

BEACH PETROLEUM N.L.

(incorporated in South Australia)

WCR Westgate-1A (W929) 1-3101C3M

ずぐが

PETROLEUM DIVISION

0 3 FEB 1987

BEACH PETROLEUM N.L.

WESTGATE NO 1A

OPA PEP 108 - OTHAN BASIN -

WELL COMPLETION REPORT

ΒŸ:

BUM

io.

B.L. RAYNEF. OCTOBER, 1986.

CONTENTS

ا المحافظ المحافظ

				•	Page	Number
SUM	MARY					1
1.	INT	RODUCTI	ON			2
2.	WELI	L HISTO	RY			•
	2.1	Locat	ion			4
	2.2	Gener	al Data			4
	2.3	Drill	ing Data 🚎 🤄			7
		2.3.1	Drilling Contractor			7
		2.3.2	Drilling Rig			7
		2.3.3	Casing and Cementing Details			8
		2.3.4	Drilling Fluid			9
		2.3.5	Water Supply			10
	2.4	Forma	tion Sampling and Testing			10
		2.4.1	Cuttings			10
		2.4.2	Cores			11
		2.4.3	Tests			12
	2.5	Loggin	ng and Surveys			16
		2.5.1	Mud Logging		.:	16
		2.5.2	Wireline Logging			16
		2.5.3	Deviation Surveys			18
		2.5.4	Velocity Survey			18
3.	RESU:	LTS OF	DRILLING			
	3.1	Strati	graphy			19
	3.2		ogical Descriptions		• •	22
			Heytesbury Group		* **	22
		3.2.2	Nirranda Group			23
		3.2.3	Wangerrip Group			24
		3.2.4	Sherbrook Group			26
		3.2.5	Otway Group		•	30
	3.3	Hydroc	arbon			30
		3.3.1	Mud Gas Readings			30
		3.3.2	Sample Fluorescence			32

CONTENTS (CONT'D.)

				Page Number	
4.	GEOI	OGY			
	4.1	Struct	ure	34	
		4.1.1	Seismic	34	
		4.1.2	Dipmeter	39	
	4.2	Porosi	ty and Water Saturation	46	
		4.2.1	Pebble Point Formation	46	
		4.2.2	Paaratte Formation	47	
		4.2.3	Nullawarre Greensand Member	47	
		4.2.4	Flaxmans Formation	47	
		4.2.5	Waarre Formation	51	
	4.3	Matura	tion and Source Rock Analysis	51	
		4.3.1	Maturation/Organic Type	51	
		4.3.2	Total Organic Carbon	52	
	4.4	Releva	nce to Occurrence of Hydrocarbons	54	

FIGURES

		Page Number
1.	Regional Location Map	5
2.	Detailed Location Map	6
3.	Prognosed and Actual Stratigraphy	20
4.	Stratigraphy of the Otway Basin	21
5.	Time Structure Map of the Near Top	35
	Upper Cretaceous	
6.	Time Structure Map of the Near Base	36
	Upper Cretaceous	
7.	"Pre Drill" Seismic Line TME 85-400	37
8.	"Post Drill" Seismic Line TME 85-400	38
9.	Structural Model inferred from Dipmeter	44
10.	Flaxmans Formation Neutron-Density Crossplot	49
11.	Vitrinite Reflectance and Total Organic	53
	Carbon Profile	33

APPENDICES

- 1. Details of Drilling Plant
- 2. Summary of Wellsite Operation
- 3. Drilling Fluid Recap
- 4. Sidewall Core Descriptions
- 5. Velocity Survey
- 6. Mean Square Dip Processing Report
- 7. Palynology
- 8. Maturation and Source Rock Analysis
- 9. Petrology
- 10. Analysis of Gas Cut Water from DST #1
- 11. Magnetic Single Shot Directional Survey
- 12. Wireline log Directional Survey.

ENCLOSURES

- 1. Composite Well Log
- 2. Exlog Mud Log
- 3. Schlumberger Wireline Logs (In Well Box FE180298)

SUMMARY

Westgate No. 1A was drilled as a wildcat exploration well in PEP 108, Otway Basin, Victoria, approximately 12 km northwest of the Paaratte gas field.

Participants in the well were Beach Petroleum N.L. (Operator) and Bridge Oil Ltd.

The structure is a fault controlled culmination with laterally offset Waarre and Pebble Point Formations as the primary targets. The borehole was deviated to intersect these targets at their highest structural points.

Drilling commenced on the 23rd February 1986 and reached a total measured depth of 1918m. At 972m MD mechanical problems necessitated the hole being plugged back to 554m MD and redrilled. At 1414m the drill string became stuck, but was freed after displacing the drilling mud with water.

A total of three wireline logging suites were performed as follows; at 456m, Induction/Sonic; at 1144m Induction/Sonic, at 1918m Dual Laterolog/Micro-spherically focused, Litho Density/Compensated Neutron, Sonic, Stratigraphic High Resolution Dipmeter, Natural Gamma Ray Spectrometry, Microlog, Well Velocity Survey (standard and offset), Sidewall Cores (29 recovered) and a Repeat Formation Tester. No conventional cores were cut.

All the prognosed target formations were intersected but proved to be water saturated. A good gas show was however, recorded within the Flaxmans Formation.

A cased hole test was performed over the most promising zone and produced a small amount of gas cut water.

Westgate No. 1A was plugged and abandoned as a dry hole on the 24th March 1986.

1. INTRODUCTION

Westgate No. 1A was drilled in the Port Campbell Embayment of the Otway Basin.

The Otway Basin is an east-west trending trough, extending from Cape Jaffa in South Australia, east to the King Island - Mornington Peninsula Ridge. The basin contains up to 8000 metres of Lower Cretaceous to recent sediments and has an areal extent of some 105,000 square kms.

The trough was initiated in the late Jurassic in response to a major tensional regime associated with the separation of Australia and Antartica. By Upper Cretaceous times a series of north trending, sub-parallel embayments had developed. Within each embayment the structural framework is dominated by a few major down-to-basin normal faults which form large tilted fault blocks. The platform areas are generally heavily modified by many smaller "compensating" fault systems, some of which have a reverse component.

In the central region of PEP 108, a major down-to-basin normal fault, the Timboon Fault, splinters into two prominent faults separated by a fault dissected platform. Westgate No. 1 was drilled on this platform, close to the bifurcation point of the Timboon Fault.

The prospect was delineated by the 1984 Beach/Bridge Timboon (TM) Seismic Survey and refined by the 1985 Beach/Bridge Timboon Extension (TME) Seismic Survey.

The primary targets were the basal Upper Cretaceous Waarre Formation and the basal Tertiary Pebble Point Formation.

At Waarre Formation level the structure is an asymmetric horst block bounded by northeast - southwest trending normal faults. The south bounding fault terminates within the Upper Cretaceous but closure is inferred against the north bounding fault up to the basal Tertiary.

As the highest points of the Waarre Formation and the Pebble Point Formation over this structure are laterally offset by some 390m (the Waarre Formation being further north) the borehole was deviated by the appropriate amount in order to maximise the potential of this exploration well.

2. WELL HISTORY

2.1 Location (see Figure 1)

Rig Co-ordinates:

Latitude: 38° 28' 1.02" S

Longitude: 142° 53' 12.34" E

Real Property Description:

County of Heytesbury

Parish of Brucknell

Property Owner:

I. & C. Cashmore

Shire:

Heytesbury

Westgate No. 1A was a directional hole designed to test two targets. Firstly the Pebble Point Formation at Shot Point 172 on Seismic Line TME400, 38° 27' 53.84" S, 142° 53' 17.60" E; and secondly the Waarre Formation at Shot Point 185 on Seismic Line TME400, 38° 27' 43.86" S, 142° 53' 27.47" E.

2.2 General Data (see Figure 2)

Well Name and Number:

Westgate No. 1 and 1A

Tenement:

PEP 108

Operator:

Beach Petroleum N.L.

685 Burke Road,

CAMBERWELL, VIC., 3124.

Participants:

Beach Petroleum N.L.

Bridge Oil Limited, Level 33, CBA Centre, 60 Margaret Street, SYDNEY, N.S.W., 2000.

Rig Elevation:

Ground Level 88.1m ASL

Kelly Bushing 94.3m ASL

(Unless otherwise stated all depths refer to measured or along hole depth (MD) relative to the kelly

bushing.)

Total Depth:

Driller:

1918m MD

Wireline Logger: 1917m MD

Date Drilling Commenced:

23rd February 1986 @ 03:30 hrs

Date Total Depth Reached:

12th March 1986 @ 12:15 hrs

Date Rig Released:

24th March 1986 @ 02:00 hrs

Drilling Time to TD:

20 days

Status:

Plugged and abandoned.

2.3 <u>Drilling Data</u> (see also Appendix 1 and 2)

2.3.1 Drilling Contractor

Richter Drilling Pty. Ltd., V.A.C.C. Building, 1st Floor, 14 Cribb Street, MILTON, QLD., 4064.

2.3.2 Drilling Rig

Richter Rig No. 8 - National 80B

2.3.3 Casing and Cementing Details

A 20" conductor pipe was set at 9m.

Surface Casing

Size: 9-5/8"

Weight and Grade: 38 joints 36 lb/ft J55 BTC

Centralizer: At 444m, 435m, 426m.

Float Collar: 440m

Shoe: 453m

Cement: 441 sacks Class "A" with

2.5% prehydrated gel. 161

sacks Class "A" neat.

Cemented to:

Method: Single plug displacement

Surface

(top plug only).

Equipment: Halliburton truck mounted

unit.

Production Casing

Size: 5½"

Weight: 15 joints 15.5 lb/ft, 147

joints 17.0 lb/ft.

Centralizer: At 1700m, 1711.5m, 1723.7m,

1735.5m, 1747.4m, 1759.3m,

1771.5m, 1781.3m, 1791.0m,

1801.1m, 1810.8m, 1820.6m,

1830.3m, 1840.4m, 1850.1m,

1859.9m, 1870.0m, 1879.7m,

1189.5m, 1899.2m, 1909.3m.

1189.5m, 1899.2m, 1909.5m

Float Collar:

1903.2m

Shoe:

1914m

Cement:

490 sacks Class "A" cement.

Cemented to:

1410m.

Method:

Single plug displacement

(top plug only).

Equipment:

Halliburton truck mounted

unit.

Cement Plugs

Plug No. 1

Interval:

1763.5 - 1713.5m

Cement:

86 sacks Class "A".

Method:

Balanced

Tested:

1000 psi for 5 minutes.

Plug No. 2

Interval:

896 - 846m

Cement:

89 sacks Class "A".

Method:

Squeezed.

Tested:

No

Plug No. 3

Interval:

423 - 377.3m

Cement:

.51 sacks Class "A"

Method:

Balanced

Tested:

1000 psi for 5 minutes

Plug No. 4

20 sacks hand mixed at surface.

2.3.4 <u>Drilling Fluid</u> (see Appendix 3 for details)

$12\frac{1}{4}$ " Hole, 9m to 456m MD

The well was spudded using a fresh water/native clay mud system with occasional high viscosity pills to aid in hole cleaning.

This portion of the hole was logged, cased and cemented without incident.

$8\frac{1}{2}$ " Hole, 456m to 1819m MD

The $8\frac{1}{2}$ " hole was drilled using a KC1-Polymer mud system. The mud properties were held fairly constantly at:

Weight:

8.8 - 9.0 ppg

Viscosity:

38 - 45 seconds

Fluid Loss:

< 9 cc

KC1:

3.3 - 4.4%

2.3.5 Water Supply

Water was trucked into the location by Timboon Plumbing Service of Timboon.

2.4 Formation Sampling and Testing

2.4.1 Cuttings

Cuttings samples were collected at 10 metre intervals from the surface to 860m, and at 5 metre intervals from 860m to TD. Each sample was washed, oven dried, divided into 4 splits and stored in labelled polythene bags. One complete sample set was distributed to each of the following; Beach Petroleum N.L, Bridge Oil Pty. Ltd. and the Victorian Department of Industry, Technology and Resources. One spare set has been retained by Beach Petroleum N.L.

In addition, from surface to TD, unwashed samples were collected at 10 metre intervals. These samples were stored in labelled calico bags and allowed to dry in the sun. This set of unwashed samples has been retained by Beach Petroleum N.L. and may be used for any special analysis in the future.

2.4.2 <u>Cores</u>

- (i) No conventional coring operations were performed.
- (ii) Thirty sidewall cores were attempted, twenty-nine were recovered, one was left in the hole. Listed below are the depths and recovery of the sidewall cores (see Appendix 4 for description).

SWC	Depth	Recovery
No.	(m)	(cm)
1 A	1909.0	4.0
2 V	1894.0	4.5
3 V A	1867.0	4.0
4	1860.5	Nil
5 V	1851.5	6.0
6 A	1848.5	5.0
7	1842.5	3.5
8 V A	1832.5	3.8
9	1816.5	2.5
10 P	1814.5	3.5
11	1809.5	5.5
12	1808.0	5.5
13	1793.0	3.5
14	1787.0	4.0
15	1777.0	4.5
16 P	1765.5	4.0
17	1763.0	1.3
18 V	1759.0	3.5
19 A	1754.0	4.0
20	1752.0	4.0
21 P	1749.5	3.0
22	1748.0	3.0
23 P	1746.0	3.5
24 V	1744.0	3.3
25	1731.0	5.3
26	1456.0	5.0
27	1443.0	5.8
28	896.5	5.4
29	889.5	5.3
30 V	881.5	3.8

Note:

- V Vitrinite Reflectance Data Available (see Appendix 8).
- P Petrologial Data Available (see Appendix 9).
- A Age Dating Available (see Appendix 7).

2.4.3 <u>Tests</u>

One Schlumberger Repeat Formation Test was run, followed by a cased hole drill stem test.

RFT NO. 1

The tool was set at a number of levels in order to gain pressure data. Only at 1814.5m (Waarre Formation) and at 1745.5, (Flaxman Formation) did the tool successfully seat against the formation wall. At 1814.5m the RFT chamber was opened and 2 litres of mud filtate was recovered.

At 1745.5,m the RFT chamber was opened but the flowline within the tool immediately plugged so that no samples were recovered.

The RFT results are tabulated below. See also Enclosure 3 for the RFT log.

		HYDRO	STATIC	FORM	ATION	
DEPTH	TEN	SG	HPG	SG	HPG	TEST
1814.5	3300	2479	2479.7	2230	2250	GOOD
1765.2	3300	2405	2419.7	2250	2226.5	TIGHT
1765.5						TIGHT
1765.0		2458	2473.15			TIGHT
1765.8		2460	2474.5	2245	2260.5	TIGHT
1749.5		2437	2452.2			NO
						SEAL
1749.4		2436	2451.7			NO
						SEAL

1748.5	2435	2450.1			NO
					SEAL
1745.0	2430	2445.1			BAD
					SEAL
1744.0	2428	2433.8			NO
					SEAL
1745.4	2432	2446			BAD
					SEAL
1744.5	2430	2444.7			NO
					SEAL
1745.2	2430	2444.7			NO
					SEAL
1745.1	2430	2444.9			NO
	- /				SEAL
1745.0	2431	2445.5			NO
1746.0	2422	2449 0			SEAL
1746.0	2433	2448.0			NO SEAL
1745.0	2// 30	2445.9			NO
1743.0	2430	2443.7			SEAL
1745.5	2433	2446			NO
		_ , , ,			SEAL
1744.7	2433	2446.7			NO
					SEAL
1747.5	2438	2448.8			NO
					SEAL
1745.4	2433	2447.2			POOR
					SEAL
1745.0	2433	2446.34			NO
					SEAL
1746.0	2433	2447.39			NO
					SEAL
1745.5	2433	2447.2	2155	2166	GOOD

Note: Pressures in P.S.1., Depth in metres, Ten=Tension. SG = strain gauge, HPG = high precision guage.

DST No.1

 $5\frac{1}{2}$ " RTTS packer set at : 1721, with 1207m water cushion.

Perforated interval : 1743m to 1758.5m with four perforations

per foot.

Formation : Flaxmans.

Sequence of events : Perforating gun fired.

Wellhead shut-in pressure steady at 10 psi after 20 min. Halliburton test head nippled down lubricator nippled up. Amerada guages run in hole. Well opened to flare through 3/4" choke. Well head pressure O psi, no air blow. Pull out of hole with Otis guages. Wire on tangled. Slip and cut Otis slick line. Retrieve drop bar. Pull packer

free. Reverse circulate.

Recovery : Recovered water cushion and gas cut filtrate. No condensate, emulsion

or oil recovered.

Samples : The following reverse circulated samples were retained. Depths are estimated

from pump strokes.

(i) Top of water column resistivity $10.8 \text{ ohm.m} @ 69^{\circ}F.$

(ii) 610.5m, water, resistivity $10.3 \text{ ohm.m } @ 69^{\circ}\text{F.}$

(iii) 1078m, gas cut water, resistivity 0.307 ohm.m. @ $69^{\circ}F$.

(iv) 1221m,. gas cut muddy water, resistivity 0.338 ohm.m. @ $69^{\circ}F$.

Note: Water cushion resistivity
9.07 ohm.m @ 67°F. Mud
resistivity 0.250 ohm.m.
@ 71.6°F.

Assessment : The Flaxmans Formation contains gas but has a very low permeability.

See also, Appendix 2 and 10.

2.5 Logging and Surveys (see Enclosure 1)

2.5.1 Mud Logging

A standard skid - mounted Exploration Logging Unit was used to provide penetration rate, continuous mud gas monitoring, intermittent mud and cuttings gas analysis, pump rate and mud volume data. The Masterlog is included as Enclosure 2.

2.5.2 Wireline Logging

Wireline logging was performed by Schlumberger Seaco Inc. using a truck-mounted Cyber Service Unit. Three logging suites were performed and the details are listed below. An analysis of these logs is included in Section 4.2.

. Suite No. 1

Induction spherically Surface to 453m focused/sonic log (ISF/Sonic/SP/GR/Cal)

Suite No. 2

Induction spherically 453m to 1135m
focused/sonic
(ISF/MSFL/Sonic/SP/GR/Cal)

Suite No. 3

Dual Laterolog 453m to 1914m (DLL/SP/GR/Cal)

Micro spherically 453m to 1914m

focused log

Lithodensity/Compensated 500m to 1150m Neuton Log 1425m to 1914m

(LDL/CNL)

Sonic Log 1125m to 1914m

(SLS)

 Natural Gamma Ray
 850m to 970m

 Spectroscopy Log
 1425m to 1515m

 (NGT)
 1665m to 1910m

Stratigraphic High 850m to 1916m

Resolution Dipmeter Tool

(SHDT)

(Mean Square Dip Processing)

Microlog 850m to 970m (ML) 1425m to 1515m 1665m to 1910m

In addition the following CSU products were generated:

Cyberdip

1350m to 1914m

Cyberlook

1430m to 1900m

TVD - Playback

(DLL-DIL-MSFL-LDL-CNL-BHC-GR) 453m to 1910m

These logs are included as Enclosure 3.

2.5.3 Deviation Surveys

Regular magnetic single shot directional surveys were performed by Hofco Oilfield Services Pty. Ltd. A summary is included as Appendix 11. In addition, a well trajectory plot was generated from the dipmeter tool. See Appendix 12.

2.5.4 Velocity Survey

Both standard and offset velocity surveys were performed by Schlumberger Seaco Incorporated. See Appendix 5.

3. RESULTS OF DRILLING

3.1 Stratigraphy

The following stratigraphic intervals have been delineated using penetration rate, cuttings and sidewall core analysis, and wireline log interpretation. All formation tops were present as predicted, although some formations were marginally deeper than prognosed (see also Figure 3 and Figure 4).

					Thick-
		Depth	Depth	Depth	ness
Group	Formation	MD	TVD	Subsea	TVD
Heytesbury	Port Campbell	Surface	Surface	+ 88.1	135
	Limestone				
	Gellibrand Marl	135.0	135	40.7	260
	Clifton	409.0	395	300.7	18
Nirranda	Narrawaturk	430.0	413	318.7	43
	Marl				
	Mepunga	478.0	456	361.7	79
Wangerrip	Dilwyn	553.5	535	440.7	240
	Pember Mudstone	836.0	775	680.7	34
	Member				
	Pebble Point	885.0	809	714.7	77
Sherbrook	Paaratte	962.0	886	791.7	348
	Skull Creek	1359.0	1234	1139.7	72
	Member				
	Nullawarre	1441.0	1306	1211.7	231
	Greensand				
	Member				
	Belfast	1699.0	1537	1442.7	40
	Mudstone				
	Flaxmans	1743.0	1577	1482.7	65
	Waarre	1813.0	1642	1547.7	35
Otway	Eumeralla	1852.0	1677	1582.7	+ 59
	TD	1918.0	1736	1641.7	-

BEACH PETROLEUM N.L.

WESTGATE No. 1A

PROGNOSED AND ACTUAL STRATIGRAPHY

PROGNOSED

ACTUAL

FIGURE 3

DRG. No. OT. 3525

BEACH PETROLEUM N.L.

OTWAY BASIN STRATIGRAPHIC TABLE

GEN	ER/	L TIME SCALE	GROUP	FORMATION	MEMBER	GENERAL LITHOLOGY	OIL/GAS
Per	rioc	Age	31.001	- CINEATION	INCHIDER		JOIL / GAS
	Q.	Pliocene	POST -	NEWER VOLCANI			
		Miocene	HEYTESBURY	FM., ETC.	•		
\	_	Oligocene		GELLIBRAND			
à	<u> </u>			CLIFTON			
RTIAR		Eocene	NIRRANDA	NARRAWATURK MEPUNGA		Fe Fe	
<u> </u>					Burrungule	V V V V OLDER VOLCANIC	
			WANGERRIP	DILWYN			
		Palaeocene		~~?~~	Pember		<u> </u>
				PEBBLE POINT			LINDON-1
	UPPER	Maastrichtian Companian	SHERBROOK		Timboon Sand Undifferentiated part		
S		Santonian		PAARATTE K	Skull Creek Mudstone and Nullawarre Greensand		
EOUS		Coniacian			Belfast		
\overline{c}		Turonian		FLAXMAN			-**
CRETA		Cenomanian		WAARRE	~~~~		North Pagratte Vallaby Creek Grumby
0	æ	Albian		EUMERALLA	· Heathfield		Port Compbell No.4
	OWER	Aptian	OTWAY	;	~;~		` No.4
		Neocamian		CRAYFISH	Geltwood Beach Pretty Hill		
Sic		Late	~;~		;		
JURASSIC		Middle	-	CASTERTON		BASAL VOLCANIC	
	PALAEOZOIC			BASEMENT			
SE MAI	P OT	.2088,					OT.3188

3.2 Lithological Descriptions

3.2.1 HEYTESBURY GROUP (surface to 430m)

Port Campbell

Surface to 135m

Limestone:

CALCARENITE, light off white, yellow - orange in part; friable; fine to occasionally medium grained; subrounded; moderately argillaceous matrix in part; very fossiliferous, abundant bryozoa, shell fragments, echinoid spines, foraminifera, sponge spicules, with trace to common glauconite pellets and infilling οf fossil fragments; trace to common, clear, loose, coarse grained quartz; trace dark brown to black lithics, very rare pyrite towards the base.

Gellibrand Marl

135m to 409m

MARL, medium olive grey, medium grey in part, medium green grey in part; soft; sticky, moderately dispersive in part; common fossil fragments, pyritized in part, trace glauconite.

Clifton Formation

409m to 430m

CALCARENITE, off white,
medium brown, light to medium
orange brown; friable to

firm; medium to very coarse, dominantly coarse grained; rounded, common to abundant iron oxide stained quartz; iron carbonate matrix; abundant fine to very coarse, well rounded iron oxide pellets; abundant fossi1 occasionally fragments, iron oxide replaced.

3.2.2 NIRRANDA GROUP (430m to 553.5m)

Narrawaturk Marl

430m to 478m

MARL, medium grey, light grey in part; very soft; very dispersive; very fossiliferous, bryozoa, foraminifera, shell fragments, gastropods, echinoid spines, trace pyrite, trace glauconite.

Mepunga Formation

478m to 553.5m

SANDSTONE, medium to light loose; very fine brown; to medium, dominantly fine grained; subangular to rounded, dominantly subangular; moderate to well sorted; iron oxide stained quartz; trace medium brown argillaceous matrix, very weak siliceous cement in part; trace medium brown lithics, trace glauconite

pellets, trace pyrite, good visual porosity. Interbedded with <u>CLAYSTONE</u> which becomes the dominant lithology at the base, light to medium brown grey, very soft, very dispersive, slightly calcareous.

3.2.3 WANGERRIP GROUP (553.5m to 962m)

Dilwyn Formation

553.5m to 836m

SANDSTONE, medium to dark brown grading to off white, brown grey, light light the base; loose grey at to friable; very fine to medium, dominantly fine subangular grained; dominantly rounded, abundant subrounded; argillaceous matrix, medium to dark brown, dark green grey in part weak siliceous cement in part; occasionally strong calcareous cement, trace to common glauconite pellets, trace pyrite; poor to good visual porosity. Interbedded with, and grading CLAYSTONE, medium to dark brown, dark brown grey, dark green grey; soft to very soft; sticky, dispersive in part; massive in part, trace to common glauconite

pellets, trace to occasional quartz grains, carbonaceous in part, rare to common pyrite, trace micromicaceous.

Pember Mudstone

Member

836m to 885m

CLAYSTONE, dark brown grey, dark green grey; very soft; sticky, dispersive, massive in part, slightly calcareous in part, trace very fine, subangular quartz grains, trace carbonaceous detritus.

Pebble Point

Formation

885m to 962m

SANDSTONE, light brown to green brown, light medium red brown; loose; very fine to medium, dominantly grained; subangular to subrounded; poorly sorted; iron oxide stained quartz; abundant argillaceous matrix, medium brownish green; trace pyrite, glauconite; trace poor visual porosity. Interbedded with, and grading from CLAYSTONE, dark green grey; dispersive, firm in part; massive in part; moderately silty; trace micromicaceous; common fine very abundant, very to coarse, dominantly fine grained, subangular to subrounded quartz grains

and glauconite pellets,
trace pyrite.

3.2.4 SHERBROOK GROUP (962m to 1852m)

Paaratte Formation

962m to 1359m

SANDSTONE, light grey, off white; friable; very fine to very coarse, dominantly grained; medium angular subrounded, dominantly to subangular; poor to moderate sorted quartz; common abundant argillaceous matrix, medium brown grey, moderate siliceous cement in part, rare calcareous cement in part; common carbonaceous detritus, trace pyrite, trace light to medium grey lithics, rare mica flakes, rare glauconite pellets, poor to good visual porosity. Interbedded with minor CLAYSTONE, medium grey, grey medium brown; soft very soft; sticky, dispersive; massive; subfissile in part, trace carbonaceous detritus, trace pyrite, trace micromicaceous, rare dolomite; with rare COAL, black, firm, sub conchoidal fracture, clayey.

Skull Creek Member

1359m to 1441m

CLAYSTONE, medium to dark brown grey, medium to dark grey, medium to dark green grey in part, soft, very dispersive, massive, subfissile, calcareous in part, trace pyrite, trace mica, trace fossil fragments, trace medium brown dolomite, interbedded with SANDSTONE, off white; hard; very fine grained; subangular to subrounded; moderately sorted quartz, moderate calcareous and siliceous cement; trace carbonaceous detritus, trace multicoloured lithics; poor visual porosity.

Nullawarre Greensand

1441m to 1699m

Member

SANDSTONE, medium to dark brown, medium red brown in part; very fine to occasionally coarse, dominantly fine grained; subangular to subrounded; moderately sorted, oxide stained quartz; trace to common argillaceous matrix, medium brown; trace to common iron oxide fine grained pellets, trace glauconite, trace pyrite, poor to good visual porosity.

Belfast Mudstone Member 1699m to 1743m

medium CLAYSTONE, SANDY to dark green grey; moderately soft to firm; subfissile; massive, laminated in part, trace micromicaceous, trace carbonaceous detritus, slightly silty in part, trace pyrite, with up to 10% glauconitic clay pellets and trace very fine to medium grained, green stained quartz.

Flaxmans Formation

1743m to 1813m

FERRUGINOUS SANDSTONE, medium to dark yellow orange brown, mottled in part; very fine to very coarse, dominantly coarse grained; medium to sorted poorly rounded; dominantly lithics; to 65% of total rock volume) with iron oxide pellets minor (average 15%) quartz abundant (up grains; 80%) white, brown, grey, yellow - orange, brick red matrix, silty argillaceous in part, slightly calcareous part, trace glauconite pellets, trace pyrite, very poor to poor visual porosity. Grades to CLAYSTONE at base, medium orange brown, mottled massive, part; to abundant medium to dark

brown iron oxide pellets, trace pale yellow - red, fine to medium grained quartz grains, rare pyrite, rare calite.

Waarre Formation

1813m to 1852m

SANDSTONE, off white to very light grey; hard; very fine to coarse, dominantly medium grained, subangular subrounded; moderate sorted quartz; common white clay matrix in part, trace medium brown argillaceous matrix, weak siliceous cement in part, moderate calcareous cement in part, trace pyrite, trace carbonaceous detritus, trace to common mica flakes, trace black and green lithics, trace altered feldspar, poor to good visual porosity. Interbedded and interlaminated with SILTY CLAYSTONE, medium dark grey; subfissile; massive in part; occasional very fine, clear, angular quartz grains; common micromica; common carbonaceous detritus; trace to common pyrite.

3.2.5 OTWAY GROUP (1852m to 1918m)

Eumeralla Formation

1852m to 1918m SANDSTONE, light grey, light green grey; friable; very fine to medium, dominantly grained; subangular fine subrounded, moderately sorted; pale green stained quartz, abundant white clay matrix, weak siliceous cement in part, calcareous cement part, abundant in multicoloured lithics, common feldspar, altered partly trace carbonaceous detritus, poor visual trace pyrite, Interbedded with porosity. minor CLAYSTONE, light to medium green, light to medium grey, subfissile, common micromica, massive, silty, rare slightly

carbonaceous detritus.

3.3. Hydrocarbon

3.3.1 Mud Gas Readings

The gas detection equipment was operated from surface to TD.

A background gas of nil to 20 ppm Cl was relatively stable in the drilling mud until the 9-5/8" casing point at 453m.

From 453m to 700m hydrogen contamination associated with the 9-5/8" casing and cementing gave anomalous mud gas readings.

From 700m to 1256m the background mud gas stabilised at half a unit (100 ppm Cl). This level of mud gas can be attributed to the action of the drilling bit on low levels of thermally immature carbonaceous detritus within the rock sequence.

From 1256m to 1414m the addition to paraformaldehyde to the mud system gave anomalous mud gas readings. While the cause of these high gas readings was quickly established and the practice of adding paraformaldehyde stopped soon after, the effect of the contaminant was, unfortunately, quite long lasting. It is impossible to say that all the high gas readings in this interval were due to the mud contaminant, but none of the primary targets were penetrated in this interval.

From 1709m to 1741m the total gas levels in the mud steadily rose from 2½ units to 10 units. In addition the levels of C2 and C3 rose to an appreciable level for the first time in the well. The maximum recorded levels in this interval were 1850 ppm C1, 105 ppm C2 and 35 ppm C3 at 1741m. The amounts of C4 and C5 were negligible. The rock lithology was a sandy claystone with only a small percentage of carbonaceous detritus. It is believed that these high gas levels were largely due to leakage of gas from the interval below.

From 1741m to 1764m the mud gas attained the highest level for the entire well. Over the zone 1741mto 1760m the total gas reached a maximum of 550units, the chromatographic breakdown of which was 101,350 ppm C1 (94.29%), 4,620 ppm C2 (4.30%), 1,210 ppm C3 (1.13%), 145 ppm iC4 (0.13%), 130 ppm nC4 (0.12%) and 27 ppm C4 (0.03%). No fluorescence was observed in this interval. the zone 1760m to 1764m the total gas levels dropped to 330 units, but the percentage of heavier gases increased 53,000 ppm C1 (86.42%), 4,740 ppm C2 (7.73%), 2,350 pm C3 (3.83%), 460 ppm iC4 (0.75%), 540 ppm nC4 (0.88%) and 240 ppm C4 (0.39%). interval was also associated with up to 2% patchy oil fluorescence (see Section 3.3.2).

A cased hole drill stem test was performed over the interval 1743.5m to 1758.5m and a small amount of gas was recovered (See Section 2.4.3 and Appendix 10).

From 1764m to 1918m (TD) the mud gas levels were high but erratic. The average total gas for this zone was 30 units, largely C1 but with minor amounts of C2, C3 and C4.

3.3.2 Sample Fluorescence

Minor oil fluorescence was observed in cuttings from the interval 1760m to 1764m. The rock lithology was a <u>Ferruginous Sandstone</u>, medium to dark brown, medium to dark yellow orange, mottled in part;

very fine to very coarse, dominantly medium grained; rounded; poorly sorted lithics; dominantly iron oxide pellets with minor quartz grains, abundant argillaceous and silty matrix, trace glauconite, trace pyrite, very poor visual porosity. These samples had between 0-2% patchy, dull, orange fluorescence with a very rare, very weak, dull yellow cut fluoescence. A number of sidewall cores were taken over this interval, some of which also showed oil fluorescence (see Appendix 4).

Oil fluorescence was not observed in any other portion of the well.

Oil staining and significant odour was not observed in any portion of the well.

4. GEOLOGY

4.1 Structure

4.1.1 Seismic

The Westgate prospect was defined by the 1984 Beach/Bridge Timboon (TM) Seismic Survey and the 1985 Beach/Bridge Timboon Extension (TME) Seismic Survey.

At depth the feature is an asymmetric horst block bound by NW-SE trending normal faults. The south bounding fault terminates in the Upper Cretaceous but closure is observed against the north bounding fault up to the basal Tertiary level (see Figure 5 and Figure 6).

This type of structural style is not uncommon in the Otway Basin but has rarely been tested by the bit because the highest points of the traditional primary targets are usually offset by a significant horizontal distance. In this case the Waarre Formation is offset by some 390m to the north of the Pebble Point Formation.

order to maximise the potential exploration well the borehole was deviated by the appropriate amount to intersect the Pebble Point Formation and the Waarre Formation at their highest structural points. At Westgate, the nature of the structure suggests that any porous interval (with a suitable cap rock and lateral seal) between the primary targets, would also be within structural closure. Westgate No. 1A was spudded 40 metres SE of shotpoint 163 on seismic line TME85-400. The borehole was deviated to intersect the Pebble Point Formation at shotpoint 172 on TME85-400 and the Waarre Formation at shotpoint 185 on the same line (see Figures 7 & 8).

The velocity survey at Westgate No. 1A suggests that at Pebble Point Formation level the original interpretation of the 1984 TM and 1985 TME seismic surveys was largely correct and that the difference between prognosed and actual formation tops (see Figure 3) can be explained by a slightly different velocity gradient at Westgate No. 1A than at nearby wells.

Figure shows the well path on TME85-400 (unmigrated). It is clear that the bore hole passed through the north bounding fault shatter zone and terminated on the downthrown side of this fault. This explains the depth discrepancy between prognosed and actual Waarre Formation and the extra Nullawarre Greensand, Belfast Mudstone and Flaxmans Formation penetrated by the bit. The Flaxmans Formation gas is contained within the seismically unresolvable shatter zone. This interpretation suggests that Westgate 1A was not a valid test of the Waarre Formation structure.

4.1.2 Dipmeter

A Schlumberger Stratigraphic High Resolution Dipmeter Tool was run over the interval 1918m to 847m. Good results were achieved by the Mean Square Dip (MSD) processing technique.

In terms of established formational boundaries, the key MSD elements are as follows:

Eumeralla Formation (1918m - 1852m)

The dip pattern is consistent with a variety of sedimentary structures. Structural dip is difficult to determine because thick shale units are absent in this portion of the Eumeralla Formation. The average dip is at 15° to the southwest.

Waarre Formation (1852m - 1813m)

The Waarre Formation is clearly separated by an unconformity from the Eumeralla Formation. This unconformity has been overprinted by a mega "red" pattern (dip angle decreasing towards the top of an interval) which spans the interval 1790m to +1860m. The average dip is at 10° to the south-west.

Flaxmans Formation (1813m - 1743m)

The lower 20 metres of the Flaxmans Formation has a dip pattern similar to that of the Waarre Formation (10° SW). From approximately 1790m to 1770m no dips can be recognized. From 1770m to 1743m the dip direction is on average still towards the southwest, but there are significant elements of northwest and southeast dip. The dip angle also shows considerable scatter with a range of 1° to 34° (average 20°).

Belfast Mudstone (1743m - 1699m)

The Belfast Mudstone proved to have little regular dip trends at this level of investigation. Only 4 "tadpoles" are evident within this zone, all of which are of low confidence.

Nullawarre Greensand Member (1699m - 1441m)

The Nullawarre Greensand section is the most structurally complex portion of the entire well. The basal 15 metres of the Nullawarre

Greensand has very little regular dip patterns (similar to the Belfast Mudstone of this well). From 1685m to 1635m, three distinct "red" patterns coalesce to form a "mega-red" pattern. The dip at the top of this mega pattern is 5° and at the base 30° . The dip direction is consistently towards the southwest. 1635m to 1480m the dips are relatively consistently towards the southwest at angles between 20° and 30° . From 1480m to 1460m the dip pattern is generally towards the southwest but dip angles were scattered between 2° and 60° . From 1460m to 1450m dip direction has a strong northeast component with dip angles between 1° and 22°. From 1450m to 1441m the dip direction is west and southwest at an average of 5°.

Skull Creek Member (1441m - 1359m)

The Skull Creek dip pattern is towards the west and southwest at an average of 5°. These dips appear to have been overprinted by a structural event evident in the Nullawarre Greensand.

Paaratte Formation (1359m - 962m)

From 1359m to 1230m the dip pattern is consistent with a variety of sedimentary structures and possibly a number of small faults. The dip is towards the west and southwest at an average of 5° . From 1230m to 1200m the dip pattern is more irregular. The dominent trend is still towards the southwest but there are significant elements

of north, east and southerly dip. The dip angle is erratic between 1° and 56°. From 1200m to 962m the dip pattern again reflects a variety of sedimentary structures. The dip is on average 5°, but the direction is strongly bipolar with southwesterly and northeasterly trends. The upper 50 metres of this interval shows increased irregularity in dip trend, similar to the 1230m - 1200m zone.

Pebble Point Formation and Basal Pember Mudstone (962m - 847m)

The Pebble Point Formation and basal Pember Mudstone appear to be conformable. As distinct from the Paaratte Formation, the dip trend in this interval has a very strong northerly component. The magnitude is variable but on average 8° .

Considering the primary data in a more general way, without regard to formational boundaries the key structural elements are as follows:

+1860m to 1790m	Mega-red trend with southwest				
	dip, with an unconformity				
	at 1852m.				
1790m to 1770m	No correlation points.				
1770m to 1740m	"Bag of nails".				
1740m to 1635m	Mega-red trend with southwest				
	dip.				
1635m to 1480m	Mega-green trend with				
	southwest dip.				
1480m to 1460m	"Bag of nails".				
1460m to 1450m	Minor northeast dip.				
1450m to 1230m	Variety of sedimentary				
	structures with dominantly				
	southwest dip.				

1230m to 1200m "Bag of nails".

1200m to 1020m Variety of sedimentary

structures with dominantly

southwest dip.

1020m to 962m "Bag of nails".

962m Unconformity.

962m to 847m Variety of sedimentary

structures with dominantly

northerly dip.

Many interpretations can be made on the above primary observations. Given the re-interpretation of TME-400 (Section 4.1.1) the simplest model is that the well bore passed through three down to the north normal faults, as shown in Figure 9.

The first fault is observed in the well path over the zone 1480m to 1460m and is responsible for the "bag of nails" dip pattern and a small amount of roll-over on the upthrown block near the fault zone (1460m to 1450m). Drag on the down thrown block is not observed (1635m to 1480m). The throw of this fault is probably in excess of 10m as indicated by the rollover trend.

The second fault of considerable magnitude is observed at 1635m. No rollover is observed in the upthrown block but drag is indicated by a "megared" trend from 1635m to 1740m. The throw of this fault is in the order of 50m.

BEACH PETROLEUM N.L.

WESTGATE No. 1A

PROJECTION OF WELL PATH
ON A
VERTICAL PLANE SW - NE

WESTGATE No. 1A

OT. 3467

The well bore passed through a third large fault in the interval 1790m to 1770m. This fault caused considerable disturbance on the upthrown block (1770m to 1740m) and was responsible for a large amount of drag on the downthrown block (mega-red pattern from 1790m to +1860m). The throw of this third fault is in excess of 70m.

Hence this model predicts that:

- (a) The unusually thick Nullawarre Greensand observed in the well is in part due to faulting.
- (b) The depth discrepancy between prognosed and actual basal Sherbrook units is largely due to penetrating three faults with a total throw in the order of 130m.
- (c) Gas was recorded in the interval 1743m to 1767m was fault controlled with lateral seal provided by the Belfast Mudstone on the downthrown side of the fault.

The problems with this model are:

- (a) No dips are recorded in the fault plane of any of these faults, ie. high angle fault planes are not observed, only inferred.
- (b) The inconsistency of the nature of drag and rollover between the three fault blocks, ie. some blocks experience edge deformation and some don't.
- (c) The absence of hydrocarbons at top Nullawarre Greensand level despite the lateral seal provided by the Skull Creek Member, ie. a similar structural trap to the Flaxmans/Fault/Belfast which contained gas at depth is dry in younger sequences.

(d) The north bounding fault as originally seismically mapped must have some components further south, which the well path intersected. See section 4.1.1.

Variations of the above model include:

- (i) The 1480m 1460m fault is a reverse fault with a diffuse mega-red pattern from 1460m 1360m. This explains why the Nullawarre Greensand was shallower than prognosed and dry. However this scheme requires considerable shortening of some fault blocks which is not observed in the seismic data.
- (ii) The disturbance at 1480m 1460m and at 1635m is largely due to sedimentary structures, ie. the intervening section represents a prograding sand (barrier bar) sequence. The problem with this approach is that the dip trends are so regular over a long interval that some structural overprinting is indicated.

4.2 Porosity and Water Saturation

Wireline log evaluation was facilitated by a Schlumberger CSU at the wellsite. No conventional cores were cut and no formation fluid was recovered. Therefore all porosity and salinity values are log derived.

4.2.1 Pebble Point Formation (885m to 962m)

The Pebble Point Formation is a relatively argillaceous lithic unit, especially at the upper and lower boundaries of the formation. The best

reservoir properties were developed over the interval 910m to 919m where shale corrected porosity approached 26% with approximately 10% clay. The formation is water saturated with salinities in the 1400 ppm NaCl equivalent range.

4.2.2 Paaratte Formation (962m to 1359m)

The Paaratte Formation consists of interbedded clean quartz sandstones and minor claystones. Good reservoir properties are found throughout this formation with shale corrected porosities at an average of 26%. The formation waters appear to be in communication with those of the Pebble Point as they are also in the 1400 ppm NaC1 equivalence range. No significant hydrocarbon intervals are observed on the wireline logs.

4.2.3 Nullawarre Greensand Member (1441m to 1699m)

The Nullawarre Greensand is a thick sandy sequence with very little interbedded claystone. Log derived porosity estimates are consistently in the 27% to 30% range with little or no clay effect. It should be noted that cuttings and sidewall cores from this interval proved the presence of significant amounts of dispersive clay matrix in the rock and, as such, these porosity estimates are probably high. This formation is water saturated with salinities in the 1400 ppm NaCl equivalent range.

4.2.4 Flaxmans Formation (1743m to 1813m)

The Flaxmans Formation contains gas, as demonstrated by both gas levels in the drilling mud when the top of this interval was intersected and by a small

amount of gas recovered from a cased hole drill stem test.

The rock is composed of a mixture of iron oxide pellets and clay with only secondary amounts of quartz and practically no carbonate or dolomite (see Appendix 9). As such conventional wireline log evaluation (which is calibrated on a quartz - limestone - dolomite system of framework elements) is not applicable to this particular rock system. Therefore a number of assumptions need to be made to get realistic porosity estimates and hence water saturation levels.

As can be seen from the density - neutron and formation cuttings logs, iron oxide pellets small amounts of glauconite have a dramatic effect on the density, photoelectric effect and neutron If however a density - neutron crossplot is generated over this zone, the picture becomes clearer (Figure 10). It is apparent from the spread of points on this plot that the rock system can indeed be viewed as having only two principle components, one of which plots near RHOB = 2.55and NPHI = 35, and the other which plots near RHOB = 3.0 and NPHI = 65. The "cloud" of points between these end-points reflects the relative percentage of each component and the porosity. One end-point is probably best considered as a mixture of kaolinite (RHOB = 2.41, NPHI = 37) and glauconite (RHOB = 2.54, NPHI = 38) and is effectively the clay point. The other end-point is approximated by limonite (RHOB = 3.59, NPHI = +60) but because of the wide chemical variation of this mineral (and hence RHOB and NPHI values) it is best to consider this end-point as simply iron oxide. Using these two

BEACH PETROLEUM N.L.

WESTGATE No. 1A

DENSITY - NEUTRON CROSSPLOT 1780-03-1739-97m (FLAXMANS FORMATION) Z AXIS IS THE EREQUENCY

OT. 3468

end-points and water as the porosity control (and without applying any gas effect correction to the neutron) it can be shown that porosity is at best 9% and more probably less than 7%. This porosity estimate agrees well with visual porosity estimates on sidewall cores.

Another approach to solving for porosity in this unusual rock type is to utilize the sonic response. The key to this approach is finding an acceptable matrix travel time which approaches the expected porosity range from visual examination of the rock. This method was used in the Cyberlook Pass I and II with qualified success. Three values of matrix travel time were used, 60 $\mu s/ft$, 55 $\mu s/ft$ and 48 us/ft, all of which are in the established range of values for an iron oxide. All three gave very high effective porosity (and therefore erroneous) estimates in the zone of interest. estimates are due in part of the difficulty of using the Spontaneous Potential log as a clay However, using these high porosities, water saturation calculates to be in the 90% range, suggesting that very little hydrocarbon could be "seen" by the logs.

In summary, wireline logs cannot be easily interpreted in the odd rock type of the Flaxmans Formation at Westgate No. 1A. A great number of assumptions have to be made to get "sensible" results or at least an interpretation that is in accord with cuttings and sidewall core descriptions. Given that the assumption of a two principle component rock system is valid, then rock porosity is less than 7% in the zone of interest and water saturation is high.

4.2.5 <u>Waarre Formation</u> (1813m - 1852m)

The Waarre Formation is a sequence of relatively clean, thin, quartz sandstone with interbedded claystone. Effective porosity is between 20% and 25%. This interval is water saturated with salinities in the 18,000 ppm NaCl equivalent range.

4.3 Maturation and Source Rock Analysis

Vitrinite reflectance estimates (Rv max) and total organic carbon analysis (TOC) were carried out on seven sidewall core samples. In addition, five sidewall core samples were palynologically examined to estimate maturation and source potential. (See Appendix 7 and 8.)

These samples were selected from the Eumeralia Formation through to the Pember Mudstone Member, with special emphasis on the basal sequences.

4.3.1 Maturation/Organic Type

Vitrinite reflectance determination results were in general disappointing. Only two samples contained enough dispersed organic matter to yield reliable counts (Waarre Formation at 1832.5m and Pember Mudstone Member at 881.5m). Both samples from the Eumeralla Formation had very low levels of dispersed organic matter and in the samples from the Flaxmans Formation only rare levels of inertinite were present, vitrinite and eximite were absent.

From the few data points that were available it can be suggested that the Waarre and Eumeralla Formations are within the onset of the oil generation zone (Rv maximum 0.5% to 0.7%) and that the Pember Mudstone is immature (Figure 11).

All samples within the oil generation zone were dominated by inertinitic dispersed organic matter with only secondary or absent vitrinite and exinite. Hence these units cannot be considered as having good source potential, although rare green fluorescing ?oil droplets were noted in one Eumeralla Formation sample.

The palynological data supports this finding. Maturation levels over the basal zone are described as early mature to mature and as having only poor or limited oil source potential.

4.3.2 Total Organic Carbon

The sidewall core sample from the Pember Mudstone Member gave a TOC value of 2.35% which suggests good source potential for this rock. However, as the level of exinite in the sediment is low, the potential is mainly for gas.

TOC values for the Waarre Formation also categorise this formation as having good source potential. Again the organic type suggests that this potential is for gas.

The Eumeralla Formation samples had a very low yield of TOC, which suggests only a very poor hydrocarbon potential.

WESTGATE No 1A

VITRINITE REFLECTANCE AND TOTAL ORGANIC CARBON PROFILE

4.4 Relevance to Occurrence of Hydrocarbons

The good gas show in the Flaxmans Formation at Westgate No. 1A attests to the effective combination of structures with down to the north normal faults and Belfast Mudstone cap rock.

Source rock and maturation studies suggest that although the basal Sherbrook Group and the top Otway Group intersected at Westgate No. 1A are most probably within the onset of oil generation maturation phase, the potential for hydrocarbons is low. This result was surprising since portions of the Eumeralla Formation from other wells in the basin have proved to have at least 'fair' oil potential. Hence it is reasonable to assume that the observed hydrocarbons at Westgate No. 1A have been sourced from deeper or more distant rocks.

Given that the observed hydrocarbon accumulation at Westgate No. 1A is not derived "in situ' then it follows that adequate migratory pathways for hydrocarbons must exist. Likely pathways are via down to basin faults and/or along the mid-Cretaceous unconformity.

Gas in the Flaxmans Formation presents a hitherto unrecognised potential reservoir. Low porosity and questionable permeability however downgrades the quality of the reservoir at Westgate No. 1A. Structural interpretation suggests the gas lies in a seismically unresolvable fault shatter zone. The dipmeter interpretation presents a more 'typical' structural trap with vertical and lateral seal provided by the Belfast Mudstone, within the fault zone. It is clear that a well further to the south would intersect the Waarre Formation in a structurally higher position.

APPENDIX 1

Details of Drilling Plant

RICHTER DRILLING PTY. LTD.

NATIONAL 80B - RIG NO. 8

DETAILS OF DRILLING PLANT

RICHTER DRILLING PTY. LTD.

NATIONAL 80B - RIG NO. 8

DRAWWORKS:

National 80B, $1\frac{1}{4}$ " Drill Line.

National type Bl Catheads, Parmac Hydromatic

brake, driven off compound.

POWER:

3 each Superior PTDS6, each rated at 600

HP at 900 RPM.

COMPOUND:

National B24, 3 Section.

MUD PUMPS:

2 each National 9-P-100 Triplex 1000 HP 6-3/4" x $9\frac{1}{4}$ " equipped with $6\frac{1}{4}$ " liners and

pistons with hydril K20-5000 pulsation dampeners.

Both with independent drive - CAT D399TA

industrial engines.

MAST:

Lee C. Moore, 142 ft. 860000 lbs. capacity.

 1×60 " - 5×48 " sheaves in crown.

SUBSTRUCTURE:

Main substructure 10'6" high, plus pony substructure 11 ft. high for total height

of 20'6".

Motor substructure, total height 12' high

composed of three subs, 5' plus 4'9".

MATTING:

1 set sectionilized hardwood matting.

ROTARY TABLE:

National C275, 27½"

HOOK BLOCK:

National Type G, 350 ton.

SWIVEL:

Ideal RB3

KELLY DRIVE:

Baash Ross, Type 2 RCH 6

MUD AGITATORS:

2 "Lightnin" Mixers 2 Brandt MA 7.5

MUD TANKS:

Shaker 37' \times 8' \times 4'6"

Intermediate tank 34' \times 8' \times 5'

Suction tank 37' x 8' x 5'

750 BBL capacity

SHALE SHAKER:

Brandt Dual Tandem

DEGASSER:

Drilco Standard Pit

DESILTER:

Pioneer 12 x 4" Cones, with pump

GENERATING PLANT:

2 Cat D3408 Generator sets

CHOKE MANIFOLD:

3" x 5000 psi wt 2" H2 chokes

BOP'S & ACCUMULATOR:

. Annular, Stamco 13-5/8" 5000 psi

2 - Cameron 13-5/8 x 5000 psi U Type Accumulator, koomey 35120-35, 12 bottles

. Hydril 10000 psi Upper Kelly Cock

Gray inside BOP, 4½" XH
 Hydril Lower Kelly Cock

DRILLING RECORDER:

Martin Decker 6 pen

. Pit Volume/Automatic Driller/Flo Sho/Stroke

Counter/Rotary RPM/Rotary Torque

RIG LIGHTING:

Hutchinson system of 48" double tube fixtures.

COMPRESSORS:

1 x Atlas Copco BT4 (on compound)

• Sullair Rotary compressor (elec driven)

WELDING AND CUTTING:

Lincoln model 400AS electric welding

machine.

Oxy and acetylene cutting equipment

MUD LAB:

Baroid model 821

DEVIATION SURVEY:

Totco unit No. 6, 8° double recorder

KELLY:

 $5\frac{1}{4}$ " Hex, $4\frac{1}{2}$ " IF Pin, 40 ft long, 37 ft working space.

DRILL PIPE:

10000 ft 4½" OD, 20 1b/ft.

Grade E, Range 2

15 joints heavy wate drill pipe 42 lb/ft.

PUP JOINTS:

1 x 5' - 1 x 10' - 1 x 20' GR "G" $4\frac{1}{2}$ " OD

DRILL COLLARS:

 12×8 " OD, 6-5/8" API Reg

24 x $6\frac{1}{4}$ " OD, $4\frac{1}{2}$ " XH

HANDLING TOOLS:

Power tongs, Farr 13-3/8 Jaws for 7", 9-5/8" and 13-3/8"

Varco SSW10 Spinning Wrench

TONGS:

BJ type B with lug jaws, $3\frac{1}{2}$ " to 13-3/8" BJ type SDD with jaws for $8\frac{1}{2}$ " to 12" BJ/Wilson for 20" casing

ELEVATORS:

BJ type BB 275 ton for $4\frac{1}{2}$ DP Elevators and single joint elevators for:

> 5½" casing 7'' 9-5/8" 11 13-3/8" ** 20"

Varco type HS spider for 20" casing.

SLIPS:

- Varco SDML slips for $3\frac{1}{2}$ " & $4\frac{1}{2}$ " Drill Pipe
- Drill collar slips, DCS-R
- Casing slips, CMXL

FISHING TOOLS:

Bowen model 150 overshots

- 11-3/4" OD, FS
 - 9-5/8" OD, FS
- 8-1/8" OD, FS

Bowen type Z hydraulic jars, $6\frac{1}{4}$ " OD

Bowen reverse circ junk basket, 8-1/8" OD

- 1 Junk Sub for 8½" hole
- 1 Junk Sub for 12½" hole
- 1 Bowen magnet 7" OD #32300

GENERATOR HOUSE:

40' x 10' x 9'

MECHANICS WORKSHOP:

36' x 8'6" x 9'

FUEL TANK:

6000 gallons, skid mounted

WATER TANK:

400 barrel

WATER PUMP:

Southern Cross 2 x 1½" powered by Petters

diesel.

JUNK BOX:

21' x 7' x 6'4"

TOOL HOUSE:

27' x 9' x 9'

DOGHOUSE:

26' x 9' x 9'

TRANSPORT:

1 Oilfield rig truck

1 Toyota Landcruiser Utility 4WD

1 Toyota Landcruiser Wagon - 4WD (11 seater)

1 Clark 504 Forklift

APPENDIX 2

Summary of Wellsite Operations

SUMMARY OF WELLSITE OPERATIONS

The Westgate -1 and -1A drill site was prepared by the earthmoving contractor Gordon Rudolph of Curdievale Road, Timboon.

Prior to the rig arriving a 26" conductor pipe had been installed to 9.0m KB.

The Richter Rig 8 was rigged up and Westgate -1 was spudded at 0300 hrs on the 23rd February 1986.

A $12\frac{1}{2}$ " hole was drilled to 126m, at which point the hole was deviated to the north east by the use of a Dyna Dril.

At 204m MD, an angle building bottom hole assembly was used to build the deviation to $28\text{-}3/4^\circ$ and maintain the north easterly direction.

At 456m MD Schlumberger ISF/BHC wireline log was run, after which 9-5/8" casing was run and cemented.

The BOP's were installed and all functions were tested to 1000 psi.

An $8\frac{1}{2}$ " hole was then drilled to 458m MD at which point a leak-off test established a formation integrity in excess of 14.55 ppg.

The $8\frac{1}{2}$ " hole was then continued to 972m MD when mechanical problems necessitated the hole to be plugged back to 554m MD.

The $8\frac{1}{2}$ " hole continued to 1144m MD with a bit change at 924m MD.

Schlumberger ISF/BHC/MSFL wireline logs were then run.

Drilling resumed with $8\frac{1}{2}$ " hole to 1414m MD when, tripping in after a wiper trip, the drill string became stuck with the bit at 1291m, MD. Milfree was spotted across the bottom hole assembly and the pipe was unsuccessfully jarred for 16 hrs. The drilling mud was then displaced with water and the drill string became free.

The $8\frac{1}{2}$ " hole was then continued to a total depth of 1918m MD with a bit change at 1704m MD.

BEACH PETROLEUM N.L.

WESTGATE No.1A
ACTUAL PENETRATION PROFILE

Total depth was reached at 1515 hrs on the 12th March 1986.

The following Schlumberger wireline logs were then run; DLL/MSFL, LDL/CNL, SLS, SHDT, NGT, ML, WSS.0, CST and an RFT.

At this point $5\frac{1}{2}$ " casing was run and cemented and a cased hole DST was performed.

Cement plugs were then set over the intervals 1763.5 - 1713.5 m ML, 896 - 846 m MD, 423 - 377.3 m MD and 20 sacks of cement was placed in the casing.

The rig was released at 0200 hrs on the 24th March 1986.

WESTGATE NO. 1.

DST NO. 1: OPERATIONS REPORT

21.3.86.	16:00	Rigged	uр	Halliburton	surface	equipment.
----------	-------	--------	----	-------------	---------	------------

- 18:29 Dropped Gearhart perforating bar.
- 18:31 Perforating gun fired. Wellhead closed at Halliburton manifold with guage of range 230 psi.
- 18:35 WHSIP : 5 psi
- 18:40 : 8 psi
- 18:45 : 9 psi
- 18:50 : 10 psi
- 18:55 : 10 psi
- 19:00 Closed in on master valve. Nipple down Halliburton test head and commence nippling up Otis lubricator
- 20:12 Completed nippling up Otis lubricator.
- 20:14 Start RIH with Amerada gauges.
- 20:30 Open well to flare through 3/4" choke. WHP: O psi, no air blow.
- 20:00 POOH with pressure gauges. Wire on spool tangled. Slip and cut Otis slick line and rig up with overshot for drop bar.

- 21:30 Spudded to work detonator. POOH No Bar. RIH to pick-up bar
- 22.3.86 02.00 Retrieve drop bar. Rig down Otis. Install lift sub.
 - 03:00 Pull packer free. Reverse circulate tubing to mud.
 - 03.30 Rig down test head and surface equipment.
 - 04:00 Circulate.
 - 08:00 POOH lay out TCP guns and test tools.

APPENDIX 3

Drilling Fluid Recap

DRILLING FLUIDS REPORT

FOR

BEACH PETROLEUM N.L.

WESTGATE #1 & #1A

OTWAY BASIN VICTORIA

PREPARED BY :

ANDRE SKUJINS JOHN DANIELS

DATE :

APRIL, 1986

Geofluids Pty Ltd Drilling Fluids
A joint venture company with Milchem in Australia

443 Vincent Street, Leederville, Western Australia. Postal Address: Box T1746, G.P.O., Perth, W.A., 6001. Telephone (09) 382 1766 Telex AA93908

CONTENTS

- 1. SUMMARY OF OPERATIONS
- 2. RECOMMENDATIONS FOR FUTURE WELLS
- 3. COST ANALYSIS
- 4. GRAPHS
 - 4.1 Depth vs Days
 Depth vs Rotating Hours
 Depth vs Mud Cost
 - 4.2 Depth vs Mud Weight
 Depth vs Funnel Viscosity
 Depth vs Filtrate
- 5. FLUID PROPERTIES SUMMARY
- 6. BIT RECORD
- 7. DAILY DRILLING FLUID REPORTS

1. <u>SUMMARY OF OPERATIONS</u>

Westgate #1 was spudded on the 23rd February, 1986 using Richter Rig #8, and reached a total depth of 1916 m on 12th March, 1986.

12-1/4" surface hole was drilled with water to 126 m, where a high viscosity pill was circulated prior to tripping the bit. A dyna drill was run in the hole and the well was kicked off. After the Gellibrand formation was penetrated, the drilling fluid started to "mud up". Increasing water additions were required to minimise the viscosity.

At 204 m the dyna drill bit was pulled and a tooth bit run back in. Drilling continued to 456 m, where the hole was circulated clean. A three stand wiper trip was made, and the hole circulated clean again. The bit was pulled, and electric logs were run. 9-5/8" casing was then run and cemented, with good returns to surface.

While installing blow out preventers, the mud tanks were dumped, cleaned, and filled with water. The water was pretreated with Soda Bicarb and Paraformaldehyde.

After pressure testing, an 8-1/2" bit was run in the hole, the cement drilled out, and 1 m of open hole was drilled. A pressure integrity test was conducted, and drilling continued. While drilling, KCl, Milpac, Milzan and KOH were added to the water to bring the drilling fluid within specifications (ie. yield point 12-18 1b/100 sq.ft, fluid loss <9 mls, and pH 9.0-9.5) prior to penetrating the first zone of interest, the Pebble Point formation, at approximately 846 m.

While drilling, the pipe became stuck at 608 m. It was worked free, and drilling continued. At 972 m the bit was tripped. Tight hole was worked at 920 m, and at 718 m the pipe became stuck in the hole. The pipe was worked, and a Milfree/diesel pill was spotted around the drill collars and stabilizers. The pipe could not be worked free, and the pill was circulated out. A free point was run and the pipe was backed off. Jars and drill collars were picked up and run in the hole, and the fish was tagged at 652 m. The fish was jarred, and then the jars became stuck. The pipe was again backed off and a cement plug set at 584 m.

A new bottom hole assembly was made up and run in the hole and the plug was tagged at 554~m. The hole was sidetracked at this point, and drilling continued. A wiper trip at 764~m and a bit trip at 924~m experienced no hole problems.

At 1144 m a wiper trip was made prior to running a suite of electric logs. No problems were encountered. Drilling resumed, and while running back in the hole after a trip at 1256 m, the pipe became stuck 20 m from bottom. The pipe was worked, and finally came free. Tight hole was reamed to bottom.

1. <u>SUMMARY OF OPERATIONS</u> (Cont'd)

Drilling continued to 1414 m, where a wiper trip was made. The hole was good while pulling out, but while running back in, the pipe became stuck at 1291 m. The pipe was jarred, and a Milfree pill was spotted around the drill collars. Eventually, the mud was circulated out of the hole and displaced with fresh water. The pipe then came free, and the water was circulated out and displaced with mud. A trip out of the hole was then made with no hole problems. When running back in, 70 m of hole was reamed to bottom.

Drilling continued, and a bit trip was made at 1704 m. No problems were experienced while pulling out, but while running in the hole was tight at 1489 m and had to be reamed.

Drilling then continued to a total depth of 1916 m. A wiper trip was made, and pipe had to be pumped out and the hole reamed between 1643 m and 1641 m. No other problems were encountered, and the pipe was pulled out of the hole.

Schlumberger were rigged up and electric logs were run. Two wiper trips were made, and in the second trip, tight hole was reamed from 1843 m to total depth. An RFT tool was then run in the hole, but was unable to pass 497 m. A bit was run in and a bridge was reamed at 497 m, and the hole worked down to 534 m. Two stands were then run in to 589 m and the hole found to be in good condition. The pipe was pulled and the RFT tool was run back in. The tool could not pass a ledge at 533 m, and the bit was run back in the hole. The hole was reamed between 533 m and 599 m prior to running in to bottom. The hole was circulated and the pipe pulled out. The RFT tool was then run in successfully.

After logging was completed, the bit was run back in the hole. Tight hole was reamed between 1631 m and 1671 m. Another twelve stand wiper trip was made and the hole circulated clean. The pipe was then laid down.

5-1/2" casing was then run in the hole and cemented. 2-7/8" tubing was then run in the hole, and after the zone of interest was perforated, a cased hole test was conducted.

The hole was subsequently plugged and abandoned.

2. RECOMMENDATIONS FOR FUTURE WELLS

Westgate #1 was a deviated well and as such is not directly comparable to other wells drilled in the area. Most of the problems experienced in this well are a direct result of the well being deviated and would not be expected to reoccur in vertical wells drilled in the area. The formations drilled appear to present two distinct hazards to drilling directional wells. The interbedded formations have a tendency to enlarge by varying amounts and form ledges. In a deviated hole this has the potential to catch stabiliser blades and to form key seats. The large amount of permeable formations in the section presents a severe differential sticking hazard, even, as was shown in this well, at low mud weights and with a very low solids content fluid with good filter cake properties. Another hazard, difficult to quantify, is the difference in drilling techniques required to successfully drill a deviated well with a drilling crew experienced in drilling only vertical holes.

12-1/4" HOLE

This was drilled cheaply, and trouble free. No changes are recommended to the mud program.

ie: the use of high viscosity pills for hole cleaning while drilling the Port Campbell Limestone formation, and the Gellibrand Marl providing viscosity from native solids for good hole cleaning.

It is still recommended that if mud rings occur, KCl be used at approximately 3% w/v.

8-1/2" HOLE

This section of hole encountered problems with stuck pipe, One B.H.A. was lost, and on a separate occasion the pipe was stuck for approximately 28 hours.

The first occasion the pipe stuck was at 972 m. At the time, the mud properties were well within specifications. (density 8.9+, yield point 16; fluid loss 7.7; KCl 3.2%) The pipe may have stuck due to earlier inadequate hole cleaning resulting in a "beach front" effect. Mud properties were brought into line while drilling ahead, and it is recommended that the KCl polymer mud be premixed prior to drilling out 8-1/2" hole, so as to provide initial hole inhibition with KCl and better hole cleaning with an increased yield point from Milzan. Due to the small quantities of mud required for a reasonable quality premixed mud, the mud engineer can handle this. The yield point specifications were subsequently raised (from 12-18 to 16-20) and no further hole cleaning problems occurred.

2. <u>RECOMMENDATIONS AND CONSLUSIONS</u> (Cont'd)

8-1/2" HOLE (Cont'd)

The second instance of stuck pipe was at 1291 m in the porous Paaratte sandstone. The pipe was eventually freed after displacing the hole with fresh water. This suggests differential sticking. At the time the mud weight was 9.0 ppg, and could not be kept at a lower level without a large increase in water dilution and subsequent increases in mud cost. Rather, it is recommended that extreme care be taken to ensure that the pipe is kept moving.

Another problem encountered at this stage was that only 27 bbls of diesel could be spared to mix a Milfree pill. Of this, only 17 bbls was pumpable, and therefore was not enough to be totally effective, since both the drill collars and heavy weight drill pipe were stuck. Enough diesel should be available to ensure that at least all of the BHA can be exposed to the pill. Weighted spotting pills would also be beneficial in minimising migration of the pill.

Apart from these stuck pipe problems, no other mud related problems were encountered. Sand blinding of the shale shakers occurred, but almost no mud was lost since the shakers were partially bypassed and/or coarser screens were used. The rigs solids control set-up worked well, and this, in conjunction with the centrifuge, meant that the mud weight never exceeded 9.0 ppg.

It is recommended that a centrifuge be used whenever the mud weight is to be kept down. Low weight, low solids muds have many benefits especially keeping differential sticking problems to a minimum, and less mud dilution (together with a decreased product usage) is required with the centrifuge.

This section of hole was drilled relatively cheaply. 1879 m of 8-1/2" hole was drilled, with an interval mud cost of \$27827, or \$14.81 per metre. (This includes the plug backed section and sidetrack.) The low mud cost was facilitated by the use of reclaimed sump water when building volume. It had a concentration of about 2% KCl and a water loss of 20-25 mls. Although no problems were noticed with the reclaimed "water", care should be taken to ensure that excess solids are not introduced to the mud, and that a biocide be added to reduce the level of bacteria in the sump.

The level of KCl used in this mud (3-4%) seemed quite adequate due to the mainly inert formations drilled. A higher level does not appear justified for similar wells.

Although no corrosion coupons were being run on this rig, it is recommended that an oxygen scavenger such as Noxygen be used at all times, especially with a KCl based mud.

3. <u>COST ANALYSIS</u>

				† † †	12-1/4"		:	8-1/2"		TOTAL			
				1 0	m TO 456	TO 456 m		n TO 1916	(fi	. (0 m - 1916	ñ	
PRODUCT	: : UNIT	•	UNIT COST	: ! UNITS !	COST	1 47 1 /s	UNITS	COST	 % 	UNITS	COST	1 7	
	!		! !	!	!	!	<u>:</u> !	1	! !		t 1	1	
Barytes	: 50	=	8.05		! !	t t	3	24.15	0.1 :	3	1 24.15	1 0.	
Caustic Soda	1 25	kg	22.37		·	:	10	1 223.70	0.8	10	1 223.70	: 0.	
KC1	1 50	•	15.84		ł		310	4910.40	17.6	310	1 4910.40	1 17.	
KOH	! 25	2	32.29		32.29	6.2	39	1259.31	4.5	40	1 1291.60	1 4.	
Milfree	1 205	lt	721.50	:	:	;	2	1443.00	5.2 !	2	1443.00	1 5.	
Milgel	100	1 b	14.02		490.70	93.8	11	154.22	0.6	46	1 644.92	1 2.	
Milpac	1 25	kg					107	8381.31 :	30.1 8	107	8381.31	1 29.	
Milzan	1 25	kg	222.41		!	! !	48	10675.68	38.4 :	48	110675.68	1 37.	
Paraformaldehyde	: 50	16	37.05		;	1	13	481.65	1.7	13	481.65	1.	
Soda Bicarb	1 40	kg	23.41		:	!	8	187.28 :	0.7 !	8	187.28	0.	
WD Defoam	1 25	1t	85.95		i	į	i	85.95	0.3 :	1	85.95	0.0	
			<u>.</u>		ļ			!	• !		i i	!	
TOTAL INTERVAL COS	1				: ! 27,826.65				28,349.6	4			
INTERVAL COST PER	NTERVAL COST PER METRE				1.15			19.06	!		14.8	0	

5. FLUID PROPERTIES SUMMARY

5. FLUID PROPERTIES SUMMARY

MUD TYPE : F.W. NATIVE SOLIDS SPUD MUD KCI POLYMER

INTERVAL : 0 - 456 m 456 - 1414 m

1414 - 1916 m

DATE 1986	DEPTH a	M.W. ppg	ECD PPg				<u>GELS</u> /100ft	рН	W.L. ml	FLOWLINE Temp(C)	KC1 (%)	Pf	Mf	CI-	Ca/Mg ppm	SAND %	SOL %	WATER %	MBC 16/661
23/02	95	8.6		29												.05	2.0	98.0	
23/02	150	8.7+		29										350	80	. 25	3.0	97.0	
24/02	214	9.2		32	5	5	3/10							350		. 25	3.5	76.5	
24/02	360	9.1		40	7	13	7/15							300		TR	5.5	94.5	
4/02	400	9.1+		36	8	15	11/25							300		TR	6.0	94.0	
5/02	456	7.2		36	8	16	10/28							300	40	TR	6.0	94.0	
		NIPPL	E UP 1	30P'S															
39/02	618	8.8+	9.0	37	7	9	1/ 2	10.0	12.2	29	4.1	.15	.35	19500	140	.05	2.5	77.5	
29/02	674	8.8+	9.0	40	10	12	2/ 3	9.0	11.5		4.0	.08	. 25	21000	160	TR	2.0	98.6	
32/02	789	8.8+	9.0	40	10	12	2/ 3	9.5	8.5		3.7	.12	.30	19500	180	TR	2.0	78.0	
1/03	971	8.7+	₽.1+	41	12	16	1/ 3	9.0	7.7	41	3.2	TR	.20	14500	280	TR	3.0	97.0	
1/03	972	9.8+		38	11	13	1/ 2	9.0	9.1	40	3.9	TR	. 22	21000	200	TR	3.0	97.0	
3/03	FIT	3.9		37	12	12	1/ 2	9.0	8.2		3.6	TR	.18	20500	220	TR	2.5	97.5	
3/03	584	8.8÷		38	9	10	1/ 1	8.5	9.0		3.4	TR	.32	18000	240	TR	2.0	98.0	
4/03	648	8.8+		38	10	12	1/ 3	9.5	8.4		3.8	. 25	.50	22500	280	TR	2.0	98.0	
5/03	792	8.3+		41	12	16	2/ 5	8.0	8.8	32	3.0	.18	.40	17500	220	TR	2.5	97.5	
5/03	876	8.9	9.1+	41	13	17	2/ 3	9.0	9.i		3. 3	TR	. 24	17500		TR	2.5	97.5	7.5
5/03	952	8.9	7.1+	41	14	16	2/ 6	9.0	9.0		4.2	.08	. 25	20000	280	TR	2.5	97.5	
6/03	1058	8.9	9.1+	41	13	17	2/ 5	9.0	8.2	31	3.4	TR	.20	17500	280	TR	2.5	97.5	5.0
5/03	1120	9.0	9.2	42	15	16	2/ 3	9.5	8.2		3.6	.10	.50	18500		. 25	3.5	96.5	
6/03	1144	9.0	9.3	45	16	21	2/ 5	8.5	8.6		4.4	TR	.32	22000		TR	3.0	97.0	5.0
7/03	1208	9.0	9.3	43	15	20	2/ 4	9.5	8.5	35	4.0	.12	. 46	20500		TR	3.0	97.0	5.0
7/03		8.9+	9.2+	46	17	22	3/ 6	9.0	7.0		4.2	.14	. 54	23000		TR	3.0	97.0	5.0
/03	1375	9.0	9.2+	44	14	18	2/ 4	9.0	7.4	3 6	4.3	.18	.60	22500		.30	97.0		
8/03	1414	9.0	9.2+	44	16	18	2/ 3	9.0	8.2		4.2	.08	.44	21500		TR	3.0	97.0	7.5
9/03	1291	8.8+		38	11	11	2/ 3	8.0	7.2		3.2	TR	.26	16500		TR	2.5	97.5	
0/03	1414	8.8+	9.1	45	15	18	2/ 4	8.5	7.0	32	3.7	TR	.36	19500		TR	2.5	97.5	
0/03	1573	8.9	9.1	40	12	16	2/ 3	9.0	7.2		3.4	.10	. 48	17500		TR	2.5	97.5	
0/03	1690	8.9	9.1+	43	13	19	2/ 5	9.0	7.4		4.2	.08	.56	21500	180	TR	2.0	98.0	
1/03	1705	8.9+	9.2	44	14	20	3/ 5	9.5	7.8	39	4.2	.14	.68	21000	160	TR	2.5	97.5	5.0
1/03	1723	8.7+	9.1+	42	13	17	2/ 4	9.0	8.3		3.4	.08	.52	16500	160	TR	3.0	97.0	7.5
1/03	1773	8.9+	9.2	43	15	19	2/ 5	9.5	7.7		3.3	.12	. 65	16000	160	Tñ	3.0	97.0	5.0
2/03	1820	7.0	9.2+	45	16	20	3/ 6	7.0	8.4	39	3.5	.08	.58	20000	180	TR	3.0	97.0	
2/03	1874	8.9+	9.2	43	15	18	3/ 5	9.0	8.6	•	3.8	.10	.55	20000	140	TR	3.0	97.0	
2/03	1916	8.9+	9.2	45	16	20	3/ 6	9.0	8.1	40	3.7		. 65			TR	3.0	97.0	5.0
1/03	1916	8.9+	9.2	42	14	17	2/ 5	9.5	8.4	37	3.3	.15	.72	18000	160	TR	3.0	97.0	
5/03	PIT	8.9		39	12	15	1/ 3	9.5	9.0		3.2	.10	.55	17000	180	TR	3.0	97.0	
703	1916	9.0		45	16	18	3/ 4	9.0	8.0	34	2.9		.58	17500		TR	3.5	76.5	
5/03	1916	9.0		46	17	20	3/ 6	8.5	8.2		2.6		.52			TR	3.5	96.5	
7/03	1916	7.0		45	17	18	3/ 6	8.5	8.4	41 _	2.9		.46	17000		TR	3.5	96.5	
7/03	PIT	9.0+		46	18	18		10.0	8.5		2.9		.84	17000		TR	3.5	96.5	
V03 (CIRC	7.0		43	15	16		10.5	8.0		2.9		.20	17000		TR	3.5	96.5	
703		9.0		45	15	15	2/ 3		7.6		2.7			16500		TR	3.5	96.5	

6. BIT RECORD

6.

Bit Record

Contractor Republic Right No. Location Nest Right No. Location Nest Right No. Location Nest Right No. Right No. Right No. Right No. Right No. Right No. Right No. Right No. Right No. Right No. Right No. Right No. Right No. Right Right No. Right No. Right Right No. Right Righ																							1111111	1		
Contractor Richited Dollar Doll	Oper	ator	BEN	IN PE	TROLI	MUS		Well	lo. (L	ocation	Wi	ESTUR	*TE		S	uperviso	ors v	VINCE	(ンダク	207	TEFANO	Jim HANDE	1/Eml	Hopme
Soud Date 3230-545 9. TO Date 1274 NAMELY 96 Run Bill Stz Make Type 328 300 Doth Depth House Commission W.T. RPM Dav. Process Colored No. 1 T B G Other Formation 1 1 134. Sec 5385 346 1240 1240 1240 35 14 30 120 120 120 120 120 120 120 120 120 12	Cont	racto	B	LINTER	, Da	JULIIJ (, ,	Rig No). S	3 1	/Jud Pum	ps NA	TICNAL	9-6	- 100	D	rill Pipe	47, "		Dril	I Col	lars	۵ " ک	1 (3/14)	7	
No. No. Size Maske Type See	Spuc	Date	23no F	er'86	TD Da	ite iQ	N MARC	486	Surfac	e Csg qs/g	"@ 453	_ Inte	er Csg			P	rod Csg	55"		Mu	d Typ	e ()	ATER -LI	LATINE SOLIN .	. XII Po	-) YME0
1 124 Sec S55 Sale 126n 16x 16x		Bit				Jets	Depth	Depth	Hours	Cumulative					вы/м					Du	II Cor	nd			YCC 15	
2 2 1214 Name 13A 1000 204 18x 334 2014 3 - 22 400 6-8 54 88 3 2 10.C. 2 3 I 3 121 1214 560 535 3x10 455x 25x 102 25x 102 25x 102 25x 102 20 10.D 10.D 10.D 10.D 10.D 10.D 10.D 10.	No.	No.									W.T.	RPM				1	1 .			T	В	G	Other	Formation		-
3 12 12 14 5 5 5 5 5 5 5 5 5	1	1									30	150		300	8.8	70	W	AT	<u>EB</u>	1	1	I]
1	3	7	15/14	VAREL	13A	Open	30cm	78m	374	کس کرنے	3		The same	400	6-8		8.8	32	N.L.	2	3	I				
1	13	RRI	12/4	SEL	5335	3×16	456m	252 r	153	323/4		1900	J83, 4	500	9.6	76		36	N.L	2	2	I				
S	4	3	87,	SEL	5335	3×10	922	SIGM	2574		10-30	ארמצו	24,4	[voo-1×56	6.8	135	8.9+	41		1.1	0 5	-				1
6 RULL 8%, SEC 2323 3×11 ATH 2720 103 84, 12 1720 103 11, 11, 12, 12, 12, 13, 12, 14, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	S	4	87,	'YEL	5335	3211	SG7m	30m	24	4703				ı	l	1		Į.	8.4	1	1			•		1
S S S S S S S S S S	6	RNY								7944						1				8	6	3/4			······································	1
9 PRG 85° SEC SELF 3×11 1121 158 121 16 16 16 17 10 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	7	1	4	1							12	رازار	28%			·		45	 	1	1					1
9 fle 88° Se Skit 3x11 1444 158 11 1 184 10-20 100 1214 150 6-8 135 9.0 44 12 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	6																 	1	Ĭ	1		,			1
10 7 8½ Sec Sure 10.10.11 1774 290x 18½ 13634 5-25 180 2.14 180 6-8 135 8.94 44 7.8 8 is by 11. 8 8½ Sec Sure 10.10.11 1914 21.2x 22.22 80 .21% 10.00 6-8 135 8.94 45 8-1 2 4 1/6		PRE						F										1		Ì	1	1/2				1
11 8 8½ SEC SECTION 1916 212 2212 15914 25-22 80 211/4 1400 6-8 135 8-9+ 45 8-1 2 4 76	 	7											1	1	1			1		0	\ !	7		<u> </u>		1
		7																		12	_	-				1
	-	"	0*	34	2045	10-10:17	TUUM	actach.	grift	121.4	77-32	90	. 2.114	1400	6-8	1.22	8-4,	42	+	4	۳	165				-
	-		 			 	<u> </u>							 			-	 	 	┼	ļ					4
	-	-		<u> </u>	-		<u> </u>	-	<u> </u>	ļ				 			-	 	-	┨	ļ			·		-
	-	 	<u> </u>		<u> </u>		<u> </u>	ļ				<u> </u>	ļ	ļ			-	ļ	-	_	_					4
	-	-	<u> </u>	ļ		<u> </u>		<u> </u>		 		-					<u> </u>	ļ	-	-						1
	-		<u> </u>								_		ļ	ļ		ļ	_	ļ	ļ	<u> </u>						
		<u> </u>		<u> </u>				<u> </u>										<u> </u>								
	_																	<u> </u>								
		<u> </u>																								
				<u> </u>]
												3					- 47							1		1

Remarks

7. DAILY DRILLING FLUID REPORTS

Geoffuids	
	Milchem

REPORT NO. \	DATE 215 FEB 86
RIG NO. 8	SPUD DATE
DEPTH 131	TO

								<u> </u>	··· <u>(</u>	<u>/</u>			
OPERATOR BEAC	H PETRIOLE	MU			CONTI	RACTOR	\mathcal{O}'	LHTER	1/20	عالاللالة			
REPORT FOR			· N		REPOR	RT FOR	1 .		•				
		TOSTER	-17NO				<u> </u>	MIGE		JI SON	OT:		
WELL NAME AND NO.	WESTLATE	#1			BLOCK	OR (NO. WILD	1.55	OCATIO	Red D	ANN	STATE	WI	ORIA
OPERAT			CASING			AUD VOLUME			• • • • • • • • • • • • • • • • • • • •	CIRCI	JLATION		OKIN
Present Activity			Surface		Hole	Pits		Pump Si	ze x		Annular	Vel. (/	Min).
Bit Size	No.	Int	at ermediate	<u> </u>	Total Ci	rculating Volu	ımo	Dump 14			Opposite DP		
Dell Bios Con-			at		iolai Ci		#11C	Pump Ma Model	ane	-	Opposite CollarRiser		
Drill Pipe Size	Туре	Produ	oction or Li at	ner		In Storage		/Stro	ke Stro	ke/Min	Circulati	na	
Drill Collar Size	Length	Mud Type	aı					/Min			Pressure	9 :Un (Min)	·····
		<u></u>									Systems	Total (Min	.)
	owline 🗆 Pit	۰.	ми	D PRO	PERTIES	1			E	QUIPMEN	T		
Flowline Temperature Time Sample Taken		°C						ZE	Hours			SIZE	Hours
Depth Die laken				ļ		Centrifuge				Desilter			
Weight⊡ (S.G.) □			-			Degasser				Shaker			
Mud Gradient (psi/ft)			 			Desander							
Funnel Viscosity (sec./	gt) API at	°C		+		DAILY				CUMULA	IIVE		
astic Viscosity cps at			-	+	_			MUD P	ROPERTIE	S SPECIF	CATION	IS	
Yield Point (lb/100 sq. ft.)			-	 		WEIG	HT		//YP		RATE	T	
Gel Strength (lb/100 sq.ft.)	10 sec/10 min.		+ , -	+ - ,	- 								
pH □Strip	□ Meter		+-'-	+-/		BY AUTH	ORITY		or's Written			Contractor	
Filtrate API (ml./30 min.				1		 		⊔ Operat	or's Represe	ntative . [Other		
API HP Filtrate (ml./30				+	-	TYF	F	JETS			DM	ICTVC	0,110
Cake Thickness (mm)	API HP-H		1	—		 		1 0513		R.	.P.M.	JET VEL.	BHHP
Alkalinity, Mud (Pm)			1		_			 	- 				
Alkalinity, Filtrate (Pf/Mf)			/	1	1	 		<u> </u>			L		1
Chloride : mg/l)			<u> </u>	 	1-	1		RE	COMM	ENDATI	ONS		
Total Hardness □ epm	n □(mg/l)					1							
Sand Content (% by Vol.)		" 		1		1		••••••	••••••••••	•••••	••••••	•••••••	•••••
Solids Content (% by Vol.)						1	•••••	••••••	•••••••	•••••	•••••	•••••••	••••••
Oil Content (% by Vol.)						1		••••••	•••••	••••••	•••••	•••••••	••••••
Water Content (% by Vol.)						1		•••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
Methylene Blue Capacity [] (ml/ml mud) ☐ (equiv.	#/bbl bent)				1		••••••	•••••	••••••	•••••••	••••••••	·····
K+ (mg/l-]			•••••••		••••••	••••••	•••••
Nitrate (mg/l) /Sulphite (mg	g/l)		/	/	/		••••••				••••••		••••••
							•••••						••••••
								*****************	**************			· · · · · · · · · · · · · · · · · · ·	
COST CUMMANY (CA 11211	o munica o o									•••••••••			
COST SUMMARY/24 HOURS	SENDING 21-2			<u>'0'</u>					•••••	••••••		•••••••	
Product/Packa	ye	Units	Unit Cos	st	Cost			An-	DATIO			•	
Λτ.						_		OPE	HAITON	IS SUM	MARY	•	
						f::)rr							•••••
- ' <u> </u>						1.7.1		<u>~</u>	••••••		•••••		•••••
					<u>-</u>		•••••	•••••		•••••			•••••
						***************************************	•••••			•••••		•••••	•••••
							•••••	•••••	••••••••	•••••	······	••••••	•••••
						••••••	••••••	•••••••	••••••	•••••••	•••••		••••••
	-							••••••	•••••••	•••••	•••••	•••••••••	•••••
				\top		••••••	•••••	•••••••	••••••	••••••	••••••		•••••
						••••••	••••••	••••••	•••••	••••••	•••••		••••••
								••••••	••••••	••••••	••••••	•••••••	•••••
	D ADDITIONS FOR 24	4 HOURS (BI	BL)			***************************************		•••••••	••••••	••••••	••••••	••••••	••••••
Diesel Drill Water	r Sea Water	Prehyd	Irate						•••••••	•••••••	••••••	••••••	•••••
		,							•••••••	••••••	•	••••••	••••••
EOFLUIDS ENGINEER	MORE	くくいこ	35		HOME A	DDRESS I	120	LAIDE	Т	ELEPHONE	DA	70.5	1.00
	11/1/1/1/	ンシン	<u> </u>		1		スこと	ハインナ	· . ' '		ノノブ・	- 1U.N	וויע

The part is subject to the following terms and conditions:
GEDFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS has no power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS hall not any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geoffuids		
	77	Milchem

REPORT NO. 2	DATE 22 NO FEB 8
RIG NO.	SPUD DATE
DEPTH O'	ТО

OPERATOR	BEAL P	C-C =:	· · · ·			CONTE	ACTOR	$\overline{\Omega}$	<u>-</u>	_	<u> </u>	<u>-</u>				
						CONTRACTOR RICHTER DRILLING										
REPORT FOR	VINCE	MAC	PARTEGO	mo_		REPOR	<u> </u>	Au	JUE	(المحادة	ULSON				
WELL NAME A	NDNO. INIFO	STEATE	M	-		FIELD C	NO. MILOU	_	CTTV		SASIN	STAT	E /(1/	TORIA		
	OPERATION	31 (-1112	<u> </u>	CASING			IUD VOLUME	٣٠	0116	9117		RCULATIO		JOICH		
Present Activity	0	<u></u>		Surface		Hole	Pits .		Pump	Size / 1/	"X OV "	Annul	ar Vel. (F+ /N	⁄in).		
Bit Size	PUE UP TO	Spus	ļ	at	, 	Total Cia	450				<u> </u>	Oppo	site DP site Collar .\.	is hisa		
	124,	No.	l int	ermediate at		lotal Cir	culating Volume	e	Model	Make N1	-13-100 H	Oppo	site Collar . l .:	101		
Drill Pipe Size		Туре	Produ	ction or Lir at	ner		In Storage		BBL/Sti	roke :	Stroke/Min	Circul	ating			
Drill Collar Size	8" 6"4"	Length	Mud Type	W A	TER		00		3B-/Mi		95%	Bottor	ns Up (Min.) ns Total (Min.)			
Sample from	□ Flowline	□ Pit								1 4	EQUIPM	ENT 4		<u> </u>		
•	perature		°C	MUI	D PROPI	ERTIES		SIZ	ZE	Hours	EGOIFM S		SIZE	Hours		
Time Samp	le Taken						Centrifuge				Desilt	er	12-44	0		
Depth					1			Drai	ia	0	Shak		40/200	0		
Weight□ (S.G.) 🗆				 		Desander		<u>د ا</u>	0			345/100	\sigma		
Mud Gradi	ent (psi/ft)			1			DAILY				CUMI	JLATIVE	1200 [1100			
Funnel Vis	cosity (sec./qt) API at		°C				COST				COST					
	osity cps at										TIES SPEC	IFICATION	ONS			
vield Point (lb/100 sq. ft.)						WEIGHT	Γ		PV/YP		FILTRATE				
Gel Strength	n (lb/100 sq.ft.) 10 sec/10	min.		1 /	1	+ /	1 W	1A	TER							
	□Strip □Meter			 	 	+ '-	BY AUTHOR	RITY	□ Ope	rator's Writt rator's Repi	en rometativo		g Contractor			
	l (ml./30 min.)		•	<u> </u>	<u> </u>		 		LX Ope		NFORMATION NFORMATION NFORMATION NAMED IN THE PROPERTY OF THE	☐ Other				
	filtrate (ml./30 min.)			+			TYPE		JE		W.T.	R.P.M.	JET VEL.	ВННР		
	Cake Thickness (mm) API HP-HT					+		35	3~		VV.1.	n,r.ivi,	3211	DITT		
Alkalinity, Mu				 	-		300 33	ددر	24	10			2(11			
Alkalinity, Fill				 	1	+ ,	<u> </u>					·	<u> </u>	1		
Chloride (mg				'-		 '	1		R	ECOM	MENDA	TIONS	}			
otal Hardne	 	ng/i)				-	1 C . \	-								
Sand Conter		119/1/				-	1 B. V. V.	·/~.			d		to ad	1		
	ent (% by Vol.)			-		 	1		7.VV.	7B.:117	OD K	MUNCOL.	10 and	/voc-		
Oil Content (ļ			cve	Ar.yr	×14							
∵ater Conte						+	ļ					•••••				
			# /b b b 1					•••••			•••••••					
	lue Capacity [] (ml/ml m	iua) 🗀 (equiv.	#/bbi bent)													
K+ (mg/l)	\ (C In hite (m. n. //)			ļ,	,	 			· · · • · · · · · · · · · · · · · · · ·							
14ltrate (mg/l)) /Sulphite (mg/l)			/_	/_	 										
						 										
						 					•••••					
COST SUMMAS	RY/24 HOURS ENDING		#/ 8	DERT!		<u> </u>		•••••			•••••		••••••			
		ع ملم م		DEPTH		01		•••••		•••••	•••••					
	Product/Package		Units	Unit Cos	St	Cost			ΔD	ED ATI	ONG GI		7 \/			
Mili	16L						0.	لـ			ONS SL	MMAI	47			
							Rugar	7c	Je	<i>γ</i> ν)						
										• • • • • • • • • • • • • • • • • • • •		•••••				
											•••••					
							•••••				••••••		••••			
							***************************************				•••••					
	1101315.455	10110 505 5	4.1101175	513			•••••	•••••					•••••			
Dios-t	LIQUID ADDIT				···											
Diesel	Drill Water	Sea Water	Prehy	orate				•••••		•••••						
											1					
EOFLUIDS ENG	INEER ANDRE	<u>Sk</u> u	ZNZ		i	HOME A	DDRESS 1	DEL	LINE	.	TELEPHO	ONE 6	18-795	COI		

The part is subject to the following terms and conditions:

GEO JIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS, in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geotjuids		₩.		٠							
	Geo	fluids	Pty L	td		RE	PORT NO.	3	DA	TE Q Z	FER'S
Milchem			_		Report	RIC	NO.	3	SP	UD DATE	Benfes
					-	DE	ртн у) _M	то		
OPERATOR BEACH PETRICEUM	M			CONTRA	ACTOR QU	HTER	_	LINE	-		· · · · · · · · · · · · · · · · · · ·
REPORT FOR VINLE SAUTOSTEFA				REPORT	•	ME	KLASO				
	100			FIELD OF		LOCAT	ION		STATE	- \\	
INESIGAIR					NO. VILDUR	UZÚ.	NAX K	NEAC			TORIA
OPERATION		SING	\angle		JD VOLUME			CIRC	CULATION		
Present Activity DRILLINE		face at	_	Hole	Pits_40	Pumps	Size (76 ×	9 Y4"	Annula	ir Vel. (🏳 / N ite DP	ለin). 5 ፟፟
Bit Size 1214 No 1/2		nediate			culating Volume	Pump N Model	Make NM		Oppos	ite Collar	r:5
Drill Pipe Size Ly Type	Production		er		In Storage	15RL/Str	oke Stro	oke/Min,	Circula	ting	
Drill Collar Size 8 5 x 6/4 Length Mu	ıd Type	at < >		۱۸ .		BOL-MI	}		s Up (Min.) .		
	T	SDI		MUD	<u> </u>	28/	0 0 0			ns Total (Min.))
Sample from ☐ Flowline Temperature°C		MUD	PROPE	RTIES	SIZ	ZE	Hours	QUIPME	NI	SIZE	Hours
Time Sample Taken	1.5		21-30		Centrifuge			Desilter	· N	1 × 4"	Q j
Depth (METLES)		45	120	214	Degasser Day	Lx	0	Shaker		W Rigo	1/2
Weight□ (S.G.) ⊠ ピー		8.6	8.7	8.8		6"	15			40 BN	15
Mud Gradient (psi/ft)		447	455	428	DAUM			CUMUL		4 .	
Funnel Viscosity (sec./qt) API at°C		29	29	32	COST Thate	3.36	22222	COST		10263 ·	56
Rastic Viscosity cps at				3	MEIOLIT		PROPERTI			NS	
eld Point (lb/100 sq. ft.)				5	WEIGHT	 	PV/YP		LTRATE		
Gel Strength (lb/100 sq.ft.) 10 sec/10 min.		/	/	3/10	BY AUTHORITY	A 1	ER				
p⊣ ⊠ Strip □Meter					BYAUTHORIT		rator's Written rator's Represe	entative	☐ Other	g Contractor	
Filtrate API (ml./30 min.)								ORMATIO	V		
API HP-HT Filtrate (ml./30 min.)					TYPE	JET	S V	V.T.	R.P.M.	JET VEL.	BHHP
Cake Thickness (mm) API□ HP-HT□					SEL 5335	3×	18		100	201	
Alkalinity, Mud (Pm)					VANGL L3 (DYNA C	Janes)				
Alkalinity, Filtrate (Pf/Mf)		/	/	/							
Chloride (mg/l)			350	320	10 :		ECOMM		ION2	, , ,	,
Tc:al Hardness □epm □(mg/l)			80	60	is but + 16	المنظرية	stoppows.	our,	, 4W	sh hole	NUL
Sand Content (% by Vol.)		.5	-25	.32	treat	nuter	and for	r add	900	101 xon	10 6 1 0
Solids Content (% by Vol.)		ર	3	3.5	, KU	(5.3)				··················	
O-I Content (% by Vol.)			-	-	2) KDH ad	ded to	tel !	VINO B	<u> </u>	steed of	N'N OH.
V-ater Content (% by Vol.)		વે8	97	96-5							
Methylene Blue Capacity ☐ (ml/ml mud) ☐ (equiv. #/bl	bl bent)	-				••••••	••••••	• • • • • • • • • • • • • • • • • • • •			
K- (mg/l)				 		•••••					•••••
Nitrate (mg/l) /Sulphite (mg/l)		_/		-1 3/							
- NK				28/59	Desarder		17.7		<u>م</u>		t
					Doubles	. UL :	. ₩.3		<u>~</u> ≉	- B. B. B.	[100xx
CUST SUMMARY/24 HOURS ENDING 23-2-9	Lia @ DE	PTH	185m		کوی:۱۱۰	01	,	69 7	<u>ٿ</u>		.w
Product/Package Un	74	Unit Cos		Cost		••••••	••••••	••••••	••••••		••••••
MILIEL 17		14.08		59-36		OP	ERATIO	NS SUI	MMAR	ίΥ	
CASSTU SOBA POTASH 1		24-00		U4.00	Soud in	. 0	02.00	hvs.			
		~		3-36	12/11 13	ر الرب	المدد فأدر	- Sr	Mar.	•••••	
			1 -4		P. ma	Hi Vis	6) 11:0	4131	١٤٤١	··) and	BH
					Makeir	, 0,,,	INA R	ų Σ	× 674	' wellow '	
					RUH.						
					Drini Ale	d wh	Dua D	न्त्री.			

SKUZIKZ ALDRE

Drill Water

wir.

Diesel

GEOFLUIDS ENGINEER

LIQUID ADDITIONS FOR 24 HOURS (BBL)

Sea Water

Prehydrate

60

This port is subject to the following terms and conditions:
GET CONSTRUCTION OF THE CO

HOME ADDRESS

......

ADELMOR

TELEPHONE 198-795102

Georgias										\
	Geofluid				RE	EPORT NO.	4	DA	TE DLYN	. FEB &
	Drillir	ng F	luid F	Report	RIC	IG NO. 🧏	<u> </u>		UD DATE	23rofes
				· · · · · · · · · · · · · · · · · · ·	DE	EPTH 18	85n	то	40	7m
OPERATOR BEALL DETRULEUM			CONTRA	ACTOR RIU	HTER		TING			
REPORT FOR VINCE SANTO STEFA	4NO		REPORT	RTFOR AL	JAJE-	KLAS				
WELL NAME AND NO. WEST GATE M			FIELD OI BLOCK I	OR NO. WILDER	LOCAT	TION A		STATE		~~ · · · ·
OPERATION	CASING		M	ALID VOLUME	144	71117 . 01-7	CIRC	CULATION	DATA	AUDT
Present Activity DRILLING	Surface at	/	Hole	Pits 4W	Pump 8	Size 644 ×		Annular	Vel. (F4 /	1541 76
0.40	Intermediate	3	Total Cire	rculating Volume	Pumpi	Make Ny	WHAL	1 Opposit	te DP te Collar	971 10
Drill Pipe Size Lili Type Proc	at duction or Lir at	ner		In Storage	Model RNL/Str	roke Str	olie/Min	Riger Circulati Pressure	ing ,,	1 7
Drill Collar Size (& 8" Lex 674" Length Mud Type	SPU1	7 M	NID		ROL-ZMY		100%	Bottoms	e s Up (Min.) s Total (Min	21
Sample from A Flowline Pit	1	JD PROPE		T	10.01	E	QUIPME		· IOILI promi	l-)
Flowline Temperature °C Time Sample Taken			15 12 5 104.00		IZE	Hours			SIZE	Hours
Depth (METRES)	360	1972 M	7 500.00	Degasser Dan	-	5	Desilter	11/2	Lalaus	12
Weight□ (S.G.) პეიუ	9:1	9.1+		15	76°	14	Shaker	• • • • • • • • • • • • • • • • • • • •	42 840 42 840	14
Mud Gradient (psi/ft)	.473	. 476	-478	DAILY	7	100	CUMUL	A T11 10		
Funnel Viscosity (sec./qt) API at °C	५०	36	36	COST DI	<u>、プリ (</u>	PROPERTIE	COST	CATION	<u> 5270.</u>	63
eld Point (lb/100 sq. ft.)		3	8	WEIGHT		PHOPERTIE		LTRATE	15	
Gel Strength (Ib/100 sq.ft.) 10 sec/10 min.	13 7/15	11 52	16	N.s.		32	+	-111/11		
ch Strip Meter	1/1/2	11/45	2 10 138	BY AUTHORITY	□Oper	rator's Written	1	□ Drilling (Contractor	
Filtrate API (ml./30 min.)	+	 	+		l∆ Ope,	erator's Represe BIT INFO	ntative ORMATION	□ Other N		
API HP-HT Filtrate (mb/30 min.)		<u> </u>	† <u></u> '	TYPE	JET			R.P.M.	JET VEL.	ВННР
Cake Thickness (mm) API M HP-HT			1	VAREL LIA				-	<u> </u>	J
Aikalinity, Mud (Pm: Aikalinity, Filtrate (Pf:Mf:			Ι	SEL 5335	3×1		5	(db	र्वन	
Chloride (mg/l)	300	1 /	+	4	RI	ECOMME	NDΔT	IONS		
Total Hardness □epm I (mg/l)	500 100	300	300	Mo-tain -					1, 4	1.
Sand Content (% by Vol.)	77	TR	TR	-1-4-4-15	J 1:	o the c	13 1 -	۾ در	HA I	oWww
Solids Content (% by Vol.) (Calculated)	5-5	60	6.0		;D.:xzr	hud ving	.,	rg''''	ب بعددا	Panns
C:l Content (% by Vol.)	_		_	1					••••••	•••••
Water Content (% by Vol.)	94-5	940	वफ्र	1	••••••				***************************************	
K^* ethylene Blue Capacity \square (ml/ml mud) \square (equiv. #/bbl bent) K^* (mg/l)	1-1	<u> </u>	1	<i>i</i>			•••••	•••••		
N _t trate (mg/l) /Sulphite (mg/l)	+-,-	 '	+-,-	ı	••••••	••••••				
- K	+		4118	ı ·····	••••••	••••••			•••••	
	+		1911/2	······································	•••••	•••••••••••••••••••••••••••••••••••••••		······································		
				Desander '	JF 11	1.2 m	@ \-;	ح هيا	lmin	•••••
		WIM	-	Desarde (UF 1	03 /	<u>a</u> 3.	2 3,	Ilmin	.±
Product/Package Units	Unit Cos	st t	Cost			ERATION				
MIL		+		N		EKAHON	12 20 IA	IMAnt		
	Г	-		of 115421	Bom	La. L s.h		••••••	•••••	
	l			RUM.		יציגט ייינטייינייאניי			••••••	
	<u> </u>			Dist p	myag	······································			************	
Note: (ast larrestion -				BON 40 1	dans	BHA O	ud Bir	1	*************	
				RIK.	3 G					
(augh B)4-02 or sock		187.	20	19/21 Ja	Jain	\$	•••••	•••••••	•••••	
Charles Care a Description con		1901	7	TO TO C	Charles.	DLI		••••••		
		+		Droll AL	~ /	••••••	••••••	••••••••	••••••	
					**************************************		•••••••	••••••	•••••••	
LIQUID ADDITIONS FOR 24 HOURS (E				***************************************				************		
Diesel Drill Water Sea Water Prehy	ydrate			***********	************				***************************************	

SKUTINS ADELAIDE

HUDRE

GEOFLUIDS ENGINEER

Prehydrate

This part is subject to the following terms and conditions:
GE JIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEO JIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give any direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS. In giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

HOME ADDRESS

TELEPHONE 08-

REPORT NO. 5	DATE 25TH FEB'81
RIG NO. 8	SPUD DATE 23 AND FEB.
DEPTH (1.57	TO 1.5

										<u> </u>	<u> </u>		<u> </u>	<u> </u>		
OPERATOR	BEACH PE	CONTRACTOR RICHTER														
REPORT FOR			TEFANO	***************************************		REPORT FOR LAWRE KLASSEN										
WELL NAME AN	· · · · · · · · · · · · · · · · · · ·		&I				PR NO. WWO.	كاسا	LOCAT			STATE	=			
AAETT IAWINE AIV	101-31	CATE	· · · · · · · · · · · · · · · · · · ·					M	OTH	ikh Re	SIN	<u>.l</u>	JANE VIL			
Present Activity	OPERATION			ASING	,	N N	IUD VOLUME	DVOLUME CIRCULATION Pits Pump Size 6 4 x 0 4 x 0 Annula Oppos								
	WOL			Surface at		Hole	Pits Soi	5	Pump S	اللالم						
Bit Size	12 1440	NRA	Inte	rmediate		Total Cir	culating Volum	Make NAT	15.	ite DP ite Gollar G	44 PH					
Drill Pipe Size	1	In Storage \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						iting	600							
Drill Collar Size	1	BRI Asia						Bottoms Up (Min.)23								
	<u>au</u> M	10 1-9-3 Sys						Systems Total (Min.)								
Sample from Flowline Temp	ERTIES	TIES EQUIPMENT SIZE Hours SIZE														
Time Sample			*C	-	Ī	1	Centrifuge	31.		Hours	Desilter	, 1	SIZE LLX4"	Hours		
Depth				 	+		Degasser	2		~				<u> </u>		
Weight□ (S	3.G.)			 			Desander	DRU		0	Shaker	13	क्या <i>क</i> क्याक	4		
Mud Gradie				 	 	_	DAILY		(6h	<u> 4</u>	CUMUL					
	osity (sec./qt) API at		°C		-		COST	<i>₹</i>		52.36	COST		\$ 255	<u>,99</u>		
	sity cps at				l					PROPERTIE	SSPECI	FICATIO	NS			
Y:eld Point (Ib					<u> </u>		WEIGH			WYPUIS	FI	LTRATE				
	(lb/100 sq.ft.) 10 sec/10 r	min.		/	/	+ /	MIL			<u>~ 35</u>	L					
	☐Strip ☐Meter			 	 		BY AUTHORITY					☐ Drilling ☐ Other	g Contractor			
	(ml./30 min.)					-	 		G Oper		DRMATIO					
API HP-HT Fil	⇒PI HP-HT Filtrate (ml./30 min.)						TYPE	=	JET			R.P.M. JET VEL		ВННР		
Cake Thickne	ess (mm) API	HP-H	TO		<u> </u>		SEU 5335 3x		3×1			iw	757	1		
A kalinity, Muc	d (Pm)							<u></u>	1-2	32	- -	,		 		
	rate (Pf/Mf)			/	/	1							1	.1		
Coloride (mg.	/l)									ECOMMI	_					
Total Hardnes	ss □epm □(m	ıg/l)					June 1	, S	ord 1	nd an	d Cles	in tu	uks.			
Sand Content]		,							
Solids Conter									•••••••	••••••	***********					
C : Content (9	· 										••••••			•••••		
∵ater Conten											•••••					
	ue Capacity ☐ (ml/ml mi	ud) 🗆 (equiv.	#/bbi bent)							•••••			••••••			
K- (mg/l)																
Nitrate (mg/l)	/Sulphite (mg/l)			/	/_	//										
						-			•••••							
						-		••••••	•••••					•••••		
COST SUMMAR	Y/24 HOURS ENDING	25-3	~ XI @ I	DEPTH	4261	1		•••••	•••••	•••••			••••••	•••••		
	roduct/Package		Units	Unit Cos		Cost	•••••	•••••	••••••	••••••				•••••		
* MILLER			18	14.0		J25-31			OP	ERATION	IS SU	MMAR	Y			
			,~			~~~ ~ ~	Duzz	to	45	bm						
										·	•••••••	•••••	••••••			
					_		3 54	سلا	Many	trè.			•••••••	······································		
							TUM.					••••••	••••••	······································		
& Used for	(consut Its.						(1/-	•			••••••	••••••	••••••	••••••		
-																
							Ring	ро	y un	Elentri	Lon	>:				
							Rin	will.			Ξ	J	••••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
·							لايتان	لم.ع	Ru	d2184	رچنې .		••••••			
	•			····			Çiri,	' لړ	ე		٠٠٠ ر		••••••			
							Cons		<i>-</i>							
- Dia 1	LIQUID ADDITI						NOC	.								
Diesel	Drill Water	Sea Water	Prehyd	drate												
CEOELL IIDO TO ITA	\\									r						
GEOFLUIDS ENGI	NEER HADRE	SKI	TINTS			HOME A	DDRESS $igarpi$	A)F	L AM	2. 1	FELEPHO	NE 198	-79511	2)		

The port is subject to the following terms and conditions:

GEOF-CUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.

GEOF-LUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOF-LUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOF-LUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOF-LUIDS. The client shall indemnify and hold indemnified GEOF-LUIDS harmless from all claims and actions by any other person arising out of any act or ornssion on the part of GEOF-LUIDS in giving any advice or report.

ANY oral advice given by GEOF-LUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geoffuids		
	77	Milchem

REPORT NO. 6	DATE 2 6TH FEB 86
RIG NO. S	SPUD DATE 3 Soften 8
DEDTU / «	TO

_										2511				
PERATOR BEACH PE	TRULE	5./M			CONTRACTOR RICHTER DRIVING									
	-				RICHIER CARLINE									
NIVICE (<u> </u>	STEFA	70		1	FIELD OR I STATE								
VELL NAME AND NO. WEST	CATE	型1			BLOCK	FIELD OR LOCATION STATE BLOCK NO. WILD CAT OTWAY BASUN							AUROT	
OPERATION			CASING		М	MUD VOLUME CIRCULATION							· CARET	
resent Activity Nupple Up	BURS	95/2"	Surface at		Hole	The state of the s							⁄lin).	
it Size	Total Cir							Opposite DP Opposite Collar						
rill Pipe Size	 	Model					Riser							
·								Circulating Pressure						
rill Collar Size				/Mir	1			ns Up (Min.)						
ample from	□ Pit					T				QUIPME		ns Total (Min.)		
lowline Temperature		°C	MUI	D PROP	ERTIES		SIZ	E	Hours	.GUIPME	14.1	SIZE	Hours	
Time Sample Taken				T	T	Centrifuge				Desilter	.	11×14°	0	
Depth				1		Degasser	Dell	1 47:	0	Shaker		324		
Weight□ (S.G.) □						Desander	لكوي		3	1				
Mud Gradient (psi/ft)						DAILY		-		CUMUL	ATIVE			
Funnel Viscosity (sec./qt) API at .						COST		Mile	DDCDE2=	COST	EICA=:-	NIC .		
astic Viscosity cps at						WEIGH	т		PROPERTIE PV/YP			JNS T		
Yield Point (lb/100 sq. ft.)						WEIGH			-V/TP	F1	LTRATE			
Gel Strength (lb/100 sq.ft.) 10 sec/10 r	min.		/	/	/	BY AUTHO	RITY		ator's Written	1	O Dellie	g Contractor		
pH						3.7.01.10			ator's Represe	ntative -	Other			
Filtrate API (ml./30 min.)				<u> </u>		BIT INFORMATION								
API HP-HT Filtrate (ml./30 min.)			<u>-</u>	<u> </u>		TYPE JETS W.T. R.P.M. JETV							ВНН	
Cake Thickness (mm) API□) HP-H	<u>1T 🗆 </u>												
Alkalinity, Mud (Pm)			+	 		 						<u> </u>	L	
Alkalinity, Filtrate (Pf/Mf) Chlorida (mg/l)			+-/-	 	+ /-			RI	ECOMM	FNDAT	ION6	•		
Chloride (mg/l) Total Hardness □epm □(m				 	+	10								
Total Hardness ☐ epm ☐ (m Sand Content (% by Vol.)	ig/I)		-	 	-	;)][/\ck	ı'n	у <i></i> б	ment et	المرابع	ф <i>i</i> у	rater pr	etaceuta	
Solids Content (% by Vol.)			 	 	-	\\h	·!>(יקיאטי.	ory 0	ara.toa	werly	ehyde		
Oil Content (% by Vol.)			-	-	-									
Water Content (% by Vol.)			+		-	*).UNG	2MV	10× N	us reen	bestie	ر المعالمة	<i>ori</i> yK	$\mathcal{A}^{'''''}$	
Methylene Blue Capacity ☐ ml/ml mu	ud) 🗆 (eauiv	, #/bbl bent)	+	 	-	ON	¥} \ *.?	arvani.	عابس!9 عاسیات	~~~ G AK = J	lva.uj	until 1	<i>I</i> W47	
K+ (mg/l)	, =154514	2. 2011/	1		+									
Nitrate (mg/l) /Sulphite (mg/l)			1 /	7	+-,-	3) Chanc	• Ŋ	Slaka	e ha	RLO /R.	α α	BW BW	 •	
			1		'	NY	۲ .	. WATTE		190'A' T'IS;	ay	מנרול אבירויי	v	
_						***************************************					••••••	•••••	••••••	
			1				- / · · · · · · · · · · · · · · · · · ·		······	•••••				
			<u> </u>					• • • • • • • • • • • • • • • • • • •						
OST SUMMARY/24 HOURS ENDING	26-2		DEPTH	456				· · · · · · · · · · · · · · · · · · ·		•••••		***************************************		
ST SUMMARY/24 HOURS ENDING Product/Package	26-2	_ % @ Units	DEPTH Unit Cos		Cost	••••••	••••••						•••••	
	26-2				Cost			OP	ERATION	NS SU	ИМАГ	RY	•••••	
	26-2				Cost	Not	••••••	OP	ERATION	NS SUI	ММАР	RY		
	26-1				Cost	Not	· · · · · · · · · · · · · · · · · · ·	OP	ERATION	NS SU	ММАБ	RY		
	26-2				Cost	Not	- ~	OP	ERATION	NS SUI	ММАР	RY		
	26-2				Cost	Not	· ~	OP	ERATION	NS SUI	MMAF	RY		
	26-2				Cost	Not	· • • • • • • • • • • • • • • • • • • •	OP	ERATION	NS SU	ММАР	RY		
	26-2				Cost	Not	Υ	OP	ERATION Ως.	NS SU	MMAF	RY		
	26-2				Cost	Not	· · · · · · · · · · · · · · · · · · ·	OP	ERATION γ ₅ .	NS SU	ММАР	RY		
	26-2				Cost	Not	· ~	OP	ERATION γς.	NS SUM	MMAF	RY		
	26-2				Cost	Not	· · · · · · · · · · · · · · · · · · ·	OP	ERATION γς.	NS SUI	MMAF	RY		
	26-2				Cost	Not	- Y	OP	ERATION P.ς.	NS SUM	MMAF	RY		
		Units	Unit Cos		Cost	Not	· · · · · · · · · · · · · · · · · · ·	ОР	ERATION Ως.	NS SUI	MMAF	RY		
Product/Package		Units	Unit Cos		Cost	Not		OP	ERATION Ως.	NS SUI	MMAF	RY		

The Dort is subject to the following terms and conditions:
GED Dort is subject to the following terms and conditions:
GED Dort is subject to the following terms and conditions:
GED Dort is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEDFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEDFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEDFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT	vo. 7	DATE 2 THEFER 8
RIG NO.	8	SPUD DATE 23 No FFA
DEPTH	WShu	TO USTA

						,					ىكت	<u> </u>		-00 .			
OPERATOR	BEALH P	ETRUL	EUM			CONTR	PACTOR RICHTER DRULING										
REPORT FOR	Musec	~ ·		REPORT													
	VIDUE		STEFAI	70			ELD OR 1 LOCATION A S						STATE	=			
WELL NAME AND	ONO. WEST	LATE	*/			BLOCK	NO.WILDE	22	07	WAY	15	NI8	VICTORIA				
		MUD VOLUME CIRCULATION DA							N DATA								
Present Activity	Hole	Pump Size Sy x QUL Annular Vel. (Opposite DP							ir Vel. () +//	37 1. 124							
Bit Size	RIH	No3	Inte	at ermediate		Total Circ	culating Volun		Pump	Make N	94		Oppos	ite Collar	711 7 446		
Drill Pipe Size		Туре	Produ	ar ciron or Lin	er		In Storage		Model MV/S		Strok	-100	Riser				
	Ly'y_"		Pressure							ıre							
Drill Collar Size	buy"	DOL	YMER.			BALIM	in C)_ 1	्रिट्ट.	System	ns Up (Min.) ns Total (Min.) Q0					
Sample from ⊈Flowline □ Pit ← MUD PROPER								SIZ	ZE	Hou				SIZE	Hours		
Time Sample	Taken					06-30	Centrifuge	OND	مه ۶۶	0		Desilter	1	ll×4°	Q		
	METRES)					618	Degasser	OR	سام	0		Shaker	R	XD B100	11		
Weight ☐ (S.						18-84	Desander	14	×6"	<u> </u>				160 BAD	i		
Mud Gradien			•		ļ	460	DAILY COST	B66	59.30	\mathcal{C}		CUMUL	AIIVE C	B1192	.29		
	sity (sec./qt) API at					37			MUE	PROPE	RTIES	SPECI	FICATIO	NS			
Yield Point (lb/	ty cps at					1 2	WEIGH			PV/YP		FI	LTRATE	KU	119		
	lb/100 sq.ft.) 10 sec/10 r	min.		/	1	1/2	9.0-9	<u> </u>	8-17	12-1		8-		3-4	10 19-9.		
	Strip	····		 '	 ' -	10-0	BY AUTHO	ORITY		erátor's Wri erator's Rei		tative	☐ Drilling ☐ Other	g Contractor			
Filtrate API (ı	ml./30 min.)					13.5		☑Operator's Representative □ Other BIT INFORMATION									
API HP-HT Filtr	rate (ml./30 min.)				i	-	TYPE JETS W.T. R						R.P.M.	JET VEL	BHHP		
Cake Thicknes	ss (mm) APL	(HP-H	ТО			1 (H)	SEL SS	35	₹×	GJ CJ	23	5	[20	348	2009		
Alkalinity, Mud				<u> </u>											<u> </u>		
Alkalinity, Filtra				/	/	15/35			E	RECON	ARAF	TACIN	SMOI.	<u> </u>			
Chloride (mg/l	<u> </u>	10				<u>19500</u>	61.1-1	Δ.		હો. હો			10110				
Total Hardness Sand Content	·	1g/I)				140	While	O(f)	Hing	Z. Z		ſ		a.			
Solids Content	· · · · · · · · · · · · · · · · · · ·	wester)				2.5		······ <i>K</i>	CLL T			,>x	1 INC		attainal		
Oil Content (%		Julian)				12.3			11120			.(3.5	~	ight Pt. >	· Amb		
Water Content		********	NB.2			97.5		V	KOH.	~ 1	١ ،			A 0-0			
Methylene Blue	e Capacity 🗆 (ml/ml mi	ud) 🔀 (equiv.	#/bbl bent)			-					.hrl			*	L		
K+ (mg/l)						21200		•••••••	••••••	••••••		••••••			••••••		
Nitrate (mg/l) /				/	/	./		•••••	•••••				•••••				
	Kα	(% W)	<u>r) </u>		ጉ	38 47							•••••				
	ŽK.				,	1.40			•••••	•••••	•••••						
COST SUMMARY	(20)		0 4. 0	DEDELL A	. 50	9.0		••••••					<i>:</i>				
	//24 HOURS ENDING	<u> </u>	Units @			Cost		•••••				•••••	· 		·····		
	AGE SOPA		i -	Unit Cos	~~~	3.64			OI	PERAT	ION	IS SUI	ММАР	₹Y			
	FORMALDERYC	SG.	4	37.05		3.00	Wind	a. Uć	o Boo	_				•			
KÜ	(PVIXITIALIZA VI	4-	8	12.8		6.72	Lessa	re Te	574 574	·····					· ·····		
	TIL POTASH			32.2	9	-	Lano	<i>F D</i>	אניבון (olles l)					
MIL			ì	ععع ال	n 2	14.55	BYR 1	A .	sir	olles 1							
MILPAC 1 78-33							Draji	<u>ij</u>	lena	<i>ж.</i> М		<u>. Hoe</u>	۸ŧ				
			17	02.PE	Drall &y hole, to 421m												
		<u> </u>	51.30	Cargin	۲۲۵	المار الما	t 705t	:	•••••		•••••						
			Neg.		-142		·····		W.V.	- R A	Α						
						::K:	97407	!!. ! !/.59	بنهدي	<i></i>	rone		.4.\.\.				
					\dashv		1.>\k.1!\.:	••••••	••••••	••••••	••••••	•••••	•••••				
	LIQUID ADDITI	IONS FOR 2	4 HOURS (E	BL)	l.,		•••••	••••••	••••••	••••••		••••••		***************************************			
Diesel	Drill Water	Sea Water	Prehy	drate					••••••		•••••	•••••••••••••••••••••••••••••					
				. I													
ECELUIDS ENGIN	HEER ALMORE	Sv	してみてら	•	·	HOMEA	DDRESS	Ann	1 Au	>E	T	ELEPHO	NE (CK	K-7951	(S)		

This port is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to be conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geof	<i>luids</i>		•
		*	Milchem

REPORT NO. 8	DATE 2 STUFES 86
RIG NO. 8	SPUD DATE BROKES
DEPTH U.T.	TO 911

											<u>, tw</u>						
OPERATOR	BEACH PE	TONE	()M			CONTR	ACTOR 0	TCH	7 0 T	DRIFT							
REPORT FOR			<u> </u>			REPORT											
	JIM HAN					EIEI DO	<u> </u>	mm	E K	V -	OTATE \						
WELL NAME AN	DNO. WESTE	M 3TAC				BLOCK	NO.WILDU	77	LOCATIO	RY BA	SiN	SIAIE	_//IL	,			
	OPERATION			CASING		М	UD VOLUME				CIRC	ULATION (DATA	1			
Present Activity	DRYLINE		95/8h	Surface L	£53M	Hole	Pits 39.5	- 1	Pump Siz	^e < ኧ [፝] ፞	ayu"	Annular \	Vel. (FT /N	Ain) Cyr			
Bit Size	- 1011-1170-	Noz		ermediate	<u> </u>		culating Volum		Pump Ma	Collar	ŭ Siĝ						
Drill Pipe Size	85		Desir	at/		 	In Storage		Model	& ~ C	050	80 Riser					
Dilli Fipe Size	rill Pipe Size Type Production or Liner							- '	/Strok	e Stro	ke/Min	Circulatir Pressure		スミー			
Drill Collar Size	(-71.	Length	Mud Type	160	0-	LYMER	`	K	313L/Min	····································	-	Bottoms	Up (Min.) .	1.45			
Sample from	স Flowline	DS Pit	L	-1/100-					6.2				iotai (Min.)	<u> </u>			
•	eraturee	MUI	D PROPE	RTIES S			EQUIPMENT SIZE Hours SIZE										
Time Sample		w-30	18.00	Centrifuge			2-3-42	24	Desilter		- (U)"	Hours					
	Yetres)	674	789	931		Drie		0	Shaker		OBNO	<u> </u>					
Weight ☐ (S	···			8.8	8.8	394	Desander	144		24		BL	1360	24			
Mud Gradie	nt (psi/ft)			458	Offi.	465	DAILY O		165.91		CUMUL	ATIVE (1	7				
Funnel Visco	osity (sec./qt) API at		°C	· iti	40	41	COST	>42	_×	ODERTIF	COST	<u> </u>	<u>2728</u>	***\n			
estic Viscos	sity cps at			· \\4	10	lJ.	WEIGH:	Ť		OPERTIE	,	TRATE		Ku			
Yield Point (Ib				19	12	16	9-0-a		8-11	1-18		Q,,	12)	4 12			
	(lb/100 sq.ft.) 10 sec/10			3/5	2/3	1/3	BY AUTHO			or's Written		☐ Drilling (<u> </u>			
	Strip ☐ Meter		•	9.0	3.2	9.0				or's Represe		□Other					
Filtrate API	·			11.2	8-8	17:7	7/55				PMATION						
Cake Thickne	trate (ml./30 min.) ess (mm) APID			1718	1/10		TYPE		JETS	W		R.P.M.	JET VEL.	BHHP			
Alkalinity, Mud		, nr-m	11 []	1(10)	i (H)	i(n)	SEL S3	35_	3×10	JD-	م ال	2-120	398	5.6			
Alkalinity, Filtr				-N8/JS	11/3	_	 										
Chloride (mg/		~~~~~		23000	73200		1		REC	COMME	ENDAT	IONS					
Total Hardnes		ng/l)		160	180	240	Banes		ململه	slokan	CNA	alla L	ie to	bladian			
Sand Content				70	TR	12	3	By pring slake slakes partially due to blinding									
Solids Conter	nt (% by Vol.)			2.0	20	3.0	No	No mil Cleaning products NAW Counted.									
Oil Content (%	6 by Vol.)			_	ر	-				•							
Water Conten				98.0	98-0	97.0	Note:	M 1	und mp	taken	<i>اب</i> کر	vion to	√k ·	•••••			
	ue Capacity ☐ (ml/ml m	ud) 🗷 (equiv.	#/bbl bent)	5	-	17											
K- (mg/l)	70			5000	19500	16200								•••••			
Nitrate (mg/l)	/Sulphite (mg/l)		·	. / .		1-/-											
	110	10 who)		(4-0	3.7	3.7	60 3 6		~	C) 04			•••••				
	<u> </u>			51/4	بإبراء	1.	Centrit	UN.	OF.	8.8	K D	9 7	x +				
COST SUMMAR	Y/3 OHOURS ENDING	i them	12+Marsh @	DEPTH	971M	19:17	CHOOLA	4 ~ √)	Г С	110 E. C	?(?) .	13.0	7 W.				
	roduct/Package	- ww \	Units	Unit Cos		Cost	1.)co.itte	yV	τ	10-5	J(4.5)	<i>5</i>	ey Java				
КU			68	12.81		ภาเฉ			OPERATIONS SUMMARY								
CAUST	IL POTASH		ã	3750	1	64-28	RIH.										
MILPA			21	783	3 \	644.93	Drall	8%	لي لم يا	e to	GOSM						
MILZI			3	322.41		79.28	\mathcal{N}^{e}	s/K 5	rick E	മ							
						(= 1)	DVEIL	Atea	d wf	Sorten				***************************************			
					JAN	62.41											
		 									•••••						
···									•••••					•••••			
							•••••	••••••				••••••	•••••				
					_				••••••			••••••		•••••			
	LIQUID ADDIT	IONS FOR 2	4 HOURS (E	BBL)			•••••	•••••	•••••	•••••		••••••	••••••				
Diesel	Drill Water	Sea Water	Prehy				•••••	••••••			••••••			••••••			
	55						***************************************	•	••••••••		••••••	•••••	•••••				
SEOFLUIDS ENGI		<u> </u>	Mu K			HOME A	DDRESS	JUS!	LAIDE	1 7	relephor	NE IND	-795	12)			
	ジスピノアニ	- 5M/	ンババフ					71.JKJ	トナイノ ノド	1 '		- OX	- M	I.CH			

This process is subject to the following terms and conditions:

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to its conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO.	DATE IST MARCY 8
RIG NO.	SPUD DATE 2300 FEAS
DEPTH dll .	TO 97).

											<u>uu nu</u>	\		1197	Μ		
OPERATOR I	BEACH P	ETROP	LEUM		CONTR	ACTOR	Ric	HTER			int						
REPORT FOR	JIM HAN					REPOR	FOR '			KLASS		• • •					
WELL NAME AND		\ .	1			FIELDC	R NO.WILOU		LOCAT			S	TATE	111			
	OPERATION	ME	`	CASING			UD VOLUME	*	LUW	(t) (1)	NBA	CIBCLILA	TIONID	VIC ATA			
Present Activity	C &	0	ļ	Surface											din).		
							22 99 Opposite DF										
	8,7°,	No ₃		at		iotal Cir	culating Volun	rie	Pump Make NAT Model 9-P-W					Collar			
Drill Pipe Size	Wyn	Туре	Produ	iction or Li	iner		In Storage		CAL/St	roke S	troke/	Min Ci	rculating essure .	101	کا		
Dri: Collar Size								0.4						n (Min)	35		
	Gkun	Length		<u>Ku</u>	DOTA1	VER_	Systems						stems To	otal (Min.)	Q.V		
Sample from ☐ Flowline ☐ Pit ☐ oc ☐ MUD PROPER							IES EQUIPMENT							IZE	ZE Hours		
me Sample Ta				+	17.00	1	Centrifuge		3-0	q	Тг	Desilter	Ilx		1)		
	Nexa			1	9722	+	Degasser	Da		0		Shaker	BW		\begin{align**}{\begin{align**} \begin{align**} align*		
Weight ☐ (S.G		···		 	84+	 	Desander	نزې		Ä	\vdash		ani	Q.,15	12		
Mud Gradient	(psi/ft)			T	765	1	DAILY				- c	CUMULATIN COST	EQI 6	2010 ~ 2010 ~	<u>~</u>		
Funnel Viscos	ity (sec./qt) API at		°C		38	1	COST	\$20c/	<u> 390.</u>	DS	C	COST	₹ D)	21 ARX	· 82		
	cos at				1.7		WEIGH	JT.		PROPERT	IES S			1	101		
eld Point (lb/1					[Z]					- ,		FILTRA	11 =	$+$ \rightarrow $'$	14 %		
	1/100 sq.ft.) 10 sec/10			/	1/2	/						Orilling Co	ntractor	- 7 13			
<u>5∺ 28∕S</u>				 	9.0		□ Operator's Representative □ Other										
Filtrate API (m					1.6	1	ļ		<u> </u>			MATION			BHHP		
	te (ml/30 min.)			· 	ļ <u>-</u>		TYPE				W.T.						
Cake Thickness Aikalinity, Mud (] HP-H	<u> </u>	 	-ITH)	-	SEC 83	135	3×1	0 90	<u>4-3</u>	133	130 348				
- kalinity, Filtrate				 	12/22	, ,	<u> </u>		<u> </u>				1		L		
Chloride (mg/l)				+ '-	2100	+	1		R	ECOM	JEN	IDATIO	NS				
Tall Hardness	□epm -₹ (r	ng/l)			200	1	1										
Sand Content (9		- To is			TR		1	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	••••••	••••••		
Solids Content (% by Vol.)				3.0		1	••••••		•••••	• • • • • • • •	••••••	•••••		••••••		
C ! Content (% b	y Vol.)						l										
∴ater Content (9	½ by Vol.)				970					••••							
'.'ethylene Blue	Capacity (ml/ml m	iud) 🗹 (equiv.	. #/bbl bent)		-												
<- (mg/l)					50200	<u> </u>				•••••							
Ntrate (mg/l) /Si	ulphite (mg/l)			/_	/_	/								•••••			
				ļ	39	ļ											
				 	-	ļ			•••••								
COST SUMMARY/	24 HOURS ENDING	G 1-3-	X(, @	DEPTH	07).	<u> </u>		•••••			•••••		•••••		••••••		
	duct/Package	- 1-3-	Units	Unit Co	***	Cost		•••••			•••••			••••••	•••••		
MILZEN			3	222.44		7.23			OP	ERATIO	ONS	SUMN	IARY				
MILPAI			٩	78.3		4-97	DAI	1	973	LM.							
KU			20	15-84		19-80	(5)	,₩ U		.π.λ	•••••	••••••	•••••	••••••	••••••		
	MALDENYDE		1	37 0		78	1404・							•••••	*******		
ChroTu	POTRA		2	32.2		4.58	took	texa	t halo	_ d+ (iou!	Μ			••••••		
MILFRE			\	6004		0-00	DV IT	•					•••••				
							Strck	:n	wle.	cot Il	δM				•••••		
	····				<u> </u>	69CP	Mark	~ **	uh pì	(n.							
							fret	T.Y.		•							
										•••••				•••••			
	•						•••••			•••••	••••••		••••••	•••••	•••••		
	LIQUID ADDIT	IONS FOR 2	4 HOURS (F	BL)			••••••	••••••	•••••	•••••	••••••	•••••	•••••		••••••		
Diesel	Drill Water	Sea Water	Prehy				••••••	•••••	••••••	•••••	•••••	••••••		••••••			
SEOFLUIDS ENGINE	ER Annes	: Swi	TWR			HOME A	DDRESS	Ans	LANX		TEL	EPHONE (92-	79 5 m			
	1 4/10/41	- 64-				i				_							

The brt is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmiess from all claims and actions by any other person arising out of any act or of mission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO. 10	DATE 2 LO MARCH 81
RIG NO. 🧏	SPUD DATE 2300 FEB &
DEPTH Q11	TO

											<u>, , , , , , , , , , , , , , , , , , , </u>	OC MI				
OPERATOR	BEACH PE		CONTRA	ACTOR	કુંમામ	TER	DRI	LIN	_ _							
REPORT FOR	JIM HAU		.=			REPORT FOR AND AF KLASSON										
WELL NAME AND						FIELDO	NO.WILDI	D.T	VTC				STATE	1/111		
	OPERATION	ייווב ו		ASING		MUD VOLUME			CIRCULATION DATA_							
Present Activity			95/8" S	Surface /.	듯	Hole	Pits		Pump Size -\(\frac{1}{2}\) \(\frac{1}{2}\) Annular Vel. (\frac{1}{2}\)/Min).							
Bit Size	<u>RIH</u>	No.	Inte				Total Circulating Volume			Pump Make N M Opposite DP Opposite Collar						
	82			A		.o.u. Oil			Model	0	-67		Riser .			
Drill Pipe Size	47,	Туре	Produ	at at	ier		In Storage		1971/SI		Strok	ke/Min	Circula Pressu	ating ire		
Drill Collar Size	6 h.	Length	Mud Type	V	0-7	1111			RAN M				Bottom	ns Up (Min.) .		
0		<u> </u>	L	NO	- PO	LYMER	}		L				<u> </u>	ns Total (Min.)	
Sample from	☐ Flowline erature	⊠ Pit	°C	MUE	PROPE	RTIES		SIZ	7F	Ho	urs	QUIPME	A i	SIZE	Hours	
Time Sample					106-00	T	Centrifuge		3-0	T C		Desilter		ابرنها	0	
Depth				7.9	(MECH	i	Degasser	DRI		7		Shaker		YO BWO	0	
Weight ☐ (S.	G.) Σ ΥΥ				8.9	1	Desander	L.	×br	1				po 1360	Ö	
Mud Gradie	nt (psi/ft)				463		DAILY	· · · · · ·		·		CUMUL	ATIVE			
Funnel Visco	osity (sec./qt) API at		°C		31		COST		MUE	PROP	FRTIF	COST	FICATIO	NS.		
	sity cps at				n		WEIGH	HT.	T	PV/YP			TRATE		Ku	
Yield Point (lb				<u> </u>	12		9.0 -		8-2	7/17-	. 18	< 0			<u>rcu</u>	
	(lb/100 sq.ft.) 10 sec/10			/	1/2	//	BY AUTHO		B Op	eralor's V	/ritten		□ Drillin	g Contractor		
	Strip □ Meter	•			9.0				≅ Op	erator's R			Other			
Filtrate API (mi./30 min.) trate (ml./30 min.)				8.7	-	TYPE		1 15	TS I	W.	RMATION	N R.P.M.	JET VEL	BHHP	
Cake Thickne				 	1(11)		3EL 5		3x		VV.	'' 	M.F.IVI.	JET VEL	Dillin	
Alkalinity, Muc		• ''' '			-		ت عاد ا	7,0	- 3X	<u> </u>				 	 	
Alkalınıty, Filtrate (Pf/Mf)					TR/ix	1										
Chloride (mg/l)					302D		1		B	RECO	MME	ENDAT	IONS	•		
Total Hardness	s ⊡epm 💆(r	ng/l)			ನ್ನಿಎಂ								,			
Sand Content					18											
Solids Conten					2.5	-										
Oil Content (%					-	ļ		•••••				• • • • • • • • • • • • • • • • • • • •				
Water Content	i (% by voi.) ie Capacity □ (ml/ml m	and) [] (oguin	#/bbl bont		975	 		•••••		•••••		•••••	•••••	•••••		
K= (mg/l)	e Capacity 🗆 (IIII/IIIIII	idd) 🗀 (equiv	. #/DDI DEIII)		19000	-		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	· · · · · · · · · · · · · · · · · · ·	••••••	••••••	
	/Sulphite (mg/l)			/	1400	/		•••••	•••••	•••••	•••••	•••••	••••••	••••••	••••••	
	Ka	(% W/	7	,	36	1		•••••	•••••	••••••	••••••	••••••	••••••	••••••		
		CIV											· · · · · · · · · · · · · · · · · · ·			
·· ·· · · · · · · · · · · · · · · · ·	Y/24 HOURS ENDING	G <u>2-3-</u>	-86 @1	DEPTH	9720											
Pr	oduct/Package		Units	Unit Co	st	Cost			0	DED V	TION	10 0111	484 A E	5 V		
NIT.							WI. A.	\		TENA	HON	IS SU	VIIVIAI	11		
							17/2(x	21/A	Cibe			C-11 ^	0		•••••	
	·							b	D-11 .	s Mi	11114	J//	WYIWN	л	•••••	
					_		1. C. V. C C		1,031 1,		•••••	•••••	•••••	······································		
							Brik	h	Fign.	yx	٠	••••••		***************************************	•••••	
							Lang	ox s	twit to	\mathcal{H}	CAVIL	wt. 1	100	upe and	l jas.	
	·						Puk.u	R.,.Ye.	رم	$\gamma \mathcal{D}^{\chi}$:::\\ŭ	k¿xálk	UH.	 		
· · · · · · · · · · · · · · · · · · ·									·····-					•••••		
											•••••			•••••		
	·							•••••			•••••		•••••	••••••	•••••	
	LIQUID ADDIT	IONS FOR	24 HOURS (B	BL)			•••••			•••••	••••••	••••••	••••••	•••••	•••••	
Diesel	Drill Water	Sea Water	Prehy				•••••	•••••		•••••	••••••		••••••		•••••••	
GEOFLUIDS ENGI	NEER ANDRE	SKA	KINTS			HOME A	DDRESS	100	AIDE		T-	TELEPHO	NE (C)	8-1951	לנו	

The phrt is subject to the following terms and conditions:

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS does not have power to give any direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or ormission on the part of GEOFLUIDS, and solve or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geoffuids		
	77	Milchei

REPORTINO. 🚺	DATE 300 MARCH 8
RIG NO. 🙎	SPUD DATE 23 PFS
DEDTH COA	TO

										1	ΔM				
OPERATOR P	SEACH PET	RULE	MC Mc			CONTR	ACTOR Q	7.().T	ITER		UNG	:			
REPORT FOR	VILLE SM	NOSTER				REPOR	REPORT FOR ANICIF KI ASCOLI								
WELL NAME AND I		1/		····		FIELDO	R	-10	LOCATI	ON 0	.>\ \	STATE	<u> </u>		
	NO. WESTE	RIE		CASING										ALRO	
Present Activity			a5/gr	Surface -			MUD VOLUME CIRCULATION DATA Hole Pits Pump Size - v x Q v, Annular Vel. (/ /Min)							Ain)	
	M.U. BHA	N.	14218	Surface at	<u> 534</u>	130	130 430				qu.	Oppos	ite DP		
Bit S:ze	87°	Noth	I Int	ermediate ax		lotal Cire	culating Volume	e	Model	lake NA)	us.		ite Collar		
Drill Pipe Size	147 11	Туре	Produ	ction or Lir	ner		In Storage	k	St-/Stro	ke Stro	ke/Min	Circula	ting		
Drill Collar Size	1. W. n	Length	Mud Type	/ at	Λ.	L			-0160 Min				re s Up (Min.) .		
	S W		L	KU	N	lymer		l				System	s Total (Min.)		
Sample from	ズ Flowline ature	□ Pit	°C	MUI	D PROPE	ERTIES		61-	=		QUIPME	TV	0175		
me Sample Ta					18-00		Centrifuge	SIZ		Hours	Desilter	11	SIZE	Hours	
	VETRES)			1 =	18-00			Den		0	Shaker		124 10/BXD	12	
Weight ☐ (S.G.				- un	8.8	- mus	Desander		\(\frac{1}{2}\)	- 5 -	- C. Grioi		60 B 100	12	
Mud Gradient	(psi/ft)				.460		DAILY 41	167	(-2D)		CUMUL		\$8432		
	ity (sec./qt) API at				_38		COST 3	2 1 GZ		PROPERTIE	COST			చు	
	cps at				9		WEIGHT	Г		V/YP		TRATE	KU	l oll	
Field Point (lb/10				 	10	 ,	9-0-0		(27)	12-17	<		124	P 9-4.5	
sel Strength (lb.	/100 sq.ft.) 10 sec/10 r trip □ Meter	TIN.		+-/-	1	+ /	BY AUTHOR		Opera	ator's Written-		□ Drilling	Contractor	<u> </u>	
Filtrate API (m				-	8.0	-			L.Opera	ator's Represer	RMATION	Other			
	te (ml/30 min.)			.†	2.0	+	TYPE		JET:			R.P.M.	JET VEL.	BHHP	
Cake Thickness					1CH))	SEL 537	3	3×1				02112		
Alkalinity, Mud (f	Pm)						30000		1	`					
≐kalinity, Filtrate	e (Pf/Mf)			/	1N.S	/					-	10110			
Chloride (mg/l)					18000				Kt	COMME	:NUAT	IONS			
Total Hardness	□epm ⊠ (m	ng/l)			240										
Sand Content (9 Solids Content (1)				 	TR	 		•••••	•••••	•••••	•••••				
C.: Content (% b				 	2.0 TR	 				•••••	••••••			•••••	
√ater Content (9					98.0			••••••	••••••	••••••				•••••	
	Capacity (ml/ml mi	ud) 🗆 (equiv.	#/bbl bent)		-	1					••••••		• • • • • • • • • • • • • • • • • • • •	•••••	
K- (mg/l)					COSI					·····	••••••			•••••	
Nitrate (mg/l) /St	ulphite (mg/l)			/	/	/				••••••	••••••			••••••	
	KU ()	Tame			34		••••••			••••••				•••••	
		• .						•••••	••••••		•••••				
COST SUMMARY/	24 HOURS ENDING	3-3-	R1. @	DEPTH O	172m	L		•••••	••••••	••••••	••••••				
	luct/Package		Units	Unit Cos		Cost		•••••	••••••	•••••	•••••	••••••	•••••		
BILARS			2	23.41		66-82	۸ -	_	OP	ERATION	IS SUM	JMA R	Υ		
	orm plactice		\'	37 VS		37-05	RI4	Jan	· Fish	~ ~ 2	140'. ((623m)		
MILPH	<u> </u>		1	78-33	· ·	18-33	<u>S</u> ua	ww	abfi	<u> </u>					
					11	7-50	Nemale Run Sch Hoth.	t.a	<i>پ</i> ۔۔۔۔۔۔				••••••		
					100	~~~	i wanase	nen-	7ID8	L LADE	sterk.				
							19274.	rower) t	indif	ISBUX	::T:			•••••	
							RIM W	F 1	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a. to con	(omm	x OLA		•••••	
erry ral.	COS (MRECTUR					1.50	Jan Fish	به _	r 1911	2 to set 5' (282 Duk to	wy)^		
Mu	MUERCE PULL 1870.50						Run Ge	mant	Ru	bur to	الكك	۸		•••••	
							19H 7	: <i>st</i> r	<u>is</u>	••••••	•••••			•••••	
	LICHED ADDIT	ONE FOR A	A HOUSE (5	- BI \				www		• • • • • • • • • • • • • • • • • • • •				•••••	
Diesel	Drill Water	Sea Water	Prehy				624.		_*\	Whas e					
		-ou malor	1 Telly					15k	יי <i>יין נא</i> ָּיאָר	**************************************	<u>L</u> INN!	∩t•	••••••	••••••••••••	
EQELUIDS ENGINE	ER Dimo	E < \	27176			HOME A	DDRESS 📐	NEI	Dine	Т Т	ELEPHON	NE 100	-1951	(2)	

The ort is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

<u> </u>	
REPORT NO. λ	DATE Lynn Mysey 86
RIG NO. 8	SPUD DATE Inofest
DETTILL - , PLUE /	TO (10

						 			DEF	$\eta \mathcal{L}_{H}$	W CBM	ж) ^Т	0 66	lm	
OPERATOR	BEALLA DET	PULL	SM			CONTR	NTRACTOR RUNTER DRILLING								
REPORT FOR		ALTOST				REPOR	REPORT FOR) ANNUE KLASSON								
WELL NAME A						FIELDO	FIELD OR LICCATION LICTATE . N								
***************************************	ODED TO FRE	THE B						774							
Dennant Anti- b	OPERATION			CASING			MUD VOLUME CIRCULATI								
Present Activity	DOULLAND	7	95185	Surface L	453m	Hale	Pump Size Shar ayu Annular Vel						(Min). CYY3		
Bit Size		No.	Int	ermediate		Total Cir	culating Volum	ne	Pump Ma	ake NAK	1.4		site DP\ site Collar	271 346	
Dell Bios Cir-	<u> </u>			_at /		<u> </u>	Model a-P-100 Riser								
Drill Pipe Size	, Lt3~	Type	Produ	iction or Li	ner	1	In Storage		・つらかつ		ke/Min	Circul		800	
Drill Collar Size	· bur	Length ,	Mud Type	KU	_ \(\bar{L} \cdot	LY ME	<u> </u>		CAL /Min	71.6	20°1'	Bottor	ns Up (Min.)		
Sample from	≥ Flowline perature	□ Pit ~	 } °C	MU		ERTIES S/4		-	70		QUIPME	NT			
Time Samp			<u> </u>	· ·					ZE	Hours	15	- T	SIZE	Hours	
	(METRES)			+		<u>でいる</u>	Centrifuge		487	<u>z</u>	Desilter		lixur	5	
Depth Weight □ (+	549		Degasser	175	المالا	<u> </u>	Shaker		100 BON	7				
Weight□ (+	8-84		Desander		~6~		0144	ATD (340 BW	1	
	ient (psi/ft)				-1700		DAILY \$ COST	141	7-47		CUMUL	AUVE	8985	(0.00)	
	scosity (sec./qt) API at			+	38	41				ROPERTIE		FICATION		<u> </u>	
	osity cps at	••••••			W	<u>u</u>	WEIGH	T		//YP		TRATE	KU	W. 1	
	(lb/100 sq. ft.)			 	li3	<u>lb</u>	MINW		X-12	16-20	4	9(1	7.7		
	h (lb/100 sq.ft.) 10 sec/10 i → Strip	mın.		/	1 /3	2/3	BY AUTHO			tor's Written	_		ng Contractor	1817 13	
<u> </u>	 	9.5	9.0				tor's Represer	ntative	Othe						
	l (ml./30 min.)				3.4	8-8				BIT INFO	PMATION	4			
	API HP-HT Filtrate (ml./30 min.)				ww		TYPE		JETS			R.P.M.	JET VEL		
	Cake Thickness (mm) API ☐ HP-HT ☐					1(14)	SEL S3	32	3×11	\	1	152	329	143	
Alkalinity, M		·····													
Alkalinity, Fil				/		0-8 m			D.	CO14147	->:->	1011			
Chloride (m					J72D)	7.	1 .			COMME				^	
Total Hardne		ng/l)			200	950	Muleas	*!!!!	Yulu	A. H	ams		at Drew	on Remot	
	ent (% by Vol.)				TR	TR		J)		11		η	on Reynost	
	ent (% by Vol.)				5.0	72	Buildin	سر ۷	solve i	- Md	Tunks	70	Annex	ويها- والميها	
Oil Content (TR	TR	Brilding Volume in Md Teals to Appen								
	ent (% by Vol.)				98.0										
Methylene B	Blue Capacity 🗆 (ml/ml mi	ud) 🙇 (equiv.	#/bbl bent)			15						••••••	•••••••	••••••	
K+ (mg/l)					2050	OCZ2j								••••••	
Nitrate (mg/l	l) /Sulphite (mg/l)			/	/	/							***************************************	••••	
	Ku ((m)			3.8	3-0				•••••••	••••••	•••••	***************************************	•••••	
	hilk				54.7	1.1 12. 0	CENTRY	LEVE	E 06	- q.<	l fry	••••••		••••••	
	ELL				9-1	4.1				13.1		Ø. 3	-2 gal	m~	
COST SUMMA	RY/24 HOURS ENDING	4-3-4	و و	DEPTH	667M		DEZIT	TFA.		10.	0 m	Z 2	東京	1	
	Product/Package		Units	Unit Co		Cost		· • · • · · · · · · · · · · · · · · · ·			~ C.W ~	ع٠	yax		
MIL	PAL		1	78-3	3	78-39			OPE	RATION	IS SUN	IAMN	RY		
MIL	JAN UME		4	397.1		589-64	Mor								
KU			24	15-84		41-08	MH	n^{r}	n (ama	70 5	77Um	••••••	••••••	••••••	
	AFORM ALDELYDE		1,	37-25		37~25	D/104	 0	Adu to	227	~~2.77.I.V	•••••		••••••	
	on Pomen		\ \ \	32.20		32.29	PM B	۶× بآ.	٠٠٠٠٠٠٠ ١		\	2	. (7.7	•••••	
<u> </u>			· ·	~~			~	M.L Ia.	سريس. پهنيمارحو	U1.999. <<>	بحب		O.:X.1N.	••••••	
						भा भी	145	سج			•••••		•••••	••••••	
				- -		<i>U</i> JII ~'	.دجي. آ ل			0	•••••	•••••	••••••		
								سد داه	15/4 D	NH.			••••••	••••••	
								.بيهي. حک	2.5-M	[] <u>``</u>	•••••	••••••		•••••••	
							!! !	82.	, L 1	267m	_ 1.17.		•••••	•••••••••	
								ひ.シ.	······································	×0.!!\.	da <u></u>	<i>y</i>		••••••	
	LIQUID ADDITIONS FOR 24 HOURS (BBL)							••••••	•••••	••••••	•••••	••••••	•••••		
Diesel		Sea Water					•••••	•••••	•••••	•••••		•••••	•••••		
Diesel Drill Water Sea Water Prehydrate							•••••		•••••		•••••	•••••			
GF UIDS ENG	1			<u> </u>		HOME A	DDDESS	_	<u> </u>		ELEDITO:	,- C	70		
OIDS ENG	GINEER MON	<u> </u>	こりえい			HOME A	חחובסס	401	ELAIDE		ELEPHON	v⊏ (38-74t	M	

This report is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give any direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is parity or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice diven by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geol	<i>luids</i>		
		*	Milche

REPORT NO. 13 DATE STA MARIAN 86 RIG NO. DEPTH LL1. 924,

						-,				90	<u></u>		lec-	M		
OPERATOR	BEAUL DE		CONTR	ACTOR (3111	~~~ ^	_									
REPORT FOR	1.	TRULES				TOWNER CHAINS										
	7100= 2b	NTOSTE				FIELDO	nR ·		NRVE I LOCATI			STA	TE			
WELL NAME A		CATE X		040":=		BLOCK	NO: WILD		Orh	MAC MAL	7115	VICTORIA			<u> </u>	
Present Activit	OPERATION (V)			CASING Surface		Hole	MUD VOLUME Hole Pits			CIRCULATION DATA						
	" RIH		1218	at U	153 n	1 230	230 300				<i>الاب</i> ه	Oppo	nsite DP 🚺	32	1024	
Bit Size	X's	No.4/5		termediate at		Total Cir.	Total Circulating Volume			Take NAT	00	Oppo	osite Collar	الدو	1.300	
Drill Pipe Size	, Ly, "	Type	Produ	uction or Lir	ner		In Storage		Model /Stro	oke Strol	ke/Min	Circu	lating	97	0/105	
Drill Collar Size			Mud Type	at		Ļ			.0600 Mir	ı	00	Press	sure ms Up (Min.)	<i>P</i> 7		
	6 44	Length :	I JAPE	KU	<u> </u>	STAMEN	<u> </u>		13.5 Wil				ms Op (Min.) ms Total (Min	.)	50	
Sample from		□Pit 31	l ∘c	MUI	D PŖQP	ERTIES					QUIPME	NT				
T me Samp	nperature ple Taken		·	30	613 1.3=		Contain		ZE	Hours	Dec. 11		SIZE	·	lours	
Depth							Centrifuge	+ 1 1	10012	<u> 23</u>	Desilter		11×4m		12	
Weight □ ((METERS) (S.G.) ROPY			378	952	1 89	Degasser	1715	HLD	<u>-'6</u>	Shaker		360 880		<u>15</u>	
	lient (psi/ft)			- in 3	- Cy C		<u> </u>		<6n	12	CUMUL	ATIVE	350 BW	l	iS	
_	scosity (sec./qt) API at		°C	. (286)	41	41	COST	<u> </u>	J4.80		COST		\$ 138	oy.	.88	
	cosity cps at			13	14	13			MUD	PROPERTIE						
Y:eld Point	(lb/100 sq. ft.)			17	16	17	WEIGH	H1		Y/YP		LTRATE	Ku	1	Ch.	
	th (lb/100 sa.ft.) 10 sec/10 r	min.		2/5	2/6		BY AUTHO)BIT^	8-12 18-00	ator's Written	<		ng Contractor	70	9-9.5	
EH.	Strip ☐ Meter			9.0	9.0	9-0	1 2. VOIU	- HII		ator's Represer		□ Othe				
Filtrate AP	91	9.0	8.2	ļ				RMATIO								
	Filtrate (ml. 30 min.)		T [-		TYP	_	JET			R.P.M.	JET VEL.		BHHP	
	Cake Thickness (mm) APIX HP-HT Arkalinity, Mud (Pm)			1(h)	1 CH			335	+3×1			132	329		144	
	iltrate (Pf/Mf	eratu			NO /2	- /2 -	SEL S	بهالدات	3×1	as l	<u> </u>	Mo	329		أنيان	
Chloride (m		······································	•	TR/24					RE	COMME	NDAT	ION	S			
	Total Hardness □ epm 🔀 (mg/l)				7000		†			_ >->++		• •				
	ent (% by Vol.)	- 		260 TR	TR	TR	1		•••••	••••••	•••••	•••••	•••••••••••••••••••••••••••••••••••••••	•••••	••••••	
	tent (% by Vol.)	BUTTE	CALL.)	2.5	2.5	28	1	••••••		••••••	••••••	•••••		••••••	•••••	
Cil Content				TR	TR	TR	1									
	ent (% by Vol.)			97.5	91/3	१७८				******************						
	Blue Capacity ☐ (ml/ml mi	ud) 🔀 (equiv.	#/bbl bent)	7%	_	ゔ							***************************************	•••••		
K+ (mg/l)	//N /Outliebin in the			17200	35000	18000										
ivitrate (mg/	/I) /Sulphite (mg/l)	11-1-1-1		12-	/	+_/_									•••••	
		(भूभ व		23.	4.2	3.4			N-2	η <u>. </u>	∾		•••••		•••••	
	- FIK			-271.3	-35/9	POTIO		TRIP		UF: \$.8. ₆ %	·····×··		···+···		
COST SUMMA	ARY/24 HOURS ENDING	5-3-	<u> </u>	DEPTH	9214	12.1,	DEN			JPi 1.3		@		Him	·	
	Product/Package		Units	Unit Cos		Cost	DEN	w.1.178	······		-9. pp) <i>(</i> E.,	.3.ig	٠٠٠٠	·c	
	hippi		11	18.33		61-63	!		OPE	ERATION						
	MLZAN		10	292.49		7574·10	Hera	<i>t</i> o		م ، رتب						
X	(U		40	15.84		33.60	13	Stew	7 174	or tro					••••	
- b	MAFORMALDEM	DK	3	37.05		74-10	٩	AV	121° W	<i>(שווהויים)</i>						
	AVSTU POTASH		7	32-29	1	61-45	DWI	<u>ر</u> مر	اعلاس	يست	•••••					
						154.80	TV	ic B	<u>(Y</u>	••••••	•••••				•••••	
						V- \ 00				••••••	•••••			•••••	•••••	
		_					•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••					
									••••••	••••••	•••••		••••••	•••••	••••••••••••••••••••••••••••••••••••••	
		-			\dashv		••••••			••••••		•••••	•••••	•••••	· · · · · · · · · · · · · · · ·	
										·····		••••••	•••••••••••••••••••••••••••••••••••••••		••••••	
	LIQUID ADDITI	ONS FOR 2	4 HOURS (E	BL)												
Diesel	 	Sea Water	Prehy								•••••	•••••				
	20	·	50	٠ ر		1										
GF UIDS ENG	GINEER ALICOK	\subset \setminus _{\lambda}	MKK			HOME A	DDRESS 1	MEI	M	т	ELEPHON	AE (C)	7 7051	"		

This report is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO. 14	DATE GTA MARCIA 86
RIG NO. 🔇	SPUD DATE ZANFER 81
DEDTH GOL	TO

										DE	PIH 72	4M	10	114	<u>um</u>
OPERATOR	BEACH PE	TWILE	MU				CONTR	ACTOR	Ricu	kTEa	Day				
REPORT FOR				TEFAN!	<i>i</i> 0		REPOR		1	IRIE					
WELL NAME A		T(-AT1		DIA			FIELD	FIELD OR LOCATION STAT						11	
	OPERATION OPERATION	712XII	- '		CASING			BLOCK NO. MLOCAT			NAY BE		1	<u> </u>	
Present Activity				Q5/2×	Curtons			MUD VOLUME Hale . Pits -			Size 🛶 🕨		ULATION	r Vel. (🛶 /	Min). 1(yu)
Bit Size	RIH	IAIs		10	al L	f23 ^y		Hole Pits 350			Size SK x	4 Yu"	Oppos	te DP 🤁	Z 1352
	827	No.5		in:	ermediate at		Total Cir	Total Circulating Volume			Make NAT	ln-	Opposi Riser	te Collar .	N 1317
Drill Pipe Size	126	Type		Produ	action or Lir	ner		In Storage		Model RN /Str	oke Stro	ke/Min	Circula		CCA
Drill Collar Size / U > Length Mud Type					/at		L			-068 BBL/Mil		100	Pressui Bottom	re © s Up (Min.)	
	gyu"	124	2,		<u>, KU</u>	<u> </u>	OLYME	<u>r</u>		6 -	<u> </u>			s Total (Min	
Sample from Flowline Tem	⊠ Flowline perature	☐ Pit	55	°C	MUI	D PROP	ERTIES		017			QUIPME	NT		
Time Samp					11-00	15.30) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Centrifuge	SIZ		Hours 23	Desilter	. 13	SIZE	Hours
Depth	Depth (Metro)					1144	1308	Degasser		TOOLS	0	Shaker		0 1300	17
Weight□ ((S.G.)				1150	9.0	9-0	Desander		450	TC	- Crianci		0 800	12
Mud Gradi	ient (psi/ft)				1468	-449		DAILY 4		6.09	·U	CUMUL	ATIVE <	~ !	
	scosity (sec./qt) API	· · · · · · · · · · · · · · · · · · ·		°C	42	45	ાં પંડે	COST 1	DC 1		PROPERTIE	COST	FICATIO		J.97
	osity cps at				کا	16	IS	WEIG	HT		W/YP		LTRATE	145	
	(lb/100 sq. ft.) h (lb/100 sq.ft.) 10 sec/	10 min			16	37	20	MIN		8-4	16-20		۵	1 2	KU 90
	Strip Mei				2/3	5/7	74	BY AUTH			ator's Written		□ Drilling	Contractor	Ψ 18
	I (ml./30 min.)				8.2	8.5	8.5			⊠ Oper	ator's Represer	ntative DRMATION	Other		····
API HP-HT F	Filtrate (ml./30 min.)				. –	-	120	TYF	E	JET			R.P.M.	JET VEL	ВННР
Cake Thickr	ness (mm) AP	1 8 F	IP-HTC		1(4)	1(11)	(A)	SEL S	خاياليك	3×1			امله	329	145
Alkalinity, Mud (Pm)					-	ر ر		SELS	SEF	3×				3,29	145
Alkalinity, Filtrate (Pf/Mf)					-10/50	TR/3	2-12/46			ום	ECOMME	TAID AT	CALC		
Chloride (mg/l)					18500			C - 15	- (١ . ١	_
Total Hardne	ess 🗆 epm 🗷 ent (% by Vol.)	t(mg/l)			350	300	200	Settly	(2) T	yts il	Derrisse	tank	dvm	رعار کا رکا	canad
	ent (% by Vol.)				3.2	30	TR 3-0	W	M.R.	million	<u> ج</u>	•••••	•••••	·····	
Oil Content (··········	TR	TR	TR		••••••		••••••		•••••	·····	•••••
Water Conte	ent (% by Vol.)				365	97.0				••••••			•••••	••••••	•••••
	Blue Capacity ☐ (ml/ml	mud) 🖄 (ed	quiv. #/	bbl bent)	_	5	5			· · · · · · · · · · · · · · · · · · ·				•••••	
K+ (mg/l)					19000	33200	21000			•••••					
Nitrate (mg/l	l) /Sulphite (mg/l)	(84 .	1-1		3/	/_	/						1		
	w/k	(90 h	1-1-		3.6	4/4	14.0	/s. L.7	·······	0F •	7.9 ° ~				
	EL	······································			9.2	9.3	9.3	Desan	gaye	Υ	~~		i.3	115.7	•••••
COST SUMMA	RY/24 HOURS ENDI	NG 6-	3-8	6 @	DEPTH	144	1.0	Desite			9.9 (P)	<u>@</u>	1.9	Try wi	
	Product/Package		L	Inits	Unit Cos	st	Cost		- GTT						······
MILP				2	78-33	<u> </u>	. <u>૧</u> ૫.૧૪	0			ERATION				
ML	ZM			3	739-4		367.23	Ream	MM	to Post	<i>w</i> .				
KU	NC .00 N. A		<u>\</u>	3 3	12-84		03-25	17/3/		man v	\				
1 2010	AFORMALDEKYC STIL POTASH	75.		<u>- ۲</u>	37.78 33.42		78-1P 11.12	CTV		اء ــــــــــــــــــــــــــــــــــــ		•••••			
LA (V	ALC TOTASA			-	30-2-2	-	200	04.45	~zi;β…		o€.	•••••	•••••	•••••	
						27	16.09	رتب	: 	•••••	***************************************	•••••	••••••	•••••	
								NOT				••••••			•••••
								COA LOS RUM	Wr S	Selhan	seek.	••••••			
						_		RW	w.t	ia Bi	<u> </u>				
										•••••	•••••		••••••		
	LIQUID ADD	TIONS FO	R 24 F	HOURS (B	BL)			***************************************	••••••	••••••	••••••	•••••	••••••	••••••	
Diesel	Drill Water	Sea Wat		Prehy				•••••	••••••	••••••	•••••••	••••••	••••••	•••••	•••••
	<i>ं</i> डिक			110	>			••••••					••••••••	•••••	•••••
UIDS ENG	SINEER ALMAE	. <	(.)-	TIL T<			HOME A	DDRESS	Anx	1 Ann	2 T	ELEPHON	NE 194	-7951	, 2)

This report is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or ormission on the part of GEOFLUIDS, and yadvice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

 <i>fuids</i>		
	77	Milche
11[

REPORT NO. 15	DATE THE MARCH 8
RIG NO. 🧣	SPUD DATE 30 FEBS
DEDTH AMAI	TO 13.

						Τ					FAW _		121	7PW			
OPERATOR	BEACH	PETRU	LEUM			CONTR	ACTOR 1	<u> </u>	HTER	<u>. Dri</u>	711/IC						
REPORT FOR	VINCE	_	STEFA	<u>10</u>	·	REPOR		LAU	JRIE	KLR	ssou						
WELL NAME AN		STEATE				FIELD O	NO. VILA	ν α	I ROCATI	ION RA	2)N	STATE		· · · · · · · · · · · · · · · · · · ·			
	OPERATION	<u> </u>		CASING			UD VOLUME		1 X X X	JP	CIRC	:ULATION					
Present Activity	DRILLIN	1-	95/2n	Surface	tS3m	Uolo.	Pits 46	2	Pump S	Size Cy"x		Annular	Vel. (1	Mip) 537			
Bit Size		No.	Inte	at U ermediate			culating_Volun	ne l	Pump N	Make NAT	てル			<u> </u>			
Drill Pipe Size	84,	- WRY	<u> </u>	at/		ļ	<u> </u>		Model	<u> </u>		Riser	<u></u>				
	Le'x"	Type		ction or Lir at	ner		In Storage		ChX.	\mathcal{O}	ke/Min	Pressure	e	1320			
Drill Collar Size	Biller	Length .	Mud Type	Ku	Po	LYMER			RSI ZMir	1							
Sample from	₽ Flowline	CT Dia	 						<u> </u>		QUIPME		5.01 (1911)				
	erature	- 21	o .c	MU		ERTIES		SIZ		Hours			SIZE	Hours			
Time Sample				0 06:00	Centrifuge		12017	ನ್ನ	Desilter			IZ					
Depth	(Metros)				1304		Degasser	UEI		_0_	Shaker			18			
Weight □ (S					8.9-		Desander	Ux	<b-< td=""><td>18</td><td></td><td>85</td><td></td><td>这</td></b-<>	18		85		这			
Mud Gradie			90		-465		DAILY ST	illa	<u>٥٠</u> ٤٢								
	osity (sec./qt) API			-	46	مهله	1 4	-101	WIID.	PROPERTIE		FICATION	ns Drotz	1 1 3 4 5 C			
	sity cps at			-	17	١١٠	WEIGH	НT		PNOPERTIE PV/YP			-	Vil			
Yield Point (Ib	·	//0			33		Minim		8-17	16-20	+	STATE RCULATION DATA Annular Vel. (F7/Mip) Opposite DP Opposite Collar		1001			
	(lb/100 sq.ft.) 10 sec			1. /	3/6		BY AUTHO		₫ Oper	rator's Written		Drilling		Ţ /o			
	Strip □Me	eter		-	9-0					rator's Represe		Other					
	(ml./30 min.)			 	7-0	17.6	-				ORMATION	·					
	Itrate (ml./30 min.)		r-	· 	1 -	+	TYPE		JET					BHHP			
Cake Thicknet Alkalinity, Mud		PI KS HP-H		 	100	i(H)	SEC 584	ŁF	13×N	1 10-	15	100	<u>529</u>	البخ			
Alkalinity, Filtr				 , 	11.1-	4-18/io	 										
Chloride (mg/				+-/		2 57200 4-18\-FO	†		R	ЕСОММІ	ENDAT	IONS					
Total Hardnes		≅ (mg/l)		 	220		Ma-L	i vite					A 1	£			
Sand Content		"		 	TR		1 month	וייון ביא	4s.W	me M	3000	₩/	timber.				
Solids Conter				 	3.5	3.0	,	rviisk v		••••••	•••••						
Oil Content (%				——	TK	1	L-277	000~	r 50 bbs mid While tripping for								
Water Content						91.0	V.17	appro.	3 H v	×10	**		4k23	<i>TNX</i>			
	ue Capacity 🗆 (ml/m	nl mud) 🗖 (eauiv	#/bbl bent)		5	1-	······································	اا						•••••			
K+ (mg/l)		73.11				33500				••••••	••••••	•••••					
	/Sulphite (mg/l)			/	/	/					••••••	••••••		••••••			
	Κų	(op M/a)			لزيك	43											
	h 1	ĸ			21/2	3.22/12	Contr	Œ,c.	0. ان ا	`	N. 18	<u> </u>	When	<i>b</i>			
	G.	V 1.			92	1 9.24	Deva	ct ray	o ji	11.0	30. (i)	~ · 65	M				
	Y/24 HOURS END	ING 7-3-8	ζ ι @ ι	DEPTH	1306		Desi	Her	Ŭ	۱۶۰۹ ع	CHY C), 2.8	3 231	······			
Pr	roduct/Package	· T	Units	Unit Cos	st	Cost							_				
MILE	2xL		7.2	78-33		174.95	_		OP	ERATION	NS SUN	MAR'	Y				
KU			ನ್ರಾ	12.84		316.80	RTH	·×······									
	stu Potrn		<u>S</u>	37.78		التاريخ		ಘ್ಲ	rto b	t							
PARA	*FORMALDEMO	E	. 1	37-0	<u>ک</u>	37.05_	Dial		<i>èt</i> }			هديوي					
***************************************					-17	90.25	Sti	uks.	المالع ر	ہر کہایا	الساسير	7 JW)					
					10	,,,,,,,		⊄	والإكاك	<u>^</u>	~ 						
				·			<i>\fightarrow</i>	<u>ن</u>						•••••			
								my.	RHY								
							1774	۸			T						
								.v <u>27</u>	Firty CH	رو کان	!Ww	`` <i>`````</i>					
					+-		D ~AI	/J/	hugh!	~\Z	••••••	•••••		••••••			
	LIQUID ADO	DITIONS FOR 2	4 HOURS /P	BL)			XV	יייאיי.	%₄	••••••				•••••			
Diesel	Drill Water	Sea Water	Prehy				•••••	••••••	••••••				E				
	O		28				••••••	•••••	•••••	••••••	••••••	•••••••••••		••••••			
EQELUIDS ENGIN	N	\0E <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			HOME A	DDRESS 1	(V.C.		Т,	El EDHO	JE (∕~					
	175 (167 15	ツム・レベル	177		INDIVILA	COLLOG [メノンにソ	ノフィンド	. 1		v⊏ 1 , 12		4871			

This ont is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geof	luids		
		77	Milchem

REPORT NO. SPUD DATE 2300 FEB RIG NO. DEPTH 1201 Beast. TO

										וכ! ייי	UUM_	•	البرابلا	,				
OPERATOR	OPERATOR BEACH PETROLEUM						RACTOR	Ru	STEV.	Daire			<u> </u>					
REPORT FOR	VINUE "	CACTO		_		REPOR	T FOR											
WELL NAME AN			STEFAN	0		FIELD	OR		NRVE LOCATIO	<u> </u>		STA	TE					
WELL NAME A	10/1/01	GATE Y	LIA				NO. WIL		OTW	N BA			<u>////</u>	,				
Present Activity	OPERATION	_		CASING			AUD VOLUME	<u> </u>	Duma Cia				ON DATA					
	JAR SNUX	Pype	1513"	at L	t53m	Hole	Pits 4	50	Pump Siz	_అ బ్లా	qyur		lar Vel. (😽 🗘	(ii) / 35				
Bit Size	87.	NORL	Int	ermediate at		Total Ci	rculating Volu	ıme	Pump Ma Model	osite Collar .	11 1 38							
Drill Pipe Size	1.45	Type	Produ	iction or Lin	er	 	In Storage		RY-Strok	e Stro	ke/Min		lating	1350				
Drill Collar Size	<u> 47. </u>	Length	Mud Type	at		<u> </u>			1.068		<i>\\\\\</i>	Press	ms Up (Min.)					
	GW"	Length	widd iype	Ku	6	OLYMI	ER		BOLL Min			Syste	ms Total (Min.	isti (
Sample from	⊠ Flowline	□ Pit	20	MUC	PROP	ERTIES	ES EQUIPMENT											
	perature		°C				ļ	SIZ		Hours			SIZE	Hours				
Time Sampl Depth		19.00	ļ		Centrifuge		1000	24	Desilter		11x4"	14						
Weight □ (S	METRES) S.G.) BE			9.0			Degasser			0	Shaker		B60 B80	B				
Mud Gradie				-467			Desander DAILY			18	CUMUL	ATIVE	340/1300	18				
	cosity (sec./qt) API at		°C	407			COST	1974			COST			5.92				
	osity cps at			16			 			ROPERTIE								
Yield Point (I	b/100 sq. ft.)			18			WEIG	HT		/YP		LTRATE		(υ				
Gel Strength	(lb/100 sq.ft.) 10 sec/10	min.		2/3	/	/	BY AUTH	IODITY	8-12	or's Written	<	<u> </u>	3	-4°				
	Strip □ Meter			9-0			DIAO	Onn i		or's Represe	ntative	Othe	ng Contractor er					
	(ml./30 min.)			8.2						BIT INFO	ORMATIO	N						
Cake Thickne	iltrate (ml./30 min.)							TYPE JETS W.T.					JET VEL	ВННР				
Alkalinity, Mu		HP-H		ITA)		-	SEL S	28TE	3>4	<u> 10 -</u>	1 2	100	378	کپتا				
Alkalinity, Filt				-018/-646		+-,-	 		J					<u> </u>				
Chloride (mg				21500	/	+ /	4		RE	СОММ	ENDAT	TIONS	3					
Total Hardnes		ng/l)		180		+	Cla		il one set it stake sinons tim BXX Brown									
Sand Conten		<u> </u>		TR		-	to	OB4	o Trus	<i>\f</i>	W. 7.	VI SU	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	WANTED !				
Solids Conte	nt (% by Vol.)			30			1			••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••				
Oil Content (9	% by Vol.)			18							•••••	••••••	••••••••••	•••••				
Water Conter				97.0]	•••••										
	ue Capacity 🗆 (ml/ml m	ud) 🔀 (equiv.	#/bbl bent)	了发														
K+ (mg/l)	0.1177			25500					•••••									
Nitrate (mg/l)	/Sulphite (mg/l)	10, 1	·	/ /	/	/	ļ											
	<u> </u>	Us w)	·5U1-1			ļ		••••••	•••••	•••••		•••••					
	wh FLO			9.24						••••••	•••••	•••••						
COST SUMMAR	RY/24 HOURS ENDING		(I. @	DEPTH	البالب			•••••	••••••	•••••	•••••	•••••	•••••					
	roduct/Package		Units	Unit Cos		Cost		•••••••	•••••	••••••	••••••	••••••	••••••					
MILPA	×U.		2	78-33	2,5	6-33			OPE	RATION	NS SU	MMA	RY					
MILZ	W		_	_		_	Dig	at 1	!પ્રાપ્	^								
<u> Ku</u>	·		_				W.p	er 12	e to s	we,	Holey	ord.						
	TIL POTAGE		3	35 30		16-87	Dim.		, 									
MULFR	JE		\$1	1772	0 1	JT-20	strik	·;~. /	مام ک		١							
					<u>_</u>	4.70		۲	refi by	<u> </u>			•••••					
					- 197	9-10	t.xw.b	\.1.	.005	MINEL	Krij							
							•••••	••••••	••••••	······		••••••	•••••					
												••••••	••••••					
									· · · · · · · · · · · · · · · · · · ·	••••••	·····	••••••						
										•••••	•••••	••••••	••••••					
Diesel	LIQUID ADDITI						•••••											
Diesei	Drill Water	Sea Water	Prehy	orate			••••••				••••••	•••••	•••••					
EOFLUIDS ENGI	INIEED \			<u> </u>		1,105:-	DDD500	N .										
ILOF LOIDS ENGI	INCER HOUSE	<u>.</u> Sk	くところ			HOME	DDRESS	HOE	LANDE	1	ELEPHO	NE (C)	2-7450	၁)				

The port is subject to the following terms and conditions:
GEO-UIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give any direction to any employee or the client as to he cited to any employee or the client as to he cited to any employee.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO. 17	DATE 9 TH MARCH SI
RIG NO.	SPUD DATE 2300 FEBS
DEPTH \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TO

										<u> </u>				
OPERATOR BEAUX PETROLEUN	Λ.			CONTRACTOR RICHTER DRILLING										
	1 _			BEBORI	EPORT FOR LAWRIE KLASSON									
AUDA SUMMIN		1 HAR	780h	1	-	-JWW	LOCA	MLASS	20N		STATE			
WELL NAME AND NO. WEST CATE	L/A'			BLOCK	NO.WILDU	X	UTO 1		BA	Mc	SIAIE	· VIL	,	
OPERATION	(CASING			UD VOLUME		CIRCULATION DATA							
Present Activity POH	95/8"	Surface Ly	. .	245	Pits 00		Pump	Size	ζ ^N × C	3140		Annular Vel. (PA AMin). Court		
Bit Size Na Na	Int	ermediate	<u> </u>		culating Volur		Pump	Make	MY	· ·	Opposite DP			
82 Reb	1	at/			595		Mode	l i	<u>4-12.</u>		Riser	<u></u>		
Drill Pipe Size	Produ	ction or Li	ner		In Storage		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Strok	re/Min	Circula		OO	
Drill Collar Size Grun Length.	Mud Type	• •	Davi	/A - A	,		PAL IM	lin		د				
	<u> </u>	Ka	SOL		Bottoms Up (Min.) Systems Total (Min.)							<u>.)9,0</u>		
Sample from ☐ Flowline ☐ Pit Flowline Temperature	⊋ ∘c	MU	D PROPE	RTIES		SIZ	70	Hai		UIPME	NT	0175	11	
Time Sample Taken		-			Centrifuge	· · · · · · · · · · · · · · · · · · ·		Hou		Desilter		SIZE	Hours	
Depth (Metres)		 	2200	1414	Degasser	DRI	18x2	7	>	Shaker			2	
Weight □ (S.G.) ຮັດຄຸລ			8.81		Desander		×6,4	1 7		Onanci	R)	60 Bros		
Mud Gradient (psi/ft)		-	2440	.460	DAILY			CUMULATIVE 4						
Funnel Viscosity (sec./qt) API at	°C		38	45	COST	7771	89.			COST		<u>05, P16</u>	7.30	
lastic Viscosity cps at			11	15			MUE		RTIES		FICATIO	NS '	12::	
Yield Point (lb/100 sq. ft.)			ii ii	13	WEIGH	11	 	PV/YP			LTRATE		KU	
Gel Strength (lb/100 sq.ft.) 10 sec/10 min.		/	2/3	2/4	BY AUTHO	ODITY	37			<				
pH ⊠ Strip □ Meter			8-0	8.5	BIAOING	וווחכ		erator's Wr erator's Re		□ Drilling Contractor				
Filtrate API (ml./30 min.)			7.2	7.0				вп	INFO	RMATIO	N			
API HP-HT Filtrate (ml./30 min.)					TYP						R.P.M.	R.P.M. JETVEL BH		
	HT 🗆		1(H)	1647	SEL S	8xF	3 _≻	W						
Alkalınity, Mud (Pm)		ļ	-	-				L				<u> </u>		
Alkalinity, Filtrate (Pf/Mf)		/		o TR /36			-	RECO	/ R/	דארואי	TIONS			
Chloride (mg/l)		ļ	16200	18200	100	1 1								
Total Hardness ☐ epm ဩ (mg/l)		ļ	3160	300	9100 P	H.S	KM [ldyna.	im y	M. un	Flu	e pyr /	MAI	
Sand Content (% by Vol.) Solids Content (% by Vol.)		-	TR	TR	bl		s foccul	البيلال	1P	γ λβα				
Oil Content (% by Vol.)	····		3.2	2.5	1) Keep	mm.		M. at.	.Pho	مهديه.	<u></u> \	~oy[ક્રા <u>ા</u> પડ	
Water Content (% by Vol.)			1R 97:5	97-5			g knee.	Chebra	٠	······	ن سماره	- 1.1 4.	17.14	
Methylene Blue Capacity ☐ (ml/ml mud) ☐ (equi	v. #/bbi bent)	 	113	-	3) Hole volume calculated using stokes realed					YOUR T	a ovalant			
K+ (mg/l)		<u> </u>	17000	00249			••••	•••••••••••••••••••••••••••••••••••••••	•••••	•••••				
Nitrate (mg/l) /Sulphite (mg/l)		/	1 1000	/		••••••	••••••	••••••	••••••	•••••		••••••	••••••	
XU 1% WA	- /		3.2	3/1		•••••		••••••	•••••			••••••	••••••	
n/k	<u> </u>			5411			•••••	••••••	••••••	••••••	•••••••	••••••	•••••	
ELO				97		· · · · · · · · · · · · · · · · · · ·		••••••	••••••	•••••	••••••	•••••	***************************************	
COST SUMMARY/24 HOURS ENDING 4-3.	-86 @	DEPTH	Vedus	· ·										
Product/Package	Units	Unit Co		Cost										
MILPAL	3	78-3		<u> </u>	_				ION	IS SU	MMAF	ťΥ		
MLZM		337 M		12 LA				Pope.	WW.				•••••	
OSUSTU POTASA	2	3578	٠	4-58		Ablogie	····r <i>r··13</i>	المرازين	wip	cu. fr	71.'''158		·····	
			- 5	1.98	Ringip	٢	w-	"SNYW"	DAY	fwT0	thick	tree.po	·	
				× 10	HUD.	O.P.	W					1		
					.Displai	ro.x.	mya	Y(XW	·!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		7. 7.10	S.J. P. J.	ana	
					Display out mud from hole wine tresh hoster and then circulate with moster (5430 stokes) Jair on pipe - Pipe comes free Pink up Kelly & circulate and display hole will									
					D.7.9	kbr	المكاسح	P.C.P.S.		المحدد	1 Y	indai. h	de MA	
				· ·		À	J a	•3 c	.7	V		mehone.	Y.W	
					(7)	ulente	and	mak	عرق	٠		••••••		
					POH -	N	o ho	le ant	5 met	*********		**************		
LIQUID ADDITIONS FOR	24 HOURS (E	BBL)										•••••••		
Diesel Drill Water Sea Water	Prehy	drate					•••••							
		<u> </u>		احيص					,					
GENELUIDS ENGINEER ANNE SKY	CUITE	•		HOME A	DDRESS	4DE	LAID	_	T	ELEPHO	NE OB	-7951	ω	

This port is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnified GEOFLUIDS harmless from all claims and actions by any other person ansing out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO. 18	DATE WITHMAN &6
RIG NO. 8	SPUD DATE 3
DEPTH 11/1.	TO 1/42

					***************************************							60-61-1		100				
OPERATOR	BEACH P	ETRUL	FIN	M		_	CONTR	ACTOR (ζ ICH.	TFO	DRILL							
REPORT FOR		1					REPORT				\ /							
	Jim HAN		TW.	, NOFM	ELER		FIELDO		Thui	ME	NLAS		CTAT	E 4 b				
WELL NAME AN	IDNO. WES	TLATE	£ 14				BLOCK	NO.WILO		<i>m</i>	NAY P.	LAZAC	STATE	11	AVOTE			
D	OPERATION			1 (CASING		М	UD VOLUME		1	,		CULATIO	N DATA_				
Present Activity	DRULI	NG		95/8h	Surface U	453m	Hole	Pits	20	Pump	Size 5'5	× guy		ar Vel. (Fit /	(3) 25			
Bit Size	972h	No			termediate at	المام صد		culating Volui	me	Pump Model	Make NIA	• •	Oppos	site DP	EPE III			
Drill Pipe Size	425	Туре		Produ	uction or Lir	ner	† 	In Storage		Model Phy./St	roke St	roke/Min	Circula					
Drill Collar Size	<u></u>			Mud Type	/at			W		315 /Mi	ζ	(0,0	Pressu) <u>/</u> Z			
	644ª	Lengt	لــــــــــــــــــــــــــــــــــــــ	uu iype	KU		LYMER			- 31/M	3			ns Up (Min.) . ns Total (Min.)				
Sample from	☐ Flowline		20	 } •c	MUI		ERTIES	EQUIPMENT										
	erature		`` ر	1 -C	15-30			 	SIZ		Hours	-T-		SIZE	Hours			
							7 03-00			Tools	24	Desilter		11×4"	18			
	METRES)				1573	1600	1792	Degasser	1 .		0	Shaker		150 VA	-13			
Weight□ (S Mud Gradie					-463	8.9	8.97	Desander	ا لرب		18	C1 14 41 11		phy Wro				
	osity (sec./qt) AP	l at		°C		-463	-415	DAILY S	366	<u>2:</u> 20		CUMUL	THINE A	23373	Cyic			
	sity cps at				12	143	14			MUD	PROPERT		FICATIO					
Yield Point (It					+ 13	13	22	WEIGI			PV/YP	FI	S SPECIFICATIONS FILTRATE Ording Contractor Other ORMATION T. R.P.M. JET VEL BH					
	(lb/100 sq. it.) (lb/100 sq.ft.) 10 sec	2/10 min			12/2			MIN		8-11	1/16-20		<u> </u>					
	Strip DM				2/3			BY AUTHO			erator's Writter)·	□ Drilling	g Contractor				
	(ml./30 min.)					74	7.3	 		⊠Ope	erator's Repres							
	trate (ml./30 min.)				1-5	144	+ ::x	TYP	F	JE				IET VE	ВННР			
Cake Thickne		Pi	HP-H	**	1(11)	i(u)	ilw	+ <u>-</u>	الإساع					.1	161			
Alkalinity, Mu				-	1 - 14	- V (W)	150	mer 2	تسح	10-10	- 12	س ا	140r	743	101			
Alkalinity, Filtr					10 Livs	JX/56	6-14/68	 			L			I	<u> </u>			
Chloride (mg.							21000	1		R	ECOM	1ENDA1	TONS					
Total Hardnes		5 /(mg/l)			1,200	180	160	ţ					_					
Sand Content		<u> </u>			TR	TR	78	1	••••••	••••••	••••••	••••••	••••••	••••••				
Solids Conter					2.5	5.0	25		•••••••	•••••		••••••		•••••••				
Oil Content (%					TR	-TR	TR	C.	••••••	••••••		••••••		••••••				
Water Conten					97-5	98-0				•••••								
Methylene Blu	ue Capacity □ (ml/n	ni mud) 💆 (equiv.	#/bbl bent)	5		15		••••••	••••••	•••••	••••••	•••••	***************************************				
K+ (mg/l)					+	2200	22000				•••••	•••••	•••••	•••••	••••••			
Nitrate (mg/l)	/Sulphite (mg/l)	•			/	/	/											
	KY	(% Wh	م ک		3.4	4.2	لامك											
	m/k				-571-1	4415	1	Conta	وممراء	UF	* - ষ্ট-স্থ	; +						
_	EU				9.1	9.17	9-2	Desa	nder		`_{3-\$		٥. نه.	3 selm	<u> </u>			
	Y/24 HOURS END	oing (i)	-3-		DEPTH			Desī.		W.	- 99	682	<u>a</u> 1.	4 galm	<u>.</u>			
	roduct/Package			Units	Unit Cos		Cost)E-12-	11-						
MILPO			 	5	78-33		11.62	0		OF	PERATIO	איט SUI	WMAF	(Y				
MILZ		·	نـــــا	<u> </u>	ड्ये म		12.44	POH.				ſ						
VAVS	HOATON JA		-	6	32.29		43-74	Change	12H	A	Lay o	w. 3	7 10 1					
Ku			 	40	12.84	16	33.60	RUMW	- Nex	w 1214								
			-			17	62.20	leen	Si	igeriti	o pum		•••••					
						76		DVII	Hen	\			•••••					
			 						••••••	••••••	•••••			•••••				
			<u> </u>			-			•••••	••••••	•••••			••••••				
		·····	<u> </u>			+-		***************************************	•••••	•••••	••••••		••••••					
				-		+			•••••	••••••	••••••		•••••	•••••				
					·····	\top		•	•••••••	••••••	••••••		••••••	••••••				
	LIQUID AD	DITIONS F	OR 2					***************************************		•••••								
Diesel	Drill Water	Sea W		Prehy		_		*********						·····				
				36	O(
UIDS ENGI	NEER . AM	TRE	<	W ZIN	75		HOME A	DDRESS	TUE	LAW	4	TELEPHO	NE ()	5-795 W	7)			
		1717-		747 747				<u> </u>	フリン	<u>د ۱۱۷ سه</u>	E		\sim 5	ソー ハベンル	44			

This report is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORTNO. ia	DATE HTH MACH 8
RIG NO. 8	SPUD DATE 3 POFERS
DEPTH UAT.	TO 1221

OPERATOR	0 - 2							_				PASM		10	Π	6M		
- PETRULEUM							RACTO	R V	1/47	TER "	Dell	عالا لمال						
REPORT FOR	I AN HOFM	FIFR	JIM	RUAH	υN		RTFOR	1	AN		KLASS.			···				
WELL NAME AT	ND NO. WEST	1 ATA 1	LIA		···•	FIELD	OR KNO. \	tı.	<u> </u>	LOCA	HON .	•	ST	ATE .				
	OPERATION	131111	T	CASING			MUD VO		M	UTO	ray 12	NION			<u> كان</u>	•		
Present Activity			OSIZA	Surface :		Hole	VIOD VO	its		Pump	Sizo -1.m			ION DAT		# \ T = *		
Bit Size		NIO I		at ¹	723W	147	<u> </u>	its Lig	<u>ა</u>	ł	S/1.	Annular Vel. (Ft/Min).						
	<u> 8¼</u> ^	19/8	<u>'</u>	ntermediate at		lotal C	rculating	O Nolun	ne	Pump Model	Make N'I	Opposite Collar All 10 Riser						
Drill Pipe Size	4%	Type	Pro	duction or Li	ner		In Sto			TS-L/St	roke S	troke/Min	Circ	ulating		1300		
Drill Collar Size	(51.4°	Length,	Mud Type	/at	_	- 				<u>انان - کان</u> Miر ب: ۲ ۲	8	100	Pres	sure oms Up (
Sample from			L	-Ku		olymea	<u> </u>			<u></u>	Ž		Syste	ems Tota	d (Min.)	071		
Flowline Temp	© Flowline erature	□Pit 곳 [©]	<u>}</u> •c	MU	D PRO	PERTIES	-	•				EQUIPM	ENT					
Time Sample			. 3	10-00				eif a a	SIZ		Hours	- 1 -		SIZ		Hours		
	Mera)			10700	(17)			rifuge	DIL		34	Desilte		"IIXI		12,		
Weight ☐ (S	.G.) BRY	·		4.6											<u> </u>			
Mud Gradie				115	-415		DAIL					CUMU	LATIVE	Thousand I	_	122		
	osity (sec./qt) API at		°C	42	143		cos	<u> </u>	<u> </u>	14.42		COST		Dan	7716	7/88		
astic Viscos	sity cps at			13	15	16	Ī	WEIGH	· T		PROPERT				×.			
Yield Point (It				17	19		M	MIM			PV/YP		ILTRATE			<u>(u</u>		
	(lb/100 sq.ft.) 10 sec/10 7 Strip □ Meter		 -	2/4			BYA	AUTHO	RITY	<u>8-0</u>	rator's Writter		<u>Q</u>	ing Contra		-4 %		
	(ml./30 min.)			9.0	9.5		 			⊠ Ope	rator's Repre	sentative	Othe	er er	actor			
	11- / 1/00		· · · · · · · · · · · · · · · · · · ·	8-3	7.1	- 	 	T)(DE				FORMATIO		· · · · · · ·				
Cake Thickne				ILHS	1(14)) ilh		TYPE		JET		W.T.	R.P.M.		VEL.	ВННР.		
Alkalinity, Mud	d (Pm)			1015) ILK)	SEr	<u>Sign</u>		10.10	<u> </u>	<u> </u>	TĴŌ	3		161		
Alkalınıty, Filtra	ate (Pf/Mf)			08/50	13 /4	5.08/58	SEC	_\$\	45	10-10	1.17	2	95	3	رپ،	165		
Chloriae (mg/l)						2030	1			RI	ECOMN	1ENDAT	rions	S				
Total Hardness	160	160			ansti	erred	GAIN	× 865	$^{\prime}$ $^{\prime}$	٠. ، ، ا	· 7	- \.						
Sand Content				TR	TR	178		Tr.w		Flate	Б С. ч	¢@cl	XVVV	.w::o	2.VPX			
Solids Conten				-0	3,0	3.0					\$ 6 (. 6	•••••••	••••••	••••••	•••••	••••••		
Oil Content (% Water Content				JR.	TIP	TR				•••••			••••••	••••••	••••••	•••••		
	re Capacity □ (ml/ml m	ud) S (oquiu	# /b b ! b +\	वार्	97.0	15.0										••••••		
K+ (mg/l)	Capacity E (Harrian)	da) 🗷 (equiv. 1	#700i dent)	77	2	1		••••••			••••••	•••••				•••••		
	Sulphite (mg/l)		· · · · · · · · · · · · · · · · · · ·	18000	1520	18200				•••••					•••••	•••••		
		(% W/J)		3.4	33	3-5	•••••	••••••	•••••	••••••	•••••	•••••	•••••					
	nlk	CIO 1910			53/13			ا مدور	······	~~	er L	••••••		•••••				
	ELO			9:17	9.7	a 5 h	<i>K</i>	entre	war.		24 PC) <u></u>	າ ທີ່		<u></u>			
	//24 HOURS ENDING	11-3-	86 @	DEPTH	เกาเ		<i>D</i>	exunx ex.The	*3	(je	17.8 6	9 	Z. Z.	34	יינייניני	:		
	oduct/Package		Units	Unit Cos	t	Cost		*#W7.1Y	×	×1	9.7 66	rgu	. 	Gm.1);;;;;;	•		
MILE	M.		5	18-33		20-18				OPE	ERATIO	NS SU	IAMN	RY				
MILZ	L POTRICA		1	कुर प		28.87				1704	M	•••••	•••••					
νū.	~ 40/14/4		10 10	75.5d		50.10	· <u>····</u> ···	بالميس			······			•••••				
1,43			ω	12.84	- 3	16.80	/v.	6p	ic.t	- No	المناهر وبعاد	لطويب		••••••				
					23	अपन्ध	17	ZZY.		FXXW	_ H&U	rtuf	~	•••••				
					+		N	υ.Κ.Υ) Τ	7	1.₽0\ \ \~	tujet	\$\cdot\2\	••••••	••••••	•••••			
					1		259		T 0 4		30 32m	4 - PT	••••••	•••••	•••••	•••••		
								 Ita	Alem)	997997.EX.	WW/:::	.3	••••••	•••••	•••••		
· · · · · · · · · · · · · · · · · · ·										- •		••••••	•••••	••••••		•••••		
									••••••	•••••		••••••			••••••			
	LIQUID ADDITIO	ONS FOR 04	HOURS (=	101.						•••••				••••••				
Diesel		Sea Water	Prehy					•••••		•••••		•••••	••••••	•••••••				
				SO				•••••		••••••			••••••			••••		
OFLUIDS ENGINE	EER DA	<				HOME AD	DBESS											
·	the following terms and co	(A)K2	ZMZ			I IOIVIE AL	יטרבסס		(TE)	ADE		TELEPHON	ECX	-79	SID	\mathcal{L}		

The part is subject to the following terms and conditions:
GEOF LUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOF LUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS has no power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
HE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geol	Juids		
		77	Mılchem

REPORT NO. RIG NO. SPUD DATE

										DE	PTH	17	76m	T	0 10	1162	(01)
OPERATOR	BEACH !		CONTR	ACTOR (રાપમ	TER !	JULL	Inc									
REPORT FOR	JM HAN	SOU	I	W Ho	FMELE		REPOR		_AN	RIE	KLA	550	N				
WELL NAME AN	NDNO. WES	1612 F	. ¥	LIA			FIELD C BLOCK	NON IUDI	אל	1990	TION	Ω.	SiN	STAT	E / 1	11 3	AMC
	OPERATION				CASING			IUD VOLUME		- \	-101	. 57		CULATIO	N DATA	<u> </u>	<u> </u>
Present Activity	POH TO	Lou	_	95/8"	Surface 4	\Z.	Hole	Pitsبنا	<u></u>	Pump	Size -	٧x ر	9/4"	Annul	ar Vel. (
Bit Size	C7 \6 h	No.8	-	Int	ermediate	<i>₼ ></i> M	Total Cir	culating Volui	me	Pump	Make N		777		site DP site Colla		
Drill Pipe Size	- 8 B	Type		Produ	at iction or Lir	ner	 	In Storage		Model By /St	Ø-	<u>-G-</u>	e/Min	Riser		<u></u>	•••••
	<u> </u>	Type			at		1	Citilage		196	8		NO NIM		ure		KO Z
Drill Collar Size	644	Length	6	Mud Type	<u>Ku</u>	Po	LYMER			13ry/M	n 3				ns Up (M ns Total (140
Sample from Flowline Temp	© Flowline erature	□ Pit	40	°C	ми	D PROP	ERTIES		SI	ZE	Hour		UIPME	NT	SIZE		Hours
Time Sample					13.30	Ross	3	Centrifuge			24		Desilter		11/4		ii
Depth	1874	PUL		Degasser Sally O Shaker Sto (350)							lb						
Weight□ (S					\$-9+	8-9	+	Desander		<ρ,	1.6			1	340/81		76
Mud Gradie					1162	على ا		DAILY COST		3.22			CUMUL		B 26		
	cosity (sec./qt) API				43	لبح	_	10001 9	-10		PROPER	RTIES		FICATIO	SNS 117 OCP	7.2	1.10
Yield Point (It	b/100 sq. ft)	***************************************			12	16		WEIGH	⊣T		Ρν/γΡ			LTRATE		1	<u>(u</u>
	(lb/100 sq.ft.) 10 sec/	10 min.			3/5	3/6		Minim	W.PM	8-0		حن		. Qu			-4%
	Strip Mei				13/3	9.0		BY AUTHO	ÖRITY		rator's Writ			□Drillin	g Contrac		
	(ml./30 min.)				8-6	8.1		1	,	⊔Ope	rator's Rep BIT		ative RMATION	□ Other V			
	ltrate (ml./30 min.)				-	-		TYPI	 E	JE		W.T.		R.P.M.	JETV	/EL I	BHHP
Cake Thickne	ess (mm) AP		-IP-HT		1(H)	1(1))	SEL S	RUK	110-10		lo -		25	34		161
Alkalinity, Mu														···			
Alkalinity, Filtr					10/22					D	ECOL	11.5	NDAT	מאסוי	·		
Chloride (mg		1/== //			30000		—]		ĸ	ECOM	IVIE	NUAI	IUNS	•		
Total Hardnes Sand Conten	· · · · · · · · · · · · · · · · · · ·	I (mg/I)			140	160					•••••					•••••	
Solids Conten					TR 3.0	30	-		••••••		•••••		•••••			•••••	
Oil Content (9					10	50 TR			••••••	••••••	•••••	•••••		••••••			
Water Conten					97.0	97-0	+			••••••		•••••			••••••	••••••	•••••
	ue Capacity 🗆 (ml/ml	mud) 🗗 (e	quiv. ŧ	#/bbl bent)	\ <u>`</u> _	5	1			••••••	••••••	•••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
K= (mg/l)					20000					••••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
Nitrate (mg/l)	/Sulphite (mg/l)			\	/	1	/						•••••••	••••	••••••	••••••	••••••
	ΚŲ	(%)	2)	3.8	37								••••••			
	<u> </u>				5411	·23/13	-	Centr	tra	L OF	8-2	Jpp.	·····				
OST SHIMMAD	Y/24 HOURS ENDI			9 1 6	9.2	4:5	1	Desar		YF.	<u>į</u> ̃3:	3,4	m. 0	<u>, 2:</u>	5. will	تـــت	
	roduct/Package	14-	<u> </u>	Units	Unit Cos		Cost	Dest	10/	UF	1:	90.	r y©	J-1	్లు చ్రబ్ల	.777.77	3
MULP				9	78-33		७५-९७			OP	ERATI	ON:	SSUN	ИМАР	RY		
	STU POTASH			5	32-20		B1-45	Dod	٠'n٠								
Ku				व्य	15-84		36-80	C.	/!					••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
						-		LON	lb s	tand	Niper	W.	>	· · · · · · · · · · · · · · · · · · ·			
						U	183-95	Pil	J. J	ه ريانه	whom	A. O.	v 1	وهكم	- 16	*Lm	
					·			ON.) Lear	~ San	·a \	······					
								EUM.	•••••		•••••	•••••	•				
								Cont.	- K	7 7 7		7.		•••••		•••••	
						_		ÇXX;	!?		r-1:00	<u> </u>	>		••••••	••••••	
														••••••	••••••	•••••	
									• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••		••••••		••••••	
Diesel	LIQUID ADDI			7							•••••	•••••					
Diesel	Drill Water	Sea Wat	er	Prehyd						•••••	••••••	•••••	•••••				
FOST LING ENCIN	NEED N.			30	N. I			20055				т—					
ESS.UIDS ENGIN	NEER HUDN	6 ·	LW	77117			HOME A	DURESS [JUN FI	MINE	<u>.</u>	TE	LEPHON	IE POS	X-70	151	17

This port is subject to the following terms and conditions:

GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or insign on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geof	luids	
		Milchem
	<i>IIF</i> —	

REPORT NO. 21	DATE BY PARLYS
RIG NO. 8	SPUD DATE BRUSES
DEPTH 1011	TO

							Dr	EPTH 191	16mt	<u>UD</u> TO) 	
OPERATOR BEACH DETROLES	MU,		, 	CONTRA	ACTOR \	LU	HTER	DRULL				
		*MELE	ia	REPORT	FOR 1	An	MIE	KLASK				
	EIA			FIELD OF	NO.WILAL	•	LOCAT			STATE	= \(\(\cdot\)	
OPERATION OPERATION	C	CASING	$\xrightarrow{\hspace*{1cm}}$	MI	NO.		+ BAA	WAY (SA	×3NU CIBC	RCULATION		
Present Activity C	nchn E	Surface ;	$\overline{}$	Hole	Pits		Pump	Size Cy x			N DATA ar Vel. (170	Adin
Bit Size TU No.	qs/gr s	Surface 4	123m	200	COPP C			(22)				
82	Inter	ermediate at	J	Total Circ	culating Volum	ne	Pump Model	Make NAT	4.5	Opposi	site DP	<i>Til</i>
Drill Pipe Size Lyb Type	Produc	iction or Line	ner		In Storage		PN _/St	troke Stro	oke/Min	Circulat		
Drill Collar Size Guy Length	Mud Type	K.U	<u>v</u> 2	IMER			BY TWI	82	100	Pressure Bottoms	ns Up (Min.) . ns Total (Min.)	
Sample from		T						F	EQUIPMEN		5 IUIai (ivii.i.,	<u>/</u>
Flowline Temperature) °C		D PROPE		1		IZE	Hours			SIZE	Hours
Time Sample Taken		 *	10-45	<u> </u>	Centrifuge			<u> </u>	Desilter		الإلايع	
Depth (Miles) Weight□(S.G.) S.G.		<u> </u> '	TO	 '	Degasser		الم	0	Shaker	r B	60 850	
Weight⊡ (S.G.) ⊠ Mud Gradient (psi/ft)		 '	894	<u>, </u>	Desander		∠ 6°			Ri	(10) 1860	
Mud Gradient (psi/ft) Funnel Viscosity (sec./qt) API at	<u>-</u> -	 '	1472	 '	DAILY COST	(CA	db.66		CUMUL	_ATIVE O	トラフィ	17.76
		1	42	<u> </u>	4	******		D PROPERTIE		IFICATIO	NS SN	01-101
Astic Viscosity cps at	······		14	 '	WEIGH	лT		PV/YP		ILTRATE		Ku
Yield Point (Ib/100 sq. ft.) Gel Strength (Ib/100 sq.ft.) 10 sec/10 min.		+,,	12	 '	MW		7 -0			<u> </u>	1.3	1.0
Gel Strength (lb/100 sq.tt.) 10 sec/10 min. pH			2/5	\ / -	BY AUTHO		E XOpe	erator's Written			g Contractor	-d 10
PH MStrip ☐ Meter Filtrate API (ml./30 min.)		+	9.5	 '				erator's Represer	entative	Other		
API HP-HT Filtrate (ml./30 min.)		1	8.4	 /	+				ORMATION			
		+	1700		TYPE				V.T. F	R.P.M.	JET VEL	ВННР
Cake Thickness (mm) API S HP-H Alkalinity, Mud (Pm)	-HTO	1	ICHI	 	SEL 58	84F	Ww	٧.١			347	<u> </u>
Alkalinity, Mud (Pm) Alkalinity, Filtrate (Pf/Mf)		+,	1 - 12	 								
The state of the s			15/77	. / /	4		P	RECOMME	END A7	TIONS	_	
Chloride (mg/l) Total Hardness □epm 🎏 (mg/l)			18000	1	4			ECON	TINDY.	IUNU		,
Total Hardness ☐ epm (mg/l) Sand Content (% by Vol.)		+	160	 	4	•••••		•••••	•••••			
Sand Content (% by Vol.) Solids Content (% by Vol.)		+	70	1	<i>i</i>	•••••	,	•••••				<i>J</i>
Oild's Content (% by Vol.) Oil Content (% by Vol.)			3.0	1	,			•••••				
Oil Content (% by Vol.) Water Content (% by Vol.)		+	72	4	<i>(</i>			***************************************				!
Water Content (% by Vol.) Methylene Blue Capacity □ (ml/ml mud) □ (equiv	" "- " hont)	+	97-0		,			•••••				1
	v. #/bbi berii)			+	<i>i</i>	······································		•••••				
K+ (mg/l) Nitrate (mg/l) /Sulphite (mg/l)		 '	U200	4	,				••••••		••••	
Nitrate (mg/l) /Sulphite (mg/l)				+-/-	,						•••••	
Ky Cio W	1		33								•••••	
PK '			- 241-1									
COST SUMMARY/24 HOURS ENDING 12 .3	- 4 @[93			•••••						
			10			•••••	••••••	······	•••••		······	
Product/Package	Units	Unit Cost		Cost			ΩF	TO ATION	6111	AD	<i>-</i>	,
	3 -	78-33		16-66	Ø	3	UF	PERATION	15 SUN	MMAn.	Y	1
CYSAM SODY	-	30-00		20-00	winds	w	7 70	Δ				
			1	6.66	"Villy both	چ		my in		UK W	s of lay	استهاد
			- <u>ar.</u> ,	3,00	THE W	C.Dy	r <i>t</i> v	Mika try	.ዮ			
					Trope	ways	<u> </u>	••••••	•••••		••••••	· ····
					UVL D	.vole	.cleur	· 	,			
											••••••	•••••
										•••••	······	
					***************************************						······································	•••••
				——	•••••	•••••		••••••			***************************************	•••••
				——			•••••				•••••	
LIQUID ADDITIONS FOR 2	24 HOURS (RE			——	•••••		•••••	•••••			•••••	•••••
Diesel Drill Water Sea Water				——				***************************************			••••••	
DIESEI DI SI VICILO.	Prehydra 50						•••••					
OFFICE HOLD TRIONIED A					N							
V-1-1-1	くスズ			HOME AD	DRESS P	DE.	T HO	'€ _⊥	ELEPHON	NE OR	-195W	.9 <u>)</u>
This port is subject to the following terms and conditions:							-					

This port is subject to the following terms and conditions:

GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geof	luids		
		77	Milchem

REPORT NO. 22	DATE / COTA MANY 8
RIG NO. 8	SPUD DATE JZRESS
DETTIL 1011 (>	70

_									l D	EPTH	JUP (ID)	то				
OPERATOR	BEAU PET		CONTRACTOR RICHTER DEVILING														
REPORT FOR	IAN HOFMEN	1	m Hours	3h		REPOR	REPORT FOR LAWRE WASKIN										
WELL NAME AN						FIELD OR BLOCK NO. NILDUM			DTWAY BASIN				STATE \ I				
	OPERATION	1115 -17		CASING		MUD VOLUME			$+\alpha_n$	UP17 13		CIRCULAT	100104	<u> </u>			
Present Activity	1		95/22	Surface u	~		Pits .		Pump	Size مد			iular Vel.		/lin).		
Bit Size	<u> Lou</u>	No	1248	at U	K)3h	Hole Size	Pits 3iv	•				∜ I ∩nr	nosite Di	oʻi3	Z		
	82	Rins	1	ermediate at		iotal Cir	culating Volun	пе	Mode		18-UD	Opp	oosite Co	oilar . s.	:H		
Drill Pipe Size	لبايع	Type	Produ	ction or Li	ner	In Storage			137 (S		troke/Mi	in Circ	Riser				
Drill Collar Size	Chai	Length	Mud Type	XU XU	Riv	7MER			157L/M	in	w	Bott	Pressure				
Sample from	□ Flowline	ীর Pit		MU	D PROPI				EQUIPMENT								
	erature		°C	:				SIZ		Hours			SIZ		Hours		
Time Sample	з іакеп			 ,	Orn		Centrifuge			<u>u</u>		silter	11-4		2		
Depth Weight ☐ (S.	G) Statu			1 9	O OT Che	<u> </u>	Degasser	Den		<u> </u>	Sha	aker	1240				
Weight □ (S.			······································		8-9		Desander DAILY	الار		7		ALII ATN	Bipli	32,	<u></u>		
	osity (sec./qt) API at		°C	 	4463	- 	COST	Pgo	327		CO	MULATIVE ST	\$	1737	1.03		
	sity cps at			+	39			×		PROPERT					·		
Yield Point (Ib		••••••		+	1/2	+	WEIGH	1T		PV/YP		FILTRAT	E		(4		
	(lb/100 sq.ft.) 10 sec/10	min.		 	1/3	+ ,	MIN		8-1	- /16-27	، د	<9			دا مها		
	Strip			 	9.5	`	BY AUTHO	PITY	Ope	erator's Writte	1	□Dri	lling Con	ractor			
Filtrate API (1	9.0			····	LI Ope	erator's Repre	sentative FORMA		ner				
	trate (ml./30 min.)				 	 	TYPE		JI.	TS I	W.T.	R.P.M.	10	T VEL.	ВННР		
Cake Thickness (mm) API SH HP-HT□			 	T(H)		SEL SIGH		10.W		V V.1.	11.1.101.		47	Drifte			
*******	Alkalinity, Mud (Pm)				1-0.0	1	200	vr_	12.W	.12			د ا	~/			
Alkalinity, Filtrate (Pf/Mf)				/	10 /S	5 /			-l			L			L		
Chloride (mg/	/I)			<u> </u>	17000	1-	Í		R	ECOM	MEND	ATION	IS				
Total Hardness	s □epm 🙀(n	ng/l)			180		_										
Sand Content					78												
Solids Conten					3.0				•••••	••••••	•••••••			••••••			
Oil Content (%	ó by Vol.)				77					• • • • • • • • • • • • • • • • • • • •	•••••		••••••	•••••	••••		
Water Content	<u> </u>				920			•••••	••••••				•••••	•••••	**************		
	ue Capacity ☐ (ml/ml m	iud) 🗌 (equiv.	#/bbl bent)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
K+ (mg/l)					17000					*************	• • • • • • • • • • • • • • • • • • •						
Nitrate (mg/l) /	/Sulphite (mg/l)			/	/	/	***************************************			***************************************	••••••						
	Ku ((Jud			3.7							••••••	·····	• • • • • • • • • • • • • • • • • • • •	••••••		
		•								••••••			•••••				
COST SUMMARY	Y/24 HOURS ENDING	البرج	86 @1	DEPTH	TD	1				••••••	••••••	•••••	••••••	••••••	•••••		
	oduct/Package		Units	Unit Cos		Cost	***************************************			•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••	••••••		
Muen			1	78-33	5 -	18-3)				PERATIC	NS S	UMMA	ARY				
* MILLER			(i)	14-07	10	رنده	Ciru.										
*****							CIPL.	- N	2 Pro	06~>							
							رو مل										
80 780V							·····			*******************************	•••••••						
Can	etic Sodi Cos	ر در در ۱	57		\dashv	2.77				***************************************	••••••						
								· · · · · · · · · · · · · · · · · · ·		•••••							
* Used to	r Previos Bea	1 Job			35					••••••		••••••	•••••		•••••		

														•••••	•••••		
**	LIQUID ADDITI	IONS FOR 2	4 HOURS (P	RI \					•••••		•••••	•••••			•••••		
Diesel	Drill Water	Sea Water	Prehyd					•••••	•••••	••••••							
	5111 11461	CCA TTAICI	rienyc	. ale				•••••	•••••	•••••					•••••		
FOSLUIDS ENGIN	VEER AL DAY	Cir.	in A	L		HOME A	DDRESS A	₽V.	A	.	TEI EDI	HONE	A	1050			
	WEEK HOUSE		ンプ			I IONE A	2211233	7510	ALDE		ICLEM	HONE	178-	ા વાગ	27		

This port is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or ornission on the part of GEOFLUIDS. In giving any advice or report.
ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Geol	<i>Juids</i>		
		**	Mılchei

REPORT NO. 23	DATE 15TH MYRLLA 8
RIG NO. S	SPUD DATE 2300 FEAS
DEDTH ACIAL	TO.

·									DEFTI	<u>' 1</u> 91	(OT)	10	<i></i>		
OPERATOR	BEALL	PETROLEU	CONTR	ACTOR	Qu	MTER									
REPORT FOR	·	NYMEIER		KRUSAF	`	REPORT FOR LAWRIE KLASSON									
WELL NAME A	— Trivin		51 V	CHUNK	J	1							E / \r,		
***************************************	ODEDATION	STEATE !	E/A	DA CINIC					UTO	W 13	MICA			TORVA	
Present Activity	OPERATION	····	1	CASING Surface		Hole	IUD VOLUME		Duma Ci		CIH	CULATIO		Min)	
	" 106		95/8°	at 4	53n	200	Pits 32	S	Pump Size	ζ Ά,×	944	Annul	ar Vel. () site DP site Collar	73 Viin).	
Bit Size	82h	NERS	Inte	ermediate		Total Cir	lotal Circulating Volume Pump Make					Oppo	site Collar	311	
Drill Pipe Size			Produ	otion or Lin	er	<u> </u>	In Storage		Model /Stroke	Stro	-100 ke/Min	Riser			
•	<u> ሢ፟</u>	Type		<u>at</u>		<u> </u>		···	1.00 kg.		<u>võ</u>	Pressu	ıre		
Drill Collar Size	e but	Length	Mud Type	Ku	PUL	YMER			13x /Min				ns Ùp (Min.) ns Total (Min.		
Sample from	•	4 1	 Υ °C	i		ERTIES			. 3.5	Ε	QUIPME		(
	perature		ζ °C	•			<u> </u>	SI		Hours			SIZE	Hours	
Time Samp				18-00			Centrifuge			8	Desilte		1×4ª	2	
Depth				CT C			Degasser	DAM		0	Shake		40 Bb3	3	
Weight □ (78-1-/	•		9-0			Desander	_	×6*	2			DED 1340	<u> </u>	
	lient (psi/ft)		00	468	• •	·	DAILY COST	12	6-66		CUMU	LATIVE	U SA	.64	
	scosity (sec./qt) A		°C	45			1 200, 4	r- u.	MUD PRO	PERTIE		IFICATIO		<u> </u>	
	cosity cps at			16	-		WEIGH	I T	PV/Y			ILTRATE		Ku	
	(lb/100 sq. ft.)			18	-		Mun			ب-ہی	-	9	2	-490	
	th (lb/100 sq.ft.) 10 se			3/4	/_	/	BY AUTHO	DRITY	Operator				g Contractor	- 7.0	
pH		Meter		9-0					3 Operator	s Represe		Other			
	Pl (ml./30 min.)	•		8-0							ORMATIC	N			
	Filtrate (ml./30 min.)		•••••				TYPE		JETS	W	п.	R.P.M.	JET VEL.	BHHP	
Cake Thick		APIS, HP-H	ТО	LU			SEL 58	4F	W-10. D	<u></u> _			347		
Alkalinity, M				-											
	iltrate (Pf/Mf)			-W/58	/	. /	1		DEC		=NID 4	TIONS			
Chloride (m				12500					HEC		ENDA	TIONS	•		
Total Hardne		⊠ (mg/l)		130]	•••••	••••						
	ent (% by Vol.)	·		TR]				**********				
	ent (% by Vol.)	·		3.5]								
Oil Content	· · · · · · · · · · · · · · · · · · ·			TR											
	ent (% by Vol.)			96-3											
Methylene E	Blue Capacity ☐ (ml/	/ml mud) 🗆 (equiv.	#/bbl bent)				l	•••••							
K† (mg/i)				12200]								
Nitrate (mg/	'l) /Sulphite (mg/l).			/	/	/					•			•••••	
	K	u Clo War	-\	2-9											
									•••••		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
COST 01:00:00	DV (04 HOLES E	10010							••••••						
	RY/24 HOURS EN	iDING 15-5-			TD	Cost			•••••						
	Product/Package		Units	Unit Cos		Cost			∩ DED	ATION	16 611		ov		
MILER			2	78-33		20.AP	1		OPER	AHON	13 3U	WINIM	11		
~1021	THE SOON			22.3	<u> </u>		100			•••••	•••••			••••••	
	•						Lyth.		N 1071				•••••	••••••	
						••	Koan	76	and No	<u>~ ~</u>	1.5			••••••	
					+	•		TYCK.	and wa	K Kip	<i>د</i>			•••••	
							Live t	Tole	Uean.	••••••					
							Lor.	•••••			•••••				
										•••••	• • • • • • • • • • • • • • • • • • • •				
	**										•••••	•••••			
	•		· · ·					•••••		••••••					
					+-			••••••	••••••	••••••	•••••	•••••	••••••		
	LIOUR	DDITIONS FOR A	A HOURS (S	RI \					•••••	•••••		•••••		•••••	
Diesel		DDITIONS FOR 2						••••••				••••••	•••••		
DIE961	Drill Water	Sea Water	Prehyd				•••••	•••••				•••••			
CENT LIBO EN	J		10	<u>v</u>				·—							
G.UIDS ENG	SINEER 12UD	ar Ck	YINT!			HOME A	DDRESS	40F	LAWE	7	TELEPHO	DNE JQ	-14510	2	

This report is subject to the following terms and conditions:

GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY and advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO. 24	DATE VOTA MARCH &
RIG NO. 8	SPUD DATE BROKES
DEDTH .C.) /	\ TO

											$\square V$	DMU	0			
OPERATOR	BENH PE	TRULFA	CONTRACTOR QULLTER DRILLING													
REPORT FOR	- 11	1	Im H	A 1 1 K		REPORT FOR LAWRY KLASSON										
	LAN HOFM			NOSON	<u> </u>	FIELDO	<u>, </u>		LOCA				STATE			
WELL NAME A	·// C>/	GATE 1	YA_			BLOCK	NO.WILD	AT	00	VAY R	1640			Mic		
December 4 Activity	OPERATION		·	CASING			IUD VOLUME		<u></u>				ULATION	JLATION DATA		
Present Activity	<i>Doc</i>		95/2"	Surface to	t53h	Hole Hole	Pits 31/	0	Pump	Size Sy	$\sim q$	1440	Annular Vel. (
Bit Size	87,	No.	Int	ermediate			culating Volun		Pump Make NN Opposite Coll						עג	
Drill Pipe Size		Туре	Produ	at / iction or Lir	ner	-	In Storage		Model (\$\frac{1}{2}\fr		Stroke	/Min	Riser			
•	<u> </u>			/at					-06	L	ioi	2	Pressure	∍'		
Drill Collar Size	° G'W	Length	Mud Type	Ku	$\rho_{\mathcal{O}}$	xmer			BY IM				Bottoms Up (Min.)			
Sample from	SyFlowline ■	□ Pit		1			T			<u></u>	FOI	UIPMEN		, iota, (iiiii	,	
Flowline Temp	vline Temperature C MUD PROPE							SIZ	ZE	Hours		O.,	•	SIZE	Hours	
Time Samp	Sample Taken 16-LS						Centrifuge	010	רטינגי	बेप		Desilter	17	χ υ *	$\overline{\chi}$	
Depth							Degasser	Day		0		Shaker		かん	2	
					9.0		Desander	Us		5			Bi	स्वराज्य स्वराज्य	5	
	Mud Gradient (psi/ft) unnel Viscosity (sec./qt) API at°C.						DAILY					CUMULA COST	ATIVE	•		
				<u> </u>	146		1 300.	-	MUD	PROPER			CATION	IS		
	osity cps at	17	-	WEIGH	1T		PV/YP			TRATE		Кu				
							MW		8 -0	L lb-d	٥.	<u><′</u>	7	~	3	
	Strip			/	3/6	 	BY AUTHO	PRITY	ТСОре	erator's Writte	en		Drilling	Contractor		
	1 (ml./30 min.)	—.—.···			8-5				¥ I Ope	erator's Repr		itive MATION	Other			
	Filtrate (ml./30 min.)	8.7	<u> </u>	TYPE	=	JF	TS	W.T.		R.P.M.	JET VEL.	ВННР				
Cake Thickn					1(.4)		Ste Start		W-W		•••••	' 	347		Dinn	
Alkalinity, Mu	ud (Pm)			İ	100	_	320 38	·	1000			\dashv		341		
Alkalinity, Fil	Itrate (Pf/Mf)			/	12/.5) /									L	
Chloride (mg	g/l)				800	2000	1		R	ECOM	MEN	NDAT	ONS			
Total Hardne	ess □epm ⊠ (r	ng/l)		İ	200]									
	nt (% by Vol.)				TO											
	ent (% by Vol.)			i	3.5											
Oil Content (<u>:</u>	TR											
	ent (% by Vol.)				96.5	ļ			• • • • • • • • • • • • • • • • • • • •							
	Blue Capacity ☐ (ml/ml m	rud) □ (equiv	. #/bbi bent)													
K- (mg/l)	l) /Sulphite (mg/l)			ļ ,	13200	 ,-		•••••								
Mirale (mg/i		% W/V)		- /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 				•••••			•••••			
	NG I	19 Mh.)			2.6			•••••	•••••	•••••		•••••				
						-		•••••	•••••	•••••	•••••	•••••	••••••	••••••		
COST SUMMAI	RY/24 HOURS ENDING	G 16-3	₹L @	DEPTH	TO	_L		••••••	•••••		•••••	•••••	••••••	•••••		
	Product/Package	<u></u> _	Units	Unit Co		Cost		••••••		••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
Mico)M-		3	78-33	3 2	44.49	_		OF	ERATIO	ONS	SUN	IMAR'	1		
CAUST			2	82.3	_	44.74	Law -	-RF7								
							Unal	de to	.00.F)	4972						
					3	X .73	NA V	- Ly	k							
							Bir	اسيوال	ઈ પ્ય	7m - No Pipe (
	·						No	k. Par	L. 49	m- 53	Ψ.,					
				-			KNA		SMS	- W	61.4	ola->				
					٠ <u>۲</u>	WOXK.	bro C	u\$	84W							
				B. Tan) in	n NG		•••••			•••••••••••••••••••••••••••••••••••••••					
		_			۱۱.۲۲.۲۷ امام ط	N:TVX			••••••	••••••	••••••					
724		-		ALD.	1.A.	K 120.2	s <u>5</u> 33 Perm	·····	33	5141	······					
	LIQUID ADDIT	IONS FOR 2	4 HOURS (E	BL)			L IVA	· · · · · · · · · · · · · · · · · · ·	~~~	Hole W	.بب سو(7.5 <i>1</i> 7		······	•••••	
Diesel	Drill Water	Sea Water	Prehy	drate			Dev.	<u> </u>				************	·····	••••••		
			14	N		-	Ring 10	<u>.</u>	اسم	UT.						
UIDS ENG	GINEER ALONE	$\leq \sim$	ZNZ			HOME A			LMOF	:	TEI	LEPHON	E 170	79510)	
	- LICANILL		U MV					1 100	T LIM		L		٠٧٥,		<u> </u>	

This report is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.
THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

Geof	<i>¶uids</i>		
		77	Milche

REPORT NO. 25	DATE Day MARCH' SI
RIG NO. 8	SPUD DATE BRIFES

OPERATOR	0	PETMILE				T				TH 19	DMC.	112) 1	<u> </u>	•	
	12CACA		CONTRACTOR RULETER DRUMB												
REPORT FOR	R JM HA	I / MOZI	AN HOP	MEIER	_	REPORT FOR LAWRIE KLASSON									
WELL NAME		STEATEH				I LICEATION I CTATE									
	OPERATION	31121116-1		CASING		1	BLOCK NO. VYILOCKY OTWAY BASIN								
Present Activ	ity o		05/0h	Surface	4534	LIGIT DISCONDINI DALA									
Bit Size		INFWKYS.	1 T. IA	at	4534	720	Annular Vel. Opposite DF								
	85,	N RR	8 '	ntermedial at	te	Total Circu	ulating Volu	me	Pump Ma	ke NAT		Oppos	site DP(site Collar	الل	
rill Pipe Size	e uy	Туре	Pro	duction or I	Liner	<u> </u>	In Storage		Model SNL/Strok	e Q-p-	ke/Min	Riser .	ating		
Orill Collar Siz		Length	Mud Type	<u>at</u>		L			アンバタ、		VOI	Pressu	ıre	•••••	
	ze 6 m		Ivida iype	Ku	1 Pol	LYMER			Min B-8				ns Up (Min.) ns Total (Min.		
Sample fron			41.°c	AAI	UD PROPI						QUIPMEN		no iotal (iviii).	.,	
	mperature		GI .c					SIZ		Hours		••	SIZE	Hou	
Time Sam Depth	ipie iaken				3130		Centrifuge	OIL	TOULS	久	Desilter		1249	1	
Weight □	(S.G.) ≥ f(? ~				TD		Degasser	DU	w	ڻ ن	Shaker	B	bolBOD	4	
	dient (psi/ft))			9-0+		Desander	Lux	60	2			UN 1360	4	
	iscosity (sec./qt) A	\PI at	°C		1471		DAILY COST	SCI	6.73		CUMUL	ATIVE C	1000	34.14. 25	
	cosity cps at			···	45			#20C		OPERTIE		EICATIO	DOTO'	rad. L	
	t (lb/100 sq. ft.)	***************************************		'' 	17	+	WEIGH	-IT	PV			TRATE		(C)	
	gth (lb/100 sq.ft.) 10 se	ec/10 min		- , , , , , , , , , , , , , , , , , , 	18	┼,	MW		8-12	16-2 -	<			Ky.	
рН		Meter		- -/-	3/6	+	BY AUTHO	DRITY	□ Operato				Contractor	> 10	
Filtrate Al	PI (ml./30 min.)				8.4	┼──┼			□ Operato	r's Represen		Other			
	Filtrate (ml./30 min.)		•••••		7.4	 -	TYPE	=	ICTO		RMATION		T		
			P-HT 🗆		IUN	 	SEL SA		JETS	- W.	. F	R.P.M.	JET VEL.	BHH	
Alkalinity, N				1	100	 	AC 28	45	10.0.0	-			347	<u> </u>	
	filtrate (Pf/Mf)			/	TR/.41	. / /			L				L	<u> </u>	
Chloride (m					17000				REC	OMME	NDATI	IONS			
Total Hardn		Ş -(mg/l)			C&J							. =			
	ent (% by Vol.)				TR					•••••	•••••••	•••••••	•••••	•••••	
Oil Content	tent (% by Vol.)				3.2			••••••				•••••••	••••••	••••••	
	ent (% by Vol.)			 	TR					•••••					
	ent (% by vol.) Blue Capacity □ (ml/	/ml mud) 🗆 (oc.	iv #/hh! h*	 	96.5					••••••				********	
K+ (mg/l)	35 55pacity (1111/	···· maa) 🗀 (eqt	iv. #/DDI Dent)	 	173						••••	•••••			
	/l) /Sulphite (mg/l)		·	/	12000	 , 			•••••				•••••		
	Ku	(% Wh	7	'-	2-9		•••••		•••••	•••••			••••••	•••••	
			····	1	~ 1		••••••	••••••	••••••	•••••				•••••	
							••••••	••••••	••••••	•••••	••••••	••••••	••••••		
	RY/24 HOURS EN	DING 7-	7-81 ®	DEPTH `	TD			•••••••	••••••	•••••••		••••••	••••••	••••••	
	Product/Package		Units	Unit Co		Cost		••••••	••••••					•••••	
	ILPAL		1	78-33		(6-3)	6 () ~	OPER	ATION	SSUM	MAR	Y		
<u>r</u>	,4		10	12.84	12	8.40	Kin 1	17		••••	••••••				
·					13	673	ICH M	F. 151	<u> </u>	4 -1					
					_=		Koan t	<i>infr</i> 4	hole 16	Slm-1	671m			•	
							~.!\\\\		•••••••						
							YIKL, h	مهوري	Des.	••••••			•••••		
							العلم يعزله	V.Y	rbin Mile	••••••			•••••		
							14(.L!\)	de ch			•••••	•••••		•••••	
							?::XXX	MANN.	<i>።</i> ሥራ				•••••		
							,	•••••	•••••	•••••	••••••	•••••	••••••	•••••	
						 "	••••••••••	•••••••	••••••	•••••••••••	••••••	· · · · · · · · · · · · · · · · · · ·	••••••	••••••	
		DITIONS FOR	24 HOURS (B	BL)				•••••••	•••••••	••••••	••••••••	•••••••	••••••	••••••	
				drate			••••••		•••••••	•••••••	••••••		•••••••	••••••	
Diesel	LIQUID AD Drill Water	Sea Water	Prehy			_ "					• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	
	Drill Water		Prehy	2											
UIDS ENG	Drill Water	Sea Water	10	9	_	HOME ADDI	RESS \	N C	Ane	· TFI	LEPHONE	100	700	-1	
UIDS ENG	Drill Water SINEER	Sea Water	2/11/2C)	0				4DE	Ane		LEPHONE		-2956	<i>37</i>	
UIDS ENG	Drill Water SINEER	Sea Water	2/11/2C)	or any of the				لتلياد	ADE					đ)	
UIDS ENG	Drill Water SINEER	Sea Water	2/11/2C)	or any of the of drilling or is conduct or responsible				لتلياد	AUNE ed.					a)	
UIDS ENG	Drill Water SINEER	Sea Water	2/11/2C)	or any of the of drilling or is conduct or responsible by report pre-				لتلياد	ed. any consequer shall indemnife					a)	
port is subject	Drill Water	Sea Water	2/11/2C)	or any of the of drilling or is conduct or responsible by report pre; r omission or				لتلياد	ed. any conseque shall indemning eport.					37	

REPORT NO. DATE ! 8 TAMORS SPUD DATE 23 ROKES RIG NO. DEPTH 1916 TO

			PERATOR RENAMED DESCRIPTION OF THE PERATOR RENAMED DESCRIPTION OF THE PERATOR OF								CONTRACTOR O										
I DEPOR	-TRYPLE	CONTRACTOR RUSTER DRILLING																			
REPORT FOR JM HAUS	I Luc	REPORT FOR LAWRIE KLASSON																			
		1A	, , , , , ,	<u> </u>	FIELDO	D .	LOCATION			STATE	11.										
WELL NAME AND NO. WEST (-	141 -		CASING			YOW ILDLAT	DUNKY	BASIL			<u> 11 (C</u>										
Proposit Activity A	_					UD VOLUME Pits	Pump Size	DATA Vel. (// //	tin)												
Bit Size		95/85		23,	Hole 6U0	770		۱۷e۱. (۲۰۰۱ /۱۸ د ۱۲۰۲ کوe													
Sit Size	No.		termediate		Total Circ	culating Volume	Pump Make Model	e Collar													
orill Pipe Size	Туре	5 L Produ	uction or Lin	er		In Storage	374/Stroke	Q-Dw Strake/	/Min	Riser											
700	Length	Mud Type					-068	(0)	0	Pressure											
rill Collar Size Gue	Longui	widd lype	<u>Ku</u>	601	TIMER		BYL/Min				: Up (Min.) : Total (Min.)										
	□ Pit		миг	PROPE			<u></u>														
lowline Temperature		.°C		THOFE	1973	SIZ	E H	ours			SIZE	Hours									
Time Sample Taken			-		01-00			8 [Desilter		×4,	٦ ع									
Depth Weight (S.G.)			ļ	ļ	OT	Degasser 00	yo !		Shaker		W Bloo	3									
Weight□ (S.G.) Rep	Mud Gradient (psi/ft)				9.0+		$\langle \mathcal{B}_{y} \rangle$	0	St 10 22 2	3	0880	_3									
unnel Viscosity (sec./qt) API at°C					1.421	DAILY SIN	4.22		CUMULAT COST	IIVE \$	WX 17	8.37									
Plastic Viscosity (sec./qt) API at					43	42-1/19	MUD PROF			CATION	(1) IS	<u> </u>									
Yield Point (lb/100 sq. ft.)					16	WEIGHT	PV/YP			RATE	<u> </u>										
Gel Strength (lb/100 sq.ft.) 10 sec/10 n	nin.		 , 	1		Min															
pH S⊋Strip □ Meter			+-'	/	2/5	BY AUTHORITY	□ Operator's \				Contractor										
Filtrate API (ml./30 min.)			 		80	. •	☐ Operator's f	Representati BIT INFORM		Other											
API HP-HT Filtrate (ml./30 min.)			.		370	TYPE	JETS	W.T.		P.M.	JET VEL.	ВННР									
Cake Thickness (mm) API			1		1CH)						JEI VEL.										
Alkalinity, Mud (Pm)					- 10.0			 													
Alkalınıty, Filtrate (Pf/Mf)			/	/	16/-82			L		!		_/									
Chloride (mg/l)					16000		RECO	MMEN	IDATIO	SNC											
Total Hardness □ ppm □ ppm	g/l)				140	***************************************															
Sand Content (% by Vol.)					TR	***************************************	*************************														
Solids Content (% by Vol.)					3.5		***************************************														
Oil Content (% by Vol.) , Water Content (% by Vol.)			<u> </u>		15		•••••					•••••									
vvater Content (% by vol.) Methylene Blue Capacity □ (ml/ml mu	d) 🗆 (again t	#/hhl =	 		96:5																
K÷ (mg/l) ·	o) in (eduly, #	roui bent)			1/2					••••		•••••									
Nitrate (mg/l) /Sulphite (mg/l)			 , 		الإنكام					•••••		••••••									
. Ku	ulu do)	2)	'		30			••••••	••••••	•••••		••••••									
. 1.09	C 10 000				W. I	•••••	••••••	•••••		•••••	••••••	•••••									
						••••••	••••••	••••••	••••••			•••••									
ST SUMMARY/24 HOURS ENDING	18-3-	8L @1	DEPTH -	TD		***************************************	***************************************	••••••	••••••	•••••	•••••										
Product/Package	3	Units	Unit Cost		Cost		••••••	••••••••	••••••	••••••		••••••									
Chista Soba		* 6	2237	13	4-32	.	OPERA	TIONS	SUM	MARY	7										
						KOH Side															
						Rinip	and, m	57	5. 25	ري <u>.</u>											
						Circ Zy	Hed no	PM .		ر		•••••									
							·····				••••••••										
								·····			•••••										
				1				•••••													
						••••••	••••••		•••••	•••••											
							•••••••			••••••	•••••	•••••									
							••••••		•••••••	•••••••		••••••									
LIQUID ADDITIO	DNS FOR 24	HOURS (BI	BL)							••••••		••••••									
LIQUID ADDITIO	DNS FOR 24	HOURS (BI																			
5:																					
Diesel Drill Water S	ea Water	Prehyd			HOME	DDESS No.	A.a.=			~											
Diesel Drill Water S LUIDS ENGINEER WARE	ea Water	Prehyo	drate		HOME AD		AIDE		EPHONE	08-	19 ,5%	<i>y</i>									
Diesel Drill Water S LUIDS ENGINEER WARE	ea Water	Prehyo	drate	buildings o			AIDE			<u> </u>	19 ,5 v	Ď									
Diesel Drill Water S LUIDS ENGINEER	ea Water	Prehyo	drate	ouildings o			AND E			<u>03</u> -	19 ,5%	Ď									
Diesel Drill Water S LUIDS ENGINEER	ea Water	Prehyo	drate	buildings o ne way in v employme or any loss			Sed. any consequentials that indemnity a			in conne	Cition with	Ď									
Diesel Drill Water S	ea Water	Prehyo	drate	ouildings one way in we employment or any loss arred or ad the part of			Sed. any consequentials that indemnity a report.			in conne	Cition with	χ.									

REPORT NO. 27	DATE 19TH MARCH'S
RIG NO.	SPUD DATE BROKER &

									טט	PIH 14	My CM) 10		
OPERATOR	BEALL PET	RULFUN	٨			CONTR	ACTOR	Ru	HTER					
REPORT FOR		MEIFR				REPORT	r FOR		JRUE	KLAS				
WELL NAME AND	•		IA			FIELD O	В NO. WILD		LOCAT	JAY BAY		STATE	Vu	
	OPERATION	21.1110	1	CASING		M	UD VOLUME		1	9 - 11 1 1 1 1 1	CIBC	ULATION (
Present Activity	1		05/25	Surface		Hole _	Pits,		Pump	Size - 🗸 🥆 x		Annular \		1in).
Bit Size	Loc	l No.	95/30	Surface usermediate	623m	Hole S	41		Pump Size S 2 X Q LL Annular Vel. (Opposite DP Pump Make N N Opposite Collar					
		110.				iolai Ciri	culating Volur	iie	Model	wake d-b	$\alpha_{l'}$		Collar	
Drill Pipe Size		Туре	Sharodu	ction or Lir at	ner		In Storage		以此 /Sti	roke Str	oke/Min	Circulatin	ig	
Drill Collar Size		Length	Mud Type	Κ̈́u		JT MER	TWER			n		Pressure Bottoms Up (Min.) Systems Total (Min.)		
Sample from	☐ Flowline	Øg Pit			D PROP		T				EQUIPMEN	<u>' </u>	,	
	rature		°C	. MOI	J FNOP	ENITES			ZE	Hours			SIZE	Hours
Time Sample 1	Taken				250	9	Centrifuge	OLU	WLS	8	Desilter		×4,	D
Depth				PIT			Degasser	DRI		Ö	Shaker	BU	3860	1
Weight ☐ (S.C	<u> </u>				9.0	۲	Desander	144		O			1360	1
Mud Gradien				<u> </u>	-471		DAILY	ر			CUMUL	ATIVE 4	1817	8.37
	sity (sec./qt) API at				46		10031		MUD	PROPERTI	COST	FICATION	27077	0.31
	ty cps at				18		WEIGH	JT.		PV/YP		TRATE	3	17
Yield Point (lb/	eld Point (lb/100 sq. ft.)					MW			FV/IF	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		106	72	
	b/100 sq.ft.) 10 sec/10	min.		/	3/5	/	BY AUTHO	ARITY		rator's Written		☐ Drilling C	Santrantar	
Ha Ha	Strip ☐ Meter				10-0	•	BI AOIIR	J. 11.1.1		rator's Repres		Other	ontractor	
	Filtrate API (ml./30 min.)					•				BIT INF	ORMATION	1		
API HP-HT Filtra	ate (ml./30 min.)						TYP	E	JE	rs v	V.T. I	R.P.M.	JET VEL	ВННР
Cake Thicknes		HP-H	17 🗆	<u> </u>	16	<u> </u>								
Alkalinity, Mud														
Alkalinity, Filtrate (Pf/Mf) / 22 A									D	ECOMM	ENDAT	ONC		
Chloride (mg/l)		17000				ĸ	ECOMM	ENDAI	IONS					
Total Hardness	□epm S ot(n	ng/l)			140							· · · · · · · · · · · · · · · · · · ·		
Sand Content (TR						•••••			
Solids Content					32									
Oil Content (%)				1	·TR						••••••			
Water Content (96.2						· · · · · · · · · · · · · · · · · · ·			
***************************************	Capacity (ml/ml m	ud) 🗆 (equiv	. #/bbl bent))									
K- (mg/l)					1200	o								
Nitrate (mg/l) /S		<u> </u>		/	_/_	//				•••••				
	Ky 1	, MA			2.9					••••••				
		•												
COST SUMMARY	/24 HOURS ENDING) (7. @	DEPTH 7				•••••			•••••	••••••		
	duct/Package	77-	}-₹6 @ i					•••••		•••••••		••••••	•••••	
110	ddcvrackage		OTIRS	Unit Cos	51	Cost			OP	ERATIO	NIS SIIR		,	
							Can	. 1	, OF	LINAIIO	143 301	AIIAIWU I		
							CONN	۲۷	;×2	•••••	•••••		•••••	
<i>\</i>	111						Wor.		δ	50.	·····			
I`	5 (L						Inter	eas	يستختنج	10P 5				
							17.15C/3		לאינואסיניין.	ops Hanyar to 2	-\$trion;			
				fPig	ne an	> 10 y								
										•••••	•••••			
					-				•••••	•••••	•••••			
	· · · · · · · · · · · · · · · · · · ·								•••••	•••••	••••••	•••••		•••••
									•••••	•••••		•••••	••••••••	•••••
					_			•••••	•••••	•••••		•••••		
	LIQUID ADDIT	ONS FOR 2	24 HOURS (R	BL)			•••••	•••••	•••••		•••••	••••••	•••••	
LIQUID ADDITIONS FOR 24 HOURS (BBL) Diesel Drill Water Sea Water Prehydrate							***************************************	•••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	
			1 10/19				•••••	•••••		••••••	••••••	••••••	•••••	•••••
SEOFLUIDS ENGINE	EER Na	~ (11.00.00		···	HOME A	DDRESS	100	1 1 . ^	e	TELEPHON	JE KV	745.0	<u> </u>
	EEH HOU	L	アンソラ	<u> </u>		1		47	ST MU	را	TELEPHON	<u>- 68 - </u>	1200	τ

ont is subject to the following terms and conditions:
GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.
GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.
GEOFLUIDS has no power to give direction to any employee or the client as to he conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO. 28	DATEZ On MARCIN
RIG NO. 6	SPUD DATE 230 FCB
DETELL KOLL (S.A.)	TO.

<u> </u>									DE	PIH KU	KIMe	21 LC)				
OPERATOR BEACH	PE	TRULE!	M			CONTR	ACTOR	Ru		DRILL		····					
REPORT FOR IAW		MELER	,			REPOR	FOR	,	URIE	KLASSO							
WELL NAME AND NO. N	VESTE	TANION F	1A			FIELDO	RUWON	<u></u>	LOCATI	1401		STATE	111.				
OPERATIO		THAT "		CASING					OTWAY RASIN			CULATION DATA _					
Present Activity	O! N			Surface		Hole	UD VOLUME Pits		Pumo	Size رنے x	CIRC	ULATION	VOI / CL	dip)			
		T	1978	at I	<u> 4234</u>	Hole	Pits رب ر	0	ンク て Opposite DPs								
Bit Size		No.		ermediate at		Total Circ	culating Volu	me	Pump N Model	Make VM	ממגים	Opposite Collar					
Drill Pipe Size		Туре	S'A Produ	ction or Lir	ner	· · · · · · · · · · · · · · · · · · ·	In Storage		BAL/Str	oke Stro	ke/Min	I Circula	tina				
Drill Collar Size		Length	Mud Type	αι Κ ι ۱		<u>LYMER</u>			1437 \With 1919	<u>. </u>	2	Bottom	Pressure Was 33 Systems Total (Min.)				
Sample from	wline	☐ Pit		140	D PROPE		FOURDIENT										
Flowline Temperature			°C	·				SIZ		Hours			SIZE	Hours			
Time Sample Taken				 	12.30		Centrifuge	OU	CKO	6	Desilter		lxly	2			
Depth				Circ		Sb.	Degasser	DRU	col.	Q	Shaker	B	80 B100				
Weight⊡ (S.G.) ⊠	[,,)			<u> </u>	9-01	h -	Desander	47	6-			ദ	us ne	2			
Mud Gradient (psi/ft)	-			<u> </u>	1471		DAILY COST	B46	18.		CUMUL		en T	2.19			
Funnel Viscosity (sec./o			°C		43		1 5001 6	- V O		PROPERTIE		FICATIO		<u> </u>			
Plastic Viscosity cps at				-	12		WEIG	нт		V/YP		TRATE					
Yield Point (lb/100 sq. ft.)		 		ļ	16				 		'"						
Gel Strength (lb/100 sq.ft.)				/	2/3	/	BY AUTH	ORITY	Oper	ator's Written-	1	□ Drilling	Contractor				
pH Strip	□Meter		· · · · · · · · · · · · · · · · · · ·		10.5					ator's Represe		□ Other					
Filtrate API (ml./30 min.)	Filtrate API (ml./30 min.) API HP-HT Filtrate (ml./30 min.)					-					ORMATION		,				
				1	_		TYP	E	JET	S W	л.	R.P.M.	JET VEL.	ВННР			
Cake Thickness (mm)	API %	T HP-H	<u> </u>	 	1(4)	+	ļ		 								
Alkalinity, Mud (Pm)	· · · · · · · · · · · · · · · · · · ·			 	1												
Alkalinity, Filtrate (Pf/Mf) Chloride (mg/l)				-/-	1-1 2-1		1		P	ECOMMI	בא רוא	IONG					
	ļ	17000	 			111		-IADW!	CINO								
Total Hardness					TR	 							•••••				
Sand Content (% by Vol.)				ļ	TR	 				•••••							
Solids Content (% by Vol.)					3.2	-			•••••	•••••							
Oil Content (% by Vol.) Water Content (% by Vol.)					Th	!			•••••								
Methylene Blue Capacity	1 (m!/~'	nd, 🗆 👝 .	#/hh! !- "		96.5	-			•••••								
Methylene Blue Capacity L K+ (mg/l)	t (minum) w	uu) 🗀 (equiv.	#וטטו pent)		150	-		•••••••••						•••••			
Nitrate (mg/l) /Sulphite (mg	·/I)			,	12000				• • • • • • • • • • • • • • • • • • • •			•••••					
TAIL ate (1119/1) /Outphite (mg		D. 1. (k.)		/	/	/				•••••							
X	Jan J.	BWV)			2,9					••••••							
	vlv.	<u> </u>			57/84			•••••	•••••	•••••	•••••••						
OST SUMMARY/24 HOURS		3 au - 3	5-86 @1	DEPTH	TD						··········	······					
Product/Packag			Units	Unit Cos	st	Cost											
Burrs Soon		3	BUB	23.4	4	18.0	0 -			ERATION							
			ا ا	-			Alto VI	 0	to you	278° 1	105	800-1	768"-				
							Rin	ZY	nmer	er Bon	Then.		••••••				
							. Rin. ve	and	W	518, M	t. perice	1768	.Μ				
							C255 9	ميل…(and mu	λ.	··· د		••••••				
							POH										
							BLOTT	itex	للجيديره		• • • • • • • • • • • • • • • • • • • •						
									د		•••••						
											·······	•••••					
	· · · · · · · · · · · · · · · · · · ·				_							•••••					
				•				•••••				•••••					
1.6	D ADDI-	ONETCE	A HOURS	DI \													
Diesel Drill Water			4 HOURS (B						•••••	•••••		•••••					
Diesel Drill Water Sea Water Prehydrate						•••••		•••••	••••••		•••••	••••••					
OFLUIDS ENGINEER	200 C	C11.1-		<u>L</u>	Ī	HOME A	DDRESS N	\ \ C !	A	-	TEI EPHON	UF (CVd	71-				
THE IN SUPPLIES TO SUSINS								400	3CDA		ELECTO	" (X	-795W)T			

Don't is subject to the following terms and conditions:

GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

REPORT NO. 29 SPUD DATE 320 FEB RIG NO. DEPTH 1916 m (TN) TO

									レル	MACCI	いり・・				
OPERATOR BEACH	+ PETRI	TIFUM			CONT	RACTOR	Ru	HTER		LING					
REPORT FOR TALL	HUFMEN				REPOR	RT FOR	1 -								
WELL NAME AND NO.					FIELDO)B		UNE LOCAT	KLAS MOIT		STATE	= \ \ \			
WELL NAME AND NO.	VESTER	it by	A		BLOCK	(NO.WILDI		170	uky BA	YOLU		VU	,		
OPERATION OPERAT	N		CASING		11212	MUD VOLUME		 		CIRC	CULATION	N DATA			
1851		95/80	Surface at	453m	Hole	Pits	5	Pump	Size S7, X	ally"		ar Vel. (A /A			
Bit Size	No.		Intermediate	е		tal Circulating Volume Pump Make NIK (Opposite Collar			
Drill Pipe Size	Туре	- Prc	at oduction or Li at	iner	 	In Storage		Model (1) /St	9-1	-100	Riser		·····		
						III Sitilage		1 -104	hΧ	te Stroke/Min Circulating Pressure					
Drill Collar Size	Length	Mud Type	· Ku		olyme	n	PJSL/Mi	in			ns Up (Min.) .				
Sample from ☐ Flow	le from DElowline StPit					^			F	QUIPMEN		ns Total (Min.))		
Flowline Temperature		°C	MU	JD PROPE	ERTIES		SI	ZE	Hours	,GUIFMEI	Ni	SIZE	Hours		
Time Sample Taken	Time Sample Taken				, T	Centrifuge			12	Desilter	11	104	0		
Depth					EX	Degasser		PILLO	0	Shaker	×	40/180	Ö		
					ā.Ē	Desander		× 6^	Ö	+		PO 1880	0		
Mud Gradient (psi/ft)	3			13.		DAILY		X.V		CUMUL	ATIVE				
Funnel Viscosity (sec./qt				45	-1	COST				COST		Dorgs	57.59		
Plastic Viscosity cps at		is		TAILC!			PROPERTIE	-,		NS					
Yield Point (lb/100 sq. ft.)	Yield Point (lb/100 sq. ft.)					WEIGH	11		PV/YP		LTRATE				
Gel Strength (lb/100 sq.ft.) 10	0 sec/10 min.		/	2/3		BY AUTHO	יבוסי		A 1 - 1 A / 4		= 5				
	□Meter			i0.5		T BI AUTIN	JHII I		erator's Written erator's Represei	entative	□ Drilling □ Other	g Contractor	!		
Filtrate API (ml./30 min.)				7.6			BIT INFORMATION								
	API HP-HT Filtrate (ml./30 min.)						E	JE	TS W	Л. ,	R.P.M.	JET VEL.	ВННР		
Cake Thickness (mm)	API tSt HI	P-HT 🗆		I(H))										
Alkalinity, Mud (Pm)															
Alkalinity, Filtrate (Pf/Mf)	/	1021									-1				
Chloride (mg/l)		16200)			H	ECOMME	ENDAI	IONS		I				
Total Hardness □epm	⊠ (mg/l) .			TR]			•••••				· ·		
Sand Content (% by Vol.)				TR]			•••••	•••••					
Solids Content (% by Vol.)				35		<u> </u>						***************************************			
Oil Content (% by Vol.)				TR											
Water Content (% by Vol.)				965	.										
Methylene Blue Capacity □ ((ml/ml mud) 🗆 (eq	uiv. #/bbl bent)	,	ļ <u> </u>		<u> </u>						***************************************			
K+ (mg/l)	-			14000		<u> </u>									
Nitrate (mg/l) /Sulphite (mg/l		- \	/	1 /_		_						•••••			
<i>N</i>	a Com	1)		127	 	ļ						•••••			
						ļ			•••••		•••••	· • • • • • • • • • • • • • • • • • • •			
COST SUMMARY/24 HOURS	ENDING 51	- 41	@ DEPTH						•••••	•••••		•••••			
Product/Package		-3- 4 6 (Unit Co	CIT	Cost	┨	• • • • • • • • • • • • • • • • • • • •	••••••	·····						
	-	- Ornio	- Oim 00	/St	Cosi	1		OF	PERATION	46 211	ANADR	V			
	-		+			1111	0, [. .:	LIMITON	10 00	/11415-71	. I			
117 11			+			Warre de	3UM	Waring.	J. 12 W. L.	- 1, -	•••••••	•••••			
1015			+	-		35477	F. V.	mound	TONT TONIE	to Cushin)!~~	•••••			
			+	+-		Uoir Lww	المندا	DV2AQ4	7 · 1 · 1	n	1 A	••••••			
			+			0.14 P. 1	-41 -41	: Jewi	to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ration.	٠٠/٠ <i>٠٠</i>				
			 	_		Maria 3	7 7 7	(1).5	- Lone I	60-111	7A				
			 			Din. W	L.II.		D < * TO UT	ر براید در این		••••••			
						Pross	MO.	d train	when of	الحالة	••••••••••	••••••			
						Short 6	exore	457	LIMITATION OF THE SECTION OF THE SEC	MANITARY	••••••	•••••			
				\top		Observe V	rell	ملح و	+ test		••••••				
							V	· V	₹.3⊁≅≅ . .		••••••	••••••	***************************************		
LIQUID	ADDITIONS FO	R 24 HOURS	(BBL)				·••••••	•••••••	***************************************		••••••				
Diesel Drill Water	Sea Wate	r Pret	hydrate						***************************************	***************************************	••••••	***************************************			
										***************************************	, 				
EOFLUIDS ENGINEER	mare	SKUZIA			HOME A	ADDRESS	Do	ELAYOF	c 7	(ELEPHON	NE 195	3-7451	(-5)		
	11000	<u> </u>	~ ~		(-7 v / t		€ I		1 10	> IT 11	ו בנא		

To port is subject to the following terms and conditions:

GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is parity or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

Mılchem

Geofluids Pty Ltd Drilling Fluid Report

REPORT NO. 30	DATE 2240 Morin 81
RIG NO. 🧏	SPUD DATE ? Snortes
DEPTH 1916 TO) то

										TRANS	(10)		
OPERATOR BEAUL DET	WEUN	٨			CONTR	ACTOR (Bun	74.C 0	_				
				WOUNTER TORONG									
TWO PARTWOISIS				REPORT FOR LAWRIE KLASSON									
VELL NAME AND NO. WEST	GATE	FIL			BLOCK HELD O	NO.WILIU	 N	LOCAT	JAN R	NW	STATE	11.	
OPERATION			CASING			UD VOLUME		100	-114 17	~	L CULATION D.	ATA	
Present Activity			Surface		Hole	Pits		Pumn 9	Size — \ ~x		Annular Ve		vin).
Bit Size	No		at U	K Bm				i	On.	4 4	Opposite (OP`	
	No.	1	ermediate		lotal Cir	culating Volum	те	Pump Model	Make NP		Opposite (Collar	
Orill Pipe Size	Туре	Produ	ction or Lig	ner.	<u> </u>	In Storage		13/3L/Str	oke Str	oke/Min	Riser	3	
Prill Collar Size	Length	Mud Type	,		L	······		. Obs	L		Pressure .	• • • • • • • • • • • • • • • • • • • •	
	-cilylli	ividu lype	KU	[B	UTMER	_		PSBLAMI	n		Bottoms U Systems To		
	☐ Pit		T	O PROPE						EQUIPME			
lowline Temperature		°C	MUL	FNUPE			SIZ	ZE	Hours			IZE	Ho
Time Sample Taken						Centrifuge	OIL	Mri	Ü	Desilte			
Depth						Degasser		اللالا	<u> </u>	Shaker		Bbo	
Weight ☐ (S.G.) ☐						Desander		×tr			BKO	BIV	
Mud Gradient (psi/ft)						DAILY I		ر انوح		CUMUI	LATIVE J	170	16:00
Funnel Viscosity (sec./qt) API at .						COST #	٠٠٠٠		DRODEDT.	COST	FICATIONS	امهم	144.1
lastic Viscosity cps at						WEIGH	т		PROPERTI		····		
Yield Point (lb/100 sq. ft.)						VVEIGH	1	+	۷/ ۱۳	FI	LTRATE	+	
Gel Strength (lb/100 sq.ft.) 10 sec/10 n	nin.		/	/	/	BY AUTHO	RITY	ПОрог	rator's Written		□ Drilling Co	ntractor	
pH ☐Strip ☐ Meter			ļ			2.7.01710			rator's Represe	entative	☐ Other	unactor	_
Filtrate API (ml./30 min.)									BIT INF	ORMATIO	N		
AP! HP-HT Filtrate (ml./30 min.)			ļ			TYPE		JET	s v	V.T.	R.P.M. J	ET VEL.	B⊦
Cake Thickness (mm) API□	HP-H	IT 🗆			<u> </u>								
Alkalinity, Mud (Pm)			ļ.,,,,		-								
Alkalinity, Filtrate (Pf/Mf)			/	/	/ /			D.		ENIDAT			
Chloride (mg/l)	~ /\\				ļ			H)	ECOMM	ENUAI	IONS		
Total Hardness	g/I)		 		-			•••••	•••••		•••••		
Sand Content (% by Vol.)													********
Solids Content (% by Vol.)					-	• • • • • • • • • • • • • • • • • • • •							
Oil Content (% by Vol.) Water Content (% by Vol.)									•••••		***************************************		
	ıd) П (· · ·	#/==:											
Methylene Blue Capacity □ (ml/ml mu K+ (mg/l)	equiv) نارور	. #/DDI bent)		·····			•••••	•••••					
Nitrate (mg/l) /Sulphite (mg/l)			 , 	,	 , 				•••••			•••••	
ч. (тул) /оприне (тдл)			. /	/	-/-								
			 		 						••••••		
					 			•••••	•••••				
ST SUMMARY/24 HOURS ENDING	22-3-	√ 1. ♠	DEPTH -		L		•••••		••••••				
Product/Package	<u>v-1-5-</u>	Units	Unit Cos		Cost	•••••		•••••	•••••				
DAMNED MAD		50	OTHIC COS		Just			ODI	ERATIO	NS SIII	MMADV		
THE THE PARTY OF T						POH.		J F1	IOI		······································		
		2	Z-05	1-	24.15			Tout	Thele		•••••	•••••	
RADITES		7	85A5		75.42X	- Elm 03	7.	150,	rages.	•••••	•••••		
BANTES WO. DEFORM							. 54.	. W. CONTRACT	איזיעני	7 .4	••••••		
BANITES WO. DEFIDAM MILLEL			1497	_ '	י ורעטן								
MO. DECOAM			الو. بايم	-	14.07	***************************************	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	•••••
MO. DECOAM		1	اله-مايم				••••••	***************************************		••••••		••••••	•••••
MO. DECORM			اله٠٠٥٦		14.07		•••••••	••••••					•••••
MO. DECORM		-	الب-مي				•••••••						
MO. DECORM			14.02										
MO. DECORM			14-02										
MO. DECORM		-	14-02										
MO. DECORM	DNS FOR 2	4 HOURS (B											

To the subject to the following terms and conditions:

GEOFLUIDS is engaged as adviser only and is not in control of the well, the site or any of the buildings or machinery relating thereto.

GEOFLUIDS does not have power to give any direction in relation to the method of drilling or the way in which materials for drilling are to be used.

GEOFLUIDS has no power to give direction to any employee or the client as to his conduct or employment.

THE client agrees that in consideration of the foregoing GEOFLUIDS shall not be responsible for any loss or damage to any person or thing or any consequential loss arising out of or in connection with the drilling operation whether or not such loss is partly or wholly attributable to any report prepared or advice given by GEOFLUIDS. The client shall indemnify and hold indemnified GEOFLUIDS harmless from all claims and actions by any other person arising out of any act or omission on the part of GEOFLUIDS in giving any advice or report.

ANY oral advice given by GEOFLUIDS shall be deemed to be incorporated in this report and subject to the terms and conditions contained herein.

APPENDIX 4

Sidewall Core Descriptions

WESTGATE NO. 1A

SWC SAMPLE DESCRIPTION

SWC #1 1909m, Rec 4cm	CLAYSTONE, 1t gry, mass - sub fiss, mod silty, mod micromic, non calc. No fluorescence.
SWC #2 1894m, Rec 4.5cm	CLAYSTONE, lt - med gry, sl silty, mod micromic, mass - sub fiss, non calc. No fluorescence.
SWC #3 1867m, Rec 4cm	SANDSTONE, lt gry, friab, vfg, SA, well srtd qtz w/ v com gry, grn & red lithics, tr brn mica tr carb det, abund part alt feld & wh clay matrix non calc, v poor vis por. No fluorescence.
SWC #4 1860.5m	NO RECOVERY
SWC #5 1851.5m, Rec 6cm	SILTY CLAYSTONE, dk gry, firm, mass - subfiss v silty, occ vf, cl, A qtz grains, com micromic, mod carb, non calc. No fluorescence.
SWC #6 1848.5m, Rec 5cm	CLAYSTONE, dk gry, firm, mass - subfiss, v silty i/p, occ vf, cl, A, qtz grains, com micromic, non calc. No fluorescence.
SWC #7 1842.5m, Rec 3.5cm	SANDSTONE, lt - med gry, friab, vf, SA mod - well srtd qtz, com blk, grn, red lithics, tr blk pyritic coal det & lam, abund partly alt feld & wh cly matrix, com med - gry argill matrix i/p & lam non calc, v poor vis por. No fluorescence.
SWC #8 1832.5m, Rec 3.8cm	CLAYSTONE, dk gry, firm, mass - subfis, v silty i/p occ vf, cl, a, qtz grains, com micromic, non calc. No fluorescence.
SWC #9 1816.5m, Rec 2.5cm	SANDSTONE, v lt brn - gry, friab, vf - fg, dom fg, SA - SR, mod srtd qtz, tr - com med grn & blk lithics, tr coal det & lam (pyritized i/p), tr pyrite, tr part alt feld & wh clay matrix, weak sil cmt, non calc. Good vis intergranular porosity. No fluorescence (trace contamination).
SWC #10 1814.5m, Rec 3.5cm	SANDSTONE, off wh - v lt brn - gry, friab, vf - fg, dom fg, SA - SR, mod well srtd gtz, tr

1814.5m, Rec 3.5cm - fg, dom fg, SA - SR, mod well srtd qtz, tr blk & grn lithics, tr coal det, tr med brn silty

& argill matrix i/p, com wh clay matrix i/p, weak sil cmt i/p, mod calc cmt i/p, v poor good

dom fair vis porosity. No fluorescence.

CLAYSTONE, med - dk gry, mass, mod micromic, 1809.5m, Rec 5.5cm sl calc w/ a single ovoid, rnd, lt - yel brn qtz pebble, 1.5×2 cm in dia. No fluorescence.

SWC #12 1808m, Rec 5.5cm CLAYSTONE, dk grn - gry, mass, firm, com micromica, gd tr vfg SA qtz, tr med brn, f-m, clay ovoids, tr wh, f, altd felds, mod silty i/p, non calc. Note: V reactive to water, swells quickly. No fluorescence.

SWC #13 1793m, Rec 3.5cm CLAYSTONE, dk grn brn gry, mass, firm, com fine - crse med brn iron oxide rich clay inclusions, tr dk grnish blk rnd ellipsoidal iron oxide pellets, tr vf - crse qtz snd grns, tr micromic, mod silty in part. No fluorescence.

SWC #14 1787m, Rec 4cm

SANDY CLAYSTONE, speckled med grn - med or brn, firm, dom grn silty claystone matrix w/ 30% med or. brn claystone ellipsoidal inclusions (prob embrionic/or degraded iron oxide pellets), com vf - v crs ellipsoidal rnd, dk brn iron oxide pellets, rare qtz grns & part alt felds, non calc. Nil vis porosity. No fluorescence.

SWC #15 1777m, Rec 4.5cm CLAYEY SANDSTONE, mottled brn, grn wh, dom pale grn, friab - hd, vf - fg, dom fg, SA, mod srtd. 10% SA qtz grains, 90% lithics, consisting of wh altd feld, dk grn - gry & brn lithics, minor red & blk lithics, r. m - crs brn mica flakes, abund wh - brn - gry cly matrix, v wk sil cmt, nil vis porosity. No fluorescence.

SWC #16 1765.5m, Rec 4cm FERRUGINOUS SANDSTONE, mottled dk brn, friab, f - m, dom mg, r, mod srtd. 30% iron oxide pellets, 10% qtz grains, 50% yel - or brn ellipsoidal clay inclusions, 10% wh clay matrix, non calc, v poor vis porosity. 5 - 10% pin-point, med yell nat fluor giving a wk inst followed by slow streaming pale yell cut. No natural cut colour. No odour.

SWC #17 1763m, Rec 1.3cm FERRUGINOUS SANDSTONE, dk brn, friab, vf - v crs, dom v crs rnd, p - m srtd, 10% qtz grains, 50% dk brn ellipsoidal iron oxide pellets, com w/a brick red clay coating, 40% yell - or, wh, brick red, brn, clay matrix, s1 calc. V poor vis porosity. 5% fluorescence as before, sl odour.

SWC #18 1759m, Rec 3.5cm FERRUGINOUS SANDSTONE, mot dk brn & off wh, vf - v crs, dom crs, friab w rndd, mod - pr srtd, 50% iron oxide pellets, 10% SA fg qtz, 40% yell - or. to med brn, off wh i/p clay matrix, non calc. Trace intergranular vis porosity. Tr pin-point as before, sl odour.

SWC #19 1754m, Rec 4cm FERRUGINOUS SANDSTONE, dk brn, friab, vf - v crs dom crs, w rnd, pr srtd, 20% iron oxide pellets, 15% qtz, 65% yell - or, med - dk brn, tr off white, clay matrix, non calc. Tr intergranular vis porosity. No fluorescence, sl odour.

SWC #20 1752m, Rec 4cm FERRUGINOUS SANDSTONE, as before. Tr intergranular vis porosity. No fluorescence, sl odour.

SWC #21 1749.5m, Rec 3cm FERRUGINOUS SANDSTONE, med dk yell - or brn, friab, vf - crs, dom crs, rnd pr srtd, 25% iron oxide pellets, 15% f - mg qtz, 60% yell - or, med - dk brn, silty - clay matrix, sl calc i/p. Tr intergranular vis porosity. No fluorescence, sl odour.

SWC #22 1748m, Rec 3cm FERRUGINOUS SANDSTONE, m - dk brn, friab, vf - v crs, dom crs, rnd, poor srtd, 40% iron oxide pellets, 15% vf - fg qtz, 45% m brn, v silty clay matrix, non calc. Tr intergranular vis porosity. No fluorescence, sl odour.

SWC #23 1746m, Rec 3.5cm

FERRUGINOUS SANDSTONE, m - dk brn, friab, vf
- crs, dom mg, SA - r, dom rnd, mod srtd, 50%
iron oxide pellets, 30% vf - mg, dom f, SA qtz,
20% silty clay matrix, calc. Fair to good intergranular
vis porosity. No fluorescence, sl odour.

SWC #24 1744m, Rec 3.3cm FERRUGINOUS SANDSTONE, m - dk brn, friab, vf - crs, dom mg, SA - r, pr srtd, 10% iron oxide pellet, 10% qtz grains, 80% med brn to grn gry silty clay matrix, non calc. Trace intergranular vis porosity i/p dom tight. No fluorescence, sl odour.

SWC #25 1731m, Rec 5.3cm SANDY CLAYSTONE, dk grn - gry, firm, massive, 10% glauc clay matrix pellets, sl silty, tr micromic, tr vf - mg, green stained qtz, v sl calc i/p. No fluorescence, sl odour.

SWC #26 1456m, Rec 5cm SANDSTONE, med brn - grn, friab, vf - mg dom fg, SA - SR, pr srtd qtz, com stain yell - brn, occ grn - brn, abund med brn argill, silty i/p matrix, no calc. V poor vis porosity. No fluorescence, sl odour.

SWC #27 1443m, Rec 5.8cm SANDSTONE, dk grn - gry, friab, vf - mg, dom f - g, SA - SR, pr srtd. 50% qtz grains w/yel, dk grn stain, 50% dk grn, occ off wh silty clay matrix, sl calc i/p. V poor vis por. No fluorescence, no odour.

SWC #28

896.5m, Rec 5.4cm

CLAYSTONE, dk grn - gry, massive, firm, mod silty tr - com micromic, 5% vf - crs, dom fg, SA - r, qtz & glauc grains. No fluorescence, (tr contamination), no odour.

SWC #29

889.5m, Rec 5.3cm

CLAYSTONE as above. No fluorescence, no odour.

SWC #30

881.5m, Rec 3.8cm

CLAYSTONE, med - dk gry, massive, firm, mod srtd, tr micromic, tr vf, SA qtz grains, sl carb. No fluorescence, no odour.

APPENDIX 5

Velocity Survey

CONTENTS

- 1 Introduction
- 2 Data Acquisition
- 3 Well Deviation Data
- 4 Check Shot Data
- 5 Sonic Calibration
- 6 Sonic Calibration Processing
- 7 GEOGRAM Processing
- 8 Summary of Geophysical Listings
 - Fig. 1: Wavelet polarity convention
 - Fig. 2: Checkshot data from mudpit shots
 - Fig. 3: Checkshot data from offset shots
 - Fig. 4: Source geometry sketch

Geophysical Airgun Report
Drift Computation Report
Sonic Adjustment Parameter Report
Velocity Report
Time Converted Velocity Report
Synthetic Seismogram Table
Colour Velocity Profile

Schlumberger

BEACH PETROLEUM N.L. GEOGRAM PROCESSING REPORT

WESTGATE - 1

FIELD : WILDCAT

PERMIT : PEP 108

COUNTRY : AUSTRALIA

STATE : VICTORIA

LOCATION : OTWAY BASIN

COORDINATES : 038° 28' 01.02" S

142° 53' 12.34" E

DATE OF SURVEY : 14-MARCH-1986

REFERENCE NO. : 560311

1.0 INTRODUCTION

A velocity check shot survey was conducted in the Westgate - 1 well on 14 March 1986. Twenty one levels from 99 metres to 1913 metres measured depth (MD) below KB were shot using a dynamite source. At each level, shots were taken from the mudpit and from a position vertically above the downhole geophone. The levels shot from the mudpit have been used in the calibration of the sonic log.

The shot times, correlation logs and calibrated sonic times have been corrected to true vertical depth (TVD) from the seismic reference datum at 150 metres above mean sea level.

2.0 DATA ACQUISITION

Table 1
Field Equipment and Survey Parameters

Elevation SRD	150.0 metres AMSL
Elevation KB	94.3 metres AMSL
Elevation DF	94.2 metres AMSL
Elevation GL	88.1 metres AMSL
No. of Levels	21
Total Depth	1916 metres below KB
Well Deviation	Offset at TD = 762 metres
	Azimuth at TD = 35.5°
Mudpit Shots	
Energy Source	Dynamite
Source Offset	28.2 metres
Source Depth	1.5 metres below GL
Source Azimuth	110°
Surface Sensor	Hydrophone
Sensor Offset	2 metres from source
Offset Shots	
Energy Source	Dynamite
Source Offset	from 22 to 762 metres metres
Source Depth	4.0 metres below local GL
Source Azimuth	approx 35°
Surface Sensor	Hydrophone
Sensor Offset	2 metres from source
Downhole Geophone	Geospace HS-1
	High Temp. $(350^{\circ}F)$
	Coil Resist. $225\Omega \pm 10 \%$
	Natural Freq. 8-12 hertz
	Sensitivity 0.45 V/in/sec
	Maximum tilt angle 60°

Recording was made on the Schlumberger Cyber Service Unit (CSU) using LIS format.

2.1 Survey Details

The survey was shot using a dynamite source and a hydrophone as the surface sensor. No major problems were noted during the survey.

3.0 WELL DEVIATION DATA

The well deviation data was obtained from the 'directional calculations' compiled by Hofco Drilling Services. The deviation data above 525 metres was computed from the 'Well Velocity Points' table supplied by Beach Petroleum. A summary of the well deviation interpolated to each check shot level is given below in table 2.

Table 2
Interpolated Deviation Data

Meas Depth metres KB	Vert Depth metres KB	Vert Depth metres SRD	EW Coord metres	NS Coord metres
99.0	99.0	154.7	0.0	0.0
135.0	135.0	190.7	0.0	0.0
250.0	247.8	303.5	10.9	19.3
409.0	394.6	450.3	39.5	69.9
450.0	432.0	487.7	49.6	86.4
566.0	532.8	588.5	78.3	133.6
722.0	673.1	728.8	114.5	190.2
835.0	773.8	829.5	141.6	232.6
896.0	827.9	883.6	156.8	256.4
962.0	885.9	941.6	173.7	282.9
1017.0	934.2	989.9	188.0	305.0
1165.0	1063.8	1119.5	228.4	363.9
1298.0	1179.9	1235.6	267.5	415.8
1392.0	1262.5	1318.2	295.7	450.6
1441.0	1305.9	1361.6	310.3	468.0
1680.0	1519.8	1575.5	379.8	548.9
1742.0	1576.2	1631.9	396.9	568.3
1764.0	1596.3	1652.0	402.8	574.9
1809.0	1637.4	1693.1	414.9	588.5
1852.0	1676.8	1732.5	426.4	601.5
1912.0	1731.6	1787.3	442.6	619.7

4.0 CHECK SHOT DATA

4.1 Mudpit Shots

A total of 21 check levels were shot during the survey. The shots from the mudpit have been used to calibrate the sonic log. All transit times are corrected to vertical transit times from SRD. A replacement velocity of 1750 metres/sec was used from source to SRD (150 metres above MSL). The data quality is good and a display of the stacked data is presented in figures 2 and 3.

4.2 Offset Shots

These shots were acquired with the source positioned vertically above each geophone station. The transit times have been corrected to the mudpit source depth and are listed with the calculated vertical transit times from the mudpit shots.

Table 3
Offset Source Transit Times

Meas Depth metres KB	Vert Depth metres KB	Trans Time (vertical)	Correction msecs	Corr TT msecs	Mudpit TT	Δ TI
99.0	99.0	•	_	_	53	-
135.0	135.0	-	-	-	71	-
250.0	247.8	137	1.6	139	134	5
409.0	394.6	213	1.6	215	209	6
450.0	432.0	233	1.7	235	226	9
566.0	532.8	267	1.7	269	268	1
722.0	673.1	323	1.7	325	325	0
835.0	773.8	362	1.5	364	365	-1
896.0	827.9	383	1.3	384	385	-1
962.0	885.9	401	1.1	402	405	-3
1017.0	934.2	419	1.1	420	423	-3
1165.0	1063.8	469	0.3	469	469	0
1298.0	1179.9	512	0.1	512	509	3
1392.0	1262.5	542	-0.1	542	537	5
1441.0	1305.9	557	-0.1	557	553	4
1680.0	1519.8	618	-0.3	618	617	1
1742.0	1576.2	641	-0.5	641	637	4
1764.0	1596.3	647	-0.5	647	644	3
1809.0	1637.4	662	-0.5	662	656	6
1852.0	1676.8	675	-0.5	675	668	7
1912.0	1731.6	688	-0.5	688	685	3

Trans Time = transit time recorded for offset source position

Correction = time required to adjust the vertical transit times to the depth of the mudpit source (using a surface velocity of 1500 metres/sec)

Corr TT = the offset transit times adjusted to mudpit source depth Mudpit TT = the vertical transit time calculated from the mudpit source (from column 6 of the 'Geophysical Airgun Report')

Δ TT = difference in offset and mudpit source transit times

Given that the transit times are to accurate to ± 1 msec, then Δ TT error criteria is ± 2 msec.

The sonic drift calculated from the mudpit TT is low, displaying a maximum deviation of ± 3 msec. The difference between the offset and the mudpit TT's is accounted for by local variations in the velocity profile vertically above the geophone levels

The mudpit transit times have been used for the sonic calibration as raypath geometry dictates these times are recorded along the wellbore in the same manner as the sonic log.

The GEOGRAM output has been positioned in TWT using the offset TT's as these give the best approximation to the stacking velocity function applied during the surface seismic processing.

The low Δ TT values imply an absence of anistropy and small lateral velocity variations.

5.0 SONIC CALIBRATION

A 'drift' curve is obtained using the sonic log and the vertical check level times. The term 'drift' is defined as the seismic time (from check shots) minus the sonic time (from integration of edited sonic). Commonly the word 'drift' is used to identify the above difference, or to identify the gradient of drift verses increasing depth, or to identify a difference of drift between two levels.

The gradient of drift, that is the slope of the drift curve, can be negative or positive.

For a negative drift $\frac{\Delta drift}{\Delta depth}$ < 0, the sonic time is greater than the seismic time over a certain section of the log.

For a positive drift $\frac{\Delta drift}{\Delta depth} > 0$, the sonic time is less than the seismic time over a certain section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic or an indication of the amount of correction required on the sonic to have the TTI of the corrected sonic match the check shot times.

Two methods of correction to the sonic log are used.

- Uniform or block shift This method applies a uniform correction to all the sonic values
 over the interval. This uniform correction is applied in the case of positive drift and is the
 average correction represented by the drift curve gradient expressed in μsec/ft.
- 2. ΔT Minimum In the case of negative drift a second method is used, called Δt minimum. This applies a differential correction to the sonic log, where it is assumed that the greatest amount of transit time error is caused by the lower velocity sections of the log. Over a given interval the method will correct only Δt values which are higher than a threshold, the Δt_{min} . Values of Δt which are lower than the threshold are not corrected. The correction is a reduction of the excess of Δt over Δt_{min} , Δt Δt_{min} .

 $\Delta t - \Delta t_{min}$ is reduced through multiplication by a reduction coefficient which remains constant over the interval. This reduction coefficient, named G, can be be defined as:

$$G = 1 + \frac{drift}{\int (\Delta t - \Delta t_{min})dZ}$$

Where drift is the drift over the interval to be corrected and the value $\int (\Delta t - \Delta t_{min}) dZ$ is the time difference between the integrals of the two curves Δt and Δt_{min} , only over the intervals where $\Delta t > \Delta t_{min}$.

Hence the corrected sonic: $\Delta t = G(\Delta t - \Delta t_{min}) + \Delta t_{min}$.

6.0 SONIC CALIBRATION PROCESSING

6.1 Open Hole Logs

Both the sonic and density logs used have been edited and corrected to true vertical depth (TVD) prior to input into the Well Seismic Calibration processing chain.

Density data was available from TD to 1450 metres and from 1150 metres to 700 metres (measured depth). The two intervening zones have been patched at densitys of 2.32 gm/cc (1450-1150 metres) and 2.1 gm/cc (700-450 metres). The overall log quality is good and only minor zones of cycle skipping have been edited from the sonic log.

Density log interval : 1912 to 1450 metres below KB (MD)

1150 to 700 metres below KB (MD)

Sonic log interval : 1912 to 450 metres below KB (MD)

All open hole logs were corrected to TVD after editing. The resulting log intervals are from 1731 to 432 metres TVD.

6.2 Correction to Datum and Velocity Modelling

Seismic reference datum (SRD) is at 150 metres above mean sea level. The dynamite source was positioned 1.5 metres below GL at an offset of 28 metres from the wellhead. A replacement velocity of 1750 metres/sec has been used from SRD to GL.

6.3 Sonic Calibration Results

The top of the sonic log (432 metres TVD below KB) is chosen as the origin for the calibration drift curve. The drift curve indicates a number of corrections to be made to the sonic log. A list of shifts used on the sonic data is given below.

Table 3 Sonic Drift

Depth Interval (TVD) (m below KB)	Block Shift µsec/ft	Δt_{min} $\mu ext{sec/ft}$	Equiv Block Shift $\mu_{ m sec}/{ m ft}$
432-769	0.45	-	0.45
769-1049	-	102.39	-1.2
1049-1731	0.71	-	0.71

The adjusted sonic curve is considered to be the best result using the available data.

7.0 GEOGRAM PROCESSING

GEOGRAM plots were generated using a zero phase butterworth wavelets at frequencies of 12-80 hertz and 10-60 hertz.

The well trajectory has been overlain on the GEOGRAM at a horizontal scale of 1:15000. Two plots of each GEOGRAM are presented with the right and left sides respectively of the well trajectory blanked out. The presentations include both normal and reverse polarity on a time scale of 5 in/sec and a trace density of 10 tr/cm.

GEOGRAM processing produces synthetic seismic traces based on reflection coefficients generated from sonic and density measurements in the well-bore. The steps in the processing chain are the following:

Depth to time conversion

Reflection coefficients

Attenuation coefficients

Convolution

Output.

7.1 Depth to Time Conversion

Open hole logs are recorded from the bottom to top with a depth index. This data is converted to a two-way time index and flipped to read from the top to bottom in order to match the seismic section.

7.2 Primary Reflection Coefficients

Sonic and density data are averaged over chosen time intervals (normally 2 or 4 millisecs). Reflection coefficients are then computed using:

$$R = \frac{\rho_2.\nu_2 - \rho_1.\nu_1}{\rho_2.\nu_2 + \rho_1.\nu_1}$$

where

density of the layer above the reflection interface ρ_1 density of the layer below the reflection interface ρ_2 compressional wave velocity of the layer above

the reflection interface

compressional wave velocity of the layer below V2

the reflection interface

This computation is done for each time interval to generate a set of primary reflection coefficients without transmission losses.

7.3 Primaries with Transmission Loss

Transmission loss on two-way attenuation coefficients are computed using:

$$A_n = (1 - R_1^2).(1 - R_2^2).(1 - R_3^2)...(1 - R_n^2)$$

A set of primary reflection coefficients with transmission loss is generated using:

$$Primary_n = R_n A_{n-1}$$

7.4 Primaries plus Multiples

Multiples are computed from these input reflection coefficients using the transform technique from the top of the well to obtain the impulse response of the earth. The transform outputs primaries plus multiples.

7.5 Multiples Only

By subtracting previously calculated primaries from the above result we obtain multiples only.

7.6 Wavelet

A theoretical wavelet is chosen to use for convolution with the reflection coefficients previously generated. Choices available include:

Klauder wavelet

Ricker zero phase wavelet

Ricker minimum phase wavelet

Butterworth wavelet

User defined wavelet.

These GEOGRAMS were generated using butterworth wavelets. Polarity conventions are shown in Figure 1.

7.7 Convolution

Standard procedure of convolution of wavelet with reflection coefficients. The output is the synthetic seismogram.

8.0 SUMMARY OF GEOPHYSICAL LISTINGS

Six geophysical data listings are appended to this report. Following is a brief description of the format of each listing.

8.1 Geophysical Airgun Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB : dkb, the depth in metres from kelly bushing .
- 3. Vertical depth from SRD: dsrd, the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: dgl, the depth in metres from ground level.
- 5. Observed travel time HYD to GEO: tim0, the transit time picked from the stacked data by subtracting the surface sensor first break time from the downhole sensor first break time.
- 6. Vertical travel time SRC to GEO: timv, is corrected for source to hydrophone distance and for source offset.
- 7. Vertical travel time SRD to GEO: shtm, is timv corrected for the vertical distance between source and datum.
- 8. Average velocity SRD to GEO: the average seismic velocity from datum to the corresponding checkshot level, $\frac{d \circ rd}{shtm}$.
- 9. Delta depth between shots: $\Delta depth$, the vertical distance between each level.
- 10. Delta time between shots: $\Delta time$, the difference in vertical travel time (shtm) between each level.
- 11. Interval velocity between shots: the average seismic velocity between each level, $\frac{\Delta depth}{\Delta time}$.

8.2 Drift Computation Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: the depth in metres from ground level.
- 5. Vertical travel time SRD to GEO: the calculated vertical travel time from datum to downhole geophone (see column 7, Geophysical Airgun Report).
- 6. Integrated raw sonic time: the raw sonic log is integrated from top to bottom and listed at each level. An initial value at the top of the sonic log is set equal to the checkshot time at that level. This may be an imposed shot if a shot was not taken at the top of the sonic.
- 7. Computed drift at level: the checkshot time minus the integrated raw sonic time.
- 8. Computed blk-shft correction: the drift gradient between any two checkshot levels $(\frac{\Delta drift}{\Delta depth})$.

8.3 Sonic Adjustment Parameter Report

- 1. Knee number: the knee number starting from the highest knee. (The first knees listed will generally be at SRD and the top of sonic. The drift imposed at these knees will normally be zero.)
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: the depth in metres from ground level.
- 5. Drift at knee: the value of drift imposed at each knee.
- 6. Blockshift used: the change in drift divided by the change in depth between any two levels.
- 7. Delta-T minimum used : see section 4 of report for an explanation of Δt_{min} .
- 8. Reduction factor: see section 4 of report.
- 9. Equivalent blockshift: the gradient of the imposed drift curve.

8.4 Velocity Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum
- 4. Vertical depth from GL: the depth in metres from ground level
- 5. Vertical travel time SRD to GEOPH: the vertical travel time from SRD to downhole geophone (see column 7, Geophysical Airgun Report)
- 6. Integrated adjusted sonic time: the adjusted sonic log is integrated from top to bottom. An initial value at the top of the sonic is set equal the checkshot time at that level. (The adjusted sonic log is the drift corrected sonic log.)
- 7. Drift=shot time-raw son: the check shot time minus the raw integrated sonic time.
- 8. Residual—shot time-adj son: the check shot time minus the adjusted integrated sonic time. This is the difference between calculated drift and the imposed drift.
- 9. Adjusted interval velocity: the interval velocity calculated from the integrated adjusted sonic time at each level.

8.5 Time Converted Velocity Report

The data in this listing has been resampled in time.

- 1. Two way travel time from SRD: This is the index for the data in this listing. The first value is at SRD (0 millisecs) and the sampling rate is 2 millisecs.
- 2. Measured depth from KB: the depth from KB at each corresponding value of two way time.
- 3. Vertical depth from SRD: the vertical depth from SRD at each corresponding value of two way time.
- 4. Average velocity SRD to GEO: the vertical depth from SRD divided by half the two way time.
- 5. RMS velocity: the root mean square velocity from datum to the corresponding value of two way time.

$$v_{rms} = \sqrt{\Sigma_1^n v_i^2 t_i / \Sigma_1^n t_i}$$

where v_i is the velocity between each 2 millisecs interval.

6. First normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 3000 feet).

$$\Delta t = \sqrt{t^2 + \left(\frac{X}{v_{rms}}\right)^2} - t$$

where

 $\Delta t = \text{normal moveout (secs)}$

X = moveout distance (metres)

t = two way time (secs)

 $v_{rms} = \text{rms velocity (metres /sec)}$

- 7. Second normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 4500 feet).
- 8. Third normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 6000 feet).
- 9. Interval velocity: the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.

8.6 SYNTHETIC SEISMOGRAM TABLE

- 1. Two way travel time from SRD: This is the index for the data in this listing. The first value is at the top of the sonic. The default sampling rate is 2 millisecs.
- 2. Vertical depth from SRD: the vertical depth from SRD at each corresponding value of two way time.
- 3. Interval velocity: the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.

- 4. Interval density: the average density between two successive values of two way time.
- 5. Reflect. coeff.: the difference in acoustic impedance divided by the sum of the acoustic impedance between any two levels. The acoustic impedance is the product of the interval density and the interval velocity.
- 6. Two way atten. coeff.: is computed from the series

$$A_n = (1 - R_1^2).(1 - R_2^2).(1 - R_3^2)...(1 - R_n^2)$$

7. Sythetic seismo. primary: the product of the reflection coefficient at each depth and the two way attenuation coefficient up to that depth.

$$Primary_n = R_n.A_{n-1}$$

- 8. Primary + multiple: a transform technique is used to calculate multiples from the input reflection coefficients.
- 9. Multiples only: (Primary + multiple) (Synthetic seismo. primary)

WESTGATE - 1 MUDPIT SOURCE

WESTGATE - 1 OFFSET SOURCE

CLIENT: BEACH PETROLEUM NL

WELL: WESTGATE-1

DATE: 14.3.86

OFFSHORE SCHLUMBERGER ZERO M.S.L. GUN **HYDRO GROUND LEVEL** S.R.D. (IF NOT M.S.L. OR GROUND LEVEL)

INDICATE ALL DISTANCES RELATIVE TO SCHLUMBERGER ZERO

* DELETE AS APPLICABLE

SHOT POS'N	DYNA OFFSET	HYDRO OFFSET	DYNA DEPTH	HYDRO DEPTH
1	28.2M	2M FROM DYNA	1.5M	1.5M
2				
3				
4				
5				
6				
7				
L				

INDICATE ALL DISTANCES RELATIVE

TO SCHLUMBERGER ZERO

INDICATE GUN/VIBRO AND HYDROPHONE OFFSET AND AZIMUTH RELATIVE TO NORTH

SCHLUMBERGER (SEG-1976) WAVELET POLARITY CONVENTION

Figure 1

MINIMUM PHASE RICKER REVERSE POLARITY

MINIMUM PHASE RICKER NORMAL POLARITY

ZERO PHASE RICKER REVERSE POLARITY

ZERO PHASE RICKER NORMAL POLARITY

REFLECTION COEFF

INTERVAL VELOCITY

0.3000

-0.3000 5000.00

M/S

1000.00

Shots

ANALIST: M. SANDERS

2-JUN-86 17:52:10

PROGRAM: GSHUT 007.E07

GEOPHYSICAL AIRGUN REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

REFERENCE: 560311

2-JUN-86 17:52:10 PROGRAM: GSHOT 007.E07

ANALYST: M. SANDERS

SCHLUMBERGER

GEOPHYSICAL AIRGUN REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

REFERENCE: 560311

M/S

M/S

1750.00

1

LONG DEFINITIONS

```
GLOBAL
          ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
KB
SRD
         ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
EKB
         ELEVATION OF KELLY BUSHING
         ĒLĒVĀTĪŎN OF USĒR'S RĒFĒRĒNCE (GENERALLY GROUND LEVEL) ABOVE SRD
GL
VĒLHYD - VĒLOCĪTY OF THE MEDIUM BETWEEN THE SOURCE AND THE HYDROPHONE
VELSUR - VELOCITY OF THE MEDIUM BETWEEN THE SOURCE AND THE SRD
            MATRIX
GUNELZ - SOURCE ELEVATION ABOVE SRD (ONE FOR THE WHOLE JOB; OR ONE PER SHOT)
GUNEWZ - SOURCE DISTANCE FROM THE BOREHOLE AXIS IN EW DIRECTION (CF. GUNELZ)
GUNNSZ - SOURCE DISTANCE FROM THE BOREHOLE AXIS IN NS DIRECTION (CF. GUNELZ)
HYDELZ - HYDROPHONE ELEVATION ABOVE SRD (CF. GUNELZ)
HYDEWZ - HYDROPHONE DISTANCE FROM THE BOREH AXIS IN EW DIRECTION (CF GUNELZ)
HYDNSZ - HYDROPHONE DISTANCE FROM THE BOREH AXIS IN NS DIRECTION (CF GUNELZ)
TRTHYD - TRAVEL TIME FROM THE HYDROPHONE TO THE SOURCE
TRISRD - TRAVEL TIME FROM THE SOURCE TO THE SRD
DEVWEL - DEVIATED WELL DATA PER SHOT: MEAS. DEPTH, VERT. DEPTH, EW, NS
            SAMPLED
SHOT.GSH
            - SHOT NUMBER
DKB.GSH
            - MEASURED DEPTH FROM KELLY-BUSHING
DSRD.GSH
            - DEPTH FROM SRD
            - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
DGL.GSH
TIMO.GSH
            - MEASURED TRAVEL TIME FROM HYDROPHONE TO GEOPHONE
              VERTICAL TRAVEL TIME FROM THE SOURCE TO THE GEOPHONE
TIMV_GSH
              SHOT TIME (WST)
SHTM.GSH
            - AVERAGE SEISMIC VELOCITY
AVGV_GSH
            - DEPTH INTERVAL BETWEEN SUCCESSIVE SHOTS
DELZ.GSH
DELT.GSH
            - TRAVEL TIME INTERVAL BETWEEN SUCCESSIVE SHOTS
            - INTERNAL VELOCITY, AVERAGE
INTV_GSH
                                              (VALUE)
  (GLOBAL PARAMETERS)
ELEV OF KB AB. MSL (WST)
                                            94.3000
                             KB
ELEV OF SRD AB. MSL(WST)
                             SRD
                                            150.000
ELEVATION OF KELLY BUSHI
                             EKB
                                           -55.7000
                                           -61.9000
1500.00
ELEV OF GL AB. SRD (WST)
                             GL
```

VELHYD

VELSUR

(MATRIX PARAMETERS)

VEL SOURCE-HYDRO(WST)

VEL SOURCE-SRD (WST)

2

	SOURCE ELV	SOURCE EW	SOUF	M	HYDRO ELEV M	HYDRO EW M	HYDRO NS M
1	-63.40	26.50		-9.64	-63.40	25.58	-11.39
	TRT HYD-SC	TRT S					
1	1.31		36.23				
	MD a KB M	VD a KB	VD a SRD	E-W COORD	N-S COORD		
123456789012345678901	99.00 1350.00 4509.00 4509.00 4566.00 7225.00 8962.00 1017.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00 1168.00	1262.55 1305.98 1519.88 1576.22 1596.33 1637.48	154.70 1700.5370 19030.5866 4888.56653 4888.981.6938 112381.6938 112381.6938 112381.6938 112381.6938 112381.6938 112381.6938 112381.6938 112381.6938 112381.6938	000001488467802133992 1399	00 3100 3900 3900 3900 3900 3900 3900 39		

COMPANY : BEACH PETROLEUM N.L.

WELL

: WESTGATE - .

LEVEL NUMBER	MEASUR DEPTH FROM KB M	VERTIC DEPTH FROM SRD M	VERTIC DEPTH FROM GL M	OBSERV TRAVEL TIME HYD/GEO MS	VERTIC TRAVEL TIME SRC/GEO MS	VERTIC TRAVEL TIME SRD/GEO MS	AVERAGE VELOC SRD/GEO M/S	DELTA DEPTH BETWEEN SHOTS M	DELTA TIME BETWEEN SHOTS MS	INTERV VELOC BETWEEN SHOTS M/S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	99.00 135.00 250.00 409.00 450.00 566.00 722.00 835.00 896.00 962.00 1017.00 1165.00 1298.00 1392.00 1441.00 1680.00 1742.00 1764.00	154.70 190.70 303.50 450.30 487.70 588.58 728.86 829.56 883.64 941.65 989.93 1119.56 1235.64 1318.25 1361.68 1575.58 1631.92 1652.03	92.80 128.80 241.60 388.40 425.80 526.68 666.96 767.66 821.74 879.75 928.03 1057.66 1173.74 1256.35 1299.78 1513.68 1570.02 1590.13 1631.28	54.00 71.00 134.00 212.00 231.00 278.00 341.00 408.00 431.00 452.00 504.00 550.00 582.00 600.00 672.00 694.00 702.00	52.85 70.60 134.06 208.83 226.26 268.26 325.24 365.55 384.97 405.05 423.49 468.83 508.82 536.85 552.81 616.96 636.98 644.31 656.22	89.08 106.83 170.29 245.06 262.49 304.48 361.47 401.78 421.20 441.28 459.72 505.06 545.05 573.08 589.04 653.19 673.21 680.54 692.45	1737 1785 1782 1838 1858 1933 2016 2065 2098 2134 2153 2217 2267 2300 2312 2412 2424 2428 2445	36.00 112.80 146.80 37.40 100.88 140.28 100.70 54.08 58.00 48.29 129.63 116.08 82.61 43.43 213.90 56.33 20.12 41.15 39.32	17.75 63.46 74.77 17.43 41.99 56.99 40.31 19.42 20.08 18.44 45.33 39.99 28.03 15.96 64.15 20.02 7.33 11.91	2028 1777 1963 2145 2402 2462 2498 2785 2888 2619 2859 2903 2947 2721 3334 2814 2744 3455 3302
20 21	1852.00 1912.00	1732.50 1787.37	1670.60 1725.47	728.00 747.00	668 . 13	704.36 721.76	2460 2476	54.87	17.40	3153

PAGE

Drift...

2-JUN-86 17:57:21 PROGRAM: GDR1FT 007.E09

SCHLUMBERGER

DRIFT COMPUTATION REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

2-JUN-86 17:57:21 PROGRAM: GDRIFT 007.E09

SCHLUMBERGER

DRIFT COMPUTATION REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

```
COMPANY
          : BEACH PETROLEUM N.L.
                                               WELL
                                                        : WESTGATE - T
        LONG DEFINITIONS
            GLOBAL
KΒ
         ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
SRD
         ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
EKB
        - ELEVATION OF KELLY BUSHING
       - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD
GL
XSTART - TOP OF ZONE PROCESSED BY WST
       - BOTTOM OF ZONE PROCESSED BY WST
XSTOP
GADOO1 - RAW SONIC CHANNEL NAME USED FOR WST SONIC ADJUSTMENT
UNFOEN - UNIFORM DENSITY VALUE
            ZONE
LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYDEN - USER SUPPLIED DENSITY DATA
            SAMPLED
SHOT
       - SHOT NUMBER
DKB
       - MEASURED DEPTH FROM KELLY-BUSHING
DSRD
       - DEPTH FROM SRD
DGL
       VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
SHTM
         SHOT TIME (WST)
RAWS
       - RAW SONIC (WST)
SHDR
       - DRIFT AT SHOT OR KNEE
BLSH
       - BLOCK SHIFT BETWEEN SHOTS OR KNEE
  (GLOBAL PARAMETERS)
                                           (VALUE)
ELEV OF KB AB. MSL (WST)
                           KB
                                          94.3000
ELEV OF SRD AB. MSL(WST)
                                         150.000
                           SRD
ELEVATION OF KELLY BUSHI
                           EKB
ELEV OF GL AB. SRD(WST)
                                         -61.9000
                           GL
TOP OF ZONE PROCD (WST)
                           XSTART
                                                0
BOT OF ZONE PROCD (WST)
RAW SONIC CH NAME (WST)
                           XSTOP
                                         DT-005-TVD-FLP-*
                           GAD001
UNIFORM DENSITY VALUE
                           UNFDEN
                                          2.30000 G/C3
  (ZONED PARAMETERS)
```

LOFDEN

LAYER OPTION FLAG DENS

USER SUPPLIED DENSITY DA LAYDEN

(VALUE)

G/C3

: 1.000000

:-999-2500

(LIMITS)

30479.7

30479_7 -

PAGE

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

MEASURED

DEPTH

FROM

KB

M

99.00

135.00

250.00

409.00

450.00

566.00

722.00

835.00

896.00

962.00

1017.00

1165.00

1298.00

1392.00

1441.00

1680.00

1742.00

1764.00

1809.00

1852.00

1912.00

VERTICAL

DEPTH

SRD

M

154.70

190.70

303.50

450.30

487.70

588.58

728.86

829.56

883.64

941.65

989.93

1119.56

1235.64

1318.25

1361.68

1575.58

1631-92

1652.03

1693.18

1732.50

1787.37

FROM

LEVEL

NUMBER

VERTICAL

FROM

GL

92.80

128.80

241.60

388.40

425.80

666.96

767.66

821.74

879.75

1057.66

1173.74

1256.35

1299.78

1513.68

1570.02

1590.13

1631.28

1670.60

1725.47

DEPTH

703.97

719.59

704.36

721.76

.39

2.17

-3.40

9.86

2

0

0

0

0

Ð

2-JUN-86 18:02:18

PROGRAM: GADJST 008.E08

SONIC ADJUSTMENT PARAMETER REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

```
COMPANY : BEACH PETROLEUM N.L.
```

WELL : WESTGATE - 1

432.000

394.600 247.800

99-0000

394.600

247.800

135.000

7.70000

M/S

1963.000

1730.000

PAGE

1

LONG DEFINITIONS

USER VELOC (WST)

```
GLOBAL
SRCDRF - ORIGIN OF ADJUSTMENT DATA
CONADJ - CONSTANT ADJUSTMENT TO AUTOMATIC DELTA-T MINIMUM = 7.5 US/F
UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)
            ZONE
ZDRIFT - USER DRIFT AT BOTTOM OF THE ZONE
ADJOPZ - TYPE OF ADJUSTMNENT IN THE DRIFT ZONE : O=DELTA-T MIN, 1=BLOCKSHIFT ADJUSZ - DELTA-T MINIMUM USED FOR ADJUSTMENT IN THE DRIFT ZONE
LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYVEL - USER SUPPLIED VELOCITY DATA
            SAMPLED
SHOT
        - SHOT NUMBER
VDKB
        - VERTICAL DEPTH RELATIVE TO KB
DSRD
        - DEPTH FROM SRD
DGL
        - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
KNEE
BLSH
        - BLOCK SHIFT BETWEEN SHOTS OR KNEE
DTMI
        - VALUE OF DELTA-T MINIMUM USED
COEF
        - DELTA-T MIN COEFFICIENT USED IN THE DRIFT ZONE
        - GRADIENT OF DRIFT CURVE
DRGR
                                              (VALUE)
  (GLOBAL PARAMETERS)
ORIG OF ADJ DATA (WST)
                             SRCDRF
                                            2.00000
                                            7.50000
CONS SONIC ADJST (WST)
                             CONADJ
                                                      US/F
                             UNERTH
                                            2133.60
UNIFORM EARTH VELOCITY
                                                      M/S
  (ZONED PARAMETERS)
                                              (VALUE)
                                                                    (LIMITS)
USER DRIFT ZONE (WST)
                            ZDRIFT
                                         : 1.000000
                                                             1731.67 - 1049.00
                                                             1049.00
                                          -.6000000
                                                                         769.000
                                            .5000000
                                                                         432.000
                                                                         99.0000
                                                             432.000
                                                             99.0000
30479.7
                                         :-999.2500
:-999.2500
ADJUSMNT MODE (WST)
                            ADJOPZ
                                                             30479.7
USER DELTA-T MIN (WST)
                            ADJUSZ
                                                      US/F
                                                             30479.7
                           LOFVEL
                                         1.000000
LAYER OPTION FLAG VELOC
```

LAYVEL

: WESTGATE - 1 COMPANY : BEACH PETROLEUM N.L. WELL PAGE 2 VERTICAL VERTICAL KNEE VERTICAL DRIFT **BLOCKSHIFT** DELTA-T REDUCTION EQUIVALENT DEPTH FROM DEPTH FROM AT KNEE NUMBER DEPTH MINIMUM FACTOR FROM USED USED Ğ **BLOCKSHIFT** KB M ĜĽ SRD MS US/F US/F US/F 55.70 0 -6.20 1 0 0 0 99.00 154.70 2 92.80 0 0 0 3 432.00 487.70 425.80 0 .45 .45 762.80 769.00 824.70 .50 4 102.39 .87 -1.20

-.60

1.00

.71

.71

5

6

1049.00

1731.67

1104.70

1787.37

1042.80

1725.47

2-JUN-86 18:02:36 PROGRAM: GADJST 008.E08

SCHLUMBERGER

VELOCITY REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

2-JUN-86 18:02:36 PROGRAM: GADJST 008.E08

SCHLUMBERGER

VELOCITY REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

```
WELL
  COMPANY : BEACH PETROLEUM N.L.
                                                            : WESTGATE - 1
          LONG DEFINITIONS
             GLOBAL
 KB
         - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
 SRD
         - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
         - ELEVATION OF KELLY BUSHING
- ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD
 FKB
 GL
 UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)
             ZONE
 LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
. LAYVEL - USER SUPPLIED VELOCITY DATA
             SAMPLED
         - SHOT NUMBER
 SHOT
         - MEASURED DEPTH FROM KELLY-BUSHING
 DKB
 DSRD
         - DEPTH FROM SRD
         - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
 DGL
 SHTM
         - SHOT TIME (WST)
         - ADJUSTED SONIC TRAVEL TIME - DRIFT AT SHOT OR KNEE
 ADJS
 SHDR
 REST
         - RESIDUAL TRAVEL TIME AT KNEE
         - INTERNAL VELOCITY, AVERAGE
 INTV
   (GLOBAL PARAMETERS)
                                               (VALUE)
                                              94.3000
 ELEV OF KB AB MSL (WST)
                              KΒ
                                           150.000
-55.7000
 ELEV OF SRD AB. MSL(WST)
ELEVATION OF KELLY BUSHI
                              SRD
                              EKB
                                          -61.9000
ELEV OF GL AB. SRD(WST)
                              GL
UNIFORM EARTH VELOCITY
                              UNERTH
                                             2133.60
                                                        M/S
   (ZONED PARAMETERS)
                                               (VALUE)
                                                                     (LIMITS)
 LAYER OPTION FLAG VELOC
                             LOFVEL
                                          : 1.000000
                                                               30479.7
                                                                          394.600
 USER VELOC (WST)
                             LAYVEL
                                          : 2145.000
                                                        M/S
                                                               432.000
                                            1963.000
                                                              394.600
                                                                           247.800
```

1730.000

4

247.800

99.0000

135.000

7.70000

PAGE

3

COMPANY : BEACH PETROLEUM N.L.

21

ŧ

1787.37

WELL : WESTGATE - 1

LEVEL MEASURED VERTICAL VERTICAL VERTICAL INTEGRATED DRIFT RESIDUAL **ADJUSTED** DEPTH DEPTH DEPTH . TRAVEL ADJUSTED INTERVAL VELOCITY NUMBER FROM SONIC FROM FROM TIME SHOT TIME SHOT TIME TIME SRD SRD/GEOPH RAW SON KB GL - ADJ SON MS MS MS M/S MS 1737 89.08 99.00 154.70 92.80 89.08 0 0 1 2028 0 2 135.00 190.70 128.80 106.83 106.83 0 1778 3 250.00 303.50 241.60 170.29 170.29 0 0 1964 0 4 409.00 450.30 388.40 245.06 245.05 -01 2145 5 450.00 487.70 425.80 262.49 262.49 0 .01 2349 588.58 -.80 6 566.00 526.68 304.48 305.43 -.95 2519 728.86 .70 7 722.00 666.96 361.47 361.12 .35 2551 829.56 8 835.00 767.66 401.78 400.59 1.66 1.19 2721 9 896.00 883.64 821.74 421.20 420.47 .94 .73 2888 962.00 941.65 10 879.75 441.28 440.55 .83 .73 2655 1017.00 989.93 .79 928.03 11 459.72 458.74 -98 2801 505.01 12 1165.00 1119.56 1057.66 505.06 -.54 -04 2918 13 1298.00 1235.64 1173.74 545.05 544.80 -.07 **2**5 2948 14 1392.00 1318.25 1256.35 573.08 572.82 .26 .15 2945 15 1441.00 1361.68 1299.78 589.04 587.56 1.46 1.48 3217 16 1680.00 1575.58 1513.68 653.19 654.05 -.37 -.86 2919 1570.02 17 1742.00 1631.92 673.21 673.35 .49 -.14 3266 1652.03 1590.13 18 1764.00 680.54 679.51 1.70 1.03 3196 692.38 19 1809.00 1693.18 1631.28 692.45 .83 .07 3161 20 1852.00 1732.50 1670.60 704.36 704.82 .39 --46 3476 1912.00 1725.47

721.76

720.60

2.17

1.16

PAGE

Time Depth....

TIME/DEPTH

2-JUN-86 18:06:55

PROGRAM: GTRFRM 007.E11

TIME CONVERTED VELOCITY REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

2-JUN-86 18:06:55 PROGRAM: GTRFRM 007.E11

SCHLUMBERGER

TIME CONVERTED VELOCITY REPORT

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

```
WELL
 COMPANY : BEACH PETROLEUM N.L.
                                                         : WESTGATE - 1
        LONG DEFINITIONS
           GLOBAL
ΚB
       - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
SRD
       - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
       - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD
GL
UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)
UNFOEN - UNIFORM DENSITY VALUE
           MATRIX
MVODIS - MOVE-OUT DISTANCE FROM BOREHOLE
           ZONE
LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYVEL - USER SUPPLIED VELOCITY DATA
LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYDEN - USER SUPPLIED DENSITY DATA
           SAMPLED
       - TWO WAY TRAVEL TIME (RELATIVE TO THE SEISMIC REFERENCE
TWOT
       - MEASURED DEPTH FROM KELLY-BUSHING
DKB
DSRD
       - DEPTH FROM SRD
AVGV
       - AVERAGE SEISMIC VELOCITY
RMSV
       - ROOT MEAN SQUARE VELOCITY (SEISMIC)
         NORMAL MOVE-OUT
MVOT
MVOT
MVOT
       - NORMAL MOVE-OUT
       - INTERNAL VELOCITY, AVERAGE
INTV
                                            (VALUE)
  (GLOBAL PARAMETERS)
ELEV OF KB AB. MSL (WST)
                                           94.3000
                           KB
                                         150.000
-61.9000
2133.60
ELEV OF SRD AB. MSL(WST)
ELEV OF GL AB. SRD(WST)
                           SRD
                           GL
UNIFORM EARTH VELOCITY
                           UNERTH
```

2.30000

G/C3

UNFDEN

PAGE

(MATRIX PARAMETERS)

UNIFORM DENSITY VALUE

MVOUT DIST M 1 1000.0 2 1500.0 3 2000.0

COMPANY : BEACH PETROLEUM N.L. WELL : WESTGATE - 1 (VALUE) (ZONED PARAMETERS) (LIMITS) : 1.000000 LAYER OPTION FLAG VELOC LOFVEL 30479.7 -2145.000 1963.000 1777.000 432.000 USER VELOC (WST) LAYVEL M/S - 394.600 394.600 247.800 247.800 135.000 1730.000 99.0000 :-1.000000 30479.7 -:-999.2500 G/C3 30479.7 -7.70000 LAYER OPTION FLAG DENS LOFDEN 0 ŏ . USER SUPPLIED DENSITY DA LAYDEN

•

PAGE

2

13:04.3

COMPANY :		ROLEUM N.L	.•	WELL	: WESTGA	TE - 1		PAGE
TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
0	-55.70	0						
2.00	-53.96	1.74	1737	1737	573.82	861.73	1149.64	1737
4.00	-52.23	3.47	1737	1737	571.83	859.74	1147.65	1737
6.00	-50.49	5.21	1737	1737	569.85	857.75	1145.65	1737
8.00	-48.75	6.95	1737	1737	567.88	855.77	1143.67	1737
10.00	-47.02	8.68	1737	1737	565.91	853.79	1141.68	1737
12.00	-45.28	10.42	1737	1737	563.94	851.81	1139.70	1737
14.00	-43.54	12.16	1737	1737	561.99	849.84	1137.72	1737
16.00	-41.81	13.89	1737	1737	560.04	847.88	1135.75	1737
18.00	-40.07	15.63	1737	1737	558.10	845.92	1133.78	1737
20.00	-38.33	17.37	1737	1737	556.17	843.96	1131.81	1737
22.00	-36.60	19.10	1737	1737	554.24	842.01	1129.85	1737
24.00	-34.86	20.84	1737	1737	552.32	840.06	1127.89	1737
26.00	-33.12	22.58	1737	1737	550.41	838.12	1125.93	1737
28.00	-31.39	24.31	1737	1737	548.50	836.18	1123.98	1737
30.00	-29.65	26.05	1737	1737	546.60	834.25	1122.03	1737
32.00	-27.91	27.79	1737	1737	544.71	832.32	1120.08	1737
34.00	-26.18	29.52	1737	1737	542.82	830.40	1118.14	1737
36.00	-24.44	31.26	1737	1737	540.94	828.48	1116.20	1737
38.00	-22.70	33.00	1737	1737	539.07	826.57	1114.27	1737
40.00	-20.97	34.73	1737	1737	537.21	824.66	1112.33	1737
42.00	-19.23	36.47	1737	1737	535.35	822.75	1110.41	1737
44.00	-17.49	38.21	1737	1737	533.50	820.85	1108.48	1737
46.00	-15.76	39.94	1737	1737	531.65	818.95	1106.56	1737

3.

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
/ O OO	44 03	/4 / 9	4777	4777	520 02	947.07	4404 44	1737
48.00		41.68	1737	1737	529.82	817.06	1104.64	1737
50.00		43.42	1737	1737	527.99	815.18	1102.72	1737
52.00		45.15	1737	1737	526.16	813.29	1100.81	1737
54.00		46.89	1737	1737	524.35	811.42	1098.90	1737
56.00		48.63	1737	1737	522.54	809.54	1097.00	1737
58.00	-5.34	50.36	1737	1737	520.73	807.67	1095.10	1737
60.00	-3.60	52.10	1737	1737	518.94	805.81	1093.20	1737
62.00	-1.86	53.84	1737	1737	517.15	803.95	1091.31	1.737
64.00	13	55.57	1737	1737	515.37	802.10	1089.42	1737
66.00	1.61	57.31	1737	1737	513.59	800.25	1087.53	
68.00	3.35	59.05	1737	1737	511.82	798.40	1085.65	1737
70.00	5.08	60.78	1737	1737	510.06	796.56	1083.76	1737
72.00	6.82	62.52	1737	1737	508.30	794.73	1081.89	1737
74.00	8.55	64.25	1737	1737	506.58	792.94	1080.07	1733
76.00	10.28	65.98	1736	1736	504.90	791.20	1078.32	1730
78.00	12.01	67.71	1736	1736	503.22	789.45	1076.56	1730
80.00	13.74	69.44	1736	1736	501.54	787.71	1074.80	1730
82.00	15.47	71.17	1736	1736	499.87	785.97	1073.04	1730
84.00	17.20	72.90	1736	1736	498.20	784.23	1071.27	1730
86.00		74.63	1736	1736	496.54	782.50	1069.51	1730
88.00		76.36	1736	1736	494.88	780.76	1067.75	1730
90.00		78.09	1735	1735	493.22	779.03	1065.98	1730
92.00		79.82	1735	1735	491.57	777.29	1064.22	1730
94.00		81.55	1735	1735	489.93	775.56	1062.45	1730
~ > ~ • 00	<i>€ J</i> a U J	J 1 6 J J	~ 1133	1177	707073	ن د میدر ۱۰	1006643	

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS MS	M	M	M/S	M/S	MS	MS	MS	M/S
96.00	27.58	83.28	1735	1735	488.29	773.84	1060.69	1730 1730
98.00	29.31	85.01	1735	1735	486.65	772.11	1058.92	1730
100.00	31.04	86.74	1735	1735	485.03	770.39	1057.16	1730
102.00	32.77	88.47	1735	1735	483.40	768.67	1055.40	
104.00	34.50	90.20	1735	1735	481.78	766.95	1053.64	1730 1730
106.00	36.23	91.93	1735	1735	480.17	765.23	1051.87	
108.00	37.96	93.66	1734	1735	478.56	763.52	1050.12	1730
110.00	39.69	95.39	1734	1734	476.96	761.81	1048.36	1730
112.00	41.42	97.12	1734	1734	475.36	760.10	1046.60	1730
114.00	43.15	98.85	1734	1734	473.77	758.40	1044.85	1730
116.00	44.88	100.58	1734	1734	472.19	756.70	1043.09	1730
118.00	46.61	102.31	1734	1734	470.61	755.00	1041.34	1730
120.00	48.34	104.04	1734	1734	469.04	753.31	1039.59	1730
122.00	50.07	105.77	1734	1734	467.47	751.62	1037.85	1730
124.00	51.80	107.50	1734	1734	465.91	749.93	1036.10	1730
126.00	53.53	109.23	1734	1734	464.35	748.25	1034.36	1730
128.00	55.26	110.96	1734	1734	462.80	746.57	1032.62	1730
130.00	56.99	112.69	1734	1734	461.26	744.89	1030.88	1730
132.00	58.72	114.42	1734	1734	459.72	743.22	1029.14	1730
134.00	60.45	116.15	1734	1734	458.18	741.55	1027.41	1730
136.00	62.18	117.88	1734	1734	456.66	739.89	1025.67	1730
138.00	63.91	119.61	1734	1734	455.14	738.22	1023.94	1730
140.00	65.64	121.34	1733	1733	453.62	736.57	1022.22	1730
142.00	67.37	123.07	1733	1733	452.11	734.91	1020.49	1730

PAGE 5

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
144.00	69.10	124.80	1733	1733	450.61	733.26	1018.77	1730
146.00	70.83	126.53	1733	1733	449.11	731.62	1017.05	1730
148.00	72.56	128.26	1733	1733	447.62	729.97	1015.33	1730
150.00	74.29	129.99	1733	1733	446.13	728.33	1013.62	1730
152.00	76.02	131.72	1733	1733	444.65	726.70	1011.90	1730
154.00	77.75	133.45	1733	1733	443.18	725.07	1010.19	1730
156.00	79.48	135.18	1733	1733	441.71	723.44	1008.49	1730
158.00	81.21	136.91	1733	1733	440.25	721.82	1006.78	1730
160.00	82.94	138.64	1733	1733	438.79	720.20	1005.08	1730
162.00	84.67	140.37	1733	1733	437.34	718.58	1003.38	1730
164.00	86.40	142.10	1733	1733	435.90	716.97	1001.68	1730
166.00	88.13	143.83	1733	1733	434.46	715.36	999.99	1730
168.00	89.86	145.56	1733	1733	433.03	713.76	998.30	1730
170.00	91.59	147.29	1733	1733	431.60	712.16	996.61	1730
172.00	93.32	149.02	1733	1733	430.18	710.56	994.93	1730
174.00	95.05	150.75	1733	1733	428.76	708.97	993.25	1730
176.00	96.78	152.48	1733	1733	427.35	707.38	991.57	1730
178.00	98.51	154.21	1733	1733	425.95	705.80	989.89	1730
180.00	100.46	156.16	1735	1735	423.74	702.97	986.54	1946
182.00	102.49	158.19	1738	1739	421.24	699.68	982.57	2028
184.00	104.52	160.22	1741	1742	418.78	696.45	978.67	2028
186.00	106.54	162.24	1745	1745	416.35	693.27	974.83	2028
188.00	108.57	164.27	1748	1749	413.96	690.14	971.05	2028
190.00	110.60	166.30	_1751	1752	411.61	68 Z -05	967.34	2028

WELL : WESTGATE - 1

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVA VELOCIT
MS	M	M	M/S	M/S	MS	MS	MS	M/S
192.00	112.63	168.33	1753	1755	409.29	684.01	963.68	202
194.00	114.65	170.35	1756	1758	407.00	681.02	960.08	202
196.00	116.68	172.38	1759	1761	404.74	678.06	956.53	202
198.00	118.71	174.41	1762	1764	402.52	675.15	953.03	202
200.00	120.74	176.44	1764	1767	400.32	672.28	949.59	202
202.00	122.77	178.47	1767	1769	398.16	669.44	946.19	202
204.00	124.79	180.49	1770	1772	396.02	666.65	942.84	202
206.00	126.82	182.52	1772	1775	393.91	663.88	939.53	202
208.00	128.85	184.55	1775	1777	391.82	661.16	936.27	202
210.00	130.88	186.58	1777	1780	389.76	658.46	933.05	202
212.00	132.91	188.61	1779	1783	387.73	655.80	929.87	203
214.00	134.93	190.63	1782	1785	385.72	653.18	926.73	202
216.00	136.75	192.41	1782	1785	384.45	651.69	925.13	178
218.00	138.56	194.19	1782	1785	383.19	650.22	923.56	177
220.00	140.37	195.97	1782	1785	381.94	648.76	921.98	177
222.00	142.18	197.75	1781	1785	380.69	647.30	920.41	177
224.00	144.00	199.52	1781	1785	379.45	645.84	918.84	177
226.00	145.81	201.30	1781	1785	378.21	644.39	917.27	177
228.00	147.62	203.08	1781	1785	376.98	642.94	915.71	177
230.00	149.43	204.86	1781	1784	375.76	641.49	914.14	177
232.00	151.24	206.63	1781	1784	374.54	640.05	912.59	177
234.00	153.06	208.41	1781	1784	373.32	638.61	911.03	177
236.00	154.87	210.19	1781	1784	372.11	637.17	909.47	177
238.00	156.68	211.97	1781	1784	370.91	635.74	907.92	177

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERV VELOCI
MS	M	M	M/S	M/S	MS	MS	MS	M/S
240.00	158.49	213.74	1781	1784	369.71	634.31	906.38	17
242.00	160.30	215.52	1781	1784	368.51	632.89	904.83	17
244.00	162.12	217.30	1781	1784	367.33	631.47	903.29	17
246.00	163.93	219.08	1781	1784	366.14	630.05	901.75	17
248.00	165.74	220.85	1781	1784	364.96	628.64	900.21	17
250.00	167.55	222.63	1781	1784	363.79	627.23	898.67	17
252.00	169.37	224.41	1781	1784	362.62	625.83	897.14	17
254.00	171.18	226.19	1781	1784	361.46	624.43	895.61	17
256.00	172.99	227.96	1781	1784	360.30	623.03	894.09	1 7
258.00	174.80	229.74	1781	1784	359.15	621.64	892.56	1
260.00	176.61	231.52	1781	1784	358.00	620.25	891.04	11
262.00	178.43	233.30	1781	1784	356.86	618.86	889.53	11
264.00	180.24	235.07	1781	1784	355.72	617.48	888.01	11
266.00	182.05	236.85	1781	1784	354.59	616.10	886.50	11
268.00	183.86	238.63	1781	1783	353.46	614.72	884.99	17
270.00	185.67	240.41	1781	1783	352.34	613.35	883.48	17
272.00	187.49	242.18	1781	1783	351.22	611.99	881.98	11
274.00	189.30	243.96	1781	1783	350.11	610.62	880.48	11
276.00	191.11	245.74	1781	1783	349.00	609.26	878.98	1
278.00	192.92	247.52	1781	1783	347.90	607.91	877.49	1
280.00	194.74	249.29	1781	1783	346.80	606.56	875.99	11
282.00	196.55	251.07	1781	1783	345.71	605.21	874.51	1
284.00	198.36	252.85	1781	1783	344.62	603.86	873.02	17
286.00	200.17	254.63	1781	1783	343.54	602.52	871.54	17

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERV VELOCI
MS MS	KB M	M	M/S	M/S	MS	MS	MS	M/S
288.00	201.98	256.40	1781	1783	342.46	601.19	870.05	17 17
290.00	203.80	258.18	1781	1783	341.39	599.85	868.58	17
292.00	205.61	259.96	1781	1783	340.32	598.52	867.10	
294.00	207.42	261.74	1781	1783	339.26	597.20	865.63	17
296.00	209.23	263.51	1780	1783	338.20	595.88	864.16	17
298.00	211.04	265.29	1780	1783	337.14	594.56	862.70	17
300.00	212.86	267.07	1780	1783	336.09	593.24	861.23	17
302.00	214.67	268.84	1780	1783	335.05	591.93	859.77	17
304.00	216.48	270.62	1780	1783	334.01	590.63	858.32	17
306.00	218.29	272.40	1780	1783	332.97	589.32	856.86	17
308.00	220.11	274.18	1780	1783	331.94	588.02	855.41	11
310.00	221.92	275.95	1780	1783	330.92	586.73	853.96	1
312.00	223.73	277.73	1780	1783	329.90	585.44	852.52	11
314.00	225.54	279.51	1780	1783	328.88	584.15	851.07	17
316.00	227.35	281.29	1780	1783	327.87	582.86	849.63	17
318.00	229.17	283.06	1780	1783	326.86	581.58	848.20	17
320.00	230.98	284.84	1780	1782	325.86	580.31	846.76	17
322.00	232.79	286.62	1780	1782	324.86	579.03	845.33	17
324.00	234.60	288.40	1780	1782	323.87	577.76	843.90	17
326.00	236.41	290.17	1780	1782	322.88	576.50	842.48	1
328.00	238.23	291.95	1780	1782	321.89	575.23	841.06	17
330.00	240.04	293.73	1780	1782	320.91	573.98	839.64	17
332.00	241.85	295.51	1780	1782	319.94	572.72	838.22	17
334.00	243.66	297.28	1780	1782	318.97	571.47	836.81	17

PAGE 10

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	M	M/S	M/S	MS	MS	MS	M/S
336.00	245.48	299.06	1780	1782	318.00	570.22	835.40	1777
338.00	247.29	300.84	1780	1782	317.04	568.98	833.99	1777
340.00	249.10	302.62	1780	1782	316.08	567.74	832.58	1777
342.00	251.08	304.50	1781	1783	314.96	566.23	830.82	1879
344.00	253.20	306.46	1782	1784	313.71	564.51	828.74	1963
346.00	255.33	308.42	1783	1785	312.47	562.79	826.67	1963
348.00	257.46	310.39	1784	1786	311.23	561.09	824.62	1963
350.00	259.58	312.35	1785	1787	310.01	559.39	822.58	1963
352.00	261.71	314.31	1786	1788	308.79	557.71	820.55	1963
354.00	263.84	316.28	1787	1789	307.58	556.04	818.53	1963
356.00	265.96	318.24	1788	1790	306.39	554.37	816.53	1963
358.00	268.09	320.20	1789	1791	305.20	552.72	814.53	1963
360.00	270.22	322.17	1790	1792	304.02	551.08	812.55	1963
362.00	272.34	324.13	1791	1793	302.85	549.45	810.58	1963
364.00	274.47	326.09	1792	1794	301.68	547.83	808.62	1963
366.00	276.60	328.06	1793	1795	300.53	546.21	806.67	1963
368.00	278.72	330.02	1794	1796	299.38	544.61	804.73	1963
370.00	280.85	331.98	1795	1797	298.24	543.02	802.81	1963
372.00	282.98	333.95	1795	1798	297.11	541.43	800.89	1963
374.00	285.10	335.91	1796	1799	295.98	539.86	798.98	1963
376.00	287.23	337.87	1797	1800	294.87	538.29	797.09	1963
378.00	289.36	339.84	1798	1801	293.76	536.73	795.20	1963
380.00	291.48	341.80	1799	1802	292.66	535.19	793.33	1963
382.00	293.61	343.76	_ 1800	1803	291.57	533.65	791.46	1963

WELL : WESTGATE - 1

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVA VELOCIT
FROM SRD MS	KB M	S R D	M/S	M/S	MS	MS	MS	M/S
384.00	295.74	345.73	1801	1803	290.48	532.12	789.60	196 196
386.00	297.86	347.69	1802	1804	289.41	530.59	787.76	196
388.00	299.99	349.65	1802	1805	288.34	529.08	785.92	
390.00	302.12	351.62	1803	1806	287.27	527.58	784.09	19
392.00	304.24	353.58	1804	1807	286.22	526.08	782.27	19
394.00	306.37	355.54	1805	1808	285.17	524.59	780.46	19
396.00	308.50	357.51	1806	1808	284.13	523.11	778.66	19
398.00	310.62	359.47	1806	1809	283.09	521.64	776.87	19
400.00	312.75	361.44	1807	1810	282.06	520.18	775.09	19
402.00	314.88	363.40	1808	1811	281.04	518.72	773.32	19
404.00	317.00	365.36	1809	1812	280.03	517.27	771.55	19
406.00	319.13	367.33	1809	1812	279.02	515.83	769.80	19
408.00	321.26	369.29	1810	1813	278.02	514.40	768.05	19
410.00	323.38	371.25	1811	1814	277.02	512.97	766.31	19
412.00	325.51	373.22	1812	1815	276.03	511.55	764.58	19
414.00	327.64	375.18	1812	1815	275.05	510.14	762.85	19
416.00	329.76	377.14	1813	1816	274.08	508.74	761.14	19
418.00	331.89	379.11	1814	1817	273.11	507.34	759.43	19
420.00	334.02	381.07	1815	1818	272.14	505.96	757.73	19
422.00	336.14	383.03	1815	1818	271.19	504.58	756.04	19
424.00	338.27	385.00	1816	1819	270.24	503.20	754.36	19
426.00	340.40	386.96	1817	1820	269.29	501.83	752.68	19
428.00	342.52	388.92	1817	1821	268.35	500.47	751.02	19
430.00	344.65	390.89	1818	1821	267.42	499.12	749.36	19

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
432.00	346.78	392.85	1819	1822	266.49	497.77	747.70	1963
434.00	348.90	394.81	1819	1823	265.57	496.43	746.06	1963
436.00	351.03	396.78	1820	1823	264.66	495.10	744.42	1963
438.00	353.16	398.74	1821	1824	263.75	493.77	742.79	1963
440.00	355.28	400.70	1821	1825	262.84	492.45	741.16	1963
442.00	357.41	402.67	1822	1825	261.94	491.14	739.55	1963
444.00	359.54	404.63	1823	1826	261.05	489.83	737.94	1963
446.00	361.66	406.59	1823	1827	260.16	488.53	736.33	1963
448.00	363.79	408.56	1824	1827	259.28	487.24	734.74	1963
450.00	365.91	410.52	1825	1828	258.40	485.95	733.15	1963
452.00	368.04	412.48	1825	1828	257.53	484.67	731.57	1963
454.00	370.17	414.45	1826	1829	256.67	483.40	729.99	1963
456.00	372.29	416.41	1826	1830	255.81	482.13	728.42	1963
458.00	374.42	418.37	1827	1830	254.95	480.86	726.86	1963
460.00	376.55	420.34	1828	1831	254.10	479.61	725.31	1963
462.00	378.67	422.30	1828	1831	253.25	478.35	723.76	1963
464.00	380.80	424.26	1829	1832	252.41	477.11	722.21	1963
466.00	382.93	426.23	1829	1833	251.58	475.87	720.68	1963
468.00	385.05	428.19	1830	1833	250.75	474.64	719.15	1963
470.00	387.18	430.16	1830	1834	249.92	473.41	717.62	1963
472.00	389.31	432.12	1831	1834	249.10	472.19	716.11	1963
474.00	391.43	434.08	1832	1835	248.29	470.97	714.60	1963
476.00	393.56	436.05	1832	1835	247.47	469.76	713.09	1963
478.00	395.69	438.01	1833	1836	246.67	468.56	711.59	1963

TWO-WAY Travel	MEA SURED DEPTH	VERTICAL DEPTH	AVERAGE VELOÇITY	RMS VELOCITY	FIRST NORMAL	SECOND NORMAL	THIRD NOR MAL	INTERVAL VELOCITY
TIME FROM SRD	FROM KB	FROM SRD	SRD/GEO		MOVEOUT	MOVEOUT	MOVEOUT	
MS	M	M	M/S	M/S	MS	MS	MS	M/S
480.00	397.81	439.97	1833	1837	245.87	467.36	710.10	1963
482.00	399.94	441.94	1834	1837	245.07	466.16	708.61	1963
		443.90	1834	1838	244.28		707.13	1963
484.00	402.07					464.98		1963
486.00	404.19	445.86	1835	1838	243.49	463.79	705.65	1963
488.00	406.32	447.83	1835	1839	242.71	462.62	704.18	1963
490.00	408.45	449.79	1836	1839	241.93	461.44	702.72	
492.00	410.75	451.90	1837	1840	241.01	460.03	700.91	2108
494.00	413.10	454.04	1838	1842	240.06	458.56	699.02	2145
496.00	415.46	456.19	1839	1843	239.12	457.10	697.14	2145
498.00	417.81	458.33	1841	1844	238.19	455.65	695.27	2145
500.00	420.16	460.48	1842	1846	237.26	454.20	693.41	2145
502.00	422.51	462.62	1843	1847	236.34	452.77	691.56	2145
504.00	424.86	464.77	1844	1848	235.43	451.35	689.73	2145
506.00	427.21	466.92	1846	1850	234.52	449.93	687.90	2145
508.00	429.57	469.06	1847	1851	233.63	448.52	686.08	2145
510.00	431.92	471.21	1848	1852	232.73	447.13	684.28	2145
512.00	434.27	473.35	1849	1853	231.85	445.74	682.48	2145
514.00	436.62	475.50	1850	1854	230.97	444.36	680.70	2145
516.00	438.97	477.64	1851	1856	230.09	442.98	678.92	2145
518.00	441.33	479.79	1852	1857	229.22	441.62	677.16	2145
								2145
520.00	443.68	481.93	1854	1858	228.36	440.26	675.40	2145
522.00	446.03	484.08	1855	1859	227.51	438.92	673.66	2145
524.00	448.38	486.22	1856	1860	226.66	437.58	671.92	2184
526.00	450.82	488.41	1857	1862	225.78	436.18	670.10	2104

•

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
528.00	453.47	490.68	1859	1863	224.83	434.66	668.10	2267
530.00	456.08	492.92	1860	1865	223.91	433.19	666.17	2245
532.00	458.73	495.19	1862	1867	222.97	431.68	664.18	2274
534.00	461.36	497.45	1863	1868	222.05	430.21	662.24	2255
536.00	464.03	499.75	1865	1870	221.11	428.68	660.22	2298
538.00	466.61	501.96	1866	1872	220.25	427.30	658.42	2211
540.00	469.17	504.16	1867	1873	219.40	425.94	656.64	2201
542.00	471.80	506.42	1869	1874	218.51	424.51	654.75	2258
544.00	474.38	508.63	1870	1876	217.67	423.16	652.98	2209
546.00	477.04	510.92	1871	1877	216.76	421.69	651.03	2291
548.00	480.18	513.61	1874	1881	215.48	419.56	648.13	2692
550.00	483.39	516.37	1878	1885	214.15	417.32	645.08	2757
552.00	486.22	518.79	1880	1887	213.16	415.69	642.89	2426
554.00	488.87	521.07	1881	1889	212.30	414.29	641.03	2281
556.00	491.51	523.34	1883	1890	211.46	412.92	639.22	2267
558.00	494.44	525.85	1885	1893	210.41	411.18	636.87	2511
560.00	497.39	528.39	1887	1896	209.35	409.42	634.49	2535
562.00	500.03	530.66	1888	1897	208.53	408.08	632.71	2268
564.00	502.69	532.94	1890	1899	207.71	406.73	630.92	2281
566.00	505.50	535.35	1892	1901	206.78	405.20	628.86	2413
568.00	508.75	538.14	1895	1904	205.52	403.07	625.93	2791
570.00	511.37	540.38	1896	1906	204.75	401.80	624.25	2244
572.00	514.02	542.66	1897	1907	203.95	400.50	622.51	2279
574.00	516.85	545.09	1899	1909	203.05	398,99	620.48	2429

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVA VELOCIT
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
576.00	519.63	547.48	1901	1911	202.18	397.55	618.54	23 <i>8</i> 25 <i>8</i>
578.00	522.64	550.07	1903	1914	201.16	395.83	616.20	237
580.00	525.40	552.44	1905	1916	200.32	394.43	614.31	234
582.00	528.06	554.79	1906	1917	199.50	393.08	612.50	
584.00	530.84	557.24	1908	1919	198.62	391.60	610.49	244
586.00	533.69	559.75	1910	1922	197.70	390.04	608.37	251
588.00	536.44	562.17	1912	1924	196.85	388.62	606.44	242
590.00	539.14	564.56	1914	1925	196.03	387.26	604.61	238
592.00	541.83	566.93	1915	1927	195.24	385.93	602.81	237
594.00	544.47	569.26	1917	1929	194.48	384.66	601.10	233
596.00	547.21	571.71	1919	1931	193.63	383.23	599.17	245
598.00	550.19	574.39	1921	1934	192.63	381.51	596.80	267
600.00	552.87	576.79	1923	1935	191.83	380.17	594.98	240
602.00	555.20	578.88	1923	1936	191.25	379.23	593.74	208
604.00	557.50	580.94	1924	1936	190.70	378.32	592.55	206
606.00	559.84	583.04	1924	1937	190.13	377.38	591.31	209
608.00	562.25	585.20	1925	1938	189.52	376.37	589.97	215
610.00	564.53	587.26	1925	1938	188.97	375.48	588.80	206
612.00	566.90	589.40	1926	1939	188.38	374.50	587.50	214
614.00	569.86	592.07	1929	1942	187.43	372.86	585.23	267
616.00	572.77	594.70	1931	1944	186.51	371.28	583.05	263
618.00	576.03	597.65	1934	1948	185.36	369.28	580.24	294
620.00	579.00	600.33	1937	1951	184.42	367.66	578.00	268
622.00	582.17	603.19	1940	1955	183.36	365.81	575.41	286

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	· M	M	M/S	M/S	MS	MS	MS	M/S
624.00	585.01	605.76	1942	1957	182.54	364.38	573.44	2566
626.00	587.73	608.22	1943	1959	181.79	363.10	571.69	2456
628.00	590.63	610.83	1945	1961	180.94	361.63	569.65	2616
630.00	593.77	613.68	1948	1965	179.93	359.87	567.18	2846
632.00	596.45	616.09	1950	1966	179.23	358.67	565.54	2414
634.00	599.15	618.54	1951	1968	178.51	357.44	563.85	2446
636.00	601.91	621.03	1953	1970	177.77	356.16	562.09	2495
638.00	604.67	623.52	1955	1972	177.04	354.90	560.35	2490
640.00	607.56	626.13	1957	1974	176.24	353.51	558.41	2607
642.00	610.36	628.66	1958	1976	175.49	352.22	556.62	2532
644.00	613.18	631.21	1960	1978	174.74	350.91	554.81	2550
646.00	615.96	633.73	1962	1980	174.02	349.66	553.08	2515
648.00	618.76	636.26	1964	1982	173.29	348.39	551.33	2530
650.00	621.47	638.70	1965	1983	172.62	347.23	549.72	2448
652.00	624.20	641.17	1967	1985	171.95	346.06	548.10	2467
654.00	627.02	643.72	1969	1987	171.23	344.80	546.36	2545
656.00	629.92	646.34	1971	1989	170.47	343.47	544.50	2620
658.00	632.89	649.02	1973	1992	169.68	342.08	542.55	2683
660.00	636.12	651.94	1976	1995	168.74	340.41	540.18	2923
662.00	639.13	654.66	1978	1998	167.95	339.01	538.21	2713
664.00	642.10	657.34	1980	2000	167.18	337.65	536.30	2686
666.00	644.80	659.78	1981	2002	166.56	336.57	534.80	2440
668.00	647.53	662.25	1983	2003	165.92	335.46	533.26	2470
670.00	650.21	664.67	1984	2005	165.32	334.41	531.81	2420

	<u> </u>						$\overline{}$		
	COMPANY :	BEACH PET	ROLEUM N.L	.•	WELL	: WESTGA	TE - 1		PA
	TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
	FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
	672.00	652.86	667.07	1985	2006	164.74	333.39	530.40	2395
	674.00	655.63	669.57	1987	2007	164.10	332.27	528.84	2501
	676.00	658.94	672.55	1990	2011	163.19	330.63	526.50	2977
•	678.00	662.07	675.35	1992	2014	162.39	329.21	524.49	2803
	680.00	664.79	677.77	1993	2015	161.81	328.20	523.08	2424
	682.00	667.45	680.15	1995	2016	161.26	327.23	521.74	2378
	684.00	670.09	682.51	1996	2017	160.72	326.29	520.44	2356
	686.00	672.69	684.83	1997	2018	160.21	325.39	519.19	2322
	688.00	675.14	687.02	1997	2019	159.76	324.61	518.12	21.89
	690.00	677.74	689.34	1998	2020	159.24	323.71	516.88	2320
	692.00	680.39	691.71	1999	2021	158.71	322.78	515.59	2371
•	694.00	683.10	694.12	2000	2022	158.16	321.81	514.23	2415
•	696.00	685.91	696.63	2002	2024	157.57	320.76	512.76	2505
	698.00	688.55	698.99	2003	2025	157.06	319.85	511.50	2358
	700.00	691.21	701.36	2004	2026	156.54	318.94	510.22	2374
	702.00	693.93	703.79	2005	2027	156.00	317.98	508.88	2429
,	704.00	696.74	706.30	2007	2029	155.42	316.95	507.43	2511
	706.00	699.56	708.82	2008	2030	154.84	315.92	505.98	2522
	708.00	702.29	711.26	2009	2030	154.31	314.97	504.65	2437
٠,	710.00	704.97	713.66	2010	2033	153.80	314.97	503.38	2394
	712.00	707.65	716.05	2011	2033	153.29	313.16	502.12	2390
	714.00	710.70	718.77	2011	2034	152.63		500.41	2726
v	714.00	713.44	721.22	2015	2037	152.10	311.96 311.03	499.10	2445
	718.00	716.01	723.51	2015	2037	151.65	310.23	497.10	2296

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
720.00	718.65	725.87	2016	2039	151.17	309.38	496.78	2361
722.00	721.21	728.16	2017	2040	150.73	308.59	495.69	2284
724.00	723.97	730.62	2018	2041	150.21	307.66	494.38	2463
726.00	726.88	733.22	2020	2043	149.63	306.62	492.90	2597
728.00	729.69	735.73	2021	2044	149.10	305.66	491.54	2511
730.00	732.39	738.14	2022	2045	148.61	304.79	490.31	2414
732.00	735.13	740.59	2023	2046	148.12	303.90	489.05	2446
734.00	737.85	743.01	2025	2048	147.63	303.03	487.82	2425
736.00	740.67	745.53	2026	2049	147.11	302.08	486.48	2519
738.00	743.71	748.25	2028	2051	146.50	300.97	484.88	2718
740.00	746.52	750.76	2029	2052	145.99	300.05	483.57	2505
742.00	749.15	753.11	2030	2053	145.55	299.26	482.46	2352
744.00	751.86	755.53	2031	2054	145.08	298.42	481.26	2424
746.00	754.57	757.95	2032	2055	144.62	297.58	480.08	2417
748.00	757.25	760.34	2033	2056	144.17	296.77	478.93	2393
750.00	760.03	762.82	2034	2058	143.69	295.90	477.69	2480
752.00	762.93	765.42	2036	2059	143.16	294.93	476.31	2594
754.00	765.81	767.98	2037	2061	142.65	294.00	474.97	2566
756.00	768.58	770.46	2038	2062	142.18	293.15	473.75	2475
758.00	771.34	772.92	2039	2063	141.72	292.31	472.55	2463
760.00	774.12	775.40	2041	2064	141.25	291.45	471.34	2483
762.00	776.84	777.84	2042	2065	140.80	290.64	470.18	2433
764.00	779.61	780.31	2043	2067	140.34	289.81	468.99	2473
766.00	782.42	782.81	2044	2068	139.88	288.95	467.76	2507

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
768.00	785.24	785.33	2045	2069	139.41	288.10	466.54	2514
770.00	788.15	787.91	2047	2071	138.92	287.19	465.24	2581
772.00	790.89	790.34	2048	2072	138.48	286.41	464.11	2434
774.00	793.58	792.74	2048	2073	138.07	285.65	463.03	2398
776.00	796.36	795.21	2050	2074	137.63	284.85	461.88	2465
778.00	798.95	797.51	2050	2074	137.25	284.16	460.91	2303
780.00	801.83	800.07	2051	2076	136.78	283.30	459.66	2563
782.00	805.00	802.89	2053	2078	136.21	282.24	458.12	2819
784.00	808.10	805.65	2055	2080	135.67	281.24	456.66	2754
786.00	811.07	808.28	2057	2082	135.19	280.33	455.35	2638
788.00	813.89	810.80	2058	2083	134.75	279.53	454.19	2512
790.00	816.74	813.33	2059	2084	134.31	278.71	453.01	2531
792.00	819.80	816.05	2061	2086	133.79	277.76	451.62	2722
794.00	823.63	819.45	2064	2090	132.99	276.24	449.36	3402
796.00	826.57	822.07	2065	2092	132.53	275.38	448.11	2615
798.00	829.53	824.70	2067	2093	132.06	274.52	446.86	2633
800.00	832.51	827.35	2068	2095	131.60	273.65	445.59	2646
802.00	835.67	830.16	2070	2097	131.07	272.66	444.15	2813
804.00	838.74	832.89	2072	2099	130.58	271.74	442.81	2732
806.00	841.71	835.53	2073	2100	130.13	270.90	441.57	2637
808.00	844.72	838.20	2075	2102	129.67	270.04	440.31	2672
810.00	847.68	840.84	2076	2103	129.22	269.20	439.09	2638
812.00	850.67	843.49	2078	2105	128.77	268.36	437.86	2657
814.00	853.80	846.28	2079	2107	128.28	267.43	436.50	2784

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
816.00	856.95	849.07	2081	2109	127.78	266.50	435.13	2793
818.00	860.06	851.84	2083	2111	127.30	265.60	433.81	2765
820.00	863.25	854.68	2085	2113	126.80	264.65	432.41	2840
822.00	866.42	857.49	2086	2115	126.31	263.73	431.04	2818
824.00	869.61	860.33	2088	2117	125.82	262.79	429.67	2837
826.00	872.73	863.10	2090	2119	125.35	261.91	428.37	2771
828.00	875.76	865.80	2091	2120	124.91	261.09	427.15	2698
830.00	878.87	868.56	2093	2122	124.45	260.22	425.88	2761
832.00	881.94	871.29	2094	2124	124.01	259.39	424.65	2725
834.00	884.81	873.81	2095	2125	123.64	258.69	423.63	2520
836.00	887.88	876.50	2097	2126	123.22	257.89	422.45	2696
838.00	890.99	879.24	2098	2128	122.78	257.06	421.23	2736
840.00	894.00	881.89	2100	2129	122.37	256.30	420.10	2647
842.00	897.10	884.60	2101	2131	121.95	255.49	418.91	2719
844.00	900.26	887.38	2103	2133	121.51	254.65	417.67	2781
846.00	903.49	890.22	2105	2135	121.05	253.78	416.38	2835
848.00	906.79	893.13	2106	2137	120.57	252.87	415.02	2908
850.00	910.30	896.21	2109	2139	120.04	251.85	413.49	3081
852.00	913.59	899.10	2111	2142	119.57	250.96	412.16	2893
854.00	916.78	901.91	2112	2143	119.14	250.13	410.93	2806
856.00	920.10	904.82	2114	2145	118.67	249.24	409.60	2916
858.00	923.34	907.67	2116	2147	118.23	248.40	408.35	2849
860.00	926.60	910.53	2118	2149	117.79	247.55	407.09	2860
862.00	929.85	913.39	2119	2151	117.36	246.72	405.84	2856

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD	M/S	M/S	MS	MS	MS	M/S
864.00	933.30	916.42	2121	2154	116.87	245.77	404.42	3032
			2124	2156	116.37	244.82	402.99	3058
866.00	936.78	919.48						2928
868.00	940.11	922.41	2125	2158	115.92	243.96	401.70	2987
870.00	943.51	925.39	2127	2161	115.46	243.06	400.36	2941
872.00	946.85	928.34	2129	2163	115.01	242.21	399.07	2789
874.00	950.03	931.12	2131	2164	114.62	241.44	397.93	2767
876.00	953.18	933.89	2132	2166	114.23	240.70	396.82	2795
878.00	956.36	936.69	2134	2168	113.84	239.95	395.69	2781
880.00	959.52	939.47	2135	2169	113.45	239.20	394.58	2846
882.00	962.76	942.31	2137	2171	113.05	238.43	393.42	2668
884.00	965.80	944.98	2138	2172	112.70	237.76	392.42	2709
886.00	968.88	947.69	2139	2173	112.34	237.07	391.39	2687
888.00	971.94	950.38	2140	2175	111.99	236.40	390.39	
890.00	975.05	953.11	2142	2176	111.63	235.70	389.35	2734
892.00	978.09	955.79	2143	2177	111.28	235.04	388.36	2674
894.00	981.06	958.39	2144	2178	110.96	234.42	387.44	2609
896.00	984.05	96102	2145	2180	110.63	233.79	386.50	2630
898.00	987.10	963.70	2146	2181	110.30	233.14	385.52	2679
900.00	990.19	966.42	2148	2182	109.95	232.48	384.52	2713
902.00	993.15	969.02	2149	2183	109.64	231.87	383.62	2608
904.00	996.05	971.57	2149	2184	109.34	231.30	382.76	2544
906.00	998.94	974.11	2150	2185	109.04	230.73	381.92	2540
908.00	1001.83	976.65	2151	2186	108.75	230.16	381.07	2543
910.00	1004.93	979.37	2152	2187	108.41	229.51	380.09	2717

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS MS	KB M	M	M/S	M/S	MS	MS	MS	M/S
912.00	1008.08	982.12	2154	2188	108.07	228.84	379.09	2757
914.00	1011.15	984.81	2155	2190	107.74	228.21	378.14	2688
916.00	1014.15	987.44	2156	2191	107.43	227.62	377.25	2626
918.00	1017.17	990.09	2157	2192	107.12	227.02	376.34	2648
920.00	1020.25	992.78	2158	2193	106.80	226.39	375.41	2690
922.00	1023.38	995.52	2159	2194	106.47	225.75	374.44	2745
924.00	1026.30	998.08	2160	2195	106.18	225.20	373.61	2556
926.00	1029.37	1000.77	2161	2196	105.87	224.59	372.69	2692 2594
928.00	1032.33	1003.36	2162	2197	105.58	224.03	371.85	
930.00	1035.31	1005.97	2163	2198	105.29	223.46	370.99	2608
932.00	1038.37	1008.65	2164	2199	104.98	222.87	370.10	2677
934.00	1041.37	1011.28	2165	2201	104.69	222.30	369.24	2630 2736
936.00	1044.50	1014.01	2167	2202	104.37	221.68	368.30	2754
938.00	1047.64	1016.77	2168	2203	104.05	221.06	367.36	2641
940.00	1050.66	1019.41	2169	2204	103.76	220.49	366.50	2667
942.00	1053.70	1022.08	2170	2205	103.47	219.91	365.63	2658
944.00	1056.74	1024.73	2171	2206	103.17	219.34	364.77	2653
946.00	1059.77	1027.39	2172	2207	102.89	218.78	363.92	2692
948.00	1062.85	1030.08	2173	2208	102.59	218.20	363.04	2652
950.00	1065.87	1032.73	2174	2209	102.30	217.65	362.20	2622
952.00	1068.87	1035.35	2175	2210	102.03	217.10	361.38	2690
954.00	1071.94	1038.04	2176	2212	101.74	216.54	360.52	2853
956.00	1075.20	1040.90	2178	2213	101.41	215.89	359.54	2769
_958.00	1078.36	1043.67	<u>2179</u>	2214	101.10	215.29	358.63	2.07

: WESTGATE - 1

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
960.00	1081.48	1046.40	2180	2216	100.81	214.72	357.75	2732
962.00	1084.58	1049.12	2181	2217	100.52	214.15	356.88	2718
964.00	1087.83	1051.96	2182	2218	100.20	213.52	355.93	2847
966.00	1091.03	1054.76	2184	2220	99.90	212.92	355.01	2798
968.00	1094.17	1057.51	2185	2221	99.60	212.35	354.14	2748
970.00	1097.34	1060.28	2186	2222	99.31	211.77	353.25	2774
972.00	1100.52	1063.07	2187	2223	99.01	211.18	352.35	2790
974.00	1103.67	1065.83	2189	2225	98.72	210.61	351.48	2759
976.00	1106.96	1068.71	2190	2226	98.41	209.99	350.53	2877
978.00	1110.18	1071.53	2191	2228	98.11	209.40	349.63	2824
980.00	1113.38	1074.33	2193	2229	97.82	208.83	348.75	2797
982.00	1116.70	1077.24	2194	2230	97.50	208.20	347.79	2912
984.00	1120.07	1080.19	2196	2232	97.18	207.56	346.81	2948
986.00	1123.46	1083.16	2197	2234	96.86	206.92	345.82	2971
988.00	1126.78	1086.07	2199	2235	96.55	206.31	344.88	2907
990.00	1130.13	1089.00	2200	2237	96.24	205.69	343.92	2936
992.00	1133.61	1092.05	2202	2239	95.90	205.02	342.89	3050
994.00	1137.21	1095.20	2204	2241	95.55	204.31	341.79	3149
996.00	1141.02	1098.54	2206	2244	95.15	203.52	340.55	3336
998.00	1144.58	1101.65	2208	2246	94.81	202.83	339.49	3116
1000.00	1148.22	1104.85	2210	2248	94.45	202.12	338.38	3195
1002.00	1151.43	1107.66	2211	2250	94.17	201.57	337.54	2814
1004.00	1154.72	1110.55	2212	2251	93.89	201.00	336.66	2886
1006.00	1158.03	1113.45	2214	2253	93.60	200.43	335.77	2898

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
1008.00	1161.12	1116.16	2215	2254	93.35	199.93	335.01	2715
1010.00	1164.24	1118.89	2216	2255	93.10	199.43	334.24	2732
1012.00	1167.85	1122.06	2218	2257	92.76	198.75	333.18	3164
1014.00	1171.30	1125.09	2219	2259	92.45	198.14	332.23	3027
1016.00	1175.11	1128.42	2221	2261	92.08	197.39	331.06	3339
1018.00	1178.69	1131.57	2223	2263	91.75	196.73	330.04	3143
1020.00	1182.04	1134.50	2225	2265	91.47	196.17	329.17	2929
1022.00	1185.37	1137.40	2226	2266	91.19	195.62	328.32	2904
1024.00	1188.77	1140.37	2227	2268	90.91	195.05	327.43	2967
1026.00	1192.20	1143.36	2229	2269	90.62	194.47	326.53	2991
1028.00	1195.54	1146.28	2230	2271	90.35	193.93	325.69	2919
1030.00	1198.80	1149.12	2231	2272	90.09	193.41	324.89	2847
1032.00	1201.91	1151.84	2232	2273	89.86	192.95	324.17	2713
1034.00	1204.95	1154.49	2233	2274	89.64	192.51	323.50	2653
1036.00	1208.25	1157.37	2234	2275	89.38	191.99	322.69	2877
1038.00	1211.55	1160.24	2236	2276	89.12	191.48	321.89	2875
1040.00	1214.89	1163.16	2237	2278	88.86	190.95	321.07	2918
1042.00	1218.22	1166.06	2238	2279	88.60	190.43	320.26	2906
1044.00	1221.70	1169.10	2240	2281	88.32	189.86	319.37	3032
1046.00	1224.93	1171.92	2241	2282	88.08	189.37	318.62	2825
1048.00	1228.40	1174.95	2242	2284	87.80	188.82	317.74	3025
1050.00	1231.81	1177.92	2244	2285	87.53	188.28	316.91	2970
1052.00	1235.15	1180.83	2245	2287	87.28	187.77	316.11	2916
1054.00	1238.33	1183.61	_2246	2288	87.05	187.31	315.40	2772

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
1056.00	1241.70	1186.55	2247	2289	86.80	186.80	314.60	29 4 1 2900
1058.00	1245.02	1189.45	2248	2290	86.55	186.30	313.82	2875
1060.00	1248.32	1192.32	2250	2292	86.31	185.82	313.06	2879
1062.00	1251.62	1195.20	2251	2293	86.07	185.33	312.31	2813
1064.00	1254.85	1198.01	2252	2294	85.84	184.87	311.59	2779
1066.00	1258.04	1200.79	2253	2295	85.62	184.43	310.90	2746
1068.00	1261.20	1203.54	2254	2296	85.40	183.99	310.22	2819
1070.00	1264.44	1206.36	2255	2297	85.18	183.54	309.51	3028
1072.00	1267.92	1209.39	2256	2299	84.92	183.01	308.69	3028
1074.00	1271.47	1212.48	2258	2300	84.65	182.47	307.83	2895
1076.00	1274.79	1215.37	2259	2302	84.42	181.99	307.09	2912
1078.00	1278.14	1218.29	2260	2303	84.18	181.52	306.34	2867
1080.00	1281.44	1221.15	2261	2304	83.95	181.06	305.62	2899
1082.00	1284.77	1224.05	2263	2305	83.72	180.59	304.89	2793
1084.00	1287.97	1226.84	2264	2306	83.51	180.16	304.21	2838
1086.00	1291.22	1229.68	2265	2307	83.29	179.72	303.52	2933
1088.00	1294.55	1232.61	2266	2309	83.06	179.25	302.78	3047
1090.00	1298.02	1235.66	2267	2310	82.81	178.74	301.98	3500
1092.00	1302.00	1239.16	2270	2313	82.48	178.06	300.91	3201
1094.00	1305.65	1242.36	2271	2315	82.20	177.51	300.03	2859
1096.00	1308.90	1245.22	2272	2316	81.99	177.07	299.34	2882
1098.00	1312.18	1248.10	2273	2317	81.77	176.63	298.65	2989
1100.00	1315.58	1251.09	2275	2319	81.54	176.15	297.90	3146
1102.00	1319.16	1254.24	2276	2320	81.28	175.63	297.07	3140

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	M	M	M/S	M/S	MS	MS	MS	M/S
1104.00	1322.45	1257.13	2277	2321	81.06	175.19	296.38	2891 2890
1106.00	1325.74	1260.02	2279	2323	80.85	174.76	295.69	2992
1108.00	1329.14	1263.01	2280	2324	80.62	174.29	294.96	2894
1110.00	1332.43	1265.90	2281	2325	80.41	173.86	294.28	3044
1112.00	1335.90	1268.95	2282	2327	80.17	173.38	293.52	2951
1114.00	1339.26	1271.90	2283	2328	79.96	172.93	292.82	
1116.00	1342.48	1274.73	2284	2329	79.76	172.53	292.18	2830 2887
1118.00	1345.76	1277.62	2286	2330	79.55	172.11	291.51	2874
1120.00	1349.03	1280.49	2287	2331	79.34	171.69	290.85	2855
1122.00	1352.28	1283.35	2288	2332	79.14	171.28	290.21	
1124.00	1355.42	1286.10	2288	2333	78.96	170.90	289.62	2755 2969
1126.00	1358.80	1289.07	2290	2334	78.74	170.47	288.92	290
1128.00	1362.17	1292.04	2291	2336	78.53	170.03	288.23	
1130.00	1365.45	1294.92	2292	2337	78.33	169.62	287.58	2883
1132.00	1368.76	1297.83	2293	2338	78.13	169.21	286.93	2908
1134.00	1372.09	1300.76	2294	2339	77.92	168.79	286.27	292
1136.00	1375.32	1303.59	2295	2340	77.73	168.40	285.65	283
1138.00	1378.49	1306.38	2296	2341	77.55	168.03	285.06	278
1140.00	1381.69	1309.20	2297	2342	77.36	167.65	284.46	281
1142.00	1385.01	1312.11	2298	2343	77.16	167.24	283.82	291:
1144.00	1388.53	1315.20	2299	2344	76.94	166.78	283.09	309
1146.00	1391.94	1318.20	2301	2346	76.73	166.36	282.41	299
1148.00	1395.39	1321.23	2302	2347	76.52	165.92	281.72	303
1150.00	1398.79	1324.22	2303	2348	76.32	165.50	281.05	298

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVA VELOCIT
MS	M	M	M/S	M/S	MS	MS	MS	M/S
1152.00	1402.29	1327.29	2304	2350	76.10	165.06	280.35	307
1154.00	1405.65	1330.25	2305	2351	75.90	164.65	279.70	295
1156.00	1408.99	1333.19	2307	2352	75.71	164.25	279.06	294
1158.00	1412.25	1336.09	2308	2353	75.52	163.87	278.45	289
1160.00	1415.63	1339.10	2309	2354	75.32	163.45	277.79	301
1162.00	1418.83	1341.95	2310	2355	75.14	163.08	277.20	285
1164.00	1422.07	1344.83	2311	2356	74.95	162.70	276.60	287
1166.00	1425.40	1347.80	2312	2357	74.76	162.31	275.97	296
1168.00	1428.72	1350.75	2313	2359	74.57	161.91	275.34	295
1170.00	1431.99	1353.66	2314	2360	74.39	161.54	274.74	290
1172.00	1435.25	1356.56	2315	2361	74.20	161.16	274.14	290
1174.00	1438.54	1359.49	2316	2362	74.02	160.78	273.54	292
1176.00	1441.86	1362.44	2317	2363	73.83	160.40	272.92	295
1178.00	1445.51	1365.69	2319	2365	73.61	159.93	272.18	324
1180.00	1449.17	1368.95	2320	2367	73.38	159.46	271.42	326
1182.00	1452.54	1371.95	2321	2368	73.19	159.07	270.80	299
1184.00	1456.25	1375.25	2323	2370	72.96	158.59	270.04	330
1186.00	1459.80	1378.41	2324	2371	72.75	158.16	269.35	315
1188.00	1463.24	1381.47	2326	2372	72.56	157.76	268.70	306
1190.00	1466.60	1384.47	2327	2374	72.37	157.38	268.09	299
1192.00	1469.91	1387.41	2328	2375	72.19	157.02	267.51	294
1194.00	1473.21	1390.35	2329	2376	72.02	156.65	266.92	294
1196.00	1476.50	1393.27	2330	2377	71.84	156.29	266.35	292
1198.00	1479.74	1396.16	2331	2378	71.68	155.95	265.79	288

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
1200.00	1483.05	1399.10	2332	2379	71.50	155.59	265.22	2942
1202.00	1486.26	1401.96	2333	2380	71.34	155.25	264.68	2862
1204.00	1489.38	1404.74	2333	2380	71.18	154.93	264.17	2775
1206.00	1492.69	1407.68	2334	2381	71.01	154.57	263.60	2948
1208.00	1496.02	1410.64	2336	2383	70.84	154.22	263.03	2959
1210.00	1499.41	1413.66	2337	2384	70.66	153.85	262.43	3015
1212.00	1502.78	1416.66	2338	2385	70.48	153.48	261.84	3006
1214.00	1506.20	1419.71	2339	2386	70.30	153.11	261.24	3042
1216.00	1509.58	1422.73	2340	2387	70.13	152.74	260.65	3025
1218.00	1512.95	1425.76	2341	2389	69.95	152.37	260.06	3028
1220.00	1516.36	1428.81	2342	2390	69.77	152.00	259.47	3052
1222.00	1519.70	1431.81	2343	2391	69.60	151.64	258.89	3001
1224.00	1523.19	1434.94	2345	2392	69.41	151.26	258.27	3125
1226.00	1526.66	1438.06	2346	2394	69.23	150.88	257.65	3118
1228.00	1530.13	1441.16	2347	2395	69.05	150.50	257.04	3109
1230.00	1533.67	1444.34	2349	2396	68.86	150.11	256.41	3172 3192
1232.00	1537.23	1447.53	2350	2398	68.67	149.71	255.77	
1234.00	1540.78	1450.72	2351	2399	68.48	149.32	255.14	3190
1236.00	1544.43	1453.99	2353	2401	68.28	148.91	254.47	3268
1238.00	1548.03	1457.22	2354	2403	68.09	148.51	253.83	3234 3178
1240.00	1551.58	1460.40	2355	2404	67.91	148.12	253.21	3173
1242.00	1555.14	1463.59	2357	2406	67.72	147.74	252.58	3181
1244.00	1558.68	1466.77	2358	2407	67.54	147.36	251.97	3162
1246.00	1562.21	1469.94	2359	2408	67.36	146.99	251.36	3102

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
1248.00	1565.77	1473.13	2361	2410	67.18	146.60	250.75	3199
1250.00	1569.36	1476.35	2362	2411	66.99	146.22	250.13	3213
1252.00	1572.97	1479.59	2364	2413	66.81	145.83	249.50	3242
1254.00	1576.58	1482.83	2365	2415	66.62	145.45	248.88	3236
1256.00	1580.24	1486.11	2366	2416	66.44	145.06	248.24	3284
1258.00	1583.85	1489.35	2368	2418	66.25	144.68	247.62	3241
1260.00	1587.44	1492.57	2369	2419	66.07	144.30	247.01	3219
1262.00	1591.11	1495.86	2371	2421	65.89	143.91	246.38	3287
1264.00	1594.79	1499.16	2372	2422	65.70	143.52	245.75	3305
1266.00	1598.52	1502.50	2374	2424	65.51	143.13	245.10	3341
1268.00	1602.28	1505.88	2375	2426	65.32	142.72	244.45	3373
1270.00	1606.00	1509.21	2377	2428	65.13	142.33	243.81	3333
1272.00	1609.70	1512.53	2378	2429	64.95	141.94	243.18	3324
1274.00	1613.47	1515.91	2380	2431	64.76	141.55	242.53	3378
1276.00	1617.29	1519.34	2381	2433	64.56	141.14	241.87	3427
1278.00	1621.10	1522.76	2383	2435	64.37	140.74	241.21	3420
1280.00	1624.92	1526.18	2385	2437	64.18	140.34	240.56	3421
1282.00	1628.74	1529.61	2386	2439	63.99	139.94	239.90	3428
1284.00	1632.59	1533.06	2388	2440	63.80	139.53	239.24	3451
1286.00	1636.51	1536.57	2390	2442	63.60	139.11	238.56	3517
1288.00	1640.51	1540.16	2392	2445	63.39	138.68	237.86	3589
1290.00	1644.49	1543.74	2393	2447	63.19	138.26	237.16	3572
1292.00	1648.47	1547.30	2395	2449	62.99	137.83	236.47	3568
1294.00	1652.44	1550.86	2397	2451	62.79	137.42	235.79	3560

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
1296.00	1656.32	1554.35	2399	2453	62.60	137.02	235.13	3485
1298.00	1660.15	1557.78	2400	2455	62.42	136.64	234.51	3433
1300.00	1663.90	1561.15	2402	2456	62.25	136.27	233.91	3363
1302.00	1667.66	1564.51	2403	2458	62.08	135.91	233.31	3369
1304.00	1671.45	1567.92	2405	2460	61.90	135.53	232.71	3404
1306.00	1675.37	1571.43	2406	2462	61.71	135.14	232.06	3513
1308.00	1679.08	1574.76	2408	2463	61.55	134.79	231.49	3326
1310.00	1682.84	1578.13	2409	2465	61.38	134.44	230.91	3371
1312.00	1686.53	1581.44	2411	2467	61.21	134.09	230.35	3309
1314.00	1689.87	1584.44	2412	2467	61.08	133.81	229.89	3004
1316.00	1693.28	1587.49	2413	2468	60.94	133.53	229.43	3050
1318.00	1696.51	1590.39	2413	2469	60.82	133.27	229.01	2903
1320.00	1699.73	1593.28	2414	2470	60.70	133.02	228.59	2887
1322.00	1702.89	1596.16	2415	2470	60.58	132.76	228.18	2876
1324.00	1706.06	1599.05	2415	2471	60.46	132.51	227.77	2897
1326.00	1709.20	1601.92	2416	2472	60.34	132.26	227.37	2870
1328.00	1712.30	1604.76	2417	2472	60.23	132.02	226.97	2832
1330.00	1715.39	1607.58	2417	2473	60.11	131.78	226.59	2829
1332.00	1718.58	1610.50	2418	2474	59.99	131.53	226.17	2912
1334.00	1721.71	1613.36	2419	2474	59.88	131.29	225.77	2868
1336.00	1724.92	1616.29	2420	2475	59.76	131.03	225.36	2929
1338.00	1728.06	1619.17	2420	2476	59.64	130.79	224.96	2873
1340.00	1731.17	1622.01	2421	2476	59.53	130.55	224.58	2841
1342.00	1734.23	1624.81	_ 2421	2477	59.42	130.32	224.20	2800

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
1344.00	1737.29	1627.61	2422	2477	59.31	130.09	223.83	2799
1346.00	1740.32	1630.38	2423	2478	59.20	129.87	223.47	2777
1348.00	1743.56	1633.35	2423	2479	59.08	129.62	223.05	2962
1350.00	1747.22	1636.69	2425	2480	58.93	129.29	222.52	3341
1352.00	1750.78	1639.94	2426	2481	58.78	128.98	222.01	3258
1354.00	1754.16	1643.03	2427	2482	58.65	128.71	221.56	3090
1356.00	1757.81	1646.37	2428	2484	58.50	128.39	221.04	3335
1358.00	1761.33	1649.59	2429	2485	58.36	128.10	220.55	3218
1360.00	1765.01	1652.95	2431	2487	58.21	127.77	220.02	3365
1362.00	1768.59	1656.23	2432	2488	58.07	127.47	219.52	3281
1364.00	1772.21	1659.54	2433	2489	57.92	127.16	219.02	3302
1366.00	1775.91	1662.92	2435	2491	57.77	126.84	218.49	3388
1368.00	1779.44	1666.15	2436	2492	57.63	126.55	218.01	3230
1370.00	1782.95	1669.36	2437	2493	57.50	126.26	217.54	3205
1372.00	1786.60	1672.70	2438	2495	57.35	125.96	217.04	3337
1374.00	1790.26	1676.05	2440	2496	57.21	125.65	216.53	3349
1376.00	1793.76	1679.25	2441	2497	57.07	125.37	216.07	3200
1378.00	1797.13	1682.33	2442	2498	56.95	125.11	215.64	3082
1380.00	1800.34	1685.26	2442	2499	56.84	124.88	215.26	2935
1382.00	1803.66	1688.30	2443	2500	56.72	124.63	214.85	3038
1384.00	1806.93	1691.29	2444	2501	56.61	124.39	214.46	2987
1386.00	1810.63	1694.67	2445	2502	56.47	124.08	213.95	3385
1388.00	1814.29	1698.02	2447	2 50 4	56.33	123.79	213.46	3344
1390.00	1817.80	1701.23	2448	2505	56.20	123.51	213.01	3209

WELL : WESTGATE - 1

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
1392.00	1821.40	1704.52	2449	2506	56.06	123.23	212.54	3292
1394.00	1824.76	1707.60	2450	2507	55.94	122.98	212.13	3079
1396.00	1828.01	1710.57	2451	2508	55.84	122.75	211.75	2972
1398.00	1831.33	1713.60	2451	2509	55.72	122.51	211.36	3027
1400.00	1834.53	1716.53	2452	2509	55.62	122.29	210.99	2933
1402.00	1837.72	1719.44	2453	2510	55.51	122.07	210.63	2915
1404.00	1841.32	1722.73	2454	2511	55.38	121.79	210.17	3290
1406.00	1844.87	1725.98	2455	2512	55.26	121.52	209.72	3248
1408.00	1848.65	1729.44	2457	2514	55.11	121.21	209.21	3461
1410.00	1851.92	1732.43	2457	2515	55.00	120.98	208.84	2984
1412.00	1855.66	1735.85	2459	2516	54.86	120.69	208.35	3421
1414.00	1859.66	1739.51	2460	2518	54.71	120.35	207.79	3661
1416.00	1863.38	1742.91	2462	2520	54.57	120.06	207.30	3398
1418.00	1867.16	1746.36	2463	2521	54.43	119.76	206.81	3454
1420.00	1870.84	1749.73	2464	2523	54.29	119.47	206.34	3373
1422.00	1874.53	1753.10	2466	2524	54.16	119.19	205.88	3367
1424.00	1878.31	1756.56	2467	2526	54.02	118.90	205.38	3463
1426.00	1881.96	1759.90	2468	2527	53.90	118.62	204.93	3333
1428.00	1885.65	1763.27	2470	2528	53.77	118.35	204.47	3375
1430.00	1889.68	1766.96	2471	2530	53.61	118.01	203.92	3683
1432.00	1893.29	1770.26	2472	2531	53.49	117.75	203.48	3302
1434.00	1896.96	1773.61	2474	2533	53.36	117.48	203.03	3357
1436.00	1900.68	1777.02	2475	2534	53.23	117.20	202.57	3406
1438.00	1904.73	1780.72	~ 2477	2536	53.07	114.87	202.03	3701

COMPANY : BEACH PETROLEUM N.L. WELL : WESTGATE - 1 PAGE 33 TWO-WAY MEASURED VERTICAL AVERAGE RMS FIRST THIRD NORMAL MOVEOUT SECOND INTERVAL TRAVEL DEPTH FROM DEPTH FROM VELOCITY SRD/GEO VELOCITY NOR MAL MOVEOUT NORMAL VELOCITY TIME FROM SRD MS MOVEOUT KB SRD M/S M/S MS MS MS M/S 3685 1440.00 1908.76 1784.41 2478 2538 52.92 116.55 201.49

Synthetic...

ANALYST: M. SANDERS

2-JUN-86 19:41:20

PROGRAM: GTRFRM 007.E11

SYNTHETIC SEISMOGRAM TABLE

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

FIELD : WILDCAT

STATE : VICTORIA

COUNTRY : AUSTRALIA

REFERENCE: 560311

THE HEADINGS AND FLAGS SHOWN IN THE DATA LIST ARE DEFINED AS FOLLOWS:

IGEOFL- FLAG INDICATING MODE OF PROCESSING
IGEOFL = 0 WST DATA AVAILABLE AND PROCESSED
IGEOFL = 1 WST DATA NOT AVAILABLE

LOG INPUT DATA:
GRF001- CHANNEL NAME FOR INPUT DENSITY LOG DATA
GTR0C1- CHANNEL NAME FOR INPUT SONIC LOG DATA
GCURVE- CORRELATION LOG NAMES

USER DEFINED MODELING

ŧ

.

LOFVEL- LAYER OPTION FLAG FOR VELOCITY LOFDEN- LAYER OPTION FLAG FOR DENSITY LAYVEL- LAYERED VELOCITY VALUES FOR USER SUPPLIED ZONE LIMIT WITH RESPECT TO SONIC LOG DATA LAYDEN- LAYERED DENSITY VALUES FOR USER SUPPLIED ZONE LIMITS WITH RESPECT TO SONIC LOG DATA UNERTH- UNIFORM EARTH VELOCITY UNFDEN- UNIFORM EARTH DENSITY SRATE SAMPLING RATE IN MS START DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM INIDEP WITH RESPECT TO SONIC LOG DATA STOP DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM IGESTP WITH RESPECT TO SONIC LOG DATA TWO WAY TRAVEL TIME FROM TOP SONIC TO SRD INITAU **EKB** ELEVATION OF KELLY BUSHING WITH RESPECT TO MEAN SEA LEVEL SEISMIC REFERENCE DEPTH WITH RESPECT TO SRDGEO MEAN SEA LEVEL FLAG FOR COMPUTING RESIDUAL MULTIPLES ICDP CDPTIM TWO WAY TIME INTERVAL FOR COMPUTATION OF RESIDUAL MULTIPLES SCRTIM SURFACE REFLECTOR TWO WAY TIME ABOVE INITAU SURFACE REFLECTION COEFFICIENT SCREFL RCMAX REFLECTION COEFFICIENTS THAT ARE EQUAL TO OR GREATER THAN THIS VALUE SHALL BE FLAGGED

IN CASE OF MODELING A SYNTHETIC SEISMOGRAM WITHOUT SONIC LOG DATA , THE DEPTH REFERENCES SHALL BE USER

OUTPUT DATA

NOTE

RMSVWE ROOT MEAN SQUARE VELOCITY FOUND FOR THE WELL SRDTIM TWO WAY TRANSIT TIME BETWEEN INIDEP AND SRDGEO

CHANNNEL NAMES

DEFINED

```
TWOT- TWO WAY TRAVEL TIME
DSRD- DEPTH OF COMPUTED DATA WITH RESPECT TO SRD
INTV- INTERVAL VELOCITY ON A TIME SCALE
RHOT- INTERVAL DENSITY ON A TIME SCALE
REFL- REFLECTION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES
ATTE- ATTENUATION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES
PRIM- SYNTHETIC SEISMOGRAM - PRIMARIES
MULT- SYNTHETIC SEISMOGRAM - PRIMARIES + MULTIPLES
MUON- MULTIPLES ONLY
```

CHANNEL NAMES

```
CHAN
          1 - TWOT.GMU.002.*
            - DSRD_GRF_006.*
CHAN
          3 - INTV.GRF.007.*
4 - RHOT.GRF.001.*
CHAN
CHAN
          5 - REFL.GRF.001.*
6 - ATTE.GRF.001.*
7 - PRIM.GRF.001.*
CHAN
CHAN
CHAN
            - MULT.GMU.001.*
CHAN
          9 - MUON_GMU_001.*
CHAN
```

ŧ

(GLOBAL PARAMETERS)

(VALUE)

MODE OF PROC (GEOGRAM) INITIALIZE CDP LOGIC CDP TIME TIME SAMPLING (WST) TOP DEPTH OF PROCESSING BOTTOM DEPTH OF PROCESSI INITIAL TWO WAY TRAVEL T SRD FOR GEOGRAM ELEVATION OF KELLY BUSHI SRD TIME SURFACE COEFFICIENT OF R SURFACE COEFFICIENT OF R REFLECTION COEFF MAXIMUM RMS VELOCITY IN WELL UNIFORM EARTH VELOCITY	IGEOFL ICDPTIM SRATEP INITAU SRATESTP INITAU SRAB SRATIM SCREFL RCMAX RMSCRTH	0 200000 2.00000 487.700 1787.00 1787.00 -30479.7 0 0 -1.00000 2860.49 2133.60	SMMMSMMMSS SS
		2133.60	M/S G/C3

3

(MATRIX PARAMETERS)

1 SD01*
2 SD02*
3 SD03*
4 SD04*
5 GR*
6 CALI*
7 SD04.CUR.LOG.003.*

(ZONED PARAMETERS)

LAYER OPTION FLAG DE	NS LOFDEN
LAYER OPTION FLAG VE	LOC LOFVEL
USER SUPPLIED DENSIT	TY DA LAYDEN
USER VELOC (WST)	LAYVEL

(VALUE)

:-1.000000 : 1.000000 :-999.2500 : 2145.000 1963.000 1777.000	G/C3 M/S	30479.7 30479.7 30479.7 432.000 394.600 247.800	-	0 0 0 394.600 247.800 135.000
1730.000		99.0000		7.70000

(LIMITS)

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
527.0 529.0 531.0 533.0 535.0 537.0 539.0 541.0 543.0 545.0 547.0 549.0 551.0 553.0 555.0 557.0	(OR TOP) 489.96 492.23 494.48 496.76 499.04 501.29 503.44 505.69 507.94 510.20 512.75 515.64 518.02 520.35 522.63 527.41 529.95			.001004 .006 .001006023 .024001 .002 .059 .063096012010 .047048 .053057	1.00000 .99999 .99995 .99995 .99991 .99938 .99881 .99881 .99881 .99881 .99881 .99881 .99881 .99534 .99137 .98230 .98216 .98207 .97988 .97758 .97483 .97168	.0006900379 .00571 .000940063302309 .0237400056 .00195 .05886 .0629109482011630946 .0463804748 .0517805549	.0006900379 .00572 .000920062902311 .0237200069 .00241 .05859 .06255094890105901225 .0482904366 .0509406360	0 .00001 00002 .00004 00002 00013 .00046 00027 00035 00007 .00104 00279 .00190 .00382 00084 00811
563.0 565.0 567.0 569.0 571.0 573.0	532.21 534.63 537.42 539.69 541.94 544.38	2422 2797 2261 2255 2441 2296	2.100 2.100 2.100 2.100 2.100 2.100	.035 .072 106 001 .040 030	.97050 .96548 .95462 .95462 .95312	.03377 .06983 10238 00135 .03781 02904	.03744 .06741 10692 .00201 .05166 03843	.00366 00242 00454 .00336 .01385 00939

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
575.0	546.68	2529	2.100	.048	.95001	.04601	.04651	.00051
577.0	549.21	2488	2.100	008	.94995	00791	01193	00402
579.0	551.69	2370	2.100	024	.94939	02301	02011	.00290
581.0	554.06	2418	2.100	.010	.94930	.00942	.00603	00339
583.0	556.48	2410	2.100	.016	.94906	.01511	.02741	.01230
585.0	558.98	2455	2.100	008	.94899	00785	03309	02524
587.0	561.43	2330	2.100	026	.94834	02483	00666	.01817
589.0	563.76	2397	2.100	.014	.94815	.01346	.02599	.01252
591.0	566.16	2410	2.100	.003	.94815	.00254	00855	01109
593.0	568.57	2361	2.100	010	.94805	00958	02141	01183
595.0	570.93			.025	-94746	.02365	.02905	.00540
597.0	573.41	2482	2.100	.039	.94602	.03694	.03698	.00003
599.0	576.10	2684 2147	2.100 2.100	111	.93432	10519	10202	.00317
601.0	578.24			019	.93397	01803	00851	.00952
603.0	580.31	2065	2.100	0	.93397	00012	02211	02199
605.0	582.37	2065	2.100	.025	.93339	.02328	.01760	00568
607.0	584.54	2170	2.100	021	.93299	01943	.01831	.03774
609.0	586.62	2082	2.100	0	.93299	00037	02707	02670
611.0	588.70	2080	2.100	.063	.92931	.05860	.04943	00917
613.0	591.06	2359	2.100	.094	.92105	.08760	.10730	.01970
615.0	593.91	2850	2.100	.006	.92102	.00535	00486	01021
617.0	596.80	2883	2.100	039	.91960	03613	03041	.00572
619.0	599.46	2666	2.100	.012	.91946	.01134	.02631	. 01497
621.0	602.19	2732	2.100	.015	.91925	.01405	.02186	.00781
623.0	605.01	2817	2.100	079	.91351		07987	00725

: WESTGATE - 1

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
TRAVEL TIME	FROM SRD (OR TOP)	M/S 2404 2601 2866 2462 2419 2488 2443 2667 2486 2549 2540 2509 2486 2454 2527 2546 2646 2876 2854	DENSITY G/C3 2.100		ATTEN.	SEISMO.	+	
663.0 665.0 667.0 669.0 671.0	656.57 659.04 661.47 663.91 666.31	2733 2470 2433 2442 2395 2425	2.100 2.100 2.100 2.100 2.100 2.100	050 008 .002 010	.89648 .89643 .89643 .89634	04530 00675 .00163 00881 .00572	03733 02974 .00277 .02096 02479	.0079802299 .00114 .0297703051

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY # MULTIPLES	MULTIPLES ONLY
673.0	668.73	2702	3 400	.068	.89210	.06137	.07574	.01437
675.0	671.51	2782	2.100	.050	. 88991	.04427	.03843	00584
677.0	674.59	3073	2.100	118	.87749	10512	13677	03165
679.0	677.01	2423	2.100	011	.87737	01000	.01840	.02840
681.0	679.38	2369	2.100	.001	.87737	.00102	.01057	.00955
683.0	681.75	2374	2.100	.004	.87736	.00347	01351	01698
685.0	684.15	2393	2.100	062	.87400	05429	03711	.01718
687.0	686.26	2114	2.100	-062	.87069	.05379	.06084	.00705
689.0	688.65	2392	2.100	021	.87031	01828	02611	00784
691.0	690.94	2293	2.100	.023	.86984	.02016	.01435	00581
693.0	693.35	2402	2.100	.018	.86957	.01523	.01804	.00281
695.0	695.83	2488	2.100	011	.86946	00977	01990	01013
697.0	698.27	2432	2.100	019	.86916	01613	00869	.00744
699.0	700.61	2344	2.100	.008	.86911	.00668	.02839	.02172
701.0	702.99	2380	2.100	.038	.86786	-03300	.01515	01785
703.0	705.56	2568	2.100	011	.86776	00933	01369	00435
705.0	708.07	2513	2.100	020	.86742	01722	02143	00421
707.0	710.49	22	2.094	002	.86741	00215	01995	01780
709.0	712.90	2411	2.093	006	.86738	00547	01415	00868
711.0	715.30	2394	2.082	.097	.85930	.08371	.13489	.05118
713.0	717.98	2683	2.254	065	.85563	05613	09949	04337
715.0	720.46	2477	2.143	034	.85464	02911	00455	.02457
717.0	722.82	2364	2.097	005	.85462	00402	.01965	.02367
719.0	725.11	2285	2.149	.020	.85429	.01678	.00076	01601
721.0	727.45	2345	2.179	022	.85388		04349	02462

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
723.0	729.75	2298 2676	2.127 2.181	.088	.84721	.07542	.09376	.01834
725.0	732.43	2502	2.131	045	.84549	03818	04588	00769
727.0	734.93	2440	2.147	009	.84543	00740	00018	.00722
729.0	737.37	2459	2.152	•005	.84541	.00424	.01093	.00669
731.0	739.83	2411	2.097	023	.84497	01910	03663	01753
733.0	742.24	2495	2.121	.023	.84454	.01911	.01523	00387
735.0	744.73	2727	2.270	.078	.83936	.06615	.13177	.06562
737.0	747.46	2479	2.160	073	.83495	06086	09987	03902
739.0	749.94	2490	2.100	.014	.83477	.01204	00620	01824
741.0	752.43	2299	2.136	058	.83199	04817	06457	01640
743.0	754.73	2421	2.138	.043	.83046	.03571	.04656	.01085
745.0	757.15	2433	2.121	018	.83019	01499	04736	03237
747.0	759.58	2463	2.095	0	.83019	.00007	.05392	.05384
749.0	762.05	2530	2.133	.022	.82978	.01848	.01599	00250
751.0	764.58			.053	.82741	.04437	.02650	01787
753.0	767.24	2666	2.252	064	.82401	05300	03183	.02116
755.0	769.66	2416	2.186	.022	.82361	.01818	.00629	01189
757.0	772.17	2507	2.202	037	.82250	03026	05213	02187
759.0	774.58	2417	2.122	•025	.82198	.02076	.05614	.03538
761.0	777.06	2479	2.177	022	.82156	01849	04470	02621
763.0	779.51	2452	2.103	•006	.82153	.00530	.00214	00316
765.0	782.02	2507	2.084	• 005	.82151	-00403	.03525	.03121
767.0	784.53	2510	2.102	.030	.82078	.02452	.02217	00235
769.0	787.09	2564 2448	2.185 2.202	019	.82047	01577	05959	04382

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
TRAVEL TIME MS 771.0 773.0 775.0 777.0 779.0 781.0 785.0 787.0 789.0 791.0 793.0 795.0 797.0 799.0	FROM SRD (OR TOP) 789.54 791.97 794.40 796.79 799.24 801.85 804.79 807.48 810.01 812.49 815.17 818.08 821.26 823.82 826.50	VELOCITY	DENSITY	021 .010007 .012 .034 .094078043013 .060 .054 .067135 .023 .005	ATTEN. COEFF. .82011 .82002 .81998 .81986 .81892 .81168 .80669 .80518 .80505 .80216 .79983 .79627 .78179 .78137	SEISMO-PRIMARY01727 .0084800569 .00995 .02777 .07697063700348601019 .04823 .04329 .0533410739 .01799 .00418	MULTIPLES .0378702993 .00072 .05082 .02748 .03906060250242802475 .02940 .08436 .0622809894 .0077203610	
801.0 803.0 805.0 807.0 809.0 811.0 813.0 815.0 817.0	829.24 832.03 834.71 837.24 840.01 842.64 845.38 848.18 850.94 853.77	2741 2791 2677 2534 2762 2638 2736 2798 2759 2833	2.224 2.228 2.163 2.207 2.287 2.289 2.242 2.228 2.222 2.279	.010 036 017 .061 023 .008 .008 009 .026 005	.78127 .78027 .78004 .77716 .77676 .77672 .77666 .77661 .77608	.007760279401346 .0474101753 .00609 .0063500660 .0202500392	.01719 .00183 04207 .06142 .02013 04851 .00496 .00691 .05245 02972	.00942 .02977 02860 .01401 .03766 05460 00139 .01351 .03221 02581

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY H MULTIPLES	MULTIPLES ONLY
. 821 . 0 823 . 0	856.58 859.42	2812 2835	2.273 2.259	.001 004	.77606 .77604	.00071	01061	01132
825.0	862.22	2806 2715	2.262 2.250	019	.77576	00347 01494	03619 _04668	03272 .06162
827 . 0 829 . 0	864 . 94 867 . 66	2719 2771	2.240 2.222	001 .006	.77576 .77573	00104 .00429	.00840 02934	.00944 03363
831 . 0 833 . 0	870.43 873.03	2603	2.190	039 .004	.77458 .77456	02993 .00303	05963 .07052	02969 .06749
835.0 837.0	875.60 878.35	2573 2751	2.233 2.286	.045 016	.77299 .77278	.03492 01274	. 01148	02345 05001
839.0 841.0	881 . 05	2696 2625	2.257 2.248	015 .049	.77260 .77078	01180 .03750	.01432	.02611
843.0 845.0	886.49 889.29	2819 2793	2.307 2.285	009	.77071	00720	00582	.01030 .00138
847.0	892.24	2950 3022	2.345 2.346	.040 .012	.76946 .76935	.03101 .00948	.05630 03162	.02528 04110
849.0 851.0	895.26 898.16	2903 2872	2.281 2.265	034 009	.76844 .76838	02636 00680	.00229 00086	.02866 .00594
853.0 855.0	901.03 903.89	2854 2868	2.238	009 .006	.76832 .76829	00688 .00461	.00379 00406	.01066 00867
857.0 859.0	906.76 909.58	2828	2.256	007 .015	.76826 .76809	00516 .01143	.00031 01225	.00547 02369
861.0 863.0	912.48 915.47	2891 2989	2.273 2.292	.021 .015	.76776 .76759	.01598 .01138	.00649 .03030	00949 .01892
865.0 867.0	918.49 921.46	30 28 2968 2941	2.331 2.422 2.420	.009 005	.76752 .76750	.00710 00399	.00336 01701	00374 01301

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
TRAVEL TIME	FROM SRD (OR TOP)	VELOCITY M/S 2985 2842 2789 2786 2807 2838 2684 2713 2651 2703 2722 2664 2609 2617 2745 2645 2549	DENSITY G/C3 2.378 2.315 2.271 2.288 2.357 2.353 2.261 2.11 2.180 2.172 2.222 2.181 2.192 2.162 2.232 2.246 2.242		ATTEN.	SEISMO.	+	
905.0 907.0 909.0 911.0 913.0 915.0	973.33 975.84 978.52 981.21 983.98 986.59	2579 2512 2680 2685 2767 2614 2669	2.209 2.140 2.221 2.220 2.209 2.147 2.204	029 .051 .001 .012 043 .024	.76089 .75891 .75890 .75879 .75741 .75699	02216 .03881 .00062 .00942 03238 .01786	04366 .06287 04615 .05581 04799 .02451	02150 .02405 04677 .04639 01562 .00665

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
919.0	991.90	2644 2781	2.253 2.284	.032	.75617	.02431	.04154	.01723
921.0	994.68	2593	2.218	050	.75431	03750	07992	04243
923.0	997.28	2600	2.216	.001	.75431	.00066	.03079	.03013
925.0	999.88	2662	2.209	.010	.75423	.00777	00747	01524
927.0	1002.54	2593	2.186	019	.75397	01405	02511	01105
929.0	1005.13	2651	2.188	.030	.75330	.02259	.00451	01808
931.0	1007.78	2676	2.258	.002	.75329	.00157	.04830	.04673
933.0	1010.46			008	.75324	00617	02425	01807
935.0	1013.16	2696	2.205	.013	.75311	.00998	.00731	00267
937.0	1015.90	2744	2.224	024	.75267	01823	04146	02323
939.0	1018.55	2648	2.196	.018	.75243	.01331	.04107	.02776
941.0	1021.25	2699	2.232	021	.75209	01601	04518	02917
943.0	1023.89	2646	2.182	006	.75206	00454	.04697	.05151
945.0	1026.53	2639	2.162	.015	.75189	.01161	01137	02298
947.0	1029.24	2703	2.176	022	.75152	01666	03474	01807
949.0	1031.89	2652	2.122	006	.75149	00446	.00284	.00729
951.0	1034.51	2627	2.117	.023	.75109	.01730	.03622	.01892
953.0	1037.18	2669	2.182	.032	.75032	.02402	00291	02692
955.0	1039.92	2732	2.272	.045	.74879	.03393	.04838	.01446
957.0	1042.81	2897	2.346	051	.74680	03856	08208	04352
959.0	1045.57	2753	2.226	017	.74659	01254	.02980	.04233
961.0	1048.24	2678	2.213	.014	.74644	.01066	.01729	.00663
963.0	1051.02	2773	2.199	.038	.74537	.02832	.04310	.01478
965.0	1053.88	2860	2.301	042	.74406	03116	06653	03536
707.0	1073.00	2735	2.213		. (4400	03110	05633	03536

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
967.0	1056.61	2770	2 227	.011	.74397	.00839	.03737	.02898
969.0	1059.39	2779	2.227	. 003	.74396	.00253	00922	01174
971.0	1062.17	2774	2.247	013	.74384	00930	.03231	.04161
973.0	1064.95	2782	2.185	•008	.74380	.00588	02061	02649
975.0	1067.75	2804	2.203	.040	.74259	.02998	.00148	02850
977.0	1070.65	2897	2.311	046	.74099	03441	04518	01076
979.0	1073-41	2765	2.207	.025	.74052	.01875	.03910	.02035
981.0	1076.29	2877	2.231	.040	.73931	.02994	.07300	.04305
983.0	1079.27	2980	2.335	002	.73930	00178	03678	03500
985.0	1082.21	2939	2.356	023	.73892	01687	00372	.01315
987.0	1085.12	2915	2.270	.012	.73882	.00875	.02706	.01831
989.0	1088.08	2956	2.292	016	.73863	01174	06906	05732
991.0	1090.99	2912	2.254	.054	.73646	.04001	.05019	.01018
993.0	1094.14	3151	2.322	.038	.73541	.02781	.06721	.03939
995.0	1097.46	3318	2.378	042	.73412	03088	03170	00082
997.0	1100.57	3111	2.331	.045	.73260	.03330	.05851	.02521
999.0	1103.89	3317	2.394	080	.72792	05857	07053	01196
1001.0	1106.76	2872	2.356	006	.72790	00402	06089	05687
1003.0	1109.65	2885	2.320	•002	.72790	.00139	00069	00208
1005.0	1112.54	2896	2.320	032	.72715	02327	.02788	.05115
1007.0	1115.26	2716	2.320	0	.72715	00020	00810	00791
1009.0	1117.97	2715	2.320	.066	.72402	.04771	.05144	.00373
1011.0	1121.07	3096	2.320	010	.72394	00757	04624	03866
1013.0	1124.10	3032	2.320	.030	.72330	.02158	.03850	.01692
_ 1015.0	1127.32	3218	2.320	.007	.72326	00506	.00954	.00447

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1017.0	1130.58	3264	2.320	041	.72203	02985	01374	.01611
1019.0	1133.59	3005	2.320	027	.72152	01924	05076	03152
1021.0	1136.44	2849	2.320	.013	.72139	.00955	.02649	.01694
1023.0	1139.36	2925	2.320	.022	.72104	.01601	.04567	.02967
1025.0	1142.42	3058	2.320	020	.72074	01473	03778	02304
1027.0	1145.36	2936	2.320	013	.72062	00937	03026	02088
1029.0	1148.22	2860	2.320	014	.72047	01021	.04730	.05751
1031.0	1151.00	2780	2.320	022	.72012	01589	10701	09113
1033.0	1153.66	2661	2.320	•022	.71978	.01572	.03702	.02131
1035.0	1156.44	2779	2.320	.014	.71963	.01034	.02710	.01677
1037.0	1159.30	2860	2.320	.011	.71954	.00797	.01852	.01055
1039.0	1162.22	2924	2.320	002	.71954	00137	.01277	.01414
1041.0	1165.13	2913	2.320	.005	.71952	.00341	.00229	00111
1043.0	1168.07	2941	2.320	005	.71950	00394	07260	06865
1045.0	1170.98	2909	2.320	.013	.71939	.00900	.02899	.01998
1047.0	1173.97	2983	2.320	.003	.71938	.00184	.02122	.01939
1049.0	1176.96	2998	2.320	009	.71933	00612	.00262	.00874
1051.0	1179.91	2947	2.320	022	.71899	01564	01340	.00224
1053.0	1182.73	2822	2.320	.007	•71896	.00496	.00633	.00137
1055.0	1185.59	2861	2.320	.010	.71888	.00740	00807	01547
1057.0	1188.51	2921	2.320	008	.71883	00595	.01009	.01604
1057.0	1191.39	2873	2.320	.007	.71879	.00535	.00001	00534
1061.0	1194.30	2916	2.320					
	1194.30	2815	2.320	018 007	.71857	01268	00776 03834	.00491
1063.0	1177.12	2776	2.320	007	.71853	00499	02824	02325

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
TIME MS 1065.0 1067.0 1069.0 1071.0 1073.0 1075.0 1077.0		M/S 2781 2752 2949 3102 2966 2900 2870	G/C3 2.320 2.320 2.320 2.320 2.320 2.320 2.320	.001 005 .034 .025 022 011 005	.71853 .71851 .71766 .71720 .71684 .71675 .71673	-00062 -00365 -02478 -01815 -01606 -00811 -00366 -00596	.01290 00100 .01654 .05251 06009 01207 .03787 02116	.01228 .00265 00824 .03436 04403 00396 .04152 02712
1081.0 1083.0 1085.0 1087.0 1089.0 1091.0 1093.0 1095.0	1223.13 1225.98 1228.75 1231.66 1234.55 1238.18 1241.46 1244.31	2919 2850 2772 2908 2884 3629 3287 2845 2917	2.320 2.320 2.320 2.320 2.320 2.320 2.320 2.320	012 014 .024 004 .114 050 072 .013	.71658 .71644 .71603 .71602 .70665 .70491 .70125 .70114	00855 00988 .01717 00300 .08192 03500 05080 .00877 00033	01970 00504 .01684 00256 .11284 01759 08843 .03764 01293	01115 .00484 00033 .00044 .03092 .01741 03763 .02887
1099.0 1101.0 1103.0 1105.0 1107.0 1109.0 1111.0	1250.14 1253.08 1256.20 1259.07 1262.05 1264.95 1267.96 1270.96	2914 2945 3116 2870 2977 2906 3007 2998	2.320 2.320 2.320 2.320 2.320 2.320 2.320	.005 .028 041 .018 012 .017 001	.70112 .70056 .69938 .69915 .69905 .69885 .69884	.00365 .01984 02875 .01271 00841 .01191 00104 01946	01476 .00823 00573 00687 .01189 05393 .01163 .06209	01841 01161 .02302 01958 .02031 06584 .01266 .08155

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
1115.0	1273.79	28 35 2898	2.320 2.320	.011	.69822	.00767	.00218	00549
1117.0	1276.69	2878	2.320	004	.69821	00251	06385	06134
1119.0	1279.57	2883	2.320	.001	.69821	.00063	.03871	.03808
1121.0	1282.45	2801	2.320	014	.69807	01002	02403	01402
1123.0	1285.25	2816	2.320	.003	.69806	.00188	.02461	.02273
1125.0	1288.07	3048	2.320	.039	.69697	.02754	.00045	02708
1127.0	1291.12			029	.69640	02006	01114	.00891
1129.0	1293.99	2877	2.320	.006	.69637	.00428	05399	05827
1131.0	1296.91	2913	2.320	.001	.69637	.00052	.07669	.07617
1133.0	1299.82	2917	2.320	009	.69631	00630	.00770	.01400
1135.0	1302.69	2865	2.320	006	.69628	00444	03545	03101
1137.0	1305.52	2828	2.320	015	.69612	01068	01872	00803
1139.0	1308.26	2743	2.320	.028	.69558	.01948	.04062	.02114
1141.0	1311.16	2901	2.320	.011	.69549	.00762	04381	05144
1143.0	1314.13	2965	2.320	.026	.69500	.01841	.06671	.04830
1145.0	1317.25	3126	2.320	018	.69478	01261	01904	00643
1147.0	1320.27	3015	2.320	006	.69475	00445	.01874	.02318
1149.0	1323.24	2977	2.320	.013	.69463	.00916	.01124	.00208
1151.0	1326.30	3056	2.320	011	.69454	00775	.01799	• 02 57 4
1153.0	1329.29	2989	2.320	004	.69453	00284	04882	04598
1155.0	1332.25	2964	2.320	017	.69432	01204	00081	.01122
1157.0	1335.12	2863	2.320	.026	.69385	.01800	00128	01928
1159.0	1338.13	3016	2.320	019	.69359	01341	01731	00390
1161.0	1341.03	2901	2.320	012	•69349	00860	01757 01555	00694
1101.0	1341603	2854	2.301	-012	• U / J - 7	• 50000	• 0 1 7 7 7	• 00074

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
1163.0	1343.89	30.50	2 720	.021	.69319	.01439	.03436	.01997
1165.0	1346.84	2950	2.320	.004	.69318	.00274	01428	01702
1167.0	1349.81	2974	2.320	010	.69310	00721	.02436	.03157
1169.0	1352.72	2913	2.320	002	.69310	00144	00991	00847
1171.0	1355.63	2900	2.320	-005	.69308	.00361	02364	02725
1173.0	1358.56	2931	2.320	012	.69299	00814	00105	.00709
1175.0	1361.42	2863	2.320	.059	.69058	.04085	.09689	.05604
1177.0	1364.64	3221	2.320	0	.69058	00030	05930	05900
1179.0	1367.86	3219	2.320	030	-68994	02092	02451	00359
1181.0	1370.95	3088	2.276	•029	.68936	.01999	.05549	.03549
1183.0	1374.18	3235	2.302	003	. 68936	00181	04034	03853
1185.0	1377.42	3236	2.289	030	.68876	02037	02552	00515
1187.0	1380.49	3069	2.276	012	.68865	00840	.02942	.03782
1189.0	1383.51	3019	2.257	015	.68850	01041	03803	02762
1191.0	1386.45	2948	2.243	•005	.68848	.00346	.00207	00139
1193.0	1389.41	2952	2.263	.003	.68847	.00241	.05278	.05037
1195.0	1392.37	2965	2.268	024	.68809	01627	05151	03524
1197.0	1395.23	2861	2.242	.008	.68804	.00542	01637	02179
1199.0	1398.14	2911	2.239	.008	.68800	.00565	.04082	.03517
1201.0	1401.10	2962	2.237	039	.68693	02708	06785	04077
1203.0	1403.83	2727	2.246	.030	.68633	.02032	.02793	.00760
1205.0	1406.72	2893	2.246	.021	.68603	.01429	.03829	.02400
1207.0	1409.69	2962	2.287	.008	.68599	.00568	02587	03155
1209.0	1412.69	3001	2.295	009	.68593	00648	.04224	.04872
_ 1211.0	1415.68	2996	2.255	.013	.68581	00898	.00382	00517

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
TRAVEL TIME	FROM SRD (OR TOP)	WELOCITY M/S 3048 3033 3009 3057 3008 3080 3125 3110 3151 3203 3159 3260 3255 3190 3177	DENSITY G/C3 2.276 2.261 2.270 2.279 2.250 2.264 2.259 2.260 2.286 2.337 2.287 2.357 2.347 2.286 2.290		ATTEN.	SEISMO.	+	
1243.0 1245.0 1247.0 1249.0 1251.0 1253.0 1255.0 1257.0	1465.75 1468.91 1472.09 1475.31 1478.54 1481.78 1485.04 1488.31 1491.52	3200 3162 3178 3222 3228 3239 3262 3273 3204 3276	2.261 2.269 2.286 2.271 2.271 2.277 2.310 2.392 2.292 2.323	004 .006 .004 .001 .003 .011 .019 032	.68377 .68374 .68373 .68373 .68365 .68340 .68270	00287 .00438 .00247 .00057 .00204 .00743 .01296 02188	0792701099 .00106 .02112 .00889 .0191000207 .0007200172	076400153700141 .02055 .00685 .0116701503 .0226001393

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY H MULTIPLES	MULTIPLES ONLY
1261.0	1494.79	3294	2.322	.003	.68248	.00178	02088	02267
1263.0	1498.09			.005	.68246	.00320	03675	03995
1265.0	1501.42	3339	2.313	.007	.68243	.00483	.05094	.04611
1267.0	1504.79	3370	2.324	004	.68242	00246	.03894	.04141
1269.0	1508.13	3331	2.335	.010	.68236	.00667	02520	03187
1271.0	1511.45	3324	2.385	•005	.68234	.00341	.00483	.00143
1273.0	1514.81	3358	2.385	004	.68233	00307	.00896	.01202
1275.0	1518.22	3410	2.327	0	.68233	.00028	05312	05340
1277.0	1521.66	3439	2.310	010	. 68226	00668	.04315	.04983
1279.0	1525.07	3408	2.285	.004	.68225	.00256	01393	01649
1281.0	1528.49	3426	2.291	.003	.68224	.00224	01329	01553
1283.0	1531.93	3437	2.298	.009	.68219	.00626	.05695	.05068
1285.0	1535.42	3496	2.301	.013	.68208	.00858	.02552	.01695
1287.0	1538.99	3567	2.313	•002	.68207	.00152	00959	01111
1289.0	1542.58	3584	2.312	002	.68207	00170	03213	03043
1291.0	1546.14	3565	2.313	0	.68207	•00024	.00865	.00841
1293.0	1549.70	3562	2.317	007	.68204	00460	02103	01643
1295.0	1553.22	35 21	2.313	013	.68192	00888	.00864	.01752
1297.0	1556.67	3447	2.301	003	.68192	00221	00016	.00205
1299.0	1560.06	3390	2.325	004	.68190	00274	02789	02515
1301.0	1563.41	3352	2.333	003	.68190	00183	00742	00559
1303.0	1566.78	3369	2.308	.044	.68058	.02998	.06962	.03964
1305.0	1570.32	3543	2.397	034	.67980	02302	06747	04444
1307.0	1573.72	3391	2.340	022	.67946	01516	.01495	.03011
_ 1309.0	1577.02	3303	2.298	.033	.67872	.02252	.03464	.01213

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1311.0 1313.0	1580.42 1583.47	3406 3044	2.381	062 013	.67609 .67597	04227 00899	08282 00726	04055 .00173
1315.0 1317.0	1586.49 1589.50	3024 3005 2876	2.305 2.317 2.296	001 026	.67597 .67550	00047 01776	-00684 04427	.00731 02651
1319.0 1321.0 1323.0	1592.37 1595.22 1598.12	2843 2904 2897	2.331 2.372 2.339	.002 .019 008	.67550 .67524 .67520	.00108 .01311 00544	.03469 .00836 04873	.03361 00475 04329
1325.0 1327.0 1329.0	1601.02 1603.85 1606.68	2837 2827	2.306	018 .005 .006	.67499 .67497	01200 .00350 .00419	01236 .06857 03021	00035 .06506 03440
1331.0	1609.55	28 7 0 2893 2898	2.331 2.348 2.364	.007 .004	.67490 .67489	.00502 .00287	.01460 .01588	.00958
1335.0 1337.0 1339.0	1615.34 1618.26 1621.10	2916 2837	2.486	-028 040 005	.67436 .67326 .67324	.01901 02722 00346	.01269 05022 .03507	00632 02299 .03854
1341.0 1343.0	1623.92	2824 2791 2773	2.343 2.345 2.355	006 001	.67322 .67322	00375 00066	04342 00404	03967 00337
1345.0 1347.0 1349.0	1629.48 1632.31 1635.59	2822 3289	2.341	.006 .149 .010	.67320 .65822 .65815	.00378 .10043 .00678	.02820 .11237 .00699	.02442 .01195 .00022
1351.0 1353.0	1638.91 1642.03	3312 3128 3238	2.750 2.637 2.676	049 .025	.65654 .65614	03255 01617	.01713 06436	.04967 08053
1355.0 1357.0	1645.27 1648.52	3251 3411	2.670 2.704	.001 .030	.65614 .65554	.00068 .01988	.03220 .01224	.03152 00764

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1359.0	1651.93	7770	2 547	053	.65370	03467	.00572	.04039
1361.0	1655.17	3238	2.563	003	.65370	00209	02045	01837
1363.0	1658.47	3299	2.499	.006	.65367	.00419	.04777	.04358
1365.0	1661.85	3381	2.470	028	.65315	01843	04562	02720
1367.0	1665.12	3270	2.414	.007	.65311	.00489	03681	04171
1369.0	1668.31	3191	2.511	.030	.65254	.01928	.02206	.00279
1371.0	1671.61	3293	2.581	.001	- 65254	.00038	.02100	.02062
1373.0	1674.96	3348	2.542	•002	.65254	.00154	01783	01937
1375.0	1678.25	3299	2.592	051	. 65087	03303	.01136	.04439
1377.0	1681.36	3106	2.488	012	.65077	00786	05329	04543
1379.0	1684.32	2964	2.545	014	-65064	00930	04969	04038
1381.0	1687.32	2993	2.449	009	-65058	00605	.03262	.03867
1383.0	1690.28	2968	2.424	.052	.64881	.03395	.05865	.02470
1385.0	1693.51	3229	2.473	.014	.64869	.00893	02341	03235
1387.0	1696.94	3423	2.399	053	.64686	03447	01871	.01576
1389.0	1700.19	3258	2.265	.027	.64639	.01734	00433	02166
1391.0	1703.42	3231	2.410	008	.64635	00533	01415	00882
1393.0	1706.60	3173	2.414	050	.64474	03222	.02262	.05485
1395.0	1709.60	3000	2.311	.018	.64453	.01156	00231	01387
1397.0	1712.65	3048	2.358	018	.64432	01186	04886	03700
1399.0	1715.58	2936	2.359	012	.64423			
1401.0	1718.51	2924	2.314			00746	00107	.00638
		3162	2.365	.050	.64262	.03221	.04414	.01193
1403.0	1721.67	3267	2.335	.010	.64256	.00622	00435	01057
1405.0	1724.94	3516	2.431	.057	.64048	.03655	.05233	.01578
1407.0	1728.45			109	.63281	07009	05972	.01037

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
TIME MS 1409.0 1411.0 1413.0 1415.0 1417.0 1419.0 1421.0 1423.0 1427.0 1427.0 1431.0 1433.0 1437.0 1437.0 1441.0 1443.0 1443.0 1447.0 1447.0 1449.0 1449.0	(OR TOP)			.059 .027 .028 029 008 .011 018 .004 .042 034 007 0 .047 004 .013 .018	.63060 .63014 .62963 .62910 .62907 .62902 .62895 .62874 .62762 .62689 .62686 .62544 .62543 .62512		.02100 .03138 .03791 05530 .01402 00457 00809 .01037 .02379 01002 .01501 03761 02738 .00935 .07360 04056 .03023 02301 .05314 .00201 01777 02215	01639 .01431 .0200103708 .01876 .0007301499 .02163 .0214603647 .03646033080272202042 .0763204857 .0188202301 .05314 .002010177702215
1453.0							•02944 •02244	•02944 •02244

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1457.0	.,		3. 33				01348	01348
1459.0							04198	04198
1461.0							.04674	.04674
1463.0							04176	04176
1465.0							.00378	.00378
1467.0							.01302	.01302
1469.0							.02388	.02388
1471.0							03058	03058
1473.0							.02915	.02915
1475.0							05608	05608
1477.0							.00969	.00969
1479.0							.03320	.03320
1481.0							03026	03026
1483.0							01173	01173
1485.0							.02439	.02439
1487.0							.06537	.06537
1489.0							03318	03318
1491.0							02132	02132
1493.0							.00821	.00821
1495.0							05431	05431
1497.0							.01975	.01975
1499.0							.05034	.05034
1501.0							03079	03079
1503.0							.02056	.02056
_ 1505.0			\sim				02424	02424

OMPANY : BEACH PETROLEUM N.L.				WELL	: WESTGATE	PAGE 24		
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1507.0							01525	01525
1509.0							.04830	.04830
1511.0	•						.01567	.01567
1513.0					•		04105	04105
1515.0						•	.03192	.03192
1517.0							03530	03530
1519.0							.00433	.00433
1521.0							.02214	.02214
1523.0							00997	00997
1525.0							01950	01950
1527.0							.01231	.01231
1529.0							.01859	.01859

175	• • • • • • • • • • • • • • • • • • • •	1170	0, 0,		
1507.0				01525	01525
1509.0				.04830	.04830
1511.0	`			•01567	.01567
1513.0				04105	04105
1515.0				.03192	.03192
1517.0				03530	03530
1519.0				.00433	.00433
1521.0				.02214	.02214
1523.0				00997	00997
1525.0				01950	01950
1527.0				.01231	.01231
1529.0				.01859	.01859
1531.0				02500	02500
1533.0				05105	05105
1535.0				.05965	.05965
1537.0				03657	03657
1539.0				.00700	.00700
1541.0				.02299	.02299
1543.0				01667	01667
1545.0				00458	00458
1547.0				.02594	.02594
1549.0				04435	04435
1551.0				.02043	.02043
1553.0				. 01858	.01858

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY # MULTIPLES	MULTIPLES ONLY
1555.0							01196	01196
1557.0							04880	04880
1559.0							.01073	.01073
1561.0							.02461	.02461
1563.0							.05963	.05963
1565.0							-01406	.01406
1567.0							03659	03659
1569.0							04574	04574
1571.0							.03315	.03315
1573.0							01250	01250
1575.0							00210	00210
1577.0							.02122	.02122
1579.0							.00940	.00940
1581.0							04488	04488
1583.0							.05361	.05361
1585.0							02507	02507
1587.0							.00635	.00635
1589.0							.01134	.01134
1591.0							01130	01130
1593.0							.00168	.00168
1595.0							.00193	.00193
1597.0							.02089	.02089
1599.0							04810	04810
1601.0							.00215	.00215
_ 1603.0							02291	02291_

.

1651.0

TWO WAY DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC PRIMARY MULTIPLES VELOCITY SEISMO. TRAVEL FROM SRD DENSITY COEFF. ATTEN. ONLY PRIMARY TIME (OR TOP) COEFF. MULTIPLES G/C3 MS M M/S 1605.0 .03629 .03629 1607.0 .03174 .03174 1609.0 -.01765 -.01765 1611.0 -.04632 -.04632 1613.0 -.00352 -.00352 1615.0 -.00085 -.00085 1617.0 .03331 .03331 1619.0 -.00208 -.00208 1621.0 .01372 .01372 1623.0 -.04362 -.04362 1625.0 .05298 .05298 1627.0 -.01287 -.01287 1629.0 .00413 .00413 1631.0 -.01437 -.01437 1633.0 .04345 .04345 1635.0 -.05184 -.05184 1637.0 -.00621 -.00621 1639.0 .01727 .01727 1641.0 .01015 .01015 1643.0 .01358 .01358 1645.0 .02262 .02262 1647.0 -.06197 -.06197 1649.0 .01956 .01956

PAGE 26

.00313

.00313

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1653.0							-01661	.01661
1655.0							03180	03180
1657.0							.03379	.03379
1659.0							02325	02325
1661.0							.02997	.02997
1663.0							01317	01317
1665.0							04530	04530
1667.0							-01247	.01247
1669.0							.01713	.01713
1671.0							03998	03998
1673.0							-00980	.00980
1675.0							.02361	.02361
1677.0							03463	03463
1679.0							00188	00188
1681.0							.05774	.05774
1683.0							03660	03660
1685.0							00408	00408
1687.0							.01338	.01338
1689.0							00833	00833
1691.0							01853	01853
1693.0							.01126	•01126
1695.0							02954	02954
1697.0							.00156	.00156
1699.0							.07270	.07270
_ 1701.0							02676	02676

COMPANY : BEACH PETROLEUM N.L.

WELL : WESTGATE - 1

DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC PRIMARY MULTIPLES TWO WAY FROM SRD (OR TOP) ATTEN. COEFF. SEISMO. PRIMARY VELOCITY DENSITY TRAVEL COEFF. ONLY MULTIPLES TIME G/C3 MS M/S 1703.0 -.01053 -.01053 1705.0 .02415 .02415 -.01861 -.01861 1707.0 -.01046 1709.0 -.01046 1711.0 .00967 .00967 1713.0 -.03664 -.03664 .06252 1715.0 .06252 1717.0 .00848 .00848 1719.0 -.03450 -.03450 1721.0 -.02900 -.02900 1723.0 .03041 .03041 1725.0 -.00393 -.00393 -.00371 1727.0 -.00371 1729.0 -.00622 -.00622 .03826 .03826 1731.0 1733.0 -.04682 -.04682 1735.0 .02832 .02832 -.02873 1737.0 -.02873 1739.0 -.03059 -.03059 1741.0 .03389 .03389 1743.0 .03453 .03453 1745.0 -.04918 -.04918 1747.0 .03477 .03477 -.00530 -.00530 1749.0

WELL : WESTGATE - 1

TWO WAY TRAVEL Time Ms	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
1751.0							01309	01309
1753.0							00113	00113
1755.0							01188	01188
1757.0							.01647	.01647
1759.0							.04626	.04626
1761.0							01709	01709
1763.0							02784	02784
1765.0							00366	00366
1767.0							.03972	.03972
1769.0							03379	03379
1771.0							-01103	.01103
1773.0							.01081	.01081
1775.0							04033	04033
1777.0							.00861	.00861
1779.0							.05018	.05018
1781.0							04433	04433
1783.0							.02827	.02827
1785.0							-00849	•00849
1787.0							04602	04602
1789.0							.01966	-01966
1791.0							.00033	.00033
1793.0							02079	02079
1795.0				•			.02957	.02957
1797.0							00194	00194
1799.0							01094	01094

COMPANY : BEACH PETROLEUM N.L. WELL : WESTGATE - 1

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1801.0							.00819	.00819
1803.0							01535	01535
1805.0							.00356	.00356
1807.0							.01194	.01194
1809.0							.02265	.02265
1811.0							02887	02887
1813.0							.00464	.00464
1815.0							.00058	.00058
1817.0							03157	03157
1819.0							01695	01695
1821.0							-06058	.06058
1823.0							00509	00509
1825.0							.02187	.02187
1827.0							02448	02448
1829.0							03827	03827
1831.0							01952	01952
1833.0							.07216	.07216
1835.0							00888	00888
1837.0							.00385	.00385
1839.0							02391	02391
1841.0							.01480	.01480
1843.0							02950	02950
1845.0							.03577	.03577
1847.0							03344	03344

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1849.0							.02205	.02205
1851.0							00802	00802
1853.0							.02141	.02141
1855.0							03234	03234
1857.0		•					.04498	.04498
1859.0							03369	03369
1861.0							00406	00406
1863.0							.01965	.01965
1865.0							.00750	.00750
1867.0							02367	02367
1869.0							.03120	.03120
1871.0							03726	03726
1873.0							02989	02989
1875.0							.05527	.05527
1877.0							.00437	.00437
1879.0							03763	03763
1881.0							.02687	.02687
1883.0							02293	02293
1885.0							01391	01391
1887.0							.05214	.05214
1889.0							.00059	.00059
1891.0							04098	04098
1893.0							.00281	.00281
1895.0							.00507	.00507
1897.0						$\overline{}$	02266	02266_

COMPANY : BEACH PETROLEUM N.L. : WESTGATE - 1 WELL PAGE 32 TWO WAY DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC PRIMARY MULTIPLES TRAVEL FROM SRD (OR TOP) ATTEN. COEFF. SEISMO. PRIMARY VELOCITY DENSITY COEFF. ONLY MULTIPLES G/C3 M/S MS 1899.0 .02868 .02863 1901.0 -.00079 -.00079

PE902239

This is an enclosure indicator page. The enclosure PE902239 is enclosed within the container PE902238 at this location in this document.

The enclosure PE902239 has the following characteristics:

ITEM_BARCODE = PE902239 CONTAINER_BARCODE = PE902238

NAME = Velocity Profile

BASIN = OTWAY PERMIT = PEP 108

TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Velocity Profile (enclosure from WCR appendix 5--Velocity Survey) for

Westgate-1A

REMARKS =

DATE_CREATED = 30/05/86DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A CONTRACTOR = Schlumberger

CLIENT_OP_CO = Beach Petroleum NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE902240

This is an enclosure indicator page. The enclosure PE902240 is enclosed within the container PE902238 at this location in this document.

The enclosure PE902240 has the following characteristics:

ITEM_BARCODE = PE902240
CONTAINER_BARCODE = PE902238

NAME = Synthetic Seismogram/Geogram

BASIN = OTWAY
PERMIT = PEP 108

TYPE = WELL

SUBTYPE = SYNTH_SEISMOGRAM

DESCRIPTION = Synthetic Seismogram/Geogram (enclosure

from WCR appendix 5--Velocity Survey)

for Westgate-1A

REMARKS =

DATE_CREATED = 30/05/86 DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A
CONTRACTOR = Schlumberger

CLIENT_OP_CO = Beach Petroleum NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE601116

This is an enclosure indicator page. The enclosure PE601116 is enclosed within the container PE902238 at this location in this document.

The enclosure PE601116 has the following characteristics:

ITEM_BARCODE = PE601116
CONTAINER_BARCODE = PE902238

NAME = Seismic Calibration Log

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Seismic Calibration Log (enclosure from

WCR appendix 5--Velocity Survey) for

Westgate-1A

REMARKS =

DATE_CREATED = 30/05/86 DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A CONTRACTOR = Schlumberger

CLIENT_OP_CO = Beach Petroleum NL

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 6

Mean Square Dip Processing Report

STRATIGRAPHIC

HIGH RESOLUTION

DIPMETER

MSD COMPUTATIONS

COMPANY : 80ACH PETROLEUM

WELL : BOSTGATE # 1

FIELD : 20LDCAT

COUNTRY : BOSTRALIA

RUN : 00E

DATE LOGGED : 14 - MAR - 86

REFERENCE : 80J.160301

1 M X 50% - 35 DEG X 2

PARAMETERS: 1M X 0.5M, 35 DEG. X 2

OPTION: WHITE CIRCLES ARE QUALITY 15 TO 16

OPTION: BLACK CIRCLES ARE QUALITY 17 TO 20

END OF LSF - VERSION 007.E05 14-APR-86 - 15:11:12

P 8	EACH **** DEF	PET	ROLE	. * *	***	* * * *	***	***	WES:	TGA * * *	ΤΕ **;	# * * *	1	·**	***		ند داد ساد	h	St	J M M ,	ARY			
*	UE:1		*			ň	7 10			(4)	L 1		i.) E V		DI	ΑМ		D 1	. A M	*	0111	Α 1	4
*	T () D													^ ^ ^ ×	XX	**	***	* * *	***	***	***	* * *	* *
*	8 4 8 4	47.0	5	27.	. 6	2	09.			28	. 1		7	so.			8.0)	1	2.3	ζ	ı	3	* *
* *	9 C 1 1 9)TTO!	M 9	4.	. 7	2	11.			29.	, 5		3	3.			8.6		·	8.9		,	•	*
	****	***	***	***	****	***	****	**:	***			**		-	***				* * *	***	, :**>	: ***	} <**	* * **

.:

AL TON

* * * * * * * * * * * * * * * * DIP FREQUENCY BY AZIMUTH *
* 0-90 DEGREE DIPS * * * * * * * * * * * * * * * * *

| PRESEN | TATION | 30 | 60 | Ε | 120 | 150 | S | 210 | 240 | W | 300 | 330 |) N | | 30 | |
|--------------|--------|----|----|---|--------|-----|---|-----------|-----|---|--------|-----|------|----|----|---|
| 847- | 850 | | | | | | | 2 . | | | | | J 1\ | | 30 | |
| 850- | 900 | 5 | 2 | | 1 | 2 | 1 | · | 2 | 4 | 2
1 | 1 | 1.0 | 1 | | |
| 900- | 950 | 5 | 3 | | 1 | 1 | 4 | _ | | | · | 4 | 10 | 8 | | |
| 950- | 1000 | | | | ' | 1 | 4 | 5 | 1 | 1 | 2 | 4 | 3 | 17 | | |
| | | 4 | | , | 1 | | 7 | 9 | 4 | 1 | 5 | 2 | 4 | 6 | | , |
| 1000- | | 10 | 5 | ć | 2 | 1 | 2 | 3 | 3 | 3 | 4 | 2 | 5 | 7 | | |
| 1050- | 1100 | 9 | 3 | 4 | ,
+ | 9 | 2 | 4 | 3 | 8 | | | | ' | | |
| 1100- | 1150 | 9 | 4 | | | | | | | ၁ | 4 | 6 | 10 | 6 | | |
| | | 7 | 6 | 3 | 5 | 2 | 3 | 4 | 7 | 4 | 7 | 4 | 8 | 7 | | |
| 1150- | 1199 | 4 | 5 | 2 | 2 | 3 | 7 | 7 | 5 | 1 | 2 | 2 | 4 | 10 | | |

| | | * * | * * | * * * | | * * * | | ^
*
* | | | | | | | |
|--------------|----|------|-----|-------|-----|-------|-------|-------------|----|------|---|----|----|---|--|
| PRESENTATION | 30 | 60 E | 12 | 0 15(|) s | 21 | 0 240 | O W | 30 | 0 33 | 0 | Ŋ | 30 | | |
| 847- 850 | | | | | | | | | 2 | 1 | | 1 | y | - | |
| 850- 900 | 5 | 1 | 1 | 2 | 1 | | 1 | 2 | 1 | 4 | 9 | 8 | | | |
| 900- 950 | 3 | 3 | 1 | 1 | 3 | 5 | 1 | 1 | 2 | 4 | 3 | 11 | | | |
| 950- 1000 | 4 | | 1 | | 1 | , | 1 | 1 | 4 | 2 | 2 | 3 | | | |
| 1000- 1050 | 10 | 5 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 4 | 6 | | | |
| 1050- 1100 | 8 | 2 | 3 | 3 | 2 | 1 | 3 | 8 | 4 | 6 | 8 | 6 | | | |
| 1100- 1150 | 9 | 6 | 4 | 1 | 5 | 4 | 4 | 3 | 6 | 3 | 8 | 4 | | | |
| 1150- 1199 | | . 4 | 2 | 1 | 6 | 4 | 2 | 1 | 2 | 2 | 3 | 9 | | | |

* * * * * * * * * * * * * * * DIP FREQUENCY BY AZIMUTH *
* 10-90 DEGREE DIPS * * * * * * * * * * * * * * * *

| PRESENT | TATION | 210 | 240 | W | 300 | 330 | N | 3 | 0 | 60 | Ε | 120 | 150 | S | 210 |
|--------------|--------|-----|-----|---|-----|-----|---|---|---|----|---|-----|-----|---|-----|
| 847- | 850 | | | | | | | | | | | | | | 2 |
| 850 - | 900 | | 1 | 2 | | | 1 | | | | 1 | | | | |
| 900 - | 950 | | | | | | | 6 | 2 | | | | | 1 | |
| 950- | 1000 | | 3 | | 1 | | 2 | 3 | | | | | | 6 | 9 |
| 1000- | 1050 | | 2 | 1 | 2 | | 1 | 1 | | | | | | | 1 |
| 1050- | 1100 | | | | | | 2 | | 1 | | 1 | .1 | 6 | | 3 |
| 1100- | 1150 | | 3 | 1 | 1 | 1 | | 3 | | | | 1 | 1 | 1 | |
| 1150- | 1199 | | -3 | | | | 1 | 1 | 4 | | 1 | | 2 | 1 | 3 |

* * * * * * * * * * * * *

| RESENT | TATION | 210 | 240 | W | 300 | 330 | N | 1 | 30 6 | 0 E | 1 2 | 20 15 | 0 s | 2 | 10 | |
|--------------|--------|-----|-----|---|-----|-----|---|----|------|-----|-----|-------|-----|---|----|--|
| 847- | 850 | | | | 2 | 1 | | 1 | | | | | | | *. | |
| 850 - | 900 | 1 | | 2 | 1 | 4 | 9 | 8 | 5 | 1 | 1 | 2 | 1 | | | |
| 90)- | 950 | 1 | | 1 | 2 | 4 | 3 | 11 | 3 | 3 | 1 | 1 | 3 | 5 | | |
| 95U - | 1000 | 1 | | 1 | 4 | 2 | 2 | 3 | 4 | | 1 | | 1 | | | |
| 1000- | 1050 | 1 | í | 2 | 2 | 2 | 4 | 6 | 10 | 5 | 2 | 1 | 2 | 2 | | |
| 1050- | 1100 | 3 | | 3 | 4 | 6 | 8 | 6 | 8 | 2 | 3 | 3 | 2 | 1 | | |
| 1100- | 1150 | 4 | | 3 | 6 | 3 | 8 | 4 | 9 | 6 | 4 | 1 | 2 | 4 | | |
| 1150- | 1199 | 2 | , | 1 | 2 | 2 | 3 | 9 | | 4 | 2 | 1 | 6 | 4 | | |

Ň.

| | | | | * | * | * | 7 | K | * | * | * | ; | * | * | * | * | * | * | r |
|-------------|-----|-----|---|------|----|---|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|--------|------|---|
| | | | * | D | TC | , | C (|) c | Q I | JEN | d C | v | D | v | ۸ | ד ל | 00 1 1 | T ti | , |
| | | | * | U | 1. | | Ó- | -1 | Õ | DE | G | ŘΙ | : E | ĵ | Ï | PS | "1 U | 1 17 | J |
| | | | * | * | * | * | | - | 4 | 4 | 4 | | L | .4. | ماء | 4 | | .1. | |
| | | | | ., | •• | | · | • | • | ^ | ^ | • | ` | ^ | ^ | ^ | * | * | |
| RESENTATION | 210 | 240 | | ial. | | マ | ne | 1 | 7 | 271 | 1 | | N. | | | 7 | 0 | | , |

| 8.5 | ACH PETROL | EUM. | V | VESTGATE # | 1 | | SUMMARY | | |
|-----|------------|---------|-------------------------|------------|------|---------------------|---------|------|-----|
| * * | | | | ***** | | | | | ** |
| * | * HT93C | DIP | <u> </u> | DEV | DEV | | | QUAL | * |
| * | * | | AZM + | | AZM | * *** | 2-4 * | | * |
| | ****** | ***** | ****** | ***** | **** | ***** | ***** | **** | ** |
| * | Ŧ A D | | | | | | | | * |
| * | 847.06 | 27.6 | 209. | 28.1 | 30. | 8.0 | 12.3 | А | * |
| * | BOTTOM | | | | | | | | * |
| * | 1199.99 | 4.7 | 211. | 29.5 | 33. | 8.6 | 8 🕳 9 | В | * |
| * | | | | | | | | | * |
| ナメ | ******* | (****** | * * * * * * * * * * * * | ***** | **** | * * * * * * * * * * | ***** | **** | * * |

| BEACH PET | ROLEUM | ! | VESTGATE | # 1 | PAGE | 10-FILE 1 |
|--------------------|----------|--|--------------|--|---|------------------------------------|
| | ***** | **** | ***** | ***** | ***** | ****** |
| * DEPTH | DIP DIP | DEV DEV | DIAM D | IAM | Q | * |
| * | AZM | AZM | 1-3 | 2-4 | | * |
| ***** | ***** | ***** | ***** | ***** | ***** | **** |
| * | | | | | | * |
| * 1193.99 | 7.9 11 | 29.5 34 | 8.7 | 8.8 | А | * |
| k 1194.49 | | 29.5 34 | 8.6 | 8.8 | A | * |
| * 1195 . 99 | 9.3 30 | 29.5
29.5
34
29.5
34
29.5 | 8 , 5 | 8.5 | A | * |
| × 1196.49 | 2.8 11 | 29.5 34 | 8.5 | 8.5 | В | * |
| 1196.99 | 1.0 316 | 29.5 34 | 8.5 | 8 5 | Ā | * |
| 1197.49 | 15.5 359 | 29.5 35 | 8 . 5 | 8 5 | B | * |
| 1197.99 | 7.2 301 | 29.6 35 | 8 - 5 | 8.6 | Ā | * |
| 1198.49 | 8.2 24 | 29.7 34 | 8.6 | 9.0 | â | * |
| · 1198.99 | 2.3 8 | 29.7 34 | 8 - 5 | 9 0 | g | * |
| 1199.49 | 5.6 200 | 29.6 34 | 8.6 | 9. n | Ř | * |
| * 1199 . 99 | 4 7 211 | 29 5 33 | 8.6 | ά ο | B | Ĵ |
| ***** | *** | | | ♥ * * * * * * * * * * * * * * * * * * * | ب.
والما والما | and the standard about a standard. |

| BEACH PETROLEUM WESTGATE # 1 PAGE 9-FILE ************************************ | · + + + |
|---|-------------|
| * DEPTH DIP DIP DEV DEV DIAM DIAM Q * AZM AZM 1-3 2-4 ************************************ | *
* |
| * | *
* |
| * 115C1-0-66-1-1-2-7-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8 | * |
| * 1153.46 10.9 162 29.5 32 8.4 8.6 B
* 1155.97 3.6 67 29.5 33 8.5 8.6 B
* 1157.97 12.2 60 29.5 32 8.4 8.5 B | *
* |
| * 1153.46 10.9 162 29.5 32 8.4 8.6 BB * 1157.97 12.2 60 29.5 33 8.4 8.5 BB * 1159.97 33.9 135 29.5 33 8.4 8.5 BB * 1160.97 4.9 110 29.5 32 8.4 8.5 BB * 1167.47 8.5 204 29.5 33 8.4 8.5 BB * 1167.47 8.5 22 29.5 33 8.4 8.5 BB * 1167.47 8.5 22 29.5 33 8.4 8.5 BB * 1167.47 8.5 22 29.5 33 8.4 BB * 1167.47 8.5 22 29.5 33 8.4 BB * 1170.97 5.7 18 29.5 33 8.4 BB * 1171.97 6.4 173 29.5 33 8.4 BB * 1171.97 6.4 173 29.5 33 8.4 BB * 1171.97 6.4 173 29.5 33 8.4 BB * 1174.48 19.7 133 29.5 33 8.4 BB * 1174.98 6.6 3339 29.4 8.5 BB * 1174.98 8.8 335 29.3 33 8.6 BB | *
* |
| * 1159.97 | *
* |
| * 1167.47 8.5 2 29.5 33 8.5 8.6 B
* 1167.97 5.7 18 29.5 33 8.4 8.5 A
* 1169.97 27.8 224 29.5 33 8.4 8.5 B
* 1170.97 18.1 52 29.5 32 8.4 8.6 B | *
* |
| # 11107779 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | *
*
* |
| * 1170 97 18 1 52 29 5 32 8 4 8 6 8 8 6 8 8 1171 47 4 7 169 29 5 33 8 5 8 6 8 8 6 8 8 1171 97 6 4 173 29 5 33 8 4 8 5 8 6 8 8 1174 98 6 6 6 339 29 4 33 8 5 8 6 A 8 1175 48 8 8 335 29 3 33 8 6 3 9 A 8 1175 48 8 8 335 29 3 33 8 6 9 1 8 1177 98 6 4 281 29 2 33 8 7 9 1 8 8 7 9 1 8 8 1177 98 3 3 178 29 1 33 8 7 9 4 A 8 1177 98 3 3 178 29 1 33 8 7 9 4 A 8 1177 98 3 3 178 29 1 33 8 7 9 4 A 8 1177 98 3 3 178 29 1 33 8 6 9 1 A 8 1177 98 3 3 1 168 29 2 33 8 6 9 1 A 8 1177 98 3 3 3 168 29 2 3 3 8 6 9 1 A 8 1177 98 3 3 3 168 29 2 3 3 8 6 9 1 A 8 1177 98 3 3 3 168 29 2 3 3 8 6 9 1 A 8 1177 98 3 3 3 168 29 2 3 3 8 6 9 1 A 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | *
* |
| * 1174.98 6.6 339 29.4 33 8.5 8.6 A
* 1175.48 8.8 335 29.3 33 8.6 3.9 A | *
* |
| * 1175.98 6.4 281 29.2 33 8.7 9.1 B
* 1177.48 2.8 180 29.1 33 8.6 9.3 A | *
* |
| * 1177.98 3.3 178 29.1 33 8.7 9.4 A * 1178.48 5.5 242 29.2 33 8.4 9.0 A * 1178.98 3.3 168 29.2 33 8.6 9.1 A * 1179.98 3.1 100 29.3 33 8.5 8.8 B | *
* |
| * 11774 98 6 6 6 3339 29 4 333 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | *
*
* |
| * 1180.48 22.9 49 29.3 34 8.5 8.7 B
* 1181.98 18.0 45 29.8 33 8.4 8.7 B
* 1182.48 62.8 226 29.9 32 8.4 8.6 B | * * |
| * 1181.98 18.0 45 29.8 33 8.4 8.7 B * 1182.48 62.8 226 29.9 33 8.5 8.6 B * 1183.98 22.3 10 29.7 33 8.5 8.8 A * 1185.48 8.9 212 29.5 33 8.6 8.8 A * 1186.98 13.6 213 29.4 33 8.6 8.9 A * 1187.48 9.7 195 29.3 33 8.7 9.0 B * 1187.98 18.0 185 29.3 33 8.8 9.1 B * 1188.48 14.6 185 29.3 33 8.6 8.8 A * 1188.98 15.4 182 29.3 33 8.6 8.8 A * 1189.98 15.4 182 29.4 33 8.6 B * 1199.98 15.5 81 29.4 33 8.6 B * 1193.48 9.7 129 29.4 34 8.8 9.1 B | * |
| * 1185.98 9.2 207 29.4 34 8.6 8.8 A
* 1186.98 13.6 213 29.4 33 8.6 8.9 A
* 1187.48 9.7 195 29.3 33 8.8 9.1 B | *
* |
| * 1186.98 13.6 213 29.4 33 8.6 8.9 A * 1187.48 9.7 195 29.3 33 8.3 9.1 B * 1187.98 18.0 185 29.3 33 8.7 9.0 B * 1188.48 14.6 185 29.3 33 8.8 9.0 B * 1188.98 15.4 182 29.3 33 8.6 8.8 A * 1189.98 5.1 73 29.4 33 8.6 8.8 A * 1189.98 5.5 81 29.4 33 8.6 8.8 B * 1192.98 11.3 82 29.5 33 8.8 B | *
* |
| * 1188.48 14.6 185 29.3 33 8.8 9.0 8
* 1188.98 15.4 182 29.3 33 8.6 8.8 A
* 1189.48 5.1 73 29.4 33 8.6 8.8 A
* 1189.98 5.5 81 29.4 33 8.6 8.6 B | *
*
* |
| * 1189.98 5.5 81 29.4 33 8.6 8.6 B | *
* |
| * 1192.98 11.3 82 29.5 33 8.8 8.8 A
* 1193.48 9.7 129 29.4 34 8.8 9.1 B
************************************ | * |

| BEACH PETROLEUM | WESTG
******* | ATE # 1 | PAGE 8-FILE 1 |
|---|--|---|---|
| * DEPTH DIP | DIP DEV DEV DIA | M DIAM | *
* |
| \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 21122222222222222222222222222222222222 | 35775543423104136766666667767998767388
99999999999988888888888888888888888 | * |

H PETROLE

STRATIGRAPHIC

HIGH RESOLUTION

DIPMETER

MSD COMPUTATIONS

COMPANY : BOACH PETROLEUM

WELL : WOSTGATE # 1

FIELD : QOLDCAT

COUNTRY : 30STRALIA

RUN : 00E

DATE LOGGED : 14 - MAR - 86

REFERENCE : 80J.160301

1 M X 50% - 35 DEG X 2

PARAMETERS: 1M X 0.5M, 35 DEG. X 2

OPTION: WHITE CIRCLES ARE QUALITY 15 TO 16

OPTION: BLACK CIRCLES ARE QUALITY 17 TO 20

| * DEPIH DIP
*
*************** | ************************************** | DIAM DIAM
1-3 2-4
******** | PAGE 1-FILE 1 *********** Q ** ** ** A |
|---|---|---|--|
| * 847 . 56 27.6 | 00000000000000000000000000000000000000 | 31110245556994667755694088888145219565
1111111111111111111111111111111111 | A |
| 212242320605396866556663646834 212242320605396866556668646834 5555554442222221111111009999887 68999023888888888888888888888888888888888 | 00000000000000000000000000000000000000 | 024555699466775569
11111111111111111111111111111111111 | ** ** ** ** ** ** ** ** ** ** ** ** ** |
| * 860.51 9.0
* 861.01 88.3
* 861.01 6.3
* 862.51 6.3
* 862.50 5.3
* 8643.49 6.0 | 28.8990000000000000000000000000000000000 | 8.4 12.7
8.5 12.7
8.4 12.5
8.4 12.6
8.4 12.9
8.4 13.4 | A |
| * * * * * * * * * * * * * * * * * * * | 32 9 1 300
3300
3445 29 29 3 300
3442 29 29 3 300
3442 29 29 3 300
3442 29 3 8 8 300
3444 30 0 30 | 8.4 14.0
8.4 13.8
8.4 13.8
8.4 13.8
8.5 14.3
8.3 15.1 | * * * * * * * * * * * * * * * * * * * |
| | 306 30-0 30 | 8 4 14 4 5
9 2 14 5
13 2 1
8 5 13 2 1
12 9 5
8 6 12 9 5
8 8 4 12 6
3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | * * * * * * * * * * * * * * * * * * * |
| * 890.92 5.7
* 892.41 11.4
* 892.91 10.8 | 260 30 0 30
262 30 0 30 | 8.5 12.4
8.5 12.3 | |

| | | ΡŤ | | | ÎP | DIP | DÊV | DÊV
AZM | DIAM
1-3 | DIAM
2-4 | Q | ****** | **** |
|----|--------------|------------|--|---------------------|---------------------------------------|--|--|--|---|--|----------------------------|--------|-------|
| ** | *** | * * | ** | ** | ** | M | **** | # # # # # # # # # # # # # # # # # # # | ***** | ~~ 4
***** | ***** | ****** | ***** |
| | ୭.ଦ | 3 | 41 | 3 | - 5 | 256 | 30.0 | ₹1 | 8.5 | 12 4 | А | | |
| | 89
89 | ź. | | 1 | *5
*5
*7 | 256
311
269
43 | 30.0
30.0 | 30 | 55554454
83888888 | 12.43 | А | | |
| | - 89
- 89 | 4. | 47 | 1
3
5 | .7
.7 | 269
43 | 29.9 | 3 U
3 O | 8 - 5
8 - 4 | 12.5 | 3
3
8 | | |
| | 89 | 6. | 90 | 4 | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 43
32 | 29.9
30.0
30.0 | žŏ | 8.4 | 12.5 | | | |
| | - 89
- 89 | ర. | 89
30 | 4 | 0.277 | 32
212
109 | 30.0
30.0
30.0
30.0
30.1 | 30
30 | 8 5 | 11 | A | | |
| | 89 | 9 " | 89 | 1 | | 207 | 30.2 | 30
30 | 8.4 | 11.4 | 8 | | |
| | 90 | Ŋ. | 39 | 2 | •9
•9 | 48 | 30.2 | 30 | 8 4 | 11.5
11.3
11.3 | A | | |
| | 90 | 1. | 944983839988387766 | 442128127
111 | • 9 | 103
103 | 33333333333333333333333333333333333333 | 30 | 445444445555555884844444444444444444444 | 11.1 | A BBABAMAABBAAABBABABAMAMA | | |
| | 90 | 2. | 38 | 12 | 4 7 | 19 | 30.2 | 30 | 8.5 | 11.0
10.9
10.4
10.8
88.7
88.7 | 30 | | |
| | 90 | 4. | 87 | | .40 | 26
351
359
349
375 | 30.2
30.1
30.2
30.1
30.1 | 30 | 8,5 | 10.9
10.4
10.2 | A A | | |
| | 90 | 5. | 37 | 5 | -0 | 51 | 30.1
30.2
30.3
30.2 | 30 | 8 • 5 | 10.2
8.8 | 8 | | |
| | | Ö. | 86 | Ş | .7 | 359 | 30.2 | 30 | 8.3 | 3.8 | A
A | | |
| | 91
91 | 1. | 6555533356
83888888888888888888888888888 | 10 | • 6 | 39 | 30.2
30.1 | 30 | 8 • 4 | 8887777555
8888888888888888888888888888 | 3 | | |
| | 91 | 2. | 35 | 5 | 68540 | 275 | 30.1
30.1 | 30 | 8.4 | | р
Э | | |
| | 91
91 | 7. | 83 | 5 | 4 | 21 | 29.9 | 30 | 8 . 4 | 8 5 | 3 | | |
| | 91 | 9. | 83 | 2 | .5 | 193 | 29.9
29.9
29.9 | 30
30 | 8.4
8.4 | 8.5 | n
B | | |
| | 92 | 1 - | 82 | 3 | •Ò | 21
83
193
3 1 0
204 | 29.9 | 30 | 8.4 | 8 • 5 | В | | |
| | 92
92 | 12336 | SUNCH SENSON SEN | 4 | 40756854050627 | 174 | 29.9
29.9
29.9
29.9
29.9 | 30
30 | 8 . 4
8 . 4 | ŏ.6
3.6 | ъ
Э | | |
| | 9.5
9.5 | 3. | 81 | 5 | 7.0 | 174
145 | 29.9 | 30 | 8.4 | 3.6
3.6 | Ā | | |
| | 92 | 6. | 31
80 | - 6 | .0
.0
.7 | 301 | 29.9 | 30
30 | 8.4 | 8.6
3.6 | :3
A | | |
| | 9.2 | 67.7 | 30 | 4 | | 238 | 29.9
29.9 | 30 | 3.4 | 8.6 | 3 | | |
| | 92
92 | 8. | 30
30 | 6522195512394526473 | .1 | 198 | 29.9
29.9 | 29 | 3.5 | 065667
888888 | i3
A | | |
| | 92 | 8. | 80 | 1 | <u>.</u> 8 | 205 | 29.9 | 30 | 3.4 | 8.6 | A
A | | |
| | 9 2
9 2 | 677889991 | 80 | 6 | 2000075 | 301
2385
1985
177
177
298 | 29.8
29.8
29.8 | 30
30 | 138888999388888888888888888888888888888 | 8.7
8.9
8.9 | A
3
8
8
A | | |
| | 93 | 1. | 29 | 1 | <u>.</u> 8 | 291 | 29.8 | ŽŽ | 8 5 | 8 9 | B | | |
| | 93 | 2. | 59 | 6
0 | .7 | 1 | 29.7
29.7 | 30
30 | 8 . 6 | 8.9
9.2 | ರ
A | | |
| | 93 | 2. | 2011100000000099998 | Ž
3 | .4
0 | 12
256 | 29.6 | TOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | 8.6
8.6
8.5 | 66665667799236
\$@@@@@@@@@@9999 | А | | |
| | 33 | | | 3 | • 0 | 256 | | | 8.5 | | 3 | ***** | |

| A7M 127 7527 | ************************************** |
|--|---|
| ************************************** | DEV DEV DIAM DIAM Q *********************************** |
| ************************************** | ************************************** |
| ************************************** | DIAM DIAM Q *********************************** |
| DIAM Q | DIAM Q *********************************** |
| Q | ************************************** |
| ******* | ********* |
| | * |
| | * |

| BEACH PETROLEUM | ()
(* * * * * * * * * * * * * * * * * * * | WESTGATE # 1 | · · · · · · · · · · · · · · · · · · · | PAGE 4-FILE 1 | |
|---|---|--|---------------------------------------|--|--|
| * DEPTH DIP | DIP DEV DEV
AZM AZM | DIAM DIAM | Q | *************** | |
| 7869797780870260739165750287774498* 91808588354455607331742 23322222 1411233331442 61616161661661661616161616161616161616 | 9000000000000099099090001000010001111111 | 46610090007780759064655479670976566777
899999899999000008888888888888888888 | | **************
********************** | |

| BEACH PETROLEUM | WESTGATE # 1 | PAGE 5-FILE 1 |
|--|---|---|
| ************************************** | DEV DIAM DIAM | Q * |
| * AZM
************ | AZM 1-3 2-4
************************************ | * ************************************ |
| * 1032.69 5.6 343 29.9 | 31 8.3 8.5 | * * |
| * 1033 . 19 | 31 8.4 8.6 | Ä * |
| * 1034,20 1.3 285 30.0 | 31 8.4 8.6
31 8.4 8.6 | A * * * * * * * * * * * * * * * * * * * |
| * 1034.70 1.5 186 30.0
* 1035.20 3.5 61 30.0 | 31 8.4 8.6
31 8.4 8.6
31 8.4 8.6
31 8.4 8.6 | 8
8 * |
| * 1033.70 1.5 270 30.0
* 1034.20 1.3 285 30.0
* 1034.70 1.5 186 30.0
* 1035.20 3.5 61 30.0
* 1035.71 0.3 54 30.0
* 1036.21 5.6 29 30.0 | 31 8.4 8.6
31 8.4 8.5 | * * * |
| * 1034.70 1.5 186 30.0
* 1035.20 3.5 61 30.0
* 1035.71 0.3 54 30.0
* 1036.21 5.6 29 30.0
* 1036.71 12.2 340 30.0
* 1039.72 2.7 206 29.8 | 30 8.4 8.5 | ************************************** |
| * 1036.71 12.2 340 30.0
* 1039.72 2.7 206 29.8
* 1040.22 6.3 56 29.9
* 1040.73 6.9 61 29.9 | 31 8.4 9.0
31 8.4 8.8 | A * * * |
| * 1040.73 6.9 61 29.9
* 1041.73 6.3 87 29.9 | 31 8.4 8.65
8.4 8.55
8.4 9.0
8.4 9.0
8.4 9.0
8.33
8.4 9.0
8.8 8.5
8.33
8.4 8.8 8.6 | A * * * * * |
| * 1036.71 12.2 340 30.0
* 1039.72 2.7 206 29.8
* 1040.22 6.3 56 29.9
* 1040.73 6.9 61 29.9
* 1041.73 6.9 87 29.9
* 1042.73 2.1 53 29.9
* 1042.73 2.1 53 29.9
* 1043.24 5.0 71 29.8 | 31 8.3 8.6
31 8.4 8.6 | Ä * * * |
| * 1036.71 12.2 340 30.0
* 1039.72 2.7 206 29.8
* 1040.22 6.3 56 29.9
* 1040.73 6.9 61 29.9
* 1041.73 6.3 87 29.9
* 1042.23 2.2 253 29.9
* 1042.23 2.1 53 29.9
* 1043.24 5.0 71 29.8
* 1044.24 1.1 314 29.9 | 655088566666666666666666666666666666666 | A * |
| * 1043.74 3.8 323 29.9
* 1044.24 1.1 314 29.9 | 31 8.4 8.6
31 8.3 8.6
31 8.3 8.6
31 8.4 8.6 | A * * |
| * 1044.74 4.3 35 30.0
* 1045.75 3.7 342 30.0 | 31 8.4 8.6 | B * * |
| * 1046.25 1.9 142 29.9
* 1046.75 7.2 9 29.8 | 31 8.3 8.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3 * * |
| * 1047.25 7.7 358 29.8 | 31 8.4 8.6
31 8.4 8.5
31 8.4 8.5
31 8.4 8.5
31 8.4 8.5 | 3 * |
| * 1049.26 7.3 44.29.8
* 1049.76 4.7 49.29.8
* 1050.27 5.7 79.29.8 | 31 8.4 8.6
31 8.4 8.5
31 8.4 8.5 | A * * |
| * 1049.76 | 31 8.4 8.5
31 8.4 8.5 | 8
3
* |
| * 1051.27 2.6 164 29.7
* 1051.77 3.1 8 29.7 | 31 8.4 8.5
31 8.4 8.4
31 8.4 8.4 | A * * |
| * 1050.77 6.5 253 29.7
* 1051.27 2.6 164 29.7
* 1051.77 3.1 8 29.7
* 1052.27 8.1 154 29.7
* 1052.78 7.3 145 29.7
* 1053.28 17.4 132 29.7
* 1053.78 17.4 132 29.7
* 1055.29 2.1 347 29.7 | 31 8.4 8.4
31 8.4 8.4
31 8.4 8.4
31 8.4 8.4 | A * |
| - ₩ 1 053 3Ω 17 Å 133 30 7 | 31 8 4 8 4 | A * * * * * * * * * * * * * * * * * * * |
| * 1052.27 8.1 154 29.7
* 1052.78 7.3 145 29.7
* 1053.28 17.4 132 29.7
* 1053.78 17.4 132 29.7
* 1055.29 2.1 347 29.7
* 1055.79 3.8 242 29.6 | 31 8.3 8.4 | B * * |
| * 1055.79 5.8 242 29.6
* 1056.29 4.3 238 29.6 | 66666655000050000566666666665655544444444 | A * * |
| * 1056.79 2.3 32 29.6 | 31 8.3 8.5
31 8.3 8.5 | A * |
| * 1057.80 6.0 126 29.6 | | 3 *
A * |
| * 1058.30 5.3 346 29.6
*********** | 31 8 3 8 5
************ | 3 **************** |
| | | |

| BEACH PETROLEUM | WESTGATE # 1 | PAGE 6-FILE 1 |
|---|--|--|
| ************************************** | DEV DIAM DIAM
A7M 1-3 2-4 | ************************************** |
| ******** | | ************************************** |
| | 31 8.4 8.5
31 8.4 8.5
31 8.4 8.5 | 4
4 |
| * 1059.30 4.6 325 29.6
* 1059.81 2.5 39 29.6
* 1000.31 7.2 34 29.6 | 31 8.4 8.5
31 8.4 8.5 | Å |
| * 1060.81 10.3 44 29.6
* 1061.31 4.3 4 29.6
* 1061.81 1.7 331 29.6 | 31 3.4 8.5
31 8.4 8.5 | 4
4 * |
| * 1060.81 10.3 44 29.6
* 1061.31 4.3 4 29.6
* 1061.81 1.7 331 29.6
* 1062.32 1.5 312 29.6
* 1062.82 1.2 22 29.6 | 31 8.3 8.5
31 8.3 8.5 | 4
4 * |
| * 1062.32 1.5 312.29.6
* 1062.82 1.2 22.29.6
* 1063.32 2.8 284.29.6
* 1063.82 5.5 296.29.6 | 31 8.3 8.5
31 8.3 8.5 | 4
4 * |
| * 1059.30 4.6 325 29.6 6 | 31 8.3 8.5
31 8.3 8.5 | * * |
| * 1064.83 2.7 49 29.6
* 1065.33 3.0 59 29.6
* 1065.83 2.7 20 29.6
* 1066.33 4.2 31 29.6 | 31 8.3 8.5
31 8.3 8.5 | 4
4 * |
| * * * * * * * * * * * * * * * * * * * | 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.6.67.67.6.67.9.1.4.4 8.8888888888888888888888888888888 | 4
4
* |
| * 1066.33 4.2 31 29.6 6 127 29.6 6 127 29.6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.6 6 6 127 29.5 6 127 29.5 | 31 8.3 8.5
31 8.3 8.5 | * * * * * * * * * * * * * * * * * * * |
| * 1068.34 1.8 329 29.6 6 6 6 6 7 9 2 29 9 6 6 6 6 6 7 9 2 29 9 6 6 6 6 6 7 9 2 29 9 6 6 6 6 6 7 9 2 29 9 6 6 6 6 7 9 2 29 9 5 5 6 9 9 6 6 7 9 8 7 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 | 31 8.3 8.6 | 3
3
4
* |
| * 1070.35 4.1 251 29.6
* 1070.85 4.9 267 29.6
* 1071.35 4.2 246 29.6 | 31 8.3 8.7 | * * * * * * * * * * * * * * * * * * * |
| * 1071.35 4.2 246 29.6
* 1071.86 3.7 240 29.6
* 1072.36 5.9 294 29.5 | 31 8.3 8.6
31 8.3 8.7
31 8.3 8.7 | ~ |
| * 1072 86 6 6 319 29 5
* 1073 36 7 9 6 29 5 | 31 8.3 8.6
31 8.3 8.6
31 8.3 8.7 | *
* |
| * 1073.86 2.1 36 29.5
* 1075.37 1.3 333 29.5 | 31 8.4 3.9
31 8.6 9.1 | 4
4 * |
| * 1078.38 15.6 61 29.4
* 1078.88 18.7 196 29.4 | 31 8.6 9.4
31 8.7 9.4 | * * * |
| * 1078.38 15.6 61 29.4
* 1078.88 18.7 196 29.4
* 1079.39 17.7 188 29.5
* 1080.39 4.6 329 29.7 | 31 8.6 9.4
31 8.7 9.4
31 8.5 9.3
31 8.4 8.9
31 8.4 8.7 | 3 *
3 * |
| * 1080.39 4.6 329 29.7
* 1080.89 4.3 68 29.7
* 1081.40 4.2 54 29.7
* 1081.90 5.4 350 29.6
* 1084.91 13.4 342 29.9 | 31 8.4 8.7
31 8.4 3.6 | 4
4 * |
| \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 55555555555555555555555566767676679144397666678 8888888888888888888888888888888 | *
* |
| * 1026.42 8.7 181 29.6
* 1087.92 18.5 139 29.6
* 1088.42 11.7 121 29.6 | 30 8.4 8.6
31 8.5 8.7 | * * |
| * 1088.42 11.7 121 29.6
******** | 31 8.6 8.8
******** | 3
********** |

| BEACH PETROLEUM | ***** | WESTGATE # 1
******* | PAGE 7-FI
******* | **** |
|---|---|--|--|----------------|
| * DEPTH DIP
*
******** | DIP DEV DI
AZM AZ
******** | EV DIAM DIAM
ZM 1-3 2-4
******* | Q
********** | *
*
**** |
| 68187115216787676839879008878830927403305 44751559344571580113356211511156443330927403305 4944444444444444444444444444444444444 | 55.67890088887777788877776666666666666555
9999999999999999999999 | 94755556776665555566767777788888899902
89888888888888888888888888888888889902
80544444443555555556676777777888888899902
60544444435555555566767777778888888899902
80988888888888888888888888888888888888 | BBBABBAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAA | ************ |

.

| ************************************** |
|--|
| XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |

| ***** | | **** | | ***** | | PAGE 2-FILE ******* | |
|---|--|--|--|---------------------------------|--------|---------------------|-----|
| DEPTH | DIP | DIP DEV | DEV DIAM
AZM 1-3 | D I A M
2 – 4 | Q | | 7 |
| | | ***** | ***** | ***** | ***** | ***** | * * |
| 1243.7
1244.7
12447.2
1248.7 | 3 13.2 | 302 30.3
83 30.2
306 30.2
315 30.2
211 30.2 | 34 8.5 | 8 . 5 | 9 | | 7 |
| 1246.7 | 3 13.2
3 11.5
7.8
2 8.7 | 3222222222233333333332222111
30000000000000000000000000000000000 | \$55.655.868.7.888.888.888.888.888.888.888.888.8 | 8.5
8.6
8.7 | э
В | | 7 |
| 1247.2
1248.2 | 8.7
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7 | 315 30.2
211 30.2 | 34 8.6
34 8.5
34 8.8
34 8.8 | 8.6 | o m | | 7 |
| 1248.7 | 9.3
11.13.2
11.13.7 | 197 30.2 | 34 8.8 | 8.6
8.7 | A | | 7 |
| 1249.2 | 1 15.7 | 202 30.2
178 30.2 | 54 8.6
35 8.8 | 3.8
8.7 | A
B | | 7 |
| 1250.2
1250.7 | 1 2.1 | 207 30.2 | 34 8.7 | 8.8 | А | | 7 |
| 1251.2 | | 62 30.3 | 35 8.7 | 3.786
3.888
3.77
3.888 | A
A | | 1 |
| 1251.7 | 0 7.3 | 27 30 3
25 30 3 | 35 8.5
35 8.6 | 8.7
8.7
8.5
8.7 | A
A | | 7 |
| 1252.7
1252.7
1253.2 | 31203059595405156734837
42217435445745520241502
111110000000999999888776 | 207 30.2
207 30.3
627 30.3
257 330.3
341 330.3
344 37 30.3
344 37 30.3 | \$8888888888888888888888888888888888888 | 8.7 | В | | ; |
| 1253.7 | 0 4.5 | 317 30.3 | 33 8.5 | 8.6
8.6
8.6 | 8
A | | • |
| 1254.2 | 4.9
3.5
7.4 | 246 30.3 | 34 8.5 | 8 . 6
8 . 6 | A
B | | ; |
| 44.566778899923
7222722222222222222222222222222222 | 9 7.4 | 111 30.3 | 35 8.4
35 8.4
35 8.4 | ŏ 4 | В | | |
| 1256.1
1256.6 | 9 4.0 | 355 30.3
336 30.3 | 35 8.4
35 8.4 | 3.4
8.4 | A
A | | 7 |
| 1257.1 | 9 3.1 | 342 30.3 | 35 8.4
35 8.4 | 8 4 | А | | 7 |
| 1258.1 | 9999888
14.3 | 355
330
330
330
330
330
330
330
330
330 | 38888888
355555555555555555555555555555 | 3 - 4 | A
A | | 7 |
| 1258.6 | 8 2.7 | 217 30.2
166 30.2 | 35 8.4 | 8 • 4 | A
3 | | 7 |
| 1259.6 | 8 1.4 | 104 30.2 | 35 8.4 | 3 🙀 4 | 8 | | , |
| 1262.6 | 5.8
7.10.3 | 229 30.1
332 30.1 | 35 8.4
35 8.4 | 3.4
8.4 | A
B | | 7 |
| 1264.1
1265.1
1267.6 | 6 2.7 | 239
230
231
231
231
249
251
261
261
261
261
261
261
261
261
261
26 | 35 8.4 | 8 - 4 | В | | 7 |
| 1267.6 | 5 6.9 | 249 30.0
312 30.0 | 35 8.4
35 8.4 | 3.4
8.4 | 9
9 | | 7 |
| 1271.6 | 150256323
10256323
10256323 | 155 511-11 | 35 8.4
35 8.4 | 8.4
8.4 | 3
B | | 7 |
| 1777 6 | 3.2 | 135 30.0
183 30.0
145 30.0 | 35 8 4
35 8 4
35 8 4 | 8.4 | Α | | • |
| 1273.6 | 14 1.6 | 96 30-0 | 55 8.4
35 8.4 | 8 4 | A
A | | 7 |
| 1273.1
1273.6
1274.1
1276.1 | 958266297
632311343
11343 | 289 30-0 | \$\\ align************************************ | 3.4 | 3
3 | | , |
| 1277.1 | · · · | 244 29.9 | 35 8.4 | 8.4 | 9 | ***** | 7 |

| * DEPTH DIP | DIP DEV DEV
AZM AZM
******** | DIAM DIAM
1-3 2-4
******** | PAGE

Q
************ | *

*
* |
|---|--|--|--|---|
| \$30538960128430013655921452975177619 \$11000000099999888877776666665555554 \$111000000999999888877776666665555554 \$1223344555677888989912224556778899999900001122222222222222222222222222 | 99999999999999999999999999999999999999 | 4444455444445997444457D87444444567665555454
8888888888888888888888888888888 | A A A A A A A A A A A A A A A A A A A | <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <p< td=""></p<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> |

| BEACH PETROLEUM | WESTGATE # 1 | | AGE 4-FILE 1 |
|--|--|--|--------------|
| ************************************** | DEV DIAM DIAM
AZM 1-3 2-4 | ************************************** | * |
| ************************** | ****** | ****** | |
| | 36 8.4 8.4
35 8.4 8.4 | B
A | *
* |
| * * * * * * * * * * * * * * * * * * * | 55 X / X / | A
A | *
* |
| * 1305.53 7.2 277 29.7
* 1306.03 6.6 285 29.6 | 3555588.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | Ä
A | *
* |
| * 1306.03 6.6 285 29.6
* 1306.53 5.0 269 29.6
* 1307.03 7.8 237 29.6
* 1307.53 3.4 281 29.5 | 35 8.4 8.4
36 8.5 8.7
36 8.4 8.6
36 8.5 8.7 | A
A | *
* |
| * 1307.53 3.4 281 29.5
* 1308.03 5.1 270 29.5
* 1308.52 6.4 315 29.5 | 36 8.5 8.7
36 8.4 3.6
35 8.4 8.5 | A
A | *
* |
| * 1306.03 6.6 285 29.6 6.6 229.6 6.6 229.6 6.6 237 229.5 237 239.5 237 229.5 239.5 2 | 36 8.4 8.4 | A
B
B | *
* |
| * 1309.52 2.0 97 29.5
* 1310.02 3.0 133 29.4
* 1310.52 0.7 201 29.4 | 35 8 4 8 4 | A
A | *
* |
| * 1310.52 0.7 201 29.4
* 1311.02 1.7 20 29.4
* 1311.52 1.0 83 29.5 | 36 8.4 8.4
36 8.4 8.4
35 8.4 8.4 | A
A | *
* |
| * 1311.02 1.7 20 29.4
* 1311.52 1.0 83 29.5
* 1312.01 6.2 159 29.5
* 1312.51 13.3 213 29.6 | 35 8.4 8.4
35 8.4 8.4
35 8.4 8.4 | B
A | * |
| * 1312.51 13.3 213 29.6
* 1313.01 6.0 235 29.5
* 1313.51 5.5 115 29.5 | 35 8.4 8.4
35 8.4 8.4 | A
B
B
A | * |
| * 1312 01 6 2 159 29 5
* 1312 51 13 3 213 29 5
* 1313 01 6 0 235 29 5
* 1313 51 5 5 115 29 5
* 1314 01 5 5 206 29 5
* 1314 51 2 3 253 29 4
* 1315 00 4 3 230 29 4 | 35 8.4 8.4
35 8.4 8.4
35 8.4 8.4 | A
B
A | * |
| * 1315.00 4.3 230 29.4
* 1315.50 4.5 221 29.4 | 35 8.4 8.4
35 8.4 3.4 | A
A
A | *
*
* |
| * 1311.52 1.0 83 29.5 5 159 229.6 6 .2 1593 229.5 6 .5 1213 229.5 5 1213 229.5 5 1213 229.5 5 1213 229.4 4 .5 1215.50 4.5 229.4 4 .5 1215.50 4.5 229.4 4 .5 1215.50 4.5 229.4 4 .5 1215.50 229.4 4 .5 1215. | \$2 00 00 00 00 00 00 00 00 00 00 00 00 00 | A
A | *
*
* |
| * 1317.00 5.6 231 29.4
* 1317.50 6.9 237.29.3 | 38.4
38.4
88.4
88.4
88.4
33.5
33.5
35.5
35.5
35.5
35.5
35.5
35 | Â
A | *
* |
| * 1317 99 31 2 219 29 3
* 1318 49 6 6 323 29 3
* 1318 99 7 1 258 29 3
* 1319 49 5 8 260 29 3
* 1319 99 3 8 249 29 3
* 1320 49 3 2 255 29 3 | 35 8.4 8.4 | A | * |
| * 1318.49 6.6 323 29.3
* 1318.99 7.1 258 29.3
* 1319.49 5.8 260 29.3 | 4444444444
8388888888888888888888888888 | A
A | * |
| * 1318.99 7.1 258 29.3
* 1319.49 5.8 260 29.3 | 36 8.4 8.4
36 8.3 8.4 | Ä | * |
| * 1319.49 5.8 260 29.3
* 1319.99 3.8 249 29.3
* 1320.49 3.2 255 29.3
* 1320.99 1.7 286 29.3 | 36 8.3 8.4
36 8.3 8.4 | A
A | * |
| * 1320.49 3.2 255 29.3
* 1320.99 1.7 286 29.3
* 1321.48 1.5 356 29.3 | 36 8.3 8.4 | Ä | *
* |
| * 1321.48 1.5 356 29.3
* 1321.08 1.5 356 29.3 | 36 8.3 3.4 | Ą | * |
| * 1321.98 1.6 297 29.3
* 1322.48 2.7 293 29.3 | 36 8.3 8.4
36 8.3 3.5 | A
A | *
* |
| * 1322.48 2.7 293 29.3
* 1322.98 6.5 287 29.3 | 36 8.3 3.5 | Α | * |
| ******** | ****** | ****** | ***** |

| | BEA! | | | | | | | | داد ماد | -44- | | W | ΞS | TG | ΑT | E | # | 1 | | | 11 | | 6.4. | .45(| (! • | | P. | A G E | : | 5. | - F I | LE | 1 |
|---|------------------|----------------------|-------------------|------------------|-------------------|------------------|-----------------------------|---|------------|------|---|------------|-----|---------------------------------|-------------|-----|---------|------------|---------------|-----|-------|--------------|-------------|------|--------------|--------|--------------|-----------|--------|--------------|--------------|-----|--------|
| 7 | k [| ÊP | ÎĤ | | ÎP | D. | ĮΡ | | ÊŸ | | DE | V | D | IA | Μ | 2 | 2 | AM | | * * | * * * | | * *
) | *** | * * * | C 7K 7 | * * 7 | . | C 7C 7 | : ж | кжж | *** | * |
| | *
* * * * * : | k * * | * * * | * * * | *** | A 7 | 2M
*** | ** | ** | ** | A Z I | ۷]
★★: | * * | 1- | 3
** | ** | ·2· | - 4
* * | *** | * * | * * | + + 7 | * * | *** | *** | ** | * * > | ** | · * * | k * > | * * * | ·** | * |
| 7 | k | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * |
| | * 1 | 323
323
324 | .48
.98
.47 | 4
2
2
4 | .7
.5 | 2 <i>6</i>
13 | 31 | 299999 | .SSS2 | | 3 | 5 | | | 3
3
3 | | 8000000 | . 5
. 6 |)
) | | | | 4
4 | | | | | | | | | | * |
| | * 1 | 324 | .47 | 5 | -8 | 1 | 14 | 29 | • 5 | | 3 | 5 | | 8 . | 3
4 | | 8. | . 6
. 9 | | | | , | Δ,
Λ | | | | | | | | | | * |
| | * 1 | 325 | . 97
. 47 | 3 | .0
.5 | 10 | 92 | 29 | . 1 | | 3 | 5 | | 8. | 4 | | 8. | . 9 | , | | | , | ٦
4 | | | | | | | | | | * |
| | * 1
* 1 | 325
326 | 97
47 | 4
0 | .3 | 19 | 79
55 | 29 | .1 | | 3 | <u> </u> | | 8. | 4
4 | | \sim | - 4 |) | | | 1 | Д
Л | | | | | | | | | | *
* |
| , | * 1 | マフム | .97 | 4 | • 6
• 9 | 28 | δÓ | 29 | -0 | | 3 | 6 | | 8 | | | 9 | | | | | , | 4 | | | | | | | | | | * |
| | * 1:
* 1: | 327
328 | 46 | 5 | <u> </u> | 20 | 80
86
88 | 28 | .9
.0 | | 3 | <u> </u> | | 8. | 5 | | 9. | - 4 |) | | | | A
A | | | | | | | | | | * |
| | * 1
* 1 | 328
329 | . 96 | <u>Š</u> | . ž | 3.4 | 41 | 29 | .1 | | 3 | 5 | | <u> </u> | 4 | | 99988 | • 4
• 9 | 5 | | | , | A | | | | | | | | | | * |
| | * 1 · | 329
329 | -46 | | 5805369632007341 | - 31
- 25 | 00
84
72
35 | 22222222222
9998999999 | .1 | | 3 | 5
5 | | 성
유 | 455433333 | | 8 | 2429887 | } | | | , | Δ
Δ | | | | | | | | | | * |
| ; | * 1 | 330
330 | .46
.95 | Ž | . 7 | 2 | ŽŽ | 29 | . 1 | | 3 | Ž | | Š. | 3 | | 8 | 7 | , | | | | Ä | | | | | | | | | | * |
| | * 1;
* 1 | 33U
331 | - 45
- 45 | 2 | • 5
• 4 | $\frac{2}{16}$ | 55
54 | 29 | :2 | | 3, | (
6 | | 8.
8. | <u>5</u> | | 889 | | } | | | • | A
A | | | | | | | | | | * |
| | * 1 | 331 | 9494949494 | 2
4
3
7 | - | 1 | 54
79 | 29 | 2222332087 | | 3 | ě. | | 8 . | 4 | | | |) | | | | Ą | | | | | | | | | | * |
| | * 1
* 1 | 3333334 | 1 95 | 3 | .5 | 17 | 71
96 | 29 | • <u>2</u> | | 3 | 6 | | S.
8. | 455645 | | | . 1 | 3 | | | , | 4
4 | | | | | | | | | | * |
| | * 1
* 1 | 337
333 | 45 | 5 | • O | 21 | 58 | 29 | . 3 | | 3 | 5 | | 8. | 5 | | 9
9 | . 1 | | | | | A | | | | | | | | | | *
* |
| | * 1 | 334 | | 5 | .3 | 4 5 | 28 | 29 | .0 | | 3 | 7 | | 8. | 4 | | 9. | . 2 | j | | | į | 3
4 | | | | | | | | | | * |
| | * 1:
* 1 | 334 | a 94 | 25535 | 00399 | 1922 | 53 | 28 | .8
.7 | | 3 | 7 | | 8. | 5 | 1 | 0 | . 1 | | | | | A
A | | | | | | | | | | * |
| | k 1 | 336
336 | . 93 | 4 | .9
.5 | 10 | 92 | 28 | : 7 | | 3 | 6 | | 8. | 6 | 1 | 1 | | | | | | 4 | | | | | | | | | | * |
| | * 1:
* 1 | 339
339 | .43 | 5 | . 6
. 3
. 1 | 19 | 97
80 | 28 | .9
.0 | | 3 | 5
7 | | 8 . | 6 | | 0 | • ~
~ | 3 | | | | A
a | | | | | | | | | | * |
| 7 | * 1 | 740 | .42 | 7 | <u>.</u> 5 | | žÓ. | 222222222222222
99999998888999 | .1 | | 3 | ? | | 8. | 4 | | | • 0 | 5 | | | į | 3 | | | | | | | | | | * |
| | | 341 | - 42 | 4
7
5
9 | 55018301
1 | 5 l |)4
15 | 29 | .6 | | 3 | 6
6 | | | 4 | | 8 | • 4
• 4 | <u> </u> | | | | A | | | | | | | | | | * |
| • | | 342 | . 92 | 7 | . 1 | | 25 | 29 | . 5 | | 3 | 5 | | 8. | 4 | | 8 | 4 | • | | | , | Ą | | | | | | | | | | * |
| | * 1
* 1 | 342
347 | .92
.90 | 4 | • 3
• 3 | : | 39
39 | 28 | .4 | | 3 | 5
6 | | 8.
8.
8. | 4
4 | | 8 | • 4
• 4 | . | | | , | A
A | | | | | | | | | | * |
| | * 1
* 1 | 3442
7448
8448 | 40 | Ş | .0 | 1 (| 29 | 28 | <u>.</u> 5 | | 3 | 5 | | 3. | 4 | | 8 | - 4 | ŧ | | | , | A | | | | | | | | | | * |
| | | 349 | 49333222222000009 | 10 | - 2 | 10 | 8304551999555
1253299555 | 2222222222
222222222222222222222222222 | 4555556 | | ๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ | 5 | | 8
8 | 4 | | 8888 | • 4
• 4 | +
+ | | | į | 4
3 | | | | | | | | | | * |
| | * 1;
* 1 | | # 89
70 | 9 | . 1 | 2; | 15 | 28 | | | 3 | 5 | | 8. | 4 | | | • 4 | | | | | 4 | | | | | | | | | | * |
| | * 1 ⁻ | 350
350
351 | 1 79 | 60 | .1 | 2 | 59
59 | 23 | .6
.7 | | 3 | 5 | | 8
8
8
8
8
8
8 | 4
4 | | 8888 | • 4
• 4 | , | | | | 3
3
3 | | | | | | | | | | * |
| | * 1:
**** | ^>U
?51
*** | . 79
*** | 11 | . 4 | 24 | 47
*** | 28 | .7 | ** | 3.
** | 6
* * * | * * | 8. | 4
* * | * * | 8 | . 4
* * | . * * | * * | *** | ;
k ** : | 3 | *** | k * * * | - * | k * \ | | | | * * 4 | | * |
| | | | | | | | | | | | | | | | | , | | | | , | , , | | | | | , | | | , , | | | | |

| BEACH PETROLEUM | WESTGA | TE # 1 | PAGE 6-FILE 1 |
|--|--|---|-----------------|
| *********************** | ****************
DTP DEV DEV DIAM | ********************** | ****** |
| * | AZM AZM 1-3 | 2 - 4 | *
********* |
| * | | | * |
| * 1351.89 12.6
* 1352.88 1.7 | 240 28.7 36 8.4
209 28.7 36 8.4
267 28.7 36 8.4 | 8.4
8.4 | * |
| * 1353.38 0.3
* 1353.88 1.9 | 267 28.7 36 8.4
5 28.7 36 8.4 | 3.4 A | * |
| * 1353.38 0.3 1
* 1353.88 1.9
* 1354.38 13.5
* 1354.88 12.4 | 5 28.7 36 8.4
194 28.7 36 8.4 | 33.4
38.4
88.4
88.4 | * * * |
| * 1353.38 0.33
* 1353.88 1.9
* 1354.88 12.4
* 1355.38 11.0 | 192 28.7 36 8.4
22 28.6 36 8.4 | 8.4 3 | * |
| * 1357.87 5.2 | 240 28.7 36 8.4
2209 28.7 36 8.4
267 28.7 36 8.4
194 28.7 36 8.4
192 28.7 36 8.4
192 28.6 36 8.3
28.6 36 8.3
28.6 37 88.3 | 8.4
8.4
8.4 | * |
| * * * * * * * * * * * * * * * * * * * | 44444444444444444444444444444444444444 | 8 4 A A A A A A A A A A A A A A A A A A | * |
| * 1360.36 1.2
* 1360.86 3.6 | 238 28.6 37 8.3
81 28.5 37 8.3 | 8 4 A A A A A A A A A A A A A A A A A A | , * |
| * 1361.36 Q.3 | 348 28.5 37 8.2 | 8.4
8.4
8.5 | * |
| * 1361.86 3.6 .
* 1362.35 5.9 | 348 28.5 37 8.2
237 28.5 37 8.3
241 28.5 37 8.2
237 28.5 37 8.2 | 8 5 A | * * * * * |
| * 1362.85 5.9
* 1363.35 1.6 | 241 28.5 37 8.2
237 28.5 37 8.2
287 28.5 37 8.2
343 28.5 37 8.2 | 4455667788999011 | * |
| * 1333333333333333333333333333333333333 | 28.3232323232323232323232323232322223323232 | 8.7
8.7
8.8
8.8
8.9
8.9
8.9 | * |
| * 1364.35 3.1
* 1364.85 2.9 | 36 28 4 37 37 38 32 23 34 34 5 28 8 4 4 37 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 8.7 A
8.8 A | |
| * 1365.35 2.4
* 1365.84 5.4 | 345 28.4 37 3.3 | 8 3 A | * |
| * 1 <u>3</u> 66.34 5.6 | 12 28.4 37 8.2 | 8.9 A | |
| * 1365.84 1.4 :
* 1367.34 1.8 : | 357 28.4 37 8.3
238 28.3 37 8.3 | 9.0 A
9.1 A | |
| * 1367.84 5.2
* 1368.34 5.3 | 290 28.3 37 8.3
714 38.3 37 8.3 | 9 . j | * |
| * 1368.83 3.5 | 299 28.3 37 8.3 | 9.1 A
9.2 A | |
| * 1369.33 2.0
* 1369.83 1.9 | 265 | 9.2
9.3
A | |
| * 1370.83 6.2
* 1371.33 2.7 | 257 28.3 37 8.3 | 9.9 | * |
| * 1370.83 6.2
* 1371.33 2.7
* 1371.82 3.3
* 1372.32 1.5 | 230 28.2 37 8.4 | 10.0
10.8 | * |
| * 1372.32 1.5
* 1378.80 51.6 | 230 | 10.8
10.8
13.6 | * |
| * 1382.79 6.0 | 284 29.1 36 8.4 | 13.0 B | * |
| * 1383.29 4.9
* 1383.79 4.4 | 28 28 3 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38 | 99999999999999999999999999999999999999 | * |
| 6739540283263699611944648235092735609459 210132152313035515555554444443333322099999 8883878888878838788388888888888888 | 230 28.2 37 8.4
160 28.2 37 3.5
273 28.8 37 8.5
284 29.1 36 8.4
282 29.1 37 8.4
270 29.0 37 8.4
247 29.0 37 8.4 | 8 8 A | *
* |
| *** | | 8.7 A | *
********** |

| 8EACH PETROLEUM ************************************ | WESTGATE # 1 | PAGE | 7-FILE 1 |
|--|--|---|--------------|
| * DEPTH DIP DIP DEV
* AZM
************ | DEV DIAM DIAM | Q | * |
| * * * * * * * * * * * * * * * * * * * | 5422245870123798235372210120274813347876888888888899999999999001111212221012027481334787611111111111111111111111111111111111 | A A A A A A A A A A A A A B B A A A B B A A A A B B B B A A B | ************ |

| 3 E | | | ROLEUM | | | | ESTGAT | | | PAGE | 8-FILE |
|-----|------------|----------------------|------------------------------|---------------------------------------|---|----------------------------------|---|------------------------------|--|-------|--------|
| * * | DΕ | PTH | DIP | DIP | DEV | DEV
AZM | DIAM
1-3 | DIAM
2-4 | Q | ***** | |
| | | | | | | **** | **** | **** | ***** | ***** | ***** |
| | 141 | 9.91 | 9.9
8.8
6.5 | 245
231
231 | 28 .1
28 . 0 | 37
37
37
37
37
37 | 8.3 | 777888999011566824760950 | A | | |
| | 142 | 9.41
0.92
1.42 | 6.5 | 231 | 28.0 | 37 | 8.4 | 8.7 | . А
А
А | | |
| | 142 | 1-4/ | 5.4 | 241
238 | 3009754322222223367676892222323232222222222222222222222222222 | 37
37 | 8.4 | 8.8
8.8 | А
Д | | |
| | 142 | 2.42 | 90850553641
44245333364 | 237488267
22222222 | 27.9 | 37 | 8.4 | 8.8 | Ã | | |
| | 142 | 3.43 | 4.5 | 258 | 27.5 | 3 (
3 7 | 3 . 4 | 8.9
8.9 | A
B | | |
| | 142 | 3.93 | 5.0 | 278 | 27.4 | 38 | 3.3 | 9.0 | B
A | | |
| | 142 | 4.93 | 3.5 | 216 | 27:2 | 38
38 | 3.3 | 9.1 | A
A | | |
| | 142
142 | 5 43 | 3.3 | 25853858
23223 | 27.2 | 78888877
33888877 | 8.3 | 9999999991111
1111 | A
B | | |
| | 142 | 6.44 | 6.4 | 259 | 27.2 | <u>37</u> | 8.2 | 9.6 | Ä | | |
| | 142 | 5.94
7.44 | 3.9 | 233
232 | 27.2 | 37
38 | 8.3
8.3 | 9 . 8
9 . 2 | Α
Δ | | |
| | 142 | 7.95 | 3.9 | 258 | 27.3 | 38 | 8.3 | 9 4 | Ä | | |
| | 142 | 1.46 | 3.6 | 223
271
240
236 | 27.6 | 388888877
3838 | 8.3 | 9.7 | A
A | | |
| | 143 | 1.96 | 2.1 | 240 | 27.7 | 38 | 8 - 4 | 10.0 | 3 | | |
| | 143 | 4.97 | 9.1 | 278 | 27.7 | 37 | 8.3 | 11.5 | 8 | | |
| | 143
143 | 47.88.27 | 41.6
23.8
20.6
26.9 | 268
20 1 | 27.6
27.8 | 37
38 | 8 . 2 | 11.0 | 3
q | | |
| | 143 | ğ. 99 | 26.9 | 239 | 27.9 | 38
37
37
37
37 | 8.3 | 11.3 | B | | |
| | 144 | 3.01 | 2.3 | 135 | 28.2 | 37
37 | 3.4
8.3 | 8.8
8.8 | A
A | | |
| | 144 | 3.51 | 5.7 | 156 | 28.2 | 37 | 3.4 | 8.6 | 9 | | |
| | 144 | 6.52 | 1306625854
4222 | 245 | 27.4 | 37 | 3.4 | 11.388643137 | m 4 m m m m 4 4 m m m a 4 m m | | |
| | 144 | 7.02 | 4.6 | 242 | 27.3 | 37
37
37 | 8 . 4 | 9.1 | A | | |
| | 144 | 8.03 | 6.1 | 2222
2333335685223697
222233392 | 27.2
27.1 | 37 | 8.4 | 8.7 | n
M | | |
| | 144 | ろ・53
9・54 | 6.6
21.7
5.7
10.7 | 299
37 | 27.1
27.0 | 37
37
37
37
37 | 8.4
8.4 | 3.6
8.5 | A
B | | |
| | 145 | 2.05 | 5.7 | 6 | 27.4 | 37 | 3.4 | 8 . 4
8 . 4 | B
A | | |
| | 145 | 3.05 | 5.7
10.7
15.7 | 20
42
64 | 27.3 | 57
37 | 5.4
8.4 | 8 • 4
8 • 4 | ###################################### | | |
| | 145 | 233667788922334* | 15.7 | 64
16 | 27.4
27.3
27.2
27.2 | 37
37
37 | 344444443483423333484848484844444444444 | 8 - 4 | 99.7 | | |
| · * | 147
*** | *** | ' 13*)
:**** | C!
:**** | ~ |)(
**** | 4 * * * * * * * | 8.4
***** | 3
****** | ***** | ***** |

| ************************************** | * DEPIH DIP DI | P DEV DEV DIAM | ************************************** | * |
|--|---|--|--|---|
| * 1469 162 248 88 88 44 44 88 88 88 44 44 88 88 88 44 44 | *************** * 1454.56 7.7 326 * 1455.06 2.6 * 1455.56 2.6 * 1456.56 3.0 * 1456.56 3.0 * 1458.07 4.9 * 1458.07 4.9 * 1458.07 4.9 * 1458.07 4.9 * 1458.07 4.9 | 27 2 37 8 4
29 27 2 37 8 4
27 2 37 8 4
37 27 1 37 8 4
38 27 1 37 8 4
38 27 1 37 8 4
27 27 1 37 8 4
27 27 1 37 8 4
27 27 1 37 8 4
27 27 1 37 8 4
27 27 1 37 8 4
27 27 1 37 8 4
27 27 1 37 8 4
27 27 1 37 8 4
27 1 37 8 4
27 1 37 8 4 | ************************************** | * * * * * * * * * * * * * * * * * * * |
| * 1514.30 28.8 214 26.8 36 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 | * 1478.66 1.7 30
* 1482.67 31.2 20
* 1484.68 29.1 21 | 5 27 1 37 8 4
7 27 1 37 8 4
8 27 1 37 8 4
8 27 0 37 8 4
7 27 0 36 8 4
7 27 0 37 8 4 | 3.4 A
8.4 A
3.4 B | * * * * * * * * * * * * * * * * * * * |
| * 1540.92 1.5 98 26.7 37 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 | * 1533.89 28.9 21
* 1534.89 25.2 22
* 1536.40 61.9 26
* 1537.40 6.5 26
* 1538.91 7.09 | 4 26.7 37 8.4
2 26.7 37 8.4
0 26.7 37 8.4
1 26.7 37 8.4
7 26.7 37 8.4
8 26.7 37 | BABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | * * * * * * * * * * * * * |

| DEPTH DIP DIP DEV DEV DIAM DIAM Q AZM 1-3 2-4 *********************************** |
|---|
| * 156456666666666666666666666666666666666 |
| * 1535.95 |
| |

| BEACH PETROLEUM | WESTG | ATE # 1 | PAGE 11-FILE 1 |
|--|---|---|--|
| * DEPTH DIP D * | IP DEV DEV DIA
ZM AZM 1- | M DIAM Q
3 2-4 | * |
| * 1595.95 28.8 2 | 17 26 6 36 8 - | | ************************************** |
| * 1608.46 27.7 2
* 1611.96 26.8 2 | 17 26.6 36 8. | 4 8.4 B
4 8.4 B
4 3.4 B | *
*
* |
| * 1617.46 23.6 2
* 1618.96 24.4 2
* 1619.46 25.9 2
* 1619.96 25.8 2 | 88888888888888888888888888888888888888 | 3 · 4
3 · 4
3 · 4
3 · 4
3 · 4
3 · 3
3 · 4
3 · 6
3 · 6
3 · 6
3 · 7
3 · 8
3 · 8 | *:
*:
* |
| * 1619 46 25 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 05 26 6 36 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3 8 4 B
3 8 4 B
3 8 4 B | * * * * * * * * |
| * 1621.97 30.0 2
* 1622.97 24.8 2
* 1624.97 31.7 2
* 1626.97 25.1 2
* 1627.47 5.2 1 | 22 26.6 36 8.17 26.6 36 8.19 26.6 36 8.39 26.6 36 8.07 26.6 36 8. | 3 8 4 B
4 8 4 B | *
*
*: |
| * 1627.47 5.2 1
* 1627.97 8.0 2
* 1628.97 5.3 2
* 1629.47 4.6 2
* 1630.97 28.2 2
* 1631.47 24.6 2 | 83 26.6 36 8.
07 26.6 36 8.
40 26.6 36 8.
05 26.6 36 8. | 3 B B B B B B B B B B B B B B B B B B B | *
* |
| * 1629.47 4.6 2
* 1630.97 28.2 2
* 1631.47 24.6 2
* 1633.47 38.1 1 | 40 26.6 36 8.
05 26.6 36 8.
15 26.6 36 8.
14 26.6 36 8.
55 26.6 36 8. | 4 8 4 B
3 8 4 B
3 8 4 B | *
*
*
* |
| * 1634.47 11.9 2
* 1635.47 10.8 2 | 315 26 6 36 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3 8 4 B
3 8 4 A
3 8 4 B | *
*
* |
| * 1030.97 13.9 1
* 1637.47 13.9 1 | 82 26.6 36 8.
91 26.6 36 8.
85 26.6 36 8. | 3 8 4 B
4 3 4 B
3 8 4 A
4 3 4 B | *
* |
| * 1638.47 11.3 1
* 1639.43 17.0 1
* 1640.98 14.1 1
* 1641.48 15.4 1 | 78 26.6 36 8.
94 26.6 36 8. | B B B B B B B B B B B B B B B B B B B | *
*
* |
| * 1641.98 19.6 1
* 1642.48 20.6 2
* 1642.98 14.6 2 | 89 26.6 36 8.38 26.6 36 8.01 26.6 36 8.09 26.6 36 8. | 4 8 4 B
4 8 4 A | * * * * * |
| * 1643.93 19.7 1
* 1645.48 12.3 1
* 1645.98 13.6 1
* 1646.48 16.3 2 | 99 25•6 36 8• | 4 8.4 B
4 8.4 A | *
* |
| * 1646.98 16.4 1 | 94 26.6 36 8. | 4 8 4 A
4 3 4 A
4 8 4 B
4 8 4 B | *
*
******** |

| BEACH PETROLEUM | WESTGATE # 1 | PAGE | 12-FILE 1 |
|--|--|-----------|---|
| | DEV DEV DIAM DIAM
AZM 1-3 2-4 | Q | *************************************** |
| * 1647.48 13.1 184 2
* 1647.98 14.9 201 2
* 1648.48 22.0 174 2 | 26.6 36 8.4 8.4
26.6 36 8.4 8.4
26.6 36 8.4 8.4
26.6 36 8.4 8.4 | S A 3 B B | * * * * * * |
| | | | |

| | ACH PETROL | | | WESTGATE # | · · | | SUMMARY | |
|----|------------------------|-------|-------|------------|-------|-------|---------|------------|
| * | *********
* DEPTH * | DIP | DIP : | * DEV | DEV | DTAM | DIAM * | QIIAI * |
| | *
******* | ***** | | | | 1-3 | | |
| * | TOP | | | | | | | * |
| * | 1204.35 | 56.1 | 244 • | 29.6 | 34. | 8 . 4 | 8.5 | B * |
| * | POTTOM
1649.98 | 16.2 | 190. | 26.6 | 36. | 8.4 | 8 . 4 | *
3 * |
| ** | ***** | ***** | **** | ***** | ***** | ***** | ***** | *
***** |

| •• | | *
*
* | DIP F | * * *
REQUE | | | MUTH 3 | * * * * | | | • | | |
|--------------------|-------|-------------|-------|----------------|-------|-------|--------|---------|----|------|-----|---|---------------------------------------|
| | | * | * * * | * * * | * * * | * * * | | * | | | | | order (1995)
Table (1995) |
| PRESENTATION | 210 2 | 40 | W 30 | 0 33 | 10 N | 3 | 0 60 | 0 E | 12 | 0 15 | 0 s | 2 | 10 g |
| 1204- 1250 | 2 | 3 | | 4 | 3 | 3 | 3 | 2 | 1 | 2 | 4 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 1250- 1300 | 11 | 16 | 6 | 4 | 4 | 2 | | 1 | 3 | 3 | 3 | 6 | |
| 1300- 1350 | 11 | 12 | 11 | 4 | 5 | 7 | 3 | 2 | 3 | 5 | 7 | 9 | |
| 1350- 1400 | 9 | 12 | 13 | 7 | 7 | 4 | 3 | 3 | | 1 | 1 | 2 | |
| 1400- 1450 | 11 | 11 | 8 | 2 | 2 | | 2 | 1 | 2 | 1 | 1 | 1 | |
| 1450- 1500 | | 2 | | 1 | 2 | 3 | 2 | | | | | 2 | |
| 1500 - 1550 | 1 | 1 | 2 | 1 | | 1 | 1 | 1 | 1 | | | | • |
| 1550- 1600 | | 1 | | | | 1 | | | | | | | |
| 1600- 1649 | 1 | | | | | | | | | | | 3 | |

| PRESENT | TATION | 210 | 240 | W | 300 | 330 | N | | 30 | 60 | £ | 120 | 150 | S | 210 |) |
|---------|--------|-----|-----|---|-----|-----|---|---|----|----|---|-----|-----|---|-----|---|
| 1204- | 1250 | | 2 | 4 | 2 | 1 | 4 | | | | 1 | 2 | 1 | | 3 | |
| 1250- | 1300 | | 1 | 1 | | 1 | 1 | | | | | 1 | | 2 | | |
| 1300- | 1350 | | 2 | | | | | | | | | | 1 | | 1 | |
| 1350- | 1400 | | 1 | 1 | 1 | | | 1 | | | | | | | 2 | |
| 1400- | 1450 | | 1 | 2 | 1 | | | 1 | 1 | | | | | 1 | 1 | |
| 1450- | 1500 | 1 | 10 | 1 | 1 | | | 2 | 1 | | 1 | | | | 1 | |
| 1500- | 1550 | . 1 | 1 | | | | | | | | | | | | | |
| 1550- | 1600 | 2 | 33 | | | | | 1 | | | | | | | 2 | |
| 1600- | 1649 | 1 | 11 | | | | | | | | | | | 3 | 25 | |

* * * * * * * * * * * * * * * * * * * DIP FRE # EMCY FY AZIMUTH * 3-10 DEGREE DIPS *

| | | * * * * | DIP F | RE 🎶 E | | DIP | IMUTH | * * * * * * | | | | | |
|--------------------|-------|---------|-------|--------|-----|-----|-------|-------------|------|------|-----|---|--|
| PRESENTATION | 30 60 | 3 C | 12 | 0 15 | 0 s | 2 | 10 24 | 40 | w 30 | 0 33 | N 0 | | 30 |
| 1204- 1250 | 3 | 2 | 1 | 2 | 4 | 1 | 2 | 3 | | 4 | 3 | 3 | |
| 1250- 1300 | | 1 | 3 | 3 | 3 | 6 | 11 | 16 | 6 | 4 | 4 | 2 | |
| 1300- 1350 | 3 | 2 | 3 | 5 | 7 | 9 | 11 | 12 | 11 | 4 | 5 | 7 | |
| 1350- 1400 | 3 | 3 | | 1 | 1 | 2 | 9 | 12 | 13 | 7 | . 7 | 4 | |
| 1400- 1450 | 2 | 1 | 2 | 1 | 1 | 1 | 11 | 11 | 8 | 2 | 2 | | A STATE OF THE STA |
| 1450- 1500 | 2 | | | | | 2 | | 2 | | 1 | 2 | 3 | |
| 1500- 1550 | 1 | 1 | 1 | | | | 1 | 1 | 2 | 1 | | 1 | |
| 1550 - 1600 | | | | | | | | 1 | | | | 1 | |
| 1600 - 1649 | | | | | | 3 | 1 | | | | | | |

* DIP FREQUENCY BY AZIMUTH *

* 0-90 DEGREE DIPS *

* * * * * * * * * * * * *

| | | * * | * * * | * * * | * * | * * * | * * | * | | | | |
|---------------------|-------|-----|-------|-------|-----|-------|-----|-----|-----|-----|---|----|
| PRESENTATION | 30 60 | E | 120 | 150 | S | 210 | 2 4 | 0 W | 300 | 330 | N | 30 |
| 1204- 1250 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 7 | 2 | 5 | 7 | 3 |
| 1250- 1300 | | 1 | 4 | 3 | 5 | 6 | 12 | 17 | 6 | 5 | 5 | 2 |
| 1300- 1350 | 3 | 2 | 3 | 6 | 7 | 10 | 13 | 12 | 11 | 4 | 5 | 7 |
| 1350- 1400 | 3 | 3 | | 1 | 1 | 4 | 10 | 13 | 1 4 | 7 | 7 | 5 |
| 1400- 1450 | 3 | 1 | 2 | 1 | 2 | 2 | 12 | 13 | 9 | 2 | 2 | 1 |
| 1450- 1500 | 3 | 1 | | | | 3 | 10 | 3 | 1 | 1 | 2 | 5 |
| 1500- 1550 | 1 | 1 | 1 | | | | 12 | 1 | 2 | 1 | | 1 |
| 1550 - 1 600 | | | | | | 2 | 33 | 1 | | | | 2 |
| 1600- 1649 | | | | | 3 | 28 | 12 | | | | | |

| t | DEPTI | * | DIP | DIP
AZM | * DEV | D E V
A Z M | DI AM
1-3 | *******
* DIAM
* 2-4 | QUAL | * |
|---|---------------|------|-------|---------------------|---------|----------------|--------------|----------------------------|------|------------|
| < * * * * * * * * * * * * * * * * * * * | **** | **** | ***** | * * * * * * * * * * | ******* | ***** | ***** | ***** | **** | * * |
| | TOP
1204 | 35 | 56.1 | 244. | 29.6 | 34. | 8 • 4 | 8.5 | 8 | * * * |
| : 1 | BOT:
1649. | | 16.2 | 190. | 26.6 | 36. | 8 • 4 | 8 . 4 | 8 | * * |

END OF LSF - VERSION 007.E05 14-APR-86 - 15:09:16

STRATIGRAPHIC

HIGH RESOLUTION

DIPMETER

MSD COMPUTATIONS

COMPANY : BEACH PETROLEUM

WELL : WESTGATE#1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

RUN : ONE

DATE LOGGED : 14 - MAR - 86

REFERENCE : SYJ.160301

1 M X 50% - 35 DEG X 2

| BEACH PETROLEUM WESTGATE#1 | PAGE 1-FILE 1 |
|--|--|
| * DEPTH DIP DIP DEV DEV DIAM DIA
* AZM AZM 1-3 2-
************************************ | |
| ************************************** | ************************************** |

| BEACH PETROLEUM WESTGATE#1 PAGE 2-FILE ************************************ | 1 |
|---|--|
| * DEPTH DIP DEV DEV DIAM DIAM & Q * AZM AZM 1-3 2-4 | ^ * |
| *********************** | ** |
| * 1673.05 17.2 195 26.5 36 8.3 8.4 B
* 1673.56 22.2 200 26.5 36 8.3 8.4 A | * |
| * 1673.05 17.2 195 26.5 36 8.3 8.4 B
* 1673.56 22.2 200 26.5 36 8.3 8.4 A
* 1674.56 24.9 191 26.5 36 8.3 8.4 A | *
* |
| * 1673.05 17.2 195 26.5 36 8.3 8.4 B * 1673.56 22.2 200 26.5 36 8.3 8.4 A * 1674.56 24.9 191 26.5 36 8.3 8.4 A * 1675.06 25.0 192 26.5 36 8.3 8.4 A * 1675.56 23.1 193 26.4 36 8.3 8.4 A * 1676.07 20.0 193 26.4 36 8.3 8.4 A | - ★ ¹³³ · · · · · · · · · · · · · · · · · · |
| * 1676.07 20.0 193 26.4 36 8.3 8.4 A
* 1676.57 16.8 181 26.4 36 8.3 8.4 A | * |
| * 1673.05 17.2 195 26.5 36 8.3 8.4 A * 1673.56 22.2 200 26.5 36 8.3 8.4 A * 1675.06 24.9 191 26.5 36 8.3 8.4 A * 1675.06 25.0 192 26.5 36 8.3 8.4 A * 1675.07 20.0 193 26.4 36 8.3 8.4 A * 1676.57 16.8 181 26.4 36 8.3 8.4 A * 1677.57 23.3 193 26.4 36 8.3 8.4 A * 1677.57 23.3 193 26.4 36 8.3 8.4 A * 1677.57 23.3 193 26.4 36 8.3 8.4 A * 1677.57 23.3 193 26.4 36 8.3 8.4 A * 1677.57 23.3 193 26.4 37 8.3 8.5 B * 1678.07 21.5 191 26.4 37 8.3 8.5 B * 1678.07 21.5 191 26.4 37 8.3 8.5 A * 1679.58 23.6 186 26.4 37 8.3 8.5 A * 1679.58 23.6 186 26.4 37 8.3 8.5 A * 1679.58 25.9 177 26.3 37 8.3 8.5 A * 1680.59 26.4 200 26.3 37 8.3 8.5 A * 1681.09 22.4 196 26.2 37 8.3 8.6 B * 1682.09 25.0 202 26.1 36 8.3 9.1 A * 1682.59 26.4 200 26.3 37 8.3 8.8 A * 1683.59 26.4 200 26.3 37 8.3 8.8 B * 1683.59 26.4 200 26.3 37 8.3 8.8 B * 1683.59 22.1 210 26.2 37 8.3 9.1 A * 1682.09 25.0 202 26.1 36 8.3 9.3 B * 1746.35 22.4 22.2 26.0 38 8.3 10.4 B * 1771.17 NO CORR 27 27.2 38 8.3 9.3 B * 1772.76 33 8.8 222 22.6 1 36 8.3 10.4 B * 17731.80 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B * 17740.84 NO CORR 27 25.8 39 8.4 10.6 B | * |
| * 1677.57 23.3 193 26.4 37 8.3 8.4 A
* 1678.07 21.5 191 26.4 37 8.3 8.5 B | * |
| * 1677.07 20.2 193 26.4 36 8.3 8.4 A * 1677.57 23.3 193 26.4 37 8.3 8.4 A * 1678.07 21.5 191 26.4 37 8.3 8.5 B * 1678.58 23.6 186 26.4 37 8.3 8.5 A * 1679.08 23.2 191 26.3 37 8.3 8.5 A * 1680.08 29.2 198 26.3 37 8.3 8.6 B * 1680.59 26.4 200 26.3 37 8.3 8.7 A * 1681.59 26.4 196 26.2 37 8.3 8.8 A * 1681.59 26.7 181 26.2 37 8.3 9.0 B | * " |
| * 1679.58 25.9 177 26.3 37 8.3 8.6 B
* 1680.08 29.2 198 26.3 37 8.3 8.6 A
* 1680.59 26.4 200 26.3 37 8.3 8.7 A | *
* |
| * 1680.59 26.4 200 26.3 37 8.3 8.7 A
* 1681.09 22.4 196 26.2 37 8.3 8.8 A | * |
| * 1681.09 22.4 196 26.2 37 8.3 8.8 A * 1681.59 26.7 181 26.2 37 8.3 9.0 B * 1682.09 25.0 202 26.2 37 8.3 9.1 A * 1682.59 23.6 192 26.1 36 8.3 9.3 B * 1683.60 22.1 210 26.1 36 8.3 9.6 A * 1696.15 19.7 181 27.1 37 8.5 12.9 B * 1701.17 NO CORR 27.2 38 8.6 13.2 * 1722.76 33.8 222 26.0 38 8.3 10.4 B | *
* |
| * 1632.09 25.0 202 26.2 37 8.3 9.1 A * 1682.59 23.6 192 26.1 36 8.3 9.3 B * 1683.60 22.1 210 26.1 36 8.3 9.6 A * 1696.15 19.7 181 27.1 37 8.5 12.9 B * 1701.17 NO CORR 27.2 38 8.6 13.2 * 1722.76 33.8 222 26.0 38 8.3 10.4 B * 1726.28 14.1 214 26.0 39 8.4 10.5 B * 1731.80 NO CORR 25.6 39 8.3 11.3 | * |
| * 1683.60 22.1 210 26.1 36 8.3 9.6 A
* 1696.15 19.7 181 27.1 37 8.5 12.9 B
* 1701.17 NO CORR 27.2 38 8.6 13.2
* 1722.76 33.8 222 26.0 38 8.3 10.4 B | * |
| * 1701.17 NO CORR 27.2 38 8.6 13.2
* 1722.76 33.8 222 26.0 38 8.3 10.4 B | * |
| * 1726.28 14.1 214 26.0 39 8.4 10.5 B * 1726.28 14.1 214 26.0 39 8.4 10.5 B * 1737.32 46.3 217 25.8 39 8.4 10.6 B * 1740.84 NO CORR 25.6 39 8.5 10.0 * 1741.34 20.3 25.6 39 8.5 9.5 B * 1743.85 2.8 293 25.7 39 8.5 9.0 A * 1747.36 20.3 214 25.4 38 8.4 8.5 B * 1747.37 20.8 218 25.4 38 8.4 8.5 B * 1748.87 33.5 323 25.2 38 8.4 8.7 B * 1748.87 33.5 323 25.2 38 8.4 8.7 B * 1749.37 26.1 220.25 1 39 8.4 8.7 B | * |
| * 1737.32 46.3 217 25.8 39 8.4 10.6 B * 1740.84 NO CORR 25.6 39 8.4 10.0 * 1741.34 20.3 257 25.6 39 8.5 9.5 B * 1743.85 2.8 293 25.7 39 8.5 9.0 A * 1746.30 2.6 280 25.5 39 8.4 8.5 A * 1747.36 20.3 214 25.4 38 8.4 8.5 B | * |
| * 1740.84 NO CORR 7 25.6 39 8.4 10.0 B * 1741.34 20.3 257 25.6 39 8.5 9.5 B * 1743.85 2.8 293 25.7 39 8.5 9.0 A * 1746.36 2.6 280 25.5 39 8.4 8.5 A * 1747.36 20.3 214 25.4 38 8.4 8.5 B | * * |
| * 1746.36 2.6 280 25.5 39 8.4 8.5 A
* 1747.36 20.3 214 25.4 38 8.4 8.5 B | * |
| * 1743.85 2.8 293 25.7 39 8.5 9.0 A
* 1746.36 2.6 280 25.5 39 8.4 8.5 A
* 1747.36 20.3 214 25.4 38 8.4 8.5 B
* 1747.87 20.8 218 25.4 38 8.4 8.6 B
* 1748.87 33.5 323 25.2 38 8.4 8.7 B | * 4 |
| * 1673 | * |
| * 1753.39 13.8 121 24.8 40 8.4 8.6 A | *
* |
| * 1/33-89 10-6 164 /4-8 39 8-4 8-8 B | * |
| * 1753.29 10.6 164 24.8 39 8.4 8.3 B
* 1755.90 16.0 214 24.9 38 8.4 8.8 B
* 1758.41 11.1 39 24.9 39 8.4 8.9 B
* 1758.91 7.9 43 24.9 39 8.4 9.1 B | * |
| | |

| ************************************** |
|--|
| |

| BEACH PETROLEUM | WESTGATE#1 | PAGE 4-FILE 1 |
|--|--|--------------------------------|
| | ************************************** | ****************************** |
| * 05510 015 | DIP DEV DEV DIAM DIAM AZM AZM 1-3 2-4 | * |
| | ****** | |
| * 1835.46 NO COR | R 23.4 41 8.4 9.3 | ' *
* |
| * 1837 . 96 9 . 3 | R 23.4 41 8.4 9.3
220 23.4 41 8.4 8.8
220 23.5 41 8.4 8.6 | A * |
| * 1837.96 9.8
* 1838.46 17.0
* 1838.96 2.7 | 220 23.5 41 8.4 8.6
16 23.6 41 8.4 8.5 | A * * * |
| * 1838.96 2.7
* 1839.46 11.5 | R 23.4 41 8.4 9.3
220 23.4 41 8.4 8.8
220 23.5 41 8.4 8.6
16 23.6 41 8.4 8.5
231 23.6 41 3.4 8.6
219 23.5 41 8.4 8.8 | A * |
| * 1839.46 11.5
* 1839.96 10.1 | 231 23.6 41 8.4 8.6
219 23.5 41 8.4 8.8 | A * |
| * 1840.46 6.5
* 1840.96 11.4
* 1841.47 10.5
* 1841.97 5.2 | 220 23.4 42 8.5 8.6
208 23.4 41 8.5 8.7 | A * * |
| * 1840.96 11.4
* 1841.47 10.5
* 1841.97 5.2 | 221 23.4 41 8.4 8.5 | Ä |
| * 1841.97 5.2
* 1842.47 6.9 | 212 23.4 42 8.4 8.4
257 23.4 41 8.4 8.9 | A * * * |
| * 1841.47 10.5
* 1841.97 5.2
* 1842.47 6.9
* 1842.97 13.8
* 1843.47 10.8
* 1844.47 13.1 | R 23 4 41 8 4 9 8 8 6 5 6 8 6 7 5 4 9 6 9 6 9 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 *
A * |
| * 1843.47 10.8
* 1844.47 13.1 | 245 23.3 40 8.4 8.6
233 23.1 40 8.4 9.0
226 22.9 41 8.4 8.6 | B * |
| * 1844.47 13.1
* 1844.97 13.9 | 226 22.9 41 8.4 8.6
237 22 9 42 8 4 8 7 | A * * * * |
| * 1844.97 13.9
* 1845.47 13.2
* 1846.47 11.7 | 221 23.4 41 8.4 8.4
212 23.4 42 8.4 8.4
257 23.4 41 8.4 8.6
223 23.1 40 8.4 9.0
8.4 9.0
8.6 9.0
8.7 9.0
8.7 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.8 9.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | Ä * |
| * 1946.47 11.7 | 320 22.8 43 8.5 8.7 | <u>*</u> |
| * 1844.97 13.9
* 1845.47 13.2
* 1846.47 11.7
* 1846.97 4.3
* 1851.47 11.5
* 1852.47 17.0 | 226 22.9 41 8.4 8.6
2237 22.9 42 8.4 8.4
2233 22.9 42 8.4 8.4
320 22.8 43 8.5 8.7
327 22.7 42 8.4 8.9
3230 22.7 42 8.4 8.2
2255 22.9 41 8.4 8.2 | B * * |
| * 1851.47 11.5
* 1852.47 17.0 | 255 22.9 41 8.4 8.2 | 3 * |
| * 1852.97 17.7
* 1853.47 21.1 | 255 22.9 41 8.4 8.2
245 23.0 41 8.4 8.2
226 23.2 41 8.4 8.2
222 23.2 42 8.4 8.5
228 22.7 40 8.5 8.6 | |
| * 1854.47 22.6 | 222 23.2 42 8.4 8.5 | A * * * |
| * 1854.47 22.6
* 1856.97 18.6
* 1858.97 22.7 | 222 23.2 42 8.4 8.5
228 22.7 40 8.5 8.6 | A * |
| * 1854.47 22.6
* 1856.97 18.6
* 1858.97 22.7
* 1859.47 13.4
* 1860.47 12.8
* 1862.48 12.9
* 1863.48 29.7 | 9 8 2 2 2 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 6 5 5 5 6 6 6 5 5 5 6 6 6 5 5 6 6 6 5 5 6 6 6 5 6 6 6 5 6 6 6 6 7 6 7 | A * * |
| * 1860.47 12.0 | 244 22.6 41 8.5 8.5
142 22.7 41 8.4 8.5 | 3 * |
| * 1860.47 12.0
* 1862.48 12.9
* 1862.48 20.2
* 1863.48 20.2
* 1868.49 22.4
* 1888.49 18.6
* 1888.49 19.3 | 142 22.7 41 3.4 8.5
126 22.7 41 3.5 8.6
253 22.6 41 8.6 8.6
221 22.7 39 8.6 8.5
216 22.7 40 8.7 8.5
227 22.7 40 8.4 8.4 | A * * |
| * 1863.48 9.7 | 253 22.6 41 8.6 8.6
221 22.7 39 8.6 8.5 | |
| * 1863.48 9.7
* 1868.98 20.2
* 1869.48 22.2 | 221 22.7 39 8.6 8.5 | 8 * * * * * |
| * 1869.48 22.2
* 1882.49 24.7 | 216 22.7 40 8.7 8.5
227 22.7 40 8.4 8.4 | 3
A * |
| * 1882.49 24.7
* 1882.99 36.2
* 1883.49 18.2
* 1883.99 19.3 | 271 22.8 40 8.4 8.4 | B * |
| * 1883.49 18.2
* 1883.99 19.3 | 271 22.8 40 8.4 8.4
257 22.8 40 8.4 8.4
248 22.8 41 8.4 8.4 | Ä * * |
| * 1834.99 1.6 | 5686754960674798222256655566554444454
411218888888888888888888888888888888888 | 3
A * |
| * 1834.99 1.6
* 1886.49 15.0 | 269 22.6 40 8.4 8.4 | з * |
| * 1837.49 2.8
* 1888.49 3.8 | 6747982225665555665554444455445
8388888888888888888888888888888888888 | A * * * |
| ****** | ********* | |

| BEACH PETROLEUM | WE
******* | STGATE#1 | PAGE 5-FILE 1 |
|---|--|--|---|
| * DEPTH DIP | DIP DEV DEV | DIAM DIAM
1-3 2-4 | Q * |
| ****** | | | ****** |
| * | | | * |
| * 1889 . 99 10 . 3 | 217 22.3 38 | 9.3 8.6
9.5 8.4
10.0 8.5 | 8 *
3 * |
| * 1890.49 8.5
* 1891.99 18.8 | 227 22.3 39 | 9.5 8.4 | 3 ★ |
| * 1891.99 18.8 | 222 23 39
222 22 39
261 222 4 39
261 222 4 39
261 222 4 39
261 222 4 39
261 222 4 39 | 10.0 8.5 | B * |
| * 1892.49 11.5
* 1894.99 6.1 | _45 22 . 2 39 | 10.1 8.4 | B * |
| * 1894.99 6.1 | 261 22.4 39 | 7.4 8.5 | A * |
| * 1895.49 10.1
* 1895.99 14.8 | 237 22.4 39
234 22.5 38 | 9.0 8.7 | A *
B *
B * |
| * 1896.49 23.2 | 221 22.7 39 | 7 s 4 . O s 4 . O s 7 . O s 7 | B * |
| * 1900.50 14.4 | 217
2223.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222.3
2222. | 7 4 0 4
0 1 2 4 | |
| * 1901.50 39.8 | 207 22.5 39
279 22.5 39 | 8 8 8 6 | B |
| * 1901.50 39.8
* 1902.50 20.3 | 214 22.4 39 | 8.9 8.7 | B * |
| * 1903.00 19.0 | 213 22.4 40
246 22.3 41
242 22.4 41
223 22.4 41 | 8 9 8 7 | 8 * |
| * 1903.50 14.2 | 246 22.3 41 | 8.9 8.7 | Ă * |
| * 1904.00 13.9 | 242 22.4 41 | 8.9 8.7 | |
| * 1904.50 21.5 | 223 22.4 41 | 8.9 8.6 | A * * * * * * * * * * * * * * * * * * * |
| * 1905.00 21.5 | 221 22.5 40 | 8.8 8.6 | ₿ * |
| * 1905.50 10.2 | 213 22 4 40
242 22 4 41
242 22 4 41
221 22 5 40
219 22 6 40
219 22 4 40 | 8.7 8.6 | B * |
| * 1906.50 21.9
* 1907.00 12.4
* 1907.50 7.1 | 219 22.5 40
240 22.4 40 | 8.5 8.5 | A * |
| * 1907.00 12.4 | 240 22.4 40 | 8.6 8.6 | <u>A</u> * |
| * 1907.50 7.1 | 240 22.4 40 | 8-2 8-2 | B * |
| * 1908.00 5.6
* 1908.50 13.8 | 242 22.5 40 | ă.o ă. <u>o</u> | A * |
| * 1908.50 13.8
* 1917.51 22.9 | 219 22 5 40
240 22 4 40
240 22 4 40
242 22 5 40
210 22 5 40
217 22 6 40 | 45455446677777666565674
8388888888888888888888888888888888888 | B * |
| | | | |
| ****** | ***** | ******* | ******* |

| DEPTH | k | D I P
A Z M | * DEV | D E V
A Z M | D I AM
1-3 | 2-4 * | QUAL | * | |
|-------------------|------|----------------|-------|----------------|---------------|-------|-------|--------|--|
| *******
TOP | **** | ***** | ***** | ***** | **** | **** | ***** | ** | |
| 1649.96 | 17.3 | 179. | 26.6 | 36. | 8.3 | 8 • 4 | В | *
* | |
| POTTOM
1917.51 | 22.9 | 217. | 22.6 | 40. | 7.7 | 7.4 | А | * | |

•

| | | | | | | • | | | | | | | | | |
|-----------------|-------|-----|-----|---|-----|-----|---|----|----|---|-----|-----|---|----|---|
| PRESENT | ATION | 210 | 240 | W | 300 | 330 | N | 30 | 60 | Ε | 120 | 150 | S | 21 | 0 |
| 1649- | 1650 | | | | | | | | | | | | | | |
| 1650- | 1700 | | 2 | | | | | | | | | | | 1 | |
| 1700- | 1750 | | | | 2 | | | | | | | | | | |
| 1750- | 1800 | | | 2 | 2 | 1 | | 1 | 1 | 1 | | | 2 | 1 | |
| 1800- | 1850 | 1 | 2 | 2 | | | 2 | 1 | 2 | | | 1 | 2 | | |
| 1850 - 1 | 1900 | | 1 | 2 | 1 | 1 | | 1 | | | | | | | |
| 1900- | 1917 | | 1 | 1 | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

| PRESENT | ration | 210 | 240 | b | w 30 | 0 330 | N | 30 | 60 | Ε | 120 | 150 | | s 2 | 10 |
|---------|--------|-----|-----|---|------|-------|---|----|----|---|-----|-----|---|-----|----|
| 1649- | 1650 | | | | | | | | | | | | 1 | | |
| 1650- | 1700 | | 2 | | 1 | | | | | | | | 8 | 46 | |
| 1700- | 1750 | | 6 | 1 | | 1 | | | | | | | | | |
| 1750- | 1800 | | 7 | | | | | | 1 | 1 | | 1 | 1 | | |
| 1800- | 1850 | | 11 | 1 | 1 | 1 | | | | | | | 1 | 1 | |
| 1850- | 1900 | • | 1 4 | 6 | 1 | | | | 1 | | | 2 | | | |
| 1900- | 1917 | | 7 | 2 | 1 | | | | | | | | | 3 | |

4 .

DIP FREQUENCY BY AZIMUTH * 0-10 DEGREE DIPS * PRESENTATION E 120 150 S 210 240 300 330 1649- 1650 1650- 1700 1700- 1750

1750- 1300 1800- 1850 1850- 1900 1900- 1917

| PRESENTATION | 30 | 60 | Ε | 120 | 150 | 5 | 21 | 0 240 | W | 300 | 330 | N | 30 |
|--------------|----|-----|---|-----|-----|---|----|-------|---|-----|-----|---|----|
| 1649- 1650 | | | | | | 1 | | | | | | | |
| 1650- 1700 | | | | | | 8 | 47 | 4 | | 1 | | | |
| 1700- 1750 | | | | | | | | 6 | 1 | 2 | 1 | | |
| 1750- 1800 | 2 | ? ? | 2 | | 1 | 3 | 1 | 7 | 2 | 2 | 1 | | 1 |
| 1800- 1850 | 2 | 2 | | | 1 | 3 | 1 | 23 | 3 | 1 | 1 | 2 | 1 |
| 1850- 1900 | 1 | • | | | 2 | | | 15 | 8 | 2 | 1 | | 1 |
| 1900- 1917 | | | | | | | 3 | 8 | 3 | 1 | | | |

| | | · | | , , , , , , , , , , , , , , , , , , , | | | | |
|--------------------|------------|-------|---------------------|---------------------------------------|-------------------|------------------|------|---------------------------------------|
| | | | • | | | | | |
| BEACH PETR | | | WESTGATE#1 | ***** | * * * * * * * * * | SUMMARY
***** | **** | ** |
| | * DIP
* | DIP . | * DEV
*
***** | D E V
A Z M | DIAM
1-3 | | QUAL | * * * * * * * * * * * * * * * * * * * |
| * | | | | | | | | * |
| * TOP
* 1649.96 | 17.3 | 179. | 26.6 | 36⋅ | 8.3 | 8 • 4 | В | *
*
* |

.

END OF LSF - VERSION 007.E05

25-MAR-86 - 22:09:51

STRATIGRAPHIC

HIGH RESOLUTION

DIPMETER

MSD COMPUTATIONS

COMPANY : BEACH PETROLEUM

WELL : WESTGATE#1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

RUN : ONE

DATE LOGGED : 14 - MAR - 86

REFERENCE : SYJ.160301

1 M X 50% - 35 DEG X 2

* ********

* SCHLUMBERGER * *******

STRATIGRAPHIC

HIGH RESOLUTION

DIPMETER

MSD COMPUTATIONS

COMPANY : BEACH PETROLEUM

WELL : WESTGATE#1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

RUN : ONE

DATE LOGGED : 14 - MAR - 86

REFERENCE : SYJ.160301

1 M X 50% - 35 DEG X 2

. . .

| | TROL EUM | **** | | ESTGAT | | ***** | PAGE 2-FILE |
|--|--|--|----------------|--|---|-----------------|-------------|
| DEPTH
***** | DIP
**** | DIP DEV
AZM | DEV
AZM | DIAM
1-3 | DIAM
2-4 | Q
****** | ***** |
| | | | | | | А | |
| 05050505050505050550505050505050505050 | 0 4.1
0 5.5
0 5.1
0 7.1 | 443208777123290983432111109998
4444433334444434333333333331212121212121 | 45443233344354 | 3.4 | 0333367206169407297663674668685101
*********************************** | A
A | |
| 1816.5
1817.0 | 0 7.1
0 9.3
0 11.2
0 17.4 | 143 24.3
202 24.2
222 24.0 | 42
32 | 8.4
8.4 | 8.3
8.3 | A
A | |
| 1817.5
1818.0 | 0 11.2 | 216 23.8 | 30
30 | 8.4 | 8.7 | 30 B | |
| 1818.5
1820.5 | 0 25.4
0 4.9
0 19.1 | 218 23.7 | 37
38 | 8.5
8.5 | 9.0
9.0 | A | |
| 1824.0
1824.5 | 0 19.1 | 12329 09 834321
2222222222222222
23829 04111995
222222222222222222222222222222222 | 40 | 455545444
***************************** | 10.1 | ® ® ® ® ® ® ® & | |
| 1825.0
1825.5
1827.0
1827.5 | 0 16.6
0 12.5
0 12.7
1 7.6 | 238 24.3 | 39 | 8.4 | 9.6
9.9 | B
B | |
| 1827.0
1827.5 | 0 12.5 | 270 24.0 | 41 | 8.4
8.4 | 9.4
9.0
8.7 | 8 | |
| 1829.5
1829.5
1839.0
1839.5 | 1 5.4 | 224 23.9 | 41
40 | 8.4
8.5
8.4 | 8.7
9.2 | | |
| 1838.5
1839.0 | 7.30111111111111111111111111111111111111 | 221 23.3 | 43344241 | 8.4
3.4 | 9 • 2
8 • 9
8 • 7 | A
A | |
| 1839.5
1840.0 | 1 10.1 | 359 23 3
239 23 2
225 23 1 | 40 | 8.4 | 8 • 6
8 • 6 | В
А | |
| 1840.5
1841.0 | 1 16.1 | 333 23.1 | 42 | 8,4
8,5
8,4 | 8 • 6
8 • 6
8 • 7 | B
A
B | |
| 1841.5
1842.0
1842.5 | 1 10.8 | 239 23.1
196 23.0 | 40
39
34 | 3.4
8.4
3.4 | 8.7
8.4 | А | |
| 1844.D | 1 7.5 | 210 22.9 | 34
41 | 3.4 | 8 . 6 | A
B
A | |
| 1844.5
1845.0
1845.5 | 10.8
11.7
11.7
16.7
16.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7
18 | 196 23.9
210 22.9
215 22.9
230 22.9
241 22.8
87 22.8 | 45
48 | 8.4 | 8 • 6 | А | |
| 1845.5
1846.0 | 2 9.8 | 24 22.6 | 43 | 2454555
888888888 | 8.4
8.6
8.6
8.6
8.5
8.5
8.1 | B
B | |
| 1851.0
1852.5 | 2 8.8
2 14.8
2 18.4 | 245 22.6 | 42
33 | 8.5 | 3.1
3.0
8.1 | യയയ | |
| 1.050500555005
42.445561.0555056
42.445561.05555556
11.8888888888
11.888888888888888888888 | 2 3 8 8 8 14 8 4 8 1 2 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 44320877712329098343211110999886690886 4444433334444434333333333342222222222 | 44444434323 | 444444455554544444454444444445555444456688888888 | 8.3 | 8 | |
| 1855.0
1856.5 | 2 21.8
2 22.8
3 19.1 | 206 22.8
216 22.6 | 28
33 | 3.5
3.6 | 8.7
8.6 | 8
A | |

| * > | ***** | * * * | ***** | A Z M
***** | *
******* | A Z M
***** | 1-3
***** | 2-4 *
****** | | *
*** |
|-----|-----------------|-------|-------|----------------|--------------|----------------|--------------|-----------------|---|-------------|
| 1 | TOP
1737.9 | 6 | 50.3 | 221. | 25.7 | 40. | 8 , 3 | 10.4 | В | *
*
* |
| 1 | POTT0
1856.5 | | 19.1 | 216. | 22.6 | 33. | 8.6 | 8.6 | А | * |

| PRESENTATION | 210 24 | 0 w | 300 | 330 | N | 30 | 60 | Ε | 120 | 150 | S | 210 |
|--------------|--------|-----|-----|-----|---|----|----|---|-----|-----|---|-----|
| 1737- 1750 | • | | | | | | | | | | | |
| 1750- 1800 | | 2 | 1 | 1 | | 1 | | | | | | 3 ; |
| 1800- 1850 | 12 | | 1 | 2 | 1 | | 1 | | | 2 | | 2 |
| 1850- 1856 | | 1 | | | | | | | | | | 1 |

| | * * DIP F * 10 | -90 DEGREE DIP: | *
IMUTH * | | |
|-----------------------|----------------|-----------------|--------------|-------|---|
| PRESENTATION 210 240 |) w 30 | 0 330 N | 30 60 E 120 | 150 s | 210 * * * * * * * * * * * * * * * * * * * |
| 1737- 1750 5 | | 1 | | | 2 |
| 1750- 1800 7 | . 2 | 2 | 2 | 3 | 3 |
| 1800 - 1850 10 | 3 | | 1 | | 1 |
| 1850 - 1856 3 | 1 | | | * | 1 |
| | | | | | |

DIP FREQUENCY BY AZIMUTH *
0-10 DEGREE DIPS * PRESENTATION 30 60 120 150 s 210 240 300 330 1737- 1750 1750- 1800 3 2 1800- 1850 2 2 2 12

1850- 1856

1

| PRESENTATION | 30 | 60 | Ε | 120 | 150 | S | 210 | 240 | W | 300 | 330 | N | 30 |) |
|--------------------|----|----|---|-----|-----|---|-----|-----|---|-----|-----|---|----|---|
| 1737- 1750 | | | | | | | 2 | 5 | | | | | 1 | |
| 1750 - 1800 | - | 3 | | | | 3 | 6 | 7 | 2 | 3 | • | 1 | 2 | |
| 1800- 1850 | | | 2 | | 2 . | | 3 | 22 | 3 | 1 | | 2 | 1 | |
| 1850- 1856 | | | | | | | 1 | 3 | 2 | | | | | |

| ACH PET | | | WESTGATE#1 | | | SUMMARY | |
|---------|---------|--------------|------------|-------|-------|---------|-------|
| | **** | | **** | | | | |
| DEPTH | * DIP | | * DEV | DEV | | | QUAL |
| | * | T to deposit | * | AZM | | 2-4 * | |
| **** | ******* | ***** | ***** | ***** | ***** | ***** | ***** |
| | | | | | | | |
| TOP | | | | | | | |
| 1737.9 | 6 50.3 | 221. | 25.7 | 40. | 8.3 | 10.4 | 8 |
| | | | | | | , 5 | .,, |
| BOTTO | Μ | | | | | | |
| 1856.5 | | 216- | 22-6 | 33. | 8.6 | 8.6 | Δ |
| | - , , | | | | 3 . 0 | J . O | 1.3 |

END OF LSF - VERSION 007.E05 25-MAR-86 - 22:09:16

APPENDIX 7

Palynology

PALYNOLOGY REPORT

BIOSTRATIGRAPHY, PALAEOENVIRONMENTS, AND
HYDROCARBON SOURCE POTENTIAL OF
WESTGATE NO.1A, 1754m - 1909m
(CRETACEOUS) OTWAY BASIN

by

MARY E. DETTMANN

Prepared for BEACH PETROLEUM NL

April 1986

SUMMARY

Palynomorphs extracted from Westgate No.1A between 1754m and 1909m demonstrate an age range of late Albian to Turonian. During late Albian - Cenomanian sediments between 1867m and 1909m were deposited in terrestrial situations. Encroachment of the sea occurred during the Cenomanian and Turonian when sediments between 1832.5m and 1848.5m accumulated in close-to-land marginal marine situations; the sandstone at 1754m is clearly of Late Cretaceous age but yielded insufficient palynomorphs from which to draw precise age, biostratigraphic and palaeoenvironmental inferences.

Sediments at 1832.5m and 1848.5m provided high yields of organic matter and have good hydrocarbon source potential; OM is predominantly gas prone and the section is early mature with respect to the main oil generation zone. Underlying terrestrial sediments at 1867m and 1909m contain low quantities of OM and have limited source potential; spore colouration indicates that the section is mature, lying within the main oil generation zone.

| type | SAMPLE depth lithol. | SOURCE POTENTIAL low mod. high v.high | OIL SOURCE POTENTIAL poor ltd. fair good | MATURATION IM EM M LM OM | BIOSTRAT. | | DEPOSITIONAL ENVIRONMEN |
|-------------------|---|--|--|--|---|--------------------------------|-------------------------|
| swc
swc
swc | 1754 sst.
1832.5 shl.
1848.5 shl.
1867 slst. | | * | | n.o. C. triplex C. triplex A. distocar. P. pannosus | n.o. Tur. Tur. Cen/Tur Alb/Cen | * |
| | | 0.8 1.2 2.4 (ml OM/10gm) KEROGEN YIELD | * | GY Y A Br Bl
1.82.22.53.0
SPORE COLOUR/
TAI VALUE | P. pannosus | Alb/Cen | * |

TABLE 1. Summary of palynological results showing inferred hydrocarbon source potential, oil source potential, maturation, age, and palaeoenvironments of sediments between 1754m and 1909m in Westgate No.1A.

INTRODUCTION

Five sidewall cores from between 1754m and 1909m in Westgate No.1A,

Otway Basin have been palynologically analysed to ascertain the age
and biostratigraphic relationships of the sediments, the palaeoenvironments at and around the depositional site, and the hydrocarbon
source potential and maturation levels of the enclosed organic matter.

Table 1 summarises these results. Species distributions are shown
on Table 2 and source rock/maturation data, as determined palynologically,
are incorporated in Table 3.

Sample processing followed conventional physico-chemical techniques for recovery and concentration of the palynological microfossils (see Phipps & Playford 1984). Kerogen slides of unoxidised residue were also prepared and form the basis of the source rock/maturation analyses.

BIOSTRATIGRAPHY AND AGE

All samples were palynologically productive, although that from 1754m provided only a low yield of palynomorphs. Biostratigraphic evaluation of the sequence is in terms of the spore-pollen zones introduced by Dettmann & Playford (1969), and, where applicable, the dinoflagellate zones of Helby et al. (in prep.) as detailed in Fig.1 (from Frakes et al. in press). Relationships of the palynozones to the lithostratigraphic sequence in the Otway Basin are displayed in Fig.2.

1. 1754m; n.o. C. triplex Zone, n.o. Turonian

The sparse assemblage is compatible with an early Late Cretaceous age. The sample is stratigraphically above sediments at 1832.5m that contain C. triplex Zone indices; a Turonian or younger age is indicated.

2. 1832.5m; C. triplex Zone, Turonian

The presence of Phyllocladidites mawsonii together with Clavifera triplex, Amosopollis cruciformis and Balmeisporites glenelgensis indicates reference of the sample to the C. triplex Zone. The dinoflagellate assemblage is taxonomically restricted and insufficiently diagnostic for precise attribution in terms of the Helby et al. zones. However it is consistent with those reported from the lower part of the Upper Cretaceous sequence in the Otway Basin; here, initial appearances of Palaeohystrichophora infusioroides are usually associated with the C. triplex Zone.

- 3. 1848.5m; A. distocarinatus Zone, Cenomanian/Turonian
- The diverse spore-pollen assemblage contains first appearances (up section) of \underline{A} . distocarinatus & Amosopollis cruciformis and lacks indices of the of the succeeding \underline{C} . triplex Zone. Accordingly the sediments are assigned to the \underline{A} . distocarinatus Zone. Dinoflagellates comprise species that are long ranging in Australian Early and mid Cretaceous sediments.
- 4. 1867m, 1909m; P. pannosus Zone, late Albian-Cenomanian

 Both samples yielded Phimopollenites pannosus in diverse spore-pollen assemblages that are indicative of the P. pannosus Zone.

PALAEOENVIRONMENTS

Land plant organic matter dominates the kerogens although algal microfossils occur in four of the samples. Additionally represented in all
samples are fungal and recycled palynomorphs. The palaeoenvironmental
significance of the individual palynomorph assemblages is discussed
below.

1. 1754m; n.o Turonian

The sandstone sample yielded a low volume of organic matter derived largely from terrestrial sources. Deposition occurred under moderate energy conditions with source sediments derived, at least in part, from Triassic sequences.

2. 1832.5m, 1848.5m; Cenomanian - Turonian

Both samples are rich in organic matter that is chiefly of land plant origin. This was deposited under low energy conditions in a close-to-land situation subjected to marine influence. Source sediments include erosion products of Permian, Triassic, and possibly Lower Cretaceous sequences.

3. 1867m, 1909m; late Albian - Cenomanian

The low volumes of organic matter extracted from the samples include products of land plants and freshwater algae. Deposition in terrestrial situations is indicated. Infrequent recycled palynomorphs of Triassic and Early Cretaceous age indicate that some of the source sediments may have derived from Triassic and Lower Cretaceous sequences.

SOURCE ROCK POTENTIAL

The source richness of the samples was determined from the volume of organic matter extracted from 10 gm of sample; this provides a guide to TOC values (Tissot & Welte 1978). Source quality was determined using transmitted and blue fluorescent microscopy methods, and maturation levels were determined from spore colouration and expressed in terms of T.A.I. values of Staplin (1982).

Samples from 1848.5m and 1832.5m provided high yields of OM and could

thus be expected to support significant hydrocarbon generation when mature. Samples from 1867m and 1909m provided low volumes of OM and have limited source potential. The sandstone from 1754m is not considered a likely source rock.

OM present in the potential source rocks (1832.5m, 1848.5m) is chiefly of opaque land plant detritus that is predominantly gas prone. However, liptinitic (oil generating) macerals comprising land plant exines/cuticles and minor alginites account for sufficiently high proportions to indicate limited potential for oil. Kerogens from underlying samples at 1867m and 1909m are predominantly gas prone and the sediments have poor oil source potential.

Based upon spore colouration, the sequence 1754m - 1848.5m is early mature; that between 1867m and 1909m is mature, lying within the main oil generation zone.

REFERENCES

- DETTMANN, M.E. & PLAYFORD, G. 1969. Palynology of the Australian Cretaceous: a review. In: Stratigraphy and Palaeontology; essays in honour of Dorothy Hill (ed. K.S.W. Campbell), A.N.U. Press, Canberra, 174-210.
- FRAKES, L.A. et al. in press. Australian Cretaceous shorelines,
 Stage by Stage. Palaeogeogr. Palaeoclimatol., Palaeoecol.
- HELBY, R.J., MORGAN, R. & PARTRIDGE, A.D. in prep. A palynological zonation for the Australian Mesozoic. Mem. Assoc. Australs. Palaeontols.
- PHIPPS, D. & PLAYFORD, G. 1984. Laboratory techniques for extraction of palynomorphs from sediments. Pap. Dep. Geol. Univ. Qd. 11, 1-23.
- STAPLIN, F.L. 1982. Determination of thermal alteration index from color of exinite (pollen spores). SEMP Short Course 7, 7-9.

TISSOT, B.P. & WELTE, D.H. 1978. Petroleum formation and occurrence.

A new approach to oil and gas exploration. Springer-Verlag,
Berlin.

Mary E. Dettmann
c/- Department of Geology & Mineralogy
University of Queensland
St. Lucia, Qld. 4067

10 April, 1986.

| OTWAY BASI | N, VIC | TORIA AND SOU | TH AUSTRALIA |
|------------------------------|-------------------|-------------------------|--|
| ROCK UNITS | FORAM.
ZONULES | AGE | SPORE-POLLEN ZONES |
| Timboon Sand Member PAARATTE | | UPPERMOST
CRETACEOUS | sediments containing Nothofagidites |
| | | CAMPANIAN | Microflora |
| FORMATION | Α | SANTONIAN | Tricalatta |
| Mudstone | | CONTACIAN | Tricolpites pachyexinus
Zone |
| FLAXMAN | В | TURONIAN | Clavifera
Iriplex
Zone |
| WAARRE | | CENOMANIAN | Appendicisporites distocarinatus Zone Tricolpites pannosus Zone |
| OTWAY | | ALBIAN | Coptospora paradoxa |
| | | | |
| GROUP | | APTIAN | Crybelosporites striatus Subzone Cyclosporites hughesi Subzone |
| | | NEOCOMIAN | Cyclosporites hughesi Subzone Subzone |
| L | | | Crybelosorites stylosus Zone |

FIG. 1. Lithostratigraphic/biostratigraphic relationships in the Cretaceous sequence, Otway Basin (from Dettmann & Playford 1969).

FIG. 2. Biostratigraphic units for the Australian Cretaceous (from Frakes et al. in press)

TABLE 2

PALYNCMCRPH

DISTRIBUTION

COMPANY: BEACH PETROLEUM N.L.

Sheet 1 of 3

WELL: WESTGATE No. 1A

BASIN:

| WELL: WESTGATE No. 1A | | | | | | | BA | SI | N: | C | WTC | łΥ | | | | | | |
|------------------------------------|---|--------------|------|--------|--------|--------|--------|----------|--------|--------|--------|--|------------|--------------|-----------|----------|-----------|-----------|
| Sample type | | s | s | s | s | s | T- | Τ | T | T | Τ | T | T | T | \neg | \neg | _ | |
| Depth (m | | 1909 | 1867 | 1848.5 | 832. | 754 | | | | | | | | | | | | - |
| CRYPTOGAM MICROSPORES: | | | | | | | | | | | | \top | \uparrow | + | | + | \dashv | |
| Trilobosporites trioreticulosus | - | F | | | + | | | | | | | T | 十 | \top | \top | \top | \dashv | _ |
| Trilites cf. tuberculiformis | | - | | + | | + | | | | | T | T | \top | \top | \top | \top | \top | |
| Stereisporites antiquasporites | 4 | - | + | + | + | + | | | | | | T | \top | \top | \top | \top | + | |
| Stereisporites pocockii | 4 | - | + | + | | | | | | | | T | T | \top | \top | \top | \top | |
| Cyathidites australis/minor | + | $\cdot \top$ | + | + | + | + | | | | | | | \dagger | + | \top | + | + | |
| Baculatisporites comaumensis | + | | + | + | + | + | | | | | | | \dagger | \top | + | + | \top | |
| Triporoletes reticulatus | + | | + | + | | + | | | | | | | \dagger | \dagger | + | 十 | + | |
| Foraminisporis wonthaggiensis | + | | + | + | | | | | | | | | \dagger | \dagger | + | + | + | |
| Foraminisporis asymmetricus | + | | + | + | | | | | | | | | \dagger | + | \dagger | + | \dagger | |
| Foraminisporis dailyi | + | | | | | + | | | | | | | \vdash | \dagger | + | + | + | - |
| Retitriletes austroclavatidites | + | 1. | + | + | | | | \dashv | | | | | <u> </u> | \dagger | \dagger | +- | + | |
| Retitriletes nodosus | + | | | + | | 1 | | | | | | | | † | +- | + | + | \exists |
| Retitriletes eminulus | + | - | + | + | + | 7 | | | | | | | | + | \dagger | \top | + | 1 |
| Perinomonoletes sp. | + | | Ť | + | Ť | T | Ť | Ť | | T | | | <u> </u> | ļ- | | - | | ł |
| Crybelosporites striatus | + | 4 | - | | | | | 1 | 7 | | | | | | +- | + | + | 7 |
| Aequitriradites spinulosus | + | 4 | - | + | | | | 7 | \top | | | | | \vdash | +- | + | \dagger | i |
| Aequitriradites verrucosus | + | 4 | - | | 1 | \top | | \top | 7 | | 1 | | | | t | + | \dagger | 1 |
| Leptolepidites verrucatus | + | + | - | + | + | | | | | | \top | \exists | | | | | 1 | 7 |
| Cicatricosisporites australiensis | + | + | | + | + | \top | | | \top | | \top | | | | | \vdash | | 1 |
| Cicatricosisporites cuneiformis | + | | | | + | | | | 1 | | | | | | \vdash | | _ | 1 |
| Cicatricosisporites hughesii | + | + | | + | \top | | \top | | \top | \top | | | | | | | \vdash | 1 |
| Cyathidites punctatus | + | | - | + | | | | | \top | | \top | \top | | | | | | 1 |
| Neoraistrickia truncata | + | + | - | + | | | | | | | \top | \exists | \exists | | | | | 1 |
| Gleicheniidites circinidites | + | + | - | + . | + | + | \top | T | | T | | \top | | | | | | 1 |
| Velosporites triquetrus | + | | | | | | 1 | \top | | | | 十 | | | | | | 1 |
| Punctatosporites sp. | + | | | - | + | | | | | | \top | \top | | | | | | 1 |
| Matonisporites cooksoniae | + | | | | | | | T | | \top | \top | \top | \neg | | | | | 1 |
| Ceratosporites equalis | + | + | -1 | - | + | | | | | | | \top | 1 | | | | | İ |
| Dictyophyllidites crenatus | + | + | | | | | | | \top | 1 | | \top | \exists | _ | | | | |
| Klukisporites scaberis | + | | + | | + | | | T | | \top | | 十 | _ | | | | | |
| Microfoveolatosporis canaliculatus | + | | + | + | - | | | | | \top | 1 | 1 | | | | _ | | |
| Coptospora paradoxa | | + | _ | | | | |]_ | \top | 1 | \top | 1 | 十 | 7 | \dashv | \dashv | \dashv | ĺ |
| Osmundacidites wellmanii | | + | | | | | | | T | 1 | T | + | \top | 7 | \dashv | \dashv | \dashv | [|
| Densoisporites velatus | | + | + | | | | | | | T | | T | \top | \top | \dashv | \dashv | \neg | |
| | | | | | | | | | | | | | | | | | | |

Sample type: S = Sidewall core; C = Conventional core;
D = Cuttings. COMPANY: BEACH PETROLEUM N.L.

Sheet 2 of 3

| WELL: | WESTGATE | NO.1A | | | | | | BA: | SIN | : | OTW | łΥ |
|-------|----------|-------|---|---|---|---|---|-----|-----|---|-----|----|
| Sampl | e type | | s | s | s | s | s | | | | T | Γ |

| WELL: WESTGATE NO.1A | | | | | | | BA | SI | N: | OT | YAW | | | | | | |
|---------------------------------------|----------|-------|----------|----------|---------|---------|--------------|----------|----------|----------|----------|---|----------|----------|----------|---------------|--------|
| Sample type | 9 | : : | 3 | s | s | s | | | T | | | | | T | T | T | T |
| Depth (m) | 1 | 909 | - 1 | 848. | 832.5 | 1754 | | | | | | | | | | | |
| Retitriletes clavatoides | \ | | - | 7 | | | | | +- | - | + | - | + | + | + | + | |
| Laevigatosporites ovatus | | 1 | + | + | + | + | | | T | +- | | | 1 | + | 1 | + | |
| Biretisporites cf. potoniaei | | 1 | - - | + | + | | | | T | T | | 1 | \top | T | | T | |
| Triporoletes radiatus | | 1 | - | | | | | | | | | | | | † | 1 | H |
| Perotrilites granulatus | | | | + | | | | | | | | T | T | | | | |
| Perotrilites major | | | | + | | | | | | | | | | T | | T | \Box |
| Perotrilites jubatus | | | | + | + | | | | | | | | | | | | |
| Concavissimisporites penolaensis | | | _ | + | | | | | | | | | | | | | |
| Stoverisporites microverrucatus | | | _ | + | + | | | | | | | | | | | | |
| Appendicisporites distocarinatus | | | - | + | + | _ | | | _ | | | | | | | | |
| Cicatricosisporites pseudotripartitus | | L | - | + | + | | | | | | | | | | | | |
| Foveogleicheniidites confossus | | | - | + | + | \perp | | | _ | | | | | | <u> </u> | | |
| Leptolepidites major | <u> </u> | | + | + | | | | | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | ļ | | |
| Retitriletes facetus | <u> </u> | | + | + | 1 | _ | | | | | <u> </u> | | | | | | |
| Contignisporites glebulentus | | | + | + | _ | _ | _ | | | | <u> </u> | | | | | | |
| Camarazonosporites australis | | | <u> </u> | _ | + | _ | _ | | | | ļ | | ļ | | | | |
| Lycopodiacidites cf. asperus | | | _ | _ | + | \perp | 4 | | | | | | | | | | |
| Laevigatosporites major | | | | - | + | _ | _ | | | <u> </u> | ļ | | <u> </u> | | | | |
| Clavifera triplex | | | | 1 | + | _ | _ | | | | <u> </u> | | | | | | |
| Interlobites intraverrucatus | | | | 1 | + | _ _ | _ | | | | | | | | | | |
| CRYPTOGAM MEGASPORES: | | | | \perp | \perp | _ | _ | _ | | | | | | | | | _ |
| Balmeisporites glenelgensis | | | | <u> </u> | + | + | \downarrow | | | | | | | | | | |
| GYMNOSPERMOUS POLLEN: | | | | <u> </u> | \perp | _ | _ | _ | | | | | | | | | |
| Alisporites grandis | + | + | | _ | \perp | | 4 | | | | | | | | | | |
| Alisporites similis | + | + | + | + | \perp | \perp | 1 | | | | | | | | | | |
| Araucariacites australis | + | + | + | + | + | - | 1 | | | | | | | | | | _ |
| Classopollis chateaunovii | + | + | + | + | 1 | \perp | \perp | \dashv | | | | | | | | | |
| Classopollis sp. | + | + | | <u> </u> | 1 | | _ | \dashv | | | | | | | | | |
| Microcachryidites antarcticus | + | + | + | + | + | - | \perp | _ | | | | | | | | \perp | _ |
| Podocarpidites cf. ellipticus | + | + | + | + | + | · | \perp | _ | | | | | | | | | _ |
| Trisaccites microsaccatus | + | + | + | + | ↓_ | | \perp | \dashv | | | | | | | | \rightarrow | |
| Vitreisporites pallidus | + | _ | + | | _ | | \perp | _ | | | | | | | | \dashv | _ |
| Cycadopites nitidus | | | + | + | _ | \perp | _ | \dashv | _ | | | | | | | | _ |
| Hoegisporis sp. | | _ | | + | 1 | 1 | _ | _ | | | | | _ | | _ | \dashv | _ |
| Phyllocladidites mawsonii | | _ | | + | | | \perp | \perp | | | | | | | | | |

Sample type: S = Sidewall core; C = Conventional core; D = Cuttings.

IABLE 2 (contd.)

PALYNCMORPH

DISTRIBUTION

COMPANY: BEACH PETROLEUM N.L.

Sheet 3 of 3

WELL: WESTGATE NO.1A

BASIN: OTWAY

| W25 T6111B 170 1111 | | | | | | | D | H3. | T 14 4 | | T AAST. | ı. | | | | | | |
|-------------------------------------|----------------|-------------|------------|--------|--------|--|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|----------|
| Sample type | | s | s | s | s | s | : | | | T | | | | | T | T | T | \top |
| Depth (m | 1) | | | 5 | 5 | | | T | | | | | | | T | \top | \top | \top |
| Palynomorph | | 1909 | 1867 | 1848. | 1832. | 1754 | | | | | | | | | | | | |
| ANGIOSPERMOUS POLLEN: | | | | | T | | + | \top | | + | | 7 | | | | + | + | + |
| Phimopollenites pannosus | \top | + | + | + | \top | + | + | + | \dagger | \top | \top | \dashv | | | \vdash | + | + | + |
| Tricolpites sp. | 7 | + | + | | 1 | | + | \dagger | \dagger | + | \top | \dashv | | | | + | + | + |
| Cupuliferoidopollenites sp | 1 | | | + | | | 1 | \dagger | \dagger | + | + | + | | | | - | + | + |
| Asteropollis asteroides | \top | 1 | | | + | + | T | | \dagger | + | + | \dashv | | _ | | - | + | + |
| Tricolporites sp. | 1 | | | | + | | \vdash | + | \dagger | + | +- | + | \dashv | | | + | + | + |
| FUNGAL PALYNOMORPHS: | \top | 1 | 1 | | | | <u> </u> | | + | + | + | + | _ | | | \vdash | + | + |
| Spores & hyphae | + | - | + | + | + | + | | | + | \dagger | + | 十 | \dashv | | | - | + | + |
| ALGAL MICROFOSSILS: | \top | \top | \top | | | | | \vdash | \dagger | \dagger | + | + | | \dashv | | _ | + | + |
| Botryococcus sp. | + | | + | | + | | | | \dagger | \dagger | + | + | \dashv | \dashv | | | - | + |
| Sigmopollis cf. carbonis | + | + | _ | | | | | | \vdash | + | + | + | + | + | | | | + |
| Veryhachium sp. | + | \dagger | + | | | | | | \vdash | + | + | + | \dashv | + | | | - | + |
| Amosopollis cruciformis | \dagger | \dagger | †- | + | + | | | | - | + | + | + | + | \dashv | | | - | + |
| Spiniferites ramosus | \dagger | \dagger | 1. | + | + | | | | | + | +- | + | \dashv | \dashv | | | - | + |
| Callialosphaeridium asymmetricum | T | Ť | - | + | 1 | 7 | | | - | \dagger | + | + | | | | | | |
| Oligosphaeridium complex | \dagger | \top | - | + | + | | \neg | | | +- | - | + | + | + | \dashv | | | \vdash |
| Coronifera oceanica | | | † - | + | | | | | | \vdash | \dagger | + | | + | + | | | \vdash |
| Cyclonephelium compactum | T | | + | + | + | | 1 | | | | | | - | \top | \dashv | | - | \vdash |
| Oligosphaeridium pulcherinum | | | 1 | - | + | 1 | | | | | † | \dagger | \top | \top | \top | | | \vdash |
| Cleistosphaeridium polypes | | | + | - | | | | | | | T | T | + | + | \dashv | \neg | | - |
| Subtilosphaera sp. | | T | 1 | - | + | | \neg | | | | | \dagger | + | \dagger | \dagger | \dashv | | |
| Chlamydopherella nyei | | \top | 1 | 1 | + | | | | | | | \dagger | \top | \top | \forall | \dashv | | |
| dontochitina operculata | | | | 1. | + | \top | | | | | | T | \dagger | \dagger | \top | + | | |
| Cribroperidinium edwardsii | | | T | - | + | \top | \top | | | | | \vdash | \top | | \top | \dashv | | |
| Palaeohystrichophora infusorioides | | | | 1 | + | | \top | | | | | | ┢ | + | \top | \dashv | | |
| donotchitina striatoperforata | | | | Τ. | + | \top | \top | 1 | | | | | \top | + | \top | \dashv | | |
| ECYCLED PALYNOMORPHS: | | | | | | \top | \top | \top | | | | | \top | \dagger | \top | \dashv | | |
| ratrisporites spp. | + | + | + | | \top | | \top | \top | | | | | | \dagger | \top | \dashv | \dashv | |
| yclosporites hughesii | + | | | | | | 1 | 1 | | | | | - | \dagger | \dagger | + | 1 | |
| licatipollenites gondwanensis | | | + | | +- | \top | + | \top | | | | | + | + | + | + | + | |
| nteradispora robusta | | | + | 1 | - | 1 | \top | + | 1 | | | | \top | T | \dagger | + | \dashv | |
| seudoreticulatispora pseudoreticul. | | | + | \top | \top | \top | \top | + | \dashv | | | | T | \dagger | + | \top | \top | |
| allialasporites dampieri | $\neg \dagger$ | | + | 1 | \top | + | + | \top | \dashv | | _ | | \vdash | + | + | + | \top | |
| | - 1 | | ļ . | i | - 1 | - 1 | , | | - 1 | | 1 | | , | , | - 1 | • | | |
| unatisporites pellucidus | \dashv | | | + | - - | - | +- | + | + | 1 | _ | | \vdash | \dagger | \dagger | \dagger | \dashv | |

| | | | AMOUNT | T | | | | | | | | N 1 | С | М | A T | ΤE | R | | |
|--------|-----------|--|--------|-----------|-------------|-------------|--------------|--------|-------------|-------|--------------|-------|--------|-------|-----|-------------|--------------------|--------------------------------------|----------------------------------|
| | | | AMOUNT | | | | | | | ompo | siti | on) | | | | | | MATUR | ITY |
| | | | (m]/ | AI | gini | te
1 | | rin. | /Cut | in. | | Hur | nic | Vi | tr. | | | | |
| SAMPLE | DEPTH (m) | LITHOLOGY | 10gm) | Dispersed | Dense | Algal cysts | Fine (<10µm) | Spores | Leaf tissue | Other | Woody tissue | <20µm | > 20µm | <20µm | 1 1 | | Spore
Colour | T.A.I.
(after
Staplin
1982) | Interpreted
Maturity
Level |
| swc 19 | 1754 | sandstone
med. brown
f. gr. | 0.1 | 20 | + | - | - | + | _ | - | - | 30 | | 25 | 25 | + | yellowish
amber | 2.1 | early mature |
| swc 8 | 1832.5 | dk. grey
shale, fine
white lam. | 2.3 | 10 | - | + | 5 | 15 | 15 | + | + | 10 | _ | 15 | 20 | 10 | yellowish
amber | 2.1 | early mature |
| swc 6 | 1848.5 | dk. grey
shale, fine
white lam. | 1.0 | 5 | - | + | 10 | 10 | + | 10 | + | 5 | 15 | 15 | 30 | | yellowish
amber | 2.1 | early mature |
| swc 3 | 1867 | greenish-
grey silt-
stone | 0.3 | - | - | + | 5 | 15 | - | 10 | + | 5 | 15 | 20 | 30 | + | amber-brown | 2.3 | mature |
| swc l | | interlam. dk. grey shale & med. grey siltstone | 0.4 | - | _ | + | 5 | 10 | - | 5 | - | 35 | | 35 | + | amber-brown | 2.3 | mature | |

TABLE 3. Organic matter, Westgate No.1A, sidewall cores, 1754m - 1909m.

APPENDIX 8

Maturation and Source Rock Analysis

WESTGATE-1A

| | K.K.
No. | Depth (m) | R _V max | Range | N | Description including Exinite Fluorescence |
|---|-------------|----------------------|--------------------|-----------|------|---|
| | | | | | Pemb | er Mudstone Member 835m |
| | ×4845 | 881.5
SWC 30 | 0.35 | 0.26-0.43 | 26 | Rare cutinite, yellow orange, rare sporinite, yellow, rare liptodetrinite, yellow to orange. (Sandy claystone. Dom common, V>I>E. Vitrinite common, inertinite sparse, eximite rare. Pyrite abundant.) |
| | | | | | Pebb | le Point Formation 896m |
| | | | | , | Pa | aratte Formation 962m |
| | | | | Nu | lawa | rre Greensand Member 1441m |
| | | | | | . Be | lfast Mudstone 1695m |
| | | | | | Fla | xmans Formation 1743m |
|) | x4846 | 1744
SWC 24
?R | 70.90 | - | ?1 | No fluorescing exinite. (Iron oxides>>sandstone. Origin of iron oxides uncertain, many of the fragments have an oolite structure and could be oxidized oolites or an artefact. ?Dom rare, ?I only. Exinite and vitrinite absent.) |
| | x4847 | 1759
SWC 18
?R | -
?1.48 | - | ?1 | No fluorescing exinite. (Iron oxides>>sandstone. Origin of iron oxides uncertain, many of the fragments have an oolite structure and could be oxidized oolites on an artefact. ?Dom rare, ?! only. Exinite and vitrinite absent.) |
| | | | | | Wa | aare Formation 1809m |
| | ×4848 | 1832.5
SWC 8 | 0.53 | 0.42-0.69 | 31 | Sparse sporinite, yellow to yellow orange, rare lipto- detrinite, bright yellow to yellow orange, rare cutinite, yellow to orange, rare resinite, greenish yellow to yellow, rare phytoplankton, green. (Siltstone> sandstone>>shaly coal. Shaly coal sparse, V>I>E. Duroclarite. Dom common to abundant, I>V>E. Inertinite and vitrinite common, exinite sparse. Pyrite sparse.) |
|) | ×4849 | 1851.5
SWC 5 | ?0 . 54 | 0.50-0.61 | ?3 | Sparse liptodetrinite, yellow to orange, rare sporinite, yellow to orange, rare ?phytoplankton, bright yellow. |
| | | R | 1.43 | 1.06-1.98 | 10 | (Siltstone>>sandstone. Dom common, I>E>V. Inertinite common, exinite sparse, ?vitrinite rare. ?Vitrinite population small and poorly defined. Pyrite common.) |
| | | | | | Eume | eralla Formation 1852m |
| | ×4850 | 1867
SWC 3 | 0.65 | 0.57-0.71 | 5 | Rare cutinite, dull orange, rare liptodetrinite, yellow, rare sporinite, yellow, rare suberinite, brown. |
| • | | Rį | 1.21 | 0.96-1.84 | 7 | (Sandstone>carbonate>claystone. Dom sparse, I>V>or=E. Inertinite sparse, vitrinite and exinite rare. Green fluorescing ?oil droplets rare. Patchy moderate mineral matter fluorescence sparse. Inorganic mud additive sparse. Pyrite rare.) |
| | ×4851 | 1894
SWC 2
R | 1.32 | 1.06-1.56 | | Rare sporinite, yellow, rare liptodetrinite, yellow to orange. (Claystone. Dom rare, I>E. Inertinite and exinite rare, vitrinite absent. Pyrite sparse.) |
| | | | | | | |

| WAM NAM | E Mestgake / A. |
|---------|-----------------|
| | , |

LE NO. X 4845

TYPE SWC 30.

FGV = First Generation Vitrinite -

| No.
Read | Pop
Rnge | Рор | | Two | | - Iner | | | | | | | | | | en. | hon | n | 1110 | ٠ . ا | me. | |
|-----------------|------------------|---------|-----|---|---|---|---|---|---|-------------|-------|-------------|---|------|------|------|--------|-------|----------|--------|--|------|
| Read | Roge | 1 4.5.5 | | | | 1 . | | | | | | | | | , | | | | na. | 2760 | ne. | |
| | | туре | 1 | Read | Pop
Rnge | Type | Ro \$ | No.
Read | Pop
Ringe | Pop
Type | Ro ≴ | NO.
Read | Pop
Ringe | Pop | Ro ≴ | | | | | | | |
| | | | .46 | <u> </u> | | | .82 | | | | 1.18 | | | | | VESO | rage | Type | Ro 💈 | Read | Pop
Roge | Ľ |
| - | | | .47 | <u> </u> | | | . 83 | | | | 1. 19 | | | | 1.54 | | | | 1.90 | | 1 | I |
| | | | | | | | . 84 | | | | | | · · | | | | | | 1.91 | | | t |
| | | | | | | | .85 | | | | | | | | | | | | 1.92 | | | t |
| | | | | | | | .86 | | | | | | | | | | | | 1.93 | | | ł |
| | | | | | | | .87 | | | | | | | | | | | | 1.94 | | | ŀ |
| | | | | | | | .88 | | | | | | | | | | | | | | | ŀ |
| | | | | | | | .89 | | | | | | | | | | | | 1.96 | | | ŀ |
| | | | | | | | .90 | | | | | | | | | | | | 1.97 | | | - |
| - | | | | | | | .91 | | | | | | | | | | | | 1.98 | | | i |
| | | | | I | | | .92 | -+ | \dashv | | | | | | | | | | | | | - |
| \dashv | | | | | | | .93 | | -+ | | | | | _ | | | | | | \neg | -+ | - |
| | | | | | | | .94 | | | | | | | | | | | | | | | |
| - | | | | | | | .95 | | | | | | | | | | | | | \neg | - | |
| | | | | | | T | .96 | | | | | | | | | | | | | | | - |
| + | $\frac{1}{x}$ | | | | | | .97 | | | | | | | | | | | | | \neg | _ | - |
| + | 7-1 | | | | | | .98 | | | | | | | | | | | | | _ | - | - |
| | +-+ | | | | | | .99 | | | | | | | | | | | | | | | - |
| - | ++ | | | | | 1 | .00 | | | | | | | | | | | | | | | - |
| - | \vdash | | | | | 1 | . 01 | | | | | - | | | | | | | | \neg | | - |
| -H | | | | | | 1 | .02 | | | | | | | | | | | | | | | - |
| -H | | | | | | 1 | .03 | | - | | | - | $-\!$ | | | | | | | | | - |
| \dashv | | | | | | 1 | . 04 | | | | | | | | | | | | | | | - |
| | | | | | | 1. | .05 | | | | | | | | | | | | | | | - |
| $\dashv \dashv$ | -1 | | | | | 1. | .06 | | _ | | | | | | | | | | | | | - |
| - - | | | | | | 1: | .07 | | | | | | - | | | | | | | \neg | | |
| ╌┼╌┤ | _ | | | _ | | 1, | .08 | | | | | | | | | | \bot | | | | | • |
| | | | | | | 1. | .09 | | | | | | | | | _ | | or | ganic | natte | r Comp. | 7 |
| \dashv | - | | | _ | | 1. | 10 | | | | | | | | | | | Ex | inite | Al | ginite | Į. |
| ┪ | - | | | | | 1, | 11 | | | | | | | | | | | | | | | |
| + | | | | _ | | 1. | 12 | | | | | - | | 1 | | _ | | _ 4 | 20.1 | | 0 | |
| ++ | | | | | | 1. | 13 | | | | | | | | | | | | | | | |
| +++ | , - | | | _ | | 1, | 14 | | | | | | | | | | | V 1- | tr inite | Ine | rtinite | - |
| +4 | | | | | | 1. | 15 | | | | | +- | | | | | | | | 1 | | _ |
| +- | | | | | | 1. | 16 | | | | | | | | | - - | | | 1. 8 | 10 |).2 | |
| ╀ | \bot | 1.6 | 31 | | _ | 1. | 17 | | | | | | | | | | | | | 1 | | |
| | | | FGV | .63
.64
.65
.66
.67
.68
.69
.69
.70
.71
.72
.73
.74
.75
.76
.77
.78
.79
.80 | .49 .50 .51 .52 .53 .54 .55 .56 .57 .58 .59 .60 .61 .62 .63 .64 .65 .65 .66 .67 .68 .69 .77 .71 .72 .71 .72 .73 .74 .75 .76 .77 .78 .79 .80 .81 | .49 .50 .51 .52 .53 .53 .54 .55 .56 .57 .58 .59 .60 .61 .62 .63 .64 .65 .65 .66 .67 .68 .69 .77 .71 .72 .73 .74 .75 .76 .77 .78 .79 .80 | .49 .50 .51 .51 .52 .53 .53 .54 .55 .56 .57 .58 .59 .60 .61 .61 .62 .63 .64 .65 .65 .66 .67 .68 .69 .77 .71 .71 .72 .71 .72 .73 .74 .75 .76 .76 .77 .78 .79 .80 .81 | .49 .85 .86 .87 .87 .52 .88 .89 .54 .90 .55 .91 .56 .92 .95 .95 .95 .95 .95 .96 .97 .98 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 | .49 .85 .85 .86 .87 .50 .86 .87 .87 .88 .89 .55 .90 .89 .55 .91 .56 .92 .93 .94 .59 .95 .95 .95 .96 .96 .96 .96 .97 .98 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 .99 .99 .95 .99 .90 | .49 | .49 | 1.20 | 1.49 | 1.49 | 1.49 | 1.49 | 1.49 | 1.49 | 1.20 | 48 | . 48 | 1.48 |

| | 11. | \ \ | | |
|--------|-------|-------|----|--|
| WENT | Wei | taale | \A | |
| IAMIL. | ••••• | | | |

SAMPLE NO. Y 4847-

DEPTH 1759m

TYPE SWC 18

FGV = First Generation Vitrinite -

1 = Inertinite

flaxmans Fm.

| | No | Pop | Pop | 1 | 1 110 | T | | | | | · | | | | | | | | | Hlax | mar | is tv | γ. |
|-------|---------------|-------------|-------------|--------------|-------------|-------------|-------------|------|-------------|-------------|-------------------------|------|-------------|----------|-------------|----------|-------------|-------|--|---------------|----------|---------------|--------------|
| Ro \$ | No.
Read | Pop
Rnge | Рор
Туре | | NO.
Read | Rope | Pop
Type | Ro ≴ | No.
Read | Pop
Rnge | С ор
Туре | Ro ≴ | NO.
Read | Pop | Рор
Туре | Ro \$ | No.
Read | Pop | Pop
Type | 0. | No. | Pop
Rnge | Po |
| .10 | | <u> </u> | | .46 | | | | .82 | | | | 1.18 | | | | <u> </u> | | ruige | Type | RO X | Kead | Rnge | Ty |
| 11 | | | | .47 | | | | .83 | | | | 1.19 | | | | 1.54 | | | | 1.90 | | l | |
| . 12 | | | | .48 | | | | . 84 | | | | 1.20 | | <u> </u> | | 1.55 | | | | 1.91 | | | |
| .13 | | | | .49 | | | | .85 | | | | 1.21 | | | | 1.56 | | | | 1.92 | | | 1 |
| .14 | | | | . 50 | | | | .86 | | | | | | | | 1.57 | | | | 1.93 | • | | \vdash |
| 15 | | | | .51 | | | | .87 | | | | 1.22 | | | | 1.58 | | | | 1.94 | | | |
| 16 | | | | .52 | | | | .88 | | | | 1.23 | | | | 1.59 | | | | 1.95 | | | - |
| 17 | | | | .53 | | | | .89 | | | | 1.24 | | | | 1.60 | | | | 1.96 | | | - |
| 18 | | | | .54 | | | | .90 | | | | 1.25 | | | | 1.61 | | | | 1.97 | | | |
| 19 | | · | | . 55 | | | | .91 | | | | 1.26 | | | | 1.62 | | | | 1.98 | | | |
| 20 | | | | .56 | | | | .92 | | | | 1.27 | | | | 1.63 | | | | 1.99 | | - | |
| 21 | | | | .57 | | | | .93 | | | | 1.28 | | | | 1.64 | | | | 2.00 | _ | | |
| 22 | | | | .58 | | + | | .94 | | | | 1.29 | | | | 1.65 | | | | | | | |
| 23 | | | | . 59 | | - | | .95 | | | | 1.30 | | | | 1.66 | | | | | | | |
| 24 | | | | .60 | | | | .96 | | | | 1.31 | | | | 1.67 | | | | | | | |
| 5 | | | | .61 | | | | .97 | | | | 1.32 | | | T | 1.68 | | | | - | | | |
| 26 | | | | .62 | | | | .98 | | | | 1.33 | | | | 1.69 | | | | | | | |
| 27 | | | | .63 | | | | .99 | | | | 1.34 | | | | 1.70 | | | | | | | |
| 28 | | | | .64 | | | | 1.00 | | | | 1.35 | | | | 1.71 | | | | | \dashv | | |
| 9 | | | | .65 | | | | 1.01 | | | | 1.36 | | | | 1.72 | (1 | | | | -+ | - | |
| 0 | | | | .66 | | | | 1.02 | | | | 1.37 | | | | 1.73 | | | | | | | |
| 1 | | | | .67 | | | | 1.03 | | | | 1.38 | | | | 1.74 | | | | | | | |
| 2 | | | | .68 | | | | | | | | 1.39 | | | | 1.75 | | | | | | | |
| 3 | | | | .69 | | | | . 04 | | | 1 | .40 | | | | 1.76 | | | - | | | | |
| 4 | | | | 70 | | | | . 05 | | | 1 | .41 | | | | 1.77 | | | | | | | |
| 5 | | | | 71 | | | | .06 | | _ | 1 | . 42 | | | | 1.78 | | | | - | | | |
| 6 | | | | 72 | | | | .07 | | | | .43 | | | | 1.79 | | | | | | | |
| 7 | | | | 73 | | | | .08 | | | | .44 | | | | . 80 | | | | | | | _ |
| В | _ | | | .74 | | | | .09 | | | 1 | .45 | | | | . 61 | | | <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> | rganic | matte | r Comp. | · (% |
| 9 | _ | | | 75 | | | | .10 | | | 1 | .46 | | | | .82 | | | {E | kinite | ^' | ginite | |
| 0 | | | | 76 | | | | -11 | | | 1 | .47 | | | | . 83 | | | | | ı | \circ | |
| , | | | | 77 | | - | | . 12 | _ | | 1 | .48 | | ? | _ | . 84 | | | | \bigcirc | 1 | \cup | |
| 2 | _ | | | 78 | | | | .13 | | | 1 | . 49 | | | | .85 | | | - , | tr In Ite | 1- | | |
| 3 | $\neg \vdash$ | | | 78
79 | | | | . 14 | | | 1 | . 50 | | | | .86 | | | ' ' ' | T IN IT | a I i u | ertinit | • |
| | $\neg \vdash$ | _ | | 80 | | | | . 15 | | | 1 | .51 | | | | ,87 | | - | | / | , | | |
| 5 | _ | | | 81 | | - | | . 16 | | | 1 | .52 | | | | .88 | _ | | \neg | 0 | 1. 3 | 40. | 1 |
| | - | | | <u></u> | | | | . 17 | | | 1. | . 53 | | | | .89 | | | | | | | |

| |) | \ \ | | |
|----------|--------|--------|----------|------|
| WEI MAME | INEL | tante | 1 2 | |
| IL I | ••*••* | •••••• | •••••••• | •••• |

SAMPLE NO. X 4846

FGV = First Generation Vitrinite -

1 = inertinite

| Ro \$ | No.
Read | | т | <u> </u> | γ | <u>, </u> | Pon | 1 | 1 12- | T | | · · · · · | | | | | | | | Flax | mαι | ns F | ~ |
|----------|-------------|------|------|--------------|-------------|---|-------------|------|-------------|-------------|-----|-----------|---------------|-------------|------|------|----------------|-------------|----------------|------------|-------------|---------------|----|
| .10 | Kead | rnge | Type | | NO.
Read | Rope | Pop
Type | Ro ≴ | No.
Read | Pop
Rnge | Pop | Ro ≴ | NO.
Read | Pop
Rnge | Pope | Ro ≴ | No.
Read | Pop
Rnge | Pop | Ro 🐒 | No.
Read | Pop
Rnge | Po |
| .11 | | | | .46 | | | | .82 | | | | 1.18 | | | | 1.54 | | | | | | raige | +- |
| 12 | | | | .47 | | | | .83 | | | | 1.19 | | | | 1.55 | | | | 1.90 | | | ╀ |
| 13 | | | | .48 | ļ | | | . 84 | | | | 1.20 | | | | 1.56 | | | | 1.91 | | | Ļ |
| 14 | | | | | | | | .85 | | | | 1.21 | | | | 1.57 | | | | 1.92 | | | L |
| 15 | | | | .50 | | | | .86 | | | | 1.22 | | | | 1.58 | | | | 1.93 | | | L |
| 16 | | | | .51 | | | | .87 | | | | 1.23 | | | | 1.59 | | | | 1.94 | | | Ļ |
| 17 | | + | | .52 | | | | .88 | | | | 1.24 | | | | 1.60 | | | | 1.95 | | | L |
| 18 | | | | .53 | | | | . 89 | | | | 1.25 | | | | 1.61 | | | | 1.96 | | | L |
| 19 | | | | .54 | | | | .90 | 1 | | ? [| 1.26 | | | | 1.62 | | | | 1.97 | | | L |
| 20 | | | | .55 | | | | .91 | | | | 1.27 | | | | 1.63 | | | | 1.98 | | | L |
| 21 | | | | .56 | | | | .92 | | | | 1.28 | | | | 1.64 | | | | 1.99 | | | _ |
| 22 | | | | .57 | | | | .93 | | | | 1.29 | | | | 1.65 | | | | 2.00 | \dashv | | |
| 23 | -+ | | | .58 | | | | .94 | | | | 1.30 | | + | | 1.66 | | | | | - | | |
| 4 | | | | | | | | .95 | | | | 1.31 | | | | 1.67 | -+ | | | | - | | |
| 5 | | | | .60 | | | | .96 | | | | 1.32 | | | | 1.68 | | | | | | | |
| 6 | | | | | | | | .97 | | | | 1.33 | | | | 1.69 | | -+ | | | | | |
| 7 | | | | .62 | | | | .98 | | | | 1.34 | | | | 1.70 | | | | | | | |
| 8 | | | | .63 | | | | .99 | | | | 1.35 | | | | 1.71 | | | | | - | | |
| 9 | | | | .65 | | | | 1.00 | | | | 1.36 | | | | 1.72 | | | | | - | | |
| 0 | | | | | | | | 1.01 | | | | 1.37 | | | | 1.73 | | | | | | | |
| + | | | | .66 | | | | 1.02 | | | | 1.38 | | _ | | 1.74 | | | | | _ _ | | |
| 2 | | | | .67 | | | | 1.03 | | | | 1.39 | | | | 1.75 | - | | | | - - | | _ |
| 3 | | | | .68 | | | | 1.04 | | | | 1.40 | | | | 1.76 | | | | | - - | | |
| 4 | | | | .69 | | | 1 | 05 | | | | 1.41 | | | | 1.77 | | | | | | | |
| 5 | | | | .70 | - | | | . 06 | | | | 1.42 | | | | 1.78 | | | | | | | |
| 5 | | | | .71 | | | | .07 | | | | 1.43 | | | | 1.79 | | | - | | | | |
| ; | | | | 72 | | | | . 08 | | | | 1,44 | | | | 80 | | | | | | L | |
| <u>'</u> | | | | .73 | | | 1 | . 09 | | | | .45 | | | | 1.81 | | | <u> </u> | rganic m | atter | Comp. | ٠. |
| 9 | | | | .74 | | | | .10 | | | | .46 | | | | .82 | | | ——{E: | cinite | Als | ginite | |
| | | | | 75 | | | | .11 | | | 1 | .47 | | | | . 83 | | | | _ | | $\overline{}$ | |
| + | | | | 76 | ; _ | | 1 | . 12 | | | | .48 | | | | . 84 | \dashv | | | \supset | 1 ' | \circ | |
| - | | - | | 77 | | | | . 13 | | | | .49 | | | | .85 | | | | | +- | | |
| + | | | | 78 | | | | . 14 | | | | . 50 | _ | | | .86 | | | ——{V | tr in ite | Ine | rtinit | re |
| - | | | | 79 | | | | . 15 | | | | , 51 | $\neg \vdash$ | | | .87 | | | | \sim | , | 100 | ı |
| - | | | | 80 | | | | . 16 | | | | .52 | | | | .88 | | | | \bigcirc | 1 : | ζo. | 1 |
| | | | • | 81 | 1 | 1 | 1. | . 17 | | | | .53 | $\neg \vdash$ | | | .89 | | | | | | | |

| | NAME | WESTGATE-IA |
|---|----------|-------------|
| • | I WILL O | |

LE NO. ×4848 DEPTH. 18320m

FGV = First Generation Vitrinite -

| Ro \$ | No.
Read | Pop
Rnge | Pop
Type | Ro \$ | NO.
Read | Ri | op
ige | Pop
Type | Ro ≴ | No.
Read | Pop
Rnge | Pope | Ro ≴ | NO.
Read | Pop
Roge | Pop
Type | Ro \$ | No.
Read | Pop
Roge | Pop
Type | Ro 1 | No. | Pop
Roge | Por |
|------------|----------------|--------------|-------------|-------|-------------|----|-------------------------|-------------|------|--------------|---------------|------|------|-------------|-------------|-------------|-------|-------------|-------------|-------------|--|-------|-------------|------|
| <u>.10</u> | <u> </u> | | | .46 | | | | | .82 | | | | 1.18 | | | | | | ruige | Type | 10 1 | Kead | Rnge | Ty |
| .11 | | | | .47 | 4. | | | | .83 | | | | 1.19 | | | | 1.54 | | | | 1.90 | | | |
| . 12 | | | | .48 | 4 | | | | . 84 | | | | 1.20 | | | | 1.55 | | | | 1.91 | | | |
| . 13 | | | | .49 | 2 | Γ | | | .85 | | | | 1.21 | | | | 1.56 | | | | 1.92 | | | |
| .14 | | | | . 50 | 4 | | | | .86 | | | -+ | 1.22 | | | | 1.57 | | | | 1.93 | | | |
| .15 | | | | .51 | 1 | | | | .87 | | | | 1.23 | | | | 1.58 | | | | 1.94 | | | |
| 16 | | | | .52 | 2 | | | | .88 | i | | | 1.24 | | | | 1.59 | | | | 1.95 | | | |
| 17 | | | | .53 | | | | | .89 | | | | 1.25 | | | | 1.60 | | | | 1.96 | | | |
| 18 | | | | .54 | | | | | .90 | | | | 1.26 | | | | 1.61 | | | | 1.97 | | | |
| 19 | | <u> </u> | | . 55 | 2 | | | FOU | .91 | | | | 1.27 | | | | 1.62 | | | | 1.98 | | | |
| 20 | | | | . 56 | | | | 100 | .92 | | + | | 1.28 | | | | 1.63 | | | | 1.99 | | | |
| 21 | | | | . 57 | | | | | .93 | | | | 1.29 | | | | 1.64 | | | | 2.00 | | | |
| 22 | | | | -58 | | | 7 | | .94 | | | | 1.30 | | | | 1.65 | | | | | | | - |
| 23 | | | | . 59 | | | | | .95 | | | | 1.31 | | | | 1.66 | | | | | | | |
| 24 | **** | | | .60 | 1 | | \neg | | .96 | | | | 1.32 | | | | 1.67 | | | | | | | |
| 25 | | | | .61 | | | 7 | | .97 | | | | 1.33 | | | | 1.68 | | | | | | | |
| 26 | | | | .62 | | | ī | | .98 | | | | 1.34 | | | | 1.69 | | | | | | | |
| 27 | | | | .63 | 2 | | 十 | | .99 | | | | 1.35 | | | | 1.70 | | | | i_ | | | |
| 28 | | | | .64 | | | \neg | | 1.00 | | - | | 1.36 | | | | 1.71 | | _ | | | | | |
| 29 | | | | .65 | | | 1 | | 1.01 | | | | 1.37 | | | | 1.72 | '' | | | | | | |
| 30 | | | | .66 | | | 十 | | 1.02 | | | | 1.38 | | | | 1.73 | | | | | | | |
| 31 | | | | .67 | | • | 7 | | 1.03 | | | | 1.39 | | | | 1.74 | _ | | | | | | |
| 52 | | | | .68 | 7 | | \top | | 1.04 | | | | 1.40 | | | _ | 1.75 | | | | | | · | |
| 3 | | | | .69 | 11 | V | 十 | | 1.05 | | | | 1.41 | - | | | 1.76 | | | | | | | |
| 4 | | | | .70 | | | 十 | | 1.06 | | | | 1.42 | | | | 1.77 | | | | | | | |
| 5 | | | | .71 | | | | | 1.07 | | | | 1.43 | | | | 1.78 | | | | | | | - |
| 6 | | | | .72 | | | T | | . 08 | | | | .44 | | - | | 1.79 | | _ | | | | | |
| 7 | | | | .73 | | | T | 1 | . 09 | | | | .45 | | | | .80 | - | | o | rganic | natte | r Comp. | .(%) |
| 8 | | | | .74 | | | T | | . 10 | | | | .46 | | | | .81 | | _ | E: | nite</td <td></td> <td>ginite</td> <td></td> | | ginite | |
| 9 | | | | 75 | | | | | . 11 | | | | .47 | | | | .82 | | | | Λ, | ļ | | |
| 0 | | | | .76 | · | | | | . 12 | | | | .48 | | | | . 83 | | | | 0.4 | - | _ | |
| 1 | | | | .77 | | | T | | .13 | | $\neg \vdash$ | | .49 | | | | . 84 | | - | | | | | |
| | 2 | 4 | | 78 | | | | | .14 | | | | .50 | | - | | .85 | _ | | | trinite | In | ertinit | |
| 3 | ++ | | | 79 | | | $oldsymbol{\mathbb{T}}$ | | . 15 | | | | ,51 | _ | | | . 86 | - | | | 1.0 | | 2.0 | ŀ |
| 4 | ! | | | 80 | | | $oldsymbol{\mathbb{T}}$ | | . 16 | | | | .52 | | | | .87 | | - | | | | | |
| 5 | / | 11 | | 81 | $-\Gamma$ | | T | | .17 | | | | .53 | -+ | | | .88 | | | | | | | |

| NAME Wes | tgate | 1,A |
|----------|-------|----------|
| | | •••••••• |

SPLE NO. X 4849

DEPTH. 18575 m

TYPE SUCS

FGV = First Generation Vitrinite -

| = |nert|n|te

Waare Fn.

| | | | T | | | | * Iner | IINITE | | | | | | | | | | ω | acre | Fm. | | | |
|-------|-------------|---------------|-------------|-------|------------------|-------------|--|--------|-------------|-------------|-------------|-------|-------------|-------------|------|--|-------------|-------------|----------------|-------------|---------------|----------------|--|
| Ro \$ | No.
Read | Pop
Rnge | Pop
Type | Ro \$ | NO.
Read | Pop
Rnge | Pop
Type | Ro \$ | No.
Read | Pop
Rnge | Pop
Type | Ro \$ | NO.
Read | Pop
Rnge | Pope | Ro ≴ | No.
Read | Вор | Pop
Type | Ro 1 | vo. | Pop | Po |
| .10 | | | | .46 | <u> </u> | | 1 | .82 | | | | 1.18 | | | | | | raige | Type | 1 KO X | lead | Rnge | 1 |
| 11 | | | | .47 | | | | .83 | | | | | | | | 1.54 | | | | 1.90 | | | |
| 12 | | | | .48 | | | | .84 | | | | 1.19 | | · · | | 1.55 | | | | 1.91 | | | 1 |
| 13 | | | | .49 | | | | .85 | | | | 1.20 | | | | 1.56 | | | | 1.92 | | | 1 |
| 14 | | | | .50 | 7 | 不 | 1 | .86 | | | | 1.21 | | | | 1.57 | | | | 1.93 | | | |
| 15 | | | | .51 | , | 1 | | .87 | | | | 1.22 | | | | 1.58 | | | | 1.94 | | | ╆ |
| 16 | | | | .52 | | | | .88 | | | | 1.23 | | | | 1.59 | | | | 1.95 | | | |
| 17 | | | | .53 | | | | .89 | | | | 1.24 | | | | 1.60 | | | | | $\overline{}$ | | ١, |
| 18 | | | | .54 | | | \vdash | .90 | | | | 1.25 | | | | 1.61 | | | | 1.97 | | | ╁╌ |
| 19 | | | | . 55 | | | | .91 | | | | 1.26 | 7 | | I | 1.62 | | | | 1.98 | , | | - |
| 20 | | | | .56 | | 7 | FGU | .92 | | | | 1.27 | | | | 1.63 | | | | 1.99 | `- | | ` |
| 21 | | | | .57 | | | 1 40 | .93 | | | | 1.28 | | | | 1.64 | | | | 2.00 | \dashv | | - |
| 22 | | | | .58 | | | | .94 | | | | 1.29 | | | | 1.65 | | | | | - | | - |
| 23 | | | | . 59 | | | | .95 | | | | 1.30 | | | | 1.66 | | | | | | | |
| 4 | | | | .60 | | | | .96 | | | | 1.31 | | | | 1.67 | | | | | - | | |
| 25 | | | | .61 | -, - | - | | .97 | | | | 1.32 | | | | 1.68 | | | | | \dashv | | |
| 26 | | | | .62 | | | | .98 | | | | 1.33 | | | | 1.69 | | | | | | | |
| 27 | | | | .63 | | | | | | | | 1.34 | | | | 1.70 | 1 | | 7 | | | | |
| 8 | | | | .64 | | | | .99 | | | | 1.35 | | | | 1.71 | | | <u> </u> | | | | |
| 9 | | | | .65 | | | | 1.00 | | | | 1.36 | | | | 1.72 | () | | | | \dashv | | |
| 0 | | | | .66 | | | | 1.01 | | | | 1.37 | | | | 1.73 | | | | | - | | |
| 1 | | | | .67 | | | | 1.02 | | | | 1.38 | | | I | 1.74 | | | | | - | -+ | |
| 2 | | | | .68 | | | | 1.03 | | | | 1.39 | | | | 1.75 | | | | | | | |
| 3 | | - | | .69 | | | | 1.04 | | | | 1.40 | 1 | | 1 | 1.76 | | | | | | - | |
| 4 | | | | .70 | | | | 1.05 | | | | 1.41 | | | | 1.77 | | | | | - - | | |
| 5 | | | | .71 | | | | 1.06 | 1 | | 1 | 1.42 | | | | 1.78 | | | | | - - | | |
| 5 | | | | .72 | | | | 07 | | | | 1.43 | | | | 1.79 | | | | | + | | |
| 7 | | | | | - | | | .08 | _ | | | 1,44 | | | | 1.80 | | | | | | | |
| 1 | | | | .73 | | | | . 09 | | | | 1.45 | | | | 1.81 | | | | rganic m | atter | Comp. | •(% |
| B 9 | | | | 75 | | | | .10 | _ | | | 1.46 | | | | 1.82 | | | ^E | xinite | 1^" | ginite | 1 |
| 0 | | | | 76 | | | | -11 | | | | .47 | | | | 1,83 | _ | | | 0.3 | 1 | \bigcirc | |
| | | | _ | | | | | . 12 | 1 | | | .48 | T | | | 1.84 | | | | \cup 5 | 1 | 0 | |
| - | \dashv | | | 77 | - | | | .13 | - | | \Box | . 49 | | | | .85 | _ | | - | itr inite | +- | - 41 4: | |
| ; | _ | | | 78 | - | | | .14 | 4 | | | . 50 | | | | . 86 | | _ | ' , | 7 | live | rtinit | re |
| | | | | 79 | | | | . 15 | _ | | 1 | , 51 | | | | .87 | _ | | | | | | |
| ; | \dashv | | | 80 | | | | . 16 | | | 1 | .52 | | | | .88 | | \neg | | 10.1 | 1 | . 0 | |
| | | | • | 81 | ł | - 1 | 1 | . 17 | | | | .53 | | | | .89 | | | | | 1 ' | . • | |

| NAME Westgate - 1A |
|--------------------|
| |

SAFLE NO. X 4850

DEPTH 186 7

TYPE SWC 3

FGV = First Generation Vitrinite -

1 = Inertinite

Eunevalle Fm

| | 44. | Τ. | T . | 1 | | | γ | | | | | | | | | | | | (= | Lune | U | a F | |
|--------------|-------------|----------------|----------|---------|--|---------------|-------------|-------|--------------|-------------|-------------|--------------|---------------|-------------|-------------|-------|---|------|------|-----------|---|-----------------------|----|
| % ≸ | No.
Read | Pop | Pop | Ro \$ | NO.
Read | Roge | Pop
Type | Ro \$ | No.
Read | Pop
Rnge | Pop | Ro \$ | NO.
Read | Pop
Roge | Pope | | No.
Read | Pop | | | | | |
| 10 | | | | .46 | i | | | .82 | | | | | - | ruige | iype | Ro \$ | Read | Roge | Pope | Ro ≸ | Read | Pop | F |
| 1 | | | | .47 | 1 | | | .83 | | | | 1.18 | | | | 1.54 | | | | 1.90 | | | 十 |
| 2 | | | | .48 | i | | _ | .84 | | | | 1.19 | | | | 1.55 | | | | 1.91 | | | ╀ |
| 3 | | | | .49 | | | | | | | | 1.20 | | | 7 | 1.56 | | | | 1.92 | | | ╀ |
| 4 | | | | .50 | - | | | .85 | | | | 1.21 | | | | 1.57 | | | | 1.93 | | | Ŧ |
| 5 | | | | .51 | | | | .86 | | | | 1.22 | | | | 1.58 | | | | | | ļ | ļ |
| T | | | | .52 | | | | .87 | | | | 1.23 | | | | 1.59 | | | | 1.94 | | | Ļ |
| 1 | | | | .53 | | | | .88 | | | | 1.24 | | | | 1.60 | | | | | | | Ļ |
| | | | | .54 | | | | .89 | | | | 1.25 | | | | 1.61 | | | | 1.96 | | | L |
| 寸 | | | | .55 | | | | .90 | | | | 1.26 | 7 | | I | 1.62 | | | | | | | L |
| 7 | | | | .56 | | | | .91 | | | | 1.27 | | | | 1.63 | | | | 1.98 | | <u> </u> | L |
| \dagger | | | | .57 | - | | | .92 | | | | 1.28 | | | | 1.64 | | | | 1.99 | | | L |
| † | | + | | .58 | | 41 | | .93 | | | | 1.29 | | | | 1.65 | | | | 2.00 | | | L |
| T | | | | .59 | | | | .94 | | | | 1.30 | | | $\neg \neg$ | 1.66 | | | | | | | _ |
| + | | | | .60 | | \rightarrow | | .95 | | | | 1.31 | | | | 1.67 | | | | | | | |
| 十 | | | | .61 | | | | .96 | 1 | | T | 1.32 | | | | 1.68 | | | | | | | |
| T | | | $\neg +$ | .62 | | | | .97 | | | | 1.33 | | | | 1.69 | | | | | | | |
| + | | | | .63 | - | | | .98 | - | | I | 1.34 | | | | 1.70 | | | | | | | _ |
| 十 | | | | .64 | | | | .99 | | | | 1.35 | | | | 1.71 | | | | | | | |
| 1 | | | | .65 | | | | 1.00 | | | | 1.36 | | | | 1.72 | -,- | | | | | | _ |
| + | _ | - | | .66 | - | + | | 1.01 | | | | 1.37 | | | | 1.73 | | | | | $-\!$ | | _ |
| 十 | _ | | | .67 | -, | | | 1.02 | | | | 1.38 | | | | 1.74 | | | | | | | _ |
| 十 | \dashv | | | | | - - F | | 1.03 | i_ | | | 1.39 | | | | 1.75 | - | | | | . | | |
| ╁ | | | | .68 | | | | 1.04 | | | | 1.40 | | | | 1.76 | | | | | | · | |
| ╁╴ | | | | .69 | | | 1 | . 05 | | | | 1.41 | | | | 1.77 | | | | | | | |
| ╁ | | | | .70 | | + | | .06 | | | | 1.42 | | | | | _ | | | | | | |
| ╁ | | | | .71 | | <u> </u> | 1 | .07 | | | | 1.43 | | | | 1.78 | | | | | | | |
| ┝ | | | | .72 | | | 1 | . 08 | | | | 1.44 | $\neg \vdash$ | | | 1.79 | | - | | L_ | | | |
| ╀ | - | | | .73 | | | 1 | . 09 | | | | 1.45 | | | | .80 | | - | | rganic | matte | r Comp. | ./ |
| ┼ | | - | | .74 | | | 1 | .10 | , | 7 | | 1.46 | | | | . 81 | | | E | xinite | AI | ginite | _ |
| ╁╴ | _ | | | 75 | | | 1 | .11 | | | | 1,47 | | | | . 82 | | | | | | | |
| ╀ | | | | 76 | | | 1 | . 12 | 1 | 7 | | 1.48 | | | | . 83 | . — — | | | 401 | 1 | $\boldsymbol{\alpha}$ | |
| - | - | _ | | 77 | \bot | | 1 | . 13 | | | | 1.49 | | | | .84 | ' | | 1 | | | | |
| ┼ | - | | | 78 | | | 1 | .14 | | | | . 50 | \dashv | | | .85 | _ _ | | | ltr inite | e in | ertinit | • |
| | - | | | 79 | | | | . 15 | | | | . 51 | | | | . 86 | | | | | | 0.2 | |
| | - | | - | 80 | | | 1 | . 16 | | | | .52 | _ _ | - | | .87 | | _ | | 201 | | | |
| <u> </u> | | | • | В1 | | T | 1. | . 17 | | | | .53 | | | | . 88 | | _ | | | 1 | | |
| | · . | • • | | note De | | | I | | | | | | | | 1 | . 89 | 1 | ı | 1 | | I | | |

| OL NAME Westgate 1A |
|---------------------|
|---------------------|

SAMPLE NO. X 4851

FGV = First Generation Vitrinite -

| = |nert|n|te

TYPE. Swcz Eumeralla Fm. Ro 1 Read Rnge Type Ro 2 Read Rnge Type Ro 3 Rnge Type Ro 3 Rnge Type R .11 1.18 .47 \mathcal{I} 1.54 . 83 . 12 1.90 1.19 -48 1.55 1.91 .13 1.20 .49 1.56 . 85 I 1.92 1.21 - 50 1.57 - 86 1.93 1.22 .51 1.58 .87 1.94 1.23 . 52 1.59 . 88 1.95 .17 1.24 . 53 1.60 . 89 1.96 . 18 1.25 . 54 1.61 .90 1.97 . 19 1.26 . 55 1.62 .91 1.98 .20 1.27 . 56 1.63 . 92 1.99 .21 1.28 . 57 1.64 . 93 2.00 1.29 . 58 1.65 . 94 . 23 1.30 . 59 1.66 .95 .24 1.31 .60 1.67 .96 .25 1.32 -61 1.68 .97 .26 1.33 . 62 1.69 .98 .27 1.34 .63 1.70 .99 . 28 1.35 . 64 1.71 1.00 .29 1.36 .65 1.72 1.01 .30 1.37 .66 1.73 1.02 .31 1.38 . 67 1.74 1.03 .32 1.39 -68 1.75 1.04 .33 1.40 .69 1.76 1.05 .34 1.41 .70 1.77 1.06 .35 1.42 .71 1.78 1.07 .36 1.43 .72 1.79 1.08 .37 1.44 .73 1.80 1.09 Organic matter Comp.(%) .38 1.45 .74 1.81 1.10 Exinite .39 Alginite 1.46 .75 1.82 1, 11 .40 1,47 .76 1.83 1.12 <0 \ . 41 1.48 .77 1.84 1.13 . 42 1.49 .78 1.85 Vitrinite inertinite 1, 14 .43 1.50 .79 1.86 1.15 .44 1.51 . 80 1.87 1.16 1.52 .81 101 1.88 1.17 1.53 1.89

WESTGATE 1A

| KK No. | Depth (m) | TOC | |
|--------|-----------|------|--|
| | | | |
| x4845 | 881.5 | 2.35 | |
| x4848 | 1832.5 | 3.20 | |
| x4849 | 1851.5 | 1.30 | |
| x4850 | 1867 | 0.27 | |
| x4851 | 1894 | 0.29 | |

APPENDIX 9

Petrology

Funington Street, Frewville, South Australia 5063 Phone Adelaide (08) 79 1662 Telex AA82520

> Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

amde[

21 April 1986

F 3/944/0 F 6408/86

Beach Petroleum NL

PO Box 360

CAMBERWELL VIC 3124

Attention: Ian Buckingham

REPORT F 6408/86

YOUR REFERENCE: Lett

Letter of 24 March 1986

MATERIAL:

SWC

LOCALITY:

Westgate-1A

WORK REQUIRED:

Detailed description

Investigation and Report by: Dr Brian G. Steveson,
Dr Roger N. Brown and
Brian L. Watson

Manager-Petroleum Services Section: Dr Brian G. Steveson

Broin flere.

for Dr William G. Spencer General Manager Applied Sciences Group

cap

Head Office: Flemington Street, Frewville South Australia 5063 Telephone (08) 79 1662 Telex: Amdel AA82520 Pilot Plant: Osman Place Thebarton, S.A. Telephone (08) 43 5733 Telex: Amdel AA82725 Branch Laboratories: Melbourne, Vic. Telephone (03) 645 3093 Perth, W.A. Telephone (09) 325 7311 elex: Amdel AA94893

> Sydney, N.S.W. Telephone (02) 439 7735 Telex: Amdel AA20053

Townsville Queensland 4814 Telephone (077) 75 1377

1. INTRODUCTION AND SUMMARY

This report gives results of a detailed examination of 4 sidewall cores from Westgate-1A.

Three of the cores (1765.5, 1749.5 and 1746 m) are ironstones and they contain a large proportion of sand-grade grains composed of concretionary hematite/goethite. It is likely that current or wave action was involved in rolling the grains on the sediment-water interface. An environment in a near-shore marine situation is most likely — akin to the environment postulated for calcareous ooids but with a chemistry such that hematite precipitated. This implies a highly oxidising medium — probably a restricted location so that there was opportunity for the build-up of iron concentration.

Porosity in thin section is limited in these three samples due to compaction effects on both ferruginous grains and lithic clasts. However, the samples have been subjected to considerable damage prior to optical examination and visual estimates of porosity should be regarded as a guide only.

The fourth sample (1814.5 m) is a friable sand. It shows little evidence of post-depositinal modifications and hence retains a porosity greater than 25%. The rock is unlikely to present any problems as a petroleum reservoir.

2. PETROGRAPHY

Sample: TSC42088; Location: Westgate-1A, Core 23, (1746 m)

Rock Name:

Ferruginous sandstone

Thin Section:

An optical estimate of the constituents gives the following:

| Component | */= | |
|--|---------------------|----|
| Sand-grade ferruginous concretions Lithic fragments/clay | 60-65
20 | |
| Quartz
Pores
Feldspar | 15
<5 (var
<1 | ie |

The rock consists of detrital sand-grade grains of ferruginous material, quartz and heterogeneous fine-grained phases which are interpreted as being derived from original lithic clasts. There is no evidence of an original muddy matrix infiltrated between the sand-grade grains.

The ferruginous grains which comprise about two thirds of the volume of the rock are well sorted about an average size of approximately 0.3 mm. Under intense illumination many of the otherwise opaque grains can be seen to have a deep red colour and most show concentric textures indicating a concretionary origin. In some instances there is a central crystal, commonly of quartz. In rare instances the ferruginous concretions have numerous small crystals embedded in them and the ferruginous material forms a contiguous network around these crystals. Most of the ferruginous grains show well rounded outlines but there is evidence of compaction and deformation of some and rare instances of what appear to be fracturing (or possibly desiccation) of the ferruginous aggregates. As well as this opaque or semi-opaque material there are less well defined patches of dark material some of which appear to be jarosite, others are distinctly redder in colour and cannot be identified from a mineralogical point of view.

Most of the other detrital grains are fine-grained lithics, many of which are quartzofeldspathic lithologies of a metasedimentary or sedimentary origin but there is a small proportion, also, of distinctly volcanic rocks and rare grains of chert. Other lithic fragments are less well defined and contain very fine-grained admixtures of quartz and clay. Many of these grains have been deformed and now occur as heterogeneous patches between the grains of quartz and ferruginous material. The quartz grains themselves tend to be compact in shape but vary from distinctly angular to subround varieties. Some of the quartz may have been fractured during compaction of the rock.

Pores are present mainly as rather small voids between the grains and to this extent appear to be of primary origin. Many of the pores are not more than about 0.05 mm in size and do not appear to be well interconnected. The thin section contains two fragments and the smaller of these is somewhat more porous and probably somewhat more siliceous than the bulk of the sample. It is felt that at least some of the porosity in this small fragment is due to breaking up of the sample during collection of the sidewall core.

Sample: TSC47086/7; Location: Westgate-1A, Core 21 (1749.5 m) and Core 16 (1765.5 m)

Thin Section:

These samples are fundamentally similar to that described immediately above and hence a detailed description is not warranted. The sample from 1749.5 m, particularly, is very similar to that from 1746 m but it has, also, been much more badly effected by the sidewall coring bullet.

The sample from 1765.5 m contains a somewhat smaller proportion of ferruginous material and correspondingly larger amounts of both quartz and lithic fragments. As well, this sample contains very fine-grained patches of a green clay tentatively identified as glauconite. This mineral forms aggregates generally not more than 0.15 mm in size which comprise perhaps 1 to 2% of the total volume of the rock. There are also one or two rather well formed biotite flakes in this sample. Lithic fragments in this sidewall core are commonly distinctly argillaceous types more or less brown in colour as a result of staining by ferruginous material. Some show foliated textures and hence appear to schistose or phyllitic rocks, others are oriented aggregates of birefringent clay or phyllosilicate and may well be derived from somewhat metamorphosed and recrystallised shales or mudstones. Even so, there is a range towards more siliceous lithologies including some which can be specifically identified as being of igneous origin.

Porosity perhaps comprises up to 5% of the volume of this rock but, as is commonly the case, it is difficult to distinguish porosity induced by collection of the sample from that which is an integral part of the rock. It appears that as a result of deformation of the softer lithic fragments there is little porosity which can be genuinely attributed to the original sandstone sample.

These three ironstones are similar to each other and from examination of the thin section, they are interpreted as probably having been formed in some kind of shallow marine environment where wave action provided an oxygenated atmosphere and hematite was the stable iron oxide phase. Hematite crystallised around small silicate grains and ooid-like features developed due to rolling action of waves. It is likely that the ferruginous material is now goethite but this is a weathering or degradation product of the hematite which originally formed in the environment of deposition. The silicate material consists both of quartz and relatively fine-grained lithic fragments and some of the latter are distinctly of volcanic origin. There is evidence of some degradation and deformation of some of the lithic fragments and this, together with fracturing and some squeezing of the ferruginous ooliths, was responsible for reduction of any original porosity.

Sample: TSC47085; Location: Westqate-1A, Core 10 (1914.5 m)

Rock Name:

Porous clean sandstone

Thin Section:

The thin section contains about 25 to 30% of pores and much of the remainder is grains of quartz. There are trace amounts of detrital feldspar and mica and rare instances of opaque and semi-opaque heavy minerals. Lithic fragments were identified in the thin section but they are not well formed and probably comprise not more than about 2% of the volume of the rock. Carbonate has a patchy distribution and appears most likely to be dolomite.

The bulk of the rock is a well sorted sandstone consisting of equant but rather angular quartz grains with an average size of approximately 0.2 mm. The quartz grains have tangential touching contacts and there is little evidence of pressure solution effects. Feldspar is present mainly as untwinned potassium feldspar and there are traces of muscovite and fine-grained (sedimentary and metasedimentary) lithic fragments.

An unstained carbonate mineral is present as an authigenic phase and it has a poikilitic texture with respect to the quartz. Crystals of the carbonate are as much as one millimetre in size and tend to enclose or partially enclose several quartz grains. The carbonate has, however, only a patchy distribution in the thin section and the sample therefore retains a high porosity and, probably, substantial permeability also.

The excellent reservoir properties of this sandstone derived from the absence of marked pressure solution effects, the patchy distribution of the carbonate and the paucity of both the clay matrix and soft lithic fragments. The rock is probably a relatively mature sandstone but it is noticeable that the detrital grains are somewhat more angular than is commonly the case in such a pure and well sorted quartz sandstone.

3. X-RAY DIFFRACTION ANALYSIS

3.1 <u>Procedure</u>

Weighed subsamples were taken and dispersed in water with the aid of defloculants and an electric blender, and allowed to sediment to produce $-2~\mu m$ e.s.d. size farctins by the pipette method. The resulting dispersions were examined by plummet balance to determine their solids contents, and were then used to produce oriented clay preparations on ceramic plates. Two plates were prepared per sample, both being saturated with Mg $^{++}$ ions, and one in addition being treated with glycerol. When air-dry, these were examined in the X-ray diffractometer. Additional diagnostic examinations were carried out as required, including examination of the glycerol-free plate hot ($\approx 130~^{\circ}\text{C}$) and after heating for one hour at $550~^{\circ}\text{C}$.

3.2 Results

The results are given Table 1, which lists the following:

- (a) The proportion of the sample found to separate into the -2 μm size fraction, as determined by the plummet balance. The figure obtained applies only to the pre-treatment and dispersion conditions used.
- (b) The mineralogy of the $-2~\mu m$ fraction, listing the minerals found, in approximate order of decreasing abundance, using the semiquantiative abbreviations given.

TABLE 1: MINERALOGY OF CLAY FRACTION OF FOUR SIDEWALL CORES

| | | ======= | | ====== | .====== | | ==== |
|------|--------------------------|-----------------|--------------------------------|---|--|---|--|
| CORI | E 10 | CORE | 16 | CORE | 21 | CORE | 23 |
| 1814 | 4.5m | 1765 | .5m | 1749.5m | | 1746m | |
| | 3 | 10 | | 5 | | 4 | |
| K | D | K | D | К | D | С | D |
| Q | SD | \mathtt{Sm}^+ | SD | G | Α | K | SD |
| M | Α | G | Α | С | Α | G | Α |
| С | Tr-A | С | ${\tt Tr-A}$ | Sm* | Α | M | Α |
| F¹ | Tr-A | M | $\mathtt{Tr}	ext{-}\mathtt{A}$ | M | Α | Sm* | Α |
| | | Q | Tr | Q | Tr | Q | Tr |
| | 1814
K
Q
M
C | Q SD M A C Tr-A | 1814.5m 1765 3 | 3 10 K D K D Q SD Sm ⁺ SD M A G A C Tr-A C Tr-A F' Tr-A M Tr-A | 1814.5m 1765.5m 1749 3 10 5 K D K D Q SD Sm+ SD G M A G A C C Tr-A C Tr-A Sm* F' Tr-A M Tr-A M | 1814.5m 1765.5m 1749.5m 3 10 5 K D K D Q SD Sm ⁺ SD G A M A G A C A C Tr-A C Tr-A Sm* A F' Tr-A M Tr-A M A | 1814.5m 1765.5m 1749.5m 1746 3 10 5 4 K D K D C Q SD Sm ⁺ SD G A K M A G A C A G C Tr-A C Tr-A Sm* A M F' Tr-A M Tr-A M A Sm* |

Mineral Key

| С | Chlorite | M | Mica/illite |
|----|------------|--------|-------------------------------------|
| F' | K feldspar | Q | Quartz |
| G | Goethite | Sm | Smectite |
| K | Kaolinite | Sm^+ | Smectite with detectable proportion |
| | | | of interstratified illite |

SEMIQUANTITATIVE ABBREVIATIONS:

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

^{*} presence of interstratified illite not certain when amount present is low.

This is an enclosure indicator page. The enclosure PE907627 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907627 has the following characteristics:

ITEM_BARCODE = PE907627 CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = SEM Core Photograph, Plate 1 (enclosure

from WCR appendix 9--Petrology) for

Westgate-1A

REMARKS =

DATE_CREATED = DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

DEPT. NAT. RES & ENV

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.
The enclosure PE907628 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907628 has the following characteristics: ITEM_BARCODE = PE907628 CONTAINER_BARCODE = PE902238 NAME = SEM Core Photograph BASIN = OTWAY PERMIT = PEP 108 TYPE = WELL SUBTYPE = CORE_PHOTO DESCRIPTION = SEM Core Photograph, Plate 2 (enclosure from WCR appendix 9--Petrology) for Westgate-1A REMARKS = DATE_CREATED = DATE_RECEIVED = 3/02/87 $W_NO = W929$ WELL_NAME = Westgate-1A CONTRACTOR = CLIENT_OP_CO = Beach Petroleum NL

mer authorient. Liay. 1875 200 phobably beer partial of high six

This is an enclosure indicator page.

The enclosure PE907629 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907629 has the following characteristics:

ITEM_BARCODE = PE907629
CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = SEM Core Photograph, Plate 3 (enclosure

from WCR appendix 9--Petrology) for

Westgate-1A

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 3/02/87$

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page.

The enclosure PE907630 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907630 has the following characteristics:

ITEM_BARCODE = PE907630 CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY PERMIT = PEP 108

TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = SEM Core Photograph, Plate 4 (enclosure

from WCR appendix 9--Petrology) for

Westgate-1A

REMARKS =

DATE_CREATED = DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
def context
d

Jan 1 - Stati Statistics of the Statis of the Statistics of the Statistics of the Statistics of the St

This is an enclosure indicator page. The enclosure PE907631 is enclosed within the container PE902238 at this location in this document.

CLIENT_OP_CO = Beach Petroleum NL

(Inserted by DNRE - Vic Govt Mines Dept)

The enclosure PE907631 has the following characteristics: ITEM_BARCODE = PE907631 CONTAINER_BARCODE = PE902238 NAME = SEM Core Photograph BASIN = OTWAY PERMIT = PEP 108 $\mathtt{TYPE} = \mathtt{WELL}$ SUBTYPE = CORE_PHOTO DESCRIPTION = SEM Core Photograph, Plate 5 (enclosure from WCR appendix 9--Petrology) for Westgate-1A REMARKS = DATE_CREATED = $DATE_RECEIVED = 3/02/87$ $W_NO = W929$ WELL_NAME = Westgate-1A CONTRACTOR =

This is an enclosure indicator page.

The enclosure PE907632 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907632 has the following characteristics:

ITEM_BARCODE = PE907632
CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY PERMIT = PEP 108

TYPE = WELL

SUBTYPE = CORE_PHOTO

Westgate-1A

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

DEPT. NAT. RES & ENV

This is an enclosure indicator page. The enclosure PE907633 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907633 has the following characteristics:

ITEM_BARCODE = PE907633
CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = SEM Core Photograph, Plate 7 (enclosure

from WCR appendix 9--Petrology) for

Westgate-1A

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 3/02/87$

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page. The enclosure PE907634 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907634 has the following characteristics:

ITEM_BARCODE = PE907634
CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = SEM Core Photograph, Plate 8 (enclosure from WCR appendix 9--Petrology) for

Westgate-1A

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

Ports 8 1/65 to all v This done class poorts crystal occum sowards

This is an enclosure indicator page. The enclosure PE907635 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907635 has the following characteristics:

ITEM_BARCODE = PE907635
CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = SEM Core Photograph, Plate 9 (enclosure

from WCR appendix 9--Petrology) for

Westgate-1A

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 3/02/87$

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

though modified a size ger of covergrowths, are still water and weathered.

tone and quartz grains

This is an enclosure indicator page. The enclosure PE907636 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907636 has the following characteristics:

ITEM_BARCODE = PE907636 CONTAINER_BARCODE = PE902238

NAME = SEM Core Photograph

BASIN = OTWAY PERMIT = PEP 108 TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = SEM Core Photograph, Plate 10

(enclosure from WCR appendix

9--Petrology) for Westgate-1A

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 3/02/87$

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page. The enclosure PE907637 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907637 has the following characteristics:

ITEM_BARCODE = PE907637
CONTAINER_BARCODE = PE902238

NAME = Thinsection Core Photograph

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = Thinsection Core Photograph, Plate 10

(Figure 1a & 1b from WCR appendix

9--Petrology) for Westgate-1A

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 3/02/87$

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

The second of th

Joseph Angelon (1997), by ede to the control of control of the contr

This is an enclosure indicator page. The enclosure PE907638 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907638 has the following characteristics:

ITEM_BARCODE = PE907638
CONTAINER_BARCODE = PE902238

NAME = Thinsection Core Photograph

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = CORE_PHOTO

DESCRIPTION = Thinsection Core Photograph, Plate 10

(Figure 2a & 2b from WCR appendix 9--Petrology) for Westgate-1A

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 3/02/87$

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page. The enclosure PE907626 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907626 has the following characteristics:

ITEM_BARCODE = PE907626
CONTAINER_BARCODE = PE902238

NAME = Well Path Diagram

BASIN = OTWAY

PERMIT = PEP 108

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Well Path Diagram (enclosure from WCR

appendix 9--Petrology) for Westgate-1A

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

APPENDIX 10

Analysis of gas cut water from DST #1

The Australian Mineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide (08) 79 1662 Telex AA82520

> Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

amdel

2 May 1986

F 3/944/0 F 5203/86

Beach Petroleum NL 685 Camberwell Road CAMBERWELL VIC 3124

Attention: Ian Buckingham

REPORT F 5203/86

YOUR REFERENCE: Letter received 24 March 1986

TITLE: Westgate No. 1

IDENTIFICATION: Gas

WORK REQUIRED: As in report

bert you

Investigation and Report by: David Fawcett, Nick Smith

Manager-Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. Spencer General Manager Applied Sciences Group

applied ociences of o

Head Office: Flemington Street, Frewville South Australia 5063 Telephone (08) 79 1662 Telex: Amdel AA82520 Pilot Plant:

сар

Osman Place Thebarton, S.A. Telephone (08) 43 5733 Telex: Amdel AA82725

Branch Laboratories: Melbourne, Vic. Telephone (03) 645 3093

Perth, W.A. Tephone (09) 325 7311 liex: Amdel AA94893

Sydney, N.S.W. Telephone (02) 439 7735 Telex: Amdel AA20053

Townsville Queensland 4814 Telephone (077) 75 1377

WATER ANALYSIS REPORT

METHOD W2/1

| S | AM | P | L | Ε | Ι | D | | NO. | 1 |
|---|----|---|---|---|---|---|--|-----|---|
|---|----|---|---|---|---|---|--|-----|---|

| CHEMIC | AL COMPOSI | ======
TION | ====== | ! DERIVED DATA | | | | |
|--------------|------------|----------------|--------|--|-------|--|--|--|
| | | MG/L | ME/L | ! | MG/L | | | |
| CATIONS | | | | ! | | | | |
| | (CA) | | | ! TOTAL DISSOLVED SOLIDS | | | | |
| MAGNESIUM | | | | ! A. BASED ON E.C. | 422 | | | |
| | (NA) | | | ! B. CALCULATED (HCO3=CO3) | 390 | | | |
| POTASSIUM | (K) | 27.0 | 0.690 | ! | | | | |
| | | | | ! TOTAL HARDNESS | 75.5 | | | |
| | | | | ! CARBONATE HARDNESS | 75.5 | | | |
| | | | | ! NON-CARBONATE HARDNESS | | | | |
| ANIONS | | | | ! TOTAL ALKALINITY | 86.8 | | | |
| HYDROXIDE | (OH) | | | ! (EACH AS CACO3) | | | | |
| RBONATE | (CO3) | | | ! | | | | |
| b I CARBONAT | E(HCO3) | | 1.73 | ! | | | | |
| SULPHATE | (SO4) | 15.0 | 0.312 | ! TOTALS AND BA | LANCE | | | |
| | | | | | | | | |
| CHLORIDE | (CL) | 172 | | ! | | | | |
| | | | | ! CATIONS(ME/L) 6.33 DIFF= | | | | |
| | | | | ! ANIONS (ME/L) 6.94 SUM = | | | | |
| NITRATE | (NO3) | 2.3 | 0.037 | ! DIFF*100./SUM = 4. | 63% | | | |
| | | | | ! SODIUM / TOTAL CATION RATIO | 65.3% | | | |
| | | | | REMARKS | | | | |
| | | | | ! IMBALANCE DUE TO PRESENCE OF
! ALUMINIUM, AND AMMONIA
! (NESSLER REAGENT SPTO TEST)
! | IRON, | | | |
| | | | | ! | | | | |
| | | | | ! | | | | |
| ACTION - | | | 7.7 | ! | | | | |
| CONDUCTIVI | | | | ! | | | | |
| • | AT 25 C | | 760 | ! | | | | |
| RESISTIVIT | с м.мно у | 25C | 13.2 | | | | | |
| | | | | ! NOTE: MG/L = MILLIGRAMS PER
! ME/L = MILLIEQUIVS. P | | | | |

STIFF DIAGRAM.

Sample: NO.1

| | | Sample: NO.1 | | | | | | | | | | | | |
|------|----------------|------------------------------|---------|------|--------|------------|-----------------|--------|--------|-------------|--------------|-------|----------------|-------|
| | | Scale | e is 1 | ogar | ithm | (base | 10) | of mi | lli-e | quiva | lent | value | e s | |
| | 1000 | 300 | 100
 | 3 O | 10
 | 3

 | 1

 | 3
 | 10
 | 30

 | 100

 | 300 | 1000

 | |
| N 16 | | | | | | * | | * - | | | | | | Cl |
| Na+K | | | | | | | | | | | | | ! | - |
| | | | | | | • | | | | | | |

 | |
| | | | | | | • | - | ·
· | | | | | | |
| Ca | i | where some some some some so | | | | | -*-* | | | | | | | нсоз |
| |

 | | | | | | . | | | | | | ! | |
| | | | | | | | .
 .
 . | | | | | |] | |
| Mg |

 | | | | | | -* | | | | | |

 | S O 4 |
| _ | | | | | | | | | | | | | trace traces | |
| |

 | | | | | | | | | | | | | |
| _ | 1 | | | | | | | | | | | | 1 | |
| Fe | | | | | | | | | | | | |

 | C03 |
| | | | | | | | | | | | | |

 | |
| | | | | | | | | | | | | | | |
| Br | `

 | | | | | | -*

 | | | | | | | ОН |
| | 1 | | | | | | i | | | | | | 1 | |

WATER ANALYSIS REPORT

METHOD W2/1

| SAMPLE ID. NO. | 2 |
|----------------|---|
|----------------|---|

| CHEMI | CAL COMPOS | ITION | | ! DERIVED DATA | | | | |
|-------------|------------|-------|--------|---|---------|--|--|--|
| C4.7.7.0 | | MG/L | ME/L | ! | MC | | | |
| CATIONS | | | | ! | MG/L | | | |
| CALCIUM | (CA) | 42.0 | 2.10 | ! TOTAL DISSOLVED SOLIDS | | | | |
| MAGNESIUM | (MG) | 8.50 | 0.699 | ! A. BASED ON E.C. | | | | |
| SODIUM | (NA) | 100 | 4.35 | ! B. CALCULATED (HCO3=CO3) | 496 | | | |
| POTASSIUM | (K) | 22.0 | 0.563 | i - 2. evecqevien (4003=003) | 468 | | | |
| | | | | ! TOTAL HARDNESS | 140 | | | |
| | | | | ! CARBONATE HARDNESS | 140 | | | |
| ANTONIC | | | | ! NON-CARBONATE HARDNESS | , 40 | | | |
| ANIONS | | | | ! TOTAL ALKALINITY | 150 | | | |
| HYDROXIDE | (OH) | | | ! (EACH AS CACO3) | 158 | | | |
| ARBONATE | (CO3) | | | i | | | | |
| BICARBONAT | E(HCO3) | 193 | 3.16 | ·
 | | | | |
| SULPHATE | (SO4) | 26.0 | 0.542 | TOTAL 0 | | | | |
| | | | 0.012 | TOTALS AND BAL | ANCE | | | |
| CHLORIDE | (CL) | 173 | 4.87 | ! | | | | |
| | | | | CATIONS(ME/L) 7.71 DIFF= | 0.898 | | | |
| NITTOATE | | | | ! ANIONS (ME/L) 8.61 SUM = | 16 2 | | | |
| NITRATE | (NO3) | 2.3 | 0.037 | DIFF*100./SUM = 5.5 | | | | |
| | | | | 1 | 1 % | | | |
| | | | | ! SODIUM / TOTAL CATION RATIO | 56.47 | | | |
| | | | | REMARKS | | | | |
| | | | | !! ! IMBALANCE DUE TO PRESENCE OF] | r P O N | | | |
| | | | ! | ZINC, MANGANESE, ALUMINIUM, NI
AND STRONTIUM | CKEL, | | | |
| | | | | | | | | |
| EACTION - | PH | | 8.0 | | | | | |
| CONDUCTIVIT | Y (E.C.) | | 9.0 : | | | | | |
| MICRO-S/CM | AT 25 C | | 890 ! | | | | | |
| RESISTIVITY | OHM.M a 2 | 5 C | 11.2 | | | | | |
| | | | 11.2 ! | Norm | | | | |
| | | | ! | NOTE: MG/L = MILLIGRAMS PER L | ITRE | | | |
| ======== | | | ! | ME/L = MILLIEQUIVS. PER | 1 7755 | | | |

STIFF DIAGRAM. JOB NO. 4292/86 Page W2

Sample: NO. 2 Scale is logarithm (base 10) of milli-equivalent values 1000 300 100 30 10 3 1 3 10 30 100 300 1000 Na+K |-HC03 Сa S O 4 Mg C O 3 Fe ΟН Br

AMDEL GAS ANALYSIS SERVICE

Method R1.1

Client:

BEACH PETROLEUM N.L.

Report # 5203/86

Sample:

WESTGATE NO.1 303-327 STROKES SAMPLE NO.2

| t | |
|-----|---|
| OL | % |
| | |
| 0.0 | 1 |
| 7.3 | 13 |
| 0.3 | 32 |
| 9.5 | 50 |
| 7.2 | 20 |
| 3.0 | 2 |
| 0.6 | 57 |
| 1.1 | . 1 |
| 0.2 | 27 |
| 0.2 | 20 |
| 0.2 | 27 |
| 0.1 | 2 |
| 0.0 | 00 |
| | 0.0
7.3
9.5
7.2
3.0
0.6
1.1
0.2
0.2 |

(0.00 = less than 0.01%)

Calculated Gas Density

(Air = 1):

0.82

Calorific Value (15.6 deg C, 760 mm Hg)

Gross: Nett: 800 BTU/CU Ft 725 BTU/CU Ft 29.78 MJ/CU.M 27.02 MJ/CU.M

Average Molecular Weight =

23.76

All results are based on an air and water free basis

This report relates specifically to the sample tested; it also relates to the entire batch insofar as the sample is truly representative of the Batch.

Approved Signatory _____

Date

14-Apr-86

AMDEL GAS ANALYSIS SERVICE

Method R1.1

Client:

BEACH PETROLEUM N.L.

Report # 5203/86

Sample:

WESTGATE NO.1 206-302 STROKES SAMPLE NO.1

| GAS | MOL % |
|---|-------|
| CHAN MILL COM MILL MILL MILL MILL MILL MILL MILL MI | |
| Oxygen plus Argon | <0.01 |
| Nitrogen | 24.24 |
| Carbon Dioxide | 0.00 |
| Methane | 60.82 |
| Ethane | 8.44 |
| Propane | 3.57 |
| I-Butane | 0.75 |
| N-Butane | 1.12 |
| I-Pentane | 0.28 |
| N-Pentane | 0.20 |
| Hexane | 0.33 |
| Heptanes | 0.23 |
| Octanes & Higher | 0.02 |
| | |

(0.00 = less than 0.01%)

Calculated Gas Density

(Air = 1):

0.78

Calorific Value (15.6 deg C, 760 mm Hg)

Gross: Nett: 963 BTU/CU Ft 874 BTU/CU Ft

35.89 MJ/CU.M 32.55 MJ/CU.M

Average Molecular Weight =

22.63

All results are based on an air and water free basis

This report relates specifically to the sample tested; it also relates to the entire batch insofar as the sample is truly representative of the Batch.

Approved Signatory

Date

14-Apr-86

APPENDIX 11

Magnetic single shot directional survey

| | MD | ANGLE | TVD | VERT SECTION | DIRECTION | NORTH | SOUTH | EAST | WEST |
|----|--------|--|---------|--|--|---|--|--------|--|
| 1 | 28.9 | 0.5 | 28.9 | 0.11 | NORTH | | - | | э <u>ү дэргэгий байн төвөө төв чрогоой рөвөгөөдөг хөгчүү</u> г. _{Дага} д |
| 2 | 76.8 | 0.75 | 76.8 | 0.39 | S 30.00 E | 0.23 | | 0.37 | gelomen i innen i enny i inni ma i i i eminari essa i essentini eg |
| 3 | 125.5 | 0.5 | | 0.02 | N 50.00 W | With a registrate delication (Minter). The introduction desired desired | 0.03 | 0.09 | rombin - Kualis Cabinery auto - abstumpuspisus auto - ab |
| 4 | 147.8 | 3.75 | | 1 | N 41.00 E | 0.69 | Married Control of the Control of th | 3.51 | control conflictions and the confliction (Section Ages) using |
| 5 | 175.6 | 8.25 | | 1 | | 3.09 | | 5.13 | erioritati e de la matematica de la mesta de la matematic |
| 6 | 194.5 | 11 | 194.05 | 1 | I | 5.93 | | 6.52 | Transfer of the text of the contract of the text of th |
| 7 | 204.2 | 12.5 | 203.55 | 1 | 1 | 7.71 | | 7.38 | und steller from men han speller from the system (extraction (e.g. masses)). In w |
| 8 | 237.7 | 16 | I | 18.67 | | 14.99 | | 11.25 | Handill, om die van de van de stere en en en en en en en en en en en en en |
| 9 | 275.2 | | | | N 30.00 E | . 24.53 | ment transport aller transport angle of the special sp | 16.65 | antiget kan bir oo di 1995 oo ji dhe irradhi kan garayo dhe ja irradhi |
| 10 | 313.6 | | 308.07 | And the state of t | | 35.66 | | 23.01 | remediation and the following the additional section of the sectio |
| 11 | 352.3 | | | The second of the contract of | N 30.00 E | 48.58 | | 30.4 | Therefore is mark over all to be right to the part of the good agency of the |
| 12 | 381 | and the second second second second second | | 69.6 | | 59.23 | | 36.55 | untilikken se dan den militer i er dir am Pilantsson i paras opgere på ung
i |
| 13 | 437.8 | a access consiste the first | | · | Andrew Committee | 81.92 | | 49.91 | or the control of the |
| 14 | 483.4 | | | <u> </u> | N 31.00 E | 100.8 | | 61.25 | The state of the s |
| 15 | 525 | | | 1 | N 31.50 E | 118.04 | | 71.72 | ra namene i mande i meneral meneral programme de esta de la mande de la mande de la mande de la mande de la ma
I |
| 16 | 544.3 | Lancia de caración caración de caración de la composição de la composição de la composição de la composição de | | | | 125.77 | | 76.5 | The state of the s |
| 17 | 562.6 | ' | | A | | 132.65 | | 80.84 | The second of th |
| 18 | 658 | | | January and the commence of the contract of th | | 167.13 | | 102.81 | The contract of the contract o |
| 19 | 782.4 | | | <u> </u> | | 212.58 | | 132.04 | ember - de- embro fileros de recogero comercia de |
| 20 | 881.4 | | | 295.58 | N 32.00 E | 250.81 | | 156.4 | To the parameter of the control of the transfer of the control of |
| 21 | 1002 | 28.75 | l | Annual Strategies of the professional and the professional and the second | francisco de la companya de la companya de la financia de la companya del companya del companya de la companya | 299.34 | | 187.32 | |
| 22 | 1088.7 | 29 | | | | 334.05 | | 210.73 | |
| 23 | 1143.5 | 28.75 | | 421.39 | | 355.8 | | 225.81 | |
| 24 | 1181 | 28.75 | 1078.78 | The state of the s | | 370.52 | | 236.22 | |
| 25 | 1250.8 | | | · | I management and a management and the | 397.85 | | 256.63 | |
| 26 | 1289.2 | 29.25 | | 492.2 | francisco como con como con como con con como con con con con con con con con con co | 412.8 | | 268.2 | |
| 27 | 1408.1 | 27.75 | | The state of the s | N 40.00 E | 456.89 | | 303.9 | |
| 28 | 1506.7 | 26.5 | | , | * · · · · · · · · · · · · · · · | 491.2 | | 332.95 | |
| 29 | 1700.7 | 26 | | <u></u> | | 556.08 | | 389.1 | The state of the s |
| 30 | 1917 | 21.75 | | en de la companya del la companya de | Complete to the process of the contract of the | 621.5 | | 447.24 | and the second s |
| 31 | | agent Capping agent capt a spigar agent | | CLOSURE 765.69m | N 35.73 E | | and the second s | | and the second s |

APPENDIX 12

Wireline log directional survey

DIRECTIONAL SURVEY

COMPANY : BEACH PETROLEUM

WELL : WESTGATE #1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

RUN : ONE

DATE LOGGED : 25 - MAR - 86

REFERENCE : 460503

DIRECTIONAL SURVEY

COMPANY : BEACH PETROLEUM

WELL : WESTGATE #1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

RUN : ONE

DATE LOGGED : 25 - MAR - 86

REFERENCE : 460503

| REF 46 | 3 | ***** | *** | **** | ***** | PAGE 1
*** | |
|--|--|---|--|--|---|--|--|
| * MEA. * * DEPTH * * M * | DEVIATION * DEGREES * | AZIMUTH * DEGREES * | TRUE
VERTICAL
DEPTH | * CO-ORDINA

* + NORTH * +
* - SOUTH * - | *******
EAST * 1
WEST * | COURSE * LENGTH * | |
| 0.200000000000000000000000000000000000 | ************************************** | *************************************** | 02000000000000000000000000000000000000 | ************************************** | *************************************** | ************************************** | |

| REF

* MEA * | 503
************ | | *********
TRUE****** | ************************************** | PAGE 2 |
|--|--|--|--|--|--|
| * DEPTH * * M * * | DEVIATION * DEGREES * | AZIMUTH * DEGREES * | VERTICAL ** DEPTH * M * | ************
+ NORTH * + EAS
- SOUTH * - WES | **** COURSE * |
| ************************************** | ************************************** | ************************************** | ************************************** | ************************************** | ************************************** |

| | 「「Andrews Company」を開発しませた。「Andrews Company」を対していませた。「Andrews Company」を対していませた。「Andrews Company」を対してい |
|---|--|
| | |
| | |
| * * * * * | ******** |
| | 77777777778888888888888888899999999999 |
| LEI | · |
| *
* | ************** |
| ******
EAST
WEST
***** | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| * * * * * * * * * * * * * * * * * * * | ************************************** |
| ****** | 67777777777777777788888888888888888888 |
| * | ********** |
| TRUE
VERTICAL
DEPTH
M
***** | 00000000000000000000000000000000000000 |
| * | ************* |
| | 788990012233444566778890011223444443322100988776** ******************************** |
| * | ************************************** |
| DEVIATION
DEGREES | 000000000000000000000000000000000000000 |
| *
*
**** | ************************************** |
| | * 1
* 1
* 1
* 1
* 1 |

•

| REF 4605 | 03 | | | | ****** | PAGE 4 | |
|--|---|---|--|--|--|---|--|
| * MEAS * | DEVIATION * DEGREES * | AZIMUTH * DEGREES * | VERTICAL
DEPTH | *********** * CO-ORDIN ********* * HORTH * * - SOUTH * | ********
+ EAST *
- WEST * | COURSE * LENGTH * M * | |
| ************************************** | *************************************** | *************************************** | 00000000000000000000000000000000000000 | ************************************** | ************************************** | *************************************** | |

| | | | | DACE E | |
|--------------------------|----------------------------------|--|--|-----------------------|--|
| REF 46 |) | **** | ****** | PAGE 5 | |
| * MEAS * | * | * TRUE | * CO-ORDINATES * | *, | |
| | DEVIATION * | AZIMUTH * VERTICAL DEGREES * DEPTH | | COURSE *:
LENGTH * | |
| * M * | | VEGREES ★ VEPIH * M | * - SOUTH * - WEST * | | |
| ***** | ***** | ****** | ****** | ***** | |
| * 188.0 * | 10.0 * | 26 * 187.7
26 * 188.7 | * 5.4 * 3.3 *
* 5.6 * 3.4 * | 6.3 * | |
| * 189.0 *
* 190.0 * | 10.2 * | 26 * 188.7
25 * 189.7 | * 5.7 * 3.5 * | 6-/* | |
| * 191 . 0 * | : 10.5 * | 25 * 190.6 | * 5_9 * 5_6 * | · 69 * | |
| * 192.0 * | 10.6 * | | * 6.U * 5.6 * | 7.0 *
7.2 * | The second secon |
| * 193.0 *
* 194.0 * | 10.8 * | | * 6.2 * 3.7 *
* 6.4 * 3.8 * | 7.4 * | |
| * 195 <u>.</u> 0 * | · 11 ₋ 1 * | 25 * 194_6 | * 6_5 * 3_9 * | 7.6 * | |
| * 196.0 * | · 11.2 * | 25 * 195.5 | * 6.7 * 4.0 * | 7.8 * | |
| * 197.0 *
* 198.0 * | 11.3 * | 26 * 197°5 | * 6.9 * 4.0 *
* 7.1 * 4.1 * | 8.0 *
8.2 * | |
| * 199 _• 0 * | · 11_5 * | 26 * 198.5 | * /_/ * 4_/ * | 8.4 * | |
| * 200 <u>.</u> 0 * | : 11.7 * | 26 * 198.5
26 * 199.5
26 * 200.5 | * 7.4 * 4.3 * | 8.6 * | |
| * 201.0 *
* 202.0 * | 11.8 *
12.0 * | 26 * 200.5
27 * 201.4 | * 7.6 * 4.4 * 7.8 * 4.5 * | 8.8 *
9.0 * | |
| * 203 . 0 * | <pre>12.1 *</pre> | 27 * 202.4 | * 8 ₋ 0 * 4 ₋ 6 * | 9.2 * | |
| * 204 <u>.</u> 0 * | · 12.3 * | 27 * 203.4 | * 8.1 * 4.6 * | : 9.4 * | |
| * 205.0 *
* 206.0 * | 12.4 * | 27 * 204.4
27 * 205.3 | * 8.3 * 4.7 *
* 8.5 * 4.8 * | 9.6 *
9.8 * | |
| * 207 <u>-</u> 0 * | : 12.6 * | 77 4 7N4 7 | * 8 ₋ 7 * 4 ₋ 9 * | : 10 ₋ 0 * | |
| * 208.0 * | 12.7 * | 27 * 207.3 | * 8 ₋ 9 * 5 ₋ 0 * | 10.2 *
10.5 * | 3 |
| * | 12.8 *
12.9 * | 27 * 208.3
27 * 209.2 | + 07+ 574 | 10.7 * | er
German |
| * 211_D * | · 13.0 * | 27 * 210.2 | * 9.5 * 5.3 * | : 10_9 * | |
| * 212.0 *
* 213.0 * | * 13.0 *
* 13.2 *
* 13.3 * | 27 * 211.2
28 * 212.2 | * 9.7 * 5.4 *
* 9.9 * 5.5 * | 11.1 * | |
| * 214_N * | t 15_4 * | (0 × (1)-1 | * 10_1 * 5_7 * | 11.6 * | |
| * 215.D * | × 13.5 * | 28 * 214 . 1 | * 10.3 * 5.8 * | . 11 2 * | |
| * 216.0 †
 * 217.0 † | k 13.6 * k 13.7 * | 28 * 215.1
28 * 216.1 | * 10.5 * 5.9 *
* 10.7 * 6.0 * | 12.0 * | |
| * 218.0 x | × 13.8 × | 28 * 217.0 | * 10 ₋ 9 * 6 ₋ 1 * | · 12.5 * | |
| * 219 _• 0 * | * 13 . 9 * | 28 * 218.0 | * 11 ₋ 1 * 6 ₋ 2 * | 12.7 *
13.0 * | |
| * 220.0 7
* 221.0 7 | k 14.0 *
k 14.1 * | 28 * 219.0
28 * 219.9 | * 11.3 * 6.3 *
* 11.6 * 6.4 * | 13.0 * | |
| * 222 . 0 * | * 14 <u>.</u> 2 * | 28 * 220.9 | * 11 ₋₈ * 6 ₋₅ | k 13.5 * | • |
| * 223 <u>-</u> 0 * | * 14 <u>.</u> 4 * | /X * //1.9 | * 12.0 * 6.6 7
* 12.2 * 6.8 9 | * 13.7 *
* 14.0 * | |
| * 224.0 7
* 225.0 7 | * 14.5 *
* 14.6 * | | * 12 ₋₄ * 6 ₋ 9 * | . 14 ₋ 2 * | |
| * 226 . 0 * | × 14.7 × | 28 * 224 <u>8</u> | * 126 * 7 A * | · 14_4 * | |
| * 227 <u>.</u> 0 * | * 14 <u>.</u> 8 * | 28 * 225.8 | * 12_9 * 7_1 * | 14.7 * | |
| * 228.0 7
* 229.0 7 | * 14.9 *
* 15.0 * | 29 * 227 ₋ 7 | 1774 7/ √ | · 152 * | |
| l ★ 230 . 0 ¬ | * 15 . 1 * | 79 * 728.7 | * 13.5 * 7.5 * | * 15 . 5 * | |
| * 231 . 0 7 | * 15 . 2 * | 29 * 229.6 | * 13.8 * 7.6 * | × 15_7 * | |
| * 232.0 7
* 233.0 7 | 1 2 9 2 | | * 14.0 * 7.7 *
* 14.2 * 7.9 * | 16.0 *
16.3 * | |
| * 234 . 0 * | * 1 5 , 6 * | 29 * 232.5 | * 14.5 * 8.0 ° | 16.3 *
16.5 * | |
| ***** | ***** | ***** | * | ***** | |

| *********************************** | RE! | |
|--|---|-------------------------------------|
| 00000000000000000000000000000000000000 | | |
| ************* | * * : | |
| ************************************** | DEVIATION
DEGREES | The first transfer the Manager Pro- |
| ************************************** | * * AZIMUTH * * DEGREES * | <u> </u> |
| ************************************** | * TRUE | |
| * | * | |
| ** ** ** ** ** ** ** ** ** ** | | |
| ************************************** | S * ***** AST * | |
| ************************************** | COURSE | |
| ************* | 6 * * * * * * * * * * * * * * * * * * * | |
| | | |
| | | |

| **** |)503
****** | * • • • • • • • • • • • • • • • • • • • | | | | PAGE _ 8 |
|--|---|--|--|--|---|--|
| * DEPTH * * * * * | DEVIATION * DEGREES * | AZIMUTH * DEGREES * | TRUE * VERTICAL *** DEPTH * + | CO-ORDINA ********* NORTH * + SOUTH * - | ********
TES *

EAST * | **** COURSE * LENGTH * |
| ************************************** | 22.4
22.4
*
22.5
*
22.6
* | ************************************* | ************************************** | ** ** ** ** ** ** ** ** ** ** | *************************************** | ************************************** |

| F |
|--|
| ************************************** |
| ************************************** |
| ************************************** |
| ************************************** |
| ** ** ** ** ** ** ** ** ** ** ** ** ** |
| ************************************** |
| |

| ·**** | * * * * * * * * * * * * * * * * * * * | REI |
|---|---|--|
| 00000000000000000000000000000000000000 | ****
MEAS
DEPTH | ــــــــــــــــــــــــــــــــــــــ |
| ************* | *** | 605 |
| ************************************** | DEVIATION | .0 3 |
| ***************************** | *********
* AZIMUTH
* DEGREES | |
| ****** | * | |
| 65431098654310986543
11222233456789C01233456789C012333333333333333333333333333333333333 | TRUE | |
| ****** | * | |
| + - * + | ***********
CO-ORDINAT

+ NORTH * +
- SOUTH * - | |
| 580358035803580358035803
667777888889999000011 | ES:**** | |
| **** | *** | |
| 7261616161505050494
999999999999999999999999999999 | COURSE | |
| | . | |
| | | |
| | | |

| 5.55 | | | |
|--|------------------------------|--|-------------------------------|
| REF 46 73 ****** | ***** | **** | PAGE 11 |
| * MEAS * * DEPTH * DEVIATION | * * TRUE | * CO-ORDINATES * | * |
| * M * DEGREES | | *****************
* + NORTH * + EAST * | COURSE *
LENGTH * |
| * * | * * M | * - SOUTH * - WEST + | M ± |
| ************************************** | * 30 * 448.2 | ************
* 95 _• 7 * 55 _• 0 * | 110.4 * |
| * 471.0 * 30.7 | * 30 * 449.1 | * 96.2 * 55.3 * | 110 9 * |
| * 473.0 * 30.9 | * 30 * 449.9
* 30 * 450.8 | * 96.6 * 55.6 *
* 97.0 * 55.8 * | 111.4 *
112.0 * |
| * 4/4_0 * 30_9 | * 30 * 451 ₋ 7 | * 9/-) * 70-1 * | 112.5 * |
| | * 30 * 452.5
* 30 * 453.4 | * 97.9 * 56.5 * | 112.5 *
113.0 *
113.5 * |
| * 477.0 * 31.0
* 478.0 * 31.1 | * 30 * 454.2 | * | 114_0 * |
| * 479.0 * 31.1 | * 30 * 455.9 | * 99.3 * 57.1 *
* 99.7 * 57.4 * | 114.5 *
115.0 *
115.6 * |
| * 480.0 * 31.0
* 481.0 * 31.0 | * 50 * 456 ₈ 8 | * 100.2 * 57.6 * | 115.6 * |
| * 482.0 * 30.8 | * 30 * 458.5 | * 100.2 * 57.6 *
* 100.6 * 57.9 *
* 101.0 * 58.1 * | 116.1 *
116.6 * |
| * 483.0 * 30.5
* 484.0 * 30.2 | * 30 * 459.4 | * 101.5 * 58.4 * | 117_1 * |
| 4 / O E D + 7 D D | * 30 * 460.2
* 30 * 461.1 | * 101.9 * 58.7 *
* 102.4 * 58.9 * | 117.6 *
118.1 * |
| * 486.0 * 29.8 | * 29 * 462.0 | * 102.4 * 58.9 *
* 102.8 * 59.2 *
* 103.2 * 59.4 * | 118 6 * |
| * 487.0 * 29.7
* 488.0 * 29.7 | * 29 * 463 ₋ 7 | * 102.4 * 58.9 *
* 102.8 * 59.2 *
* 103.2 * 59.4 *
* 103.7 * 59.7 * | 119.1 *
119.6 * |
| * 489.0 * 29.6 | * 29 * 464.6 | * 104-1 * 39-9 * | 120-1 * |
| * 491.0 * 29.7 | * 29 * 465.4
* 30 * 466.3 | * 104.5 * 60.1 *
* 105.0 * 60.4 * | 120.6 *
121.1 * |
| * 497.0 * 79.7 | * 30 * 467 . 2 | * 105 ₋ 4 * 60 ₋ 6 * | 121.6 * |
| * 494 <u>-0</u> * 29 <u>-</u> 7 | * 30 * 468.0
* 30 * 468.9 | | 122.1 *
122.6 *
123.1 * |
| * 495.0 * 29.7
* 496.0 * 29.8 | * 30 * 469.8 | * 106.7 * 61.4 * | 123.1 * |
| * 497_N * 29_9 | * 30 * 470.6
* 30 * 471.5 | | 123.6 *
124.1 * |
| * 498.0 * 30.0 | * 30 * 472 ₋ 4 | * 108.0 * 62.1 * | 124-6 * |
| * 500 <u>-</u> 0 * 30-0 | * 31 * 473.2
* 31 * 474.1 | * 108_8 * 62_6 * | 125.1 *
125.6 * |
| * 501.0 * 30.0 | * 31 * 475 _• 0 | * 109.3 * 62.9 * | 126.1 * |
| * 503.0 * 30.0 | * 31 * 476.7 | * 109.7 * 63.1 *
* 110.1 * 63.4 * | 126.6 *
127.1 * |
| | * 31 * 477.6
* 31 * 478.4 | * 110 ₋ 6 * 63 ₋ 6 * | 127.6 * |
| * 506 <u>-</u> 0 * 30-0 | * 31 * 478.4
* 31 * 479.3 | | 128.1 *
128.6 * |
| * 507.0 * 30.0
* 508.0 * 30.0 | | * 111 ₋ 8 * 64 ₋ 4 * | 129.1 * |
| * 509.0 * 30.0 | * 31 * 481 <u>.</u> 9 | | 129.6 *
130.1 * |
| | * 31 * 482 ₋ 8 · | * 113 . 1 * 65.2 * | 130.6 * |
| * 512.0 * 29.9 | * 31 * 484 . 5 | · 114.0 * 65.7 * | 131.1 *
131.6 * |
| * 513.0 * 30.0 | * 31 * 485 ₋ 4 : | ' 114_4 * 65_9 * | 132.1 * |
| * 515.0 * 30.0 | * 31 * 487.1 | * 115.3 * 66.5 * | 132.6 *
133.1 * |
| | * 31 * 488 _• 0 · | * 115.7 * 66.7 * | 133.6 * |

| REF 46 | 03 | | | | ************************************** | PAGE_1 | |
|--|--|--|--|--|--|--|----------|
| * MEAS * * DEPTH * * * * * * | DEVIATION * DEGREES * | AZIMUTH * DEGREES * | VERTICAL * DEPTH * | **************************** | ATES *

+ EAST * | COURSE S | t |
| ************************************** | ************************************** | ********
30 *
31 *
31 *
31 *
31 * | * * * * * * * * * * * * * * * * * * * | ************************************** | ** ** ** ** ** ** ** ** ** ** | 5059483827260594837160594
6777888990011222233444556667
55555555666666666666667 | |
| ************************************** | ************************************** | *************************************** | ************************************** | ************************************** | ************************************** | 11111111111111111111111111111111111111 | |

| *********************** |
|--|
| ************************************** |
| * |
| * TE * * ARE **234444332223345666665666666666666666668887777890123* * ARE **22222222222222222222222222222222222 |
| ************************************ |
| HS * 110 ** |
| ******************************* |
| TRUE * VERTICAL ** DEPTH * |
| * + - * |
| 826048259371582603715826937
1112223333445555667778888999900 |
| ************************************** |
| EH *5048372615948372615048372615049372605938261504837261504937260593826150483726150493726059382615048372615049372605938261504837261504937260593826150483726150493726059382615048372615049372605938261504837261504937260593826150483726150493726059382615048372615048372615049372605938261504837261504937261504837261504937260593826150483726150484748448484848484848484848484848484848 |
| ****************** |

| ************************************** | R 8
** |
|---|-----------|
| # ************************************ | **** |
| IE * 22211122210977779134454433223333321123445443344 IIG *6666666666655555566666666666666666666 | 03 |
| O * | **** |
| 00000000110001110001110000000001110111 | **** |
| ************** | |
| A *3210987654321098765432109876543209
C *321098765432109876543209
ETT *415677890123456678901234556789012334544444
WEEPM *666666666666666666666666666666666666 | **** |
| ********************* | *** |
| D* ** ******************************** | ***** |
| ************************************** | ****** |
| ST *37260594827160493726159483726059483716059482716 ST *37260594827160493726159483726059483716059482716 UNM *999900011223344445566777889 OE *1111222222222222222222222222222222222 | PAGE 1 |
| ************ | 5 |

| ***************** | RE
**
* |
|---|---------------------------------|
| *567890123456789012345678901234567890
*0000111111111122222222233333333334444444444 | F

MEAS
DEPT
M |
| 000000000000000000000000000000000000000 | |
| ********************************** | ** |
| * | |
| *22222222222222222222222222222222222222 | * * |
| *32110134565432223567877653235678875544555544556 | |
| *** | * * *
I O N
E S |
| * | * |
| ** | |
| **: | |
| * 333333333333333333333333333333333333 | **;
MU1
REE |
| *** | |
| * ************************************ | * |
| *** | TE |
| 666666666666666666666666666666666666666 | RUE |
| *67890112345678990123456788901234566789012345567 | I |
| 321098765431098765432109876543209876543210987 | D'* |
| ************* | k * * *
k |
| - * | , |
| *************************************** | |
| 9999966677788889990001112223333445555667 | C O- |
| T**47159360482593714826047159370482604715937048260 | - O R |
| ******************* | DI |
| ** | NA |
| * | TF |
| 11111111111111111111111111111111111111 | S |
| *1358024691368025791468135802479136803579246813 | *** |
| **************** | * |
| ** | ** |
| E *222222222222222222222222222222222222 | |
| H *05948271604938271504938271605948272605948372615 | :
**
RSE |
| * | 16 |

| REF 46 | 03 | ***** | * * * * * * A L at at at a | | PAGE 17 |
|--|--|--|--|--|--|
| * MEAS.
* DEPTH : | * * DEVIATION * * DEGREES * | * * AZIMUTH * DEGREES * * | TRUE * VERTICAL ** DEPTH * | ************************************** | * COURSE * * LENGTH * * M |
| ************************************** | ************************************** | ************************************** | ************************************** | ************************************** | ************************************** |

| * * * * | ************************************** | ** N ** ** N ** ** N ** ** N ** ** N ** ** PD ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** DD ** ** ** ** DD ** ** ** ** DD ** ** ** ** DD ** ** ** ** DD ** ** ** ** ** ** ** ** ** ** ** ** ** | TTE *00000000000000000000000000000000000 | * * * * * * | C *6432109876432109876532109876532
IH *01234556789012333456789011234567
REPM *777777777777777777777777777777777777 | R*HH*60482604826048260482604815937 R*HH*604826048260482604815937 -*RU*56667788889900011222333444555566 0*00*22222222222222222222222222222222 | * * * * * * * * * * * * * * * * * * * | ST * 11222333445566778888990011 UNM*66666666666666666677777 OE *222222222222222222222222222222222222 |
|---------|--|---|--|-------------|--|--|---|--|
| ****** | ************************************** | 2234688765435790232
777777777777778888.******************** | * * * * * * * * * * * * * * * * * * * | *********** | 77777777777777777777777777777777777777 | * 23390 • 71 • 937 2 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | * 139.8 * 140.0 * * 140.5 * * 140.7 * * 141.4 * * 141.9 * * | 27777777777777777777777777777777777777 |

| ******* | ************ | * * * |
|--|---|---|
| ************************************** | ************************************** | *****
MEAS.
DEPTH * |
| \$2222222223333332233333
**************** | ************************************** | DEVIATION DEGREES |
| ************* | * ** ** ** ** ** ** ** ** ** ** ** ** * | * |
| >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | ************************************** | ******
A Z I MU T H
D E G R E E S |
| ***** | ********** | * |
| 80000000000000000000000000000000000000 | ************************************** | TRUE
VERTICAL
DEPTH |
| ***** | ***************** | *
** |
| 48261594827150483716049 * 445566667788999000112233333 * 5555555555555555666666666 * 2222222222222222222222222222 | 44556666778888990011122334444
2222222222222222222222222222 | (n-ns |
| *
* | *** | D T ALA |
| ************************************** | ************************************** | *******
TES *

EAST * |
| 6150504949493838383727272727272727272727272727272727 | 283.2
283.6
284.1 | PAGE

COURSE
LENGTH |
| ****** | ******************* | 19**** |

| ŖЕ | F _460 | 0503 | | | PAGE _20 |
|----------|-------------------------------|------------------------------|-------------------------------|--|--|
| * *
* | MEAS | **********
*
DEVIATION | * * | TRUE * CO-ORDINATES * | **** |
| * | c [V] | * DEGREES
* | * DEGREES * | DEPTH * + NORTH * + EAST * | COURSE *
LENGTH *
M * |
| ** | 893.0 · 894.0 · | * 30.0
* 30.0 | *********
* 30 *
* 30 * | ******************************
823.3 * 264.3 * 153.6 * | *******
305.7 * |
| *
* | 895.0 >
896.0 > | k 29.9
k 29.9 | * 30 *
* 30 * | 825.9 * 265.6 * 154.1 * | 306.2 *
306.7 *
307.2 * |
| *
* | 897.0
898.0
899.0 | * 30.0
* 30.1 | * 30 *
* 30 *
* 30 * | 827-6 * 266-4 * 157.8 * | 307.7 *
308.2 * |
| * * | 900.0 x
901.0 x
902.0 x | 30.1 | * 30 *
* 30 * | 00046 * 20/4/ * 155 6 * | 309.2 *
309.7 * |
| * | 903.0 7
904.0 7 | 30.2 | * 30 *
* 30 *
* 30 * | 832.8 * 269.0 * 156.3 * | 310.2 *
310.7 *
311.2 * |
| *
* | 905.0 7
906.0 7
907.0 7 | 30.2
30.2
30.2 | * 30 *
* 30 *
* 30 * | 833.7 * 269.5 * 156.6 * 834.5 * 269.9 * 156.8 * | 311.7 * |
| *
* | 908.0 × 909.0 × 910.0 × | 30.2 | * 30 *
* 30 * | 83/.1 * 271.2 * 157.6 * | 312.2 *
312.7 *
313.2 *
313.7 * |
| * | 911.0 + | 30.1
30.1 | * 30 *
* 30 *
* 30 * | X X X X X X X X X X X X X X X X X X X | 314.2 *
314.7 * |
| *
* | 913.0 ×
914.0 ×
915.0 × | 30.0 | * 30 *
* 30 *
* 30 * | 838.9 * 272.1 * 1588.1 * 1588.3 * 272.5 * 1588.6 * 1588.8 * 159.1 * 159.3 * 15 | 315.7 *
316.2 * |
| * * | 916.0 *
917.0 *
918.0 * | 29.9 | * 30 *
* 30 * | 043.4 × 274.5 × 159.5 × 844.1 × 274.7 × 150.4 × | 316.7 *
317.2 *
317.7 *
318.2 * |
| * | 919.0 *
920.0 * | 29.9 | * 30 *
* 30 * | 846.7 * 276.0 * 160.1 * | 318.7 * |
| * * | 921.0 *
922.0 *
923.0 * | 29.9
29.9 | * 30 *
* 30 *
* 30 * | 847.5 * 276.4 * 160.6 *
848.4 * 276.9 * 160.8 * | 319.7 *
320.2 * |
| *
* | 924.0 *
925.0 *
926.0 * | 29.9 | * 30 *
* 30 *
* 30 * | 85U.1 * 277.7 * 161.3 *
851.0 * 278.2 * 161.6 * | 320.7 *
321.2 *
321.7 * |
| * | 927.0 *
928.0 * | 79.9 | * 30 *
* 29 * | 852.7 * 279.0 * 162.1 *
853.6 * 279.5 * 162.3 * | ************************************** |
| * * | 930.0 *
931.0 * | : 29.8
: 29.8 | * 29 *
* 29 * | \$\frac{\dagger}{3} \frac{\dagger}{3} \dagg | 323.7 *
324.2 *
324.7 * |
| *
* | 932.0 *
933.0 *
934.0 * | 29. | * 29 *
* 30 *
* 30 * | 857.1 * 281.2 * 163.3 *
857.9 * 281.6 * 163.5 * | 325.2 *
325.7 * |
| * * | 935.0 *
936.0 * | 29.7
29.8 | * 30 *
* 30 * | 859.7 * 282.5 * 164.0 * 860.5 * 282.9 * 164.3 * | 326.2 *
326.7 *
327.1 * |
| *
* | 938.0 *
939.0 * | 29.9 | × 30 * | 863 1 * 286 2 * 165 0 * | 327.6 *
328.1 * |
| ** | ***** | **** | ***** | ************ | **** |

| *************** |
|---|
| ************************************** |
| ***************** |
| ** OS ** ** ARE *0987655666788901221111122322186544455556665544566 ** ** IE *3222222222222233333333333333333333333 |
| ************************************** |
| WE *33333333333333333333333333333333333 |
| TE *0000000000000000000099900099999999999 |
| *************************************** |
| C *0976532108764320986542108753210 C *09765321087643209865421087653210 EIH *445678901123456778901234 *66666677777777777778888888888888888888 |
| ***************************** |
| * + - * |
| 615948261594826159482615938261593826159486159482615948615948615948616159486161594861615948616159486161594861616161616161616161616161616161616161 |
| I************************************* |
| NA * + - * |
| TEXEWX1111111111111111111111111111111111 |
| *************** |
| EH *16161616161616161616161616161616161616 |
| ************* |

| ***************** |
|--|
| ************************************** |
| * |
| ** IE * * IE * * IE * * IE * * IE * * IE * * IE * * I * * * * * * * * * * * * * * * * |
| ************* |
| HS * HS * HS * ADE * ADE * |
| ******** |
| TRUE * |
| * + - * * |
| 33333333333333333333333333333333333333 |
| 2 |
| **T**13580358035702570257025702479247924792570 |
| ST * * * * * * * * * * * * * * * * * * * |
| H *5050594949494949494949494949494949494949 |
| |

| REF 460 3 | ***** | | PAGE 23 |
|---|---|--|--|
| * MEAS: * * DEPTH * DEVIATION * M * DEGREES * | * TRUE
* AZIMUTH * VERTICA
* DEGREES * DEPTH
* M | ************************************** | COURSE * LENGTH * |
| 90099999999999999999999999999999999999 | ************************************** | 5.703580358136813691469147924798889999000011122223333344469147922479888999900001112222333334444455556666677788889999000111122223333333333333333333333333 | ************************************** |

| REF 460503 | ********** | PAGE 24 |
|--|---|--|
| * MEAS * * DEPTH * DEVIATION * M * DEGREES * | * AZIMUTH * VERTICAL ************************************ | * COURSE * LENGTH * |
| 667898765567890109877778766666665543345679887699999999999999999999999999999999 | ************************************** | ************************************** |

| ***************** | *
*
* | |
|---|---|---|
| 20000000000000000000000000000000000000 | ****
MEAS
DEPTH
M | |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | · 6 * * * * * * * * * * * * * * * * * * | , n |
| 5567765443344443334445555555555555555555 | DEVIATION
DEGREES | 77 |
| ************************************** | *********
* AZIMUTH
* DEGREES | |
| ************ | * * * * | |
| 32098654210976532108764321987543109865421087653
7899012345667890123344567899012345667890123345667
222223333333333334444444444445555555555 | TRUE
VERTICAL
DEPTH | |
| ****************** | *
**
* | |
| ************************************** | ********
CO-ORDINA

+ NORTH * +
- SOUTH * - | |
| ************************************** | TES * ****** EAST * WEST * | AND AND AND AND AND AND AND AND AND AND |
| ************************************** | PAGE 25 **** COURSE * LENGTH * | |
| | | |
| | | |
| | | |

.

| REF _460503 | | | | | 1 | * |
|--------------------------------------|--|---|---|---|---|---|
| ***** | ****** | ***** | ***** | PAGE 2 | | |
| * DEPTH * DEVIA
* M * DEGR
* | ATION * AZIMUTH
REES * DEGREES | * VERTICAL
* DEPTH | * (0-0901MATE) | * COURSE * | | |
| 999999999999999999999999999999999999 | ************************************** | 11987643209875431098654210876532198764320
0990123456678901233345678900123
000000777777777888888888889999999999999 | \$146924703581369147925803691470358146925222222222222222222222222333333333333 | 494949493838383838383838272727272727161616161616167788999001122334455555555555555555555555555555555 | | |

| *********************************** |
|---|
| ************************************** |
| * * * * * * * * * * * * * * * * * * * |
| ** IS * ** IS * ** TE ** ODDOODO99999999999999999999999999999 |
| **************************** |
| HS * TE *555555555555566666666677666554566666555566666655556 MR * *35555555555555566666666677666554566666555566666655556 MR * * * * * * * * * * * * * |
| ************************* |
| TRUE |
| <pre> **</pre> |
| ************************************** |
| T* |
| ************************************** |
| ******* |
| EH *1616161616161616161616050505050505050505 |
| |
| |
| |
| |

| ************* | R * * * * * |
|---|------------------------|
| ************************************** | F 4 **** ME A DEPTH |
| **************** | 6** |
| | D 8 |
| 77777777777777777777777777777777777777 | |
| 43333332210011122109889012331976566777766666655 | AT |
| | **
IOI
ES |
| ***************************** | k N
k |
| | k
k / |
| | 4 Z I |
| <u> NIMMMINIMMMINIMMMMMMMMMMMMMMMMMMMMMMMM</u> | ***
[MU
GRE |
| 555566666666666666776667766556666666666 | ТН |
| ************ | * |
| | · • |
| | TRI
VE
DE |
| 11111111111222222222222222222222222222 | R T |
| 01234456789011234567889012345567890122345678997 | ΙC |
| 54320986543109865431098654310976543109865432098 | |
| ************* | * |
| | * * *
* + |
| * | , *
; |
| * 444444444444444444444444444444444444 | C O - |
| * * * * * * * * * * * * * * * * * * * | - 01
* * :
? T ! |
| ************************************** | 1 |
| * | NA:
*** |
| *22222222222222222222222222222222222222 | TE
** |
| *445555666667778888899990000111122223333444455556666777 | S
**
AS |
| *69258136925813692581469258147925813692580369247 | **
**
T |
| *********************** | * |
| | ** |
| *5555555555555555555555555555555555555 | AGE
**
OURS |
| 4838383837272727161616160505049494938382727261615 | * *
SE |
| *************** | 9**** |

| *************** | |
|--|---------------------|
| * 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | E F
* * * |
| *3333333333333333333333333333333333333 | * D
EPTH |
| ************************************** | * |
| 22222222222222222222222222222222222222 | **** |
| ********************************** | * |
| DE ** DE | |
| ********** | * |
| ************************************** | TRI |
| ************************************** | * * * * |
| ************************************** | *******
CO-ORDIN |
| 0369247036924703692580369258036925703692
88889999900111122223222222222222222222222222 | ATES * |
| ************************************** | PAGE 30 |
| * | k |

| REF 46 3 | | | PAGE_ 31 | |
|--|--|--|--|--|
| * MEAU. * * DEPTH * DEVIATI * M * DEGREE * | ES * DEGREES * DEPTH * M | * CO-ORDINATES * **************** * + NORTH * + EAST * * - SOUTH * - WEST * | * COURSE * LENGTH * | |
| 244553101110974223333444455678901211233222 288888888888888887777777777777777 | *** *** *** *** *** *** *** *** *** ** | 5703692570369247036814703581470258136924 599999999999999999999999999999999999 | ************************************** | |

·.·

| REF 46 |)3
******** | ***** | **** | ***** | PAGE. | 33 |
|--|--|--|---|--|--|----------------------------------|
| * MEA. * * DEPTH * * M * | DEGREES | * AZIMUTH * * DEGREES * * | * TRUE * * VERTICAL *** * DEPTH * + * M * - | CO-ORDINATES
************************************ | * *** COURSE LENGTH | *
*
* |
| ************************************** | 22222222222222222222222222222222222222 | ************************************** | ************************************** | 11111120000000000000000000000000000000 | *26150493827160594837261504938271504938271605948 *334445556677888999900112233344455667788889900112222222 *400000000000000000111111111111111111222222 | * ****************************** |

| REF

* MEAU ***** | * * * * * * * * * * * * * * * * * * * | *********
* | ********************** | ************************************** | | |
|--|---|---|--|--|--|--|
| * DEPTH * DE
* M * D
* * | VIATION * EGREES * | AZIMUTH * DEGREES * | VERTICAL **** DEPTH * + | ************************************** | COURSE * LENGTH * | |
| ************************************** | <pre>222222222222222222222222222222222222</pre> | *************************************** | ************************************** | ************************************** | ************************************** | |

| | | - | | |
|--------------------------------------|--|--|--|--|
| REF 6 | 73 | | | PAGE 35 |
| *************** | DEVIATION * DEGREES * | AZIMUTH * DEGREES * | TRUE * CO-ORDINATES VERTICAL ************************************ | * COURSE * LENGTH * |
| ************************************ | ************************************** | ************************************** | 1444.1 * 548.9 * 3445.5 * 3446.1 * 5549.0 * * 3445.5 * 3446.1 * 5548.9 * * 3445.5 * 3446.1 * 5555.1 * * 3446.1 * * 5555.1 * * 3446 | ************************************** |

| * MEAS * * * DEPTH * * M * | **********
* DEVIATION
* DEGREES
* | * TRUE
VERTICAL
VERTICAL
VERTICAL
M
*********************************** | * + NORTH * + EAST * * SOUTH * - WEST * * * * * * * * * * * * * * * * * * * | ************************************** | |
|--|---|--|--|--|--|
| ************************************** | ************************************** | 987654210987654321
99123.1.09876599999999999999999999999999999999999 | * * * * * * * * * * * * * * * * * * * | ************************************** | |
| * * * * * * * * * * * * * * * * * * * | ************************************** | 98765421
98765421
998765421
15501
115511
115511
115511
115511
115511
115511
115511
1155222
115511
1155222
115511
1155222
115511
1155222
115511
115511
1155222
115511
115511
1155222
115511
115511
1155222
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
115511
1 | * 5774 * 33664 * 336666 * 336666 * 336666 * 336666 * 33666 * 3 | ************************************** | |

| ***************** | * |
|--|--------------------------|
| 11111111111111111111111111111111111111 | * * *
M E
D E |
| 9999999990000000000011111111111222222222 | |
| ***************** | 6
* * * |
| ************************************** | DEVIATIO |
| ************************************** | *
N * |
| ** *** *** *** ** ** ** ** ** ** ** ** | *******
A Z I M U T H |
| *********** | * |
| *98765431098765432098765432109 76543210987654321 *********************************** | TRUE |
| ************************************** | * * * *
*
* * * |
| - *** 5 | |
| ************************************** | CO-ORD |
| ****************** | IN |
| ** | *******
ATES
***** |
| *************** | * |
| ** | |
| *94837261504948372615049372615 48371604937260593
*5667788899000112233344555667788 99001122233445556 | |
| ****** | 37
**
* |
| | |
| | |

,

| ************************************** |
|---|
| **ST *90123456789000000000000000000000000000000000000 |
| ************************************** |
| * IE *766666666542109889909888899009987789887766890000
* TE *76666666542109889909888899009987789887766890000
* YE *5555555555555555544444444444444444444 |
| \[\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |
| H\$ * |
| ****************** |
| L * 198765432109876543321098765432109887654321009876543210098765432100987654321009876543210098765432100987654321009887654321009876543210098765432100987654321009876543210098765432100988888888888888888889999999999999999 |
| * * * * * * * * * * * * * * * * * * * |
| D*: ** R*HHH*25925925925926925925925925825825825815814814714 R*HHH*259259259259200011122233334455556667778889999000111111 C*NS*555555555555666666666666666666666666 |
| ************************************** |
| RG *67788899900111122334445566677889999001112233444556677889990011112233444556667788999001111223344455666778899990011122334445566677889999001112233444556667788999900111223344455666778899990011122334445566677889999001112233444556667788999900111223344455666778899990011122334445566677889999001111223344455666778899990011112233444556667788999900111122334445566677889999001111223344455666778899990011112233444556667788999900111122334445566677889999001111223344455666778899990011112233444556667788999900111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999000111122334445566677889999900011112233444556667788999900011112233444556667788999990001111223344455666778899999000111122334445566677889999900011112233444556667788999999900011112233444556667788999999990001111223344455666778899999999999999999000111122334445566677889999999999999999999999999999999 |
| ************************************** |

| REF 46 3 | | | | PAGE 39 |
|---|---|--|---|-------------------------------|
| * MEAS * | | * TRUE * | ************************************** | **** |
| * DEPTH * DEVIATION
* M * DEGREES | | * VERTICAL **** * DEPTH * + | ***************
NORTH * + EAST * | COURSE * |
| * *************** | | * M * - | SOUTH * - WEST * | M * |
| * 1786.0 * 24.9
* 1787.0 * 24.9 | Z : | * 1609.6 *
* 1610.5 * | | 726.5 * |
| * 1788.0 * 24.9
* 1789.0 * 24.9 | | * 1611 ₋₄ * | 612.4 * 392.5 * | 727-4 * |
| * 1790.0 * 24.9
* 1791.0 * 24.9 | * 39 | * 1612.3 *
* 1613.2 *
* 1614.1 * | 612.7 * 392.8 * 613.0 * 393.0 * 613.4 * 393.3 * | 727.8 * 728.2 * 728.6 * |
| * 1792.0 * 24.8
* 1793.0 * 24.8 | * 39
* 39 | * 1615.0 *
* 1615.9 * | 613_7 * 393_6 * | 729.0 * |
| * 1794.0 * 24.7
* 1795.0 * 24.6 | * 39 | * 1616.8 *
* 1617.7 * | 614.3 * 394.1 * | 729.9 * " |
| * 1796.0 * 24.6
* 1797.0 * 24.6 | * 39 :
* 39 : | * 1618.6 *
* 1619.6 * | 615.0 * 394.6 * | 730.7 * |
| * 1798.0 * 24.6
* 1799.0 * 24.6 | * 39 * 39 * | * 1620.5 *
* 1621.4 * | 615.3 * 394.9 *
615.6 * 395.1 *
616.0 * 395.4 * | 774 5 |
| * 1800.0 * 24.7
* 1801.0 * 24.7 | * 39 - | * 1622.3 *
* 1623.2 * | 616.3 * 395.7 * 616.6 * 395.9 * | 732.4 * |
| * 1802.0 * 24.7
* 1803.0 * 24.7 | * 39 7 | * 1624 ₋ 1 * | 616.9 * 396.2 * | 733.2 *
733.6 * |
| * 1804.0 * 24.7
* 1805.0 * 24.6 | * 39 1 | * 1625 . 9 * | 617.6 * 396.7 * 617.9 * 397.0 * | 734.0 * |
| * 1806.0 * 24.6
* 1807.0 * 24.7 | * 40 · 40 · 40 · 40 · 40 · 40 · 40 · 40 | * 1626.8 *
* 1627.7 *
* 1628.6 * | 618.2 * 397.2 * 618.6 * 397.5 * 618.9 * 397.8 * | 734-9 * |
| * 1808.0 * 24.7
* 1809.0 * 24.8 | : I | * 1629.5 *
* 1630.5 * | 618.9 * 397.8 * 619.2 * 398.0 * | |
| * 1810.0 * 24.7
* 1811.0 * 24.7 | * 40 *
* 40 * | * 1631 . 4 * | 619.5 * 398.3 * 619.8 * 398.6 * | 736.5 *
736.9 * |
| * 1812.0 * 24.6
* 1813.0 * 24.6 | | * 1633.2 *
* 1634.1 * | 620.2 * 398.8 * 620.5 * 399.1 * 620.8 * 399.4 * | 737.3 * |
| * 1814.0 * 24.6
* 1815.0 * 24.5 | * 41 7 | * 1635.0 *
* 1635.9 * | 620.8 * 399.4 * 621.1 * 399.6 * | 737.8 * 738.2 * 738.6 * |
| * 1816 _• 0 * 24 _• 2 | * 40 * | * 1636.8 *
* 1637.7 * | 621 4 * 300 0 + | 739.0 *
739.4 * |
| * 1818.0 * 23.9
* 1819.0 * 23.8 | * 40 x | * 1638.6 *
* 1639.6 * | 621 7 * 400 2 * 400 4 * 622 4 * 400 7 * 622 7 * 401 0 * 623 0 * 401 5 * | 739.8 *
740.2 * |
| * 1820.0 * 23.8
* 1821.0 * 23.9 | : : | * 1640.5 *
* 1641.4 * | 622.7 * 401.0 * 623.0 * 401.2 * | 740.6 *
741.0 * |
| * 1823.0 * 24.0 | | * 1642.3 *
* 1643.2 * | 623.0 * 401.2 * 401.5 * 623.6 * 401.7 * | 741.4 *
741.8 * |
| * 1824.0 * 24.1 | * 40 * | * 1644.1 *
* 1645.0 * | 623-9 * 402 0 * | 742.2 *
742.6 *
743.0 * |
| * 1826.0 * 24.2
* 1827.0 * 24.1 | * 40 * | * 1646.0 *
* 1646.9 * | 624.2 * 402.3 * 402.5 * 402.5 * 402.8 * | 743.0 *
743.4 * |
| * 1828.0 * 24.1
* 1829.0 * 23.9 | * 41 * | | 625.2 * 403.0 * 403.3 * | 743.8 *
744.2 * |
| * 1851.0 * 23.7 | * 40 *
* 40 * | * 1649 . 6 * | 625.8 * 403.6 *
626.1 * 403.8 * | 744.2 *
744.7 *
745.1 * |
| * 1832.0 * 23.6
******** | * 40 *
****** | * 1651.4 *
******* | 626.4 * 404.1 * | 745.5 * |

| | 503 | | | PAGE 40 | |
|--------------------------------------|--|---|--|--|--|
| * MEAS. * * DEPTH * * M * | DEVIATION
DEGREES | * TRUE * AZIMUTH * VERTICA * DEGREES * DEPTH * | * + NORTH * + E
* - SOUTH * - W | * * * COURSE * AST * LENGTH * FST * | |
| ************************************ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | *33210998765443210098776543321009876654334444444111111111111111111111111111 | ************************************** | ************************************** | |

| |)3
****** | **** | **** | **** | PAGE 4 | |
|--|--|---|--|--|---|---------------------------------------|
| * MEAS * * DEPTH * D | EVIATION * DEGREES * | AZIMUTH * DEGREES * | TRUE
VERTICAL
DEPTH
M | * CO-ORDINA

* + NORTH * +
* - SOUTH * - | TES * ******* COURSE EAST * LENGTH WEST * M | * * * * * * * * * * * * * * * * * * * |
| ************************************** | ************************************** | *************************************** | 6654332109987665433210098776543321009
56789012334567890123345678901233456789
66666777777777777777777777777777777 | ************************************** | * 765.9
765.9
766.6
7766.6
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7766.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
7777.7
4220.9
4221.9
4222.9
4222.9
4222.9
4222.9
4222.9
4222.9 | ***** |

This is an enclosure indicator page. The enclosure PE902241 is enclosed within the container PE902238 at this location in this document.

The enclosure PE902241 has the following characteristics:

ITEM_BARCODE = PE902241
CONTAINER_BARCODE = PE902238

NAME = Directional Survey

BASIN = OTWAY
PERMIT = PEP 108
TYPE = WELL

SUBTYPE = DIAGRAM

Westgate-1A

REMARKS =

DATE_CREATED = 30/05/86 DATE_RECEIVED = 3/02/87

 $W_NO = W929$

WELL_NAME = Westgate-1A
CONTRACTOR = Schlumberger

CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page. The enclosure PE605037 is enclosed within the container PE902238 at this location in this document.

The enclosure PE605037 has the following characteristics:

ITEM_BARCODE = PE605037

CONTAINER_BARCODE = PE902238

NAME = Exlog Mud Log

BASIN = OTWAY

PERMIT = PEP 108

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Exlog Mud Log (enclosure from WCR) for

Westgate-1A

REMARKS =

DATE_CREATED = 12/03/86

 $DATE_RECEIVED = 3/02/87$

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR = EXLOG

CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page. The enclosure PE605038 is enclosed within the container PE902238 at this location in this document.

The enclosure PE605038 has the following characteristics:

ITEM_BARCODE = PE605038
CONTAINER_BARCODE = PE902238

NAME = Composite Well Log

BASIN = OTWAY
PERMIT = PEP 108

TYPE = WELL

SUBTYPE = COMPOSITE_LOG

DESCRIPTION = Composite Well Log (enclosure from WCR)

for Westgate-1A

REMARKS =

DATE_CREATED = 24/03/86 DATE_RECEIVED = 3/02/87

 $W_NO = W929$

 $WELL_NAME = Westgate-1A$

CONTRACTOR =

CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page. The enclosure PE907624 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907624 has the following characteristics:

ITEM_BARCODE = PE907624
CONTAINER_BARCODE = PE902238

NAME = Structure Map Near Top of Cretaceous (Pebble Pt.)

BASIN = OTWAY
PERMIT = PEP 108

TYPE = SEISMIC

SUBTYPE = HRZN_CNTR_MAP

Westgate-1A

REMARKS =

DATE_CREATED = 31/10/85 DATE_RECEIVED = 8/01/86

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR = Beach Petroleum NL CLIENT_OP_CO = Beach Petroleum NL

This is an enclosure indicator page. The enclosure PE907625 is enclosed within the container PE902238 at this location in this document.

The enclosure PE907625 has the following characteristics:

ITEM_BARCODE = PE907625 CONTAINER_BARCODE = PE902238

NAME = Structure Map Near Top of Waarre

Sandstone BASIN = OTWAY

PERMIT = PEP 108 TYPE = SEISMIC

SUBTYPE = HRZN_CNTR_MAP

DESCRIPTION = Structure Map Near Top of Waarre Sanstone, enclosure from WCR for

Westgate-1A

REMARKS =

DATE_CREATED = 31/10/85 DATE_RECEIVED = 8/01/86

 $W_NO = W929$

WELL_NAME = Westgate-1A

CONTRACTOR = Beach Petroleum NL
CLIENT_OP_CO = Beach Petroleum NL