

ES WELL REPORT ATTACHMENT TO WCR WHITING-1 (W807)

ES WELL REPORT

ESSO AUSTRALIA LTD.

0 5 SEP 1983

WHITING NO. 1

OIL and GAS DIVISION

CORE LABORATORIES AUSTRALIA (QLD.) LTD.

7 July 1983

ESSO AUSTRALIA LTD. Esso House 127 Kent Street Sydney N.S.W. 2001

ATTENTION: MR. K. KUTTAN

Dear Mr. Kuttan,

Please find enclosed five (5) copies plus the original well report for WHITING NO. 1.

If you have any enquiries concerning this well, please do not hesitate to contact us.

Yours very truly CORE LABORATORIES INTERNATIONAL LTD.

M. MOWATT

UNIT SUPERVISOR

ARC:pc

INDEX

- 1. INTRODUCTION
- 2. RIG SPECIFICATIONS
- 3. WELL INFORMATION, PROGRESS AND HISTORY
- 4. LITHOLOGY AND CORE-O-GRAPHS
- 5. EXTENDED SERVICE PACKAGE:
 - A. INTRODUCTION
 - B. EQUIPMENT
 - C. MONITORING EQUIPMENT
- 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS
- 7. B.H.T. ESTIMATION
- 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT-
- 9. GAS ANALYSES :
 - A. COMPOSITION GRAPHICS
 - B. SIDEWALL CORES
- 10. CORELAB DATA SHEETS :
 - A. BIT RECORDS
 - B. MUD DATA
 - C. R.F.T. DATA
 - D. PRODUCTION TEST DATA

COMPUTER DATA LISTINGS :

BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES DATA LIST A DATA LIST B DATA LIST C DATA LIST D

APPENDED PLOTS :

DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG

1. INTRODUCTION

WHITING NO. 1 was drilled by Esso Australia Ltd. in the Bass Strait, Australia.

Well co-ordinates:

Latitude : 38° 14' 11.77" S Longitude : 147° 53' 00.93" E

The well was drilled by South Seas Drilling Company's semi-submersible rig, "Southern Cross", and monitored by Core Laboratories Intermediate Extended Service Field Laboratory 802.

WHITING NO. 1 was spudded on 6th March 1983 and reached a total depth of 3011m on 5th April 1983, a total drilling time of 31 days. The Main objective of the well was to test the hydrocarbon potential of an intra-Latrobe Group closure between Barracouta and Snapper. The well was production-tested at the top of the Latrobe Formation (1483-1486 metres).

Elevations were:

Kelly	bushings	to	mean	sea	leve:	1.		 	 • •	 	21m
Water	depth		• • • • •					 	 	 	53m
Kelly	bushings	to	mean	sea	bed		• •	 	 	 	74m

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of WHITING NO. 1 were as follows:

М.	MOWATT	-	Unit Supervisor
G.	MUNN	-	Pressure Engineer
T.	CHARLES	_	Pressure Engineer
В.	GIFTSON	-	Logging Crew Chief
В.	LOWMAN	-	Well Logger
E.	KARP	-	Well Logger
P.	DENTON	-	Well Logger
A.	BOCK	-	Sample Catcher
G.	KILLEN	-	Sample Catcher
N.	ELLOI T T	-	Sample Catcher
T.	GROTH	-	Sample Catcher

2. RIG SPECIFICATIONS

	RIG INFORMATION SHEET
	PANY ESSO AUSTRALIA LTD.
MINIMINIAB COMP	LUITETNO NO 1
MELL WELL	WHITING NO. 1
OWNER	SOUTH SEAS DRILLING COMPANY
NAME AND NUMBER	SOUTHERN CROSS (NO 107)
TYPE	SEMI-SUBMERSIBLE , TWIN HULLED.
DERRICK, DRILL FLOOR	·
& SUBSTRUCTURE	LOAD CAPACITY OF 1 000 000 lbs
DRAWWORKS	OILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS.
•	
CROWN BLOCK	LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS.
TRAVELING BLOCK	OILWELL A 500
SWIVEL	OILWELL PC 425
ELEVATORS	BYRON JACKSON MODEL GG CAPACITY .350 TON
KELLY & KELLY SPINNER	DRILLCO 54"x 50' HEX KELLY
ROTARY TABLE	OILWELL A 37% SINGLE ELECTRIC MOTOR
ROTARY SLIPS	VARCO DCS-L
MUD PUMPS	TWO OILWELL A 1700PT. RATED AT 1600HP
	FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL
	TANK HAVING A CAPACITY OF 105 BBL.
MUD SYSTEM	TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100
	HP ELECTRIC MOTORS.
	DESANDER : 1 DEMCO 4 CONE 12" MODEL NO 124
	DESILTER : 1 DEMCO 4"-16H 16 CONE
	DEGASSER: 1 SWACD MODEL NO 36
DI ON CHE COLOR	SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT.
BLOW OUT PREVENTORS	THREE SHAFFER L.W.S. 1830 - 10 000 psi
	TWO HYDRIL G.L. $18\frac{3}{4}$ - 5000 psi
	EDID VALVEON ACCIMILIATORS
WELL CONTROL EQUIP.	FOUR VALV CON ACCUMULATORS. 2" - 10 000ps CHOKES: 2 C I W AR L H2 2 1/16" 10 000 - 1 1 CWASS SUBSECTION
TUBULAR DRILLING	CHOKES:2 C.I.W. ABJ H2 2 1/16" - 10 000 psi,1 SWACO SUPER CHOKE DC : $6\frac{1}{4}$ " × 2 13/16" (4" IF TJ)
EQUIPMENT	8 " x 2 13/16" (6 5/8" H90 TJ)
	8 " x 2 13/16" (6 5/8" H90 TJ) 9¾" x 3" (7 5/8" H90 YJ)
	HWDP: 5" 501b/ft GRADE G (62" 00 42" IF TJ)
	DP : 5" 19½1b/ft GRADE G&E(6 3/8" OD 4½" IF TJ)
CEMENTING UNIT	HALLIBURTON HT-400 UNIT
MONITORING	MARTIN DECKER : MUD VOLUME TOTALIZER
EQUIPMENT	6 CHANNEL DRILLING RECORDER
	4 PRESSURE GAUGES
	FLOWSHOW INDICATOR
POWER SUPPLY	2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH
	1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP
DIRECTIONAL EQUIP.	

MISCELLANEOUS (E.G. RISER, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT)
RISER:REGAN FC-7 TELESCOPIC 21" ID. PLUS FLOW D'IVERTOR.

CASING POWER TONGS:ECKEL 13 3/8"(20 000 ft 1bs),20" (35 000 ft 1bs)

CMT BULK TANKS:3x1570cu ft.RISER TENSIONER:6WESTERN GEAR,50'STROKE,80 0001bs.

MUD BULK TANKS:3x1570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 1bs,40'STROKE

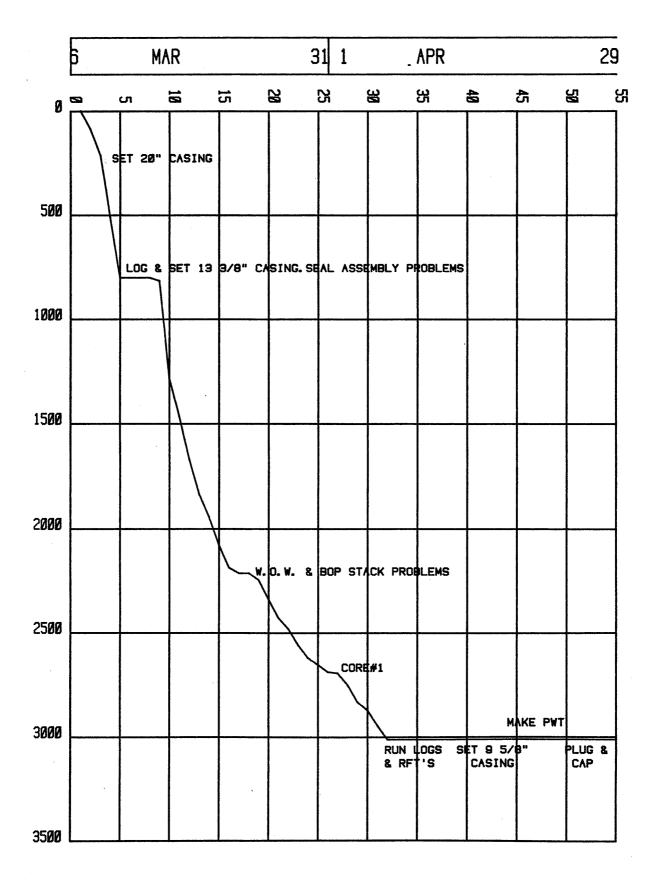
7520-485 (CL 1151)

3. WELL INFORMATION, PROGRESS AND HISTORY

			· · · · · · · · · · · · · · · · · · ·									
MMIN							WEL	L INFORM	IATION S	SHEET		
	LAB COMPANY ESSO AUSTRALIA LTD.											
								Sheet N	Vo1_			
WELL NAME	WHITING NO. 1											
OPERATOR	ESSO AUSTRALIA LTD.											
PARTNERS	B.H.P.											
RIG	OWNER SOUTH SEAS DRILLING COMPANY											
	NAME OR N	UMBER	SOUTHERN CROSS									
	TYPE		SEMI-SUBMERSIBLE									
LOCATION	LATITUDE (X)	38° 14'	11.77"	S	LONGIT	UDE (Y)	147° 53'	0.93"	F		
	FIELD		GIPPSLA	ND BASI	J .	AREA		BASS STI				
	COUNTY		AUSTRAL:	ΙA		STATE		VICTORIA				
ł	COUNTRY		AUSTRAL	ΙΑ								
	DESCRIPTIO	N	EXPLORA:	rion				·				
DATUM POINTS	Ground Eleva	ition	_				Ground Level	_				
	Mean Water [Depth	53M			111111	Water Level	21M				
DATES	SPUD		6TH MARC			TOTAL		5TH MARC				
HOLE SIZES	Depth From		Bit Size	No. of Bits	No. o	f Reamers	Date From	Date To	Cased	Logged		
	74.24	211	26"	1			6/3/83	7/3/83				
	211	800	17½"	1			8/3/83	9/3/83				
	800	3011	12½"	10			13/3/83	5/4/83	3 10/3/8	3 YES		
							<u> </u>			ļ		
	ļ						<u> </u>			 		
l										-		
	<u> </u>						 			+		
DRILLING	Depth From	Depth To	Weights		Type		<u> </u>			<u>-L,</u>		
FLUID	74 211		8.6 T	SEAWATER								
	211			8.6 TO 9.6 SEAWATER GEL								
	800	3011	9.0 TO 9.6		SEAWATER GEL SEAWATER PREHYDRATED GEL							
			7.0 10 9.0 TO		DEMANDE INDITIONALED GED							
			то									
·			то									
			то									
			Т	O								
WIRELINE	Depth From	Depth To		Date Run	Logs	Run	· · · · · · · · · · · · · · · · · · ·					
LOGGING	800	196	17½"	9/3/83	BHO	C/GR/CA	AL					
	3011	778	12坎"	6/4/83		-MSFL		 				
	3011	778	12½"	7/4/83		L-CN L	G – GR					
	3011	778	12½"	7/4/83		C-GR						
	2997	1200	12½"	7/4/83	HD'							
		-	12½"	9/4/83		NOS :						
	_	_	12½"	11/4/83 12/4/83	RF	NOS C	$\frac{3}{6}$, 4, 5					
RISER,	Depth From	Donth To	0D	12/4/63 ID	Weight	Grade		Date Run	Cement Stag	es Excess		
CASING &	Depth From	Depth To	21.5"	21"		Grade	- RISER	2010 MUII	Cernerit Gray			
LINER	74	196	20.0"	19.124"	94.4	V_52	JV BOX	7/3/83	"G" 1	T		
	74	778		12.615"				10/3/83	"G" 1	 		
1 .	74	2972		8.861"			BUTT	15/4/83	"G" 2			
			, -					,,,,,,,		1		
			1									
			1			1						

MMM	N
	MIAR

01404404	`	ESSO	AUSTRALIA	LTD.
OMPANY.		-550	HOULIGHEN	U.D.


WHITING NO. 1

WELL INFORMATION SHEET (SUPPLEMENTARY)

Sheet No. 2

WIRELINE LOGGING (continued)

Depth from	Depth to	size	Date run	Logs run
_		12坛"	13/4/83 14/4/83 19/4/83	CST 1, 2 CST 3 CBL/CCL
_	-	124"	14/4/83	CST 3
2972		8.681"	19/4/83	CBL/CCL
1483	1486	8 681"	21/4/83	PWT 1
1705	1400	0.001	21/4/03	I WI I
	<u> </u>			
				·
		<u> </u>		
	<u> </u>			
	 			
		t		
		 		
··				
		!		
				
· · · · · · · · · · · · · · · · · · ·				
				
		ļ		
				
		 	<u> </u>	
				
		<u> </u>		
		1		

WELL HISTORY

6th March 1983. Towed to new location, 38° 14' 11.77" S and 147° 53' 0.93" E. Set anchors and ballasted rig. Spudded WHITING NO. 1 at 22:05 hours. Drilled to 86m.

 $\frac{7 \text{th March 1983}}{\text{POOH and ran 20"}}$ Drilled ahead to 211m. POOH and made wiper trip. POOH and ran 20" casing, setting it at 196m. Cemented the casing. Rigged up to run the stack.

8th March 1983. Ran stack and riser. Nippled up diverter. Made up new BHA, RIH, and tagged CMT at 190m. Tested diverter system and then drilled cement and new hole at 511m.

9th March 1983. Drilled $17\frac{1}{2}$ " hole from 51lm to 800m, circulated bottoms up, dropped survey and POOH to shoe. Background gas rose from 5 units to 40 units in this interval, and was predominantly C_1 with trace C_2 - C_4 . The survey was recovered (3/4°) and then RIH (3m fill). Circulated bottoms up, 0.9/62/9 units trip gas. POOH.

10th March 1983. Continued POOH then ran Schlumberger (BHC/GR/CAL). Some tight spots were encountered during the logging run. A wiper trip was then made, and the pipe had to be washed down from 70lm to 719m, RIH to 800m and circulated bottoms up with 0.9/25/9 units trip gas. POOH. 59 joints of 13-3/8" casing were run, the circulating head rigged up and 3200 stokes circulated through the casing.

llth March 1983. The casing was then cemented at 778m. The wellhead was then washed from 68m to 73m. POOH and RIH to set the seal assembly. The seal assembly and BOP were tested from 200 psi to 5000 psi. POOH. Seal assembly was still on the cup tester tool. Ran the Cameron wash tool and washed from 66m to 72m. POOH, attempted to set seal assembly unsuccessfully. Recovered seal assembly fish. Washed riser down to 13-3/8" hanger and attempted to run seal assembly with no success. RIH and flushed riser. Attempted to set seal assembly.

12th March 1983. Attempted to run seal assembly with no success.

13th March 1983. Run seal assembly on specially made running tool, as casing hanger suspected of being out of true. Tested seal assembly and BOP's successfully then RIH with No. 3 (HTC X3A), tagging cement at 742m. Drilled cement to 800m and then drilled 5m new hole and made PIT (13.5 ppg). Drilled ahead to 815m (trace gas levels).

14th March 1983. Drilled ahead in Gippsland limestone and through a gradational change into the Lakes Entrace formation and then the Gurnard formation. Background gas rose from 0.2 units to 0.5 units after 1220m, with a maximum of 1.3 units from 1230m. The average hole diameter calculated from a carbide lag check at 1184m was 13". Drilling continued to a midnight depth of 1280m.

15th March 1983. Drilling continued into the Latrobe formation, samples were circulated up at 1287m and 1297m. After flow checks (negative) no shows were seen and gas levels were 0.6/3.7/0.5 units from 1287m, and 0.6/2.0/0.4 units from 1297m. Drill rates had increased from 20m/hour to 160m/hour in these breaks. The bit was pulled at 1339m after severe torque increase having been on bottom for 19.2 hours and 176000 turns. No. 4 (HTC J22) was RIH; a tight spot was encountered

at 1312m and the hole was reamed to 1339m. Trip gas was masked by Gumbo. Drilling continued with samples circulated out at 1368m (gas 2.0/2.6/1.1 units), 1398m (gas 0.2/0.5/0.1 units) and 1457m (gas 0.5/1.2/0.5 units) after flow checks. No shows were evident in the samples. Background gas levels were 0.5 units, with a maximum of 6 units from 1371m.

16th March 1983. Drilled ahead, conducting flow checks at 1465m (-ve), 1480m (-ve), 1506m (-ve) and 1558m (-ve), with high torque at 1496m, 1547m and 1587m. Background gas was 0.2-0.5 units, with peaks of 7.5 from 1470m, 11.1 units from 1480m, 20 units from 1530m and 18 units from 1657m. The formation consisted of interbedded sandstone, siltstone and coal.

17th March 1983. Drilled on to 1668.2m, where the bit was pulled, due to low ROP's, after 25 on bottom hours and 120000 turns. There were no teeth left when it reached the surface. Tight hole was encountered on POOH at 1278-1364m and up to 100 000 lbs overpull was required. RIH with No. 5 (HTC J44) and reamed from 1278-1364m. RIH and drilled ahead. Flow checked (-ve) at KD 1675m after ROP's increased from 3,/hr to 60m/hr. It proved to be a coarse grained loose sandstone when a sample was caught. The ROP continued at 30-50m/hr to 1700m, and a gas peak of 44 units was detected from a coal at 1695m. The drilling rate then dropped down to 5-10m/hr. A flow check was conducted at 1715m, no flow was detected and samples were circulated out. The BU sample had no show and gas levels increased only slightly, 2.6/4.2/0.9 units. Flow checks were conducted after drilling breaks at 1733m, 1742m, 1781m and 1827m, no flow was detected. Gas levels rose with peaks of 136 units (1723m), 20 units (1731m), 102 units (1742m), 39 units (1750m), 53 units (1790m), 38 units (1802m) and 11 units (1832m). Some of these coincided with connections, but all came from coals and so the possibility of connection gas, although considered, was disregarded.

18th March 1983. Drilled ahead from 1833 to 1849m where a flow check was made (no flow) and drilling resumed. At 1877m another flow check was made (no flow) - samples were circulated up at 1878m when the drilling break continued, BU gas was 2/49/1.5 units, with no show in the sample. Further flow checks were made, after drilling breaks at 1894m and 1897m (no flow). The bit was pulled at 1942m, due to increased torque. The bit had drilled 274m in 31 hours. It was graded 3,8,I. Background gas for the day was 1-2 units with peaks from coals at 1832m (11 units), 1848m (15 units), 1876m (49 units), 1897m (10 units).

19th March 1983. RIH with No. 6 (HTC J22), having picked up a shocksub in the BHA. Drilled $12\frac{1}{2}$ " hole down to 2078m. Drill-breaks were associated with coals predominantly. Maximum gas came from a coal at 1957m (27 units), and the background gas was 2 units.

20th March 1983. Drilled to 2185m, at which point the bit was pulled due to decreased ROP's (below 2m/hr). Flow checks had been made at the following depths: 2084, 2113, 2126 and 2143m, all proving negative. Maximum gas in the drilled interval was 28 units (from Coal at 2113m), and the BG remained steady at 2 units. On pulling out, overpull was experienced between 2100 and 2130m.

21st March 1983. RIH with bit No. 7 (HTC J11, $12\frac{1}{4}$ " 3x18), reaming the tight sections. Drilled to 221lm, at which point it was decided to POOH to the shoe, due to inclement weather. The mud pits were emptied, and the riser unlatched from the lower section of the

stack, and pulled to the surface. Waited on weather - high seas and strong winds expected.

22nd March 1983. Waited on weather - rig on red alert. Ran the upper stack and riser.

23rd March 1983. Tested the stack. Pulled Bit No. 7, which had been hung off in the rams for 2 days; then RIH with Bit No. 8 (J22, $12\frac{1}{4}$ ", 3x18), and drilled to 2245m. Trip gas was 51 units, maximum drill gas was 10 units (from coal at 2219m) and BG was 0.2 units. Traces of CO₂ were detected between 2211 and 2230m.

24th March 1983. Drilled to 2338m at 3-4m/hr on average. (Formation consisted of interbedded Siltstones, Claystones, Coals and Sands). Maximum gas was 26 units (Coal 2325m) and the background was 1 unit.

25th March 1983. Drilled to 2428m at 3-5m/hr, with 9-15m/hr through coals. Gas peaks of 40 to 100 units were observed from the coals over a BG of 2 to 4 units. Maximum gas was 103 units (Coal, 2400m). High gas peaks were observed as drilling continued through interbedded sand and carbonaceous siltstones below 2400m.but although sand content increased from 10 to 50%, only very rare fluorescence (weak crush cut) was evident. The bit was pulled at 2428m, due to low ROP's, after dropping a survey (1° when retrieved) and BCO was 2,3,I.

26th March 1983. Running in hole with Bit No. 9 ($12\frac{1}{4}$ " HTC J22), TG was 2.1/44/4.2 units as drilling continued. Maximum gas was 31.5 units (Coal, 2438m) over background of 2 units and other peaks, also from coal were 29.5 units, 2441m and 25.5 units, 2443m. The average ROP was 3-6 m/hr (10m/hr in coals) to 2462m, increasing to 8m/hr below that point. 20.9 units and 27.1 units of gas were recorded from sands at 2462m and 2469m respectively, interbedded with 60% siltstone. Drilling continued to 2480m.

27th March 1983. Drilled to 2557m at an average ROP of 2-3m/hr (8-10m/hr in coals) with background gas of 0.5-10 units. Maximum gas was 9.7 units (sandstone, 2490m) and a 5-stand wiper trip was conducted at 2551m which yielded 3.0/4.1/1.6 units of WTG on returning to bottom.

28th March 1983. Drilled ahead to 2619m at a steady ROP of 2.4- 3.0~m/hr with occasional 4.5-5m/hr. Maximum gas was 10.5 units (Coal, 2565m) over a background level of 1.0-1.5 units. Sands at 2577m and 2594m respectively yielded 4.2 and 2.7 units of gas. A drilling break of 3.8-7.2m/hr was circulated out at 2619m but maximum gas at BU was 1.9/3.0/1.6 units with only a trace of sand in predominantly siltstone.

29th March 1983. Drilling to 2634m (average ROP of 2.5m/hr), maximum gas was 6.7 units from coal at 2627m and background gas was 1.0-1.3 units. Tripped to change the bit at 2634m, after dropping a survey (misrun), the bit condition out was 6-2-I. Running in with Bit No. 10 (HTC J33), trip gas was 0.8/32.3/1.0 units and drilling continued to 2652m at an average ROP of 2.0-3.0m/hr.

30th March 1983. Drilling to 2674m, the section 2652m - 2674m was then reamed after high torque before continuing ahead to 2681m. Maximum gas was 24 units (sand, 2666m) and background gas was 1-2 units. After a drilling break of 3-9.2m/hr and flow check (-ve) at 2681m the well was circulated out indicating 2.4/19.0/2.5 units of gas from a sandstone (bright yellow fluorescence with slow streaming

cut). Dropping a survey (misrun) and POOH, the core barrel was made up and RIH. Trip gas was only 2.6/3.0/2.4 units and Core No. 1 was cut from 2681 to 2687m.

31st March 1983. Cutting Core No. 1 to 2693.6m, recovery was 9.57m out of 12.6m cut (76%) and maximum gas while coring was 4.6 units (2688.4m). The BOP stack was then tested prior to RIH with Bit No. 11 (HTC J22) and the section 2645m to 2658m was reamed. Core bit condition out was 5% worn.

lst April 1983. Reaming continued from 2658m to the top of the rat hole at 2681m and maximum gas while reaming was 2.6/18/5.0 units. Completing reaming of the core hole to 2693m, trip gas to surface was 3/34.6/4 units and drilling of 12½" hole proceeded to 2748m. Average ROP was 3-4m/hr and a drilling break of 4.4 -- 9.8m/hr at 2744m was flow checked (-ve), with maximum gas also coming from this break, 14.7/46.4/24.2 units (coal) over background gas of 2-5 units. (Lithology immediately below the cored section was mainly volcanic rock, grading back to normal sediments by 2725m). A flow check (-ve) was also conducted at 2718m after a small pit gain.

2nd April 1983. Drilling ahead to 2777m, a drilling break of 5 - 9.6m/hr was flow checked (-ve) and circulating out gave 29.6 units of gas from a sand. A break of 5.5 -- 12.1m/hr at 2753m was flow checked (-ve) but not circulated out, and maximum gas for the day of 8/67/9 units was from a sand at 2753m. Drilling continued at an average ROP of 3-5m/hr to 2810m where a 5-stand wiper trip was conducted (no drag). Drilling ahead to 2830m, wiper trip gas was negligible, and another break of 2.6-13.7m/hr was flow checked (-ve) and circulated out yielding 29 units of gas from a sand. Background gas was still 2-5 units.

3rd April 1983. Drilling ahead to 2840m (average ROP 2-3m/hr), the bit was pulled when the ROP dropped below 2m/hr. A survey was dropped (0°) and POOH, bit condition out was 3-3-I. RIH with Bit No. 12 (HTC J22), drilling continued to 2870m with trip gas to surface of 3.3/5.3/2.0 units. Background gas was 2-4 units and a drilling break of 4.9 - 13.6m/hr, flow checked (-ve), produced the maximum gas for the day of 4.1/10.3/3.6 units at 2860m (sand with trace fluorescence and no cut). Another flow check at 2865m after a small pit gain indicated no flow.

4th April 1983. Drilling ahead to 2943m (average ROP of 2-3m/hr), flow checks were made (both negative) at 2900m and 2903m, the latter being circulated out after a drilling break of 4-16.1m/hr (maximum gas 1.6 units, sand.) Other breaks observed were from coals that drilled at up to 16m/hr yielding up to 19 units of gas over a background of 3-5 units. (2878m, 2923m and 2931m) Maximum gas for the day was 2.2/19.3/3.3 units from the coal at 2931m.

5th April 1983. Drilling continued to 3011m where increasing winds, gusting up to 100 knots, forced commencement of POOH. Average ROP to 3011m was 3m/hr and a flow check (-ve) was conducted at 2981m after a drilling break of 4-17.7m/hr. (1.6/8.8/0.7 units of gas in a sandstone with 10% fluorescence, no cut.) Maximum gas for the day was 4.3/11.4/4.7 units at 2964m (sand) and background levels were 2-4 units on average.

6th April 1983. POOH into the casing, the Pipe was hung off the top rams and backed off at the hang-off tool. After closing the shear rams and displacing the riser, POOH was completed to WOW. Weather

subsiding by 09:30 hours and RIH, the riser was displaced with mud and the well monitored through the kill line prior to opening the shear rams. Screwing into the hang-off tool, the remaining pipe in the casing was POOH. Retrieving a survey, deviation was 1° and bit condition out was $4-2-\frac{1}{4}$. Schlumberger were then rigged up and RIH. Schlumberger logging - DLL-MSFL-GR (3011m - 778m)

7th April 1983. Schlumberger logging:

LDL-CNLG-GR (3011 - 778m) BHC-GR (3013 - 778m) HDT (2997 - 1200m)

8th April 1983. Made a wiper trip, washing and reaming to bottom. There was 6m of fill. Circulated and conditioned the mud to 9.7 ppg (T.G. was 1-30-4 units). No drag was experienced when POOH. Further Schlumberger logs were run:

EPT (3009 - 1200m) Velocity Survey

9th April 1983. Continued running the velocity survey, then RFT run No. 1 (pretests) was made. Problems occurred with the tool associated with the head, and shear pin. Ran RFT No. 2 (pretests). Hole took $29\frac{1}{2}$ bbls today.

10th April 1983. Completed RFT No. 2 (pretests). Conducted a wiper trip. Maximum trip gas was lll units. The hole took an extra 14 bbls on the trip out.

11th April 1983. Schlumberger ran RFT No. 3 (from 1482m), 4 (from 2801.5m), 5 (pretests).

12th April 1983. Completed RFT No. 5 by taking a sample from 2418.0m. Conducted a wiper trip. Ran RFT No. 6, recovering samples from 140lm. Attempted to run sidewall core tool but the tool became stuck at 2060m.

13th April 1983. Freed the CST tool and retrieved same. Conducted a wiper trip (trip gas was 4-48-4 units). Schlumberger made two sidewall core runs.

14th April 1983. Schlumberger made a third sidewall core run. Performed a wiper trip. Wiper trip gas was 7-14-2 units. 26m of fill was encountered during the wiper trip. Due to inclement weather, pipe was RIH and mud circulated.

15th April 1983. Continued circulating then POOH and ran 9-5/8" casing.

16th April 1983. Continued running 9-5/8" casing, circulated through the casing. BU gas was 0.2-5.6-1.5 units. A 50 bbls water spacer was pumped prior to 146 bbls of cement slurry (15.8 ppg) which was then displaced, maximum gas was 4 units. Circulation then commenced through the DV collar whilst WOC. BU gas was 1.5-4-1 units. The second cement stage was then completed with a maximum of 2 units gas during displacement. The casing running string was retrieved and then the seal assembly was run but could not be inserted.

17th April 1983. POOH with seal assembly and inspected same. RIH and washed hanger whilst modifying the running tool. The seal

assembly was successfully run and BOP's tested from 200 to 5000 psi. The 8" drill collars were then laid down, as were 10 joints of HWDP and the core barrel prior to running an 8½" HTC 3AJ bit. Cement was tagged at 2091m, and drilled to 2099m, where the "DV" tool was encountered and drilled out. Continued RIH to 2919m whre cement was tagged. Circulated to clean the hole before POOH.

18th April 1983. Continued POOH and then rigged up Schlumberger to run CBL/CLL. Due to excessive casing scale this was unsuccessful and Schlumberger POOH and rigged down. RIH with a casing scraper to 2919m and circulated to condition mud, then POOH. Schlumberger then attempted to run CBL/CLL again, but the previous problem persisted, so Schlumberger rigged down and a 7" magnet was RIH to pick up up casing scale.

19th April 1983. POOH with magnet from 1583m. Rigged up Schlumberger and ran GBL-VD-GR-CCL from 1100 - 1550m. The casing was then tested against the shear rams from 200 - 3500 psi successfully. A gauge ring and junk basket were then run to 1525m. Having cleaned the casing the packer, Baker model "D", was run and set at 1460m. The production tubing was then run.

20th April 1983. Continued running tubing and rigged up the test equipment. Stabbed packer and pressure tested the lower annular preventer to 200/1500 psi. The tubing was stabbed into the packer and landed, then rigged up test and kill lines to STT and pressure tested annulus to 200 - 1500 psi, then the tubing. Pressure testing continued with the STT and choke manifold. A safety meeting was then held. The lines to the burner were tested as was the OTIS burner. BOP's and lubricators were tested then waited on daylight.

21st April 1983. Still waiting on daylight to perforate. After the annulus was pressure tested (200 - 1500psi) tubing was displaced with 40 bbls diesel, giving 800 psi on the tube which was bled off and 250 psi was maintained on the annulus. The well was then perforated between 1483 - 1486m. The perforating gun was laid down and the well flowed for 1 hour before being shut in. The well flowed 58 API oil. Due to Schlumberger HP tool failure, Schlumberger was rigged down.

22nd April 1983. Rigged down Schlumberger and rigged up OTIS surface lubricator and pressure tested to 2000 psi. Made up and RIH 2 Amerada gauges to 1478m. The well was then flowed and burnt for 7 hours. 100% oil was recovered with a 58° API, and a GOR of approximately 230. The well stabilised and flowed at a rate of 5000 bpd. The well was then shut in. Due to the OTIS cables snapping the well was shut in on the SSTT and operations waited on daylight and new tools.

23rd April 1983. Still waiting on new tools A decision had been made to reperforate the zone and repeat the test. Schlumberger was rigged up and perforations made between 1483m and 1486m at daylight. After Schlumberger rigged down the well was flowed for one hour, oil recovered was 58 API, and then shut in whilst Schlumberger rigged up and ran their HP tool. The well was then flowed again. Oil and gas samples were taken from the choke manifold and separator. The oil had a specific gravity of 58 , gas samples had an H S content of, on average, 10 ppm with a maximum of 25 ppm.

24th April 1983. Flow continued from the well until downhole pressure stabilised and final samples taken. The rate of flow was just over

5000 BOPD and approximately 1.2 MMCFD gas, with a GOR in the low 200's. The well was then shut in prior to making a pressure gradient survey with the HP gauge. When the HP gauge was recovered the well was killed, having unstabled the tubing by reverse circulating, 50 bbls of 9.7 ppg mud. Normal circulation then commenced with a BU gas of 0-280-85 units, this gas largely consisted of 'heavies' and was probably due to oil contamination in the mud. The test trees were then rigged down and the tubing POOH.

25th April 1983. Continued laying down tubing. Schlumberger then set a bridge plug at 1440m. DP was RIH open-ended and a cement plug set on the bridge plug. 6 stands of DP were POOH and mud was reverse - circulated with gas levels of 50-330-50 units. DP was then POOH and laid down. RIH with open-ended DP to 205m and pumped 100 sacks of blue Circle 101 cement with 12 bbls seawater and displaced with 2 bbls water and 4 bbls mud. POOH to 80m and washed stack and riser The remaining drill pipe was laid down other than that required for retrieving the wear bushing; preparations were then made to pull the BOP stack.

26th April 1983. The BOP stack and riser were pulled and preparations made to pull the anchors. Attempts were made to fit the corrosion caps, however it was the wrong size. A replacement corrosion cap was made up and fitted.

The State of State of State of Particles

27th April 1983. Pulled anchors and proceeded on tow to location of TERAGLIN NO. 1.

4. LITHOLOGY AND CORE-O-GRAPHS

LITHOLOGICAL SUMMARY

The primary objective of WHITING NO. 1 was to assess the hydrocarbon potential of an intra-Latrobe Group closure between Barracouta and Snapper. No closure was expected at the Top of the Latrobe.

All formation tops are open to speculation and are based entirely on examination of cuttings. All depths are from RKB.

GIPPSLAND LIMESTONES (74m - 920m)

The Gippsland Limestone encountered was a medium to light grey, well sorted, biosparite. The top of this interval was a fossiliferous calcarenite to calcirudite, being dominated by micro-fossils of Foramifera, Echinodermata, Gastropoda, Bryazoa and assorted broken shell fragments.

Gas in this top section was 1-5 units with a chromatograph breakdown of $\mathbf{C_1}$ and $\mathbf{C_2}$.

The formation became progressively softer, finer grained (micritic) and had a higher clay content (most of which washed out of the sample). Fewer fossils were found and traces of Glauconite were evident.

A minor sandstone unit was encountered at the base of this formation. It exhibited 50% patchy, dull straw mineral fluorescence from a cream, well rounded, well sorted, medium grained quartz sand.

Gas levels increased to 10 - 50 units up to 800m, but then dropped off to a steady 0.5 to 1 units for the remainder of the Gippsland Limestone, breaking down to $^{\rm C}_{1}$ to $^{\rm C}_{2}$, with traces of $^{\rm C}_{3}$ and $^{\rm C}_{4}$.

LAKES ENTRANCE FORMATION (920m - 1288m)

The Gippsland Limestone graded into a medium to light grey, highly calcareous, siltstone in the Lakes Entrance Formation. It was a soft to firm and generally well sorted with traces of glauconite, foramifera and Echinodermata common.

Gas in this formation was between 0.5 and 1 unit, consisting of $^{\rm C}$ only.

LATROBE GROUP (1288m - 3011m)

The top of the Latrobe was dominated by a coarse-grained sandstone with minor coals.

The sandstone was clear to frosted grains, coarse to very coarse grained being subangular to subrounded in general. It was generally well sorted with a dolomite cement and a good visual porosity. The sand displayed traces of mineral fluorescence and rarely a weak streaming cut.

Interbedded with the sandstone were minor siltstones and a small amount of calcisiltite. Coal in this section was typically black, very angular, vitreous and moderately hard. Background gas levels were 3-5 units with peaks up to 10 units associated with coals and some sands. Chromatographic breakdown yielded C $_1$ to C $_3$ prevalent.

To be also walk the distribution

1840m marked the change to a siltstone - dominant section, with interbedded sands, coals and minor claystone.

The siltstone was generally light to medium grey, red-brown and buff; soft and carbonaceous in part with traces of orange-brown spotty dull flourescence.

Gas in this lower section varied from 50 units to 0.1 units, with occasional higher peaks associated with coals and sandstones. The gas generally broke down to C_1 to C_3 . Between 2693m and 2720m, a green-grey to medium grey, very hard crystalline, medium to coarse grained quartzose unit was encountered, which was thought to be volcanics.

Sandstones in this lower section between 2670m and 2775m commonly exhibited a bright yellow flourescence with a slow streaming cut.

The sandstoneswere of two types. There was a loose medium to coarse grained, sub angular to sub rounded quartz sand, with no show; and a clear to translucent, fine to very fine grained, friable, sub rounded to rounded, well-sorted quartz sand with a white argillaceous matrix and occasional black inclusions, which had the show.

The shale which was seen towards T.D. was medium to dark grey, sub fissile to fissile, friable to hard, and carbonaceous.

One core was cut in this well. It contained an immature sandstone with interbedded shale, coal and siltstone.

CORE-O-GRAPH

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 12.6 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

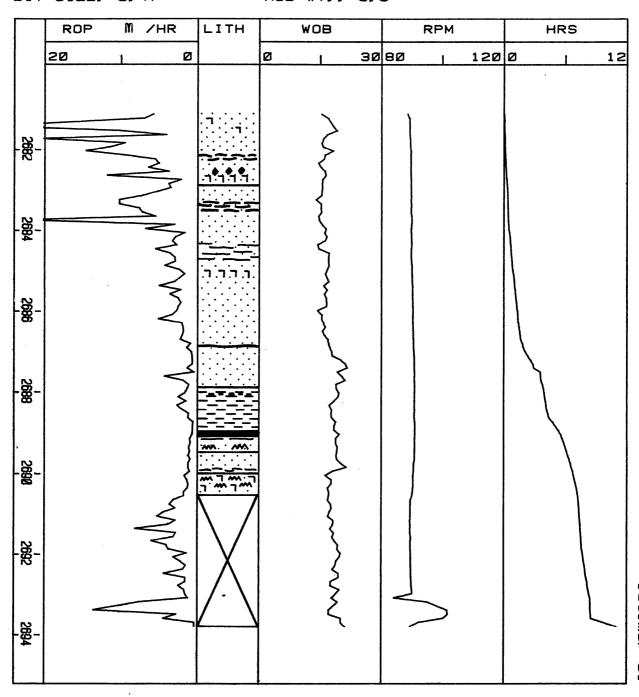
BIT SIZE: 8.47

ESSO AUSTRALIA LTD.

WHITING #1

1

2681. Øm. TO 2693. 6m.


RECOVERED: 9.6m. (76.0%)

LATROBE GROUP

CHRISTENSEN C-20

6.75in. × 4.00in. × 19.66m.

MUD WT.: 9.9

5. EXTENDED SERVICE PACKAGE

INTERMEDIATE EXTENDED SERVICE INTRODUCTION

The Core Laboratories Intermediate Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Laboratories I.F.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories I.E.S. logs include the following :

I.E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests.

CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is an progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The 'd' exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter.

The modified "dc" exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc" to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore:

Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column.

An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

I.E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

I.E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the I.E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), is made using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 metres.

GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

GRAPHOLOG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak-off test data, and R.F.T. and well test data where appropriate.

CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 802 monitoring equipment includes the following:

A, MUD LOGGING

- 1. T.H.M. total gas detector and recorder.
- 2. Hot Wire total gas detector and recorder.
- 3, F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- 4. Gas trap and support equipment for the above.
- 5. Rate of penetration, recorder and digital display.
- 6. Pit volume totalizer, recorder and digital display.
- 7. Digital depth counter.
- 8. Two integrated pump stroke counters, with digital display.
- 9. Ultra-violet fluoroscope.
- 10. Binocular microscope.

B. INTERMEDIATE EXTENDED SERVICE PACKAGE

- 1. Hewlett Packard 9825B desktop computer. 2. Hewlett Packard 9872B plotter
- 3. Hewlett Packard 2631A printer.
- 4. Two Hewlett Packard 2621P visual display units, (one located in the client's office).
- 5. Hookload/weight-on-bit transducer and recorder.
- 6. Rotary speed tacho-generator and recorder.

- Stand-pipe pump pressure transducer and recorder.
 Mud flow out sensor and recorder.
 Mud temperature sensors and recorders (in and out).
- . 10. Mud conductivity sensors and recorders (in and out).
 - 11. Rotary torque sensor and recorder. 12. Shale density apparatus.

 - 13. Hydrogen sulphide gas detector.
 - 14. Carbon dioxide gas detector.

CORE LABORATORIES MONITORING EQUIPMENT

DEPTH

Depth registered every 0.2 metres and rate of penetration calculated each metre (or every 0.2m while coring), ROP displayed on digital panel and chart.

WEIGHT-ON-BIT

A Tyco $0-1000~\rm psi$, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Rig Functions Panel, and displayed (with hookload) on a digital meter and recorder chart.

ROTARY SPEED

This is a DC generator for which 1 volt = 100 rpm, and which is belt-driven from the rotary drive shaft. The value is displayed on a digital meter and recorder chart.

PUMP PRESSURE

This is a Tyco 0-5000 psi transducer mounted on the stand-pipe manifold. The pressure is displayed on a digital panel meter and recorder chart.

PIT VOLUME

Six individual pits can be displayed on the meter. The pit volume total is calculated in the PVT panel and displayed on a digital meter. The sensors are vertical floats driving potentiometers accurate to +/- 1 barrel. Each sensor is equipped with a wave compensating device. In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The Pulse Data Box can monitor one or two pumps individually or integrate the total number of strokes from both pumps. The pump rate per minute is displayed on a recorder chart.

ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on a digital panel meter and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, calibrated $0-100~{\rm deg}$. C. Temperature in and out is displayed on a digital panel meter and chart recorder.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor contains two toroidally-wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondary coil, the amplitude of the current being directly proportional to the conductivity of the mud.

All the sensors are 5 to 24V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties...

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Dry samples were washed, dried and boxed. Wet samples were washed, sacked and boxed. Geochemical samples were canned and boxed.

GAS

- 1.Flame Ionization Total Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.
 The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3. Hot Wire gas detector (Wheatstone Bridge type).
 A back-up system for total gas detection.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density liquid column.

6. ESP PLOT DISCUSSIONS AND CONCLUSIONS

ESP PLOT DISCUSSIONS AND CONCLUSIONS

WHITING NO. 1 was drilled in the Gippsland Basin, Bass Strait. From the numerous data obtained from adjacent wells it was correctly deduced that the section drilled was normally pressured to T.D., with an increased likelihood of encountering higher pressures approaching T.D., as on the WIRRAH wells. Core Laboratories Field Laboratory 802 continuously monitored and calculated various pressure detection parameters, the primary factors being plotted on the "Drill Data Plot" (see appended plots).

The "Drill Data Plot" shows the d'c' exponent trend. This appears fairly scattered from the sea-bed down to a depth of 520m. This pattern is typical of the poorly consolidated limestone encountered in this area, where drilling is achieved more by extrusion due to the jetting action rather than rotation of the bit. A normal trend is, however, established down to 1070m, with a 'normal', or increased, deflection to the right which is caused by lithological change from limestone to calcareous siltstone/mudstone.

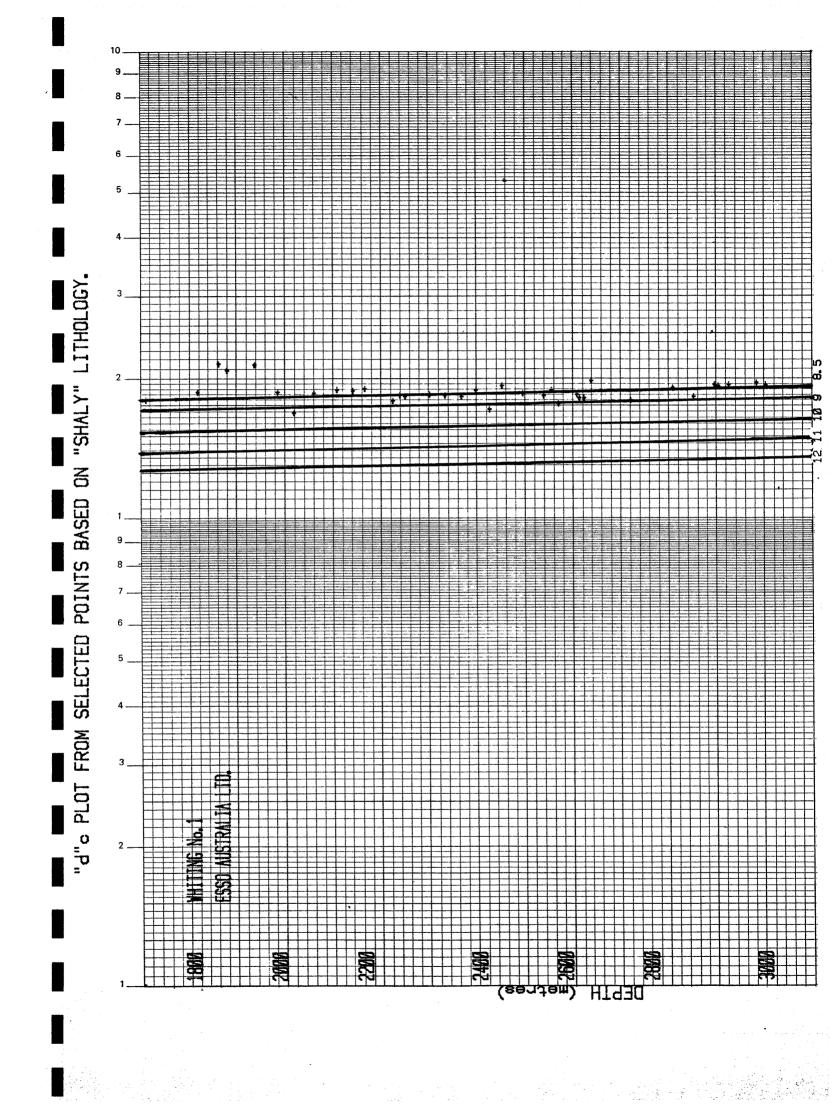
An abnormal trend exists between 1070m and 1240m; a drill-off is noticeable despite the increase in mud weight to 10 ppg. This mud weight increase masked gas indications of overpressure, but is thought to have enhanced the 'drillability' of the formation by keeping the hole in a more stable condition, contrary to normal expectations where increased mud weight reduces drillability due to increased 'chip hold down' effect. The reversal in d'c' trend is commonly seen in the Gippsland Basin and generally is throught to reflect the increasing grain size and decreasing calcareous cement bonding in the formation.

From 1240m down to T.D. (301lm) the d'c' exponents manifest a scattered (but generally normal) trend, with the degree of scattering decreasing with depth, resulting in a tapered morphology to the d'c' plot. The scattering is caused by the interbedded nature of the lithology, being siltstones, sandstones, claystones, coals and occasional shales. So the indication is one of normal formation pressure in this interval.

The ROP track of the Drill Data Plot shows a drill-off trend between 2640 and 2750m, coinciding with an increase in background gas from less than 1 unit to as high as 9 units. Thus, the indication here would be that the pore pressure has increased, and this is confirmed by Repeat Formation Tests run by Schlumberger. The latter revealed that, in the interval mentioned, the formation pressure increased from 8.5 to 8.8 ppg E.M.W. Certain connection gas was not detected at any point in the well.

Another noticeable increase in background gas occurred between 2320 and 2450m, rising to 20 units at times, from 1 unit. This also coincided with a localised increase in pore pressure from 8.4 to 8.8 ppg over the interval, as verified by RFT data. Thus a curve representing formation pressure was drawn, fashioned by the pretest data from the Repeat Formation Tests, and the curve can be seen on both the Geoplot and Pressure Plot (see the appendices at the end of this well report).

No shale density measurements were made as there were no beds of true shales encountered.


No reliable conclusions can be drawn from the temperature plot due to

the periodic treatment of the mud system masking any temperature changes which might be attributed to geothermal trends. The thermal gradient of WHITING NO. 1 was calculated to be 1.61° C/ 100 feet, and the bottomhole temperature at 3011m was extrapolated to 135.4° C.

A "Wireline Plot" was not drawn as this log plots shale parameters, and the lack of shale points encountered did not facilitate an objective plot.

Overburden gradient calculations and a plot of the gradient are included in the report. It was not possible to derive a true fracture gradient as no L.O.T.'s were performed. One PIT was made just below the 13-3/8" casing shoe (13.5 ppg E.M.W. at 805m). L.O.T.'s were not required as high mud weights were not anticipated.

Based on the information above, the fracture gradient on the pressure plot was drawn, the shape of which in turn was based on data from wells in the U.S. Gulf Coast Basin. The curve was then offset to match local data. A true fracture gradient for the Gippsland Basin cannot be drawn until further leak-off data is available.

CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT

DEPTH ON A LINEAR SCALE AGAINST d'c EXPONENT ON A LOGARITHMIC SCALE

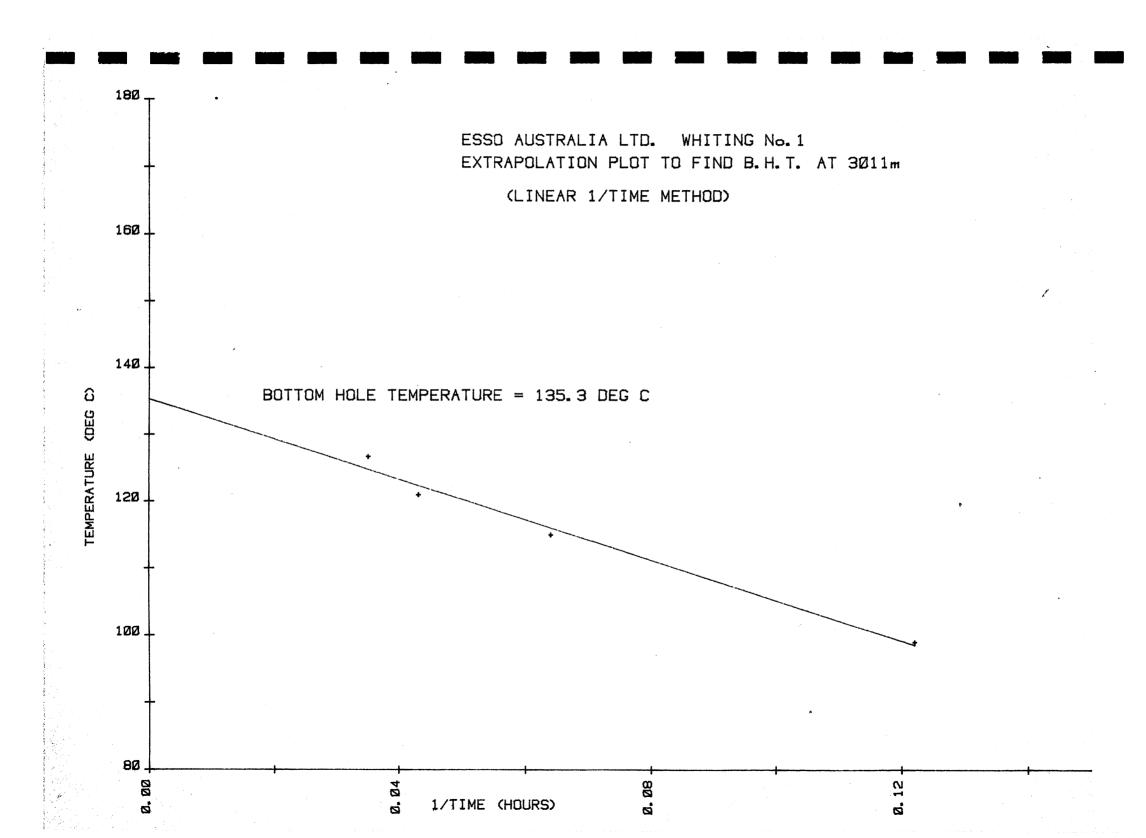
ENTERED DATA:

DATA SET #	DEPTH	d'c EXPONENT
1	1704	1.80
2	1812	1.87
2 3	1856	2.15
.4	1874	2.08
4 5	1932	2.14
6	1980	1.87
7	2014	1.69
7 8	2056	1.86
9	2104	1.89
10	2138	1.88
11	2163	1.70
12	222 2	1.79
13	2237	1.84
1.4	2248	1 ,83
15	2300	1.85
16	23 32	1.84
17	236 7	1.83
18	23 97	1.89
19	2425	1.72
20	2451	1.93
21	2495	1.86
22	2539	1.84
23	2555	1.89
24	2570	1.77
25	2609	1.85
26	2614	1.82
27	2624	1.82
28	2639	1.78
29	2721	1.80
30	2809	1.91

CORE LAB

BTRAIGHT LINE LEAST SQUARES BEST FIT

DEPTH ON A LINEAR SCALE AGAINST d'c EXPONENT ON A LOGARITHMIC SCALE


ENTERED DATA:

DATA SET #	DEPTH	d'c EXPONENT
31	2853	1.83
32	2897	1.94
33	2905	1.93
34	2927	1.94
35	2985	1.96
36	3004	1.94

COEFFICIENT & CONSTANT:

log(Y) = m.X + c where m = -3.8168404E-06 and c = 2.8308584E-01

7. B.H.T. ESTIMATION

CORE LAB

BTRAIGHT LINE LEAST SQUARES BEST FIT

1/TIME ON A LINEAR SCALE AGAINST TEMPERATURE ON A LINEAR SCALE

ENTERED DATA:

TEMPERATURE	1/TIME	DATA SET #
99.0	0.12	1
115.0	0.06	2
121.0	0.04	3
126.7	0.04	-4

COEFFICIENT & CONSTANT:

Y = M.X + c where M = -3.0166307E 02 and C = -1.3533476E 02

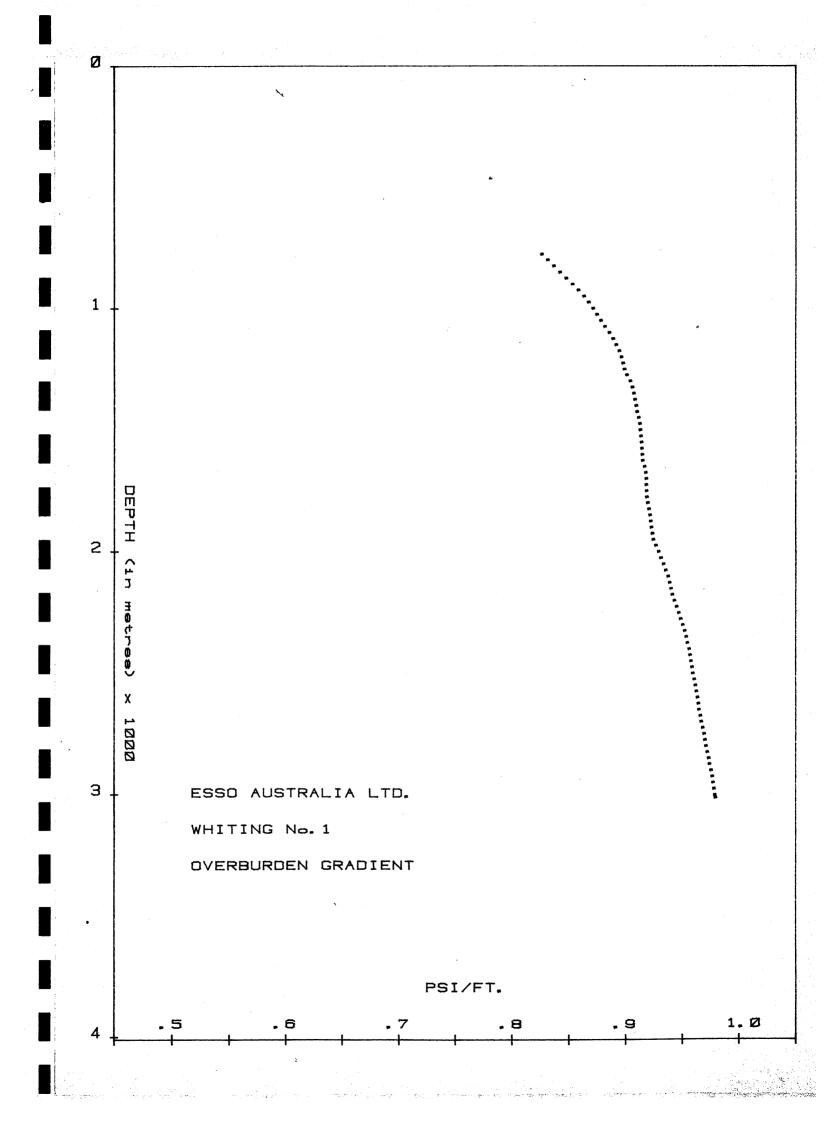
INTERPOLATED DATA:

1/TIME TEMPERATURE 0.00 135.3 3. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

OVERBURDEN GRADIENT CALCULATIONS

DEPTH metres

BULK DENSITY gm/cc


OVERBURDEN PRESSURE INCREMENT. .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/m

OVERBURDEN EQUIVALENT DENSITY. . Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, ORFROM SONIC LOG FOR SECTIONS WHERE THE F.D.C. LOG IS NOT AVAILABLE.

OVERBURDEN GRADIENT CALCULATIONS

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INCR.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.
feet	feet	qMS/CC	psi.	psi	psi/ft	bbd
0	74	1.02	32.68	32.68	0.442	8.49
74	776	2.00	607.93	640.61	0.826	15.88
776	800	2.30	23.90	664.52	0.831	15.97
300	825	2.33	25.22	689.74	0.836	16.08
825	850	2.35	25.44	715.18	0.841	16.18
8 50	875	2.38	25.76	740.94	0.847	16.28
375	90 0	2.42		767.14	0.852	16.39
200	925	2.41	26.09	793,23	0.858	16.49
225	950	2.40	25.98	819.21	0.862	16.58
250	975	2.37	25.66	844.86	0.867	16.66
775	1000	2.36	25.55	870.41	0.870	16.74
1000	1025	2.33	25.22	895.63	0.874	16.80
1025	1050	2.36	25,55	921.18 946.94	0.87 7 0.8 81	16.87 16.94
1050 1075	1075 1100	2.38 2.42	25.76 26.20	973.14	0.885	17.01
1100	1125	2.40	25.78	999.12	0.888	17.08
1125	1:50	2.33	25.22	1024.34	0.891	17.13
1150	1175	2.36	25.55	1049.89	0.894	17.18
1175	1200	2.27	24.57	1074.46	0.875	17.22
1200	1225	2.24	24,25	1078.71	6.897	17.25
1225	1250	2.20	23.82	1122.52	0.898	17.27
1250	1275	2.33	25.22	1147.74	0.900	17.31
1275	1300	2.44	26.41	1174.16	0.903	17.37
1300	1325	2,31	25.01	1199.16	0.905	17.40
1325	1350	2.25	24,36	1223.52	0.906	17.43
1350	1375	2.23	24,14	1247.66	0.907	17.45
1375	1400	2.22	24,03	1271.69	0.708	17.47
1400	1425	2.20	23.82	1295.51	0.709	17.48
1425	1450	2.28	24.68	1320.19	0.910	17.51
1.450	1475	2,24	24.25	1344,43	0.911	17.53
1475	1500	2.18	23.60	1368.03	0.912	17.54
1500	1525	2.19	23.71	1391.74	0.913	17.55
1525	1550	2.17	23,49	1415.23	0.913	17.56
1550	1575	2.16	23.38	1438.61	0.913	17.57
1575	1600	2.17	23.49	1462.10	0.914	17.57
1600	1625	2.17	23.49	1485,59	0.914	
1625	1650	2.37	25,66	1511.25	0.916	17.61
1650	1675	2.27	24.57	1535.82	0.917	17.63
1675	170 0	2.20	23.82	1559.64	0.917	17.64
1700	1725	2.11	22.84	1582.48	0.917	17.64
1725	1750	2.16	23.38	1605.86	0.918	17.65
1750	1775	2.17	23,49	1629.35	0.918	17.65
1775	1800	2.26	24.46	1653.81	0.919	17.67
1300	1825	2.30	24.90	1678.71	0.920	17.69
1325	1350	2.29	24.79	1703.50	0.921	17.71
185 0 1875	1875 1700	2.22	24.03 24.25	1727.53 1751.78	0.921	17.72
1900	1925	2,27	24.57	1776.35	0.922	17.73
1925	1950	2.28	24.68		0,923	17.75
1725	1975	2.25 2.55	27.60	1801.03	0.924	17.76
1/00	8 7 Z G	ದ.ವರ	A/ 100	1828.64	0.926	17.81

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INCR.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.
feet	feet	gms/cc	psi.	psi	psi/ft	bbá
1275	2000	2.56	27.71	1856.35	0,928	17.85
2000	2025	2.54	27.50	1883.84	0.930	17.89
2025	2050	2.56	27.71	1911.56	0.932	17.93
2050	2075	2.53	27.39	1938.94	0.934	17.97
2075	2100	2.59	28.04	1966.98	0.937	18.01
2100	2125	2.42	26.20	1993.18	0.938	18.04
2125	2150	2.41	26.09	2019.27	0.939	18.06
2150	2175	2.39	25.87	2045.14	0.940	18,08
2175	2200	2.57	27.82	2072.96	0.942	18.12
2200	2225	2.58	27.93	2100.89	0.944	18.16
2225	2250	2.57	27.82	2128.71	0.946	18.19
2250	2275	2.54	27.50	2156.20	0.948	18.23
2275	2300	2.56	27.71	2183.91	0,950	18.26
5200	2325	2.56	27.71	2211.63	0.951	18.29
2325	2350	2.51	27.17	2238.80	0.953	18.32
2350	2375	2.40	25,98	2264.78	0.954 0.955	18.34
2375	2400	2.57	27.82	2292.60	0.755	18.37 18.39
2400	2425	2.38	25.76 25.87	2318.36 2344.23	0.957	18.40
2425	2450 2475	2.39 2.40	25.98	2370,21	0.737	18.42
2450	2500	2.39	25.87	2396.08	0,758	18.43
24 75 250 0	2500 252 5	2.50	27.06	2423.15	0.750	18.46
25 25	2550	2.45	26.52	2449.67	0,761	18.47
2550	2575	2.42	26.20	2475,86	0.962	18.49
2575	2600	2.46	26,63	2502.49	0.962	18.51
2600	2625	2.40	25.98	2528.47	0.963	18.52
2625	2650	2.35	25.44	2553.91	0.964	18.53
2650	2675	2.54	27.50	2581.41	0.965	18.56
2675	2700	2.43	26.30	2607.71	0.966	18.57
2700	2725	2.57	27.82	2635.53	0.967	18.60
2725	2750	2.51	27.17	2662.70	0.968	18.62
2750	2775	2.45	26.52	2689.22	0.969	18.64
2775	2800	2.46	26.63	2715.85	0.970	18.65
2800	2825	2.57	27.82	2743.67	0.971	18.68
2825	2850	2.56	27.71	2771.39	0.972	18.70
2850	2875	2.44	26.41	2797.80	0.973	18.71
2875	2900	2.62	28.36	2826,16	0.975	18.74
2700	2925	2.52	27.28	2853,44	0.976	18.76
2925	2950	2,45	26.52	2879.96	0.976	18.77
2950	2975	2.48	26.85	2906.81	0.977	18.79
2975	3000	2.47	26.74	2933.54	0.978	18.80
3000	3011	2.56	12.19	2945.74	0.978	18.81

à

٠

9. GAS ANALYSES

GAS COMPOSITION ANALYSIS

The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

LOG PLOT

The ratios of C1/C2, C1/C3, C1/C4, C1/C5, and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluate by the following criteria :

- Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65, gas. If the C1/C2 ratio is below about 2, or above about 65, the zone is probably non-productive.

The actual values of the gas/oil/water limits will vary from area to area.

- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- 5. The ratios may not be definitive for low permeability zones; however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT

The triangulation diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to C4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.

A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

GAS ANALYSIS

1480m. This analysis was made from gas liberated from a clear-frosted, coarse-grained, sub-angular sub-rounded well sorted quartz sand. A trace yellow, mineral fluorescence was associated with this sample.

1531m. The gas from which this analysis was made originated in a fine to medium grained, sub angular - sub rounded moderately well sorted sandstone, which exhibited a yellow-gold mineral fluorescence

1723m. The analysis from this depth indicated a coal gas. The sample contained coal as well as a medium-coarse grained sandstone which contained 5% spotty dull orange yellow fluorescence with a slow weak streaming cut.

1802m. The medium-coarse and very fine grained, moderately sorted sandstone with which this analysis was associated was bimodal, well sorted with trace dolomite fluorescence.

 $\frac{2026m}{m}$. A fine - very fine grained, sub-angular-angular, moderately well sorted, quartz sandstone was the origin of the gas for this interpretation.

2346m. This plot was made from gas released from a white/buff, quartzose, fine grained sandstone.

 $\underline{2411m}$. A trace dull to bright gold fluorescence with a trace milky white cut in a fine grained, moderately well sorted sandstone was associated with this analysis.

2742m. Two types of sandstone were present in the samples from which the gas emanated for this plot. One was a medium-coarse grained, loose quartz; the other was fine grained, and well sorted with 5% bright white fluorescence and a fast dull white crush cut.

 $\overline{2752m}$. The sample associated with this analysis was similar to the one at 2742m.

2829m. This plot was made from a gas which originated in a clear, fine to medium grained sandstone with trace bright yellow fluorescence and yellow crush cut.

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 10 UIL NON-PRODUCTIVE C1/C5 Ct=C1+C2+C3+nC4 % Allen, 198Ø

NO. DEPTH C1 **C2** C3 1C4 **C5** C1/C4 C1/C5 nC4 C6 % Ct C1/C3 Ø. ØØ6 0.001 0.000 0.000 0.000 0.000 0.000 0.007 8 18 49 196 CONCLUSION: WET GAS

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct Ø. Ø5 10 UIL NON-PRODUCTIVE C1/C5 Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C1 CS СЗ 1C4 nC4 **C5** C6 % C1/C2 C1/C3 C1/C4 C1/C5 1 2752 Ø. Ø1Ø 0.001 0.001 0.000 0.000 0.000 0.012 18 1089 0.000 CONCLUSION: WET GAS

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 Ø. Ø5 12 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C1 CS C3 ±C4 nC4 **C**5 C6 % C1/C4 C1/C5 1 2742 Ø. ØØ8 0.002 Ø. ØØ1 0.000 0.000 0. 202 0.000 0.011 16 CONCLUSION: PROBABLE OIL PRODUCER

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct Ø. Ø5 10 UIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH

C1

0.013

CONCLUSION: GAS ZONE

C2

0.001

СЭ

0.000

iC4

0.000

nC4

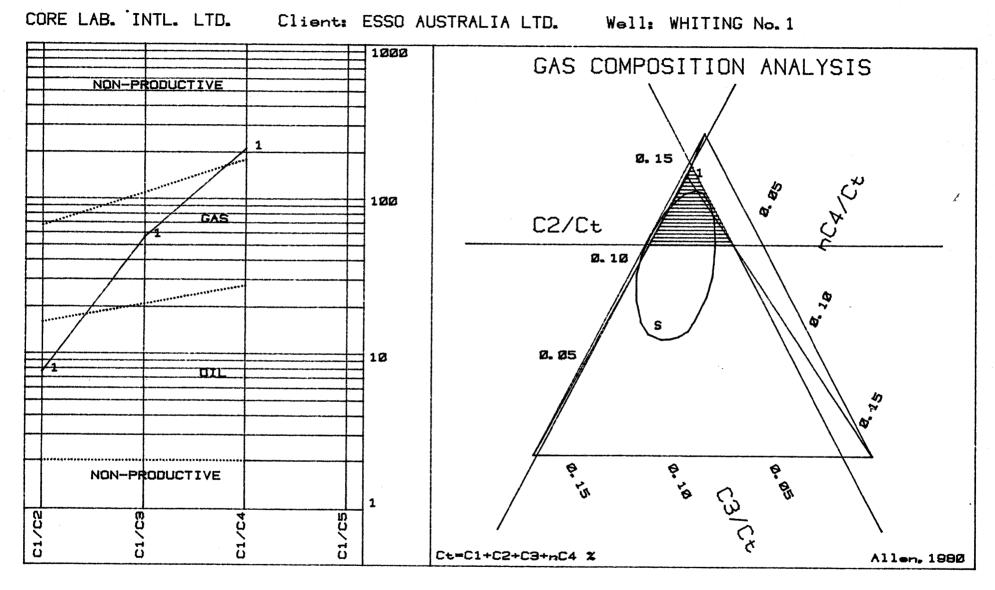
0.000

C5

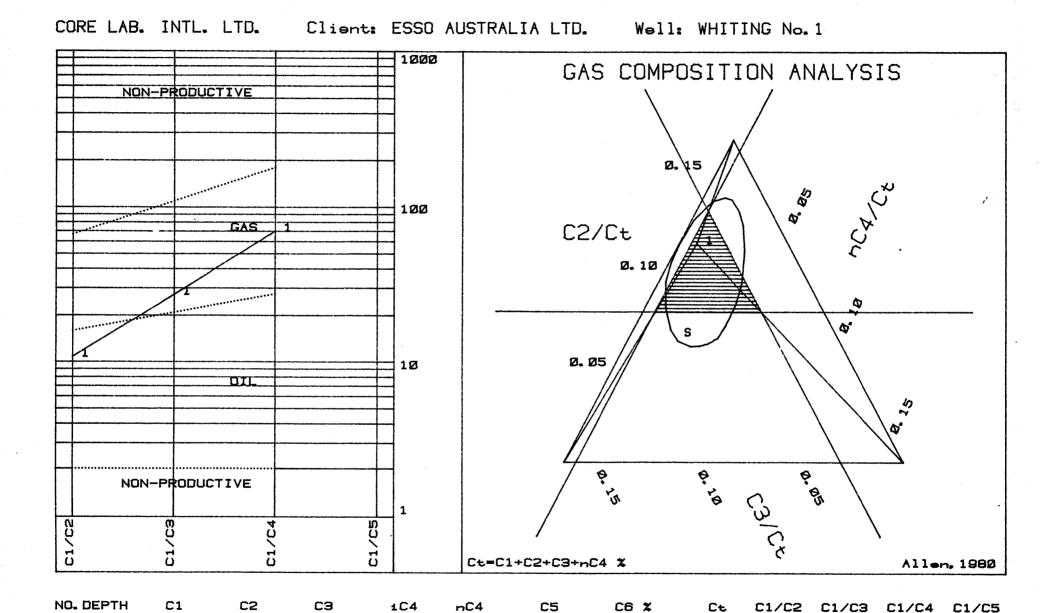
0.000

C6 %

0.000


13

53


0.015

C1/C4 C1/C5

124

NO. DEPTH C1 **CS** C3 1C4 nC4 **C5** C6 % C1/C2 C1/C3 C1/C4 C1/C5 1 2346 0.011 0.002 0.000 0.000 0.000 0.000 0.000 Ø. Ø13 57 212 CONCLUSION: NON-PRODUCTIVE WET GAS

0.006

CONCLUSION: PROBABLE WET GAS

0.001

0.000

0.000

0.000

0.000

0.000

11

27

70

0.007

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct Ø. Ø5 10 UIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C1 **CS** СЗ 1C4 nC4 **C**5 C6 % C1/C4 C1/C5 0.006 Ø. ØØ6 12 141 0.000 0.000 0.000 0.000 31 CONCLUSION: POSSIBLE GAS ZONE (WET?)

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct GAS Ø. Ø5 10 UIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 NO. DEPTH C1 C2 СЗ iC4 nC4 C5 . 12 Ø. Ø25 52 1 1723 Ø. Ø22 0.002 0.000 0.000 0.000 0.000 0.000 CONCLUSION: COAL GAS

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct Ø. Ø5 10 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C1 CS СЗ iC4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 1531 Ø. ØØ2 0.000 0.000 0.000 0.000 0.000 0.000 0.002 12 26 107 CONCLUSION: PROBABLE NON-PRODUCTIVE OIL ZONE

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHITING No. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 GAS 10 NON-PRODUCTIVE

NO. DEPTH C1 C2 СЭ iC4 C5 nC4 C6 % C1/C3 C1/C4 C1/C5 1 1480 0.001 0.000 0.000 5 5 0.000 0.000 0.000 0.000 0.001 8 12 CONCLUSION: LOW GOR OIL PRODUCER

Ct=C1+C2+C3+nC4 %

Allen, 1980

CORE LAB		SIDEWALL	CORE		ANALYSIS		SHEET	SHEET#
COMPANY _	ESSO AUSTRALIA	LTD.		LOGG	ing Suite	NQ.	CST NO. 2	
WELL _	WHITING NO. 1							

12	DEPTH	CI	C 2	C3	C [*] 4	C5	C 6	COMMENTS
		PPM	PPM	PPM	PPM	PPM	PPM	
07	2801.5	26	-	_	•	-	_	NO APPRECIABI
			_					GAS READINGS
								WERE OBTAINED
								FOLLOWING CO
								NOS: 51-57, 62, 63,
								→ 65, 103
								104, 100 109, 110
								- 112, 114
								122, 128
								·
						·		
								7
								-
								-
								-
								-
•								1
								-
								1
								+
								-
								-
								-
						 		4
								-
								4

10. CORELAB DATA SHEETS

BIT RECORD

BIT SIZE Inches

BIT COST Australian dollars

JET SIZE Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME. . . . Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge Inches

BIT RECORD

ESSO AUSTRALIA LTD. WHITING NO. 1 COMPANY_ WELL____

Sheet No. 1

			WELL				·····						Sneet IV	0
S/NO	Bit No.	Make	Type		Size 11	Jets		Hole Made	Drilling Time	On Bottom Hours	Turns K	Condition T B G	Remarks	COST
295 SR	RR 1	нтс	OSC 3AJ- 26 H/O	111	$\frac{17\frac{1}{5}}{26}$	20/20/20	74	137	8½	5.98	17	2-4-I	POOH FOR 20" CSG.	-
MJ 888	2	HTC	OSC 3AJ	111	17½	20/20/20	211	589	26 ¹ / ₄	19.13	155	2-2-I	POOH AT 13-3/8" CSG PT.	4442
299 UK	3	HTC	X3A	114	12 ¹ / ₄	18/18/18	800	539	27	19.23	178	$7-4-\frac{1}{8}$	POOH DUE TO HIGH TORQUE.	2201
923 HS	4	HTC	J22	517	12½	18/18/18	1339	329.2	31½	24.87	120	$8-3-\frac{1}{8}$	PULLED DUE TO LOW ROP'S	6788
072 NK	5	HTC	J44	617	124	18/18/18	1668.2	273.8	$35\frac{3}{4}$	32.21	140	3-8-I	PULLED DUE TO HIGH	4919
268 HK	6	HTC	J22	517	12½	18/18/18	1942	243	39¹₂	34.07	138	$3-7-\frac{1}{8}$	PULLED DUE TO DECREASED ROP'S.	6788
319 X3	7	нтс	J11	437	12½	18/18/18	2185	26.5	41/4	3.84	17	4-2-I	PULLED TO TEST STACKS.	6788
148 WK	8	нтс	J22	517	12 ¹ / ₄	18/18/18	2111.5	216.5	56 3	50.47	158	2-3-I	PULLED DUE TO LOW ROP'S.	6788
142 WK	9	нтс	J22	517	12½	16/16/18	2428	206	63½	58.59	181	6-2-1	PULLED DUE TO LOW ROP'S.	6788
767 BE	10	нтс	J33	537	12½	16/16/18	2634	47	18	15.91	45	1-1-I	PULLED TO CORE.	6637
81E 0919	10	CHRIS	C-20	4	8 <u>32</u>	TFA 46 14/14/13	2681	12.6	11½	10.94	59	5% WN	CORE NO: $1(\frac{\text{RECOVERY}}{9.57\text{M}} = 76\%)$	13000
149 WK	11	HTC	J22	517	12 ¹ ⁄ ₂	16/16/18	2693.6	146.9	54½	39,58	116	3-3-I	PULLED DUE TO LOW	6788
150 WK	12	нтс	J22	517	12 ¹ ⁄ ₄	16/16/18	2840.5	170.5	52½	48.33	139	4-2-1/4	10M EARLY DUE TO T.D. (WEATHER.)	6788
							:							
													-	
•														
												a		

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.

WELL WHITING NO. 1

Sheet No. 1

		10 025		WELL _						-						01100	
s/N	10	Bit No.	Make	Туре	IADC Code	Size	Cost	Jets	Depth In	Depth Out	Hole Made	Drilling Time	On Bottom Hours	TurnsK	Average ROP	Average Cost/ M	Condition T B G
295 S	SR	RR 1	HTC	OSC 3AJ+ 26" H/O	111	$\frac{17\frac{1}{2}}{26}$	_	20/20/20	74.0	211.0	137.0	8½	5.98	17	22.7	325.08	2-4-I
мј 88	38 [2	HTC	OSC 3AJ	111	17½	4442	20/20/20	211.0	800.0	589.0	26 ¹ / ₄	19.13	155	30.8	207.67	2-2-I
229 U	L .		HTC	хза		12½	2201	18/18/18	800.0	1339.0	539.0	27	19.23	178	28.0	242.08	7-4-1/8
923 F	IS	4	HTC	J22	517	12½	6788	18/18/18	1339.0	1668.2	329.2	314	24.87	120	13.2		8-3-1/8
072 N	vk [5	HTC	J44	617	12½	4919	18/18/18	1668.2	1942.0	273.8	354	32.21	140	8.5	786.03	3-8-I
268 F	łK [6	HTC	J22	517	12½	6788	18/18/18	1942.0	2185.0	243.0	39½	34.07	138	7.1	944.26	3-7-I
319 X	ζ3	7	HTC	J11	437	12½	6788	18/18/18	2185.0	2211.5	26.5	41/4	3.84	17	6.9	2433.75	4-2-I
148 W	vk [8	HTC	J22	517	12½	6788	18/18/18	2211.5	2428.0	216.5	56 3	50.47	158	4.3	1487.22	2-3-I
142 W	√K	9	HTC	J22	517	12½	6788	16/16/18	2428.0	2643.0	206.0	63½	58.59	181	3.5	1792.13	6-2-I
767 E	BE	10	HTC	J33	537	12½	6637	16/16/18	2634.0	2681.0	47.0	18	15.91	45	3.0	2891.12	1-1-I
81E C	919	10	CHRIS	C-20	4	8 <u>15</u>	13000	EQUIVALENT	2681.0	2693.6	12.6	11½	10.94	59	1.2	9131.27	5%
149 W	√K [11	HTC	J22	517	12½	6788	16/16/18	2693.6	2840.5	146.9	52½	39.58	116	3.7	1819.53	3-3-I
150 W	√K	12	HTC	Ј22	517	12½	6788	16/16/18	2840.5	3011.0	170.5	52½	48.33	139	3.5	1861.49	4-2-1/2

MUD INFORMATION SHEETS .

DEPTH Metres

MUD WEIGHT , , , , . Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I.seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square feet

FILTRATE A.P.I. c.c.

CAKE THICKNESS . . . Thirty-seconds of an inch

SALINITY : Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

	7				MUD IN	IFORMATIO	ON SHEE
LAB c	OMPANY	ESSO AUSTE	RALIA LTD.				
W WILLIAM	ELL	WHITING NO). 1			Sh	eet No. 1
DEPTH (M)			511	800	800	800	800
DATE	6/3/83	7/3/83	8/3/83	9/3/83	10/3/83	11/3/83	12/3/83
TIME	S		24:00	23:00	23:30	22:00	22:00
WEIGHT	F	8.6+	9.2	9.3	9.6	9.5	9.3
FUNNEL VISCOSITY		200	42	33	34	31	28
PV/YP	A		6/53	4/18	5/16	3/19	3/5
N/K	W		.14/24.7	.24/4.9	.31/3.08	.18/6.97	.46/.46
GEL: INITIAL/10 MIN			40/36	10/22	9/18	9/16	4/9
pH	A		9.0	9.0	9.0	9.1	8.6
FILTRATE: API/API HTHP	T		N/C	N/C	N/C	N/C	N/C
CAKE			4	4	5	N/C	N/C
SALINITY (PPM)	Е		15000	16000	18000	13000	·1100 0
SAND	R		TR	TR	TR	TR	TR
SOLIDS			6	6	8	7	5
OIL			0	0	0	0	0
		6					
		O'' CSG	LOG 1	RUN 13-3/8	" CSG.	WITH SI ASSEMBI	
	SET 2 @ 196		LOG]	RUN 13-3/8	" CSG.		
DEPTH (M)				·		ASSEMBI	LY.
	@ 196 806	M 1230	1457	1664	1847	ASSEMB	LY.
DATE	@ 196	M		1664 16/3/83	1847 17/3/83	ASSEMBI 1942 18/3/83	1973 19/3/83
DATE TIME	@ 196 806 13/3/83	1230 14/3/83 21:00	1457 15/3/83 23:00	1664 16/3/83 22:00	1847 17/3/83 14:30	1942 18/3/83 20:00	1973 19/3/83 09:00
DATE TIME WEIGHT	@ 196 806 13/3/83 23:00	M 1230 14/3/83	1457 15/3/83	1664 16/3/83 22:00 9.7	1847 17/3/83 14:30 9.8+	1942 18/3/83 20:00 9.7+	1973 19/3/83 09:00 9.8
DATE TIME WEIGHT FUNNEL VISCOSITY	@ 196 806 13/3/83 23:00 9.0	1230 14/3/83 21:00 10.0+	1457 15/3/83 23:00 10.0+	1664 16/3/83 22:00	1847 17/3/83 14:30	1942 18/3/83 20:00 9.7+	1973 19/3/83 09:00 9.8
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP	@ 196 806 13/3/83 23:00 9.0 32	1230 14/3/83 21:00 10.0+ 57	1457 15/3/83 23:00 10.0+ 49 10/18	1664 16/3/83 22:00 9.7 49	1847 17/3/83 14:30 9.8+ 51 14/16	1942 18/3/83 20:00 9.7+ 43 13/16	1973 19/3/83 09:00 9.8 50 13/18
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K	@ 196 806 13/3/83 23:00 9.0 32 4/12	1230 14/3/83 21:00 10.0+ 57 12/23	1457 15/3/83 23:00 10.0+ 49 10/18	1664 16/3/83 22:00 9.7 49 12/19	1847 17/3/83 14:30 9.8+ 51	1942 18/3/83 20:00 9.7+	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN	@ 196 806 13/3/83 23:00 9.0 32 4/12 .32/2.15 4/8	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN	@ 196 806 13/3/83 23:00 9.0 32 4/12 .32/2.15 4/8 10.4 N/C	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP	@ 196 806 13/3/83 23:00 9.0 32 4/12 .32/2.15 4/8	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN DH FILTRATE: API/API HTHP CAKE	@ 196 806 13/3/83 23:00 9.0 32 4/12 .32/2.15 4/8 10.4 N/C N/C 15000	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8 6.2/16.8	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28 10.6 6.4/15.9	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30 10.4 7.2/17.6	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7 6.2/16.0	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6 6.4/16.2	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26 10.5 6.0/16.
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN DH FILTRATE: API/API HTHP CAKE SALINITY (PPM)	@ 196 806 13/3/83 23:00 9.0 32 4/12 .32/2.15 4/8 10.4 N/C N/C 15000 TR	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8 6.2/16.8 2 15000 TR	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28 10.6 6.4/15.9 2 13000 TR	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30 10.4 7.2/17.6 2 14000	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7 6.2/16.0 2	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6 6.4/16.2	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26 10.5 6.0/16.
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN PH FILTRATE: API/API HTHP CAKE SALINITY (PPM) SAND SOLIDS	@ 196 806	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8 6.2/16.8 2 15000 TR 12	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28 10.6 6.4/15.9 2 13000	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30 10.4 7.2/17.6 2 14000	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7 6.2/16.0 2	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6 6.4/16.2 2 16000	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26 10.5 6.0/16. 2
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN OH FILTRATE: API/API HTHP CAKE GALINITY (PPM) GAND GOLIDS	@ 196 806 13/3/83 23:00 9.0 32 4/12 .32/2.15 4/8 10.4 N/C N/C 15000 TR	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8 6.2/16.8 2 15000 TR	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28 10.6 6.4/15.9 2 13000 TR	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30 10.4 7.2/17.6 2 14000	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7 6.2/16.0 2 16000	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6 6.4/16.2 2 16000	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26 10.5 6.0/16. 2 16000
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN PH FILTRATE: API/API HTHP CAKE SALINITY (PPM) SAND SOLIDS OIL	@ 196 806	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8 6.2/16.8 2 15000 TR 12	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28 10.6 6.4/15.9 2 13000 TR 12	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30 10.4 7.2/17.6 2 14000 12 9	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7 6.2/16.0 2 16000 12 10	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6 6.4/16.2 2 16000 ½ 10	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26 10.5 6.0/16.2 16000
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN PH FILTRATE: API/API HTHP CAKE SALINITY (PPM) SAND GOLIDS DIL	@ 196 806	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8 6.2/16.8 2 15000 TR 12	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28 10.6 6.4/15.9 2 13000 TR 12	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30 10.4 7.2/17.6 2 14000 1/2 9	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7 6.2/16.0 2 16000 ½ 10	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6 6.4/16.2 2 16000 ½ 10	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26 10.5 6.0/16. 2 16000 1/2 10
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN PH FILTRATE: API/API HTHP CAKE SALINITY (PPM) SAND SOLIDS OIL	@ 196 806	1230 14/3/83 21:00 10.0+ 57 12/23 .43/2.47 8/28 10.8 6.2/16.8 2 15000 TR 12	1457 15/3/83 23:00 10.0+ 49 10/18 .44/1.80 10/28 10.6 6.4/15.9 2 13000 TR 12	1664 16/3/83 22:00 9.7 49 12/19 .47/1.64 11/30 10.4 7.2/17.6 2 14000 1/2 9	1847 17/3/83 14:30 9.8+ 51 14/16 .55/.96 9/32 10.7 6.2/16.0 2 16000 ½ 10	1942 18/3/83 20:00 9.7+ 43 13/16 .53/1.04 10/26 10.6 6.4/16.2 2 16000 ½ 10	1973 19/3/83 09:00 9.8 50 13/18 .50/1.3 8/26 10.5 6.0/16. 2 16000 1/2 10

DRILLED 12½" HOLE

7520-492 (CL 1158)

MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY. WELL_ WHITING NO. 1 Sheet No. 2_ (M) 2109 2199 2211 DEPTH 2241 2287 2383 2476 20/3/83 21/3/83 DATE 22/3/83 23/3/83 24/3/83 25/3/83 26/3/83 06:00 TIME 10:00 02:00 22:30 10:00 10:30 23:00 WEIGHT 9.8 9.8+ 9.8 9.8 9.8 9.8 9.9 FUNNEL VISCOSITY 46 49 48 42 46 55 47 12/18 PV/YP 13/19 9/18 13/18 13/19 14/22 14/22 .49/1.46 .49/1,49 .41/2.03 .50/1.33 .47/1.88 .47/1.88 N/K .49/1.49 6/25 6/24 3/12 6/16 6/18 9/32 GEL: INITIAL/10 MIN 8/28 10.6 10.5 10.4 10.6 10.4 10.5 10.4 7.2/19.8 6.0/16.4 FILTRATE: API/API HTHP 6.4/17.2 5.8/16.2 6.2/15.8 5.8/16.4 5.4/16.2 2 2 CAKE 2 2 2 2 2 SALINITY (PPM) 17000 17000 14000 14000 14000 15000 17000 SAND 5 玚 0 9 9 SOLIDS 7 9 9 10 9 0 0 0 OIL 0 0 0 0 NITRATES (PPM) 160 140 120 200 200 200 160

REMARKS:

DRILLED 12坛" HOLE

W.O.W.

DRILLED 12½" HOLE

DEPTH (M)	2531	2616	2647	2681	2693	2740	2825
DATE	27/3/83	28/3/83	29/3/83	30/3/83	31/3/83	1/4/83	2/4/83
TIME	14:00	22:15	22:00	09:45	10:00	22:00	22:00
WEIGHT	9.9	9.9	9.9	9.9	9.9	9.9	9.8+
FUNNEL VISCOSITY	50	51	42	41	43	43	40
PV/YP	13/20	22/28	13/20	15/20	15/20	12/25	10/20
N/K	.48/1.67	.53/1.88	.48/1.67	.51/1.42	.51/1.42	.41/2.96	.41/2.26
GEL: INITIAL/10 MIN	8/28	15/33	10/25	10/29	12/30	18/28	15/26
pH	10.3	10.7	10.5	10.3	10.1	10.4	10.3
FILTRATE: API/API HTHP	5.2/16.0	5.8/17.7	6.7/19.1	7.3/19.6	8.5/22.4	9.8/24.3	9.6/24.1
CAKE	2	2	2	2	2	2	2
SALINITY (PPM)	17000	18400	18000	17400	18100	17800	18500
SAND	4	1/4	TR	TR	TR	TR	TR
SOLIDS	9	9	8	8	8	8	7
OIL	0	0	0	0	0	0	0
NITRATES (PPM)	200	160	160	200	160	200	160
	-						

REMARKS:

DRILLED 12坛" HOLE

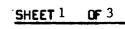
MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY_ WHITING NO. 1 Sheet No. 3_ WELL 2865 2934 3011 3011 3011 DEPTH (M) 3011 3011 3/4/83 4/4/83 5/4/83 6/4/83 7/4/83 8/4/83 9/4/83 DATE 22:00 21:45 21:30 16:00 19:00 09:00 24:00 TIME 9.9 9.9 9.8 9.9 9.7 9.7 9.7 WEIGHT 40 36 39 **FUNNEL VISCOSITY** 41 39 40 39 14/20 10/15 9/14 11/20 10/20 12/10 8/14 PV/YP .48/1.18 .5/1.53 .44/2.02 .41/2.02 .63/.44 .49/1.21 .45/1.35 N/K 11/2016/30 15/27 10/24 17/30 7/18 6/20 GEL: INITIAL/10 MIN 10.1 10.4 10.2 9.8 рΗ 10.3 10.1 9.9 FILTRATE: API/API HTHP 9.4/23.8 8.5/22.4 9.3/-8.3/23.2 8.5/23.6 11.7/26.4 11.8/27.4 CAKE 2 2 2 2 2 SALINITY (PPM) 18500 18400 18700 18400 18200 18400 18200 TR SAND TR TR TR TR TR TR SOLIDS 8 7 7 OIL 0 0 0 0 0 0 180 300 NITRATES (PPM) 160 160 140 TR TR REMARKS: DRILLED 12坛" HOLE T.D. LOGGING DEPTH (M) 3011 3011 3011 3011 3011 3011 3011 10/4/83 12/4/83 13/4/83 11:30 14/4/83 23:30 15/4/83 20:30 16/4/83 23:00 DATE 11/4/83 19:00 22:30 12:00 TIME 9.7 9.6 WEIGHT 9.7+ 9.7 9.8 9.8 9.8 FUNNEL VISCOSITY 38 42 41 46 48 43 <u>47</u> 7/12 8/18 14/17 PV/YP 9/12 12/16 15/20 14/15 .45/1.13 .39/2.33 .51/.85 N/K 7/15 8/14 6/15 8/20 8/20 8/20 GEL: INITIAL/10 MIN 7/18 10.7 10.1 10.2 10.6 10.2 9.8/22.0 рΗ 10.5 10.0 14.2/30.1 13.9/26.2 9.6/20.4 FILTRATE: API/API HTHP 14.4/28.2 10.1/22.4 10/22.4 2 2 2 2 2 2 CAKE SALINITY (PPM) 17800 16000 17500 18000 18000 18000 18000 SAND TR TR TR TR 0.25 TR TR SOLIDS 6 7 8 8 8 OIL 0 TR TR TR TR TR NITRATES (PPM) TR TR 50 30 TR TR **REMARKS:** RAN LOGGING 9-5/8" PRODUCTION CSG. TEST FROM

WIPER

TRIP

WIPER

TRIP

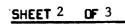

WIPER

TRIP

19/4/83

WIPER

TRIP


PORE PRESSURE DATA SHEET

DATA FROM: RFT NOS: 1 & 2

COMPANY: ESSO AUSTRALIA LTD.

WELL : WHITING NO. 1"

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT EMW (MSL)	PORE PRESSURE GRADIENT
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)
2987.5	2966.5	4879.6	9.642*	1.645
2871.0	2850.0	4243.0	8.727	1.489
2801.5	2780.5	4150.2	8.749	1.493
2688.0	2667.0	3908.5	8590	1.466
2537.0	2516.0	3645.6	8.493	1.449
2481.7	2460.7	3550.9	8.459	1.433
2467.0	2446.0	3542.3	8.489	1.448
2451.0	2430.0	3537.4	8.533	1.456
2441.7	2420.7	3536.6	8.564	1.461
2428.0	2407.0	3618.0	8.811	1.503
2418.0	2397.0	3526.7	8.624	1.471
2403.6	2382.6	3536.2	8.700	1.484
2354.0	2333.0	3421.4	8.596	1.467
2346.5	2325.5	4319.3	8.619	1.470
2300.0	2279.0	3322.6	8.546	1.458
2259.0	2238.0	3231.8	8.464	1.444
2238.0	2217.0	3204.4	8.472	1.445
2203.2	2182.2	3168.7	8.511	1.452
2193.0	2172.0	3167.0	8.547	1.458
2157.5	2136.5	3091.4	8.481	1.447

PORE PRESSURE DATA SHEET

DATA FROM: RFT NOS: 1 & 2

COMPANY: ESSO AUSTRALIA LTD.

WELL : WHITING NO. 1

DEPTH DEPTH GOSSELDS PORE PRESSURE PORE PRESSUR									
DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	GRADIENT EMW (MSL)	GRADIENT					
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)					
2147.2	2126.2	3081.1	8.494	1.449					
2124.2	2103.2	3053.1	8.509	1.452					
2115.4	2094.4	3051.9	8.541	1.457					
2006.0	1985.0	2860.2	8.446	1.441					
1946.0	1925.0	2773.4	8.445	1.441					
1921.0	1900.0	2736.1	8.441	1.440					
1910.0	1889.0	2721.2	8.444	1.441					
1901.0	1880.0	2717.0	8.471	1.445					
1880.0	1859.0	2713.4	8.556	1.460					
1825.0	1804.0	2591.9	8.422	1.437					
1812.5	1791.5	2581.2	8.445	1.441					
1807.0	1786.0	2580.8	8.470	1.445					
1771.0	1750.0	2517.1	8.431	1.438					
1745.0	1724.0	2477.8	8.425	1.437					
1718.0	1697.0	2451.8	8.469	1.445					
1659.0	1638.0	2357.6	8.437	1.439					
1575.0	1554.0	2227.0	8.400	1.433					
1500.0	1479.0	2124.4	8,419	1.436					
1493.5	1472.5	2115.4	8.421	1.437					
1486.0	1465.0	2109.0	8.438	1.440					

PORE PRESSURE DATA SHEET

DATA FROM: RFT NOS: 2 & 5

COMPANY: ESSO AUSTRALIA LTD.

WELL : WHITING NO. I

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT EMW (MSL)	PORE PRESSURE GRADIENT
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)
1482.0	1461.0	2105.1	8.446	1,.441
1401.0	1380.0	1987.7	8.443	1.440
2910.0	2889.0	4311.2	8.747	1.492
2836.0	2815.0	4261.0	8.873*	1.514
2785.0	2764.0	4140.1	8.780	1.498
2701.0	2680.0	3937.7	8.612	1.469
2623.5	2602.5	3970.3	8.942*	1.526
2603.0	2582.0	3730.5	8.469	1.445
2537.0	2516.0	3647.5	8.468	1.450
2494.0	2473.0	3569.7	8.461	1.443
2428.0	2407.0	3637.8	8.859	1.511
2418.0	2397.0	3524.6	8.619	1.470
* INDICATES	POSSIBLE SUPERCHAR	ING.		

CORE LABORATORIES	K.F.I.	DATA. SII	ILEE - SAMPLING DATA				
COMPANY: ESSO AUSTRALIA WELL: WHITING NO. 1 LTD.							
RUN No. : 3		PK	RESSURE GAUGE TYPE: HP				
CHAMBER No.	1	2					
CHAMBER CAPACITY (LITRES)		3.78	L.				
CHOKE SIZE (SQ.INS.)	.03	.03	OIL PROPERTIES CONT.				
SEAT No.	3/44	3/44	ODOUR O				
DEPTH (M) (from RKB)	1482	1482	POUR POINT ()				
A RECORDING TIMES			COMMENTS				
TOOL SET (HRS:MINS)	03:35		(c)WATER PROPERTIES				
PRETEST OPEN	03:35		RESISTIVITY ()				
TIME OPEN	:06	_	C1 (frm. resis.)()				
CHAMBER OPEN	03:41	03:56	C1 (frm. titrat)()				
CHAMBER FULL	03:49	03:57	NO ₃ ()				
FILL TIME	:08	:01					
START BUILD UP	03:49	03:57	OTHER TRACERS				
FINISH BUILD UP	03:55	04:00	()				
BUILD UP TIME	:06	:03	DENSITY ()				
SEAL CHAMBER	03:55	04:00	FLUORESCENCE				
TOOL RETRACT	_	04:01	COLOUR				
TOTAL TIME		:26	COMMENTS				
B SAMPLE PRESSURES							
IHP (PSIA)	2525.7	_	(d)OTHER SAMPLE				
ISIP (PSIA)	2105.4	_	PROPERTIES				
IFP (PSIA)	2003.2	1987.8	1 1				
FFP (PSIA)	1942.1		F MUD PROPERTIES				
FSIP (PSIA)	2105.1	2105.0	TYPE SWG SWG				
FHP (PSIA)		2524.1	RESISTIVITY (M) .192@34°C .192@34°C				
TEMP. CORR. ()	 		C1 (frm.resis.)(PPM) 28K 28K				
COMMENTS	 		C1 (frm.titrat)(PPM) 17.8K 17.8K				
C TEMPERATURE		<u> </u>	NO ₃ Drld/1st.circ()				
DEPTH TOOL REACHED(M)	11510	1510	pH ³				
MAX. REC. TEMP. (°C)	75	75	OTHER TRACERS				
TIME CIRC. STOPPED	18;3983	18;3983					
TIME SINCE CIRC.			DENSITY ()				
	8:30	8:30					
D SAMPLE RECOVERY	<u> </u>		G GENERAL COMMENTS				
SURFACE PRESSURE(PSIG	2320		THE MUD COVERED FROM pH 8.5				
VOL. GAS (CUFT		 	CHAMBER NO. 1 HAD THE				
	16850	P	RESISTIVITY 0.330				
)NIL	R	20°C				
VOL. FILTRATE (<u> </u>	E	FOLLOWING PROPERTIES:				
VOL. CONDENSATE (4	S	NaC1 EQUIVALENT 20K PR				
	650	E	C1 TITRATED 8K PH				
E SAMPLE PROPERTIES	<u> </u>	R	NO. OK PH.				
	59187		NO ₃ 66 PPN				
	3738	E	THE LOWER CHAMBER HAD A SMALL LEAK IN				
	1690		THE TRANSPORT VALVE.				
	243	ļ	THE INAMOPURI VALVE.				
	40	<u> </u>	THE UPPER CHAMBER WAS SEALED FOR				
0 c6+ (PPM)			ANALYSIS.				
M CO ₂ (%	0.4	<u> </u>	_				
P H ₂ S (PPM) TR						
(b)OIL PROPERTIES							
DENSITY: HYDROMETER	58.5@1	6 C					
() REFRACTOMET	ER]				
REFRACTIVE INDEX			7				
COLOUR	DK RED-	-BROWN	7				
FLUORESCENCE	BRT BL	UE-WH	7				
G.O.R. (SCF/STE)	144	 	-				

	CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA							
	COMPANY: ESSO AUSTRALIA WELL: WHITING NO. 1							
	RUN No. : 4							
	жон но . . ц			CES	SURE GAUGE TYPE: HP			
	AMBER No.	1	2					
CH	AMBER CAPACITY (LITRES) OKE SIZE (SQ. INS.)	22.7	10.4	-	OIL PROPERTIES CONT.			
SE	AT No.	4/45	4/45	1	ODOUR			
	PTH (M) (from RKB)	2801.5	2801.5	1	POUR POINT (O)			
A	RECORDING TIMES TOOL SET (HRS:MINS)	08:43	1	1	COMMENTS (c)WATER PROPERTIES			
1	PRETEST OPEN	08:43		1	RESISTIVITY (M) .133@22°C .122@24°C			
	TIME OPEN	:05		1	C1 (frm. resis.)(PPM) 55K 49K			
	CHAMBER OPEN	08:48]	C1 (frm. titrat)(PPM) 15K 15.5K			
1	CHAMBER FULL FILL TIME	10:13	11:03		NO ₃ (PPM) 22 30			
	START BUILD UP	1:25	:36	1	OTHER TRACERS 8.0 8.0			
	FINISH BUILD UP	10:13	11:03					
	BUILD UP TIME	:14	:04		DENSITY ()			
	SEAL CHAMBER	10:13	11:03	1	FLUORESCENCE			
	TOOL RETRACT TOTAL TIME	1.20	11:07	1	COLOUR COMMENTS			
В	SAMPLE PRESSURES	1:30	:54	1	GOLLIE MT 2			
	IHP (PSIA)	4721.5			(d)OTHER SAMPLE			
	ISIP (PSIA)	4151.3	500 (PROPERTIES			
	FFP (PSIA)	111.8 2173.7	529.6 3821	F	MUD PROPERTIES			
	FSIP (PSIA)	4151.2	4150.3	-	TYPE SWG			
	FHP (PSIA)		1230.5		RESISTIVITY (M) .192@34°C			
1	TEMP. CORR. () COMMENTS				C1 (frm.resis.) (PPM) 28K			
c	TEMPERATURE				C1 (frm.titrat)(PPM) 17.8K NO ₂ Drld/1st.circ()			
	DEPTH TOOL REACHED(M)	2810	2810		pH DITTY ISC. CIFC()			
	MAX.REC.TEMP.(° C)	110	110		OTHER TRACERS			
	TIME CIRC. STOPPED	18,3983	10/4/83		()			
D	TIME SINCE CIRC. SAMPLE RECOVERY	13:30	13:30	G	DENSITY ()			
-	SURFACE PRESSURE (PSIG)	0	0	5	GENERAL COMMENTS			
	VOL. GAS (CUFT)		0.38		THE LOWER CHAMBER LEAKED FROM			
		NIL 19500	9000		the transport valve.			
	VOL. FILTRATE ()	19300	3000					
	VOL. CONDENSATE ()							
<u></u>	VOL. OTHER ()							
E	SAMPLE PROPERTIES (a) G c1 (PPM)	55751	99306					
		47002	14100	ł				
	S c3 (PPM)	38356	11081					
		10680	3944					
	0 c6+ (PPM)	1598	1318					
	M CO ₂ (%)	77 0	288 4					
	P H ₂ S (ppm)	0	0					
	(b)OIL PROPERTIES DENSITY: HYDROMETER		,					
	() REFRACTOMETE	R						
	REFRACTIVE INDEX							
	COLOUR							
	FLUORESCENCE G.O.R. ()							
<u></u>	J. J		<u> </u>	<u> </u>				

CORE LABORATORIES	CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA						
COMPANY: ESSO AUSTRALIA WELL: WHITING NO. 1							
L	TD.						
RUN No. : 5		ESSURE GAUGE TYPE: HP					
	1						
CHAMBER No. CHAMBER CAPACITY (LITRES)		2 3.78					
CHOKE SIZE (SQ.INS.		.03	OIL PROPERTIES CONT.				
SEAT No.	5/55	5/55	ODOUR POUR POINT ()				
DEPTH (M) (from RKB) A RECORDING TIMES	2418	2418	POUR POINT () COMMENTS				
TOOL SET (HRS:MINS)	:22		(c)WATER PROPERTIES				
PRETEST OPEN	:22		RESISTIVITY (M) .92@19°C				
TIME OPEN	:30	/ 2	C1 (frm. resis.)(PPM) 7000				
CHAMBER OPEN CHAMBER FULL	:30	:42	C1 (frm. titrat)(MG/L) 3500 NO. (MG/L) 8				
FILL TIME	:05	:01	MG/L) 8				
START BUILD UP	:35	:43	OTHER TRACERS				
FINISH BUILD UP	:41	:46	()				
BUILD UP TIME SEAL CHAMBER	:06	:03	DENSITY () FLUORESCENCE				
TOOL RETRACT	- 41	:46 :47	COLOUR				
TOTAL TIME	:19	:06	COMMENTS				
B SAMPLE PRESSURES	T		(1) OWYER CANDI B				
IHP (PSIA) ISIP (PSIA)	4083.6 3524.6	4083.6 3525.0	(d)OTHER SAMPLE PROPERTIES				
IFP (PSIA)	3407.9	3325.0	Thorac and a second				
FFP (PSIA)	3366.0	3416	F MUD PROPERTIES				
FSIP (PSIA) FHP (PSIA)	3525.0	3525.2	TYPE SWG				
FHP (PSIA) TEMP. CORR. ()		4085.7	RESISTIVITY (M) .192 @ 34°C C1 (frm.resis.)(PPM) 28000				
COMMENTS	 		C1 (frm.titrat)(PPM) 17800				
C TEMPERATURE			NO ₃ Drld/1st.circ()				
DEPTH TOOL REACHED(M) MAX.REC.TEMP.(OC)	2935	2935	pH company				
TIME CIRC. STOPPED	116 19:30 10/4/83	116 19;30	OTHER TRACERS				
TIME SINCE CIRC.	29:00	29:00	DENSITY ()				
D SAMPLE RECOVERY			G GENERAL COMMENTS				
SURFACE PRESSURE(PSIG)	1800 124.1		UDDED GHAMDE VII C DOT				
	NIL		UPPER CHAMBER WAS PRESERVED.				
<u> </u>	1300						
VOL. FILTRATE (/ 22						
VOL. CONDENSATE (CC VOL. OTHER (430						
E SAMPLE PROPERTIES	<u>′I</u>	<u> </u>					
(a) G c1 (PPM)	219341						
A c2 (ppm)		P					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11827 3040	R					
C C5 (PPM)		E					
0 c6+ (PPM)	77	S					
M CO ₂ (%)		E E					
P H ₂ S (PPM) (b)OIL PROPERTIES	1						
DENSITY: HYDROMETER	53@ 16°	c R					
() REFRACTOMETE	ER	V					
REFRACTIVE INDEX	-	E					
FLUORESCENCE	COLOURLE	ESS D					
G.O.R. (bb1/cutt	BLUE-WH 21.8	 	}				
							

R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES COMPANY: ESSO AUSTRALIA WELL: WHITING NO. 1 LTD. PRESSURE GAUGE TYPE: HP RUN No. : CHAMBER No. CHAMBER CAPACITY (LITRES) 22.7 10.4 OIL PROPERTIES CONT. CHOKE SIZE (SQ.INS.) 03 03 SEAT No. ODOUR 6/56 6/56 DEPTH (M) (from RKB) POUR POINT 1401 1401 RECORDING TIMES COMMENTS TOOL SET (HRS:MINS) 19:03 (c)WATER PROPERTIES RESISTIVITY (M) 493@21^OC PRETEST OPEN 19:03 .718@ 21 C Cl (frm. resis.)(PPM) 13000 TIME OPEN 8500 .04 C1 (frm. titrat)(PPM) 6000 CHAMBER OPEN 4300 19:07 19:19 19:14 (PPM) TR NO.3 CHAMBER FULL 19:22 0.... :07 pН FILL TIME :03 8.5 7.5 START BUILD UP OTHER TRACERS 19:14 19:22 FINISH BUILD UP 19:17 19:25 BUILD UP TIME DENSITY :03 :03 SEAL CHAMBER FLUORESCENCE 19:17 19:25 TOOL RETRACT 19:26 COLOUR TOTAL TIME COMMENTS :14 :09 SAMPLE PRESSURES В (PSIA) IHP (d)OTHER SAMPLE 2352.0 FILTRATE FORMATION ISTP (PSIA) PROPERTIES 1988.7 1988.5 WATER IFP (PSIA) 1973 1972.2 FFP (PSIA) 1974 1974.2 MUD PROPERTIES FSIP PSIA) 1988.5 1988.5 TYPE SWG (PSIA) FHP 2350.6 RESISTIVITY (.145 @ 17⁰C TEMP. CORR. Cl (frm.resis.)(PPM) 58000 COMMENTS C1 (frm.titrat)(PPM) 17500 NO3Drld/1st.circ(TEMPERATURE С DEPTH TOOL REACHED(M) 1503 1503 MAX. REC. TEMP. (°C) OTHER TRACERS 76 12,747 12,74783 TIME CIRC. STOPPED TIME SINCE CIRC. DENSITY 7:00 7:00 SAMPLE RECOVERY GENERAL COMMENTS SURFACE PRESSURE(PSIG) 590 200 VOL. GAS CU FT) 0.85 0.37 THERE WAS AN INSUFFICIENT GAS SAMPLE VOL. OIL) NIL NIL FROM THE UPPER CHAMBER TO FACILITATE A VOL. WATER CC) 21300 10000 A MEANINGFUL ANALYSIS. VOL. FILTRATE VOL. CONDENSATE (VOL. OTHER SAMPLE PROPERTIES (a) G c1 (PPM) 54447 A c2 (PPM) 16268 S (PPM) 14515 c3 с4 (PPM) 2909 C **c**5 (PPM) 268 0 TR c6+ (PPM) CO2 M (% P H₂S (PPM 50 (b)OIL PROPERTIES DENSITY: HYDROMETER REFRACTOMETER REFRACTIVE INDEX COLOUR FLUORESCENCE G.O.R.

WHITING NO. 1 - PRODUCTION TEST

The sand between 1483-1486 metres was production tested. 10 perforations were made in this zone for PWT No. 1. The initial flow period was one hour and gas samples were analysed from the choke manifold every 15 minutes once oil reached the surface. An oil sample was tested for API gravity (58 API). The well was then shut in. The shut in period was longer than anticipated due to a malfunction of the HP gauge; eventually this was rigged down and OTIS Ameradas were run. The well was finally opened at 04:00 hours on 22nd April 1983 and oil/gas flared off. Gas samples were analysed for chromatographic breakdown, CO₂ and H₂S every 15 minutes, initially from the choke manifold, then after one and a half hours of flow, when the sediment content of the oil had dropped sufficiently, from the separator. Maximum H₂S from the gas samples was 9 ppm, and maximum CO₂ was 1.8%. Oil gravity remained relatively constant at 58 API.

The well was shut in at 11:00 hours on 22nd April 1983. Unfortunately the OTIS Wireline broke and so no record was available of down-hole pressure. The decision was then made to reperforate and rerun the test.

Ten perforations were made over the same zone (1483-1486m), for PWT No. IR. Similar samples were taken as for PWT No. 1. Oil gravity remained constant at 58° API, maximum H $_{\odot}$ S concentrations in the gas stream were 25 ppm and a maximum CO_{2}° content of 2.0% was recorded. Oil flowed at a rate just over 5000 BOPD, and gas flowed at 1.2 MMCFD with a GOR in the low 200's.

CORE LAB		PRODUCTION WELL TEST DATA SHEET	SHEET # 1/2
COMPANY	ESSO AUSTRALIA	LTD.	
WELL	WHITING NO. 1	PWT#1	
PERFORAT	IONS 1483-1486M	(FM PKR)	DATE 21-22 APRIL 1983

TIME	SAMPLING POINT	CI	CS	C3	C4	C5	C6	cos	H2S	
HH: MM		PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
09:15	CHOKE MANIFOLD	358400	149811	181094	97280	3794		1.1	0	ÎNIT
09:30	11	2240	7338	6288	6080	10226	- in	0.6	0	1 LO
04:00	11	134400	48154	60364	30400	17050		0.7	0	FINA FLOV
04:15	11	268800	74900	90550	53200	36900		0.8	٠ 0	1
04:30	11	313600	101660	110670	66120	5000		1.6	0	1
04:45	11	322560	96300	110670	63080	36000		1.7	0	1
05:00	11	367360	107000	110670	54720	34300		1.7	0	1
05:15	11	538400	107100	110670	58520	41300		1.8	0	1
05:30	11	340480	101650	105640	61560	42450		1.8	0	1
05:45	SEPARATOR	430800	80260	55330	19760	12110	-	1.3	0	1.
06:00	11	448000	80260	55330	21 280	11280		1.2	0	1
06:15	11	421120	85600	57850	23560	11280		1.3	0 ·	1
06:30	11	439040	85600	60365	24320	12330		1.3	0	1
06:45	tt	430080	85606	60364	23560	14892		1.3	8	1
07:00	ŧŧ	430080	85606	61622	25080	12096		1.3	8	1
07:15	11	412160	85600	60360	25840	11960		1.3	7	1
07:30	11	439040	85600	62880	26600	12900	······································	1.3	3	1
07:45	11	430080	85500	65390	27360	12900		1.2	7	1
08:00	11	430080	85600	65400	26600	12560	t	1.3	4	1
08:15	11	430080	85600	62880	24320	14580	· · · · · · · · · · · · · · · · · · ·	1.3	8	1
08:30	11	430080	85600	62880	26600	12500		1.3	9	1
08:45	tt	448000	90960	62880	28120	19500		1.3	8	1
09:00	11	439040	85600	65400	30400	17260		1.3	4	
NO MOR	E SAMPLES F	OR IMMEDI	ATE ANALY	SIS WERE	TAKEN.	AS SAMPLE	S WERE	BEIN	 }	
	FOR LABORAT									
									·	
						-				
						 				l ·

:

CORE LA	8.				PRO	DUCT	ON I	WELL TES	T DA	TA SHEE	Ţ			\$	HEET#_2/2
COMPANY	ESSO	AUS	STRA	LIA	LTD									22 .	APRIL 1983
WELL	WHITI	NG	NO.	1	- F	ATW	<u> 1</u>								
PERFOR	ATIONS 1483	3-14	486M		(FM,	RKB)								
RATHOLE	FLUID:	TYF	E					. RES	n			,н	_CI (1	TITR	AT) PP
NO3PPM DENSITY CUSHION FLUID: TYPERE\$mPH CI (TITRAT)PPM DENSITY															
CUSHION	FLUID	TYP Ci (1	E	T)			PPI	RES. M DENS	⊶∿ M_ SITY			, PH.			
TIME	SAMPLING	Ť	SHA	KE O	UT	APIE	TEM	COLOUR	POUR	WATER	RES	CI	NO3	PH	
	POINT	ld							1				 	-	
HH: MM		Z	OIL	H20	SLOS				Ŀ	√r-m	-	PPM	PPM		COMMENTS
09:40	<u> </u>	ļ	<u> </u>			58	72		ļ		<u> </u>		-		INITIAL FLO
04:00	''	┡			-		63		├	 		ļ	 		FINAL FLOW
04:15	 ''	-			-		65		 				+	_	·
04:30 04:45	11	+	-	-	├	57.9	71 72		┼──	1		 	-	-	
04:43	11	十	 	 	\vdash	57.2			 		 	 	 	-	
05:15	11	十	 		一	1	75		1			 	1	 	
05:30	11	T			1	58.4			 				1		1
06:00	11	T					82								
06:30	11	T				58.2			1				1-		
07:00	11	T				57.8							1		1
07:30	11	T				57.9	82						1	Г	•
08:00	11	T		\vdash	<u> </u>	58.2	 						1	┢	1
08:30	11	T			T	58.7			†		 		1	 	1
09:00	11	╁	-	-	-	58.5			╁		-		-	┢	
09:30	11	╁		-	-	58.2			-				-	-	į
	11	╀			-	ļ			 		-			 	
10:00	 	┼-			├	58.3	 		 			 			
10:30	11	-	<u> </u>			57.7			ļ	ļ 				<u> </u>	
11:00	"	_				575	80								
		L											_		
		Π											1	T	1
		T							1				+	-	
		\vdash	-	-			-		+			 	┪	╁	
		\vdash				-			-					-	1
		+			-				-	 		 	+	├	
		╁		-	-	├			┼			·	-	-	•
 		┢			-	-			 	ļ	-	ļ	╁	├-	
	ļ	\vdash			1	<u> </u>	 		-				-	<u> </u>	·
		_		<u> </u>	<u> </u>				-		ļ		<u> </u>		
				<u> </u>					<u> </u>						
							<u></u>								
													T		

ì.

÷

CORE LAB	PRODUCTION WELL TEST DATA SHEET	SHEET#_1/2
COMPANY ESSO AUSTRALIA	LTD.	
WELL WHITING NO. 1	PWT#	
PERFORATIONS_1483-1486M	(FM, RKB)	DATE 23 APRIL 1983

TIME	SAMPLING			i						
	POINT	CI	C S	СЗ	C4	C5	C6	CO2	H2S	
HH: MM		PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
08:35	CHOKE	241920	90560	90550	40280	21900		1.3	0	INITIA FLOW
08:45	11	250880	80260	88030	38000	23500		1.3	0	1 "
09:00	17	233000	96300	108150	50160	32930		2.0	3	
09:15	11	259840	74900	88030°	45600	32930		1.8	٠ 8	
14:45	11	286720	77580	65395	32680	25000		1.5	0	FINAL
15:00	11	259840	74910	72940	36480	39010		1.5	0	FLOW
15:15	- 11	161280	48150	55330	34960	31560		1.1	3	
15:30	11	179200	53500	60360	36480	32150		1.3	6	
15:45	11	219520	66880	72940	41040	33150		1.7	10	1
16:00	SEPARATOR	282240	42800	25150	9120	6650		1.1	6	1.
16:30	11	295680	46820	26400	9880	6900		1.1	4	
	WELL SHUT	IN DUE TO	FLARE NO	ZZLE BLO	CKAGE.					
18:00	SEPARATOR	259840	52170	32700	14820	12360		1.3	14	1
18:30	11 .	259840	50830	30180	13300	10720		1.2	4	1
19:00	11	250880	50830	30180	15200	12070		1.2	10	1.
19:30	11	255360	50830	30180	13300	11270		1.2	19	
20:00	11	268800	53500	`30180	12920	8630		1.1	20	
20:30	11	268800	50830	30180	13300	10220		1.1	14	
21:00	11	259840	50830	30180	13300	10470		1.1	15	•
21:30	11	255360	49490	28920	12920	9131		1.1	16	
22:00	11	268800	52200	31440	14060	11820		1.2	20	
22:30	. 11	264320	50830	30180	14060	11520		1.1	25	
	E SAMPLES W		1	DIATE AN	ALYSIS AS	SAMPLES	WERE BE	NG		
BOTTLE	D FOR LABOR	ATORY ANA	LYSIS.							

1.

CORE LA								WELL TES	ST DA	TA SHE	ET	•		\$	HEET# 2/2
COMPANY	ESSO WHITI	AUS NG	STRA NO.	LIA 1	LTD	DWT-	 _ 11	R	•			DATE	23-	24	APRIL 1983
	TIONS 148														
RATHOLE	FLUID:	TYP	E		2014		110:	. RES	n	•		ън	_CI (1	ri T R/	AT) PPA
CUSHION	FLUID	TYP	E		, rpm	DE	1150.	RES.	-V- M-			PH.			
		CI (T	TITRA	T)			PP	M DENS	SITY		- .				
TIME	SAMPLING POINT		SHAI	KE O	UT	API 8	TEM	COLOUR OIL	POUR	WATER & TEM	RES	CI	EON	PH	
нн: мм		Ž.	OIL	H20	SLOS		•		•	⊿r.−m	•	PPM	PPM		COMMENTS
	CHOKE					59.6									INITIAL FLOW
09:00	11					58.6	72								·
09:30	11	<u> </u>			<u> </u>										·
10:00	11	-	<u> </u>		-				-	ļ		 		-	
14:45 15:00	11	\vdash		-	-	58.2 58.0			+	 		 	+	\vdash	FINAL FLOW
15:15	11	\vdash			 	57.8			+	 	1	 	1		
15:30	11					57.4	75						1		
15:45	11					57 <i>A</i>	83								
16:00	11					573	84								
16:30	11	<u> </u>				57.9	89								
	SHUT IN	ΑT	16:	47	18	:00	HOU	RS.							
18:00	CHOKE					58.0	85								
18:30	11					57.5	95								
19:00	11					57.9	93								
19:30	11	Γ				57.8	 							T	
20:00	11					58.0	95								
20:30	**					57.9	99								
21:00	11	T				57.7									
21:30	11	Τ				57.7					1			T	
22:00	"	T				580									
22:30	"	1			1	575	 		1		1		1	T	1
23:00	11	T				1	100				1			1	1
23:30	11	T				+	103	·	1	 	1		1.		
00:00	11	T			1	 	97				1		1	一	
00:30	11	T				57.6									
		T			1						1			T	1
		Γ											1	1	1
		1		1	1	1			1		+		1	\vdash	
		\dagger		 	1	f	 	 	+		+		1	\vdash	1
		\vdash	 	 	+-	1			+	 		<u> </u>		+	

.

APPENDICES

COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the DRILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTBIT, and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

the following data lists have been made for this well :

- (a). Bit record and bit initialization data
- (b). Hydraulic analyses
- (c). Data list A
- (d). Data list B
- (e). Data list C
- (f). Data list D

COMPUTER PLOTS

Using the RSPORT program, hte following plots have been drawn for this well :

GEOPLOT - 1:5000 SCALE - 2m averages

Since all the data is stored on tape, further data lists or plots are available at any time on request.

(a). BIT RECORD AND BIT INITIALIZATION DATA

BIT SIZE Inches

BIT COST Australian dollars

JET SIZE Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME, , , , . Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

DEPTH

BIT TOTAL

12.250 5788.00 16 16 18 2593.6 2840.5 146.9 39.58 3.7 8.0 1819 53 115791 3 3 0.000

12.250 6788.00 16 16 18 2840.5 3011.0 170.5 48.33 3.5 8.4 1861 49 139280 4 2 0.250

TRIP

TOTAL CONDITION

DEPTH

BIT IADC

11 517 HTC J22 12 517 HTC J22

	CODE M	AKE & TYPE	SIZE	COST	NOZZLES	IN	OUT	RUN	HOURS	AROP TIM		TURNS	T B G
1	111 H	TC OSC3AJ&26"HO	26.000	0.00	20 20 20	74.0	211.0	137.0	6,03	22.7 2.		17485	
2	111 0	SC 3AJ	17.500	4442.00	20 20 20	211.0	800.0	589.0	19.13	30.8 2.	9 207.67	155173	2 2 0,000
3	114 H	TC X3A	12.250	2201.00	18 18 18	800.0	1339.0	539.0	19.23	28,0 4.		177615	7 4 0 125
4	517 H	TC J22	12.250	6788.00	18 18 18	1339.0	1668.2	329.2	24.87	13.2 4.		119781	8 3 0.125
ទី	617 H	TC J44	12.250	4919,00	18 18 18	1668.2	1942.0	273.8	32,21	8.5 6.		140419	3 8 9.000
6	517 H	TC J22	12.250	6788.00	18 18 18	1942.0	2185.0	243.0	34.07	7.1 6.	5 944.26	137842	3 7 0.125
₩ELL	.: 941	TING NO.1					,						BIT RECORD
RIT	IADC					DEPTH	DEPTH	BIT	TOTAL	TRI	•	TOTAL	CONDITION
		AKE & TYPE	SIZE	COST	NOZZLES	IN	CUT	RUN	HOURS	AROP TIM	E COOST	TURNS	T 9 G
7	437 H	TC J11	12.250	6788.00	18 18 18	2185.0	2211.5	26.5	3.84	6.9 6.	7 2433.75	17534	4 2 0.001
8	517 H	TC J22	12.250	6788.00	18 18 18	2211.5	2428.0	216.5	50.47	4.3 7.	1 1487 . 22	158096	2 3 0.000
9	517 H	TC J22	12.250	6788.00	16 16 18	2428.0	2634.0	206.0	58.59	3.5 7.	5 1792.13	1809 06	6 2 0.000
10	537 8	TC 133	12.250	6637.00	16 16 18	2634.0	2681.0	47.0	15,91	3.0 7.	7 2891 12	45492	1 1 0.00 0
1.0	4 (HRIS C-20	8.449	13000.00	14 14 13	2681.0	2693.6	12.6	10.94	1.2 7.	7 9131,27	59389	0 0 0.050

BIT NUMBER: 1 TADC CODE 111	HTC OSC3	AJ&26"H0	
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER	74.0 0.00 2.1 26.000		\$
NOZZLES	20 22. 59 39. 37 27.8 3	5.000	20 3.000 2.813 3.125
DRILL PIPE OD, ID	74.00 0.119	5 000 0,000 21,000 0,119	4.276
PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE DVERBURDEN GRADIENT MODIFIER	1,20 8,4 0,00 0,10		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0	2.00	
FINISHING DEPTH	5.0		G 0.900
BIT NUMBER: 2 JACC CODE 111	(90 34 3		
STARTING DEPTH. TUD	36 (2), 39 2, 4	211.0 5475.00	
BIT DIAMETER	0 77 - 59 0 98 0 - 59	20	20 200
ORILL COLLAR THREE, OD, TO HW DRILL FIRE LEAGUE, OO, TO ORILL PIPE OD, ID	2.4 72 %	7 000 3 000 5 000	2 817
CASING DEPTH, 1D	125.30 23.40 4.11 9		
PORE PRESSURE CALC EXPONENT PORMAL PORE PRESSURE, OVERBURDEN GRADTENT MODIFIER	7.20 8.4 9.00		
STRESS RATIO MODIFIER	$egin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 3 & 0 \end{array}$	2.10	
FINISHING DEPTH	ਾ0 0 .0 1 9 .1	生物(成生物)	
BIT CONDITION OUT.,,,	T 2	155173 R 2	G 0.000

•

RIT NUMBER: 3 IADC CODE 114	HTC X3A		
STARTING DEPTH, TVD. BIT COST, RIG COST/HOUR. TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	800.0 2201.00 4.2 12.250 131.10 90.27 778.00 71.00 0.119 1.20 8.4 0.00 0.10 10.0	800.0 5475.00 18 8.000 5.000 12.615 21.000 0.119	18 2.813 3.125 4.276
FINISHING DEPTH	1339 0 19,2 T.7	177615 B 4	G 9.125
BIT NUMBER: 4 HADO CODE 517	HTC J22		
STARTING DEPTH, TVD	1339.0 6738.00 4.9 12.250 18 159.17 90.27 778.00 71.00 0.119 1.20 8.4 0.00 0.10 10.0	1339.0 5475.00 18 2.000 5.000 12.415 21.000 0 119	18 7.013 3.125 4.276
FINISHING DEPTH	1668.2 04.9 T-8	119781 B 3	6 0.125

en de la companya de			
BIT NUMBER: 5 TADC CODE 617	HTC J44		
STARTING DEPTH, TVD	1668.2 4919.00 6.2	1668.2 5475.00	
BIT DIAMETER	12.250		
NOZZLES	18 159.88	18 8,000	18 2.81 3
HW DRILL PIPE LENGTH, OD, ID	90.27	5,000	3.125
DRILL PIPE OD, ID		5.000	4.276
CASING DEPTH, ID	778.00 71.00	12.615 21.000	
PUMP VOLUMES 1 AND 2	0.119	0.119	
PORE PRESSURE CALC EXPONENT	1.20		
NORMAL PORE PRESSURE	8.4 0.00	,	
STRESS RATIO MODIFIER	0.10		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0	C) 4.0	
COTTINGS DIFFREIER, DEPOITE,,,,,,,	2.5	2,40	
FINISHING DEPTH	1942.0		
CUMULATIVE HOURS, TURNS	32.2	140419	
BIT CONDITION OUT	T 3	B 8	G 0.000
BIT NUMBER: 6 IADC CODE 517	HTC J22		
STARTING DEPTH, TVD	1242.0	1942.0	
BIT COST, RIG COST/HOUR	6788.00 5.6	5475.00	
BIT DIAMETER	12.250		
NOZZLES, DRILL COLLAR LENGTH, OD. 10,	18	18	18
HW DRILL PIPE (ENGIN, Ob. 10	163.3 1 90.27	8.000 5.000	2 813 3 125
DRILL PIPE OD, ID.,, .,., .,.,		5.000	4.276
CASING DEPTH, ID	778.00 71.00	12.615 21.000	
PUMP VOLUMES 1 AND 2	0.119	0.119	
PORE PRESSURE CALC EXPONENT	1.20		
NORMAL PORE PRESSURE	9.4 9.00		
STRESS RATIO MODIFIFR	0.10		
"d" EXPONENT CORRECTION FACTOR,	100	,000 A NA	
CUTTINGS DIAMETER, DENSITY	2,5	2.40	
FINISHING DEPTH	2185.0		
CUMULATIVE HOURS, TURNS	34,1	137842	
BIT CONDITION OUT	т 3	B 7	G. 0,125

BIT NUMBER: 7	IADC CODE 437	HTC J11		
BIT COST, RIG COSTRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH DRILL PIPE OD, IS CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AI PORE PRESSURE CAN NORMAL PORE PRESSURE PRESSURE CAN NORMAL PORE PRESSURE PROSPER PRESSURE PROSPER PROSPE	TVD ST/HOUR GTH, OD, ID NGTH, OD, ID D ND 2 LC EXPONENT SURE ENT MODIFIER IFIER RECTION FACTOR R, DENSITY	2185.0 6788.00 6.7 12.250 18 163.31 90.27 778.00 74.00 0.119 1.20 8.4 0.00 0.10 10.0	2185.0 5475.00 18 8.000 5.000 12.615 21.000 0.119	18 2.613 3.125 4.276
CUMULATIVE HOURS	T	2211.5 3.8 T 4	1 7534 B 2	G 0.000
BIT NUMBER: 8	TADC CODE 517	HTC J22		
BIT COST, RIG COSTRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENG HW DRILL PIPE LES DRILL PIPE OD, TO CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES I AN PORE PRESSURE CAN	TVD	2211.5 6268.00 7.1 12.250 18 164.02 90.27 24.00 0.119 1.20 8.4	2211.5 5475.00 18 8.000 5.000 5.000 12.615 21.000 0.119	18 2.813 3.125 4.276
STRESS RATIO MOD.	ENT MODIFIER	0.00 0.10 10.0 2.2	2.46	
CUMULATIVE HOURS	, TURNS	2428.0 50.5 T 2	158096 B 3	G 0.000

***	IT NUMBER: 9 IADC CODE 517	HTC J22		
E	TARTING DEPTH, TVD	2428.0 6788.00 7.6	2428.0 5475.00	
N XX	IT DIAMETER	12.250 16 163.31 90.27	46 8.000 5.000	18 2.813 3.125
D C R	RILL PIPE OD, ID	778.00 74.00	5.000 12.615 21.000	4.276
의 어 ()	JMP VOLUMES 1 AND 2 JRE PRESSURE CALC EXPONENT JRMAL PORE PRESSURE JERBURDEN GRADIENT MODIFIER TRESS RATIO MODIFIER	0.119 1.20 8.4 0.00 0.10	0.119	
. 11	HE EXPONENT CORRECTION FACTOR JITINGS DIAMETER, DENSITY	10.0	2.46	
C	INISHING DEPTH	263 4 .0 58.6 T.6	180906 B 2	G 0.000
В	IT NUMBER: 10 IADC CODE 537	HTC J33		
\mathbf{E}	CARTING DEPTH, TVD	263 4.0 6637.00 7.7	2635.0 5475 00	
N N D	IT DIAMETER	12.250 16 163.31 90.27	36 8.000 5.000	18 2 813 3 125
C R P	RILL PIPE OD. 10 ASING DEPTH, ID ISER LENGTH, ID	778.00 74.00 0.119	5.000 12.615 21.000 0.119	4 276
N O S	DRE PRESSURE CALC EXPONENT DRMAL PORE PRESSUPE PERBURDEN GRADIENT MODIFIER TRESS RATIO MODIFIER	1.20 8.4 0.00 0.10		
	"EXFONENT CORRECTION FACTOR " TTINGS DIAMETER, DENSITY,	10.0 26	n jug	

	BIT NUMBER: 10 IADC CODE 4	CHRIS C-	20	
	STARTING DEPTH, TVD	13000.00 7.7	2681.0 5475.00	
	BIT DIAMETER		1.4	1.3
	DRILL COLLAR LENGTH, OD, ID	152.02	8.000	2.813
	HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID		5,000 5,000	3,125 4,276
	LINER DEPTH, TOP, ID		778.00 12.615	12.250
	RISER LENGTH, ID	74.00	21.000 0.119	
	PUMP VOLUMES 1 AND 2	1.20	0.117	
	NORMAL PORE PRESSURE			
	STRESS RATIO MODIFIER	0.10		
	CUTTINGS DIAMETER, DENSITY		2.40	
,	FINISHING DEPTH		(*** par, 110g par, par,	
	BIT CONDITION OUT		5938 9 B 0	G 0.050
	BIT NUMBER: 11 IAOC CODE 517	HTC 322		
	STARTING DEPTH, TVD			
	BIT COST, RIG COST/HOUR	8.9	5475.00	
	BIT DIAMETER		16	18
	DRILL COLLAR LENGTH, OD, JD	150.57	8.000	2.813
	HW DRILL PIPE LENGTH, OD; 10 DRILL PIPE OD, ID		.5.000 5.000	3.125 4.276
	CASING DEPTH, ID		12.615 21.000	
	PUMP VOLUMES 1 AND 2		0 119	
	NORMAL PORE PRESSURE	8.4		
	OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER			
	"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10. 0 2.2	2.46	
	Some of the analysis of the analysis and the second of the	face 1 fees	A 4 177 Sal	
	FINISHING DEPTH			
	CUMULATIVE HOURS, TURNS	39.6 T 3	115791 B 3	G 0.000

HTC J22	•	
2840.5	2840.0	-
6788.0 0	5475.00	
8.4		
	· ·	
		18
		2.813
88.87		3.125
		4.276
	0.119	
2.2	2.46	
3011. 0		4
48.3	139280	
T 4	B 2	G 0.250
	6788.00 8.4 12.250 16 160.57 88.87 778.00 74.00 0.119 1.20 8.4 0.00 0.10 10.0 2.2	2840.5 2840.0 6788.00 5475.00 8.4 12.250 16 16 160.57 8.000 88.87 5.000 5.000 778.00 12.615 74.00 21.000 0.119 0.119 1.20 8.4 0.00 0.10 10.0 2.2 2.46 3011.0 48.3 139280

•

(b), HYDRAULIC ANALYSIS

Data listed from the tape every 100m for each bit run.

DEPTH. Metres

FLOW RATE, Rate of mud flow into the well,

in gallons per minute.

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which

the flow becomes turbulent

SLIP VELOCITY. The rate of slip of cuttings in the

annulus under laminar flow

ASCENT VELOCITY. . . . The rate of ascent of cuttings in

the annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

IMPACT FORCE The impact force at the bit, in foot-pounds per second squared.

 $\mathsf{H}_{\mathsf{f}},\mathsf{H}_{\mathsf{f}},\mathsf{P}_{\mathsf{f}}$, , , , , . Hydraulic horsepower at the bit

JET VELOCITY The velocity of mud through the

bit nozzles, in metres per second.

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 100.0 AND TVD 100.0

SPM 1 65 SPM 2 59 FLOW RATE 620

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FL.OW	VEL	VEL	DROP
HWDC/OH	1.851	42	8	.0	TURBULENT			0.0
DC/OH	1.950	ク	8	0	TURBULENT			0.0
DC/RIS	1,201	42	12	1	TURBULENT			0.0
HWDP/RIS	1.325	37	11	0	TURBULENT			0.0
DP/RIS	1.325	15	11	0	TURBULENT			0.0
TOTAL	VOLUME,	142			TOTAL	PRESSU	RE DROP	0.0

626 STROKES #1 AND 568 STROKES #2

BIT HYDRAULICS:

LAG: 9.6 MINUTES

PRESSURE DROP	359.1	HHP	130	IMPACT FORCE	596
% SURFACE PRESSURE	108.8	HHP/sqin	0.24	JET VELOCITY	66

PEESSURE BREAKDOWN:

SURFACE 24.3
STRING 76.7
BIT 359.1
ANNULUS 0.0
TOTAL 460.2 PUMP PRESSURE 330.0 % DIFFERENCE 39.5

		D	ENSITY UNITS	PR	ESSURE UNITS
NOT CIRCULATING: CIRCULATING:	MUD	WEIGHT ECD	8.60 8.60	HYDROSTATIC PRESSURE	146.7
PULLING OUT: EFFECTIVE		MARGIN WEIGHT	0.00 8.60	ESTIMATED SWAB BOTTOM HOLE PRESSURE	0.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 200.0 AND TVD 200.0

SPM 1 65 SPM 2 59 FLOW RATE 620

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP ASCEND VEL VEL	PRESSURE DROP
HMDC/OH	1.851	42	8	0	TURBULENT		0,0
DC/OH	1.950	75	8	0	TURBULENT		0.0
HWDP/OH	2.074	58	7		TURBULENT		0.0
DP/OH	2.074	77	7	0	TURBULENT		0.0
DP/RIS	1.325	98	11	0	TURBULENT		0.0
TOTAL	_ VOLUME	350			TOTAL	PRESSURE DROP	0.1
100: 23.7	MINHTER	15.40	отраис	C 44 /	A ATT - 17200 4	STOOVED AO	

LAG: 23.7 MINUTES 1540 STROKES #1 AND 1398 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 359.1 HHP 130 IMPACT FORCE 596 % SURFACE PRESSURE 90.9 HHP/sqin 0.24 JET VELOCITY 66

PRESSURE BREAKDOWN:

SURFACE 24.3 STRING 90.7 BIT 359.1 ANNULUS 0.0

TOTAL 474,2 PUMP PRESSURE 395.0 % DIFFERENCE 20.1

	:	DENSITY UNITS		PRESSURE Units
NOT CIRCULATING:	MUD WEIGHT ECD	8.60 8.60	HYDROSTATIC PRESSURE	293.4 293.4
PULLING OUT: EFFECTIVE A	RIP MARGIN MUD WEIGHT		ESTIMATED SWAB BOTTOM HOLE PRESSURE	0.0 29 3.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0

SPM 1 95 SPM 2 97 FLOW RATE 962

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP 6	ASCEND -	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL	VEI.	DROP
HWDC/OH	0.673	14	34	149	LAMINAR	0	34	0.5
DC/OH	0.772	64	30	150	LAMINAR	0	3.0	1,5
DC/CSG	0.961	12	24	150	LAMINAR	0	24	0.2
HWDP/CSG	1.085	87	21	151	LAMINAR	0	21	0.9
DP/CSG	1.085	33	21	151	LAMINAR	0	21	0.3
DP/RIS	1.325	97	17	151	LAMINAR	0	17	0.7
TOTAL	VOLUME	307		<i>a</i> .	TOTAL	PRESSURE	E DROP	4,1

LAG: 13.4 MINUTES 1274 STROKES #1 AND 1305 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 866.2 HMP 486 IMPACT FORCE 1438 % SURFACE PRESSURE 48.1 HMP/sqin 2.02 JET VELOCITY 102

PRESSURE BREAKDOWN:

SURFACE 67.0
STRING 497.8
BIT 866.2
ANNULUS 4.1

TOTAL 1435.0 PUMP PRESSURE 1800.0 % DIFFERENCE 20.3

	()	NNIL8 FWSTIA	,	UNITS
CIRCULATING:	D WEIGHT ECD	8.60 8.68	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	440.2 444.2
PULLING OUT: TRI EFFECTIVE MU	P MARGIN D WEIGHT	0.16 8. 44	ESTIMATED SWAB BOTTOM HOLE PRESSURE	8.1 432.1

CORE LAB 28 102 103 103 103 103 103 103

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 SPM 2 FLOW RATE 962

ANNULAR HYDRAULICS:

ANNULUS TYPE	UNIT	YOL.	ANN VEL	CRIT	TYPE OF FLOW	SLIP A VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH :	0.673	1.4	34	131	LAMINAR	0	34	0.4
DC/OH	0.772	73	30	129	LAMINAR	Ö	30	1.4
HWDP/OH	0.896	72	26	127	LAMINAR	0	25	0.8
DP/OH	0.896	7	26	127	LAMINAR	ň	-25	0.1
DP/CSG	1,085	134	21	126	LAMINAR	ñ	21	1.0
DP/RIS	1.325	97	17	125	LAMINAR	ő	17	0.5
TOTAI	L. VOLUME	396			TOTAL	PRESSURE	DROP	4.0

LAG: 17.3 MINUTES 1657 STROKES #1 AND 1675 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP	905.9	F11 [17]	509	IMPACT FORCE	1504
% SURFACE PRESSURE	48.7	HHP/scin	2,11	JET VELOCITY	102

PRESSURE BREAKDOWN:

79.7 SURFACE STRING 638.7 BIT 905.9 ANNULUS 4.0

TOTAL 1628,4 PUMP PRESSUPE 1840.0 % DIFFERENCE 12.5

BOTTOM HOLE PRESSURES:

	DENSITY	PRESS UN	URE ITS
CIRCULATING:	WEIGHT 9.00 ECD 9.06 MARGIN 0.12 WEIGHT 8.88	CIRCULATING PRESSURE 61 ESTIMATED SWAB	4,2 8,2 8,0 6,1

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 94 SPM 2 91 FLOW RATE 922

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH	0.673	14	33	131	LAMINAR	0	32	(1,4
DC/OH	0.772	7.3	28	129	LAMINAR	Ö	28	1.3
HWDP/OH	0.896	72	25	127	LAMINAR	0	24	0.8
DP/OH	0.896	96	25	127	LAMINAR	Ö	24	1.0
DP/CSG	1.085	134	20	126	LAMINAR	0	20	0.9
DP/RIS	1,325	97	17	125	LAMINAR	0	17	0.4
TOTAL	L VOLUME	486			TOTAL	PRESSU	RE DROP	4,9

LAG: 22.1 MINUTES 2076 STROKES #1 AND 2008 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 832.6 HHP 448 IMPACT FORCE 1382 % SURFACE PRESSURE 47.1 HHP/sqin 1.86 JET VELOCITY 98

PRESSURE BREAKDOWN:

SURFACE 73.9
SIRING 634.6
BIT 832.6
ANNULUS 4.9
TOTAL 1546.0 PUMP PRESSURE 1768.2 % DIFFERENCE 12.6

		D	ENSITY UNITS			PRESSURE. UNITS
NOT CIRCULATING: CIRCULATING: PULLING OUT: EFFECTIVE	TRIP	WEIGHT ECD MARGIN WEIGHT	9.00 9.06 0.12 8.88	HYDROSTATIC CIRCULATING ESTIMATED SU BOTTOM HOLE	PRESSURE JAB	772.6 9.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 1 95 SPM 2 92 FLOW RATE 932

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOI	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE
		,						
$HWDC \setminus OH$	0.673	14	33	168	LAMINAR	0	33	0.7
DC/ O H	0.772	73	29	168	LAMINAR	0	29	2.4
HWDP/OH	0,896	72	25	167	LAMINAR	0	25	1.4
DP/OH	0.896	186	25	167	LAMINAR	0	25	3.6
DP/CSG	1.085	134	20	167	LAMINAR	0	20	1.7
DP/RIS	1.325	97	17	167	LAMINAR	0	17	0,9
TOTA	L VOLUME	576			TOTAL	PRESSUI	RE DROP	10.6
					•			

LAG: 25.9 MINUTES 2460 STROKES #1 AND 2377 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 887.7 HMP 483 IMPACT FORCE 1474 % SURFACE PRESSURE 48.0 HHP/sgin 2.01 JET VELOCITY 99

PRESSURE BREAKDOWN:

SURFACE 78.0 STRING 714.3 BIT 887.7 ANNULUS 10.6

TOTAL 1690.5 PUMP PRESSURF 1850.0 % DIFFERENCE 8.6

	DENSITY UNITS	PRESSURE UNITS
CIRCULATING:	WEIGHT 9.40 ECD 9.50 MARGIN 0.21 WEIGHT 9.19	HYDROSTATIC PRESSURE 962.2 CIRCULATING PRESSURE 972.8 ESTIMATED SWAB 21.2 BOTTOM HOLE PRESSURE 941.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0
--

SPM 1 94 SPM-2 91 FLOW RATE 922

ANNULAR HYDRAULICS:

ANNUL US TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 6 VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH	0.,673	1.4	33	167	LAMINAR	0	33	0.7
DC/OH	0.772	73	28	167	LAMINAR	0	28	2.4
HWDP/OH	0.896	72	25	166	LAMINAR	0	24	1.4
HO\90	0.896	276	25	166	LAMINAR	. 0	24	5,3
DP/CSG	1.085	134	20	166	LAMINAR	0	20	1.7
DP/RIS	1.325	97	17	166	LAMINAR	0	17	0.9
TOTA	r nornwe	665			TOTAL	PRESSURE	qong E	12.3

LAG: 30.3 MINUTES 2839 STROKES #1 AND 2751 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 378.2 HHP 472 IMPACT FORCE 1458 % SURFACE PRESSURE 46.0 HHP/sqin 1.76 JET VELOCITY 98

PRESSURE BREAKDOWN:

SURFACE 77.1 STRING 751.1 BIT 878.2 ANNULUS 12.3

TOTAL 1718.8 PUMP PRESSURE 1910.0 % DIFFERENCE 10.0

BOTTOM HOLE PRESSURES:

		UNITS	•	UNITS
CIRCULATING: PULLING OUT: T	MUD WEIGHT ECD RIP MARGIN MUD WEIGHT	9.50 9.60 0.21 9.29	HYDROSTATIC PRESSURE CIRCULATING PRESSURE FSTIMATED SWAB BOTTOM HOLE PRESSURE	1134.5 1146.8 24.6 1109.9

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TVD 800.0

SPM 1 93 SPM 2 91 FLOW RATE 922

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOLZ	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A	SCEND VEL	PRESSURE DROP
HMDC/CH	0.673	14	33	169	LAMINAR	. 0	33	0.7
DC/OH	0.772	73	28	169	LAMINAR	0	28	2.4
HWDP/OH	0.896	72	25	168	LAMINAR	0	24	1,4
DP/OH	0.896	365	25	168	LAMINAR	Ö	24	$\hat{\mathbf{z}}$, $\hat{0}$
DP/CSG	1.085	134	20	168	LAMINAR	Ö	20	1.7
DP/RIS	1,325	97	17	168	LAMINAR	ŏ	17	0.9
TOTAL	VOLUME	755			TOTAL	PRESSURE	DROP	14.0

LAG: 34.4 MINUTES 3199 STROKES #1 AND 3144 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 859.8 HMP 46% IMPACT FORCE 1427 % SURFACE PRESSURE 41.9 HMP/sqin 1.92 JET VELOCITY 98

PRESSURE BREAKDOWN:

SURFACE 75.8 STRING 782.2 BIT 859.8 ANNULUS 14.0

TOTAL 1731.8 PUMP PRESSURF 2050.0 % DIFFERENCE 15.5

	DENSITY UNITS	PRESSURE UNITS
CIRCULATING:	WEIGHT 9.30 ECD 9.40 MARGIN 0.21 WEIGHT 9.09	HYDROSTATIC PRESSURE 1269.3 CIRCULATING PRESSURE 1283.3 ESTIMATED SWAB 28.1 BOTTOM HOLE PRESSURE 1241.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 102 SPM 2 95 FLOW RATE 985

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL	VEL.	DROP
DC/OH	0.274	33	86	103	LAMINAR	1	84	4,1
DC/CSG	0.303	3	77	102	LAMINAR	1	76	0.3
HWDP/CSG	0,427	39	55	98	LAMINAR	0	54	1.2
DP/CSG.	0.427	260	55	98	LAMINAR	0	54	8.2
DP/RIS	1,325	94	18	92	LAMINAR	0	18	0.2
TOTAL	. VOLUMĖ	429			TOTAL	PRESSURE	DROP	14.0

LAG: 18.3 MINUTES 1869 STROKES #1 AND 1732 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1447.1 HHP 832 JMPACT FORCE 1946 % SURFACE PRESSURE 51.3 HHP/sqin 7.06 JET VELOCITY 129

PRESSURF BREAKDOWN:

OURFACE 76.7 STRING 912.4 BIT 1447.1 ANNULUS 14 0

TOTAL 2450.1 PUMP PRESSURE 2819.8 % DIFFERENCE 13.1

BOTTOM HOLE PRESSURES:

			UNITS		UNITS
NOT CIRCULATING:	MUD	WEIGHT	9.00	HYDROSTATIC PRESSURE	1381,9
CTRCULATING:		ECD	9.09	CIRCULATING PRESSURE	1395,9
PULLING OUT:	TRIP	MARGIN	0.18	ESTIMATED SWAB	28.0
EFFECTIVE	MUD	WEIGHT	8.82	BOTTOM HOLE PRESSURE	1353,9

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1000.0 AND TVD 1000.0

SPM 1 106 SPM 2 96 FLOW RATE 1013

ANNULAR HYDRAULICS:

VOL.Z		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
UNIT	VOL	VEL	VEL.	FL.OW	VEL	VEL.	DROP
0.274	36	88	103	LAMINAR	1	87	4.4
0.398	36	61	78	LAMINAR	0	60	1.3
0,398	0	61	98	LAMINAR	0	60	0.0
0.427	302	56	98	LAMINAR	0	56	9.6
1.325	94	18	92	AMINAR	0	18	0.3
TAL VOLUME	468			TOTAL	PŘESSURE	E DROP	15.6
	UNIT 0,274 0,398 0,398 0,427 1,325	UNIT VOL 0.274 36 0.398 36 0.398 0 0.427 302 1.325 94	UNIT VOL VEL 0.274 36 88 0.398 36 61 0.398 0 61 0.427 302 56 1.325 94 18	UNIT VOL VEL VEL 0.274 36 88 103 0.398 36 61 98 0.398 0 61 98 0.427 302 56 98 1.325 94 18 92	UNIT VOL VEL VEL FLOW 0.274 36 88 103 LAMINAR 0.398 36 61 98 LAMINAR 0.398 0 61 98 LAMINAR 0.427 302 56 98 LAMINAR 1.325 94 18 92 LAMINAR	UNIT VOL VEL VEL FLOW VEL 0.274 36 88 103 LAMINAR 1 0.398 36 61 98 LAMINAR 0 0.398 0 61 98 LAMINAR 0 0.427 302 56 98 LAMINAR 0 1.325 94 18 92 LAMINAR 0	UNIT VOL VEL VEL FLOW VEL VEL 0.274 36 88 103 LAMINAR 1 87 0.398 36 61 98 LAMINAR 0 60 0.398 0 61 98 LAMINAR 0 60 0.427 302 56 98 LAMINAR 0 56 1.325 94 18 92 LAMINAR 0 18

LAG: 19:4 MINUTES 2066 STROKES #1 AND 1870 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1531.3 HHP 905 IMPACT FORCE 2059 % SURFACE PRESSURE 53.1 HHP/sqip 7.68 JET VELOCITY 133

PRESSURE BREAKDOWN:

SURFACE 80.7 STRING 1006.6 BIT 1531.3 ANNULUS 15.6

TOTAL 2634.2 PUMP PRESSURE 2884.7 % DIFFERENCE 8.7

BOTTOM HOLE PRESSURES:

		UNITS		UNITS
NOT CIRCULATING: MUD	WEIGHT	9.00	HYDROSTATIC PRESSURE	1535.4
CIRCULATING:	ECO	9.09	CIRCULATING PRESSURE	1551.0
PULLING OUT: TRIP	MARGIN	0,18	ESTIMATED SWAR	31.3
EFFECTIVE MUD	WEIGHT	8.82	BOTTOM HOLE PRESSURE	1504.2

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 97 SPM 2 92 FLOW RATE 945

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOLZ	VOL.	ANN VEL	CRIT	TYPE OF FLOW	SLIP (ASCEND VEL	PRESSURE DROP
DC/OH	0.274	36	82	101	LAMINAR	1	81	4.3
HWDP/OH	0.398	36	56	96	LAMINAR	Ō	56	1.3
DPZOH	0.398	40	56	96	LAMINAR	0	56	1.5
DP/CSG	0.427	302	53	96	LAMINAR	Ö	52	9,4
DF/RIS	1.325	94	17	90	LAMINAR	0	17	0.2
TOTAL	VOLUME	508			TOTAL	PRESSURI	E DROP	16.7

LAG: 22.6 MINUTES 2201 STROKES #1 AND 2070 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1376.7 HMP 759 IMPACT FORCE 1851 % SURFACE PRESSURE 47.4 HMP/sqin 6.44 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 73.1 STRING 953.8 BIT 1376.7 ANNULUS 16.7

TOTAL 2420.4 PUMP PRESSURE 2901.8 % DIFFERENCE 16.6

	YTIRMED STINU		PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 9.30 ECD 9.39	HYDROSTATIC PRESSURE	
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN 0.18 WEIGHT 9.12	ESTIMATED SWAB BOTTOM HOLE PRESSURE	33.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1200,0 AND TVD 1200,0

SPM 1 91 SPM 2 88 FLOW RATE 891

ANNULAR HYDRAULICS:

ANNULUS TYPE	UOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DCZOH	0,274	36	77	121	AMINAR	1	77	6.4
HWDPZOH	0.398	36	53	116	LAMINAR	Ö	53	1.9
DP/OH	0.398	80	53	116	LAMINAR	0	53	4,3
DP/CSG	0.427	302	50	1.15	LAMINAR	- 0	49	13.8
DP/RIS	1.325	94	16	108	LAMINAR	Ö	16	0.4
TOTAL	L VOLUME	548			TOTAL	PRESSURE	DROP	26,8

LAG: 25.8 MINUTES 2340 STROKES #1 AND 2265 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1316.6 HHP 685 IMPACT FORCE 1770 % SURFACE PRESSURE 46.0 HHP/sqin 5.81 JET VELOCITY 117

PRESSURE BREAKDOWN:

SURFACE 75.6 STRING 1030.0 BIT 1316.6 ANNULUS 26.8

TOTAL 2449.0 PUMP PRESSURE 2863.9 % DIFFERENCE 14.5

BOTTOM HOLE PRESSURES:

NOT CIRCULATING:	MUD	WEIGHT	10.00	HYDROSTATIC PRESSURE	2047.2
CIRCULATING:		ECD	10.13	CIRCULATING PRESSURE	2073.9
PULLING OUT: 7	RIP	MARGIN	0.26	ESTIMATED SWAR	53.5
EFFECTIVE	MUD	WEIGHT	9.74	ROTTOM HOLF PRESSURE	1007 7

DENSITY

UNITS

PRESSURE

UNITS

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 84 SPM 2 87 FLOW RATE 858

ANNULAR HYDRAULICS:

ANNULUS	VOL.Z		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FL.OW	VEL	VEL.	DROP
DC/OH	0.274	36	74	134	LAMINAR	n	74	7.9
HWDP/OH	0.398	36	51	123	LAMINAR	0	51	2.2
DP/OH	0,398	120	51	123	LAMINAR	0	F-1	7.2
DP/CSG	0.427	302	48	122	LAMINAR	0	48	15.4
DP/RIS	1.325	94	15	108	LAMINAR	0	15	0.3
TOTAL	- VOLUME	588			TOTAL	PRESSURE	DROP	33.1

LAG: 28.8 MINUTES 2432 STROKES #1 AND 2508 STROKES #2

BIT HYDRAULTCS:

PRESSURE DROP 1219.1 HHP 610 IMPACT FORCE 1639 Z SURFACE PRESSURE 44.3 HHP/sqin 5.18 JET VELOCITY 112

PRESSURE BREAKDOWN:

SURFACE 81.0 STRING 1150.7 BIT 1219.1 ANNULUS 33.1

TOTAL 2484.0 PUMP PRESSURF 2751.0 % DIFFERENCE 9.7

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.00 HYDROSTATIC PRESSURE 2217.8 CIRCULATING: 10.15 2250.9 CIRCULATING PRESSURE TRIP MARGIN PULLING OUT: 66.2 0.30 ESTIMATED SWAB EFFECTIVE MUD WEIGHT 9.70 BOTTOM HOLE PRESSURE 2151.6

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TVD 1400.0

SPM 1 85 SPM 2 85 FLOW RATE 853

ANNULAR HYDRAULICS:

NNULUS TYPE	VOL	VOL.	QKK	CREI	TYPELOE	SVE AS	SCEND	PRESSURE DROP
DČZOH	0.274	44	74	134	LAMINAR	1	74	9.6
WDP/OH	0.398	36	51	123	LAMINAR	0	51	2.2
DP/OH	0,398	148	51	123	LAMINAR	0	51	9.0
DP/CSG	0.427	302	48	122	LAMINAR	0	47	15.4
DP/RIS	1.325	94	15	108	LAMINAR	0	15	\mathcal{E} , 0
TOTAL	. VOLUME	624			TOTAL	PRESSURE	DR OP	36.4
	TYPE DC/OH WDP/OH DP/OH DP/CSG DP/RIS	TYPE UNIT DC/OH 0.274 WDP/OH 0.398 DP/OH 0.398 DP/CSG 0.427 DP/RIS 1.325	TYPE UNIT VOL DC/OH 0.274 44 WDP/OH 0.398 36 DP/OH 0.398 148 DP/CSG 0.427 302 DP/RIS 1.325 94	TYPE UNIT VOL VEL DC/OH 0.274 44 74 WDP/OH 0.398 36 51 DP/OH 0.398 148 51 DP/CSG 0.427 302 48 DP/RIS 1.325 94 15	TYPE UNIT VOL VEL VEL DC/OH 0.274 44 74 134 WDP/OH 0.398 36 51 123 DP/OH 0.398 148 51 123 DP/CSG 0.427 302 48 122 DP/RIS 1.325 94 15 108	TYPE UNIT VOL VEL VEL TELOW DC/OH 0.274 44 74 134 LAMINAR WDP/OH 0.398 36 51 123 LAMINAR DP/OH 0.398 148 51 123 LAMINAR DP/CSG 0.427 302 48 122 LAMINAR DP/RIS 1.325 94 15 108 LAMINAR	TYPE UNIT VOL VEL VEL "FLWW SVEL AS DC/OH 0.274 44 74 134 LAMINAR 1 WDP/OH 0.398 36 51 123 LAMINAR 0 DP/OH 0.398 148 51 123 LAMINAR 0 DP/CSG 0.427 302 48 122 LAMINAR 0 DP/RIS 1.325 94 15 108 LAMINAR 0	TYPE UNIT VOL VEL VEL TELOW SOLL ASCORD DC/OH 0.274 44 74 134 LAMINAR 1 74 WDP/OH 0.398 36 51 123 LAMINAR 0 51 DP/OH 0.398 148 51 123 LAMINAR 0 51 DP/CSG 0.427 302 48 122 LAMINAR 0 47 DP/RIS 1.325 94 15 108 LAMINAR 0 15

LAG: 30 8 MINUTES 2619 STROKES #1 AND 2627 STROKES #2

.BIT HYDRAULICS:

PRESSURE DROP 1192.5 HHP 593 IMPACT FORCE 1604 % SURFACE PRESSURE 41.7 HHP/sqin 5.03 JET VELOCITY 112

PRESSURE BREAKDOWN:

SURFACE 79.5 STRING 1258.2 BIT 1192.5 ANNULUS 36.4

TOTAL 2566.7 PUMP PRESSURE 2860.0 % DIFFERENCE 10.3

BOTTOM HOLE PRESSURES:

NOT CIRCULATING: 9,90 MUD WEIGHT HYDROSTATIC PRESSURE 2364.6 2401.0 CTRCULATING: 10.05 CIRCULATING PRESSURE ECD TRIP MARGIN PULLING OUT: 0.31 ESTIMATED SWAR 72.79 9.59 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 2291.7

DENSITY

UNITS

PRESSURE

UNITS

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1500.0

SPM 1 87 SPM 2 82 FLOW RATE 842

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT	TYPE OF FLOW	SLIP A	ASCEND VEL	PRESSURE DROP
DC/OH	0.274	44	23	115	LAMINAR	1	72	7.5
HWDP/OH	0.398	36	50	105	LAMINAR	0	50	1.7
DP/OH	0.398	188	50	105	LAMINAR	0	50	8.7
DP/CSG	0.427	302	47	104	LAMINAR	0 -	47	11.8
DP/RIS	1.325	94	15	91	LAMINAR	0	15	0.2
 TOTAL	. VOLUME	664			TOTAL	PRESSURE	EDROP	29.9

LAG: 33.1 MINUTES 2877 STROKES #1 AND 2703 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1174.1 HHP 577 IMPACT FORCE 1579
Z SURFACE PRESSURE 43.4 HHP/sqin 4.89 JET VELOCITY 110

PRESSURF BREAKDOWN:

SURFACE 75.5 STRING 1238.7 BIT 1174.1

ANNULUS 29.9

TOTAL 2518.2 PUMP PRESSURE 2703.1 % DIFFFRENCE 6.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE
UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 10.00 HYDROSTATIC PRESSURE 2559,0 CIRCULATING: 2588.9 ECD 10.12 CIRCULATING PRESSURE PULLING OUT: TRIP MARGIN 0.23 ESTIMATED SWAB 59.7 EFFECTIVE MUD WEIGHT 9.77 BOTTOM HOLE PRESSURE 2499,3

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1600.0

SPM 1 87 SPM 2 79 FLOW RATE 830

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL	VOL	ONE Y	CRET	TYPFLOW	SINEL AS	3C£ V∓b	PRESSHE
DC/OH	0.274	4.4	72	115	LAMINAR	1	71	7.4
HWDP/OH	0.398	36	50	105	LAMINAR	0	49	1.7
DF/OH	0.398	228	50	105	LAMINAR	0	49	10.5
DP/CSG	0:427	302	46	104	LAMINAR	0	46	11.7
DP/RIS	1.325	94	15	91	LAMINAR	0	15	0.2
TOTAL	VOLUME	704		•	TOTAL	PRESSURE	DRUB	31.5

LAG: 35.6 MINUTES 3100 STROKES #1 AND 2815 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1140.6 HHP 552 IMPACT FORCE 1534 % SURFACE PRESSURE 42.7 HHP/sqin 4.68 JET VELOCITY 109

PRESSURE BREAKDOWN:

SURFACE 73.6 STRING 1249.2 BIT 1140.6 ANNULUS 31.5

TOTAL 2495.0 PUMP PRESSURE 2670.0 % DIFFERENCE 6.6

BOTTOM HOLE PRESSURES:

			UNITS		UNITS
NOT CIRCULATING:	MUD	WEIGHT	10.00	HYDROSTATIC PRESSURE	2729.7
CIRCULATING:		ECD	10.12	CIRCULATING PRESSURE	2761.2
PULLING OUT:	TRIP	MARGIN	0.23	ESTIMATED SWAB	63.0
EFFECTIV	CUM 3	WEIGHT	9.77	BOTTOM HOLE PRESSURE	2666.6

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1700.0

SPM 1 88 SPM 2 83 FLOW RATE 850

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL.	FLOW	VEL.	VEL.	DROP
DC/OH	0.274	44	74	120	LAMINAR	. 1	73	8.0
HWDP/OH	0.398	36	51	108	LAMINAR	Ü	51	1.7
DP/OH	0,398	268	54	108	LAMINAR	0	51	12,8
DP/CSG	0.427	302	47	107	LAMINAR	0	47	12.1
DP/RIS	1.325	94	15	92	LAMINAR	0	15	0.2
TOTA	L VOLUME	744			TOTAL I	PRESSU	RE DROP	34.8
·.								

LAG: 36.7 MINUTES 3218 STROKES #1 AND 3031 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1161.7 HHP 576 IMPACT FORCE 1562 % SURFACE PRESSURE 40.0 HHP/sqin 4.89 JET VELOCITY 111

PRESSURE BREAKDOWN:

SURFACE 77.8 STRING 1368.1 BIT 1161.7 ANNULUS 34.8

TOTAL 2642.3 PUMP PRESSURE 2902.6 % DIFFERENCE 9.0

BOTTOM HOLE PRESSURES:

		CHATIO		CHATES
NOT CIRCULATING: MUI) WEIGHT	9.70	HYDROSTATIC PRESSURE	2813.2
CIRCULATING:	ECD	9.82	CIRCULATING PRESSURE	2848.0
PULLING OUT: TRIF	MARGIN	0.24	ESTIMATED SWAB	69.5
EFFECTIVE MUI) WEIGHT	9.46	BOTTOM HOLE PRESSURE	2743.7

DENSITY

PRESSURE

HAITTO

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1800.0 AND TVD 1800.0

SPM 1 87 SPM 2 84 FLOW RATE 853

ANNULAR HYDRAULICS:

ANNULU	8	VOLZ		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYP	E	UNIT	VOL.	VEL	VEL	FL.OW	VEL	VEL.	DROP
N (2) / (2)	4.1	o osa		r-1 A			_		
DC/O		0.274	44	74	107	LAMINAR	1	73	6.7
HWDP/O	11-1	0.398	36	51	95	LAMINAR	0	51	1.4
DP/O	H	0.398	308	51	95	LAMINAR	. 0	51	12.2
DP/CS	G	0.427	302	48	94	LAMINAR	0	47	10.0
DP/RI	S	1.325	94	15	80	LAMINAR	0	15	0.2
T. St.	OTAL	VOLUME	284		•	TOTAL	PRESSURI	E DROP	30.5

LAG: 38.6 MINUTES 3345 STROKES #1 AND 3239 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1182.9 HHP 589 TMPACT FORCE 1591 % SURFACE PRESSURE 40.4 HHP/sgin 5.00 JET VELOCITY 112

PRESSURE BREAKDOWN:

SURFACE 77.7 STRING 1409.9 BIT 1182.9 ANNULUS 30.5

TOTAL 2701.0 PUMP PRESSURE 2929.8 % DIFFERENCE 7.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE MUD WEIGHT 9.80 3009.4 CIRCULATING: ECD 9,90 CIRCULATING PRESSURE 3039,9 PULLING OUT TRIP MARGIN 0.20 ESTIMATED SWAB 61.0 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 9.60 2948.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1899.9

SPM 1 87 SPM 2 83 FLOW RATE 847

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	TINU .	VOL.	VEL	VEL	FLOW	VEL	VE.L.	DROP
DC/OH	0.274	44	74	115	LAMINAR	1	73	7.6
HWDP/OH	0.398	36	5 t	100	LAMINAR	0	50	1.6
DP/OH	0.398	347	51	100	LAMINAR	0	50	15.1
DP/CSG	0.427	302	47	99	LAMINAR	0	47	10.9
DP/RIS	1.325	94	15	82	LAMINAR	. 0	15	0.2
тот	AL VOLUME	823			TOTAL	PRESSURI	E DROP	35.3

LAG: 40.8 MINUTES 3534 STROKES #1 AND 3385 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1165.8 HHP 376 IMPACT FORCE 1568 X SURFACE PRESSURE 39.5 HHP/sqip 4.89 JET VELOCITY 111

PRESSURE BREAKDOWN:

SURFACE 80.4 STRING 1504.6 BIT 1165.8 ANNULUS 35.3

TOTAL 2788.1 PUMP PRESSURF 2953.0 % DIFFFRENCE 5.6

BOTTOM HOLE PRESSURES:

		Œ	ENSITY UNITS		PRESSURE UNITS
NOT CIRCULAT	ING: MUD	WEIGHT	9.80	HYDROSTATIC PRESSUR	E 3176.5
CIRCULATING:		ECD	9.91	CIRCULATING PRESSUR	E 3211.8
PULLING OUT:	TRIP	MARGIN	0.22	ESTIMATED SWAB	70.6
· · · · · · · · · · · · · · · · · · ·	EFFECTIVE MUD	WEIGHT	9.58	BOTTOM HOLE PRESSUR	E 3105.9

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 2000.0

SPM 1 85 SPM 2 83 FLOW RATE 840

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL.	FLOW	VEL	VEL.	DROP
				•				
DC/OH	0.274	45	73	115	LAMINAR	1	72	7.7
HWDP/OH	0.398	36	50	101	LAMINAR	0	50	1.6
DP/OH	0.398	386	50	101	LAMINAR	0	50	16.9
DP/CSG	0.427	302	47	100	LAMINAR	0	47	11.0
DP/RIS	1.325	94	15	84	LAMINAR	0	15	0.2
TOTA	AL VOLUME	863	٠		TOTAL	PRESSURE	DROP	37.4

"LAG: 43.1 MINUTES 3660 STROKES #1 AND 3590 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1146.7 HHP 562 JMPACT FORCE 1542 % SURFACE PRESSURE 39.1 HHP/sqin 4.77 JET VELOCITY 110

PRESSURE BREAKDOWN:

SURFACE 78.1 STRING 1517.6 BIT 1146.7 ANNULUS 37.4

TOTAL 2779.7 PUMP PRESSURE 2936.4 % DIFFERENCE 5.3

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.80 HYDROSTATIC PRESSURE 3343.8 CIRCULATING: ECD 9.91 CIRCULATING PRESSURE 3381.2 TRIP MARGIN 0.22ESTIMATED SWAB 74.8 PULLING OUT: EFFECTIVE MUD WEIGHT 9.58 BOTTOM HOLE PRESSURE 3269.0

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2100.0 AND TVD 2100.0

SPM 1 82 SPM 2 83 FLOW RATE 821

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL.	FL.OW	VEL.	VEL.	DROP
DC/OH	0.274	45	71	115	LAMINAR	1	71	7.6
HWDFZOH	0.398	36	49	101	LAMINAR	0	49	1.6
DP/OH	0.398	426	49	101	LAMINAR	0	49	18.4
DP/CSG	0.427	302	46	100	LAMINAR	0	46	10.9
DP/RIS	1.325	94	15	84	LAMINAR	0	15	0.2
TOTAL	VOLUME	903			TOTAL	PRESSURE	าลดา	38.7
1 (2) 1 111	A CHE CHAIN	700			: 1.7 I PH	1 17 1 2 () (221X C.21	(JU) ()

LAG: 46.2 MINUTES 3764 STROKES #1 AND 3821 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1095.5 HHP 525 IMPACT FORCE 1473 % SURFACE PRESSURE 37.9 HHP/sqin 4.45 JET VELOÇITY 107

PRESSURE BREAKDOWN:

SURFACE 74.9 STRING 1499.7 BIT 1095.5 ANNULUS 38.7

TOTAL 2708.8 PUMP PRESSURE 2894.1 % DIFFERENCE 6.4

BOTTOM HOLE PRESSURES:

UNITS UNITS MUD WEIGHT NOT CIRCULATING: 9.88 HYDROSTATIC PRESSURE 3511.0 3549.6 CIRCULATING: 9.91 CIRCULATING PRESSURE ECD PULLING OUT: TRIP MARGIN 0.22 ESTIMATED SWAB 77.3 EFFECTIVE MUD WEIGHT 3433.6 9.58 BOTTOM HOLE PRESSURE

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2200.0 AND TVD 2200.0

SPM 1 82 SPM 2 81 FLOW RATE 814

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FL.OW	VEL	VEL.	DROP
DC/OH	0.274	45	フォ	122	LAMINAR	1	70	8.4
HWDP/OH	0.398	36	49	108	LAMINAR	0	48	1.7
DP/OH	0.398	466	49	108	LAMINAR	0	48	22.4
DP/CSG	0.427	301	45	107	LAMINAR	0	45	12.1
DP/RIS	1.325	98	15	90	LAMINAR	. 0	15	0.2
TOTAL	. VOLUME	945			TOTAL	PRESSURE	DROP	44.9
10.1141	. volumn	7 4 1			16.11	rkmaauke	. DRUF	** ** **

LAG: 48.8 MINUTES 3989 STROKES #1 AND 3953 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1085.9 HHP 515 IMPACT FORCE 1460 Z SURFACE PRESSURE 36.2 HHP/sqin 4.37 JET VELOCITY 106

PRESSURE BREAKDOWN:

SURFACE 75.4 STRING 1551.9 BIT 1085.9 ANNULUS 44.9

TOTAL 2758.0 PUMP PRESSURE 3001.2 % DIFFERENCE 8.1

BOTTOM HOLE PRESSURES:

UNITS UNITS 3715.7 NOT CIRCULATING: MUD WEIGHT 9,90 HYDROSTATIC PRESSURE CIRCULATING: ECD 10.02 CIRCULATING PRESSURE 3760.6 PULLING OUT: TRIP MARGIN 0.24 ESTIMATED SWAR 89.7 EFFECTIVE MUD WEIGHT 9.66 BOTTOM HOLE PRESSURE 3626.0

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2300.0

SPM 1 83 SPM 2 77 FLOW RATE 801

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	VEL	CRIT VEL	TYPE OF FLOW	SLIP A	VEL	PRESSURE DROP
DC/OH	0.274	45	70	119	LAMINAR	1	69	7.9
HWDP/OH	0.398	36	48	106	LAMINAR	0	48	1.6
DP/OH	0.398	505	48	106	LAMINAR	0	48	23.0
DP/CSG	0.427	301	45	105	LAMINAR	0	44	11.5
DP/RIS	1.325	98	1.4	89	LAMINAR	0	14	0.2
TOTA	AL VOLUME	985	•		TOTAL	PRESSURE	DROP	44.3

LAGI 51.6 MINUTES 4308 STROKES #1 AND 3968 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1042.9 HHP 488 IMPACT FORCE 1402 % SURFACE PRESSURE 35.2 HHP/sqin 4.14 JET VELOCITY 105

PRESSURE BREAKDOWN:

SURFACE 71.7 STRING 1519.2 BIT 1042.9 ANNULUS 44.3

TOTAL 2678.1 PUMP PRESSURE 2964.9 % DIFFERENCE 9.7

BOTTOM HOLE PRESSURES:

				i)	UNITS		<u> </u>	RESSURE UNITS
NOT	CIRCULAT	ING:	MUD	WEIGHT	9.80	HYDROSTATIC	PRESSURE	3845.4
CIR	CULATING:	•		ECD	9,91	CIRCULATING	PRESSURE	3889.7
PULI	LING OUT:		TRIP	MARGIN	0.23	ESTIMATED SV	1AB	88.6
		EFFECTIVE	CUM	WEIGHT	9.57	BOTTOM HOLE	PRESSURE	3756.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2400.0

SPM 1 82 SPM 2 72 FLOW RATE 770

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	TINU	AOT"	VEL	VEL	FL.OW	VEL	VEL	DROP
DC/OH	0.274	45	67	131	LAMINAR	n	66	9.0
HWDP/OH	0.398	36	46	117	LAMINAR	ő	46	1.9
DF/OH	0.398	545	46	117	LAMINAR	0	46	28.7
DP/CSG	0.427	301	43	116	LAMINAR	0	43	13.3
DP/RIS	1.325	98	14	99	LAMINAR	0	14	0.3
тот	AL VOLUME	1025			TOTAL	PRESSURI	E DROP	53.1

LAG: 55.9 MINUTES 4574 STROKES #1 AND 4037 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 962.2 HHP 432 IMPACT FORCE 1294 % SURFACE PRESSURE 33.6 HHP/sqin 3.67 JET VELOCITY 101

PRESSURE BREAKDOWN:

SURFACE 67.7 STRING 1473.1 BIT 962.2 ANNULUS 53.1

TOTAL 2556.1 PUMP PRESSURE 2861.2 % DIFFERENCE 10.7

BOTTOM HOLE PRESSURES:

		ν.	UNITS		UNITS
NOT CIRCULATING:	MUD	WEIGHT	9.80	HYDROSTATIC PRESSUR	F 4012.6
CIRCULATING:		ECD	9,93	CIRCULATING PRESSUR	E 4065.7
PULLING OUT:	TRIP	MARGIN	0.26	ESTIMATED SWAB	106.2
EFFECTIVE	CUM :	WEIGHT	9.54	BOTTOM HOLE PRESSUR	E 3906.3

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2500.0

SPM 1 80 SPM 2 68 FLOW RATE 740

ANNULAR HYDRAULICS:

ANNULUS	V0L/		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FLOW	VEL	VEL.	DROP
DC/OH	0.274	45	64	130	LAMINAR	0	64	8.8
HWDP/OH	0.398	36	44	116	LAMINAR	0	44	1.9
DP/OH	0.398	585	44	116	LAMINAR	0	44	30,2
DP/CSG	0,427	301	41	115	LAMINAR	0	41	13.0
DP/RIS	1.325	98	1.3	99	LAMINAR	0	13	0.3
TOTAL	_ VOLUME	1065			TOTAL	PRESSUR	E DROP	54.2

LAG: 60.4 MINUTES 4845 STROKES #1 AND 4102 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1213.9 HHP 524 IMPACT FORCE 1404 % SURFACE PRESSURE 41.6 HHP/sqin 4.45 JET VELOCITY 113

PRESSURE BREAKDOWN:

SURFACE 63.5 STRING 1417.8 BIT 1213.9 ANNULUS 54.2

TOTAL 2749.4 PUMP PRESSURE 2918.9 % DIFFERENCE 5.8

BOTTOM HOLE PRESSURES:

		UNITS		UNITS
NOT CIRCULATING: MUI) WEIGHT	9,90	HYDROSTATIC PRESSURE	4222,4
CIRCULATING:	ECD	10.03	CTRCULATING PRESSURE	4276.6
PULLING OUT: TRIF	MARGIN	0.25	ESTIMATED SWAB	108.3
EFFECTIVE MUI) WEIGHT	9.65	BOTTOM HOLE PRESSURE	4114.1

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2600.0

SPM 1 73 SPM 2 73 FLOW RATE 726

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FL.OW	VEL.	VEL.	DROP
DCZOH	0.274	45	63	122	LAMINAR	n	63	8.0
HWDP/OH	0.398	36	43	103	LAMINAR	ö	43	1.5
DP/GH	0.398	625	43	103	LAMINAR	0	43	26.6
DP/CSG	0.427	301	40	102	LAMINAR	0 -	40	10.6
DP/RIS	1,325	98	13	80	LAMINAR	0	1.3	0.2
TOTA	L VOLUME	1105			TOTAL	PRESSURE	DROP	46.9

LAG: 63.9 MINUTES 4636 STROKES #1 AND 4646 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1168.3 HHP 495 IMPACT FORCE 1351 X SURFACE PRESSURE 40.9 HHP/sqin 4.20 JET VELOCITY 110

PRESSURE BREAKDOWN:

SURFACE 65.9 STRING 1509.0 BIT 1168.3 ANNULUS 46.9

TOTAL 2790.1 PUMP PRESSURE 2857.5 % DIFFERENCE 2.4

BOTTOM HOLE PRESSURES:

		T)	ENSITY UNITS		PRESSURE UNITS
NOT CIRCULATING: CIRCULATING:	MUD	WEIGHT FCD	9,90 10.01	HYDROSTATIC PRESSURE	. , ,
PULLING OUT: EFFECTIVE	TRIP QUM E	MARGIN	0,21 9,69	ESTIMATED SWAB BOTTOM HOLE PRESSURE	93.9

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2700.0 AND TVD 2700.0

SPM 1 72 SPM 2 72 FLOW RATE 716

ANNULAR HYDRAULICS:

ANNULUS TYPE		VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP	ASCEND VEL	PRESSURE DROP
DC/OH		0.274	44	62	122	LAMINAR	. 0	62	7.7
HWDP/OH		0.398	35	43	108	LAMINAR	0	43	1.6
DP/OH	'g- *k	0.398	66 6	43	108	LAMINAR	0	43	30.1
DP/CSG		0.427	301	40	107	LAMINAR	0	40	11.4
DP/RIS		1,325	98	13	ዎ0	LAMINAR	0	13	0.2
TOT	AL I	JOL.UME	1145			TOTAL	PRESSUR	E DROP	51.0

LAG: 67.2 MINUTES 4803 STROKES #1 AND 4816 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1136.0 HHP 474 IMPACT FORCE 1314 % SURFACE PRESSURE 39.5 HHP/sqin 4.02 JET VELOCITY 109

PRESSURE BREAKDOWN:

SURFACE 59.8 STRING 1396.9 BIT 1136.0 ANNULUS 51.0

TOTAL 2643.7 PUMP PRESSURE 2876.5 % DIFFERENCE 8.1

BOTTOM HOLE PRESSURES:

		UNITS		UNITS
NOT CIRCULATING:	MUD WEIGHT	9,90	HYDROSTATIC PRESSURE	4560.2
CIRCULATING:	ECD	10.01	CIRCULATING PRESSURE	4611.2
PULLING OUT: T	RIP MARGIN	0.22	ESTIMATED SWAR	102.0
EFFECTIVE	MUD WEIGHT	9.68	BOTTOM HOLE PRESSURE	4458.2

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2800.0 AND TVD 2800.0

SPM 1 72 SPM 2 72 FLOW RATE 723

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW		ASCEND VEL	PRESSURE DROP
DC/OH HWDP/OH DP/OH DP/CSG DP/RIS	0.274 0.398 0.398 0.427 1.325	44 35 706 301 98	63 43 43 40 13	142 131 131 130 117	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	0 0 0 0 0	62 43 43 40 13	9.9 2.2 44.2 15.9 0.4
TOTA	L VOLUME	1185			TOTAL	PRESSUR	E DROP	72.6

LAG: 68.8 MINUTES 4974 STROKES #1 AND 4980 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1159.2 HMP 489 IMPACT FORCE 1341 % SURFACE PRESSURE 40.5 HMP/sqin 4.15 JET VELOCITY 110

PRESSURE BREAKDOWN:

SURFACE 59.1
STRING 1413.4
BIT 1159.2
ANNULUS 72.6
TOTAL 2704.3 PUMP PRESSURE 2864.8 % DIFFERENCE 5.

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9/90 HYDROSTATIC PRESSURE 4729.1 CIRCULATING: ECD 10.05 CIRCULATING PRESSURE 4801.7 PULLING OUT: TRIP MARGIN 0.30 ESTIMATED SWAR 145,2 EFFECTIVE MUD WEIGHT 9.60 BOTTOM HOLE PRESSURE 4583.9

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2900.0 AND TVD 2900.0

SPM 1 SPM 2 72 FLOW RATE

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT	TYPE OF FLOW	SLIP A	SCEND	PRESSURE DROP
DC/OH	0.274	44	63	99	LAMINAR	i	62	5.5
HWDP/OH	0.398	35	43	.88	LAMINAR	0	43	1.1
DP/OH	0.398	746	43	88	LAMINAR	. 0	43	24.2
DP/CSG	0.427	301	40	87	LAMINAR	. 0	40	8.2
DP/RIS	1.325	98	13	75	LAMINAR	0	1.3	0.2
ΤΠΤΔΙ	UNI LIME	1224			TOTAL	PPEGGIDE	en arr	76 o

LAG: 70.9 MINUTES 5156 STROKES #1 AND 5133 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP IMPACT FORCE 1167.4 HHP % SURFACE PRESSURE 40.8 JET VELOCITY HHP/sqin 4.19 110

PRESSURE BREAKDOWN:

SURFACE 56.1 STRING 1375.2 BIT 1167.4 ANNUL US 39.2

2637.9 PUMP PRESSURE 2860.0 % DIFFERENCE TOTAL

BOTTOM HOLE PRESSURES:

		Q	ENSITY UNITS	p.	RESSURE UNITS
NOT CIRCULAT		WEIGHT	9,90 9,98	HYDROSTATIC PRESSURE	4898.0 4937.2
PULLING OUT:	TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.16 9.74	ESTIMATED SWAB BOTTOM HOLE PRESSURE	78.4 4819.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3000.0 AND TVD 3000.0

SPM 1 72 SPM 2 71 FLOW RATE 713

ANNULAR HYDRAULICS:

TYPE	UNIT	VOL	VEL	VEL	FLOW	AEF ACIA 6	VEL	PRESSURE
DC/OH	0.274	44	62	123	LAMINAR	0	61	7.7
HWDPZOH	0.398	35	43	109	LAMINAR	0	42	1.6
DP/OH	0.398	786	43	109	LAMINAR	0	42	35.4
DP/CSG	0.427	301	40	108	LAMINAR	0	40	11.3
DP/RIS	1.325	98	13	91	LAMINAR	0	13	0,2
TOTAL	. VOLUME	1264			TOTAL	PRESSURE	DROP	56.3

LAG: 74.5 MINUTES 5369 STROKES #1 AND 5255 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1116.1 HHP 464 IMPACT FORCE 1291 % SURFACE PRESSURE 39.7 HHP/sqin 3.94 JET VELOCITY 108

PRESSURE BREAKDOWN:

SURFACE 59.0
STRING 1478.1
BIT 1116.1
ANNULUS 56.3
TOTAL 2709.5 PUMP PRESSURE 2807.9 % DIFFERENCE 3.5

BOTTOM HOLE PRESSURES:

		YSITY STIML		PRESSURE UNITS
NOT CIRCULATING: MUI	WEIGHT	9.80	HYDROSTATIC PRESSUR	E 5015.7
CIRCULATING:	ECD	9.91	CIRCULATING PRESSUR	(E 5072.0
PULLING OUT: TRIP	MARGIN	0,22	ESTIMATED SWAR	112.6
EFFECTIVE MUX	WEIGHT	9.58	BOTTOM HOLE PRESSUR	RE 4903.1

(c). COMPUTER DATA LISTING : LIST A

INTERVAL	All depth records (data not averaged)
DEPTH	Well depth, in metres
ROP ,	Rate of penetration, in metres/hour
WOR	Weight-on-bit, in thousands of pounds
RPM	Rotary speed, in revolutions per minute
MU	Mud weight in, in pounds per gallon
'dc'	Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg.
HOURS, , , , , , , , , ,	Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours.
TURNS,	Cumulative bit turns. The number of turns made by the hit, while actually on bottom
ICOST	Incremental cost per metre, calculated from the rate of menetration, in Australian dollars.
CCOST	Cumulative cost per metre, calculated from the drilling time, in A dollars.
PP	Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation.
FG	Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL program using Eaton's equation.
·	It is dependent on the pore pressure, the overburden gradient and the matrix stress.

information.

this value may be modified by leak-off

	BIT NUMBE HTC OSC34 COST		1 HO 0.00	ç	(ADC (SIZE TRIP		26.000 2.1	NO:	TERVAL ZZLES T RUN	74		211.0 20 20 137.0
	TOTAL HOL	JRS	6.03			TURNS			NOITION	TZ	84 G	
Ž.	DEPTH	ROP	MOB	RPM	мш	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
	00.0	4.50		p=1 ==p	 ,	A 1991.						
	80.0	12.4				0.78	0.48	2112				11.6
	20.0	7.3		63		0.84	1.85	7256			8.4	11.6
	100.0	14.1	2.0	52	8.6	0.70	2.55	9478	387.05	980.14	8.4	11.6
	110.0	17.1	2.0	37	8.6	0.61	3.14	10766	319,55	796.64	8.4	11.7
	120.0	34.2	2.0	63		0.59	3.43		160.01			11.7
	130.0	26.7	2.0	38	8.6	0.54	3.81		205.33			11.8
	140.0	35.2	2.0	28		0.45	4.09		155,41			11.8
	150.0	47.1	2.1	36		0.44	4.30		116.29			11.9
	160.0	42.4	2.0	30		0.43	4.54		129.24			11.9
	170.0	34.2	2.0	33		0.48	4.83		159.99			11.9
	180,0	39.3	2.0	36		0.47	5.08		139.37			12.0
	190.0	44.0	2.0	49		0.50	5.31		124.54			12.0
	200.0	35,4	2.0	44		0.52	5.59		154.84			12.0
	210.0	28.2	2.0	35	2 2	0.52	5.95	17707	193.83	77 77 77 77 77 77 77 77 77 77 77 77 77	(C) A	12.1
	211.0	40.4		37								
		AP 13 1 AP	. # . U	3/	0.0	0.47	5.97	17408	135.52	ವರ್ಷ.63	ਲ,4	12.1

allender i en

800.0 BIT NUMBER IADC CODE 111 INTERVAL 211.0-OSC 3AJ SIZE 17.500 NOZZLES 20 20 20 TRIP TIME 4442.00 2.4 BIT RUN 589.0 COST TOTAL HOURS 19.13 TOTAL TURNS 155173 CONDITION T2 B2 G0.000 ROP "d"c PP FG DEPTH WOB RPM MW HOURS TURNS ICOST CCOST 215.0 364.6 3.0 129 8.6 0.35 0.01 85 15 4411 8.4 12.1 235 19 1971 283.9 3.0 142 0.03 220.0 8.6 0.42 8.4 12.1 1271 225.0 3.0 142 321 500.0 8.6 0.31 0.04 11 8.4 12.1 230.0 502 23.29 942.61 235.1 3.0 142 8.6 0.45 0.06 8.4 12.2 8.6 0.40 18.15 750.02 301.7 3.0 141 235.0 0.08 642 8.4 12.2 3.0 138 240.0 8.4 12.2 8.6 0.44 0.10 815 22.81 624.64 240.0 23.17 536.19 3.0 128 8.6 0.43 977 245.0 236.3 0.12 8.4 12.2 3.0 142 250.0 8.6 0.48 0.14 1189 27.22 470.93 8.4 12.2 201.1 29.05 420.72 255.0 188.5 3.0 127 8.6 0.47 0.17 1392 8.4 12.3 0.20 8.6 0.52 36.80 381.54 8.4 12.3 260.0 148.8 3.0 128 1650 67.5 3.0 146 8.6 0.69 0.28 2300 81.06 353.72 8.4 12.3 265.0 49.9 3.0 143 8.6 0.74 0.38 3162 109.80 333.05 8.4 12.3 270.0 275.0 69.8 5.4 139 8.6 0.75 0.45 3759 78.48 313.16 8,4 12,3 280.0 115.0 9.0 126 8.6 0.69 0.49 4088 47,60 293,92 8.4 12.4 73.8 9.0 138 8.6 0.81 0.56 4651 74,22 279,07 8.4 12.4 285.0 290.0 115.4 9.5 135 8.6 0.71 0.60 5003 47,45 264,41 8.4 12.4 295.0 72.9 11.4 150 8.6 0.87 0.67 5619 75.13 253.15 8.4 12.4 300.0 90.0 12.0 148 8.6 0.82 0.73 6112 60.83 242.34 8.4 12.4 305.0 62.3 13.7 148 8.6 0.94 0.81 6825 87,90 234,13 8.4 12.4 79.3 14.0 148 8.6 0.88 69.05 225.79 310.0 0.87 7385 8.4 12.5 8.4 12.5 68.6 14.0 148 8.7 0.91 0.94 79.87 218.78 315.0 8033 8.7 0.84 8.4 12.5 90.0 14.0 148 1.00 8526 60.83 211.53 320.0 78.9 14.0 148 8.7 0.87 325.0 1.06 9088 69.35 205.29 8.4 12.5 8.7 0.96 9879 103.72 201.03 330.0 52.8 14.0 139 1.16 8.4 12.5 8.7 0.98 335.0 47.7 14.0 138 10746 114.67 197.54 8.4 12.6 1,26 1.37 340.0 8.7 1.00 47.6 14.0 148 11678 114.98 194.34 8.4 12.6 8.9 1.02 1.49 345.0 41.0 14.0 148 12761 133,53 192.07 8.4 12.6 8.4 12.6 28.1 14.0 148 8.9 1.10 350.0 1.67 14342 194,97 192,18 8.9 0.89 1.74 355.0 69.2 14.0 148 14984 79.08 188.25 8.4 12.6 8.9 0.88 360.0 72.0 14.0 148 1.81 15600 76.04 184.49 8.4 12.6 69.5 19.5 137 8.9 0.93 365.0 1.88 16192 78.78 181.05 8.4 12.7 370.0 63.2 28.0 120 8.9 1.01 1.96 16762 86.69 178.09 8,4 12.7 375.0 62.5 28.0 120 8.9 1.01 2.04 17338 87.60 175.33 8,4 12,7 54.4 29.2 120 8.9 1.06 380.0 2.13 18000 100.68 173.12 8,4 12,7 385.0 43.5 29.1 120 8.9 1.13 2,25 18828 125.93 171.76 8.4 12.7 8.9 1.14 390.0 40.5 28.5 120 2.37 19716 135.05 170.74 8.4 12.7 395.0 58.4 27.8 122 9.0 1.03 2.46 20344 93,68 168,64 8.4 12.8 400.0 62.1 26.5 132 9.0 1.01 2.54 20982 88.21 166.52 8.4 12.8 60.8 25.5 132 405.0 9.0 1.01 2.62 21633 90.03 164.55 8.4 12.8 410.0 46.6 24.6 132 9.0 1.07 2.73 22483 117.41 163.36 8.4 12.8 415.0 66,2 28,4 132 9.0 1.02 2.80 23081 82.73 161.38 8.4 12.8 420.0 51.1 29.0 132 9.0 1.09 2,90 23855 107.07 160.09 8.4 12.8 425.0 48.5 26.2 132 9.0 1.08 3.00 24672 112.85 158.98 8.4 12.9

현실 (18 mm) - 19 전 선생님은 15 mm 등 15 대학생님은 15 대학생님

		9.5		•	•				
DEPTH	ROP WOB	RPM MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
430.0 435.0 440.0 445.0 450.0 455.0 460.0 470.0 475.0	69.5 26.3 38.8 20.9 61.0 19.7 44.9 19.9 35.1 20.0 36.7 20.0 35.7 24.4 55.7 23.0 38.5 27.8 34.4 20.7	136 9.0 136 9.0 150 8.9 150 9.0 150 9.0 150 9.0 150 9.0	0.98 1.09 0.96 1.07 1.13 1.12 1.18 1.04 1.20	3.07 3.20 3.29 3.40 3.54 3.68 3.82 3.91 4.04 4.18	26959 27961 29244 30472 31732 32539 33707	141.02 89.73 121.85 156.17 149.35 153.30	155.33 154.61 154.64 154.53 154.51 153.40 153.18	8.4 8.4 8.4 8.4 8.4 8.4	12.9 12.9 12.9 12.9 12.9 13.0 13.0 13.0
480.0 485.0 490.0 495.0 500.0 515.0 515.0 520.0 525.0	52.2 20.3 41.9 25.4 24.6 26.1 27.1 29.5 31.8 24.2 33.5 24.5 45.0 21.1 32.4 23.1 24.5 26.0 30.8 23.6	150 9.0 150 9.0 150 9.0 150 9.0 156 9.0 153 9.0 128 9.0 130 9.0	1.03 1.15 1.30 1.31 1.21 1.21 1.08 1.15 1.26	4.28 4.40 4.60 4.78 4.94 5.09 5.36 5.56 5.72	36954 38787 40444 41859 43255 44276 45458 47056	104.94 130.79 222.95 201.66 172.16 163.64 121.67 169.12 223.56 177.63	152.01 153.28 154.13 154.44 154.60 154.05 154.30 155.42	8.4 8.4 8.4 8.4 8.4 8.4	13.1 13.1 13.1 13.1
530.0 535.0 540.0 545.0 550.0 555.0 560.0 570.0 575.0	25.4 25.2 19.3 23.8 24.1 23.6 22.0 25.2 19.7 24.9 24.8 27.1 24.9 25.5 24.6 24.6 24.7 25.0 18.8 24.5	130 9.0 132 9.0 132 9.0 133 9.1 130 9.2 127 9.2 130 9.2 125 9.2	1.24 1.30 1.24 1.29 1.30 1.24 1.22 1.22	5.92 6.18 6.39 6.61 7.07 7.27 7.47 7.694	51854 53494 55293 57316 58885 60414 61995 63515	215.35 283.48 227.21 249.42 277.70 220.83 219.61 222.65 221.74 290.78	158.66 159.70 161.05 162.77 163.61 164.41 165.24 166.02	8.4	13.2 13.3 13.3 13.3 13.3 13.3
580.0 585.0 590.0 595.0 600.0 610.0 615.0 625.0	21.9 24.8 28.1 24.7 21.1 23.2 22.3 23.0 22.2 21.5 19.6 22.1 19.7 21.4 18.6 21.0 20.9 19.6 25.8 20.2	131 9.4 130 9.4 130 9.4 130 9.4 136 9.4 132 9.3 130 9.3	1.23 1.16 1.21 1.20 1.18 1.23 1.22 1.23	8.17 8.35 8.58 8.81 9.03 9.29 9.54 9.81 10.05 10.24	68827 70668 72417 74179 76261 78277 80371 82334	250.33 194.67 259.45 245.46 246.38 279.22 277.70 293.83 261.89 212.31	169.20 170.39 171.37 172.33 173.69 174.99 176.46 177.51	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.4 13.4 13.4 13.4 13.4 13.5
630.0 635.0 640.0 645.0 650.0 655.0 665.0 670.0	23.7 21.2 16.0 21.7 18.3 20.5 20.1 19.4 18.8 18.3 18.1 22.6 16.8 23.8 19.5 23.3 16.0 22.8 20.4 28.7	134 9.3 136 9.3 132 9.3 137 9.3 135 9.3 130 9.3 132 9.3 130 9.3	1.29 1.24 1.19 1.20 1.27 1.30 1.25 1.29	10.45 10.77 11.04 11.29 11.55 11.83 12.13 12.39 12.70 12.94	88095 90322 92294 94472 96703 99036 101064 103503	231.47 343.10 298.69 272.23 290.48 301.73 326.68 281.35 342.49 268.28	180.51 181.88 182.93 184.15 185.47 187.05 188.09 189.77	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.5 13.5 13.6 13.6 13.6 13.6

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
480.0 485.0 690.0 695.0 700.0 710.0 715.0 720.0 725.0	22.9 14.8 16.7 17.5 21.5 21.1 20.7	31.7 31.0 29.9 29.1 28.8 28.4 31.0 31.4 30.7	146 154 159 177 158 110 110	9,333355 9,355 9,55 9,55	1.39 1.33 1.45 1.42 1.47 1.36 1.24 1.25 1.25	13.21 13.43 13.77 14.07 14.41 14.69 14.93 15.16 15.41	109820 112933 115784 119395 122089 123627 125191 126788	238.77 368.95 327.28	197.28 198.44 199.01 199.61 200.25	8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.7 13.7 13.8 13.8
730.0 735.0 740.0 745.0 750.0 755.0 765.0 770.0	22.9 19.4 16.7 23.1 24.2 23.6 24.9 23.2	28.8 30.4 30.2	110 110 114 120 120 142 133 138	9.4 9.4 9.4 9.4 9.4 9.3 9.3	1.24 1.28 1.35 1.25 1.22 1.27 1.34	15.92 16.14 16.40 16.70 16.92 17.12 17.33 17.54 17.75	131654 133353 135408 136968 138456 140257 141857 143644	284.70 239.38 281.96 327.59 237.25 226.30 231.77 219.91 235.73 241.20	202.22 202.98 204.14 204.45 204.65 204.90 205.03 205.31	8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.8 13.8 13.9 13.9 13.9
780.0 785.0 790.0 795.0 800.0	23.8 20.9 21.2	29.9 30.1 29.5 30.4 32.4	132 142 141	9.3 9.3 9.3	1.31 1.28 1.33 1.33	18.20 18.41 18.65 18.88 19.13	148954 151004 153005	248.20 229.95 262.50 258.24 269.19	206.21 206.69 207.14	8.4 8.4 8.4	13.9 13.9 14.0 14.0

	3 01.00 19.23	IADC CODE SIZE TRIP TIME TOTAL TURNS	114 12,250 4,2 177615	INTERVA NOZZLES BIT RUN CONDITI		.0- 1339.0 18 18 18 539.0 84 G0.125
DEPTH ROP	WOB RPI	M MW "d"c	HOURS	TURNS ICO	st ccost	PP FG
802.0 21.2	30.0 140 30.0 140 30.0 140	0 9.0 1.51	0.04 0.09 0.14	740 2	24 25420 59 12839 09 8662	8.4 14.0
805.0 29.0 806.0 21.6 807.0 34.3 808.0 29.0 809.0 28.3 810.0 26.7 811.0 18.9 812.0 27.7	30.0 140 30.0 140 35.0 147 25.9 120 27.2 120 27.0 120 20.3 140 25.3 140 28.2 140	0 9.0 1.41 0 9.0 1.50 7 9.0 1.44 0 9.0 1.31 0 9.0 1.33 0 9.0 1.35 0 9.0 1.39 0 9.0 1.36	0.19 0.22 0.27 0.30 0.33 0.37 0.40 0.46 0.49	1853 1 2242 2 2498 1 2746 1 3000 1 3270 2 3714 2 4017 1	28 6554 89 5281 53 4443 60 3831 89 3376 93 3022 05 2740 89 2518 98 2324 83 2159	8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0
815.0 16.6 816.0 30.9 817.0 31.9 818.0 31.3 819.0 31.3 820.0 22.4 821.0 29.3 822.0 32.1	28.6 140 27.7 140 25.1 140 26.0 140 29.2 140 30.1 140 27.4 140 29.4 140 30.1 140 30.8 140	0 9.0 1.55 0 9.0 1.32 0 9.0 1.33 0 9.0 1.38 0 9.0 1.39 0 9.0 1.46 0 9.0 1.40 0 9.0 1.38	0.56 0.62 0.65 0.68 0.72 0.75 0.79 0.83 0.88	5088 3 5360 1 5624 1 5892 1 6161 1 6536 2 6823 1 7085 #	86 2018 30 1906 77 1798 72 1702 75 1617 75 1541 45 1477 87 1415 70 1359 38 1306	8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0
825.0 25.5 826.0 34.6 827.0 34.3 828.0 38.7 829.0 40.4 830.0 40.0 831.0 44.4	33.5 140 31.2 120 29.5 120 31.1 120 32.7 120 32.7 120 32.4 120 33.1 120 33.7 120 32.9 120	9.0 1.42 9.0 1.30 9.0 1.32 9.0 1.30 9.0 1.29 0 9.0 1.29 0 9.0 1.26 0 9.0 1.30	0.91 0.95 0.98 1.01 1.04 1.06 1.09 1.11	7831 2 8039 1 8249 1 8435 1 8613 1 8793 1 8955 1	64 1258 15 1216 58 1176 60 1138 41 1102 35 1069 37 1038 23 1008 83 981.11 71 955.16	8.4 14.0 8.4 14.1
835.0 42.9 836.0 48.6 837.0 47.4 838.0 50.7 839.0 44.4 840.0 46.2 841.0 45.6 842.0 40.4	33.5 120 32.9 154 32.1 159 32.5 159 34.7 159 34.6 159 34.9 159 35.1 159 35.7 159 34.7 159	4 9.0 1.35 9 9.0 1.31 9 9.0 1.33 9 9.0 1.33 9 9.0 1.37 9 9.0 1.36 9 9.0 1.37 9 9.0 1.42	1.18 1.20 1.22 1.24 1.26 1.29 1.31 1.33 1.35	9467 130. 9683 127. 9878 112. 10079 115. 10267 107. 10481 123. 10688 118. 10897 120. 11133 135. 11382 142.	75 907.97 54 885.87 58 865.05 98 845.13 19 826.62 63 808.92 15 792.12 35 776.48	8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1

•

DEPTH	ROP	WOB R	RPM MW	"d "c	HOURS	TURNS	ICOST	CCOST	pр	FG
844.0 845.0 846.0 847.0 848.0 849.0 850.0 851.0 852.0 853.0	32.4 3 41.9 3 37.9 3 39.6 3 38.3 3 43.9 3 40.9 3 40.4 3 35.3 3	34.4 1 33.3 1 33.7 1 33.6 1 35.0 1 34.8 1 33.9 1	157 9.0 157 9.0 157 9.0 157 9.0 157 9.0 157 9.0 158 9.0	1.46 1.39 1.41 1.40 1.41 1.38 1.40 1.39 1.38	1.41 1.44 1.46 1.49 1.51 1.54 1.56 1.59 1.61	11898 12146 12385 12632 12847 13078 13311 13524	168.81 130.79 144.48 138.40 142.96 124.71 133.83 135.35 123.19 155.13	734.55 721.72 709.31 697.51 685.82 674.78 664.21 653.80	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
854.0 855.0 856.0 857.0 858.0 859.0 860.0 861.0 862.0	41.4 3 40.9 3 42.4 3 35.0 3 35.6 3 39.6 3 30.0 3 29.3 3	37.9 1 37.9 1 37.5 1 38.1 1 38.4 1 37.4 1 35.9 1	155 9.0 155 9.0 155 9.0 155 9.0 157 9.0 158 9.0 158 9.0	1.40 1.43 1.42 1.49 1.49 1.45 1.50 1.53 1.48	1.66 1.68 1.71 1.74 1.77 1.79 1.82 1.86 1.89	14240 14460 14731 14998 15236 15517 15852 16164	132.31 133.83 129.27 159.69 156.65 138.40 162.73 193.15 182.50 187.06	616.93 608.91 601.11 593.27 586.10 579.65 573.25	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
864.0 865.0 866.0 867.0 868.0 870.0 871.0 872.0	29.3 3 3 3 3 4 5 5 5 3 3 1 . 3 3 3 2 5 . 4 2 3 5 . 4 2	32.9 1 34.6 1 34.8 1 33.5 1 34.4 1 34.9 1 34.0 1	157 9.0 157 9.0 157 9.0 157 9.0 157 9.0 157 9.0 157 9.0	1.50 1.48 1.53 1.55 1.51 1.50 1.49 1.52 1.45	1.96 1.99 2.03 2.07 2.10 2.14 2.17 2.21 2.21 2.28	17113 17464 17833 18174 18491 18792 19135 19428	187.06 182.50 203.79 214.44 197.71 184.02 174.90 199.23 176.42 215.96	555.35 550.03 545.02 539.91 534.75 529.61 524.96 520.12	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.2 14.2 14.2 14.2 14.2 14.2 14.2
874.0 875.0 876.0 877.0 878.0 879.0 880.0 881.0 882.0	31.6 3 39.6 3 34.6 3 37.1 3 33.3 3 41.9 3 38.3 3 32.1 3	85.0 1 85.1 1 87.5 1 86.4 1 86.1 1 86.8 1 86.4 1	59 9.0 159 9.0 159 9.0 159 9.0 159 9.0 160 9.0 155 9.0	1,45 1,49	2.31 2.33 2.36 2.39 2.42 2.45 2.45 2.53 2.56	20329 20605 20881 21138 21425 21654 21904 22194	138.40 158.17 158.17 147.52 164.25 130.79 142.96	497.31 492.82 488.66 484.19 479.98 476.20	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
884.0 885.0 886.0 887.0 888.0 899.0 891.0 891.0	32.4 3 29.0 3 32.1 3 52.2 3 44.4 3 50.7 3 43.4 3 29.3 3 50.0 3	38,5 1 37,5 1 35,4 1 36,8 1 36,0 1 35,4 1 33,3 1	57 9.0 57 9.0 57 9.0 57 9.0 57 9.0 57 9.0 43 9.0 55 9.0	1.56 1.51 1.33 1.39 1.34 1.39	2.59 2.62 2.65 2.67 2.69 2.71 2.74 2.77 2.79 2.81	23047 23341 23521 23733 23920 24137 24431 24617	109.50	465.23 461.80 457.70 453.89 450.01	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2

DEPTH	ROP	MOB	RPM	MM	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
894.0 895.0 896.0 897.0 898.0 899.0 900.0 901.0 902.0 903.0	53.7 3 47.4 3 32.7 3 39.6 3 37.9 3 28.8 3 25.7 3 31.6 3	35.8 36.4 35.1 36.9 36.3 34.9 33.9	157 157 157 158 158 156 159	9.0 9.0 9.0 9.0 9.0 9.0	1.32 1.36 1.49 1.41 1.45 1.53 1.55 1.48	2.83 2.85 2.88 2.91 2.93 2.97 3.01 3.04 3.07	25727 25976 26305 26669 26974 27276	101.90 115.58 167.29 138.40 144.48 190.10 212.92 174.90 173.38 146.00	423.90 421.05 418.72 416.66 414.26 411.90	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
904.0 905.0 906.0 907.0 908.0 909.0 910.0 911.0 912.0 913.0	28.3 3 3 3 4.6 3 3 1.3 3 2 2.1 3 3 2 2 3 3 3 3 3 3 6 9.2 3 5 6 9.2 3	33.9 34.4 35.9 36.2 33.7 32.9 32.9	159 159 159 160 160 156 157	9.0 9.0 9.0 9.0 9.0 9.0	1.53 1.45 1.45 1.50 1.63 1.50 1.50 1.46 1.20	3.13 3.16 3.19 3.22 3.37 3.30 3.34 3.37 3.39 3.40	28149 28425 28730 29165 29494 29837		404.90 402.57 400.44 399.03 397.10 395.32	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.3 14.3 14.3 14.3 14.3 14.3
914.0 915.0 916.0 917.0 918.0 919.0 920.0 921.0 922.0 923.0	51.4 3 29.0 3 51.4 3 55.6 3 54.5 3 52.9 3 47.4 3 35.3 3 22.6 3	34.1 33.3 33.9 31.8 33.2 30.5 33.4	157 157 157 157 149 149 150	9.0 9.0 9.0 9.0 9.0 9.0	1.50 1.31 1.43 1.27 1.41 1.25	3,42 3,46 3,48 3,51 3,55 3,55 3,57 3,66	30946 31130 31394 31567 31818 31987 32177 32434	106.46 188.58 106.46 153.60 100.38 153.60 103.42 115.58 155.13 241,81	383.75 381.36 379.41 377.05 375.17 372.90 370.78 369.01	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3
924.0 925.0 926.0 927.0 928.0 929.0 930.0 931.0 932.0 933.0	28.8 3 27.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$2,2 \$3,0 \$4,0 \$0.8 \$2.5 \$2.4 \$3.2	151 152 151 146 150 151 152	9.0 9.0 9.0 9.0 9.0 9.0	1.62 1.39 1.50 1.44 1.63	3.70 3.74 3.77 3.82 3.85 3.89 3.92 3.98 4.01 4.06	33483 33783 34253 34510 34852 35142 35649 35971	190.10 200.75 180.98 282.88 155.13 214.44 176.42 305.69 193.15 272.23	365.22 363.75 363.12 361.49 360.35 358.94 358.53 357.28	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
934.0 935.0 936.0 937.0 938.0 939.0 940.0 941.0 942.0 943.0	40.0 3 38.3 3 38.7 3 37.9 2 47.6 3 34.3 3 39.1 3 30.0 3 26.5 3 40.4 3	4,7 3,9 9,8 3,7 4,4 3,5	156 157 143 155 156 156	9.0	1.41 1.36 1.30 1.44 1.41 1.48	4.09 4.11 4.14 4.16 4.19 4.21 4.24 4.27 4.31 4.34	36892 37134 37382 37562 37833 38072 38384 38737	114.91 159.69 139.92 182.50 206.83	353.43 351.87 350.35 348.65 347.29 345.81	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

.

DEPTH	ROP W	IOB RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PР	FG	•
944.0 945.0 946.0 947.0 948.0 949.0 950.0 951.0 953.0	36.0 34 33.3 34 22.0 34 19.6 32 43.4 33 38.3 32 39.6 31 34.3 33 35.6 33 35.0 32	1.3 155 1.3 156 1.5 151 1.1 153 1.6 155 1.6 156 1.7 156	9.0 1.43 9.0 1.46 9.0 1.59 9.0 1.35 9.0 1.37 9.0 1.37 9.0 1.42 9.0 1.42	4.39 4.44 4.49 4.51 4.57 4.59 4.62	39509 39934 40397 40609 40852 41088 41362 41625	152.08 164.25 249.42 279.83 126.23 142.96 138.40 159.69 153.60	339.68 339.06 338.66 337.23 335.92 334.61 333.45 332.26	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.4 14.4 14.4 14.4 14.4	
954.0 955.0 956.0 957.0 958.0 959.0 960.0 961.0 963.0	38.7 33 40.4 33 31.6 33 27.3 32 40.0 31 40.0 32 40.0 34 25.7 34 36.0 34 25.5 34	1.3 157 1.6 157 1.8 156 1.2 155 1.1 155 1.3 155 1.2 155 1.2 155	9.0 1.40 9.0 1.38 9.0 1.47 9.0 1.50 9.0 1.36 9.0 1.37 9.0 1.39 9.0 1.54 9.0 1.55	4.78 4.77 4.77 4.79 4.82 4.84 4.88	42369 42668 43010 43243 43476 43708 44070 44328	141.44 135.35 173.38 200.75 136.88 136.88 136.88 212.92 152.08 214.44	328.63 327.63 326.83 325.62 324.44 323.26 322.58 321.53	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4	
964.0 965.0 966.0 967.0 968.0 969.0 970.0 971.0 973.0	30.5 34 26.7 34 24.0 32 27.7 34 22.5 31 25.7 32 26.5 30 37.9 32 28.3 30 28.6 30	.2 155 .0 149 .7 155 .5 156 .4 156 .3 156 .1 156 .9 156	9.0 1.48 9.0 1.53 9.0 1.52 9.0 1.52 9.0 1.55 9.0 1.48 9.0 1.39 9.0 1.47 9.0 1.46	5.02 5.06 5.10 5.14 5.22 5.25 5.28	45346 45718 46054 46470 46834 47188 47436 47766	179.46 205.31 228.13 197.71 243.33 212.92 206.83 144.48 193.15 191.63	319.31 318.76 318.04 317.59 316.97 316.33 315.32 314.61	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4	
974.0 975.0 976.0 977.0 978.0 979.0 980.0 981.0 982.0 983.0	34.0 30 35.6 31 27.5 31 32.4 30 24.0 30 20.2 31 27.1 30 22.4 31 30.3 30 22.8 30	.3 157 .4 150 .6 153 .9 153 .3 154 .8 154 .2 154 .4 154	9.0 1.40 9.0 1.47 9.0 1.47 9.0 1.51 9.0 1.57 9.0 1.57 9.0 1.54 9.0 1.53	5.37 5.41 5.44 5.53 5.57 5.61 5.65	48636 48963 49246 49629 50086 50428 50840 51145	161.21 153.60 199.23 168.81 228.13 270.71 202.27 244.85 180.98 240.29	312.11 311.47 310.66 310.20 309.98 309.38 309.03 308.32	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4	
984.0 985.0 986.0 987.0 988.0 989.0 990.0 991.0 992.0 993.0	20.9 30 19.4 31 28.3 30 30.0 31 25.2 31 18.0 32 24.1 33 24.5 32 21.3 33 19.9 33	.8 148 .6 152 .4 152 .6 152 .9 152 .4 153 .9 153 .7 153	9.0 1.55 9.0 1.58 9.0 1.45 9.0 1.45 9.0 1.50 9.0 1.52 9.0 1.53 9.0 1.59 9.0 1.60	5.79 5.83 5.86	52451 52773 53077 53440 53948 54299 54673 55105	261.58 282.88 193.15 182.50 217.48 304.17 209.88 223.56 257.02 275.27	307.56 306.95 306.28 305.81 305.80 305.30 304.87 304.62	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.5 14.5 14.5 14.5	

na de la companya de Canada de la companya de la company

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
994.0 995.0 996.0 997.0 998.0 999.0 1000.0 1001.0 1002.0	13.7 17.6 22.0 18.4 15.2 16.1 20.3 17.4	33.2 30.8 31.7 31.1 30.6 30.2 29.6 31.3 30.2	152 154 154 154 155 154 154	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.60 1.68 1.62 1.54 1.59 1.65 1.62 1.57 1.61	6.18 6.25 6.31 6.36 6.41 6.48 6.54 6.59 6.69	56686 57208 57628 58129 58737 59312 59765 60296	399.98 310.25 249.42 298.08 360.44 339.15 269.19	304.80 304.97 304.79 304.84	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1004.0 1005.0 1006.0 1007.0 1008.0 1009.0 1010.0 1011.0 1012.0 1013.0	25.7 27.1 18.9 20.7 28.3 24.3 18.4 17.6	32.8 31.2 30.6 30.6 32.1 31.0 30.7 31.1 31.2	160 160 160 160 160 160 160	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.57 1.51 1.48 1.60 1.59 1.47 1.52 1.61	6.74 6.78 6.81 6.87 6.91 6.95 7.04 7.10	61519 61874 62381 62845 63183 63578 64101 64645	247.90 212.92 202.27 288.96 264.63 193.15 225.08 298.08 310.25 431.92	303.88 303.39 303.32 303.13 302.60 302.23 302.22 302.25	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1014.0 1015.0 1016.0 1017.0 1018.0 1019.0 1020.0 1021.0 1022.0 1023.0	19.7 13.8 18.3 20.5 20.7 20.3 21.7 19.1	30.6 30.8 32.0 31.0 32.9 32.7 33.8 34.8 35.8	155 155 154 154 154 154 154 154	9.0 9.0 9.0 9.0 9.0 9.0	1.68 1.58 1.71 1.60 1.59 1.61 1.60 1.62	7.25 7.30 7.37 7.43 7.48 7.58 7.58 7.62 7.67	66496 67169 67675 68126 68572 69027 69453 69935	384.77 278.31 396.94 299.60 267.67 264.63 269.19 252.46 285.92 308.73	303.13 303.56 303.54 303.38 303.20 303.05 302.82 302.74	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1024.0 1025.0 1026.0 1027.0 1028.0 1029.0 1030.0 1031.0 1033.0	23.1 19.6 28.3 25.2 27.7 16.3 25.0	41.2 39.4 39.9 40.0 40.1 42.8 41.1 41.1 39.9 37.5	160 160 160 160 160 160 160	9.0 9.0 9.0 9.0 9.1 9.1 9.1	1.72 1.65 1.72 1.59 1.63 1.63 1.78 1.63	7.78 7.82 7.87 7.91 7.95 7.98 8.05 8.14 8.22	71359 71850 72188 72570 72916 73504 73888 74440	279.83	302.32 302.22 301.74 301.37 300.92 301.07 300.72 300.80	8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5
1034.0 1035.0 1036.0 1037.0 1038.0 1039.0 1040.0 1041.0 1042.0	20.8 20.8 18.8 10.3 22.9 23.7 21.2	35.3 35.6 36.5 35.4 38.0 36.4 37.9 36.0 40.6	159 159 159 159 158 158 158	9.1 9.1 9.1 9.1 9.1	1.62	8.28 8.33 8.37 8.43 8.52 8.57 8.61 8.66 8.79	76185 76644 77150 78073 78486 78886 79334 80058	328.50 263.10 263.10 290.48 530.77 238.77 238.77 231.17 258.54 422.79 310.25	301.21 301.05 301.00 301.97 301.71 301.41 301.23 301.74	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6

en de la composition La composition de la

.

									e tra
			•						
DEPTH	ROP	WOB RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	рP	FG
1044.0 1045.0 1046.0 1047.0 1048.0 1049.0 1050.0 1051.0 1052.0 1053.0	18.8 4 13.7 4 15.7 4 18.2 4 30.0 4 19.0 4 16.0 4 16.5 4	1.6 157 2.3 157 1.3 158 3.0 157 2.2 157 1.3 157 0.8 157 0.5 157 1.1 155 3.5 157	9.1 1.74 9.1 1.74 9.1 1.83 9.1 1.81 9.1 1.75 9.1 1.76 9.1 1.77 9.1 1.76 9.1 1.66	8.85 8.90 8.97 9.04 9.09 9.13 9.18 9.24 9.30 9.34	81621 82309 82913 83432 83746 84241 84831 85395	307.21 290.48 398.46 349.79 301.13 182.50 287.44 342.19 331.54 225.08	301.75 302.14 302.33 302.33 301.85 301.79 301.95 302.07	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
1054.0 1055.0 1056.0 1057.0 1058.0 1059.0 1060.0 1061.0 1062.0	25.9 4: 28.1 4 31.9 4: 29.3 4 32.1 4: 28.3 4: 17.2 4: 19.5 4	3.0 157 3.2 157 1.3 157 0.5 158 0.4 158 3.5 157 2.0 158 0.4 157 1.7 157 2.6 158	9.1 1.72 9.1 1.64 9.1 1.59 9.1 1.53 9.1 1.56 9.1 1.57 9.1 1.59 9.1 1.74 9.1 1.72 9.1 1.72	9.39 9.43 9.47 9.50 9.53 9.56 9.60 9.71	86611 86947 87243 87567 87860 88194 88740 89225	269.19 211.40 194.67 171.85 187.06 170.33 193.15 317.85 281.35 270.71	301.28 300.86 300.36 299.92 299.42 299.01 299.09	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
1064.0 1065.0 1066.0 1067.0 1068.0 1069.0 1070.0 1071.0 1072.0	21.6 4 24.5 4 17.9 4 19.9 4 18.4 4 17.5 4 13.7 4 20.2 4	3.2 158 1.1 158 2.9 157 2.6 158 4.0 158 3.6 158 5.2 156 2.8 159 2.7 161 3.6 160	9.1 1.66 9.1 1.68 9.1 1.65 9.1 1.76 9.1 1.74 9.1 1.76 9.1 1.80 9.1 1.80 9.1 1.82 9.1 1.72	9.80 9.84 9.89 9.94 9.99 10.05 10.10 10.18 10.23	90525 90911 91439 91915 92430 92964 93659 94135	228.13 253.98 223.56 305.69 275.27 298.08 313.29 398.46 270.71 243.33	298.47 298.19 298.22 298.14 298.14 298.19 298.56 298.46	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
1074.0 1075.0 1076.0 1077.0 1078.0 1079.0 1080.0 1081.0 1082.0	23.1 42 18.5 42 13.4 44 14.3 43 19.0 40 21.1 40 27.1 42 29.3 42	3.9 160 2.9 161 2.5 161 4.8 161 3.2 161 0.6 161 0.8 158 2.7 158 2.3 158 2.6 158	9.1 1.77 9.1 1.68 9.1 1.75 9.1 1.89 9.1 1.85 9.1 1.72 9.3 1.64 9.3 1.58 9.3 1.55 9.3 1.58	10.32 10.37 10.42 10.50 10.57 10.62 10.67 10.70 10.74	95502 96024 96742 97416 97922 98374 98724 99047	296.56 237.25 296.56 407.58 381.73 287.44 260.06 202.27 187.06 203.79	298.03 298.02 298.42 298.72 298.68 298.54 298.20 297.80	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.7 14.7 14.7 14.7
1084.0 1085.0 1086.0 1087.0 1089.0 1090.0 1091.0 1092.0 1093.0	25.9 43 28.3 42 25.2 40 39.1 43 38.3 43 23.7 40 19.7 42 30.8 42	3.3 158 3.1 158 2.2 158 0.9 159 3.7 158 3.5 158 0.9 155 2.3 155 2.6 155 9.9 155	9.3 1.68 9.3 1.60 9.3 1.56 9.3 1.59 9.3 1.47 9.3 1.47 9.3 1.60 9.3 1.68 9.3 1.53 9.3 1.49	10.82 10.86 10.90 10.94 10.96 10.99 11.03 11.08 11.11	99852 100219 100553 100931 101173 101421 101812 102286 102587 102879	193.15 217.48 139.92 142.96 231.17 278.31 177.94	297.04 296.68 296.40 295.86 295.33 295.11 295.05 294.65	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7

		·									
DEPTH	ROP	MOB R	RPM MW	"d "c	HOURS	TURNS	ICOST	CCOST	рp	FG	
1094.0 1095.0 1096.0 1097.0 1098.0 1099.0 1100.0 1101.0 1102.0	26.9 4 33.0 4 28.8 4 30.0 4 40.9 4 42.9 4 25.2 3 33.3 4 39.6 4 36.0 3	10.9 1 13.3 1 12.4 1 12.9 1 11.0 1 39.9 1 10.5 1	155 9.3 155 9.3 155 9.3 155 9.3 155 9.3 155 9.3 159 9.3 159 9.3	1.56 1.49 1.56 1.54 1.44 1.40 1.57 1.49 1.43	11.18 11.21 11.25 11.28 11.30 11.33 11.37 11.40 11.42 11.45	103506 103829 104139 104366 104583 104952 105237 105479	203.79 165.77 190.10 182.50 133.83 127.75 217.48 164,25 138.40 152.08	293.49 293.14 292.76 292.23 291.68 291.43 291.01 290.51	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	
1104.0 1105.0 1106.0 1107.0 1108.0 1109.0 1110.0 1111.0 1111.0	28.6 4 27.7 4 20.2 4 27.7 3 28.6 3 25.2 4 27.5 4 28.1 4 30.8 4	11.8 1 10.3 1 39.7 1 39.9 1 38.9 1 11.1 1 11.8 1	159 9.5 159 9.5 160 9.5 156 9.5 157 9.5 158 9.5 158 9.5	1.55 1.53 1.62 1.51 1.56 1.49 1.55 1.53 1.52	11.48 11.52 11.57 11.61 11.65 11.68 11.72 11.76 11.80 11.83	106423 106896 107242 107639 107970 108346 108691 109028	191.63 197.71 270.71 197.71 232.69 191.63 217.48 199.23 194.67 177.94	289.42 289.36 289.06 288.88 288.57 288.34 288.05 287.75	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	
1114.0 1115.0 1116.0 1117.0 1118.0 1119.0 1120.0 1121.0 1122.0 1123.0	33.0 4 39.1 3 31.6 3 27.3 3 9.6 3 31.6 4 31.6 3 36.7 4 42.4 4 46.8 4	88.9 1 89.2 1 89.9 1 87.7 11.1 1 19.4 1 11.7 1	158 9.5 158 9.5 158 9.5 98 9.5 158 9.5 160 9.5 160 9.5	1.47 1.39 1.46 1.51 1.67 1.48 1.46 1.44	11.86 11.88 11.92 11.95 12.06 12.09 12.12 12.15 12.17	109867 110168 110516 111126 111426 111730 111991 112217	568.79 173.38 173.38 149.04	286.55 286.19 285.92 286.81 286.45 286.10 285.67 285.19	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	
1124.0 1125.0 1126.0 1127.0 1128.0 1129.0 1130.0 1131.0 1132.0 1133.0	42.4 3 43,9 4 42.4 4 30.8 4 36.7 3 41.9 4 40.9 4 40.4 4	2.5 1 2.9 1 3.1 1 39.9 1 0.4 1 11.4 1 11.2 1	60 9.5 60 9.5 159 9.7 155 9.7 157 9.7 157 9.7 158 9.7	1.36 1.39 1.41 1.48 1.35 1.35 1.37 1.34	12.22 12.24 12.26 12.29 12.32 12.35 12.37 12.39 12.42 12.44	112866 113092 113402 113655 113879 114110 114319 114553	129.27 124.71 129.27 177.94 149.04 130.79 133.83 121.67 135.35	283.69 283.22 282.90 282.49 282.03 281.58 281.10 280.66	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8	
1134.0 1135.0 1136.0 1137.0 1138.0 1139.0 1140.0 1141.0 1142.0 1143.0	39.1 4 40.0 4 39.1 4 34.0 3 29.3 4 29.0 4 28.3 4 31.6 4 37.1 4 52.2 4	2.1 1 1.6 1 7.8 1 2.1 1 3.5 1 3.5 1 3.5 1	57 9.7 157 9.7 153 9.7 159 9.7 160 9.7 160 9.7 159 9.7	1.38 1.38 1.38 1.49 1.51 1.51 1.48 1.42	12.47 12.49 12.52 12.55 12.68 12.65 12.68 12.71 12.73	115264 115506 115776 116102 116432 116770 117073	147.52	279.38 278.96 278.61 278.34 278.08 277.83 277.52 277.14	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8	

DEPTH	ROP WOB	RPM MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1144.0 1145.0 1146.0 1147.0 1148.0 1149.0 1150.0 1151.0 1152.0	37.9 43.3 44.4 45.3 29.0 42.5 40.9 42.6 42.9 42.9 40.0 43.3 45.6 44.2 44.4 40.8 42.9 39.9 42.9 41.9	154 9.7 139 9.7 150 9.7 154 9.7 154 9.7 154 9.7 154 9.7 155 9.7	1.41 1.37 1.45 1.36 1.36 1.35 1.33 1.33	12.76 12.78 12.81 12.84 12.86 12.88 12.91 12.93 12.93	117972 118259 118479 118694 118925 119128 119336 119552	144.48 123.19 188.58 133.83 127.75 136.88 120.15 123.19 127.75	275.81 275.56 275.15 274.73 274.33 273.89 273.46 273.05	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8
1154.0 1155.0 1156.0 1157.0 1158.0 1159.0 1160.0 1161.0 1162.0 1163.0	32.4 43.4 40.4 41.7 43.4 41.9 40.9 37.8 40.9 39.3 36.0 38.3 38.3 38.3 44.4 39.4 41.4 38.9 37.5 39.3	155 9.8 154 9.8 154 9.8 155 9.8 155 9.8 155 9.8 154 9.8 155 9.8	1.44 1.36 1.33 1.31 1.33 1.36 1.34 1.30 1.32	13.01 13.03 13.05 13.08 13.10 13.13 13.16 13.18 13.20 13.23	120284 120497 120723 120750 121208 121451 121659 121883	135.35 126.23 133.83 133.83 152.08 142.96 123.19	271.55 271.16 270.78 270.45 270.09 269.69 269.31	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8
1164.0 1165.0 1166.0 1167.0 1168.0 1169.0 1170.0 1171.0 1172.0	38.3 38.3 32.7 36.4	155 9.8 135 9.8 154 9.8 153 9.8 153 9.8 153 9.8 155 9.8 155 9.8	1.30 1.33 1.41 1.29 1.38 1.40 1.33 1.37 1.46	13.25 13.28 13.32 13.34 13.37 13.40 13.43 13.46 13.50	122905 123125 123403 123686 123925 124209	130.79 165.77 168.81 142.96 167.29 208.35	268.23 268.08 267.71 267.43 267.16 266.83 266.56 266.40	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8
1174.0 1175.0 1176.0 1177.0 1178.0 1179.0 1180.0 1181.0 1182.0	28.6 39.1 19.4 37.7 20.7 40.2 27.7 39.7 26.9 40.9 33.0 39.9 19.7 41.1 36.0 39.0 36.7 39.4 40.0 39.3	151 10.0 155 10.0 155 10.0 155 10.0 154 10.0 155 10.0 154 10.0 155 10.0	1.45 1.37 1.55 1.34 1.33	13.57 13.62 13.67 13.71 13.75 13.83 13.86 13.86 13.88	125250 125717 126166 126502 126847 127127 127599 127857 128109 128340	282.88 264.63 197.71 203.79 165.77 278.31 152.08 149.04	266.11 265.93 265.76 265.50 265.53 265.24 264.93	8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9
1184.0 1185.0 1186.0 1187.0 1188.0 1189.0 1190.0 1191.0 1192.0	40.4 40.5 32.1 39.2 37.9 40.4 46.2 40.8 38.3 40.9 39.6 40.4 41.4 40.7 48.0 40.2 48.0 41.2 45.6 40.1	148 10.0 151 10.0 152 10.0 152 10.0 152 10.0 152 10.0 154 10.0 153 10.0	1.36 1.33 1.27 1.33 1.32 1.31 1.26 1.27	14.11 14.13	128567 128844 129084 129282 129520 129750 129971 130163 130354 130553	170.33 144.48 118.63 142.96 138.40 132.31 114.06	264.02 263.71 263.33 263.02 262.70 262.37 261.99 261.61	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9

								•		
DEPTH	ROP W	OB RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
1194.0 1195.0 1196.0 1197.0 1198.0 1199.0 1200.0 1201.0 1202.0 1203.0	14.8 15 40.9 37 45.6 37 39.1 36 40.0 36 38.7 38 46.2 39 40.9 39 43.4 39 34.7 39	.0 152 .5 153 .2 153 .1 154 .4 154 .5 153 .1 154 .3 154	10.0 10.0 10.0 10.0 10.0 10.0	1.27 1.25 1.28 1.27 1.31 1.26 1.30	14.22 14.24 14.26 14.32 14.32 14.36 14.36 14.39 14.41	130969 131171 131406 131637 131876 132075 132301 132513	369.56 133.83 120.15 139.92 136.88 141.44 118.63 133.83 126.23 157.79	261.20 260.85 260.54 260.23 259.93 259.58 259.27 258.94	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
1204.0 1205.0 1206.0 1207.0 1208.0 1209.0 1210.0 1211.0 1212.0 1213.0	35.0 39 42.0 40 34.6 36 38.3 37 41.9 35 32.1 37 49.3 39 42.9 40 33.3 39 38.7 37	.0 153 .6 154 .4 153 .9 154 .0 155 .5 153 .2 153	10.0 10.0 10.0 10.0 10.0 10.0	1.30 1.32 1.30 1.26 1.35 1.24 1.29	14.47 14.49 14.52 14.55 14.57 14.60 14.62 14.65 14.68 14.70	133260 133526 133767 133987 134276 134462 134676 134952	156.43 130.36 158.17 142.96 130.79 170.33 111.02 127.75 164.25 141.44	258.12 257.87 257.59 257.28 257.06 256.71 256.39 256.17	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
1214.0 1215.0 1216.0 1217.0 1218.0 1219.0 1220.0 1221.0 1222.0	46.8 36 40.4 37 50.0 36 36.7 37 43.4 37 40.4 36 37.5 34 32.7 38 35.6 37 34.6 34	.1 153 .8 153 .8 153 .1 153 .5 154 .9 155 .0 154 .6 152	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.28 1.21 1.31 1.26 1.27 1.28 1.35	14.72 14.75 14.77 14.79 14.82 14.84 14.87 14.90	135601 135785 136034 136246 136474 136721 137003 137259	117.10 135.35 109.50 149.04 126.23 135.35 146.00 167.29 153.60 158.17	255.27 254.92 254.66 254.36 254.07 253.81 253.61 253.37	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 15.0
1224.0 1225.0 1226.0 1227.0 1228.0 1229.0 1230.0 1231.0 1232.0 1233.0	35.3 35 48.6 36 36.4 36 42.9 35 34.0 37 40.9 38 40.0 38 40.9 37 40.9 38	.4 153 .5 153 .1 154 .9 153 .6 153 .6 154 .6 153 .7 153	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.21 1.30 1.24 1.34 1.29 1.35 1.30	14.98 15.01 15.03 15.06 15.09 15.11 15.14 15.16 15.19	137953 138206 138421 138691 138915 139187 139417 139642	150.56 127.75 161.21 133.83 161.21 136.88	252.59 252.35 252.05 251.84 251.57 251.36 251.09 250.82	8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0 15.0
1234.0 1235.0 1236.0 1237.0 1238.0 1239.0 1240.0 1241.0 1243.0	36.4 38 37.9 37 43.9 36 45.0 37 43.9 38 38.3 38 46.2 39 40.0 38 44.4 38 44.4 37	.9 153 .1 153 .2 153 .4 151 .9 152 .4 151 .8 150 .8 152	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.31 1.24 1.25 1.26 1.31 1.26 1.29		140355 140563 140767 140974 141212	136.88 123.19	250.08 249.79 249.50 249.21 248.97 248.67 248.42 248.14	8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0 15.0

								•				
	DEPTH	ROP	WOB	ррм	MIJ	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	17111111	KOF	WOD	Kr n	1100	u L	nooka	TUKNO	TCOSI	CCOST	rr	ru
	1244.0	70 7	37.4	155.4	10 0	1 70	15,48	1 40000	141 44	7 A77 64	n 4	1 E A
									141.44			15.0
	1245.0		37.2				15.51		177.94			15.0
	1246.0		38.4			1.33	15.54		152.08			15.0
	1247.0		38.6			1.27	15.56		124.71			15.0
	1248.0		38.9			1.29	15.59		135.35			15.0
	1249.0		39.2			1.34	15.61		155.13		8.4	15.0
	1250.0	36.0	38.7	152	10.0	1.33	15.64	143784	152.08	246.31	8.4	15.0
_	1251.0	31.3	37.0	147	10.0	1.34	15.67	144067	174.90	246,15	8.4	15.0
	1252.0	25.0	38.6	158	10.0	1.45	15.71	144445	219.00	246.09	8.4	15.0
	1253.0	36.4	37.6	157	10.0	1.32	15.74		150.56			15.0
						*						
	1254.0	29.3	38.7	158	10.0	1.40	15.78	1.45027	187.06	245 75	8 4	15.0
	1255.0		38.8			1.32	15.80		144.48			15.0
-	1256.0		38.2				15.83		176.42			15.0
	1257.0		38.0			1.35	15.86		159.69			15.0
	1258.0		37.5			1.38	15.90		180.98			15.0
_	1259.0		38.5			1.35	15.93		159.69			15.0
-	1260.0		38.8			1.35	15.95		158,17			15.0
	1261.0		36.8				16.00		246,38			15.0
	1262.0		37.3				16.04		223.56		8.4	15.0
	1263.0	24.7	35.0	154	10.0	1.41	16.08	147881	222.04	244.58	8.4	15.0
			•									
	1264.0	24.5	36.4	154	10.0	1.42	16.12	148257	223.56	244.53	8.4	15.0
	1265.0	24,3	38.5	157	10.0	1.45	16.16		225.08			15.0
	1266.0		37.4			1.46	16.21		235.73			15.0
	1267.0		37.6			1.50	16.26		275.27			15.0
	1268.0		36.6			1.50	16.31		282.88			15.0
	1269.0	17.3				1.55	16.37		316.33			15.0
_	1270.0		34.7			1,49	16.42		298.08		*** -	15.0
	1271.0		35.2				16.47		261.58			15.0
	1272.0		35.9				16.51		243.33			15.1
_	1273.0	18.7	36.6	156	10.0	1.51	16.57	152405	293.52	245.02	8.4	15.1
	1274.0		36.3			1.52	16.62		308.73		8.4	15.1
	1275.0		35.6			1.52	16.68	153477	313.29	245.30		15.1
	1276.0	18.4	34.9	157	10.0	1.50	16.73		298.08			15.1
	1277.0		35.3			1.60	16.81		407.58	245.75	8.4	
	1278.0	14.2	38.7	157		1.62	16.88		386,29			15.1
_	1279.0		39.3			1,54	16.93		284,40		8.4	
	1280.0		40.1			1.54	16.98		279.83		8.4	
	1281.0		41.1				17.03		246.38		8.4	
	1282.0		40.3				17.07		223,56		8.4	
	1283.0		40.7				17.10		179.46			
	n Institut I W	SUIG	13717	* **/		A 1 TY X	1 / 1 X U	፲ ፲ / ጥጥ ፡፡	3 7 7 1 ** (3)	E.MO.UI	8.4	Lili
-	1284.0	AD A	40.3	157	10 0	4 "7" 0	17 17	4 8072 6 7 7	100 00	OAE PP	~	4 65 4
							17.12		129.27		8.4	
	1285.0		40.7			1.33	17.15		136.88		8,4	
	1286.0		41.6			1.26	17.17		107.98		8.4	
	1287.0		41.2			1.27	17.19		112.54		8.4	
	1288.0		34.4			1.32	17.22		160.77		8.4	
	1289.0		35.3			1.22	17.24		120.15		8.4	
	1290.0	100.0				0.96	17.25	158856	54.75	244.18	8.4	15.1
	1291.0	105.9					17.26	158941	51.71	243.78	8.4	15.1
=	1292.0	100.0	30.1	153	10.0	0.94	17.27	159033		243,40	8.4	
	1293.0	163.6	32.2	154	10.0	0.82	17,28	159090		242.97	8.4	
					•			• ••	,	• • •	• •	

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	P P	FG
1294.0 1295.0 1296.0 1297.0 1298.0 1299.0 1300.0 1301.0 1302.0 1303.0	100.0	34.9 34.2 32.9 35.0 35.1 34.7 34.5	158 160 161 158 154 155 157 161	10.0 10.0 10.0 10.0 10.0 10.0	0.84 0.86 0.93 1.06 0.99 1.02 0.98 0.99	17.28 17.29 17.30 17.30 17.32 17.33 17.34 17.35 17.36 17.36	159146 159202 159263 159341 159465 159557 159658 159749 159843 159925	31.94 34.98 44.10 71.48 54.75 59.31 53.23 53.23	242.55 242.12 241.71 241.31 240.97 240.59 240.23 239.86 239.49 239.10	8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1304.0 1305.0 1306.0 1307.0 1308.0 1309.0 1310.0 1311.0 1312.0 1313.0	109.1 12.9 11.1	34.0 33.4 33.7 32.7 29.5	164 163 147 139 158 163 160	10.0 10.0 10.0 10.0 10.0 10.0	0.85 0.81 0.86 0.96 0.94 0.93 1.60	17.37 17.38 17.39 17.40 17.41 17.42 17.50 17.59 17.79		33.46 28.90 34.98 54.75 59.31		8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1314.0 1315.0 1316.0 1317.0 1318.0 1319.0 1320.0 1321.0 1322.0 1323.0	90.0 144.0 73.5 64.3 48.6 55.4 64.3	37.6 37.5 37.1 36.9 36.1 34.3	160 159 155 155 157 158 156 158	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.04 0.90 1.11 1.15 1.23 1.19 1.14	17.95 17.96 17.97 17.98 18.00 18.02 18.04 18.05 18.07	165628 165694 165820 165965	38.02 74.52 85.17 112.54 98.85 85.17 65.40	239.89 239.50 239.18 238.88	8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1324.0 1325.0 1327.0 1328.0 1329.0 1330.0 1331.0 1333.0	45.0 58.1 51.4 33.3 31.0	35.1 34.6 36.0 35.9 35.4 30.9 31.7 13.8	155 156 159 159 150 145 142	10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.99 1.13 1.23 1.16 1.20 1.26 1.28	18.08 18.09 18.11 18.13 18.15 18.17 18.20 18.23 18.29 18.30	167346 167532 167802 168082	54.75 88.21 121.67 94.29 106.46 164.25 176.42 154.36	236.66 236.16 235.89 235.65 235.51 235.40	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
1336.0 1337.0 1338.0 1339.0		14.7 15.2	162 146		1.15	18.96 19.01 19.06 19.23	176130	1825 244.85 302.65 924.67	240.82	8.4 8.4	15.2 15.2 15.2 15.2

•

		,	
BIT NUMBER 4		517 INTERVAL	1339.0- 1668.2
HTC J22		2.250 NOZZLES	18 18 18
COST 6788.00	TRIP TIME	4.9 BIT RUN	329.2
TOTAL HOURS 24.87	TOTAL TURNS 1	19781 CONDITION	T8 83 G0.125
DEPTH ROP WOB	RPM MW "d"c HO	URS TURNS ICOST	CCOST PP FG
		.15 1744 809	
1341.0 10.7 26.1 1342.0 12.8 40.3		.24 2816 513 .32 3593 427	17469 8.4 15.2 11788 8.4 15.2
AUTHOR VILLE	***************************************	rom doya way	11700 0:4 1U:A
1343.0 12.5 45.0		40 4023 436	8950 8.4 15.2
1344.0 23.4 45.0		.44 4 <mark>254</mark> 234	7207 8.4 15.2
1345.0 18.4 45.0		.50 4548 298	6056 8.4 15.2
1346.0 36.7 45.0		.52 4695 149	5212 8.4 15.2
1347.0 14.9 45.0		.59 5058 368	4606 8.4 15.2
1348.0 58.1 45.0 1349.0 25.9 45.0		.61 5151 94	4105 8.4 15.2
1350.0 64.3 45.0		.65 5360 211	3716 8.4 15.2
1351.0 116.1 45.0		.66 5444 85 .67 5490 47	3386 8.4 15.2 3107 8.4 15.2
1352.0 90.0 45.0		.68 5550 61	3107 8.4 15.2 2873 8.4 15.2
A STATE OF THE STA	70 717 0174 0	700 0000 01	2073 0.4 10.2
1353.0 39.1 45.0	90 9.9 1.21 0	.71 5688 140	2678 8.4 15.2
1354.0 25.7 45.0	90 9.9 1.35 0	.75 5898 213	2513 8.4 15.2
1355.0 14.8 45.0		.81 6263 370	2379 8.4 15.2
1356.0 50.7 45.0		.83 636 9 108	2246 8.4 15.2
1357.0 59.0 45.0		.85 6461 93	2126 8.4 15.2
1358.0 69.2 45.0 1359.0 100.0 45.0		.87 6539 79	2019 8.4 15.2
1360.0 73.5 45.0		.88 6593 55 .89 6666 75	1920 8.4 15.2
1361.0 55.4 45.0		.89 6666 75 .91 6 764 99	1832
1362.0 92.3 45.0		92 6822 59	1680 8.4 15.2
		The state of the same state of	x 0.50 - 61-4 - x 0.12.
1363.0 100.0 45.0		93 6876 55	1612 8.4 15.2
1364.0 19.7 45.0		98 7151 278	1559 8.4 15.2
1365.0 22.6 45.0		02 7389 242	1508 8.4 15.2
1366.0 87.8 45.0 1367.0 102.9 45.0		03 7451 62	1455 8.4 15.2
1368.0 144.0 45.0		.04 7503 53 .05 7541 38	1405 8.4 15.2
1369.0 124.0 45.0		06 7584 44	1358 8.4 15.2 1314 8.4 15.2
1370.0 42.1 45.0		08 7712 130	1276 8.4 15.2
1371.0 18.7 45.0		14 8002 294	1245 8.4 15.2
1372.0 25.4 45.0		18 8215 216	1214 8.4 15.2
dual had the training of training of the training of training	MA 40 A A A		
1373.0 83.7 45.0 1374.0 22.4 45.0		19 8279 65	1180 8.4 15.2
1374.0 22.4 45.0 1375.0 25.4 45.0		23 8521 245	1153 8.4 15.2
1376.0 15.7 45.0		27 8734 216 34 90 77 348	1127 8.4 15.2 1106 8.4 15.2
1377.0 29.3 45.0		37 9262 187	1106 8.4 15.2 1082 8.4 15.2
1378.0 69.2 45.0		38 9340 79	1056 8.4 15.3
1379.0 37.1 45.0		41 9485 148	1033 8.4 15.3
1380.0 57.1 45.0	90 10.0 1.08 1.	43 9580 96	1011 8.4 15.3
1381.0 52.2 45.0		45 9683 104,94	989.05 8.4 15.3
1382.0 40.0 45.0	90 10.0 1.19 1.	47 9818 136.88	969.23 8.4 15.3

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	IĆOST	CCOST	PР	FG
1383.0 1384.0 1385.0 1386.0 1387.0 1389.0 1390.0 1391.0	8.5	45.0 45.0 45.0 45.0 45.0 45.0	90	9.9 9.9 9.9 9.9	1.69	1.53 1.65 1.67 1.70 1.72 1.76 1.80 1.82 1.90	10781 10880 11039 11177 11368 11578 11716 12133	331.54 644.83 100.38 161.21 139.92 193.15 212.92 139.92 422.79 164.25	947.85 929.43 913.09 896.98 882.61 869.22 854.92 846.61	8.4 8.4 8.4 8.4 8.4 8.4	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1393.0 1394.0 1395.0 1396.0 1397.0 1398.0 1399.0 1400.0 1401.0	23.2 22.9 13.4 13.4 163.6 80.0 54.0 63.5 54.5	45.0 45.0 45.0 45.0 45.0 45.0 45.0	90 90 90 90 90 90 90 90	9.9 9.9 9.9 10.0 9.9 9.9	1.38 1.38 1.56 1.56 0.75 0.97 1.11 1.05 1.10	1.97 2.02 2.09 2.17 2.17 2.19 2.20 2.22 2.24	12763 13166 13570 13603 13670 13770 13855	68.44 101.39 86.18 100.38	812.04 804.85 797.91 784.73 772.59 761.40 750.33	8.4 8.4 8.4 8.4 8.4 8.4	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1403.0 1404.0 1405.0 1406.0 1407.0 1408.0 1409.0 1410.0 1411.0	22.8 15.7 25.7 13.7 34.6 35.0 24.2 50.0 33.6 33.0	45.0 45.0 45.0 45.0 45.0 45.0 45.0	90 90 90 90 90 90 90 90	9.9 9.9 9.9 9.9 9.9 9.9	1.38 1.51 1.35 1.55 1.25 1.25 1.37 1.13 1.26	2.29 2.35 2.39 2.46 2.52 2.56 2.58 2.61 2.64	14571 14781 15175 15331 15486 15709 15817 15978	240.29 349.79 212.92 399.98 158.17 156.65 226.60 109.50 162.73 165.77	715.32 707.70 703.11 695.10 687.29 680.71 672.67 665.58	8.4 8.4 8.4 8.4 8.4 8.4	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1413.0 1414.0 1415.0 1416.0 1417.0 1418.0 1419.0 1420.0 1421.0	8.2 14.8 7.5	45.0 45.0 45.0 45.0 45.0 45.0 45.0	90 90 90	9,9 9,9 9,9	1.73 1.76 1.33	2.66 2.69 2.71 2.82 2.94 3.01 3.14 3.29 3.33	16380 16488 17083 17739 18103 18825 19623 19828	112.54 129.27 109.50 603.77 664.60 369.56 731.52 809.08 208.35 243.33	644.40 637.36 636.92 637.28 633.89 635.11 637.26 632.03	8.4 8.4 8.4 8.4 8.4 8.4	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1423.0 1424.0 1425.0 1426.0 1427.0 1428.0 1429.0 1430.0 1431.0	21.2 17.1 25.9 35.3 23.2 31.3 29.3 26.9 23.8 26.1	45.0 45.0 45.0 45.0 45.0 45.0 45.0	90 90 90 90 90 90 90	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.46 1.33 1.23 1.36 1.27 1.29 1.32 1.36	3.42 3.48 3.52 3.54 3.59 3.62 3.65 3.67 3.77	20640 20848 21001 21234 21406 21591 21792 22018	258.54 320.90 211.40 155.13 235.73 174.90 187.06 203.79 229.65 209.88	619.40 614.65 609.37 605.13 600.29 595.70 591.39 587.46	8.4 8.4 8.4 8.4 8.4 8.4	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3

DEPTH	ROP	ROW	RPM	MW	"d"c	HOURS	TURNS	1COST	CCOST	p p	FG
1433.0 1434.0 1435.0 1436.0 1437.0 1438.0 1439.0 1440.0 1441.0	24.7 35.3 14.2 15.4 14.4 22.1 15.3	45.0 45.0 45.0 31.0 35.5 31.8 40.0 31.9	90 90 90 88 81 81 92 81	10.0	1.35 1.52 1.33 1.38 1.21 1.45 1.08	3.85 3.89 3.92 3.99 4.05 4.12 4.17 4.23 4.26 4.31	23023 23404 23747 24086 24307 24670 24808	431.92 222.04 155.13 386.29 354.86 380.21 247.90 358.92 153.98 267.67	573.60 571.67 569.46 567.54 564.35 562.31 558.31	8.4 8.4 8.4 8.4 8.4 8.4	15.3 15.4 15.4 15.4 15.4 15.4 15.4
1443.0 1444.0 1445.0 1446.0 1447.0 1448.0 1449.0 1450.0 1451.0 1452.0	14.8 15.5 26.1 23.5 22.6 12.9 15.5 12.7 9.8	42.9 43.1 42.7 43.9 44.7 44.4	93 91 93 94 93 95 90 93	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1,49 1,31 1,35 1,36 1,55 1,55	4.38 4.44 4.48 4.52 4.57 4.65 4.71 4.79 4.89	25831 26041 26278 26526 26526 27332 27756 28323	371.08 354.35 209.88 232.69 241.81 425.83 354.35 430.40 558.15 451.69	551.82 548.59 545.64 542.83 541.75 540.05 539.06 539.23	8.4 8.4 8.4 8.4 8.4 8.4	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
1453.0 1454.0 1455.0 1456.0 1457.0 1458.0 1459.0 1460.0 1461.0		43.9 42.7 42.7 43.0 36.0 47.3	92 92 93 92 57 81 89		1.49 1.37 1.08 1.11 1.00 0.95 1.57 1.84	5.05 5.11 5.16 5.20 5.22 5.23 5.43 5.63	29539 29788 29890 30003 30095 30155 30526 31413	404.54 351.31 246.38 100.38 111.02 149.04 67.68 381.73 903.37 892.73	535.66 533.17 529.47 525.92 522.76 518.97 517.83 520.99	8.4 8.4 8.4 8.4 8.4 8.4	15.4 15.4 15.4 15.4 15.4 15.4 15.4
1463.0 1464.0 1465.0 1466.0 1467.0 1468.0 1469.0 1470.0 1471.0	19.7 56.2 51.4 20.6 69.5 32.1 24.5 29.0	46.0 48.7 31.2 40.3 43.6 46.2 46.0	62 68 74 95 93 82 95 71	10.0 10.0 10.0	0.97 1.05 1.20 0.97 1.02 1.27 1.29	5.68 5.70 5.72 5.77 5.78 5.80 5.86 5.90	32322 32402 32619 32693 32774 32942 33119 33293	97.33 106.46 266.15 71.48	513,40 509,95 506,61 504,14 501,59 499,48	8.4 8.4 8.4 8.4 8.4 8.4	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
1473.0 1474.0 1475.0 1476.0 1477.0 1478.0 1479.0 1480.0 1481.0		47.5 47.4 50.4 51.2 46.2 47.8	61 63 71 71 63 82 91	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.44 1.73 1.74 1.34 1.03 1.14 1.03	5.98 6.06 6.23 6.37 6.41 6.44 6.46 6.47 6.47	33854 34500 35116 35299 35385 35497 35574 35674	124.71 124.71	494.60 497.86 499.97 498.05 495.36 492.71 489.77 487.04	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	15.4 15.4 15.4 15.4 15.4 15.4

DEPTH	ROP	WOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
1483.0 1484.0 1485.0 1486.0 1487.0 1488.0 1489.0 1490.0 1491.0	37.1 16.4 27.1 10.9 14.0 12.2 35.6 69.2 85.7 60.0	45.0 45.0 30.0 32.8 27.6 33.7 35.3 35.0	78 1 86 1 90 1 87 1 93 1 85 1 88 1 89 1	0.0 0.0 0.0 0.0 0.0 0.0	1.17 1.46 1.16 1.45 1.33 1.42 1.13 0.94 0.87	6.56 6.62 6.66 6.75 6.82 6.90 6.93 6.95 6.95	36005 36321 36520 37000 37399 37816	147.52 334.58 202.03 502.29 391.07 448.65 153.60 79.08 63.88	482.86 481.84 479.92 480.07 479.47 479.26	8.4 8.4 8.4 8.4 8.4 8.4	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
1493.0 1494.0 1495.0 1496.0 1497.0 1498.0 1499.0 1500.0 1501.0	69.2 3 70.6 4 62.1 4 60.0 4 48.6 4 24.3 4 10.4 4 21.3 4 18.5 2	45.0 45.0 45.0 45.0 45.0 45.0	88 1 89 1 89 1 87 1 67 1 68 1 87 1 91 1		0.92 1.00 1.04 1.06 1.12 1.25 1.53 1.38 1.14	6.99 7.00 7.02 7.04 7.06 7.10 7.19 7.24 7.29 7.38	38781 39171 39417 39712	77.56 88.21	455.80 456.23 454.99 454.01	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1503.0 1504.0 1505.0 1506.0 1507.0 1508.0 1509.0 1510.0 1511.0	31.6 2 18.3 2 21.1 3 31.9 1 45.0 1 38.3 1 13.6 1 65.5 13.1	20.0 13.0 13.0 13.0 13.0	92 1 101 1 98 1 88 1 77 1 84 1	0.0 0.0 0.0 0.0 0.0	0.92 0.82 0.83 1.08 0.40 0.89	7.41 7.47 7.52 7.55 7.57 7.60 7.68 7.82	40583 40870 41055 41172 41293 41660 41738 42105	173.38 299.60 260.06 171.85 121.67 142.96 401.50 83.59 417.94 307.58	451.54 450.38 448.72 446.77 444.97 444.72 442.60 442.46	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1513.0 1514.0 1515.0 1516.0 1517.0 1518.0 1519.0 1520.0 1521.0	17.0 1 15.0 11.0 9.0 46.8 44.4 23.2 4 11.9 4 52.9 4	5,0 5,0 5,0 5,0 45,0 45,0 45,0	85 1	0.0	0.87 0.93 0.95 0.67 1.15 1.35 1.57	7.88 7.94 8.03 8.14 8.17 8.19 8.23 8.31 8.33	43019 43485 44008 44122 44241 44460 44907 45005	322.06 365.00 497.73 608.33 116.99 123.19 235.73 459.29 103.42 159.69	440.56 440.88 441.83 440.01 438.24 437.11 437.23 435.40	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1523.0 1524.0 1525.0 1526.0 1527.0 1528.0 1529.0 1530.0 1531.0	32.4 4 16.1 4 11.8 4 15.2 4 16.5 4 15.6 4 22.0 4 27.7 4	45.0 45.0 45.0 40.0 40.0 40.0	85 10 88 10 89 10 87 10 92 10 94 10 96 10 92 10	0.0 0.0 0.0 0.0 0.0	1.47 1.58 1.49 1.55 1.48 1.41 1.35	8.39 8.46 8.54 8.61 8.70 8.76 8.82 8.87 8.91	45626 46076 46421 46915 47248 47560 47819 48028	168.81 339.15 463.85 360.44 506.44 331.54 351.31 249.42 197.71 430.40	431.95 432.12 431.74 432.13 431.60 431.18 430.23 429.02	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5

. . .

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
1533.0	31.3	40.0	94	10.0	1.24	9.02	48442	174.90	427.71	8.4	15.5
1534.0	22.9			10.0		9.06		238.77			15.5
1535.0		40.0		10.0		9.11		264.63			15.5
1536.0	27.9			10.0		9.14		196.19			15.5
1537.0	27.9			10.0		9.18		196.19			15.5
1538.0	21.3			10.0		9,23		257.02			15.5
1539.0		40.0		10.0		9.30		383.25			15.5
1540.0	30.5			10.0		9.33		179.46			15.5
1541.0		40.0		10.0		9.35		118.63			15.5
1542.0	42.9		90	10.0	1.13	9.37	50449	127.75	418.41	8.4	15.5
1543.0	45.6	40.0	91	10.0	1.11	9.40	50568	120.15	416.95	8.4	15.5
1544.0		40.2		10.0		9.42	50685	118.63			15.5
1545.0		39.5		10.0		9,44		106.46			15.5
1546.0		37.3		10.0		9.45	50868		412.38		15.5
1547.0	61.0			10.0		9.47	50953		410.83	8.4	15.5
1548.0		16.6		10.0		9.52		267.67		8.4	15.5
1549.0		27.9		10.0		9,54		107.98			15.5
1550.0		21.8		10.0		9.55	51374	82.13			15.5
1551.0				10.0		9.61		313,29			15.5
1552.0		24.3		10.0		9.67	52141	319.37	406.30		15.6
1553.0		21.5		10.0		9,70	52289	191.63			15.6
1554.0		17.9		10.0		9.74		200.75			15.4
1555.0	57.1			10.0		9.76	52554		402.92		15.6
1556.0	39.1			10.0		9.78		139.92			15.6
1557.0	60.0			10.0		9.80	52769		400.28		15.6
1558.0		26.5		10.0		9.81	52832	109.50	398.77		15.6 15.6
1559.0		24.5		10.0	0.92	9.83 9.84	52988		395,94		15.6
1560.0	87.8			10.0		9.86		101.90			15.6
1561.0		32.5 34.9		10.0		9,88		101.70			15.6
1562.0	യാഹ	34.7	O.C.	10.0	0.77	7,00	331/4	101.70	379.30	Ω, **r	10.0
1563.0	20.2	37.9		10.0		9.93		270,71			15.6
1564.0	48.0			10.0		9.95		114,06			15.4
1565.0	48.6	45.1	86	10.0	1.12	9.97		112,54		8,4	15.6
1566.0	54.5	46.8		10.0	1.09	9.99		100.38			15.6
1567.0	58.1				1.06	10.01	53822		387.71		15.6
1568.0	65.5			10.0		10.02	53900		386.38		15.6
1569.0	67.9			10.0		10.04	53975		385.05		15.6
1570.0	55.4			10.0		10.05	54067		383.81		15.6
1571.0		44.7		10.0		10.07		114.06			15.6
1572.0	44,4	42.7	79	10.0	1.10	10.10	54280	123.19	381.54	8.4	15.6
1573.0	11.0	43.7	85		1.57	10.19	54743	495.79			15.6
1574.0		46.6			1.82	10.33	55661	774.10		8.4	15.6
1575.0	11.7			10.0		10.41	56227			8.4	15.6
1576.0	34.6	42.5	108	10.0	1.27	10.44	56414	158.17	383.09	8.4	15.6
1577.0				10.0		10.48	56620	173.38			15.6
1578.0		42.5			1.29	10.51		170.33			15.6
1579.0				10.0		10.54	57026	184.02	380.50		15.6
1580.0	25.9				1.31	10.58	57255	211.40	379.80		15.6
1581.0				10.0		10.62		202.27			15.6
1582.0	22.1	35.0	94	10.0	1.29	10.66	57737	247.90	378.53	੪.4	15.6

DEPTH	ROP	WOB	RPM	мЫ	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1583.0 1584.0 1585.0 1586.0 1587.0 1589.0 1590.0 1591.0	30.8 19.4 9.2 12.8 26.7 36.0 31.9	42.5 42.8 44.2 45.2 26.3 32.6 31.6 21.1 38.0	104 103 107 96 92 94 95	10.0 10.0 10.0 10.0 10.0 10.0	1.30 1.46 1.72 1.35 1.20 1.14 1.03	10.69 10.73 10.78 10.89 10.97 11.00 11.03 11.06 11.09	58152 58473 59173 59622 59829 59985 60164 60352	185.54 177.94 282.88 596.17 428.88 205.31 152.08 171.85 173.38 159.69	376.92 376.54 377.43 377.64 376.95 376.05 375.23 374.43	8.4 8.4 8.4 8.4 8.4 8.4	15.6 15.6 15.6 15.6 15.6 15.6 15.6
1593.0 1594.0 1595.0 1596.0 1597.0 1598.0 1599.0 1600.0	40.9 30.8 33.6 35.3 34.6 36.0 10.0	34.6 32.8 30.9 32.3 35.2 35.2 34.6 35.0 38.5	110 110 110 110 110 110 83 87	10.0 10.0 10.0 10.0	1.13 1.20 1.19 1.19 1.21 1.19 1.49 1.51	11.15 11.18 11.21 11.24 11.27 11.29 11.32 11.42 11.51 11.65	60874 61090 61287 61474 61666 61849 62347 62806	150.56 133.83 177.94 162.73 155.13 158.17 152.08 547.50 479.91 789.31	371.77 371.01 370.20 369.37 368.55 367.72 368.41 368.83	8.4 8.4 8.4 8.4 8.4 8.4	15.6 15.6 15.6 15.6 15.6 15.6 15.6
1603.0 1604.0 1605.0 1606.0 1607.0 1608.0 1609.0 1610.0 1611.0	14.6 33.3 12.0 20.8 32.1 11.3 61.0 25.4	44.6 46.3 44.8 45.6 47.4 47.1 48.3 37.1 36.4 37.4	90 97 89 93 104 93 76 99	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.53 1.27 1.58 1.44 1.32 1.64 0.94 1.28	11.73 11.80 11.83 11.91 11.96 11.99 12.08 12.09 12.13 12.16	64286 64460 64903 65172 65366 65856 65931 66164	399.98 375.65 164.25 456.25 263.10 170.33 483.62 89.73 215.96 161.21	370.56 369.79 370.11 369.71 368.97 369.40 368.36 367.80	8.4 8.4 8.4 8.4 8.4 8.4	15.6 15.6 15.6 15.6 15.6 15.6 15.6
1613,0 1614,0 1615,0 1616,0 1617,0 1618,0 1620,0 1621,0 1622,0	22.9 25.4 31.0 26.7 5.6 16.0 12.8 5.9	38.1 34.8 33.6 36.5 36.8 37.9 46.5 46.7 45.7	99 103 110 111 112 111 111 106	10.0 10.0 10.0 10.0 10.0	1.29 1.26 1.25 1.30 1.79 1.57 1.64	12.20 12.24 12.28 12.31 12.35 12.53 12.59 12.67 12.67 12.84 13.17	66838 67083 67297 67547 68752 69169 69688	193.15 238.77 215.96 176.42 205.31 982.46 342.19 428.88 924.67 1827	365.95 365.40 364.72 364.15 366.36 366.28 366.50	8.4 8.4 8.4 8.4 8.4 8.4 8.4	15,.0 15,.7 15,.7 15,.7 15,.7 15,.7 15,.7
1623.0 1624.0 1625.0 1626.0 1627.0 1628.0 1629.0 1630.0 1631.0	3.1 2.3 2.4 2.5 2.5 2.5	48.3 45.8 45.2 46.4 47.0 48.8 44.9 46.3	58 59 58 59 75 75 75	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.88 1.92 1.85 1.98 2.02 1.96 2.02 2.04	13,52 13,85 14,21 14,51 14,93 15,39 15,99 16,48	73445 74580 75881 76934 78416 80078 81364 83168 84955 85356	1890 1793 1997 1643 2319 2021 1565 2195 2175 488,19	379 384 390 394 401 406 410 416 422 422,61	8,4 8,4 8,4 8,4 8,4 8,4	15.77 15.77 15.77 15.77 15.77 15.77

								•			
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
1633.0	15.8	50.0	75	10.0	1.48	16.54	85641	346.75	A22 35	8 4	15.7
1634.0		50.0		10.0		16.66		684.38			15.7
		50.0		10.0							
1635.0						16.75		482.10			15.7
1636.0	21.3				1.38	16.80		257.02			15.7
1637.0	15.2			10.0		16.87		360.44			15.7
1638.0	11.7			10.0		16.95		468.42			15.7
1639.0	12.8			10.0	1.55	17.03		427,35			15.7
1640.0		50.0		10.0		17.17		757.38			15.7
1641.0		50.0		10.0		17.41	89556	1326	427	8.4	15.7
1642.0	7.3	50.0	75	10.0	1.74	17.55	90176	754.33	428.01	8.4	15.7
1643.0	7.7	50.0	75	10.0	1.72	17.68	90761	711.75	428.95	8.4	15.7
1644.0	7.4	50.0	75	10.0	1.73	17.81	91371	742.17	429.97	8,4	15.7
1645.0	6.6	50.0	75	10.0	1.77	17.96	92049	824,29	431.26	8.4	15.7
1646.0	6.7	50.0	75	10.0	1.76	18.11	92720	816.69	432.52	8.4	15.7
1647.0	5.6	50.0	75	10.0	1.82	18,29	93521	974.85	434,28	8.4	15.7
1648.0	7.0	50.0	75	10.0	1.75	18.43	94165	783,23	435.41	8.4	15.7
1649.0	1.8	50.0	75	10.0	2.20	18.99	96665	3042	444	8.4	15.7
1650.0	2.8	50.0	75	9.8	2.10	19.35	98272	1955	449	8.4	15.7
1651.0	3.5	50.0	75	9.8	2.02	19.63	99558	1564	452	8.4	15.7
1652.0	5.5	50.0	75	9.8	1.87	19,81	100376	995.45	453.99	8.4	15.7
1653.0		50.0	75		2.16	20.25	102333	2380	460		15.7
1654.0		50.0	75		1.83	20.41		883.06			15.7
1655.0	13.4		75		1.57	20.48		408.58			15.7
1656.0	15.6		75		1.51	20.55		350,96			15.7
1657.0	12.6		75		1.59	20.63	104040	434.52			15.7
1658.0		50.0	75		1.74	20.75		682.85	461,56		15.7
1659.0		50.0	75		2.15	21.17	106466	2269	467	8.4	15.7
1660.0		50.0	75		2.37	21.98	110119	4444	480	8.4	15.7
1661.0	1.8	50.0	75	9.8	2,25	22.55	112675	3110	488	8.4	15.7
1662.0	4.6	50.0	75	9.8	1.93	22.76	113649	1185	490	8.4	15.7
1663.0	10.1	50.0	75	9.8	1.66	22.86	114096	544.46	490.09	8.4	15.7
1664.0	7.1	50.0	75	9.8	1.78	23,00	114729	769.54	490.95	8.4	15.7
1665.0	6.3	47.0	67	9.7	1.76	23.16	115365	869.92			15.7
1666.0		43.7	42		1.54	23.31		787.79			15.7
1667.0	1.8	44.9	43	9.7	2.01	23,88	117185	3121	501		15.7
1668.0		44.7	45		2.15	24.71	119411	4563	513		15.7
1668.2	1.3	45.0	39		2.09	24.87	119781	4372	516		15.7

BIT NUMBER 5 IADC CODE INTERVAL 617 1668.2- 1942.0 HTC J44 SIZE 12.250 NOZZLES 18 18 18 COST 4919.00 TRIP TIME 6.2 BIT RUN 273.8 TOTAL HOURS 32.21 TOTAL TURNS 140419 CONDITION T3 B8 G0.000 DEPTH ROP WOB RPM "d "c HOURS MW THRNS ICOST CCOST PP FG 1.9 40.3 0.42 1669.0 65 9.7 2.05 1637 2867 51447 8.4 15.7 2.9 43.8 9.7 8.4 15.7 1670.0 80 2.04 0.76 3288 1878 23909 1671.0 4.1 41.1 108 9.7 1.98 1.01 4875 1338 15848 8.4 15.7 1672.0 3.3 40.1 109 9.7 2.04 1.31 6854 1659 12114 8.4 15.7 12.4 46.5 1673.0 78 9.7 1.58 1.39 7231 442 9682 8.4 15.7 23.0 46.2 9.7 1.31 1674.0 1.43 64 7398 238 8054 8.4 15.7 9.7 1.18 1.47 1675.0 28.6 39.8 63 7530 192 6898 8.4 15.7 9.7 1.04 1.49 55.4 50.1 1676.0 64 7599 99 6026 8.4 15.7 1677.0 40.9 49.4 9.7 1.17 70 1.51 7701 5356 134 8.4 15.7 33.0 51.0 9.7 1.29 1678.0 76 1.54 7840 166 4827 8.4 15.8 1679.0 40.9 50.2 77 9.7 1.21 1.57 7953 134 4392 8.4 15.8 9.7 1.15 1680.0 49.3 50.0 77 1.59 4029 8.4 15.8 8047 111 1681.0 51.4 50.0 77 9.7 1.13 1.61 8137 106 3723 8.4 15.8 53.7 50.6 9.7 1.12 1682.0 77 1.62 8223 102 3461 8.4 15.8 9.7 1.21 1683.0 41.9 51.7 77 1.65 8334 3236 131 8.4 15.8 9.7 1.22 1684.0 39.6 49.7 77 8450 1.67 138 3040 8.4 15.8 9.7 1.12 1685.0 43.4 47.6 67 1.70 8543 126 2866 8.4 15.8 9.7 1.23 1686.0 36.7 50.1 73 1.72 8.4 15.8 8662 149 2714 1.75 1687.0 34.6 48.5 74 9.7 1.25 8794 158 2578 8.4 15.8 37.9 48.8 9.7 1.22 1.78 1688.0 76 8914 144 2455 8,4 15,8 1689.0 40.4 48.9 9.7 1.20 1.80 76 9028 135 2343 8.4 15.8 9.7 1.19 1.83 1690.0 40.9 47.7 76 9140 134 2242 8.4 15.8 1691.0 29.5 49.3 76 9.7 1.31 1.86 9295 2152 186 8.4 15.8 1692.0 25.2 50.3 9.7 1.37 76 1.90 9477 217 2070 8.4 15.8 1693.0 27.3 48.7 76 9.7 1.33 1.94 9644 201 1995 8.4 15.8 76 9.7 1.26 1694.0 34.6 50.1 1.97 9776 158 1924 8.5 15.8 72 1695.0 28.8 48.0 9.7 1.29 2.00 9926 190 1859 8.5 15.8 76 1676.0 30.3 47.0 9.7 1.28 10077 2.03 1799 181 8.5 15.8 1697.0 26.1 48.0 9.7 1.34 76 2.07 10253 210 1744 8.5 15.8 9.7 1.33 76 2.11 1698.0 26.5 47.3 10425 207 1692 8.5 15.8 9.7 1.30 1699.0 27.9 46.3 76 2.15 10589 196 1643 8.5 15.8 1700.0 14.2 46.2 9.7 1.53 76 2.22 10911 385 1604 8.5 15.8 26.5 45.4 9.7 1.31 1701.0 76 2,25 11084 207 1561 8.5 15.8 1702.0 9.7 1.58 12.6 47.6 77 2.33 11448 433 1528 8.5 15.8 9.7 1.90 1703.0 4.9 47.9 77 2,54 12382 1112 1516 8.5 15.8 1704.0 7.0 49.1 77 9.7 1.80 2.68 13042 786 1496 8.5 15.8 1705.0 4.0 48.7 78 9.7 1.99 2.93 14213 1369 1492 8.5 15.8 1706.0 4.6 48.3 77 9.6 1.95 3.15 15209 1179 8.5 15.8 1484 1707.0 17.0 46.9 77 9.6 1.49 3.20 15481 322 1454 8.5 15.8 1708.0 9.0 47.2 77 9.6 1.71 15993 3.32 8.5 15.8 608 1433 1709.0 24.0 43.7 77 9.6 1.35 3.36 16186 228 8.5 15.8 1403 3.49 1710.0 7.5 47.6 77 9.6 1.78 16798 725 1387 8.5 15.8 3,90 1711.0 2.5 48.3 77 9.6 2.17 18686 2233 1407 8.5 15.8

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	icost	CCOST	PP	FG
1712.0 1713.0 1714.0 1715.0 1716.0 1717.0 1718.0 1719.0 1720.0	9.8 27.7 38.3 42.4 38.7 21.2 17.7 27.5		77 77 69 72 56 61 72 75 75	9.6 9.6 9.6 9.6 9.6 9.6	2.06 1.69 1.28 1.17 1.04 1.13 1.38 1.46 1.32 2.08	4.20 4.30 4.34 4.36 4.39 4.41 4.46 4.52 4.55	20088 20560 20709 20822 20901 20995 21199 21452 21616 23159	1656 558 198 143 129 141 259 309 199 2147	1412 1393 1367 1341 1316 1292 1271 1252 1232 1249	8.5 8.5 8.5 8.5 8.5 8.5 8.5	15.8 15.8 15.8 15.8 15.8 15.8 15.8
1722.0 1723.0 1724.0 1725.0 1726.0 1727.0 1728.0 1729.0 1730.0	6.0 5.0 10.7 8.0 6.0 9.0 6.3 7.0	48.1 49.1 46.8 48.3 48.4 46.7 48.0 48.1 46.6	51 57 75 70 75 74 76 76 76	9.6 9.6 9.6 9.6 9.6 9.6	2.13 1.77 1.90 1.63 1.76 1.83 1.72 1.84 1.79	5.50 5.67 5.87 5.96 6.25 6.32 6.57 6.73	24861 25435 26336 26727 27292 28036 28541 29265 29919 30204	3051 913 1095 509 684 913 608 869 782 342	1282 1276 1272 1259 1249 1243 1233 1227 1220 1206	8.5 8.5 8.5 8.4 8.4 8.4	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1732.0 1733.0 1734.0 1735.8 1736.0 1737.0 1738.0 1739.0 1740.0	25.0	36.8 47.7 45.0 46.6 43.2	76 74 76 76 64 67 76 77 77	9.6 9.6 9.6 9.6 9.6 9.6	1.38 1.33 1.22 1.22 0.99 1.09 1.14 1.18 1.03	6.78 6.82 6.84 6.87 6.89 6.91 6.93 6.97	30411 30589 30719 30849 30925 31006 31107 31215 31289 31392	249 219 156 156 109 111 120 129 88 143	1191 1176 1160 1145 1130 1115 1101 1087 1073	8.4 8.4 8.4 8.4 8.4 8.4	15.8 15.8 15.8 15.8 15.8 15.8 15.8
1742.0 1743.0 1744.0 1745.0 1746.0 1747.0 1748.0 1749.0 1750.0	4.0 21.0	45.1 45.0 45.1 44.0 43.2 44.8 46.0	75 76 76 76 76 76 73 76 75	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.04 1.30 1.43 1.62 1.35 1.40 1.97 1.97	7.02 7.06 7.11 7.20 7.24 7.29 7.57 7.82 7.82 7.81	33923 35063 35277	106 196 290 508 231 275,271 1503 1369 261 782,14	1006 1011 1002	8.4 8.4 8.4 8.4 8.4 8.4	15.8 15.8 15.9 15.9 15.9 15.9 15.9
1752.0 1753.0 1754.0 1755.0 1756.0 1757.0 1759.0 1760.0	16.0 18.0 23.0 23.0 19.0 22.0 26.0 24.0	45.6 44.4 47.5 45.4 43.5 43.4	74 66 72 76 76 76 76 76 77	9.6 9.6 9.6 9.6 9.6 9.6	1.85 1.43 1.44 1.36 1.39 1.44 1.37 1.31	8.27 8.37 8.37 8.41 8.55 8.55 8.72	37296 37495 37694 37935 38143 38320 38511	1095 342.19 304.17 238.04 238.04 288.16 248.86 210.58 228.13 684.38	984.33 975.73 967.33 959.68 951.77 943.60 935.81	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9

								•			
DEPT	H ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1762. 1763. 1764. 1765. 1766. 1767. 1768. 1770.	0 22.6 0 20.7 0 22.5 0 41.4 0 37.1 0 29.3 0 26.1 0 25.4	44.4 44.7 43.8 43.8 42.7 43.5 43.5 43.7	76 76 76 77 77 77 77 75	9.66 9.66 9.66 9.66 9.66	1.40 1.37 1.40 1.37 1.17 1.19 1.28 1.32 1.31	8.77 8.81 8.86 8.90 8.93 8.95 8.99 9.03 9.10	39486 39708 39912 40023 40147 40304 40480 40654	241.81 264.63 243.33 132.31 147.52 187.06	911.90 904.99 897.09 889.50 882.46 875.79 869.31	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9
1772. 1773. 1774. 1775. 1776. 1777. 1778. 1779. 1780.	0 32.1 0 10.8 0 6.2 0 5.4 0 8.7 0 6.3 0 5.5	44.8 45.3 46.1 44.9 44.6 45.4 47.0 47.3 46.6	76 76 74 74 73 73 75 75 76	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.32 1.26 1.62 1.80 1.83 1.68 1.81 1.87 1.47	9.14 9.17 9.26 9.42 9.61 9.72 9.88 10.06 10.12	41131 41541 42258 43064 43569 44262 45077 45330	203.79 170.33 506.44 880.56 1008 632.67 869.92 993.10 316.33 273.75	849.90 846.65 846.97 848 846.48 846.69 848.02 843.26	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1782.(1783.(1784.(1785.(1787.(1788.(1789.(1790.(28.1 24.5 28.6 27.3 22.5 25.5 21.4 25.7	42.3 44.7 44.1 45.4	75 75 76 76 76 76 76 76 76 76	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.34 1.28 1.32 1.28 1.30 1.35 1.33 1.33	10.21 10.25 10.29 10.32 10.36 10.40 10.44 10.49 10.53	45898 46084 46243 46410 46613 46791 47004 47177	219.00 194.67 223.56 191.63 200.75 243.33 214.44 255.50 212.92 170.33	827.21 822.00 816.60 811.37 806.59 801.65 797.13 792.33	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1792.(1793.(1794.(1795.(1796.(1797.(1799.(1800.(4.7 9.3 11.3 5.2 5.1 6.4 13.0	46.4 43.7 44.7 44.8 44.7 43.9 42.7	76 75 75 75 75 75 76 76	9.6 9.6 9.6 9.6	1.68 1.59 1.86 1.87 1.75 1.78	10.63 10.84 10.95 11.04 11.23 11.43 11.58 11.92 12.00 12.07	48601 49087 49487 50351 51240 51945 53406 53788	374.12 1176 591.60 486.67 1051 1080 854.71 1825 456.25 365.00	787 785.51 783.16 785 788 788.06 796 793.41	8.4 8.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5 6	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1802.0 1803.0 1804.0 1805.0 1807.0 1809.0 1810.0	21.0 24.0 26.0 23.1 21.8 23.4 18.0 6.7	42.6 42.7 41.3 41.5 41.8 42.8	766666677777755	9.8 9.8 9.8 9.8 9.8 9.8 9.8	1.35 1.31 1.27 1.31 1.33 1.31 1.42	12.13 12.17 12.22 12.25 12.30 12.34 12.39 12.44 12.59 12.77	54579 54770 54946 55144 55354 55544 55794 56471	322.06 260.71 228.13 210.58 237.25 250.94 234.21 304.17 815.17 985.50	782.78 778.70 774.54 770.64 766.90 763.09 759.83 760.22	8.5	16.0 16.0 16.0 16.0 15.9

							÷		
DEPTH	ROP WOE	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP FG	
1812.0 1813.0 1814.0 1815.0 1816.0 1817.0 1818.0 1819.0 1820.0	4.3 43.6 4.2 44.6 2.7 43.4 11.0 42.1 14.7 42.4 25.2 41.7 20.9 43.0 23.4 42.1 25.9 40.3 32.7 40.8	74 75 75 75 75 72 76 76	9.8 1.87 9.8 1.89 9.8 2.01 9.8 1.54 9.8 1.46 9.8 1.27 9.8 1.34 9.8 1.31 9.8 1.31	13.01 13.25 13.61 13.70 13.77 13.81 13.86 13.90 13.94 13.97	61756 61935 62142 62337 62513	217.48 261.58 234.21	772.97 769.24 765.85 762.32 758.69	8.4 15.9 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0	
1822.0 1823.0 1824.0 1825.0 1826.0 1827.0 1828.0 1829.0 1830.0	28.1 41.1 29.8 45.3 29.0 46.3 33.0 47.8 32.4 50.6 29.5 50.5 23.4 50.4 24.7 50.8 10.0 51.4 6.8 50.5	76 76 76 76 76 75 76	9.8 1.24 9.8 1.26 9.8 1.25 9.8 1.25 9.8 1.31 9.8 1.31 9.8 1.37 9.8 1.69 9.8 1.81	14.00 14.04 14.07 14.10 14.13 14.17 14.21 14.25 14.35	62969 63126 63264 63405 63559 63752 63936 64395	194.67 184.02 188.58 165.77 168.81 185.54 234.21 222.04 547.50 804.52	747.52 743.93 740.24 736.62 733.15 730.03 726.87 725.76	8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0	
1832.0 1833.0 1834.0 1835.0 1835.0 1837.0 1839.0 1840.0 1841.0	19.3 49.0 18.8 48.1 3.0 49.8 3.9 49.8 10.5 50.1 4.9 51.6 4.1 51.7 4.2 51.5 7.9 51.0 8.8 51.1	76 77 77 77 76 77	9.8 1.44 9.8 1.44 9.8 2.08 9.8 1.99 9.8 1.66 9.8 1.93 9.8 2.00 9.8 1.99 9.8 1.77 9.8 1.73	14.55 14.60 14.94 15.19 15.29 15.49 15.74 15.97 16.21	65550 67085 68264 68704 69642 70776 71873 72459	284.40 290.48 1827 1401 523.17 1119 1343 1296 693.50 625.06	728 732 730.38 733 736 740 739.29	8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.4 16.0 8.5 16.0	
1842.0 1843.0 1844.0 1845.0 1846.0 1847.0 1849.0 1850.0 1851.0	7.6 51.8 5.5 51.9 6.1 51.3 5.5 51.3 6.4 52.4 12.5 51.8 13.5 49.0 28.6 46.3 13.8 46.7 11.9 48.6	77 77 77 77 77 74 76 65	9.8 1.79 9.8 1.90 9.8 1.86 9.8 1.86 9.8 1.62 9.8 1.55 9.8 1.28 9.8 1.47 9.8 1.59	16.35 16.53 16.69 16.87 17.03 17.11 17.19 17.22 17.29	74440 75197 76046 76774 77145 77474 77633 77916	720.88 997.67 894.25 1002 860.79 439.52 406.06 191.63 395.42 460.81	740.00 740.88 742 743.03 741.33 739.46 736.43 734.56	8.5 16.0 8.5 16.0 8.5 16.0 8.5 16.0 8.5 16.0 8.5 16.0 8.5 16.0 8.5 16.0	
1852.0 1853.0 1854.0 1855.0 1856.0 1857.0 1858.0 1859.0 1860.0	17.1 47.6 8.1 48.9 2.6 49.1 4.6 49.9 3.0 51.6 2.0 49.6 14.0 46.7 6.0 48.2 18.5 47.2 7.0 47.4	76 76 76 76 75 75 74	9.8 1.46 9.8 1.73 9.8 2.12 9.8 1.93 9.8 2.10 9.8 2.20 9.8 1.51 9.8 1.81 9.8 1.43 9.8 1.75	17.44 17.56 17.95 18.17 18.50 19.00 19.07 19.24 19.29	79127 80896 81895 83417 85657 85976 86723 86965	296.56	730.54 738 741 746 757		

DEPTH	ROP W	OB RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1862.0 1863.0 1864.0 1865.0 1866.0 1867.0 1868.0 1869.0 1870.0	3.0 48 3.5 48 7.0 46 3.0 47 2.4 48 2.5 48 5.0 48 2.4 49 6.0 48 2.0 50	75 75 75 75 75 75 75 73 76 67 74	9.8 2.04 9.8 1.99 9.8 1.75 9.8 2.04 9.8 2.13 9.8 2.11 9.8 1.76 9.8 2.11 9.8 1.81 9.8 2.20	19.77 20.05 20.19 20.53 20.94 21.34 21.54 21.96 22.13 22.63	89104 90375 91020 92520 94390 96136 96760 98447 99188 101412	1825 1544 782.14 1825 2281 2190 1095 2304 912.50 2730	759 763 763.14 769 776 783 785 792 793.02 803	88888855555555555555555555555555555555	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1872.0 1873.0 1874.0 1875.0 1876.0 1877.0 1878.0 1879.0 1880.0	1.9 49 2.4 48 2.4 50 3.0 51 22.5 49 24.0 48 22.0 51 20.6 44 5.0 50 2.7 51	.5 42 .0 78 .1 77 .4 75 .8 75 .1 74 .4 74 .2 67	9.8 2.02 9.8 1.93 9.8 2.16 9.8 2.10 9.8 1.39 9.8 1.36 9.8 1.40 9.9 1.35 9.9 1.85 9.9 2.02	23.15 23.57 23.99 24.32 24.36 24.41 24.45 24.50 24.70 25.07		2859 2281 1833 243.33 228.13 248.86 266.15 1095 2015		8.555555555555555555555555555555555555	16.0 16.1 16.1 16.1 16.1 16.1 16.1 16.1
1882.0 1883.0 1884.0 1885.0 1886.0 1887.0 1889.0 1890.0 1891.0	2.6 49 2.3 51 2.6 51 2.4 48 5.0 48 13.0 47 9.0 50 5.0 50 3.0 48 3.2 46	.2 76 .6 77 .9 69 .4 76 .0 76 .1 76 .2 77	9.9 2.10 9.9 2.17 9.9 2.12 9.9 2.08 9.9 1.87 9.9 1.53 9.9 1.69 9.9 1.89 9.9 2.04 9.9 1.99	25.45 25.89 26.27 26.69 26.89 26.96 27.07 27.27 27.61 27.92	111954 113984 115731 117442 118357 118709 119216 120134 121664 123103	2091 2426 2084 2258 1095 421.15 608.33 1095 1825 1696	834 841 847 853 854 852:31 851:20 852 857 860	888888888 8888888888888888888888888888	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
1892.0 1893.0 1894.0 1895.0 1896.0 1897.0 1898.0 1899.0 1900.0	5.0 49 10.0 48 15.0 48 17.0 48 24.8 50 29.0 49 19.0 44 26.0 51 28.0 51	.4 64 .4 76 .4 77 .2 77 .6 77 .5 76 .9 76 .2 76	9.9 1.88 9.8 1.59 9.8 1.52 9.8 1.37 9.8 1.37 9.8 1.31 9.8 1.40 9.8 1.33 9.8 1.33	28.12 28.28 28.34 28.38 28.42 28.47 28.51 28.54 28.58	124717 124987 125173 125332 125571 125747 125910	1095 547.50 365.00 322.06 220.52 188.79 288.16 210.58 195.54 188.58	857.92 855.56 852.77 849.87 847.42 844.66 841.86	88888888888888888888888888888888888888	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
1902.0 1903.0 1904.0 1905.0 1906.0 1907.0 1908.0 1909.0 1910.0	27.1 50 26.9 50 30.0 51 27.1 51 23.1 51 19.7 51 25.0 51 25.7 53 21.4 58 21.7 56	.5 76 .2 71 .8 75 .4 75 .5 75 .5 75 .4 75 .0 75	9.8 1.34 9.8 1.28 9.8 1.34 9.8 1.40 9.8 1.45 9.8 1.37 9.8 1.38 9.8 1.48 9.8 1.46	28.62 28.65 28.69 28.72 28.82 28.86 28.90 28.94 28.99	126406 126548 126715 126911 127140 127321 127497 127707	202.27 203.79 182.50 202.27 237.25 278.31 219.00 212.92 255.50 252.46	833.64 830.88 828,22 825.74 823.44 820.92 818.40 816.07	8.5 8.4 8.4 8.4 8.4 8.4	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1912.0	21.4	56.3	75	ଚ. ୫	1.46	29,04	128127	255.50	811.46	8.4	16.1
1913.0	19.9		75		1.49	29.09	128354		809.27		16.1
1914.0	17.5		73		1.52	29.14	128605		807.25		16.1
1915.0	30.0		77		1.34	29.18	128758	182.50			16.1
1916.0	26.3		76		1.38	29.21	128933	208.35			16.1
1917.0	25.2		77		1.38	29.25		217.48			16,1
1918.0	23.7		77		1.40	29.30		231.17			16.1
1919.0	30.3		フ フ		1.34	29.33		180.98			16.1
1920.0	14.9		73		1.57	29.40		368.04			16.1
1921.0	17.5		76		1.52	29.45		313.29			16.1
	47147	47 1 1 43	,	, , ,,,,	A 1 1/2 800	6 > 1 V>	10001	C/ X L/ LL/	7 7 1 1 (343	W1.1	
1922.0	10.3	54.6	75	9.8	1.71	29.55	130458	532.29	790.41	я. д	16.1
1923.0	19.0		75		1.48	29.60		287.44			16.1
1924.0	14.3		76		1.58	29.67		381.73			16.1
1925.0	21.2		76		1.45	29.72		258,54			16.1
1926.0	20.6		76		1.47	29.77		266.15			16.1
1927.0	21.2		76		1.45	29.82		258.54			16.1
1928.0	22.0		76		1.44	29.86		249.42			16.1
1929.0	28.6		76		1.34	29.90		191,63			16.1
1930.0	24.7		76		1.40	29.94		222.04			16.1
1931.0	8.3	53.5	77	9.8	1.78	30.06		660.04			16.1
1932.0	3.2	55.8	77	9.8	2.14	30.37	134215	1709	778	8.4	16.1
1933.0	2.4	55.1	76	9.8	2,22	30.78	136104	2263	783	8.4	16.1
1934.0		52.8	60	9.8	1.99	31.08	137165	1609	786	8.4	16.1
1935.0	5.1	51.7	54	9.8	1.80	31.28	137800	1081	78 7	8.4	16.1
1936.0	13.0	51.7	47	9.8	1.43	31.35	138015	419.75	786.09	8.4	16.1
1937.0	14.1	51.7	47	9.8	1.41	31.42	138214	389.33	784.61	8.4	16.1
1938.0	14.5		47	9.8	1.39	31.49	138408	377.17	783.10	8.4	16.1
1939.0	15.0	51.1	47	9.8	1.38	31.56	138596	365.00	781,56	8.4	16.1
1940.0	15.1	51.1	47	9.8	1.38	31.62		363.48		8.4	16.1
1941.0	17.3	50.9	47	9.8	1.33	31.68	138944	316.33	778.32		16.1
1942.0	1.9	50.0	47	9.8	2.07	32.21	140419	2882	786	8.4	16.1

BIT NUMBER HTC J22 COST 6788 TOTAL HOURS 34	6 IADC CO SIZE .00 TRIP TOTAL	12.250 IME 6.6	INTERVAL NOZZLES BIT RUN CONDITION	1942.0- 2185.0 18 18 18 243.0 T3 B7 G0.125
DEPTH ROP	WOB RPM MW	"d"c HOURS	TURNS ICOST	CCOST PP FG
1943.0 2.3 3 1944.0 2.7 3 1945.0 5.7 4	8.0 57 9.8	1.84 0.81	1519 2433 2768 1994 3454 966	45356 8.4 16.1 23675 8.4 16.1 16105 8.4 16.1
1946.0 5.4 4 1947.0 5.9 5 1948.0 6.0 5 1949.0 5.9 4 1950.0 5.8 5 1951.0 6.6 5 1952.0 6.0 5 1953.0 6.1 5 1954.0 6.9 5 1955.0 10.9 5	1.2 66 9.8 1 0.6 66 9.8 1 7.5 66 9.8 1 0.0 67 9.8 1 0.2 74 9.8 1 0.9 80 9.8 1 0.2 80 9.8 1	1.82 1.34 1.80 1.50 1.79 1.67 1.81 1.85 1.80 2.00 1.87 2.16 1.86 2.33 1.83 2.47	4187 1011 4859 925 5521 909 6194 925 6886 947 7553 827 8354 911 9148 902 9841 788 10262 502	12332 8.4 16.1 10050 8.4 16.1 8527 8.4 16.1 7441 8.4 16.1 6629 8.4 16.1 5985 8.4 16.1 5477 8.4 16.1 5061 8.4 16.1 4705 8.4 16.1
1956.0 8.8 55 1957.0 42.4 5 1958.0 12.9 5 1959.0 6.3 55 1960.0 5.8 5 1961.0 6.8 55 1962.0 6.8 55 1963.0 6.0 55 1964.0 6.5 5	2.7 81 9.8 1 1.5 81 9.8 1 1.5 75 9.8 1 1.5 79 9.8 1 1.9 79 9.8 1 2.6 77 9.8 1 2.8 78 9.8 1	1.76 2.68 1.21 2.70 1.60 2.78 1.88 2.94 1.89 3.11 1.83 3.26 1.84 3.40 1.89 3.57	10814 622 10928 129 11278 424 12036 864 12855 946 13533 806 14209 803 14995 916 15728 844 16397 788	4113 8.4 16.1 3848 8.4 16.1 3634 8.4 16.1 3471 8.4 16.2 3330 8.4 16.2 3198 8.4 16.2 3078 8.4 16.2 2975 8.4 16.2 2878 8.4 16.2 2787 8.4 16.2
1966.0 5.9 49 1967.0 10.9 48 1968.0 19.3 49 1969.0 21.8 53 1970.0 17.4 48 1971.0 16.6 50 1972.0 13.1 53 1973.0 15.3 52 1974.0 14.3 52 1975.0 11.7 53	3.5 81 9.8 1 9.2 81 9.8 1 .3 79 9.8 1 3.9 71 9.8 1 6.6 73 9.8 1 .0 72 9.8 1 1.8 76 9.8 1 2.1 76 9.8 1	1.64 4.13 1.46 4.18 1.43 4.23 1.45 4.29 1.49 4.35 1.57 4.42 1.55 4.49	17218 926 17662 502 17913 284 18130 251 18374 315 18638 330 18965 417 19263 357 19582 382 19958 467	2710 8.4 16.2 2621 8.4 16.2 2531 8.4 16.2 2447 8.4 16.2 2371 8.4 16.2 2300 8.4 16.2 2238 8.4 16.2 2177 8.4 16.2 2121 8.4 16.2 2121 8.4 16.2
1976.0 12.9 53 1977.0 7.2 53 1978.0 7.2 53 1979.0 9.2 53 1980.0 5.9 52 1981.0 6.3 49 1982.0 6.0 50 1983.0 7.0 50 1984.0 7.3 49 1985.0 7.6 46	.8 77 9.8 1 .7 77 9.8 1 .4 75 9.8 1 .3 74 9.8 1 .3 66 9.8 1 .2 66 9.8 1 .0 68 9.8 1	1.83 4.86 1.83 5.00 1.73 5.10 1.87 5.27 1.77 5.43 1.80 5.60 1.75 5.74	20310 423 20948 757 21587 757 22080 598 22832 925 23464 868 24133 920 24710 777 25272 748 25832 718	2022 8.4 16.2 1986 8.4 16.2 1952 8.4 16.2 1915 8.4 16.2 1889 8.4 16.2 1863 8.4 16.2 1840 8.4 16.2 1814 8.4 16.2 1788 8.4 16.2

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1986.0 1987.0 1988.0 1989.0 1990.0 1991.0 1992.0 1993.0 1994.0	9.2 9.9 6.2 6.0 6.7 8.6 8.4 7.2	48.9 49.2 48.7 50.3 51.4 50.8 51.8	71 73 72 71 70 70 73 66 69	9.8 9.8 9.8 9.8 9.8 9.8	1.65 1.64 1.80 1.88 1.82 1.80 1.72 1.81 1.67	6.12 6.22 6.38 6.59 6.75 6.90 7.02 7.17 7.29 7.43	26291 26721 27419 28309 29015 29648 30163 30827 31299 31875	593 555 878 1124 909 820 668 830 655 765	1737 1711 1692 1680 1664 1647 1627 1612 1593 1578	8.4 8.4 8.4 8.4 8.4 8.4	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
1996.0 1997.0 1998.0 1999.0 2000.0 2001.0 2002.0 2003.0 2004.0	7.8 1 11.4 2 26.1 4 19.9 1 10.4 1 5.9 1 12.2 1 23.7 4	48.8 47.1 48.7 50.3 50.5 50.1 48.9 48.7	69 68 68 69 68 64 69 69	9.8 9.8 9.8 9.8 9.8 9.8	1.72 1.58 1.28 1.39 1.63 1.82 1.55 1.33 1.21	7.56 7.65 7.69 7.74 7.84 8.01 8.09 8.13 8.16 8.19	32404 32765 32921 33127 33526 34217 34534 34708 34829 34954	703 481 210 275 528 931 449 231 161	1562 1542 1518 1496 1480 1470 1453 1433 1413	8.4 8.4 8.4 8.4 8.4 8.4	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2006.0 2007.0 2008.0 2009.0 2010.0 2011.0 2012.0 2013.0 2014.0 2015.0	2.8 5 4.2 5 8.6 5 12.8 5 13.7 5 8.5 5 5.0 4 10.8 4 8.3 4	50.5 51.7 52.5 53.1 50.2 49.7 49.3	72 51 50 50 49 50 50 57 77	9.8 9.8 9.8 9.8 9.8 9.8	2.08 1.83 1.60 1.47 1.44 1.60 1.75 1.53 1.72	8.54 8.78 8.87 9.05 9.16 9.36 9.45 9.66	36468 37197 37547 37782 37997 38362 38951 39261 39799 40204	1924 1294 639 427 400 645 1086 505 657 484	1401 1400 1388 1374 1359 1349 1345 1334 1324 1313	8.4 8.4 8.4 8.4 8.4 8.4	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2016.0 2017.0 2018.0 2019.0 2020.0 2021.0 2022.0 2023.0 2024.0 2025.0	7.4 4 8.5 4 10.0 4 7.7 4 17.9 4 10.8 4 12.1 4 8.6 4 7.3 4 9.2 5	49.0 49.3 49.4 48.6 49.1 49.0 49.2	76 77 76 77 76 76 70 75 77	9.8 9.8 9.8 9.8 9.8 9.8	1.76 1.72 1.66 1.75 1.46 1.63 1.57 1.71	9.80 9.91 10.01 10.15 10.20 10.29 10.38 10.49 10.63 10.74	40822 41366 41823 42422 42678 43102 43449 43977 44603 45106	738 648 546 715 306 506 452 639 745 598	1305 1296 1286 1279 1266 1257 1247 1239 1233 1225	8.5.55.5.5.5.5 8.8.8.8.8.8.8.8.8.8.8.8.8	16.2 16.2 16.2 16.2 16.2 16.2 16.3 16.3
2026.0 2027.0 2028.0 2029.0 2031.0 2032.0 2033.0 2034.0 2035.0	13.7 5 28.8 4 8.9 5 8.6 5 12.3 5 10.7 5 6.3 5 10.6 5	49.3 51.5 51.3 50.6 50.3 50.9 51.5	77 76 77 77 77 76 76 76 76	9.8 9.8 9.8 9.8 9.8 9.8	1.65 1.76	10.81 10.85 10.96 11.07 11.16 11.25 11.38 11.53 11.63 11.76	45440 45600 46118 46652 47027 47458 48039 48760 49192 49799	398 190 617 636 446 511 695 865 517 725	1216 1204 1197 1190 1182 1174 1166 1159 1154	8.555555555555555555555555555555555555	16.3 16.3 16.3 16.3 16.3 16.3 16.3

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2036.0 2037.0 2038.0 2039.0 2040.0 2041.0 2042.0 2043.0 2044.0	6.8 6.2 6.4 6.5 5.9	51.5 51.6 51.6 50.5 52.7 50.6	7666672855555555555555555555555555555555	9.8 9.8 9.8 9.8 9.8 9.8	1.71 1.82 1.82 1.85 1.83 1.81 1.79 1.57	11.87 12.02 12.16 12.32 12.48 12.63 12.82 12.99 13.09	50295 50965 51632 52371 53084 53753 54419 55015 55351 55725	593 800 797 884 853 847 1043 923 520 578	1148 1144 1141 1138 1135 1132 1131 1129 1123 1118	88.55555555555555555555555555555555555	16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
2046.0 2047.0 2048.0 2049.0 2050.0 2051.0 2052.0 2053.0 2054.0 2055.0	18.4 7.5 4.5 6.5 6.7 7.2	51.4 49.9 51.2 51.3 51.7 51.4 51.5	59 59 59 57 59 69 76 76	9.8 9.8 9.8 9.8 9.8 9.8 9.8	1.55 1.38 1.68 1.85 1.83 1.80 1.82 1.80	13.28 13.33 13.46 13.68 13.88 14.03 14.18 14.32 14.48 14.62	56029 56222 56481 57431 58121 58757 59433 60068 60793 61459	470 298 709 1209 1060 841 815 765 873 801	1112 1104 1100 1101 1101 1099 1096 1093 1091	88.555555 88.88.55555 88.88	16.3 16.3 16.3 16.3 16.3 16.3 16.3
2056.0 2057.0 2058.0 2059.0 2060.0 2061.0 2062.0 2063.0 2064.0 2065.0	6.3 6.5 6.5 9.2 19.4 25.0 22.2		76 72 75 75 75 75 75 75 75	9.8 9.8 9.8 9.8 9.8 9.8 9.8	1.86 1.82 1.84 1.83 1.82 1.70 1.45 1.35 1.33	14.79 14.95 15.11 15.26 15.42 15.52 15.62 15.62 15.67	62207 62895 63612 64310 64998 65485 65716 65895 66071 66564	900 873 870 846 841 595 283 219 246 582	1087 1085 1083 1081 1079 1075 1068 1061 1055	8.5 8.5 8.5	
2046.0 2067.0 2068.0 2069.0 2070.0 2071.0 2072.0 2073.0 2074.0 2075.0	9.0 6.2 7.8 17.2 26.7 9.3 12.7	51.6 51.8 51.4	77 78 78 78 75 75 72 76 76 76	9.8 9.8 9.8 9.8 9.8 9.8	1.74 1.73 1.86 1.79 1.48 1.34 1.69 1.61 1.41	15.88 15.99 16.15 16.28 16.34 16.38 16.48 16.56 16.61	67091 67607 68356 68955 69215 69383 69847 70207 70413 70644	621 608 879 703 318 205 590 430 249 278	1047 1044 1043 1040 1034 1028 1024 1020 1014	88888888 88888888888888888888888888888	16.3 16.3 16.3 16.3 16.3 16.3 16.3
2076.0 2077.0 2078.0 2079.0 2080.0 2081.0 2082.0 2083.0 2084.0 2085.0	2.7 4.4 4.7 12.5 15.8 16.7	52.0 52.0 50.0 42.7 48.7 49.5 49.7	76 77 75 55 60 50 50 50	9.8 9.8 9.8 9.7 9.7 9.7	1.41 1.61 2.00 2.01 1.75 1.85 1.52 1.44 1.43	16.70 16.78 17.03 17.40 17.62 17.84 17.92 17.98 18.04 18.17	72335 73590 74340 75114 75403 75628 75842	249 434.96 1332 2024 1241 1177 440 347 326.98 682.85	1001 1009 1010 1011 1007 1003 997.91	88888888 88888888888888888888888888888	16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3

				•					
DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	icost	CCOST	PP	FG
2086.0 2087.0 2088.0 2089.0 2090.0 2091.0 2092.0 2093.0 2094.0 2095.0	7.4 49. 5.8 49. 5.2 50. 4.3 50. 6.1 51. 5.5 52. 5.5 51. 6.9 51. 10.1 51.	6 58 4 58 8 59 4 65 2 65 7 65 65 3 65	9.7 1.70 9.7 1.78 9.7 1.82 9.7 1.82 9.7 1.82 9.7 1.86 9.7 1.86 9.7 1.78 9.7 1.64 9.7 1.78	18.30 18.47 18.67 18.90 19.06 19.24 19.43 19.57 19.67 19.82	77349 78021 78846 79482 80189 80897 81460 81843		993.58 994 996 995.18 995.19 995.21 993.87 990.89	88855555555555555555555555555555555555	16.3 16.3 16.3 16.3 16.3 16.3 16.3
2096.0 2097.0 2098.0 2099.0 2100.0 2101.0 2102.0 2103.0 2104.0 2105.0	4.7 50. 5.0 50. 4.4 51. 6.3 50. 4.9 51. 3.1 50. 6.5 47. 9.3 48. 5.0 48. 4.5 48.	5 64 64 7 64 2 64 6 64 9 64 9 64	9.8 1.88 9.8 1.85 9.8 1.90 9.8 1.78 9.8 1.87 9.8 2.02 9.8 1.73 9.8 1.61 9.8 1.83 9.8 1.87	20.04 20.23 20.46 20.62 20.82 21.14 21.30 21.40 21.83	86281 87526 88120	1086 1230 868.40 1112 1764 841.53 587.04 1086	993 998 997.03	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.4 16.4
2106.0 2107.0 2108.0 2109.0 2110.0 2111.0 2111.0 2112.0 2113.0 2114.0 2115.0	4.8 48.5 5.3 48.5 4.4 48.5 5.3 47.6 13.5 47.6 13.6 47.6 13.5 47.5 14.0 48.6	5 64 5 60 5 57 6 57 6 57 8 58 7 58 5 56	9.8 1.83 9.8 1.81 9.8 1.76 9.8 1.44 9.8 1.44 9.8 1.40 9.8 1.45 9.8 1.44 9.8 1.43	22.04 22.23 22.45 22.64 22.72 22.79 22.86 22.93 23.00 23.08	93640 93868 94123 94371	1151 1037 1233 1037 413.67 404.54 360.44 401.50 406.06 392.38	992.32 988.60 985.17 981.80	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.4 16.4 16.4 16.4 16.4
2116.0 2117.0 2118.0 2119.0 2120.0 2121.0 2122.0 2123.0 2124.0 2125.0	16.2 49.4 13.8 49.8 14.1 49.5 15.1 49.4 13.6 49.5 4.7 51.6 4.7 51.6 5.7 49.9 4.6 50.4	57 56 4 60 3 60 1 61 2 63 7 62 4 59	9.8 1.39 9.8 1.46 9.8 1.45 9.8 1.44 9.8 1.48 9.8 1.86 9.8 1.79 9.8 1.85 9.8 1.85	23.14 23.21 23.28 23.35 23.42 23.64 23.85 24.02 24.24 24.45	95060 95301 95540 95805 96587 97391	337.63 395.42 389.33 363.48 403.02 1177 1163 958.12 1194 1118	971.40 968.09 964.68 961.52 963 964	8.5 8.5 8.5	16.4 16.4 16.4 16.4
2126.0 2127.0 2128.0 2129.0 2130.0 2131.0 2132.0 2133.0 2134.0 2135.0	5.0 47.4 5.3 47.5 5.8 51.6 6.8 51.6 6.4 52.1 7.1 49.5 11.8 49.5 5.3 50.4 6.0 50.6	5 58 64 64 64 64 64 64 64	9.8 1.81 9.8 1.76 9.8 1.82 9.8 1.76 9.8 1.79 9.8 1.72 9.8 1.55 9.8 1.83 9.8 1.78 9.8 1.81	24.65 24.83 25.01 25.15 25.31 25.45 25.73 25.89 26.05	102147 102745 103289 103615 104346 104964	1103 1027 947.48 804.52 851.67 774.10 463.85 1039 879.04 907.94	966.00 965.39 964.38 961.75 962 961.72	8888888888 888888888888888888888888888	16.4 16.4 16.4 16.4 16.4 16.4

DEPTH	ROP	MOB	RPM	MW "	d"c	HOURS	TURNS	ICOST	CCOST	PΡ	FG
2136.0 2137.0 2138.0 2139.0 2140.0 2141.0 2142.0 2143.0 2145.0	6.2 5.1 7.3 6.7 17.5 20.8 15.1	48.0 39.6 44.3 50.2 49.2 49.9 49.5 49.5	72 75 65 65 64 64 64 64	9.8 1 9.8 1 9.8 1 9.8 1	.76 .78 .85 .71 .73 .42 .36	26.26 26.42 26.60 26.79 26.93 27.08 27.14 27.19 27.25 27.31	110312 110496 110738	1153 880.56 956.60 1072 752.81 815.17 313.29 263.10 361.96 340.67	961.98 963 961.48 960.74 957.51 954.05 951.12	8.555555 8.55555 8.55	16.4 16.4 16.4 16.4 16.4 16.4 16.4
2146.0 2147.0 2148.0 2149.0 2150.0 2151.0 2152.0 2153.0 2154.0 2155.0	11.6 23.4 17.1 14.7 19.5 16.6 19.9 20.6	49.6 48.8 51.0 49.7 50.9 51.2 50.6 50.3	64 64 63 64 61 63 64 64	9.8 1	.55 .33 .43 .46 .39 .45 .38	27.36 27.45 27.49 27.55 27.62 27.67 27.73 27.78 27.83 27.94	111500 111662 111886 112135 112330 112560 112752 112937	276.79 471.46 234.21 320.90 372.60 281.35 330.02 275.27 266.15 622.02	942.51 939.08 936.09 933.38 930.26 927.40 924.31 921.21	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
2156.0 2157.0 2158.0 2159.0 2160.0 2161.0 2162.0 2163.0 2164.0 2165.0	4.2 4.7 5.2 5.8 4.4	50.1 51.0 50.0 49.6 48.7 49.5 51.8 52.1 51.6	64 64 63 51 51 49 56 63	9.8 1 9.8 1 9.8 1 9.8 1 9.8 1	.86 .90 .80 .77 .75 .76 .90	28.04 28.24 28.48 28.71 28.92 29.11 29.30 29.57 29.80 30.02	113722 114505 115401 116089 116737 117333 117899 118725 119642 120483	497.31 1119 1300 1255 1160 1059 1045 1451 1250 1220	917.83 919 921 922 923 924 924 927 928 929	8.555555 8.55555 8.555	16.4 16.4 16.4 16.4 16.4 16.4 16.4
2166.0 2167.0 2168.0 2169.0 2170.0 2171.0 2172.0 2173.0 2174.0 2175.0	12.8 7.7 5.2 4.4 4.9 4.1 4.8 4.8	50.7 48.5 48.9 50.8 50.5 50.4 48.4 45.8 50.1	63 62 69 75 73 87 75 75	9.8 1 9.8 1 9.8 1 9.8 1	.51 .67 .87 .95 .90 .97 .91	30.19 30.27 30.40 30.59 30.82 31.02 31.27 31.48 31.69 31.89	121436	955.08 428.88 707.19 1049 1244 1121 1351 1142 1142 1110	927.37	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.4 16.4 16.4 16.4 16.4
2176.0 2177.0 2178.0 2179.0 2180.0 2181.0 2183.0 2184.0 2185.0	9.3 6.2 5.6 5.3 4.8 4,5	49.7 50.4 49.1 48.9 47.5 46.9 47.5 48.9	75 76 75 75 75 75 76 60	9.8 1 9.8 1 9.8 1	.70 .82 .85 .83 .85 .90	32.01 32.12 32.28 32.46 32.65 32.84 33.05 33.27 33.55 34.07	129756 130500	678.29 587.04 888.17 985.50 1004 1042 1147 1220 1541 2824	931.02 930.84	888888555 8888888888888888888888888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4

t

BIT NUMBER 7 HTC J11 COST 6788.00 TOTAL HOURS 3.84	IADC CODE SIZE TRIP TIME TOTAL TURNS	437 12.250 6.7 17534	INTERVAL NOZZLES BIT RUN CONDITION	2185.0- 2211.5 18 18 18 26.5 T4 B2 G0.000
DEPTH ROP WOB	RPM MW "d"c	HOURS	TURNS ICOST	CCOST PP FG
2186.0 7.0 30.5 2187.0 13.6 29.9 2188.0 10.0 31.1	91 9.8 1.59 91 9.8 1.39 98 9.8 1.49	0.14 0.22 0.32	776 782 1176 403 1719 548	44253 8.5 16.5 22328 8.5 16.5 15068 8.5 16.5
2189.0 5.9 32.2 2190.0 7.0 32.7 2191.0 6.5 32.2 2192.0 7.2 31.9 2193.0 6.8 26.5 2194.0 15.3 31.1 2195.0 6.9 31.2 2196.0 7.9 31.5 2197.0 5.0 30.6 2198.0 11.8 30.4	91 9.8 1.67 91 9.8 1.62 91 9.8 1.64 91 9.9 1.59 89 9.9 1.51 91 9.9 1.36 91 9.9 1.59 90 9.9 1.55 84 9.9 1.65 66 9.9 1.33	0.49 0.63 0.78 0.92 1.07 1.13 1.28 1.41 1.61	2641 928 3419 782 4256 842 5013 760 5794 805 6151 358 6945 797 7627 694 8642 1104 8981 465	11533 8.5 16.5 9383 8.5 16.5 7959 8.5 16.5 6931 8.5 16.5 6165 8.5 16.5 5520 8.5 16.5 5048 8.5 16.5 4652 8.5 16.5 4356 8.5 16.5
2199.0 13.2 30.6 2200.0 14.8 30.6 2201.0 12.9 31.1 2202.0 6.7 32.1 2203.0 4.8 30.1 2204.0 5.2 32.5 2205.0 4.6 32.0 2206.0 6.9 32.3 2207.0 6.5 32.5 2208.0 4.7 31.6	67 9.9 1.30 66 9.9 1.27 67 9.9 1.32 66 9.9 1.52 65 9.9 1.58 63 9.9 1.59 65 9.9 1.62 65 9.9 1.51 65 9.8 1.54 66 9.8 1.63	2.27 2.46 2.68 2.83 2.98	9282 414 9552 371 9861 424 10451 814 11265 1145 11998 1057 12856 1198 13420 789 14026 847 14868 1170	3797 8.5 16.5 3568 8.5 16.5 3372 8.5 16.5 3221 8.5 16.5 3106 8.5 16.5 2998 8.5 16.5 2908 8.5 16.5 2807 8.5 16.5 2718 8.5 16.5 2651 8.5 16.5
2209.0 4.9 31.7 2210.0 5.4 31.7 2211.0 6.0 32.0 2211.5 5.8 32.4	73 9.8 1.65 66 9.8 1.59 68 9.8 1.57 66 9.8 1.58	3.59 3.75	15770 1127 16508 1022 17192 913 17534 940	2587 8.5 16.5 2525 8.5 16.5 2463 8.5 16.5 2434 8.5 16.5

BIT NUMBER 8 HTC J22 COST 6788.00 TOTAL HOURS 50.47	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 INTERVAL 12.250 NOZZLES 7.1 BIT RUN 158096 CONDITION	2211.5- 2428.0 18 18 18 216.5 T2 B3 G0.000
DEPTH ROP WOR	RPM MW "d"c	HOURS TURNS ICOST	CCOST PP FG
2212.0 14.6 24.0 2213.0 2.4 28.6 2214.0 3.3 34.5	39 9.8 1.06 49 9.8 1.69 52 9.8 1.71	0.03 79 376 0.44 1286 2243 0.75 2248 1673	91697 8.5 16.5 32061 8.5 16.5 19906 8.5 16.5
2215.0 3.3 36.7 2216.0 3.3 36.2 2217.0 4.0 38.8 2218.0 5.8 37.8 2219.0 5.2 40.6 2220.0 8.8 41.3 2221.0 6.9 41.3 2222.0 4.5 41.7 2223.0 3.7 42.5 2224.0 4.5 44.9	53 9.8 1.74 53 9.8 1.74 55 9.8 1.72 58 9.8 1.61 58 9.8 1.68 58 9.8 1.52 58 9.8 1.52 58 9.8 1.60 58 9.8 1.74 54 9.8 1.80 50 9.8 1.74	1.05 3208 1643 1.35 4177 1653 1.60 4995 1370 1.77 5593 944 1.97 6261 1054 2.08 6657 625 2.23 7159 789 2.45 7938 1224 2.72 8821 1486 2.94 9491 1212	14688 8.5 16.5 11791 8.5 16.5 9896 8.5 16.5 8519 8.5 16.5 7524 8.5 16.5 6712 8.5 16.5 6089 8.5 16.5 5625 8.5 16.5 5266 8.5 16.5 4941 8.5 16.5
2225.0 3.3 44.6 2226.0 3.6 44.9 2227.0 4.3 42.6 2228.0 3.9 45.0 2229.0 3.9 45.9 2230.0 4.5 46.3 2231.0 5.5 46.5 2232.0 6.1 46.6 2233.0 13.4 47.3 2234.0 5.6 44.3	51 9.8 1.84 51 9.8 1.81 50 9.8 1.72 51 9.8 1.79 51 9.8 1.81 51 9.8 1.76 51 9.8 1.66 51 9.8 1.41 50 9.8 1.66	3.24 10408 1644 3.52 11243 1504 3.75 11947 1271 4.00 12725 1398 4.26 13522 1416 4.48 14200 1211 4.67 14762 1004 4.83 15265 894 4.90 15492 408 5.08 16024 973	4697 8.5 16.5 4477 8.5 16.5 4270 8.5 16.5 4096 8.5 16.5 3943 8.5 16.5 3795 8.5 16.5 3652 8.5 16.5 3517 8.5 16.5 3373 8.5 16.5 3266 8.5 16.5
2235.0 4.0 45.2 2236.0 3.7 44.9 2237.0 3.4 45.3 2238.0 3.0 45.6 2239.0 3.2 45.9 2240.0 3.2 46.0 2241.0 3.6 45.3 2242.0 3.0 45.7 2243.0 2.8 46.1 2244.0 4.0 46.0	49 9.8 1.77 47 9.8 1.78 47 9.8 1.81 47 9.8 1.86 47 9.8 1.84 47 9.8 1.84 47 9.8 1.80 48 9.8 1.87 48 9.8 1.89 46 9.8 1.77	5.33 16751 1352 5.60 17522 1483 5.89 18351 1603 6.23 19291 1820 6.53 20162 1688 6.84 21042 1699 7.12 21836 1528 7.46 22802 1855 7.82 23832 1977 8.08 24533 1384	3185 8.5 16.5 3115 8.5 16.5 3056 8.5 16.5 3009 8.5 16.5 2961 8.5 16.5 2917 8.5 16.5 2870 8.5 16.5 2837 8.5 16.5 2809 8.5 16.5 2765 8.5 16.5
2245.0 3.2 44.5 2246.0 3.3 44.7 2247.0 3.8 44.1 2248.0 3.3 43.9 2249.0 3.9 42.8 2250.0 3.9 42.5 2251.0 7.2 42.1 2252.0 6.0 42.6 2253.0 13.6 43.2 2254.0 17.9 43.5	53 9.8 1.38	8.39 25368 1703 8.69 26289 1662 8.95 27079 1425 9.25 28001 1658 9.51 28814 1407 9.77 29662 1408 9.91 30117 762 10.07 30633 911 10.15 30867 403 10.20 31048 306	2734 8.5 16.5 2703 8.5 16.5 2667 8.5 16.5 2639 8.5 16.5 2606 8.5 16.5 2575 8.5 16.5 2529 8.5 16.5 2489 8.5 16.5 2439 8.5 16.5 2389 8.5 16.5

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
2255.0 2256.0 2257.0 2258.0 2259.0 2260.0 2261.0 2262.0 2263.0 2264.0	6.4 6.5 10.6 4.3 3.7 3.5 4.3	44.1 44.3 44.8 44.0 45.8 46.6 46.6	544555 555 555 555 555 555	9.8 9.8 9.8 9.8 9.8 9.8	1.29 1.49 1.64 1.65 1.48 1.79 1.85 1.87	10.26 10.36 10.51 10.67 10.76 10.99 11.26 11.55 11.78	31225 31547 32063 32571 32881 33645 34537 35481 36236 37203	297 540 861 846 516 1270 1481 1585 1259 1624	2341 2300 2269 2238 2202 2183 2168 2157 2139 2130	8.555555555555555555555555555555555555	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2265.0 2266.0 2267.0 2269.0 2270.0 2271.0 2272.0 2273.0 2274.0	3.9 3.0 5.5 4.1 3.8 4.0 3.9 6.3	45.7 43.0 43.6 45.5 45.5 44.2 42.3	556 566 566 556 557 577	9.8 9.8 9.8 9.8 9.8 9.8	1.89 1.80 1.88 1.69 1.78 1.84 1.82 1.81 1.64	12.39 12.64 12.98 13.16 13.40 13.67 13.92 14.18 14.34	38229 39083 40201 40810 41617 42506 43346 44214 44761 45164	1688 1402 1833 998 1320 1455 1376 1405 876 648	2121 2108 2103 2084 2070 2060 2048 2038 2019 1997	88888855 88888888	16.5 16.5 16.5 16.6 16.6 16.6 16.6
2275.0 2276.0 2277.0 2278.0 2279.0 2280.0 2281.0 2282.0 2283.0	4.8 3.5 3.6 3.2 3.5 4.4 9.7	41.1 42.7 43.0 42.7 42.7 43.0 43.4 42.8 42.9	57 57 57 57 57 57 57 57 57 57 57 57 57 5	9.8 9.8 9.8 9.8 9.8 9.8 9.8	1.41 1.60 1.73 1.83 1.82 1.85 1.74 1.50	14.54 14.68 14.88 15.17 15.44 15.76 16.27 16.37	45442 45918 46623 47604 48542 49562 50477 51204 51548 52239	447 765 1130 1568 1503 1709 1550 1243 567 1138	1972 1954 1941 1936 1929 1926 1920 1911 1892 1882	555555555 888888888	16.6 16.6 16.6 16.6 16.6 16.6 16.6
2285.0 2286.0 2287.0 2288.0 2289.0 2290.0 2291.0 2292.0 2293.0 2294.0	3.7 4.1 3.7 3.4 3.5	41.9	55555555555555555555555555555555555555	9.8 9.8 9.8 9.8 9.8 9.8	1.82 1.81 1.78 1.84 1.85 1.83 1.69 1.47 1.36	16.86 17.13 17.38 17.65 17.94 18.23 18.42 18.51 18.58 18.64	53153 54049 54858 55739 56713 57656 58271 58589 58819 59008	1560 1490 1351 1466 1618 1563 1022 529 383 316	1877 1872 1865 1860 1857 1853 1843 1826 1809	0.555555555555555555555555555555555555	16.6 16.6 16.6 16.6 16.6 16.6 16.6
2295.0 2296.0 2297.0 2298.0 2299.0 2300.0 2301.0 2302.0 .2303.0 2304.0	6.2 3.1 3.2 3.8 3.1 3.7		55 55 55 55 53 46 53 53 53	9.8 9.8 9.8 9.8 9.8 9.8		18.70 18.77 19.01 19.18 19.50 19.81 20.07 20.39 20.66 20.94	59210 59445 60232 60268 61807 62666 63471 64484 65344 66217	336 392 1306 890 1776 1705 1428 1761 1484 1504	1773 1757 1752 1742 1742 1742 1738 1738 1736 1733	55555555555555555555555555555555555555	16.6 16.6 16.6 16.6 16.6 16.6 16.6

1 1											
]	DEPTH	ROP	WOB	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2305.0 2306.0 2307.0	3.5	49.7 48.5 46.1	53 55 53	9.8 1.92 9.8 1.90 9.8 1.80	21.53	67179 68130	1664 1565	1732 1731	8.5	16.6 16.6
	2308.0 2309.0	2.9 3.4	49.7 47.2	45 52	9.8 1.90 9.8 1.87	21.77 22.12 22.41	68 907 6 9832 7 0747	1328 1881 1606	1726 1728 1727	8.6	16.6 16.6 16.6
	2310.0 2311.0 2312.0	3.4 2.9	46.3 47.3 46.4	52 52 53	9.8 1.77 9.8 1.87 9.8 1.92	22.63 22.93 23.27	71442 72366 73463	1223 1611 1904	1722 1720 1722	8.6	16.6 16.6
İ	2313.0 2314.0		46.2 45.2	52 52	9.8 1.85 9.8 1.83	23.56 23.84	74370 75245	1579 1522	1721 1719	8.6	16.6
	2315.0 2316.0 2317.0	3.1	46.3 45.9 46.6	53 53 53	9.8 1.80 9.8 1.88 9.8 1.89	24.09 24.40 24.72	76020 77022 78021	1346 1738 1731	1715 1716 1716	8.6	16.6 16.6 16.6
	2318.0 2319.0 2320.0	3.5	47.0 46.0 47.7	53 53 54	9.8 1.87 9.8 1.85 9.8 1.88	25.02 25.30 25.59	78955 79872 80788	1623 1577 1544	1715 1714	8.6 8.6	16.6 16.6
	2321.0 2322.0 2323.0	4.1 3.9	48.0 49.6 50.3	54 54 54	9.8 1.84 9.8 1.87	25.83 26.09	81 590 82418	1351 1395	1712 1709 1706	8.6 8.6	16.6 16.6
	2324.0	3.7	50.6	54	9.8 1.96 9.8 1.90	26.41 26.68	83473 84351	1776 1480	1706 1704		16.6 16.6
	2325.0 2326.0 2327.0	5.3 11.4		53 53 53	9.8 1.84 9.8 1.71 9.8 1.45	26.95 27.13 27.22	85195 85795 86073	1443 1034 481	1702 1696 1686	8.6	16.6 16.6
	2328.0 2329.0 2330.0	4.9	44.3 43.0 43.2	53 50 51	9.8 1.58 9.8 1.69 9.8 1.72	27.36 27.56 27.78	86497 87115 87787	728 1118 1212	1678 1673 1669	8.6 8.6	16.6 16.6 16.6
!	2331.0 2332.0 2333.0	3.4	43.3 45.7 46.9	51 50 50	9.8 1.83 9.8 1.84 9.8 1.84	28.10 28.39 28.67	88740 89621 90460	1722 1600 1527	1669 1669	8.6 8.6	16.6 16.6
	2334.0 2335.0	3.8	48.0	50 50	9.9 1.81	28.93	91250	1440	1668 1666	8.6	16.6 16.6
	2336.0 2337.0	5,4 5,5	46.4 46.1	50 50	9.9 1.68 9.9 1.67	29.17 29.36 29.54	91973 92528 93079	1320 1011 1002	1663 1658 1652	8.6 8.6 8.6	16.6
	2338.0 2339.0 2340.0	8.5 6.6 9.4	43.3 41.7	50 51 52	9.9 1.50 9.9 1.58 9.9 1.46	29.66 29.81 29.92	93434 93900 94233	648 835 582	1645 1638 1630	8.6 8.6 8.6	16.6
	2341.0 2342.0 2343.0	11.7 4.4 2.1	43.9	52 52 50	9.9 1.41 9.9 1.73 9.9 1.94	30.00 30.23 30.70	94499 95221 96604	468 1256 2549	1621 1618 1625	8.6 8.6 8.6	16.6 16.6
	2344.0 2345.0	2.8		53 55	9.9 1.89 9.9 1.39	31.05 31.13	97735 97989	1939 418	1628	8.6	16.6
	2346.0 2347.0 2348.0	13.5 12.0 15.1	42.9 43.7	55 55 54	9.9 1.38 9.9 1.42 9.9 1.34	31.20 31.28	98235 98513	406 458	1619 1610 1601	8.6 8.6 8.6	16.7 16.7
	2349.0 2350.0 2351.0	15.1 4 8.2 4	44.0 45.1	54 55	9.9 1.34 9.9 1.56	31,35 31,42 31,54	98728 98944 9 934 4	362 362 668	1592 1583 1576	8.6 8.6	16.7 16.7
	2352.0 2353.0	6,2 6,8 4,3	45.3 45.7	55 55 55	9.9 1.65 9.9 1.62 9.9 1.77	31.70 31.85 32.08	99874 100357 101119	885 806 1270	1571 1566 1564	8.6 8.6 8.6	16.7
	2354.0	4.3	44.7	55	9.9 1.76	32.31	101881	1268	1562	8.6	

	DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2355.0	4.3	44.8	55	9.9	1.76	32,54	102650	1278	1560	8.6	16.7
	2356.0		45.1	55		1.71	32.74	103297	1077	1557		16.7
	2357.0		44.3	55		1.53	32.86	103683	642	1550		16.7
	2358.0		42.9	53		1.38	32.94	103929	421	1543		16.7
	2359.0		45.2	56		1.74	33,15	104643	1171	1540		16.7
	2360.0		45.9	55		1.89	33.48	105725	1782	1542		16.7
	2361.0		46.7	55		1.92	33.83	106894	1928	1544		16.7
	2362.0		46.2	55		1.64	33.98	107392	821	1539		16.7
	2363.0	3.9	46.5	56	9.9	1.82	34.23	108241	1396	1539		16.7
	2364.0	3.7	45.9	56	9.9	1.83	34.51	109154	1497	1538		16.7
	2365.0		45.9	56		1.83	34.78	110065	1493	1538		16.7
	2366.0		46.1	56		1.84	35.06	110994	1521	1538		16.7
	2367.0		46.3	54		1,83	35.33	111898	1524	1538		16.7
	2368.0		44.8	55		1.81	35.60	112776	1468	1537		16.7
	2369.0		44.9	54		1.83	35,90	113732	1624	1538		16.7
	2370.0		45.0	53		1.86	36.20	114709	1667	1539		16.7
	2371.0		44.6	54		1.85	36.50	115666	1629	1539		16.7
	2372.0		46.1	54		1.88	36.81	116659	1681	1540		16.7
	2373.0		46.3	56		1.88	37.10	117650	1621	1541		16.7
	2374.0	5.2	46.0	56	9.8	1.74	37.30	118296	1059	1538	8.6	16.7
	2375.0		46.2	56		1.85	37.57	119206	1490	1537		16.7
	2376.0		45.7	56		1.97	37.96	120510	2131	1541		16.7
	2377.0		41.3	53		1.91	38,38	121830	2278	1545		16.7
	2378.0		40.3	53		1.86	38.75	123022	2042	1548		16.7
	2379.0		40.1	54		1.78	39.03	123946	1559	1548		16.7
	2380.0		41.3	54		1.84	39.37	125028	1823	1550		16.7
	2381.0		39.4	54		1.84	39.72	126197	1960	1553		16.7
	2382.0		38.8	54		1.63	39.91	126801	1013	1549		16.7
	2383.0		39.1	54		1.73	40.16	127634	1395	1548		16.7
	2384.0	Ø . 4	39.1	54	9.8	1.49	40.28	128023	652	1543	8.7	16.7
	2385.0		38.4	54	9.8	1.63	40.47	128640	1034	1540	8.7	16.7
	2386.0		46.3	54	9.8	1.96	40.86	129901	2119	1544	8.7	16.7
	2387.0		45.1	47		1.93	41,28	131103	2327	1548		16.7
	2388.0	3.6	44.4	47	9.8	1.79	41.56	131897	1536	1548	8.7	16.7
	2389.0		45.6	47		1.94	41,99	133103	2339	1552	8.7	16.7
	2390.0		44.9	47	9.8	1.97	42.48	134475	2658	1559	8.7	16.7
	2391.0		45.3	44		1.88	42.86	135493	2117	1562	8.7	16.7
	2392.0		48.0	51	9.8	1.85	43.14	136342	1525	1562	8.7	16.7
	2393.0		47.6	51		1.90	43.47	137338	1796	1563		16.7
	2394.0	3.8	46.5	51	9.8	1.82	43.74	138145	1454	1562	8.7	16.7
	2395.0		45.5	51		1.67	43.91	138682	967	1559		16.7
	2396.0		43.7	50		1.63	44.08	139183	913	1556		16.7
	2397.0		45.9	53		1.89	44.41	140221	1804	1557		16.7
	2398.0		47.7	52		1.88	44.71	141160	1635	1557		16.7
	2399.0		44.7	52		1.59	44.84	141586	745	1553		16.7
	2400.0		44.4	52		1.64	45.01	142098	894	1549		16.7
	2401.0		45.2	52		1.61	45.15	142552	795	1545		16.7
	2402.0		45.0	52		1.71	45.35	143174	1087	1543		16.7
•	2403.0		45.3	52		1.66	45.51	143689	878	1540		16.7
	2404.0	6.3	45.3	52	9.8	1.64	45.67	144182	864	1536	8.7	16.7

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2405.0	7.2 4	7.9	52	9.8	1.63	45.81	144617	763	1532	8.7	16.7
2406.0		6.7	51	9.8	1.57	45,94	145000	681	1528		16.7
2407.0	8,2 4		51		1.57	46.06	145373	669	1523		16.7
2408.0	9.9 4		51	9.8	1.53	46.16	145680	554	1519		16.7
2409.0	8.3 4		51		1.57	46.28	146046	662	1514		16.7
2410.0	5.2 4		45	9.8	1.67	46.47	146561	1051	1512		16.7
2411.0	7.4 4		48		1.58	46.61	146949	736	1508		16.7
2412.0	6.8 4		48		1.62	46.75	147372	803	1504		16.7
2413.0	8.3 4		48		1.55	46.87	147720	660	1500		16.7
2414.0	9.8 4		48		1.50	46.98	148016	560	1496		16.7
2415.0	5.5 4	7.0	48	9.8	1.68	47.16	148543	996	1493	8.6	16.7
2416.0	3.4 4	7.0	49	9.8	1.84	47.45	149399	1604	1494		16.7
2417.0	3.0 4	7.0	49	9.8	1.88	47.78	150360	1799	1495	8.6	16.7
2418.0	2.9 4	7.6	49	9.8	1.91	48.13	151386	1918	1497	8.6	16.7
2419.0	5.6 49	9.0	49	9.8	1.70	48.31	151906	976	1495	8.6	16.7
2420.0	5.4 4		48		1.69	48.49	152440	1005	1492		16.7
2421.0		6.6	48		1.60	48.63	152852	779	1489		16.7
2422.0		5.4	48		1.63	48.80	153325	893	1486		16.7
2423.0	6.6 4		48		1.59	48.95	153764	826	1483		16.8
2424.0	7.6 4		48		1.54	49.08	154147	724	1479		16.8
									• .,,	.	
2425.0	5,1 45	5.4	53	9,8	1.72	49.28	154769	1067	1477	8.8	16.8
2426.0		5.9	48	9.8	1.94	49.69	155962	2275	1481		16.8
2427.0	2.5 45		44		1.88	50,10	157029	2214	1485		16.8
2428.0	2.7 4		48		1.91	50.47	158096	2047	1487		16.8
		- • •••					· · · · · · · · · · · · · · · · · · ·	*** 16 1 6	A 1 1477	107 5 145	n tur I tur

	BIT NUMBER HTC J22 COST TOTAL HOURS	6788.00	SIZE TRIP		517 12.250 7.6 180906	NOZ: BIT	ERVAL ZLES RUN DITION		0- 2634.0 16 16 18 206.0 B2 G0.000
	DEPTH	ROP WOB	RPM MW	d"c	HOURS	TURNS	ICOST	ссовт	PP FG
	2429.0 2430.0 2431.0	1.7 22.0 1.5 25.2 2.0 29.1	34 9.9	1.55	0.59 1.25 1.74	1162 2504 3699	3224 3600 2719	51622 27611 19314	8.8 16.8 8.8 16.8 8.7 16.8
·	2432.0 2433.0 2434.0 2435.0 2436.0 2437.0 2438.0 2439.0 2440.0	3.4 30.4 5.3 37.0 3.6 42.3 5.9 38.9 9.5 41.8 8.0 42.6 7.4 43.0 7.2 45.3 10.5 45.5 9.4 45.5	48 9.9 52 9.9 46 9.9 50 9.9 50 9.9 51 9.9 51 9.9	1.56 1.56 1.77 1.53 1.45 1.51 1.54 1.58 1.46	2.04 2.23 2.51 2.68 2.78 2.91 3.04 3.18 3.28 3.39	4457 4999 5874 6340 6660 7037 7450 7875 8165 8491	1626 1040 1533 924 578 681 744 763 520 586	14892 12121 10357 9009 7955 7147 6507 5985 5529 5149	8.7 16.8 8.7 16.8 8.7 16.8 8.7 16.8 8.6 16.8 8.6 16.8 8.6 16.8 8.6 16.8
	2442.0 2443.0 2444.0 2445.0 2446.0 2447.0 2447.0 2449.0 2450.0 2451.0	9.7 45.5 10.4 46.9 5.4 44.9 9.8 43.6 8.6 43.3 4.3 44.8 3.0 44.9 3.9 44.6 2.8 44.6 2.4 44.6	51 9.9 50 9.9 51 9.9 51 9.9 52 9.9 51 9.9 52 9.9	1.48 1.47 1.66 1.46 1.50 1.74 1.86 1.77 1.88	3.49 3.58 3.77 3.87 3.99 4.22 4.55 4.81 5.17	8805 9097 9658 9970 10327 11038 12057 12859 13971 15271	563 525 1014 558 637 1259 1807 1420 1963 2286	4821 4535 4315 4094 3902 3763 3665 3558 3486 3433	8.6 16.8 8.6 16.8 8.5 16.7 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8
•	2452.0 2453.0 2454.0 2455.0 2456.0 2457.0 2458.0 2459.0 2460.0 2461.0	2.8 44.7 3.0 44.5 3.3 44.2 2.9 44.2 2.7 44.9 3.0 45.7 3.1 45.9 2.7 46.2 2.9 46.7 4.3 46.0	52 9.9 52 9.9 52 9.9 49 9.9 51 9.9 51 9.9 51 9.9	1.88 1.86 1.82 1.87 1.88 1.86 1.85 1.70	5.94 6.28 6.58 6.93 7.30 7.64 7.95 8.32 8.66 8.89	16379 17421 18356 19438 20545 21552 22508 23621 24677 25387	1960 1846 1655 1913 2046 1813 1744 1997 1874 1259	3372 3311 3247 3198 3157 3110 3065 3030 2994 2942	8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8
•	2463.0 2464.0 1 2465.0 2466.0 2467.0 2468.0 2469.0 2470.0	0.8 44.3 8.4 42.6 1.5 41.6 0.1 42.6 9.0 43.0 5.8 43.4 6.8 42.6 8.3 41.8 1.0 41.7 9.6 43.7	50 9.9 53 9.9 53 9.9 53 9.9 53 9.9 53 9.9 53 9.9	1.44 1.49 1.40 1.45 1.64 1.58 1.50 1.41	8.98 9.10 9.19 9.29 9.40 9.57 9.72 9.84 9.93	25671 26032 26308 26623 26975 27526 27996 28379 28668 28998	506 654 478 544 608 947 808 659 497 569	2870 2807 2742 2683 2628 2585 2541 2495 2447 2403	8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8

DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2472.0	8.2 43.	1 53	9.9 1.52	10.16	29383	665	2364	8.5	16.8
2473.0	8.5 42.	9 52	9.9 1.50	10.28	29748	645	2326	8.5	16.8
2474.0	7.7 42.		9.9 1.53	10.40	30150	709	2291		16.8
2475.0 2476.0	7.3 41. 7.9 41.		9.9 1.54 9.9 1.51	10.54 10.67	30573 30966	747 692	2258 2225	8.5 8.5	16.8 16.8
2477.0	7.9 42.		9.9 1.51	10.27	31357	689	2194	8.5	16.8
2478.0	8.9 42.		9.9 1.48	10.91	31706	617	2162	8.5	16.8
2479.0	3.9 44.		9.9 1.77	11.16	32509	1410	2147	8.5	16.8
2480.0	3.2 45.		9.9 1.84	11.48	33487	1719	2139		16.8
2481.0	2.9 44.	2 32	9.9 1.87	11.83	34580	1913	2135	8.5	16.8
2482.0	4.0 43.		9.9 1.75	12.08	35350	1370	2121	8.5	16.8
2483.0	4.1 43. 4.7 43.		9.9 1.73 9.9 1.71	12.32 12.54	36093	1337	2107	8.5	16.8
2484.0 2485.0	8,643,		9.9 1.50	12.65	36758 37117	1170 634	2090 2064	8.5 8.5	16.8 16.8
2486.0	9.1 44.		9.9 1.49	12.76	37455	601	2039	8.5	16.8
2487.0	9.5 42.		9.9 1.46	12.87	37779	573	2014	8.5	16.8
2488.0	10.4 41.		9.9 1.42	12.96	38075	525	1989	8.5	16.8
2489.0 2490.0	8.9 42. 10.1 41.		9.9 1.48 9.9 1.43	13.07 13.17	38423 38729	617 5 4 3	1967 1 944	8.5 8.5	16.8 16.8
2491.0	7.4 41.		9.9 1.53	13.31	39145	736	1925	8.5	16.8
2492.0	7.5 43.	5 50	9.9 1.54	13.44	39543	732	1906	8.5	16.8
2493.0	7.2 42.	7 51	9.9 1.55	13.58	39972	762	1888		16.8
2494.0	8.4 43.		9.9 1.51	13.70	40338	649	1870	8.5	16.8
2495.0 2496.0	3.0 44. 2.6 43.		9.9 1.86 9.9 1.88	14.04 14.41	41386 42564	1843	1869		16.8
2497.0	2.9 43.		9.9 1.85	14.76	43616	2074 1906	1872 1873	8.5 8.5	16.8 16.8
2498.0	3.5 43.		9.9 1.79	15.05	44498	1563	1868	8.5	16.8
2499.0	3.1 43.		9.9 1.83	15.37	45503	1782	1867	8.5	
2500.0	2.9 43.		9.9 1.85	15.72	46573	1896	1868	8.5	16.8
2501.0	4.3 42.	9 49	9.9 1.70	15.95	47262	1279	1860	8.5	16.8
2502.0	5.3 42.		9.9 1.65	16.14	47850	1037	1848		16.8
2503.0	5.9 41.		9.9 1.61	16.31	48375	923	1836		16.8
2504.0 2505.0	5.5 42. 4.8 42.		9.9 1.64 9.9 1.68	16.49 16.70	48942 495 95	996 1145	1825 1816	8.5 8.5	16.8 16.8
2506.0	4.6 42.		9.9 1.69	16.92	50271	1185	1808	8.5	16.8
2507.0	3.5 42.		9.9 1.78	17.20	51160	1556	1805	8.5	16.8
2508.0	4.7 42.		9.9 1.67	17.41	51806	1157	1797		16.8
2509.0 2510.0	3.5 42. 3.7 43.		9.9 1.79 9.9 1.77	17.70 17.97	52719 53566	1583 1474	1794 1790	8.5 8.5	16.8 16.8
2511.0	3.1 43.		9.9 1.82	18.29	54551	1758	1790		16.8
2512.0	3.9 42.	4 52	9.9 1.75	18.55	55353	1404	1785	8.5	16.8
2513.0	2.9 42.		9.9 1.84	18.90	56440	1909	1787		16.8
2514.0	4.6 42.	2 53	9.9 1.69	19.12	57121	1182	1780	8.5	16.8
2515.0	3.8 42. 7.7 42.		9.9 1.75	19.38	57938	1424	1776		16.8
2516.0 2517.0	6.7 42.		9.9 1.52 9.9 1.55	19.51 19.65	58332 5876 5	712 820	1764 1753		16.8 16.8
2518.0	6.7 42.		9.9 1.57	19,80	59224	820	1743		16.8
2519.0	4.2 43.		9.9 1.73	20.04	59963	1299	1738	8.5	16.8
2520.0 2521.0	2.9 41. 2.7 40.		9.9 1.83 9.9 1.84	20.38	61022	1869	1739		16.8
គេឃ៩1 i U	miz Auc	7 U.L	フェブース・254	20.76	62171	2038	1742	ਖ.ਹ	16.8

	DEPTH	ROP	WOB	RPM	MW "d	" C	HOURS	TURNS	ICOST	CCOST	РP	FG
	2522.0 2523.0	3.3	40.8 41.8	51 52	9.9 1.8 9.9 1.3	79	21.15 21.46	63391 64346	2170 1674	1747 1746		16.8 16.8
	2524.0		41.5	53	9.9 1.6		21.82	65512	2011	1749		16.8
	2525.0 2526.0		43.6	53 53	9.9 1.8		22.20 22.55	66 700 6 783 7	2030 1950	1752 1754		16.8 16.8
	2527.0		43.0	53	9.9 1.8		22.92	69022	2042	1757		16.8
	2528.0		43.9	53	9.9 1.8		23.28	70165	1968	1759		16.8
	2529.0	3.2	42.6	53	9.9 1.8	82	23.60	71161	1708	1758		16.8
	2530.0		39.2	53	9.9 1.		23.75	71632	815	1749		16.8
	2531.0	6.9	39.2	53	9.9 1.5	53	23.8 9	72093	789	1740	8.5	16.8
	2532.0		40.5	53	9.9 1.5		24.03	72546	777	1730		16.8
	2533.0 2534.0		40.0	53 54	9.9 1.8		24.20 24.53	73096 74161	938	1723 1724		16.8
	2535.0		41.0	54	9.9 1.6		24.74	74821	1808 1124	1718		16.8 16.8
	2536.0		40.4	54	9.9 1.7		25.00	75679	1458	1716		16.8
	2537.0		41.2	52	9.9 1.8	B1	25.33	76696	1787	1716		16.8
	2538.0		40.0	47	9.9 1.8		25.74	77871	2260	1721		16.9
	2539.0		41.4	51	9.9 1.8		26.12	79008	2042	1724		16.9
	2540.0 2541.0		40.1	52 52	9.9 1.8 9.9 1.8		26.46 26.83	80 081 81233	1889 2021	1726 1728		16.9 16.9
	Salvary X & O	f-m 1 7	TX 16		717 11	(1-m)	mu . Gu	01200	for O for A	1720	Oiu	X C2 + 2.
	2542.0		40.2	52	9.9 1.7		27.15	82225	1734	1728		16.9
	2543.0 2544.0	10.0	38.7	52	9.9 1.4		27.25 27.50	82536	546	1718		16.9
	2545.0		39.5	52 52	9.9 1.6		27.30 27.87	8331 <i>9</i> 84490	1363 2059	1715 1718		16.9 16.9
	2546.0		41.5	51	9.9 1.8		28.27	85695	2176	1722		16.9
	2547.0	4.4	41.6	50	9.9 1.6		28,50	86383	1249	1718		16.9
	2548.0		41.7	50	9.9 1.8		28.85	87455	1941	1720		16.9
	2549.0		41.6	51	9.9 1.8		29.24	88637	2106	1723		16.9
	2550.0 2551.0		40.7	52 52	9.9 1.8 9.9 1.5		29.59 29.87	89750	1953	1725		16.9
	EGG1,0	0.7	******	(Jen	7.7 1.7	/ **	27.87	90600	1492	1723	ਰ ,ਹ	16.9
	2552.0		39.1	52	9.9 1.8		30.29	91925	2312	1728		16.9
	2553.0 2554.0		39.0	52 52	9.9 1.8		30.70	93211	2243	1732		16.9
	2555.0		40.4	52 52	9.9 1.8 9.9 1.8		31.07 31.51	94387 9575 7	2050 2389	1734 1739		16.9 16.9
	2556.0		40.4	52	9.9 1.8		31.91	97017	2193	1743		16.9
	2557.0		39.8	53	9.9 1.8		32.36	98433	2458	1749		16.9
	2558.0		39.0	53	9.9 1.8		32.80	99828	2421	1754		16.9
•	2559.0		38.3	52	9.9 1.8		33.22	101128	2286	1758		16.9
	2560.0		38.4 37.5	52 52	9.9 1.7		33 , 49 . 77 . 07	101969	1471	1756		16.9
	2561.0	£ , 1	37 i d	GE.	9.9 1.8	37 ¢	33.96	103446	2573	1762	8.5	16.9
	2562.0		38.3	53	9.9 1.8		34.37	104750	2246	1765		16.9
	2563.0		38.9	53	9.9 1.8		34.78	106060	2266	1769		16.9
	2564.0 2565.0		38.5 38.1	53 53	9.9 1.8 9.9 1.8		35.23 35.65	107491 108815	2 47 6 2292	1774 1778		16.9 16.9
	2566.0		37.5	52	9.9 1.6		35.85	109437	1086	1773		16.9
	2567.0	3.5	37.9	53	9.9 1.7		36.14	110347	1574	1772		16.9
	2568.0		37.6	53	9.9 1.7	79 3	36.49	111471	1941	1773	8.5	16.9
•	2569.0		38.4	50	9.9 1.8		36 . 88	112628	2115	1775		16.9
	2570.0 2571.0		37.6 37.3	53 52	9.9 1.7 9.9 1.8		37.22	113706	1869 2503	1776 1781		16.9
	m 1.7 / L + U	l (l	0/ i 0	V. F 2	212 716	ಎಲ ರ	3 7 . 68 -	115143	E. O. U.3	1 1 10 1	បារជា	16.9

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2572.0 2573.0 2574.0 2575.0 2576.0 2577.0 2578.0 2579.0 2580.0 2581.0	2.6 2.5 2.4 4.8 3.0 2.3 2.5	38.2 37.9 37.8 37.6 37.6 38.5 40.2 40.3	52353555555555555555555555555555555555	9,9 9,9 9,9 9,9 9,9 9,9	1.81 1.82 1.82 1.82 1.83 1.62 1.78 1.89 1.86	38.06 38.45 38.83 39.24 39.65 39.86 40.20 40.64 41.04 41.38	116340 117562 118789 120073 121374 122028 123074 124461 125734 126804	2082 2125 2128 2222 2251 1142 1852 2401 2205 1851	1783 1785 1788 1791 1794 1789 1790 1794 1797	8.55 8.55 8.55 8.55 8.55 8.55	16.9 16.9 16.9 16.9 16.9 16.9 16.9
2582.0 2583.0 2584.0 2585.0 2586.0 2587.0 2588.0 2589.0 2591.0	2.8 2.4 1.7 3.4 2.7 2.5 3.4 3.9	40.0 39.8 39.8 40.7 40.1 39.6 39.4 39.6	533 533 512 52 52 52 52 52	9.9 9.9 9.9 9.9 9.9 9.9 9.9	1.91 1.83 1.87 1.97 1.75 1.82 1.85 1.75	41.84 42.21 42.63 43.21 43.50 43.86 44.26 44.55 44.81 45.14	128282 129435 130770 132547 133447 134572 135818 136730 137544 138587	2547 1989 2309 3182 1588 1994 2173 1591 1420 1817	1802 1803 1806 1815 1814 1815 1817 1816 1813	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9
2592.0 2593.0 2594.0 2595.0 2596.0 2597.0 2598.0 2599.0 2600.0	3.2 3.0 3.1 5.3 4.9 4.3 2.9 3.4	39.4 40.6 40.8 41.9 41.4 40.2 39.8 40.6 41.5	52 52 52 52 52 52 52 52 52 52 52 52 52 5	9.9 9.9 9.9 9.9 9.9 9.9	1.86 1.79 1.81 1.63 1.64 1.68 1.81	45.55 45.87 46.21 46.53 46.72 46.92 47.15 47.49 47.78 48.10	139886 140885 141935 142955 143540 144171 144901 145977 146891 147900	2260 1737 1825 1776 1025 1108 1274 1872 1589 1757	1816 1815 1815 1815 1811 1806 1803 1804 1802 1802	88.5555555 88.8888888888888888888888888	16.9 16.9 16.9 16.9 16.9 16.9 16.9
2602.0 2603.0 2604.0 2605.0 2606.0 2607.0 2608.0 2609.0 2610.0 2611.0	2.6 2.9 2.7 2.9 3.1 3.0 2.8 3.0	41.6 40.8 40.5 41.9 42.3 41.4 42.1 42.0 41.7	52 53 52 52 52 52 52 52 52	9.9 9.9 9.9 9.9 9.9 9.9	1.84 1.85 1.81 1.85 1.84 1.81 1.83 1.85 1.85	48.46 48.84 49.18 49.55 49.90 50.22 50.56 50.92 51.25 51.57	149026 150219 151296 152446 153523 154540 155584 156702 157732 158729	1959 2071 1871 2012 1892 1791 1836 1960 1810	1803 1805 1805 1806 1807 1807 1807 1808 1808	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9
2612.0 2613.0 2614.0 2615.0 2616.0 2617.0 2618.0 2619.0 2620.0 2621.0	3.0 2.9 3.3 6.5 3.7 5.2 7.0 3.3	40.9 41.7 41.3 41.4 39.0 39.2 38.2 35.5 38.1	52 52 52 51 52 52 52 53	9.9 9.9 9.9 9.9 9.9 9.9	1.79 1.82 1.82 1.79 1.54 1.72 1.60 1.48 1.75	51.88 52.22 52.56 52.87 53.02 53.29 53.48 53.62 53.93 54.27	159713 160768 161824 162778 163251 164084 164682 165127 166102 167214	1729 1855 1858 1682 847 1463 1048 782 1663 1898	1807 1807 1807 1807 1802 1800 1796 1790 1790	88888855555555555555555555555555555555	16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9

DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP FG
2622.0	3.3 38.	8 54	9.9 1.76	54,58	168199	1677	1790	8.5 16.9
2623.0	3,0 39.	6 54	9.9 1.80	54.91	169259	1805	1790	8.5 16.9
2624.0	2.5 37.	3 54	9.9 1.82	55.31	170535	2172	1792	8.5 16.9
2625.0	2.8 37.	3 54	9.9 1.79	55,66	171673	1938	1793	8.5 16.9
2626.0	3.0 36.	5 53	9.9 1.75	56.00	172736	1834	1793	8.5 16.9
2627.0	2.7 34.	5 52	9.9 1.75	56.36	173889	2015	1794	8.5 16.9
2628.0	4.2 35.	1 52	9.9 1.62	56.60	174630	1291	1791	8.5 16.9
2629.0	3.6 35.	8 52	9.9 1.69	56.88	175512	1535	1790	8.5 16.9
2630.0	3.5 36.	7 52	9.9 1.71	57.17	176420	1580	1789	8.5 16.9
2631.0	3.0 37.	0 53	9.9 1.76	57.50	177468	1819	1789	8.5 16.9
2632.0	3.0 36.	2 53	9.9 1.74	57.83	178515	1819	1789	8.5 17.0
2633.0	2.8 36.	4 52	9.9 1.77	58.19	179642	1959	1790	8.5 17.0
2634.0	2.5 36.	9 52	9.9 1.81	58.59	180904	2100	1700	9 5 17 0

-

BIT NUMBER HTC J33 COST TOTAL HOURS	10 6637.00 5 15.91		537 12.250 7.7 45492	INTERVAL NOZZLES BIT RUN CONDITION	2634.0- 2681.0 16 16 18 47.0 T1 B1 G0.000
DEPTH	ROP WOB	RPM MW "d"c	HOURS	TURNS ICOST	CCOST PP FG
2635.0 2636.0 2637.0	2.0 35.9 2.7 31.7 2.2 35.6	47 9.9 1.68	0.50 0.87 1.33	1590 2738 2633 2038 4072 2492	51532 8.5 17.0 26785 8.6 17.0 18687 8.6 17.0
2638.0 2639.0 2640.0 2641.0 2642.0 2643.0 2644.0 2645.0 2646.0 2647.0	2.0 39.2 1.7 41.9 2.3 42.9 3.2 41.1 2.3 55.6 2.6 55.7 3.0 55.7 2.4 53.9 3.0 55.3 2.9 56.1	53 9.9 1.92 50 9.9 1.98 47 9.9 1.89 52 9.9 1.79 50 9.9 2.08 44 9.9 1.99 44 9.9 1.94 47 9.9 2.02 47 9.9 1.96 47 9.9 1.98	1.84 2.41 2.84 3.16 3.59 3.98 4.32 4.73 5.07	5686 2786 7403 3134 8624 2374 9609 1722 10913 2380 11932 2134 12809 1836 13973 2274 14922 1851 15902 1918	14712 8.6 17.0 12396 8.6 17.0 10726 8.6 17.0 9440 8.6 17.0 8557 8.6 17.0 7844 8.6 17.0 7243 8.6 17.0 6791 8.6 17.0 6379 8.6 17.0 6036 8.6 17.0
2648.0 2649.0 2650.0 2651.0 2652.0 2653.0 2654.0 2655.0 2656.0 2657.0	3.0 54.9 3.1 54.7 2.6 53.8 3.1 53.0 2.0 53.3 3.7 54.6 2.7 53.2 3.2 53.5 3.6 53.6	47 9.9 1.96 47 9.9 1.94 47 9.9 1.99 47 9.9 1.92 47 9.9 2.07 48 9.9 1.88 48 9.9 1.97 49 9.9 1.93 44 9.9 1.91 43 9.9 1.85	5.76 6.08 6.46 6.79 7.28 7.54 7.91 8.22 8.55 8.83	16847 1848 17744 1750 18824 2103 19739 1779 21128 2675 21896 1471 22940 1997 23851 1694 24725 1828 25443 1512	5737 8.6 17.0 5471 8.6 17.0 5261 8.6 17.0 5056 8.6 17.0 4924 8.6 17.0 4742 8.6 17.0 4605 8.6 17.0 4466 8.6 17.0 4346 8.6 17.0 4223 8.6 17.0
2658.0 2659.0 2660.0 2661.0 2662.0 2663.0 2664.0 2665.0 2666.0	4.0 52.2 2.7 53.7 2.8 54.2 2.8 55.1 2.6 55.4 2.7 53.9 3.9 50.1 3.8 51.0 4.2 51.4 3.5 50.4	43 9.9 1.80 42 9.9 1.94 43 9.9 1.94 46 9.9 1.98 47 9.9 2.01 46 9.9 1.97 47 9.9 1.81 48 9.9 1.83 48 9.9 1.81 48 9.9 1.86	9.08 9.46 9.81 10.17 10.55 10.92 11.17 11.44 11.68	26100 1384 27037 2059 27958 1951 28950 1955 30024 2105 31041 1997 31761 1389 32521 1442 33215 1308 34041 1564	4105 8.6 17.0 4023 8.6 17.0 3943 8.6 17.0 3870 8.6 17.0 3807 8.6 17.0 3744 8.6 17.0 3594 8.6 17.0 3522 8.6 17.0 3463 8.6 17.0
2668.0 2669.0 2670.0 2671.0 2672.0 2673.0 2674.0 2675.0 2676.0	3.0 52.3 3.3 52.1 4.8 51.1 2.5 52.0 2.9 53.0 2.4 52.5 3.0 52.4 4.1 53.1 3.6 53.1	49 9.9 1.93 49 9.9 1.70 49 9.9 1.76 46 9.9 1.97 46 9.9 1.93 45 9.9 1.98 48 9.9 1.93 51 9.9 1.85 50 9.9 1.92 51 9.9 1.89	12.29 12.59 12.80 13.20 13.54 13.95 14.29 14.53 14.82 15.09	35009 1820 35886 1644 36491 1136 37576 2167 38519 1884 39617 2237 40584 1846 41322 1331 42180 1559 43017 1510	3415 8.6 17.0 3364 8.6 17.0 3302 8.6 17.0 3272 8.6 17.0 3235 8.6 17.0 3210 8.6 17.0 3175 8.6 17.0 3130 8.6 17.0 3093 8.6 17.0 3056 8.6 17.0

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2678.0	3.1	53.4	51	9.9	1.95	15.42	44001	1775	3027	8.6	17.0
2679.0	3.6	51.6	51	9.9	1.87	15.69	44835	1503	2993	8.6	17.0
2680.0	9.2	51.9	50	9.9	1.56	15.80	45165	598	2941	8.6	17.0
2681.0	9.3	53.5	51	9.9	1.58	15.91	45492	590	2891	8.6	17.0

•

									and the second
						•			
BIT NUMBER	R	10	IADC CODE	4	INT	ERVAL	2681	.0- 20	593.6
CHRIS C-2			SIZE	8,469		ZLES			14 13
COST	13000.		TRIP TIME	7.7		RUN		-	12.6
TOTAL HOU	RS 10.	94	TOTAL TURNS	59389	CON	MOITION	TO	BO GO	
TOTAL THE	nan u	an nnw		HOUDE	THEAL	TABAT	00007	0.0	
DEPTH	ROP W	OB RPM	MW "d"d	HOURS	TURNS	ICOST	CCOST	PP	FG
2681.2	6.1 16	.3 89	9.9 1.50	0.03	176	905	276692	8.6	17.0
2681.4	26.7 18			0.04	216		138449		17.0
2681.6	5.5 17	.5 89	9.9 1.56	0.08	411	996	92631		17.0
2681.8	12.6 15			0.09	496	433	69582		17.0
2682.0	12.6 17			0.11	581	433	55752		17.0
2682.2	6.7 16			0.14	742	821	46597		17.0
2682. 4 2682.6	5.4 15 5.4 16			0.18	940	1011	40085		17.0
2682.8	2.4 15			0.21 0.30	1140 1587	1019	35202 31543		17.0 17.0
2683.0	4.0 15			0.35	1859	1384	28527		17.0
2683.2	8.3 14			0.37	1989	662	25994		17.0
2683.4	8.5 15			0.39	2116	646	23881		17.0
2683.6	6.0 15			0.43	2297	920	22115		17.0
2683.8	4.8 15			0.47	2520	1133	20616	8.6	17.0
2684.0	2.3 16			0.56	2992	2403	19402	8.6	17.0
2684.2	2.8 16			0.63	3380	1969	18313		17.0
2684.4	3.3 14			0.69	3705	1650	17333		17.0
2684.6	3.0 17			0.76	4069	1855	16473		17.0
2684.8	3.2 17 1.7 16			0.82	4411	1734	15697		17.0
2685.0 2685.2	2.4 17			0.94	5056	3270	15076		17.0
2685.4	2.7 16			1.02	551 <i>4</i> 5910	2319 2008	14468 13902		17.0
2685.6	2.7 16			1.17	6314	2046	13386		17.0
m00010	f 1 / X (3	145 745	717 1170	* . * /	OOLT	E. O 49 (3	10000	0.0	17.0
2685.8	2.1 16	.7 90	9.9 1.80	1.27	6833	2623	12938	8.6	17.0
2686.0	2.7 15	.0 90		1.34	7227	1992	12500		17.0
2686,2	2.6 15		9.9 1.72	1.42	7645	2114	12101	8.6	17.0
2686.4	1.6 16			1.54	8330	3460	11781	8.6	17.0
2686.6	1.8 16			1.65	8918	2966	11466		17.0
2686.8	0.8 17		9.9 2.08	1,50	10268	6806	11305		17.0
2687.0	0.4 18		9.9 2.27	2.35	12697	12220	11336		17.0
2687.2 2687.4	0.4 20 0.3 19		9.9 2.39	2.85	15443	13809	11415		17.0
2687,6	2.3 21		9.9 2.46 9.9 1.90	3.58 3.67	19390 19873	19824	11678		17.0
	for t A.P. for A	16 7.1	7.7 1.70	0101	17070	2426	11398	0.0	17.0
2687.8	0.9 19	.2 91	9.9 2.10	3.88	21043	5878	11235	8.6	17.0
2688.0	1.7 19	.7 91	9.9 1.95	4.00	21689	3247	11007		17.0
2688.2	1.6 18		9:9 1:92	4.12	22374	3445	10797		17.0
2688.4	1.2 18		9.9 2.00	4.30	23315	4730	10633	8.6	17.6
2688.6	0.4 18		9.9 2.29	4.75	25785	12402	10680		17.0
2688.8	0.4 18		9.9 2.35	5.31	28844	15345	10799		17.0
2689.0 2689.2	0.5 19		9.9 2.26		30863	10136	10783		17.0
2689.4	0.7 19 0.8 19		9.9 2.16 9.9 2.14		32331	7376	10700		17.0
2689.6	0.8 17		9.9 2.16	6.20 6.46	336 77 3 507 6	6768 7041	10606 10523		17.0 17.0
mww.r.tu	0.0 17		7 1 7 E 13 O	D+40	9947 0	7041	ruama	G. C	17.0

DEPTH	ROP WOE	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP FG
2689.8 2690.0 2690.2 2690.4 2690.6 2690.8 2691.0 2691.2	0.8 19.7 1.2 17.3 1.0 17.5 1.5 17.3 3.1 17.4 3.2 17.8 3.4 18.0 4.9 18.1 2.7 18.4	90 90 90 89 89 89	9.9 2.15 9.9 1.97 9.9 2.03 9.9 1.91 9.9 1.71 9.9 1.71 9.9 1.60 9.9 1.78	6.70 6.86 7.07 7.20 7.27 7.33 7.39 7.43 7.51	36403 37294 38415 39134 39479 39815 40130 40349 40752	6692 4502 5665 3642 1764 1711 1612 1118 2053	10436 10304 10203 10064 9891 9724 9562 9396 9255	8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0
2691.6 2691.8	4.5 19.3 1.7 20.1	89 90	9.9 1.65 9.9 1.96	7.55 7.67	4098 9 41640	1209 3315	9103 8996	8.6 17.0
2692.0 2692.2 2692.4 2692.6 2692.8 2693.0	2.3 19.5 1.4 18.6 2.0 19.7 1.6 17.7 1.3 19.5	90 90 90 90 90	9.9 1.85 9.9 1.97 9.9 1.90 9.9 1.90 9.9 2.00 9.9 1.89	7.76 7.91 8.01 8.13 8.28 8.40	42116 42899 43451 44120 44926 45542	2426 3985 2806 3399 4083 3293	8876 8789 8684 8593 8517 8429	8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0 8.6 17.0
2693.2 2693.4 2693.6	13.3 17.3 3.1 18.5 0.1 20.8	102	9.9 1.35 9.9 1.78 9.9 2.84	8.42 8.48 10.94	45633 46032 59389	411 1795 67175	8298 8193 9129	8.6 17.0 8.6 17.0 8.6 17.0

BIT NUMB HTC J22 COST	BER 1	SIZE	CODE	513 12.25(סא (כ	TERVAL ZZLES	2697	3.6- 2840.5 16 16 18
TOTAL HO	URS 39.5		TURNS	8.0 115791		T RUN MDITION	Ta	146,9 B3 G0,000
DEPTH	ROP WO	B RPM MU	/ "d"c	HOURS	TURNS	ICOST	CCOST	PP FG
2694.0 2695.0	3.1 8. 7.7 19.		1.23	0.13	479	1758	128228	8.6 17.0
2696.0	9.2 38.		1.25	0.26 0.37	909 1252	712 595	37145 21916	8.6 17.0
2697.0	2.9 37.0	3 52 9,9	1.78	0.71				
2698.0	2.8 38.	52 9,9	1.79	1.06	2333 3442	1881 1933	16023 12821	
2699.0 2700.0	3,4 40,8		1.77	1.36	4360	1614	10746	8.6 17.0 8.6 17.0
2701.0	3,0 50,0 2,9 48,0		1.91	1.70	5334	1843	9355	8.6 17.0
2702.0	3,4 48,6		1.90	2.04	6323	1874	8344	8.6 17.0
2703.0	2.7 48.9		1.84 1.93	2.33	7164	1594	7540	8.6 17.0
2704.0	4.0 51.3		1.82	2.70 2.95	8246	2046	6956	8.6 17.0
2705.0	2.9 49.1		1.91	3.30	8973 9987	1372	6419	8.6 17.0
2706.0	2.1 48.6		2.00	3.77	11352	1918	6024	8.6 17.0
2707.0	3.6 48.4					2550	5744	8.6 17.0
2708.0	5.2 45.8		1.85 1.69	4.04	12219	1506	5427	8.6 17.0
2709.0	3.8 50,4	52 9.9	1.86	4,23 4,50	12819 13658	1046	5123	8.6 17.0
2710.0	4.4 49.7	53 9.9	1.80	4.73	14367	1460	4885	8.6 17.0
2711.0	3.2 49.5	53 9.9	1.90	5.04	15354	1232 1709	4663	8.6 17.0
2712.0 2713.0	2.9 53.1	53 9.9	1.99	5.39	16459	1921	4493 4353	8.6 17.0
2714.0	2.8 54.6 2.9 54.9		2.01	5.74	17562	1924	4228	8.6 17.0 8.6 17.0
2715.0	3.9 53.7	52 9.9 52 9.9	2.01		18649	1898	4114	8.6 17.0
2716.0	2.6 54.3		1.88	6.34	19446	1389	3986	8.6 17.0
2717.0			2.04	6.73	20677	2132	3904	8.6 17.0
2718.0	3.1 53.6 3.1 53.5		1.95	7.05	21650	1746	3811	8,6 17.0
2719.0	3.4 53.3	50 9,9 48 9,9	1.95		22614	1761	3727	8.6 17.1
2720.0	3.1 53.2	48 9.9 48 9.9			23476	1632	3645	8.6 17.1
2721.0	4.2 51.0	48 9.9		7.99	24414	1772	3574	8.6 17.1
2722.0	2.2 50.0	49 9.9			25108	1306	3491	8.6 17.1
2723.0	2.8 43.7	51 9.9			26434 27515	2491 1925	3456	8.7 17.1
2724.0	2.6 40.7	47 9.8	1.83		28580	2082	3404	8.7 17.1
2725.0 2726.0	3.6 44.9	46 9.8	1.78	9.69	29347	1513	3360 3302	8.7 17.1
	3.2 46.7	47 9.8	1.85 1		30237	1717	3253	8.7 17.1 8.7 17.1
2727.0	2.8 47.0	48 9.8	l , 91 1	0.37 3	31278	1 m / m	~~ .	
2728.0	3.6 46.0	48 9,8	1.81 1		32084	1968 1522	3214	8.7 17.1
2729.0	4,1 44,9	48 9.8	.76 11		32798	1346	3165 3114	8.7 17.1
2730.0 2731.0	8.9 43.8	48 9.8 1	. 49 11	1.00 3	3123	614		8.7 17.1 8.7 17.1
2732.0	3.2 46.1	48 9,8 1	. 85 1:	1.31 3	4016	1688		8.7 17.1
2733.0	3.0 46.3 8.6 45.1	48 9.9 1		1.65 3	4997	1854		8.7 17.1
2734.0	3.1 46.7	48 9.9 1 48 9.9 1	.50 11	1.77 3	5333	634		8.7 17.1 8.7 17.1
2735.0	3.2 49.1	48 9.9 1 48 9.9 1			6273	1770		B.7 17.1
2736.0	3.5 50.4	· · · · · · · · · · · · · · · · · · ·			7163	1703	2862	8.7 17.1
		, , , ,	.uu ka	., O7 3	7997	1580		B.7 17.1

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2737.0 2738.0 2739.0 2740.0 2741.0	2.9 5.5 3.7 3.4	50.9 50.1 51.8 53.0 53.0	48 48 48 48 49	9.9 9.9 9.9 9.9	1.85 1.92 1.72 1.87 1.90	12.97 13.32 13.50 13.77 14.07	38803 39814 40336 41113 41981	1531 1916 995 1478 1633	2802 2782 2742 2715 2692	8.7 8.7 8.7 8.7	17.1 17.1 17.1 17.1
2742.0 2743.0 2744.0 2745.0 2746.0	9.8 9.2 7.2	52.1 52.5 47.6 49.5 48.1	49 49 49 50 51	9.9 9.9 9.9	1.81 1.54 1.51 1.62 1.61	14.30 14.40 14.51 14.65 14.78	42653 42951 43270 43692 44118	1246 557 593 763 757	2662 2620 2580 2544 2510	8.7 8.7 8.7	17.1 17.1 17.1 17.1
2747.0 2748.0 2749.0 2750.0 2751.0 2752.0 2753.0 2754.0 2755.0	4.9 4.2 5.5 6.4 7.9 12.1 4.5 8.4	46.6 45.1 45.8 45.4 45.0 47.2 47.8 47.7 48.1	49 48 48 49 48 49 50 53	9.9 9.9 9.9 9.9 9.9 9.9	1.81 1.68 1.74 1.65 1.60 1.51 1.41 1.75 1.56	15.07 15.27 15.51 15.69 15.85 15.98 16.06 16.28 16.40 16.64	44953 45547 46233 46762 47221 47587 47823 48488 48866 49622	1550 1124 1296 1001 855 696 452 1221 654 1308	2492 2467 2446 2420 2393 2364 2332 2313 2286 2271	8.7 8.7 8.7 8.7 8.7 8.7 8.7	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1
2757.0 2758.0 2759.0 2760.0 2761.0 2762.0 2763.0 2764.0 2765.0	3.7 3.1 4.3 4.2 4.0 3.4 2.9 7.0	48.4 50.1 49.4 50.4 49.2 48.6 49.4 48.2	53 53 53 53 53 53 53 53	9.9 9.9 9.9 9.9 9.9 9.9	1.83 1.86 1.91 1.81 1.83 1.83 1.87 1.94	16.90 17.17 17.49 17.72 17.96 18.21 18.50 18.85 18.99	50443 51288 52303 53049 53812 54600 55525 56615 57068 57968	1419 1463 1757 1288 1319 1357 1592 1890 786 1568	2257 2245 2237 2223 2210 2197 2189 2184 2165 2156	8.7 8.7 8.7 8.7 8.7 8.7	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1
2767.0 2768.0 2769.0 2770.0 2771.0 2772.0 2773.0 2774.0 2775.0	2.8 3.0 4.1 6.8 7.0 4.7 9.5	48.9 48.1 48.5 47.9 49.1 49.5 46.3 43.3	52 45 45 44 44 43 46 46	9.9 9.9 9.9 9.9 9.9 9.9	1.88 1.89 1.86 1.76 1.57 1.59 1.58 1.67 1.43	19.58 19.94 20.27 20.52 20.66 20.81 20.95 21.16 21.27 21.39	58917 59892 60801 61459 61837 62223 62597 63146 63436 63769	1652 1959 1834 1337 791 809 785 1156 576 665	2150 2147 2143 2132 2115 2098 2082 2070 2052 2035	8.7 8.7 8.7 8.7 8.8 8.8	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1
2777.0 2778.0 2779.0 2780.0 2781.0 2782.0 2783.0 2784.0 2785.0	5.9 7.5 7.6 7.6 4.8 4.2	45.5 43.7 44.7 46.7 48.6 47.7 48.2 48.2	46 46 45 47 47 47 46 47 48	9.9 9.9 9.9 9.9 9.9 9.9	1.46 1.59 1.53 1.63 1.54 1.58 1.50 1.70	21.49 21.66 21.80 21.98 22.11 22.25 22.36 22.57 22.81 23.13	64059 64523 64901 65387 65746 66132 66461 67037 67716 68656	579 921 753 996 695 748 637 1139 1316 1770	2018 2005 1970 1978 1964 1950 1935 1927 1920 1918	8.8 8.8 8.8 8.8 8.8 8.8	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	РP	FG
2787.0 2788.0 2789.0 2790.0 2791.0 2792.0 2793.0 2794.0 2795.0	2.143.1537 5.4.7	50.2 49.6 49.5 48.5 48.1 47.4 48.8 49.4	48 44 44 44 44 51 49 50	9.9 9.9 9.9 9.9 9.9 9.9	1.97 1.93 1.76 1.80 1.61 1.67 1.69 1.77 1.63 1.59	23.55 23.95 24.19 24.48 24.64 25.02 25.25	69841 70903 71538 72312 72728 73244 73795 74475 74915 75306	2254 2207 1322 1611 870 1074 989 1262 814 715	1922 1925 1919 1915 1905 1896 1887 1881 1870 1859	8.8 8.8 8.8 8.8 8.8 8.8	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1
2797.0 2798.0 2799.0 2800.0 2801.0 2802.0 2803.0 2804.0 2805.0	4.4 3.8 4.4 3.7 5.7 3.6	49.0 49.5 49.2 49.7 52.7 54.5 43.5	50 50 50 50 49 48 48 48 48	9,9 9,9 9,9 9,9 9,9	1.62 1.78 1.89 1.93 1.76 1.90 1.74 1.85 1.76	25.67 25.90 26.21 26.57 26.79 27.08 27.26 27.53 27.81 28.12	75735 76418 77368 78437 79071 79929 80446 81226 82041 82943	782 1245 1723 1947 1180 1591 981 1481 1538 1703	1849 1843 1842 1843 1836 1834 1826 1823 1821 1820	8.7 8.7 8.7 8.7 8.7 8.7 8.7	17.2 17.1 17.1 17.1 17.1 17.1 17.1 17.1
2807.0 2808.0 2809.0 2810.0 2811.0 2812.0 2813.0 2814.0 2815.0	3.7 2.5 3.7 2.4 3.8 3.0 4.1	41.0 42.0 47.0 42.2 42.3 42.2 41.6 41.1 42.3	48 47 46 46 46 49 48 49 49	9.9 9.9 9.9 9.9 9.9 9.9	1.69 1.72 1.91 1.73 1.86 1.73 1.79 1.70	28.36 28.63 29.03 29.30 29.72 29.98 30.31 30.55 30.89 31.19	83652 84408 85511 86267 87425 88196 89156 89878 90853 91751	1338 1474 2172 1490 2285 1423 1807 1344 1822 1673	1815 1812 1816 1813 1817 1813 1813 1810 1810	8.7 8.7 8.7 8.7 8.7 8.7	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
2817.0 2818.0 2819.0 2820.0 2821.0 2822.0 2823.0 2824.0 2825.0	3.1 3.9 4.3 2.6 2.6 2.6 3.1 3.6	40.6 41.1 40.5 41.1 40.2 40.2 39.4 44.2 49.6	49 49 49 49 48 48 48 48	9.9 9.9 9.9 9.9 9.9 9.9	1.72 1.79 1.70 1.68 1.83 1.82 1.80 1.81 1.84	31.47 31.79 32.05 32.28 32.66 33.04 33.43 33.74 34.02 34.43	92557 93523 94272 94964 96081 97184 98276 99182 99985 101145	1501 1793 1390 1285 2067 2105 2088 1738 1538 2245	1806 1806 1803 1798 1801 1803 1805 1805 1803	8.7 8.7 8.7 8.7 8.7 8.7	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
2827.0 2828.0 2829.0 2830.0 2831.0 2832.0 2833.0 2833.0 2834.0 2835.0	7.7 7.9 13.7 6.2 3.0 2.6 2.5 2.1	43.3 44.5 44.6 43.0	52 54 54 54 44 42 45 44 43	9.9 9.9 9.9 9.9 9.9 9.9	1.87 1.54 1.55 1.37 1.56 1.79 1.84 1.85	34.82 34.95 35.08 35.15 35.31 35.65 36.04 36.44 36.92 37.42	102345 102772 103185 103423 103849 104702 105682 106751 108047 109329	2125 715 693 400 890 1846 2109 2182 2658 2728	1808 1800 1792 1782 1775 1776 1778 1781 1787	8.7 8.7 8.7 8.7 8.7 8.7	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2

								•				
DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG	
2837.0 2838.0 2839.0 2840.0	1.9 3.0 1.9	38.8 43.4 43.0 44.1	49 50 50 51	9.9 9.9 9.9	1.87 1.97 1.82 1.99	37.89 38.40 38.74 39.27	110722 112253 113251 114873	2576 2815 1836 2908	1799 1806 1807 1814	8.7	17.2 17.2 17.2 17.2	
2840.5	1.6	43.9	49	9.9	2.03	39.58	115791	3410	1820		17 2	

								•			
BIT NUMBE	R	12	1	ADC (CODE	517	TNT	ERVAL.	2840	.5- 3(111.0
HTC J22	• • • • • • • • • • • • • • • • • • • •	A (m)		SIZE	ar tur me su.	12.250		ZLES	2.070		16 18
COST	470	8.00		RIP .	TTME	8.4		RUN			170.5
TOTAL HOU		8.33			TURNS	139280		DITION	TA	B2 G	
TOTAL TOO	11.62	ro i oo	•	Wille	מאואטו	10/200	UUIT	X7 X. 1 X. C.) 14	17	7. C.	1 1 2 1 3 1 1
DEPTH	ROP	ump	RPM	MIJ	"d"c	HOURS	TURNS	ICOST	CCOST	рр	FG
NEL 111	KUF	WOD	KFP	ITW	u C	กมมหอ	LUKIYO	10001	ccuai	rr	r (p
2041 0	~y ~ y	99 4	E" 4		4 25 113	0 45	A ET 179	4 / *** /	407400	<i>r</i> . m	4 mg .m
2841.0		27.6	51		1.57	0.15	457	1636	107192		17.2
2842.0		43.7	47		1.81	0.48	1378	1801	36931		17.2
2843.0	ა, გ	47.6	47	9.9	1.80	0.75	2151	1506	22761	8.7	17.2
2044 0		A /23 A	A 173	n n		4 64	7071	4 19 0 29	4 / 12 4 15	n m	455 6
2844.0		48.4	47		1.85	1.06	3031	1705	16745		17.2
2845.0		48.2	47		1.90	1.42	4039	1942	13455		17.2
2846.0		47.2	43		1.82	1.74	4867	1778	11332		17.2
2847.0		47.7	47		1.88	2.10	5860	1936	9887		17.2
2848.0		46.9	47		1.88	2.46	6884	1976	8832		17.2
2849.0		47.7	47		1.89	2.81	7896	1945	8022		17.2
2850.0		47.8	47		1.78	3.07	8625	1402	7325		17.2
2851.0		47.3	47		1.81	3.35	9420	1528	6773		17.2
2852.0		48.0	47		1.82	3.64	10234	1597	6323		17.2
2853.0	3,3	48.4	45	9.9	1.83	3.94	11053	1665	5950	8.7	17.2
2854.0		47.8	46		1.80	4.23	11829	1542	5624		17.2
2855.0		48.4	46		1.62	4.38	12263	864	5295		17.2
2856.0		48.3	45		1.72	4.60	12863	1205	5031		17.2
2857.0		47.4	48		1.65	4.78	13359	949	4784		17.2
2858.0		45.4	48		1.68	4,98	13939	1100	4573		17.2
2859.0		46.1	48		1.69	5.18	14524	1107	4386	8.7	17.2
2860.0	13.6		48		1.37	5.25	14737	403	4182	8.7	17.2
2861.0	16.1	46.6	46	9.9	1.30	5.32	14910	341	3994	8.7	17.2
2862.0	11.9		46	9.9	1.39	5.40	15140	459	3830	8.7	17.2
2863.0	9.7	46.8	46	9.9	1.46	5.50	15423	566	3685	8.7	17.2
2864.0	8.2	46.4	46	9.9	1.51	5.63	15758	671	35 57	8.7	17.2
2865.0	8.5	47.0	46	9.9	1.50	5.74	16079	642	3438	8.7	17.2
2866.0	3.1	46.9	46	9.9	1.84	6.07	16972	1787	3373	8.7	17.2
2867.0	3.8	46.0	46	9.9	1.76	6.33	17703	1449	3300	8.7	17.2
2868.0	3.1	46.5	46	9.9	1.83	6.65	18582	1740	3244		17.2
2869.0	3.0	46.7	46	9.9	1.84	6.98	19490	1801	3193	8.7	17.2
2870.0	2.5	45.5	44	9.9	1.88	7.39	20574	2227	3160		17.2
2871.0	2.5	45.5	42	9.9	1.85	7.79	21567	2179	3128		17.2
2872.0	2.7	45.8	41	9.9	1.84	8.16	22494	2041	3094		17.2
2873.0	2.7	47.2	41	9.9	1.86	8.53	23424	2053	3062		17.2
									•••	= •	
2874.0	2.6	45.3	41	9.9	1.84	8.93	24394	2144	3034	8.7	17.2
2875.0	2.7	45.1	41	9.9	1.83	9.30	25328	2061	3006		17.2
2876.0	2.2	46.2	40	9.9	1.90	9.76	26427	2493	2992		17.2
2877.0	3.6	44.7	41	9.9	1.72	10.03	27110	1515	2951		17.2
2878.0	10.6		42		1.36	10.13	27348	516	2886		17.2
2879.0	3.4		42		1.79	10.42	28093	1603	2853		17.2
2880.0	3.6		42		1.78	10.70	28800	1519	2819		17.2
2881.0	3.7		42		1.79	10.97	29485	1483	2786		17.2
2882.0	2.4		41		1.93	11.39	30508	2301	2774		17.2
2883.0	2.0		36		1.93	11.89	31579	2754	2774		17.2
		. ,						poor Tol I		W17	a c 1 I

	NEO TII	200	HOD	DDW	W11	14 11	Hallas					
	DEPTH	ROP	WOB	KPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2884.0		48.0	37		1.87	12.32	32508	2319	2763		17.2
	2885.0 2886.0		48.0 48.0	41 40		1.93	12.78 13.16	33633 34562	2523 2099	2758		17.2
	2887.0	2.9		41		1.83	13.50	35388	1857	2744 2724		17.2 17.2
	2888.0	3.3	48.0	41		1.80	13.81	36141	1684	2703		17.2
	2889.0		48.0	40		1.84	14.16	36995	1925	2687		17.2
	2890.0 2891.0		46.5	40 40		1.84	14.53 14.88	37894 38751	2027 1931	26 73 2659		17.2 17.2
	2892.0		47.6	40		1.86	15.26	39674	2081	2647		17.2
_	2893.0		47.7	43		1.87	15.63	40619	2001	2635		17.2
	2894.0		47.8	45		1.88	15.99	41588	1969	2623		17.2
	2895.0 2896.0	2.7 3.5	50.1 51.0	45 46		1.92	16.36 16.64	42587 43371	2021 1562	2612 2593		17.2 17.2
	2897.0	2.7	51.5	46		1.94	17.01	44395	2039	2583		17.2
	2898.0		51.8	46		1.93	17.36	45365	1906	2571	8.7	17.2
	2899.0	3.1	52.1	49		1.93	17.69	46327	1776	2557		17.2
	2900.0 2901.0		51.8	50 49		1.91	18.00 18,25	47253 48000	1702 1382	2543 2524		17.2 17.2
-	2902.0		46.9	49		1.51	18.36	48329	608	2493		17.2
	2903.0	16.1	46.8	48	9.9	1.31	18.42	48508	340	2458		17.2
	2904.0		46.4	47		1.50	18.54	48830	631	2430		17.2
	2905.0 2906.0		48.0 48.2	52 52		1.93 1.76	18.90 19.11	49952 50633	1963 1189	2422 2403		17.2 17.2
	2907.0		47.4	52	9.9		19.42	51605	1694	2393		17.3
	2908.0	3,3	47.8	52	9.9	1.87	19.73	52569	1677	2382		17.3
	2909.0		47.4	53		1.88	20.05	53573	1743	2373		17.3
	2910. 0 2911.0		47.5 47.9	52 52		1.90	20.39 20.73	546 39 55728	1854 1898	2 365 235 9		17.3 17.3
_	2912.0		48.4	52		1.94	21.10	56884	2012	2354		17.3
	2913.0	2.8	47.8	52	9.9	1.93	21.46	58015	1965	2349		17.3
	2914.0		47.7	53		1.86	21.75	58928	1585	2338		17.3
	2915.0 2916.0		48.9 48.2	53 54		1.94	22.10 22.36	60066 608 94	1942 1404	2333 2321		17.3
	2917.0		47.9	53		1.92	22.71	61998	1898	2315		17.3 17.3
_	2918.0	3.2	48.3	53	9.9	1.89	23.02	62996	1719	2307		17.3
	2919.0		47.8	52		1.89	23.34	64000	1757	2300		17.3
_	2920.0 2921.0		47.8 46.2	51 51		1,90 1,78	23.68 23.93	65042 65807	1854 1360	22 95 22 83		17.3 17.3
	2922.0		47.0	51		1.62	24.08	66271	826	2265		17.3
	2923.0		46.6	51		1.54	24.20	66629	646	2246		17.3
	2924.0		46.6	51		1.81	24.47	67451	1474	2236		17.3
	2925.0 2926.0		47.2 46.7	52 52		1.87 1.85	24.78 25.08	68409 69351	1696 1667	2230 2223		17.3 17.3
_	2927.0		47.0	52		1.94	25.47	70556	2128	2222		17.3
	2928.0	4.3	45.8	45	9.9	1.71	25.70	71183	1273	2211	8.7	17.3
	2929.0		45.4	54		1.54	25,82	71556	628	2194		17.3
_	2930.0 2931.0	11.4	44.7	54 54		1.56	25.94 26.03	71967 72253	690 481	21 <i>77</i> 2158		17.3 17.3
	2932.0	10.9		54		1.46	26.12	72552	502	2140		17.3
	2933.0		44.5	53		1.56	26.25	72970	725	2125		17.3

			•						
DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2934.0 2935.0 2936.0 2937.0 2938.0 2939.0 2940.0 2941.0 2942.0	5.4 48. 2.8 56. 3.2 56. 3.1 55. 5.3 44. 7.7 44. 8.9 44. 9.3 44.	3 53 9 2 52 9 4 52 9 7 52 9 9 52 9 6 52 9 8 51 9 1 54 9	.9 1.72 .9 2.04 .9 1.99 .9 1.84 .9 1.68 .9 1.55 .9 1.50 .9 1.51	26.44 26.80 27.12 27.43 27.72 27.70 28.03 28.15 28.25 28.36	73554 74694 75681 76670 77547 78131 78531 78871 79220 79546	1013 1976 1728 1744 1545 1028 707 613 592	2113 2111 2107 2103 2098 2087 2073 2058 2044 2030	8.7 8.7 8.7 8.7 8.7 8.7	17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3
2944.0 2945.0 2946.0 2947.0 2948.0 2949.0 2950.0 2951.0 2952.0 2953.0	3.3 45. 2.8 44. 3.5 45. 3.9 44. 2.8 45. 4.1 45. 5.8 44. 3.3 43. 1.8 46.	7 50 9 0 50 9 1 50 9 3 50 9 1 50 9 8 50 9 8 51 9 0 47 9	.9 1.82 .9 1.87 .9 1.81 .9 1.76 .9 1.88 .9 1.75 .9 1.64 .9 1.81 .9 2.01 .9 1.90	28.66 29.02 29.31 29.57 29.92 30.16 30.33 30.64 31.20 31.58	80453 81523 82396 83181 84250 84986 85507 86428 88013 89109	1650 1939 1582 1420 1935 1334 941 1664 3083 2094	2026 2025 2021 2015 2015 2008 1999 1996 2005 2006	8.7 8.7 8.7 8.7 8.7 8.7	17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3
2954.0 2955.0 2956.0 2957.0 2958.0 2959.0 2960.0 2961.0 2963.0	4.1 45. 3.5 45. 7.4 45. 5.3 45. 7.1 45. 5.3 48. 2.4 50. 2.7 50. 2.6 51.	8 48 9 3 48 9 5 48 9 7 48 9 9 48 9 1 48 9 4 48 9 5 47 9	.9 1.74 .9 1.79 .9 1.55 .9 1.66 .9 1.78 .9 1.98 .9 1.94 .9 1.97	31.83 32.11 32.25 32.44 32.58 32.77 33.19 33.57 33.96 34.25	89802 90623 91010 91553 91955 92497 93712 94776 95891 96741	1326 1571 741 1040 770 1039 2324 2036 2146 1630	2000 1996 1986 1977 1967 1959 1962 1963 1965	8.7 8.7 8.7 8.7 8.7 8.7 8.7	17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3
2964.0 2965.0 2966.0 2967.0 2968.0 2969.0 2970.0 2971.0 2972.0	3.4 52. 4.9 52. 2.5 52. 3.3 51. 4.9 51. 2.1 50. 2.1 52. 2.6 51. 3.1 51. 3.2 50.	2 47 9 7 47 9 9 47 9 9 47 9 7 47 9 3 47 9 4 47 9 0 48 9	.9 1.89 .9 1.76 .9 1.99 .9 1.89 .9 1.75 .9 2.02 .9 2.05 .9 1.96 .9 1.88	34.55 34.76 35.15 35.45 35.66 36.13 36.61 36.99 37.32 37.63	97583 98164 99285 100139 100719 102046 103424 104494 105422 106325	1627 1121 2166 1653 1122 2569 2663 2076 1760 1720	1959 1952 1954 1952 1945 1956 1956 1955 1953	8.7 8.7 8.7 8.7 8.7 8.7 8.7	17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3
2974.0 2975.0 2976.0 2977.0 2978.0 2979.0 2980.0 2981.0 2982.0	3.2 51. 2.2 50. 3.1 50. 3.5 51. 3.1 51. 4.0 49. 11.1 50. 17.7 49. 11.8 47. 4.4 49.	3 48 9 7 48 9 2 48 9 3 48 9 1 48 9 1 48 9 8 48 9 5 49 9	.9 1.90 .9 2.01 .9 1.90 .9 1.87 .9 1.91 .9 1.79 .9 1.46 .9 1.31 .9 1.42	37.94 38.40 38.73 39.01 39.34 39.59 39.68 39.74 39.82 40.05	107227 108548 109469 110297 111241 111955 112213 112377 112626 113327	1722 2522 1757 1576 1795 1358 494 310 462 1235	1951 1956 1954 1951 1950 1946 1936 1924 1914	8.7 8.7 8.7 8.7 8.7 8.7 8.7	17.3 17.3 17.3 17.3 17.3 17.3 17.3

											4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2984.0	2.6	49.6	52	9.9	1.97	40.43	114536	2122	1910	8.7	17.3
2985.0	2.8	50.4	52	9.9	1.96	40.80	115661	1980	1911	8.7	17.3
2986.0	2.7	50.6	51	9.9	1.96	41.16	116787	2014	1912	8.7	17.3
2987.0	4.8	49.2	51	9.9	1.76	41.37	117428	1145	1906	8.7	17.3
2988.0	3.0	50.4	51	9.9	1.93	41.70	118443	1816	1906	8.7	17.3
2989.0	4.6	49.0	51	9.9	1.77	41.92	119115	1201	1901	8.7	17.3
2990.0	2.9	48.6	51	9.9	1.92	42.27	120178	1889	1901	8.7	17.3
2991.0	7.9	47.8	52	9.9	1.58	42.40	120575	695	1893	8.7	17.3
2992.0		47.7	52	9.9	1.51	42.50	120893	5 57	1884	8.7	17.3
2993.0	11.4	47.9	52	9. 9	1.46	42.58	121168	482	1875	8.7	17.3
2994.0	4.5	47.7	52	9.9	1.76	42.81	121859	1206	1871	8.7	17.3
2995.0	2.4	48.1	52	9.8	2.00	43.22	123147	2245	1873		17.3
2996.0	2.9	48.1	52	9.8	1.94	43.56	124233	1895	1873	8.7	17.3
2997.0	2.3	48.6	52	9.8	2.01	43.99	125572	2334	1876	8.7	17.3
2998.0	2.9	49.2	52	9.8	1.95	44.33	126648	1878	1876	8.7	17.3
299 9. 0	3.1	48.8	52	9.8	1.93	44.66	127668	1779	1876	8.7	17.3
3000.0	2.9	47.8	53	9.8	1.94	45.00	128761	1895	1876	8.7	17.3
3001.0	3.1	48.1	53	9.8	1.91	45.32	129773	1755	1875	8.7	17.3
3002. 0	3.1	48.1	53	9.8	1.92	45.65	130808	1793	1874	8.7	17.3
3003.0	3.1	48.8	53	9.8	1.92	45.97	131822	1754	1874	8.7	17.3
3004.0	2.8	47.4	53	9.8	1.94	46.32	132940	1933	1874	8.7	17.3
3005.0		47.9	53		1.89	46.63	133898	1655	1873		17.3
3006.0	3.9		53		1.84	46.88	134703	1395	1870		17.3
3007.0		47.8	53		1.89	47.18	135659	1656	1868		17.3
3008.0			53		1.94	47.54	136790	1957	1869		17.3
3009.0		47.1	53		1.65	47.69	137266	824	1863		17.4
3010.0		52.4	53	9.8	1.97	48.01	138271	1731	1862		17.4
3011.0		52.5	52		1,97	48.33	139280	1772	1862		17.4

•

(d). COMPUTER DATA LISTING : LIST B

INTERVAL , , , , , ,	10m averages.
DEPTH	Well depth, in metres.
ŘOP	Rate of penetration, in metres per hour.
BIT RUN,	Depth interval drilled by the bit, in metres.
HOURS	Cumulative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours.
TURNS. , , , , , , , , ,	Cumulative bit turns. The number of turns made by the bit, while actually 'on bottom'.
TOTAL COST	Cumulative bit cost, in A dollars.
ICOST	Incremental cost per metre, calculated from the drilling time, in A dollars.
CCOST. , , ,	Cumulative cost per metre, calculated from the drilling time, in A dollars.
IC	ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, (and therefore uneconomic), this should change from negative to positive.

BIT NUMBER		1 IA	DC CODE	111	INTERVA	L.	74.0-21	11.0
HTC OSCJAJ&	26"H0	SI	ZE	26.000) NOZZLES		20 20	20
COST	0	.00 TR:	TP TIME	2.1	BIT RUN		13	37.0
TOTAL HOURS	6	. 03 TO	TAL TURNS	17485	CONDITI	ON	T2 B4 G0.	000
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
80.0	12.4	6.0	0.48	2112	14150.13	442.11	2358.36	****
90.0	7.3	16.0	1,85	7256	21613.14		1350.82	****
100.0	14.1	26.0	2.55	9478	25483.64		980.14	
4.4.0	ul 1*** .6	*** 2 25	*** A	4 25 851 2 4	processes a group processes as a	and "I had has been		
110.0	17.1 34.2	36.0 46.0	3.14	10766	28679.16	319.55		****
120.0 130.0	26.7	56.0	3.43 3.81	11874	30279.25	160.01	658.24	****
140.0	35.2	66.0	3.01 4.09	12726	32332.58	205.33		****
150.0	47.1	76.0	4.30	13206 13669	33886.71 35049.64	155.41	513.43	****
160.0	42.4	86.0	4,54	14095	36341.99	116.29 129.24		****
170.0	34.2	96.0	4.83	14682	37941.87		422.58	
180.0	39.3	106.0	5.08	15237		159.99	395.23	****
			5.31		39335.60	139.37	371.09	
190.0	44.0 35.4	116.0 126.0		15910	40580.95	124.54	349.84	****
2 00 .0	a.a.,49	U.OLI	5.59	16649	42129.37	154.84	334.36	•
210.0	28.2	136.0	5.95	17383	44067.66	193.83	324.03	
211.0	40,4	137.0	5.97	17438	44203.18	135.52	322.65	••••

211.0-800.0 INTERVAL 5 IADC CODE 111 BIT NUMBER 17,500 20 20 20 NOZZLES SIZE OSC 3AJ 589.1 4442.00 TRIP TIME 2.4 BIT RUN COST \$T2 B2 G0.000 TOTAL HOURS 19.13 TOTAL TURNS 155173 CONDITION ICOST CCOST I-C ROP BIT RUN HOURS TURNS TOTAL COST DEPTH 17,39 1970,94 17738,50 220.0 314.8 9.0 0.03 235 17.12 942,61 230.0 319.8 19.0 0.06 502 17909,68 240.0 267.3 29.0 0.10 815 18114.49 20,48 624.64 18366,44 470.93 39.0 1189 25.20 217,3 0.14 250.0 18695,70 32.93 381,54 1650 166.3 49.0 0.20 260.0 95,43 333.05 57.4 59.0 0.38 3162 19650.02 270.0 0,49 4088 20280,41 63.04 293,92 280.0 86.9 69.0 60 83 264,41 290.0 90.0 79.0 0.60 5003 20888,74 80.5 89.0 0.73 6112 21568,55 67.98 242,34 300.0 2385 28,42 225.79 99.0 0.87 22353.30 310.0 69,8 70.35 211.53 8526 320.0 77.8 109.0 1.00 23056,80 201.03 63.3 119.0 9879 23922,15 86.54 330.0 1.16 25070,38 114.82 194.34 340.0 47.7 129.0 1.37 11678 14342 26712.88 164,25 192.18 350.0 33.3 139.0 1.67 77.56 184,49 149.0 15600 27488.50 360,0 70.6 1.81 178.09 82.73 66.2 159.0 1,96 16762 28315.84 320.0 173,12 58.2 169.0 2.13 18000 29257.23 94.14 380.0 19716 130.49 170.74 42.0 179.0 2,37 30562.11 390.0 2.54 20982 31471.57 90.95 166.52 60.2 189.0 400.0 199.0 2.73 22493 32508.78 103.72 163.36 410.0 52.8 57.7 209.0 2.90 23855 33457,78 94,90 160.09 420,0 25941 95.81 157,15 430.0 57.1 217.0 3,07 34415.90 24959 35569.66 115.38 155,33 440.0 47.5 229.8 3.29 2,49.0 9.7分44 36959.75 139.01 154,64 39.4 3 54 450.0 31732 154,51 249 9 3.82 38472,98 151.32 460.0 36.2 470,0 45.0 259.0 A . .) A 33707 39674,44 120.15 153,18 269.0 4.28 35879 40996.04 132.16 152,40 480,0 41.4 279 0 38797 42764.77 176,87 153,28 ٠4٠ 490.0 31.0 4.60 186,91 154 44 29.3 289.0 4.94 41859 44633.87 500.0 46060.42 9.20 44276 142.65 154.05 299.0 38.4 510.0 9.56 27.9 47056 155,42 ÷ 48023.81 196.34 520.0 309.0 196.49 156.70 49830 530.0 27,9 319.0 5.92 49988,73 ٠. 255.35 21.4 329.0 53494 52542,21 159,70

6.39 540.0 52316 55177,81 263,56 162,77 ÷. 339.0 6.87 550,0 20.8 57379,98 164.41 60414 220.22 ٠4٠ 24,9 349.0 7,27 560.0 222,19 59601.92 166,02 ٠,٠ 24.6 359.0 7.67 63515 570.0 67432 62307.48 270,56 168,85 ·†-580.0 20.2 369.0 9,17 64578.08 227,06 170.39 590.0 24.1 379.0 8.58 70668 22.3 172.33 609.0 389.0 9.03 74179 67037,27 245.92 19.7 399.0 9.54 78277 69821.92 278,46 174.99 ٠. 610.0 19.7 177,51 277.86 4. 409.0 10.05 82334 72600,48 620.0 24.7 74819.37 178.57 ٠+٠ 419.0 10,45 85571 221.89 530,0 90322 78028,33 320,90 181.88 640.0 429.0 11.04 17.1

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-C
650.0	19.5	439.0	11.55	94472	80841.87	281.35	184.15	+
660.0	17.4	449.0	12.13	99036	83983.92	314,20	187.05	4.
670.0	17.6	459.0	12.70	103503	87103.14	311,92	189,77	
680.0	19.4	469.0	13.21	107912	89931,89	282.88	191.75	- {-
690.0	18.0	479.0	13.77	112933	92970.52	303.86	194.09	4.
700.0	15.6	489.0	14,41	119395	96469,96	349.94	197,28	· †·
710.0	19.3	499.0	14.93	123627	99306.31	283.64	199.01	-4-
720.0	20.9	509.0	15.41	126788	101928.23	262.19	200.25	4.
730.0	19.3	519.0	15,92	130211	104767.62	283.94	201.86	4
740.0	21.0	529.0	16.40	133353	107374.33	260.67	202.98	-\$-
750.0	19.4	539.0	16.92	136968	110198.52	282.42	204.45	4.
760.0	23.9	549.0	17.33	140257	112488.89	229.04	204.90	-∳∙
770.0	24.0	559.0	17.75	143644	114767,10	227.82	205.31	-4.
780.0	22.4	569.0	18.20	147286	117214.12	244,70	206.00	· † ·
790.0	22.2	579.0	18,65	151004	119676.35	246.22	206.69	· } ·
800.0	20.8	589.0	19.13	155173	122313.48	263.71	207.66	4-

					•			
BIT NUMBER HTC X3A COST	2201		IADC CODE SIZE TRIP TIME	114 12.250 4.2	NOZZLES		300.0-133 18 18	
TOTAL HOURS			TOTAL TURNS				Г7 B4 G0.	
DEPTH	ROP	BIT RU	N HOURS	TURNS	TOTAL COST	TCOST	ccost	I-C
810.0	24.8	10.	0 0.40	3270	27403,74	220.77	2740.37	***
	25.7	20,		6536	29532.40		1476.62	
830.0	34.1	30.	0 1.09	8793	31138.57	160.62	1037.95	
340.0	44,9	40,		10688	32356.76	121.82	808.92	
850.0 860.0	39.6 38.4	50. 60.		13078 15517	33739.20 35165.74	138.24 142.65	674,78 586,10	****
370.0	28.7	70.		18792	37072.86	190.71	529.61	1
880.0	32.9	80.		21654	38735.13	166.23	484.19	****
890.0	38.0	90.		24137	40176.88	144.18	446.41	
900.0	36.8	100.		26669	41665.78	148.89	416.66	***
910.0	30.1	110.		29837	43484,70	181.89	395.32	***
920.0	43.3	120.		31987		126.38	372.90	
930.0	28.6	130.	0 3.92	35142	46661.72	191.32	358,94	
940,0	31.3	140.	0 4.24	38072	48413.04	175.13	345.81	
950.0	30.8	150.		41088	50190.90	177.79	334.61	****
960.0	35.7	160.		43708	51722.37	153.15	323.26	****
970.0	26.7	170.		47188	53775.50	205.31	316.33	
980.0 990.0	28.6 23.6	180.		50428	55688.71	191.32	309.38	****
1000.0	18.3	190. 200.		54299 59312	58006.46 60993.37	231.78 298.69	305.30 304.97	
1010.0	22.1	210.		63578	63469,29	247.59	302.23	
1020.0	17.1	220.		69027	66670.65	320.14	303.05	. . .
1030.0	21.3	230.		73564	69246,94	257.63	301.07	***
1040.0	17 7	240.			72338.79	309.19	301.41	.\$.
	17.6				75447.37	310.86	301.79	-∳-
1960.0	23.8	260.			77743.83	229.65	299.01	****
1070.0 1080.0	19.8 17.8	270. 280.		92964	80511.75 83591.44	276.79	298.19	
1090.0	27.5	290.		9837 4 101812	85580,69	307.97 198.93	298.54 295.11	. . .
1100.0	29.6	300.		104952	87430.02	184.93	291.43	•
1110.0	28.0	310.		109346	89384.29	195,43	288.34	
1120.0	25.3	320.		111730	91551.48	216.72	286.10	
1130.0	40.0	330.	0 12.37	114110	92921.75	137.03	281.58	••••
1140.0	35.6	340,		116770	94460.83	153.91	277.83	****
1150.0	39.1	350.		119128	95861.52	140,07	273.89	****
1160.0	39.9	360.		121451	97233.31	137,18	270.09	
1170.0 1180.0	36.7 25.2	370. 380.		123925 127599	98726.77 100903.08	149.35 217.63	266.83 265.53	
1190.0	38.5	390.		129971	102323.54	142.05	262,37	
1200.0	36.3	400.		132075	103832.21	150.87	259.58	****
1210.0	38.6	410.		134462	105250.11	141.79	256.71	****
1220.0	40,5	420.		136721	106602.13	135.20	253.81	••••
1230.0	3ブ.0	430.	0 15.14	139187	108083.43	148.13	251.36	

	4.0							to the first by the
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1240.0	41.1	440.0	15.38	141408	109415.68	133.23	248.67	****
1250.0	38.5	450.0	15.64	143784	110837.66	142.20	246.31	
1260.0	32.0	460.0	15.95	146717	112548.59	171.09	244.67	
1270.0	21.5	470.0	16.42	151047	115097.51	254.89	244.89	.4.
1280.0	17.8	480.0	16.98	156331	118174.16	307,66	246.20	+
1290.0	37.2	490.0	17.25	158856	119645,89	147.17	244.18	
1300.0	116.5	500.0	17.34	159658	120115.83	46.99	240.23	***
1310.0	122.9	510.0	17.42	160421	120561.43	44.56	236.39	
1320.0	16.1	520.0	18.04	166330	123952.89	339.15	238,37	- ۇ.
1330.0	62.9	530.0	18.20	167802	124822.80	86.99	235.51	
1339.6	8.7	539.0	19.23	177615	130483.35	628.95	242.08	.∳•

HTC J22 COST	6788	S12	ZE IP TIME	12.25	S SIGN TO THE PER	_	18 18 18 329.2 T8 B3 G0.125				
TOTAL HOURS	24	.87 TOT	TAL TURNS	11978	CONDIT	ION	T8 B3 G0	125			
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-C			
1340.0	6.8	1.0	0.15	1744	34424.92	809,42	34425				
	19.4		0.66	5444	37241,50	281.66	3385.59				
1360.0	44.2	21.0	0.89	6666	38480.98	123.95	1832.43	••••			
1370.0	51.6	31.0	1.08	7712	39541.81	106.08	1275.54				
	28.9	41.0	1.43	9580	41435,25	189.34	1010.62				
	25.3	51.0	1.82	11716	43600.92	216.57	854.92	••••			
1400.0	25,2	61.0	2.22	13855	45770.13	216.92	750.33	, 1144			
1410.0	27.5	71.0	2.58	15817	47759.38	198.93	672.67				
1420.0	14.2	81.0	3.29	19623	51617.74	385.84	637.26	***			
1430.0	24.9	91.0	3.69	21792	53816.86	219.91	591.39	·			
1440.0	18.4		4.23	24670	56793.64	297,68	562.31				
1450.0	18.0	111.0	4,79	27756	59835,69	304.20	539.06				
1460.0	19.4	121.0	5.30	30526	62657.59	282.19	517.83	****			
1470.0	17.9	131.0	5,86	33119	65708.39	305.08	501.59				
1480.0	16.3	141.0	6.47	35574	69057,26		489,77	••••			
1490.0	21.2	151.0	6.95	38041	71643.07	258.58	474.46				
1500.0	34,0		7.24	39417	73253.63	161.06	454.99				
	22.5	171.0	7.68	41738	75685.39	243,18	442.60	****			
	15.9	181.0	8.31	44907	79139.23	345.38	437.23	****			
	18,0	191.0	8.87	47819	82173.29	303.41	430,23	****			
1540.0	21.7		9.33	50206	84691.79		421.35				
1550.0	44.9		9.55	51374			407.16				
1560.0	34.4	221.0	9.84	52988	87502.29	159,23	395.94	****			
1570.0	47.2	231.0	10.05	54067			383.81	. ****			
1580.0	19.1	241.0	.0.58	57255	91532.50	287,13	379,80				
1590.0	20.7	251.0	30.11	60164	94183.31		375.23	••••			
1600.0	27.8	261.0	11.42	62347	96154.31	197.10	368.41	•••			
	14.9		12.09	65931	99826,45	367.21	368.36	••••			
1620.0			12.67	49438 -	102986,74	316.03	366.50	****			
1630.0	3.0		15,99	83168	121160.70		416.36	· ķ •			
1640.0	8.5		17.17		127607.51	644.68	423.95	- {·			
1650.0	4,6		19.35	28272	139538.01	1193.05	448.68	.4.			
1660 0	3.8	321.0	- 21,98 t	10119	153951.13	1441,31					
1668.2	2.8	329,2	24.87 1	19781	169775.40	1929.79	515.72	4			

INTERVAL

517

IADC CODE

BIT NUMBER

HTC J44		SI	ZE	12,250	NOZZLE!	3	18 18	18
COST	4919	.00 TR	IP TIME	6.2	BIT RU	N	27 13 BB G0.	73.8
TOTAL HOURS	32	. 21 TO	TAL TURNS	140419	CONDIT	ION .	13 B8 G0.	0.00
DEPTH	nan	BIT RUN	HOURS	THENT	TOTAL COST	recer	cocca	тс
DET IT	RUF	DII KON	nuuka	CMMO	TOTML COST	3.6001	CCCST	1
1670.0	2,4	1.8	0.76	3288	43035.65	2317,58	23909	2 Tet
1680.0	12.1	11.8	1,59	8047	47547,58	451.19	4029.46	
1690.0	41.3	21.8	1.83	9140	48872.23	132.46	2241.85	
3 22 0 0 0	25.7	"" 4 (")	en en en	4 0 0 4 4	manon on		4 / 25 004 15 104	
1700.0 1710.0	7,9	31.8 41.8	2.22 3.49	10911 16798	51002.92 57972.54		1603.87	****
· ·	9.4	51.8	4,55	21616	63797.33		1231.61	••••
	4.7	61.8	6.67	29919	75368.92			
1740.0	32.6		6.97	31289	77049.46		1073.11	
1750.0	11.2	81.8	7.87	35277	81931.99		1001.61	***
1760.0	13.8	91.8	8.59	38511	85907.30			••••
	21.2	101.8	9.07	40654	88495.76	258.85		
	9.5	111.8		45330				****
	24.6	121.8	10.53	47177	96505.98		792:33	,,,,
3000 0		as comparate and	4 25 5 25	1000 0000 ELIE 200, 204		45 45 J 105 4		
	6.8	131.8	12.00	53788	104570.96		793,41	.∳∙
1810.0 1820.0	17.0	141.8	12.59	56471	107799.17		760.22	****
1830.0	24.2	151.8 161.8	13.94 14.35	62513 64395	115169.54		758.69	
1840.0	5.7	171.8	16.10	72459	117427.98		725.76 739.29	 -∳•
1850.0	8.4	181.8	17.29	77916		653.35	734.56	
1860.0	5.0	191.8	19.29	86965	144489.90		753.34	-4-
1870.0	3.5	201.8		97188	160030.65		793.02	4
1880.0	3.9	211.8		108906	174096.28		821.98	4.
1890.0	3.4	221.8		21664	190014.73		856.69	· 4 ·
	10.7	231.8		125910	195143.60		841.86	
	25.1	241.8		27707	197326.00		816.07	****
	22.0	251.8		129258	199811.04	248.50	793 53	••••
	18,5	261.8		32224	202772.10		774.53	****
1940.0		271.8		38782	212009.64		780.02	· * -
1942.0	3,4	273.8	32.21 1	40419	215207.55	1598.96	786.00	4.

INTERVAL

1668.2-1942.0

5

IADC CODE

HTC J22	6788 34	.00 T	ADC CODE IZE RIP TIME OTAL TURNS	517 12.250 6.6 137842	NOZZLES BIT RUM	1 3	742.0-218 18 18 24 T3 B7 G0	3 18 43.1
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	rcost	CCOST	I-C
1950.0 1960.0 1970.0	4,3 7,9 8,5	8.0 18.0 28.0	3.11	6886 12855 18374	53033.50 59948.73 66383.38	691.52	6629.19 3330.48 2370.83	
1980.0 1990.0 2000.0 2010.0 2020.0 2030.0 2040.0 2050.0 2060.0	10.1 6.8 9.2 8.3 8.7 10.5 7.6 7.1 6.5	38.0 48.0 58.0 68.0 78.0 98.0 108.0 118.0	6.75 7.84 9.05 10.20 11.16 12.48 13.88 15.42	22832 29015 33526 37997 42678 47027 53084 58121 64998 69215	71796.02 79886.85 85821.15 92444.38 98772.56 103999.67 111240.35 118897.75 127323.17	809.08 593.43 662.32 632.82 522.71 724.07 765.74 842.54	1889.37 1664.31 1479.67 1359.48 1266.31 1181.81 1135.11 1100.91 1079.01	
2080.0 2090.0 2190.0 2110.0 2120.0 2130.0 2140.0 2150.0 2160.0	7.8 7.0 5.7 5.3 14.2 5.2 14.5 7.7	138.0 148.0 158.0 168.0 178.0 188.0 198.0 208.0	17.62 19.06 20.82 22.72 23.42 25.31 26.93 27.62 28.92	74340 79482 86281 93387 95805 102745 109537 112135 116737 123732	139412.27 147287.15 156918.58 167297.26 171151.05 181494.24 190372.86 194143.01 201249.86 211658.44	703.54 787.49 963.14 1037.87 385.38 1034.32 887.86 377.01 710.69	1010.23	
2180.0 2185.0	5.5 3.5	238.0 243.0		132140 137842	221657.05 229440 25		931.37 944.20	\$-

BIT NUMBER HTC J11 COST TOTAL HOURS	7 6788.00 3.84	IADC CODE SIZE TRIP TIME TOTAL TURNS	437 12.250 6.7 17534	INTERVAL NOZZLES BIT RUN CONDITIO	2185.0-2211.5 18 18 18 26.5 T4 B2 G0.000
DEPTH	ROP BIT	RUN HOURS	TURNS T	OTAL COST	ICOST CCOST I-C
2190.0 2200.0 2210.0		5.0 0.63 15.0 1.84 25.0 3.59	3419 9552 16508	53523.21	688.47 9382.57 - 661.04 3568.21 - 959.34 2524.66 -
2211.5	5.9	26.5 3.84	17534	64499.06	921.62 2433.93 -

HTC J22		SI:		12.250 7.1) NOZZLES I BIT RUM	1	211.5-242 18 18 21 12 83 G0	3 18 16.5
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2220.0 2230.0 2240.0	4.1 4.2 4.2	8.5 18.5 28.5		6657 14200 21042		1315.52	3795.09	••••
2250.0 2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0	3.4 8.2 3.7 4.8 4.0 6.3 3.5 3.4	38.5 48.5 58.5 68.5 78.5 98.5 108.5	9.77 10.99 13.67 15.76 18.23 19.81 22.63 25.59	29662 33645 42506 49562 57656 62666 71442 80788	99141.47 105851.39 120497.01 131924.56 145470.62 154127.20 169571.26 185745.33	670.99 1464.56 1142.75 1354.61 865.66 1544.41	2182.50 2059.78 1925.91 1853.13 1741.55 1721.54	
2330.0 2340.0	4.6	118.5	27.78 29.92	87787 94233	197762.95	1201.76	1668.89	
2350.0 2360.0 2370.0 2380.0 2390.0 2400.0 2410.0 2420.0	6.2 5.2 3.2 3.2 4.0 6.8 5.0	138.5 148.5 158.5 168.5 178.5 188.5 198.5 208.5	33,48 36,20 39,37 42,48 45,01 46,47 48,49	99344 105725 114709 125028 134475 142098 146561 152440	218337.29 228937.50 243876.65 261189.81 278223.15 292073.38 300098.31 311156.29 321980.71	1060.02 1493.91 1731.32 1703.33 1385.02 802.49 1105.80	1541.67 1538.65 1550.09 1558.67 1549.46 1511.83 1492.36	

BIT NUMBER HTC J22 COST TOTAL HOURS	6788	.00 TR	DC CODE ZE IP TIME TAL TURNS	7.6	BIT RU	8 ·	428.0-26 16 1 2 T6 B2 G0	6 18 06.0
HTPBC	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2430.0	1.6	2.0	1.25	2504	55221.98	3411.99	27611	
		12.0		8165				
2450.0	5.3	22.0	5.17	13971				
2460.0	2.9	32.0	8.66	24677	95816.82	1913.36	2994.28	
	7.9	42.0	9.93		102777.68			
2480.0	6.5	52.0	11.48	33487	111238.07			
2490.0	5.9	62.0	13,17	38729	120521,24			* ***
2500.0	3.9	72.0	15.72	46573	134465,76			
2510.0	4.4	82.0	17,97	53566	146801.24			
2520.0	4.1	92.0	20.38	61022	159995,99	1319.48	1739.09	••••
2530.0	3.0	102.0	23.75	71632	178402,20	1840.62	1749,04	- ş -
2540.0	3.7	112.0	26.46	80081	193275.95	1487,38	1725.68	****
2550.0	3.2	122.0	29.59	89750	210423.35	1714.74	1724.78	
2560.0	2.6	132.0	33,49	101969	231737.83	2131.45	1755,59	-4.
2570.0	2.7	142.0	37,22	113706	252176.31	2043.85	1775.89	
2580.0	2.6	152.0	41.04	125734	273087,76	2091.15	1796.63	+
2590.0	2.7	162.0	44.81	137544	293731.56	2064.38	1813.16	.6.
2600.0	3,4	172.0	47.78	146891	310015.62	1628,41	1802.42	
2610.0	2,9	182.0	51,25	157732	328973.57	1895.79	1807.55	4
2620,0	3.7	192.0	53.93	166102	343646.57	1467.30	1789.83	·
2630.0	3,1	202.0	57,17	176420	361391.66	1774.51	1789.07	
2634.0	2.8	206.0	58.59	180906	369187,45	1948.95	1792.17	4.

	BIT NUMBER HTC J33	10	IA: SI:	ZE	537 12,250	NOZZLES	3	634.0-268 16 16	5 18
	COST TOTAL HOURS	6637.00 15.91	TR. TO:	IP TIME TAL TURNS	7.7 45492				47.0 .000
	DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
	2640.0	2,1	6.0	2.84	8624	64356.17	2593.61	10726	••••
•	2650.0	2.8	16.0	6.46	18824	84171.95	1981.58	5260.75	•
	2660.0	3.0	26.0	9.81	27958	102522.32	1835.04	3943.17	••••
	2670.0	3.3	36.0	12.80	36491	118882.87	1636.05	3302.30	-174
	2680.0	3.3	46.0	15.80	45165	135292.66	1640.98	2941,14	****
	2681.0	9.3	47.0	15.91	45492	135882.74	590.08	2891.12	****

*** *** *** *	10	SIZE	TIME	8.469 7.7	NOZZLES BIT RUM	ł 3		4 13 12.6
TOTAL HOURS	10.94	TOTA	AL TURNS	59389	CONDIT	. ON	ro Bo Go	.050
DEPTH	ROPBIT	RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I C
2690.0	1.3	9.0	6.86	37294	92737.29		10304	

•

BIT NUMBER HTC J22 COST TOTAL HOURS		SI.	DC CODE ZE IP TIME TAL TURNS	517 12.25(8.(11579)	0 NOZZLE 0 BIT RU	S N	693.6-2840.5 16 16 18 146.9 13 B3 G0.000
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	TCOST	CCOST I-C
2700.0 2710.0 2720.0	3.8 3.3 3.1	6.4 16.4 26.4	1.70 4.73 7.99	5334 14367 24414	59869.10 76465.96 94349.44	1659,69	4662.56 -
2730.0 2740.0 2750.0 2760.0 2770.0 2780.0 2800.0 2810.0 2820.0	3.3 3.6 5.2 4.9 3.6 6.8 4.0 4.8 3.7	36.4 46.4 56.4 76.4 86.4 96.4 106.4 116.4	11.00 13.77 15.69 17.72 20.52 21.98 24.48 26.57 29.30 32.28	33123 41113 46762 53049 61459 65387 72312 78437 86267 94964	110835,27 125985,81 136504,55 147617,28 162910,78 170941,62 184639,77 196058,69 211006,96	1515.05 1051.87 1111.27 1529.35 803.08 1369.81 1141.89 1494.83	2715.21 - 2420.29 - 2223.15 - 2132.34 - 1978.49 - 1915.35 -
2830.0 2840.0 2840.5	3.52.4	136.4 146.4 146.9	39,27	103423 114873 115791	243043.18 265592.57 267297.43	2254,94	1781.84 - 1814.16 + 1819.59 +

BIT NUMBER HTC J22 COST TOTAL HOURS		.00 T	ADC CODE IZE RIP TIME OTAL TURNS	517 12.250 8.4 139280	NOZZLES BIT RUN	3 N	840.5-301 16 16 17 14 B2 G0	6 18 70.5
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
2850.0 2860.0 2870.0	3.1 4.6 4.7	19.5	5.25	8625 14737 20574	69585.91 81545.75 93227.27	1195,98	4181.83	
2880.0 2890.0 2900.0 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0	3.0 2.6 2.9 4.2 3.0 4.4 4.8 3.5 2.9		14.53 18.00 20.39 23.68 25.94 28.03 30.33 33.19	28800 37894 47253 54639 65042 71967 78531 85507 93712 103424	111351.04 132323.33 151312.45 164395.58 182428.10 194815.29 206264.12 218859.66 234510.56 253244.18	2097.23 1898.91 1308.31 1803.25 1238.72 1144.88 1259.55 1565.09	2673.20 2543.07 2365.40 2294.69 2176.71 2073.01 1998.72 1962.43	
2980.0 2990.0 3000.0 3010.0 3011.0	3.3 3.9 3.7 3.3 3.1	149.5 159.5	42.27 45.00 48.01	112213 120178 128761 138271 139280	270027.02 284195.80 299162.32 315614.32 317386.09	1417.38 1496.65 1645.20	1900.98 1875.63 1862.03	

(e). COMPUTER DATA LISTING : LIST C

INTERVAL 10m averages. DEPTH. . . Well depth, in metres. FLOW RATE. Mud flow into the well, in gallons per minute. Pump pressure, in pounds per square inch. PBIT Bit pressure drop, in pounds per square inch. XP SP Percentage of surface pressure dropped at the bit. . . . Bit hydraulic horsepower. HHP/SQ IN. Bit hydraulic horsepower per square inch of bit diameter. IMPACT FORCE Bit impact force, in foot-pounds per second squared. JET VELOCITY . . Mud velocity through the bit nozzles, in

metres per second.

	BIT NUMBE HTC OSC3A COST TOTAL HOU	J&26"HO 0.	.00 T	ADC CODE IZE RIP TIME OTAL TURN		0 NOZ	ERVAL ZLES RUN DITION		1.0-211.0 20 20 20 137.0 14 G0.000
		FLOW					HHP/	IMPACT	
	DEPTH	RATE	PSP	PBIT	%PSP	HHP	sqin	FORCE	VELOCITY
	80.0	625	330.0	364.9	110.6	133	0.25	606	66
	90.0	620	330.0	359.1	108.8	130	0.24	596	66
	100.0	620	330.0	359.1	108.8	130	0.24	596	66
	110.0	620	330.0	359.1	108.8	130	0.24	596	66
	120.0	630	380.0	370.8	97.6	136	0.26	616	67
	130.0	630	380.0	370.8	97.6	136	0.26	616	67
	140.0	630	380.0	370.8	97.6	136	0.26	616	67
	150.0	630	380.0	370.8	97.6	136	0.26	616	67
	160.0	630	380.0	370.8	97.6	136	0.26	616	67
	170.0	630	380.0	370.8	97.6	136	0.26	616	67
	180.0	630	380.0	370.8	97.6	136	0,26	616	67
	190.0	630	380.0	370.8	97.6	136	0.26	616	67
	200.0	620	395.0	359.1	90.9	130	0.24	596	66
•	210.0	620	395.0	359.1	90.9	130	0.24	596	66
r page	211.0	620	395.0	359.1	90.9	130	0.24	596	66

BIT NUMBE OSC 3AJ COST TOTAL HOU	4442	.00 TR	DC CODE ZE ZP TIME DTAL TURNS		NOZ BIT	ERVAL ZLES RUN DITION		1.0-800.0 20 20 20 589.0 32 G0.000
DEPTH	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin		JET VELOCITY
220.0 230.0 240.0	965 965 971	1780.0 1780.0 1842.4	870.0 870.0 882.2	48.9 48.9 47.9	490 490 500	2.04 2.04 2.08	1 444 1 444 1 465	102
250.0 260.0 270.0 280.0 290.0 300.0 310.0 320.0 330.0	980 973 966	1800.0	884.8	44.8 52.3 49.9 49.1 48.4 48.1 48.3 49.2 47.9 50.6	414 551 513 502 491 486 490 499 480 522	2.08	1291 1563 1490 1468 1448 1448 1444 1469 1431	104 103 102 102 102 102 102
350.0 360.0 370.0 380.0 390.0 400.0 410.0 420.0 430.0	981 979 952 841 846 962 895 975 543	1800.0 1800.0 1800.0 1800.0 1800.0 1860.0 1860.0 1800.0 630.0	932.0 928.3 877.6 684.8 693.1 905.9 784.0 929.4 288.2 263.5	51.8 51.6 48.8 38.0 38.5 48.7 42.2 51.6 45.7	534 531 488 336 342 509 409 528 91	2.22 2.21 2.03 1.40 1.42 2.11 1.70 2.20 0.38 0.33	1547 1541 1457 1137 1151 1504 1302 1543 478 437	104 101 89 90 102 95 103 58
450.0 460.0 470.0 480.0 490.0 510.0 510.0 520.0 530.0	540 968 957 810 832 922 927 937 916	650.0 1800.0 1892.4 1723.1 1660.9 1768.2 1910.0 1910.0 1910.0	284.9 917.2 896.4 642.4 676.9 832.6 841.1 858.3 840.0	43.8 51.0 47.4 37.3 40.8 47.1 44.0 44.9 44.8	90 518 501 304 328 448 455 469 454 438	0.37 2.15 2.08 1.26 1.37 1.86 1.89 1.95 1.89	473 1523 1488 1066 1124 1382 1396 1425 1395 1362	
550.0 560.0 570.0 580.0 590.0 600.0 610.0 620.0 630.0	921 923 936 924 929 932 921 933 922 924	1830.0 1830.0 1830.0 1830.0 1850.0 1850.0 1850.0 1210.0 1880.0	849.0 852.9 877.1 873.0 881.6 887.7 857.1 879.5 859.7	46.4 46.6 47.9 47.7 47.7 48.0 46.3 72.7 45.9	456 459 479 471 478 483 460 479 462 465	1.90 1.91 1.99 1.96 1.99 2.01 1.91 1.99	1409 1416 1456 1449 1464 1474 1423 1460 1427	98 99 98 98 99 98 99 98

The State of the S								
	FLOW		•			HHP/	IMPACT	JET
DEPTH	RATE	PSP	PBIT	%PSP	HHP	sqin	FORCE	VELOCITY
650.0	924	1880.0	364.0	46.0	466	1.94	1434	98
660.0	916	1880.0	848.8	45.2	454	1.89	1409	97
670.0	924	1880.0	863.9	46.0	466	1.94	1434	98
680.0	918	1880.0	852.0	45.3	456	1.90	1414	97
690.0	916	1910.0	848.9	44,4	454	1.89	1409	97
700.0	922	1910.0	878.2	46.0	472	1,96	1458	98
710.0	928	1910.0	889,3	46.6	481	2.00	1476	98
720.0	922	1910.0	878.5	46.0	473	1.97	1458	98
730.0	917	2050.0	868.6	42.4	465	1.93	1442	97
740.0	923	2050.0	871.0	42.5	469	1.95	1446	98
750.0	913	2050.0	851. 8	41.6	454	1.89	1414	97
760.0	917	2050.0	859.5	41.9	460	1.91	1427	97
770.0	918	2050.0	851.5	41.5	456	1.90	1414	97
780.0	921	2050.0	857.6	41.8	461	1.92	1424	98
790.0	924	2050.0	863.0	42.1	465	1.93	1433	98
300.0	922	2050.0	859.8	41.9	463	1,92	1427	98

	BIT NUMBER HTC X3A COST	2201		TADC CODE SIZE TRIP TIME	114 12.250 4.2	NOZZ	RVAL LES RUN	800.	0-1339.0 18 18 18 539.0
	TOTAL HOURS			TOTAL TURNS			ITION	T7 E	4 G0.125
	DEPTH	FLOW RATE	pSp	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
	810.0	984	2815.0	1445.2	51.3	830	7.04	1943	129
	820.0	983	2812.6		51.2	826	7.00	1936	129
	830.0	984	2796.9		51.7	830	7.04	1943	129
	840.0	995	2824.2		52.3	85 8	7.28	1986	130
	850.0	984	2823.0		51.2	830	7.04	1943	129
	860.0	992	2797.8		52.4	849	7.21	1973	130
	870.0 880.0	577 994	1080.1		46.0 51.8	167 85 4	1.42 7.25	668 1981	75 130
		980	2810.8		50.9	818	6.94	1925	128
.		985	2819.8		51.3	832	7.06	1946	129
_		972	2803.5		50.3	799	6.78	1895	127
	920.0	975	2802.3		50.6	806	6.84	1906	128
	930.0	970	2846.2	1403.1	49.3	794	6.74	1887	127
	940.0	976	2835.3	1421.3	50.1	810	6.87	1911	128
1.0	950.0	971	2815.6		50.0	797	6.76	1892	127
	960.0	974	2831.0		50.0	804	6.82	1903	127
	970,0	969	2818.4		49.7	792	6.72	1884	127
	980.0	966	2844.0		48.9	784	6.65	1871	126
	990.0 1000.0	983	283 3.4 2884.7		50.9	827 905	7.02 7.68	1939 205 9	129 133
	1010.0	1013 983	2899,4		53.1 49.7	900 826	7.00	1937	129
	1020.0	973	2902.6		48.6	801	6.80	1898	127
	1030.0	964	2872.8		48.7	787	6.68	1883	126
	1040.0	961	2877.4	1392.1	48.4	780	6.62	1872	126
	1050.0	965			48.9	791	6.71	1889	126
	1040.0	960	2867.8		48.5	779	6.61	1869	126
	1070.0 1080.0	927 959	2661.0 2867.2		48.7	702	5.95	1744	121
	1090.0	962	2871.6		49,4 49.6	792 800	6.72 6.79	1905 1917	125 126
	1100.0	945	2901.8		47.4	759	6.44	1851	124
	1110.0	942	2909.2		48.0	768	6.52	1879	123
-	1120.0	923	2821.7		47.6	723	6.13	1805	121
	1130.0	918	2874.3	1354.0	47.1	725	6.15	1821	120
	1140.0	928	2884.3		48.0	749	6.36	1861	121
	1150.0	910	2837.1		46.9	706	5,99	1788	119
	1160.0	397	2830.5		46.1	683	5,80	1756	117
	1170.0	891	2845.9		45.3	670	5.68	1732	117
	1180.0 1190.0	886 885	2822.3 2829.3		46.1 45.9	6 73 670	5.71 5.68	1750 1745	116 116
	1200.0	891	2863.9		46.0	685	5.81	1770	117
	1210.0	890	2877.8		45.6	682	5.78	1765	116
	1220.0	888	2883.5		45.3	676	5.74	1756	116
	1230.0	889	2869.6	1308.2	45.6	678	5.75	1759	116

DEPTH	RATE	PSP	PBIT	%P SP	ннР	sqin	FORCE	VELOCITY
1240.0	878	2783.3	1276.0	45.8	653	5.54	1716	115
1250.0	876	2771.0	1271.3	45.9	650	5.51	1710	115
1260.0	869	2764.1	1252.3	45.3	635	5.39	1684	114
1270.0	784	2416.6	1017.8	42.1	465	3,95	1369	103
1280.0	864	2773.4	1237,2	44.6	624	5.29	1664	113
1290.0	854	2740.7	1207.2	44.0	601	5.10	1623	112
1300.0	858	2751.0	1219.1	44.3	610	5.18	1639	112
1310.0	868	2829.7	1248.9	44.1	633	5.37	1679	114
1320.0	860	2827.2	1226.1	43,4	615	5,22	1649	113
1330.0	850	2814.0	1198.1	42.6	594	5,04	1611	111
1339.0	851	2744.4	1200.6	43.7	596	5.06	1614	111

•

BIT NUMBER		4	IADC CODE	517		ERVAL	1339.0	1-1668.2
HTC J22	6788	, n n	SIZE	12.250		ZLES	1	8 18 18
COST TOTAL HOURS		.00 .87	TRIP TIME TOTAL TURNS	4.9 119781		RUN DITION	70 D7	329. 2 G0.125
1 to 1 1 that I 1 to 1.0 th the	1414		1 (2) 112 1 (2)(1(4)		(1, C) Y		, , , , , , , , , , , , , , , , , , ,	, marina
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSF	PEIT	%PSP	ННР	sqin	FORCE V	PELOCITY
1340.0	857	2821.3		43.2	609	5.17	1637	112
1350.0	862	2790.0		43.7	612	5.20		. 113
1360.0	860	2787.4	1212.6	43.5	608	5.16	1631	112
1370.0	872	2824.5	1259.2	44.6	640	5.43	1693	114
1380.0	860	2782.6		44.1	615	5.22	1649	113
1390.0	861	2870.t			611	5.18	1635	113
1400.0	853	2860.0		41.7	593	5,03	1604	112
1410.0	849	2805.7		42.2	586	4.97	1591	111
1420.0	828	2783.2		41.8	570	4.83	1566	110
1430.0	841	2783.2		42.1	575	4.88	1576	110
1440.0	847	2903.5		42.4	587	4.98	1597	111
1450.0 1460.0	845 835	2794,2 2668,8		42.4	583	4.95	1591	111
140010	000	~~~~~) lido, z	43.3	563	4,78	1555	109
1470.0	828	2646.9	1135.1	42.9	548	4.65	1526	108
1480.0	841	2707.4	1171.6	43.3	575	4.88	1575	110
1490.0	863	2815.5		43.8	621	5.27	1659	113
1500.0	842	2703.1		43.4	577	4.89	1579	110
1510.0	845	2738.0		43.2	583	4,94	1590	111
1520.0	848	2753.4		43.2	589	4,99	1601	111
1530.0	596	1480.9		39.7	205	1.74	792	78
1540.0	852	2798.0		43.0	598	5.07	1618	111
1550.0 1560.0	835	2677.3		43.1	562	4,77	1552	109
idov, v	833	2723.7	[14, 4, 4	42.2	558	4.74	1546	109
1570.0	835	2758.9		41.8	562	4.77	1552	109
1580.0	529	1219.9		38.1	143	1,22	625	69
1590.0	828	2692.8		42.2	549	4.66	1529	108
1600.0	830	2670.0		42.7	552	4.68	1534	109
1610.0	835	2711.7		42.6	562	4.77	1552	109
1620.0	836	2749.2		42.1	564	4.79	1557	109
1630.0 1640.0	83 7 83 7	2743.2 2728.1		42.5	571	4.85	1569	110
1650.0	843	2701.1		42.5	566 567	4.80 4.81	1559	109
1660.0	506	2014.2		20.7	123	1,04	1550 560	110
		er er e t Tass		nee San Hillian	is too lot	A 1 W "Y	12 14 W	4.33.3
1668.2	852	2732.1	1167.2	42.7	580	4.92	1570	111

BIT NUMBER HTC J44 COST TOTAL HOUR	4919 S 32	. 00	IADC CODE SIZE TRÎP TIME TOTAL TURNS	617 12.250 6.2 140419	NOZ BIJ	TERVAL ZZLES F RUN MOITION		.2-1942.0 18 18 18 273.8 38 G0.000
DEPTH	FLOW RATE	PSP	PETT	%P SP	ннр	HHP/ sqin		JET VELOCITY
	847 855 858	2908.4 2930.7 2926.7	1175.0	39.6 40.1 40.5	570 586 593	4.83 4.97 5.03	1550 1580 1592	111 112 112
1710.0 1720.0	850 855 862 875 867	2902.6 2931.8 2878.5 2972.8 2966.7	1162.3 1181.3 1217.5	40.0 39.6 41.0 41.0 40.3	576 580 594 621 605	4.89 4.92 5.04 5.27 5.13	1562 1563 1589 1637 1608	112
1750.0 1760.0 1770.0 1780.0 1790.0	586 581 865 868 871	1538.7 1557.6 2956.0 2972.6 2976.8		35.6 34.5 40.2 40.3 40.6	187 182 600 607 614	1.59 1.55 5.09 5.15 5.21	736 723 1599 1611 1624	77 76 113 114 114
1830.0 1840.0 1850.0 1860.0	853 845 845 845 824 824 789 778 852	2929.8 2916.9 2934.4 2954.4 2814.7 2828.7 2642.7 2521.4 2906.3	1182.9 1159.2 1158.5 1159.5 -1103.9 1101.3 1011.7 -983.2 1192.0	40.4 39.7 39.5 39.2 39.2 38.9 38.3 39.0 41.0	589 571 572 531 529 466 446 593	5.00 4.85 4.84 4.85 4.51 4.49 3.95 3.79	1591 1559 1559 1559 1484 1481 1360 1322 1603	112 111 111 111 108 108 103 102
1870.0 1900.0 1910.0 1920.0 1930.0 1940.0	855 847 851 845 847 827 859	2899.5 2953.0 2877.6 2916.8 2953.2 2995.9 3002.2	1178.5 1165.8 1175.4 1159.3 1165.0 1111.9	39.5 40.8 39.7 39.4 37.1 39.9	578 576 583 571 576 537 600	5.07 4.89 4.95 4.85 4.88 4.55	1612 1568 1581 1559 1562 1495 1610	112 111 111 111 111 103 112

BIT NUMBER HTC J22 COST TOTAL HOURS		. 00	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 12.250 6.6 137842	NOZ BIT	ERVAL ZLES RUN DITION		0-2185.0 18 18 18 243.0 27 GO.125
	FLOW	jac. 201, 200.	gon, 400, 110 ddgd	W 2 100 200 140.	111195	ННР/	IMPACT	and the second s
 DEPTH	RATE	PSP	PBIT	XP SP	HHP	sqin	FURUE	VELOCITY
1950.0	841.	2956.3	1149.2	38.9	564	4.79	1545	110
1960.0	839	2940.0		38.9	560	4.75	1538	110
1970,0	557	1444.2		34.9	164	1,39	678	73
	the tire of		W. W. C. L. W.		7		4.0° F 44	
1980.0	835	2901.6	1132.6	39.0	552	4,68	1523	109
1990.0	842	2934.9	1150.9	39.2	565	4.80	1548	110
2000.0	840	2936.4	1146.7	39.1	562	4.77	1542	110
2010.0	837	2913.1	1138.7	39,1	556	4.72	1531	110
2020.0	837	2997.3	1138.9	38.0	556	4.72	1531	110
2030.0	841	2994.5	1148.0	38.3	563	4,78	1544	110
2040.0	562	1537.7	513.0	33.4	168	1,43	690	74
2050.0	833	2943.0	1127.3	38.3	548	4.65	1516	109
2060.0	827	2943.1	1110.0	37.7	575	4,54	1493	108
2070.0	831	2957.3	1120.5	37,9	543	4.61	1507	109
2080.0	826	2961.1		37.5	535	4.54	1491	108
2090.0	824	2877.7		37.9	525	4,45	1468	108
2100.0	821	2894,1		37.9	525	4.45	1473	107
2110.0	825	2877/1		38.4	531	4.51	1485	108
2120.0	548	1474.7		33.1	156	1.33	657	72
2130.0	813	2935.4		36.6	509	4.32	1443	106
2140.0	819	2989.6		36.5	521	4,42	1465	107
2150.0	821	3016.7		36.3	524	4.45	1472	107
2160.0	826	3038.5		36.4	533	4.53	1489	108
2170.0	921	3063.9	1095.8	35.8	525	4.46	1474	107
2180 0	551	1591.9	492.8	31,0	158	1.34	663	72
2185.0	404	2998.0			63	0.53	357	53
tion of North Section 1997	1 45 1	2 2 NA 1 W	2.2.1.2.1.2.1.4.2	5.00 (1.00	V.7 Va7	AN E SHOWS	512 Sept. 2	547.545

BIT NUMBER HTC J11 COST TOTAL HOURS	6788 3 3		IADC CODE SIZE TRIP TIME TOTAL TURNS	437 12.250 6.7 17534	BIT	ERVAL ZLES RUN DITION	and the second s	-2211.5 8 18 18 26.5 G0.000
DEPTH	FLOW RATE	PSP	рвіт	XPSP	ннр	HHP/ sqin	IMPACT FORCE V	JET ELOCITY
2190.0 2200.0 2210.0	815 814 797	3017.5 3001.2 2961.5	1085.9	35.8 36.2 34.8	514 515 479	4.36 4.37 4.06	1452 1460 1385	107 106 104
2211.5	798	2951.6	1034.4	35.0	482	4.09	1391	104

•	BIT NUMBER HTC J22 COST TOTAL HOURS	6788 50	. 00	IADC CODE SIZE TRIP TIME TOTAL TURN	517 12,250 7,1 IS 158096	NO2	TERVAL ZZLES RUN WDITION		.5-2428.0 18 18 18 216.5 33 G0.000
	DEPTH	FLOW RATE	PSP	PBIT	%PSP	ннь	HHP/ sqin		JET VELOCITY
	2220.0	767	2775.2		34.4	427	3.62	1283	
	2230.0 2240.0	768 554	2755.3 1575.6		34.8 31.6	429 161	3 - 6 4 1 - 36	128 8 67 0	100 72
	2250.0	821	3085.9		35.5	524	4.45	1471	
	2260.0	813	2999.7		35.8	510	4.32	1444	106
	2270.0	815	3024.1	1078.3	35.7	513	4,35	1450	107
	2280.0	814	3017.1	1076.3	35.7	511	4.34	1447	107
	2290.0	808	3014.9		35.2	500	4,24	1425	106
	2300.0	801	2964.9		35.2	488	4,14	1402	105
	2310.0	784	2865.3		34.8	456	3.87	1342	the state of the s
	2320,0	785	2875.0		34.8	458	3.88	1345	103
	2330.0 2340.0	779 ⁻ 778	2867.9 2870.8		34.4 34.6	449 451	3.81	1326	102
	E 0 7 V ; V	7.7.0	#070 tO	27010	13.44 1 (3)	** ** * *	3.83	1336	102
	2350.0	771	2861.3	975.6	34.1	439	3.72	1312	101
	2360.0	561	1666.9		31.0	169	1.44	695	73
	2370.0	783	2923.6	996.6	34.1	455	3.86	1340	102
	2380.0	572	1758.2	531.2	30.2	177	1.50	714	75
	2390.0	572	1758.8	531.5	30.2	177	1.51	715	75
	2400.0	770	2861.2	962/2	33,6	432	3.67	1294	101
	2410.0	545	175717	482.7	27.5	154	1.30	649	71
	2420.0		2874.9	962.8	33.5	433	3,67	1295	101
	2428.0	750	2772.7	922.5	33.3	404	3.42	1240	98

BIT NUMBER HTC J22 COST TOTAL HOUR	6788	9 1.00 1.59	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 12,250 7,6 180906	NO7 BIT	ERVAL ZZLES RUN IDITION	•	.0-2634.0 16 16 18 206.0 32 G0.000
DEPTH	FLOW RATE	p S p	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2430.0 2440.0 2450.0	724 731 724	2906.1 292 4 .7 2854.4	1184.0	40.0 40.5 40.8	491 505 492	4.16 4.28 4.17	1344 1369 1346	110 111 110
2460.0 2470.0 2480.0 2490.0 2500.0 2510.0 2520.0 2530.0 2540.0	739 731 738 743 740 743 744 746 741 742	2923.7 2868.8 2923.0 2948.5 2918.9 2915.3 2929.7 2907.2 2898.3 2911.7	1184.4 1206.8 1224.9 1213.9 1224.0 1227.8 1235.2 1216.3	41.5 41.3 41.5 41.6 42.0 41.9 42.5 42.0 42.0	523 505 519 531 524 531 538 526 529	4,44 4,28 4,41 4,51 4,50 4,52 4,56 4,46 4,49	1402 1370 1396 1417 1404 1416 1420 1429 1407	112 111 112 113 113 113 113 113 113
2560.0 2570.0 2580.0 2590.0 2600.0 2610.0 2620.0 2630.0 2634.0	747 658 733 730 726 726 716 717	2954.1 2425.9 2905.4 2868.3 2857.5 2895.5 2897.7 2853.0 2840.5	1169.8 1136.5	41.9 39.6 41.1 41.2 40.9 40.0 40.4 39.8 40.2	540 369 510 503 495 486 496 475 477	4.58 3.13 4.33 4.26 4.20 4.13 4.21 4.03 4.05	1433 1112 1380 1366 1351 1336 1353 1314 1319	114 100 112 111 110 110 110 109

BIT NUMBER HTC J33 COST TOTAL HOUR	6637 S 15	. 00	IADC CODE SIZE TRIP TIME TOTAL TURNS	537 12,250 7,7 45492	INTER NOZZI BIT F CONDI	LES RUN		0-2681.0 16 16 18 47.0 1 G0.000
DEPTH	FLOW RATE	psp	PRIT	%PSP	нчь	HHP/ sqin	IMPACT FORCE V	JET VELOCITY
2640.0 2650.0 2660.0	722 716 730	2909.5 2842.5 2915.6	1135.4	39.8 39.9 40.5	487 474 502	4.14 4.02 4.26	1338 1313 1365	110 109 111
2670.0 2680.0 2681.0	720 724 725	2922.8 2919.3 2914.0	1161.6	39.3 39.8 40.1	483 490 494	4,10 4,16 4,19	1329 1343 1350	110 110 110

BIT NUMBER CHRIS C-20 COST TOTAL HOUR	13000	. 00	IADC CODE SIZE TRIP TIME TOTAL TURNS	4 8.469 7.7 59389	NOZ BIT	ERVAL ZLES RUN DITION		0-2693.6 14 14 13 12.6 30 G0.050
DEPTH	FLOW RATE	PSP	PETT	%PSP	ннр	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2690.0 2693.6	299 304	1103.6 743.2		39.9 61.1	77 80	1.36 1.43	342 35 3	68 69

BIT NUMBER HTC J22 COST	₹ 6788		TADC CODE SIZE TRIP TIME	517 12.250 8.0	NOZ	ERVAL ZLES RUN	2693	6-2840,5 16 16 18 146.9
TOTAL HOUR	85 39	1,58	TOTAL TURN	S 115791	COV	NOITION	T 3 E	33 G0.000
	FLOW			•		HHP/	IMPACT	JET
DEPTH	RATE	pSp	PBIT	%P SP	HHP	sqin	FORCE	VELOCITY
2700.0	716	2876.5	1136.0	39.5	474	4.02	1314	109
2710.0	730	2923.9	1182.0	40,4	503	4.27	1367	111
2720.0	.748	2927.3	1241.4	42,4	542	4.60	1436	114
2730.0	731	2925.2	1173.2	40.1	500	4.25	1357	111
2740.0	595	2041,2	784.9	38.5	272	2.31	908	90
2750.0	726	2874.5	1169.4	40.7	495	4.20	1352	110
2760.0	728	2865.6	1176.0	41.0	500	4.24	1360	111
2770.0	724	2880.7	1161.1	40.3	4.90	4.16	1343	110
2780.0	651	2517.9	940.6	37.4	357	3.03	1088	99
2790.0	724	2864.2	1161,7	40.6	491	4.16	1344	110
2800.0	723	2864.8	1159.2	40.5	489	4.15	1341	110
2810.0	725	2873.8	1165.7	40.6	493	4.18	1348	110
2820.0	728	2876.5	1174.2	40.8	498	4.23	1358	111
2830.0	730	2884.6	1183.0	41.0	504	4.28	1368	111
2840.0	721	2857.5	1151.4	40.3	484	4.11	1332	110
2840.5	727	2907.0	1170.6	40.3	496	4.21	1354	111

Gar.

BIT NUMBER		12	IADC CODE	517	INT	ERVAL	2840.	5-3011.0
HTC J22	**		SIZE	12.250		ZLES		16 16 18
COST	6788		TRIP TIME	8.4		RUN		170.5
TOTAL HOURS			TOTAL TURNS	139280		MOITION	T4 E	2 GO.250
			<i>i</i>					
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PRIT	%PSP	HHP	sqin	FORCE	VELOCITY
						•		
2850.0	723	2888.1		40.1	489	4.15	1341	110
2860.0	726	2850.0		41.0	495	4.20	1351	110
2870.0	729	2861.8	1179.1	41.2	502	4.26	1364	111
mmm a a	rea con a	0000		a.n. m.	A 044, 1749		4	
2880.0	721	2828.8		40.8	485	4.12	1333	110
2890.0	725	2824.9		41.2	493	4.18	1348	110
2900.0	726	2860.0		40.8	494	4.19	1350	110
2910.0	719	2822.3		40.6	481	4.08	1326	109
2920.0	717	2829.6		40,3	477	4.05	1319	109
2930.0	719	2816.6	1145.3	40.7	480	4.07	1325	109
2940.0	720	2834.1	1149.3	40.6	483	4.10	1329	110
2950.0	725	2854.3	1164.2	40.8	492	4.18	1346	110
2960.0	724	2871.3	1163.7	40.5	492	4.17	1346	110
2970.0	712	2832.0	1122.7	39.6	466	3,95	1298	108
2980.0	721	2891.8		39.8	484	4,11	1332	110
2990.0	715	2845.9		39.9	474	4.02	1313	109
3000.0	713	2807,9		39,7	464	3.94	1291	108
3010.0	712	2832.4	1114.1	39.3	463	3.93	1288	108
3011.0	713	2816.8	1115.4	39.6	464	3.94	1290	108

(f). COMPUTER DATA LISTING : LIST D

INTERVAL 10m averages.

DEPTH Well depth, in metres.

SPM1 Stroke rate per minute, for Pump no.1

SPM2 Stroke rate per minute, for Pump no.2.

FLOW RATE Mud flow rate into the well, in gallons per minute.

ANNULAR VELOCITIES: (in metres per minute)

DC/OH - Between drill collars and the open hole.

DC/CSG - Between drill collars and casing.

HW/OH - Between heavyweight drill pipe and the open hole.

HW/CSG - Between heavyweight drill pipe and casing.

DP/OH - Between drill pipe and open hole.

DP/CSG - Between drill pipe and casing.

DP/RIS - Between drill pipe and riser.

HT CO	T NUMBER C OSC3AJ ST TAL HOUR	0H" 85&1 0	1 . 00 . 03	IADC CODE SIZE TRIP TIME TOTAL TUR	2	111 6.000 2.1 17485	NOZ: TIG	ERVAL ZLES RUN DITION			20 20 137.0
	75 (*** 275 - 777) . 1	275 PA SA 4	m m sams	FLOW	DCZ	DCZ	HW/	HW/	DP/	DP/	DP/
	DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH :	CSG	RIS
	80.0	65	60	625	0	. 0	0	a	O	0	Û
	90.0	65	59	620	ö	Ö	ő	ő	Õ	ñ	11
	100.0	65	59	620	8	Ö	ñ	Ö	ő	ñ	11
						•	"	Ψ,	₩ .		
	110.0	65	59	620	8	0	0	0	0	θ	11
	120.0	65	61	630	8	0	0	0	0	0	11
	130.0	65	61	630	8	0	0	0	0 -	0	11
	140.0	65	61	630	8	0	.7	0	0	0	11
	150.0	65	61	630	8	0	7	0	0	0	11
	160.0	65	61	630	8	0	7	0	0	0	11
	170.0	65	61	630	8	0	7	0	7	0	11
	180.0	65	61	630	8	0	7	0	7	0	11
	190.0	65	61	630	8	0	7	0	7	0	11
	200.0	-65	59	620	8	0	7	0	7	0	11
	210.0	65	59	620	8	0	7	0	7	0	11
	211.0	65	59	620	8	0	7	0	7	0	11

OSC COST		4442 S 19		IADC CODE SIZE TRIP TIME TOTAL TUR	1.	111 7.500 2.4 55173	NOZZ BIT	ERVAL ZLES RUN DITION			20 20 589.0
D	ЕРТН	SPM1	SPM2	FLOW RATE	DC/	DC/ CSG	HW/ HO	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
e e	20.0 30.0 40.0	93 93 94	100 100 100	965 965 971	30 30	24 24 24	0 0 0	21 21 21	0 0 0	0	17 17 17
22 23 33 33 33 33 33 33 33 33 33 33 33 3	50.0 60.0 70.0 80.0 90.0 10.0 20.0 40.0	97 97 100 95 95 95 96 96 95	85 103 96 100 96 97 98 103 95	912 1004 980 973 966 962 965 967 955 982	28 31 30 30 30 30 30 30 39	23 25 24 24 24 24 20 0	0 0 0 0 0 0 26 25	20 22 21 21 21 21 21 21 21 22	0 0 0 0 0 0 0 0 0 0 0 0	0 21 21 21 21 21 21 21 21 22	16 18 17 17 17 17 17
3 3 3 4 4 4 4	50.0 60.0 70.0 80.0 90.0 10.0 20.0 30.0 40.0	97 97 97 80 92 96 97 109	100 99 94 88 77 97 82 98	981 979 952 841 846 962 895 975 543	30 30 29 26 26 30 28 30 17	0 0 0 0 0 0 0	26 25 22 26 24 26 14	22 21 23 18 19 0 0	0 0 0 0 26 24 26 14	22 21 21 18 19 21 20 21 12	18 18 17 15 15 17 16 18 10
4 4 4 5 5 5 5	50.0 60.0 70.0 90.0 90.0 10.0 20.0 30.0	108 96 94 93 94 93 94 93 95	0 97 98 68 74 91 91 95 90	540 968 957 610 832 922 927 937 927	17 30 30 25 26 28 29 29 29	0 0 0 0 0 0	14 26 25 22 25 25 25 25 24	0 0 0 0 0 0 0	14 26 25 22 25 25 25 25 25 26	12 21 18 18 20 20 21 20	10 17 17 15 15 17 17 17
55 55 66 66	50.0 60.0 70.0 80.0 90.0 10.0 20.0 30.0	93 94 94 94 95 94 93 94	91 91 93 91 92 90 93 91	921 923 936 924 929 932 921 933 922 924	2877778788	0 0 0 0 0 0	4555554555	0 0 0 0 0 0	24555554555	20 21 20 20 20 20 20 20 20	17777777777777777777777777777777777777

DEPTH	SPM1	SPM2	FLOW RATE	DCN	DCV	NW. HÖ	· CSG	N 90 HO	CSG	DP/ RIS
650.0	95	90	924	29	0	25	0	25	20	17
660.0	93	90	916	28	0	24	0	24	20	16
670.0	94	91	924	29	0	25	0	25	20	17
680.0	9.4	90	918	28	0	24	0	24	20	16
690,0	93	90	916	28	0	24	0	24	20	16
700.0	94	91	922	- 28	0	25	0	25	20	17
710.0	94	91	928	29	0	25	0	25	20	17
720.0	94	91	922	58	0	25	0	25	20	17
730.0	94	89	917	28	0	24	0	24	20	16
740.0	94	91	923	28	0	25	0	25	20	17
750.0	93	89	913	28	0	24	0	24	20	16
760.0	93	90	917	28	0	24	0	24	20	16
770.0	93	90	918	28	0	24	0	24	20	16
780.0	94	90	921	28	0	24	0	24	. 20	17
790.0	93	92	924	29	0	25	0	25	3.0	17
800.0	93	91	922	. 58	0	25	0	25	20	17

BIT NUMBER HTC X3A COST TOTAL HOURS	3 2201.00 19.23	IADC CODE SIZE TRIP TIME TOTAL TURN	11 12.25 4. NS 17761	30 NO2	ERVAL ZLES RUN IDITION		0.0-1339.0 18 18 18 539.0 B4 G0.125
DEPTH	SPM1 SPM2	FLOW RATE	DC/ DC OH CS		HW/ CSG	DP/ OH	DP/ DP/ CSG RIS
810.0 820.0 830.0	97 100 99 97 99 98	984 983 984	85 7	7 0 7 0 7 0	55 55 55	0 0 0	55 18 55 18 55 18
840.0 850.0 860.0 870.0 880.0 990.0 910.0 920.0 930.0	102 97 101 96 103 96 115 0 102 97 102 94 102 95 99 96 102 93 100 94	995 984 992 577 994 985 972 975	85 7 86 7 50 4 86 7 85 7 86 7	8 0 7 0 8 0 5 0 8 0 7 0 7 0 0 58 0 58	55525555555555555555555555555555555555	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 18 55 18 55 18 32 10 55 18 55 18 55 18 54 17 54 18 54 17
940.0 950.0 960.0 970.0 980.0 990.0 1000.0 1010.0 1020.0	102 93 100 95 101 94 98 96 99 94 102 95 106 96 101 96 98 96	976 971 974 969 966 983 1013 983 973	84	0 58 0 58 0 58 0 58 0 58 0 59 0 61 0 59 0 58	544 554 554 550 000 0	0 0 0 0 0 61 59 58	54 18 54 17 54 17 54 17 54 17 55 18 56 18 55 18 54 17 54 17
1040.0 1050.0 1060.0 1070.0 1080.0 1090.0 1100.0 1110.0 1120.0	100 93 100 93 101 92 94 92 100 92 100 93 97 92 98 90 93 92 91 92	961 965 960 927 959 962 945 942 923 918	84 83 81 83 84 82 82	0 57 0 58 0 57 0 55 0 57 0 57 0 56 0 56 0 55	0 0 0 0 0 0 0 0	578757766555555555555555555555555555555	54 17 54 17 53 17 52 17 53 17 54 17 53 17 52 17 51 17 51 16
1140.0 1150.0 1160.0 1170.0 1180.0 1200.0 1210.0 1220.0	94 92 93 89 92 87 89 89 91 87 91 86 91 88 91 88 91 88 91 88 91 88 91 88 91 88 91 88	928 910 897 891 886 885 891 888 888	79 78 77 77 77 77 77	0 55 0 54 0 53 0 53 0 53 0 53 0 53 0 53	0 0 0 0 0 0 0	55 54 53 53 53 53 53 53	52 17 51 16 50 16 50 16 49 16 49 16 50 16 50 16 50 16

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DCV	NW HO	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
						•				
1240.0	88	`* 88	878	76	0	52	0	52	49	16
1250.0	88	88	876	76	0	52	0	52	49	16
1260.0	88	86	869	75	0	52	0	52	48	16
1270.0	96	61	784	68	0	47	0	47	44	14
1280.0	86	86	864	75	0	52	0	52	48	16
1290.0	85	. 86	854	74	: 0	51	0.	51	48	15
1300.0	84	87	858	74	0	51	0	51	48	15
1310.0	86	88	868	25	Õ	52	0	52	48	16
1320.0	86	86	860	25	. 0	51	0	51	48	15
1330.0	85	85	850	74	0	51	0	51	47	15
7 (2 (2 (2)) ()	175 775	to to	0.50			•••	"			
1339.0	85	85	851	74	0	51	0	51	47	15

	. What he will									in de la compansión de la Compansión de la compansión de	Talasa Jeritak
	BIT NUMBER HTC J22		4	IADC COD	1.7	517 2.250		ERVAL ZLES	13:	39.0-1 18	668.2 18 18
	COST TOTAL HOUR	6788 S 24		TRIP TIM		4.9 19781		RUN DITION	T	3 B3 G	329.2 0.125
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/	Н W / ОН	HW/ CSG	NP/ HO	DP/ CSG	DP/ RIS
	1340.0 1350.0	88	86 85	857 862	74	0	51	0,	51	48	15
	1360.0	86	86	860	75 75	0	51 51	0	51 51	48	15 15
	1370.0	88	86	872	76	0	52	0	52	49	16
	1380.0	86 87	86 86	860 861	75	0	51	0	51	48	15
	1400.0	85	85	953	75 74	0	51 51	0	51 51	48	15
	1410.0	89	81	849	74	0	51	0	51	48 47	15 15
	1420.0	87	81	838	73	ő	50	0	50	47	15
	1430.0	88	81	841	73	Ö	50	Ö	50	47	15
	1440.0	88	81	847	74	0	51	ō	51	47	15
	1450.0	88	81	845	73	0	51	Ö	51	47	i Š
	1460.0	88	80	835	73	0	50	0	50	47	15
	1470.0	86	80	828	72	0	49	0	49	46	15
	1480.0	87	81	841	73	Ö .	50	ő	50	47	15
	1490.0	88	85	863	75	Ö	52	Ö	52	48	15
	1500.0	87	82	842	73	0	50	0	50	47	15
	1510.0	87	82	845	73	0	50	0	50	47	15
	1520.0	. 88	82	848	74	0	51	0	51	47	15
	1530.0	119	0	596	52	0	3 6	0	36	33	11
e e a j	1540.0	87	83	852	74	0	51	0	51	47	15
•	1550.0 1560.0	8 8 87	79 80	835	72	0	50	0	50	47	15
	3 33 53 53 5 53	ων	00	833	72	0	50	0	50	46	15
	1520.0	87	8.0	835	72	0	50	0	50	47	15
	1580.0	106	0	529	46	Ö	32	ő	32	30	i
	1590.0	87	79	828	72	0	49	0	49	46	15
	1600.0	87	79	830	72	0	50	0	50	46	15
	1610.0	87	8.0	835	72	0	50	0	50	47	15
	1620.0	88	8.0	836	73	0	50	. 0	50	47	15
	1630.0	82	86	939	73	0	50	0 -	50	47	15
	1640.0	81	86	837	73	0	50	0	50	47	15
	1650.0	82	86	843	73	0	50	0	50	47	15
	1660.0	101	0	506	44	0	30	0	30	28	9
	1668.2	83	88	852	74	0	51	0	51	47	15

	i i				•					
BIT NUMBER HTC J44 COST TOTAL HOUR	4919. S 32.		IADC CODE SIZE TRIP TIME TOTAL TUE	1:	617 2,250 6,2 40419	NOZZ	ERVAL ZLES RUN DITION	1668.2-1942.0 18 18 18 273.8 T3 B8 G0.000		
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	\WH H0	HWZ	DP/	DP/ CSG	DP/ RIS
1670.0 1680.0 1690.0	86 87 88	84 84 84	847 855 858	74 74 75	0 0 0	51 51 51	0	51 51 51	47 48 48	15 15 15
1700.0 1710.0 1720.0 1730.0 1740.0 1750.0 1760.0 1770.0 1790.0	88 87 88 87 0 85 84 87	83 85 87 87 117 116 88 88	850 855 862 875 867 586 581 865 868	74 775 777 75 75 777 76	0 0 0 0 0 0 0	51 51 52 52 35 35 52 52	0 0 0 0 0 0 0	51 51 52 52 35 52 52 52	47 48 49 48 33 32 48 48	15 15 16 16 16 11 10 16 16
1800.0 1810.0 1820.0 1830.0 1840.0 1850.0 1860.0 1880.0	87 87 87 87 84 87 80 78 87	84 82 82 81 78 78 83	853 845 845 845 824 824 789 778 852 855	74 73 73 72 72 69 68 74	0 0 0 0 0 0 0	51 50 50 49 49 47 47 51	0 0 0 0 0 0 0	51 50 50 49 49 47 47 51	48 47 47 46 46 44 43 48	15 15 15 15 15 14 14 15
1900.0 1910.0 1920.0 1930.0 1940.0	87 88 87 88 88	83 82 82 81 78 84	847 851 845 847 827 859	74 74 73 74 72 75	0 0 0 0	51 51 50 51 49 51	0 0 0 0 0	51 50 51 49 51	47 47 47 47 46 48	15 15 15 15

BIT NUMBE HTC J22 COST	6788		IADC CODE SIZE TRIP TIME	12	517 2.250 6.6	NOZ	ERVAL ZLES RUN			18 18 1 243.11
TOTAL HOU	RS 34	0.7	TOTAL TUR	NS 13	37842	UUN	DITION	1.0	3 B7 G(1.125
DEPTH	SPM1	SPM2	FLOW RATE	DC/	csc	HW/	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1950.0	85	83	841	73	Ö	50	ō	50	47	15
1960.0 1970.0	· 86	82 0	839 557	73 48	0 0	50 33	0	50 33	47 31	15 10
1980.0	86	81	835	73	0	50	0	50	47	15
1990.0	85	83	842	23	0	50	0	50	47	15
2000.0	85 85	82 83	840 837	73 73	0	50 50	0	50 ·	47 47	15 15
2010.0 2020.0	85	82	837	73 73	0	50	0	50	47	15
2030.0	86	82	841	73	0	50	0	50	47	15
2040.0	1	111	562	49	ő	34	ŏ	34	31	10
2050.0	85	82	833	72	Ö	50	Ö	50	46	15
2060.0		82	827	72	0	49	0	49	46	15
2070.0	83	83	831	72	0	50	0	50	46	1.5
2080.0	83	82	826	72	0	49	0	49	46	15
2090.0	83	82	824	72	0	49	0	49	46	15
2100.0	82	83	821	71	Ũ	49	0	49	46	15
2110.0	82	83	825	72	0	49	.0	49	46	15
2120.0	110	0	548	48	0	33	0	33	31	10
2130.0	82	80	813	71	0	49	0	49	45	15
2140.0	82	82	819	71	0	49	0	49	46	15
2150.0	83	81	821	71	0	49	Ö	49	46	15
2160.0	83	82	826	72	0	49	0	49	46	15
2170.0	83	82	821	71	0	49	0	49	46	15
2180.0	0	110	551	48	0	33	0	33	31	10
2185.0	0	81	404	35	0	24	0	24	2.3	7

F. SHARE											
	BIT NUMBER HTC J11 COST TOTAL HOUR	6788. S 3.	7 00 84	IADC CODE SIZE TRIP TIME TOTAL TUR	1	437 2.250 6.7 17534	NOZ:	ERVAL ZLES RUŅ DITION	21: T-		18 19 26.5
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HWZ OH	HW/ CSG	DPŽ OH	DP/ CSG	DP/ RIS
	2190.0 2200.0 2210.0	81 82 80	82 81 79	815 81 4 797	71 71 69	0 0 0	49 49 48	0 0 0	49 49 48	45 45 44	15 15 14
5	2211.5	80	79	798	69	. 0	48	0	48	44	14

BIT NUMBER HTC J22 COST TOTAL HOURS		8 6788.00 5 50.47		TADC CODE 517 SIZE 12.250 TRIP TIME 7.1 TOTAL TURNS 158096			INTERVAL NOZZLES BIT RUN CONDITION		2211.5-2428.0 18 18 18 216.5 T2 B3 G0.000		
	DEPTH	SPM1	SPM2	FLOW RATE	DC/	DC/ CSG	HW/	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	2220.0	79	75	767	67	0			47		
	2230.0	78	76	768	67	0	46	0	46	43	14
	2240.0	111	70	700 554	48	0	46 33	0	46	43	14
	E., L., 29 (3) (3)	x x x	Œ		*1 C)	U	9.0	U	33	31	10
	2250.0	84	80	821	.71	0	49	0	49.	46	15
	2260.0	83	80	813	71	0	49	0	49	45	15
	2270.0	83	80	815	71	0	49	0	49	45	15
	2280.0	84	79	814	71	0	49	0	49	45	15
	2290.0	84	78	808	70	0	48	0	48	45	15
	2300.0	83	77	8.01	70	0	48	0	48	45	14
	2310.0	81	76	784	68	0	47	0	47	44	14
	2320.0	81	. 76	785	68	0	47	0	47	44	14
	2330.0	81	75	779	68	0	47	0	47	4.3	14
	2340.0	78	78	778	68	0	47	0	47	4.3	14
	And any company on the							<u>.</u>			
	2350.0	78	77	771	67	0	46	0	46	43	14
	2360.0	112	0	561	49	0	34	0	34	31	10
	2370.0	82	74	783	68	0	47	0	47	44	14
	2380.0	0	114	572	50	0	34	0	34	32	10
	2390.0	0	114	572	50	0	34	0	34	32	10
	2400.0	82	72	770	67	0	46	0	46	43	į 4
	2410.0	21	88	545	47	0	33	0	33	30	10
	2420.0	84	70	770	67	0	46	0	46	43	14
	2428.0	79	71	750	65	0	45	0	45	42	13

	BIT NUMBER HTC J22 COST TOTAL HOUR	6788.		IADC COD SIZE TRIP TIM TOTAL TU	1 7 E	517 2,250 7,6 80906	NOZ	ERVAL ZLES RUN DITION			16 18 206.0
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HWZ	HW/	NPZ HO	DP/ CSG	DP/ RIS
	2430.0	76	69	724	63	0	43	0	43	40	13
	2440.0	-78	68	731	63	0	44	0	44	41	13
	2450.0	77	68	724	63	0	43	0	43	40	13
	2460.0	80	68	739	64	. 0	44	0	44	41	13
	2470.0	77	6 9	731	63	0	44	ő	44	41	13
	2480.0	8.0	68	738	6.4	0	44	Ö	44	41	13
	2490.0	81	68	743	65	0	44	0	44.	41	13
	2500.0	80	68	740	6.4	Ö	44	Ö	44	41	13
	2510.0	80	68	743	65	Ö	44	Ů.	44	41	13
	2520.0	81	68	744	65	0	44	0	44	41	13
	2530.0	8.0	69	746	65	0	45	Ö	45	42	13 13
	2540.0	8.0	68	741	64	0	44	Ö	44	41	13
	2550.0	77	71	742	64	0	44	0	44	41	13
	2560.0	73	77	747	65	0	45	0	45	42	13
	2570.0	85	46	658	57	ő	39	ő	39	37	12
	2580.0	73	73	733	64	Õ	44	0	44	41	13
	2590,0	23	73	230	63	ő	44	Ö	44	41	13
•.	2600.0	7.3	73	726	6.3	Ö	43	Ö	43	40	i3
	2610.0	72	72	722	6.3	ö	43	Ő	43	40	13
•	2620.0	73	72	726	63	Ö	43	Ö	43	40	13
	2630.0	70	73	716	62	Ö	43	0	43	40	13
	2634.0	70	73	717	62	0	43	Ö	43	40	13

BIT NUMBE HTC J33 COST TOTAL HOU	6637		IADC CODE SIZE TRIP TIME TOTAL TUE	•	537 12.250 7.7 45492	NOZ: BIT	ERVAL ZLES RUN DITION	263 T1		81.0 6 15 47.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2640.0 2650.0	72 71	72 72	722 716	63 62	0	43 43	0	43 43	40 40	13 13
2660.0	74	72	730	63	Ö	44	Ö	44	41	13
2670.0	72	72	720	63	0	43	. 0	43	40	13
2680.0	72	73	724	63	0	43	0	43	40	13
2681.0	72	73	725	63	0	43	0	43	40	13

BIT NUMBER	1	. 10	TADC CODE	:	4	INT	ERVAL	268	31.0-26	593.6
CHRIS C-20			SIZE		8,469	NOZ	ZLES		14 1	4 13
COST	13000	0.0	TRIP TIME	•	7.7	BIT	RUN			12.6
TOTAL HOUR	S 10	94	TOTAL TUR	RNS	59389	CON	MOITION	T () B0 G0	0.050
			FL.OW	DCZ	DC/	HWZ	HW/	DPZ	DP /	DP/
DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
2690.0	60	0	299	289	0	0	0	0	17	5
2693.6	0	61	304	294	0	0	0	0	17	5

1	BIT NUMBER HTC J22		41	IADC CODE	1 7	517 2,250	NOZZ	ERVAL ZLES	269		6 18
	COST	6788		TRIP TIME		8.0		RUN		and the second second second	46.9
	TOTAL HOUR	S 39	. 58	TOTAL TUR	RNS 1	15791	CON	NOITIC	T	3 B3 G0	1,000
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	√WH HO	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	00000	m) m	72		62	0	43	0	43	40	13
	2700.0 2710.0	72 73	73	716 730	63	0	44	0	44	41	13
	2720,0	73 77	73 73		65	0	45	0	45	42	13
	m/muyu	//	, ·	7 -713	. 00	· ·	"Y 1.J	U		···7 L	7 113
	2730.0	72	74	731	63	0	44	. ()	44	41	1.3
	2740.0	95	24	595	52	0	36	0	36	33	11
	2750.0	73	73	726	6.3	0	43	0	43	40	13
	2760.0	72	73	728	63	0	44	0	44	41	13
	2770.0	72	72	724	63	0	43	0	43 1	40	13
	2780.0	59	72	651	57	0	39	0	39	36	12
	2790.0	72	73	724	63	0	43	0	43	40	13
	2800.0	72	72	723	63	0.	43	0	43	40	13
	2810.0	72	73	725	63	0	43	0	4.3	40	13
	2820.0	72	73	728	63	0	43	0	43	41	13
	2830.0	72	74	730	63	0	44	0	44	41	13
	2840.0	72	72	721	63	0	43	0	43	40	13.
	2840.5	73	73	727	6.3	0	43	0	43	40	1 3

BIT NUMBER 12 HTC J22 COST 6788.00 TOTAL HOURS 48.33		IADC CODE 517 SIZE 12.250 TRIP TIME 8.4 TOTAL TURNS 139280			NOZ:	ERVAL ZLES RUN DITION	2840.5-3011.0 16 16 18 170.5 T4 B2 G0.250				
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HUV	HW/ CSG	DP/ OH	DP/ CSG	
	2850.0	72	73	723	63	0	43	0	43	40	13
	2860.0	72	73	726	63	()	43	0	4.3	40	13
	2870.0	.73	73	729	63	0	44	0	44	41	1.3
											e sa en
	2880.0	73	71	721	63	0	43	0	43	40	13
	2890.0	72	73	725	63	0.	43	0	43	40	1.3
	2900.0	73	72		63	0	43	, 0	43	40	13
	2910.0	72	72	719	62	0	43	0	43	40	13
	2920.0	72	72	717	62	0	4.3	0	43	40	1.3
	2930.0	71	73	719	62	0	43	0	43	40	13
	2940.0	72	72	720	63	0	43	0	43	40	13
	2950,0	. 73	72	725	63	0	43	0	43	40	1.3
	2960.0	72	72	724	63	0	43	0	43	40	13
	2970.0	68	75	712	62	0	43	0	43	40	13
	2980.0	72	72	721	63	a	43	0	43	40	13
		72	71		62	0	43	0	43	40	13
	2990.0	72	71		62	0	43	0	43	40	13
	3000.0 3010.0	72	71	712	62	0	43	0	43		13
	3011.0	72	71	713	62	0	43	Ö	43	40	13
	$\mathbf{D}\mathbf{U}$ and \mathbf{U}	16	/ 1	Z 3 53	(C) A.C.	Ç.	~ ·	v		(3	2.52

a, alto

This is an enclosure indicator page.
The enclosure PE603939 is enclosed within the container PE905520 at this location in this document.

The enclosure PE603939 has the following characteristics:

ITEM_BARCODE = PE603939
CONTAINER_BARCODE = PE905520

Better British Better bette

NAME = Drill Data Plot

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drill Data Plot (from E.S Final Well

Report) for Whiting-1

REMARKS =

DATE_CREATED = 5/04/83

DATE RECEIVED = 5/09/83

 $W_NO = W807$

WELL_NAME = WHITING-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

PE603939 DRILL DATA PLOT

Berger in der State der St

This is an enclosure indicator page. The enclosure PE603940 is enclosed within the container PE905520 at this location in this document.

The enclosure PE603940 has the following characteristics:

The state of the s

ITEM_BARCODE = PE603940
CONTAINER_BARCODE = PE905520

NAME = Geoplot

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = GeoPlot (from E.S Final Well Report)

for Whiting-1

REMARKS =

DATE_CREATED = 5/04/83

DATE_RECEIVED = 5/09/83

 $W_NO = W807$

WELL_NAME = WHITING-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

PE603940 GEO-PLOT

This is an enclosure indicator page. The enclosure PE603941 is enclosed within the container PE905520 at this location in this document.

The enclosure PE603941 has the following characteristics:

ITEM_BARCODE = PE603941
CONTAINER_BARCODE = PE905520

NAME = Temperature Plot

BASIN = GIPPSLAND

PERMIT = VIC/L2 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Plot (from E.S Final Well

Report) for Whiting-1

REMARKS =

DATE_CREATED = 5/04/83

 $DATE_RECEIVED = 5/09/83$

 $W_NO = W807$

WELL_NAME = WHITING-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

PE603941 TEMPERATURE PLOT

This is an enclosure indicator page. The enclosure PE603942 is enclosed within the container PE905520 at this location in this document.

The enclosure PE603942 has the following characteristics:

ITEM_BARCODE = PE603942 CONTAINER_BARCODE = PE905520

NAME = Pessure Plot BASIN = GIPPSLAND

PERMIT = VIC/L2

 $\mathtt{TYPE} = \mathtt{WELL}$

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Plot (from E.S Final Well

Report) for Whiting-1

REMARKS =

 $DATE_CREATED = 5/04/83$

 $DATE_RECEIVED = 5/09/83$

 $W_NO = W807$

WELL_NAME = WHITING-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

PE603942 PRESSURE PLOT

This is an enclosure indicator page. The enclosure PE603943 is enclosed within the container PE905520 at this location in this document.

The enclosure PE603943 has the following characteristics:

ITEM_BARCODE = PE603943
CONTAINER_BARCODE = PE905520

NAME = Mud Log (Grapholog)

BASIN = GIPPSLAND PERMIT = VIC/L2

TYPE = WELL SUBTYPE = MUD_LOG

DESCRIPTION = Mud Log (from E.S Final Well Report)

for Whiting-1

REMARKS =

DATE_CREATED = 5/04/83

 $DATE_RECEIVED = 5/09/83$

 $W_NO = W807$

WELL_NAME = WHITING-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

PE603943 GRAPHOLOG