Cultus Petroleum NL

DEPT. NAT. RES & ENV

PPL1 OTWAY BASIN, VICTORIA

SKULL CREEK-1 WELL COMPLETION REPORT (W1153)

submitted by R. Jason

August, 1997

PETROLEUM DIVISION

3 1 OCT 1997

Cultus Petroleum NL

PPL1

OTWAY BASIN, VICTORIA

SKULL CREEK-1 WELL COMPLETION REPORT

submitted by R. Jason

August, 1997

CONTENTS

<u>PAR</u>	<u>T 1</u>	Page No.
1.	INTRODUCTION	1
1.1	Well Data Card	3
2.0	GEOLOGICAL DATA	5
2.1	Lithological Descriptions	8
2.3	Hydrocarbon Indications	14
2.3	Log Analysis	14
2.4	Structural History	20
3.0	OPERATIONAL INFORMATION	23
3.1	Well Location Survey	23
3.2	Drilling Summary	25
3.3	Drilling Fluid Summary	27
3.4	Casing and Cementing Details	28
3.5	Bit History	28
3.6	Time Analysis	29
4.0	FORMATION SAMPLING AND TESTING	30
4.1	Cuttings	30
4.2	Cores	30
4.3	Sidewall Cores	30
4.4	Drill Stem Testing	30
4.5	Wireline Formation Testing	31
4.6	Palynology	32
5.0	LOGGING AND SURVEYS	32
5.1	Mudlogging	32
5.2	Wireline	32
5.3	Deviation Survey	34
54	Velocity Survey	34

		TABLES
i	Page	
1.	Well Card	4 3
2.	Formation Tops and Thicknesses	5
3	Hydrocarbon Show Summary	14
4.	Bottom Hole Temperature Extrapolation	15
5.	Bit Record	28
6.	RFT Results	31
7.	Wireline Logging Tables	33
8.	Mud Properties While Logging	33
9.	TOTCO Deviation Surveys	34
FIG	GURES	Page
1.	Strall Crook 1 Location Mon	
1. 2.	Skull Creek-1 Location Map Offshore - Onshore Operational Stratigraphic Chart	2
3.	Predicted verses Actual	6 7
4.	Seismic Line 9490 - Waarre 3D	21
5.	TWT Structure On Top Waarre Fm.	22
6.	Surface Elevation Plan	24
7.	Skull Creek-1 Drilling Progress Chart	29
API	PENDICES	
1.	Rig Specifications	
2.	Drilling Fluid Recap	
3.	Daily Drilling Reports	
4.	Daily Geological Reports	
5.	Cuttings Descriptions	
6.	Palynology of Skull Creek-1	
7.	Velocity Survey	
8.	Casing and Cementing Reports	

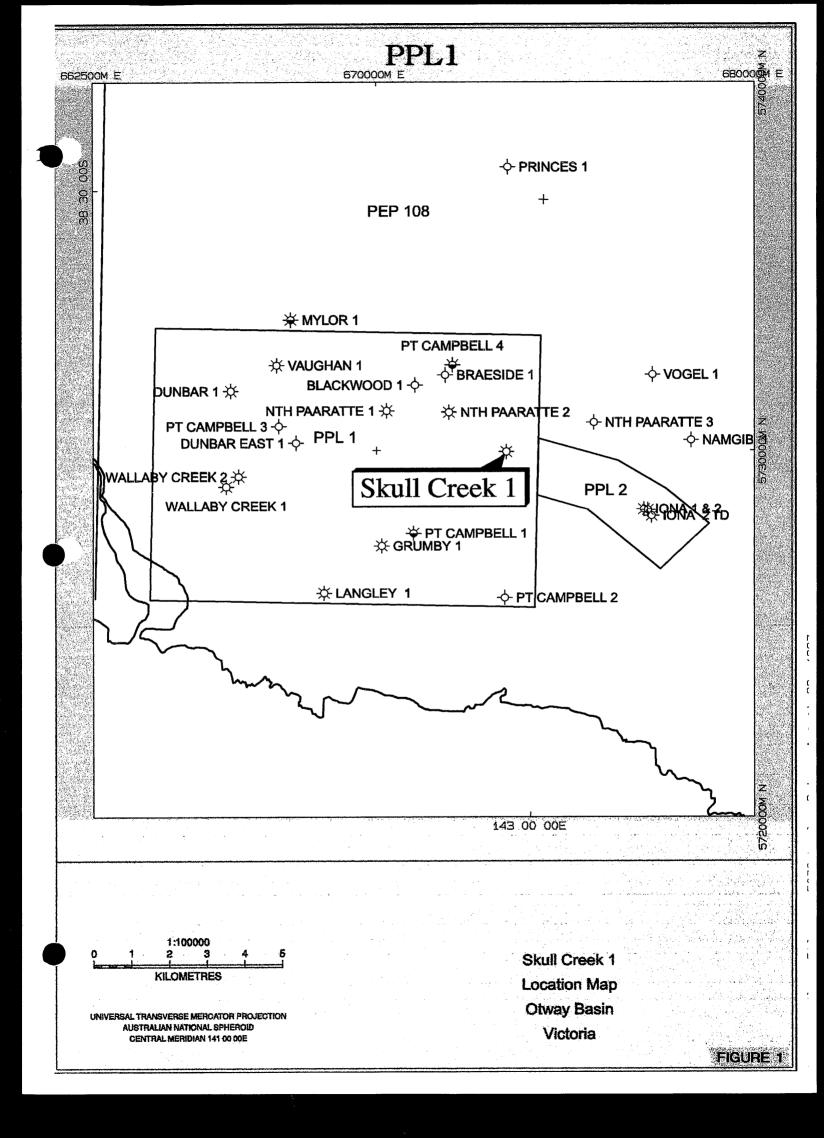
PART 2

DST & RFT Interpretation and Analysis

ENCLOSURES

1	Composite Log	1:500
2	Formation Evaluation Log (Mud Log)	1:500
3	Waarre Formation - Stratigraphic Correlation	1:750
4	Log Analysis - Waarre Formation	1:500
5	Log Analysis - Eumeralla Formation	1.500

INTRODUCTION


Skull Creek-1 is located onshore in the Port Campbell Embayment in the eastern part of the Otway Basin. The Otway Basin is a northwest to southeast trending sedimentary basin which formed primarily due to extension along the southern margin of Australia during the Late Jurassic - Early Cretaceous. The well is located in production license PPL1, onshore Victoria, approximately 200km west of Melbourne (Figure 1).

Skull Creek-1 was the final well in a three well exploration programme planned for the first half of 1996. This programme was the first for GFE Resources as part of the new parent company Cultus Petroleum NL. Basin Oil, a wholly owned subsiduary of Cultus, acquired PPL1 via an *in specie* distribution of GFE's assets on the 26th June, 1996.

The Skull Creek prospect is a seismically defined central horst fault block on the upthrown side of two major faults. The well was designed to test the presence of hydrocarbons in the sand reserviors of the basal Upper Cretaceous Waarre Formation.

The well was spudded at 0200 on 19 May 1996 and reached a total depth of 1700mMD after 9 days at 0530 on 28 May 1996. The OD & E rig 30 was released at 1700 on 6 June 1996, 18.6 days after spud.

Skull Creek-1 intersected gas saturated sands in the main target Waarre Formation and in the underlying Eumeralla Formation. Seven DST's, conducted primarily from the Warre Formation, produced a combined flow rate of 26 MMCFD of gas. Skull Creek-1 was cased and suspended as a gas producer.

1.1 Well Data Card

VELL: WELL TYPE: BLOCK/LICENCE::	SKULL CREEK #1 EXPLORATION PPLI Otway Basin Victoria	SPUD: TD REACHED: RIG RELEASED: COMPLETED:	0200 hours, 19-05-96 0530 hours, 28-05-96 1700 hours, 06-06-96	
RIG: LATITUDE: LONGITUDE:	ODE 30 38 33' 42.4" 142 59' 25.1"	TYPE COMPLETION:		ndensate
X coord: Y coord:	673411 mE 5 729 963 mN	TYPE STRUCTURE:	Horst block	
ELEVATION GL:	Waarre 3D Xline 2805 Inline 9465 88.6 m AHD 92.9 m	ZONE(S): REMARKS:		
TD:	1701.4 m MD (Logr Ext)	CASING SIZE	SHOE DEPTH mRT	TYPE
170	00.0 m MD (Driller)	16" 9 5/8"	9.0 332.3 1614.0	

		DEPT	H (m)			
AGE	FORMATION OR ZONE TOPS	LOGGERS MD	SUBSEA TVD	THICKNESS (metres)	HIGH (H)	Prelim. TWI (msec)
		4.7	88.6	15.3	0	
TERTIARY	PORT CAMPBELL LIMESTONE	4.7	72.9	209		
TERTIARY	GELLIBRAND MARL	20		29	50.9m H	142.0
TERTIARY	CLIFTON FORMATION	229	-136.1		30.91111	172.6
TERTIARY	NARRAWATURK MARL	258	-165.1	85	140 TT	261.0
TERTIARY	MEPUNGA FORMATION	343	-250.1	52	14.9m H	
TERTIARY	DILWYN FORMATION	395	-302.1	196	22.9m H	312.8
TERTIARY	PEMBER MUDSTONE	591	-498.1	84		479.0
TERTIARY	PEBBLE POINT FORMATION	675	-582.1	62.5	17.1m L	544.8
ATE CRETACEOUS	PAARATTE FORMATION	737.5	-644.6	360.1	19.6m L	580.1
LATE CRETACEOUS	SKULL CREEK MUDSTONE	1098	-1004.7	77.8		861.6
LATE CRETACEOUS	BELFAST MUDSTONE	1176	-1082.5	26.4	2.5m L	909.2
	WAARRE FM: UNIT "C"	1202.5	-1108.9	19.4	75.1m H	932.5
LATE CRETACEOUS	WAARRE FM: UNIT "B"	1222	-1128.3	27		944.0
LATE CRETACEOUS	WAARRE FM: UNIT "A"	1249	-1155.3	23.4-		963.2
LATE CRETACEOUS	FUMERALLA FORMATION	1272.5	-1178.7		76.3m H	1252.0
EARLY CRETACEOUS	EUMERALLA FORMATION	12/2.5	1170.7			
	T.D. (LOGR. EXTRAP.)	1701.4	-1607.2			

	LOG INTERPRETA	ATION (Interval Av	PERFORAT	IONS (4 shots/ft)			
ZONE	INTERVAL m MD	THICKNESS	NP m	POR %	sw%	ZONE	INTERVAL m MD
Waarre C1 sand	1202.9 - 1213.5	10.6	10.6	24.1	12.4	Waarre Unit 'C'	1205 - 1212
Waarre C2 sand	1214.3 - 1221.3	7.0	6.3	22.9	23.1	Eumeralla '1400'	1402 - 1417
Waarre B1 sand	1230.7 - 1232.0	1.3	1.2	22.5	36.7		
Waarre B2 sand	1234.7 - 1236.9	2.2	2.2	26.9	38.2		
Waarre A sand	1249.2 - 1258.4	9.2	7.3	22.5	30.3		
No pay mapped in	Eumeralla				L	<u></u>	
Hydrocarbon Show	w Summary						
1512-1525 Gas sho	w - Waarre						
1525-1549 Gas sho	w - Eumeralla Sandstor	ne and Claystone - po	or porosity	/.			

LOG (BPB)	RUN	INTERVAL mRT	BHT/TIME	LOG	RUN	INTERVAL mRT	BHT/TIME
MLL-DLS-SP-CAL	1/1	1064.0 - 1369.6		PDS-CNL-GR-CAL	3/2	1350.0 - 1701.4	63.0°C/24.5hrs
-SONIC-GR PDS-CNL-GR-CAL	2/1	1064.0 - 1369.6		Dipmeter	4/2	1350.0 - 1701.4	63.0°C/28hrs
LL-DLS-SP-CAL	1/2	1350.0 - 1701.4	55.0°C/8.5hrs	SRS (Vel survey)	5/2	96.3 - 1694.5	
-SONIC-GR RFS-GR	2/2	1350 0 1701.4	48°C	CBL	6/2	800.0 - 1600.0	

	FORMATION TESTS									
yo .	INTERVAL (mRT)	FORMATION	FLOW (mins)	SHUT IN (mins)	BOTTOM GAUGE IP/FP (psia)	SIP	MAX SURF PRESS (psia)	FLUID TO SURF (mins)	TC/ BC	REMARKS
1	1199.0 - 1221.0	Waarre Unit C			-					Misrun
2	1200.5 - 1210.5	Waarre Unit C	90	13			540	5	3/4"	GTS @ 8.2 MMCFD
3	1402.0 - 1417.0	Eumeralla '1400 sand	125	30			400	2.5	3/8"	GTS @ 1.1 MMCFD with indet amount of cond.
4	1240.0 - 1255.0	Waarre Unit A	60	36			680	0	3/4"	GTS @ 11.1 MMCFD
5	1500.0 - 1520.0	Eumeralla '1500 sand	8	30						Strong air blow, misrun packer seat failed
6	1225.0 - 1245.0	Waarre Unit B				-				Misrun
7	1234.0 - 1245.0	Waarre Unit B	120	0			880	1	1/2"	GTS @ 6.2 MMCFD WTS after 24 mins, rec 1.4bbl W (Fm water?)

SUMMARY:

Skull Creek is a new gas field discovery in PPL1, onshore Otway Basin, Victoria. The well tested gas from the Waarre Formation and from sands within the upper Eumeralia Formation, primary and secondary targets respectively. Skull Creek #1 is located approximately 1.9km southeast of North Paaratte #2 and 4.0km northwest of Iona #1. It was drilled near the crest of a horst block, bounded by two major normal faults which extend down to the Early Cretaceous.

The top of the Waarre Unit C (75m High) and the top of the Eumeralla (76m High) were encountered high to prognosis. A fault was intersected in Skull Creek #1 at approximately 1160mRT within the Skull Creek Mudstone. It is estimated that approximately 220+ metres of section (including the Nullawarre Greensand) is missing. From the Velocity Survey, the top of the Waarre Unit C was 60 msec TWT less an that prognosed, the result of higher velocities over the Skull Creek Horst.

Strong gas shows were encountered throughout the Waarre Formation in Units C, B and A. Gas shows were also encountered in the Eumeralla Formation with gas peaks of 405 and 497 units within the '1400' and '1500' sands respectively.

From RFT, DST and log interpretation a GWC is present within the Waarre Unit A sand at approximately 1170.1m SS (1263.0m RT). RFT interpretation and DST #7 result suggests a possible GWC in the Waarre Unit B2 sand at approximately 1143.8m SS (1237.5m RT)

AUTHOR: RJJ	TD A TIME. A
AULION. 103	DATE: April, 1997

2.0 GEOLOGICAL DATA

The section penetrated in Skull Creek-1 is summarised in Table 2 below. Interpreted formation tops are based on rate of penetration, cuttings descriptions, palynological analyses and wireline logs. Unless stated otherwise, depths mentioned in this report will be referenced on the well datum, the rotary table (RT). The Onshore - Offshore Operational Stratigraphic Table, from which interpreted formation tops are based, is presented on the following page (Figure 3).

Formation Tops	Prognosed	Actual	Actual	Difference	Thickness
	(mRT)	(mRT)	(m TVD SS)	(m)	(m)
Port Campbell	4.3	4.3	-88.6		
Limestone					
Gellibrand Marl		20	-72.9		209
Clifton Formation	283	229	136.1	50.9 High	29
Narrawaturk Marl		258	165.1		85
Mepunga Formation	361	345	250.1	14.9 High	52
Dilwyn Formation	421	397	302.1	22.9 High	196
Pember Mudstone		590	498.1	· · · · · · · · · · · · · · · · · · ·	84
Pebble Point Formation	661	651	582.1	17.1 Low	62.5
Paaratte Formation	721	719	644.6		360.1
Skull Creek Mudstone	1031	1139	1004.7	19.6 Low	77.8
Nullawaarre Formation	1121	absent			-
Belfast Mudstone	1201	1183	1082.5	2.5 Low	26.4
Waarre Formation	1266	1203	1108.9	75.1 High	69.8
Eumeralla Formation	1316	1272	1178.7	76.3 High	429+
T.D	1500.0	1700	1607.2	200 Low	

Table 2: Formation tops and thicknesses.

PE907567

This is an enclosure indicator page.

The enclosure PE907567 is enclosed within the container PE900832 at this location in this document.

The enclosure PE907567 has the following characteristics:

ITEM_BARCODE = PE907567
CONTAINER_BARCODE = PE900832

NAME = Schematic Stratigraphic Table

BASIN = OTWAY PERMIT = PPL/1

TYPE = WELL

SUBTYPE = STRAT_COLUMN

DESCRIPTION = Schematic Stratigraphic Table

(enclosure from WCR) for Skull Creek-1

REMARKS =

DATE_CREATED = 28/02/97 DATE_RECEIVED = 31/10/97

 $W_NO = W1153$

WELL_NAME = Skull Creek-1

CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE907568

This is an enclosure indicator page.

The enclosure PE907568 is enclosed within the container PE900832 at this location in this document.

The enclosure PE907568 has the following characteristics:

ITEM_BARCODE = PE907568
CONTAINER_BARCODE = PE900832

NAME = Predicted vs. Actual Stratigraphic

Section

BASIN = OTWAY

PERMIT = PPL/1

 $\mathtt{TYPE} = \mathtt{WELL}$

SUBTYPE = STRAT_COLUMN

DESCRIPTION = Predicted vs. Actual Stratigraphic

Section (enclosure from WCR) for Skull

Creek-1

REMARKS =

DATE_CREATED = 30/05/97

DATE_RECEIVED = 31/10/97

 $W_NO = W1153$

WELL_NAME = Skull Creek-1

CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL

(Inserted by DNRE - Vic Govt Mines Dept)

2.1 LITHOLOGICAL DESCRIPTIONS

The predicted verses actual stratigraphic section (Figure 4) on the previous page, provides the basis for a summary of the lithological units observed in Skull Creek-1. Descriptions are compiled from the wellsite geologist as well as interpretations from wireline results. Skull Creek-1, situated on a regional high trend, is characterised by the absence of Nullawarre Greensand and Waarre 'D' (Flaxmans Formation) of the Late Cretaceous Sherbrook Group.

HEYTESBURY GROUP (Surface - 124.0 mRT)

Port Campbell Limestone (Surface - 20.0 mRT) This formation was noticably much thinner than anticipated, being only 16m thick. Lithology dominantly consists of:-

Calcarenite: no samples collected.

Gellibrand Marl (20.0 - 229.0 mRT) This formation was much thicker than anticipated. The Gellibrand Marl consists of the following observed lithology:-

Massive Marl: medium grey to medium green grey, minor medium brown grey, abundant bryozoa, forams, shell fragments, trace echinoid spines and sponge spicules, trace pyrite occasionally replacing and infilling fossil fragments, trace glauconite, rare clear fine quartz sand grains, very soft and sticky, non fissile.

Clifton Formation (229.0 - 258.0 mRT) 50.9 metres high to prognosis and comprising the following observed lithology:-

Calcarenite: medium orange brown, yellow-red in part, very coarse grained, abundant fossil fragments including bivalves, gastropods, bryozoa, forams, sponge spicules and echinoid spines, minor strong cryptocrystalline calcite cement, trace to common very fine to grit frosted rounded brown stained quartz sand grains, abundant glauconite, common brown iron oxide pellets and iron oxide rich clay, friable, very poor inferred porosity, no oil fluorescence.

NIRRANDA GROUP (258.0 - 395.0 mRT)

Narrawaturk Marl (258.0 - 343.0 mRT) Thickness and significance greater than anticipated. Consists entirely of:-

Marl: medium brown grey to medium green grey, abundant bryozoa, forams and shell fragments and forams, trace echinoid spines and sponge spicules, trace to common pryite often as fossil infill and replacement, trace to common very fine to fine clear quartz sand grains, trace to common glauconite, very soft and sticky, non fissile.

Mepunga Formation (343.0 - 395.0 mRT) 14.9 meteres high to prognosis. The Mepunga Formation consists of an upper sandstone interval underlain by a claystone dominant interval. Lithological descriptions are as follows:-

Sandstone: light to medium brown, very fine to coarse, dominantly fine to medium, angular to subrounded, moderately to well sorted, very weak silica cement, common to abundant medium brown argillaceous and silt matrix, moderate to strong in general decreasing with depth yellow to orange to brown iron oxide stain on quartz grains, trace multicoloured volcanic lithics, trace coarse muscovite flakes, trace pyrite, trace to common iron oxide pellets, trace glauconite, trace dark brown clay lithics, friable to unconsolidated, fair to good inferred porosity, no oil fluorescence with minor interbedded and becoming dominant with depth.

Claystone: dark brown, moderately silty, trace pyrite, trace glauconite, trace micromica, soft, very dispersive, non fissile.

WANGERRIP GROUP (395.0 - 737.5 mRT)

Dilwyn Formation (395.0 - 591.0 mRT) 22.9 metres high to prognosis. The Dilwyn Formation is dominantly sandstone and consists of several cycles of sandstone and claystone with the following descriptions:-

Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderately well sorted, very weak silica cement, trace to abundant medium brown grey argillaceous and silt matrix, minor pyrite cement, clear to opaque quartz grains, trace yellow to red stained quartz grains, trace brown red and black lithics, trace coarse mica flakes, friable to unconsolidated, very good inferred porosity, no oil fluorescence, with minor interbedded

Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.

Pember Mudstone (591.0 - 675 mRT) Dominantly claystone with minor interbeds of sandstone and generally described as:-

Claystone: (591-642m) medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine quartz and off white partially altered feldspar sand grains, common glauconite, slightly calcareous in part, trace black coaly detritus often associated with pyrite, trace pyrite, trace micromica, , very soft and sticky, moderately dispersive, non fissile, with minor interbedded Sandstone: light brown, very fine to fine, subangular to subrounded, moderately to well sorted, very weak silica cement, common to abundant dark brown grey argillaceous and silt matrix, trace

The lower sequence of Pember Mudstone is characterised by a hot GR log response similar to the lower sequence of Pebble Point Formation otherwise known as the KT shale.

glaucontie, common coarse mica flakes, friable, poor inferred porosity, no oil fluorescence.

Claystone: (642-675m) medium to dark brown grey to medium grey, trace to common dispersed very fine to grit quartz sand grains, moderately to very silty, trace to common dark green argillaceous glauconite, trace pyrite, trace fine mica flakes, soft, moderately dispersive, non fissile.

Pebble Point Formation (675 - 737.5 mRT) 17 metres low to prognosis. Pebbly sand sequence underlain by claystone sequence (KT shale) with very high GR response. Inferred porosity in sandstone increases with depth, confirmed by sonic log response.

Sandstone: light orange green, very fine to pebble, dominantly medium to coarse, subangular to subrounded, moderately sorted, very weak silica cement, common medium to dark green argillaceous and silt matrix, weak yellow to green stain on quartz grains, common glauconite, common multicoloured volcanic lithics, trace coarse green mica flakes, friable to unconsolidated, very poor to good inferred porosity in general increasing with depth, no oil fluorescence, grading to and in general decreasing with depth

Claystone: medium to dark green, medium brown, moderately to very silty, abundant dispersed very fine to grit green-brown stained quartz grains - grading to argillaceous sandstone, common glauconite, trace pyrite, soft, moderately dispersive, non fissile.

SHERBROOK GROUP (737.5 - 1272.5 mRT)

Paaratte Formation (737.5 - 1098.0 mRT) 19.6 metres low to prognosis. Upper sequence is massive coarse grained sandstone 120 metres thick. Sharp spikes identified on the sonic log and MSFL, matched with slow drilling, are interpreted to be dolomitic bands average 2 metres thick, increasing in frequency with depth. Lower sequences occur as sandstone, becoming finer, interbedded with claystone.

Sandstone: light grey, very fine to grit, dominantly coarse, at base often dominantly fine, subangular to subrounded, moderately sorted, weak silica cement, no visual matrix, clear to translucent quartz grains, trace green grey lithics, trace black coaly detritus, trace pyrite, trace coarse mica flakes, friable, fair to very good inferred porosity, no oil fluorescence, occasionally with towards base minor interbeds of

Claystone: medium to dark brown to medium grey, moderately to very silty, moderately carbonaceous, common black carbonaceous flecks and coaly detritus in part, trace disseminated and nodular pyrite, common micromica, firm, very dispersive and washing from samples, slightly subfissile.

Section)

Skull Creek Mudstone (1098.0 - 1176.0 mRT) Basal sequence of Paaratte Formation. Dominantly claystone with minor interbedded sandstone.

Claystone: medium to dark grey, medium brown grey, very silty, common very fine partially altered feldspar grains in part, trace black carbonaceous flecks, trace micromica, trace pyrite, soft, very dispersive, slightly subfissile, interbedded and laminated with

Sandstone: light grey, very fine to coarse, dominantly fine, subangular to subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown volcanic lithics, trace black carbonaceous matter, common pyrite, friable to moderately hard, very poor visual porosity, no oil fluorescence.

Belfast Mudstone (1176.0 - 1202.5mRT) 2.5 metres low to prognosis. Skull Creek-1 intersected a major fault at around 1160 mRT when drilling through the Skull Creek Mudstone. An estimated 220+ m of missing section have been interpreted from lithology, palynology and dipmeter data. The Belfast Mudstone is in direct contact with the Skull Creek Mudstone. (The Nullawarre Greensand had been faulted out). Belfast Mudstone is dominantly claystone described as:-

Claystone: medium to dark grey, medium to dark brown grey, very silty, common very fine partially altered feldspar grains in part, common black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile with minor laminatied and probably contaminated by cavings

Sandstone: light grey, very fine to coarse, dominantly fine grained, subangular to subrounded, moderately sorted, moderate silica cements, trace white argillaceous matrix - matrix supported, trace red brown lithics, friable, trace carbonaceous matter, common pryite, friable to moderately hard, very poor visual porosity, no oil fluorescence.

Waarre Formation (1510.0 - 1595.0 metres) 75 metres high to prognosis. Units C, B and A present with the following lithology descriptions:-

Unit C (1202.5 - 1222.0 mRT)

Sandstone: very light to light grey, very fine to grit, dominantly medium to very coarse, angular to subrounded, poor to moderate sorting, becoming moderate to well sorted with depth, very weak silica cement, no visual matrix, trace yellow stained quartz grains, trace black carbonaceous detritus, friable, very good inferred porosity, no oil fluorescence.

Unit B (1222.0 - 1249.0 mRT)

Claystone: medium grey to medium brown, very silty grading to siltstone, common very fine off white partially altered feldspar grains in part, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile interbedded with Sandstone: very light brown grey, very fine to medium, dominantly fine, angular to subrounded, moderately sorted, weak silica cement, no visual matrix, common bright red green brown grey and black lithics, common black coaly detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescence.

Unit A (1249.0 - 1272.5 metres)

Sandstone: light orange grey, very fine to grit, dominantly medium, angular to subangular, well sorted, moderate silica cement, trace white argillaceous matrix, common to abundant yellow orange

lithics, trace red green grey and black lithics, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.

OTWAY GROUP (1272.5 - 1701.4 mRT)

Eumeralla Formation (1272.5- 1701.4 mRT) 76.3 metres high to prognosis. Top Eumeralla unconformity at Skull Creek evidenced by weathering of the uppermost Eumeralla.

Sandstone: weathered at top with abundant white argillaceous matrix, with depth cleaning to Sandstone: medium green grey, mottled, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, very weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence, interbedded with

Claystone: very weathered at top to structureless white to light blue grey clay, with depth cleaning to Claystone: light to medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially altered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, firm, slightly subfissile.

Claystone: off white to medium green grey, light to medium grey, light to medium brown grey, slightly to occasionally moderately silty, trace to common very fine partially altered feldspar grains in part, trace to common brown to black carbonaceous flecks and detritus, trace micromica, trace pyrite, firm, slightly subfissile, interbedded with

Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare to trace pyrite, friable, very poor visual porosity, no oil fluorescence.

2.2 HYDROCARBON INDICATIONS

Whilst drilling Skull Creek-1, cuttings and gas levels were carefully monitored. Cuttings were analysed under a fluoroscope to detect any hydrocarbon occurences. Gas equipment used by Haliburton in the monitoring of gas levels comprised an FID Gas Chromatograph and an FID Total Gas tool. Skull Creek-1 intersected several intervals recording significant gas shows as listed below:-

Interval	Formation	Units Peak / Backgnd	ROP	Remarks
1203 - 1214 mRT	Waarre 'C'	727 / 12 units	60 m/hr	Gas show
1214 - 1221 mRT	Waarre 'C'	195 / 6 units	40 m/hr	Gas show
1229 - 1232 mRT	Waarre 'B'	313 / 22 units	28 m/hr	Gas show
1235 - 1238 mRT	Waarre 'B'	134 / 11 units	45 m/hr	Gas show
1249 - 1265 mRT	Waarre 'A'	234 / 21 units	30 m/hr	Gas show
1399 - 1427 mRT	Eumeralla	405 / 45 units	110 m/hr	Gas show
1498 - 1518 mRT	Eumeralla	497 / 72 units	100 m/hr	Gas show
1528 - 1533 mRT	Eumeralla	318 / 29 units	40 m/hr	Gas show

Table 3: Hydrocarbon Show Summary

2.3 LOG ANALYSIS

Independant interpertations have been conducted on the Waarre and Eumeralla Formations. The evaluation of the Waarre, conducted by A. Pomilio using a deterministic approach is included in Appendix 6a. Conventional resistivity based log analysis of the Eumeralla Formation was not possible. A probablistic approach was conducted by A. Calcraft using Multimin with results presented in Appendix 6b.

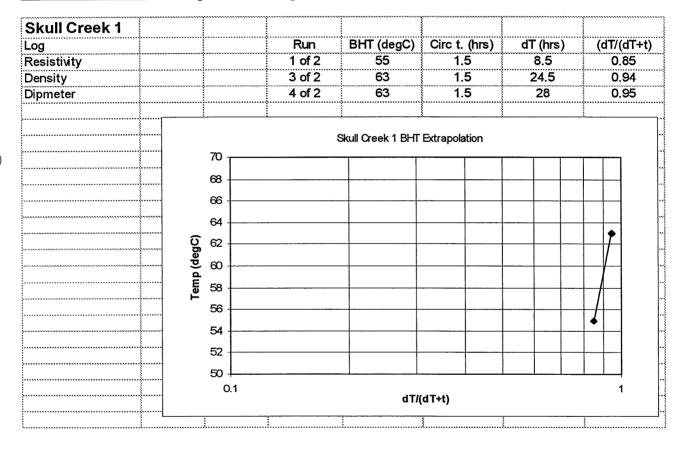
Hole Conditions

The 8 1/2"section of the well was drilled with a fresh water mud system down to approximately the base of the Waarre Formation. Because of the inability to run the laterolog tools (the only resistivity log available on location) in this type of mud system, KCl was added and intermediate logs run at 1368 mRT.

Suite #1 comprised the following logs:

DLL-MLL-CALI-SP-GR	1369.6 to 1064 mRT (GR to shoe)	Run #1
SONIC	1369.6 to 1064 mRT	Run #1
NEUTRON/DENSITY	1369.6 to 1064 mRT	Run #2
TIDO TITOTUDE -		

Because of encouraging results in the Waarre Formation, the well was deepened and a second suite of logs were run to evaluate the Upper Eumeralla sandstones.


At total depth, Suite #2 comprised the following logs:

DLL-MLL-CALI-SP-GR	1701.4 to 1350 mRT	Run #1
SONIC	1701.4 to 1350 mRT	Run #1
RFT	1701.4 to 1350 mRT	Run #2
NEUTRON-DENSITY	1701.4 to 1350 mRT	Run #3
DIPMETER	1701.4 to 1350 mRT	Run #4

Side wall cores were not attempted because of concerns regarding borehole stability.

The RFT tool was affected by continuos plugging of the filter probe. The question of the RFT plugging has caused much debate, but the most plausible explanation for the plugging is poor mud properties control upon entering the Waarre Sandstone. Fluid losses into the Waarre have been estimated at greater than 27 cc.

Table 4: Bottom Hole Temperature Extrapolation

The bottom hole temperature for Skull Creek-1 of 67°C was extrapolated using a Horner plot (Table 4). Using a surface hole temperature of 15°C a geothermal gradient of 3.05°C/100m is calculated.

There were seven open hole drill stem tests conducted as follows:

DST-1	1199-1221m	Misrun
DST 2	1200.5-1210.5m	GTS at 8.2 MMCFD on 3/4"
DST 3	1402-1417 m	GTS at 1.3 MMCFD on 3/8"
DST-4	1240-1255m	GTS at 11.1 MMCFD on 3/4'
DST-5	1500-1520 m	Misrun
DST-6	1225-1245 m	Misrun
DST-7	1234-1245 m	GTS at 6.2 MMCFD + Fm water

The well was cased and suspended with 7" casing run down to 1600 m where it became stuck.

Correlation of the Waarre Sandstone (Enclosure 3)

The typical Units 'C', 'B' and 'A' into which the Waarre Sandstone is normally subdivided can be easily recognised at Skull Creek-1. This well correlates quite well with nearby Iona 1 & 2 wells and North Paaratte 2, where the Waarre Sandstone displayed very similar log character response. At Iona Field the Waarre is slightly thicker (around 80 m). The shale barriers separating Unit 'C' from 'B' and Unit 'B' from 'A' are clearly continuous, at least in the direction of Iona Field and North Paaratte 2. The correlation in Enclosure 3 is characterised by an absence of Waarre Unit D in both Wallaby Creek 2 and Skull Creek 1.

The implications of this lateral continuity are quite important. At Skull Creek-1, pressure data from DST and RFT indicates that there are at least three gas columns under separate pressure regimes. Therefore, given the clay continuity, it is possible that the accumulations in Units C and B at Iona Field might be separate.

Log evaluation: Waarre Sandstone

Log evaluation (Enclosure 4) has identified three gas accumulations separated by, so far, two water contacts. The gas accumulation in Unit 'B' has no identified GWC from logs at Skull Creek-1.

<u>Accumulatio</u>	<u>n 1</u>	1202.5-1222 mRT UNIT 'C"
HKG LTG LKG	:	1202.5 mRT 1210.5 mRT 1222.0 mRT (Strong gas indications from logs)
GGC Net	:	19.5 m 15.5 m
N/G	:	80%
Ave Vcl Ave PHIE	:	0.04 0.24
Ave Sw	:	0.15

No GWC identified. However, the decrease in deep resistivity log values at around 1219.0 mRT might indicate, as in nearby Iona that:

- 1) The GWC is not far downdip from the well
- 2) An oil leg might be present downdip from the well

or alternatively a change in lithology

Accumulation 2

1229.0-1237.0 mRT UNIT 'B"

This accumulation comprises two thin sandstones. It is unclear if the two are communicated by a single pressure regime (ie one GWC).

HKG : 1229.0 mRT GWC : 1237.0 mRT

GGC : 8.0 m

Net : 3.4 m

N/G : 40%

Ave Vcl : 0.13

Ave PHIE : 0.24

Ave Sw : 0.41

The presence of a GWC at 1237.0 mRT is unquestionable; it has been predicted by log evaluation and confirmed by RFT pressure data, RFT sampling and DST results.

Sapara

Accumulation 3

Case 1:1249.0 to 1258.0

Case 2: 1249.0-1263.0 mRT UNIT 'A'

Accumulation 3 is contained within reservoir Unit 'A'; because of varying and possibly deteriorating reservoir quality with depth, a unique position for the GWC could not be established. Log evaluation suggests that the GWC is around 1258 to 1263 mRT and more likely at 1263 mRT than at the shallower alternative.

HKG : 1249.0 mRT LTG : 1255.0 mRT

Case 1

GWC1 : 1258.0 mRT (?)

GGC : 9.0 m

Net Pay : 8.5 m

N/G : 94%

Ave Vcl : 0.28 (?)

Ave PHIE : 0.21

Ave Sw : 0.33

Case 2 Additional pay

GWC2 : 1263.0 mkb

GGC2 : 5 m

Net Pay : 1.3 m

N/G : 26%

Ave Vcl : 0.33

Ave PHIE : 0.19

Ave Sw : 0.47

RFT and Drill Stem Test data indicate that the three gas accumulations encountered have three separate pressure regimes. Accumulation 1, the only accumulation without an identified GWC, is therefore likely to have a separate contact.

The possibility also exists that the sands in Unit 'B', grouped under Accumulation 2, might, instead, be two separate and independent accumulations. Therefore, the Waarre Sandstone at Skull Creek-1 might contain up to four gas zones with their respective GWC's.

RFT results in the Waarre Sandstone

The interpretation of RFT data was conducted by B.Richardson and results are presented in a separate report (Appendix 9). However some of the main results are highlighted here:

A gas gradient in Unit 'C'

A valid water point in Unit 'B'

A valid water point in Unit 'A'

A valid formation water sample in Unit 'B' mixed with filtrate

Evaluation of the Eumeralla Gas

Initial evaluations were conducted from a lithology aspect, tests results, raw logs, dipmeter data, gas shows and mudcake build-up. Conventional log evaluation of the Eumeralla was very unreliable due to a number of adverse factors such as:

Complex lithology

Lack of resistivity contrast

Radioactive minerals affecting VCL from GR.

A. Calcraft, of the Modern Log Analysis Company Pty Ltd, employed a complex lithology model of the Eumeralla section (Enclosure 5) in order to evaluate shows encountered in this formation. The use of Multimin, a volume optimisation model, was important for the petrophysical analysis because it allows for small changes in one or more rock components. The felspathic litharenite reservoirs of the Eumeralla Formation were evaluated using a quartz-illite-smectite-chlorite mineralogy (Calcraft, 1997). Other minerals known to be present were incorporated by appropriate ajustments, i.e. The properties of the quartz component were adjusted for the commonality of albite.

Several other wells including Iona-2 and Vaughan-1 were investigated together with Skull Creek-1 to form a robust model for determining hydrocarbon bearing zones. Poor reservoir quality was

determined to be a primary reason why zones in the Eumeralla did not flow. High gas ratios are thought to be relate to intervals with low clay bound water (Calcraft, 1997).

The best tested complex lithology model indicated that Smectite acted to fill pore spaces and pore throats. This implied that if there is little or no Smectite present then the reservoir may flow. On the reslutant log analysis plot this criteria is flagged at HF 1. The second flag HF 2 marks the more conventional test of a water saturation - porosity cross plot using an Sw cutoff of 0.6. This criteria is subject to the effects of Zeolite being insignificant (Calcraft, 1997). Intervals that meet both sets of criteria in Skull Creek-1 are 1400 -1420mRT (Tested @ 1.1MMCFD) and 1510 - 1530mRT (Tested but misrun).

In summary, the best quick-look indicators for the Eumeralla are good gas shows followed by the presence of some cross over on a conventional density neutron log plot. In Skull Creek-1 the best evidence of this occurs in the `1400m sand'. Intervals like this should be considered for underbalance drilling which could determine what effect formation damage has on the flowability of Eumeralla sands. A summary of the Eumeralla sands intersected in Skull Creek-1 follows:-

A) The '1300' m sand

This zone comprises, from mud log data, a series of thinly interbedded sandstones and claystones. The sandstones have been described as 'typical Eumeralla' with abundant lithics and poor visible porosity.

Mudlog gas readings in the overlying shale between 1270 and 1312.0 mRT approximately, averaged only 10 units. Gas between 1312.0 and 1355.0 mRT approximately was 100 units in the sands indicating the possibility of a gas column due to the 10 fold increase. Therefore a gross gas column of 43 m can be postulated from the gas detector.

This zone could be considered as a candidate for cased hole testing but does not meet both sets of criteria as set out in the complex lithological analysis. Wireline logs are characteristically featureless and the dipmeter shows uniform low resistivity with no visible thin resistive beds that could be indicative of pay.

Net pay is probably low, however, the N/D logs approaching each other several times suggest that this zone probably has some pay when compared with the other Eumeralla accumulations.

B) The '1400' sand

This gas zone was tested by DST-3 conducted between 1402.0 and 1417.0 mRT, that flowed GTS at 1.3 MMCFD with no water and with a small amount of condensate.

The overall extent of the gas bearing interval is likely to be 1402.0 to 1439.0 mRT, spanning a 37 m gross interval. Log analysis indicated a 20m gross interval.

Lithological descriptions and dipmeter data are as per the zone above and are considered rather useless.

Drill Stem Test results have indicated that most of the gas produced on DST is probably originated from a thin net pay sand with low permeability. Net pay is unlikely to exceed 2 to 3 m and is concentrated around the zone with N/D cross over at 1402.0 mRT.

C) The '1500' sand

Underlying a non-net, argillaceous zone at 1470 to 1500 mRT, another sequence of very poor visual porosity sands displayed attractive gas readings suggestive of an accumulation. The interpreted gas zone comprises the interval 1508.0 to 1532.0 mRT.

DST-5 between 1502.0 and 1522.0 mRT blowed strongly before being aborted as a misrun. Because of the near absence of N/D cross over or the logs approaching each other, this zone is estimated to contain only very little pay and it is anticipated that flow rates will be smaller than at the '1400' m sand.

2.4 STRUCTURAL HISTORY

Uplift and erosion of Eumeralla to the east during the early Cenomanian acted as sediment provinence for the Waarre Formation. The Skull Creek Horst is interpreted to have influenced the palaeotopography since the Late Cenomanian. Firstly, the Waarre 'B' and 'C' units are known to thin in a westerly direction across the Skull Creek Horst. The non deposition or erosion of Waarre Unit 'D' at Skull Creek-1 is a direct result of the horst being high prior to the deposition of Belfast Mudstone. Although the Belfast Mudstone is thin and Nullawarre Greensand is faulted out at Skull Creek-1, the Skull Creek Horst significantly influenced its deposition. The Nullawarre Greensand is not recognised south of the Skull Creek horst and its aerial extent is believed to be influenced by along shore currents and wave action during a period of relative tectonic quiescence.

The Skull Creek Horst probably incurred tilting and uplift of the eastern part of the horst during the mid Miocene compressional event related to collision of the Australian craton with the Banda arc. This event had basin wide effect with contribution to the formation of the Otway Ranges and the Dartmoor uplift. Hydrocarbon generation is believed to have been filling the structure formed at the eastern part of the Skull Creek Horst from Miocene to Recent times.

PE907569

This is an enclosure indicator page.

The enclosure PE907569 is enclosed within the container PE900832 at this location in this document.

The enclosure PE907569 has the following characteristics:

ITEM_BARCODE = PE907569
CONTAINER_BARCODE = PE900832

NAME = Seismic section

BASIN = OTWAY

PERMIT = PPL/1

TYPE = SEISMIC

SUBTYPE = SECTION

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 31/10/97

 $W_NO = W1153$

WELL_NAME = Skull Creek-1

CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE907570

This is an enclosure indicator page.

The enclosure PE907570 is enclosed within the container PE900832 at this location in this document.

The enclosure PE907570 has the following characteristics:

ITEM_BARCODE = PE907570

CONTAINER_BARCODE = PE900832

NAME = Structure Map

BASIN = OTWAY

PERMIT = PPL/1

TYPE = SEISMIC

SUBTYPE = HRZN_CNTR_MAP

DESCRIPTION = TWT Structure on Top of Waarre

Formation, Post Drill Map (enclosure

from WCR) for Skull Creek-1

REMARKS =

DATE_CREATED = 28/08/97

DATE_RECEIVED = 31/10/97

 $W_NO = W1153$

WELL_NAME = Skull Creek-1

CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL

(Inserted by DNRE - Vic Govt Mines Dept)

3.0 OPERATIONAL INFORMATION

Operator Personnel on Site

Drilling Supervisor:

Henry Flink

Engineer/Night Supervisor:

Bruce Richardson

/Kevin Kelly

Geologist:

Dave Horner

Drilling Contractor

Oil Drilling and Exploration Pty Ltd (O.D.&E.) Rig #30

Drilling Fluids

Independent Drilling Fluid Services Pty Ltd

Cementing

Halliburton

Mud Logging

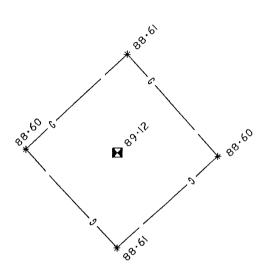
Halliburton

Coring & Testing

Australian DST

Wireline Logging

BPB Logging


Total Cost

\$949,000.00

3.1 Well Location Survey

The Skull Creek-1 location was surveyed by Alan Simpson of Warrnambool (Figure 4) after the well was suspended. The surveyed co-ordinates and ground level are used throughout the text and in the database for the location map.

SKULL CREEK *1
APPROX. CO-ORDINATES
E 673 410
N 5 729 960

SURFACE ELEVATION PLAN NOTATIONS SCALE 1: 50 FIGURE 6 CULTUS PETROLEUM N.L. ELEVATIONS ARE TO A.H.D. VIDE PM 14 RL.72.978 LEVEL 4, 828 PACIFIC HIGHWAY ELEVATIONS ARE SHOWN THUS *1.56 $0.5 \quad 0 \quad 0.5 \quad 1 \quad 1.5$ GORDON N.S.W. 2072 LENGTHS ARE IN METRES TOP OF CAST IRON WELL BELOW PRESSURE GAUGE.(PRESSURE GAUGE MISSING) REF SURROUNDING STEEL PLATE • LAND SURVEYOR •
A.C.N. 062 912 510
P.O.BOX 421, WARRNAMBOOL 3280 AT GROUND LEVEL 4511 DATE OF SURVEY: 23-10-96 PHONE (055) 611846 FAX (055) 621775

AMG ZONE

3.2 Drilling Summary

DATE	DEPTH	OPERATION
19-May-96	306	Mobilised OD & E Rig # 30 from Blackwood-1. Skull Creek-1 spudded at 02:00 hrs on 19th May 1996. Drilled 12.25" hole to 306m
20-May-96	335	Drilled 121/4" hole to 335mRT using Tricone Bit with active mud.
		Displaced active system with gel mud. Run wiper trip was run with minimal drag. $9^5/8''$ surface casing was run and landed at 332.5mRT. Casing was pressure tested to 2500 psi. Nipple up the BOP's.
21-May-96	481	Continue to nipple up the BOP's, pressure tested the kelly and surface equipment prior to drilling out. Drill out the float collar, cement, float shoe and 5m of new formation with 8½" Rock Bit. A formation integrity
		test was conducted with 9.2 ppg drilling fluid to 13.5 ppg equivalent. Drill 8.5" hole to 481m.
22-May-96	1158	Circulate and sweep with hi-visc pill. Drill 8.5" from 481 to 642m. Run survey, unable to pass 292m, pull survey. Drill to 651, 11 stand wiper trip, change out corrosion ring. Run survey @ 638m. Drill 8.5" to 954m, circ
23-May-96	1338	and survey @ 942m. Drill 8.5" from 954 to 1158m.
·		Drilled ahead to 1214m (Waarre Fm) and circulated. Wiper trip to shoe. Drilled 8.5" from 1214 to 1338m.
24-May-96	1368	Drilled ahead to 1368m and circulated before running a wiper trip (18units of gas on wiper trip). Pumped pill, dropped survey (3° @ 1360mRT). Pulled out of hole to wireline log, Run 1: MLL-DLS-SP-CAL-SONIC-GR, Run 2: PDS-CNL-GR-CAL. Make up DST tools.
25-May-96	1368	Make up DST tools. RIH with DST#1. Inflate packers, interval 1199 to 1221m. Expected mechanical problem or plugged tool after weak flow. Unseat and reset packers @ 1200 to 1222m. Circ and work stauck pipe. Flow check and POOH with DST tools.
26-May-96	1373	Lay out test tools, make up bit, junk sub, b/sub and r/reamer. Work junk sub and drill 5m new hole to 1373m. POOH to m/u DST #2. Inflate packer and set, open & close tool, re-inflate, open & close tool, re-inflate, still communication past packer. Deflate, drop down 2.5m re-inflate.

DATE	DEPTH	OPERATION
27-May-96	1592	Build mud wt from 8.7 to 9.2 to bal well. POOH with test tools. M/u r/reamer, X/O, motor and bit #4. Pull up kelly and test motor. RIH, 2m
		fill. Drill 8.5" from 1373 to 1592m.
28-May-96	1700	Drill 8.5" from 1592 to 1700 (1701.4m RT Logger extrapolated). Circ
		b/u, wiper trip to 1180m. RIH to 1600, wash thru tight hole 1600 to
		1604m. Circ hole clean, POOH, run survey (7.5° @ 1696m). Rig up
		BPB.Run #1: MLL-DLS-SP-CAL-SONIC-GR, Run #2: RFS-GR.
29-May-96	1700	Cont RFS, problem with tool. POH, RIH with new tool, not working,
		POH. Run #3: PDS-CNL-GR-CAL, Run #4: Dipmeter, Run #5: SRS
		Velocity survey. Make up BHA for wiper trip prior to DST.
30-May-96	1700	Condition hole. RIH with DST tools, packer depth 1402 - 1417m. Run
		DST #3. Rig down DST head & surface lines. POH to top packer. R/u
		DST head & surface lines 1240 to 1255m.
31-May-96	1700	Inflate packer, run DST #4. POH, rec sample
01-Jun-96	1700	Circ and condition mud. R/u BPB, m/u RFS. Problems with tool, POH.
		M/u BHA and RIH to 1600m. Circ and condition mud. POH to p/u DST
		tools.
02-Jun-96	1700	M/u DST tools for DST #5 & 6. Run DST's. POH with DST tools, rec
		sample.
03-Jun-96	1700	Condition hole, flow check, Max gas 100u. POH for DST #7 RIH, set
		packers @ 1234-1245m, perform DST #7. Unseat packers. Change
		surface lines circ conventionally.
04-Jun-96	1700	B/out & lay down DST tools. M/u bit, bit sub, 1 RR and RIH to shoe. Slip
		33' drill line. RIH to 1582m, work tight spot @ 1515m. Circ and
		condition mud, flow check, POH. Rack 700m pipe in mast, lay out
		remainder. P/u kelly, flush rat hole and mouse hole. Break upper kelly
		joints. Remove kelly/hose, clear floor. Rig up and run 7" casing.

DATE	DEPTH	OPERATION
05-Jun-96	1700	Circ and work 7" casing @ 1622m. Test casing to 1600psi
		The well was cased and suspended and the rig released at 17:00 hrs 6th
		June 1996.
06-Jun-96	1700	Install and test packoff to 200psi. R/u BPB and run CBL. N/d BOP, install
		tubing hanger, blind flange and secure well head. RIG RELEASED @
		17:00.

3.3 Drilling Fluid Summary

12 1/4" Hole, Surface to 329mRT

A gel spud mud, prehydrated with caustic soda to peptise it, was used to drill out the Mouse and Rat holes prior to being used to drill out the conductor pipe and top hole, to the marl. Water with slight additives was used to pass the marl section and drill to 335m where the system was reverted back to the fresh water gel polymer mud which was circulated proir to pulling out to run casing.

Weight (ppg) : 9.25 Viscosity (API) : 36

Fluid Loss (BBLS) : 136 Downhole

81/2" Hole, 329 to 1700mRT

The 8 1/2" hole was started with the cement and shoe being drilled out with water. Treated water was used to drill out the rest of the marl until 367mRT when sand returns were observed. The gel polymer mud that was retained from the 12 1/4" section, with appropriate dilution, then displaced the water. The mud system was then diluted to counter weight and viscosity gains. Flowzan was added as the main objective Waarre was drilled through. Bentonite was added to build wall cake. Drispac was used to raise the yeild point. The down hole loss was minimised once the API fluid loss was reduced.

To assist wireline logging KCl was added towards the base of the Waarre Formation. A wipr trip was initiated at 1212mRT using CaCO3 to slug the pipe. During this trip 56BBLS (12BBLS / hour) were lost down hole. Ammonium Nitrate was used as a tracer for the first DST.

There were signs of overpressured Eumeralla in the cuttings. The 8 1/2" bit was drilled to TD and two check trips were conducted prior to pumping a pill and pulling out to log. Attention was aimed at maintaining a low fluid loss during DST operations.

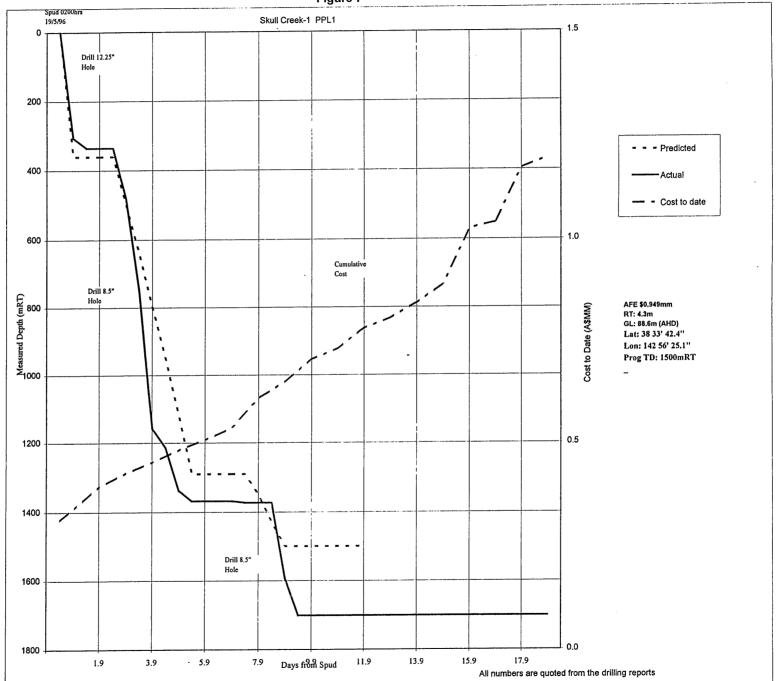
Weight (ppg) : 9.2 to 9.5

Viscosity (API) : 37 to 48

Fluid Loss (BBLS) : 1034 Downhole

Drilling fluid reports are provided in Appendix 2.

3.4 Casing and Cementing Details


Casing and cementing reports including FIT's are provided in Appendix 8.

3.5 Bit History

To be forwarded at a later date.

Figure 7: Skull Creek-1 Drilling Progress Chart

4.0 FORMATION SAMPLING AND TESTING

4.1 Cuttings

Cuttings samples were collected at ten metre intervals from spud to 9 5/8 casing point. At five metre intervals from 9 5/8 casing to 1300 metres. At three metre intervals from 1300 m to 1700 metres (T.D.) and subdivided into sets as follows;

- 1 set of washed and dried samples in sample bags from spud to 1700 metres (T.D).
- 1 set of washed and dried samples in Samplex trays spud to 1700 metres (T.D).

The set of washed and dried samples in sample bags were subsequently sent to the Department of Energy and Minerals (Petroleum Division) sample store. The remaining samples were retained by Cultus Petroleum N.L.

A summary of the lithological descriptions from daily reports issued during the drilling can be found in Appendix 4. Cuttings descriptions made by the wellsite geologist are provided in Appendix 5.

4.2 Cores

No conventional cores were cut in Skull Creek-1.

4.3 Sidewall Cores

No sidewall cores were cut in Skull Creek-1.

4.4 Drill Stem Testing

Seven Drill Stem Tests (DST's) was conducted in Skull Creek-1. A full report including all sample analysis is provided in Part 2, the DST and RFT interpretation and analysis.

1. 1199.0 - 1221.0mRT Waarre Unit C

Misrun

2. 1200.5 - 1210.5mRT Waarre Unit C

GTS @ 8.2 MMCFD

3.	1402.0 - 1417.0mRT Eumeralla `1400 sand'	GTS @ 1.1 MMCFD with
		indeterminate amount of condensate.
4.	1240.0 - 1255.0mRT Waarre Unit A	GTS @ 11.1 MMCFD
5.	1500.0 - 1520.0mRT Eumeralla `1500 sand'	Strong air blow, misrun due to packer
		seat failure.
6.	1225.0 - 1245.0mRT Waarre Unit B	Misrun
7.	1234.0 - 1245.0mRT Waarre Unit B	GTS @ 6.2 MMCFD water to surface
		after 24 minutes, recovered 1/4BBL
		water (Formation Water Or Filtrate?)

4.5 Wireline Formation Testing

Repeat Formation Test (RFT) pressure readings were carried out in Skull Creek-1 and the results listed in Part 2, the DST and RFT interpretation and analysis.

Test	Depth	Depth	HydroStatic		Formation	Comments
No.			Pressure		Pressure	
	КВ	ss	Initial	Final		
1	1205.0	-1111.4	1984.8	1993.4	1613.4	Hydrostatic Varying
2	1211.3	-1117.7	1990.0	2000.0	1680.7	
3	1212.5	-1118.9	1993.7	2004.9	-	
4	1212.5	-1118.9	1992.0	2003.7	?	Very low perm/stopped
5	1212.2	-1118.6	1993.7	2003.7	-	
6	1212.3	-1118.7	1995.6	2004.5	1614.5	
7	1216.7	-1123.0	2000.0	2008.3	1623.2	
8	1237.5	-1143.8	2031.8		1644.9	Sample taken
9	1237.9	-1144.2	2023.3	2023.1		Pressure dropping
10	1271.5	-1177.7	2076.8	2076.2		Tight-Low perm.
11	1271.0	-1177.2	2076.0	2075.4		Tight
12	1267.4	-1173.6	2069.0	2068.4		Tight
13	1261.4	-1167.6	2059.4	2059.1		Tight

1237.5	-1143.8	2020.6	2019.8		Tight
1271.5	-1177.7	2078.8	2078.7	1717.5	Good test
1266.0	-1172.2	2069.9	2069.7		Tight/plugged
1261.4	-1167.6	2061.8	2061.3		Tight/plugged
1217.0	-1123.3	1991.5	1991.0		Tight/plugged
1217.5	-1123.8	1992.3	1992.1		Tight/plugged
	1271.5 1266.0 1261.4 1217.0	1271.5 -1177.7 1266.0 -1172.2 1261.4 -1167.6 1217.0 -1123.3	1271.5 -1177.7 2078.8 1266.0 -1172.2 2069.9 1261.4 -1167.6 2061.8 1217.0 -1123.3 1991.5	1271.5 -1177.7 2078.8 2078.7 1266.0 -1172.2 2069.9 2069.7 1261.4 -1167.6 2061.8 2061.3 1217.0 -1123.3 1991.5 1991.0	1271.5 -1177.7 2078.8 2078.7 1717.5 1266.0 -1172.2 2069.9 2069.7 1261.4 -1167.6 2061.8 2061.3 1217.0 -1123.3 1991.5 1991.0

Table 6: RFT Results

4.6 Palynology

Eight cuttings samples were sent to Roger Morgan for analysis. Palynology results for Skull Creek-1 are provided in Appendix 5.

5.0 LOGGING AND SURVEYS

5.1 Mud Logging

A standard skid-mounted unit equipped for continuous recording of depth, rate of penetration (ROP), mud gas, pump rate and mud volume data, as well as intermittent mud and cuttings gas (blender) analysis was operative from spud until the well was plugged and abandoned. The ROP and gas data is included on the 1:500 scale Composite Log (Enclosure 1), the Formation Evaluation Log (i.e., "Mud Log") at 1:500 scale is provided in Enclosure 2a, and a Gas Ratio Analysis Log at 1:1000 scale is provided in Enclosure 2b.

5.2 Wireline Logging

Wireline logging was performed by BPB using a standard truck-mounted unit. Two logging suites were carried out. Intermediate logs were run at 1368 mRT. The second suite was run at 1700mRT (TD).

Suite 1

Run	Tool	Interval m RT	BHT (°C)	Hours Since Circ	Comments
—		m Ki	ļ	Since Circ	
1/1	MSFL-DLL-GR-	1064 - 1369.6	48	7	
	CAL-DT				
2/1	PDS-CNL-CR-	1064 - 1369.6			
	CAL				

Suite 2

Run	Tool	Interval m RT	BHT (°C)	Hours Since Circ	Comments
1/2	MSFL-DLL-GR- CAL-DT	1350 - 1701.4	55	8.5	
2/2	RFS-GR	1350 - 1701.4			
3/2	PDS-CNL-CR-	1350 - 1701.4	63	24.5	
	CAL				
4/2	DIPMETER	1350 - 1701.4	63	28	
5/2	SRS (Velocity)	96.3 - 1694.5			35 shots, 22 levels
6/2	RFS-GR	1350 - 1701.4			Continued plugging, RFS logging eventually abandoned
7/2	CBL	800 - 1600			, wo made on our

Table 7: Wireline Logging

Suite 1	Run 1 & 2	Suite 2	Runs 1 to 7
Fluid Type	FW Poly	Fluid Type	KCL
Density (ppg)	9.3	Density (ppg)	9.3
Viscosity (sec)	46	Viscosity (sec)	46
pН	9.5	pН	9.5
Fluid Loss (cc)	9.6	Fluid Loss (cc)	8.7
Rm @ Temp	0.896 @ 16.7 °C	Rm @ Temp	0.618 @ 20.7 °C
Rmf @ Temp	0.795 @ 15.0 °C	Rmf @ Temp	0.528 @ 17.6 °C
Rmc @ Temp	1.500 @ 18.9 °C	Rmc @ Temp	1.293 @ 22.4 °C

Table 8: Mud Properties While Logging

5.3 Deviation Surveys

Totco deviation surveys were carried out periodically throughout the drilling of Skull Creek-1, with results as shown in Table 9. Using this data a maximum radius of deviation was calculated by summing the products of the component of horizontal shift [interval length × sin(deviation angle)] for each interval.

Depth (mRT)	Deviation (degree)
170	0.3
329	0.0
638	0.5
940	1.8
1199	4.0
1360	3.0
1695	7.5

Table 9: TOTCO Deviation Surveys

5.4 Velocity Survey

A Velocity Survey (WST-Checkshot) was carried out by Velocity Data. 35 shots were processed and 22 levels recorded. The velocity survey report is provided in Appendix 7.

APPENDIX 1 - RIG SPECIFICATIONS

RIG AND CONTRACTOR'S EQUIPMENT

1

CONTRACTOR'S RIG : Rig 30 - rates to 3,350 m (11,000 ft) with $4\frac{1}{2}$ " drill pipe

DRAWWORKS : Dreco Model 700E, driven by EMD 79 electric motor

maximum input: 1,000 HP

ENGINES : Four (4) Caterpillar Model 3412 PCTA diesel engines

SUBSTRUCTURE: One piece substructure 14' high x 13'6" wide and 50'

long with 12' BOP clearance

Setback area loading: 250,000 lbs Casing area loading: 275,000 lbs

(loading concurrently)

MAST : Dreco Model #: M12713-510 Floor Mounted Cantilever

Mast designed in accordance with API Specification 4E Drilling & Well Servicing Structures. Hook load Gross

Nominal Capacity - 510,000 lbs with:-10 lines strung - 365,000 lbs 8 lines strung - 340,000 lbs

Clear working height of 127'

Base width of 13'6

Adjustable racking board with capacity for:-

(i) 120 stands of 4½' drill pipe,
(ii) 10 stands of 6½" drill collars,

(iii) 3 stands of 8" drill collars

Designed to withstand an API windload of 84mph with

pipe racked and 100 mph with no pipe racked

CATHEADS: One (1) Foster Model 37 make-up spinning cathead

mounted on drillers side.

One (1) Foster Model 24 break-out cathead mounted off

drillers side

CROWN BLOCK : 215 ton with five (5) 36" sheaves and one (1) 36" fastline

sheave grooved 11/8"

TRAVELLING BLOCK: One (1) 667 Crosby McKissick 250 ton combination

block hook Web Wilson. 250 ton Hydra hook Unit 5 -

36" sheaves

SWIVEL : One (1) Oilwell PC-300 ton swivel

RIG LIGHTING: Explosion proof fluorescent. As per approved State

Specifications

MUD PUMPS : Two (2) Gardner Denver mud pumps Model PZ-8 each

driven by 800 HP EMD 79 motors - 8" stroke

MIXING PUMPS : Five (5) Mission Magnum 5" x 6" x 12" centrifugal

pumps complete with 50 HP, 600 Volt, 60 HZ, 3 phase

explosion proof electric motors

MUD AGITATORS : Six (6) Geolograph/Pioneer 40TD - 15" "Pitbull" mud

agitators with 15HP, 600 Volt, 60HZ, 3 phase explosion

proof electric motors

SHALE SHAKER : Two (2) Derrick high speed sandwich linear motion shale

shakers, Model No K48-96-DF3

DEGASSER : One (1) Drilco See-Flo

DESILTER : One (1) Pioneer T12-4 'Siltmaster' desilter

12 x 4" cones

DESANDER : Harrisburg DSN-1000 unit with 2 x 10" cones

GENERATORS: Four (4) Brown Boveri 600 Volt, 3 phase, 60HZ AC

generators. Powered by four (4) Cat 3412 PCTA diesel

engines

DRILL PIPE SAFETY

VALVE : One (1) Griffith 6½" inside blowout preventers (4" IF)

One (1) Griffith 6½" stabbing valve (4" IF)

AIR COMPRESSORS &

RECEIVERS: Two (2) LeRoi Dresser Model 660A air compressor

packages c/w 10 HP motors rated at 600 Volts, 60 HZ, 3 phase Receivers each 120 gallon capacity and fitted with

relief valves

AIR WINCH : One (1) Ingersol Rand HU-40 with %" wireline. Capacity

2,000 lb

POWER TONGS : One (1) Farr 135% - 5½" hydraulic casing tongs c/w

hydraulic power pack and hoses and torque gauge

assembly

ROTARY TABLE : One (1) Oilwell A 20½ rotary table torque tube driven

from drawworks

MUD TANKS

One (1) Shaker tank total 265 bbls with sand trap - 15 (SHAKER)

bbls with desander tank - 120 bbls

One (1) Intermediate tank total 240 bbls (INTERMEDIATE)

with desilter tank - 120 bbls with settling tank - 120 bbls

One (1) Suction tank total 241 bbls (SUCTION)

with pill tank - 25 bbls

with suction tanks - 108 bbls each

Total system: 746 bbls

One (1) Mission Magnum 2" x 3" centrifugal pump TRIP TANK PUMP

complete with 20 H, 600 Volts, 60 HZ, 3 phase

explosion proof motors

One (1) McEvoy choke and kill manifold 3" 5,000 psi CHOKE MANIFOLD

with hydraulic Swaco "super" choke

11,000' 41/2" 16.60 lb/ft drill pipe, with 4 IF connections DRILL PIPE

,8,800' "E" Grade 2,200' "G" Grade

One (1) - 41/2" OD Grade 'G', 5 foot long **PUP JOINTS**

One (1) - 41/2" OD Grade 'G', 10 foot long One (1) - 41/2" OD Grade 'G', 15 foot long

HEVI-WATE DRILL

12 joints of 41/2" hwdp PIPE

6 - 8" OD drill collars DRILL COLLARS

24 - 61/2" OD drill collars 1 - 61/2" OD short drill collar

One (1) 41/4" Square Kellys 40 foot long complete with **KELLY**

Scabbard

One (1) 20 HDP Varco kelly drive bushing KELLY DRIVE

One (1) Griffith Upper Kelly Cock 7¾" with 65%" API KELLY COCK (UPPER):

connections

KELLY COCK

One (1) Griffith Lower Kelly Cock 61/2" OD with 4" IF (LOWER)

connections

One (1) only 81/8" Bowen series 150 FS overshot c/w FISHING TOOLS

grapples & Packoff to catch Contractors downhole

equipment

One (1) only 8" OD fishing magnet 41/2" reg pin

One (1) only 71/8" OD Reverse circle junk basket 4" IF

box

One (1) only Fishing Jars 61/2" OD Griffith Fishing 4" IF

pin & box

One (1) only 12" Junk Mill - 65/8" reg pin

One (1) only 8" Junk Mill - 41/2" reg pin

SUBSTITUTES

Two (2) Bit Subs - 65/8" reg double box

Two (2) Bit Sbs - 41/2" reg x 4" IF double box

One (1) X/O Sub - 75/8" reg x 65/8" reg double box

One (1) X/O Sub - 4" IF box x 41/2" IF pin

One (1) X/O Sub - 41/2" reg x 4" IF double pin

Two (2) X/O Sub - 65/8" reg pin x 4" IF box

One (1) Junk Sub - 65/8" reg pin and 65/8" reg box

One (1) Junk Sub - 41/2" reg box x 41/2" reg pin

One (1) Junk Sub - 4½" reg box x 4" IF box

Two (2) Kelly Saver Subs c/w rubber 4" IF pin & box

Two (2) Circulating Subs - 4" If x 2" Fig 1502 hammer

union

HANDLING TOOLS

1 only 13%" Baash Ross 150 ton side door elevator

1 only 133/8" single joint elevators

1 only 95/8" Webb Wilson 150 ton side door elevators

1 only 95%" single joint elevator

1 only 7" BJ 200 ton side door elevator

1 only 7" single joint elevator

2 only 4½" BJ 250 ton 18 degree taper D/P elevators

1 only 3½" BJ 100 ton tubing elevator

1 only 21/8" IUS 100 ton tubing elevator

(all single joint elevators c/w slings & swivel)

1 only 8" Webb Wilson 150 ton single ton door elevator

D/C

1 only 6½" Webb Wilson 150 ton single ton door

elevator D/C

(above c/w lift nubbing and bails)

1 only 133/8" Varco CMS-XL casing slips

1 only 95/8" Varco CMS-XL casing slips

1 only 7" Varco CMS-XL casings slips

2 only 41/2" Varco SDXL D/P slips

1 only 31/2 Varco SDML tubing slips

1 only 37/8" Varco SDML tubing slips

2 only 8" - 61/2" DCS-R drill collar slips

ROTARY TONG

One set BJ type 'B' c/w latch & lug jaws 133/8"-31/2"

BIT BREAKERS

Four (4) 17½", 12¼", 8½", 6"

FUEL TANK

1 only 30,000 litres

WATER TANK

1 only 400 bbls

:

DRILLING RATE

RECORDER

1 only open 6 drill sentry recorder to record:

. weight

. penetration (feet)

pump pressure (0-6,000 psi)

electric rotary torquerotary speed (rpm)

• pump spm (with selector switch)

DEVIATION

INSTRUMENT

1 set Totco 'Double Shot' deviation instrument 0°-8°

INSTRUMENTS &

INDICATORS

1 only Martin Decker Auto Driller SA-102 satellite

1 only drillers console including the following equipment:

. Martin Decker Weight Indicator type 'D'

. Electric rotary torque gauge

Pit scan

. SPM gauge (2 per console)

. Rotary rpm gauge

MUD TESTING

1 set Baroid mud testing laboratory (standard kit)

RATHOLE DRILLER

One (1) fabricated rotary table chain driven

WATER PUMPS

Three (3) Mission Magnum 2" x 3" centrifugal pumps c/w 20 HP, 600 Volts, 69 HZ, 3 phase explosion proof

motors

AUGER

One (1) 271/2" auger 4" IF box

CUP TESTER

One (1) Grey Cup Tester c/w test cups for 95%" & 133%"

DRILLING LINE

5,000' 11/8" - E.I.P.S.

TRANSPORT EQUIPMENT AND MOTOR VEHICLES

1 International 530 Forklift

1 Mack Oilfield Truck

2 Toyota 4 x 4 units -

1 Tray Top Utility

1 Crew Wagon

CAMP EQUIPMENT

- 4 8-Man Bunkhouses
- 1 Recreation/Canteen unit
- 1 Ablution/Laundry/Freezer unit
- 1 Kitchen/Cooler/Diner unit
- 2 Toolpushers/Engineer units with bathrooms
- 1 Combined Water/Fuel Tank unit
- 2 CAT 3304PC generator sets each 106Kva, 50 HZ

Note: Contractor reserves the right to replace any listed item with a replacement of equal or greater capacity.

EQUIPMENT DATA/SPECIFICATIONS

1 Maximum Pull

(i)	Drill Pipe	E Grade	G Grade	
	41/2"	16.6 lbs/ft	16.6 lbs/ft	
	New	330,560 lbs	462,780 lbs	
	Used Premium	260,100 lbs	364,140 lbs	

(ii) Kelly - OMSCO

 $4\,\mbox{\ensuremath{\,^{1}\!\!\!/}}$ " Square 40 ft long w/- $65\!\mbox{\ensuremath{\,^{8}\!\!\!/}}$ " Reg L/H/ Box & 4" IF Pin Tensile Yield

1,488,500 Drive Section

1,924,300 Lower Pin Connection

(iii) Swivel - OILWELL PC 300 w/- 65%" Reg LH Box

Deadload Capacity (AP Strength Rating): 300 tons API Bearing Load @ 100 rpm: 192 tons

2 Maximum Hook Load

(i) Drawworks - DRECO 700E - 750 combined engine hp

Make: Dreco 700E
Model #: D-700-E

Serial #: -48-

SPEED	8 LINES	BLOCK SPEED FT/MIN	10 LINES	BLOCK SPEED FT/MIN
Low	288,000	57	347,000	46
High	135,000	122	163,000	98

Wireline

11/8" Extra Improved Plow Steel

130,00 lbs single line pull

(ii) Mast DRECO

Model #: M12713-510-1

(a) Rating: Gross Nominal Capacity

510,000 lbs

(b) Mast: (Static Load)

8 lines 340,000 lbs

10 lines 365,000 lbs

Max Wind Resistance:

84 mph actual velocity w/- 150,000 lb pipe set

back

100 mph actual velocity w/- zero pipe set back &

zero hook load

Substructure - DRECO: One piece (iii)

Dimensions: Height:

14 ft

Width:

13 ft 6 in

Length:

50 ft

BOP clearance:

12 ft

Capacity Set Back Area

250,000 lbs

Capacity Rotary Table Beams

275,000 lbs

Simultaneous Capacity

525,000 lbs

Blocks - 667 CROSBY McKISSICK TRAVELLING BLOCK (iv) w/- 250 ton Hydra Hook - combination - total 500,000 lbs

Rotary Table - OILWELL A201/2" (v) complete with API Split Master Bushings and 1 & 2 inset bowls Supportable deadload capacity 350 tons

3 Pumps No 1 & No 2

Make: (i)

GARDNER DENVER (750 hp)

Model: (ii)

PZ-8 :

Max Liner Size: 7" x 8" stroke

Power Source: (iii)

800 hp EMD & chain driven

Maximum Discharge Pressure (iv)

LINER	PSI
7"	1996
61/2"	2315
61/4"	2504
6"	2717
51/2"	3233
5"	3912

BOP Equipment

- Hydril 135%" 3000 psi Spherical Annular BOP studded top flanged bottom 1
- Hydril 135%" 500 psi Double Gate BOP flanged top & bottom 1
- McEvoy Choke Manifold w/- 1 Swaco hydraulic adjustable choke 5000 psi 1

5 Generators

Four (4) Brown Boveri 600v, 3 phase, 60 HZ. AC generators and powered by four (4) Cat D3412 PCTA diesel engines.

Note: The above are all original equipment manufacturers specifications.

6 <u>Derrick Shale Shakers</u>

The Derrick - Sandwich Model K-48-96-DF-3-SM Shale Shaker is one of the most advanced designed vibrating Screen systems available to the Oil industry. This Derrick design is a result of 30 years experience in the mining and chemical industries.

The design incorporates the most efficient combination of many variables of pitch, frequency and layouts. The most significant development of these units is a non plugging sandwich type screen panel assembly which is patented to the Derrick Corporation. The assembly uses identical screen cloths bonded together with a backing panel in a sandwich arrangement. The wires of the intermediate cloth interfere with a particle that would plug the top cloth. With the use of a tension bolt compression tool screen panels can be changes in a matter of minutes.

The three section unit with a pitch increasing from 20 to 30 degrees produces excellent results. With a flatter pitch at the feed end of the unit, the maximum amount of fluid is achieved. As fluid is removed, it becomes necessary to increase pitch to convey the solids.

The general layout and installation of unit is similar to most shakers. As an additional feature a hydraulically operated by pass valve has been incorporated in place of mechanical slide gates which tend to jam and are prone to leak.

The vibrator and all electrical equipment on Shaker are division Class 1 Group D for hazardous locations. An electric lubricator on a timed cycles insures that the vibrator is properly lubricated.

These designs coupled with a constant program of research to improve or existing and develop new ideas make Derrick sandwich Shale Shakers one of the most advance unit available to the Drilling industry.

APPENDIX 2 - DRILLING FLUID REPORTS

Independent Drilling Fluid Services Drilling Fluid Report

Report# 18 Date 5-Jun Soud Date 19 May 1996 1,600 (M.)To Depth

Skull Creek # 1 O. D. & E. CONTRACTOR Block No PPL - 1 Otway Basın Location State Victoria RIG No TOR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Dav' BAKER Drilling Assembly Casing Mud Volume Bbis 8.5 Туре inch @ 9.0 Metres Pump size 6 O" 8.0 ins ne " 45 Type Length 9 625 inch @ 332 5 Metres Drill String Cap Total Volume PZ - 8 % Effic Make/Model 1 GD 0.95 45 HWt Type 42 Length 70 inch @ 1614 Metres In Storage 0 Weight Make/Model 2: G.D. PZ - 8 % Effic 0.95 65 Length nc. Other MUD TYPE F. W. Polymer % O/G: ~ Annular Velocity Bhl/stk 0.067 Stk/min DC Length Mud Properties DP size 45 (Ft/M) ##### Bbl/stk 0 067 Stk/min GPM · SAMPLE From DC size 65 (FVM) ###### Bottoms up : ##### PRESSURE : TIME Sample Taken 08.00 DC size (Ft/M) Total Circ. : ##### Type surf/sys. 3 Flowline TEMPERATURE deg. C N.C. MUD PROPERTY SPECIFICATIONS Metres 1 700 Other: WEIGHT 9.50 Plastic Viscosity: Viscosity Yield Point : Funnel VISCOSITY (sec/qt.) API @ 47 By Authority . ~ Operator's written Drilling Contractor PLASTIC VISCOSITY cP@ deg. C ##### 12 Operator's Representative Other YIELD POINT (Ib/100ff2) ##### 11 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 2 12 FILTP API (cm3 / 30 min.) @ 6.4 ON COMPLETING THE CEMENT OPERATION, THE SURFACE VOLUME API E Filtrate (cm3 / 30 min.) @ WAS TREATED PRIOR TO DUMPING INTO THE SUMP CAKE Thickness (32nd. in API / HTHP) 1 THE CHEMICALS WERE SELECTIVELY MIXED TO GAIN COMPATABILITY SOLIDS Content (% by Vol.) Calc Retort **** 8.6 ALUMINIUM SULPHATE WAS ADDED AT 294 KG / BBL. LIQUID Content (% by Vol.) Oil/Water #### 91.4 LIME WAS ADDED AT 0.21 KG / BBL SAND Content (% by Vol.) Tr DRILLPOL WAS ADDED AT 0 17 LT / BBL METHYLENE BLUE CAPACITY lh/hhi cm3/cm3 15.0 12 deg. C 9.4 ALKALINITY Mud ALKALINITY Filtrate 0 27/1 13 CHLORIDE (mg/L) 3,100 Total HARDNESS (mg/L) 560 rE (mg/L) Tr OPERATIONS mg/L) CASING WAS RUN WITH NO PROBLEMS TO THE REVISED DEPTH. KCL (% by Wt.) THE VOLUME WAS CIRCULATED [1.2 TIMES] AND A SAPP / BIOCIDE PHPA (Calc lb/bbl) (40 BBL) SWEEP WAS PUMPED PHPA (Excess lb/bbl) FROM THIS POINT THE CEMENT OPERATION FOLLOWED WITH NO RHEOLOGY - 600 / 300 / 6 (readings) PROBLEMS 35/23/3 MUD ACCOUNTING (BBLS.) SOLIDS CONTROL EQUIPMENT Flu "uilt & Received Fluid Lost or Disposed Summary Гуре Man Hr. Cones Hr. Screen Size Hr. 722 Initial Volume Centrifuge 0 D'sand 2 0 S210/S175/S175 4.5 w/ fresh water 0 Desilter Degasser Drilco 0 12 0 S210/S175/S175 4.5 " recycled " Ω Downhole 31 Fluid Received 0 **Drill Water** 0 Dumped SOLIDS EQUIPMENT EFFICIENCY Other Ω Other Overflow (ppg.) Underflow (ppg.) Desander Final Total Desilter Total Received 0 Total Lost 722 (Circulating Vol.) SOLIDS ANALYSIS (ppb / %) Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0 0 Jet Velocity #### FT/SEC Barvtes 365 5 360 6.20 9.5 1.0 Impact Force 31.00 Bentonite Drillool 6 4 75.75 68.6 303.00 Drilled Solids 7.5 ##### HHP / in? Cronox 2-100 1 ннр 881.15 Low Gravity Solids 78 1 ###**#** 86 0 Average S. G. 2.60 #### Solids Bit Press. Loss 24 24 0 ... 25 70 616.80 Med. "n" #### 0 605 Csg. Seat Frac Pres #1ck #2 ck PSI SAPP 9 9 67 95 -#### 2 696 " Equiv. Mud Wt. 0 611.55 Med. "K" PPG Surfle B54X 0.530 ECD 1 #### 207.75 Low "n" PPG 0 4.30 Crit.Flo @ DC/DP - GPM Low "K" ium Sulphate 56 24.00 1.344.00 **Cumulative Cost:** .ime 18 5.80 \$ 1018 23.20 \$ 37,431 ADDRESS South Australia TELEPHONE 08 - 338 3027 Any opinion and I or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made y ourselves or our agents as to it's correctness or completeness, and no liability is assumed for any damages resulting from the use of same

Independent Drilling Fluid Services **Drilling Fluid Report**

17 Date 4-Jun Spud Date 19 May 1996 Depth 1,700 (M.)To 1,700

Skull Creek #1 O. D. & E. WELL NAME and No CONTRACTOR Block No PPL - 1 Otway Basin RIG No TOR'S REPRESENTATIVE Henry FLINK / Kevin KELLY Dav' BAKER REPORT FOR Drilling Assembly Casing Mud Volume Bbls Circulation Data 35 Type SSH Jets 12/12/14 16 90 349 Pits 300 [21] inch @ 6 0" 45 Length 1402 9 625 inch @ 332 5 Metres Drill String Cap. 73 DP Type Total Volume 722 Make/Model 1: G D PZ - 8 % Effic 0.95 Type 42 Length 1388 inch @ Metres In Storage: Weight Make/Model 2: G D PZ - 8 % Effic 0 95 Length 1595 12 79 MUD TYPE F. W. Polymer 25 0 Annular Velocity DC % O/G: Bbl/stk 0 067 Stk/min 126 Bbl/M 8.38 OP size 4.5 166 (FVM) Lam Bbl/stk 0.067 Stk/min Length **Mud Properties** 352 SAMPLE From F/Line Pit DC size 65 287 (Ft/M) Turb Bottoms up: 42 PRESSURE · 1 150 07.30 TIME Sample Taken 22.00 DC size . ~ (FUM) Total Circ. : 3 Type surf/sys. Flowline TEMPERATURE 26 N.C. deg. C MUD PROPERTY SPECIFICATIONS DEPTH 1.700 1,700 < 6.0 Other : Chlorides max @ < 10k 9.45 9.50 WEIGHT ppq. Viscosity N.C. Plastic Viscosity < 18 Yield Point: 42 40 Funnel VISCOSITY (sec/qt.) API @ ~ Operator's written deg. C By Authority: Drilling Contractor PLASTIC VISCOSITY CP @ 10 deg. C 11 yes Operator's Representative Other yes YIELD POINT (Ib/100ft2) 8 8 FLUID SUMMARY AND RECOMMENDATIONS 2 2 GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 8 FILTC 'S API (cm3 / 30 min.) @ 5.7 5.5 NO TREATMENT WAS REQUIRED IN THIS PERIOD ≥ Filtrate (cm3 / 30 min.) @ ~ dea. C CAKE Thickness (32nd. in API / HTHP) 1 1 SOLIDS Content (% by Vol.) Calc 8.2 8.6 THE ID - GEL IS TO BE USED FOR THE CEMENT OPERATION AND HAS Retort LIQUID Content (% by Vol.) Oil/Water 91.8 91.4 BEEN PREHYDRATED [BY HALIBURTON] FOR THIS Tr Tr SAND Content (% by Vol.) METHYLENE BLUE CAPACITY 14.0 10.0 THROUGH THE JETTING OF THE CELLAR ON TWO OCCASIONS. cm3/cm3 рΗ 9.8 9.8 WATER WAS PERMITTED INTO THE SURFACE SYSTEM, THIS DID NOT ALKALINITY Mud (Pm) CAUSE ANY PROBLEMS TO THE MUD AT THIS TIME ALKALINITY Filtrate (Pf/Mf) 0.46/1.63 0.36/1.55 CHLORIDE (ma/L) 3.200 3,000 Total HARDNESS (mg/L) 600 480 TE (mg/L) 20 TrOPERATIONS SUMMARY THE SYSTEM WAS CIRCULATED CLEAR OF GAS WITH A BALANCED ima/L) KCL (% by Wt.) MUD WEIGHT, PRIOR TO PULLING OUT - USING A BARYTES PILL TO CLEAR PHPA (Calc. lb/bbl) THE PIPE AND COROSSION INHIBITOR TO TREAT THE WORK STRING PHPA (Excess lb/bbl) PICK UP AND RUN 7" CASING RHEOLOGY - 600 / 300 / 6 (readings) 30/19/2 28/18/2 EQUIPMENT MUD ACCOUNTING (BBLS.) SOLIDS CONTROL Shaker# Screen Size F١٠ **Puilt & Received** Fluid Lost or Disposed Summary Man Hr. Type 1 \$210/\$175/\$175 Prei 2 Desander 6 Initial Volume 717 Centrifuge 0 2 w/ fresh water 0 Desilter 0 0 12 0 S210/S175/S175 Degasser Drile " recycled " 0 Downhole 19 Fluid Received 35 Drill Water 0 0 SOLIDS EQUIPMENT EFFICIENCY Dumped 5 Other 35 Other Fluid Lost 30 Overflow (ppg.) Underflow (ppg.) Output (gal/m) 9.5 12.6 Desander Final Total 722 Total Received Total Lost (Circulating Vol.) SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA 01 00 Jet Velocity 304 Rec'd. Used Balance Unit \$ High Gravity Solids FT / SEC Product Inventory Cost \$ 526 Barvtes LBS 400 365 Bentonite 2.9 0.3 Impact Force 6.20 2.8 75.3 8.3 HHP / in2 Drilled Solids Cronox 2-100 0 78.2 8.6 161 1 Low Gravity Solids HHP 881 15 Cronox C798M 4 4 132 00 Average S. G. 2.60 Solids Bit Press. Loss 784 PS KCI 0 Med. "n" #1ck # 2 ck 0.659 0 637 Csg. Seat Frac Pres 320 25 70 SAPP PPG 9 0 q 0.313 1.731 " Equiv. Mud Wt. 67 95 Med. "K" Surflo B54X 0.489 0.477 ECD 9.70 PPC 1 0 207 75 Low "n" 443 0.901 4.69 Crit.Flo @ DC/DP - GPM 318 225 20 205 8.13 162.60 Low 0 Cumulative Cost: Daily Chemical Cost: \$ 33,413 908 TELEPHONE 08 - 338 3027 ENGINEER EDD PERKINS South Australia Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made by ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

Independent Drilling Fluid Services Drilling Fluid Report

16 Date 3-Jun Spud Date 19 May 1996 1,700 (M.)To Depth 1,700

Skull Creek # 1 O. D. & E. CONTRACTOR Otway Basın PPL - 1 Location State Victoria RIG No. "OR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Dav' BAKER Drilling Assembly Casing Mud Volume Bbis Circulation Data 85 Type SSH 90 Jets . 12/12/14 inch @ 349 Pits: 358 6 0" nρ " 4.5 Ε Length 1402 9 625 inch @ 332 5 Drill String Cap. 73 Metres Total Volume Make/Model 1. G D PZ - 8 % Effic -w. " 45 Туре 42 Lenath 138 8 ınch @ 0 Weight Make/Model 2: G D PZ - 8 % Effic 0.95 65 Length 159 5 Other 12 75 MUD TYPE F. W. Polymer % O/G: 25 0 Annular Velocity Bbl/stk 9 067 Stk/min 7.65 Length **Mud Properties** DP size 4.5 151 (FVM) Lam Bbl/stk 0.067 Stk/min 115 GPM: 321 SAMPLE From Pit F/Line DC size 6.5 262 (Ft/M) Turb Bottoms up: 46 PRESSURE: 1,150 IME Sample Taken 17 00 20.00 DC size ~ (FVM) Total Circ. Type surf/sys. 3 Flowline TEMPERATURE N.C. 29 deg. C MUD PROPERTY SPECIFICATIONS OFPTH Metres 1 700 1 700 Other: Chlorides max. @ < 10k < 60 WEIGHT 9.50 9.40 N C Plastic Viscosity Viscosity < 18 Yield Point: Funnel VISCOSITY (sec/qt.) API @ 44 44 By Authority: ~ Operator's written **Drilling Contractor** PLASTIC VISCOSITY CP@ 8 deg. C 11 yes Operator's Representative Other YIELD POINT (Ib/100ft2) 12 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 2 8 2 FILTRATE API (cm3 / 30 min.) @ 4.2 5.2 CAUSTIC SODA ONLY WAS USED TO MAINTAIN THE DESIRED API HTHP Filtrate (cm3 / 30 min.) @ BARYTES FOR WEIGHTED PILLS ONLY. kness (32nd. in API/HTHP) 1 1 SOLIDS Content (% by Vol.) Calc. 8.6 7.8 AT THIS POINT, DID NOT RENEW VOLUME AS THE AREA WILL BE NEEDED iQUID Content (% by Vol.) Oil/Water 91.4 92.2 IN THE NEXT SECTION OF THE OPERATION SAND Content (% by Vol.) Tr Tr METHYLENE BLUE CAPACITY lh/bbl 13.0 12.0 cm3/cm3 MINIMISED THE YIELD POINT TO MINIMISE THE SURGE PRESSURES. Strip 20 deg. C 10.0 9.6 ALKALINITY Mud THE WATER SAMPLE GATHERED @ 15.00 HOURS SHOWED THE ALKALINITY Filtrate (Pf/Mf) 0.55/1.62 0.38/1.47 FOLLOWING RESISTIVITY - 0 629 @ 52 DEGREES - F : pH - 7.2 ; CHLORIDE (mg/L) 3,300 T Hardness - < 50 ppm; Clondes - 6.100 ppm; SO3 - Nil. Total HARDNESS (mg/L) 480 640 fi.e. TEST EXTRACTION! E (ma/L) 40 20 OPERATIONS SUMMARY را/L) MADE UP THE TEST STRING AND RAN IN FOR D.S.T. #7. KCL (% by Wt.) THIS WAS COMPLETED SUCCESSFULLY AND AFTER REVERSE CIRC -PHPA (Calc. lb/bbl) ULATING. THE SYSTEM WAS PUMPED AROUND [AND WHEN IN BALANCE] PHPA (Excess lb/bbl) A PILL WAS PUMPED WITH THE TEST STRING BEING PULLED OUT OF THE RHEOLOGY - 600 / 300 / 6 (readings) 28/20/1 29/18/1 MUD ACCOUNTING (BBLS.) SOLIDS CONTROL EQUIPMENT Fluid Built & Received Fluid Lost or Disposed Summary Гуре Shaker# Screen Size 780 _ 2 Initial Volume Centrifuge 0 D'sand 0 1 S210/S175/S175 3.5 25 Desilter 6 Degasser 0 D'sitte 12 1.5 3.5 2 S210/S175/S175 " recycled " 0 Downhole 45 25 Fluid Received Drill Water 0 Dumped SOLIDS EQUIPMENT EFFICIENCY 88 Fluid Lost Overflow (ppg.) Underflow (ppg.) Desander Final Total 717 Desilter 9.45 otal Received Total Lost 88 (Circulating Vol.) SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA Inventory Used Rec'd. Balance 0.1 Unit \$ Cost \$ High Gravity Solids 00 Jet Velocity Earytes 460 60 64 0.7 Impact Force 486 372.00 Bentonite LBS 64.7 Drilled Solids 71 HHP/in2 Prispac - Low Vis 27 0 27 Low Gravity Solids 712 78 ННР 6 0 6 84.05 Average S. G. 2.60 Solids Bit Press. Loss Laustic Soda 26 1 25 Med. "n" #1ck # 2 ck 0.485 0.688 Csg. Seat Frac Pres rspac 19 0 152 28 Med. "K" 0.971 1.263 " Equiv. Mud Wt. 14.04 PPG 0 0.500 0.477 Total nozzle area Low "n" 0.331 SQ INC 0 0.885 4.69 Low 0 Daily Chemical Cost: Cumulative Cost: s 32,505 TELEPHONE 08 - 338 3027 ADDRESS South Australia Any opinion and I or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same

Independent Drilling Fluid Services Drilling Fluid Report

15 Report# Date 2.Jun Spud Date 19 May 1996 1,700 (M.)To 1,700 Depth

Skull Creek #1 O. D. & E. CONTRACTOR Block No PPL - 1 Otway Basın State Victoria Location RIG No TOR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Dav' BAKER Drilling Assembly Casing Mud Volume Bbls Circulation Data 85 Type SSH 90 Jets 12/12/14 inch @ 349 Pits 358 [21] 5 O" np 4.5 1402 9.625 inch @ 332.5 Drill String Cap 73 Total Volume 780 Make/Model 1 GE PZ · 8 % Effic 0.95 4.5 42 HWI Type Length 138.8 18 3 4 In Storage P7 - A % Effic 0.95 159.5 DC F. W. Length Other 12 75 MUD TYPE Polymer 25 0 Annular Velocity Bbl/stk 0.067 Stk/min 7 45 Bhl/M DC Length Mud Properties 4.5 147 (Ft/M) Lam | Bbl/stk 0.067 Stk/min 313 GPM SAMPLE From F/L F.Line DC size 6.5 255 (Ft/M) Turb Bottoms up 47 PRESSURE : 1 100 TIME Sample Taken 9 30 16 30 3.30 (Ft/M) Total Circ. 105 Type surf/sys. 3 Flowline TEMPERATURE N.C. 25 29 deg. C MUD PROPERTY SPECIFICATIONS DEPTH 1,700 1,700 1,700 > 9.2 Filtrate < 50 Other : Chlorides max @ < 10k WEIGHT ppq. 9.45 9.50 9 45 N.C. Plastic Viscosity Viscosity < 18 Yield Point: >7 Funnel VISCOSITY (sec/qt.) API @ 22 46 12 48 ~ Operator's written deg. C Drilling Contractor PLASTIC VISCOSITY CP @ 13 12 10 VES Operator's Representative Other YIELD POINT (Ib/100ft2) 8 7 8 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 2 9 2 11 FILT' API (cm3 / 30 min.) @ 4.5 5.4 4.8 AT THIS TIME VOLUME LEVELS WERE KEPT AT SLIGHTLY HIGHER API h...e Filtrate (cm3 / 30 min.) @ THAN DRILLING VOLUME, DUE TO THE NATURE OF THE OPERATIONS CAKE Thickness (32nd. in API/HTHP) 1 SOLIDS Content (% by Vol.) Calc. Retort 8.2 8 2 A MAINTENANCE PREMIX WAS BUILT (PRIOR TO) AND ADDED ON CIRC -LIQUID Content (% by Vol.) Oil/Water 91.8 91.8 ULATING, AFTER WIPING THE HOLE SAND Content (% by Vol.) Tr Tr Tr METHYLENE BLUE CAPACITY lh/hbl cm3/cm3 8.0 14.0 THE PRODUCT DRISPAC WAS BLENDED AT 0.2 PPB AND THE 10.0 10.0 20 dea. C 9.8 DRISPAC "SUPER LOW" WAS MIXED AT 0.19 PPB ALKALINITY Mud WITH THE GAS INTERFERENCE, THE DH HAS BEEN KEPT AT A MIN -ALKALINITY Filtrate 0.58/1.64 0.52/1.78 IMUM OF 95 TO STOP DETERIATION OF THE FLUID CHLORIDE (mg/L) 3.800 3.600 3.300 Total HARDNESS (mg/L) 580 640 520 DOWN-HOLE LOSSES WERE NOMINAL IN THIS PERIOD FE (mg/L) 60 60 40 OPERATIONS SUMMARY (mg/L) KCL (% by Wt.) WHEN THE DISIT OPERATION WAS COMPLETED AND A CIRCUL -PHPA (Calc. lb/bbl) ATION WAS COMPLETED. THE TEST STRING WAS PULLED OUT AND PHPA (Excess lb/bbl) THE WORKING STRING WAS RUN IN TO WIPE AND CIRCULATE BOTTOMS RHEOLOGY - 600 / 300 / 6 (readings) 28/18/1 UP ON COMPLETING CIRCULATING, A SLUG WAS PUMPED TO POOH. GAS PEAK 105 UNITS @ BOTTOMS UP MUD ACCOUNTING (BBLS.) SOLIDS CONTROL FOURMENT Fli Fluid Lost or Disposed uilt & Received Summary Гуре Hr. Premia 0 Initial Volume 0 2 0 Centrifuge 2 D'sand S210/S175/S175 w/ fresh water Ω 7 12 0 1.5 Degasser D'silter S210/S175/S175 Drilco 0 Fluid Received " recycled ' Downhole 25 0 Drill Water 0 0 Dumped SOLIDS EQUIPMENT EFFICIENCY 0 2 Other Other Fluid Lost 35 Underflow (ppg.) Overflow (ppg.) Output (gal/m) 0 Desilter 13.2 Total Received 35 Total Lost (Circulating Vol.) SOLIDS ANALYSIS BIT / HYDRAULICS DATA (ppb / %) Balance ___0.1 Inventory Rec'd. Used High Gravity Solids 0.0 Jet Velocity 270 Unit \$ Cost \$ FT / SEC Barvtes 520 60 460 6 20 8.6 09 impact Force Bentonite LBS 66.0 72 HHP / in2 2.0 Drilled Solids Drispac - Low Vis 30 3 456.84 152.28 Low Gravity Solids 746 82 112 Defoam 1 0 PS 84 05 Average S. G. 2 60 616 Solids Bit Press, Loss Caustic Soda 27 26 21 38 21.38 Med. "n" 0 695 0 637 Csg. Seat Frac Pres 320 P5 #1ck #2 c Drispac 22 3 10 152 28 456.84 0 276 1.731 " Equiv. Mud Wt. 14.04 PPG Med. "K" 0 0.511 0.477 Total nozzle area 0.371 SQINCE Low "n" 0 "K" 0.870 4 69 0 Daily Chemical Cost: Cumulative Cost: 1,307 \$ 32,112 South Australia TELEPHONE 08 - 338 3027 **ADDRESS** Any opinion and I or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made

urselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same

Independent Drilling Fluid Services Orilling Fluid Report ACCOUNT OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE

Report# 14 Date

Spud Date 19 May 1996

Depth 1,700 (M)To 1,700

WELL NAME and N	ło	Skull	Creel	4 1		CONTRACTOR O. D. & E.
Block No PPL	. 1	Location	Otway Basın	State	Victoria	RIG No 30
TOR'S REPR	ESENTA	TIVE	Henry FLIN	K / Kevin KE	LLY	REPORT FOR Dav' BAKER
Drilling	Assen	nbly	Casing			Mud Volume Bbls. Circulation Data
Bit size 35 Type	SSF	Jets 12/12/14	16 inch 4	⊕ 90 Metre	Hole .	349 Pits 393 Pump size [2*] 60" * 80 ins.
OP " 45 Type	E	Length 1402	9 525 inch (9 3325 Metre	s Drill String Cap	73 Total Volume 815 Make/Model 1 G D PZ · 8 % Effic 0 9
нит 45 Туре	42	Length 138.8	- inch @		s In Storage	0 Weight Make/Model 2 G D PZ 8 % Effic 0.9
	th 159	5 Other 12.75	MUD TYPE:	F. W. Polym	ner	% O/G 25 0 Annular Velocity Bbl/stk 0 067 Stk/min 126 Bbl/M 8 38
OC " ~ Lengt	h ~	_			Properties	DP size 4.5 166 (Ft/M) Lam Bbl/stk 0.067 Stk/min ~ GPM : 352
SAMPLE From TIME Sample Taken				F.Line 19.30	F.Line	DC size 65 287 (FVM) Turb Bottoms up: 42 PRESSURE: 1,350
Flowline TEMPERATI	IRE		deg. C		20.30	DC size - i - (FVM) - Total Circ. : 97 Type surf/sys. 3 MUD PROPERTY SPECIFICATIONS
DEPTH Metre			Geg. G	1,700	1,700	Weight: > 9.2 Filtrate: < 6.0 Other: Chlorides max @ < 10k
WEIGHT ppg.				9.40	9.40	Viscosity: N.C. Plastic Viscosity: < 18 Yield Point: >7
Funnel VISCOSITY (sec/qt.) A	PI@ 23	deg. C	44	47	By Authority: ~ Operator's written ~ Drilling Contractor
PLASTIC VISCOSITY	cP@	35	deg. C	13	14	yes Operator's Representative yes Other
VIELD POINT (IB/100)	ft2)			9	11	FLUID SUMMARY AND RECOMMENDATIONS
GEL STRENGTH (Ib/	100ft2)	10 sec. / 10 min.		2 10	2 12	
FILTRATE API (cm3 /	30 min.)	@		7.1	5.0	FOR MAINTENANCE, PREHYDRATED POYMERS WERE USED TO
API HTHP Filtrate (c	m3 / 30 r	nin.) @ ~	d e g. C	-	- .	ENSURE THE DESIRED PARAMETERS WERE RETAINED
1		(PI / HTHP)		1 -	1 -	
SOLIDS content (% b		Calc.	/ Retort	7.8 ~	7.8 ~	PAC WAS ADDED AT 0 13 PPB & Low Vis WAS ADDED AT 0 3 PPB.
LIQUID Content (% by	-	Oil/Water		~ 92.2	92.2	WITH THE PREMIX PIT BEING FLUSHED OUT WITH MUD AFTERWARDS
SAND Content (% by				Tr	Tr	THE SPORT MUD OUT OF THE MUD OF T
METHYLENE BLUE C.	Strip	X lb/bbl	cm3/cm 20 deg. C	3 12.0 9.6	10.0 9.8	THE FIRST MUD CHECK WAS TAKEN OF THE MUD LEFT DOWN-HOLE DURING THE LAST LOGGING PERIOD
i'	(Pm)		zo deg. o	3.0	3.0	THE SECOND CHECK WAS TAKEN AFTER BOTTOMS - UP
ALKALINITY Filtrate	(Pf/Mf	1		0.42/1.38	0.5/1.53	THE SESSING CHECK WAS TAKEN AT TEN BOTTOMS - OF
CHLORIDE (mg/L)	(, ,,,,,,	,		4,200	3,600	
Total HARDNESS (mg]/L)			820	640	
S TE (mg/L)				80	80	OPERATIONS SUMMARY
/L)			-	~	~	LOGGING FOLLOWED AND WHEN FINISHED, A CHECK TRIP TO
KCL (% by Wt.)				~	-	1,600 METRES WAS CONDUCTED.
PHPA (Calc. lb/bbl)				~	~	THE SYSTEM WAS CIRCULATED AND A SLUG PUMPED TO CLEAR THE
PHPA (Excess lb/bbl)				_	~	PIPE. THEN THE WORKING STRING WAS CHANGED FOR THE TEST
RHEOLOGY - 600 / 300	1/6 (read	dings)		35/22/2	39/25/2	STRING AND DST's FOLLOWED
		MUD ACCOUNT	ING (BBLS.)			SOLIDS CONTROL EQUIPMENT
Fluid Built & Recei	ved	Fluid Lost or	Disposed	Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
Premix		Desander	7	Initial Volume	847	Centrifuge - 0 D'sand 2 2.5 1 S210/S175/S175 2.5
esh water	0	Desilter	0			Degasser Drilco 0 D'silter 12 0 2 S210/S175/S175 2.5
" recycled "	0	Downhole	22	Fluid Received	0	
Drill Water	0	Dumped	0			SOLIDS EQUIPMENT EFFICIENCY
Other	0	Other	3	Fluid Lost	32	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
						Desander 9.5 12.4 2.0
				Final Total	815	Desilter ~ 0
Total Received	0	Total Lost	32	(Circulating Vol.))	·
					. =	SOLIDS ANALYSIS (ppb / %) BIT/HYDRAULICS DATA
Product	Invent	tory Rec'd.	Used Baland	ce Unit \$	Cost \$	High Gravity Solids 0.1 0.0 Jet Velocity 304 FT/SEC
Barytes		550	30 520	6.20	186.00	Bentonite 38 04 Impact Force 521 LBS
						Drilled Solids 67 2 7.4 HHP / in2 2.8
Orispac - Low Vis		35	5 . 3 0	152 28	761.40	Low Gravity Solids 71 0 78 HHP 159
Defoam L		6	0 6	84 05		Average S. G. 2 60 Solids Bit Press. Loss 775 PS
Caustic Soda		27	0 . 27	21 38		Med. "n" #1ck # 2 ck 0 669 0 641 Csg. Seat Frac Pres 320 PS
Crispac		24	2 22	152 28	304.56	Med. "K" - " 0.338 2.344 " Equiv. Mud Wt. 14 04 PPC
,			0	•		Low "n" " 0 521 0.548 Total nozzle area 0.371 SQINCH
			0			Low "K" 0.855 4.18
<u> </u>			0	•		Daily Chemical Cost: Cumulative Cost:
		•				\$ 1,252 \$ 30,805
NGINEER EDD T	EDVIN	e	10000	. 0	Augtr-1:-	
	PERKIN:		ADDRESS ally or written herin		Australia arefully and maybe us	TELEPHONE 08 - 338 3027 ed if the user so elects, however, no representation or warranty is made
ourselves or our agents as						

y ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

Independent Drilling Fluid Services Drilling Fluid Report

Report# 13

Spud Date 19 May 1996 1.700 (M.)To 1,700

Skull Creek # 1 O. D. & E. CONTRACTOR WELL NAME and No. Otway Basın 30 Block No PPL - 1 Location State Victoria RIG No Henry FLINK / Kevin KELLY Dav' BAKER TOR'S REPRESENTATIVE REPORT FOR Drilling Assembly Casing Mud Volume Bbls Circulation Data 9.0 425 6·0" 85 SSH 16 Metres Hole Pits 12.1 8.0 Bit size Type Jets: 12/12/14 inch @ Pump size Length 1402 73 4 5 9 625 inch @ 332 5 Total Volume G D PZ · 8 % Effic 0.95 Type Metres In Storage 0 HW 45 Туре 42 Length 1388 ınch Weight Make/Model 2: G D PZ - 8 % Effic 0 95 25 0 Annular Velocity 159 5 Other 12 75 MUD TYPE F. W. Polymer % O/G Bbi/stk 0.067 Stk/min 126 8 38 DC Length Mud Properties DP size 4.5 166 (Ft/M) Lam Bbl/stk 0.067 Stk/min 352 GPM: DC Length SAMPLE From F.Line F.Line DC size 65 287 (Ft/M) Turb Bottoms up: 42 PRESSURE: 14.00 24.30 DC size (FUM) Total Circ. : 101 TIME Sample Taken 3 29 29 Flowline TEMPERATURE deg. C MUD PROPERTY SPECIFICATIONS DEPTH Metres 1.700 1.700 > 9 1 Filtrate: < 10 0 Other: Chlorides max. @ < 10k 9.30 9.30 WEIGHT Viscosity: N.C. Plastic Viscosity < 18 Yield Point : ppq. 41 38 Funnel VISCOSITY (sec/at.) API @ By Authority: ~ Operator's written 11 11 PLASTIC VISCOSITY cP @ deg. C yes Operator's Representative YIELD POINT (Ib/100ft2) 9 11 FLUID SUMMARY AND RECOMMENDATIONS 2 2 8 ON COMPLETION OF DST # 4 THE SYSTEM WAS CIRCULATED TO GEL STRENGTH (lb/100ft2) 10 sec. / 10 min 11 WORK THE GAS OUT OF THE MUD DUE TO THE LOW YIELD POINT, THIS FILTRATE API (cm3 / 30 min.) @ 7.3 5.7 ? Filtrate (cm3 / 30 min.) @ deg. C WAS READILY ACHIEVED WITH THE ASSISTANCE OF DEFOAMER TO CUT THE ENTRAINMENT WITH THE DEGASSER (DRILCO) 1 CAKE Inickness (32nd, in API/HTHP) 1 7.3 SOLIDS Content (% by Vol.) Calc. 7.0 OPERATING, NO SOLIDS CONTROL EQUIPMENT WAS RUNNING [BAR THE SHAKERS) TO ENSURE THAT NO AIRATION OF THE FLUID WAS TAKING LIQUID Content (% by Vol.) 92.7 93.0 OilWater Tr PLACE ALTHOUGH THIS MAY HAVE CAUSED SOME SOLIDS TO BE SAND Content (% by Vol.) Tr METHYLENE BLUE CAPACITY 13.0 11.0 ABSORBED, WITH THE BARYTES SLUGS ON TRIPS RAISING THE WEIGHT, THE PRIGRITY WAS TO STOP AIRATION AND ENSURE A SAFE BALANCED рΗ Strip 18 deg. C 9.8 10.0 ALKALINITY Mud ALKALINITY Filtrate WITH A BALANCED & LOW "BACK-GROUND". A SLUG WAS USED TO POH 0.58/1.66 0.65/1.63 (Pf/Mf) 3,800 4,000 AS PER INSTRUCTIONS [29 MAY] NO FURTHER SODIUM SULPHITE HAS CHLORIDE (ma/L) Total HARDNESS (mg/L) 420 540 BEEN ADDED TO THE SYSTEM 'TE (mg/L) 80 OPERATIONS SUMMARY 1,200 1.000 Continued From Above (mg/L) 0.24 0.21 WITH THE T/TOOLS LAID OUT, A BIT WAS RUN TO 1,600 METRES AND KCL (% by Wt. BOTTOMS - UP CIRCULATED DURING THIS TIME A VOLUME / MAIN -PHPA (Calc. lb/bbl) PHPA (Excess lb/bbl) TENANCE MIX WAS BLED INTO THE SYSTEM. TO BRING THE PROPERTIES INTO LINE PRIOR TO PUMPING A BARYTES SLUG AND PULLING OUT. RHEOLOGY - 600 / 300 / 6 (readings) 33/22/2 THE MUD WEIGHT IS CLIMBING (DUE TO ALL THE TRIP - SLUGS). MUD ACCOUNTING (BBLS.) CONTROL Fluid Lost or Disposed Shaker# Screen Size Fluid Built & Received Summary Hr. Hr. Hr. Type Man. Cones 824 0 2 0.5 1 S210/S175/S175 8.5 1 Centrifuge 0 7 12 0 8.5 83 2 \$210/\$175/\$175 Degasser 0 36 83 " recycled " Fluid Received 0 Drill Water Dumped SOLIDS EQUIPMENT EFFICIENCY Output (gal/m) 0 Other 23 60 Underflow (ppg.) Other Fluid Lost 1.7 Desander 12.6 94 Final Total Desilter Total Lost Total Received 83 60 (Circulating Vol.) SOLIDS ANALYSIS BIT / HYDRAULICS DATA (ppb / %) 0 1 0 0 Jet Velocity 304 Rec'd. Used High Gravity Solids Product Inventory Balance Unit \$ Cost \$ 515 Barytes 30 550 6.1 07 Impact Force 186.00 Bentonite 6 20 57.9 6.4 HHP / in2 2.8 Drilled Solids 157 Drispac - Low Vis 5 152.28 Low Gravity Solids 63.9 70 HHP CMC - LV 2.60 | Solids | Bit Press. Loss 767 2 71.70 143 40 Average S. G. 320 0 632 0 585 Csg. Seat Frac Pres PS Caustic Soda 29 2 27 21 38 Med. "n" #1ck #2 ck 14.04 0.389 2 935 " Equiv. Mud Wt. PPG Drisoac 5 152.28 761 40 Med. "K" 0.371 Polvahin 0.500 0.521 Total nozzle area SQ INCH 2 2 74.35 148.70 "n" Low 0.885 4 37 4 10 6 84.05 336.20 Low 0 Daily Chemical Cost: \$ 29,553 \$ 2,380 TELEPHONE 08 - 338 3027 ENGINEER **EDD PERKINS** ADDRESS South Australia Any opinion and I or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made

by ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same

Independent Drilling Fluid Services

Drilling Fluid Report

Report# 12 Date 30-May 19 May 1996 Depth 1,700 (M.)To 1,700

Skull Creek #1 O. D. & E. WELL NAME and No CONTRACTOR Block No PPL - 1 Otway Basın State Victoria 30 RIG No OR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Paul COOPER Orilling Assembly Casing Mud Volume Bbis Circulation Data 35 SSH 350 401 Type Jets 12/12/1 inch @ Pits Pumo size 15.1 50. 45 Type Length 1403 9 625 inch @ 332 5 Metres Drill String Cap Total Volume 824 Make/Model 1 G D P7 - 8 % Effic 0.35 4.5 42 Length 138 8 0 inch @ Metres In Storage Weight Make/Model 2 0.95 Length 1585 14 54 MUD TYPE : F. W. Polymer 25 0 Annular Velocity Other % O/G Bbl/stk 0 067 Stk/min 8 31 Length Mud Properties DP size 4.5 164 (Ft/M) Lam Bbl/stk 0.067 Stk/min 349 SAMPLE From Pit Pit DC size 6.5 285 (FVM) Turb Bottoms up 42 PRESSURE . 1.300 ME Samole Taken 16.00 16.00 99 (Ft/M) Total Circ. : 3 Type surf/sys owline TEMPERATURE N.C. N.C. deg. C MUD PROPERTY SPECIFICATIONS -CPTH Metres 1.700 1,700 < 10.0 Other: Chlorides max. @ < 10k > 9 1 Filtrate : MEIGHT 9.30 9.30 N.C. Plastic Viscosity < 18 Yield Point pgq. Viscosity >10 annel VISCOSITY (sec/qt.) API @ 48 48 Drilling Contractor 17 dea. C By Authority Operator's written PLASTIC VISCOSITY CP @ 12 12 35 dea. C ves Operator's Representative Other ELD POINT (Ib/100ft2) 11 11 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 2 13 2 13 FLT' API (cm3 / 30 min.) @ 47 47 VOLUME LOSSES WERE BROKEN DOWN THUS 421 h . .. Filtrate (cm3 / 30 min.) @ deg. C SOLIDS DUMPED FROM THE SAND TRAP (20 BBLS). CAKE Thickness (32nd, in API / HTHP) 1 1 SOLIDS CONTROL EQUIPMENT AND SURFACE LOSSES 7.3 7.0 SOLIDS Content (% by Vol.) **ESTIMATED DOWN - HOLE LOSSES** Oil/Water -. QUID Content (% by Vol.) 92.7 93.0 THE CHEMICALS CONSUMED IN THE MUD. WERE ADDED AFTER MIDNIGHT Tr SAND Content (% by Vol.) Tr DURING THE CIRCULATING TO CONDITION THE MUD HETHYLENE BLUE CAPACITY cm3/cm3 12.0 12.0 Strip 14 deg. C 9.5 9.5 THE DST OPERATION WAS TAKING PLACE, DURING THE REST OF ±_KALINITY Mud (Pm) THIS REPORT PERIOD 0.43/1.32 ÷_KALINITY Filtrate (Pf/MD 0.43/1.32 I-LORIDE (mg/L) 4,100 4,100 Total HARDNESS (mg/L) 620 620 € (mg/L) 80 80 OPERATIONS SUMMARY 1,500 1.500 ON COMPLETING THE CONDITIONING OF THE MUD SYSTEM (IN ・こし (% by Wt.) 0.3 0.3 TWO CIRCULATIONS) A BARYTES SLUG WAS PUMPED TO CLEAR THE PA (Calc. lb/bbl) PIPE AND THE BIT WAS PULLED OUT OF THE HOLE PAPA (Excess lb/bbl) =-EOLOGY - 600 / 300 / 6 (readings) 35/23/2 DST #3FOLLOWED 35/23/2 MUD ACCOUNTING (BBLS.) SOLIDS CONTROL EQUIPMENT uilt & Received Fluid Lost or Disposed Hr Summary Screen Size 10 685 0 2 3 3 Desander Initial Volume Centrifuge S210/S175/S175 183 0 w/ fresh water Desilter Degasser 0 D'silter 12 n S210/S175/S175 3 " recycled " 0 47 Downhole Fluid Received 234 Drill Water 51 20 Dumped SOLIDS EQUIPMENT EFFICIENCY 18 Other Other 95 Underflow (ppg.) Fluid Lost Overflow (ppg.) Output (gal/m) 9.3 11.8 2.3 Desander 0 Final Total 824 Desilter (Circulating Vol.) SOLIDS ANALYSIS BIT / HYDRAULICS DATA (ppb / %) Product Inventory Rec'd. Used Balance Unit \$ Cost \$ 0 1 0.0 Jet Velocity 302 High Gravity Solids FT / SEC :antes 617 37 580 6 20 229 40 Bentonite 7 4 0.8 Impact Force 507 LBS 2.7 56.5 6.2 HHP/in2 Drilled Solids 154 0 63.9 70 Low Gravity Solids HHP ∵C - LV 7 755 5 2 71 70 358.50 2.60 Solids Bit Press. Loss PS Average S. G. austic Soda 320 2S 30 21 38 Med. "n" 0 605 0 605 Csg. Seat Frac Pres 21.38 #1ck #2 ck 0.528 2.696 " Equiv. Mud Wt. 14.04 ppr 32 3 29 456.84 152.28 Med. "K" 0.371 12 74 35 892.20 Low "n" 0.530 0.530 Total nozzle area 54X) 3 0.842 4 30 2 207 75 "K" Low 0 Cumulative Cost: Daily Chemical Cost: \$ 2,374 \$ 27,173 GINEER EDD PERKINS South Australia TELEPHONE 08 - 338 3027 ADDRESS Any opinion and I or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same

Independent Drilling Fluid Services **Drilling Fluid Report**

Pepoit# 11 Date Spud Date 19 May 1996 1,700 (M.)To Depth

29-May

1,700

Skull Creek # 1 O. D. & E. WELL NAME and No CONTRACTOR Block No PPL - 1 Otway Basin State Victoria RIG No TOR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Paul COOPER Drilling Assembly Casing Mud Volume Bbls Circulation Data 90 262 Bit size 3.5 Type SSH Jets 12/12/1-16 inch @ Metres Hole 350 Pits Pump size 12.1 50" 80 ins Length 1403 45 F 9 625 inch @ 332 5 Metres Drill String Cap. 73 DΡ Total Volume 585 Make/Model 1 G D PZ - 8 % Effic Type 0.95 Length 138.8 45 42 168 HWt Туре Metres In Storage Make/Model 2: G D 0.95 65 Length 1585 14 54 MUD TYPE F. W. Polymer 25 0 Annular Velocity Bbl/stk 0.067 Stk/min 8 31 DP size 4 5 164 (FVM) Lam Bbl/stk 0 067 Stk/min Length Mud Properties **GPM** 349 SAMPLE From Pit F.Line DC size 6.5 ,285 (Ft/M) Turb Bottoms up: 42 PRESSURE: 1,300 12 00 5.00 Total Circ. : TIME Sample Taken DC SIZE (Ft/M) 82 Flowline TEMPERATURE N.C 28 MUD PROPERTY SPECIFICATIONS deg. C DEPTH Metres 1.700 1,700 > 9 1 Filtrate < 10 0 Other : Chlorides max @ < 10k WEIGHT 9.35 9.30 N.C. Plastic Viscosity: < 18 Yield Point : ppg. Viscosity: Funnel VISCOSITY (sec/qt.) API @ 11 47 ~ Operator's written Drilling Contractor 14 12 PLASTIC VISCOSITY cP @ dea. C Other yes Operator's Representative 16 10 YIELD POINT (Ib/100ft2) FLUID SUMMARY AND RECOMMENDATIONS 4 17 2 16 AFTER CONSULTATION WITH CULTUS. THE CONSENSIS WAS TO GEL STRENGTH (lb/100ft2) 10 sec. / 10 min FILTRATE API (cm3 / 30 min.) @ 6.8 5.8 LOWER THE FLUID LOSS AND ALIGN PROPERTIES ³ Filtrate (cm3 / 30 min.) @ 2 THE INITIAL SUGGESTION OF 3 PPB OF CMC - Low Vis WAS MORE 1 CAKE Thickness (32nd, in API/HTHP) SOLIDS Content (% by Vol.) 7.7 7.0 EXPENSIVE THAN TO ADD CMC @ 1 47 PPB., DRISPAC @ 0.47 PPB. & Calc DRILLTHIN @ 0 25 LT/BBL , FOR A SIMILAR EFFECT, SO THIS WAS LIQUID Content (% by Vol.) Oil/Water 92.3 93.0 Tr SAND Content (% by Vol.) Tr IMPLEMENTED METHYLENE BLUE CAPACITY 12.0 14.0 THE PARAMETERS WERE TO LOWER THE FLUID-LOSS, YIELD POINT, lb/bbl Strip рΗ 12 deg. C 9.5 9.7 GEL STRENGTHS AND CONTAIN THE WEIGHT ALKALINITY Mud WATER WAS ADDED TO THE FLUID THAT WAS CIRCULATED UP AS IT (Pm) 0.54/1.38 WAS DEHYDRATED - BIOCIDE (@ 0.04 LT/BBL) ALSO WAS ADDED AS ALKALINITY Filtrate 0.4/1.23 (Pf/Mf) CHLORIDE (mg/L) 4,400 3,900 THERE WAS BACTERIAL DEGRADATION TAKING PLACE Total HARDNESS (mg/L) 920 480 THE WATER ADDITION WAS @ 0 05 LT/BBL 'TE (ma/L) 150 100 OPERATIONS SUMMARY (ing/L) 2,000 1,400 ON COMPLETING THE LOGGING, A BIT WAS RUN TO BOTTOM WITH KCL (% by Wt.) 0.42 0.28 NO TIGHT "SPOTS" BEING OBSERVED PHPA (Calc. lb/bbl) A HIGH VISCOSITY SWEEP WAS INCORPORATED INTO THE BEGINNING PHPA (Excess lb/bbl) OF THE CIRCULATION, FOR CHECKING PURPOSES - MINIMAL CAVINGS. RHEOLOGY - 600 / 300 / 6 (readings) THE SYSTEM WAS CIRCULATED AND CONDITIONED WITH VOLUME 34/22/2 BEING BUILT IN PREPARATION OF SEVERAL D.S.T.'S AND A CASING RUN MUD ACCOUNTING (BBLS.) CONTROL EQUIPMENT SOLIDS Fluid Lost or Disposed Туре Hr. Fluid Built & Received Summary Man Hr Hr Screen Size 0 757 0 2 0 1 \$175/\$175/\$110 0 Pre Desander Initial Volume Centrifuge D'sand Desilter 0 12 0 w/ fresh water \$175/\$175/\$110 Degasser D'silter Drilco " recycled " 0 Downhole 43 Fluid Received 0 Drill Water 0 Dumped SOLIDS EQUIPMENT EFFICIENCY 29 72 Output (gai/m) Overflow (ppg.) Underflow (ppg.) 0 685 Final Total Desilter Total Received Total Lost (Circulating Vol.) BIT / HYDRAULICS DATA SOLIDS ANALYSIS (ppb / %) 0 1 302 Product Inventory Rec'd. Used **Balance** Cost \$ 0 0 Jet Velocity FT / SEC Unit \$ High Gravity Solids 507 Barytes 617 0 617 10 0 1.1 Impact Force 6 20 Bentonite 2.7 Drilled Solids 54.0 59 HHP / in2 n 64 0 70 154 Low Gravity Solids HHP CMC - LV 20 2.60 | Solids | Bit Press. Loss 71.70 1.434.00 Average S. G. Caustic Soda 0 552 0 628 Csg. Seat Frac Pres 31 1 30 320 PS 21 38 Med. "n" #1ck # 2 ck Drispac 40 8 32 0 958 2 244 " Equiv. Mud Wt. 14 04 PPG 152 28 Med. "K" 0.371 SQ INCH Enerseal 0 41 0.438 0 521 Total nozzle area "n" Low 0 1 959 4 37 Low "K" 0 Cumulative Cost: Daily Chemical Cost: 2,674 \$ 24,799 ADDRESS TELEPHONE 08 - 338 3027 ENGINEER EDD PERKINS South Australia

Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made

ourselves or our agents as to it's correctness or completeness; and no Hability is assumed for any damages resulting from the use of same.

Independent Drilling Fluid Services Drilling Fluid Report

Reports 10 28-May Date Spud Date 19 May 1996 Depth 1,592 (M.)To 1,700

Skull Creek #1 O. D. & E. WELL NAME and No CONTRACTOR PPL - 1 Otway Basın Location State Victoria 30 Block No RIG No TATOR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Paul COOPER Onlling Assembly Casing Mud Volume Bbls Circulation Data Bit size 35 Type ME15 Pits 340 Jets . 12/12/1 ınch @ Hote 345 [21] 80 ins. Pumo size 5 0" F Length 1388 DΡ 45 9 625 inch @ 332 5 73 Make/Model 1 G D PZ - 8 % Effic 0.95 HWt " 45 42# Length 1105 Metres In Storage Type 0 inch Weight Make/Model 2: GD PZ - 8 0.95 Length 2014 F. W. Polymer 25 0 Annular Velocity DC 15 53 MUD TYPE Other % O/G Bbl/stk 0 067 Stk/min 145 9 64 DC Length **Mud Properties** DP size 45 191 (Ft/M) Lam Bbl/stk 0 067 Stk/min GPM: 405 DC size 6.5 1331 (Ft/M) Turb Bottoms up SAMPLE From **E.Line** Pit PRESSURE : 1,780 11,30 21.00 TIME Sample Taken DC size Total Circ. 78 (Ft/M) Type surf/sys. Flowline TEMPERATURE 35 N.C. deg. C MUD PROPERTY SPECIFICATIONS DEPTH Metres 1.700 1.700 > 9.1 Filtrate: < 10.0 Other: Chlorides max. @ < 10k WEIGHT 9.30 9.30 N.C. Plastic Viscosity Viscosity < 18 Yield Point : 15 - 20 Funnel VISCOSITY (sec/qt.) API @ 45 47 deg. C **Drilling Contractor** Operator's written PLASTIC VISCOSITY CP @ 10 11 deg. C yes Operator's Representative Other YIELD POINT (Ib/100ft2) 16 18 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min 8 24 8 23 FILTRATE API (cm3 / 30 min.) @ 8.7 8.2 THERE WERE SIGNS OF OVER-PRESSURED EUMERALLA FORMATION API Pittrate (cm3 / 30 min.) @ IN THE CUTTINGS, AT THE END OF EACH CIRCULATION, AT IT D., PRIOR CAKE Inickness (32nd, in API/HTHP) 2 2 TO LOGGING 7.3 SOLIDS Content (% by Vol.) Calc 7.0 CONTINUED EFFORTS TO LOWER THE TOTAL HARDNESS WERE LIQUID Content (% by Vol.) OilWater 92.7 93.0 HAMPERED BY THE FORMATION CUTTINGS (INTRODUCING MORE OF THE SAND Content (% by Vol.) Tr Tr COMPLEX CARBONATES WERE ALSO BUILT FROM THE METHYLENE BLUE CAPACITY 15.0 16.0 RE-USE OF THE SUMP FLUID. THOUGH ON THE POSITIVE SIDE THE SUMP ρН Strip 9.6 9.5 IS [ONLY] A THIRD FULL 17 deg. C ALKALINITY Mud (Pm) ALUM AND CMC - Low Vis CONTINUED TO BE USED TO CONTAIN THE ALKALINITY Filtrate 0.35/1.28 0.33/1.4 GELS. WITH THE LATTER AIDING IN FLUID LOSS CONTROL. (Pf/Mf) CHLORIDE (mg/L) 4,300 4.300 Total HARDNESS (mg/L) 680 560 **THE Ammonium Nitrate WAS USED FOR THE FIRST D.S.T. AS A TRACER. CHITE (mg/L) 150 170 OPERATIONS SUMMARY 2,200 4/L) 2.100 KCL (% by Wt) 0.43 0.45 THE 85" BIT WAS DRILLED TO TID AND TWO CHECK TRIPS WERE PHPA (Calc. lb/bbl) CONDUCTED PRIOR TO PUMPING A PILL AND PULLING OUT TO LOG PHPA (Excess lb/bbl) RHEOLOGY - 600 / 300 / 6 (readings) AT THE TIME OF THE REPORT. THE LOGGING OPERATION WAS 36/26/9 40/29/9 ON - GOING MUD ACCOUNTING (BBLS.) SOLIDS CONTROL EQUIPMENT Fluid Built & Received Fluid Lost or Disposed Summary Type Man. Hr. Hr. Screen Size 34 0 2 1 S175/S175/S110 Initial Volume 753 Centrifuae 9.5 7.5 w/ fresh water 0 Desilter 0 7.5 12 Degasser D'silter 2 \$175/\$175/\$110 " recycled " 120 Downhole 58 Fluid Received 120 Drill Water 0 Dumped 0 SOLIDS EQUIPMENT EFFICIENCY Other Other Ω 24 116 Overflow (ppg.) Output (gal/m) Underflow (ppg.) 9.3 11.7 2.5 757 0 Final Total Desilter Total Received 120 Total Lost 116 (Circulating Vol.) BIT / HYDRAULICS DATA SOLIDS ANALYSIS (ppb / %) Product_ Rec'd. Used 350 Inventory Balance High Gravity Solids 01 0.0 Jet Velocity Unit \$ Cost \$ FT / SEC 40 657 617 6.20 127 682 248.00 Bentonite 14 Impact Force Sodium Sulphate 24 2 22 23.56 Drilled Solids 51 1 5.6 HHP/in2 4.2 0 Low Gravity Solids 638 7.0 HHP 240 CMC - LV 33 27 1016 6 71 70 430 20 Average S. G. 2.60 Solids Bit Press, Loss PS Caustic Soda 7 0 469 0 464 Csg. Seat Frac Pres 38 31 320 PS 21 38 149.66 #1ck # 2 ck Alum. Sulphate 64 8 56 . 8.224 " Equiv. Mud Wt. 14.04 PPG 192.00 1 394 24.00 Med. "K" Enerseal 42 1 41 0.256 0 280 Total nozzle area 0.371 63.60 63.60 Low "n" SG INC 47 7 40 1,065.96 5.270 25.91 152.28 Low "K" imonium Nitrate 66.20 66.20 Daily Chemical Cost: Cumulative Cost: \$ 2,263 \$ 22,126 TELEPHONE 08 - 338 3027 ADDRESS South Australia ion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made by ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

Independent Drilling Fluid Services Drilling Fluid Report

q Permit 27-May Date Spud Date 19 May 1996 Depth 1,373 (M.)To 1.592

Skull Creek # 1 O. D. & E. WELL NAME and No CONTRACTOR PPL - 1 Otway Basın Victoria Block No Location State RIG No TOR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Paul COOPER Drilling Assembly Casing Mud Volume Bhis Circulation Data 35 MF 15 16 Type Jets 12/12/1 inch @ 90 Pits Pump size 121 50" 8.0 Ε Length 1280 9 525 inch @ 332.5 Metre Drill String Cap Type 68 Total Volume Make/Model 1 G D PZ - 3 % Effic 0 95 45 Length 1105 Туре Metres In Storage 63 3.5 inch @ Weight Make/Model 2: G D 0.95 Length 2014 F. W. Polymer Other MUD TYPE 25 0 Annular Velocity % O/G Bbl/stk 0.067 Stk/min 143 9 5 1 DC. Length Mud Properties 4.5 188 (Ft/M) Lam Bbl/stk 0 067 Stk/min GPM: 399 SAMPLE From Pit F.Line DC size 65 326 (Ft/M) Turb Bottoms up 34 PRESSURE : 1.500 TIME Sample Taken 14.00 24.R0 DC size 79 ~ (Ft/M) Total Circ 3 Flowline TEMPERATURE deg. C N.C. 35 MUD PROPERTY SPECIFICATIONS DEPTH Metres 1,373 1,615 > 9 1 Filtrate : Weight: < 10.0 Other: Chlorides max @ < 10k WEIGHT 9.20 ppq. 9.20 Viscosity N.C. Plastic Viscosity Yield Point: 15 - 20 Funnei VISCOSITY (sec/qt.) API @ 42 44 27 dea. C By Authority: ~ Operator's written **Drilling Contractor** PLASTIC VISCOSITY CP @ 10 25 dea. C 11 yes Operator's Representative Other YIELD POINT (Ib/100ft2) 14 16 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 4 3 IN REFERENCE TO "OTHER LOSSES" - 43 BBLS [G/C] TO FLARE PIT FILTRATE API (cm3 / 30 min.) @ 9.2 9.1 GAS CUT MUD REQUIRED THAT THE MUD WEIGHT BE INCREASED Filtrate (cm3 / 30 min.) @ deg. C TO STABLIZE THE SYSTEM BARYTES WAS USED TO RAISE THE CAKE , ... ckness (32nd, in API/HTHP) 2 2 WEIGHT TO 9.2 PPG IBOTH IN & OUTLIPRIOR TO PULLING OUT OF THE SOLIDS Content (% by Vol.) 6.5 6.3 Calc. Retort HOLE A BARYTES PILL WAS USED TO CLEAR THE PIPE. 93.5 LIQUID Content (% by Vol.) Oil/Water 93.7 THE EFFECTS OF THE "PIPE-FREE" WAS STILL INFLUENCING THE SAND Content (% by Vol.) Tr Tr FLUID LOSS AND MORE POLYMER WAS BEING CONSUMED IN THIS METHYLENE BLUE CAPACITY 18.0 13.0 lb/bbl PERIOD TO COUNTER IT cm3/cm3 рΗ Strip 19 deg. C 9.0 9.0 THE CLAY CONTENT WAS HIGHER, AFTER THE TEST ALKALINITY Mud (Pm) CMC - Low Vis AND ALUM WAS INCORPORATED TO RESTRAIN THE ALKALINITY Filtrate 0.2/1.23 0.23/1.27 RISING GEL STRENGTHS CHLORIDE (ma/L) 4.400 4.100 DUE TO THE HARDNESS OF THE FLUID AND THE CARBONATES Total HARDNESS (mg/L) 960 1220 INDUCED FROM THE TEST. THERE WAS A HIGHER CONSUMPTION OF E (mg/L) 160 160 OPERATIONS SUMMARY 2.300 q/L) 2 300 Continued from above KCL (% by Wt.) 0.48 0.47 CAUSTIC SODA PHPA (Calc. lb/bbl) THE INITIAL TREATMENT, AFTER RUNNING BACK IN THE HOLE WITH THE PHPA (Excess lb/bbl) BIT. WAS AIMED AT ENSURING THAT THE GAS WAS WORKED OUT OF RHEOLOGY - 600 / 300 / 6 (readings) 34/24/5 38/27/5 THE MUD [SO THE YIELD WAS KEPT AT THE LOW END OF THE SPEC'S]. THIS WAS CHANGED AS THE PENETRATION RATE INCREASED. MUD ACCOUNTING (BBLS.) SOLIDS CONTROL Fluid Built & Received Fluid Lost or Disposed Summary Man. Hr. Type Shaker# Screen Size Prem 66 Desander Initial Volume 636 Centrifuge 0 2 15 1 S175/S175/S110 w/ fresh water 75 0 Desilter 0 12 0 2 \$175/\$175/\$110 15 " recycled " 251 85 Downhole Fluid Received 326 Drill Water 0 0 Dumped SOLIDS EQUIPMENT EFFICIENCY 0 Other 58 Fluid Lost 209 Underflow (ppg.) 9.2 12.6 Desander 3.1 Final Total 753 Desilter rotal Received 326 209 (Circulating Vol.) Total Lost SOLIDS ANALYSIS %) DATA (ppb / Product Inventory Rec'd. Used Balance 345 Cost \$ ligh Gravity Solids 0 1 0.0 Jet Velocity FT / SEC 784 127 657 6 20 787 40 96 656 Bentonite 11 Impact Force LBS Sodium Sulphate 28 4 HHP / in2 23.56 94.24 Drilled Solids 47 A 5.2 40 0 57.0 6.3 228 Low Gravity Solids HHP CMC - LV 42 9 33 71 70 977 645.30 Average S. G. 260 Solids Bit Press. Loss Caustic Soda 44 6 0 502 0 493 Csg. Seat Frac Pres 21 38 128.28 Med. "n" 320 PS #1ck #2ck ilum Sulphate 1 047 6 387 " Equiv. Mud Wt. 76 12 64 14.04 PPG 24 00 288.00 Med. "K" oly -Thin 0.389 0.477 Total nozzle area 0 74 35 0.371 SQ INCH Low "n" 55 8 "K" 2.120 7 04 152 28 1,218.24 Low 0 Cumulative Cost : Daily Chemical Cost: \$ 19.863 3,161 NGINEER EDD PERKINS South Australia TELEPHONE 08 - 338 3027 Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made rselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

Independent Drilling Fluid Services

Drilling Fluid Report

. Report# 8 Date 26-May Soud Date 19 May 1996 Depth 1,368 (M.)To 1,373

Skull Creek # 1 O. D. & E. WELL NAME and No. CONTRACTOR Otway Basın Block No. PPL - 1 Location State Victoria RIG No ATOR'S REPRESENTATIVE Henry FLINK / Kevin KELLY REPORT FOR Paul COOPER Drilling Assembly Casing Mud Volume Bbis Circulation Data 8 5 Type SSH 12/13/1 16 9.0 Jets inch @ Pits 303 Pump size 12*1 .60" 80 ins OP " 4.5 Ε Type 1061 9 625 inch @ 332 5 Metres Drill String Cap. Length 57 Total Volume 636 Make/Model 1 G D PZ - 8 % Effic 0.95 HWt " 45 Type 42 # Length 110.5 inch Metres In Storage 48 Weight 86 PZ - 8 Make/Model 2: G.D. 0.95 2014 Other DC Length 15 53 MUD TYPE F. W. Polymer % O/G 25 0 Annular Velocity Bbl/stk 0.067 Stk/min 125 8 31 DC Length DP Size **Mud Properties** 4.5 164 (Ft/M) Lam Bbl/stk 0.067 Stk/min GPM 349 SAMPLE From Pit DC size 6.5 285 (Ft/M) Turb Bottoms up: 33 PRESSURE : 1.150 TIME Sample Taken 6.30 23.30 DC size - (FUM) Total Circ. : 76 Type surf/sys. 3 Flowline TEMPERATURE N.C. N.C. deg. C MUD PROPERTY SPECIFICATIONS DEPTH Metres 1.373 1 373 < 10 0 Other: Chlorides max. @ < 10k WEIGHT 9.20 9.15 N.C. Plastic Viscosity Viscosity: < 18 Yield Point : Funnel VISCOSITY (sec/qt.) API @ 44 42 By Authority: Yes Operator's written PLASTIC VISCOSITY CP @ deg. C 9 yes Operator's Representative YIELD POINT (Ib/100ft2) 18 15 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 9 6 28 21 CMC - Low Vis USAGE WAS UP DUE TO THE EFFECTS OF THE FILTRATE API (cm3 / 30 min.) @ 9.7 8.8 PIPE - FREE IAS NEEDED DURING THE PREVIOUS REPORT PERIODI. API HTHP Filtrate (cm3 / 30 min.) @ ~ deg. C ANOTHER VOLUME PREMIX WAS BUILT AND PLACED ON STANDBY IN CAKE "ickness (32nd. in API/HTHP) 2 PREPARATION FOR D.S.T. #3 [THIS WAS PUT TO GOOD USE DURING SOLIL 6.5 Intent (% by Vol.) Calc Retort 5.9 THE END OF THE TEST OPERATION]. LIQUID Content (% by Vol.) Oil/Water 93.5 94.1 MORE VOLUME WAS PREPARED FOR THE NEXT PHASE OF THIS SAND Content (% by Vol.) Tr Tr METHYLENE BLUE CAPACITY lh/hhi cm3/cm3 17.0 13.0 Strip 17 deg. C 9.0 9.5 ALKALINITY Mud (Pm) ALKALINITY Filtrate 0.15/0.93 (Pf/Mf) 0 28/1 22 *** THE BIOCIDE (B54X) WAS USED DURING THE PREVIOUS REPORT CHLORIDE (mg/L) 4.300 4,100 PERIOD THE BARYTES WAS USED FOR A TRIP SLUG Total HARDNESS (mg/L) 840 720 ENERSEAL WAS USED FOR THE MOPPING UP OF SPILLAGE ETC. 'ITE (mg/L) 120 160 OPERATIONS SUMMARY 4/L) 2,800 2.600 THE CLEAN OUT AND DRILLING OF 5 METRES WAS COMPLETED KCL (% by Wt.) 0.58 0.54 AND A BARYTES SLUG USED TO CLEAR THE PIPE ON PULLING OUT. PHPA (Calc. Ib/bbl) ON FINISHING THE DISIT. VOLUME WAS LOST IDURING DISPLACING I. PHPA (Excess Ib/bbi) A SLUG WAS BUILT (TO BE USED, TO PULL OUT WITH) RHEOLOGY - 600 / 300 / 6 (readings) REVERSE PROCEDURES WERE IN PLACE, AT REPORT TIME. 36/27/9 31/23/8 MUD ACCOUNTING (BBLS.) EQUIPMENT SOLIDS CONTROL Fluid Built & Received Fluid Lost or Disposed Summary Man. Hr. Hr. Туре Shaker# Screen Size Hr. Premix 2 Initial Volume 655 0 Centrifuge D'sand 3 1 \$175/\$175/\$110 45 fresh water Desilter Degasser Drilco 0 D'sitter 12 3 S175/S175/S110 recycled " 66 Downhole Fluid Received Drill Water 0 Dumped 0 SOLIDS EQUIPMENT EFFICIENCY Other Fluid Lost Overflow (ppg.) Underflow (ppg.) 9.2 10.3 1.6 Desander Final Total Desilter 9.2 Total Received 111 Total Lost 130 (Circulating Vol.) SOLIDS ANALYSIS (ppb / %) BIT / HYDRAULICS DATA Inventory Rec'd. Used Balance Unit \$ Cost \$ High Gravity Solids 0 1 0.0 'Jet Velocity **Barvtes** 824 40 784 6.20 10 1 248.00 Bentonite 1.1 Impact Force Sodium Sulphate 43.5 34 6 28 23.56 141.36 Drilled Solids 4.8 HHP/in2 Enerseal 94 15 79 59 ннр Low Gravity Solids 53.6 137 CMC - LV 52 10 42 71.70 717.00 Average S. G. 2 60 672 PS Solids Bit Press, Loss Caustic Soda 45 1 44 21.38 #1ck # 2 ck 0.415 320 Med. "n" 0 430 Csq. Seat Frac Pres PS Alum, Sulphate 78 2 76 24.00 2 032 8 027 " Equiv. Mud Wt. 14.04 48.00 Med. "K" PPG ⊃oly -Thin 14 0 14 74 35 0.239 0.292 Total nozzle area 0.390 Low "n" SQ INCH cide (B54X). 5 2 3 207.75 6.099 19.05 Low "K" Agri 24 0 25.70 Daily Chemical Cost: Cumulative Cost: Flowzan 400.00 400.00 \$ 2,945 \$ 16,701 ADDRESS South Australia TELEPHONE 08 - 338 3027 Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made by ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

Independent Drilling Fluid Services Pty. Ltd.

7 Report# Date 25-May Spud Date 19 May 1996
Depth 1,368 (M.)To 1,368

	Skull	Creek	, 41		Depth 1,368 (M.)To 1,3
WELL NAME and No				·	CONTRACTOR O. D. & E.
Block No PPL - 1	Location	Otway Basın		te Victoria	RIG No 30
TOR'S REPRESENTA		Henry FLIN	K / Kevin K	ELLY	REPORT FOR Paul COOPER
Bit size 85 Type -	T	Casing			Mud Volume Bbls Circulation Data
1 "	Jets -	16 inch @	_	1	276 Pits 322 Pump size [2*] 60" * 80 ins.
DP " 45 Type E HWi" 45 Type 42#	Length 1056 Length 1105	9 625 inch @		tres Drill String Ca	2 3 7 2 110
1 **	1 -	***************************************		res In Storage	0 Weight ~ Make/Model 2: G D PZ - 8 % Effic 0
DC " 65 Length 2014 DC " ~ Length ~	Other 15 53	MUD TYPE	F. W. Poly		% O/G: 25 0 Annular Velocity Bbl/stk 0 067 Stk/min 55 Bbl/M 3.6
SAMPLE From			F/Line	Properties Pit	DP size 4.5 72 (FVM) Lam BbVstk 0.067 Stk/min ~ GPM: 15- DC size 6.5 125 (FVM) Lam Bottoms up: 75 PRESSURE: 800
TIME Sample Taken			13.30	22.30	
Flowline TEMPERATURE		deg. C	35	N.C.	DC size ~ i ~ (FUM) ~ Total Circ. : 179 Type surf/sys. 3 MUD PROPERTY SPECIFICATIONS
DEPTH Metres		-	1,368	1,368	Weight: > 9 0 Filtrate: < 10 0 Other: Chlorides max. @ < 10k
WEIGHT ppg.			9.30	9.20	Viscosity: N.C. Plastic Viscosity: < 18 Yield Point: 15 - 20
Funnel VISCOSITY (sec/qt.) AF	ମ @ 28	deg. C	43	44	By Authority : yes Operator's written - Drilling Contractor
PLASTIC VISCOSITY cP@	25	deg. Ç	9	10	yes Operator's Representative - Other
YIELD POINT (Ib/100ft2)			16	17	FLUID SUMMARY AND RECOMMENDATIONS
GEL STRENGTH (Ib/100ft2) 1	0 sec. / 10 min.		10 24	7 18	WHILE CIRCULATING, ON COMPLETION OF DST #1, FURTHER VOL -
FILT . API (cm3 / 30 min.)	@		9.4	8.6	UME (HELD IN STORAGE) WAS ADDED TO THE ACTIVE SYSTEM
API HimP Filtrate (cm3 / 30 m	in.)@ ~ d	deg. C	~~	~	THIS PRACTICE WAS CONTINUED WHEN - EVER CIRCULATING WAS
CAKE Thickness (32nd. in Al	-		2 ~	2 ~	TAKING PLACE
SOLIDS Content (% by Vol.)	Calc.	/ Retort	7.3 ~	6.3 ~	THE ABOVE PROCEDURE ASSISTED IN REDUCING THE MUD WEIGHT
LIQUID Content (% by Vol.)	Oil/Water		~ 92.	- 1	
SAND Content (% by Vol.)			Tr	Tr	DUE TO THE DRILL-STRING CONDITION, A "FREE-PIPE" AND DIESEL (20
METHYLENE BLUE CAPACITY OH Strip	X lb/bbi	cm3/cm3		16.0	BARREL) MIX WAS PUMPED AND SPOTTED (WITH AN INITIAL 16 BBL. SPOT
		17 deg. C	9.0	9.0	IN THE ANNULUS AND 4 BBLS LEFT IN THE STRING]
			~ ~	~	THE PRODUCT ENERSEAL WAS USED TO SOAK UP THE DIESEL [ETC.]
LKALINITY Filtrate (Pf/Mf) CHLORIDE (mg/L)		-	0.2/1.37	0.18/1.04	SPILLAGE, WHEN THE TANK WAS CLEANED OUT, AFTER THE OPERATION.
otal HARDNESS (mg/L)			4,000 1200	3,700 1600	WITH THE DRILL-STRING FREE, WHAT DIESEL MIX AS COULD BE TAKEN
"E (mg/L)				1 1 1 1 1	FROM THE SYSTEM, WAS CIRCULATED OUT & INTO THE FLARE PIT.
g/L)	***		160	140	OPERATIONS SUMMARY
CL (% by Wt.)			2,700	2,500	LOSSES FROM THIS WERE REPLACED AND FURTHER VOLUME
HPA (Calc. Ib/bbl)			0.56	0.52	WAS BUILT
HPA (Excess lb/bbl)				~	ATTENTION WAS AIMED AT MAINTAINING A LOW FLUID LOSS, AS IT WAS
			~ ~	. ~	CLIMBING AFTER THE PREVIOUS EXERCISE
HEOLOGY - 600 / 300 / 6 (read	ings)		34/25/12	37/27/9	BARYTES WAS USED TO TRIP OUT WITH. POLY-THIN WAS INTRODUCED
					TO ENSURE CONTROL OVER THE FINAL GEL STRENGTHS [FOR TRIPS].
	MUD ACCOUNTI				SOLIDS CONTROL EQUIPMENT
F! uilt & Received	Fluid Lost or		Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
· · · · · · · · · · · · · · · · · · ·	Desander		Initial Volume	625	Centrifuge - 0 D'sand 2 8 1 S175/S175/S110 6
1	Desilter	. 20			Degasser Drilco 0 D'silter 12 8 2 \$175/\$175/\$110 6
" recycled " 175	Downhole	57	Fluid Received	260	
	Dumped	110			SOLIDS EQUIPMENT EFFICIENCY
Other 0	Other	18	Fluid Lost	230	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
					Desander 9.3 10.5 2.2
			Final Total	655	Desilter 9.3 11.4 1.7
tal Received 260 T	otal Lost	230	Circulating Vo	1.)	
			·		SOLIDS ANALYSIS (F. A. A. A. A. A. A. SITALING DATA
Product Invento	ry Rec'd. U	Jsed Balanc	a 11-ia A	C	SOLIDS ANALYSIS (ppb / %) BIT/HYDRAULICS DATA
		47 824			High Gravity Solids 0.1 0.0 Jet Velocity #### FT/SEC
odium Sulphate		6 34	6.20		Bentonite 13.6 1.5 Impact Force #### LBS
rerseal			23.56	•	Drilled Solids 43.7 4.8 HHP / in2 ####
MC - LV		14 57 13 52		• • • • • •	Low Gravity Solids 57 3 6.3 HHP ####
ustic Soda	•	•	71 70	•	Average S. G. 2 60 Solids Bit Press. Loss #### PS
•	46	1 45	21 38	• • • • • • • • • • • • • • • • • • • •	Med. "n" #1ck #2ck 0.443 0.454 Csg. Seat Frac Pres 320 PS
ım Sulphate	. 82	4 78	24.00	•	Med. "K" " 1.575 8.118 " Equiv. Mud Wt. 14.04 PPG
ly -Thin	20	6 14	74.35	•	Low "n" " 0.199 0.293 Total nozzle area SQ INC
		13 10	19 28	250.64	Low "K" - 7.228 22.17
Agri.		2 24	25.70	51.40	Daily Chemical Cost : Cumulative Cost :
e - Free	2	1 1	606.15	606.15	\$ 3,727 \$ 13,756
GINEER EDD PERKINS		ADDRESS	South	Australia	TELEPHONE 08 - 338 3027
		ly or written herin, i			

Independent Drilling Fluid Services

Drilling Fluid Report

Pty. Ltd.

Report# 6 Date 23-May

Spud Date 19 May 1996

Depth 1,338 (M.)To 1,368

Skull Creek # 1 O. D. & E. CONTRACTOR Otway Basın State . Victoria RIG No PPL - 1 Biock No Henry FLINK / Kevin KELLY REPORT FOR Paul COOPER TOR'S REPRESENTATIVE Mud Volume Bbls. Circulation Data Casing Drilling Assembly M05D Jets . 11/11/1 275 292 [2.] 6 O" 8.0 uns 35 Type 16 inch @ 9.0 Pits Pump size 57 PZ 8 % Effic Çp " Ε Length 1056 9 625 inch @ 332.5 Metres Drill String Cap. Total Volume 525 Make/Model 1: G D 0.95 45 80 Make/Model 2 G D 15 42# Length 1105 Weight 0 95 ınch @ Metres In Storage -'A/1 Type Length 2014 25 0 Annular Velocity Bbl/stk 0 067 Stk/min 8.31 15 53 MUD TYPE F. W. Polymer % O/G: 125 Other Mud Properties DP size 4.5 164 (Ft/M) Lam Bbl/stk 0.067 Stk/min 349 GPM : Length F/Line DC size 6.5 285 (FVM) Lam Bottoms up: F/Line SAMPLE From 75 9.30 21.00 ~ (FUM) Total Circ. : "ME Sample Taken MUD PROPERTY SPECIFICATIONS N.C. Fowline TEMPERATURE 35 deg. C 1,368 1,368 < 10 0 Other: Chlondes max. @ < 10k > 9 0 Filtrate CEPTH Metres 9.30 9.30 N.C. Plastic Viscosity < 18 Yield Point: 15 - 20 MEIGHT Viscosity: deg. C 48 Drilling Contractor Funnel VISCOSITY (sec/qt.) API @ 46 By Authority: Yes Operator's written 32 12 Other PLASTIC VISCOSITY cP@ 10 yes Operator's Representative deg. C "ELD POINT (Ib/100ft2) 18 20 FLUID SUMMARY AND RECOMMENDATIONS AFTER THE WIPER TRIP, THE CLAY CONTENT HAD BUILT UP DUE 12 34 12 GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 9.5 8.8 TO SOME OF THE WALL-CAKE BEING SCRAPED OFF FLTRATE API (cm3 / 30 min.) @ WITH THIS TYPE OF MUD. IT IS MORE VULNERABLE TO DEHYDRATION 4.PI HTHP Filtrate (cm3 / 30 min.) @ ~ deg. C CAKE kness (32nd. in API/HTHP) 2 2 AND WILL NEED A GOOD "DRINK", ONCE CIRCULATING BACK ON 7.3 7.1 SOLIDS Content (% by Vol.) Calc. Retort Tr 92.7 92.9 LOSES DOWN-HOLE WERE 2.5 BARRELS PER HOUR, WHILE THE LOG -..QUID Content (% by Vol.) Oil/Water Tr ING OPERATION WAS TAKING PLACE SAND Content (% by Vol.) 22.0 23.0 JETHYLENE BLUE CAPACITY lb/bbl cm3/cm3 9.5 FURTHER VOLUME WAS BUILT IN PREPARATION FOR THE TEST 19 deg. C 9.3 Strip KALINITY Mud (Pm) 0.22/0.86 0.27/0.95 _KALINITY Filtrate (Pf/Mf) 3,100 3 300 -LORIDE (mg/L) 840 700 stal HARDNESS (mg/L) 20 20 OPERATIONS SUMMARY TE (mg/L) 2,200 DRILLED TO 1368 METRES AND PERFORMED A WIPER TRIP (WITH --) OUT A "SLUG"). THERE WAS NO FILL ON BOTTOM. 0.46 CL (% by Wt.) FOLLOWING THIS. THE BIT WAS PULLED OUT WITH A CALCIUM CHLORIDE -PA (Calc. lb/bbl) ~ ~ PILL TO CLEAR THE PIPE -PA (Excess lb/bbl) THE LOGGING OPERATION PROCEEDED WITH NO HOLE PROBLEMS. ~EOLOGY - 600 / 300 / 6 (readings) 38/28/10 44/32/12 SOLIDS CONTROL MUD ACCOUNTING (BBLS.) = uid Built & Received Fluid Lost or Disposed Туре Man Нr Shaker# Screen Size Hr. . _7 . 2 1 \$175/\$175/\$110 19 Centrifuge 0 21 Initial Volume 718 Desander D'sand 2 \$175/\$175/\$110 12 7 0 0 resh water 0 Desilter 26 Degasser Drilco D'silter 57 " recycled " 78 57 Downhole Fluid Received SOLIDS EQUIPMENT EFFICIENCY **Drill Water** 0 Dumped 0 Output (gal/m) 150 Underflow (ppg.) Other Fluid Lost Overflow (ppg.) Desander 9.3 625 Desitter 9.3 12.8 Final Total 150 Total Lost (Circulating Vol.) tal Received BIT / HYDRAULICS DATA SOLIDS ANALYSIS (ppb / %) 378 Balance High Gravity Solids 0.1 0.0 Jet Velocity Product Inventory Rec'd. Used 2.4 Impact Force 0 871 Bentonite 219 6.20 4.3 42 5 47 HHP/in2 Drilled Solids 22 4 18 Low Gravity Solids 64 3 7.1 HHP 242 spac 152.28 609.12 73 8 65 Average S. G. 2 60 Solids Bit Press. Loss .'C - LV 71.70 573.60 0 440 0 459 Csg. Seat Frac Pres :_stic Soda 46 0 21 38 Med. "n" #1ck # 2 ck 14.04 Med. "K" -. 1 798 9 333 " Equiv. Mud Wt. PPG 0 ¬ Sulphate 24.00 0 184 0.213 Total nozzle area 0.296 sq inch 36.00 4 _ (ligno.) Low "n" 8.889 43.32 40 40 4.52 180.80 Low "K" Cumulative Cost: 25.70 33 26 179.90 Daily Chemical Cost: \$ 10,355 \$ 1,687 TELEPHONE 08 - 338 3027 **EDD PERKINS** ADDRESS South Australia GINEER Any opinion and I or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made rselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same

Independent Drilling Fluid Services Orilling Fluid Report AGN 0000 2007 JA

Report# 5 Date 23-May Spud Date Depth 1,15 Date 19 May 1996 1,158 (M.)To 1,338

WELL NAME and No. Skull Cred	ek #1	CONTRACTOR O. D. & E.
Block No PPL - 1 Location Otway Bas	n State Victoria	RIG No 30
'ATOR'S REPRESENTATIVE : Henry FL	INK / Kevin KELLY	REPORT FOR Paul COOPER
Drilling Assembly Cas	ing ,	Mud Volume Bbls Circulation Data
Bit size 8.5 Type . M05D Jets : 11/11/12 16 inch	@ 90 Metres Hole	270 Pits 392 Pump size [2*] 50" * 80 ins.
DP " 4.5 Type: E Length 1026 9 625 inch	@ 332 5 Metres Drill String Cap	. 56 Total Volume 718 Make/Model 1. G.D. PZ - 8 % Effic 0 4
HWt" 45 Type: 42 # Length 1105 - inch	**************************************	43 Weight: 88 Make/Model 2: G D PZ -8 % Effic 0
DC " 6 5 Length 201 4 Other 15 53 MUD TYPE		% O/G: 25 0 Annular Velocity Bbl/stk 0 067 Stk/min 125 Bbl/M 8 31
SAMPLE From	Mud Properties F / Line F/L F / Line	DP size 4.5 164 (Ft/M) Lam Bb/stk 0.067 Stk/min ~ GPM: 349
TIME Sample Taken	11.00 18.00 24.00	DC size 6 5 285 (FVM) Lam Bottoms up: 32 PRESSURE: 1,540 DC size - 1 - (FVM) - Total Circ.: 86 Type surf/sys 3
Flowline TEMPERATURE deg.		DC size (Ft/M) _ Total Circ. : 86 Type surffsys. 3 MUD PROPERTY SPECIFICATIONS
DEPTH Metres	1,212 1,293 1,338	Weight: > 9.0 Filtrate: < 10.0 Other: Chlorides max. @ < 10k
WEIGHT ppg.	9.20 9.30 9.30	Viscosity: N.C. Plastic Viscosity: < 18 Yield Point: 15 - 20
Funnel VISCOSITY (sec/qt.) API @ 24 deg. C	45 40 46	By Authority : <u>yes</u> Operator's written <u>~</u> Drilling Contractor
PLASTIC VISCOSITY cP @ 23 deg. C	16 11 11	yes Operator's Representative ~ Other
YIELD POINT (Ib/100ft2)	17 14 17	FLUID SUMMARY AND RECOMMENDATIONS
GEL STRENGTH (Ib/100ft2) 10 sec. / 10 min.	7 26 9 32	DUE TO THE RESTRICTION OF BEING UNABLE TO ADD L.C.M. (JET
FILTRATE API (cm3 / 30 min.) @ API	8.5 8.0 9.6	BLOCKAGE) THERE WAS NO CHECK TO THE LOSS DOWN-HOLE AND
CAKE Thickness (32nd. in API/HTHP)	2 ~ 2 ~	SO NEW VOLUME NEEDED TO BE BUILT AND ADDED CONSTANTLY WITH THE SAND SECTIONS BEING DRILLED AND ADDING SOLIDS TO THE
SOLIDS Content (% by Vol.) Calc. / Reto		SYSTEM, LOSES ASSISTED IN KEEPING THE WEIGHT DOWN.
LIQUID Content (% by Vol.) Oil/Water	~ 93.5 ~ 92.9	CHLORIDES WERE PICKED UP FROM THE FORMATION (# 1 CHECK)
SAND Content (% by Vol.)	0.75 Tr Tr	TO ASSIST LOGGING. KCL WAS ADDED [PARAMETERS 3,000 PPM APP.]
METHYLENE BLUE CAPACITY X Ib/bbl cm3/c	1	FLOWZAN WAS ADDED IN THE PREVIOUS REPORT. BUT NOT NOTED.
pH Strip 17 deg.		AS THE SANDS WERE DRILLED THROUGH, MORE BENTONITE WAS NEED-
ALKALINITY Mud (Pm) ALKALINITY Filtrate (Pf/Mf)		ED TO BUILD WALL-CAKE [AND WAS BEING DEPLETED QUICKLY]
ALKALINITY Filtrate (Pf/Mf) CHLORIDE (mg/L)	0.33/1.02 0.27/0.92 800 870 3,200	DRISPAC WAS USED TO RAISE & MAINTAIN THE YIELD POINT.
Total HARDNESS (mg/L)		THE DOWN-HOLE LOSS WAS MINIMISED, ONCE THE API F L UID-LOSS WAS REDUCED
STATE (mg/L)	80 40 40	
J/L)	~ ~ ~	OPERATIONS SUMMARY A WIPER TRIP WAS INITIATED AT 1,212 METRES, USING CALCIUM
KCL (% by Wt.)	~	CARBONATE TO "SLUG" THE PIPE. DURING THIS TRIP 56 BBLS. WERE
PHPA (Calc. lb/bbl)	1 1	LOST DOWN-HOLE [A STATIC CHECK SHOWED A 12 BBL LOSS PER
PHPA (Excess lb/bbl)	1 1	HOUR] ONCE BACK ON BOTTOM, THE FLUID LOSS WAS REDUCED
RHEOLOGY - 600 / 300 / 6 (readings)	49/33/5 36/25/4 39/28/9	FROM 17.3cc's (THE 09 00 AM CHECK) TO 8 3cc's (THE 11 00 AM CHECK).
	Gels: 5/28	DRILLING CONTINUED.
MUD ACCOUNTING (BBLS.)		SOLIDS CONTROL EQUIPMENT
Fluid Built & Received Fluid Lost or Disposed	Summary	Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
Prei Desander 62		Centrifuge - 0 D'sand 2 19 1 S175/S175/S110 21
w/ fresh water 45 Desilter 54		Degasser Drilco 0 D'sitter 12 12 2 S175/S175/S110 21
" recycled " 340 Downhole 99	Fluid Received 385	
Drill Water 0 Dumped 0		SOLIDS EQUIPMENT EFFICIENCY
Other 0 Other 14	Fluid Lost 229	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
		Desander 9.3 11.5 2.3
	Final Total 718	Desilter 9.3 13.6 3.2
otal Received 385 Total Lost 229	(Circulating Vol.)	
		SOLIDS ANALYSIS (ppb / %) BIT/HYDRAULICS DATA
Product Inventory Rec'd Used Bala	nce Unit \$ Cost \$ H	righ Gravity Solids 0.1 0.0 Jet Velocity 378 FT/SEC
Prispac 29 7 22	152.28 1,065.96 B	Bentonite 17.9 2.0 Impact Force 636 LBS
oda Ash 9 9	15 75 141.75 D	0rilled Solids 46.5 5.1 HHP / in2 4.3
1 - Gel 240 55 185		ow Gravity Solids 64.4 7 1 HHP 242
MC - LV 10 80 17 73	71 70 1,218.90 A	verage S. G. 2.60 Solids Bit Press. Loss 1187 PSI
austic Soda 16 40 10 46		led. "n" #1ck #2 ck 0 570 0 478 Csg. Seat Frac Pres 320 PS
lum Sulphate 10 10		led. "K" " 0.944 7.272 " Equiv. Mud Wt. 14.04 PPG
FL (ligno) 7 3 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ow "n" " 0.337 0.246 Total nozzle area 0.296 sq INCH
80 40 40	· · · · · · · · · · · · · · · · · · ·	ow "K" - - 4.042 30.77
Wzan 4 2 2 CL - Agri. 46 13 33		aily Chemical Cost : Cumulative Cost :
	25.70 334.10	\$ 4,750 \$ 8,667
NGINEER EDD PERKINS ADDRES		TELEPHONE 08 - 338 3027
Any opinion and for recommendation, expressed orally or written her ourselves or our agents as to it's correctness or completeness; and no liable	in, has been prepared carefully and maybe used ity is assumed for any damages resulting from	I if the user so elects, however, no representation or warranty is made the use of same.

Independent Drilling Fluid Services Pty. Ltd.

4 Date 22-May Spud Date ate 19 May 1996 481 (M.)To 1,158 Depth

	Classill	<u> </u>	11.4		(Depth 481 (M.)To 1,158
WELL NAME and No		Creel	(# I		CONTRACTOR O. D. & E.
Block No. PPL - 1	Location :	Otway Basin		State Victoria	RIG No 30
OR'S REPRESENTATI		Henry FLINE	/ Bruce	RICHARDSON	REPORT FOR Paul COOPER
Bit size 8.5 Type M05D		Casing			Mud Volume Bbis Circulation Data
	Jet size 11/11/12 Length 846 1	16 inch (-	Metres Hole	232 Prts 386 Pump size [2*] 60" * 80 ins.
	Length 1105	~ inch (Metres Drill String C Metres In Storage	25 Marie 09
	Other 15 53	MUD TYPE:		Native Clay	1 0 0 35 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
∞ " ~ Length ~				lud Properties	DD 45 1161 (5-114)
SAMPLE From			F / Line	F / Line	55 and 65 and 55
TIME Sample Taken			11.30	24.00	DC size ~ \ ~ (Ft/M) ~ Total Circ. : 68 Type surf/sys. 3
Flowline TEMPERATURE		deg. C	32	32	MUD PROPERTY SPECIFICATIONS
DEPTH Metres NEIGHT ppg.			727	1,158	Weight: Min Filtrate: NC Other: Chlorides max. @ < 10k
	2 22		9.25	9.20	Viscosity: N.C. Plastic Viscosity: - Yield Point: 10
iunnel VISCOSITY (sec/qt.) API	_	deg. C	45	35	By Authority: Operator's written Drilling Contractor
LASTIC VISCOSITY of @	25	deg. Ç	7	6	yes Operator's Representative - Other
GELD POINT (Ib/100ft2) SEL STRENGTH (Ib/100ft2) 10			22	11	FLUID SUMMARY AND RECOMMENDATIONS
!LTRA \P! (cm3 / 30 min.) @	•		,	34 6 24	- THE WEIGHT
PI HT. ciltrate (cm3 / 30 min.)		deg. C	>35.0	26.2	& VISCOSITY GAINS [WITH DILUTION] & VOLUME NEEDED FOR HOLE LOSS.
AKE Thickness (32nd. in API	. •		1	- 3 -	ALL ADDITIONS WERE PRETREATED WITH ALUM (TO INHIBIT THE CLAYS AND ASSIST IN THE SEPARATION OF THE WATER PHASE, FROM THE
OLIDS Content (% by Vol.)	Calc.	/ Retort	1 1	~ 6.5 ~	
:QUID Content (% by Vol.)	Dil/Water		~ 9	3.1 - 93.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
AND Content (% by Vol.)			0.75	1.5	URED QUANTITIES (AS THE NATIVE CLAYS ARE VOLATILE TO ANY
'ETHYLENE BLUE CAPACITY	X lb/bbl	cm3/cm3	21.0	15.0	INCREASE OF THE pH]
H Strip		17 deg. C	8.5	8.5	DUE TO THE NEED TO MINIMISE THE SUMP VOLUME. THIS SOURCE
LKALINITY Mud (Pm)				-	OF "HARDNESS" [FROM THE CEMENT OPERATION] WAS ACCEPTED IN
_KALINITY Filtrate (Pf/Mf)			0.08/0.6	0.1/0.38	THIS PERIOD NOTE THE FORMATION CUTTINGS ARE THE PRIMARY
HLORIDE (mg/L)			270	390	SOURCE OF THE INCREASE IN THE HARDNESS
otal HARDNESS (mg/L)			1440	980	
(mg/L)			160	120	OPERATIONS SUMMARY
71 (9/ by 18/4)			~	. ~	THE POINT IN WHICH TO REDUCE THE FLUID - LOSS TO BELOW
CL (% by Wt.)			~	~	10 0cc's, HAS BEEN REVISED DOWN-WARD TO SUITE THE FORMATIONS
HPA (Calc. lb/bbl)			~	~	BEING DRILLED THE MAIN AIM IS TO ENSURE THAT THE DESIRED
PA (Excess ib/bbl)			~ ~	~	PROPERTIES ARE ACHIEVED PRIOR TO DRILLING THE BASE OF THE
1EOLOGY - 600 / 300 / 6 (reading	gs)	ļ	36/29/16	23/17/6	BELFAST SECTION (SO THAT THE WAARRE HAS THE CORRECT PROPER-
					TIES A WIPER TRIP WAS CONDUCTED AT 651 METRES.
†	JD ACCOUNTIN				SOLIDS CONTROL EQUIPMENT
	Fluid Lost or I		Summary		Type Man. Hr. Cones Hr. Shaker# Screen Size Hr.
· †· ···	sander		Initial Volum	e 433	Centrifuge - 0 D'sand 2 23 1 S175/S175/S175 23
- · · · · · · · · · · · · · · · · · · ·	silter	33			Degasser Drilco 0 D'sitter 12 18 2 S175/S175/S175 23
· . I	wnhole	226	Fluid Receive	ed 532	
· · · · · · · · · · · · · · · · · · ·	mped	65			SOLIDS EQUIPMENT EFFICIENCY
Other 0 Oth	ner	32	luid Lost	403	Overflow (ppg.) Underflow (ppg.) Output (gal/m)
					Desander 9.2 10.0 1.5
			inal Total	562	Desilter 9.2 11.8 1.3
al Received 532 Tot	al Lost	403	Circulating V	/ol.)	
					SOLIDS ANALYSIS (ppb / %) BIT/HYDRAULICS DATA
Product Inventory	Rec'd. U	sed Balance	Unit	\$ Cost \$	
rytes 87		0 871		20	10.0
-			•	•	12 0 1.3 Impact Force 629 LBS
Gel 26	64 2	240 240	. 8	13 195.12	Low Gravity Solids 59.2 6.5 HHP 239
d Sulphite 7	7	7	23 :	56 164.92	Average S. G. 2 60 Solids Bit Press. Loss 1174 PS:
ustic Soda 2	1 !	5 16	21 3	38 106.90	Med. "n" #1ck # 2 ck 0.312 0.436 Csg. Seat Frac Pres 320 PSI
m Sulphate 36	6 2	6 10	24 (Med. "K" " 4,150 5.734 " Equiv. Mud Wt. 14 04 PPG
L (ligno)	•		36 (•	Low "n" " 0.192 0.226 Total nozzle area 0.296 SQ INCH
	C)	•	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Low "K" - 8.779 21.20
	C)			
	-	• · ·	•	•	
SINEER EDD PERKINS		46			
Any opinion and I or recommendation	on, expressed orally	ADDRESS	as been prepar	h Australia	TELEPHONE 08 - 338 3027 used if the user so elects, however, no representation or warranty is made
rselves or our agents as to it's correctni	ess or completenes	ss; and no liability is	s assumed for a	iny damages resulting fr	om the use of same.

Ir

Independent Drilling Fluid Services

Drilling Fluid Report

Pty. Ltd.

Report# 3 Date 21-May Spud Date: 19 May 1996
Depth 335 (M.)To 481

Skull Creek # 1 O. D. & E. CONTRACTOR 30 Otway Basin State: Victoria RIG No Block No. Paul COOPER Henry FLINK / Bruce RICHARDSON REPORT FOR TOP'S REPRESENTATIVE Mud Volume Bbls Circulation Data Orilling Assembly Casing 369 [2.] 6.0" 8 5 M05D Jet size 11/11/12 16 inch @ 90 81 Prts Pump size 8.0 Length 169 1 9 625 inch @ 332 5 Ε Make/Model 1: G D PZ - 8 % Effic 45 Metres Drill String Can 16 Total Volume 433 0.95 ne Metres In Storage 165 Weight 8 4 Make/Model 2: HWt " 42 # Length 1105 inch @ G D PZ - 8 0.95 Type 10 0 Annular Velocity 9 98 Length 2014 15 53 MUD TYPE Relaxed Native Clay % O/G: Bbl/stk 0.067 Stk/min 75 Other 4 5 197 (Ft/M) Turb Bbl/stk 0 067 Stk/min Mud Properties DP size 75 GPM: 419 F/Line F / Line DC size 65 342 (Ft/M) Turb Bottoms up: 8 PRESSURE : 2,000 SAMPLE From 20.00 24.00 DC size - (FUM) Total Circ. : 43 Type surf/sys. 3 TIME Sample Taken Flowline TEMPERATURE 25 MUD PROPERTY SPECIFICATIONS 22 367 481 DEPTH Filtrate: NC Other: Chlorides max. @ < 10k Metres 9.00 9.20 WEIGHT Viscosity: N.C. Plastic Viscosity Yield Point: 10 ppg. **Drilling Contractor** 37 38 Funnel VISCOSITY (sec/qt.) API @ dea. C By Authority: Yes Operator's written 7 8 VES Operator's Representative Other PLASTIC VISCOSITY cP @ deg. C 8 9 FLUID SUMMARY AND RECOMMENDATIONS YIELD POINT (Ib/100ft2) 2 2 THE INITIAL WATER PHASE ON DRILLING OUT THE MARL SECTION GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. FILTRATE API (cm3 / 30 min.) @ ~ deg. C WAS TREATED WITH SOD, BICARB, THE SECONDARY WATER PHASE 28.6 26.4 WAS TREATED WITH ALUM. AS THE CEMENT CONTAMINATED FLUID WAS DISPLACED EXTRA VOLUME WAS MADE UP WITH SUMP WATER CAKE ...ickness (32nd. in API/HTHP) A 6.5 [SEPARATED FROM THE CEMENT WATER - BY A PARTITION]. SOLIDS Content (% by Vol.) Calc. / Retort THE MARILWAS DRILLED WITH THE TREATED FLUID UNTIL SAND 95.0 93.5 LIQUID Content (% by Vol.) Oil/Water 2.25 RETURNS WERE OBSERVED AT THE SHAKERS. AT THIS POINT. SAND Content (% by Vol.) 1.25 THE MUD WITH APPROPRIATE DILUTION, THAT WAS RETAINED FROM THE METHYLENE BLUE CAPACITY x lb/bbl 22.0 24.0 cm3/cm3 12.25" SECTION DISPLACED THE ABOVE MENTIONED FLUID 9.0 9.2 19 deg. C THE DH WAS RAISED AND THIS WAS SUFFICIENT TO ACTIVATE THE CLAY ALKALINITY Mud (Pm) BEING DRILLED TO GIVE THE NECESSARY PROPERTIES ALKALINITY Filtrate (Pf/Mf) 0.15/0.32 0.2/0.35 CHLORIDE (mg/L) 380 380 ALUM TREATED WATER WAS USED TO INHIBIT THE ACTIVE SYSTEM AND CAUSTIC WATER WAS USED TO BUILD VOLUME AND PROPERTIES. Total HARDNESS (mg/L) 80 OPERATIONS SUMMARY 'TE (mg/L) THE 85" SECTION WAS STARTED WITH THE CEMENT BEING DRILL --) ED OUT WITH WATER, WHICH WAS DISPOSED OF, ONCE THE SHOE (CL (% by Wt.) WAS PENETRATED. TREATED WATER WAS USED FOR THE MARL SEC -PHPA (Calc, lb/bbl) FROM 367 METRES, WHEN SAND RETURNS WERE OBSERVED, PHPA (Excess lb/bbi) RHEOLOGY - 600 / 300 / 6 (readings) 22/15/2 THE FI UID WAS BROUGHT INTO LINE WITH THE DESIRED PROGRAMME 25/17/2 SPECIFICATIONS SOLIDS CONTROL EQUIPMENT MUD ACCOUNTING (BBLS.) Fluid Built & Received Fluid Lost or Disposed Туре Hr Hr. Shaker# Screen Size Hr. Summary 2 1 S175/S175/S175 0 5 8 99 Desander Initial Volume Centrifuge D'sand 12 2 \$175/\$175/\$175 0 3 8 w/ fresh water 90 Desilter Degasser Drilco D'silter " recycled " 149 67 Fluid Received 576 Downhole SOLIDS EQUIPMENT EFFICIENCY Drill Water 0 Dumped 137 242 Overflow (ppg.) Underflow (ppg.) Other 337 Other Fluid Lost Desander 8.8 Final Total Desilter 576 Total Lost otal Received (Circulating Vol.) BIT / HYDRAULICS DATA (ppb / %) SOLIDS ANALYSIS 00 00 Jet Velocity Balance High Gravity Solids Product Inventory Rec'd. Used Unit \$ 23.9 2.6 Impact Force Bentonite **0** 871 __35.3 Drilled Solids 3.9 HHP / in2 59 2 65 ннр Low Gravity Solids - Gel 8.13 113.82 4 7 2.60 Solids Bit Press. Loss 11 23.56 94.24 Average S. G. od. Sulphite 18 PS 0 0.552 0.556 Csg. Seat Frac Pres 18 5.80 Med. "n" #1ck, # 2 ck. me 14.04 . . 0.479 2.710 " Equiv Mud Wt. PPG APP 0 Med. "K" 4 67.95 4 0.296 21 0.438 0.465 Total nozzle area SQ INCH 25 21.38 Low "n" austic Soda 0.980 4.79 26 **0** 26 "K" rbonate 16.38 Low 42 6 36 24.00 144.00 Daily Chemical Cost: 1,818 438 TELEPHONE 08 - 338 3027 EDD PERKINS ADDRESS South Australia Any opinion and f or recommendation, expressed orally or written hern, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made ourselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

Indep

Independent Drilling Fluid Services

Drilling Fluid Report

Pty. Ltd.

Report# 2 Date 19-May
| Spud Date : 19 May 1996
| Depth 306 (M.)To 335

Skull Creek #1 WELL NAME and No O. D. & E. CONTRACTOR Block No : PPL - 1 Location Otway Basin State Victoria RIG No TOR'S REPRESENTATIVE : Henry FLINK / Bruce RICHARDSON REPORT FOR Paul COOPER Drilling Assembly Casing Mud Volume Bbls. 123 Circulation Data Type 1G.L ınch @ Metre Pits 18 80 ins. 45 Type: F 6 0" Length 94 37 inch @ Metres Drill String Cap 10 Total Volume 99 Make/Model 1: G D PZ · 8 % Effic HWt " 45 42 # 0.95 Length 1105 inch @ Metres In Storage 0 Weight Make/Model 2: G D PZ · 8 % Effic 0.95 1032 Other Length 13 34 MUD TYPE : Spud Mud 10 0 Annular Velocity % O/G: Bbl/stk 0 067 Stk/min 130 Bbl/M 8 Length 26 94 17 29 **Mud Properties** DP size 4.5 137 (Ft/M) ###### Bbl/stk 0.067 Stk/min SAMPLE From 130 GPM 726 Pit DC size 6.5 165 (Ft/M) ##### Bottoms up : 8 PRESSURE : TIME Sample Taken 1.000 10.00 17.00 8 - (Ft/M) ##### Total Circ. : 6 Type surf/sys. Flowline TEMPERATURE deg. C N.C. N.C. MUD PROPERTY SPECIFICATIONS DEPTH Metres 335 335 Min Filtrate Other: Chlorides max @ < 15k WEIGHT ppq. 9.30 8.33 N.C. Plastic Viscosity: Yield Point: Funnel VISCOSITY (sec/qt.) API @ 35 27 By Authority: yes Operator's written **Drilling Contractor** PLASTIC VISCOSITY CP @ 22 dea. C 8 yes Operator's Representative Other YIELD POINT (Ib/100#2) 6 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 1 3 FILTRATE API (cm3 / 30 min.) @ 21.4 N.C. WHILE THE HOLE WAS BEING DRILLED WITH WATER. SAPP WAS USED API HTHP Filtrate (cm3 / 30 min.) @ IN LUE OF ALUM, TO ENSURE THAT NO FURTHER PROBLEMS WERE kness (32nd. in API/HTHP) ENCOUNTERED AS PREVIOUSLY MENTIONED, PRIOR TO PULLING SOLIDS Content (% by Vol.) Calc. 7.3 Retort 0.0 OUT, MUD DISPLACED THE WATER AT IT D. AND WAS CIRCULATED. LIQUID Content (% by Vol.) Oil/Water 92.7 ~ 100.0 SAND Content (% by Vol.) Tr N.C. ON COMPLETION OF THE CEMENT OPERATION. IT WAS FOUND FURTHER METHYLENE BLUE CAPACITY lh/hhl N.C. WATER HAD MIXED IN WITH THE MUD; AT THIS TIME NO TREATMENT WILL N.C. deg. C 88 BE DONE [TO THE MUD] UNTIL THE NEXT SECTION HAS BEEN DRILLED. ALKALINITY Mud (Pm) ALKALINITY Filtrate (Pf/Mf) 0.1/0.22 0.0/0.08 MORE WORK WAS DONE TO THE SOLIDS CONTROL EQUIPMENT DURING CHLORIDE (mg/L) 260 180 THIS PERIOD Total HARDNESS (mg/L) 400 440 E (mg/L) OPERATIONS SUMMARY CASING WAS RUN TO BOTTOM WITHOUT ANY PROBLEMS; THE (CL (% by Wt.) SYSTEM WAS CIRCULATED AND THEN THE CEMENT OPERATION FOL -PA (Calc. lb/bbl) ##### ##### LOWED. THE PITS WERE THEN CLEANED, WHILE LITTLE OF THE MUD 'HPA (Excess !b/bbl) WAS LOST A PIT WAS LINED UP TO DRILL OUT THE CEMENT AND RHEOLOGY - 600 / 300 / 6 (readings) 22/14/1 SHOE, WITH A SECOND PIT OF TREATED WATER, TO COMPLETE DRILL -ING THE MARL SECTION [AND A THIRD PIT OF WATER ON STAND-BY]. MUD ACCOUNTING (BBLS.) SOLIDS CONTROL EQUIPMENT Fluid Built & Received Fluid Lost or Disposed Summary Туре Hr,_ Cones Shaker# Screen Size Hr. Desander 6 Initial Volume 458 Centrifuge ~ 2 0 D'sand 3.5 1 S175/S175/S175 4.5 resh water 0 Desilter 0 12 0 D'sitter 0 2 \$175/\$175/\$175 4.5 _ 0 recycled " Downhole 34 Dumped 92 SOLIDS EQUIPMENT EFFICIENCY Other 337 Overflow (ppg.) Underflow (ppg.) Desander Final Total Desilter otal Received 110 469 SOLIDS ANALYSIS (ppb / %) Product Inventory Rec'd. Used Balance High Gravity Solids Jet Velocity FT / SEC 871 0.. 6 20 Bentonite #### Impact Force #### LBS Drilled Solids #### #### HHP / in2 2.3 278 - Gel 0 278 Low Gravity Solids -0.1 0.0 HHP 276 6 0 6 75.75 Average S. G. 2.60 Solids Bit Press. Loss 652 me 18 0 18 Med. "n" #### Csg. Seat Frac Pres #1ck. # 2 ck 0.652 PS APP 3 4 #### " Equiv. Mud Wt. Med "K" 0.241 PPG austic Soda 25 0 25 Low "n" #### Total nozzle area 0.573 rbonate 30 26 16.38 Low "K" 0.393 #### um Sulphate Daily Chemical Cost: Cumulative Cost : 269 1,380 **ADDRESS** South Australia TELEPHONE 08 - 338 3027 Any opinion and / or recommendation, expressed orally or written herrin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made purselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

Independent Drilling Fluid Services

Drilling Fluid Report

Pty. Ltd.

Skull Creek # 1 O. D. & E. WELL NAME and No CONTRACTOR Block No Location Otway Basin 30 State: Victoria RIG No ERATOR'S REPRESENTATIVE Henry FLINK / Bruce RICHARDSON REPORT FOR Paul COOPER Orilling Assembly Casing Mud Volume Bbls Circulation Data 12.3 Type 1GJ ınch @ Pits 302 Pump size 12.1 6 0" 80 ins GP 4.5 F Type Length 91 37 ınch @ 10 458 Make/Model 1 G D PZ - 8 % Effic 0.954 Туре Length 1105 In Storage Ω PZ - 8 inch @ Metres Weight Make/Model 2: G D Length 1032 DC. Other 13 34 MUD TYPE Spud Mud 10 0 Annular Velocity % O/G Bbl/stk 0.067 Stk/min 130 17 29 DC. 8 Length 26 94 Mud Properties 45 137 (FVM) Turb Bbl/stk 0 067 Stk/min 130 726 GPM · SAMPLE From F / Line Pit DC size 6.5 165 (FVM) Turb Bottoms up : 8 PRESSURE : 1.000 TIME Sample Taken 17.30 5.00 DC size 26 ~ (FUM) Turb Total Circ. Type surf/sys 3 Flowline TEMPERATURE deg. C 28 NC MUD PROPERTY SPECIFICATIONS OFPTH Metres 226 335 Weight Min Filtrate Other: Chlondes max @ < 15k NC 9.25 9.25 Viscosity ppq. N.C. Plastic Viscosity Yield Point: Funnel VISCOSITY (sec/qt.) API @ 36 35 25 dea. C By Authority: <u>yes</u> Operator's written **Drilling Contractor** PLASTIC VISCOSITY CP @ 9 8 deg. C yes Operator's Representative YIELD POINT (Ib/100ft2) q 7 FLUID SUMMARY AND RECOMMENDATIONS GEL STRENGTH (lb/100ft2) 10 sec. / 10 min. 1 IG - Gel was prenydrated with Caustic Soda to peptise it. FILTRATE API (cm3 / 30 min.) @ 8.5 17.9 This was used to drill out the Mouse and Rat holes, prior to being used to drill API HTHP Filtrate (cm3 / 30 min.) @ deg. C out the conductor pipe and top hole, to the Mart. From this point water was CAH ckness (32nd, in API/HTHP) 1 3 used to pass the Marl section with slight additives being incorporated after that. SOLIDS Content (% by Vol.) Calc. Retort 6.9 6.9 Lime was to adjust the pH and Drillpol was used for lubrication. LIQUID Content (% by Vol.) 93.1 93.1 Oil/Water SAND Content (% by Vol.) Tr Tr THE MAKE - UP WATER CONSISTED OF METHYLENE BLUE CAPACITY 22.0 19.0 lb/bbl cm3/cm3 62 pH, 180 ppm, Chlorides pН 19 deg. C 9.2 8.8 440 ppm Total Hardness 0 0 / 0 08 pf / Mf This was retrieved from both ALKALINITY Mud (Pm) a dam on site and suplemented with pipe-line water, trucked in. ALKALINITY Filtrate (Pf/Mf) 0.18/0.32 0.14/0.27 CHLORIDE (mg/L) 350 220 With only 3 joints to drill, the viscosity was slowly being raised with Drillpol (37 Total HARDNESS (mg/L) 240 340 sec/qut being the last check) but a mud ring delayed the operation. * PHITE (mg/L) OPERATIONS SUMMARY (mg/L) From there [299m.] water (treated with SAPP) was used to drill to T.D. KCL (% by Wt.) [335m] and then the system was reverted to mud, once again. PHPA (Calc. lb/bbl) ##### **** A wiper trip found no fill (back on bottom) and the bit was pulled out to run Csg... PHPA (Excess lb/bbi) RHEOLOGY - 600 / 300 / 6 (readings) 27/18/1 23/15/1 Spud Time was at 02 00 hours, drilling ahead with a 12.25" bit MUD ACCOUNTING (BBLS.) Fluid Built & Received Fluid Lost or Disposed Summary Hг Type Man Screen Size Hr. Initial Volume Centrifuge Premix 39 22 Desander 0 2 19 200 4 Desilter i fresh water Degasser 0 12 3 22 Ω " recycled ' 102 Downhole Fluid Received 649 Drill Water 449 0 Dumped SOLIDS EQUIPMENT EFFICIENCY 0 Fluid Lost Other 191 Overflow (ppg.) Underflow (ppg.) Output (gal/m) Desander 92 10.1 1.4 Final Total 458 11.5 Total Received 649 Total Lost (Circulating Vol.) SOLIDS ANALYSIS (dag) %) BIT / HYDRAULICS DATA Balance Product Inventory Rec'd. Used Unit \$ High Gravity Solids 00 0.0 Jet Velocity Barytes 0 871 871 6.20 Bentonite 168 18 Impact Force 1,030 Drilled Solids HHP / in2 45 9 5.0 2.6 ld - Gel 70 316 307 8.13 569,10 Low Gravity Solids 62.7 69 HHP Drill pol 8 2 6 75.75 151.50 Average S. G. 2.60 Solids Bit Press. Loss Lime 23 18 0 585 0 616 Csg. Seat Frac Pres 5 80 29.00 Med. "n" #1ck #2ck PS SAPP 12 0 470 1 642 " Equiv. Mud Wt. 67 95 339.75 Med. "K" PPG Caustic Soda 26 25 0 628 0.588 Total nozzle area 0.786 21.38 21.38 Low "n" SQ INC: 0 "K" 0.359 ow 1 96 0 Daily Chemical Cost: 1,111 1,111 ENGINEER FOD PERKINS TELEPHONE 08 - 338 3027 Any opinion and / or recommendation, expressed orally or written herin, has been prepared carefully and maybe used if the user so elects, however, no representation or warranty is made rselves or our agents as to it's correctness or completeness; and no liability is assumed for any damages resulting from the use of same.

APPENDIX 3 - DAILY DRILLING REPORTS

Cultus

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 18

Report Date:

5/06/96

Issue Date: 6/06/96

Page Number:

28

Basic Data

DRILL CO. : ODE RIG 30 KB TO GRND LVL 4 98 RND LVL AMSL

1,700.0 0.0 PROGRESS: DAYS FROM SPUD: 17 92 92 0 DAYS +/- CURVE 0.0

HOLE SIZE 8.50 LAST CSG SIZE 9-5/8" SHOE DEPTH 332.50 LEAK-OFF 13.50

TOT PERS ON SITE: DAILY COST : CUM COST:

AFE COST:

\$130,106.00 \$1,170,626.00 \$940,000.00

Gas and General Data

FORMATION: MAX GAS B/G GAS % :

WEATHER Eumeralla

Cold, windy, occasional showers

R:

STATUS @ 0600

Energise "B" section, test to 2000 psi, reinstalling BOP's.

Bit/Hydraulics

ROTATE HRS: BIT# AVE WOB: SIZE AVE RPM MFR **FLOW** TYPE: PUMP PRESS.: SERIAL #: NOZZLES: DEPTH IN m : HHSI: DEPTH OUT m : ANN VEL DP: METERAGE: ANN VEL DC: TOT HRS: BIT VEL mps :

BIT#: IADC # WEAR l: 01: D: B: G. 02: **Mud Properties**

SAMPLE FROM: Pit TYPE: F.W.Poly TIME 8:00 WEIGHT: 9.50 VISCOSITY: 47 PV: 12 YP: 11 GEL 10 sec : 2 12 GEL 10 min : API FL: 6.4 FILTER CAKE: SOLIDS: 8.6

%LGS: 9 %DS: 8 SAND: Tr MBT: 15.0 PH: 9.4 CI: 3,100 K+ · HARD/Ca: 560 6RPM: 3 DAILY COST: \$4,018.00 CUM. COST: \$37,431.00

BHA and Drilling Information

BHA#

BHA LENGTH: HRS ON JARS:

WT BLW JAR: BHA WT:

STRING WT: PICK UP WT: SLK OFF WT:

TRQE MAX: TRQE ON: TRQE OFF:

BHA DESCRIPTION:

vey pints	MD	TVD	INCL	AZ.
)	1,199.0 1,360.0 1,695.0		4.0 3.0 7.5	

F	Pumps		Pump		Slow Pun	np Rates		
		MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
	į	GD-PZ8 GD-PZ8	6.00 6.00	115	320	200		
1	ı		0.00	113	320	300		

Bulk Stocks	Drill					ıel		rite	Ge	9	Cer	nent	Di	esel
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock				
	<u></u>	0		0		0	5	360	0	185	0	750	2,000	8,000

Personnei			
JOB TITLE	NAME	COMPANY NAME	#
DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	Kevin Kelly Henry Flink Dave Horner	Haliburton Cementin IDFS Weatherford ODE	2 1 1 21

Drills and Insp	ections		
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL	27/05/96 4/06/96	DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	290 21/5/96 20/5/96 4/6/96 5/6/96

FROM	TO	HPC	DEPTH	
				DESCRIPTION-ACTIVITY
0:00	1:00	1.0	1,700.0	Run 7" casing
1:00	2:30	1.5	1.700.0	Circ and work casing at 1622. No progress
2:30	3:30			
3:30	4:30	10	1 700 0	Circ 120 % casing contents. Pump 40 bbl of SAPP
4:30	6:30	20	1,700.0	Hold safety masters. Pump 40 bbl of SAPP
			1,700.0	Hold safety meeting. Perform cement job; 482 sx, 12.8ppg Lead w/2.5% BWOC PHB,
			i	1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -
				throughout job, no cement to surface. Bump plug, test casing to 1600psi. Floats held OK.
6:30	10:30	40		
1		7.0	1,700.0	Drain and flush BOP's. Set casing in rotary table; 100000 lbs. Prepare to lift BOP's.
.30	11:30			
:30	15:00	3.5		
15:00	17:00	2.0	1,700.0	Lay out D/pipe in mouse hole while waiting on cement.
10.00		2.0	1,700.0	WOC - Prepare to release rig; Laydown kelly & swivel & rat hole, flush #1 & 2 mud pumps, BOP. HCR line, choke manifold, flare line, and page have the
17:00	0:00	70	1 700 0	pumps, BOP, HCR line, choke manifold, flare line, and poor boy degasser.
	10.00	7.0		
				stick up, final cut csg, dress and install "B" section, prep to set down BOP.

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 17

Report Date:

4/06/96

Issue Date: 5/06/96

Page Number

Basic Data							
DRILL CO RIG (B TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92.0	DEPTH PROGRESS DAYS FROM SPUD DAYS +/- CURVE	1.700 0 0 0 16 92 0 0	HOLE SIZE LAST CSG SIZE SHOE DEPTH LEAK-OFF	8.50 9-5/8" 332.50 13.50	TOT PERS ON DAILY COST CUM COST AFE COST	SITE . 32 \$24,924.00 \$1,040,520.00 \$940,000 00

Gas and General Data

FORMATION MAX GAS B/G GAS % :

Eumeralla

WEATHER

STATUS @ 0600

Cold, windy, occasional showers

Ran 7" casing. Unable to pass 1620, set shoe at 1614. Bumped plug at

6.00

Bit/Hydraulics ROTATE HRS: BIT #: 7 RR AVE WOB: SIZE: 8.50 AVE RPM: MFR: SM FLOW . TYPE MFDSSH PUMP PRESS.: SERIAL#: LFG918 14 12 12 NOZZLES: DEPTH IN m: HHSI: DEPTH OUT m: ANN VEL DP: METERAGE: ANN VEL DC: TOT HRS: BIT VEL mps : BIT#: 7 RR IADC# WEAR 01: D: L: B: R: G. 02:

Mud Properties SAMPLE FROM: Pit %LGS: 9 TYPE: F.W.Poly %DS: 8 TIME 22:0Ó SAND: Tr WEIGHT: 9.50 MBT: 10.0 VISCOSITY: 40 PH: 9.8 PV: 10 CI: 3,000 YP: 8 K+ · GEL 10 sec: 2 8 HARD/Ca: 480 GEL 10 min: 6RPM: 2 API FL : 5.5 DAILY COST: FILTER CAKE: \$908.00 CUM. COST: SOLIDS: 8.6 \$33,413.00

BHA and Drilling Information

BHA LENGTH : HRS ON JARS : 311

WT BLW JAR: BHA WT:

STRING WT: PICK UP WT: SLK OFF WT:

138

TRQE MAX: TRQE ON:

BHA DESCRIPTION:

TRQE OFF: Check Trip. Bit, B/S, 6 1/2" D/C, R/R, 14 x 6 1/2" D/C's, Jars, 2 x 6 1/2" D/C's, 15 x 4 1/2" HWDP

vey [MD	TVD	INCL	AZ.
)	1,199.0		4.0	
	1,360.0		3.0	
	1,695.0		7.5	

Pumps			Pump	Data - la	st 24 hrs		Slow Pump Rates			
	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE		
		GD-PZ8 GD-PZ8	6.00 6.00	115	320	1,150				

Bulk Stocks	Drill Water		Pot. Water		Fuel		Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	35	365	0	185	0	750	2,000	10,000

Personn	el			
JC	B TITLE	NAME	COMPANY NAME	#
DRILLING	G ENGINEER G SUPERVISO E GEOLOGIST	Kevin Kelly Henry Flink Dave Horner	Australian DST Haliburton Cementin IDFS Weatherford ODE Halliburton Mudloggi	2 2 1 1 20 3

Drills and Insp	· · · · · · · · · · · · · · · · · · ·		,
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL	27/05/96 4/06/96	DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	289 21/5/96 20/5/96 4/6/96 2/6/96

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	2:30	2.5	1,700.0	B/out & lay down DST Tools
2:30	3:00	.5	1,700.0	Make up bit, bit sub, 1 RR and RIH to shoe
3:00	3:30	.5	1,700.0	Slip 33' drill line
	5:30	2.0	1,700.0	RIH to 1582m Work tight spot at 1515 m with 15000 lbs
	6:00	.5	1,700.0	Wash from 1582 to 1600 m
	8:00	2.0	1,700.0	Circulate and condition mud. Pump pill
	9:00	1.0	1,700.0	Flow check, POH. Rack 700 m pipe in mast
	11:30	2.5	1,700.0	Layout remaining drill pipe.
11.30	12:30	1.0	1,700.0	Pick up kelly, flush rat hole and mouse hole. Break upper Kelly joints. Remove
				Kelly/hose, lower cock and saver sub.
2:30	14:30	2.0	1,700.0	Layout HWDP, 6 1/2" DC
14:30	15:00	.5	1,700.0	Cléar floor
	16:00	1.0	1,700.0	Rig up to run 7 " casing
16:00	0:00	8.0	1,700.0	Run 7" casing.

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 16

Report Date:

3/06/95

Issue Date: 4/06/96

Page Number:

1

Basic Data							
DRILL CO : 3 TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92 0	DEPTH 1 PROGRESS DAYS FROM SPUD DAYS +/- CURVE	0.700 0 0 0 15 92 0 0	HOLE SIZE : LAST CSG SIZE : SHOE DEPTH : LEAK-OFF	8.50 9-5/8" 332 50 13.50	TOT PERS ON S DAILY COST : CUM COST : AFE COST :	\$138,197.00 \$1,026,396.00 \$940,000.00

Gas and General Data

FORMATION: MAX GAS: B/G GAS %:

Eumeralla

WEATHER .

Cold and raining.

STATUS @ 0600 :

Circulating and conditioning mud prior to running casing.

WEAR	1:	01:	D:	L:	B:	G:	O2:	R:	
BIT#: 7	RR			IAE	OC #				
Bit/Hydr BIT #: SIZE: MFR: TYPE: SERIAL #: DEPTH IN IT DEPTH OU METERAGI TOT HRS:	n : T m :	MF	7 RR 8.50 SM DSSH FG918	AV FL PU NC HH AN	/E WC /E RPI OW :	MESS.S.DP:		14 12	12

Mud Propertie	:S		
SAMPLE FROM	: FL	%LGS:	8
TYPE:	F.W.Poly	%DS:	7
TIME:	20:00	SAND:	Tr
WEIGHT:	9.40	MBT:	12.0
VISCOSITY:	44	PH:	9.6
PV:	11	CI:	3,300
YP:	7	K+:	
GEL 10 sec :	2	HARD/Ca:	640
GEL 10 min :	11	6RPM:	1
API FL :	5.2		· · · · · · · · · · · · · · · · · · ·
FILTER CAKE:	1	DAILY COST :	\$393.00
SOLIDS :	7.8	CUM. COST :	\$32,505.00

BHA and Drilling Information

BHA # : BHA LENGTH : HRS ON JARS :

7 311 WT BLW JAR : BHA WT : STRING WT : PICK UP WT : SLK 0FF WT :

138

TRQE MAX : TRQE ON : TRQE OFF :

BHA DESCRIPTION:

Check Trip. Bit, B/S, 6 1/2" D/C, R/R, 14 x 6 1/2" D/C's, Jars, 2 x 6 1/2" D/C's, 15 x 4 1/2" HWDP

ey boints	MD	TVD	INCL	AZ.
only)	1,199.0		4.0	
	1,360.0		3.0	
	1,695.0		7.5	

ı	Pumps				Data - la		T	Slow Pur	
		#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
			GD-PZ8 GD-PZ8	6.00 6.00	115	320	1,150		

Bulk Stocks	Drill	Water	Pot.	Water	Fi	ıel	Ва	rite	Ge	el	Cen	nent	Di	esel
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	60	400	0	185	0	750	2,700	12,000

Personnel			
JOB TITLE	NAME	COMPANY NAME	#
DRILLING ENGINEER DRILLING SUPERVISO GEOLOGIST WELLSITE GEOLOGIST	Kevin Kelly Henry Flink Alex Pumillio Dave Horner	Australian DST Haliburton Cementin Weatherford BPB ODE IDFS Halliburton Mudloggi	2 2 1 5 20 1 3

DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL	27/05/96 3/06/96	DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	288 21/5/96 20/5/96 4/6/96 2/6/96

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	1:30	1.5	1,700.0	RIH to 1505 m
1:30	2:00	.5	1,700.0	Wash and ream from 1505 to 1528 m
2:00	2:30	.5	1,700.0	RIH from 1505 to 1600 m
2:30	4:00	1.5	1,700.0	Circulate and condition mud, flow check. Max gas 100 units.
4:00	7:00	3.0	1,700.0	Pump pill and POH for DST # 7
	9:00	2.0	1,700.0	Pick up and make up DST tools
9:00	11:30	2.5	1,700.0	RIH with DST tools, SLM
11 70	12:00	.5	1,700.0	Pick up and make up head lines and manifold.
3	12:30	.5	1,700.0	Pressure test manifold, surface lines, and fail safe to 1500 psi for 10 minutes
30	13:30	1.01	1,700.0	Set packers at 1234 to 1245 m for DST # 7. Hold safety meeting
13:30	17:30	4.0	1,700.0	Perform DST; one 2 hour flow period and one 2 hour shut in
17:30	19:00	2.0	1,700.0	Unseat packers, drop bar and chase with 18 bbls. Open test manifold, shut rams and
19:00	20:20	j		reverse circ 69 bbls.
19.00	20:30	1.5	1,700.0	Change surface lines circulate conventionally 233 bbls.

Cultus

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 16

Report Date:

3/06/95

Issue Date : 4/06/96

Page Number :

)

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
20:30	21:00	.5	1,700.0	Rig down, clean and layout surface lines and test manifold. Flow check, static, pump
1:00	0:00	3.0	1,700.0	POH with DST tool (slow).

Skull Creek #1

REPORT#: 15

Report Date:

2/06/96

Issue Date: 3/06/96

Page Number:

8

Tr

14.0

9.8

3,300

520

Basic Data							
DRILL CO RIG: RKB TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92 0	DEPTH 1 PROGRESS DAYS FROM SPUD DAYS -/- CURVE	700 0 0 0 14 92 0 0	HOLE SIZE : LAST CSG SIZE SHOE DEPTH LEAK-OFF	8.50 9-5/8** 332.50 13.50	TOT PERS ON S DAILY COST : CUM COST : AFE COST :	\$44,388.00 \$888,199.00 \$940,000.00

Gas and General Data	ta	
----------------------	----	--

FORMATION MAX GAS B/G GAS %

Eumeralla

WEATHER

STATUS @ 0600

02:

R:

Clear, warm in day, cold at night

Mud Properties

SAMPLE FROM:

Tripping out of hole from check trip prior to DST #7

FL

Bit/Hydraulics ROTATE HRS BIT#: 7 RR AVE WOB SIZE: 8 50 AVE RPM MFR: SM **FLOW** TYPE: MFDSSH PUMP PRESS. : SERIAL #: LFG918 14 12 12 NOZZLES: DEPTH IN m : HHSI DEPTH OUT m : ANN VEL DP: METERAGE: ANN VEL DC -TOT HRS: BIT VEL mps: BIT#: 7 RR IADC #

L.

F.W.Poly TYPE TIME 3:30 WEIGHT 9.45 VISCOSITY: 48 PV. 10 YP: 8 GEL 10 sec : GEL 10 min : 2 11

MBT: PH: CI: K+: HARD/Ca:

%LGS:

%DS:

SAND:

6RPM:

API FL: 4.8 FILTER CAKE: 1 SOLIDS 8.2

DAILY COST : \$1,307.00 CUM. COST : \$32,112.00

BHA and Drilling Information

01:

1:

BHA# BHA LENGTH HRS ON JARS

WEAR

D

WT BLW JAR BHA WT.

В

STRING WT: PICK UP WT: SLK OFF WT: TRQE MAX:

TRQE ON: TRQE OFF:

BHA DESCRIPTION

Check Trip. Bit. B/S. 6 1/2" D/C, R/R, 14 x 6 1/2" D/C's, Jars, 2 x 6 1/2" D/C's, 15 x 4 1/2" HWDP

Survey points	MD	TVD	INCL	AZ.
) iy)	1.199.0 1.360.0 1.695.0		4.0 3.0 7.5	

Pumps	Ц.		Slow Pump Rates					
	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
	1	GD-PZ8	6.00					

138

Bulk Stocks			Pot. Water				Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	60	460	0	185	0	750	2,300	14,700

JOB TITLE	NAME	COMPANY NAME	#
DRILLING ENGINEER DRILLING SUPERVISO GEOLOGIST WELLSITE GEOLOGIST	Kevin Kelly Henry Flink Alex Pumillio Dave Horner	Australian DST Haliburton Cementin BPB ODE IDFS Halliburton Mudloggi	20

Drills and Insp	ections		
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL	27/05/96 2/06/96	DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	287 21/5/96 20/5/96 4/6/96 2/6/96

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	1:30	1.5	1,700.0	Make up DST tools for DST#5&6
1:30	6:00	4.5	1,700.0	RIH with DST tools, install pump out and impact subs
6:00	7:30	1.5	1,700.0	Rig up head, lines & manifold. P/test surface lines, position packers @ 1500 to 1520 m.
7.20	10.00		1	TOLUS L# 5. Pump up packers and set. Hold safety meeting
7:30	10:00	2.5	1,700.0	Open tool. DST head not torqued up, shut in, tighten head, set packers and open tool.
10.00	44.00			Communication on final flow period, shufting
10:00	11:00	1.0	1.700.0	Lower packers 2 m to 1502 to 1522 m. Attempt to set packers twice, unsuccessful,
144.00	12.20	م د ا	4 700 0	abandon DST #5.
11:00	13:30	2.5	1.700.0	Pick up 1 single and POH 10 stands. Position packers at 1225 to 1245 m for DST #6.
113:30	14:00	.5	1,700.01	Attempt to set packers unsuccessful suspect blow packer Ahandon DST #6
:00	15:00	1.0	1,700.0	Drop bar, fill annulus with 249 stks (17 bbl). Shut in test manifold, change over surface lines
15:00	16:00	1 0	1 700 0	Pump conventionally total cap of drill pipe and annulus.
16:00	19:00	3.0	1.700.0	POH with DST tools, flow check, OK
	22:00	3.0	1.700.0	POH Brook and Joseph And Joseph And Joseph
10.00	22.00	3.0	1,700.0	POH. Break and layout test tools, recover sample, clean and service tools and packer. Change packer.

DAILY DRILLING REPORT

Skull Creek #1

REPO	RT#	: 15	Rep	ort Date:	2/06/96	Issue Date : 3/06/96	Page Number :	2
FROM	TO	HRS	DEPTH			DESCRIPTION-ACTIVITY		
22:00	0.00	2.0	1.700 0	Make up BH	A and RIH fo	or check trip.		

DAILY DRILLING REPORT

Skull Creek #1

8

REPORT#: 14

Report Date:

1/6/96

Issue Date : 2/6/96

Page Number:

Basic Data						
ORILL CO IG RKB TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92.0	DEPTH: PROGRESS DAYS FROM SPUD DAYS +/- CURVE:	1,700 0 0 0 13 92 0 0	HOLE SIZE LAST CSG SIZE SHOE DEPTH LEAK-OFF	9-5/8" 332.50	TOT PERS ON SITE: 34 DAILY COST: \$ 24, 343 CUM COST: \$843, 811 AFE COST: \$940,000

Gas and General Data

FORMATION: MAX GAS %: B/G GAS %:

Eumeralla WEATHER: Rain, windy, and cold

STATUS @ 0600:

RIH for DST # 5.Testing surface equipment.prior to set packers and open

Bit/Hydraulics ROTATE HRS: BIT#: 6 RR AVE WOB: SIZE 8.50 AVE RPM: MFR SM FLOW: TYPF MFDSSH PUMP PRESS.: SERIAL#: LFG918 14 12 12 NOZZLES: DEPTH IN m: BIT HHSI: DEPTH OUT m: ANN VEL DP: MFTERAGE: ANN VEL DC: HRS: BIT VEL mps :

BIT#: 6 RR

IADC # WEAR 1: 01: D: B: G: 02: **Mud Properties**

SAMPLE FROM: FL. TYPE: F.W.Poly TIME 20:30 WEIGHT: 9.40 VISCOCITY: 47 PV: 14 YP: 11 GEL10S: 2 GEL10M: 12 APIFL: 5.0 FILTER CAKE: 1 SOLIDS: 7.8

%DS: 7 SAND: Tr MBT: 10.0 PH: 9.8 CI: 3,600 K+: HARD/Ca: 640 6RPM: 2 DAILY COST: \$1,252.00 CUM. COST: \$30,805.00

BHA and Drilling Information

BHA# BHA LENGTH:

311

WT BLW JAR : BHA WT:

STRING WT: PICK UP WT: SLK OFF WT:

138

TRQE MAX: TRQE ON:

%LGS:

Seal DESCRIPTION:

HRS ON JARS

TRQE OFF: Check Trip. Bit, B/S, 6 1/2" D/C, R/R, 14 x 6 1/2" D/C's, Jars, 2 x 6 1/2" D/C's, 15 x 4 1/2" HWDP

R:

Survey MD TVD INCL AZ. (3 points 1,199.0 only) 4.0 1,360,0 3.0 1,695.0 7.5

Pumps			Pump	Data - la	st 24 hrs		Slow Pump Rates			
	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRES		
	1	GD-PZ8 GD-PZ8	6.00 6.00		350	1,300				

l														
Bulk Stocks	Drill	Water	Pot. Water		Fuel		Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock				Stock				
								Otock	- OSCU	SIUCK	Useu	Stock	Usea	Stock
		0		0		0	30	520	0	185	0	750	2.000	17,000
														,500

Personnel JOB TITLE NAME **COMPANY NAME** Australian DST 2 **IDFS** DRILLING ENGINEER Kevin Kelly **BPB** 5 DRILLING SUPERVISOR Henry Flink ODF 20 WELLSITE GEOLOGIST Dave Horner Halliburton Mudloggin

Drills and Inspections										
DRILL TYPE	TIMING	INSPECTIONS	TIMING							
FIRE INCIDENT PIT DRILL TRIP DRILL	27/05/96 1/06/96	DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	286 21/5/96 20/5/96 4/6/96 30/5/96							

LABEL

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	0:30	.5	1,700.0	Circulate and condition mud
0:30	3:30	3.0	1,700.0	Flow check, pump pill, POH
3:30	15:30	12.0	1,700.0	R/U BPB. M/U RFT. Replace BPB wt indicator sensator. RFT in 5:30, out 8:00. Clean
				out tool. In 9:45, out 11:35. Tool not working, Rig down
1 7	19:00	3.5	1,700.0	M/U BHA and RIH to 1600 m
1	21:00	2.0	1,700.0	Circulate and condition mud
21:00	0:00	3.0	1,700.0	POH to pick up DST tools.

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 13

Report Date:

31/5/96

Issue Date: 1/6/96

Page Number:

1

35

Basic	Data

ORILL CO	ODE
RIG [□]	30
RKB TO GRND LVL	4 98
GRND LVL AMSL	920

DEPTH: 1,700 0
PROGRESS: 0 0
DAYS FROM SPUD: 12 92
DAYS +/- CURVE: 0 0

HOLE SIZE 8.50 LAST CSG SIZE 9-5/8" SHOE DEPTH 332.50 LEAK-OFF 13.50

TOT PERS ON SITE:
DAILY COST: \$37, 421
CUM COST: \$806, 390
AFE COST: \$940,000

Gas and General Data

FORMATION :
MAX GAS %:
B/G GAS %:

DEPTH OUT m:

TERAGE:

JT HRS:

Eumeralia WEATHER:

WEATHER: Clear and cool. STATUS @ 0600: RIH with RFT tool

14 12 12

Bit/Hydraulics ROTATE HRS:
BIT #: 5RR | AVE WOB:

 SIZE:
 8.50

 MFR:
 SM

 TYPE:
 MFDSSH

 SERIAL#:
 LFG918

 DEPTH IN m:
 LFG918

FG918 PUMP PRESS.:
NOZZLES:
BIT HHSI:
ANN VEL DP:
ANN VEL DC:
BIT VEL mps:

AVE RPM:

FLOW:

BIT#: 5RR IADC#

WEAR I: O1: D: L: B: G: O2: R:

Mud Properties

SAMPLE FROM FL TYPE: F W.Poly 0:30 TIME WEIGHT: 9.30 VISCOCITY: 38 11 PV · YP: 11 GEL10S: 2 8 GEL10M: APIFL: 5.7 FILTER CAKE: 1 SOLIDS:

7 %LGS: %DS: 6 $\operatorname{\mathsf{Tr}}$ SAND: MBT: 11.0 PH: 10.0 CI · 4,000 K+: 1,000.0 HARD/Ca: 540 6RPM: 2 DAILY COST: \$2,380.00 CUM. COST: \$29,553.00

BHA and Drilling Information

1,695.0

BHA #: 5 BHA LENGTH: 311 HRS ON JARS:

IA DESCRIPTION :

WT BLW JAR : BHA WT :

7.5

STRING WT : PICK UP WT :

TRQE MAX :

SLK 0FF WT : TRQE 0FF : Check Trip. Bit, B/S, 6 1/2" D/C, R/R, 14 x 6 1/2" D/C's, Jars, 2 x 6 1/2" D/C's, 15 x 4 1/2" HWDP

138

Pumps			Pump	Data - la	st 24 hrs	Slow Pump Rates		
•	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRES
	1	GD-PZ8	6.00	35	100	500		
	2	GD-PZ8	6.00					

Bulk Stocks	Drill Water		Pot. Water		Fı	Fuel E		Barite (Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	
		0	-	0		0	30	550	0	185	0	750	3,000	19,000	

P	ersonnel			
	JOB TITLE	NAME	COMPANY NAME	#
			Australian DST	2
	DRILLING ENGINEER	Kevin Kelly	BPB	5
	DRILLING SUPERVISOR	Henry Flink	ODE	20
	RESERVOIR ENGINEER		IDFS	1
	WELLSITE GEOLOGIST	Dave Horner	Halliburton Mudloggin	3

Drills and Inspections										
DRILL TYPE	TIMING	INSPECTIONS	TIMING							
FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	285 21/5/96 20/5/96 4/6/96 30/5/96							

LABEL

FROM	то	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	4:30	4.5	1,700.0	Inflate packer & set . Open tool @ 0:50, close @ 1:00, open @ 1:46, close @ 2:46. Pull
				packer free @ 4:16
4:30	5:30	1.0	1,700.0	Fill 1000 ft of d/pipe with mud. Drob bar, didn't shear pins.
5:30	6:00	.5	1,700.0	Fill pipe, blow pump out sub at 1100 psi.
10	10:00	4.0	1,700.0	Circulate gas through BPM and Poor Boy. Max 22%, LMW 8.1%
00:د	10:30	.5	1,700.0	Flow check. RIH 7 stds. Top packer @ 1430
10:30	13:00	2.5	1,700.0	Circulate out gas and condition mud. Max 28%, LMW 8.7%
13:00	13:30	.5	1,700.0	Break and layout test head and DST surface equipment.
13:30	14:00	.5	1,700.0	F/check (static) POH 2 stds, P/U kelly pump pill.
14:00	16:30	2.5	1,700.0	POH slow with DST tools. Flow check on way out (static)
16:30	19:30	3.0	1,700.0	Recover samples from chamber. Break and layout test tools, service and clean.
19.30	20:30	10	1 700.0	M/U BHA and RIH for check trip

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 13 Report Date: 31/5/96 Issue Date: 1/6/96

Page Number :

ILLI OILIW. 10 ILC				itcp	of But. Onorgo team but the bu
	FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
	?0:30	21:00	.5	1,700.0	Slip and cut line
	21:00	23:00	2.0	1,700.0	Cont RIH to 1600 m
	23:00	0:00	1.0	1,700.0	Circulate and condition mud.

\$853,600.00

REPORT#: 12

Report Date: 30/05/96

Issue Date : 31/05/96

Page Number:

Basic Data DRILL CO. ODE HOLE SIZE 8.50 TOT PERS ON SITE: DEPTH 1.700.0 35 ₽IG 30 LAST CSG SIZE **PROGRESS** 0.0 9-5/8" DAILY COST: \$50,405.00 .B TO GRND LVL 4 98 DAYS FROM SPUD 11 92 SHOE DEPTH: 332.50 CUM COST: \$782,047.00 SRND LVL AMSL 92 0 DAYS +/- CURVE 00 LEAK-OFF 13 50 AFE COST:

Gas and General Data

FORMATION MAX GAS

Eumeralla

WEATHER

Clear and cool

STATUS @ 0600 Completed DST #3 & 4 Circulating conventionally.

B/G GAS %

Bit/Hydraulics BIT# SIZE MFR TYPE SERIAL # : DEPTH IN m : DEPTH OUT m: METERAGE:

ROTATE HRS AVE WOB AVE RPM **FLOW PUMP PRESS** NOZZLES HHSI ANN VEL DP ANN VEL DC BIT VEL mps

IADC #

D. L: В 02: **Mud Properties**

SAMPLE FROM PIT F.W.Poly TYPE: TIME 16:00 WEIGHT 9.30 VISCOSITY: 48 PV: 12 YP: 11 GEL 10 sec : 2 GEL 10 min: 13 API FL: 47 FILTER CAKE: SOLIDS:

7

%LGS: %DS: 6 SAND: TR MBT: 12.0 PH: 9.5 CI: 4,100 K+: 1,500.0 HARD/Ca: 620 6RPM: 2

DAILY COST: \$2,374.00 CUM. COST: \$27,173.00

BHA and Drilling Information

01:

BHA#

TOT HRS:

BIT#:

WEAR

WT BLW JAR

BHA LENGTH: HRS ON JARS : BHA WT

STRING WT PICK UP WT: SLK OFF WT

TRQE MAX: TRQE ON:

TRQE OFF:

BHA DESCRIPTION:

1:

DST#3&4

vey	MD	TVD	INCL	AZ.
nly)	1,199.0 1,360.0 1,695.0		4.0 3.0 7.5	

1	Pumps		Pump Data - last 24 hrs Slow Pump I						
		#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
			GD-PZ8 GD-PZ8	6.00 6.00					

Bulk Stocks	Drill Water		Pot.	Water	Fı	ıel	Ва	rite	Ge	el .	Cer	nent	Di	esel
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	37	580	0	185	0	750	2,200	7,000

R:

Personnel			
JOB TITLE	NAME	COMPANY NAME	#
	Kevin Kelly Henry Flink Rod Harris Dave Horner	Australian DST BPB ODE IDFS Halliburton Mudloggi	2 5 20 1 3

Drills and Inspections													
DRILL TYPE	TIMING	INSPECTIONS	TIMING										
FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	284 21/5/96 20/5/96 4/6/96 30/5/96										

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	2:30	2.5	1,700.0	Cont m/up BHA and RIH to 1679 m
2:30	3:00	.5	1,700.0	Wash from 1679 to 1700 m, 2 m fill.
3:00	6:30			Circulate and condition mud, Flow check.
	9:30	3.0	1,700.0	Pump pill, POH. Break out 2 x R/reamer, bit sub, bit.
	11:30	2.0	1,700.0	Prepare and pick up DST tools.
	15:00	3.5	1,700.0	RIH with DST tools. Strap in, no corrections.
15:00	23:00	8.0	1,700.0	P/U & M/U DST head and surface lines, check pump 1 & 2 on k/line & function test fail
				safe valve on DST head. Packer depth - 1402 - 1417 m.
				Set packers 15:21 to 15:42, tool open 15:55, tool closed 16:00. Reopen tool 16:39,
				close tool 18:39. Pull packer free 22:43
1 0	0:00	1.0	1,700.0	Rig down DST head & surface lines. POH to top packer 1240 to 1255m. R/u DST head
				and surface lines.

Skull Creek #1

REPORT#: 11

Report Date: 29/05/96

Issue Date: 30/05/96

Page Number:

Basic Data

DRILL CO.:	ODE
RIG ·	30
B TO GRND LVL	4 98
GRND LVL AMSL	92 0

DEPTH 1,700.0 **PROGRESS** 0.0 DAYS FROM SPUD 10.92 DAYS +/- CURVE 00

HOLE SIZE 8.50 LAST CSG SIZE 9-5/8" SHOE DEPTH: 332.50 LEAK-OFF 13 50

TOT PERS ON SITE: DAILY COST:

CUM COST:

AFE COST:

36 \$25,455.00 \$731,642.00 \$853,600.00

Gas and General Data

FORMATION .
MAX GAS:
B/G GAS %:

WEATHER STATUS @ 0600

Showers, clearing in afternoon

Circulating and conditioning mud prior to DST. Max gas 0.6%

Bit/Hydraulics

ROTATE HRS: BIT#: AVE WOB: SIZE : AVE RPM: MFR: FLOW TYPE: PUMP PRESS.: SERIAL #: NOZZLES: DEPTH IN m : HHSI: DEPTH OUT m: ANN VEL DP: METERAGE: ANN VEL DC: TOT HRS: BIT VEL mps: BIT # :

Eumeralla

IADC# D: 1: 01: L: B: G: 02: R: **Mud Properties**

maa i roportio	,
SAMPLE FROM:	FL
TYPE:	F.W.Poly
TIME:	5:00
WEIGHT:	9.30
VISCOSITY:	47
PV:	12
YP:	10
GEL 10 sec:	2
GEL 10 min :	16
API FL:	5.8
FILTER CAKE:	1
SOLIDS:	7

%LGS: 7 %DS: 6 SAND: Τr MBT: 14.0 PH: 9.7 CI: 3,900 1,400.0 HARD/Ca: 480 6RPM: 2 DAILY COST: \$2,674.00

CUM. COST : \$24,799.00

BHA and Drilling Information

BHA#

WEAR

BHA LENGTH: HRS ON JARS : WT BLW JAR:

BHA WT:

STRING WT: PICK UP WT: SLK 0FF WT:

TRQE MAX: TRQE ON: TRQE OFF:

BHA DESCRIPTION: Logging

yey bints	MD	TVD	INCL	AZ.
ly)	1,199.0		4.0	
1	1,360.0		3.0	
	1,695.0		7.5	

Pu	ımps				Slow Purr				
		#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
			GD-PZ8 GD-PZ8	6.00 6.00					

Bulk Stocks	Drill	Water				ıel	Ва		Ge	el	Cen	nent	Di	esel
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	0	617	0	185	0	750	2,000	9,200

F	Personnel			
	JOB TITLE	NAME	COMPANY NAME	#
	DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	Kevin Kelly Henry Flink Dave Horner	Australian DST IDFS Velocity Data BPB ODE Halliburton Mudloggi	2 1 1 5 21

Drills and Inspections												
DRILL TYPE	TIMING	INSPECTIONS	TIMING									
FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	283 21/5/96 20/5/96 4/6/96 29/5/96									

			DEPTH	DEGGIA HOLLAGIALI
0:00	23:30	23.5	1,700.0	Con't RFT log. Problems with tool, POH. RIH wit new tool, not working, POH. Abandon
23:30	0:00	.5	1,700.0	RFT's, Run #3 - LDL-CNL-GR-CAL. Run #4 - Dipmeter. Perform velocity survey. Make up BHA for wiper trip prior to DST

Skull Creek #1

REPORT#: 10 Report Date: 28/05/96 Issue Date: 29/05/96 Page Number: 1

Basic Data					
DRILL CO ODE PIG 30 KB TO GRND LVL 4 98 GRND LVL AMSL 92 0	DEPTH 1.700 0 PROGRESS 108 0 DAYS FROM SPUD 9 92 DAYS +/- CURVE 0 0	HOLE SIZE : LAST CSG SIZE : SHOE DEPTH : LEAK-OFF :	8 50 9-5/8" 332 50 13 50	TOT PERS ON S DAILY COST : CUM COST : AFE COST :	\$56,282.00 \$706,187.00 \$853,600.00

Gas and General Da	ita	1	
FORMATION: MAX GAS:	Eumeralla	WEATHER: STATUS @ 0600:	Rain, clearing in afternoon,cool POH with RFT tool. Swap tool, RIH to complete RFT logging.
B/G GAS %:			

Bit/Hydraulics	······································	ROTATE HRS :	9.2	Mud Properties	3		
BIT #: SIZE: MFR: TYPE: SERIAL #: DEPTH IN m: DEPTH OUT m: METERAGE: TOT HRS:	4 8.50 SM MF15 LC2089 1,373.0 1,700.0 327.0 13.0	AVE WOB: AVE RPM: FLOW: PUMP PRESS: NOZZLES: HHSI: ANN VEL DP: ANN VEL DC: BIT VEL mps:	30 200 400 1,500 14 12 12 3 189 327 325	SAMPLE FROM: TYPE: TIME: WEIGHT: VISCOSITY: PV: YP: GEL 10 sec: GEL 10 min: API FL: FILTER CAKE:	PIT F.W.Poly 21:00 9:30 47 11 18 8 23 8.2 2	%LGS: %DS: SAND: MBT: PH: CI: K+: HARD/Ca: 6RPM:	7 6 Tr 16.0 9.5 4,300 2,200.0 560 9
BIT #: 4		IADC # 4 4 7		SOLIDS :	7	CUM. COST:	\$22,126.00
WEAR I: 2	O1:2 D:N	L:A B:E G:I O	2:N R:TD				

BHA and Drill	ing In	formation	·				
BHA # : BHA LENGTH : HRS ON JARS :	4 328 195	WT BLW JAR : BHA WT :	41 64	STRING WT : PICK UP WT : SLK 0FF WT :	146 154 144	TRQE MAX : TRQE ON : TRQE OFF :	100 100 70
BHA DESCRIPTIO	N:	Bit, 6 1/2" motor, X/O, R/Rea	amer, 6 1/2" [OC, R/Reamer, 15 x 6 1/2	2" DC's, Jars,	2 x 6 1/2" DC's, 15 x 4	1/2"

rvey	MD	TVD	INCL	AZ.	Pumps	#	MAKE/TYPE			St 24 hrs	AVEDDESS	Slow Pum	<u> </u>
only)	1,199.0 1,360.0		4.0 3.0				GD-PZ8	6.00	AVSPIN	AVFLOV	AVEFRESS	45	32
	1,695.0		7.5										

Bulk Stocks	Drill	Drill Water		Pot. Water		Fuel		Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	
		0		0	:	0	40	617	0	185	0	750	3,500	11,200	

Personnel				Drills and Insp	ections		
JOB TITLE	NAME	COMPANY NAME	#	DRILL TYPE	TIMING	INSPECTIONS	TIMING
DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	Kevin Kelly Henry Flink Dave Horner	Australian DST BPB IDFS Velocity Data Halliburton Dir Drill ODE Halliburton Mudloggi	2 5 1 1 1 21 3	FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	282 21/5/96 20/5/96 4/6/96 28/5/96

FROM	TO	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	5:30	5.5	1,700.0	Drill 8 1/2 " hole from 1592 to 1700 m
5:30	6:00			Circulate bottom's up
6:00	9:00	3.0	1,700.0	Wiper trip to 1180. RIH to 1600. B/circ, wash thru tight hole 1600 to 1604m. Cont RIH
			·	to 1628m. B/circ wash thru t/hole 1628 to 1630 m. Cont RIH to 1695 m.
9:00	9:30	.5	1,700.0	B/circ wash to btm, 5 m of fill, circulate bottoms up.
9:30	10:30	1.0	1,700.0	POH to 1409 m. RIH to 1695, Hole good.
10:30	11:30	1.0	1,700.0	B/circ and circulate hole clean.
30	12:00			Drop survey, Pump pill, POH SLM out
.00	14:00			POH SLM. Flow check 5 stnds.
14:00	15:00			Slip and cut drill line
15:00	16:30	1.5	1,700.0	POH. L/D BHA, 2 x R/R, 1 x 6 1/2 DC, X/O. Recover survey (7.5 deg at 1696m).
				Service motor.
16:30	0:00	7.5	1,700.0	Rig up BPB. Log # 1 - DLL-MSFL-SP-SONIC-GR-CAL. Run # 2 - RFT.

Skull Creek #1

REPORT#:

Report Date: 27/05/96

Issue Date: 28/05/96

Page Number

Basic Data

DRILL CO

RIG

ODE 30

DEPTH 1,592 0 PROGRESS 219 0

HOLE SIZE : 8.50 LAST CSG SIZE 9-5/8" SHOE DEPTH

TOT PERS ON SITE DAILY COST

33 \$40,041.00 \$649,905.00

6

5

Tr

13.0

9.0

5

4,100

2,300.0

4.98 92 0

DAYS FROM SPUD 8.92 DAYS +/- CURVE 0.0

332.50 LEAK-OFF: 13.50

CUM COST AFE COST \$853,600.00

Gas and General Data

KB TO GRND LVL

GRND LVL AMSL

FORMATION Eumeralla MAX GAS 497.0 B/G GAS % 80.0

9

WEATHER Clear and Cool

STATUS @ 0600:

Drill to 1700 m (TD). Circ. Btms up. prior to WT and logging run.

FL

6.3

Bit/Hydraulics ROTATE HRS 5.3 BIT# AVE WOB 30 AVE RPM 200 SIZE 8.50 **FLOW** 400 MFR SM PUMP PRESS.: 1,500 TYPE MF15 NOZZLES: 14 12 12 SERIAL # : LC2089 DEPTH IN m : HHSI 3 1.373.0 ANN VEL DP: 189 DEPTH OUT m: ANN VEL DC: METERAGE: 327 219.0 BIT VEL mps : 325 TOT HRS: 7.5 BIT#: 4 IADC# 4 4 7 WEAR 1: G: D: В: 01: 1 . 02: R:

Mud Properties SAMPLE FROM:

TYPE: F.W.Poly 0:30 TIME WEIGHT 9.20 VISCOSITY: 44 PV: 11 YP: 16 GEL 10 sec : 3 25 GEL 10 min: API FL: 9.1

HARD/Ca: 1,220 6RPM:

%LGS:

%DS:

MRT ·

PH:

CI:

SAND .

FILTER CAKE: SOLIDS:

DAILY COST: \$3,161.00 CUM. COST: \$19,863.00

BHA and Drilling Information

BHA LENGTH: HRS ON JARS

WT BLW JAR: 328 BHA WT 8

41 64 STRING WT: PICK UP WT: 140 144 SLK OFF WT: 136

TRQE MAX: 110 TRQE ON: 110 TRQE OFF:

BHA DESCRIPTION:

Bit, 6 1/2" motor, X/O, R/Reamer, 6 1/2" DC, R/Reamer, 15 x 6 1/2" DC's, Jars, 2 x 6 1/2" DC's, 15 x 4 1/2"

HWDP

rvey TVD INCL MD AZ. points only) 1.8 4.0 3.0 940.0 1,199.0 1,360.0

Pumps			Pump	Data - la	st 24 hrs		Slow Pur	p Rates
	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
		GD-PZ8 GD-PZ8	6.00 6.00	143	400	1,500	45 55	24 30

Bulk Stocks							Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	127	657	0	185	0	150	2,800	14,700

Personnel JOB TITLE NAME COMPANY NAME Halliburton Mudloggi Velocity Data DRILLING ENGINEER DRILLING SUPERVISO IDFS Kevin Kelly Henry Flink ODE 21 RESERVOIR ENGINEE Andy Ion Australian DST WELLSITE GEOLOGIST Dave Horner Halliburton Dir Drill

Drills and Insp	ections		
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	281 21/5/96 20/5/96 4/6/96 25/5/96

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	7:00	7.0	1,373.0	Cont reverse circ 940 stks. R/u & circ conventionally 5099 stks. Open bag & cont circ
				to build mud weight from 8.7 to 9.2 to bal well
7:00	10:00	3.0	1,373.0	POH with test tools. L/O 2 drill collars.
	12:30	2.5	1,373.0	B/dn & I/o DST tools.
, ,	13:00	.5	1,373.0	P/u and m/u R/reamer, 6 1/2 DC, R/reamer, X/O, motor and # 4 bit.
13:00	13:30	.5	1,373.0	P/up kelly and test motor
13:30	16:00	2.5	1,373.0	RIH with bit # 4 to 1361 m
16:00	16:30	.5	1.373.0	Wash and ream from 1361 to 1373 m - 2 m fill
30	0:00	7.5	1,592.0	Drill 8 1/2 " hole from 1373 to 1592 m

Bulk Stocks

REPORT#: 8

Report Date: 26/05/96

Drill Water Pot. Water

Issue Date: 27/05/96

Page Number:

Basic Data						
DRILL CO RIG KB TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92 0	DEPTH . PROGRESS DAYS FROM SF		HOLE SIZE: LAST CSG SIZE: SHOE DEPTH	8.50 9-5/8" 332.50	DA CI

DRILL CO RIG KB TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92 0	DEPTH 1,3 PROGRESS DAYS FROM SPUD 1 DAYS +/- CURVE	5.0 LA 7.92 SH	PLE SIZE ST CSG SIZE : OE DEPTH AK-OFF :	8.50 9-5/8" 332.50 13.50	TOT PERS ON S DAILY COST : CUM COST : AFE COST :	\$73,844.00 \$609,864.00 \$853,600.00
Gas and General Dat	а						

FORMATION MAX GAS:	Eumeralla	WEATHER STATUS @ 0600	Sunny and cool Complete rev circ after DST. Circ. building MW up to 9.2. Max gas
B/G GAS %:		318103@0000	13%/LW 8.6

Bit/Hydraulics		ROTATE HRS:	.5	Mud Properties	S		
BIT #: SIZE: MFR: TYPE: SERIAL #: DEPTH IN m: DEPTH OUT m: METERAGE: TOT HRS:	RR#2 8.50 OT MFDSSH LF6918 1,368.0 1,373.0 5.0	AVE WOB: AVE RPM: FLOW: PUMP PRESS: NOZZLES: HHSI: ANN VEL DP: ANN VEL DC: BIT VEL mps:	20 80 350 1,100 14 13 12 2 152 286 288	SAMPLE FROM: TYPE: TIME: WEIGHT: VISCOSITY: PV: YP: GEL 10 sec: GEL 10 min:	F.W.Poly 23:30 9:15 42 8 15 6 21	%LGS: %DS: SAND: MBT: PH: CI: K+: HARD/Ca: 6RPM:	6 5 Tr 13.0 9.5 4,100 2,600.0 720 8
BIT # : RR#2 WEAR I: 1	O1:2 D:R	IADC # 1 1 7 L:G B:E G:I O2	:N R:DS	API FL : FILTER CAKE : SOLIDS :	8.8 2 5.9	DAILY COST : CUM. COST :	\$2,945.00 \$16,701.00

BHA and Drilli	ng In	formation			
BHA # : BHA LENGTH : HRS ON JARS :	3 321	WT BLW JAR : BHA WT :	STRING WT : PICK UP WT : SLK 0FF WT :	60	TRQE MAX : TRQE ON : TRQE OFF :
BHA DESCRIPTION	1:	Bit, J/sub, B/sub, 6 1/2" D/C, R/R,	18 x 6 1/2" D/C, Jars, 2 x 6 1/2"	D/C, 12 x H	WDP

rvey ooints	MD	TVD	INCL	AZ.	Pumps				st 24 hrs		Slow Pun	
only)	940.0		1.8			# MAKE/TYF	E LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
	1,199.0 1,360.0		4.0 3.0			1 GD-PZ8	6.00					

Barite

Gel

Cement

Diesel

Fuel

1										•	· ·	001		1	C3C1
		Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
			0		0		0	40	784	0	185	0	150	2,400	17,500
F	ersonnel							Drill	s and li	nspect	ions				
	JOB TITLE		NAME		COMPA	NY NAM	IE #	DF	RILL TYP	E TI	MING	INS	PECTIO	NS	TIMING
	DRILLING ENGINEER DRILLING SUPERVISO RESERVOIR ENGINEE WELLSITE GEOLOGIST		evin Kelly enry Flink ndy Ion ave Horner	II C	/elocity E DFS DE Justralian	n Mudlog Pata	1 1 21 2	PIT [EDENT DRILL DRILL		5/96	DAYS SI BOP TE: RIG INSI NEXT TE SAFETY	ST PECTIO EST DUE	N E DATE	280 21/5/96 20/5/96 4/6/96 25/5/96

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	1:00	1.0	1,368.0	Cont b/dn and lay out test tools
1:00	2:00	1.0	1,368.0	Make up bit, junk sub, b/sub and r/reamer. RIH to shoe
2:00	2:30	.5	1,368.0	Slip 33 feet drill line Reset COM
2:30	4:00	1.5	1,368.0	Cont RIH to 1193
4:00	4:30			B/circ and wash from 1193 to 1224m
4:30	5:00	.5		Cont RIH to 1354m
5:00	5:30	.5	1,373.0	B/circ and wash to btm 1368 m. Work junk sub and drill 5 m new hole to 1373 m
5.30	6:00	.5	1,3/3.0	Circ btm's up, pump pill
j j	8:30			POH to m/u DST #2 tools
.30	10:30			P/u and m/u DST tools
10:30	14:30			RIH with DST # 2 tools.
14:30	15:00	.5	1,373.0	Rig up head, manifold and surface lines
15:00	20:00	5.0	1,373.0	Inflate packer and set, open & close tool, re inflate, open & close tool, communication
				past packer, re inflate/open - communication.
				Deflate, drop down 2.5 meter, re inflate, open tool at 16:31, close at 18:03.

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 8

Report Date: 26/05/96

Issue Date : 27/05/96

Page Number :

2

		<u> </u>	DEPTH	
20:00	0:00	4.0	1,373.0	Pull packer free at 20:30. Fill hole, reverse circ 220 stks, circ to clean out ports, reverse circ 147 stks, circ to clean out ports, reverse circ.

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 7

Report Date:

25/5/96

Issue Date : 26/5/96

Page Number :

Basic Data					
DRILL CO. RIG: RKB TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92 0	DEPTH 1,368 0 PROGRESS 0.0 DAYS FROM SPUD 6 92 DAYS +/- CURVE 0.0	HOLE SIZE : LAST CSG SIZE SHOE DEPTH - LEAK-OFF :	8 50 9-5/8" 332.50 13.50	TOT PERS ON SITE: DAILY COST: \$28,023 CUM COST: \$536,020 AFE COST: \$853,600

Gas and General Data

FORMATION:

Eumeralla WEATHER: Rain periods, cool

MAX GAS %:

B/G GAS %:

STATUS @ 0600:

RIH and work junk bit to 1373 m. Circulating bottoms up.

Bit/Hydraulics		ROTATE HRS :
BIT#:		AVE WOB:
SIZE :		AVE RPM:
MFR:	OT	FLOW:
TYPE:		PUMP PRESS. :
SERIAL#:		NOZZLES:
DEPTH IN m :		BIT HHSI :
TH OUT m:		ANN VEL DP:
METERAGE:		ANN VEL DC :
TOT HRS :		BIT VEL mps :
BIT#:		IADC #
WEAR I: 01	: D:	L: B: G: O2: R:

Mud Propertie	s	1	
SAMPLE FROM TYPE: TIME: WEIGHT: VISCOCITY: PV: YP: GEL10S: GEL10M: APIFL:	: PIT F.W.Poly 22:30 9.20 44 10 17 7 18 8.6	%LGS: %DS: SAND: MBT: PH: CI: K+: HARD/Ca: 6RPM:	6 5 Tr 16.0 9.0 3,700 2,500.0 1,600
FILTER CAKE : SOLIDS :	2 6.3	DAILY COST : CUM. COST :	\$3,727.00 \$13,756.00

BHA and Drilling Information

BHA #:

BHA LENGTH:

WT BLW JAR: BHA WT:

STRING WT:

TRQE MAX:

HRS ON JARS:

"HA DESCRIPTION:

PICK UP WT: TRQE ON: SLK OFF WT: TRQE OFF:

Survey (3 points only)

MD	TVD	INCL	AZ.
940.0		1.8	
1,199.0		4.0	
1,360.0		3.0	

DST#1

Pumps				Slow Pump Rates				
	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRES
	1	GD-PZ8	6.00	100	110	500		
	2	GD-PZ8	6.00					

Bulk Stocks	Drill	Water	Pot.	Water	Fı	uel	Ba	rite	Ge	el .	Cer	nent	Di	esel
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	47	824	0	185	0	150	6,100	19,900
Personnel	Personnel Drills and Inspections													

JOB TITLE	NAME	COMPANY NAME	#
		BPB Loggers	-
		Velocity Data	1
DRILLING ENGINEER	Bruce Richardson	Halliburton Mudloggin	3
DRILLING ENGINEER	Kevin Kelly	IDFS	1
DRILLING SUPERVISOR	Henry Flink	ODE	21
RESERVOIR ENGINEER	Andy Ion	Australian DST	2
WELLSITE GEOLOGIST	Dave Horner	Halliburton Cementers	C

Drills and Inspe	ections		
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL	2/05/96 25/05/96	DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	278 21/5/96 20/5/96 4/6/96 25/5/96

LABEL

	FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
	0:00	1:00	1.0	1,368.0	Cont. P/u and Make up DST tools.
	1:00	2:00			RIH to 350 m
	2:00	2:30	.5	1,368.0	Slip 33 ft drill line. Reset C.O.M.
	30	3:30			Fill Pipe with sodium nitrate bumper 350 m.
_	1	5:00			Cont RIH with DST #1. S.L.M. in.
,		5:30			P/u and m/u test head and surface lines.
- 1	1	6:00			Rig service
- f	1	6:30	.5	1,368.0	Inflate packers.
		7:00	.5	1,368.0	Check head up and surface lines.
1	7:00	7:30	.5	1,368.0	Hold safety meeting - pre DST

DAILY DRILLING REPORT

Skull Creek #1

REPORT#:

25/5/96

Issue Date: 26/5/96

Page Number:

Report Date: FROM TO HRS DEPTH **DESCRIPTION-ACTIVITY** 30 12:00 4.5 1,368.0 DST#1 intervals 1199 to 1221 m. Open tool @ 8:25 for 10 min, S/l for 30 m. Weak flow with bubbles down to 3 in. Open tool at 9:12 for main flow, still weak flow. Expect mechanical problem or plugged tool. Unseat packers and reset @ 1200 to 1222m. Open tool @ 12:11. Afetr 20 min bubble started getting stronger (bottom of Opened to flareline and bubble died. S/I @ 11:00, unseated packers and reversed circulated. Circulated gas flaring. 2.0 1,368.0 Continue to reverse circ and conventionally circulate. 12:00 14:00 2.5 1,368.0 Circ and work stuck pipe. 140 k overpull. 14:00 16:30 1,368.0 Pump and spot Pipe Lax. Set down 60 k and hold 300 amp torque.
15 1,368.0 Rig up BPB. Pipe came free. Rig down down BPB.
1,368.0 Work pipe. circ out Pipe Lax
3.0 1,368.0 Flow check, POOH with DST tools. 16:30 17:00 17:00 17:30 17:30 19:00 22:00 19:00 2.0 1,368.0 B/out DST tools. 0:00 22:00

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 6

Report Date:

24/5/96

Issue Date : 25/5/96

Page Number:

Basic Data						
DRILL CO RIG RKB TO GRND LVL GRND LVL AMSL	ODE 30 4 98 92 0	DEPTH PROGRESS: DAYS FROM SPUD DAYS +/- CURVE:	1,368 0 30 0 5 92 9	HOLE SIZE LAST CSG SIZE SHOE DEPTH LEAK-OFF:	TOT PERS ON SITE: 3 DAILY COST: \$ 25, 161 CUM COST: \$ 507 497 AFE COST: \$ 853, 600	36

Gas and General Data

FORMATION: MAX GAS %: B/G GAS % :

WEATHER:

Rain periods, mod. winds, cold

STATUS @ 0600:

RIH with DST#1. Waiting for daylight to run test.

Bit/Hydraulics		ROTATE HRS	40.7
BIT#:	2	AVE WOB	15
SIZE :	8.50	AVE RPM:	100
MFR:	HU	FLOW:	350
TYPE:	ATJ MOSD	PUMP PRESS. :	1,500
SERIAL#:	SO2W5	NOZZLES:	11 11 12
CCPTH IN m:	335.0	BIT HHSI:	
ЛН OUT m :	1,368.0	ANN VEL DP:	164
METERAGE:	1,033.0	ANN VEL DC :	285
TOT HRS:	47.5	BIT VEL mps :	378
BIT #: 2		IADC # 4 2 7	

Eumeralla

Mud Properties SAMPLE FROM: FL %LGS: 7 TYPE: F.W.Poly %DS: 5 TIME: 21:00 SAND: Tr WEIGHT: 9.30 MBT: 23.0 VISCOCITY: 48 PH: 9.5 PV: 12 CI: 3,300 YP: 20 K+: GEL10S: 12 HARD/Ca: 700 GEL10M: 26 6RPM: 12 APIFL: 8.8 FILTER CAKE: 2 DAILY COST: \$1,687.00 SOLIDS: 7.1 CUM. COST: \$10,355.00

BHA and Drilling Information

01:8

BHA #: BHA LENGTH: 327 HRS ON JARS : 182

2 WT BLW JAR : BHA WT:

D:WT L:A B:E G:I

62 69

O2:BT R:ROF

STRING WT: PICK UP WT: SLK OFF WT:

144 TRQE MAX: 146 TRQE ON: 140 TRQE OFF:

220 220 180

PHA DESCRIPTION:

WEAR

8.5" bit, near bit R/R, 6.5" pony DC, string R/R, 6.5" DC, string R/R, 18x6.5" DC, 6.5" jars, 2x6.5" DC, 12xHWDP

3 points	MD	TVD	INCL	AZ.
only)	940.0		1.8	
′′	1,199.0		4.0	ļ
j	1,360.0		3.0	-

]	Pumps				Slow Pump Rates				
l		#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRES
ı			GD-PZ8 GD-PZ8	6.00 6.00		350	1,500	4 5	280
l		لک	GD-1 20	0.00				55	380

Bulk Stocks	Drill Water		ater Pot. Water		Fuel		Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock		
		0		0		0	0	871	0	185	0	150	3,500	26,000

Personnel			
JOB TITLE	NAME	COMPANY NAME	#
DRILLING ENGINEER DRILLING ENGINEER DRILLING SUPERVISOR RESERVOIR ENGINEER WELLSITE GEOLOGIST	Andy Ion	BPB Halliburton Mudloggin IDFS ODE Australian DST Halliburton Cementers	5 2 1 21 2 0

Drills and Inspe	ections		
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL	2/05/96 23/05/96	DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	278 21/5/96 20/5/96 4/6/96 24/5/96

LABEL

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00	6:00	6.0	1,368.0	Drill 8.5" hole from 1338 to 1368 mRT
6:00	6:30	.5	1,368.0	Circ btm's up
6:30	8:00	1.5	1,368.0	POH 10 std wiper trip to 1076m. RIH to 1360m. 18 units of gas on wiper trip.
8.00	9:00	1.0	1,368.0	B/circ wash to bottom. Circ hole clean.
• ,	13:30	4.5	1,368.0	Pump pill, drop survey and POH to log. SLM out. Break out bit. Recover survey - 3 deg at 1360 m.
1 1	22:00 0:00	8.5 2.0	1,368.0	Rig up BPB. Run # 1: LCS/DFE - 1368 to 330 m. Run # 2: PDS/CNS. Rig down BPB P/up 6 1/2" D/C. P/u and Make up DST tools.

Skull Creek #1

REPORT#: 5

Report Date: 23/05/96

Issue Date: 24/05/96

Page Number:

Basic Data DRILL CO. : ODE HOLE SIZE DEPTH 1,338.0 RIG 30 PROGRESS 180.0 LAST CSG SIZE RKB TO GRND LVL 4 98 DAYS FROM SPUD: 4 92 SHOE DEPTH GRND LVL AMSL 95.0 DAYS +/- CURVE .9

8.50 TOT PERS ON SITE 30 9-5/8" DAILY COST : \$29,356.00 332.50 CUM COST: \$482,836.00 LEAK-OFF 13.50 AFE COST: \$853,600.00

Gas and General Data

FORMATION: Eumeralla MAX GAS 6.2 B/G GAS %

WEATHER Rain periods, mod. winds, cold STATUS @ 0600 :

Drilled to 1368 m. ROP 1.5 m/hr. Circulating btm's up prior to wiper trip

Bit/Hydraulics ROTATE HRS: 40.7 BIT#: AVE WOB 2 15 AVE RPM: SIZE: 8.50 100 MFR: FI OW 350 HU PUMP PRESS. : 1,500 TYPE: ATJ M05D NOZZLES: 11 11 12 SFRIAL # · SO2W5 HHSI DEPTH IN m : 335.0 4 DEPTH OUT m : ANN VEL DP: 164 ANN VEL DC: 285 METERAGE: 1,003.0 BIT VEL mps: TOT HRS: 378 41.5 BIT#: IADC# 4 2 7 **WEAR**

L:

B

G:

Mud Properties SAMPLE FROM: FL %LGS: TYPE: F.W.Poly %DS 5 TIME 24:00 SAND . Tr WEIGHT: 9.30 MBT: 20.0 VISCOSITY: 46 PH: 9.5 PV: 11 CI: 3,200 YP: 17 K+: GEL 10 sec : 9 32 HARD/Ca: 920 GEL 10 min: 6RPM: 9 API FL: 9.6 FILTER CAKE: DAILY COST: \$4,750.00 2 SOLIDS: 7.1 CUM. COST: \$8,667.00

BHA and Drilling Information

01:

1:

WT BLW JAR: 62 STRING WT: TRQE MAX: 220 BHA LENGTH : 327 BHA WT: 69 PICK LIP W/T 144 TRQE ON: 180 HRS ON JARS: 176 SLK OFF WT 140 TRQE OFF: 100

R·

02:

BHA DESCRIPTION:

8.5" bit, near bit R/R, 6.5" pony DC, string R/R, 6.5" DC, string R/R, 18x6.5" DC, 6.5" jars, 2x6.5" DC,

D:

3 points	MD	TVD	INCL	AZ.
only)	638.0		.5	
	940.0		1.8	1
l	1,199.0		4.0	1

Pumps	_			Data - la:			Slow Pump Rates			
	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE		
		GD-PZ8 GD-PZ8	6.00 6.00	125	350	1,500	45 55	27 38		

Bulk Stocks		Water		Water	Fı	nel	Ba	rite	Ge	el	Cer	nent	Di	esel
	Used	Stock	Used	Stock										
		0		0		0	0	871	55	185	0	150	3,800	29,500

Personnel			
JOB TITLE	NAME	COMPANY NAME	#
DRILLING ENGINEER DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	Kevin Kelly Henry Flink	Australian DST Halliburton Mudloggi IDFS ODE Halliburton Cemente	2 3 1 20 0

Drills and Insp	ections		
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	277 21/5/96 20/5/96 4/6/96 23/5/96

FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
0:00 3:30 4:00 4:30	3:30 4:00 4:30 6:30	.5 .5	1,212.0 1,214.0	Drill 8.5" hole from 1158 to 1212 mRT Circulate and survey at 1199m, 4 deg. Drill 8.5" hole from 1212 to 1214 mRT Circulate sample at Geo's request. Pull back one stand and cont. to circ. Mix and pump
6:30 9:00 11:00	9:00 11:00 0:00	2.0	1,214.0	pill. POH. Wiper trip to shoe. RIH to 1209m. B/circ, wash to Btm and circ 5 mins. Pull back one std and circ and cond mud. Drill 8.5" hole from 1214 to 1338 mRT

Skull Creek #1

REPORT#: 4

Report Date: 22/05/96

Issue Date : 23/05/96

Page Number :

	Basic Data							
•	DRILL CO.: RIG (B TO GRND LVL) CRND LVL AMSL:	ODE 30 4 98 95 0	DEPTH: PROGRESS: DAYS FROM SPUD DAYS +/- CURVE	1.158.0 677.0 3.92 9	HOLE SIZE : LAST CSG SIZE : SHOE DEPTH : LEAK-OFF :	8.50 9-5/8" 332.50 13.50	TOT PERS ON S DAILY COST : CUM COST : AFE COST :	\$26,500.00 \$26,500.00 \$453,500.00 \$853,600.00

Gas and General FORMATION: MAX GAS %: B/G GAS %:	Data Skull Creek (4.0 .0	WEATHER : STATUS @ 0600 :	Rain periods, mod. winds, cold POH for wiper trip from 1214 mRT to shoe prior to DST (likely Waare zone)
Bit/Hydraulics	5.07.	~~	Mud Proportios

2 8.50	ROTATE HRS: AVE WOB	20.0 15	i .			
ATJ-S05D SO2W5 335.0 1,158.0 823.0	AVE RPM: FLOW: PUMP PRESS: NOZZLES: HHSI: ANN VEL DP: ANN VEL DC: BIT VEL mps:	100 350 1,450 11 11 12 4 164 285 378	TYPE: TIME: WEIGHT: VISCOSITY: PV: YP: GEL 10 sec: GEL 10 min:	NativeClay 00:00 9:20 35 6 11 6 24	%LGS: %DS: SAND: MBT: PH: CI: K+: HARD/Ca: 6RPM:	7 5 1.5 15.0 8.5 390 980 6
O1: D:	IADC # 4 2 7 L: B: G: O2:	R:	FILTER CAKE : SOLIDS :	3 6.5	DAILY COST : CUM. COST :	\$2,099.00 \$3,917.00
	ATJ-S05D SO2W5 335.0 1,158.0 823.0 24.5	ATJ-S05D PUMP PRESS.: NOZZLES: NOZZLES: HHSI: ANN VEL DP: ANN VEL DC: BIT VEL mps:	ATJ-S05D SO2W5 SO2	ATJ-S05D SO2W5 SO2W5 335.0 HHSI: 4 WISCOSITY: PV: YP: ANN VEL DP: 164 ANN VEL DC: 285 BIT VEL mps: 378 IADC # 4 2 7 O1: D: L: B: G: O2: R:	ATJ-S05D SO2W5 SO2W5 335.0 1,158.0 823.0 24.5 BIT VEL mps: IADC # 4 2 7 O1: D: L: B: G: O2: R: PUMP PRESS.: 1,450 WEIGHT: 9.20 API FL: 35 FILTER CAKE: 3 SOLIDS: 6.5	ATJ-S05D SO2W5 NOZZLES: 11 11 12 HHSI: 4 ANN VEL DP: 164 ANN VEL DC: 285 BIT VEL mps: 378 O1: D: L: B: G: O2: R: O1: D:

BHA and Drilli	ing In	formation					
BHA # : BHA LENGTH : HRS ON JARS :	2 327 159	WT BLW JAR : BHA WT :	62 69	STRING WT : PICK UP WT : SLK 0FF WT :	128 130 126	TRQE MAX : TRQE ON : TRQE OFF :	220 180 100
BHA DESCRIPTION	N:	8.5" bit, near bit R/R, 6.5" po 12xHWDP	ny DC, stri	ng R/R, 6.5" DC, string R/F	R, 18x6.5" DC	C, 6.5" jars, 2x6.5" DC,	

only) 329.0 0.0 # MAKE/TYPE LINR AVSPM AVFLO	N AVEPRESS	SISIWSDM	I SI M/DDE
		OLVIOI IV	STANE
638.0 940.0 1.8 1 GD-PZ8 6.00 125 38	1,450	0 45 55	

Bulk Stocks			Vater Pot. Water		Fuel		Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	0	871	24	240	0	150	5,200	33,300

Personnel				Drills and Insp	ections		
JOB TITLE	NAME	COMPANY NAME	#	DRILL TYPE	TIMING	INSPECTIONS	TIMING
DRILLING ENGINEER DRILLING SUPERVISO WELLSITE GEOLOGIST	Bruce Richardso Henry Flink Dave Horner	Australian DST IDFS Halliburton Mudloggi ODE Halliburton Cemente	20	FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	276 21/5/96 20/5/96 4/6/96 20/5/96

FROM	TO	HRS	DEPTH	DESCRIPTION-ACTIVITY
00:00	00:30	.5	481.0	Circulate hole clean, 7m of fill, sweep hole with Hi-vis pill
00:30	01:00	.5	481.0	Pump up and recalibrate geolograph ROP sensor
	06:00	5.0	642.0	Drill 8.5" hole from 481m to 642 mRT
	06:30	.5	642.0	Circulate to run survey, unable to pass 292m, pull survey
	07:00	.5	651.0	Drill 8.5" hole from 642 to 651 mRT
07:00	08:30	1.5	651.0	Circulate for 15mins, POH 11 stands for wiper trip, change out corrosion ring, RIH to
0000		_ [039 MK I
1 1	09:00	.5	651.0	Circulate and wash to bottom @651mRT
1 1	09:30	.5	651.0	Run survey @ 638 mRT
0	16:30	7.0	954.0	Drill 8.5" hole from 651 to 954 mRT
_	17:00	.5	954.0	Circulate and survey @ 942 mRT
17:00	00:00	7.0	1,158.0	Drill 8.5" hole from 954 1158 mRT

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 3

Report Date: 21/05/96

Issue Date: 22/05/96

Page Number:

Basic Data

DRILL CO ODE RIG 30 **'KB TO GRND LVL** 4 98 JRND LVL AMSL 95 0

DEPTH 481 0 **PROGRESS** 146.0 DAYS FROM SPUD 2 92 DAYS +/- CURVE 0 0

HOLE SIZE 8.50 LAST CSG SIZE 9-5/8" SHOE DEPTH 332.50 LEAK-OFF 13.50

TOT PERS ON SITE: DAILY COST CUM COST:

AFE COST

\$31,300.00 \$426,900.00 \$853,600.00

28

Gas and General Data

FORMATION MAX GAS % B/G GAS %

Pember WEATHER 0.0 STATUS @ 0600 0.0

Cloudy, occ. showers, cold, moderate winds Drill ahead in 8.5" hole @ 642 mRT. Run survey

Bit/Hydraulics ROTATE HRS 3.1 BIT# AVE WOB 2 20 SIZE AVE RPM: 8.50 110 FLOW MFR 420 HU PUMP PRESS TYPE 2,000 ATJ- S05D NOZZLES: 11 11 12 SERIAL #: SO2W5 DEPTH IN m : 335.0 HHSI DEPTH OUT m: ANN VEL DP: 197 481 O METERAGE: ANN VEL DC : 146.0 342 TOT HRS: BIT VEL mps : 5.0 454 BIT#: 2 IADC # 4 2 WEAR 1:

L:

Mud Properties SAMPLE FROM %LGS: FL 7 TYPE: NativeClay %DS 4 TIME 00.00 SAND: 2.3 WEIGHT: 9.20 MBT: 24.0 VISCOSITY: 38 PH: 9.2 PV 8 CI: 380 YP: 9 K+ · GEL 10 sec : 2 HARD/Ca: 240 GEL 10 min : 23 6RPM: 2 API FI 26.4 FILTER CAKE: DAILY COST: \$438.00 SOLIDS: 6.5 CUM. COST : \$1,818.00

BHA and Drilling Information

01:

BHA# BHA LENGTH: 327 HRS ON JARS 140

WT BLW JAR: BHA WT:

G:

62 69

R٠

02:

STRING WT PICK UP WT SLK OFF WT:

TRQE MAX: 95 TRQE ON: 89 TRQE OFF:

220 220 100

BHA DESCRIPTION :

8.5" bit, near bit R/R, 6.5" pony DC, string R/R, 6.5" DC, string R/R, 18x6.5" DC, 6.5" jars, 2x6.5" DC, 12xHWDP

D:

TVD	INCL	AZ.	
	.3 0.0		
	100	3	3

Pumps					st 24 hrs		Slow Pun	p Rates
	#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRE
		GD-PZ8 GD-PZ8	6.00 6.00	75 75	210 210	2,000 2,000		24 34

Bulk Stocks		Water				ıel		rite	Ge		Cer	nent	Di	esel
	Used	Stock	Used	Stock										
		0		0		0	0	871	14	264	0	150	1,600	13,500

Personnel JOB TITLE NAME **COMPANY NAME** DRILLING ENGINEER Bruce Richardso Halliburton Mudloggi DRILLING SUPERVISO Henry Flink 20 2 ODE WELLSITE GEOLOGIST Halliburton Cemente

Drills and Insp	ections		
DRILL TYPE	TIMING	INSPECTIONS	TIMING
FIRE INCIDENT PIT DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE	274 21/5/96 4/6/96
TRIP DRILL		SAFETY MEETING	20/5/96

FROM	TO	HRS	DEPTH	DESCRIPTION ACTIVITY
				DECOMM HOM-ACTIVITY
00:00	07:30	7.5	335.0	Continue BOP nipple up, pressure test kelly & surface eqiupment
07:30	11:30	4.0	335.0	Pick up cup tester, pressure test kelly & surface equipment Pick up cup tester, pressure test manifold, BOP's, HCR & kill line valves.
1			000.0	line valves. Layout cup tester
11:30	12:30	1.0	335.0	RIH 8" drill collars, layout same
12:30	15:30	3.0	335.0	Pick up and make in page 114 Duty
15:30	16:00	.5	335.0	Pick up and make up new BHA, RIH and tag cement @ 316mRT Pressure test FOSV
	17:30	1.5		Fressure test FOSV
			335.0	Drill out cementing plug and shoe track
	18:00	.5	340.0	Drill 5m of new 8.5" hole from 335 to 340mRT prior to FIT
1	19:00	1.0	340.01	CIFCUIATE NOIE Clean prior to FIT limited test 13.5 ppg FM/M
19:00	20:00	1.0	367.0	Drill 8.5" hole from 340 o 367mRT
0	20:30	.5	367.0	Repair mudlogging block/ROP indicator
0د.	00:00	3.5	481.0	Drill ahead 8.5" hole from 367 - 481 mRT
		0.0	701.0	Britished 0.5 Hole Holli 507 - 481 MKT

Bulk Stocks

Gas and General Data

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 2 Report Date: 20/05/96 Page Number: Issue Date : 21/05/96

Basic Data								
DRILL CO RIG 18 TO GRND LVL RND LVL AMSL	ODE 30 4 98 95 0	DEPTH PROGRESS DAYS FROM SPUD DAYS +/- CURVE	335.0 29.0 1.92 0.0	HOLE SIZE : LAST CSG SIZE : SHOE DEPTH LEAK-OFF :	12.25 9-5/8" 332.50	TOT PERS ON S DAILY COST CUM COST: AFE COST:	\$56,500 \$394,90 \$853,600	0.00

FORMATION MAX GAS % B/G GAS %	Narrawaturk 0.0 0.0	WEATHER: STATUS @ 0600		oud patches, occa ontinue to nipple u		o cold e test surface equipme	ent.
Bit/Hydraulics BIT #: SIZE: MFR: TYPE: SERIAL #: DEPTH IN m: DEPTH OUT m: METERAGE: TOT HRS:	1 AVE 12.25 AVE HU FLOV OSC IGJ PUM HK93489 NOZZ 9.0 HHSI 335.0 ANN 326.0 ANN	P PRESS. : ZLES : 15	11.5 15 120 726 1,000 20 20 3 137 165 296	Mud Propert SAMPLE FRO TYPE: TIME: WEIGHT: VISCOSITY: PV: YP: GEL 10 sec: GEL 10 min: API FL:	1	%LGS: %DS: SAND: MBT: PH: CI: K+: HARD/Ca: 6RPM:	0 0 0 0.0 6.2 180
BIT # : 1 WEAR I: 1	IADC D1:1 D:N L:A E		R:TD	FILTER CAKE SOLIDS :	. 0	DAILY COST : CUM. COST :	\$269.00 \$1,380.00

BHA and Drilli	ng Inf	ormation					
BHA # : BHA LENGTH : HRS ON JARS :	1 254 135	WT BLW JAR BHA WT :	R: 47 64	STRING WT : PICK UP WT : SLK 0FF WT :	76 78 72	TRQE MAX : TRQE ON : TRQE OFF :	150 150 80
BHA DESCRIPTION	1 :	12.25" bit, bit sub, 2x8" [DC, 12.25" stabilise	er, 8" DC, x/o, 9x6.5" DC	C, 6.5" jars, 2:	x6.5" DC, 12xHWDP	

S rvey ints	MD	TVD	INCL	AZ.	Pumps	_				st 24 hrs		Slow Pur	
()	170.0 329.0		.3			-	MAKE/TYPE GD-PZ8						SLWPRE
L	020.0		0.0				GD-P20	6.00	130	363	1,000		

Barite

Gel

Cement

Diesel

Hood Shook Hard St. 1						101	Da	TILE	l G	eı	Cer	nent	וט ו	esel
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock
		0		0		0	0	871		246	490	150	1,900	15,100
Personnel				7.7			Drill	s and I	nspect	ions				
JOB TITLE		NAME		COMPA	NY NAM	E #	DI	RILL TYP	PE T	MING	INS	PECTIO	NS	TIMING
DRILLING ENGINEE DRILLING SUPERVI WELLSITE GEOLOG	SO He	ice Richa nry Flink ve Horner	rdso H C	DDE	n Mudlog n Cemen	20	PIT [E DENT DRILL DRILL			DAYS SI BOP TES RIG INSI NEXT TE SAFETY	ST PECTIO ST DUE	N E DATE	274 30/4/96 21/5/96 20/5/96

Fuel

Drill Water Pot. Water

335.0 Nipple up BOP's

EDOM	· ==			
FROM	ТО	HRS	DEPTH	DESCRIPTION-ACTIVITY
00:00	01:30		335.0	Drill ahead from 306 to 335mRT
1	02:00		335.0	Circulate and survey @ 329m. displace active system to get mud
1	03:30		335.0	POH for wiper trip, RIH to 329, wash to bottom no fill
	04:00	.5	335.0	Circulate shakers clean
) I	05:00		335.0	POH to run 9-5/8" casing, break out bit, recover survey.
	06:00		335.0	Rig up to run casing
	09:30	3.5	335.0	Run 9-5/8" mixed casing string to 332.5 mRT, circulate last joint down.
09:30	11:00	1.5	335.0	Circulate casing and condition mud
11:00	12:30	1.5	335.0	Rig in cementing head and lines, hold JSA, cement 9-5/8" casing, displace with water,
12.20	40.00		1	Dullip blud, pressure test casing to 2500nsi
12:30	18:30	6.0	335.0	Clean out cellar, drain conductor and cut window in same for top up job. Mix and pump
● ∪	10:00	_	t	TOD UD TOD. Dredare to stack off wait on cement
	19:00	.5	335.0	Slack off on 9-5/8" casing, no movement. Layout casing landing joint and conductor
1	00:00	1.0	333.01	rick up and make up pragennead to surface casing
20.00	00.00	4.0	335.0	Nipple up BOP's

Gas and General Data

DAILY DRILLING REPORT

Skull Creek #1

REPORT#: 1	Report Date:	19/5/96	Issu	ue Date : 20/5/9	6	Page Number :	1
Basic Data							
DRILL CO RIG RKB TO GRND LVL GRND LVL AMSL		•	306.0 306.0 0.92 0.0	HOLE SIZE LAST CSG SIZE SHOE DEPTH LEAK-OFF	16" 9.00	TOT PERS ON SITE: DAILY COST: \$ 26,670 CUM COST: \$ 340,700 AFE COST: \$ \$53,600	28

Gas and Gener	ai Data	1					
FORMATION	Narrawaturk	WEATHER	R: C	loud patches, occas, sl	howers, cool		
MAX GAS %: B/G GAS %:	0.0 0.0	STATUS @	-	rill from 306 to 335 mR int and check same	RT. Rig to run 9	-5/8" casing, pick up sl	noe & float
Bit/Hydraulics	ROT	ATE HRS :	10.0	Mud Properties	s		
BIT #: SIZE: MFR: TYPE: SERIAL #: DEPTH IN m: DEPTH OUT m: **TTERAGE:HRS:	12.25 AVE HU FLOV OSC IGJ PUMF HK93489 NOZZ 9.0 BIT H 306.0 ANN 1	P PRESS. :	10 120 726 1,000 15 20 20 137 165 296	TIME: WEIGHT: VISCOCITY: PV: YP: GEL10S: GEL10M:	Water/Clay 5:00 9.25 35 8 7 1	%LGS: %DS: SAND: MBT: PH: CI: K+: HARD/Ca: 6RPM:	7 5 Tr 19.0 8.8 220
BIT # : 1 WEAR I: (IADC:		· R·	APIFL : FILTER CAKE : SOLIDS :	17.9 3 6.9	DAILY COST : CUM. COST :	\$1,111.00 \$1,111.00

BHA and Drilli	ng Info	ormation					
BHA # : BHA LENGTH : HRS ON JARS :	1 254 134	WT BLW JAR : BHA WT :	47 64	STRING WT : PICK UP WT : SLK OFF WT :	74 76 70	TRQE MAX : TRQE ON : TRQE OFF :	150 150 80
HA DESCRIPTION	N:	12.25" bit, bit sub, 2x8" DC, 12	2.25" stabilis	ser, 8" DC, x/o, 9x6.5" DC, 6	6.5" jars, 2x6	.5" DC, 12xHWDP	

Survey	MD	TVD	INCL	AZ.	Pumps	$\overline{}$				st 24 hrs		Slow Pur	
only)	170.0		.3			#	MAKE/TYPE	LINR	AVSPM	AVFLOW	AVEPRESS	SLWSPM	SLWPRES
Į.	329.0		0.0			- 1	GD-PZ8	6.00		363	1,000		
					[2	GD-PZ8	6.00	130	363	1,000		I

Bulk Stocks			Pot. Water				Barite		Gel		Cement		Diesel	
	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock	Used	Stock		
		0		0		0	0	871	70	246	0	640	3,000	17,000

sonnel				Drills and Inspe	ections		
JOB TITLE	NAME	COMPANY NAME	#	DRILL TYPE	TIMING	INSPECTIONS	TIMING
DRILLING ENGINEER DRILLING SUPERVISOR WELLSITE GEOLOGIST	Henry Flink	IDFS Halliburton Mudloggin ODE Halliburton Cementers	20	FIRE INCIDENT PIT DRILL TRIP DRILL		DAYS SINCE LTA BOP TEST RIG INSPECTION NEXT TEST DUE DATE SAFETY MEETING	273 30/4/96 21/5/96 19/5/96

LABEL

FROM	1 TO	HRS	DEPTH	DESCRIPTION-ACTIVITY
02:00	02:30	.5	9.0	SPUD WELL @ 02:00 hrs 19/5/96 Hold pre-spud and safety meetings, make up BHA
02:30	14:00	11.5	183.0	Drill 12.25" hole from surface to 183mRT
14:00	1	1	183.0	Circulate and survey @170m.
1	17:00	2.5	220.0	Drill 12.25" hole from 183 to 220mRT
17:00	1	.5	220.0	Install mudloggers ROP line on blocks
7.30	1-0.00	3.0	299.0	Drill 12.25" hole from 220 to 299mRT
.30	23:30	3.0	299.0	Mud rings to surface, blocked bell nipple, flowline & shaker possum bellys. Clear same.
		-	i	Circulate and use mud pump flowline jet to remove further material
23:30	00:00	.5	306.0	Drill ahead from 299 to 306mRT

Cultus Petroleum NL

Skull Creek #1

MORNING REPORT - Pre Spud 19/5/96

Lay pit liners, take on water, mix spud mud, 200 bbls @ 17.5 ppb gel
Pressure test surface lines to 2000 psi
Drill rat hole, drill mouse hole
Replace two liners in #2 pump
Hold pre-spud & safety meeting
Pick up 12.25" bit, bit sub & 8" drill collar and make up BHA.
RIH, Spud well @ 02:00 hrs 19/5/96
Initially drill ahead with one pump at 145 SPM, 400 GPM, maximum available WOB,
50 RPM.

06:00 hrs update

Drill ahead in 12.25" hole @ 20m, maximum available WOB, 560 GPM, 80-100 RPM

APPENDIX 4 - DAILY GEOLOGICAL REPORTS

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 1

Well Name: Skull Creek-1 Permit: PPL1 Report Date: 20/5/96

Rig: ODE-30 Cultus Rep: Henry Flink

GL(AHD): 95.0m **KB(AHD):** 99.3m (datum)

Report to 0600 for 24hrs 0600 Depth: 335m

Geologist: Dave Horner

Last Casing:

at m

Progress to 0600: 335m

Comments:

Spud Skull Creek-1 with 12.25" hole at 0200hrs 19th May, 1996. Drill to 335m, wiper trip, POOH to run 9.625" casing.

Lithological and Fluorescence Summary:

5
Description
Calcarenite - Port Campbell Limestone - No Show Massive Marl - Gellibrand Marl - No Show Calcarenite - Clifton Formation - No Show Massive Marl - Narrawaturk Marl - No Show

as Summary: Interval (m)	ROP (m/hr)	Total (units)	C₁	C2 (1	C3 0pm)	Cı	Cs	Comments
Spud - 20	22	0	0	0	0	0	0	Port Campbell Limestone
20 - 229	60	0	0	0	0	Õ	0	Gellibrand Marl - No Show
229 - 257	100	0	0	0	Õ	0	0	Clifton - No Show
257 - 335	45	0	0	Ö	0	0	0	Narrawaturk - No Show
-								212 220
-								
-								
-								
-								

-				
Formation Tops:	Prognosed	Actual *	Difference *	Thickness *
	(mKB)	(mKB)	(m High/Low)	(m)

				Page	2
Port Campbell Limestone	4.3 (surface)	4.3	0	1.6	_
Gellibrand Marl	-	20	U	16	
Clifton Formation	283		-	201	
Narrawaturk Marl		229	54 High	28	
Mepunga Formation	361	257	-		
Pilwyn Formation	421				
rember Mudstone	-				
Pebble Point Formation	661				
Paaratte Formation	721				
Skull Creek Mudstone	-				
Nullawarre Greensand	1056				
Belfast Mudstone	1176				
Waarre Formation Unit D					
Waarre Formation Unit C	1280				1
Waarre Formation Unit B	-				1
Waarre Formation Unit A	_				
Eumeralla Formation	1351				
T.D.	1500				

* Provisional, based on mud log.

Lithological a	nd Fluorescence	Description:
Interval (m)	ROP (Av.) (m/hr)	Description
Spud-20	17-30 (22)	No samples collected.
20-229	14-120 (60)	Marl: medium grey to medium green grey, minor medium brown grey, abundant bryozoa, formas, shell fragments, trace echinoid spines and sponge spicules, trace pyrite occasionally replacing and infilling fossil fragments, trace glauconite, rare clear quartz sand grains, very soft and sticky, non fissile.
229-257	21-200 (100)	Calcarenite: medium orange brown, yellow-red in part, very coarse grained, abundant fossil fragments including bivalves, gastropods, bryozoa, forams, sponge spicules and echinoid spines, minor strong cryptocrystalline calcite cement, common very fine to grit frosted rounded brown stained quartz sand grains, abundant glauconite, common brown iron oxide pellets and iron oxide rich clay, friable, poor inferred porosity, no oil fluorescence.
257-335	6-300 (45)	Marl: medium brown grey to medium green grey, abundant bryozoa, shell fragments and forams, trace echinoid spines and sponge spicules, trace to common pyrite aoften as fossil infill and replacement, trace to common glauconite, trace to common very fine to fine clear quartz sand grains, very soft and sticky, non fissile.

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 2

Well Name:	Skull (Creek-1	Pern	ait: PPL	.1	Report Date:	21/ 5 /96
Rig: Cultus Rep: Geologist:		c I	GL(AHD): KB(AHD): Last Casing:			Report to 0600 f 0600 Depth: Progress to 0600:	335m
Comments: Run 9.6		o 332.27m	, cement casi	ng, WOC, n	ipple up and	pressure test BOP's.	
Lithological	and Fluore	scence Su	mmary:				
Interval	I			De	scription		
(m)	No r	new formation	on drilled.				
-	1101						
-							
- -							
-							
-							
-							
-							
Gas Summa	ry:						
Interval (m)	ROP (m/hr)	Total (units)	<i>C</i> ₁ ←	C2 (ppm)	C3 C4	Cs Comn	nents
-							
-							
-							
-							
-							
-							
-							
<u>-</u>							
Formation T	ops:			gnosed nKB)	Actual * (mKB)	Difference * T (m High/Low)	hickness * (m)

Dort Comphell Limestone	4.2 (1.7	0	16
Port Campbell Limestone	4.3 (surface)	4.3	U	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	
Mepunga Formation	361			
ilwyn Formation	421			
Pember Mudstone	-			
Pebble Point Formation	661			
Paaratte Formation	721			·
Skull Creek Mudstone	1031			
Nullawarre Greensand	1121			
Belfast Mudstone	1201			
Waarre Formation Unit D	-			
Waarre Formation Unit C	1266			
Waarre Formation Unit B	-			
Waarre Formation Unit A	-			
Eumeralla Formation	1316			
T.D.	1500			
				•

* Provisional, based on mud log.

Lithological and Fluorescence Description:

Interval ROP (Av.)
(m) (m/hr)

Description

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 3

Well Name: Skull Creek-1 Permit: PPL1 Report Date: 22/5/96

Rig: ODE-30
Cultus Rep: Henry Flink
Geologist: Dave Horner

GL(AHD): 95.0m KB(AHD): 99.3m (datum) Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs 0600 Depth: 642m Progress to 0600: 307m

Comments:

Pressure test BOP's, drill out shoe track and 5m of new hole, run FIT to 13.5lb/gal equivalent mudweight with no leak off, drill ahead with 8.5" hole.

Lithological and Fluorescence Summary:

Interval (m)	Description
335 - 345	Massive Marl - Gellibrand Marl - No Show
345 - 397	Sandstone with minor interbedded Claystone - Mepunga - No Show
397 - 590	Sandstone grading to and interbedded with minor Claystone - Dilwyn - No Show
590 - 642	Claystone with minor interbedded Sandstone - Pember - No Show
-	

Gas Summary: Interval **ROP Total** C_{I} C_2 C3 Cı C5 **Comments** (m) (m/hr) (units) (ppm) 335 - 345 50 0 0 0 Gellibrand - No Show 0 0 0 345 - 397 70 0 0 0 0 0 0 Mepunga - No Show 397 - 590 80 0 0 0 0 0 0 Dilwyn - No Show 590 - 642 35 0.1 28 0 Pember - No Show

Formation Tops:	Prognosed	Actual *	Difference *	Thickness *
	(mKB)	(mKB)	(m High/Low)	(m)

Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	1,,,
Pebble Point Formation	661			
Paaratte Formation	721			
Skull Creek Mudstone	1031			
Nullawarre Greensand	1121			
Belfast Mudstone	1201			
Waarre Formation Unit D	-			
Waarre Formation Unit C	1266			
Waarre Formation Unit B	-			
Waarre Formation Unit A	-			
Eumeralla Formation	1316			
Γ.D.	1500			

*	Provisional,	based	on	mud	log.
---	--------------	-------	----	-----	------

Lithological an	d Fluorescence	Description:
Interval (m)	ROP (Av.) (m/hr)	Description
335 - 345	26-120 (50)	Marl: medium brown grey, common bryozoa, shell fragments and forams, trace pyrite, trace glauconite, trace very fine to fine dispersed clear quartz
345-397 397-590	13-150 (70) 17-600 (80)	sand grains, very soft, very dispersive, non fissile. Sandstone: light to medium brown, very fine to coarse, dominantly fine to medium, angular to subrounded, moderately to well sorted, very weak silica cement, common to abundant medium brown argillaceous and silt matrix, moderate to strong in general decreasing with depth yellow to orange to brown stain on quartz grains, trace multicoloured volcanic lithics, trace coarse muscovite flakes, trace pyrite, trace to common iron oxide pellets, trace glauconite, trace dark brown clay lithics, friable to unconsolidated, fair to good inferred porosity, no oil fluorescence, with minor interbedded Claystone: dark brown, moderately silty, trace pyrite, trace glauconite, trace micromica, soft, very dispersive, non fissile. Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderately well sorted, very weak silica cement, minor pyrite cement, trace to abundant medium brown grey argillaceous and silt matrix, clear to opaque quartz grains, trace yellow to red quartz grains, trace brown red and black lithics, trace coarse mica flakes, friable to unconsolidated, very good inferred porosity, no oil fluorescence, grading to and interbedded with minor Claystone: medium to dark brown grey, moderately to very silty, abundant dispersed very fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, very dispersive, non fissile.

·uges

590-642

14-75 (35)

Claystone: medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine quartz and off white partially altered feldspar sand grains, trace pyrite, common glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile, with minor interbedded Sandstone: light brown, very fine to fine, subangular to subrounded, moderately to well sorted, very weak silica cement, common to abundant dark brown grey argillaceous and silt matrix, trace glauconite, common

caorse mica flakes, friable, poor inferred porosity, no oil fluorescence.

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 4

Well Name: Skull Creek-1 Permit: PPL1 Report Date: 23/5/96

Rig: ODE-30 Cultus Rep: Henry Flink

Geologist: Dave Horner

GL(AHD): 95.0m KB(AHD): 99.3m

95.0m 99.3m *(datum)*

Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs

0600 Depth: 1214m Progress to 0600: 572m

Comments:

Drill to 651m, wiper trip to shoe, drill ahead. Circulate sample at 1214m, begin wiper trip prior to running DST-1. Identification of lower formations may not be correct and are best guess only based on presently available data.

Lithological and Fluorescence Summary:

Interval (m)	Description
642 - 651 651 - 719 719 - 1139 1139 - 1183 1183 - 1203 1203 - 1214	Claystone with minor interbedded Sandstone - Pember - No Show Sandstone grading to Claystone - Pebble Point - No Show Sandstone with minor interbeds towards base of Claystone - Paaratte - No Show Claystone laminated/interbedded with Claystone - Skull Creek - No Show Massive Claystone minor laminated Sandstone - Belfast? - No Show Massive Sandstone - Waarre? "C" - Gas Show
1139 - 1183 1183 - 1203 1203 - 1214	Claystone laminated/interbedded with Claystone - Skull Creek - No Show Massive Claystone minor laminated Sandstone - Belfast? - No Show

Interval (m)	ROP (m/hr)	Total (units)	C_I	C ₂	C3	C.	Cs	Comments
(9	(110111)	(ипиз)		u	pm)		~	>
642 - 651	35	0.1	11	0	0	0	0	Pember - No Show
651 - 719	90	0.4	74	0	0	0	Õ	Pebble Point - No Show
719 - 1139	120	27	5326	32	0	Õ	Õ	Paaratte - No Show
1139 - 1183	25	31	5927	59	0	0	Ö	Skull Creek - No Show
1183 - 1203	12	12	1954	18	Ö	ő	0	Belfast? - No Show
1203 - 1214	60	727	144000	690	Ŏ	0	0	Waarre? C - Gas Show
-					ŭ	•	U	Waare: C - Gas Show
-								
-								
-								
-								
, -								
,) -								

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	_	201
Clifton Formation	283	229	54 High	
Varrawaturk Marl	-	257	J4 High	28
Mepunga Formation	361	345	16 11:-1	88
Dilwyn Formation	421	397	16 High	52
Pember Mudstone	-	590	24 High	193
Pebble Point Formation	661	651	-	61
Paaratte Formation	721		10 High	68
Skull Creek Mudstone	1031	719	2 High	420
Nullawarre Greensand	1121	1139	108 Low	64
Belfast Mudstone	1201	absent	-	0
Waarre Formation Unit D	1201	1183	18 High	20
Waarre Formation Unit C	1266	absent	-	0
Waarre Formation Unit B	1266	1203	63 High	
Waarre Formation Unit A	-			
Eumeralla Formation	-			
Γ.D.	1316			
L.D.	1500			

Lithological an	id Fluorescence	Description:
Interval (m)	ROP (Av.) (m/hr)	Description
642-651	30-45 (35)	Claystone: dark green grey to dark brown grey, moderately to very silty, abundant dispersed very fine to grit clear to opaque quartz sand grains, common glauconite, common pyrite, trace light brown cryptocrystalline
651-719	25-300 (90)	dolomite, rare micromica, soft and sticky, moderately dispersive, non fissile. Sandstone: light orange green, very fine to pebble, dominantly medium to coarse, subangular to subrounded, moderately sorted, very weak silica cement, common medium to dark green argillaceous and silt matrix, weak yellow-green stain on quartz grains, common glauconite, common multicoloured volcanic lithics, trace coarse green mica flakes, friable to unconsolidated, very poor to good inferred porosity in general increasing with depth, no oil fluorescence, grading to and in general decreasing with depth Claystone: medium to dark green, medium brown, moderately to very silty, abundant dispersed very fine to grit green-brown stained quartz grains - grading to argillaceous sandstone, common glauconite, trace pyrite, soft, moderately dispersive, non fissile.

quartz grains, common to abundant red green and varicoloured volcanic lithics, nil to common black coal detritus, trace pyrite, friable to unconsolidated, very good inferred porosity, no oil fluorescence grading v depth to Sandstone: light grey, very fine to grit, dominantly coarse, at base often dominantly fine, subangular to subrounded, moderately sorted, weak silicatement, no visual matrix, clear to translucent quartz grains, trace green gradithics, trace black coal detritus, trace pyrite, friable, fair to very good inferred porosity, no oil fluorescence, occasionally with towards base mine interbeds of Claystone: medium to dark brown to medium grey, moderately to very silimoderately carbonaceous, common black carbonaceous flecks and coaly	ı	710 11	20 0 (00 (100)		
firm, very dispersive and washing from samples, slightly subfissile. 1139-1183 8.6-86 (25) Claystone: medium to dark grey, medium brown grey, very silty, common very fine partially altered feldspar grains in part, trace black carbonaceous				subangular to subrounded, moderately sorted, weak silica cement, trace medium brown argillaceous matrix, common weakly yellow orange stained quartz grains, common to abundant red green and varicoloured volcanic lithics, nil to common black coal detritus, trace pyrite, friable to unconsolidated, very good inferred porosity, no oil fluorescence grading with depth to Sandstone: light grey, very fine to grit, dominantly coarse, at base often dominantly fine, subangular to subrounded, moderately sorted, weak silica cement, no visual matrix, clear to translucent quartz grains, trace green grey lithics, trace black coal detritus, trace pyrite, friable, fair to very good inferred porosity, no oil fluorescence, occasionally with towards base minor interbeds of Claystone: medium to dark brown to medium grey, moderately to very silty, moderately carbonaceous, common black carbonaceous flecks and coaly detritus in part, trace disseminated and nodular pyrite, common micromica.	h
interbedded and laminated with Sandstone: light grey, very fine to coarse, dominantly fine, subangular to subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown lithics, trace carbonaceous matter, common pyrite, friable to moderately hard, very poor visual porosity, no oi fluorescence. Claystone: medium to dark grey, medium to dark brown grey, very silty, common very fine partially altered feldspar grains in part, common black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile, with minor laminated and probably contaminated by cavings Sandstone: light grey, very fine to coarse, dominantly very fine, subangular to subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown lithics, trace carbonaceous matter, common pyrite, friable to moderately hard, very poor visual porosity, no oil fluorescence. Sandstone: very light grey, very fine to grit, dominantly coarse to very	· ý			Interbedded and laminated with Sandstone: light grey, very fine to coarse, dominantly fine, subangular to subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown lithics, trace carbonaceous matter, common pyrite, friable to moderately hard, very poor visual porosity, no oil fluorescence. Claystone: medium to dark grey, medium to dark brown grey, very silty, common very fine partially altered feldspar grains in part, common black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile, with minor laminated and probably contaminated by cavings Sandstone: light grey, very fine to coarse, dominantly very fine, subangular to subrounded, moderately sorted, moderate silica cement, trace white argillaceous matrix, trace red brown lithics, trace carbonaceous matter, common pyrite, friable to moderately hard, very poor visual porosity, no oil fluorescence. Sandstone: very light grey, very fine to grit, dominantly coarse to very coarse, subangular to subrounded, poor to moderate sorting, very weak silica cement, no visual matrix, trace yellow stained quartz grains, trace black carbonaceous detritus, friable, very good inferred porosity, no oil	

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 5

Well Name: Skull Creek-1 Permit: PPL1 Report Date: 24/5/96

Rig: ODE-30
Cultus Rep: Henry Flink
Geologist: Dave Horner

GL(AHD): 95.0m KB(AHD): 99.3m (datum) Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs 0600 Depth: 1368m Progress to 0600: 154m

Comments:

Wiper trip at 1214m, condition mud, drill ahead (probable gas saturation from 1203 to 1265m). Reach 1368m - Total Depth - at 0600hrs 24th May, 1996.

Lithological and Fluorescence Summary:

Interval (m)	Description
1214 - 1221	Massive Sandstone - Waarre "C" - Gas Show
1221 - 1249	Claystone with minor interbedded Sandstone - Waarre "B" - Gas Shows
1249 - 1265	Sandstone - Waarre "A" - Gas Show
-	Probable Gas/Water contact 1265m.
1265 - 1272	Sandstone - Waarre "A" - No Show
1272 - 1368	Sandstone interbedded with Claystone - Eumeralla - No Show
-	
-	
-	
-	

Interval	ROP	Total	C_1	C_2	Сз	Cı	Cs	Comments
(m)	(m/hr)	(units)		(i	ppm)			>
1214 - 1221	40	195	36521	150	0	0	0	Waarre C - Gas Show
1221 - 1229	10	6	1193	6	0	Õ	Ö	Waarre B - Clay
1229 - 1232	28	313	37714	562	0	Õ	0	Waarre B - Gas Show
1232 - 1235	12	22	4350	42	0	0	Ö	Waarre B - Clay
1235 - 1238	45	134	20796	187	0	0	ő	Waarre B - Gas Show
1238 - 1249	10	11	3403	32	Ō	Ô	ŏ	Waarre B - Clay
1249 - 1265	30	234	41079	702	0	Ô	Õ	Waarre A - Gas Show
1265 - 1272	35	21	3204	30	0	Õ	Ö	Waarre A - No Show
1272 - 1368	8	64	13100	1020	421	202	42	Eumeralla - No Show
-								
-								
-								

Formation Tops:	Prognosed	Actual *	Difference *	Thickness *
	(mKB)	(mKB)	(m High/Low)	(m)

Port Campbell Limestone	4.3 (surface)	4.3	0	1.0
Gellibrand Marl	-	20	U	16
Clifton Formation	283	229	54 Uiah	201
Narrawaturk Marl	-	257	54 High	28
Mepunga Formation	361	345	- 16 III-l	88
Dilwyn Formation	421	397	16 High	52
Pember Mudstone	-	597 590	24 High	193
Pebble Point Formation	661	651	- 10 Yr' 1	61
Paaratte Formation	721	719	10 High	68
Skull Creek Mudstone	1031		2 High	420
Nullawarre Greensand	1121	1139	108 Low	64
Belfast Mudstone	1201	absent	-	0
Waarre Formation Unit D	1201	1183	18 High	20
Waarre Formation Unit C	1266	absent	-	0
Waarre Formation Unit B	1200	1203	63 High	18
Waarre Formation Unit A	-	1221	-	28
Eumeralla Formation	1216	1249	-	23
r.D.	1316	1272	44 High	96+
	1500	1368	132 High	

Provisional, based on mud log.

Lithological an	d Fluorescence	Description:
Interval (m)	ROP (Av.) (m/hr)	Description
1214-1221	17-46 (40)	Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderate to well sorted, weak silica cement, no visual matrix, trace black coaly detritus, friable, very good to good inferred porosity, no oil fluorescence.
1221-1249	5.2-50 (12)	Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspar grains in part, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile, interbedded with Sandstone: very light brown grey, very fine to medium, dominantly fine, angular to subrounded, moderately sorted, weak silica cement, no visual matrix, common bright red green brown grey and black lithics, common black coaly detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescence.
1249-1272	16-57 (32)	Sandstone: light orange grey, very fine to grit, dominantly medium, angular to subangular, well sorted, moderate silica cement, trace white argillaceous matrix, common to abundant yellow orange lithics, trace red green grey and black lithics, trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.

1272-1368 T.D.

1.3-40 (8)

Sandstone: weathered at top with abundant white argillaceous matrix, with depth cleaning to - Sandstone: medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence, interbedded with Claystone: very weathered at top to structureless white to light blue grey clay, with depth cleaning to Claystone: light to medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, firm, slightly subfissile

CULTUS PETROLEUM N.L. ELECTIC LOGGING REPORT SHEET

Well Name: Sk	ull Creek-1 Permit: PPL1	Observer: Dave Horner	Date: 25-5-96
TIME			
TAVIE		OPERATION	
0900	BPB arrive on site.		
1400	Rig-up LCS/DFE.	·	
1420	Run tool in hole.		
1445	Run casing check.		
1530	Log repeat section		
1550	Log main log -LCS/DFE 1368-330		
1740	Out of hole.	ш.	
1800	Rig-up PDS/CNS		
1830	Run tool in hole.		
1915	Log repeat section.		
1945	Log main log - PDS/CNS.		
2015	End PDS/CNS.		
2045	Rig down.		
	rag down.		
			·
			·

CULTUS PETROLEUM N.L.

GEOLOGY OPERATIONS REPORT NO. 6

Skull Creek-1 Well Name: PPL1 Permit: 25/5/96 Report Date:

Rig: ODE-30 Cultus Rep: Henry Flink Geologist: Dave Horner GL(AHD): 95.0m KB(AHD):

99.3m (datum) Last Casing: 9.625" at 332.27m Report to 0600 for 24hrs 0600 Depth: 1368m

Progress to 0600: 0m

Comments:

Circulate bottoms up, 10 stand wiper trip, circulate hole clean, POOH. Rig-up BPB, run-1 DLL-MSFL-GR-SP-Cal-Sonic, run-2 LDL-CNL-GR-Cal, rig down BPB, make-up inflate straddle test tool for DST-1, run test tool in hole in preparation for testing interval 1199-1221m.

Lith	ological and	Fluorescence Summary:		
	Interval (m)		Description	
	-	No new formation drilled		
	-			
(6 <i>ij</i>	-			
	-			
	-			
	-			
	-			
	-			
	-			
	-			
	-			

Gas Summa Interval (m)	ROP (m/hr)	Total (units)	<i>C₁</i>	C2 C3 ———(ppm)	C ₄	Cs	Comments →
-							
- -							
-							
-							
-							
-							
-							
<u> </u>							

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
larrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	96+
T.D.	1500	1368	132 High	

Interval ROP (Av.)
(m) (m/hr)

GEOLOGY OPERATIONS REPORT NO. 7

Well Name:

Skull Creek-1

Permit:

PPL1

Report Date:

26/5/96

Rig:

ODE-30

Dave Horner

Cultus Rep: Henry Flink

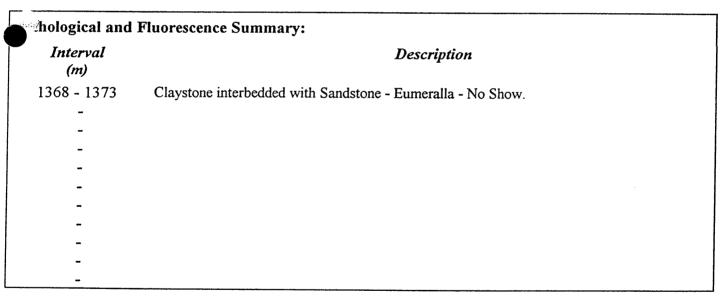
GL(AHD): KB(AHD): 92.0m

96.3m (datum)

Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs

0600 Depth:


1373m

Progress to 0600: 5m

Comments:

Geologist:

Continue RIH test string, DST-1 inflate straddle 1199-1221m - weak blow to bubble hose only, close and unseat tool, reseat tool 1200-1222m - weak blow, increased to strong blow before dying - tool assumed to be plugged - close tool, reverse cirulate out gas cut water cushion, tool differentially stuck, spot pipe lax, work pipe free, POOH test string - sample chamber 1225 PSI containing gas and rathole mud. Gas analysis - 95.8%=C1: 4.1%=C2: No C3C4C5: 0.1%= CO2 No H2S, charts show test tool blocked above both mechanical charts - no solid physical blockage found in tool but hydraulic tool and entry ports covered with thick filtercake. RIH with bit and junk sub for cleanout trip, work junk sub and drill 5m new hole, circulate hole clean, POOH in preparation for running DST-2 across interval 1198-1208m.

Gas Summar	y:							
Interval (m)	ROP (m/hr)	Total (units)	C₁	C2 (p	C3 ppm)	Cı	Cs	Comments
1368 - 1373	17	17	3150	118	0	0	0	Eumeralla - No Show

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	••	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	. 0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	96+
T.D.	1500	1368	132 High	
Provisional, based on mud log.			-	

Lithological	and Fluorescence	Description:
Littiviogical	and Photocolcic	Describition.

Interval ROP (Av.) (m) (m/hr)		Description
1368-1373	2-21 (17)	Claystone: medium green grey, light to medium

Claystone: medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, trace pyrite, firm, slightly subfissile, interbedded with Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence.

GEOLOGY OPERATIONS REPORT NO. 8

Well Name: Skull Creek-1 Permit: PPL1 Report Date: 27/5/96

Rig: ODE-30 Cultus Rep: Henry Flink

Geologist: Dave Horner

GL(AHD): 92. **KB(AHD):** 96.

92.0m

KB(AHD): 96.3m (datum) **Last Casing:** 9.625" at 332.27m Report to 0600 for 24hrs

0600 Depth: 1373m

Progress to 0600: 0m

Comments:

Continue POOH, make-up inflate straddle tool, RIH, run DST-2 1198-1208m - packer seat leaking - close tool, reinflate rubbers, packer seat still leaking, unseat tool and reset across interval 1200.5-1210.5m. No water cushion was used - one flow period only was used due to suspect nature of packer seats - IF=90min, ISI=120min, Q = 8.2 MMCFD, no formation water Gas analysis C1=93.8%, C2=6.2%, C3=C4=C5=0, H2S=0, CO2=0.69%. Reverse circulate drill string, balance mud weight to 9.2lb/gal.

Lith	ological and	I Fluorescence Communication		
Litti		I Fluorescence Summary:		
S	Interval (m)		Description	
), in [-	No new formation drilled		
	•			
	-			
	-			
	-			
	-			
	-			
	-			
	-			
	-			
	-			

Gas Summar Interval (m)	y: ROP (m/hr)	Total (units)	Cı ←	C2 C3 ———(ppm)	C.	Cs	Comments
-							
-							
-							
-							1
- 							
_							
_							
-							
-							
-							

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	_	201
Jlifton Formation	283	229	54 High	
Narrawaturk Marl	-	257	54 High	28
Mepunga Formation	361	345	16 III.ah	88
Dilwyn Formation	421	397	16 High	52
Pember Mudstone	-	590	24 High	193
Pebble Point Formation	661	651	10.777.1	61
Paaratte Formation	721	719	10 High	68
Skull Creek Mudstone	1031	1139	2 High	420
Nullawarre Greensand	1121	absent	108 Low	64
Belfast Mudstone	1201		- 10 TY' 1	0
Waarre Formation Unit D	1201	1183	18 High	20
Waarre Formation Unit C	1266	absent	-	0
Waarre Formation Unit B	1200	1203	63 High	18
Waarre Formation Unit A	-	1221	-	28
Eumeralla Formation	1216	1249	-	23
Г.Д.	1316	1272	44 High	
1.D.	1500			

[♥] Interval (m)

ROP (Av.) (m/hr)

GEOLOGY OPERATIONS REPORT NO. 9

Well Name: Skull Creek-l Permit: PPL1 Report Date: 28/5/96

Rig: ODE-30
Cultus Rep: Henry Flink
Geologist: Dave Horner

GL(AHD): 92.0m KB(AHD): 96.3m (datum) Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs 0600 Depth: 1700m Progress to 0600: 1373m

Comments:

POOH and break down test string, make up and RIH mud motor/drilling assembly, drill ahead to 1700m Total Depth reached at 0500hrs 28th May, 1996, circulate hole clean.

Lithological and Fluorescence Summary:

Interval (m)	Description
1373 - 1399	Claystone interbedded with Sandstone - Eumeralla - No Show
1399 - 1427	Sandstone with minor interbedded Claystone - Eumeralla - Gas Show
1427 - 1484	Sandstone with minor interbedded Claystone - Eumeralla - No Show
1484 - 1498	Claystone with minor interbedded Sandstone - Eumeralla - No Show
1498 - 1518	Sandstone with minor interbedded Claystone - Eumeralla - Gas Show
1518 - 1528	Claystone with minor interbedded Sandstone - Eumeralla - No Show
1528 - 1533	Sandstone with minor interbedded Claystone - Eumeralla - Gas Show
1533 - 1615	Sandstone with minor interbedded Claystone - Eumeralla - No Show
1615 - 1700	Claystone interbedded with Sandstone - Eumeralla - No Show
-	·
-	

Interval	ROP	Total	C_{I}	C2	Сз	C ₄	Cs	Comments	
(m)	(m/hr)	(units)		(p	pm)				
1373 - 1399	20	117	22904	1655	409	98	20	Eumeralla - No Show	
1399 - 1427	110	405	33143	1167	370	121	26	Eumeralla - Gas Show	
1427 - 1484	95	45	8521	599	188	74	18	Eumeralla - No Show	
1484 - 1498	40	49	8274	603	165	57	16	Eumeralla - No Show	
1498 - 1518	100	497	45086	5525	1375	330	57	Eumeralla - Gas Show	
518 - 1528	50	72	12384	939	248	73	13	Eumeralla - No Show	
528 - 1533	40	318	29083	3514	867	204	37	Eumeralla - Gas Show	
533 - 1615	60	29	5557	406	123	46	1	Eumeralla - No Show	
615 - 1700	30	12	2132	147	35	18	0	Eumeralla - No Show	
-									
-									
-									

Formation Tops:	Prognosed	Actual *	Difference *	Thickness *
	(mKB)	(mKB)	(m High/Low)	(m)

Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	_	257	5 (Lugh	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590		61
Pebble Point Formation	661	651	10 High	68 -
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	<u>.</u>	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	_	23
Eumeralla Formation	1316	1272	44 High	428+
		1700	200 Low	420T

rrovisionai,	vasea	on mua	iog.
 			<u>~</u>

Lithological an	Lithological and Fluorescence Description:									
Interval (m)	ROP (Av.) (m/hr)	Description								
1373-1399	13-60 (20)	Claystone: off white to medium green grey, light to medium brown, medium brown grey, slightly to occasionally moderately silty, common very fine partially alterered feldspar grains in part, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile, interbedded with Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, trace pyrite, friable, very poor visual porosity, no oil								
1399-1484	12-600 (100)	fluorescence. Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red lithics, trace to common black to very dark green lithics, trace black coaly detritus, trace brown and green black mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence, with minor interbedded Claystone: off white to medium green grey, light to medium brown, medium brown grey, slightly to occasionally moderately silty, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile.								

		Page 3
1484-1498	25-150 (40)	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subangular, well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace feldspars, trace brown black mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence, interbedded with minor Claystone: off white to medium grey to medium brown grey to medium green grey, slightly silty, trace brown to black carbonaceous flecks, trace
1498-1518	50-300 (100)	pyrite, trace micromica, firm to moderately hard, slightly subfissile. Sandstone: medium green grey, fine to coarse, dominantly medium to coarse, angular to subangular, moderately to well sorted, weak silica and calcareous cements, trace to common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace black mica flakes, trace black carbonaceous matter, friable, poor inferred porosity, no oil fluorescence, interbedded with minor Claystone: off white to medium grey to medium brown grey to medium green grey, slightly silty, trace brown to black carbonaceous flecks, trace
1518-1528	23-60 (50)	pyrite, trace micromica, firm to moderately hard, slightly subfissile. Claystone: off white to medium grey to medium green grey, slightly silty, trace brown to black carbonaceous flecks, trace pyrite, trace micromica, firm to moderately hard, slightly subfissile, interbedded with minor Sandstone: medium green grey, very fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, trace to common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, trace brown to black mica flakes, trace black carbonaceous matter, friable, very poor
1528-1615	15-400 (60)	inferred porosity, no oil fluorescence. Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, common brown to black mica flakes, trace black carbonaceous matter, friable, very poor inferred porosity, no oil fluorescence, interbedded with minor Claystone: off white to medium grey to medium green grey, slightly to rarely very silty, trace brown to black carbonaceous flecks, trace pyrite,
1615-1700 T.D.	8.6-300 (30)	trace micromica, firm to moderately hard, slightly subfissile. Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common orange brown and black lithics, trace brown mica flakes, trace black carbonaceous matter, friable, nil to very poor visual porosity, no oil fluorescence, interbedded with Claystone: off white to medium, light to medium brown grey, light to medium green grey, slightly to very silty, trace to common brown to black carbonaceous flecks, trace black coaly detritus, trace pyrite, trace micromica, trace coarse brown mica flakes, firm to moderately hard, moderately dispersive, slightly subfissile

GEOLOGY OPERATIONS REPORT NO. 10

Skull Creek-1 Well Name: PPL1 Permit: 29/5/96 Report Date:

Rig: ODE-30 Cultus Rep: Henry Flink Geologist: Dave Horner

GL(AHD): 92.0m 96.3m (datum) KB(AHD):

Last Casing: 9.625" at 332.27m

Report to 0600 for 24hrs 0600 Depth: 1700m Progress to 0600: 0m

Comments:

Wiper trip, circulate hole clean, POOH to run BPB electric logs. Run-1 DLL-MSFL-SP-GR-Sonic-Cal, Run-2 RFS-GR 5 pressure points & sample (hole very sticky to cable) POOH RFS due to inability to achieve stabilized pressure readings - suspect possible problem with tool.

Lithological an	d Fluorescence Summary:		
Interval (m)		Description	
-	No new formation drilled.		
-			
elds.			
-			
-			
-			
-			
-			
-			
-			
_			

Gas Summary Interval (m)	y: ROP (m/hr)	Total (units)	<i>C</i> ₁ ←	C2 C3 (ppm)	C4	Cs →	Comments
-							
-							
-							
-							
-							
_							
-							
-							
) -							

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Jarrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	<u>-</u>	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	
* Provisional, based on mud log.				

Interval ROP (Av.)
(m) (m/hr)

CULTUS PETROLEUM N.L. RFT - PRESSURE TEST REPORT SHEET

ic

Well Name: Skull creek-1 Permit: PPL1 Observer: D.Horner Date: 29-5-96

Test No.	File No	Depth	SEAT Y N	Hydrostatic Pressure Initial Final	Formation Pressure Quartz Strain	Time to Stabili zation	Sample Y N	Formation - Remarks
1	1	i			Gauge Gauge		l i	

									.,			
1	1	1205.0	Y		1984.8	1993.4	1613.4		465		N	Hydrostatic varying
2	2	1211.3	Y		1990.0	2000.0	1680.7		205	<u> </u>	N	
3	X	1212.5	ļ.,	N	1993.7	2004.9	<u> </u>	ļ		ļ	L.	
4	3	1212.5	Y	 	1992.0	2003.7	?		?	 	N N	Very low perm/stopped
5	X	1212.2	\	N	1993.7	2003.7	16146	ļ	1.00	├	NI	<u> </u>
6	4	1212.3	Y	-	1995.6 2000.0	2004.5	1614.5 1623.2	 	166 15		N	
8	6	1216.7	Y		2031.8	2008.3	1644.9		150	Y	14	
°	1 %	1237.3	 	-	2031.6		1044.5	 	1 130	╁┷╌	 	Comples
ļ	╀	 	 	 			 		 	 		Samples
							1		1			Large Tank
1	1		1]			l		l			filled initially
	1			1	İ		l		1			Small Tank
1	İ					•			l			filled second at same
								1		1		interval - partial
	1						1	1	l	l		plugging of tool
	1			1						1		
<u> </u>	 		 				ļ	 		ļ		during flow.
	1								1	ĺ		Large Tank
												Rw = 0.655 @ 61.1F
	ł							l				850 PSI
												12 cu ft gas
												4 litres water
i								ļ	1	1		C1 = 95.9%
İ								l				C2 = 4.1%
]	1	Ì			4
]	l .											C3=C4=C5=0
1												CO2=H2S=0
	Ì						l					pH = 7.7
							1					SO3 = 160 ppm
1							ļ					Pmf = 0.0-1.13
1												Cl = 3600 ppm
												Ca = 2500 + ppm
	 							 				Small Tank
l												
					i							Rw = 0.702 @ 63.2F
												400 PSI
		ł										3 cu ft gas
]	l									300 ml water
		l	l		I						l	C1 = 93.7%
			- 1	Į								C2 = 6.3%
		}	ļ	1	1				ĺ			C3=C4=C5=0
	LI							LI		1	1	C3 C4-C3-0

CULTUS PETROLEUM N.L. RFT - PRESSURE TEST REPORT SHEET

Well Name: Skull creek-1 Permit: PPL1 Observer: D.Horner Date: 29-5-96

Test No.	File I	Depth	SEAT Y N	Hydrostatic Pressure Initial Final	Formation Pressure Quartz Strain Gauge Gauge	Time to Stabili zation	Sample Y N	Formation - Remarks
-------------	--------	-------	-------------	--	--	---------------------------------	---------------	------------------------

1	1	1205.0	Y	l	1984.8	1993.4	1613.4	<u> </u>	465	L	N	Hydrostatic varying
2	2	1211.3	Y		1990.0	2000.0	1680.7		205	<u> </u>	N	
3	X	1212.5		N	1993.7	2004.9	-					
4	3	1212.5	Y		1992.0	2003.7	?		?		N	Very low perm/stopped
5	X	1212.2		N	1993.7	2003.7	-					
6	4	1212.3	Y		1995.6	2004.5	1614.5	<u> </u>	166		N	
7	5	1216.7	Y		2000.0	2008.3	1623.2	<u> </u>	15	<u> </u>	N	
8	6	1237.5	Y		2031.8		1644.9		150	Y	L	
 	 	<u> </u>										
	}				 		 			-		
<u> </u>	ļ	L	<u> </u>	ļ	ļ		ļ		ļ	<u> </u>	ļ	
	}											
-	 											
			 	-				<u> </u>			 	
	<u></u>											
												
								 				
			L				ļ	ļ		<u> </u>	├	
											L	
							ł					
												
			_									
	ļl											
	L											
												

CULTUS PETROLEUM N.L. ELECTIC LOGGING REPORT SHEET

Well Name: Skull Creek-1 Permit: PPL1 Observer: D. Horner Date: 30-5-95

TIME	OPERATION
THATE	OI EXTITON
0930	BPB arrive on site
1635	Rig-up
1700	Assemble DFE
1745	Run DFE in hole
1800	Casing check LCS-DFE
1845	Log repeat section
1900	Main log LCS-DFE (1700-1350m)
1945	Finish main log
2100	Rig up RFT - 5 pressure points plus sample
0730	Rig down RFT
0730	Begin rig-up PDS-CNS
0900	Log repeat section PDS-CNS
0930	Main Log PDS-CNS (1700-1350m - Max temp = 63C)
1045	Out of hole with PDS-CNS
1130	Rig down PDS-CNS
1130	Rig up PSD (dipmeter)
1245	Log repeat section PSD
1300	Main log PSD (1700-700m - Max temp = 63C)
1530	Rig down PSD
1530	Rig up VD (velocity data - 22 levels)
2220	Rig down

CULTUS PETROLEUM N.L. GEOLOGY OPERATIONS REPORT NO. 11

Well Name	: Skull Cree	k-1 Pern	nit: PPL1	Report Date:	30/ 5 /96
Rig:	ODE-30	GL(AHD):	92.0m	Report to 0600 f	or 24hrs
Cultus Rep	: Henry Flink	KB(AHD):	96.3m (datum)	0600 Depth:	1700m
Geologist:	Dave Horner	Last Casing:	9.625" at 332.27m	Progress to 0600:	0m
Comments:					
POOH 1	RFS, retrieve sam	ples (see RFT rep	ort), rig up Run-3 LD	L-CNL-GR-Cal, Run-4	4 Dipmeter.
				p trip and condition mu	
			······································		
Lithological	and Fluorescend	e Summary:			
Interval	1		Description		

Lithological an	ithological and Fluorescence Summary:								
Interval (m)	Description								
-	No new formation drilled.								
-									
-									
	·								
-									
-									
-									
-									
_									
L									

Gas Summary Interval (m)	y: ROP (m/hr)	Total (units)	<i>C₁</i>	C2 C3 (ppm)	C_4 C_5 \longrightarrow	Comments
-						
_						
-						
-						
-						
_						
_						
-						
-						
-						
-						

Formation Tops:	Prognosed	Actual *	Difference *	Thickness *
	(mKB)	(mKB)	(m High/Low)	(m)

Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0 .
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	

* Provisional, based on mud log.

Lithological and Fluorescence Description:

Interval (m) ROP (Av.) (m/hr)

GEOLOGY OPERATIONS REPORT NO. 12

Well Name: Skull Creek-1 Permit: PPL1 Report Date: 31/5/96

Rig: ODE-30
Cultus Rep: Henry Flink
Geologist: Dave Horner

GL(AHD): 92.0m KB(AHD): 96.3m (datum) Last Casing: 9.625" at 332.27m Report to 0600 for 24hrs 0600 Depth: 1700m Progress to 0600: 0m

Comments:

Condition mud, POOH, make up inflate straddle tool with no water cushion, RIH test string and run DST-3 (1402-1417m) IF 5min ISI 30 min FF 120min FSI 240min GTS 2.5min Q = 1.1 MMCFD through 0.375" choke, C1=58.9% C2=23.5% C3=14.2% C4=7.7% C5=1.7% CO2=0.05% H2S=0 deflate tool and move to DST-4 (1240-1255m) IF 10min, ISI 36min, FF 60min, FSI 90min, GTS 1 min, Q=11.1 MMCFD through 0.75" choke, C1=99.45%, C2=C3=C4=C5=0.0%, CO2=0.55%, H2S=0. Deflate packers, Reverse circulate out test string.

Litl	Lithological and Fluorescence Summary:								
	Interval (m)		Description						
	-	No new formation drilled.							
	-								
	-								
	-								
	-								
	-								
	-								
	<u>-</u>								
	_								
	-								

Gas Summary Interval (m)	y: ROP (m/hr)	Total (units)	<i>C₁</i>	C2 C3(ppm)	C ₄ C ₅	Comments
-						
-						
-						
L) :						
-						
-						
-						

Formation Tops:	Prognosed (mKB)		Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Fellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	- 88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	_	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	
* Provisional, based on mud log.				

Interval ROP (Av.)
(m) (m/hr)

GEOLOGY OPERATIONS REPORT NO. 13

Skull Creek-1 PPL1 1/6/96 Permit: Report Date: Well Name: Report to 0600 for 24hrs Rig: ODE-30 GL(AHD): 92.0m Cultus Rep: Henry Flink KB(AHD): 96.3m (datum) 0600 Depth: 1700m Last Casing: 9.625" at 332.27m Geologist: Dave Horner Progress to 0600: 0m **Comments:** Continue reverse circulation after DST-4, POOH and lay out test string, RIH to 1600m, circulate hole clean, POOH, RIH BPB RFS tool. Lithological and Fluorescence Summary: Description Interval (m) No new formation drilled. Gas Summary: C_1 C_2 C3 C_{ι} Cs**Comments** Interval ROP **Total** (units) (ppm) (m) (m/hr)

Formation Tops:	Prognosed	Actual *	Difference *	Thickness *
_	(mKB)	(mKB)	(m High/Low)	(m)

Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl	-	20	-	201
Clifton Formation	283	229	54 High	28
Narrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	- .	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	•	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	

Provisional, based on mud log.

Interval (m) ROP (Av.) (m/hr)

GEOLOGY OPERATIONS REPORT NO. 15

3/ 6 /96 Skull Creek-1 PPL1 Permit: Report Date: Well Name:

Rig: ODE-30 Cultus Rep: Henry Flink Geologist: Dave Horner

GL(AHD): 92.0m KB(AHD): 96.3m (datum)

0600 Depth: Last Casing: 9.625" at 332.27m Progress to 0600:

Report to 0600 for 24hrs

1700m 0m

Comments:

RIH inflate straddle, DST-5 1500-1520m - strong air blow - packer seat failed after 8 mins, reseat at 1502-1522m - strong air blow - packer seat failed after 2 mins, abandon DST-5, attempt DST-6 1225-1245m unable to seat packers, abandon test, POOH test string (top packer burst) rig down test string, RIH with bit, circulate hole clean, POOH.

Lithological and Fluorescence Summary:						
Interval (m)		Description				
-	No new formation drilled.					
ezernejt =						
-						
-						
-						
-						
-						
-						
-						
-						
-						

Gas Summa Interval (m)	ROP (m/hr)	Total (units)	. C1	C2 C3 (ppm)	C4 Cs	Comments
-						
-						
-						
-						
-						
-						
) -						
<u>-</u>						
•						

Formation Tops:	Prognosed (mKB)	Actual * (mKB)	Difference * (m High/Low)	Thickness * (m)
Port Campbell Limestone	4.3 (surface)	4.3	0	16
Gellibrand Marl		20	-	201
Clifton Formation	283	229	54 High	28
Varrawaturk Marl	-	257	-	88
Mepunga Formation	361	345	16 High	52
Dilwyn Formation	421	397	24 High	193
Pember Mudstone	-	590	-	61
Pebble Point Formation	661	651	10 High	68
Paaratte Formation	721	719	2 High	420
Skull Creek Mudstone	1031	1139	108 Low	64
Nullawarre Greensand	1121	absent	-	0
Belfast Mudstone	1201	1183	18 High	20
Waarre Formation Unit D	-	absent	-	0
Waarre Formation Unit C	1266	1203	63 High	18
Waarre Formation Unit B	-	1221	-	28
Waarre Formation Unit A	-	1249	-	23
Eumeralla Formation	1316	1272	44 High	428+
T.D.	1500	1700	200 Low	
* Provisional, based on mud log.	1500	1700	200 Low	

Interval ROP (Av.)
(m) (m/hr)

APPENDIX 5 - CUTTINGS REPORTS

CUTTINGS DESCRIPTION

WELL NAME:

Skull Creek-1

DATE:

28-5-96

GEOLOGIST:

Dave Horner

PAGE:

1

Interval (m) % Description

Continuation for geology report-9

1650-1653	20	Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common orange brown and black lithics, trace brown mica flakes, trace black carbonaceous matter, friable, very poor inferred porosity, no oil fluorescence.
	80	Claystone: off white to medium brown grey to medium grey to medium green grey, dominantly medium grey, slightly to rarely very silty, trace brown to black carbonaceous flecks, trace black coal detritus, trace pyrite, trace micromica, firm to moderately hard, very dispersive, slightly subfissile.
1653-1656	10	Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common orange brown and black lithics, trace brown mica flakes, trace black carbonaceous matter, friable, very poor inferred porosity, no oil fluorescence.
	90	Claystone: off white to medium brown grey to medium grey to medium green grey, dominantly medium grey, slightly to rarely very silty, trace brown to black carbonaceous flecks, trace black coal detritus, trace pyrite, trace micromica, firm to moderately hard, very dispersive, slightly subfissile.
1656-1680	100	Claystone: off white to medium, light to medium brown grey, light to medium green grey, slightly to very silty, trace to common brown to black carbonaceous flecks, trace black coaly detritus, trace pyrite, trace micromica, trace coarse brown mica flakes, firm to moderately hard, moderately dispersive, slightly subfissile.
	Tr	Sandstone: medium green grey, very fine to medium, dominantly fine, angular to subangular, moderately to well sorted, weak to moderate silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, trace to common orange brown and black lithics, common fine brown mica flakes, trace black carbonaceous matter, friable, no visual porosity, no oil fluorescence.
1680-1683	95	Claystone: off white to medium, light to medium brown grey, light to medium green grey, slightly to very silty, trace to common brown to black carbonaceous flecks, trace black coaly detritus, trace pyrite, trace micromica, trace coarse brown mica flakes, firm to moderately hard, moderately dispersive, slightly subfissile.
	5	Sandstone: medium green grey, very fine to medium, dominantly fine, angular to subangular, moderately to well sorted, weak to moderate silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, trace to common orange brown and black lithics, common fine brown mica flakes, trace black carbonaceous matter, friable, no visual porosity, no oil fluorescence.
1686-1689	40	Claystone: off white to medium, light to medium brown grey, light to medium green grey, occasionally dark brown, slightly to very silty, trace to common brown to black carbonaceous flecks, trace black coaly detritus, trace pyrite, trace micromica, trace coarse brown mica flakes, firm to moderately hard, moderately dispersive, slightly subfissile.

4680

Interval (m)	/%	Description	PAGE:	7
	10	Claystone: off white to medium brown grey to medium grey to medium dominantly light brown, slightly to rarely very silty, trace brown to blac flecks, trace black coal detritus, trace pyrite, trace micromica, firm to m dispersive, slightly subfissile.	k carbonaceou	ıs I, very
1641-1644	80	Sandstone: medium green grey, fine to coarse, dominantly medium, and moderately to well sorted, weak silica and calcareous cements, common matrix, abundant grey green lithics, trace to common orange brown and brown mica flakes, trace black carbonaceous matter, friable, very poor in oil fluorescence.	white argillac	cous
	20	Claystone: off white to medium brown grey to medium grey to medium dominantly medium grey, slightly to rarely very silty, trace brown to blad flecks, trace black coal detritus, trace pyrite, trace micromica, firm to medispersive, slightly subfissile.	ck carbonaceo	us , very
1644-1650	40	Sandstone: medium green grey, fine to coarse, dominantly fine to medius subangular, moderately to well sorted, weak silica and calcareous cemen argillaceous matrix, abundant grey green lithics, trace to common orange lithics, trace brown mica flakes, trace black carbonaceous matter, friable, porosity, no oil fluorescence.	s, common w	hite lack
	60	Claystone: off white to medium brown grey to medium grey to medium grey dominantly medium grey, slightly to rarely very silty, trace brown to blac flecks, trace black coal detritus, trace pyrite, trace micromica, firm to modispersive, slightly subfissile.	k carbonaceou	ıs very

Interval (m)	9%	Description PAGE:	6
1602-1608	80	Sandstone medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common vargillaceous matrix, abundant grey green lithics, trace to common red brown and blac lithics, common brown to black mica flakes, trace black carbonaceous matter, friable, poor inferred porosity, no oil fluorescence.	white
	20	Claystone: off white to medium brown grey to medium grey to medium green grey, sl to rarely very silty, trace brown to black carbonaceous flecks, rare pyrite, trace micron firm to moderately hard, very dispersive, slightly subfissile.	lightl nica,
1608-1620	90	Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common wargillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, common brown to black mica flakes, trace black carbonaceous matter, friable, poor inferred porosity, no oil fluorescence.	vhite k
	10	Claystone: off white to medium brown grey to medium grey to medium green grey, sli to rarely very silty, trace brown to black carbonaceous flecks, rare pyrite, trace microm firm to moderately hard, very dispersive, slightly subfissile.	ightly ica,
1620-1626	80	Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common we argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, common brown mica flakes, common black coaly detritus, friable, very poor inferred porosity, no oil fluorescence.	hite
	20	Claystone: off white to medium brown grey to medium grey to medium green grey, slip to rarely very silty, trace brown to black carbonaceous flecks, rare pyrite, trace micromi firm to moderately hard, very dispersive, slightly subfissile.	ghtly ica,
1626-1632	80	Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common whargillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, common brown to black mica flakes, trace black carbonaceous matter, friable, ve poor inferred porosity, no oil fluorescence.	
	20	Claystone: off white to medium brown grey to medium grey to medium green grey, slig to rarely very silty, trace brown to black carbonaceous flecks, rare pyrite, trace micromic firm to moderately hard, very dispersive, slightly subfissile.	ghtly ca,
1632-1635	50	Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common who argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, common brown to black mica flakes, trace black carbonaceous matter, friable, ve poor inferred porosity, no oil fluorescence.	
	50	Claystone: off white to medium brown grey to medium grey to medium green grey, dominantly light brown, slightly to rarely very silty, trace brown to black carbonaceous flecks, trace black coal detritus, trace pyrite, trace micromica, firm to moderately hard, v dispersive, slightly subfissile.	/ery
1635-1638	60	Sandstone: medium green grey, fine to coarse, dominantly fine to medium, angular to subangular, moderately to well sorted, weak silica and calcareous cements, common whi argillaceous matrix, abundant grey green lithics, trace to common red brown and black lithics, common brown to black mica flakes, trace black carbonaceous matter, friable, ver poor inferred porosity, no oil fluorescence.	
	40	Claystone: off white to medium brown grey to medium grey to medium green grey, dominantly light brown, slightly to rarely very silty, trace brown to black carbonaceous flecks, trace black coal detritus, trace pyrite, trace micromica, firm to moderately hard, ve dispersive, slightly subfissile.	ery
1638-1641	90	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subangular moderately to well sorted, weak silica and calcareous cements, common white argillaceous matrix, abundant grey green lithics, trace to common orange brown and black lithics, trace brown mica flakes, trace black carbonaceous matter, friable, very poor inferred porosity, roil fluorescence.	is ce

Interval (m)	%	Description	PAGE:	5
	30	Claystone: off white to medium grey to medium green grey, light bro trace brown to black carbonaceous flecks, trace pyrite, trace micromic hard, slightly subfissile.	wn, slightly silty a, firm to moder	tely
1554-1560	80	Sandstone: medium green grey, very fine to medium, dominantly med subangular, moderately to well sorted, weak silica and calcareous cem common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	ents, trace to to common red	
	20	Claystone: off white to medium grey to medium green grey, light brown trace brown to black carbonaceous flecks, trace pyrite, trace micromical hard, slightly subfissile.	vn. slightly silty, a, firm to modera	ately
1560-1566	90	Sandstone: medium green grey, very fine to medium, dominantly med subangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black of friable, very poor inferred porosity, no oil fluorescence.	ents, trace to to common red	itter,
	10	Claystone: off white to medium grey to medium green grey, light brow trace brown to black carbonaceous flecks, trace pyrite, trace micromical hard, slightly subfissile.		
1566-1572	90	Sandstone: medium green grey, very fine to medium, dominantly med subangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace to brown and black lithics, trace brown to black mica flakes, trace black of friable, very poor inferred porosity, no oil fluorescence.	ents, trace to	tter,
	10	Claystone: off white to medium grey to medium green grey, slightly to trace brown to black carbonaceous flecks, trace pyrite, trace micromica hard, slightly subfissile.	rarely very silty, firm to modera	tely
1572-1581	90	Sandstone: medium green grey, very fine to medium, dominantly medisubangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace to brown and black lithics, common brown to black mica flakes, trace black matter, friable, very poor inferred porosity, no oil fluorescence.	ents, trace to o common red	
	10	Claystone: off white to medium grey to medium green grey, slightly to trace brown to black carbonaceous flecks, trace pyrite, trace micromica, hard, slightly subfissile.		
1581-1593	90	Sandstone: medium green grey, fine to coarse, dominantly medium, an moderately to well sorted, weak silica and calcareous cements, common matrix, abundant grey green lithics, trace to common red brown and blabrown to black mica flakes, trace black carbonaceous matter, friable, ve porosity, no oil fluorescence.	white argillaced ack lithics, comm	ous
	10	Claystone: off white to medium grey to medium green grey, slightly to trace brown to black carbonaceous flecks, trace pyrite, trace micromica, hard, slightly subfissile.		
1593-1602	90	Sandstone: medium green grey, fine to coarse, dominantly fine to medi subangular, moderately to well sorted, weak silica and calcareous cemer argillaceous matrix, abundant grey green lithics, trace to common red b lithics, common brown to black mica flakes, trace black carbonaceous matrix, no oil fluorescence.	nts, common whi	l
	10	Claystone: off white to medium grey to medium green grey, slightly to trace brown to black carbonaceous flecks, trace pyrite, trace micromica, hard, slightly subfissile.		

Interval (m)	%	Description	PAGE: 4
1500-1503	100	Sandstone: medium green grey, very fine to coarse, dominantly me to subangular, moderately to well sorted, weak silica and calcareous common white argillaceous matrix, abundant grey green lithics, trace black mica flakes, trace black carbon poor inferred porosity, no oil fluorescence.	s cements, trace to ce to common red
	Tr	Claystone: off white to medium grey to medium brown grey to med silty, trace brown to black carbonaceous flecks, trace pyrite, trace m moderately hard, slightly subfissile.	
1503-1512	70	Sandstone: medium green grey, fine to coarse, dominantly medium subangular, moderately to well sorted, weak silica and calcareous common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace black mica flakes, trace black carbona poor inferred porosity, no oil fluorescence.	ements, trace to ce to common red
	30	Claystone: off white to medium grey to medium brown grey to med silty, trace brown to black carbonaceous flecks, trace pyrite, trace m moderately hard, slightly subfissile.	
1512-1518	20	Sandstone: medium green grey, fine to coarse, dominantly medium subangular, moderately to well sorted, weak silica and calcareous common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	ements, trace to ce to common red
	80	Claystone: off white to medium grey to medium brown grey to med silty, trace brown to black carbonaceous flecks, trace pyrite, trace m moderately hard, slightly subfissile.	
1518-1524	50	Sandstone: medium green grey, very fine to coarse, dominantly fine subangular, moderately to well sorted, weak silica and calcareous common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace blac friable, very poor inferred porosity, no oil fluorescence.	ments, trace to be to common red
	50	Claystone: off white to medium grey to medium green grey, slightly black carbonaceous flecks, trace pyrite, trace micromica, firm to mo subfissile.	
1524-1530	90	Sandstone: medium green grey, very fine to coarse, dominantly med subangular, moderately to well sorted, weak silica and calcareous ce common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	ments, trace to ee to common red
	10	Claystone: off white to medium grey to medium green grey, slightly black carbonaceous flecks, trace pyrite, trace micromica, firm to mos subfissile.	
1530-1536	80	Sandstone: medium green grey, very fine to coarse, dominantly med subangular, moderately to well sorted, weak silica and calcareous ce common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	ments, trace to e to common red
	20	Claystone: off white to medium grey to medium green grey, light br trace brown to black carbonaceous flecks, trace pyrite, trace micromi hard, slightly subfissile.	
1536-1554	70	Sandstone: medium green grey, very fine to medium, dominantly m subangular, moderately to well sorted, weak silica and calcareous cer common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace brown to black mica flakes, trace black friable, very poor inferred porosity, no oil fluorescence.	ments, trace to e to common red

Interval (m)	%	Description	PAGE:	3
	Tr	Claystone: off white to medium green grey, light to medium brown, med slightly to occasionally moderately silty, trace to common brown to black flecks and detritus especially where brown, trace micromica, trace pyrite, subfissile.	carbonaceou	IS
1455-1461	80	Sandstone: medium green grey, fine to coarse, dominantly medium, ang well sorted, weak silica and trace weak calcareous cement, common whit matrix, abundant grey green lithics, trace to common red brown and blac feldspars, trace brown black mica flakes, trace pyrite, friable, very poor v oil fluorescence.	e argillaceou: k lithics, trac	s ce
	20	Claystone: off white to medium green grey, light to medium brown, med dominantly medium grey, slightly to occasionally moderately silty, trace to black carbonaceous flecks and detritus especially where brown, trace n pyrite, firm, slightly subfissile.	to common b	rown
1461-1467	90	Sandstone: medium green grey, fine to coarse, dominantly medium, anguell sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and blac feldspars, trace brown black mica flakes, trace pyrite, friable, very poor vioil fluorescence.	e argillaceous k lithics, trac	s :e
	10	Claystone: off white to medium green grey, light to medium brown, med dominantly medium grey, slightly to occasionally moderately silty, trace to black carbonaceous flecks and detritus especially where brown, trace myrite, firm, slightly subfissile.	o common bi	rown
1467-1473	80	Sandstone: medium green grey, fine to coarse, dominantly medium, anguwell sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and black feldspars, trace brown black mica flakes, trace pyrite, friable, very poor vioil fluorescence.	e argillaceous k lithics, trac	e e
	20	Claystone: off white to medium green grey, light to medium brown, med dominantly medium grey, slightly to occasionally moderately silty, trace to black carbonaceous flecks and detritus especially where brown, trace m pyrite, firm, slightly subfissile.	o common br	rown
1473-1482	60	Sandstone: medium green grey, fine to coarse, dominantly medium, anguwell sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and black feldspars, trace brown black mica flakes, trace pyrite, friable, very poor vi oil fluorescence.	argillaceous clithics, trace	e e
	40	Claystone: off white to medium grey to medium brown grey to medium g silty, trace brown to black carbonaceous flecks, trace pyrite, trace microm moderately hard, slightly subfissile.		ghtly
1482-1494	20	Sandstone: medium green grey, fine to coarse, dominantly medium, anguwell sorted, weak silica and trace weak calcareous cement, common white matrix, abundant grey green lithics, trace to common red brown and black feldspars, trace brown black mica flakes, trace pyrite, friable, very poor vi oil fluorescence.	argillaceous lithics, trace	e e
	80	Claystone: off white to medium grey to medium brown grey to medium g silty, trace brown to black carbonaceous flecks, trace pyrite, trace micromoderately hard, slightly subfissile.	reen grey, sli	ghtly
1494-1500	40	Sandstone: medium green grey, very fine to coarse, dominantly medium to subangular, moderately to well sorted, weak silica and calcareous ceme common white argillaceous matrix, abundant grey green lithics, trace to c brown and black lithics, trace black mica flakes, trace black carbonaceous poor inferred porosity, no oil fluorescence.	nts, trace to ommon red	
	60	Claystone: off white to medium grey to medium brown grey to medium g silty, trace brown to black carbonaceous flecks, trace pyrite, trace micromi moderately hard, slightly subfissile.	ceen grey, slig ca, firm to	ghtly

Interval (m)	%	Description	PAGE: 2
	30	Claystone: off white to medium green grey, light to medium brown, dominantly off white to light green grey, slightly to occasionally mo common brown to black carbonaceous flecks and detritus especially micromica, trace pyrite, firm, slightly subfissile.	derately silty, trace to
1407-1413	90	Sandstone: medium green grey, fine to coarse, dominantly medium subrounded, moderately to well sorted, weak silica and trace weak common white argillaceous matrix, abundant grey green lithics, con black lithics, trace black coaly detritus, trace brown and dark green pyrite, friable, very poor visual porosity, no oil fluorescence.	alcareous cement, nmon red brown and
	10	Claystone: off white to medium green grey, light to medium brown, dominantly off white to light green grey, slightly to occasionally mo common brown to black carbonaceous flecks and detritus especially micromica, trace pyrite, firm, slightly subfissile.	derately silty, trace to
1413-1419	100	Sandstone: medium green grey, fine to coarse, dominantly medium, subrounded, moderately to well sorted, weak silica and trace weak common white argillaceous matrix, abundant grey green lithics, con to common black to very dark green lithics, trace black coaly detritugreen black mica flakes, trace pyrite, friable, very poor visual porosi	alcareous cement, nmon red lithics, trace s, trace brown and
1419-1431	100	Sandstone: medium green grey, fine to coarse, dominantly medium, subrounded, moderately to well sorted, weak silica and trace weak common white argillaceous matrix, abundant grey green lithics, com to common black to very dark green lithics, trace black coaly detritugeren black mica flakes, trace pyrite, friable, very poor visual porosit	alcareous cement, nmon red lithics, trace s, common brown and
	Tr	Claystone: off white to medium green grey, light to medium brown, slightly to occasionally moderately silty, trace to common brown to be flecks and detritus especially where brown, trace micromica, trace py subfissile.	olack carbonaceous
1431-1440	100	Sandstone: medium green grey, fine to coarse, dominantly medium, subrounded, moderately to well sorted, weak silica and trace weak common to abundant white argillaceous matrix, abundant grey greer lithics, trace to common black to very dark green lithics, trace black common brown and green black mica flakes, trace pyrite, friable, very no oil fluorescence.	alcareous cement, a lithics, common red coaly detritus,
	Tr	Claystone: off white to medium green grey, light to medium brown, slightly to occasionally moderately silty, trace to common brown to be flecks and detritus especially where brown, trace micromica, trace py subfissile.	lack carbonaceous
1440-1443	100	Sandstone: medium green grey, fine to coarse, dominantly medium, well sorted, weak silica and trace weak calcareous cement, common matrix, abundant grey green lithics, trace to common red brown and feldspars, trace brown black mica flakes, trace pyrite, friable, poor vi poor inferred porosity, no oil fluorescence.	white argillaceous black lithics, trace
1443-1449	90	Sandstone: medium green grey, fine to coarse, dominantly medium, well sorted, weak silica and trace weak calcareous cement, common matrix, abundant grey green lithics, trace to common red brown and feldspars, trace brown black mica flakes, trace pyrite, friable, poor vi poor inferred porosity, no oil fluorescence.	white argillaceous black lithics, trace
	10	Claystone: off white to medium green grey, light to medium brown, slightly to occasionally moderately silty, trace to common brown to b flecks and detritus especially where brown, trace micromica, trace py subfissile.	lack carbonaceous
1449-1455	100	Sandstone: medium green grey, fine to coarse, dominantly medium, well sorted, weak silica and trace weak calcareous cement, common watrix, abundant grey green lithics, trace to common red brown and feldspars, trace brown black mica flakes, trace pyrite, friable, poor vispoor inferred porosity, no oil fluorescence.	white argillaceous black lithics, trace

CUTTINGS DESCRIPTION

WELL NAME:

Skull Creek-1

DATE:

28-5-97

GEOLOGIST:

Dave Horner

PAGE:

1

Interval (m) % Description

For geology report-9

1373-1380	70	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
	30	Claystone: off white to medium green grey, light to medium brown, medium brown grey, slightly to occasionally moderately silty, common very fine partially alterered feldspar grains in part, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile.
1380-1383	30	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
	70	Claystone: off white to medium green grey, light to medium brown, medium brown grey, slightly to occasionally moderately silty, common very fine partially alterered feldspar grains in part, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile.
1383-1395	10	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
	90	Claystone: off white to medium green grey, light to medium brown, medium brown grey, dominantly off white to light green grey, slightly to occasionally moderately silty, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile.
1395-1401	30	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace brown and dark green mica flakes, trace pyrite, friable, very poor visual porosity, no oil fluorescence.
	70	Claystone: off white to medium green grey, light to medium brown, medium brown grey, dominantly off white to light green grey, slightly to occasionally moderately silty, trace to common brown to black carbonaceous flecks and detritus especially where brown, trace micromica, trace pyrite, firm, slightly subfissile.
1401-1407	70	Sandstone: medium green grey, fine to coarse, dominantly medium, angular to subrounded, moderately to well sorted, weak silica and trace weak calcareous cement, common white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace brown and dark green mica flakes, trace pyrite, friable, poor visual porosity, very poor inferred porosity no oil fluorescence.

CUTTINGS DESCRIPTION

WELL NAME: Skull Creek-1 DATE: 26-5-97

GEOLOGIST: Dave Horner PAGE: 1

Interval (m)	%	Description

For geology report-7

1368-1371 20 80 1371-1373 40	Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence. Claystone: medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, trace pyrite, firm, slightly subfissile Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence.
1371-1373 40	trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, trace pyrite, firm, slightly subfissile Sandstone: light to medium green grey, very fine to coarse, dominantly medium, subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence.
	subangular to subrounded, moderately to well sorted, weak silica and calcareous cements, common to abundant white argillaceous matrix, abundant grey green lithics, common red brown and black lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very poor visual porosity, no oil fluorescence.
60	1. Later of the bound of the bo
")	Claystone: medium green grey, light to medium grey, medium brown grey, slightly silty, trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, trace pyrite, firm, slightly subfissile
	·
)	
	i e

interval (m)	%	Description PAGE	::	7
	80	Claystone: light to medium green grey, light to medium grey, medium brown grey silty, trace very fine partially alterered feldspar grains in part, trace brown to black carbonaceous flecks and detritus, trace micromica, firm, slighttly subfissile	, sli	ghtly
		Total Depth: 1368m.		
L	<u></u>			

	Interval (m)	0,	6 Description	PAGE:	6
	1338-1344	10	Sandstone: medium green grey, very fine to coarse, dominantly medius subrounded, moderately to well sorted, weak silica and calcareous cern argillaceous matrix, abundant grey green lithics, trace to common red lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, porosity, no oil fluorescence.	nents, common v	white
		60	Claystone: light to medium green grey, light to medium grey, medium silty, trace brown to black carbonaceous flecks and detritus, trace microsubfissile	ı brown grey, sli omica, firm, slig	ightly ghttly
	1344-1347	50	Sandstone: medium green grey, very fine to coarse, dominantly mediu subrounded, moderately to well sorted, weak silica and calcareous ceme argillaceous matrix, abundant grey green lithics, trace to common red blithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, porosity, no oil fluorescence.	ents, common w	hite
		50	Claystone: light to medium green grey, light to medium grey, medium silty, trace brown to black carbonaceous flecks and detritus, trace micro subfissile	brown grey, slig	ghtly httly
	1347-1350	30	Sandstone: medium green grey, very fine to coarse, dominantly medium subrounded, moderately to well sorted, weak silica and calcareous ceme argillaceous matrix, abundant grey green lithics, trace to common red bilithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, v porosity, no oil fluorescence.	nts, common wh	nite
		70	Claystone: light to medium green grey, light to medium grey, medium bills, trace brown to black carbonaceous flecks and detritus, trace micron subfissile	orown grey, slight nica, firm, sligh	htly ttly
ind)	1350-1356	40	Sandstone: medium green grey, very fine to coarse, dominantly medium subrounded, moderately to well sorted, weak silica and calcareous cemen argillaceous matrix, abundant grey green lithics, trace to common red bro lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very porosity, no oil fluorescence.	its, common whi	ite
		60	Claystone: light to medium green grey, light to medium grey, medium be silty, trace very fine partially alterered feldspar grains in part, trace brown carbonaceous flecks and detritus, trace micromica, firm, slightly subfissi	m 4 m lul = -1.	tly
	1356-1362	30	Sandstone: medium green grey, very fine to coarse, dominantly medium, subrounded, moderately to well sorted, weak silica and calcareous cement argillaceous matrix, abundant grey green lithics, trace to common red bro lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, ver porosity, no oil fluorescence.	subangular to	te
		70	Claystone: light to medium green grey, light to medium grey, medium brosilty, trace very fine partially alterered feldspar grains in part, trace brown carbonaceous flecks and detritus, trace micromica, firm, slighttly subfissile	to hi1-	ly
	1362-1365	40	Sandstone: medium green grey, very fine to coarse, dominantly medium, subrounded, moderately to well sorted, weak silica and calcareous cements argillaceous matrix, abundant grey green lithics, trace to common red brow lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very porosity, no oil fluorescence.	subangular to	=
		60	Claystone: light to medium green grey, light to medium grey, medium bro silty, trace very fine partially alterered feldspar grains in part, trace brown carbonaceous flecks and detritus, trace micromica, firm, slighttly subfissile	ta black	y
) 	1368-1368		Sandstone: medium green grey, very fine to coarse, dominantly medium, so subrounded, moderately to well sorted, weak silica and calcareous cements, argillaceous matrix, abundant grey green lithics, trace to common red brown lithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, very porosity, no oil fluorescence.	ubangular to common white	

	interval (m)	1 %	Description	PAGE:	5
		90	Claystone: light to medium green grey, light brown grey, slightly sil fine brown to black carbonaceous flecks, trace micromica, rare pyrite to slightly subfissile.	ty in part, trace v	rery
	1314-1317	20	Sandstone: light grey to light green grey, very fine to coarse, domina angular to subrounded, moderately to well sorted, weak silica and cal abundant white argillaceous matrix, abundant green grey lithics, trace brown black lithics, trace black carbonaceous detritus, friable, very poil fluorescence.	careous cements, e to common red	,
		80	Claystone: light to medium green grey, light brown grey, slightly silf fine brown to black carbonaceous flecks, trace micromica, rare pyrite to slightly subfissile.	y in part, trace ve, soft and sticky,	ery non
	1317-1323	60	Sandstone: light grey to light green grey, very fine to coarse, domina to subrounded, moderately to well sorted, weak silica and calcareous white argillaceous matrix, abundant green grey lithics, trace to comm lithics, trace black carbonaceous detritus, friable, very poor visual por fluorescence.	cements, abundar on red brown bla	nt
		40	Claystone: light to medium green grey, light brown grey, slightly silt fine brown to black carbonaceous flecks, trace micromica, rare pyrite, to slightly subfissile.	y in part, trace ve soft and sticky, I	ery
	1323-1326	80	Sandstone: light grey to light green grey, very fine to coarse, dominant to subrounded, moderately to well sorted, weak silica and calcareous of white argillaceous matrix, abundant green grey lithics, trace to commulithics, trace black carbonaceous detritus, friable, very poor visual portular fluorescence.	ements, abundan	t
		20	Claystone: light to medium green grey, light brown grey, slightly silty fine brown to black carbonaceous flecks, trace micromica, rare pyrite, to slightly subfissile.	in part, trace ve soft and sticky, n	ry
	1326-1329	30	Sandstone: light grey to light green grey, very fine to coarse, dominar to subrounded, moderately to well sorted, weak silica and calcareous c white argillaceous matrix, abundant green grey lithics, trace to commo lithics, trace black carbonaceous detritus, friable, very poor visual porofluorescence.	ements, abundan	t
		70	Claystone: light to medium green grey, light brown grey, slightly silty fine brown to black carbonaceous flecks, trace micromica, rare pyrite, to slightly subfissile.	in part, trace ver soft and sticky, n	ry on
	1329-1335	40	Sandstone: medium green grey, very fine to coarse, dominantly medius subangular to subrounded, moderately to well sorted, weak silica and common white argillaceous matrix, abundant grey green lithics, trace brown and black lithics, trace black coaly detritus, trace mica flakes, ravery poor visual porosity, no oil fluorescence.	alcareous cement to common red	
		60	Claystone: light to medium green grey, light brown grey, slightly silty fine brown to black carbonaceous flecks, trace micromica, rare pyrite, s to slightly subfissile.	in part, trace ver soft and sticky, no	y on
	1335-1338	50	Sandstone: medium green grey, very fine to coarse, dominantly mediu subrounded, moderately to well sorted, weak silica and calcareous ceme argillaceous matrix, abundant grey green lithics, trace to common red blithics, trace black coaly detritus, trace mica flakes, rare pyrite, friable, porosity, no oil fluorescence.	ents, common whorown and black	nite
)		50	Claystone: light to medium green grey, light brown grey, slightly silty fine brown to black carbonaceous flecks, trace micromica, rare pyrite, s to slightly subfissile.		

Interval (m)	%	Description	PAGE:	4
1284-1287	Sandstone: medium blue grey, very fine to coarse, dominantly fi moderately to well sorted, weak silica and calcareous cement, co argillaceous matrix, abundant green grey lithics, common red broommon fine black carbonaceous detritus, friable, very poor visu fluorescence.		n to abundant wl	hite
	30	Claystone: off white to light blue grey to light green grey,occasionally trace pyrite, structureless, soft and sticky.	y medium brown	,
1287-1290	10	Sandstone: medium blue grey, very fine to coarse, dominantly fine, as moderately to well sorted, weak silica and calcareous cement, common argillaceous matrix, abundant green grey lithics, common red brown a common fine black carbonaceous detritus, friable, very poor visual por fluorescence.	n to abundant whand black lithics.	iite
	90	Claystone: off white to light blue grey to light green grey,occasionally trace pyrite, structureless, soft and sticky.	medium brown,	
1290-1293	30	Sandstone: light grey to light green grey, very fine to coarse, dominar to subrounded, moderately to well sorted, weak silica and calcareous of white argillaceous matrix, abundant green grey lithics, trace to commo lithics, trace black carbonaceous detritus, friable, very poor visual porofluorescence.	ements, abundan on red brown blac	t
	70	Claystone: off white to light green grey to light blue grey, occasionally brown, slightly silty in part, trace very fine carbonaceous flecks, rare p. micromica, soft and sticky, slightly subfissile.	y light to medium yrite, trace	1
1293-1299	20	Sandstone: light grey to light green grey, very fine to coarse, dominan to subrounded, moderately to well sorted, weak silica and calcareous ce white argillaceous matrix. abundant green grey lithics, trace to commo lithics, trace black carbonaceous detritus, friable, very poor visual poro fluorescence.	ements, abundant	<u> </u>
	80	Claystone: off white to light green grey to light blue grey, occasionally brown, slightly silty in part, trace very fine carbonaceous flecks, rare py micromica, soft and sticky, slightly subfissile.	light to medium vrite, trace	ı
1299-1302	10	Sandstone: light grey to light green grey, very fine to coarse, dominant to subrounded, moderately to well sorted, weak silica and calcareous ce white argillaceous matrix, abundant green grey lithics, trace to common lithics, trace black carbonaceous detritus, friable, very poor visual poros fluorescence.	ments, abundant n red brown black	- 1
	90	Claystone: light to medium green grey, light brown grey, trace very fin carbonaceous flecks, trace micromica, rare pyrite, soft and sticky, non to	e brown to black o slightly subfiss	ile.
1302-1305	Tr	Sandstone: light grey to light green grey, very fine to coarse, dominant to subrounded, moderately to well sorted, weak silica and calcareous cer white argillaceous matrix, abundant green grey lithics, trace to common lithics, trace black carbonaceous detritus, friable, very poor visual poros fluorescence.	ments, abundant i red brown black	
	100	Claystone: light to medium green grey, light brown grey, slightly silty if fine brown to black carbonaceous flecks, trace micromica, rare pyrite, so to slightly subfissile.	n part, trace very oft and sticky, no	n
1305-1308	100	Claystone: light to medium green grey, light brown grey, slightly silty i fine brown to black carbonaceous flecks, trace micromica, rare pyrite, so to slightly subfissile.	n part, trace very	n
1308-1314	10	Sandstone: light grey to light green grey, very fine to coarse, dominantly subrounded, moderately to well sorted, weak silica and calcareous cemer argillaceous matrix, abundant green grey lithics, trace to common red by trace black carbonaceous detritus, friable, very poor visual porosity, no o	nts, abundant who	ite

interval (m)	1 %	Description	PAGE:	3
1257-1260	100	Sandstone: very light brown, very fine to very coarse, dominantly medium subrounded, poorly sorted, weak to moderate silica cement, trace to commargillaceous matrix, common to abundant yellow orange lithics, trace gree black lithics, trace black coal detritus, trace coarse brown and green mica fair to good visual porosity, no oil fluorescence.		nd
1260-1263	100	Sandstone: light orange grey, very fine to very coarse, dominantly fine to med to subangular, well sorted, moderate silica cement, common white argillaceous abundant yellow orange lithics, trace red green grey and black lithics, trace bladetritus, friable to moderately hard, poor visual porosity, no oil fluorescence.		
1263-1266	100	Sandstone: light orange grey, very fine to medium, dominantly fine, any subangular, well sorted, moderate silica cement, trace white argillaceous yellow orange lithics, trace red green grey and black lithics, trace black of friable, fair visual porosity, no oil fluorescence.	gular to	ion
1266-1269	100	Sandstone: light orange grey, very fine to grit, dominantly medium to consubangular, well sorted, moderate silica cement, trace white argillaceous yellow orange lithics, trace red green grey and black lithics, trace black of friable, fair visual porosity, no oil fluorescence.	matrix comm	to on
1269-1272	100	Sandstone: light orange grey, very fine to grit, dominantly fine to mediu subangular, well sorted, moderate silica cement, weak calcareous cement argillaceous matrix, common yellow orange lithics, trace red green grey a trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.	, trace white	cs,
1272-1275	50	Sandstone: light orange grey, very fine to grit, dominantly fine to medius subangular, well sorted, moderate silica cement, weak calcareous cement, argillaceous matrix, common yellow orange lithics, trace red green grey a trace black coaly detritus, friable, fair visual porosity, no oil fluorescence.	trace white	s,
	30	Sandstone: medium blue grey, very fine to coarse, dominantly medium, a subrounded, moderately to well sorted, weak silica and calcareous cement abundant white argillaceous matrix, abundant green grey lithics, common black lithics, common fine black carbonaceous detritus, friable, very poor no oil fluorescence.	, common to	d ′,
	20	Claystone: off white to light blue grey, structureless, soft and sticky.		
1275-1278	70	Sandstone: medium blue grey, very fine to coarse, dominantly medium, a subrounded, moderately to well sorted, weak silica and calcareous cement, abundant white argillaceous matrix, abundant green grey lithics, common black lithics, common fine black carbonaceous detritus, friable, very poor no oil fluorescence.	common to	1
	30	Claystone: off white to light blue grey to light green grey, structureless, so	oft and sticky.	
1278-1281	60	Sandstone: medium blue grey, very fine to coarse, dominantly fine, angula moderately to well sorted, weak silica and calcareous cement, common to a argillaceous matrix, abundant green grey lithics, common red brown and b common fine black carbonaceous detritus, friable, very poor visual porosity fluorescence.	ibundant white	ed,
	40	Claystone: off white to light blue grey to light green grey, structureless, so	ft and sticky.	
1281-1284	50	Sandstone: medium blue grey, very fine to coarse, dominantly fine, angula moderately to well sorted, weak silica and calcareous cement, common to a argillaceous matrix, abundant green grey lithics, common red brown and b common fine black carbonaceous detritus, friable, very poor visual porosity fluorescence.	bundant white lack lithics,	d,
	50	Claystone: off white to light blue grey to light green grey,occasionally med trace pyrite, structureless, soft and sticky.	ium brown,	

intervar (m)	70	Description	PAGE:	2
1239-1242	60	Sandstone: very light brown grey, very fine to medium, dominantly f subrounded, moderately sorted, weak silica cement, no visual matrix, green brown grey and black lithics, common black coaly detritus, tracinferred porosity, no oil fluorescence.	common bright	red fair
	40	Claystone: medium grey to medium brown, very silty, common very altered feldspars grains in part, common brown to black carbonaceous detritus, trace medium brown cryptocrystalline dolomite, trace glauco trace micromica, soft, very dispersive and washing from sample, slight	s flecks and fine	•
1242-1245	20	Sandstone: very light brown grey, very fine to medium, dominantly fi subrounded, moderately sorted, weak silica cement, no visual matrix, green brown grey and black lithics, common black coaly detritus, trace inferred porosity, no oil fluorescence.	common bright r	ed fair
	80	Claystone: medium grey to medium brown, very silty, common very faltered feldspars grains in part, common brown to black carbonaceous detritus, trace medium brown cryptocrystalline dolomite, trace glaucor trace micromica, soft, very dispersive and washing from sample, slight	flecks and fine	tially
1245-1248	20	Sandstone: very light brown grey, very fine to medium, dominantly fin subrounded, moderately sorted, weak silica cement, trace white argillac common bright red green brown grey and black lithics, common black pyrite, friable, fair inferred porosity, no oil fluorescence.	ne, angular to	ace
	70	Claystone: medium grey to medium brown, very silty, common very fi altered feldspars grains in part, common brown to black carbonaceous detritus, trace medium brown cryptocrystalline dolomite, trace glaucon trace micromica, soft, very dispersive and washing from sample, slight	flecks and fine	ially
	10	Coal: dark brown to black, very argillaceous in part, often abundant di subvitreous lustre with platy to dominantly subconchoidal fracture where fracture with earthy texture where argillaceous, trace medium brown tra hard and brittle.	sseminated pyrite	
1248-1251	60	Sandstone: very light brown, very fine to grit, dominantly medium to c subrounded, poorly sorted, weak to moderate silica cement, trace to con argillaceous matrix, common red green grey and black volcanic lithics, detritus, trace coarse brown and green mica flakes, friable, fair to good oil fluorescence.	mon white	
	40	Claystone: light to medium brown grey, light to medium grey, very silt fine off white partially altered feldspars grains in part, common brown to carbonaceous flecks and fine detritus, trace medium brown cryptocrystal glauconite, trace pyrite, trace micromica, soft, very dispersive and washinghtly subfissile.	o black lline dolomite tra	ace
1251-1254	90	Sandstone: very light brown, very fine to very coarse, dominantly fine to subrounded, poorly sorted, weak to moderate silica cement, trace to coargillaceous matrix, common yellow orange red green grey and black vo black coal detritus, trace coarse brown and green mica flakes, friable, fai porosity, no oil fluorescence.	ommon white	- 1
	10	Claystone: light to medium brown grey, light to medium grey, very silty fine off white partially altered feldspars grains in part, common brown to carbonaceous flecks and fine detritus, trace medium brown cryptocrystall glauconite, trace pyrite, trace micromica, soft, very dispersive and washin slightly subfissile.	black line dolomite tra	ce
1254-1257	1	Sandstone: very light brown, very fine to grit, dominantly medium, angupoorly sorted, weak to moderate silica cement, trace to common white arg common to abundant yellow orange lithics, trace green grey red and black local detritus, trace coarse brown and green mica flakes, friable, fair porosity, no oil fluorescence.	gillaceous matrix k lithics, trace	d,

CUTTINGS DESCRIPTION

WELL NAME:

Skull Creek-1

DATE:

24-5-96

GEOLOGIST:

Dave Horner

PAGE:

1

Interval (m)	%	Description

For geology re	eport-5
----------------	---------

1214-1220	100	Sandstone: light grey, very fine to grit, dominantly medium, angular to subrounded, moderate to well sorted, weak silica cement, no visual matrix, trace black coaly detritus, friable, good inferred porosity, no oil fluorescence.
1220-1225	100	Sandstone: light grey, very fine to very coarse, dominantly medium, angular to subrounded, moderate to well sorted, weak silica cement, no visual matrix, trace black coaly detritus, friable, good inferred porosity, no oil fluorescence.
	Tr	Claystone: medium grey, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
1225-1230	60	Sandstone: light grey, very fine to very coarse, dominantly medium, angular to subrounded, dominantly subangular, poorly sorted, weak silica cement, clear to opaue quartz grains, trace pyrite, trace fine black to brown carbonaceous matter, friable, good inferred porosity, no oil fluorescence.
	40	Claystone: medium grey, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
1230-1233	50	Sandstone: light grey, very fine to very coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, weak silica cement, clear to opaue quartz grains, trace pyrite, trace fine black to brown carbonaceous matter, friable, fair to good inferred porosity, no oil fluorescence.
	50	Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
1233-1236	30	Sandstone: light grey, very fine to very coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, poorly sorted, weak silica cement, clear to opaue quartz grains, trace pyrite, trace fine black to brown carbonaceous matter, friable, fair to good inferred porosity, no oil fluorescence.
	70	Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspars grains, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.
1236-1239	60	Sandstone: very light brown grey, very fine to coarse, dominantly fine to medium, angular to subrounded, moderately sorted, weak silica cement, no visual matrix, common bright red green brown grey and black lithics, common black coaly detritus, trace pyrite, friable, fair to good inferred porosity, no oil fluorescence.
	40	Claystone: medium grey to medium brown, very silty, common very fine off white partially altered feldspars grains in part, common brown to black carbonaceous flecks and fine detritus, trace medium brown cryptocrystalline dolomite, trace glauconite, trace pyrite, trace micromica, soft, very dispersive and washing from sample, slightly subfissile.

CUTTINGS DESCRIPTION

WELL NAME:

Skull Creek-1

DATE:

23-5-96

GEOLOGIST:

Dave Horner

PAGE:

1

		
Interval (m)	%	Description
F-1-1		

Continuation for geology report-4

_			
	1200-1205	80	Claystone: medium to dark grey, medium to dark brown grey, very silty, common very fine partially altered feldspar grains in part, common black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile.
		20	Sandstone: very light grey, very fine to grit, dominantly coarse to very coarse, subangular to subrounded, poor to moderate sorting, very weak silica cement, no visual matrix, trace yellow stained quartz grains, trace black carbonaceous detritus, friable, very good inferred porosity, no oil fluorescence.
	1205-1210	90	Sandstone: very light grey, very fine to grit, dominantly coarse to very coarse, subangular to subrounded, poor to moderate sorting, very weak silica cement, no visual matrix, trace yellow stained quartz grains, trace black carbonaceous detritus, friable, very good inferred porosity, no oil fluorescence.
		10	Claystone: medium to dark grey, medium to dark brown grey, very silty, common very fine partially altered feldspar grains in part, common black carbonaceous flecks, trace micromica, firm, very dispersive, slightly subfissile.——
	1210-1214	100	Sandstone: very light grey, very fine to grit, dominantly coarse to very coarse, subangular to subrounded, poor to moderate sorting, very weak silica cement, no visual matrix, trace yellow stained quartz grains, trace black carbonaceous detritus, friable, very good inferred porosity, no oil fluorescence.

F			
L			
T			
-			
-			
\ -			
-	·		
\vdash			

Interval (m)	%	Description	PAGE: 6
	10	Sandstone: off white to light brown, very fine to fine, subangular to su moderately to well sorted, moderate silica and calcareous cements, con white to medium brown argillaceous and silt matrix, trace green lithic flecks and detritus, trace pyrite, moderately hard, nil to very poor visua fluorescence.	nmon to abundant of trace carbonaceo
1160-1170	70	Claystone: medium to dark grey, medium brown grey, very silty, compartially altered feldspar grains in part, trace black carbonaceous fleck trace pyrite, soft, very dispersive, slightly subfissile.	
	30	Sandstone: light grey, very fine to very coarse, dominantly fine to med subrounded, poorly sorted, weak silica cement, minor off white argillad red brown lithics, trace black carbonaceous matter, trace pyrite, friable poor inferred porosity, no oil fluorescence.	cous matrix, trace
1170-1175	30	Claystone: medium to dark grey, medium brown grey, very silty, compartially altered feldspar grains in part, trace black carbonaceous flecks trace pyrite, soft, very dispersive, slightly subfissile.	non very fine s, trace micromica,
	70	Sandstone: light grey, very fine to coarse, dominantly fine, subangular moderately sorted, moderate silica cement, trace white argillaceous ma lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	trix, trace red brow
1175-1180	20	Claystone: medium to dark grey, medium brown grey, very silty, comm partially altered feldspar grains in part, trace black carbonaceous flecks trace pyrite, soft, very dispersive, slightly subfissile.	non very fine , trace micromica,
	80	Sandstone: light grey, very fine to coarse, dominantly fine, subangular moderately sorted, moderate silica cement, trace white argillaceous mat lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	rix, trace red brow
1180-1185	50	Claystone: medium to dark brown grey, moderately to very silty, commpartially altered feldspar grains in part, trace black carbonaceous flecks trace micromica, trace pyrite, soft, very dispersive, slightly subfissile.	
	50	Sandstone: light grey, very fine to coarse, dominantly fine, subangular moderately sorted, moderate silica cement, trace white argillaceous mat lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	rix, trace red brown
1185-1190	80	Claystone: medium to dark grey, medium to dark brown grey, very silty partially altered feldspar grains in part, common black carbonaceous fle micromica, firm, very dispersive, slightly subfissile.	
	20	Sandstone: light grey, very fine to coarse, dominantly very fine, subang moderately sorted, moderate silica cement, trace white argillaceous matelithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	rix, trace red brown
1190-1195	100	Claystone: medium to dark grey, medium to dark brown grey, very silty partially altered feldspar grains in part, common black carbonaceous flemicromica, firm, very dispersive, slightly subfissile.	
	Tr	Sandstone: light grey, very fine to coarse, dominantly very fine, subang moderately sorted, moderate silica cement, trace white argillaceous matter lithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	ix, trace red brown
1195-1200	90	Claystone: medium to dark grey, medium to dark brown grey, very silty partially altered feldspar grains in part, common black carbonaceous fled micromica, firm, very dispersive, slightly subfissile.	
1	10	Sandstone: light grey, very fine to coarse, dominantly very fine, subange moderately sorted, moderate silica cement, trace white argillaceous matrilithics, trace carbonaceous matter, common pyrite, friable to moderately visual porosity, no oil fluorescence.	ix, trace red brown

	Interval (m)	%	Description	PAGE:	5				
	1090-1100	90	Sandstone: light brown grey to light grey, very fine to coarse, domin subangular to subrounded, moderately sorted, weak to moderate silica occasionally common white argillaceous matrix, trace green gry and black coal detritus, trace coarse mica flakes, trace pyrite, friable, fair fluorescence.	a cement, trace to red lithics, comm	o non				
		10		prown grey to light grey, very fine to coarse, dominantly fine, subangular					
	1100-1110	80	Sandstone: light brown grey to light grey, very fine to coarse, domine to subrounded, moderately sorted, weak to moderate silica cement, tracemmon white argillaceous matrix, trace green gry and red lithics, condetritus, trace coarse mica flakes, trace pyrite, friable, fair visual pors fluorescence.	ace to occasionall ommon black coal	y				
		20	Claystone: medium grey to medium brown grey, very silty, often very common black carbonaceous flecks and detritus, trace pyrite, common very dispersive, slightly subfissile.						
	1110-1120	60	Sandstone: light brown grey to light grey, very fine to coarse, domina to subrounded, moderately sorted, weak to moderate silica cement, tracommon white argillaceous matrix, trace green gry and red lithics, co detritus, trace coarse mica flakes, trace pyrite, friable, fair visual porse fluorescence.	nce to occasionally mmon black coal	y				
		40	Claystone: medium grey to medium brown grey, very silty, often very common black carbonaceous flecks and detritus, trace pyrite, commor very dispersive, slightly subfissile.						
	1120-1140	50	Sandstone: light brown grey to light grey, very fine to coarse, domina to subrounded, moderately sorted, weak to moderate silica cement, tra common white argillaceous matrix, trace green gry and red lithics, co detritus, trace coarse mica flakes, trace pyrite, friable, fair visual porse fluorescence.	ce to occasionally mmon black coal	,				
		50	Claystone: medium brown grey to medium brown, very silty, often ve common black carbonaceous flecks and detritus, trace pyrite, common very dispersive, slightly subfissile.						
	1140-1145	80	Claystone: medium brown to medium brown grey, moderately to very fine quartz and partially altered feldspar grains in part, common black and fine detritus, trace medium brown cryptocrystalline dolomite, com common pyrite, soft, very dispersive and washing from samples, slight	carbonaceous fle mon micromica,					
		20	Sandstone: off white to light brown, very fine to fine, subangular to sum oderately to well sorted, moderate silica and calcareous cements, con white to medium brown argillaceous and silt matrix, trace green lithic flecks and detritus, trace pyrite, moderately hard, nil to very poor visual fluorescence.	nmon to abundan s, trace carbonace	eous				
	1145-1150	70	Claystone: medium brown to medium brown grey, moderately to very fine quartz and partially altered feldspar grains in part, common black and fine detritus, trace medium brown cryptocrystalline dolomite, com common pyrite, soft, very dispersive and washing from samples, slight	carbonaceous fle mon micromica,					
)		30	Sandstone: off white to light brown, very fine to fine, subangular to su moderately to well sorted, moderate silica and calcareous cements, con white to medium brown argillaceous and silt matrix, trace green lithics flecks and detritus, trace pyrite, moderately hard, nil to very poor visua fluorescence.	nmon to abundants, trace carbonace	ous				
	1150-1160	90	Claystone: medium brown to medium brown grey, moderately to very fine quartz and partially altered feldspar grains in part, common black and fine detritus, trace medium brown cryptocrystalline dolomite, common pyrite, soft, very dispersive and washing from samples, slight	carbonaceous fleomon micromica,					

Interval (m)	%	Description	PAGE:	4
	10	Claystone: medium to dark brown to medium grey, moderately to very searbonaceous, common black carbonaceous flecks and coaly detritus in pedisseminated and nodular pyrite, common micromica, firm, very disperse from samples, slightly subfissile.	art, trace	•
1010-1030	100	Sandstone: light grey to light brown grey, very fine to grit, dominantly f subangular to subrounded, moderately sorted, weak to moderate silica ce argillaceous matrix, trace green grey lithics, trace black coal detritus, trafair to good inferred porosity, no oil fluorescence.	ment, trace wi	nite
	Tr	Claystone: medium to dark brown to medium grey, moderately to very s carbonaceous, common black carbonaceous flecks and coaly detritus in p disseminated and nodular pyrite, common micromica, firm, very dispersifrom samples, slightly subfissile.	art, trace	
1030-1040	100	Sandstone: light grey to light brown grey, very fine to grit, dominantly f subangular to subrounded, moderately sorted, weak to moderate silica ce argillaceous matrix, trace green grey lithics, trace black coal detritus, tra fair to good inferred porosity, no oil fluorescence.	ment, trace wh	nite
1040-1050	100	Sandstone: light grey to light brown grey, very fine to grit, dominantly f subangular to subrounded, moderately sorted, weak to moderate silica ce occasionally common white argillaceous matrix, trace green gry and red coal detritus, trace coarse mica flakes, trace pyrite, friable, fair visual por fluorescence.	ment, trace to lithics, trace b	
1050-1060	20	Sandstone: light grey to light brown grey, very fine to grit, dominantly for subangular to subrounded, moderately sorted, weak to moderate silica ceroccasionally common white argillaceous matrix, trace green gry and red coal detritus, trace coarse mica flakes, trace pyrite, friable, fair visual por fluorescence.	nent, trace to lithics, trace b	
	70	Sandstone: light grey, very fine to fine, well sorted, strong silica and taccements, trace white argillaceous matrix, trace fine black carbonaceous d lithics, trace fine mica flakes, hard, very poor visual porosity, no oil fluor	etritus, trace g	
	10	Claystone: dark grey, very silty, common black carbonaceous flecks, con common disseminated pyrite, firm, very dispersive, slightly subfissile.	imon micromi	ca,
1060-1070	100	Sandstone: light brown grey to light grey, very fine to very coarse, domin medium, subangular to subrounded, moderately sorted, weak to moderate trace to occasionally common white argillaceous matrix, trace green gry a trace black coal detritus, trace coarse mica flakes, trace pyrite, friable, fai no oil fluorescence.	silica cement and red lithics	,
	Tr	Claystone: dark grey, very silty, common black carbonaceous flecks, con common disseminated pyrite, firm, very dispersive, slightly subfissile.	mon micromi	ca,
1070-1080	100	Sandstone: light brown grey to light grey, very fine to very coarse, domin medium, subangular to subrounded, moderately sorted, weak to moderate trace to occasionally common white argillaceous matrix, trace green gry a trace black coal detritus, trace coarse mica flakes, trace pyrite, friable, fai no oil fluorescence.	silica cement and red lithics	,
1080-1090	90	Sandstone: light brown grey to light grey, very fine to coarse, dominantly subangular to subrounded, moderately sorted, weak to moderate silica cer occasionally common white argillaceous matrix, trace green gry and red l black coal detritus, trace coarse mica flakes, trace pyrite, friable, fair visus fluorescence.	nent, trace to ithics, commo	
	10	Claystone: medium grey to medium brown grey, very silty, often very fin common black carbonaceous flecks and detritus, trace pyrite, common mi very dispersive, slightly subfissile.		

(AJ, GFE:F53)

Interval (m)	Interval (m)		PAGE:	3			
	10	Claystone: medium to dark grey, moderately silty, trace black carbo detritus, trace to common pyrite, common micromica, soft, very dis subfissile.		đ			
890-910	100	Sandstone: very light brown grey to light grey, very fine to grit, dominantly coarse to coarse, occasionally dominantly fine, subangular to subrounded, moderately sorted, we moderate silica cement, trace medium to dark grey argillaceous matrix in part, clear to opaque quartz grains, trace grey green lithics, trace pyrite, trace coarse mica flakes, fri fair to good inferred porosity, no oil fluorescence.					
910-930	100	Sandstone: light grey, very fine to grit, dominantly medium to coar subrounded, moderately sorted, weak silica cement, no visual matrix quartz grains, trace green grey lithics, trace black coal detritus, trace inferred porosity, no oil fluorescence.	x, clear to transluce				
930-950	100	Sandstone: light grey, very fine to grit, dominantly coarse, subangumoderately sorted, weak silica cement, no visual matrix, clear to tractrace green grey lithics, trace black coal detritus, trace pyrite, friable porosity, no oil fluorescence.	nslucent quartz gra				
950-960	90	Sandstone: light grey, very fine to grit, dominantly coarse, subangu moderately sorted, weak silica cement, no visual matrix, clear to trace green grey lithics, trace black coal detritus, trace pyrite, friable porosity, no oil fluorescence.	nslucent quartz gra				
	10	Claystone: medium to dark brown to brown black, moderately to very carbonaceous grading to black coal, common disseminated pyri micromica, firm, very dispersive and washing from samples, slightly	te, common	to			
960-970	Sandstone: light grey, very fine to grit, dominantly coarse, subangular to subrour moderately sorted, weak silica cement, no visual matrix, clear to translucent quar trace green grey lithics, trace black coal detritus, trace pyrite, friable, very good in porosity, no oil fluorescence.						
	Tr	Claystone: medium to dark brown to brown black, moderately to very carbonaceous grading to black coal, common disseminated pyric micromica, firm, very dispersive and washing from samples, slightly	te, common	to			
970-980	100	Sandstone: light grey, very fine to very coarse, dominantly fine, subangular to subromoderately sorted, weak silica cement, no visual matrix, clear to translucent quartz g trace green grey lithics, trace black coal detritus, trace pyrite, friable, good inferred porosity, no oil fluorescence.					
	Tr	Claystone: medium to dark brown to brown black, moderately to very carbonaceous grading to black coal, common disseminated pyrit micromica, firm, very dispersive and washing from samples, slightly	e, common	to			
980-990	100	Sandstone: light grey, very fine to coarse, dominantly fine, subangular to subrounded moderately sorted, weak silica cement, no visual matrix, clear to translucent quartz grace green grey lithics, trace black coal detritus, trace pyrite, friable, good inferred porosity, no oil fluorescence.					
990-1000	100	Sandstone: light grey to light brown grey, very fine to grit, dominantly fine, subangul subrounded, moderately sorted, weak to moderate silica cement, trace weak calcareous cement, trace to common white argillaceous matrix, trace green grey lithics, trace black coal detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescence.					
	Tr	Tr Claystone: medium to dark brown to medium grey, moderately to very silty, mode carbonaceous, common black carbonaceous flecks and coaly detritus in part, trace disseminated and nodular pyrite, common micromica, firm, very dispersive and we from samples, slightly subfissile.					
1000-1010	90	Sandstone: light grey to light brown grey, very fine to grit, dominant subrounded, moderately sorted, weak to moderate silica cement, trace cement, trace to common white argillaceous matrix, trace green grey coal detritus, trace pyrite, friable, fair inferred porosity, no oil fluorescent	weak calcareous lithics, trace black	to			

Interval (m)	%	Description	PAGE:	2
710-720	70	Sandstone: medium orange brown, very fine to grit, dominantly medic subrounded, poorly sorted, very weak silica cement, common medium argillaceous and silt matrix, weak yellow-green stain on quartz grains, oxide pellets, common multicoloured volcanic lithics, trace coarse gree friable to unconsolidated, fair to good inferred porosity, no oil fluoresce	o dark green race brown iron n mica flakes,	
	30	Claystone: medium to dark green to dark brown, slightly silty, commo dispersed very fine to grit quartz sand grains, trace glauconite, soft, mo non fissile.		ive,
720-730	80	Sandstone: medium orange brown, very fine to grit, dominantly very c subrounded, moderately sorted, very weak silica cement, trace medium matrix, common yellow orange stained quartz grains, trace multicolour trace pyrite, friable to unconsolidated, very good inferred porosity, no o	brown argillace ed volcanic lithi	ous
	20	Claystone: medium to dark green to dark brown, slightly silty, common dispersed very fine to grit quartz sand grains, trace glauconite, soft, monon fissile.		ive,
730-740	100	Sandstone: light orange brown, very fine to grit, dominantly very coars subrounded, moderately sorted, very weak silica cement, trace medium matrix, common yellow orange stained quartz grains, trace multicolour trace pyrite, friable to unconsolidated, very good inferred porosity, no o	brown argillaced ed volcanic lithi	ous
740-750 Sandstone: light orange brown, very fine to grit, dominantly very coarse, suban subrounded, moderately sorted, very weak silica cement, trace medium brown at matrix, common weakly yellow orange stained quartz grains, trace multicoloure lithics, trace pyrite, friable to unconsolidated, very good inferred porosity, no oil fluorescence.				ous
750-760		No sample.		
760-800	100	Sandstone: light orange brown, very fine to pebble, dominantly very co subrounded, moderately sorted, weak silica cement, trace medium brow matrix, common weakly yellow orange stained quartz grains, abundant varicoloured volcanic lithics, trace pyrite, friable to unconsolidated, very porosity, no oil fluorescence.	n argillaceous red green and	r to
800-810	100	Sandstone: light orange brown, very fine to pebble, dominantly very co subrounded, moderately sorted, weak silica cement, trace medium brown matrix, common weakly yellow orange stained quartz grains, abundant varicoloured volcanic lithics, common black coal detritus, trace pyrite, funconsolidated, very good inferred porosity, no oil fluorescence.	n argillaceous red green and	r to
810-850	100	Sandstone: very light orange brown, very fine to pebble, dominantly ve subangular to subrounded, moderately sorted, weak silica cement, trace grey argillaceous matrix, common weakly yellow-orange stained quartz multicoloured volcanic lithics, trace black coal detritus, trace pyrite, fria unconsolidated, very good inferred porosity, no oil fluorescence.	medium brown grains, common	
850-860	100	Sandstone: very light brown grey, very fine to grit, dominantly coarse, subrounded, moderately sorted, weak silica cement, trace medium to dar matrix in part, clear to opaque quartz grains rarely with yellow orange s green and rare pink lithics, common pyrite, trace coarse mica flakes, frid inferred porosity, no oil fluorescence.	k grey argillace taining, trace gr	
860-880	100	Sandstone: very light brown grey, very fine to grit, dominantly very coasubrounded, moderately sorted, weak silica cement, trace medium to dar matrix in part, clear to opaque quartz grains, trace grey green lithics, co coarse mica flakes, friable, very good inferred porosity, no oil fluorescent	k grey argillaced mmon pyrite, tra	ous
880-890	90	Sandstone: light grey, very fine to grit, dominantly fine, subangular to s moderately sorted, weak to moderate silica cement, trace weak calcareous medium grey argillaceous matrix in part, trace partially altered feldspar grey lithics, trace coarse mica flakes, trace black coaly detritus, trace pyr visual porosity, no oil fluorescence.	s cement, trace grains, trace gre	een

CUTTINGS DESCRIPTION

WELL NAME: Skull Creek-1 DATE: 23-5-96

GEOLOGIST: Dave Horner PAGE: 1

Interval (m)	%	Description				
--------------	---	-------------	--	--	--	--

For geology report-4

645-650	100	Claystone: dark green grey to dark brown grey, moderately to very silty, abundant dispersed very fine to grit clear to opaque quartz sand grains, common glauconite, common pyrite, trace light brown cryptocrystalline dolomite, rare micromica, soft and sticky, moderately dispersive, non fissile.
650-655	100	Claystone: dark green grey to dark brown grey, moderately to very silty, common dispersed very fine to grit clear to opaque quartz sand grains, common glauconite, common pyrite, trace light brown cryptocrystalline dolomite, rare micromica, soft and sticky, moderately dispersive, non fissile.
655-660	100	Claystone: dark green grey to dark brown grey, moderately to very silty, common dispersed grit to dominantly very fine quartz sand grains, common glauconite, common pyrite, trace light brown cryptocrystalline dolomite, rare micromica, soft and sticky, moderately dispersive, non fissile.
660-670	100	Claystone: dark green grey to dark brown grey, moderately to very silty, common dispersed grit to dominantly very fine quartz sand grains, abundant glauconite, common pyrite, trace light brown cryptocrystalline dolomite, rare micromica, soft and sticky, moderately dispersive, non fissile.
670-680	10	Sandstone: medium green, very fine to grit, dominantly very coarse, subangular to subrounded, poorly sorted, weak silica cement, abundant medium to dark green argillaceous and silt matrix - grading to arenaceous claystone, yellow to green stained quartz grains, common glauconite, trace coarse green mica flakes, friable, no visual porosity, no oil fluorescence.
	90	Claystone: medium to dark green, medium brown, moderately to very silty, abundant dispersed very fine to grit green-brown stained quartz grains - grading to argillaceous sandstone, common glauconite, trace pyrite, soft, moderately dispersive, non fissile.
680-690	100	Sandstone: light orange green, very fine to pebble, dominantly medium to coarse, subangular to subrounded, moderately sorted, very weak silica cement, common medium to dark green argillaceous and silt matrix, weak yellow-green stain on quartz grains, common glauconite, common multicoloured volcanic lithics, trace coarse green mica flakes, friable to unconsolidated, fair to good inferred porosity, no oil fluorescence.
690-700	90	Sandstone: light orange green, very fine to pebble, dominantly medium to coarse, subangular to subrounded, poorly sorted, very weak silica cement, common medium to dark green argillaceous and silt matrix, weak yellow-green stain on quartz grains, trace glauconite, common multicoloured volcanic lithics, trace coarse green mica flakes, friable to unconsolidated, fair to good inferred porosity, no oil fluorescence.
	10	Claystone: dark green brown, slightly silty, common to abundant dispersed very fine to grit quartz sand grains, trace glauconite, soft, moderately dispersive, non fissile.
700-710	90	Sandstone: medium orange brown, very fine to grit, dominantly medium, subangular to subrounded, poorly sorted, very weak silica cement, common medium to dark green argillaceous and silt matrix, weak yellow-green stain on quartz grains,trace brown iron oxide pellets, common multicoloured volcanic lithics, trace coarse green mica flakes, friable to unconsolidated, fair to good inferred porosity, no oil fluorescence.
	10	Claystone: dark green brown, slightly silty, common to abundant dispersed very fine to grit quartz sand grains, trace glauconite, soft, moderately dispersive, non fissile.

interval (m)	/ %	Description PAGE: 4						
	Claystone: medium brown grey, moderately to very silty, common to at very fine to coarse quartz sand grains, trace pyrite, rare black coaly detrinuctomica, very soft, very dispersive, non fissile. Claystone: dark brown grey, moderately to very silty, common dispersed quartz sand grains, trace pyrite, trace glauconite, trace black coaly detriting associated pyrite, trace micromica, very soft and sticky, moderately dispersive, or abundant medium brown grey, rep fine to very coarse, dominantly fine to subrounded, moderately sorted, very weak silica cement, cabundant medium brown grey argillaceous and silt matrix, clear to opaq yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, to detritus, trace pyrite, friable, good inferred pososity, no oil fluorescence. Claystone: dark brown grey, moderately to very silty, common dispersed quartz sand grains, trace pyrite, trace to common glauconite, trace black on with associated pyrite, trace micromica, very soft and sticky, moderately to fine to fine quartz sand grains, trace pyrite, common glauconite, trace black often with associated pyrite, trace micromica, very soft and sticky, moderately often with associated pyrite, trace micromica, very soft and sticky, moderately often with associated pyrite, trace black coaly detritus often with associated micromica, very soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very silty, common glauconite, trace black coaly detritus often with associated micromica, very soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very silty soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very silty soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very silty soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey	Claystone: medium brown grey, moderately to very silty, common to abundant dispersed very fine to coarse quartz sand grains, trace pyrite, rare black coaly detritus, trace micromica, very soft, very dispersive, non fissile.						
600-605	90	Claystone: dark brown grey, moderately to very silty, common dispersed very fine to grit quartz sand grains, trace pyrite, trace glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile						
	10	Sandstone: light brown grey, very fine to very coarse, dominantly fine to medium, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace black coalse.						
Claystone: medium brown grey, moderately to very silty, common to abun very fine to coarse quartz sand grains, trace pyrite, rare black coaly detritus micromica, very soft, very dispersive, non fissile. Claystone: dark brown grey, moderately to very silty, common dispersed very quartz sand grains, trace pyrite, trace glauconite, trace black coaly detritus associated pyrite, trace micromica, very soft and sticky, moderately dispers subundant medium brown grey, very fine to very coarse, dominantly fine to subrounded, moderately sorted, very weak stilica cement, con abundant medium brown grey argillaceous and silt matrix, clear to opaque yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace detritus, trace pyrite, friable, good inferred possity, no oif fluorescence. Claystone: dark brown grey, moderately to very silty, common dispersed we quartz sand grains, trace pyrite, trace to common glauconite, trace black coawith associated pyrite, trace micromica, very soft and sticky, moderately dispersed very fine to fine quartz and grains, trace pyrite, common glauconite, trace black often with associated pyrite, trace micromica, very soft and sticky, moderate often with associated pyrite, trace micromica, very soft and sticky, moderate often with associated pyrite, trace micromica, very soft and sticky, moderate often with associated pyrite, trace micromica, very soft and sticky, moderate often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very silty dispersed very fine quartz and off white partially altered feldspar sand grains common glauconite, trace black coaly detritus often with associated pyrite, trace black coaly detritus often with associated pyrite, trace partially altered feldspar sand grains common glauconite, trace black coaly detritus often with associated pyrite, common glauconite, trace black coaly detritus often with associated pyrite, common glauconite, trace	Claystone: dark brown grey, moderately to very silty, common dispersed very fine to fine quartz sand grains, trace pyrite, trace to common glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non-							
610-615	100	Claystone: medium to dark brown grey, moderately to very silty, common dispersed very fine to fine quartz sand grains, trace pyrite, common glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile.						
615-620	100	Claystone: medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine to fine quartz and off white partially altered feldspar sand grains, trace pyrite, common glauconite, trace black coaly detritus often with associated pyrite, trace micromica, very soft and sticky, moderately dispersive, non fissile.						
620-630	100	Claystone: medium to dominantly dark brown grey, moderately to very silty, common dispersed very fine quartz and off white partially altered feldspar sand grains, trace pyrite, common glauconite, trace black coaly detritus often with associated pyrite, trace micromica						
Claystone: dark brown grey, moderately to very silty, common to all very fine to coarse quartz sand grains, trace pyrite, rare black coaly detrinic morphisms of the subangular to subrounded, moderately to very silty, common disperse quartz sand grains, trace pyrite, trace glauconite, trace black coaly detrit associated pyrite, trace micromica, very soft and sticky, moderately dispersive, and substitution of the subangular to subrounded, moderately sorted, very weak silica cement, abundant medium brown grey argillaceous and silt matrix, clear to opaq yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, detritus, trace pyrite, friable, good inferred possity, no oil fluorescence. Claystone: dark brown grey, moderately to very silty, common dispersed quartz sand grains, trace pyrite, trace to common glauconite, trace black with associated pyrite, trace micromica, very soft and sticky, moderately fissile. Claystone: medium to dark brown grey, moderately to very silty, common fine to fine quartz sand grains, trace pyrite, common glauconite, trace black only mit associated pyrite, trace micromica, very soft and sticky, moderately in the subspersed very fine to fine quartz and off white partially altered feldspar spyrite, common glauconite, trace black coaly detritus often with associated micromica, very soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very sidispersed very fine quartz and off white partially altered feldspar spyrite, common glauconite, trace black coaly detritus often with associated micromica, very soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very sidispersed very fine to fine quartz and off white partially altered feldspar sprite, common glauconite, trace black coaly detritus often with associated micromica, very soft and sticky, moderately dispersive, non fissile. Claystone: medium to dominantly dark brown grey, moderately to very sidis	640 Claystone: medium to dominantly dark brown grey, moderately to very silty dispersed very fine to fine quartz and off white partially altered feldspar sand pyrite, common glauconite, trace black coaly detritus often with associated by							
	Sandstone: light brown, very fine to fine, subangular to subrounded, moderately to well sorted, very weak silica cement, common to abundant dark brown grey argillaceous and silt matrix, trace glauconite, common caorse mica flakes, friable, poor inferred porosity, no oil fluorescence.							
	Claystone: dark brown grey, moderately to very silty, common dispersed very fine to fine quartz and partially altered feldspar sand grains, common glauconite, trace pyrite, rare light brown cryptocrystalline dolomite, trace black coaly detritus, trace micromica, very soft and sticky, non fissile.							

mici vai (iii)		Description F	PAGE:	3
	30	Claystone: medium to dark brown grey, moderately to very silty, abundant d fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very s dispersive, non fissile.	lispersed v	eı
525-540	100	Sandstone: light brown grey, very fine to very coarse, dominantly fine to meeto subrounded, poorly sorted, very weak silica cement, common to abundant a grey argillaceous and silt matrix, clear to opaque quartz grains, trace red lithic coarse mica flakes, trace pyrite, friable, fair inferred pososity, no oil fluoresce	medium b	ul ro
	Tr	Claystone: medium to dark brown grey, moderately to very silty, abundant difine to coarse quartz sand grains in part, trace pyrite, trace micromica, very so dispersive, non fissile.	icnoreed	ery
540-550	90	Sandstone: light brown grey, medium to grit, dominantly very coarse, subang subrounded, moderately sorted, very weak silica cement, common to abundant brown grey argillaceous and silt matrix, clear to opaque with trace yellow to p grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good infepososity, no oil fluorescence.	t medium	Z.
	10	Claystone: medium to dark brown grey, moderately to very silty, abundant disfine to coarse quartz sand grains in part, trace pyrite, trace micromica, very so dispersive, non fissile.	spersed ve	гу
550-560	100	Sandstone: light brown grey, very fine to grit, dominantly medium, subangula subrounded, moderately sorted, very weak silica cement, common to abundant brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pi grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferpososity, no oil fluorescence.	medium	
	Tr	Claystone: medium to dark brown grey, moderately to very silty, abundant displication to coarse quartz sand grains in part, trace pyrite, trace micromica, very sof dispersive, non fissile.	persed ver	у
560-570	90	Sandstone: light brown grey, very fine to grit, dominantly medium to coarse, si subrounded, moderately sorted, very weak silica cement, common to abundant a brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pin grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferpososity, no oil fluorescence.	medium	to
	10	Claystone: medium to dark brown grey, moderately to very silty, abundant disp fine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft dispersive, non fissile.	ersed very	,
570-580	100	Sandstone: light brown grey, very fine to grit, dominantly coarse, subangular to subrounded, moderately sorted, very weak silica cement, common to abundant no brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pin grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good infer pososity, no oil fluorescence.	nedium	
	Tr	Claystone: medium to dark brown grey, moderately to very silty, abundant dispering to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, dispersive, non fissile.	ersed very very	
580-590	100	Sandstone: light brown grey, very fine to grit, dominantly medium to coarse, sul subrounded, moderately sorted, very weak silica cement, common to abundant m brown grey argillaceous and silt matrix, clear to opaque with trace yellow to pink grains, trace red lithics, trace coarse mica flakes, trace pyrite, friable, good inferr pososity, no oil fluorescence.	edium	.0
	Tr	Claystone: medium to dark brown grey, moderately to very silty, abundant disperfine to coarse quartz sand grains in part, trace pyrite, trace micromica, very soft, dispersive, non fissile.	rsed very very	
590-600		Sandstone: light brown grey, very fine to very coarse, dominantly fine to medium subangular to subrounded, moderately sorted, very weak silica cement, common to abundant medium brown grey argillaceous and silt matrix, clear to opaque with to yellow to pink quartz grains, trace red lithics, trace coarse mica flakes, trace black detritus, trace pyrite, friable, good inferred pososity, no oil fluorescence.	:0 race	

interval (m)	/0	Description	PAGE:	2
405-410	100	Sandstone: light grey, very fine to coarse, dominantly medium, and moderately to well sorted, very weak silica cement, minor pyrite cen brown grey argillaceous and silt matrix, clear to opaque quartz grain quartz grains, trace brown to black lithics, trace coarse muscovite fla unconsolidated, very good inferred porosity, no oil fluorescence.	nent, trace medium	, 1
410-420	100	Sandstone: light grey, very fine to coarse, dominantly fine to mediu subrounded, moderately to well sorted, very weak silica cement, min medium brown grey argillaceous and silt matrix, clear to opaque que yellow to red quartz grains, trace brown to black lithics, trace coarse friable to unconsolidated, very good inferred porosity, no oil fluoresc	or pyrite cement, tartz grains, trace muscovite flakes.	гасе
420-430	100	Sandstone: light grey, very fine to medium, dominantly fine, angula moderately to well sorted, very weak silica cement, minor pyrite cembrown grey argillaceous and silt matrix, clear to opaque quartz grain quartz grains, trace brown to black lithics, trace coarse muscovite fla unconsolidated, very good inferred porosity, no oil fluorescence.	ent, trace medium s, trace yellow to re	ed
430-440	100	Sandstone: very light brown grey, very fine to coarse, dominantly me subrounded, moderately to well sorted, weak silica cement, minor py medium brown argillaceous and silt matrix, clear to opaque quartz grange quartz grains, trace red and grey lithics, trace coarse muscovi unconsolidated, very good inferred porosity, no oil fluorescence.	rite cement, trace rains, common yell	low
440-460	100	Sandstone: very light brown grey, very fine to coarse, dominantly me subrounded, moderately to well sorted, weak silica cement, minor pyr medium brown argillaceous and silt matrix, clear to opaque quartz grorange quartz grains, trace red and grey lithics, trace coarse muscovit coal detritus, friable to unconsolidated, very good inferred porosity, n	rite cement, trace rains, common yellete flakes, trace blace	ow :k
460-175		No sample.		
475-490	100	Sandstone: very light brown grey, very fine to coarse, dominantly me subrounded, moderately to well sorted, weak silica cement, minor pyr medium brown argillaceous and silt matrix, clear to opaque and occas stained quartz grains, common yellow orange quartz grains, trace red coarse muscovite flakes, trace black coaly detritus, friable to unconsol inferred porosity, no oil fluorescence.	ite cement, trace sionally orange and grey lithics, tr	race
490-500	100	Sandstone: very light brown grey, very fine to coarse, dominantly medium subrounded, poor to moderate sorting, weak silica cement, minor pyrimedium brown argillaceous and silt matrix, clear to opaque and occas stained quartz grains, trace yellow orange quartz grains, trace red and coarse muscovite flakes, friable to unconsolidated, very good inferred fluorescence.	te cement, trace ionally orange grey lithics, trace	
500-510	90	Sandstone: very light brown grey, very fine to coarse, dominantly med subrounded, poor to moderate sorting, weak silica cement, minor pyrit medium brown argillaceous and silt matrix, clear to opaque and occasi stained quartz grains, trace yellow orange quartz grains, trace red and coarse muscovite flakes, friable to unconsolidated, very good inferred pfluorescence.	e cement, trace ionally orange grey lithics, trace	
	10	Claystone: medium to dark brown grey, moderately to very silty, abunfine to coarse quartz sand grains in part, trace pyrite, trace micromica, dispersive, non fissile.	dant dispersed very very soft, very	y
510-525	70	Sandstone: very light brown grey, very fine to coarse, dominantly med subrounded, poor to moderate sorting, weak silica cement, minor pyrite medium brown argillaceous and silt matrix, clear to opaque and occasi stained quartz grains, trace yellow orange quartz grains, trace red and coarse muscovite flakes, friable to unconsolidated, very good inferred p fluorescence.	e cement, trace onally orange grey lithics, trace	

CUTTINGS DESCRIPTION

WELL NAME: Skull Creek-1

DATE:

22-5-96

GEOLOGIST:

Dave Horner

PAGE:

: 1

Interval (m) % Description

For geology report-3

335-340	100	Very poor sample due to clay dispersion and cement contamination. Marl: medium brown grey, common bryozoa, shell fragments and forams, trace pyrite, trace glauconite, trace very fine to fine dispersed clear quartz sand grains, very soft, very dispersive, non fissile.
340-355	100	Probable inaccurate sample collection interval. Sandstone: medium to dark greenish brown, very fine to coarse, dominantly fine to medium, angular to subrounded, dominantly subangular, moderately to well sorted, very weak iron oxide and silica cements, abundant dark brown iron oxide rich argillaceous matrix, strong brown staining on quartz grains, common brown iron oxide pellets, common white and green lithics, trace multicoloured volcanic lithics, common glauconite, trace coarse clear to brown mica flakes, unconsolidated to friable, fair inferred porosity, no oil fluorescence.
355-365	100	Sandstone: medium brown, very fine to very coarse, dominantly coarse, angular to subrounded, poor to moderately sorted, very weak iron oxide and silica cements, common medium brown argillaceous matrix, strong brown stain on quartz grains, common brown iron oxide pellets, trace glauconite, trace multicoloured volcanic lithics, trace pyrite, friable to unconsolidated, good inferred porosity, no oil fluorescence.
365-370	100	Sandstone: medium brown, very fine to coarse, dominantly fine to medium, angular to subrounded, poor to moderately sorted, very weak iron oxide and silica cements, common medium brown argillaceous matrix, strong brown stain on quartz grains, common brown iron oxide pellets, trace glauconite, trace multicoloured volcanic lithics, trace pyrite, friable to unconsolidated, good inferred porosity, no oil fluorescence.
370-390	100	Sandstone: light to medium brown, very fine to coarse, dominantly fine to medium, angular to subrounded, moderately to well sorted, very weak silica cement, common medium brown argillaceous and silt matrix, common yellow to orange to brown stain on quartz grains, trace multicoloured volcanic lithics, trace coarse muscovite flakes, trace pyrite, trace iron oxide pellets, trace glauconite, trace dark brown clay lithics, friable to unconsolidated, good inferred porosity, no oil fluorescence.
390-400	100	Sandstone: light to medium brown, fine to very coarse, dominantly medium to coarse, angular to subrounded, moderately to well sorted, very weak silica cement, common medium brown argillaceous and silt matrix, common yellow to orange to brown stain on quartz grains, trace multicoloured volcanic lithics, trace coarse muscovite flakes, trace pyrite, trace iron oxide pellets, trace glauconite, trace dark brown clay lithics, friable to unconsolidated, good inferred porosity, no oil fluorescence.
	Tr	Claystone: dark brown, moderately silty, trace pyrite, trace glauconite, trace micromica, soft, very dispersive, non fissile.
400-405	100	Sandstone: light grey to light brownish grey, very fine to coarse, dominantly medium, angular to subrounded, dominantly subangular, moderately to well sorted, very weak silica cement, trace medium grey to medium brown grey argillaceous and silt matrix, clear to opaque quartz grains occasionally with weak yellow brown staining, trace red and green lithics, trace pyrite, trace brown clay lithics, friable to unconsolidated, very good inferred porosity, no oil fluorescence.

APPENDIX 6 - PALYNOLOGICAL REPORT

PALYNOLOGY OF SKULL CREEK-1

OTWAY BASIN, VICTORIA

\mathbf{BY}

ROGER MORGAN

	CONTI	ENIS		PAGE							
	1	SUMMARY									
À	2	INTRODUCTION '		4							
	3	PALYNOSTRATIGRAPHY									
	4	CONCLUSIONS									
	5	REFERENCES									
	FIGURE	E 1 : CRETACEOUS REGIONAL FRAMEW	ORK, OTWAY BA	SIN							
	FIGURE	E 2 : DETAILED ZONATION USED HEREI	N								

FIGURE 3 : MATURITY PROFILE : SKULL CREEK-1

CONTENTS

1 SUMMARY

- 1125-1130m (cutts), 1145-50m (cutts): middle senectus Spore-pollen Zone (upper aceras Dinocyst Zone) with caved Middle Eocene, Early Eocene, late Paleocene and Maastrichtian (longus/druggii Zones): early Campanian: nearshore marine: immature: usually upper Belfast Mudstone and correlative lower Paaratte Formation.
- 1155-1160m (cutts): apparently middle *apoxyexinus* Spore-pollen Zone (lower *cretacea* Dinocyst Zone) with mixed younger caving: Santonian: very nearshore marine: immature: usually mid Belfast Mudstone and correlative basal Paaratte Formation.
- 1175-1180m (cutts): apparently middle *apoxyexinus* Spore-pollen Zone (no Dinocyst Zone possible) with mixed younger caving: Santonian: marginal marine: immature: usually mid Belfast Mudstone and correlative basal Paaratte Formation.
- 1185-1190m (cutts): apparently lower *mawsonii* Spore-pollen Zone (*infusorioides* Dinocyst Zone) mixed with caved middle *apoxyexinus* Spore-pollen Zone (no Dinocyst Zone) and mixed younger presumed caving: Turonian: very nearshore marine: immature: usually basal Belfast Mudstone/upper Flaxmans Formation/uppermost Waare Sandstone.
- 1195-1200m (cutts), 1278-1281m (cutts): nothing older seen and samples appear to be mostly mixed younger caving: may be mixed caving in lean sandy lithologies.
- 1287-1290m (cutts): paradoxa Zone (no Dinocyst Zone with dinoflagellates probably entirely caved) with mixed younger caving: probably Albian: probably non-marine: marginally mature: usually Eumeralla Formation.

2 INTRODUCTION

Eight cuttings samples were studied after drilling at the request of Alex Pomilio. An initial breakdown was faxed on 11/7/96, and the final results are summarised herein.

Palynomorph occurrence data are shown as Appendix I and form the basis for the assignment of the samples to six units of Campanian to Albian age. Younger caving is also detailed.

Specimen counts were made on all assemblages and expressed in the raw data as percentages.

The Cretaceous spore-pollen zonation is essentially that of Dettmann and Playford (1969), but has been significantly modified and improved by various authors since, and most recently discussed in Helby et al (1987), as shown on Figure 1. The Late Cretaceous zonation has been refined by Morgan (1992) in project work (Figure 2).

Maturity data was generated in the form of Spore Colour Index, and is plotted on Figure 3 Maturity Profile of Skull Creek-1. The oil and gas windows on Figure 3 follow the general consensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (Staplin Spore Colour Index of 2.7) to dark brown (3.6). These respond to vitrinite reflectance values of 0.6% to 1.3%. Geochemists argue variations on kerogen type, basin type and basin history. The maturity interpretation is thus open to reinterpretation using the basic colour observations as raw data. However, the range of interpretation philosophies is not great, and probably would not move the oil window by more than 200 metres.

AGE	SPORE POLL	EN	MICRO-			LITHOSTRA	ATIGRAPHY		
AGE	ZONES		PLANKTON ZONES			OFFSHORE	ONSHORE		
MAASTRICHTIAN	T.longus	tos	F-drugg II	Sida	~~~	TIMBOON SANDSTONE	·····		
	T.IIIIoi,	Nothofagidites	l-korojonense	D.pellucida		PARAT	·		
CAMPANIÁN	N.senectus 2		X-australis N-aceras		GROUP	PARATTE FORMATION	SHERBROOK GROUP		
SANTONIAN	7			1			(thin sandstones)		
CONIACIAN	T.pachyexinus (T.apoxyexinus)		l		SHERBROOK	BELFAST MUDSTONE			
TURONIAN	Catriplex (Pamawsonii)	C.striatoco	108	S				
CENOMANIAN	A.distocarina	A-distocarinatus D-multispinum				FLAXMANS FORMATION WAARE SANOSTONE WAARE SANOSTONE			
ALBIAN	P.pannosus Up.C.parad Low.C.parado C.striatus	X8			~~~	middle	Silvathilleld Member		
APTIAN	Upper C.hugh	osl .				EUMERALLA FOI	Winderman M 2 coaly factors		
BARREMIAN	upper F. wonthaggie	nsis			GROUP	Kal	aylish D. nook Sandstone) Crayfish C (Laira Fm)		
HAUTERIVIAN	lower F. wonthaggien			OTWAY GR	SUBGF Sandst	ayfish B			
VALANGINIAN	•				CRAYFISH Pretty Hill	Crayfish A			
BEŖRIASIAN	C. australiens	İs				5 6	A TO THE STATE OF		

FIGURE 1. CRETACEOUS REGIONAL FRAMEWORK, OTWAY BASIN

AGE	SPORE-POL ZONES		DINOFLAGELLATE ZONES
MAASTRICHTIAN	LONGUS	lower	DRUGGII
	LILLEI	upper lower	KOROJONENSE
CAMPANIAN		upper	upper AUSTRALIS — lower
	SENECTUS		
		middle	
		lower	ACERAS middle
		upper	CRETACEA upper
SANTONIAN	APOXYEXINUS	middle	lower
		lower	upper PORIFERA lower
CONIACIAN	MAWSONII	upper	STRIATOCONUS
TURONIAN	120001411	lower	INFUSORIOIDES
CENOMANIAN	DISTOCARIN.	ATUS	

FIGURE 2 DETAILED ZONATION USED HEREIN

			DEF		im	matur	e		1	atu	re	dr	y gas		GAS/ CONDENSATE
AGE		ZONE	PTH(thous.m.		immat	ure		mar -ina	matur	е	pos	t m	ature		OIL
	A GE		(thou				yellow		brov	ת א	dark	\	bla	ck	COLOUR
			s.m	0.5	1,0	1.5	2.0	2,5	3,0			;0	4,5	5,0	TAI
			-												
			-												
		}	-												
			-												
			_												
			1												
			4					,							
	amp ant a Tur	senec apoxy maws	-]												
- 1-	?	? para													
ſ			1												
			+												
		-												•	
									٠,	·					
			4												
		L	2											٠	
			7								.				
			+				!								
			4												
L		2	.5	·											

FIGURE 3 : MATURITY PROFILE - SKULL CREEK-1

3 PALYNOSTRATIGRAPHY

3.1 1125-30m (cutts), 1145-50m (cutts): middle senectus Spore-pollen Zone (upper aceras Dinocyst Zone)

Assignment to the middle Subzone of the *Nothofagidites senectus* Spore-pollen Zone is indicated by the dinoflagellates present. On the basis of the spores and pollen seen, these cuttings might be assigned to much younger Zones, but the markers are considered caved. Assignment to the upper *Nelsoniella aceras* Dinocyst Zone of early Campanian age is on youngest *Nelsoniella tuberculata* at 1125-30m, without older markers. Also consistent are *Nelsoniella semireticulata* and *Xenikoon australis* down to 1145-50m, although these could be caved. Amongst the scarce dinoflagellates, *Heterosphaeridium* spp and *Spiniferites* spp are the most frequent with rare *Nelsoniella* spp and *Trithyrodinium* spp. Obviously caved are the Middle Eocene *Alisocysta ornata*, *Corrudinium incompositum* and *Heteraulacysta sp*, the Early Eocene *Apectodinium homomorphum*, the late Paleocene *Deflandrea obliquipes*, *Cordosphaeridium inodes* and *Hafniasphaera septata* and the Maastrchtian *Manumiella coronata*.

Given these dinoflagellate data, spores and pollen considered in place include N. senectus, Nothofagidites endurus and Tricolpites sabulosus, consistent with the correlative middle senectus Spore-pollen Zone. Considered caved are Middle Eocene Nothofagidites falcatus, Malvacipollis subtilis, Paleocene Lygistepollenites balmei, Gambierina rudata and Maastrichtian Stereisporites punctatus, Tricolpites confessus. Overall, Falcisporites similis is common with Cyathidites minor, Dilwynites granulatus, Gleicheniidites, Podosporites microsaccatus, Proteacidites spp and Vitreisporites pallidus frequent.

Nearshore marine environments are suggested by the dominant and diverse spores and pollen, minor dinoflagellates and common freshwater algae *Botryococcus*. However, in these cuttings, much of the observed microflora may be caved.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are usually seen in the upper Belfast Mudstone, correlative Paaratte Formation, and other correlatives.

3.2 1155-60m (cutts): apparently middle apoxyexinus Spore-pollen Zone (lower cretacea Dinocyst Zone)

Assignment to the middle *Tricolporites apoxyexinus* Spore-pollen Zone is indicated by the associated dinoflagellates. On the basis of spores and pollen, a younger assignment might be suggested, but key markers are considered caved. Assignment to the lower Subzone of the *Isabelidinium cretaceum* Dinocyst Zone of Santonian age is indicated by *I. cretaceum* without younger (especially *Nelsoniella* or *Amphidiadema* spp) or older markers. Considered caved are the Middle Eocene *C. incompositum*, Early Eocene *Homotriblium tasmaniense*, and Maastrichtian *Manumiella druggii*. *Heterosphaeridium heteracanthum* is the most common dinoflagellate and rare *Isabelidinium balmei* and *Trithyrodinium suspectum* are considered in place.

Given the dinoflagellate data, caved spores and pollen include Middle Eocene-Paleocene H. harrisii, Nothofagidites emarcidus and Maastrichtian-Campanian N. endurus, N. senectus and T. sabulosus. Overall, F. similis is common, with Australopollis obscurus, C. minor, D. granulatus, H. harrisii, P. microsaccatus and Proteacidites frequent.

Very nearshore marine environments are suggested by the very low dinoflagellate content and low "in situ" diversity, abundant and diverse spores and pollen and common *Botryococcus*. However, these assemblages may be largely caved.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are normally seen in the mid Belfast Mudstone, correlative basal Paaratte Formation and other correlatives.

3.3 1175-1180m (cutts): apparently middle *apoxyexinus* Spore-pollen Zone (no Dinocyst Zone)

Assignment to the middle *T. apoxyexinus* Spore-pollen Zone of Santonian age is on the zonal assignment of the sample above, and the lack of older markers. *Amosopollis cruciformis* is rare in this sample. Overall, *F. similis* is very common, with *D. granulatus* and *P. microsaccatus* common, and *C. minor*, *Gleicheniidites* and *V. pallidus* frequent. Considered caved are the Eocene *H. emarcidus*, *H. harrisii*, *M. subtilis* and Maastrichtian-Campanian *G. rudata*, *T. confessus* and *T. sabulosus*.

Dinoflagellates are non-descript and lack zonal markers considered in place. Most consistent are *Heterosphaeridium* spp and *Spiniferites* spp. Considered caved are Eocene *A. ornata* and Paleocene *Deflandrea dartmooria*.

Marginal marine environments are indicated by the very scarce dinoflagellates considered in place, the common and diverse spores and pollen and common freshwater *Botryococcus*. However, these assemblages may be largely caved.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are usually seen in the mid Belfast Mudstone and correlative basal Paaratte Formation and other correlatives.

3.4 1185-90m (cutts): apparently lower *mawsonii* Spore-pollen Zone (*infusorioides* Dinocyst Zone)

Assignment is on the dinoflagellate data, namely youngest Cribroperidinium edwardsii, indicating the Palaeohystrichophora infusorioides Dinocyst Zone of Turonian age, and the correlative lower Phyllocladidites mawsonii Spore-pollen Zone. Of the dinocysts, only Heterosphaeridium spp and C. edwardsii are considered in place, with caved Eocene A. homomorphum, Deflandrea phosphoritica and Achomosphaera crassipellis, Maastrichtian M. coronata, Campanian N. aceras and Campanian-Santonian Odontochitina porifera.

Amongst the spores and pollen, *P. mawsonii* is considered in place, but the 3% *A. cruciformis* with 8% *Proteacidites* suggests caving from the mid *apoxyexinus* Zone. Definitely caved are the Eocene-Paleocene *H. subtilis*, *H. harrisii*, *L. balmei* and the Maastrichtian-Campanian *T. confessus*. Overall, *D. granulatus* and *P. microsaccatus* are common with *F. similis*, *Proteacidites* and *V. pallidus* frequent.

Marginal marine environments are suggested by the scarce dinoflagellates considered in place, the abundant and diverse spores and pollen, common freshwater algae *Botryococcus* and common plant cuticle.

Yellow to light brown spore colours indicate immaturity for hydrocarbons.

These features are normally seen in the basal Belfast Mudstone and correlative upper Flaxmans Formation and uppermost Waare Sandstone and their correlatives.

583,827.49

3.5 1195-1200m (cutts), 1278-1281m (cutts): nothing older seen, mostly caved

These samples are leaner than those overlying, contain nothing new, and a higher content of caved material. This would be consistent with lean sandy lithologies yielding poorly, with the caving therefore a higher proportion of the assemblage. Overall, *F. similis* is common, with *C. minor*, *Gleicheniidites*, *Microcachryidites antarcticus*, *P. microsaccatus*, *Proteacidites*, *S. antiquasporites* and *V. pallidus* frequent. Obviously caved are Eocene-Paleocene *Anacolosidites acutullus*, *H. harrisii*, *Malvacipollis diversus*, *N. emarcidus*, *Proteacidites incurvatus*, *Proteacidites grandis* and *Spinozonocolpites prominatus* and Maastrichtian-Campanian *G. rudata*, *N. endurus*, *N. senectus*, *Oramentifera sentosa*. Possibly in place is *P. mawsonii*, although it too is likely to be caved. Rare older elements include *Crybelosporites striatus* (very rare above the Albian) and Permian taxa, presumed reworked.

Dinoflagellates include Eocene A. ornata, Heteraulacysta sp and A. homomorphum, Paleocene D. obliquipes, Maastrichtian M. druggii, Campanian N. aceras and X. australis, with Heterosphaeridium spp and Spiniferites spp the most consistent. Most, if not all, are considered caved.

Marginal marine environments are suggested by the common freshwater algae *Botryococcus*, dominant and diverse spores and pollen, and minor dinoflagellates. However, much of the assemblage is caved.

Yellow to light brown darkest spore colours suggest immaturity for hydrocarbons. The Tertiary elements are mostly colourless.

These features suggest nothing older than the overlying samples, but barren sandstones (?Waare Sandstone) would be consistent with these data.

3.6 1287-1290m (cutts): paradoxa Spore-pollen Zone (no dinocyst Zone)

Assignment to the Coptospora paradoxa Spore-pollen Zone of Albian age is indicated by youngest C. paradoxa, coincident with youngest Triporoletes reticulatus, Triporoletes bireticulatus, Appendicisporites distocarinatus and downhole influxes of Cicatricosisporites australiensis, Crybelosporites striatus and other spores. Overall, C. minor and F. similis are common, with Gleicheniidites, Laevigatosporites ovatus, M. antarcticus, O. wellmanii, P. microsaccatus and V. pallidus frequent. Obviously caved are Eocene-Paleocene Intratriporopollenites notabilis, H. harrisii and Late Cretaceous A.

4 CONCLUSIONS

Palynology results are not precise due to the apparent heavy caving in these cuttings and poor yields in sandy section. Samples towards the base are particularly problematic, and the section may be fairly incomplete.

Present only as caving are the Middle Eocene (on Deflandrea phosphoritica and Alisocysta ornata), Early Eocene (Homotriblium tasmaniense), probable late Paleocene (Deflandrea dartmooria and D. obliquipes) and Maastrichtian (longus/druggii Zones) all above the sampled section. Probably in place are early Campanian (senectus/aceras Zones) and probably Santonian (mid apoxyexinus Zone, possible Turonian (lower mawsonii Zone) and Albian (paradoxa Zone).

Normally distinctive but not seen even as caving are the *lillei/korojonense* Zones, lower *senectus*-upper *apoxyexinus*/lower aceras-upper *cretacea* Zones and lower *apoxyexinus/porifera* Zones. These are probably absent. Bland and non-distinctive are the upper *senectus/australis* Zones, upper *mawsonii/striatoconus* Zones and *distocarinatus*/unzoned Zones. These may be barren sands, absent or masked by caving from the more distinctive horizons.

5 REFERENCES

Dettmann ME and Playford G (1969) Palynology of the Australian Cretaceous: a review In Stratigraphy and Palaeontology. Essays in honour of Dorothy Hill, KSW Campbell ED. ANU Press, Canberra 174-210

Helby RJ, Morgan RP and Partridge AD (1987) A palynological zonation of the Australian Mesozoic In Studies in Australian Mesozoic Palynology Assoc. Australas. Palaeontols. Mem 4 1-94

APPENDIX 7 - VELOCITY SURVEY REPORT

Velocity Data

VELOCITY SURVEY

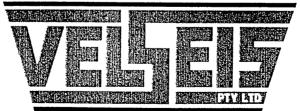
SKULL CREEK No.1

PPL 1

OTWAY BASIN VICTORIA

for

CULTUS PETROLEUM N.L.


recorded by

VELOCITY DATA PTY LTD

Processed by

Velseis Processing Pty Ltd

Brisbane, Australia 26 September 1996

Integrated Seismic Technologies

.

CONTENTS

SUMMARY	•••	•••					1
GENERAL INFORM	IATION	•••		•••	•••	•••	1
EQUIPMENT				•••	•••		2
RECORDING		•••	•••	•••	•••	•••	3
PROCESSING							
Elevation Data		•••	•••	•••	•••	•••	3
Recorded Data	•••	•••	•••	•••			4
Correction for Instrum Delay and Shot Offse			•••				4
Pit Fatigue Analysis	•••	•••	•••	•••	•••	•••	4
Correction to Datum	•••	•••	•••		•••	•••	5
Calibration of Sonic I	.og						
Method		•••	•••	•••	•••		5
Results	•••	•••	•••	•••	•••	•••	5
Trace Playouts	•••	•••	•••				6

FIGURES

Figure 1 Shot location sketch

Figure 2 Time-depth and velocity curves

Figure 3 Trace playouts

TABLES

Table 1 Time-depth values

ENCLOSURES

- 1 Shot Calculation Sheets
- 2 Trace Display and First Arrival Plots

Back phone

SKULL CREEK 1

SHOT POINT LOCATION SKETCH CULTUS PETROLEUM

Figure 1

SUMMARY

Velocity Data Pty Ltd conducted a velocity survey for Cultus Petroleum N.L. in the Skull Creek No. 1 well, PPL 1, Otway Basin, Victoria. The date of the survey was the 29 May, 1996.

The results of the survey, which are considered to be reliable, have been used to calibrate the sonic log.

Explosives were used as an energy source with shots being fired in the mud pit in the majority of instances.

GENERAL INFORMATION

Name of Well : Skull Creek No. 1

Location : PPL 1

Coordinates : 5729963.0 N

: 673411.5 E

Date of Survey : 29 May, 1996

Wireline Logging : BPB Wireline Services

Weather : Fine

Operational Base : Brisbane

Operator : D. Blick

Shooter : G. Clifford

Client Representative : Mr. D. Horner

EQUIPMENT

Downhole Tool

Veldata Camlock 100 (90 mm)

Sensors:

6 HSI 4.5 Hz 215 ohm, high temperature (300 degrees F) detectors connected in series parallel. Frequency response 8-300 Hz within 3 dB.

Preamplifier:

48 dB fixed gain. Frequency response 5-200 Hz within 3 dB.

Reference Geophone

Mark Products L1 4.5 Hz

Recording Instrument

(1) System VDL 16

Windows based high resolution seismic acquisition instruments

Computer: Resolution: 386 Portable computer

Dynamic Range:

A/D conversion 16 bits 96dB

Total Gain:

136dB

Data channels:

8

Display:

A4 Bubble Jet Printer 300 D.P.I.

RECORDING

Energy Source

: Explosive, Powergel

Shot Location

: Mud pit

Charge Size

: 0.3 - 3 sticks

Average Shot Depth

: 2.0 metres

Mud Pit Shot Offset

: 51.0 metres

Recording Geometry

: Figure 1

Shots were recorded on $3^{1/2}$ " floppy disc. Printouts of the shots used are included with this report.

The sample rate was 0.5 millseconds across the entire survey.

The scale of the graphic display varies with signal strength and is noted on each playout. The times were picked from a sample by sample screen plot a full set of these trace displays can be seen at the rear of the report.

PROCESSING

Elevation Data

Elevation of KB

: 96.3 metres above A.S.L.

Elevation of Ground

: 92.0 metres above A.S.L.

Elevation of Seismic

Datum

: 0.0 metres A.S.L.

Depth Surveyed

: 1694.5 metres below KB

Total Depth

: Unknown

Depth of Casing

: 333.0 metres below KB

Sonic Log Interval

: 300 to 1701.7 metres below KB

PROCESSING

Recorded Data

Number of Shots

: 35

Processed

Number of Levels

Recorded

: 22

Data Quality

: Good

Noise Level

: Low

Correction for Instrument Delay and Shot Offset

The 'corrected' times shown on the calculation sheets have been obtained by:

- 1. Subtraction of the instrument delay (2.0 milliseconds) from the recorded arrival times.
- 2. Geometric correction for non-verticality of ray paths resulting from shot offset.
- 3. Shot static correction to correct for the depth of shot below ground level at the well head using a correction velocity of 2000 metres/second.
- 4. Additional 1.0 milliseconds uphole time was added to all shots external to the mud.
- 5. 1.1 milliseconds bulk shift applied to all shots discharged within the mud pit to tie them to shots external to the pit.
- 6. Re-addition of the instrument delay (2.0 milliseconds).

Pit Fatigue Analysis

An examination of surface channel information indicated a degree of noise associated with traces on both the well and back phones. Thus these were not used for pit fatigue analysis. Instead pick times for shots in and out of the hole at the same interval were examined. Pick times were found to be similar and no pit fatigue correction required.

Correction to Datum

The datum chosen was 0.0 metres ASL that is 96.3 metres below KB. This level was shot nine (9) times during the survey and an effective datum correction time of 63.3 milliseconds was calculated.

This value includes the 2.0 milliseconds instrument delay which must be subtracted to obtain the raw time.

PROCESSING

Calibration of Sonic Log - Method

Sonic times were adjusted to checkshot times using a polynomial derived least squares fit correction of the sonic transient times. The sonic log that lay within the casing was deleted from the calibration.

Differences between the check shot and sonic times arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

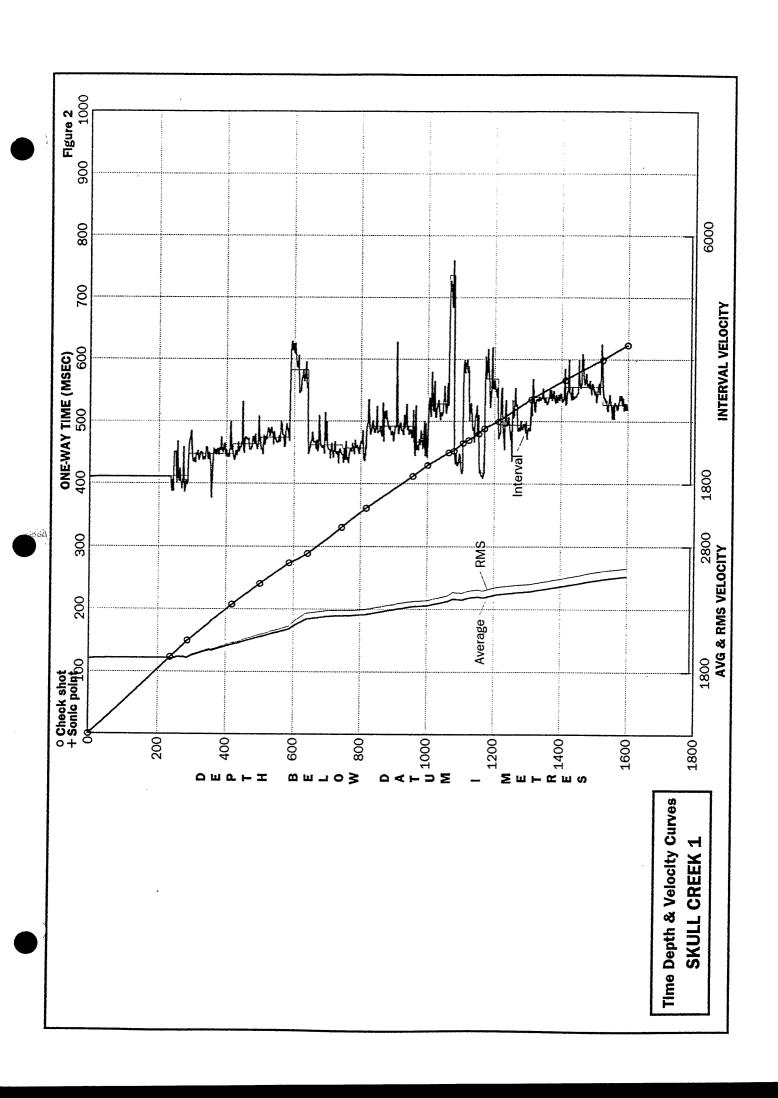
Calibration of Sonic Log - Results (Enclosure 1)

Sonic values were only available between the interval 300.0 and 1701.7m below KB.

The discrepancies between shot and sonic interval velocities were small. The largest of these occurred over the interval 1176 to 1203 metres which yielded an interval sonic drift of 137.04µsec/m. This value is large due to the small interval distance over which it was calculated

In aggregate, the shot and sonic interval times differed by 13.6 milliseconds over the logged portion of the well.

PROCESSING


Trace Playouts (Figure 3)

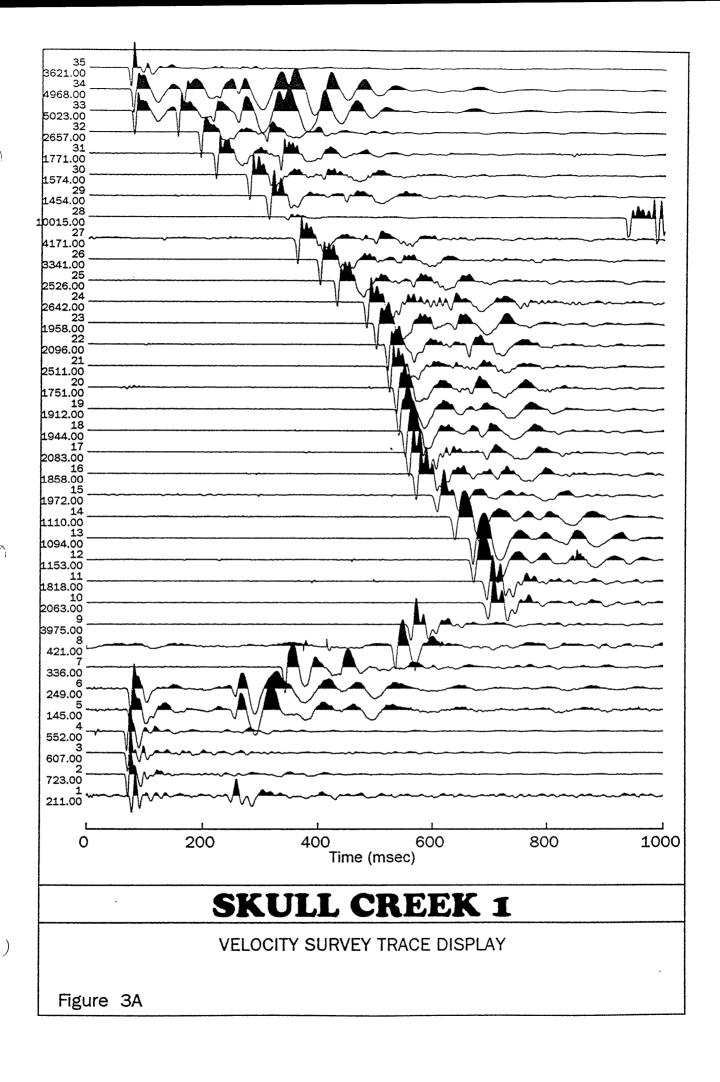
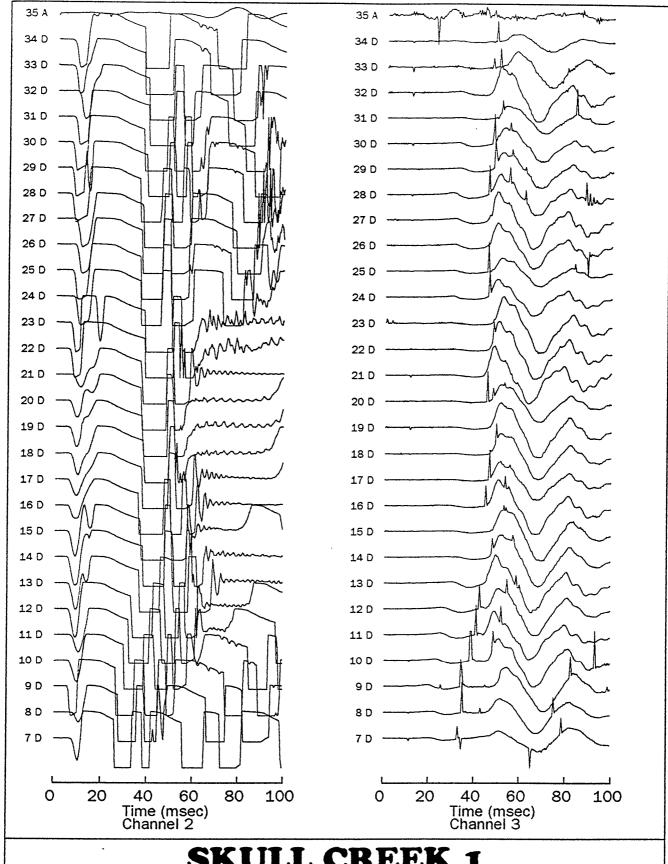

Figure 3A is a plot of all raw data traces used.


Figure 3B is a plot to scale in depth and time of selected traces.


Figure 3C is a plot of selected surface traces.

Troy Peters Geophysicist

SKULL CREEK 1

VELOCITY SURVEY TRACE DISPLAY AUXILIARY CHANNELS

Figure 3C

Well: SKULL CREEK 1

Client: CULTUS PETROLEUM

Survey units: METRES

Datum: 0.0

Calibrated sonic velocities used from 237.5 to 1597.5

							 		
Datum depth	One-way time(ms)	VE Average		ES —— Interval	Datum depth	One-way time(ms)	VEI Average		ES —— Interval
•									
2.5	1.3	1905	1905	1905	102.5	53.6	1911	1911	1911
5.0	2.6	1906	1906	1907	105.0	55.0	1911	1911	1911
7.5	3.9	1907	1907	1909	107.5	56.3	1911	1911	1911
10.0	5.2	1908	1908	1910	110.0	57.6	1911	1911	1911
12.5	6.6	1908	1908	1910	112.5	58.9	1911	1911	1911
15.0	7.9	1909	1909	1911	115.0	60.2	1911	1911	1911
17.5	9.2	1909	1909	1911	117.5	61.5	1911	1911	1911
20.0	10.5	1909	1909	1911	120.0	62.8	1911	1911	1911
22.5	11.8	1909	1909	1911	122.5	64.1	1911	1911	1911
25.0	13.1	1910	1910	1911	125.0	65.4	1911	1911	1911
27.5	14.4	1910	1910	1911	127.5	66.7	1911	1911	1911
30.0	15.7	1910	1910	1911	130.0	68.0	1911	1911	1911
32.5	17.0	1910	1910	1911	132.5	69.3	1911	1911	1911
35.0	18.3	1910	1910	1911	135.0	70.6	1911	1911	1911
37.5	19.6	1910	1910	1911	137.5	72.0	1911	1911	1911
40.0	20.9	1910	1910	1911	140.0	73.3	1911	1911	1911
42.5	20.9	1910	1910	1911	142.5	74.6	1911	1911	1911
42.5 45.0	23.6	1910	1910	1911	145.0	7 5 .9	1911	1911	1911
45.0 47.5	23.6 24.9	1910	1910	1911	147.5	77.2	1911	1911	1911
50.0	24.9 26.2	1910	1910	1911	150.0	78.5	1911	1911	1911
52.5	27.5	1910	1910	1911	152.5	79.8	1911	1911	1911
55.0	28.8	1910	1910	1911	155.0	81.1	1911	1911	1911
57.5	30.1	1910	1910	1911	157.5	82.4	1911	1911	1911
60.0	31.4	1911	1911	1911	160.0	83.7	1911	1911	1911
62.5	32.7	1911	1911	1911	162.5	85.0	1911	1911	1911
65.0	34.0	1911	1911	1911	165.0	86.3	1911	1911	1911
67.5	35.3	1911	1911	1911	167.5	87.7	1911		1911
70.0	36.6	1911	1911	1911	170.0	89.0	1911	1911	1911
72.5	37.9	1911	1911	1911	172.5	90.3	1911	1911	1911
75.0	39.3	1911	1911	1911	175.0	91.6	1911	1911	1911
77.5	40.6	1911	1911	1911	177.5	92.9	1911	1911	1911
80.0	41.9	1911	1911	1911	180.0	94.2	1911	1911	1911
82.5	43.2	1911	1911	1911	182.5	95.5	1911	1911	1911
85.0	44.5	1911	1911	1911	185.0	96.8	1911	1911	1911
87.5	45.8	1911	1911	1911	187.5	98.1	1911	1911	1911
90.0	47.1	1911	1911	1911	190.0	99.4	1911	1911	1911
90.0	48.4	1911	1911	1911	192.5	100.7	1911	1911	1911
92.5 95.0	49.7	1911	1911	1911	195.0	102.0	1911	1911	1911
95.0 97.5	51.0	1911	1911	1911	197.5	103.4	1911	1911	1911
100.0	51.0 52.3	1911	1911	1911	200.0	104.7	1911	1911	1911
T00.0	52.5	T3TT	T-2.T-T	T37T	200.0				

Well: SKULL CREEK 1 Client: CULTUS PETROLEUM

Survey units: METRES Datum: 0.0 Calibrated sonic velocities used from 237.5 to 1597.5

Datum depth	One-way time(ms)	VELO Average R			Datum depth	One-way time(ms)	VE Average		ES —— Interval
202.5 205.0 207.5 210.0 212.5	106.0 107.3 108.6 109.9 111.2	1911 19 1911 19 1911 19	911 911 911 911 911	1911 1911 1911 1911 1911	302.5 305.0 307.5 310.0 312.5	156.4 157.5 158.7 159.8 160.9	1934 1936 1938 1940 1942	1940 1942 1943 1946 1949	2167 2219 2152 2304 2273
215.0 217.5 220.0 222.5 225.0	112.5 113.8 115.1 116.4 117.7	1911 19 1911 19 1911 19	911 911 911 911 911	1911 1911 1911 1911 1911	315.0 317.5 320.0 322.5 325.0	161.9 163.1 164.2 165.3 166.4	1945 1947 1949 1951 1954	1951 1953 1955 1958 1961	2345 2193 2247 2318 2323
227.5 230.0 232.5 235.0 237.5	119.0 120.4 121.7 123.0 124.5	1911 19 1911 19 1911 19	911 911 911 911 908	1911 1910 1910 1909 1679	327.5 330.0 332.5 335.0 337.5	167.4 168.6 169.7 170.8 171.9	1956 1958 1959 1961 1963	1963 1965 1967 1968 1970	2303 2199 2239 2204 2246
240.0 242.5 245.0 247.5 250.0	125.8 127.3 128.4 129.4 130.5	1905 19 1908 19 1912 19	908 905 909 913 917	1853 1682 2325 2331 2329	340.0 342.5 345.0 347.5 350.0	173.0 174.0 175.2 176.2 177.3	1966 1968 1970 1972 1974	1973 1976 1977 1980 1982	2406 2390 2207 2314 2285
252.5 255.0 257.5 260.0 262.5	131.9 132.9 134.2 135.6 136.8	1919 19 1919 19 1918 19	916 921 921 920 921	1818 2499 1909 1841 2046	352.5 355.0 357.5 360.0 362.5	178.5 180.1 181.5 182.6 183.7	1975 1971 1970 1971 1974	1982 1979 1978 1980 1982	2097 1564 1861 2179 2385
265.0 267.5 270.0 272.5 275.0	138.2 139.6 141.0 142.0 143.5	1916 19 1916 19 1919 19	920 918 918 922 919	1827 1714 1869 2405 1668	365.0 367.5 370.0 372.5 375.0	184.7 185.8 186.9 188.0 189.0	1976 1978 1980 1982 1984	1984 1987 1988 1991 1993	2300 2364 2285 2367 2387
277.5 280.0 282.5 285.0 287.5	144.9 146.3 147.7 149.1 150.1	1914 19 1913 19 1912 19	918 917 916 915 918	1739 1853 1785 1823 2277	377.5 380.0 382.5 385.0 387.5	190.1 191.1 192.2 193.2 194.2	1988 1990 1993	1995 1997 2000 2003 2005	2284 2398 2364 2573 2356
290.0 292.5 295.0 297.5 300.0	151.1 152.1 153.0 154.1 155.3	1923 19 1928 19 1931 19	922 927 933 936 938	2503 2593 2682 2370 2170	390.0 392.5 395.0 397.5 400.0	195.3 196.3 197.3 198.4 199.5	1999 2002 2003	2007 2009 2012 2013 2015	2318 2446 2473 2254 2360

Well: SKULL CREEK 1 Client: CULTUS PETROLEUM

Survey units: METRES Datum: 0.0
Calibrated sonic velocities used from 237.5 to 1597.5

									
Datum	One-way	V	ELOCITII	ES	Datum	One-way	V	ELOCITI	= S
depth	time(ms)	Averag	e RMS	Interval	depth	time(ms)			Interval
400.5	000.0				•				
402.5	200.6	2006	2017	2280	502.5	241.5	2081	2097	2369
405.0	201.7	2008	2018	2246	505.0	242.5	2082	2098	2385
407.5	202.8	2009	2020	2258	507.5	243.6	2083	2099	2294
410.0	203.9	2011	2022	2374	510.0	244.6	2085	2102	2611
412.5	204.8	2015	2026	2836	512.5	245.6	2087	2103	2455
415.0	205.8	2016	2028	2366	515.0	246.6	2089	2105	2589
417.5	206.9	2018	2030	2403	517.5	247.6	2090	2107	2545
420.0	208.0	2020	2031	2251	520.0	248.5	2093	2110	2672
422.5	209.1	2021	2032	2198	522.5	249.4	2095	2112	2738
425.0	210.2	2022	2033	2235	525.0	250.3	2097	2115	2711
427.5	211.3	2023	2035	2353	527.5	251.3	2099	2117	2602
430.0	212.4	2025	2036	2278	530.0	252.2	2101	2119	2676
432.5	213.5	2026	2038	2332	532.5	253.1	2104	2122	2742
435.0	214.5	2028	2040	2489	535.0	254.1	2106	2124	2641
437.5	215.5	2030	2042	2343	537.5	255.1	2107	2125	2460
440.0	216.6	2032	2044	2413	540.0	256.0	2109	2128	2672
442.5	217.6	2034	2046	2411	542.5	257.0	2111	2129	2550
445.0	218.6	2036	2048	2500	545.0	258.0	2112	2131	2532
447.5	219.4	2040	2053	3180	547.5	259.0	2114	2133	2496
450.0	220.4	2041	2055	2372	550.0	260.0	2115	2134	2490
452.5	221.5	2043	2056	2315	552.5	261.0	2117	2136	2503
455.0	222.5	2045	2059	2575	555.0	262.0	2119	2138	2603
457.5	223.5	2047	2061	2578	557.5	263.0	2120	2139	2513
460.0	224.4	2050	2064	2551	560.0	263.8	2123	2142	2848
462.5	225.4	2052	2066	2541	562.5	264.7	2125	2144	2794
465.0	226.4	2054	2068	2552	565.0	265.7			
467.5	227.5	2055	2070	2380	567.5	266.6	2127 2128	2146	2624
470.0	228.5	2057	2071	2367	570.0			2148	2618
472.5	229.6	2058	2073	2387	570.0 572.5	267.7	2129	2149	2416
475.0	230.6	2060	2075	2427		268.7	2131	2151	2461
					575.0	269.6	2133	2153	2715
477.5	231.6	2062	2077	2590	577.5	270.5	2135	2155	2803
480.0	232.5	2064	2079	2551	580.0	271.4	2137	2157	2727
482.5	233.5	2066	2081	2474	582.5	272.4	2139	2159	2668
485.0	234.5	2068	2084	2629	585.0	273.3	2140	2161	2520
487.5	235.5	2070	2085	2431	587.5	274.1	2144	2165	3543
490.0	236.6	2071	2087	2381	590.0	274.7	2148	2172	4144
492.5	237.6	2073	2088	2455	592.5	275.2	2153	2178	4202
495.0	238.4	2076	2092	2939	595.0	275.9	2157	2184	4050
497.5	239.4	2078	2094	2533	597.5	276.5	2161	2190	4158
500.0	240.4	2080	2096	2485	600.0	277.1	2165	2196	4008

100000

Well: SKULL CREEK 1

Client: CULTUS PETROLEUM

Survey units: METRES Datum: 0.0
Calibrated sonic velocities used from 237.5 to 1597.5

									
Datum depth	One-way time(ms)		ELOCITI e RMS	ES —— Interval	Datum depth	One-way time(ms)	—— V Averas	ELOCITI	ES —— Interval
600 F	077.7								meervar
602.5	277.7	2170	2202		702.5	313.1	2243	2288	2383
605.0	278.3	2174	2208		705.0	314.2	2244	2288	
607.5	279.0	2178	2213	3770	707.5	315.3	2244	2288	2228
610.0	279.7	2181	2218	3757	710.0	316.4	2244	2288	2362
612.5	280.3	2185	2223	3958	712.5	317.4	2245	2289	2480
615.0	281.0	2188	2227	3333	715.0	318.4	2245	2289	2349
617.5	281.8	2191	2231	3357	717.5	319.6	2245	2289	2246
620.0	282.5	2195	2234	3368	720.0	320.6	2246	2289	2358
622.5	283.2	2198	2239	3574	722.5	321.6	2246	2290	2502
625.0	283.9	2201	2243	3619	725.0	322.7	2247	2290	2319
627.5	284.6	2205	2248	3723	727.5	323.8	2247	2290	2296
630.0	285.3	2208	2252	3531	730.0	324.9	2247	2290	2332
632.5	286.0	2212	2256	3629	732.5	326.0	2247	2290	2149
635.0	286.6	2215	2261	3849	735.0	327.1	2247	2290	2356
637.5	287.4	2218	2265	3414	737.5	328.1	2248	2290	2382
640.0	288.1	2222	2269	3441	740.0	329.2	2248	2290	2315
642.5	289.2	2222	2269	2304	742.5	330.3	2248	2290	2288
645.0	290.2	2222	2269	2359	745.0	331.4	2248	2290	2283
647.5	291.3	2223	2270	2417	747.5	332.6	2248	2290	2154
650.0	292.3	2224	2270	2500	750.0	333.6	2248	2290	2383
652.5	293.3	2225	2271	2533	752.5	334.7	2248	2290	2202
655.0	294.2	2226	2273	2662	755.0	335.7	2249	2290	2504
657.5	295.2	2227	2273	2500	757.5	336.9	2249	2290	2203
660.0	296.2	2228	2274	2497	760.0	338.0	2249	2290	2231
662.5	297.2	2229	2275	2508	762.5	339.2	2248	2290	2149
665.0	298.2	2230	2275	2382	765.0	340.2	2248	2290	2302
667.5	299.2	2231	2276	2532	767.5	341.3	2249	2290	2373
670.0	300.3	2231	2277	2345	770.0	342.3	2249	2290	2397
672.5	301.3	2232	2277	2405	772.5	343.4	2250	2290	2342
675.0	302.2	2234	2279	2953	775.0	344.4	2250	2291	2475
677.5	303.1	2235	2280	2625	777.5	345.5	2251	2291	2392
680.0	304.2	2236	2281	2444	780.0	346.5	2251	2291	2299
682.5	305.2	2236	2281	2403	782.5	347.5	2252	2292	2526
685.0	306.2	2237	2282	2404	785.0	348.6	2252	2292	2402
687.5	307.3	2238	2282	2438	787.5	349.6	2253	2293	2443
690.0	308.3	2238	2282	2312	790.0	350.6	2253	2293	2421
692.5	309.2	2240	2285	3000	792.5	351.7	2253	2293	2344
695.0	310.2	2241	2286	2527	795.0	352.8	2253	2293	2308
697.5	311.0	2242	2287	2832	797.5	353.8	2254	2294	2456
700.0	312.1		2288	2418	800.0	354.8	2255	2294	2514
									~ ~

Well: SKULL CREEK 1
Survey units: METRES

Client: CULTUS PETROLEUM
Datum: 0.0

Calibrated sonic velocities used from 237.5 to 1597.5

						•			
Datun depth		•	VELOCIT	TIES —— S Interval	Datun depth	,	•	VELOCI"	TIES ——
802.5	355.8						S) Avera	age RM:	S Interval
805.0		225				392.8	229	8 233	8 2771
807.5		225				393.7	229		
810.0		225			907.5	394.3	230:		
812.5		225			910.0	395.1	230		
		225	6 2296	3 2295	912.5	396.1	2304	-	
815.0		2257		2442	915.0	397.0	2305		
817.5		2258		7 2759	917.5		2306		
820.0		2260		2826	920.0		2307		
822.5		2262	2 2301	3214	922.5		2308		
825.0	364.5	2263	3 2303		925.0		2309		
827.5	365.5	2264	2304	2638	927.5	401.6			
830.0	366.4	2265			930.0		2310		
832.5	367.3	2266			930.0		2311		
835.0	368.2	2268				403.3	2312		•
837.5	369.1	2269			935.0	404.2	2313	2354	2863
840.0					937.5	405.0	2315	2356	3142
842.5	370.1	2270			940.0	405.9	2316	2357	2709
	371.0	2271		2672	942.5	406.8	2317	2358	2750
845.0	371.9	2272		2769	945.0	407.8	2317	2358	2630
847.5	372.7	2274		3105	947.5	408.7	2318	2359	2710
850.0	373.6	2275	2315	2657	950.0	409.6	2319	2360	2698
852.5	374.6	2276	2316	2686	952.5	410.6	2320	2360	2573
855.0	375.5	2277	2317	2689	955.0	411.6	2320	2361	
857.5	376.4	2278	2318	2767	957.5	412.4	2322	2363	2651
860.0	377.4	2279	2319	2620	960.0	413.4	2322	2363	3041
862.5	378.3	2280	2319	2601	962.5	414.5	2322	2363	2485 2275
865.0	379.1	2282	2321	3163	965.0	415.3			
867.5	380.1	2282	2322	2522	967.5	416.3	2324	2364	3113
870.0	380.9	2284	2324	3019	970.0		2324	2364	2371
872.5	381.8	2285	2325	2910	970.5 972.5	417.4	2324	2365	2437
875.0	382.6	2287	2327	3028		418.4	2324	2365	2372
877.5					975.0	419.4	2325	2365	2542
880.0	383.5 384.4	2288 2289	2328	2887	977.5	420.4	2325	2365	2459
882.5	385.3		2330	2812	980.0	421.4	2326	2366	2692
885.0	386.2	2291	2331	2746	982.5	422.3	2327	2367	2638
887.5		2292	2332	2713	985.0	423.3	2327	2367	2389
	387.1	2293	2333	2745	987.5	424.4	2327	2367	2425
890.0	388.1	2293	2334	2622	990.0	425.3	2328	2368	2846
892.5	389.0	2294	2334	2658	992.5	426.4	2328	2368	2271
895.0	389.9	2295	2335	2685	995.0		2329	2369	2813
897.5	390.9	2296	2336	2521	997.5		2329	2369	2251
900.0	391.9	2297	2337	2656	1000.0		2329 2329	2369	
							~~~	<b>4309</b>	2453

Well: SKULL CREEK 1 Client: CULTUS PETROLEUM

Survey units: METRES Datum: 0.0
Calibrated sonic velocities used from 237.5 to 1597.5

_									
Datum depth	One-way time(ms)		ELOCITI		Datum	•		/ELOCITI	
		`		Interval	depth	time(ms)	Avera	ge RMS	Interval
1002.5	430.2	2330			1102.5	463.9	2376	2428	1976
1005.0	431.0	2332	2372	3247	1105.0	465.2	2376		
1007.5	431.8	2333	2374	3095	1107.5	465.8	2378		
1010.0	432.6	2335	2375		1110.0	466.5	2378		
1012.5	433.3	2337			1112.5	467.1	2380	2433 2435	3881 3669
1015.0	434.1	2338	2379	3180	1115.0	467.8	2384	2437	
1017.5	434.9	2339	2380	3028	1117.5	468.4	2386	2440	3816
1020.0	435.6	2341	2383	3521	1120.0	469.1	2387	2440	3880
1022.5	436.5	2343	2384	2927	1122.5	469.8			3673
1025.0	437.3	2344	2385	2934	1125.0	470.7	2389 2390	2444 2445	3702 2865
1027.5	438.1	2345	2387	3095	1127.5	471.5	2391	2446	3087
1030.0	438.9	2347	2388	3134	1130.0	472.3	2393	2448	3153
1032.5	439.7	2348	2390	3204	1132.5	473.1	2394	2449	
1035.0	440.6	2349	2391	3023	1135.0	474.0	2394		2977
1037.5	441.4	2350	2392	2884	1137.5	475.0	2395	2449 2450	2706 2740
1040.0	442.3	2352	2394	3001	1140.0	475.9	2395	2450	2503
1042.5	443.1	2353	2395	2954	1142.5	476.8	2396	2451	2934
1045.0	443.9	2354	2396	3013	1145.0	477.6	2397	2452	2984
1047.5	444.7	2356	2398	3237	1147.5	478.4	2398	2453	3116
1050.0	445.4	2357	2400	3441	1150.0	479.4	2399	2454	2603
1052.5	446.2	2359	2402	3190	1152.5	480.2	2400	2455	2954
1055.0	447.0	2360	2403	2996	1155.0	481.5	2399	2453	1982
1057.5	447.9	2361	2404	3097	1157.5	482.7	2398	2452	2025
1060.0	448.6	2363	2406	3489	1160.0	484.0	2396	2451	1930
1062.5	449.4	2364	2408	3131	1162.5	485.3	2395	2450	1936
1065.0	449.9	2367	2412	4910	1165.0	486.6	2394	2449	1896
1067.5	450.4	2370	2417	5229	1167.5	487.9	2393	2448	1960
1070.0	450.8	2373	2421	5141	1170.0	489.0	2393	2447	2344
1072.5	451.4	2376	2426	4787	1172.5	489.6	2395	2450	3940
1075.0	451.8	2379	2431	5579	1175.0	490.3	2396	2452	3582
1077.5	452.3	2382	2435	5007	1177.5	491.0	2398	2454	3682
1080.0	453.4	2382	2435	2261	1180.0	491.6	2400	2457	4067
1082.5	454.6	2381	2434	2134	1182.5	492.3	2402	2459	3725
1085.0	455.7	2381	2434	2287	1185.0	493.0	2404	2461	3521
1087.5	456.9	2380	2433	2103	1187.5	493.8	2405	2462	3093
1090.0	458.1	2380	2432	2111	1190.0	494.6	2406	2463	3355
1092.5	459.2	2379	2431	2148	1192.5	495.2	2408	2466	4094
1095.0	460.3	2379	2431	2299	1195.0	495.9	2410	2468	3412
1097.5	461.4	2379	2431	2244	1197.5	496.6	2411	2469	3402
1100.0	462.7	2378	2430	2008	1200.0	497.3			
		•		2000	1200.0	-31.3	2413	2471	3536

Well: SKULL CREEK 1

Client : CULTUS PETROLEUM

Survey units: METRES Datum: 0.0
Calibrated sonic velocities used from 237.5 to 1597.5

Datum depth	One-way time(ms)		ELOCITII e RMS	ES —— Interval	Datum depth	One-way time(ms)		ELOCITII e RMS	ES —— Interval
1202.5	400.1	0444	0.470	0.404				<del></del>	
	498.1	2414	2473		1302.5	533.4	2442	2499	2741
1205.0	498.8	2416	2474	3350	1305.0	534.3	2442	2499	2699
1207.5	499.6	2417	2476	3262	1307.5	535.3	2443	2500	2700
1210.0	500.3	2418	2477	3412	1310.0	536.1	2444	2501	3165
1212.5	501.3	2419	2478	2560	1312.5	536.9	2445	2502	2959
1215.0	502.2	2419	2478	2629	1315.0	537.6	2446	2503	3559
1217.5	503.2	2420	2478	2666	1317.5	538.4	2447	2505	3359
1220.0	503.9	2421	2480	3314	1320.0	539.2	2448	2506	3061
1222.5	504.7	2422	2481	3410	1322.5	540.0	2449	2507	3023
1225.0	505.5	2423	2482	2851	1325.0	540.8	2450	2508	3204
1227.5	506.5	2423	2482	2587	1327.5	541.6	2451	2509	3226
1230.0	507.6	2423	2482	2378	1330.0	542.3	2452	2510	3231
1232.5	508.4	2424	2483	2982	1332.5	543.1	2453	2511	3200
1235.0	509.2	2425	2484	3204	1335.0	543.9	2455	2512	3270
1237.5	510.1	2426	2485	2775	1337.5	544.7	2456	2514	3220
1240.0	511.0	2427	2485	2809	1340.0	545.4	2457	2515	3245
1242.5	511.8	2428	2486	2926	1342.5	546.2	2458	2516	3245
1245.0	512.7	2428	2487	2779	1345.0	546.9	2459	2517	3404
1247.5	513.7	2428	2487	2546	1347.5	547.7	2460	2519	3257
1250.0	514.6	2429	2487	2674	1350.0	548.5	2461	2520	3181
1252.5	515.8	2428	2487	2183	1352.5	549.2	2462	2521	3253
1255.0	516.6	2430	2488	3208	1355.0	550.0	2463	2522	3183
1257.5	517.4	2430	2489	2920	1357.5	550.8	2464	2523	3144
1260.0	518.3	2431	2489	2964	1360.0	551.6	2465	2524	3187
1262.5	519.0	2433	2491	3409	1362.5	552.4	2467	2525	3249
1265.0	519.8	2434	2492	3114	1365.0	553.1	2468	2526	3377
1267.5	520.6	2435	2493	3130	1367.5	553.9	2469	2528	3251
1270.0	521.5	2435	2494	2698	1370.0	554.6	2470	2529	3375
1272.5	522.5	2436	2494	2689	1372.5	555.4	2471	2530	3216
1275.0	523.4	2436	2494	2746	1375.0	556.2	2472	2531	3291
1277.5	524.3	2437	2495	2696	1377.5	556.9	2473	2532	3365
1280.0	525.2	2437	2495	2853	1380.0	557.7	2474	2534	3217
1282.5	526.1	2438	2496	2724	1382.5	558.5	2475	2535	3166
1285.0	527.0	2438	2496	2714	1385.0	559.2	2477	2536	3296
1287.5	527.9	2439	2497	2803	1387.5	560.0	2478	2537	3186
1290.0	528.8	2440	2497	2806	1390.0	560.8	2479	2538	3232
1292.5	529.7	2440	2498	2664	1392.5	561.6	2480	2539	3308
1295.0	530.6	2441	2498	2849	1395.0	562.3	2481	2540	3213
1297.5	531.6	2441	2498	2557	1397.5	563.1	2482	2541	3325
1300.0	532.5	2441	2499	2706	1400.0	563.8	2483	2543	3310
-					±-700.0	300.0	2700	2040	2210

Well: SKULL CREEK 1 Client: CULTUS PETROLEUM

Survey units: METRES Datum: 0.0 Calibrated sonic velocities used from 237.5 to 1597.5

Datum depth	One-way time(ms)	VELOCI Average RM		Datum depth	One-way time(ms)	VE Average		ES —— Interval
1402.5 1405.0 1407.5 1410.0 1412.5	564.6 565.4 566.2 566.8 567.6	2484 254 2485 254 2486 254 2487 254 2488 254	5 3203 6 3228 7 3736	1502.5 1505.0 1507.5 1510.0 1512.5	593.8 594.6 595.4 596.1 596.8	2530 2531 2532 2533 2534	2594 2595 2596 2597 2599	3364 3183 3311 3456 3496
1415.0 1417.5 1420.0 1422.5 1425.0	568.4 569.2 569.9 570.6 571.3	2489 254 2490 255 2492 255 2493 255 2494 255	0 3341 2 3375 4 3884	1515.0 1517.5 1520.0 1522.5 1525.0	597.6 598.3 598.9 599.5 600.3	2535 2536 2538 2540 2541	2600 2601 2603 2605 2606	3318 3560 4152 3838 3371
1427.5 1430.0 1432.5 1435.0 1437.5	572.1 572.8 573.6 574.3 575.1	2495 255 2496 255 2498 255 2499 255 2500 256	7 3225 8 3419 9 3232	1527.5 1530.0 1532.5 1535.0 1537.5	601.0 601.8 602.6 603.4 604.2	2541 2542 2543 2544 2545	2607 2607 2608 2609 2610	3261 3233 3178 3208 3040
1440.0 1442.5 1445.0 1447.5 1450.0	575.9 576.6 577.4 578.2 578.9	2501 256 2502 256 2503 256 2504 256 2505 256	2 3273 4 3279 5 3321	1540.0 1542.5 1545.0 1547.5 1550.0	605.0 605.8 606.6 607.3 608.2	2545 2546 2547 2548 2549	2610 2611 2612 2613 2614	3043 3180 3303 3185 3104
1452.5 1455.0 1457.5 1460.0 1462.5	579.5 580.3 581.0 581.7 582.3	2506 256 2508 256 2509 257 2510 257 2511 257	9 3508 0 3418 2 3491	1552.5 1555.0 1557.5 1560.0 1562.5	609.0 609.8 610.7 611.5 612.3	2549 2550 2550 2551 2552	2614 2615 2615 2616 2617	2906 3130 2909 3173 3140
1465.0 1467.5 1470.0 1472.5 1475.0	583.0 583.7 584.4 585.1 585.8	2513 257 2514 257 2515 257 2517 258 2518 258	7 3570 8 3477 0 3550	1565.0 1567.5 1570.0 1572.5 1575.0	613.1 613.9 614.7 615.5 616.2	2553 2553 2554 2555 2556	2618 2618 2619 2620 2621	3127 3058 3079 3180 3289
1477.5 1480.0 1482.5 1485.0 1487.5	586.5 587.2 588.0 588.7 589.4	2519 258 2520 258 2521 258 2523 258 2524 258	4 3485 5 3416 6 3535	1577.5 1580.0 1582.5 1585.0 1587.5	617.0 617.8 618.6 619.3 620.2	2557 2558 2558 2559 2560	2622 2622 2623 2624 2625	3221 3284 3131 3240 3042
1490.0 1492.5 1495.0 1497.5 1500.0	590.2 590.9 591.6 592.3 593.1	2525 2586 2526 2596 2527 2596 2528 2596 2529 2596	3487 1 3443 2 3373	1590.0 1592.5 1595.0 1597.5	620.9 621.8 622.6 623.4	2561 2561 2562 2563	2625 2626 2627 2627	3163 3062 3147 3063





Latitude: 572 9963 N Longitude: 673 411.5 E Survey date: 29-May-96

Elevations: Datum: 0 Ground: 92 Kelly: 96.3

Survey units: METRES Times: MILLISECONDS

Rig Identification: O.D. & E.RIG 30 Energy source: POWERGEL

Logger: B.P.B.

Elevation velocity

for shot statics: 2000 Instrument delay: 2.0 msec

Shot data: Location	Elevation	Offset
A	92.0	8.0
В	90.5	23.0
C	90.0	51.0
Ε	92.0	23.0
F	91.5	51.0
a	89.0	51.0

### **SHOT CALCULATIONS:**

Shot			Shot	****************	TIM	ES		Check sho		W 4 - 111			
no.	Kelly	- Datum	Locn	Depth	Record	Corr	Avg	Datum	distance	time	Average	Velocities RMS	Interval
DATU	M												
1	96.3	0.0	F	0.6	72.5	64.7 n/u							
2	96.3	0.0	Ε	0.3	64.5	63.6							
3	96.3	0.0	Α	0.3	65.5	66.3 n/u							
4	96.3	0.0	В	0.6	63.5	63.3							
5	96.3	0.0	C	0.6	70.0	63.1							
6	96.3	0.0	C	0.3	70.0	63.1							
33	96.3	0.0	D	2.0	70.5	63.7							
34	96.3	0.0	D	2.0	69.5	62.8							
35	96.3	0,0	Α	0.3	64.0	64.8 n/u	63.3	0.0					
32	332.3	236.0	D	2.0	186.5	186.8	186.8	123.5	236.0	123.5	1910.9	1910.9	1910.9
31	383.0	286.7	D	2.0	212.5	213.2	213.2	149.9	50.7	26.4	1912.6	1912.6	1920.5
30	515.0	418.7	D	2.0	269.5	270.7	270.7	207.4	132.0	57.5	2018.8	2026.1	2295,7
29	597.0	500.7	D	2.0	302.5	304.0	304.0	240.7	82.0	33.3	2080.2	2091.9	2462.5

## SHOT CALCULATIONS: (cont)

Shot	•	hone depth	Shot	Shot	****************	TI	MES		Check sho	t interval	***************************************	M-1(A)	
no.	Kelly	- Datum	Locn	Depth	Record	Corr	Avg	Datum	distance	time	Average	- Velocities RMS	Interval
							·						
7	683.0	586.7	D	2.0	335.5	337.1			86.0	33.4			
28	683.0	586.7	D	2.0	336.0	337.6	337.4	274.1	00.0	33.4	2140.5	2156.5	2574.8
07	700.0	044.7	_						55.0	14.8	2140.0	2100.0	3716.2
27	738.0	641.7	D	2.5	350.5	352.2	352.2	288.9			2221.2	2262.7	0, 20,2
26	840.0	743.7	D	2.5	392.0	202.0	200.0		102.0	41.7			2446.0
		1 40,1	D	2.0	392.0	393.9	393.9	330.6	<b>70.</b>		2249.5	2286.6	
25	913.0	816.7	D	2.0	422.5	424.4	424.4	361.1	73.0	30.5	0004.7	2005.0	2393.4
								001.1	140.0	50.6	2261.7	2295.9	2766.8
24	1053.0	956.7	D	2.0	473.0	475.0	475.0	411.7		30.0	2323.8	2358.8	2100.8
23	1097.0	1000.7		0.0					44.0	17.6		_,,,,,	2500.0
20	1097.0	1000.7	D	2.0	490.5	492.6	492.6	429.3			2331.0	2364,8	
22	1160.0	1063.7	D	2.0	510.5	512.6	512.6	449.3	63.0	20.0			3150.0
					2=0.0	012.0	312.0	449.3	16.0	3.0	2367.5	2405.2	<b>5000</b> 0
21	1176.0	1079.7	D	2.0	513.5	515.6	515.6	452.3	10.0	3.0	2387.1	2436.2	5333.3
	1000.0	4400 =	_								2007.1	2430,2	
8 20		1106.7 1106.7	D	2.0	526.5	528.6			27.0	12.5			2160.0
20	1203.0	1100.7	D	2.0	525.5	527.6	528.1	464.8			2381.0	2429.2	
19	1220.0	1123.7	D	2.0	530.5	532.6	532.6	460.0	17.0	4.5			3777.8
					000.0	002.0	332.0	469.3	30.0	10.5	2394.4	2445.7	
18	1250.0	1153.7	D	2.0	541.0	543.1	543.1	479.8	30.0	10.5	2404.5	2455,4	2857.1
_											2404.5	2455,4	
9	1267.0		D	2.0	550.5	552.6			17.0	8.6			1976.7
17	1267.0	1170.7	D	2.0	548.5	550.7	551.7	488.4			2397.0	2447.8	
16	1308.0	1211 7	D	2.0	561.0	560 O	500.0	400 -	41.0	11.5			3565.2
		man de de s	D	2.0	561.0	563.2	563.2	499.9			2423.9	2479.2	



Shot no.	Geophone depth Kelly Datum	Shot Locn	Shot Depth	Record Corr Avg Datum			Check shot	t interval	Velocities			
	- Datam			Record -	Corr	Avg	Datum	distance	time	Average	RMS	Interval
15	1407.0 4040.7	_						99.0	35.5			2788.7
10	1407.0 1310.7	D	2.0	596.5	598.7	598.7	535.4			2448.1	2500.9	
14	1508.0 1411.7	D	2.0	627.5	629.7	629.7	ECC 4	101.0	31.0			3258.1
				027.0	023.7	029.1	566.4			2492.4	2548.1	
12	1620.0 1523.7	D	2.0	659.5	661.8			112.0	32.6			0405.0
13	1620.0 1523.7	D	2.0	660.5	662.8	662.3	599.0	112.0	52.0	2543.7	2604.2	3435.6
10	1694.5 1598.2	D	2.0	684.5	686.8			74.5	23.8			
11	1694.5 1598.2	D	2.0	683.0	685.3	686.0	622.8	74.0	23.8	2566.4	2626.5	3136.8



Latitude: 572 9963 N Longitude: 673 411.5 E Survey date: 29-May-96

Elevations: Datum: 0 Ground: 92 Kelly: 96.3

Survey units: METRES Times: MILLISECONDS

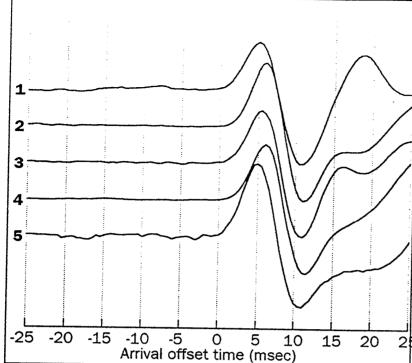
## SONIC DRIFT:

Geoph Kelly	one depth — Datum	Check Average	Check shot times Average - Below Datum		shot interval ce - Time	Sonic Int. time	Interva usec/i	Interval sonic drift usec/m – msec	
DATUM								111360	drift msec
96.3	0.0	63.3	0.0						
332.3	236.0	186.8	123.5	236.0	123.5				
383.0	286.7	213.2	149.9	50.7	26.4	21.7	92.70	4.7	4.7
515.0	418.7	270.7	207.4	132.0	57.5	58.6	-8.33	-1.1	3.6
597.0	500.7	304.0	240.7	82.0	33.3	32.7	7.32	0.6	4.2
683.0	586.7	337.4	274.1	86.0	33.4	33.8	-4.65	-0.4	3.8
738.0	641.7	352.2	288.9	55.0	14.8	18.1	-60.00	-3.3	0.5
840.0	743.7	393.9	330.6	102.0	41.7	39.6	20.59	2.1	2.6
913.0	816.7	424.4	361.1	73.0	30.5	27.5	41.10	3.0	5.6
053.0	956.7	475.0	411.7	140.0	50.6	53.0	-17.14	-2.4	3.2
97.0	1000.7	492.6	429.3	44.0	17.6	14.7	65.91	2.9	6.1
.60.0	1063.7	512.6	449.3	63.0	20.0	20.6	-9.52	-0.6	5.5

## SONIC DRIFT: (cont)

	ne depth Datum		hot times Below Datum	Check shot interval Sonic Interval sonic drift Cumu Distance Time Int. time usec/m msec drift r					
1160.0	1063.7	512.6	449.3						the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th
1176.0	1079.7	515.6	452.3	16.0	3.0	4.7	-106.25	-1.7	3.8
1203.0	1106.7	528.1	464.8	27.0	12.5	8.8	137.04	3.7	7.5
1220.0	1123.7	532.6		17.0	4.5	6.1	-94.12	-1.6	5.9
			469,3	30.0	10.5	10.3	6.67	0.2	6.1
1250.0	1153.7	543.1	479.8	17.0	8.6	6.4	129.41	2.2	9.2
1267.0	1170.7	551.7	488.4				120.71	44	8.3
1308.0	1211.7	563.2	499.9	41.0	11.5	13.1	-39.02	-1.6	6.7
1407.0	1310.7	598.7	535.4	99.0	35.5	31.2	43.43	4.3	11.0
1508.0	1411.7	629.7	•	101.0	31.0	30.7	2.97	0.3	11.3
			566.4	112.0	32.6	32.4	1.79	0.2	11.5
1620.0	1523.7	662.3	599.0	745	00.0				22.0
1694.5	1598.2	686.0	622.8	74.5	23.8	21.6	28.86	2.1	13.6

**COMPANY: CULTUS PETROLEUM WELL: SKULL CREEK 1** 


Latitude: 572 9963 N Longitude: 673 411.5 E Survey date: 29-May-96 Elevations: Datum: 0 Ground: 92 Kelly: 96.3 Survey units: METRES Times : MILLISECONDS

### **SONIC CALIBRATION:**

	ne depth Datum	Interval Distance	Original sonic times Interval – Cumulative		Adjusted sonic times Interval Calibrated				
DATUM						1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			······································
96.3	0.0								
00.0	0.0	236,0							1910.9
332.3	236.0	400,0					1910.9	1910.9	1010.5
		50,7	21.7		26.4		1010.0	1010.0	1920.5
383.0	286.7			21,7		149.9	1912.6	1912.6	202010
		132.0	58.6		57.5				2295.7
515.0	418.7			80.3		207.4	2018.8	2026.1	
		82.0	32.7		33.3				2462.5
597.0	500.7			113.0		240.7	2080.2	2091.9	
		86.0	33.8		33.4				2574.9
683.0	586.7			146.8		274.1	2140.5	2156.5	
		55.0	18.1		14.8				3716.2
738.0	641.7			164.9		288.9	2221.2	2262.7	
0.40.0		102.0	39.6		41.7				2446.0
840.0	743.7	<b>70.0</b>		204.5		330.6	2249.5	2286.6	
913.0	0167	73.0	27.5	000.0	30.5	004.4	2224 7		2393.4
913.0	816.7	140,0	53.0	232.0	50 C	361.1	2261.7	2295.9	0700.0
1053.0	956.7	140.0	. 55.0	285.0	50.6	444 7	0202.0	0250.0	2766.8
1005.0	950.1	44.0	14.7	265.0	17.6	411.7	2323.8	2358.8	2500.0
1097.0	1000.7	44.0	14.1	299.7	17.0	429.3	2331.0	0264.0	2500.0
2001.0	2000.7	63.0	20.6	233.1	20.0	429.3	2331.0	2364.8	3150.0
1160.0	1063.7			320.3	20.0	449.3	2367.5	2405.2	3130.0

## SONIC CALIBRATION: (cont)

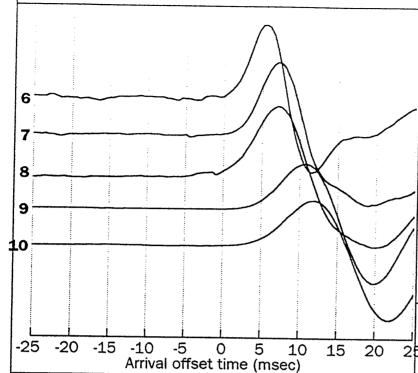
	ne depth Datum	Interval		sonic times		sonic times	***************************************	- Velocities	*******************
- Tony	Datum	Distance	Interval	- Cumulative	Interval	Calibrated	Average -	RMS	Interval
1160.0	1063.7						2367.5	2405.2	***************************************
	·	16.0	4.7		3.0		2507,5	2405.2	5333.3
1176.0	1079.7			325.0		452,3	2387.1	2436.2	0000.5
4000		27.0	8.8		12.5			2100.2	2160.0
1203.0	1106.7			333.8		464.8	2381.0	2429.2	2200.0
1000.0	4400.7	17.0	6.1		4.5				3777.8
1220.0	1123.7	20.0		339.9		469.3	2394.4	2445.7	
1250.0	1153.7	30.0	10.3	250.0	10.5				2857.1
	1100.7	17.0	6.4	350.2		479.8	2404.5	2455.4	
1267.0	1170.7	11.0	0.4	356.6	8.6	400.4			1976.7
		41.0	13.1	330.0	11.5	488.4	2397.0	2447.8	
1308.0	1211.7			369.7	44.0	499.9	2423.9	0470.0	3565.2
		99.0	31.2		35.5	100.0	2423.9	2479.2	2788.7
1407.0	1310.7			400.9		535,4	2448.1	2500.9	2100.1
4500.0		101.0	30.7		31.0			2000.0	3258.1
1508.0	1411.7			431.6		566.4	2492.4	2548.1	
1620.0	1523.7	112.0	32.4		32.6				3435.6
1020.0	1023,7	74.5	04.0	464.0		599.0	2543.7	2604.2	
1694.5	1598.2	14.0	21.6	405.6	23.8				3136.8
				485.6		622.8	2566.4	2626.5	



Shot 1 Location: F Charge depth 0.6 Size 0.3 Phone depth: 96.3

Arrival time: 72.5 msec

**Shot** 2 Location: E Charge depth 0.3 Size 0.3 Phone depth: 96.3 Arrival time: 64.5 msec


Shot 3 Location: A Charge depth 0.3 Size 0.3 Phone depth: 96.3 Arrival time: 65.5 msec

Shot 4 Location: B Charge depth 0.6 Size 0.3 Phone depth: 96.3 Arrival time: 63.5 msec

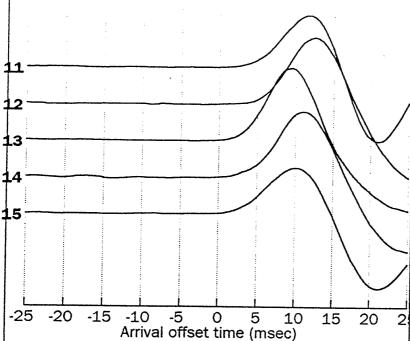
Shot 5 Location : C Charge depth 0.6 Size 0.3

25Phone depth: 96.3 Arrival time: 70.0 msec

SHO	T 1	SHOT	Γ 2	SHOT	Г 3	CUO	T 4	01101	
		<del> </del>		<del></del>		SHO	<del></del>	SHO.	
Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampi
62.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.	4.00 -4.00 -5.00 -7.00 -8.00 -10.00 -10.00 -10.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.0	72.0	-2.00 -5.00 -7.00 -1.00 -4.00 -3.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	0.50.50.50.50.50.50.50.50.50.50.50.50.50	3.00 -2.00 -1.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.	05050505050505050505050505050505050505	2.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.50.50.50.50.50.50.50.50.50.50.50.50.50	-2.00 -3.00 -1.00 -3.00 -1.00 -3.00 -1.00 -3.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00



Shot 6 Location: C Charge depth 0.3 Size 0.3 Phone depth: 96.3 Arrival time: 70.0 msec


**Shot** 7 Location: D Charge depth 2 Size 0.5 Phone depth: 683.0 Arrival time: 335.5 msec

**Shot** 8 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1203.0 Arrival time: 526.5 msec

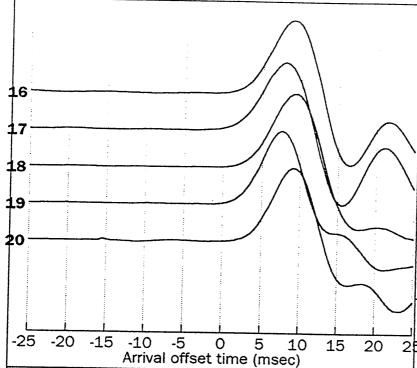
Shot 9 Location: D Charge depth 2.0 Size 3.0 Phone depth: 1267.0 Arrival time: 550.5 msec

Shot 10 Location: D
Charge depth 2.0 Size 3.0
25Phone depth: 1694.5
Arrival time: 684.5 msec

		T		<del></del>					
SHOT	6	SHOT		SHO	T 8	SH	OT 9	SHO	OT 10
Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl
73.5 74.0 74.0 75.5 76.0 76.5 77.5 78.5 78.5 79.0 78.5 80.5	-7.00 -5.00 -5.00 -5.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	339.5 340.0 340.5 341.0	-4.00 -6.00 -5.00 -4.00 -6.00 -6.00 -4.00 -6.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	0.50.50.50.50.50.50.50.50.50.50.50.50.50	23.00 26.00 27.00 28.00 24.00 29.00 28.00 28.00 21.00 21.00 17.00 9.00 6.00 3.00 21.00 9.00 -24.00 -25.00 -35.00 -34.00 -26.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00 -274.00	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	4.00 5.00 5.00 5.00 3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	7.00



**Shot** 11 Location: D Charge depth 2.0 Size 3 Phone depth: 1694.5 Arrival time: 683.0 msec


Shot 12 Location: D Charge depth 2.0 Size 3.0 Phone depth: 1620.0 Arrival time: 659.5 msec

Shot 13 Location: D Charge depth 2.0 Size 3.0 Phone depth: 1620.0 Arrival time: 660.5 msec

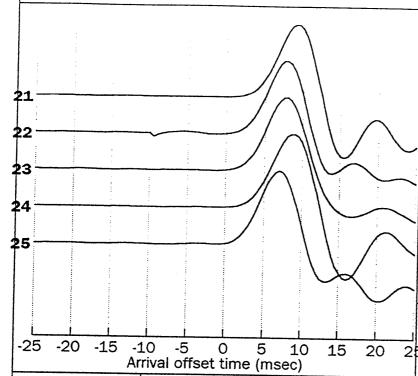
Shot 14 Location: D Charge depth 2.0 Size 3.0 Phone depth: 1508.0 Arrival time: 627.5 msec

Shot 15 Location: D
Charge depth 2.0 Size 2.0
25 Phone depth: 1407.0
Arrival time: 596.5 msec

SHO	T 11	SHOT	12	SHO	T 13	SHO	Г 14	SHO	T 15
Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampl
693.0 693.5	-4.00 -5.00 -3.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	665.5 - 666.5 - 667.0 - 667.5 - 668.5 - 669.0 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5 - 669.5	-5.00 -6.00 -6.00 -13.00 -13.00 -13.00 -13.00 -13.00 -15.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.0	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	0.00 -1.00 -3.00 -3.00 -1.00 -2.00 -1.00 -2.00 -1.00 -3.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.01 -1.00 -1.01	616.7.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	4.00 3.00 4.00 7.00 11.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 7.00 7.00 7.00 7.00 4.00 -2.00 -4.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -31.00 -	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-3.00 -6.00 -9.00 -11.00 -18.00 -16.00 -0.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.



Shot 16 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1308.0 Arrival time: 561.0 msec


Shot 17 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1267.0 Arrival time: 548.5 msec

Shot 18 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1250.0 Arrival time: 541.0 msec

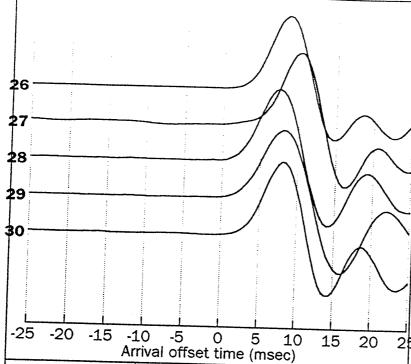
Shot 19 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1220.0 Arrival time: 530.5 msec

Shot 20 Location: D
Charge depth 2.0 Size 2.0
25Phone depth: 1203.0
Arrival time: 525.5 msec

SHO	T 16	SHO	T 17	SHO	OT 18	SH	OT 19	SHO	OT 20
Time	Ampl	Time		<del> </del>		<del> </del>			
0.50.50.50.50.50.50.50.50.50.50.50.50.50	9.00 12.00 14.00 15.00 18.00 16.00 12.00 18.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 1	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-8.00 -10.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -11.00 -15.00 -15.00 -16.00 -16.00 -16.00 -12.00 -16.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -12.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00	Time  0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.	-8.00 -8.00 -7.00 -6.00 -7.00 -6.00 -2.00 -1.00 -1.00 -1.00 -1.00 -1.00 -11.00 -12.00 -11.00 -12.00 -15.00 -137.00 -201.00 -286.00 -34.00 -34.00 -137.00 -1032.00 -1435.00 -1435.00 -1435.00 -1752.00 -1872.00 -1944.00 -1944.00 -1944.00 -1523.00	Time 0.500.0500.500.500.500.500.500.500.500.	-5.00 -7.00 -12.00 -12.00 -9.00 -8.00 -5.00 -4.00 -3.00 -4.00 -3.00 -1.00 -3.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.0	Time	31.00 26.00 215.00 15.00 -12.00 -14.00 -13.00 -11.00 -13.00 -11.00 -10.00 -11.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.0



**Shot** 21 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1176.0 Arrival time: 513.5 msec


Shot 22 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1160.0 Arrival time: 510.5 msec

**Shot** 23 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1097.0 Arrival time: 490.5 msec

**Shot** 24 Location: D Charge depth 2.0 Size 2.0 Phone depth: 1053.0 Arrival time: 473.5 msec

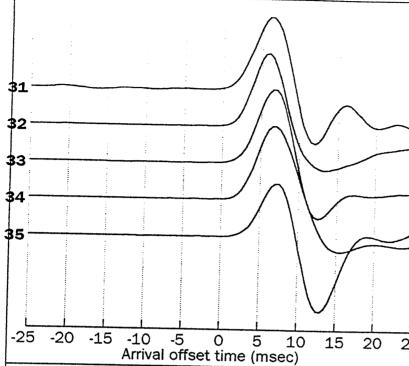
Shot 25 Location: D
Charge depth 2.0 Size 1.5
25 Phone depth: 913.0
Arrival time: 422.5 msec

SHO	T 21	SHO	T 22	SHO	T 23	SHO	OT 24	SHO	T OF
Time	Ampl	Time	Ampl	Time		<del> </del>		<del> </del>	
	-6.00	500.0	-1.00	480.0	Ampl	Time	Ampl	Time	Ampl
519.5 520.5 520.5 521.0 522.5 522.5 523.0 523.5	2.00 4.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	55055555555555555555555555555555555555	-2.00 -1.00 96.00 45.00 -6.00 -24.00 -36.00 -43.00 -49.00 -54.00 -18.00 -18.00 -17.00 14.00 17.00 13.00 -199.00 -35.00 -67.00 -121.00 -199.00 -356.00 -67.00 -121.00 -199.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00 -1582.00	481.5.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.	-6.00 -1.00 -2.000 -4.000 -4.000 -5.5.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1	4623.05.05.05.05.05.05.05.05.05.05.05.05.05.	1.00	4123.05.05.05.05.05.05.05.05.05.05.05.05.05.	-9.00 -6.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00



Shot 26 Location: D Charge depth 2.5 Size 1.5 Phone depth: 840.0 Arrival time: 392.0 msec

Shot 27 Location: D Charge depth 2.5 Size 1.5 Phone depth: 738.0 Arrival time: 351.5 msec


Shot 28 Location: D Charge depth 2.0 Size 3.0 Phone depth: 683.0 Arrival time: 336.0 msec

Shot 29 Location: D Charge depth 2.0 Size 2.0 Phone depth: 597.0 Arrival time: 302.5 msec

Shot 30 Location : D Charge depth 2.0 Size 2.0

25Phone depth: 515.0 Arrival time: 269.5 msec

CU	OT OO			11300)		AII	ival time :	269.5 n	nsec
	OT 26	SH	OT 27	SH	OT 28	SH	OT 29	SH	OT 30
Time	Ampi		Ampi	Time	Ampl	Time	Ampl		Ampl
381.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.	-2.00 -3.00 -2.00 -1.00 -2.00 3.00 3.00 2.00 -2.00 -2.00 -2.00 -2.00 -1.00 -1.00 0.00	5.05.05.05.05.05.05.05.05.05.05.05.05.05	36.00 -19.00 23.00 23.00 53.00 62.00 54.00 54.00 14.00 112.00 12.00 -125.00 -125.00 -125.00 -125.00 -125.00 -125.00 -125.00 -125.00 -125.00 -125.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -127.00 -1	325667.050.50.50.50.50.50.50.50.50.50.50.50.50	-11.00 -10.00 -7.00 -7.00 -7.00 -7.00 -6.00 -7.00 -6.00 -2.00 -2.00 -3.00 -11.00 -14.00 -14.00 -14.00 -14.00 -14.00 -122.00 -374.00 -374.00 -374.00 -1244.00 -1263.00 -1244.00 -1263.00 -1244.00 -1263.00 -1244.00 -1263.00 -1274.00 -1244.00 -1263.00 -1274.00 -1244.00 -1263.00 -1067.00 -1274.00 -1244.00 -1263.00 -1067.00 -1244.00 -1263.00 -1067.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1177.00 -1244.00 -1263.00 -1067.00 -1177.00	292.5 293.5 294.0	-3.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	250.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.	5.00 2.00 2.00 2.00 0.00 -4.00



Shot 31 Location: D Charge depth 2.0 Size 1.0 Phone depth: 383.0 Arrival time: 212.5 msec

Shot 32 Location: D Charge depth 2.0 Size 1.0 Phone depth: 332.3 Arrival time: 186.5 msec

Shot 33 Location: D Charge depth 2.0 Size 1.0 Phone depth: 96.3 Arrival time: 70.5 msec

Shot 34 Location: D Charge depth 2.0 Size 1.0 Phone depth: 96.3 Arrival time: 69.5 msec

Shot 35 Location: A Charge depth 0.3 Size 0.25 25 Phone depth: 96.3

Arrival time: 64.0 msec

01:0		<del></del>				7.11	vai time . C	74.0 IIIS	Sec
SHO		SHO	T 32	SHO	T 33	SHO	OT 34	SHO	OT 35
Time	Ampl	Time	Ampl	Time	Ampl	Time	Ampi	Time	Ampl
218.5 219.5 219.5 220.0 220.5 221.0 221.5 222.0 223.0	-6.00 9.00 13.00 13.00 15.00 15.00 -1.00 -7.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.	196.5 197.0 197.5	-1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-4.00 -3.00 -2.00 1.00 0.00 -3.00 -3.00 -11.00 -7.00 3.00 -10.00 -7.00 -5.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -7.00 -116.00 -367.00 -1385.00 -1985.00 -1985.00 -4616.00 -4275.00 -4616.00 -4275.00 -4275.00 -3640.00 -2741.00 -1665.00 -2741.00 -2741.00 -2741.00 -2741.00 -1579.00 -1522.00 2371.00	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	-1.00 -4.00 -5.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5	7.00 9.00 6.00 0.00 8.00 8.00 5.00 0.00 7.00 6.00 7.00 6.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.0

## APPENDIX 8 - CASING & CEMENTING REPORTS



### **CEMENTING REPORT**

Well Name:

Skull Creek #1

Rig Name:

ODE Rig 30

Engineer:

H Flink/K Kelly

**Date :** ∃ .... ∌€

**Gas Reading** 

Casing Size:

Casing MD/TVD: 1514

**Hole Geometry** Hole Size:

2 ' 8.

Mud Wt:

**Mud Properties** 9.5

Max Gas:

Hole MD: Hole TVD:

Vis: PV:

40 10

S

5.5

Bttms Up: Final BG:

Hole Angle: Last Csg Size:

YP: WL:

Last Csg MD:

Last Csg TVD :

BHCT: BHST:

Casing Summary

Wt (lb/ft)	Grade	Conn	Length	Depth, mRT
	K55			1613 47
26	K55	8PD		1601.59
	K55	8RD	<del> </del>	1589.40
26	K55	8RD		166.71
26	K55	3RD	<del> </del>	165.35
26	K55	VAM	166.79	-1.44
	26 26	26 K55 K55 26 K55 26 K55	K55     3RD       26     K55     8RD       K55     8RD       26     K55     8RD       26     K55     8RD	K55     3RD     0.53       26     K55     8RD     11.88       K55     8RD     12.19       26     K55     8RD     1422.69       26     K55     8RD     1.36

### Centralizers

Manufacturer	Туре	Quantity	Remark / Placement
Davis Lynch	SRC	9	1601. 1490. 1467.14431389.1372. 1360.1301. 1240 m
Davis Lynch	SBS		1215, 1191,45, 1180 1155 1132

**Lead Cement Slurry Details** 

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
12.8	156	126	482	2.05	2.5% PreHydGel
					z.d 31 Terrydder

Tail Cement Slurry Details

	Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
	15.8	48	30	250	1.15	1 % Halad 322
į					<del></del>	

Top Up Cement Slurry Details

Weight (ppg)	Malaban				
	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
N/A	N/A	N/A	N/A	<del></del>	<del></del>
			INA	N/A	N/A
		1			

**Operation Description** 

t .	Circulation	D			
	Officulation	Pre-Flush	Lead	Tail	Displacement
Volume (bbl)	250	E0.		741	Displacement
	200	50	156	48	201
Time (min)	40	1.5	00		-01
	70		20	10	30
Job Evaluation					

Reciprocate: Yes

Remarks

Full Returns: Yes

Returns: Lead (bbl) Tail (bbl)

209

Cmt to Surface: No

Total (bbl)

179 438

Bump Plug: Yes, 1600 psi, pressure up to 2100 psi Pressure Test: 2500 psi for 10 min. 1 bbl bled back

Pumped Total (bbl)

455

ECP: No

Difference (bbl)

17



### CASING RUNNING LIST

WELL : SKULL CREEK #1

PERMIT: PPL 1 DATE: 31/5/96

Rig: RIG 30

Casing size (in) 7" Wt(ppf) 26.00

Grade: K55

Connection: 8 Rd Ltc-17t/jts vam on top

Supervisor: H.FLINK/K.KELLY

Measured by: O D E TOOLPUSHER

Page: 1 of Pages: 2

Order	Jt No	): [t	Length	Total	Depth		Comment	Order	Jt No:	Length	Total	Denth	Comment
				1			Battom of Shoe	11	101.110.	Lengui	IIVIAI	Depth	Comment
· ·	1 Shoe	1	12.4	12.4			SRC 5 m above shoe	┪}	+				<b> </b>
) =	2 F/Col		12.1					-		0.0	VI 625.2	000.70	7-415
		15	12.5					5	3 4			070.40	Total from last col.
		16	12.5					1	<del></del>	-+			· · · · · · · · · · · · · · · · · · ·
		17	12.5					5 5			_ +		
1		18	12.5					5		<del></del>			
1		19	12.5					5					
1		20	12.5			_		4	· <del>  · · · · · · · · · · · · · · · · · ·</del>			<del></del>	
l	9	3	11.8			_		54		<del></del>			
	10	4	11.8				SRC MIDDLE of JOINT	55					ļ
	11	5	11.8				OLIC MIDDLE OF JOIN I	60		<del></del>			
-	12	6	11.84				SRC MIDDLE of JOINT	6					
Total	<del>'</del>	┪	147.42		2 1400.	쒸	SKC MIDDLE OF JUINT	67	2 56			863.91	
		<del>-</del>				ᆜ		Total	1	124.8	/	<u> </u>	
	13	7	11.83			$\overline{}$		63	57	12.5	7 762.66	851.34	
	14	8	11.83	171.0	B 1442.	92	SRC MIDDLE of JOINT	64	58				
	15	9	11.83	182.9	1 1431.0	09[		65		<del> </del>	·		
		10	11.84	194.7	5 1419.:	25		66	<del> </del>	<del></del>		813.59	
1 1	17	1	11.83			42		67		12.0	-4		
1	18	2	11.83	218.4		-		68	+	<del></del>		788.93	
1	9 -	3	11.84				SRC MIDDLE of JOINT	69				776.35	
2	20	4	11.84	-1			SRC MIDDLE of JOINT	70	<del> </del>	<del></del>	~	763.77	
2	1 1	5	11.83	-1			SRC MIDDLE of JOINT	71	65	12.58	-4	751.19	
	2 1	6	11.83		1			72		12.59		731.19	
Total			118.33		1	+		Total 12	1 00	12.5		130.60	
	2	-1	44.00	T 222 2		_			L	120.0	<u> </u>		
		7	11.83			-		73	67	11.84	887.24	726.76	
2		8	11.83	1		-		74	68	11.84	899.08	714.92	
2		9	11.84	4	3			75	69	12.58	911.66	702.34	
2		0	11.84	•			SRC MIDDLE of JOINT	76	70	11.83	923.49	690.51	
2			12.57	325.66	1	-		77	71	11.83	935.32	678.68	
2000) 2			12.58	1	1	_		78	72	11.84	947.16	666.84	
25			11.83	350.07		-		79	73	11.84	- 1	655.00	
30			11.83	361.90				80	74	11.84	970.84	643.16	
3			11.83	373.73		7 S	RC MIDDLE of JOINT	81	75	11.84	-1 - 1	631.32	
32	2 2	3	12.57	386.30	1227.7	0		82	76	11.84	994.52	619.48	
Total	1		120.55					Total		119.12			
33	3 2	7	12.58	398 88	1215 1	2 0	BS MIDDLE of JOINT	83	-,-,1	44.55	4000.05	005.55	
34			11.84	410.72			CO MIDDEE OF JOHAT		77	11.83		607.65	
35		_	11.83	422.55			BS MIDDLE of JOINT	84	78	11.84	I F	595.81	
36			11.84	434.39				85	79	11.84	· · · · · -	583.97	
37		-	11.84				BS MIDDLE of JOINT	86	80	11.84		572.13	
38			11.84		1167.77		DO MUDDI E . C COURT	87	81	11.84		560.29	.,
39		_					BS MIDDLE of JOINT	88	82		1065.55	548.45	
40			11.83		1144.10			89	83	11.84	1077.39	536.61	
40			11.83				BS MIDDLE of JOINT	90	84	11.83	1089.22	524.78	
			11.83	493.56		_		91	85		1101.06	512.94	
Total	36		11.84	505.40	1108.60	4	[	92	86	11.84	1112.90	501.10	
ivial	<u></u>	<u> </u>	119.10			Ц.		Total		118.38			
43	37	Г	11.83	517.23	1096.77	T		93	87	11 94	1124.74	480.00	
44	38		11.84	529.07	1084.93	-		94	88			489.26	
45			11.83	540.90	1073.10	$\vdash$		95	89	11.83	1136.57	477.43	
46		<u> </u>	11.83	552.73	1061.27	_		96		11.84	-	465.59	
47	41		11.83	564.56	1049.44			97	90		1160.25	453.75	
48			11.83	576.39	1037.61		II-	98	91 92	11.83 11.83	1172.08 1183.91	441.92 430.09	
49	43		11.84	588.23		_	MENT BASKET	99	93	11.83	<b>-</b>		
50	44		11.83	600.06	1013.94			100	94		1195.74 1207.57	418.26	
51	45		12.59	612.65	1001.35	Г		101	95	11.83	<u> </u>	406.43	
52	46		12.57	625.22	988.78	┢		101	96	11.84	<u> </u>	394.59	
Total		. 1	119.82			<u> </u>		otal	30	11.83	1231.24	382.76	
						_	L			110.54			
	Casing:		154 J					e below			····		
	g Used:		134 J			Lei	ft over 17 jts 8 rd ltc+ 3 jts	s vam csg					
Casi	ng Left:		20 J	ts	l								· · · · · · · · · · · · · · · · · · ·
				j	l								
				i i									

#### CASING RUNNING LIST

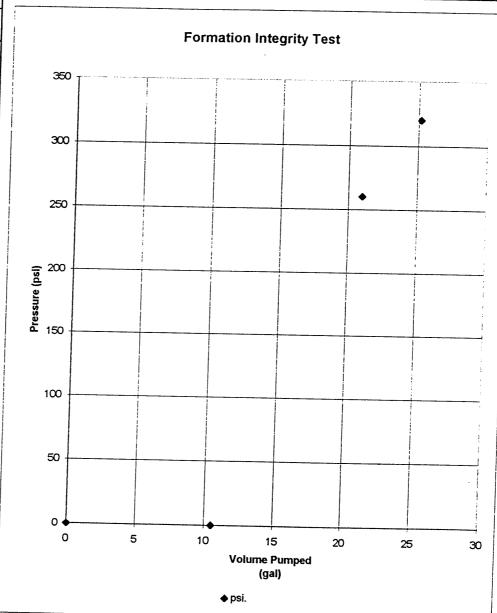
WELL: SKULL CREEK #1 PERMIT: PPL 1 DATE: 31/5/96

Rig: ODE RIG 30

Connection: 8 Rd Ltc-17t/jts vam on top

Casing size (in) 7" Wt(ppf) 26.00 GRADE K55 Supervisor: H.FLINK/K.KELLY Page 2 of Pages: 2 Measured by: O D E TOOLPUSHER rder Jt No: Length Total Depth Comment Order Jt No: Length Total Depth Comment 1231.24 382.76 Total from page 1 -1.44 Total from last col. 0.00 103 97 11.83 1243.07 370.93 0.00 -1 44 104 98 11.84 1254.91 359.09 0.00 -1.44 105 99 11.83 1266.74 347.26 0.00 -1 44 106 100 11.83 1278.57 335.43 0.00 -1.44 11.84 1290.41 107 101 323.59 0.00 -1 44 108 102 11.84 1302.25 311.75 0.00 -1.44 109 103 11.84 1314.09 299.91 0.00 -1.44 110 104 11.83 1325.92 288.08 0.00 -1.44 111 105 11.85 1337.77 276.23 0.00 -1.44 11.84 1349.61 106 112 264.39 0.00 -1.44 Total 118.37 Total 0.00 113 107 12.58 1362.19 251.81 0.00 -1.44 12.58 1374.77 114 108 239.23 0.00 -1.44 115 109 12.58 1387.35 226.65 0.00 -1.44 116 110 12.59 1399.94 214.06 0.00 -1.44 117 111 11.83 1411.77 202.23 0.00 -1.44 118 112 11.84 1423.61 190.39 0.00 -1.44 119 113 11.84 1435.45 178.55 0.00 -1 44 120 114 11.84 1447.29 166.71 0.00 -1.44 121 115 1.36 1448.65 165.35 8rd x vam 0.00 -1 44 122 11.99 1460.64 153.36 VAM 0.00 -1.44 Total 111.03 Total 0.00 123 117 11.97 1472.61 141.39 VAM 0.00 -1.44 124 118 11.98 1484.59 129.41 VAM 0.00 -1.44 125 119 1496.57 11.98 117.43 VAM 0.00 -1.44126 1508.55 120 11.98 105.45 VAM 0.00 -1.44 127 121 11.97 1520.52 93.48 VAM 0.00 -1.44 128 122 11.98 1532.50 81.50 VAM 0.00 -1.44 129 123 11.98 1544.48 69.52 VAM 0.00 -1.44 130 124 11.99 1556.47 57.53 VAM 0.00 -1.44 131 125 11.98 1568.45 45.55 VAM 0.00 -1.44 132 126 11.98 1580.43 33.57 VAM 0.00 -1.44 Total 119.79 VAM Total 0.00 133 12.00 1592.43 21.57 VAM 0.00 -1.44 134 1604.41 11.98 9.59 VAM 0.00 -1.44135 11.03 1615.44 -1.44 VAM -- B/SPRING 0.00 -1.44 136 1615.44 -1.44 VAM 0.00 -1.44 -1.44 VAM 137 1615.44 0.00 -1 44 1615.44 138 -1.44 VAM 0.00 -1.44 1615 44 -1.44 0.00 -1.441615.44 -1.44 0.00 -1.44 1615.44 -1.44 0.00 -1.44 1615.44 -1.44 0.00 -1.44 Total 35.01 0.00 Total 1615.44 -1.44 0.00 -1.44 1615.44 -1.44 0.00 -1.44 1615.44 -1.44 0.00 -1.44 1615.44 -1.44 0.00 -1.44 1615.44 -1 44 0.00 -1.44 1615.44 -1.44 0.00 -1.44 1615.44 -1.44 0.00 -1.44 -1.44 0.00 -1.44 -1 44 0.00 -1 44 -1.44 0.00 -1.44 0.00 Total 0.00 154 Jts **Total Casing:** Remarks: 134 joints plus x/over=135 - Shoe = .58 - f/collar .48 134 Jts Casing Used: Left over 17 jts 8 rd ltc+ 3 jts vam csg Casing Left: 20 Jts

SL_CSG.XLS5/6/96


Page 2

## Cultus

## **Formation Integrity Test**

Well Name:	Chull Canali	
	Skull Creek	Date: 22/5/96
Hole Size:	12.25	Rig: ODE Rig 30
TVD, m:	335	Pumps: HT-400
Casing Size:	9.625	Circ. Rate:
Casing Depth:	332.5	Mud Wt: 8 4

	Casing Size:							
Casing Depth:								
Raw Data								
	Volume		Pres	sure	1			
	gal.			si.				
	0		(		1			
	10.5		C	)	]			
	21 25.2		26					
	25.2		32	20				
		$\perp$						
		$\perp$						
					j			
					-			
		$\perp$			1			
					İ			
		$\perp$						
		Γ						
)								
					İ			
					-			
		$\Gamma$			ļ			
		Γ			İ			
		Π						
		Γ			l			
		Γ						
		Г			1			
			<del></del>					
		_			1			



### Comments:

Pressure stabilised at 300 psi for 5 minutes.

EMW at 300 psi = 13.7 ppg (1.64SG)



### **CEMENTING REPORT**

Skull Creek #1

Date: 26 May 96

Gas Reading

Rig Name:

00E Rig 30

Casing Size: 🦠

Engineer:

High Requardson

Casing MD/TVD: 332-54

**Hole Geometry** Hole Size :

12 14

Mud Wt:

9.3

**Mud Properties** 

Max Gas:

Hole MD: Hole TVD:

Vis: PV:

35 ٠,

Bttms Up: Final BG:

Hole Angle:

YP:

Last Csg Size :

Ç 21.4

Last Csg MD:

WL: BHCT:

Last Csg TVD:

BHST:

Casing Summary

Description	Wt (lb/ft)	Grade	Conn	Length	Depth, mRT
Float Shoe		N30	BTC	0.53	332.01
1 jt. casing	36	K55	BTC	11.80	320.21
Fioat collar		N30	BTC	0.41	319.80
2 jts casing	36	K55	BTC	23 00	296.80
1 jt casing	40	N80	BTC	11.72	285.08
3 jts casing	36	K55	BTC	33.11	251.97
20 jts casing	43.5	N80	BTC	235.35	16.62
1 jt casing	36	K55	BIÇ	11 11	5.51
Bradenhead	43.5	N30	8RD x BTC	0.67	4.84
RT to flange			1	4.84	7.0-7

### Centralizers

Manufacturer	Туре	Quantity	Remark / Placement	
Davis Lynch	Bow spring	3	329m, 308.7m, 296.6m	

Lead Cement Slurry Details

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
		<del></del>		3. 1 3.(110101C)	Additives
		t			
				i	1
		1		1	

Tail Cement Slurry Details

vveight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
15.8	93	53.4	450	1.15	Neat

Top Up Cement Slurry Details

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
15.8	10	4 2	35	1.15	2% CaCl- (SWOC)

Operation Description

	Circulation	Pre-Flush	Lead	Tail	Displacement
Volume (bbl)	200	20	N/A	93	82
Time (min)	40	5	N/A	30	0
Job Evaluation		• • • • • • • • • • • • • • • • • • •	Remarks		<u> </u>

Reciprocate: No

Full Returns: No. 8bbis water

Cmt to Surface: No

Bump Plug: Yes. 600 psi, pressure test to 1100 psi, 5 mins Pressure Test: 2500 psi for 10 minutes, 1 bbl bleed back

ECP: No



## CASING TALLY (as run)

Casing Size ......9-5/8" Page No. 1

1000			Page N								
7011		CUM. L	Wt/Grade/Conn.	JOINT	LENGTH	CUM. L	Wt/Grade/Conn.				
Sh		12,33	K55 Butt, 36#	41							
2 Flo		23.53	K55 Butt, 36#	42		***					
3	11 85	35.74	K55 Butt, 36#	43							
4	11.72	47 46	N80 Butt, 40#	44							
5	10.97	58 43	K55 Butt, 36#	45							
7	11.06	69 49	K55 Butt, 36#	46							
8	11 08	80.57	K55 Butt, 36#	47							
9	11.78	92 35	N80 Butt, 43.5#	48							
10		104.24	N80 Butt, 43.5#	49							
11	11.81	116.05	N80 Butt, 43.5#	50							
12	11.86	127.01	NOOD !! 10 5!!		r						
13	11.86	127.91	N80 Butt, 43.5#	51							
1 3	11.86	139.77	N80 Butt, 43.5#	52							
16	11.59	151.63 163.22	N80 Butt, 43.5#	53							
17	11.64	174,86	N80 Butt, 43.5#	54							
18	1181	186.67	N80 Butt, 43.5# N80 Butt, 43.5#	55							
19	11.86	198.53	N80 Butt, 43.5#	56 57							
20	11 68	210.21	N80 Butt, 43.5#	57							
21	11.86	222.07	N80 Butt, 43.5#	58 59							
22	11.66	233.73	N80 Butt, 43.5#	60							
7			1100 Datt, 45.5#	00							
23	11 68	245.41	N80 Butt, 43.5#	61							
24	11 86	257.27	N80 Butt, 43.5#	62							
25	11.86	269 13	N80 Butt, 43.5#	63							
26	11.55	280.68	N80 Butt, 43.5#	64							
27	11.85	292 54	N80 Butt, 43.5#	65							
30	11 70	304.24	N80 Butt, 43.5#	66							
3	11.68	315.92	N80 Butt, 43.5#	67							
35	11.11	327.03	K55 Butt, 36#	68							
				69							
				70							
						<del></del>					
31	<del>                                     </del>			71							
32	ļ			72							
33	ļ			73							
34				74							
35				75							
36				76							
37 38				77							
38				78							
40				79							
40				80							
7	OTAL THE DA	OF:									
	OTAL THIS PA	GE:		CUM	ULATIVE TOT	AL:					
CSG_	TLY9.XLS										



## CASING TALLY AS STRAPPED

Casing Size ......9-5/8" Page No. 1

- 1	<del> </del>	, 0.20		9-0/0				Page No. 1
_	IOINT	LENGTH	CUM. L	Wt/Grade/Conn.	JOINT	LENGTH	CUM. L	Wt/Grade/Conn.
	. Shoe	12.33	12 33	K55 Butt, 36#	41	1		
4	2 Float	11 56	20,38	K55 Butt, 36#	42		<u> </u>	
1	3	11.85	35.74	K55 Butt, 36#	43			
4	4	11.72	47 46	Nさ455 Butt, 40#	44			
4	5	10.97	58 43	K55 Butt, 40# 35	45			
-	<u>-6 -</u>	1131	69.74	K55 Butt, 36#	46	NO DRIFT		
1	7	11 06	80 80	K55 Butt, 36#	47			·
1	8	11 G8	91 88	K55 Butt, 36#	48			
<i> </i>	9	11.78	103,66	N80 Butt, 43.5#	49			
<b>/</b>	10	11 89	115.55	N80 Butt, 43.5#	50			
1								
1	11	11.81	127.36	N80 Butt, 43.5#	51			
-	12	11.86	139.22	N80 Butt, 43.5#	52			
<b>/</b>	.3	11 86	151.08	N80 Butt, 43.5#	53			
$\downarrow$	14	11_8C	182 88	N80 Butt, 43.5#	54	DAMAGED	BOX	
Ĺ	15	11.86	174 74	N80 Butt, 43.5#	55			
Ĺ	16	11 59	186.33	N80 Butt, 43.5#	56			
<u> </u>	17	11.64	197.97	N80 Butt, 43.5#	57			
ŀ	18	1181	209.78	N80 Butt, 43.5#	58			
L	19	11.86	221.64	N80 Butt, 43.5#	59			
人	∞ <u>50</u>	11.68	233.32	N80 Butt, 43.5#	60			
7								
$\perp$	21	11 86	245.18	N80 Butt, 43.5#	61			
L	22	11.66	256.84	N80 Butt, 43.5#	62			
$\vdash$	23	11.68	268.52	N80 Butt, 43.5#	63			
$\vdash$	24	11.86	280.38	N80 Butt, 43.5#	64			
$\vdash$	25	11 86	292 24	N80 Butt, 43.5#	65			
$\vdash$	26	11 55	303.79	N80 Butt, 43.5#	66		OUT \$6	// . 3/
F	7	11.86	315.65	N80 Butt, 43.5#	67		# n	1180
$\vdash$	28	11.80	327.45	N80 Butt, 43.5#	68			22.11
$\vdash$	29	11.79	339.24	N80 Butt, 43.5#	69			
┝	30	11.70	350,94	N80 Butt, 43.5#	70			
-	21	11.00	200.02					
$\vdash$	31	11.86	362.80	N80 Butt, 43.5#	71			1.70
-		11.86	374.56	N80 Butt, 43.5#	72		#3	3 11.68
<del> </del>	33	11 68	386.34	N80 Butt, 43.5#	73			23.38
		10.27	396.61	N80 Butt, 43.5#	74			
<u> </u>	35	11.11	407.72	K55 Butt, 36.5#	75			
	36 37				76			
					77			
	38				78			
	9				79			
	40				80			
	TO	TAL THIS PAG	GE:		CUN	<b>IULATIVE TO</b>	TAL:	
	TALYFO	RM.XLS						20/5/06

### CASING RUNNING LIST

Rig: ODE#30

WELL: Skull Creek #1 PERMIT: PPL 1 DATE: 19/5/96

Casing size (in) 9-5/8" Wttppf) 36.5/43.5 Grade: K55/N80 Connection: BUTTRESS

****Page: 4 br ODE/Gultus Page: 1 of Pages: 1

Supervisor: H FLINK. / B. Richardson					Measured by	Connection: BUTTRESS Page: 1 of Pages: 1					
Order	der Jt No: Length Total Depth			Comment	Order	Jt No:	Length	Total	Comment		
				332.54	Bottom of Shoe	<b></b>				Depth	- Comment
BHOE 1	1	12.33		320.21	K55 36#		T	-	1		
F/COL 2	2	11.15		309.06	K55 36#			0.00		0.00	Total from last co
3	3	11.86			K55 36#						
4	4	11.72	47.06		N80 40#	ļ	-		ļ	1	
5	5 7	10.97	58.03		K55 36#	ļ			<u> </u>	J	
7	8	11.06	69.09 80.17		K55 36#	<u> </u>			ļ		
8	9	11.08 11.78	91.95		K55 36# N80 43.5#	ļ	<b>_</b>			<u> </u>	
9	10	11.89	103.84		N80 43.5#	ļ	<del> </del>		<b>!</b>	ļ	
10	11	11.81	115.65		N80 43.5#	<b> </b>	-				
11	12	11.86	127.51		N80 43.5#	<del>                                     </del>	<del> </del>	-			
12	13	11.86	139.37		N80 43.5#		<del> </del>			<del> </del>	
otal		139.37					<del> </del>			<del> </del>	
13	15	11.00	454.22	404.04	hioo to su		<del></del>			<u> </u>	
14	16	11.86	151.23 162.82		N80 43.5#		<del> </del>			ļ	
15	17	11.64	174.46		N80 43.5# N80 43.5#		ļ				
16	18	11.81	186.27		N80 43.5#		<del> </del>			<del> </del>	
17	19	11.86	198.13		N80 43.5#		<del> </del>				
18	20	11.68	209.81		N80 43.5#		<del> </del>	<del> </del>			
19	21	11.86	221.67		N80 43.5#		<del> </del>			<del> </del>	
20	22	11.66	233.33		N80 43.5#						
21	23	11.68	245.01		N80 43.5#		<del> </del>	-}		<del>  </del>	
22	24	11.86	256.87		N80 43.5#		<del> </del>			<del>  </del>	
otal		117.50					<del> </del>	<del> </del>			
23	25	11.86	268.73	62.04	NOO 42 5# 1		L				
24	26	11.55	280.28		N80 43.5# N80 43.5#			-		ļl	
25	27	11.86	292.14		N80 43.5#		ļ				
26	30	11.70	303.84		N80 43.5#			-			<del></del>
27	33	11.68	315.52		N80 43.5#			-}			-
28	35	11.11	326.63		K55 36#			-			
29 /3	nding jt.	6.88	333.51	-0.97				<del> </del>			
30	28	11.80	345.31	-12.77	V80 43.5#			<del> </del>			
31	29	11.79	357.10	-24.56	V80 43.5#			<del>                                     </del>			<del></del>
32	6	11.31	368.41	-35.87	<b>&lt;55 36#</b>						
tal		111.54									
33	31	11.86	380.27	-47.73	\80 43.5#	T					
34	32	11.86	392.13	-59.59	N80 43.5#			<del>    -</del>			
35	14	11.80	403.93		180 43.5#			<del> </del>			
36	34	10.27	414.20		180 43.5#			<del>  </del>			
				0.00						<del></del>	
	_			0.00							
				0.00							
				0.00							
				0.00							
				0.00						T	
				0.00						<del></del>	
				0.00				<del></del>			
				0.00							
				0.00				<b></b>	<del></del>		
				0.00							
				0.00							
-+				0.00							
-+				0.00							
		<del></del>		0.00							
	L						1				
		Jts		Г	Remarks:						
		Jts									
- 1	1	Jts	: 1								

This is an enclosure indicator page.

The enclosure PE600652 is enclosed within the container PE900832 at this location in this document.

The enclosure PE600652 has the following characteristics:

ITEM_BARCODE = PE600652
CONTAINER_BARCODE = PE900832

NAME = Composite Well Log

BASIN = OTWAY
PERMIT = PPL/1
TYPE = WELL

SUBTYPE = COMPOSITE_LOG

DESCRIPTION = Composite well log (enclosure from WCR)

for Skull Creek-1

REMARKS =

DATE_CREATED = 13/06/96

DATE_RECEIVED =

 $W_NO = W1153$ 

WELL_NAME = Skull Creek-1

CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL

This is an enclosure indicator page. The enclosure PE900833 is enclosed within the container PE900832 at this location in this document.

The enclosure PE900833 has the following characteristics:

ITEM_BARCODE = PE900833
CONTAINER_BARCODE = PE900832

NAME = Stratigraphic Correlation - Wallaby

Creek - 1 to Iona 2

BASIN = OTWAY PERMIT = PPL/1

TYPE = WELL

SUBTYPE = WELL_CORRELATION

DESCRIPTION = Stratigraphic Correlation - Wallaby

Creek - 1 to Iona 2, Waarre Formation (enclosure from WCR) for Skull Creek-1

REMARKS =

 $DATE_CREATED = 31/08/97$ 

DATE_RECEIVED =

 $W_NO = W1125$ 

WELL_NAME = Skull Creek-1

CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL

This is an enclosure indicator page.

The enclosure PE600653 is enclosed within the container PE900832 at this location in this document.

The enclosure PE600653 has the following characteristics:

ITEM_BARCODE = PE600653
CONTAINER_BARCODE = PE900832

NAME = Complex Lithology Model - Log

BASIN = OTWAY
PERMIT = PPL/1
TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Complex Lithology Model - Log, CPI, (enclosure from WCR) for Skull Creek-1

REMARKS =

DATE_CREATED = 5/06/96

DATE_RECEIVED =

 $W_NO = W1153$ 

WELL_NAME = Skull Creek-1

CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL

This is an enclosure indicator page. The enclosure PE600654 is enclosed within the container PE900832 at this location in this document.

The enclosure PE600654 has the following characteristics:

ITEM_BARCODE = PE600654
CONTAINER_BARCODE = PE900832

NAME = Volume Optimized Log Analysis

BASIN = OTWAY
PERMIT = PPL/1
TYPE = WELL
SUBTYPE = WELL_LOG

DESCRIPTION = Volume Optimized Log Analysis

(Multimin), enclosure from WCR, for

Skull Creek-1

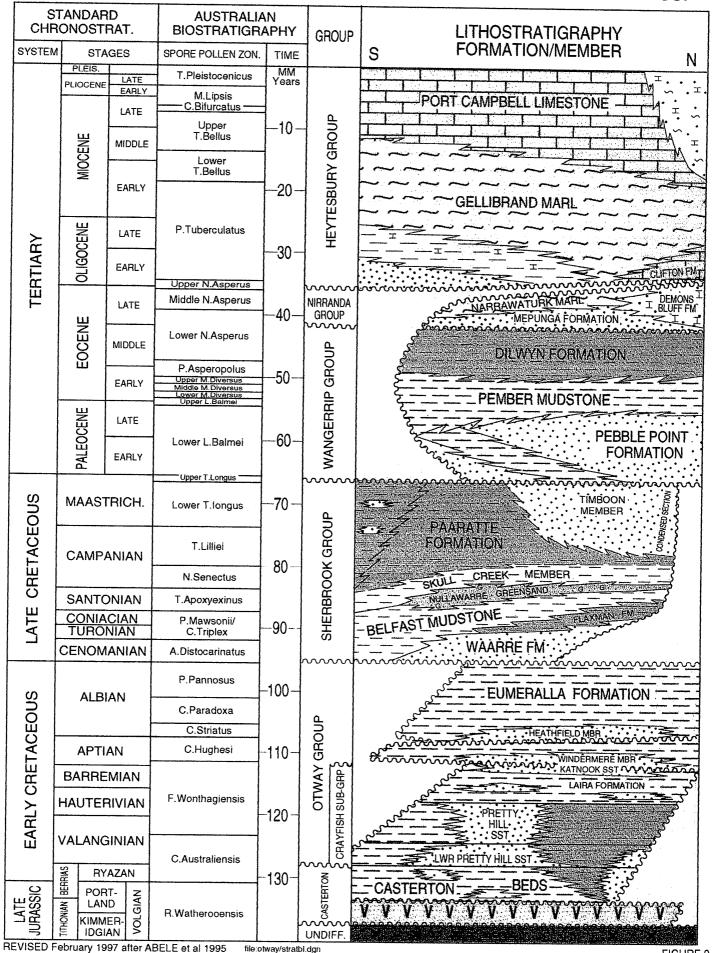
REMARKS =

 $DATE_CREATED = 21/04/97$ 

DATE_RECEIVED =

 $W_NO = W1153$ 

WELL_NAME = Skull Creek-1


CONTRACTOR = Cultus Petroluem NL CLIENT_OP_CO = Cultus Petroluem NL



# CULTUS PETROLEUM N.L. OTWAY BASIN - VICTORIA SCHEMATIC STRATIGRAPHIC TABLE



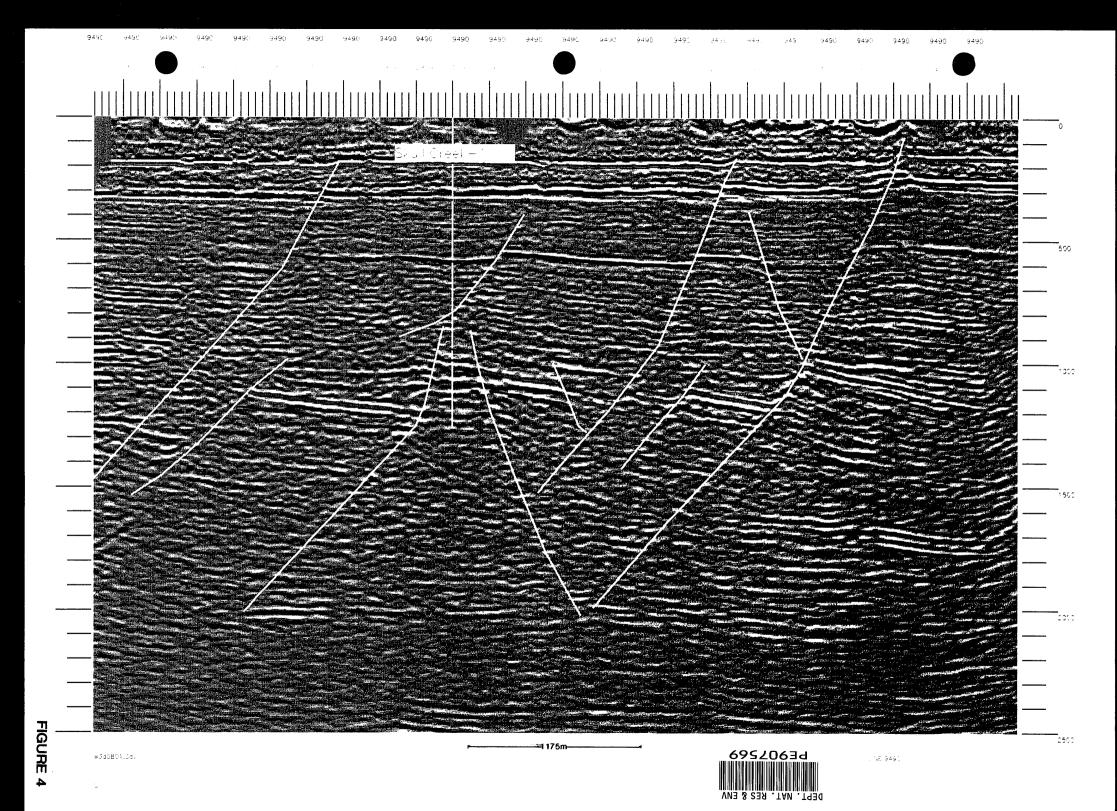
FIGURE 2





### **ONSHORE OTWAY BASIN**




### PPL₁

## SKULL CREEK-1

PREDICTED v ACTUAL STRATIGRAPHIC SECTION

LAT: 38°33'42.4"S GL:88.6 m SPUD: 0200hrs 19/5/96 LONG: 142°59'25.1"E RT: 9.3m RIG RELEASE: 1700hrs 6/6/96 LOCATION: WAARRE 3D XLine 2805 Inline 9465 STATUS: Cased & suspended Gas & Condensate discovery

LOUA		. VY/-\	ARRE 3D XLine 280		····	M105: 0	aseu a suspi	ende	ed Gas & Condens	ate c	JISCO	very
DEPTH		·	PREDICT	ED					ACTUAL	,		<del>y </del>
(mSS)	AGE	GRP	STRATIGRAPHY mss	OBJ	LITHOLOGY		LITHOLOGY	OBJ	STRATIGRAPHY mss	GRP	AGE	moo
  - 0  -		HEYTESBURY GROUP	PORT CAMPBELL LIMESTONE AND GELLIBRAND MARL						-88.6 -73 PORT CAMPBELL LST  GELLIBRAND MARL  136 165 CLIFTON FM	HEYTESBURY GP.		16" 84m
-	TERTIARY	HEYTE	CLIFTON FM. & NARRAWATURK MARL 268						NARRAWATURK 250 MARL 302 MEPUNGA FM	NIRRANDA GROUP	TERTIARY	9 ⁵ /8" 239m
-500	TERT	WANGERRIP GP.	MEPUNGA FM 328  DILWYN FORMATION  568  PEMBER MUDSTONE 628  PEBBLE POINT FM.						DILWYN FORMATION  498  PEMBER MUDSTONE  PEBBLE 644.6 POINT FM.	WANGERRIP GP.	TER	
-	CRETACEOUS	SHERBROOK GROUP	PAARATTE FORMATION 963						PAARATTE FORMATION	OOK GROUP	LATE CRETACEOUS	
<u> </u>	LATE CRE	SHERBR	NULLAWARRE FORMATION 1083 BELFAST MUDSTONE 1187			F		F	SKULL CREEK 1082.5 MUDSTONE BELFAST MUDSTONE 1108.9 WAARRE 1178.7 FORMATION	SHERBROOK	LATE C	
-	E.CRET.	OTWAY	WAARRE FM 1258  EUMERALLA FORMATION 1407						EUMERALLA FORMATION	OTWAY GROUP	EARLY CRETACEOUS	
- 1500 -					(T.D. 1500mRT)		T.D. 1701.4mRT)		1608.4	OTWA	EARLY CF	7" 1521m
							·					

