	16	36	088	07	45	058	51	09	58.85	58.00	0.85
06	35	0.00	028	45	00	088	03	03	059	18	03	59.30	58.00	1.30

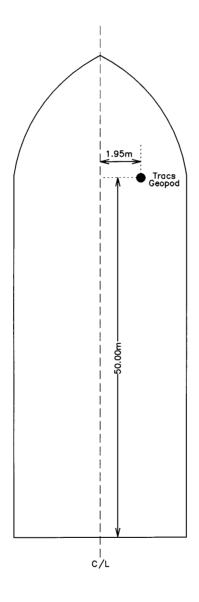
			Mean C-O	1.20
Signature				
	SURVEYOR/PARTY CHIEF	CLIENT SURVEY REPRESENTATIVE		

APPENDIX G

OCEAN BOUNTY OFFSET DIAGRAM


OCEAN BOUNTY OFFSET DIAGRAM

APPENDIX H


PACIFIC SENTINEL AND PACIFIC CONQUEROR OFFSET DIAGRAMS

PACIFIC CONQUEROR

(NOT TO SCALE)

PACIFIC SENTINEL

(NOT TO SCALE)

APPENDIX I

GNS2 CONFIGURATION FILE PRINTOUT

GNS II COMFIGURATION FILE C:\OceanBountyGDA94\OceanBountyGDA94.gns

JOB DETAILS

Job Number : 3447A3

Job Description : Ocean Bounty to Casino-2
Company : Thales GeoSolutions Group Ltd

Client : Santos

Time Zone : GMT +9:00 + 10:00

WORKING SPHEROID

GDA94

Semi-major : 6378137.000 m e Squared : 0.006694380023

WORKING PROJECTION

MGA94 Zone 54

Lat of Origin : 00°00.00000'N
Long of Origin : 141°00.00000'E
False Easting : 500000.00
False Northing : 10000000.00
Scale Factor : 0.999600
Units : Metres

GPS TRANSFORMATION

From : WGS 84

Semi-major : 6378137.000 m e Squared : 0.006694380067

: GDA94 To Dχ : 0.000 m Dу 0.000 m : 0.000 m Dz : 0.0000 secs Rot x: Rot y: 0.0000 secs Rot z: 0.0000 secs Scale: 0.0000 ppm

WAYPOINTS

Casino-1 E: 647653.72 N: 5705320.87 Ht: 0.00 m Run In E: 651362.33 N: 5711529.73 Ht: 0.00 m

Casino-2 E: 651751.95 N: 5704460.93 Ht: 0.00 m Tol1: 10.00 m Tol: wp2 E: 655242.00 N: 5710298.00 Ht: 0.00 m Tol1: 25.00 m Tol: ANC8 E: 652820.00 N: 5703807.00 Ht: 0.00 m Tol1: 50.00 m Tol: ANC 8 LOWERED E: 651767.00 N: 5704445.00 Ht: 0.00 m

MOBILES

Ocean Bounty (semi-sub rig)

Shape Definition: Ocean Bounty

Line:-

X: 14.20 m Y: 37.00 m X: 14.20 m Y: 16.60 m X: 39.30 m Y: 16.60 m X: 39.30 m Y: -16.60 m X: 14.20 m Y: -16.60 m X: 14.20 m Y: -36.20 m

Verified by: (sign)

(print) J.C. TIGHE

04:32 24-Sep-2002

Page 1 of 6

GNS II CONFIGURATION FILE C:\OceanBountyGDA94\OceanBountyGDA94.gns

X: -14.20 m Y: -36.20 m X: -14-20 m Y: -16-60 m X: -39.30 m Y: -16.60 m X: -39.30 m Y: 16.00 m X: -14.20 m Y: 16.00 m X: -14.20 m Y: 37.00 m X: 14.20 m Y: 37.00 m Line:-X: -4.00 m Y: 30.00 m 4.00 m Y: 30.00 m X: X: 4.00 m Y: 41.00 m 2.00 m Y: 45.00 m X: X: -2.00 m Y: 45.00 m X: -4.00 m Y: 41.00 m X: -4.00 m Y: 30.00 m

Tracking Point : Datum
Pitch and Roll Centre: Datum

Selected Sources:-

Primary Position: T1 Thales UKCOA (Using Antenna Offset: GPS Ae)
Backup Position: T2 Thales UKCOA (Using Antenna Offset: GPS Ae)

Primary Heading : S1 SGB 1000S
Primary Height : Datum Displacement
Pitch and Roll : G1 Ocean Bounty
Heave Sensor : G1 GNS II Master
Soundings : G1 Ocean Bounty
Speed : Position Filter
Course Made Good : Posn Filter CMG

Equipment:-

T3 Tracs TDMA Master

Status: ON Interface: COM10 Antenna Offset Selected: Datum

X: 0.00 m Y: 0.00 m Z: 0.00 m Rng: 0.00 m Brg: 0.0°

T1 Thales UKOOA

Status: ON Interface: Sockl Antenna Offset Selected: GPS Ae

X: 0.28 m Y: 33.90 m Z: 0.00 m Rng: 33.90 m Brg: 0.5°

Apply Pitch Roll: Off Stale Time: 5.0 s Posn SD: 3.0 m Ht SD: 1.0 m

Update posn regardless of whether diff corrected

Filter: Off Time Constant:60.0 s Sample Dwell: 0.5 s

Gate: Off Gate Width: 9.0 xSD Minimum Gate: 0.0 m

T2 Thales UKOOA

Status: ON Interface: Sock2 Antenna Offset Selected: GPS Ae

X: 0.28 m Y: 33.90 m Z: 0.00 m Rng: 33.90 m Brg: 0.5°

Apply Pitch Roll: Off Stale Time: 5.0 s Posn SD: 3.0 m Ht SD: 1.0 m

Update posn regardless of whether diff corrected

Filter: Off Time Constant:60.0 s Sample Dwell: 0.5 s

Gate: Off Gate Width: 9.0 xSD Minimum Gate: 0.0 m

Verified by: (sign) J.C. TIGHE

```
GNS II CONFIGURATION FILE C:\OceanBountyGDA94\OceanBountyGDA94.gns
  S1 SGB 1000S
   Status: ON
                Interface: COM6
   C-O: 1.1 degs Stale Time: 5.0 s SD: 0.1 degs
    Filter: Off Gate: Off Time Constant: 5.0 s Sample Dwell: 0.5 s
    * ENTERED NEW C-O OF +1.2° ON 24/09/02 AFTER CAUBRATION
 Defined Offsets:-
  Datum
                                             0.00 m Brg: 0.0°
   X:
         0.00 m Y: 0.00 m Z:
                                0.00 m Rng:
  GPS Ae
        0.28 m Y: 33.90 m Z:
                                0.00 m Rng:
                                             33.90 m Brg: 0.5°
   х:
  Fairlead 1
   X: -39.30 m Y: 12.60 m Z: -4.11 m Rng: 41.27 m Brg:287.8°
  Fairlead 2
  X: -39.30 m Y: 16.60 m Z: -4.11 m Rng: 42.66 m Brg:292.9°
  Fairlead 3
  X: 39.30 m Y: 16.60 m Z: -4.11 m Rng: 42.66 m Brg: 67.1°
  Fairlead 4
        39.30 m Y: 12.60 m Z: -4.11 m Rng: 41.27 m Brg: 72.2°
  Fairlead 5
        39.30 m Y: -12.60 m Z: -4.11 m Rng: 41.27 m Brg:107.8°
  х:
  Fairlead 6
        39.30 m Y: -16.60 m Z: -4.11 m Rng:
                                             42.66 m Brg:112.9°
  X:
  Fairlead 7
   X: -39.30 m Y: -16.60 m Z: -4.11 m Rng: 42.66 m Brg:247.1°
  Fairlead 8
   X: -39.30 m Y: -12.60 m Z: -4.11 m Rnq: 41.27 m Brq:252.2°
  Tow Bridle
                                             38.00 m Brg: 0.0°
        0.00 m Y: 38.00 m Z:
                               0.00 m Rng:
Sentinel (ship)
 Shape Definition: Pac Sentinel
  Line:-
   X: -6.80 m Y:
                   0.00 m
   X: -6.80 m Y: 49.40 m
       0.00 m Y: 65.00 m
   X:
       6.80 m Y: 49.40 m
   Х:
       6.80 m Y:
   Χ:
                  0.00 m
   X: -6.80 m Y:
                  0.00 m
  Line:-
   X: -1.50 m Y: 35.00 m
   X: -3.50 m Y: 37.00 m
   X: -3.50 m Y: 45.00 m
   X: -6.00 m Y: 45.00 m
   X: -6.00 m Y: 47.00 m
   X: -3.50 m Y: 47.00 m
   X: -3.50 m Y: 49.00 m
   X: -2.00 m Y: 51.00 m
       2.00 m Y: 51.00 m
   Χ:
   х:
       3.50 m Y:
                  49.00 m
       3.50 m Y:
                  47.00 m
   Х:
       6.00 m Y:
                  47.00 m
   Х:
       6.00 m Y:
                  45.00 m
   X:
   X:
       3.50 m Y: 45.00 m
        3.50 m Y: 37.00 m
   х:
```

Verified by: (sign) Jh (print) J.C. TIGHE

GNS II CONFIGURATION FILE C:\OceanBountyGDA94\OceanBountyGDA94.gns

1.50 m Y: 35.00 m X: -1.50 m Y: 35.00 m Tracking Point : Datum Pitch and Roll Centre: Datum Selected Sources:-Primary Position: T4 Tracs TDMA Remote (Using Antenna Offset: Pod) Primary Heading : T4 Tracs TDMA Remote Primary Height : Datum Displacement Pitch and Roll : Manual : Manual Soundings : Position Filter Speed Course Made Good : Posn Filter CMG Equipment:-T4 Tracs TDMA Remote Status: ON Interface: Not defined Antenna Offset Selected: Pod 1.95 m Y: 50.00 m Z: 0.00 m Rng: 50.04 m Brg: 2.2° X: Defined Offsets:-Datum 0.00 m Y: 0.00 m Z: 0.00 m Rnq: 0.00 m Brg: 0.0° X: delete 2.00 m Y: 2.00 m Z: 0.00 m Rng: 2.83 m Brg: 45.0° X: Pod 1.95 m Y: 50.00 m Z: 0.00 m Rng: 50.04 m Brg: 2.2° X: Conqueror (ship) Shape Definition: Pac Conquerer Line:-X: -6.80 m Y: 0.00 m X: -6.80 m Y: 49.40 m 0.00 m Y: 65.00 m 6.80 m Y: 49.40 m Х: 6.80 m Y: 0.00 m Х: X: -6.80 m Y: 0.00 mLine:-X: -1.50 m Y: 35.00 m X: -3.50 m Y: 37.00 m X: -3.50 m Y: 45.00 m X: -6.00 m Y: 45.00 m X: -6.00 m Y: 47.00 m X: -3.50 m Y: 47.00 m X: -3.50 m Y: 49.00 m X: -2.00 m Y: 51.00 m 2.00 m Y: 51.00 m X: 3.50 m Y: 49.00 m Х: 3.50 m Y: 47.00 m X: 6.00 m Y: 47.00 m X: 6.00 m Y: 45.00 m X: 3.50 m Y: 45.00 m Х: 3.50 m Y: 37.00 m х: Verified by: (sign) Jw (print) J.C. TIGHE

GNS II CONFIGURATION FILE C:\OceanBountyGDA94\OceanBountyGDA94.gns

1.50 m Y: 35.00 m X: -1.50 m Y: 35.00 m

Tracking Point : Datum Pitch and Roll Centre: Datum

Selected Sources:-

Primary Position : T5 Tracs TDMA Remote (Using Antenna Offset : Pod)

Primary Heading : T5 Tracs TDMA Remote Primary Height : Datum Displacement Pitch and Roll : Manual

Soundings : Manual

Speed : Position Filter Course Made Good : Posn Filter CMG

Equipment:-

T5 Tracs TDMA Remote

Status: ON Interface: Not defined

Antenna Offset Selected: Pod

X: 2.00 m Y: 48.00 m Z: 0.00 m Rng: 48.04 m Brg: 2.4°

Defined Offsets:-

Datum

0.00 m Y: 0.00 m Z: 0.00 m Rng: 0.00 m Brg: 0.0° X: Pod

2.00 m Y: 48.00 m Z: 0.00 m Rng: 48.04 m Brg: 2.4°

ANCHORS

Ocean Bounty Fairleads:-

X Y Z Rng Brg
-39.30 m 12.60 m -4.11 m 41.27 m 287.8°
-39.30 m 16.60 m -4.11 m 42.66 m 292.9°
39.30 m 16.60 m -4.11 m 42.66 m 67.1°
39.30 m 12.60 m -4.11 m 41.27 m 72.2°
39.30 m -12.60 m -4.11 m 41.27 m 107.8°
39.30 m -16.60 m -4.11 m 42.66 m 112.9°
-39.30 m -16.60 m -4.11 m 42.66 m 247.1°
-39.30 m -12.60 m -4.11 m 41.27 m 252.2° Name Fairlead 1 Fairlead 2 Fairlead 3 Fairlead 4 Fairlead 5 Fairlead 6 Fairlead 7 Fairlead 8

Main Intended Positions:-

Name Easting Northing Depth Tolerance 651736.75 5703208.80 0.00 m 50.00 m 651130.54 5703380.78 0.00 m 50.00 m 650507.00 5704510.46 0.00 m 50.00 m 650684.20 5705115.11 0.00 m 50.00 m 651767.14 5705713.06 0.00 m 50.00 m 652373.36 5705541.09 0.00 m 50.00 m 652996.00 5704411.00 0.00 m 50.00 m Anchor 1 Anchor 2 Anchor 3 650684.20 5705115.11 0.00 m 651767.14 5705713.06 0.00 m 652373.36 5705541.09 0.00 m 652996.00 5704411.00 0.00 m 652819.70 5703806.74 0.00 m Anchor 4 50.00 m 50.00 m 50.00 m Anchor 5 Anchor 6 Anchor 7 Anchor 8 50.00 m

Main Actual Positions:-

Verified by: (sign) JW (print) J.C. TIGHE

GNS II CONFIGURATION FILE C:\OceanBountyGDA94\OceanBountyGDA94.gns

Name	Easting	Northing	Depth	Tolerance
Anchor 1	651655.00	5703290.00	0.00 m	50.00 m
Anchor 2	651132.00	5703316.00	0.00 m	50.00 m
Anchor 3	650466.00	5704511.00	0.00 m	50.00 m
Anchor 4	650637.00	5705145.00	0.00 m	50.00 m
Anchor 5	651770.00	5705723.00	0.00 m	50.00 m
Anchor 6	652385.00	5705556.00	0.00 m	50.00 m
Anchor 7	652974.00	5704409.00	0.00 m	50.00 m
Anchor 8	0.00	0.00	0.00 m	50.00 m

Verified by: (sign) (print)

APPENDIX J

DAILY REPORT SHEETS

Date: 22-Sept-2002 Client: Santos Job No.: 3447A3 Vessel: Ocean Bounty Location: Casino-2

Equipment	Ор	
Ocean Bounty		
SkyFix	1	
SkyFix Spot	2	
Gyro	1	
GNS 2	1	1
MultiFix 3	1	1
Remote Disp	1	1
Tracs	1	1

Equipment	Op	
AHV's		
Tug Display	2	
Tracs	2	
Fluxgate gyro	2	
_		

Racal Personnel
R. Bright
J. Antao
Client Personnel
J. Tighe

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1800			

DIARY OF OPERATIONS PAGE 1 OF

TIME	Time Zone=UTC+10.00 Su	nday, 22 September 2002
1515	Thales personnel depart Perth for Me	elbourne
1840	Arrive Melbourne	
1950	Check in at Holiday Inn Hotel.	

Forms are to be completed daily in duplicate on all vessels.	Each form should be countersigned by the	Clients Representative, the original b	eing retained on board
until the next crew change or at the end of job, whichever is	the earlier, when they should be returned to	the PERTH office.	

Signature		WHITE	: Accounts Department	Signature	
_	SURVEYOR/ENGINEER	BLUE	:Operations Department		CLIENT REPRESENTATIVE
		YELLOW/	· Clients Representative		

Date: 23-Sept-2002 Client: Santos Job No.: 3447A3 Vessel: Ocean Bounty Location: Casino-2

Equipment	Ор	
Ocean Bounty		
SkyFix	1	
SkyFix Spot	2	
Gyro	1	
GNS 2	1	1
MultiFix 3	1	1
Remote Disp	1	1
Tracs	1	1

Equipment	Ор	
AHV's		
Tug Display	2	
Tracs	2	
Fluxgate gyro	2	

Racal Personnel
R. Bright
J. Antao
Client Personnel
J. Tighe

WX	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1800			

DIARY OF OPERATIONS PAGE 2 OF

TIME	Time Zone=UTC+10.00 Monday, 23 September 2002		
0630	Thales personnel arrive at Bristow Heli Base		
0830	Depart Bristow Heli Base for Ocean Bounty		
0925	Arrive on board Ocean Bounty		
0940	Commenced Induction		
1050	Completed Induction		
1200	Commenced tow to new location, Casino-2		
1400	All equipment mobilised and operational. Checking System settings		
1515	Checked offsets. Agreed with previous measurements		
1650	Rig 1nm from ANC 6 drop location		
1721	ANC # 6 deployed by rig. E 652 385 N 5 705 556 (AGD 84 MGA Zone 54 CM 141°)		
1800	ANC # 2 PCC passed to Conqueror		
1831	ANC # 2 on bottom, Conqueror		
2020	Conqueror recovered ANC # 2 to re-deploy		
2040	ANC # 2 on bottom. E 651 132 N 5 703 316 (AGD 84 MGA Zone 54 CM 141°)		
2105	ANC # 2 PCC returned to rig		
2115	ANC # 7 PCC passed to Conqueror		
2147	ANC # 7 on bottom. E 652 974 N 5 704 409 (AGD 84 MGA Zone 54 CM 141°)		
2215	ANC # 7 PCC returned to rig		
2228	ANC # 3 PCC passed to Conqueror		
2251	ANC # 3 on bottom. E 650 466 N 5 704 511 (AGD 84 MGA Zone 54 CM 141°)		
2322	ANC # 3 PCC returned to rig		
2340	ANC # 5 PCC passed to Conqueror		
2350	Tow Bridle returned to rig by Sentinel		
2351	ANC # 5 on bottom. E 651 770 N 5705723 (AGD 84 MGA Zone 54 CM 141°)		

Forms are to be completed daily in duplicate on all vessels. Each form should be countersigned by the Clients Representative, the original being retained on board until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.

Signature		WHITE	: Accounts Department	Signature	
· ·	SURVEYOR/ENGINEER	BLUE	:Operations Department	· ·	CLIENT REPRESENTATIVE
		YELLOW	: Clients Representative		

Date: 24-Sept-2002 Client: Santos Job No.: 3447A3 Vessel: Ocean Bounty Location: Casino-2

Equipment	Ор	
Ocean Bounty		
SkyFix	1	
SkyFix Spot	2	
Gyro	1	
GNS 2	1	1
MultiFix 3	1	1
Remote Disp	1	1
Tracs	1	1

Equipment	Ор	
AHV's		
Tug Display	2	
Tracs	2	
Fluxgate gyro	2	

Thales
Personnel
R. Bright
J. Antao
Client Personnel
J. Tighe

wx	Sea State	Swell	Wind Dir.
0000			
0600			
1200			
1800			

DIARY OF OPERATIONS PAGE 3 OF

TIME	Time Zone=UTC+10.00 Tuesday, 24 September 2002
0035	ANC # 4 PCC passed to Conqueror
0054	ANC # 4 on bottom. E 650 637 N 5 705 145 (AGD 84 MGA Zone 54 CM 141°)
0130	ANC # 4 PCC returned to rig
0140	ANC # 1 PCC passed to Conqueror
0215	ANC # 1 on bottom. E 651 655 N 5 703 290 (AGD 84 MGA Zone 54 CM 141°)
0240	ANC # 1 PCC returned to rig
0259	Lowered ANC # 8 to seabed for J-Hook operations as PCC is faulty. Will use J-Hook to recover chain of
	ANC # 8 for deployment. Recorded location: E 651 767 N 5 704 445 (AGD 84 MGA Zone 54 CM141°)
0630	Performed Gyro Calibration by means of sun obs. Result: +1.2°. Entered new c-o into system
0715	Informed by Ron King (Company Rep) that all nav kit must be de-mobilised once positioning is complete
0805	Sentinel, commenced running ANC # 8
0812	ANC # 8 on bottom. E 652 857 N 5 703 778 (AGD 84 MGA Zone 54 CM 141°)
0905	Completed cross-tensioning
0932	Spud operations commenced. J. Antao transfers to AHV's for demob of nav kit.
1400	Commenced Final Fix at Casino-2 location
1500	Completed Final Fix. Result: Final Datum Position is 2.94m on a bearing of 12.3° True from intended
	location. Final Datum Position: E 651 752.63 N 5 704 463.79. Final Heading of 242.0° True
	(AGD 84 MGA Zone 54 CM 141°)
1515	Final Fix approved by Survey Rep
1530	J. Antao returns to rig
1815	Commenced demob of equipment on board rig
2115	Completed demob. All equipment secure in container ready for transfer to AHV Conqueror

Forms are to be completed daily in duplicate on all vessels.	. Each form should be countersigned by the Clients Representative, the original being retained on b	oard
until the next crew change or at the end of job, whichever is	the earlier, when they should be returned to the PERTH office.	

Signature		WHITE	: Accounts Department	Signature	
-	SURVEYOR/ENGINEER	BLUE	:Operations Department	· ·	CLIENT REPRESENTATIVE
		YELLOW	: Clients Representative		

Date: 25-Sept-2002 Client: Santos Job No.: 3447A3 Vessel: Ocean Bounty Location: Casino-2

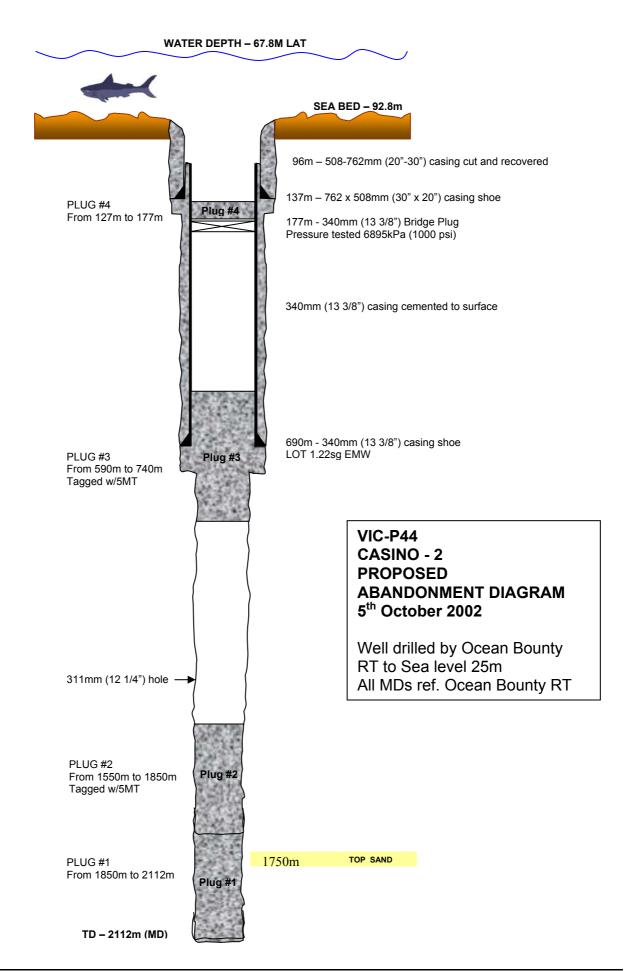
Equipment	Ор	
Ocean Bounty		
SkyFix	1	
SkyFix Spot	2	
Gyro	1	
GNS 2	1	1
MultiFix 3	1	1
Remote Disp	1	1
Tracs	1	1

Equipment	Ор	
AHV's		
Tug Display	2	
Tracs	2	
Fluxgate gyro	2	

Thales
Personnel
R. Bright
J. Antao
Client Personnel
J. Tighe
-

_				
١	ΝX	Sea State	Swell	Wind Dir.
0	000			
0	600			
1	200			
1	800			

DIARY OF OPERATIONS PAGE 4 OF


TIME	Time Zone=UTC+10.00 Wednesday, 25 September 2002					
0830	Thales Personnel depart rig for transit to Essendon Airport					
1150	Depart Melbourne Airport for transit to Perth					
1550	Arrive Perth					

until the next crew change or at the end of job, whichever is the earlier, when they should be returned to the PERTH office.	Forms are to be completed daily in duplicate on all vessels.	. Each form should be countersigned by the Clients Representative, i	ne original being retained on board.
	until the next crew change or at the end of job, whichever is	the earlier, when they should be returned to the PERTH office.	

Signature		WHITE	: Accounts Department	Signature	
	SURVEYOR/ENGINEER	BLUE	:Operations Department	-	CLIENT REPRESENTATIVE
		YELLOW	: Clients Representative		

Santos	Well Completion Report Volume 1 Basic
SECTION 14: WELL A	BANDONMENT AND PLUG REPORT
SECTION 14 WELL A	DANDONMENT AND I LUG REFORT

WELL ABANDONMENT DIAGRAM

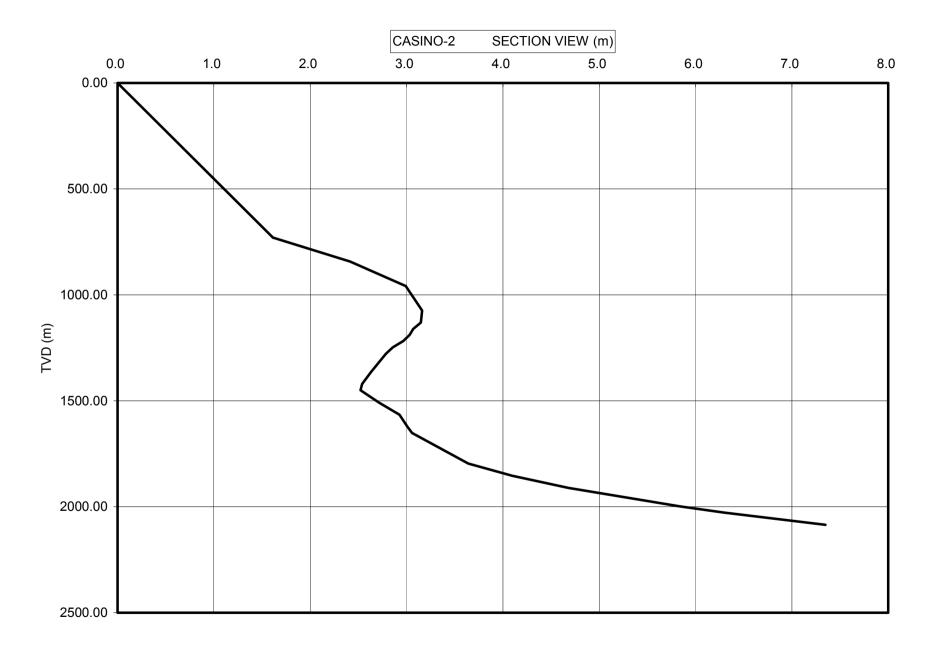
Santos OAE	BU		ABAN	NDONMEN	NT CEMEN	IT # 1			
WELL: Casino 2 ELEVATIONS:		o seabed (m): T to MSL (m) : SERIES:			DATE: T.D (m): PBTD (m): REPORT BY	7/10/2 2112 ': Steve	002 Hodgetts		
Cmt Plug # 1 from 2,000m to 1,825n	n								
PREFLUSH: Seawater	Volume (m3):	1.6		Density (SG):	: 1				
Additive:		Amount Used:		Additive	:	%	Amount Used		
CEMENT:									
TAIL SLURRY					Additive		litre/sx	Amount Used (litre)	
	Class G :	462 sxs	MT:	19.7	HR 6-L			64	
Mixwater litr/sk:	Yield litr/sk:	1.16	Density sg:	1.89	Dair 3000L			19	
Volume pumped 14.8	m3 Excess:	10	% Oped hole	1.09	Dall 3000L			19	
		10	% Open note		A ddisino		litus /s.v	American I lead (litre)	
TAIL SLURRY (mixed with seawater					Additive		litre/sx	Amount Used (litre)	
Brand: Adelaide Brighton Cement	Class:		MT:						
Mixwater litr/sk:	Yield litr/sk:		Density sg:						
Volume pumped	m3 Excess:		%						
<u>DISPLACEMENT</u>									
Fluid: Mud	Calc. Displace	ment (m3):	16.2			kPa 25	03 Pressure Tested to	6895	kPa
Density sg: 1.24	Actual Displac	ement (m3):	16.0	at Rate	1.27	m3/min	Bleed Back:		m3
<u>activity</u>	Time								
Pump Drill water spacer	6/10/02 0:36	Re	eturns to Surface:	Yes			bbls cement	Nil	
Test Lines	6/10/02 0:42		te/Rotate Casing:						
Pump Drill water spacer	6/10/02 0:48	During;	Circulating		Top Up Job run	: No	sacks of Clas	N/A	
Mix & Pump Tail Slurry Pump Drill water	6/10/02 0:56 6/10/02 1:11		Cementing Displacing						
Displace Slurry	6/10/02 1:14		Wiper Plugs:		Туре	9			
			Bottom						
			Тор						
		Ceme	nting Contractor:	Halliburton	1				
CEMENT JOB DETAIL/REMARKS	ı								
Pumped 0.8 m3 (5bbls) of drillwater, to	ested lines to 6.895 MI	Pa (1,000psi). Pu	mped 0.8 m3 (5bbls)	of drillwater. @	0.64 m3/min				
Mixed & pumped 14.8 m3 (93.4bbls) 4	52sx of tail slurry @ 1	.89sg with 8.8 m3	(55.5bbls) of mix wa	ter. @ 0.95 m3/	/min				
Displaced with 16 m3 (101bbls) of mud	d. @ 1.27 m3/min								

ABANDONMENT CEMENT # 2 Santos OABU WELL: Casino 2 DATE: 7/10/2002 **ELEVATIONS:** RT to seabed (m): 92.8 T.D (m): 2112 RT to MSL (m): PBTD (m): 25 SERIES: Dril Quip SS-10 REPORT BY: Steve Hodgetts Cmt Plug # 1 from 2,000m to 1,825m PREFLUSH: Density (SG): Seawater Volume (m3): 1.6 Additive: Amount Used: Additive: % **Amount Used** CEMENT: TAIL SLURRY Additive litre/sx Amount Used (litre) Class G: 904 sxs MT: 38.6 HR 6-L 83 Mixwater litr/sk: Yield litr/sk: 1.16 Density sg: 1.89 Volume pumped Excess: % Oped hole TAIL SLURRY (mixed with seawater) Additive litre/sx Amount Used (litre) Brand: Adelaide Brighton Cement Class: MT: Mixwater litr/sk: Yield litr/sk: Density sg: Volume pumped Excess: % DISPLACEMENT Pressure Fluid: Calc. Displacement (m3): 14.3 3013 6895 kPa kPa Tested to 1.24 Actual Displacement (m3): 14.1 1.27 Bleed Back: Density sg: at Rate: m3/min m3 <u>ACTIVITY</u> Time Pump Drill water spacer 6/10/02 2:04 Returns to Surface: Yes bbls cement Nil 6/10/02 2:07 Test Lines Reciprocate/Rotate Casing: Pump Drill water spacer 6/10/02 2:10 During; Circulating Top Up Job run: sacks of Clas N/A Mix & Pump Tail Slurry 6/10/02 2:14 Cementing Displacing Pump Drill water 6/10/02 2:50 Displace Slurry 6/10/02 2:52 Wiper Plugs: Type Bottom Тор **Cementing Contractor:** Halliburton CEMENT JOB DETAIL/REMARKS Pumped 0.8 m3 (5bbls) of drillwater, tested lines to 6.895 MPa (1,000psi). Pumped 0.8 m3 (5bbls) of drillwater. @ 0.8 m3/min Mixed & pumped 29.7 m3 (186.8bbls) 904sx of tail slurry @ 1.89sg with 17.6 m3 (111bbls) of mix water. @ 0.95 m3/min Displaced with 14.1 m3 (89bbls) of mud. @ 1.27 m3/min

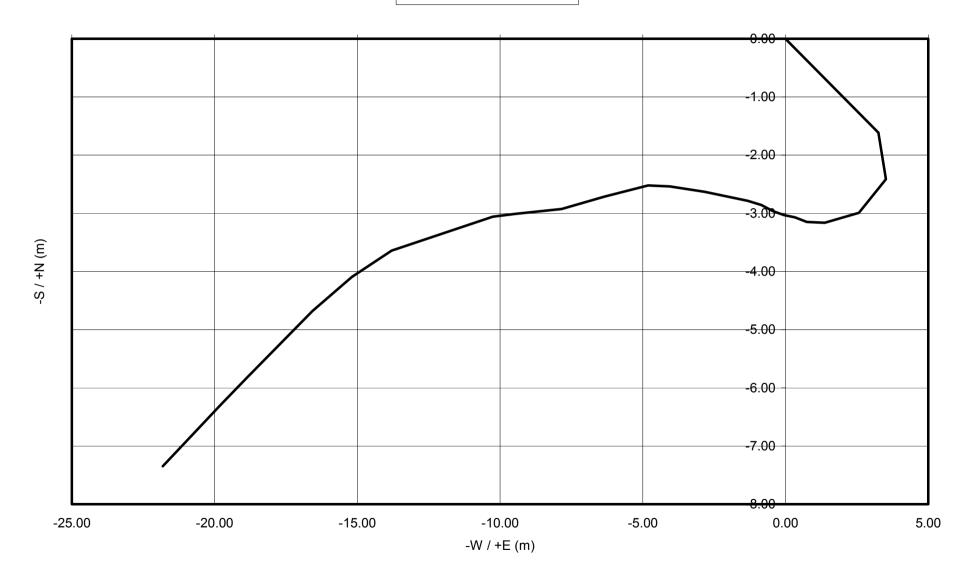
ABANDONMENT CEMENT #3 Santos OABU WELL: Casino 2 DATE: 7/10/2002 **ELEVATIONS:** RT to seabed (m): 92.8 T.D (m): 2112 RT to MSL (m): 25 PBTD (m): SERIES: Dril Quip SS-10 REPORT BY: Steve Hodgetts Cmt Plug # 1 from 2,000m to 1,825m PREFLUSH: Density (SG): Seawater Volume (m3): 1.6 Additive: Amount Used: Additive: **Amount Used** CEMENT: TAIL SLURRY Additive litre/sx Amount Used (litre) Class G: 387 sxs MT: 16.5 Mixwater litr/sk: Yield litr/sk: Density sg: 1.89 Volume pumped Excess: % Oped hole TAIL SLURRY (mixed with seawater) Additive litre/sx Amount Used (litre) Brand: Adelaide Brighton Cement Class: MT: Mixwater litr/sk: Yield litr/sk: Density sg: Volume pumped Excess: % DISPLACEMENT Pressure Fluid: Calc. Displacement (m3): 6895 5.6 kPa 1951 kPa Tested to 1.24 Actual Displacement (m3): 5.4 1.11 Bleed Back: Density sg: at Rate: m3/min m3 <u>ACTIVITY</u> Time Pump Drill water spacer 6/10/02 14:50 Returns to Surface: Yes bbls cement Nil 6/10/02 14:54 Test Lines Reciprocate/Rotate Casing: Pump Drill water spacer 6/10/02 14:58 During; Circulating Top Up Job run: sacks of Clas N/A Mix & Pump Tail Slurry 6/10/02 15:08 Cementing Displacing Pump Drill water 6/10/02 15:21 Displace Slurry 6/10/02 15:23 Wiper Plugs: Type Bottom Тор **Cementing Contractor:** Halliburton CEMENT JOB DETAIL/REMARKS Pumped 0.8 m3 (5bbls) of drillwater, tested lines to 6.895 MPa (1,000psi). Pumped 0.8 m3 (5bbls) of drillwater. @ 0.95 m3/min Mixed & pumped 12.7 m3 (80bbls) 387sx of tail slurry @ 1.89sg with 7.6 m3 (47.6bbls) of mix water. @ 0.8 m3/min Displaced with 5.4 m3 (34bbls) of mud. @ 1.27 m3/min

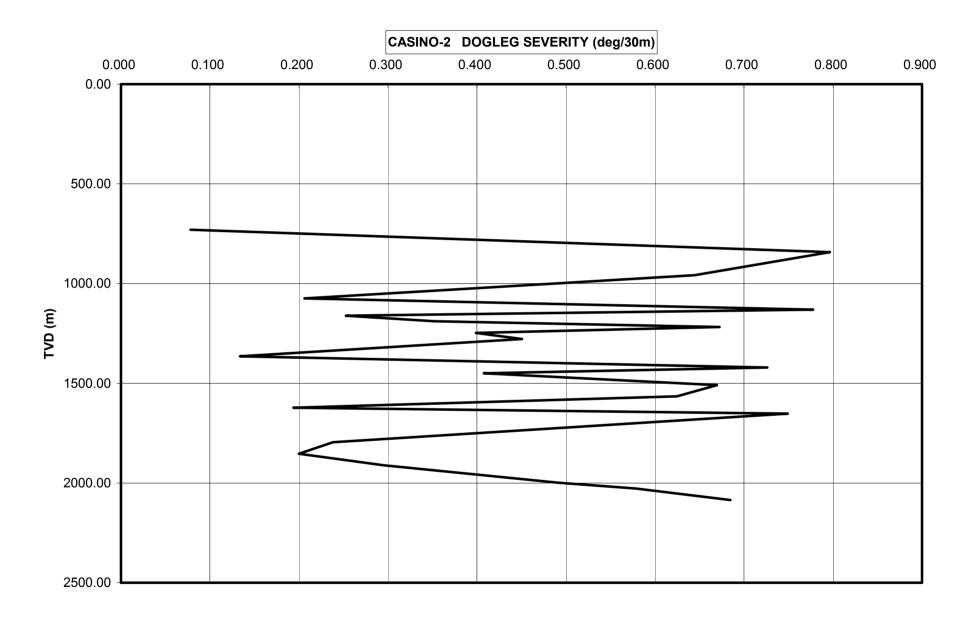
Santos OABU		ABANDONMENT CEMENT # 4								
WELL: Casino 2 ELEVATIONS:		o seabed (m): T to MSL (m) : SERIES:	92.8 25 Dril Quip SS-10		DATE: T.D (m): PBTD (m): REPORT BY:	7/10/2 2112 : Steve	002 Hodgetts			
Cmt Plug # 1 from 2,000m to 1,825m										
PREFLUSH: Seawater Additive:	Volume (m3):	1.6 Amount Used:		Density (SG):		%	Amount Used			
CEMENT: TAIL SLURRY Mixwater litr/sk:	Class G : Yield litr/sk:	120 sxs 1.16	MT: Density sg:	5.1 1.89	Additive		litre/sx	ount Used	(litre)	
Volume pumped 3.9 m TAIL SLURRY (mixed with seawater)	3 Excess:	10	% Oped hole		Additive		litre/sx	ount Used	(litre)	
Brand: Adelaide Brighton Cement Mixwater litr/sk: Volume pumped m	Class: Yield litr/sk: 3 Excess:	ı	MT: Density sg: %							
DISPLACEMENT Fluid: Mud	Calc. Displace	ment (m3):	0.9			kPa 1517	Pressure Tested to	6895	kPa	
Density sg: 1.24	Actual Displac	ement (m3):	0.8	at Rate:	1.27	m3/min	Bleed Back		m3	
### Time		Reciprocate During;	turns to Surface: e/Rotate Casing: Circulating Cementing Displacing Wiper Plugs: Bottom Top	Yes bbls ceme Top Up Job run: No sacks of C				Nil N/A		
		Cemen	nting Contractor:	Halliburton	l					
CEMENT JOB DETAIL/REMARKS Set EZSV Packer @ 177 mts Pumped 0.8 m3 (5bbls) of drillwater, tested lines to 6.895 MPa (1,000psi). Pumped 0.8 m3 (5bbls) of drillwater. @ 0.8 m3/min Mixed & pumped 3.9 m3 (24.7bbls) 120sx of tail slurry @ 1.89sg with 2.3 m3 (14.7bbls) of mix water. @ 0.8 m3/min Displaced with 0.8 m3 (5bbls) of mud. @ 1.27 m3/min										
Displaced with 0.6 m3 (SDDIS) of Midd. @	1.27 HIS/MIN									

SECTION 15:- DEVIATION SUMMARY


SURVEY CALCULATION METHOD USED: MINIMUM CURVATURE

WELLNAME: Casino-2


ALL BEARINGS CORRECTED TO TRUE NORTH. DEPTHS IN FEET (MDRT)


REFERENCED TO WELLHEAD COORDINATES

No.	MD	INC	AZ	+E/-W	+N/-S	Closure	Direction	TVD	Build/30m	Walk /30m	Dog Leg	V.Sect.
1	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00				0.0
2	729.86	0.57	116.39	3.25	-1.61	3.6	116.39	729.85	0.078	0.000	0.078	1.6
3	842.72	0.61	203.59	3.51	-2.41	4.3	124.48	842.70	0.035	77.264	0.796	2.4
4	958.13	0.69	268.77	2.57	-2.99	3.9	139.29	958.11	0.069	56.477	0.644	3.0
5	1074.07	0.52	252.87	1.37	-3.16	3.4	156.52	1074.04	-0.147	-13.714	0.206	3.2
6	1130.64	0.79	283.25	0.75	-3.15	3.2	166.63	1130.61	0.477	53.703	0.778	3.1
7	1161.14	0.82	278.20	0.33	-3.07	3.1	173.91	1161.10	0.098	-16.557	0.253	3.1
8	1188.85	0.76	272.62	-0.05	-3.03	3.0	180.99	1188.81	-0.217	-20.137	0.352	3.0
9	1217.68	0.78	286.97	-0.43	-2.97	3.0	188.27	1217.64	0.069	49.775	0.672	3.0
10	1247.53	0.88	282.51	-0.85	-2.86	3.0	196.55	1247.49	0.335	-14.941	0.399	2.9
11	1277.80	0.94	274.80	-1.32	-2.79	3.1	205.41	1277.75	0.198	-25.471	0.450	2.8
12	1364.44	1.05	276.88	-2.82	-2.63	3.9	226.98	1364.38	0.127	2.401	0.134	2.6
13	1421.10	1.45	272.46	-4.05	-2.54	4.8	237.93	1421.03	0.706	-7.801	0.726	2.5
14	1450.24	1.55	270.01	-4.81	-2.52	5.4	242.35	1450.16	0.343	-8.408	0.408	2.5
15	1508.96	1.49	255.36	-6.35	-2.72	6.9	246.84	1508.86	-0.102	-24.949	0.670	2.7
16	1565.71	1.58	268.16	-7.84	-2.93	8.4	249.53	1565.59	0.159	22.555	0.625	2.9
17	1622.24	1.67	265.96	-9.44	-3.01	9.9	252.32	1622.09	0.159	-3.892	0.194	3.0
18	1652.08	1.45	267.41	-10.25	-3.06	10.7	253.40	1651.92	-0.737	4.859	0.749	3.1
19	1796.08	1.43	253.78	-13.80	-3.64	14.3	255.22	1795.88	-0.014	-9.465	0.238	3.6
20	1853.43	1.50	250.23	-15.19	-4.10	15.7	254.91	1853.21	0.122	-6.190	0.200	4.1
21	1911.17	1.48	243.72	-16.57	-4.68	17.2	254.23	1910.93	-0.035	-11.275	0.295	4.7
22	1998.68	1.91	243.21	-18.89	-5.84	19.8	252.82	1998.40	0.491	-0.583	0.492	5.8
23	2028.08	2.08	243.11	-19.80	-6.30	20.8	252.35	2027.78	0.578	-0.340	0.578	6.3
24	2085.35	2.47	242.08	-21.82	-7.35	23.0	251.39	2085.01	0.681	-1.798	0.685	7.3

CASINO-2 PLAN VIEW

