

ATTACHMENT 1

OF WCR : TARWHINE-1

IES WELL REPORT Tarwhine No 1 ESSO AUSTRALIA LTD

OIL and GAS DIVISION

2 9 APR 1982

CORE LABORATORIES AUSTRALIA (QLD.) LTD.

Petroleum Reservoir Engineering AUSTRALIA

BRISBANE OFFICE: 1173 KINGSFORD SMITH DRIVE PINKENBA, Q. 4008. P.O. BOX 456 HAMILTON CENTRAL, Q. 4007 AUSTRALIA.

CABLE ADDRESS: CORELAB BRISBANE TELEX No.: COREBN AA42513 TELEPHONE: 260 1722 260 1723

2nd April, 1982.

Esso Australia Ltd 127 Kent Street SYDNEY. N.S.W.

2000.

ATTENTION:

MR K. KUTTAN.

Dear Sir

Please find enclosed copies of the well report for Tarwhine No. 1.

If you have any enquiries please do not hesitate to contact us.

Yours very truly CORE LABORATORIES AUSTRALIA (QLD) LTD.

A. DODSON Signed by

in A. Dodson's absence.

--Jan 1982

ESSO AUSTRALIA LTD. ESSO HOUSE 127 Kent St. Sydney N.S.W. - 2001

Dear Sir,

Core Laboratories Intermediate Extended Service Well Logging Unit FL802 was in use during the drilling of TARWHINE # 1 from surface to a total depth of 2955 metres.

Please find enclosed the IES well report, appended drilling parameter logs and the Corelab grapholog for your reference.

We appreciated being of assistance during the drilling operations and associated testing and look forward to continuing our association on future wells.

If you require clarification of this report, please do not hesitate to contact us.

Yours very truly, CORE LABORATORIES INTERNATIONAL Ltd.

A.Dodson Unit supervisor

INDEX.

1. ,	Introduction
2.	Core Laboratories Equipment
3.	Core Laboratories Monitoring Equipment
4.	Intermediate Extended Service Introduction
5.	Rig Information Sheet
6.	Well Information Sheets
7.	Well History
8.	Progress Report
9.	Bit Record Sheets
10.	Mud Information Sheets
11.	Geological Summary
12.	Overburden Gradient Calculations and Overburden Log
13.	F.I.T./R.F.T. Data and Bottom-hole Temperature Estimations
14.	Sidewall Core Gas Analysis
15.	Gas Composition Analysis
16.	Core-O-Graphs
17.	Pore Pressure Summary and L.O.T./P.I.T. Data
18.	Production Test Data
19.	Computer Data Listings:- (a) Bit Record and Bit Initialization Data (b) Hydraulic Analyses (c) Data List A (d) Data List B (e) Data List C (f) Data List D
	Appended Logs:- (a) Drill Data Plot (b) Cost Analysis Plot (c) Temperature Plot (d) Pressure Plot (e) Geoplot 1: 5000 and 1: 2000

(f) Drilling Parameter Plot

(g) Grapholog.

I. INTRODUCTION.

Tarwhine No. 1 was drilled by ESSO Australia Ltd. in the Bass Strait, Australia.

Well co-ordinates were:

Latitude : 38° 24' 17.88"S. Longtitude : 147° 31' 41.556"E.

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Intermediate Extended Service Field Laboratory 802.

Tarwhine No. 1 was spudded on 20th November, 1981 and reached a total depth of 2955 metres on 28th December, 1981, a total drilling time of 39 days. The main objective of the well was to test an anticlinal closure at the top of the Latrobe Coarse Clastics on the Barracouta - Perch and Dolphin trend. The secondary objective was to test for local intra-Latrobe pay zones similar to the Barracouta M-1 oil reserve.

Elevations were:

21m Kelly bushings to mean sea level

44m Water depth

65m Kelly bushings to mud line.

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging were as follows:

A. Dodson - Unit Supervisor

T. Charles - Pressure Engineer

N. Danker - Logging Crew Chief

B. Giftson - Well Logger

A. McConville - Well Logger

R. Bickerstaff - . Well Logger

C. Miekle - Well Logger.

2. CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 802 monitoring equipment includes the following :

A. MUD LOGGING

- 1.T.H.M. total gas detector and recorder
- 2. Hot wire total gas detector and recorder
- 3.F.I.D. (Flame Ionization Detector) chromatograph and recorder
- 4. Gas trap and support equipment for the above
- 5.Rate of Penetration recorder and digital dislay
- 6.Pit volume totalizer, display and recorder
- 7.Digital depth counter
- 7. Two integrated pump stroke counters, with digital display
- 9.Ultra-violet fluoroscope
- 10.Binocular microscope

B. INTERMEDIATE EXTENDED SERVICE PACKAGE

- 1. Hewlett Packard 9825B desktop computer
- 2. Hewlett Packard 9872B plotter
- 3. Hewlett Packard 2631A printer
- 4.Two Hewlett Packard 2621P visual display units, (one located in the client's office)
- 5.Hookload/weight on bit transducer and recorder
- 6.Rotary speed tachogenerator and recorder
- 7.Standpipe pump pressure transducer and recorder
- 8.Mud flow out sensor and recorder
- 9.Mud temperature sensors and recorder (in and out)
- 10. Mud conductivity sensors end recorder (in and out)
- 11.Rotary torque sensor and recorder
- 12. Shale density apperatus
- 13. Hydrogen sulphide gas detector
- 14. Carbon dioxide gas detector

CORE LABORATORIES MONITORING ÉQUIPMENT

DEPTH

DEpth registered every 0.2 metres and rate of penetration calculated each metre (or every 0.2 m while coring). ROP displayed on digital panel and chart.

WEIGHT ON BIT

A Tyco 0-1000 psi,solid state pressure transducer is connected to the rig's deadline anchor. The weight on bit is calculated in the Rig Functions panel, and displayed (with hookload) on a digital meter and recorder chart

ROTARY SPEED

This is a DC generator for which 1 volt = 100 rpm, and which is belt -driven from the rotary drive shaft. The value is displayed on digital meter and recorder chart.

PUMP PRESSURE

This is a Tyco 0-5000 psi transducer mounted on the standpipe manifold. The pressure is displayed on digital panel meter and recorder chart.

PIT VOLUME

Six individual pits can be displayed on the meter. The pit volume total is calculated in the PVT panel and displayed on a digital meter. The sensors are vertical floats driving potentiometers accurate to +/1 barrel. Each sensor is equiped with a wave compensating device.
In addition a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type,counting individual strokes.The Pulse Data Box can monitor one or two pumps individually or integrate the total number of strokes from both pumps.The pump rate per minute is displayed on recorder chart.

ROTARY TORQUE

An American aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on digital panel meter and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer,calibrated 0-100 deg.C. Temperature in and out is displayed on recorder chart and digital meter.

MUD CONDUCTIVITY

- A Balsbaugh electrode-less conductivity sensor measures the current in a closed loop of solution coupling a pair of toroidal transformer coils.
- The conductivity in and out is displayed on analog and digital meters, and recorder chart.
- All the sensors are 5 to 24 v DC powered with the exception of the air driven gas trap.Along with monitoring and maintaining the above equipment ,Core Lab furnished and operated certain other items.

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals.Dry samples were washed,dried and boxed.Wet samples were washed sacked and boxed.Geochemical samples were canned and boxed.

GAS

- 1.Flame Ionization Total Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.
 The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Hot wire gas detector(Wheatstone Bridge type) A back up system for total gas detection.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density column.

4. INTERMEDIATE EXTENDED SERVICE INTRODUCTION

The Core Laboratories Intermediate Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation; for the detection of abnormal formation pressure; and the optimization of drilling.

Presented graphically on Core Laboratories I.E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement and bit performance programmes for the wellsite drilling engineer.

Core Laboratories I.E.S. logs include the following :

I.E.S. PRESSURE LOG
Information plotted on this log includes formation pore pressure,
mud weight in and formation fracture pressure. This is plotted on linear
graph paper at a vertical scale of 1:5000. The formation pore pressure
and fracture pressure gradients are based on all available information.
This is a conclusion log, therefore the information may be modified by
results from formation drill stem tests, data from adjacent wells, kicks,
and formation breakdown tests.

CORELAE DRILL DATA PLOT

This plot,which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected 'd'exponent, which is presented on a logarithmic scale. The 'd' exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight on bit per inch of bit diameter.

The modified 'dc'exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard 'd'exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the 'dc' to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for 'dc' is therefore:

Deviations from the normal "dcs" trend may be interpretated as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure form deviations in the "dcs" plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the 'dcs' plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air dried shale samples in an accurately calibrated density solution.

An interpreted lithology column is also includedon the log, as is a plot of mud density in,to assist in interpretation.All relavant information, such as casing points, bit runs, etc. are also included.

I.E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress.At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, breakeven analysis, formation pore pressure, mud density in and formation fracture pressure.

Two Geo-plots are included in this report, at scales of 1:2000 and 1:5000.

I.E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END TO END PLOTS

Flowline temperature and end to end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the I.E.S. drill log. Continous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm./cc) and neutron porosity (\mathbb{Z}), is made, using data supplied by Schlumberger. Two-cycle semilog paper is used, with a vertical scale of 1:10,000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration,weight on bit, rotary speed,pump pressure,hydraulic horsepower,impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling,routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer.This report includes a sample hydraulics for each 100 m.

GAS COMPOSITION ANALYSIS

For each significant gas show,the chromatograph results are analysed using two techniques:-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

GRAPHOLOG

This is plotted on the industry standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relavant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference.These include formation leak off test data,and R.F.T. and well test data where appropiate. 5. RIG INFORMATION SHEET

	RIG INFORMATION SHEET
NAR COMP	PANY ESSO AUSTRALIA LTD.
WELL	TARWHINE No. 1
QWNER .	SOUTH SEAS DRILLING COMPANY
ME AND NUMBER	SOUTHERN CROSS (NO 107)
TYPE	SEMI-SUBMERSIBLE , TWIN HULLED.
DERRICK, DRILL FLOOR	DERRICK: LEE C MOORE, 152' HIGH X 40' AT EASE.
8 UBSTRUCTURE	LOAD CAPACITY OF 1 000 000 1bs
DAWWORKS	DILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS.
- -	
	LEE C MOCDE 37/ED C CADACITY EDD CHOCK 1000
C OWN BLOCK	LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS.
TRAVELING BLOCK	OILWELL PC 425
SWIVEL	BYRON JACKSON MODEL GG CAPACITY .350 TGN
X X KELLY SPINNER	DRILLCO 54"x 50' HEX KELLY
BUTARY TABLE	OILWELL A 372 SINGLE ELECTRIC MOTOR
TARY SLIPS	VARCO DCS-L
N D PUMPS	TWO OILWELL A 1700PT. RATED AT 1600HP
	TWO OZEMELE A TIBBIT! THATED AT TOOMIN
	FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL
	TANK HAVING A CAPACITY OF 105 BBL.
MUD SYSTEM	TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100
•	HP ELECTRIC MOTORS.
	DESANDER : 1 DEMCO 4 CONE 12" MODEL NO 124
	DESILTER: 1 DEMCO 4"-16H 16 CONE
_	DEGASSER : 1 SWACO MCDEL NO 36
	SHALE SHAKERS : Z BRANDT DUAL UNIT TANDER: - GHI DUAL UNIT.
B W OUT PREVENTORS	THREE SHAFFER L.W.S. 18½" - 10 000 psi
·	TWO HYDRIL G.L. $18\frac{3}{4}$ - 5000 psi
	FOUR VALVEON ACCUMULATORS. 2" - 10 000ps:
WELL CONTROL EQUIP.	CHOKES:2 C.I.W. ABJ H2 2 1/16" - 10 000 psi,1 SWACO SUPER CHOKE
THBULAR DRILLING E JIPMENT	DC: $6\frac{1}{4}$ " x 2 13/16" (4" IF TJ)
	8" x 2 13/16" (6 5/8" H9D TJ) 9¾" x 3" (7 5/8" H9D YJ)
	HWDP: 5" 501b/ft GRADE G (6⅓" DD 4½" IF TJ)
	DP : 5" 19½1b/ft GRADE G&E(6 3/8" DD 4½" IF TJ)
	51 . 5 13218/10 SIMBL BUCKS 3/6 65 42 11 13)
CEMENTING UNIT	HALLIBURTON HT-400 UNIT
MITORING	MARTIN DECKER : MUD VOLUMÉ TOTALIZER
EMIPMENT	6 CHANNEL DRILLING RECORDER
	4 PRESSURE GAUGES
	FLOWSHOW INDICATOR
PCE/ER SUPPLY	2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH
	1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP
DIRECTIONAL EQUIP.	
RISER: REGAN FC. 7 T	R, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT) ELESCOPIC 21" ID.PLUS FLOW DIVERTOR.
	S:ECKEL 13 3/8"(20 000 ft lbs),20" (35 000 ft lbs)
	570cu ft.RISER TENSIONER: 6WESTERN GEAR, 50'STROKE, 80 0001bs.
	570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 1bs,40'STROKE

6. WELL INFORMATION SHEET

		WELL INFORMATION SHEET												
11-11111111111111111111111111111111111	A COMP	ANYE	SSO AUST	RALIA LI	D.									
WINL'	****		ARWHINE	No. 1						;	Shee	t No.	1	
WELL NAME	TARWHI	NE No. 1												
OPERATOR	ESSO A	ESSD AUSTRALIA LTD.												
PARTNERS	ВНР													
RIG	OWNER			EAS DRIL	LII	NG C	UMPANY	·						
	NAME OR N	UMBER		N CROSS BMERSIBL	Ē									
LOCATION	LATITUDE (38 24	17.880	1		LONGIT	UDE (Y)	_	1470	31	• /1 *	1.556"	
LOCATION	FIELD	^'		ND BASIN			AREA	ODE (1)	+	BASS				
	COUNTY		GIFFSLA	ILCHO ON	<u>v</u>		STATE		+	טרוטט	31	11,12	<u> </u>	
	COUNTRY		AUSTRAL	TA			1							
	DESCRIPTIO	N	VOTHULTU											
DATUM	Ground Eleva	tion	-				RKB to	Ground Leve	ı	-	-			
POINTS	Mean Water D	'	43.8m				RKB to V	Nater Level		21.	. 2m			
DATES	SPUD		20 NOV 1	981		,	TOTAL	DEPTH	\perp	28 D		198	1	.,
HOLE SIZES	Depth From	Depth To	Bit Size	No. Of Bits				Date From	_	Date T			Cased	Logged
31213	65	204	26	1						20 N			20"	N
	204	799	17 1	1									13 3/8	
	799	2955	124	15			D 25 NOV		81	20 U		81	9 5/8	1
								 				-+		
			 											 -
			1					<u> </u>				_		
												7		
DRILLING	Depth From	Depth To	Weights		Typ									
FLUID	65	204					TER	· · · · · · · · · · · · · · · · · · ·						
	204	2955	 	то 10.1	SEAWATER GEL									
		<u> </u>	то											
				то										
				TO TO										
			+	то										
			+	ТО										
WIRELINE	Depth From	Depth To	Hole Siz	Date Ru	n	Logs	Run	•						
LOGGING	65	799	17½	23 NOV	81	ISF.	-BHC-GI	R						
	784	1495	12분					GR-SP; L						
			-					No2, No	3_	(misr	nu)			
	<u> </u>	•	-				OCITY SURVEY							
	2510	1575	121/4	6 DEC				NO 5 GR-SP;LC	T	CAU C	D .	DUC	CR	
	2519 2519	1575	124					CITY SUF			<u> ز ۱۱</u>	DITL	-011	
	2313	-						No 7 No			NLIE	ם ם	N SHE	T 2
RISER,	Depth From	Depth To	OD "	ID "	Wei		Grade	Threads	-	Date Ru			ent Stage	
CASING &	3	65	23	21				- RISEF		- -		-		
LINER	65	190	20	19.124	I	14	X 52	BUTT		1 NOV			1	
	65	784		12.415		•5	K 55	BUTT		4 NOV				-
	65	2930	9 5/8	8.681	47		N 80	BUTT	3	DEC	81	., N.	2	
	\								ļ					
		<u> </u>	-						-					
	L		<u> </u>						1					

					•		WI	ELL INFOR	MATIC	ON SI	HEET	
			OD AUSTRA					She	et No	2		
WELL NAME	CONTINUATION OF WIRELINE LOGGING DATA											
OPERATOR												
PARTNERS	-											
RIG	OWNER	Т										
1	NAME OR N	UMBER										
	TYPE		**************************************			, ,			,			
LOCATION	LATITUDE (X)			-	LONGIT	rude (Y)					
	FIELD					AREA						
	COUNTY				***************************************	STATE			· · · · · · · · · · · · · · · · · · ·			
	COUNTRY		122									
	DESCRIPTIO	N										
DATUM	Ground Eleva	ition				RKB to	Ground Leve	ıı	- "			
POINTS	Mean Water D	Depth				RKB to	Water Level					
DATES	SPUD					TOTAL	DEPTH		-			
HOLE	Depth From	Depth To	Bit Size	No. Of Bits	No	of Reamers	Date From	Date To	Ca	sed	Logged	
SIZES												
								۰				
										ļ		
DRILLING	Depth From	Depth To	Weights		Туре							
FLUID				то								
				то								
				то								
				то								
				то								
				то								
				то								
				то	<u> </u>							
WIRELINE LOGGING	Depth From	Depth To	Hole Size	Date Rui		s Run		 				
LOGGING	-	••	-			$T \times 3F$	RUNS	Tan				
	2815	2520	124"	23 DEC		TC						
	2809	2510	12년"	23 DEC		LL-MSFL			v			
	2813	2515	12411	23 DEC		DL-CNL-						
	2813	784	124"	23 DEC.		HC-GR-S						
	-	-	12 11	24/5DEC			10,11, 8	k 12	·7····			
	2951	2809	1211	28 DEC		LL-MSFL						
	2953	2813	124"	29 DEC	81 B	HC-GR-5	P				,	
RISER, CASING & LINER	Depth From	Depth To	OD	ID	Weight	Grade	Threads	Date Run	Cement	Stages	Exces	
						 			-		-	
		-				-		-	1			
		l									 	
		<u> </u>						1				

							WE	ELL	INFOR	MATIC)N SH	HEET
[[///////]]],	1 COMB	ANY ES	SO AUSTR	RALIA LT	D.							
		TI							Shee	et No	3	
WELL NAME			CONTINUA	ATION OF	WIREL	INE LOG	GING DA	TA				
OPERATOR		*										
PARTNERS												
RIG	OWNER		".									
	NAME OR N	UMBER										
	TYPE							, ,				
LOCATION	LATITUDE (X)				LONGIT	UDE (Y)					
	FIELD					AREA						
	COUNTY					STATE						
	COUNTRY											
	DESCRIPTIO	N										
DATUM POINTS	Ground Eleva	tion				RKB to (Ground Level	Ц				
	Mean Water D	epth					Nater Level					
DATES	SPUD		T	T		TOTAL	T	Д,				
HOLE SIZES	Depth From	Depth To	Bit Size	No, Of Bits	No.	of Reamers	Date From		Date To	Cas	ed	Logged
								-				
											+	
								-				
			1									
DRILLING FLUID	Depth From	Depth To	Weights		Туре							
PLOID		ļ		то								
		ļ		то								
		 		TO TO								
				TO TO								
				TO								
				то								
				то								
WIRELINE	Depth From	Depth To	Hole Size	Date Ru	n Logs	Run	•					
LOGGING	2953	2813	12글"	29 DEC	81 LDI	CNL-G	SR					
	2955	2815	12吉"	29 DEC								
	-	-	1211	29 DEC								
	_		12111				& 14 (P	RETE	STS UN	LY)		
	2948.5	2486	124"	30 DEC			4 & 5					
	2004 5	2000	9 5/8C		82 CCL	PERF.	CUM					
	2891.5	2890	9 5/8 C			K BASK		ONITT	NUATIO	N DAL O	LICET	<i>(</i> ,)
DISED	Depth From	Depth To	9 5/8 C	ID JAN	Weight	Grade	Threads	T	ete Run	Cement		1
RISER, CASING & LINER	Deptil From	Depth 10	05		vveignt	Grade	inreads		ste nuti	Cement	Stages	Excess
												ļ
			-									
												
			1									<u> </u>

		ANY <u>ESSI</u>					WE 	ELL INFOR	et No. 4	SHEET			
WELL NAME	т	CONTINUA		•									
OPERATOR													
PARTNERS													
RIG	OWNER												
	NAME OR N	UMBER											
	TYPE												
LOCATION	LATITUDE (X)		**		LONGIT	UDE (Y)		:				
	FIELD					AREA							
	COUNTY					STATE							
	COUNTRY			4	V								
	DESCRIPTIO	N											
DATUM	Ground Eleva	tion				RKB to 0	Ground Level						
POINTS	Mean Water D	epth				RKB to V	Nater Level						
DATES	SPUD					TOTAL	DEPTH						
HOLE SIZES	Depth From	Depth To	Bit Size	No. Of Bits	No.	of Reamers	Date From	Date To	Cased	Logged			
31223													
							<u> </u>						
				ļ									
				 									
				<u> </u>									
DRILLING	Depth From	Depth To	Weights	L	Туре		l						
FLUID	Dopan . rom	Deptil From Deptil 10		TO									
			-	то			·						
				то									
				то									
				то									
				то									
				то									
				то									
WIRELINE	Depth From	Depth To	Hole Size	Date Rur		s Run							
LOGGING	-		9 5/8 0					@ 2870 m					
	1801.5	1800	9 5/8 0										
		-	9 5/8 0				RE SURVE	ΕY					
	-	-	9 5/8 0										
	-	-	9 5/8 0	B JAN.	,82 FI	I No 1	@ 2779m						
	-	-		9 JAN									
		-	9 5/8 6	9 JAN	BZ GE	T DACKE	D & JUNK	C BASKET	AUINTTON (E			
DICED		Darah Ta		1				om (CONTI					
RISER, CASING &	Depth From	Depth To	OD	ID	Weight	Grade	Threads	Date Run	Cement Stag	es Excess			
LINER			-			-			+	+			
			+			 			 				
						+			 				
										+			
									1				

]						WE	LL INFOR	MATION	SHEET
	AR COMP	ANY ES	SO AUSTR	ALI LTD.						
MAIDA	· ·		RWHINE N					She	et No	5
WELL NAME										
OPERATOR										
PARTNERS										
RIG	OWNER									
	NAME OR N	UMBER				****		· · · · · · · · · · · · · · · · · · ·		
	TYPE									
LOCATION	LATITUDE (X)			•	LONGIT	UDE (Y)			
	FIELD					AREA				
	COUNTY					STATE		L		
	COUNTRY									
DATUM	DESCRIPTIO					T=		1		
DATUM POINTS	Ground Eleva						Ground Level			
DATES	Mean Water D	Pepth					Nater Level	1		
HOLE	Depth From	Depth To	Bit Size	No. Of Bits	No. o	TOTAL	Date From	Date To	Cased	Logged
SIZES	Jopan . rom	Doptii (- Dit Gizo	110, 01 213	1.10, 0			2010 10	Justin	Logged
				<u> </u>						
DRILLING FLUID	Depth From	Depth To	Weights		Туре					
		 		TO TO						
				TO						
				<u></u> то			, , , , , , , , , , , , , , , , , , , 			
		 		то						
				то	<u></u>					
				то						***************************************
				то						
WIRELINE	Depth From	Depth To	Hole Size	Date Ru			•			
LOGGING		-		O JAN 8			(MISRUN)			
	2667.5	2656		11 JAN 8			PWT 1			
	-	-		11 JAN 8		AMERAD				
	-	-		13 JAN 8 15 JAN 8			SURVEY	INK BASKET		
	-	-		15 JAN 8			R & 1372			
	1400.5	1398		16 JAN 8		F GUN	.11 @ 1312	. 141		
	1400.5	1398		16 JAN 8						
RISER, CASING &	Depth From	Depth To	OD	ID	Weight	Grade	Threads	Date Run	Cement St	tages Excess
LINER										
			 							

7. WELL HISTORY.

- 20/11/81 Dropped the anchors, giving a final fix of 38° 24' 17.35"S, 147° 31' 41.28"E (which was 7m at 290° from the called location). Ballasted down the rig to 42' draft. Lowered T.G.B. to seafloor (weight plus blocks = 110 KIPS in water). Ran TV and unjayed from T.G.B. Recovered and laid down 'J' tool. Strapped the drill string to find the water depth. (43.8m). Laid down 3 joints of HWDP. Made up BHA and R.I.H. Tagged seafloor (RKB Seafloor = 64.84m). Spudded in at 1315 hours. Drilled 26" hole from 65 to 204 metres with a 17½" bit and 26" hole opener. POOH to run surface casing. (Ballasted down rig on first connection to 47' 6" to eliminate POH). Hard drilling to 126m (spotted hi-vis pills as needed).
- 21/11/81 Circulated out. Flushed the hole by pumping 30 bbls of hi-vis gel, and spotted 150 bbls hi-vis gel in hole. Dropped survey, POOH to 87m, and recovered the survey, $\frac{3}{4}$ at 204m. R.I.H. there was no fill. Circulated and spotted 300 bbls of hi-vis gel. POOH. Ran 20" casing (10 joints, overall length 128m) Ran drill pipe stinger. Filled the casing with seawater and installed Bull plugs in the running tool. Landed to 20" casing at 190.6m. Could not circulate with the Howco unit, so switched to rig pump - the tugger line caught on the chicksands and broke the cement line. Checked out blockage in lines. Found lo-torque valve cemented up on Howco unit. Circulated the 20" casing and tested the lines to 2,000 psi - OK. Cemented the 20" casing through the test line with 627 sacks of class "N" cement plus 12% ge1 and 2% Ca Cl in 194 bbls of fresh water (Slurry weight = 12.6 ppg), followed by 350 sacks of "neat" mixed in 43 bbl seawater (slurry weight = 15.6 ppg). Displaced cement with 15 bbls of seawater. The float held (full's eye $\frac{30}{4}$). Full returns. The running tool was backed out, and then POOH. Good cement returns. Rigged up and ran the BOP stack. Function tested both pads. Tested choke and kill lines to 200/5000 psi,
- 22/11/81 Rigged up the slip joint, and landed the stack. Pull tested to 15,000 over-pull. Unbolted the slip joint. Rigged up the divertor (tested the connections and cement to 200/500 psi OK). Backed out the divertor handling tool. Set the wear bushing. Function tested the BOP with the blue and yellow pads. POOH. Made up the BHA. Laid down 21 joints "E" drill pipe and 3 joints HWDP from the derrick. Picked up the kelly, lagged the cement at 184m. Using the diverter, seawater was pumped through overboard lines. Drilled cement from 184 to 204 metres (bit No. 2: HTC, OSC 3AJ, 17½", 3 x 20). Drilled 17½" hole from 204m to 537m, spotting high-vis mud when required. (Only a trace of gas was detected).
- 23/11/81 Drilled $17\frac{1}{2}$ " hole from 537 to 599 metres. Shaker screens were cleaned out after becoming plugged with sand. Drilled $17\frac{1}{2}$ " hole from 599 to 799 metres. Casing point reached. No gas. Circulated out. Dropped a survey, and pumped slug. POOH to the 20" casing shoe, and retrieved the survey (1°). Made a wiper trip. Circulated and cleaned the hole. POOH slowly because of 20,000 to 30,000 lbs drag. Rigged up Schlumberger and ran ISF-SONIC-GR logs for the interval 799-65 metres.

- 24/11/81 Ran BHC-ISF logs (799-65 metres). Rigged down Schlumberger and service tools. Made up casing landing string and cement plug. Made up BHA and R.I.H. Circulated out. Pumped slug, and POOH. No tight spots were encountered. Made up the wear bushing running tool. Washed the well-head and POOH. Rigged up and ran the 13 3/8" casing (60 joints; JAP; weight = 54.5; Grade = K55; Buttress threads). Pulled up the hanger in the derrick. Ran in and landed the hanger. The shoe was set at 784.07 metres. Rigged up Halliburton chicksans and cementing head. Circulated with the rig pumps. Pumped through the lines with Halliburton pump. Tested lines to 3000 psi. The cement mix comprised 643 sacks of class "N" cement and 80 bbls of fresh water, followed by 300 sacks of class "N" cement mixed with 37 bbls of seawater, and displaced with 355 bbls of mud. The plug was bumped with 1500 psi. Rigged down Halliburton. POOH. The hanger was backed out, and the wash tool pulled up. Tagged in the hole, washed the wellhead, and POOH. Pulled up the seal assembly and landed it. Tested the BOP and seal assembly to ESSO specifications.
- POOH with the seal assembly running tool and rigged down same. Made up, ran in and set the 18\frac{3}{4} \times 13 3/8 wear bushing. POOH. Broke down the 9\frac{3}{4}" DC and BHA. Made up the new BHA and bit number 3. Pressure tested the blind rams to 1500 psi OK. R.I.H. and tagged cement at 756 metres. Drilled cement from 756 to 799 metres, then drilled 12 1/4" hole from 799 805 metres. (bit No. 3: HTC x 3A, 12 1/4", 3 x 16). Circulated the hole clean. POOH to casing. Hung off on rams. Carried out a leak-off test. (Pumping rate was 3/4 bbl/min to 13.5 ppg equivalent mud weight. Set back the hanging assembly. Tagged in the hole, and drilled from 805 to 896m. Very little background gas was experienced (maximum of 0.3 units).
- 26/11/81 Drilled 12 1/4" hole from 896m to 1133 metres, reaming tight spots and spotting high viscosity mud when necessary. Maximum gas in this interval was 1 unit. There was 40,000 bls overpull at 943 metres. Drilled from 1133 to 1286 metres. (Maximum gas was 4 units over a background of 1 unit). Diesel was added to case tight hole problems. Mud ball accumulated in the riser, and lost circulation occurred. Worked pipe, and flushed the riser. Drilled slowly from 1286 to 1293 metres, because of Gumbo (maximum gas was 5 units; background was 1 unit). Cleaned hole, and flushed the riser. Checked for flow. Dropped a Totco, then POOH for a bit change, since bit number 3 had currently accumulated 30 hours drilling. (The bit was graded at 3-5-I: not worn, but still uneconomical as indicated by the Core Lab bit cost program).
- 27/11/81 POOH to surface. Changed the bit and R.I.H. to 784 metres (bit No. 4: HTC x 3A, 12 1/4", 3 x 16). Hung off the drill string and broke circulation. R.I.H. to 1247m. Wash and reamed from 1247 1293 metres. (Trip gas was 33 units). Drilled 12 1/4" hole from 1293 to 1392 metres. Background gas increased continuously during this drilled interval, from 5 35 units. Checked for flow none. Circulated up a drill-break of 4 metres (1388 1392 metres: loose, coarse sand) and obtained 840 units of gas. Continued circulating bringing the mud weight up to 10.2+. Checked for flow. Pumped a slug. POOH to the 13 3/8" casing shoe (experienced a drag of 30 40,000 lbs). The hole took 16.5 bbls for 22 stands of drill pipe.

- 27/11/81 Monitored the trip tank no flow. Tagged in the hole. continued. Circulated bottoms up and detected 60 units of gas (coming from the coarse clastics at 1385 1392m). Checked for flow none. Dropped a Totco, and pumped a slug. POOH, having decided to cut a core.
- Broke out the bit, bit-sub and stab. Retrieved the survey (1°). Made up and serviced the core barrel. R.I.H. circulated. Dropped the ball and circulated (maximum gas was 11 units). Cut core from 1392 1405 metres using a Christensen C22 bit, 8 15/32", TFA equivalent: 3 x 13). Pumped a slug and POOH. Broke the core barrel out and recovered the core (85%). R.I.H. with the same core barrell and bit. Circulated bottoms up (30 units Trip Gas). Started cutting core No. 2 with 12,000 WOB, 65 RPM, and 500 psi. Increased WOB to 14,000, RPM to 80, and pump pressure to 600 psi. Cored 13 metres in total to 1418 metres (Maximum gas was 18 units of the circulated samples in both cores). Pumped slug, POOH and chained out.
- 29/11/81 Finished tripping out. Recovered 76% of core No. 2. Broke down the 6" drill collars and serviced the core barrel. Made up bit No. 6 (HTC x 3A, 12 1/4", 14, 14, 15) and BHA. R.I.H. to 1392 metres. Reamed from 1392 to 1418m. (Maximum gas was 90 units). Drilled 12 1/4" hole from 1418 - 1450m. (Trip gas at 1418m was 2-32-6). Circulated a drill-break of 2 metres up (1449 - 1450m) and obtained 1 unit of gas only. Drilled 12 1/4" hole from 1450 - 1463 metres (maximum gas : 1 unit). Drilled from 1463 - 1495m (obtaining trace gas only). Decided to trip out because of the low penetration rates and hence uneconomical as indicated by the Core Lab cost program. Dropped a Totco, and pumped slub. POOH partly (drill string was pulling wet). Pumped a second slug, pulled out to the casing shoe, retrieved the Totco (1 1/4°) and serviced the rig. Broke out and examined the bit (condition was 7-6-3/4). Tagged in the hole with bit No. 7: HTC JD4, 12 1/4": 15, 15, 14; and laid down 1 washed HWDP and 1 washed DP. Laid down 9 joints to ream with. pipe. Tagged in hole to 1392 metres. Reamed from 1392 - 1493m.
- 30/11/81 Reamed from 1493 1495 metres. Drilled 12 1/4" hole from 1495 1585m (the maximum gas was 3 units over a background of 1 unit). Very slow penetration rates indicated a dulled bit. Dropped a Totco survey (misrun). Circulated bottoms up. Chained out of the hole. The bit was graded 7-4-5/16, its condition being due to excessive reaming. Rigged up Schlumberger and ran:

 (1) DLL MSFL GR.

 (2) FDC CNL GR.

 Rigged down Schlumberger. Made up the BHA and serviced the HWDP's. Ran in the hole with bit No. 8 (HTC x DG, 12 1/4"; 15, 15, 14) to ream tight spots.
- 1/12/81 R.I.H. to 1558m. Reamed from 1558 1585m. The hole was clean. Circulated bottoms up (Trip gas: 9 units). Dropped a Totco, pumped slug and POOH. Rigged up Schlumberger, ran RFT No. 1 and collected samples from 1406.4m. RFT No. 2 was a misrum. Ran RFT No. 3 and retrieved samples from 1396.6m. Rigged down the RFT tool and rigged up the Velocity Survey equipment.

- 2/12/81 Rigged down Schlumberger, R.I.H. and pulled the wear bushing. Set-back the wear bushing, and pulled up to test the cup.

 Tagged in the hole. Tested the BOP: annuar preventers 200 3500 psi; and rams 200 5000 psi. POOH and laid down the test plug. Tagged in the hole and ran the wear bushing. Made up the new bit (bit No. 9: HTC J22, 12 1/4"; 15, 15, 14).

 Tagged in the hole, broke circulation, broke in the bit and drilled from 1585 1720 metres. Only a trace of gas was detected in this drilled interval.
- 3/12/81 Drilled 12 1/4" hole from 1720 1912 metres (yielding a maximum of 4 gas units).
- 4/12/81 Drilled 12 1/4" hole to 1986m (maximum gas was 8 units over a trace of background gas). Circulated out, checked for flow, and ran a deviation survey. Pumped a slug and POOH to run logs; found a tight spot at 1440m. Reamed from 1401 1411m. POOH to the shoe, and retrieved the survey. R.I.H. to 1966m and reamed to 1986m. Circulated for 75 minutes, pumped a slug, and POOH.
- 7/12/81 R.I.H. with bit No. 8RR (HTC x DG). Reamed from 1176 1986m. Circulated for 2½ hours, pumped a 40 bb1 hi-vis pi11 and heavyweight slug. POOH to 1450m. Pumped a 45 bb1 hi-vis pi11, displaced the pi11 with 48 bb1 of mud and pumped a 25 bb1 heavyweight pi11; POOH. Rigged up Schlumberger and ran Velocity Data's Velocity survey. Rigged up to run RFT No. 4.
- 6/12/81 Ran RFT No. 4 and took a sample at 1387.7m. Ran RFT No. 5 and took a sample at 1399m. R.I.H. with NB No. 10 (HTC J22, 12 1/4"). Found no fill, drilled from 1986 2076m. (Trip gas at 1986m: 1-12-1). Only trace gas was detected in the drilled interval.
- 7/12/81 Drilled 12 1/4" hole from 2076 2161m (trace background gas).

 Decided to pull the bit due to slow penetration rates. Pumped a
 70 bbl hi-vis pill and circulated the hole clean. Dropped a
 survey and pumped a slug. POOH with no drag. The deviation was
 2° at 2161m, and the bit was graded 8-5-1/8.
- 8/12/81 R.I.H. with bit No. 11 (HTC J33, 12 1/4"). Reamed from 2145-2161m, and drilled to 2255m, experiencing only a trace of gas. (Trip gas at 2161m was 0-1-0.
- 9/12/81 Drilled to 2292m (1 unit maximum gas) and made a wiper trip. Pulled 20 stands to 1730m, ran to bottom, and drilled to 2304m where a flow check was made. Drilled to 2324m (maximum gas: 3 units), dropped a survey, pumped a slug, and POOH due to low rates of penetration.

- 10/12/81 Continued to POOH and retrieved the survey tool (misrun). Pulled the wear bushing, ran the test plug and tested the BOP to 5000 psi. Recovered the test plug and ran the wear bushing. R.I.H. to 2308m, reamed from 2308 2324m, and drilled ahead to 2381m. (Trip gas: 0-3-0). The drilled interval yielded 81 units maximum gas, over a background of 2 3 units.
- 11/12/81 Drilled from 2381 2425m (Gas : 57 units maximum; 4 5 units background); and circulated out. Pumped a slug and made a 20 stand wiper trip. Ran back to 2424m and found 1m of fill. Reamed to 2425m and drilled to 2460m. (STG : 2-4-2 units; Gas : 24 units maximum, 2 units background). Circulated out.
- 12/12/81 Drilled to 2505 metres (Gas: 154 units maximum, background 3-5 units). Circulated out. Drilled to 2521m (Gas: 11 units maximum, 2 units background), circulated out, dropped a survey and pumped slug. Made a wiper trip as far as the show. Retrieved the survey (misrun) and ran back in.
- 13/12/81 Circulated out, dropped a survey (2521m, misrun), pumped a slug and POOH to run logs at this tentative TD. Laid down the core barrel. Ran the following wireline logs:

 Run No. 1: DLL-MSFL-GR-SP
 Run No. 2: LDT-CNL-GR
 Run No. 3: BHC-GR
) 2519 1575 metres.
- 14/12/81 Continued to run wireline logs:
 Run No. 4: HDT (2519 1474 metres)
 Run No. 5: Velocity Survey.

Run in to condition hole before RFT runs. Dropped a survey, pumped a slug, and POOH.

- 15/12/81 Ran RFT No. 6 (misrun). Changed the probe and ran RFT No. 7. Collected this sample (2403.4 metres) and made run RFT No. 8.
- 16/12/81 Continued RFT Run No. 8 and recovered this sample from 2365.5m Laid out tools. Made up and ran CST No. 1, CST No. 2, and CST No. 3. Laid out tools and rigged down Schlumberger. Made up bit No. 13 (HTC J7, 12½") and serviced the 9 5/8" water head. R.I.H., broke circulation and reamed from 2497 2521 metres. (T.G. at 2521m: 1-20-4 units). Worked the junk sub, and drilled 12¼" hole from 2521 2530m.
- 17/12/81 Drilled 12¼" hole from 2530 2535m (Gas: 5 units maximum; 1 unit background). Pumped slug and POOH. Broke out the mill-junk bit (condition: 3-2-1) and junk sub. Retrieved the wear bushing. R.I.H. with the test plug. Tested the stack (all rams and choke and kill lines to 200/5000 psi). Tested annulars to 200/3500 psi (OK). POOH and broke out the test plug. Set wear bushing. Made up BHA and bit No. 14 (HTC J33, 12¼") and ran in to 1366 metres. Simulated hang-off drilling and filled pipe (drilled for 8 minutes). R.I.H. to 2535m and drilled 12¼" hole

- 17/12/81 down to 2560m (T.G. at 2535m : 0-10-1 units: Gas: maximum continued 27 units, background 2 units). Circulated the sample up at 2555m. Repaired the wash pipe and swivel.
- Drilled 12¼" hole to 2600 metres with flow checks. (Gas: 38 units maximum, 1 unit background). Circulated out drill; break samples at 2579m (21 units) and 2597m (5 units). At 2600m, 400 psi pump pressure was lost. Checked the surface equipment, lost a further 750 psi, so POOH slowly, looking for a washout. Found 2 joints of HWDP washed out. Laid down all HWDP. Made up bit No. 15 (HTC J33, 12¼") and pulled up 3 8" DC's. R.I.H. to the shoe. Filled pipe and simulated "hang off" drilling for 9 minutes. R.I.H. to 2562m. Reamed from 2562 2600 metres. Drilled 12¼" hole from 2600 2602m. (T.G. was 20 units at 2600m).
- 19/12/81 Drilled 12¼" hole from 2602 2645m, (Gas: 24 units maximum, 2 units background), with flow checks. Circulated up the sample from a drill-break at 2614m (6 units). Drilled from 2645 2663m. (Gas: 70 units maximum, 7 units background). Circulated samples up at 2657m (53 units), and 2663 (15 units). Dropped survey and pumped slug. POOH, 70,000 lbs overpull at 2504m. The bit was pulled since core point had been reached. Broke off bit No. 15 and inspected it (condition: 3-3-1/8). Retrieved survey. Picked up the core barrel and made up the Christensen bit (C-20, 8 15/32").
- 20/12/81 Serviced the core barrel, R.I.H. and tagged the bottom at 2663m. Circulated bottoms up. Spaced out and dropped the ball. Cut core No. 3 from 2663-2669m (2 units maximum gas circulated). Pumped slub and POOH, strapping the pipe. Recovered the core: 5.85 metres (97½%). Racked up the core barrel back in the derrick and made up bit No. 17 (HTC J33, 12¼"). R.I.H. to the shoe. Simulated "hang off" drilling for 5 minutes. Filled pipe and serviced the rig. R.I.H. to 2643m, laying down 12 joints of grade "G" drill-pipe. Reamed core rathole from 2663-2669m. (T.G. 12 units; 3 units background gas during reaming).
- 21/12/81 Drilled $12\frac{1}{4}$ " hole from 2669-2773 metres. Serviced swivel packing and bushings (Gas: 53 units maximum; 5 to 6 units background)
- Drilled 12¼" hole from 2773-2786m (Gas: 43 units maximum, 3 units background). Pumped slug, and pulled 20 stands to 2219m. (The hole took 2½ barrels on the trip out). R.I.H. and drilled 12¼" hole from 2786-2815m. (WTG: 4-21-11; Gas: 28 units maximum, 2 units background). Circulated bottoms up. Checked for flow, pumped slug, and POOH to 13 3/8" shoe. Checked for flow, and serviced the rig. T.I.H. filled the pipe. Circulated bottoms up. Pumped slug, and POOH to run wireline logs (The spinning wrench was used up to the casing shoe). Rigged up Schlumberger and ran the DLL-MSFL-GR logs.

- 23/12/81 Continued running the DLL-MSFL-GR logs from 2815-2460m.
 Retrieved, laid out and serviced tools. Carried out
 Run No. 2: LDT-CNL-GR from 2815-2460 metres. Laid out and
 serviced tools. Run No. 3: BHC-GR (2813-784m). The well took
 33 bbls of mud during 12 hours of logging. Retrieved and
 laid out tools. Rigged up and ran the depth tool. Rigged
 down Schlumberger. T.I.H. and made a wiper trap.
- 24/12/81 Circulated and conditioned mud, and serviced the rig.
 Pumped a slug and then POOH. Rigged up the Schlumberger
 compensator line. Picked up tools and R.I.H. with the
 RFT equipment, and ran RFT No. 9 (misrun because of mechanical
 problems). Ran RFT No. 10 and retrieved the sample from
 2659.4 metres.
- 25/12/81 Serviced and ran RFT No. 11. Retrieved the sample from 2779m, laid down tools and rigged down the compensator line. Made up rerun bit No. 15 and R.I.H. Simulated BOP drill. Filled pipe, and R.I.H. to 2815m. Circulated and cleaned hole for further logging. Well took 13½ bbls during 6½ hours of logging. Circulated hole clean. Pumped slug and POOH (using the spinning wrench as far as the casing shoe). Rigged up Schlumberger, made up and ran RFT No. 12. Recovered the sample from 2498.5m and rigged down Schlumberger. R.I.H. and pulled the wear bushing. Pulled up the test cup, put new cup on tool, T.I.H. and landed the tool.
- 26/12/81 Fully function tested the BOP to Esso specifications. Pulled the 18\frac{3}{4} \times 13 3/8" test cup and broke down same. Ran the 18\frac{3}{4}" \times 13 3/8" wear bushing. Made up bit No. 18 (HTC J33, 12\frac{1}{4}"), checked the float and Totco run. R.I.H. Simulated "hang off" drilling and filled pipe. Serviced the rig. R.I.H. to 2786m. Broke circulation and reamed from 2786 2815m (as a precaution). Drilled 12\frac{1}{4}" hole from 2815 to 2883m (TG: 21 units at 2815m; Gas: 18 units maximum, 3 units background). Changed the swab on No. 1 pump. Pulled the caps on No. 2 pump (there was debris under the suction valve). Serviced the blocks, swivel and D.S.C.
- 27/12/81 Drilled 12¼" hole from 2883 2910m (Gas: 34 units maximum, 1 unit background). Made a 20 stand wiper trip from 2910 2343m. No tight spots encountered. Well took 5 barrels. Drilled 12¼" hole from 2910 2952 metres (WTG: 5-10-4 units; Gas: 30 units maximum, 1 unit background).
- Drilled 12¼" hole from 2952-2955 metres. Low penetration rates indicated a dulled bit. Circulated bottoms up. Dropped survey and pumped slug. This was the final TD. POOH (hole took 13.5 bbls) and strapped the pipe. There was 32 Kips overpull at 2716 metres. Retrieved the survey (3°). R.I.H. circulated bottoms up (TG: 2-5-2- units). Pumped slug and POOH. Rigged up Schlumberger and made the following logging runs:

28/12/81 (1) DLL-MSFL-GR (2951 - 2809m) continued (2) LDT-CNL-GR (2953 - 2813m)

- 29/12/81 (3) BHC-GR-SP (2953 2813m) (4) HDT (2955 - 2815m)
 - (5) Velocity survey.

Rigged down Schlumberger, made up the BHA, and RIH to 2949m. Broke circulation and reamed from 2949 - 2952 metres. Circulated out. POOH.

- 30/12/81 Rigged up Schlumberger and made RFT pretest runs 13 and 14.
 Rigged down the RFT tool and rigged up the CST tool. Made 2
 sidewall core runs, recovering 101 plugs altogether. Rigged
 down Schlumberger. Made up the casing hanger and laid down
 same. Made up BHA and R.I.H.
- 31/12/81 R.I.H. to 2955m, and circulated out. Dropped multishot and POOH taking multishot and retrieving it at the 13 3/8" shoe. R.I.H. to 2955m and circulated out. Pumped slug and POOH (there was 40 to 50,000 lbs drag on the first 8 stands). Retrieved the wear bushing and ran the 9 5/8" casing.
- 1/1/82 Continued to run casing. Rigged up cement head and lines and conditioned mud prior to cementing. Tested cement lines to 3000 psi and pumped 40 bbls fresh water ahead of 900 sx Aust "N" cement mixed with 111 bbls fresh water. Released the plug and displaced with mud, however the cement would not fully displace (it was only displaced 470 bbls of the calculated 697 bbls. Pressured to 1500 psi, bled, then pressured up to 2000 psi. Checked cement head and opened the DV port for the 2nd cement stage. Circulated mud for 2 hours and pumped 40 bbls of water followed by 710 sx of Aust "N" cement mixed with 88 bbls of water and 0.8% HRGL. Installed on MSC closing plug in the cement head and displaced it with 368 bbls of mud at 300 psi. (Plug was bumped with 1800 psi).
- 2/1/82 Laid down the casing. Washed the wallhead and hanger. POOH and tested the BOP. Ran the wear bushing and pulled up the $8\frac{1}{2}$ " BHA and R.I.H. Tagged the DV tool at 1499m and drilled out same (with bit No. 19: HTC, OSC IG, $8\frac{1}{2}$ "). Pressure tested the casing to 2000 psi OK. R.I.H. and tagged cement at 1998m. Laid down some drill pipe and drilled cement to 2190 metres.
- 3/1/82 Drilled cement to 2460m (currently the bit had been run for $18\frac{3}{4}$ hours, so it was pulled, and graded at 4-6-In. Changed the bit and R.I.H. with bit No. 20: HTC J2, $8\frac{1}{2}$ ", 3 x 16. Drilled cement to 2575m.

- 4/1/82 Drilled cement out to its lower limit at 2747m. Washed to the baffle plate and circulated bottoms up. Tested the casing to 2000 psi, flusher the riser, POOH and R.I.H. with the casing scraper. Tagged the baffle plate at 2895m, circulated, and conditioned mud. POOH to run wireline logs.
- Ran CCL-GR. Rigged up the 4" perforating gun and perforated 5/1/82 from 2890 - 2891.5m (4 SPF). Hole took 22 bb1s of fluid. Ran the junk basket. Set a Baker (EZSV) packer at 2870m. Perforated from 1800 - 1801.5m (4 SPF). Made up cement stinger Established pressure losses at 700 psi at 60 SPM and 1350 psi when stung in. Displaced heavy mud with 9.8 ppg mud, maximum gas 25 units which dropped down to 1 unit. Pressure tested the cement lines and pumped 40 bbls of water followed by 900 SX of Aust "N" cement and 2% HRGL (slurry weight: 15.6 ppg). Displaced the cement wibh 8 bbls of water and 147 bbls of mud. The total mud displacement should have been 158 bbls so the cement was under-displaced by 13 bbls. Reverse circulated out 50 bbls of contaminated mud. Circulated for $2\frac{3}{4}$ hours and POOH. Waited on cement for a further $\frac{1}{2}$ hour and closed the blind rams. Established an injection rate of $5\frac{1}{2}$ bbls/min at 1400 psi. RIH with the stinger, circulated bottoms up at 1800m (Gas: 1 unit). Pumped 14 bbls of water ahead of 100 SX of Aust "N" cement followed by 2 bbls of water and 96 bbls of mud (cement plug was set from 1800 - 1712m). Pulled up 8 stands, closed the upper pipe rams and pumped 10 bbls of mud.
- 6/1/82 Squeezed the cement and bled back 5 bbls. A total of 7 bbls of slurry was squeezed into the performations. Pumped slug and POOH. R.I.H. with the scraper to 1727,, and washed and drilled cement from 1727 1804 metres. R.I.H. to 2863m, circulated out, and POOH. Ran a CBL.
- 7/1/82 Removed the divertor packer and made up the fluted hanger, and R.I.H. to space out. RKB to top of hanger was 62.56m. (LPR to top of hanger was 1.52m).
- 8/1/82 Ran FIT No. 1 at 2779m. Recovered only filtrate (see RFT section of this report for full details). Tested the BOP and ran FIT No. 2 at 2661.5m. Recovered only filtrate.
- 9/1/82 Ran the gauge ring and junk basket, and set a packer at 2640m. Picked up $3\frac{1}{2}$ ", 9.3/ft tubing and ran in the hole.
- 10/1/82 Stabbed tubing into the packer at 2640 metres. Pressure tested the annulus to 500 psi. Halliburton tested the back-side and rigged down the circulating head. Spaced out tubing; function tested the latch and subsea test tree. R.I.H. with the subsea lubricating valve and Otis service test tree. Tested choke manifold and lines to 3000 psi. Rigged up slings for 3½" tubing.

Turned down the pins for slings (too big for holes in thimbles).

Rigged up slings. Made up surface tree and hung it on the slings from the blocks. Displaced tubing with diesel (5 bbls of water ahead plus 78 bbls diesel). Stung in packer - closed the lower pipe rams - pressure tested the annulus to 250 psi.

Rigged up Schlumberger, well flowed 12 bbls; shut in 450 psi on the tubing. Tested lubricator to 1,000 psi. R.I.H. with perforator gun and detonated. (No indication that shots fired). POOH, found primer cord had fired but shots had not fired.

Rigged down Schlumberger. Waited on daylight to perforate - monitored well and annulus.

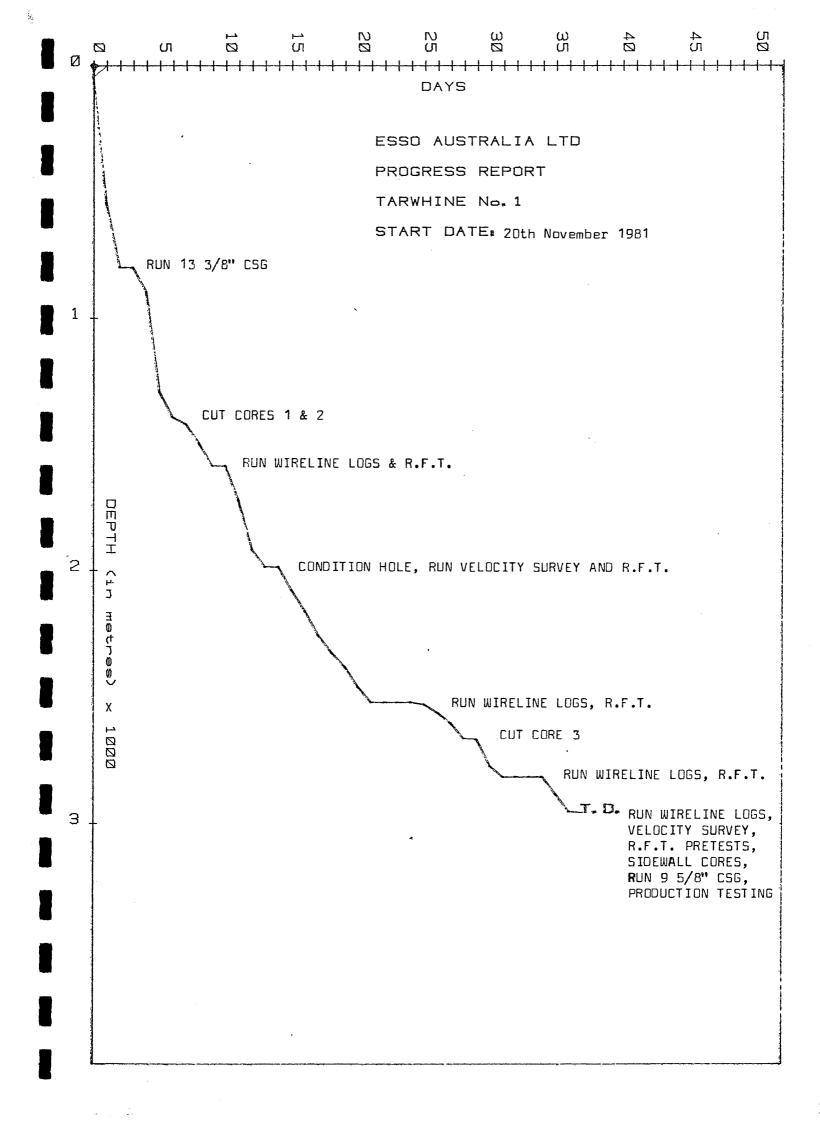
Rigged up the perforating gun. R.I.H. and perforated from 2656 - 2667.5m (Shot at 06.14 a.m., pressure 170 psi). Monitored pressure build-up, stabilizing at 425 psi. Schlumberger POOH and rigged down, while the well flowed through the test tank (maximum tubing pressure was 36 psi, maximum annular pressure was 270 psi). Rigged up Otis, swabbed the well (43 runs) and pumped 25.3 bbls diesel. The fluid level was 248 metres. Rigged down Otis, rigged up and ran Schlumberger logs: HP-Amerada.

12/1/82 Rigged down Schlumberger and rigged up Otis. Swabbed the well (7 runs, 7 bbls loading fluid, fluid level was 240m).
Rigged down swabbing tool. Made up slick tool and lubricator and R.I.H. with same. Filled tubing with 6½ bbls water.
Pressured tubing to 500 psi. R.I.H. and opened the sleeve.
POOH with Otis. Reverse circulated with 81.5 bbls of mud.
Displaced tubing with 80 bbls of diesel. R.I.H. with Otis to close sliding sleeve. Rigged down Otis. Pressure tested annulus to 500 psi. Flowed the well.

13/1/82 The well produced 65.1 bbls. Swabbed 19 runs - recovered 32.7 bbls of fluid - total recovery was 97.8 bbls (68 bbls diesel, remainder was filtrate water). Swabbed well for another 51 runs, fluid recovered was 165.6 bbls (68 bbls diesel). Well stopped flowing at 22.30 hours, after 346.5 bbls had flowed. Shut-in well, R.I.H. with Schlumberger and carried out a pressure survey. Pressure at midnight was 220 psi.

Opened the well for flow. Surface pressure went from 225 to zero psi in 5 minutes. Closed the well. Final shut-in: tubing head pressure was 157 psi. POOH with Schlumberger gauges and rigged down same. The pressure was bled off the tubing. Rigged down the slings. Reverse circulated. Circulated through tubing to condition mud. POOH and laid down the Otis tree. R.I.H. and stung into the packer. Pressure tested cement lines to 3500 psi (OK). Attempted to establish injection rate - too low to pump cement. Set balance cement plug on top of packer - pumped 114 SX of cement. POOH 10 stands. Reverse circulated, but there were no cement returns. POOH, laying down the tubing.

Laid down BHA. Rigged up Schlumberger. Made up junk basket and gauge ring - ran to 1460m. Made up EZSV bridge plug and set it at 1450m. Rigged down Schlumberger. Retrieved wear bushing and tested the casing to 3000 psi (OK). R.I.H. with the test plug. Filled pipe with water to test the BOP. Tested the rams and preventers - all OK. POOH with the test plug. R.I.H. with the wear bushing. Rigged up Schlumberger. Set model D Packer with Schlumberger wireline at 1372 metres. Rigged down Schlumberger. Made up BHA, ran 3½" tubing and stung it into the packer. Tested the annulus to 500 psi and tubing to 2000 psi (OK). Made up the upper test assembly and compensator slings.


16/1/82 Rigged up the lines and tested the cement lines to 3000 psi. Unstung the tubing from the packer. Displaced the tubing with: 2 bbls water; 35 bbls diesel; and 2 bbls water. Stung the tubing and tested: the annulus to 200 psi; the cement lines, manifold and tubing to 1500 psi; the packer and casing to 2000 psi. Rigged up Schlumberger (BOP and lubricator) and made up and loaded the perforating gun. Tested the lubricator to 2000 psi. R.I.H. with the perforating gun and perforated from 1398 - 1400.5m (07.24 a.m., initial pressure: 300 psi). Removed perforating gun and the Schlumberger lubricator. Opened the well for initial flow at 08.25 a.m. on the 24/64 adjustable choke. Rigged up the gauges and closed in the well at 970 psi. Tested the Schlumberger lubricator to 2000 psi. Monitored bottom hole pressure. Flowed the well for 8 hours and shut-in same. POOH and rigged down Schlumberger.

17/1/82 Rigged up Otis and tested the lubricator to 2000 psi. R.I.H. and opened the sleeve. POOH. Made up the Otis lubricator. Reversed out of the tubing and burned off the reservoir fluid. R.I.H. with Otis and closed the sleeve. POOH. Rigged down the Otis lubricator and BOP. Unstung the tubing from the packer and reversed out - the maximum gas was 85 units. Circulated and conditioned the mud (maximum gas: 140 units; average gas: 80 - 100 units). Rigged down lines and POOH. Laid down Otis SSLV and SSTT. R.I.H. with drill-pipe to the top of the packer. Set 114 SX class "N" neat balanced cement plug on top of the Cemented in place at 13.04 hours. Pulled 10 stands, and reversed out - no visible cement in returns. Pulled 10 stands, and reversed out - no visible cement in returns. Pumped a slug, POOH, and laid down the tubing. Pressure tested annulus to 3000 psi against shear rams (OK). Rigged up Schlumberger and ran the gauge ring and junk basket to 1020m. POOH. Ran and set EZSV bridge plug at 1000m. POOH. Rigged down Schlumberger. R.I.H. with $3\frac{1}{2}$ " tubing stinger on 5" drill pipe to 780m. Set 114 SX neat cement plug plus 14 bbls seawater (slurry weight: 15.9 ppg) from 780 - 680m. POOH to 500m and reversed out (no cement). Laid down drill-pipe. Rigged up and displaced riser with seawater. POOH laying down 5" drill-pipe and 4 stands of 3½" tubing. R.I.H. with DC's and 5" drill-pipe, and POOH laying them down. Pulled the wear bushing.

19/1/82 Pulled riser and BOP stack.

20/1/82 Pulled anchors and towed to the new location.

8. PROGRESS REPORT

9. BIT RECORD

BIT SIZE inches

BIT COST A dollars

JET SIZE Thirty seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME. Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . A dollars

BIT CONDITION. . . . Teeth .

Bearings

Gauge . . . inches

BIT RECORD

		VIAR
W	M	LAB

COMPANY ESSO AUSTRALIA LTD.

WELL ____TARWHINE No. 1

Sheet No. ___1

IADC Drilling | On Bottom Bit No. Make Depth In Hole Condition Type S/N Size Jets Code Remarks Madem Time Hours K Turns COST TBG 17岁 OSC 3AJ 111 20 20 20 M.I. 804 1 RR HTC 103 139 65 2-2-I 26 5.80 OUT FOR 20" CSG 15 15 15 34 7000 HOLE MADE + 10m OF CMT OUT TO BUN 13 3/8" CSG OUT AFTER 31 HRS, KX 788 2 17분 HTC OSC 3AJ 111 20 20 20 204 595 22호 115 5000 13.61 3-3-I LS 196 12분 3 HTC X 3A 114 16 16 16 799 494 31 162 1400 21.11 3-5-I NO TORQ/NOT WORN 12분 LR 569 HTC X3A 114 16 16 16 1293 5₺ 99 4.14 33 1-3-I OUT AT CORE POINT 1400 15 TFA 13/13/ 32 13 EDUIV 15 TFA 13/13/ B0L05553 5 RR CHRIST C 22 4 1392 13 2.24 13 30% WN CUT CORE NO. 1 15000 80L05553 5 RR CHRIST C 22 4 8 32 13 EQU'IV 1405 13 3 3.02 16 80% WN CUT CORE NO: 2 15000 KL 689 HTC 12분 б X 3A 114 14 14 15 1418 77 64 4.27 35 $7-6-\frac{3}{4}$ DAMAGED WHILE REAMING ? 14 00 7-5-5 (2 HOURS REAMING)
16 DULLED BIT LA 802 7 HTC 217 12분 91/2 JD4 15 15 14 1495 90 7.22 50 1800 12분 KZ 727 8 HTC XDG 135 15 15 14 1/585 1 Ω 0 0 1-1-I REAM ONLY 1400 FL 595 9 HTC J 22 517 12분 15 15 14 44출 1585 401 40.68 244 5-4-3 OUT FOR VEL SURV& RFT's 4200 KZ 727 12분 8 RR HTC XDG 135 83 15 15 14 1986 Π П 0 1-1-I REAM&WORK PIPE 1106-1986 1400 00 6PL 10 HTC 12분 8-5-4 J 22 517 14 14 15 1986 175 33点 29.75 176 BT. OUT DUE TO LOW ROP 4200 11 12 1/2 016 BL HTC J 33 527 14 14 14 2161 163 38 4-6-36 36.22 20 6090 13 BT.OUT DUE TO LO ROP 12 12분 068 AL HTC J 33 527 14 14 14 2324 197 53 45.29 252 6-6-4 **OUT** FOR WIRELINE LOGS 6090 HT 210 13 HTC J 7 12분 316 61/2 14 14 14 2521 14 6.20 21 3-2-I MILL JUNK 1800 104 AL 14 HTC 12분 J 33 527 5-3--14 14 14 2535 65 10공 8.77 54 OUT DUE TO WASHOUT 6090 105 AL 15 HTC 12분 J 33 527 14 14 15 15공 3-3-2600 63 13.94 76 OUT FOR CORE No.3 6090 815 14/14/15 81E61047 16 CHRIST C 20 4 2663.3 10분 6 4.08 19 20% WN CUT CORE No.3 15000 TEA EQUIV 067 AL 17 HTC 12분 3 2 HRS REAMING J 33 527 6-5-16 OUT FOR WIRELINE LOGS 14 14 15 2669 146 37 33.41 235 6090 027 BL 18 HTC J 33 527 12분 14 14 15 2815 140 41 36.54 218 6090 6-6-4 DULLED BIT ; OUT AT T.D. 259BF 19 HTC 105C 1G 131 8불 28 26 26 1998 183 462 14.37 104 3-5-I DRILLED CEMENT 900 PB 179 20 HTC J 2 8후 116 16 16 16 287 2-2-I 950 2460 8 5.46 35 DRILLED CEMENT PB 179 20 HTC 10 J 2 116 8호 16 16 16 2-2-I DRILLED OUT DV & CMT 950 7520-487 (CL 1153)

BIT RECORD

COMPANY __ESSO AUSTRALIA LTD.

WELL TARWHINE No. 1

Sheet No. __1

5/N	Bit No.	Make	Type	IADC Code	Size	Cost	Jets	Depth In	Depth Out	Hole Made m	Drilling Time	On Bottom Hours	TurnsK	Average ROP	Average Cost/ m	Condition T B G
M J 804	1 RR	нтс	OSC_3AJ	111	17½ 26²	7000	20 20 20 15 1 5 15	65	204	139	10 3	•80	34	24.0	241	2-2-I
KX 788	2	HTC	OSC 3AJ	111	17출	5000	20 20 20	204	799	595	22 ⁵ .	13.61	115	43.7	112	3-3-I
LS 196	3	нтс	X 3/A	114	12½	1400	16 16 16	799	1293	494	31	21.11	162	23.4	195	3-5-I
LR 569	4	нтс	x3A	114	12½	1400	16 16 16	1293	1392	99	5 <u>1</u>	4.14	33	23.9	377	1-3-I
80L05553	5 RR	CHRIST	C 22	4	15 8 32	15000	TFA 13/13/ 13 EQUIV TFA 13/13/	1392	1405	13	2 1 /4	2.24	13	6.4	3366	30% WN
80L05553		CHRIST	C 22	4	8 32	1 5000	TFA 13/13/ 13 EQUIV	1405	1418	1 3	3	3.02	16	4.3	4538	80% WN
KL 689	6	HTC	X 3A	114	12½	1400	14 14 15	1418	1495	7 7	$6\frac{1}{4}$	4 .27	35	16.7	524	$7-6-\frac{3}{4}$
LA 802	7	HTC	JD4	217	12½	1800	15 15 14	1495	1585	90	91/4	7.22	50	12.5	571	7-5-16
KZ 727	8	нтс	XDG	135	12 1 / ₄	1400	15 15 14	1585	1585	0	1	0	0	0	-	1-1-I
FL 595	9	нтс	J 22	517	12½	4200	15 15 14	1585	1986	401	441/2	40.68	244	9.9	440	5-4-3
KZ 727	8 RR	HTC	XDG	135	121/4	1400	15 15 14	1986	1986	0	83/4	0	0	0	-	1-1-I
00 6PL	10	HTC	J 22	517	121/4	4200	14 14 15	1986	2161	175	33½	29.75	176	5.9	806	8-5-1
016 BL	11	нтс	J 33	527	12분	6090	14 14 14	2161	2324	163	38	36.22	207	4.6	1020	4-6+3
068 AL	12	нтс	J 33	527	12년	6090	14 14 14	2324	2521	197	53	45.29	252	4.3	1029	$6-6-\frac{1}{4}$
HT 210	13	HTC	J 7	317	124	1800	14 14 14	2521	2535	14	62	6.20	21	2.3	4278	3-2-I
104 AL	14	HTC	J 33	527	12½	6090	14 14 14	2535	2600	65	10 3	8.77	54	7.4	1119	5-3-8
105 AL	15	HTC	J 33	527	12 ¹ / ₄	6090	14 14 15	2600	2663.3	63	15 3	13.94	76	4.5	1475	3-3-1
81E61047	16	CHRIST	C 20	4	8 <u>15</u> 32	.15000	14/14/15 TFA EQUIV	2663.3	2669	6	10½	4.08	19	1.4	11225	20% WN
067 AL	17	нтс	J 33	527	121/4	6090	14 14 15	2669	2815	146	37	33.41	235	4.4	1124	6-5-16
027 BL	18	HTC	J 33	527	12½	6090	14 14 15	2815	2955	140	41	36.54	218	3.8	1265	6-6-1/4
259 BF	19	нтс	0SC 1G	131	81/2	900	28 28 28	1998	2460	462	18 3	14.37	104	32.2	175	3-5-I
PB 179	20	нтс	J 2	116	81/2	950	16 16 16	2460	2747	287	8	5.46	35	52.6	192	2-2-I
PB 179	20	HTC	J 2	116	81/2	950	16 16 16	•	-	-	10	***	***	-	-	2-2-I
- -																
	7520 496 /	CL 1153\											*	***************************************		

7520-486 (CL 1152)

BT BT

10. MUD INFORMATION SHEETS

DEPTH Metres

 $\ensuremath{\mathsf{MUD}}$ WEIGHT , , , , . , Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I. seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. Pounds/100 square feet

GEL : Initial/10 min . Pounds/100 square feet

FILTRATE A.P.I. cc

CAKE THICKNESS . . . Thirty seconds of an inch

SALINITY : Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

MUD INFORMATION SHEET COMPANY ESSD AUSTRALIA LTD. TARWHINE No. 1 1 WELL Sheet No. _ 150 360 790 1300 DEPTH 1060 1355 1405 28 NOV 81 20 NOV 81 22 NOV 81 23 NOV 81 26 NOV 81 27 NOV 81 27 NOV 81 DATE TIME 21:00 18:00 11:44 13:00 09:30 09:00 11:45 10.1 WEIGHT 8.6 8.9 8.9 10.0 10.3 9.0 FUNNEL VISCOSITY 28 28 41 41 44 4/6 .49/.49 9/16 .44/1.57 2/2 3/14 9/12 7/19 .58/.10 .51/.85 .23/.10 .34/3.0 N/K 8/19 GEL: INITIAL/10 MIN 6/28 10/19 10.6 11.0 10.8 16.1 13.3 11.2 FILTRATE: API/API HTHP 2 17K 16.5 K 17.DK SALINITY - C1 4 SAND 10 10 10 SOLIDS 0 0 tr 140 100 SALINITY - Ca 15 NITRATES REMARKS: SEAWATER GEL SEAWATER oil-defoamer added

					_		
DEPTH	1444	1495	1613	1816	1901	1980	1986
DATE	29 NOV 81	29 NOV 81	2 DEC 81	3 DEC 81	3 DEC 81	4 DEC 81	4 DEC 81
TIME	10:00	24:00	13:15	11:15	22:00	07:15	17:00
WEIGHT	10.1	10.1+	10.0+	10.2	10.1	10.0+	10.1
FUNNEL VISCOSITY	43	50	44	45	45	44	43
PV/YP	10/15	16/20	10/15	15/16	14/16	14/14	14/15
N/K	.49/1.21	.53/1.32	.49/1.21	.57/0.89	.55/ .96	.58/.73	.57/.84
GEL: INITIAL/10MIN	5/20	8/29	4/18	4/14	6/19	4/16	4/17
Нα	10.8	10.1	11.0	10.5	10.9	10.7	11.1
FILTRATE: API/API HTHP	7.8/14.2	7.4/13.2	8.2/14.2	5.8/11.6	6 .9/ -	6.4/13.8	6.6/13.0
CAKE	2	2	2	1	. 1	1	1
SALINITY - C1	17.5K	17.0K	16.0K	17.DK	17.DK	17.3K	17.3K
SAND	4	1/4	1/4	2	<u>1</u>	1/2	± 2
SOLIDS	10	11	Ð	11	10	10	9
OIL	TR	TR	TR	NIL	NIL	NIL	NIL
SALINITY -Ca	140	140	80	100	80	80	80
NITRATES ppm	220	175	176	75	25	90	112
REMARKS:	1	<u> </u>	<u> </u>		<u> </u>	L	L

MUD INFORMATION SHEET

COMPANY ESSD AUSTRALIA LTD
TARWHINE No. 1

Sheet No. _____

DEPTH	1986	1986	2001	2060	2115	2161	2190
DATE	5 DEC 81	5 DEC 81	6 DEC 81	6 DEC 81	7 DEC 81	7 DEC 81	8 DEC 81
TIME	11:00	13:30	13:00	22:15	12:00	20:30	16:30
WEIGHT	10.1	10.1	10.0+	10.0	10.0	10.0	10.0
FUNNEL VISCOSITY	44	45	50	46	43	44	45
PV/YP	16/17	15/16	17/21	15/19	15/15	16/17	16/16
N/K	.57/.94	.57/0.89	.53/1.37	0.53/1.27	0.58/0.78	0.57/0.94	0.58/0.84
GEL: INITIAL/10 MIN	4/19	4/17	6/18	5/16	7/16	6/19	6/18
bH	10.8	11.0	10.8	11.0	10.7	11.2	11.1
FILTRATE: API/API HTHP	6.5/13.4	6.8/13.6	7.8/14.5	6.6/13.2	7.0/13.0	6.6/12.4	6.8/12.8
CAKE	1	1	1	1	1	1	1
SALINITY - C1	17.8K	18.0K	17.6K	17.8K	18.5K	18.6K	18.7K
SAND	1/4	1/4	1/4	1/4	1/4	1 4	1/4
SOLIDS	10	9	10	10	10	10	10
OIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
SALINITY - Ca	80	80	90	90	90	90	90
NITRATES PPM	1.5	130	180	155	98	108	112
					-		

REMARKS:

DEPTH	2250	2308	2324	2337	2377	2425	2457
DATE	8 DEC 81	9 DEC 81	9 DEC 81	10 DEC 81	10 DEC 81	11 DEC 81	11 DEC 81
TIME	22:00	22:00	13:50	22:40	12:30	23:00	22:00
WEIGHT	10.0	10.0	10.1	10.1	10.1	10.1	9.9+
FUNNEL VISCOSITY	46	46	47	49	47	47	45
PV/YP	15/18	15/22	14/20	13/30	17/30	14/18	13/16
N/K	0.54/1.14	0.49/1.73	.50/1.53	0.38/4.00	0.45/2.93	0.52/1.22	0.53/1.04
GEL: INITIAL/10MIN	5/17	7/22	5/19	6/20	7/22	7/19	6/18
рН	10.6	10.8	10.6	10.7	10:1	10.6	10.8
FILTRATE: API/API HTHP	7.0/13.2	7.0/13.6	7.7/13.2	7.8/13.4	7.8/13.2	7.5/13.2	7.2/13.0
CAKE	1	1	1	1	1	1	1
SALINITY - C1	18.9K	17.5K	18.0K	18.5K	18.5K	18.5K	18.5K
SAND	1/4	1/4	1/4	1/4	<u> </u>	1/4	1/4
SOLIDS	10	10	. 9	8	7	7	8
OIL	TR	TR	TR	TR	TR	TR	TR
SALINITY - Ca	80	60	80	80	60	80	80
NITRATES ppm		160	140	140	185	185	170

REMARKS:

COMPANY ESSO AUSTRALIA LID.

WELL TARWHINE No. 1

MUD INFORMATION SHEET

Sheet No. ____3

DEPTH	2458	2521	2521	2521	2521	2521	2526
DATE	12 DEC 81	12 DEC 81	13 DEC 81	14 DEC 81	14 DEC	15 DEC 81	16 DEC 81
TIME	10:40	23:00	23:15	17:30	21:00	23:30	22:00
WEIGHT	9.9+	9.9	10.0	10.1	10.0	10.0	10.0
FUNNEL VISCOSITY	47	45	61	49	54	54	50
PV/YP	13/19	11/17	12/18	12/18	10/21	11/20	10/14
N/K	0.49/1.49	0.48/1.42					
GEL: INITIAL/10 MIN	7/19	8/21 、	5/15	7/19	6/19	7/19	4/16
рH	10.5	10.6	10.3	10.6	10.6	10.6	11.0
FILTRATE: API/API HTHP	7.2/13.6	7.2/13.2	7.4/13.6	7.9/14.2	7.8/ -	8.0/14.4	8.0/14.6
CAKE	1	1	2	2	2	2	2
SALINITY C1	18.0K	18.5K	18.OK	19.OK	19.0K	19.OK	19.OK
SAND	- 4	1/4	TR	TR	1/4	TR	TR
SOLIDS	8	7 7	7	7	7	7	77
OIL	TR	TR	TR	T R	TR	TR	TR
SALINITY Ca	80	60	80	93	93	93	93
NITRATES PPM	180	180	160	1 60	1 5 5	175	170
P Pill							

REMARKS:

RUN E-LOGS

RUN E-LOGS

RUN RFTS

DEPTH	2669m	2700m	2806m	2856m	2950m	2955m	2555m
DATE	20 DEC 81	21 DEC 81	22 DEC 81	26 DEC 81	27DEC 81	27 DEC 81	29 DEC 81
TIME	22:45	08:30	08:00	17:00	23:00	-	20.30
WEIGHT	10.1+	10.1	10.1	10.0	10.1	10.0	10.0
FUNNEL VISCOSITY	52	51	46	43	49	45	45
PV/YP	12/20	15/20	13/17	13/15	14/17	14/16	13/14
N/K	0.46/1.82		0.52/1.25	0.55/0.91	0.54/1.09		0.82/0.10
GEL: INITIAL/10MIN	18/19	9/23	6/19	6/18	6/23	6/17	5 /17
рН	11	10.7	11	10.8	10.6	11.1	10.9
FILTRATE: API/API HTHP	7.2/13	7.6/13.4	7/ti2.6	6.6/14	8/14.2	6.8/13.6	6.8/13.0
CAKE	1	2	1	1	1	1	1
SALINITY []	18.5K	19.5K	19K	19.4K	19.2K	19.OK	19.OK
SAND	0.25	0.25	0.2	0.25	Tr	Tr	Tr
SOLIDS	7	7	7.	10	9	9	9
OIL	Tr	Tr	Tr	Tr	1%	1%	1%
RETORT H_0	93%	93%	93%	90%	90%	90%	90%
SALINITYCa			100	80	80	80	80
NITRATES ppm	185	175	165	205	205	210	210

REMARKS:

RUN E-LOGS

MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY _ TARWHINE NO.1 4 WELL_ Sheet No. 2955m 2955m 2955m 1499m 2346m 2895m 2895m DEPTH JAN 82 5 30 DEC 81 31 DEC 81 1 JAN 82 2 JAN 82 13 JAN 82 4 JAN 82 DATE 21.45 23.13 11.10 13.30 09.30 TIME 23.45 11.15 WEIGHT 10.0+ 10.1 10.1 10.1 9.9 10.1 9.8 FUNNEL VISCOSITY 48 50 47 45 45 56 49 12/11 14/15 16/15 PV/YP 13/15 15/14 15/15 13/12 N/K 0.55/0.91 0.60/0.68 0.57/0,84 0.58/0.78 0.60/0.58 0.60/0.73 0.61/0.53 4/11 4/17 3/11 4/14 6/17 5 /15 6/15 GEL: INITIAL/10 MIN 11.5 10.8 10.9 11.2 12.3 13.D 12.0 6.9/13.8 9.8/23.5 7.3/14 12.9/26.2 68/12.8 7.2/13:3 18.6/34.2 FILTRATE: API/API HTHP 2 1 1 1 1 1 2 18.5K Cl 18.0K 18.0K 18.0K 17.0K 16.5K 15.5K SALINITY Tr Tr Tr Tr Tr Tr SAND SOLIDS 9 В 9 8 8 10 5 1 1 OIL 1 1 1 1 1 420 SALINITY Ca 80 80 90 120 320 300 NITRATES ppm 220 210 190 190 170 100 70 BEMARKS: RUN 9 5/8 CMT CSG RUN RFTS DRILL DRILL DRILL COND CSG COULD CMT CMT CMT MUD NOT DISP FULLY DEPTH 2863m 2830m 2863m 2640m 2640m 7 JAN 82 8 JAN 82 10 JAN 82 DATE 6 JAN 82 9 JAN 82 23.45 23.45 10.15 TIME 04.45 15.00 WEIGHT 9.8 9.8 9.8 9.8 9.8 FUNNEL VISCOSITY 51 47 42 43 40 11/10 15/10 13/10 12/11 11/9 PV/YP 0.61/0.48 0.68/0.37 0.68/0.41 0.61/0.53 0.63/0.39 N/K GEL: INITIAL/10MIN 3/9 4/10 3/9 3/10 2/8 12.0 12.5 12.0 12.0 11.8 13.9/28.6 11.7/24.5 11.4/23.8 12.6 11.9/25.7 FILTRATE: API/API HTHP 2 2 CAKE 2 2 2 15.5K 15.5K 16.DK 15.5K Cl 16.DK SALINITY SAND Tr Tr Tr Tr Tr SOLIDS 4 Δ 4 4 4 •5 • 5 OIL .5 .5 •5 SALINITY Ca 300 400 360 360 380 NITRATES ppm :70 88 60 50 50 REMARKS: CIMT RUN AUBING PERFORATE SQUEEZE RUN CSG CMT FIT FOR PTW-1 PWT-1 MISRUN

11. GEOLOGICAL SUMMARY.

(All depths from RKB).

The main objective of the well was to assess the hydrocarbon potential of reservoir sandstone within the Latrobe "Coarse Clastic" in a well defined, faulted anticlinal structure. The secondary objective was to test for any intra-Latrobe seals that may have occurred due to thin shales and coals.

ALL DEPTH WERE MEASURED FROM THE KELLY BUSHING.

GIPPSLAND LIMESTONE 65m - 800m

Limestone, as expected, was the predominant lithology. The limestone had the basic characteristics of calcarenite: white - off white, gray to dark gray, brown, silty to a medium grain, with coral, forams and fossils in abundance throughout. In the depth interval of 525m to 640m, a grading to a coarse grained, clear, white, well rounded, sub-spherical, well sorted and loose sandstone had been observed. The limestone in the depth interval of 750m to 800m, trace amounts of glauconite were interspersed through the formation.

LAKES ENTRANCE FORMATION 800m - 1386m.

This formation was very distinct due to an initial, 50% inclusion of coarse grained sandstone. This sandstone was white to light gray, medium to very coarse grained, rounded, sub-spherical, moderately well sorted with a slight, very calcarious cement. The sandstone graded to a slightly calcarious siltstone that varied in texture from sub-fissile to gumbo. Its basic characteristics were light gray to gray, trace of shell fragments and coral, carbonaceous, and soft to moderately hard.

To the depth of 1010m, limestone was observed in verying amounts. This limestone was very similar to that encountered in the Gippsland Limestone.

Clay was found in the depth interval of 1200m to 1280m. It was a medium gray, very calcarious, silty with a trace of glauconite.

GURNARD FORMATION 1386m - 1410m.

Over this depth interval, sandstone, and not siltstone, was encountered. This sandstone was accompanies by very high gas readings of 850 units. The sandstone was clear to smokey in colour, coarse to very coarse grained, sub-rounded to angular, sub-spherical and loose. Consequently, two cores were cut.

LATROBE 1410m - 2485m.

The Latrobe was found to be predominantly coarse grained sandstone with interbedding of siltstone, coal and a slight amount of claystone. The sandstone was basically clear to smokey, loose, very coarse grained, sub-rounded, moderately well sorted, traces of pyrite, glauconite, mica, and some argillaceous material. The siltstone is dark grey, brown, and is carbonaceous, argillaceous, with pyrite inclusions, hard. The coal is dark brown to black, hard to very hard, brittle to very brittle, carying from fissile to blocky, and was shiney. The claystone was fairly hard to differentiate from shale at times, and varied from white, brown, slightly calcareous, arbonaceous in part, sandy, soft to dark brown, gray, carbonaceous, platy, fissile and firm.

INTRA-LATROBE 2485m - 2955m.

This section varied from predominantly siltstone to predominantly sandstone with both having interbedding of coal and shale. The coal, sandstone, and siltstone were all found to be very similar to those described above. The shale was dark brown to gray, highly carbonaceous, platy, fissile and firm.

12. OVERBURDEN GRADIENT CALCULATIONS

DEPTH , , , , , , , , , , , metres

BULK DENSITY gm/cc

OVERBURDEN PRESSURE INCREMENT .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/ft

OVERBURDEN EQUIVILANT DENSITY .Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONIC LOG FOR SECTIONS WHERE THE F.D.C.LOG IS NOT AVAILABLE.

OVERBURDEN AND STRESS RATIO WORK SHEET

COMPANY ESSO AUSTRALIA L.T.D.
WELL TARWHINE No. 1

Sheet No. 1

MATIN	☑ · W	ELL THEM	AINE NO.					Shee	t No
DEPTH From	^{T0}	Average Bulk Density	Overburden Pressure Increment	Cumulative Overburden Pressure	Overburden Pressure Gradient	Overburden Equivalent Density	Fracture Equivalent Density	Pore Pressure Equivalent Density	Stress Ratio
M	M	gm/cc	PSI	PS I	PSI/FT	ppg EMW			
0	65	1.02	28.71	28.71	0.442	8.49			
65	800	2.13	677.88	706.59	0.883	16.99			
800	825	2.30	24.90	731.49	0.887	17.05			
825	850	2.29	24.79	756.28	0.890	17.11			
850	875	2.29	24.79	781.07	0.893	17.17			
875	900	2.32	25.11	806.18	0.896	17.23			
900	925	2.33	25.22	831.40	0.899	17.28			
925	950	2.35	25.44	856.84	0.902	17.34			
950	975	2.32	25.11	881.96	0.905	17.40			
975	1000	2.26	24.46	906.42	0.906	17.43			
1000	1025	2.20	23.82	930.24	0.908	17.45			
1025	1050	2.26	24.46	954.70	0.909	17.49			
1050	1075	2.36	25.55	980.25	0.912	17.54			
1075	1100	2.33	25.22	1005.47	0.914	17.58			
1100	1125	2.31	25.01	1030.48	0.916	17.61			
1125	1150	2.28	24.68	1055.16	0.918	17.64			
11 50	1175	2.09	22.62	1077.78	0.917	17.64			
1175	1200	2.19	23.71	1101.49	0.918	17.65			
1200	1225	2.20	23.82	1125.30	0.919	17.67			
1225	1250	2.05	22.19	1147.49	0.918	17. 65			
1250	1275	2.00	21.65	1169.14	0.917	17.63			
1275	1300	2.12	22.95	1192.09	0.917	17.63			
1300	1325	2.02	21.87	1213.96	0.916	17.62			
1325	1350	2.10	22.73	1236.69	0.916	17.62			,
1350	1385	1.70	25.76	1262.45	0.912	17.53			
1385	1400	2.23	14.48	1276.94	0.912	17.54			
1400	1425	2.28	24.68	1301.62	0.913	17.57			
1425	1450	2.24	24.25	1325.87	0.914	17.58			
1450	1475	2.26	24.46	1350.33	0.915	17.61			
1475	1500	2.33	25.22	1375.55	0.917	17.64			
1500	1525	2.24	24.25	1399.80	0.918	17.65			
1525	1550	2.23	24.14	1423.94	0.919	17.67			

7520-498 (CL 1164)

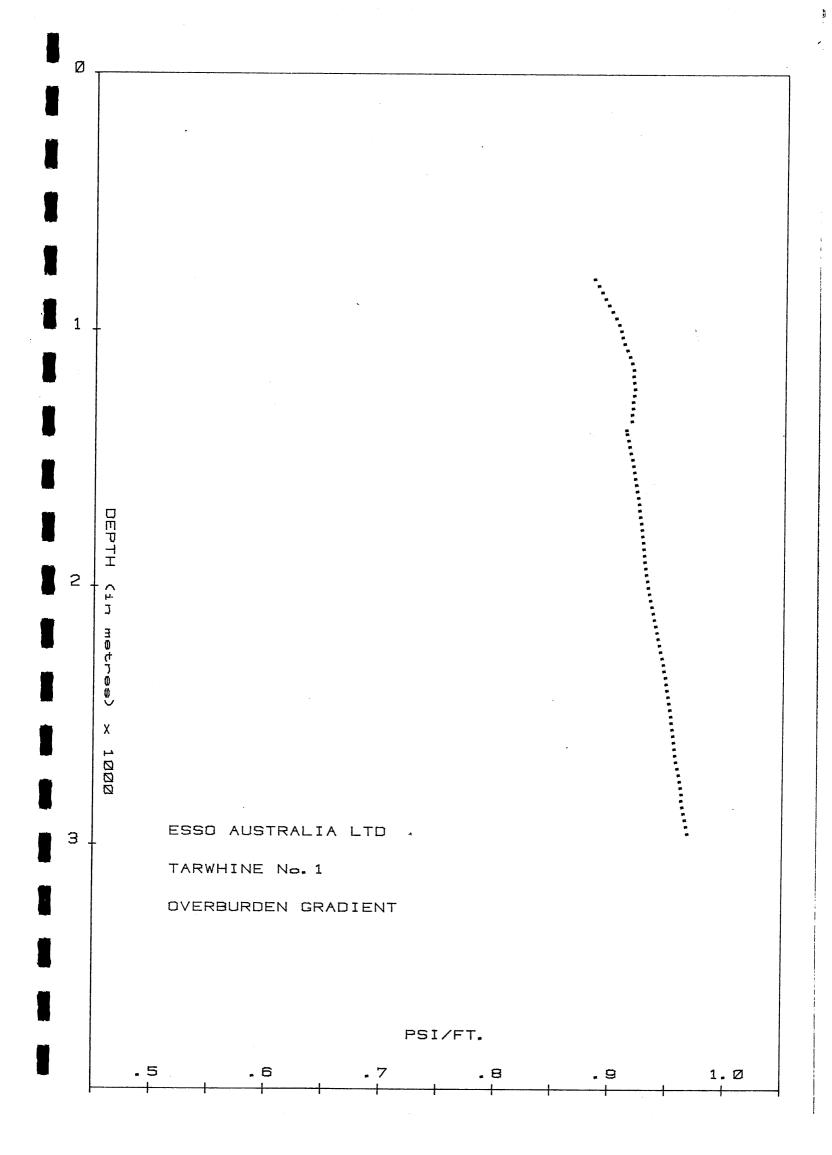
OVERBURDEN AND STRESS RATIO WORK SHEET

COMPANY ESSO AUSTRALIA L.T.D.
WELL TARWHINE No. 1

Sheet No. 2_

DEPTH From	ТО	Average Bulk Density	Overburden Pressure Increment	Cumulative Overburden Pressure	Overburden Pressure Gradient	Overburden Equivalent Density	Fracture Equivalent Density	Pore Pressure Equivalent Density	Stress Ratio
M	m	ōw/cc	PSI	PSI	PSI/FT	ppg EMW			
1550	1575	2.26	24.46	1448.41	0.920	17.69			
1575	1600	2.25	24.36	1472.76	0.920	17.70			
1600	1625	2.24	24.25	1497.01	0.921	17.72			
1625	1650	2.29	24.79	. 1521.80	0.922	17.74			
1650	1675	2.25	24.36	1546.16	0.923	17.75			
1675	1700	2.19	23.71	1569.86	0.923	17.76			
1700	1725	2.24	24.25	1594.11	0.924	17.77			
1725	1750	2.27	24.57	1618.68	0.925	17.79			
1750	1775	2.23	24.14	1642.82	0.926	17.80			
1775	1800	2.23	24.14	1666.96	0.926	17.81			
1800	1825	2.26	24.46	1691.43	0.927	17.82			
1825	1850	2.21	23.92	1715.35	0.927	17.83			
1850	1875	2.25	24.36	1739.71	0.928	17.84			
1875	1900	2.21	23.92	1763.63	0.928	17.85			
1900	1925	2.27	24.57	1788.20	0.929	17.86			
1925	1950	2.27	24.57	1812.78	0.930	17.88			
1950_	1975	2.33	25.22	1838.00	0.931	17.90			
1975	2000	2.29	24.79	1862.79	0.931	17.91			
2000	2025	2.35	25.44	1888.23	0,932	17.93			
2025	2050	2.33	25.22	1913.45	0.933	17.95			
2050	20 7 5	2.40	25.98	1939.43	0.935	17.97			
2075	2100	2.39	25.87	1965.30	0.936	1 e.no			
2100	2125	2.36	25.55	1990.85	0.937	18.02			
2125	2150	2.42	26.20	2017.04	0.938	18.04			
2150	2175	2.39	25.87	2042.92	0.939	18.06			
2175	2200	2.38	25.76	2068.68	0.940	1 8.08			
2200	2225	2.40	25.98	2094.66	0.941	18.10			
2225	2250	2.41	26.09	2120.75	0.943	18.13			
2250	2275	2.45	26.52	2147.27	0.944	18.15			
2275	2300	2.42	26.20	2173.47	0.945	18.17			
2300	2325	2.33	25.22	2198.69	0.946	18.19			
2325	2350	2.46	26.63	2225.32	0.947	18.21			

7520-498 (CL 1164)


OVERBURDEN AND STRESS RATIO WORK SHEET

COMPANY ESSE AUSTRALIA L.T.D.

1

TARWHINE No. Sheet No. 3 Pore Pressure Stress Ratio Overburden Pressure Cumulative Average Overburden Overburden Fracture Equivalent Density Equivalent Density Equivalent Density Bulk Overburden Pressure From Density Increment Pressure То gm/cc PSI PSI PSI/FT M M ppg EMW 2.31 25.01 2350 2375 2250.32 0.948 18.22 2375 2400 2.37 25.66 2275.98 0.948 18.24 2400 2425 2.42 26.20 2302.17 0.949 18.26 2425 2450 2.37 25.66 2327.83 0.950 18.27 2450 2475 2.42 26.20 2354.03 0.951 18.29 2475 2500 2.37 25.66 2379.68 0.952 18,31 2500 2525 2.28 24.68 2404.36 0.952 18.31 2525 2550 2.40 25.98 2439.34 0.953 18.33 2550 2575 2.37 25.66 2456.00 0.954 18.34 2575 2600 2.35 25.44 2481.44 0.954 18.35 2600 2625 2.36 25.55 0.955 2506.98 18.37 2625 2,35 2650 25.44 2532.42 0.956 18.38 2650 2,41 2675 26.09 2558.51 0.956 18.39 2675 2700 2.52 27.28 2585.79 0.958 18.42 2725 2.51 27.17 0.959 2700 2612.96 18.44 2725 2750 2.44 26.41 0.960 2639.37 18.46 2.45 2750 2775 26.52 2665.89 0.961 18.47 2.41 2775 2800 26.09 2691.98 0.961 18.49 2800 2825 2.16 23.38 2715.36 0.961 18.48 2825 2850 2.50 27.06 2742.43 0.962 18.50 2850 2875 2.52 27.28 2769.71 0.963 18.53 2875 2900 2.53 27.39 2797.09 0.965 18.55 2900 2925 0.966 2.52 27.28 2824.37 18.57 2925 2953 2,52 30.55 2854.92 0.967 18.59

7520-498 (CL 1164)

13. F.I.T. / R.F.T. DATA.

CORE LABORATURIES INTERNATIONAL

PORE PRESSURE DATA SHEET

DATA FROM R.F.T. RUNS

COMPANY : ESSO AUSTRALIA LTD.

WELL : TARWHINE No. 1

	·	11/11-1		
DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT E.M.W.(MSL)	PORE PRESSURE GRADIENT
M.	m.	P.S.I.G.	P.P.G.	P.S.I.G./FT.
1559.5	1515.7	2225.20	8.60	•447
1522.0	1478.2	2214.80	8.78	•457
1538.0	1494.2	2194.44	8.61 ·	•448
1522.9	1479.1	2181.80	8.64	•449
1522.5	1478.7	2170•44	8.60	.447
1515.5	1471.7	2163.76	8.62	. 448
1508.5	1464.7	2150•22	8.60	•447
1498.0	1454.2	2135.34	8.61	•447
1489.5	1445.7	2124.00	8.62	•448
1480.0	1436.2	2110.19	8.62	•448
1470.0	1426.2	2096.50	8.62	•448
1450.0	1416.2	2082.00	8.62	•448
1439.0	1395.2	2053.15	8.62.	•448
1416.5	1372.7	2022.4	8.63	•449
1412.0	1368.2	2015.3	8.63	•449
1431.0	1387.2	2041.07	8.62	•448
1407.0	1363.2	2008.50	8.63	.448
1402.0	1358.2	2004.80	8.65	•450
1399.0	1355.2	2002.83	8 • 66	•450
1396.7	1352.9	2000.50	8.69	•452
1400.7	1356.9	2003.60	8.65	•450
	i		i	, t

CURE LABORATURIES INTERNATIONAL

PORE PRESSURE DATA SHEET

DATA FROM R.F.T. RUNS

COMPANY: - ESSO AUSTRALIA LTD.

TARWHINE No. 1

WELL	: TARWHI	VE No. 1		
DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT E.M.W.(MSL)	PORE PRESSURE GRADIENT
M.	M.	P.S.I.G.	P.P.G.	P.S.I.G./FT.
1397.7	1353.0	2000.9	8.66	•450
1552.0	1508.2	2214.9	8.61	•447
1797.0	1753.2	2561.0	8.56	.445
1973	1929.2	2810.3	8.54	•440
2166.5	2122.7	3079.3	8.50	•442
2216.5	2172.7	3149.8	8.50	•442
2298.0	2254.2	3266.4	8.50	•442
2503.0	2459.2	3564.6	8.49	•442
2489.0	2445.2	3539.3	8.48	.441
2482.0	2438.2	3529.2	8.48	•441
2470.0	2426•2	3512.8	8.48	.441
2461.5	2417.7	3501.1	8.48	.441
2453.0	2409.2	3488.2	8.48	.441
2442.0	2398.2	3473.1	8.48	.441
2435.5	2391.7	3463.7	8.48	•441
2426.0	2382.2	3449.9	8.48	.441
2411.0	2367.2	3427.6	8.48	.441
2403.5	2359.7	3418.2	8.48	.441
2405.0	2361.2	3419.3	8.48	.441
2397.5	2353.7	3410.4	8.49	•442
2394.5	2350.7	3410.2	8.49	.442

CORE LABORATORIES INTERNATIONAL

PORE PRESSURE DATA SHEET

DATA FROM R.F.T. RUNS

COMPANY : ESSO AUSTRALIA LTD.

WELL	* TARWHI	NE No. 1		
DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT E.M.W.(MSL)	PORE PRESSURE GRADIENT
m	m	P.S.I.G.	P.P.G.	P.S.I.G./FT.
2378.5	2334.7	3387,5	8.50	•442
2369.0	2325.2	3367.3	8.48	.441
2365.5	2321.7	3363.3	8 . 51 ·	.443
2359.5	2315.7	3362.6	8.51	•442
2352,5	2308.7	3343.9	8.48	.441
2336.0	2292.2	3320.3	8.48	.441
2490.5	2446.7	3541.7	8.48	•447
2498.5	2454.7	3554 • 9	8.49	.441
2509.5	2465.7	3570.6	8.49	•441
2513.0	2469.2	3575.0	8.49	.441
2512.5	2468.7	3574.2	8.49	.441
2501.5	2457.7	3562.4	8.50	.442
2504.4	2460.6	3566.9	8.50	.442
2507.5	2463.7	3567.5	8.49	.441
2536.5	2492.7	36112	8.49	•442
2540•5	2496.7	3615.6	8.49	.441
254770	2503.2	3624.6	8.49	<u>.</u> 441
2489.0	2445.2	35 39.9	8.48	.441
2803.0	2759•2	4006.4	8.51	•442
2796.2	2752.4	3996.5	8.51	.& 43
2792.0	2748.2	3989.3	8.51	•442

CORE LABORATORIES INTERNATIONAL

PORE PRESSURE DATA SHEET

1904

DATA FROM RFT PRETESTS

COMPANY : ESSO AUSTRALIA LTD

WELL : TARWHINE No 1

WELL	: TARWHINE N					
DEPTH FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT E.M.W.(MSL)	PORE PRESSURE GRADIENT		
m	ÎTÎ	P.5.I.G.	P.P.G.	P.S.I.G./FT.		
2779.0	2735.2	3981.4	8.53	.444		
2769.0	2725.2	3961.1	8.52	.443		
2849.0	2705.2	3935.5	8.53	.443		
2743.8	2700.0	3915.6 .	8.50	•442		
2732.4	2688.6	3902.8	8.51	•442		
2718.0	2674.2	3898.5	8.54	•444		
2712.4	2668•6	3872.7	8.51	. 442		
2686.0	2642.2	3854.2	8.55	•445		
2661.8	2618.0 .	3796.2	8.50	.442 .442 .441		
2665.6	2621.8	3804.2	8.50			
2614.0	2570.2	3723.0	8.49			
2595.0	2551.2	3694.1	8•49			
2578.5	2534.7	3669.1	8.4.8	.441		
2568.7	2524.9	3655•2	8.49	.441		
2555.0	2511.2	3637.0	8.49	.441		
2547.0	2503•2	3634.9	8.51	•443		
2503.0	2459.2	3562.9	8.49	•442		
2690.8	2647.0	3846.0	8.52	.443		
2664.0	2620.2	3798.0	8.50	.442		
2843.0	2799.2	4063.0	8.51	.442		
2721.5	2677.7	3893.0	8.52	.443		

CORE LABORATORIES INTERNATIONAL

PORE PRESSURE DATA SHEET

DATA FROM

COMPANY :

DEPTH FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT E.M.W.(MSL)	PORE PRESSURE GRADIENT
m.	m.	P.S.I.G.	P.P.G.	P.S.I.G./FT.
2694.0	2650.2	3845.0	8.50	.442
2860.0	2816.2	4098.0	8.53	.443
2854.0	2810.2	4083.0	8.52	.443
2718.0	2674.2	3899.0	8.55	.444
2920.8	2877.0	4180.0	8.52	443
2712.0	2668.2	3871.0	8.50	.442
2926.0	2882.2	4193.0	8.53	.443
	·			
]			
		-		
dental control of		and the second		,
	The second secon	The second secon		and and a second se
		- Seed Manager Statement Committee - Statement Manager - Statement	er en ar en	ar i de la amminimenta campinanta i se l'ar de

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

=========		-		**************************************
COMPANY _	ESSO AUSTRAL	LIA LTD.	WELL TARWHINE No. 1	
. RUN No	1	**************************************	CHOKE SIZE .03/.02 F	RESS.GUAGE TYPE HP
	CHAMB. 1 SIZE 6 gal	CHAMB. 2 SIZE 1 ga		CHAMB. 1 CHAMB. 2 SIZE 6 gal SIZE1 gal
SEAT No.		18-7-19	OIL PROPERTIES CONT:	
DEPTH (m) (frm RKB)	1406.4	1406.4	SMELL POUR POINT (P)	
A RECORDING TIMES			COMMENTS	
TCOL SET	: :	: :	(c)WATER PROPERTIES:	
PRETEST OPEN	: :	: :	- RESISTIVITY (2m)	0.52 @230 1.05 @230
TIME OPEN CHAMBER OPEN	 	: :	Cl (frm. resis.)()	
CHAMBER FULL	1 1	: :	Cl (frm. titrat)(PPm)	7.5 K 4.55 K
FILL TIME		: :	- NO ₃ (ppm)	11 9
START BUILD UP	:::	: :	pH	6.5 6.4
FINISH BUILD UP	; ;	: :	OTHR.TRACERS ()	
BUILD UP TIME	1 1	: :	(d)OTHER SAMPLE	
SEAL CHAMBER	::	::	PRUPERTIES	
TOOL RETRACT	:::	1 :		
TOTAL TIME B.SAMPLE PRESSURES	: :	-: :	- 	
IHP (1		4	
ISIP (1		1 1	
IFP (5		E.MUD PROPERTIES:	
FFP)		TYPE	
FSIP (<u> </u>		RESISTIVITY ()	
FHP (TEMP. CORR.if app({		Cl (frm.resis.)()	
COMMENTS	4		Cl (frm.titrat)()	
C TEMPERATURE			NO3Drld/1st.circ()	
DEPTH TOOL REACHED(OTHER TRACERS	
MAX. REC.TEMP (0				į
TIME CIRC. STOPPED	: /	: /	COMMENTS	I.
TIME SINCE CIRC.		1	F.GENERAL COMMENTS	
SURFACE PRESSURE (psic	100	400		
SURFACE PRESSURE (psic	()	100 0.35		
VOL. CIL	0.24	0.33		
VOL. WATER (L	0.24	0.35		
VOL. FILTRATE (
VOL. CONDENSATE ()			
VOL. OTHER ()			
E.SAMPLE PROPERTIES (a)GAS COMP.C1 (nom.	10 000	117 000	NOTE:Gas volume does n	nt tolo lining
C2 (ppm)	19 000 1 300	117 000 6 700	•	pt take liquid account,unless noted
C3 (ppm)	1 200	5 800	[
C4 (ppm)	360	1 200		when tested zone was
C ₅ (NIL	NIL	drilled and last	circulation.
C ₆ + (NIL	NIL_		oted, pressures are
CO ₂ (%)	NIL	NIL	temperature corre	cted.
H ₂ 5 (ppm) (b)OIL PROPERTIES	NIL	NIL		
DENSITY: HYDROMETER	@ D			
REFRACTOMETER	<u>a</u> 0			
COLOUR				
FLUORESCENCE G.O.R.	J			
0.0.11.	1			

CORE LABORATORIES . R.F.T. DATA SHEET - SAMPLING DATA

COMPANY _	ESSO AUSTRA	LIA LTD	WELL TARWHINE No. 1
, RUN No	3		CHOKE SIZE •03/•02 PRESS.GUAGE TYPE HP
	CHAMB. 1	CHAMB. 2	CHAMB. 1 CHAMB. 2
	SIZE 6 gal	SIZE 1 gal	SIZE _{6 gal} SIZE 1 gal
SEAT No.			OIL PROPERTIES CONT:
DEPTH (m) (frm RKB)	1396.6	1396.6	SMELL (0)
ALRECORDING TIMES			POOR POINT ()
TCOL SET	: :	3 3	COMMENTS (c)WATER PROPERTIES:
PRETEST OPEN	: :	1 1	RESISTIVITY () @ 0 @ 0
TIME OPEN	::	::	Cl (frm. resis.)(
CHAMBER OPEN CHAMBER FULL	1 1	: :	Cl (frm. titrat)(ppm) 8.0 K
FILL TIME	: :	: :	NO ₃ (ppm) 13
START BUILD UP	1 3	: :	- PH 7.4
FINISH BUILD UP	1 1	::	OTHR.TRACERS ()
BUILD UP TIME	1 1	: :	COMMENTS
1 SEAL CHAMBER		: 1	(d)OTHER SAMPLE
TOOL RETRACT		::	PRUPERT 1ES
TOTAL TIME		::	
B.SAMPLE PRESSURES			j ·
IHP (
ISIP (
IFP (E MUD PROPERTIES:
FFP (2		TYPE
FSIP (<u> </u>		RESISTIVITY () @ 0 @ 0
FHP (4		Cl (frm.resis.)()
TEMP. CORR.if app(COMMENTS	J		Cl (frm.titrat)()
C.TEMPERATURE			NO3Drld/1st.circ() / /
DEPTH TOOL REACHED		 	DTHER TRACERS
MAX. REC.TEMP (0	Ó		OTTEN TRACERS
TIME CIRC. STOPPED	: /	: /	COMMENTS
TIME SINCE CIRC.	:	:	F GENERAL COMMENTS
D.SAMPLE RECOVERY			
SURFACE PRESSURE (psic		100	
VOL. GAS (cf)		4.8	
VOL. CIL (L)	.350	.720	
VOL. FILTRATE	DED.	110	
VOL. CONDENSATE (•950	.110	
VOL. OTHER			
E SAMPLE PROPERTIES			
(a)GAS COMP.C1 (ppm)	450 000	304 000	NOTE:Gas volume does npt take liquid
C2 (ppm)	78 800	92 200	displacement into account, unless noted
Сз (ррт)	61 400	115 000	
C4 (ppm)	7 200	36 900	Take mud nitrates when tested zone was
C5 (ppm)	1 870	7 490	drilled and last circulation.
C ₆ + ()	124	391	Unless otherwise noted, pressures are
CO ₂ (%)	NIL	NIL	temperature corrected.
H ₂ S (ppm) (b)OIL PROPERTIES	NIL	NIL	
DENSITY: HYDROMETER	62API@22°C	624 DT@27	
REFRACTOMETER	63API@23°C		
COLOUR	JUN 1620-6	المحادث المحادث	
FLUORESCENCE			
G.O.R. (cf/bbl	1390	1060	

R.F.T. DATA SHEET - SAMPLING DATA

COMPANY E	SSO AUSTRAL	IA LTD	WELL TARWHINE No. 1
, RUN No	4	-	CHOKE SIZE .03/.02" PRESS.GUAGE TYPE HP
		CHAMB. 2 SIZE1 gal	
SEAT No.	34	34	OIL PROPERTIES CONT:
DEPTH (m) (frm RKB)	1387.7	1387.7	SMELL (0)
A RECORDING TIMES			POUR POINT (O)
TCOL SET	: :	: :	(c)WATER PROPERTIES:
PRETEST OPEN	: :	: :	RESISTIVITY (2m) 28 @140 @ 0
TIME OPEN	::	: :	Cl (frm. resis.)()
CHAMBER OPEN	1 1	: :	Cl (frm. titrat)(ppm) 18.0 K
CHAMBER FULL FILL TIME	1 :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO (COM)
START BUILD UP	: 08,20	: 02: 00	pH 6.8
FINISH BUILD UP	: :	3 :	DTHR.TRACERS ()
BUILD UP TIME	1 1	1 1	COMMENTS
SEAL CHAMBER	:::	: :	(d)OTHER SAMPLE
TOOL RETRACT	: :	::	PRUPERT 1ES
TOTAL TIME	: :	:::	
BISAMPLE PRESSURES			
IHP (psic			
ISIP (psia	//	4.50.00	
IFP (psia		1885.8	E MUD PROPERTIES:
FFP (psia	<u> </u>		TYPE
FSIP (psig		1992.9	1 1 2 2 3 1 2 2 1 1 2 2
FHP %psie		2422	Cl (frm.resis.)(S.)
TEMP. CORR.if app()	<u> </u>		Cl (frm.titrat)()
C TEMPERATURE	<u> </u>		NO3Drld/1st.circ() / /
DEPTH TOOL REACHED(m)	1403	· · · · · · · · · · · · · · · · · · ·	DTHER TRACERS
MAX. REC.TEMP (90	'1		UTIEN TRACERS
TIME CIRC. STOPPED	14:45 5/DEC	: /	COMMENTS
TIME SINCE CIRC.	11:45	:	F GENERAL COMMENTS
D SAMPLE RECOVERY			
SURFACE PRESSURE (psid	1 450		PRESERVED
VOL. GAS (cf)			SAMPLE
VOL. CIL (L)	11.3		
VOL. WATER () VOL. FILTRATE (L)			
VOL. CONDENSATE ()	3.1		
VOL. OTHER ()			
E SAMPLE PROPERTIES			
(a)GAS COMP (C1 (ppm)	469 300		NOTE:Gas volume does not take liquid
C2 (ppm)	£29 700	-	displacement into account, unless noted
C3 (ppm)	20 500	4	[
C4 (ppm)	2 700		Take mud nitrates when tested zone was
C5 (ppm)	330		drilled and last circulation.
C6 + (bbw)	TR		Unless otherwise hoted, pressures are
[CO ₂ (%)	NIL		temperature corrected.
H ₂ S (ppm) (b)OIL PROPERTIES	NIL		
DENSITY: HYDROMETER	65.8 @14°C		
REFRACTOMETER	6 D	<u> </u>	
COLOUR	HONEY BROWN		
FLUORESCENCE	BRT BLU WHT		
G.O.R. (cf/bbl)	905		
	<u> </u>		

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

CCMPANY ESSD AUSTRALIA LTD. WELL TARMHINE No. 1	=======================================				
CHAMB. 1 CHAMB. 2			IA LTD.		_
SIZE 6 gal SIZE 1 gal	RUN No.	5		CHOKE SIZE .03/.020" PRESS.GUAGE TYPE	HP
SEAT NO.		l	1		
SERIE DOC PTH PT		SIZE 6 gal	SIZE1 gal	SIZE 6 gal SIZE	:1 gal
DEPTH (M) (Frm RKB) 1399	SEAT NO.	35	35		
TIME S		1399	1399		
PRETEST OPEN				POUR PUINT ()	
FRETEST OPEN	TCOL SET	: :	1 1		
CHAMBER OPEN	PRETEST OPEN				
Cl (frm. titret) Chamber Full 1		05:32:	05:44:		<u>a</u> .
TILL TIME	I I	: :	: :		
START BUILD UP	1 1				
SIRN BUILD UP		: 08; 25	:02:25	1 N	
TANSH BOLLD UP TIME		: :	::		
SEAL CHAMBER	• •	1 1	1 1		
TOTAL TIME		1 :	: :		
TOTAL TIME		:::	 		
E SAMPLE PRESSURES	1 1	<u> </u>	1		
THP		· · · · · ·	-3 3		
TSIP	THE COST	2441			
IFP		<u> </u>			
FFP		<u> </u>	1898.0	E MUD DODDEDTIES.	
FSIP		/1			
FHP		<u> </u>	•		6 D
TEMP. CORR.if vapp() Cl (frm.titrat)() NO3Drld/1st.circ(ppm pH					ں ہے
COMMENTS C.TEMPERATURE DEPTH TOOL REACHED(m) 1399 MAX. REC.TEMP (°C) 60.4 TIME CIRC. STOPPED 14.45 5/OEC : / TIME SINCE CIRC. 15:15 : F.GENERAL COMMENTS D.SAMPLE RECOVERY SURFACE PRESSURE (psig) 1220 VOL. GAS (cf) 33.9 VOL. OIL (L) 6.3 VOL. FILTRATE (L) 11.2 VOL. CONDENSATE () VOL. OTHER () E.SAMPLE PROPERTIES (a)GAS COMP.C1 (ppm) 348 400 C3 (ppm) 37 600 C4 (ppm) 11 600 C5 (ppm) 1700 C6 + (ppm) 200 C02 (%) NIL H-2S (ppm) NIL (b)OIL PROPERTIES DENSITY:HYDROMETER 64.4 @180C OAPI REFRACTOMETER & @ 0 COLOUR LT HONEY BN FLUDRESCENCE BRT BLU WH		(
DEPTH TOOL REACHED(m) 1399		1		NO20 rid/st. circ() 100 / 120 100	1/170
DEPTH TOOL REACHED(m) 1399 MAX. REC.TEMP (°C) 60.4 TIME CIRC. STOPPED 14:45 5/OEC : / TIME SINCE CIRC. 15:15 : F GENERAL COMMENTS D SAMPLE RECOVERY SURFACE PRESSURE (psig) 1220 VOL. GAS (cf) 33.9 VOL. OIL (L) 6.3 VOL. WATER () VOL. FILTRATE (L) 11.2 VOL. CONDENSATE () VOL. OTHER () E SAMPLE PROPERTIES (a)GAS COMP.C1 (pom) 348 400 C3 (ppm) 37 600 C4 (ppm) 11 600 C5 (pom) 1 700 C6 + (ppm) 200 C0 (%) NIL H_2S (ppm) NIL (b)OIL PROPERTIES DENSITY:HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUDRESCENCE BRT BLU WH	C TEMPERATURE				טוו קנ
MAX. REC.TEMP	DEPTH TOOL REACHED (m)				
TIME SINCE CIRC. 15,15 : F.GENERAL COMMENTS D.SAMPLE RECOVERY SURFACE PRESSURE (psi) 1220 VOL. GAS (cf) 33.9 VOL. OIL (L) 6.3 VOL. WATER () VOL. CONDENSATE () VOL. COMDENSATE () VOL. OTHER () E.SAMPLE PROPERTIES [a)GAS COMP.C1 (ppm) 348 400 C3 (ppm) 37 600 C4 (ppm) 29 700 C5 (ppm) 1 700 C6 + (ppm) 200 C02 (%) NIL H ₂ S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH					
D SAMPLE RECOVERY SURFACE PRESSURE (psi) 1220			: /	COMMENTS	
SURFACE PRESSURE (psi) 1220	I	15:15	:	GENERAL COMMENTS	
VOL. GAS					
VOL. GIL	 			PRES	ERVED
VCL. WATER	100 071			SAM	1PLE
VOL. FILTRATE (L) 11.2 VOL. CONDENSATE () VOL. OTHER () E. SAMPLE PROPERTIES (a) GAS COMP.C1 (ppm) 348 400 C2 (ppm) 29 700 C3 (ppm) 37 600 C4 (ppm) 11 600 C5 (ppm) 1 700 C6 + (ppm) 200 C02 (%) NIL H ₂ S (ppm) NIL (b) OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR FLUORESCENCE BRT BLU WH		6.3			
VOL. CONDENSATE () VOL. OTHER () E.SAMPLE PROPERTIES (a)GAS COMP.C1 (ppm) 348 400 C2 (ppm) 29 700 C3 (ppm) 37 600 C4 (ppm) 11 600 C5 (ppm) 1 700 C6 + (ppm) 200 C02 (%) NIL H ₂ S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR FLUORESCENCE BRT BLU WH	1101 57170075	11 2			
VOL. OTHER		11.2			
E-SAMPLE PROPERTIES (a) GAS COMP.C1 (ppm) 348 400 C2 (ppm) 29 700 C3 (ppm) 37 600 C4 (ppm) 11 600 C5 (ppm) 1 700 C6 + (ppm) 200 C02 (%) NIL H ₂ S (ppm) NIL (b) OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH					
(a)GAS COMP.C1 (ppm) 348 400 C2 (ppm) 29 700 C3 (ppm) 37 600 C4 (ppm) 11 600 C5 (ppm) 1 700 C6 + (ppm) 200 C02 (%) NIL H2S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH					
C2 (ppm) 29 700 C3 (ppm) 37 600 C4 (ppm) 11 600 C5 (ppm) 200 C6 + (ppm) 200 C02 (%) NIL H ₂ S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH	TOCAC COMPIC	348 400		VOTE: Gas volume does not take liquid	
C3				· · · · · · · · · · · · · · · · · · ·	מטן המ
C4 (ppm) 11 600 C5 (ppm) 1 700 C6 + (ppm) 200 C02 (%) NIL H2S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH		 	-	! !	
C5 (ppm) 1 700 C6 + (ppm) 200 C02 (%) NIL H ₂ S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER & O COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH	C4 (ppm)				าย was
CO2 (%) NIL temperature corrected. H ₂ S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @18°C OAPI REFRACTOMETER & © COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH		1 700		drilled and last circulation.	
CO2 (%) NIL temperature corrected. (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH		200		Unless otherwise hoted. pressure	are
H ₂ S (ppm) NIL (b)OIL PROPERTIES DENSITY: HYDROMETER 64.4 @180C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH					
DENSITY: HYDROMETER 64.4 @18°C OAPI REFRACTOMETER @ 0 COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH		NIL			
OAPI REFRACTOMETER & O COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH		5			
COLOUR LT HONEY BN FLUORESCENCE BRT BLU WH					1
FLUORESCENCE BRT BLU WH	[TET THIS TOME TEN				l
					Ī
(61/001) 000					ļ
	[ct/pp1)	850			1

R.F.T. DATA SHEET - SAMPLING DATA

	COMPANY E	550 AUSTRAL!	IA LTD.	_ u	WELL TARWHINE No. 1		
	RUN No.	7			CHOKE SIZE <u>.03/.02 "</u> F	PRESS.GUAGE	TYPE HP
		CHAMB. 1 SIZE 6 gal	CHAMB. 2 SIZE1 pal			CHAMB. 1 SIZE _{6 qal}	CHAMB. 2 SIZE 1 pal
_	PAT AI	77	777		OIL PROPERTIES CONT:		
	EAT No. EPTH (m) (frm RKB)	2403.4	2403.4		SMELL		
	RECORDING TIMES				POUR POINT (O)		
-	TCOL SET	: :	3 3	1	COMMENTS	ļ	
ŀ	PRETEST OPEN	: :	1 1	1 !	(c)WATER PROPERTIES:	0.26 @22°C	<u>a</u> o
	TIME OPEN	::	: :			U. CD @CC-U	<u> </u>
	CHAMBER OPEN	2 4	: :]	Cl (frm. resis.)(Cl (frm. titrat)(ppm)	19.0 K	
	CHAMBER FULL	: :	: :		NO ₃ (ppm)	1	
	FILL TIME	01: 30:	0::]	рН	9.2	
	START BUILD UP	:::	:::	-	OTHR. TRACERS (
	FINISH BUILD UP	1 1	1 1	-	COMMENTS		
1	BUILD UP TIME	: :	: :	-	(d)OTHER SAMPLE		
	SEAL CHAMBER	: :	<u> </u>	-	PRUPERT IES		
	TOOL RETRACT TOTAL TIME	: :	1 :	-			
-	SAMPLE PRESSURES	: :	·• •	-	`		
므	IHP (psig	4210	 	1			
	ISIP (psia)			1			
	IFP (psia)		380 .	E.	MUD PROPERTIES:		
	FFP (psia)	{	2280		TYPE		
	FSIP (psia)		3417] !	RESISTIVITY (s.)	@ 0	@ D
	FHP (psig)				Cl (frm.resis.)()	1	
	TEMP. CORR.if app()				Cl (frm.titrat)()	 	
L	COMMENTS	<u> </u>		-	NO3Drld/1st.circ()		/
	TEMPERATURE		<u> </u>	1	pH		
	DEPTH TOOL REACHED()	4		-	OTHER TRACERS		
	MAX. REC.TEMP (90) TIME CIRC. STOPPED	·	 	-	COMMENTE	1	
	TIME CIRC. STUPPED	: /	: /	-	COMMENTS GENERAL COMMENTS	-	
,	SAMPLE RECOVERY	+	•	15	TOENERAL COMMENTS		
	SURFACE PRESSURE (psig)	1127	-	1			SAMPLE
	VOL. GAS (cf)	4		1			PRESERVED
	VOL. CIL (L)	0.1					
	VCL. WATER ()						
	VOL. FILTRATE (L)	5 •5					
	VOL. CONDENSATE ()	<i>j</i>		.]			
_	VOL. OTHER () SAMPLE PROPERTIES	1	ļ]			
٤	7 7 7 7 7 7 7	447 700		+ NIC	DTE:Gas volume does r	t take lie	<u> </u>
	(a)GAS CUMP.C1 (opm)	7 660	 	- 11	displacement into	i .	1
		1 760	 	-	·		İ
	C4 (ppm)	560		1	Take mud nitrates	1	1
	C5 (opm)	180			drilled and last	tirculation	! •
	C6 + (ppm)	TR		1	Unless otherwise	hoted, pres	sures are
	CD ₂ (%)	0.7		1	temperature corre		
	H ₂ S (ppm)	NIL]	·		
	(b)OIL PROPERTIES		ļ	-			
	DENSITY : HYDROMETER	(a) D	ļ	1			
-	REFRACTOMETER	<u>(ā</u> D		1			
	COLOUR		 -	+			
	FLUORESCENCE G.O.R.	WH BLU		1			
		1 <u></u>					

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

=======================================	======	11.	THE DATA SHEET - SAMELING DATA
COMPANY _	ESSO AUSTRAI	LIA LTD	WELL TARWHINE No. 1
RUN No.	8		CHOKE SIZE .03/.02" PRESS.GUAGE TYPE HP
	CHAMB. 1 SIZE <u>6 gal</u>	CHAMB. 2 SIZE1 gal	
SEAT No.	78	78	OIL PROPERTIES CONT:
DEPTH (m) (frm RKB)	2365.5	2365.5	SMELL
ALRECORDING TIMES			POUR POINT (O)
TOOL SET	: :	: :	COMMENTS
PRETEST OPEN	: :	1 1	(c)WATER PROPERTIES:
TIME OPEN	:60:	:06 :	- RESISTIVITY (2 m) 0.25 @20°C @ °
CHAMBER OPEN	: :	: :	Cl (frm. resis.)(ppm) 17.0 K
CHAMBER FULL	: :	: :	Cl (frm. titrat)(ppm) 19.0 K
FILL TIME	: :	: :	- NO ₃ (ppm) 120
START BUILD UP	: :	: :	DTHR.TRACERS ()
FINISH BUILD UP	; ;	1 1	COMMENTS
BUILD UP TIME	1 1	: :	(d)OTHER SAMPLE
SEAL CHAMBER	: :	: :	PRUPERTIES
TOOL RETRACT	: :	: :	THUFLITTES-
TOTAL TIME	::	::	
B SAMPLE PRESSURES	/ 170		
IHP (psig	· · · · · · · · · · · · · · · · · · ·	ļ	4
		520	T MUZ COCCESTATO
IFP (psia) FFP (psia)		530.0	E MUD PROPERTIES:
FSIP (psia	1300.0	220.0	TYPE
FHP			RESISTIVITY () @ 0 @ 0
TEMP. CURR.if app()			C1 (frm.resis.)()
COMMENTS			Cl (frm.titrat)() NO3Drld/lst.circ() / /
C TEMPERATURE			DH /
DEPTH TOOL REACHED()			OTHER TRACERS
MAX. REC. TEMP (PC)	88		()
TIME CIRC. STOPPED	: /	: /	COMMENTS
TIME SINCE CIRC.	:	1	F GENERAL COMMENTS
D SAMPLE RECOVERY			
SURFACE PRESSURE (sig)	1142		CAMPLE
VOL. GAS (cf)	30.7		
VOL. CIL (L)	0.50		PREJERVED
VCL. WATER ()			
VOL. FILTRATE (L)	9 .7 5		·
VOL. CONDENSATE ()			
VOL. OTHER () E.SAMPLE PROPERTIES			
	394 045		NOTE
	7 056		NOTE:Gas volume does not take liquid
C2 (ppm)	2 200		displacement into account,unless noted
Cz (ppm) C4 (ppm)	448		Take mud nitrates when tested zone was
			drilled and last circulation.
C ₆ + (ppm)	39		Unlong athorning bat and
CO ₂ (%)	0.3		Unless otherwise noted, pressures are
H ₂ S (ppm)	NIL		temperature corrected.
(b)OIL PROPERTIES			
DENSITY : HYDROMETER	@ 0		
REFRACTOMETER	<u>a</u> 0		
COLOUR			
FLUORESCENCE .	WH BLU		
G.O.R. (cf/bbl)	9560		

R.F.T. DATA SHEET - SAMPLING DATA

COMPANY ES	SO AUSTRALI	A LTD	WELL TARWHINE No. 11
. RUN No	10	CHOKE SIZE .03/.02 PRESS.GUAGE TYPE HP	
	CHAMB. 1 SIZE 6 gal	CHAMB. 2 SIZE 1 ga:	CHAMB. 1 CHAMB. 2 SIZE 6 gal SIZE 1 gal
SEAT No.	128	128	OIL PROPERTIES CONT:
DEPTH (m) (frm RKB)	2659.4	2659.4	SMELL :
ALRECORDING TIMES			POUR POINT (O)
TCOL SET	21:04:	: :	(c)WATER PROPERTIES:
PRETEST OPEN	21:05:	1 1	RESISTIVITY (2.m) 0.22 @220 0.24 @220
TIME OPEN	:01:	: :	Cl (frm. resis.)()
CHAMBER OPEN	21:06:	21:50:	Cl (frm. titrat)(ppm) 17.5 K 18.1 K
CHAMBER FULL	21:48:	21:58:	NO ₃ (ppm) 158 143
FILL TIME START BUILD UP	:42:	:08:	pH
FINISH BUILD UP		: :	OTHR.TRACERS ()
BUILD UP TIME	: :	1 1	COMMENTS
SEAL CHAMBER	21,48;	: :	(d)OTHER SAMPLE
TOOL RETRACT	21,40;	 	PRUPERT IES PROPERT IES
TOTAL TIME	:44:	:20:	FILTRATE HAS
B.SAMPLE PRESSURES			FLUORESCENCE : DUL GRN/YEU DUL GRN /
IHP (psig	4665		FLU YEL FLU
ISIP (psia		3782.0	
IFP (psia		120	E MUD PROPERTIES:
FFP (psia		3779.8	TYPE
FSIP (psia		3782.9	RESISTIVITY (عسر) 1.2 @22⊅C 1.2 @22⊃C
FHP (psig	4665.1		Cl (frm.resis.)()
TEMP. CURR.if app()			Cl (frm.titrat)(ppm) 19.2 K
C.TEMPERATURE			NO3Drld/1st.circ() /
DEPTH TOOL REACHED(m)	2659.4		pH
MAX. REC. TEMP (90)			OTHER TRACERS
TIME CIRC. STOPPED	02:30 24/DEC	: /	COMMENTS
TIME SINCE CIRC.	19:00	1	F.GENERAL COMMENTS
D.SAMPLE RECOVERY		-	T COUNTY COMMENTS
SURFACE PRESSURE (psid	527	630	
VOL. GAS (cf)	2.1	0.44	
VOL. 01L ()		-	
VCL. WATER ()			
VOL. FILTRATE (L)	21.3	3.5	
VOL. CONDENSATE ()			
VOL. OTHER () E.SAMPLE PROPERTIES			
(a)GAS COMP.C1 (ppm)	67 500	243 000	NOTE Cas values dans and the same
C2 (ppm)	2 150	6 470	
Cz (ppm)	687	2 260	displacement into account,unless noted
C/ (ppm)	760	152	Take mud nitrates when tested zone was
C ₅ (ppm)	L	NIL	drilled and last circulation.
C6 + (ppm)	NIL	NIL	Unless otherwise noted, pressures are
CO ₂ (%)	NIL	NIL	temperature corrected.
H ₂ 5 (ppm)	NIL	NIL	
(b)OIL PROPERTIES			
DENSITY: HYDROMETER	@ 0		
REFRACTOMETER	<u>a</u> 0		
COLOUR			
FLUORESCENCE G.O.R.			
•		· · · · · · · · · · · · · · · · · · ·	h h

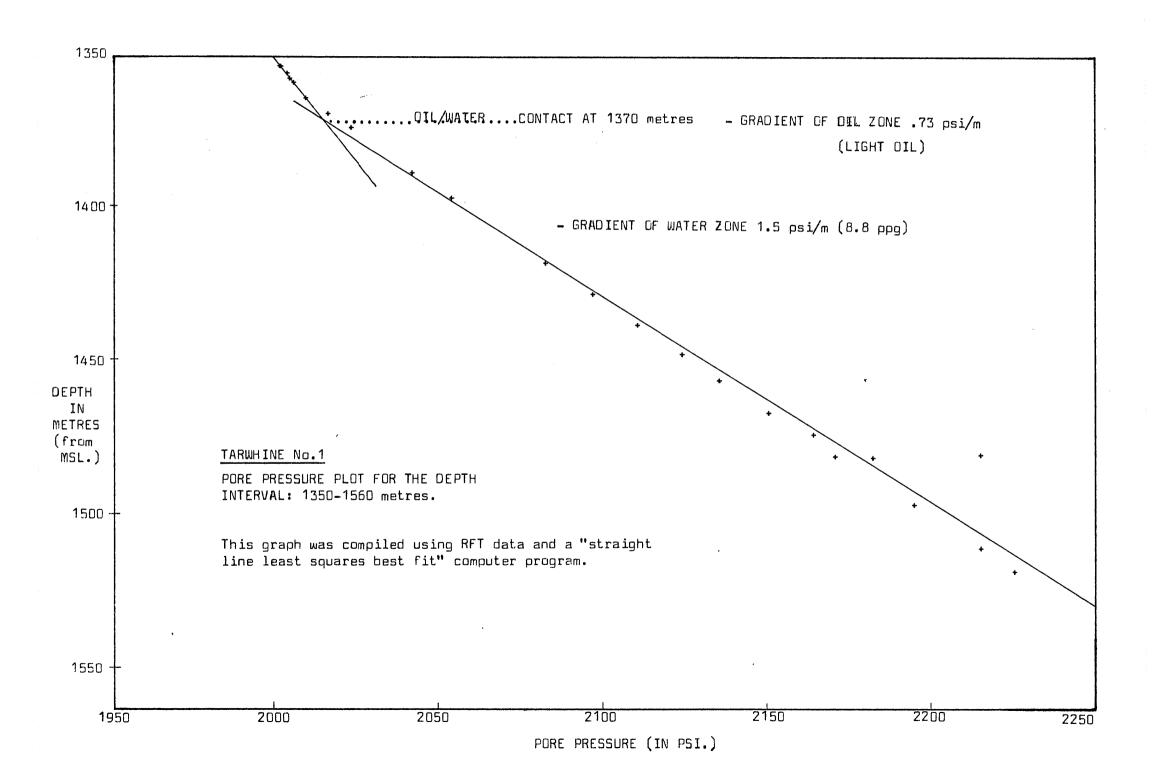
R.F.T. DATA SHEET - SAMPLING DATA

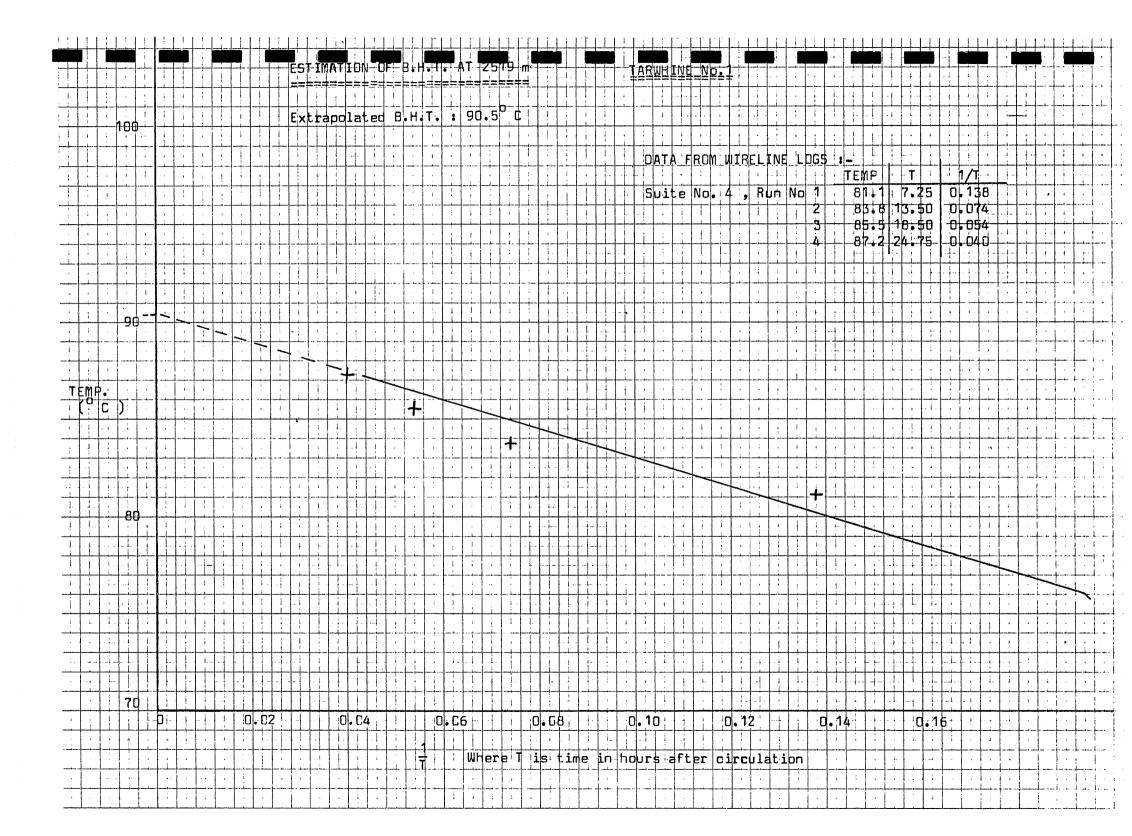
COMPANY	ESSO AUSTRAL	IA LTD	WELL TARWHINE No. 1
RUN No.	11		CHOKE SIZE .03/.02 " PRESS.GUAGE TYPE HP
	CHAMB. 1	CHAMB. 2	CHAMB. 1 CHAMB. 2
	SIZE 6 gal		
SEAT No.	129	129	OIL PROPERTIES CONT:
DEPTH (m) (frm RKB)	2779	2779	SMELL
ALRECORDING TIMES			POUR POINT (°)
TOOL SET	02:34:	: :	COMMENTS
PRETEST OPEN	02:34:	3 3	(c)WATER PROPERTIES:
TIME OPEN	:02:	: :	RESISTIVITY (2m) 0.26 @21cc0.24 @22
CHAMBER OPEN	02:36:	03:29:	Cl (frm. resis.)()
CHAMBER FULL	03:27:	03:36:	1 102 (121110 020100)(1111)
FILL TIME	:51:	:07:	1 1,100
START BUILD UP	: :	: :	pH
FINISH BUILD UP	: :	: :	OTHR.TRACERS ()
BUILD UP TIME	::	: :	COMMENTS
SEAL CHAMBER	03: 27:	03:43:	(d)OTHER SAMPLE
TOOL RETRACT	::	03:44:	PRUPERT IES
TOTAL TIME	£3:	. 15:	FILTRATE HAS
B SAMPLE PRESSURES			
IHP (psig	<u> </u>		YEL YEL
ISIP (psia		3970.8	
IFP (psia		150	E MUD PROPERTIES:
FFP (psia		3970	TYPE
FSIP ()		RESISTIVITY (&) @ 0 @ 0
FHP (Cl (frm.resis.)()
TEMP. CURR.if app()		Cl (frm.titrat)()
COMMENTS	1		NO3Drld/1st.circ() / /
C TEMPERATURE			HaH
DEPTH TOOL REACHED(MAX. REC.TEMP (°C)	97		OTHER TRACERS
MAX. REC. TEMP (°C) TIME CIRC. STOPPED	o2:30 24/ DEC	,	
TIME SINCE CIRC.	25:25		COMMENTS
D.SAMPLE RECOVERY	20 120	:	F GENERAL COMMENTS
SURFACE PRESSURE (psig	483	600	
VOL. GAS (cf)		0.52	
VOL. CIL	2.24		
VCL. WATER			
VOL. FILTRATE (L)	21.1	3.65	
VOL. CONDENSATE ()			
VOL. OTHER ()			
E SAMPLE PROPERTIES			
(a)GAS COMP.C1 (ppm)	63 600	73 700	NOTE: Gas volume does not take liquid
C2 (ppm)	1 520	1 760	displacement into account, unless noted
Ca (ppm)	283	328	· • • • • • • • • • • • • • • • • • • •
C ₄ (ppm)	38	440	Take mud nitrates when tested zone was
C5 (ppm)		NIL	drilled and last circulation.
C ₆ + (ppm)	NIL	NIL	Unless otherwise noted, pressures are
CO ₂ (%)	NIL	NIL	temperature corrected.
H ₂ S (ppm)	NIL	NIL	
(b)OIL PROPERTIES			
DENSITY: HYDROMETER	@ D		
REFRACTOMETER	(a □		
COLOUR			
FLUORESCENCE G.O.R. (
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		

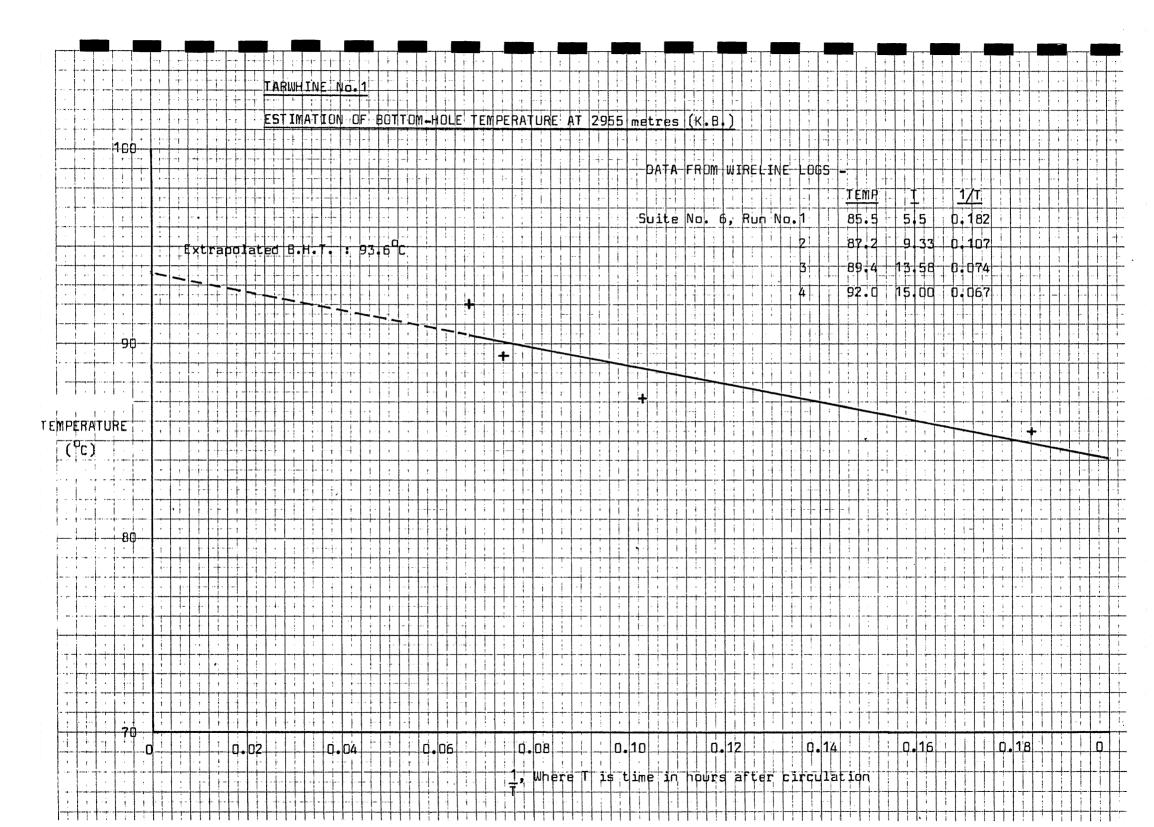
CORE LABORATORIES F.I.T/R.F.T. DATA SHEET - SAMPLING DATA

CHAMBER CAPACITY Gal		CHAMB. 2. HI-SULPHER <-4 -
CHAMBER CAPACITY (gal) 6.00 2.75 CHOKE SIZE (sq in) 0.030 0.040 SEAT NO. 130 130 DEPTH (m) (frm.RKB) 2498.5 2498.5 A.RECORDING TIMES HH:MM:SS HH:MM:SS TOOL SET 19:35: :-: PRETEST OPEN 19:35: :-: CHAMBER OPEN 00:01: :-: CHAMBER OPEN 19:36: 20:20: CHAMBER FULL 20:19: 20:43: FILL TIME 00:43: 00:21: START BUILD UP 20:17: 20:40: FINISH BUILD UP 20:17: 20:42: BUILD UP TIME 00:05: 00:02: SEAL CHAMBER 20:19: 20:44: TOOL RETRACT :-: 20:44: TOTAL TIME 00:44: 00:22: BUSAMPLE PRESSURES IHP (psig) 4480 ISIP (psig) 4480 ISIP (psig) 3554.1 IND. TOPPERTIES CONT. SMELL HI. POUR POINT (C 0) COMMENTS COMMENTS COMMENTS COMMENTS FINISH BUILD UP 20:17: 20:40: DENSITY (ppn) DENSITY (ppn) DENSITY (ppn) DENSITY (ppn) COLOUR COMMENTS FINISH BUILD UP 20:44: 00:22: COLOUR COMMENTS FINISH BUILD UP 3554.1 COMMENTS COMMENTS FINISH BUILD UP 3554.1 COMMENTS COMMENTS FINISH BUILD UP 3554.1 COMMENTS COMMENT COMMENTS COMMENTS COMMENTS COMMENT COMMENT COMMENT COME	-SULPHUR <-4 0.32 @22C 7.6K 8.8 K 99	HI-SULPHER
CHAMBER CAPACITY (gal) 6.00 2.75 CHOKE SIZE (sq in) 0.030 0.040 SEAT NO. 130 130 DEPTH (m) (frm.RKB) 2498.5 2498.5 A.RECORDING TIMES HH:MM:SS HH:MM:SS TOOL SET 19:35: :-: PRETEST OPEN 19:35: :-: CHAMBER OPEN 00:01: :-: CHAMBER OPEN 19:36: 20:20: CHAMBER FULL 20:19: 20:43: FILL TIME 00:43: 00:21: START BUILD UP 20:17: 20:40: FINISH BUILD UP 20:17: 20:42: BUILD UP TIME 00:05: 00:02: SEAL CHAMBER 20:19: 20:44: TOOL RETRACT :-: 20:44: TOTAL TIME 00:44: 00:22: BUSAMPLE PRESSURES IHP (psig) 4480 ISIP (psig) 4480 ISIP (psig) 3554.1 IND. TOPPERTIES CONT. SMELL HI. POUR POINT (C 0) COMMENTS COMMENTS COMMENTS COMMENTS FINISH BUILD UP 20:17: 20:40: DENSITY (ppn) DENSITY (ppn) DENSITY (ppn) DENSITY (ppn) COLOUR COMMENTS FINISH BUILD UP 20:44: 00:22: COLOUR COMMENTS FINISH BUILD UP 3554.1 COMMENTS COMMENTS FINISH BUILD UP 3554.1 COMMENTS COMMENTS FINISH BUILD UP 3554.1 COMMENTS COMMENT COMMENTS COMMENTS COMMENTS COMMENT COMMENT COMMENT COME	-SULPHUR <-4 0.32 @22C 7.6K 8.8 K 99	HI-SULPHER
CHAMBER CAPACITY (SQ in) 0.030 0.C40 CHOKE SIZE (SQ in) 0.030 0.C40 SEAT No. 130 130 DEPTH (m) (frm.RKB) 2498.5 2498.5 A.RECORDING TIMES	<-4 3.32 @22℃ 7.6K 8.8 K 99	<- 4
SEAT NO. DEPTH (m) (frm,RKB) A,RECORDING TIMES HH:MM:SS HH:MM:SS HH:MM:SS TOOL SET PRETEST OPEN TIME OPEN CHAMBER OPEN CHAMBER FULL FILL TIME START BUILD UP START BUILD UP SEAL CHAMBER TOOL RETRACT TOOL RETRACT TOTAL TIME DO:44; [DSIG) DIL PROPERTIES CONT.; SMELL POUR POINT (C D) SMELL POUR POINT (C D) COMMENTS (c)WATER PROPERTIES: RESISTIVITY (a m) D C1 (frm. resis.)(ppm) 17 C1 (frm. titræt)(ppm) 16 NO3 (ppm) DH OTHR.TRACERSIPA(ppm) DENSITY (ppm) DENSTER (ppm) DENSITY (ppm) DENSITY (ppm) DENSITY (ppm) DENSITY	<-4 3.32 @22℃ 7.6K 8.8 K 99	<- 4
DEPTH (m) (frm.RKB) 2498.5 2498.5 2498.5 A.RECORDING TIMES HH:MM:SS HH:MM:SS HH:MM:SS COMMENTS COMMENTS	<-4 3.32 @22℃ 7.6K 8.8 K 99	<- 4
DEPTH (m) (frm. KKB)	7.6K 8.8 K 99	
TOOL SET	7.6K 8.8 K	0.28 a Z OC
TOUL SET	7.6K 8.8 K 99	0.28 az c
PRETEST OPEN	7.6K 8.8 K 99	0.28 aZC
TIME OPEN CHAMBER OPEN CHAMBER FULL CHAMBER OD: 43: COLD (frm. resis.)(ppm) 17: C1 (frm. titrat)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. resis.)(ppm) 17: C1 (frm. resis.)(ppm) 17: C1 (frm. titrat)(ppm) 18: C1 (frm. resis.)(ppm) 17: C1 (frm. titrat)(ppm) 18: C1 (frm. resis.)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. resis.)(ppm) 18: C1 (frm. titrat)(ppm) 18: C1 (frm. titrat)	7.6K 8.8 K 99	
CHAMBER OPEN CHAMBER FULL COLOR FUNCTION COLOR FLUORESCENCE COLOUR COMMENTS COMMENTS FINANCE FOR FOR FULL COLOUR COMMENTS FINANCE FOR FULL COLOUR COMMENTS FINANCE FOR FULL COLOUR COMMENTS FINANCE FOR FULL COLOR FLUORESCENCE COLOUR COMMENTS FINANCE FOR FULL CHAMBER FULL COLOR FOR FULL CHAMBER FULL CHAMBER FULL COLOR FOR FULL CHAMBER FULL CHAMBER FULL COLOR FOR FULL CHAMBER FULL CHAMBER FULL COLOR FOR FULL COLOR FOR FULL CHAMBER FULL COLOR FOR F	8.8 K 99	17.0 K
CHAMBER FULL 20:19: 20:43: NO3 (ppm) FILL TIME 00:43: 00:21: PH START BUILD UP 20:17: 20:40: DTHR.TRACERS IPA(ppm) BUILD UP TIME 00:05: 00:02: DENSITY (ppm) SEAL CHAMBER 20:19: 20:44: TOOL RETRACT :-: 20:44: COLOUR COMMENTS TOTAL TIME D0:44: 00:22: COMMENTS FI BISAMPLE PRESSURES IHP (psig) 4480 PROPERTIES	99	18.2 K
START BUILD UP 20:12; 20:40; DTHR.TRACERS IPA(ppm)	1	121
START BUILD UP 20:12; 20:40; OTHR.TRACERS IPA(ppm)		8.77
BUILD UP TIME	146	149
SEAL CHAMBER 20:19: 20:44: FLUORESCENCE DUL DUL DUL DUL DUL DUL	9.8	9.8
SEAL CHAMBER TOOL RETRACT TOTAL TIME D0:44: D0:22: B.SAMPLE PRESSURES IHP (psig) 4480 ISIP (psia) 3554.1 - PROPERTIES	L GN/YEL	DL GN/YEL
TOOL RETRACT TOTAL TIME DO:44: B.SAMPLE PRESSURES IHP (psig) 4480 ISIP (psia) 3554.1 - PROPERTIES	K BRN	DK BRN
BISAMPLE PRESSURES IHP (psig) 4480 - (d) OTHER SAMPLE PROPERTIES ISIP (psia) 3554.1 - PROPERTIES		
IHP (psig) 4480 - (d) UTHER SAMPLE ISIP (psia) 3554.1 - PROPERTIES	ILTRATE	FILTRATE
IHP (psig) 4480 - (d) UTHER SAMPLE ISIP (psia) 3554.1 - PROPERTIES		
ISIP (psia) 3554.1 - PRUPERTIES	1	
IFP (osia) 78 98 E MUD PROPERTIES:		
	W GEL	S/W GEL
FSIP (psia) 3553.2 3553.1 RESISTIVITY (Am) 0	34 @ 240C	0.34 @24oC
	17.8 K	17.8 K
	16.9 K	16.9 K
	105/100	105 / 100
C_TEMPERATURE : OH	8.9	8.9
DEDTH TOOL REACHED(-) 2540 COTHER TRACERS		455
MAX. REC. TEMP. (°C) 82 - I.P.A. (ppm)	155	155
TIME CIRC. STOPPED 13:00 25/DEC : - / DENSITY (ppg)	9.8	9.8
TIME SINCE CIRC. D6:30 :- F.GENERAL COMMENTS		
DISAMPLE RECOVERY		
SURFACE PRESSURE (psig) 432 10		
VOL. GAS (cf) 1.22 .098		
VOL. OIL (L) 3.36 1.24		
VOL. WATER (L) -	•	
VOL. FILTRATE (L) 21.9 9.0		
VOL. CONDENSATE (L) D.12 D.14		
VOL. OTHER SAND (L) 0.002 0.001		
E SAMPLE PROPERTIES		Þ
(a)GAS COMP.C1 (ppm) 138 DOO INSUFFICE, NOTE: Gas volume does not	take lin	uid
C2 (ppm) 1 140 ENT GAS displacement into ac		
[Carm) 162 []	·	
C: CREM 23 MEASURE Take mud nitrates wh		(
C5 (ppm) NIL drilled and last in	rculation	j•
C6 + (ppm) NIL Unless otherwise not	ted. ores	sures are
CO ₂ (%) NIL temperature correcte		
H-S (nom) NTL	İ	
(b)OIL PROPERTIES Chamber 1 is the fir	rst chamb	er to be
DENSITY: HYDROMETER 62.3 @150C62.4@150C opened.		
(A.P.I.) REFRACTOMETER 62.4 @150C62.5@150C		j
COLOUR HONEY/BRN HONEY/BRN		
FLUORESCENCE BRT BLU BRT BLU	1	
G.O.R. (SCF/STB) 57.7 -		
JULY 1 3111 -	, programme de la companya de la com	i

F.I.T/R.F.T. DATA SHEET - SAMPLING DATA


			SSO AUSTRAL	IA L							
		• _	RFT 12			SUF	RE GAUGE 1	YPE H.	P.		
CHAMBER No.			1.		2.	1			ı	CHAMB. 1.	CHAMB.
CHAMBER CAF			6.00		• 75]				CHAMD. I.	CHAIID.
CHOKE SIZE	(sq	in)	0.030		C40	1	IOTI BBBB				
SEAT No.			130		130			ERTIES CON	1.8		<u> </u>
DEPTH (m)			2498.5	2	498.5		SMELL	ν τ (Ε			<u> </u>
A RECORDING	TIMES		HH:MM:SS	HH:	MM:55	1	POUR POI	11			
TOOL SET			19:35:	* '	1	7	COMMENTS		_		
PRETEST C	PEN		19:35:		3	†		PROPERTIE			
TIME OPEN			00:01:			1	RESISTIV)	@ D	
CHAMBER C			19:36:		20:	1	Cl (frm.	resis.)(
CHAMBER F		·	20,19		43	┨	Cl (frm.	titrat)(pp	m)	18.8 K	18.2
FILL TIME					21,	-	NOs	(pp		99	12
START BUI			00:43:			-	Ha	(20	-4	9.0	8.
•			20:12:		40:	-	OTHR. TRAI	FRS (-1		
FINISH BU			20:17:		42:	1	I) LIIU	-{		ļ
BUILD UP			00:05:		02 :	1	DENSITY	NCC -	-4	OUL GN/YEL	DI CNIV
SEAL CHAM			20:19:		44 8		FLUORESCE	.IVLE .			
TOOL RETR	ACT		: :		44;		COLOUR			DK BRN	DK BRN
TOTAL TIM	E		00:44:		22 .	1	COMMENTS			FILTRATE	FILTRA
SAMPLE PRI				·		1					
IHP		sig)	4480	1		1	(d) OTHER	SAMPLE			
ISIP		sia)	<u> </u>	 		1	PROPE	RTIES	1	-	•
IFP		sia)		 	98	=	MILL COOR	DITEC	4		
FFP		sia)		+	3550	F.	MUD PROPE	KITF2:	_		
FSIP					553 . 1	ł	TYPE		-,		
FHP		sia)				ł	RESISTIVI		ال	@ 0	<u>a</u>
1		sio)		 4	397		Cl (frm.r				
TEMP. CORF	· Ti abd(Cl (frm.t				
				-			NO3Drld/1s	st.circ()[/	/
TEMPERATUR				-			ρΗ				
DEPTH TOOL	REACHED(OTHER TRA	CERS	7		
MAX. REC.T		oc)						()		
TIME CIRC.			13:00 25/DEC	:	/		DENSITY	}	4		·····
TIME SINCE			06 :30	2			GENERAL C	OMMENTS	7		
SAMPLE REC						=			+		
SURFACE PR	ESSURE (p	sid	432	7	0						
VOL. GAS	(c	f)	1.22	•09	18						
VOL. DIL		一旬		 					l	-	
VOL. WATER		1		 		Į					
VOL. FILTR		_ { 	21.9	9.	. 0	-					
VOL. CONDE		- { 						•		İ	
VOL. OTHER		{		 		.		,		1	
SAMPLE PRO		-4	7-0					•		į	
(a)GAS COM			170 000	TAICTIE			T		+		
Caloun Coll		(mq	138 000	LNOUL	<u>, TPT</u>	NU	IL:Gas vo	lume does	nþ	t take liq	ıid
		<u> (ma</u>		ENT E	CAG		displa	cement int	0	account, un	less not
		pm)	162	TO					ł	1	
		Dm)	23	MEAS	UKE		rake w	oo nitrate	:5	when tested	zone i
		(ma	NIL				OLITIE	u ano last	·F	irculation.	•
		pm)	NIL				Unless	otherwise	, h	oted, pres	SUPPE PI
	CO ₂ (%		NIL				temmer	ature corr	'لے۔	tod	ores qi
	H ₂ S (p	Dw)	NIL				o cinper	COLE COIL	5	LEU.	
(b)OIL PRO							Chambei	1 is the	fi:	irst chambe	r to be
DENSITY HY		T	@ D	(2	. 0		opened.				_
	RACTOMETE	R	<u>a</u> o				, – – ,		-		
COLOUR	CHILT	''+									
FLUORESCEN	`F	$\overline{}$	·								
G.O.R.	, <u> </u>]	
i) a i i a ft -											


F.I.T. DATA SHEET - SAMPLING DATA


CUMPANY _	ESSO AUSTRAL	IA LTD.	WELL TARWHINE No. 1	
RUN No.	1	CHOKE SIZE 0.20/0.20 PRESS. GUAGE TYPEST. GGE		
	CHAMB. 1	CHAMB. 2	CHAMB. 1 CHAMB. 2	
	SIZE 12 gal			
	1 12 (10.	1	OIL PROPERTIES CONT:	
SEAT No. DEPTH (m) (frm RKB)	 		SMELL	
DEPTH (m) (frm RKB)	2779	2779	POUR POINT (º)	
ALRECURDING TIMES			COMMENTS	
TCOL SET	: :	: :	(c)WATER PROPERTIES:	
PRETEST OPEN	: :	2 2		
TIME OPEN	: :	: :		
CHAMBER OPEN	02 : 00:	06:30:		
CHAMBER FULL	: :	: :	Cl (frm. titrat)(ppm) 14.5 K 13.0 K	
FILL TIME	: :	: :	1 (***)	
START BUILD UP	: :	: :	7 (ph) 11.0 11.4	
FINISH BUILD UP	3 3	: :	OTHR.TRACERS ()	
BUILD UP TIME	: :	: :	COMMENTS	
SEAL CHAMBER	06:30:	06:45:	(d)OTHER SAMPLE	
TOOL RETRACT	: :	1 1	PRUPERTIES WT ppg 9.8 9.8	
TOTAL TIME	04 : 30:	00:15:	1	
B.SAMPLE PRESSURES			FILTRATE HAS PALE YELL OUL OLIVE	
IHP (FLUORESCING SCUM : GRN FLU GRN FLU	
ISIP (1 1	
IFP (psig)	4540	4621	E MUD PROPERTIES:	
FFP (psiq)	1	4625	TYPE SEAWATER GEL	
FSIP			RESISTIVITY (2m) 0.33@22dC 0.33@22o	
FHP (psig)		5310	¬ ' ' ' - ' - ' - ' - ' - ' - ' - ' - '	
TEMP. CORR. if wapp()				
COMMENTS			\ \ \	
C.TEMPERATURE		,	NO3Drld/1st.circ(ppm) 170 /55 170 /55 pH 12.3 12.3	
DEPTH TOOL REACHED()			- 1.'	
MAX. REC. TEMP			OTHER TRACERS	
TIME CIRC. STOPPED	: /	: /	COMMENTS	
TIME SINCE CIRC.	: /	<u>'</u>		
D SAMPLE RECOVERY	•	•	GENERAL COMMENTS	
SURFACE PRESSURE (psid	350	115	RECOVERED FLUID APPEARS TO BE CONTAMINAT	
VOL. GAS (cf)		0.1	FILTRATE WITH A TRACE OF OIL (FLU)	
VOL. OIL	2.5		FILINATE WITH A THADE OF OIL (110)	
VCL. WATER				
VOL. FILTRATE (L)	30.50	0.600		
VOL. CONDENSATE ()	30.00			
VOL. OTHER				
E SAMPLE PROPERTIES				
(a)GAS COMP.C1 (ppm)	297 676	GAS VOL	NOTE:Gas volume does not take liquid	
C2 (ppm)	1 808	TOO SMALL		
	325		displacement into account,unless note	
C4 (bbw)	105		Take mud nitrates when tested zone was	
C5 (ppm)	62		drilled and last circulation.	
C6 + (ppm)	NIL	····	11-1-1	
	0.05		Unless otherwise noted, pressures are	
H ₂ 5 (ppm)	NIL		temperature corrected.	
(b)OIL PROPERTIES				
DENSITY: HYDROMETER	@ O			
REFRACTOMETER	<u>a</u> 0			
COLOUR				
FLUORESCENCE				
G.O.R.				
1 1		İ		
				

F.I.T. DATA SHEET - SAMPLING DATA

COMPANY E	WELL TARWHINE NO. 1					
RUN No. 2 CHOKE SIZE 0.20/0.20PRESS.GUAGE TYPEST. GE						
	CHAMB. 1 SIZE <u>12 g</u> al	CHAMB. 2 SIZE <u>660m</u> :		SIZE 12 ga	CHAMB. 2 SIZE660 ml	
SEAT No.	2	2	OIL PROPERTIES CONT			
DEPTH (m) (frm RKB)	2661.5	2661.5	SMELL COLUMN		ļ	
ALRECORDING TIMES			LEDON FOINT			
TOOL SET	19 45:	1 1	COMMENTS (c)WATER PROPERTIES:			
PRETEST OPEN	: :	3 3	RESISTIVITY (2 m)		0.32 @2240	
TIME OPEN	3 :	: :	Cl (frm. resis.)(ppm)		12.1 K	
CHAMBER OPEN	19 :50 :	24 100 :	Cl (frm. titrat)(ppm)		13.5 K	
CHAMBER FULL	: :	: :	NOa (ppm)		95	
FILL TIME	1 1	: :	Ha (PPIII)	11.8	12.0	
START BUILD UP	::	: :	OTHR. TRACERS ()	1100	12.00	
FINISH BUILD UP	: :	1 1	COMMENTS		ļ	
BUILD UP TIME	: :	: :	(d) OTHER SAMPLE			
SEAL CHAMBER	24:00:	00:15:	PRUPERTIES			
TOOL RETRACT	: :	: :	DENSITY (ppg	9.8	9.8	
TOTAL TIME	04 :10 :	00:15:	- DEMOTE	, ,,,	1	
B.SAMPLE PRESSURES			1			
IHP (4 1			
ISIP (
IFP (psig		4539 .	E MUD PROPERTIES:			
FFP (psig		4507	TYPE	SEAWATER	i .	
FSIP (psig		4583		0.33 @2290	0.33@22 ©	
		5180	Cl (frm.resis.)(ppm)			
TEMP. CORR.if app() COMMENTS			Cl (frm.titrat)(ppm)	14.0 K	14.0 K	
C TEMPERATURE			NO3Drld/1st circ(ppm)		185 / 55	
DEPTH TOOL REACHED()		•	pH	12.2	12.2	
MAX. REC.TEMP			OTHER TRACERS		:	
TIME CIRC. STOPPED	: /	. /	GOMPHENITE WIT	n o	9.8	
TIME SINCE CIRC.	:	3 /	COMMENTS WT (ppg) F.GENERAL COMMENTS	9.8	9.0	
D.SAMPLE RECOVERY	•	•	F OCIVERAL COMMENTS			
SURFACE PRESSURE (psig)	130	*	SAMPLE APPEARS TO BE	FTITPATE		
VOL. GAS (cf)	1	NIL	SAMPLE APPEARS TO BE	, Triukir		
VOL. CIL	1.0	IVIL				
VCL. WATER						
VOL. FILTRATE (L)	36.0	0.635	·			
VOL. CONDENSATE ()						
VOL. OTHER ()						
E SAMPLE PROPERTIES						
(a)GAS COMP.C1 (ppm)	58 735		NOTE:Gas volume does n	ot take lio	uid	
C2 (ppm)	904		displacement into	account	less noted	
C3 (ppm)	297				i	
C4 (ppm)	211		Take mud nitrates			
C5 (ppm)	424	·	drilled and last	circulation	•	
C6 + (ppm)	99		Unless otherwise	noted, pres	sures are	
CO ₂ (%)	0.05		temperature corre			
H ₂ S (ppm)	NIL					
(b)OIL PROPERTIES			* Pressure too sm	all to acch	rately	
DENSITY: HYDROMETER	@ D		measure		[
REFRACTOMETER	<u>a</u> 0				ĺ	
COLOUR					Ī	
FLUORESCENCE G.O.R. (•			
				1	į	
	<u></u> -L	<u>_</u>		{		

14. SIDEWALL CORE GAS ANALYSIS.

CORE LAB

SIDEWALL CORE GAS ANALYSIS DATA SHEET

SHEET# 1 of 1

COMPANY ESSO AUSTRALIA LTD.

WELL - TARWHINE 1

	1	T		,	T	Y	·	
NΩ	DEPTH	СІ	C 2	С3	C4	C5	C 6	COMMENTS
	METERS	PPM	PPM	PPM	PPM	PPM	PPM	
7	2922	Tr	4	153	4			ALL THESE
10	2907.7	27	5	71.5	4			SAMPLES WEF
20	2874	47	2	40	3	<u> </u>	ļ	ESSO GEOLOG
26	2854	23	58	` 7		<u> </u>		PRIOR TO GA ANALYSIS.
40	2779	259	7	77	40			ANALISIS.
43	2769	1584	38	176		6		4
49	2749	604	48	198	13			4
55	2725	173	19	211	. 8	<u> </u>		_
56	2718	175	72	- 22	147	Tr		_
58	2712	806	19	105	Tr			_
61	2705.5	1188	24	99	10			
62	2703.4	792	12	66	10	Tr		1
63	2701	35	Tr	Tr	284			1 ·
66	2691	. 1785	38 .	1380	Tr			7
6 7	2693.7	360	12	110	10	Tr	Tr	
_68	2687.6	108	Tr	17	Tr			-
6 9	2686	108	6	88	Tr			1
70	2681	9 1 8	24	22	5			-
71	2674.3	720	24	22	Tr			1
72	2671.5	612	120	22	32			1
73	2658	180	6	66	51			
74	2659.2	52	24	Tr	10			-
75	2660.8	43	Tr	9	Tr			1
76	2664	29	5	22	2			
93	2556	58	5	44	Tr			
94	2560	43	2	18 -	2			-
95	2568.5	4	4	29	<u>.</u>			1
-53	2300.3			23				4
								-
								-
			·					4
	· .							
_ [1	1		I		!!!		1

LL THESE AMPLES WERE PENED BY SSO GEOLOGIST RIOR TO GAS VALYSIS.

15 GAS COMPOSITION ANALYSIS

The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

LOG PLOT

The ratios of C1/C2, C1/C3, C1/C4, C1/C5 and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show.The plots can be evaluated by the following criteria:

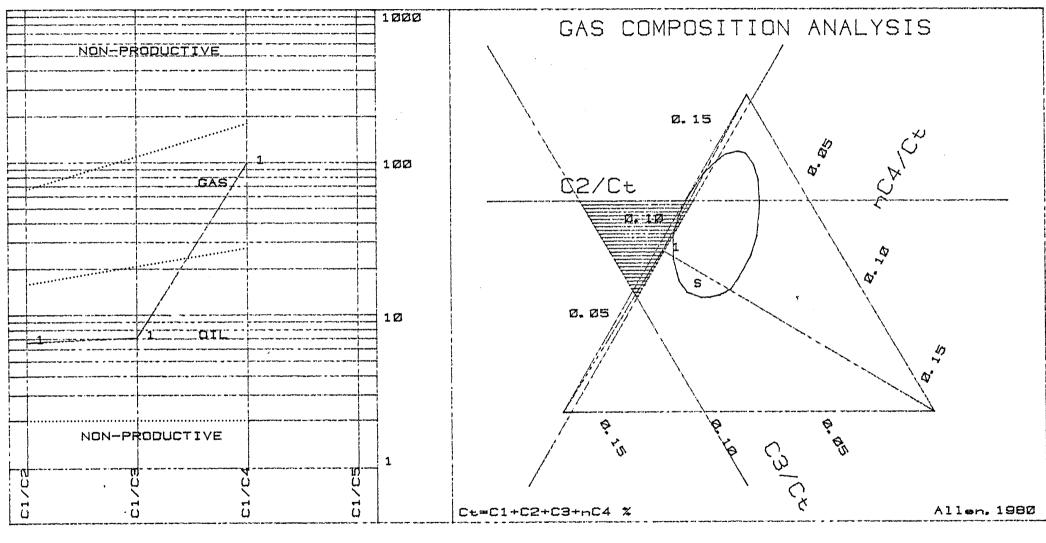
- Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65,gas.If the C1/C2 ratio is below about 2, or above about 65,the zone is probably non-procuctive.

The actual values of the gas/oil/water limits will vary from area to area.

- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5,if oil is used in the mud) is lower than the preceding ratio,the zone is probably non-productive.
- 5. The ratios may not be definitive for low permeability zones;however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT

The triangular diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to nC4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.


A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

GAS COMPOSITION ANALYSES. Tarwhine No. 1.

The first three diagrams all represent oil zones. The show at 1386 metres suggests oil with a particularly high GOR is present. At 1384 and 1386 metres, the composition of the heavier hydrocarbons is abnormal. In particular the C_1 / C_4 ratios indicate much lower permeabilities than would be expected. The C_1 / C_2 and C_1 / C_3 ratios suggest excellent permeabilities in contrast.

The next six gas composition analyses all exhibit similar features, i.e. each one represents a gas zone, though the gas at 2357, 2376 and 2499 ratios is probably non-productive. In all six zones the permeabilities appear to be fair to good. The wetness of these gas zones increases with depth, being dry at 2357 metres and moderately wet at 2573 metres.

The remaining diagrams all manifest non-productive dry gas zones with fair to average permeabilities, and are included in this report for reference purposes only.

C1/C2 C1/C3 C1/C4 C1/C5 СЗ 1C4 nC4 C5 C6 % NO. DEPTH C1 CS 100 2.800 0.100 0.100 0.000 0.000 25. 800 1 1384 19.900 3.000

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C5/C 0.05 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen. 1980 NO. DEPTH C1 C2 C3 iC4 nC4 C5 C6 % C1/C2 C1/C3 C1/C4 C1/C5 1 1386 42.200 4.400 4.200 0.100 0.100 50.900

0.000

0.000

10

10

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct Ø. 10 0.05 10 DIL NON-PRODUCTIVE 704 Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH

C1

CS

C3

1 1392 4900.000 900.000 460.000 210.000210.000 46.000 0.000

1C4

nC4

C5

C6 %

Ct C1/ 6470.0005

C1/C2 C1/C3 C1/C4

11

12

C1/C5

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 0.10 Ø. Ø5 10 OIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

C5

0.000

C6 %

0.000

Ct

15699. 00053

104

7.000

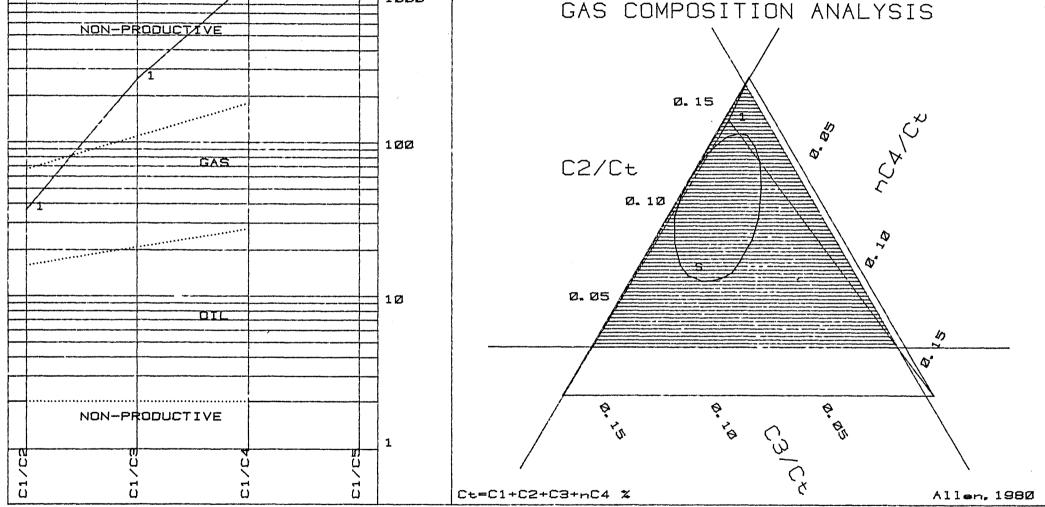
NO. DEPTH

C1

CS

1 2357 15322.000290.000 80.000

C3


nC4

7.000

C1/C2 C1/C3 C1/C4 C1/C5

192

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTAVE Ø. 15

NO. DEPTH C1 CS. C3 iC4 C5 C6 % nC4 C1/C2 C1/C3 C1/C4 C1/C5 1 2376 33868. 000929. 000 131. 000 15. 000 15. 000 0.000 0.000 34943. 20236 259 1129

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 0.10 0. 05 110 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C1 CZ **C3** 1C4 nC4 C5 C6 % C1/C2 C1/C3 C1/C5 C1/C4 1 2499 22580.000600.000 131.000 17.500 17.500 22.000 0.000 23328. 50038 172 1026 645

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 0.10 Ø. Ø5 10 OIL NON-PRODUCTIVE

C1/C2 C1/C3 C1/C4 C1/C5 C6 % Ct C5 C3 iC4 nC4 C1 CS NO. DEPTH 408 1427 24 83 1.204 0.001 0.001 0.001 0.000 1 2571 1.141 0.047 0.014

Ct=C1+C2+C3+nC4 %

Allen, 1980

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 0.05 10 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980 NO. DEPTH C1 CS C3 iC4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2572 Ø.613 Ø. Ø29 0.008 0.000 0.000 0.000 0.000 0.649 21 81 681

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE # 1 GAS COMPOSITION ANALYSIS 1000 NON-PRODUCTIVE Ø. 15 100 C2/Ct GAS 0.10 Ø. Ø5 10 DIL NON-PRODUCTIVE Ü Allen, 1980 Ct=C1+C2+C3+nC4 % C1/C2 C1/C3 C1/C4 C1/C5 Ct C6 % C5 iC4 nC4

437

79

10

0.340

0.000

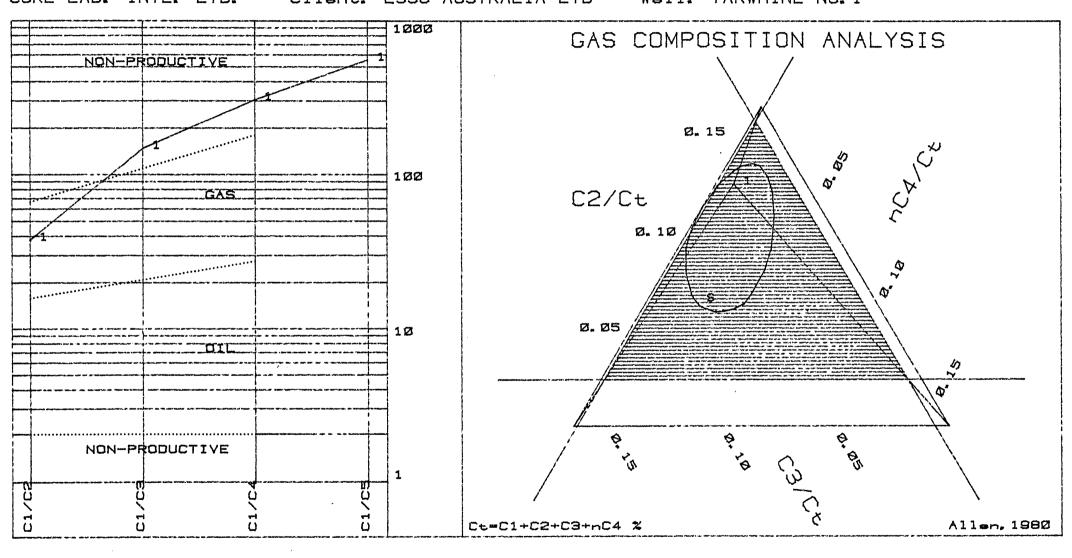
0.000

C3

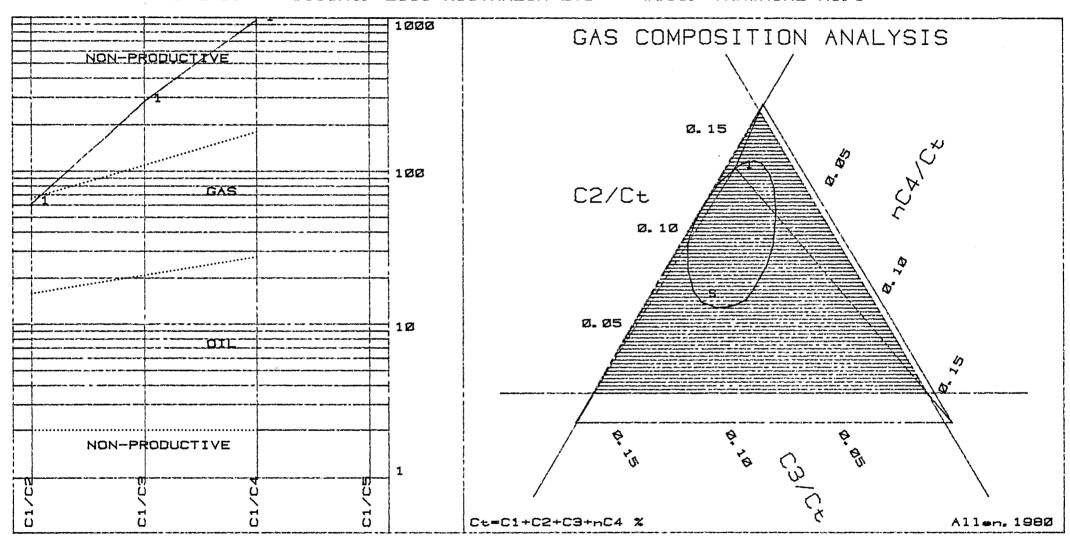
0.004

0.000

0.000


C2

0.030


C1

NO. DEPTH

1 2573 0.306

C1/C5 1C4 nC4 C5 C1/C3 C1/C4 NO. DEPTH C1 C2 C3 15.500 15.500 17.000 24.000 9795.500 38 148 3Ø5 557 1 2642 9466.000 250.000 64.000

NO. DEPTH C1 C2 C3 1C4 nC4 C5 C6% Ct C1/C2 C1/C3 C1/C4 C1/C5
1 2656 21158.000346.000 75.000 11.000 11.000 0.000 0.000 21590.00061 282 962

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE NO. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct Ø. Ø5 10 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO.DEPTH C1 C2 C3 1C4 nC4 C5 C6% Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2658 24500.000400.000 95.000 14.000 14.000 0.000 0.000 25009.00061 258 875

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE NO. 1/ 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTLYE Ø. 15 100 C2/Ct Ø. Ø5 10 Ġ NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH

C1

CZ

C3

1 2660 27840.000477.000 94.000 17.500 17.500 24.000 0.000

1C4

nC4

C5

C6 %

C1/C2 C1/C3

296

28428. 50058

C1/C4 C1/C5

1160

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE NO. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 10 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C1 C2 1C4 C3 nC4 C5 C6 % C1/C2 C1/C3 C1/C4 C1/C5 1 2662 11414.000231.000 50.000 7.000 7.000 0.000 0. 000 11702.00049 228 815

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE NO. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTÍVE Ø. 15 100 C2/Ct Ø. Ø5 10 NON-PRODUCTIVE 1 Allen, 1980 Ct=C1+C2+C3+nC4 %

NO.DEPTH C1 C2 C3 ±C4 nC4 C5 C6% Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2685 41700.000431.000 150.000 18.000 19.000 0.000 0.000 42299.00097 278 1158

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE NO. 1 1000 GAS COMPOSITION ANALYSIS Ø. 15 100 C2/Ct Ø. Ø5 10 NON-PRODUCTIVE Allen, 1980 Ct=C1+C2+C3+nC4 % C1/C2 C1/C3 C1/C4 C1/C5 Ct

1C4

NO. DEPTH

C1

CS

1 2724 23385. ØØØ3ØØ. ØØØ 60. ØØØ 7. ØØØ

C3

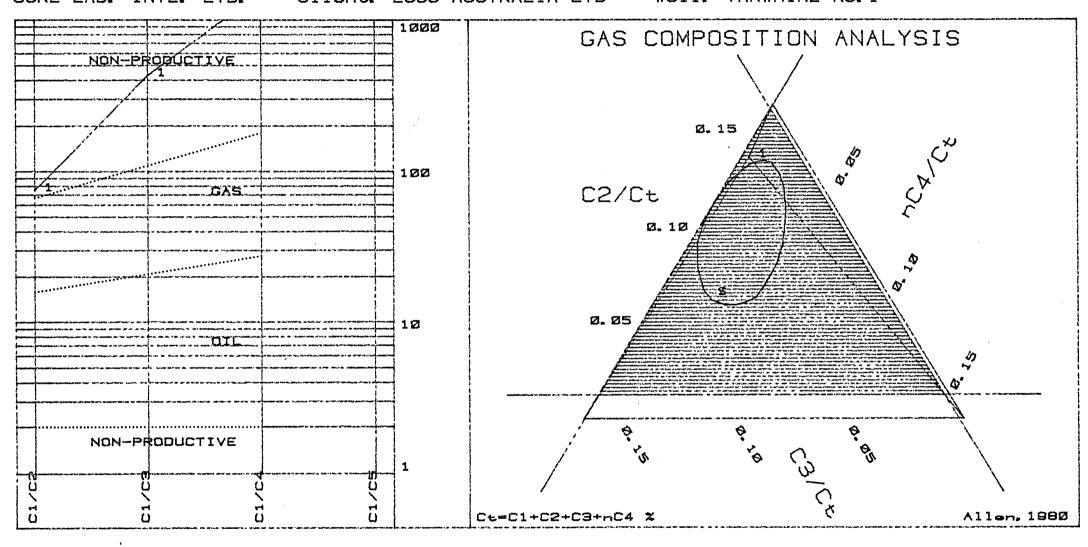
nC4

7.000

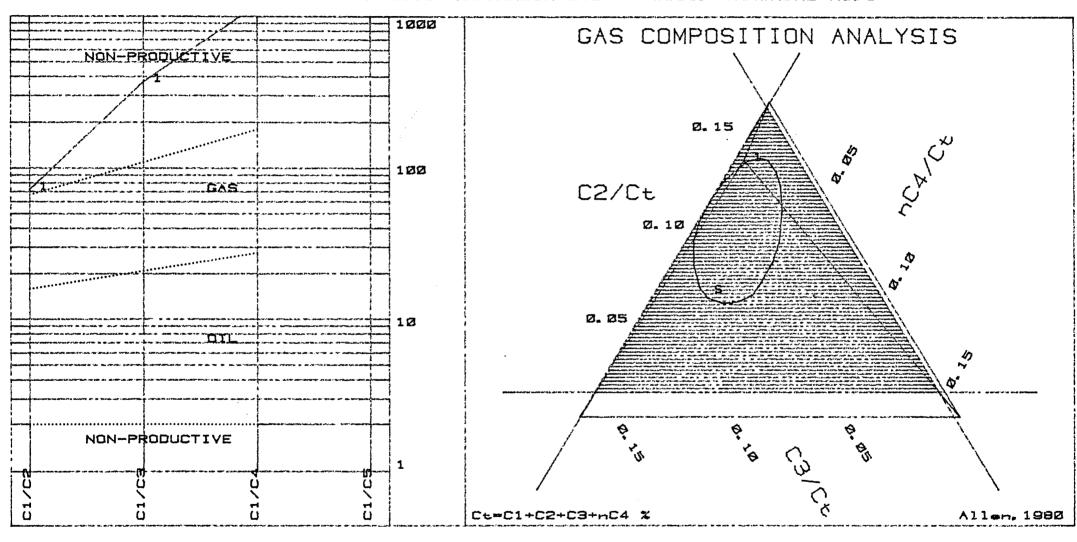
C5

0.000

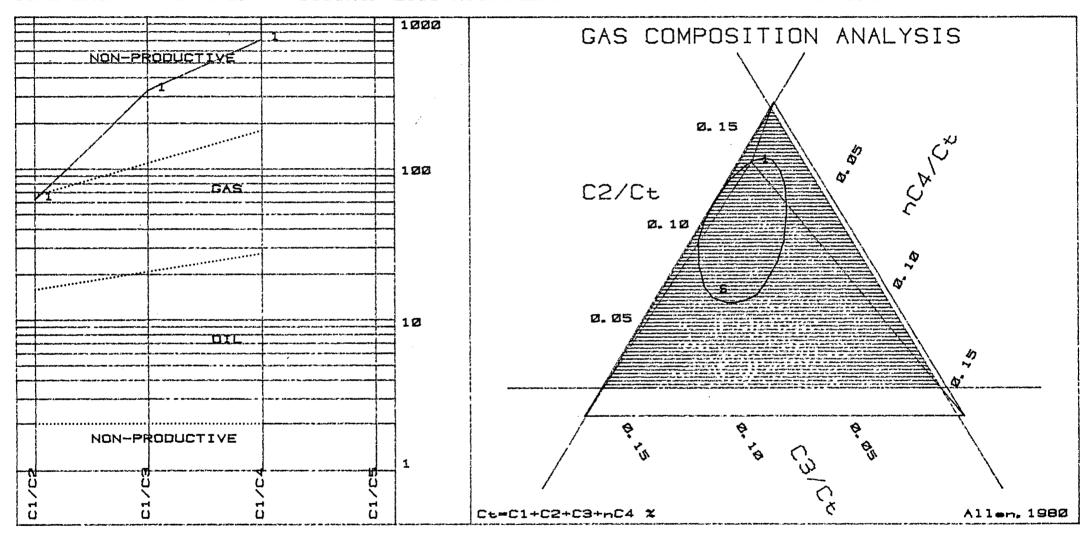
C6 %

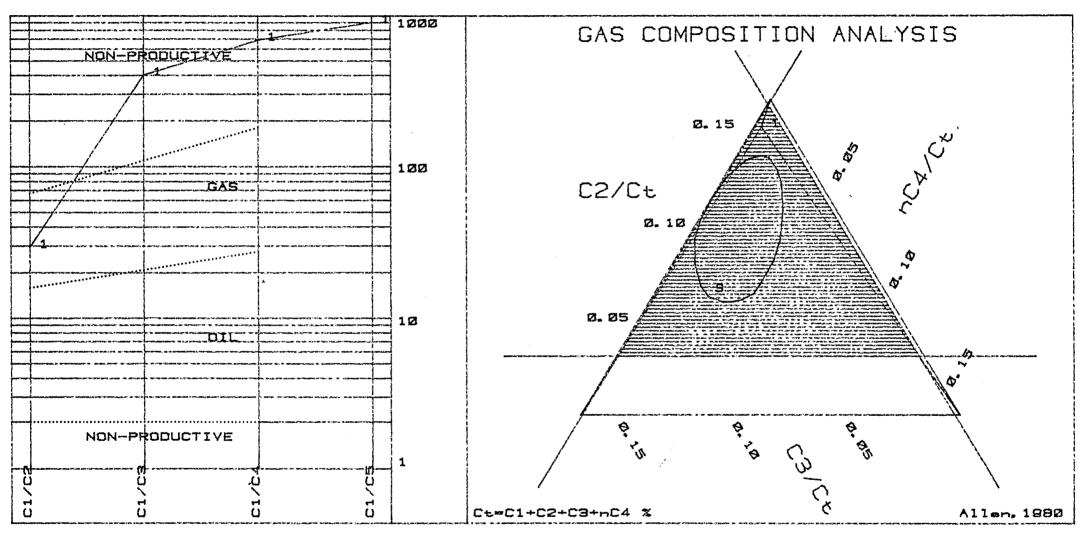

0.000

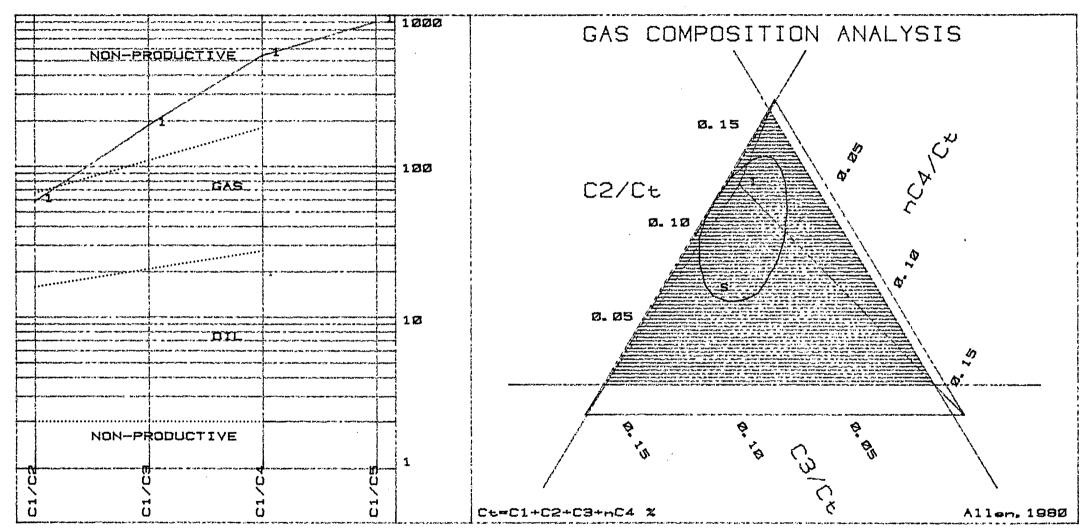
23752. ØØØ78


39Ø

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE NO. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 10 NON-PRODUCTIVE Allen, 1980 Ct=C1+C2+C3+nC4 %


C1/C2 C1/C3 C1/C4 C1/C5 nC4 C5 C6 % 1C4 NO. DEPTH C1 CS. 39Ø 1392 19488. 000277. 000 50. 000 7.000 7.000 0.000 2.000 19822. ØØØ7Ø 1 2728


C1/C2 C1/C3 C1/C4 C1/C5 NO. DEPTH C1 C2 C3 1 C4 nC4 C5 C6 % 21779. 00075 429 7. 000 1531 1 2736 21437. ØØØ285. ØØØ 50. ØØØ 7. ØØØ 0.000 0.000


NO. DEPTH C1 C2 C3 1C4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2739 16704.000231.000 45.000 7.000 7.000 0.000 0.000 16987.00072 371 1193

C2 C1/C3 C1/C4 C1/C5 NO. DEPTH C1 **C3** 1C4 nC4 C5 C6 % C1/C2 328 714 1 2764 16425.000262.000 50.000 11.500 11.500 0.000 0.000 16748.50263

NO. DEPTH C1 CS СЗ 1C4 nC4 C5 C6 % C1/C3 C1/C4 C1/C5 1 2773 14476. 000493. 000 36. 000 10. 500 10. 500 16.000 23.000 15015.50029 402 688 9Ø5

C1 NO. DEPTH CS C3 1C4 nC4 CB % Ct C1/C2 C1/C3 C1/C4 C1/C5 21715.000370.000 116.000 20.000 20.000 24.000 33.000 22221.00059 187 543 905

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: TARWHINE NO. 1 1000 GAS COMPOSITION ANALYSIS Ø. 15 100 C2/Ct

NO. DEPTH C1 C2 C3 1C4 nC4 C5 C6% Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2788 19800.000339.000 122.000 25.000 25.000 34.000 47.000 20286.00058 182 398 582

Ct=C1+C2+C3+nC4 %

Allen, 1982

NON-PRODUCTIVE

16. CORE - O - GRAPHS

CORE-O-GRAPH

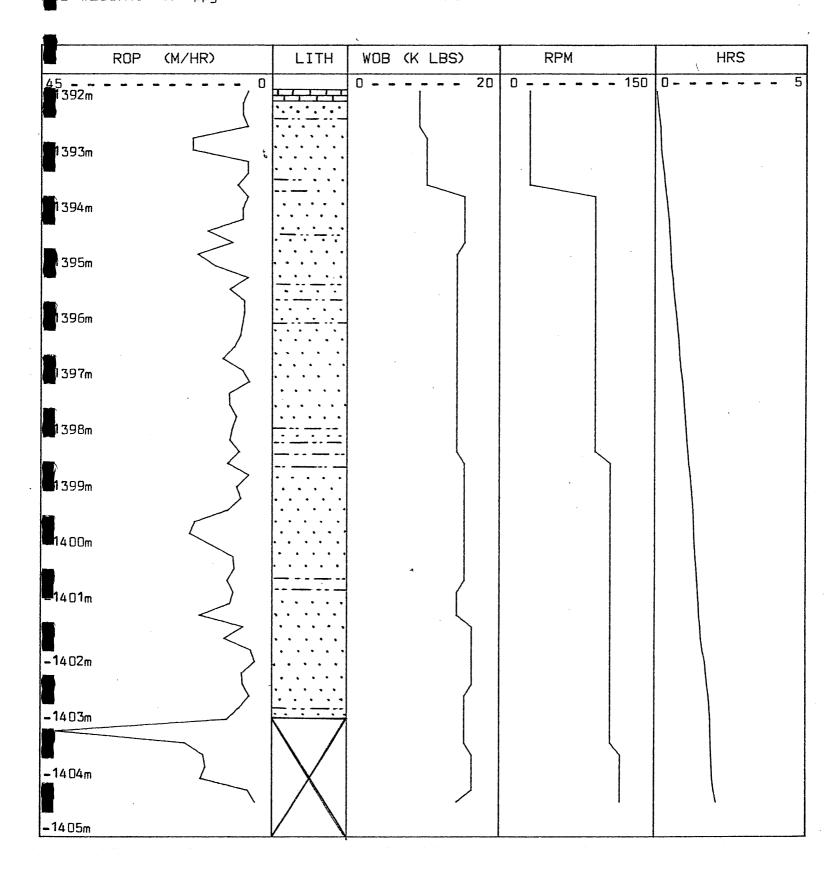
TENT: ESSO AUSTRALIA LTD.

CORE NO: 1

TARWHINE No.1

THITERVAL CORED: 1392 - 1405 metres

CUT: 13 metres


COVERED: 10.85 metres (83.5)

FTT MAKE AND TYPE: CHRISTENSEN C-22

BIT SIZE: 8 15/32"

DD WEIGHT: 10.4 ppg

FORMATION GROUP: LATROBE

CORE-O-GRAPH

IENT: ESSO AUSTRALIA LTD.

CORE NO: 2

WLL: TARWHINE No.1

INTERVAL CORED: 1405 - 1418 metres

CUT: 13 metres

FCOVERED: 9.85 metres (76%)
BIT MAKE AND TYPE: CHRISTENSEN C-22

BIT SIZE: 8 15/32"

MUD WEIGHT: 10.1 ppg FORMATION GROUP: LATROBE

	ROP (M/HR)	LITH	· WOB (K LBS)	RPM	HRS
55 -1405m	>		0 20	0 150	0 5
-1406m					
-1407m					
4 08m					
409m					
410m					
411m		· :			
412 _m				·	
413m					
414m					
-7415m					
-7416m					
-1417m		$/ \setminus $			
-1418m		/			

CORE-O-GRAPH

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 6. ØM

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.47

ESSO AUSTRALIA LTD

TARWHINE NO. 1

3

2663.3m. TO 2669.0m.

RECOVERED: 5.9m. (97.5%)

INTER LATROBE

CHRISTENSEN C-20

6.75in. x 4.00in. x 19.66m.

MUD WT.: 10.0

M.	ROP	FT/HR	LITH		WOB		RPM			HRS		
2663	10	1 2		Ø		25	5Ø	<u> </u>	00	Ø l	5	
2664								`				
2665											·	
2666												
2667							S.				1	
2668				•								
1 2669												

17. PORE PRESSURE SUMMARY AND L.O.T. / P.I.T. DATA.

Tarwhine No. I was drilled in the Gippsland basin region of the Bass Strait. It was correctly thought that this basin is normally pressured and abnormal pressure was therefore not expected. Core Laboratories unit FL 802 monitored and calculated various parameters associated with pressure detection, the primary means of detection being the "Drill Data Plot" (See plots at end of report).

The "Drill Data Plot" shows, amongst other information, the d'c exponent trend. As can be seen from the plot a good trend does not develop until around 720 metres, in the calcareous section. There is a laternal shift in the trend at 880 metres, where the limestone loses its sandy and silty components. This normal trend is followed down to 965 metres where there is a reversal. The reversal extends down to a depth of 1280 metres, and is due to the lithology change from limestone to siltstone.

Between the depths 1280 and 1610 metres no significant trend can be established due to firstly, the thin interbedded sections of sandstones, siltstones and coals; and secondly, the profusion of bit changes in this interval. A good normal trend is established during bit run 9, between 1610 and 2000 metres, but that trend is shifted and steepened in bit run 10 (2000 - 2160 metres) owing to the cleaner nature of the sandstone in this latter section. An excellent normal trend then extends all the way to total depth at 2955 metres.

The only abnormality in the mud gas plot is the increase in background gas below 2350 metres from 1 unit to between 5 and 10 units. However, this results from the change in lithology rather than from any abnormality in formation pressure.

No shale density measurements were taken since only isolated thin beds of true shales were encountered.

As may be expected from the above discussions, the temperature plot does not show any deviations away from normal. The geothernal gradient was 1.52° C / 100m (2.74° F / 100m).

A "Wireline Plot" was not drawn as this log plots shale parameters and the few shale points encountered in the well were insufficient to facilitate an objective plot.

The "Pressure Plot" is the pressure conclusion log for the well. As can be seen it shows that the formations encountered in the drilling of Tarwhine No. 1 are believed to be normally pressured throughout. The quantitative data for this log is from the R.F.T. tests run in the sands between 1396 and 2926 metres. As can be seen from the R.F.T. data the sands had pressure gradients of between 1.444 and 1.499 psi/m, which are equivalent to pore pressures of 8.5 to 8.8 ppg (from M.S.L.). It is believed that a pore pressure of 8.6 ppg E.M.W. is representative of the pressure gradient for the formations above the Latrobe (as inferred from the R.F.T. data).

Overburden gradient calculations and a plot of the gradient are included in the report. It was not possible to derive a true fracture gradient as insufficient L.O.T.'s were taken. In fact only one P.I.T. was taken,

just below the 13 3/8" casing shoe. There was no need to carry out L.O.T.'s since high mud weights were not appreciated. The P.I.T. that was carried out gave a value of 13.5 p.p.g. E.M.W. (see Well History section). Based on this information the fracture gradient on the "Pressure Plot" was drawn. The shape of the curve is based on data from wells in the U.S. Gulf Coast basin, and offset to match local data. A true fracture gradient for the Gippsland Basin cannot be drawn until further leak-off data is available.

18. P.W.T. DATA.

CORE LA		PI	RODUCTION	WELL TES	ST DATA SHE	ET			SHEET#	1
	Y ESSO AUST TARWHINE			r#_1 (INITIAL F	LOW)				
GAS AN	ATIONS <u>2656-2</u> JALYSIS FROM BING AFTER I	LIBERATE	D GAS FR	B) OM LIQUIO	SAMPLES	TAKEN W	HILE DIS	PLAC	ING FL	UID
NO	SAMPLING POINT	CI	C2	C 3	C 4	C5	C 6	C02	H2S	TOTAL GAS
	AFTER x BBL DISPLACEED	PPM	PPM	PPM	PPM	РРМ	PPM	%	PPM	U
1										140
2		56 722	1042	637	424	176				140
3	10		`							180
4		39421	994	539	343	106	-			112
55	20									100
6		15667	497	297	264	188	-			7 0
7		•			ļ					52

CORE LA		<u> </u>	PRODUCTION	WELL TES	ST DATA SH	EET			SHEET#	2
1	Y ESSO AUS	TRALIA LT	<u>D.</u>	4 (TNI)		111 Y				
WELL		1			LITAL FLU	w j				
FERFOR	ATIONS <u>2656-2</u> NALYSIS FROM	667.5m VIITRERAT	(FM,RK	(B) HOM L TOUT	D SAMPLES	S TAKEN I	WHILE DIS	SPLAC	ING FL	UID
	BING AFTER									
SAMPLE	SAMPLING									TOTAL
No	POINT	CI	C S	С3	C4	C5	c e	cos	H2S	GAS
	AFTER × BBI DISPLACED.	PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	U
35										26
36		6379	240	131	119	39	-			25
37			` `							27
38		650 2	255	141	129	42	-			28
39										29
40		6599	276	162	132	44	-			30
41										36
42	80	10424	340	202	172	92	-			46
43		15888	424	202	200	163	- e	-		78
						 		-		
						 				
			 				 	+-+	•	
	,					 		+		-
			 							
	,		 							
	**									:
				<u> </u>	·					i
						<u> </u>				
		······································								
				-A						
								-		
NOTE	20 u GAS	IS EQUIVI	LANT TO	% METHA	NE EQUIV	ILANT GA	5			

CORE LAB

	<u> </u>							OF 6						HEET# 1	
CORE LA						HON	WELL TE	SIDA	AIA SHEE				\$	HEE! #	
COMPAN	Y ESSO AUS	STRA	LIA	LTD	•	1	CINITIA		ל ווות						
WELL	TARWHINE	2665			PWT	#	(TINT! TH	IL FL	LW)						
PERFOR	ATIONS 2656-2 ALL SAMPL	60 i	- 5m	N F	(FM, P∩M	RKB)) 'F MANTE	מוח:	WHEN RE	VER	SE CTRC	111 AT	TNG	AND	
NOTE	DISPLACIN									. V _ 11.	JE CINC	ULKI	1.40	· ·	
RATHOLE	FLUID: TY	PE_S	SEAW	ATE	R GE	L	RES. A	m 0.	29 • 25	,C	PH 11.6	CI (TITR	AT) 16.0K	PP
	NO:	3	50	_PPN	A E	ENSI	ry 9.8pp	20					,		-
CUSHION	FLUID: TYP						RES	n.m	<u>> 10 • 2</u>	5°C	PH_			5501070.W5	•
						PP		-	~					EFRACT&HYD	ווי
	SAMPLING POINT	SHA	KE (API	BTEM	FLU	SG	WATER	RES	CI	EON	PH		
No	AFTER × BB			1	力	•	 	†	<u> </u>		†				
	DISP.	OIL	H20	SLC	=	+		1	∠n.−m		PPM K		•	COMMENTS	
1		↓_	╀	 			NIL	1.0!	6 0.37		5 13.0	45	12	3	
2			<u> </u>	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	<u> </u>		Y	 	0.26		<u> </u>				
3	10			<u> </u>		<u> </u>	Y		0.40	11		<u> </u>			
4		<u> </u>		<u> </u>			Υ.		0.35	"					
5	20						NIL		0.22	**					
6		L					NIL		0.30	**	,				
7							NTL		0.31	"	13.5	45	12	3	
8			1	T			Y		0.30	1,,					
9	30		1				Yı	1.04	4 0.27	+					
10		T	1	1	T	†		1:00	0.24		 		-		
11			1	T		+	Y Y	 	0.28		 		-	·	
—	, · · · ·	-	+	┼─	╁╌	┼─	 	╁	 	 		}			
12		-	 	-	 		<u> </u>	ļ	0.27	"					
13			 		<u> </u>		. Y	<u> </u>	0.33						
14							Y		0.32		14.0	50	12.	2	
15							Y		0.24	1					
			1	1				1 0	4 0.25	_					
1 6		 -	+		\vdash	┼	Y	1.04	 	 	 				
17		-	├		 	├	Y	ļ	0.25						
18				<u> </u>		<u> </u>	Y		0.25	"					
19	40						Y		0.25						
20								1 0	C 0 35		14.5	22	12	7	
20			┼─		-	 	Y	1.04	6 0.25	<u> </u>	14.5	22	12.	2	
21			ļ			<u> </u>	<u>Y</u>	<u> </u>	0.25	11					
22							Y		0.25	"					
23	50						•		0.25			i	\neg		
			1	 	-		Y								
24			-	-	_		Y		0.25						
25					<u> </u>		Y		0,25	**					
NOTE			·												
	WHERE PRE	SENT	AL	L FL	υI	F YE	LLOW/GR	EEN							
	FLU : Y	- Fl	U P	RESE	NT		· · · · · · · · · · · · · · · · · · ·								
	GAS WAS L	IBEF	ATE) FF	OM	ALL	OF THE	AB OV	SAMPL	ES A	OR GAS	ANA	LYS	IS SEE	
	GAS ANALY														
l	ONS ANALY	12	DHE	. 1		L1						- 1			

·__ .__.

COME LA	AB.			PRO	DUCT	10N	WELL TE	ST DA	TA SHEE	T		****	5	SHEET# 2
COMPAN	Y _ESSO AU	STRA	LIA	LTD					_					
WELL	TARWHIN	E 1		- 1	PWT	<u> </u>	(INIT I	IL FL	OM)					
PERFOR	ATIONS 2656-	2667	.5m	(FM.	RKB	ı							•
NOTE:	ALL SAMPLE DISPLAYING								HEN REV	ERSI	CIRCL	JLAT I	ING.	AND
RATHOL	E FILID: TY	or S	EAWA	TER	GEL	 -	PF9 0	m D.2	29 • 25 ⁸	C i	11. 6	CLC	rino	AT) 18.0K PP
111111111111111111111111111111111111111	NO3	5	0	PPM	DI	ENSI	7 9.8p	pg		۱			1111	A. /
CUSHION	FLUID: TYP	EBI	ESEL				RES.	r. m_	30 • 2	25°C	PH_	_=		
5.000DL 5	CI (TITRA	T)	90	1	PP	M DEN	SITY_	7.00 oc) gc	MEASURE			FRACT&HYD 'M
NO	SAMPLING POINT AFTER XBBL	SHA	KE O	UT	API 8	TEM	PILU	36	WATER 8 TEMP	RES	CI	EON	PH	
	DISP.	OIL	H20	SLDS		•		1.	inm	•	PPMK	PPM		COMMENTS
26							Y	-	2 0.26			╫	=	COMMENT
27					-	 	Υ.	1.00	0.26	·		-	-	
		1	 	 		 		1	0.25	·	14.5	120	12	5
<u>28</u> 29		 	-	_		_	Y	1 04	4 0.26	1	14.5	1.20	1.2.	J
30			 		 		Ÿ	104	0.26	111	 	┼	-	
31							Y	 	0.25	 		-	 	
32							Y	1	0.26	 		 	-	
33	70							1	0.26	 		1-		
							Y	+	0.26	,,		 		
34 35						-	Y	1 04	9 0.30	••		-		
	<u> </u>						 	1 • 04		,,				
36	۲۰۰۰						Y	┼──	0.32					
37							Y	<u> </u>	0.32	••				
38							Y	<u> </u>	0.27	11				
30							Υ		0.32	**				
40							Y		0.30	11				
41							Y		0.30	11				
42									0.30		15.0	85	11	
	*		\dashv	$\neg \dagger$			NIL				15•0	03	<u>' • •</u>	3
<u>43</u>			}						0.87					
NOTE	: ALL SAMPL	ES C	ARK	BR	NWC	IN C	OLOUR.							
	WHERE PRE	SENŢ	AL	L FL	U I	S Y	CLLOW GF	EEN					[:	
	FLU : Y	FL	PR	ESE	ıτ									
	GAS WAS L	IBER	ATE	FR	OM	ALL	OF THE	ABOV	E SAMPL	ES	OR GAS	ANA	TY S	SIS SEE
	GAS ANALY	SIS	SHE	T			4			<u></u>				
*	NUTE: SAM	7LE	NO.	43	<u>-</u> в	пта	M HGLE	, סטוא			·············			
					\longrightarrow									
				<u> </u>										
			<u>.</u>				`		ŀ				-	i de la companya de l
	į									7				a de la companya
Ì		Ť.		T	$\neg \dagger$	 i				\rightarrow				ELECTION AND ADDRESS AND ADDRE
- 				-					- Carret	$-\dot{i}$! !			, cur, alto
}				V-425-4						<u> </u>	<u> </u>		_	S.C. mallored
		_			<u></u>	!				The state of the s				2 Av v v Village
į	Bett		£	Ì		1			4	ļ	i N		ļ	

CORE LAS	}	PRODUCTION WELL TEST DATA SHEET	SHEET#_1
COMPANY	ESSO AUSTRALIA	LTD.	
WELL	TARWHINE 1	PWT# 1 (FINAL FLOW)	

PERFORATIONS 2656-2667.5m (FM, RKB)

POINT C1 C2 C3 C4 C5 C6 C02 H2S	777.1.4.77		1	T	1	1	T	ſ	T	I	
09.57	TIME	SAMPLING POINT	CI	C2	С3	C4	C5	C 6	co2	H2S	
10.045	нн: мм	MANTEOLD	PPM	РРМ	PPM	PPM	PPM	PPM	%	PPM	
11.00	09.57		940020	57122	2589	654	106	NIL	NIL	NIL	
11.02	10.45		258509	65088	1190	106	NIL	-	-	-	
11.15	11.00		148838	29463	781	32	_	_	_	-	
11.30	11.02		235008	11571	4762	98	-		-	•	
11.45	11.15		235008	11572	4762	158	_	-	-	-	
12.00 219341 15910 5357 1452 318 Tr - - 12.17	11.30		227174	13017	5952	264	_	-	_	-	
12.17 188006 28928 7142 1478 1096 Tr - - 12.30 594190 25312 6398 1214 1590 1260 - - 12.45 783360 23142 4464 950 954 590 - - 13.00 611020 56409 5650 1372 2120 1800 - - 13.15 643202 34934 5454 1398 2200 1786 - - 13.30 658022 33792 5952 1478 2332 2160 - - 13.45 NO 6AS PRODUCED - - - - - 13.45 NO 6AS PRODUCED - - - - - 14.15 " " " " " " " " " " -<	T				4464	1267					
12.30 594190 25312 6398 1214 1590 1260 - - 12.45 783360 23142 4464 950 954 590 - - 13.00 611020 56409 5654 1372 2120 1800 - - 13.15 643202 34934 5454 1398 2200 1786 - - 13.30 658022 33792 5952 1478 2332 2160 - - 13.45 NO GAS PRODUCED - - - - - 13.45 NO GAS PRODUCED -	12.00		219341	15910	5357	1452	318	Tr	-	-	
12.45 783360 23142 4464 950 954 590 - - 13.00 611020 56409 5654 1372 2120 1800 - - 13.15 643202 34934 5454 1398 2200 1786 - - 13.30 658022 33792 5952 1478 2332 2160 - - 13.45 NO GAS PRODUCED NO GAS 1478 2332 2160 - - 14.15 NO GAS PRODUCED NO GAS 1478 2332 2160 - - 14.15 NO GAS PRODUCED NO GAS 140 - - - 14.45 673689 17357 4166 950 1272 900 0.50 - 15.15 673890 23142 3720 818 1060 774 0.71 - 15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.01 720691 31821 <td></td> <td></td> <td></td> <td></td> <td>7142</td> <td>1478</td> <td></td> <td>Tr</td> <td> -</td> <td>-</td> <td></td>					7142	1478		Tr	-	-	
13.00 611020 56409 5654 1372 2120 1800 - - 13.15 643202 34934 5454 1398 2200 1786 - - 13.30 658022 33792 5952 1478 2332 2160 - - 13.45 NO GAS PRODUCED NO GAS NO GAS PRODUCED N	12.30		594 1 90	25312	6398	1214	1590	1260	-	-	
13.15	12.45		783360	23142	4464	950	954	590	_		
13.30	13.00		6 1 1020	56409	5654	1372	2120	1 800	_	· -	
13.45 NO GAS PRODUCED NO GAS PRODUCED 38.00 NO GAS PRODUCED NO GAS PRODUCED 14.15 NO GAS PRODUCED NO GAS PRODUCED 14.30 689356 26035 3273 1116 1802 1602 - 14.45 673689 17357 4166 950 1272 900 0.50 - 15.00 785024 27482 4762 1069 1802 1170 0.60 - 15.15 673890 23142 3720 818 1060 774 0.71 - 15.30 712857 30374 5059 1003 1961 1440 1.00 - 15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.16 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4761 739 1272 632 1.9 - 17.15 NO GAS PROU	13.15		643202	34934	5454	1398	2200	1786	_	-	
\$48.00 III III III III III III III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	13.30		658022	33792	5952	1478	2332	2160	_	-	
14.15 <td< td=""><td>13.45</td><td></td><td></td><td>ND GAS</td><td>PRODUCED</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	13.45			ND GAS	PRODUCED						
14.30 689356 26035 3273 1116 1802 1602 - - 14.45 673689 17357 4166 950 1272 900 0.50 - 15.00 795024 27482 4762 1069 1802 1170 0.60 - 15.15 673890 23142 3720 818 1060 774 0.71 - 15.30 712857 30374 5059 1003 1961 1440 1.00 - 15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.00 689357 30374 5803 1003 2491 2160 1.00 - 16.15 720691 31821 6249 950 2226 1620 1.00 - 16.45 712857 27481 4464 739 1007 540 1.9 - 17.15 NO GAS PRODUCED NO GAS 1080 1.2 - 18.30 NO GAS NO GAS <	₹4.00			11 11	**						
14.45 673689 17357 4166 950 1272 900 0.50 - 15.00 795024 27482 4762 1069 1802 1170 0.60 - 15.15 673890 23142 3720 818 1060 774 0.71 - 15.30 712857 30374 5059 1003 1961 1440 1.00 - 15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.00 689357 30374 5803 1003 2491 2160 1.00 - 16.15 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4464 739 1007 540 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 """"""""""""""""""""""""""""""""""""	14.15			11 11	**						
15.00 795024 274 82 4762 1069 1802 1170 0.60 - 15.15 673890 23142 3720 818 1060 774 0.71 - 15.30 712857 30374 5059 1003 1961 1440 1.00 - 15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.00 689357 30374 5803 1003 2491 2160 1.00 - 16.15 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4464 739 1007 540 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 NO GAS PRODUCED - - - - 18.30 NO W W W W W W W W W W W W W W W W W W W	14.30		689356	26035	3273	1116	1802	1602	-	-	
15.15 673890 23142 3720 818 1060 774 0.71 - 15.30 712857 30374 5059 1003 1961 1440 1.00 - 15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.00 689357 30374 5803 1003 2491 2160 1.00 - 16.15 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4464 739 1007 540 1.9 - 16.45 712857 27481 4761 739 1272 632 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 """"""""""""""""""""""""""""""""""""	14.45		673689	17357	4166	950	1272	900	p.5q	-	
15.30 712857 30374 5059 1003 1961 1440 1.00 - 15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.00 689357 30374 5803 1003 2491 2160 1.00 - 16.15 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4464 739 1007 540 1.9 - 16.45 712857 27481 4761 739 1272 632 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 """"""""""""""""""""""""""""""""""""	15.00		705024	27482	4762	1 069	1802	1170	p.6q	-	
15.45 689357 31820 5952 1082 2438 1980 1.10 - 16.00 689357 30374 5803 1003 2491 2160 1.00 - 16.15 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4464 739 1007 540 1.9 - 16.45 712857 27481 4761 739 1272 632 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 """"""""""""""""""""""""""""""""""""	15.15		673890	23142	3720	818	1060	774	0.71	-	· · · · · ·
16.00 689357 30374 5803 1003 2491 2160 1.00 - 16.15 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4464 739 1007 540 1.9 - 16.45 712857 27481 4761 739 1272 632 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 NO GAS PRODUCED NO GAS PRODUCED NO GAS NO GAS <td>15.30</td> <td></td> <td>712857</td> <td>30374</td> <td>5059</td> <td>1003</td> <td>1961</td> <td>1440</td> <td>1.oc</td> <td>-</td> <td></td>	15.30		712857	30374	5059	1003	1961	1 440	1.oc	-	
16.15 720691 31821 6249 950 2226 1620 1.00 - 16.30 720691 27481 4464 739 1007 540 1.9 - 16.45 712857 27481 4761 739 1272 632 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 NO GAS PRODUCED NO GAS PRODUCED NO GAS NO GAS PRODUCED NO GAS NO GAS <td>15.45</td> <td></td> <td>689357</td> <td>31820</td> <td>5952</td> <td>1082</td> <td>2438</td> <td>1980</td> <td>1.10</td> <td>_</td> <td></td>	15.45		68935 7	31820	5952	1082	2438	1980	1.10	_	
16.30 720691 27481 4464 739 1007 540 1.9 - 16.45 712857 27481 4761 739 1272 632 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.30 NO GAS PRODUCED NO GAS	16.00		689357	30374	5803	1003	2491	2160	1.00	-	
16.45 712857 27481 4761 739 1272 632 1.9 - 17.00 705024 28928 5208 897 1590 1080 1.2 - 17.15 NO GAS PRODUCED IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	16.15		720691	31821	6249	950	2226	1620	1.00	_	
17.00 705024 28928 5208 897 1590 1080 1.2 - 17.15 NO GAS PRODUCED	16.30		720691	27481	4464	739	1007	540	1.9	-	
17.15 NO GAS PRODUCED 17.30 " " " " " " " " " " " " " " " " " " "	16.45		7 1 285 7	27481	4761	739	1272	632	1.9	_	
17.30 " " " " " 18.00 " " " " " " " " " " " " " " " " " "	17.00		705024	28928	5208	897	1590	1 080	1.2	_	
18.00 " " " " 18.30 19.00 " " " " " " " " " " " " " " " " " "	17.15			NO GAS	PRODUCED						
18,30 " " " " " " " " " " " " " " " " " " "	17.30			11 11	••						
_1g.nn	18.00			** **	**						
	18.30			•• ••	••						
10.70	19.00			•• ••	••						
13-20 " " "	19.30				**				T		

CORE LA	<u>.B</u>			WELL TEST	DATA SH	EET		S	SHEET#.	
COMPAN	Y ESSO AUSTE	RALIA LTD.		1 (ETN	יאו בוחוו')				
WELL	TARWHINE			# <u>1 (FIN</u>	AL FLUW	,				
PERFOR	ATIONS_2656-2	2667.5m	(FM, RK	B) -						
TIME	SAMPLING					T				
	POINT	CI	C2	C3	C 4	C5	C6	C05	H2S	
нн : мм	MARTPED	PPM	PPM	РРМ	PPM	PPM	PPM	%	PPM	
	CHOKE MANIFOLD									
20.00	1		NO GAS	PRODUCED						
20.30			11 ` 11	**]
21.00			11 11	**						.:
21.30			11 11	*1						
22.00			11 11	••]
]
						<u> </u>	ļ.			-
	<u> </u>					 	<u> </u>			
	<u> </u>					-	-	-		1
				·			-	-	<u> </u>	1
		-								-
	,	ļ		ļ		-	<u> </u>			4
	_						<u> </u>			1
	<u> </u>								<u> </u>	_
	<u> </u>					ļ	<u> </u>			-
]
										1
										1
										1
 						 		1		1
				-				-		1
								-		1
	<u> </u>			<u> </u>		-	 			1
	<u> </u>			!	<u> </u>	-			ļ	
	<u> </u>						 	-		
						 	ļ		1	}
							-			
		•				<u> </u>	ļ			<u> </u> 1
···							ļ			-
NOTE	FROM THE	1	LE EIGHT	GAS PEAK	S WERE	PRODUCED	ON THE	-		
	CHROMATOG	RAPH.						1 1		İ

											·				
RATHOL	E FLUID:			AWA1				RES TY9.8p		29 • 25°	<u>C</u>	PH 11.E	_CI (TITR	AT) 16.1
CUSHION	FLUID:	TYF	E_L	TES		-,	-	RES	. n m) 10 • :	25 [°] C	PH_	-		
T.446				AT)_						7.00				-	
TIME	SAMPLING POINT	MABNE	SHA	%	T.	API	I.	OIL	SG	WATER & TEMP	·····	CI	ком	┼	
HH: MM		15	101L	H20	SLU	=	╞	 	⊨	in-m	÷	PPM k	(IPPM	\vdash	COMME
	CHOKE MANIFOLO	╁	\vdash	╫	-	┨	╁	-	+	<u> </u>	-		╫	╀─	\ \
09.00	 	1	╁	+-	+	├	+	 	 	0.19	25.	<u> </u>	 	┼╌	
09.02	1	2	T	T	┢	1.	1	 	1	0.19	11		\dagger	1	
09.05		3							1	0.19	"		1	1	1
09.11		4			Ŀ				1203	0.19	"	21.5	45	6.8	
09.22		5				<u> </u>			1.03	0.23	••	21.0		8.7	i .
09.30		6	<u> </u>		<u> </u>		<u> </u>	 	1.03	0.24	7	16.5	50	11.	8
09.37		7	<u> </u>	<u> </u>	<u> </u>	<u> </u>			1.06	0.26	"	14.0	22	 	ł
09.43	<u> </u>	8	<u> </u>	<u> </u>			ļ	<u> </u>	1.02	0.24	"	14.5	22	11.	8
09.50		9	ļ		ļ	<u> </u>		<u> </u>	1.02	0.25	"	14.0	22	11.	6
09.57	·	10	<u> </u>	<u> </u>			<u> </u>		1.02	0.26	"	13.0	30	10.	0
11.00)	11			<u> </u>		<u> </u>	<u> </u>							NO LIC
11.02		12					<u>L</u>								NO LIC
11.15		13							1.02	0.29					
11.26		14							1.02	0.29					
11.30		15							 		25.	013.0	39	9.2	ALL 5
11.38		16							1	0.29	11				HAVE
11.46		17									,,	45.5	0.0		
							 	†		0.29		13.0	28	8.7	•
11.57 NOTE	: ALL SAN	18		AVE	Д	RTC	 	HTTF /RI		0.30	FNT	FOAM /	SCU	m	FOAM/
NOIL	 	-													
				{}			<u> </u>	AS PROD	<u> </u>				1	SWA	BBED.
-	SAMPLIN	ll:	WAS	LUN	INL	IFD	hin k	TIME A	א טא	JI A 5W	AR I	O RASI	Þ•		
12:06		19							1.02	0.30	**	13.5	33	8.9	,
•															
		_													
		\neg			-				 						

															1
CORE LA	<u>8.</u>				PRO	DUCT	ION 1	WELL TES	ST DA	TA SHEE	<u>T</u>			S	HEET# 1
COMPANY	ESSO TARWH	AUST	RAL No.	1 <u>A</u> L	TD.		_1 1	FF							
DEBEORA	TIONS 26	56 -	- 26	67.5	om (FM.	RKBI								
NOTE :	ALL SA	MPLE	s (EXCE	PT	No 1	I) T	AKEN FR	OM CH	OKE MA	NIFO UBIN	LD WHE	N RE	VER	SE · · · ·
RATHOLE	FLUID:	TYP	E SE	AWAT	ER	GEL		RE9 I	U. 20	• 25	C F	H 11.	6 CI (1	TITR/	AT) 16.0 K PP
		NO3	5	0	PPM	DE	ENSIT	Y 9.8	ppg				-		
CUSHION	FLUID:							RES.			5 L	URED)			• .
							PPI	M DENS	ITY						
TIME	SAMPLING POINT	as AM	SHAI	KE O	UT	GF	15	FLU'	'SG '	WATER & TEMP	RES	CI	NO3	PH	
нн: мм	BESP.	ר ו		H20	51.05		۰U			in.÷m	•	ррм ^К	PPM		COMMENTS
		1	-		1.0		120	Υ -73	1.0		T.				FAKEN WHILE
12:36		 	 		1	-	125		} -	0.31	 	15.5	33	60	BLEEDING OFF
12:38 12:38		3	-	╫─			90	YB	1.02		-	13.3	133	02	PRESSURE
12:39	5 .	4		 	2.	5	92	Y SC	1.02				-		SAMPLES No.
12:41		5	-	 	 	-	92	ΥS	1.01	0.30	1	<u> </u>	 		1 TO 5 HAD A 5mm OIL
12:43		6	 		 	_	90	Y		0.30	1				FOAM
12:45		7			2.5	-	95	ΥŠ	1.01	0.30	1:	14.5	28	6.	В
12:47	25	8	-		 	 	101) Y 🖁	1.01	0.28	P				·
12:40	<u> </u>	9		-		 	61	Ϋ́	1.01	0.30	F			-	SAMPLES No.
12:51	<u> </u>	10		-	2.5	-	55	Ϋ́	1.01	0.29	SAM			-	6 TO 18
12:53	•	111	 		2.5	-	46	YE	1.01	<u> </u>		<u> </u>	 	-	HAD A PATCHY DIL
		12		 	7 0	-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.01	<u> </u>		14 0	33	6.	FOAM.
12:55	<u> </u>	1			3.0	<u> </u>	46		<u> </u>	<u> </u>	봊	14.0	33	0.	
12:57	41	13					41.	Y 툺	1.01	0.27	Ã		<u> </u>		
12:59	44	14			3.0		52	γÃ	1.07	0.27	A				
13:01	47	15					63	i	1.01	0.28	25				
13:03	50	16			4.0		60	YE	1.01	0.26	-	13.0	44	6.	Β .
13:05		17					59	Y	1.01	0.26	0				
13:07	5 7	18			4.0		63	Υ∵	1.02	0.26	1				
13:09	<u></u>	19			32		66		1.17	0.42	1	15.5	16	111.	8 BOTTOM HOLE
		+					\ 			<u> </u>	1		-	-	MDD BOLLOW HOTE
	(4)			1005		T 4.	1.60	DUE TO	HITCH	CAND	}	ENIT			
NUTE	: (1) 0	HUK	, PL	ՍԵԵԵ	U A	,) : U9	טטב וט	LIDI	JAND	LUNI	LINI		ļ	-
	(2) A	LL S	AMP	LES	EXC	EPT	Nο	19 HAD	A CRE	AM/LT	βRN	OIL FO	AM O	N	
	1	HE S	SURF	ACE.	TH	15 (AVE	A BRIG	HT WI	HTE/YE	LLOU	-FLUGR	ESCE	NEE	
	(3) T	HF I) TI	FOAN	<u>ו</u>	ח או	T 5	ETTLE O	! UT II	THE D	TIS	TANKS.		-	
							-		<u> </u>	<u>}</u>	 	; 	 		
	(4) H	ALL	BUR	TON	EST	IMAT	ED	72 BBL ALCULAT	PUMPE	D, OTI	5 RE	COVERE	<u>06</u> و	, BB	_
									!	 	-				
,	(5) A	LL I	HLO	RIDE	s,	NIT	ATE	S AND p	H ME	SUREME	NTS	WERE P	ERFO	RME	, D
	` E	Y M	AGCO	BAR	ENG	INE	FR.		Control of the Contro	į					
	(A) F	IL	FOAM	. WOI	פונ	NOT	SEP	ARATE O	ŲT WI	HEN CEN	TRIF	UGED.			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		11						Ì						
3									 	! }					
į									<u> </u>						
,							l i				•		ġ	ŧ į	

CORE L	AG.			PRO	רסטמכי	TION	WELL T	EST D	ATA THE	ET				SHEET# 1
	Y ESSO AL	JSTRALI	A L	td.										
WELL	TARWHIN	NE No 1		- .	PWT	#	2							
,	ATIONS 139								. 5					
NOTE	ALL SAMF	LES IN	KEN	rku	111 11	1E L								
RATHOL	E FLUID:						RES. A	.m_ 0	29 25	C	PH	6 CI (TIT	RAT) 15.4k PP
CUSHION		NO3					TY 9.80		10.	250.	A U			
		CI (TITRA							7.0ppg		, F.R.			
TIME	SAMPLING POINT	SHA	KE C	TŲC	APIE	TEM	COLOUR	POUR	WATER	RES	CI	EON	PI	н
HH: MM	7 01111	OIL	T	SLO		C			inm		221	1	+-	-
	L FLOW	- 012		1300					J.C M	Ë	PPM	PPM	\vdash	COMMENTS
1	09:30	0	0	0	0	-	 -	SAN	PLE VE	RY F	DAMY	+	╀	-
2	09:45	9	-	 	-	-	-	SAN	PLE VE	RY F	DAMY	-	╁	-
3	10:00	85	0	15	60.6	15.	1 Pappiu	3				†	十	FPn FEHALLE
4	10:15	94	0		6 0	13	''	2				1		- 'BtoEn'
5	10:30	99	0	1	58.1	24	**	3			`			
6L05	 			-				 						
FINAL 6	FLOW		-		-0.4	45	/1t	1 =				<u> </u>	_	_ _
<u> </u>	12:30	96.5	0		50.1 59.9		org/pu	11.5				ļ	_	FLU - WHITE TO LT BLUE
8	13:00	93.5	<u></u>		58.2		<u> </u>	1				-	_	-
9	13:15		0				! DRANGE		<u> </u>			-	_	FLU - WHITE
10	13:30	97	ם		59.5		}					 	_	- WHITE
11	14:00	9873			57	15	<u></u>	0				-		4
12	14:30	1 -			51.1		11					<u> </u>		_
13	15:00	98.4					11				· · · · · · · · · · · · · · · · · · ·			_
14	15:30	99.3			50.6		11	'< 0						
15	16:00	99.2	!		52.3			40						
<u>}</u>			i			!	· · · · · · · · · · · · · · · · · · ·	۷0			· · · · · · · · · · · · · · · · · · ·]
16	16:30	99.6			52.1		11	<0		<u> </u>				
17	17:00	99.6	U !	U.4E	53.1	76	.71	₹ 0	;			. !		FLU - WHITE
18	17:30	99.5	0	0.5£	2.2	14	**	<0	ļ					
19	18:00	99.5	0	0.5	2.3	13	**	<0	 }	Ì	······································			•
20	18:30	99.5	0	0.56	2.5	15	11	<0	: í					
21	19:00	99.5	0	0.56	1.3	13	11	<0	0.30	74	2,000	154	6.	BSWATER TEROM S
22	19:30	99.5	0	0.56	1.8	14!	. **	<u>~ 0 </u>		·		'-		FLU - WHITE
23	20:00	99.5	0 ;1	0.56	1.7	14	11	40					-	
		;	***	Ì				,	7	 -)
GAS Š	AMPLES WE	RE OBT	AIŅE	D E	ITHE	R F	ROM THE	SEPA	ARATOR [®]	OR E	Y LIBE	RATI	UN.	OF THE
	SAMPLES						· · · · · · · · · · · · · · · · · · ·					'	 }	
1														₹
			 ;-		:	;	<u> </u>			<u>.</u>				
					+	 j-	,	 :-	,		· · · · · · · · · · · · · · · · · · ·		_{	; ;

							G	AS C	OMPOSI	TION
PLE •	TIME HH:MM	CI	C 2	C3	C4	C5	C6	cos	H2S	COMMEN
	,	РРМ .	РРМ	PPM	PPM	РРМ	PPM	%	PPM	
INIT	ÍAL FLOW									
1	09:30	4896	1808 、	0	0	0	0	0	0	1
2	09:45	1566	5785	8332	3379	7096	115326	۵	0	7 C7 &CB
3	10:00	1958	1446	19050	6758	50880	195800	0	0	ARE IN
4	10:15	7834	1446	26189	10138	61056	230400	0	0	DICATED IN MOST
5	10:30	3917	1446	20250	10138	40704	138240		0	SAMPLES
	ED IN					-		+		1
FINA	\			1			<u> </u>	1		1
6	12:30	5875	1446	28570	37171	84800	172800	0	0	
7	12:45	2938	723	12400	15206	35616	34560	0	0]
8	13:00	2938	tr	11309	15206	32224	66240	0	0	
9	13:15	2938	tr	8928	11827	30528	40320	0	0	1_
10	13:30 *	9792	723	14285	16896	42400	57600	0	٥	
11	14:00	979	tr	6547	8448	23744	23040	0	0	1
12	14:30	3916	723	13094	16051	39008	40320		0	1
13	15:00	3916	tr	11309	135 (33920	40320	0	()	1
14	15:30	979	tr	9523	14362	37312	34560	0	0	1
15	16:00	3916	723	18451	23654	54272	63370	0	0	1
16	16:30	4896	723	17856	21120	52576	57600	0	0	1
17	17:00	5769	1446	19046	20275	50880	51840		O	1
18	17:30	4896	1446	35712	21956	52576	57600	. 0	0	1
19	16:00	6854	1085	20237	23654	50880	51840	0	0	_ . .
20 ,	18:30	246,758	8823	41069	23654	-,	11520	1 0		SAMPLE
71	10.00			1	1	!)	· · ·		-SEPARAT
21	19:00 19:30	279891	9621 8678	50321 36902	24781	46129	11890 28800	0	0	· :
23	20:00	262426	8678	39878	24499	44090	31680	1 0	0	4
- 1	20.00	202920		35010		1 40152	, , , , , , ,	1		• •
		1		<u> </u>		<u> </u>				<u> </u>
					<u> </u>	5 ,				_!
	SAMPLES WE INDICATED.	RE TAKEN E SAMPLES		MINUTES : ERE OSTA:						<u>i</u> 5

19. COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the Drill program and is stored on the tape at $10,1,\text{or }0.2\,\text{m}$ intervals This data is then available at a later date for use in other programs (for example, KICK, SURGE, COST, OPTBIT and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

The following data lists have been made for this well

- a. Bit record & Bit initialization data
- b. Hydraulic analyses
- c. Data list A
- d. Data list B
- e. Data list C
- f. Data list D

COMPUTER PLOTS

Using the REPORT program,the following plots have been drawn for this well :

GEOPLOT - 1:5000 SCALE - 2m average

GEOPLOT 1:2000 SCALE - 2m average

DRILLING PARAMETER PLOT - 1:5000 SCALE - 2m average

COST ANALYSIS PLOT - 1:2000 SCALE - 2m average

Since all the data is stored on tape, further data lists or plots are available at any time on request.

BIT RECORD

BIT SIZE Inches

BIT COST A dollars

JET SIZE Thirty seconds of an inch

DEPTHS Metres

BIT RUN (HOLE MADE). . Metres

TOTAL HOURS. Hours (the time the bit was actually drilling)

AVERAGE ROP. Metres/hour

CUMULATIVE COST/METRE. A dollars

BIT CONDITION : Teeth

Bearings

Gauge . . . Inches

	•	IADC CODE	MAKE & TYPE	Ē	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT	BIT RUN	TOTAL HOURS	AROP	TRIP TIME	CCOST	TOTAL TURNS	CONDITION T B G
1	1 2 3 4	111 114	HTC OSC3AJ8 HTC 3AJ HTC X3A HTC X3A	:26 °H0	26.000 17.500 12.250 12.250	3000.00 5000.00 1300.00 1300.00	20 20 20 20 20 20 16 16 16 16 16 16	65.0 204.0 799.0 1293.0	204.0 799.0 1293.0 1391.0	139.0 595.0 494.0 98.0	5.80 13.87 21.11 4.14	24.0 42.9 23.4 23.7	1.7 3.9 5.7 6.1	212.63 114.16 194.86 383.31	33634 116516 162445 33204	2 2 0.000 3 3 0.000 3 5 0.000 1 3 0.000
	5 5 6 7 9	4 114 217 517	CHRISTENSEN CHRISTENSEN HTC X3A HTC JD4 HTC J22 HTC J22			15000.00	13 13 13 13 13 13 14 14 15 15 15 14 15 15 14 14 14 15	1392.0 1405.0 1418.0 1495.0 1585.0 1986.0	1404.4 1418.2 1495.0 1585.0 1986.0 2161.0	12.4 13.2 77.0 90.0 401.0 175.0	2.02 5.21 4.60 7.22 40.51 29.75	6.1 4.1 16.7 12.5 9.9 5.9	6.1 6.2 6.4	3528.92 2115.03 524.40 571.64 440.71 806.19	11091 28361 36973 49693 244481 175777	0 0 0.300 0 0 0.800 7 6 0.750 7 5 0.313 5 4 0.188 8 5 0.125
	11 12 13 14 15	527 316 527 527	HTC J33 HTC J33 HTC J7 HTC J33 HTC J33 CHRISTENSEN	! C20	12.250 12.250 12.250 12.250 12.250 12.250 8.468	6090.00 6090.00 1800.00 6090.00 6090.00	14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 13 13 13	2161.0 2324.5 2521.0 2535.0 2600.0 2663.3	2324.5 2521.0 2535.0 2600.0 2663.3 2669.0	163.5 196.5 14.0 65.0 63.3 5.7	35.81 45.29 6.20 8.77 13.94 4.08	4.3 2.3 7.4 4.5	10.2 10.2 10.4 10.7	1018.66 1031.45 4277.77 1138.12 1474.93 1818.13	204879 252275 20696 53719 - 76380 18692	4 6 0.188 6 6 0.250 3 2 0.000 5 3 0.125 3 3 0.125 0 0 0.200

BIT No.	IADC CODE MAKE & TYPE	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT		TOTAL Hours	TRIP AROP TIME	CCOST		CONDITION T & G
18 19	527 HTC J33 527 HTC J33 131 HTC OSC 1G 116 HTC J2	12.250 8.500	6090.00 900.00	14 14 15 28 28 28	2815.0 1998.0	2955.0 2460.0	140.0 462.0	36.54 14.37	4.4 11.2 3.8 11.7 32.2 9.9 52.6 11.0	1263.97 188.02	218379 104481	6 6 0.250 3 5 0.000

BIT NUMBER: 1 IADC CODE 111	нтс оѕсз	AJ&26"HO	
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER	45.0 3000.00 1.7 26.000	3542.00	-
NOZZLES	20 22.12 39.15 27.74	20 9.750 8.000 5.000 5.000	20 3.062 2.813 3.000 4.276
CASING DEPTH, ID	0.00 0.119 1.20 8.5 0.00 0.08 10.0	0.000 0.119	
CUTTINGS DIAMETER, DENSITY	3.0	1.80	
	204.0 5.80 T 2	33634 B 2	G 0.000
			~
BIT NUMBER: 2 IADC CODE 111	HTC 3AJ		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME	204.0 5000.00 3.9	3542.00	
BIT DIAMETER	17.500 20	20	20
DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID	80.00 27.74	8.000 5.000	2.813 3.000
TORILL PIPE OD, ID	190.00	5.000 19.124	4.276
RISER LENGTH, ID	65.00 0.119	21.000 0.119	
PORE PRESSURE CALC EXPONENT	1.20 8.5		
OVERBURDEN GRADIENT MODIFIER	0.00		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	0.08 10.0 2.5	2.00	
FINISHING DEPTH	799.0 13.87 T 3	116516 B 3	G 0.000

■ BIT NUMBER: 3 IADC CODE 114	HTC X3A		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	799.0 1300.00 5.7 12.250 16 117.73 84.53 784.00 65.00 0.119 1.20 8.5 0.00 0.08 10.0 2.0	3542.00 16 8.000 5.000 5.000 12.415 21.000 0.119	16 2.813 3.000 4.276
FINISHING DEPTH	1293.0 21.11 T 3	162445 B 5	G 0.000
		•	
•			
BIT NUMBER: 4 IADC CODE 114	HTC X3A		•
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER	1293.0 1300.00 6.1 12.250	3542.00	
NOZZLES DRILL COLLAR LENGTH, OD, ID	16 117.73	16 8.000	16 2.813
HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	84.53	5.000 5.000	3.000 4.276
CASING DEPTH, ID		12.415 21.000 0.119	1 1 to 7 W
NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	8.5 0.00 0.08 10.0	2.40	
FINISHING DEPTH	1391.0 4.14 T 1	33204 B 3	G 0.000

BIT NUMBER: 5	IADC CODE	4	CHRISTEN	SEN C22	-
STARTING DEPTH BIT COST, RIG COST TRIP TIME BIT DIAMETER DRILL COLLAR LENGTH HW DRILL PIPE LENGTH DRILL PIPE OD, ID CASING DEPTH, ID. RISER LENGTH, ID. PUMP VOLUMES 1 AND PORE PRESSURE CALC NORMAL PORE PRESSOR OVERBURDEN GRADIES STRESS RATIO MODIS "d" EXPONENT CORRE CUTTINGS DIAMETER	T/HOUR TH, OD, ID STH, OD, ID O 2 D EXPONENT URE NT MODIFIER. FIER		1392.0 15000.00 6.1 8.468 13 115.49 84.53 784.00 65.00 0.119 1.20 8.5 0.00 0.08 10.0 0.3	3542.00 13 8.000 5.000 5.000 12.415 21.000 0.119	13 2.813 3.000 4.276
FINISHING DEPTH CUMULATIVE HOURS, BIT CONDITION OUT	TURNS		1404.4 2.02 T 0	11091 B 0	G 0.300
•					
THE MINISTER OF	ም ል ሃን <i>የነ</i> - <i>የነ የ</i> ነን ን ነ የግ	٨	/*\11m ** /** *** *** ***	ora ora	
BIT NUMBER: 5	(4		SEN LEE	
BIT COST, RIG COSTRIP TIME	T/HOUR			3542.00	
PREVIOUS HOLE MADE PREVIOUS HOURS, TO BIT DIAMETER	JRNS		2.02	11091	
DRILL COLLAR LENG HW DRILL PIPE LENG DRILL PIPE OD, ID	 ТН, ОD, ID GTH, OD, ID.		13 117.73 84.53	13 8.000 5.000 5.000	13 2.813 3.000 4.276
CASING DEPTH, ID. RISER LENGTH, ID.		,	784.00 65.00	12.415 21.000	
PUMP VOLUMES 1 AN PORE PRESSURE CAL NORMAL PORE PRESS OVERBURDEN GRADIE STRESS RATIO MODI '"d" EXPONENT CORR CUTTINGS DIAMETER	C EXPONENT URE NT MODIFIER. FIER ECTION FACTO		0.119 1.20 8.5 0.00 0.08 10.0 0.3	0.119 2.65	
FINISHING DEPTH CUMULATIVE HOURS,	•		1418.2	al i Gu	

$\frac{1}{2} \frac{1}{2}			
■ BIT NUMBER: 6 IADC CODE 114	нтс хза		
LILI ROHALLINI O LING CODE. III	HIO ADM		
STARTING DEPTH	1418.0		
BIT COST, RIG COST/HOUR	1400.00	3542.00	
TRIP TIME	6.4		•
BIT DIAMETER	12.250		
NOZZLES	14	14	15
■ DRILL COLLAR LENGTH, OD, ID	117.73	8.000	2.713
HW DRILL PIPE LENGTH, OD, ID	84.53	5.000	3.000
DRILL PIPE OD, ID		5.000	4.276
CASING DEPTH, ID	784.00	12.415	
RISER LENGTH, ID	65.00	21.000	
PUMP VOLUMES 1 AND 2	0.119	0.119	
PORE PRESSURE CALC EXPONENT	1,20		
NORMAL PORE PRESSURE	8.5		
OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER	0.00 0.08		
"d" EXPONENT CORRECTION FACTOR	10.0		
CUTTINGS DIAMETER, DENSITY	2.0	2.45	
COLLINGS NIMITITES NEWDILLIAM	a v	4 1 "Y W	
FINISHING DEPTH	1495.0		
CUMULATIVE HOURS, TURNS	4.60	36973	
BIT CONDITION OUT	T 7	B 6	G 0.750
*			
BIT NUMBER: 7 IADC CODE 217	HTC JD4		
		-	
STARTING DEPTH	1495.0		
BIT COST, RIG COST/HOUR	1800.00	3542.00	
TRIP TIME	6.8		
BIT DIAMETER	12.250		
NOZZLES	15	15	14
_ DRILL COLLAR LENGTH, OD, ID	117.73	8,000	2.813
HW DRILL PIPE LENGTH, OD, ID	84.53	5.000	3.000
DRILL PIPE OD, ID	12 C A A A A	5.000	4.276
CASING DEPTH, ID	784.00	12.415 21.000	
PUMP VOLUMES 1 AND 2	65.00 0.119	0.119	
PORE PRESSURE CALC EXPONENT	1,20	0,117,	
NORMAL PORE PRESSURE	8.5		
OVERBURDEN GRADIENT MODIFIER	0.00		
STRESS RATIO MODIFIER	0.08		
"d" EXPONENT CORRECTION FACTOR	10.0		
CUTTINGS DIAMETER, DENSITY	2.0	2.50	
5			
	3 100 00 000 05		
FINISHING DEPTH	1585.0		
FINISHING DEPTH	1585.0 7.22 T 7	49693 B 5	G 0.313

	BIT NUMBER: 9	IADC CODE	517	HTC J22		
	STARTING DEPTH BIT COST, RIG COSTRIP TIME BIT DIAMETER DRILL COLLAR LENGHW DRILL PIPE LENDRILL PIPE OD, II CASING DEPTH, ID. RISER LENGTH, ID. PUMP VOLUMES 1 AN PORE PRESSURE CAL NORMAL PORE PRESS OVERBURDEN GRADIE STRESS RATIO MODI	ST/HOUR STH, OD, ID SG		1585.0 4200.00 8.2 12.250 15 117.73 84.53 785.00 65.00 0.119 1.20 8.5 0.00 0.08	3542.00 15 8.000 5.000 5.000 12.415 21.000 0.119	14 2.813 3.000 4.276
	"d" EXPONENT CORR CUTTINGS DIAMETER	ECTION FACTO	R	10.0	2.54	
	FINISHING DEPTH CUMULATIVE HOURS, BIT CONDITION OUT	TURNS		1986.0 40.51 T 5	244481 B 4	G 0.188
		-				
	BIT NUMBER: 10	IADC CODE	517	HTC J22		
	STARTING DEPTH BIT COST, RIG COS TRIP TIME BIT DIAMETER	T/HOUR	7 7 1 2 1 1 1 1 1 1 7 7 7 1 7	1986.0 4200.00 8.9	3542.00	
I	STARTING DEPTH BIT COST, RIG COSTRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENG HW DRILL PIPE LEN DRILL PIPE OD, II	T/HOUR TH, OD, ID		1986.0 4200.00	3542.00 14 8.000 5.000 5.000 12.415	15 2.813 3.000 4.276
	STARTING DEPTH BIT COST, RIG COSTRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENG HW DRILL PIPE LENDRILL PIPE OD, II CASING DEPTH, ID. RISER LENGTH, ID. PUMP VOLUMES 1 AN PORE PRESSURE CAL NORMAL PORE PRESS	T/HOUR TH, OD, ID IGTH, OD, ID C EXPONENT		1986.0 4200.00 8.9 12.250 14 117.73 84.53 784.00 65.00 0.119 1.20 8.5	14 8.000 5.000 5.000	2.813 3.000
	STARTING DEPTH BIT COST, RIG COSTRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGHW DRILL PIPE LENDRILL PIPE DD, II CASING DEPTH, ID. RISER LENGTH, ID. PUMP VOLUMES 1 AN	T/HOUR TH, OD, ID GTH, OD, ID C EXPONENT CURE THOUR.		1986.0 4200.00 8.9 12.250 14 117.73 84.53 784.00 65.00 0.119 1.20	14 8.000 5.000 5.000 12.415 21.000	2.813 3.000

	BIT NUMBER: 11 IADC CODE 527	HTC J33			
	STARTING DEPTH	2161.0 6090.00 9.5 12.250 14	3542.00 14	1.4	
	DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID	119.15 83.20	8.000 5.000	2.813 3.000	
	DRILL PIPE OD, ID	784.00 65.00 0.119 1.20 8.5 0.00 0.08 10.0	5.000 12.415 21.000 0.119	4.276	
	CUTTINGS DIAMETER, DENSITY	2.0	2.50		
	FINISHING DEPTH	2324.5 35.81 T 4	204879 B 6	G 0.188	
				· .	
_					
1	BIT NUMBER: 12 IADC CODE 527	HTC J33			
1	STARTING DEPTH	2324.5 6090.00 10.2	3542.00		
	STARTING DEPTH	2324.5 6090.00 10.2 12.250 14	14	14	
	STARTING DEPTH	2324.5 6090.00 10.2 12.250 14 119.15 83.20	14 8.000 5.000 5.000	14 2.813 3.000 4.276	
	STARTING DEPTH	2324.5 6090.00 10.2 12.250 14 119.15	14 8.000 5.000	2.813 3.000	
	STARTING DEPTH	2324.5 6090.00 10.2 12.250 14 119.15 83.20 784.00 65.00 0.119 1.20	14 8.000 5.000 5.000 12.415	2.813 3.000	
	STARTING DEPTH	2324.5 6090.00 10.2 12.250 14 119.15 83.20 784.00 65.00 0.119 1.20 8.5 0.00 0.08	14 8.000 5.000 5.000 12.415 21.000	2.813 3.000	
	STARTING DEPTH	2324.5 6090.00 10.2 12.250 14 119.15 83.20 784.00 65.00 0.119 1.20 8.5 0.00	14 8.000 5.000 5.000 12.415 21.000	2.813 3.000	
	STARTING DEPTH	2324.5 6090.00 10.2 12.250 14 119.15 83.20 784.00 65.00 0.119 1.20 8.5 0.00 0.08 10.0	14 8.000 5.000 5.000 12.415 21.000 0.119	2.813 3.000	

•

in the second of

BIT NUMBER: 13 IADC CODE	316	HTC J7		
STARTING DEPTH	D	2521.0 1800.00 10.2 12.250 14 119.15 83.20 784.00 65.00 0.119 1.20 8.5 0.00 0.08 10.0	3542.00 14 8.000 5.000 5.000 12.415 21.000 0.119	14 2.813 3.000 4.276
FINISHING DEPTH		2535.0 6.20 T 3	20696° B-2	G 0.000
BIT NUMBER: 14 IADC CODE	527	нтс јзз		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, I DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIE STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FAC CUTTINGS DIAMETER, DENSITY.	D	2535.0 6090.00 10.4 12.250 14 147.86 83.20 784.00 65.00 0.119 1.20 8.5 0.00 0.08 10.0	3542.00 14 8.000 5.000 5.000 12.415 21.000 0.119	14 2.813 3.000 4.276
FINISHING DEPTH		2600.0 8.77 T 5	53719 B 3	G 0.125

_	•		-	
	BIT NUMBER: 15 IADC CODE 527	нтс јзз		
	STARTING DEPTH	2600.0		
	BIT COST, RIG COST/HOUR	6090.00	3542.00	
Œ	TRIP TIME	10.7 12.250		
	NOZZLES	14	14	15
1	DRILL COLLAR LENGTH, OD, ID	176.00	8.000	2.813
	DRILL PIPE OD, ID		5.000	4.276
	CASING DEPTH, ID	784.00	12.415	
	RISER LENGTH, ID	65.00	21.000	
	PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT	0.119 1.20	0.119	
	NORMAL PORE PRESSURE	8.5		
	OVERBURDEN GRADIENT MODIFIER	0.00		
	STRESS RATIO MODIFIER	0.08		
-	"d" EXPONENT CORRECTION FACTOR	10.0		
	CUTTINGS DIAMETER, DENSITY	1.7	2.56	
•	FINISHING DEPTH	2663.3		
_	CUMULATIVE HOURS, TURNS	13.94	76380	
	BIT CONDITION OUT	т 3	в 3	G 0.125
	BIT NUMBER: 16 IADC CODE 4	CHRISTEN	SEN C20	
	STARTING DEPTH	2663.3		
	BIT COST, RIG COST/HOUR	15000.00	3542.00	
_	TRIP TIME	10.7		
	BIT DIAMETER	8,468 13	13	13
	DRILL COLLAR LENGTH, OD, ID	79.55	8.000	2.813
	DRILL PIPE OD, ID	7 7 1 12 12	5.000	4.276
	LINER DEPTH, TOP, ID	2663.30	784.00	12.250
	CASING ID	12.415		
	RISER LENGTH, ID	65.00 0.119	21.000 0.119	
	PUMP VOLUMES 1 AND 2	1.20	0.117	
4	NORMAL PORE PRESSURE	8.5	•	

0.00

0.08

10.0

2669.0

4.08 T 0

0.3

2.65

18692

 $\mathbf{B} = \mathbf{0}$

G 0.200

OVERBURDEN GRADIENT MODIFIER.....

STRESS RATIO MODIFIER......

"d" EXPONENT CORRECTION FACTOR....

CUTTINGS DIAMETER, DENSITY.....

FINISHING DEPTH.....

BIT NUMBER: 16	TADC CODE	4	CHRISTEN	SEN C20	
STARTING DEPTH BIT COST, RIG COSTA TRIP TIME BIT DIAMETER	/HOUR	, , , , , , , , , , , , , , , , , , ,		3542.00	
NOZZLES	4, OD, ID		13 79.55		13 2.813
■ DRILL PIPE OD, ID LINER DEPTH, TOP, I ■ CASING ID	[D.,		2663.30 12.415	5.000 784.00	4.276 12.250
RISER LENGTH, ID PUMP VOLUMES 1 AND			65.00 0.119	21.000 0.119	
PORE PRESSURE CALC NORMAL PORE PRESSUR	EXPONENT		1.20	V / X X /	
OVERBURDEN GRADIENT STRESS RATIO MODIFI	ER		0.08		
"d" EXPONENT CORRECT CUTTINGS DIAMETER,			10.0 0.3	2.65	
FINISHING DEPTH CUMULATIVE HOURS, 1			2669.0 4.08	18692	
BIT CONDITION OUT.		1 1 1 1	T 0	B 0	G 0.200

BIT NUMBER: 17 IADC CODE 527	нтс јзз		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID CASING DEPTH, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	2669.0 6090.00 11.2 12.250 14 176.00 784.00 65.00 0.119 1.20 8.5 0.00 0.08 10.0	3542.00 14 8.000 5.000 12.415 21.000 0.119	15 2.813 4.276
FINISHING DEPTH	2785.0 33.64 T 6	236008 B 5	G 0.187
5			x
BIT NUMBER: 18 IADC CODE 527	HTC J33		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE	2815.0 6090.00 11.7 12.250 14 176.00 0.00 784.00 65.00 0.119 1.20 8.5	3542.00 14 8.000 0.000 5.000 12.415 21.000 0.119	15 2.813 0.000 4.276
OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	0.00 0.08 10.0	2.35	
FINISHING DEPTH	0.3 2955.0 36.54 T 6	218379 B 6	G 0.250

المحادث والهامية

•

	BIT NUMBER: 19 IADC CODE	131	HTC OSC	1 G	
1	STARTING DEPTH	1 1 1 1 1	1998.0 900.00 9.9 8.500	3542.00	ns. m
1	NOZZLES		28 89,32	28 6.250	28 2.813
-	DRILL PIPE OD, ID		2930.00	5.000 8.681	4.276
	RISER LENGTH, ID		65.00 0.119	21.000 0.119	
	PORE PRESSURE CALC EXPONENT		1.20	0,117	
	NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER.		8.5 0.00		
	STRESS RATIO MODIFIER		0.08		
	"d" EXPONENT CORRECTION FACTO CUTTINGS DIAMETER, DENSITY		10.0 3.0	2.00	
	FINISHING DEPTH		2460.0	٠	
	CUMULATIVE HOURS, TURNS		14.37	104481	C 0 000
-	BIT CONDITION OUT		Т 3	B 5	G 0.000
1					**************************************
	RIT NUMBER: 20 IADC CODE	116	HTC J2		
	STARTING DEPTH		2460.0 900.00	3542.00	
	TRIP TIME		11.0	3342 O	
	BIT DIAMETER		8.500 16	16	16
	DRILL COLLAR LENGTH, OD, ID		89.32	6.250	2.813
	DRILL PIPE OD, ID		2930.00	5.000 8.681	4.276
	RISER LENGTH, ID		65.00 0.119	21.000 0.119	
	PORE PRESSURE CALC EXPONENT		1.20		
	NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER.		8.5 0.00		
	STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTO		0.08 10.0		
	CUTTINGS DIAMETER, DENSITY		2.0	2.00	
	FINISHING DEPTH		2747.0		×
	CUMULATIVE HOURS, TURNS BIT CONDITION OUT		5.46 T 2	35461 B 2	G 0.000

.

,

HYDRAULIC ANALYSIS

Data listed from data tape every 100m for each bit run.

DEPTH. Metres

FLOW RATE. Rate of mud flow into the well,

in gallons per minute

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES , , Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which

the flow becomes turbulent

SLIP VELOCITY. . . . The rate of slip of cuttings in the

annulus under laminar flow

ASCEND VELOCITY. . . . The rate of ascent of cuttings in the

annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

HHP. Hydraulic horsepower at the bit

IMPACT FORCE The impact force at the bit,

in foot pound per second squared

JET VELOCITY , , , . The velocity of mud through the bit

nozzzles, in metres per second

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 100.0 AND TVD 100.0

SPM 1 105

SPM 2 112

FLOW RATE 1085

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	ASCEND VEL	PRESSURE DROP
	HWDC/OH DC/OH	1.851	- 41 76	14 13	19 19	LAMINAR LAMINAR	0	14 13	0.0 0.0
	HWDP/OH DP/OH	2.074	58 23	12 12	18 18	LAMINAR LAMINAR	0	12 12	0.0 0.0
,	TOTAL	VOLUME	198	¥ £	2.0	TOTAL	PRESSURI	•	0.0

LAG: 7.7 MINUTES 803 STROKES #1 AND 857 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1099.8 HHP 696 IMPACT FORCE 1826 % SURFACE PRESSURE 108.4 HHP/sqin 1.31 JET VELOCITY 115

PRESSURE BREAKDOWN:

SURFACE 76.6 STRING 249.4 BIT 1099.8

ANNULUS 0.0

TOTAL 1425.8 PUMP PRESSURE 1015.0 % DIFFERENCE 40.5

		DENSIT UNIT	•	PRESSURE UNITS
NOT CIRCULATING:	MUD WEI	GHT 8.6 ECD 8.6		
	RIP MAR MUD WEI	4		

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 200.0 AND TVD 200.0

SPM 1 106 SPM 2 112 FLOW RATE 1090

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRI	ESSURE DROP
HWDC/OH	1.851	41	14	19 19	LAMINAR	0	14 13	1	0.0
DC/OH	1.950	76	13	* •	LAMINAR	U			
HWDP/OH DP/OH	2.074 2.074	58 230	13 13	18 18	LAMINAR LAMINAR	0 n	12 12		0.0
- 171 7 (311	£ 1 0 7 ··· 4	f w V		X ()	in the call exerts	v	Α 1		010
TOTA	L VOLUME	405			TOTAL	PRESSURE	DROP		0.0

LAG: 15.6 MINUTES 1655 STROKES #1 AND 1748 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1110.0 HHP 706 IMPACT FORCE 1843 % SURFACE PRESSURE 96.5 HHP/sqin 1.33 JET VELOCITY 115

PRESSURE BREAKDOWN: .

SURFACE 77.2 STRING 296.0 BIT 1110.0 ANNULUS 0.0

TOTAL 1483.2 PUMP PRESSURE 1150.0 % DIFFERENCE 29.0

		NSITY UNITS	•	PRESSURE UNITS
NOT CIRCULATING: MUI CIRCULATING:	WEIGHT ECD	8.60 8.60	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	
PULLING OUT: TRIE EFFECTIVE MUS	MARGIN WEIGHT	00.00 8.60	ESTIMATED SWAB BOTTOM HOLE PRESSURE	0.1 293.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0

SPM 1 123 SPM 2 112 FLOW RATE 1175

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.772	62	36	4.0	LAMINAR	1	36	0.2
HWDP/OH	0.896	25	31	37	LAMINAR	0	31	0.0
DP/OH	0.896	2	31	37	LAMINAR	0	31	0.0
DP/CSG	1.085	136	26	36	LAMINAR,	0	25	0.1
DP/RIS	1.325	86	21	35	LAMINAR	0	21	0.0
TOTAL	. VOLUME	310			TOTAL	PRESSURE	DROP	0.4

LAG: 11.1 MINUTES 1365 STROKES #1 AND 1243 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1304.8 HHP 894 IMPACT FORCE 2166 % SURFACE PRESSURE 52.6 HHP/sqin 3.72 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 96.7
STRING 524.9
BIT 1304.8
ANNULUS 0.4

TOTAL 1926.8 PUMP PRESSURE 2480.0 % DIFFERENCE 22.3

		SITY		PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:		8.70 8.71	HYDROSTATIC P	
	MARGIN	0.02	ESTIMATED SWA BOTTOM HOLE P	B 0.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 118 SPM 2 110 FLOW RATE 1140

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRE	DROP
DC/OH HWDP/OH	0.772 0.896	62 25	35 30	40 37	LAMINAR LAMINAR	1 0	35 30	1	0.2 0.0
DP/OH	0.896	92	30 25	37 36	LAMINAR LAMINAR	0 0	30 25		0.1
DP/CSG DP/RIS	1.085 1.325	136 86	20 20	35	LAMINAR	0	20		0.0
TOTAL	VOLUME	400			TOTAL	PRESSURE	DROP		0.5

LAG: 14.7 MINUTES 1740 STROKES #1 AND 1622 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1228.3 HHP 817 IMPACT FORCE 2039. % SURFACE PRESSURE 49.7 HHP/sqin 3.40 JET VELOCITY 121

PRESSURE BREAKDOWN:

SURFACE 91.6 STRING 549.9 BIT 1228.3 ANNULUS 0.5

TOTAL 1870.3 PUMP PRESSURE 2470.0 % DIFFERENCE 24.3

AND FIGHT THOMAS TINE AND AND AND A	DENS UN	ITY ITS	PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:			TIC PRESSURE 593.7 ING PRESSURE 594.2
PULLING OUT: TRIP EFFECTIVE MUD		.01 ESTIMATE .69 BOTTOM H	D SWAB 1.0 OLE PRESSURE 592.7

CORE LAB *** *** *** *** *** *** ***

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 130

SPM 2 110 FLOW RATE 1200

ANNULAR HYDRAULICS:

1	ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
	DC/OH	0.772	62	37	40	LAMINAR	1	36	0.2
	HWDP/OH	0.896	25	32	37	LAMINAR	0	31	0.0
	DP/OH	0.896	181	32	37	LAMINAR	0	31	0.3
}	DP/CSG	1.085	136	26	36	LAMINAR	0	26	0.1
	DP/RIS	1.325	86	22	35	LAMINAR	0	21	0.0
	TOTAL	. VOLUME	490			TOTAL	PRESSURE	DROP	0.7

LAG: 17.1 MINUTÈS 2229 STROKES #1 AND 1886 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1361.0 HHP 952 IMPACT FORCE 2259 HHP/sqin 3.96 % SURFACE PRESSURE 46.1 JET VELOCITY 127

PRESSURE BREAKDOWN:

SURFACE 100.5 STRING 661.0 BIT 1361.0 ANNULUS 0.7

TOTAL 2123.0 PUMP PRESSURE 2950.0 % DIFFERENCE 28.0

	DENSITY UNITS	F	RESSURE UNITS
CIRCULATING:	MUD WEIGHT 8.70	HYDROSTATIC PRESSURE	742.1
	ECD 8.71	CIRCULATING PRESSURE	742.8
	RIP MARGIN 0.02	ESTIMATED SWAB	1.3
	MUD WEIGHT 8.68	BOTTOM HOLE PRESSURE	740.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 1 100

SPM 2 110

FLOW RATE 1050

ANNULAR HYDRAULICS:

ANNULUS . TYPE	VOL./ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH HWDP/OH	0.772 0.896	62 25	32 28	40 37	LAMINAR LAMINAR	1 N	32 28	0.2 0.0
DP/OH DP/CSG	0.896 1.085	271 136	28 23	37 36	LAMINAR LAMINAR	0	28 23	0.4 0.1
DP/RIS	1.325	86	19	35	LAMINAR	0	19	0.0
TOTAL	VOLUME	579			TOTAL	PRESSURE	DROP	0.7

LAG: 23.2 MINUTES 2318 STROKES #1 AND 2550 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1042.0 HHP 638 IMPACT FORCE 1730 % SURFACE PRESSURE 44.7 HHP/sqin 2.65 JET VELOCITY 111

PRESSURE BREAKDOWN:

SURFACE 79.0 STRING 565.3 BIT 1042.0

ANNULUS 0.7

TOTAL 1687.0 PUMP PRESSURE 2330.0 % DIFFERENCE 27.6

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 890.5 NOT CIRCULATING: MUD WEIGHT 8.70 HYDROSTATIC PRESSURE CIRCULATING PRESSURE 8.71 891.3 CIRCULATING: ECD PULLING OUT: TRIP MARGIN 0.01 ESTIMATED SWAR 1.5 EFFECTIVE MUD WEIGHT 8.69 BOTTOM HOLE PRESSURE 889.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0

SPM 1 112

SPM 2 110 FLOW RATE 1110

ANNULAR HYDRAULICS:

_	ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRE	SSURE DROP
	DC/OH	0.772	62	34	40	LAMINAR	1	34	1	0.2
_	HWDP/OH	0.896	25	29	37	LAMINAR	0	29	*	0.0
	DP/OH	0.896	360	29	37	LAMINAR	0	29		0.5
	DP/CSG	1.085	136	24	36	LAMINAR	0	24		0.1
	DP/RIS	1.325	86	20	35	LAMINAR	0	20		0.0
	TOTAL	VOLUME	669			TOTAL	PRESSURE	DROP		0.9

25.3 MINUTES 2836 STROKES #1 AND 2785 STROKES #2 LAG:

BIT HYDRAULICS:

PRESSURE DROP 1164.5 HHP 754 IMPACT FORCE 1933 HHP/sgin 3.13 % SURFACE PRESSURE 40.9 JET VELOCITY 118

PRESSURE BREAKDOWN:

SURFACE 87.3 STRING

675.1 BIT 1164.5

ANNULUS 0.9

TOTAL 1927.8 PUMP PRESSURE 2850.0 % DIFFERENCE 32.4

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 8.70 HYDROSTATIC PRESSURE 1039.0 CIRCULATING: 8.71 CIRCULATING PRESSURE ECD 1039.9 PULLING OUT: TRIP MARGIN 0.01 ESTIMATED SWAR 1.8 EFFECTIVE MUD WEIGHT 8.69 BOTTOM HOLE PRESSURE 1037.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TVD 800.0

SPM 1 100 SPM 2 0 FLOW RATE 500

ANNULAR HYDRAULICS:

ANNULUS	V0L./		ANN	CRIT	TYPE OF		ASCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL	FL.OW	VEL	VEL	DROP
DC/OH	0.274	4	43	117	LAMINAR	0	43	0.5
DC/CSG	0.287	29	41	117	LAMINAR	0	41	3.2
HWDP/CSG	0.411	35	29	116	LAMINAR	0	29	1,3
DP/CSG	0.411	219	29	116	LAMINAR	0	29	8.2
DP/RIS	1.325	86	9	114	LAMINAR	0	9	0.3
TOTAL	. VOLUME	374			TOTAL	PRESSURE	DROP	13.6

LAG: 31.4 MINUTES 3140 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 596.7 HHP 174 IMPACT FORCE 634 % SURFACE PRESSURE 74.6 HHP/sqin 1.48 JET VELOCITY 83

PRESSURE BREAKDOWN:

SURFACE 21.4 STRING 238.7 BIT 596.7 ANNULUS 13.6

TOTAL 870.4 PUMP PRESSURE 800.0 % DIFFERENCE 8.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.00 HYDROSTATIC PRESSURE 1228.3 CIRCULATING: ECD 9.10 CIRCULATING PRESSURE 1241.9 PULLING OUT: TRIP MARGIN 0.20 ESTIMATED SWAB 27.2 EFFECTIVE MUD WEIGHT 8.80 BOTTOM HOLE PRESSURE 1201.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 86 SPM 2 90 FLOW RATE 880

ANNULAR HYDRAULICS:

1	ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A	SCEND VEL	PRESSURE DROP
	DC/OH DC/CSG	0.274 0.287	32 0	76 73	161 162	LAMINAR LAMINAR	0 0	76 73	7.8 0.1
	HWDP/CSG DP/CSG	0.411 0.411	35 260	51 51	164 164	LAMINAR LAMINAR	0 0	51 51	2.8 21.0
•	DP/RIS	1.325	86	16	168	LAMINAR	0	16	0.7
	TOTAL	VOLUME	414			TOTAL.	PRESSURE	DROP	32.5

LAG: 19.7 MINUTES 1698 STROKES #1 AND 1777 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1827.9 HHP 938 IMPACT FORCE 1942 % SURFACE PRESSURE 67.0 HHP/sqin 7.96 JET VELOCITY 146

PRESSURE BREAKDOWN:

SURFACE 58.5 STRING 688.3 BIT 1827.9 ANNULUS 32.5

TOTAL 2607.2 PUMP PRESSURE 2730.0 % DIFFERENCE 4.5

	DENSITY UNITS	P	RESSURE UNITS
CIRCULATING:	WEIGHT 8.90	HYDROSTATIC PRESSURE	1366.5
	ECD 9.11	CIRCULATING PRESSURE	1399.0
	MARGIN 0.42	ESTIMATED SWAB	64.9
	WEIGHT 8.48	BOTTOM HOLE PRESSURE	1301.6

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1000.0 AND TVD 1000.0

SPM 1 96 SPM 2 80 FLOW RATE 880

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF		SCEND	PRES	SSURE
TYPE	UNIT	VOL	VEL	VEL	FLOW	VEL.	VEL		DROP
DC/OH	0.274	32	76	161	LAMINAR	0	76	ţ	7.9
HWDP/OH	0.398	34	53	164	LAMINAR	0	52		2.9
DP/OH	0.398	5	53	164	LAMINAR	0	52		0.5
DP/CSG	0.411	296	51	164	LAMINAR	0	51	í.	23.9
DP/RIS	1.325	86	16	168	LAMINAR	0	16		0.7
TOTAL	. VOLUME	453			TOTAL.	PRESSURE	DROP		35.9

LAG: 21.6 MINUTES 2078 STROKES #1 AND 1732 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1827.9 HHP 938 IMPACT FORCE 1942 % SURFACE PRESSURE 64.4 HHP/sqin 7.96 JET VELOCITY 146

PRESSURE BREAKDOWN:

SURFACE 58.5 STRING 722.0 BIT 1827.9 ANNULUS 35.9

TOTAL 2644.4 PUMP PRESSURE 2840.0 % DIFFERENCE 6.9

1	DENSITY UNITS	PRESSU UNI	
NOT CIRCULATING: MUD CIRCULATING: PULLING OUT: TRIP	WEIGHT 8.90 ECD 9.11 MARGIN 0.42	HYDROSTATIC PRESSURE 1518 CIRCULATING PRESSURE 1554 ESTIMATED SWAB 71	
EFFECTIVE MUD		BOTTOM HOLE PRESSURE 1446	

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 96 SPM 2 80 FLOW RATE 880

ANNULAR HYDRAULICS:

l	ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 4 VEL	ASCEND VEL	PRESSURE DROF
l	DC/OH HWDP/OH	0.274 0.398	32 34	76 53	63 56	TURBULENT LAMINAR	4	52	2.4 0.5
	DP/OH	0.378	45	53	56	LAMINAR	1	52	0.7
	DP/CSG	0.411 1.325	296	51	56 47	LAMINAR	1	50	4.1
l	DP/RIS	1.320	86	16	4/	L.AMINAR	0	16	0.1
	TOTAL	VOLUME	493			TOTAL.	PRESSURE	EDROP	7.8

LAG: 23.5 MINUTES 2261 STROKES #1 AND 1884 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1827.9 HHP 938 IMPACT FORCE 1942 % SURFACE PRESSURE 62.6 HHP/sqin 7.96 JET-VELOCITY 146

PRESSURE BREAKDOWN:

SURFACE 62.0 STRING 800.5 BIT 1827.9 ANNULUS 7.8

TOTAL 2698.3 PUMP PRESSURE 2920.0 % DIFFERENCE 7.6

BOTTOM HOLE PRESSURES:

Ī	DENSITY UNITS	PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 8.90 ECD 8.94	HYDROSTATIC PRESSURE 1670.2 CIRCULATING PRESSURE 1678.0
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN 0.08 WEIGHT 8.82	ESTIMATED SWAB 15.7 BOTTOM HOLE PRESSURE 1654.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1200.0 AND TVD 1200.0

SPM 1 90 SPM 2 84 FLOW RATE 870

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 6 VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.274	32	76	63	TURBULENT			2.4
_ HWDP/OH	0.398	34	52	56	LAMINAR	1	51	0.5
DP/OH	0.398	85	52	56	LAMINAR	- 1	51	1.3
DP/CSG	0.411	296	50	56	LAMINAR	1	50	4.1
DP/RIS	1.325	86	16	47	LAMINAR	0	16	0.1
TOTAL	VOLUME	533			TOTAL.	PRESSURE	EDROP	8.4

LAG: 25.7 MINUTES 2317 STROKES #1 AND 2162 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1786.6 HHP 906 IMPACT FORCE 1898 % SURFACE PRESSURE 63.4 HHP/sqin 7.69 . JET VELOCITY 144

PRESSURE BREAKDOWN:

SURFACE 60.7 STRING 819.2 BIT 1786.6

ANNULUS 8.4

TOTAL 2674.9 PUMP PRESSURE 2820.0 % DIFFERENCE 5.1

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 8.90 HYDROSTATIC PRESSURE 1822.0 CIRCULATING: ECD 8.94 CIRCULATING PRESSURE 1830.4 PULLING OUT: TRIP MARGIN 0.08 ESTIMATED SWAB 16.7 EFFECTIVE MUD WEIGHT 8.82 BOTTOM HOLE PRESSURE 1805.3

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 100 SPM 2 75 FLOW RATE 875

ANNULAR HYDRAULICS:

1	ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 4 VEL	VEL	PRESSURE DROP
	DC/OH	0.274	32	76	88	LAMINAR	1	75	3.8
	HONGRUH	0.398	34	52	77	LAMINAR	. 0	52	1.0
ŀ	DP/OH	0.398	125	52	77	LAMINAR	0	52	3.7
\	DP/CSG	0.411	296	51	76	LAMINAR	0	50	8.1
	DP/RIS	1.325	86	16	63	LAMINAR	0	16	0.1
	TOTAL	. VOLUME	573			TOTAL	PRESSURE	EDROP	16.6

LAG: 27.5 MINUTES 2751 STROKES #1 AND 2063 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2050.9 HHP 1047 IMPACT FORCE 2179 % SURFACE PRESSURE 100.5 HHP/sqin 8.88 JET VELOCITY 145

PRESSURE BREAKDOWN:

SURFACE 79.9 STRING 1123.2

BIT 2050.9 ANNULUS 16.6

TOTAL 3270.5 PUMP PRESSURE 2040.0 % DIFFERENCE 60.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE MUD WEIGHT 10.10 2240.0 CIRCULATING PRESSURE CIRCULATING: ECD 10.18 2256.7 33.3 PULLING OUT: TRIP MARGIN 0,15 ESTIMATED SWAR EFFECTIVE MUD WEIGHT 9.95 BOTTOM HOLE PRESSURE 2206.7

HYDRAULICS ANALYSIS PRÓGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1450.0 AND TVD 1450.0

SPM 1 69 SPM 2 79 FLOW RATE 740

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	V.E.L.	VEL	FL.OW	VEL	VEL	DROP
DCZOH	0.274	32	64	102	LAMINAR	0	64	4.3
HWDP/OH	0.398	34	44	92	LAMINAR	0	44	1.2
DP/OH	0.398	185	44.	92	LAMINAR	0	44	6.6
DP/CSG	0.411	296	43	92	LAMINAR	0	43	9.8
DP/RIS	1.325	86	13	79	LAMINAR	0	13	0.2
TOTAL	. VOLUME	633			TOTAL	PRESSURE	DROP	22.1

LAG: 35.9 MINUTES 2479 STROKES #1 AND 2838 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2272.7 HHP 981 IMPACT FORCE 1940 % SURFACE PRESSURE 80.0 HHP/sqin 8.32 JET VELOCITY 152

PRESSURE BREAKDOWN:

SURFACE 59.1 STRING 938.5 BIT 2272.7 ANNULUS 22.1

TOTAL 3292.4 PUMP PRESSURE 2840.0 % DIFFERENCE 15.9

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.10 HYDROSTATIC PRESSURE 2498.5 CIRCULATING PRESSURE 2520.5 CIRCULATING: ECD 10.19 0.18 TRIP MARGIN ESTIMATED SWAB 44.1 PULLING OUT: BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT 9.92 2454.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1500.0

SPM 1 75 SPM 2 79 FLOW RATE 770

ARNULAR HYDRAULICS:

ANNUL US	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL	FIOW	VEL.	VEL	DROP
DC/ GH	0.274	32	67	101	LAMINAR	1	66	4,4
HWDP/OH	0.398	34	46	90	LAMINAR	0	46	1.2
DP/JH	0.398	205	46	90	LAMINAR	0	46	7.3
DP/CSG	0.411	296	45	90	LAMINAR	0	44	9.7
DP/RIS	1.325	86	14	76	LAMINAR	0	14	0.2
TOTAL	. VOLUME	653			TOTAL	PRESSURE	DROP	22.7

LAG: 35.6 MINUTES 2671 STROKES #1 AND 2813 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2244.7 HHP 1008 IMPACT FORCE 2006 % SURFACE PRESSURE 78.2 HHP/sqin 8.55 JET VELOCITY 152

PRESSURE BREAKDOWN:

SURFACE 64.8 STRING 986.0 BIT 2244.7 ANNULUS 22.7

TOTAL 3318.2 PUMP PRESSURE 2870.0 % DIFFERENCE 15.6

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.10 HYDROSTATIC PRESSURE 2584.6 CIRCULATING: ECD 10.19 CIRCULATING PRESSURE 2607.3 TRIP MARGIN 0.18 ESTIMATED SWAR 45.4 EFFECTIVE MUD WEIGHT 9.92 BOTTOM HOLE PRESSURE 2539.2

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1600.0

SPM 1 80 SPM 2 76 FLOW RATE 780

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FL.OW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	32	68	101	LAMINAR	1	67	4,4
HWDP/OH	0.398	34	47	90	L.AM I NAR	0	46	1.2
DP/OH	0.398	244	47	90	LAMINAR	0	46	8.7
DP/CSG	0.411	296	45	90	L.AMI NAR	0	45	9.8
DP/RIS	1.325	86	14	76	LAMINAR	0	14	0.2
TOTAL	_ VOLUME	692			TOTAL	PRESSURE	DROP	24.3

LAG: 37.3 MINUTES 2984 STROKES #1 AND 2835 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2303.4 HHP 1048 IMPACT FORCE 2059 % SURFACE PRESSURE 78.3 HHP/sqin 8.89 JET VELOCITY 153

PRESSURE BREAKDOWN:

SURFACE 66.3 STRING 1047.4 BIT 2303.4 ANNULUS 24.3

TOTAL 3441.4 PUMP PRESSURE 2940.0 % DIFFERENCE 17.1

BOTTOM HOLE PRESSURES:

	UNITS		UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 10.10 ECD 10.19	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	2756.9 2781.2
PULLING OUT: TRIP	MARGIN 0.18	ESTIMATED SWAB	48.5
EFFECTIVE MUD	WEIGHT 9.92	BOTTOM HOLE PRESSURE	2708.4

·DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1700.0

SPM 1 76 SPM 2 72 FLOW RATE 740

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF		SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FL.OW	VEL	VEL	DROP
DC/OH	0.274	32	64	102	LAMINAR	1	64	4.3
HWDP/OH	0.398	34	44	91	LAMINAR	0	44	1.2
HOVAC	0.398	284	44	91	LAMINAR	0	44	9.9
DP/CSG	0.411	296	43	90	LAMINAR	0	43	9.5
DP/RIS	1.325	86	13	77	LAMINAR	0	13	0.2
TOTAL	VOLUME	732			TOTAL	PRESSURE	DROP	25.0

LAG: 41.6 MINUTES 3160 STROKES #1 AND 2994 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2052.7 HHP 886 IMPACT FORCE 1834 % SURFACE PRESSURE 74.1 HHP/sqin 7.52 JET VELOCITY 146

PRESSURE BREAKDOWN:

SURFACE 59.9 STRING 979.7

BIT 2052.7

ANNULUS 25.0

TOTAL 3117.2 PUMP PRESSURE 2770.0 % DIFFERENCE 12.5

EFFECTIVE MUD WEIGHT

BOTTOM HOLE PRESSURES:

UNITS UNITS 10.00 2900.3 NOT CIRCULATING: MUD WEIGHT HYDROSTATIC PRESSURE 10.09 CIRCULATING PRESSURE 2925.3 CIRCULATING: ECD 0.17 TRIP MARGIN ESTIMATED SWAB 50.1 PULLING OUT:

9.83

DENSITY

PRESSURE

2850.2

BOTTOM HOLE PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1800.0 AND TVD 1800.0

SPM 1 75 SPM 2 75 FLOW RATE 750

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL.	FL.OW	VEL	VEL	DROP
DC/OH	0.274	32	65	105	LAMINAR	0	65	4.7
HWDP/OH	0.398	34	45	90	LAMINAR	0	45	1.2
DP/OH	0.398	324	45	90	LAMINAR	0	- 45	11.5
DP/CSG	0.411	296	43	90	LAMINAR	0	43	9.6
DP/RIS	1.325	86	13	72	LAMINAR	0	13	0.1
LATOT	. VOLUME	772			TOTAL	PRESSURE	DROP	27.1

LAG: 43.3 MINUTES 3244 STROKES #1 AND 3244 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2108.5 HHP 922 IMPACT FORCE 1884 % SURFACE PRESSURE 74.8 HHP/sqin 7.83 JET VELOCITY 148

PRESSURE BREAKDOWN:

SURFACE 65.6 STRING 1111.3 BIT 2108.5 ANNULUS 27.1

TOTAL 3312.5 PUMP PRESSURE 2820.0 % DIFFERENCE 17.5

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.00 HYDROSTATIC PRESSURE 3070.9 10.09 3097.9 CIRCULATING: ECD CIRCULATING PRESSURE 54.2 PULLING OUT: TRIP MARGIN 0.18 ESTIMATED SWAB EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 9.82 3016.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1900.0

SPM 1 72 SPM 2 72 FLOW RATE 720

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
1115	CW T 1	VUL	Α I I	V I I	1 L OW	V I	V I I	DICO
DC/OH	0.274	32	63	105	LAMINAR	0	62	4.6
HWDP/OH	0.398	34	43	89	LAMINAR	0	43	1.2
DP/OH	0.398	364	43	89	LAMINAR	0	43	12.4
DP/CSG	0.411	296	42	89	L.AMINAR	0	41	9.3
DP/RIS	1.325	86	13	70	LAMINAR	0	13	0.1
TOTAL	VOLUME	812			TOTAL	PRESSURE	DROP	27.6

LAG: 47.4 MINUTES 3411 STROKES #1 AND 3411 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1943.2 HHP 816 IMPACT FORCE 1737 % SURFACE PRESSURE 66.5 HHP/sqin 6.92 JET VELOCITY 142

PRESSURE BREAKDOWN:

SURFACE 61.8 STRING 1082.5

BIT 1943.2 ANNULUS 27.6

ANNULUS 27.6 TOTAL 3115.1 PUMP PRESSURE 2920.0 % DIFFERENCE 6.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE 3241.5 MUD WEIGHT 10.00 CIRCULATING: CIRCULATING PRESSURE 3269.1 ECD 10.09 TRIP MARGIN 0.17 55.2 ESTIMATED SWAB PULLING OUT: 9,83 BOTTOM HOLE PRESSURE 3186.3 EFFECTIVE MUD WEIGHT

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 2000.0

64 SPM 2 FLOW RATE 635 63 SPM 1

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL.	FL.OW	VEL.	VEL	DROP
DC/OH	0.274	32	55	104	LAMINAR	0	55	4.3
HWDP/OH	0.398	34	38	89	LAMINAR	0	38	1.1
DP/OH	0.398	404	38	89	LAMINAR	0	38	12.9
DP/CSG	0.411	296	37	88	LAMINAR	0	37	8.6
DP/RIS	1.325	86	11	70	LAMINAR	0	11	0.1
TOTAL	. VOLUME	852			TOTAL	PRESSURE	DROP	27.0

LAG: 56.4 MINUTES 3551 STROKES #1 AND 3607 STROKES #2

BIT HYDRAULICS:

IMPACT FORCE PRESSURE DROP 1673.5 HHP 620 1428 JET VELOCITY % SURFACE PRESSURE 59.8 HHP/sqin 5.26

PRESSURE BREAKDOWN:

SURFACE 49.7 STRING 899.0 1673.5 BIT 27.0 ANNULUS

PUMP PRESSURE 2800.0 % DIFFERENCE 5.4 2649,1 TOTAL

BOTTOM HOLE PRESSURES:

DENSITY UNITS UNITS MUD WEIGHT HYDROSTATIC PRESSURE NOT CIRCULATING: 10.10 3446.2 10.18 3473.1 CIRCULATING: ECD CIRCULATING PRESSURE TRIP MARGIN 0.16 ESTIMATED SWAB 53.9 PULLING OUT: EFFECTIVE MUD WEIGHT 9.94 BOTTOM HOLE PRESSURE 3392.3

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2100.0 AND TVD 2100.0

SPM 1 65 SPM 2 65 FLOW RATE 650

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FIOW	VEL	VEL	DROP
DCZOH	0.274	32	56	104	LAMINAR	0	56	4.3
HWDP/OH	0.398	34	39	89	LAMINAR	0	39	1.1
DP/OH	0.398	444	39	89	L.AMINAR	0	39	14.3
DP/CSG	0.411	296	38	88	LAMINAR	0	37	8.8
DP/RIS	1,325	86	12	70	LAMINAR	0	12	0.1
TOTAL	L VOLUME	892			TOTAL	PRESSURE	DROP	28.6

LAG: 57.6 MINUTES 3746 STROKES #1 AND 3746 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1753.5 HHP 665 IMPACT FORCE 1497 % SURFACE PRESSURE 58.8 HHP/sqin 5.64 JET VELOCITY 134

PRESSURE BREAKDOWN:

SURFACE 51.8
STRING 967.4
BIT 1753.5
ANNULUS 28.6

TOTAL 2801.3 PUMP PRESSURE 2980.0 % DIFFERENCE 6.0

BOTTOM HOLE PRESSURES:

UNITS UNITS HYDROSTATIC PRESSURE 3618.5 NOT CIRCULATING: MUD WEIGHT 10.10 CIRCULATING PRESSURE 3647.1 CIRCULATING: ECD 10.18 TRIP MARGIN 57.2 **PULLING OUT:** 0.16 ESTIMATED SWAB EFFECTIVE MUD WEIGHT 9.94 BOTTOM HOLE PRESSURE 3561.3

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2200.0 AND TVD 2200.0

SPM 1 64 SPM 2 66 FLOW RATE 650

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF		SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL	FL.OW	VEL	VEL.	DROP
DC/GH	0.274	33	56	117	LAMINAR	0	56	5.2
HWDP/OH	0.398	33	39	105	LAMINAR	0	39	1.4
DP/OH	0.398	484	39	105	LAMINAR	0	39	20.3
DP/CSG	0.411	296	38	105	LAMINAR	0	37	11.5
DP/RIS	1.325	88	12	90	LAMINAR	0	12	0.2
TOTAL	VOLUME	931			TOTAL	PRESSURE	DROP	38.6

LAG: 60.2 MINUTES 3853 STROKES #1 AND 3973 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1930.7 HHP 732 IMPACT FORCE 1571 % SURFACE PRESSURE 69.0 HHP/sqin 6.21 JET VELOCITY 141

PRESSURE BREAKDOWN:

SURFACE 49.5 STRING 954.7 BIT 1930.7 ANNULUS 38.6

TOTAL 2973.5 PUMP PRESSURE 2800.0 % DIFFERENCE 6.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

10.10 NOT CIRCULATING: 3790.8 MUD WEIGHT HYDROSTATIC PRESSURE CIRCULATING PRESSURE ECD 10.20 3829.4 CIRCULATING: 0.21 TRIP MARGIN 77.2 PULLING OUT: ESTIMATED SWAR EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3713.6 9.89

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2300.0

SPM 1 62 SPM 2 66 FLOW RATE 640

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL	FLOW	VEL	VEL	DROP
DC/OH	0.274	33	56	117	LAMINAR	0	55	5.2
HWDP/OH	0.398	33	38	105	LAMINAR	0	38	1.4
DP/OH	0.398	523	38	105	LAMINAR	0	38	21.8
DP/CSG	0.411	296	37	105	LAMINAR	0	37	11.4
DP/RIS	1.325	86	11	90	LAMINAR	0	11	0.2
TOTAL	. VOLUME	971			TOTAL	PRESSURE	DROP	40.0

LAG: 63.8 MINUTES 3953 STROKES #1 AND 4208 STROKES #2

BIT HYDRAÚLICS:

PRESSURE DROP 1871.8 HHP 699 IMPACT FORCE 1523 % SURFACE PRESSURE 66.6 HHP/sqin 5.93 JET VELOCITY 138

PRESSURE BREAKDOWN:

SURFACE 48.2 STRING 956.2 BIT 1871.8 ANNULUS 40.0

TOTAL 2916.1 PUMP PRESSURE 2810.0 % DIFFERENCE 3.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 3963.1 NOT CIRCULATING: HYDROSTATIC PRESSURE MUD WEIGHT 10,10 CIRCULATING PRESSURE 4003.1 CIRCULATING: ECD 10.20 79.9 0.20 TRIP MARGIN PULLING OUT: ESTIMATED SWAB EFFECTIVE MUD WEIGHT 9.90 BOTTOM HOLE PRESSURE 3883.2

CURE LAB

HIDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2400.0

SPM 1 0 SPM 2 103 FLOW RATE 515

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL	FL.OW	VEL	VEL.	DROP
DC/OH	0.274	33	45	128	LAMINAR	0	44	5.4
HWDP/OH	0.398	33	31	115	LAMINAR	0	31	1.4
DP/OH	0.398	563	31	115	LAMINAR	0	31	24.5
DP/CSG	0.411	296	30	114	LAMINAR	0	30	11.9
DP/RIS	1.325	86	9	98	LAMINAR	0	9	0.2
TOTAL	VOLUME	1011			TOTAL	PRESSURE	DROP	43,4

LAG: 82.5 MINUTES 0 STROKES #1 AND 8495 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1212.0 HHP 364 IMPACT FORCE 986 % SURFACE PRESSURE 65.5 HHP/sqin 3.09 JET VELOCITY 111

PRESSURE BREAKDOWN:

SURFACE 33.6 STRING 686.2 BIT 1212.0 ANNULUS 43.4

TOTAL 1975.3 PUMP PRESSURE 1850.0 % DIFFERENCE 6.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS MUD WEIGHT NOT CIRCULATING: 10.10 HYDROSTATIC PRESSURE 4135.5 CIRCULATING: 10.21 CIRCULATING PRESSURE ECD 4178.9 TRIP MARGIN 0.21 ESTIMATED SWAB 86.8 PULLING OUT: BOTTOM HOLE PRESSURE 4048.7 EFFECTIVE MUD WEIGHT 9.89

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2500.0

SPM 1 66 SPM 2 61 FLOW RATE 635

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FL.OW	VEL	VEL.	DROP
DC\OH	0.274	33	55	114	LAMINAR	0	55	4.9
HONAGMH	0.398	33	38	100	LAMINAR	0	38	1.3
DP/OH	0.398	603	38	100	LAMINAR	0	38	22.9
DP/CSG	0.411	296	37	100	LAMINAR	0	37	10.3
DP/RIS	1.325	86	11	83	LAMINAR	0	11	0.2
TOTAL	. VOLUME	1051			TOTAL.	PRESSURE	DROP	39.5

LAG: 69.5 MINUTES 4589 STROKES #1 AND 4241 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1824.4 HHP 676 IMPACT FORCE 1484 % SURFACE PRESSURE 59.8 HHP/sqin 5.73 JET VELOCITY 137

PRESSURE BREAKDOWN:

SURFACE 47.9 STRING 1005.6 BIT 1824.4

ANNULUS 39.5 TOTAL 2917.4 PUMP PRESSURE 3050.0 % DIFFERENCE 4.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.00 HYDROSTATIC PRESSURE 4265.1 CIRCULATING: ECD 10.09 CIRCULATING PRESSURE 4304.7 PULLING OUT: TRIP MARGIN 0.19 ESTIMATED SWAR 79.0 EFFECTIVE MUD WEIGHT 9.81 BOTTOM HOLE PRESSURE 4186.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2530.0 AND TVD 2530.0

SPM 1 60 SPM 2 63 FLOW RATE 615

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL	FL.OW	VEL	VEL	DROP
DCZúH	0.274	33	53	97	LAMINAR	0 .	53	3.7
HWDP/OH	0.398	33	37	86	LAMINAR	0	37	1.0
DP/GH	0.398	615	37	86	L.AMINAR	0	37	17.9
DP/CSG	0.411	296	36	85	L.AMINAR	0	35	7.9
DP/RIS	1.325	86	11	71	LAMINAR	0	1.1	0.1
TOTAL	_ VOLUME	1063			TOTAL	PRESSURE	DROP	30.7

LAG: 72.6 MINUTES 4356 STROKES #1 AND 4574 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1721.5 HHP 617 IMPACT FORCE 1400 % SURFACE PRESSURE 58.4 HHP/sqin 5.24 JET VELOCITY 133

PRESSURE BREAKDOWN:

SURFACE 43.1 STRING 912.5 BIT 1721.5 ANNULUS 30.7

TOTAL 2707.9 PUMP PRESSURE 2950.0 % DIFFERENCE 8.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS HYDROSTATIC PRESSURE CIRCULATING PRESSURE NOT CIRCULATING: MUD WEIGHT 10.06 4342.2 CIRCULATING: ECD 10.13 4372.8 PULLING OUT: TRIP MARGIN 0.14 ESTIMATED SWAB 61.4 EFFECTIVE MUD WEIGHT 9.92 BOTTOM HOLE PRESSURE 4280.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2600.0

SPM 1 64 SPM 2 64 FLOW RATE 640

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.274	41	56	91	LAMINAR	0	55	٨ , ٨
HWDP/OH	0.398	33	38	79	LAMINAR	0	38	0.9
HOV9Œ	0.398	631	38	79	LAMINAR	0	38	16.7
DP/CSG	0.411	296	37	78	LAMINAR	0	37	7.2
DP/RIS	1.325	86	11	64	LAMINAR	0	11	0.1
TOTAL	VOLUME	1087			TOTAL	PRESSURE	E DROP	29.3

LAG: 71.4 MINUTES 4567 STROKES #1 AND 4567 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1871.8 HHP 699 IMPACT FORCE 1523 % SURFACE PRESSURE 77.3 HHP/sqin 5.93 JET VELOCITY 138

PRESSURE BREAKDOWN:

SURFACE 47.4 STRING 1072.2 BIT 1871.8

ANNULUS 29.3 TOTAL 3020.6 PUMP PRESSURE 2420.0 % DIFFERENCE 24.8

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: $10.10 \\ 10.17$ HYDROSTATIC PRESSURE CIRCULATING PRESSURE 4480.0 4509.3 MUD WEIGHT ECD CIRCULATING: 0.13 ESTIMATED SWAB 58.6 TRIP MARGIN PULLING OUT: EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 4421.4 9.97

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2650.0 AND TVD 2650.0

SPM 1 64 SPM 2 63 FLOW RATE 635

ANNULAR HYDRAULICS:

ANNULUS	VOL/	•	АИИ	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FL.OW	VEL	VEL	DROP
DC/OH	0.274	48	55	101	LAMINAR	0	55	6.0
DP/OH	0.398	673	38	87	L.AMINAR	0	38	20.4
DP/CSG	0.411	296	37	86	LAMINAR	0	37	8.2
DP/RIS	1.325	86	11	69	LAMINAR	0	11	0.1
TOTAL	_ VOLUME	1103			TOTAL	PRESSUR	RE DROP	34.7

LAG: 73.0 MINUTES 4673 STROKES #1 AND 4600 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1656.9 HHP 614 IMPACT FORCE 1414 Z SURFACE PRESSURE 59.6 HHP/sqin 5.21 JET VELOCITY 131

PRESSURE BREAKDOWN:

SURFACE 47.9 STRING 1045.5 BIT 1656.9 ANNULUS 34.7

TOTAL 2785.1 PUMP PRESSURE 2780.0 % DIFFERENCE 0.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS MUD WEIGHT 10.00 4521.0 HYDROSTATIC PRESSURE NOT CIRCULATING: CIRCULATING: 10.08 CIRCULATING PRESSURE 4555.7 ECD 0.15 ESTIMATED SWAB TRIP MARGIN 69.5 PULLING OUT: EFFECTIVE MUD WEIGHT 9.85 BOTTOM HOLE PRESSURE 4451.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2700.0 AND TVD 2700.0

SPM 1 64 SPM 2 64 FLOW RATE 640

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/GH DP/OH	0.274 0.398	48 693	56 38	120 106	LAMINAR LAMINAR	0 0	56 38	8.0 29.1
DP/CSG DP/RIS	0.411 1.325	296 86	37	105 87	LAMINAR LAMINAR	0 0	37 11	11.4
	_ VOLUME	1123		 .	TOTAL	PRESSURE	DROP	48.7

LAG: 73.8 MINUTES 4720 STROKES #1 AND 4720 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1699.9 HHP 634 IMPACT FORCE 1451 % SURFACE PRESSURE 57.6 HHP/sqin 5.38 JET VELOCITY 132

PRESSURE BREAKDOWN:

SURFACE 50.4 STRING 1114.4 BIT 1699.9

ANNULUS 48.7

TOTAL 2913.4 PUMP PRESSURE 2950.0 % DIFFERENCE 1.2

BOTTOM HOLE PRESSURES:

	D	ENSITY	•	PRESSURE
		UNITS		UNITS
			,	
NOT CIRCULATING: MUD	WEIGHT	10.10	HYDROSTATIC PRESSUR	E 4652.3
CIRCULATING:	ECD	10.21	CIRCULATING PRESSUR	E 4701.0
PULLING OUT: TRIP	MARGIN	0.21	ESTIMATED SWAB	97.4
EFFECTIVE MUD	WEIGHT	9.89	BOTTOM HOLE PRESSUR	E 4555.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2800.0 AND TVD 2800.0

SPM 1 62 SPM 2 66 FLOW RATE 640

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ИИА	CRIT	TYPE OF	SLIP 6	ASCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL.	FL.OW	VEL	VEL	DROP
DC/OH	0.274	48	56	121	LAMINAR	0	56	8.1
DP/OH	0.398	733	38	110	LAMINAR	0	38	32.7
DP/CSG	0.411	296	37	109	LAMINAR	0	37	12.2
DP/RIS	1.325	86	11	94	LAMINAR	0	11	0.2
TOTAI	_ VOLUME	1163			TOTAL	PRESSURE	EDROP	53.1

LAG: 76.4 MINUTES 4735 STROKES #1 AND 5040 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1699.9 HHP 634 IMPACT FORCE 1451 % SURFACE PRESSURE 58.8 HHP/sqin 5.38 JET VELOCITY 132

PRESSURE BREAKDOWN:

SURFACE 48.2 STRING 1093.5

BIT 1699.9 ANNULUS 53.1

ANNULUS 53.1 TOTAL 2894.8 PUMP PRESSURE 2890.0 % DIFFERENCE 0.2

EFFECTIVE MUD WEIGHT

BOTTOM HOLE PRESSURES:

UNITS UNITS HYDROSTATIC PRESSURE NOT CIRCULATING: MUD WEIGHT 10.10 4824.7 10.21 CIRCULATING: CIRCULATING PRESSURE ECD 4877.8 0.22 TRIP MARGIN ESTIMATED SWAB **PULLING OUT:** 106.2

9.88

DENSITY

PRESSURE

4718.4

BOTTOM HOLE PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2900.0 AND TVD 2900.0

SPM 1 0 SPM 2 116 FLOW RATE 580

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
ншрсион	0.274	48	50	114	LAMINAR	0	50	6.9
DP/OH	0.398	773	35	100	LAMINAR	0	35	28.0
DP/CSG	0.411	296	34	100	LAMINAR	0	34	9.9
DP/RIS	1.325	86	10	83	LAMINAR	0	10	0.2
TOTAL	_ VOLUME	1203			TOTAL	PRESSUR	E DROP	44.9

LAG: 87.2 MINUTES 0 STROKES #1 AND 10110 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1382.3 HHP 468 IMPACT FORCE 1180 Z SURFACE PRESSURE 56.2 HHP/sqin 3.97 JET VELOCITY 119

PRESSURE BREAKDOWN:

SURFACE 40.7 STRING 946.8

BIT 1382.3

ANNULUS 44.9

TOTAL 2414.8 PUMP PRESSURE 2460.0 % DIFFERENCE 1.8

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS MUD WEIGHT 10.00 HYDROSTATIC PRESSURE 4947.5 NOT CIRCULATING: CIRCULATING: 4992.4 10.09 CIRCULATING PRESSURE ECD 0.18 TRIP MARGIN ESTIMATED SWAB 89.9 PULLING OUT: EFFECTIVE MUD WEIGHT 9.82 BOTTOM HOLE PRESSURE 4857.6

COMPUTER DATA LISTING : LIST A

INTERVAL	.1 depth records (data not averaged)
DEPTH	ell depth,in metres
ROP	te of penetration; in metres/hour
WOB	eight on bit, in thousands of pounds
RPM	tary speed, in revoloutions per minute
MW	d weight in,in pounds per gallon
fo	alculated "d" exponent,corrected or variations in mud weight in, sing a correction factor of 10 ppg
h o	mulative bit hours.The number of ours that the bit has actually been on bottom",recorded in decimal hours
	mulative bit turns.The number of turns de by the bit,while actually"on bottom"
	cremental cost per metre,calculated from e rate of penetration,in A dollars
	mulative cost per metre,calculated from e drilling time,in A dollars
p o	re pressure gradient,in equivilant unds per gallon.The pressure exerted the fluid in the pore spaces of the formation
g e th	acture gradient,in equivilant pounds per llon.The pressure required to fracture e formation,calculated by the DRILL ogram using Eaton's equation
o v Th	is dependant on the pore pressure, the erburden gradient and the matrix stress. is value may be modified by leak-off

information

BIT NUMBE HTC OSC3A COST TOTAL HOU	J&26"HO 3000.	9 T 0 C	IADC CODE SIZE TRIP TIME TOTAL TURNS	111 26.000 1.7 33634	NO.	TERVAL ZZLES T RUN MDITION		.0- 204.0 20 20 20 139.0 B2 G0.000
DEPTH	ROP WO	ов крм	MW "d"c	HOURS	TURNS	ICOST	ccost	PP FG
70.0 75.0 80.0		.0 75 .0 75 .0 75	8.6 0.44 8.6 0.47 8.6 0.50	0.05 0.11 0.19	225 506 837		1840 941.99 645.35	8.6 11.5 8.6 11.5 8.6 11.5
85.0 90.0 95.0 100.0 105.0 110.0 120.0 125.0 130.0	8.0 2 78.0 5 21.0 4 10.0 6 25.0 8 25.0 8 7.0 7 10.0 7	.0 75 .0 75 .0 93 .0 93 .0 95 .0 90 .0 90 .0 90	8.6 0.59 8.6 0.86 8.6 0.59 8.6 0.81 8.6 1.02 8.6 0.87 8.6 0.87 8.6 1.11 8.6 1.03 8.6 0.92	0.31 0.94 1.00 1.24 1.74 1.94 2.14 2.85 3.35	1400 4212 4570 5898 8748 9828 10908 14766 17466 19209	88.55 442.75 45.41 168.67 354.20 141.68 141.68 506.00 354.20 221.38	418.80 383.06 379.46 353.04 331.90 347.73 348.27	8.6 11.6 8.6 11.6 8.6 11.6 8.6 11.6 8.6 11.7 8.6 11.7 8.6 11.7 8.6 11.7
135.0 140.0 145.0 150.0 155.0 160.0 170.0 175.0	19.0 6 17.0 5 33.0 6 39.0 7 47.0 8 44.0 8	.0 93 .0 109 .0 115 .0 134 .0 134	8.6 0.94 8.6 0.89 8.6 0.78 8.6 0.80 8.6 0.79 8.6 0.83 8.6 0.77 8.6 0.72 8.6 0.88	4.00 4.26 4.56 4.71 4.84 4.94 5.06 5.14 5.21	21109 22499 24175 25021 25859 26593 27507 28177 28751 29732	186.42 208.35 107.33 90.82 75.36 80.50 59.03 50.60	331.19 321.54 314.47 302.28 290.54 279.21 269.27 259.26 249.78	8.6 11.8 8.6 11.8 8.6 11.8 8.6 11.8 8.6 11.9 8.6 11.9 8.6 11.9 8.6 11.9 8.6 11.9
185.0 190.0 195.0 200.0 204.0	76.0 8 62.0 8	.0 138 .0 140 .0 139 .0 140 .0 142	8.6 0.90 8.6 0.92 8.6 0.73 8.6 0.77 8.6 0.84	5.43 5.57 5.64 5.72 5.80	30560 31726 32275 32952 33634	46.61 57.13	235.52 230.03 222.98 216.83 212.63	8.6 12.0 8.6 12.0 8.6 12.0 8.6 12.0 8.6 12.0

BIT NUMBER 2 IADC CODE 204.0- 799.0 111 INTERVAL HTC 3AJ SIZE 17.500 20 20 20 NOZZLES COST 5000.00 TRIP TIME BIT RUN 3.9 595.0 TOTAL HOURS 13.87 TOTAL TURNS 116516 CONDITION T3 B3 G0.000 DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST PP CCOST FG 205.0 200.0 3.0 100 8.7 0.41 0.01 30 18 18832 8.6 12.0 80.0 210.0 3.0 100 8.7 0.58 0.07 405 44 3175 8.6 12.1 215.0 190.0 3,0 100 8.7 0.42 0.09 563 19 1741 8.6 12.1 220.0 218.0 4.0 100 8.7 0.41 0.12 701 16 1202 8.6 12.1 225.0 220.0 4.0 100 8.7 0.41 8.6 12.1 0.14 837 16.10 919.42 230.0 50.0 3.0 100 8.7 0.67 0.24 1437 70.84 756.23 8.6 12.1 235.0 76.0 3.0 100 8.7 0.59 0.31 1832 46.61 641.78 8.6 12.1 4.0 100 240.0 47.0 8.7 0.71 0.41 2470 75.36 563.11 8.6 12.2 42.0 8.7 0.74 245.0 4.0 100 0.53 3184 84.33 504.72 8.6 12.2 250.0 50.0 8.7 0.70 4.0 100 0.63 3784 70.84 457.56 8.6 12.2 255.0 68.0 4.0 100 8.7 0.64 0.70 4225 52.09 417.81 8.6 12.2 49.0 8.7 0.73 260.0 5.0 100 0.81 4838 72.29 386.96 8.6 12.2 5.0 100 265.0 61.0 8.7 0.69 0.89 5329 58.07 360.00 8.6 12.3 0.94 270.0 95.0 2.0 100 8.7 0.52 5645 37.28 335.55 8.6 12.3 275.0 81.0 2.0 100 8.7 0.54 1.00 8.6 12.3 6016 43.73 315.00 280.0 75.0 5.0 100 8.7 0.65 1.07 6416 47.23 297.38 8.6 12.3 285.0 79.0 5.0 100 8.7 0.64 1.13 6795 44,84 281,79 8.6 12.3 75.0 10.0 140 8.7 0.81 290.0 1.20 7355 47.23 268.16 8.6 12.3 295.0 58.0 10.0 140 8.7 0.87 1.29 8079 61.07 256.78 8.6 12.4 300.0 44.0 9.0 140 8.7 0.92 1.40 9034 80.50 247.60 8.6 12.4 305.0 57,0 9.0 141 8.7 0.86 1,49 9776 62.14 238.42 8.6 12.4 8.7 0.89 310.0 60.0 12.0 135 1.57 10451 59.03 229.95 8.6 12.4 315.0 51.0 12.0 139 8.7 0.94 1.67 11269 69.45 222.72 8.6 12.4 320.0 50.0 14.0 135 8.7 0.96 1.77 12079 70.84 216.18 8.6 12.4 325.0 59.0 14.0 135 8.7 0.92 1.85 12765 60.03 209.73 8.6 12.5 330.0 61.0 15.0 138 8.7 0.93 1.93 13444 58.07 203.71 8.6 12.5 335.0 58.0 14.0 138 8.7 0.93 2.02 14158 61.07 198.26 8.6 12.5 340.0 55.0 14.0 140 8.7 0.95 2.11 14921 64.40 193.34 8.6 12.5 345.0 55.0 14.0 140 8.7 0.95 2.20 15685 64.40 188.77 8.6 12.5 350.0 53.0 15.0 148 8.7 0.99 2,30 16523 66.83 184.59 8.6 12.6 39.0 13.0 150 355.0 8.7 1.04 2,43 17677 90.82 181.49 8.6 12.6 360.0 42.0 17.0 150 8.7 1.08 2.54 18748 84.33 178.37 8.6 12.6 365.0 50,0 14,0 147 8.7 0.99 2.64 19630 70.84 175.03 8.6 12.6 370.0 84.0 17.0 148 8.7 0.90 2.70 20159 42.17 171.03 8.6 12.6 62.0 17.0 148 375.0 8.7 0.98 2.78 20875 57.13 167.70 8.6 12.6 43.0 22.0 150 8.7 1.14 12,90 380,0 21921 82,37 165,28 8.6 12.7 385.0 51.0 22.0 150 8.7 1.09 3.00 22804 69.45 162.63 8.6 12.7 8.7 1.15 390.0 47.0 25.0 148 3.11 23748 75.36 160.28 8.6 12.7 395.0 45.0 25.0 148 8.7 1.16 3.22 24735 78.71 158.15 8.6 12.7 400.0 60.0 25.0 149 8.7 1.08 3.30 25480 59.03 155.62 8.6 12.7 405.0 40.0 25.0 149 8.7 1.19 3.42 26597 88.55 153.95 8.6 12.7 410.0 49.0 25.0 149 8.7 1.14 3.53 27510 72,29 151,97 8.6 12.8 415.0 38.0 25.0 149 8.7 1.21 3.66 28686 93.21 150.58 8.6 12.8

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PP	FG
420.0 425.0 430.0 435.0 440.0 445.0 450.0 455.0 460.0	28.0 34.0 31.0 45.0 56.0 91.0 50.0	21.0 21.0 22.0 22.0 22.0 22.0 22.0 22.0	148 150 150 149 149 149 149	8.7 8.7 8.7 8.7 8.7 8.7	1.22 1.24 1.20 1.23 1.12 1.06 0.93 1.10 0.91 0.93	3.83 4.00 4.15 4.31 4.42 4.51 4.57 4.67 4.72 4.78	31752 33075	126.50 104.18 114.26 78.71 63.25 38.92 70.84 39.36	148.30	8.6 8.6 8.6 8.6 8.6 8.6	12.8 12.8 12.8 12.9 12.9 12.9 12.9 12.9
470.0 475.0 480.0 485.0 490.0 495.0 500.0 505.0 510.0	110.0 125.0 111.0 111.0 85.0 108.0	23.0 25.0 25.0 25.0 25.0 26.0 26.0	149 149 149 149 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.95 1.07 0.91 0.87 0.90 0.90 0.99 0.92 0.90	4.84 4.92 4.97 5.05 5.10 5.16 5.20 5.25 5.31	39228 39999 40405 40763 41166 41568 42098 42514 42913 43497	61.07 32.20 28.34 31.91 31.91 41.67 32.80 31.35	135.15 133.78 131.94 130.10 128.38 126.72 125.29 123.75 122.24 121.02	8.6 8.6 8.6 8.6 8.6 8.6	12.9 13.0 13.0 13.0 13.0 13.0 13.1 13.1
520.0 525.0 530.0 535.0 540.0 550.0 555.0 560.0 565.0	57.0 64.0 45.0 51.0 65.0 67.0 72.0	25.0 28.0 26.0 26.0 26.0	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	1.00 1.10 1.06 1.20 1.14 1.07 1.07 1.04 1.03	5.38 5.46 5.54 5.65 5.75 5.91 5.98 6.05 6.12	44067 44856 45559 46559 47442 48134 48826 49460 50064 50723	62.14 55.34 78.71 69.45 54.49 54.49 49.89	119.81 118.91 117.94 117.34 116.63 115.72 114.84 113.91 113.00 112.18	8.6 8.6 8.6 8.6 8.6 8.6	13.1 13.1 13.2 13.2 13.2 13.2 13.2 13.2
570.0 575.0 580.0 585.0 590.0 595.0 600.0 605.0 615.0	64.0 76.0	23.0 23.0 25.0 13.0 8.0	145 145 145 135 135 135	8.7 8.7 8.7 8.7 8.7 8.7	0.54 0.59 0.81 0.75 0.56 0.70 0.80 0.81 0.87	6.21 6.23 6.25 6.29 6.36 6.44	50916 51152 51461 51708 51828 52729 53361 53894 54508	19.25 25.12 20.13 9.81 25.85 52.87 55.34 46.61	110.86 109.63 108.50 107.34 106.08 105.05 104.40 103.78 103.08 102.48	8.6 8.6 8.6 8.6 8.6 8.6 8.6	13.3 13.3 13.3 13.3 13.3 13.3 13.4 13.4
620.0 625.0 630.0 635.0 640.0 645.0 655.0 660.0 665.0	48.0 43.0 33.0 38.0 37.0 43.0 40.0 38.0	18.0 15.0 18.0 18.0	135 135 135 145 145 145 145	8.7 8.7 8.7 8.7 8.7 8.7	0.83 0.99 1.06 1.13 1.05 1.12 1.08 1.10	6.63 6.74 76.85 7.01 7.14 7.27 7.51 7.65 7.84	59027 60202 61214 62302 63446	73.79 82.37 107.33 93.21 95.73 82.37 88.55 93.21	101.71 101.38 101.15 101.23 101.13 101.07 100.86 100.73 100.64 101.03	8.6 8.6 8.6 8.6 8.6 8.6	13.4 13.4 13.4 13.5 13.5 13.5 13.5 13.5

•

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
670.0 675.0 680.0 685.0 690.0 700.0 705.0	34.0 2 28.0 2 19.0 2 27.0 2 25.0 2 22.0 2 23.0 2	28.0 28.0 28.0 28.0 28.0 24.0 24.0	145 145 145 145 145 145 145 145	8.7 8.7 8.7 8.7 8.7 8.7	1.21 1.32 1.44 1.33 1.36 1.39 1.31 1.33	7.98 8.16 8.43 8.61 8.81 9.04 9.24 9.46 9.62	67952 70242 71853 73593 75570 77310 79202 80652	126.50 186.42 131.19 141.68 161.00 141.68 154.00 118.07	104.54	8.6 8.6 8.6 8.6 8.6 8.6	13.5 13.6 13.6 13.6 13.6 13.6 13.6
715.0 720.0 725.0 730.0 735.0 740.0 745.0 750.0 760.0	29.0 2 33.0 2 31.0 2 25.0 2 39.0 3 35.0 3 30.0 2 20.0 2	27.0 21.0 27.0 27.0 29.0 31.0 31.0	145 145 145 145 145 145 150	8.7 8.7 8.7 8.7 8.7 8.7	1.27 1.30 1.19 1.28 1.37 1.26 1.29 1.40 1.33	9.77 9.94 10.09 10.26 10.46 10.58 10.73 10.89 11.14 11.32	81931 83431 84749 86152 87892 89008 90251 91751 94001 95608	122.14 107.33 114.26 141.68 90.82 101.20	104.73 104.83 105.17 105.04 105.00 105.12	8.6 8.6 8.6 8.6 8.6 8.6	13.7 13.7 13.7 13.7 13.7 13.7 13.8 13.8
765.0 770.0 775.0 780.0 785.0 790.0 795.0	26.0 2 15.0 2 18.0 2 16.0 2 14.0 2 15.0 2 16.0 2	28.0 28.0 25.0 25.0 25.0 29.0	150 150 142 132 132 135	8.7 8.7 8.7 8.7 8.7 8.7	1.28 1.40 1.50 1.38 1.42 1.52 1.50 1.45	11.51 11.74 12.07 12.35 12.66 13.02 13.36 13.61	97339 99384 102224 104424 106899 109792 112492	136.23 161.00 236.13 196.78 221.38 253.00	106.23 106.72 107.85 108.62 109.59 110.81 111.88	8.6 8.6 8.6 8.6 8.6 8.6	13.8 13.8 13.8 13.8 13.9 13.9 13.9

-**4**

·

.

.

• • .

BIT NUMBER HTC X3A COST TOTAL HOUR	1300.00	SIZE	CODE TIME L TURNS	114 12.250 5.7 162445	BIJ	TERVAL ZZLES T RUN NDITION			6 16
DEPTH	ROP WOB	RPM M	W "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
800.0 801.0 802.0	16.0 25.0 40.0 25.0 25.0 25.0	135 9.	0 1.51 0 1.23 0 1.38	0.06 0.09 0.13	510 713 1037	221 89 142	21711 10900 7314	8.6	13.9 13.9 13.9
803.0 804.0 805.0 806.0 807.0 808.0 809.0 810.0	19.0 25.0 25.0 25.0 19.0 25.0 10.0 20.0 18.0 20.0 18.0 25.0 14.0 25.0 17.0 25.0 18.0 25.0	135 9. 135 9. 125 9. 125 9. 125 9. 125 9. 125 9.	0 1.46 0 1.38 0 1.46 0 1.53 0 1.37 0 1.45 0 1.53 0 1.47 0 1.45 0 1.43	0.18 0.22 0.27 0.37 0.43 0.48 0.56 0.61 0.67	1463 1787 2213 2963 3380 3796 4332 4773 5190 5585	186 142 186 354 197 197 253 208 197 186	5532 4454 3743 3259 2876 2578 2346 2151 1988 1850	8.6 8.6 8.6 8.6 8.6 8.6	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
813.0 814.0 815.0 816.0 817.0 818.0 819.0 820.0 821.0	21.0 25.0 18.0 25.0 15.0 33.0 18.0 33.0 15.0 33.0 17.0 33.0 14.0 33.0 14.0 33.0 12.0 33.0	125 9. 125 9. 125 9. 125 9. 125 9. 125 9. 125 9.	0 1.63 0 1.61 0 1.59 0 1.65	0.77 0.83 0.89 0.95 1.01 1.08 1.14 1.21 1.28 1.36	5942 6359 6859 7275 7275 8244 8685 9221 9757 10382	169 197 236 197 236 221 208 253 253	1730 1628 1541 1462 1393 1332 1276 1227 1183 1144	8.6 8.6 8.6 8.6 8.6 8.6	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
823.0 824.0 825.0 826.0 827.0 828.0 829.0 830.0 831.0	20.0 33.0 16.0 33.0 21.0 30.0 21.0 30.0 15.0 30.0 15.0 30.0 20.0 28.0 19.0 28.0	125 9. 130 9. 130 9. 130 9. 130 9. 130 9. 132 9.	0 1.58 0 1.48	1.41 1.47 1.52 1.57 1.64 1.70 1.77 1.82 1.87	13008 13496 13892 14309	177 221 169 169 236.13 236.13 221.38 177.10 186.42 236.13	949.01 924.76 900.64 878.32	8.6 8.6 8.6 8.6 8.6 8.6	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
833.0 834.0 835.0 836.0 837.0 838.0 839.0 840.0 841.0	23.0 28.0 25.0 28.0 17.0 31.0 17.0 31.0 18.0 31.0 14.0 31.0 15.0 31.0 18.0 34.0 13.0 34.0	132 9. 132 9. 143 9. 143 8. 143 8. 143 8. 128 8.	0 1.60 9 1.60 9 1.68 9 1.66	1.98 2.02 12.08 2.14 2.19 2.26 2.33 2.39 2.46 2.53	15498 15964 16468 16945 17558 18130 18556 19147	154.00 141.68 208.35 208.35 196.78 253.00 236.13 196.78 272.46 253.00	818.23 801.29 785.26 769.78 756.53 743.52 730.18 719.28	8.6 8.6 8.6 8.6 8.6 8.6	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0

	DEPTH	ROP	MOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
	843.0 844.0 845.0 846.0 847.0 848.0 849.0 850.0 851.0	17.0 18.0 18.0 20.0 15.0 16.0 16.0	34.0 34.0 31.0 31.0 31.0 31.0 31.0 33.0	128 123 123 123 123 123 123 136	8.9 8.9 8.9 8.9 8.9 8.9	1.65 1.63 1.55 1.55 1.52 1.61 1.59 1.59 1.72	2.60 2.65 2.71 2.77 2.82 2.88 2.95 3.01 3.08 3.15	20628 21038 21448 21817 22309 22770 23231 23859	208.35 196.78 196.78 177.10 236.15 221.38 221.38	675.86 665.66 655.48 646.93 638.42 630.24 623.36	8.6 8.6 8.6 8.6 8.6 8.6	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
3 5 5	853.0 854.0 855.0 856.0 857.0 858.0 859.0 860.0 861.0	14.0 18.0 18.0 14.0 14.0 15.0	33.0 33.0 32.0 32.0 32.0 32.0 32.0 32.0	136 110 110 110 110 110 120	8.9 8.9 8.9 8.9 8.9 8.9	1.72 1.70 1.53 1.53 1.61 1.61 1.62 1.62	3.22 3.30 3.35 3.41 3.48 3.55 3.62 3.69 3.76 3.84	25580 25946 26313 26785 27256 27727 28207 28722	272.67 253.00 196.78 196.78 253.00 253.00 253.00 236.13 253.00 295.17	602.94 595.69 588.69 582.90 577.31 571.90 566.40 561.34	8.6 8.6 8.6 8.6 8.6 8.6	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
	863.0 864.0 865.0 866.0 867.0 868.0 869.0 870.0 871.0	9.0 10.0 10.0 10.0 13.0 11.0 8.0 7.0	32.0 32.0 31.0 31.0 31.0 31.0 28.0 28.0 28.0	120 122 122 122 122 122 128 118	8.9 8.9 8.9 8.9 8.9 8.9	1.69 1.78 1.74 1.74 1.75 1.75 1.75	3.93 4.04 4.14 4.24 4.34 4.41 4.50 4.63 4.77	30722 31454 32186 32918 33481 34146 35031 36043	295.17 393.56 354.20 354.20 354.20 272.46 322.00 442.75	550.57 547.60 544.71 541.91 538.00 534.92 533.62 533.24	8.6 8.6 8.6 8.6 8.6 8.6	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
1 1	873.0 874.0 875.0 876.0 877.0 878.0 879.0 880.0 881.0	11.0 12.0 14.0 13.0 11.0 13.0 11.0	34.0 34.0 34.0 34.0 34.0	118 106 106 106 106 106 112	8,9 8,9 8,9 8,9 8,9 8,9	1.60 1.65 1.68 1.63 1.65 1.71 1.65 1.73 1.51	4.97 5.07 5.15 5.22 5.30 5.39 5.46 5.66 5.64	38116 38646 39100 39589 40168 40657 41268 41588	272.46 322.00 295.17 253.00 272.46 322.00 272.46 322.00 168.67 141.68	525.74 522.70 519.20 516.04 513.58 510.57 508.24 504.10		14.1 14.1 14.1 14.1 14.1
	883.0 884.0 885.0 886.0 887.0 888.0 899.0 891.0	23.0 24.0 17.0 20.0 23.0 20.0 20.0	36.0 36.0 36.0 36.0 36.0		8.9 8.9 8.9 8.9 8.9 8.9	1.55 1.51 1.53 1.65 1.59 1.54 1.59 1.57	5.69 5.74 5.78 5.89 5.93 5.98 6.03 6.13	42485 42797 43238 43613 43940 44315 44663 44994	177.10 154.00 147.58 208.35 177.10 154.00 177.10 177.10 168.67 177.10	491.87 487.86 484.65 481.16 477.48 474.14 470.88 467.59	8.6 8.6 8.6 8.6 8.6 8.6 8.6	14.1 14.1 14.1 14.1 14.1 14.1

.

	DEPTH	ROP	MOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1 1	893.0 894.0 895.0 896.0 897.0 898.0 899.0 900.0 901.0	18.0 19.0 18.0 17.0 23.0 21.0 22.0 24.0	36.0 36.0 36.0 36.0 36.0 36.0 34.0 34.0	116 122 122 122 122 122 118 118	8,9 8,9 8,9 8,9 8,9 8,9	1.62 1.60 1.62 1.64 1.54 1.57 1.51 1.49	6.19 6.24 6.30 6.35 6.41 6.45 6.50 6.55 6.59	46138 46523 46930 47361 47679 48027 48349 48644	196.78 186.42 196.78 208.35	456.12 453.44 450.94 447.94 445.15 442.34 439.45	8.6 8.6 8.6 8.6 8.6 8.6	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.2
5 5 5	903.0 904.0 905.0 906.0 907.0 908.0 909.0 910.0 911.0 912.0	26.0 33.0 23.0 22.0 25.0 30.0 34.0 21.0	34.0 34.0 31.0 31.0 36.0 36.0 35.0 35.0	118 112 112 112 112 112 129 129	8.9 8.9 8.9 8.9 8.9 8.9	1.50 1.46 1.33 1.44 1.46 1.48 1.42 1.41 1.57	6.66 6.70 6.73 6.77 6.82 6.86 6.89 6.92 6.97	49439 49643 49935 50240 50509 50733 50961 51329	154.00 136.23 107.33 154.00 161.00 141.68 118.07 104.18 168.67 208.35	430.68 427.63 425.07 422.63 420.05 417.30 414.48 412.29	8.6 8.6 8.6 8.6 8.6 8.6	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
	913.0 914.0 915.0 916.0 917.0 918.0 919.0 920.0 921.0 922.0	24.0 20.0 18.0 17.0 15.0 14.0 20.0 22.0	35.0 35.0 39.0 39.0 39.0 39.0 39.0 26.0 26.0	129 131 131 131 131 131 146 146	8.9 8.9 8.9 8.9 8.9 8.9	1.56 1.53 1.65 1.68 1.70 1.75 1.77 1.50	7.07 7.12 7.17 7.22 7.28 7.35 7.42 7.47 7.57	52459 52852 53288 53751 54275 54836 55274 55672	147.58 177.10 196.78 208.35 236.13 253.00	404.05 402.28 400.64 399.26 398.04 396.21 394.28	8.6 8.6 8.6 8.6 8.6 8.6	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
	923.0 924.0 925.0 926.0 927.0 928.0 929.0 930.0 931.0 932.0	25.0 22.0 18.0 25.0 30.0 26.0 25.0 22.0	36.0 36.0 36.0 36.0	146 120 120 120 120 120 149 149	8.9 8.9 8.9 8.9 8.9 8.9	1.51 1.43 1.55 1.61 1.50 1.44 1.49 1.55 1.59		56971 57298 57698 57986 58226 58503 58860 59267	161.00	389,02 387,21 385,71 383,80 381,74 379,86 378,04 376,39	8.6 8.6 8.6 8.6 8.6 8.6	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
	933.0 934.0 935.0 936.0 937.0 938.0 939.0 940.0 941.0 942.0	23.0 22.0 17.0 14.0 11.0 14.0 18.0 22.0	34.0 34.0 34.0 34.0 34.0		8.9 8.9 8.9 8.9 8.9 8.9	1.58 1.59 1.66 1.72 1.80 1.72 1.53 1.47	8.05 8.09 18.14 8.19 8.27 8.36 8.43 8.43 8.61	60433 60839 61333 61933 62697 63297 63667 63970	154.00 161.00 208.35 253.00	369.90 368.72 367.89 367.56 366.74 365.53 364.09	8.6 8.6 8.6 8.6 8.6 8.6	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2

DEPTH	ROP	WOB	пчя	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
943.0 944.0 945.0 946.0 947.0 948.0 949.0 950.0 951.0 952.0	12.0 9.0 9.0 9.0 10.0 15.0 13.0	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	111 107 107 107 107 107 107	8.9 8.9 8.9 8.9 8.9 8.9	1.66 1.66 1.75 1.75 1.75 1.71 1.58 1.63 1.75	8.69 8.77 8.88 9.00 9.11 9.21 9.27 9.35 9.43 9.52	65592 66305 67019 67732 68374 68802 69296 69896	295.17 295.17 393.56 393.56 393.56 354.20 236.13 272.46 295.17 295.17	362.51 362.72 362.93 363.14 363.08 362.23 361.64 361.20	8.6 8.6 8.6 8.6 8.6 8.6	14.2 14.3 14.3 14.3 14.3 14.3 14.3
953.0 954.0 955.0 956.0 957.0 958.0 959.0 960.0 961.0 962.0	12.0 14.0 13.0 17.0 16.0 18.0 26.0	36.0 36.0 37.0 37.0 37.0 37.0 38.0 38.0	140 123 123 123 123 123 123 131	8.9 8.9 8.9 8.9 8.9 8.9	1.81 1.80 1.72 1.75 1.65 1.64 1.54 1.81	9.62 9.70 9.77 9.85 9.91 9.97 10.03 10.06 10.15	71916 72443 73011 73445 73906 74316 74618 75273	354.20 295.17 253.00 272.48 208.35 221.38 196.78 136.23 295.17	360.30 359.62 359.06 358.11 357.25 356.24 354.88 354.51	8.6 8.6 8.6 8.6 8.6 8.6	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
963.0 964.0 965.0 966.0 967.0 968.0 959.0 971.0 972.0	17.0 27.0 17.0 16.0 27.0 25.0 25.0	38.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0	131 136 136 136 136 136 136	8.9 8.9 8.9 8.9 8.9 8.9	1.76 1.69 1.51 1.66 1.68 1.51 1.53 1.53	10.30 10.36 10.40 10.46 10.52 10.56 10.60 10.64 10.68 10.71	76952 77254 77734 78244 78547 78873 79199 79526	253.00 208.35 131.19 208.35 221.38 131.19 141.68 141.68 141.68	352,65 351,31 350,46 349,69 348,40 347,18 345,98 344,79	8.6 8.6 8.6 8.6 8.6 8.6	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
973.0 974.0 975.0 976.0 977.0 978.0 979.0 981.0 981.0	38.0 32.0 32.0 29.0 48.0 32.0 28.0 38.0	35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0	136 176 176 176 176 176 176 185	8.9 8.9 8.9 8.9 8.9 8.9	1.54 1.54 1.57 1.40	10.74 10.77 10.80 10.83 10.86 10.88 10.92 10.95 10.98	80267 80597 80927	110.69 110.69 122.14 73.79 110.69 126.50 93.21	340.72 339.41 338.12 336.91 335.44 334.19	8.6 8.6 8.6 8.6 8.6 8.6	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
983.0 984.0 985.0 986.0 987.0 988.0 989.0 990.0 991.0	38.0 32.0 29.0 21.0 29.0 38.0 31.0 26.0	35.0 35.0 35.0 39.0 39.0 39.0 39.0 34.0 34.0	185 154 154 154 154 154	8.9 8.9 8.9 8.9 8.9 8.9	1.42 1.50 1.55 1.57 1.69 1.57 1.48 1.49	11.02 11.05 11.08 11.11 11.16 11.19 11.22 11.25 11.25	83926 84366 84684 84927 85226 85581	93.21 110.69 122.14 168.67 122.14	325.38 324.54 323.47 322.26 321.17 320.21	8.6 8.6 8.6 8.6 8.6 8.6	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
	993.0 994.0 995.0 996.0 997.0 999.0 1000.0 1001.0	21.0 23.0 27.0 49.0 22.0 22.0 34.0 37.0	34.0 34.0 34.0 39.0 39.0 39.0 39.0 33.0 33.0	154 154 154 154 154 154 154	8.9 8.9 8.9 8.9 8.9 8.9	1.62 1.59 1.53 1.39 1.67 1.67	11.34 11.39 11.44 11.47 11.49 11.54 11.58 11.61 11.64	86925 87268 87456 87876 88296	168.67 154.00 131.19 72.29 161.00 161.00 104.18 95.73	316.30 315.36 314.14 313.37 312.60	8.6 8.6 8.6 8.6 8.6 8.6	14.4 14.4 14.4 14.4 14.4 14.4 14.4
!	1003.0 1004.0 1005.0 1006.0 1007.0 1008.0 1009.0 1010.0 1011.0	25.0 32.0 36.0 46.0 47.0 54.0 33.0 56.0	33.0 33.0 33.0 33.0 33.0 30.0	154 140 140 140 140		1.53 1.55 1.47 1.40 1.32 1.31 1.26 1.41 1.24	11.71 11.75 11.78 11.80 11.83 11.85 11.87 11.90 11.91	89416 89786 90075 90308 90491 90669 90825 91098 91258 91419	141.68 110.69 98.39 77.00 75.36 65.59 107.33 63.25	308.58 307.77 306.81 305.80 304.70 303.60 302.47 301.55 300.42 299.31	8.6 8.6 8.6 8.6 8.6 8.6	14.4 14.4 14.4 14.4 14.4 14.4 14.4
	1013.0 1014.0 1015.0 1016.0 1017.0 1019.0 1019.0 1020.0 1021.0	56.0 54.0 51.0 52.0 45.0 45.0 54.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.24 1.25 1.27 1.26 1.31 1.31 1.25 1.28	11.95 11.97 11.99 12.01 12.03 12.05 12.07 12.07 12.11	91580 91740 91907 92084 92257 92457 92657 92823 93006 93185	68.12 78.71 78.71 65.59 70.84	298.21 297.11 296.04 295.00 293.96 292.97 292.00 290.98 289.98 288.99	8.6 8.6 8.6 8.6 8.6 8.6	14.4 14.4 14.4 14.4 14.4 14.4 14.4
	1023.0 1024.0 1025.0 1026.0 1027.0 1028.0 1029.0 1030.0 1031.0	34.0 62.0 59.0 50.0 38.0 18.0 54.0	30.0 30.0 30.0 32.0 32.0 32.0 30.0 30.0	152 152 153 153 153 152 152	8,9 8,9 8,9 8,9 8,9 8,9 8,9	1.37 1.40 1.21 1.23 1.31 1.40 1.64 1.26 1.24	12.15 12.18 12.20 12.22 12.24 12.26 12.32 12.34 12.35 12.38	93425 93693 93840 93994 94178 94420 94930 95099 95261 95447	104.18 57.13 60.03 70.84 93.21 196.78 65.59 63.25	286.28 285.29 284.35 283.51	8.6 8.6 8.6 8.6 8.6 8.6 8.6	14.4 14.4 14.4 14.4 14.4 14.4 14.4
	1033.0 1034.0 1035.0 1036.0 1037.0 1038.0 1039.0 1040.0 1041.0	31,0 47.0 56.0 38.0 54.0 69.0 44.0 59.0	30.0 30.0 35.0 35.0 35.0 35.0 34.0 34.0	152 151 151 151 151 151 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.30 1.43 1.36 1.30 1.43 1.31 1.23 1.36 1.27	12.40 12.45 12.45 12.47 12.49 12.51 12.53 12.55 12.55	96128	114.26 75.36 63.25 93.21 65.59 51.33 80.50 60.03	277.91 277.01	8.6 8.6 8.6 8.6 8.6 8.6	14.4 14.4 14.4 14.5 14.5 14.5 14.5

DEPTH	ROP	MOB	RPM	MW	"d "c:	HOURS	TURNS	ICOST	CCOST	PP	FG
1043.0 1044.0 1045.0 1046.0 1047.0 1048.0 1049.0 1050.0 1051.0	59.0 63.0 38.0 40.0 47.0 40.0 59.0 38.0	34.0 34.0 34.0 34.0 34.0 34.0 36.0 36.0	150 150 150 150 150 150 155 155	8.9	1.31 1.27 1.25 1.41 1.40 1.34 1.40 1.30	12.60 12.62 12.64 12.66 12.69 12.71 12.73 12.75 12.75	97503 97656 97798 98035 98260 98452 98677 98834 99079 99273	60.03 56.22 93.21 88.55 75.36 88.55 60.03 93.21	271.01 270.15 269.28 268.57 267.84 267.07 266.35 265.53 264.85 264.09	8.6 8.6 8.6 8.6 8.6 8.6	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1053.0 1054.0 1055.0 1056.0 1057.0 1058.0 1059.0 1060.0 1061.0	56.0 59.0 56.0 56.0 33.0 59.0 51.0		155 155 145 145 145 145 145 145 145	8.9 8.9 8.9 8.9 8.9 8.9	1.30 1.32 1.18 1.19 1.19 1.36 1.18 1.22 1.22	12.81 12.83 12.85 12.87 12.88 12.91 12.93 12.95 12.97 12.99	99431 99597 99744 99899 100055 100318 100466 100636 100807 100955	63.25 60.03 63.25 63.25 107.33 60.03 69.45	263.29 262.50 261.71 260.94 260.18 259.59 258.82 258.09 257.37 256.62	8.6 8.6 8.6 8.6 8.6 8.6	14.5 14.5 14.5
1063.0 1064.0 1065.0 1066.0 1067.0 1068.0 1069.0 1070.0 1071.0	34.0 45.0 54.0 40.0 48.0 33.0 25.0 38.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 35.0 35.0	145 146 146 146 146 146 148 148	8.9 8.9 8.9 8.9 8.9 8.9	1.16 1.35 1.26 1.21 1.30 1.24 1.36 1.56 1.42	13.00 13.03 13.06 13.07 13.10 13.12 13.15 13.19 13.22 13.24	101095 101351 101545 101708 101927 102109 102375 102730 102963 103185	78.71 65.59 88.55 73.79 107.33 141.68 93.21	255.87 255.29 254.63 253.92 253.30 252.64 252.10 251.69 251.11 250.51	8.6 8.6 8.6 8.6 8.6 8.6	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1073.0 1074.0 1075.0 1076.0 1077.0 1078.0 1079.0 1080.0 1081.0	73.0 43.0 34.0 48.0 44.0 38.0 54.0	34.0 34.0 34.0 34.0 34.0 35.0	148 148 145 145 145 145 145 145 150	8.9 8.9 8.9 8.9 8.9 8.9	1.34 1.20 1.36 1.44 1.32 1.35 1.40 1.29 1.25 1.28	13.26 13.28 13.30 13.33 13.35 13.40 13.42 13.43 13.45	103367 103488 103691 103947 104128 104326 104554 104716 104856 105009	48.52 82.37 104.18 73.79 80.50 93.21 65.59 55.34	249.86 249.13 248.53 248.01 247.38 246.78 246.23 246.23 244.26	8.6 8.6 8.6 8.6 8.6 8.6	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1083.0 1084.0 1085.0 1086.0 1087.0 1088.0 1089.0 1090.0 1091.0	59.0 50.0 46.0 82.0 50.0 82.0 67.0 63.0	35.0 35.0 35.0 33.0 33.0 33.0	150 150 150 150 145 145 145 148 148	8.9 8.9 8.9 8.9 8.9 8.9	1.30 1.28 1.33 1.36 1.14 1.30 1.14 1.20 1.27	13.47 13.48 13.50 13.53 13.54 13.56 13.57 13.58 13.60 13.62	105169 105322 105502 105698 105804 105978 106084 106214 106355 106548	60.03 70.84 77.00 43.20 70.84 43.20 52.87 56.22	243.62 242.98 242.38 241.80 241.11 240.52 239.84 239.20 238.57 238.02	8.6 8.6 8.6 8.6 8.6 8.6	14.5 14.6 14.6 14.6 14.6 14.6 14.6 14.6

	DEPTH	ROP	WOB	RPM	МЫ	"d"c	HOURS	TURNS	ICOST	CCOST	' pp	F.G
	1093.0 1094.0 1095.0 1096.0 1097.0 1098.0 1099.0 1100.0 1101.0	76.0 .76.0 35.0 72.0 63.0 64.0 62.0	36.0 36.0 36.0 36.0 36.0	148 148 145 145 145 145 145		1.30 1.21 1.21 1.45 1.21 1.26 1.25 1.26 1.48 0.98	13.64 13.65 13.67 13.71 13.72 13.74 13.76 13.79	106698 106815 106932 107180 107301 107439 107575 107716 107988 108049	46.61 46.61 101.20 49.19 56.22 55.34 57.13 110.69	237.42 236.77 236.13 235.67 235.05 234.45 233.85 233.27 232.86 232.17	8.6 8.6 8.6 8.6 8.6 8.6	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
	1103.0 1104.0 1105.0 1106.0 1107.0 1108.0 1109.0 1110.0 1111.0	47.0 69.0 47.0 59.0	36.0 36.0 36.0 35.0	143 143 143 144 144	8.9 8.9 8.9 8.9 8.9 8.9	1.26 1.28 1.43 1.45 1.36 1.34 1.21 1.31	13.81 13.83 13.85 13.88 13.90 13.93 13.94 13.96 13.98 14.01	108187 108334 108563 108812 109007 109189 109314 109498 109644 109878	60.03 93.21 101.20 80.50 75.36 51.33 75.36	231.59 231.03 230.58 230.16 229.67 229.17 228.60 228.11 227.57 227.15	8.6 8.6 8.6 8.6 8.6 8.6	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
	1113.0 1114.0 1115.0 1116.0 1117.0 1118.0 1119.0 1120.0 1121.0 1122.0	63.0 59.0 50.0 45.0 59.0 45.0 42.0 43.0	33.0 33.0 33.0 33.0 36.0	144 145 145 145 145 145 135	8.9 8.9 8.9 8.9 8.9 8.9	1.29 1.21 1.25 1.30 1.33 1.25 1.33 1.37 1.36	14.03 14.04 14.06 14.08 14.10 14.12 14.14 14.16 14.16 14.21	110054 110191 110338 110512 110706 110853 111047 111239 111428 111587	56.22 60.03 70.84 78.71 60.03 78.71 84.33 82.37	226.66 226.11 225.59 225.10 224.64 224.12 223.67 223.24 222.80 222.32	8.6 8.6 8.6 8.6 8.6 8.6	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
	1123.0 1124.0 1125.0 1126.0 1127.0 1128.0 1129.0 1130.0 1131.0	27.0 50.0 45.0 52.0 52.0 54.0 49.0 50.0	36.0 36.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0	135 143 143 143 143 143 143	8.9 8.9 8.9 8.9 8.9 8.9	1.27 1.52 1.20 1.23 1.19 1.19 1.18 1.20 1.23	14.22 14.26 14.28 14.30 14.32 14.34 14.36 14.38 14.40 14.43	111731 112031 112203 112394 112559 112724 112882 113058 113214 113404	131.19 70.84 78.71 68.12 68.12 65.59 72.29 70.84	221.83 221.55 221.09 220.66 220.19 219.73 219.26 218.82 218.37 217.98	8.6 8.6 8.6 8.6 8.6 8.6	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
I I I	1133.0 1134.0 1135.0 1136.0 1137.0 1138.0 1139.0 1140.0 1141.0	56.0 50.0 51.0 56.0 62.0 50.0 46.0 64.0	30.0 30.0 30.0 30.0 30.0 30.0 29.0 29.0	130 130 130 130 130 130 130	8,9 8,9 8,9 8,9 8,9 8,9	1.19 1.19 1.23 1.22 1.19 1.16 1.23 1.24 1.14	14.44 14.46 14.48 14.50 14.52 14.54 14.56 14.58 14.59 14.61	113543 113682 113838 113991 114131 114256 114412 114582 114704 114857	63.25 70.84 69.45 63.25 57.13 70.84 77.00 55.34	217.51 217.05 216.62 216.18 215.73 215.26 214.83 214.43 213.97 213.54	8.6 8.6 8.6 8.6 8.6 8.6	14.7 14.7 14.7 14.7 14.7 14.7 14.7

	17 h. 17 d. 1	n on	J I CO TO	n m M	3 /1.1	11 -4 11	unune	TUDAR	TODOT	CCOCT	ממ	cr
	DEPTH 1143.0		29.0		8.9	"d"c 1.21	14.63	TURNS		CCOST 213.12	PP 8.6	
_	1144.0 1145.0	42.0	29.0 29.0	130 130	8.9	1.17 1.27	14.65 14.67	115139 115325	84.33	212.68 212.31	8.6 8.6	14.7
	1146.0 1147.0	47.0	29.0 29.0	130 130	8.9	1.25 1.24	14.69 14.72	115498 115664	78.71 75.36		8.6 8.6	14.7
	1148.0 1149.0		29.0 29.0	$\begin{array}{c} 130 \\ 130 \end{array}$	8.9 8.9	1.21 1.18	14.74 14.75	115817 115956		211.12 210.70	8.6. 8.6	
	1150.0 1151.0		29.0 29.0	130 130	8.9 8.9	1.24	14.77 14.80	116126 116299	77.00 78.71	210.32	8.6 8.6	
•	1152.0	35.0	29.0	130	8.9	1.33	14.83	116522	101.20	209.64	8.6	14.7
	1153.0 1154.0	35.0 49.0		130 130	8.9 8.9	1.33 1.22	14.85 14.87	116745 116904		209.33 208.94	8.6 8.6	
	1155.0 1156.0	42.0 37.0		125 125	8.9 8.9	1.26 1.30	14.90 14.93	117083 117285	84.33 95.73	208.59	8.6	
_	1157.0 1158.0	54.0 40.0	28.0 28.0	125 125	8.9 8.9	1.17 1.26	14.94 14.97	117424 117612		207.88 207.55	8.6 8.6	
	1159.0 1160.0		28.0 28.0	125 125	8.9 8.9	1.26 1.38	14.99	117799 118067	88.55 126.50	207.22	8.6	14.7
	1161.0	40.0	28.0	125 127	8.9	1.26	15.05 15.10	118255 118617	88.55	206.67	8.6	14.7
	1163.0		28.0	127		1.21	15.12	118776		206.20	8.6	
	1164.0		28.0	127 125	8.9	1.26	15.15 15.17	118962	86.39	205.87 205.50	8.6	14.7
_	1166.0 1167.0	63.0 35.0	30.0	125 125	8.9	1.14	15.18 15.21	119231	56.22	205.09	8.6	14.7
	1168.0 1169.0		30.0	125		1.22	15.23 15.26	119595 119788		204.45	8.6	14.7
	1170.0 1171.0	37.0 45.0	29.0	125	8.9	1.30	15.28 15.31	119990		203.85	8.6 8.6	14.7
	1172.0		29.0		8.9	1.31	15.33	120365		203.23	8.6	
	1173.0 1174.0		29.0 29.0			1.35	15.37 15.39	120600 120759	110.69	202.98 202.64	8.6	
	1175.0	59.0	29.0	125	8.9	1.15	15.40	120886	60.03	202.26	8.6	14.7
	1176.0 1177.0	32.0 38.0	30.0	125	8.9	1.36	15.44	121121		201.73	8.6	14.7
	1178.0 1179.0	39.0 35.0	30.0	125 125	8.9	1.30	15.49 15.52		101.20		8.6	14.7
	1180.0 1181.0		30.0		8.9	1.36	15.55 15.56	121959		200.56	8.6	14.8
	1182.0		30.0			1.29	15.59	122268		200,27	8.6	
	1183.0 1184.0	47.0		125	8.9	1.26	15.61	122438	75.36	199.96	8.6	14.8
	1185.0 1186.0	44.0	29', 0	136 126	8.9	1.27	15.66 15.68	122783 122972	88.55	199.32	8,6	14.8
_	1187.0	45.0	29.0	126 126	8.9	1.24	15.70 15.73	123140 123329	88.55	198.73 198.45	8.6	14.8
	1189.0 1190.0	52.0 56.0	29.0	126 127	8.9	1.20 1.18	15,75 15,76	123474 123611	63.25	198.11 197.77	8.6	14.8
	1191.0 1192.0		29.0 29.0			1.16 1.22	15.78 15.80	123740 123895		197.41 197.10	8.6 1 8.6 1	

									-			
	DEPTH	ROP	WOB	RPM	MM "d	l"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	1193.0 1194.0 1195.0 1196.0 1197.0 1198.0 1199.0 1200.0	45.0 45.0 40.0 35.0 48.0	29.0 29.0 29.0 29.0 29.0 29.0 29.0	127 127 127 127 127 127 127	8.9 1. 8.9 1.	24 24 28 32 22 29 31 25	15.83 15.85 15.87 15.90 15.93 15.95 15.97 16.00 16.03	124113 124282 124452 124642 124860 125019 125214 125426 125599 125830	88.55 101.20 73.79 90.82 98.39	196.55 196.26 195.99 195.75 195.44 195.18 194.94	8.6 8.6 8.6 8.6 8.6 8.6	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
	1203.0 1204.0 1205.0 1206.0 1207.0 1208.0 1209.0 1210.0 1211.0	38.0 40.0 34.0 34.0 38.0 36.0 39.0	29.0 29.0 28.0 28.0 28.0 28.0 28.0 28.0	127 127 125 125 125 125 125	8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1.	30 28 31 31 28 30 28 36 25	16.08 16.11 16.14 16.17 16.19 16.22 16.25 16.28 16.30 16.33	126030 126221 126441 126662 126859 127068 127265 127524 127702 127910	88.55 104.18 104.18 93.21 98.39 93.21 122.14 84.33	193.48 193.24 193.01 192.76	8.6 8.6 8.6 8.6 8.6 8.6	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
	1213.0 1214.0 1215.0 1216.0 1217.0 1218.0 1219.0 1220.0 1221.0	36.0 51.0 42.0 47.0 32.0	28.0 28.0 29.0 29.0 29.0 31.0 28.0 28.0	125 125 125 125 125 124 124	8.9 1. 8.9 1. 8.9 1.	25 30 20 26 23 37 23 24	16.36 16.38 16.41 16.43 16.45 16.51 16.53 16.53 16.55	128119 128297 128506 128653 128831 128991 129222 129391 129564 129796	84.33 98.39 69.45 84.33 75.36 110.69 80.50	190.12 189.86	8.6 8.6 8.6 8.6 8.6 8.6	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
1	1223.0 1224.0 1225.0 1226.0 1227.0 1228.0 1229.0 1230.0 1231.0 1232.0	40.0 41.0 29.0 36.0 38.0 40.0 44.0	28.0 28.0 28.0 28.0 28.0 28.0 28.0	124 124 124 124 124 124 128 128	8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1.	25 26 25 36 29 28 27 24	16.62 16.64 16.67 16.69 16.73 16.76 16.81 16.81 16.83	130239 130425 130606	88.55 86.39 122.14 98.39 93.21 88.55 80.50	189.28 189.04 188.80	8.6 8.6 8.6 8.6 8.6 8.6	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
! !	1233.0 1234.0 1235.0 1236.0 1237.0 1238.0 1239.0 1240.0 1241.0 1242.0	38.0 39.0 41.0 41.0 41.0 48.0 47.0 52.0 36.0 47.0	28.0 28.0 28.0 28.0 28.0 28.0 27.0 27.0	128 128 128 128 128 128 124 124	8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1. 8.9 1.	28 26 26 26 21 22 17 28	16.88 16.91 16.93 16.95 16.98 17.00 17.02 17.04 17.07	132017 132214 132401 132589 132776 132936 133099 133242 133449 133607	90.82 86.39 86.39 73.79 75.36 68.12 98.39	187.28 187.06 186.83 186.60 186.37 186.11 185.86 185.59 185.39	8.6 8.6 8.6 8.6 8.6 8.6	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9

DEPTH	ROP	ผกห	RPM	ми	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
1243.0 1244.0 1245.0 1246.0 1247.0 1248.0 1249.0 1250.0 1251.0	38.0 41.0 40.0 42.0 42.0 27.0 32.0 40.0 37.0	27.0 27.0 27.0 27.0 27.0	124	8.9 8.9 8.9 8.9 8.9 8.9	1.26 1.24 1.25 1.24 1.24 1.37 1.32 1.32	17.12 17.14 17.16 17.19 17.21 17.25 17.28 17.31 17.33	133803 133985 134172 134351 134529 134807 135041 135229 135432	93.21 86.39 88.55 84.33 84.33 131.19 110.69 88.55 95.73	184.94 184.72 184.50 184.28 184.05 183.94 183.77 183.56 183.37	8.6 8.6 8.6 8.6 8.6 8.6	14.9 14.9 14.9 14.9 14.9 14.9
1253.0 1254.0 1255.0 1256.0 1257.0 1258.0 1259.0 1260.0 1261.0	42.0 42.0 42.0 40.0 38.0 35.0 44.0	28.0 28.0 30.0 30.0 30.0 30.0 27.0 27.0 27.0	125 124 124 124 124 124 121 121	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1.26 1.27 1.27 1.27 1.27 1.29 1.30 1.28 1.21	17.39 17.41 17.43 17.46 17.50 17.50 17.56 17.56 17.61	135827 135998 136175 136352 136529 136715 136911 137119 137284 137465	88.55 80.50 84.33 84.33 88.55 93.21 101.20 80.50 88.55	182.97 182.75 182.53 182.32 182.10 181.90 181.71 181.53 181.31	8.6 8.6 8.6 8.6 8.6 8.6	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9
1263.0 1264.0 1265.0 1266.0 1267.0 1268.0 1269.0 1270.0 1271.0	25.0 29.0 30.0 25.0 25.0 25.0 28.0 28.0	27.0 27.0 30.0 30.0 30.0 30.0 26.0 26.0	121 120 120 120 120 120 128 128	8.9 8.9 8.9 8.9 8.9 8.9	1.22 1.39 1.38 1.37 1.43 1.43 1.43 1.35 1.35	17.63 17.67 17.71 17.74 17.78 17.82 17.86 17.89 17.93	137634 137924 138173 138413 138701 138989 139277 139551 139825 140252	141.68 122.14 118.07 141.68 141.68 141.68 126.50	180.90 180.82 180.69 180.56 180.47 180.39 180.31 180.19 180.08	8.6 8.6 8.6 8.6 8.6 8.6	14.9 14.9 14.9 14.9 14.9 14.9 14.9
1273.0 1274.0 1275.0 1276.0 1277.0 1278.0 1279.0 1280.0 1281.0	14.0 25.0 16.0 20.0 13.0 16.0 16.0	26.0 26.0 28.0 28.0 28.0 28.0 28.0 27.0 27.0	128 126	8.9 9.0 9.0 9.0 9.0 9.0 9.0	1.55 1.57 1.40 1.54 1.60 1.54 1.17 1.13	18.05 18.12 18.16 18.23 18.28 18.35 18.42 18.42 18.53	141312 141615 142087 142465 143047 143519 143669 143803	221.38	180.39 180.30 180.39 180.38 180.58 180.66 180.75	8.6 8.6 8.6 8.6 8.6 8.6	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9
1283.0 1284.0 1285.0 1286.0 1287.0 1288.0 1289.0 1290.0 1291.0	11.0 11.0 10.0 4.0 2.0 3.0 3.0	25.0 21.0 25.0 12.0	131 131 131 131 123 123	9.0 9.0 9.0 9.0 9.0 10.1 10.1	1.23 1.63 1.61 1.64 1.92 2.12 1.69 1.77 1.41	18.69 18.78 18.87 18.97 19.22 19.72 20.05 20.39 20.64 20.87	144854 145568 146354 148319 152249 154709 157169 159014	1771 1181 1181	181.45 181.74 182.09 183.53 187 189 191 192.24	8.6 8.6 8.6 8.6 8.6 8.6	14.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0

DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST PP FG
1293.0 4.3 13.0 123 10.1 1.42 21.11 162445 823.72 194.84 8.6 15.0

BIT NUMBER 4 HTC X3A COST 1300.00 TOTAL HOURS 4.14	SIZE TRIP TIME	114 INTERVA 12.250 NOZZLES 6.1 BIT RUN 33204 CONDITE	5 16 16 16 N 98.0
DEPTH ROP WOE	RPM MW "d"c	HOURS TURNS ICC	OST CCOST PP FG
1295.0 12.0 21.0	135 10.1 1.46 135 10.1 1.36 135 10.1 1.30	0.21 1688 2	943 23349 8.6 15.0 295 11822 8.6 15.0 236 7960 8.6 15.0
1297.0 13.0 21.0 1298.0 14.0 21.0 1299.0 15.0 21.0 1300.0 16.0 20.0 1301.0 16.0 20.0 1302.0 14.5 20.0 1303.0 15.5 20.0 1304.0 15.5 20.0 1305.0 27.0 22.0	135 10.1 1.30 135 10.1 1.27 135 10.1 1.27 135 10.1 1.29 135 10.1 1.28 135 10.1 1.28	0.42 3429 2 0.49 3969 2 0.55 4475 2 0.62 4982 2 0.68 5540 2 0.75 6063 2 0.81 6585 2 0.85 6890	272 6038 8.6 15.0 253 4881 8.6 15.0 236 4107 8.6 15.0 221 3552 8.6 15.0 221 3136 8.6 15.0 222 2556 8.6 15.0 229 2556 8.6 15.0 229 2344 8.6 15.0 229 2344 8.6 15.0
1307.0 24.0 22.0 1308.0 33.0 22.0 1309.0 36.0 22.0 1310.0 29.0 28.0 1311.0 40.0 28.0 1312.0 44.0 28.0 1313.0 33.0 28.0 1314.0 38.0 28.0 1315.0 39.0 29.0 1316.0 29.0 29.0	137 10.1 1.12 137 10.1 1.09 132 10.1 1.22 132 10.1 1.13 132 10.1 1.10 132 10.1 1.18 132 10.1 1.14 128 10.1 1.14	0.97 7839 1 0.99 8067 1.03 8340 1 1.05 8538 1.08 8718 1.11 8958 1 1.13 9167 1.16 9364	148 1873 8.6 15.0 107 1755 8.6 15.0 98 1652 8.6 15.0 122 1562 8.6 15.0 1480 8.6 15.0 1406 8.6 15.0 1341 8.6 15.0 1282 8.6 15.0 1228 8.6 15.0 122 1180 8.6 15.0
1318.0 33.0 29.0 1319.0 37.0 29.0 1320.0 37.0 26.0 1321.0 31.0 26.0 1323.0 30.0 26.0 1324.0 30.0 26.0 1325.0 34.0 27.0 1326.0 38.0 27.0	128 10.1 1.15 128 10.1 1.18 128 10.1 1.15 132 10.1 1.13 132 10.1 1.17 132 10.1 1.13 132 10.1 1.18 132 10.1 1.18 132 10.1 1.18 125 10.1 1.15	1.28 10271 1.30 10485 1.34 10740 114. 1.36 10960 98. 1.40 11224 118. 1.43 11488 118.	39 956.34 8.6 15.0 07 928.39 8.6 15.0 07 902.25 8.6 15.0
1328.0 29.0 27.0 1329.0 30.0 27.0 1330.0 30.0 27.0 1331.0 27.0 1332.0 28.0 27.0 1333.0 26.0 27.0 13334.0 25.0 27.0 1335.0 21.0 31.0	125 10.1 1.18 125 10.1 1.17 125 10.1 1.20	1.52 12156 118. 1.55 12415 122. 11.59 12665 118. 1.62 12915 118. 1.65 13157 114. 1.69 13425 126. 1.73 13713 136. 1.77 14013 141. 1.81 14399 168. 1.85 14710 136.	14 811.64 8.6 15.0 07 792.38 8.6 15.0 07 774.15 8.6 15.0 26 756.79 8.6 15.0 50 740.62 8.6 15.0 23 725.51 8.6 15.0 68 711.27 8.6 15.1 67 698.36 8.6 15.1

 DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	РP	FG
1337.0 1338.0 1339.0 1340.0 1341.0 1342.0 1343.0 1344.0 1345.0	24.0 30.0 30.0 25.0 36.0 40.0 37.0 36.0	33.0 33.0 33.0	135 138 138 138 138 138 138	10.1 10.1 10.1	1.32 1.31 1.25 1.28 1.33 1.23 1.20 1.22 1.48	1.90 1.94 1.97 2.00 2.04 2.07 2.10 2.12 2.15 2.18	15400	88.55 95.73 98.39	661.53 649.71 638.40	8.6 8.6 8.6 8.6 8.6 8.6	15.1 15.1 15.1 15.1 15.1 15.1 15.1
1347.0 1348.0 1349.0 1350.0 1351.0 1352.0 1353.0 1354.0 1355.0 1356.0	16.0 18.0 16.0 16.0 10.0 14.0 16.0	62.0 62.0 35.0 35.0 35.0 35.0 35.0	128 127 127 127 127 127 127	10.1 10.1 10.1	1.60 1.76 1.72 1.46 1.46 1.50 1.46 1.34	2.22 2.28 2.34 2.40 2.46 2.56 2.63 2.70 2.75 2.80	18152 18579 19055 19531 20293 20837 21314 21737	141.68 221.38 196.78 221.38 221.38 354.20 253.00 221.38 186.42 196.78	563.44 556.89 551.00 545.32 542.08 537.26 532.08 526.51	8.6 8.6 8.6 8.6 8.6 8.6	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1357.0 1358.0 1359.0 1360.0 1361.0 1362.0 1363.0 1364.0 1366.0	25.0 22.0 19.0 34.0 52.0 27.0 27.0	32.0 32.0 32.0 32.0 32.0	134 133 133 133 133 133		1.35 1.26 1.30 1.39 1.22 1.10 1.29 1.29 1.30	2.86 2.90 2.95 3.00 3.03 3.05 3.08 3.12 3.16 3.20	22952 23317 23737 23972 24125 24421 24717 25023	131.19 131.19	510.44 505.15 500.39 494.56 488.38 483.28 478.32 473.57	8.6 8.6 8.6 8.6 8.6 8.6	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1367.0 1368.0 1369.0 1370.0 1371.0 1372.0 1373.0 1374.0 1375.0	32.0 32.0 52.0 27.0 16.0 20.0 22.0	32.0 32.0 34.0 34.0 34.0 34.0 34.0 31.0	133 130 130 130 130 130 130	10.1 10.1 10.1 10.1 10.1 10.1	1.27 1.24 1.25 1.11 1.30 1.46 1.39	3.23 3.26 3.29 3.33 3.35 3.44 3.49 3.54 3.60	25855 26104 26348 26498 26787 27274 27664 28033	110.69 122.14 110.69 110.69 68.12 131.19 221.38 177.10 161.00 196.78	459.55 454.96 450.49 445.59 441.61 438.85 435.62 432.27	8.6 8.6 8.6 8.6 8.6 8.6	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1377.0 1378.0 1379.0 1380.0 1381.0 1382.0 1383.0 1384.0 1385.0	21.0 19.0 33.0 18.0 23.0 25.0 20.0	26.0 26.0	135 135 150 150 150 150 150	10.1 10.1 10.1 10.1 9.9 9.9 9.9	1.39 1.35 1.38 1.19 1.36 1.32 1.29 1.35 1.30	3.65 3.70 13.75 3.78 3.84 3.88 3.92 3.97 4.01 4.03	29318 29745 30017 30517 30909 31269 31719	196.78 168.67 186.42 107.33 196.78 154.00 141.68 177.10 136.23 88.55	423.63 420.87 417.27 414.76 411.83 408.83 406.28	8.6 8.6 8.6 8.6 8.6 8.6	15.1 15.1 15.1 15.1 15.1 15.1 15.1

What is a work the contract of the way is a series of the

DEPTH	ROP	WOB RPM	ММ	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1387.0	26.0	28.0 148	9.9	1.30	4.07	32624	136.23	397.16	8.6	15.1
1388.0	51.0	28.0 148	9.9	1.12	4.09	32798	69.45	393.71	8.6	15.1
1389.0	70.0	28.0 148	9.9	1.03	4.11	32925	50.60	390.13	8.6	15.1
1390.0	64.0	29.0 148	9.9	1.06	4.12	33063	55.34	386.68	8.6	15.1
1391.0	63.0	29.0 148	9.9	1.07	4.14	33204	56.22	383.31	8.6	15.2

4

`

•

BIT NUMBER 5 CHRISTENSEN C22 COST 15000.00 TOTAL HOURS 2.02	SIZE TRIP TIME	4 INTERVAL 8.468 NOZZLES 6.1 BIT RUN 11091 CONDITION	1392.0- 1404.4 13 13 13 - 12.4 TO BO GO.300
	RPM MW "d"c	HOURS TURNS ICOST	CCOST PP FG
1392.2 4.0 10.0 1392.4 5.0 10.0 1392.6 5.0 10.0	30 10.4 1.06	0.05 90 886 0.09 162 708 0.13 234 708	
1392.8	30 10.4 0.83 30 10.4 0.83 30 10.4 1.14 30 10.4 1.14 30 10.4 1.04 95 10.4 1.54 95 10.4 1.49	0.18 324 886 0.19 348 236 0.21 372 236 0.26 462 886 0.31 552 886 0.34 612 590 0.39 897 886 0.43 1125 708	37291 8.6 15.2 31115 8.6 15.2 26797 8.6 15.2 23558 8.6 15.2 21006 8.6 15.2 18994 8.6 15.2 17331 8.6 15.2
1394.4 5.0 16.1 1394.6 12.0 16.1	95 10.4 1.26	0.47 1353 708 0.49 1448 295	14742 8.6 15.2
1394.8 7.0 15. 1395.0 14.0 15. 1395.2 10.5 15. 1395.4 4.0 15. 1395.6 7.6 15. 1395.8 4.7 15. 1396.0 4.7 15. 1396.2 5.1 15. 1396.4 5.5 15. 1396.6 6.7 15.	95 10.4 1.20 95 10.4 1.28 95 10.4 1.52 95 10.4 1.36 95 10.4 1.48 95 10.4 1.48 95 10.4 1.48	0.52 1611 506 0.53 1692 253 0.55 1801 337 0.60 2086 886 0.62 2236 466 0.67 2478 754 0.71 2721 754 0.75 2944 695 0.79 3152 644 0.82 3322 529	11390 8.6 15.2 10783 8.6 15.2 10255 8.6 15.2 9780 8.6 15.2 9348 8.6 15.2
	95 10.4 1.46 95 10.4 1.54 95 10.4 1.35 95 10.4 1.36 95 10.4 1.39 95 10.4 1.37 95 10.4 1.37	0.84 3449 394 0.88 3672 695 0.93 3980 957 0.96 4128 460 0.98 4278 466 1.01 4451 537 1.04 4612 499 1.07 4762 466 1.10 4962 621 1.13 5127 443	6930 8.6 15.2 6716 8.6 15.2 6514 8.6 15.2 6330 8.6 15.2
1399.0 6.2 16.1399.2 5.4 16.1399.4 8.0 16.1399.6 14.6 16.1399.8 15.6 16.1400.0 11.2 16.1400.2 6.9 16.1400.4 6.7 16.	110 10.4 1.59 110 10.4 1.47 110 10.4 1.50 110 10.4 1.40 110 10.4 1.25 110 10.4 1.23 110 10.4 1.32 110 10.4 1.44 110 10.4 1.45	1.18 5474 932 1.21 5687 571 1.25 5931 656 1.28 6096 443 1.29 6187 243 1.30 6271 227 1.32 6389 316 1.35 6580 513 1.38 6777 529 1.40 6940 437	5843 8.6 15.2 5699 8.6 15.2 5557 8.6 15.2 5417 8.6 15.2 5284 8.6 15.2 5160 8.6 15.2 5047 8.6 15.2

												-
	DEPTH	ROP	MOB	RPM	MW	"d "c:	HOURS	TURNS	ICOST	CCOST	PP	FG
	1400.8	6.9	16.0	110	10.4	1.44	1.43	7132	513	4736	8.6	15.2
	1401.0	7.6	15.0	110	10.4	1.39	1.46	7305	466	4641	8.6	15.2
	1401.2	13.6	15.0	110	10.4	1.25	1.47	7402	260	4546	8.6	15.2
	1401.4	4.9	17.0	110	10.4	1.55	1.51	7672	723	4465	8.6	15.2
8	1401.6	8.7	17.0	110	10.4	1.40	1.54	7824	407	4380	8.6	15.2
	1401.8	3.4	17.0	110	10.4	1.65	1.60	8212	1042	4312	8.6	15.2
	1402.0	2.6	17.0	110	10.4	1.72	1.67	8720	1362	4253	8.6	15.2
	1402.2	5.2	17.0	110	10.4	1.54	1.71	8973	681	4183	8.6	15.2
	1402.4	5.0	17.0	110	10.4	1.55	1.75	9237	708	4116	8.6	15.2
	1402.6	3.7	16.0	110	10.4	1.60	1.80	9594	957	4057	8.6	15.2
	1402.8	5.7	16.0	110	10.4	1.49	1.84	9826	621	3993	8.6	15.2
	1403.0	8.2	16.0	110	10.4	1.40	1.86	9987	432	3928	8.6	15.2
	1403.2	42.0	16.0	110	10.4	0.98	1.87	10018	84	3860	8.6	15.2
	1403.4	16.4	16.0	110	10.4	1.22	1.88	10099	216	3796	8.6	15.2
_	1403.6	12.8	17.0	120	10.4	1.33	1.90	10211	277	3735	.8.6	15.2
	1403.8	12.4	17.0	120	10.4	1.34	1.91	10327	286	3676	8.6	15.2
	1404.0	13.4	17.0	120	10.4	1.32	1.93	10435	264	3620	8.6	15.2
	1404.2	14.0	17.0	120	10.4	1.30	1.94	10538	253	3564	8.6	15.2
	1404.4	2.6	15.0	120	10.4	1.68	2.02	11091	1362	3529	8.6	15.2

G

•

4

•

•

BIT NUMBE CHRISTENS COST TOTAL HOU	EN C22 15000.00	SIZE	E I ME	8.468 NO2 6.2 BIT	TERVAL ZZLES T RUN NDITION		0- 1418.2 13 13 13 13.2 30 G0.800
 DEPTH	ROP WOB	RPM MW	"d"c HOL	JRS TURNS	ICOST	CCOST	PP FG
1405.2 1405.4 1405.6	3.0 12.0 1.4 12.0 4.3 12.0	70 10.1	1.66 2.	09 11371 23 11971 28 12169	1181 2530 824	3360 3348 3310	8.6 15.2 8.6 15.2 8.6 15.2
1405.8 1406.0 1406.2 1406.4 1406.6 1407.0 1407.2 1407.4 1407.6	4.9 12.0 2.5 14.0 3.0 14.0 3.2 14.0 3.4 16.0 4.7 16.0 6.7 16.0 3.2 16.0 3.6 16.0	83 10.1 83 10.1 83 10.1 85 10.1 85 10.1 85 10.1 84 10.1	1.62 2. 1.57 2. 1.56 2. 1.60 2. 1.52 2. 1.42 2. 1.61 2.	32 12343 40 12741 46 13073 53 13385 58 13685 63 13902 66 14054 72 14369 78 14649 84 15033	723 1417 1181 1107 1042 754 529 1107 984 1181	3273 3246 3217 3188 3159 3126 3091 3065 3038 3015	8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2
1407.8 1408.0 1408.2 1408.4 1408.6 1409.0 1409.2 1409.4 1409.6	4.7 16.0 3.0 15.0 4.5 15.0 4.9 15.0 8.0 15.0 3.0 15.0 3.8 15.0 4.7 15.0 2.9 15.0	96 10.1 96 10.1 96 10.1 96 10.1 96 10.1 96 10.1 96 10.1	1.64 2. 1.53 3. 1.51 3. 1.39 3. 1.64 3. 1.58 3. 1.52 3.	88 15278 95 15662 00 15918 04 16153 06 16297 13 16681 18 16984 22 17229 29 17627 40 18233	754 1181 787 723 443 1181 932 754 1221 1864	2986 2943 2936 2909 2880 2840 2837 2813 2794 2784	8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2
1409.8 1410.0 1410.2 1410.4 1410.6 1410.8 1411.0 1411.2 1411.4	1.5 15.0 1.6 17.0 1.3 17.0 1.4 17.0 2.4 15.0 3.0 15.0 4.6 15.0 2.5 15.0 3.2 15.0	94 10.1 94 10.1 94 10.1 90 10.1 90 10.1 90 10.1 94 10.1	1.85 3. 1.91 3. 1.89 3. 1.68 4. 1.62 4. 1.51 4. 1.68 4.	53 19001 66 19706 81 20574 95 21379 04 21829 10 22189 15 22424 23 22875 29 23228 37 23698	2361 2214 2725 2530 1476 1181 770 1417 1107 1476	2779 2773 2772 2770 2756 2739 2718 2705 2688 2676	8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2
1411.8 1412.0 1412.2 1412.4 1412.6 1412.8 1413.0 1413.2 1413.4 1413.6	6.6 16.0 6.6 16.0 5.4 16.0 10.2 16.0 25.8 16.0 10.5 16.0 17.7 16.0 36.0 16.0 23.0 16.0	94 10.1 94 10.1 94 10.1 94 10.1 94 10.1 94 10.1 94 10.1	1.45 4. 1.51 4. 1.34 4. 1.10 4. 1.33 4. 1.20 4. 1.01 4. 1.13 4.	40 23869 43 24040 47 24249 49 24359 50 24403 52 24510 53 24574 53 24605 54 24675		2654 2633 2613 2591 2567 2546 2524 2501 2479 2456	8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2

				•								
	DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	1413.8	23.0	16.0	94	10.1	1.13	4.55	24724	154	2435	8.6	15.2
	1414.0	34.0	10.0	90	10.1	0.90	4.56	24756	104	2414	8.6	15.2
	1414.2			90	10.1	0.97	4.57	24799	142	2394	8.6	15.2
	1414.4			90	10.1	1.05	4.58	24859	197	2374	8.6	15.2
8	1414.6	23.0	10.0	90	10.1	0.99	4.59	24906	154	2354	8.6	15.2
	1414.8	22.0	10.0	90	10.1	1.00	4.60	24955	161	2335	8.6	15.2
	1415.0	21.0	10.0	90	10.1	1.01	4.61	25007	169	2316	8.6	15.2
	1415.2	18.0	10.0	90	10.1	1.05	4.62	25067	197	2298	8.6	15.2
	1415.4	13.0	10.0	90	10.1	1.13	4.63	25150	272	2281		15.2
_	1415.6	13.0	10.0	90	10.1	1.13	4.65	25233	272	2264	8.6	15.2
	1415.8	5.8	10.0	90	10.1	1.31	4.68	25419	611	2250	8.6	15.2
	1416.0	10.0	10.0	90	10.1	1.19	4.70	25527	354	2234		15.2
	1416.2	6.7	10.0	90	10.1	ì.28	4.73	25688	529	2220		15.2
	1416.4	8.0	10.0	90	10.1	1,24	4.76	25823	443	2205	8.6	15.2
	1416.6	13.0	10.0	90	10.1	1.13	4.77	25906	272	2190	8.6	15.2
_	1416.8	6.4	10.0	90	10.1	1.29	4.80	26075	553	2176	8.6	15.2
	1417.0	5.3	14.0	93	10.1	1.46	4.84	26286	668	2164	8.6	15.2
	1417.2	5.8	14.0	93	10.1	1.43	4.88	26478	611	2152	8.6	15.2
	1417.4	5.3	14.0	93	10.1	1.46	4.91	26689	668	2140	8.6	15.2
	1417.6	4.2	14.0	93	10.1	1.52	4.96	26954	843	2130	8.6	15.2
									•			
	1417.8	4.4	14.0	93	10.1	1.50	5.01	27208	805	2120	8.6	15.2
	1418.0	6.6	15.0	94	10.1	1.43	5.04	27379	537	2108	8.6	15.2
	1418.2	4.3	15.0	94	10.1	1.54	5.08	27641	824	2098	8.6	15.2

			9	IADC C SIZE TRIP T FOTAL		114 12.250 6.4 36973	BI. NO:	TERVAL ZZLES T RUN NDITION		0- 1495.0 14 14 15 77.0 B6 G0.750
DEPTH	I ROP	WOB	RPM	мы	" cl " c:	HOURS	TURNS	ICOST	CCOST	PP FG
1419.0 1420.0 1421.0	16.0	16.0	150	10.1 10.1 10.1	1.23	0.04 0.10 0.16	270 833 1362	127 221 208	24195 12208 8208	8.6 15.2 8.6 15.2 8.6 15.2
1422.0 1423.0 1424.0 1425.0 1426.0 1427.0 1428.0 1429.0 1430.0	13.0 14.5 37.0 21.0 17.0 30.0 34.0 53.0	16.0 17.0 14.0 14.0 20.0 20.0 23.0	150 150 140 140 145 145 135	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.28 1.27 0.98 1.11 1.16 1.13 1.10	0.22 0.30 0.37 0.40 0.44 0.50 0.54 0.57 0.58	1962 2654 3275 3502 3902 4396 4686 4942 5095	236 272 244 96 169 208 118 104 67	6215 5027 4230 3639 3205 2872 2597 2370 2178 2016	8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2
1432.0 1433.0 1434.0 1435.0 1436.0 1437.0 1438.0 1439.0 1440.0	28.0 28.0 47.0 36.0 20.0 28.0 32.0 36.0	23.0 23.0 23.0 23.0 23.0 21.0 21.0	135 135 135 135 135 125 125	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.17 1.17 1.03 1.10 1.26 1.12 1.09	0.62 0.65 0.69 0.71 0.74 0.79 0.82 0.86 0.88	5361 5651 5940 6112 6337 6742 7010 7245 7461 7761	49 127 75 98 177 127 111 98	1875 1759 1657 1564 1482 1414 1349 1290 1236	8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2
1442.0 1443.0 1444.0 1445.0 1447.0 1448.0 1449.0 1450.0	43.0 56.0 23.0 45.0 44.0 49.0 73.0	17.0 17.0 19.0 19.0 19.0 19.0	130 130 130 130 130 130 130	10.1	0.97 0.91 1.15 0.99 0.99 0.96 0.87	0.94 0.97 0.98 1.03 1.05 1.07 1.07 1.11	7924 8105 8244 8584 8757 8934 9093 9200 9262 9519	82 63 154 78.71 80.50 72.29 48.52	1026 992.29 960.85 931.23 902.76 875.49	8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.2 8.6 15.3 8.6 15.3
1452.0 1453.0 1454.0 1455.0 1456.0 1457.0 1458.0 1459.0 1460.0	116.0 49.0 38.0 37.0 36.0 38.0 31.0	26.0 26.0 22.0 23.0 22.0 21.0 21.0 24.0	125 125 125 145 145 143 143	10.1 10.1 10.1 10.1	0.80 1.04 1.06 1.12 1.11 1.08 1.13	1.16 1.17 1.19 1.22 1.24 1.27 1.30 1.33 1.36	9601 9666 9819 10016 10252 10493 10719 10996 11228 11448	30.53 72.29 93.21 95.73 98.39 93.21 114.26 95.73	828.86 806.05 785.67 766.95 749.29 732.60 716.61 701.92 687.49 673.61	8.6 15.3 8.6 15.3 8.6 15.3 8.6 15.3 8.6 15.3 8.6 15.3 8.6 15.3 8.6 15.3

-

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PP	FG
1462.0 1463.0 1464.0 1465.0 1466.0 1467.0 1468.0 1469.0 1471.0	29.0 37.0 40.0 46.0 19.0 50.0 40.0	26.0 25.0 19.0 20.0 20.0 20.0 17.0 17.0 19.0	136 140 142 142 142 142 142 142	10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.19 1.05 1.05 1.02 1.24 0.96 1.01 0.97	1.41 1.45 1.48 1.50 1.52 1.57 1.59 1.62 1.64		88.55 77.00 186.42 70.84 88.55 68.12	648.85	8.6 8.6 8.6 8.6 8.6 8.6	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1472.0 1473.0 1474.0 1475.0 1476.0 1477.0 1478.0 1479.0 1480.0 1481.0	34.0 36.0 13.0 13.0 40.0 20.0 23.0 24.0	19.0 19.0 14.0 14.0 20.0 20.0 17.0 17.0 19.0	142 144 144 144 140 140 142	10.1 10.1 10.1 10.1 10.1 10.1	1.08 0.99 1.23 1.34 1.05 1.17 1.14	1.68 1.71 1.74 1.82 1.90 1.92 1.97 2.01 2.06 2.16	14488 15152 15817 16033 16453 16818 17173	272.46 272.46	539.98 535.29 530.76 523.26 517.49 511.53 505.66	8.6 8.6 8.6 8.6 8.6 8.6	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1482.0 1483.0 1484.0 1485.0 1486.0 1487.0 1488.0 1489.0 1490.0	6.0 9.0 5.0 3.5 8.0 6.0 17.0	19.0	142 133 135 135 135 135 65 65	10.1	1.51 1.39 1.60 1.65 1.42 1.50 1.04	2.25 2.41 2.52 2.72 3.01 3.14 3.30 3.36 3.42 3.48	20220 21106 22726 25041 26053 27403 27633 27849	322.00 590.33 393.56 708.40 1012 442.75 590.33 208.35 196.78 208.35	501.81 500.17 503.28 511 509.77 510.92 506.66 502.36	8.6 8.6 8.6 8.6 8.6 8.6	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1492.0 1493.0 1494.0 1495.0	5.4 1.8	18.0 19.0 26.0 40.0	133 135	10.1 10.1 10.1 10.1	1.52	3.53 3.72 4.27 4.60		196.78 655.93 1968 1181		8.6 8.6	15.3 15.3 15.3

BIT NUMBE HTC JD4 COST TOTAL HOL	1800.0	9 0 T	ADC CODE IZE RIP TIME OTAL TURNS	217 12.250 6.8 49693	BI.	TERVAL ZZLES T RUN NDITION		0- 15 15 1 B5 G0	5 14 90.0
DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	bb.	FG
1496.0 1497.0 1498.0	28.0 26.	0 130	10.1 1.20 10.1 1.20 10.1 1.19	0.04 0.07 0.10	279 557 817	127 127 118	26012 13069 8752	8.6	15.3 15.3 15.3
1499.0 1500.0 1501.0 1502.0 1503.0 1504.0 1505.0 1506.0 1507.0 1508.0	16.0 28. 16.0 28. 28.0 31. 9.0 32. 19.0 34. 9.0 34. 25.0 31. 23.0 27.	0 130 0 130 0 128 0 127 0 127 0 127 0 130 0 122	10.1 1.38 10.1 1.25 10.1 1.59 10.1 1.40 10.1 1.62 10.1 1.29	0.13 0.20 0.26 0.29 0.41 0.46 0.57 0.61 0.65	1047 1534 2022 2296 3143 3544 4390 4702 5020 5282	104 221 221 127 394 186 394 142 154	6590 5316 4467 3847 3415 3057 2790 2550 2350 2179	8.6 8.6 8.6 8.6 8.6 8.6	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
1509.0 1510.0 1511.0 1512.0	24.0 27. 18.0 28. 14.0 27. 20.0 28.	0 118 0 115	10.1 1.32 10.1 1.37	0.73 0.79 0.86 0.91	5587 5980 6473 6824	148 197 253 177	2034 1911 1808 1712	8.6 8.6	15.4 15.4 15.4 15.4
1513.0 1514.0 1515.0 1516.0 1517.0 1518.0	56.0 25.	0 114 0 114 0 116 0 116	18:1 1:38 10:1 1:19	0.97 1:20 1:25 1.25 1.27	7263 8366 8855 9171 9295 9432	221 573 253 161 63 69	1629 1507 1507 1443 1380 1323	8.6 8.6 8.6	15.4 15.4 15.4 15.4 15.4
1519.0 1520.0 1521.0 1522.0 1523.0 1524.0 1525.0 1526.0 1527.0 1528.0	59.0 18. 59.0 23. 45.0 24. 50.0 22. 59.0 22.	0 116 0 115 0 117 0 117 0 114 0 114 0 115 0 115	10.1 0.83	1.30 1.32 1.33 1.35 1.37 1.39 1.41 1.43	9556 9657 9753 9912 10031 10147 10299 10437 10554 10704	49 81 60 60 79 70.84 60.03	1271 1222 1177 1136 1098 1062 1029 998.50 969.17	8.6 8.6 8.6 8.6 8.6 8.6	15.4 15.4 15.4 15.4 15.4 15.4 15.4
1529.0 1530.0 1531.0 1532.0 1533.0 1534.0 1535.0 1536.0 1537.0	7.0 32. 4.0 33. 6.0 32. 7.0 32. 24.0 32. 27.0 32. 33.0 32. 35.0 32.	0 100 0 100 0 68 0 68 0 115 0 115 0 116	10.1 1.41 10.1 1.59 10.1 1.77 10.1 1.53 10.1 1.48 10.1 1.28 10.1 1.25 10.1 1.19 10.1 1.19	1.58 1.72 1.97 2.14 2.28 2.32 2.36 2.39 2.42 2.44	12328 13828 14508 15091 15378 15634 15845	393.56 506.00 885.50 590.33 506.00 147.58 131.19 107.33 101.20	914.00 913.21 904.49 894.00 874.86 856.27 838.00	8.6 8.6 8.6 8.6 8.6 8.6	15.4 15.4 15.4 15.4 15.4

_	DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	1539.0 1540.0	28.0	30.0	109	10.1	1.20	2.45		126.50		8.6	15.4 15.4
_	1541.0 1542.0				10.1.		2.59 2.79		354.20 708.40			15.4 15.4
	1543.0 1544.0		30.0		10.1	1.55 1.32	2.91 2.97		442.75 186.42			15.4 15.4
•	1545.0	12.0	30.0	115	10.1	1.45	3.05	20208	295.17	733.75	8.6	15.4
	1546.0 1547.0		31.0		10.1	1.68	3.23 3.43		632.50 708.40			15.4 15.4
	1548.0		33.0			1.66	3.58		528.66			15.4
	1549.0 1550.0		27.0		10.1	1.29	3.63 3.65	24185 24303	186,42	717.47 705.51		15.4 15.4
	1551.0	49.0	17.0	116	10.1	0.91	3.67	24445	72.29	694.21	8.6	15.4
	1552.0 1553.0				10.1		3.69 3.70	24582 24682		683.25 672.35		15.4 15.4
	1554.0	51.0	30.0	114	10.1	1.04	3.72	24817	69.45	662.13	8.6	15.4
	1555.0 1556.0		28.0		10.1	0.86 1.06	3.73 3.75	24888 25042		651.71 642.35		15.4 15.4
_	1557.0	28.0	32.0	114	10.1	1.23	3.79	25286	126.50		8.6	15,4
	1558.0				10.1	1.22	3.82	25570	118.07	620.84		15.4
	1559.0		20.0			0.92	3,84 3,86	25696 25838		616.88 608.37		15.4 15.4
	1560:0 1561:0	56:0 59:0	23:0 27:0	$\begin{array}{c} 133\\ 133\end{array}$	$10.1 \\ 10.1$	0.98 1.01	3.87	25973	60.03	600.06	8.6	15.4
	1562.0 1563.0		27.0		10.1	1.01	3.89 3.92	26109 26343	60.03	592.00 584.83		15.4 15.4
	1564.0	35.0	27.0	133	10.1	1.16	3.95	26571	101.20	577.82	8.6	15.4
_	1565.0 1566.0		27.0			1.10	3.97 3.99	26757 26913		570.74 563.68		15.4 15.4
	1567.0	44.0	27.0	120	10.1	1.07	4.01	27077	80.50	556.97	8.6	15.4
	1568.0		27.0			1,09	4.03	27253		550.37		15.4
	1569.0 1570.0	36.0 63.0			10.1		4.06 4.08	27483 27615		544.26 537.76		15.4 15.4
-	1571.0	80.0	28.0	138	10.1	0.95	4.09	27718	44.28	531.26	8.6	15.5
	1572.0 1573.0		25.0		10.1	1.00	4.11 4.12	27834 27962		525.02 519.01		15.5 15.5
	1574.0				10.1		4.14	28102	63.25	513.24	8.6	15.5
	1575.0 1576.0		15.0 16.0			$0.95 \\ 0.94$	4.16 4.18	28287 28457		507,88 502,54		15.5 15.5
	1577.0 1578.0		16.0		10.1	0,94	4.21 4.53	28627 31201	75.36 1143	497.33 505	8.6	15.5 15.5
	1579.0 1580.0		32.0 30.0			1.90 1.91	4.91 5.35	33740 36713	1362 1540	515 527	8.6 8.6	15.5 15.5
	1581.0	2.7	30.0	115	10.1	1.87	15.72	39269	1312	536	8.6	15.5
	1582.0 1583.0		28.0 33.0		10.1	1.96 1.96	6.31 6.72	43363 46313	2084 1476	554 565	8.6 8.6	15.5 15.5
_	1584.0	5.0	40.0	114	10.1	1.84	6.92	47681	708.40	566.35	8.6	15.5
	1585.0	এ.4	46.U	114	10.1	1.77	7.22	49693	1042	572	0.0	15.5

BIT NUMBER IADC CODE 517 INTERVAL 1585.0- 1986.0 HTC J22 SIZE 12.250 NOZZLES 15 15 14 COST 4200,00 TRIP TIME 8.2 BIT RUN 401.0 T5 B4 G0.188 TOTAL HOURS 40.51 TOTAL TURNS 244481 CONDITION MW "d"c HOURS PP F.C DEPTH ROP WOB RPM TURNS ICOST CCOST 1586.0 4.6 10.0 80 10.1 1.23 0.22 1043 770 34014 8.6 15.5 81 10.1 1.35 770 1587.0 4.6 15.0 0.43 2100 17392 8.6 15.5 4.7 18.0 754 1588.0 75 10.1 1.39 0.65 3057 11846 8.6 15.5 0.97 8,6 15.5 1589.0 3.1 19.0 75 10.1 1.51 4509 1143 9170 4.4 20.0 75 10.1 1.45 1.20 805 7497 8,6 15.5 1590.0 5532 6.7 20.0 8.6 15.5 1591.0 75 10.1 1.34 1.35 6203 529 6336 1592.0 3.7 20.0 75 10.1 1.49 1.62 7420 957 5567 8.6 15.5 1.71 10.9 21.0 4912 8.6 15.5 1593.0 72 10.1 1.22 7816 325 1.77 16.0 22.0 72 10.1 1.14 8086 221 4391 8.6 15.5 1594.0 1595.0 24.0 7.0 90 10.1 0.84 1.81 8311 148 3967 8.6 15.5 1.85 1596.0 24.0 7.0 90 10.1 0.84 8536 148 3619 8.6-15.5 32.0 1597.0 6.0 90 10.1 0.76 1.89 8705 111 3327 8.6 15.5 47.0 10.0 90 10.1 0.76 1.91 75 3077 8.6 15.5 1598.0 8820 8.6 15.5 1599.0 23.0 23.0 90 10.1 1.11 1.95 9054 154 2868 88 10.1 1.41 1600.0 9.6 28.0 2.05 9604 369 2701 8,6 15.5 90 10.1 1.37 1601.0 8.1 22.0 2.18 10271 437 2560 8.6 15.5 32.0 23.0 1602.0 90 10.1 1.03 2.21 10440 111 2416 8.6 15.5 25.0 22.0 90 10.1 1.08 142 2290 8.6 15.5 1603.0 2.25 10656 24.0 22.0 2.29 10881 148 1604.0 90 10.1 1.09 2177 8.6 15.5 90 10.1 1.08 25.0 22.0 2.33 1605.0 11097 142 2075 8.6 15.5 24.0 22.0 90 10.1 1.09 2.37 148 1983 8.6 15.5 1606.0 11322 34.0 25.0 2.40 1607.0 94 10.1 1.05 11488 104 1898 8.6 15.5 25.0 24.0 1608.0 25 10.1 0.77 2.44 11548 142 1821 8.6 15.5 1609.0 28.0 24.0 95 10.1 1.09 2,48 11751 127 1751 8.6 15.5 1610.0 20.0 20.0 26 10.1 0.80 2.53 11829 177 1688 8.6 15.5 7.6 30.0 26 10.1 1.16 2.66 12034 1641 8.6 15.5 1611.0 466 2.78 8.6 15.5 8.2 30.0 95 10.1 1.50 12730 1612.0 432 1596 8.6 15.5 7.2 34.0 95 10.1 1.60 2.92 13521 492 1557 1613.0 5.8 51.0 100 10.1 1.90 40.0 51.0 100 10.1 1.26 3.09 14556 1524 8.6 15.5 1614.0 611 14706 8.6 15.5 1615.0 3.12 89 1476 35.0 50.0 100 10.1 1.30 3.15 14877 1432 8.6 15.5 1616.0 . 101 32.0 40.0 100 10.1 1.24 3.18 15065 1391 8.6 15.5 1617.0 111 1618.0 17.0 38.0 102 10.1 1.41 3.24 15425 208 1355 8.6 15.5 118 8.6 15.5 1619.0 30.0 39.0 105 10.1 1.26 3.27 15635 1318 1620.0 14.0 39.0 105 10.1 1.49 3.34 253 8.6 15.5 16085 1288 1621.0 26.0 38.0 105 10.1 1.29 3.38 16327 136 1256 8.6 15.5 1622.0 18.0 36.0 104 10.1 1.38 3,44 16674 197 1227 8.6 15.5 21.0 36.0 104 10.1 1.33 3,48 16971 169 1199 8.6 15.5 1623.0 8.6 15.5 38.0 30.0 104 10.1 1.10 3.51 93 1171 17135 1624.0 98 36.0 36.0 103 10.1 1.17 8,6 15.5 1625.0 3.54 17307 1144 36.0 40.0 102 10.1 1.21 8.6 15.5 1626.0 3.56 17477 98 1119 23.0 40.0 102 10.1 1.34 1627.0 3.61 17743 154 1096 8.6 15.5 29.0 40.0 102 10.1 1.27 1073 1628.0 3.64 17954 122 8.6 15.5

DEP	TH ROP	MOR	RPM	MIJ	"d "c	HOURS	TURNS	ICOST	CCOST	pР	FG
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638	.0 19.0 .0 25.0 .0 21.0 .0 25.0 .0 21.0 .0 24.0 .0 8.9 .0 15.0	40.0 40.0 40.0 40.0	102 102 102 102 102 102 102		1.34 1.42 1.33 1.38 1.38 1.34 1.65 1.49	3.68 3.74 3.78 3.82 3.86 3.91 3.95 4.07 4.13 4.17		141.68 168.67 147.58	934.25 920.82	8.6 8.6 8.6 8.6 8.6 8.6	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1639 1640 1641 1642 1643 1644 1645 1646 1648	.0 44.0 .0 21.0 .0 21.0 .0 21.0 .0 7.1 .0 30.0 .0 7.8 .0 4.6	40.0 41.0 41.0 41.0 35.0 38.0 36.0 37.0 41.0	102 105 105 105 105 105 105	10.0 10.0 10.0 10.0 10.0 10.0	1.65 1.82	4.20 4.22 4.27 4.32 4.37 4.51 4.54 4.67 4.89 5.09	21379 21518 21818 22118 22418 23305 23515 24323 25692 26990	80.50 168.67 168.67 168.67 498.87 118.07 454.10	834.13 822.20 816.17 815.42	8.6 8.6 8.6 8.6 8.6 8.6	15.5 15.6 15.6 15.6 15.6 15.6 15.6
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658	.0 21.0 .0 30.0 .0 34.0 .0 37.0 .0 7.6 .0 6.4 .0 18.0 .0 20.0	41.0 39.0 39.0 36.0 36.0 39.0 39.0 38.0 38.0	105 105 105 105 105 105 105 105	10.0 10.0 10.0 10.0 10.0 10.0	1.38 1.27 1.21 1.18 1.69 1.75 1.42	5.21 5.29 5.32 5.35 5.48 5.69 5.74 5.78	27766 28066 28276 28461 28632 29461 30445 30795 31110 31301	168.67 118.07 104.18 95.73 466.05 553.44 196.78 177.10	798.15 787.84 777.64 767.61 763.24 760.24 752.31 744.32	8.6 8.6 8.6 8.6 8.6 8.6	15.6 15.6 15.6 15.6 15.6 15.6 15.6
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668	.0 33.0 .0 30.0 .0 25.0 .0 27.0 .0 28.0 .0 35.0 .0 18.0	38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0	102 102 102 102 102 102 105	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.23 1.26 1.31 1.29 1.28 1.21 1.42	5.81 5.84 5.87 5.91 5.95 5.99 6.01 6.11	31691 31895 32139 32366 32585 32760 33110 33335		719.03 711.12 703.72 696.38 689.17 681.82 675.83 669.13	8.6 8.6 8.6 8.6 8.6 8.6 8.6	15.6 15.6 15.6 15.6 15.6 15.6 15.6
1669 1670 1671 1672 1673 1674 1675 1676 1677	.0 28.0 .0 33.0 .0 20.0 .0 17.0 .0 23.0 .0 38.0 .0 31.0		105 102 102 103 103 103 103	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.28 1.23 1.41 1.46 1.31	6.17 6.21 6.24 6.29 6.35 6.39 6.42 6.45 6.48	33984 34175 34481 34841 35109 35272 35471 35677	107.33 126.50 107.33 177.10 208.35 154.00 93.21 114.26 118.07 632.50	649.81 643.50 638.14 633.26 627.87 621.93 616.35 610.94	8.6 8.6 8.6 8.6 8.6 8.6	15.6 15.6 15.6 15.6 15.6 15.6 15.6

. •

<u> </u>)EPTH	ROP	MOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
	579.0 580.0 581.0 582.0 583.0 584.0 585.0 586.0	9.0 3.1 3.8 6.4 26.0 12.0 7.3 11.0	40.0 41.0 34.0 34.0 37.0 35.0 36.0 36.0	103 102 105 105 105 105 105	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.65 1.99 1.83 1.68 1.30 1.50	7.01 7.12 7.44 7.70 7.86 7.90 7.98 8.12 8.21 8.27	41584 43241 44226 44468 44993 45856 46429	1221 393.56 1143 932.11 553.44 136.23 295.17 485.21 322.00 208.35	615.30 621 624.00 623.28 618.36 615.13 613.85 610.98	8.6 8.6 8.6	15.6 15.6 15.6 15.6 15.6 15.6 15.6
1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	689.0 690.0 691.0 692.0 693.0 694.0 695.0 696.0 697.0	12.0 5.2 5.6 5.1 5.9 7.8 4.4 10.0	36.0 36.0 35.0 36.0 36.0 36.0 28.0 28.0	100 102 100 100 100 100 110	10.0 10.0 10.0	1.50 1.76 1.72 1.76 1.72 1.63 1.70	8.41 8.49 8.68 8.86 9.06 9.23 9.35 9.58 9.75	48174 49351 50423 51599 52616 53385 54885 55545	491.94 295.17 681.15 632.50 694.51 600.34 454.10 805.00 354.20 236.13	603.01 603.75 604.01 604.85 604.81 603.44 605.26 603.02	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	15.6 15.6 15.6 15.6 15.6 15.6
	699.0 700.0 701.0 702.0 703.0 704.0 705.0 706.0 707.0	9.6 4.0 3.8 6.9 27.0 22.0 36.0 38.0	26.0 26.0 34.0 34.0 31.0 29.0 29.0	114 117 117 117 117 113 119	10.0 10.0 10.0 10.0	1.47 1.70 1.86 1.69 1.25 1.30 1.15	9.82 9.92 10.17 10.43 10.58 10.61 10.66 10.69 10.71	57154 58864 60711 61729 61989	513.33 131.19 161.00 98.39 93.21	594.60 597.11 599.97 599.24 595.30	8.6 8.6 8.6	15.6 15.6 15.6 15.6 15.6 15.6 15.6
		22.0 7.3 5.9 8.5 3.6 5,1 9.0 9.0	28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	119 118 118 119 119 119	10.0 10.0 10.0 10.0	1.58 1.64 1.54 1.78 1.68 1.53	10.78 10.82 10.96 11.13 11.25 11.53 11.72 11.83 11.94 12.01	63470 64448 65648 66481 68465 69865 70658 71451		571.98 572.20 570.99 574.19 575.11 573.73 572.36	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	15.7 15.7 15.7 15.7 15.7 15.7
	719.0 720.0 721.0 722.0 723.0 724.0 725.0 726.0 728.0	20.0 20.0 23.0 20.0 9.0 4.0 11.0 13.0	28.0 28.0 26.0 26.0 29.0 27.0 27.0 20.0	119 120 120 120 120 120 120	10.0 10.0 10.0	1.30 1.30 1.24 1.28 1.54 1.74 1.46	12.05 ,12.10 12.15 12.19 12.24 12.36 12.61 12.70 12.77 12.85	72565 72922 73235 73595 74395 76195 76850 77403	154.00 177.10 177.10 154.00 177.10 393.60 885.50 322.00 272.46 272.46	563.74 560.89 557.92 555.16 554.00 556.37 554.71 552.72	8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	15.7 15.7 15.7 15.7 15.7 15.7

_	DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	1729.0 1730.0 1731.0 1732.0 1733.0 1734.0 1735.0 1736.0 1737.0	24.0 14.0 31.0 17.0 16.0 10.0 12.0 8.5	21.0 22.0 22.0 19.0 19.0 19.0 22.0	116 116 105 105 105 105 116 110	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.15 1.29 1.08 1.23 1.20 1.32 1.30	12.92 12.96 13.03 13.17 13.13 13.19 13.29 13.37 13.49 13.55	78717 79214 79417 79788 80182 80812 81392 82168	253.00 114.26	545.92 543.92 541.00 538.75 536.62 535.40 533.81 533.04	8.6 8.6 8.6 8.6 8.6 8.6	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
	1739.0 1740.0 1741.0 1742.0 1743.0 1744.0 1745.0 1746.0 1747.0	13.0 9.0 16.0 7.6 11.0 9.0 12.0	21.0 22.0 22.0 22.0 22.0 22.0	110 115 115 115 115 115 115	10.0 10.0 10.0 10.0 10.0	1.30 1.39 1.27 1.47 1.37 1.42 1.33	13.61 13.68 13.80 13.86 13.99 14.08 14.19 14.27 14.35 14.47		272.46	527.18 526.32 524.38 524.01 522.74 521.93	8.6 8.6 8.6 8.6 8.6 8.6	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
	1749.0 1750.0 1751.0 1752.0 1753.0 1754.0 1755.0 1756.0 1757.0	10.0 13.0 7.5 3.8 2.3 2.3	26.0 28.0 28.0 28.0 23.0 32.0 32.0	113 112 112 112 114 112 110 118	10.0 10.0 10.0 10.0 10.0	1.45 1.41 1.56 1.75 1.80 1.96	14.55 14.65 14.73 14.86 15.13 15.56 16.00 16.13 16.28 16.34	93265 96239 99161 100077 101134	295.17 354.20 272.46 474.16 932.11 1540 1540 491.94 528.66 208.35	516.02 514.35 514.31 516.80 523 529 528.62 528.62	8.6 8.6 8.6 8.6 8.6 8.6	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1 1 1	1759.0 1760.0 1761.0 1762.0 1763.0 1764.0 1765.0 1766.0 1767.0	21.0 5.1 4.0 6.4 7.2 14.0 14.0	32.0 32.0	117 117 117 117 98 100 98	10.0	1.34 1.74 1.81 1.68 1.59 1.39 1.40	16.38 16.42 16.62 16.87 17.03 17.17 17.24 17.31 17.39 17.44	102103 103479 105234 106331 107148 107577 107997	122.14 168.67 694.51 885.50 553.44 491.94 253.00 253.00 272.46 208.35	523.39 525.43 525.59 525.40 523.89 522.39 521.02	8.6 8.6 8.6 8.6 8.6 8.6	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
	1769.0 1770.0 1771.0 1772.0 1773.0 1774.0 1775.0 1776.0 1777.0	9.0 5.2 5.0 7.8 13.0 15.0 18.0 23.0	31.0 33.0 32.0 32.0 38.0 40.0 38.0 41.0 40.0 39.0	96 94 94 96 96 95	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.54 1.68 1.69 1.64 1.51 1.45 1.42	17.50 17.61 17.81 18.01 18.14 18.21 18.28 18.33 18.33	109766 110851 111979 112702 113145 113529 113846 114094	454.10 272.46 236.13 196.78 154.00	516.95 517.83 518.85 518.51 517.20 515.73 514.06	8.6 8.6 8.6 8.6 8.6 8.6	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.8

,

DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST pp FG 94 10.0 1.42 1779.0 18.0 41.0 18.48 114689 196,78 508,83 8.6 15.8 1780.0 15.0 39.0 95 10.0 1.46 18.55 115069 236.13 507.43 8.6 15.8 15.0 39.0 1781.0 95 10.0 1.46 18,62 115449 236.13 506.04 8.6 15.8 19.0 39.0 95 10.0 1.38 18.67 115749 186.42 504.42 8.5 15.7 1782.0 8.5 15.8 19.0 42.0 97 10.0 1.42 18.72 116055 186.42 502.82 1783.0 8.5 15.8 96 10.0 1.52 18.81 116535 295.17 501.77 1784.0 12.0 38.0 116839 186.43 500.20 8.5 15.8 96 10.0 1.38 18.86 1785.0 19.0 38.0 15.0 42.0 95 10.0 1.49 18,92 117219 236,13 498,88 8.5 15.8 1786.0 95 10.0 1.42 18.98 117519 186.42 497.34 8.5 15.8 1787.0 19.0 42.0 29.0 39.0 95 10.0 1.25 19.01 117715 122,14 495,49 8.5 15.8 1788.0 8.5 15.8 1789.0 16.0 39.0 95 10.0 1.44 19.07 118071 221.38 494,14 95 10.0 1.46 8.5 15.8 1790.0 15.0 39.0 19.14 118451 236.13 492.89 119139 397,98 492,42 1791.0 8.9 40.0 102 10.0 1.65 19.25 8.5 15.8 1792.0 18.0 41.0 103 10.0 1.45 19.31 119482 196,78 491,00 8.5 15.8 1793.0 18.0 38.0 103 10.0 1.41 19.36 119826 196.78 489.58 8,5 15.8 95 10.0 1.72 19.52 120730 562.22 489.93 8.5 15.8 1794.0 6.3 39.0 19.58 121066 208.35 488.59 8.5 15.8 1795.0 17.0 40.0 95 10.0 1.43 8.5 15.8 95 10.0 1.47 15,0 40.0 19.65 121446 236.13 487.39 1796.0 121665 136.23 485.74 1797.0 26.0 41.0 95 10.0 1.31 19.69 8.5 15.8 19.0 40.0 100 10.0 1.41 19.74 121981 186,42 484,33 8.5 15.8 1798.0 19.80 122356 221.38 483.10 8.5 15.8 1799.0 16.0 41.0 100 10.0 1.47 15.0 40.0 100 10.0 1.48 19.87 8.5 15.8 122756 236.13 481.95 1800.0 18.0 40.0 100 10.0 1.43 19.92 123089 196.78 480.63 1801.0 8.5 15.8 13.0 40.0 100 10.0 1.53 20.00 123551 272.46 479.67 8.5 15.8 1802.0 4.8 40.0 100 10.0 1.83 124801 737.92 480.86 8.5 15.8 1803.0 20.21 88 10.0 1.65 125524 485.21 480.88 1804.0 7.3 39.0 20.35 8.5 15.8 5.6 38.0 103 10.0 1.77 1805.0 20.53 126627 632.50 481.57 8.5 15.8 1806.0 5.6 38.0 103 10.0 1.77 20.70 127731 632.50 482.25 8.5 15.8 98 10.0 1.69 1807.0 7.3 39.0 20.84 128537 485,21 482,26 8.5 15.8 1808.0 5.1 40.0 104 10.0 1.83 21.04 129760 694.51 483.21 8.5 15.8 8.5 15.8 1809.0 5.9 39.0 105 10.0 1.77 21.21 130828 600.34 483.74 4.4 39.0 105 10.0 1.86 8.5 15.8 1810.0 21.43 132260 805.00 485.17 8.5 15.8 1811.0 7.2 40.0 98 10.0 1.70 21.57 133076 491.94 485.20 1812.0 13,5 40,0 98 10.0 1.51 21.65 133512 262.37 484.21 8.5 15.8 21.86 134788 753.62 485.40 8.5 15.8 1813.0 4.7 38.0 100 10.0 1.81 13.0 39.0 106 10.0 1.53 21.94 135278 272.46 484.47 8.5 15.8 1814.0 93 10.0 1.44 135707 272.46 483.54 8.5 15.8 1815.0 13.0 35.0 22.01 22.10 136274 322.00 482.84 8.5 15.8 1816.0 11.0 38.0 104 10.0 1.57 99 10.0 1.87 1817.0 3.5 36.0 22,39 137971 1012 485 8.5 15.8 15.0 36.0 102 10.0 1.44 138379 236.13 484.06 1818.0 22.46 8.5 15.8 8.5 15.8 1819.0 10.0 37.0 102 10.0 1.58 22.56 138991 354.20 483.50 1820.0 14.0 36.0 102 10.0 1.46 22.63 139428 253.00 482.52 8.5 15.8 12.0 34.0 100 10.0 1.48 8.5 15.8 22.71 139928 295,17 481,73 1821.0 18.0 35.0 100 10.0 1.37 22.77 140262 196.78 480.52 8.5 15.8 1822.0 22.82 140595 196.78 479.33 8.5 15.8 1823.0 18.0 35.0 100 10.0 1.37 1824.0 18.0 35.0 100 10.0 1.37 22.88 140928 196.78 478.15 8.5 15.8 22.93 141272 196.78 476.98 8.5 15.8 1825.0 18.0 36.0 103 10.0 1.39 14.0 36.0 106 10.0 1.47 23.00 141726 253.00 476.05 8.5 15.8 1826.0 16.0 35.0 105 10.0 1.42 23.07 142120 221.38 475.00 1827.0 8.5 15.8 1828.0 15.0 35.0 105 10.0 1.44 23.13 142540 236,13 474,01 8,5 15.8

į

.	DEPTH	ROP	WOB	RPM	МИ	"d "c	HOURS	TURNS	ICOST	CCOST	РР	FG
	1829.0 1830.0 1831.0 1832.0 1833.0 1834.0 1835.0 1836.0 1837.0	13.0 12.0 12.0 15.0 15.0 14.0 4.7 4.7	35.0 35.0 35.0 36.0 35.0 35.0 35.0	107 107 107 106 107 107 105 105	10.0 10.0 10.0	1.49 1.51 1.51 1.45 1.44 1.46 1.78	23.21 23.29 23.37 23.45 23.52 23.59 23.66 23.87 24.08 24.26	143518 144053 144588 145012 145440 145899 147239 148580	272.46 272.46 295.17 295.17 236.13 236.13 253.00 753.62 753.62 610.69	472.37 471:65 470.93 469.99 469.05 468.18 469.32 470.45	88888888 88888888 8	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
5	1839.0 1840.0 1841.0 1842.0 1843.0 1844.0 1845.0 1845.0 1846.0	7.3 11.0 12.0 14.0 14.0 11.0	34.0 37.0 37.0 37.0 38.0 38.0 38.0	104 104 104 104 104 102 102	10.0 10.0 10.0	1.64 1.68 1.55 1.53 1.49 1.49 1.49	24.33 24.47 24.60 24.69 24.78 24.85 24.92 25.01 25.08 25.17	150971 151826 152393 152913 153359 153804 154361 154798		470.20 470.26 469.69 469.01 468.17 467.35 466.79 465.97	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
	1849.0 1850.0 1851.0 1852.0 1853.0 1854.0 1855.0 1855.0 1856.0	3.8 9.1 12.0 16.0 17.0 15.0 13.0	38.0 39.0 38.0 38.0 32.0 32.0 37.0	102 105 105 105 105 105 105	10.0 10.0 10.0 10.0	1.88 1.64 1.54 1.45 1.37 1.40 1.51	25.24 25.51 25.62 25.70 25.76 25.82 25.89 25.97 26.03 26.13	157402 158094 158619 159013 159383 159803 160288 160682	253.00 932.11 389.23 295.17 221.38 208.35 236.13 272.46 221.38 368.96	466.39 466.10 465.46 464.55 463.59 462.75 462.05 461.16	8 . 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15.8 15.8 15.8 15.8 15.9 15.9 15.9
	1859.0 1860.0 1861.0 1862.0 1863.0 1864.0 1865.0 1866.0 1867.0	4.7 4.5 4.7 5.0 14.0 17.0 17.0	37.0 37.0 37.0 37.0 32.0 33.0 36.0 36.0	100 100 100 100 100 100 100	10.0 10.0 10.0 10.0	1.80 1.81 1.80 1.78 1.41 1.36 1.40	26.36 26.58 26.80 27.01 27.21 27.28 27.34 27.40 27.46 27.62	163979 165312 166589 167789 168217 168570 168923 169276	787.11 753.62 708.40 253.00 208.35 208.35	463.21 464.38 465.43 466.30 465.54 464.62 463.71 462.80	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
	1869.0 1870.0 1871.0 1872.0 1873.0 1874.0 1875.0 1875.0	4.3 5.0 5.6 7.6 9.6 13.0 20.0	36.0 37.0 38.0 37.0 36.0 33.0 33.0 34.0	100 94 95 95 94 94 94	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.81 1.76 1.74 1.64 1.55 1.42 1.30 1.38	27.85 28.08 28.28 28.46 28.59 28.70 28.78 28.83 28.89 28.95	173019 174147 175165 175915 176503 176936 177218 177575	823.72 823.72 708.40 632.50 466.05 368.96 272.46 177.10 221.38 208.35	465.68 466.53 467.11 467.11 466.77 466.10 465.10 464.27	8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9

Marketine to a 1.

5												
_	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	1879.0 1880.0 1881.0 1882.0 1883.0 1884.0 1885.0 1886.0 1887.0	8.9 5.9 13.0 14.0 15.0	35.0 34.0 35.0 32.0 32.0 34.0 34.0	95 95 95 95 95 95 95 90	10.0 10.0 10.0	1.40 1.56 1.69 1.44 1.43 1.39 1.37 1.40 1.36	29.02 29.13 29.30 29.38 29.45 29.52 29.59 29.65 29.72 29.77	178957 179924 180362 180769 181176 181556 181936 182274	253.00 397.98 600.34 272.46 253.00 253.00 236.13 236.13 221.38 186.42	462.46 462.93 462.28 461.58 460.88 460.14 459.39 458.60	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.9 15.9 15.9 15.9 15.9 15.9 15.9
	1889.0 1890.0 1891.0 1892.0 1893.0 1894.0 1895.0 1896.0 1897.0	9.6 12.0 11.0 6.4 5.6 5.0 15.0	35.0 35.0 35.0 34.0 36.0 36.0	90 90 90 90 90 90 90	10.0 10.0 10.0 10.0 10.0		29.85 29.94 30.04 30.12 30.21 30.37 30.55 30.75 30.82 30.88	186769 187849 188209	295.17 322.00 553.44 632.50 708.40		55555555 8888888 888	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
	1879.0 1900.0 1901.0 1902.0 1903.0 1904.0 1905.0 1906.0 1907.0	15.0 8.5 11.0 12.0 14.0 15.0 18.0 13.0	35.0 35.0 35.0 35.0 35.0 35.0	90 90 90 90 90 90 90	10.0 10.0 10.0 10.0		30.95 31.07 31.16 31.24 31.31 31.38 31.43 31.51 31.57 31.66	188929 189565 190056 190506 190891 191251 191551 191967 192277 192800	416.71 322.00 295.17 253.00 236.13 196.78 272.46 196.78	454.86 454.44 453.94 453.30 452.62 451.82 451.27	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1 1 1	1909.0 1910.0 1911.0 1912.0 1913.0 1914.0 1915.0 1916.0 1917.0	6.3 6.3 4.7	33.0 34.0 34.0	92 94 94 94 94 95	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.63 1.75 1.66 1.47 1.35 1.38	31.89 32.05 32.21 32.42 32.58 32.66 32.72 32.78 32.84 32.91	194932 195809 197009 197890 198360 198692 199048 199404	823.72 562.22 562.22 753.62 553.44 295.17 208.35 221.38 221.38 221.38	451.57 451.91 452.83 453.14 452.66 451.92 451.22 450.53	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
	1919.0 1920.0 1921.0 1922.0 1923.0 1924.0 1925.0 1926.0 1927.0	6.9 13.0 19.0	34.0 35.0 35.0 37.0 37.0 35.0 31.0	95 95 98 98 98 98	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.38 1.41 1.41 1.54 1.84 1.65 1.41	32.98 33.04 33.11 33.17 33.26 33.51 33.66 33.74 33.79 33.92	200524 200904 201284 201818 203288 204141 204593 204902	253.00 221.38 236.13 236.13 322.00 885.50 513.33 272.46 186.42 454.10	448.57 447.94 447.31 446.94 448.24 448.43 447.91 447.15	555555555 88888888	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9

•

•

-											
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
1929.0 1930.0 1931:0 1932.0 1933.0 1934:0 1935.0 1936.0 1937.0 1938.0	4.2 4.5 11.0 13.0 14.0 14.0	34.0 38.0 38.0 37.0 37.0 39.0 39.0	102 88 88 88 90 90 90	10.0 10.0 10.0 10.1 10.1 10.1 10.1 10.1	1.79 1.79 1.50 1.45 1.42 1.45	34.11 34.35 34.57 34.66 34.74 34.81 34.88 34.96 35.02 35.11	208337 209510 209990 210396 210782 211168 211583 211921	253.00	449.03 450.01 449.64 449.13 448.57 448.01 447.51 446.87	88888888888888888888888888888888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1939.0 1940.0 1941.0 1942.0 1943.0 1944.0 1945.0 1946.0 1947.0 1948.0	12.0 11.0 12.0 12.0 12.0 13.0 8.2 11.0	38.0 39.0 39.0 39.0 38.0 40.0 37.0 36.0	90 90 90 90 90 90 90	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.51 1.49 1.49 1.49 1.48 1.48	35.19 35.28 35.36 35.45 35.61 35.69 35.81 35.90 35.99	213762 214212 214662 215112 215527 216185 216676	322.00 295.17 295.17 295.17 295.17 272.46	445.66 445.24 444.82 444.40 443.98 443.51 443.48 443.14	88888555555555555555555555555555555555	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1949.0 1950.0 1951.0 1952.0 1953.0 1954.0 1955.0 1956.0 1957.0 1958.0	11.0 9.6 6.9 11.0 6.2 4.4	38.0 38.0 37.0 37.0 38.0 37.0 38.0	90 90 97 96 96 96 96	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.47 1.55 1.67 1.51 1.69 1.80 1.58	36.10 36.19 36.29 36.44 36.53 36.69 36.92 37.03 37.11 37.19	222378 223026 223469	513.33 322.00 571.29 805.00	442.26 442.06 442.25 441.92 442.27 443.25 443.13 442.67	888855555 8888888888888888888888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1959.0 1960.0 1961.0 1962.0 1963.0 1964.0 1965.0 1966.0 1967.0 1968.0	5.0 4.4 7.8 12.0 8.5 10.2 10.0 9.0	37.0 29.0 27.0 28.0	96 97 97 97 95 110 105	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.76 1.78 1.62 1.49 1.59 1.43	37.30 37.50 37.73 37.86 37.94 38.06 38.16 38.26 38.37 38.48	225748 227071 227817 228302 228986 229545 230205 230905	397.98 708.40 805.00 454.10 295.17 416.71 347.25 354.20 393.56 393.56	442.87 443.83 443.86 443.47 443.14 442.91 442.78	888885555 8888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1969.0 1970.0 1971.0 1972.0 1973.0 1974.0 1975.0 1976.0 1977.0	8.9 8.6 11.0 14.0 7.8 8.5 8.5	28.0 28.0 28.0 28.0 28.0 28.0 27.0 28.0	105 105 105 105 105 105 105	10.1 10.1 10.1 10.1	1.48 1.49 1.42 1.35 1.32 1.52 1.48	38.59 38.70 38.82 38.91 38.98 39.04 39.17 39.29 39.41 39.53	233021 233754 234326 234776 235170 235978 236719 237460	397.98 397.98 411.86 322.00 253.00 221.38 454.10 416.71 416.71 431.95	442.42 442.34 442.03 441.54 440.98 441.01 440.95 440.89	8888855555 888888888888888888888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0

	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
	1979.0 1980.0		28.0 28.0				39.68 39.86		528.66 655.93			16.0 16.0
	1981.0 1982.0	8.2		105	10.1	1.52	39.97 40.09	241760		441.42	8.5	16.0 16.0
-	1983.0 1984.0	10.0	28.0	110	10.1	1.46	40.20	243161	397.98 354.20	441.09	8.5	16.0
1	1985.0 1986.0		28.0 28.0				40.40 40.50		354.20 354.20			16.0 16.0

BIT NUMBER 10 HTC J22 COST 4200.00 TOTAL HOURS 29.75	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 INTER 12.250 NOZZI 8.9 BIT F 175777 COND	LES 14 14 15
	RPM MW "d"c	HOURS TURNS	TCOST CCOST PP FG
1987.0 21.0 10.0 1988.0 29.5 10.0 1989.0 29.1 10.0	80 10.1 0.91 80 10.1 0.84 80 10.1 0.84	0.05 229 0.08 391 0.12 556	169 35892 8.5 16.0 120 18006 8.5 16.0 122 12045 8.5 16.0
1991.0 8.0 12.0 1992.0 7.0 12.0 1993.0 10.3 11.0 1994.0 5.6 12.0 1995.0 14.1 36.0 1996.0 14.9 35.0 1997.0 13.0 36.0 1998.0 13.6 38.0	80 10.1 1.14 80 10.1 1.16 80 10.1 1.19 80 10.1 1.08 80 10.1 1.24 100 10.1 1.44 100 10.1 1.41 100 10.1 1.45 100 10.1 1.46	0.25 1223 0.38 1823 0.52 2509 0.62 2975 0.80 3832 0.87 4257 0.94 4660 1.01 5122 1.09 5563 1.16 5979	492 9157 8.5 16.0 443 7414 8.5 16.0 506 6262 8.5 16.0 344 5417 8.5 16.0 633 4819 8.5 16.0 251 4311 8.5 16.0 238 3904 8.5 16.0 272 3574 8.5 16.0 260 3298 8.5 16.0 246 3063 8.5 16.0
2000.0 15.0 41.0 2001.0 12.5 36.0 2002.0 13.0 37.0 2003.0 6.0 37.0 2004.0 20.3 37.0	100 10.1 1.48 100 10.1 1.48 100 10.1 1.48 100 10.1 1.71 100 10.1 1.34 100 10.1 1.37 98 10.1 1.41 98 10.1 1.33 98 10.1 1.34 98 10.1 1.34	1.22 6379 1.30 6859 1.38 7321 1.55 8321 1.60 8616 1.65 8939 1.72 9359 1.72 9359 1.78 9680 1.83 9996	236 2861 8.5 16.0 283 2689 8.5 16.0 272 2538 8.5 16.0 590 2424 8.5 16.0 174 2299 8.5 16.0 190 2188 8.5 16.0 253 2091 8.5 16.0 194 2001 8.5 16.0 190 1918 8.5 16.0 201 1844 8.5 16.0
2010.0 16.8 35.0 2011.0 17.1 35.0 2012.0 24.0 33.0 2013.0 24.3 36.0 2014.0 7.3 38.0 2015.0 10.1 38.0 2016.0 10.4 38.0 2017.0 7.8 35.0 2018.0 11.6 35.0 2019.0 10.5 35.0	98 10.1 1.37 98 10.1 1.37 98 10.1 1.24 98 10.1 1.27 98 10.1 1.66 98 10.1 1.56 98 10.1 1.55 98 10.1 1.48 98 10.1 1.48	1.95 10681 2.00 11024 2.05 11269 2.09 11511 2.22 12317 2.32 12899 2.42 13464 2.55 14218 2.63 14725 2.73 15285	211 1776 8.5 16.0 207 1713 8.5 16.1 148 1653 8.5 16.1 146 1597 8.5 16.1 485 1557 8.5 16.1 351 1516 8.5 16.1 341 1476 8.5 16.1 454 1443 8.5 16.1 305 1408 8.5 16.1 337 1375 8.5 16.1
2024.0 10.6 35.0 2025.0 8.5 36.0 2026.0 9.6 36.0 2027.0 9.6 36.0 2028.0 7.3 35.0	98 10.1 1.47 98 10.1 1.50 98 10.1 1.31 100 10.1 1.46 100 10.1 1.51 100 10.1 1.59 100 10.1 1.55 100 10.1 1.55 100 10.1 1.62 100 10.1 1.56	2.81 15771 2.90 16306 2.97 16726 3.05 17194 3.15 17760 3.26 18466 3.37 19091 3.47 19716 3.61 20538 3.72 21212	293 1344 8.5 16.1 322 1314 8.5 16.1 253 1285 8.5 16.1 277 1258 8.5 16.1 334 1233 8.5 16.1 417 1212 8.5 16.1 369 1191 8.5 16.1 369 1171 8.5 16.1 485 1155 8.5 16.1 398 1137 8.5 16.1

									÷			
_	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP FG	
	2030.0 2031.0 2032.0 2033.0 2035.0 2036.0 2037.0 2038.0 2039.0	6.4 7.2 9.6 5.9 7.2 12.9 12.9	30.0 26.0 27.0 26.0 26.0 26.0 26.0 26.0	100 100 100 100 98 98 98	10.1 10.1 10.1	1.53 1.49 1.43 1.55 1.49 1.33 1.33	3.83 3.98 4.12 4.23 4.39 4.53 4.61 4.69 4.76 4.85	21837 22775 23608 24233 25250 26067 26523 26979 27411 27905	369 553 492 369 600 492 275 275 260 297.65	1120 1107 1094 1078 1069 1057 1041 1026 1011 997.89	8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1	
	2040.0 2041.0 2042.0 2043.0 2044.0 2045.0 2046.0 2047.0 2048.0 2049.0	18.0 17.0 13.7 12.1 12.9 17.1 13.4 14.3	31.0 32.0 33.0 33.0 32.0 32.0 35.0 34.0 34.0	98 98 98 98 98 98 98	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.36 1.32 1.34 1.41 1.43 1.41 1.37 1.42 1.41	4.91 4.97 5.03 5.10 5.18 5.26 5.32 5.39 5.46 5.54	28624 28970 29399 29885 30341 30684 31123 31534	236.13 196.78 208.35 258.54 292.73 274.57 207.13 264.33 247.69 268.33	969.48 955.89 943.65 932.43 921.28 909.38 898.80 888.30	8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1	
	2050.0 2051.0 2052.0 2053.0 2054.0 2055.0 2056.0 2057.0 2058.0 2059.0	13.7 8.5 4.3 4.1 2.4 2.2 3.6 6.2	34.0 24.0 24.0 30.0 35.0 16.0 10.0 24.0 25.0	98 95 95 95 100 100	10.1 10.1 10.1 10.0 10.0 10.0 10.0	1.47 1.29 1.41 1.68 1.80 1.58 1.46 1.66 1.53	5.63 5.70 5.82 6.05 6.30 6.71 7.18 7.46 7.62 7.84	33621 34947 36354 38729 41520 43177 44145	313.45 258.54 416.71 823.72 874.57 1476 1647 978.45 571.29 787.11	860.23 853.51 853.07 853.38 862 874 875.09 870.87	8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1	
1	2060.0 2061.0 2062.0 2063.0 2064.0 2065.0 2066.0 2067.0 2068.0 2069.0	10.1 10.7 3.5 5.9 5.2 10.9 11.4	30.0 32.0 31.0 31.0 32.0 32.0	100 100 100 100 100 100 100	10.0 10.0 10.0 10.1 10.1 10.1 10.1	1.42 1.44 1.77 1.64 1.66	8.12 8.22 8.32 8.60 8.77 8.96 9.06 9.14 9.22 9.32	48347 50062 51079 52233 52783 53309 53785	1012 350.69 331.03 1012 600.34 681.15 324.95 310.70 281.11 334.15	857.68 860 856.36 854.14 847.53 840.90 834.07	8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1	
T T T	2070.0 2071.0 2072.0 2073.0 2074.0 2075.0 2076.0 2077.0 2078.0 2079.0	7.6 8.5 10.6 9.6 8.9 2.4 8.5	27.0 30.0	100 100 100 100 100 100 118 118	10.1 10.1 10.1 10.1 10.1 10.1	1.57 1.55 1.47 1.50 1.51	9.45 9.58 9.70 9.79 9.90 10.01 10.43 10.54 10.66 10.79	55925 56631 57197 57822 58496 60996 61829 62662	463.01 466.05 416.71 334.15 368.96 397.98 1476 416.71 416.71 460.00	819.50 814.81 809.29 804.28 799.72 807 802.94 798.74	8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1	

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
2080.0 2081.0 2082.0 2083.0 2084.0 2085.0 2086.0 2087.0 2089.0	3.3 7.7 7.3 6.9 8.2 8.2 3.3	29.0 28.0 29.0 28.0 28.0 32.0 34.0 34.0	118 118 118 118 118 118 118	10.1 10.1 10.1 10.1 10.1 10.1	1.57 1.57 1.58 1.59 1.62 1.89	11.08 11.38 11.52 11.65 11.78 11.93 12.05 12.17 12.47 12.79	67750 68719 69638 70608 71634 72497	484.54 460.00 485.21 513.33 431.95 431.95 1073	800 797.02 793.55 790.40 787.60 784.05	.5555555555 888888888	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
2090.0 2091.0 2092.0 2093.0 2094.0 2095.0 2096.0 2097.0 2099.0	7.3 7.3 8.2 7.8 7.7 7.3 7.4	36.0 38.0 36.0 36.0 35.0 35.0 35.0	100 100 100 100 100 100 100	10.1 10.1 10.1 10.1 10.1 10.1	1.60 1.62 1.61 1.62 1.63	12.96 13.09 13.23 13.35 13.48 13.61 13.75 13.89 14.02 14.16	79558 80380 81111 81881 82660 83482 84315 85126	600.34 485.21 485.21 431.95 454.10 460.00 485.21 491.94 478.65 485.21	781.93 779.13 775.88 772.90 770.03 767.44 764.96 762.41	8.555555555555555555555555555555555555	16.1 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2100.0 2101.0 2102.0 2103.0 2104.0 2105.0 2106.0 2107.0 2108.0 2109.0	6.2 6.3 6.2 5.9 5.9 5.9	38.0 38.0 38.0 38.0 38.0 38.0 38.0	100 100 100 100 100 100 100		1.71 1.71 1.73 1.73 1.73	14.34 14.50 14.66 14.81 14.98 15.14 15.31 15.48 15.75 15.91	87987 88924 89877 90845 91861 92878 93895 95517	632.50 571.29 553.44 562.22 571.29 600.34 600.34 957.30 562.22	757.20 755.45 753.80 752.25 750.97 749.72 748.48 750.19	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2110.0 2111.0 2112.0 2113.0 2114.0 2115.0 2116.0 2117.0 2118.0 2119.0	6.7 6.4 6.4 4.0 3.0 6.3 6.9 5.1	38.0 38.0 38.0 38.0 38.0	100 100 100 100 100 100 100 95	10.1 10.1 10.1 10.1	1.70 1.70 1.84 1.93 1.71 1.67		99374 100311 101811 103811 104764 105633	528.66 553.44	745.98 744.45 742.94 744.06 747 746.02 744.24	3.555555555 3.88888888888888888888888888	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2120.0 2121.0 2122.0 2123.0 2124.0 2125.0 2126.0 2127.0 2128.0 2129.0	3.5 5.1 4.7 4.8 4.9 4.9 5.5 4.5	38.0 39.0 39.0 38.0 36.0 36.0 37.0 37.0 39.0	95 95 95 95 95 95 95	10.1 10.1 10.1	1.88 1.77 1.78 1.74 1.74 1.75 1.72	18.25 18.54 18.73 18.95 19.16 19.36 19.56 19.75 19.97 20.13	114225 115413 116576 117739 118775 120042	753.62 737.92 722.86 722.86	750.13 749.38 749.64	55555555555555555555555555555555555555	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2

	DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
	2130.0	4.9	39.0	95	10.1	1.78	20.33	122125	722.86	748.22	8,5	16.2
	2131.0		36.0	95	10.1	1.74	20.54	123312	737.92	748.15	8.5	16.2
	2132.0	4.7	37.0	95	10.1	1.76	20.75		753.62		8.5	16.2
	2133.0		39.0		10.1	1.77	20.95		708.40		8.5	16.2
	2134.0		38.0		10.1	1.84	21.22		932.11			16.2
	2135.0		36.0	95		1.84	21.50	128794	1012	751		16.2
	2136.0		35.0	95	10.1		21.95	131316	1567	756		16.2
	2137.0		36.0	95	10.1	1.99	22.42	134030	1687	763		16.2
	2138.0		36.0		10.1	1.76	22.64		787.11			16.2
	2139.0	1.7	35.0	95	10.1	2.03	23.22	138591	2047	771	8.5	16.2
	2140.0		36.0		10.1		23.85	142154	2214	780		16.2
_	2141.0		37.0		10.1		24.09		874.57			16.2
	2142.0		37.0	95		1.88	24.41	145343	1107	783	8.5	
	2143.0		37.0			1.81	24.65		863.90		8.5	
	2144.0		34.0		10.1		24.97	148560	1135	786		16.2
	2145.0		34.0	95	10.1		25.20		823.72			16.2
	2146.0		34.0	95 95	10.0		25.36 25.56	150786	559.56 708.40			16.2 16.2
	2147.0		34.0		10.0		25.72		553,44			16.2
	2148.0		36.0		10.0		25.87		553.44		8.5	
	£147.0	Ο, Ψ	20.0	7.3	10.0	X 1 L/L/	<i>au</i> , ,	x x . y	www.i.i.m	7 7 7	010	X 4.7 T 1
_	2150.0	6.7	36.0	95	10.0	1.66	26.02	154558	528.66			16.2
	2151.0	5.9	32.0	95	10.0	1.64	26.19		599.32	N		16.2
	2152.0		33.0	95	10.0		26.36	156472	590.33		8.5	16.2
	2153.0		33.0	95	10.0		26.76	158752	1417	781	8.5	16.2
	2154.0		28.0	95	10.0		26.97		753.62		8.5	16.2
	2155.0		28.0	95	10.0		27.34	162076	1312	784	8.5	16.2
	2156.0	1,9	34.0		10.0		27.87	165108	1884	- 791		16.2
	2157.0		34.0			1.89	28.24	167166	1279	794		16.2
	2158.0		32.0		10.0		28.55	168947	1107	796		16.2
-	2159.0	2.5	32.0	95	10.0	1.87	28.95	171218	1411	799	გ.ე	16.2
	2160.0		32.0		10.0		29.22		978.45			16.2
	2161.0	1.9	32.0	95	10.0	1.97	29.75	175777	1854	806	8.5	16.2

-4

•

•

N_c

BIT NUMBER HTC J33 COST 609 TOTAL HOURS 3		12.250	NOZZLES BIT RUN	14 14 14
DEPTH ROP	WOB RPM MW	"d"c HOURS	TURNS ICOST	CCOST PP FG
2163.0 1.6 2164.0 2.9	9.0 95 10.1 28.0 95 10.1 30.0 95 10.1	1.92 1.28	3738 2300 7301 2214 9287 1234	41646 8.5 16.2 22028 8.5 16.2 15120 8.5 16.2
2168.0 9.1 2169.0 8.2 2170.0 8.5 2171.0 8.2 2172.0 8.5	31.0 95 10.1 31.0 95 10.1 31.0 95 10.1 31.0 95 10.1 31.0 95 10.1 31.0 95 10.1 31.0 95 10.1 31.0 95 10.1 31.0 95 10.1	1.54 2.05 1.49 2.16 1.49 2.27 1.52 2.39 1.51 2.51 1.52 2.63 1.51 2.75 1.69 2.97	10939 1027 11684 463 12310 389 12936 389 13633 434 14307 419 15002 432 15673 417 16939 787 17487 341	11605 8.5 16.2 9381 8.5 16.2 7885 8.5 16.2 6816 8.5 16.2 6019 8.5 16.2 5397 8.5 16.2 4901 8.5 16.2 4494 8.5 16.2 4498 8.5 16.3 3890 8.5 16.3
2175.0 8.5 2176.0 8.9 2177.0 8.5 2178.0 6.9 2179.0 6.9 2180.0 6.3 2181.0 6.4 2182.0 6.2 2183.0 4.5	30.0 95 10.1 28.0 95 10.1 28.0 95 10.1 28.0 95 10.1	1.48 3.30 1.46 3.42 1.52 3.56 1.52 3.71 1.56 3.87 1.59 4.02 1.58 4.18 1.67 4.40	18161 419 18802 398 19472 417 20301 515 21127 513 22032 562 22922 553 23842 571 25108 787 26074 600	3642 8.5 16.3 3426 8.5 16.3 3238 8.5 16.3 3078 8.5 16.3 2935 8.5 16.3 2811 8.5 16.3 2698 8.5 16.3 2597 8.5 16.3 2514 8.5 16.3 2431 8.5 16.3
2186.0 6.4 2187.0 6.4 2188.0 7.2 2189.0 6.4 2190.0 8.2 2191.0 7.3 2192.0 8.2 2193.0 4.7 2194.0 3.0		1.57 4.90 1.57 5.06 1.56 5.20 1.55 5.35 1.51 5.47 1.52 5.61 1.49 5.73 1.71 5.95	27040 600 27931 553 28822 553 29622 492 30522 553 31224 432 32013 485 32716 432 33928 754 35828 1181	2355 8.5 16.3 2283 8.5 16.3 2216 8.5 16.3 2153 8.5 16.3 2095 8.5 16.3 2038 8.5 16.3 1986 8.5 16.3 1936 8.5 16.3 1899 8.5 16.3 1878 8.5 16.3
2196.0 9.6 2197.0 8.9 2198.0 6.9 2199.0 7.7 2200.0 6.2 2201.0 6.3 2202.0 4.5 2203.0 3.0	35.0 95 10.1 35.0 95 10.1 35.0 95 10.1 32.0 95 10.1 32.0 95 10.1 34.0 95 10.1 34.0 95 10.1 29.0 95 10.0 26.0 95 10.0	1.53	37067 770 37661 369 38304 399 39132 515 39873 460 40792 571 41692 560 42959 787 44859 1181 46635 1103	1845 8.5 16.3 1803 8.5 16.3 1764 8.5 16.3 1730 8.5 16.3 1697 8.5 16.3 1648 8.5 16.3 1649 8.5 16.3 1609 8.5 16.3 1597 8.5 16.3

_	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	205.0 206.0 207.0 208.0 209.0 210.0 211.0	10.6 7.3 9.6 9.6 8.2 10.0	25.0 33.0 34.0 34.0 34.0 33.0 33.0	95 90 90 90 90 90	10.0 10.0 10.0 10.0 10.0 10.0	1.40 1.47 1.59 1.51 1.51 1.55	8.27 8.37 8.47 8.61 8.71 8.81 8.94 9.04	47178 47773 48283 49022 49585 50147 50808 51348	337 370 334 485 369 369 434 354	1569 1542 1516 1494 1470 1448 1428 1406	8.5 8.5 8.5 8.5 8.5	16.3 16.3 16.3 16.3 16.3
	213.0 214.0		34.0 34.0	90 90	10.0	1,51 1,56	9.14 9.26	51911 52569	369 432	1387 1369		16.3 16.3
	215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0	7.3 5.9 7.3 8.5 7.8 4.1 7.8	34.0 35.0 34.0 33.0 33.0 35.0 35.0 35.0	90 90 90 90 90 90 90	10.0 10.0 10.0 10.0 10.0 10.0 10.0		9.38 9.52 9.69 9.83 9.95 10.07 10.32 10.45 10.77	53228 53968 54881 55621 56256 56256 58282 58974 59497 60830	432 485 599 485 417 454 875 454 351 787	1351 1335 1322 1308 1292 1278 1271 1258 1243 1236	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.3 16.3 16.3 16.3 16.3 16.3 16.3
	225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0	5.2 5.1 4.1 3.5 6.7 5.0 11.0	35.0 35.0 34.0	90 90 90 90 90 90 90	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.70 1.71 1.78 1.82 1.63 1.70 1.46	10.96 11.15 11.35 11.59 11.88 12.03 12.23 12.32 12.32	61975 63006 64061 65394 66932 67738 68818 69309 70368 71225	676 672 875 1009 529 708 322 695 562	1227 1219 1211 1206 1203 1193 1186 1174 1167 1159	8.5 8.5 8.5	16.3 16.3 16.3 16.3 16.3 16.3
	235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 242.0 243.0	6.7 6.3 7.3 8.9 4.2 6.3 7.7	29:0 33:0 32:0 31:0 31:0 33:0 38:0 36:0 35:0	90 90 90 90 90 94 94 94	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.60 1.61 1.55 1.49 1.74 1.70 1.68	12.79 12.94 13.10 13.24 13.35 13.59 13.74 13.90 14.03 14.14	71861 72667 73520 74259 74866 76152 77043 77934 78671 79267	417 529 560 485 398 843 560 560 463 374	1149 1141 1133 1125 1115 1116 1107 1098 1091	8.5 8.5 8.5 8.5	16.3 16.3 16.3 16.3 16.3 16.3
	245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0	6.9 4.9 2.6 4.0 3.8 3.3	34.0 34.0 34.0 34.0 36.0 35.0 35.0 35.0	96 96 98 98 98 98	10.0 10.0 10.0 10.1 10.1 10.1 10.2 10.2	1.60 1.63 1.71 1.93 1.78 1.81 1.83	14.23 14.36 14.51 14.71 15.10 15.35 15.61 15.91 16.32 16.70	79810 80563 81400 82576 84837 86307 87855 89636 92007 94269	334 463 515 723 1362 886 932 1073 1428 1362	1073 1066 1060 1056 1059 1057 1056 1056 1060	8.5 1 8.5 1 8.5 1 8.5 1	16.3 16.3 16.3 16.3 16.3 16.3

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
2255.0 2256.0	6.7	35.0 35.0	98	10.2	1.62	16.88 17.03	95315 96194	630 529	1059 1053	8.5	16.3
2257.0 2258.0		35.0 · 36.0	98 98	10.2	1.68	17.21 17.48	97240 98874	630 984	1049 1048		16.3
2259.0		34.0		10.2		17.63	99751	529	1043		16.4
2260.0		34.0	98	10.2	1.59	17.77	100568	492	1037		16.4
2261.0 2262.0		36.0 34.0		10.2	1.76	18.00 18.14	101920 102736	81 <i>4</i> 492	1035 1030		16.4
2263.0	5.4	33.0	98	10.2	1.66	18.33	103825	656	1026	8.5	16.4
2264.0	5.6	34.0	98	10.2	1.66	18.50	104875	633	1022	8.5	16.4
2265.0		34.0		10.2		18.72	106126	754	1019		16.4
2266.0 2 267.0		32.0 36.0		10.2		18.92 19.09	107302 108299	708 600	1017 1013		16.4 16.4
2268.6		36.0		10.2	1.80	19.35	109826	920	1012		16.4
2269.0	2.8	33.0		10.2		19.70	111926	1265	1014		16.4
2270.0		34.0			1.76	19.95	113396	886	1013		16.4
2271.0 2272.0		35.0 33.0		10.2	1.71	20.15 20.37	114572 115851	708 770	1010 1008		16.4
2273.0		32.0		10.2		20.52	116728	529	1004		16.4
2274.0		32.0	98	10.2	1.60	20.68	117677	571.29	999.87	8.5	16.4
2275.0		36.0		10.2		20.91		823.72			16.4
2276.0		33.0		10.2	1.76	21.18 21.39	120591	932.11	997.74 995.50		16.4 16.4
2277.0 2278.0		36.0 33.0		10.2		21.64	123286		994.56		16.4
2279.0		30.0		10.2		21.92	124966	1012	995	8.5	16.4
2280.0		29.0		10.2	1.62	22.12	126142		992.31		16.4
2281.0 2282.0		29.0 29.0		10.2	1.64	22.49 22.71	128320	1312 766.67	995 993.08		16.4 16.4
2283.0		29.0		10.2		23.04	131553	1181	995		16.4
2284.0	4.5	29.0	98	10.2	1.65	23.26	132854	783.63	992.90	8.5	16.4
2285.0		29.0		10.2		23.50		829'.51			16.4
2286.0 2287.0		34.0 36.0		10.2		23.68 23.86		630.25			16.4 16.4
2288.0		32.0		10.2		24.15	138078	1027	986	8.5	
2289.0	5.9	32.0		10.2		24.32		604.44			16.4
2290.0		33.0		10.2		24,48		553.44			16.4
2291.0 2292.0		30.0 32.0		10.2		24.70 24.86		770.00 571.29			16.4 16.4
2293.0		30.0		10.2		25.09		812.39			16.4
2294.0	7.2	29.0	98	10.2	1.52	25.23	144394	492.63	970.52	8.5	16.4
2295.0		30.0		10.1		25.46		823.72		8.5	
2296.0		30.0		10.1	1.69	25.71		874.57		8.5	
2297.0 2298.0		30.0 34.0		10.1	1.70 1.76	25.96 26.22		908.21 920.00		8.5 8.5	16.4 16.4
2298.0 2299.0		28.0		10.1	1.68	26.49		965.12			16.4
2300.0	4.9	32.0	90	10.1	1.66	26.70	152343	722.86	966.14	8.5	16.4
2301.0		30.0		10.1		26.95		881.09			16.4
2302.0 2303.0		33.0		10.1		27.17 27.47	154906	799.55	964.36 965	8.5 8.5	16.4 16.4
2304.0		33.0		10.1		27.69		805.00			16.4

:	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PР	FG
2	305.0	6.0	35.0	90	9.9	1.68	27.86	158621	590.33	961.19	8.5	16.4
2	306.0	5.6	35.0	90	10.0	1.68	28.04	159585	632.50	958.92	8.5	16.4
2	307.0	6.3	35.0	90	10.0	1.65	28.20	160439	559.56	956.19	85	16,4
2	308.0	5.6	35.0	90	10.1	1.67	28.38	161403	632.50	953,99	8.5	16.4
2	309.0	3.1	32.0	90	10.1	1.79	28.70	163145	1143	955	8.5	16.4
2	310.0	1.9	34.0	90	10.1	1.97	29.24	166048	1904	962	8.5	16.4
2	311.0	2.4	31.0	90	10.1	1.85	29.65	168270	1458	965	8.5	16.4
2	312.0	1.5	34.0	90	10.1	2.03	30.30	171777	2300	974	8.5	16.4
2	313.0	1.6	37.0	100	10.1	2.10	30.92	175527	2214	982	8.5	16.4
2	314.0	1.5	38.0	100	10.1	2.14	31,59	179554	2377	991	8.5	16.4
2	315.0	1.3	36.0	100	10.1	2.15	32.36	184169	2725	1002	8.5	16.4
2	316.0	1,8	44.0	100	10.1	2.18	32.92	187502	1968	1009	8.5	16.4
2	317.0	2.3	38.0	100	10.1	2.01	33.35	190111	1540	1012	8.5	16.4
2	318.0	5.4	34.0	100	10.1	1.70	33,54	191222	656	1010	8.5	16.4
2	319.0	5.9	35.0	100	10.1	1.68	33.71	192239	600	1007	8.5	16.4
2	320.0	5.6	37.0	100	10.1	1,73	33.89	193310	633	1005	8.5	16.4
2	321.0	5.9	37.0	100	10.1	1.71	34.05	194326	599	1002	8.5	16.4
2	322.0	2.4	37.0	100	10.1	1.99	34,48	196879	1507	1005	8.5	16.4
_ 2	323.0	2.0	35.0	100	10.1	2.00	34.98	199879	1771	1010	8.5	16.4
	324.0	1.2	38.0	100	10.1	2.21	35.81	204879	2952	1022	8.5	16.4
2	324.5	1.3	37.0	100	10.1	2.16	36.22	207325	2725	1027	8.5	16.4

BIT NUMBER HTC J33 COST TOTAL HOUR	12 6090.00 S 45.29	SIZE TRIP		527 12.250 10.2 252275	NOZ. BIT	ERVAL ZLES RUN DITION		5- 2521.0 14 14 14 196.5 B6 G0.250
DEPTH	ROP WOB	RPM MW	"d"c	HOURS	TURNS	ICOST	ccost	PP FG
2325.0 2326.0 2327.0	4.8 18.0 5.2 18.0 5.0 19.0	82 10.1	1.39	0.10 0.29 0.49	460 1406 2426	738 681 708	92517 29616 17865	8.5 16.4 8.5 16.4 8.5 16.4
2328.0 2329.0 2330.0 2331.0 2332.0 2333.0 2334.0 2335.0 2336.0	5.2 25.0 9.1 25.0 7.7 25.0 9.6 22.0 7.7 28.0 8.2 32.0 8.9 32.0 5.6 32.0 6.1 31.0 4.5 31.0	90 10.1 90 10.1 90 10.1 90 10.1 90 10.1 90 10.1 90 10.1	1.39 1.43 1.33 1.48 1.52 1.49	0.68 0.79 0.92 1.03 1.16 1.28 1.39 1.57 1.73	3465 4058 4764 5328 6034 6693 7301 8262 9147 10347	681 389 463 370 463 432 399 630 581 787	12898 10094 8330 7098 6208 5526 4984 4567 4220 3944	8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4
2344.0	5.6 30.0 3.6 30.0 3.1 30.0 3.1 34.0 3.5 30.0 6.7 30.0 4.0 29.0 1.7 28.0 3.0 29.0 2.6 33.0	90 10.1 90 10.1 90 10.1 80 10.1 80 10.1 110 10.1	1.72 1.76 1.83 1.69 1.51 1.64 1.94	2.13 2.41 2.74 3.06 3.34 3.49 3.74 4.32 4.65 5.04	11312 12812 14559 16301 17669 18386 19592 23407 25607 27984	633 984 1146 1143 1009 529 890 2047 1181 1362	3698 3510 3357 3223 3096 2957 2851 2812 2736 2674	8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4 8.5 16.4
2348.0 2349.0 2350.0 2351.0 2352.0 2353.0 2354.0 2355.0 2356.0 2357.0	10.4 30.0 6.2 29.0 5.0 28.0 4.0 30.0 3.6 30.0 2.8 35.0 5.4 30.0 6.3 30.0	103 10.1 109 10.1 109 10.1	1.46 1.59 1.63 1.73 1.76 1.93 1.66	5.19 5.28 5.45 5.65 5.90 6.18 6.53 6.72 6.88 7.02	28907 29501 30498 31734 33279 35015 37350 38561 39600 40516	529 341 571 708 886 995 1265 -656 562 492	2583 2491 2416 2351 2298 2252 2219 2167 2116 2066	8.5 16.4 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5
2358.0 2359.0 2360.0 2361.0 2362.0 2363.0 2364.0 2365.0 2366.0	4.6 34.0 3.4 34.0 2.5 34.0 8.5 34.0 7.8 33.0 7.3 34.0 6.4 34.0 7.2 35.0	110 10.1 110 10.1	1.77 1.86 1.95 1.59 1.60 1.64 1.67	7.25 7.46 7.76 8.16 8.28 8.40 8.54 8.70 8.84 9.01	42033 43468 45409 48049 48826 49672 50576 51607 52524 53643	814 770 1042 1417 417 454 485 553 492 600	2029 1992 1966 1950 1910 1872 1837 1805 1773	8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5 8.5 16.5

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2368.0	5.4	34.0	110	10.1	1.72	9.19	54865	656	1720	8.5	16.5
2369.0	5.4	33.0	90	10.1	1.65	9.38	55865	656	1697	8.5	16.5
_ 2370.0		34.0	93	10.1	1.80	9.66	57455	1009	1681	8.5	16.5
2371.0	3.0		90	10.1	1.84	10.00	59285	1201	1671	8.5	16.5
2372.0		35.0	90	10.1	1.89	10.38	61362	1362	1665	8.5	16.5
2373.0		38.0	90	10.1	1.94	10.77	63439	1362	1658	8.5	16.5
2374.0	3.8		90	10.1	1.83	11.03	64856	930	1644	8.5	16.5
2375.0		35.0		10.1	1.82	11.33	66493	1073	1632	8.5	16.5
2376.0		35.0	90	10.1	1.63	11.49	67350	562	1612	8.5	16.5
= 2377.0		35.0		10.1	1.61	11.64	68132	513	1591		16.5
23//.0	Ω,7	33.0	70	10.1	1.01	11.04	00132	U.C	1071	O.U	10.0
2378.0		35.0		10.1	1.63	11.80	68986	560	1571		16.5
2379.0	4.0	36.0		10.1	1.78	12.05	70329	881	1559		16.5
2380.0	3.3	36.0		10.1	1.84	12.35	71985	1087	1550		16.5
2381.0	3.3	36.0	90	10.1	1.84	12.65	73622	1073	1542	8.5	16.5
2382.0	4.0	36.0	90	10.1	1.78	12.90	74972	886	1530	8.5	16.5
2383.0	5.4	36.0	90	10.1	1.70	13.09	75979	661	1515	8.5	16.5
2384.0	5.6	36.0	90	10.1	1.68	13.27	76945	634	1501	8.5	16.5
2385.0		31.0	90	10.1	1.77	13.58	78627	1103	1494		16.5
2386.0		32.0		10.1	1.69	13.81	79846	800	1483		16.5
2387.0		33.0		10.1	1.74	14.06	81196	88,6	1473		16.5
_ 2388.0	4 7	34.0	o n	10.1	1.60	14.21	82003	529	1458	o =:	16.5
2389.0		32.0		10.1	1.65	14.40	83062	695	1446		16.5
					1.78						
2390.0		32.0		10.1		14.71	84745	1103	1441		16.5
2391.0	2.9	32.0		10.1	1,81	15.06	86588	1209	1438		16.5
2392.0	5.2		90	10.1	1.69	15.25	87626	681	1426		16.5
2393.0		35.0	90	10.1	1.64	15.41	88497	571	1414		16.5
2394.0		35.0	90	10.1	1.59	15.55	89247	492	1401		16.5
2395.0		33.0	90	10.1	1.53	15.67	89906	432	1387		16.5
2396.0		33.0		10.1	1.59	15.82	90711	529	1375		16.5
2397.0	7.7	33.0	90	10.1	1.55	15.95	91417	463	1362	8.5	16.5
2398.0	2.5	33.0	90	10.1	1,87	16.35	93595	1428	1363	8.5	16.5
2399.0	2.0	35.0	90	10.1	1.97	16.85	96281	1762	1369	8.5	16.5
2400.0	2.5	33.0	90	10.1	1.87	17.25	98459	1428	1369	8.5	16.5
2401.0		32.0		10.1	1.84	17.63	100512	1347	1369		16.5
2402.0		30.0		10.1	1.62	17.83	101571	695	1360		16.5
2403.0		36.0		10.1	1.63	17.98	102377	529	1350		16.5
2404.0		35.0		10.1	1.61	18.13	103171	521	1339		16.5
2405.0		35.0		10.1	1.62	18.28	103977	-529	1329		16.5
2406.0		30.0		10.1	1.56	18.43	104821	553	1320		16.5
2407.0		30.0		10.1	1.57	18.59	105692	571	1311		16.5
2000 0	/ m	מ מיניי	es n	10 1	4 12 17	473 725	40/57	E. 173 4	4 ማለጣ	O E	4 / 12"
2408.0		30.0		10.1	1.57	18.75 18.95	106563 107621	571 695	1302		16.5
2409.0		29.0			1.61				1295		16.5
2410.0		29.0		10.1	1.58	19.13	108586	633	1287		16.5
2411.0		30.0		10.1	1.61	19.32	109605	668	1280		16.5
2412.0		30.0		10.1	1.61	19.51	110635	676	1273		16.5
2413.0		29.0		10.1	1.47	19.63	111273	419	1263		16.5
2414.0		29.0	90	10.1	1.51	19.76	112012	485	1254		16.5
2415.0		29.0		10.1	1.53	19.91	112819	529	1246		16.5
2416.0		30.0		10.1	1.58	20.08	113733	599	1239		16.5
2417.0	2.6	29.0	90	10.1	1.79	20.47	115810	1362	1241	8.5	16.5

· ·

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	PP	FG
2418.0 2419.0 2420.0 2421.0 2422.0 2423.0 2424.0 2425.0 2426.0 2427.0	4.0 2.8 3.0 3.1 7.3 7.8 6.4	33.0 30.0 29.0 29.0 29.0 29.0 28.0 32.0 33.0	90 90 90 90 90 90 90	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.69 1.75 1.76 1.74 1.49 1.53	20.81 21.06 21.41 21.75 22.08 22.40 22.54 22.67 22.82 22.96	117640 118984 120912 122712 124530 126261 127000 127692 128536 129287	1201 881 1265 1181 1193 1135 485 454 553 493	1240 1236 1237 1236 1236 1235 1227 1219 1213 1206	88888888888888888888888888888888888888	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2428.0 2429.0 2430.0 2431.0 2432.0 2433.0 2434.0 2435.0 2436.0 2437.0	2.2 2.9 4.4 7.2 8.5 7.6 8.9	31.0 36.0 34.0 34.0 35.0 35.0 35.0 35.0	90 90 90 90 90 90 90	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.96 1.87 1.85 1.72 1.59 1.55 1.58	23.15 23.61 23.98 24.33 24.56 24.70 24.81 24.95 25.06 25.25	130318 132772 134795 136676 137895 138645 139280 139991 140598 141628	676 1610 1327 1234 800 492 417 466 398 676	1201 1205 1206 1206 1202 1196 1189 1182 1175	88888888888888888888888888888888888888	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2438.0 2439.0 2440.0 2441.0 2442.0 2443.0 2444.0 2445.0 2446.0 2447.0	6.2 7.2 4.7 8.8 3.3 2.8 2.5	34.0 34.0 34.0 33.0 31.0 34.0 36.0 37.0 37.0	90 90 90 90 90 90 90	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.62 1.58 1.69 1.50 1.70 1.84 1.91	25.66 25.82 25.96 26.17 26.29 26.50 26.80 27.16 27.56 27.79	143823 144694 145444 146593 147252 148377 150013 151963 154089	1440 571 492 754 432 738 1073 1279 1394 824	1173 1168 1162 1158 1152 1149 1149 1149 1149	.5555555555555555555555555555555555555	16.5 16.6 16.6 16.6 16.6 16.6 16.6
2448.0 2449.0 2450.0 2451.0 2452.0 2453.0 2454.0 2455.0 2456.0 2457.0	5.6 6.2 6.2 6.3 2.8 3.4 3.4	37.0 37.0 37.0 37.0 37.0 37.0 38.0 38.0 38.0	90 90 90 90 90 90 90	10.1 10.0 10.0 10.0 10.0 9.9 10.0 10.0	1.70 1.67 1.69 1.69 1.68 1.95 1.89	27.92 28.10 28.25 28.41 28.57 28.73 29.09 29.38 29.68 30.07	156055 157019 157825 158696 159567 160420 162349 163961 165549 167658	466 633 529 571 571 560 1265 1057 1042 1384	1143 1139 1134 1130 1125 1121 1122 1121 1121 1123	8.55555555 8.88888888888888888888888888	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
2458.0 2459.0 2460.0 2461.0 2462.0 2463.0 2464.0 2465.0 2466.0 2467.0	9.1 8.5 12.1 5.9 3.5 3.3 3.8 2.3	38.0 33.0 33.0 34.0 30.0 32.0 32.0 30.0 34.0 34.0	90 90 90 90 90 90 90	9.9 9.9 9.9 9.9 9.9		30.35 30.46 30.58 30.66 30.83 31.12 31.43 31.69 32.13 32.39	169175 169768 170406 170852 171774 173339 174996 176420 178768 180186	995 389 419 293 604 1027 1087 935 1540 930	1122 1116 1111 1105 1102 1101 1101 1100 1103 1102	8.5555555 8.888.55555 8.88888	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6

September de casamina

DEPTH	ROP	MOB	RPM	ми	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2468.0 2469.0 2470.0 2471.0 2472.0 2473.0 2474.0 2475.0 2476.0 2477.0	6.4 6.4 4.8 4.5 2.7 2.9 5.0	34.0 34.0 35.0 35.0 35.0 35.0 35.0 35.0	90 90 90 90 90 90		1.76 1.73 1.75 1.90 1.88	32.50 32.65 32.81 33.04 33.25 33.47 33.84 34.18 34.38 34.65	180778 181622 182466 183707 184832 186027 188027 189883 190963 192387	389 553 553 814 738 784 1312 1217 708 935	1097 1093 - 1089 1087 1085 1084 1085 1083 1082	8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.6 16.6 16.6 16.6 16.6 16.6 16.6
2478.0 2479.0 2480.0 2481.0 2482.0 2483.0 2484.0 2485.0 2486.0 2487.0	4.4 8.5 5.1 5.9 3.5 4.9 2.4	34.0 34.0 34.0 34.0 34.0 34.0 38.0 38.0 34.0	90 90 90 90 90 90 90	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.74 1.55 1.70 1.66 1.81 1.77 1.99	34.81 35.04 35.35 35.35 35.52 35.80 36.01 36.43 36.85 37.05	193240 194482 195120 196175 197090 198629 199731 202028 204278 205358	560 814 419 692 600 1009 723 1507 1476 708	1078 1077 1073 1070 1067 1067 1065 1067 1070	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	16.6 16.6 16.6 16.6 16.6 16.6 16.6
2488.0 2489.0 2490.0 2491.0 2492.0 2493.0 2494.0 2495.0 2496.0 2497.0	6.9 7.7 6.4 7.2 5.4 2.0 2.1	34.0 34.0 34.0 34.0 34.0 35.0 35.0 33.0	90 90 90 90 90 90 90	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.61 1.58 1.63 1.60 1.68 1.96 1.96	37.21 37.35 37.49 37.64 37.78 37.97 38.42 38.93 39.40 39.65	206216 207000 207706 208550 209301 210309 212730 215485 218069 219402	562 515 463 553 493 661 1588 1807 1695 875	1065 1061 1058 1055 1051 1049 1052 1057 1060 1059	8.55555555 8.88888888	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
2498.0 2499.0 2500.0 2501.0 2502.0 2503.0 2504.0 2505.0 2506.0 2507.0	5.1 5.9 10.3 10.0 9.1 10.6 9.1 5.9	34.0 34.0 32.0	90 90 90 90 90 90 100	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.70 1.66 1.49 1.50 1.53 1.48 1.56	39.78 39.97 40.15 40.24 40.34 40.45 40.55 40.66 40.83 41.00	220095 221149 222071 222595 223135 223728 224237 224897 225914 226930	454 692 604 344 354 389 334 389 600	1056 1054 1051 1047 1043 1039 1036 1032 1030	88888885555555555555555555555555555555	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
2508.0 2509.0 2510.0 2511.0 2512.0 2513.0 2514.0 2516.0 2517.0	6.2 6.9 6.4 4.8 7.3 2.1 2.2		100 100 100 100 100 100 95	10.0 10.0 10.0	1.66 1.61 1.60 1.72 1.71 1.59 1.98	41.24 41.41 41.55 41.71 41.92 42.12 42.26 42.74 43.20 43.69	228423 229395 230268 231205 232455 233680 234500 237281 239860 242641	881 574 515 553 738 723 485 1728 1603 1728	1026 1024 1021 1019 1017 1016 1013 1017 1020 1023	8.55555 8.5555 8.5555	16.6 16.6 16.6 16.6 16.6 16.6 16.6

School of the Benkelon.

DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2518.0	1.8 37.	0 100	10.0 2.09	44.24	245974	1968	1028	8.5	16.6
2519.0	2.2 36.	$0 \ 100$	10.0 2.01	44.69	248689	1603	1031	8.5	16.6
- 2520.0	2.5 36.	0 100	10.0 1.97	45.09	251051	1394	1033	8.5	16.6
2521.0	4.9.36.	0.100	9.9 1.79	45,29	252275	723	1031	8.5	16.6

	BIT NUMBER HTC J7 CUST TOTAL HOURS		13 00.00 6.20	9	BIZE	CODE TIME TURNS	316 12.250 10.2 20696	NOZ BIT	ERVAL ZLES RUN DITION		0- 2535.0 14 14 14 14.0 B2 G0.000
_	DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP FG
	2522.0 2523.0 2524.0	3.2 6.3 5.1	30.0 38.0 36.0	82 95 92	10.0 10.0 10.0	1.75 1.71 1.74	0.31 0.47 0.67	1538 2438 3520	1107 560 695	39035 19797 13430	8.5 16.6 8.5 16.6 8.5 16.6
	2525.0 2526.0 2527.0 2528.0 2529.0 2530.0	4.7 6.9 1.8 1.7	40.0 35.0 36.0 37.0 34.0 35.0	96 97 92 70 35	10.0 10.0 10.0 10.0 10.1	1.91 1.76 1.67 2.08 1.93	0.94 1.15 1.29 1.86 2.44 3.16	5061 6286 7132 10269 12682 14193	957 754 515 2013 2036 2548	10312 8400 7086 6361 5820 5457	8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6
	2531.0 2532.0 2533.0 2534.0	3.0 3.0 2.5 1.0	35.0 36.0 36.0 37.0	36 36 36 36	10.1 10.1 10.1	1.59 1.59 1.65 1.93	3.50 3.83 4.22, 5.20	14925 15638 16499 18596	1201 1169 1411 3439	5031 4680 4408 4333	8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7
	2535.0	1.0	38.0	35	10.1	1.94	6.20	20696	3542	4277	8.5 16.7

. .

.

IADC CODE 2535.0- 2600.0 BIT NUMBER 14 527 INTERVAL 12.250 NOZZLES BIT RUN 14 14 14 HTC J33 SIZE 6090.00 65.0 TRIP TIME COST 10.4 T5 B3 G0.125 CONDITION TOTAL HOURS 8.77 TOTAL TURNS 53719 DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST PP FG 505 351 43277 8.5 16.7 10.1 25.0 85 10.0 1.36 0.10 2536.0 21779 8.5 16.7 12.6 33.0 125 10.0 1.52 0.18 281 2537.0 1100 8.5 16.7 2538.0 14.6 36.0 140 10.0 1.54 0.25 1676 243 14600 8.5 16.7 2539.0 13.5 38.0 130 10.0 1.57 0.32 2253 262 11016 2540.0 8888 8.5 16.7 12.9 40.0 131 10.0 1.61 0,40 2863 275 260 13.6 40.0 126 10.0 1.58 0.47 3418 7433 8.5 16.7 2541.0 13.9 38.0 127 10.0 1.56 0.54 3967 255 6408 8.5 16.7 2542,0 259 5639 8.5 16.7 13.7 40.0 127 10.0 1.58 0.62 4523 2543.0 8.5 16.7 0.68 223 5037 15.9 38.0 123 10.0 1.50 4987 2544.0 2545.0 8.5 16.7 13.6 40.0 120 10.0 1.57 0.75 5516 260 4560 0.85 2546.0 __ 10.0 33.0 105 10.0 1.53 6146 354 4177 8.5 16.7 9.6 34.0 75 10.0 1.46 0.96 6615 369 3860 8.5 16.7 2547.0 529 6.7 32.0 85 10.0 1.57 8.5 18.7 7376 3604 2548.0 1.11 8.5 16.7 2549.0 5.7 40.0 75 10.0 1.69 1.28 8166 621 3391 8.5 16.7 2,4 40.0 116 10.0 2.09 1.70 11066 1476 3263 2550.0 1042 3.4 45.0 130 10.0 2.10 1.99 13360 3124 8.5 16.7 2551.0 7.3 50.0 126 10.0 1.91 485 2969 8.5 16.7 2552.0 2.13 14394 2553.0 5.6 48.0 128 10.0 1.97 2.31 15761 630 2839 8.5 16.7 2.41 8.5 16.7 10.0 50.0 120 10.0 1.79 16481 354 2708 2554.0 2.47 15.6 50.0 120 10.0 1.64 8.5 16.7 2555.0 16942 227 2584 2.59 8,2 41,0 120 10,0 1,74 2482 8.5 16.7 17820 432 2556.0 13.2 48.0 126 10.0 1.69 2.67 18393 268 2381 8.5 16.7 2557.0 11.2 48.0 126 10.0 1.74 2.76 19068 316 2291 8.5 16.7 2558.0 12.4 48.0 128 10.0 1.71 2.84 19687 286 2208 8.5 16.7 2559,0 11.0 49.0 125 10.0 1.76 2.93 20369 322 2132 8.5 16.7 2560.0 8.5 16.7 10.1 49.0 125 10.0 1.79 2064 3.03 21112 351 2561.0 14.2 46.0 1997 8.5 16.7 96 10.0 1.55 3.10 21517 249 2562.0 8.5 16.7 2563.0 10.0 48.0 73 10.0 1.60 3.20 21955 354 1938 8.9.48.0 73 10.0 1.64 3.31 22448 398 1885 8.5 16.7 2564.0 8.5 16.7 3,43 22984 434 1836 2565.0 8.2 48.0 73 10.0 1.67 10.5 48.0 98 10.0 1.68 3.53 23544 337 1788 8.5 16.7 2566.0 24319 398 1745 8.5 16.7 2567.0 8.9 48.0 115 10.0 1.79 3.64 11.2 48.0 110 10.0 1.70 3.73 24908 316 1701 8.5 16.7 2568.0 344 8.5 16.7 10.3 48.0 100 10.0 1.69 3.83 25491 1661 2569.0 3.97 6.9 48.0 105 9.9 1.86 26406 515 1629 8.5 16.7 2570.0 8.5 16.7 3.7 52.0 100 2571.0 9.9 2.11 4.25 28041 965 1610 4.7 52.0 100 8.5 16.7 2572.0 9.9 2.02 4.46 29318 754 1587 9.6 52.0 100 9.9 1.78 4.56 29943 369 1555 8.5 16.7 2573.0 8.5 16.7 9.6 52.0 100 9.9 1.78 4.67 369 1525 30568 2574.0 8.5 16.7 5.7 52.0 100 9.9 1.96 4.84 31624 624 1502 2575.0 8.5 16.7 3.3 52.0 105 9.9 2.16 1067 1491 2576.0 5.14 33522 6.2 52.0 105 9.9 1.95 5.31 34538 571 1470 8.5 16.7 2577.0 290 1442 8.5 16.7 12.2 52.0 105 9.9 1.72 5.39 35054 2578.0

_	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2579.0	11.5	52.0	100	9.9	1.72	5.47	35576	308	1416		16.7
	2580.0	3,6	52.0	100	9.9	2.11	5.75	37243	984	1407	8.5	16.7
_	2581.0	4.0	52.0	100	10.0	2.06	6.00	38750	890	1395	8.5	16.7
	2582.0	9.1	51.0	97	10.0	1.76	6.11	39390	389	1374	8.5	16.7
	2583.0	10.5	42.0	95	10.0	1.60	6,21	39933	337	1352	8.5	16.7
	2584.0	10.4	53.0	100	10.0	1.75	6.31	40510	341	1332	8.5	16.7
	2585.0	5.6	46.0	87	10.1	1.80	6.48	41439	630	1318	8.5	16.7
	2586.0	9.6		93	10.1	1.67	6.59	42020	369	1299	8.5	16.7
	2587.0	9.6	47.0	93	10.1	1.67	6,69	42601	369	1281	8.5	16.7
_	2588.0	4.6		100	10.1	1.95	6.91	43903	768	1272	8.5	16.7
	2589.0	8.5	50.0	100	10.1	1.76	7.03	44612	419	1256	8.5	16.7
-	2590.0	8.7	48.0	102	10.1	1.74	7.14	45319	409	1240	8.5	16.7
	2591.0	4.4	46.0	101	10.1	1.93	7.37	46687	800	1233	8.5	16.7
	2592.0	6.9	48.0	98	10.1	1.80	7.51	47539	513	1220	8.5	16.7
	2593.0	9.1	47.0	100	10.1	1.71	7.62	48198	389	1206	8.5	16.7
	2594.0	12.3	49.0	93	10.1	1.61	7.70	48652	288	1190	8.5	16.7
	2595.0	9,0	49.0	93	10.1	1.71	7.82	49272	394	1177	8.5	16.7
	2596.0	8.9	48.0	105	10.1	1.74	7.93	49980	398	1164	8.5	16.7
	2597.0	11.3	48.0	105	10.1	1.66	8.02	50537	313	1150	8.5	16.7
	2598.0	4.2	52.0	70	10.1	1.90	8.25	51537	843	1145	8.5	16.7
-												
_	2599.0	3.8	48.0	70	10.1	1.88	8.52	52639	930	1142	8.5	16.7
	2600.0	4.0	49.0	72	10.1	1.89	8.77	53719	886	1138	8.5	16.7

•

f

	BIT NUMBER HTC J33 COST TOTAL HOUR	6090.	0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	527 12.250 10.7 76380	NOZ BIT	ERVAL ZLES RUN DITION		0- 2663.3 14 14 15 63.3 B3 G0.125
_	DEPTH	ROP W	DB RPM	MW "d"c	HOURS	TURNS	ICOST	ccost	PP FG
	2601.0 2602.0 2603.0	6.0 48 3.9 55 3.1 48	.0 72	10.1 1.74 10.1 1.98 10.1 1.95	0.17 0.43 0.75	700 1822 3177	590 920 1143	44580 22750 15547	8.5 16.7 8.5 16.7 8.5 16.7
	2604.0 2605.0 2606.0 2607.0 2608.0 2609.0 2610.0 2611.0 2612.0 2613.0	3.2 48 2.5 48 4.2 48 4.0 48 3.6 48 4.4 50 3.8 50 5.1 50 4.0 50 9.1 50	.0 100 .0 100 .0 90 .0 85 .0 100 .0 90	10.1 1.97	1.06 1.46 1.70 1.95 2.23 2.45 2.72 2.91 3.16 3.27	4523 6913 8345 9688 11121 12475 13893 14947 16291 16884	1103 1411 845 881 995 800 930 692 881 389	11936 9831 8334 7269 6485 5853 5361 4936 4598 4275	8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7
	2614.0 2615.0 2616.0 2617.0 2618.0 2619.0 2620.0 2621.0 2623.0	12.6 50 16.0 48 12.8 48 12.9 49 10.8 49 3.7 48 4.5 50 3.8 49 5.4 49 3.2 49	.0 87 .0 87 .0 89 .0 89 .0 90 .0 85 .0 83	10.0 1.94 10.0 1.97 10.0 1.90	3.35 3.49 3.57 3.66 3.93 4.15 4.42 4.60 4.91	17313 17639 18047 18461 18955 20427 21555 22869 23924 25706	281 227 275 328 965 784 935 656 1107	3989 3738 3522 3331 3164 3048 2935 2840 2740 2669	8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7 8.5 16.7
	2624.0 2625.0 2626.0 2627.0 2628.0 2629.0 2630.0 2631.0 2632.0 2633.0	3.2 49 1.9 53 3.5 52 4.3 56 4.3 56 3.5 55 4.8 56 4.0 53 4.4 53 4.0 54	.0 87 .0 93 .0 90 .0 90 .0 90 .0 87 .0 87	10.0 2.08 10.0 2.28 10.0 2.08 10.0 2.05 10.0 2.05 10.0 2.11 10.0 2.00 10.0 2.03 10.0 1.99 10.0 2.05	5.23 5.75 6.04 6.27 6.51 6.79 7.00 7.25 7.48 7.73	27524 30272 31866 33131 34395 35934 37021 38333 39511 40868	1107 1864 1012 830 830 1009 738 -890 800	2604 2575 2515 2452 2394 2347 2293 2248 2202 2163	8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8
	2634.0 2635.0 2636.0 2637.0 2638.0 2639.0 2640.0 2641.0 2642.0	7.2 54 4.8 54 4.8 54 4.1 54 3.8 54 3.8 53 4.8 54 5.9 54 4.5 53 4.0 53	.0	10.0 1.85 10.0 1.99 10.0 1.99 10.0 2.04 10.0 2.07 10.0 2.04 10.0 1.98 10.0 1.91 10.0 1.99	7.87 8.08 8.28 8.53 8.80 9.06 9.27 9.44 9.66 9.91	41618 42743 43868 45201 46626 48016 49116 50017 51185 52379	492 738 738 875 935 932 738 604 784 881	2113 2074 2037 2006 1977 1951 1920 1888 1862 1839	8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8

. •

	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	. FG
	2644.0	4,2	53.0	80	10.0	1.98	10.15	53522	843	1816	8.5	16.8
	2645.0	3.0	53.0	70	10.0	2.04	10.48	54908	1169	1802	8.5	16.8
	2646.0	4.6	53.0	113	10.0	2.06	10.69	56378	768	1780	8.5	16.8
	2647.0	3.9	52.0	113	10.0	2.11	10.95	58139	920	1761	8.5	16.8
	2648.0	4.4	52.0	110	10.0	2.06	11.18	59657	814	1742	8.5	16.8
_	2649.0	3.6	52.0	110	10.0	2.12	11.46	61480	978	1726	8.5	16.8
	2650.0	4.5	52.0	110	10.0	2.05	11.68	62940	784	1707	8.5	16.8
•	2651.0	3.8	53.0	110	10.0	2.12	11.94	64682	935	1692	8.5	16.8
	2652.0	5.9	53.0	110	10.0	1.97	12.11	65808	604	1671	8.5	16.8
1	2653.0	5.2	46.0	110	10.0	1.92	12.31	67067	676	1652	8.5	16.8
	2654.0	3.3	46.0	100	10.0	2.04	12.61	68886	1073	1642	8.5	16.8
•	2655.0	3.4	48.0	100	10.0	2.06	12.90	70650	1042	1631	8.5	16.8
i	2656.0	5.9	46.0	100	10.0	1.85	13.07	71667	600	1612	8.5	16.8
•	2657.0	11.4	46.0	100	10.0	1.64	13.16	72194	311	1589	8.5	16.8
	2658.0	13.3		100	10.0	1.59	13.23	72645	266	1567	8.5	16.8
	2659.0	9.1	48.0	80	10.0	1.66	13.34	73172	389	1547	8.5	16.8
	2660.0	14.2	48.0	8.0	10.0	1.52	13.41	73510	249	1525	8.5	16.8
	2661.0	11.7	46.0	80	10.0	1.56	13.50	73920	303	1505	8.5	16.8
	2662.0	11.1	46.0	97	10.0	1.64	13.59	74444	319	1486	8.5	16.8
	2663.0	10.5	46.0	102	10.0	1.67	13.69	75027	337	1468	8.5	16.8
	2663.3	10.5	46.0	102	10.0	1.67	13.71	75202	337	1462	8.5	16.8

CH CC	T NUMBER RISTENSEN ST TAL HOURS	1500	16 00.00 4.08		CADC (SIZE TRIP TOTAL		4 8.468 10.7 18692	NOZ BIT	ERVAL ZLES RUN DITION		.3- 26 13 1 BO GO	13 13 5.7
	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PP	FG
E	663.4 663.6 663.8	6.9	10.0 10.0 16.0	64	10.0 10.0 10.0	1.21	0.02 0.05 0.10	62 173 387		529565 176864 106512	8.5	16.8 16.8 16.8
2 2	664.0 664.2 664.4 664.6	1.3	16.0 16.0 16.0	64 64	10.0 10.0 10.0	1.80 1.71	0.23 0.39 0.50 0.56	899 1508 1930 2142	2361 2811 1946 978	76755 60323 49709 42212	8.5 8.5	16.8 16.8 16.8
	664.8 665.0 665.2	4.3 4.1 3.0	16.0 18.0 19.0	64 67 78	10.0 10.0 10.0 10.0	1.48 1.55 1.71	0.60 0.65 0.72	2321 2517 2829	824 864 1181	36693 32478 29184	8.5 8.5 8.5	16.8 16.8 16.8
2	665.4 665.6 665.8	2.7	19.0 19.0 19.0	78 78	10.0	1.73	0.79 0.86 0.91	3141 3488 3722	1181 1312 886	26517 24325 22450	8.5 8.5	16.8 16.8 16.8
2	666.0 666.2 666.4 666.6	0.9 0.7	18.0 18.0 18.0 18.0	78 78 78	10.0 10.0 10.0	2.01 2.08 2.05	0.97 1.19 1.48 1.74	4014 5049 6387 7618	1107 3918 5060 4661	20869 19700 18755 17901	8.5 8.5 8.5	16.8 16.8 16.8 16.8
	666.8 667.0 667.2 667.4	0.7 0.8	16.0 16.0 17.0	80 80	10.0 10.0 10.0	2.01 2.02	2.08 2.35 2.60 2.86	9218 10533 11733 12980	5903 4852 4428 4600	17216 16547 15926 15373	8.5 8.5	16.8 16.8 16.8
2	667.6 667.8	1.3	20.0 19.0	80 80	10.0	1.96	3.01 3.16	13696 14413	2643 2643	14781 14242	8.5 8.5	16.8
	668.0 668.2 668.4 668.6 668.8	0.5 1.7 2.1 2.1	16.0 11.0 10.0 20.0 20.0	80 80 80 80	10.0 10.0 10.0 10.0 10.0	1.90 1.59 1.84 1.84	3.27 3.64 3.76 3.85 3.95 4.08	14955 16733 17298 17755 18212 18692	2001 6559 2084 1687 1687 2361	13721 13429 12984 12557 12162 11818	8.5 8.5 8.5 8.5	16.8 16.8 16.8 16.8 16.8

BIT NUMBER 17 HTC J33 COST 6090.00 TOTAL HOURS 33.41	SIZE 12.1 TRIP TIME 1	250 NOZZLES 1.2 BIT RUN	2669.0- 2815.0 14 14 15 146.0 T6 B5 G0.187-
DEPTH ROP WOB	RPM MW "d"c HOUR	s TURNS ICOST	CCOST PP FG
2671.0 1.8 25.0	80 10.2 1.44 0.3 105 10.2 1.84 0.8 100 10.2 2.42 4.2	9 5100 1968	
2674.0 3.8 48.0 2675.0 3.9 46.0 2676.0 3.2 46.0 2677.0 4.7 46.0 2678.0 4.6 47.0 2679.0 3.2 46.0 2680.0 3.3 47.0 2681.0 3.3 47.0	95 10.2 1.95 4.4 100 10.1 2.00 4.7 120 10.1 2.03 4.9 120 10.1 2.08 5.3 123 10.1 1.97 5.5 123 10.1 1.99 5.7 124 10.1 2.10 6.0 124 10.1 2.10 6.3 124 10.1 2.10 6.6 116 10.1 2.18 7.0	3 28097 932 9 29967 920 1 32210 1103 2 33780 754 4 35381 768 5 37699 1103 5 39953 1073 5 42208 1073	15399 8.5 16.8 12506 8.5 16.8 10575 8.5 16.8 9222 8.5 16.8 8163 8.5 16.8 7342 8.5 16.8 6718 8.5 16.8 6205 8.5 16.8 5777 8.5 16.8
2684.0 6.3 48.0 2685.0 10.3 49.0 2686.0 13.1 49.0 2687.0 11.5 46.0 2688.0 10.6 47.0 2689.0 10.5 48.0 2690.0 10.1 48.0 2691.0 11.7 48.0	124 10.1 2.09 7.3 124 10.1 1.91 7.4 124 10.1 1.76 7.5 124 10.1 1.68 7.6 115 10.1 1.66 7.7 122 10.1 1.72 7.8 120 10.1 1.73 7.9 120 10.1 1.74 8.0 112 10.1 1.67 8.1 75 10.1 1.76 8.2	7 48102 562 7 48824 344 4 49392 270 3 49992 308 2 50683 334 2 51368 337 2 52081 351 0 52656 303	5118 8.5 16.8 4814 8.5 16.8 4535 8.5 16.8 4284 8.5 16.8 4063 8.5 16.8 3867 8.5 16.8 3691 8.5 16.8 3531 8.5 16.8 3385 8.5 16.8 3264 8.5 16.8
2695.0 4.8 48.0 2696.0 6.7 48.0 2697.0 4.7 49.0 2698.0 3.5 48.0 2699.0 3.8 50.0 2700.0 3.3 50.0 2701.0 3.0 48.0	122 10.1 1.79 8.4	9 54964 399 9 56476 738 4 57560 529 6 59104 754 5 61191 1027 1 63128 930 2 65337 1087 5 67737 1181	3142 8.5 16.8 3033 8.5 16.8 2944 8.5 16.8 2855 8.5 16.8 2780 8.5 16.8 2719 8.5 16.8 2660 8.5 16.8 2504 8.5 16.8 2501 8.5 16.8
2704.0	120 10.1 2.11 10.6 123 10.1 2.15 10.9 120 10.1 2.20 11.3 120 10.1 1.74 11.4 122 10.1 1.91 11.5 120 10.1 2.13 11.8 122 10.1 2.03 12.0 120 10.1 1.90 12.2 123 10.1 1.81 12.3 139 10.1 1.70 12.4	8 73076 1042 4 75611 1247 3 76317 347 8 77381 515 9 79563 1073 9 81088 738 5 82230 562 8 83177 454	2459 8.5 16.8 2419 8.5 16.8 2386 8.5 16.8 2331 8.5 16.8 2283 8.5 16.8 2252 8.5 16.8 2215 8.5 16.8 2174 8.5 16.8 2133 8.5 16.8 2090 8.5 16.8

DEPTH	ROP	MOB	RPM	мш	"d "c	HOURS	TURNS	ICOST	CCOST	PP FG
2713.0 2714.0 2715.0 2716.0 2717.0 2718.0 2719.0 2720.0 2721.0 2722.0	5.0 6.4 11.5 9.5 7.8 8.5 10.6 3.5	50.0 47.0 46.0 48.0 47.0 46.0 47.0 45.0 45.0	124 122 120 115 115 115	10.1 10.1 10.1 10.1 10.1 10.1	1.97 1.88 1.71 1.75 1.79 1.77 1.68 2.03	12.53 12.73 12.88 12.97 13.07 13.20 13.32 13.41 13.70 13.80	84357 -85842 87004 87641 88399 89283 90095 90746 92717 93436	241 707 553 308 373 454 417 334 1012 369	2048 2019 1987 1951 1918 1888 1859 1829 1813 1786	8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.8 8.5 16.9
2723.0 2724.0 2725.0 2726.0 2727.0 2728.0 2729.0 2730.0 2731.0 2732.0	8.5 3.8 3.0 6.7 6.4 8.2 8.2	45.0 48.0 48.0 48.0 48.0 48.0	120 120 120 130 130 130 120	10.1 10.1 10.1 10.1 10.1 10.1	1.76 2.02 2.14 1.90 1.92 1.84 1.81	14.08 14.20 14.46 14.80 14.95 15.10 15.23 15.35 15.44 15.55	95425 96276 98171 100595 101761 102980 103931 104809 105458 106216	978 419 932 1193 529 553 432 432 319 389	1771 1746 1732 1722 1702 1682 1662 1641 1620 1601	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9
2733.0 2734.0 2735.0 2736.0 2737.0 2738.0 2739.0 2740.0 2741.0 2742.0	4.6 4.9 7.2 5.6 3.7 4.3 7.8 4.4	50.0 50.0 50.0 44.0 47.0 48.0 44.0 46.0	120 120 120 120 120 120 120 120	10.1 10.1 10.1 10.1 10.1 10.1	2.02 2.00 1.83 1.92 2.07 1.96 1.83 1.99	15.69 15.91 16.11 16.25 16.43 16.70 16.93 17.06 17.29 17.40	107259 108821 110291 111291 112572 114518 116192 117115 118770 119520	513 768 723 492 630 957 824 454 814 369	1584 1571 1558 1542 1529 1521 1511 1496 1486 1471	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9
2743.0 2744.0 2745.0 2746.0 2747.0 2748.0 2749.0 2750.0 2751.0 2752.0	4.0 4.0 6.4 10.3 12.3 8.9 4.0	48.0 46.0 46.0 47.0 47.0	120 120 120 120 120 120 120	10.1 10.1 10.1 10.1 10.1 10.1	2.01 1.86 1.72 1.67 1.76 2.01 1.89	17.49 17.74 17.99 18.15 18.24 18.32 18.44 18.69 18.85	120200 122000 123791 124916 125615 126200 127009 128809 129970 131431	334 886 881 553 344 288 398 886 571 707	1456 1448 1440 1429 1415 1401 1388 1382 1372 1364	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9
2753.0 2754.0 2755.0 2756.0 2757.0 2758.0 2759.0 2760.0 2761.0 2762.0	5.0 4.7 7.7 2.4 4.0 6.4 3.7 4.8	44.0 43.0 43.0	120 120 124 125 123 125 120 120	10.1 10.1 10.1 10.1 10.1 10.1	1.94 1.95 1.78 2.16 1.98 1.84 2.00	19.22 19.42 19.63 19.76 20.18 20.43 20.58 20.86 21.06 21.38	132681 134121 135652 136625 139750 141586 142758 144720 146220 148546	604 708 754 463 1476 881 553 965 738 1135	1355 1348 1341 1331 1332 1327 1318 1315 1308 1306	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9

DEPTH	ROP	WOR	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	bb te@
2763.0 2764.0 2765.0 2766.0 2767.0 2769.0 2770.0 2771.0 2772.0	10.4 4.4 2.2 10.6 11.2 7.3 3.0 3.0	45.0 40.0 40.0 46.0 46.0 45.0 46.0 46.0	120 122 120 120 120 120 120 120	10.1 10.1 10.1 10.1 10.1 10.1	1.91 2.21 1.70 1.67 1.82 2.11 2.11	21.62 21.72 21.95 22.40 22.50 22.59 22.72 23.06 23.39 23.78	150265 150957 152640 155913 156592 157235 158221 160621 163021 165790	845 341 814 1610 334 316 485 1181 1181 1362	1302 1291 1286 1290 1280 1270 1262 1262 1261 1262	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9
2773.0 2774.0 2775.0 2776.0 2777.0 2778.0 2779.0 2780.0 2781.0 2782.0	2.8 2.7 11.3 11.0 10.1 4.8 4.0 2.7	48.0 48.0 49.0 54.0 51.0 51.0	124 116 120 123 76 120 120	10.1 10.1 10.1 10.1 10.1 10.1	2.16 1.71 1.73 1.66 2.02	24.00 24.35 24.72 24.81 24.90 25.00 25.21 25.46 25.84 26.06	167390 170047 172625 173262 173933 174385 175885 175885 180381 182061	787 1265 1312 313 322 351 738 886 1327 787	1257 1258 1258 1249 1240 1232 1228 1225 1226 1222	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9
2783.0 2784.0 2785.0 2786.0 2787.0 2789.0 2790.0 2791.0 2792.0	3.1 3.8 2.7 2.8 6.3 3.6 4.4 8.5	47.0 48.0 46.0 47.0 50.0 47.0 49.0 49.0	124 126 116 115 127 121 128 128	10.1 10.1 10.1 10.1 10.1 10.1	2.05 2.13 2.13 1.94 2.07 2.05 1.83	26.16 26.48 26.74 27.11 27.47 27.63 27.90 28.13 28.25 28.37	182766 185151 187140 189718 192182 193392 195409 197154 198058 198961	344 1135 932 1312 1265 562 984 805 417 417	1214 1213 1211 1212 1212 1207 1205 1202 1195 1189	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9
2794.0 2795.0 2796.0 2797.0 2798.0 2799.0 2800.0 2801.0	9.6 9.6 8.9 3.4 2.9 3.3	51.0 51.0 51.0 46.0 50.0 46.0 46.0 50.0	116 118 118 120 120 120 120 121	10.1 10.1 10.1 10.1 10.1 10.1	1.82 2.11 1.79 1.79 1.76 2.12 2.12 2.08 1.72	28.48 28.76 28.87 28.97 29.08 29.38 29.72 30.02 30.11	199865 201798 202535 203273 204082 206200 208682 210864 211480 212143	417 984 369 369 398 1042 1221 1073 316 334		8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9
2803.0 2804.0 2805.0 2806.0 2807.0 2808.0 2809.0 2810.0 2811.0 2812.0	10.1 10.1 3.4 3.4 2.8 8.2 3.3 2.7	48.0 46.0 46.0 46.0 46.0 46.0 45.0	120 120 115 115 115 115 115	10.1 10.1 10.1 10.1 10.1 10.1		30.34 30.43 30.53 30.83 31.12 31.48 31.60 31.90 32.27 32.64	213066 213778 214491 216521 218550 221014 221856 223947 226502 229058	454 351 351 1042 1042 1265 432 1073 1312 1312	1143 1137 1132 1131 1130 1131 1126 1127 1129	8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9 8.5 16.9

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
2813.0								1087	1128	8.5	16.9
2814.0	4.6	49.0	118	10.1	2.01	33.17	232769	770	1126	8.5	16.9
2015 0	59 1	AQ n	115	10 1	o on	ልል ጆጆ	234009	1447	1170	g s	14 0

	BIT NUMBER HTC J33 COST \ TOTAL HOURS	18 6090.00 36.54	SIZE TRIP TIME	527 12.250 11.7 218379	INTERVAL NOZZLES BIT RUN CONDITION	
_	DEPTH	ROP WOB	RPM MW "d"c	HOURS	TURNS ICOST	CCOST PP FG
	2817.0	3.1 50.0	105 10.1 2.14 105 10.1 2.11 105 10.1 2.21	0.36 0.68 1.08	2250 1265 4282 1143 6802 1417	48796 8.5 16.9 24969 8.5 16.9 17119 8.5 16.9
	2820.0 11 2821.0 5 2822.0 16 2823.0 14 2824.0 14 2825.0 6 2826.0 5	1.3 58.0 7.6 57.0 5.0 57.0 4.0 57.0 4.0 58.0 3.2 55.0 5.9 48.0 5.3 48.0	110 10.1 1.83 110 10.1 1.66 110 10.1 1.70 105 10.1 1.70 105 10.1 1.85 105 10.1 1.87	1.28 1.37 1.47 1.53 1.61 1.68 1.80 1.97 2.13 2.21	8122 708 8706 313 9394 369 9806 221 10278 253 10728 253 11496 432 12564 600 13554 562 14074 295	13016 8.5 17.0 10476 8.5 17.0 8791 8.5 17.0 7567 8.5 17.0 6653 8.5 17.0 5942 8.5 17.0 5391 8.5 17.0 4955 8.5 17.0 4589 8.5 17.0 4259 8.5 17.0
	2830.0 5 2831.0 2 2832.0 5 2833.0 5 2834.0 5 2835.0 6 2836.0 6	5.1 48.0 2.8 48.0 7.8 48.0 3.8 48.0 7.5 48.0 6.4 45.0 5.9 45.0	104 10.1 1.78 104 10.1 2.01 104 10.1 1.79	2.32 2.52 2.88 3.01 3.27 3.40 3.56 3.71 3.88 4.03	14775 398 15999 695 18228 1265 19028 454 20670 932 21502 472 22477 553 23414 553 24431 600 25301 513	3983 8.5 17.0 3764 8.5 17.0 3608 8.5 17.0 3422 8.5 17.0 3284 8.5 17.0 3136 8.5 17.0 2890 8.5 17.0 2786 8.5 17.0 2687 8.5 17.0
	2840.0 9 2841.0 9 2842.0 1; 2843.0 ; 2844.0 2 2845.0 2 2846.0 2	9.6 45.0 9.6 45.0 1.0 45.0 5.1 47.0 2.8 45.0 2.7 45.0 1.7 52.0	100 10.1 1.89 100 10.1 2.06 100 10.1 2.07 100 10.1 2.06 100 10.1 2.32	4.20 4.30 4.41 4.50 4.69 5.05 5.42 5.78 6.37 6.68	26318 600 26943 369 27568 369 28113 322 29290 695 31432 1265 33655 1312 35797 1265 39327 2084 41202 1107	2600 8.5 17.0 2511 8.5 17.0 2428 8.5 17.0 2350 8.5 17.0 2291 8.5 17.0 2256 8.5 17.0 2224 8.5 17.0 2193 8.5 17.0 2190 8.5 17.0 2157 8.5 17.0
	2850.0 10 2851.0 1: 2852.0 1: 2853.0 10 2854.0 10 2855.0 : 2856.0 2	1.0 50.0 1.0 50.0 0.0 50.0 0.0 50.0 5.2 50.0 2.5 55.0 3.5 55.0	100 10.1 1.71 100 10.1 1.68 100 10.1 1.68 100 10.1 1.71 100 10.1 1.71 100 10.1 1.92 100 10.0 2.26	6.78 6.88 6.97 7.06 7.16 7.26 7.45 7.85 8.14 8.22	41802 354 42402 354 42947 322 43493 322 44093 354 44693 354 45847 681 48247 1417 49961 1012 50437 281	2104 8.5 17.0 2054 8.5 17.0 2006 8.5 17.0 1961 8.5 17.0 1918 8.5 17.0 1848 8.5 17.0 1838 8.5 17.0 1818 8.5 17.0 1782 8.5 17.0

DEPTH	ROP	WOR	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2859.0 2860.0 2861.0 2862.0 2863.0 2864.0 2865.0 2866.0 2867.0 2868.0	6.3 2.8 7.4 2.6 5.4 9.1 10.7 4.8 5.2	55.0 40.0 50.0 50.0	100 104 106 100 104 102 104 102	10.0 10.0 10.0 10.0 10.0 10.0	2.22 1.90 2.26 1.80 1.77 1.71 2.01 1.98	8.38 8.73 8.87 9.25 9.44 9.55 9.64 9.65 10.04	51390 53532 54376 56822 57941 58627 59199 60499 61676 62276	562 1265 479 1362 661 389 331 738 681 347	1755 1744 1716 1709 1687 1660 1634 1616 1598	88.55.55.55.55 88.88.88 88.88 88.88	17.0 17.0 17.0 17.0 17.0 17.0 17.0
2869.0 2870.0 2871.0 2872.0 2873.0 2874.0 2875.0 2876.0 2877.0 2878.0	3.0 8.5 5.0 1.9 2.8 10.8 11.0	48.0 49.0 49.0 49.0 47.0 45.0 45.0 45.0 51.0	102 104 104 104 104 101 104	10.0 10.0 10.0 10.0 10.0 10.0	2.12 1.78 1.96 2.24 2.09 1.64 1.65	10.29 10.62 10.74 10.94 11.47 11.83 11.92 12.01 12.10 12.38	63191 65231 65965 67213 70497 72725 73287 73854 74426 76160	529 1181 417 708 1864 1265 328 322 325 984	1555 1548 1528 1514 1520 1516 1496 1477 1458 1450	88.555555555555555555555555555555555555	17.0 17.0 17.0 17.0 17.0 17.0 17.0
2879.0 2880.0 2881.0 2882.0 2883.0 2884.0 2885.0 2886.0 2887.0 2888.0	3.2 3.8 3.0 1.5 2.5 2.1 5.1 2.5	51.0 49.0 51.0 51.0 53.0 50.0 49.0 51.0	102 100 100 104 103 105 105	10.0 10.0 10.0 10.0 10.0 10.0	2.10 2.06 2.14 2.42 2.20 2.25 1.97 2.16	12.71 13.02 13.29 13.62 14.29 14.69 15.16 15.36 15.76	78160 80072 81651 83651 87811 90283 93283 94518 96798 98798	1181 1107 932 1181 2361 1417 1687 695 1417	1446 1441 1433 1430 1443 1446 1436 1435 1432	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	17.0 17.0 17.0 17.0 17.0 17.0 17.0
2889.0 2890.0 2891.0 2892.0 2893.0 2894.0 2895.0 2896.0 2897.0 2898.0	2.5 2.5 1.7 2.5 4.5 8.5 3.6	46.0 48.0 49.0 48.0 48.0	93 88 95 90 98 85 106 98	10.0 10.0 10.0 10.0 10.0 10.0	2.01 2.14 2.26 2.14 1.91 1.75 2.00	16.48 16.56 16.87 17.27 17.86 18.24 18.47 18.58 18.86 18.97	100921 101368 103018 105298 108474 110736 111869 112617 114251 114950	1362 283 1107 1417 2084 1362 787 417 984 389	1431 1416 1412 1412 1420 1420 1412 1399 1394 1382	8.55.55.55.55.55.55.55.55.55.55.55.55.55	17.0 17.0 17.0 17.0 17.0 17.0 17.0
2899.0 2900.0 2901.0 2902.0 2903.0 2904.0 2905.0 2906.0 2907.0 2908.0	2.5 2.1 2.1 7.3 3.9 2.9 1.9 3.5	47.0 46.0 46.0 48.0 45.0 47.0 45.0 41.0	102 103 103 95 95 70 70	10.0 10.0	2.13 2.19 2.19 1.79 1.95 1.98 2.09 1.89	19.39 19.79 20.26 20.74 20.88 21.13 21.48 22.00 22.29 22.46	117550 119998 122941 125883 126664 128126 129574 131785 132985 133676	1476 1417 1687 1687 485 908 1221 1864 1012 600	1383 1384 1387 1391 1380 1375 1373 1379 1375 1366	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	17.0 17.0 17.0 17.0 17.0 17.0 17.0

•

DEPTH	ROP	MOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рp	FG
2909.0 2910.0 2911.0 2912.0 2913.0 2914.0 2915.0 2916.0 2917.0 2918.0	3.3 3.8 7.8 7.8 10.2 10.6 7.2 5.0	43.0 46.0 50.0 48.0 45.0 45.0 45.0 45.0	68 98 105 105 105 105 105	10.0 10.0 10.0	1.91 2.04 2.04 1.76 1.68 1.67 1.79	22.63 22.93 23.20 23.46 23.59 23.68 23.78 23.92 24.12 24.37	134368 135604 137151 138809 139617 140235 140829 141704 142964 144539	600 1073 932 932 454 347 334 492 708 886	1358 1355 1351 1347 1338 1328 1318 1309 1304 1299	8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17	.0.0.0.0.0.0
2919.0 2920.0 2921.0 2922.0 2923.0 2924.0 2925.0 2926.0 2927.0 2928.0	4.0 4.0 3.0 2.1 12.5 10.0 5.1 2.7	43.0 43.0 43.0 46.0	100 100 100 105 105 105 105 105	10.0 10.0 10.0 10.0 10.0	1.96 1.96 2.05 2.15 1.59 1.66 1.87 2.12	24.70 24.95 25.20 25.53 26.01 26.09 26.19 26.39 26.76 27.08	146539 148039 149539 151539 154539 155043 155673 156903 159237 161269	1181 886 886 1181 1687 283 354 692 1312 1143	1298 1294 1291 1289 1293 1284 1275 1270 1271 1269	8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17	.1 .1 .1 .1 .1 .1
2929.0 2930.0 2931.0 2932.0 2933.0 2934.0 2935.0 2936.0 2937.0 2938.0	2.4 2.5 2.6 2.5 3.2 3.6 2.2	45.0 45.0 48.0 48.0 48.0 45.0 45.0	105 105 105 100 100 100 100	10.0 10.0 10.0 10.0	2.13 2.16 2.16 2.07 1.81 2.00 2.17	27.50 27.91 28.31 28.70 29.10 29.40 29.54 29.82 30.27	163894 166519 169039 171462 173862 175680 176514 178180 180908 183689	1476 1476 1417 1362 1417 1073 492 984 1610	1271 1273 1274 1275 1276 1275 1268 1266 1271	8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17	.1 .1 .1 .1 .1 .1 .1
2939.0 2940.0 2941.0 2942.0 2943.0 2944.0 2945.0 2946.0 2947.0	3.2 5.1 4.7 3.1 3.0 3.4 3.0	46.0 42.0 42.0 43.0 43.0 44.0 42.0 42.0	100 100 100 100 100 103 102 102	10.0 10.0 10.0 10.0 10.0 10.0	1.99 1.84 1.87 2.01 2.02 2.01 2.02 1.69	30.99 31.30 31.50 31.71 32.03 32.37 32.66 32.99 33.11 33.21	185331 187206 188378 189655 191590 193590 195408 197448 198168	932 1107 692 754 1143 1181 1042 1181 417 369	1269 1267 1263 1259 1258 1257 1255 1255 1249 1242	8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17	
2949.0 2950.0 2951.0 2952.0 2953.0 2954.0 2955.0	1.5 1.9 2.3 2.4 2.6	44.0 42.0 44.0 52.0 51.0 53.0 48.0	102 102 100 102	10.0 10.0 10.0 10.0	2.23 2.19 2.24 2.22 2.22	33.53 34.19 34.72 35.15 35.57 35.57 35.95 36.54	200749 204829 208050 210625 213175 215414 218379	1107 2361 1864 1520 1476 1362 2084	1241 1249 1254 1256 1257 1258 1264	8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17 8.5 17	.1

	BIT NUMI HTC OSC COST	BER	19]	(ADC (CODE	131		[ERVAL		.0- 2460	
	HTC OSC	1 G	00 00		SIZE	ттыс	8.500 9.9	NOZ	ZZLES		28 28 462	
	TOTAL HO	711DC :	00.00 1 <i>1</i> 7277	-		TURNS		CU)	I KUR JNTTTON	ד ד	B5 G0.0	
	TOTAL IN	JUKO .	X ~ Y 1 (3) /		i W i m	TONING	104401	()	ATAT 1 TEM	,	100 CO 1 C	, , ,
	DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	PP	FG
	2000.0					0.83			71	18054	8.5 16	
	2005.0					1.01		1544		5268	8.5 16	
	2010.0	43.0	10.0	100	10.2	0.86	0.37	2242	82	3107	8.5 16	5.0
	2015.0		20.0				0.79	5242	295	2280	8.5 16	
	2020.0		20.0				0.87	5842		1775	8.5 16	
	2025.0		20.0				1.04	7042 8607		1469	8.5 16	
_	2030.0 2035.0		22.0				1.26 1.51	10257		1263 1116	8.5 16 8.5 16	
	2040.0		20.0				1.71	11577		1000	8.5 16	
	2045.0		18.0				1.93		154.00	910.31	8.5 16	
	2050.0		15.0				2.18	14812	177.10	839.81	8.5 16	5.1
	2055.0		15.0				2.43		177.10		8.5 16	
	2060.0	22.0	15.0	120	10.2	1.17	2.65	18248	161.00	731.62	8.5 16	5.1
_	2065.0		15.0				2.85			687.60	8.5 16	
	2070.0		15.0				3.04		136.23		8.5 16	
	2075.0		15.0				3.24		141.68		8.5 16	
_	2080.0 2085.0		15.0 15.0				3.43 3.68		131.19		8.5 16 8.5 16	
	2090.0		15.0				3.99		221.38		8.5 16	
_	2095.0		15.0				4.14		107.33		8.5 16	
	2100.0		15.0				4.36	30805	154.00	504.05	8.5 16	5.2
	2105.0		15.0				4.53		118.07		8.5 16	
	2110.0	31.0	15.0	122	10.2	1.09	4.69	33205	114.26	469,42	8.5 16	5.2
	2115.0					1.10				454.41		
	2120.0		15.0				5.03		126.50		8.5 16	
_	2125.0		15.0				5.21		122.14		8.5 16	
	2130.0 2135.0		18.0 18.0			1.14	5.36 5.50	39138	107.33	416,20	8.5 16 8.5 16	
	2140.0					1.15	5.65		110.69			5.2
	2145.0		18.0				5.81		110.69			5.2
	2150.0		18.0				5.98		118.07		8.5 16	5.2
	2155.0	35.0	15.0	123	10.1	1.07	6.12		101.20		8.5 16	
	2160.0	34.0	18.0	124	10.1	1.14	6.27	44822	104.18	359.02	8.5 16	5.2
	2165.0					1.14	6.42		107.33		8.5 16	
_	2170.0		18.0				6.56		101.20		8.5 16	
	2175.0		18.0				16.71		107.33		8.5 16	
	2180.0 2185.0		18.0 18.0				6.86 7.02		107.33		8.5 16 8.5 16	5.3 5.3
_	2190.0		18.0				7.17		107.33			3.3
	2195.0		18.0				7.31		104.18			5.3
	2200.0		18.0				7.46		101.20		8.5 16	. Z
	2205.0	38.0	18.0	124	10.1	1.11	7.59	54657	93.21	303.59	8.5 16	
	2210.0	39.0	18.0	124	10.1	1.10	7.72	55611	90.82	298.57	8.5 16	3

.

•

	•											
_	DEPTH	ROP	MOB	RPM	WM	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2215.0 2220.0 2225.0 2230.0 2235.0 2240.0 2245.0 2250.0 2250.0	30.0 30.0 35.0 35.0 32.0 32.0 34.0 36.0	18.0 18.0 18.0 18.0 18.0	125 125 125 125 125 125 122	10.1 10.1 10.1 10.1 10.1 10.1	1.10 1.17 1.13 1.13 1.16 1.16 1.13 1.12	7.84 8.01 8.17 8.32 8.46 8.62 8.77 8.92 9.06 9.20	56549 57799 59049 60120 61192 62364 63535 64612 65629 66674	118.07 101.20 101.20 110.69 110.69 104.18	289.78 286.00 282.01 278.20 274.74 271.42 268.10 264.80	8.5555555 8.88888 8.8888	16.3 16.3 16.3 16.3 16.3 16.3 16.3
	2265.0 2270.0 2275.0 2280.0 2285.0 2290.0 2300.0 2305.0 2310.0	35.0 36.0 36.0 36.0 36.0 35.0	18.0 18.0 18.0 18.0 18.0	122 122 122 122 122 122 122	10.1 10.1 10.1 10.1 10.1 10.1	1.12 1.12 1.11 1.12 1.12 1.12 1.12 1.12	9.34 9.49 9.62 9.77 9.90 10.04 10.18 10.32 10.46	67720 68766 69755 70801 71817 72834 73851 74867 75913 76902	101.20 101.20 95.73 101.20 98.39 98.39 98.39 98.39 101.20 95.73	242.53	8.5 8.5 8.5 8.5 8.5	16.4 16.4 16.4 16.4 16.4 16.4
	2315.0 2320.0 2325.0 2330.0 2335.0 2345.0 2350.0 2350.0 2350.0	30.0 35.0 35.0 35.0 38.0 40.0 33.0 35.0	18.0 18.0 14.0 14.0 14.0 15.0 15.0	122 122 122 122 122 122 122	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.17 1.12 1.12 1.05 1.05 1.03 1.04 1.09 1.07	10.77 10.93 11.08 11.22 11.36 11.49 11.62 11.77 11.91 12.05	78122 79342 80388 81434 82479 83442 84357 85467 85512 87529	118.07 101.20 101.20 101.20 93.21 88.55 107.33 101.20	233.75 231.95 229.95 228.01 226.13 224.19 222.23 220.60 218.93 217.27	8.5 8.5 8.5 8.5 8.5 8.5	16.4 16.4 16.4 16.4 16.4 16.4 16.5 16.5
	2365.0 2370.0 2375.0 2380.0 2385.0 2390.0 2395.0 2400.0 2405.0	40.0 40.0 40.0 40.0 40.0 42.0 42.0 42.0	12.0 12.0 14.0 14.0 12.0 12.0 12.0 14.0	122 122 122 122 122 122 122	10.1 10.1 10.1 10.1 10.1 10.1	0.98 1.02 1.02 1.02 0.98 0.97 1.01	12.19 12.31 12.44 12.56 12.69 12.81 12.93 13.05 13.17	88518 89433 90348 91263 92178 93093 93965 94836 95707 96579	88.55 88.55 88.55 88.55 88.55 84.33 84.33	215.61 213.90 212.24 210.62 209.04 207.51 205.95 204.44 202.97 201.53	8.5 8.5 8.5 8.5 8.5 8.5	16.5 16.5 16.5 16.5 16.5 16.5
	2415.0 2420.0 2425.0 2430.0 2435.0 2440.0 2445.0 2450.0	45.0 45.0 48.0 48.0 48.0 50.0	16.0 16.0 16.0 16.0	122 122 122 122 122 122 122	10.1 10.1 10.1 10.1 10.1 10.1	1.02 1.02 1.01 1.01 1.01 1.00 0.95	13.40 13.51 13.63 13.73 13.83 13.94 14.04 14.15	97430 98243 99057 99819 100582 101344 102076 102889 104481	78.71 78.71 73.79 73.79 73.79 70.84 78.71	200.10 198.66 197.26 195.83 194.43 193.07 191.70 190.45 187.99	8.5 : 8.5 : 8.5 : 8.5 :	16.5 16.5 16.5 16.5 16.6 16.6 16.6

BIT NUMBER 20 HTC J2 COST 900.00 TOTAL HOURS 5.46	SIZE TRIP TIME	116 8.500 11.0 35461	INTERVAL NOZZLES BIT RUN CONDITION	2460.0- 2747.0 16 16 16 287.0 T2 B2 G0.000
DEPTH ROP WOI	RPM MW "d"c	HOURS	TURNS ICOST	CCOST PP FG
2470.0 59.0 12.0	116 10.1 0.96 116 10.1 0.87 116 10.1 0.90	0.13 0.21 0.31	870 89 1460 60 2129 68	8061 8.5 16.6 4060 8.5 16.6 2730 8.5 16.6
2480.0 53.0 13.0 2485.0 54.0 13.0 2490.0 46.0 13.0 2495.0 45.0 13.0 2500.0 47.0 13.0 2505.0 50.0 13.0 2510.0 49.0 13.0 2515.0 50.0 13.0	120 10.1 0.96 120 10.1 0.96 120 10.1 0.95	0.46 0.55 0.66 0.77 0.88 0.98 1.08 1.18 1.27	9067 66.83	1672 8.5 16.6
2530.0 56.0 14.0 2535.0 57.0 14.0 2540.0 58.0 14.0 2545.0 60.0 14.0 2550.0 58.0 14.0 2555.0 62.0 14.0 2560.0 52.0 14.0 2565.0 53.0 14.0 2570.0 53.0 12.0	116 10.1 0.92 116 10.1 0.91 116 10.1 0.91 116 10.1 0.90 116 10.1 0.91 116 10.1 0.89 116 10.1 0.94 116 10.1 0.93 116 10.1 0.93	1.45 1.54 1.63 1.71 1.80 1.88 1.97 2.07 2.16 2.23	10931 62.14 11531 61.07 12111 59.03 12711 61.07 13272 57.13 13942 68.12 14598 66.83 15255 66.83	642.97 8.5 16.7 604.25 8.5 16.7 570.30 8.5 16.7 540.22 8.5 16.7 513.60 8.5 16.7 489.58 8.5 16.7 468.50 8.5 16.7 449.38 8.5 16.7 431.99 8.5 16.7 415.38 8.5 16.7
2620.0 71.0 11.0 2625.0 70.0 11.0	40 10.1 0.58 40 10.1 0.60 40 10.1 0.64 40 10.1 0.64 40 10.1 0.59	2.32 2.40 2.49 2.60 2.70 2.79 2.88 2.95 3.02	16145 59.03 16363 64.40 16619 75.36 16874 75.36 17084 62.14 17295 62.14 17789 49.89 18284 49.89	400.53 8.5 16.7 386.87 8.5 16.7 374.47 8.5 16.7 363.39 8.5 16.7 353.10 8.5 16.7 343.07 8.5 16.7 333.70 8.5 16.7 324.55 8.5 16.7 315.97 8.5 16.7 307.92 8.5 16.8
2635.0 64.0 11.0 2640.0 64.0 11.0 2650.0 57.0 11.0 2660.0 48.0 11.0 2670.0 48.0 11.0 2680.0 52.0 11.0 2690.0 48.0 11.0 2700.0 57.0 11.0	117 10.1 0.81 117 10.1 0.83 117 10.1 0.83 117 10.1 0.86 117 10.1 0.90 117 10.1 0.90 117 10.1 0.88 117 10.1 0.88 117 10.1 0.90	3.16 3.24 13.32 3.49 3.70 3.91 4.10 4.31 4.49 4.71	19835 55.34 20383 55.34 21615 62.14 23077 73.79 24540 73.79 25890 68.12 27352 73.79 28584 62.14	300.36 8.5 16.8 293.36 8.5 16.8 286.74 8.5 16.8 274.92 8.5 16.8 264.87 8.5 16.8 255.77 8.5 16.8 247.24 8.5 16.8 239.70 8.5 16.8 232.30 8.5 16.8 226.23 8.5 16.8

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	pР	FG
2718.0	45.0	12.0	117	10.1	0.94	4.89	31428	78.71	221.65	8,5	16.8
2728.0	43.0	12.0	117	10.1	0.95	5.12	33060	82.37	216.46	8.5	16.9
2738.0	57.0	13.0	118	10.1	0.90	5.30	34302	62.14	210.90	8.5	16.9
2747.0	55.0	13.0	118	10.1	0.91	E 46	35441	64 40	204 31	8 5	14.9

COMPUTER DATA LISTING : LIST B

INTERVAL	10 m average
DEPTH	Well depth, in metres
ROP	Rate of penetration, in metres per hour
BIT RUN	Depth interval drilled by the bit, in metres
HOURS	Cumulative bit hours. The number of hours that the bit has actually been "on bottom", recorded in decimal hours
	Cumulative bit turns. The number of turns made by the bit, while actually "on bottom"
TOTAL COST	Cumulative bit cost, in A dollars
ICOST	Incremental cost per metre, calculated from the drilling time, in A dollars
CCOST	Cumulative cost per metre, calculated from the drilling time, in A dollars
IC	ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, this should change from negative to positive

	BIT NUMBER HTC OSC3AJ8	25 8110		ADC CODE IZE	26.000				04.0
	COST			RIP TIME	20.000			20 20	
		3000							39.0
	TOTAL HOURS	i 5.	.80 T	OTAL TURNS	33634	4 CONDITI	ON T	72 B2 G0	. 0 0 0
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	70.0	100.0	5.0	0.05	225	9198.50	35	1840	•
	80.0	73.5	15.0	0.19	837	9680.32	48.18	645.35	••••
	90.0	13.3	25.0	0.94	4212	12336.82	265.65	493.47	****
	100.0	33.1	35.0		5898	13407.20	107.04	383.06	***
_	110.0	14.3	45.0	1.94	9828	15886.60	247.94	353.04	****
	120.0	10.9	55.0	2.85	14766	19125.00	323.84	347.73	****
	130.0	12.3	65.0	3.67	19209	22002.88	287.79	338.51	
	140.0	16.8	75.0	4.26	22499	24115.65	211.28	321.54	••••
	150.0	22.4	85.0	4.71	25021	25694.08	157,84	302.28	****
	160.0	42.6	95.0	4.94	26593	26524.99	83.09	279.21	••••
	170.0	50.8	105.0	5.14	28177	27222.66	69.77	259,26	****
	180.0	51.7	115.0	5.33	29732	27907.61	68.50	242.67	
	190.0	41.9	125.0	5.57	31726	28753.75	84.61	230.03	***
	200.0	68.3	135.0	5.72	32952	29272.42	51.87	216.83	****
	204.0	50.0	139.0		33634	29555.78	70.84	212.63	***

.

	BIT NUMBER HTC 3AJ COST TOTAL HOURS	5000.	.00 TR	DC CODE ZE IP TIME TAL TURNS	111 17.500 3.9 116516	NOZZLES BIT RUN		4.0- 79 20 20 59 3 83 G0.	20 25.0
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	210.0	88.9	6.0	0.07	405	19052.89	40	3175	****
		203.0	16.0	0.12	701	19227.33	17	1202	
	230.0	81.5	26.0	0.24	1437	19662.03	43.47	756.23	•
	240.0	58.1	36.0	0.41	2470	20271.87	60.98	563.11	••••
_	250.0	45.7	46.0	0.63	3784	21047.74	77.59	457.56	****
	260.0	57.0	56.0	0.81	4838	21669.61	62.19	386.96	
	270.0	74.3	66.0	0.94	5645	22146.35	47.67	335.55	****
_	280.0	77.9	76.0	1.07	6416	22601.13	45.48	297.38	••••
	290.0	76.9	86.0	1.20 1.40	7355 9034	23061.44 23769.28	46.03 70.78	268,16. 247,60	••••
	300.0 310.0	50.0 58.5	96.0 106.0	1.57	10451	24375.15	60.59	229,95	•••
	320.0	50.5	116.0	1.77	12079	25076.61		216.18	****
	330.0	60.0	126.0	1.93	13444	25667.11		203.71	••••
_	340.0	56.5	136.0	2.11	14921	26294.45	62.73	193.34	****
	350.0	54.0	146.0	2.30	16523	26950.60	65.62	184.59	
	360.0	40.4	156.0	2.54	18748	27826.37	87.58	178.37	••••
	370.0	62.7	166.0		20159	28391.40	56.50	171.03	
	380.0	50.8	176.0	2.90	21921	29088.91	69.75	165.28	•
	390.0	48.9	186.0	3.11	23748	29812.97	72.41	160.28	
	400.0	51.4	196.0	3.30	25480	30501.70	68.87	155.62	•
	410.0	44.0	206.0	3.53	27510	31305.87	80.42	151.97	***
	420.0	33.5	216.0	3.83	30166	32362.26	105.64	149.83	****
	430.0	30.7	226.0	4.15	33075	33515.64	115.34	148.30	****
	440.0	36.7	236.0	4.42	35520	34480.49	96.48	146.10	****
	450.0	69.3	246.0	4,57	36810	34991.35	51.09	142.24	
		64.3		4.72	38200	35542.33			••••
	470.0	87.0	266.0	4.84	39228	35949.67	40.73	135.15	
	480.0	76.0	276.0	4.97	40405	36416.02	46.63	131.94	****
	490.0 500.0	117.6	286.0 296.0	5.05 5.16	41166 42098	36717.25 37085.15	30.12 36.79	128.38 125.29	
		96.3 110.4	306.0	5.25	42913	37405.86	32.07	122.24	••••
	520.0	78.0	316.0	5.38	44067	37860.03	45.42	119.81	••••
_	530.0	60.3	326.0	5.54	45559	38447.45	58.74	117.94	••••
	540.0	47.8	336.0	5.75	47442	39188.27	74.08	116.63	•••
	550.0	65.0	346.0	5.91	48826	39733.19	54.49	114.84	
	560.0	71.5	356.0	6.05	50064	40228.60	49.54	113.00	••••
		102.2	366.0	6.14	50916	40575.29	34.67	110.86	***
		159.7	376.0	6.21	51461	40797.15	22.19	108.50	****
		236.6	386.0	6.25	51828	40946.83	14.97	106.08	****
	600.0	90.0	396.0	6.36	52729	41340.43	39.36	104.40	••••
	610.0 420.0	69.5	406.0	6.50 6.47	53894	41850.17 42311.01	50.97 46.08	103.08 101.71	
	620.0 630.0	76.9 45.4	416.0 426.0	6.63 6.85	54948 56734	43091.82	78.08	101.71	••••
	000:0	t.∩ 1	-y a., O + U	CD 1 CD CD	WW/ W7	The Cartification	10100	*** * * * * * * * * * * * * * * * * * *	

DEPTH	ROP I	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I - C
640.0	35.3	436.0	7.14	59027	44094.54	100.27	101.13	••••
650.0	39.8	446.0	7.39	61214	44985.05	89,05	100.86	•
660.0	39.0-	456.0	7,65	63446	45893.86	90.88	100.64	••••
670.0	29.5	466.0	7.98	66399	47095,89	120.20	101.06	-4-
680.0	22.6	476.0	8.43	70242	48660.50	156.46	102.23	.∳∙
690.0	26.0	486.0	8.81	73593	50024.82	136.43	102.93	-4-
700.0	23.4	496.0	9.24	77310	51538.22	151.34	103.91	-∳-
710.0	26.0	506.0	9,62	80652	52898.56	136.03	104.54	.4.
720.0	31.3	516.0	9.94	83431	54030.13	113.16	104.71	·{·
730.0	32.0	526.0	10.26	86152	55138.09	110.80	104.83	-∳-
740.0	30.5	536.0	10.58	89008	56300.59	116.25	105.04	•••
750.0	32.3	546.0	10.89	91751	57396.92	109.63	105.12	٠ţ٠
760.0	23.3	556.0	11.32	95608	58914.92	151.80	105.96	- \$-
770.0	23.8	566.0	11.74	99384	60401.08	148,62	106.72	4.
780.0	16.4	576.0	12.35	104424	62565.63	216.46	108.62	4.
790.0	14.9	586.0	13.02	109792	64937.51	237.19	110.81	+
799.0	15.4	595.0	13.61	114532	67003.67	229.57	112.61	+

l	BIT NUMBER HTC X3A COST TOTAL HOURS		00 TR	DC CODE ZE IP TIME TAL TURNS	11 12.25 5.1 16244	0 NOZZLES 7 BIT RUN		9.0- 129 16 16 49 3 B5 G0	5 16 74.0
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
	800.0	16.0	1.0	0.06	510	21710.78	221	21711	
	810.0	18.1	11.0	0.61	4773	23664.64	195	2151	****
	820.0	16.9	21.0	1.21	9221	25765.05	210	1227	
	830.0	16.4	31.0	1.82	13892	27919.77	215.47	900.64	••••
	840.0	17.6	41.0	2,39	18556	29937.40	201.76	730.18	
	850.0	16.1	51.0	3.01	23231	32142.14	220.47	630.24	
	860.0	14.7	61.0	3,69	28207	34550.34	240.82	566.40	****
	870.0	10.6	71.0	4.63	35031	37887.04	333.67	533.62	****
	880.0 890.0	10.8	81.0 91.0	5.56 6.03	41268 44663	41167.34	328.03	508.24	
	900.0	19.4	101.0	6.55	48349	42850.02 44676.14	168.27 182.61	470.88 442.34	
_	910.0	26.6	111.0	6.92	50961	46007.54	133.14	414.48	••••
	920.0	18.3	121.0	7.47	55274	47941.61		396.21	
-	930.0	22,4	131.0	7.91	58860	49522,92	158.13	378.04	••••
	940.0	17.6	141.0	8.48	63667	51540.05	201.71	365.53	••••
	950.0	11.5	151.0	9.35	69296	54607.31	306.73	361.64	•
_	960.0	14.0	161.0	10.06	74618	57135.23	252.79	354,88	****
	970.0	17.5	171.0	10.64	79199	59162.37	202.71	345.98	••••
	980.0	31.7	181.0	10.95	82218	60280.27	111.79	333.04	
	990.0	33.3	191.0	11.25	85226	61343.87	106.36	321.17	•
	1000.0 1010.0	27.6 35.4	201.0 211.0	11.61 11.90	88568 91098	62625.14	128.13	311.57	••••
	1020.0	52.2	221.0	12.09	92823	63626.36 64305.53	100.12 67.92	301,55 290,98	
	1030.0	40.2	231.0	12.34	95099	65186.79	88.13	282.19	
	1040.0	47.0	241.0	12.55	97032	65941.20	75.44	273.61	
_	1050.0	50.1	251.0	12.75	98834	66648.44	70.72	265.53	
	1060.0	49.6	261.0		100636	67362.07	71.36	258.09	••••
	1070.0	41.8	271.0		102730	68208.52	84.64	251.69	••••
	1080.0	44.2	281.0		104716	69010.73	80.22	245.59	••••
	1090.0	59.4	291.0		106214	69607.33	59.66	239.20	••••
	1100.0 1110.0	58.5	301.0		107716	70212.89	60.56	233.27	
	1120.0	48.6 49.4	311.0 321.0		109498 111239	70941.74 71658.68	72.89 71.69	228.11 223.24	
	1130.0	46.0	331.0	14.38	113058	72428.59	76.99	218.82	****
	1140.0	51.2	341.0		114582	73120.84	69.22	214,43	****
	1150.0	50.5	351.0		116126	73821.89	70.11	210.32	****
	1160.0	39.2	361.0		118067	74724.54	90.27	206.99	****
	1170.0	39.2	371.0		119990	75627.59	90.31	203.85	
	1180.0	38.1	381.0		121959	76557.38	92.98	200.94	
	1190.0	46.0	391.0		123611	77326.60	76.92	197.77	****
	1200.0	42.0	401.0		125426	78170.29	84.37	194,94	••••
	1210.0 1220.0	36.0 40.1	411.0 421.0		127524 129391	79155.18 80039.35	98.49 88.42	192.59 190.12	••••
	1 6 (I. I. I.	-Y U 1 1	"7 L J 1 U	and and a	16.7071	00007,00	OO 1 ME	170.16	••••

	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1									
	1230.0	36.1	431.0	16.81	131457	81020.47	98.11	187.98	
•	1240.0	42.9	441.0	17.04	133242	81845.77	82.53	185,59	
	1250.0	37.6	451.0	17.31	135229	82786.77	94.10	183.56	
	1260.0	39.4	461.0	17.56	137119	83685.89	89.91	181.53	
1	1270.0	29.9	471.0	17.89	139551	84870.74	118.48	180.19	****
	1280.0	17.1	481.0	18.48	143669	86938.52	206.78	180.75	+
1	1290.0	5.2	491.0	20.39	157169	93696.25	675.77	190.83	4.
	1293.0	4.2	494.0	21.11	162445	96248.81	850.85	194.84	4.

	BIT NUMBER HTC X3A		4 IA SI	DC CODE	12.25		1297	3.0- 139	
	COST	1300.		IP TIME	6.			16 16	98.0
	TOTAL HOURS	4.		TAL TURNS	3320		T NC		
_	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	1300.0	12.7	7.0	0.55	4475	24863.22	280	3552	••••
	1310.0	21.0	17.0	1.03	8340	26546.53	. 168	1562	
	1320.0	36.3	27.0	1.30	10485	27521.09	97	1019	****
_	1330.0	31.6	37.0	1.62	12915	28643.59	112.25	774,15	••••
_	1340.0	26.0	47.0	2,00	15946	30004.88	136.13	638.40	
	1350.0	25.3	57.0	2.40	19055	31407.21	140.23	551.00	••••
	1360.0	16.7	67.0	3.00	23737	33526.24	211.90	500.39	****
	1370.0	30.5	77.0	3.33	26348	34687.56	116.13	450.49	****
	1380.0	21.9	87.0	3.78	30017	36302.31	161.48	417.27	***
	1390.0	29.4	97.0	4.12	33063	37508.28	120.60	386.68	****
	1391.0	63.0	98.0	4.14	33204	37564.50	56.22	383.31	***

1

.

•

	BIT NUMBER CHRISTENSEN	5 C22	IADC SIZE	CODE	8,468		1392.	13 13 13
_	COST 1	5000.00	TRIP	TIME	6.1	BIT RUN		12.4
	TOTAL HOURS	2.02	TOTA	L. TURNS	11091	CONDITION	т 0	B0 G0.300
	DEPTH	ROP BIT	RUN .	HOURS	TURNS	TOTAL COST	ICOST	ccost I-c
	1400.0	6.1	8.0	1.32	6389	41279,46	584	5160 -
•	1404.4	6.3	12.4	2.02	11091	43758.59	563	3529 -

.

.

• .

.

,

BIT NUMBER CHRISTENSEN COST 1 TOTAL HOURS	5 C22 5000,00 5.21	IADC COD SIZE TRIP TIM TOTAL TU	8.468 E 6.2	NOZZLES BIT RUN	 1418.2 3 13 13 13.2 60.800
DEPTH	ROP BIT	RUN - HOUR 8.0 3.6		TOTAL COST : 49909.46	 OST I-C
1418.2		26.2 5.0		54967.48	 098 -

BIT NUMBER HTC X3A COST	6 1400.00	IAD SIZ TRI	E	114 12.250 6.4	NOZZLES	_ 1418		75.0 3 15 77.0
TOTAL HOURS	4.60	тот	AL TURNS	36973	CONDITI	.T. AC	7 B6 G0.	750
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-0
1420.0	20.4	2.0	0.10	833	24416.68	174	12208	
1430.0	20.6	12.0	0.58	5095	26139.72	172	2178	••••
1440.0	33.5	22.0	0.88	7461	27195.78	106	1236	****
1450.0	43.2	32.0	1.11	9262	28015.72	81.99	875,49	****
_ 1460.0	41.2	42.0	1.36	11228	28874.49	85.88	687.49	****
1470.0	35.5	52.0	1.64	13605	29873.34	99,89	574,49	••••
1480.0	24.0	62.0	2.06	17173	31351.11	147.78	505.66	
1490.0	7.4	72.0	3.42	27849	36169.81	481.87	502.36	***
1495.0	4.2	77.0	4.60	36973	40379.31	841.90	524,41	+

4

•

BIT NUMBER HTC JD4 COST TOTAL HOURS	1800. 7.	00 TR		217 12.250 6.8 49693	NOZZLES BIT RUN			
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
1500.0 1510.0	25.4 17.0	5.0 15.0	0.20 0.79	1534 5980	26582.22 28670.17	139 209	5316 1911	••••
1520.0	18.8	25.0	1.32	9657	30554.22	188	1222	••••
1530.0	24.7	35.0	1.72	12328	31990.12	143.59	914.00	
1540.0	13.1	45.0	2.49	16491	34700.34	271.02	771.12	••••
1550.0	8.6	55.0	3.65	24303	38803.29	410.29	705.51	****
1560.0	47.8	65.0	3.86	25838	39543.89	74.06	608.37	****
1570.0	45.0	75.0	4.08	27615	40331.63	78.77	537,76	***
1580.0	7.9	85.0	5.35	36713	44825.92	449.43	527.36	
1585.0	2.7	90.0	7.22	49693	51447.30	1324	572	+

. • •

	BIT NUMBER HTC J22 COST TOTAL HOURS	4200 40		SIZE	CODE TIME . TURNS	517 12.250 8.2 24448	5 I 0 <i>V</i>	OZZLI BIT RU			5.0- 198 15 15 4(5 B4 G0.	5 14)1.0
_	DEPTH	ROP	BIT RL	IN I	HOURS	TURNS	TOTAL	cos	r ico	ST	CCOST	I-C
	1590.0	4.2	5,	n	1.20	5532	777	185.60	n (2)	48	7497	****
_	1600.0	11.7	15.		2.05	9604		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		04	2701	
		21.1	25.		2.53	11829		98.0		68	1688	••••
	1620.0	12.3	35.	0	3.34	16085	450	78.50) 2	88	1288	••••
_	4 / 77 / 10	25.3	45.		3.74	18531		80.3		40	1033	
	1640.0	20.5	55.	0	4.22	21518	482	209.05	5 172.	87	876.53	****
•	1650.0	9.6	65,		5.26	28066	518	379.50	7 367.	05	798.15	
_	1660.0	17.3	75,		5.84	31691		27.00			719.03	****
	1670.0	27.1	85.		6.21	33984		233.93			649.81	****
		11.0	95.		7.12	39609		153.68			615.30	****
_	1690.0	7.3	105.		8,49	48174		(15.8			603.01	****
	1700.0 1710.0	7.0 11.1	115. 125.		9.92 10.82	57154 63470		378.91 384.07	l 506. 7 320.		594.60 572.67	
	1720.0	7.8	135.	n 1	2.10	72565	741	04,31	1 452.	በጋ	563.74	
	1730.0	11.6	145.		2.96	78717		59.1			545.92	****
	1740.0	13.9	155.		3.68	83455		12.78		100	527.18	••••
	1750.0	10.3	165.		4.65	90080		43.02			516.02	****
	1760.0	5.6	175.	0 1	6.42	102103	914	21.51	627.	85	522.41	-4-
	1770.0	8.4	185.	0 1		109766	956	35.63	3 421.	41	516.95	****
	1780.0	10.7	195.			115069		48.67			507.43	****
	1790.0	16.9	205,			118451		41.44			492.89	••••
	1800.0	13.7	215.			122756		19.84			481.95	
_	1810.0	6.4	225,	U £	21.43	132260	1071	62.26	5 554.	£ 44	485.17	-4-
	1820.0	8.4	235.	0 2	22.63	139428	1133	92.45	5 423.	02	482.52	
	1830.0	15.2	245.	0 2	23.29	143518	1157	30.16	233.	77	472.37	****
_		8.5	255.			150971		01.88			470.20	•••
	1850.0	9.6	265.			157402		<i>1</i> 92.3 <i>6</i>			466.39	
	1860.0	9.3	275.			163979		882.75			463.21	
	1870.0	6.6	285.			173019		19.60			465.68	-4-
	1880.0	9.6	295.			178957		25.78			462.46	•
	1890.0	12.4	305.			183458		274,98			456.64	••••
	1900.0 1910.0	10.2	315. 325.			189565 194932		180.5t 160.81			454.86 451.57	••••
	. 7 3 7 0 1 0	10,2.	OLC I	u .) <u>(</u>	7.3 44.3 OV	1.407	00.0		v a	MU1.U/	••••
	1920.0	10.1	335.			200524		272.10			448.57	••••
_	1930.0	7.6	345.			208337		16.03			449.03	.⊹.
	1940.0	10.8	355.			213312		209.77			445.66	****
	1950.0	11.0	365.			218211		23.25			442.26	
	1960.0	7.6	375.			225748		75.82			442.87	-4-
	1970.0 1980.0	8.3	385. 395.			233021 240335		31.31			442.42	****
	1986.0	8.6 9.4	401.			244481		43.60 05.08			441.63	****
	a c west I W	. 1 "7	101	· · · · · ·	CHIMN I	1 1 1 1 1 2 2	x / W/	VW 1 VV	, 0/01		1767 120	

BIT NUMBER HTC J22 COST TOTAL HOURS	4200 29	SI.00 TR	DC CODE ZE IP TIME TAL TURNS	511 12.25 8.5 17577	0 NOZZLES 9 BIT RUN		36.0- 216 14 14 17 18 B5 G0	15 75.0
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
1990.0 2000.0 2010.0	15.7 10.3 13.8	4.0 14.0 24.0	0.25 1.22 1.95	1223 6379 10681	36626.20 40055.26 42615.40	226 343 256	9157 2861 1776	****
2020.0 2030.0 2040.0	11.6 9.9 9.2	34.0 44.0 54.0	2.81 3.83 4.91	15771 21837 28297	45681.86 49274.49 53124.48	. 307 359 385.00	1344 1120 983.79	••••
2050.0	14.0	64.0	5.63	32500	55656.40	253.19	869.63	••••
2060.0 2 070.0	4.0 7.6	74.0 84.0	8.12 9.45	47193 55136	64502.06 69191.20	884.57 468.91	871.65 823.70	• • •
2080.0 2090.0	6.1 5.3	94.0 104.0	11.08 12.96	65605 78736	74956.29 81617.15	576.51 666.09	797.41 784.78	••••
2100.0 2110.0	7.2 5.7	114.0	14.34	97541	86507.12 92718.40	489.00	758.83 747.73	••••
2120.0 2130.0 2140.0	4.6 4.8 2.8	134.0 144.0 154.0	20.33	110266 122125 142154	100374.51 107743.52 120189.75	765.61 736.90 1245	749.06 748.22 780	- { -
2150.0 2160.0 2161.0	4.6 3.1 1.9	164.0 174.0 175.0	26.02 29.22	154558 172793 175777	127897.56 139228.71 141083.16	770.78 1133 1854	779.86 800 806	 -{-

.

the state of the s

BIT NUMBER HTC J33 COST TOTAL HOURS	11 6090.00 35.81	IADC CODE SIZE TRIP TIME TOTAL TURNS	527 12.250 9.5 204879	NOZZLES		.0- 2324.5 14 14 14 163.5 B6 G0.188
DEPTH	ROP BIT R	JN HOURS	TURNS	TOTAL COST	ICOST	ccost I-C
2162.0 2163.0 2164.0	1.6 2	.0 0.66 .0 1.28 .0 1.63	3738 7301 9287	42062.00 44275.75 45509.90	2300 2214 1234	41646 - 22028 - 15120 -
2165.0 2166.0 2167.0 2168.0 2169.0 2170.0 2171.0 2172.0 2173.0	7.7 5 9.1 6 9.1 7 8.2 8 8.5 9 8.2 10 8.5 11 4.5 12	.0 2.75 .0 2.97	10939 11684 12310 12936 13633 14307 15002 15673 16939	46536.56 46999.57 47388.37 47777.18 48210.71 48629.39 49061.34 49478.05	1027 463 389 389 434 419 432 417 787	11605 9381 7885 6816 6019 5397 4901 4494 4185
2173.0 2174.0 2175.0 2176.0 2177.0 2178.0 2179.0 2180.0 2181.0 2182.0 2183.0 2184.0	10.4 13 8.5 14 8.9 15 8.5 16 6.9 17 6.9 18 6.3 19 6.4 20 6.2 21 4.5 22 5.9 23	.0 3.19 .0 3.30 .0 3.42 .0 3.56 .0 3.71 .0 3.87 .0 4.02 .0 4.18	17487 18161 18802 19472 20301 21127 22032 22922 23842 25108 26074	50605.74 51024.41 51422.39 51839.09 52353.92 52867.25 53429.48 53982.91 54554.20 55341.31 55941.65	341 419 398 417 513 513 553 571 787 600	3890 - 3642 - 3426 - 3238 - 3078 - 2935 - 2811 - 2698 - 2597 - 2514 - 2431 -
2185.0 2186.0 2187.0 2188.0 2189.0 2190.0 2191.0 2192.0 2193.0 2194.0	5.9 24 6.4 25 6.4 26 7.2 27 6.4 28 8.2 29 7.3 30 8.2 31 4.7 32 3.0 33	.0 4.90 .0 5.06 .0 5.20 .0 5.35 .0 5.47 .0 5.61 .0 5.73	27040 27931 28822 29622 30522 31224 32013 32716 33928 35828	56541.99 57095.43 57648.87 58140.81 58694.25 59126.20 59611.41 60043.36 60796.97	600 553 553 492 553 432 485 432 754 1181	2355 - 2283 - 2216 - 2153 - 2095 - 2038 - 1986 - 1936 - 1878 -
2195.0 2196.0 2197.0 2198.0 2199.0 2200.0 2201.0 2202.0 2203.0 2204.0	4.6 34 9.6 35 8.9 36 6.9 37 7.7 38 6.2 39 6.3 40 4.5 41 3.0 42 3.2 43	6.60 6.71 6.86 6.99 7.15 7.31 7.53 7.86	37067 37661 38304 39132 39873 40792 41692 42959 44859 46635	62747.64 63116.60 63515.92 64030.75 64490.75 65062.04 65621.60 66408.71 67589.37 68692.80	770 369 399 515 460 571 560 787 1181 1103	1845 1803 1764 1730 1697 1668 1640 1619 1609 1597

. .

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2205.0	10.5	44.0	8.27	47178	69030.13	337	1569	·
2206.0	9.6	45.0	8.37	47773	69400.25	370	1542	
2207.0	10.6	46.0	8.47	48283	69734.40	334	1516	****
2208.0	7.3	47.0	8.61	49022	70219.61	485	1494	
2209.0	9.6	48.0	8.71	49585	70588.56	369	1470	•
2210.0	9.6	49.0	8.81	50147	70957.52	369	1448	••••
2211.0	8.2	50.0	8.94	50808	71391.06	434	1428	••••
2211.0 2212.0	10.0	51.0	9.04	51348	71745,26	354	1406	
2213.0	9.6	52.0	9,14	51911	72114.22	369	1387	****
2214.0	8.2	53.0	9.26	52569	72546.17	432	1369	•
						- - ,		
2215.0	8.2	54.0	9.38	53228	72978.12	432	1351	
2216.0	7.3	55.0	9.52	53968	73463.33	485	1335	••••
2217.0	5.9	56.0	ዎ.69	54881	74062,65	599	1322	
2218.0	7.3	57.0	9,83	55621	74547.85	485	1308	••••
2219.0	8.5	58.0	9,95	56256	74964.56	417	1292	****
2220.0	7.8	59.0	10.07	56949	75418.66	454	1278	****
2221.0	4.1	60.0	10.32	58282	76293.23	875	1271	****
2222.0	7.8		10.45	58974	76747.33	454	1258	***
2223.0	10.1	62.0	10.55	59497		351	1243	•
2224.0	4.5	63.0	10.77	60830	77885.14	787	1236	***
in in in 1 1 W	110	·	*****		7 7 WWW 1 X 1	, , , , , , ,	A 100 W/ W/	
_ 2225.0	5.2	64.0	10.96	61975	78561.09	676	1227	****
2226.0	5.2	65.0	11.15	63006	79237.05	676	1219	****
2227.0	5.1	66.0	11.35	64061	79928.84	692	1211	••••
2228.0	4.1	67.0	11.59	65394	80803.41	875	1206	••••
	3.5	68.0	11.88	66932	81812.53	1009	1203	
2229.0 2230.0	6.7	69.0	12.03	67738	82341.18	529	1193	****
2231.0	5.0	70.0	12.23	68818	83049.58	708	1186	
2232.0	11.0	71.0	12.32	69309	83371.58	322	1174	••••
2233.0	5.1	72.0	12.51	70368	84066.09	695	1167	
2234.0	6.3	73.0	12.67	71225	84628.32	562	1159	
<i></i>	u i u	7.5.0	x & + C) Z	/ 1 til til til	OMOMO LOM	JOE	1107	
2235.0	8.5	74.0	12,79	71861	85045.02	417	1149	••••
2236.0	6.7	75.0	12.94	72667	85573.68	529	1141	•••
2237.0	6.3	76.0	13.10	73520	86133.24	560	1133	****
2238.0	7.3	77.0	13.24	74259	86618.44	485	1125	••••
2239.0	8.9	78.0	13.35	74866	87016.42	398	1115	
2240.0	4.2	79.0	13.59	76152	87859.75	843	1112	
mm a a n	6.3	80.0	13.74	77043	88419.31	560	1105	••••
2242.0	6.3	81.0	13.90	77934			1098	****
2243.0	7.7	82.0	14.03	78671		463	1091	****
_ 2244.0	9.5	83.0	14.14	79267		374	1082	
		0.010	X Y 1 X Y	F F 6 V. I F	07010170	J/ 7	1 U U	
2245.0	10.6	84.0	14,23	79810	90150.05	334	1073	****
2246.0	7.7	85.0	14.36	80563	90613.06	463	1066	••••
2247.0	6.9	86.0	14.51	81400	91127.88	515	1060	
2248.0	4.9	87.0	14,71	82576	91850.74	723	1056	
2249.0	2.6	88.0	15.10	84837	93213.05	1362	1059	4.
ማማፎስ ለ	4.0	89.0	15.35	86307	94098.55	886	1057	
2251.0	3.8	90.0	15.61	87855	95030.65	932	1056	•
2252.0	3.3	91.0	15.91	89636	96103.98	1073	1056	4.
_ 2253.0	2.5	92.0	16.32	92007		1428	1050	+
2254.0	2.6	93.0	16.70	94269	98894.52	1362	1063	. 4 .
hai fai Sid "Y T W	f 1 W	7 W 1 U	4.417.0	7 °Y 6 \.) 7	e with e "Y e tillion	a w. l.d i	1000	ī

	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
	2255.0	5.6	94.0	16.88	95315	99524.77	630	1059	·
	2256.0	6.7	95.0	17.03	96194	100054.21	529	1053	••••
	2257.0	5.6	96.0	17.21	97240	100684.46	630	1049	
	2258.0	3.6	97.0	17.48	98874	101668.35	984	1048	••••
	2259.0	6.7	98.0	17.63	99751	102197.01	529	1043	
	2260.0	7.2	99.0	17,77	100568	102688.95	492	1037	••••
	2261.0	4.4	100.0	18.00	101920	103503.21	814	1035	***
	2262.0	7.2	101.0	18.14	102736	103995.15	492	1030	••••
	2263.0	5.4		18.33	103825	104651.08	656	1026	••••
-	2264.0	5.6	103.0	18.50	104875	105283.58	633	1022	••••
						· · · · · · · · · · · · · · · · · · ·	See the see	A 15 In In	
_	2265.0	4.7	104.0	18.72	106126	106037.19	754	1019	
	2266.0	5.0	105.0	18.92	107302	106745.59	708	1017	••••
	2267.0	5.9	106.0	19.09	108299	107345.93	600	1013	••••
	2268.0	3.9	107.0	19.35	109826	108265.93	920	1012	
	2269.0	2.8	108.0	19.70	111926	109530.93	1265	1014	4.
	2270.0	4.0	109.0	19.95	113396	110416.43	886	1013	
	2271.0	5.0	110.0	20.15	114572	111124.83	708	1010	****
_	2272.0	4.6	111.0	20.37	115851	111894.83	770	1008	••••
_	2273.0	6.7	112.0	20.52	116728	112423.49	529	1004	••••
Ħ	2274.0	6.2	113.0	20.68	117677	112994.78	571.29	999.87	***
_	2275.0	4.3	114.0	20.91	119044	113818.50	823.72	998.32	****
	2276.0	3.8	115.0	21.18	120591	114750.61			
	2277.0	4.8	116.0	21.39		115488.52	932.11	997,74	****
_					121816		737.92	995.50	
_	2278.0 2279.0	4.0	117.0	21.64	123286	116374.02	885.50	994,56	
	2280.0	3.5 5.0		21.92	124966	117386.02	1012	995	+
	2281.0		119.0	22.12	126142	118094.42	708.40	992.31	
	2282.0	2.7	120.0	22.49	128320	119406.27 120172.94	1312	995	+
	2283.0	4.6	121.0	22.71 23.04	129593		766.67	993.08	
	2284.0	3.0 4.5	122.0 123.0	23.26	131553 132854	121353.61 122137.24	1181 783.63	995 992.90	
	2 2 C Y ; C		12010	E. G. FE. C.	100004	immio/.mm	700,00	776.70	•••
	2285.0	4.3	124.0	23.50	134231	122966.74	829.51	991,59	•
	2286.0	5.6	125.0	23.68	135277	123596.99	630.25	988.70	****
	2287.0	5.4	126.0	23.86	136374	124257.81	660.82	986.09	••••
	2288.0	3.5	127.0	24.15	138078	125284.48	1027	986	• \$ -
	2289.0	5.9	128.0	24.32	139082	125888.92	604.44	983.43	
	2290.0	6.4	129.0	24.48	140001	126442.36	553.44	980.10	••••
	2291.0	4.6	130.0	24.70	141279	127212.36	770.00	978.48	****
	2292.0	6.2	131.0	24.86	142227	127783.65	571.29	975.37	•••
-	2293.0	4,4	132.0	25.09	143576	128596.03	812.39	974.14	****
_	2294.0	7.2	133.0	25.23	144394	129088.66	492.63	970.52	••••
	2295.0	4.3	134.0	25.46	145649	129912.38	823.72	969,42	
	2296.0	4.1	135.0	25.71	146983	130786.95	874.57	968.72	
-	2297.0	3.9	136.0	25.96	148367	131695.15	908.21	968.28	•••
	2298.0	3.9	137.0	26.22	149770	132615.15	920.00	967,92	••••
	2299.0	3.7	138.0	26.49	151241	133580.28	965.12	967.90	••••
	2300.0	4.9	139.0	26.70	152343	134303.13	722.86	966.14	••••
	2301.0	4.0	140.0	26.95	153687	135184.23	881.09	965.53	
	2302.0	4.4	141.0	27.17	154906	135783.78	799.55	964,36	
	2303.0	3.4	142.0	27.47	156494	137025.54	1042	764,36 965	+
	2304.0	4,4	143.0	27.69	157721	137830.54	805.00	963,78	•••
		-7 , -9	x, *** O * O	6.7 (07	10//21	19/090194	000,00	700,70	•••

_	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-0
	2305.0	6.0	144.0	27.86	158621	138420.87	590.33	961,19	•
-	2306.0	5.6	145.0	28.04	159585	139053.37	632.50	958.92	****
	2307.0	6.3	146.0	28.20	160439	139612:93	559,56	956.19	
	2308.0	5.6	147.0	28.38	161403	140245.43	632,50	953.99	•••
	2309.0	3.1	148.0	28.70	163145	141388.01	1143	955	4.
	2310.0	1.9	149.0	29.24	166048	143292.31	1904	962	4
	2311.0	2.4	150.0	29.65	168270	144749.93	1458	965	-{∙
	2312.0	1.5	151.0	30.30	171777	147049.93	2300	974	+
	2313.0	1.6	152.0	30.92	175527	149263.68	2214	982	-4-
	2314.0	1.5	153.0	31.59	179554	151640.86	2377	991	4
-	2315.0	1.3	154.0	32.36	184169	154365.47	2725	1002	+
_	2316.0	1.8	155.0	32.92	187502	156333.25	1968	1009	+
	2317.0	2.3	156.0	33.35	190111	157873.25	1540	1012	+
	2318.0	5.4	157.0	33.54	191222	158529.18	656	1010	•••
	2319.0	5.9	158.0	33.71	192239	159129.52	600	1007	****
	2320.0	5.6	159.0	33.89	193310	159762.02	633	1005	••••
	2321.0	5.9	160.0	34.05	194326	160361.34	599	1002	****
	2322.0	2.4	161.0	34.48	196879	161868.57	1507	1005	
	2323.0	2.0	162.0	34,98	199879	163639.57	1771	1010	· t ·
	2324.0	1.2	163.0	35.81	204879	166591.24	2952	1022	4.
	2324.5	1.3	163.5	36.22	207325	168035.29	2725	1027	4.

	BIT NUMBER			ADC CODE	527			.5- 252	
	HTC J33			IZE	12.250			14 14	
	COST	6090		RIP TIME	10.2				76.5
	TOTAL HOURS	45	.29 T	OTAL TURNS	252275	CONDITI	ON T6	B6 G0.	250
_	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	2330.0	5.9	5.5	0.92	4764	45480.79	598	8330	
•					14559	51905.87	643	3357	
	2340.0	5.5	15.5						
I	2350.0	3.7	25.5	5,45	30498	61507.86	960	2416	••••
	2360.0	4.3	35.5	7.76	45409	69697.81	819	1966	••••
_	2370.0	5.3	45.5	9.66	57455	76437.31	674	1681	
H	2380.0	3.7	55.5	12.35	71985	85968.31	953	1550	••••
	2390.0	4.2	65.5		84745	94337.46	837	1441	****
	2400.0	3.9	75.5	17.25	98459	103332.97	900	1369	
	2410.0	5.3	85.5	19.13	108586	109975.47	664	1287	
	2420.0	4.4	95.5	21.41	120912	118060.80	809	1237	
	2430.0	3.9	105.5		134795	127166.57	911	1206	••••
	2440.0	5.1	115.5	25.96	145444	134151.97	699	1162	••••
	2450.0	4,4	125.5	28.25	157825	142272.91	812	1134	
	2460.0	4.3	135.5	30.58	170406	150525.14	825	1111	****
	2470.0	4.5	145.5		182466	158435.38	791	1089	•••
	2480.0	4.3	155.5		195120	166735.66	830	1073	••••
	2490.0	4.3	165.5		207706	174991.29	826	1058	****
			175.5		222071	184413.31	942	1051	
	2500.0 2510.0	3.8 7.1	185.5		230268	189394.24	498	1021	•
	2520.0	2.8	195.5		251051	201916.30	1252	1033	4.
	2521.0	4.9	196.5		252275	202639.16	723	1031	·
	100 307 200 A 1 37					**** ** **** *** * * * * * * ***		., ., .,, .,	

. .

	BIT NUMBER HTC J7 COST	13 1800.00	SIZ	OC CODE ZE IP TIME	316 12.250 10.2	NOZZLES	2521.	0- 2535.0 14 14 14 14.0
	TOTAL HOURS	6.20	- тот	TAL TURNS	20696	CONDITION	Т3	B2 G0.000
.	DEPTH	ROP BIT	RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost I-c
	2530.0 2535.0	2.9 1.6	9.0 14.0	3.16 6.20	14193 20696	49111.42 59873.06	1243 2152	5457 - 4277 -

•

•

BIT NUMBER HTC J33		14 IA SI		527 12.250		2535.	.0- 260 14 14	
COST	6090.	00 TR	IP TIME	10.4	BIT RUN		ŧ	5.0
TOTAL HOURS	8.1	77 TO	TAL TURNS	53719	CONDITIO	۲-5 T-5	B3 G0.	125
DEPTH	ROP :	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2540.0	12.5	5.0	0.40	2863	44338.15	282	8888	****
2550.0	7.7	15.0	1.70	11066	48944.21	461	3263	•••
2560.0	8.1	25.0	2.93	20369	53306.20	436	2132	****
2570.0	9.6	35.0	3.97	26406	57002.31	370	1629	••••
_ 2580.0	5.6	45.0	5.75	37243	63302.94	630	1407	
2590.0	7.2	55.0	7.14	45319	68224.68	492	1240	
2600.0	6.2	65.0	8.77	53719	73977.81	575	1138	

Н	IT NUMBER TC J33 OST	6090.0	SI	DC CODE ZE IP TIME	527 12.250 10.7	NOZZLES	2600	.0- 266 14 14 6	
T	OTAL HOURS	13.9	94 TO	TAL TURNS	76380	CONDITION	≀ тз	B3 G0.	125
_	DEPTH	ROP I	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	2610.0	3.7	10.0	2.72	13893	53607.49	962	5361	••••
	2620.0	7.0	20.0	4.15	21555	58700.10	509	2935	****
	2630.0	3.5	30.0	7.00	37021	68786.60	1009	2293	••••
-	2640.0	4.4	40.0	9.27	49116	76812.98	803	1920	
_	2650.0	4.1	50.0	11.68	62940	85359.12	855	1707	****
	2660.0	5.8	60.0	13.41	73510	91504.77	615	1525	•
	2663.3	11.0	63.3	13.71	75202	92565.14	321	1462	•••

	BIT NUMBER CHRISTENSEN COST TOTAL HOURS	15000.00	SIZ TRI	OC CODE E P TIME FAL TURNS	4 8.468 10.7 18692	NOZZLES BIT RUN		3.3- 266 13 13 0 B0 G0.	13 5.7
_	DEPTH	ROP BIT	RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	2663.4	6.2	0.1	0.02	62	52956.53	571	529565	•***
	2663.6	6.9	0.3	0.05	173	53059.20	513	176864	
	2663.8	3.6	0.5	0.10	387	53255.97	984	106512	••••
	2664.0	1.5	0.7	0.23	899	53728.24	2361	76755	****
_	2664.2	1.3	0.9	0.39	1508	54290.46	2811	60323	****
	2664.4	1.8	1.1	0.50	1930	54679.69	1946	49709	****
	2664.6	3.6	1.3	0.56	2142	54875.38	978	42212	•••
	2664.8	4.3	1.5	0.60	2321	55040.13	824	36693	••••
	2665.0	4.1	1.7	0.65	2517	55212.91	864	32478	
	2665.2	3.0	1.9	0.72	2829	55449.04	1181	29184	****
	2665.4	3.0	2.1	0.79	3141	55685.18	1181	26517	••••
	2665.6	2.7	2.3	0.86	3488	55947.55	1312	24325	****
	2665.8	4.0	2.5	0.91	3722	56124.65	886	22450	••••
_	2666.0	3.2	2.7	0.97	4014	56346.02	1107	20869	
	2666.2	0.9	2.9	1.19	5049	57129.65	3918	19700	
	2666.4	0.7	3.1	1.48	6387	58141.65	5060	18755	****
_	2666.6	0.8	3.3	1.74	7618	59073.75	4661	17901	****
	2666.8	0.6	3.5	2.08	9218	60254.42	5903	17216	****
	2667.0	0.7	3.7	2.35	10533	61224.83	4852	16547	****
	2667.2	0.8	3.9	2.60	11733	62110.33	4428	15926	••••
	2667.4	0.8	4.1	2.86	12980	63030.33	4600	15373	****
	2667.6	1.3	4.3	3.01	13696	63558.99	2643	14781	****
	2667.8	1.3	4.5	3.16	14413	64087.65	2643	14242	••••
	2668.0	1.8	4.7	3.27	14955	64487.87	2001	13721	****
	2668.2	0.5	4.9	3.64	16733	65799.72	6559	13429	•
	2668. 4	1.7	5.1	3.76	17298	66216.43	2084	12984	•
	2668.6	2.1	5.3	3.85	17755	66553.76	1687	12557	
	2668.8	2.1	5.5	3.95	18212	66891.10	1687	12162	
	2669.0	1.5	5.7	4.08	18692	67363.36	2361	11818	•
	# ⁷ 								

	BIT NUMBER			DC CODE	527		2669	.0- 281	
	HTC J33			ZE	12.25			14 14	
_	COST	6090.		IP TIME	11.2				16.0
	TOTAL HOURS	33,	41 TO	TAL TURNS	234381	7 CONDITIO	ν Т6	B5 G0.	187
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	2670.0	3.0	1.0	0.33	1600	46941.07	1181	46941	•
	2680.0	1.7	11.0	6.35	39953	68250.84	2131	6205	
	2690.0	6.0	21.0	8.02	52081	74161.50	591	3531	****
	2700.0	5.3	31.0	9.92	65337	80881.12	672	2609	***
	2710.0	4.3	41.0	12.25	82230	89144.82	826	2174	••••
П	2720.0	8.6	51.0	13.41	90746	93274.07	413	1829	···· .
	2730.0	5.2	61.0	15.35	104809	100123.64	685	1641	****
	2740.0	5.8	71.0	17.06	117115	106193.81	607	1496	••••
	2750.0	6.2	81.0	18.69	128809	111946.53	575	1382	****
	2760.0	4.6	91.0	20.86	144720	119629.75	768	1315	
	2770.0	4.5	101.0	23,06	160621	127429.38	780	1262	
_	2780.0	4.2	111.0	25,46	177685	135945.87	852	1225	****
	2790.0	3.7	121.0	28.13	197154	145398.79	945	1202	
	2800.0	5.3	131.0	30.02	210864	152105.16	671	1161	••••
	2810.0	5.3	141.0		223947	158764.87	666	1126	•
	2815.0	2.9	146.0	33.64	236008	164907.98	1229	1130	+

``

■ BIT NUMBER	18	IAI	OC CODE	52:	7 INTERVAL	2815	.0- 295	55.0
HTC J33		S17	ZE	12.25	0 NOZZLES		14 14	15
COST	6090.00	TR:	IP TIME	11.	7 BIT RUN		1 4	10.0
_ TOTAL HOURS	36.54	TOT	TAL TURNS	21837	9 CONDITION	V T6	B6 G0.	250
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2820.0	3.7	5.0	1.37	8706	52377.63	969	10476	***
2830.0	8.7	15.0	2.52	15999	56456.13	408	3764	
2840.0	5.6	25.0	4.30	26943	62769.45	631	2511	
2850.0	3,9	35,0	6.88	42402	71895,58	913	2054	••••
_ 2860.0	5.4	45.0	8.73	53532	78466.26	657	1744	•
2870.0	5.3	55,0	10.62	65231	85164.74	670	1548	••••
2880.0	4.2	65.0	13.02	80072	93665.40	850	1441	••••
2890.0	2.8	75.0	16.56	101368	106180.62	1252	1416	
2900.0	3.1	85.Ò	19.79	119998	117619.70	1144	1384	
2910.0	3.2	95.0	22,93	135604	128758.04	1114	1355	••••
2920.0	5.0	105.0	24.95	148039	135909.77	715	1294	
2930.0	3.4	115.0	27.91	166519	146398.06	1049	1273	***
2940.0	3.0	125.0	31.30	187206	158402.12	1200	1267	
<u> </u>	3.5	135.0	34.19	204829	168647.08	1024	1249	****
2955.0		140.0	36.54	218379	176953.14	1661	1264	· ķ·

-

BIT NUMBER HTC OSC 1G COST TOTAL HOURS	900. 14.	0 0	IADC CODE BIZE TRIP TIME TOTAL TURNS	131 8.500 9.9 104481	NOZZLES BIT RUN		3.0- 246 28 28 46 3 B5 G0.	28 2.0
DEPTH	ROP	BIT RU	N HOURS	TURNS	TOTAL COST	ICOST	CCOST	Ι-ε
2000.0 2010.0 2020.0	50.0 30.0 20.0	2. 12. 22.	0 0.37	240 2242 5842	36107.48 37289.34 39060.34	71 118 177	18054 3107 1775	
2030.0 2040.0 2050.0 2060.0 2070.0 2080.0 2090.0	26.0 22.2 21.4 21.0 25.5 26.0 17.8	32. 42. 52. 62. 72. 82.	0 1.71 0 2.18 0 2.65 0 3.04 0 3.43	8607 11577 14812 18248 21167 23987 28104	45360.57 16 46750.13 13 48114.45 13	136 159 65.55 69.05 38.96 36.43 99.24	1263 1000 839.81 731.62 649.31 586.76 544.64	
2100.0 2110.0 2120.0	27.1 30.5 29.0	102. 112. 122.	0 4.36 0 4.69	30805 33205 35732	51413.50 13 52575.12 1	30.67 16.16 22.28	504.05 469.42 440.97	****
2130.0 2140.0 2150.0 2160.0 2170.0 2180.0 2190.0 2200.0 2210.0 2220.0	30.9 33.9 31.0 34.5 34.0 33.0 34.5 38.5 34.3	132. 142. 152. 162. 172. 182. 192. 202. 212.	0 5.65 0 5.98 0 6.27 0 6.56 0 6.86 0 7.17 0 7.46 0 7.72	38113 40291 42674 44822 47012 49267 51522 53678 55611 57799	55990.69 10 57134.46 1: 58161.34 10 59204.01 10 60277.34 10 61350.68 10 62377.56 10 63297.71	14.74 04.54 14.38 02.69 04.27 07.33 07.33 02.69 92.02	416.25 394.30 375.88 359.02 344.21 331.19 319.53 308.80 298.57 289.78	
2230.0 2240.0 2250.0 2260.0 2270.0 2280.0 2290.0 2300.0 2310.0	32.3 33.4 33.0 35.5 35.0 36.0 36.0 36.0 36.0	232.0 242.0 252.0 262.0 282.0 292.0 312.0 312.0	0 8.62 0 8.92 0 9.20 0 9.49 0 9.77 10.04 0 10.32	60120 62364 64612 66674 68766 70801 72834 74867 76902 79342	66486.57 10 67560.89 10 68558.83 9 69570.83 10 70555.48 9 71539.37 9 72523.26 9 73507.91	09.63 05.94 07.43 79.79 01.20 78.46 78.39 78.39 78.39	282.01 274.74 268.10 261.67 255.78 250.20 245.00 245.00 240.14 235.60 231.95	
2330.0 2340.0 2350.0 2360.0 2370.0 2380.0 2390.0 2400.0 2410.0	35.0 36.4 36.2 35.5 38.4 40.0 40.0 42.0 42.0 42.0	332.0 342.0 352.0 372.0 382.0 402.0 412.0	11.49 11.77 12.05 12.31 12.56 12.81 13.05 13.29	81434 83442 85467 87529 89433 91263 93093 94836 96579 98243	76672.63 9 77652.04 9 78649.99 9 79571.39 9 80456.89 8 81342.39 8 82185.72 8	01.20 97.21 97.94 99.79 92.14 38.55 34.33 34.33	228.01 224.19 220.60 217.27 213.90 210.62 207.51 204.44 201.53 198.66	

•

	DEPTH	ROP J	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
	2430.0	46.5	432.0	13.73	99819	84596.98	76.25	195.83	<u></u>
•	2440.0	48.0	442.0	13.94	101344	85334.90	73.79	193.07	***
	2450.0	47.4	452.0	14.15	102889	86082.66	74.78	190.45	••••
	2460.0	46.0	462.0	14.37	104481	86852.66	77.00	187.99	••••

•

.

`

	BIT NUMBER HTC J2 COST TOTAL HOURS	900 5	.00	TADC CODE SIZE TRIP TIME TOTAL TURNS	116 8.500 11.0 35461	NOZZLES BIT RUN		0.0- 274 16 16 28 2 B2 G0.	5 16 37.0
_	DEPTH	ROP	BIT RUN	N HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
	2470.0 2480.0 2490.0	47.7 40.4 49.7	10.0 20.0 30.0	0.46	1460 3220 4669	40604.92 41482.16 42195.13	74 88 71	4060 2074 1407	
-	2500.0	46.0	40.0		6235	42965.49	77	1074	****
_	2510.0	49.5	50.0	·	7690	43681.12	71.56	873.62	•
	2520.0	51.5	60.0		9067	44369.47	68.84	739.49	
	2530.0	55.5	70.0		10321	45007.72	63.83	642.97	****
_	2540.0	57.5	80.0		11531	45623.77	61.60	570.30	****
	2550.0 2560.0	59.0 56.6	90.(100.(12711 13942	46224,28 46850.50	60.05 62.62	513.60	
	2570.0	53.0	110.(15255	47518.80	66.83	468.50 431.99	
_	2580.0	65.0	120.0		15945	48063.40	54.46	400.53	••••
	2590.0	57.4	130.0		16363	48680.57		374,47	••••
_	2600.0	47.0	140.0		16874	49434.19	75.36	353.10	****
	2610.0	57.0	150.0		17295	50055.59	62.14	333.70	
	2620.0	71.0	160.0		18284	50554.47	49.89	315.97	****
_	2630.0	70.0	170.0		19287	51060.47	50.60	300.36	••••
	2640.0	64.0			20383	51613.90	55.34	286.74	
	2650.0	57.0	190.0		21615	52235.31	62.14	274.92	
	2660.0	48.0	200.0		23077	52973.22	73.79	264.87	****
	2670.0	48.0	210.0		24540	53711.14	73.79	255.77	••••
	2680.0 2690.0	52.0 48.0	220.0 230.0		25890 27352	54392.29 55130.21	68.12 73.79	247.24	***
		rw i u	a	T I SA A	in 1 rd rd for	www.	7 W 1 7 7	207170	
	2700.0 2710.0 2747.0	57.0 44.0 49.4	240°.0 250°.0 287°.0	4.71	28584 30180 35461	55751.61 56556.61 59211.03	62.14 80.50 71.74	232.30 226.23 206.31	••••

COMPUTER DATA LISTING : LIST C

INTERVAL		,				10 m average
DEPTH		,				Well depth, in metres
FLOW RATE, .	ı					Mud flow into the well, in gallons per minute
PSP	•	•			•	Pump pressure, in pounds per square inch
PRIT		,		•	,	Bit pressure drop, in pounds per square inch
% PSP	•			·		Percentage of surface pressure dropped at the bit
ннг			,	;	,	Bit hydraulic horsepower
HHP/SQ IN .	,	,-	,	,	,	Bit hydraulic horsepower per square inch of bit diameter
IMPACT FORCE	•	,		,	ı	Bit impact force, in foot pound per second squared
JET VELOCITY	ŧ			,		Mud velocity through the bit nozzles, in metres per second

	BIT NUMBER HTC OSC3AJ COST TOTAL HOUR	00°83 00°8	.00	IADC CODE BIZE TRIP TIME FOTAL: TURN	111 26.000 1.7 S 33634	NOZ BIT	ERVAL ZLES RUN DITION	65.0 T2 I	0- 204.0 20 20 20 139.0 32 G0.000
		FLOW					HHP/	IMPACT	JET
1	DEPTH	RATE	PSP	PBIT	%PSP	HHP	sqin		VELOCITY
	70.0	665	350.0	413.1	118.0	160	0.30	686	70
	80.0	665	350.0	413.1	118.0	160	0.30	686	70
	90.0	665	350.0	413.1	118.0	160	0.30	686	70
_	100.0	1085	1015.0	1099.8	108.4	696	1.31	1826	115
	110.0	1110	1120.0	1151.1	102.8	745	1.40	1911	118
	120.0	1090	1070.0	1110.0	103.7	706	1.33	1843	115
	130.0	1080	1060.0	1089.7	102.8	686	1.29	1809	114
	140.0	1105	1120.0	1140.7	101.9	735	1.38	1894	117
	150.0	1090	1080.0	1110.0	102.8	706	1.33	1843	115
	160.0	1095	1120.0	1120.2	100.0	715	1.35	1860	116
	170.0	1100	1120.0	1130.4	100.9	725	1.37	1877	117
	180.0	1100	1120.0	1130.4	100.9	725	1.37	1877	117
	190.0	1090	1130.0	1110.0	98.2	706	1.33	1843	115
	200.0	1090	1150.0	1110.0	96.5	706	1.33	1843	115
	204.0	1090	1140.0	1110.0	97.4	706	1.33	1843	115

BIT NUMBER HTC 3AJ COST TOTAL HOUR	5000	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	111 17.500 3.9 116516	NOZZ BIT			799.0 20 20 595.0 60.000
DEPTH	FLOW RATE	PSP	TEET	%PSP	ННР	HHP/ sqin	IMPACT FORCE VE	JET ELOCITY
210.0 220.0 230.0	1080 1080 1080	2500.0 2500.0 2500.0	1102.4	44.1 44.1 44.1	694 694 694	2.89 2.89 2.89	1830 1830 1830	114 114 114
240.0 250.0 260.0 270.0 280.0 290.0	1080 1110 1180 1175 1140 1140	2500.0 2170.0 2470.0 2470.0 2280.0 2280.0	1164.5 1316.0 1304.8 1228.3 1228.3	44.1 53.7 53.3 52.8 53.9 53.9	694 754 906 894 817 817	2.89 3.13 3.77 3.72 3.40 3.40	1830 1933 2185 2166 2039 2039	114 118 125 124 121 121
300.0 310.0 320.0 330.0	1175 1165 1165 1155	2480.0 2480.0 2480.0 2220.0	1282.7 1282.7	52.6 51.7 51.7 56.8	894 872 872 849	3.72 3.62 3.62 3.53	2166 2129 2129 2093	124 123 123 122
340.0 350.0 360.0 370.0 380.0 390.0 400.0 410.0 420.0 430.0	1075 1145 1145 1155 1155 1140 1140 1140 114	2220.0 2350.0 2350.0 2490.0 2490.0 2470.0 2470.0 2470.0 2470.0	1260.8 1228.3 1228.3 1228.3 1228.3	49.2 52.7 52.7 50.6 50.6 49.7 49.7 49.7	685 827 827 849 849 817 817 817	2.85 3.44 3.53 3.53 3.40 3.40 3.40 3.40	1813 2057 2057 2093 2093 2039 2039 2039 2039	114 121 121 122 122 121 121 121 121
440.0 450.0 460.0 470.0 480.0 490.0 500.0 510.0 520.0	1150 1150 1150 1170 1170 1170 1200 1200 1200	2500.0 2500.0 2500.0 2620.0 2620.0 2620.0 2950.0 2950.0 2950.0	1249.9 1249.9 1249.8 1293.8 1293.8 1293.8 1361.0 1361.0	50.0 50.0 50.0 49.4 49.4 49.4 46.1 46.1	838 838 838 883 883 952 952 952	3.49 3.49 3.49 3.67 3.67 3.96 3.96 3.96	2075 2075 2075 2148 2148 2148 2159 2259 2259 2259	122 122 122 124 124 127 127 127
540.0 550.0 560.0 570.0 580.0 590.0 600.0 610.0 620.0 630.0	1200 1200 1050 1050 1050 1050 1120 1120	2950.0 2950.0 2330.0 2330.0 2330.0 2330.0 2450.0 2450.0	1042.0 1042.0	46.1 46.1 44.7 44.7 44.7 44.7 44.7 48.4 48.4	952 952 638 638 638 638 638 774 774	3.96 3.96 2.65 2.65 2.65 2.65 3.22 3.22	2259 2259 1730 1730 1730 1730 1730 1968 1968	127 127 111 111 111 111 119 119

		FLOW					HHP/	IMPACT	JET
	DEPTH	RATE	PSP	PBIT	%P SP	HHP	sqin	FORCE	VELOCITY
	640.0	1120	2450.0	1185.5	48.4	774	3.22	1968	119
	650.0	1120	2450.0	1185.5	48.4	774	3.22	1968	119
	660.0	1120	2450.0	1185.5	48.4	774	3.22	1968	119
	670.0	1120	2450.0	1185.5	48,4	774	3.22	1968	119
	680.0	1120	2450.0	1185.5	48.4	774	3.22	1968	119
	690.0	1120	2450.0	1185.5	48.4	774	3.22	1968	119
	700.0	1110	2850.0	1164.5	40.9	754	3.13	1933	118
	710.0	1110	2850.0	1164.5	40.9	754	3.13	1933	118
	720.0	1110	2850.0	1164.5	40.9	754	3.13	1933	118
	730.0	1160	2730.0	1271.7	46.6	860	3.58	2111	123
_	740.0	1160	2730.0	1271.7	46.6	860	3,58	2111	123
	750.0	1160	2730.0	1271.7	46.6	860	3.58	2111	123
	760.0	1160	2730.0	1271.7	46.6	860	3.58	2111	123
	770.0	1160	2730.0	1271.7	46.6	860	3.58	2111	123
	780.0	1160	2730.0	1271.7	46.6	860	3.58	2111	123
	790.0	1160	2290.0	1271.7	55.5	860	3.58	2111	123
	799.0	1075	2360.0	1092.2	46.3	685	2.85	1813	114

•

.

799.0- 1293.0 BIT NUMBER 3 IADC CODE 114 INTERVAL HTC X3A SIZE 12.250 NOZZLES 16 16 16 1300.00 TRIP TIME BIT RUN COST 5.7 494.0 TOTAL HOURS 21,11 TOTAL TURNS 162445 -CONDITION T3 B5 G0,000 FLOW HHP/ IMPACT JET PSP **XPSP** DEPTH RATE PBIT HHP FORCE VELOCITY sgin 500 800.0 800.0 596.7 74.6 174 1.48 634 83 810.0 460 2740.0 505.1 18.4 135 1.15 76 537 820.0 1005 2700.0 2410.9 89.3 11.99 2562 1413 166 2790.0 1020 2483,4 89.0 1477 12.53 830.0 2639 169 69.2 840.0 880 1827.9 938 7.96 1942 146 2640.0 10.99 980 2690.0 2267.0 84.3 1296 2409 850.0 162 1890.8 69.8 987 8.37 148 860.0 895 2710.0 2009 780 104.1 653 5.54 129 870.0 1380.0 1436.1 1526 880.0 875 2700.0 1807.2 66.9 922 7.82 1920 145 890.0 885 2730.0 1848.7 67.7 954 8.10 1964 146 900.0 880 2730.0 1827.9 67.0 938 7.96 1942 146 910.0 840 2730.0 1665.5 61.0 6.92 1770 139 816 920.0 870 2740.0 1786.6 65.2 906 7.69 1898 144 144 930.0 870 2750,0 1786.6 65.0 906 1898 7.69 940.0 850 2730.0 1705.4 62.5 845 7.17 1812 141 950.0 794.0 2.28 580 1200.0 66.2 96 269 844 1827.9 960.0 2750.0 880 66.5 938 7,96 1942 146 970.0 850 2720.0 1705.4 62.7 845 7.17 1812 141 980.0 890 2930.0 1869.7 970 63.8 8.23 1987 147 990.0 880 2830.0 1827.9 64.6 938 7.96 1942 146 1000.0 880 2840,0 1827.9 64.4 7.96 146 938 1942 900 1010.0 2950.0 1911.9 64.8 1004 8.51 2031 149 1020.0 900 2950.0 1911.9 64.8 1004 8,51 2031 149 900 2920.0 1911.9 1030.0 65.5 1004 8.51 2031 149 1040.0 900 2920.0 1911.9 65.5 1004 8.51 2031 149 1050.0 900 2920.0 1911.9 65.5 1004 8.51 149 2031 900 2950.0 1911.9 1060.0 64.8 1004 8.51 2031 149 900 2920.0 1911.9 1070.0 65.5 1004 8.51 2031 149 1911.9 1080.0 900 2900.0 65.9 1004 8.51 2031 149 2770.0 1827.9 938 1090.0 880 66.0 7,96 1942 146 1827.9 1100.0 880 2920.0 62.6 938 7.96 1942 146 1110.0 880 2930.0 1827.9 62.4 938 7,96 1942 146 1120.0 880 2900.0 1827.9 63.0 938 7.96 1942 146 1827.9 1130.0 880 2880.0 63.5 938 7.96 1942 146 938 146 1140.0 880 2880.0 1827.9 63.5 7,96 1942 905 67.1 1150.0 2880.0 1933.3 1020 2054 150 8.66 1160.0 905 2880.0 1933.3 67.1 1020 8.66 2054 150 1170.0 910 2810,0 1954.7 2077 69.6 1037 8.80 151 910 1954.7 2077 1180.0 2810.0 69.6 1037 8.80 151 1190.0 870 2820.0 1786.6 63.4 906 7.69 1898 144 7.69 1200.0 870 2820.0 1786.6 63.4 906 1898 144 1210.0 870 2850.0 1786.6 62.7 906 7.69 1898 144 1220.0 600 1450.0 849.8 58.6 297 2.52 903 99

_		FLOW					HHP/	IMPACT	JET
	DEPTH	RATE	PSP	PBIT	%P SP	HHP	sqin	FORCE	VELOCITY
	1230.0	600	1440.0	849.8	59.0	297	2.52	903	99
_	1240.0	1140	2840.0	3067.6	108.0	2039	17.30	3259	189
ı	1250.0	600	1470.0	849.8	57.8	297	2.52	903	99
	1260.0	600	1480.0	849.8	57.4	297	2,52	903	99
	1270.0	600	1460.0	849.8	58.2	.297	2.52	903	99
	1280.0	600	1480.0	859.3	58.1	301	2.55	913	99
	1290.0	600	1490.0	964.3	64.7	337	2.86	1025	99
	1293.0	600	1410.0	964.3	68.4	337	2.86	1025	99

-4

•

٠, ١

i

and the second of the second o

BIT NUMBER HTC X3A COST	1300	.00	IADC CODE SIZE TRIP TIME	114 12.250 6.1	NOZ BIT	TERVAL ZZLES F RUN		0- 1391.0 16 16 16 98.0
TOTAL HOURS	5 4	.14	TOTAL TURN	S 33204	C01	NOITION	TI F	33 G0.000
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PRIT	%PSP	HHP	sqin	FORCE	VELOCITY
1300.0	875	2040.0	2050.9	100.5	1047	8.88	2179	145
1310.0	815	2770.0	1779.3	64.2	846	7.18	1890	135
1320.0	850	2480.0	1935.4	78.0	959	8.14	2056	141
 1330.0	860	2500.0	1981.2	79.2	994	8.43	2105	142
1340.0	860	2850.0	1981.2	69.5	994	8.43	2105	142
1350.0	850	2970.0	1935.4	65.2	959	8.14	2056	141
1360.0	845	2840.0	1912.7	67.3	943	8.00	2032	140
1370.0	865	2530.0	2004.3	79.2	1011	8.58	2129	143
1380.0	825	2820.0	1823.2	64.7	877	7.44	1937	137
1390.0	800	2800.0	1680.4	60.0	784	6.65	1785	132
1391.0	800	2800.0	1680.4	60.0	784	6.65	1785	132

BIT NUMBER CHRISTENSEN COST		9	ADC CODE SIZE RIP TIME	4 8.468 6.1	NOZ	ERVAL ZLES RUN		- 1404.4 13 13 13 12.4
TOTAL HOURS			OTAL TURNS	11091		NOITION	TO B	0 G0.300
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PRIT	%PSP	HHP	sqin	FORCE	VELOCITY
1400.0	225	690.0	320.4	46.4	42	0.75	225	56
1404.4	225	550.0	320.4	58.3	42	0.75	225	56

BIT NUMBER CHRISTENSE			IADC CODE SIZE	8,468		ERVAL ZLES	1405.0)- 1418,2
								13 13 13
COST	15000		TRIP TIME	6.2	R.1.1	RUN		13.2
TOTAL HOUR	S 5	.21	TOTAL TURNS	28361	CON	NOITION	TO I	30 G0.800
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PRIT	%P SP	ННР	sqin	FORCE	VELOCITY
1410.0	230	520.0	325.2	62.5	44	0.77	228	58
1418.2	240	380.0	354.0	93.2	50	0.88	248	60

ø

	BIT NUMBER HTC X3A COST TOTAL HOURS	1400 3 4	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	114 12.250 6.4 36973	NOZ BIT	ERVAL ZLES RUN DITION		- 1495.0 14 14 15 77.0 6 G0.750
		FLOW		Tarrina Tarriva	W.W. F. W.	Ser Ser I S	HHP/	IMPACT	JET
	DEPTH	RATE	P SP	PBIT	%PSP	ННР	sqin	FORCE	VELOCITY
_	1420.0	740	2840.0	2272.7	80.0	981	8.32	1940	152
_	1430.0	740	2890.0	2272.7	78.6	981	8.32	1940	152
	1440.0	740	2880.0	2272.7	78.9	981	8.32	1940	152
	1450.0	740	2840.0	2272.7	80.0	981	8.32	1940	152
	1460.0	740	2500.0	2272.7	90.9	981	8.32	1940	152
	1470.0	740	2450.0	2272.7	92.8	981	8.32	1940	152
	1480.0	740	2390.0	2272.7	95.1	981	8.32	1940	152
	1490.0	740	2790.0	2272.7	81.5	981	8.32	1940	152
	1495.0	740	2790.0	2272.7	81.5	981	8.32	1940	152

Value of the control of

ž.

•

	BIT NUMBER HTC JD4 COST TOTAL HOUR	1800 S 7	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	217 12.250 6.8 49693	NOZ BIT	ERVAL ZZLES RUN NDITION	1495.(T7 I	0- 1585.0 15 15 14 90.0 35 G0.313
		FLOW					HHP/	IMPACT	JET
	DEPTH	RATE	PSP	PBIT	%PSP	HHP	sqin	FORCE	VELOCITY
	1500.0	770	2870.0	2244.7	78.2	1008	8.55	2006	152
	1510.0	770	2830.0	2244.7	79.3	1008	8,55	2006	152
	1520.0	770	2830.0	2244.7	79.3	1008	8.55	2006	152
_	1530.0	770	2830.0	2244.7	79.3	1008	8.55	2006	152
	1540.0	615	1920.0	1432.0	74.6	514	4.36	1280	121
	1550.0	. 785	2860.0	2333.0	81.6	1068	9.06	2085	154
	1560.0	785	2780.0	2333.0	83.9	1068	9.06	2085	154
	1570.0	755	2660.0	2158.1	81.1	950	8.06	1929	149
	1580.0	755	2630.0	2158.1	82.1	950	8.06	1929	149
	1585.0	800	2820.0	2423.0	85.9	1130	9.59	2165	157

•

.

• •

BIT NUMBER HTC J22 COST TOTAL HOURS	4200 40	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 12.250 8.2 244481	NOZ BIT	ERVAL ZLES RUN IDITION		1986.0 5 15 14 401.0 G0.188
	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE V	JET ELOCITY
1590.0	710	2810.0	1908.5	67.9	790	6.71	1706	140
1600.0	780	2940.0	2303.4	78.3	1048	8.89	2059	153
1610.0	730	2960.0	2017.6	68.2	859	7.29	1803	144
1620.0	720	2860.0	1962.7	68.6	824	6.99	1754	142
1630.0	750	2950.0	2108.5	71.5	922	7.83	1884	148
1640.0	750	2950.0	2108.5	71.5	922	7.83	1884	148
1650.0	740	2880.0	2052.7	71.3	886	7.52	1834	146
1660.0	740	2880.0	2052.7	71.3	886	7.52	1834	146
1670.0	740	2970.0	2052.7	69.1	886	7.52	1834	146
1680.0	720	2810.0	1943.2	69.2	816	6.92	1737	142
1690.0	720	2760.0	1943.2	70.4	816	6.92	1737	142
1700.0	740	2770.0	2052.7	74.1	886	7.52	1834	146
1710.0	705	2800.0	1863.1	66.5	766	6.50	1665	139
1720.0	810	2880.0	2459.4	85.4	1162	9.86	2198	159
1730.0	760	2860.0	2165.1	75.7	960	8.14	1935	150
1740.0	765	2890.0	2193.7	75.9	979	8.30	1961	151
1750.0	760	2800.0	2165.1	77.3	960	8,14	1935	150
1760.0	745	2750.0	2080.5	75.7	904	7,67	1859	147
1770.0	720	2810.0	1943.2	69.2	816	6,92	1737	142
1780.0	740	2830.0	2052.7	72.5	886	7,52	1834	146
1790.0	785	2820.0	2309.9	81.9	1058	8.97	2064	154
1800.0	750	2820.0	2108.5	74.8	922	7.83	1884	148
1810.0	610	2000.0	1394.8	69.7	496	4.21	1247	120
1820.0	730	2970.0	1997.6	67.3	850	7.22	1785	144
1830.0	710	2980.0	1889.6	63.4	782	6.64	1689	140
1840.0	710	2860.0	1889.6	66.1	782	6.64	1689	140
1850.0	710	2880.0	1889.6	65.6	782	6.64	1689	140
1860.0	720	2830.0	1943.2	68.7	816	6.92	1737	142
1870.0	750	2830.0	2108.5	74.5	922	7.83	1884	148
1880.0	720	2950.0	1943.2	65.9	816	6.92	1737	142
1890.0		2930.0	1943.2	66.3	816	6.92	1737	142
1900.0		2920.0	1943.2	66.5	816	6.92	1737	142
1910.0		2920.0	1943.2	66.5	816	6.92	1737	142
1920.0		2920.0	1943.2	66.5	816	6.92	1737	142
1930.0		2785.0	1810.6	65.0	734	6.23	1618	137
1940.0		2790.0	1802.5	64.6	725	6.15	1611	136
1950.0		2790.0	1802.5	64.6	725	6.15	1611	136
1940.0		2820.0	1881.7	66.7	774	6.56	1682	139
1970.0		2880.0	2017.6	70.1	859	7.29	1803	144
1980.0		2790.0	1962.7	70.3	824	6.99	1754	142
1986.0		2730.0	2129.6	78.0	931	7.90	1903	148

BIT NUMBER HTC J22 COST TOTAL HOUR	4200	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 12.250 8.9 175777	NOZ BIT	ERVAL ZLES RUN DITION		0- 2161.0 14 14 15 175.0 35 G0.125
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PBIT	%PSP	HHP	sqin		VELOCITY
1990.0	630	2800.0	1647.2	58.8	605	5.14	1406	130
2000.0	635	2800.0	1673.5	59.8	620	5.26	1428	131
2010.0	660	2930.0	1807.9	61.7	696	5.90	1543	136
2 020.0	650	2930.0	1753.5	59.8	665	5.64	1497	134
2030.0	650	2980.0	1753.5	58.8	665	5.64	1497	134
2040.0	650	2920.0	1753.5	60.1	665	5.64	1497	134
_ 2050.0	650	2920.0	1753.5	60.1	665	5.64	1497	134
2060.0	635	2800.0	1656.9	59.2	614	5.21	1414	131
2070.0	550	2130.0	1255.5	58.9	403	3.42	1072	113
2080.0	650	2980.0	1753.5	58.8	665	5.64	1497	134
2090.0	650	2980.0	1753.5	58.8	665	5.64	1497	134
2100.0	650	2980.0	1753.5	58.8	665	5.64	1497	134
2110.0	650	2980.0	1753.5	58.8	665	5.64	1497	134
2120.0	650	2700.0	1753.5	64.9	665	5.64	1497	134
2130.0	650	2750.0	1753.5	63.8	665	5.64	1497	134
_ 2140.0	650	2750.0	1753.5	63.8	665	5.64	1497	134
2150.0 2160.0	650	2750.0	1736.1	63.1	658	5.58	1482	134
2160.0	500	1780.0	1027.3	57.7	300	2.54	877	103
2161.0	500	1780.0	1027.3	57.7	300	2.54	877	103

COS.		6090 35	. 00	IADC CODE SIZE TRIP TIME TOTAL TURNS	527 12.250 9.5 204879	NOZ. BIT	ERVAL ZLES RUN	1	2324.5 4 14 14 163.5
	ar unoka	ಎಎ	. 0.1	TOTAL TORRE	2040/7	CUR	NOITION	14 50	-G0.188
■ DF		FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE U	JET ELOCITY
			1 021	1 A. J. 1	781 (31	1 11 11	⇔d ∓11	1 WIYWI V	ha ha \2 \cdot d. 1 1
	52.0	635	2750.0		67.0	682	5.79	1499	137
	53.0 54.0	635 635	2750.0 2750.0		67.0 67.0	682 682	5.79 5.79	1499 1499	137 137
						tor tor bus		* 177	2 1.37
	55.0 56.0	635 635	2750.0 2750.0		67.0 67.0	682	5.79	1499	137
	50.0 57.0	640	2780.0		67.3	682 699	5.79 5.93	1499 1523	137 138
	58.0	640	2780.0		67.3	699	5.93	1523	138
_	59.0	640	2780.0		67.3	699	5.93	1523	138
	70.0	640	2780.0		67.3	699	5.93	1523	138
	71.0	640	2780.0		67.3	699	5.93	1523	138
	72.0	640	2780.0		67.3	699	5.93	1523	138
	73.0 74.0	640 640	2780.0 2780.0		67.3 67.3	699 699	5,93 5,93	1523 1523	138 138
£ X .	/ "Y i U	CTTO	2700.0	10/110	UZIO	077	W 17 W	Lumb	1.00
	75.0	640	2780.0		67.3	699	5.93	1523	138
	76.0	650	2800.0		69.0	732	6.21	1571	141
	77.0	650	2800.0		69.0	732	6.21	1571	141
	78.0 79.0	650 650	2800.0 2800.0		69.0 69.0	732 732	6.21 6.21	1571 1571	141
	30.0	650	2800.0		69.0	732 732	6.21	1571	141 141
	31.0	650	2800.0		69.0	732	6.21	1571	141
	32.0	650	2800.0		69.0	732	6.21	iŠži	14î
	33.0	650	2800.0		69.0	732	6.21	1571	141
218	34.0	650	2800.0	1930.7	69.0	732	6.21	1571	141
218	35.0	650	2800.0	1930.7	69.0	732	6.21	1571	141
	36.0	650	2800.0		69.0	732	6.21	1571	141
	37.0	650	2800.0		69.0	732	6.21	1571	141
	38.0	650	2800.0		69.0	732	6.21	1571	141
	39.0 20.0	650 650	2800.0 2800.0		69.0	732	6.21	1571	141
	71.0	650	2800.0		69.0 69.0	732 732	6.21 6.21	1571 1571	141 141
	72.0	650	2800.0		69.0	732	6.21	1571	141
	93.0	650	2800.0		69.0	732	6.21	1571	141
219	74.0	650	2800.0	1930.7	69.0	732	6.21	1571	141
219	75.0	650	2800.0	1930.7	69.0	732	6.21	1571	141
219	76.0	650	2800.0		69.0	732	6.21	1571	141
	77.0	650	2800.0		69.0	732	6.21	1571	141
	0.89	650	2800.0		69.0	232	6.21	1571	141
	የዎ.0 ጋዐ.ዐ	650 450	2800.0		69.0	732	6.21	1571	141
)1.0	650 650	2800.0 2800.0		69.0 69.0	732 732	6.21 6.21	1571 1571	141
	,,,,)2.0	650	2800.0		68.3	73 <i>c</i> 725	6.15	1555	141 141
	3.0	650	2620.0		73.0	725	6.15	1555	141
= 220)4.0	650	2620.0	· ·	73.0	725	6.15	1555	141

DEPTH	FLOW RATE	P SP	PBIT	%P SP	ННЬ	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2205.0 2206.0 2207.0 2208.0 2209.0 2210.0 2211.0 2212.0 2213.0 2214.0	650 650 650 650 650 650 650 650	2620.0 2620.0 2620.0 2620.0 2620.0 2620.0 2620.0 2620.0 2620.0	1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6	73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0	725 725 725 725 725 725 725 725 725	6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15	1555 1555 1555 1555 1555 1555 1555 155	141 141 141 141 141 141 141 141
2215.0 2216.0 2217.0 2218.0 2219.0 2220.0 2221.0 2222.0 2223.0 2224.0	650 650 650 650 650 650 650 650	2620.0 2620.0 2620.0 2620.0 2620.0 2620.0 2620.0 2870.0 2870.0	1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6	73.0 73.0 73.0 73.0 73.0 73.0 66.6 66.6	725 725 725 725 725 725 725 725 725	6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15	1555 1555 1555 1555 1555 1555 1555 155	141 141 141 141 141 141 141
2225.0 2226.0 2227.0 2228.0 2229.0 2230.0 2231.0 2232.0 2233.0 2234.0	650 650 650 650 650 650 650 650	2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0	1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6	66.6 66.6 66.6 66.6 66.6 66.6 66.6	725 725 725 725 725 725 725 725 725	6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15	1555 1555 1555 1555 1555 1555 1555 155	141 141 141 141 141 141 141 141
2235.0 2236.0 2237.0 2238.0 2239.0 2240.0 2241.0 2242.0 2243.0 2244.0	650 650 650 650 650 650 650 650	2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0	1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6 1911.6	66.6 66.6 66.6 66.6 66.6 66.6 66.6	725 725 725 725 725 725 725 725 725	6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15	1555 1555 1555 1555 1555 1555 1555 155	141 141 141 141 141 141 141 141
2245.0 2246.0 2247.0 2248.0 2249.0 2250.0 2251.0 2252.0 2253.0 2254.0	650 650 650 650 650 650 650 650	2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2850.0	1911.6 1911.6 1911.6 1930.7 1930.7 1930.7 1949.8 1949.8	66.6 66.6 67.3 67.3 67.3 67.3 67.9 68.4	725 725 725 732 732 732 739 739 739	6.15 6.15 6.21 6.21 6.21 6.21 6.27 6.27	1555 1555 1557 1571 1571 1571 1571 1586 1586	141 141 141 141 141 141 141

		FLOW					HHP/	IMPACT	JET
	DEPTH	RATE	PSP	PBIT	%P SP	HHP	sqin		VELOCITY
	2255.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
_	2256.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2257.0	650	2850.0	1949.8	68.4	739	6.27	1586	
_	2258.0	650	2850.0	1949.8	68.4	739	6.27	1586	
_	2259.0	650	2850.0	1949.8		739	6.27	1586	
	2260.0	650	2850.0	1949.8	68.4	739	6.27	1586	
	2261.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
_	2262.0 2263.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2264.0	650 650	2850.0 2850.0	1949.8 1949.8	68.4 68.4	739 739	6.27 6.27	1586 1586	141 141
	2265.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2266.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2267.0 2268.0	650	2850.0 2850.0	1949.8 1949.8	68.4 68.4	739	6.27	1586	141
-	2269.0	650 650	2850.0	1949.8	68.4	739 739	6.27 6.27	1586	
	2270.0	650	2850.0	1949.8	68.4	737 739	6.27	1586 1586	141 141
	2271.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
_	2272.0	650	2850.0	1949.8	68.4	737 739	6.27	1586	141
	2273.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2274.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2275.0 2276.0	650 450	2850.0	1949.8	68.4	739	6.27	1586	141
	2277.0	650 650	2850.0 2850.0	1949.8 1949.8	68.4 68.4	739 739	6.27 6.27	1586 1586	141
	2278.0	650	2850.0	1949.8	68.4	737 739	6.27	1586	141 141
	2279.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
_	2280.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2281.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2282.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2283.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2284.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
•	2285.0	650		1949.8	68.4	739	6.27	1586	141
_		650	2850.0	1949.8	68.4	739	6.27	1586	141
	2287.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2288.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2289.0	650 (F)	2850.0	1949.8	68.4	739	6.27	1586	141
	2290.0 2291.0	650 (E0	2850.0	1949.8	68.4	739	6.27	1586	141
	2292.0	650 650	2850.0 2850.0	1949.8 1949.8	68.4 68.4	739 739	6.27 6.27	1586 1586	141 141
	2293.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
	2294.0	650	2850.0	1949.8	68.4	739	6.27	1586	141
_	2295.0	560	2180.0	1433.1	65.7	468	3.97	1166	121
. 🔳	2296.0	560	2180.0	1433.1	65.7	468	3.97	1166	121
	2297.0	560	2180.0	1433.1	65.7	468	3.97	1166	121
	2298.0	560	2180.0	1433.1	65.7	468	3.97	1166	121
	2299.0	460	1620.0	967.0	59.7	259	2.20	787	99
	2300.0	640	2950.0	1871.8	63.4	699	5.93	1523	138
	2301.0	500	1770.0	1142.4	64.5	333	2.83	929	108
	2302.0	500	1770.0	1142.4	64.5	333	2.83	929	108
	2303.0 2304.0	500 500	1770.0 1770.0	1142.4 1142.4	64.5 64.5	333 333	2.83 2.83	929 929	108 108
	mwsmi V	000	X 7 / U + U	ል ጸ "የሬ ነ "የ	UTIU	ພພພ	പാധാ	7 6. 7	7.00

,

_	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PBIT	%P SP	HHP	sqin	FORCE	VELOCITY
2305.0	500	1770.0	1119.8	63.3	327	2.77	911	108
2306.0	645	2980.0	1882.3	63.2	708	6.01	1531	139
2307.0	645	2980.0	1882.3	63.2	708	6.01	1531	139
2308.0	645	2980.0	1901.1	63.8	715	6.07	1546	139
2309.0	645	2980.0	1901.1	63.8	715	6.07	1546	139
2310.0	645	2980.0	1901.1	63.8	715	6.07	1546	139
2311.0	645	2980.0	1901.1	63.8	715	6.07	1546	139
2312.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2313.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2314.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
	0.0	E 7 C. 7 T V	.,0111	W 11 "1	7 2 4.5	0107	10.10	2.07
_ 2315.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2316.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2317.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2318.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2319.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2320.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2321.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2322.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2323.0	645	2950.0	1901,1	64.4	715	6.07	1546	139
2324.0	645	2950.0	1901.1	64.4	715	6.07	1546	139
2324.5	645	2950.0	1901.1	64,4	715	6.07	1546	139

BIT NUMBER HTC J33 COST TOTAL HOURS	6090 3 45		IADC CODE SIZE TRIP TIME TOTAL TURNS	527 12.250 10.2 252275	NOZ BIT	ERVAL ZLES RUN DITION		- 2521.0 14 14 14 196.5 6 G0.250
							, u. a	he to be 4 400 or be
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	pgp	PBIT	%PSP	ННР	sqin	and the second s	VELOCITY
47 hm 1 1 1 1	17.77.1 1	1 (2)	1 2.3 .3. 1	/m1 s.21	11111	#drii	1 (2)7 (2)2	V I I W W J. 1 1
2330.0	650	2860.0	1930.7	67.5	732	6.21	1571	141
2340.0	650	2860.0		67.5	732	6.21	1571	141
2350.0	650	2890.0		66.8	732	6.21	1571	141
2360.0	480	2010.0	1052.9	52.4	295	2.50	856	104
2370.0	660	2830.0	1990.6	70.3	766	6.50	1619	143
2380.0	660	2830.0	1990.6	70.3	766	6.50	1619	143
2390.0	650	2790.0		69.2	732	6.21	1571	141
2400.0	515	1850.0	1212.0	65.5	364	3.09	986	111
2410.0	640	2750.0	1871.8	68.1	699	5.93	1523	138
 2420.0	650	2850.0	1930.7	67.7	732	6.21	1571	141
2430.0	655	2920.0	1960.5	67.1	749	6.35	1595	142
2440.0	660	2880.0	1990.6	69.1	766	6.50	1619	143
2450.0	645	2830.0	1874.8	66.2	705	5.98	1525	139
2460.0	660	3030.0	1951.2	64.4	751	6.37	1587	143
2470.0	660	3030.0		65.0	759	6.44	1603	143
2480.0	615	3030.0	1711.3	56.5	614	5.21	1392	133
2490.0	640	3030.0		61.2	692	5.87	1508	138
2500.0	635	3050.0		59.8	676	5,73	1484	137
 2510.0	655	2920.0		66.5	741	6,29	1579	142
2520.0	655	2950.0		65.8	741	6.29	1579	142
2521.0	655	2950.0		65.1	734	6.23	1563	142
							** *** ***	** * ****

•

•

.

-

BIT NUMBER HTC J7 COST TOTAL HOURS	1800.	00	IADC CODE BIZE TRIP TIME TOTAL TURNS	316 12.250 10.2 20696	BIT	ERVÁL ZLES RUN IDITION		0- 2535.0 14 14 14 14.0 32 G0.000
	FLOW RATE	PSP	PBIT	%P SP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2530.0 2535.0		2950.0 2870.0	1721.5 1645.1	58.4 57.3	617 576	5.24 4.88	1400 1338	133 130

.

. -

	BIT NUMBER HTC J33 COST	6090	.00 1	IADC CODE BIZE FRIP TIME	527 12.250 10.4	NOZ BIT	ERVAL ZLES RUN		0-2600.0 14 14 14 65.0
	TOTAL HOUR	5 8	.77 1	FOTAL TURNS	53719	CON	DITION	T5	33 G0.125
		FLOW					HHP/	IMPACT	JET
	DEPTH	RATE	PSP	PBIT	%PSP	HHP	sqin	FORCE	VELOCITY
	2540.0	520	2000.0	1223.4	61.2	371	3.15	995	112
	2550.0	615	2860.0	1711.3	59.8	614	5.21	1392	133
	2560.0	640	2800.0	1853.2	66.2	692	5.87	1508	138
_	2570.0	640	2910.0	1834.7	63.0	685	5.81	1492	138
	2580.0	640	2820.0	1834.7	65.1	685	5.81	1492	138
	2590.0	640	2820.0	1871.8	66.4	699	5.93	1523	138
	2600.0	640	2420.0	1871.8	77.3	699	5.93	1523	138

	BIT NUMBER HTC J33 COST TOTAL HOURS	6090 3 13	15 .00 .94	IADC CODE SIZE TRIP TIME TOTAL TURNS	527 12.250 10.7 76380	NOZ BIT	ERVAL ZLES RUN DITION		0- 2663.3 14 14 15 63.3 33 G0.125
		FLOW					HHP/	IMPACT	JET
	DEPTH	RATE	PSP		%PSP	HHP	sqin	FORCE	VELOCITY
	2610.0	630	2750.0		59.9	605	5.14	1406	130
	2620.0	635	2760.0	1656.9	60.0	614	5,21	1414	131
	2630.0	520	2020.0	1111.1	55.0	337	2.86	948	107
_	2640.0	635	2780.0	1656.9	59.6	614	5.21	1414	131
	2650.0	635	2780.0	1656.9	59.6	614	5.21	1414	131
	2660.0	635	2780.0	1656.9	59.6	614	5.21	1414	131
	2663.3	640	2780.0	1683.1	60.5	628	5.33	1437	132

.

. •

CHR:	NUMBER ISTENSEN T AL HOURS	15000.00	SIZE	CODE TIME L TURNS	4 8.468 10.7 18692	INTER NOZZL BIT R CONDI	ES UN		3- 2669.0 13 13 13 5.3 30 -G0.200	3 7
ומ 🔳		FLOW RATE	PSP	PATT	%b Cb		HHP/	IMPACT	JET UELOCITY	•

78

1.38

335

70

2669.0

280 1460.0

	BIT NUMBER HTC J33 COST TOTAL HOURS	6090 33	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	527 12.250 11.2 234387	NOZ BIT	ERVAL IZLES RUN IDITION		0- 2815.0 14 14 15 146.0 35 G0.187
		FLOW					HHP/	IMPACT	JET
		RATE	P S P	PEIT	%PSP	HHP	sqin		VELOCITY
_	2670.0	640	2880.0	1716.8	59.6	641	5.44	1465	132
	2680.0	640	2950.0	1699.9	57.6	634	5,38	1451	132
	2690.0	640	2950.0	1699.9	57.6	634	5.38	1451	132
_	2700.0	640	2950.0	1699.9	57.6	634	5.38	1451	132
П	2710.0	640	2910.0	1699.9	58.4	634	5.38	1451	132
	2720.0	640	2940.0	1699.9	57.8	634	5.38	1451	132
	2730.0	640	2960.0	1699.9	57.4	634	5.38	1451	132
	2740.0	640	2930.0	1699.9	58.0	634	5.38	1451	132
	2750.0	640	2930.0	1699.9	58.0	634	5.38	1451	132
	2760.0	640	2920.0	1699.9	58.2	634	5.38	1451	132
	2770.0	630	2880.0	1647.2	57.2	605	5,14	1406	130
	2780.0	630	2870.0	1647.2	57.4	605	5.14	1406	130
_	2790.0	630	2980.0	1647.2	55.3	605	5.14	1406	130
	2800.0	640	2890.0	1699.9	58.8	634	5.38	1451	132
	2810.0	640	2940.0	1699.9	57.8	634	5.38	1451	132
_	2815.0	630	2860.0	1647.2	57.6	605	5,14	1406	130

.

	BIT NO HTC J: COST TOTAL		6090 36		IADC CODE SIZE TRIP TIME TOTAL TURNS	527 12.250 11.7 218379	NOZ BIT	ERVAL ZLES RUN DITFON		0- 2955.0 14 14 15 140.0 36 G0.250
_			FLOW					HHP/	IMPACT	JET
	DEP.	ГH	RATE	PSP	PBIT	ZPSP	HHP	sqin	FORCE	VELOCITY
	2820	. 0	620	2850.0	1595.4	56.0	577	4.89	1362	128
	2830	. 0	615	2750.0	1569.7	57.1	563	4.78	1340	127
	2840	. 0	600	2800.0	1494.1	53.4	523	4,44	1275	124
_	2850	. 0	610	2880.0	1544.3	53.6	549	4.66	1318	126
	2860	. 0	610	2960.0	1529.0	51.7	544	4.62	1305	126
	2870	. 0	610	2720.0	1529.0	56.2	544	4.62	1305	126
	2880	. 0	600	2570.0	1479.3	57.6	518	4.39	1263	124
	2890	. 0	575	2550.0	1358.6	53.3	456	3.87	1160	118
	2900	. 0	580	2460.0	1382.3	56.2	468	3.97	1180	119
	2910	. 0	610	2430.0	1529.0	62.9	544	4,62	1305	126
	2920	. 0	570	2560.0	1335.1	52.2	444	3.77	1140	117
	2930	. 0	570	2640.0	1335.1	50.6	444	3.77	1140	117
	2940	. 0	570	2640.0	1335.1	50.6	444	3.77	1140	117
	2950	. 0	570	2590.0	1335.1	51.5	444	3.77	1140	117
	2955	. 0	570	2590.0	1335.1	51.5	444	3.77	1140	117

.

.

BIT NUMBER HTC OSC 1G COST TOTAL HOURS	19 900.00 14.37	IADC CODE SIZE TRIP TIME TOTAL TURNS	131 8.500 9.9 104481	INTERVAL NOZZLES BIT RUN CONDITION	1998.0- 2460.0 28 28 28 462.0 T3 B5 G0.000
	FLOW RATE PS	P PRIT	%PSP	HHP/	
2000.0 2010.0 2020.0	515 830. 515 830. 490 700.	0 76.5	9.2 9.2 9.9	23 0.40 23 0.40 20 0.35	249 28 249 28 225 26
2030.0 2040.0 2050.0 2060.0 2070.0 2080.0 2090.0 2100.0 2110.0 2120.0	490 700. 490 700. 525 850. 525 850. 525 850. 525 850. 525 850. 525 850. 525 850. 665 1400.	0 69.3 0 79.5 0 79.5 0 79.5 0 79.5 0 79.5 0 79.5	9.9 9.9 9.4 9.4 9.4 9.4 9.4 9.0	20 0.35 20 0.35 24 0.43 24 0.43 24 0.43 24 0.43 24 0.43 24 0.43 24 0.43 24 0.43	225 26 225 26 259 28 259 28 259 28 259 28 259 28 259 28 259 28 259 28
2130.0 2140.0 2150.0 2160.0 2170.0 2180.0 2190.0 2200.0 2210.0	665 1400. 665 1400. 665 1400. 665 1400. 665 1400. 665 1400. 665 1400. 665 1400. 560 1190.	0 125.8 0 125.8 0 125.8 0 125.8 0 125.8 0 125.8 0 125.8 0 125.8	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	49 0.86 49 0.86 49 0.86 49 0.86 49 0.86 49 0.86 49 0.86 49 0.86 49 0.86 29 0.51	409 36 409 36 409 36 409 36 409 36 409 36 409 36 409 36 409 36 409 36
2230.0 2240.0 2250.0 2250.0 2260.0 2270.0 2280.0 2290.0 2300.0 2310.0	560 1190. 560 1190. 560 1190. 615 1330. 615 1330. 615 1330. 615 1330. 640 1470.	0 89.2 0 89.2 0 107.6 0 107.6 0 107.6 0 107.6 0 116.5	7.5 7.5 7.5 8.1 8.1 8.1 8.1 7.9	29 0.51 29 0.51 29 0.51 39 0.68 39 0.68 39 0.68 39 0.68 39 0.68 39 0.77 43 0.77	290 30 290 30 290 30 350 33 350 33 350 33 350 33 379 35 379 35 379 35
2330.0 2340.0 2350.0 2360.0 2370.0 2380.0 2390.0 2400.0 2410.0 2420.0	640 1470.0 640 1470.0 640 1470.0 640 1470.0 640 1470.0 640 1470.0 640 1470.0 640 1470.0 640 1470.0	116.5 116.5 116.5 116.5 116.5 116.5 116.5	7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.1	43 0.77 43 0.77 43 0.77 43 0.77 43 0.77 43 0.77 43 0.77 43 0.77 43 0.77 43 0.77 43 0.77	379 35 379 35 379 35 379 35 379 35 379 35 379 35 379 35 379 35 379 35 379 35 379 35 333 32

	DEPTH	FLOW RATE	PSP	PBIT	ZPSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
	2430.0	600	1440.0	102.4	7.1	36	0.63	333	32
_	2440.0	630	1440.0	112.9	7.8	41	0.73	367	34
	2450.0	630	1440.0	112.9	7.8	41	0.73	367	34
	2460.0	0.53	1290.0	112.9	8.8	Δ1	በ '7'ኛ	ፕ ሬ. ግ	

· ·

·

BIT NUMBER HTC J2 COST TOTAL HOURS	900 5 5	.00 T	ADC CODE IZE RIP TIME OTAL TURNS	116 8.500 -11.0 35461	NOZ BIT	ERVAL ZLES RUN DITION		1- 2747.0 16 16 16 287.0 (2 G0.000
DEPTH	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2470.0	490	1500.0	643.2	42.9	184	3.24	683	81
2480.0	490	1500.0	643.2	42.9	184	3.24	683	81
2490.0	490	1500.0	643.2	42.9	184	3.24	683	81
2500.0	490	1500.0	643.2	42.9	184	3.24	683	81
2510.0	490	1500.0	643.2	42.9	184	3.24	683	81
2520.0	490	1500.0	643.2	42.9	184	3.24	683	81
2530.0	490	1500.0	643.2	42.9	184	3.24	683	81
2540.0	500	1510.0	669.7	44.3	195	3.44	712	83
2550.0	500	1510.0	669.7	44.3	195	3.44	712	83
2540.0 2570.0 2580.0 2590.0	500 500 500 500	1510.0 1510.0 1510.0 1510.0	669.7 669.7 669.7 669.7	44.3 44.3 44.3	195 195 195 195	3,44 3,44 3,44 3,44	712 712 712 712	83 83 83 83
2600.0	500	1510.0	669.7	44.3	195	3.44	712	83
2610.0	500	1510.0	669.7	44.3	195	3.44	712	83
2620.0 2630.0 2640.0 2650.0	500 500 500 500	1510.0 1510.0 1510.0 1510.0	669.7 669.7 669.7 669.7	44.3 44.3 44.3	195 195 195 195	3.44 3.44 3.44	712 712 712 712	83 83 83 83
2660.0	500	1510.0	669.7	44.3	195	3.44	712	83
2670.0	500	1510.0	669.7	44.3	195	3.44	712	83
2680.0	500	1510.0	669.7	44.3	195	3.44	712	83
2690.0	500	1510.0	669.7	44.3	195	3.44	712	83
2700.0	500	1510.0	669.7	44.3	195	3.44	712	83
2710.0	500	1510.0	669.7	44.3	195	3.44	712	83
2747.0	500	1690.0	669.7	39.6	195	3.44	712	83

COMPUTER DATA LISTING : LIST D

INTERVAL	. 10	M	average
----------	------	---	---------

DEPTH Well depth, in metres

SPM1 Stroke rate per minute, for pump No 1

SPM2 Stroke rate per minute, for pump No 2

FLOW RATE Mud flow rate into the well, in gallons per minute

ANNULAR VELOCITIES: (in metres per minute)

DC/OH - Between drill collars and the open hole

DC/CSG - Between drill collars and casing

HW/OH - Between heavyweight drill pipe and the open hole

HW/CSG - Between heavyweight drill pipe and casing

DP/OH - Between drill pipe and open hole

DP/CSG - Between drill pipe and casing

DP/RIS - Between drill pipe and riser

	BIT NUMBER HTC OSC3AJ COST TOTAL HOUR	OH" 65& [*] . 000	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TUE	2	111 6.000 1.7 33634	NOZZ BIT	ERVAL ZLES RUN DITION		20 2	204.0 20 20 139.0 0.000
	DEPTH	SPM1	SPM2	FLOW RATE	DC\	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	70.0	68	65	665	8		8				
	80.0	68	65	665	8		8	•			
	90.0	68	65	665	8		8		8		
	100.0	105	112	1085	13		12		12		
	110.0	108	114	1110	14		13		13		
_	120.0	106	112	1090	13		13		13		
_	130.0	106	110	1080	13		12		12		
	140.0	106	115	1105	13		13		13		
	150.0	106	112	1090	13		13		13		
	160.0	107	112	1095	13	1	13		1.3		
	170.0	106	114	1100	13		13		13		
	180.0	106	114	1100	13		13		13		:
	190.0	106	112	1090	13		13		13		
	200.0 204.0	106 106	112 112	1090 1090	13 13		13 13		13 13		

BIT NUMBER HTC 3AJ COST TOTAL HOURS	5000.00 3 13.87	IADC CODE SIZE TRIP TIME TOTAL TURN	111 17.500 3.9 85 116516	INTERVAL NOZZLES BIT RUN CONDITION	204.0- 799.0 20 20 20 595.0 T3 B3 G0.000
DEPTH	SPM1 SPM2		DC/ DC/	OH CSG	DP/ DP/ DP/ OH CSG RIS
210.0 220.0 230.0	100 116 100 116 100 116	1080	33 27 33 27 33 27	24 24 24	24 19 24 19 24 19
	100 116 115 107 124 112 123 112 120 108 120 108 123 112 123 110 123 110	1110 1180 1175 1140 1140 1175 1165	33 27 34 27 36 29 36 35 35 36 36 36 36	24 24 26 26 30 25 30 25 31 31 31	24 19 24 20 24 20 26 21 26 21 25 20 25 20 31 26 21 31 26 21 31 26 21 31 26 21
340.0 350.0 360.0 370.0 380.0 390.0 400.0 410.0 420.0 430.0	108 107 121 108 121 108 123 108 123 108 118 110 118 110 118 110 118 110 118 110 118 110 118 110 118 110 118 110	1145 1145 1155 1155 1140 1140	33 35 35 36 36 35 35 35 35	29 30 31 31 30 30 30 30	29 24 19 30 25 21 30 25 21 31 25 21 31 25 21 30 25 20 30 25 20 30 25 20 30 25 20 30 25 20 30 25 20 30 25 20 30 25 20
440.0 450.0 460.0 470.0 480.0 490.0 500.0 510.0 520.0 530.0	120 110 120 110 120 110 118 116 118 116 130 110 130 110 130 110 130 110 130 110 130 110 130 110 130 110	1150 1150 1150 1170 1170 1200 1200 1200 1200	35 35 36 36 36 37 37 37	31 31 31 31 31 32 32 32 32	31 25 21 31 25 21 31 25 21 31 26 21 31 26 21 31 26 21 32 26 22 32 26 22 32 26 22 32 26 22 32 26 22 32 26 22 32 26 22
540.0 550.0 560.0 570.0 580.0 590.0 600.0 610.0 620.0 630.0	130 110 130 110 100 110 100 110 100 110 100 110 100 110 114 110 114 110 114 110 114 110 114 110	1200 1200 1050 1050 1050 1050 1050 1120 112	37 32 32 32 32 35 35	32 32 28 28 28 28 28 30 30	32 26 22 32 26 22 28 23 19 28 23 19 28 23 19 28 23 19 28 23 19 30 25 20 30 25 20 30 25 20 30 25 20

			FLOW	DC/	DCA	HW/	HW/	DP/	DP/	DP/
DEPTH	SPM1	SPM2	RATE	ОН	CSG	OH	CSG	ОН	CSG	RIS
640.0	114	110	1120	35		30		30	25	20
650.0	114	110	1120	35		30		30	25	20
660.0	114	110	1120	35		30		30	25	20
670.0	114	110	1120	35		30		30	25	20
680.0	114	110	1120	35		30		30	25	20
690.0	114	110	1120	35		30		30	25	20
700.0	112	110	1110	34		29		29	24	20
710.0	112	110	1110	34		29		29	24	20
720.0	112	110	1110	34		29		29	24	20
730.0	122	110	1160	36		31		31	25	21
740.0	122	110	1160	36		31		31	25	21
750.0	122	110	1160	36		31		31	25	21
760.0	122	110	1160	36		31		31	25	21
	122		1160	36		31		31	25	2i
770.0		110								
780.0	122	110	1160	36		31		31	25	21
790.0	122	110	1160	36		31		31	25	21
799.0	100	115	1075	33		29		29	24	19

.

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	нw/ он	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1230.0	120	0	600	52		36		36	35	11
1240.0	144	84	1140	99		68		68	- 66	20
1250.0	120	0	600	52		36		36	35	11
1260.0	120	0	600	52		36		36	35	11
1270.0	120	0	600	52		36		36	35	11
1280.0	120	0	600	52		36		36	35	11
1290.0	120	0	600	52		36		36	35	11
1293.0	120	0	600	52		36		36	35	11

-1

ļ

•

	BIT NUMBER HTC X3A COST TOTAL HOUR	1300	4 .00 .14	IADC CODE SIZE TRIP TIME TOTAL TUR	:	114 2.250 6.1 33204	NOZ: BIT	ERVAL ZLES RUN DITION		3.0- 13 16 B3 G	16 16 98.0
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	2711 111	orm.	arna	KHI E	On	Cas	(.211	COC.	W11	(., t.) (.)	17 3. 12
_	1300.0	100	75	875	76		52		52	51	16
	1310.0	92	71	815	71		49		49	47	15
	1320.0	100	70	850	74		51		51	49	15
_	1330.0	100	72	860	75		51		51	50	15
	1340.0	100	72	860	75		51		51	50	15
	1350.0	99	71	850	74		51		51	49	15
	1360.0	96	73	845	73		50		50	49	15
	1370.0	96	77	865	75		52		52	50	16
	1380.0	95	70	825	72		49		49	48	15
	1390.0	80	80	800	69		48		48	46	14
	1391.0	80	80	800	69		48		48	46	14
			,			•					
						,			Sign		

.

.

8											
	BIT NUMBER CHRISTENSE COST TOTAL HOUR	EN C22 15000.	5 .00 .02	IADC CODI SIZE TRIP TIMI TOTAL TUI		4 8.468 6.1 11091	NOZ:	ERVAL ZLES RUN DITION	1392 - T(404.4 13 13 12.4 0.300
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	1400.0 1404.4	45 45	0 0	225 225	218 218		36 36		36 36	13 13	4 4

	BIT NUMBER CHRISTENSE		5	SIZE		4 8.468		ERVAL ZLES	1405	5.0- 1. 13	418.2
_	COST	15000	. 00	TRIP TIM	Ε.	6.2	BIT	RUN			13.2
	TOTAL HOUR	S 5	.21	TOTAL TU	RNS	28361	CON	DITION	Τ () B0 G	0.800
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	1410.0 1418.2	46 48	0 0	230 240	223 233		37 38		37 38	13 14	4 4

•

•

•

BIT NUMBER HTC X3A COST TOTAL HOUR	1400. S 4.	6 0 0 6 0	IADC CODE SIZE TRIP TIME TOTAL TUR	1 2	114 2.250 6.4 36973	NOZ:	ERVAL ZLES RUN DITION	1418 T:		495.0 14 15 77.0 0.750
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1420.0 1430.0 1440.0	69 69 69	79 79 79	740 740 740	64 64		44 44 44		44 44 44	43 43 43	13 13 13
1450.0 1460.0 1470.0 1480.0 1490.0	69 72 72 72 72 70	79 76 76 76 76 78	740 740 740 740 740 740	64 64 64 64 64		44 44 44 44 44		44 44 44 44 44	43 43 43 43 43	13 13 13 13 13

. . .

	BIT NUMBER HTC JD4 COST TOTAL HOUR	1800.	7 00 22	IADC CODE SIZE TRIP TIME TOTAL TUE) E	217 2.250 6.8 49693	BIT BOZ	ERVAL ZLES RUN DITION		0.0- 15 15 B5 G	15 14 90.0
8	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	1500.0 1510.0 1520.0	75 79 75	79 75 79	770 770 770	67 67 67		46 46 46		46 46 46	45 45 45	14 14 14
	1530.0 1540.0 1550.0 1560.0	75 123 78 78	79 0 79 79	770 - 615 785 785	67 53 68 68		46 37 47 47		46 37 47 47	45 36 45 45	14 11 14 14
	1570.0 1580.0 1585.0	80 80 80	71 71 80	755 755 800	66 66 69		45 45 48		45 45 48	44 44 46	14 14 14

•

.

BIT NUMBER HTC J22 COST TOTAL HOUR	4200. S 40.		IADC CODE SIZE TRIP TIME TOTAL TURM		517 12.250 8.2 244481	BIT	ERVAL ZLES RUN DITION			15 14 301.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/	DC/ CSG	HW/ OH	CSG HW/	DP/ OH	DP/ CSG	DP/ RIS
1590.0 1600.0 1610.0	69 80 70	73 76 76	710 780 730	62 68 63		42 47 44		42 47 44	41 45 42	13 14 13
1620.0 1630.0 1640.0 1650.0	70 72 72 72	74 78 78 76	720 750 750 740	63 65 65 64		43 45 45 44		43 45 45 44	42 43 43 43	13 13 13
1660.0 1670.0 1680.0 1690.0 1700.0	72 72 68 74 76	76 76 76 70 72	740 740 720 720 740	64 64 63 63		44 44 43 43 44		44 44 43 43 44	43 43 42 42 43	13 13 13 13
1710.0 1720.0 1730.0	77 84 81	64 78 71	705 810 760	61 70 66		42 48 45		42 48 45	41 47 44	13 15 14
1740.0 1750.0 1760.0 1770.0 1780.0	71 72 71 72 71	82 80 78 72 77	765 760 745 720 740	66 66 65 63		46 45 45 43 44		46 45 45 43 . 44	44 44 43 42 43	14 14 13 13
1790.0 1800.0 1810.0	75 75 0	82 75 122	785 750 610	68 65 53		47 45 36		47 45 36	45 43 35	14 13 11
1820.0 1830.0 1840.0 1850.0 1860.0	72 72 74 74	77 70 70 68 70	730 710 710 710 720	63 62 62 63		44 42 42 42 43		44 42 42 42 43	42 41 41 41 42	13 13 13 13
1870.0 1880.0 1890.0 1900.0 1910.0	75 76 72 72 72	75 68 72 72 72	750 720 720 720 720 720	65 63 63 63 63		45 43 43 43 43		45 43 43 43 43	43 42 42 42 42	13 13 13 13
1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0	72 67 69 69 69 72 75	72 72 69 69 72 74 72 75	720 695 690 690 705 730 720 750	63 60 60 61 63 63 65		43 42 41 42 44 43 45		43 42 41 41 42 44 43 45	42 40 40 41 42 42 43	13 12 12 13 13 13

	BIT NUMBER HTC J22 COST TOTAL HOUR	4200. S ⁻ 29.	0 0	IADC CODE SIZE TRIP TIME TOTAL TUR	1 <i>i</i>	517 2.250 8.9 75777	BIT	ERVAL ZLES RUN DITION			14 15 175.0
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
_	1990.0	62	64	630	55		38		38	36	11
	2000.0	63	64	635	55		38		38	37	11
	2010.0	67	65	660	57		39		39	38	12
_	2020.0	65	65	650	56		39		39	38	12
	2030.0	65	65	650	56		39		39	38	12
	2040.0	65	65	650	56		39		39	38	12
	2050.0	65	65	650	56		39		39	38	12
	2060.0	62	65	635	55		38		38	37	11
	2070.0	0	110	550	48		33		33	32	10
	2080.0	65	65	650	56		39		39	38	12
	2090.0	65	65	650	56		39		39	38	12
	2100.0	65	65	650	56		39		39	38	12
	2110.0	65	65	650	56		39		39	38	12
	2120.0	65	65	650	56		39		39	38	12
	2130.0	64	66	650	56		39		39	38	12
	2140.0	64	66	650	56		39		39	38	12
	2150.0	64	66	650	56		39		39	38	12
	2160.0	100	. 0	500	43		30		30	29	9
	2161.0	100	0	500	43		30		30	29	9

	11 6090.00 S 35.81	IADC CODE SIZE TRIP TIME TOTAL TUR	12	527 1.250 9.5 4879	BIT	RVAL LES RUN ITION		j	63.5
DEPTH	SPM1 SPM2	FLOW RATE	DC/	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2162.0 2163.0 2164.0	63 64 63 64 63 64	635	55 55 55		38 38 38		38 38	37 37 37	11 11 11
2165.0 2166.0 2167.0 2168.0 2169.0 2170.0 2171.0 2172.0 2173.0 2174.0	63 64 63 64 64 64 64 64 64 64 64 64 64 64	635 640 640 640 640 640 640 640	55 56 56 56 56 56 56 56		38 38 38 38 38 38 38 38		38 38 38 38 38 38 38 38 38 38 38 38 38 3	37 37 37 37 37 37 37 37 37	1 1 1 1 1 1 1 1 1 1 1 1 1 1
2175.0 2176.0 2177.0 2178.0 2179.0 2180.0 2181.0 2182.0 2183.0 2184.0	64 64 64 66 64 66 64 66 64 66 64 66 64 66 64 66	640 650 650 650 650 650 650 650	56 56 56 56 56 56 56 56 56		38 39 39 39 39 39 39 39		38 39 39 39 39 39 39 39	37 38 38 38 38 38 38 38 38	11 12 12 12 12 12 12 12
2185.0 2186.0 2187.0 2188.0 2189.0 2190.0 2191.0 2192.0 2193.0 2194.0	64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66	650 650 650 650 650 650 650 650	56 56 56 56 56 56 56 56		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12 12
2195.0 2196.0 2197.0 2198.0 2199.0 2200.0 2201.0 2202.0 2203.0 2204.0	64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 67 63	650 650 650 650 650 650 650 650	56 56 56 56 56 56 56 56 56		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12 12

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2205.0 2206.0 2207.0 2208.0 2209.0 2210.0 2211.0 2212.0 2213.0 2214.0	67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	566666666665555		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12
2215.0 2216.0 2217.0 2218.0 2219.0 2220.0 2221.0 2222.0 2223.0 2224.0	67 67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	56 56 56 56 56 56 56 56 56		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12 12
2225.0 2226.0 2227.0 2228.0 2229.0 2230.0 2231.0 2232.0 2233.0 2234.0	67 67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	56 56 56 56 56 56 56 56		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12 12
2235.0 2236.0 2237.0 2238.0 2239.0 2240.0 2241.0 2242.0 2243.0 2244.0	67 67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	56666665555555555555555555555555555555		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12
2245.0 2246.0 2247.0 2248.0 2249.0 2250.0 2251.0 2253.0 2254.0	67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	546 556 556 556 556 556 556		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12 12

: =	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	2255.0 2256.0 2257.0 2258.0 2259.0 2260.0 2261.0 2262.0 2263.0 2264.0	67 67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	56 56 56 56 56 56 56 56		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12
	2265.0 2266.0 2267.0 2268.0 2269.0 2270.0 2271.0 2272.0 2273.0 2274.0	67 67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	56 56 56 56 56 56 56 56		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12
	2275.0 2276.0 2277.0 2278.0 2279.0 2280.0 2281.0 2282.0 2283.0 2284.0	67 67 67 67 67 67 67 67	63 63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	56 56 56 55 55 56 56 56		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12
	2285.0 2286.0 2287.0 2288.0 2289.0 2291.0 2291.0 2292.0 2293.0 2294.0	67 67 67 67 67 67 67 67	63 63 63 63 63 63 63	650 650 650 650 650 650 650 650	56666666666666666666666666666666666666		39 39 39 39 39 39 39 39		39 39 39 39 39 39 39 39	38 38 38 38 38 38 38 38 38	12 12 12 12 12 12 12 12
	2295.0 2296.0 2297.0 2298.0 2299.0 2300.0 2301.0 2302.0 2303.0 2304.0	52 52 52 52 40 62 48 48 48	60 60 60 52 66 52 52 52	560 560 560 560 460 640 500 500	49 49 49 40 56 43 43 43		33 33 33 27 38 30 30 30		33 33 33 27 38 30 30 30	32 32 32 37 37 29 29 29	10 10 10 10 8 11 9 9

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ HW	HW/ CSG	DP/ OH	DP/ CSG	D R
										••
2305.0	48	52	500	43		30		30	29	
2306.0	62	67	645	56		39		39	37	
2307.0	62	67	645	56		39		39	37	
2308.0	62	67	645	56		39		39	37	
2309.0	62	67	645	56		39		39	37	
2310.0	62	67	645	56		39		39	37	
2311.0	62	67	645	56		39		39	37	
2312.0	67	62	645	56		39		39	37	
2313.0	67	62	645	56		39		39	37	
2314.0	67	62	645	56		39		39	37	
2315.0	67	62	645	56		39		39	37	
2316.0	67	62	645	56		39		39	37	
2317.0	67	62	645	56		39		39	37	
2318.0	67	62	645	56		39		39	37	
2319.0	67	62	645	56		39		39	37	
2320.0	67	62	645	56		39		39	37	
2321.0	67	62	645	56		39		39	37	
2322.0	67	62	645	56		39		39	37	
2323.0	67	62	645	56		39	* 44	39	37	
2324.0	67	62	645	56		39	`.	39	37	
2324.5	67	62	645	56		39		39	37	

•

		6090	12	IADC CODE SIZE TRIP TIME	1	527 2.250 10.2	NOZZ	ERVAL ZLES RUN	2324		521.0 14 14 196.5
	TOTAL HOURS	45	. 29	TOTAL TUR	NS 2	52275	CONI	MOITIC	Τ.6) B6 G(0.250
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ HO	HW/ CSG	DP / OH	DP/ CSG	DP/ RIS
	2330.0	64	66	650	56		39		39	38	12
	2340.0	64	66	650°	56		39		39	38	12
	2350.0	63	67	650	56		39		39	38	12
	2360.0	0	96	480	42		29		29	28	9
	2370.0	67	65	660	57		39		39	38	12
_	2380.0	67	65	660	57		39		39	38	12
_	2390.0	64	66	650	56		39		39	38	12
	2400.0	0	103	515	45		31		31	30	9
	2410.0	64	64	640	56		38		38	37	11
	2420.0	64	66	650	56		39		39	38	12
	2430.0	63	68	655	57		39		39	38	12
	2440.0	64	68	660	57		39		39	38	12
	2450.0	68	61	645	56		39	· · · · · · · · · · · · · · · · · · ·	39	37	12
I	2460.0	68	64	660	57		39		39	38	12
-	2470.0	68	64	660	57		39		39	38	12
_	2480.0	63	60	615	53		37		37	36	11
	2490.0	66	62	640	56		38		38	37	11
	2500.0	66	61	635	55		38		38	37	11
	2510.0	63	68	655	57		39		39	38	12
	2520.0	63	68	655	57		39		39	38	12
	2521.0	63	68	655	57		39		39	38	12

•

BIT NUMBER HTC J7 COST	1800.	13	IADC CODE SIZE TRIP TIME	1	316 2.250 10.2	NOZZ	ERVAL ZLES RUN	2521	1.0- 25	535.0 14 14 14.0
TOTAL HOUR		20	TOTAL TUI		20696		NÖITIÖN	7.5	3 B2 G(0.000
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ HO	HW/ CSG	DP/	DP/ CSG	DP/ RIS
2530.0 2535.0	60 60	63 60	615 600	53 52		37 36		37 36	36 35	1 1 1 1

•

1

.

A

	BIT NUMBER		14	TADC CODE		527	INT	ERVAL	2535	5.0- 20	500.0
	HTC J33			SIZE	1	2.250	NOZ:	ZLES		14	14 14
	COST	6090.	0.0	TRIP TIME		10.4	BIT	RUN			65.0
	TOTAL HOURS 8		77	TOTAL TUR	3 SNS	48 53719		NOITION	T ;	5 B3 G	0.125
	æ*			FLOW	DC/	DCZ	HW/	HW/	DP/	DP/	DP/
	DEPTH	SPM1	SPM2	RATE	ОН	CSG	OH	CSG	OH	CSG	RIS
	2540.0	104	ó	520	45		31		31	30	9
	2550.0	75	48	615	53		37		37	36	11
	2560.0	64	64	640	56		38		38	37	11
_	2570.0	66	62	640	56		38		38	37	11
	2580.0	64	64	640	56		38		38	37	11
	2590.0	64	64	640	56		38		38	37	11
_	2600.0	64	64	640	56		38		38	37	11

·, 4

.

BIT NUMBER HTC J33 COST	6090.	15	IADC CODE SIZE TRIP TIME	1 2	527 2.250 10.7	NOZ	ERVAL ZLES RUN	260(14	663.3 14 15 63.3
TOTAL HOUR			TOTAL TU		76380		MOITIC	T	8 183 G	0.125
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2610.0 2620.0 2630.0	62 63 104	64 64 0	630 635 520	55 55 45				38 38 31	36 37 30	11 11 9
2640.0 2650.0 2660.0 2663.3	64 64 64 64	63 63 63 64	635 635 635 640	55 55 55 56				38 38 38	37 37 37 37	11 11 11

	BIT NUMBER CHRISTENSE COST TOTAL HOUR	EN C20 15000		IADC CODE SIZE TRIP TIME TOTAL TUE		4 8.468 10.7 18692	NOZ: BIT	ERVAL ZLES RUN DITION	2667 T (669.0 13 13 5.7 0.200
•	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	\WH HO	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	2669.0	56	0	280	271					16	5

	BIT NUMBER HTC J33 COST		17	IADC CODE SIZE TRIP TIME	1 2	527 2.250 11.2	NOZ	ERVAL ZLES RUN	2669		815.0 14 15 146.0
	TOTAL HOUR			TOTAL TUR		34387		MOITIC	Υ 6	. B5 G	
	DEPTH	C'D M4	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	175.111	SPM1	or m.	K Fi I II.	UH	C. O ta	UH	COG	CFT	Coe	PC A O
	2670.0	64	64	640	56				38	37	11
	2680.0	64	64	640	56				38	37	11
	2690.0	64	64	640	56				38	37	11
_	2700.0	64	64	640	56				38	37	11
	2710.0	64	64	640	56				38	37	11
	2720.0	64	64	640	56				38	37	11
	2730.0	64	64	640	56				38	37	11
	2740.0	64	64	640	56				38	37	11
	2750.0	63	65	640	56				38	37	11
	2760.0	63	65	640	56				38	37	11
	2770.0	62	64	630	55				38	36	11
	2780.0	62	64	630	55				38	36	11
	2790.0	63	63	630	55		,		38	36	11
	2800.0	62	66	640	56				38	37	11
	2810.0	64	64	640	56				38	37	11
	2815.0	62	64	630	55				38	36	11

· ... •

	BIT NUMBER HTC J33 COST TOTAL HOUR	6090		IADC CODE SIZE TRIP TIME TOTAL TUR	1 <i>1</i> 2	527 2.250 11.7 18379	NOZ:	ERVAL ZLES RUN DITION			14 15 140.0
_				FLOW	DC/	DC/	HW/	HW/	DP/	DP/	<u>ወ</u> ₽/
	DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
_	2820.0	60	64	620					37	36	11
	2830.0	61	62	615					37	36	11
	2840.0	60	60	600					36	35	11
_	2850.0	62	60	610					36	35	11
	2860.0	62	60	610					36	35	11
	2870.0	62	60	610					36	35	11
	2880.0	120	0	600					36	35	11
	2890.0	0	115	575					34	33	10
	2900.0	0	116	580					35	34	10
	2910.0	122	0	610					36	35	11
	2920.0	0	114	570					34	33	10
	2930.0	0	114	570					34	33	10
-	2940.0	0	114	570					34	33	10
	2950.0	0	114	570					34	33	10
	2955.0	0	114	570					34	33	10

.

,

BIT NUMBER HTC OSC 1G COST TOTAL HOUR:	900.		IADC CODE SIZE TRIP TIME TOTAL TUR		131 8.500 9.9 04481	NOZ7 BIT	ERVAL ZLES RUN DITION			28 28 462.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2000.0 2010.0 2020.0	103 103 98	0 0	515 515 490		106 106 101				76 76 73	9 9 9
2030.0 2040.0 2050.0 2060.0 2070.0 2080.0 2090.0 2100.0 2110.0	98 98 105 105 105 105 105 105 48	0 0 0 0 0 0 0 0	490 490 525 525 525 525 525 525 665		101 101 108 108 108 108 108 108				73 73 78 78 78 78 78 78 78 99	9 9 9 9 9 9 9 9 9
2130.0 2140.0 2150.0 2160.0 2170.0 2180.0 2190.0 2200.0 2210.0	48 48 48 48 48 48 48	65 65 65 65 65 65 65 112	665 665 665 665 665 665 665 . 665		137 137 137 137 137 137 137 137				99 99 99 99 99 99 99	12 12 12 12 12 12 12 12
2230.0 2240.0 2250.0 2260.0 2270.0 2280.0 2290.0 2310.0 2320.0	0 0 0 60 60 60 60 64	112 112 112 63 63 63 63 64 64	560 560 560 615 615 615 640 640		115 115 127 127 127 127 127 132				83 83 91 91 91 91 95	10 10 11 11 11 11
2330.0 2340.0 2350.0 2360.0 2370.0 2380.0 2390.0 2400.0 2410.0	64 64 64 64 64 64 64	64 64 64 64 64 64 64	640 640 640 640 640 640 640 640 640		132 132 132 132 132 132 132 132 132				95 95 95 95 95 95 95 95 95 95	11 11 11 11 11 11

.

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	NW HO	HW/ CSG	DP ∕ OH	DP/ CSG	DP/ RIS
2439.0	56	64	600		123				89	11
2440.0	60	66	630	•	130				93	11
2450.0	60	66	630		130				93	11
2460.0	60	66	630		130				93	11

Ž

-

BIT NUMBER HTC J2 COST TOTAL HOURS	900 3 5	20 .00 .46	IADC CODI SIZE TRIP TIM TOTAL TUI		116 8.500 11.0 35461	NOZZ BIT	ERVAL ZLES RUN DITION			16 16 287.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2470.0 2480.0 2490.0	50 50 50	48 48 48	490 490 490		1 0 1 1 0 1 1 0 1				73 73 73	9 9 9
2500.0 2510.0 2520.0 2530.0 2540.0 2550.0 2560.0 2580.0	50 50 50 48 48 48 48	48 48 48 52 52 52 52	490 490 490 490 500 500 500		101 101 101 103 103 103 103				73 73 73 74 74 74 74 74	9 9 9 9 9 9 9 9
2590.0 2600.0 2610.0 2620.0 2630.0 2640.0 2650.0 2670.0 2680.0	48 48 48 48 48 48 48 48	5 555555555555555555555555555555555555	500 500 500 500 500 500 500 500		103 103 103 103 103 103 103 103 103				74 74 74 74 74 74 74 74	9 99999999999999
2700.0 2710.0 2747.0	48 48 0	52 52 100	500 500 500		103 103 103				74 74 74	9 9 9

This is an enclosure indicator page.

The enclosure PE603794 is enclosed within the container PE906419 at this location in this document.

The enclosure PE603794 has the following characteristics:

ITEM_BARCODE = PE603794
CONTAINER_BARCODE = PE906419

NAME = Drill Data Log

BASIN = GIPPSLAND

PERMIT = VIC/L1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drill Data Log for Tarwhine-1

REMARKS =

 $DATE_CREATED = 28/12/81$

DATE_RECEIVED =

 $W_NO = W760$

WELL_NAME = TARWHINE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

DRILL DATA PLOT PE603794

This is an enclosure indicator page.

The enclosure PE603795 is enclosed within the container PE906419 at this location in this document.

The enclosure PE603795 has the following characteristics:

ITEM_BARCODE = PE603795
CONTAINER_BARCODE = PE906419

NAME = Cost Analysis Log

BASIN = GIPPSLAND PERMIT = VIC/L1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Cost Analysis Log for Tarwhine-1

REMARKS =

 $DATE_CREATED = 28/12/81$

DATE_RECEIVED =

 $W_NO = W760$

WELL_NAME = TARWHINE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

COST ANALYSIS PLOT PE603795

This is an enclosure indicator page.

The enclosure PE603796 is enclosed within the container PE906419 at this location in this document.

The enclosure PE603796 has the following characteristics:

ITEM_BARCODE = PE603796
CONTAINER_BARCODE = PE906419

NAME = Temperature Log

BASIN = GIPPSLAND PERMIT = VIC/L1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Log for Tarwhine-1

REMARKS =

 $DATE_CREATED = 28/12/81$

DATE_RECEIVED =

 $W_NO = W760$

WELL_NAME = TARWHINE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

TEMPERATURE PLOT
PE 603796

This is an enclosure indicator page. The enclosure PE603797 is enclosed within the container PE906419 at this location in this document.

The enclosure PE603797 has the following characteristics:

ITEM_BARCODE = PE603797 CONTAINER_BARCODE = PE906419

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/L1 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Plot for Tarwhine-1

REMARKS =

DATE_CREATED = 28/12/81

DATE_RECEIVED =

 $W_NO = W760$

WELL_NAME = TARWHINE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

PRESSURE PLOT PE603797

This is an enclosure indicator page.

The enclosure PE603799 is enclosed within the container PE906419 at this location in this document.

The enclosure PE603799 has the following characteristics:

ITEM_BARCODE = PE603799
CONTAINER_BARCODE = PE906419

NAME = Geoplot 1:2000

BASIN = GIPPSLAND

PERMIT = VIC/L1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Geoplot (1:2000) for Tarwhine-1

REMARKS =

DATE_CREATED = 28/12/81

DATE_RECEIVED =

 $W_NO = W760$

WELL_NAME = TARWHINE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603798 is enclosed within the container PE906419 at this location in this document.

```
The enclosure PE603798 has the following characteristics:
    ITEM_BARCODE = PE603798
CONTAINER_BARCODE = PE906419
            NAME = Geoplot 1:5000
           BASIN = GIPPSLAND
          PERMIT = VIC/L1
            TYPE = WELL
         SUBTYPE = WELL_LOG
     DESCRIPTION = Geoplot (1:5000) for Tarwhine-1
         REMARKS =
    DATE\_CREATED = 28/12/81
   DATE_RECEIVED =
            W_NO = W760
       WELL_NAME = TARWHINE-1
      CONTRACTOR = CORE LABORATORIES
    CLIENT_OP_CO = ESSO AUSTRALIA LIMITED
```

GEOPLOT

PE603798

PE 603799

1: 5000

1: 2000

This is an enclosure indicator page. The enclosure PE603800 is enclosed within the container PE906419 at this location in this document.

The enclosure PE603800 has the following characteristics:

ITEM_BARCODE = PE603800
CONTAINER_BARCODE = PE906419

NAME = Drilling Parameter Log

BASIN = GIPPSLAND

PERMIT = VIC/L1 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drilling Parameter Log for Tarwhine-1

REMARKS =

 $DATE_CREATED = 28/12/81$

DATE_RECEIVED =

 $W_NO = W760$

 $WELL_NAME = TARWHINE-1$

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

DRILLING PARAMETER PLOT PE 603800

This is an enclosure indicator page. The enclosure PE601368 is enclosed within the container PE906419 at this location in this document.

The enclosure PE601368 has the following characteristics:

ITEM_BARCODE = PE601368
CONTAINER_BARCODE = PE906419

NAME = Corelab Grapholog/Mud Log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL SUBTYPE = MUD_LOG

DESCRIPTION = Corelab Grapholog/Mud Log (enclosure

from WCR) for Tarwhine-1

REMARKS =

DATE_CREATED = 20/11/81 DATE_RECEIVED = 29/12/82

 $W_NO = W760$

WELL_NAME = Tarwhine-1

CONTRACTOR = Core Laboratories Inc

 $CLIENT_OP_CO = ESSO$

MUP LOG PE601368