

ESSO EXPLORATION AND PRODUCTION AUSTRALIA INC.

Rec. 2/4/79. VDME

WELL COMPLETION REPORT W 704

SWEEP-1

CIPPSLAND BASIN VICTORIA

OIL and GAS DIVISION

R.C.N. Thornton R. Do Rozario

September 1978

CONTENTS

·I	WELL DATA RECORD
II	FORMATION INTERVAL TESTS SUMMARY
III	CASING-LINER - TUBING RECORD
IV	CEMENT RECORD
V	SAMPLES, CONVENTIONAL CORES, SIDEWALL CORES
VI	WIRELINE LOGS AND SURVEYS
VII	STRATIGRAPHIC TABLE
VIII	DESCRIPTION OF LITHOLOGICAL UNITS
IX	GEOLOGICAL AND GEOPHYSICAL ANALYSIS

APPENDICES

1.	SAMPLE DESCRIPTIONS
2.	SIDEWALL CORE DESCRIPTIONS
3.	PALYNOLOGICAL ANALYSIS
	•

- 4. FORAMINIFERAL SEQUENCE
- 5. LOG ANALYSIS
- 6. VELOCITY SURVEY
- 7. FORMATION INTERVAL TESTS RECORD AND ANALYSIS

ENCLOSURES

- STRUCTURE MAP TOP OF LATROBE GROUP
 STRUCTURE MAP TOP OF STRZELECKI GROUP
 IGOPACH MAP TOP OF LATROBE GROUP TOP OF STRZELECKI GROUP
- 4. GEOLOGICAL CROSS SECTION
- 5. TIME DEPTH CURVE
- 6. SONIC CALIBRATION CURVE
- 7. WELL COMPLETION LOG
- 8. DRILLING HISTORY CURVE

ATTACHMENT

ExTENDED SERVICE WELL REPORT

ESSO EXPLORATION AND PRODUCTION AUSTRALIA INC.

COMPLETION REPORT

I WELL DATA RECORD

September, 1973

LOCATION

WELL NAME	STATE	PERMIT or	LICENC	E	GEOLOGICA	AL BASIN	FIELD
SWEEP-1	VIC	VIC VIC/P1			GIPPŞLA	ND	NEW FIELD WILDCAT
CO-ORDINATES Lat: 38 ^O 03'26.73"S Long: 148 ^O 38'12.98"E		= 643,1612mE = 5,786,534mN		MAP PROJECTI AMG-AG Zone 5	ION DESC 137K D 8 km	m W of Sale WSW of WAR	SWEEP is e, Victoria HOO-1
		ELEVAT	CIONS &	DEPTHS			
ELEVATIONS	WATER	DEPTH		TOTAL DE	EPTH	Ave	rage .Angle
Ground MSL KB 25m		69m		M.D.	900m	St	craight ole
	PLUG I	BACK DEPTH		REASONS FOR PLUGGING BACK ABANDONMENT			
			DATES				
MOVE IN	F	RIG UP,		C	SPUDDED		
16th July 1978		16-18th July	1978		0445 hou	rs, 18th Ju	ıly 1978
RIG DOWN COMPLETE	I	RIG RELEASED					
29th July 1978		16.30 hours	29th J	uly 1978			
					·		4
		MIS	SCELLA	NEOUS			
OPERATOR Esso Australia Ltd		TTEE or LICENCE tite Petroleum		1	INTEREST 0%	. 1	NTEREST
CONTRACTOR Australian Odeco Pty	"Ltd	RIG NAME Ocean Endea	vour			T TYPE mersible ro vessel	otary
TOTAL RIG DAYS		AFE NUMBER					. •
LAHEE WELL CLASSIFICATION		fore Drilling:		field Wi Hole, pl		abandoned,	

R. DOROZARIO

TT	SUMMARY	OF	SWEEP-1	FTT	S.	RFT	DATA	 for	Details	266	Appendix	8
·	DOLUMENT	Οı	D 44 TITE T	1 1 1	Œ	I/T T	DALL	TOT	DCCALLS	366	Thhenary	•

					<u> </u>
FIT No.	Depth (m) KB SS		Recovery (litres) GAS OIL FILTRATE	Po PSIG	Kh MD/FT
1	801	776	No recovery, tool malfunction.	-	_
2	795	720	Recovered mud due to seal failure.	-	-

RFT

No RFT's run due to tool malfunction.

III	CASING - TUBING RECORD									
ТҮРЕ	SIZE	WEIGHT	GRADE	THREAD	NO. OF JOINTS	LENGTH m (ft)	DEPTH - MDKB m (ft)			
Pile Joint	24''	670#	-	CC	1					
Cross Over	20''	129#	X-52	JV-CC	1					
Conductor Casing	20''	94#	X-52	JV	9					
Float Join & Shoe	t 20"	94#	X-52	JV	1		227 (745)			
Casing Hanger	18-3/4''x 13-3/8''	. -	•	. -	1 .					
Pup Joint	13-3/8"	54.5#	K-55	BUTT	1					
Surface Casing	13-3/8"	54.5#	K-55	BUTT						
Float Collar	13-3/8"	_	· -	BUTT	1					
Float Joint	13-3/8''	54.5#	K-55	BUTT	1					
Float Collar	13-3/8''	-	_	BUTT	1		601.2 (1973)			

IVa CEMENT RECORD							
STRING	20" Conductor	Casing	13-3/8" Surfac	13-3/8" Surface Casing			
TYPE OF CEMENT	Aust 'N' Neat + 12% Gel	Aust 'N' Neat + 2% CaCl ₂	Aust 'N' Neat	Aust 'N' Neat + 1% CaCl ₂			
SLURRY VOLUME m³ (ft³)	45.8 (1617)	11.7 (413)	16.7 (590)	7.70 (272)			
SLURRY DENSITY	SG 1.45 (12.1 ppg)	SG 1.87 (15.6 ppg)	SG 1.87 (15.6 ppg)				
CEMENT TOP	Sea	afloor	238 m (782 ft)				
CASING TEST PRESSURE	72.5 kPa	(500 psi)	10,342 kPa	(1500 psi)			
NO. OF CENTRALISERS	6)	. 8	·			
NO. OF SCRATCHERS	-			·			
STAGE COLLAR, ETC.	_		-				
REMARKS							

The rig pipe tally showing details of casing strings run into the hole have been lost and as a consequence the above information is incomplete.

G.W.	WEYBURY	
EN	GINEER	

CEMENT PLUGS

PLUG NO.	1	<u>2</u> "	3
Cement Type	Neat	Neat	Neat
Volume	326 Sx	291 Sx	196 Sx
Top of Plug	684m	539m	139m
·	2244 ft.	1768 ft.	456 ft.
Bottom of Plug	802m	631m	220m
	2630 ft.	2070 ft.	722 ft.
Remarks		Retainer set at 575 metres.	

SAMPLES, CONVENTIONAL CORES, SW CORES									
INTERVAL	TYPE	RECOVERED	INTERVAL	TYPE	RECOVERED				
240 - 620m	5 sets of washed and dried cutting one unwashed sack of cuttings	Б,	605 - 230.5m 897 - 630 m 889 - 622 m Note: No convent	SWC Run #2	25 out of 30 28 out of 30 23 out of 30 ut				
Every 5m 620 - 900m Every 25m 240 - 900m	composite cuttings canned		•						
VI WIRELINE LOGS AND SURVEYS (Incl. FIT)									

WIRELINE LOGS AND SURVEYS (Incl. FIT)

Type & Scale	From To	Type & Scale	From To
ISF-SONIC Run 1 1:200 and 1:500	613.5 - 227.5m		
ISF-SONIC-MSFL Run 2 1:200 and 1:500	900.2 - 601m		
FDC-GR Run 1 1:200 and 1:500 1 FDC-CNL-GR Run 2	606-227.5m (-95m GR) 902.0 - 601.0	Ran 2 FIT's: FIT-1 FIT-2	801m 795m
1:200 and 1:500 HDT Run 1 Velocity Survey	901 - 601 m 10 levels 300-896m		
velocity burvey	10 10 10 070 070 070	•	
•			

SWEEP-1 STRATIGRAPHIC TABLE

MM YEARS	ЕРОСН	SERIES	I .	ORMATION ORIZON	PALYNOLOGICAL ZONATION SPORE-POLLEN ASSEMBLAGE ZONES	PLANKTONIC FORAMINIFERAL ZONATIONS	DRILL DEPTH (m)	SUBSEA DEPTH (m)	THICKNESS
0 -			SE	EA FLOOR			94 m	-69 m	
7 ~	PLEIST.	EML				AI - A2			
5 -	PLI0.	E Z				A3 A4			·
10 -		LATE		GIPPSLAND LIMESTONE		B - D _i Not Possible to Zone in Detail			521m
I5 -	MIOCENE	MIDDLE	GROUP			D2 E1	- 545	520 	
20-		EARLY	EASPRAY	LAKES ENTRANCE FORMATION		E2 F G H I	 739 		130m
25 -			SEAS	LAKES ENTRANCE GREENSAND	PROTEACIDITIES TUBERCULATUS	H2	~~ 745 ~~ ~~ 756·7		II:5m
30-	OLIGOCENE	LATE				I 2			
35 -		EARLY				J1	MISS	Ĝing \\\\\	
					UPPER <i>N. asperus</i>	К	756.5	1 -7315	
40-		LATE		GURNARD FORMATION	MIDDLE N. asperus	(D. extensa)			15·5 m
45 -	- NE)LE		LATROBE	LOWER	D. heterophylcta	761 772		
	EOCENE	MIDDLE		COARSE CLAST	N. asperus		789	-764 ~~	17m
50 -		EARLY	GROUP		P. asperopolus UPPER M. diversus	·	Mis	SING	
55 -			BE:		LOWER M. diversus				
		LATE	LATROBE		UPPER L. balmei				
60-	PAL	EARLY MIDDLE		LATROBE COARSE CLASTICS	LOWER <i>L. balmei</i>		215	764	53m
65 -	CRETACEOUS	LATE		·	T. longus	*	815		
>100	CRE	EARLY 	STR	ZELECKI GP.	ZONES UNDIFFERENTIATED		842 T.D. 900m		58 m

Dwg. 1895/0P/9

DESCRIPTION OF LITHOLOGICAL UNITS

GIPPSLAND LIMESTONE 94-615m

240-420m

Skeletal Limestone: Light grey to white, predominantly loose fossil bryozoans, sponge spicules, echinoid spines, minor foraminifera, and other calcareous forms, with bivalve? fragments up to 4mm. No evidence of matrix.

and

<u>Ditrital Limestone:</u> Light to medium grey, buff, firm to moderately hard (increasing hardness with depth), comprising 0.1-0.25mm calcareous fossil fragments, forams, and sponge spicules, some impregnated with modular light to dark green glauconite. Clayey calcareous cement.

420-615mm

Marl: Very light to light grey, very soft to slightly firm, with fine grained calcareous grains, forams and bryozoans included as minor constituents with traces of glauconite and pyrite.

and

<u>Detrital Limestone:</u> Medium grey, soft to moderately firm, micritic with very fine to siltsize calcareous grains, rare glauconite and pyrite, matrix contains varying amounts of clay.

LAKES ENTRANCE FORMATION 615-745m

615-745m

Marl: Very light to light grey as previous interval,
but grading in part to:

<u>Calcareous Mudstone:</u> Medium grey, grey-brown, firm, slightly fissile, fossiliferous with fine to silt-size bryozoan fragments and forams, minor glauconite and pyrite grains.

LAKES ENTRANCE: GREENSLAND FACIES 745-756.5

745-756.5

Greensand: Dark green to brown, firm, glauconite pellets, well rounded, fine to coarse grained, very poorly sorted, in part altered to pyrite (brown), minor white forams, set in 30% calcareous clay matrix.

LATROBE GROUP 756.5-842m GURNARD FORMATION 756.5-772m

756.5-772m

<u>Siltstone:</u> Brown, hard, very pyritic, with pyrite occuring as nodules.

Sandstone: Light grey to dark brown, very fine to fine grained, clear, subangular to rounded quartz grains, well sorted, friable to moderately hard, very glauconitic, with dark green glauconite nodules comprising 20-30% of rock.

LATROBE "COARSE CLASTICS" 772-842m

772-842m

Sandstone: Loose medium grained to granule sized, mostly coarse to very coarse quartz grains, predominantly clear, minor polished to frosted, and trace blue to grey quartz, subangular to well rounded.

minor Shale: Very dark grey, pyritic, fissile, associated with:

Coal: Black, with finely disseminated pyrite, and minor white clay and mica.

STRZELECKI GROUP 842-900m

842-900m

Sandstone: Quartzose, multicoloured and speckled, mainly green (chloritic), brown, yellow, grey and orange, mainly fine grained, minor medium, moderately well sorted, angular to subrounded, clear to frosted hard, with 10-20% grey clay matrix and silica cement, minor scattered black carbonaceous specks and white feldspar grains. Trace pyrite.

Claystone: Multicoloured, mainly white to green, brown, pink, moderately hard, slightly calcareous, with minor silt size to very fine quartz grains.

GEOLOGICAL AND GEOPHYSICAL ANALYSIS

GEOLOGICAL DATA:

			Deptl	n (m)	Thickness
Age	Formation/Horizon	Predicted	Actual	Subsea	(m)
Miocene-Pliocene	Gippsland Lime- Stone	94	94	- 69	521
Miocene	Lakes Entrance Formation		615	- 590	130
Late Oligocene	Lakes Entrance: Greensland Facies	-	745	-720	11.5
Late Cretaceous- Late Eocene	Latrobe Group	755	756.5	-731.	5 85.5
Middle-Late Eocene	Gurnard Formation	755	756.5	-731.	5 15.5
Late Cretaceous - Paleocene	Latrobe "Coarse Clastics"	780	772	-747	70
Early Cretaceous	Strzelecki Group	830	842	-817	58
T.D.			900	-875	

GEOLOGICAL ANALYSIS:

Location and Structure:

Sweep-1 is located llkm SE of Flathead-1 and 8km WSW of Wahoo-1. It was drilled to a total depth of 900m KB (-875 subsea) on a structure consisting of a small WSW-ENE trending anticlinal culmination, comprising three en echelon anticlines, which coalesce with depth to have a single lowest closing contour. The structure is believed to have formed by compression between two converging shear faults having right lateral movement.

Objectives:

- (a) To assess the oil potential of the Latrobe Group sands, and
- (b) To evaluate the uppermost Strzelecki Group, which was hydrocarbon bearing at Flathead-1.

Results:

Sweep-1 encountered no hydrocarbons in either the Latrobe Group or Strzelecki Group. Post drill geophysical reinterpretation confirmed the presence of a valid structure. Consequently, the reason for the lack of hydrocarbons has to be attributed to either non-generation, migration prior to structuring, or lack of valid seal.

Stratigraphy:

The overlying Gippsland Limestone consists of an impermeable section of detrital and skeletal limestone, which grades down to marls and calcareous mudstones of the Lakes Entrance Formation. This appears to be an effective seal to the underlying Latrobe and Strzelecki Groups.

Beneath the Lakes Entrance Formation, Sweep-1 encountered two greensand facies, which consist of very glauconitic and pyritic marine fine grained sandstone and siltstone. The top unit is 11.5m thick and is age equivalent to the Lakes Entrance Formation, whereas the bottom 15.5m thick unit equates with the Latrobe Gurnard Formation. A depositional hiatus of about 13 million years separates the two units. Depositional rates are exceedingly low for both.

The Latrobe Group "Coarse Clastics" intersected in the well comprises two lithologic units, separated by an unconformity. The upper one is Lower N.asperus in age and consists of marginal marine fine grained sandstone. Beneath the unconformity "Coarse Clastics" of T.Longus to L.balmei age comprise coarse to granular clean porous sands, minor coals and shales, of terrestrial to near-shore origin.

A 58m section of the underlying Strzelecki Group was drilled to T.D. The dominant lithology is one of immature fine grained sandstone and minor claystone, commonly associated with feldspar and diagenetic chlorite.

GEOPHYSICAL ANALYSIS:

Following the G77A Seismic Survey, the top of Latrobe Group was remapped over the Sweep anticlinal structure. The predicted depth at the wellsite was 730m subsea. In actuality, the top of Latrobe Group in Sweep-1 came in at 731.5 metres subsea, only 1.5 metres lower than anticipated. Check shot times from the well indicate the pre-drill time pick to be correct and the true velocity to top of Latrobe Group to be 2035 metres per second.

The top of Strzelecki Group was encountered at 817 metres subsea, 12 metres low to prediction. Check shot times indicate that the seismic time pick should be revised to 0.795 seconds two-way time and the interval velocity for the Latrobe Group sediments to 3490 metres/second.

APPENDIX 1

OIL and GAS DIVISION

APPENDIX 1

SAMPLE DESCRIPTIONS

DEPTH	%	DESCRIPTION
		Tag cement at 222m. Drill out at 239m at 1910 hours.
240m-250m	80%	Skeletal Limestone - very light grey, sample contains abundant loose fossils - dominantly ? bryozoans. Some larger ? bivalve calcareous chips to 3mm.
	20%	<pre>Detrital Limestone - medium light grey, dominantly calcareous grains, minor dark grains insolvent in HCl which include nodular glauconite and rare pyrite. Limestone is soft to slightly firm.</pre>
		Trace cement.
250m-260m	70%	<u>Skeletal Limestone</u> - As above.
	30%	Detrital Limestone - As above, some rare grains, very pyritic.
260m-270m	90%	<pre>Skeletal Limestone - As above, foraminifera abundant for first time, appears to have:-</pre>
	10%	<u>Detrital Limestone</u> - As above.
270m-280m	90%	Skeletal Limestone - probably a Boundstone - very light grey, entirely loose fossils, many branching bryozoans, some larger (to 4mm) chips of ? bivalves. Foraminifera to 2mm common.
	10%	<pre>Detrital Limestone - medium light grey, dominantly calcareous grains, minor dark grains which include nodular glauconite, some enclosed fossils, slight to moderately firm.</pre>
280m-290m	80%	Skeletal Limestone - As above.
_	20%	<u>Detrital Limestone</u> - As above.
290m-300m	90%	<u>Skeletal Limestone</u> - As above.
=	10%	Detrital Limestone - As above.
300m-310m	90%	Skeletal Limestone - As above.
	10%	Detrital Limestone - As above.
310m-320m	80%	Skeletal Limestone - (? boundstone) abundant fossils with no evidence of a matrix. Fossils include framework bryozoans with branches of 1mm diameter on a 2mm x 2mm grid, ? calcareous sponge spicules, minor foraminifera and many other calcareous fossil forms. Colour is light grey to white, and rock would have excellent growth framework and interparticular porosity.
	20%	<pre>Detrital Limestone - light to medium grey, moderately firm to hard, (increasing hardness with depth) calcareous fine grains, minor dark minerals and nodular light to dark green glauconite.</pre>
		Note: In rare cases pyrite fills growth framework porosity.
320m-330m	60%	Skeletal Limestone - As above, foraminifera more abundant.
	40%	Detrital Limestone - As above.
330m-340m	60%	Skeletal Limestone - As above, bryozoans not quite as abundant.
		2/

<u>DEPTH</u>	<u>%</u>	DESCRIPTION
330m−340m		Continued/
	40%	<u>Detrital Limestone</u> - As above.
340m-350m	80%	Detrital Limestone - light to medium grey, moderately firm to
		moderately hard, fine to medium calcareous grains, minor fine grained nodular glauconite, minor trace dark grains, tight.
	20%	Skeletal Limestone - (boundstone) abundant fossils including
		bryozoans and forams. Colour light grey to white, excellent porosity.
350m-360m	50%	Skeletal Limestone - As above, predominantly bryozoan, with fragments up to 5mm long, also echinoid spines, colour light grey to white, excellent porosity, minor pyrite infilling porosity.
	F 00	
	50%	<u>Detrital Limestone</u> - (packstone), buff to light grey, firm to moderately hard, comprising \(\frac{1}{4} - \frac{1}{2} \) 8mm fossil fragments, some white, others including glauconite impregnated forams, and sponge spicules set in clayey calcareous cement.
		Trace - 1% Loose forams, up to 22m diameter, mainly coiled forams, but including Uvigerina, Orbulina.
360m-370m	80%	Detrital Limestone - As above.
	20%	Skeletal Limestone - As above.
		Trace - 1% Forams, as above.
370m-380m	60%	Detrital Limestone - As above.
	35%	Skeletal Limestone - As above, virtually all bryozoan fragments.
	5%	Loose Forams, up to 4mm diameter, abundant pyrite.
380m-390m	80%	Detrital Limestone - (packstone), buff to light grey, soft to mainly moderately hard, comprising 1/8-1/4mm fossil fragments, forams, some glauconite impregnated and sponge spicules set in clayey calcareous matrix.
	į.	Trace of coarser Limestone with fragments set in sparry calcite cement.
	15%	Skeletal Limestone - very light grey, virtually all bryozoan fragments, up to 5mm long.
	5%	Loose forams, up to 3mm diameter, including Uvigerina, pyrite aggregates, ostracod.
390m-400m	85%	<u>Detrital Limestone</u> - As above.
	10%	<u>Skeletal Limestone</u> - As above.
	5%	Loose forams, as above, including globular forams, pyrite.
400m-410m	80%	Detrital Limestone - As above.
	15%	Skeletal Limestone - As above.
	5%	Loose forams, as above, pyrite. Siltstone, medium grey to brown, angular quartz, abundant
-		3/

DEPTH	%	DESCRIPTION
		DISCRIPTION.
400m-410m		Continued/
		glauconite, slightly calcareous.
410m-420m	80%	<pre>Detrital Limestone - As above, amount of clay in the matrix varies considerably, and limestone varies from micrite to sparite,</pre>
		micritic limestone tends to be softer than sparry limestone.
	15%	<u>Skeletal Limestone</u> - As above.
•	5%	Loose forams, pyrite.
420m-430m	50%	Marl - very light grey, very soft, very calcareous clay, containing fossil fragments and forams - envelopes all cuttings.
	50%	<u>Limestone</u> - As above.
430m-440m	70%	Detrital Limestone - As above, particularly soft.
	20%	Marl - As above.
	8%	Skeletal Limestone - As above.
_	2%	Loose Forams, as above, pyrite.
440m-450m	80%	<pre>Marl - As above, gradational with detrital limestone (i.e., more clayey and much softer).</pre>
	10%	Detrital Limestone - As above.
	10%	Bryozoan fragments, forams.
450m-460m	80%	Marl - As above, gradational with:-
	10%	<u>Detrital Limestone</u> - As above.
	10%	Bryozoan fragments, forams, including spherical, globular forams (? Orbulina), trace siltstone, hard, brown, glauconite.
460m-470m	50%	Detrital Limestone - As above, in part pyritic, gradational with:
	40%	Marl - As above.
_	10%	Bryozoan fragments (in part pyritic), large, loose forams, as above
470m-480m	60%	Marl - As above, gradational with:-
	30%	Detrital Limestone - As above.
	10%	Bryozoan fragments, as above, loose forams, as above.
480m-490m	80%	Marl - very light grey to light grey, very soft to slightly firm, very calcareous, clayey, contains fossils including forams (many fossils loose: ? after washing.
	20%	Detrital Limestone - medium light grey, fine calcareous grains, fossils included, no glauconite evident, moderately firm.
490m-500m	50%	Marl - medium light grey, very calcareous, clayey, fine grained calcareous grains included as minor constituent, also bryozoans and forams, years soft to clicktly firm
		forams, very soft to slightly firm.

ДЕРТН	્	DESCRIPTION
	-	
490m-500m		Continued/
	40%	Detrital Limestone - medium grey, micritic with fine calcareous grains, some darker grains which include rare glauconite and very rare pyrite, slightly firm.
	10%	Loose fossil fragments, dominantly forams and bryozoans.
500m-510m	?30%	Marl - very soft as above (% difficult to estimate as washes out and covers all grains).
	60%	<u>Detrital Limestone</u> - As above, rare pyrite replacing fossils.
	10%	Loose fossils mainly forams (including ? fusulinids), and bryozoans.
510m-520m	80%	Marl - As above.
	20%	Detrital Limestone - as grains become finer it tends to marl with fossil fragments. Fossils also include spicules.
		Some loose fossil fragments including rare chips (to 3mm) of larger ? bivalves.
520m-530m	50%	<pre>Marl - light grey to very light grey, minor fine grained clear carbonate grains, some fossils, soft to firm.</pre>
	40%	<pre>Detrital Limestone - medium grey, moderately firm to hard, fine to very fine grained, glauconite present, fossils common, pyrite is abundant on some grains.</pre>
	10%	Loose fossil fragments, dominantly forams and bryozoans.
530m-540m	50%	Marl - As above.
	40%	Detrital Limestone - As above, micritic and tends to marl in part.
	10%	Fossils loose and fossil fragments.
540m-550m	70%	Marl - As above, more dark grains some of which are glauconite.
1	20%	Detrital Limestone - As above.
	10%	Fossils loose, forams include ? orbulina.
550m-560m	100%	Detrital Limestone - very fine to siltsize calcareous grains, minor dark grains, rare glauconite, pyrite, white fossil fragments, micritic in part and tends to marl, slightly firm.
		Trace loose fossils, bryozoans and forams not nearly as abundant.
	4 4	Note: Marl may be washing out.
560m-570m	90%	Detrital Limestone - As above.
	10%	Loose fossils predominantly foraminifera.
570m-580m	90%	Detrital Limestone - As above, varies from very soft to moderately firm.
	10%	Loose fossil fragments.
		5/

<u> ДЕРТИ</u>	00 —	DESCRIPTION
580m-590m	100%	Detrital Limestone - As above.
	< 10%	Loose fossil fragments.
590m-600m	100%	Detrital Limestone - As above, generally very micritic tends to marl.
	< 10%	Loose fossils dominantly foraminifera.
600m-610m	100%	Detrital Limestone - As above, glauconite becoming common.
		Minor loose fossils dominantly forams.
610m-619m	100%	Detrital Limestone - As above.
		Minor loose fossils.
		Stop drilling for casing at 1415 hours.
	.*	Scop diffing for easing at 1415 hours.
	# · · · · · · · · · · · · · · · · · · ·	Had to ream 10m on wiper trip to bottom. 4 units trip gas.
		24.7.78 R.C.N.THORNTO
		Run in hole with X3A Bit $12\frac{1}{4}$ ". Condition mud. Start drilling cement at 1900 hours, tagged at 584m. Casing shoe at 601m. Drill to 627m 2200 hours.
618m-620m		Mostly cement, Minor Detrital Limestone - medium light grey, very fine to silty grains, trace glauconite, moderately firm.
620m-625m		Mostly cement, Minor Detrital Limestone - As above.
		627m Formation Integrity Test. 0130 hours commenced drilling, mudweight 11.2 ppg.
625m-630m	60%	Marl - very light grey, very soft, comprising 0-20% fossil fragments generally <.5mm in size, including bryozoans, forams, sponge spicules in calcareous clay matrix, trace glauconite and pyrite.
		Gradational with:
	40%	<pre>Detrital Limestone - light to medium grey, soft to firm, fossils in calcite matrix containing varying amounts of clay, trace glau- conite and pyrite.</pre>
		Trace Loose, large (up 3mm diameter) forams and fossil fragments, large pyrite infilled cylindrical fossils (1mm diameter) - ? worm burrows.
630m-635m	95%	Marl - As above, some forams pyrite impregnated.
	5%	Detrital Limestone - As above.
		Trace Loose, large forams.
635m-640m	95%	Marl - As above.
		6/

LITHOI

LOGICAL	DESCRIPTIONS	25.7.78	

DEPTH	8	DESCRIPTION
	-	
635m-640m		Continued/
	5%	Detrital Limestone - As above.
		Trace Loose, large forams and bryozoan fragments.
640m-645m	100%	Marl - As above.
645m-650m	100%	Marl - As above.
650m-655m	90%	Marl - As above.
	10%	Sparry Limestone - firm, clear to white, sparite containing minor glauconite impregnated forams.
		Trace Loose forams and fossil fragments.
655m-660m	95%	Marl - As above, fossils comprise about 10-20%, mostly about $1/8 \text{mm}$ in size.
-	5%	Sparry Limestone - As above.
660m-665m	100%	Marl - very light grey, very soft, comprising 10-20% forams, some of them impregnated by glauconite and fossil fragments, including bryozoans, mostly 1/8-1mm in size, minor pyrite set in a highly calcareous clay matrix.
		Trace loose forams and bryozoan fragments up to 1-2mm.
665m-670m	100%	Marl - As above.
670m-675m	100%	Marl - As above.
		Trace Sparry Detrital Limestone - hard, slightly fossiliferous, sparry cement, trace glauconite.
675m-680m	100%	Marl - light grey, very soft and tends to wash out, foraminifera common, trace glauconite, minor unidentified dark minerals.
680m-685m	100%	Marl - As above.
685m-690m	100%	Marl - As above.
		Trace mica, very finely disseminated.
690m-695m	100%	Marl - As above.
695m-700m	95%	Marl - As above.
	5%	Calcareous Mudstone - medium grey, firm, slightly fissile, slightly fossiliferous, pyritic, carbonaceous.
	*	Trace Quartz grains, clear , fractured, medium to very coarse grained.
		0825: Circulate bottoms up 714.2m.
700-705m	100%	Marl - As above.
705m-710m	100%	Marl - As above.
		7/
		

		·	
	DEPTH	000	DESCRIPTION
7	10m-714.2m	100%	Marl - As above.
			Trace Calcareous Mudstone - As above.
7	14.2m-715m	70%	Marl - As above.
		30%	<u>Calcareous Mudstone</u> - medium grey, firm to slightly fissile, slightly fossiliferous, pyritic.
			Trace Pyrite nodules.
7	715m-720m	60%	Marl - As above, except slightly firmer. Some Marl shows very slight tinge of green colour.
		40%	Calcareous Mudstone - As above.
			Trace Glauconite pellets, pyrite nodules, sparry Limestone, calcite vein material, loose forams, bryozoan fragments, spotty mineral fluorescence.
7	720m-725m	80%	<pre>Marl - As above, slightly greater concentration of calcite in the matrix, and slightly more fossiliferous.</pre>
		20%	Calcareous Mudstone
·			Trace Glauconite pellets, very minor spotty mineral fluorescence.
7	/25m-730m	100%	Marl - very light grey, very soft, comprising 10-20%, 1/8-4mm sized forams and fossil fragments set in calcareous clay matrix, trace glauconite, pyrite.
			Trace Glauconite pellets, loose forams, bryozoan fragments, pyrite nodules.
7	'30m-735m	70%	Marl - As above.
		30%	<u>Calcareous Mudstone</u> - medium, grey to brown, moderately fissile, firm, fossiliferous, mostly $^1/8-^14$ mm fossil fragments (bryozoans), and forams, slightly pyritic, slightly glauconitic (in forams).
		, a	Trace Pyrite nodules, large loose forams and bryozoan fragments, glauconite, sparry calcite.
- 7	735m-740m	70%	<u>Marl</u> - As above.
		30%	<u>Calcareous Mudstone</u> - As above, some very green with some disseminated glauconite.
			Trace pyrite, loose forams and other fossil fragments, glauconite nodules.
7	40m-745m	70%	Marl - As above, heavily glauconitic, glauconite constituent 20% of sample ~50% fine marl.
		30%	Mudstone - As above.
7	'45m-750m	70%	Siltstone (?) Greyish red, ? heavily pyritic, some grains banded (brainlike) some? forams pyritised, hard.
		30%	Mudstone - As above, Trace Marl.

DEPTH	<u>0,0</u>	DESCRIPTION
745m-750m		Trace loose <u>Quartz Grains</u> , with pyrite, no fluorescence, coarse grained, subangular to broken, loose forams. Loose glauconite grains coarse grained.
750m-755m	30%	Mudstone - As above, light grey.
- ■		Minor Marl as above.
5	70%	Siltstone (?) Greyish red, heavily ? pyritic, grains very brown, some minor typical pyrite.
		Minor loose Quartz Grains, as above, no shows.
		Minor loose forams.
		(2.5m samples identical)
755m-760m	70%	Siltstone - brown, hard pyritic - perhaps almost all pyrite, occur as well rounded, coarse to very coarse grained nodules.
	20%	Glauconite - dark green, hard, well rounded, mostly coarse to very coarse grained nodules.
-] -	10%	Sandstone - clear to light brown, unconsolidated, quartz, fine grained, clear, mostly well sorted, angular, medium grained, well rounded, dark green glauconite nodules, friable to moderately hard, poor to good porosity, no fluorescence.
		Trace coarse quartz grains.
760m-765m	20%	Sandstone - medium grey to light grey, fine grained, clear quartz, well sorted, glauconite, dirty, no shows.
	60%	Siltstone - brown, hard, pyritic - perhaps all pyrite.
	20%	Marl and Mudstone - As above.
765m-770m	10%	Sandstone - As above, no shows.
	50%	Siltstone - As above.
	30%	Marl and Mudstone - As above.
	10%	Glauconite nodules, loose, minor loose quartz grains, coarse grained, subrounded to subangular, no shows and forams, minor crystalline cubic pyrite.
770m-775m 775m-780m	60%	? Siltstone - brown, pyritic, hard, pyrite occasionally only mineral visible.
	10%	Mudstone - light grey, firm, no glauconite.
	10%	Sandstone - fine grained to very fine grained, dirty, glauconite, medium to well sorted, no shows.
	10%	Pyritic, crystalline.
	10%	Nodular glauconite.
		Trace yellow clay, slightly firm, quartz and glauconite grains included.
		9/

DEPTH	<u> </u>	DESCRIPTION
770m-775m		
775m-780m		Continued/
t de la companya de La companya de la co		Trace coarse grained quartz, subrounded, no shows.
		Trace loose fossils forams and bryozoans.
780m-785m	50%	Siltstone - As above.
	10%	Mudstone - As above.
	10%	Sandstone - As above.
	10%	Pyrite - As above.
	10%	Glauconite - As above.
	10%	Loose Quartz Grains, as above.
785m-788m	70%	Loose Quartz Grains.
	30%	Siltstone/Mudstone/Pyrite/Glauconite A/A
l	·	
		R.C.N. THORNTON
788m-790m	95%	Quartz Grains - clear, polished to frosted, coarse to very coarse
		grained, even granule size, subangular to subrounded.
	5%	Pyrite, Glauconite, forams, greensand, black coal, no fluorescence.
790m - 795m	95%	Quartz Grains - As above, except mostly coarse grained, minor medium grained to very coarse grained.
	5%	Coal - pyrite, glauconite, greensand.
795m-800m	98%	Quartz Grains - As above.
	2%	<u>Coal</u>
		Trace white mica, pyrite, glauconite.
800m-805m	70%	Quartz Grains - As above.
	25%	Coal - black, with finely disseminated pyrite.
	5%	Shale - very dark grey, pyritic, fissile.
		Trace Pyrite nodules.
805m-810m	100%	Quartz Grains - mostly clear, minor milky very minor blue to
COSM OTOM	100%	grey, polished to frosted, medium grained to granule, mostly coarse to very coarse grained, subangular to wellrounded.
		Trace Coal, large white mica flakes, pyrite.
810m-815m	100%	Quartz Grains - As above.
		Trace Coal, pyrite.

DEPTH	<u>8</u>	DESCRIPTION
01 5 000	7.000	
815m-820m	100%	Quartz Grains - As above.
•		Trace Coal, pyrite, very dark grey shale, mica.
820m-825m	98%	Quartz Grains - As above.
	2%	<u>Coal</u>
		Trace Fyrite, shale.
825m-830m	80%	Quartz Grains - As above.
	20%	Feldspar grains, white, medium to coarse grained, minor very coarse grained, angular to subrounded.
		Trace Pyrite, shale, mica, coal, fine grained sandstone, green
_		clay.
830m-835m	80%	Quartz Grains - As above, mainly medium to coarse grained.
	20%	Feldspar Grains - As above, often pyrite encrusted.
		Trace white clay and claystone, fine grained sandstone, pyrite, mica, coal.
835m-840m	70%	Quartz Grains - As above.
	10%	Feldspar Grains - As above.
	10%	<u>Claystone</u> - pink, white, green to brown, firm to moderately hard, very slightly carbonaceous, very slightly silty, slightly calcareous.
- 1	5%	Sandstone - white, light brown to grey, fine grained, moderately hard to hard, slightly calcareous matrix.
	5%	Siltstone - brown, moderately hard.
		Trace Pyrite, dark grey shale.
840m-845m	70%	Quartz Grains - As above, mostly clear, minor milky.
	5%	Feldspar Grains - As above.
	5%	Sandstone - green, brown, moderately hard to hard, fine grained, in part pyritic, tight.
	15%	Claystone - white to green, pink, light brown, very dark grey to black.
-	5%	Siltstone - brown, moderately hard.
		Trace Pyrite.
845m-850m	50%	Quartz Grains - As above.
	30%	Sandstone - especially green, brown, fine grained as above, calcareous in part, tight.
	5%	Siltstone - especially green, brown, as above, calcareous in part
		11/

DEPTH	0, —	DESCRIPTION
845m-850m		Continued/
	15%	Claystone - especially green, pink, white, as above, calcareous in part.
		Trace Pyrite, feldspar.
850m-855m	40%	Quartz Grains
	30%	Sandstone - As above, especially green.
	30%	<u>Claystone</u> - As above, especially buff, green, yellow.
		Trace Pyrite, feldspar.
855m-860m	50%	Sandstone - fine grained, quartz, moderately hard to hard, multicoloured and speckled, mainly green, brown, yellow, light grey, orange, minor medium grained, tight, silica cement.
	20%	Claystone - firm, multicoloured, mainly buff, green.
	30%	Quartz Grains - As above.
		Trace mica, pyrite nodules, feldspar, dark grey shale.
860m-865m	50%	Sandstone - multicoloured, as above.
	30%	Claystone - multicoloured, as above.
	20%	Quartz Grains - As above.
		Trace Pyrite, forams, fossil fragments.
865m-870m	50%	<u>Claystone</u> - multicoloured, as above, hard.
	30%	Sandstone - multicoloured, as above, very hard.
	20%	Quartz Grains - As above.
		Trace Pyrite.
870m-875m	50%	Sandstone - As above.
	20%	<u>Claystone</u> - As above.
	20%	<pre>? Dolomite - blue, green, orange, yellow, very hard,. crystalline.</pre>
	10%	Quartz Grains - As above.
875m-880m	50%	Sandstone - As above.
	10%	<u>Claystone</u> - As above.
	10%	? Dolomite
	30%	Quartz Grains
		Trace half pebble, wellrounded of ? dolomite.
880m-885m	60%	<pre>Sandstone - especially speckled green, also clear, brown, red, orange, blue, speckled brown and white, hard, mainly fine grained,</pre>
		12/

SWEEP-1

LITHOLOGICAL DESCRIPTIONS

<u> DEPTH</u>	<u>%</u>	DESCRIPTION
880m-885m		Continued/
		also medium grained quartz set in clear cement, in part calcareous.
	20%	Claystone - red, yellow, buff, dark brown, hard.
	10%	? Dolomite - blue, green, yellow, very hard, crystalline.
	10%	Quartz Frains - clear, polished to frosted, mainly coarse grained subangular to rounded.
885m-890m	60%	Sandstone - As above.
	20%	Claystone - As above.
	10%	? Dolomite - As above.
	10%	Quartz Grains - As above.
890m-895m	70%	Sandstone - As above.
	20%	Quartz Grains - As above.
 	10%	<u>Claystone</u> - As above.
895m-900m	80%	Sandstone - As above.
	10%	Quartz Grains - As above.
	10%	<u>Claystone</u> - As above.
		Total depth reached 0015 hours, 26.7.78.

APPENDIX 2

OIL and GAS DIVISION

APPENDIX 2

SIDEWALL CORE DESCRIPTIONS

SWEEP-1

P. KEMP

SWC NO.	DEPTH	RECOVERED Cm	<u>DESCRIPTION</u>
			GUN-1
1	605m	4.7	<pre>Marl - medium light grey, very calcareous, minor fossils, homogenous sample, moderately firm.</pre>
2	592m	5.8	<pre>Marl - medium light grey, very calcareous, minor fossils, including forams, soft, trace glauconite</pre>
3	582m	0	(nodular).
4	563.3m	3.8	Marl - medium light grey with some light grey
			bands, minor fossils, mainly forams, moderately firm, trace pyrite.
5	553m	5.0	Marl - As above.
6	537m	5.0	Marl - medium light grey, lightly speckled with white fossil fragments to 1.5mm long. Otherwise massive soft.
7	533.7m	4.0	<pre>Marl - medium light grey, massive, no fossils evident or accessory minerals, soft.</pre>
8	527.5m	4.5	Marl - medium light grey, speckled with white fossil fragments or calcareous matter and clear forams, soft.
9	517m	4.8	Marl - As above.
10	507.5m	5.0	Marl - As above.
11	498.2m	5.0	Marl - As above, some larger ? bryozoan fragments to lcm long.
12	485m	0	MISFIRE
13	469m	5.0	Marl - medium light grey, massive except for white calcareous material - fossil fragments - throughout core. Forams rare, soft.
14	446.5m	5.0	Marl - As above, forams common, very rare pyrite and mica.
15	430.6m	4.8	Marl - As above.
16	410.5m	3.5	Marl - As above, contains clear calcareous fossil fragments to 1.5mm.
17	397m	4.3	Marl - medium light grey, massive minor white and clear. Calcareous fossil fragments speckle sample, soft.
18	382 . 5m	5.2	<pre>Detrital Limestone - medium light grey, clear calcareous grains more abundant than last sample, micritic and tends to marl, some white fossil fragments to 3mm. Slightly firm.</pre>
19 1 9	367m	,\O	CORE LOST.
20	351m	5.2	Detrital Limestone - As above, minor pyrite and fossils include forams, slightly firm.

			SWEEP-1 P. KEMP
			23.7.78
SWC NO.	DEPTH	RECOVERED	DESCRIPTION
21	34 3m	0	CORE LOST
22	327m	5.1	Marl - medium light grey, minor clear and white calcareous fragments including forams, rare pyrite,
		•	soft.
23	315.5m	4.9	Marl - As above, minor pyrite.
24	300m	4.5	Marl - As above, very soft, fossils rare.
25	287.5m	О	MISFIRE
26	273.5m	5.0	<pre>Marl - medium light grey, soft, minor clear and white calcareous fragments (generally silt size) but</pre>
			fossil fragments to 2mm.
27	264.5m	5.0	Marl - As above.
28	254.3m	5.1	Marl - As above.
29	241.5m	5.3	Limestone - detrital, medium light grey, fossili- ferous, contains fossil (bryozoans, forams and others) and cemented calcareous fragments in a micritic matrix.
			Sample is very soft and gritty to feel. Suggests skeletal limestone described in cuttings may have micritic matrix which has washed out.
30	230.5m	5.0	Marl - medium light grey, soft, minor clear calcareous fragments and white fossil fragments, bryozoans, and forams.
			Trace pyrite and glauconite.
			reads Pyrros and gradomics.
		غ	

SWEEP-1

R.C.N. THORNTON

			23.7.78
SWC NO.	DEPTH	RECOVE RED mm	DESCRIPTION
			Run No. 2.
31	897m	20mm	Siltstone - dark grey, very hard, very well cemented, fractured.
			A.
32	883m	40mm	Sandstone - dark grey, friable, predominantly quartz clear, yellow, brown, red, black, trace feldspar white,
			medium grained, moderate to well sorted, angular to
			subrounded, frosted with less than 5% grey clay matrix. Good porosity.
33	871m	30mm	Conglomerate, comprising well rounded, flat pebbles,
		J Oxian	up to 25mm across, of Claystone, red, slightly sandy,
			hard, fractured, with quartz veins; Sandstone - dark grey, fine grained, very hard, silica cement, tight;
			set in soft, grey sandstone matrix, fine to medium
	*	·	grained, subangular to rounded quartz, clay rich.
34	855m	50mm	Sandstone - dark grey, friable, fine to medium
			grained, poor sorting, quartz, clean, red, brown, yellow, subangular to subrounded, trace feldspar, white,
			set in 5% soft grey clay matrix. Good porosity.
35 • .	838m	25mm	Sandstone - medium grey, semi-friable, fine grained,
			well sorted quartz, clear, angular to subrounded, minor white mica, trace red grains, pyrite bands, set in
~	·		10-20% soft clay matrix, low porosity.
36	828m	25mm	Sandstone - light to dark grey, friable, medium to
•			very coarse grained, very poorly sorted quartz,
			clear, subangular to subrounded, clear to frosted, pyrite bands, set in 10% very soft clay, mostly light
	·		grey, in part very dark red and carbonaceous, no
			fluorescence. Good porosity.
37	819m	60mm	Sandstone - light brown, speckled dark brown, semi-
	·		friable, quartz, clear, yellow, orange, fine grained, well sorted, angular to subangular, abundant dark brown
			carbonaceous patches, trace white mica, set in 10% soft
•• • • • •			clay matrix. Low porosity.
38	812m	, 55mm	Sandstone - light brown, semi-friable, quartz, fine to
			medium grained, moderately sorted, clear, frosted, subangular to subrounded, trace white mica, 5% thin
		er. C	(lmm) carbonaceous bands, set in 20% soft clay matrix.
			Low to fair porosity.
39	804.5m	20mm	Sandstone - light grey, semi-friable, quartz, fine
			grained to trace coarse grained, mostly moderately
	· · · · · · · · · · · · · · · · · · ·		sorted, clear, milky, grey, polished to frosted, angular to rounded, set in 10% soft clay matrix. Low porosity.
40	7 95m	40mm	Sandstone - light grey, friable, quartz, fine to
		<u> </u>	coarse grained, very poor sorting, clear, grey, polished
			angular to rounded, trace pyrite, very minor carbona- ceous flecks set in 10% very soft clay matrix. Good
÷ •		, i	porosity.
41	785m	60mm	Sandstone - dark brown to grey, friable, quartz,
	3		fine grained, well sorted, clear, yellow, subangular
			to subrounded, very minor white mica, set in 20% soft
			2/
		· ·	

SWEEP-1

R.C.N. THORNTON

SWC NO.	DEPTH	RECOVERED mm	DESCRIPTION
41	785m	60mm	Continued/
			clay matrix. Poor porosity.
42	774m	40mm	Sandstone - dark brown to grey, friable, quartz, fine grained, well sorted, clear, subrounded to rounded
			very minor white mica, set in 20% very soft clay matrix. Poor porosity.
43	771m	50mm	Sandstone - dark brown, semi-friable, quartz, very fine to fine grained, moderately sorted, subangular to rounded, minor white mica, abundant yellow blotches
			of partially oxidised pyrite, trace glauconite, trace very coarse grained quartz, set in 20-30% soft clay matrix. Poor porosity.
44	767m	50mm	Sandstone - dark brown, semi-friable, comprising 80% quartz, very fine to fine grained, subangular to
			subrounded, well sorted, 20% glauconite pellets, bright green round, fine to medium grained, minor mica, set in 30% soft clay matrix. Poor porosity.
45	763m	30mm	Sandstone - dark brown, semi-friable, comprising
	7 0 Jill	JORdin	70% quartz, clear, brown, very fine to fine grained, subangular to subrounded, well sorted, 30% glauconite
=			pellets, bright green, round, fine to medium grained, minor mica, set in 30% soft clay matrix. Poor porosity.
46	759m	60mm	Sandstone - very dark brown, firm, as for 76 m except that glauconite has been altered in part to pyrite.
47	755m	20mm	Greensand - dark green to brown, firm, glauconite pellets, well rounded, fine to coarse grained, very
			poorly sorted, in part altered to pyrite (brown), minor white forams, set in 30% soft calcareous clay matrix. Tight.
48	751m	Omm	BULLET LOST.
49	747m	25mm	Greensand - as for 755m, clay matrix highly calcareous.
50	743.5m	Omm	BULLET LOST.
51	740m	50mm	<pre>Mudstone - dark grey to green, very firm, subfissile, abundant bryozoan fragments lying along bedding planes, highly calcareous, trace pyrite.</pre>
52	736m	3 0mm	Mudstone - dark green to grey, very firm, massive,
	, 55	Sonut.	bryozoan fragments, forams, glauconite, highly calcareous.
53	732m	60mm	<pre>Mudstone - dark green to grey, very firm, massive, abundant forams, bryozoan fragments, trace pyrite glauconite, highly calcareous.</pre>
54	728m	1.0mm	<u>Mudcake</u>
55	724m	30mm	<pre>Mudstone - green, very firm, massive, abundant forams, minor bryozoan fragments, glauconite, highly calcareous.</pre>
···			3/

SWEEP-1

P. KEMP R.C.N. THORNTON

	1	4	23.7.78		
SWC NO.	DEPTH RECOVERED mm		DESCRIPTION		
·					
56	709m	50mm	Fossiliferous Mudstone - dark green to brown, speckled white, very firm, massive, consisting of 30% forams, minor bryozoan fragments and glauconite,		
		•	set in highly calcareous matrix.		
57	690m	35mm	Siltstone - dark green to grey, very firm, very fine quartz silt, abundant forams, some glauconite impregnated, white mica, trace pyrite set in highly calcareous clay matrix.		
58	670m	45mm	Mudstone - dark green to brown, speckled white, very firm, massive, containing forams, pyrite, bivalve shell fragments, mica, highly calcareous.		
59	650m	45mm	Mudatona doub avec to avec to see Sim marine		
	, ózou	45111111	Mudstone - dark green to grey, very firm, massive, containing forams, pyrite nodule, highly calcareous.		
60	630m	50mm	Mudstone - dark grey, very firm, massive, containing		
			forams, bryozoan fragments, highly calcareous. RUN NO. 3 P. KEMP		
61	889m	2 Omm	Sandstone - medium green, chlorite, coarse grained, angular, poorly sorted with white soft clay cement, disseminated chlorite, carbonaceous fragments.		
62	876m	40mm	Siltstone - heavily chloritic, dark green, poorly		
			sorted minor white clay, fine grained sand, but mainly silty, angular, ~ 10% black carbonaceous material, slightly hard.		
62	963 5	20	The state of the s		
63	863.5m	20mm	Sandstone - grey red to green to grey in bands, very poorly sorted, very fine to medium grained, minor clay cement, angular, minor chlorite, minor		
			coal fragments.		
64	845m	40mm	Sandstone - sample contains one very large fragment of medium dark grey quartz (1cm thick, full diameter)		
			massive except for several fragments of feldspar 2mm across. Remainder of sample is very poorly sorted, very fine to medium grained, chloritic Sandstone, white clay cement, soft, medium green colour.		
65	833m	, 50mm	<u>Claystone</u> - very light grey, contains large (1cm) weathered feldspar grain and white clay with minor		
		**************************************	silt to fine grained quartz grains, soft.		
66	826m	2 Omm	Siltstone - medium grey, clayey and contains black carbonaceous material finely disseminated, firm, poorly sorted.		
67	814m	40mm	Sandstone - medium grey, very coarse (to 5mm) to very		
			fine grained, very poorly sorted, white clay cement, white? Feldspar weathered, soft.		
68	807.5m	Omm	LOST BULLET.		
.69	798m	Omm	LOST BULLET.		
70	790m	50mm	Claystone - light grey, silty, soft, trace carbona-ceous specks.		
71	780.5m	2 Omm	Siltstone - light grey, slightly clayey, minor		
		·	4/		

		1	23.7.78
WC NO.	DEPTH	RECOVERED nam	DESCRIPTION
71	780.5m	20mm	Continued/
			very fine grained sand, quartz, well sorted.
72	772m	Omm	LOST BULLET.
73	769m	50mm	Sandstone - dark green, grey, chloritic (? glauconit very soft mineral, vitreous lustre, very fine grained, dirty with some minor clay, well indurated, firm.
74	765m	5 Omm	Sandstone - As above, tends to silt in part.
75	761m	50mm	Siltstone - dark green grey, clayey, chloritic (? glauconite), soft, trace mica, trace pyrite,.
76	757m	50mm	Siltstone - As above, contains about 30% ? iron nodules, to .5mm, spheroidal cleavage, iron colour.
77	753m	Omm	LOST BULLET.
78	749m	50mm	Sandstone - fine grained, dark green grey, grains ar mainly ?Iron nodules and glauconite nodules, rarely quartz, well rounded, well sorted, white clay cement, very firm.
79	744.5m	50 mm	Claystone - green grey, soft, 50% clay, 50% fine grained, well rounded, glauconite nodules, fossils mainly forams present, very calcareous.
80	742m	5 0mm	LOST BULLET.
81	738m	5 Omm	<pre>Marl - light olive grey, very calcareous, uniform except for minor white calcareous fossil fragments, firm.</pre>
82	734m	5 Omm	Marl - As above.
83	7 30m	50mm	Marl - As above.
84	727m	Omm	LOST BULLET.
85	720m	50mm	Marl - green to grey, firm to slightly hard, uniform except for minor white calcareous fossil fragments.
86	700m	50mm	Marl - As above.
87	680m	50mm	<pre>Marl - As above, trace pyrite, minor forams.</pre>
88	660m	30mm	<pre>Marl - light green to grey, soft, uniform minor forams.</pre>
89	639.5m	Omm	LOST BULLET.
90	622m	50mm	<pre>Marl - light green to grey, firm, minor forams, minor bedding apparent.</pre>

2/...

WELL SWEEP-1 ESSO AUSTRALIA LTD. 30 _{REC} 25 GEOLOGIST P. KEMP SIDEWALL CORE DESCRIPTIONS 23.7.78 SERVICE CO. SCHLUMBERGER IES RUN NO .. .SWC RUN NO 25 24 23 22 21 20 17 <u>N</u> 30 29 28 27 26 19 18 16 410.5 397 254.3 230 287.5 300 343 382.5 264.5 273.5 327 367 DEPTH ū ū Сī 5 ω. 5 σ 5 ŲΊ G G 4.9 5.2 PEC PEC 0 0 0 Ġ 0 o ω 0 LIME-MARL MARL MARL LIME-LIME-MARL MARL ROCK TYPE Detrital Detrital Detrital MODIFIERS ı medium Light grey medium light grey medium light : grey medium light grey medium light grey medium light s grey medium light medium light g grey medium light s grey f light s medium light grey light grey medium firm very fine to silt slightly firm slightly firm sligh firm soft very soft very soft very soft very soft very soft NDUR DEG very fine to silt fine SIZE <u>jeg</u> SRTG 9 AND 10 CLAY STAIN 2 몼 DISTR COLOR INTEN CUT FLUOR. COLOR ... 8 QUAN 19 COLOR 20 SHOW 21 PROD 22 PROB MISFIRE CORE CORE Ţ REMARKS - GAS LOST ISOI

	WELL SEOL	.ogis		WEE		••••	KE	MP									<i>IA LT</i>								3			23	
		ICE		SC		MBE			-	1		S RU	N N	0		2		RUN			3	D	ATE			7			
F O R	76	į	75		74		73	72	71	70	69	68			67	66	0.0		64				6 3		62		19	NO.	
R 257 3.72	757	F	761		765		769	772	780.5	790	798	807.5			814	826	833		845			-	863.5		876		889	DEPTH	
	50	C	Σ Σ		50		50	0	20	50	0	0			40	20	50	1	40				20		40		20	REC mm 2	
	STONE	STONE	SILTI-		SAND- STONE		SAND- STONE		STONE	CLAY- STONE					SAND-	SILT-	STONE		SAND-				SILT-		STONE		SAND- STONE	TYPE 3	* *
nodules	Chloritic Iron	CHICHTCHC	ر ۱۰ ا ۱۳۵ ا با د		Chloritic	ŀ	Chloritic			Silty						Clayey	FeldspathicMON	pebble	Large Quartz				Chloritic		Very Chloritic		Chlorite	4	MODIFIERS
	NON	INC	N O N		NON		NON		NON	NON ,					NON	NON	MOM		NON]				NON		NON		SLI	CAL 5	
	dark I green				dark I green		dark green			light grey				()	NON medium	medium grey	1 light grey	ed	medium grain	grey	green				dark I green		medium grain-c		
	SO		n O fi		fi		f:		1	soft						1	SC	T	1				firm	hard		Tir	m sli- -ahtly	DEG 7	INDUR
	ft				rm ve	gr	rm ve		rti I	1			coa	Ve t		firm -	ft		soft -			:		d fi	- sl Iv ah			8 SIZE	
	ı			L	very fine Poor	grain- ed	very fine Poor						coarse	to very	1	Poor	ı		very				very fine Poor	T.M.	sli- ah+lyPoor		Poor	ZE SRTG	
					or we		1			-				l		R		1									- 1		
	1		!		<u> </u>		we11			I				'	ang		1		ang				and		ang	ţ	n C	RND CL	
									-			-													·			CLAY S	
										,																		STAIN 12	•
																											· 1	% RK	
																								-			i di	DISTR 14	FLO
								,																				INTEN 15	FLOURESCENCE
																												1 COLOR	С П
																									,			INTEN 17	CUT FLUOR.
							منر																			.3		COLOR 18	.UOR.
																												QUAN 19	- 2
																		-								•			CUT RESIDUE
																												COLOR 20	DUE
	•					3				-															٠			SHOW 21	
																								VI , V				PROD 22	РЯОВ
								LC			LO	LO																	
								LOST BULLET			LOST BULLET	LOST BULLET																REMARKS - GAS 23	

WELL SWEEP-1 PAGE 4OF...... ESSO AUSTRALIA LTD. GEOLOGIST P. KEMP ATT30 REC 23 SIDEWALL CORE DESCRIPTIONS SERVICE CO. SCHLUMBERGER 28.7.78 SWC RUN NO 1 a 84 90 89 88 87 86 85 83 82 79 78 77 FORM R 257 3.72 622 639 660 680 700 734 742 738 749 744.5 753 DEPTH Ġ 50 50 50 2配 50 50 30 50 50 50 50 0 0 MARL MARL MARL MARL MARL MARL CLAY-STONE SAND-MARL **TYPE** RCOK Trace nodules, glauconite Trace Pyrite, forams Minor fossils Minor fossils Minor fossils Minor fossils Minor fossils Minor forams Glauconite MODIFIERS CAL ⋖ < ⋖ < < light olive grey green grey green to grey Light olive light olive grey light olive COLOR grey grey o firm firm firm firm firm firm firm firm INDUR DEG fine well grain-ed GRAIN SIZE ထ ı ı ł SRTG ı RND 10 ı CLAY STAIN 2 곳 DISTR 14 INTEN 5 COLOR ಕ NTEN CUT FLUOR. 7 a) COLOR 8 QUAN CUT RESIDUE 19 COLOR 20 SHOW 21 PROD 22 LOST LOST LOST BULLET LOST REMARKS - GAS BULLET BULLET BULLET ည

APPENDIX 3

APPENDIX 3

PALYNOLOGICAL ANALYSIS OF SWEEP-1

GIPPSLAND BASIN

bу

A.D. Partridge

and

H.E. Stacey

INTRODUCTION

Twenty-three sidewall core samples from Sweep-I were examined for palynology. In general, fossil recovery was poor to fair, although good, diverse assemblages were obtained in few cases.

Formation and zone subdivision from the basal part of the Lakes Entrance Formation to the bottom of the well is summarised below. Table I lists all samples examined and summarises the findings, while individual fossil occurrence is recorded on the accompanying distribution charts.

SUMMARY

UNIT/FACIES	ZONE	DEPTH (in metres)
Lakes Entrance Formation		
"Micaceous Marl Member"	P. tuberculatus	744.5m
745m		
Lakes Entrance Formation		
"Greensand Member"	P. tuberculatus	747 - 755
756.5m	- Unconformity	
Gurnard Formation		
(Glauconitic Sandstone)	Middle <u>N.</u> asperus	759
•	Lower <u>N. asperus</u> and	761 - 771
	D. heterophylcta	
772m		
Latrobe Group		
Coarse Clastics	Lower N. asperus	774 - 785
789m	- Unconformity	
Latrobe Group		
Coarse Clastics	Lower <u>L. balmei</u>	790 - 812
	T. Jongus	819 - 838
0.42	T. longus	019 - 0.00
842m	- Uncontormity	
Strzelecki Group	(barren)	855 - 901
TD-900m		

GEOLOGICAL COMMENTS

I. GREENSAND UNIT AND UNCONFORMITY:

In Sweep-I a greensand or glauconitic sandstone unit was intersected between 745m and 772m. As is typical for the Gippsland Basin this unit lies between the coarse clastics of the Latrobe Group and the marine marks typical of the Lakes Entrance Formation.

The palynology and the micropalaeontology indicates that this greensand unit can be separated into two distinct units. The lower unit from 756.5m to 772m consists of fine grained moderately well sorted glauconitic sandstone of Middle to Late Eocene in age (Lower and Middle \underline{N} . $\underline{asperus}$ Zones). As such it is lithological and age equivalent to the Gurnard Formation recognised in the offshore part of the Gippsland Basin. The upper unit from 745m to 756.5m is a poorly sorted glauconitic sandstone of Late Oligocene age (Planktonic foraminiferal Zone H2). In the eastern onshore part of the Gippsland Basin a slightly older Oligocene greensand is given member status at the base of the Lakes Entrance Formation. It was called the Greensand Member by Carter (1964) and renamed the Cunningham Greensand Member by Hocking (1976), (See Abele et al. 1976, pp. 257-259 for discussion).

A hitus of approximately II million years representing all of the Early Oligocene and most of the Late Oligocene separates the two greensand units and is placed at 756m.

The adjacent wells Flathead-I, Wahoo-I and Sole-I also contain equivalent greensand units which probably have similar time duration. Unfortunately sidewall core sampling is in these wells too widely spaced to adequately delineate the ages of these greensands.

The results from Sweep-I, where a significant unconformity lies within what has previously been regarded as a single lithological unit, once again indicates that the "greensand" development in the Gippsland Basin is best treated as a <u>facies</u> rather than a classical <u>rock unit</u>.

2. LATROBE GROUP COARSE CLASTICS

As in the greensand unit a significant unconformity occurs within the rock unit which is informally referred to as the <u>Coarse Clastics</u>. The unconformity is placed at 789m where there is a distinct break on the electric logs. The hiatus at the unconformity has a duration of approximately 10 million years, and is represented by the Lower N. asperus Zone overlying the L. balmei Zone within a sample gap of only 5 metres.

The situation of the Lower \underline{N} . asperus Zone unconformably overlying the \underline{L} . balmei Zone is characteristic of other wells along the margins of the Gippsland Basin and also the margins of the Bass and Otway Basins. This is interpreted as due to eustatic high stands of sea level during these zone intervals (See Steele, 1976, and Partridge, 1976). The absence of the Early Eocene spore-pollen zones at the Sweep-I location is therefore interpreted as non-deposition rather than deposition followed by removal through erosion.

3. STRZELECKI GROUP

The samples examined from this unit were barren of spore-pollen and gave very low yields of mineral charcoal and woody types of particulate organic matter. The sediments are assigned to the Strzelecki Group solely on lithology and top of the unit is placed at the electric log break at 842 metres.

DISCUSSION OF ZONES

Tricolpites longus Zone

819 - 838m.

The top of the <u>T. longus</u> Zone is readily recognised by the highest occurrence of the zone species, <u>Tricolpites longus</u>, together with <u>T. confessus</u> and <u>Proteacidites reticuloconcavus</u>. Key species from other samples include <u>Proteacidites prepolus</u>, <u>P. gemmatus</u>, <u>P. intracatus</u>, <u>P. palisadus</u> and <u>Ornamentifera sentosa</u>, none of which range above the <u>T. longus</u> Zone. That the section is no older than the <u>T. longus</u> Zone is confirmed by the presence of <u>Stereisporites</u> (<u>Tripunctisporis</u>) at 826m. Unfortunately the sample at 833m was barren while that at 838m gave only a very limited assemblage. This last sample is assigned to this zone base on similarity to the higher assemblages, and consideration of the sequence recognised in Wahoo-I.

Lower Lygistepollenites balmei Zone

790m - 812m.

There were only two productive samples from the <u>L. balmei</u> Zone, and both can confidently be assigned to the zone based on the common occurrence of the nominated zone species. In the deeper sample this zone assignment is supported by the presence of <u>Australopollis obscurus</u>, <u>Proteacidites angulatus</u> and <u>Polycolpites langstonii</u>. In the higher sample, which unfortunately gave only a very low yield, the common occurrence of <u>Haloragacidites harrisii</u> suggests a position for the sample high in the <u>L. balmei</u> Zone, however

.../4

absence of any of the diagnostic zone species precludes assignment of the sample to the Upper $\underline{\mathsf{L}}$. $\underline{\mathsf{balmei}}$ Zone.

Lower Nothofagidites asperus Zone

761m - 785m

The dominance of <u>Nothofagidites</u> pollen in the spore-pollen assemblages, which first occurs at 785m assigns this and the overlying samples to the Lower <u>N</u>. <u>asperus</u> Zone. This is supported by the first appearances of <u>Tricolpites simatus</u> at 780.5m, <u>Proteacidites recavus</u> at 774m and <u>Nothofagidites falcatus</u> which is first recorded from the base of the greensand unit at 771m.

The absence of <u>Myrtaceidites tenuis</u> and <u>Intratriporopollenites</u> <u>notabilis</u> indicates that a section equivalent to the <u>P</u>. <u>asperopolus</u> Zone in Flathead-I is not present in Sweep-I.

<u>Deflandrea</u> <u>heterophylcta</u> <u>Dinoflagellate</u> Zone

761m - 771m

The base of the greensand unit lies within the upper part of the Lower \underline{N} . asperus based on the occurrence of $\underline{Deflandrea}$ heteroplyIcta, a key species for its nominated zone, in samples between 771m and 765m. Supporting species present include $\underline{Wetzeliella}$ glabra, $\underline{Areosphaeridium}$ dictyoplokus and $\underline{Deflandrea}$ oebisfeldensis. The occurrence of this species at 761m justifies extending this zone to that level even though \underline{D} . heterophyIcta was not recorded from the highest two samples.

Middle Nothofagidites asperus Zone

759m.

Only a very limited assemblage was recorded from the one sample assigned to this zone owing to very low palynomorph recovery. The sample is assigned to the Middle $\underline{\text{N.}}$ asperus Zone based on the presence of the dinoflagellates Schematophora speciosus and Corrodinium corrugatum.

Proteacidites tuberculatus Zone

744.5m - 755m

The occurrence of a number of morphologically relatively simple dinoflagellates which have been given the manuscript names $\underline{\text{Dinosphaera simplex, D. pontus}}$ and $\underline{\text{D. scabroellipticus,}}$ demonstrate a post-Eocene age for these sediments even though the $\underline{\text{P. tuberculatus}}$ zone marker fossils such as $\underline{\text{Cyatheacidites}}$ annulatus and the nominate species were not present.

REFERENCES:

ABELE, C., et al., 1976: Tertiary, <u>in</u> Geology of Victoria:

J.G. Douglas & J.A. Ferguson, Eds.,

Spec. Publ. Geol. Soc. Aust., No. 5 pp. 1-528.

PARTRIDGE, A.D., 1976, The Geological Expression of Eustacy in the Early Tertiary of the Gippsland Basin, <u>The APEA jour.</u>, Vol. 16, pt. 1, pp. 73-79.

STEELE, R.J., 1976: Some concepts of seismic stratigraphy with application to the Gippsland Basin, The APEA
Jour., Vol. 16, pt.1, pp. 67-71.

BASIN	<u>GIPPSLANE</u>)			DAT	E	Octob	October 16, 1978						
WELL	NAME SWEEP-1		· · · · · · · · · · · · · · · · · · ·	- Marine Para Marine	ELE	VATION								
		ні	GHEST	DATA			LOW	EST	DATA		*************			
AGE	PALYNOLOGIC ZONES	Preferred Depth	Rtg.	Alternate Depth	Rtg.	2 way time	Preferred Depth	-	Alternate	Rtg.	2 ti			
OLIG- MIO.	P. tuberculatus	744.5m	1				755m	1_						
<u>5 ×</u>	U. <u>N. asperus</u>													
	M. N. asperus	759m	-2											
	L. N. asperus	761m	0				785m	2						
闭	P. asperopolus													
EOCENE	U. M. diversus													
	M. M. diversus								·					
	L. M. diversus													
ENE	U. L. balmei			·							ļ ——			
PA LE OCENE	L. L. balmei	790m	2				812m	1	*					
PA	T. longus	819m	1				838m	2						
ες.	T. lilliei													
LAIE ETACEOUS	N. senectus										**********			
CRETA	C. trip./T.pach.													
	C. distocarin.										—			
FA:	T. pannosus RLY CRETACEOUS													
Lin	KHI OKLINOLOGO													
PR	E-CRETACEOUS		·											
							<u> </u>							
COMME	ENTS:	D. heterop	hylata	<u>a dinoflage</u>	llate	zone :	765m to 7	71m						
	**************************************										-			
RATIN	pollen 1; SWC or pollen 2; SWC or and/or 3; CUTTING	and microp CORE, GOOD or micropl CORE, POOR microplank S, FAIR CO or micropl S, NO CONF	CONF ankto CONF ton. ONFIDE	on. IDENCE, ass IDENCE, ass NCE, assemb n, or both.	embla embla	age with	n zone speci n non-diagno one species	les o ostic	f spores a spores, p	nd ollen e and	i			
NOTE:	: If a sample ca Also, if an en better confide	try is giv	en a	3 or 4 conf	idend	e ratir	ng, an alter	entr nate	y should b depth wit	e mad h a	le.			
	RECORDED BY:					n.4 mn	٠							
DATA	RECORDED DI.					DATE					-			

TABLE 1 : SUMMARY OF PALYNOLOGICAL ANALYSES, SWEEP-1, GIPPSLAND BASIN

Sample	Depth (m)	Depth (ft.)	Zone	Age	Confidence Rating			Comments
SWC-79	744.5	2441	P. tuberculatus	Oligocene	1	Poor	Low	D. pontus, D. simplex
SWC-49	747	2451	11	11	1	Poor	Moderate	Mostly Post-Latrobe dinoflagellates
SWC-78	749	2457	11	11	1	Poor	V.Low '	One D. cf scabroellipticus
SWC-47	755	2477	11	11	1	Poor	Low	D. simplex
SWC-46	759	2490	Middle N. asperus	Middle to Upper Eocene	$\frac{1}{2}$	Poor	Moderate	Few dinoflagellates
SWC-75	761	2497	Lower N. asperus	Middle Eocene	0	Poor	High /	Highest A. dictyoplokus
SWC-45	763	2503			-	V.Poor	V.Low	Almost barren
SWC-74	- 765	2510	11	11	1	Fair	High	
SWC-44	767	2516	11	11	Û	Good	High	D. heterophylcta present
SWC-73	769	2523	11	11	0	Fair	High	**
SWC-43	771	2529	11	11	0	Good		11
SWC-42	774	2539	11	11	2	Poor	High	Eggentically New marries
SWC-71	780.5	2561		11 1	1	Low	U; ah	Essentially Non-marine
SWC-41	785	2575	11	11	2	Low	High High	
SWC-70	790	2592	Lower L. balmei	Paleocene	2	Fair	Moderate	
SWC-38	812	2664	Lower L. balmei	11	1	Good	High	Common L. balmei, no other markers
SWC-37	819	2687	T. longus	Lower Paleocene	1			
SWC-66	826	2710	1. 1011gus	rateocene	1	Good	Moderate	$oldsymbol{\epsilon}$
SWC-65	833	2733		·	Ţ	V.Good	High	
SWC-35	838	2749	T longue	Town Dologoma	-	Barren		Almost no organic material
SWC-34	855	2805	T. longus	Lower Paleocene	2	Poor	Fair	
SWC-62	876	2874			_	Barren	+	Practically no organic material
SWC- 32	883	2897		. 	-	Barren	***	Small amount charcoal/woody frags.
3116-34	. 003	2897			-	Barren		Fine, black mineral charcoal

SWEEP-/

SPECIES

4157.

SWEEP-1 Basin _____GIPPSLAND Sheet No. $\frac{1}{}$ of $\frac{4}{}$ Well Name _ SAMPLE TYPE * SS DEPTHS 744. 780. 749 755 855 876 747 763 812 774 833 838 759 761 767 785 790 771 PALYNOMORPHS A. qualumis A. acutullus A. luteoides A. oculatus A. sectus A. triplaxis A. obscurus B. disconformis B. arcuatus B. elongatus B. mutabilis B. otwayensis B. elegansiformis B. trigonalis B. verrucosus B. bombaxoides B. emaciatus C. bullatus C. heskermensis cf C. horrendus C. meleosus C. apiculatus C. leptos C. striatus C. vanraadshoovenii C. orthoteichus/major C. annulatus C. gigantis C. splendens D. australiensis D. granulatus D. tuberculatus D. delicatus D. semilunatus E. notensis E. crassiexinus F. balteus F. crater F. lucunosus F. palaequetrus G. edwardsii G. rudata G. divaricatus G. gestus G. catathus G. cranwellae G. wahooensis G. bassensis G. nebulosus H. harrisii H. astrus H. elliottii I. anguloclavatus I. antipodus I. notabilis I. gremius I. irregularis J. peiratus K. waterbolkii L. amplus L. crassus L. ohaiensis L. bainii L. lanceolatus L. balmei RW Ryy L. florinii M. diversus M. grandis M. perimagnus

^{*}C=core; S=sidewall core; T=cuttings.

SWEEP-1

SPECIES LIST

Sheet No. $\frac{2}{}$ SWEEP-1 GIPPSLAND Well Name Basin_ SAMPLE TYPE * S 744.5 2 DEPTHS 780. 819 838 883 755 759 763 765 767 769 771 790 812 826 747 855 833 785 761 **PALY NOMORPHS** N. subtilis M. ornamentalis M. hypolaenoides M. homeopunctatus M. parvus/mesonesus M. tenuis M. verrucosus M. australis N. asperus N. asperoides N. brachyspinulosus N. deminutus N. emarcidus/heterus N. endurus N. falcatus N. flemingii N. goniatus N. senectus N. vansteenisii O. sentosa P. ochesis P. catastus P. demarcatus P. magnus P. polyoratus P. vesicus P. densus P. velosus P. morganii/jubatus P. mawsonii P. reticulosaccatus P. verrucosus P. crescentis P. esobalteus P. langstonii P. reticulatus P. simplex P. varus P. adenanthoides (Prot.) RW P. alveolatus cf P. amolosexinus cf P. angulatus annularis P. asperopolus P. biornatus P. clarus P. cleinei P. confragosus P. crassis P. delicatus P. formosus P. grandis P. grevillaensis P. incurvatus P. intricatus P. kopiensis cf P. lapis ct P. latrobensis P. leightonii RVY P. obesolabrus cf cf P. obscurus P. ornatus P. otwayensis P. pachypolus P. palisadus P. parvus P. plemmelus P. prodigus P. pseudomoides

P. recavus

^{*}C=core; S=sidewall core; T=cuttings.

SWEEP-1.

Species List

SWEEP-1 GIPPSLAND Sheet No. 3 of 4Well Name Basin_ SAMPLE TYPE * N N N N N SS SS SS DEPTHS 744.5 819 826 833 838 855 876 883 769 780. 785 790 812 761 765 767 755 771 774 747 PALYNOMORPHS P. rectomarginis P. reflexus P. reticulatus P. reticuloconcavus P. reticuloscabratus P. rugulatus P. scitus P. stipplatus P. tenuiexinus P. truncatus P. tuberculatus P. tuberculiformis P. tuberculotumulatus (Prot.) P. xestoformis Q. brossus R. boxatus R. stellatus R. mallatus R. trophus S. cainozoicus S. rotundus S. digitatoides S. marlinensis S. rarus S. meridianus S. prominatus S. uvatus S. punctatus S. regium T. multistrixus (CP4) T. textus T. verrucosus T. securus T. confessus (C3) T. gillii T. incisus T. longus T. phillipsii T. renmarkensis T. sabulosus T. simatus T. thomasii T. waiparaensis T. adelaidensis (CP3) T. angurium T. delicatus T. geraniodes T. leuros T. lilliei T. marginatus T. moultonii T. paenestriatus T. retequetrus T. scabratus T. sphaerica T. magnificus (P3) T. spinosus T. ambiguus T. chnosus 7. helosus T. scabratus T. sectilis V. attinatus V. cristatus V. kopukuensis

^{*}C=core; S=sidewall core; T=cuttings.

SWEEP-1

SWEEP-1

SPECIES

LIST

GIPPLLAND Well Name _ Sheet No. 4 of 4 Basin_ SAMPLE TYPE * DEPTHS 744. 755 759 763 765 769 780. 819 <u> 7</u>01 785 833 855 876 883 771 812 PALYNOMORPHS Dino. pontus Dino. simplex Oper. centrocarpum Leptodinium sp. Achom. alcicornu Spiniferites spp. Caligod amiculum Oper. brevum Poly. varispinosum Nema. cf. divergens Ling. solarum Pent. lactinctum Cyclop. vieta
Poly. fibrosum Dino. scabroellipticus Lepto. leos Emsl. australiense Hemicystidinium sp. Spinidinium sp. Schem. speciosus
Tect. marlum
Corrod. corrugatum Wetz. glabra Areo. dictyoplokus Defl. oebisfieldensis cf. Areo arcuatum H'kolp. riguade Defl. flounderensis Defl. heterophylcta Homot, tasmanensis Thalasiphora sp. Defl. leptodermata Para, indentata System. placantha Phtham. coreoides Hystr. tubiferum *C=core; S=sidewall core; T=cuttings.

APPENDIX 4

APPENDIX 4

FORAMINIFERAL SEQUENCE - SWEEP-1

bу

David Taylor

THE FORAMINIFERA SEQUENCE IN SWEEP-1,

GIPPSLAND BASIN

by

David Taylor, Consultant

ESSO AUSTRALIA LTD

PALAEONTOLOGICAL REPORT: 1979/8

MARCH 22, 1979

FORAMINIFERAL SEQUENCE

- SWEEP # 1

by DAVID TAYLOR
Consultant

Esso Australia Ltd., Paleontological Report 1979/8

March 22, 1979

SUMMARY

The foraminiferal sequence commenced in "Greensand" sediment deposited in the late Oliogcene (Zone H-2). Although the most biostratigraphic units, apart from B-2, were recognised, the sedimentary record is far from complete. This is demonstrated by dramatic fluctuations in the accumulation rates for the Zones. Episodic canyon cutting and filling cycles are evident over a period of some 14m.y., between late early Miocene (F) to Pliocene (A-3). This is the longest recorded span for submarine canyon activity in the Gippsland Basin. Probably the Sweep site was at the proximal end of the modern Bass Canyon and that the last fill episode did not cease till the Quaternary (17,000 yr. BP)

INTRODUCTION

Fiftynine sidewall cores were examined from SWEEP # 1. No planktonic fauna was found in the eleven SWCs between 785 and 757. All depths quoted are in metres as labelled on submitted samples.

Data is collated on the following sheets.

FACTUAL Biostratigraphic Data Sheet

FACTUAL Sample data Sheets with observations on residue grains.

FACTUAL Distribution Chart - Sheet 1 - for planktonic foraminifera.

FACTUAL Distribution Chart - Sheet 2 - for benthonic foraminifera and other grains.

BIOSTRATIGRAPHY.

LATE OLIGOCENE - ZONE H-2 - 755 to 747.

The foraminiferal sequence commences with a low diversity H-2 association of Globigerina woodi woodi and G. ciperoensis. The apparent condensation of the zonal interval was probably due to the slow sedimentation rate of the "Greensand" which contains the H-2 faunas.

EARLY MIOCENE - ZONES H-1 to E-2 - 744.5 to 660.

The base of early Miocene (= H-1) is designated at the *Globigerina woodi connecta* FAD*with the top (= E-2) at 660, below the *Orbulina* FAD at 650. Units H-1 and G were extremely condensed, suggesting very slow sedimentation rates (see Environment section).

MID MIOCENE - ZONES E-1 to C - 650 to 507.5.

The base of the mid Miocene corresponds to the appearance of a poorly preserved specimen of *Orbulina suturalis* within a typical E-l association. The fauna

^{*}FAD = First Appearance Datum.

at 630 was more diverse and contained definite, though rare, specimens of O. suturalis.

The Zones D-2 and D-1 intervals were unusually thin. This interval was designated as that between the *Orbulina universa* FAD (at 605) and the *Globorotalia miotumida miotumida* FAD at 553.

LATE MIOCENE - ZONE B-2 - ? Absent.

Zone B-2 faunas were not recorded in Sweep # 1. As there was little or no room for B-2 sediments between the *G. mayeri* LAD*at 507.5 (= Zone C) and the *G. conomiozea* FAD at 498.2, it must be concluded that Zone B-2 is absent or extremely condensed in this section.

PLIOCENE - ZONES B-1 to A-3; 498.2 to 241.5.

Base of Pliocene in Austral region is believed to approximate the *G. conomiozea* FAD. Base of Zone A-4 at 397 was established on *G. puncticulata* FAD, whilst base of Zone A-3 has been tentatively positioned in next sample above the *G. conomiozea* LAD.* The quality rating for the A-3 pick is very low as faunas at and above 327 lack definite *G. inflata*. As this cool temperate minimal layer species was normally common in A-3, its absence is puzzling. The presence of *G. miotumida* in Zones A-4 and A-3 is anomalous and probably due to reworking.

ENVIRONMENT.

Sweep # 1 is by far the best sample sequence on the northern margin of offshore Gippsland. A cyclic environmental pattern of:-

- 3) Shallow shelf platform sedimentation in
- 2) Episodic shelf and slope canyon cutting and filling events from high in the early Miocene (Zone F) to the Pliocene (? Zone A-3).
- 1) Shallow shelf platform sedimentation in latest Oliogcene and early Miocene (Zones H-2, H-1 & G).

This pattern is evident from the benthic foraminiferal distribution chart (Sheet 2) on which species are grouped according to their comparative distribution in other sections. Distribution of other grains (e.g. sponge

^{*} LAD = Last Appearance Datum.

spicules or bryozoal fragments) show coincidence with a particular benthic group. More detailed observations on grain components are summarised on the six data sheets.

Canyon fill sedimentation occupy a longer time span than normally observed in the Gippsland Miocene; some 14m.y. compared with 2 to 4m.y. in other sequences. The Sweep fill was characterised by reworked older planktonic foraminifera in younger faunas (e.g. D-2 mixed with C or B-1), together with deeper water benthic associations. Differences in preservation, both from corrosion and abrasion (e.g. the Battered Robulus fauna), separate the displaced specimens from the better preserved autochthonous specimens. Adhering limonite and pyrite as well as pyritic infilling (see below) is common on the allochthonous specimens.

Sporadic accumulation of siliceous sponge spicules are another feature of Gippsland canyon fills, as is size and/or shape sorting of foraminifera.

The fill indicators extend from 734 at base of F to 241.5 within ? A-3. However the canyon fill was episodic being interspersed by errosive canyon cutting episodes. This is evident from condensation or abbreviation or even absence of some biostratigraphic intervals interspersed with disproportionate developments of other units. This is illustrated by the following uncorrected accumulation rates (UR).

ZONE	SPAN IN M.Y.	THICKNESS IN M.	U.R. cm/1,000 yrs.
A-3	1	86	860
A-4	1	46	460
B-1	1.7	88	517
B-2	5.5	< 9	16
С	2.5	45.5	182
D1/D2	1.3	41.7	321
E-1	.2	28	1400
E-2	.3	30	1000
F	.5	30	500

The UR for Zones D-2/D-1 are unusually low. For instance in Halibut # 1 the UR for D-2/D-1 approximates 8,000cm/1,000 years. But Halibut was in the distal canyon situation, compared with a proximal one for Sweep. Therefore the disproportionate difference in URs probably reflects an up canyon decline in nutrient availability affecting biogenic productivity. Another factor is that canyon fill commenced in Zone F in Sweep, but later in Halibut (i.e. Zone D-2). The initial accumulation of most Gippsland Canyon fill sequences were coarser grained than higher in the sequences and thus had greater porosity and features, suggesting rapid dump/fill deposition. This could explain also the differences in URs for Zones D-2/D-1 between initial rapid filling (i.e. Halibut) and finer grained later sequence fill in Sweep.

It can be logically ascertained that canyons developed from the shelf into deeper water in a progressive and diachronous manner of cutting and filling with fill higher in the canyon constantly being redistributed down the canyon. Therefore the UR values for Sweep are artificial in that they imply constant sedimentation during a selected time span. The abbreviation of some units and exaggeration of thickness of other units indicates cycles of dumping, followed by non deposition and/or removal of previous fill, then more dumping. This model assumes fluctuation in energy within the system and rapid burial Fluctuating down canyon current energy is apparent from of accumulations. such observations as specimen number, benthic diversity, size and shape sorting and specimen abrasion. Rapidity of burial is an essential phenomenon in the anaerobic formation of iron sulphides from protoplasm in the presence of iron sulphates (e.g. Sugden, 1966). The observations of limonite and pyrite adhering or infilling foraminiferal specimens is noted on the data sheets.

Thus the Sweep canyon fill sequence is regarded as a discontinuous one; recording repeated episodes of cutting, filling and probably non deposition in a proximal or "Canyon Head" situation. The depth to the canyon floor, at any one time, is difficult to estimate as a number of the Basin Deep species (listed on Distribution Sheet 2) could have been "elevated" by the upwelling of cold, nutrient enriched waters. This "faunal elevation" was demonstrated by Taylor & Mee (1970) in modern Gippsland Canyon floor samples. However the canyon

initiation was sudden with a drop in base level at base of Zone F. This base level drop could have been from 100m with an inner shelf Zone G fauna to 200m, with an "elevated" slope fauna at base of Zone F.

Although circumstantial, the geographic linear fit of the Snowy River mouth, Sweep and the northern Tributary of the Bass Canyon (refer Conolly, 1968, figs. 1 & 2) is more than coincidental. Samples from the present North Bass Canyon floor (Taylor & Mee, 1970) showed that the canyon was dormant regarding mass sediment dumping, but that there was a steady supply of debris from the sponge gardens and bryozoal forests at the canyon head. This canyon head is an exposure at 120m of consolidated Quaternary calcarenite, which has all the features of having been deposited in much shallower water during a glacioeustatic sea level low (21,000 to 14,-00 years, BP-data in Jongsma, 1970). This barrier would have caused backfill of the canyon towards the shoreline.

The paucity of terrestial detritus in the Sweep Canyon fills, could preclude the connection with the Snowy River. But it must be remembered that the bed of the Snowy is at present incised and obviously a rejuvenation of the meandering, tortuous course it took pre-uplift. The terrestial detritus reaching the sea, would have been minimal. This is confirmed by the purity of the Miocene (Zones F to D-2 - pers. obs.) calcarenites outcropping along the Snowy Valley in the vicinity of Orbost.

REFERENCES

CONOLLY, J.R., 1968 - Submarine canyons of the continental margin, East Bass Strait. *Marine Geol.*, 6; 449-461.

JONGSMA, D., 1970 - Eustatic sea level changes in the Arafura Sea. *Nature*, 228; 150-1.

SUGDEN, W., 1966 - Pyrite staining of pellety debris in carbonate sediments from the Middle East and elsewhere. *Geol. Mag.*, 103(3); 250-256.

TAYLOR, D & MEE, V., 1970 - Report to Esso on Gippsland seafloor sampling.

WELL NAME AND NO. SWEEP # 1.

DATE: 21.1.79.

PREPARED BY: DAVID TAYLOR.

SHEET NO. 1 of 6.

<u>DEPTH</u> IN METRES	SAMPLE TYPE	SLIDE ADDITIONAL INFORMATION
785	SWC 41	N.F.F Dom - m ang qtz - rare subrd. qtz. & rock frags.
780.5	SWC 71	N.F.F. ibid
774	SWC 42	N.F.F. ibid
771	SWC 43	N.F.F. orange f-m ang qtz sdst - r. green glauc. but common limonite "books" after glauc, after mica.
769	SWC 73	N.F.F. dom m. ang qtz. sdst with pellet glauc - r. c. ang. & subrd. rock frags. (? Paleozoic quatzite).
767	SWC 44	Cassidulina sp? (5 specs) "L.E. GREENSAND" Dom. m. ang. qtz. sdst + 20% glauc of 2 species - (1) book - brighter green (2) irregular pellets light apple green.
765	SWC 74	N.F.F. 60% f-m ang clear qtz, 40% orange f ang qtz sdst.
763	SWC 45	N.F.F. Dom orange f ang qtz sdst with 10% "book" & irreg. pellet glauc; r ang. rock frags.
761	SWC 75	N.F.F. Dom clear f-c ang qtz sdst 10% glauc - "book" pellet & irregular in various stages of oxidation. 5% pyrite. (? biogenic) r subr rock frags.
759	SWC 46	N.F.F. Dom 1. bn limonitic clay after glauc - some in pelle form. 10% orange f. ang. qtz sdst; r c subr. qtz. Bioturbation evident.
7 57	SWC 76	ibid + 10% gn glauc clay.
755	SWC 47	H-2(1) - Dom pellet glauc & limonite. shallow water benths with Dom. Cibicides.
749	SWC 78	H-2(1) - ibid + fish teeth.
747	SWC 49	H-2(1) <i>ibid</i>
744.5	SWC 79	H-1(1) - 70% pellet glauc - 25% forams + r f ang qtz sdst & bry count 500. 10% planks benth diversity 20, all shallow water.

WELL NAME AND NO. SWEEP # 1.

DATE: 21.1.79.

PREPARED BY: DAVID TAYLOR.

SHEET NO. 2 of 6.

DEPTH IN METRES	SAMPLE TYPE	SLIDE	ADDITIONAL INFORMATION
740	SWC 51	limonite staining	caren <u>+</u> r. f. ang. qtz. sdst. with orange + r. ech. count 1000, 40% planks - v. th abundant <i>Carpentaria</i> spp., arrieraspp.
738	SWC 81		ren with ech spines, fecal pellets - 100, 40% planks, benth suggest slight
736	SWC 52	-	lcaren with ech spines & count displaced incl. rafted bry. adherent
734	SWC 82	sponge spics bry,	tic stained lst. frags. r ang qtz & ech, ost. count 800, planks 50% benth + ? reworked. N.B. r Cassidulina carinate.
732	SWC 53		0% limonitic stained lst. frags + r. glauc, 60% planks, benths indicate slight s diverse as 734.
730	SWC 83	frags, vein qtz f Count 1900, 45% p rafted adherent f	alc. mdst. + limonite, v.r. dirty coal rags, mica, bry. ech. <i>Tubiporid coral</i> lanks. good pres. benth diversity 16 with brms & corroded miliolids. Obvious g with shallow water displaced spp.
728	SWC 54	Charophyphyites. 9000 planks 70%.	r. ang. qtz., ? epidote & botryoidal glauc. Some glauc in filling of planks. Count good pres. Benth diversity 12 + displaced ED ROBULUS. Shelf edge.
724	SWC 55	frags, r. coal epopres. poor sugary	limonite staining, r.c. ang. qtz. lst. dote & glauc ech. count 800. 85% planks recryst. Benth low diversity. Spherical planks & benth). High energy shelf edge.
720	SWC 85	F(1) - Dom Forams mod. pres sugary. Shelf/slope break	ost. bry. ech. count 3500, planks 70% - Benth diversity 12 + etched miliolids.

WELL NAME AND NO. SWEEP # 1.

DATE: 28/2/79.

PREPARED BY: DAVID TAYLOR.

SHEET NO. 3 of 6.

<u>DEPTH</u> IN METRES	SAMPLE TYPE	\underline{SLIDE}	ADDITIONAL INFORMATION
709	SWC 56		10% bright grn. blauc. r. pyr. Count Benths with 45% reworked limonitic ter spp.
700	SWC 86		e r. ost. ech. spic. count 10 - lens h energy shelf/slope break.
690	SWC 57		count 500, 60% planks. Pres. poor - conite stained slope benths + displaced cd.
680	SWC 87	count 6000, 70% pl	20% micrite frags, worn bry. frags. spicanks. pres. good often limonite stained. displaced spp. incl. BATTERED ROBULUS.
670	SWC 58		count 2000. planks 60%.Slope Benths + ch adherent limonite.
660	SWC 88	charophytes, count	. r.c. rd. qtz. common spics. 2 spp. 10,000, planks 80%. Small residue, mm. size sorted. High energy slope spp.
650	SWC 59		30% micrite, limonite adherent grains. anks. Slope benths + displaced spp.
630	SWC 60		r. adherent pyr. & limonite. r. pitted 3000, 65% planks slope benths.
622	SWC 90	infilled cibicidid count 450, 35% pla	ms, 30% limonitic lst, 10% pyrite ls. r. rd. qtz, ech, worn bry. frags. nks slope benths - high energy canyon lina carinata). Displaced Cibicides l history.
605	SWC 1	spics, ost., count	bundant limonite, r. adherent pyr. common 800 40% planks. slope benths (Dom. ariensis) + displaced shalf benths &

WELL NAME AND NO. SWEEP # 1

DATE: 28/2/79.

PREPARED BY: DAVID TAYLOR.

DRAW:

SHEET NO.4 of 6.

EPTH METRES	SAMPLE TYPE	\underline{SLIDE}	ADDITIONAL INFORMATION
592	SWC 2	stained + pyr. infi	s. 30% benths pyr. infilled & limonitilled ech. spines. Count 500, 30% s displaced with Dom. Cibicides
563.3	SWC 4	r. ang. qtz. spics	s (recryz). limonite to pyrite adhere (4), osts. count 450, 45% planks, slaulina carinata) + displaced spp. Hig
553	SWC 5	count 2500, 65% pla	with adherent limonite, spics, ech., anks, shelf/slope break benths + aths + reworked planks (D-2 or E).
537	SWC 6	C(1) - Dom forams - 2400, 65% planks - displaced benths.	limonite + r. pyr. adhering. Count mainly reworked D-2 spp. High % ?
533.7	SWC 7	limonite & pyr. aft ech, bry. ost. Mos	conded clay (difficult to dis er limonite abundant common spics, t specs. pyr. infilled. Count 120, illed, displaced & recrys. see below
527.5	SWC 8	Common pyr. infilli Globorotalia spp. Cibicides spp. Cou specs incl. D-2 plan	Abundant limonite & pyr after limoning of both <i>Cibicides</i> spp. & reworked Pyr. also adhering to externally nt 2000, 50% planks, 90% displaced nks. Rapidly buried in anaerobic energy proximal canyon fill.
517	SWC 9	charophytes & rework reworked shallow bea	undant limonite, common spics, r. ked gastr. Count 6000, planks 60%, nths & D-2 planks - 90% Canyon fill k 527.5 & 533.7 (note absence of Pyr.).
507.5	SWC 10	r. ost. count 500, 3 displaced benths (in miliolids) with oute	clay abundant limonite, commom spics, 30% planks incl. D-2 reworkings. 90% ncl. Massilina lapidera & corroded er shelf Cassidulina carinate. Most imal canyon fill but not instantaneou
498.2	SWC 11	B-1(1). Dom. planks reworked D-2 spp. Ou Cassidulina carinata	s Count 4500, 75% planks, incl. some ater shelf <i>Cibicides</i> spp. and

WELL NAME AND NO. SWEEP # 1

DATE: 28/2/79

PREPARED BY: DAVID TAYLOR.

SHEET NO.5 of 6.

			
<u>DEPTH</u>	SAMPLE TYPE	SLIDE	ADDITIONAL INFORMATION
IN METRES.			
469	SWC 13	Count 1200, 60% pl	& clay. Abundant limonite. ech. bry. ost. anks with minor D-2 reworked. Outer to with minor displaced spp. inc. rafted.
446.5	SWC 14	1200, 65% planks i outer shelf with d	& clay. Common spics. ech. ostr. Count ncl. reworked Zone C. Benths mid to isplaced forms incl. Massilina . miliolids.Pres. poor.
430.6	SWC 15		ms & clay limonite common. Abundant spics. nt 3000, 45% planks. Shelf benths + roded miliolids.
410.5	SWC 16	spics, ost. ech.,	clay with secondary calcite. Abundant gast., Pres. poor. Count 200, 10% planks corroded miliolids.
397	SWC 17	forams with pyr. e: "spots". Common s	y with limonite - limonitic infills of xternally as aggregates or isolated pics, v. poorly pres. bry. frags. Count v. small size. Cibicides spp = Dom see fraction.
382.5	A-4(1). Doi	ost., Count 1000,	y + 40% forams. Abundant spics, gastr., 10% planks - heavy calc. overgrowth erse mid to innershelf benths + abundant
351	SWC 20	Count 3000, 20% pla	enic with abundant diverse bry. gastr & echanks diverse inner shelf benths - similar modern fauna (e.g. "Challenger" Sta. 162).
327	SWC 22 A-	3(2) - calc. clay + s planks. Inner sheli	spic, bry., ech., ost. Count 500 55% benths.
315.5	SWC 23		g. glauc. Count 300, 10% planks. Inner reworking (e.g. ? Hofkerina semiornata).
300	SWC 24	- bryo. calcarer shallow shelf benth	a + ech. ostr. Count 300, 15% planks - as. Dom. <i>Cibicides</i> .

WELL NAME AND NO. SWEEP # 1

DATE: 28/2/79.

PREPARED BY: DAVID TAYLOR.

SHEET NO. 6 of 6.

DEPTH IN METRES.	SAMPLE TYPE	SLIDE	ADDITIONAL INFORMATION
273.5	SWC 26	<i>ibid</i> - Count Dom. <i>Cibicides</i> .	100, 10% planks shallow shelf benths.
264.5	SWC 27		500, 10% planks, very shallow water benths. a megalophoto & Elphidium crassatum. Dom. rent spp.
254.3	SWC 28	80% bry. Cour for 264.5.	t 500 - 5% planks. Shallow water benths as
241.5	SWC 29	spines. Count l	Mixture of fresh & worn bry. frags. & ech 000, 15% planks. Shallow benths as for ccurrence of reworked planks(eg. G.miotumida)
230.5	SWC 30	-	s. + ech. Moll. ostr, tubiporid coral, lanks. Shallow benths

MICROPALEONTOLOGICAL DATA SHEET

ВА	SI	N:	GIPPSLANI)			ELEVA	ATION: KB: +25.3m GL: -69m						
WEL	L NA	ME:	SWEEP #	L			TOTAL	DEPTH:	90	Om				
			HIG	НЕ	ST D	АТ	A	LO	WE	ST D	ΑТ	A		
	C 13	FORAM. ZONULES	Preferred		Alternate		Two Way	3		Alternate		Two Wa		
PLIO- PLEIS-		ļ	Depth	Rtg	Depth	Rtg	Time	Depth	Rtg	Depth	Rtg	Time		
		^A 1							 					
E E	-	A ₃		-										
		³ ^A 4	241.5	2		ļ		327	2					
PE		B ₁	351	1				397	1-1-					
ENE	LATE	B ₂	410.5	2	430.6	1		498.2	1					
	LA	C		_					_					
	闭	D ₁	507.5	1	·			553	1					
	Н	D ₂	563.3	2				563.3	2					
	Q Q	E ₁	592	1	-			605	0					
0	н	E ₂	622	1				650	2	630	0			
H	Σ		660	1				690	1			·		
Σ	χı	F	709	0				734	1					
	EARLY	G H l	736	1				738	_1_					
-		1 H ₂	740	1				744.5	1			····		
60	日日	1 1	747	1				755	1					
OLIGOCENE	Ą	1 1 ₂		-										
005	니													
OI	SARLY	J ₂												
-	بصب													
EOC-		K Pre-K							-					
		116-17												
CON	MEN	TS:												
		-		·										
			····											
		F1		··········			•		, <u>-</u> ,					
			•							······				
	FIDEN ATING				Complete ass Almost comp									
		2:	SWC or Co	ore -	Close to zonu	de ch	ange but al	ole to interpre	nce). t (low	confidence).				
•		3: 4:	Cuttings Cuttings	_	Complete ass	embl	age (low co	onfidence).						
		•.	Cuttings	_	Incomplete a depth suspicion				table	or SWC with				
NOT	E:	If an entry	is given a 3 or	4 con	fidence rating	, an	alternative	depth with a	better	confidence				
		rating shoul then no enti	d be entered, ry should be m	if pos	sible. If a sar	nple of	cannot be a	issigned to one	parti	cular zone,				
		limit will a	ppear in one z	one ar	nd the lowest p	ossib]	le limit in	another.	Sucol	hossinie				
							. *	•						
DATA	A REC	CORDED BY:	DAVID	TAY	LOR			DATE: N	OVEM	BER 10, 19	78			
DATA	A RE	/ISED BY:	DAVII	YAT C	LOR			DATE: F	EBRU	ARY 26, 19	79.			

SWEEP #1 Sheet 1 of 2

		n n	10 10	^	2	2				A) 10		^ ^																	
PLANKTIC SPECIES GROUP CO	RES IN	0 H 4	. 4 .	, o	•	٦ .	7 0	430.6	. 6	498.2	7	527.5 533.7	537	563.3	592	622	650	660	089	069	602	724	728	730	734	736	740	747	755
ORBULINA UNIVERSA	•	0	۰	0		ΙI	•		ĪĪ				I °	•	ΙΙ						<u> </u>		•		•		1. 1.		
GLOBIGERINA DECORAPERTA	•			•	• •		•						۰				•	•						c£					
G. BULLOIDES	۰		0 0	•	۰	• ,	۰	I:	I	I	r	I	۰ı	I	I	I	I	I I			I	I I			۰	۰			
G. NEPENTHES	?	?				?			?								_						-	_					
G. FALCONENSIS	•																												
GLOBOROTALIA CONTINUOSA	•		•	, ,		۰ ?						?			۰														
G. PUNCTICULATA	•	•				?	•	cf																					
GLOBIGERINOIDES spp. indet	t °	•																											
G. TRILOBUS			0 0	•				• :	II	II	I	ı °	I	I :	ΙI	• 1		I I	I		I :	ΙI	D	I I	I	cf °	•		
GLOBOROTALIA INFLATA		cf																											
G. MIOTUMIDA MIOTUMIDA			9 9	3 2	₽I	٩	ē	•	0 0		۰		? °																
GLOBOQUADRINA DEHISCENS (S	3.S.)	•				• •		۰				•		•	•			• •	•							•	ı °		
GLOBIGERINA APERTURA																													
GLOBIGERINOIDES RUBER		3				?					۰				۰	۰	•		•		0	•	۰		?				
GLOBOROTALIA MIOZEA MIOZEA	4		?			2		٠ .	० ०	오	٩	۰	<u>•</u> •	•	•	0 0	•	۰	•	۰ ?	۰								
G. CRASSAFORMIS			?	,		U																							
G. MIOCENICA			2																										
GLOBIGERINA WOODI WOODI				•		•									۰	1	[• •			1	Į.	۰	I I		I I	ı °	•	• •
GLOBOROTALIA CONOMIOZEA							cf	•		°cf		_	_		•														
G. MIOZEA CONOIDEA						•			۰	° G	•	• •		۰			cf	cf											
G. SCITULA					•	•		•	٠?																				
G. SPHERICOMIOZEA																													
GLOBOQUADRINA ADVENA							_			_			_	_												•			
GLOBOROTALIA PRAEMENARDII G. MENARDII							?			-	•	•	cf			0 0		• •	•	•		۰	۰		٥				
G. OBESA								0 0	0 0	۰	•	•													•				
GLOBIGERINELLOIDES AEQUILA	ATER ALIS							• •	•																				
GLOBOQUADRINA ALTISPIRA								?					?			۰	•			•	•								
GLOBIGERINOIDES SACCULIFER	R							•	•																				
GLOBOROTALIA MAYERI								2	-	<u>•</u>	•	?		•															
G. PANDA								•	٠,		2	2																	
G. PRAESCITULA									•	•	٥ و	2 ?			0	0 0	0 0			•	•	0	۰		۰	۰			
GLOBIGERINOIDES SICANUS		•							٥						0	0 (• •		•	•	۰	° I	?	II	•				
GLOBOROTALIA PERPHEROACUTA	A									<u>-</u>	<u>•</u>		2																
G. PERIPHERORONDA										2	2 2	2	<u>•</u>					•	0										
G. CONICA										<u>•</u>				으	<u>•</u>	? ?	?												
PRAEORBULINA GLOMEROSA											2				0 0	•	•	? ?	•	•	?			?					
ORBULINA UNIVERSA PARKERAI											0 0	•																	
GLOBIGERINA WOODI CONNECTA	4												<u>•</u>			. 1		•						۰	I	• •	I I		
ORBULINA SUTURALIS																	?												
GLOBOROTALIA ZEALANDICA																-	-						•	_					
GLOBIGERINOIDES TRILOBUS	(elongat	:e)																•						۰					
GLOBOROTALIA SIAKENSIS																			0	•			_	۰	_				
G. OPIMA CONTINUOSA																				-				•	•				
G. c.f. KUGLERI																							3	•					
G. BELLA																							۰	-					
GLOBIGERINOIDES TRILOBUS -	SICANUS	,																					-		۰	•	^		•
GLOBOOUADRINA DELLECENS (S	S. T. A																								-	•	т		
GLOBOQUADRINA DEHISCENS (S GLOBOROTALIA NANA (S.L.)	, . 11 .)																									•	1		-
G. OPIMA NANA (S.L.)																										0	-		
GLOBIGERINA PRAEBULLOIDES																											ΙI	•	۰
G. EUAPERTURA																											- +	٥	,
					•																								
Base in metres					327	39	7		498.	2			553		505	65	50		69	0				73	34	738	744	Π	755
of]			1				$ \bar{1} $	5 -2	E-	-1	,	E-2									1	
ZONE		?	?		A-3	3 A-	4	В	3-1			C		ا ا		٦	_						F			G	H-1		H-2
						1	- 1			- 1				1 1		l	i								- 1		1	1	_

SHEET 2 of 2.

720 724 728 730 732 734 736 736 740 744.5 747 747 747 CORES IN METRES BENTHIC SPECIES GROUP CIBICIDES LOBATULUS <u>ı</u> ° OPAQUS REFULGENS <u>ı . .</u> SUBHAIDINIGER. MID to CYGNORUN INNER PERFORATUS SHELF VICTORIENSIS THIARA THIAKA

BREVORALIS

NOVOZEALANDICUS PSEUDOUNGERIANAS ROBULUS SEP. LINGULINA METUNGENSIS GROUP LAGENA SPF. NODOSARIA SPP GLOBOCASSIDULINA SUBGLOBOSA GYROIDINOIDES SPP.

LENTICULINA MEGALOPHOTA SHALLOW ROSALINA MITCHELLI WATER STOMATORBINA CONCENTRIC KARRERIA MAORIA HERONALEENIA SPP. CARPENTARIA SPP. ° I SYMBIONTS on SEA GRASS & BRYOZOA ELPHIDIUM SPP. EPONIDES REPANDUS SIPHONINA AUSTRALIS HAPLOPHRAGMOIDES KARRERIELLA CYLINDRICA Ι SHALLOW TEXTULARIA CONICA WATER GOESII ARENACEOUS PSEUDOGRAMEN CARINATA GAUDYRINA CONVEXA AMMOSPHAEROIDINA SPHAERIFORMIS ı ı PSEUDOCLAVULINA BRADYANA
MARTINOTIELLA COMMUNIS ELEVATED . BATHYSIPHON KARRERIELLA BRADYI BASIN Ι DEEP or SLOPE STILOSTOMELLA SP.
"UVIGERINA" MAYNEI SPECIES I I I º º PROBOSCILEA CANARIENSIS PICKI SCHENKI CIBICIDES WUELLERSTORF CASSIDULINA CARINATA
"BATTERED" ROBULUS
"CORRODED MILIOLIDS" DISPLACED GRAINS SPONGE SPICULES C D "PYRITISED FAUNA" QUARTZ 100% 50% % BRYOZOA FRAGMENTS 0 % 100% % GLAUCONITE and/or LIMONITE PELLETS 50% х х x x 08. A - 3 С D F ZONE

WELL LOG ANALYSIS

bу

S. Patniyot

TO Well File, c.c. B.R. Griffith, R.J. Coppin

OPERATOR

Esso Australia Ltd.

WELL Sweep #1

DATE 18th August 1978

STATE Victoria

ELEV. 25.0m KB

			
	POROSITY	WATER SAT.	
DEPTH INTERVAL (m)			REMARKS
ISF Depths	ESTIMATE %	ESTIMATE	All intervals listed are interpreted a
	/0	%	being water productive.
782.0 - 84.5 (2.5) 784.5 - 85.5 (1.0)	26-28	100	V. shaley
	25	11	V. shaley
787.5 - 88.0 (0.5)	22-23	11	V. shaley
788.0 - 88.5 (0.5) 788.5 - 89.5 (1.0)	25-27	14	V. shaley
788.5 - 89.5 (1.0)	21	tt .	V. shaley
790.5 - 91.0 (0.5)	23-27	11	n n
791.0 - 92.0 (1.0)	19-21	TT .	n n
791.0 - 92.0 (1.0) 792.0 - 93.0 (1.0)	22-24	11	Shaley
793.0 - 94.0 (1.0)	27-28	11	
_ 794.0 - 94.5 (0.5)	28-30	11	
794.5 - 95.5 (1.0)	27-29	11	
795.5 - 97.0 (1.5)	29-32*	11	V. shaley
797.0 - 99.0 (2.0)	18-21	11	V. shaley
	23-25	tt .	Shaley
799.0 - 99.5 (0.5) 799.5 - 80.0 (0.5)	26-28	11	
800.0 - 803.0 (3.0)	30-34*	11	V. Shaley
903 0 904 5 (1 5)	28-32*	***	
808.5 - 809.0 (0.5)	20-22	11	V. shaley
809.0 - 810.0 (1.0)	23-26	11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
810.0 - 811.0 (1.0)	28-32*	100	
811.0 - 11.5 (0.5) 811.5 - 13.0 (1.5)	33-34*	11	
811.5 - 13.0 (1.5)	25-27	11	
813.0 - 14.0 (1.0)	29-34*	11	
- 01/ 0 1/ 5 (0 5)	27-29	11	
814.5 - 16.0 (1.5)	29-34	. 11	
816.0 - 17.0 (1.0)	25-27	11	
817.0 - 18.0 (1.0)	20-23	II .	Shaley
818.0 - 20.0 (2.0)	18-20	11	V. Shaley
824.5 - 25.0 (0.5)	23-25	11	
825.0 - 26.0 (1.0)	25-27	11	Shaley
826.0 - 27.0 (1.0)	22-24	"	ll ll
827.0 - 28.5 (1.5)	25-26	11	
828.5 - 30.0 (1.5)	24-25	11	
830.0 - 30.5 (0.5)	21-23	11	
830.5 - 31.5 (1.0)	25-27	11	
831.5 - 35.0 (3.5)	21-23	11	Shaley
TESTS:		<u> </u>	

FIT's at 795 + 801m resurted in zero fluid recovery.

FORMATION:

Latrobe

OGS:

ISF-MSFL-SONIC-GR FDC-CNL-GR

COMMENTS:

This interpretation uses the density and neutron logs as porosity indicators and gamma ray log as clay indicator. An Rw value of 1.4 at 135°F was used in the estimation of water saturation and corresponds to 2000 ppm NaCl. An invasion study carried out over some of the sands using Schlumberger Chart Rint-5, 1977 chart book edition revealed that depth of invasion in the range 10-15" had occurred at he time of resistivity logging.

S. Patnight

^{*} Possibly reading too high, adversely affected by mud or washout.

•		•	WELL Sweep	» #1
DEPTH INTERVAL (m)	POROSITY ESTIMATE %	WATER SAT. ESTIMATE		REMARKS
835.0 - 38.5 (3.5)	19-22	100	Shaley	
838.5 - 40.0 (1.5)	22-24	11	11	A.
840.0 - 42.0 (2.0)	22-24	11	11	
842.0 - 43.0 (1.0) 843.0 - 44.0 (1.0)	16-17 15-16	11	11	
844.0 - 45.0 (1.0)	18-20	11	11	· · · · · · · · · · · · · · · · · · ·
845.0 - 49.0 (4.0)	14-16	11	, ,	•
849.0 - 51.0 (2.0)	12-14	11	,,,	
851.0 - 52.5 (1.5)	11-13	11	11	·
852.5 - 53.0 (0.5)	14	11		
853.0 - 54.0 (1.0)	12-16	11	11	ng dia kabupatèn Kab
854.0 - 54.5 (0.5)	14-15	11	11	
854.5 - 55.5 (1.0)	22-24	11	11	
855.5 - 57.0 (1.5)	11-13	11	11	
857.0 - 57.5 (0.5)	13-15	11	11	
857.5 - 59.0 (1.5)	10-13	11 .	11	
859.0 - 60.0 (1.0)	10-13	11	11	
860.0 - 61.0 (1.0)	13-16	11	11 .	
861.0 - 63.0 (2.0)	11-13	11	11	
863.0 - 66.0 (3.0)	13-15	11	11	
866.0 - 67.0 (1.0)	16-18	11	** 11	and the second s
867.0 - 68.0 (1.0)	14-15	11	11	
_ 868.0 - 69.0 (1.0)	12	11	11	
869.0 - 70.0 (1.0)	14-15	11	11	
870.0 - 71.5 (1.5)	11-13	11	11	
871.5 - 72.5 (1.0)	14-17	11	,11	
872.5 - 74.0 (1.5)	10-12	11	11	
874.5 - 76.0 (1.0)	15-16	11	11	
875.0 - 76.0 (1.0)	15-16	11	11	
876.0 - 76.5 (0.5)	18	n	11	
876.5 - 78.0 (1.5)	10-11	11	11	
879.0 - 80.0 (1.0)	14-16	11	11 .	
880.0 - 81.0 (1.0)	19-23	11	11	
881.0 - 81.5 (0.5)	15-17	11	11	· · · · · · · · · · · · · · · · · · ·
881.5 - 82.0 (0.5)	11-14	ir	11	4
882.0 - 83.5 (1.5)	25-27	11	11	
883.5 - 84.0 (0.5)	22-24	' 11	11	
884.0 - 84.5 (0.5)	16-19	11	11	
884.5 - 85.0 (0.5)	10-13	11	11	
886.0 - 87.0 (1.0)	11	11	H .	
888.0 - 89.0 (1.0)	10-12	11	11	
890.0 - 90.5 (0.5)	11-13	: 11 ,	11	
893.0 - 93.5 (0.5)	12	11	11	
897.0 - 98.0 (1.0)	10-11	11	V. shaley	
898.0 - 900.0 (2.0)		11	Shaley	
		·		
•				•
	r'-			•
•				
	1.			
	· ·			
				• •
			,	•
		1.0		
	1	,		
		#]	
	· .			
•		[

VELOCITY SURVEY REPORT

VELOCITY SURVEY

	Well SWE	EEP.#1	
	BasinGIP	PP S LAND	
	•		
INTRODUCTION			
E	sso personnel	JOHN HUGHES	
•		VELOCITY DATA PTY. LTD.	
	Supplied ((1) Instruments	ş.,
		(2) Personnel	
		Seismic Observer B. POTTER Marine Shooter R. DOYLE	
•	•		
	•	Dynamite	
(3) Seismic S	ouce ((3) Licenced Shooting Boat	•
Gas Gun		name	
Gas Pressures	· · · · · · · · · · · · · · · · · · ·	date loaded	
0xygen 90) PSI		
Propane5	O PSI	Agent	
		amount of powder lbs	
	•	size of cans lbs	
		number of cans	
		number of caps	
	Personnel and Ins		
-		at OCEAN ENDEAVOUR date 26/7/1978	
		rig). OCEAN. ENDEAVOUR. date 2.7/7/19.78	
		urvey26/7/1978	
		pth. 13-3/8. @ .601.2m	•
		shot900 m FTD 900 m	
	water dept	th69. m K.B25.3.m	
SURVEY PROCED	URE *		
	Weather:	sea 0.5 m	
	¥ .	rig movement .NONE	٠
	•	rig noiseMODERATE	
	Hydrophone	es: number THREE	
		depth below sea level12.2 m	
		position 2-1 m above bottom of gas gun	
•		l- in moon pool	
	Shot Posit	tioning and Charges:	
**	i	marker buoys (number	
•	1	direction	
•	•	charge depth ft number of shots charge size 1b	16
• • • • • • • • • • • • • • • • • • •		number of shots	s.
Gas gun		number of misfires	

NO.	OF POPS PER LEVEL: -	2 TO 3 POP	S
1			amount of powder dumpedbs.
		Well-phone	positioning:
			T-bar
			number of depths10
•		Time:	first shot 1830 hrs
			last shot 2037 hrs
			rig time 3 hrs.
•		*	
	RESULTS		
		Quality of	records (good
		Comparison with sonic	of Interval Times log ///average26.87microsec/m/c/
			/\(\triangle max / \triangle 60.0 \triangle microsec/m
		•	
. '	CONCLUSION		
		Reliabilit	y of T-D curve FAIR
		•	

COMMENTS:

- 1) Traces 1: time break hydrophone
 - 2-5: well geophone at 4 different gain settings
 - 6: moon pool hydrophone
 - 7: dead trace
 - 8: time break hydrophone
- 2) The moonpool hydrophone was not working throughout the survey due to a break in the hydrophone cable. This could not be fixed without a considerable loss of time so it was decided to continue the survey without it.
- 3) A considerable amount of noise was experienced on most records. This was due to the shallow depth of the well.

	Shothole	information	n:- Elevo	ition, Dist	nce &	Direction fo	rom Wel	u I								<u> </u>]	Y-1-1 D					LOCATI	0 N
									ESS0		ORATIO A INC	N SW	Well EEP #1			Derric	k Floor)	Total Dept 900m	lat	. 38 g.148	03'26. 38'12.	.73"	tion,Towns	hip, Ronge County Area or Field GIPPSLAND an Sea Level BASIN
Record Shot Number Num	Time of Shot	Dgm (m)	Ds	tus	tr,	Reading	Folarity G	Grade	Dgs	н	TAN I	Cos i	Tgs	Δsd	∆sd V	Tgd	T g	d age	Dgd	△ D g đ	∆Tgd	Vi Interval Velocity	V a Average Velocity	Elevation Shothole Ae
24	2036	300	12.	2.008	3	.145	D	G	262.5	36.6	1394	.9904	.144	12.	2.00	8 .15		52 27	4.7				1807	De De Elevation Datum Plane
25	2037	300	"	"		.145	D	G	П	11	11	. 11	.144	11	. 11	.15				150	066	0070	-	Elevation Shot
																				150	.066	2273		
1	1830	450	12.	2.008	3	.211	D	F	412.5	36.	6.0887	.9961	.210	12.	2.00	8 .21	3 .2	18 42	4.7				1948	
2	1832	450	"	11		.211	D	F	11	11	11	n .	.210		11	.21				475		0100		1 \
			1					$\neg \vdash$											\neg	175	.083	2108	ļ .	S Dgm (
3	1848	625	12.	2.008	3	.294	D	G !	587.5	36.	5.0623	.9981	.293	12.	2.00	8 .30	1 .30	01 59	9.7				1992	1 "\ "".
4	1849	625 ⁻	- 11	- 11		.294	D	G	11	-11	- 11	П	.293		11	.30								1
				l · T				- 1						1						55	.024	2292		71-1
22	2022	680	12.	2.008	3 11	.318	D	FI	642.5	36.	5.0570	.9984	.317	12.	2.00	8.32	5 .37	25 65	4.7				2014	
23	2023			2.008		.318		P	11	11	11	11	.317	11	11	.32							1 201,	Dgm = Geophone depth measured from well glayd
				F										-	 		1							Dgs = " " " shot "
19	2009	744	12	2.008	₹	.347	D	G	706 5	36	5.0518	.9987	347	12	2 no	8.35	-			64.	.030	2133		Dgd = 4 4 4 datum 4
20	2010	744		2.008		.347	D	Ğ	11	11	. 11	11	.347	11	11	.35		55 71	8 7				2025	
21	2011	744	11	"		.347	. D	Ğ	11	11	- 11	11	.347	11	11	.35		33 / 1	<u></u>				2023	De = Shothole elevation to datum plane
							-							 										H = Horizontal distance from well to shotpoi
5	1901	772	12	2.008	₹	.359	D	F	OFFSI	FT D	ISTANC	F	359	12.	2.00	8 .36	1			28	012	2333		S = Straight line travel path from shot to well of
6	1902	772	11	11		.359		G			AFFEC				1 1	8 .36		67 74	6 7 L				2035	Tus = Uphole time at shotpoint
7	1903	772		11		.359		G	TIM		711 7 20					8 .36		0/ / 4	··/_				2033	T = Observed time from shotpoint to well geophon
	1303	1,75				.005		-					• 000	12.	00	0,30	1							tr = * * to reference geophone.
16	1958	805	12	2.008	3	.371	D	P					371	12	2 00	8 .37	ļ		[33	.013	2538		Δe = Difference in elevation between well & shot
17	1959	805	12.	2.008	3	.372		F								8 .38		80 77	9.7 L		-		2052	∆sd = .4
18	2000	805		2.008		.373		P								8 .38		00 / /					2002	Dgs = Dgm - Ds ± Δ e; ton i = $\frac{H}{}$
	2000	000		000	' —	.3/3	-						.373	12.	00	0 .30	 	-	-		•			$T_{gs} = cos i T_{\pi} V_{ert}$, travel time from shot elev, to g
8	1915	827	12	2.008	₹ 1	.380	D	F					380	12	2 00	8 .38				22	.008	2750		$T_{gd} = T_{gs} + \frac{\Delta_{gd}}{V} = H + \frac{1}{2} = \frac{1}{2} \text{ datum plane}.$
9	1916	827		2.008		.381		Ġ						1	1 1	8 .38	1	00 00	17				2066	
10	1917	827		2.008		.380		G								8 .38		00 00	/ _				2000	$Vi = \text{Interval velocity} = \frac{\Delta D g d}{\Delta T g d}$
10	1317	027	14.	2.000	'	.300	-	쒸					.300	17.		0.300	 			25	.008	3125		
14	1945	852	12	2.008	- 	.389	- -	립					380	12	2 01	8 .39	30	96 82	6 7 [2088	
15	1946	852				388										8 .39		00 02	<u>~</u> [2000	Surveyed by: J. Hugnes
	1 1 1 1 1	032	14.		' +	.500	- J	쒸					. 300	14.	04	0 . 59	1		[26.7.78
11	1932	896	12	2 00k	- 	.403	\neg						403	12		8 .41	*		Γ	44	.014	3143		Weathering Data :
														i				10 07	$\overline{-}$					
12 13	1933 1934	896 896	12	2.008 2.008	5-1	.402	D D	빔					402	12.	<u> </u>	8 .410 8 .410	4	TO 871	U-/				2124	
	1324	090	14.	2.048	} 	.402	_n -	-					.402	176.	2.04	0 .410	 		-					Casing Record
	 				-+			+									 		—I					13-3/8" @ 601.2m

• • •

F 4.32

VELOCITY SURVEY ERROR CHECK

Depth Pel. S.L.	Av. Vertical Travel Time (check shots)	Ti Check Shots (sec.)	Ti Sonic Log (sec.)	△ (Millisecs.) Ti — Ti Check Sonic	Depth Interval (m)	Error (Microsec. per m)
275	.152	.066	.0675	-1.5	150	10.0
425	.218		- 			1
425	.218	.083	.0785	4.5	175	25.7
600	.301					
600	.301	.024	.023	ı	55	18.2
655	.325					
655	.325	.030	027	3 [.]	64	46.9
719	.355	.030	.027	3	04	40.9
719	.355	0.1.0	0.7.2	-	20	35.7
7 47	.367	.012	.013	-1	28	35.7
747	.367		·			
780	.380	.013	.013	0	33	0
■ 78′0	.380				· · · · · · · · · · · · · · · · · · ·	:
802	.388	.008	.009	-1	22	45.4
802	.388					
		.008	.0095	-1.5	25	60.0
827	.396					
<u>827</u>	.396	.014	.014	0	44	0
871	.410					
						3
	, i					
		·				
		•				
		1				
					<u> </u>	

PO. Box 141, Kenmore, Queensland, 4069. Telephone (072) 78 4860(Office) (072) 93 1514(Field Operations)

Esso.	26 July 78	
WELL 14	ESSO.	<u></u>
	WELL 74 /	 1'

OBSERVERS REPORT

GEOPHONES WELL SELD SEAD OF STATE OF THE SEA PLOOP REPRENCE SENSOR OF STATE OF THE SEAD OF STATE OF STATE OF THE SEAD OF STATE	ENERGY SOUR	CE CIAS	GUN	•	RECORDIA	JG INSTRI	IMENTS (Sch	· ·	GGERS-Hombargar.
MARTING SENSON OFFSET	GEOPHONES:	VELI 621	_S 10	300	REFEREN	CE NOT U	sect		SEA FLOOR	DEEDVALON
RETURN RECERT STATE OF THE REAL PROPERTY OF O						<u> </u>			DRILL SHIP	Earterland SHIP HEADING
RECENSION CHANGE SEPTH COMMENTS SHOT CAMPON OFFSET THE COMMENTS SHOT CAMPON OFFSET SHOT					SEAS C	alm.			Diffice Office	J. J
TIME COMMENTS TIME COMMENTS TIME COMMENTS							ALADI ICI	FROMIN	 	
#50n. 1 Sec 45t. 6t. 15ct. 2/1 0 1830 Snow break wisheavy Suffer 2 1	■ KB DEPTH	1	ľ	SHOT DEPTH		r	AMPLIFI	ENGAIN	TIME	COMMENTS
C		1			Port	1504	2/1	0		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
625 m		z		 	Crane	"	,			1 1
772 m 5	625 m	.3	11	1,	1	1 1	ct .	11		
772 m 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		н	t	, tr	<i>i</i> 1	1/	"		
1	772 m		l1	10	• (u	te	u	1901	
827 m 8 n n n n n n n n n n n n n n n n n n		6	17	tı	(1	. 16	٠,	11	1902	
1		 	11	11	11	11	t t	11		
10	827 M		11	11	11	11.	11	11		
896 m 11	. (9	n	11	n	11	l1	n		
12			 	11						
852m M- 11 11 11 11 11 11 11 1334 852m M- 11 11 11 11 11 11 11 1945 805 m 16 11 11 11 11 11 11 11 1959 117 11 11 11 11 11 11 11 1959 118 11 11 11 11 11 11 11 11 11 11 11 11	896 m		 	 	 	 	()			
852m A- 11			 	 	 		lı .			
15	5.55		 	+						
805 m. 16 11 11 11 11 1359 177 11 11 11 11 1355 188 11 11 11 11 1355 189 11 11 11 11 1355 180 m. 122 11 11 11 11 11 11 2010 20 11 11 11 11 11 2010 21 11 11 11 11 2022 23 11 11 11 11 11 2037 25 11 11 11 11 11 2037 100 m. 24 11 11 11 11 11 2037 100 m. 24 11 11 11 11 11 2037 100 m. 24 11 11 11 11 11 2037 100 m. 25 11 11 11 11 11 2037 100 m. 26 11 11 11 11 11 11 2037 100 m. 26 11 11 11 11 11 11 11 2037 100 m. 27 11 11 11 11 11 11 2037 100 m. 20 m	852m		 	 	 	 				
17 1 1 1 1 1 1 2009 THY M 19 1 1 1 1 1 1 2009 20 1 1 1 1 1 1 1 2000 20 1 1 1 1 1 1 1 2000 21 1 1 1 1 1 1 1 2000 880 M 22 1 1 1 1 1 1 1 1 2022 23 1 1 1 1 1 1 1 1 2037 3004 24 1 1 1 1 1 1 1 1 2037 25 1 1 1 1 1 1 1 1 1 2037 Note Moonpool found oben Circult at start of Surveys not replaced Through lack of time.	Q = =		 	 	 	 				
18 1 1 1 1 1 1 2000 74 1 1 1 1 1 1 2000 20 1 1 1 1 1 1 2000 21 1 1 1 1 1 2000 25 1 1 1 1 1 1 2000 25 1 1 1 1 1 1 2000 25 1 1 1 1 1 1 2000 25 1 1 1 1 1 1 2000 25 1 1 1 1 1 1 2000 25 1 1 1 1 1 1 2000 Mode Moontrook found often Circuit at Start of Surence through dock of time. Note the place of through dock of time.	805 M	T	 	 		1				1
144 m 19 1 1 1 1 1 2009 20 1 1 1 1 1 1 2010 21 1 1 1 1 1 2021 680 m 22 1 1 1 1 1 1 2022 23 1 1 1 1 1 1 1 2023 300m 24 11 1 1 1 1 1 2037 10 2037 10 1 1 1 1 1 2037 10 1 1 1 1 1 1 2037 10 1 1 1 1 1 1 1 1 1 2037 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7	 	1		1				
20 1 1 1 1 1 1 2010 21 1 1 1 1 1 1 1 2021 580 M 72 1 1 1 1 1 1 1 1 2022 23 1 1 1 1 1 1 1 2023 300m 24 11 1 1 1 1 1 2037 25 1 1 1 1 1 1 2037 Thank 1 2037 Thank 1 1 2037 Thank 1 2037 Thank 1 1 1 1 2037 Thank 1 1 1 1 2037 Thank 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2037 Thank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	744 m					† 				1
1	<u> </u>			+	1,	 				
680 m 22		21	†	4	4		31	l		
23 " " " " " 2023 300m 24 " " " " " 2037 Thong Note Moontroon found open CITCUIT A Start of Surveys not replaced Through lack of time.	680 m		'n	l ₁	14	11	11	71		
NUMBER OF RECORDS 25 EXPLOSIVES USED: CAPS. PART TAKENDE THOUGH TO THE TAKENDE THOUGH TO THE TAKENDE THOUGH TO THE TAKENDE TH		2.3	11	(1	11	ħ	٦(n		
Note Moonpach found open Circuit at shart of Surveys not replaced through lack of time.	300m	24	11	4	п	и	lı .	Ŋ	2036	
NUMBER OF RECORDS 25 EXPLOSIVES USED: CAPS. PRIMERS EXPLOSIVE		Z5	4	4	11	t ₁	4	11	2037	
NUMBER OF RECORDS 25 EXPLOSIVES USED: CAPS. PRIMERS EXPLOSIVE		ļ	<u> </u>						<u> </u>	
NUMBER OF RECORDS 25 EXPLOSIVES USED: CAPS PRIMERS EXPLOSIVE		ļ	ļ		ļ .					Note Moonpooly found open
NUMBER OF RECORDS 25 EXPLOSIVES USED: CAPS PRIMERS EXPLOSIVE		ļ	ļ	<u> </u>						circuit at start of
LANDON CONTROL LANDON CONTROL		-	 	 	,l					Surveys not replaced
LANDON CONTROL LANDON CONTROL		-	 		 				ļ	through ldck of time.
LANDON CONTROL LANDON CONTROL		+	 	 	 	· ·		·		<u> </u>
LANDON CONTROL LANDON CONTROL		 	 	 	-	 	-			
LANDON CONTROL LANDON CONTROL		<u> </u>	 	 	 					
LANDON CONTROL LANDON CONTROL		†	<u> </u>	 			- 17 M - 11 Live			
LANDON CONTROL LANDON CONTROL		 	-	1	 					
LANDON CONTROL LANDON CONTROL		1	 	1					 	
LANDON CONTROL LANDON CONTROL		1			1	<u> </u>				
LANDON CONTROL LANDON CONTROL										
LANDON CONTROL LANDON CONTROL										
LANDON CONTROL LANDON CONTROL										
LANDON CONTROL LANDON CONTROL										
LAF DOING TOOLS ON THE TOOLS OF					1					
DEPART BRISBANE 25 July 78 RETURN BRISBANE 2/ July 78 OBSERVERSK FETTER	NUMBER OF F	RECORDS.				EXPLOSI	VES USED	CAPS		_PRIMERSEXPLOSIVE
Perth O ' Marth ' \	DEPART BEIS	BANE 2	<u>5,7~~</u>	ly]	8	RETURN	BRISBAN	F _ 2/	194	78 OBSERVERSK tetter
	Per	けり)	•			1-6-14	m '		

WELL VELOCITY RECORD

26 - 7 - 1978

Rec. No. 24 300 m. K.B.

Rec. No. 25 300 m. K.B.

Rec. No. I 450 m. K.B.

Rec. No. 2 450 m. K.B.

Rec. No. 3 625 m. K.B.

Rec. No. 4 625 m. K.B.

WELL VELOCITY RECORD

26 - 7 - 1978

Rec. No. 22 680 m. K.B.

Rec. No. 23 680 m. K.B.

Rec. No. 19 744 m. K.B.

Rec. No. 20 744 m. K.B.

Rec. No. 21 744 m. K.B.

Rec. No. 5 772 m. K.B.

WELL VELOCITY RECORD

26 - 7 - 1978

Rec. No. 6 772 m. K.B.

Rec. No. 7 772 m. K.B.

Rec. No. 16 805 m. K.B.

Rec. No. 17 805 m. K.B.

Rec. No. 18 805 m. K.B.

Rec. No. 8 827 m. K.B.

WELL VELOCITY RECORD

26 - 7 - 1978

Rec. No. 9 827 m. K.B.

Rec. No. 10 827 m. K.B.

Rec. No. 14 852 m. K.B.

Rec. No. 15 852 m. K.B.

Rec. No. 11 896 m. K.B.

Rec. No. 12 896 m. K.B.

Rec. No. 13 896 m. K.B.

FORMATION TEST RECORDS

ANALYSIS OF FORMATION INTERVAL TESTS - SWEEP -1

Designation Depth (KB) Details

FIT-1

801m

Recovered: No recovery

Pressures: Initial hydrostatic: 10.58MPa; (1535.6
psig). Sampling Pressure: 8.04MPa (1167 psig).
Final hydrostatic: not recorded.

Main chamber was open for 17 mins 38 secs. On opening tool pressure dropped from hydrostatic to the expected formation pressure of 8.04 MPa. Segregator was open for 1 min 26 secs. and pressure remained at 8.04MPa. No sample was recovered from main chamber or segregator. Piston malfunction suspected.

FIT-2

795m

Recovered: mud

Pressures: Initial hydrostatic: 10.503MPa (1524.5 psig). Sampling pressure: 10.466MPa (1519 psig) fluctuating.

Final hydrostatic: 10.503 MPa (1524.5 psig)

Main chamber was open for 7 mins 21 secs. On setting tool, pressure increased from hydrostatic to a supercharge of 14.02-13.37 MPa. On opening tool, pressure dropped to 10.466 MPa (near hydrostatic) fluctuating by up to 1.37MPa.

Segregator was opened and pressure dropped to a minimum of 4.009 MPa in 9 secs., increasing slowly to 4.37MPa after 1 min 49 secs. The very slow build up indicated tool was plugged, and the segregator was sealed and tool dumped. Recovered mud at surface indicating partial seal failure.

F.I.T. RECORD

			-		GEO	OLOGIST/S:	P. Kemp R.C.N. Thom	m ton t
WELL:	Sweep-1	F.I.T.	NO: 1	a				
	ULT: Unsu							-
	ETHOD:							
	Tool Set: 0				,	Dosn: 17 r	— mins 38 secs.	
	Shaped Charge							
	Segregator Op							
	Tool Closed:					-		,
	Segregator Ty					-		
	Segregator or					- -		
MIID DATA	: In Hole							
	more Resistivity F	≀mf	Ωa		O _{C Equiv.}	Na. Cl.		ppm
	Fitration Cl	_						ppm ppm
	SAMPLE TAKEN				NO 5			PP***
		m hab or						
RECOVERY	- MAIN CHAME	BER						
			_ L. Gas				L. Filtra	ite
_			_L. Oil				L. Mud	
			L. Form	ation Water			L. Other	
PROPERTIE	ES - MAIN CHA	MBER						
c	GAS C	c	C	C	C	C	нс	
	GAS C	c ₂	c ³	c ₄	c ₅	c ₆	H ₂ S	
			·		-			
				-	*			
	-		. <u></u>					
	-	***************************************						1
. (OIL	OAPI @		o _{F;} Pour	Point		o _F	1
			Lour;		Fluc	rescent C	Colour	
		G.(D.R.					
RESTSTIVI	TTY WATER/FIL	льуль	Ω	a	O _{F Equiv}	7. Na. Cl.		nnm
	Fitration Cl	•			_ r require			_ ppm
	rreraction of			ppm .	NO 3:			ppm
PRESSURES	6 - MAIN CHAM	BER		A	gnew			
M	Pa-g	Schlumber	ger	Amerada	Amer	ada	_ Hewlett P	ackard*
Initial H	lydrostatic	144		` .	•		10.58Mpa(153	5.6 psig)
Sampling							8.04Mpa(116	
Final Shu	ıt-in	C					8.639Mpa(116	•
Hydrostat	ic					,	Not reco	
-	n Pressure		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	**************************************	
(Horn	ner)		· · · · ·	Sampling T	ime Min	17 mins	38 secs	**
		± .		Shut-in T	ime Min		<u></u>	
		(*Correcto	d for At	mospheric p	ressure)			
TEMPERATU	JRES: (max r	ecorded)		°c		°c		
	H TOOL REACH			m	paper and record to the control of t			
	CE CIRCULATIO	•		" Hrs				
	TEMPERATURE	• •		o _C	•			
REMARKS:							. gauge indi	
	at that	depth.	. OT TTO/	hald: mureu	was the ex	pected 10	rmation press	Juic

F.I.T. RECORD P. Kemp GEOLOGIST/S: R.C.N. Thornton F.I.T. NO: 2 @ 795 m (KB) DATE: 26.7.78 Sweep-1 TEST RESULT: Unsuccessful. Tested mud due to seal failure FIRING METHOD: Normal CHOKE SIZES: 1.02" Tool Set: 01:55 Tool Open: 04:02 Min.Open: 7 mins 21 secs TIMES: Shaped Charge Shot: XXXX/No at: _____Min. Open: _____Full After: Segregator Open: 11:23 Mins.Open: 1 min 49 secs Full After: Not full Tool plugged @ Tool Closed: 13:12 Tool Off: 13:16 ≈ 600 psi Segregator Type: _____ Number: Segregator opened/transferred container No.: MUD DATA: In Hole Resistivity Rmf Ω @ _____OC, Equiv. Na. Cl. _____ ppm Titration Cl: ppm NO 3: SAMPLE TAKEN AT END OF LAST CIRCULATION RECOVERY - MAIN CHAMBER kPa Surface Pressure L. Gas L. Filtrate L. Oil L. Mud L. Other PROPERTIES - MAIN CHAMBER C₄ GAS H2S C_2 C₃ . C₅ OIL _____OAPI @ o F; Pour Point Colour; _____ Fluorescent Colour G.O.R. RESISTIVITY WATER/FILTRATE Ω @ Ω F Equiv. Na. Cl. Ω NO 3: Titration Cl : _____ ppm PRESSURES - MAIN CHAMBER Agnew Schlumberger Amerada Amerada Hewlett Packard* MPa-q 10.503Mpa(1524.5psig) Initial Hydrostatic fluctuating :- 10.466Mpa (1519psig) Sampling Final Shut-in 10.503Mpa(1524.5psig) Hydrostatic Formation Pressure (Horner) ____ Sampling Time Min. Shut-in Time Min. (*Corrected for Atmospheric pressure) TEMPERATURES: (max recorded) MAX. DEPTH TOOL REACHED:

MAX. DEPTH TOOL REACHED: m

TIME SINCE CIRCULATION: Hrs

FORMATION TEMPERATURE (HORNER)

REMARKS: Partial Seal Failure. Tested Mud. Maximum Hydraulic Pressure used not sufficient at this depth.

ENCLOSURES

This is an enclosure indicator page. The enclosure PE902748 is enclosed within the container PE902747 at this location in this document.

The enclosure PE902748 has the following characteristics:

ITEM_BARCODE = PE902748
CONTAINER_BARCODE = PE902747

NAME = Isopach Map Top of Latrobe Group - Top

of Strzelecki Group

BASIN = GIPPSLAND

PERMIT =

TYPE = SEISMIC

SUBTYPE = ISOPACH_MAP

DESCRIPTION = Isopach Map Top of Latrobe Group - Top

of Strzelecki Group

REMARKS =

DATE_CREATED = 1/11/78

DATE_RECEIVED =

 $W_NO = W704$

WELL_NAME = Sweep-1 CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902746 is enclosed within the container PE902747 at this location in this document.

The enclosure PE902746 has the following characteristics:

ITEM_BARCODE = PE902746
CONTAINER_BARCODE = PE902747

NAME = Structure Map Top of Strzelecki Group

BASIN = GIPPSLAND

PERMIT =

TYPE = SEISMIC

SUBTYPE = HRZN_CONTR_MAP

DESCRIPTION = Structure Map Top of Strzelecki Group

Post Sweep-1

REMARKS =

 $DATE_CREATED = 1/09/78$

DATE_RECEIVED =

 $W_NO = W704$

WELL_NAME = Sweep-1 CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902745 is enclosed within the container PE902747 at this location in this document.

The enclosure PE902745 has the following characteristics:

ITEM_BARCODE = PE902745
CONTAINER_BARCODE = PE902747

NAME = Structure Map Top of Latrobe Group

BASIN = GIPPSLAND

PERMIT =

TYPE = SEISMIC

SUBTYPE = HRZN_CONTR_MAP

DESCRIPTION = Structure Map Top of Latrobe Group Post

Sweep-1

REMARKS =

 $DATE_CREATED = 1/09/78$

DATE_RECEIVED =

 $W_NO = W704$

WELL_NAME = Sweep-1 CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902749 is enclosed within the container PE902747 at this location in this document.

The enclosure PE902749 has the following characteristics:

ITEM_BARCODE = PE902749
CONTAINER_BARCODE = PE902747

NAME = Geological Cross Section A-A'

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = CROSS_SECTION

DESCRIPTION = Geological Cross Section A-A'

REMARKS =

 $DATE_CREATED = 1/11/78$

DATE_RECEIVED =

 $W_NO = W704$

WELL_NAME = Sweep-1

CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902750 is enclosed within the container PE902747 at this location in this document.

The enclosure PE902750 has the following characteristics:

ITEM_BARCODE = PE902750
CONTAINER_BARCODE = PE902747

NAME = Sonic Calibration Curve

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Sonic Calibration Curve

REMARKS =

DATE_CREATED = 1/09/78

DATE_RECEIVED =

 $W_NO = W704$

 $WELL_NAME = Sweep-1$

CONTRACTOR = ESSO

 $CLIENT_OP_CO = ESSO$

This is an enclosure indicator page. The enclosure PE906357 is enclosed within the container PE902747 at this location in this document.

The enclosure PE906357 has the following characteristics:

ITEM_BARCODE = PE906357
CONTAINER_BARCODE = PE902747

NAME = Time Depth curve

BASIN = GIPPSLAND PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Time Depth Curve for Sweep-1

REMARKS =

DATE_CREATED = 30/09/78 DATE_RECEIVED = 2/04/79

 $W_NO = W704$

WELL_NAME = SWEEP-1

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE902751 is enclosed within the container PE902747 at this location in this document.

The enclosure PE902751 has the following characteristics:

ITEM_BARCODE = PE902751
CONTAINER_BARCODE = PE902747

NAME = Drilling History Curve

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Drilling History Curve

REMARKS =

DATE_CREATED = 12/05/78

DATE_RECEIVED =

 $W_NO = W704$

WELL_NAME = Sweep-1

CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE601417 is enclosed within the container PE902747 at this location in this document.

The enclosure PE601417 has the following characteristics:

ITEM_BARCODE = PE601417
CONTAINER_BARCODE = PE902747

NAME = Well Completion Log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = COMPLETION_LOG

DESCRIPTION = Well Completion Log

REMARKS =

DATE_CREATED = 29/07/78

DATE_RECEIVED =

 $W_NO = W704$

 $WELL_NAME = Sweep-1$

CONTRACTOR = ESSO

 $CLIENT_OP_CO = ESSO$