### **Essential Petroleum Resources Limited**

### PEP 152 ONSHORE OTWAY BASIN, VICTORIA

### WELL COMPLETION REPORT

**Port Fairy 1** 

January 2003

### **CONTENTS**

| 1  | SU           | MMARY                                         | 1  |
|----|--------------|-----------------------------------------------|----|
| 2  | WI           | ELL HISTORY                                   | 3  |
|    | 2.1          | GENERAL DATA                                  | 3  |
| 3. | EN           | GINEERING DATA                                | 7  |
|    | 3.1.         | WELL STATUS                                   | 7  |
|    | <i>3.2</i> . | OPERATIONAL SUMMARY                           | 7  |
|    | 3.3          | DAILY OPERATIONS                              | 9  |
|    | 3.3          | BHA AND BIT SUMMARIES                         | 12 |
|    | 3.4          | CASING AND CEMENTING REPORT                   | 12 |
|    | 3.5          | DRILLING FLUIDS                               | 13 |
|    | 3.6          | WELL TESTING & COMPLETION                     | 13 |
|    | 4.1          | CUTTINGS                                      | 16 |
|    | 4.2          | CORES                                         | 16 |
|    | 4.3          | TESTING                                       | 16 |
|    | 4.4          | SAMPLE ANALYSIS                               | 16 |
|    | 4.5          | FLUID ANALYSES                                | 16 |
|    | 4.6          | MUD LOGGING                                   | 16 |
|    | 4.7          | WIRELINE LOGGING                              | 17 |
|    | 4.8          | VELOCITY SURVEY                               | 17 |
| 5  | GE           | OLOGY                                         | 18 |
|    | 5.1          | STRATIGRAPHY                                  | 18 |
|    | 5.2          | LITHOLOGY                                     | 19 |
|    | 5.3          | RESERVOIR QUALITY AND HYDROCARBON INDICATIONS | 22 |
|    | 5 4          | CONTRIBUTION TO GEOLOGICAL KNOWLEDGE          | 24 |

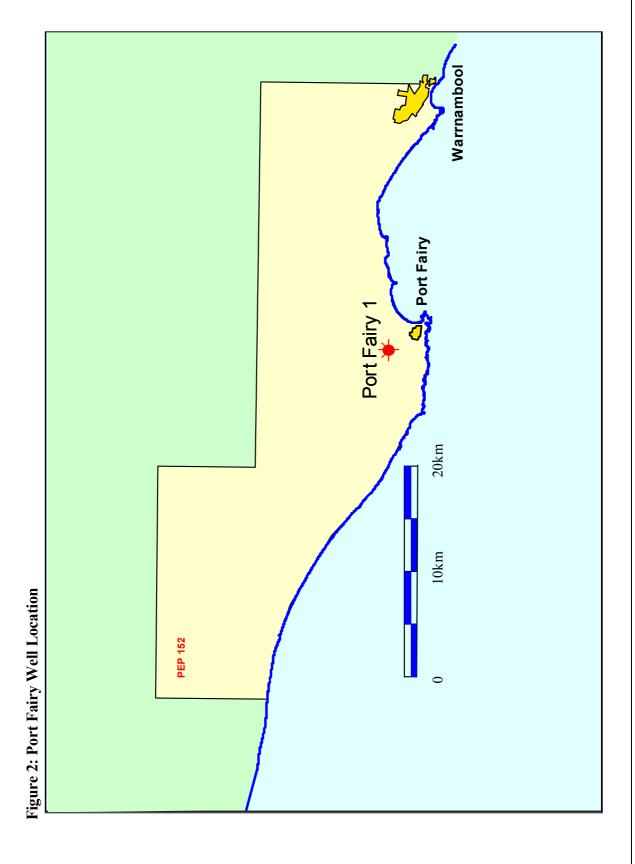
### **FIGURES**

| Figure 1: Port Fairy Top Waarre Formation Two Way Time      | 4  |
|-------------------------------------------------------------|----|
| Figure 2: Port Fairy Well Location                          | 5  |
| Figure 3: Port Fairy Time -Depth Curve                      | 10 |
| Figure 4: Time Analysis - Drilling Phase                    | 11 |
| Figure 5: Time Breakdown - Testing phase                    | 14 |
| Figure 6: Port Fairy 1 - Well Schematic                     | 15 |
| TABLES                                                      |    |
| Table 1: General well data                                  | 3  |
| Table 2: List of Contractors                                | 6  |
| Table 3: Time Breakdown – drilling phase                    | 9  |
| Table 4: Deviation Surveys                                  | 11 |
| Table 5: Bit and BHA Record                                 | 12 |
| Table 6: Casing and Cementing Details                       | 12 |
| Table 7: Completion Time Summary                            | 14 |
| Table 8: Drill Stem Test Results                            | 16 |
| Table 9: Detail of logs run                                 | 17 |
| Table 10: Stratigraphic Table                               | 18 |
| Table 11:Reservoir Quality and Hydrocarbon Indications      | 23 |
| APPENDICES                                                  |    |
| Appendix 1: Location Survey                                 |    |
| Appendix 2: Daily Drilling Reports                          |    |
| Appendix 3 Casing Tables                                    |    |
| Appendix 4: Drilling Fluid Recap                            |    |
| Appendix 5: Cuttings Description                            |    |
| Appendix 6: Drill Stem Test Results                         |    |
| Appendix 7: Well checkshot survey and synthetic seismogram. |    |
| Appendix 8: Cased hole testing results                      |    |
| Appendix 9: Palynological Report                            |    |
| Appendix 10: Fluid Analysis                                 |    |
| ENCLOSURES                                                  |    |
|                                                             |    |

Enclosure 1: Composite Well Log

Enclosure 2: Mudlog

Enclosure 3: Wireline Logs


#### 2 WELL HISTORY

#### 2.1 GENERAL DATA

General well data are given in Table 1, and the location shown in Figures 1 & 2.

Table 1: General well data

| Well name:          | Port Fairy 1                                                                |
|---------------------|-----------------------------------------------------------------------------|
| Classification:     | Exploration                                                                 |
| Permit operator:    | Oil Company of Australia Limited                                            |
| Well operator       | Essential Petroleum Resources Limited                                       |
| Basin:              | Otway, onshore western Victoria                                             |
| Lease:              | PEP 152                                                                     |
| Seismic location:   | Line OBE00-01, Shotpoint 345, location offset 200m west.                    |
| Coordinates:        | Latitude 38° 21' 38.40"S, Longitude 142 12'49.03"E                          |
|                     | Easting 606, 030.35m, Northing 5,753,470.16m,                               |
|                     | MGA Zone 54                                                                 |
| Datum:              | GDA94                                                                       |
| Elevation:          | Ground Level (GL): 7.67 metres AHD                                          |
|                     | Rotary Table (RT): 12.09 metres AHD                                         |
|                     | (All depths relate to RT unless otherwise stated)                           |
| Property owner:     | Bill McClaren, Tayfield Station                                             |
| Nearest town:       | The coastal township of Port Fairy, approximately 3.5 km south of the well. |
| Nearest well:       | Government water bore Belfast 4, approximately 4km SSE of the well.         |
| Measured depth      | Driller: 1550.0 m                                                           |
|                     | Logger: 1523.0 m (logger could not reach TD)                                |
| Spud date:          | 07:00 hours January 9, 2002.                                                |
| TD reached:         | 18:30 hours January 18, 2002.                                               |
| Days to Drill:      | 9.5 days                                                                    |
| Date suspended:     | 04:00 hours, January 24, 2002.                                              |
| Drill rig released: | 12:00 hours January 24, 2002.                                               |
| Testing commenced:  | 07:00 March 19, 2002                                                        |
| Testing completed:  | 18:00 September 24, 2002                                                    |
| Well status:        | Suspended oil & gas well.                                                   |



### 2.2 CONTRACTORS

**Table 2: List of Contractors** 

| Service                                                                            | Contractor                                                        |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Project Managers                                                                   | Essential Petroleum Resources Limited                             |
| Drilling                                                                           | Mitchell Drilling and Exploration                                 |
| Location Survey                                                                    | Paul Crowe, Licensed Surveyor                                     |
| Site Construction                                                                  | Walter Mellis                                                     |
| Water Supply                                                                       | Trucked in by Walter Mellis                                       |
| Fuel Supply                                                                        | Supplied by Drilling Contractor                                   |
| Cementing                                                                          | Dowell                                                            |
| Mud System - Drilling Fluids - Solids Control                                      | IDFS<br>Via Drilling Contractor                                   |
| Mud Logging                                                                        | Geoservices                                                       |
| Electric Logging                                                                   | Schlumberger                                                      |
| Drilling Tools                                                                     | Tasman Oil Tools                                                  |
| Casing Services                                                                    | Drilling Rig                                                      |
| Drill Stem Testing                                                                 | Australian DST                                                    |
| Casing & Tubing                                                                    | Itochu                                                            |
| Wellheads And Equipment                                                            | Cameron Iron Works                                                |
| Workover Rig                                                                       | Imperial Snubbing                                                 |
| Completion Services - Slickline - Completion Components - Perforating - Lubricator | <ul><li>Expertest</li><li>Expertest</li><li>Schumberger</li></ul> |
| Well Testing                                                                       | Expertest                                                         |
| Environmental - Waste Disposal                                                     | Transwest Environmental                                           |
| Accommodation                                                                      | Town accommodation. (Port Fairy)                                  |
| Trucking                                                                           | Dehne Transport                                                   |
| Crane Services                                                                     | Timboon Engineering                                               |
| Communications - Landlines - E Mail/Internet                                       | <ul><li>Telstra</li><li>Via EPRL server</li></ul>                 |

#### 3. ENGINEERING DATA

#### 3.1.WELL STATUS

Figure 3 illustrates the suspended condition of the well as at December 2002.

#### 3.2. OPERATIONAL SUMMARY

#### 3.2.1. Logistics and Planning

Essential Petroleum Resources (EPRL) managed drilling on behalf of the PEP152 Joint Venture. Materials and logistics were managed out of the EPRL offices and from the Port Fairy wellsite.

Mud and cement chemicals were supplied by Independent Drilling Fluid Services, from their Cheltenham facility.

#### 3.2.2. Site Preparation

Site construction for Port Fairy 1 commenced in December 2001. The original selected position (SP 345 on line OBE00a-01) was unsuitable as the land had been subdivided for housing and was also boggy from recent rains. The site was shifted 200m to the west side of Blackwood Road.

Fencing and lockable gates were installed. Pits were dug and the site was sheeted with gravel. Hard rock (basalt) at surface limited the depth of the water storage pits. The size of the location was kept relatively compact, as the rig required a small footprint and no rig camp.

Of particular concern throughout construction was adherence to the environmental management plan for the project, which stressed the minimisation of noise and dust levels.

#### 3.2.3. Mobilisation

Mitchell Rig 50 was mobilised from Queensland on January 3 after completion of necessary modifications to the mud system. Mobilisation was timed to avoid the road congestion of the immediate Christmas-New Year period.

The mobilisation to the rigsite was completed in 4 days.

#### **3.2.4.** Pre Spud

The Port Fairy 1 pre-spud meeting was held at the rig site at 19:00 on January 8, 2002.

#### 3.2.5. 17 1/2" Hole Section

Port Fairy 1 was spudded at 07:00 hrs on the January 9, 2002. The 17½" hole section was initiated with a 20" drag bit to drill the soil above the basalt. A 12 ¼" pilot hole was then air-hammered to 14.5m. Attempts to ream the pilot hole with the drag bit were unsuccessful. A 20" conductor was set to 6.5m and the diverter rigged up. The pilot hole was reamed at 17½" diameter with an air hammer to 14.5m and then drilled ahead to 31.5m. Caving sand below the base of basalt at 28m prevented further air drilling. The air hammer was laid down and 23 sacks neat cement was spotted on bottom. After waiting on cement and rigging up mud tanks 17½" hole was drilled ahead with no returns to 55m and partial water returns to 78.2m. The 13 ¾" conductor was run to 67.4m and cemented with neat class G cement.

#### 3.2.6. 12 1/4" Hole section

Cement was tagged at 57.9m inside the conductor pipe. The 12 ½" hole section was drilled from 78.2 to 821m with water/gel mud. High instantaneous rates of penetration were achieved. With only one mud pump available, the large cuttings load caused mud rings in the annulus and cutting blockages in the flow line. The flow line was modified to add cleaning jets, and the drill pipe was worked briefly prior to connections to prevent cuttings build-up. The mud was continually diluted to counter viscosity increases due to the native clays and limestone, and treated with SAPP to counter the mud rings. Enerseal lost circulation material (LCM) was used during drilling of the Dilwyn Formation aquifer to ensure minimal contamination of the formation. No losses were experienced.

Further minor time losses were caused by the mud pump losing prime in the section 500 – 687m. LCM in the mud probably contributed to this problem. At 817.5m a wiper trip was carried out. No fill was encountered. The hole was deepened to 821 during the wiper trip to better accommodate the 9 5/8" casing measurement.

Hole deviation in the upper part of the  $12 \frac{1}{4}$ " section was stable at  $1^{\circ}$ . A survey at 821m was a misrun.

#### 3.2.7. 9 %" Intermediate String

A string of 9 %" L80 47 ppf BTC casing was run to a shoe depth of 812m. The string was cemented to surface with 200% annular volume of class G cement and displaced with 195 BBL mud. Good cement returns to surface were noted. Plugs were bumped with 1300psi.

#### 3.2.8. 8 ½" Hole Section

The BOPs were nippled up and tested successfully at 250 and 2500psi without incident. The float and shoe were drilled out and formation drilled to 824m. A leak-off test was performed. Leak-off was recorded at 620 psi, equivalent to mud weight of 13.5ppg. The hole was displaced to PHPA mud. A survey of 3 ½° was recorded at 824m. 8 ½" hole was drilled ahead to 1327m with a PDC bit. Flow check and sample circulation was carried out to evaluate a drilling break at 865m. A survey of 3 ½° was recorded at 1044m. The mud weight was increased to 9.5ppg. Rate of penetration decreased below 1236m and the bit was pulled at 1327m. The PDC bit was in good condition. The low ROP was attributed to poor face cleaning.

A new tricone bit was reamed to bottom and drilled 8 ½" hole to 1550m TD. Samples were circulated at 1343 and 1351m. The hole was logged successfully. Straddle drillstem tests were attempted unsuccessfully. As the zones could not be properly evaluated in open hole by DST the hole was completed for testing through casing.

#### 3.2.9. 7" Production String

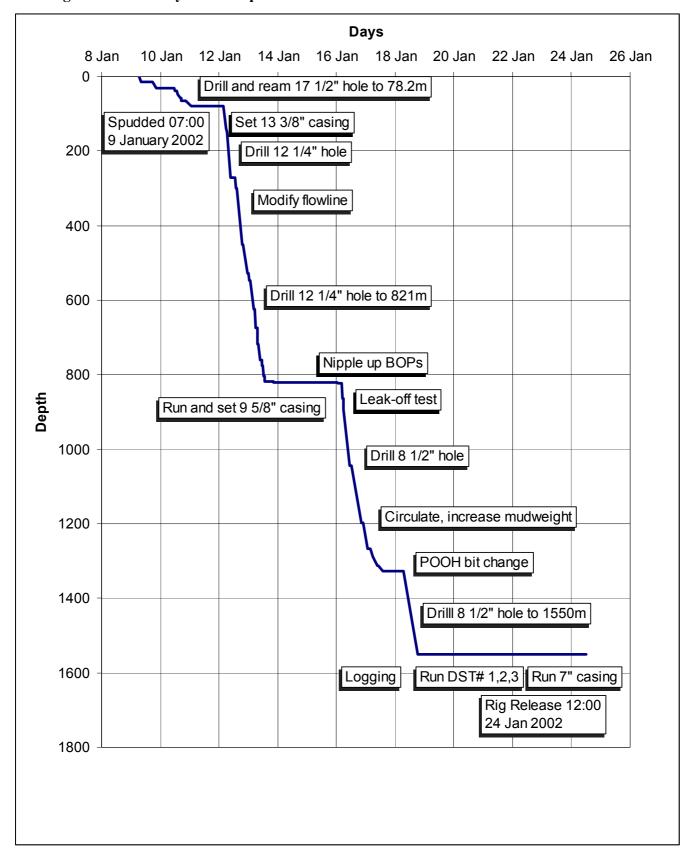
A string of 7" J55 BTC casing was run to a shoe depth of 1536m. The string was cemented, to a theoretical depth of 660m RT plus 40% excess, with class G cement and displaced with 199 BBL mud. Plugs were bumped with 3000psi.

During rigging down of the cementing gear the well started to flow. The annular BOP was closed. A stable shut in pressure of 13psi was observed. The pressure bled off and the well was observed to be stable.

#### 3.3 DAILY OPERATIONS

#### 3.3.1 Daily Drilling Reports

The details of the daily activities during rig up and drilling operations for the Port Fairy 1 well are presented in the Daily Drilling reports in Appendix 2.


#### 3.3.2 Time Performance

The time – depth curve for Port Fairy 1 is presented in Figure 3 and a time breakdown presented in Table 2 and Figure 4. Problems due to DST failures at the end of the hole were the most significant cause of delays. Drilling, logging and casing operations were carried out without significant problems. Some delays were incurred dealing with mud rings and poor cuttings clearance, and pump suction problems from LCM in the 12 ½" section. An unscheduled bit change in the 8 ½" section was due to the PCD bit balling up.

**Table 3: Time Breakdown – drilling phase** 

| OPERATION                                              | Days  | %    |
|--------------------------------------------------------|-------|------|
| Drill actual                                           | 3.17  | 21%  |
| Reaming                                                | 0.71  | 5%   |
| Rig Repairs & maintenance                              | 0.38  | 2%   |
| Rig up or modify surface equipment                     | 0.30  | 2%   |
| Logging                                                | 0.48  | 3%   |
| Circulate to condition mud                             | 0.38  | 2%   |
| Circulate to evaluate well                             | 0.36  | 2%   |
| Casing and cementing operations                        | 2.84  | 19%  |
| Tripping for bit or BHA change, for casing and at TD   | 1.75  | 12%  |
| Tripping to condition hole                             | 0.63  | 4%   |
| Tripping to evaluate well                              | 1.51  | 10%  |
| Hole problems                                          | 0.41  | 3%   |
| Well surveys                                           | 0.15  | 1%   |
| Drill stem testing operations                          | 1.31  | 9%   |
| Installing & testing BOPS, Leak-off tests              | 0.79  | 5%   |
| Routine HSE operations: site cleanups, safety meetings | 0.05  | 0.3% |
| HSE time related to incidents                          | 0.00  | 0%   |
| Total Days                                             | 15.21 | 100% |

Figure 3: Port Fairy Time -Depth Curve



Routine HSE operations: site cleanups, safety meetings 0.3% Installing testing BOPS, Leak off HSE related to incidents tests 0% 5% Drillstem test operations Drill actual 9% 21% Well surveys 1% Hole problems 3% Tripping to Reaming evaluate well 5% 10% Rig Repairs & maintenace 2% Tripping to Rig up or modify condition hole surface eqpt 4% 2% Logging 3% Circulate to Tripping for bit or condition mud BHA change, 2% for Csg and at TD Circulate to 12% evaluate well 2% Casing and cementing operations

Figure 4: Time Analysis - Drilling Phase

#### 3.3.3 Surveys

Deviation measured in the well did not exceed 3 ½ degrees.

**Table 4: Deviation Surveys** 

| Depth | Deviation |
|-------|-----------|
| 148   | 1°        |
| 299   | 1.5°      |
| 450   | 1°        |
| 821   | Misrun    |
| 824   | 3 1/2°    |
| 1044  | 3 ½°      |
| 1327  | 3 ½°      |

#### 3.3 BHA AND BIT SUMMARIES

Drilling bits performed adequately. Air hammering proved effective in the basalt at surface. The rental PDC 8  $\frac{1}{2}$ " bit delivered very high ROP. Low ROP at the end of the bit run was attributed to sub-optimal face cleaning.

Table 5: Bit and BHA Record

| Bit<br>No | in     | mm    | Jets                          | Make          | Туре          | IADC<br>code | In                               | Out                                | Made    | Hrs   | Cond                | Reason<br>Pulled |
|-----------|--------|-------|-------------------------------|---------------|---------------|--------------|----------------------------------|------------------------------------|---------|-------|---------------------|------------------|
| 1         | 17 ½   | 445   |                               | Drill<br>quip | Air Hamr      | ner          | 6.5                              | 31.5                               | 25      | 2.75  | good                | Hole caving      |
|           | not    | es    |                               | Reamed        | 6.5-31.5m aft | er 12 ½      | i" pilo                          | t hole                             | air ham | merec | l to base b         | asalt            |
| 2         | 17 ½   | 445   |                               | Bourne        | Drag          |              | 31.5                             | 78.2                               | 46.70   | 4.75  |                     | Casing point     |
|           | ВНА    |       |                               |               | 2 x 8" DC     |              |                                  |                                    |         |       |                     |                  |
| 3         | 12 1/4 | 311   | 20-16-16                      | Varel         | ETR1GMPS      | 115S         | 78.2                             | 821                                | 742.80  | 23.5  | 2-2-WT-<br>A-E-I-D  | Casing point     |
|           | BHA    |       | 2 X 8" DC, 1 x 8" stabilizer, |               |               |              | zer, 1                           | r, 16 x 6 ¼" DC, drilling jars, XO |         |       |                     |                  |
| 4         | 8 1/2  | 216   | 5 x 14                        | DBS           | PDC           |              | 821                              | 1327                               | 506.00  | 28.5  | 1-1-1-A-<br>X-I-P-R | Low ROP          |
|           | BH     | ΙA    | NBR, Pony DC, STB,            |               |               |              | 3, 1 x DC, STB, jars, 2 x DC, XO |                                    |         |       |                     |                  |
| 5         | 8 1/2  | 216   | 13-13-13                      | Hughes        | GT-03         | 417          | 1327                             | 1550                               | 223.00  | 11.5  | 2-2-WT-<br>A-B-I-D  | TD               |
|           | BH     | BHA N |                               | NBR, Pony DO  | C, STB        | , 1 x I      | OC, ST                           | B, jars,                           | 2 x D   | C, XO |                     |                  |

#### 3.4 CASING AND CEMENTING REPORT

The casing and cementing program is summarised in Table 5 below.

**Table 6: Casing and Cementing Details** 

| Hole<br>Size<br>(in) | Hole<br>Depth<br>(mRT) | Casin<br>g Size<br>(in) | Shoe<br>Depth<br>(mRT) | Casing type | Casing<br>Eqpt | Cementing             | Comment          |
|----------------------|------------------------|-------------------------|------------------------|-------------|----------------|-----------------------|------------------|
| 17                   |                        | 13 3/8"                 | 67.4                   | K55         | Open           |                       |                  |
| 1/2                  | 78.2                   |                         |                        | BTC         |                |                       |                  |
|                      |                        | 9 5/8"                  | 812.0                  | 47 ppf      | Float          | 277bbl 13.2 ppg lead, | Approx 90 bbl    |
|                      |                        |                         |                        | L80         | shoe,          | 52bbl 15.6ppg tail    | cement returns.  |
|                      |                        |                         |                        | BTC         | float          | (100% excess), disp   | Bump plugs w/    |
| 12                   |                        |                         |                        |             | collar         | w/ 10bbl water 185    | 1300psi. Floats  |
| 1/4                  | 821                    |                         |                        |             |                | bbl mud.              | held OK          |
|                      |                        | 7"                      | 1536                   | 23 ppf      | Float          | 498sx, 578 ft3 Class  | Bump plugs w/    |
|                      |                        |                         |                        | J55 BTC     | shoe,          | G 15.8 ppg, rise:     | 3000 psi, held 5 |
|                      |                        |                         |                        |             | float          | 670m +40% excess.     | min OK. Well     |
|                      |                        |                         |                        |             | collar         | Disp w/ 10bbl water   | flowed, shut in  |
|                      |                        |                         |                        |             |                | & 199 bbl mud         | pressure 13PSI,  |
| 8 1/2                | 1550.0                 |                         |                        |             |                |                       | bled off OK.     |

#### 3.5 DRILLING FLUIDS

Drilling fluid details are summarised in the Operational summaries (Section 3.2). The drilling fluid contractor's mud recap is provided in Appendix 4. Drilling fluid chemistry was effective throughout the program.

#### 3.6 WELL TESTING & COMPLETION

#### 3.6.1 OPERATIONS SUMMARY

Site operations recommenced on 18 March 2002 with unloading and rigging up surface equipment. Contractor personnel worked a day shift, travelling to Port Fairy for accommodation. A well check shot survey was recorded.

A tubing head was installed and the Imperial snubbing unit positioned over the well. The BOP was installed and tested to 2500 PSI. A scraper and mill were run to TD and 7 lb/bbl KCl brine circulated into the well.

The testing assembly was run in to the hole and the packer set at 1389mRT. A 2.8bbl water cushion was pumped. Expertest ran a 2.3" gauge ring and then pulled the PX prong and PX plug. Sclumberger ran in for GR-CCL correlation and ran perforation guns.

The intervals 1402 - 1406mRT and 1443 - 1452mRT were perforated. Well flow was too small to measure. A build-up against a surface shut-in was measured with the Expertest surface-readout gauge.

Expertest ran in with a PX plug. Fluid was tagged at 930m, calculated fluid influx was 5.4 bbl. Fluid was reversed out through the sliding sleeve. No gas was present. The packer was pulled and an ESVZ bridge plug set at 1400m and tested at 2000 psi.

The packer was set above 842mRT, PX plug and prong pulled and 600ft water cushion pumped. Sclumberger ran GR CCL and perforated the interval 862m – 866mRT. Surface pressure built to 70psig but flow died when the well was open at surface. A 1.75" gauge cutter was run to check for hydrate plugging. An EMR gauge was run at 500 ft stages. Pressures indicated a normal water hydrostatic gradient in the tubing. The packer was unseated and re-seated at 870mRT. The well flowed water from the annulus at 10 bbl/hr. The sliding sleeve was opened and the tubing swabbed until steady flow was established. The well flowed fresh water at 10bbl/hr (240 BWPD). The well was shut in at surface and equipment rigged down. Operations ceased on 26 March.

Testing was recommenced on 7 August 2002 with Expertest. The fluid in the tubing was swabbed down to  $\sim$ 591m. Three short intervals in the Flaxman Formation in the zone 1347-1358 were perforated. Perforations at 1356.5 to 1358.0m were monitored for 15 minutes with no increase in wellhead pressure. After sitting overnight the fluid level in the well had risen to 529m, there was an air blow (no gas) at the wellhead. The zone 1352.5m to 1354m was perforated with a 2 psi pressure rise noted at the wellhead. Fluid had risen to 518m. The zone 1347m to 1348m was perforated with a 1 psi pressure increase noted at the wellhead. The fluid level was  $\sim$ 520m. The well was swabbed to catch a sample. A sample of oily material in water was taken for analysis and found to contain a refined product (lubricating oil).

The well was suspended until 16 September 2002 when a pressure of 900 psi was noted on the wellhead. The well was flared and a gas sample was taken on 21 September 2002. A static pressure gradient survey on 22 September showed approximately 223m of gas 15m of oil and 1120m of completion brine in the tubing (measurement from the base of

the perforated interval at 1358m). Swabbing of the well on 23 September produced samples of light oil in water. Wellhead pressure returned to 900 psi. The oil sample was analysed to be 52° oil. Fluid analyses are presented in Appendix 10.

#### 3.6.2 COMPLETION SUMMARY

The details of the completion are shown in the completion status diagram. Completion and testing time performance times achieved are shown in Table 7 and in Figure 5.

**Table 7: Completion Time Summary** 

| Tuble 7. Completion Time Summary |        |      |  |  |  |  |
|----------------------------------|--------|------|--|--|--|--|
| Operation                        | Hours  | 0/0  |  |  |  |  |
| Travel to/from wellsite          | 7.25   | 6%   |  |  |  |  |
| Site & surface Equipment         | 17     | 14%  |  |  |  |  |
| Logging & perfs                  | 13.25  | 11%  |  |  |  |  |
| Well head & BOPs                 | 10.75  | 9%   |  |  |  |  |
| Circulate fluid                  | 1      | 1%   |  |  |  |  |
| Tripping tubing                  | 25.5   | 21%  |  |  |  |  |
| Wireline & testing ops           | 41.5   | 34%  |  |  |  |  |
| Plugging                         | 2      | 2%   |  |  |  |  |
| Rig up/down                      | 5.5    | 4%   |  |  |  |  |
| Total Hours                      | 123.75 | 100% |  |  |  |  |

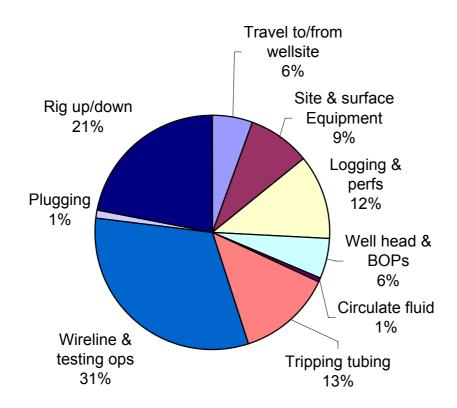
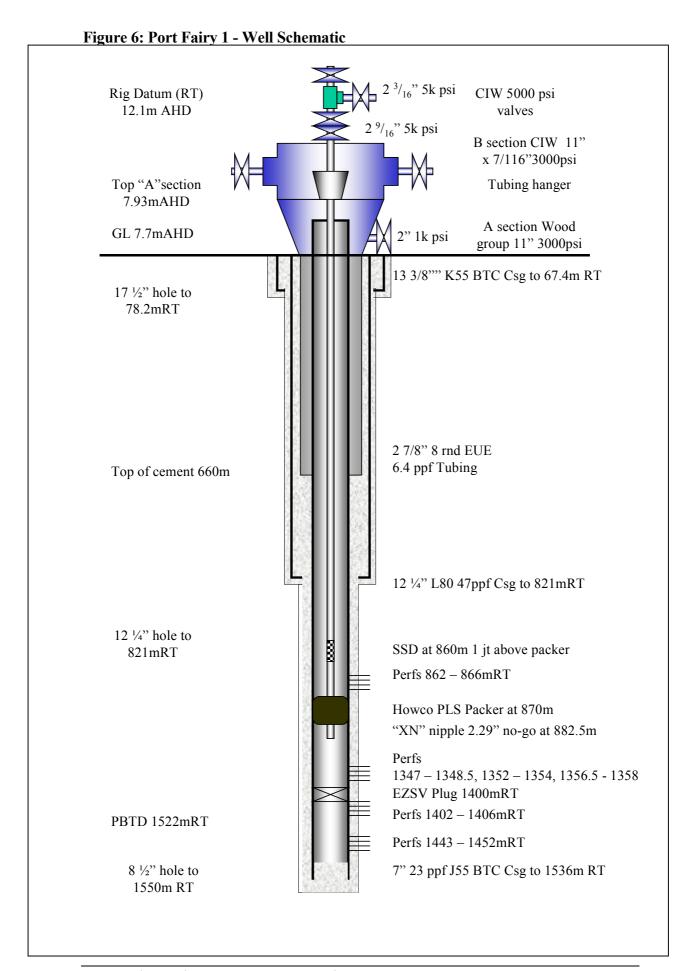




Figure 5: Time Breakdown - Testing phase



#### FORMATION SAMPLING AND TESTING

#### 4.1 CUTTINGS

Cuttings were collected at 10metre intervals in the 12 ½" hole section and then at 3m intervals to TD. Detailed cuttings descriptions are presented in Appendix 5.

#### 4.2 CORES

No sidewall cores or conventional cores were cut.

#### 4.3 TESTING

Straddle inflate testing was attempted after logging at TD. The results are summarised in Table 8. Drill stem testing was unsuccessful in evaluating the formation due to both the test tool plugging with drill cuttings and formation material, and packer failures. Drill stem test reports are provided in Appendix 6.

**Table 8: Drill Stem Test Results** 

| DST<br>No | Interval    | <u>IF</u>                                      | ISI        | FF                            | FSI        | Result                                    |
|-----------|-------------|------------------------------------------------|------------|-------------------------------|------------|-------------------------------------------|
| 1         | 1429 – 1451 | 9 minutes,<br>weak blow<br>throughout,<br>NGTS | 40 minutes | 22<br>minutes.<br>No Blow     | 40 minutes | Tool<br>plugged<br>during IF              |
| 2         | 1378 – 1402 | Packer did not seat.                           |            |                               |            |                                           |
| 3         | 860 – 868   | 5 minute,<br>mod blow                          | 45 minutes | No blow.<br>test<br>abandoned |            | Tool<br>partially<br>plugged<br>during IF |
| 4         | 859 – 868.9 | Could not Inflate                              |            |                               |            | Packer<br>ruptured                        |

#### 4.4 SAMPLE ANALYSIS

Ten cuttings samples were submitted for palynological analysis to Biostrata Pty Ltd. The results of the palynological analysis are presented in Appendix 9. The palynology indicated that zone immediately above the top of the Eumeralla Formation contained an age equivalent of the lower part of the Waarre Formation (Waarre 'B'). No material of age equivalent to the upper Waarre 'C' horizon, where good quality reservoir sands can be expected, was intersected in the well.

#### 4.5 FLUID ANALYSES

Samples from fluid recoveries are presented in Appendix 10

#### 4.6 MUD LOGGING

Geoservices provided a skid mounted mudlogging unit. Depth, penetration rate, mud gas, pump rate, and mud volume data as well as mud chromatographic analysis was recorded

from surface to total depth. Rate of penetration, weight on bit, total gas and chromatography were recorded and plotted on the Formation Evaluation Log (Mud Log) and are presented in Enclosure 2.

#### 4.7 WIRELINE LOGGING

Wireline logging was carried out by Schlumberger Seaco using a truck mounted MAXIS unit. The logging suite consisted of two logging runs. A composite log is provided in enclosure 1.

Logs are presented in Enclosure 3

Details of the log depth intervals for each log run are as follows.

Table 9: Detail of logs run

| Run | Depth<br>(mKB) | Log       | Top Log<br>Interval | Bottom Log<br>Interval | BHT Deg.<br>C |
|-----|----------------|-----------|---------------------|------------------------|---------------|
| 1   | 1523           | Gamma Ray | 15                  | 1515                   | 66            |
|     |                | SP        | 812                 | 1501                   |               |
|     |                | LDT       | 812                 | 1518                   |               |
|     |                | CNL       | 812                 | 1515                   |               |
|     |                | DLL       | 812                 | 1521                   |               |
|     |                | MSFL      | 812                 | 1518                   |               |
|     |                | NGT       | 1200                | 1507                   |               |
|     |                | PEF       | 812                 | 1518                   |               |
| 2   | 1523           | Sonic     | 100                 | 1510                   | NR            |

#### 4.8 VELOCITY SURVEY

A velocity check shot survey in open hole was programmed, but could not be carried out because explosives could not be safely used with a microwave transmitter tower in close proximity. The velocity survey was eventually carried out using an airgun during the cased hole testing program. A synthetic seismogram was computed from the sonic log and checkshot surveys. The results are included in Appendix 7.

| Port Fairy No. 1 WCR Appendixes |  |
|---------------------------------|--|
|                                 |  |
|                                 |  |
|                                 |  |
| Appendix 1: Location Survey     |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |
|                                 |  |

Paul D Crowe, B.App.Sci. (Surv), LS, M.I.S. Trevor W McDowell, B.App.Sci. (Surv), LS, M.I.S.



Paul Crowe Licensed Surveyor 192 Koroit Street, WARRNAMBOOL 3280 Ph 5561 1500 Fax 5561 2935 crowe@ansonic.com.au ABN 5952 1601 183

17 Jan. 02

Essential Petroleum 226 Albert Road SOUTH MELBOURNE 3205

Attention GORDON WAKELIN - KING FAX 9699 3110

PORT FAIRY #1
WELL SITE

Dear Gordon

Following is a plan indicating the results of the survey of the location of the above well.

Yours faithfully

PAUL D CROWE

#### **VICTORIA**

### **GAS WELL LOCATION**

#### REFERENCE MARKS SKETCH PLAN

|                                    |                                                  | El El CENTOL MOUNT                                                                                                             | O OILLIOITI D'II          | •                                           |
|------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------|
| ٧                                  | Vell Name                                        | PORT FAIRY # 1                                                                                                                 |                           |                                             |
| s                                  | pheroid                                          | AGD                                                                                                                            | AMG                       | ZONE 54                                     |
|                                    | atitude                                          | S 38°21'43·71"                                                                                                                 | Easting                   | 605 910-12                                  |
| L                                  | ongitude                                         | E 142°12'44·15"                                                                                                                | Northing                  | 5 753 293-15                                |
|                                    | Convergence                                      | 0°45'09"                                                                                                                       | Elevation                 | 7-67 (AHD)                                  |
| S                                  | cale Factor                                      | 0-99973627                                                                                                                     | Measurement               | units (metres)                              |
| s                                  | pheroid                                          | GDA94                                                                                                                          | MGA                       | ZONE 54                                     |
| L                                  | atitude                                          | S 38°21'38·40"                                                                                                                 | Easting                   | 606 030-35                                  |
| L                                  | ongitude                                         | E 142°12'49.03"                                                                                                                | Northing                  | 5 753 470-16                                |
| AMO ZONE 84                        | RL TOP ORL ROTAR  T PLACED 5846-95 3236-96 12-91 | PORT FAIRY # 1 605910-12 5753293-15 DP OF CELLAR 7-67 IF WELL HEAD 7-93 RY PLATFORM 12-09  85-34  265°25'40"  102°14'20" 76-10 | 54.03.00 TOW              | 000M XJ X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y |
| Distand<br>Bearing<br>DATUM: AMG Z | gs shown are comp                                | puted grid distances.<br>outed grid bearings.<br>00, Port Fairy Steel                                                          | 179°47'05"<br>2817-35     | PM 100<br>606617-732<br>5751129-860<br>4-79 |
|                                    | datum is to AHD v                                |                                                                                                                                |                           |                                             |
| •                                  | ental error is less th                           |                                                                                                                                | PORT FAIRY STEEL          | WT                                          |
|                                    | al error is less than                            |                                                                                                                                | 605942·567<br>5750426·436 |                                             |

ABN 59521601183

Warmambool

Ph. (03) 5561 1500

Paul Crowe Surveyor **REF** "Ambleside" 192 Koroit Street 1062 TREVOR McDOWELL LICENSED SURVEYOR

| Port Fairy No. 1 WCR Appendixes    |
|------------------------------------|
|                                    |
|                                    |
|                                    |
| Appendix 2: Daily Drilling Reports |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |

#### Origin Energy Petroleum Ltd / Essential Petroleum Resources Limited. **Daily Drilling Report** WELL: Port Fairy #1 DATE: 9.01.02 Vic P-152 PERMIT: **REPORT#** RIG: Mitchell Drilling Rig #50 D.F.S. DEPTH 2400 Hrs: STATUS @ 06:00 Hrs: Prepare to spud well TVD: FORMATION: 24 HR PROGRESS: LAST CASING: SHOE L.O.T. HOLE SIZE: RT - GL / Air gap: MAASP: WD (LAT): SURVEYS: MUD PROPERTIES CONSUMABLES FORMATION DATA **ADDITIVES** Density (ppg) Funnel viscosity. Lithology РΗ Potable water Top depth RT. PV/YP(cp/lb/100ft2) Drill wate Trip gas % Gels 10secs / 10min Barite: Connection Gas % WL API(cc/30min) Background gas % Cemen WL HTHP(cc/30min) Ge ECD (ppg) Cake (1/16") Base Oi DRILLS / BOPS Solids % PUMPS 2 3 LAST BOP DRILL 1 Sand % TYPE LAST FIRE DRILL Chlorides (mg/l) STROKE(in) LAST MOB DRILL KCI % LINER(in) LAST ABN. RIG DRILL MBT(lb/bbl) SPM LAST BOP TEST Flowline Temp °C LPM **BOP TEST DUE** Hole volume bbls. AV-DP(Ft/min) HRS CUM Surface volume bbls. AV-DC(Ft/min) 1. Rig up / down. 24 24 SPP(kPa/psi) Drilling. SCR @ 40 3. Reaming. SCR @ 50 4. Trip WEATHER / RIG RESPONSE BIT DATA 5. Circ. / condition. Bit Run Wind Speed (kts) 6. Deviation survey Diameter Direction 7. Run casing Type & manufacture Temperature 8. Cementing IADC code Barometric pressure millibar 9. Handle Preventors Serial number Barometer rise / fall 10. Marine riser. Nozzles Visibility(NM) 11. Logging. Depth In (m) Sea state 12. Press. test BOP Depth Out Swell / Period / Direction 13. Repair rig. Drilled (m cum/dly) Waves / period / direction 14. Service rig. Hours (cum/dly) Heave 15. Slip / cut drlg line Dull grade Pitch 16. Drill stem test. Averade ROP (m/hr) Roll 17. Fishing. WOB Klbs Anchor tension 18. Well control. 19. Hang-off. RPM Anchor tension 21. W.O.Weather Jet velocity Riser tension VARIABLE DECK LOAD (Kips) HHP @ BIT Lost circ. 23. Plug / Abandon. BHA No. **BHA WEIGHT** STRING WT BHA Profile : 24. Mob / Demob 25. Handle anchors. DOWNHOLE TOOLS DRILLING DATA SERIAL No. ROT/REAM HRS 26. Position rig. DRAG - UP (mt) 27. Guide base / ROV DRAG - DOWN (mt) TORQUE-On Bottom (amps) TORQUE-Off Bottom (amps)

TOTAL (HRS)

## Origin Energy Petroleum Ltd / Essential Petroleum Resources Limited. DAILY DRILLING REPORT

|                                   | Port Fairy #  | 1            | ]                      |                   |                        |                     | DATE:              | 9th January 2002 |
|-----------------------------------|---------------|--------------|------------------------|-------------------|------------------------|---------------------|--------------------|------------------|
|                                   | Vic P-152     |              |                        |                   |                        |                     | REPORT #           | 1                |
| RIG:                              | Mitchell Dril | ling Rig #50 | ]                      |                   |                        |                     | D.F.S.             | 0                |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
| FROM                              | то            | HOURS        |                        |                   |                        |                     |                    |                  |
| 7:30                              | 19:30         | 12.00        | Rig up. Position drill | pipe magazines. U | nload and position sle | eeper shacks. Lav o | ut catwalk and rac | KS.              |
|                                   |               | 12.00        | Unload and stack mu    |                   |                        |                     |                    |                  |
|                                   |               |              | Hold prespud meetin    |                   |                        |                     |                    |                  |
|                                   |               |              |                        | <u> </u>          |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
| OPERATI                           | ONS TO 060    | 0 HRS:       | <u> </u>               |                   |                        |                     |                    |                  |
| · · · · · · · · · · · · · · · · · |               |              |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
| PROGRA                            | MME NEXT      | 24 HRS:      |                        |                   |                        |                     |                    |                  |
|                                   |               |              |                        |                   |                        |                     |                    |                  |
| BULK                              |               | GEL(sx)      | BARITE(sx)             | CEMENT(sx)        | DRILLWATER(mt)         | POT WATER(mt)       | DIESEL FUEL(It)    | HELI FUEL(It)    |
|                                   |               | ` '          | , ,                    | , ,               | ,                      |                     | . ,                |                  |
| PERSON                            | NEL ON RIG    |              |                        | TRANSPORTATION    | I                      |                     | COSTS              |                  |
| OPERATO                           | OR            |              |                        | NAME              | LOCATION               |                     | DAILY MUD          |                  |
| DRILLING                          | CONT.         |              | WORKBOAT               |                   |                        | CUI                 | MULATIVE MUD       |                  |
| SERVICE                           | COMPS         |              | WORKBOAT               |                   |                        |                     | DAILY WELL         |                  |
| OTHER                             |               |              | STANDBY BOAT           |                   |                        | CUM                 | ULATIVE WELL       |                  |
|                                   |               |              | HELICOPTER             |                   |                        |                     |                    |                  |
| TOTAL                             |               |              | HELICOPTER             |                   |                        |                     |                    |                  |
| SUPER                             | RVISOR(S)     |              |                        | ENGINEER          |                        |                     | OIM                |                  |

### ORIGIN ENERGY PETROLEUM LTD

### **Daily Drilling Report**

| WELL:                | Port Fairy #1       |                     | ]                     |               |                   |            | DATE:                    | 10.01.02  |     |
|----------------------|---------------------|---------------------|-----------------------|---------------|-------------------|------------|--------------------------|-----------|-----|
| PERMIT:              | Vic P-152           |                     | ]                     |               |                   |            | REPORT #                 | 2         |     |
| RIG:                 | Mitchell Drilling F | Rig #150            |                       |               |                   |            | D.F.S.                   | 1         |     |
| DEPTH 2400 Hrs:      | 31.5                |                     | STATUS @ 06:00        | Hrs:          | Wait on ceme      | nt to set. |                          |           |     |
| TVD:                 | 31.5                | <del>-</del>        | FORMATION:            |               | Newer basalt      |            |                          |           |     |
| 24 HR PROGRESS:      | 31.5                | □<br>□ LAST CASING: |                       | @             | Nower Basan       |            | SHOE L.O.T.:             |           |     |
| HOLE SIZE:           | 17½"                | _                   |                       | 1             | T - GL / Air gap: | 4.65       | MAASP:                   |           |     |
| HOLE SIZE.           | 1 / /2              | WD (LAT):           |                       | ] "           | i - GL / All yap. | 4.00       | IVIAASP.                 |           |     |
| SURVEYS:             |                     |                     |                       |               |                   |            |                          |           |     |
| MUD PROF             | PERTIES             | ADDITIVES           |                       | CONSUM        | IABLES            |            | FORMA                    | TION DATA |     |
| Density (ppg)        |                     |                     |                       | Rig           | Workboat          | Workboat   | Name                     |           |     |
| Funnel viscosity.    |                     |                     | Fuel                  |               |                   |            | Lithology                |           |     |
| PH                   |                     |                     | Potable water         |               |                   |            | Top depth RT.            |           |     |
| PV/YP(cp/lb/100ft2)  |                     |                     | Drill water           |               |                   |            | Trip gas %               |           |     |
| Gels 10secs / 10min  |                     |                     | Barites               |               |                   |            | Connection Gas %         |           |     |
| WL API(cc/30min)     |                     |                     | Cement                |               |                   |            | Background gas %         |           |     |
| WL HTHP(cc/30min)    |                     |                     | Gel                   |               |                   |            | ECD (ppg)                |           |     |
| Cake (1/16")         |                     |                     | Base Oil              |               |                   |            | DRILL                    | S / BOPS  |     |
| Solids %             |                     |                     | PUMPS                 | 1             | 2                 | 3          | LAST BOP DRILL           |           |     |
| Sand %               |                     |                     | TYPE                  |               |                   |            | LAST FIRE DRILL          |           |     |
| Chlorides (mg/l)     |                     |                     | STROKE(in)            |               |                   |            | LAST MOB DRILL           |           |     |
| KCI %                |                     |                     | LINER(in)             |               |                   |            | LAST ABN. RIG DRILL      |           |     |
| MBT(lb/bbl)          |                     |                     | SPM                   |               |                   |            | LAST BOP TEST            |           |     |
| Flowline Temp °C     |                     |                     | LPM                   |               |                   |            | BOP TEST DUE             |           |     |
| Hole volume bbls.    |                     |                     | AV-DP(Ft/min)         |               |                   |            |                          | HRS       | CUM |
| Surface volume bbls. |                     |                     | AV-DC(Ft/min)         |               |                   |            | 1. Rig up / down.        |           |     |
|                      |                     |                     | SPP(kPa/psi)          |               |                   |            | 2. Drilling.             | 3.00      |     |
|                      |                     |                     | SCR @ 40              |               |                   |            | 3. Reaming.              | 31/2      |     |
|                      |                     |                     | SCR @ 50              |               |                   |            | 4. Trip                  | 1.00      |     |
|                      | BIT DATA            |                     | V                     | VEATHER / RIG | RESPONSE          |            | 5. Circ. / condition.    | 1.00      |     |
| Bit Run              |                     |                     | Wind Speed (kts)      |               |                   |            | 6. Deviation survey      |           |     |
| Diameter             |                     |                     | Direction             |               |                   |            | 7. Run casing            | 6.00      |     |
| Type & manufacture   |                     |                     | Temperature           |               |                   |            | 8. Cementing             | 2.00      |     |
| IADC code            |                     |                     | Barometric pressu     | ıre millibar  |                   |            | 9. Handle Preventors     |           |     |
| Serial number        |                     |                     | Barometer rise / fa   | all           |                   |            | 10. Marine riser.        |           |     |
| Nozzles              |                     |                     | Visibility(NM)        |               |                   |            | 11. Logging.             |           |     |
| Depth In (m)         |                     |                     | Sea state             |               |                   |            | 12. Press. test BOP      |           |     |
| Depth Out            |                     |                     | Swell / Period / Dire | ection        |                   |            | 13. Repair rig.          |           |     |
| Drilled (m cum/dly)  |                     |                     | Waves / period / dir  | rection       |                   |            | 14. Service rig.         |           |     |
| Hours (cum/dly)      |                     |                     | Heave                 |               |                   |            | 15. Slip / cut drlg line |           |     |
| Dull grade           |                     |                     | Pitch                 |               |                   |            | 16. Drill stem test.     |           |     |
| Averade ROP (m/hr)   |                     |                     | Roll                  |               |                   |            | 17. Fishing.             |           |     |
| WOB Klbs             |                     |                     | Anchor tension        |               |                   |            | 18. Well control.        |           |     |
| RPM                  |                     |                     | Anchor tension        |               |                   |            | 19. Hang-off.            |           |     |
| Jet velocity         |                     |                     | Riser tension         |               |                   |            | 21. W.O.Weather          |           |     |
| HHP @ BIT            |                     |                     | VARIABLE DECK         | LOAD (Kips)   |                   |            | 22. Lost circ.           |           |     |
| BHA No.              |                     | BHA WEIGHT          |                       |               | STRING WT         |            | 23. Plug / Abandon.      |           |     |
| BHA Profile :        |                     |                     |                       |               |                   |            | 24. Mob / Demob          |           |     |
|                      | 1                   | <u> </u>            | 11                    |               |                   |            | 25. Handle anchors.      |           |     |
| DOWNHOLE TOOLS       | SERIAL No.          | ROT/REAM HRS        |                       | DRILLING      | G DATA            |            | 26. Position rig.        |           |     |
|                      |                     |                     | DRAG - UP (mt)        |               |                   |            | 27. Guide base / ROV.    |           |     |
|                      |                     |                     | DRAG - DOWN (r        |               |                   |            | 28. Others               | 1/2       |     |
|                      |                     |                     | TORQUE-On Bott        |               |                   |            |                          |           |     |
|                      |                     |                     | TORQUE-Off Bott       | tom (amps)    |                   |            |                          |           |     |
|                      |                     | 1                   |                       |               | 1                 |            | TOTAL (HRS)              | 17.00     | 0   |

### **ORIGIN ENERGY PETREOLEUM LTD**

#### **DAILY DRILLING REPORT**

| WELL: Port Fairy #1             | WELL:   |
|---------------------------------|---------|
| PERMIT: Vic P-152               | PERMIT: |
| RIG: Mitchell Drilling Rig #150 | RIG:    |

SERVICE COMPS

SUPERVISOR(S)

OTHER

TOTAL

WORKBOAT

HELICOPTER

HELICOPTER

W.J. WESTMAN

STANDBY BOAT

ENGINEER

DATE: REPORT #

DAILY WELL

OIM

CUMULATIVE WELL

10th January 2002

| FROM     | то         | HOURS   |                     |                        |                           |                   |                  |               |
|----------|------------|---------|---------------------|------------------------|---------------------------|-------------------|------------------|---------------|
| 0:00     | 7:00       | 12.00   | Crew rest period.   |                        |                           |                   |                  |               |
| 7:00     | 7:00       | 12.00   |                     | 171/4" hole to 2m. Drs | ag bit wouldn't drill thr | ough rocks @2m    |                  |               |
| 7:15     | 8:30       | 11/4    |                     | ammer assy. to drill a |                           | ough focks @Ziff. |                  |               |
| 8:30     | 11:30      | 3.00    |                     |                        | ream conductor hole.      | No progress made  | Pooh             |               |
| 11:30    | 17:30      | 6.00    |                     |                        | ement in 2m conduct       |                   |                  |               |
| 17:30    | 18:00      | 1/2     | Ream 17½" hole 2r   |                        | oment in 2m conduct       | 01.               |                  |               |
| 18:00    | 20:45      | 23/4    | Drill 10m-31.5m. Ba |                        |                           |                   |                  |               |
| 20:45    | 21:30      | 3/4     |                     | nole. Sand evident.    | Basalt caving.            |                   |                  |               |
| 21:30    | 22:00      | 1/2     | POOH. L/d hamme     |                        |                           |                   |                  |               |
| 22:00    | 0:00       | 2.00    |                     | H. Rig up cementing    | a equipment.              |                   |                  |               |
| 0:00     | 1:00       | 1.00    | Mix & spot cement   |                        |                           |                   |                  |               |
| 1:00     | 6:00       | 5.00    | POOH. WOC           |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
| -        |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
| DED AT   | ONS TO 060 | n upe.  | 1                   |                        |                           |                   |                  |               |
| PERAII   | JNS 10 000 | u nko.  |                     |                        |                           |                   |                  |               |
|          |            |         |                     |                        |                           |                   |                  |               |
| POCRA    | AME NEVT   | 24 UDC: |                     |                        |                           |                   |                  |               |
| RUGRAI   | MME NEXT   | 24 HKS: |                     |                        |                           |                   |                  |               |
| DIII 1/  |            | OFI ( ) | DADITE( )           | OFMENT( )              | DDII I WATER ( )          | DOT WATER ( *)    | DIEGEL EUEL (IS) | HELLEUEL 90   |
| BULK     |            | GEL(sx) | BARITE(sx)          | CEMENT(sx)             | DRILLWATER(mt)            | POT WATER(mt)     | DIESEL FUEL(It)  | HELI FUEL(It) |
| EDCON    | IEL ON DIO |         |                     | TRANSPORTATION         | NI                        |                   | COSTS            |               |
|          | IEL ON RIG |         |                     | TRANSPORTATION         | 1                         |                   | COSTS            |               |
| PERATO   |            | OCA     | WORKBOAT            | NAME                   | LOCATION                  |                   | DAILY MUD        |               |
| DRILLING |            | MDC     | WORKBOAT            | -                      |                           | CU                | MULATIVE MUD     |               |

#### Origin Energy Petroleum Ltd / Essential Petroleum Resources Limited. **Daily Drilling Report** WELL: Port Fairy #1 DATE: 11.01.02 PERMIT: Vic P-152 **REPORT#** 3 RIG: Mitchell Drilling Rig #150 D.F.S. DEPTH 2400 Hrs: STATUS @ 06:00 Hrs: Running 13.375" conductor 78.2 TVD: FORMATION: Port Campbell Lst 24 HR PROGRESS: LAST CASING: NA SHOE L.O.T. HOLE SIZE: MAASP: RT - GL / Air gap: 17½ WD (LAT): 4.5 SURVEYS: MUD PROPERTIES FORMATION DATA **ADDITIVES CONSUMABLES** Density (ppg) Funnel viscosity. Lithology РΗ Potable wate Top depth RT. PV/YP(cp/lb/100ft2) Drill wate Trip gas % Gels 10secs / 10min Connection Gas % Barite WL API(cc/30min) Background gas % Cemen WL HTHP(cc/30min) Ge ECD (ppg) Cake (1/16") Base Oil DRILLS / BOPS Solids % PUMPS 2 3 LAST BOP DRILL 1 Sand % TYPE LAST FIRE DRILL Chlorides (mg/l) STROKE(in) LAST MOB DRILL KCI % LINER(in) LAST ABN. RIG DRILL MBT(lb/bbl) SPM LAST BOP TEST Flowline Temp °C LPM BOP TEST DUE Hole volume bbls AV-DP(Ft/min) HRS CUM Surface volume bbls. AV-DC(Ft/min) 1. Rig up / down. 6.00 6.00 SPP(kPa/psi) Drilling. 3.00 9.00 SCR @ 40 3. Reaming. 5.50 14 50 SCR @ 50 4. Trip 3.75 18.25 WEATHER / RIG RESPONSE BIT DATA 5. Circ. / condition. 18.25 Bit Run Wind Speed (kts) 6. Deviation survey 18.25 Diameter Direction 7. Run casing 2.00 20.25 Type & manufacture Temperature 8. Cementing 1.00 21.25 IADC code Barometric pressure millibar 9. Handle Preventors 21.25 Serial number Barometer rise / fall 10. Marine riser. 21.25 Nozzles Visibility(NM) 11. Logging. 21.25 Depth In (m) Sea state 12. Press. test BOP 21.25 Depth Out Swell / Period / Direction 13. Repair rig. 21.25 Drilled (m cum/dly) Waves / period / direction 14. Service rig. 0.25 21.50 Hours (cum/dly) Heave 15. Slip / cut drlg line 21.50 Dull grade Pitch 16. Drill stem test. 21.50 Averade ROP (m/hr) Roll 17. Fishing. 21.50 WOB Klbs Anchor tension 18. Well control. 21.50 RPM Anchor tension 19. Hang-off. 21.50 Jet velocity Riser tension 21. W.O.Weather 21.50 VARIABLE DECK LOAD (Kips) HHP @ BIT Lost circ. 21.50 23. Plug / Abandon. BHA No. **BHA WEIGHT** STRING WT 21.50 BHA Profile : 24. Mob / Demob 21.50 25. Handle anchors. 21.50 DOWNHOLE TOOLS DRILLING DATA SERIAL No. ROT/REAM HRS 26. Position rig. 21.50 DRAG - UP (mt) 27. Guide base / ROV 21.50 DRAG - DOWN (mt) 24.00 28. Others 2.50 TORQUE-On Bottom (amps) TORQUE-Off Bottom (amps) TOTAL (HRS) 24.00

## Origin Energy Petroleum Ltd / Essential Petroleum Resources Limited. DAILY DRILLING REPORT

| WELL:   | Port Fairy #1              | DATE:    | 11th January 2002 |
|---------|----------------------------|----------|-------------------|
| PERMIT: | Vic P-152                  | REPORT # | 3                 |
| RIG:    | Mitchell Drilling Rig #150 | D.F.S.   | 2                 |

| FROM  | то    | HOURS |                                                            |
|-------|-------|-------|------------------------------------------------------------|
| 6:00  | 7:00  | 1:00  | WOC                                                        |
| 7:00  | 11:00 | 4:00  | R/u mud tank                                               |
| 11:00 | 12:00 | 1:00  | RIH. Drill loss circ.                                      |
| 12:00 | 13:30 | 1:30  | Build volume                                               |
| 13:30 | 14:00 | 0:30  | Drill - loss circ                                          |
| 14:00 | 14:30 | 0:30  | Build volume & set up 6" mud pump.                         |
| 14:30 | 16:30 | 2:00  | Drill partial to full returns - 55m.                       |
| 16:30 | 17:00 | 0:30  | Build volume                                               |
| 17:00 | 17:30 | 0:30  | Drill to 65m                                               |
| 17:30 | 18:45 | 1:15  | Circ. Ream. POOH                                           |
| 18:45 | 19:30 | 0:45  | POOH break bit                                             |
| 19:30 | 20:30 | 1:00  | RIH with drag bit.                                         |
| 20:30 | 20:45 | 0:15  | Stopped 2m off btm. To repair remote control of mud pump.  |
| 20:45 | 1:00  | 4:15  | Ream hole with drag bit. 78.2m                             |
| 1:00  | 2:00  | 1:00  | POOH.                                                      |
| 2:00  | 4:00  | 2:00  | R/u Casing equipment. Remove MDC conductor T-piece.        |
| 2.00  | 4.00  | 2.00  | Conduct pre-casing safety meeting. Raised Hot Work Permit. |
| 4:00  | 6:00  | 2:00  | RIH with 13.375" conductor.                                |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       | 1     |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |
|       |       |       |                                                            |

#### OPERATIONS TO 0600 HRS:

#### PROGRAMME NEXT 24 HRS:

| BULK             | GEL(sx) | BARITE(sx)     | CEMENT(sx) | DRILLWATER(mt) | POT WATER(mt) | DIESEL FUEL(It) | HELI FUEL(It) |
|------------------|---------|----------------|------------|----------------|---------------|-----------------|---------------|
|                  |         |                |            |                |               |                 |               |
| PERSONNEL ON RIG |         | TRANSPORTATION |            |                | COSTS         |                 |               |
| OPERATOR         | OCA     |                | NAME       | LOCATION       |               | DAILY MUD       |               |
| DRILLING CONT.   | MDC     | WORKBOAT       |            |                | CU            | MULATIVE MUD    |               |
| SERVICE COMPS    |         | WORKBOAT       |            |                |               | DAILY WELL      |               |
| OTHER            |         | STANDBY BOAT   |            |                | CUM           | IULATIVE WELL   |               |
|                  |         | HELICOPTER     |            |                |               |                 |               |
| TOTAL            |         | HELICOPTER     |            |                |               |                 |               |
| SUPERVISOR(S)    | W.J.    | WESTMAN        | ENGINEER   | -              | OIM           |                 |               |

## Origin Energy Ltd / Essential Petroleum Resources Limited. Daily Drilling Report

| WELL:                     | Port Fairy #1       |                 |                       |               |                    |          | DATE:                       | 12.01.02    |               |
|---------------------------|---------------------|-----------------|-----------------------|---------------|--------------------|----------|-----------------------------|-------------|---------------|
| PERMIT:                   | Vic P-152           |                 | ]                     |               |                    |          | REPORT #                    | 4           |               |
| RIG:                      | Mitchell Drilling R | tig #150        | ]                     |               |                    |          | D.F.S.                      | 3           | ]             |
| DEPTH 2400 Hrs:           | 140.30 m            | 1               | STATUS @ 06:00 H      | Hrs:          | drilling 12 1/4"   | hole     |                             |             |               |
| TVD:                      |                     | 1               | FORMATION:            |               | Port Campbell Li   | mestone  |                             |             |               |
| 24 HR PROGRESS:           | 62.10 m             | LAST CASING:    | 13 3/8"               | @             | 67.4m              |          | SHOE L.O.T.:                | N/A         | ]             |
| HOLE SIZE:                | 12 1/4"             | WD (LAT):       |                       |               | RT - GL / Air gap: | 4.5m     | MAASP:                      | N/A         | ]             |
| SURVEYS:                  |                     | . ,             |                       |               |                    |          | _                           |             | 1             |
| MUD PROF                  | PERTIES             | ADDITIVES       |                       | CONSU         | MABLES             |          | FORMA                       | TION DATA   |               |
| Sample taken @            | 24:00hrs            | 58              |                       | Rig           | Workboat           | Workboat | Name                        | Port Campbe | ell Limestone |
| Flowline Temp °C          | -                   |                 | Fuel                  | 9             |                    |          | Lithology                   |             |               |
| Density (ppg)             | 8.55                |                 | Potable water         |               |                    |          | Top depth RT.               | 44.50       | ) m           |
| Funnel viscosity.         | 45                  |                 | Drill water           |               |                    |          | Trip gas %                  |             |               |
| PV/YP(cp/lb/100ft2)       | 12                  |                 | Barites               |               |                    |          | Connection Gas %            |             |               |
| Gels 10secs / 10min       | 13                  | 16              | Cement                |               |                    |          | Background gas %            |             |               |
| WL API(cc/30min)          | -                   | 26              | Gel                   |               |                    |          | ECD (ppg)                   |             |               |
| WL HTHP(cc/30min)         | -                   | 20              | Base Oil              |               |                    |          |                             | S / BOPS    |               |
| Cake (1/32")              | _                   |                 | PUMPS                 | 1             | 2                  | 3        | LAST BOP DRILL              | 37 001 3    |               |
| Solids %                  | 1.6                 |                 | TYPE                  | SOILMEC       | 2                  | <u> </u> | LAST FIRE DRILL             |             |               |
| Sand %                    | 0                   |                 | STROKE(in)            | 7"            |                    |          | LAST MOB DRILL              |             |               |
| MBT(lb/bbl)               | 17.5                |                 | LINER(in)             | 7"            |                    |          | LAST ABN. RIG DRILL         |             |               |
| PH                        | 10                  |                 | SPM                   | 140           |                    |          | LAST ABN. RIG DRILL         |             |               |
|                           |                     |                 | GPM                   | 480           |                    |          | BOP TEST DUE                |             |               |
| Chlorides (mg/l)<br>KCl % | -                   |                 | AV-DP(Ft/min)         | 83            |                    |          | BOP TEST DUE                | HRS         | CUM           |
|                           | -                   |                 | · ' '                 | 102           |                    |          | 1 Dig up / down             | 8.75        | 38.75         |
| PHPA (Calc ppb)           | -                   |                 | AV-DC(Ft/min)         | 367           |                    |          | Rig up / down.     Drilling |             |               |
| Hala calcus a bala        | 22                  |                 | SPP(kPa/psi)          | 307           |                    |          | 2. Drilling.                | 4.50        | 10.50         |
| Hole volume bbls.         | 32                  |                 | SCR @ 40              |               |                    |          | 3. Reaming.                 | 2.00        | / 75          |
| Surface volume bbls.      | 213                 |                 | SCR @ 50              | /EATUED / DIC | DECDONCE           |          | 4. Trip                     | 2.00        | 6.75          |
| D:: D                     | BIT DATA            | 1               | <b></b>               | /EATHER / RIC | RESPUNSE           |          | 5. Circ. / condition.       |             |               |
| Bit Run                   | 2                   |                 | Wind Speed (kts)      |               |                    |          | 6. Deviation survey         | 4.50        | 0.50          |
| Diameter                  | 12 1/4"             |                 | Direction             |               |                    |          | 7. Run casing               | 1.50        | 9.50          |
| Type & manufacture        | 122ETRIGMPS VAR     | (EL             | Temperature           |               |                    |          | 8. Cementing                | 5.75        | 8.75          |
| IADC code                 | 445747              |                 | Barometric pressu     |               |                    |          | 9. Handle Preventors        |             |               |
| Serial number             | 165767              |                 | Barometer rise / fa   | III           |                    |          | 10. Marine riser.           |             |               |
| Nozzles                   | 16-16-20            |                 | Visibility(NM)        |               |                    |          | 11. Logging.                |             |               |
| Depth In (m)              | 78m                 |                 | Sea state             |               |                    |          | 12. Press. test BOP         |             |               |
| Depth Out                 | -                   |                 | Swell / Period / Dire |               |                    |          | 13. Repair rig.             | 1.50        | 1.50          |
| Drilled (m cum/dly)       |                     |                 | Waves / period / dire | ection        |                    |          | 14. Service rig.            |             | 0.25          |
| Hours (cum/dly)           |                     |                 | Heave                 |               |                    |          | 15. Slip / cut drlg line    |             |               |
| Dull grade                |                     |                 | Pitch                 |               |                    |          | 16. Drill stem test.        |             |               |
| Average ROP (m/hr)        |                     |                 | Roll                  |               |                    |          | 17. Fishing.                |             |               |
| WOB Klbs                  |                     |                 | Anchor tension        |               |                    |          | 18. Well control.           |             |               |
| RPM                       |                     |                 | Anchor tension        |               |                    |          | 19. Hang-off.               |             |               |
| Jet velocity              |                     |                 | Riser tension         |               |                    |          | 21. W.O.Weather             |             |               |
| HHP @ BIT                 |                     |                 | VARIABLE DECK         | LOAD (Kips)   |                    |          | 22. Lost circ.              |             |               |
| BHA No.                   | 1                   | BHA WEIGHT      | L                     | •             | STRING WT          |          | 23. Plug / Abandon.         |             |               |
| BHA Profile :             | 12.25" BIT - 2x8"DC | - 1x8"STAB XOVE | R - 16x6.25"DC - JA   | RS - XOVER -  | 3.5"DRILL PIPE     |          | 24. Mob / Demob             |             |               |
|                           |                     |                 |                       |               |                    |          | 25. Handle anchors.         |             |               |
| DOWNHOLE TOOLS            | SERIAL No.          | ROT/REAM HRS    |                       | DRILLIN       | IG DATA            |          | 26. Position rig.           |             |               |
|                           |                     |                 | DRAG - UP (mt)        |               |                    |          | 27. Guide base / ROV.       |             |               |
|                           |                     |                 | DRAG - DOWN (n        | nt)           |                    |          | 28. Others                  |             | 3.00          |
|                           |                     |                 | TORQUE-On Botte       | om (amps)     |                    |          |                             |             |               |
|                           |                     |                 | TORQUE-Off Botte      | om (amps)     |                    |          |                             |             |               |
|                           |                     |                 |                       |               |                    |          | TOTAL (HRS)                 | 24.00       | 79.00         |

## Origin Energy Ltd / Essential Petroleum Resources Limited. DAILY DRILLING REPORT

| WELL:   | Port Fairy #1              | DATE:    | 12th January 2002 |
|---------|----------------------------|----------|-------------------|
| PERMIT: | Vic P-152                  | REPORT # | 4                 |
| RIG:    | Mitchell Drilling Rig #150 | D.F.S.   | 3                 |

| FROM      | ТО         | HOURS  |                                                                              |
|-----------|------------|--------|------------------------------------------------------------------------------|
| 6:00      | 7:30       | 1:30   | Conduct pre-tour meeting. Set conductor in slips. Rig down casing elevators. |
| 7:30      | 9:00       | 1:30   | Rig up cementing equipment. Mix cement                                       |
| 9:00      | 13:15      | 4:15   | Cementing.                                                                   |
| 13:15     | 22:00      | 8:45   | R/u riser, bell nipple, flowline, shaker, etc. Mix mud. Organise BHA.        |
| 22:00     | 0:00       | 2:00   | RIH with 12 1/4" Varel bit -S/N 165767 (2x 16/32 . 1x 20/32 ) Tag @ 57.88m   |
| 0:00      | 1:30       | 1:30   | Repair shaker electrics                                                      |
| 1:30      | 3:15       | 1:45   | Drill out shoe                                                               |
| 3:15      | 6:00       | 2:45   | Drilling Depth= 140.3m instantaneous ROP=360 m/hr @6am                       |
|           |            |        |                                                                              |
|           |            |        | survey 148m 1deg                                                             |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           |            |        |                                                                              |
|           | ļ          |        |                                                                              |
|           |            |        |                                                                              |
| OPERATION | ONS TO 060 | 0 HRS: |                                                                              |

#### **OPERATIONS TO 0600 HRS:**

#### PROGRAMME NEXT 24 HRS:

| BULK             | GEL(sx) | BARITE(sx)   | CEMENT(sx)     | DRILLWATER(mt) | POT WATER(mt) | DIESEL FUEL(It) | HELI FUEL(It) |
|------------------|---------|--------------|----------------|----------------|---------------|-----------------|---------------|
|                  |         |              |                |                |               |                 |               |
| PERSONNEL ON RIG |         |              | TRANSPORTATION | ı              |               | COSTS           |               |
| OPERATOR         | OCA     |              | NAME           | LOCATION       |               | DAILY MUD       |               |
| DRILLING CONT.   | MDC     | WORKBOAT     |                |                | CUI           | MULATIVE MUD    |               |
| SERVICE COMPS    |         | WORKBOAT     |                |                |               | DAILY WELL      |               |
| OTHER            |         | STANDBY BOAT |                |                | CUM           | IULATIVE WELL   |               |
|                  |         | HELICOPTER   |                |                |               |                 |               |
| TOTAL            |         | HELICOPTER   |                |                |               |                 |               |
| SUPERVISOR(S)    | W.J. '  | WESTMAN      | ENGINEER       |                |               | OIM             |               |

# Origin Energy Ltd / Essential Petroleum Resources Limited. Daily Drilling Report

| WELL:                | Port Fairy #1       |                |                       |                  |                   |          | DATE:                    | 13.01.02  |        |
|----------------------|---------------------|----------------|-----------------------|------------------|-------------------|----------|--------------------------|-----------|--------|
| PERMIT:              | Vic P-152           |                | j                     |                  |                   |          | REPORT #                 | 5         |        |
| RIG:                 | Mitchell Drilling R | ig #150        |                       |                  |                   |          | D.F.S.                   | 4         | j      |
| DEPTH 0600 Hrs:      | /74.00 m            | <br>1          | STATUS @ 06:00 H      | Urcı             | drilling 12 1/4"  | holo     |                          |           |        |
|                      | 674.00 m            | ]<br>1         |                       | П. 5.            |                   | TIOIC    |                          |           |        |
| TVD:                 | 674.00 m            | ]<br>1         | FORMATION:            |                  | Top Progrades     |          |                          |           | 1      |
| 24 HR PROGRESS:      | 533.70 m            | LAST CASING:   |                       | @                | 67.4m             |          | SHOE L.O.T.:             | N/A       | ]      |
| HOLE SIZE:           | 12 1/4"             | WD (LAT):      | N/A                   | R                | T - GL / Air gap: | 4.5m     | MAASP:                   | N/A       |        |
| SURVEYS:             | Survey @ 450m 1 de  | eg             |                       |                  |                   |          |                          |           |        |
| MUD PROP             | PERTIES             |                |                       | CONSUN           | IABLES            |          | FORMA                    | TION DATA |        |
| Sample taken @       | 09:00 / 245m        | 23:30 / 548    |                       | Rig              | Workboat          | Workboat | Name                     | Top Pro   | grades |
| Flowline Temp °C     | -                   | -              | Fuel                  |                  |                   |          | Lithology                | 1         |        |
| Weight ppg/SG        | 9.1 / 1.09          | 9.25 / 1.11    | Potable water         |                  |                   |          | Top depth RT.            | 633.5     | 0 m    |
| Funnel viscosity.    | 49                  | 38             | Drill water           |                  |                   |          | Trip gas %               |           |        |
| PV/YP(cp/lb/100ft2)  | 28                  | 14             | Barites               |                  |                   |          | Connection Gas %         |           |        |
| Gels 10secs / 10min  | 22 / 35             | 4 / 21         | Cement                |                  |                   |          | Background gas %         |           |        |
| WL API(cc/30min)     | N/C                 | 10             | Gel                   |                  |                   |          | ECD (ppg)                |           |        |
| WL HTHP(cc/30min)    | -                   | -              | Base Oil              |                  |                   |          | DRILL                    | S / BOPS  |        |
| Cake (1/32")         | -                   | -              | PUMPS                 | 1                | 2                 | 3        | LAST BOP DRILL           | - 1       |        |
| Solids %             | 5.7                 | 6.8            | TYPE                  | SOILMEC          |                   |          | LAST FIRE DRILL          |           |        |
| Sand %               | .75                 | 1              | STROKE(in)            | 7"               |                   |          | LAST MOB DRILL           |           |        |
| MBT(lb/bbl)          | 25                  | 25             | LINER(in)             | 7"               |                   |          | LAST ABN. RIG DRILL      |           |        |
| PH                   | 9.5                 | 8.5            | SPM                   | 140              |                   |          | LAST BOP TEST            |           |        |
| Chlorides (mg/l)     | 1000                | 1500           | GPM                   | 480              |                   |          | BOP TEST DUE             |           |        |
| KCI%                 |                     |                | AV-DP(Ft/min)         | 83               |                   |          |                          | HRS       | CUM    |
| PHPA (Calc ppb)      | -                   |                | AV-DC(Ft/min)         | 102              |                   |          | 1. Rig up / down.        |           | 38.75  |
| , II /               |                     |                | SPP(kPa/psi)          | 367              |                   |          | 2. Drilling.             | 17.50     | 28.00  |
| Hole volume bbls.    |                     |                | SCR @ 40              |                  |                   |          | 3. Reaming.              |           |        |
| Surface volume bbls. | 237                 | 190            | SCR @ 50              |                  |                   |          | 4. Trip                  |           | 6.75   |
|                      | BIT DATA            | l .            |                       | /EATHER / RIG    | RESPONSE          |          | 5. Circ. / condition.    |           |        |
| Bit Run              | 2                   |                | Wind Speed (kts)      |                  |                   |          | Deviation survey         | 1.00      |        |
| Diameter             | 12 1/4"             |                | Direction             |                  |                   |          | 7. Run casing            |           | 9.50   |
| Type & manufacture   | 122ETRIGMPS VAR     | EL             | Temperature           |                  |                   |          | 8. Cementing             |           | 8.75   |
| IADC code            |                     |                | Barometric pressu     | re millibar      |                   |          | 9. Handle Preventors     |           |        |
| Serial number        | 165767              |                | Barometer rise / fa   |                  |                   |          | 10. Marine riser.        |           |        |
| Nozzles              | 16-16-20            |                | Visibility(NM)        |                  |                   |          | 11. Logging.             |           |        |
| Depth In (m)         | 78m                 |                | Sea state             |                  |                   |          | 12. Press. test BOP      |           |        |
| Depth Out            | -                   |                | Swell / Period / Dire | ection           |                   |          | 13. Repair rig.          |           | 1.50   |
| Drilled (m cum/dly)  |                     |                | Waves / period / dire |                  |                   |          | 14. Service rig.         |           | 0.25   |
| Hours (cum/dly)      |                     |                | Heave                 |                  |                   |          | 15. Slip / cut drlg line |           |        |
| Dull grade           |                     |                | Pitch                 |                  |                   |          | 16. Drill stem test.     |           |        |
| Average ROP (m/hr)   |                     |                | Roll                  |                  |                   |          | 17. Fishing.             |           |        |
| WOB Klbs             |                     |                | Anchor tension        |                  |                   |          | 18. Well control.        |           |        |
| RPM                  |                     |                | Anchor tension        |                  |                   |          | 19. Hang-off.            |           |        |
| Jet velocity         |                     |                | Riser tension         |                  |                   |          | 21. W.O.Weather          |           |        |
| HHP @ BIT            |                     |                | VARIABLE DECK         | I OAD (Kins)     | 1                 |          | 22. Lost circ.           |           |        |
| BHA No.              | 1                   | BHA WEIGHT     |                       | 207.12 (1.1.190) | STRING WT         |          | 23. Plug / Abandon.      |           |        |
| BHA Profile :        | 12.25" BIT - 2x8"DC | 4              | L                     | RS - XOVFR - 3   | L                 |          | 24. Mob / Demob          |           |        |
| Britti Tome .        | 12.20 011 2.00 00   | THO STAB. HOVE | 10.0.20 00 371        | NO NOVER O       | .o Divice i ii e  |          | 25. Handle anchors.      |           |        |
| DOWNHOLE TOOLS       | SERIAL No.          | ROT/REAM HRS   |                       | DRILLING         | 3 DATA            |          | 26. Position rig.        |           |        |
| SOMMINGE TOOLS       | JERIAL NO.          | AO IALAWIING   | DRAG - UP (mt)        | DIVILLIAN        | - J               |          |                          |           |        |
|                      |                     |                | DRAG - DOWN (m        | nt)              |                   |          | 27. Guide base / ROV.    | 5.50      | 8.50   |
|                      | 1                   |                | TORQUE-On Botto       | -                |                   |          | 28. Others               | 3.30      | 0.50   |
|                      | 1                   |                | TORQUE-Off Botto      |                  |                   |          | -                        |           |        |
|                      | 1                   |                | TORQUE-OII BUIL       | om (amps)        |                   |          | TOTAL (HRS)              | 24.00     | 102.00 |
|                      | I                   |                |                       |                  |                   |          | IOIAL (IIK3)             | 44.00     | 102.00 |

## Origin Energy Ltd / Essential Petroleum Resources Limited. DAILY DRILLING REPORT

| WELL:   | Port Fairy #1              |  |
|---------|----------------------------|--|
| PERMIT: | Vic P-152                  |  |
| RIG:    | Mitchell Drilling Rig #150 |  |

SUPERVISOR(S)

W.J. WESTMAN

ENGINEER

DATE: REPORT # D.F.S. 13th January 2002 5

| RIG:    | Mitchell Dril | ling Rig #150 |                      |                          |                      |                       | D.F.S.           | 4                                       |
|---------|---------------|---------------|----------------------|--------------------------|----------------------|-----------------------|------------------|-----------------------------------------|
|         |               |               |                      |                          |                      |                       |                  |                                         |
| FROM    | то            | HOURS         |                      |                          |                      |                       |                  |                                         |
| 6:00    | 6:30          | 0:30          | Drilling ahead       |                          |                      |                       |                  |                                         |
| 6:30    | 6:45          | 0:15          | Survey conducted (   | @ 148m 1deg.             |                      |                       |                  |                                         |
| 6:45    | 9:30          | 2:45          | Drilling ahead. Pre- | tour safety meeting.     |                      |                       |                  |                                         |
| 9:30    | 12:45         | 3:15          | Clear & Modify Flow  | vline, add jetting lines | S.                   |                       |                  |                                         |
| 12:45   | 13:45         | 1:00          | Drilling ahead.      |                          |                      |                       |                  |                                         |
| 13:45   | 14:15         | 0:30          | Circ. Survey @ 299   | m 1.5 deg.               |                      |                       |                  |                                         |
| 14:15   | 19:15         | 5:00          | Drilling ahead. Pre- | tour safety meeting.     |                      |                       |                  |                                         |
| 19:15   | 19:30         | 0:15          | Survey conducted (   | @ 450m 1deg.             |                      |                       |                  |                                         |
| 19:30   | 23:30         | 4:00          | Drill ahead. Workin  | g joints up & down to    | help break up cutti  | ngs prior to connecti | ions. Prep       | . Csg.                                  |
|         |               |               | Dilwyn Formation re  | eturns. Drilling break   | @500m. Drill ahea    | ıd.                   |                  |                                         |
| 23:30   | 0:00          | 0:30          | Lost prime on mud    | pump. Cleaned unde       | er suction/discharge | valves.               |                  |                                         |
| 0:00    | 0:30          | 0:30          | Drill ahead.         | •                        |                      |                       |                  |                                         |
| 0:30    | 1:45          | 1:15          | Lost prime on mud    | pump. Cleaned unde       | er suction/discharge | valves. Flushed su    | ction hose.      |                                         |
|         |               |               |                      | o. Suspected that lar    |                      |                       |                  |                                         |
| 1:45    | 4:15          | 2:30          | Drill ahead          | · .                      |                      |                       |                  |                                         |
| 4:15    | 5:15          | 1:00          | Lost prime on mud    | pump. Cleaned unde       | er suction/discharge | valves. Bled air out  | of pump.         |                                         |
| 5:15    | 6:00          | 0:45          | Drill ahead.         | F F                      | <u>g-</u>            |                       |                  |                                         |
| 00      | 0.00          | 0.10          |                      |                          |                      |                       |                  |                                         |
|         | -             |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
| PERAT   | IONS TO 06    | 00 HRS:       |                      |                          |                      |                       |                  |                                         |
|         |               |               | Drill to 750m        |                          |                      |                       |                  |                                         |
|         |               |               |                      |                          |                      |                       |                  |                                         |
| ROGRA   | MME NEXT      | 24 HRS:       | Circ. 2x btms up or  | till returns are clean.  | Wiper trip. Run ca   | sing & cement.        |                  |                                         |
|         |               |               |                      |                          |                      | <del>-</del>          |                  |                                         |
| BULK    |               | CEL (ov)      | DADITE(ov)           | CEMENT(ov)               | DDILLWATER(mt)       | DOT WATER(mt)         | DIESEL ELIEL/III | HELLEUEL/I                              |
| BULK    |               | GEL(sx)       | BARITE(sx)           | CEMENT(sx)               | DRILLWATER(IIII)     | POT WATER(mt)         | DIESEL FUEL(II)  | HELI FUEL(II                            |
|         |               |               | 1                    | <u> </u>                 |                      |                       |                  |                                         |
| ERSON   | NEL ON RIC    | 3             | ,                    | TRANSPORTATION           | ı                    |                       | COSTS            |                                         |
| PERAT   | OR            | OCA           |                      | NAME                     | LOCATION             |                       | DAILY MUD        | \$1,029.76                              |
| RILLING | CONT.         | MDC           | WORKBOAT             |                          |                      | CUM                   | MULATIVE MUD     | \$1,885.44                              |
|         | COMPS         |               | WORKBOAT             |                          |                      | 30                    | DAILY WELL       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|         | JOINT J       |               | +                    |                          |                      | CLIM                  |                  | <u> </u>                                |
| THER    |               |               | STANDBY BOAT         |                          |                      | CUMI                  | ULATIVE WELL     |                                         |
|         |               |               | HELICOPTER           |                          |                      |                       |                  |                                         |
| TOTAL   |               |               | HELICOPTER           |                          |                      |                       |                  |                                         |

## Essential Petroleum Resources Limited. Daily Drilling Report

| WELL:                | Port Fairy #1       |              |                       |               |                   |          | DATE:                    | 14.01.02  |        |
|----------------------|---------------------|--------------|-----------------------|---------------|-------------------|----------|--------------------------|-----------|--------|
| PERMIT:              | Vic P-152           |              | ]                     |               |                   |          | REPORT #                 | 6         |        |
| RIG:                 | Mitchell Drilling R | ig #150      | ]                     |               |                   |          | D.F.S.                   | 5         | ]      |
| DEPTH 0600 Hrs:      | 821.00 m            |              | STATUS @ 06:00 H      | Hrs:          | Running casin     | g        |                          |           |        |
| TVD:                 | 821.00 m            |              | FORMATION:            |               | N/A               |          |                          |           |        |
| 24 HR PROGRESS:      | 147.00 m            | LAST CASING: | 13 3/8"               | @             | 67.4m             |          | SHOE L.O.T.:             | N/A       |        |
| HOLE SIZE:           | 12 1/4"             | WD (LAT):    |                       | R             | T - GL / Air gap: | 4.5m     | MAASP:                   | N/A       | j      |
| SURVEYS:             | Survey @ 821m Misr  | un           |                       |               |                   |          |                          |           | -      |
| MUD PROF             | PERTIES             |              |                       | CONSUM        | MABLES            |          | FORMA                    | TION DATA |        |
| Sample taken @       | 14:00 / 818         | 21:30 / 821  |                       | Rig           | Workboat          | Workboat | Name                     | N/        | /A     |
| Flowline Temp °C     | -                   | -            | Fuel                  |               |                   |          | Lithology                |           |        |
| Weight ppg/SG        | 9.3 /1.12           | 9.25 / 1.11  | Potable water         |               |                   |          | Top depth RT.            |           |        |
| Funnel viscosity.    | 39                  | 40           | Drill water           |               |                   |          | Trip gas %               |           |        |
| PV/YP(cp/lb/100ft2)  | 8 / 10              | 08-Nov       | Barites               |               |                   |          | Connection Gas %         |           |        |
| Gels 10secs / 10min  | 3 / 15              | 5 / 14       | Cement                |               |                   |          | Background gas %         |           |        |
| WL API(cc/30min)     | 20                  | 18           | Gel                   |               |                   |          | ECD (ppg)                |           |        |
| WL HTHP(cc/30min)    | -                   | -            | Base Oil              |               |                   |          |                          | S / BOPS  |        |
| Cake (1/32")         | -                   | -            | PUMPS                 | 1             | 2                 | 3        | LAST BOP DRILL           | <u> </u>  |        |
| Solids %             | 7.2                 | 6.8          | TYPE                  | SOILMEC       |                   |          | LAST FIRE DRILL          |           |        |
| Sand %               | 1.5                 | 1            | STROKE(in)            | 7"            |                   |          | LAST MOB DRILL           |           |        |
| MBT(lb/bbl)          | 17.5                | 15           | LINER(in)             | 7"            |                   |          | LAST ABN. RIG DRILL      |           |        |
| PH                   | 9                   | 9            | SPM                   | 140           |                   |          | LAST BOP TEST            |           |        |
| Chlorides (mg/l)     | 1000                | 1000         | GPM                   | 480           |                   |          | BOP TEST DUE             |           |        |
| KCI %                | 1000                | 1000         | AV-DP(Ft/min)         | 83            |                   |          | BOP TEST DUE             | HRS       | CUM    |
| PHPA (Calc ppb)      | -                   | _            | AV-DF (Ft/min)        | 102           |                   |          | 1. Rig up / down.        | IIKS      | 38.75  |
| епен (Сак рри)       | -                   | -            |                       | 367           |                   |          | , ·                      | 2.75      |        |
| Hala valvasa labia   | 2/4                 |              | SPP(kPa/psi)          | 307           |                   |          | 2. Drilling.             | 3.75      | 31.75  |
| Hole volume bbls.    | 364                 |              | SCR @ 40              |               |                   |          | 3. Reaming.              | 10.00     | 4/75   |
| Surface volume bbls. | 190                 |              | SCR @ 50              | /EATUED / DIC | DECDONICE         |          | 4. Trip                  | 10.00     | 16.75  |
| D:: D                | BIT DATA            |              | <b></b>               | /EATHER / RIG | RESPONSE          |          | 5. Circ. / condition.    | 5.00      | 5.00   |
| Bit Run              | 2                   |              | Wind Speed (kts)      |               |                   |          | 6. Deviation survey      | 0.50      | 40.00  |
| Diameter             | 12 1/4"             | F1           | Direction             |               |                   |          | 7. Run casing            | 3.50      | 13.00  |
| Type & manufacture   | 122ETRIGMPS VAR     | EL           | Temperature           |               |                   |          | 8. Cementing             |           | 8.75   |
| IADC code            | 4/57/7              |              | Barometric pressu     |               |                   |          | 9. Handle Preventors     |           |        |
| Serial number        | 165767              |              | Barometer rise / fa   | 111           |                   |          | 10. Marine riser.        |           |        |
| Nozzles              | 16-16-20            |              | Visibility(NM)        |               |                   |          | 11. Logging.             |           |        |
| Depth In (m)         | 78m                 |              | Sea state             |               |                   |          | 12. Press. test BOP      |           |        |
| Depth Out            | 821m                |              | Swell / Period / Dire |               |                   |          | 13. Repair rig.          |           | 1.50   |
| Drilled (m cum/dly)  |                     |              | Waves / period / dire | ection        |                   |          | 14. Service rig.         |           | 0.25   |
| Hours (cum/dly)      |                     |              | Heave                 |               |                   |          | 15. Slip / cut drlg line |           |        |
| Dull grade           |                     |              | Pitch                 |               |                   |          | 16. Drill stem test.     |           |        |
| Average ROP (m/hr)   |                     |              | Roll                  |               |                   |          | 17. Fishing.             |           |        |
| WOB Klbs             |                     |              | Anchor tension        |               |                   |          | 18. Well control.        |           |        |
| RPM                  |                     |              | Anchor tension        |               |                   |          | 19. Hang-off.            |           |        |
| Jet velocity         |                     |              | Riser tension         |               |                   |          | 21. W.O.Weather          |           |        |
| HHP @ BIT            |                     |              | VARIABLE DECK         | LOAD (Kips)   |                   |          | 22. Lost circ.           |           |        |
| BHA No.              | 1                   | BHA WEIGHT   |                       |               | STRING WT         |          | 23. Plug / Abandon.      |           |        |
| BHA Profile :        |                     |              |                       |               |                   |          | 24. Mob / Demob          |           |        |
|                      |                     |              |                       |               |                   |          | 25. Handle anchors.      |           |        |
| DOWNHOLE TOOLS       | SERIAL No.          | ROT/REAM HRS |                       | DRILLING      | G DATA            | <u> </u> | 26. Position rig.        | i         |        |
|                      |                     |              | DRAG - UP (mt)        |               |                   |          | 27. Guide base / ROV.    |           |        |
|                      |                     |              | DRAG - DOWN (n        | nt)           |                   |          | 28. Others               | 1.75      | 10.25  |
|                      |                     |              | TORQUE-On Botto       | om (amps)     |                   |          |                          |           |        |
|                      |                     |              | TORQUE-Off Botto      | om (amps)     |                   |          |                          |           |        |
|                      |                     |              |                       | <u> </u>      |                   |          | TOTAL (HRS)              | 24.00     | 126.00 |

## Essential Petroleum Resources Limited. DAILY DRILLING REPORT

| WELL:   | Port Fairy #1              |
|---------|----------------------------|
| PERMIT: | Vic P-152                  |
| RIG:    | Mitchell Drilling Rig #150 |

SUPERVISOR(S)

W.J. WESTMAN

ENGINEER

DATE: REPORT # D.F.S.

OIM

14th January 2002

|          |               |         | _                     |                        |                       |                      |                 |               |
|----------|---------------|---------|-----------------------|------------------------|-----------------------|----------------------|-----------------|---------------|
| FROM     | то            | HOURS   |                       |                        |                       |                      |                 |               |
| 6:00     | 7:15          | 1:15    | Lost prime on mud p   | oump. Cleaned und      | ler suction/discharge | valves. Bled air out | of pump.        |               |
| 7:15     | 7:45          | 0:30    | Drill ahead 687m to   |                        |                       |                      |                 |               |
| 7:45     | 8:15          | 0:30    | Change shaker scre    | ens. Blinding w/ sa    | and.                  |                      |                 |               |
| 8:15     | 9:45          | 1:30    | Drill ahead 717m to   | 760m                   |                       |                      |                 |               |
| 9:45     | 10:45         | 1:00    | Circulate bottom sa   | mple.                  |                       |                      |                 |               |
| 10:45    | 11:15         | 0:30    | Drill 760m to 775m.   |                        |                       |                      |                 |               |
| 11:15    | 12:00         | 0:45    | Circulate bottom sa   | mple.                  |                       |                      |                 |               |
| 12:00    | 12:30         | 0:30    | Drill 775m to 805m.   |                        |                       |                      |                 |               |
| 12:30    | 13:00         | 0:30    | Circulate bottom sa   | mple.                  |                       |                      |                 |               |
| 13:00    | 13:30         | 0:30    | Drill 805m to 817.5r  | n                      |                       |                      |                 |               |
| 13:30    | 15:00         | 1:30    | Circulate bottom sa   | mple.                  |                       |                      |                 |               |
| 15:00    | 18:00         | 3:00    | POOH wiper trip.      |                        |                       |                      |                 |               |
| 18:00    | 20:15         | 2:15    | RIH wiper trip. No fi | ill.                   |                       |                      |                 |               |
| 20:15    | 20:30         | 0:15    | Drill 817.5m to 821r  | n                      |                       |                      |                 |               |
| 20:30    | 21:45         | 1:15    | Circulate until shak  | ers clean.             |                       |                      |                 |               |
| 21:45    | 1:45          | 4:00    | Drop survey. Slug p   | pipe. POOH             |                       |                      |                 |               |
| 1:45     | 2:30          | 0:45    | Break out bit. Retrie | eve survey tool - mis  | srun.                 |                      |                 |               |
| 2:30     | 4:15          | 1:45    | R/u Casing epuipme    | ent.                   |                       |                      |                 |               |
| 4:15     | 4:30          | 0:15    | Pre-casing safety m   | eeting.                |                       |                      |                 |               |
| 4:30     | 6:00          | 1:30    | RIH casing.           |                        |                       |                      |                 |               |
|          |               |         | ,                     |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
| OPERATI  | IONS TO 06    | OU HRS: |                       |                        |                       |                      |                 |               |
|          |               |         | Drill to 750m         |                        |                       |                      |                 |               |
|          |               |         |                       |                        |                       |                      |                 |               |
| PROGRA   | MME NEXT      | 24 HRS: | Circ. 2x btms up or t | till returns are clean | . Wiper trip. Run ca  | sing & cement.       |                 |               |
|          |               | T -     | <u> </u>              | T -                    |                       |                      |                 |               |
| BULK     |               | GEL(sx) | BARITE(sx)            | CEMENT(sx)             | DRILLWATER(mt)        | POT WATER(mt)        | DIESEL FUEL(It) | HELI FUEL(It) |
|          |               |         |                       |                        |                       |                      |                 |               |
|          | NEL ON RIC    |         |                       | FRANSPORTATIO          |                       |                      | COSTS           |               |
| OPERATO  |               | OCA     |                       | NAME                   | LOCATION              |                      | DAILY MUD       | \$1,029.76    |
| DRILLING |               | MDC     | WORKBOAT              |                        |                       | CUM                  | IULATIVE MUD    | \$1,885.44    |
| SERVICE  | COMPS         |         | WORKBOAT              |                        |                       |                      | DAILY WELL      |               |
| OTHER    |               |         | STANDBY BOAT          |                        |                       | CUMI                 | JLATIVE WELL    |               |
|          |               |         | HELICOPTER            |                        |                       |                      |                 |               |
| TOTAL    |               |         | HELICOPTER            |                        |                       |                      |                 |               |
| OLIDED   | 1 (10 O D (O) | 10/ 1   | VALECTATABLE          | ENGINEED               | 1                     |                      | 0114            |               |

# Origin Energy Ltd / Essential Petroleum Resources Limited. Daily Drilling Report

| WELL:                | Port Fairy #1        |              |                                                |               |                   |          | DATE:                    | 16.01.02  |        |
|----------------------|----------------------|--------------|------------------------------------------------|---------------|-------------------|----------|--------------------------|-----------|--------|
| PERMIT:              | PEP-152              |              |                                                |               |                   |          | REPORT #                 | 8         |        |
| RIG:                 | Mitchell Drilling Ri | ig #150      |                                                |               |                   |          | D.F.S.                   | 7         |        |
|                      |                      | 1            |                                                |               | T=                |          |                          |           |        |
| DEPTH 0600 Hrs:      | 893.00 m             |              | STATUS @ 06:00 H                               | Hrs:          | Drilling ahead    |          |                          |           |        |
| TVD:                 | 893.00 m             |              | FORMATION:                                     |               | Paaratte          |          |                          |           |        |
| 24 HR PROGRESS:      | 72.00 m              | LAST CASING: | 9 5/8                                          | @             | 812.0m            |          | SHOE L.O.T.:             | 13.5 ppg  |        |
| HOLE SIZE:           | 8 1/2"               | WD (LAT):    | N/A                                            | R             | T - GL / Air gap: | 4.5m     | MAASP:                   | 620 psi   |        |
| SURVEYS:             |                      |              |                                                |               |                   |          |                          |           |        |
| MUD PROPERTIES       | FL                   | PIT          |                                                | CONSUN        | MABLES            |          | FORMA                    | TION DATA |        |
| Sample taken @       |                      | 11:30 - 821m |                                                | Rig           | Workboat          | Workboat | Name                     | Paar      | atte   |
| Flowline Temp °C     |                      | -            | Fuel                                           |               |                   |          | Lithology                |           |        |
| Weight ppg/SG        |                      | 8.9 - 1.07   | Potable water                                  |               |                   |          | Top depth RT.            | 804.5     | 0 m    |
| Funnel viscosity.    |                      | 45           | Drill water                                    |               |                   |          | Trip gas %               |           |        |
| PV/YP(cp/lb/100ft2)  |                      | 13 - 19      | Barites                                        |               |                   |          | Connection Gas %         |           |        |
| Gels 10secs / 10min  |                      | 4 - 6        | Cement                                         |               |                   |          | Background gas %         |           |        |
| WL API(cc/30min)     |                      | HIGH         | Gel                                            |               |                   |          | ECD (ppg)                |           |        |
| WL HTHP(cc/30min)    |                      | -            | Base Oil                                       |               |                   |          |                          | S / BOPS  |        |
| Cake (1/32")         |                      | -            | PUMPS                                          | 1             | 2                 | 3        | LAST BOP DRILL           |           |        |
| Solids %             |                      | 1            | TYPE                                           | SOILMEC       |                   |          | LAST FIRE DRILL          |           |        |
| Sand %               |                      | NIL          | STROKE(in)                                     | 7"            |                   |          | LAST MOB DRILL           |           |        |
| MBT(lb/bbl)          |                      | -            | LINER(in)                                      | 6             |                   |          | LAST ABN. RIG DRILL      |           |        |
| PH                   |                      | 9.0          | SPM                                            | 150           |                   |          | LAST BOP TEST            |           |        |
| Chlorides (mg/l)     |                      | 50,000       | GPM                                            | 378           |                   |          | BOP TEST DUE             |           |        |
| K+ (mg/l)            |                      | 56,700       | AV-DP(Ft/min)                                  | 154           |                   |          |                          | HRS       | CUM    |
| KCI %                |                      | 10.5         | AV-DC(Ft/min)                                  | 279           |                   |          | 1. Rig up / down.        |           | 38.75  |
| PHPA (Calc ppb)      |                      | -            | SPP                                            | 1150          |                   |          | 2. Drilling.             | 4.00      | 35.75  |
| Hole volume bbls.    |                      | 169          | SCR @ 40                                       |               |                   |          | 3. Reaming.              | 1.00      | 1.00   |
| Surface volume bbls. |                      | 30           | SCR @ 50                                       |               |                   |          | 4. Trip                  | 6.00      | 22.75  |
|                      | BIT DATA             |              |                                                | /EATHER / RIG | RESPONSE          |          | 5. Circ. / condition.    | 2.75      | 9.75   |
| Bit Run              | 3                    |              | Wind Speed (kts)                               |               |                   |          | 6. Deviation survey      | 0.50      | 0.50   |
| Diameter             | 8 1/2"               |              | Direction                                      |               |                   |          | 7. Run casing            |           | 18.25  |
| Type & manufacture   |                      |              | Temperature                                    |               |                   |          | 8. Cementing             |           | 17.75  |
| IADC code            |                      |              | Barometric pressu                              | re millibar   |                   |          | 9. Handle Preventors     | 3.25      | 3.25   |
| Serial number        | 5996742 RW           |              | Barometer rise / fa                            | II            |                   |          | 10. Riser, flowline      |           |        |
| Nozzles              | 14 -14 -14 -14 -14   |              | Visibility(NM)                                 |               |                   |          | 11. Logging.             |           |        |
| Depth In (m)         | 821m                 |              | Sea state                                      |               |                   |          | 12. Press. test BOP      | 5.00      | 5.00   |
| Depth Out            |                      |              | Swell / Period / Dire                          | ction         |                   |          | 13. Repair rig.          |           | 1.50   |
| Drilled (m cum/dly)  |                      |              | Waves / period / dire                          | ection        |                   |          | 14. Service rig.         | 1.00      | 1.25   |
| Hours (cum/dly)      |                      |              | Heave                                          |               |                   |          | 15. Slip / cut drlg line |           |        |
| Dull grade           |                      |              | Pitch                                          |               |                   |          | 16. Drill stem test.     |           |        |
| Average ROP (m/hr)   |                      |              | Roll                                           |               |                   |          | 17. Fishing.             |           |        |
| WOB Klbs             | 5-15                 |              | Anchor tension                                 |               |                   |          | 18. Well control.        |           |        |
| RPM                  | 140                  |              | Anchor tension                                 |               |                   |          | 19. Hang-off.            |           |        |
| Jet velocity         |                      |              | Riser tension                                  |               |                   |          | 21. W.O.Weather          |           |        |
| HHP @ BIT            |                      |              | VARIABLE DECK                                  | LOAD (Kips)   |                   |          | 22. Lost circ.           |           |        |
| BHA No.              | 1                    | BHA WEIGHT   |                                                |               | STRING WT         |          | 23. Plug / Abandon.      |           |        |
| BHA Profile :        |                      | 1            | <u>ı                                      </u> |               | [                 |          | 24. Mob / Demob          |           |        |
|                      |                      |              |                                                |               |                   |          | 25. Handle anchors.      |           |        |
| DOWNHOLE TOOLS       | SERIAL No.           | ROT/REAM HRS |                                                | DRILLIN       | G DATA            |          | 26. Position rig.        |           |        |
|                      |                      |              | DRAG - UP (mt)                                 |               |                   |          | 27. Guide base / ROV     | I         |        |
|                      |                      |              | DRAG - DOWN (m                                 | nt)           |                   |          | 28. Others               | 0.75      | 11.00  |
|                      |                      |              | TORQUE-On Botto                                |               |                   |          | 20. Officia              | 2.70      |        |
|                      |                      |              | TORQUE-Off Botto                               |               |                   |          |                          |           |        |
|                      |                      |              | 2222 3 30                                      | . ()          |                   |          | TOTAL (HRS)              | 24.25     | 166.50 |
|                      | ı                    |              | ]                                              |               | 1                 |          | ,                        |           |        |

| Essential _<br>Petroleum<br>Resources | Esse              | ntial P       | etrolei            | um Re         | esour                                            | ces L       | _imited.                                                 |           |       |
|---------------------------------------|-------------------|---------------|--------------------|---------------|--------------------------------------------------|-------------|----------------------------------------------------------|-----------|-------|
| Limited                               |                   |               | Daily D            |               |                                                  |             |                                                          |           |       |
| A/F1 I -                              | Dart Faire #4     |               |                    |               |                                                  |             | DATE                                                     | 15 01 02  |       |
| WELL:                                 | Port Fairy #1     |               |                    |               |                                                  |             | DATE:                                                    | 15.01.02  |       |
| PERMIT:                               | PEP-152           |               |                    |               |                                                  |             | REPORT #                                                 | 7         |       |
| RIG:                                  | Mitchell Drilling | Rig #150      |                    |               |                                                  |             | D.F.S.                                                   | 6         |       |
| DEPTH 0600 Hrs:                       | Surface           |               | STATUS @ 06:0      | 0 Hrs:        | Nipple up B0                                     | OP's & asso | ociated equipment                                        | I.        |       |
| TVD:                                  | 821.00 m          |               | FORMATION:         |               | N/A                                              |             |                                                          | 1         |       |
| 24 HR PROGRESS:                       | N/A               | LAST CASING:  | 9 5/8              | @             | 812.0m                                           |             | SHOE L.O.T.:                                             | N/A       |       |
| HOLE SIZE:                            | 12 1/4"           | WD (LAT):     | N/A                | RT            | - GL / Air gap:                                  | 4.5m        | MAASP:                                                   | N/A       |       |
| SURVEYS:                              |                   |               |                    |               |                                                  |             |                                                          |           |       |
| MUD PROPERTIES                        | FL                | PIT           |                    | CONSUM        | IABLES                                           |             | FORMA                                                    | TION DATA |       |
| Sample taken @                        |                   | 10:00 / 821m  |                    | Rig           | Workboat                                         | Workboat    | Name                                                     | N/        | Α     |
| Flowline Temp °C                      |                   | -             | Fuel               |               |                                                  |             | Lithology                                                |           |       |
| Weight ppg/SG                         |                   | 9.25 / 1.11   | Potable water      |               |                                                  |             | Top depth RT.                                            |           |       |
| Funnel viscosity.                     |                   | 37            | Drill water        |               |                                                  | ·           | Trip gas %                                               |           |       |
| PV/YP(cp/lb/100ft2)                   |                   | 7 / 8         | Barites            |               |                                                  |             | Connection Gas %                                         |           |       |
| Gels 10secs / 10min                   |                   | 8             | Cement             |               |                                                  |             | Background gas %                                         |           |       |
| WL API(cc/30min)                      |                   | 20            | Gel                |               |                                                  |             | ECD (ppg)                                                |           |       |
| WL HTHP(cc/30min)                     |                   | -             | Base Oil           |               |                                                  |             | DRILLS                                                   | S / BOPS  |       |
| Cake (1/32")                          |                   | -             | PUMPS              | 1             | 2                                                | 3           | LAST BOP DRILL                                           |           |       |
| Solids %                              |                   | 6.8           | TYPE               | SOILMEC       |                                                  |             | LAST FIRE DRILL                                          |           |       |
| Sand %                                |                   | 0.75          | STROKE(in)         | 7"            |                                                  |             | LAST MOB DRILL                                           |           |       |
| MBT(lb/bbl)                           |                   | 15            | LINER(in)          | 7"            |                                                  |             | LAST ABN. RIG DRIL                                       | L         |       |
| PH                                    |                   | 9.0           | SPM                | 140           |                                                  |             | LAST BOP TEST                                            |           |       |
| Chlorides (mg/l)                      |                   | 1000          | GPM                | 480           |                                                  |             | BOP TEST DUE                                             |           |       |
| KCI%                                  |                   | -             | AV-DP(Ft/min)      | 83            |                                                  |             |                                                          | HRS       | CUM   |
| PHPA (Calc ppb)                       |                   | -             | AV-DC(Ft/min)      | 102           |                                                  |             | 1. Rig up / down.                                        |           | 38.75 |
| (** *                                 |                   |               | SPP(kPa/psi)       | 367           |                                                  |             | 2. Drilling.                                             |           | 31.75 |
| Hole volume bbls.                     |                   | 185           | SCR @ 40           |               |                                                  |             | 3. Reaming.                                              |           |       |
| Surface volume bbls.                  |                   | -             | SCR @ 50           |               |                                                  |             | 4. Trip                                                  |           | 16.75 |
|                                       | BIT DATA          |               |                    | EATHER / RIG  | RESPONSE                                         |             | 5. Circ. / condition.                                    | 2.00      | 7.00  |
| Bit Run                               | 2                 |               | Wind Speed (kts    |               |                                                  |             | Deviation survey                                         |           |       |
| Diameter                              | 12 1/4"           |               | Direction          |               |                                                  |             | 7. Run casing                                            | 5.25      | 18.25 |
| Type & manufacture                    | 122ETRIGMPS V     | ARFI          | Temperature        |               |                                                  |             | 8. Cementing                                             | 9.00      | 17.75 |
| ADC code                              |                   |               | Barometric pres    | sure millibar |                                                  |             | Handle Preventors                                        | 1177      |       |
| Serial number                         | 165767            |               | Barometer rise     |               |                                                  |             | 10. Riser, flowline                                      | 7.75      |       |
| Vozzles                               | 16-16-20          |               | Visibility(NM)     | Tun.          |                                                  |             | 11. Logging.                                             | 7170      |       |
| Depth In (m)                          | 78m               |               | Sea state          |               |                                                  |             | 12. Press. test BOP                                      |           |       |
| Depth Out                             | 821m              |               | Swell / Period / D | irection      | †                                                |             | 13. Repair rig.                                          |           | 1.50  |
| Orilled (m cum/dly)                   | 02.1111           |               | Waves / period /   |               |                                                  |             | 14. Service rig.                                         |           | 0.25  |
| Hours (cum/dly)                       |                   |               | Heave              | a collor1     | <del>                                     </del> |             | 15. Slip / cut drlg line                                 |           | 0.20  |
| Oull grade                            |                   |               | Pitch              |               |                                                  |             | 16. Drill stem test.                                     |           |       |
| Average ROP (m/hr)                    |                   |               | Roll               |               |                                                  |             | 17. Fishing.                                             |           |       |
| WOB Klbs                              |                   |               | Anchor tension     |               |                                                  |             | 18. Well control.                                        |           |       |
| RPM                                   |                   |               | Anchor tension     |               | +                                                |             | 19. Hang-off.                                            |           |       |
| Jet velocity                          |                   |               | Riser tension      |               | <del>                                     </del> |             | 21. W.O.Weather                                          |           |       |
| HHP @ BIT                             |                   |               | VARIABLE DEC       | K I OAD /Vinc | <u> </u>                                         |             | 21. W.O.Weather                                          |           |       |
| BHA No.                               | 1                 | BHA WEIGHT    | AUNIADEE DEC       | v FOND (KIh2) | STRING WT                                        |             | 1                                                        |           |       |
| BHA Profile :                         | 1                 | DHA WEIGHT    |                    |               | STRING WI                                        |             | <ol> <li>Plug / Abandon.</li> <li>Mob / Demob</li> </ol> |           |       |
| AIM FIUIIR.                           |                   |               |                    |               |                                                  |             | 25. Handle anchors.                                      |           |       |
| DOMNINOI E TOOL O                     | CEDIAL No.        | DOT/DEAM LIDS |                    | ייזו דווטט    | C DATA                                           |             | 4                                                        |           |       |
| DOWNHOLE TOOLS                        | SERIAL No.        | ROT/REAM HRS  |                    | DRILLING      | DATA                                             |             | 26. Position rig.                                        | <u> </u>  |       |
|                                       |                   |               | DRAG - UP (mt)     |               |                                                  |             | 27. Guide base / RC                                      | OV.       | 10.0- |
|                                       |                   |               | DRAG - DOWN        | • •           |                                                  |             | 28. Others                                               |           | 10.25 |
|                                       |                   |               | TORQUE-On B        |               |                                                  |             | -                                                        |           |       |
|                                       |                   | 1             | TORQUE-Off B       | ottom (amnc)  |                                                  |             | ii .                                                     |           | i     |

## Essential Petroleum Resources Limited. DAILY DRILLING REPORT

| WELL:   | Port Fairy #1              |
|---------|----------------------------|
| PERMIT: |                            |
| RIG:    | Mitchell Drilling Rig #150 |

DATE: REPORT # 15th January 2002 7

| FROM         TO           7:00         7:15           9:30         12:15           12:15         12:30           12:30         14:00           14:30         20:31           20:30         0:30           1:00         2:45           3:15         4:30           4:30         6:00 | 2:15<br>5 2:45<br>0 0:15<br>0 1:30<br>0 0:30<br>0 6:00<br>0 4:00<br>0 0:30<br>1:45<br>6 0:30<br>1:15               | CIP @ 14:30.  WOC. Drain conduct Landing jt. difficult to Lunch, Pre-nipple up R/d casing handling                                                                                                                                     | ace w/195bbls much<br>ctor, dump & clean<br>back out .r/d flowl<br>o meeting.<br>equipment.<br>if safety meeting to | tanks, mix mud ine, conductor. R/u m | Opsi (500psi above FCP). 5min ok. nanifold, trip tank, 50bb tank, circ. Ma | anifold.        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|-----------------|
| 7:00 7:15 7:15 9:30 9:30 12:11 12:15 12:30 14:00 14:31 14:30 20:31 20:30 0:30 1:00 2:45 2:45 3:15 4:30 7:15                                                                                                                                                                         | 0:15<br>0:2:15<br>5 2:45<br>0 0:15<br>0 1:30<br>0 0:30<br>0 6:00<br>0 4:00<br>0 0:30<br>0 1:45<br>6 0:30<br>0 1:15 | Circulate 1.5xcasing Head up Dowell Safety meeting. Mix & pump cement. Drop top plug. Disple CIP @ 14:30. WOC. Drain conduct Landing jt. difficult to Lunch, Pre-nipple up R/d casing handling of Position BOP's, brie Nipple up BOP's | ace w/195bbls much<br>ctor, dump & clean<br>back out .r/d flowl<br>o meeting.<br>equipment.<br>if safety meeting to | tanks, mix mud ine, conductor. R/u m | nanifold, trip tank, 50bb tank, circ. Ma                                   | anifold.        |
| 7:15 9:30 9:30 12:11 12:15 12:30 14:00 14:30 14:30 20:30 0:30 0:30 1:00 2:45 2:45 3:15 4:30                                                                                                                                                                                         | 2:15<br>5 2:45<br>0 0:15<br>0 1:30<br>0 0:30<br>0 6:00<br>0 4:00<br>0 0:30<br>6 1:45<br>6 0:30<br>0 1:15           | Circulate 1.5xcasing Head up Dowell Safety meeting. Mix & pump cement. Drop top plug. Disple CIP @ 14:30. WOC. Drain conduct Landing jt. difficult to Lunch, Pre-nipple up R/d casing handling of Position BOP's, brie Nipple up BOP's | ace w/195bbls much<br>ctor, dump & clean<br>back out .r/d flowl<br>o meeting.<br>equipment.<br>if safety meeting to | tanks, mix mud ine, conductor. R/u m | nanifold, trip tank, 50bb tank, circ. Ma                                   | anifold.        |
| 9:30 12:11 12:15 12:30 14:00 14:30 14:30 20:31 14:30 20:30 0:30 1:00 1:00 2:45 2:45 3:15 3:15 4:30                                                                                                                                                                                  | 5 2:45<br>0 0:15<br>0 1:30<br>0 0:30<br>0 6:00<br>0 4:00<br>0 0:30<br>6 1:45<br>6 0:30<br>0 1:15                   | Head up Dowell Safety meeting. Mix & pump cement. Drop top plug. Displace CIP @ 14:30. WOC. Drain conduct Landing jt. difficult to Lunch, Pre-nipple up R/d casing handling of Position BOP's, brie Nipple up BOP's                    | ace w/195bbls much<br>ctor, dump & clean<br>back out .r/d flowl<br>o meeting.<br>equipment.<br>if safety meeting to | tanks, mix mud ine, conductor. R/u m | nanifold, trip tank, 50bb tank, circ. Ma                                   | anifold.        |
| 12:15         12:3           12:30         14:0           14:00         14:3           14:30         20:3           14:30         20:3           20:30         0:30           1:00         2:45           2:45         3:15           4:30         4:30                             | 0 0:15<br>0 1:30<br>0 0:30<br>0 6:00<br>0 4:00<br>0 0:30<br>1:45<br>6 0:30<br>0 1:15                               | Safety meeting.  Mix & pump cement.  Drop top plug. Disple  CIP @ 14:30.  WOC. Drain conduct  Landing jt. difficult to  Lunch, Pre-nipple up  R/d casing handling of  Position BOP's, brie  Nipple up BOP's                            | ace w/195bbls muctor, dump & clean back out .r/d flowling meeting. equipment. If safety meeting to                  | tanks, mix mud ine, conductor. R/u m | nanifold, trip tank, 50bb tank, circ. Ma                                   | anifold.        |
| 12:30     14:00       14:30     14:30       14:30     20:30       20:30     0:30       1:00     2:45       2:45     3:15       4:30     4:30                                                                                                                                        | 0 1:30<br>0 0:30<br>0 6:00<br>0 4:00<br>0 0:30<br>6 1:45<br>6 0:30<br>0 1:15                                       | Mix & pump cement. Drop top plug. Displ. CIP @ 14:30. WOC. Drain conduct Landing jt. difficult to Lunch, Pre-nipple up R/d casing handling. Position BOP's, brie Nipple up BOP's                                                       | ace w/195bbls muctor, dump & clean back out .r/d flowling meeting. equipment. If safety meeting to                  | tanks, mix mud ine, conductor. R/u m | nanifold, trip tank, 50bb tank, circ. Ma                                   | anifold.        |
| 14:00     14:30       14:30     20:30       20:30     0:30       0:30     1:00       1:00     2:45       3:15     4:30                                                                                                                                                              | 0 0:30<br>0 6:00<br>1 4:00<br>0 0:30<br>6 1:45<br>6 0:30<br>1 1:15                                                 | Drop top plug. Displace Drop top plug. Displace Drop top plug. Displace Drop top top top top top top top top top t                                                                                                                     | ace w/195bbls muctor, dump & clean back out .r/d flowling meeting. equipment. If safety meeting to                  | tanks, mix mud ine, conductor. R/u m | nanifold, trip tank, 50bb tank, circ. Ma                                   | anifold.        |
| 14:30 20:30<br>20:30 0:30<br>0:30 1:00<br>1:00 2:45<br>2:45 3:15<br>3:15 4:30                                                                                                                                                                                                       | 0 6:00<br>0 4:00<br>0 0:30<br>6 1:45<br>6 0:30<br>1:15                                                             | CIP @ 14:30.  WOC. Drain conduct Landing jt. difficult to Lunch, Pre-nipple up R/d casing handling. Position BOP's, brie Nipple up BOP's                                                                                               | ctor, dump & clean<br>back out .r/d flowled<br>meeting.<br>equipment.<br>If safety meeting to                       | tanks, mix mud ine, conductor. R/u m | nanifold, trip tank, 50bb tank, circ. Ma                                   | anifold.        |
| 20:30     0:30       0:30     1:00       1:00     2:45       2:45     3:15       3:15     4:30                                                                                                                                                                                      | 4:00<br>0:30<br>1:45<br>0:30<br>1:15                                                                               | WOC. Drain conduct<br>Landing jt. difficult to<br>Lunch, Pre-nipple up<br>R/d casing handling<br>Position BOP's, brie<br>Nipple up BOP's                                                                                               | back out .r/d flowled<br>meeting.<br>equipment.<br>of safety meeting to                                             | ine, conductor. R/u m                |                                                                            |                 |
| 20:30     0:30       0:30     1:00       1:00     2:45       2:45     3:15       4:30                                                                                                                                                                                               | 4:00<br>0:30<br>1:45<br>0:30<br>1:15                                                                               | Landing jt. difficult to<br>Lunch, Pre-nipple up<br>R/d casing handling<br>Position BOP's, brie<br>Nipple up BOP's                                                                                                                     | back out .r/d flowled<br>meeting.<br>equipment.<br>of safety meeting to                                             | ine, conductor. R/u m                |                                                                            |                 |
| 0:30 1:00<br>1:00 2:45<br>2:45 3:15<br>3:15 4:30                                                                                                                                                                                                                                    | 0:30<br>6: 1:45<br>6: 0:30<br>0: 1:15                                                                              | Lunch, Pre-nipple up<br>R/d casing handling<br>Position BOP's, brie<br>Nipple up BOP's                                                                                                                                                 | o meeting. equipment. If safety meeting to                                                                          | re-address positionin                |                                                                            |                 |
| 1:00 2:45<br>2:45 3:15<br>3:15 4:30                                                                                                                                                                                                                                                 | 1:45<br>0:30<br>1:15                                                                                               | R/d casing handling<br>Position BOP's, brie<br>Nipple up BOP's                                                                                                                                                                         | equipment.  If safety meeting to                                                                                    | •                                    | ng the BOP's in the tight, muddy area                                      | l.              |
| 2:45 3:15<br>3:15 4:30                                                                                                                                                                                                                                                              | 0:30                                                                                                               | Position BOP's, brie<br>Nipple up BOP's                                                                                                                                                                                                | of safety meeting to                                                                                                | •                                    | ng the BOP's in the tight, muddy area                                      | 1.              |
| 3:15 4:30                                                                                                                                                                                                                                                                           | 1:15                                                                                                               | Nipple up BOP's                                                                                                                                                                                                                        |                                                                                                                     | •                                    | g and 50% of mane again, maday and                                         |                 |
| -                                                                                                                                                                                                                                                                                   |                                                                                                                    | <u> </u>                                                                                                                                                                                                                               | nipple, flowline, tan                                                                                               | ıks, etc.                            |                                                                            |                 |
| 4.50                                                                                                                                                                                                                                                                                | 1.00                                                                                                               | Complete I/a of Self 1                                                                                                                                                                                                                 | inppre, newine, tan                                                                                                 | ind, cito.                           |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    | i .                                                                                                                                                                                                                                    |                                                                                                                     |                                      |                                                                            | _               |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
| PERATIONS TO                                                                                                                                                                                                                                                                        | 0600 HRS:                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    | Drill to 750m                                                                                                                                                                                                                          |                                                                                                                     |                                      |                                                                            |                 |
|                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                     |                                      |                                                                            |                 |
| PROGRAMME N                                                                                                                                                                                                                                                                         | EXT 24 HRS:                                                                                                        | Circ. 2x btms up or ti                                                                                                                                                                                                                 | ill returns are clear                                                                                               | n. Wiper trip. Run cas               | sing & cement.                                                             |                 |
| BULK                                                                                                                                                                                                                                                                                | GEL(sx)                                                                                                            | BARITE(sx)                                                                                                                                                                                                                             | CEMENT(sx)                                                                                                          | DRILLWATER(mt)                       | POT WATER(mt) DIESEL FUEL(I                                                | t) HELI FUEL(It |
| ERSONNEL ON                                                                                                                                                                                                                                                                         | RIG                                                                                                                | <u> </u>                                                                                                                                                                                                                               | RANSPORTATIO                                                                                                        | )<br>N                               | COSTS                                                                      |                 |
| PERATOR                                                                                                                                                                                                                                                                             | OCA                                                                                                                | i                                                                                                                                                                                                                                      | NAME                                                                                                                | LOCATION                             | DAILY MUD                                                                  | \$1,029.76      |
| RILLING CONT.                                                                                                                                                                                                                                                                       |                                                                                                                    | WORKBOAT                                                                                                                                                                                                                               | MAINE                                                                                                               | LOCATION                             | CUMULATIVE MUD                                                             |                 |
| ERVICE COMPS                                                                                                                                                                                                                                                                        |                                                                                                                    | WORKBOAT                                                                                                                                                                                                                               |                                                                                                                     | 1                                    | DAILY WELL                                                                 |                 |
|                                                                                                                                                                                                                                                                                     | <i>-</i>                                                                                                           | +                                                                                                                                                                                                                                      |                                                                                                                     | 1                                    |                                                                            |                 |
| THER                                                                                                                                                                                                                                                                                |                                                                                                                    | STANDBY BOAT                                                                                                                                                                                                                           |                                                                                                                     | +                                    | CUMULATIVE WELL                                                            | +               |
| OTAL                                                                                                                                                                                                                                                                                |                                                                                                                    | HELICOPTER                                                                                                                                                                                                                             |                                                                                                                     | 1                                    |                                                                            |                 |
| SUPERVISOR(                                                                                                                                                                                                                                                                         |                                                                                                                    | HELICOPTER WESTMAN                                                                                                                                                                                                                     | ENGINEER                                                                                                            | <u> </u>                             | OIM                                                                        | 1               |

| WELL:   | Port Fairy #1              | DATE:    | 16th January 200 |
|---------|----------------------------|----------|------------------|
| PERMIT: | PEP-152                    | REPORT # | 8                |
| RIG:    | Mitchell Drilling Rig #150 | D.F.S.   | 7                |
|         |                            |          |                  |

| FROM    | то        | HOURS   |                                                                                       |  |  |  |  |  |  |  |  |
|---------|-----------|---------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 6:00    | 7:00      | 1:00    | N/u BOP                                                                               |  |  |  |  |  |  |  |  |
| 7:00    | 7:15      | 0:15    | Pre-tour safety brief w/ crew.                                                        |  |  |  |  |  |  |  |  |
| 7:15    | 9:30      | 2:15    | N/u BOP                                                                               |  |  |  |  |  |  |  |  |
| 9:30    | 10:30     | 1:00    | nction test BOP.                                                                      |  |  |  |  |  |  |  |  |
| 10:30   | 13:30     | 3:00    | est Blind rams, csg, choke manifold. 250 / 2500psi 10mins OK.                         |  |  |  |  |  |  |  |  |
| 13:30   | 15:30     | 2:00    | RIH w/ BHA.                                                                           |  |  |  |  |  |  |  |  |
| 15:30   | 16:30     | 1:00    | P/test pipe rams, IBOP, 250 / 2500 psi 10 mins OK. Annular 250 / 2500 psi 10 mins OK. |  |  |  |  |  |  |  |  |
| 16:30   | 17:30     | 1:00    | Service top drive.                                                                    |  |  |  |  |  |  |  |  |
| 17:30   | 21:30     | 4:00    | RIH. BHA #2                                                                           |  |  |  |  |  |  |  |  |
| 21:30   | 22:00     | 0:30    | Wash down f/ 773m.                                                                    |  |  |  |  |  |  |  |  |
| 22:00   | 23:30     | 1:30    | Tag plug at 802m. Drill plug, float, shoe.                                            |  |  |  |  |  |  |  |  |
| 23:30   | 0:30      | 1:00    | Ream sump to 821m.                                                                    |  |  |  |  |  |  |  |  |
| 0:30    | 1:00      | 0:30    | Drill 3m new hole. 821m - 824m.                                                       |  |  |  |  |  |  |  |  |
| 1:00    | 1:45      | 0:45    | Circulate clean.                                                                      |  |  |  |  |  |  |  |  |
| 1:45    | 2:15      | 0:30    | LOT. Equivalent mud wt 13.5ppg.                                                       |  |  |  |  |  |  |  |  |
| 2:15    | 2:45      | 0:30    | Displace to PHPA.                                                                     |  |  |  |  |  |  |  |  |
| 2:45    | 3:30      | 0:45    | Run Totco survey on slickline. 3.5 deg @ 824m                                         |  |  |  |  |  |  |  |  |
| 3:30    | 4:00      | 0:30    | Circ. & condition new PHPA.                                                           |  |  |  |  |  |  |  |  |
| 4:00    | 5:15      | 1:15    | Drill ahead.                                                                          |  |  |  |  |  |  |  |  |
| 5:15    | 5:45      | 0:30    | Drilling break @865m, flow check & circ. b/up.                                        |  |  |  |  |  |  |  |  |
| 5:45    | 6:00      | 0:15    | Drill ahead. 893m @6:00 Inst. ROP 158m/hr                                             |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
| OPERATI | ONS TO 06 | 00 HRS: |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
|         |           |         |                                                                                       |  |  |  |  |  |  |  |  |
| PROGRA  | MME NEXT  | 24 HRS: |                                                                                       |  |  |  |  |  |  |  |  |

| BULK             | GEL(sx) | BARITE(sx)   | CEMENT(sx)    | DRILLWATER(mt) | POT WATER(mt) | DIESEL FUEL(It) | HELI FUEL(It) |
|------------------|---------|--------------|---------------|----------------|---------------|-----------------|---------------|
|                  |         |              |               |                |               |                 |               |
| PERSONNEL ON RIC | }       | 1            | TRANSPORTATIO | N              |               |                 |               |
| OPERATOR         | OCA     |              | NAME          | LOCATION       |               |                 |               |
| DRILLING CONT.   | MDC     | WORKBOAT     |               |                |               |                 |               |
| SERVICE COMPS    |         | WORKBOAT     |               |                |               |                 |               |
| OTHER            |         | STANDBY BOAT |               |                |               |                 |               |
|                  |         | HELICOPTER   |               |                |               |                 |               |
| TOTAL            |         | HELICOPTER   |               |                |               |                 |               |
| SUPERVISOR(S)    | W.J.    | WESTMAN      | ENGINEER      |                |               | OIM             |               |

| WELL:                                   | Port Fairy #1        |               |                       |               |                   |          | DATE:                    | 17-Jan-02   |             |
|-----------------------------------------|----------------------|---------------|-----------------------|---------------|-------------------|----------|--------------------------|-------------|-------------|
| PERMIT:                                 | PEP-152              |               |                       |               |                   |          | REPORT #                 | 9           |             |
| RIG:                                    | Mitchell Drilling Ri | ig #150       |                       |               |                   |          | D.F.S.                   | 8           |             |
|                                         |                      | 1             |                       |               | T=                |          |                          |             |             |
| DEPTH 0600 Hrs:                         | 1288.00 m            |               | STATUS @ 06:00 H      | irs:          | Drilling ahead    |          |                          |             |             |
| TVD:                                    | 1288.00 m            |               | FORMATION:            |               | Belfast Mudstone  | e (Lwr)  |                          |             |             |
| 24 HR PROGRESS:                         | 395.00 m             | LAST CASING:  | 9 5/8                 | @             | 812.0m            |          | SHOE L.O.T.:             | 13.5 ppg    |             |
| HOLE SIZE:                              | 8 1/2"               | WD (LAT):     | N/A                   | R             | T - GL / Air gap: | 4.5m     | MAASP:                   | 620 psi     |             |
| SURVEYS:                                |                      |               |                       |               |                   |          |                          |             |             |
| MUD PROPERTIES                          | FL                   | FL            |                       | CONSUN        | MABLES            |          | FORMA                    | TION DATA   |             |
| Sample taken @                          | 12:30 / 1048m        | 24:00 / 1255m |                       | Rig           | Workboat          | Workboat | Name                     | Belfast Mud | stone (Lwr) |
| Flowline Temp °C                        | 104                  | 115           | Fuel                  | <u> </u>      |                   |          | Lithology                |             |             |
| Weight ppg/SG                           | 9.10 / 1.09          | 9.5 / 1.14    | Potable water         |               |                   |          | Top depth RT.            | 1235.0      | 00 m        |
| Funnel viscosity.                       | 41                   | 43            | Drill water           |               |                   |          | Trip gas %               |             |             |
| PV/YP(cp/lb/100ft2)                     | 13 / 17              | 14 / 17       | Barites               |               |                   |          | Connection Gas %         |             |             |
| Gels 10secs / 10min                     | 2 - 3                | 4 - 5         | Cement                |               |                   |          | Background gas %         |             |             |
| WL API(cc/30min)                        | 7                    | 6.4           | Gel                   |               |                   |          | ECD (ppg)                |             |             |
| WL HTHP(cc/30min)                       |                      | -             | Base Oil              |               |                   |          |                          | S / BOPS    |             |
| Cake (1/32")                            | <1                   | <1            | PUMPS                 | 1             | 2                 | 3        | LAST BOP DRILL           |             |             |
| Solids %                                | 3.7                  | 6.4           | TYPE                  | SOILMEC       |                   |          | LAST FIRE DRILL          |             |             |
| Sand %                                  | 0.75                 | 1.0           | STROKE(in)            | 7             |                   |          | LAST MOB DRILL           |             |             |
| MBT(lb/bbl)                             | 4.0                  | 6.0           | LINER(in)             | 7             |                   |          | LAST ABN. RIG DRILL      |             |             |
| PH                                      | 9.0                  | 9.0           | SPM                   | 150           |                   |          | LAST BOP TEST            |             |             |
| Chlorides (mg/l)                        | 33,000               | 26,000        | GPM                   | 378           |                   |          | BOP TEST DUE             |             |             |
| K+ (mg/l)                               | 35,100               | 56,700        | AV-DP(Ft/min)         | 154           |                   |          |                          | HRS         | CUM         |
| KCI %                                   | 6.5                  | 5.2           | AV-DC(Ft/min)         | 279           |                   |          | 1. Rig up / down.        |             | 38.75       |
| PHPA (Calc ppb)                         | 0.75                 | 0.94          | SPP                   | 1150          |                   |          | 2. Drilling.             | 19.25       | 35.75       |
| Hole volume bbls.                       | 262                  |               | SCR @ 36              | 10bar         |                   |          | 3. Reaming.              |             | 1.00        |
| Surface volume bbls.                    | 180                  |               | SCR @ 64              | 28bar         |                   |          | 4. Trip                  |             | 22.75       |
|                                         | BIT DATA             |               |                       | /EATHER / RIG | RESPONSE          |          | 5. Circ. / condition.    | 2.50        | 12.25       |
| Bit Run                                 | 3                    |               | Wind Speed (kts)      |               |                   |          | 6. Deviation survey      |             | 0.50        |
| Diameter                                | 8 1/2"               |               | Direction             |               |                   |          | 7. Run casing            |             | 18.25       |
| Type & manufacture                      | - 11-                |               | Temperature           |               |                   |          | 8. Cementing             |             | 17.75       |
| IADC code                               |                      |               | Barometric pressur    | re millibar   |                   |          | 9. Handle Preventors     |             | 3.25        |
| Serial number                           | 5996742 RW           |               | Barometer rise / fa   |               |                   |          | 10. Riser, flowline      |             |             |
| Nozzles                                 | 14 -14 -14 -14 -14   |               | Visibility(NM)        |               |                   |          | 11. Logging.             |             |             |
| Depth In (m)                            | 821m                 |               | Sea state             |               |                   |          | 12. Press. test BOP      |             | 5.00        |
| Depth Out                               |                      |               | Swell / Period / Dire | ction         |                   |          | 13. Repair rig.          | 2.25        | 3.75        |
| Drilled (m cum/dly)                     |                      |               | Waves / period / dire |               |                   |          | 14. Service rig.         |             | 1.25        |
| Hours (cum/dly)                         |                      |               | Heave                 |               |                   |          | 15. Slip / cut drlg line |             |             |
| Dull grade                              |                      |               | Pitch                 |               |                   |          | 16. Drill stem test.     |             |             |
| Average ROP (m/hr)                      |                      |               | Roll                  |               |                   |          | 17. Fishing.             |             |             |
| WOB Klbs                                | 5-15                 |               | Anchor tension        |               |                   |          | 18. Well control.        |             |             |
| RPM                                     | 140                  |               | Anchor tension        |               |                   |          | 19. Hang-off.            |             |             |
| Jet velocity                            |                      |               | Riser tension         |               |                   |          | 21. W.O.Weather          |             |             |
| HHP @ BIT                               |                      |               | VARIABLE DECK I       | LOAD (Kips)   |                   |          | 22. Lost circ.           |             |             |
| BHA No.                                 | 1                    | BHA WEIGHT    |                       | (             | STRING WT         |          | 23. Plug / Abandon.      |             |             |
| BHA Profile :                           |                      | 2             | <u> </u>              |               |                   |          | 24. Mob / Demob          |             |             |
| • • • • • • • • • • • • • • • • • • • • |                      |               |                       |               |                   |          | 25. Handle anchors.      |             |             |
| DOWNHOLE TOOLS                          | SERIAL No.           | ROT/REAM HRS  |                       | DRILLIN       | G DATA            |          | 26. Position rig.        |             |             |
|                                         | 52 IE 110.           |               | DRAG - UP (mt)        | DIVIDENT      |                   |          | 27. Guide base / ROV     | l           |             |
|                                         |                      |               | DRAG - DOWN (m        | nt)           |                   |          | 28. Others               |             | 11.00       |
|                                         |                      |               | TORQUE-On Botto       |               |                   |          | ZO. OHIEIS               |             | 11.00       |
|                                         |                      |               | TORQUE-Off Botto      |               |                   |          |                          |             |             |
|                                         | <u> </u>             |               | 751120E OII BOILL     | (umps)        |                   |          | TOTAL (HRS)              | 24.00       | 171.25      |
|                                         |                      |               | L                     |               | <u> </u>          |          | TOTAL (TIKS)             | 27.00       | 111.23      |

| WELL:   | Port Fairy #1              | DATE:    | 17th January 200 |
|---------|----------------------------|----------|------------------|
| PERMIT: | PEP-152                    | REPORT # | 9                |
| RIG:    | Mitchell Drilling Rig #150 | D.F.S.   | 8                |
|         |                            |          |                  |

| FROM     | то        | HOURS                                        |                       |                     |                                              |                   |               |               |
|----------|-----------|----------------------------------------------|-----------------------|---------------------|----------------------------------------------|-------------------|---------------|---------------|
|          |           | 5:00                                         | Drill ahead. Pre-tour | mooting             |                                              |                   |               |               |
| 6:00     | 11:00     |                                              |                       |                     |                                              |                   |               |               |
| 11:00    | 12:15     | 1:15                                         | Circ. Survey 3.5deg   |                     |                                              |                   |               |               |
| 12:15    | 20:30     | 8:15                                         |                       |                     |                                              | DI- 000DM @ 40k   | 040004 @ 04   | N             |
|          |           |                                              | Pre-tour meeting. W   |                     |                                              | R's 36SPM @ 10bar | 64SPM @ 28    | Bbar          |
| 20:30    | 21:45     | 1:15                                         | Flowcheck / Circulate |                     | opg                                          |                   |               |               |
| 21:45    | 1:15      | 3:30                                         | Drill ahead 1236-126  |                     |                                              |                   |               |               |
| 1:15     | 3:30      | 2:15                                         | Replace accumulato    | r pump and test nev | w unit.                                      |                   |               |               |
| 3:30     | 6:00      | 2:30                                         | Drill ahead.          |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     | <u> </u>                                     |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
| ·        |           |                                              |                       |                     |                                              |                   |               |               |
| OPERATI  | ONS TO 06 | 00 HRS:                                      |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     | <u> </u>                                     |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
| PROGRA   | MME NEXT  | 24 HRS:                                      |                       |                     |                                              |                   |               |               |
|          |           |                                              |                       |                     |                                              |                   |               |               |
| BULK     |           | GEL(sx)                                      | BARITE(sx)            | CEMENT(sx)          | DRILLWATER(mt)                               | POT WATER(mt) DI  | ESEL FUEL(It) | HELI FUEL(It) |
|          |           | =(0//)                                       |                       | (0.1)               |                                              | 31111211()        |               | 022(11)       |
| PERSONI  | NEL ON RI | <u>.                                    </u> | <u> </u>              | RANSPORTATIO        | <u>.                                    </u> |                   |               | <u> </u>      |
| OPERATO  |           | OCA                                          | i                     | NAME                | LOCATION                                     |                   |               |               |
|          |           | MDC                                          | WORKBOAT              | HAME                | LOCATION                                     |                   |               |               |
| DRILLING |           | IVIDC                                        | WORKBOAT              |                     |                                              |                   |               |               |
| SERVICE  | COMPS     |                                              | WORKBOAT              |                     |                                              |                   |               |               |
| OTHER    |           |                                              | STANDBY BOAT          |                     |                                              |                   |               |               |

OIM

HELICOPTER

HELICOPTER

ENGINEER

W.J. WESTMAN

TOTAL

SUPERVISOR(S)

| WELL:                | Port Fairy #1        |              | ]                     |               |                   |                | DATE:                    | 18-Jan-02   |             |
|----------------------|----------------------|--------------|-----------------------|---------------|-------------------|----------------|--------------------------|-------------|-------------|
| PERMIT:              | PEP-152              |              | Ì                     |               |                   |                | REPORT#                  | 10          |             |
| RIG:                 | Mitchell Drilling R  | ig #150      | j                     |               |                   |                | D.F.S.                   | 9           |             |
| DEPTH 0600 Hrs:      | 1327.00 m            |              | STATUS @ 06:00 H      | Hrs:          | Reaming, Circ     | culating botto | ms up                    |             |             |
| TVD:                 | 1327.00 m            | <u>.</u>     | FORMATION:            |               | Belfast Mudstone  | (I wr)         | <u> </u>                 |             |             |
| 24 HR PROGRESS:      | 0.00 m               | LAST CASING: | 9 5/8                 | @             | 812.0m            | (=)            | SHOE L.O.T.:             | 13.5 ppg    |             |
| HOLE SIZE:           | 8 1/2"               | ]<br>1       | ,                     |               | ·                 | 4.Em           | MAASP:                   |             |             |
|                      |                      | WD (LAT):    | N/A                   | K             | T - GL / Air gap: | 4.5m           | MAASP:                   | 620 psi     |             |
| SURVEYS:             | 3.5deg @ 1327m       |              |                       |               |                   |                |                          |             |             |
| MUD PROPERTIES       | FL                   | FL           |                       | CONSUN        | IABLES            |                | FORMA                    | TION DATA   |             |
| Sample taken @       | 12:00 -1320m         | 4:00 / 1327m |                       | Rig           | Workboat          | Workboat       | Name                     | Belfast Mud | stone (Lwr) |
| Flowline Temp °C     | 125                  | -            | Fuel                  |               |                   |                | Lithology                |             |             |
| Weight ppg/SG        | 9.60 / 1.15          | 9.65 / 1.16  | Potable water         |               |                   |                | Top depth RT.            | 1235.0      | 00 m        |
| Funnel viscosity.    | 44                   | 42           | Drill water           |               |                   |                | Trip gas %               |             |             |
| PV/YP(cp/lb/100ft2)  | 15 / 19              | 14 / 16      | Barites               |               |                   |                | Connection Gas %         |             |             |
| Gels 10secs / 10min  | 3 - 6                | 2 - 5        | Cement                |               |                   |                | Background gas %         |             |             |
| WL API(cc/30min)     | 6.8                  | 6.5          | Gel                   |               |                   |                | ECD (ppg)                |             |             |
| WL HTHP(cc/30min)    |                      |              | Base Oil              |               |                   |                | DRILL                    | .S / BOPS   |             |
| Cake (1/32")         | 1                    | 1            | PUMPS                 | 1             | 2                 | 3              | LAST BOP DRILL           |             |             |
| Solids %             | 7.1                  | 7.6          | TYPE                  | SOILMEC       |                   |                | LAST FIRE DRILL          |             |             |
| Sand %               | 1                    | 1.25         | STROKE(in)            | 6             |                   |                | LAST MOB DRILL           |             |             |
| MBT(lb/bbl)          | 8.5                  | 9.0          | LINER(in)             | 6             |                   |                | LAST ABN. RIG DRILL      |             |             |
| PH                   | 9.0                  | 9.2          | SPM                   | 150           |                   |                | LAST BOP TEST            |             |             |
| Chlorides (mg/l)     | 25,000               | 21,000       | GPM                   | 378           |                   |                | BOP TEST DUE             |             |             |
| K+ (mg/l)            | 27,600               | 22,700       | AV-DP(Ft/min)         | 154           |                   |                |                          | HRS         | CUM         |
| KCI %                | 5.1                  | 4.2          | AV-DC(Ft/min)         | 279           |                   |                | 1. Rig up / down.        |             | 38.75       |
| PHPA (Calc ppb)      | 1.18                 | 1.16         | SPP                   | 1150          |                   |                | 2. Drilling.             | 7.25        | 43.00       |
| Hole volume bbls.    | 278                  |              | SCR @ 36              | 10bar         |                   |                | 3. Reaming.              | 8.75        | 10.00       |
| Surface volume bbls. | 160                  |              | SCR @ 64              | 28bar         |                   |                | 4. Trip                  | 6.25        | 28.90       |
|                      | BIT DATA             |              | W                     | VEATHER / RIG | RESPONSE          |                | 5. Circ. / condition.    | 0.75        | 13.00       |
| Bit Run              | 3                    | 4            | Wind Speed (kts)      |               | 10                | 5              | 6. Deviation survey      | 0.50        | 1.00        |
| Diameter             | 8 1/2"               | 8 1/2"       | Direction             |               | SE                | SE             | 7. Run casing            |             | 18.25       |
| Type & manufacture   | DBS                  | HTC          | Temperature           |               | 18                |                | 8. Cementing             |             | 17.75       |
| IADC code            | PDC                  |              | Barometric pressu     | re millibar   |                   |                | 9. Handle Preventors     |             | 3.25        |
| Serial number        | 5996742 RW           |              | Barometer rise / fa   | all           |                   |                | 10. Riser, flowline      |             |             |
| Nozzles              | 14 -14 -14 -14 -14   |              | Visibility(NM)        |               |                   |                | 11. Logging.             |             |             |
| Depth In (m)         | 821m                 | 1327m        | Sea state             |               |                   |                | 12. Press. test BOP      |             | 5.00        |
| Depth Out            | 1327m                |              | Swell / Period / Dire | ection        |                   |                | 13. Repair rig.          |             | 3.75        |
| Drilled (m cum/dly)  | 506m                 |              | Waves / period / dire | ection        |                   |                | 14. Service rig.         |             | 1.25        |
| Hours (cum/dly)      | 71/4 / 301/4         |              | Heave                 |               |                   |                | 15. Slip / cut drlg line |             |             |
| Dull grade           | Rng                  |              | Pitch                 |               |                   |                | 16. Drill stem test.     |             |             |
| Average ROP (m/hr)   | 16.7                 |              | Roll                  |               |                   |                | 17. Fishing.             |             |             |
| WOB Klbs             | 5-15                 |              | Anchor tension        |               |                   |                | 18. Well control.        |             |             |
| RPM                  | 140                  |              | Anchor tension        |               |                   |                | 19. Hang-off.            |             |             |
| Jet velocity         | 135                  |              | Riser tension         |               |                   |                | 21. W.O.Weather          |             |             |
| HHP @ BIT            | 39                   |              | VARIABLE DECK         | LOAD (Kips)   |                   |                | 22. Lost circ.           |             |             |
| BHA No.              | 2                    | BHA WEIGHT   |                       | ()            | STRING WT         |                | 23. Plug / Abandon.      |             |             |
| BHA Profile :        | Bit / NB / Pony/STB/ | l            |                       | l.            | [                 |                | 24. Mob / Demob          |             |             |
|                      |                      |              |                       |               |                   |                | 25. Handle anchors.      |             |             |
| DOWNHOLE TOOLS       | SERIAL No.           | ROT/REAM HRS |                       | DRILLING      | G DATA            |                | 26. Position rig.        |             |             |
| Jars                 | DAH 02993            | 35¾          | DRAG - UP (mt)        | ZIMELIN       |                   |                | 27. Guide base / ROV.    |             |             |
| Nb stab              | MDC                  | 301/4        | DRAG - DOWN (m        | nt)           |                   |                | 28. Others               | 0.50        | 11.50       |
| Stab                 | MDC                  | 301/4        | TORQUE-On Botto       | -             |                   |                | zo. Others               | 0.50        | 11.50       |
| Stab                 | MDC                  | 301/4        | TORQUE-Off Botto      |               |                   |                | <del> </del>             |             |             |
|                      | MDO                  | 00/1         | . OR QUE ON DOLL      | o (ap3)       |                   |                | TOTAL (HRS)              | 24.00       | 195.40      |
| <u> </u>             | <u> </u>             |              |                       |               |                   |                | ,                        |             |             |

# Essential Petroleum Resources Limited. Daily Drilling Report

| WELL:                | Port Fairy #1       |                     |                      |              |                 |            | DATE:                    | 19-Jan-02                                     |          |
|----------------------|---------------------|---------------------|----------------------|--------------|-----------------|------------|--------------------------|-----------------------------------------------|----------|
| PERMIT:              | PEP-152             |                     |                      |              |                 |            | REPORT # 11              |                                               |          |
| RIG:                 | Mitchell Drilling   | Rig #150            |                      |              |                 |            | D.F.S.                   | 10                                            |          |
| DEPTH 0600 Hrs:      | 1550.00 m           |                     | STATUS @ 06:00       | Hrs:         | Prepareing to   | rig Schlum | berger up.               |                                               |          |
| TVD:                 | 1550.00 m           |                     | FORMATION:           |              | Eumerella       |            |                          |                                               |          |
| 24 HR PROGRESS:      | 223.00 m            | LAST CASING:        | 9 5/8                | @            | 812.0m          |            | SHOE L.O.T.:             | 13.5 ppg                                      |          |
| HOLE SIZE:           | 8 1/2"              | WD (LAT):           | N/A                  | RT           | - GL / Air gap: | 4.5m       | MAASP:                   | 620 psi                                       |          |
| SURVEYS:             |                     | -                   |                      |              | <u> </u>        |            |                          |                                               | -        |
| MUD PROPERTIES       | FL                  | PIT                 |                      | CONSUM       | IARI FS         |            | FORMA                    |                                               |          |
| Sample taken @       | 1130 / 1371m        | 1930 / 1550m        |                      | Rig          | Workboat        | Workboat   | Name                     | Eume                                          | erella   |
| Flowline Temp °C     | 120                 | 124                 | Fuel                 | 9            |                 |            | Lithology                |                                               |          |
| Weight ppg/SG        | 9.60 / 1.15         | 9.70 / 1.16         | Potable water        |              |                 |            | Top depth RT.            | 1369.5                                        | 50 m     |
| Funnel viscosity.    | 46                  | 48                  | Drill water          |              |                 |            | Trip gas %               |                                               |          |
| PV/YP(cp/lb/100ft2)  | 16 / 21             | 19 / 23             | Barites              |              |                 |            | Connection Gas %         |                                               |          |
| Gels 10secs / 10min  | 3 - 7               | 5 - 8               | Cement               |              |                 |            | Background gas %         |                                               |          |
| WL API(cc/30min)     | 6                   | 6.4                 | Gel                  |              |                 |            | ECD (ppg)                |                                               |          |
| WL HTHP(cc/30min)    |                     |                     | Base Oil             |              |                 |            |                          | S / BOPS                                      |          |
| Cake (1/32")         | 1.5                 | 1.5                 | PUMPS                | 1            | 2               | 3          | LAST BOP DRILL           |                                               | 19/01/02 |
| Solids %             | 7.4                 | 8.2                 | TYPE                 | SOILMEC      |                 |            | LAST FIRE DRILL          |                                               |          |
| Sand %               | 1.75                | 1.50                | STROKE(in)           | 6            |                 |            | LAST MOB DRILL           |                                               |          |
| MBT(lb/bbl)          | 9.0                 | 9.5                 | LINER(in)            | 6            |                 |            | LAST ABN. RIG DRILL      | 3                                             |          |
| PH                   | 8.8                 | 9.0                 | SPM                  | 150          |                 |            | LAST BOP TEST            |                                               | 15/01/02 |
| Chlorides (mg/l)     | 21,500              | 21,000              | GPM                  | 378          |                 |            | BOP TEST DUE             |                                               | 29/01/02 |
| K+ (mg/l)            | 23,200              | 21,600              | AV-DP(Ft/min)        | 154          |                 |            |                          | HRS                                           | CUM      |
| KCI %                | 4.3                 | 4.0                 | AV-DC(Ft/min)        | 279          |                 |            | 1. Rig up / down.        |                                               | 38.75    |
| PHPA (Calc ppb)      | 1.23                | 1.22                | SPP                  | 1150         |                 |            | 2. Drilling.             | 11.50                                         | 47.25    |
| Hole volume bbls.    | 346                 |                     | SCR @ 36             | 10bar        |                 |            | 3. Reaming.              | 2.50                                          | 12.50    |
| Surface volume bbls. | 150                 |                     | SCR @ 64             | 28bar        |                 |            | 4. Trip                  | 7.00                                          | 36.00    |
|                      | BIT DATA            |                     | W                    | EATHER / RIG | RESPONSE        |            | 5. Circ. / condition.    | 3.00                                          | 16.00    |
| Bit Run              | 3                   | 4                   | Wind Speed (kts)     | )            |                 |            | 6. Deviation survey      |                                               | 1.00     |
| Diameter             | 8 1/2"              | 8 1/2"              | Direction            |              |                 |            | 7. Run casing            |                                               | 18.25    |
| Type & manufacture   | DBS                 | HTC                 | Temperature          |              |                 |            | 8. Cementing             |                                               | 17.75    |
| IADC code            | PDC                 |                     | Barometric pressi    | ure millibar |                 |            | 9. Handle Preventors     |                                               | 3.25     |
| Serial number        | 5996742 RW          |                     | Barometer rise / f   | all          |                 |            | 10. Riser, flowline      |                                               |          |
| Nozzles              | 14 -14 -14 -14 -14  | 13 - 13 - 13        | Visibility(NM)       |              |                 |            | 11. Logging.             |                                               |          |
| Depth In (m)         | 821m                | 1327m               | Sea state            |              |                 |            | 12. Press. test BOP      |                                               | 5.00     |
| Depth Out            | 1327m               | 1550m               | Swell / Period / Dir | ection       |                 |            | 13. Repair rig.          |                                               | 3.75     |
| Drilled (m cum/dly)  | 506m                |                     | Waves / period / di  | irection     |                 |            | 14. Service rig.         |                                               | 1.25     |
| Hours (cum/dly)      | 71/4 / 301/4        |                     | Heave                |              |                 |            | 15. Slip / cut drlg line |                                               |          |
| Dull grade           | Rng                 |                     | Pitch                |              |                 |            | 16. Drill stem test.     |                                               |          |
| Average ROP (m/hr)   | 16.7                |                     | Roll                 |              |                 |            | 17. Fishing.             |                                               |          |
| WOB Klbs             | 5-15                |                     | Anchor tension       |              |                 |            | 18. Well control.        |                                               |          |
| RPM                  | 140                 |                     | Anchor tension       |              |                 |            | 19. Hang-off.            |                                               |          |
| Jet velocity         | 135                 |                     | Riser tension        |              |                 |            | 21. W.O.Weather          |                                               |          |
| HHP @ BIT            | 39                  |                     | VARIABLE DECK        | LOAD (Kips)  |                 |            | 22. Lost circ.           |                                               |          |
| BHA No.              | 2                   | BHA WEIGHT          |                      |              | STRING WT       |            | 23. Plug / Abandon.      |                                               |          |
| BHA Profile :        | Bit / NB / Pony/STE | B/ DC/STB/ 16 xDc/J | lars/ 2 x Dc./Xo     |              |                 |            | 24. Mob / Demob          |                                               |          |
|                      |                     | 1                   |                      |              |                 |            | 25. Handle anchors.      |                                               |          |
| DOWNHOLE TOOLS       | SERIAL No.          | ROT/REAM HRS        |                      | DRILLING     | G DATA          |            | 26. Position rig.        |                                               |          |
| Jars                 | DAH 02993           | 35¾                 | DRAG - UP (mt)       |              |                 |            | 27. Guide base / ROV     | <u>'.                                    </u> | _        |
| Nb stab              | MDC                 | 30¼                 | DRAG - DOWN (        |              |                 |            | 28. Others               |                                               | 11.50    |
| Stab                 | MDC                 | 30¼                 | TORQUE-On Bo         |              |                 |            |                          |                                               |          |
| Stab                 | MDC                 | 301/4               | TORQUE-Off Bo        | ttom (amps)  |                 |            | TOTAL (UDC)              | 24.00                                         | 212.25   |
| i e                  | 1                   | 1                   |                      |              | 1               |            | TOTAL (HRS)              | 24.00                                         | 212.25   |

### Essential Petroleum Resources Limited. DAILY DRILLING REPORT

| WELL:   | Port Fairy #1              |  |
|---------|----------------------------|--|
| PERMIT: | PEP-152                    |  |
| RIG:    | Mitchell Drilling Rig #150 |  |

DATE: REPORT # D.F.S. 19-Jan-02 11

| KIG:     | witchell Dfl | ling Rig #150 |                       |              |                  |               | D.F.S.          | 10            |
|----------|--------------|---------------|-----------------------|--------------|------------------|---------------|-----------------|---------------|
| FROM     | ТО           | HOURS         |                       |              |                  |               |                 |               |
| 6:00     | 7:00         | 1:00          | Continue to circ bott | oms up       |                  |               |                 |               |
| 7:00     | 18:30        | 11:30         | Drill ahead to 1550n  | •            |                  |               |                 |               |
| 18:30    | 20:00        | 1:30          |                       |              | pm, 18bar @36spm | P/T meetir    | ng              |               |
| 20:00    | 1:45         | 5:45          | Pump as pulling out   |              |                  |               | 3               |               |
| 1:45     | 2:15         | 0:30          | Circ. B/u. @ shoe.    |              |                  |               |                 |               |
| 2:15     | 6:00         | 3:45          | POOH                  |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
| OPERATIO | ONS TO 06    | 00 HRS:       |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
|          |              |               |                       |              |                  |               |                 |               |
| PROGRAM  | MME NEXT     | 24 HRS:       |                       |              |                  |               |                 |               |
|          |              |               | <del></del>           |              | T                |               |                 | 1             |
| BULK     |              | GEL(sx)       | BARITE(sx)            | CEMENT(sx)   | DRILLWATER(mt)   | POT WATER(mt) | DIESEL FUEL(It) | HELI FUEL(It) |
| DED CO.  | IEI 6        |               |                       |              | <u> </u>         |               |                 |               |
| PERSONN  |              |               | 1                     | RANSPORTATIO |                  |               |                 | T             |
| OPERATO  |              | OCA           | WORKEST               | NAME         | LOCATION         |               |                 |               |
| DRILLING |              | MDC           | WORKBOAT              |              |                  |               |                 |               |
| SERVICE  | COMPS        |               | WORKBOAT              |              |                  |               |                 |               |
| OTHER    |              |               | STANDBY BOAT          |              |                  |               |                 |               |
| TOTAL    |              |               | HELICOPTER            |              |                  |               |                 |               |
| TOTAL    | /ICOD/O      | 14/ 1         | HELICOPTER            | ENCINEED     | 1                |               | OIM.            |               |
| SUPER!   | VISOR(S)     | W.J.          | WESTMAN               | ENGINEER     | <u> </u>         |               | OIM             |               |

| WELL:   | Port Fairy #1              | DATE:    | 18th January 2003 |
|---------|----------------------------|----------|-------------------|
| PERMIT: | PEP-152                    | REPORT # | 10                |
| RIG:    | Mitchell Drilling Rig #150 | D.F.S.   | 9                 |
|         |                            |          |                   |

|          |            | 110::    |                        |                   |                      |                  |                   |                |
|----------|------------|----------|------------------------|-------------------|----------------------|------------------|-------------------|----------------|
| FROM     | то         | HOURS    |                        |                   |                      |                  |                   |                |
| 6:00     | 9:45       | 3:45     | Drill 81/2" hole 1288n | n to 1313m.       |                      |                  |                   |                |
| 9:45     | 10:30      | 0:45     | Circulate bottom san   | nple.             |                      |                  |                   |                |
| 10:30    | 14:00      | 3:30     | Drill 81/2" hole 1313n | n to 1327m.       |                      |                  |                   |                |
| 14:00    | 14:30      | 0:30     | Drop survey, 3.5de     | g @1327m. Slug pi | pe. Flow check.      |                  |                   |                |
| 14:30    | 18:00      | 3:30     | POOH. Bit change.      |                   |                      |                  |                   |                |
| 18:00    | 18:30      | 0:30     | Flow check at shoe.    |                   |                      |                  |                   |                |
| 18:30    | 20:00      | 1:30     | POOH.                  |                   |                      |                  |                   |                |
| 20:00    | 21:15      | 1:15     | Change bit RIH         |                   |                      |                  |                   |                |
| 21:15    | 5:15       | 8:00     | Tagged tight section   | of hole @ 874m. F | Ream to 959m.        |                  |                   |                |
| 5:15     | 6:00       | 0:45     | Tagged hard section    |                   |                      |                  |                   |                |
|          |            |          | - 55                   |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          | 1                      |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
| OPERATI  | ONS TO 06  | 00 HRS:  |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
| PROGRA   | MME NEXT   | 24 HRS:  |                        |                   |                      |                  |                   |                |
|          |            |          |                        |                   |                      |                  |                   |                |
| BULK     |            | GEL(sx)  | BARITE(sx)             | CEMENT(sx)        | DRILLWATER(mt)       | POT WATER(mt)    | DIESEL ELIEL /III | HELI FUEL(It)  |
| DOLK     |            | OLL(SX)  | DUILIE(9Y)             | OLIVILINI (5X)    | DIVILLAND LEW (IIII) | I OT WATER(IIII) | DILOCK FUEL(II)   | TILLIT OLL(II) |
| DEDSON   | NEL ON RIG | <u> </u> | <u> </u>               | RANSPORTATIO      | N                    |                  | 1                 |                |
| -        |            |          |                        |                   |                      |                  | 1                 |                |
| OPERATO  |            | OCA      | WODKDOAT               | NAME              | LOCATION             |                  |                   |                |
| DRILLING |            | MDC      | WORKBOAT               |                   |                      |                  |                   |                |
| SERVICE  | COMPS      |          | WORKBOAT               |                   |                      |                  |                   |                |

OTHER

TOTAL

SUPERVISOR(S)

STANDBY BOAT HELICOPTER

ENGINEER

OIM

HELICOPTER

W.J. WESTMAN

| WELL:                            | Port Fairy #1         |                       |                       |                 |                   |          | DATE:                                                      | 20-Jan-02 |              |
|----------------------------------|-----------------------|-----------------------|-----------------------|-----------------|-------------------|----------|------------------------------------------------------------|-----------|--------------|
| PERMIT:                          | PEP-152               |                       |                       |                 |                   |          | REPORT#                                                    | 12        |              |
| RIG:                             | Mitchell Drilling Ri  | ig #150               |                       |                 |                   |          | D.F.S.                                                     | 11        |              |
|                                  |                       |                       |                       |                 | <b>-</b>          |          |                                                            |           |              |
| DEPTH 0600 Hrs:                  | 1550.00 m             |                       | STATUS @ 06:00 H      | łrs:            | Running DST       | tests.   |                                                            |           |              |
| TVD:                             | 1550.00 m             |                       | FORMATION:            |                 | Eumerella         |          |                                                            |           |              |
| 24 HR PROGRESS:                  | -                     | LAST CASING:          | 9 5/8                 | @               | 812.0m            |          | SHOE L.O.T.:                                               | 13.5 ppg  |              |
| HOLE SIZE:                       | 8 1/2"                | WD (LAT):             | N/A                   | R               | T - GL / Air gap: | 4.5m     | MAASP:                                                     | 620 psi   |              |
| SURVEYS:                         |                       |                       |                       |                 | -                 |          | <u>-</u>                                                   |           | -            |
| MUD PROPERTIES                   | PIT                   | PIT                   |                       | CONSUN          | MARI FS           |          | FORMA                                                      | TION DATA |              |
| Sample taken @                   |                       | 18:30 / 1550m         |                       | Rig             | Workboat          | Workboat | Name                                                       | Eume      | erella       |
| Flowline Temp °C                 |                       | -                     | Fuel                  | 9               |                   |          | Lithology                                                  |           |              |
| Weight ppg/SG                    |                       | 9.55 / 1.15           | Potable water         |                 |                   |          | Top depth RT.                                              | 1369.5    | 50 m         |
| Funnel viscosity.                |                       | 43                    | Drill water           |                 |                   |          | Trip gas %                                                 |           |              |
| PV/YP(cp/lb/100ft2)              |                       | 15 / 25               | Barites               |                 |                   |          | Connection Gas %                                           |           |              |
| Gels 10secs / 10min              |                       | 4 / 8                 | Cement                |                 |                   |          | Background gas %                                           |           |              |
| WL API(cc/30min)                 |                       | 5.8                   | Gel                   |                 |                   |          | ECD (ppg)                                                  |           |              |
| WL HTHP(cc/30min)                |                       | -                     | Base Oil              |                 |                   |          |                                                            | S / BOPS  |              |
| Cake (1/32")                     |                       | 1.5                   | PUMPS                 | 1               | 2                 | 3        | LAST BOP DRILL                                             | 07 001 0  | 19/01/02     |
| Solids %                         |                       | 7.0                   | TYPE                  | SOILMEC         | -                 | •        | LAST FIRE DRILL                                            |           | 17/01/02     |
| Sand %                           |                       | 0.5                   | STROKE(in)            | 6               |                   |          | LAST MOB DRILL                                             |           |              |
| MBT(lb/bbl)                      |                       | 7.0                   | LINER(in)             | 6               |                   |          | LAST ABN. RIG DRILL                                        |           |              |
| PH                               |                       | 9.0                   | SPM                   | 150             |                   |          | LAST BOP TEST                                              |           | 15/01/02     |
| Chlorides (mg/l)                 |                       | 13,000                | GPM                   | 378             |                   |          | BOP TEST DUE                                               |           | 29/01/02     |
| K+ (mg/l)                        |                       | 11,300                | AV-DP(Ft/min)         | 154             |                   |          | DOI 1E31 DOE                                               | HRS       | CUM          |
| KCI %                            |                       | 2.1                   | AV-DC(Ft/min)         | 279             |                   |          | 1. Rig up / down.                                          | TINO      | 38.75        |
| PHPA (Calc ppb)                  |                       | 0.9                   | SPP                   | 1150            |                   |          | 2. Drilling.                                               |           | 47.25        |
| Hole volum                       | na hhle               | 365                   | SCR @ 36              | 10bar           |                   |          | 3. Reaming.                                                |           | 12.50        |
| Surface volu                     |                       | 165                   | SCR @ 64              | 28bar           |                   |          | 4. Trip                                                    |           | 35.90        |
| Surface voic                     | BIT DATA              | 103                   |                       | /EATHER / RIG   | DESDONSE          |          | 5. Circ. / condition.                                      |           | 16.00        |
| Bit Run                          | 3                     | 4                     | Wind Speed (kts)      | LATTILIC / ICIO | KESI ONSE         |          | Deviation survey                                           |           | 1.00         |
| Diameter                         | 8 1/2"                | 8 1/2"                | Direction             |                 |                   |          | 7. Run casing                                              |           | 18.25        |
| Type & manufacture               | DBS                   | HTC                   | Temperature           |                 |                   |          | 8. Cementing                                               |           | 17.75        |
| IADC code                        | PDC                   | IIIC                  | Barometric pressur    | ro millihar     |                   |          | Handle Preventors                                          |           | 3.25         |
| Serial number                    | 5996742 RW            |                       | Barometer rise / fa   |                 |                   |          | 10. Riser, flowline                                        |           | 3.23         |
| Nozzles                          | 14 -14 -14 -14 -14    | 13 - 13 - 13          | Visibility(NM)        | II.             |                   |          | 11. Logging.                                               | 11.50     | 11.50        |
| Depth In (m)                     | 821m                  | 13 - 13 - 13<br>1327m | Sea state             |                 |                   |          | 12. Press. test BOP                                        | 11.50     | 5.00         |
|                                  | ł                     | 1550m                 | Swell / Period / Dire | ction           |                   |          |                                                            |           |              |
| Depth Out<br>Drilled (m cum/dly) | 1327m<br>506m         | 1000111               | Waves / period / dire |                 |                   |          | <ul><li>13. Repair rig.</li><li>14. Service rig.</li></ul> |           | 3.75<br>1.25 |
| Hours (cum/dly)                  | 7¼ / 30¼              |                       | Heave                 | CUUII           |                   |          | 15. Slip / cut drlq line                                   |           | 1.20         |
| Dull grade                       | 1                     |                       | Pitch                 |                 |                   |          | 16. Drill stem test.                                       | 10.00     | 10.00        |
| Average ROP (m/hr)               | Rng<br>16.7           |                       | Roll                  |                 |                   |          | 17. Fishing.                                               | 10.00     | 10.00        |
| WOB Klbs                         | 5-15                  |                       | Anchor tension        |                 |                   |          | 17. Fishing.<br>18. Well control.                          |           |              |
|                                  | 1                     |                       |                       |                 |                   |          |                                                            |           |              |
| RPM                              | 140                   |                       | Anchor tension        |                 |                   |          | 19. Hang-off.                                              |           |              |
| Jet velocity                     | 135                   |                       | Riser tension         | OAD (Vina)      |                   |          | 21. W.O.Weather                                            |           |              |
| HHP @ BIT                        | 39                    | DIIA WEIGUT           | VARIABLE DECK I       | LUAD (KIPS)     | STRING WT         |          | 22. Lost circ.                                             |           |              |
| BHA No.                          | 2                     | BHA WEIGHT            |                       |                 | STRING WIL        |          | 23. Plug / Abandon.                                        |           |              |
| BHA Profile :                    | Refer to Australian D | .o.i. Sileel.         |                       |                 |                   |          | 24. Mob / Demob                                            |           |              |
| DOMNINO E TOOLO                  | CEDIAL NI-            | DOT/DE ANALIES        |                       | DDILLIN         | C DATA            |          | 25. Handle anchors.                                        |           |              |
| DOWNHOLE TOOLS                   | SERIAL No.            | ROT/REAM HRS          | DDAG UB (12)          | DRILLIN         | UAIA              |          | 26. Position rig.                                          |           |              |
|                                  | -                     |                       | DRAG - UP (mt)        |                 |                   |          | 27. Guide base / ROV.                                      | 2.50      | 11 50        |
|                                  | 1                     |                       | DRAG - DOWN (m        | •               |                   |          | 28. Others                                                 | 2.50      | 11.50        |
|                                  | 1                     |                       | TORQUE-On Botto       |                 |                   |          | <u> </u>                                                   |           |              |
|                                  |                       |                       | TORQUE-Off Botto      | om (amps)       |                   |          | TOTAL (120)                                                | 24.00     | 200 (=       |
|                                  |                       |                       |                       |                 |                   |          | TOTAL (HRS)                                                | 24.00     | 233.65       |

### Essential Petroleum Resources Limited. DAILY DRILLING REPORT

| WELL: Port Fairy #1             |  |
|---------------------------------|--|
| PERMIT: PEP-152                 |  |
| RIG: Mitchell Drilling Rig #150 |  |

DATE: REPORT # D.F.S. 20-Jan-02 12

| RIG:     | Mitchell Drill | ling Rig #150 | ]                   |               |                |               | D.F.S.          | 11            |
|----------|----------------|---------------|---------------------|---------------|----------------|---------------|-----------------|---------------|
| FROM     | то             | HOURS         |                     |               |                |               |                 |               |
| 6:00     | 17:00          | 11:00         | Logging             |               |                |               |                 |               |
| 17:00    | 17:30          | 0:30          | R/d Schlumberger lo | ogging        |                |               |                 |               |
| 17:30    | 19:30          | 2:00          | R/u DST BHA         | <u> </u>      |                |               |                 |               |
| 19:30    | 22:00          | 2:30          | Standby to run DST  |               |                |               |                 |               |
| 22:00    | 6:00           | 8:00          |                     | timer @ 22:25 |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
| OPER ATI | ONS TO 060     | 00 HRS:       | <u> </u>            |               |                |               |                 |               |
| J. EKATI | 2.10 .0 000    |               |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
| PROGRA   | MME NEXT       | 24 HRS:       |                     |               |                |               |                 |               |
|          |                |               |                     |               |                |               |                 |               |
| BULK     |                | GEL(sx)       | BARITE(sx)          | CEMENT(sx)    | DRILLWATER(mt) | POT WATER(mt) | DIESEL FUEL(It) | HELI FUEL(It) |
|          |                | . ,           | , ,                 |               | , ,            | , ,           | , ,             | . /           |
| PERSON   | IEL ON RIG     | ;             | 7                   | RANSPORTATIO  | N              |               |                 |               |
| OPERATO  | )R             | OCA           |                     | NAME          | LOCATION       |               |                 |               |
| DRILLING | CONT.          | MDC           | WORKBOAT            |               |                |               |                 |               |
| SERVICE  | COMPS          |               | WORKBOAT            |               |                |               |                 |               |
| OTHER    |                |               | STANDBY BOAT        |               |                |               |                 |               |
|          |                |               | HELICOPTER          |               |                |               |                 |               |
| TOTAL    |                | -             | HELICOPTER          |               |                |               |                 |               |
| SUPER    | VISOR(S)       | W.J.          | WESTMAN             | ENGINEER      |                |               | OIM             |               |

| WELL:                         | Port Fairy #1            |                       |                                |               |                   |          | DATE:                                                      | 21-Jan-02 |          |
|-------------------------------|--------------------------|-----------------------|--------------------------------|---------------|-------------------|----------|------------------------------------------------------------|-----------|----------|
| PERMIT:                       | PEP-152                  |                       |                                |               |                   |          | REPORT #                                                   | 13        | Ì        |
| RIG:                          | Mitchell Drilling Ri     | ig #150               |                                |               |                   |          | D.F.S.                                                     | 12        |          |
|                               |                          | 1                     |                                |               | T===              |          |                                                            |           |          |
| DEPTH 0600 Hrs:               | 1550.00 m                |                       | STATUS @ 06:00 H               | lrs:          | POOH              |          |                                                            |           |          |
| TVD:                          | 1550.00 m                |                       | FORMATION:                     |               | Eumeralla         |          |                                                            |           |          |
| 24 HR PROGRESS:               | -                        | LAST CASING:          | 9 5/8                          | @             | 812.0m            |          | SHOE L.O.T.:                                               | 13.5 ppg  |          |
| HOLE SIZE:                    | 8 1/2"                   | WD (LAT):             | N/A                            | R             | T - GL / Air gap: | 4.5m     | MAASP:                                                     | 620 psi   |          |
| SURVEYS:                      |                          |                       |                                |               |                   |          |                                                            |           |          |
| MUD PROPERTIES                | PIT                      | PIT                   |                                | CONSUN        | MABLES            |          | FORMA                                                      | TION DATA |          |
| Sample taken @                | 12:30 / 1550m            | 04:00 / 1513m         |                                | Rig           | Workboat          | Workboat | Name                                                       | Eume      | eralla   |
| Flowline Temp °C              |                          |                       | Fuel                           |               |                   |          | Lithology                                                  |           |          |
| Weight ppg/SG                 | 9.55 / 1.15              | 9.65 / 1.16           | Potable water                  |               |                   |          | Top depth RT.                                              | 1369.5    | 50 m     |
| Funnel viscosity.             | 40                       | 46                    | Drill water                    |               |                   |          | Trip gas %                                                 |           |          |
| PV/YP(cp/lb/100ft2)           | 16 / 16                  | 22 / 25               | Barites                        |               |                   |          | Connection Gas %                                           |           |          |
| Gels 10secs / 10min           | 4/8                      | 5 / 10                | Cement                         |               |                   |          | Background gas %                                           |           |          |
| WL API(cc/30min)              | 5.8                      | 5.4                   | Gel                            |               |                   |          | ECD (ppg)                                                  |           |          |
| WL HTHP(cc/30min)             | -                        | -                     | Base Oil                       |               |                   |          |                                                            | S / BOPS  |          |
| Cake (1/32")                  | 1.5                      | 1.5                   | PUMPS                          | 1             | 2                 | 3        | LAST BOP DRILL                                             |           | 19/01/02 |
| Solids %                      | 7.1                      | 7.6                   | TYPE                           | SOILMEC       | _                 |          | LAST FIRE DRILL                                            |           |          |
| Sand %                        | 0.50                     | 0.75                  | STROKE(in)                     | 6             |                   |          | LAST MOB DRILL                                             |           |          |
| MBT(lb/bbl)                   | 7.0                      | 8.0                   | LINER(in)                      | 6             |                   |          | LAST ABN. RIG DRILL                                        |           |          |
| PH                            | 8.5                      | 9.2                   | SPM                            | 150           |                   |          | LAST BOP TEST                                              |           | 15/01/02 |
| Chlorides (mg/l)              | 13,000                   | 20,500                | GPM                            | 378           |                   |          | BOP TEST DUE                                               |           | 29/01/02 |
| K+ (mg/l)                     | 520                      | 320                   | AV-DP(Ft/min)                  | 154           |                   |          | DOT TEST DOE                                               | HRS       | CUM      |
| KCI %                         | 2.1                      | 3.7                   | AV-DC(Ft/min)                  | 279           |                   |          | 1. Rig up / down.                                          |           | 38.75    |
| PHPA (Calc ppb)               | 1.00                     | 1.10                  | SPP                            | 1150          |                   |          | 2. Drilling.                                               |           | 47.25    |
| Hole volun                    |                          | 359                   | SCR @ 69                       | 28bar         |                   |          | 3. Reaming.                                                |           | 12.50    |
| Surface volu                  |                          | 205                   | 30K @ 07                       | 20001         |                   |          | 4. Trip                                                    | 7.75      | 43.75    |
| Ouridoo Foic                  | BIT DATA                 | 203                   | W                              | /EATHER / RIG | RESPONSE          |          | 5. Circ. / condition.                                      | 1.00      | 17.00    |
| Bit Run                       | 3                        | 4                     | Wind Speed (kts)               | LATTILITY RIO | TEST ONSE         |          | Deviation survey                                           | 1.00      | 1.00     |
| Diameter                      | 8 1/2"                   | 8 1/2"                | Direction                      |               |                   |          | 7. Run casing                                              |           | 18.25    |
| Type & manufacture            | DBS                      | HTC                   | Temperature                    |               |                   |          | 8. Cementing                                               |           | 17.75    |
| IADC code                     | PDC                      | 1110                  | Barometric pressur             | ra millihar   |                   |          | Handle Preventors                                          |           | 3.25     |
| Serial number                 | 5996742 RW               |                       | Barometer rise / fa            |               |                   |          | 10. Riser, flowline                                        |           | 3.23     |
| Nozzles                       | 14 -14 -14 -14 -14       | 13 - 13 - 13          | Visibility(NM)                 | ii            |                   |          | 11. Logging.                                               |           | 11.50    |
| Depth In (m)                  | 821m                     | 13 - 13 - 13<br>1327m | Sea state                      |               |                   |          | 12. Press. test BOP                                        |           | 5.00     |
| Depth Out                     | 1327m                    | 1550m                 | Swell / Period / Dire          | ction         |                   |          |                                                            |           | 3.75     |
| Drilled (m cum/dly)           | 506m                     | 1330111               | Waves / period / dire          |               |                   |          | <ul><li>13. Repair rig.</li><li>14. Service rig.</li></ul> |           | 1.25     |
| . ,,                          | 1                        |                       |                                | ECHOIT        |                   |          |                                                            |           | 1.23     |
| Hours (cum/dly)<br>Dull grade | 7¼ / 30¼                 |                       | Heave<br>Pitch                 |               |                   |          | 15. Slip / cut drlg line<br>16. Drill stem test.           | 15.75     | 25.25    |
| Average ROP (m/hr)            | Rng<br>16.7              |                       | Roll                           |               |                   |          | 17. Fishing.                                               | 15.25     | 25.25    |
| WOB Klbs                      | 5-15                     |                       |                                |               |                   |          | 17. Fishing.<br>18. Well control.                          |           |          |
| RPM                           |                          |                       | Anchor tension  Anchor tension |               |                   |          | 19. Hang-off.                                              |           |          |
|                               | 140                      |                       |                                |               |                   |          |                                                            |           |          |
| Jet velocity                  | 135                      |                       | Riser tension                  | OAD (V:)      |                   |          | 21. W.O.Weather                                            |           |          |
| HHP @ BIT                     | 39                       | DITA MEIO:            | VARIABLE DECK I                | LUAD (KIPS)   | CTDING WIT        |          | 22. Lost circ.                                             |           |          |
| BHA No.                       | 2                        | BHA WEIGHT            |                                |               | STRING WT         |          | 23. Plug / Abandon.                                        |           |          |
| BHA Profile :                 | 8 1/2" HTC bit - Drill o | collors - Drill pipe  |                                |               |                   |          | 24. Mob / Demob                                            |           |          |
| DOMNIIO E TOO: 0              | CEDIAL AL                | DOT/DE *** USO        |                                | DDULL         | CDATA             |          | 25. Handle anchors.                                        |           |          |
| DOWNHOLE TOOLS                | SERIAL No.               | ROT/REAM HRS          | DDAG 115 ( 3)                  | DRILLIN       | DAIA              |          | 26. Position rig.                                          |           |          |
|                               | -                        |                       | DRAG - UP (mt)                 | 0             |                   |          | 27. Guide base / ROV.                                      | I         | 44       |
|                               |                          |                       | DRAG - DOWN (m                 |               |                   |          | 28. Others                                                 |           | 11.50    |
|                               |                          |                       | TORQUE-On Botto                |               |                   |          |                                                            |           |          |
|                               |                          |                       | TORQUE-Off Botto               | om (amps)     |                   |          | TOTAL (1:20)                                               | 04        | 055      |
|                               |                          |                       |                                |               |                   |          | TOTAL (HRS)                                                | 24.00     | 257.75   |

| WELL: Port Fairy #1             | DATE:    | 21-Jan-02 |
|---------------------------------|----------|-----------|
| PERMIT: PEP-152                 | REPORT # | 13        |
| RIG: Mitchell Drilling Rig #150 | D.F.S.   | 12        |

|          |            |         | _                      |                  |                       |                     |                 |               |
|----------|------------|---------|------------------------|------------------|-----------------------|---------------------|-----------------|---------------|
| FROM     | то         | HOURS   |                        |                  |                       |                     |                 |               |
| 6:00     | 6:15       | 0:15    | R/u DST manifold       |                  |                       |                     |                 |               |
| 6:15     | 9:00       | 2:45    |                        | Im, weak blow on | first opening. More b | low on second flow. |                 |               |
| 9:00     | 10:30      | 1:30    | Unset packer. Stuck    |                  |                       |                     |                 |               |
| 10:30    | 11:30      | 1:00    | Attempt to inflate @   |                  |                       |                     |                 |               |
| 11:30    | 21:15      | 9:45    | POOH                   |                  |                       |                     |                 |               |
| 21:15    | 3:00       | 5:45    | RIH w/ drill string. \ | Washed down @14  | 47-1455m Brok         | e down DST tool.    |                 |               |
| 3:00     | 4:00       | 1:00    |                        |                  | wn unsuccesful. Circ  | c 1.5xB/up.         |                 |               |
| 4:00     | 6:00       | 2:00    | POOH                   |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
| OPERATI  | ONS TO 06  | 00 HRS: |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     |                 |               |
| PROGRA   | MME NEXT   | 24 HRS: |                        |                  |                       |                     |                 |               |
|          |            |         |                        |                  |                       |                     | 1               |               |
| BULK     |            | GEL(sx) | BARITE(sx)             | CEMENT(sx)       | DRILLWATER(mt)        | POT WATER(mt)       | DIESEL FUEL(It) | HELI FUEL(It) |
|          |            |         | <u> </u>               |                  | <u> </u>              |                     |                 |               |
|          | NEL ON RIC |         | 1                      | RANSPORTATIO     |                       |                     |                 |               |
| OPERATO  |            | OCA     | WODING: T              | NAME             | LOCATION              |                     |                 |               |
| DRILLING |            | MDC     | WORKBOAT               |                  |                       |                     |                 |               |
| SERVICE  | COMPS      |         | WORKBOAT               |                  |                       |                     |                 |               |
| OTHER    |            |         | STANDBY BOAT           |                  |                       |                     |                 |               |
|          |            |         | HELICOPTER             |                  |                       |                     |                 |               |
| TOTAL    |            | 1       | HELICOPTER             |                  | 1                     |                     |                 |               |

ENGINEER

W.J. WESTMAN

SUPERVISOR(S)

| WELL:                      | Port Fairy #1          |                       |                                    |                |                   |          | DATE:                                            | 22-Jan-02                                        |                 |
|----------------------------|------------------------|-----------------------|------------------------------------|----------------|-------------------|----------|--------------------------------------------------|--------------------------------------------------|-----------------|
| PERMIT:                    | PEP-152                |                       |                                    |                |                   |          | REPORT #                                         | 14                                               | Ì               |
| RIG:                       | Mitchell Drilling R    | ig #150               |                                    |                |                   |          | D.F.S.                                           | 13                                               | ]               |
|                            |                        |                       |                                    |                | -                 |          |                                                  |                                                  | 1               |
| DEPTH 0600 Hrs:            | 1310.00 m              |                       | STATUS @ 06:00 I                   | Hrs:           | RIH , wiper trip  | )        |                                                  |                                                  |                 |
| TVD:                       | 1550.00 m              |                       | FORMATION:                         |                | Eumeralla         |          |                                                  |                                                  |                 |
| 24 HR PROGRESS:            | -                      | LAST CASING:          | 9 5/8                              | @              | 812.0m            |          | SHOE L.O.T.:                                     | 13.5 ppg                                         |                 |
| HOLE SIZE:                 | 8 1/2"                 | WD (LAT):             | N/A                                | R              | T - GL / Air gap: | 4.5m     | MAASP:                                           | 620 psi                                          |                 |
| SURVEYS:                   |                        | •                     |                                    |                | _                 |          |                                                  |                                                  | -"              |
| MUD PROPERTIES             | PIT                    | PIT                   | 1                                  | CONSUM         | IARI FS           |          | EODWV.                                           | TION DATA                                        |                 |
| Sample taken @             | FIL                    | 17:00 / 1550m         |                                    | Rig            | Workboat          | Workboat | Name                                             | Eume                                             | ralla           |
| Flowline Temp °C           |                        | 17.007 1330111        | Fuel                               | rtig           | Workboat          | Workboat | Lithology                                        | Lume                                             | Ji dild         |
| Weight ppg/SG              |                        | 9.70 / 1.16           | Potable water                      |                |                   |          | O,                                               | 1369.5                                           | 50 m            |
| Funnel viscosity.          |                        | 44                    | Drill water                        |                |                   |          | Top depth RT.<br>Trip gas %                      | 1007.0                                           | 50 111          |
| PV/YP(cp/lb/100ft2)        |                        | 19 / 20               | Barites                            |                |                   |          | Connection Gas %                                 |                                                  |                 |
| Gels 10secs / 10min        |                        | 4/6                   | Cement                             |                |                   |          | Background gas %                                 |                                                  |                 |
| WL API(cc/30min)           |                        | 5.0                   | Gel                                |                |                   |          | ECD (ppg)                                        |                                                  |                 |
| WL HTHP(cc/30min)          |                        | -                     | Base Oil                           |                |                   |          |                                                  | S / BOPS                                         |                 |
| Cake (1/32")               |                        | 1.5                   | PUMPS                              | 1              | 2                 | 3        | LAST BOP DRILL                                   | 37 001 3                                         | 19/01/02        |
| Solids %                   |                        | 8.0                   | TYPE                               | SOILMEC        | 2                 | <u> </u> | LAST FIRE DRILL                                  |                                                  | 17/01/02        |
| Sand %                     |                        | 1.25                  | STROKE(in)                         | 6              |                   |          | LAST MOB DRILL                                   |                                                  |                 |
| MBT(lb/bbl)                |                        | 8.5                   | LINER(in)                          | 6              |                   |          | LAST ABN. RIG DRILL                              |                                                  |                 |
| PH                         |                        | 9.2                   | SPM                                | 150            |                   |          | LAST BOP TEST                                    |                                                  | 15/01/02        |
| Chlorides (mg/l)           |                        | 20,500                | GPM                                | 378            | 1                 |          | BOP TEST DUE                                     |                                                  | 29/01/02        |
| K+ (mg/l)                  |                        | 20,500                | AV-DP(Ft/min)                      | 154            | +                 |          | BUP TEST DUE                                     | HRS                                              | 29/01/02<br>CUM |
| KCI %                      |                        | 2.5                   | AV-DF(Ft/min)                      | 279            | +                 |          | 1. Rig up / down.                                | IIKS                                             | 38.75           |
| PHPA (Calc ppb)            |                        | 1.10                  | SPP                                | 1150           | +                 |          | 2. Drilling.                                     |                                                  | 47.25           |
| Hole volum                 | no bble                | 365                   | SCR @ 69                           | 28bar          |                   |          | 3. Reaming.                                      | -                                                | 12.50           |
| Surface volu               |                        | 150                   | SCR @ 36                           | 18bar          | +                 |          | 4. Trip                                          | 5.00                                             | 48.75           |
| Surface void               | BIT DATA               | 150                   |                                    | /EATHER / RIG  | DESDONSE          |          | 5. Circ. / condition.                            | 1.00                                             | 18.00           |
| Bit Run                    | 3                      | 4                     | Wind Speed (kts)                   | ILATTILK / KIO | RESPONSE          |          | 6. Deviation survey                              | 1.00                                             | 1.00            |
| Diameter                   | 8 1/2"                 | 8 1/2"                | Direction                          |                | +                 |          | 7. Run casing                                    |                                                  | 18.25           |
| Type & manufacture         | DBS                    | GT03                  | Temperature                        |                | 1                 |          | 8. Cementing                                     | -                                                | 17.75           |
| IADC code                  | PDC                    | HTC                   | Barometric pressu                  | ro millihar    | +                 |          | Handle Preventors                                |                                                  | 3.25            |
| Serial number              | 5996742 RW             | L45CV                 | Barometer rise / fa                |                | +                 |          | 10. Riser, flowline                              |                                                  | 3.23            |
| Nozzles                    | 14 -14 -14 -14 -14     | 13 - 13 - 13          |                                    | III            | 1                 |          |                                                  | -                                                | 11.50           |
|                            | 821m                   | 13 - 13 - 13<br>1327m | Visibility(NM)                     |                | +                 |          | 11. Logging.<br>12. Press. test BOP              |                                                  | 5.00            |
| Depth In (m)               |                        |                       | Sea state<br>Swell / Period / Dire | otion          |                   |          | 1                                                |                                                  |                 |
| Depth Out                  | 1327m                  | 1550m                 |                                    |                |                   |          | 13. Repair rig.                                  |                                                  | 3.75<br>1.25    |
| Drilled (m cum/dly)        | 506m                   | 223m                  | Waves / period / dir               | ection         |                   |          | 14. Service rig.                                 |                                                  | 1.25            |
| Hours (cum/dly) Dull grade | 7¼ / 30¼               |                       | Heave<br>Pitch                     |                |                   |          | 15. Slip / cut drlg line<br>16. Drill stem test. | 18.00                                            | 43.25           |
|                            | Rng                    |                       |                                    |                |                   |          | 17. Fishing.                                     | 18.00                                            | 43.25           |
| Average ROP (m/hr)         | 16.7                   |                       | Roll                               |                |                   |          | 18. Well control.                                |                                                  |                 |
| WOB Klbs                   | 5-15<br>140            |                       | Anchor tension                     |                |                   |          |                                                  |                                                  |                 |
| RPM                        |                        |                       | Anchor tension                     |                |                   |          | 19. Hang-off.                                    | <u> </u>                                         |                 |
| Jet velocity               | 135                    |                       | Riser tension                      | I OAD (Vina)   |                   |          | 21. W.O.Weather                                  |                                                  |                 |
| HHP @ BIT                  | 39                     | DUA WEIGHT            | VARIABLE DECK                      | LUAD (KIPS)    | CTDING WIT        |          | 22. Lost circ.                                   | <del> </del>                                     |                 |
| BHA No.                    | 2                      | BHA WEIGHT            |                                    |                | STRING WT         |          | 23. Plug / Abandon.                              |                                                  |                 |
| BHA Profile :              | 8 1/2" HTC bit - Drill | pipe וווים - collors  |                                    |                |                   |          | 24. Mob / Demob                                  |                                                  |                 |
| DOMAINOLE TOOLS            | CEDIAL N               | DOTIDEALUES           |                                    | DDULL          | 2 DATA            |          | 25. Handle anchors.                              | <del>                                     </del> |                 |
| DOWNHOLE TOOLS             | SERIAL No.             | ROT/REAM HRS          | DDAC UE ( °                        | DRILLING       | J VATA            |          | 26. Position rig.                                |                                                  |                 |
|                            |                        |                       | DRAG - UP (mt)                     | 1)             |                   |          | 27. Guide base / ROV.                            |                                                  | 44.50           |
|                            |                        |                       | DRAG - DOWN (n                     | ,              |                   |          | 28. Others                                       | <del>                                     </del> | 11.50           |
|                            |                        |                       | TORQUE-On Botto                    |                |                   |          | -                                                |                                                  |                 |
|                            |                        |                       | TORQUE-Off Botto                   | om (amps)      |                   |          | TOTAL (1) = 1)                                   | 24                                               | 201 ==          |
|                            |                        |                       |                                    |                | <u> </u>          |          | TOTAL (HRS)                                      | 24.00                                            | 281.75          |

|         | _                          |          | _         |
|---------|----------------------------|----------|-----------|
| WELL:   | Port Fairy #1              | DATE:    | 22-Jan-02 |
| PERMIT: | PEP-152                    | REPORT # | 14        |
| RIG:    | Mitchell Drilling Rig #150 | D.F.S.   | 13        |
| •       |                            |          |           |

| FROM     | то         | HOURS    |                      |                    |                           |                |                 |               |
|----------|------------|----------|----------------------|--------------------|---------------------------|----------------|-----------------|---------------|
| 6:00     | 7:00       | 1:00     | POOH                 |                    |                           |                |                 |               |
| 7:00     | 15:00      | 8:00     | M/u DST #2 tools L   | oad clocks @ 11:2  | 5 RIH 860-868m            |                |                 |               |
| 15:00    | 15:30      | 0:30     | Inflate              |                    |                           |                |                 |               |
| 15:30    | 15:45      | 0:15     | Open Initial Flow 10 | mins. Moderate blo | ow to bottom of bucke     | t.             |                 |               |
| 15:45    | 16:30      | 0:45     | Initial shut-in      |                    |                           |                |                 |               |
| 16:30    | 17:00      | 0:30     | Open - no blow - plu | ıgged              |                           |                |                 |               |
| 17:00    | 23:00      | 6:00     | Unseat packers. Po   | OOH. Recover 35m   | n drlg mud in drill strir | ng.            |                 |               |
| 23:00    | 1:00       | 2:00     | Evaluate charts.     |                    |                           |                |                 |               |
| 1:00     | 3:30       | 2:30     | RIH w/ drlg assy.    |                    |                           |                |                 |               |
| 3:30     | 4:00       | 0:30     | Circ. B/u @ 870m,    | Total gas units 9. |                           |                | SCR 18bar @ 36  | SPM           |
| 4:00     | 5:00       | 1:00     | RIH                  |                    |                           |                |                 |               |
| 5:00     | 5:30       | 0:30     | Circulate bottoms u  | p at 1118m.        |                           |                |                 |               |
| 5:30     | 6:00       | 0:30     | RIH                  |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
| OPERATI  | IONS TO 06 | 00 HRS:  | 1                    |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
| PROGRA   | MME NEXT   | 24 HRS:  |                      |                    |                           |                |                 |               |
|          |            |          |                      |                    |                           |                |                 |               |
| BULK     |            | GEL(sx)  | BARITE(sx)           | CEMENT(sx)         | DRILLWATER(mt)            | POT WATER(mt)  | DIESEL FUEL(It) | HELI FUEL(It) |
|          |            | J_L(0//) | 2, i E(0,t)          | 222111 (0.1)       | = /= (111)                | . J. M. Linnin |                 | 0(n)          |
| PERSONI  | NEL ON RIG | <u> </u> | †                    | TRANSPORTATIO      | N                         |                | <u> </u>        |               |
| OPERATO  |            | OCA      |                      | NAME               | LOCATION                  |                | Ī               |               |
| ORILLING |            | MDC      | WORKBOAT             | 10.000             | LOGATION                  |                |                 |               |
|          | COMPS      | IVIDO    | WORKBOAT             |                    |                           |                |                 |               |
| PERVICE  | COIVIPO    |          | MOKUBOAT             |                    | 1                         |                |                 |               |

OIM

OTHER

TOTAL

SUPERVISOR(S)

STANDBY BOAT HELICOPTER

ENGINEER

HELICOPTER

W.J. WESTMAN

| WELL:                                  | Port Fairy #1            |                       |                       |               |                   |          | DATE:                                                      | 23-Jan-02 |          |
|----------------------------------------|--------------------------|-----------------------|-----------------------|---------------|-------------------|----------|------------------------------------------------------------|-----------|----------|
| PERMIT:                                | PEP-152                  |                       |                       |               |                   |          | REPORT #                                                   | 15        |          |
| RIG:                                   | Mitchell Drilling R      | ig #150               |                       |               |                   |          | D.F.S.                                                     | 14        |          |
|                                        | -                        | 1                     |                       |               | T===              |          |                                                            |           |          |
| DEPTH 0600 Hrs:                        | 873.02 m                 |                       | STATUS @ 06:00 H      | Hrs:          | DST #3            |          |                                                            |           |          |
| TVD:                                   | 1550.00 m                |                       | FORMATION:            |               | Eumeralla         |          |                                                            |           |          |
| 24 HR PROGRESS:                        | -                        | LAST CASING:          | 9 5/8                 | @             | 812.0m            |          | SHOE L.O.T.:                                               | 13.5 ppg  |          |
| HOLE SIZE:                             | 8 1/2"                   | WD (LAT):             | N/A                   | F             | T - GL / Air gap: | 4.5m     | MAASP:                                                     | 620 psi   |          |
| SURVEYS:                               |                          |                       |                       |               |                   |          |                                                            |           |          |
| MUD PROPERTIES                         | PIT                      | PIT                   |                       | CONSUN        | MABLES            |          | FORMA                                                      | TION DATA |          |
| Sample taken @                         |                          |                       |                       | Rig           | Workboat          | Workboat | Name                                                       | Eume      | eralla   |
| Flowline Temp °C                       |                          |                       | Fuel                  |               |                   |          | Lithology                                                  |           |          |
| Weight ppg/SG                          |                          |                       | Potable water         |               |                   |          | Top depth RT.                                              | 1369.5    | 50 m     |
| Funnel viscosity.                      |                          |                       | Drill water           |               |                   |          | Trip gas %                                                 |           |          |
| PV/YP(cp/lb/100ft2)                    |                          |                       | Barites               |               |                   |          | Connection Gas %                                           |           |          |
| Gels 10secs / 10min                    |                          |                       | Cement                |               |                   |          | Background gas %                                           |           |          |
| WL API(cc/30min)                       |                          |                       | Gel                   |               |                   |          | ECD (ppg)                                                  |           |          |
| WL HTHP(cc/30min)                      |                          |                       | Base Oil              |               |                   |          |                                                            | S / BOPS  |          |
| Cake (1/32")                           |                          |                       | PUMPS                 | 1             | 2                 | 3        | LAST BOP DRILL                                             |           | 19/01/02 |
| Solids %                               |                          |                       | TYPE                  | SOILMEC       | _                 |          | LAST FIRE DRILL                                            |           |          |
| Sand %                                 |                          |                       | STROKE(in)            | 6             |                   |          | LAST MOB DRILL                                             |           |          |
| MBT(lb/bbl)                            |                          |                       | LINER(in)             | 6             |                   |          | LAST ABN. RIG DRILL                                        |           |          |
| PH                                     |                          |                       | SPM                   | 150           |                   |          | LAST BOP TEST                                              |           | 15/01/02 |
| Chlorides (mg/l)                       |                          |                       | GPM                   | 378           |                   |          | BOP TEST DUE                                               |           | 29/01/02 |
| K+ (mg/l)                              |                          |                       | AV-DP(Ft/min)         | 154           |                   |          | BOT TEST BOE                                               | HRS       | CUM      |
| KCI %                                  |                          |                       | AV-DC(Ft/min)         | 279           |                   |          | 1. Rig up / down.                                          |           | 38.75    |
| PHPA (Calc ppb)                        |                          |                       | SPP                   | 1150          |                   |          | 2. Drilling.                                               |           | 47.25    |
| Hole volum                             | ne hhls                  |                       | SCR @ 69              | 28bar         |                   |          | Reaming.                                                   | 3.00      | 15.50    |
| Surface volu                           |                          |                       | SCR @ 36              | 18bar         |                   |          | 4. Trip                                                    | 5.00      | 53.75    |
| 041400 1010                            | BIT DATA                 |                       |                       | /EATHER / RIG | RESPONSE          |          | 5. Circ. / condition.                                      | 2.50      | 20.50    |
| Bit Run                                | 3                        | 4                     | Wind Speed (kts)      | TEATHER / RIO | TEST ONSE         |          | Deviation survey                                           | 2.30      | 1.00     |
| Diameter                               | 8 1/2"                   | 8 1/2"                | Direction             |               |                   |          | 7. Run casing                                              |           | 18.25    |
| Type & manufacture                     | DBS                      | GT03                  | Temperature           |               |                   |          | 8. Cementing                                               |           | 17.75    |
| IADC code                              | PDC                      | HTC                   | Barometric pressu     | ro millihar   |                   |          | Handle Preventors                                          |           | 3.25     |
| Serial number                          | 5996742 RW               | L45CV                 | Barometer rise / fa   |               |                   |          | 10. Riser, flowline                                        |           | 3.23     |
| Nozzles                                | 14 -14 -14 -14 -14       | 13 - 13 - 13          | Visibility(NM)        | III           |                   |          |                                                            |           | 11.50    |
| Depth In (m)                           | 821m                     | 13 - 13 - 13<br>1327m | Sea state             |               |                   |          | 11. Logging.<br>12. Press. test BOP                        |           | 5.00     |
| Depth Out                              | 1327m                    | 1550m                 | Swell / Period / Dire | ction         |                   |          |                                                            |           | 3.75     |
|                                        | 1                        |                       |                       |               |                   |          | <ul><li>13. Repair rig.</li><li>14. Service rig.</li></ul> | 0.50      |          |
| Drilled (m cum/dly)<br>Hours (cum/dly) | 506m                     | 223m                  | Waves / period / dire | CUIUH         |                   |          |                                                            | 0.50      | 1.75     |
| Dull grade                             | 7¼ / 30¼                 |                       | Heave<br>Pitch        |               |                   |          | 15. Slip / cut drlg line<br>16. Drill stem test.           | 13.00     | 56.25    |
| •                                      | Rng                      |                       |                       |               |                   |          |                                                            | 13.00     | 30.23    |
| Average ROP (m/hr) WOB Klbs            | 16.7<br>5-15             |                       | Roll                  |               |                   |          | 17. Fishing.<br>18. Well control.                          |           |          |
|                                        | 1                        |                       | Anchor tension        |               |                   |          |                                                            |           |          |
| RPM                                    | 140                      |                       | Anchor tension        |               |                   |          | 19. Hang-off.                                              |           |          |
| Jet velocity                           | 135                      |                       | Riser tension         | I OAD (Kina)  |                   |          | 21. W.O.Weather                                            |           |          |
| HHP @ BIT                              | 39                       | DITA MEIO:            | VARIABLE DECK         | LUAU (KIPS)   | CTDING WIT        |          | 22. Lost circ.                                             |           |          |
| BHA No.                                | 2<br>Defer to DCT #2 DUI | BHA WEIGHT            |                       |               | STRING WT         |          | 23. Plug / Abandon.                                        |           |          |
| BHA Profile :                          | Refer to DST #3 BHA      | 4 Sneet.              |                       |               |                   |          | 24. Mob / Demob                                            |           |          |
| DOMBINO: 5 TOO: 5                      | CEDIA: 1:                | DOTIDE                |                       | DD:::::       | 0.0474            |          | 25. Handle anchors.                                        |           |          |
| DOWNHOLE TOOLS                         | SERIAL No.               | ROT/REAM HRS          | DDAC UE ( :           | DRILLIN       | DAIA              |          | 26. Position rig.                                          |           |          |
|                                        | 1                        |                       | DRAG - UP (mt)        |               |                   |          | 27. Guide base / ROV.                                      |           | 44       |
|                                        |                          |                       | DRAG - DOWN (m        |               |                   |          | 28. Others                                                 |           | 11.50    |
|                                        |                          |                       | TORQUE-On Botto       |               |                   |          | -                                                          |           |          |
|                                        | ļ                        |                       | TORQUE-Off Botto      | om (amps)     |                   |          | TOTAL 5:=5                                                 | 04        | 005 ==   |
|                                        |                          |                       |                       |               |                   |          | TOTAL (HRS)                                                | 24.00     | 305.75   |

| WELL:   | Port Fairy #1              | DATE:    | 23-Jan-02 |
|---------|----------------------------|----------|-----------|
| PERMIT: | PEP-152                    | REPORT # | 15        |
| RIG:    | Mitchell Drilling Rig #150 | D.F.S.   | 14        |
|         |                            |          |           |

|          |             |          | _                 |                   |                       |                       |                 |               |
|----------|-------------|----------|-------------------|-------------------|-----------------------|-----------------------|-----------------|---------------|
| FROM     | то          | HOURS    |                   |                   |                       |                       |                 |               |
| 6:00     | 9:00        | 3:00     | Ream to 1546m     |                   |                       |                       |                 |               |
| 9:00     | 11:30       | 2:30     | Circ b/u          |                   |                       |                       |                 |               |
| 11:30    | 16:30       | 5:00     | POOH              |                   |                       |                       |                 |               |
| 16:30    | 17:00       | 0:30     | Service top drive |                   |                       |                       |                 |               |
| 17:00    | 5:00        | 12:00    |                   | Stop @ shoe to pr | repare casing while w | vaiting for daylight. |                 |               |
| 5:00     | 6:00        | 1:00     | Continue to RIH   |                   | ·                     |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
| OPERATI  | ONS TO 06   | 00 HRS:  |                   |                   |                       |                       |                 |               |
|          |             |          |                   |                   |                       |                       |                 |               |
| DDGGDA   | MARKE NIEWY |          |                   |                   |                       |                       |                 |               |
| PROGRA   | MME NEXT    | 24 HRS:  |                   |                   |                       |                       |                 |               |
| DIIIV    |             | CEL (av) | DADITE(av)        | CEMENT(ov)        | DDII I WATED(mst)     | DOT WATER(mst)        | DIEGEL EUEL/W   |               |
| BULK     |             | GEL(sx)  | BARITE(sx)        | CEMENT(sx)        | DRILLWATER(mt)        | FUI WAIEK(Mt)         | DIESEL FUEL(II) | HELI FUEL(It) |
| PERSONI  | NEL ON RIG  | <u> </u> | <u> </u>          | RANSPORTATIO      | N                     |                       | <u> </u>        |               |
| OPERATO  |             | OCA      |                   | NAME              | LOCATION              |                       | J               |               |
| DRILLING |             | MDC      | WORKBOAT          | 10,100            | 200/110/1             |                       |                 |               |
| SERVICE  |             | 11.00    | WORKBOAT          |                   |                       |                       |                 |               |
| OTHER    |             |          | STANDBY BOAT      |                   |                       |                       |                 |               |
| JLIV     |             |          | HELICOPTER        |                   |                       |                       |                 |               |
| TOTAL    |             |          | HELICOPTER        |                   |                       |                       |                 |               |

ENGINEER

W.J. WESTMAN

SUPERVISOR(S)

| WELL:                       | Port Fairy #1           |                       |                          |               |                   |              | DATE:                                                      | 24-Jan-02 |          |
|-----------------------------|-------------------------|-----------------------|--------------------------|---------------|-------------------|--------------|------------------------------------------------------------|-----------|----------|
| PERMIT:                     | PEP-152                 |                       |                          |               |                   |              | REPORT #                                                   | 16        |          |
| RIG:                        | Mitchell Drilling Ri    | ig #150               |                          |               |                   |              | D.F.S.                                                     | 15        |          |
|                             |                         | 1                     |                          |               | <u> </u>          |              |                                                            |           |          |
| DEPTH 0600 Hrs:             | -                       |                       | STATUS @ 06:00 H         | Hrs:          | Monitoring we     | ll pressure. |                                                            |           |          |
| TVD:                        | 1550.00 m               |                       | FORMATION:               |               | Eumerella         |              |                                                            |           |          |
| 24 HR PROGRESS:             | -                       | LAST CASING:          | 9 5/8                    | @             | 812.0m            |              | SHOE L.O.T.:                                               | 13.5 ppg  |          |
| HOLE SIZE:                  | 8 1/2"                  | WD (LAT):             | N/A                      | R             | T - GL / Air gap: | 4.5m         | MAASP:                                                     | 620 psi   |          |
| SURVEYS:                    |                         |                       |                          |               |                   |              |                                                            |           |          |
| MUD PROPERTIES              | PIT                     | PIT                   |                          | CONSUN        | MABLES            |              | FORMA                                                      | TION DATA |          |
| Sample taken @              |                         |                       |                          | Rig           | Workboat          | Workboat     | Name                                                       | Eume      | erella   |
| Flowline Temp °C            |                         |                       | Fuel                     |               |                   |              | Lithology                                                  |           |          |
| Weight ppg/SG               |                         |                       | Potable water            |               |                   |              | Top depth RT.                                              | 1369.5    | 50 m     |
| Funnel viscosity.           |                         |                       | Drill water              |               |                   |              | Trip gas %                                                 |           |          |
| PV/YP(cp/lb/100ft2)         |                         |                       | Barites                  |               |                   |              | Connection Gas %                                           |           |          |
| Gels 10secs / 10min         |                         |                       | Cement                   |               |                   |              | Background gas %                                           |           |          |
| WL API(cc/30min)            |                         |                       | Gel                      |               |                   |              | ECD (ppg)                                                  |           |          |
| WL HTHP(cc/30min)           |                         |                       | Base Oil                 |               |                   |              |                                                            | S / BOPS  |          |
| Cake (1/32")                |                         |                       | PUMPS                    | 1             | 2                 | 3            | LAST BOP DRILL                                             |           | 19/01/02 |
| Solids %                    |                         |                       | TYPE                     | SOILMEC       |                   |              | LAST FIRE DRILL                                            |           |          |
| Sand %                      |                         |                       | STROKE(in)               | 7             |                   |              | LAST MOB DRILL                                             |           |          |
| MBT(lb/bbl)                 |                         |                       | LINER(in)                | 7             |                   |              | LAST ABN. RIG DRILL                                        |           |          |
| PH                          |                         |                       | SPM                      | 150           |                   |              | LAST BOP TEST                                              |           | 15/01/02 |
| Chlorides (mg/l)            |                         |                       | GPM                      | 100           |                   |              | BOP TEST DUE                                               |           | 29/01/02 |
| K+ (mg/l)                   |                         |                       | AV-DP(Ft/min)            | 154           |                   |              | BOT TEST BOE                                               | HRS       | CUM      |
| KCI%                        |                         |                       | AV-DC(Ft/min)            | 279           |                   |              | 1. Rig up / down.                                          | 11110     | 38.75    |
| PHPA (Calc ppb)             |                         |                       | SPP                      | 1150          |                   |              | 2. Drilling.                                               |           | 47.25    |
| Hole volum                  | ne hhls                 |                       | SCR @ 69                 | 28bar         |                   |              | Reaming.                                                   |           | 15.50    |
| Surface volu                |                         |                       | SCR @ 36                 | 18bar         |                   |              | 4. Trip                                                    |           | 53.75    |
| 041400 1010                 | BIT DATA                |                       |                          | /EATHER / RIG | RESPONSE          |              | 5. Circ. / condition.                                      | 1.75      | 22.25    |
| Bit Run                     | 3                       | 4                     | Wind Speed (kts)         | TEATHER / RIO | TEST ONSE         |              | Deviation survey                                           | 1.73      | 1.00     |
| Diameter                    | 8 1/2"                  | 8 1/2"                | Direction                |               |                   |              | 7. Run casing                                              | 10.50     | 28.75    |
| Type & manufacture          | DBS                     | GT03                  | Temperature              |               |                   |              | 8. Cementing                                               | 1.75      | 19.50    |
| IADC code                   | PDC                     | HTC                   | Barometric pressu        | ro millihar   |                   |              | Handle Preventors                                          | 1.73      | 3.25     |
| Serial number               | 5996742 RW              | L45CV                 | Barometer rise / fa      |               |                   |              | 10. Riser, flowline                                        |           | 3.23     |
| Nozzles                     | 14 -14 -14 -14 -14      | 13 - 13 - 13          |                          | III           |                   |              |                                                            |           | 11.50    |
| Depth In (m)                | 821m                    | 13 - 13 - 13<br>1327m | Visibility(NM) Sea state |               |                   |              | 11. Logging.<br>12. Press. test BOP                        |           | 5.00     |
| Depth Out                   | 1327m                   | 1550m                 | Swell / Period / Dire    | ction         |                   |              |                                                            |           | 3.75     |
| Drilled (m cum/dly)         | 506m                    | 223m                  |                          |               |                   |              | <ul><li>13. Repair rig.</li><li>14. Service rig.</li></ul> |           | 1.75     |
| Hours (cum/dly)             |                         | 223111                | Waves / period / dire    | ECHOII        |                   |              |                                                            |           | 1.70     |
| Dull grade                  | 7¼ / 30¼                |                       | Heave<br>Pitch           |               |                   |              | 15. Slip / cut drlg line<br>16. Drill stem test.           | 9.00      | 4E 2E    |
| •                           | Rng                     |                       | Roll                     |               |                   |              |                                                            | 9.00      | 65.25    |
| Average ROP (m/hr) WOB Klbs | 16.7<br>5-15            |                       |                          |               |                   |              | 17. Fishing.<br>18. Well control.                          |           |          |
|                             | 1                       |                       | Anchor tension           |               |                   |              |                                                            |           |          |
| RPM                         | 140                     |                       | Anchor tension           |               |                   |              | 19. Hang-off.                                              |           |          |
| Jet velocity                | 135                     |                       | Riser tension            | I OAD (Kina)  |                   |              | 21. W.O.Weather                                            |           |          |
| HHP @ BIT                   | 39                      | BUA WEIGHT            | VARIABLE DECK            | LUAD (KIPS)   | CTDINO MT         |              | 22. Lost circ.                                             |           |          |
| BHA No.                     | 2<br>Defeate DCT #2 DU/ | BHA WEIGHT            |                          |               | STRING WT         |              | 23. Plug / Abandon.                                        |           |          |
| BHA Profile :               | Refer to DST #3 BHA     | a Sneet.              |                          |               |                   |              | 24. Mob / Demob                                            |           |          |
| DOMBINO: 5 TOO: 5           | CEDIA: 1:               | DOTIDE                |                          | DD:::::       | 0.0474            |              | 25. Handle anchors.                                        | <u> </u>  |          |
| DOWNHOLE TOOLS              | SERIAL No.              | ROT/REAM HRS          | DDAC UE ( :              | DRILLIN       | DAIA              |              | 26. Position rig.                                          |           |          |
|                             |                         |                       | DRAG - UP (mt)           |               |                   |              | 27. Guide base / ROV.                                      |           | 44       |
|                             |                         |                       | DRAG - DOWN (m           |               |                   |              | 28. Others                                                 | <u> </u>  | 11.50    |
|                             |                         |                       | TORQUE-On Botto          |               |                   |              | -                                                          |           |          |
|                             | ļ                       |                       | TORQUE-Off Botto         | om (amps)     |                   |              | TOTAL 5:=5                                                 | 00.77     | 205 ==   |
|                             |                         |                       |                          |               |                   |              | TOTAL (HRS)                                                | 23.00     | 328.75   |

| WELL:        | Port Fairy #1              | DATE:    | 24-Jan-02 |
|--------------|----------------------------|----------|-----------|
| PERMIT:      | PEP-152                    | REPORT # | 16        |
| RIG:         | Mitchell Drilling Rig #150 | D.F.S.   | 15        |
| <del>-</del> |                            |          |           |

| FROM                                                                                                                                                                                                                                                               |          |            |         | _                                     |                                       |                       |                      | ·-                  |               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|---------------------------------------|---------------------------------------|-----------------------|----------------------|---------------------|---------------|--|--|
| 3.30                                                                                                                                                                                                                                                               | FROM     | то         | HOURS   |                                       |                                       |                       |                      |                     |               |  |  |
| 3.30                                                                                                                                                                                                                                                               | 6:00     | 8:30       | 2:30    | Head up Australian I                  | DST. Inflate packer                   | s DST #3. Interval 8  | 59m to 869m.         |                     |               |  |  |
| 15:00                                                                                                                                                                                                                                                              |          |            |         | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                       |                      | own.                |               |  |  |
| 3:15   3:30   0-15   Head up Dowell. Pump 10 bils water spacer. Drop bottom plug. Cament w/ 500s x*0's at 158 p.pg.                                                                                                                                                | 15:00    | 1:30       | 10:30   |                                       |                                       |                       |                      |                     |               |  |  |
| 3:30                                                                                                                                                                                                                                                               | 1:30     | 3:15       | 1:45    | Circulate casing cap                  | Circulate casing capacity x 2.        |                       |                      |                     |               |  |  |
| ### ### ##############################                                                                                                                                                                                                                             | 3:15     | 3:30       | 0:15    | Head up Dowell. Pu                    | mp 10 bbls water sp                   | pacer. Drop bottom    | plug. Cement w/ 50   | 0sx "G" at 15.8 ppg | <b>j</b> .    |  |  |
|                                                                                                                                                                                                                                                                    | 3:30     | 4:00       | 0:30    | Dowell wash out line                  | . Drop top plug. Di                   | splace w/ 199bbls w   | ater. Bump plug w/   | 3Kpsi 10 mins. Flo  | oats OK.      |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              | 4:00     | 5:00       | 1:00    | Well continued to flo                 | w after displacemer                   | nt ceased. Shut in ar | nd monitor. 10 psi d | ecreasing slowly.   |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PROGRAMME NEXT 24 HRS:  BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER              | ODEDATI  | ONS TO SS  | UU HBG: |                                       |                                       |                       |                      |                     |               |  |  |
| BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT  SERVICE COMPS WORKBOAT  OTHER STANDBY BOAT HELICOPTER                                    | OFERAII  | ONS 10 00  | ov nno. |                                       |                                       |                       |                      |                     |               |  |  |
| BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT  SERVICE COMPS WORKBOAT  OTHER STANDBY BOAT HELICOPTER                                    |          |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| BULK GEL(sx) BARITE(sx) CEMENT(sx) DRILLWATER(mt) POT WATER(mt) DIESEL FUEL(it) HELI FUEL(it)  PERSONNEL ON RIG  OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT  SERVICE COMPS WORKBOAT  OTHER STANDBY BOAT HELICOPTER                                    | PROGRA   | MME NEXT   | 24 HRS: |                                       |                                       |                       |                      |                     |               |  |  |
| PERSONNEL ON RIG OPERATOR OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT SERVICE COMPS OTHER STANDBY BOAT HELICOPTER                                                                                                                                      | - 2-31   |            |         |                                       |                                       |                       |                      |                     |               |  |  |
| PERSONNEL ON RIG         TRANSPORTATION           OPERATOR         OCA         NAME         LOCATION           DRILLING CONT.         MDC         WORKBOAT            SERVICE COMPS         WORKBOAT             OTHER         STANDBY BOAT             HELICOPTER | BULK     |            | GEL(sx) | BARITE(sx)                            | CEMENT(sx)                            | DRILLWATER(mt)        | POT WATER(mt)        | DIESEL FUEL(It)     | HELI FUEL(It) |  |  |
| OPERATOR OCA NAME LOCATION  DRILLING CONT. MDC WORKBOAT  SERVICE COMPS WORKBOAT  OTHER STANDBY BOAT  HELICOPTER                                                                                                                                                    |          |            | ` '     | , ,                                   | . /                                   | , ,                   | . ,                  | ( )                 |               |  |  |
| DRILLING CONT. MDC WORKBOAT  SERVICE COMPS WORKBOAT  OTHER STANDBY BOAT  HELICOPTER                                                                                                                                                                                | PERSONI  | NEL ON RIG | 3       | T                                     | RANSPORTATIO                          | N                     |                      | <u> </u>            |               |  |  |
| SERVICE COMPS WORKBOAT OTHER STANDBY BOAT HELICOPTER                                                                                                                                                                                                               | OPERATO  | )R         | OCA     |                                       | NAME                                  | LOCATION              |                      |                     |               |  |  |
| OTHER STANDBY BOAT HELICOPTER                                                                                                                                                                                                                                      | DRILLING | CONT.      | MDC     | WORKBOAT                              |                                       |                       |                      |                     |               |  |  |
| HELICOPTER                                                                                                                                                                                                                                                         | SERVICE  | COMPS      |         | WORKBOAT                              |                                       |                       |                      |                     |               |  |  |
|                                                                                                                                                                                                                                                                    | OTHER    |            |         | STANDBY BOAT                          |                                       |                       |                      |                     |               |  |  |
| TOTAL HELICOPTER                                                                                                                                                                                                                                                   |          |            |         | HELICOPTER                            |                                       |                       |                      |                     |               |  |  |
|                                                                                                                                                                                                                                                                    | TOTAL    |            |         | HELICOPTER                            |                                       |                       |                      |                     |               |  |  |

SUPERVISOR(S)

W.J. WESTMAN

ENGINEER

OIM

| Port Fairy No. 1 WCR Appendixes |
|---------------------------------|
|                                 |
|                                 |
| Appendix 3 Casing Tables        |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |

### PORT FAIRY #1 13 3/8" CASING RUNNING TALLY

| Joint<br>No. | Joint<br>Length | Cumulative<br>Length | Depth<br>Landed | Capacity<br>(bbls) | Displacement (bbls) | String<br>Weight MT | Remarks                           |
|--------------|-----------------|----------------------|-----------------|--------------------|---------------------|---------------------|-----------------------------------|
|              |                 |                      |                 |                    |                     |                     | String wt is buoyed wt.           |
|              |                 |                      |                 |                    |                     |                     |                                   |
| Chas         | 44.55           | 44.55                | 70.00           | F 7                | 0.04                | 0.004               |                                   |
| Shoe         | 11.55<br>10.65  | 11.55<br>22.20       | 78.20<br>66.65  | 5.7<br>10.9        | 0.94<br>1.80        | 0.804<br>1.545      |                                   |
| 1            | 10.00           |                      |                 |                    |                     | 2.376               |                                   |
| 3            | 11.93<br>11.85  | 34.13<br>45.98       | 56.00<br>44.07  | 16.8<br>22.6       | 2.77<br>3.73        | 3.201               |                                   |
| 4            | 11.86           | 57.84                | 32.22           | 28.4               | 4.69                | 4.026               |                                   |
| 5            | 11.97           | 69.81                | 20.36           | 34.3               | 5.66                | 4.026               |                                   |
| 6            | 11.85           | 81.66                | 8.39            | 40.1               | 6.62                | 5.684               | required due to drilling further. |
| 0            | 11.00           | 61.00                | 0.59            | 40.1               | 0.02                | 3.004               | required due to drilling further. |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
| _            |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
|              |                 |                      |                 |                    |                     |                     |                                   |
| Stick up ab  | OVO DT          | 3.46m                |                 |                    |                     |                     |                                   |
| Suck up ab   | OVE KI          | 3.40111              |                 |                    |                     |                     |                                   |

#### **CASING RUN SUMMARY**

Drill to 69.2m. POOH. Conduct pre-casing meeting.

Rig up to run casing.

Run shoe followed by next 5 joints of casing. (13.3/8" K-55 BTC Casing)

Tag bottom. Pick up of bottom to cement.

Prepare for cementing.

Conduct pre-cementing meeting.

Commence cement job.

DO NOT RUN FLOAT

Page 1 18/12/2002

### PORT FAIRY #1 9 5/8" SURFACE CASING RUNNING TALLY

| Joint           | Joint          | Cumulative       | Depth            | Capacity                 | Displacement             | String           | Remarks            |
|-----------------|----------------|------------------|------------------|--------------------------|--------------------------|------------------|--------------------|
| No.             | Length         | Length           | Landed           | (bbls)                   | (bbls)                   | Weight klb       | Kemarks            |
|                 | (meters)       | (meters)         | 812.00m          |                          | 0.08117bbl/ft            | 47.00lb/ft       |                    |
| Shoe & Jt       | 12.82          | 12.82            | 812.00           | 3.08 bbl                 | 3.41 bbl                 | 1.977            | shoe length 0.52m  |
| Float & Jt      | 12.52          | 25.34            | 799.18           | 3.01 bbl                 | 6.75 bbl                 | 3.907            | float length 0.35m |
| 3               | 12.20          | 37.54            | 786.66           | 5.94 bbl                 | 10.00 bbl                | 5.789            |                    |
| 4               | 12.12          | 49.66            | 774.46           | 8.85 bbl                 | 13.22 bbl                | 7.657            |                    |
| 5               | 11.88          | 61.54            | 762.34           | 11.71 bbl                | 16.39 bbl                | 9.489            |                    |
| 6               | 11.77          | 73.31            | 750.46           | 14.54 bbl                | 19.52 bbl                | 11.304           |                    |
| 7               | 12.29          | 85.60            | 738.69           | 17.49 bbl                | 22.79 bbl                | 13.199           |                    |
| 8               | 11.93          | 97.53            | 726.40           | 20.35 bbl                | 25.97 bbl                | 15.039           |                    |
| 9               | 11.78          | 109.31           | 714.47           | 23.19 bbl                | 29.11 bbl                | 16.855           |                    |
| 10              | 12.51          | 121.82           | 702.69           | 26.19 bbl                | 32.44 bbl                | 18.784           |                    |
| 11<br>12        | 11.77          | 133.59<br>145.81 | 690.18           | 29.02 bbl<br>31.96 bbl   | 35.57 bbl                | 20.599           |                    |
| 13              | 12.22<br>11.28 | 157.09           | 678.41<br>666.19 | 31.96 bbl<br>34.67 bbl   | 38.83 bbl<br>41.83 bbl   | 22.484<br>24.223 |                    |
| 14              | 11.26          | 168.23           | 654.91           | 37.34 bbl                | 44.80 bbl                | 25.941           |                    |
| 15              | 11.86          | 180.09           | 643.77           | 40.19 bbl                | 47.96 bbl                | 27.769           |                    |
| 16              | 11.07          | 191.16           | 631.91           | 42.85 bbl                | 50.90 bbl                | 29.476           |                    |
| 17              | 11.36          | 202.52           | 620.84           | 45.58 bbl                | 53.93 bbl                | 31.228           |                    |
| 18              | 12.41          | 214.93           | 609.48           | 48.56 bbl                | 57.23 bbl                | 33.142           |                    |
| 19              | 12.08          | 227.01           | 597.07           | 51.47 bbl                | 60.45 bbl                | 35.004           |                    |
| 20              | 12.44          | 239.45           | 584.99           | 54.46 bbl                | 63.76 bbl                | 36.923           |                    |
| 21              | 12.82          | 252.27           | 572.55           | 57.54 bbl                | 67.18 bbl                | 38.899           |                    |
| 22              | 12.00          | 264.27           | 559.73           | 60.42 bbl                | 70.37 bbl                | 40.750           |                    |
| 23              | 12.02          | 276.29           | 547.73           | 63.31 bbl                | 73.57 bbl                | 42.603           |                    |
| 24              | 12.34          | 288.63           | 535.71           | 66.27 bbl                | 76.86 bbl                | 44.506           |                    |
| 25              | 10.97          | 299.60           | 523.37           | 68.91 bbl                | 79.78 bbl                | 46.198           |                    |
| 26              | 12.18          | 311.78           | 512.40           | 71.84 bbl                | 83.02 bbl                | 48.076           |                    |
| 27              | 12.08          | 323.86           | 500.22           | 74.74 bbl                | 86.24 bbl                | 49.938           |                    |
| 28              | 11.84          | 335.70           | 488.14           | 77.58 bbl                | 89.39 bbl                | 51.764           |                    |
| 29              | 12.60          | 348.30           | 476.30           | 80.61 bbl                | 92.75 bbl                | 53.707           |                    |
| 30              | 11.60          | 359.90           | 463.70           | 83.40 bbl                | 95.84 bbl                | 55.496           |                    |
| 31<br>32        | 11.15<br>12.09 | 371.05<br>383.14 | 452.10<br>440.95 | 86.08 bbl<br>88.98 bbl   | 98.81 bbl<br>102.03 bbl  | 57.215<br>59.079 |                    |
| 33              | 12.09          | 395.35           | 428.86           | 91.92 bbl                | 102.03 bbl               | 60.962           |                    |
| 34              | 12.42          | 407.77           | 416.65           | 94.90 bbl                | 103.28 bbi               | 62.877           |                    |
| 35              | 11.79          | 419.56           | 404.23           | 97.74 bbl                | 111.73 bbl               | 64.695           |                    |
| 36              | 12.10          | 431.66           | 392.44           | 100.64 bbl               | 114.95 bbl               | 66.561           |                    |
| 37              | 12.11          | 443.77           | 380.34           | 103.55 bbl               | 118.17 bbl               | 68.428           |                    |
| 38              | 11.98          | 455.75           | 368.23           | 106.43 bbl               |                          | 70.276           |                    |
| 39              | 12.22          | 467.97           | 356.25           | 109.37 bbl               | 124.62 bbl               | 72.160           |                    |
| 40              | 11.55          | 479.52           | 344.03           | 112.14 bbl               | 127.69 bbl               | 73.941           |                    |
| 41              | 12.52          | 492.04           | 332.48           | 115.15 bbl               | 131.03 bbl               | 75.871           |                    |
| 42              | 11.65          | 503.69           | 319.96           | 117.95 bbl               | 134.13 bbl               | 77.668           |                    |
| 43              | 12.14          | 515.83           | 308.31           | 120.87 bbl               | 137.36 bbl               | 79.540           |                    |
| 44              | 11.83          | 527.66           | 296.17           | 123.71 bbl               | 140.51 bbl               | 81.364           |                    |
| 45              | 12.41          | 540.07           | 284.34           | 126.69 bbl               | 143.82 bbl               | 83.277           |                    |
| 46              | 11.58          | 551.65           | 271.93           | 129.47 bbl               | 146.90 bbl               | 85.063           |                    |
| 47<br>48        | 11.58          | 563.23<br>574.22 | 260.35<br>248.77 | 132.26 bbl               | 149.98 bbl<br>152.91 bbl | 86.849<br>88.543 |                    |
| 48              | 10.99<br>12.49 | 586.71           | 248.77           | 134.90 bbl<br>137.90 bbl | 152.91 bbl               | 90.469           |                    |
| <u>49</u><br>50 | 12.49          | 598.79           | 225.29           | 140.80 bbl               | 159.45 bbl               | 92.332           |                    |
| 51              | 12.34          | 611.13           | 213.21           | 143.77 bbl               | 162.74 bbl               | 94.235           |                    |
| 52              | 11.91          | 623.04           | 200.87           | 146.63 bbl               | 165.91 bbl               | 96.071           |                    |
| 53              | 11.99          | 635.03           | 188.96           | 149.51 bbl               | 169.10 bbl               | 97.920           |                    |
| 54              | 12.21          | 647.24           | 176.97           | 152.44 bbl               | 172.35 bbl               | 99.803           |                    |
| 55              | 12.24          | 659.48           | 164.76           | 155.39 bbl               | 175.61 bbl               | 101.690          |                    |
| 56              | 12.42          | 671.90           | 152.52           | 158.37 bbl               | 178.92 bbl               | 103.605          |                    |
| 57              | 11.81          | 683.71           | 140.10           | 161.21 bbl               | 182.07 bbl               | 105.426          |                    |
| 58              | 12.19          | 695.90           | 128.29           | 164.14 bbl               | 185.31 bbl               | 107.306          |                    |
| 59              | 12.36          | 708.26           | 116.10           | 167.11 bbl               | 188.60 bbl               | 109.212          |                    |
| 60              | 12.54          | 720.80           | 103.74           | 170.12 bbl               | 191.94 bbl               | 111.146          |                    |
| 61              | 12.37          | 733.17           | 91.20            | 173.09 bbl               | 195.24 bbl               | 113.053          |                    |
| 62              | 12.59          | 745.76           | 78.83            | 176.12 bbl               | 198.59 bbl               | 114.994          |                    |
| 63              | 12.35          | 758.11           | 66.24            | 179.08 bbl               | 201.88 bbl               | 116.899          |                    |
| 64              | 12.52          | 770.63           | 53.89            | 182.09 bbl               | 205.21 bbl               | 118.829          |                    |

Page 1 18/12/2002

|                             | PORT FAIRY #1 7" CASING CEMENT JOB |             |                             |        |          |                          |           |                    |  |  |
|-----------------------------|------------------------------------|-------------|-----------------------------|--------|----------|--------------------------|-----------|--------------------|--|--|
| EPR.                        |                                    | Cementing   | Company : Dowell            |        |          | Da                       | ate of J  | lob: 24th Jan 2002 |  |  |
|                             |                                    |             | Single Stag                 | ge     |          |                          |           |                    |  |  |
| LEAD CEMENT                 | NA                                 | ppg         | TAIL CEMENT                 | 15.8   | ppg      | Diesel Spacer            | 7.09      | ppg                |  |  |
| previous shoe               | 818                                | m           | top of tail                 | 670    | m        | Amount                   | n/a       | bbl                |  |  |
| bottom of lead              |                                    | m           | bottom of tail              | 1540   | m        | diesel                   | n/a       | bbl                |  |  |
| gauge hole (ft3)            |                                    | ft3         | gauge hole (ft3)            | 362.1  | ft3      | MCS B                    | n/a       |                    |  |  |
| plus 100% excess            |                                    | ft3         | plus 40% excess             | 506.9  | ft3      | Chemical Wash            | 8.3       | ppg                |  |  |
| Caliper hole volume (logs)  | n/a                                | ft3         | Caliper hole volume (logs)  | 550.0  | ft3      | Amount                   | n/a       | bbl                |  |  |
| csg-csg ann. cap. (cuft/ft) |                                    | ft3/ft      | csg-csg ann. cap. (cuft/ft) | 0.1268 | ft3/ft   | water (39.9 galls/bbl)   | n/a       | bbl                |  |  |
| length (ft)                 |                                    | ft          | length (ft)                 | 492    | ft       | MCS B (2.1 galls/bbl     | n/a       | gal                |  |  |
| csg-csg volume (cuft)       |                                    | ft3         | csg-csg volume (cuft)       | 62     | ft3      | FP9L                     | 0         | gal                |  |  |
| shoe track                  |                                    | ft3         | shoe track                  | 9.0    | ft3      |                          |           |                    |  |  |
| slurry volume (cuft)        |                                    | ft3         | slurry volume (cuft)        | 577.9  | ft3      | Pressures                |           |                    |  |  |
| No. of sacks                |                                    | SX          | No. of sacks                | 498    | SX       | max differential         | 1325      | psi                |  |  |
| mix water theory            |                                    | bbls        | mix water theory            | 61.7   | bbls     |                          |           |                    |  |  |
| mix water actual            |                                    | bbls        | mix water actual            | 61.7   | bbls     | Job Time Estimate        |           |                    |  |  |
| D081 Retarder 0.04 gals/sx  |                                    | gals        | D145A Dispersant            | 32     | gal      | mixing slurry            | 40        | min                |  |  |
| bentonite (30kg/tonne)      |                                    | SX          | D144 Antifoam               | 5      | gal      | displacement             | 23        | min                |  |  |
| D144 Antifoam.              |                                    | gals        |                             |        |          | total time               | 70        | min                |  |  |
| D145A Retarder              |                                    |             |                             |        |          | thickening time          | 4         | hour               |  |  |
| CaCl2                       | 0                                  | kgs         |                             |        |          |                          |           |                    |  |  |
| Displacement                | 199.0                              | bbl         |                             |        | JOB S    | SUMMARY                  |           |                    |  |  |
| Cementer                    | 199                                | bbl Water   | Time                        | mins   |          | Description &            | Comm      | ents               |  |  |
| Rig pump                    | 0.0                                | bbl 9.1 mud | 04:30 - 04:32               | 2      | Pump     | 10 bbls water ahead.     |           |                    |  |  |
| liner size (in)             | 7.00                               | in          | 04:32 - 04:35               | 5      | Test lin | nes 3500psi Ok.          |           |                    |  |  |
| 97% efficiency              | 0.078                              | bbl/stk     | 04:35 - 05:15               | 40     | Mix an   | d pump tail.             |           |                    |  |  |
| number of strokes           | 0                                  |             | 05:15 - 05:40               | 25     | Wash     | out line. Drop top plug  | . Displa  | ace.               |  |  |
| rate                        | 11                                 | BPM         | 05:40 - 05:50               | 10     | Bump     | plug w/ 3000 psi 5 min   | s OK.     |                    |  |  |
| SPM                         | 0                                  |             |                             |        | Nil cm   | t returns.               |           |                    |  |  |
| annular velocity            | 110                                | fpm         |                             |        |          |                          |           |                    |  |  |
| approx. time                | 17                                 | minutes     |                             |        | Float h  | eld OK.                  |           |                    |  |  |
|                             |                                    |             |                             |        | Well w   | as flowing strongly afte | er plua k | numned Shutannul   |  |  |
|                             |                                    |             |                             |        |          | n pressure 10 psi. Obs   |           |                    |  |  |
|                             |                                    |             |                             |        |          | own OK.                  |           |                    |  |  |
|                             |                                    |             |                             |        | Dica a   | OWIT OIL.                |           |                    |  |  |
|                             |                                    |             |                             | 1      | 1        |                          |           |                    |  |  |

| Joint<br>No. |              | Cumulative<br>Length | Depth<br>Landed  | Capacity<br>(bbls) | Displacement (bbls) | String<br>Weight MT | Remarks                 |
|--------------|--------------|----------------------|------------------|--------------------|---------------------|---------------------|-------------------------|
|              |              | 0.00                 | 0.00             |                    | , ,                 |                     | String wt is buoyed wt. |
|              |              | 0.00                 | 0.00             |                    |                     |                     |                         |
|              |              | 0.00                 | 0.00             | 0.0                | 0.00                | 0.000               |                         |
| XN           | 0.28         | 0.28                 | 850.00           | 0.0                | 0.00                | 0.002               |                         |
| 1            | 9.41         | 9.69                 | 849.72           | 0.2                | 0.07                | 0.064               |                         |
| Packer       | 1.15         | 10.84                | 840.31           | 0.2                | 0.08                | 0.072               |                         |
| 2<br>SSD     | 9.31<br>1.18 | 20.15<br>21.33       | 839.16<br>829.85 | 0.4<br>0.4         | 0.15<br>0.16        | 0.134<br>0.142      |                         |
| 3            | 9.31         | 30.64                | 828.67           | 0.4                | 0.16                | 0.142               |                         |
| 4            | 9.35         | 39.99                | 819.36           | 0.8                | 0.29                | 0.266               |                         |
| 5            | 9.40         | 49.39                | 810.01           | 0.9                | 0.36                | 0.329               |                         |
| 6            | 9.34         | 58.73                | 800.61           | 1.1                | 0.43                | 0.391               |                         |
| 7            | 9.37         | 68.10                | 791.27           | 1.3                | 0.50                | 0.453               |                         |
| 8            | 9.41         | 77.51                | 781.90           | 1.5                | 0.57                | 0.516               |                         |
| 9            | 9.39         | 86.90                | 772.49           | 1.7                | 0.64                | 0.578               |                         |
| 10           | 9.41         | 96.31                | 763.10           | 1.8                | 0.71                | 0.641               |                         |
| 11           | 9.36         | 105.67               | 753.69           | 2.0                | 0.78                | 0.703               |                         |
| 12<br>13     | 9.32         | 114.99<br>124.42     | 744.33<br>735.01 | 2.2<br>2.4         | 0.85<br>0.91        | 0.765<br>0.828      |                         |
| 13           | 9.43<br>9.29 | 133.71               | 735.01           | 2.4                | 0.91                | 0.828               |                         |
| 15           | 9.29         | 143.02               | 716.29           | 2.5                | 1.05                | 0.890               |                         |
| 16           | 9.43         | 152.45               | 706.98           | 2.9                | 1.12                | 1.014               |                         |
| 17           | 9.38         | 161.83               | 697.55           | 3.1                | 1.19                | 1.077               |                         |
| 18           | 9.41         | 171.24               | 688.17           | 3.3                | 1.26                | 1.139               |                         |
| 19           | 9.43         | 180.67               | 678.76           | 3.4                | 1.33                | 1.202               |                         |
| 20           | 9.36         | 190.03               | 669.33           | 3.6                | 1.40                | 1.264               |                         |
| 21           | 9.47         | 199.50               | 659.97           | 3.8                | 1.47                | 1.327               |                         |
| 22           | 9.44         | 208.94               | 650.50           | 4.0                | 1.54                | 1.390               |                         |
| 23           | 9.44         | 218.38               | 641.06           | 4.1                | 1.60                | 1.453               |                         |
| 24           | 9.47         | 227.85<br>237.29     | 631.62           | 4.3                | 1.67<br>1.74        | 1.516               |                         |
| 25<br>26     | 9.44<br>9.32 | 237.29               | 622.15<br>612.71 | 4.5<br>4.7         | 1.74                | 1.579<br>1.641      |                         |
| 27           | 9.32         | 255.91               | 603.39           | 4.7                | 1.88                | 1.703               |                         |
| 28           | 9.43         | 265.34               | 594.09           | 5.0                | 1.95                | 1.765               |                         |
| 29           | 9.43         | 274.77               | 584.66           | 5.2                | 2.02                | 1.828               |                         |
| 30           | 9.29         | 284.06               | 575.23           | 5.4                | 2.09                | 1.890               |                         |
| 31           | 9.29         | 293.35               | 565.94           | 5.6                | 2.16                | 1.952               |                         |
| 32           | 9.32         | 302.67               | 556.65           | 5.7                | 2.22                | 2.014               |                         |
| 33           | 9.48         | 312.15               | 547.33           | 5.9                | 2.29                | 2.077               |                         |
| 34           | 9.46         | 321.61               | 537.85           | 6.1                |                     | 2.140               |                         |
| 35           | 9.47         | 331.08               | 528.39           | 6.3                |                     | 2.203               |                         |
| 36           | 9.47         | 340.55               | 518.92           | 6.5                |                     | 2.266               |                         |
| 37           | 9.48         | 350.03<br>359.50     | 509.45<br>499.97 | 6.6                |                     | 2.329               |                         |
| 38<br>39     | 9.47<br>9.49 | 368.99               | 499.97           | 6.8<br>7.0         |                     | 2.392<br>2.455      |                         |
| 40           | 9.49         | 378.48               | 481.01           | 7.0                | 2.78                | 2.433               |                         |
|              |              |                      |                  |                    |                     |                     |                         |
| 41           | 9.48         | 387.96               | 471.52           | 7.4                | 2.85                | 2.581               |                         |
| 42           | 9.49         | 397.45               | 462.04           | 7.5                | 2.92                | 2.644               |                         |
| 43           | 9.49         | 406.94               | 452.55           | 7.7                | 2.99                | 2.708               |                         |
| 44           | 9.46         | 416.40               | 443.06           | 7.9                | 3.06                | 2.771               |                         |
| 45           | 9.46         | 425.86               | 433.60           | 8.1                | 3.13                | 2.834               |                         |
| 46<br>47     | 9.46         | 435.32               | 424.14<br>414.68 | 8.3                |                     | 2.896               |                         |
| 48           | 9.48<br>9.47 | 444.80<br>454.27     | 414.68           | 8.4<br>8.6         | 3.27                | 2.960<br>3.023      |                         |
| 49           | 9.49         | 463.76               | 395.73           | 8.8                |                     | 3.086               |                         |
| 50           | 9.48         | 473.24               | 386.24           | 9.0                |                     | 3.149               |                         |
| 51           | 9.49         | 482.73               | 376.76           | 9.2                | 3.55                | 3.212               |                         |
| 52           | 9.49         | 492.22               | 367.27           | 9.4                |                     | 3.275               |                         |
| 53           | 9.48         | 501.70               | 357.78           | 9.5                | 3.69                | 3.338               |                         |
| 54           | 9.44         | 511.14               | 348.30           | 9.7                | 3.76                | 3.401               |                         |
| 55           | 9.49         | 520.63               | 338.86           | 9.9                | 3.83                | 3.464               |                         |
| 56           | 9.48         | 530.11               | 329.37           | 10.1               |                     | 3.527               |                         |
| 57           | 9.49         | 539.60               | 319.89           | 10.3               |                     | 3.590               |                         |
| 58           | 9.48         | 549.08<br>559.57     | 310.40           | 10.4               |                     | 3.653               |                         |
| 59<br>60     | 9.49<br>9.48 | 558.57<br>568.05     | 300.92<br>291.43 | 10.6<br>10.8       |                     | 3.717<br>3.780      |                         |
| 61           | 9.48         | 577.52               | 281.95           | 11.0               |                     | 3.780               |                         |
| 62           | 9.47         | 586.99               | 272.48           | 11.0               | 4.24                | 3.906               |                         |

Page 1 18/12/2002

| Joint<br>No. | Joint<br>Length | Cumulative<br>Length | Depth<br>Landed | Capacity<br>(bbls) | Displacement (bbls) | String<br>Weight MT | Remarks |
|--------------|-----------------|----------------------|-----------------|--------------------|---------------------|---------------------|---------|
| _            | _               | 596.43               | 263.01          | 11.3               | 4.38                |                     |         |
| 63<br>64     | 9.44<br>9.50    | 605.93               | 253.57          | 11.5               | 4.45                | 3.968<br>4.032      |         |
| 35           | 9.49            | 615.42               | 244.07          | 11.7               | 4.43                | 4.095               |         |
| 36<br>36     | 9.46            | 624.88               | 234.58          | 11.9               | 4.59                | 4.158               |         |
| 67           | 9.49            | 634.37               | 225.12          | 12.1               | 4.66                | 4.221               |         |
| 58           | 9.48            | 643.85               | 215.63          | 12.1               | 4.73                | 4.284               |         |
| 59           | 9.47            | 653.32               | 206.15          | 12.4               | 4.80                | 4.347               |         |
| 70           | 9.48            | 662.80               | 196.68          | 12.4               | 4.87                | 4.410               |         |
| 71           | 9.46            | 672.26               | 187.20          | 12.8               | 4.94                | 4.473               |         |
| 72           | 9.49            | 681.75               | 177.74          | 13.0               | 5.01                | 4.536               |         |
| 73           | 9.48            | 691.23               | 168.25          | 13.1               | 5.08                | 4.599               |         |
| 74           | 9.49            | 700.72               | 158.77          | 13.3               | 5.15                | 4.662               |         |
| 75           | 9.47            | 710.19               | 149.28          | 13.5               | 5.22                | 4.725               |         |
| 76           | 9.49            | 719.68               | 139.81          | 13.7               | 5.29                | 4.788               |         |
| 77           | 9.47            | 729.15               | 130.32          | 13.9               | 5.36                | 4.851               |         |
| 78           | 9.49            | 738.64               | 120.85          | 14.0               | 5.43                | 4.915               |         |
| 79           | 9.48            | 748.12               | 111.36          | 14.2               | 5.50                | 4.978               |         |
| 30           | 9.48            | 757.60               | 101.88          | 14.4               | 5.57                | 5.041               |         |
| 31           | 9.49            | 767.09               | 92.40           | 14.6               | 5.64                | 5.104               |         |
| 32           | 9.47            | 776.56               | 82.91           | 14.8               | 5.71                | 5.167               |         |
| 33           | 9.49            | 786.05               | 73.44           | 14.9               | 5.78                | 5.230               |         |
| 34           | 9.48            | 795.53               | 63.95           | 15.1               | 5.85                | 5.293               |         |
| 35           | 9.45            | 804.98               | 54.47           | 15.3               | 5.92                | 5.356               |         |
| 36           | 9.47            | 814.45               | 45.02           | 15.5               | 5.99                | 5.419               |         |
| 37           | 9.47            | 823.92               | 35.55           | 15.7               | 6.06                | 5.482               |         |
| 38           | 9.47            | 833.39               | 26.08           | 15.8               |                     | 5.545               |         |

Page 2 18/12/2002

| NNING TALLY   | ASING RUI            | FACE C              | 8" SUR             | 9 5/            | AIRY #1              | RTF             | PO           |
|---------------|----------------------|---------------------|--------------------|-----------------|----------------------|-----------------|--------------|
| Remarks       | String<br>Weight klb | Displacement (bbls) | Capacity<br>(bbls) | Depth<br>Landed | Cumulative<br>Length | Joint<br>Length | Joint<br>No. |
|               | 120.758              | 208.54 bbl          | 185.10 bbl         | 41.37           | 783.14               | 12.51           | 65           |
|               | 122.604              | 211.73 bbl          | 187.98 bbl         | 28.86           | 795.11               | 11.97           | 66           |
|               | 124.468              | 214.95 bbl          | 190.88 bbl         | 16.89           | 807.20               | 12.09           | 67           |
| Landing joint | 125.625              | 216.95 bbl          | 192.68 bbl         | 4.80            | 814.70               | 7.50            | Lnd Jt       |
| OUT           | 127.558              | 220.29 bbl          | 195.70 bbl         | -2.70           | 827.24               | 12.54           | 68           |
| OUT           | 129.578              | 223.78 bbl          | 198.84 bbl         | -15.24          | 840.34               | 13.10           | 69           |
| OUT           | 131.586              | 227.24 bbl          | 201.97 bbl         | -28.34          | 853.36               | 13.02           | 70           |
| OUT           | 133.541              | 230.62 bbl          | 205.02 bbl         | -41.36          | 866.04               | 12.68           | 71           |
| OUT           | 135.490              | 233.98 bbl          | 208.06 bbl         | -54.04          | 878.68               | 12.64           | 72           |
| OUT           | 137.413              | 237.31 bbl          | 211.05 bbl         | -66.68          | 891.15               | 12.47           | 73           |
| OUT           | 139.324              | 240.60 bbl          | 214.03 bbl         | -79.15          | 903.54               | 12.39           | 74           |
| OUT           | 141.228              | 243.89 bbl          | 217.00 bbl         | -91.54          | 915.89               | 12.35           | 75           |

#### CASING RUN SUMMARY

Drill to 821m. Run survey. POOH.
Conduct pre-casing meeting.
Rig up to run casing.
Run shoe followed by next 5 joints of casing. (13.3/8" K-55 BTC Casing)
Tag bottom. Pick up of bottom to cement.
Prepare for companion meeting.

Conduct pre-cementing meeting.

Commence cement job.

Page 2 18/12/2002

| Port Fairy No. 1 WCR Appendixes  |
|----------------------------------|
|                                  |
|                                  |
| Appendix 4: Drilling Fluid Recap |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |

### **DRILLING FLUID SUMMARY**

FOR: Oil Company of Australia Ltd

WELL: Port Fairy # 1

Otway Basin

**VICTORIA** 

Engineered by: Arun Madan

Prepared by: Arun Madan and Mark Scheide

Spud Date: 9th January 2002

### **CONTENTS**

- 1. Summary of Operations
- 2. Observations, Recommendations and Well Analysis
- 3. Interval Costs
- 4. Materials Reconciliation
- 5. Fluid Properties Summary
- 6. Mud Volume Analysis
- 7. Graphs
- 8. Bit Record
- 9. Solids Control Equipment
- 10. Hole Gauge Analysis
- 11. Polymers Concentration
- 12. Daily Mud Reports

#### 1. SUMMARY OF OPERATIONS

Port Fairy # 1 was an exploration well in PEP 152 of the onshore Otway Basin. The primary targets were the Flaxman and Warree sandstones while the secondary target was the Nullawarree Green sands. The well was spudded @ 0700 Hours on 9<sup>th</sup> January 2002, TD of 1550 Meters was reached @ 1830 Hours on 18<sup>th</sup> January 2002 and the rig was released on 24<sup>th</sup> January 2002.

HOLE SIZE : 17 1/2" MUD TYPE : Air/Water

**INTERVAL** : Surface – 78.2 Metres

CASING : 13 3/8" conductor @ 67 metres

The well was spudded @ 07:00 hours on  $9^{th}$  January with 17 ½" drag bit. As the bit would not drill below 2 metres, a 12 ¼" hammer assembly was picked up and the hole was drilled to 10 metres. The hole was further drilled using 17 ½" hammer to 31 metres assembly just through basalt into sands. Some basalt cavings were evident at this stage. 23 sacks of cement were mixed and spotted at bottom.

After waiting on cement, the 12 ¼" pilot hole was further drilled using water from the mud tanks with returns to the sump. After drilling to 78.2 metres, the hole was enlarged to 17 ½". 13 3/8" conductor casing was run in to 67 metres and cemented using rig mixing facilities and mud pumps.

**HOLE SIZE** : 12<sup>1</sup>/<sub>4</sub>"

MUD TYPE : Spud Gel Mud INTERVAL : 78 – 821 Metres CASING : 9-5/8" @ 813 Metres

The make up water (from local bore plus haulage from Port Fairy township) was tested at location and found to have the following properties:

pH 8.5 pf/mf 0.05/0.3 Hardness 200 mg/l Chlorides 800 mg/l

During waiting on cement on 13 3/8" conductor, the tanks were placed in position. 200 barrels of 20 ppb Trugel 13A and 0.25 ppb Caustic Soda were mixed in the tanks obtaining viscosity of more than 45 sec/qt. The shaker was dressed with 20/30 mesh screens.

A 12 ¼" bit was run in and the cement was tagged at 58 metres. The cement was drilled with gel mud with minimal cement contamination. Whilst drilling through the Limestone and Marl formations, water addition was made to counter the increasing viscosity. The shaker screens were washed continuously to prevent excessive run off from the shakers. Occasional by passing of the Possum belly and shale shakers were required in view of excessive cuttings.

Mud rings were experienced while drilling at 270 metres due to anticipated Gumbo in lower Gellibrand Marl. The mud had started picking up in gels just prior to mud rings.

The flow line was nippled down and cleaned. Provision for jet cleaning of flow line was made and the drilling was resumed. The mud was treated with SAPP (0.3 ppb) at this stage to prevent any mud rings.

The mud yield point decreased to less than 5 lbs/100ft2 on addition of the SAPP and again gradually increased during further Marl drilling. Half a sack (0.075 ppb) of SAPP was again added when the mud viscosity increased at 420 m. Mud rings were again experienced during bottoms up after survey at 450 m.

While drilling through Dilwyn formation, Xanthan Gum and Pac Reg sweeps (addition to Suction during connections as no separate pill tank) were pumped around to keep the hole clean in view of low pump discharge (only one mud pump). Enerseal Coarse was also added during Dilwyn sands on operator's request.

As the mud pump started jacking off during pumping of sweeps, these sweeps were discontinued. The shaker screens were upgraded to 60/80 mesh, however the bottom screen was almost immediately replaced with coarser screen (20 mesh) because of excessive run off. The upper screen was also continuously hosed in view of sand blinding.

A wiper trip to the drill collars was made after drilling to 818 metres. After drilling another 3 metres to 821 metres, for casing shoe adjustment, the pipes were pulled out. The pipes were slugged both prior to Wiper trip and the final pull out.

9 5/8" (47 ppf) casings were run in with shoe at 813 metres. After circulating the hole, the casings were cemented displacing the cement slurry with the mud. A good amount of cement slurry surfaced during displacement.

HOLE SIZE :  $8\frac{1}{2}$ "

MUD TYPE : KCl - PHPA – Polymer INTERVAL : 813 Meters – 1550 Meters

CASING : 7" Casing

During nippling up of the BOP's, the mud tanks were dumped and cleaned. 250 barrels of fresh KCl-PHPA-Polymer mud was mixed in the settling and suction pits (keeping 90 barrels in trip and reserve tanks), isolating sand-trap as suction for sand trap:

 JK-261 (dry PHPA)
 0.22 ppb

 PAC-R
 1.75 ppb

 Xanthan Gum
 0.22 ppb

 KCl
 37 ppb

The KCl concentration (10.5 %) was higher than recommended (3-4%) so as to have the initial mud weight of 8.9 ppg (1.07 SG) as requested by the operator. The fluid was sheared through the gun lines while the shakers were dressed with 20 / 40 mesh screens.

The cement was tagged at 774 meters with the 8 ½" bit. The shoe track and 2 meters of new formation to 823 meters were drilled with the mud from previous interval using the sandtrap as the

suction. After circulating the hole clean, an extended LOT was conducted obtaining EMW of 13.5 ppg.

The hole was displaced with fresh KCl – PHPA mud after LOT. A deviation survey was conducted immediately after displacement (the survey prior to casing was a miss-run), which gave enough time to mix another 140 barrels of fresh mud to replenish the surface volume. PHPA was not added to this fresh batch to avoid any run off from the shaker.

The drilling resumed after the survey. There was no run off from the shakers. PHPA (dry) was added, initially through the reserve tank but as the frequent shifting of the flexi-pump for water, premix and other works became cumbersome, so continuous dry addition was started in the tanks to keep up with the drilling. The approximate rate of addition was 1.35 lbs per metre of formation drilled. The formation was argillaceous in nature but the cuttings were dry and well encapsulated.

The mud volume was built up with water and simultaneous addition of PAC -Reg. Xanthan Gum was added whenever required to maintain hole cleaning. Only one triplex mud pump with 7" stroke length and 6" liner was available, so the mud yield point was allowed to build up in view of lower pump discharge (310 - 325 gpm).

The yield point was more than 15 lbs/100ft2 in the beginning and was allowed to gradually build to more than 17 lbs/100ft2 as the drilling progressed though PHPA (dry) addition also accounted for some of this higher rheology.

The mud weight increased to 9.2 ppg (1.10 SG) while drilling at 1200 metres. Attempts were made to up grade the shaker screens but without success, so coarser screens were continued. While drilling at 1236 metres, gas up to 25 units was recorded. The mud weight was increased to 9.5 ppg (1.14 SG) on operator's request using Barytes.

The drilling after 1236 metres was controlled with less weight on bit. The ROP became very poor at 1327 metres so it was decided to pull out of hole. A baryte slug was pumped which was mixed in the suction tank after stopping the circulation. The PDC condition was O.K. on pulling out.

A new tri-cone bit was run in. On encountering a ledge at 874 metres, further running in was done with washing and reaming. The availability of a top drive, facilitated this washing down. 20 metres of fill were encountered at bottom. During washing and reaming, Xanthan Gum and Pac Reg additions were made and the yield point was increased to more than 20 lbs/100ft2.

On resumption of drilling, the yield point was continued to be maintained more than 20lbs/100ft2. PHPA addition had to be decreased because of higher rheology and non-availability of any pre-mix facilities. The PHPA rate of addition was still 0.95 lbs per metre of formation drilled. The concentration of Pac Reg was kept on higher side. KCl addition was not required as the same was still more than 4 %.

The mud weight gradually increased to 9.6 - 9.7 ppg (1.15 - 1.16 SG) while drilling through lower Flaxman and Eumerrella formations. Although the desander and the desilter were run continuously, the sand was more than 1.0 % while drilling these formations though the MBC values were still low.

TD of 1550 metres was reached at 18:30 hours on 18<sup>th</sup> January 2002. After circulating the hole clean, the pipes were pumped out utilising the top drive facilities. As it was decided to pump out the pipes so the slug was not pumped thus the pull out was wet.

#### **POST TD**

After pulling out, Schlumberger was rigged up and two runs of logs were recorded. Fill was encountered at 1523 metres during logging. After rigging down Schlumberger, test tools were run in and DST # 1 was conducted. After deflating the packer, the pipes were pulled out to 2<sup>nd</sup> object. Attempts to seat the packer failed so test tools were pulled out.

The sample chamber was found plugged with sand on pulling out. During logging and DST operations, 70 barrels of mud was mixed in the surface tanks to make up for the volume lost during wet pull out. Pac Reg was the only polymer used while building up the volume.

The old bit was run in for a wiper trip. Fill was encountered at 1513 metres. After circulating bottoms up at 1513 metres the pipes were pulled out. Water along with Pac Reg, Caustic and Idcide was added during circulation to build up the volume. After pumping slug, the pipes were pulled out.

Test tools were made up and run in for DST # 2 in Parratte. The tools got plugged after initial build up. The test tools were pulled out. Another trip was made after DST # 2. The fill from 1506 metres was washed and reamed. Xanthan Gum high viscous mud was pumped around during final bottoms up. A slug was pumped and the pipes were pulled out.

DST # 3 tools were run in to repeat the test in the Parratte formation. The packer did not inflate. The tools were pulled out and 7" casing was run in without any fill with shoe at 1546 metres. The casing was cemented, displacing the slurry with water and bumping the plug.

The rig was released on 24<sup>th</sup> of January 2002.

## 2. OBSERVATIONS, RECOMMENDATIONS AND WELL ANALYSIS

The well Port Fairy # 1 was drilled to TD of 1550 meters. Two run of wireline logs and three DST's were carried out during post TD evaluation. The logging runs were successfully conducted though the test tools got plugged during DST # 1 and DST # 2 while the packers did not inflate for DST # 3 (re-test of DST # 2 object).

| HOLE SIZE | INTERVAL               | Meters       | COST        | COST / FT |
|-----------|------------------------|--------------|-------------|-----------|
| 12 1/4""  | 0 – 821. Metres        | 821          | \$3309.42   | \$ 4.03   |
| 8 1/2"    | 821 – 1550 Meters      | 729          | \$ 13003.69 | \$ 17.84  |
| TOTAL     | DRILLING COST (15      | \$ 16,313.11 | \$10.52     |           |
| POST      | TD COSTS (logging / co | mpletion)    | \$ 2,367.98 |           |
|           | TOTAL WELL COST        | T            | \$18,681.09 | \$ 12.05  |
|           | DAMAGED COST           | \$ 131.72    |             |           |
| TO        | ΓAL COST (Damaged +    | \$ 18,812.81 |             |           |

#### 121/4" Surface Hole

The surface interval was drilled with Gel Spud Mud at the cost of \$3,309.42 i.e. \$4.03 per metre.

13 3/8" conductor was set at 67 metres so losses were not encountered in the upper limestone formations. Mud rings were experienced while drilling through the Marl section especially Gellibrand Marl. SAPP addition was made which helped in thinning down the mud.

Pac Reg and Xanthan Gum sweeps were pumped around while drilling through Dilwyn sands. The losses were not significant. LCM (Enerseal Coarse @ 1 ppb) though was added on Operator's request. The addition of Pac Reg provided stability to the mud system though yield point was only 10-11 lbs/100ft2 at TD. Casing was run in without any problems. Good quantity of cement surfaced during displacement with mud.

#### 8½" Production Hole

This interval was drilled using KCl PHPA mud at the total mud cost of \$ 13.003.69 or \$17.84 per metre again without any major mud related problems.

The initial mud weight was kept 8.9 ppg (1.07 SG) using KCl in anticipation of aquifer pressures. The mud weight was further increased to 9.5 ppg (1.14 SG) using Barytes when some gas indications were there in claystones prior to Nullawarre Green sands.

The hole was drilled without any major problems except for some fill during bit and logging trips (1523 metres). No wiper trip had been made prior to logging and DST # 1. The running in of 7" casing was smooth without encountering any fill at bottom with casing shoe at 1546 metres.

#### **Solids Control**

The rig had very basic and inferior solids control system. The single double deck shaker could be operated with coarse screens (20/30 to 60/20 mesh) during surface hole and any attempt to upgrade the screens resulted in run off from the shakers.

The desilter and desander (single cone) were available but were operated through single hopper pump. The desander had been requisitioned for this well but as the feed system was not properly set so effectiveness of hydrocyclones was low. As the cut size of screen was around 234 microns, so load on hydrocyclones was very high.

The settling in sand trap was utilised but faulty dump gate and lack of any high-pressure water hose for cleaning made it difficult to clean the sand trap frequently. The sand trap was dumped during surveys and trips only.

There was no direct dumping provision of the possum belly in the sump and the same had to be dumped through the sand trap. Though the possum belly was dumped frequently but it only added to solids in the sand trap.

Provision of gumbo sliding by pass line was an advantage, but lack of any proper jetting provision in the flow line resulted in non-productive rig time. Due to low operating volume, the LGS were only around 7.0 % by surface target depth despite drilling 821 metres of 12 ¼" hole.

During production interval, the shaker screens had to be downgraded to 20/40 mesh (cut size of 381 microns) because of the polymers. The shaker screen could not be upgraded due to continuous direct addition of PHPA. The PHPA addition in the pits further lowered the efficiency of solids control hydrocyclones. The settling rate was high due to PHPA but again the sand trap could not be dumped frequently.

The formations were quite argillaceous but the sufficient amount of PHPA in the system helped in keeping the solids on lower side. The LGS increased to only 3.5 % by 1050 metres and further to 5.5 % by 1255 feet. The LGS further increased during flaxman and Eumerrella formation drilling to 7.2 % v/v.

The sand in the system was always high with values of 1.0 - 1.75 % v/v in Flaxman and Eumerrella formations.

#### **Mud Weight**

The mud weight by surface casing depth was 9.25 - 9.3 ppg (1.11-1.115 SG) because of drilled solids. Due to anticipated aquifer pressure in the Dilwyn formation, the operator requisitioned minimum mud weight of 8.9 ppg (1.07 SG).

Again due to anticipated aquifer pressure, the operator requested the mud weight of 8.9 ppg (1.07 SG) for the initial brew for production hole. The casing seat formation was not sure at that stage. KCl was utilised as the initial weighing agent.

As the LGS increased, the KCl content was allowed to drop continuously from initial 10.5 % to specified 4 %. The mud weight was increased at 1236 feet from 9.2 ppg (1.10 SG) to 9.5 ppg (1.14 SG) using Barytes on operator's request. This was requisitioned in anticipation of high-pressure sands as 25 units of drilled gas were recorded in clay stone formations.

The mud weight further increased to 9.6-9.7 ppg (1.15-1.16~SG) during fast drilling through Flaxman and Eumerrella formations. No effort was made to dump and dilute the system to cut back the mud weight.

#### **Mud Losses**

No significant mud losses were experienced in the surface or production intervals. The conductor was set quite deep (67 metres) which covered the thief limestone zones. While drilling the conductor hole with water from the sump, losses were evident.

#### **Hole Gauge**

The hole on the basis of single axis calliper logs was 6.4 % overgauge with average hole size of 8.74". The Pember Mud stone, Skull Creek and Belfast Mud Stone had higher average hole sizes i.e.9.20", 9.54" and 9.52" respectively.

Though the single axis calliper does not reflect the true picture, the lower concentration of PHPA due to mixing constraints might be a contributing factor in these argillaceous formations.

#### **Mud System and Properties**

Mud used for surface hole was basic gel spud mud. Initial gel concentration was 20 ppb, which gave the viscosity of more than 45 sec/qt in fresh make up water. The claystone of long sequence of Marl formations contributed further to mud viscosity.

SAPP addition (0.3 ppb) was added to the system at 270 metres when mud rings were experienced in Gallibrand Marl due to gumbo. Further additions of less than 0.1 ppb SAPP was made at 420 metres when a rapid viscosity increase was noticed. Mud rings were experienced after the survey at 450 metres.

During further drilling, Pac Regular and Xanthan Gum sweeps were pumped around to keep the hole clean and to increase the viscosity in Dilwyn sand formations in view of low pump discharge rate because of the single mud pump.

The running of casing was smooth though the yield point was in the range of 10-11 lbs/100ft2 only with lower gels because of sufficient polymers in the system at this stage.

KCl – PHPA Polymer mud system was used for the 8 ½" Production hole. The initial concentration of dry PHPA was 0.15 ppb, the concentration of PHPA was gradually increased to 1.0 ppb by continuous addition of PHPA during drilling.

The rate of addition was 1.35 lbs/metre of formation drilled until top of Flaxman. The average rate of addition was cut down to 0.95 lb/metre.in Flaxman and Eumerrella formations due to various factors like target sands, fish eyes due to higher rheology and direct additions of PHPA.

As the concentration of PHPA was kept lower in the beginning, due to shaker constraints, so the initial concentration of Pac Reg was kept more than 1.0 ppb. The concentration was maintained between 1.25 ppb to 1.50 ppb to maintain fluid loss and rheology properties.

When the rate of addition of PHPA was decreased near the target, Pac Reg was supplemented with Pac lv also, to have combined concentration of approximately 1.75 ppb. Xanthan Gum concentration was maintained between 0.25 to 0.4 ppb; additions more through sweeps.

As the pump discharge was expected to be low due to availability of only one mud pump (triples: 6' liner and 7' stroke length), so the yield point was kept more than 17 lbs/100ft2 from the beginning itself. The yield point was 17- 23 lbs/100ft2 during the drilling of 8 ½' hole though un-sheared PHPA and solids also contributed to this rheology.

Fluid loss throughout the section was less than 7.0 cc/30min and was below 6.5 cc/30min while drilling the targets.

Potassium chloride concentration was 10.5 % in the beginning of the hole as it was used as weighing agent for the starting fluid, but was allowed to decrease as the drilling progressed. The concentration was more than 4.0 % while drilling through target sands.

Due to non-availability of a pill tank, the suction tank was used as a makeshift pill tank for slugs and high viscous pills though the returns during pumping of these pills could not be isolated due to low surface capacity.

| Port Fairy No. 1 WCR Appendixes       |
|---------------------------------------|
|                                       |
|                                       |
|                                       |
| Appendix 5: Cuttings Description      |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
| Essential Petroleum Resources Limited |



| Depth      | (mRT)      |     |     |       |     |      | Por | t Fair | y No 1 - Sample Descriptions                                                                                                                                                             |
|------------|------------|-----|-----|-------|-----|------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deptii     | (IIIX1)    | G 4 | СП  | CI 4  | T 4 | 26.1 |     | Vis    |                                                                                                                                                                                          |
| From       | To         | Sst | Slt | Clyst | Lst | Marl | Co  | Por    | Description and shows:                                                                                                                                                                   |
| 80         | 90         |     |     | 100   |     |      |     |        | CLAY medium grey, sticky, very soft, washing out of sample. Washed sample is predominantly cement.                                                                                       |
| 90         | 100        |     |     | 100   |     |      |     |        | CLAY medium grey, soft, plastic,                                                                                                                                                         |
| 100        | 110        |     |     | 95    | 5   |      |     |        | CALCAREOUS CLAY, medium grey, soft, CALCARENITE, light grey, fine grained, common marine fossils and glauconite.                                                                         |
| 110        | 120        |     |     | 90    | 10  |      |     |        | CALCAREOUS CLAYSTONE, medium to light grey, soft, sticky, minor fossils. CALCARENITE, light grey, fine grained, soft - frim, friable, fossiliferous, trace glauconite.                   |
| 120        | 130        |     |     |       | 10  | 90   |     |        | MARL, as above, CALCARENITE, light grey, occasionally white, fine to coarse grained, soft - hard, friable to well cemented, fossiliferous, trace glauconite.                             |
| 130        | 140        |     |     |       | 5   | 95   |     |        | MARL, as above, trace pyrite, soft, plastic, CALCARENITE, light grey, occasionally white, fine to coarse grained,soft - hard, friable to well cemented, fossiliferous, trace glauconite. |
| 140        | 150        |     |     |       | 10  | 90   |     |        | MARL, as above, CALCARENITE, white to light grey, occ yellowish white, fine to coarse grained, poorly sorted, fossil frags, friable to firm, tarce glauconite.                           |
| 150        | 160        |     |     |       | 10  | 90   |     |        | MARL, as above, CALCARENITE, as above, laminated in part.                                                                                                                                |
| 160        | 170        |     |     |       | 10  | 90   |     |        | MARL, as above, CALCARENITE, white to grey, mottled, fine to coarse, silty, fossiliferous,                                                                                               |
| 170        | 180        |     |     |       | 5   | 95   |     |        | MARL, as above, very sticky, dispersive, fossiliferous, CALCARENITE, as above.                                                                                                           |
| 180        | 190        |     |     |       | 20  | 80   |     |        | MARL, as above, very finely calcarenitic in part, soft to firm, CALCARENITE, as above, glauconitic, occasionally well cemented.                                                          |
| 190        | 200        |     |     |       | 30  | 70   |     |        | MARL, as above, very finely calcarenitic in part, soft to firm, CALCARENITE, as above, glauconitic, occasionally well cemented.                                                          |
| 200        | 210        |     |     |       | 10  | 90   |     |        | MARL, as above, very finely calcarenitic in part, soft to firm, CALCARENITE, as above, glauconitic, occasionally well cemented.                                                          |
| 210        | 220        |     |     |       | 20  | 80   |     |        | MARL, as above, very finely calcarenitic in part, soft to firm, CALCARENITE, as above, glauconitic, occasionally well cemented.                                                          |
| 220<br>230 | 230<br>240 |     |     |       | 10  | 90   |     |        |                                                                                                                                                                                          |
| 240        | 250        |     |     |       | 10  | 90   |     |        | MARL, light grey, soft/dispersive to firm, glauconitic, common sand size fossil grains.                                                                                                  |
| 250        | 260        |     |     |       | 5   | 95   |     |        | MARL, as above, occasionally pyritic                                                                                                                                                     |
| 260        | 270        |     |     |       | 60  | 40   |     |        | MARL as above, washing over shakers, CALCARENITE, light grey to light greenish and brownish grey, fine to coarse grained, very silty grades to CALCISILTITE. Abundant fossil fragments   |
| 270        | 280        |     |     |       | 60  | 40   |     |        | MARL, light grey, firm, CALCARENITE, as above, fossiliferous, tr glauconite, common loose large fossil fragments.                                                                        |
| 280        | 290        |     |     | 30    | 60  | 10   |     |        | CLAYSTONE, medium grey, soft, slightly to very calcareous, silty, grades to CALCISILTITE, light grey soft, CALCARENITE, as above. Aundant large fossil fragments.                        |
| 290        | 300        |     |     |       | 80  | 20   |     |        | CALCARENITE, pred light grey, occ brown, very fine to coarse grained, grades to MARL                                                                                                     |



|       |       |     |     |       |     |      | P   | 4 E .      | w.N. 1. Camala Danish dana                                                                                                                                                                                                                                                                     |
|-------|-------|-----|-----|-------|-----|------|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth | (mRT) |     |     |       |     |      | Por |            | y No 1 - Sample Descriptions                                                                                                                                                                                                                                                                   |
| From  | To    | Sst | Slt | Clyst | Lst | Marl | Co  | Vis<br>Por | Description and shows:                                                                                                                                                                                                                                                                         |
| 300   | 310   |     |     | 30    | 60  | 10   |     |            | CLAYSTONE, medium grey, soft, slightly to very calcareous, silty, grades to MARL, light grey soft, CALCARENITE, as above. Abundant large fossil fragments.  CALCARENITE, pred light grey, occ v pale greyish brown, very                                                                       |
| 310   | 320   |     |     |       | 90  | 10   |     |            | fine to coarse grained, grades to CALCISILTITE, clayey, abundant fossil fragments                                                                                                                                                                                                              |
| 320   | 330   |     |     |       | 100 | 0    |     |            | CALCARENITE, occ very pale greenish grey, predominantly very fine grained, silty grading to clayey CALCISILTITE,                                                                                                                                                                               |
| 330   | 340   |     |     |       | 90  | 10   |     |            | CALCARENITE, as above grades to clayey calcisiltite and MARL, Abundant fossil fragments                                                                                                                                                                                                        |
| 340   | 350   |     |     |       | 80  | 20   |     |            | CALCISILTITE, light to medium grey, fossiliferous, grades to very fine CALCARENITE and MARL                                                                                                                                                                                                    |
| 350   | 360   |     |     |       | 70  | 30   |     |            | CALCISILTITE, as above.                                                                                                                                                                                                                                                                        |
| 360   | 370   |     |     |       | 90  | 10   |     |            | CALCARENITE, light grey, mottled, occ light greenish grey, argillaceous, very fine grained, poorly sorted, grades to CALCISILTITE and MARL                                                                                                                                                     |
| 370   | 380   |     |     |       | 80  | 20   |     |            | CALCISILTITE, light to medium grey, fossiliferous, grades to very fine CALCARENITE and MARL, light grey,                                                                                                                                                                                       |
| 380   | 390   |     |     |       | 40  | 60   |     |            | Minor CALCARENITE, white, very fine grained, moderately sorted, laminated, soft, CALCISILTITE and MARL as above                                                                                                                                                                                |
| 390   | 400   |     |     |       | 20  | 80   |     |            | MARL, medium grey, occasionally light greenish grey, grades to CALCILUTITE, argillaceous, soft, plastic. CALCARENITE, light grey, very fine grained, silty.                                                                                                                                    |
| 400   | 410   |     |     |       | 20  | 80   |     |            | MARL medium grey, soft, dispersive, grades to calcilutite, CALCISILTITE, light grey, argillaceous, grades to very fine CALCARENITE,                                                                                                                                                            |
| 410   | 420   | Tr  | Tr  |       | 20  | 80   |     |            | MARL and CALCISILTITE as above, trace SANDSTONE, loose, clear, medium grained, trace SILTSTONE, yellowish brown, ?limonitic, firm to hard                                                                                                                                                      |
| 420   | 430   | 5   | 0   | 0     | 20  | 75   | 0   |            | as above, SANDSTONE clear, fine to medium grained, loose, occasionally well cemented with clear calcite.                                                                                                                                                                                       |
| 430   | 440   | 80  | tr  |       | 0   | 20   |     |            | SANDSTONE, clear to light brown, yellowish brown, fine to medium grained, quartzose, subangular, predominantly loose grains with Fe staining and calcite cement adhereing, common carbonaceous grains. SILTSTONE, yellowish brown, calcareous, firm, common carbonaceous grains. MARL as above |
| 440   | 450   | 30  | 20  | 20    |     | 30   |     |            | SANDSTONE, as above, occ coarse grained, siltstone, greyish brown to light grey, calcareous, grades to calcareous claystone, light grey,                                                                                                                                                       |
| 450   | 460   | 80  | 20  |       |     |      |     |            | SANDSTONE, mottled, fine to coarse grained, poorly sorted, subangular, dispersive calcareous argillaceous matrix, common lithic and carbonaceous grains very soft. SILTSTONE, very calcareous.                                                                                                 |
| 460   | 470   | 90  | 10  |       |     |      |     |            | SANDSTONE, greyish brown, speckled, very fine to very coarse grained, poorly sorted, loose Fe-stained grains and very soft aggregates with dispersive argillaceous calcareous matrix.  CARBONACEOUS SILTSTONE, very dark brown.                                                                |
| 470   | 480   | 90  | 10  |       |     |      |     | р          | SANDSTONE, clear, Fe-stained to greyish brown, fine to v coarse, loose grains and aggs with soft clay matrix or occ firm calcite cement                                                                                                                                                        |
| 480   | 490   | 90  | 10  |       |     | 0    |     | p          | SANDSTONE, as above, calcite cement decreasing, common carbonaceous silty laminae and inclusions.                                                                                                                                                                                              |



| Depth      | (mRT)      |            |     |           |            |      | Por | t Fair | y No 1 - Sample Descriptions                                                                                                                                               |
|------------|------------|------------|-----|-----------|------------|------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deptil     | (IIIXI)    | a .        | GT. | <b>67</b> | <b>.</b> . |      |     | Vis    |                                                                                                                                                                            |
| From       | To         | Sst        | Slt | Clyst     | Lst        | Marl | Co  | Por    | Description and shows:                                                                                                                                                     |
| 490        | 500        | 100        |     |           |            |      |     | e      | SANDSTONE, clear, transl, medium to predominantly very coarse, well sorted, subangular,trace irregular shaped ?composite grains w/ dark inclusions, sub ang to subrounded. |
| 500<br>510 | 510<br>520 | 100<br>100 |     |           |            |      |     | e<br>e | SANDSTONE, clear, as above. ? reworked qtz cemented sst<br>SANDSTONE, as above (Sample swamped w/ LCM)                                                                     |
| 310        | 320        | 100        |     |           |            |      |     | C      | SANDSTONE, as above (Sample swamped w/ LCM) SANDSTONE, light brown, fine to coarse pred medium, poorly                                                                     |
| 520        | 530        | 95         | 5   |           |            |      |     | f      | sorted, trace dispersive, argillaceous matrix. SILTSTONE, dark brown, carbonaceous, finely sandy                                                                           |
| 530        | 540        | 100        | Tr  |           |            |      |     | vg     | SANDSTONE, clear, light grey, yellowish brown, loose, fine to very coarse subangular polished grains.                                                                      |
| 540        | 550        | 100        |     |           |            |      |     | vg     | SANDSTONE as above, clean loose grains, trace calcareous cement, trace carbonaceous grains                                                                                 |
| 550        | 560        | 100        |     |           |            |      |     | vg     | SANDSTONE as above, clean loose grains,trace silty matrix washing out, trace carbonaceous grains                                                                           |
| 560        | 570        | 100        |     |           |            |      |     | vg     | SANDSTONE as above, angular to subrounded, polished                                                                                                                        |
| 570        | 580        | 90         | 10  |           |            |      |     | f      | SANDSTONE, as above but with dark grey silty matrix in part.<br>SILTSTONE, dark grey to greyish brown, silty, soft to firm                                                 |
| 580        | 590        | 100        |     |           |            |      |     | vg     | SANDSTONE as above, becoming clean.                                                                                                                                        |
| 590        | 600        | 100        | tr  |           |            |      |     | g      | SANDSTONE as above, trace SILTSTONE as above                                                                                                                               |
| 600        | 610        | 100        |     |           |            |      |     | vg     | SANDSTONE, clear, white, light grey, medium to very coarse grained, moderately sorted, angular to subrounded, trace calcareous cement. trace chert.                        |
| 610        | 620        | 100        |     |           |            |      |     | g      | SANDSTONE as above                                                                                                                                                         |
| 620        | 630        | 100        | tr  |           |            |      |     | g      | SANDSTONE as above, trace SANDY SILTSTONE very dark brown.                                                                                                                 |
| 630        | 640        | 100        |     |           |            |      |     | vg     | SANDSTONE as above, becoming well sorted predominantly very coarse grained                                                                                                 |
| 640        | 650        | 100        | tr  |           |            |      |     | vg     | SANDSTONE as above,trace pyrite, trace SILTSTONE, dark brown, carbonaceous                                                                                                 |
| 650        | 660        | 100        |     |           |            |      |     | vg     | SANDSTONE as above, clean                                                                                                                                                  |
| 660        | 670        | 100        |     |           |            |      |     | vg     | SANDSTONE as above, coarse to very coarse grained                                                                                                                          |
| 670        | 680        | 100        |     |           |            |      |     | vg     | SANDSTONE, as above                                                                                                                                                        |
| 680        | 690        | 100        |     |           |            |      |     | vg     | SANDSTONE, as above SANDSTONE, clear, white, occ light grey, very coarse grained                                                                                           |
| 690        | 700        | 100        |     |           |            |      | tr  | e      | well sorted, subangular loose polished grains, trace COAL and CARBONACEOUS SILTSTONE                                                                                       |
| 700        | 710        | 100        |     |           |            |      |     | e      | SANDSTONE as above, medium to very coarse grained, trace fossil fragments                                                                                                  |
| 710        | 720        | 100        |     |           |            |      |     | e      | SANDSTONE, clear, translucent, medium to very coarse grained, quartzose, v sl tr calc cmt, lse, subang. TR COALY SILTSTONE,                                                |
| 720        | 730        | 100        |     |           |            |      |     | 0      | dark brown to black<br>SANDSTONE, as above, tr Fe staining                                                                                                                 |
|            |            |            |     |           |            |      |     | e      | SANDSTONE, as above, if restaining SANDSTONE, as above, medium to v coarse, pred coarse grained,                                                                           |
| 730        | 733        | 100        |     |           |            |      |     | e      | well sorted.                                                                                                                                                               |
| 733        | 736        | 100        |     |           |            |      |     | e      | SANDSTONE, as above, becoming predominantly med grained.                                                                                                                   |
| 736        | 739        | 100        |     |           |            |      |     | e      | SANDSTONE as above, fine to coarse grained.                                                                                                                                |
| 739        | 742        | 100        |     |           |            |      |     | e      | SANDSTONE, as above                                                                                                                                                        |
| 742<br>745 | 745<br>748 | 100<br>100 |     |           |            |      |     | e      | SANDSTONE, as above, coarse to very coarse.                                                                                                                                |
| 745        | 751        | 100        |     |           |            |      |     | e<br>e | SANDSTONE, as above, coarse to very coarse.  SANDSTONE, as above,                                                                                                          |
| 751        | 754        | 100        |     |           |            |      |     | e      | SANDSTONE, as above, coarse grained                                                                                                                                        |
| 754        | 757        | 100        |     |           |            |      |     | e      | SANDSTONE, as above, medium to occ. very coarse                                                                                                                            |



| D (1        | ( D.T.) |     |     |       |     |      | D   | 4 Fa≟      | v No. 1 Comple Descriptions                                                                                                     |
|-------------|---------|-----|-----|-------|-----|------|-----|------------|---------------------------------------------------------------------------------------------------------------------------------|
| Depth       | (mRT)   |     |     |       |     |      | Por |            | y No 1 - Sample Descriptions                                                                                                    |
| From        | To      | Sst | Slt | Clyst | Lst | Marl | Co  | Vis<br>Por | Description and shows:                                                                                                          |
| 757         | 760     | 100 |     |       |     |      |     | e          | SANDSTONE, as above, medium to coarse                                                                                           |
| 760         | 763     | 100 |     |       |     |      |     | e          | SANDSTONE, as above, medium to coarse, predominantly                                                                            |
| 700         | 703     | 100 |     |       |     |      |     | Č          | angular, trace COAL, black, dull, silty                                                                                         |
| 763         | 766     | 100 |     |       |     |      |     | g          | SANDSTONE, clear, occ milky, tr Fe stain, medium to coarse                                                                      |
|             |         |     |     |       |     |      |     | ŭ          | grained, well sorted, sl calc cmt, quartzose,<br>SANDSTONE, as above, fine to coarse pred medium, tr silty                      |
| 766         | 769     | 100 |     |       |     |      |     | g          | matrix washing out.                                                                                                             |
| <b>7</b> 50 |         | 100 |     |       |     |      |     |            | SANDSTONE, as above, dispersive silty matrix increasing                                                                         |
| 769         | 772     | 100 |     |       |     |      |     | f          | slightly.                                                                                                                       |
| 772         | 775     | 100 |     |       |     |      |     | e          | SANDSTONE, clear, medium to coarse grained, clean                                                                               |
|             |         |     |     |       |     |      |     |            | SANDSTONE clear, medium to coarse grained, clean, sl trace                                                                      |
| 775         | 778     | 100 | tr  |       |     |      |     | vg         | calcareous cement, tr SILTSTONE, very dark brown, sandy.                                                                        |
|             |         |     |     |       |     |      |     |            | · ·                                                                                                                             |
| 778         | 781     | 100 |     |       |     |      |     | vg         | SANDSTONE, fine to coarse grained, occ very coarse, mod srt, angular, sl arg matx washing out.                                  |
|             |         |     |     |       |     |      |     |            | SANDSTONE, clear to pale brown, fine to coarse grained                                                                          |
| 781         | 784     | 100 |     |       |     |      |     | f          | predominantly medium, moderately sorted, ang to subang, pred                                                                    |
|             |         |     |     |       |     |      |     |            | loose, occ calc cemented aggs, minor silty matrix                                                                               |
| 784         | 787     | 100 |     |       |     |      |     | f          | SANDSTONE, as above, tr SILTSTONE, v dk brn                                                                                     |
| 787         | 790     | 100 |     |       |     |      |     | f          | SANDSTONE, as above,                                                                                                            |
| 790         | 793     | 100 |     |       |     |      |     | f          | SANDSTONE, as above,                                                                                                            |
| 793         | 796     | 100 |     |       |     |      |     | e          | SANDSTONE, clear - white, coarse to very coarse grained,                                                                        |
| 796         | 799     | 100 |     |       |     |      |     | f          | SANDSTONE, clear to greyish brown, fine to very coarse grained poorly sorted, angular to occ. rounded, pred loose w/ common arg |
| 790         | 199     | 100 |     |       |     |      |     | 1          | and calc matrix. tr SILTSTONE, grey, pyritic                                                                                    |
| 799         | 802     | 100 |     |       |     |      |     | f          | SANDSTONE as above, clear to greyish brown, mod srt,                                                                            |
| 802         | 805     | 100 | tr  |       |     |      |     | f          | <u> </u>                                                                                                                        |
|             |         |     |     |       |     |      |     |            | SANDSTONE clear, light greyish brown, fine to coarse grained                                                                    |
| 805         | 808     | 100 | tr  |       |     |      |     | f          | angular to well rounded, loose w/ trace brownish calcareous                                                                     |
| 000         | 000     | 100 |     |       |     |      |     | Ť          | cement, occ firm fine well cemented aggregates. Trace                                                                           |
| 909         | 011     |     |     |       |     |      |     |            | SILTSTONE dark grey.                                                                                                            |
| 808         | 811     |     |     |       |     |      |     |            | SANDSTONE, as above, becoming medium to coarse, SANDSTONE, as above, fine to very coarse, poorly sorted,                        |
|             |         |     |     |       |     |      |     |            | angular to well rounded, dispersive silty matrix and calcareous                                                                 |
| 811         | 814     |     |     |       |     |      |     | f          | cement adhereing to predominantly loose grains. occasional                                                                      |
|             |         |     |     |       |     |      |     |            | cemented aggs, trace greenish grey lithic grains.                                                                               |
| 814         | 818     | 90  | 10  |       |     |      |     | n          | SANDSTONE, brown, fine to occ coarse, silty matrix increasing                                                                   |
| 014         | 010     | 90  | 10  |       |     |      |     | р          | SANDS FOIVE, brown, fine to occ coarse, sinty matrix increasing                                                                 |
|             |         |     |     |       |     |      |     |            | SANDSTONE, It brn to mott grn/brn,v fine to v co, p std, ang to                                                                 |
| 818         | 822     | 60  | 40  |       |     |      |     | ,,         | srnd, brown silty mtx and calc cmt, dense pyrtic cmt I/part, qtzose                                                             |
| 010         | 822     | 60  | 40  |       |     |      |     | n          | sst I/bedded w/ glauconite sst (30%) in dense brn mtx. SLTST, lt                                                                |
|             |         |     |     |       |     |      |     |            | to v dk gy, vf sndy, blky, frm to hard, calc i/p.                                                                               |
|             |         |     |     |       |     |      |     |            | OV THORT                                                                                                                        |
| 822         | 825     | 10  | 90  | 0     | Tr  |      |     |            | SLTST, med gy to brn or grnsh gy, sandy w/ f & med qtz and                                                                      |
|             |         |     |     |       |     |      |     |            | glauc grains, v arg gds to slty,sndy CLYST. Tr? Dol brn transl.                                                                 |
| 825         | 828     | 20  | 40  | 40    | Tr  |      |     |            | SLTST, as above, common f-co qtz gns gds to silty arg SST, med                                                                  |
| 023         | 020     | 20  | 70  | 70    | 11  |      |     |            | to lt gy greysh brn, glauc                                                                                                      |
| 920         | 027     | 50  | 20  | 20    |     |      |     |            | SST, medium greysh brn, m-co, vp std w/ abndt disp silty arg mtx                                                                |
| 828         | 837     | 50  | 20  | 30    |     |      |     |            | and occ dense ?dol cmt, gds to snady SLT and CLYST v sft, glauc,                                                                |
|             |         |     |     |       |     |      |     |            | occ bands w/ v hd dol cmt. ARG SST, medium gy, m to co gn, abndt silty arg mtx disp. gdsd                                       |
| 837         | 843     | 60  | 30  | 10    |     |      |     |            | to sndy SLTST and CLYST.                                                                                                        |
|             |         |     |     |       |     |      |     |            | to stray SE1S1 and CE1S1.                                                                                                       |



| Depth (    | (mRT)      |          |     |       |     |      | Por | t Fair | y No 1 - Sample Descriptions                                                                                                                                                                |
|------------|------------|----------|-----|-------|-----|------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |            | Sst      | Slt | Clyst | Lst | Marl | Co  | Vis    | Description and shows:                                                                                                                                                                      |
| From       | To         | SSI      | Sit | Ciyst | Lst | Maii | Cu  | Por    | Description and shows.                                                                                                                                                                      |
| 843        | 846        | 20       | 60  | 20    |     |      |     |        | SLTST, gy, brn, mott grn, v sndy, v arg, abndt lse co & v co<br>subang qtz gns washing out, gds to ARG SST and sndy CLYST                                                                   |
| 846        | 852        | 60       | 20  | 20    |     |      |     |        | SST, medium greysh brn, m-v co, vp std w/ abndt disp silty arg mtx and occ dense ?dol cmt, gds to snady SLT and CLYST v sft, glauc, occ bands w/ v hd dol cmt.                              |
| 852        | 855        | 60       | 20  | 20    |     |      |     |        | ARG SST as above                                                                                                                                                                            |
| 855        | 858        | 70       | 20  | 10    | Tr  |      |     | n-f    | SST, (1), med gysh brn, arg, as above, (2) clr mlky, co to gran, qtz subang, lse                                                                                                            |
| 858        | 861        | 100      | tr  |       |     |      |     | e      | SST, clr mlky, v co- granular, w std, ang - srnd occ w rnd, clean, lse qtzose, tr gy cherty lithic gns, vis por excellent, no shows, TRace SLTST a/a                                        |
| 861        | 867        | 100      |     |       |     |      |     | e      | SST as above                                                                                                                                                                                |
| 867        | 873        | tr       |     | 100   |     |      |     |        | CLYST, m-dk gry, amorphous, sticky, very soft, very finely qtz sandy, Trace SST v co a/a                                                                                                    |
| 873        | 885        |          |     | 100   |     |      |     |        | CLYST a/a                                                                                                                                                                                   |
| 885        | 900        | 60       |     | 40    |     |      |     | p      | SST, clr, v lt gy, co -v co, wstd, sang, lt gy arg mtx washing out                                                                                                                          |
| 900        | 906        | 100      | 20  |       |     |      |     | p      | SST, clr - lt brn, m to co gn mod std, lt brn arg mtx washing out                                                                                                                           |
| 906        | 915<br>921 | 70<br>20 | 30  | 80    |     |      |     | f      | SST a/a, mtx decreasing, I/bedded w/ CLAYST a/a                                                                                                                                             |
| 915<br>921 | 921        | 20       |     | 100   |     |      |     |        | CLAYST, med-dk gy, amorphous, soft, sticky, v sl sandy CLAYST a/a ibeeds of coarse clean sst in interval                                                                                    |
| 927        | 933        |          |     | 100   |     |      |     |        | CLYST a/a                                                                                                                                                                                   |
|            |            | • •      |     |       |     |      |     |        | CLYST a/a, bec lt grysh brn, mottled sandy, common pyrite                                                                                                                                   |
| 933        | 942        | 20       |     | 80    |     |      |     |        | aggregates                                                                                                                                                                                  |
| 942        | 951        | 40       | 30  | 30    |     |      | Tr  |        | CLYST, m gy mmica, amorphous to occ firm/cemented, silty and sandy, gds to arg, sandy, SLTST, SST v co a/a, Tr COAL, black, fibrous to blocky                                               |
| 951        | 960        | 50       | 40  | 10    |     |      | Tr  |        | SST, med brnsh grey, vf to co, p std, abndt silty arg mtx, gds to sandy SLTST and CLYST, com pyrite aggs, variably cmted w/calc.                                                            |
| 960        | 963        | 60       | 30  | 10    |     |      |     | n      | SST, silty arg a/a variably cemented, tr min flu                                                                                                                                            |
| 963        | 966        | 40       | 40  | 20    |     |      |     | n      | SST medish grysh brn, a/a grades to sandy CLYST, lse/disp to hard.                                                                                                                          |
| 966        | 969        | 40       | 40  | 20    |     |      |     | n      | SST a/a, as silty arg sst and ? clean stringers of co to v co sst                                                                                                                           |
| 969        | 972        | 60       | 30  | 10    |     |      | Tr  |        | SST med grysh brn, vf to co gn, v p std, silty arg disp matx i/p, occ well cmted, occ pyrite cemented aggs, tr grey chert grains, gds to silty Clayst,                                      |
| 972        | 975        | 80       |     |       |     |      | 20  | n      | SANDSTONE, It brnsh gy, f to co mod srt, ang to srnd, mod to sl arg matx and mod cmt, friable aggs and occ lse co to v co qtz gns, tr prite and lithic gns, COAL, blk to v dk brn, fibrous. |
| 975        | 978        | 60       | 20  | 10    |     |      | 10  |        | SST a/a, silty arg matx increasing, tr min flu                                                                                                                                              |
| 978        | 981        | 50       | 40  | 10    |     |      | tr  |        | SST a/a bec v silty vf gn, COAL gds to car MDST                                                                                                                                             |
| 981        | 984        | 60       | 40  |       |     |      |     |        | SST a/a soft ? laminated light-med grysh brn, patchy white clay<br>mtx I/p                                                                                                                  |
| 984        | 987        | 70       | 30  |       |     |      | tr  |        | SST gysh brn a/a, vf to co gn, occ lse v co gn, vp std, brn silty clay, white patchy mtx and variable dol cmt, occ dense py cmt, gds to sandy siltst                                        |
| 987        | 990        | 90       | 10  |       |     |      |     |        | SST a/a, brn,                                                                                                                                                                               |
| 990        | 993        | 90       | 10  |       |     |      |     |        | SST, lt to m gysh brn, vf to co v p std, a/a gds to SLTST, i/p fine to med gn, clean                                                                                                        |



| Depth        | (mRT)        |          |          |          |     |      | Por |            | y No 1 - Sample Descriptions                                                                                                        |
|--------------|--------------|----------|----------|----------|-----|------|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| From         | To           | Sst      | Slt      | Clyst    | Lst | Marl | Co  | Vis<br>Por | Description and shows:                                                                                                              |
| 993          | 996          | 90       | 10       |          |     |      |     |            | SST, clr - lt brn gy, f to co, pred lse gns and aggs w/ silty mtx or pyrite cement.                                                 |
| 996          | 999          | 90       | 10       |          |     |      |     |            | SST, m brnsh gry, vf -m, mod std, occ co, very dense silty mtx, tr<br>CLYST, m-dk gy, silty, occ lt brn, tr glauconite              |
| 999          | 1002         | 80       | 20       |          |     |      |     |            | SST, gysh brn, vf to co gn, p std, sang srnd, very silty sl calc mtx                                                                |
| 1002         | 1005         | 80       | 20       |          |     |      |     |            | gds to SLTS<br>a/a                                                                                                                  |
| 1002         | 1011         | 100      | 20       |          |     |      |     |            | SST, lt gy, f - v co, p std, subang                                                                                                 |
| 1011         | 1017         | 100      |          |          |     |      |     |            | SST, a/a                                                                                                                            |
| 1017         | 1020         | 20       | 00       |          |     |      |     |            |                                                                                                                                     |
| 1017         | 1023         | 20       | 80       |          |     |      |     |            | SLTST, m gy, fnly sndy, arg, gds to arg sst and slty clyst. SST, o                                                                  |
| 1023         | 1029         | 30       | 60       | 10       |     |      |     |            | lse co gns,                                                                                                                         |
| 1029         | 1032         | 80       | 20       |          |     |      |     |            | SST, gy-grn, vf -co, v p std,                                                                                                       |
| 1032         | 1035         | 40       | 50       | 10       |     |      |     |            |                                                                                                                                     |
| 1035         | 1038         | 60       | 30       | 10       |     |      |     |            | Yes 1 11 100TP 1 est 1 est 2 est TOTP 1 est                                                                                         |
| 1038         | 1041         | 50       | 50       |          |     |      |     |            | Interbedded SST, clr qtz in dense pyrite cement, SLTST, gds to CLYST, glauconitic laminae,                                          |
| 1041         | 1044         | 50       | 50       |          |     |      |     |            | SST co, lse or dense pyrite cement, SLTST, blocky, fnly sandy I abndt pyrite                                                        |
| 1044         | 1047         | 40       | 50       | 10       |     |      |     |            | SLTST, m brnsh gy, blky, sl sndy, SST:, vf-co gn, p srt,                                                                            |
| 1047         | 1050         | 70       | 30       |          |     |      |     |            | SST a/a/ SLTST a/a tr glauconite,                                                                                                   |
| 1050         | 1053         | 10       | 90       |          |     |      |     | `          | SLTST, m brnsh gy, arg, blocky, sft-frm, fnly snady gds to vf sst I/p, I/p smooth , tr pyrtitc,                                     |
| 1053         | 1056         | 20       | 80       |          |     |      | tr  |            | SLST, a/a, fine carb frags, sandy w/ fine qtz and minor lithic grn<br>washing out, gds to SST                                       |
| 1056         | 1059         | 20       | 80       |          |     |      |     |            | SLTST a/a abndt pyrite as aggas and cement in SST                                                                                   |
| 1059         | 1062         | 20       | 80       |          |     |      |     |            | SLTST, grysh brn, smth, soft/disp, sandy I/p, common pyrite agg                                                                     |
| 1062         | 1065         | 40       | 60       |          |     |      |     |            | SLTST, a/a gds to slty SST, abndt arg silty mtx washing out, abrupyrite,                                                            |
| 1065         | 1068         | 30       | 70       | 0        |     |      | tr  |            | SLTST a/a gds to sst abndt pyrite                                                                                                   |
| 1068         | 1071         | 20       | 70       | 10       |     |      |     |            | CLYST, smooth, m gy, abndt pyrite as round aggs,                                                                                    |
| 1071         | 1074         | 10       | 70       | 20       |     |      | tr  |            | a/a abndt pyrite rounded aggs,                                                                                                      |
| 1074         | 1077         | 50       | 40       | 10       |     |      | tr  |            | SST, clr, f-c ?bimodal, lse qtz gns, SLTST, lt gy, fnly snady, sol disp, comm carb flecks,                                          |
| 1077         | 1080         | 10       | 70       | 20       |     |      |     |            | ov vyom                                                                                                                             |
| 1080         | 1083         | 10       | 60<br>70 | 30       |     |      |     |            | CLYST, m gy, slty, gds to SLTST                                                                                                     |
| 1083<br>1086 | 1086<br>1089 | 10<br>10 | 70<br>80 | 20<br>10 |     |      |     |            | SLTST m gy, grades to CLYST, blocky, firm, SLTST, m gy, blky, fnly sndy, lamianted w/ light gy vf sst, tr                           |
| 1089         | 1092         |          | 50       | 50       |     |      |     |            | pyrite, SLTST gds to CLYST, m gry, sl sndy, carb flecks                                                                             |
| 1089         | 1092         |          | 50       | 50       |     |      |     |            | a/a                                                                                                                                 |
|              |              | 10       |          |          |     |      |     |            | SLTST, lt to medium grysh brown, carb flecks, firm, trace                                                                           |
| 1095         | 1098         | 10       | 70       | 20       |     |      |     |            | glauconite,                                                                                                                         |
| 1098         | 1101         | 0        | 0        | 100      |     |      | 0   |            | silty clyst a/a, massive,                                                                                                           |
| 1101         | 1104         |          |          | 100      |     |      |     |            | silty clayst, massive                                                                                                               |
| 1104         | 1107         | 80       | 20       |          |     |      |     | vp         | SST, lt gy, grysh brn, vf -c gn, p std, pred lse, occ, patchy silty matrix, trace to com glauconite in siltier aggs, gds to Siltst. |
| 1107         | 1110         | 50       | 50       |          |     |      |     |            | SST, lt gy, grysh brn, vf -m gn, well std, dense calc cement, patc silty matrix, trace glauconite.                                  |
| 1110         | 1113         | 10       | 80       | 10       |     |      |     |            | SST, bec v f gn, gds to siltst,                                                                                                     |
| 1113         | 1116         | 10       | 50       | 50       |     |      |     |            | 221, 200 1 1 gm, gas to smot,                                                                                                       |



|       |       |     |     |       |     |      | _   |            |                                                                                                                                              |
|-------|-------|-----|-----|-------|-----|------|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Depth | (mRT) |     | ı   |       |     |      | Por |            | y No 1 - Sample Descriptions                                                                                                                 |
| From  | To    | Sst | Slt | Clyst | Lst | Marl | Co  | Vis<br>Por | Description and shows:                                                                                                                       |
| 1116  | 1119  |     | 50  | 50    |     |      |     |            | SLTY CLYST md gry, massive, v fnly sndy I/p, tr glauconite,                                                                                  |
| 1119  | 1125  | 0   | 100 |       |     |      |     |            | a/a                                                                                                                                          |
| 1125  | 1128  | 20  | 80  |       |     |      |     |            | SLTY CLYST md gry, massive, v fnly sndy I/p grades to v f SST, tr glauconite, sandy, grades, tr carb mat. tr dolomite, common pyrite nodules |
| 1128  | 1131  | 20  | 80  |       |     |      |     |            | SLTST, cly, a/a                                                                                                                              |
| 1131  | 1134  | 60  | 40  |       |     |      |     |            | •                                                                                                                                            |
| 1134  | 1137  | 60  | 40  |       |     |      |     |            | SST brn, vf gn, slty, tr dol, gds to sndy SLTST                                                                                              |
| 1137  | 1140  | 20  | 50  | 30    |     |      |     |            | SLTST, m gry, finely sandy, gds to v f sst, CLYST, m gry,                                                                                    |
| 1140  | 1143  | 30  | 40  | 30    |     |      |     |            | SILTSTONE, gds to CLYST and silty SST a/a                                                                                                    |
| 1143  | 1146  | 20  | 50  | 30    |     |      |     |            | SST, gry, vf to co, v p std, ang, mic mic, pyritic, very silty, gds to SLTST                                                                 |
| 1146  | 1149  | 30  | 50  | 20    |     |      |     |            | SLTST, m gry, finely sandy,gds to v f sst, CLYST, m gry,                                                                                     |
| 1149  | 1152  | 60  | 30  | 10    |     |      |     |            | SST, vf to m gn, pred lse, dispersive slty mtx, glauconitic                                                                                  |
| 1152  | 1155  | 40  | 50  | 10    |     |      |     |            | SST, a/a                                                                                                                                     |
| 1155  | 1158  | 30  | 50  | 10    |     |      |     |            |                                                                                                                                              |
| 1158  | 1161  | 40  | 50  | 10    |     |      |     |            |                                                                                                                                              |
| 1161  | 1164  | 40  | 50  | 10    |     |      |     |            |                                                                                                                                              |
| 1164  | 1167  | 10  | 50  | 40    |     |      |     |            | Sily CLYST, md to dk gy, gds, arg SLTST, micmicaceou, tr carb mat, SST gy, f-m occ co, p std, silty occ w/ dense calc cmt                    |
| 1167  | 1170  | 30  | 50  | 20    |     |      |     |            | SST, lt gysh brn, vf m gn, p std, abndt slty arg mtx, sft, pulpy,                                                                            |
| 1170  | 1173  | 30  | 60  | 10    |     |      |     |            | SST, lt gysh brn, vf m gn, p std, abndt slty arg mtx, soft, gds to sandy SLTST                                                               |
| 1173  | 1176  | 40  | 40  | 20    |     |      |     |            | SST, It gy, It yellsh gy, It brn, vf to m gn, silty, occ dol, pred lse gns w/ abndt mtx washing out, gds to Siltstone,                       |
| 1176  | 1179  | 30  | 50  | 20    |     |      |     |            | SLTST, v lt gy, spkled, v f sndy, tr carb specks, gds to SST, lt gy, vf to m gn, p std, soft arg, tr glauc,                                  |
| 1179  | 1182  | 70  | 30  |       |     |      |     | n          | SST, I/p green, speckled, vf to f gn, v p std, silty, arg, micmic, com carb spks, dgs to SLTST.                                              |
| 1182  | 1185  | 50  | 50  | 0     |     |      |     | n          | SST a/a/ SLTST a/a tr glauconite,                                                                                                            |
| 1185  | 1188  | 10  | 80  | 10    |     |      |     |            | SLTST, m gy, blky, fnly sndy, lamianted w/ light gy vf sst, tr<br>pyrite,                                                                    |
| 1188  | 1191  | 20  | 70  | 10    |     |      |     |            |                                                                                                                                              |
| 1191  | 1194  | 30  | 60  | 10    |     |      |     |            |                                                                                                                                              |
| 1194  | 1197  | 20  | 70  | 10    |     |      |     |            | SLTST, m gy brn, sft, blky, f sndy, SST, lt gy                                                                                               |
| 1197  | 1200  | 20  | 70  | 10    |     |      |     |            |                                                                                                                                              |
| 1200  | 1207  | 10  | 80  | 10    |     |      |     |            | SLTST m -lt gy brn,                                                                                                                          |
| 1207  | 1216  | 40  | 30  | 30    |     |      |     | p          | SST, lt gy, lt gysh brn, very silty, sl dol cmt. glauconitic, SLTST, md gy brn, blky,                                                        |
| 1216  | 1222  | 50  | 40  | 10    |     |      |     | p          | SST, v lt gy, vf to rr m gn, p std, slty, tr glauc, ibdd w/ SLTST, gy brn, f sndy and glauc,                                                 |
| 1222  | 1231  | 50  | 40  | 10    |     |      |     | n          | SST, gyrsh brn, vf gn, slty, occ fn, tight, gds, to sandy SILTSTONE,                                                                         |
| 1231  | 1237  | 20  | 80  |       |     |      |     |            | SLTST, brnsh gy, v fnly sndy, gds to v f gn SST                                                                                              |
| 1237  | 1240  | 30  | 70  | tr    |     |      |     |            | a/a                                                                                                                                          |
| 1240  | 1243  | 40  | 60  |       |     |      |     |            | SLTST, bec fv sndier gds to SST.                                                                                                             |
| 1243  | 1249  | 30  | 60  | 10    |     |      |     |            | SLTST, a/a                                                                                                                                   |
| 1249  | 1252  | 20  | 80  |       |     |      |     |            | SLTST, m gy to grysh brn, v fnly sandy, v soft, gds to sst                                                                                   |
| 1252  | 1255  | 10  | 80  | 10    |     |      |     |            | SLTST m gy, grades to CLYST, blocky, firm,                                                                                                   |
| 1255  | 1258  | 10  | 70  | 20    |     |      |     |            | SLTST a.a, tr glauconite, tr sst, dense calc cmt, glauc v f gn.                                                                              |
| 1258  | 1261  | 10  | 70  | 20    |     |      |     |            | SLTST a/a                                                                                                                                    |
| 1261  | 1264  | tr  | 60  | 40    |     |      |     |            | SILTY CLAYSTONE, med brn gy, sft, rr fossil frags                                                                                            |



| Depth  | (mPT)   |          |     |           |     |      | Por | t Fair | y No 1 - Sample Descriptions                                                                                                                                                         |
|--------|---------|----------|-----|-----------|-----|------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deptii | (IIIK1) |          |     |           |     |      |     | Vis    |                                                                                                                                                                                      |
| From   | То      | Sst      | Slt | Clyst     | Lst | Marl | Co  | Por    | Description and shows:                                                                                                                                                               |
| 1264   | 1267    | tr       | 60  | 40        |     |      |     |        | a/a, minor fine glauconitic sst laminae in siltsone, tr carb frags.                                                                                                                  |
| 1267   | 1270    | tr       | 50  | 50        |     |      |     |        | Silty claystone, med brn gy, sft, rr fossil frags                                                                                                                                    |
| 1270   | 1273    | tr       | 40  | 60        |     |      |     |        | a/a, minor fine glauconitic sst laminae in siltsone, tr carb frags.                                                                                                                  |
| 1273   | 1276    | 20       | 60  | 20        |     |      |     |        | m brnsh gy, glauconitic, sandy gds to v f SST                                                                                                                                        |
| 1276   | 1279    | 10       | 40  | 50        |     |      |     |        | CLYST, m - dk gy, blocky, tr m gn weatherd felds,                                                                                                                                    |
| 1279   | 1287    | 10       | 80  | 10        |     |      |     |        | SLTST w/ hard dol cement, glauconitic                                                                                                                                                |
| 1287   | 1290    | 10       | 20  | 70        |     |      |     |        | CLYST, m - dk gy, blocky, tr m gn weatherd felds, sndy, micromicaceous, tr glauconite.                                                                                               |
| 1290   | 1293    | 10       | 10  | 80        |     |      |     |        | CLYST, medium to dark grey, smooth, blocky.                                                                                                                                          |
| 1293   |         | 10       | 10  | 90        |     |      |     |        |                                                                                                                                                                                      |
| 1293   | 1296    |          | 10  | 90        |     |      |     |        | CLyst, slty, very glauconitic, up to 40 % glauconite in tray.                                                                                                                        |
| 1296   | 1299    |          | 10  | 90        |     |      |     |        | Glauconitic Claystone, dark grey, glauconite is v dark greenish blacl                                                                                                                |
| 1299   | 1302    |          | 10  | 90        |     |      |     |        | a/a, minor fine glauconitic sst laminae in siltsone, tr carb frags.                                                                                                                  |
| 1302   | 1305    | 10       | 10  | 80        |     |      |     |        | CLAYST, a/a v dk gry, glauconite                                                                                                                                                     |
| 1305   | 1308    |          | 10  | 90        |     |      |     |        | CLAYST, 70 % glauc in tray, pyritic glaucoite viens                                                                                                                                  |
| 1308   | 1311    |          |     | 100       |     |      |     |        | CLAYST, abndt glauconite                                                                                                                                                             |
| 1311   | 1314    | 10       | 40  | 50        |     |      |     |        | a/a bec sandy and silty,                                                                                                                                                             |
| 1314   | 1317    | 10       | 10  | 100       |     |      |     |        | GLAUCONITE CLAYST                                                                                                                                                                    |
| 1317   | 1320    |          |     | 100       |     |      |     |        | a/a                                                                                                                                                                                  |
| 1320   | 1323    |          |     | 100       |     |      |     |        | a/a glauconite decreasing to minor constituent                                                                                                                                       |
|        |         |          |     |           |     |      |     |        |                                                                                                                                                                                      |
| 1323   | 1326    |          |     | 100       |     |      |     |        | a/a                                                                                                                                                                                  |
| 1326   | 1329    |          |     | 100       |     |      |     |        | a/a                                                                                                                                                                                  |
| 1329   | 1332    | 20       | 30  | 50        |     |      |     | n      | GLAUCONITIC CLAYSTONE, v dk gry, soft abndt blk glaucon                                                                                                                              |
|        |         |          |     |           |     |      |     |        | grains ashing out, gds to arg greensand                                                                                                                                              |
|        |         |          |     |           |     |      |     |        | clyst a/a bec v glauc gds to greensand, m gn tight w/ abndt clay                                                                                                                     |
| 1332   | 1335    | 50       | 0   | 50        |     |      |     | n      | mtx, and loose glauconite gns, also 20% lse clear co to v co lse qt                                                                                                                  |
|        |         |          |     |           |     |      |     |        | gns,                                                                                                                                                                                 |
| 1335   | 1338    | 50       | 30  | 20        |     |      |     | n      |                                                                                                                                                                                      |
|        |         |          |     |           |     |      |     |        | Glauconite Sandstone, v dark green, gds to glauconitic claystone,                                                                                                                    |
| 1338   | 1341    | 40       | 0   | 60        |     |      |     | n      | black m gn glauc gns and pellets of ?glau cly in solid dk gy clay mtx.                                                                                                               |
| 1241   | 1244    | 10       | 20  | <b>CO</b> |     |      |     |        | Clyst 2 types, (1) pelloidal claystone, very dark grey to black,                                                                                                                     |
| 1341   | 1344    | 10       | 30  | 60        |     |      |     |        | (2)dark grey to medium brown, firm, subfissile                                                                                                                                       |
| 1344   | 1348    | 20       | 30  | 50        |     |      |     |        | SLTST, med gry brn, Clyst, as above                                                                                                                                                  |
| 1348   | 1350    | 20       | 30  | 50        |     |      |     |        | Sltst and Clyst as above                                                                                                                                                             |
|        |         |          |     |           |     |      |     |        | Glauconite Sandstone, v dark green, gds to glauconitic claystone,                                                                                                                    |
| 1350   | 1353    | 30       | 30  | 40        |     |      |     |        | black m gn glauc gns and pellets of ?glau cly in solid dk gy clay                                                                                                                    |
| 1550   | 1333    | 50       | 50  | 10        |     |      |     |        | mtx.                                                                                                                                                                                 |
| 1353   | 1356    | 10       | 30  | 60        |     |      |     |        | inta.                                                                                                                                                                                |
| 1333   | 1330    | 10       | 50  | 00        |     |      |     |        | SILTSTONE, medium grey to brown, finely qtz sandy, Trace to                                                                                                                          |
| 1356   | 1359    | 20       | 40  | 40        |     |      |     |        | common lse, very coarse qtz grains.                                                                                                                                                  |
| 1250   | 1262    | 20       | 40  | 40        |     |      |     |        | Sltst as above                                                                                                                                                                       |
| 1359   | 1362    | 20<br>10 | 50  | 40        |     |      |     |        | Shot as above                                                                                                                                                                        |
| 1362   | 1365    | 10       | 50  | 40        |     |      |     |        |                                                                                                                                                                                      |
| 1365   | 1368    |          | 20  | 80        |     |      |     |        | Two types as above, predominantly dark grey to medium brown, firm, subfissile, gds to SILTSTONE, medium grey to brown, finel qtz sandy, Trace to common lse, very coarse qtz grains. |
| 1368   | 1371    | 10       | 20  | 70        |     |      |     |        | Sst Sltst and Clyst as above                                                                                                                                                         |
| 1371   | 1374    | 10       | 30  | 70        |     |      |     |        | Siltstone and Clyst as above                                                                                                                                                         |
| 1374   | 1374    |          | 20  | 80        |     |      |     |        | Sltst and Clyst as above                                                                                                                                                             |
| 13/4   | 13//    |          | 20  | 80        |     |      |     |        | SLTST, m brnsh gy, fnly sndy, tr glauc, gds to v fn arg SST and to                                                                                                                   |
| 1377   | 1380    | 10       | 70  | 20        |     |      |     |        | SL151, m brish gy, mly sndy, tr glauc, gds to v m arg SS1 and to CLYST, dk gy, subfiss.                                                                                              |



|              |              |     |     |       |     |      | _   |            |                                                                                                                                                                                                                                                |
|--------------|--------------|-----|-----|-------|-----|------|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth        | (mRT)        |     |     |       |     |      | Por |            | y No 1 - Sample Descriptions                                                                                                                                                                                                                   |
| From         | To           | Sst | Slt | Clyst | Lst | Marl | Co  | Vis<br>Por | Description and shows:                                                                                                                                                                                                                         |
| 1380         | 1383         | 10  | 30  | 60    |     |      |     |            | SST, m gry, vf to f gn, slty, p std, calc I/p, pred v arg,gsd to SLTST and SLTY CLYST, tr lithic gns, red gns, mica,                                                                                                                           |
| 1383         | 1386         | 20  | 10  | 70    |     |      |     |            | CLYST, v lt gy, occ v pale blu-gy-grn, v smooth, waxy. SST, ?lse gns washing out, vf to m gn, qtz, tr lithics, tr glauc,tr biotite                                                                                                             |
| 1386         | 1389         | 20  | 30  | 50    |     |      |     |            | CLYST,(1) v lt gy, v smooth, waxy. (2) m gy, sft, slty, gds to siltst, SST, I/p whi, ?tuffaceous, f gn, tr red, blk, gy lithic gns & felds, common lse gns washing out, vf to m gn, qtz, tr lithics, tr glauc,tr biotite gds to whi sndy sltst |
| 1389         | 1392         | 10  | 40  | 50    |     |      |     |            | CLYST, (1) pale brnsh gy tov lt gy blocky, homogenous, (2) v lt gy to hi, v silty,sandy, gds to arg sandstone, and siltstone, tr lithics tr biotite. SLTST, I/p m gry brn, vf sndy, tr to minor glauc,                                         |
| 1392         | 1395         | 10  | 70  | 20    |     |      |     |            | sltst,md gy, tr glauc and lithic gns, occ v lt gy, sft, gds to v f SST,                                                                                                                                                                        |
| 1395         | 1398         | 20  | 70  | 10    |     |      |     |            | silty sst, v lt gy, soft, gds to sandy sltst, tr lithic gns,                                                                                                                                                                                   |
| 1398         | 1401         | 10  | 80  | 10    |     |      |     |            | sltst, v lkt gy, sndy, sft, v fnly qtz sndy, gds to silty sst                                                                                                                                                                                  |
| 1401         | 1404         | 10  | 80  | 10    |     |      |     |            | sltst, v lkt gy, sndy, sft, v fnly qtz sndy, gds to silty sst, biotite flakes,                                                                                                                                                                 |
| 1404         | 1407         |     | 70  | 30    |     |      |     |            | Arg sltst, md gryish brn and very light gry, sandy, Clyst, pale brown, waxy                                                                                                                                                                    |
| 1407         | 1410         |     | 50  | 50    |     |      |     |            | Arg sltst, v lt gry, sandy w/ wi, gy, tr red, and tr biotite gns, very                                                                                                                                                                         |
| 1410         | 1413         |     | 30  | 70    |     |      |     |            | soft stickt, gds to sndy, slty, clyst<br>clyst, a/a tr biotite, gy lithic gns,                                                                                                                                                                 |
|              |              | 20  |     |       |     |      |     |            | sltst, v lt gry, sandy, arg, v soft steky, gds to arg sst, vf gn, p std,                                                                                                                                                                       |
| 1413         | 1417         | 20  | 60  | 20    |     |      |     | n          | minor lithics, tr biotite and felds                                                                                                                                                                                                            |
| 1417         | 1420         | 20  | 60  | 20    |     |      |     |            |                                                                                                                                                                                                                                                |
| 1420         | 1423         | 20  |     | 80    |     |      |     |            | sandy cyst, v lt gy, com felds, minor biotite, gds to v f arg sst                                                                                                                                                                              |
| 1423         | 1426         |     | 60  | 40    |     |      | tr  |            | clyst10%,, pale gysh grn, smth, subfiss, 90% light grysh brn, vfly sndy, gds to slty clyst, tr coal frags,                                                                                                                                     |
| 1426         | 1429         |     | 60  | 40    |     |      |     |            | clyst pale bl-grnsh gy, 90 % It gry sily clyst a/a tr biotite, tr carb frags, Clyst40%, pale grnsh gry a/a, 60% light grys brn v fnly sndy, gds                                                                                                |
| 1429         | 1432         |     | 40  | 60    |     |      |     |            | to tr v f sst,                                                                                                                                                                                                                                 |
| 1432<br>1435 | 1435<br>1438 |     | 80  | 20    |     |      |     |            | siltst, lt gy, gry brn, arg gds to clyst, clyst I/p pale bluish gry,                                                                                                                                                                           |
| 1438         | 1440         | 20  | 70  | 10    |     |      | tr  |            | siltst, lt gy, gry brn, arg gds to clyst, clyst I/p pale bluish gry,                                                                                                                                                                           |
| 1440         | 1443         | 80  | 20  |       |     |      |     | p          | sst, clr gy, vf to m grn, mod std, arg mtx, occ dense calc cmt, abdn lithic gns, tr felds,                                                                                                                                                     |
| 1443         | 1446         | 80  | 20  |       |     |      |     | p          | sst as above, pred lse gns, minor aggs w/ silty cly mtx washing out                                                                                                                                                                            |
| 1446         | 1449         | 50  | 50  |       |     |      |     |            | sst a/a, vf gn silty, gds to sltst,                                                                                                                                                                                                            |
| 1449         | 1452         | 30  | 70  |       |     |      |     | tr         | sst, vf gn, gds to sltst,                                                                                                                                                                                                                      |
| 1452         | 1455         | 10  | 40  | 50    |     |      |     | tr         | clyst 20%, pale bluish gy, subfissile, sltst, light, greysh brn, v fnly sandy, sltst a/a                                                                                                                                                       |
| 1455         | 1458         |     | 70  | 30    |     |      |     |            | Sltst, lt gy, grysh brn, firm, sndy w/ qtz and common lithic gns, tr carb mat.sltst a/a                                                                                                                                                        |
| 1458         | 1461         |     | 50  | 50    |     |      |     |            | clyst, gy, pale grnsh gy, silty I/p gdst to                                                                                                                                                                                                    |
| 1461         | 1464         |     | 50  | 50    |     |      |     |            | ded to much him harmon and the Cold                                                                                                                                                                                                            |
| 1464         | 1467         |     | 80  | 20    |     |      |     |            | sltst, lt grysh brn, homogenous, tr carb mat, tr felds,                                                                                                                                                                                        |
| 1467         | 1470         |     | 80  | 20    |     |      |     |            | a/a, tr large carb flecks, v fnly sndy I/p., clyst, pale grnish gy a/a                                                                                                                                                                         |



| Depth  | (mRT)   |     |     |       |     |      | Por | t Fair | y No 1 - Sample Descriptions                                                                                                                                                                                                 |
|--------|---------|-----|-----|-------|-----|------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deptii | (IIIXI) | G 4 | CIL | CI 4  | T 4 | N/ 1 |     | Vis    |                                                                                                                                                                                                                              |
| From   | To      | Sst | Slt | Clyst | Lst | Marl | Co  | Por    | Description and shows:                                                                                                                                                                                                       |
| 1470   | 1473    | 50  | 50  |       |     |      |     |        | sst, gry, vf gn, slty, tr carb mat, felds, com lithic grains,gds to clyst,<br>smooth                                                                                                                                         |
| 1473   | 1476    | 70  | 30  |       |     |      |     | tr     | Sst, clear to grey, very fine to medium grained, moderately sorted, argillaceous matrix washing out, variable calcareous cement, abundant grey and black, trace red lithic grains, trace feldspar, vis porosity nil to poor. |
| 1476   | 1479    | 60  | 30  | 10    |     |      |     |        |                                                                                                                                                                                                                              |
| 1479   | 1482    | 50  | 40  | 10    |     |      |     | nil-pr | Sltst, light grey to greyish brown, finely sandy, trace carbonaceous flakes and feldspar,                                                                                                                                    |
| 1482   | 1485    | 20  | 50  | 30    |     |      |     |        |                                                                                                                                                                                                                              |
| 1485   | 1488    | 20  | 30  | 50    |     |      |     |        | Clyst, in part brownish grey, in part pale greenish to bluish grey, smooth to waxy, friable ?tuff                                                                                                                            |
| 1488   | 1491    | 10  | 30  | 60    |     |      |     |        | Sltst, light grey to greyish brown, finely sandy, trace carbonaceous                                                                                                                                                         |
| 1491   | 1494    | 10  | 40  | 50    |     |      |     | nil-pr | flakes and feldspar,                                                                                                                                                                                                         |
| 1494   | 1497    | 10  | 30  | 60    |     |      |     |        | Clyst, in part brownish grey, in part pale greenish to bluish grey, smooth to waxy, friable ?tuff                                                                                                                            |
| 1497   | 1500    | 50  | 30  | 20    |     |      |     | nil-pr | Sst, clear to grey, very fine to medium grained, moderately sorted, argillaceous matrix washing out, variable calcareous cement, abundant grey and black, trace red lithic grains, trace feldspar, vis porosity nil to poor. |
| 1500   | 1503    | 10  | 40  | 50    |     |      |     |        |                                                                                                                                                                                                                              |
| 1503   | 1506    | 80  | 10  | 10    |     |      |     | tr     | Sst, lt gry, vf to f gnh, m std, ang, pred lse, cly mtx adhering to gns, abndt gy and black lithic tr casrb mat                                                                                                              |
| 1506   | 1509    | 90  | 10  |       |     |      |     | n      | sst, gry, vf to f gn, slty, p std, ang, pred lse gns, occ slty aggs w/clay mtx and calc cmt,                                                                                                                                 |
| 1509   | 1512    | 80  | 10  |       |     |      | 10  |        | sst, gry, vf gn, w std, ang, qtz and abndt lithic gn, ashing out of lt<br>gy clay mtx, tr felds, tr coal, black, v dk brn,                                                                                                   |
| 1512   | 1515    | 80  | 10  | 10    |     |      | tr  |        |                                                                                                                                                                                                                              |
| 1515   | 1518    | 70  | 30  |       |     |      | tr  |        | sst, a/a, vf to f gn, abndt arg mtx washing out, gds to siltstone. red siltstone, dispersive,                                                                                                                                |
| 1518   | 1521    | 80  | 20  |       |     |      | p   |        | sst, gry, v fn gn, silty, p std, occ calc mtx, pred lse, occ tight aggs,                                                                                                                                                     |
| 1521   | 1524    | 90  | 10  |       |     |      | p   |        | sst a/a, vf gn silty, gy, red blk lithics, tr biotite, gds to sltst, , ang, abndt lithics, sl calc cmt, variable, cly mtx washing out.                                                                                       |
| 1524   | 1527    | 100 |     |       |     |      |     | p      | sltst, gry, vf gn, well std, , ang, abndt lithics, sl calc cmt, variable, cly mtx washing out.                                                                                                                               |
| 1527   | 1530    | 100 |     |       |     |      |     |        | sst a/a,                                                                                                                                                                                                                     |
| 1530   | 1533    | 90  | 10  |       |     |      |     |        | sst a/a, vf to occ m gn, tr felds, common lithics, common aggs<br>ww/ whi cal cmt.                                                                                                                                           |
| 1533   | 1536    | 100 |     |       |     |      |     | p      | sst a/a, pred lse, com aggs / hi clay mtx                                                                                                                                                                                    |
| 1536   | 1539    | 100 |     |       |     |      |     |        | sst, gy, grnsh gry, speckled, vf to m gn, m std, ang, pred lse,                                                                                                                                                              |
| 1539   | 1542    | 90  |     | 10    |     |      |     | p      | sst a/a f - medium, m std, ang, variable calc cmt, abndt cly mtx, lithic, to 50% of sst, vis por poor,                                                                                                                       |
| 1542   | 1545    | 80  |     | 20    |     |      |     |        | sst a/a                                                                                                                                                                                                                      |
| 1545   | 1548    | 90  |     | 10    |     |      |     |        | SST a/a matrix increasing,                                                                                                                                                                                                   |
| 1548   | 1550    | 70  |     | 30    |     |      |     |        | SST a/a abnundant grey cley matrix grades to sandy CLYST                                                                                                                                                                     |

| Port Fairy No. 1 WCR Appendixes     |
|-------------------------------------|
|                                     |
|                                     |
|                                     |
| Appendix 6: Drill Stem Test Results |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |

| Port Fairy No. 1 WCR Appendixes       |
|---------------------------------------|
|                                       |
|                                       |
|                                       |
|                                       |
| Appendix 9: Palynological Report      |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
| Essential Petroleum Resources Limited |

# Palynological analysis of cuttings samples from Port Fairy-1, onshore Otway Basin.

by

Alan D. Partridge

Biostrata Pty Ltd A.B.N. 39 053 800 945

Biostrata Report 2002/04 3<sup>rd</sup> May 2002

## **BASIC DATA**

Table 3: Basic sample data for Port Fairy-1, Otway Basin.

| Sample<br>Type | Depth   | Lithology & Texture of cuttings                                   | Wt<br>(grams) | VOM<br>(cc) | Lab. Yield |
|----------------|---------|-------------------------------------------------------------------|---------------|-------------|------------|
| Cuttings       | 856-59m | Black-dark grey argillaceous quartz sandstone, very fine texture. | 52.9          | 2.8         | 0.052      |
| Cuttings       | 874m    | Dark grey mudstone, very fine texture.                            | 15.1          | 0.3         | 0.019      |
| Cuttings       | 1351m   | Black mudstone, fine texture.                                     | 15.3          | 0.7         | 0.045      |
| Cuttings       | 1357m   | Dark grey mudstone, fine-medium texture.                          | 15.4          | 0.5         | 0.032      |
| Cuttings       | 1369m   | Medium grey mudstone, coarse-grain texture.                       | 18.6          | 1.4         | 0.075      |
| Cuttings       | 1381m   | Medium grey mudstone, fine-medium texture.                        | 15.0          | 1.1         | 0.073      |
| Cuttings       | 1387m   | Medium-light grey mudstone, powder to lumpy texture.              | 15.1          | 0.9         | 0.059      |
| Cuttings       | 1405m   | Medium grey mudstone, very fine texture.                          | 15.3          | 0.4         | 0.026      |
| Cuttings       | 1441m   | Dark grey mudstone, medium texture.                               | 15.4          | 0.4         | 0.025      |
| Cuttings       | 1545m   | Dark grey mudstone, lumpy texture.                                | 15.3          | 0.2         | 0.013      |

Wt = Weight of sample processed in grams.

VOM = Volume of wet organic residues in cubic centimetres recovered from sample.

Org. Yield = VOM divided by Wt.

Table 4: Basic assemblage data for Port Fairy-1, Otway Basin.

| Sample<br>Type | Depth   | Visual<br>Yield | Palynomorph<br>Concentration | Preservation | No. SP<br>Species | No. MP<br>Species |
|----------------|---------|-----------------|------------------------------|--------------|-------------------|-------------------|
| Cuttings       | 856-59m | High            | Moderate                     | Poor-good    | 43+               | 8+                |
| Cuttings       | 874m    | High            | Moderate-high                | Good         | 43+               | 6+                |
| Cuttings       | 1351m   | High            | High                         | Good         | 37+               | 27+               |
| Cuttings       | 1357m   | High            | High                         | Fair-good    | 32+               | 25+               |
| Cuttings       | 1369m   | High            | Moderate                     | Poor-fair    | 41+               | 17+               |
| Cuttings       | 1381m   | High            | High                         | Poor-fair    | 32+               | 26+               |
| Cuttings       | 1387m   | High            | Moderate-high                | Poor         | 37+               | 23+               |
| Cuttings       | 1405m   | Moderate        | Moderate                     | Poor-fair    | 33+               | 13+               |
| Cuttings       | 1441m   | High            | Moderate                     | Poor-fair    | 37+               | 6+                |
| Cuttings       | 1545m   | Moderate        | Low                          | Poor         | 26+               | 3+                |

Averages: 36.1 15.4

Table 5: Species abundances and occurrences in Port Fairy-1, Otway Basin.

| Sample Type:                    | Cuttings | Cuttings |
|---------------------------------|----------|----------|
| Depth:                          | 856-59m  | 874m     |
| Spore-Pollen Species            |          |          |
| Angiosperm pollen undiff.       | 0.6%     | 2.8%     |
| Australopollis obscurus         | 1.2%     |          |
| Araucariacites australis        | 0.6%     | 2.1%     |
| Baculatisporites spp.           | 2.4%     |          |
| Beaupreaidites orbiculatus      |          | cf.      |
| Camarozonosporites apiculata †  | X        | X        |
| Camarozonosporites bullatus     | X        | X        |
| Camarozonosporites heskermensis |          | X        |
| Clavifera triplex               | 0.6%     | X        |
| Cyathidites spp. large >40µm    | X        | 0.7%     |
| Cyathidites spp. small <40µm    | 4.2%     | 2.8%     |
| Densoisporites velatus          |          | 0.7%     |
| Dilwynites granulatus           | 2.4%     |          |
| Dictyophyllidites spp.          | 1.2%     | 2.1%     |
| Forcipites longus               |          | X        |
| Gambierina rudata               | 9.5%     | 6.4%     |
| Gleicheniidites circinidites    | 3.0%     | 6.4%     |
| Grapnelispora evansii           | X        |          |
| Herkosporites elliottii         | 1.8%     | 1.4%     |
| Ilexpollenites spp.             |          | 0.7%     |
| Laevigatosporites major         | X        | X        |
| Laevigatosporites ovatus        | 5.4%     | 2.8%     |
| Latrobosporites amplus          | X        | 1.4%     |
| Liliacidites spp.               | X        | 1.4%     |
| Lygistepollenites balmei        | 0.6%     | 0.7%     |
| Lygistepollenites florinii      | 1.8%     | 1.4%     |
| Marattisporites scabratus       | 1.2%     |          |
| Microalatidites paleogenicus    |          | 0.7%     |
| Microcachryidites antarcticus   | 1.2%     | 2.1%     |
| Nothofagidites endurus          |          | X        |
| Nothofagidites senectus         | X        | 1.4%     |
| Ornamentifera sentosa           | X        |          |
| Peninsulapollis gillii          | 0.6%     |          |
| Peromonolites baculatus †       | X        |          |
| Perotrilites spp.               |          | X        |
| Phyllocladidites mawsonii       | 4.2%     | 9.9%     |
| Phyllocladidites verrucosus     | 1.2%     |          |
| Podocarpidites spp.             | 6.0%     | 13.5%    |
| Proteacidites spp.              | 31.0%    | 25.5%    |
| Proteacidites clinei †          | 1.2%     | 0.7%     |

Table 5: Species abundances and occurrences in Port Fairy-1, Otway Basin (continued).

| Sample Type:                     | Cuttings | Cuttings |
|----------------------------------|----------|----------|
| Depth:                           | 856-59m  | 874m     |
| Proteacidites konfragosus †      | X        | X        |
| Proteacidites palisadus          |          | 0.7%     |
| Proteacidites prepolus †         | X        |          |
| Proteacidites reticuloconcavus † | 1.8%     | 0.7%     |
| Pseudowinterapollis wahooensis   | X        |          |
| Retitriletes spp.                | X        | 2.8%     |
| Stereisporites antiquisporites   | 10.7%    | 2.1%     |
| Stereisporites regium            | 1.2%     | 0.7%     |
| Tetracolporites verrucosus       |          | 0.7%     |
| Trichotomosulcites subgranulatus | 0.6%     | 1.4%     |
| Tricolp(or)ates spp.             | 1.2%     | 2.1%     |
| Tricolpites waiparaensis         |          | X        |
| Tricolporites lilliei            |          | X        |
| Trilete spores undiff.           | 3.0%     |          |
| Triporopollenites spp.           |          | 0.7%     |
| Tripunctisporis maastrichtiensis | X        |          |
| Total Spores:                    | 34.5%    | 24.1%    |
| Total Gymnosperms:               |          | 31.9%    |
| Total Angiosperms:               | 47.6%    | 44.0%    |
| Total Spore-Pollen:              | 168      | 141      |
| MP count:                        | 41       | 20       |
| Combined SP + MP count:          | 209      | 161      |
| MP% of combined MP + SP count:   | 19.6%    | 12.4%    |
| Microplankton & Algae Species    |          |          |
| Microplankton undiff.            | 5%       | 15%      |
| Alterbidinium sp. cf A. acutulum | X        | 5%       |
| Amosopollis cruciformis          | 2%       |          |
| Botryococcus braunii             |          | X        |
| Impletosphaeridium sp.           | 7%       | 5%       |
| Manumiella conorata              | 71%      | 70%      |
| Nummus sp.                       |          | X        |
| Palaeostomocystis reticulata     | 2%       |          |
| Paralecaniella indentata         | 12%      | 5%       |
| Spiniferites spp.                | 2%       |          |
| Total Microplankton:             | 41       | 20       |
| Reworked Palynomorphs            | 1.0%     | 3.1%     |
| TOTAL COUNT:                     | 209      | 161      |

**Abbreviations:** X = Present

cf. = Compared with† = Manuscript species.

Table 6: Species abundances and occurrences in Port Fairy-1, Otway Basin.

| Sample Type:                     | Cutts   | Cutts   | Cutts   | Cutts   | Cutts   | Cutts   | Cutts  | Cutts    |
|----------------------------------|---------|---------|---------|---------|---------|---------|--------|----------|
| Depth:                           | 1351m   | 1357m   | 1369m   | 1381m   | 1387m   | 1405m   | 1441m  | 1545m    |
| _                                | 1331111 | 1337111 | 1507111 | 1501111 | 1307111 | 1100111 | 111111 | 15 15111 |
| Spore-Pollen Species             |         |         |         |         | **      |         | 1.00/  |          |
| Aequitriradites spinulosus       | ***     |         | 0.504   | **      | X       |         | 1.3%   |          |
| Appendicisporites distocarinatus | X       | • 0     | 0.6%    | X       | X       |         | 4.0    |          |
| Araucariacites australis         | 1.3%    | 2.9%    | 2.4%    | 1.7%    | 1.6%    | 2.7%    | 1.3%   | 5.3%     |
| Asteropollis asteroides          | 0.451   | X       |         |         | 0.054   | 0.054   |        |          |
| Australopollis obscurus          | 0.6%    | 0.5%    | 4.0     |         | 0.8%    | 0.9%    | 4.0-1  | 0.054    |
| Baculatisporites spp.            | 0.6%    | 1.0%    | 1.8%    | 2.5%    | 3.2%    | 1.8%    | 1.9%   | 8.8%     |
| Balmeisporites glenelgensis      |         |         | X       |         |         |         |        |          |
| Balmeisporites holodictyus       |         |         |         |         |         | X       |        |          |
| Ceratosporites equalis           | X       |         |         |         | X       | X       | 0.6%   |          |
| Cicatricosisporites spp.         | X       | X       |         | 2.5%    | 1.6%    | 4.5%    | 7.6%   | 1.8%     |
| Clavifera triplex                | 1.3%    | X       | X       |         |         |         |        |          |
| Coptospora paradoxa              |         |         |         |         |         | X       | 0.6%   |          |
| Coptospora pileolus †            | X       |         |         |         | _       |         |        |          |
| Corollina torosa                 | 0.6%    | 1.0%    | 1.2%    |         | X       | 2.7%    | 4.5%   | 0.9%     |
| Crybelosporites striatus         |         |         |         |         | RW      | 2.7%    | 1.9%   | 2.6%     |
| Cupressacites sp.                | 25%     | 23.%    | 3.7%    | 5.9%    | X       | 3.6%    | 3.8%   | 1.8%     |
| Cyathidites spp. large >40µm     | 0.6%    | 1.4%    | 3.7%    | 1.7%    | 7.3%    | 3.6%    | 4.5%   | 1.8%     |
| Cyathidites spp. small <40µm     | 4.5%    | 6.2%    | 15.2%   | 15.3%   | 13.7%   | 28.2%   | 26.8%  | 14.0%    |
| Cyclosporites hughesii           |         |         |         |         |         | X       | X      |          |
| Dacrycarpites australiensis      | 0.6%    |         |         |         |         |         |        |          |
| Densoisporites velatus           |         |         | 0.6%    |         |         |         |        |          |
| Dictyophyllidites spp.           | 0.6%    | 4.3%    | 5.5%    | 4.2%    | 3.2%    | 3.6%    | 1.3%   | 1.8%     |
| Dictyotosporites speciosus       |         |         |         |         |         | X       |        |          |
| Dilwynites spp.                  | 11.6%   | 12%     | 9.8%    | 14.4%   | 7.3%    | 2.7%    | 1.9%   | 0.9%     |
| Dilwynites echinatus †           | X       |         | X       |         |         | X       |        |          |
| Dilwynites granulatus            | X       | X       | X       | X       | X       | X       | X      | X        |
| Dilwynites pusillus †            | X       | X       | X       | X       | X       | X       | X      |          |
| Foraminisporis asymmetricus      |         |         |         |         |         | X       | X      |          |
| Foraminisporis dailyi            | X       |         | 0.6%    |         |         |         |        |          |
| Foveogleicheniidites confossus   |         |         | 1.2%    | X       |         |         |        |          |
| Gleicheniidites ancorus †        | 0.6%    | 1.0%    |         |         |         |         |        |          |
| Gleicheniidites circinidites     | 8.4%    | 9.1%    | 19.5%   | 12.7%   | 18.5%   | 6.4%    | 2.5%   | 4.4%     |
| Herkosporites elliottii          | X       | 2.4%    | 0.6%    |         | 1.6%    |         |        |          |
| Herkosporites proxistriatus      | X       |         | X       | 2.5%    |         |         |        |          |
| Hoegisporis trinalis †           |         |         | X       |         | ?       |         |        |          |
| Laevigatosporites musa †         |         | 0.5%    |         |         |         | 0.9%    |        |          |
| Laevigatosporites ovatus         | 2.6%    | 1.9%    | 3.0%    | 2.5%    | 1.6%    | 2.7%    | 1.9%   |          |
| Liliacidites spp.                |         |         | X       | 0.8%    | 0.8%    | 0.9%    |        |          |
| Lygistepollenites florinii       | CV      |         |         | CV      |         |         |        | CV       |
| Marattisporites scabratus        | 0.6%    | 1.4%    | 1.2%    | 0.8%    | 0.8%    |         |        | 0.9%     |
| Matonisporites cooksoniae        |         |         |         |         |         |         | X      |          |
| Microcachryidites antarcticus    | 6.5%    | 6.2%    | 3.0%    | 5.1%    | 2.4%    | 6.4%    | 3.8%   | 3.5%     |
| Neoraistrickia truncata          |         | X       | X       |         |         |         |        |          |
| Osmundacidites wellmanii         | 0.6%    | 0.5%    | 1.8%    | 0.8%    | 1.6%    | 2.7%    | 1.9%   | 6.1%     |
| Peromonolites spp.               | X       |         | X       |         | 2.4%    |         |        |          |
| Perotrilites jubatus             |         |         | 0.6%    |         | 1.6%    | X       |        | 1.8%     |

Table 6: Species abundances and occurrences in Port Fairy-1, Otway Basin (continued).

| Sample Type:                     | Cutts | Cutts | Cutts | Cutts | Cutts                                            | Cutts | Cutts | Cutts |
|----------------------------------|-------|-------|-------|-------|--------------------------------------------------|-------|-------|-------|
| Depth:                           | 1351m | 1357m | 1369m | 1381m | 1387m                                            | 1405m | 1441m | 1545m |
| Perotrilites majus               |       |       | X     | X     |                                                  |       |       |       |
| Phimopollenites pannosus         |       |       |       |       |                                                  |       | 3.2%  | 0.9%  |
| Phyllocladidites eunuchus †      |       | 0.5%  |       |       |                                                  |       | X     |       |
| Phyllocladidites mawsonii        | 2.6%  | 1.0%  | X     | 0.8%  | 0.8%                                             |       | 0.6%  | 2.6%  |
| Podocarpidites spp.              | 20.6% | 9.1%  | 12.8% | 11.0% | 11.3%                                            | 9.1%  | 12.1% | 26.3% |
| Proteacidites spp.               | X     |       | 0.6%  | 0.8%  | 2.4%                                             | 0.9%  | 0.6%  |       |
| Retitriletes spp.                | 0.6%  | 1.9%  | X     | 2.5%  | 3.2%                                             | 2.7%  | 2.5%  | 1.8%  |
| Retitriletes austroclavatidites  |       |       |       |       |                                                  | X     | X     |       |
| Retitriletes nodosus             | RW    |       |       | X     |                                                  | X     |       |       |
| Stereisporites antiquisporites   | 0.6%  | 0.5%  | 0.6%  | X     | 0.8%                                             | 1.8%  | 0.6%  | 0.9%  |
| Stoverisporites microverrucatus  |       |       |       |       |                                                  | X     |       |       |
| Trichotomosulcites subgranulatus | 5.8%  | 6.7%  | 1.8%  | 6.8%  | 6.5%                                             | 2.7%  | 5.1%  | 4.4%  |
| Tricolp(or)ates spp.             |       | 1.0%  | 1.2%  | 0.8%  | 0.8%                                             | 1.8%  | 1.3%  |       |
| Tricolporites melusina †         |       |       |       |       |                                                  | 2.7%  | 0.6%  | 3.5%  |
| Trilete spores undiff.           |       | 3.3%  | 4.9%  |       | 4.0%                                             | 0.9%  | 1.9%  | 2.6%  |
| Trilobosporites trioreticulosus  |       |       | X     |       |                                                  |       |       |       |
| Triporoletes laevigatus          |       |       |       |       |                                                  | X     | 1.9%  |       |
| Triporoletes reticulatus         |       |       | X     | X     | X                                                |       | 0.6%  | 0.9%  |
| Verrucosisporites admirabilis †  |       | 1.0%  | 1.8%  | 2.5%  | X                                                | CV    |       |       |
| Vitreisporites signatus          | 2.6%  |       |       | 0.8%  | X                                                |       | 0.6%  |       |
| Total Spores:                    | 22%   | 36%   | 63%   | 51%   | 65%                                              | 63%   | 61%   | 50%   |
| Total Gymnosperms:               | 77%   | 62%   | 35%   | 47%   | 30%                                              | 30%   | 34%   | 46%   |
| Total Angiosperms:               | 0.6%  | 1.4%  | 1.8%  | 2.5%  | 4.8%                                             | 7.3%  | 5.7%  | 4.4%  |
| Total Spore-Pollen:              | 155   | 209   | 164   | 118   | 124                                              | 110   | 157   | 114   |
| Total MP in MP + SP count:       | 20    | 40    | 11    | 20    | 14                                               | 14    | 9     | 7     |
| Combined MP + SP Count:          | 175   | 249   | 175   | 138   | 138                                              | 124   | 166   | 121   |
| MP% in SP + MP counts            | 11.4% | 16.1% | 6.3%  | 14.5% | 10.1%                                            | 11.3% | 5.4%  | 5.8%  |
| Microplankton                    |       |       |       |       |                                                  |       |       |       |
| Microplankton undiff.            | 5%    | 16%   | 5%    | 10%   | 16%                                              | 21%   | 11%   |       |
| Amosopollis cruciformis          | 31%   | 23%   | 3%    | 5%    | 3%                                               | 7%    | 11%   |       |
| Amphidiadema denticulata         |       |       | CV    |       |                                                  |       |       |       |
| Callaiosphaeridium asymmetricum  | X     | X     |       |       |                                                  |       |       |       |
| Chatangiella tripartita          | CV    |       |       |       |                                                  |       |       |       |
| Chatangiella victoriensis        | CV    |       |       |       |                                                  |       |       |       |
| Chlamydoporella nyei             |       | 4%    | X     | 6%    | 10%                                              | 7%    |       |       |
| Cleistosphaeridium ancoriferum   | 2%    | 1%    | 4%    | 3%    | 3%                                               |       |       |       |
| Cribroperidinium apione          | 5%    | 3%    |       | X     | 7%                                               |       |       |       |
| Cribroperidinium edwardsii       |       | 4%    | 26%   | 26%   | 16%                                              | 7%    | 22%   | 29%   |
| Cyclonephelium compactum         |       |       |       | 4%    | 5%                                               |       |       |       |
| Cyclonephelium distinctum        | X     |       | X     |       |                                                  |       |       |       |
| Cyclonephelium vannophorum       |       |       |       | 3%    |                                                  |       |       |       |
| Cymatiosphaera sp.               |       |       |       | X     | X                                                |       |       |       |
| Exochosphaeridium spp.           | X     | X     | 5%    | 4%    | X                                                | 7%    | CV    |       |
| Flaxadinium sp. nov. †           | 8%    | 1%    |       | 1%    |                                                  | 7%    |       |       |
|                                  | 1     | 1     | !     | l     | <del>                                     </del> |       |       | l     |
| Florentinia deanei               |       |       |       |       | X                                                |       |       |       |

Table 6: Species abundances and occurrences in Port Fairy-1, Otway Basin (continued).

| Sample Type:                       | Cutts |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Depth:                             | 1351m | 1357m | 1369m | 1381m | 1387m | 1405m | 1441m | 1545m |
| Heterosphaeridium conjunctum       | X     | X     |       |       |       |       |       |       |
| Heterosphaeridium heteracanthum    | X     | X     | X     | X     | X     | CV    |       |       |
| Horologinella sp. cf H. lineata    |       |       |       |       |       | 7%    |       |       |
| Hystrichodinium pulchrum           |       | X     |       | 1%    |       |       |       |       |
| Isabelidinium spp.                 | 5%    | 4%    | 1%    |       |       |       |       |       |
| Isabelidinium balmei               | CV    | 3%    |       |       | CV    |       |       |       |
| Isabelidinium cretaceum            |       | CV    |       |       |       |       |       |       |
| Kallosphaeridium sp.               | X     | 7%    |       | 3%    | 2%    |       |       |       |
| Kiokansium polypes                 | 5%    | 3%    | 5%    | 4%    | 5%    |       |       |       |
| Manumiella conorata                |       |       | CV    |       |       |       |       | CV    |
| Micrhystridium spp.                | 3%    |       | 1%    | X     | 2%    | 14%   |       |       |
| Microdinium ornatum                |       |       |       | X     |       |       |       |       |
| Nelsoniella aceras                 |       |       |       |       |       |       |       | CV    |
| Odontochitina costata              | X     |       | 4%    |       | 2%    | CV    |       |       |
| Odontochitina operculata           | X     | 3%    |       |       |       |       |       |       |
| Odontochitina porifera             | 3%    | 1%    |       |       |       |       |       |       |
| Oligosphaeridium spp.              |       |       | 14%   | 14%   | 7%    |       | 11%   |       |
| Oligosphaeridium complex           | X     |       | X     | X     | X     |       | CV    |       |
| Oligosphaeridium pulcherrimum      |       | X     |       | X     |       |       |       |       |
| Palaeohystrichophora infusorioides | 5%    | 3%    |       |       |       | 7%    |       |       |
| Palaeoperidinium cretaceum         |       |       | 5%    | 4%    | 3%    | CV    |       |       |
| Palambages spp.                    | 2%    |       |       | X     |       |       |       |       |
| Pterospermella australiensis       |       |       |       | X     |       | CV    |       |       |
| Sigmopollis carbonis/hispidus      |       |       |       |       | X     | X     | 33%   | 29%   |
| Spiniferites spp.                  | 6%    | 4%    | 3%    | 4%    | 9%    | 7%    | 11%   |       |
| Tanyosphaeridium salpinx           | 5%    |       |       |       |       |       |       |       |
| Trichodinium castanea              |       | X     |       | 3%    | 2%    | CV    |       |       |
| Trithyrodinium spp.                | 2%    |       |       |       |       |       |       |       |
| Valensiella griphus                | 3%    | 4%    |       |       |       |       | CV    |       |
| Veryhachium sp.                    |       |       |       |       | 5%    | X     |       |       |
| Xenascus sp.                       | X     | X     |       |       |       |       |       |       |
| <b>Total Microplankton count:</b>  | 62    | 74    | 76    | 80    | 58    | 14    | 9     | 7     |
| Other Palynomorph                  |       |       |       |       |       |       |       |       |
| Fungal microfossils                | 1.3%  | 0.9%  | 1.2%  |       |       | 0.9%  | 2.5%  |       |
| Botryococcus braunii               |       | X     |       |       |       |       |       |       |
| Reworked/Caved spore-pollen        |       |       |       |       |       | 0.9%  |       | 2.6%  |
| Aratrisporites spp.                |       |       |       |       | RW    |       |       | RW    |
| Battenipollis sectilis             | CV    |       |       |       |       |       |       |       |
| Forcipites sabulosus               | CV    |       |       |       |       |       |       |       |
| Latrobosporites amplus/ ohaiensis  | CV    |       |       |       |       | CV    |       |       |
| Nothofagidites senectus            |       |       |       |       |       |       | CV    |       |
| Ornamentifera sentosa              |       |       |       |       |       | CV    | CV    |       |
| Pilosisporites notensis            |       |       |       |       | RW    |       |       |       |
| Total Others:                      | 2     | 2     | 2     |       |       | 2     | 4     | 3     |
| <b>TOTAL SP + Others COUNT:</b>    | 157   | 211   | 166   | 118   | 124   | 112   | 161   | 117   |

**Abbreviations:** 

X= Present;

CV = Caved;

RW = Reworked;

cf. = Compared with;

† = Manuscript species

| Port Fairy No. 1 WCR Appendixes |
|---------------------------------|
|                                 |
|                                 |
| Appendix 10: Fluid Analysis     |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |

#### 3 September 2002

Essential Petroleum Resources Ltd Level 2 226 Albert Road SOUTH MELBOURNE VIC 3205

Attention: Wally Westman

#### REPORT LQ11954

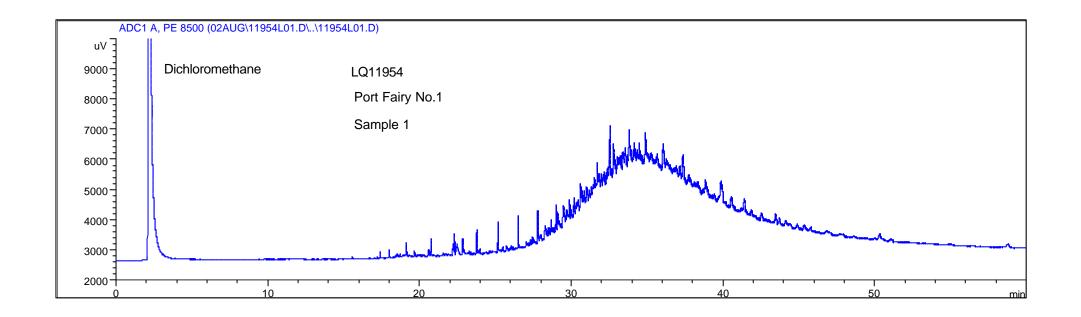
**CLIENT REFERENCE:** Letter of 15/8/02

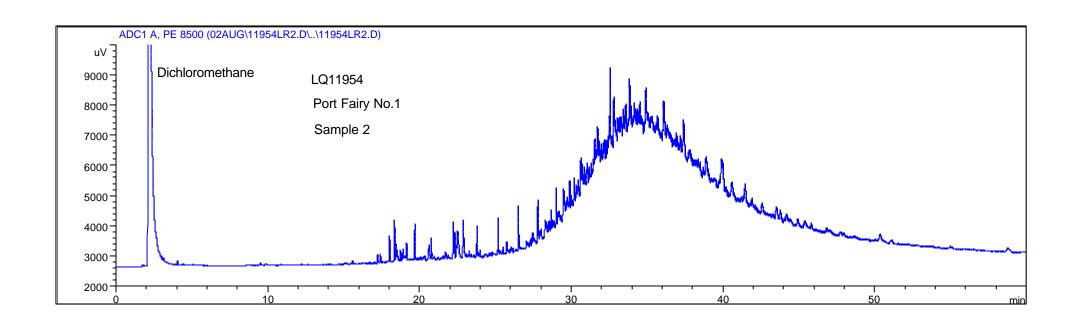
**WELL NAME/RE:** Port Fairy #1

MATERIAL: Fluid

**WORK REQUIRED:** Extraction, qualitative gas chromatography & resistivity

**AUTHOR'S NAME:** Carmelina Valente


Please direct technical enquiries regarding this work, to the signatory below, under whose supervision the work was carried out. This report relates specifically to the sample or samples submitted for testing.


Diane Cass
Operations Manager
Petroleum Services

dc.cm

G:\Secretary\petroleum\Docs-02\11954.doc

Amdel Limited shall not be liable for loss, cost, damages  $\alpha$  expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested.





Amdel Limited • 35-37 Stirling Street Thebarton SA 5031 • PO Box 338 Torrensville Plaza SA 5031 ABN 30 008 127 802 • Telephone: +61 8 8416 5200 • Facsimile: +61 8 8234 2933

#### 1. INTRODUCTION

Amdel Limited received two liquid samples from Port Fairy No.1 for extraction, residual hydrocarbons and resistivity on 22 August 2002. This report is a formal presentation of results forwarded by facsimile on 28 August 2002.

#### 2. PROCEDURE

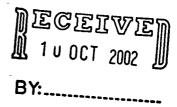
The samples were extracted with dichloromethane and carefully dried down using a rotary evaporator.

The extracts were analysed on a Perkin Elmer 8500 Gas Chromatograph equipped with a capillary column, flame ionisation detector and nitrogen carrier gas.

#### 3. RESULTS

The gas chromatograms are presented on the following pages.

| SAMPLE ID | YIELD (mg/L) | RESISTIVITY ohm.M @ 25°C |
|-----------|--------------|--------------------------|
| Sample 1  | 5            | 1.81                     |
| Sample 2  | 3            | 1.78                     |


The extracts appear to be medium to heavy boiling range hydrocarbon.

The napthenic hydrocarbon fraction between 30 and 60 minutes (>400°C) appears to be a lubricating oil.



3 October 2002

Essential Petroleum Resources Ltd Level 2 226 Albert Road SOUTH MELBOURNE VIC 3205



Attention: Wally Westman / Roger Blake

# REPORT LQ12088

CLIENT REFERENCE:

Request 25/9/02

WELL NAME/RE:

Port Fairy-1

**MATERIAL**:

Gas

WORK REQUIRED:

Cylinder rental, gas composition & mobilisation

**AUTHOR'S NAME:** 

Carmelina Valente

Please direct technical enquiries regarding this work, to the signatory below, under whose supervision the work was carried out. This report relates specifically to the sample or samples submitted for testing.

Diane Cass

**Operations Manager Petroleum Services** 

dc.cm

G:\Secretary\petroleum\Docs-02\12088.doc Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested.

#### PETROLEUM SERVICES GAS ANALYSIS

Method GL-01-01 ASTM D 1945-96 (modified)

Client: ESSENTIAL PETROLEUM Report # LQ12088

Sample: PORT FAIRY-1

Gas

2850 kPag @ 10°C

22/09/02, 1100 h, Cyl# 484

| GAS                      | MOL %  |
|--------------------------|--------|
|                          | 0.10   |
| Nitrogen                 | 9.13   |
| Carbon Dioxide           | 0.00   |
| Methane                  | 82.02  |
| Ethane                   | 4.21   |
| Propane                  | 2.60   |
| I-Butane                 | 0.96   |
| N-Butane                 | 0.71   |
| I-Pentane                | 0.22   |
| N-Pentane                | 0.08   |
| Hexanes                  | 0.04   |
| Heptanes                 | 0.02   |
| Octanes and higher h'cs  | 0.01   |
| Total                    | 100.00 |
| (0.00 = less than 0.01%) |        |

The above results are calculated on an air and water free basis assuming only the measured constituents are present. The following parameters are calculated from the above composition at  $15^{\circ}$ C and 101.325 kPa (abs) using ISO 6976 and the physical constants from the GPSA SI Engineering Data Handbook 11 th Ed.

| Average Molecular Weight                           | 19.38  |
|----------------------------------------------------|--------|
| Lower Flammability limit                           | 4.89   |
| Upper Flammability limit                           | 15.86  |
| Ratio of upper to lower                            | 3.24   |
| Wobbe Index                                        | 47.39  |
| Compressibility Factor                             | 0.9976 |
| Ideal Gas Density (Rel to air $= 1$ )              | 0.669  |
| Real gas Density (Rel to air = 1)                  | 0.670  |
| Ideal Nett Calorific Value MJ/m3                   | 35.05  |
| Ideal Gross Calorific Value MJ/m3                  | 38.76  |
| Real Nett Calorific Value MJ/m3                    | 35.13  |
| Real Gross Calorific Value MJ/m3                   | 38.86  |
| Gross calorific value of water-saturated gas MJ/m3 | 38.08  |

This report relates specifically to the sample submitted for analysis.

Approved Signatory

Accreditation No.: 2013

Date: 12-12-02

Essential Petroleum Resources Ltd Level 2 226 Albert Road SOUTH MELBOURNE VIC 3205

Attention: Roger Blake

#### REPORT LQ12106

**CLIENT REFERENCE:** Letter of 25/9/02

**WELL NAME/RE:** Port Fairy No. 1

MATERIAL: Liquid

**WORK REQUIRED:** Gas chromatographic analysis of oil & X-ray analysis

**AUTHOR'S NAME:** Carmelina Valente

Please direct technical enquiries regarding this work, to the signatory below, under whose supervision the work was carried out. This report relates specifically to the sample or samples submitted for testing.

Diane Cass
Operations Manager
Petroleum Services

dc.cm

#### G:\Secretary\petroleum\Docs-02\12106.doc

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested.

#### 1. INTRODUCTION

A sample of liquid was received for gas chromatography and determination of its mineralogy on 1 October 2002. This is a final presentation of results sent by e-mail on 3 and 10 October 2002.

#### 2. PROCEDURE

The sample was analysed on a Perkin Elmer 8500 Gas Chromatograph equipped with a capillary column, flame ionisation detector and nitrogen carrier gas.

The sample was analysed by X-ray diffraction to identify the minerals present.

#### 3. RESULTS

The gas chromatogram and composition is presented on the following page.

The low boiling hydrocarbon at 1.8-16 min with a boiling range (-11.7 - 235°C) appears to be a full range naptha (without the black discolouration).

The gas chromatogram contains a small amount of mono aromatics and the density 0.7700 g/cm<sup>-3</sup>. It is appears to be suitable to be used as a solvent in industry.

The semi-quantitative mineralogy of the sample follows.

| Name      | Composition                    | Relative abundance |
|-----------|--------------------------------|--------------------|
| Amorphous |                                | D                  |
| Magnetite | Fe <sub>3</sub> O <sub>4</sub> | A                  |
| Graphite  | С                              | Tr-A               |
| Talc      | Magnesium silicate             | Tr-A               |
| Calcite   | CaCO <sub>3</sub>              | Tr                 |
| ?Hematite | $Fe_2O_3$                      | Tr                 |

#### **Semiquantitative Abbreviations**

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

.

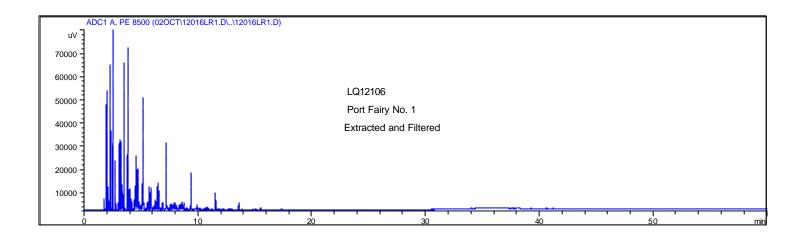
The X-ray diffraction indicates that the black particles in this sample are due to the carbon and  $Fe_3O_4$  content.

Client: ESSENTIAL PETROLEUM RESOURCES LTD Report # LQ12106

Sample: PORT FAIRY NO. 1

| Boiling Point<br>Range (Deg.C) | Component         | Weight% | Mol%   |
|--------------------------------|-------------------|---------|--------|
|                                |                   |         |        |
| -88.6                          | ETHANE            | 0.00    | 0.00   |
| -42.1                          | PROPANE           | 0.00    | 0.01   |
| -11.7                          | I-BUTANE          | 0.04    | 0.07   |
| -0.5                           | N-BUTANE          | 0.19    | 0.35   |
| 27.9                           | I-PENTANE         | 1.86    | 2.77   |
| 36.1                           | N-PENTANE         | 2.33    | 3.46   |
| 36.1-68.9                      | HEXANE, C-6       | 12.22   | 15.23  |
| 80.0                           | BENZENE           | 0.00    | 0.00   |
| 80.7                           | CYCLOHEXANE       | 1.57    | 2.00   |
| 68.9-98.3                      | HEPTANE,C-7       | 18.61   | 19.94  |
| 100.9                          | METHYLCYCLOHEXANE | 8.57    | 9.37   |
| 110.6                          | TOLUENE           | 0.07    | 0.09   |
| 98.3-125.6                     | OCTANE, C-8       | 24.23   | 22.77  |
| 136.1-144.4                    | ETHYLBZ+XYLENES   | 1.03    | 1.04   |
| 125.6-150.6                    | C-9               | 15.47   | 12.95  |
| 150.6-173.9                    | C-10              | 8.74    | 6.59   |
| 173.9-196.1                    | C-11              | 3.53    | 2.42   |
| 196.1-215.0                    | C-12              | 1.03    | 0.65   |
| 215.0-235.0                    | C-13              | 0.39    | 0.22   |
| 235.0-252.2                    | C-14              | 0.07    | 0.04   |
| 252.2-270.6                    | C-15              | 0.04    | 0.02   |
| 270.6-287.8                    | C-16              | 0.01    | 0.01   |
| 287.8-302.8                    | C-17              | 0.00    | 0.00   |
| 302.8-317.2                    | C-18              | 0.00    | 0.00   |
| 317.2-330.0                    | C-19              | 0.00    | 0.00   |
| 330.0-344.4                    | C-20              | 0.00    | 0.00   |
| 344.4-357.2                    | C-21              | 0.00    | 0.00   |
| 357.2-369.4                    | C-22              | 0.00    | 0.00   |
| 369.4-380.0                    | C-23              | 0.00    | 0.00   |
| 380.0-391.1                    | C-24              | 0.00    | 0.00   |
| 391.1-401.7                    | C-25              | 0.00    | 0.00   |
| 401.7-412.2                    | C-26              | 0.00    | 0.00   |
| 412.2-422.2                    | C-27              | 0.00    | 0.00   |
| >422.2                         | C-28+             | 0.00    | 0.00   |
|                                | Total             | 100.00  | 100.00 |

The above boiling point ranges refer to the normal paraffin hydrocarbon boiling in that range. Aromatics, branched hydrocarbons, naphthenes and olefins may have higher or lower carbon numbers but are grouped and reported according to their boiling points.


Average molecular weight of C-8 plus fraction (calc) = 121 g/mol

(0.00 = LESS THAN 0.01%)

This report relates specifically to the sample submitted for analysis.

Approved Signatory

Accreditation No: 2013
Date 12-Dec-02







Your Ref: Reserve Pit Port Fairy No. 1

17 April 2002

Essential Petroleum Resource Limited Level 2, 226 Albert Road South Melbourne VIC 3205

Date Received: 5/04/200 ECEIVE

Attention:

Mr. Wally Westman

## **Certificate of Analysis**

WSL Report Number: 443664

The sample(s) referred to in this report were analysed by the following methods:

|                         | 1 \ /          | , , ,            |                |
|-------------------------|----------------|------------------|----------------|
| Analyte(s)              | Method         | Analyte(s)       | Method         |
| Alkalinity              | APHA 2320 B    | Cations          | WSL 023A       |
| Chloride                | APHA 4500-CL,B | Cyanide          | APHA 4120      |
| Electrical Conductivity | APHA 2510B     | Fluoride         | WSL 077        |
| Metals                  | WSL-032        | Nitrate Nitrogen | APHA 4120      |
| OCs                     | WSL8000        | PAHs             | WSL8000        |
| PCBs                    | WSL8000        | рН               | APHA 4500H,B   |
| Resistivity ^^          | APHA 2510 B    | Silica           | APHA 4500-SI,C |
| Sulphate                | APHA 4500SO4E  | Total Phenolics  | APHA 4120      |
| TPH                     | WSL030         | Volatiles        | WSL3810A       |
|                         |                |                  |                |

Results pertain to samples as received

Yours faithfully

WSL Consultants Pty Ltd

Nick Bray

Manager Of Chemistry



This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

^^ Accreditation No's 1201 & 1205 ^^ Nata registration does not cover the performance of this test

A NATA Accredited Laboratory An Approved Quarantine Premises An Approved EPA Auditor

Page 1 of



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002

WSL Report No: 443664

| LAB NUM | Received   | Sample                         | As | Cd    | Co | Cr | Cu | Hg     | Mo | Ni | Pb | Se | Sn | Zn  |
|---------|------------|--------------------------------|----|-------|----|----|----|--------|----|----|----|----|----|-----|
| 443664  | 5-Apr-2002 | PARTLY DEHYDRATED DRILLING MUD | 19 | < 0.2 | 7  | 40 | 52 | < 0.05 | <5 | 16 | 17 | <5 | <5 | 100 |



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002 WSL Report No: 443664

| LAB NUM | Received   | Sample                        | POTASSIUM | SODIUM | CALCIUM | MAGNESIUM | ALKALINITY<br>as CaCO3 | Bi-<br>CARBONATE | CARBONATE<br>as CaCO3 | HYDROXIDE<br>as CaCO3 | CHLORIDE | SULPHATE |
|---------|------------|-------------------------------|-----------|--------|---------|-----------|------------------------|------------------|-----------------------|-----------------------|----------|----------|
| 443665  | 5-Apr-2002 | WATER SAMPLE FROM RESERVE PIT | 310       | 930    | 32      | 24        | 450                    | as CaCO3         | <2                    | <2                    | 1,500    | 55       |



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002

WSL Report No: 443664

| LAB NUM | Received   | Sample                        | $\begin{array}{c} CONDUCTIVITY \\ (\; \mu S/cm\; ) \end{array}$ | pH<br>(pH Units) | NITRATE<br>NITROGEN | SILICA | IRON | SOLUBLE<br>IRON | RESISTIVITY (ohms-cm) |
|---------|------------|-------------------------------|-----------------------------------------------------------------|------------------|---------------------|--------|------|-----------------|-----------------------|
| 443665  | 5-Apr-2002 | WATER SAMPLE FROM RESERVE PIT | 5,700                                                           | 7.3              | 0.02                | 31     | 3.6  | 0.94            | 180                   |



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002 WSL Report No: 443664

| LAB NUM | Received   | Sample                         | TPH   | TPH     | TPH     | TPH     | BENZENE TO | DLUENE | ETHYL   | XYLENES | STYRENE | CUMENE | 1 2 4-TRI- | TOTAL   | FLUORIDE C | CYANIDE |
|---------|------------|--------------------------------|-------|---------|---------|---------|------------|--------|---------|---------|---------|--------|------------|---------|------------|---------|
|         |            |                                | C6-C9 | C10-C14 | C15-C28 | C29-C36 |            |        | BENZENE |         |         |        | METHYL     | PHENOLS |            |         |
|         |            |                                |       |         |         |         |            |        |         |         |         |        | BENZENE    |         |            |         |
|         |            |                                |       |         |         |         |            |        |         |         |         |        |            |         |            |         |
| 443664  | 5-Apr-2002 | PARTLY DEHYDRATED DRILLING MUD | 58    | 31      | 300     | 170     | < 0.5      | < 0.5  | < 0.5   | < 0.5   | < 0.5   | < 0.5  | < 0.5      | 0.5     | <5         | <5      |



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002 WSL Report No: 443664

| LAB NUM | Received   | Sample                         | NAP   | ACY   | ACE   | FLU   | PHE   | ANT   | FLA   | PYR   | BAA   | CHR   | BBF   | BKF   | BAP   | DBA   | BGP   | IPY   | TOTAL<br>PAH |  |
|---------|------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|--|
| 443664  | 5-Apr-2002 | PARTLY DEHYDRATED DRILLING MUD | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <1           |  |



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002 WSL Report No: 443664

| LAB NUM | Received   | Sample                         | НСВ    | a-BHC  | LINDANE | HEPTACHLOR | ALDRIN | b-BHC  | d-BHC  | HEPTACHLOR-<br>EPOXIDE | DDE    | DIELDRIN |
|---------|------------|--------------------------------|--------|--------|---------|------------|--------|--------|--------|------------------------|--------|----------|
| 443664  | 5-Apr-2002 | PARTLY DEHYDRATED DRILLING MUD | < 0.05 | < 0.05 | < 0.05  | < 0.05     | < 0.05 | < 0.05 | < 0.05 | < 0.05                 | < 0.05 | < 0.05   |



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002 WSL Report No: 443664

| LAB NUM | Received   | Sample                         | DDD    | DDT    | ENDRIN | METHOXYCHLOR | CHLORDANE | a-ENDO-<br>SULPHAN | b-ENDO-<br>SULPHAN | ENDOSULPHAN<br>SULPHATE | ENDRIN<br>ALDEHYDE |
|---------|------------|--------------------------------|--------|--------|--------|--------------|-----------|--------------------|--------------------|-------------------------|--------------------|
| 443664  | 5-Apr-2002 | PARTLY DEHYDRATED DRILLING MUD | < 0.05 | < 0.05 | < 0.05 | < 0.05       | < 0.05    | < 0.05             | < 0.05             | < 0.05                  | < 0.05             |



Email: wsl@wsl.com.au Web Page: www.wsl.com.au



Date: 18-Dec-2002

WSL Report No: 443664

| LAB NUM | Received   | Sample                         | AROCLOR | TOTAL |
|---------|------------|--------------------------------|---------|---------|---------|---------|---------|---------|---------|-------|
|         |            |                                | 1016    | 1221    | 1232    | 1242    | 1248    | 1254    | 1260    | PCBs  |
| 443664  | 5-Apr-2002 | PARTLY DEHYDRATED DRILLING MUD | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   | <1    |





Your Ref: Reserve Pit Port Fairy No. 1

17 April 2002

Essential Petroleum Resource Limited Level 2, 226 Albert Road South Melbourne VIC 3205

Date Received: 5/04/200 ECEIVE

Attention:

Mr. Wally Westman

## **Certificate of Analysis**

WSL Report Number: 443664

The sample(s) referred to in this report were analysed by the following methods:

|                         | 1 \ /          | , , ,            |                |
|-------------------------|----------------|------------------|----------------|
| Analyte(s)              | Method         | Analyte(s)       | Method         |
| Alkalinity              | APHA 2320 B    | Cations          | WSL 023A       |
| Chloride                | APHA 4500-CL,B | Cyanide          | APHA 4120      |
| Electrical Conductivity | APHA 2510B     | Fluoride         | WSL 077        |
| Metals                  | WSL-032        | Nitrate Nitrogen | APHA 4120      |
| OCs                     | WSL8000        | PAHs             | WSL8000        |
| PCBs                    | WSL8000        | рН               | APHA 4500H,B   |
| Resistivity ^^          | APHA 2510 B    | Silica           | APHA 4500-SI,C |
| Sulphate                | APHA 4500SO4E  | Total Phenolics  | APHA 4120      |
| TPH                     | WSL030         | Volatiles        | WSL3810A       |
|                         |                |                  |                |

Results pertain to samples as received

Yours faithfully

WSL Consultants Pty Ltd

Nick Bray

Manager Of Chemistry



This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

^^ Accreditation No's 1201 & 1205 ^^ Nata registration does not cover the performance of this test

A NATA Accredited Laboratory An Approved Quarantine Premises An Approved EPA Auditor

Page 1 of