

Onshore Otway Basin VICTORIA

IRREWARRA-1 Well Completion Report Volume 2 Drilling

ALTROLEUM DIVISION 1.8 JAN 1999

PPL 1 Onshore Otway Basin VICTORIA

IRREWARRA-1
Well Completion Report
Volume 2
Drilling

CULTUS PETI

Cultus Drilling Manager
Cultus Drilling Superintendent
Cultus Drilling Supervisor(s)
Cultus Drilling Engineer(s)
Cultus Geologist
Reviewed by
Author : A. Baczkowski r(s) : A. Baczkowski r(s) : P. Bartholomew : D.Horner : C. Way : L. Wilson 30th November 1998

Date

.૯ ંયુલિ_જ,

CULTUS PETROLEUM NL

IRREWARRA - 1 - WELL COMPLETION REPORT VOLUME 2

TABLE OF CONTENTS

1.	SII	MMARY		Page No
40				
	1.1 1.2	Well Summary		1
	1.3	Location Map		2.
	1.4	• 1		3.
	1.5	•		4.
	1.6			6. 7.
2.	TIN	ME BREAKDOWNS		
	2.1	Total Time Breakdown		
		Total Times by Class / Operational Codes		8.
		Graph by Class / Operational Codes		9.
	2.2	Time Analysis		7.
		Time Analysis by Operational Codes	(Pie Chart)	11.
	2.3	Time Breakdowns	(2 10 01111)	*1.
)		Time Breakdown by Phase		12.
	2.4	Activity Reports		14.
	2.5	Multi-Well Analysis		.
		Comparative Cost per Metre / Meter per Da	y	16.
		Multi-well Trouble Analysis by Operational	,	18.
	2.6	Non-Productive Time		. 10.
		Problem Time Summary		20.
		Trouble Time Analysis Report		21.
		Trouble Drilling by Operational Codes	(Bar / Pie Charts)	22.
3.	DRI	LLING DATA		
	3.1	Casing and Cement		
		Casing Tally		23.
		Cementing Report		24.
		Formation Integrity Test		25.
	3.2	Bit and Hydraulic Records		26.
	3.3	Bottom Hole Assemblies		27.
	3.4	Drilling Fluid Reports		28.
4.	DAI	LY DRILLING REPORTS		48.

CULTUS PETROLEUM NL

IRREWARRA #1

The location of the well is X: 734 344.47 E, Y: 5 757 501.53 N in Block PEP 133B, Onshore Otway Basin, Victoria. Irrewarra #1 was an exploration well, spudded at 20:30 hours on 29th April 1998 by Slimdrill's Rig HTA 3000. RT was 4.3m.

8-1/2" hole was drilled into the Heytesbury Formation to 202m RT using fresh water gel mud. Equipment repairs accounted for 6 hours delay. Ran a wiper trip with the hole in good condition. Prior to running 7" casing the hole was circulated and conditioned and the pipe strapped out of the hole. One survey was ran over the interval with the deviation of 0.0° at 154m RT.

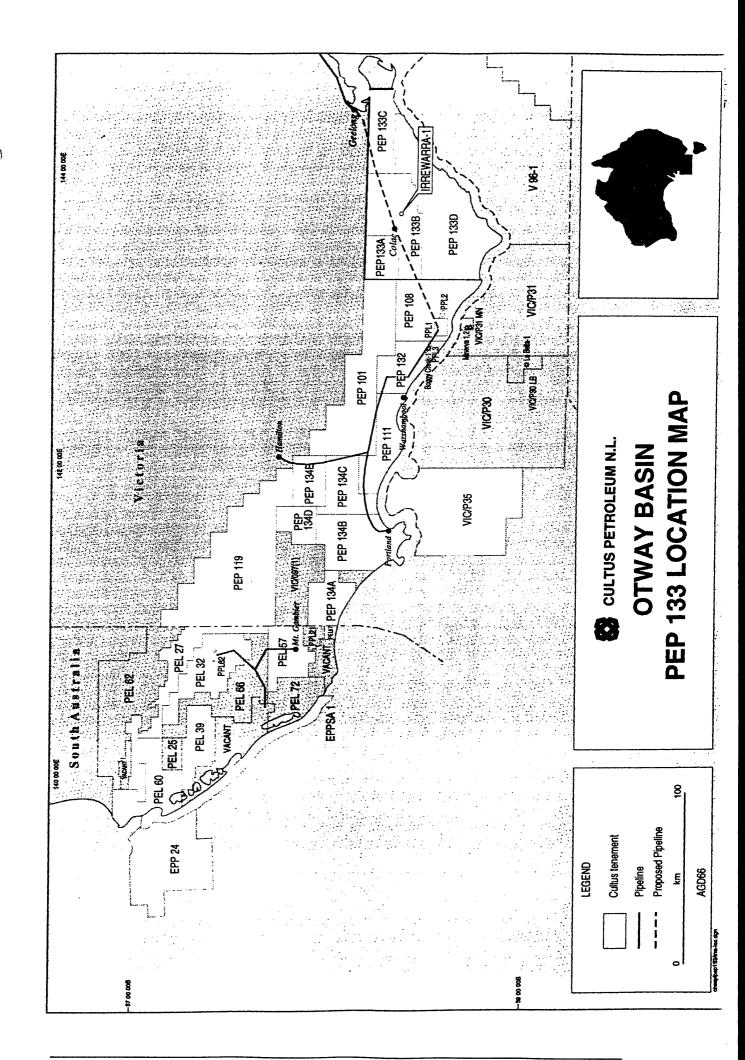
Ran 7" casing with the shoe set at 200.0m RT. 160sx Class A cement at 15.8ppg was displaced and pumped to surface. The plug was bumped, the casing tested to 3000psi and the float held when pressure was released. WOC and slacked off 7" casing. Attempted to install Bradenhead but the weld twice failed the pressure test. Removed Bradenhead, redressed casing and waited for replacement Bradenhead. Re-installed Bradenhead and nippled up BOP's and Choke manifold. Pressure tested BOP's, choke manifold, inside BOP, HCR, casing, Kelly cocks and standpipe to 200/2100psi. Tested annular to 200/1500psi.

Made up 6" BHA, RIH and tagged cement at 179m RT. Drilled out cement, shoe and 2m of open hole to 204m RT. Displaced hole with a Gel / Polymer mud at 8.5ppg. Ran FIT to 150psi with 8.5ppg mud equating to 13.0 ppg EMW. Leak off at 261psi was seen on the chart recorder.

6" hole was drilled from 204m RT out of the Heytesbury Formation, through the Nirranda and Wangerrip Formations and into the Eumeralla Formation where poorly sorted sands caused large mud losses over the shakers due to sand blinding. TD at 552m RT was reached on day 8 at 06:00 hours on 6th May 1998. Circulated hole clean, ran a wiper trip to the shoe with no excessive drag or tight spots. Conditioned well and strapped out of hole. Two surveys were ran over the interval with the deviation of 0.0° at 400m RT.

Ran electric log#1 LLD_LLS_MSFL_SDT_SP_LDT_CNL_CAL_GR Slimhole Tool Description HLLD_HLLS_MCFL_SDT_SP_RHOZ_TNPH_CAL_GR

Ran open ended drillpipe to 232m RT. Set abandonment plug #1 from 232m to 170m RT with 75sx Class A cement at 15.6ppg with 2% CaCl2. Pulled 9 stands and circulated pipe clean. POH and layed out excess pipe. RIH and tagged plug #1 at 165m RT with 10K. Layed down remaining drillpipe. Recovered wellhead and set abandonment plug #2 used 20sx Class A cement. Installed plate and erected well marker post. The rig was released at 12:00 hours on 7th May 1998.


The well was completed in 7.65 days at an estimated cost of \$0.643 mm at an average cost of \$1164/m plugged and abandoned.

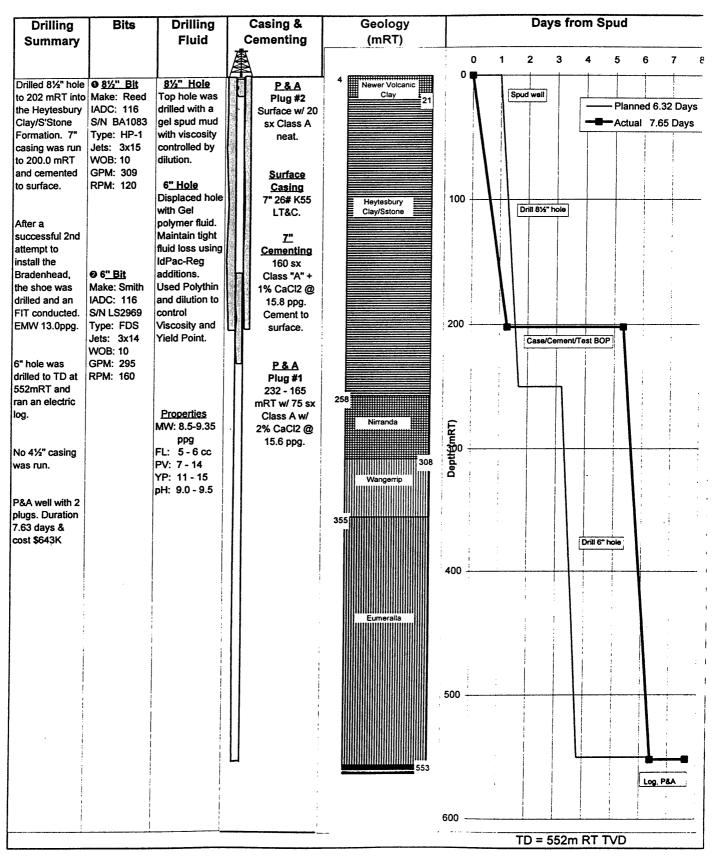
:

•

•

.

Well: Irrewarra -1


Cultus Petroleum NL

Surface Location X: 734 344.47 E Y:5 757 501.53 N Siesmic Reference IR96-04, SP 330

GL (m): 124 m TBC RT (m

RT (m): 4.3

Actual Depth vs. Time Curve

imw IRW_TDA.XLS Planned TD Curve 7/12/98

.

.

WELL: IRREWARRA - 1

Cost Variance Analysis

Irrewarra - 1 was budgeted for 5.0 days and actually took 7.65 days (2.65 days over budget).

The total well cost was 5.74% over the Dry Hole AFE cost estimate of \$607.9 K AUD. Actual well cost was \$642.8 K AUD with no major cost variances. The minimal cost overrun is mainly attributable to the extra time and cost associated with the re-installation of the Bradenhead.

Individual accounts were not kept for the cost centres associated with this AFE.

WELL COST AFE VS ACTUAL

Well: Irrewarra #1

Onshore Otway Basin, S.A. Area:

Permit: PEP 133

Country: Australia

AFE No:

AFE Days: 5.0 Actual Days: AFE TD m RT:

7.6 550 Actual TD m RT: 552

Account	Tender /	Category	AFE Total	ACTUAL Total	VARIANCE AFE vs Actual	VARIANCE AFE vs Actu
Code	Contract		Dry Hole	Dry Hole	\$A	Percent
INTANGIBL						
100	.E CO313	ADMINISTRATION				
101		Salaries, Wages and Oncosts	\$14,000			l
102		Drilling Superintendent & Supervisors	\$7,600	ļ	1	
103		Drilling Engineers	\$0			
104		Materials Superintendant	\$6,000	1	İ	
105		Geology & Geophysical	\$14,300	1		1
106		Wellsite Geologist	\$6,800		1	İ
107		Well Control Insurance	\$5,000	1	İ	
108					1	
		Travel / Accomodation	\$10,000		1	
109		Draft. / Printing consumables	\$5,000		İ	l
200		SHORE BASE / LOGISTICS				
201		Site Office				1
202		Contract Vehicles	\$2,500			[
203		Staff Safety Clothing	\$500			
204		Warehousing & Storage	\$4,000	l		
205		Purchasing Agent's Fees	\$10,000			
206		Load Fees (wharfage & stevedoring)	1,	1		
207		Communications	64 000			
			\$4,900		1	
208		Weather Forecasting]	1	
300		TECHNICAL	1	1		
301		Geological Supplies		ì	1	
302		• ,,	04 500			
		Electric Log Analysis	\$1,500	1		
303		Core & Fluid Analysis	\$2,000			
304		Onshore Prep/Test comp. Assy.	1			
400		TRANSPORTATION	i	1		
401		Air Freight				
		•				
402		Fixed Wing				
403		Helicopters				
404		Land Freight	\$7,000			
405		Work Boats				
500		THE DARWARD OF DARWARD	1		1	
500		THIRD PARTY SERVICES			1	
501		Site Survey / Preparation & Clean Up	\$62,500		l i	
502		Drilling Rig & Assoc. Services	\$82,800			
503		Drilling Rig - Additional Equipment	\$5,100			
504		Rig Mob / Demob / Move	\$150,000			
505		Rig Positioning	V.00,000			
506			****			
		Electric Line Logging	\$24.000		1	
507		Coring Services	\$0			
508		Mud Logging	\$15,000		1	
509		Mud Engineering	\$5,600			
510		Cement Services	\$29,700		1	
511		Directional Drilling	\$0		1	
•		Mobilisation:	\$0		i	
]	
		Equipment & Personnel			1	
512		Wellbore Survey	\$1,500			
513		Drilling Tools	\$23,900]	
514		Diving / ROV	\$0]	
515		Inspection	\$0		1	
516		Well Testing	\$0]	
517		Wellhead Services - Welding	\$1,000			
518		Casing Handling				
519		Fishing/Casing Cutting				
520	1	Miscellaneous	\$0			
	Г	TOTAL INTANCISI SO			 	-
		TOTAL INTANGIBLES	\$502,200			
TANGIBLE	COSTS		[····
601		Fuel & Lubricants			·	
			\$1,000			
602		Tubulars	\$15,000			
603		Equipment Lost in Hole				
604	•	Tubular Accessories	\$4,800			
605	1	Wellhead Equipment	\$14,200			
606		Drill Bits, nozzles, etc	\$11,700			
607		Coreheads	\$0			
608		Cement	\$4,000			
609		Cementing Additives	\$800			
610		Orilling Fluid	\$25,000			
611		<i>N</i> ater	\$2,400			
612	t	iner Equipment] !		i	
613		Completion Equipment	\$25,000			
		Misc. Drilling Equipment	\$1,800	l	1	
614			1		i	
614	_	· · · · · · · · · · · · · · · · · · ·				
614	F	TOTAL TANGIBLES	\$105,700			

GENERAL INFORMATION

Well Name Irrewarra -1

Block PEP 133B, Onshore Otway Basin, Victoria

Seismic Line IR96-04 SP330

Surface Location X: 734 344.47 E 38° 17' 59.47" S

Y: 5 757 501.53 N 143° 40' 47.49" E

Block Equity Percentage Cultus Group (Operator) 100%

Type of Well Exploration

Spud Date 2030 hrs 29 April 1998 Release Date 1200 hrs 7 April 1998

Time to Drill, Plug and Abandon 7.65 days

Total Depth 552m RT MD

RT 4.3m

GL a.m.s.l. 124.36m

Rig Slimdrill HTA 3000

Drilling Contractor Slimdrill Contracting Pty Ltd

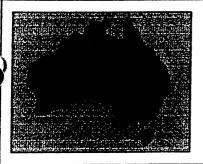
Cultus Personnel on Site Drilling Supervisor A. Baczkowski

Drilling Engineer P. Bartholomew

Wellsite Geologist D. Horner

Western Controlled Difference

Well Objectives Primary: Wangerrip Group Sandstone.


Secondary: Nirranda Group Sandstone.

Heytesbury Group Sandstone.

Well Cost AFE 98-39-01 642.8 A\$K

a.m.s.l. - above mean sea level

CULTUS PETROLEUM (AUSTRALIA) N.L.

ONSHORE OTWAY BASIN - VICTORIA

PEP 133B IRREWARRA 1

PLUG & ABANDONMENT SCHEMATIC

AUTHOR: LEON WILSON DATE: NOVEMBER 1998 SCALE: NTS FILE: otway/pep133/irresch.dgn

Well: IRREWARRA 1

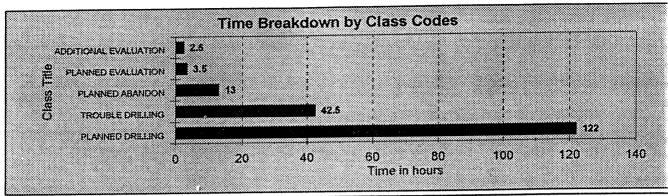
Drilling Co: SLIMDRILL CONTRACTING P/L

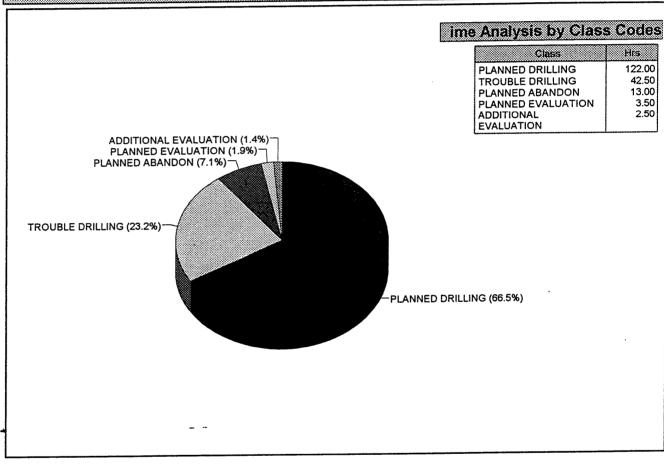
Rig: HTA 3000

 Spud Date :
 29.04.98

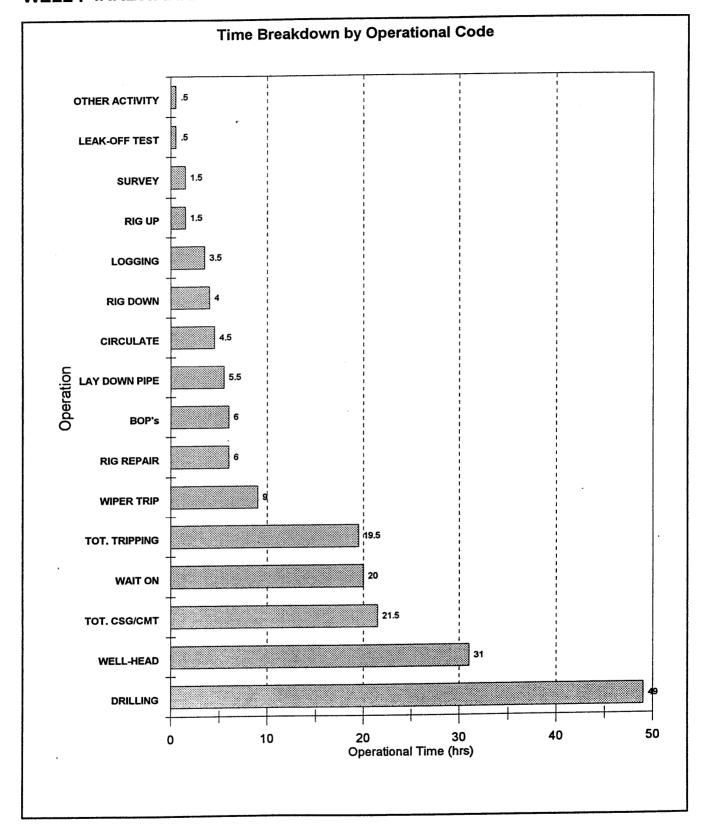
 TD Depth :
 202.0

Total Time (hrs) - Spud/Release : 183.50

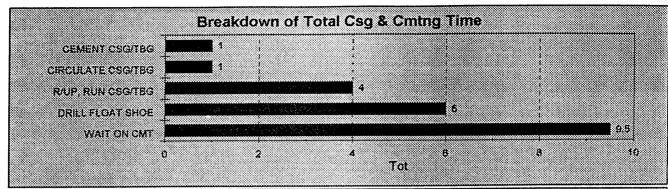

Total Time (hrs) - Rig Move; 0.00 Total NPT (hrs): 42.50

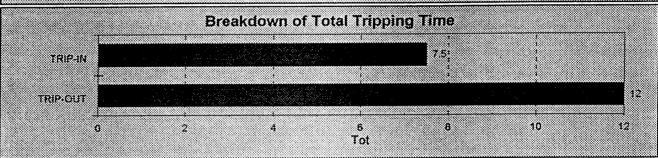

Time-Breakdown: Times by Class and Operation

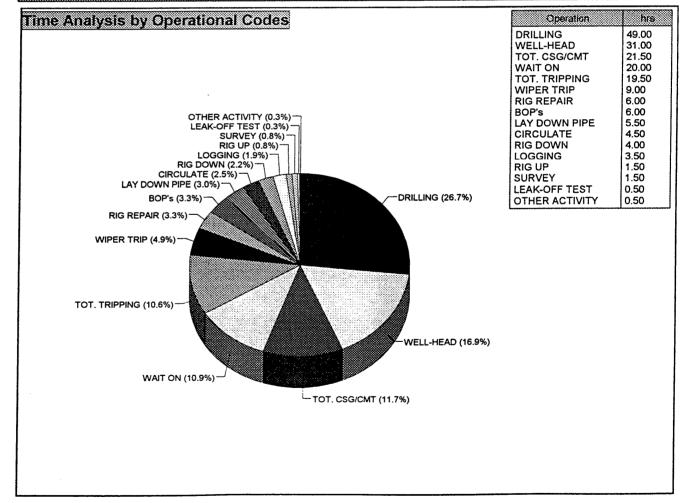
	Flacs	Hrs
	57454	
	PLANNED DRILLING	122.00
	TROUBLE DRILLING	42.50
į	PLANNED ABANDON	13.00
	PLANNED EVALUATION	3.50
ĺ	ADDITIONAL EVALUATION	2.50


Operation	Hrs
DRILLING	49.00
WELL-HEAD	31.00
TOT. CSG/CMT	21.50
WAIT ON	20.00
TOT. TRIPPING	19.50
WIPER TRIP	9.00
RIG REPAIR	6.00
BOP's	6.00
LAY DOWN PIPE	5.50
CIRCULATE	4.50
RIG DOWN	4.00
LOGGING	3.50
RIG UP	1.50
SURVEY	1.50
LEAK-OFF TEST	0.50
OTHER ACTIVITY	0.50

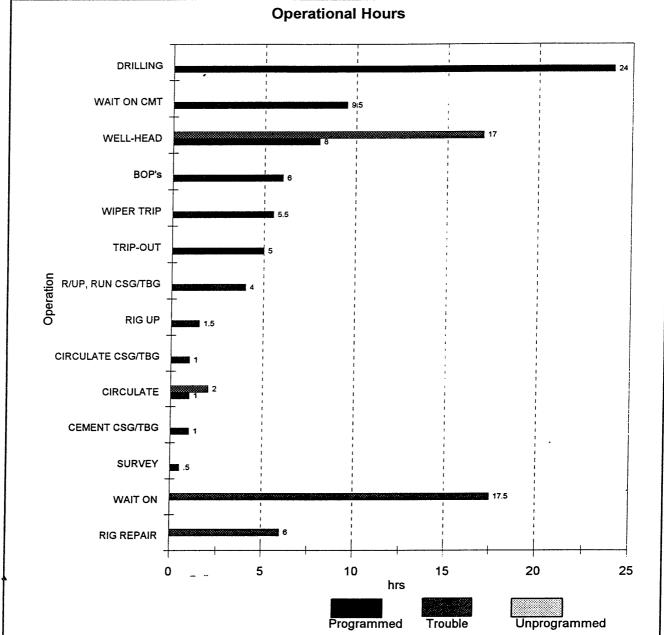
WELL: IRREWARRA 1





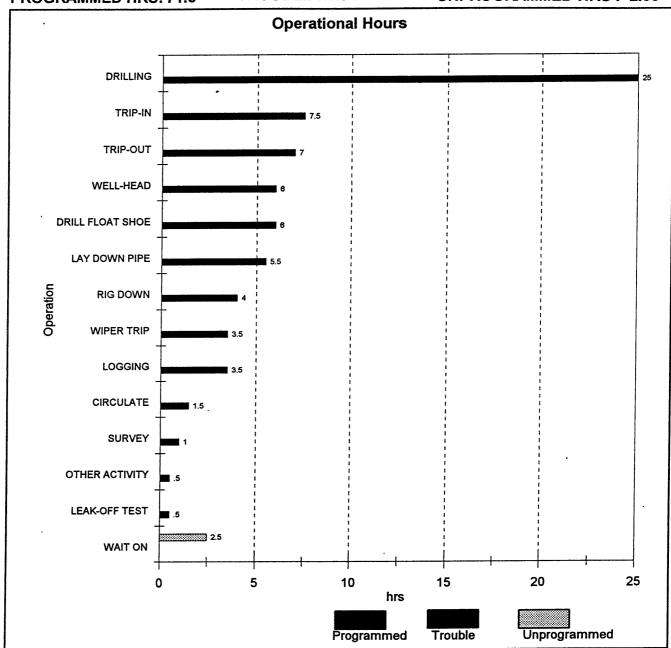

WELL: IRREWARRA 1

WELL: IRREWARRA 1



Time breakdown by Phase **IRREWARRA 1**

PHASE: S1


TROUBLE HRS: 42.5 UNPROGRAMMED HRS: 0.00 PROGRAMMED HRS: 67.0 Operational Hours

Time breakdown by Phase IRREWARRA 1

PHASE: S2

PROGRAMMED HRS: 71.5 TROUBLE HRS: 0.0 UNPROGRAMMED HRS: 2.50

Copyright IDS, June 1997

 \bigcirc

<u>*</u>-

زر

.)

TIME BREAKDOWN DATABASE - ACTIVITY REPORT

WELL: IRREWARRA 1

Drilling Co : SLIMDRILL CONTRACTING P/L

Rig: HTA 3000 Page Number: 1 of 2

DATE	PHS	CLS	OPERATION	HRS	DEPTH	DESCRIPTION
29.04.98	S1	PD	DRILLING	3.50		Spud Irrewarra-1 2030hrs 29/4/98 Drill 8.
20.04.00	•					5"hole F/9 to 30m
30.04.98	S1	PD	DRILLING	2.00	6	Continue drill 8 1/2" hole f/30 to 41m.
30.04.98	S1	TD	RIG REPAIR	2.00	41	Hydraulics to rotary and to hoist failing,
			•			repairing same.
30.04.98	S1	PD	DRILLING	2.00		Continue drill 8 1/2" hole f/41 to 65m.
30.04.98	S1	TD	RIG REPAIR	4.00		Repair fluid inlet valve to Power swivel.
30.04.98	S1	PD	DRILLING	11.00		Drill 8 1/2" hole f/65m to 154m.
30.04.98	S1	PD	SURVEY	0.50	(Run wireline survey @ 154m. Bl.
30.04.98	S1	PD	DRILLING	2.50		Continue drill 8 1/2" hole f/154m to 178m.
01.05.98	S1	PD	DRILLING	3.00	202	Continue drill 8 1/2" hole f/178m to 202m.csg point.
01.05.98	S1	PD	CIRCULATE	0.50	202	Circ bttms up (carbide)for wiper trip.Hole in gauge.
01.05.98	S1	PD	WIPER TRIP	5.50	202	Wiper trip for csg.
01.05.98	S1	PD	CIRCULATE	0.50		Circ bttms up,prior to POH f/7"csg.
01.05.98	S1	PD	TRIP-OUT	5.00		POH to run 7"csg, L/out 6 1/4" DC`s.
01.05.98	S1	PD	RIG UP	0.50		Rig to run 7"csg.
01.05.98	S1	TD	WAIT ON	4.00		Wait on float equipment.
01.05.98	S1	PD	R/UP, RUN CSG/TBG	4.00		Run 16jnts 26#/ft k55 8rnd LT&C csg.
01.05.98	S1	PD	CIRCULATE CSG/TBG	1.00		Install circ swedge & circ 7"csg.
02.05.98	S1	TD	WAIT ON	13.50		Wait on cmt unit, circ csg.
02.05.98	S1	PD	RIG UP	1.00		Cmt unit onsite, no operator,rig up pump truck and load cmt head.
02.05.98	S1	TD	CIRCULATE	2.00		Continue circ & wait on operator.
02.05.98	S1	PD	CEMENT CSG/TBG	1.00		Press test lines t/3000psi.Pump spacer ahead, Mix & pump160sx Class"A" @15.8#/gal.Drop plug& displace& bump,press tst csg t/3000psi, Flt held,cmt to surface.
02.05.98	S1	PD	WAIT ON CMT	6.50		WOC sample soft, unable to slack off 7".
03.05.98	S1	PD	WAIT ON CMT	3.00		WOC. Slack off 7" csg.
03.05.98	S1	PD	WELL-HEAD	8.00	202	Rough cut 7",remove stub,final cut& bevel, Preheat & weld on B/head.Press test weld failed,reweld & allow to cool,press test failed two attempts.
03.05.98	S1	TD	WELL-HEAD	13.00	202	Cut & remove Bradenhead,machine & remove csg stub & restore to as new.
04.05.98	S1	TD	WELL-HEAD - ::	1.00	202	Continue machine & restore Bradenhead to as new condition.
04.05.98	S1	TD	WELL-HEAD	3.00	202	Install Bradenhead,preheat & weld,cool & pressure test to 1500psi. OK.
04.05.98	S1	PD	BOP's	6.00		N/up BOP`s.
04.05.98		PD	WELL-HEAD	6.00	202	Pressure test BOP & choke manifold,ISBOP,U. K/cock,HCR,200L,2100H.Hydril 200L,1500H. Run up Koomey unit 13 1/2min.
04.05.98	S2	PD	TRIP-IN	5.50	202	M/up new Bit & BHA & RIH. TOC @ 179m.
04.05.98			DRILL FLOAT SHOE	2.50		Drilling cmt & flt shoe.
05.05.98		PD	DRILL FLOAT SHOE	3.50		Continue drill cmt ,flt cll & shoe.
05.05.98		:	LEAK-OFF TEST	0.50	1	Perform FIT to EMW 13#/gal. (150psi)
05.05.98	1	PD	DRILLING	8.00	300	Drilling 6" hole W/Wireline surveys.F/202m to 300m
05.05.98	S2	PD	SURVEY	0.50		Circ & survey @ 300m. 1Deg.
		•	DRILLING	8.00		Drill 6" hole F/300m to 400m
00.00.00						

TIME BREAKDOWN DATABASE - ACTIVITY REPORT

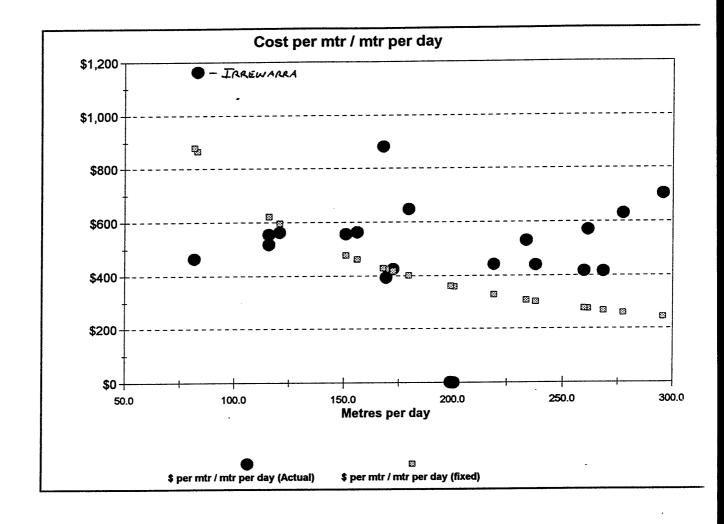
WELL: IRREWARRA 1

Drilling Co: SLIMDRILL CONTRACTING P/L

ig: HTA 3000 Page Number: 2 of 2

DATE	PHS	CLS	OPERATION	HRS	DEPTH	DESCRIPTION
05.05.98	S2	PD	SURVEY	0.50	400	Circ & survey @ 400m. Bl.
05.05.98	S2	PD	DRILLING	3.00		Drill 6" hole F/400m to 470m.
06.05.98	S2	PD	DRILLING	6.00	552	Continue drill 6" hole F/470m to 552m. TD.
06.05.98	S2	PD	CIRCULATE	0.50		Circ bttms up for wiper trip.
06.05.98	S2	PD	WIPER TRIP	3.50	552	Wiper trip to shoe.(No excess drag/tite spots.)
06.05.98	S2	PD	CIRCULATE	0.50		Circ & condition prior to POH to Log.
06.05.98	S2	PD	TRIP-OUT	5.50	552	POOH to log. (strap out,D551m, Simber
						D549m) No correction.
06.05.98	S2	PE	LOGGING	3.50		SImber log run #1 - PEX (AITH) BHT.38c.
06.05.98	S2	AE	WAIT ON	2.50		Wait on Geology ops for P&A order.
06.05.98	S2	PD	TRIP-IN	1.00		RIH open ended for P&A @ 232m to 170m.
06.05.98	S2	PA	OTHER ACTIVITY	0.50	552	Mix & pump Plug #1 F/232m to 170m,total
						75sx"A"cmt @15.6#/gal w/2%CaCl2.
06.05.98	S2	PA	TRIP-OUT	0.50	552	Pull 9 singles & circ.
07.05.98	S2	PA	CIRCULATE	0.50	202	Circ out after cmt job.
07.05.98	S2	PA	TRIP-OUT	1.00		POOH.
07.05.98	S2	PA	LAY DOWN PIPE	3.50		Lay out excess Dp & Dc`s.
07.05.98	S2	PA	TRIP-IN	1.00	202	RIH to tag top of Plug #1 @ 165m. W/10K.
07.05.98	S2	PA	LAY DOWN PIPE	2.00		POH sideways.
07.05.98		PA	RIG DOWN	4.00	202	Nipple down BOP,cut & remove Bradenhead,
						mix & spot 20sx "A" cmt on surface. Install sign
						RELEASE RIG @ 1200HRS 7TH MAY 1998.

Multi-Well Analysis

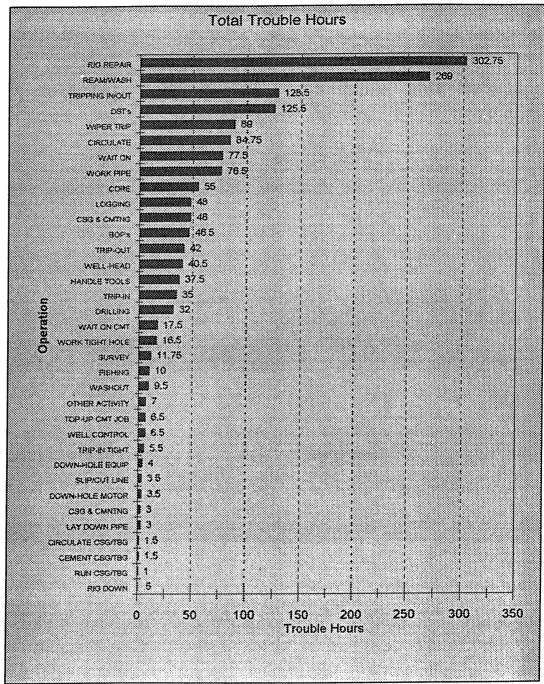

Multi well cost analysis Cost per mtr / mtr per day

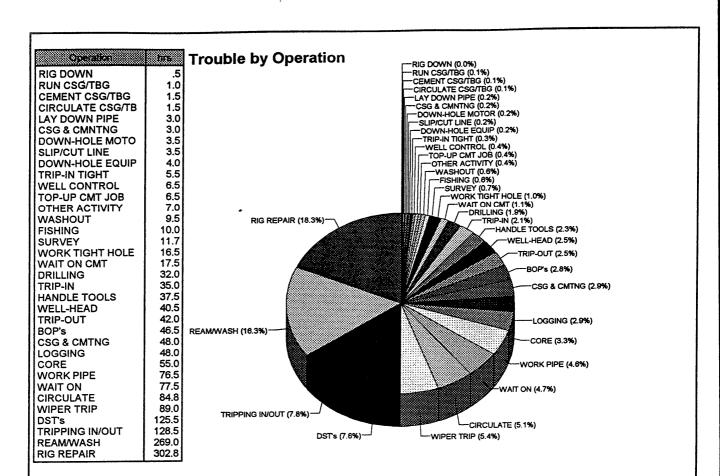
Comparative cost per hour value: \$3000.00

Well		Max Depth	Days to TD	fi/m per day	\$ per ft/m	\$ per ft/m
	Cost \$				(@ \$1000 hr)	(real well cost)
BLACKWOOD #1	\$1,127,273	2,650.00	15.38	172.36	\$417.74	\$425.39
BOGGY CREEK #1	\$1,230,000			B .		3
DIGBY #1	\$1,082,000	· ·	•		\$621.41	\$518.20
DUNBAR #1	\$933,000	1,758.00		233.75	\$308.02	\$530.72
DUNBAR EAST #1	\$1,328,921	2,361.00	19.56	120.69	\$596.57	\$562.86
EAST AVENUE # 1	\$1,275,850	2,900.00	12.19	237.95	\$302.59	\$439.95
Fenton Creek #1	\$1,050,000	1,840.00	7.04	261.30	\$275.54	\$570.65
Gordon #1	\$1,106,054	2,505.00	11.44	219.02	\$328.74	\$441.54
HOWMAINS #1	\$847,000	2,150.00	12.71	169.18	\$425.58	\$393.95
HUNGERFORD #1	\$915,000	2,196.00	8.46	259.63	\$277.32	\$416.67
IONA #2	\$1,458,000	1,650.00	9.83	167.80	\$429.09	\$883.64
IRREWARRA 1	\$642,801	552.00	6.65	83.06	\$866.85	\$1,164.49
LANGLEY #1	\$1,114,000	2,006.00	17.31	115.87	\$621.39	\$555.33
NAMGIB #1	\$577,000	1,387.00	5.17	268.45	\$268.20	\$416.01
PINE LODGE #1	\$1,000,000	2,150.00	26.28	81.81	\$880.12	\$465.12
SKULL CREEK #1	\$1,194,889	1,700.00	5.75	295.65	\$243.53	\$702.88
SKULL CREEK WEST # 1	\$1,261,100	2,000.00	7.21	277.46	\$259.50	\$630.55
Skull Creek North #1	\$1,020,000	1,810.00	11.60	155.98	\$461.60	\$563.54
Taralea #1	\$1,557,118	2,800.00	18.56	150.84	\$477.32	\$556.11
VAUGHAN #1	\$1,812	2,030.00	10.13	200.49	\$359.11	\$0.89
WALLABY CREEK #1	\$2,188	1,745.00	8.77	198.95	\$361.89	\$1.25

Multi well cost analysis Cost per mtr / mtr per day

Comparative cost per hour value: \$3000.00


TIME BREAKDOWN DATABASE Multi-well trouble analysis (by operation)


Drilling Co : ALL Rig : ALL

Well Type: ALL

Number of Wells selected: 21
Total Trouble time (hrs): 1,650.2
Ave Trouble time/ well (hrs): 78.6
Total Trouble time (days): 68.8

:-

•

WELL: IRREWARRA - 1

Problem Time Summary

A total of 42.5 hours of problem time occurred on Irrewarra - 1 representing 23.16% of total time on the well. The problem time primarily occurred due to rig repairs requiring the restoration of hydraulic pressure to the rotary and hoist systems, plus a failed weld on the top casing collar requiring the wellhead to be removed and re-installed.

Primary problems (exceeding 2 hrs per individual event) were:

1. Wellhead	- Failure of the weld between the Bradenhead a	nd casing meant the
	removal of the Bradenhead. This comprised of	of waiting for restoration
	of the Bradenhead, redressing of the casing stu	ıb, re-installation of the
	Bradenhead and re-testing to 1500 psi.	17.0 hrs Lost.

2. Rig Repairs	- Equipment repairs comprised of rectifying hyd	draulic pressure loss to
	both the rotary and hoist systems. (2 hr). Also	the repair of the fluid
	inlet valve to the Power swivel. (4 hrs).	6.0 hrs Lost.

3. Waiting Time	Due to sharing of cement unit with Boral (ODE Rig 30) waiting time
	was incurred while cementing operations on Rig 30 were completed.
	17.5 hrs Lost.

Rig Performance

This well was the first by Cultus utilising the slimdrill HTA 3000 rig. Due to well commitment timing, this rig was selected primarily on the basis of availability after bidding. The rig was mobilised from WA exclusively for this job.

In general the rig performed satisfactorily. Rig up time was slow, but once drilling the mud pump could deliver the hydraulic power necessary to keep the hole clean and optimise ROP for this well depth. The HSE management of the rig was excellent and there were no LTI's on this programme.

To improve future operations:

- 1. The rig needs both mud pumps manifolded together via a common header to accommodate pump changes.
- 2. Trip time is slow, but this was resolved by the use of a lower rig rate for tripping.
- 3. Drill floor ergonomics need to be reviewed and redesigned to accommodate 8-1/2" drilling assemblies and 7" casing sizes.

TIME BREAKDOWN DATABASE Trouble Time Analysis

Well Name:

IRREWARRA 1

Drilling Co:

SLIMDRILL CONTRACTING P/L

HTA 3000

Rig : Spud Date :

29.04.98

Total Time on Well

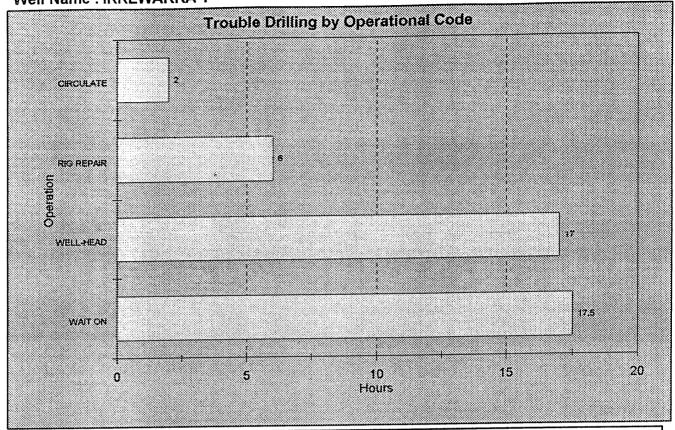
183.50

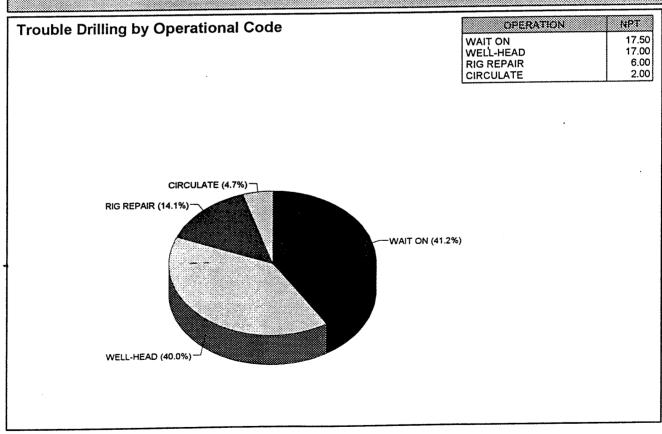
Total Trouble Time

42.50

% Trouble Time

23.16


Total NPT Hours per Phase


PHASE	NPT HOURS
S1	42.50

NPT On Well

PHASE	OPERATION	NPT	DEPTH	DESCRIPTION OF TROUBLE TIME
		Hrs		
S1	RIG REPAIR	2.00	41.0	Hydraulics to rotary and to hoist failing, repairing same.
S1	RIG REPAIR	4.00	65.0	Repair fluid inlet valve to Power swivel.
S1	WAIT ON	4.00		Wait on float equipment.
S1	WAIT ON	13.50		Wait on cmt unit, circ csg.
S1	CIRCULATE	2.00	202.0	Continue circ & wait on operator.
S1	WELL-HEAD	13.00	202.0	Cut & remove Bradenhead, machine & remove csg stub & restore to as new.
S1	WELL-HEAD	1.00	202.0	Continue machine & restore Bradenhead to as new condition.
S1	WELL-HEAD	3.00	202.0	Install Bradenhead, preheat & weld, cool & pressure test to 1500psi. OK.

Well Name: IRREWARRA 1

CASING RUNNING LIST

Rig:

DATE: 01.05.98 PERMIT: PEP133 WELL: IRREWARRA#1 Grade: K55 Connection: 8-ROUND Casing size (in) 7" Wt(ppf) 26.00

Page: 1 of Pages:

Supervisor: A.Baczkov Measured by: Supervisor

Sup	pervisor:	A.Baczkov			Measured by	Supervise	Of		Page: 1 of	Pages:
Order	Jt No:	Length	Total	Depth	Comment	Order	Jt No:	Length	Total	Depth
					Bottom of Shoe					
1	Shoe A	13.05	13.05	188.95	C 3 m above shoe					
	F/CII	12.97	26.02	175.98	С			0.00	559.82	-357.82
3		12.57	38.59	163.41	С	53	53	12.57	572.39	-370.39
4	4	12.57	51.16	150.84	С	54	54	12.58	584.97	-382.97
5	5	12.57	63.73	138.27		55	55	12.57	597.54	-395.54
6	6	12.57	76.30		13.05 L/shoetrack	56	56	12.59	610.13	-408.13
7	7	12.57	88.87	113.13		57	57	12.57	622.70	-420.70
8	8	12.57	101.44	100.56		58	58	12.59	635.29	-433.29
9	9	12.57	114.01	87.99		59	59	12.58	647.87	-445.87
10	10	12.57	126.58	75.42		60	60	12.58	660.45	-458.45
	11	12.57	139.15	62.85		61	61	12.08	672.53	-470.53
11	12	12.57	151.72	50.28		62	62	12.58	685.11	-483.11
Total	12	151.72	107.72			Total		125.29		
TOTAL						~	62	12.58	697.69	-495.69
13	13	12.57	164.29	37.71		63	63		710.27	-508.27
14	14	12.57	176.86	25.14		64	64	12.58	710.27	-520.85
15	15	11.72	188.58	13.42		65	65	12.58		-520.65
16	16	11.70	200.28	1.72		68	66	12.59	735.44	
17	17		200.28	1.72		67	67	11.84	747.28	-545.28 557.12
18	18		200.28	1.72		68	68	11.84	759.12	-557.12
19	19		200.28	1.72		69	69	12.58	771.70	-569.70
20	20		200.28	1.72		70	70	11.83	783.53	-581.53
21	21		200.28	1.72		71	71	11.83	795.36	-593.36
22	22		200.28	1.72		72	72	11.84	807.20	-605.20
Total						Total		122.09		
			040.44	40.44		73		11.84	819.04	-617.04
23	23	11.83	212.11	-10.11		74		11.84	830.88	-628.88
24	24	11.83	223.94	-21.94		75		11.84	842.72	-640.72
25	25	11.83	235.77	-33.77		76		11.84	854.56	-652.56
26	26	11.57	247.34	-45.34		77	ļ — — — — — — — — — — — — — — — — — — —	11.83	866.39	-664.39
27	27	11.58	258.92	-56.92				11.84	878.23	-676.23
28	28	11.84	270.76	-68.76		78	ļ		890.07	-688.07
29	29	11.83	282.59	-80.59		79	ļ	11.84	901.91	-699.91
30	30	11.84	294.43	-92.43		80		11.84	913.75	-711.75
31	31	11.84	306.27	-104.27		81	<u> </u>	11.84	925.59	-723.59
32	32	11.84	318.11	-116.11		82		11.84	925.58	-123.39
Total		117.83		<u> </u>		Total	L	118.39		
33	33	11.83	329.94	-127.94		83		11.84	937.43	-735.43
34	34	11.83	341.77	-139.77		84		11.83	949.26	-747.26
	35	11.83	353.60	-151.60		85		11.84	961.10	-759.10
35			365.44	-163.44		86		11.84	972.94	-770.94
36	36	11.84	1			87		11.84	984.78	-782.78
37	37	11.83	377.27	-175.27 -187.11			26 Ppf	11.83	996.61	-794.61
38	38	11.84	389.11	I		89		11.84		-806.45
39	39	11.83	400.94			90	l	11.84	•	-818.29
40						91	 	11.83		-830.12
41	41	11.83	424.60	I		92		11.83	1	
42	42		436.43	-234.43		Total		118.36		
Total		118.32		L			L			
<u></u>		·		646.55		93		11.83	1055.78	-853.78
43	43	11.84	448.27	1		93	 	11.83		-865.61
44	44		460.10	1		94	 	11.84	•	-877.45
45	45	12.59	472.69				 	11.83	•	-889.28
46	46	12.57	485.26			96 97		11.83	1	-901.11
47	47	12.59	497.85			98		11.84		-912.95
48	48	12.57	510.42			99		11.83	1 .	-924.78
49	49	12.57	522.99			100		11.83	1	-936.61
50	50		535.57	ı		101		11.84	i	-948.45
51	51	11.66	547.23	1		102		11.84	1	-960.29
52	52		559.82	-357.82		Total		118.34		
Total	<u></u>	123.39				L				
Total	Casing:	25	Jts		Remarks:					
	ng Used:		Jts	i '						
	ing Left:		Jts	1						
		<u> </u>		l						
				l		4				
$10007 \times$	(LG04:0	5.90			Page	1				

CEMENTING REPORT

Irrewarra #1

Date: 02.May.98

Rig Name:

Slimdrill HTC2000

Casing Size: 7"

Engineer:

A.Baczkowski.

Casing MD/TVD: 200m.

Hole Geometry

8 1/2"

Mud Properties Mud Wt: 8.7

Gas Reading

Hole Size : Hole MD:

202m.

Vis:

Max Gas: Bttms Up: 0 0

Hole TVD:

202m.

PV: YP:

0

Hole Angle:

BI.

WL:

Final BG:

Last Csg Size : Last Csg MD : Last Csg TVD: 9 5/8" Conducter 5.3 5.3

BHCT: BHST:

24

40

8

12

asing Summary

8Rnd 8Rnd	13.05	200.00
0Pnd	40.07	1000
) ortiu	12.97	188.95
8Rnd	174.26	1.72
	8Rnd	8Rnd 174.26

•					
1_	 •-	_ 1	•	_	

Cellu alizel 3			
Manufacturer	Туре	Quantity	Remark / Placement
Howco	Bowspring	4	3m/sh/jnt. 3m/fit/jnt. 3rd & 4th cll`s.

Lead Cement Slurry Details

Louis Controlle Clarity	, , , , , , , , , , , , , , , , , , , ,				
Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives
15.8	33	18.5	160sx "A"	1.15	CaCl2 1%
				1	

Tail Cement Slurry Details

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives

Top Up Cement Slurry Details

Weight (ppg)	Vol (bbl)	Mixwater (bbl)	# Sacks	S. Vol(ft3/sk)	Additives

Operation Description

	Circulation	Pre-Flush	Lead	Tail	Displacement
Volume (bbl)	1000bbl`s	10bbl`s		33bbl`s	24bbl`s
Time (min)	1546(720)	1553(6)		1625(33)	1643(18)

Job Evaluation

Reciprocate: N Full Returns: Y

Remarks

Full 'returns thruout job, cmt to surface. Bumped plug, floats held.

Cmt to Surface: Y Bump Plug: Y 330psi Pressure Test: Y 3000psi

Pressure test csg t/3000psi Top job by hand 10sx

ECP: 200psi

CMTY_EA1.XLS

Irrewarra 6"				Date:	05.05.98	,
				Rig:	Slimdrill HTC	
202n	 ገ			Pumps:	Howco	
7"	**************************************			Circ. Rate:	0.25	
²⁰⁰ n)	***************************************		Mud Wt:	8.5	
			_			
		Formati	on Integri	ty Test		
2000 -	,					···
						-
İ						
1800			_	+		+
						1
1600						-
						-
						-
1400						
1200						-
-						
e, G						
≣ 1000						- Calendaria
P.						
800						
					The state of the s	<u> </u>
~~					1	
800						
-						
400				ACAS	ING TEST	ı
l						
200 L		•				•
200				I	Ĭ	
1	♦					
0 &						-
0	0.1				0.6 0.7	′
		V	orane rumpe	л, ил		
orillers error in pathological brillers error in pathological brilled out						
	2000 1800 1400 1400 1200 1600 1400 1200 16	1800 1600 1400 1200 1200 800 600 400 200 0 0.1	Formati 2000 1800 1600 1400 1200 800 600 400 200 0.1 0.2	Formation Integrit 1800 1600 1400 1200 800 600 0 0.1 0.2 0.3 Volume Pumpe	Formation Integrity Test 2000 1800 1600 1400 1200 200 400 200 0 0.1 0.2 0.3 0.4 0.5 Volume Pumped, bbl	Formation Integrity Test 2000 1600 1400 1200 800 600 400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 Volume Pumped, bbl

_	;	-			Т	_		i'	7	_		T	7
	1	:	_	~	P	2		-	1		L	1	1
	-	i	IADC DULL BIT GRADING	0	2	2		:	1				1
			ADIN	G	Z	Z	:						
	T	1	TGR	00	ш	ш	:		T				T
r	F	Ť	LLB	_	2	2	İ	T	T				
r		T	S	۵	2	2	-	İ	1			T	T
F	T	1	¥	5	2	~	-	T	\dagger		_	T	T
H	$^{+}$	+		_	8	~~		-	\dagger	-			t
H	+	\dagger	\vdash	i .	8	- -	<u> </u>		\dagger		_	t	\vdash
				Ö	1/05/5	6/05/9							
\vdash	-	t	Date	-	86	@	-	-	+	-		\vdash	╁
				=	9/04/	6/05/9							
\vdash	\vdash	+	\vdash		60	36	-	-	-	-		\vdash	\vdash
				Flow	ľ							L	
Γ			d E	988	8	1100 295 6/05/98 6/05/98							
-	+	-	Pu	A Pr	2	200	-	_	\vdash	-		H	+
L	1	-		RP	٦	<u>+</u>	-	_	-	4		-	-
				VOB	۲	: :							
\vdash		+	/se	>	3.3	2.5		-	\dagger	1			\vdash
			Metr	된	Ĺ	; • !						L	
			Rotating	lours	14.5	21.5				-			
			s Depth IADC Rotating Metres/ Pump	onus	24	25							
				eters F	193	268							
-	-		epth	ĭ,	202	552			-	+			-
	\vdash	\vdash	۵	4	-		_		\vdash	+			
	\vdash		Jets	က	15	4				1			
			ရီ	7	15	4				1			
	_			_	15	4			-	-			L
				IADC	116	116							
 				=	383	69			T	1			
_		-		S/N	BA1083	_			_	-			
	feum N.L.	Well: Irrewarra #1		Туре	HP-1	FDS							
	us Petro	varra #1	-		eed :	Smith			 	+			
B	S	Inev		Run# Size Make		S	_			1		_	
ZEC(any:			Siz	8 1/2	ဖ			L	1			_
BIT RECORD	Som	Well:	;	Run	-	7							

Bottom Hole Assembly Summary

IRREWARRA - 1

	2	Stabilised	.,9	FDS	Bit Sub	2 x 41/8"Spir DC	Crossover	Roller Reamer	Crossover	8 x 41/8"Spir DC	13 x 41/8"Slim DC	
	1	Pendulum	81/2"	HP-11	Bit Sub	$3 \times 6\%$ DC	$10 \times 41/8$ " DC	10 x 41/8"RSK6 DC				
" ".4	Bit#	BHA Type	Bit / Hole Size			BHA Components						

Independent Drilling Fluid Services Pty. Ltd

DRILLING FLUID SUMMARY

FOR

CULTUS PETROLEUM N.L.

WELL: IRRAWARRA #1

OTWAY BASIN

VICTORIA

Prepared by: Neil Kyberd Andre Skujins

Date: May 1998

Perth Office: 2/7 Pitt Way Myaree WÁ 6154

Tel: (618) 9330 8284 Fax: (618) 9330 8283

Head Office: 248 Pirie Street Adelaide SA 5000 Tel: (618) 8232 6771 Fax: (618) 8232 6764

P.O. Box 192, Glen Osmond S.A. 5064

CONTENTS

- 1. Summary of Operations
- 2. Observations, Recommendations and Well Analysis
- 3. Material Costs and Consumption Analysis
- 4. Mud Materials Reconciliation
- 5. Fluid Properties Summary
- 6. Mud Volume Reconciliation
- 7. Graphs
- 8. Bit Record
- 9. Hydraulics Record
- 10. Daily Mud Reports

Operator: Cultus Petroleum N.L.

Well : Irrawaara # 1
Rig : Slimdrill # 1
Spud : 29th April 1998

1. SUMMARY OF OPERATIONS

HOLE SIZE : 216 mm (8½")

MUD TYPE : Gel Spud Mud

INTERVAL : Surface - 202 m

CASING : 9-5/8" @ 199 m

Make up water supplied from a local bore was tested on location and found to have the following properties:

pH : 7.2 Pf / Mf : 0.0/0.4 Salinity : 800 mg/l Hardness : 100 mg/l

120 bbls of spud mud was prepared using 20 ppb of Highgel and allowed to yield for several hours before extending the viscosity with small Lime additions. The Brandt type shakers were dressed with S40 / S80 screens.

An 8½" bit was made up and the well was spudded at 20:00 hours on the 29th April, with a spud mud viscosity of 50 sec/qt. After drilling down the 6½" collars, the pump rate was increased and the viscosity controlled between 40 and 43 sec/qt with water additions. As volume allowed, the sand trap was dumped when required to remove solids and the Desilter / Mud Cleaner run continually.

Drilling continued to casing point (202 m) where a 4 stand wiper trip was pulled to check on hole conditions (no fill). The hole was circulated clean while further water additions maintained the viscosity.

With the hole in good condition the bit was pulled out of the hole. 7" casing was run in the hole without problems and the hole circulated clean. The mud was diluted back with water additions to a viscosity of 38 sec/qt and 10 min gels to 12 lbs/100ft², while circulating the casing. The cement job was conducted and the slurry displaced with mud. Good returns were maintained throughout with cement returned to surface.

Operator: Cultus Petroleum N.L.

Well : Irrawaara # 1 Rig : Slimdrill # 1 Spud : 29th April 1998

HOLE SIZE : 152.4 mm (6") Production Hole MUD TYPE : Gel - Polymer - Lignosulphonate

INTERVAL : .202 m - 552 m

While waiting on cement and nippling up the BOPs, the tanks were dumped and cleaned, and then filled with water. 70 bbls of new fluid was prepared with 25 ppb Idgel, 0.8 ppb IdPac-Reg and 1 ppb Lignosperse. The fluid was then treated with Soda Ash for expected cement contamination. The desilter was run to agitate the tank and attempt to mix the fluid and chemicals. No shearing could be done, so limiting the amount of polymer initially added. The shaker screens were left with S40 / S80 size fitted to cope with the unsheared polymer and prevent excessive mud loss due to screen blinding.

A 6" bit was run into the hole and tagged cement at 179 m. The shoe track was drilled with mud, incorporating the spud mud left in the hole from the cement displacement into the new system. The pH quickly rose to 11 as cement was drilled. At 204 m, an F.I.T. was performed before drilling resumed.

Drilling continued and once the polymer began shearing through the bit, further IdPac-Reg additions were made to reduce the fluid loss. The shaker screens were upgraded to S80 / S120.

From 345 m poorly sorted sands were encountered, causing massive mud losses at the shakers and mud cleaner due to sand blinding. The top shaker screen was downgraded to S60 to help reduce mud loss over the shakers. New premix was mixed and added to maintain volume.

A rapid mud weight gain to 9.3 ppg occurred while drilling the Eumeralla Fm as the desilter / mud cleaner was down for repairs and the sand trap could not be dumped. By-passing the shakers direct to the sump was the only way to dump & dilute leaving the settling tank full of solids. If the sand trap had been dumped the whole surface system would have been lost before the dump gate could be closed.

Polythin and water were added to control the rapidly rising viscosity and Yield Point due to the increasing solids content.

Drilling continued to a total depth of 552 m. The hole was circulated clean and the bit pulled out for a wiper trip to the casing shoe, working tight hole. The hole was then circulated clean and the bit pulled out to log.

Logging tools were made up and run into the hole and logging commenced.

As soon as it was clear that no DST's were to be run the IDFS engineer was released.

Operator

Cultus Petroleum N.L.

Well

Irrawaara # 1

29th April 1998

2. OBSERVATIONS, RECOMMENDATIONS AND WELL ANALYSIS

Irrawarra # 1 was drilled for a mud cost of \$2925.17 or \$5.30 per metre. No DST's were conducted after TD and no further mud costs incurred. The well was generally trouble free from a Drilling / Drilling Fluid viewpoint and mud costs appeared reasonable given the depth of well and the hole sizes.

8½" Surface Hole

This section of hole was drilled with a Gel Caustic spud mud for a mud cost of \$575.00 or \$2.85 per metre. Mud making clays were encountered throughout and water was added to maintain the viscosity in the 40 - 45 sec/qt range.

6" Production Hole

This section of hole was drilled for a mud cost of \$2,371.17 or \$6.77 per metre. It was designated to be drilled with a Gel Polymer Lignosulphonate system to TD. IdGel and IdPac-Reg were used for primary yield point and water loss control with Lignosperse (Calcium Lignosulphonate) for rheology stability and improved filter cake quality.

Some tight hole was experienced during initial trips through new hole but posed no further problem after being wiped with the bit.

Mud Properties

The mud in general responded poorly to chemical treatment due to the poor and / or inadequate mixing facilities provided and the layout of the tank system.

Solids Control Equipment

The Desilter / Mud Cleaner worked adequately but frequently broke down with electrical problems. When drilling sands the 200 mesh screen continually blinded and threw most of the mud into the sump.

Mud Volume

Downhole losses throughout were masked by the frequent / continual mud loss over the shaker screens and mud cleaner screen due to sand blinding. Losses over the shale shakers accounted for approximately 35% of all mud lost / disposed.

3. INTERVAL COSTS

				8-1/2" Surface Hole	Hole		6" Production Hole	Hole	Ţ	Total Well Consumption	mption
		Interval:		0 m - 202 m			202 m - 552 m (TD)	TD)		0 m - 552 m (TD)	(Q.
Product	Cost	Unit Size	Used	Cost	%Cost	Osed	Cost	%Cost	Osed	Cost	%Cost
Caustic Soda	\$ 42.50) 25 kg	1	\$42.50	7.4%	1	\$42.50	1.8%	2	\$85.00	2.9%
Defoam L	\$ 95.00) 25 lt				_	\$95.00	4.0%	,	\$95.00	3.2%
Highgel	\$ 12.50) 25 kg	42	\$525.00	91.3%	3	\$37.50	1.6%	45	\$562.50	19.2%
Idgel	\$ 9.5() 25 kg				35	\$874.00	37.2%	35	\$874.00	29.9%
IdPac Reg	\$ 136.00) 25 kg				4	\$544.00	23.1%	4	\$544.00	18.6%
Lignosperse	\$ 37.89	9 25 kg				3	\$113.67	4.8%	3	\$113.67	3.9%
Lime	\$ 7.50	0 20 kg	-	\$7.50	1.3%				,	\$7.50	0.3%
Polythin	\$ 108.00	0 25 kg				2	\$540.00	23.0%	5	\$540.00	18.5%
Soda Ash	\$ 15.00	0 25 kg				7	\$30.00	1.3%	7	\$30.00	1.0%
Sodium Sulphite	\$ 24.50	0 25 kg				3	\$73.50	3.1%	3	\$73.50	2.5%
		Totals:		\$575.00	100.0%		\$2,350.17	100.0%		82,925.17	100.0%
	ػٞ	Cost per Metre:		\$2.85			\$6.71			85.30	

4. MATERIALS RECONCILIATION

Previous Well:

Well:

Irrawarra #1

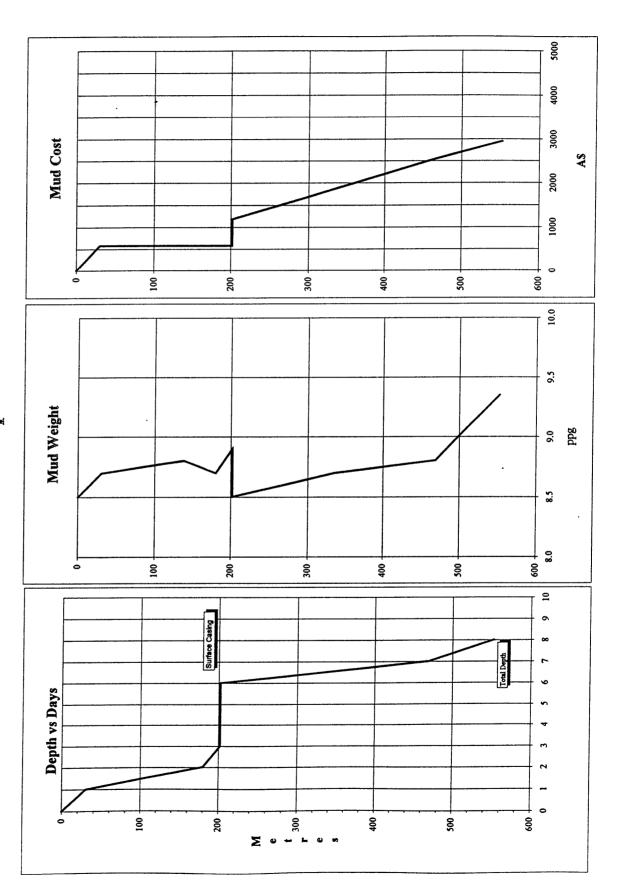
Transferred to:

Stores

		TOTAL	TOTAL	TRANSFER
PRODUCT	UNIT	RECEIVED	USED	BALANCE
Barytes	25 kg	560		560
CaCl2	25 kg	22	1	21
Caustic Soda	25 kg	28	2	26
Defoam L	25 kg	2	1	1
Highgel	25 kg	120	45	75
ID-Gel	25 kg	120	92	28
ID-Pac Reg	25 kg	20	4	16
Lignosperse	25 kg	20	3	17
Lime	20 lt	59	1	58
Polythin	25 kg	16	5	11
Soda Ash	25 kg	20	2	18
Sodium Sulphite	25 kg	20	3	17
				<u> </u>

5. FLUID PROPERTIES SUMMARY

							Gels		Filtrate	e		Solids	s							
Date	Mud Type	Depth	Weight	Vis	PV	YP	10 sec 1	10 min	API	Cake	Solids	Water	Sand	MBT	Hd	¥	JW	ਹ	Ca++	SO ₃
29-Apr-98	Gel Spud Mud	0	8.50	39	6	12	6	13	25.0	4	Ξ	6'86	ä	20.0	9.0	0.20	0.30	008	40	
		30	8.70	4	2	18	6	91	25.0	4	2.5	97.5	Ä	20.0	9.0	0.20	0.30	800	120	
30-Apr-98	Gel Spud Mud	138	8.80	43	7	12	4	6	22.0	4	3.2	8.96	Ţ	18.5	8.5	0.10	0.25	1,200	120	
	Gel Spud Mud	180	8.70	9	6	=	4	∞	22.0	4	2.5	97.5	T	18.5	8.5	0.10	0.25	1,050	120	
1-May-98	Gel Spud Mud	202	8.90	45	∞	13	9	=	20.0	4	3.9	96.1	Ļ	20.0	8.5	0.10	0.25	1;000	120	
	Gel Spud Mud	202	8.80	47	∞	12	٠,	6	22.0	4	3.2	8.96	Ţ	18.5	8.5	0.10	0.25	906	100	
2-May-98	Gel Spud Mud	202	8.80	45	•	12	3	···	22.0	4	3.2	8.96	Ţ	18.5	8.5	0.10	0.25	006	100	
	Gel Spud Mud																			
3-May-98	Gel Polymer Lignosulphonate																			~
	Gel Polymer Lignosulphonate	202	8.60	45	7	=		13	12.5	7	1.8	98.2	L	25.0	9.0	0.20	0.95	800	40	-
4-May-98	Gel Polymer Lignosulphonate																			
	Gel Polymer Lignosulphonate	202	8.50	42	0	=	6	22	11.5	7	1.1	6.86	Ţ	25.0	11.0	0.35	1.80	800	400	
5-May-98	Gel Polymer Lignosulphonate	335	8.70	\$	7	2	·	12	12.0	7	2.5	97.5	1/4	20.0	9.5	0.20	0.70	800	280	08
	Gel Polymer Lignosulphonate	469	8.80	4	6	=	6	19	11.0	7	3.2	8.96	1/4	20.0	9.0	0.20	09.0	800	180	120
6-May-98	Gel Polymer Lignosulphonate				-															
	Gel Polymer Lignosulphonate	552	9.35	4	4	15	6	78	9.5	7	7.1	92.9	1/4	20.0	9.5	0.25	1.40	009	160	120
						_														


6. Mud Volume Analysis

		Inte	Interval			Fluid Br	Fluid Built & Received	eived			Ę	Fluid Disposed	sed			Summary	ary	
	Hole				Fresh	Sump	Direct			De-	De-	Down-						
Date	Size	From	To	Mud Type	Premix	Premix	Recirc	Water	Other	sander	silter	_	Dumped Shakers		Initial	Received Disposed	Disposed	Final
29-Apr-98	8.5"	ш ₀	30 m	Spud Mud	120							16			0	120	16	<u>5</u>
30-Apr-98 8.5"	8.5"	30 m	178 m	Spud Mud				9				25	35		104	9	9	109
1-May-98	8.5"	178 m	202 m	Spud Mud		_		25				10	10		109	25	2	114
2-May-98	8.5"	202 m	202 m	Spud Mud				10							114	10	0	124
Sub Total					120	0	0	100	0	0	0	51	45	0		.220	96	
3-May-98	.9	202 m	202 m		68										0	68	0	68
4-May-98	.9	202 m	202 m	Gel Lignosulphonate											68	0	0	68
5-May-98	.9	202 m	469 m		280							121		120	68	280	241	128
6-May-98	.9	469 m	552 m	Gel Lignosulphonate	20							41		20	128	20	19	137
Sub Total					439	0	٥	0	0	0	0	162	0	140		439	302	
Well																		
Total					559	•	•	100	•	0	0	213	45	140		629	398	

	Dilut	Dilution Factors	
	Interval Length	Dilution Vol	Dilution Factor
8½" Surface Hole	202 m	100 bbls	0.5 bbls/m
6" Main Hole	350 m	350 bbls	1.0 bbls/m

IDES

7. Graphs

8. Bit Record

Opera	tor:	perator: Cultus		Well: Irrewarra#1		rrewa	arra #	_	Contra	Contractor: Slimdrill	Slimd	i i		Supervisors	isors :		Andv	Baczk	Andy Baczkowski	
Spud 1	Date:	Spud Date: 29-Apr-98		TD Date	ate:		6-Ms	1y-98	Surfac	6-May-98 Surface Csg: 7" @ 199 m	7" @	199 m		Production Csg:	tion C		P&A			
:									Depth	Depth		Cumm				Pump	Mud	Jet		Impact
Bit #	Size	Make	Type			Jets	10		Ont	Drilled	Hours	Hours	WOB	RPM	GPM	Pressure	Wt	Vel	HHPb	Force
(8.5"	Reed	HP-1	15 15 15	15	15		_	202 m	202 m	14.5 hr	3 14.5 hrs	10	120	309	202 m 202 m 14.5 hrs 14.5 hrs 10 120 309 600 8.9 191 53 272	8.9	161	53	272
7	<u>.</u> 9	Smith	FDS	4	14	4			552 m	350 m	21.5 hr	350 m 21.5 hrs 36.0 hrs	10	160	295	1100	9.4	500	63	299
						-		-												

9. HYDRAULICS

BIT PRESS LOSS	285	360
HSI	0.45	1:11
IMPACT		298
JET	191	209
FLOW REGIME	Laminar	Laminar
0 4 1 1	574	308
DC	8.0	6.5"
FLOW CORIL DC OCERT	Laminar	Laminar
n 8300 DP QCRIT	713	405
ΔO	4.5"	4.5"
9300	0.49 20 4.5"	0.57 29 4.5"
	0.49	0.57
MOD	. 6.8	9.6
GPM	309	295
DEPTH	202 m	552 m
JETS	SI SI SI	14 14 14
TYPE	HP-1	FDS
SIZE	8.5*	.9
BIT	~	2

	Inde	pende	ent Di	illing	ξFl	uid	Se	rvic	es	Da	ort#	1	Date		2	9-April-9	8
TIME .	<u></u>	•			,				. Ltd	<u> </u>	No			d Date			April-9
		Drillir	ng Flui	d Rep	ort			A.C.N	. 009267314	Der))	То		Me	
OPERATO	D	BASIN (СО	NTRA	CTOR		ndrill						
REPORT F			czkowski					PORT		Bri	an Ph	ilps					
	ME AND No						FIE	LD		LO	CATI	ON			STATE		
		IRREW	ARRA -	1			Perr	nit PE	P 133	Ot	way l	Basin				ictoria	
DRILLING ASSI		JET SIZE		CASING				UME (B		PUMP	STZE	CIR	CULA	TION	DATA		
SIT SIZE TY	PE 15 HP-11	15 15	SURFAC SET @	E 0.0			4	10	0	6 X	8	Inches			PRESS (PSI)		200
ORILL PIPE TY		1 Mirs	INT. SET @		ft M	TOTAL C		ING VOL. 04		MP MODE D PZ-8	L		97		BOTTOMS UP (min)		0
ORILL PIPE TY		Mira	PROD. ed		n M		IN STOR	rage 0		0.0700		1 *	TK/MI	N 80	TOTAL CIRC. TIME (min)		19
SIZE 0 DRILL COLLAR SI	ZE (") Length		MUD TYPE					·		BLMIN			AL/MO	N 28	ANN VEL.	DP DCs	101 186
4.13	7 0	29 Mirs	<u> </u>	Gel Spud M		MUD PR	OPERT	TES		5.43	MUI) PRO			ECIFICATIO		100
SAMPLE	FROM					it		FL	Mud Weight	Miz	imum	API FI	itrate		N/C	HPHT Filt	rate
TIME SAN	MPLE TAKEN	1			15	:00	2.	4:00	Plastic Vis	ı	Viin	Yield I			>10	pH	
FLOWLIN	VE TEMPERA	TURE		°C	 		ļ		KCI			PHPA		DVAT	IONE	Sulphites	
DEPTH	(ft) - (m)			Metres PPB / SG	8.50	1.020	8.70	1.044	Make up water	trucked	in was			RVAT ation to			
WEIGHT	VISCOSITY	(sec/at) API (°C		9		44	Chlorides : 80			ss : 100			/Mf : 0.0 /	0.4 pH:	7.4
		cP@		120 °C	9	9		10	Mixed 120 bbls								
	OINT (1b/100)					2		18	and allowed to								
	ENGTH (1b/1		/10 min.		2	13		9 16 25.0	Flocculated sys Running Desilt				d the	/ISCOSI	y for spud.		
	E API (cm3/3 FILTRATE)@	°F					Kunning Desire	EI / IVIU	Cican						
	ICKNESS A				4		4	4									
SOLIDS C					1.			2.5	!				-				
LIQUID C		6by Vol.) OII	/WATER			98.9	0.0	97.5 Tr	Rheology: 600	:38 300	0:28 20				JMMARY		
	NTENT (% I		nh equiv.)		20			20.0	Rig up over Irre	warta #	1	OLEN	<u> </u>	110.00	JANEAU L		
PH	ENE DECE CA	uncarr y	pp oquity		9.			9.0	Spud well at 20		-						
ALKALIN	TTY MUD (Pm)			ļ				Control Drill w	ith slow	pump	rate & 1	Mud V	is 50 s	ec/qt until 6.5	" collars we	re buried.
	ITY FILTRAT	E (Pf/Mf)			0.20	0.30	0.20	0.30	-								
	E (mg/L) ARDNESS AS	CALCIUM	(mg/L)		80			120									
SULPHITI		CHISCION	(8)														
K+ (mg/)	K+ (mg/L) KCL (% by Wt.)																
					ļ			T									
PHPA (C	alc ppb / Exce		ACCOUNTI	NG (BBLS)							so	LIDS (ONT	ROL	EQUIPMEN	T	
FLUID BUILT	& RECIEVED	14101	FLUID DI		Γ	SUMN	ARY			Туре	Hrs	l		Cenes	Hrs	<u> </u>	. She
remix (drill wate	r)	120	Desander	0	INITIA	T AOTA	ME	0	Centrifuge	•	0	Desar	\rightarrow	0	0	Shaker #1	\$40/\$80
remix (recirc from	m sump)	0	Desilter	0		.	· ren	120	Degasser	<u> •</u>	0	Desi	ter	-8	4	Shaker #2	•
Orill Water Direct Recirc Sump		0	Downhole Dumped	16 0	-FLUID	LOST	VED.	16			L			I		L	L
Other (eg Diesel)		0	Shakers	0	+FLUIE	IN STO	RAGE			Ov	erflow (ppg)			om (bbE)	Outpu	t (Gal/Min
									Desander		0.0				0		0.00
TOTAL RE	,	120	TOTAL LOST	16	FINAL V			1	Desilter SOI II	DS ANA	0.0 AT.VSI	<u> </u>				. PRESS.I	
Product	Price \$ 42.50	Start 28	Received	Used 1	Clo 21		s	20st 42.50	3014	DO ALYA	PPB	*		Jet Ve			141
austic Soda lighgel	\$ 12.50	120		42	71	В	s	525.00	High Grav solids		0.0	0.0	0	Impac	t force		145
ime	s 7.50	59		1	51	8	S		Total LGS		2.2	23.1	_	HHP			21
									Bentonite Drilled Solids		20.0	3.1 0.0	_	HSI Rit Pro	ess Loss		156
									Salt						eat Frac Pre	\$\$	
		<u> </u>							a @ 24:00 Hrs		0.44			Equiv.	Mud Wt.		
									K @ 24:00 Hrs		1.80			ECD			
										-							
	1	l															
			1	- 1		i											
										AILY C			\Box			ATTVE CO	OST

CITY Adelaide Office

Adelaide Office

Any openion solidor recommendation, depressed orably or written heres, has been propered carefully and may be used if the user so elects, however, no representation or warrenty

is made by ourselves or our agents as to dis correctness or completeness, and no liability is assumed for any demands revailing from the use of same

	Taal		D		<u> </u>	لدند	54	***	200										
IDES	ina	epena	ent D	mini	2 rı	ulu	Se		. Ltd	ı	Repo	t#	2 I	Date		30	0-April-9	8	
		Deilli	ng Flui	d Dor	\art			•	. L.C. 1. 00926		Rig N			pud D					ril-98
				u net	, on						Depth		30	7	Го	178	Me	tres	
OPERATO			OIL N.L.					NTRA PORT	CTOR		Slime		ilne				···		
REPORT F			aczkowski				FIE		FOR		LOC				STAT	Έ			
W DDD I W.			VARRA -	1			ı	nit PE	P 133		Otwa	ıy B	Basin			V	ictoria		
DRILLING ASSI	EMBLY	JET SIZE		CASING				UME (B					CIRCU	ILATIC	N DATA				
BIT SIZE TY	IP-11		SURFAC SET @	DE 0.	0 n 0 M	l	34	7.	18 5		PUMP SE		Inches		CIRCUI PRESS	(PSI)		600	
DRILL PIPE TY SIZE 4.1 16.		Mire	INT. SET @		R M	TOTAL C	IRCULAT	ING VOL. 09			PZ-8		91		BOTT UP (4
DRILL PIPE TY SIZE 0	PE Lengt HW	Mitre	PROD. o		n M		IN STOR	RAGE D			i∟∕stik .0700		STE	100	TOTAL				16
DRILL COLLAR S	IZE (") Lengt		MUD TYPE	C-1 S 1		•					L/MIN 5.79		GAI	./MIN 285	ANN (ft/s		DP DCs 126	126	233
4.13	7 14	9 29 Mirs		Gel Spud N		MUD PR	OPERT	IES	T	······		/IUD	PROPI		PECIFIC				
SAMPLE	FROM				F	L		FL	Mud We		Minim		API Filtr		N/	_	HPHT Filt	rate	
	IPLE TAKE				16	:00	24	4:00	Plastic V KCl	/is	Mir		Yield Poi		>1	0	pH Sulphites		8.
	E TEMPER	ATURE		°C Metres	1	38	1	180	I C.						TIONS		Duipanes		
DEPTH WEIGHT	(1t) - (m)			PPB / SG	8.80	1.056	8.70		1				3.2	022411					
	VISCOSITY	(sec/qt) API	@	°C	4	13		40	4	nical trea									
	VISCOSITY			120 °C		7		9	4		-		Sec/qt w	ith wate	r additions				
	INT (lb/10	0FT2) 100ft2) 10 sec	-/10 min			9		11	4 `	and trap a g Desilter	-		-						
	API (cm3		J10 mm.		+	2		2.0	1	g Donice	, was	IOMIC	4.						
API HPHT	FILTRATE	°F]												
	ICKNESS .		4	.2	4	2.5	-												
SOLIDS C			3	96.8	0.0	97.5	1												
	VIENT (%		1	`r		Tr				9	OPERA'	TIONS	SUMMA	RY					
	ENE BLUE C			3.5		8.5	1						_		collars we		лied.		
PH ALKALIN	TTV MITTO	(Pm)			8.	8.5		3.5	1	e drilling ed drillin			d circulat	ion rate	(100 spm)	and re	duced visc	osity	
		TE (Pf/Mf)			0.10	0.25	0.10	0.25	Continu	ca ai min	8 m 1 / 61	.1							
CHLORID	E (mg/L)				1,2	.00		050]										
		CALCIUM	(mg/L)		12	20	1	20											
SULPHITE K+ (mg/I									l										
									1						-				
РНРА (С	CL (% by Wt)							l				103	me co	NTDO	L EQUIP	AVANT	-		
FLUID BUILT &					г	SUMM	IARY					- T	யல்	Coors				. 81	list:
remix (drill water					INITIA	L VOLUM	A E	104	Cents	rNuge	•	•	Desande	r O	0		Shaker #1	540/	/580
remix (recirc from									Dega	13961	•	<u> </u>	Desilter	*	24	_	Shaker #2	•	<u>'</u>
rill Water irect Recirc Sump					-FLUID	LOST	/ED	65		1	LL_					L			
ther (eg Diesel)	r 65 Downhole irc Sump 0 Dumped Diesel) 0 Shakers OTAL RECEIVED 65 TOTAL LOST (IN STOP	RAGE				Overfl	ow (p	Pg)	Under	rflow (ppg)		Outpa		Min.)
									Desander			0.0			0			0.00	
						OLUME			Desilter	SOLEDS	S ANAL	0.0			0 RIT	HVD	PRESS.D	0.00 ATA	
Product	Price	Start	Used	Clo	se		ost		30TID	ANAL		*	Jet \	/elocity	.11D.	I VESSID		176	
							High Grav	v solids	0	.0	0.00		ct force				227		
		ļ							Total LGS		2	-	22.98	нн	•				40
		ļ							Bentonite Drilled So		18	-	0.00	HSI Bit P	ress Loss				243
		+							Salt				0.1		Seat Fra	Pres	<u> </u>		
									n @ 24:0		0.:			+-	v. Mud W	t.			
									K @ 24:0	0 Hrs	0.	71		ECD					
						\dashv	**		·										
		†																	
					1				DAY					O1 13	ATTT 4	TT 100 CC	CT.		
		ļ									LY COS	-		+	COI		TIVE CO 75.00	-51	

CITY Adelaide Office nendation, expressed orally or written herm, has been prepared carefully and may be used if the user so elects, however, no representation or warranty reserves or our agents as to at correctness or completeness, and no labelity is assumed for any demages resulting from the use of same

41

	Inc	ler	oende	nt Dr	ıllıng	ţ Fli	uid	Se	rvic	es		Repor	t #	3 Dat			1-May-98			
		1			2	,			Pty.	. Ltd	j			1 Spu				April	_02	
			Drillin	g Fluid	d Den	ort			A.C.N.			Rig N		178	To		Met		-70	
					u rtep							Depth		1/6	10	202	Wici	165		
OPERATOR	₹		BASIN C						TRAC			Slimd Brian		lne						
REPORT FO			Andy Ba	czkowski				FIE	ORT I	TOR		LOCA				STATE				
WELL NAM	IE AND		YD DESI	ADDA 1					it PE	D 133		Otwa					ictoria/			
				ARRA -1	CASING		MIII	VOLU				00000	-	CIRCUL	TION	<u> </u>				
DRILLING ASSE		15 J	ET SEZE	SURFACE		R		OLE .	PIT			PUMP SE	Œ.			CIRCULATION	ł			
8.50 H	P-11			SET @	0.0	M	TOTAL C	39 RCULATE	75 YG VOI-	-		MODEL		ASSUMIED	EFF	PRESS (PSI) BOTTOMS		600		
RILL PIPE TYPI SIZE 4.1 16.6	- 1	egth	24 Mtrs	INT. SET @		M	10120	114			GD	PZ-8	97 STK		TN	UP (min) TOTAL CIRC.		5		
RILL PIPE TYP	E L	agth	Mire	PROD. or LNR Set (ft Mi	ĺ	IN STORA	.GE	Ì.		0.0700			100	TIME (===)		17	7	
RILL COLLAR SIZ	E (") L	ngth	- Mus	MUD TYPE								LMEN		GAL/N	IN 285	ANN VEL.	DP DCs 126	126 23	.3	
4.13 7		149	29 Mtrs	<u></u>	Gel Spud M		MID DD	OPERTI	rs	┯┷		5.79 N	/IIID			ECIFICATION				
6	DOM:					,	L		L	Mud W	eight	Minim		API Filtrate		N/C	HPHT File	rate		
SAMPLE F		ZEN				ļ <u>-</u>	:00		:00	Plastic	Vis	Mir		Yield Point		>10	pН		8.5	
FLOWLINI			URE		°C	T		l		KCI				PHPA excess			Sulphites			
DEPTH (Metres	20	02	2	02					OBSE	RVAT	TONS				
WEIGHT					PPB / SG	8.90	1.068	8.80	1.056	ł.										
FUNNEL V	ISCOST	Υ (s	ec/qt) API @)	°C		15			No chemical treatment required. Maintained viscosity at 40 - 43 Sec/at with water additions.										
PLASTIC V			P@		120 °C	ļ	8				Maintained viscosity at 40 - 43 Sec/qt with water additions. Dump sand trap as required.									
YIELD POI				10			3 11			Running Desilter / Mud Cleaner.										
			0ft2) 10 sec/	10 min.	 		0		2.0	T. COLLEGE	ig izanu	/ Ivida C	, ionic	•						
FILTRATE				. @	• F	 		22.0		1										
	API HPHT FILTRATE (cm3/30 min.) @ CAKE THICKNESS API : HPHT (32nd in)							4		1										
	CAKE THICKNESS API: HPHI (32nd in) SOLIDS CONTENT JQUID CONTENT (%by Vol.) OIL/WATER					3	.9	3	.2											
							96.1	0.0 96.8		L				DED:	> N/C -	(DATATE)				
SAND CON							îr	Tr 18.5				100 -	_	JPERATI(JNS S	UMMARY				
METHYLE	NE BLU	E CAI	PACITY (p	pb equiv.)		20.0 8.5			.5 .5	1	head from		02m.							
PH						-	.ə	- °	.5	1	ate hole cle stand wine		nle go	od , no fill.						
ALKALINI ALKALINI						0.10	0.25	0.10	0.25	1	ate hole cle	-	8.							
CHLORIDI			(11/1/11)			1,0			00	РООН										
			ALCIUM	(mg/L)		13	20	10	00	Rig up	and run 7	casing.								
SULPHITE										Circula	ate casing									
K+ (mg/L)									ļ						•				
										ł										
PHPA (Ca	+ (mg/L) CL (% by Wt.) HPA (Calc ppb / Excess ppb)				NC (DDI S)					 			SOL	IDS CON	TROL	EQUIPMEN	VΤ			
FLUID BUILT &	CL (% by Wt.) IPA (Calc ppb / Excess ppb) MUD ACCOUNTING D BUILT & RECIEVED FLUID DISPOS				<u> </u>	SUM	MARY		i		Турс	1811		Cones	Hrs	7	Sta	•		
remix (drill water)				0	INITIA	L VOLU	ME	109	Ces	atr F uge	•	0	Desander	0	0	Shaker #1	S40/5	580		
remix (recirc from			0	Desilter	0					De	gasser	•	0	Desiter	8	4	Shaker #2	0	_	
rill Water			25	Downhole	10	+ FLUI	D RECEI	VED	25						<u> </u>		<u> </u>		1	
irect Recirc Sump	ter 25 Downhole				10		LOST		20				low (p	ne)	Underf	low (ppg)	Outp	t (Gal/A	Min.)	
ther (eg Diesel)	peire Sump 0 Dumped				0	+FLUI	IN STO	RAGE		Desaude			0.0	PE		0	-	0.00		
TOTAL PE					20	FINAL V	OLUME		114	Desilter		1	0.0			0	 	0.00		
					Used		ose		ost			S ANAI	YSIS	;	Γ	BIT HY	D. PRESS.I	ATA		
Product												PB	**	Jet V	elocity			176		
									High Gr	rav solids		0.0	0.00	Impa	rt force			229		
							Total L			2.0	29.49	HHP				41				
									Bentoni			8.5	10.99	HSI	T			0.7 246		
									Drilled	Solids		1.2	0.00		ess Loss	PEE				
					<u> </u>				Salt	1:00 H=-		.49	0.1		Seat Frac Pr . Mud Wt.					
										1:00 Hrs		.97		ECD						
										F •										
										 										
		\dashv																		
		-																		
		_								l	DA	ILY CO	ST				LATIVE C	OST		
						-						\$0.00				_	575.00			

	Inde	pende	nt Dr	gaille	s fil	ud	>e	TVIC	Jes	Report #	4 4	Date			2-May-	98	
GINE	<u>.</u>	•		•	-			Pty	. Ltd	Rig No		1 Spu			<u>-</u> _	9-Api	ril_Of
1 1 1		Drillin	g Fluid	d Ren	ort			A.C.N	. 009267314			1 Spui	To	202		fetres	
				- 10			T ==:			Depth		:02	10	202	10	lettes	
OPERATO		BASIN C						NTRA		Slimdri							
REPORT F		Andy Ba	czkowski				1	PORT	FOR	Brian P				STATE			
WELL NAM	ME AND No						FIE	L <i>V</i> nit PE	D 133	Otway		n			/ictori:		
			ARRA -1	CASING		МПП		JME (B		Otway			TION	DATA	10111	<u> </u>	
DRILLING ASSE		IET SIZE	SURFACE		n () VOL	PIT	rs	PUMP SIZE				CIRCULATION	1		-
8.50 H	IP-11		SET @	0.0	M n	TOTAL C	39 IRCULAT	NG VOL		6 X 8 P MODEL	Inches	SSUMED	EFF	PRESS (PSI) BOTTOMS		0	
RILL PIPE TYPE		24 Mirs	INT. Set @		M		12	4	GI	PZ-8		97 STK/MI	N	UP (mm) TOTAL CIRC			0
RILL PIPE TY	PE Leagth HW	Mire	PROD. or LNR Set (n M		IN STOR			0700	1		0	TIME (min)	·		0
RILL COLLAR SI			MUD TYPE							L/MIN		GAL / MI	0	ANN VEL. (Ft/min)	DP DCs	0	
4.13	7 149	29 Mira	L	Gel Spud N		ATID DD	OPERT	IFS.	<u>_</u>	0.00 MT	ID PRO			CIFICATION			
CANEDI E	enov.				F			FL	Mud Weight	Minimum		litrate		N/C	НРНТ В	iltrate	
SAMPLE I	IPLE TAKEN				13:				Plastic Vis	Min	Yield	Point		>10	pН		
	E TEMPERAT	URE		°C					KCI		PHPA	A excess			Sulphite	3	
DEPTH				Metres	20	2						OBSE	RVAT	IONS			
WEIGHT				PPB/SG	8.80	1.056			1								
FUNNEL V	VISCOSITY (sec/qt) API @		°C	45		<u> </u>		No chemical trea	tment requir	ed.						
	VISCOSITY o			<u>°C</u>	8		ļ		Dump and clean	action took	nd n	are to -	nix ne	mud for ne	ct section		
	INT (1b/100F		10		5			0	Trying and clean	ocuve tälik i	ara breb	W I		101 1160			
	NGTH (Ib/10		10 min.		22			· [U									
	FILTRATE		. @	°F					1								
	ICKNESS AF				4				1								
SOLIDS C			3.3	2]										
LIQUID C	ONTENT (%	by Vol.) OIL	/WATER			96.8	0.0	0.0									
	NTENT (% b				Tı		0	.00	1				NS SU	<u>IMMARY</u>			
	ENE BLUE CA	PACITY (p	pb equiv.)		18.				Circulate casing								
PH					8.:	•			Cement casing w	nun cement r	aumou	to surre	SCC.				
ALKALIN	TY MUD (P	m)			0.10	0.25		T	1								
CHLORID		2 (117141)		•	90			<u></u>	Calcium Chlorid	e used in cer	nent job) .					
	ARDNESS AS (CALCIUM ((mg/L)		10	0]								
SULPHITE	(mg/L)																
K+ (mg/I	-)																
KCL (%					ļ			1	1								
PHPA (C	alc ppb / Exces	-	ACCOUNTE	VC (PPI S)				<u> </u>		SC	LIDS	CONT	ROL	EQUIPMEN	VT		
FLUID BUILT &	& RECIEVED	MUD	FLUID DIS		ı	SUMN	/ARY		1	Type Hrs	_	_	Cones	Hrs	1		Size
remix (drill water		0	Desander	0	INITIA	LVOLU	ME	114	Centrifuge	• 0	Desi	nder	0	0	Shaker	#1 S4	40/580
remix (recirc from		0	Desilter	0					Degasser	• 0	Des	Rter	8	0	Shaker	72	•
rill Water		10	Downhole	0	+ FLUID		VED	10		J	1				J		
irect Recirc Sump		0	Dumped Shakers	0	-FLUID			0		Overflow	(nng)	1	Underfi	ow (ppg)	Ou	tput (Ga	al/Min.
Other (eg Diesel)		0	+FLUID	IN STO	RAGE	<u></u>	Desander	0.0		\vdash		0	-	0.00			
TOTAL RE	CEIVED	0	FINAL VO	LUME		124	Desilter	0.0)	i	0.00	,		
Product	Price	10 Start	TOTAL LOST Received	Used	Clos	ie l	С	ost	SOLID	S ANALY:	SIS			BIT HY	D. PRES	S.DAT/	Ā
aCI2	\$ 21.00	1	21		s	21.00		PPB	*		Jet Ve	locity					
acu									High Grav solids	0.0	0.	00	Impac	t force			
									Total LGS	0.0		_	ННР				
									Bentonite	0.0	+		HSI				
									Drilled Solids	0.0	0.			ess Loss eat Frac Pro	PES .		
									Salt n @ Hrs					Mud Wt.			
									Ke Hrs				ECD				
									·								
										ILY COST \$21.00					596.00	COST	

CITY Adelaide Office TELE

Any openion and/or recommendation, expressed onsity or written harm, but been prepared carefully and may be used if the user so elects, however, no representation or warranty
is made by ourselves or our agents as to dis correctness or completeness, and no liability is assumed for any demanes resulting from the use of same

	In	de	pend	ent D	rillin	g Fl	uid	Se	ervi	ces	D	port #	5 D	ate	· · · · · · · · · · · · · · · · · · ·	3 Ma A	Q
CUE			_		•	_				. Ltd	-					3-May-9	
			Drilli	ng Flui	id Rei	port			A.C.I	N. 009267314	<u> </u>	No	202	oud Da To			-April
OPERATO	vD.			OIL N.L.				Loc		CTOR	De	pun ndrill		10	202	Me	etres
REPORT				aczkowski			·····		PORT			an Ph					
WELL NA		D No		ICZRUWSKI					ELD	TOR		CATI	<u> </u>		STATE		
			IRREV	VARRA -	-1			Per	mit PI	EP 133	Ot	way]	Basin		1	Victoria	
DRILLING ASS	EMBLY		JET SIZE		CASING		MUI	VOL	UME (I	BBL)			CIRCUI	ATION	DATA		
SIT SIZE TY 6.00	PE FDS4	14	14 14	SURFA		0 n .0 M	н	OLE 19		TS 70	PUMI 6 X	SIZE 8	Inches		CIRCULATIO		0
RILL PIPE TY	PE	Length		INT.	<u>~</u>	R	TOTAL C	TRCULA	TING VOL.	PU	MP MODE		ASSUMI	D EFF	BOTTOMS		
	.6 # 'PE	Length	53 Mitra	SET @		M		IN STO	RAGE		SD PZ-8 BBL/STK		97 STK/	MIN	UP (min) TOTAL CIRC		0
SIZE 0 DRILL COLLAR S	HW IZE (")	Length	Mirs	LNR Se	1.00	М			0		0.0700 BL/MIN		GAL/	0 MOIN	ANN VEL	DP	0
	7	149	Mtrs		Gel Polym	er Lignos	ulphon	ate			0.00			0	(IVmin)	DCs 0	
							MUD PR	OPER							ECIFICATI		
SAMPLE						P	it	 	Pit	Mud Weight Plastic Vis		5 - 9.2 <15	API Filtrat Yield Point		6-10	PHT File	trate
TIME SAN			TIDE		°C	-		 	7:00	KCl		-13	PHPA exce		8-15	Sulphites	
FLOWLIN DEPTH			UKE		Metre	s		\vdash	202	 			L	ERVAT	TONS	1	
WEIGHT	(11) - (11)				PPB / SG	+		8.60		Dumped and cl	eaned a	tive tar	-	· · · · · · · ·			
FUNNEL	VISCOS	TY ((sec/qt) API	<u>a</u>	°C	1			45	Mixed 70 bbls	new flui	d for ne	ext section	of hole			
PLASTIC	VISCOS	TTY (cP@		120 °C				7	With:							
YIELD PO	<u>`</u>					ļ		ļ	11	25 ppb IDGEL							
			00ft2) 10 sec	/10 min.		┼			8 13	0.78 ppb Pac-R							
FILTRAT	<u>`</u>		(cm3/30 min)@	°F	 		ļ <u>'</u>	12.5	1.0 ppb Lignos Pretreated for c	-		ation with	Sada Ae	h		
			PI: HPHT (F	 			2	Further addition						oolvmer has	sheared.
SOLIDS C			·····			†			1.8]							
LIQUID C	ONTEN	(%	by Vol.) OII	/WATER				0.0	98.2								
SAND CO						<u> </u>			T	4				ONS S	UMMARY		
METHYL!	ENE BLU	JE CA	PACITY (pb equiv.)		 			25.0 9.0	Nipple up BOP	s and pr	essure (test.				
ALKALIN	TY MU	D (P	m)			 			3.0	1							
			E (Pf/Mf)		·····	1 1		0.20	0.95	1							
CHLORID	E (mg/	L)							800	1							
 			CALCIUM	(mg/L)					40								
SULPHITE)				 				ł							
K+ (mg/I KCL (%	by Wt.)					 				1					•		
PHPA (C		Exces	(dag			lт			Т	l		•					
				ACCOUNT	NG (BBLS))	l		, <u></u>			SOL	IDS CON	TROL	EQUIPMEN	Т	
FLUID BUILT &	RECIEV	ED		FLUID DI	SPOSED		SUMM	IARY			Type	Hrs		Cones	Hes		Size
remix (drill water			89	Desander	0	INITIAI	LVOLUN	ME	0	Centrifuge	<u> • </u>	0	Desander	0	0	Shaker #1	\$40/\$8
emix (recirc from	sump)		0	Desilter Downhole	0	+ FLUID	necen	UPD	89	Degasser	 	•	Desitter	8	0	Shaker #2	
rect Recirc Sump			0	Dumped	0	-FLUID		'ED	0		11			<u> </u>		L	L
ther (eg Diesel)			0	Shakers	0	+FLUID		RAGE			Ove	rflow (p	Pg)	Underfi	ow (ppg)	Outpu	t (Gal/M
										Desander		0.0)		0.00
TOTAL RE			89	TOTAL LOST	0	FINAL VO			89	Desilter	<u> </u>	0.0		, ()		0.00
Product	Pric		Start	Received	Used	Clos			Cost	SOLI	S ANA		*	7-4 7/-1		. PRESS.D	DATA
-Gel -Pac Reg	\$ \$ 1	9.50 36.00	120 20		32	19		<u>s</u>	304.00 136.00	High Grav solids		PPB 0.0	0.00	Jet Ve			
Pac Reg		37.89	20		3	17		<u>s</u>		Total LGS		2.7	16.69	ННР			
la Ash		15.00	20		2	18		s		Bentonite		25.0	-8.31	HSI			
										Drilled Solids		-0.9	0.00	Bit Pre	es Loss		
										Salt			0.1		eat Frac Pre	ss	
										n @ 07:00 Hrs		0.47		· · ·	Mud Wt.		
		\dashv								K @ 07:00 Hrs	1	0.94		ECD			
		\dashv					-+										
							\dashv										
		\neg					•									 	
1							-								010.00	. =====================================) CT
			1		I					DA	ILY CO	721			CUMUL	ATIVE CO	31

	+								n @ 24:00 Hrs	0.54			Equiv. ECD	Mud Wt.					
	 		-						Salt	-1.0		.1		eat Frac Pre	35				
									Bentonite Drilled Solids	25.0		L74 00	HSI Bit Pro	ess Loss			0.9 200		
	<u> </u>								Total LGS	2.7			ННР				27		
	+		-						High Grav solids	0.0		00	Impac				163		
Product	Pric	e Start	Used	Cle	ose		Cost	SOLID	S ANALY	-1 -2:		Jet Ve		. PRESS.I		162			
TOTAL RE	CEIVED	0	0		OLUME		89	Desilter	0.0				D TT 1 TO (1)	DENGG	0.00				
ATHER (ER THEREI)			•	 			1	Desander	0.0)			0		0.00				
irect Recirc Sump other (eg Diesel)) 	0	0		D IN STO	RAGE	"		Overflow	(ppg)	T	Underfi	ow (ppg)	Outpo	at (GaVM	/lin			
rill Water		0	Downhole Dumped	0		D RECEI	VED	0			.L		<u> </u>		L	<u></u>			
remix (recirc from	m sump)	0	Desilter	6					Degasser	• 0	Des	iter	8	4	Shaker #2				
Premix (drill water		0	Desander	0	INITIA	AL VOLU	ME	89	Centrifuge	• 0	Desi	nder	0	0	Shaker #1	\$40/\$	80		
FLUID BUILT 4	& RECIEV		D ACCOUNTI		Γ	SUMI	MARY			Type Hrs	_		Cones	Hrs	Ī	. Star			
РНРА (С	alc ppb/			====	L						OI TO	CON	TPOT 1	EQUIPMEN	т				
KCL (%																			
K+ (mg/I	<u>`</u>	<u>'</u>			 														
TOTAL HA		S AS CALCIUM	(mg/L)		 		 	+00											
CHLORID			(m=ff.)		 			800 400											
ALKALIN	ITY FILT	RATE (Pf/Mf))				0.35		Drill shoe track v	with mud.									
ALKALIN	ITY MUI) (Pm)							Tag cement at 17										
PH	EIVE BLU	E CALACITI	ppo equiv.)		 			1.0	Make up BHA a	•									
		(% by Vol.) E CAPACITY (nnh equiv	, ,				Tr 25.0	Nipple up BOP's	and pressur		WIL	<u> </u>	NATION I					
LIQUID C					L	0.0	98.9	OPERATIONS SUMMARY											
SOLIDS C					,		1.1	1											
		S API: HPHT		F				2											
	<u>-</u>	m3/30 min.) TE (cm3/30 mir	ı.) @	°F	-		 '	1.3	No Chemicals used today.										
		(lb/100ft2) 10 se	c/10 min.		<u> </u>	<u></u>		9 22	Upgrading shaker screens as soon as sheared fluid allows.										
YIELD PO	OINT (lb	/100FT2)						11	Further additions of Pac-R required to reduce Fluid Loss, once polymer has shear										
PLASTIC '		<u>` </u>	<u> </u>	120 °C				9	Pre treated new f										
WEIGHT FUNNEL V	VISCOST	ΓΥ (sec/qt) API	@	°C	 			42	High pH due to cement contamination.										
DEPTH	(ft) - (m)			Metres PPB / SG	-		8.50	1.020	Used surface equ	ipment to a			4×141						
FLOWLIN		ERATURE		°C			 	202	ксі				RVAT	IONS	haires				
TIME SAN							2	4:00	Plastic Vis	<15		Point excess		8 - 15	pH Sulphites		- 8		
SAMPLE 1	FROM				F	?it		Pit	Mud Weight	8.6 - 9.2		'iltrate		6-10	HPHT File	rate			
4.13	4	96 Mtra	.1	Gel Polyme		MUD PR		TES			JD PRO			CIFICATIO	NS		_		
DRILL COLLAR SI	IZE (*)	ength	MUD TYPE			enlaka-	et e			5.43		GAL / M	UN 228	ANN VEL. (fivada)	DP DCs 294	294 294	4		
DRILL PIPE TY		ength 106 Mirs	PROD. et		n M		IN STOR			.0700			80	TOTAL CIRC. TIME (===)		16	6		
DRILL PIPE TYP		ength Mtrs	INT. SET @		n M	TOTAL C	8	ING VOL.	GI	P MODEL O PZ-8	^	97		BOTTOMS UP (====)		3			
BIT SIZE TYP	PE FDS4	14 14 14	7" SURFAC SET @	E 653			20	P11		6 x 8	Inches	SSUMED		PRESS (PSI)		500			
DRILLING ASSE	EMBLY	JET SIZE		CASING				UME (B		PUMP SIZE	CIR	CUL	ATION	DATA					
			VARRA -	1			Pern	nit PE	P 133	Otway					ictoria				
REPORT F			aczkowski				FIE			LOCAT	ION			STATE	-				
OPERATO:			OIL N.L. aczkowski		··········			PORT		Brian F									
							I co	NTRAC		Depth Slimdri		.04	10	202	IVIC	203			
		Drilli	ng Flui	d Ren	ort			ACN	. 009267314	Rig No		1 Spu 202	To	202	Me		-70		
	<u>.</u>	•		_	,			Pty	. Ltd				d Date			-April	0		
2010	In	depend	ent Di	alling	ζFľ	uid	Se	TVIC	ces	Report	# 6	Dat	e		i-May-98	}			

	In	de	pende	ent Di	rilling	t Fli	uid	56	rvie	ces		D.	oet #	7	Dat			5-May-9	R		
3 101	·		1			3				. Ltd			ort#								
P 4			Drillir	ng Flui	d Rep	ort			A.C.N	1. 009267	7314	Rig		<u>1</u>		d Dat To			-April-9 tres		
OPERATO)R			OIL N.L.				CO	NTRA	CTOR			ıdrill								
REPORT				czkowski				-	PORT			Briz	n Ph	ilps							
WELL NA		D No		CHIOWBIL					ELD			LOC	ATI	ON			STATE				
			IRREW	VARRA -	1			Peri	mit PE	P 133		Otv	vay]	Basin			7	⁷ ictoria			
DRILLING ASS	EMBLY		JET SIZE		CASING				UME (B					CIRC	CUL	MOIT	DATA				
SIT SIZE TY	PE FDS4	14	14 14	7" SURFAC	£ 653		н	OLE 48	PT 8			PUMP	8 8	Inches			PRESS (PSI)	·	750		
DRILL PIPE TY	PE	Leagth	267 35-	INT. SET @		n M	TOTAL C		TING VOL. 28			MODEL PZ-8		ASI	UMDED 97	धा	BOTTOMS UP (min)		6		
DRILL PIPE T	i.6 # YPE	Leagth	267 Mitrs	PROD. •		R		IN STO	RAGE		BBI	LISTIK		s	TK/M		TOTAL CIRC.		19		
SIZE 4.125 DRILL COLLAR:	HW SIZE (")	Length	106 Mtrs	LNR Set	<u>e</u>	M	L		0			0700 L/MON		-	AL/M	IN 00	ANN VEL	DP	368		
4.13	4	96	Mirs	<u> </u>	Gel Polyme						6	.79			_	85	(fV:min)	DCs 368	368		
							MUD PR			Mud Weis	-ht	8.6	MUI - 9.2	MUD PROPERT 9.2 API Filtrate		ry sp.	6-10	HPHT FII	trate		
SAMPLE		AVEN				13:			FL 4:00	Plastic Vi			15	Yield F			8-15	pH			
TIME SA			TURE		°C	133		 		KCI				PHPA	excess			Sulphites			
DEPTH					Metres	33	35		469	T		OBSERVATIONS									
WEIGHT	· · · · · · ·				PPB/SG	8.70	1.044	8.80	1.056	-1											
FUNNEL	viscos	ITY ((sec/qt) API @	<u>a</u>	°C	4			41	Began rea	_										
PLASTIC			cP @	·	120 °C	7			9	Poorly so at shaker							m causing ma	ssive mua i	oss		
YIELD PO				/10 min		1	12	 	11 9 19	4						_	ce losses to s	uman			
FILTRAT			00ft2) 10 sec.	/10 min.		1		 	11.0	7	-	p shaker screen to S60 mesh to reduce losses to sump. olume with fresh premix additions.									
		`	(cm3/30 min.	.) @	°F					Sodium S				_							
			PI: HPHT (2		:	2	Downhol	e losses	maske	l by m	and loss	at sha	iker.					
SOLIDS (CONTEN	T				2.			3.2	1											
LIQUID (by Vol.) OIL	/WATER		<u> </u>	97.5	0.0	96.8					on m	. m.c	NO OT	DO (ADV				
SAND CO				h		20			0.25		4-2112						JMMARY				
METHYL PH	ENE BL	UE CA	PACITY (P	opb equiv.)		9.			9.0	Continue Perform F		snoe u	ack as	ia new i	ioie u	J 20-411	l				
ALKALIN	ITY MU	D (P	'm)				-			Drill ahea		m wit	h surv	eys.							
ALKALIN	TTY FIL	TRAT	E (Pf/Mf)			0.20	0.70	0.20	0.60]											
CHLORI						80			800	1											
			CALCIUM	(mg/L)		28			180	ł											
SULPHIT K+ (mg/		رد					,		120	ł											
KCL (%																					
	Calc ppb	Exces	s ppb)							İ											
			MUE	ACCOUNTI		,								LIDS C			EQUIPMEN	T			
FLUID BUILT		/ED		FLUID DI			SUMN		T			Туре	Hrs			Conces	Hrs		State		
Premix (drill water	<i>.</i>		280	Desander Desilter	0	INITIA	L VOLU	ME	89	Centri		\vdots	-	Desan Desa		8	24	Shaker #1 Shaker #2	S60/S12		
remix (recirc fro	m sump)		0	Downhole	120	+ FLUII	RECE	VED	280	- Deg		-				╅			 		
irect Recirc Sum)		0	Dumped	0	-FLUID	LOST		240												
ther (eg Diesel)			0	Shakers	120	+FLUID	IN STO	RAGE				Ove	flow (PPg)	1		ow (ppg)	Outp	at (Gal/Min		
TOTAL RI	CERVED		•••	TOTAL LOST	240	FINAL VO	MILIME		128	Desander Desilter			0.0)		0.00		
			280	Received	240 Used				ost		SOLIDS	S A N/A						. PRESS.I			
Product	S Pri	9.50	Start 88	Keceivea	60	Clos 28		s	570.00		OLID	AIVA	PPB	5	-1	Jet Ve		. 1 RESS.	202		
D-Gel D-Pac Reg	+	136.00	19	3	16		s	408.00	High Grav	solids		0.0	0.00	, ,	Impaci	force		26			
olythin	s	108.00	16		3	13		S	324.00	Total LGS			2.2	29.5	4	ннр			54		
odium Sulphite	s	24.50	20		3	17		S		Bentonite			20.0	9.54		HSI			1.9		
	ļ									Drilled Soli	ids		1.0	0.00			ss Loss		324		
										Sait n @ 24:00	Hrs	\dashv	0.54	0.1			eat Frac Pre Mud Wt.	35			
·	-						-+			K @ 24:00			0.71			ECD					
	 									<u> </u>											
							\Box														
												LY CO			-			ATIVE CO 555.17	OST		
												375.:									

	lt 🏄	ıde	pend	ent D	rilling	g Fli	uid	Se	rvi	ces		Rep	set #	8 Da	ıte		6-May-9	 Q	
•		_	•		•	_				. Ltd						<u></u>	<u>-</u>		
	一		Drillin	ng Flui	id Rei	nort			•	v. 00926		Rig			ud Da			9-Ap	711->
					- 110							Dep		469	T	552	М	etres	
OPERA				OIL N.L.						CTOR		Slim				· · · · · · · · · · · · · · · · · · ·			
REPOR				aczkowski					PORT	FOR		Bria				STATE			
WELL	NAME A	ND NO		C A TO TO A	4				ELD	10 122		LOC				ı	/iotomio		
				VARRA -						P 133		Oth	ay 1	Basin CIRCUL	ATTO		/ictoria		
BIT SIZE	TYPE	14	JET SIZE	7" SURFA	CASING CE 65	n C	MUD		UME (E	TS TS		PUMP :	TZE.	CIRCUL	AHO	CIRCULATIO	N .		
6.00 DRILL PIPE	FDS4 TYPE	Length		SET @	199.	.0 M	TOTAL CU	57 PCTII A1		10		6 X P MODEL	В	Inches ASSUME	D EFF	PRESS (PSI) BOTTOMS		900	
SIZE 4.1	16.6 #		350 Mbrs	SET @		M		1.	37		GI	PZ-8		97		UP (min)			7
DRILL PIPE SIZE 4.125	TYPE HW	Length	106 Mars	PROD. LNR Se		n M	1	IN STO	ragie O			3L/STK .0700		STK/	MOIN 100	TOTAL CIRC	•		20
DRILL COLL	AR SIZE (")	Length		MUD TYPE								LMIN		GAL/I		ANN VEL.	DP 34	368	
4.13	4	96	Mitra	<u> </u>	Gel Polym		ulphona MUD PRO		TES	┰┸	1	6.79	мп	PROPER	285	ECIFICATION	DCs 36	8	368
SAMP	LE FROM					F			FL	Mud We	ight	8.6		API Filtrate		6-10	HPHT FI	ltrate	
	SAMPLE T	AKEN				†			0:00	Plastic V	is	<	5	Yield Point		8 - 15	pН		
	LINE TEM				°C					KCI				PHPA exces	is		Sulphites		
DEPTI	H (ft) - (n	1)			Metre	s			552						ERVA				
WEIG					PPB / SG	1		9.35						drilling Eum	eralla F	m while			
	EL VISCO		(sec/qt) API	<u>@</u>	°C	 			44	-4				for repairs.	le drilli-	10			
	POINT (cP @		120 °C	1			14	-	-			ind trap whil ditions to co		ng. sing Viscosity	& Yield F	oint .	
			00ft2) 10 sec	/10 min.		1			28		, ******								
	ATE API					 			9.2	1									
			(cm3/30 min	.)@	°F					1									
CAKE	THICKNE	SS A	PI:HPHT (32nd in)				2	2	1									
	S CONTE					ļ			7.1	4									
	CONTEN	<u>-</u>	by Vol.) OII	_WATER		 		0.0	92.9	ļ				ODED ATT	0 276 6	DOGADY			
	CONTENT		·			 			0.0	- II AL		460-			ONS S	UMMARY			
PH	I LENE BI	OE CA	PACITY (opo equiv.)		ļ			9.5	Drill Aho				ı ipertriptosi	hoe				
	LINITY MU	D (E	m)			1				TH	ilole cie	Zazi, FO)11 W1	ipa uip w s	noc.				
			E (Pf/Mf)					0.25	1.40	run to bo	ttom and	d circula	e hol	e clean.					
CHLO	RIDE (mg	/L)						6	i00	Pull out t	to log.								
TOTAL	HARDNE	SS AS	CALCIUM	(mg/L)		ļ			60	Run Sch	lumberge	ar logs.							
	ITE (mg/	L)				ļ <u>.</u>		1	20	1									
	ng/L)									ł						•			
	(% by Wt.) (Calc ppb	/ Free	s nnh)			\vdash			T	1									
IIUA	(Care ppn	/ Eltes		ACCOUNT	NG (BBLS)				L	 			SOI	JDS CON	TROL	EOUIPMEN	T		
FLUID BUI	LT & RECIE	VED		FLUID DI		T	SUMMA	ARY		1		Турс	Hr		Cones	Hrs	Ī	. s	æ
remix (drill v	rater)		70	Desander	0	INITIAI	LVOLUM	E	128	Centr	Yuge	•	0	Desander	0	0	Shaker #1	S60/	5120
remix (recirc	from sump)		0	Desilter	0					Dega	sser	•	0	Desilter	8	8	Shaker #2	<u> </u>	0
rill Water			0	Downhole	41 0	+ FLUID	RECEIVE	ED	70 61	ļ		LL				-	L	1	
ther (eg Diese			0	Dumped Shakers	20		IN STORA	AGE	- 01		1	Over	low (p	Ppg)	Underfi	ow (ppg)	Outp	ut (Gal	Min
tales (eg Diese	<u> </u>		•	- CLERCI 2		11202			L	Desander			0.0	-		0	-	0.00	_
TOTAL	RECEIVED		70	TOTAL LOST	61	FINAL VO	LUME		137	Desilter			0.0			0		0.00	
Product	Pr	ice	Start	Received	Used	Clos	e	C	ost		SOLID	S ANAI	YSIS			BIT HYD	. PRESS.	DATA	
austic Soda	s	42.50	27		1	26			42.50				PB	*	Jet Ve	`			202
efoam L	\$	95.00	2		1	1	S			High Grav	solids		0.0	0.00	·	t force			280
ghgel	S	12.50	78		3	75	S			Total LGS			0.0	64.99	HHP				2.0
olythin	\$	108.00	13		2	11	S	•		Bentonite Drilled Sol	ids		0.0	44.99 0.00	HSI Bit Pr	ess Loss			344
										Salt		-+	+	0.0		eat Frac Pre	55		
							-			n @ 10:00	Hrs		.57			Mud Wt.			_
										K @ 10:00		0	.84		ECD				
	ı											LY CO					ATIVE C	OST	
												391.00				~ ~	946.17		

Any opinion and/or recommendation, expressed orably or written here, has been propered carefully and may be used if the user so elects, however, no representation or warranty
is made by ourselves or our secrets as to de comprehense or completeness and to lightly is Millered for the demands and have been the use of secrets.

CULTUS PETROLEUM

DAILY DRILLING REPORT#

IRREWARRA 1

Report Date: 07.05.98

FROM: A.Baczkowski

TO: Chris Way

Well Data DAILY COST \$: DEPTH (m RT): 552 HOLE SIZE ("): 6.00 (PROGRESS (m): CSG OD ("): CUM COST \$ 545,000,00 7.00 DRILL CO.: RILL CONTRACTING P/L AFE COST \$ 594,100.00 DAYS FROM SPUD : SHOE DEPTH(m RT): 200 RIG: HTA 3000 8.17 AFE BASIS: 13.00 IDES LEAK-OFF EMW(SG) MUD CO: DAYS +/- CURVE : STATUS @ 0800 : Rig released @ 1200hrs 7th May 1988. RT TO GL (m): 4.0 GL ABOVE MSL (m): 0.0 WEATHER: Cloudy with showers, cold.

Gas Data Trip Gas : 0.0 @ m. Formation Tops (this report only)

BHA#3 Length (m): D.C. (1) ANN. VELOCITY (mpm); 0.00 D.C. (2) ANN VELOCITY (mpm): 0.00 HRS ON JARS : STRING WT(k-lbs): TROE MAX (ft-lbs): H.W.D.P. ANN VELOCITY (mpm): WT BLW JAR(k-lbs): PICK UP WT(k-tbs): TROE ON (ft-lbs): 0.00 SLK OFF WT(k-lbe): TRQE OFF (ft-lbs): D.P. ANN VELOCITY mfpm): 0.00 BHA WT(k-lbs): **BHA DESCRIPTION:**

MUD DATA - CHECK# MUD DAILY COST :\$ MUD CUM COST :\$ 2,947

WEIGHT (ppg): VISCOCITY (ops): MBT: SOLIDS (% vol): SAMPLE FROM : PV (cps): H2O (% vol): PH: YP (lbs / 100 ft2): OIL (% vol): CL: TIME: DEPTH (m): GEL105 & 10m : SAND (% vol): K+C*1000: TEMP (Deg C): 3RPM: FL (cc/30min): HARD/CA: FILTER CAKE (/32"): BRPM .

Pump and SCR Data Pump Data - last 24 hrs Slow Pump Data SPM EFF SPP SPM SPP DEPTH MW TYPE LNR Flow (SG) (%) (pel) (mRT) (gpm) (psi) Partek 97 6.00 2 G.Deriver 4.50

Casing PHASE CSG SHOE MD CSG SHOE TVD CSG OD 200 7.00 TYPE LENGTH CSG ID WEIGHT THRD GRD (m) (Ibe/Ft) (") Shoe 127 6.3 26.0 1635 8md Fit cll. int cag 186,6

Survey (last 8 points only) TVD EW MD INCL AZ. N/S SECT (mRT) (m RT) DEG (deg) (m) (m) (m) 0.0 400.0 0.0 154.0 154.0 0.0 300.0 300.0 1.0

Last Tool Type: totco

Personnel: on Site =7 JOB TITLE NAME CO. NAME # 8 SLIMDRILL **CUITUS HIGGINS** 0 **IDF8** 0 Howco 0 Schlumberge 0

Driffs, Permits DRILL TYPE SAFETY DETAILS DATE INSPECTIONS DATE & Inspections TRIP DRILL 6/5/98 LAST CSG PRESS TEST 3/5/98 6/5/98 DAYS SINCE LAST LTA PIT DRILL 7/5/QR FIRE SAFETY MEETING BOP DRILL 5/5/98 SAFETY INSPECTION 4/5/98 DAYS SINCE LAST BOP TE LAST BOP TEST 4/5/98

 Bulk Stocks
 DRILL WATER (MT):
 0.0
 FUEL (MT):
 0
 GEL (sx):
 0.0

 HELI -FUEL (tr):
 0.0
 POT WATER (MT):
 0
 BARITE (sx):
 0.0
 CEMENT (sx):
 0

DAILY DRILLING REPORT #

IRREWARRA 1

Report Date: 07.05.98

Summary of period 00:00 to 24:00 hrs:

Planned Operations:

Circ out cmt,POH &WOC,L/out excess dp/dc.RIH. TOC @165m.POH sideweys.N/Down BOP,Cut & remove Bradenhead,install marker plate, RELEASE RIG @ 1200HRS 7/5/1998

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 07.05.98

PHSE	CLS	OP	FROM	TO	HRS	DEPTH	ACTIVITY DESCRIPTION		
S2	PA	CIR	00:00	00:30	50	202	Circ out after cmt job.		
S2	PA	ТО	00:30	01:30	1.00	202	РООН.		
S2	PA	LDP	01:30	05:00	3.50	202	Lay out excess Dp & Dc's.		
S2	PA	Π	05:00	06:00	1.00	202	RIH to tag top of Plug #1 @ 165m. W/10K.		
S2	PA	LDP	06:00	08:00	2.00	202	POH sideways.		
\$2	PA	BOP	08:00	12:00	4.00		Nipple down BOP,cut & remove Bradenhead,mix & spot 20sx "A" cmt on surface. Install sign RELEASE RIG @ 1200HRS 7TH MAY 1998.		

ACTIVITY FOR PERIOD 00:00 HRS TO 08:00 HRS ON 08.05.98

DAILY DRILLING REPORT#

IRREWARRA 1

12.5

Report Date: 06.05.98

DEPTH OUT (m RT):

Chris Way TO:

FROM: A.Baczkowski 552 **Well Data** DEPTH (m RT): HOLE SIZE ("): 6.00 DAILY COST \$: PROGRESS (m): 82 CSG OD ("): 7.00 CUM COST \$: \$0 DRILL CO.: RILL CONTRACTING P/L AFE COST \$: \$0 HTA 3000 DAYS FROM SPUD : SHOE DEPTH(m RT): 200 RIG: AFE BASIS: LEAK-OFF EMW(SG) 0.00 MUD CO: IDES DAYS +/- CURVE: STATUS @ 0600 : RIH to tag top of Plug #1 @ 165m. 4.0 RT TO GL (m): GL ABOVE MSL (m): 0.0 WEATHER: Clear.cold.

Formation Trip Gas : 0.0 @ m. FORMATION (RT) Gas Data TOP(m) Tops (this BGG : 0.0 Max Gas: 0.0 @ m.

report only)

IADC# 01 D G 02 Bit Data for Bit # 2 Wear Nil SIZE ("): 6.00 NOZZLE MANUFACTURER: SM AVE WOB (k-lbs): 2 3 x 14 Calculated over the bit run Drilled over the last 24 hrs TYPE: FDS AVE RPM: 150 ¥ FOOTAGE (m): 268 CUM.FOOTAGE (m): 268 SERIAL#: LS2969 FLOW (gpm): 295 X CUM. ON BOT. HRS: ON BOTTOM HRS: 6.0 25.0 PUMP PRESS. (psi): 1,100 DEPTH IN (m RT): 202 X IADC ROT, HRS: 4.5 CUM.IADC.HRS: 21.5

X

ROP (m/hr)

Length (m) :264.0 **BHA #2** D.C. (1) ANN. VELOCITY (mpm): 120.03 D.C. (2) ANN VELOCITY (mpm): 120.03 HRS ON JARS STRING WT(k-lbs): TRQE MAX (ft-lbs): 38 TRQE ON (ft-lbs): H.W.D.P. ANN VELOCITY (mpm): WT BLW JAR(k-lbs): PICK UP WT(k-lbs): 33 0.00 SLK OFF WT(k-lbs): 33 TRQE OFF (ft-lbs): 0 D.P. ANN VELOCITY mfpm): 97.18 BHA WT(k-lbs): BHA DESCRIPTION: Bit,Bit sub(fit&crows ft)x/o,2x4 1/8"Spir DC,x/o,RReamer,x/o,8x4 1/8"Spir DC`s,21x4 1/8"Slim DC`s, 36 x 3.65" DP

3

MUD DATA - CHECK # **MUD CUM COST: \$ 2,947** MUD DAILY COST:\$ 391 SOLIDS (% vol): 7.1 MBT: 20.0 WEIGHT (ppg): 8.80 VISCOCITY (cps): 44 93 9.5 SAMPLE FROM: Pit PV (cps): 14 H2O (% vol): PH: YP (lbs / 100 ft2): 15 OIL (% vol): 0 CL: 600 TIME: 2400 DEPTH (m): 470 GEL10S & 10m: 28 K+C*1000: SAND (% vol): Tr TEMP (Deg C): 3RPM: FL (cc/30min): HARD/CA: 160 6RPM: FILTER CAKE (/32"):

Pump and SCR Data Pump Data - last 24 hrs Slow Pump Data LNR SPM EFF MW TYPE Flow SPP SPM SPP DEPTH (m RT) (%) (gpm) (psi) (psi) (SG) Partek 6.00 100 97 295 1100 G.Denver 4.50

HSI (hp/sqi):

592

Survey (last 8 points only) MD TVD INCL N/S FΛV (m RT) DEG (deg) SECT (mRT) (m) (m) (m) 154.0 154.0 0.0 300.0 300.0 1.0 400.0 0.0 400.0

59.6 ROP (m/hr)

ersonnel : on Site =20							
JOB TITLE	NAME	CO. NAME	#				
		SLIMDRILL	10				
		CULTUS	1 :				
i		HIGGINS	٠ ١				
		IDFS	١ ٠				
		Howco	:				
		Schlumberger	:				

Report Date: 06.05.98

Casing	csg od		CSG SHOE MD		CSG SHOE TVD	
	7.	00		200		
	TYPE	LENGTH (m)	CSG ID (")	WEIGH*		THRD
Shoe jnt csg Fit cll. jnt csg		12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	6.3	26.	0 k 55	8rnd

Drills, Permits	DRILL TYPE	DATE	INSPECTIONS		DATE	SAFETY	DETAILS	
& Inspections	TRIP DRILL PIT DRILL FIRE BOP DRILL	6/5/98 6/5/98 5/5/98	LAST CSG PRESS TO DAYS SINCE LAST L' SAFETY MEETING SAFETY INSPECTION DAYS SINCE LAST B LAST BOP TEST	TA N	3/5/98 8 6/5/98 4/5/98 4/5/98			
Bulk Stocks	0.0		WATER (MT):	0. 0	FUEL (MT	•	GEL (sx) : CEMENT (sx) :	28.0 0

Report Date: 06.05.98

Summary of period 00:00 to 24:00 hrs:

Drill 6" hole to 552m TD,W/trip,POH & Log<Wait on P&A orders,RIH open ended,Mix &pump Plug #1 & circ.

Planned Operations:

Continue N/down BOP & Release rig.Mix & spot plug #2.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 06.05.98

PHSE	CLS	OP	FROM	то	HRS	DEPTH	ACTIVITY DESCRIPTION
S2	PD	D	00:00	06:00	6.00	552	Continue drill 6" hole F/470m to 552m. TD.
S2	PD	CIR	06:00	06:30	.50	552	Circ bttms up for wiper trip.
S2	PD	WT	06:30	10:00	- 3.50	552	Wiper trip to shoe.(No excess drag/tite spots.)
S2	PD	CIR	10:00	10:30	.50	552	Circ & condition prior to POH to Log.
S2	PD	то	10:30	16:00	5.50	552	POOH to log. (strap out,D551m, Slmber D549m) No correction.
S2	PE	LOG	16:00	19:30	3.50	552	Simber log run #1 - PEX (AITH) BHT.38c.
S2	ΑE	wo	19:30	22:00	2.50	552	Wait on Geology ops for P&A order.
S2	PD	TI	22:00	23:00	1.00	552	RIH open ended for P&A @ 232m to 170m.
S2	PA	0	23:00	23:30	.50		Mix & pump Plug #1 F/232m to 170m,total 75sx"A"cmt @15.6#/gal w/2%CaCl2.
S2	PA	то	23:30	24:00	.50	552	Pull 9 singles & circ.

ACTIVITY FOR PERIOD 00:00 HRS TO 06:00 HRS ON 07.05.98

PHSE	CLS	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
S2	PA	CIR	00:00	00:30	.50	202	Circ out after cmt job.
S2	PA	TO	00:30	01:30	1.00	202	РООН.
S2	PA	LDP	01:30	05:00	3.50	202	Lay out excess Dp & Dc`s.
S2	PA	TI	05:00	06:00	1.00	202	RIH to tag top of Plug #1 @ 165m. W/10K.
S2	PA	LDP	06:00	08:00	2.00	202	POH sideways.

52

DAILY DRILLING REPORT #

AFE BASIS:

IRREWARRA

P&.

180

Report Date: 05.05.98

DRILL CO.: RILL CONTRACTING P/L

FROM: A. Baczkowski.

Well Data

RIG:

MUD CO:

TO: Chris Way. DEPTH (m RT): 470 HOLE SIZE ("): 6.00 DAILY COST \$: PROGRESS (m): 268 CSG OD ("): 7.00 CUM COST \$: \$ DAYS FROM SPUD: SHOE DEPTH(m RT): 200 AFE COST \$: 6.17 \$

0.00

LEAK-OFF EMW(SG)

RT TO GL (m): 4.0 STATUS @ 0600 : Circ bttms up @ 552m. TD.

DAYS +/- CURVE:

GL ABOVE MSL (m): 0.0 WEATHER: Clear & cold, foggy.

HTA 3000

IDFS

 Gas Data
 Trip Gas : 0.0 @ m.
 Formation Tops (this report only)
 FORMATION (RT)
 TOP(m)

 BGG : 0.0 Max Gas : 0.0 @ m.
 TD
 Eumeralla Fmt. TD
 552

IADC# Bit Data for Bit # 2 01 Wear R SIZE ("): 6.00 NOZZLE MANUFACTURER: SM AVE WOB (k-lbs): 2 3 x 14 Calculated over the bit run Drilled over the last 24 hrs TYPF · FDS AVE RPM: 150 X FOOTAGE (m): 268 CUM.FOOTAGE (m): 268 FLOW (gpm): 295 LS2969 SERIAL#: X ON BOTTOM HRS: 19.0 CUM. ON BOT. HRS: 19.0 PUMP PRESS. (psi): 1,100 DEPTH IN (m RT): 202 X IADC ROT. HRS: 17.0 CUM.IADC.HRS: 17.0 DEPTH OUT (m RT): HSI (hp/sqi): 3 Y ROP (m/hr) 15.8 ROP (m/hr) 15.8

Length (m) :264.0 **BHA #2** D.C. (1) ANN. VELOCITY (mpm): 120.03 HRS ON JARS: STRING WT(k-lbs): TRQE MAX (ft-lbs): D.C. (2) ANN VELOCITY (mpm): 38 120.03 WT BLW JAR(k-lbs): PICK UP WT(k-lbs): H.W.D.P. ANN VELOCITY (mpm): 33 TRQE ON (ft-lbs): 0.00 SLK 0FF WT(k-lbs): BHA WT(k-lbs): 26 l 33 TRQE OFF (ft-lbs): 0 D.P. ANN VELOCITY mfpm): 97.18 **BHA DESCRIPTION:** Bit, Bit sub(fit&crows ft)x/o,2x4 1/8"Spir DC,x/o,RReamer,x/o,8x4 1/8"Spir DC`s,21x4 1/8"Slim DC`s, 36 x 3.65" DP

MUD DATA - CHECK # 6 MUD DAILY COST :\$ 1,376 MUD CUM COST: \$ 2,556 WEIGHT (ppg): 8.80 41 SOLIDS (% vol): 3.2 MBT: 20.0 VISCOCITY (cps): SAMPLE FROM: Pit PV (cps): 9 H2O (% vol): 97 PH: 9.0 YP (lbs / 100 ft2): 11 TIME: 2400 0 500

FILTER CAKE (/32"):

TIME: 2400 YP (lbs / 100 ft2): 11 OIL (% vol): 0 CL:
DEPTH (m): 470 GEL10S & 10m: 9 19 SAND (% vol): Tr K+C*1000:
TEMP (Deg C): 3RPM: FL (cc/30min): 11.0 HARD/CA:

 Casing
 CSG OD
 PHASE
 CSG SHOE MD
 CSG SHOE TVD

 7.00
 200

TYPE

LENGTH CSG ID WEIGHT GRD THRD

6RPM:

TYPE	LENGTH (m)	CSG ID (")	WEIGHT (lbs/Ft)	GRD	THRD
Shoe nt csg -it cll. nt csg	.4 12.7 .4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	6.3	26.0	k55	8md

Bulk Stocks		FUEL (MT):	0
DRILL WATER (MT):	0.0	BARITE (sx):	560.0
POT WATER (MT):	0	GEL (sx):	28.
HELI -FUEL (ltr) :	0.0	CEMENT (sx):	0

Survey (last 8 points only)									
MD (m RT)	TVD (m RT)	INCL DEG	AZ. (deg)	°V SECT (m)	N/S (m)	E/W (m)			
154.0 300.0 400.0	154.0 300.0 400.0	0.0 1.0 0.0							

DAILY DRILLING REPORT #

Report Date: 05.05.98

IRREWARRA

Summary of period 00:00 to 24:00 hrs:

Drill out cmt,flt cll & shoe,perform FIT. Drill 6" hole WLS.

Planned Operations:

Wiper trip to shoe,trip out to Electric log.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 05.05.98

PHSE	CLS	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
S2	PD	DFS	00:00	03:30	3.50	202	Continue drill cmt ,flt cll & shoe.
S2	PD	LOT	03:30	04:00	.50	202	Perform FIT to EMW 13#/gal. (150psi)
S2	PD	D	04:00	12:00	8.00	300	Drilling 6" hole W/Wireline surveys.F/202m to 300m
S2	PD	s	12:00	12:30	.50	300	Circ & survey @ 300m. 1Deg.
S2	PD	D	12:30	20:30	8.00	400	Drill 6" hole F/300m to 400m
S2	PD	S	20:30	21:00	.50	400	Circ & survey @ 400m. Bl.
S2	PD	D	21:00	24:00	3.00	470	Drill 6" hole F/400m to 470m.

Report Date: 04.05.98

FROM: A. Baczkowski.		TO: Chris V	/ay.				
Well Data		DEPTH (m RT) :	202	HOLE SIZE ("):	7.00	DAILY COST \$:	\$(
DRILL CO. : RILL CONT	RACTING P/L	PROGRESS (m):	0	CSG OD ("):	7.00	CUM COST \$:	\$(
RIG:	HTA 3000	DAYS FROM SPUD :	5.17	SHOE DEPTH(m RT):	200	AFE COST \$:	\$0
MUD CO:	IDFS	DAYS +/- CURVE :		LEAK-OFF EMW(SG)	0.00	AFE BASIS :	
RT TO GL (m):	4.0	STATUS @ 0600 : Drilli	ng 6" h	ole @ 232m.			
GLABOVE MSL (m)	on l	WEATHER · Clea	r & cold	formy			

Gas Data	Trip Gas: 0.0 @ m.	Formation	FORMATION (RT)	TOP(m)
BGG : 0.0	Max Gas: 0.0 @ m.	Tops (this report only)		- 1

Bit Data for Bit #	2	IADC#		Wear		01	D	L	В	G	02	R
SIZE ("): MANUFACTURER: TYPE: SERIAL#: DEPTH IN (m RT): DEPTH OUT (m RT):	FDS	AVE WOB (k-lbs) : AVE RPM : FLOW (gpm) :	2 45 220 550	NOZZLE 3 x14 x x x x	FOOT ON BO	AGE (m OTTOM ROT. HI	HRS:	0.0 0.0	CUM.F	OOTAC ON BOT ADC.HR	over the ti GE (m) : T. HRS :	oit run O. O.

BHA #2 Leng	jth (m) :202.0				D.C. (1) ANN. VELOCITY (mpm);	52.65
HRS ON JARS :		STRING WT(k-lbs):	20	TRQE MAX (ft-lbs):	0	D.C. (2) ANN VELOCITY (mpm):	52.65
WT BLW JAR(k-lbs):	0	PICK UP WT(k-lbs):	20	TRQE ON (ft-lbs):	0	H.W.D.P. ANN VELOCITY (mpm):	0.00
BHA WT(k-lbs):	20	SLK 0FF WT(k-lbs):	20	TRQE OFF (ft-lbs):	0	D.P. ANN VELOCITY mfpm):	0.00
BHA DESCRIPTION :	Bit,	Bit sub(fit&crows ft)x/o,2x4	1/8"Sp	ir DC,x/o,RReamer,x/o,8x4	1/8"Spir [C`s,13x4 18"Slim DC`s.	

MUD DATA - CHECK # 6		MUD DAILY COST :\$			605	M COST :\$ 1,180		
WEIGHT (ppg):	8.50	VISCOCITY (cps):		42	SOLIDS (% vol):	1.1	MBT:	25.0
SAMPLE FROM:	pit	PV (cps):		9	H2O (% voi):	99	PH:	11.0
TIME:	2400	YP (lbs / 100 ft2):		11	OIL (% voi):	0	CL:	500
DEPTH (m):	202	GEL10S & 10m:	9	22	SAND (% vol):	Tr	K+C*1000:	
TEMP (Deg C):	1	3RPM:		ı	FL (cc/30min):	11.5	HARD/CA:	400
		6RPM:		1	FILTER CAKE (/32"):	2		

Casing	CSG OD		PHASE	CSG SH	OE MD	C	SG SHO	DE TVD
	7	.00			200			
	TYPE		NGTH (m)	CSG ID (")	WEIGH (lbs/F		GRD	THRD
Shoe jnt csg Fit cll. jnt csg			.4 12.7 .4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	6.3	l	6.0	k55	8rnd

Bulk Stocks		FUEL (MT):	0
DRILL WATER (MT):	0.0	BARITE (sx) :	560.0
POT WATER (MT):	0	GEL (sx):	88.
HELI -FUEL (ttr) :	0.0	CEMENT (sx):	0

Survey (last 8 points only)									
	MD (m RT)	TVD (m RT)	INCL DEG		'V' SECT (m)	N/S (m)	E/W (m)		
l	154.0	154.0	0.0						
l	300.0	300.0	1.0						
ı	400.0	400.0	0.0						
ľ									

DAILY DRILLING REPORT #

Report Date: 04.05.98

IRREWARRA 1

Summary of period 00:00 to 24:00 hrs:

Planned Operations:

Installed B/head& tested same,N/up BOP & tested same,Drilled out cmt& fit cll.

Drill 6" hole WLS.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 04.05.98

PHSE	CLS	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
S1	TD	WH	00:00	01:00	1.00	202	Continue machine & restore Bradenhead to as new condition.
S1	TD	WH	01:00	04:00	3.00	202	Install Bradenhead, preheat & weld, cool & pressure test to 1500psi. OK.
S1	PD	ВОР	04:00	10:00	6.00	202	N/up BOP`s.
S2	PD	WH	10:00	16:00	6.00		Pressure test BOP & choke manifold,ISBOP,U.K/cock,HCR,200L, 2100H.Hydril 200L,1500H. Run up Koomey unit 13 1/2min.
S2	PD	TI	16:00	21:30	5.50	202	M/up new Bit & BHA & RIH. TOC @ 179m.
S2	PD	DFS	21:30	24:00	2.50	202	Drilling cmt & fit shoe.

ANNOTATIONS FOR PERIOD	00:00 HRS TO 24:00 HRS ON 04.05.98
REMARK / OBSERVATION	SOLUTION / RECOMMENDATION
Due to driller error the shoe was drilled out,unable to obtain csg pressure line. So we actually had an injection rate established @ 200psi.	Supervision of green hands.

Report Date: 03.05.98

FROM: A. Baczkowski.

TO: Chris Way.

Well Data DRILL CO.: RILL CONTRACTING P/L RIG: HTA 3000 MUD CO: IDFS	DEPTH (m RT): PROGRESS (m): DAYS FROM SPUD: DAYS +/- CURVE:	202 0 4.17	HOLE SIZE ("): CSG OD ("): SHOE DEPTH(m RT): LEAK-OFF EMW(SG)	7.00 7.00 200 0.00	DAILY COST \$: CUM COST \$: AFE COST \$: AFE BASIS:	\$0 \$0
RT TO GL (m): 4.0 GL ABOVE MSL (m): 0.0	STATUS @ 0600 : N/up B WEATHER : Clear	BOP. & cold,	foggy.			

Gas Data	Trip Gas: 0.0 @ m.	Formation	FORMATION (RT)	TOP(m)
BGG : 0.0	Max Gas : 0.0 @ m.	Tops (this report only)		

MUD DATA - CHECK #		MUD DAILY C	OST:\$	MUD CUM COST :\$ 575		
WEIGHT (ppg): SAMPLE FROM: TIME: DEPTH (m): TEMP (Deg C):	8.70 Pit 202	VISCOCITY (cps): PV (cps): YP (lbs / 100 ft2): GEL10S & 10m: 3RPM:	40	SOLIDS (% vol): H2O (% vol): OIL (% vol): SAND (% vol): FL (cc/30min): FILTER CAKE (/32"):	MBT: PH: CL: K+C*1000: HARD/CA:	

K	Casing	CSG OD		PHASE	CSG SH	OE MD	CS	SG SHC	E TVD
		7.	00			200			
		TYPE		NGTH (m)	CSG ID (")	WEIGH (lbs/F		GRD	THRD
	Shoe jnt csg Fit cll. jnt csg			.4 12.7 .4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	6.3	2	6.0	k55	8rnd

Bulk Stocks		FUEL (MT):	0
DRILL WATER (MT):	0.0	BARITE (sx):	560.0
POT WATER (MT):	0	GEL (sx):	90.
HELI -FUEL (ltr) :	0.0	CEMENT (sx):	0

Survey	Survey (last 8 points only)											
MD (m RT)	TVD (m RT)	INCL DEG	AZ. (deg)	'V' SECT (m)	N/S (m)	E/W (m)						
154.0		0.0										
300.0 400.0	300.0 400.0	1.0 0.0										

Personnel : on Site =57										
JOB TITLE	NAME	CO. NAME	#							
Drlg Supervisors	Flink/Jackson	RBT	2							
Drig Manager	C.Way	Cultus	1							
OIM / Towmaster	Reese / Rodrigu	Santa Fe	2							
Toolpushers	Brown / Wilkie	Santa Fe	2							
Mud Engineer		Baroid								
Cementer		Hibtn								
Mud Loggers		HML								
Electric Line		Schlum ·								
Rig Crews		Santa Fe	30							
Sub Contractors		Santa Fe	1 1							
Catering		P&O	7							
ROV Operator		Contract Diving	2							
Insurance Surveyor	K. Brederman	Noble Denton	1							
Seaman		Tide Water	7							
Surveyors		Racal	2							
QC Surveyor	Halls		1							
Welders		G&S	0							

DAILY DRILLING REPORT #

IRREWARRA 1

Report Date: 03.05.98

Summary of period 00:00 to 24:00 hrs:

Planned Operations:

Slack off 7"csg,install & weld & attempt pressure test Bradenhead,falled, remove Bradenhead & restore to as new condition.

Press test BOP.Drill out cmt,fit&shoe,perform FIT,Drill 6" hole.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 03.05.98

PHSE	CLS	OP	FROM	то	HRS	DEPTH	ACTIVITY DESCRIPTION
S1	PD	wo	00:00	03:00	3.00	202	WOC. Slack off 7" csg.
S1	PD	WH	03:00	11:00	8.00		Rough cut 7",remove stub,final cut& bevel,Preheat & weld on B/head. Press test weld failed,reweld & allow to cool,press test failed two
S1	TD	wн	11:00	24:00	13.00	202	attempts. Cut & remove Bradenhead, machine & remove csg stub & restore to as new.

ANNOTATIONS FOR PERIOD	00:00 HRS TO 24:00 HRS ON 03.05.98
REMARK / OBSERVATION	SOLUTION / RECOMMENDATION
111010 011 10 POLICE 01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Removed from 7" and remachined to remove 7" stub and clean out welding dags.

DAILY DRILLING REPORT

Report Date: 02.05.98

IRREWARRA 1

Summary of period 00:00 to 24:00 hrs:

Planned Operations:

Wait on cmt unit & pump hand,Mix & pump 160sx Class"A" cmt @ 15.8#/gal. Displace &bump,press test t/3000psi. WOC.

Complete welding & cooldown as per procedure.N/up & press test same to Cultus spec`s.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 02.05.98

PHSE	CLS	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
S1	TD	wo	00:00	13:30	13.50	202	Wait on cmt unit, circ csg.
S1	PD	RU	13:30	14:30	1.00	202	Cmt unit onsite, no operator,rig up pump truck and load cmt head.
S1	TD	CIR	14:30	16:30	2.00	202	Continue circ & wait on operator.
S1	PD	СМ	16:30	17:30	1.00		Press test lines t/3000psi.Pump spacer ahead,Mix & pump160sx Class"A" @15.8#/gal.Drop plug& displace& bump,press tst csg t/3000psi,Flt held,cmt to surface.
S1	PD	wo	17:30	24:00	6.50	202	WOC sample soft, unable to slack off 7".

ANNOTATIONS FOR PERIOD	00:00 HRS TO 24:00 HRS ON 02.05.98
REMARK / OBSERVATION	SOLUTION / RECOMMENDATION
	Increase in the % of CaCl2 for next surface job due to ambient temperature.

Report Date: 02.05.98

FROM: A. Baczkowski TO: Chris Way

DAILY COST \$: DEPTH (m RT): HOLE SIZE ("): 7.00 Well Data 202 PROGRESS (m): CSG OD ("): 7.00 **CUM COST \$:** \$0 0 DRILL CO.: RILL CONTRACTING P/L AFE COST \$: \$0 DAYS FROM SPUD : SHOE DEPTH(m RT): 200 3.17 HTA 3000 RIG: AFE BASIS: 0.00 MUD CO: IDFS DAYS +/- CURVE: LEAK-OFF EMW(SG) STATUS @ 0600 : Welding on Bradenhead. RT TO GL (m): 4.0

GL ABOVE MSL (m): 0.0 WEATHER: Clear & cold, frosty.

Gas Data Trip Gas: 0.0 @_m.

BGG: 0.0 Max Gas: 0.0 @_m.

Formation Tops (this report only)

BHA #2 Length (m): D.C. (1) ANN. VELOCITY (mpm): 0.00 D.C. (2) ANN VELOCITY (mpm): TRQE MAX (ft-lbs): 0.00 HRS ON JARS: STRING WT(k-lbs): H.W.D.P. ANN VELOCITY (mpm): 0.00 TRQE ON (ft-lbs): WT BLW JAR(k-lbs): PICK UP WT(k-lbs): D.P. ANN VELOCITY mfpm): 0.00 SLK 0FF WT(k-lbs): TRQE OFF (ft-lbs): BHA WT(k-lbs): **BHA DESCRIPTION:**

MUD CUM COST :\$ 575 MUD DATA - CHECK # MUD DAILY COST :\$ SOLIDS (% vol): MBT: WEIGHT (ppg): VISCOCITY (cps): PH: PV (cps): H2O (% vol): SAMPLE FROM: CL: YP (lbs / 100 ft2): OIL (% vol): TIME: GEL10S & 10m: K+C*1000: SAND (% vol): DEPTH (m): TEMP (Deg C): 3RPM: FL (cc/30min): HARD/CA: 6RPM: FILTER CAKE (/32"):

sing CSG OD		PHASE	CSG SH	OE MD	CS	SG SHC	E TVD
7.0	00			200			
TYPE			CSG ID			GRD	THRD
		12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	6.3	<u> </u>		k55	8rnd
			TYPE LENGTH (m) 4 12.7 .4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	TYPE LENGTH (m) CSG ID (") .4 12.7 .4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	TYPE LENGTH CSG ID WEIGH (Ibs/F)	TYPE LENGTH (m) CSG ID (lbs/Ft) .4 12.7 .4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	TYPE LENGTH (m) CSG ID (Ibs/Ft) GRD (ibs/Ft)

 Bulk Stocks
 FUEL (MT) :
 0

 DRILL WATER (MT) :
 0.0
 BARITE (sx) :
 0.0

 POT WATER (MT) :
 0
 GEL (sx) :
 0.

 HELI -FUEL (ltr) :
 0.0
 CEMENT (sx) :
 0

l	Survey (last 8 points only)											
	MD (m RT)	TVD (m RT)	INCL DEG	AZ. (deg)	'V' SECT (m)	N/S (m)	E/W (m)					
	154.0 300.0 400.0	154.0 300.0 400.0	0.0 1.0 0.0									

- 1	· · · · · · · · · · · · · · · · · · ·			
İ	Personnel : on	Site =57		
١	JOB TITLE	NAME	CO. NAME	#
ı	Drlg Supervisors	Flink/Jackson	RBT	2
ı	Drig Manager	C.Way	Cultus	1
ı	OIM / Towmaster	Reese / Rodrigu	Santa Fe	2
1	Toolpushers	Brown / Wilkie	Santa Fe	2
ł	Mud Engineer		Baroid	1 1
ı	Cementer		Hibtn	1 1
ı	Mud Loggers		HML	
	Electric Line		Schlum	
I	Rig Crews		Santa Fe	30
7	Sub Contractors		Santa Fe	
I	Catering		P&O	7
I	ROV Operator		Contract Diving	2
H	Insurance Surveyor	K. Brederman	Noble Denton	1
	Seaman		Tide Water	7
	Surveyors		Racal	2
ᆁ	QC Surveyor	Halis		1
Į	Welders		G & S	0

DAILY DRILLING REPORT

Report Date: 01.05.98

IRREWARRA 1

FROM: A.baczkowski.

Chris way. TO:

DAILY COST \$: **Well Data** DEPTH (m RT): HOLE SIZE ("): 8.50 202 PROGRESS (m): 7.00 CUM COST \$. 24 CSG OD ("): \$0 DRILL CO.: RILL CONTRACTING P/L SHOE DEPTH(m RT): AFE COST \$: \$0 DAYS FROM SPUD: 200 2.17 HTA 3000 RIG: AFE BASIS: DAYS +/- CURVE : UNKNOWN **IDFS** LEAK-OFF EMW(SG) 0.00 MUD CO: STATUS @ 0600 : Circ 7" csg W.O.Cmt pump truck.

4.0 RT TO GL (m): **WEATHER:** 0.0 Clear, cold & frosty.

GL ABOVE MSL (m):

Trip Gas : 0.0 @ m. **Formation Gas Data** FORMATION (RT) TOP(m) Tops (this BGG : 0.0 Max Gas: 0.0 @ m. report only)

IADC# 02 R Bit Data for Bit # 1 Wear NO SIZE ("): 8.50 NOZZLE MANUFACTURER: RE AVE WOB (k-lbs): 2 3 x 15 Drilled over the last 24 hrs Calculated over the bit run TYPE: HP11 AVE RPM: 120 X FOOTAGE (m): 24 CUM.FOOTAGE (m): 193 FLOW (gpm): 309 SERIAL#: BA1083 X ON BOTTOM HRS: 30 CUM. ON BOT. HRS: 24.0 PUMP PRESS. (psi): 600 DEPTH IN (m RT): 9 X IADC ROT. HRS: 2.0 CUM.IADC.HRS: 14.5 HSI (hp/sqi): DEPTH OUT (m RT): 202 1 Y ROP (m/hr) 12.0 ROP (m/hr) 13.3

Length (m) :202.0 **BHA #1** D.C. (1) ANN. VELOCITY (mpm): 69.56 D.C. (2) ANN VELOCITY (mpm): HRS ON JARS: STRING WT(k-lbs): 28 TRQE MAX (ft-lbs): 0 41.79 WT BLW JAR(k-lbs): PICK UP WT(k-lbs): 29 TRQE ON (ft-lbs): 0 H.W.D.P. ANN VELOCITY (mpm): 41.79 SLK 0FF WT(k-lbs): D.P. ANN VELOCITY mfpm): 28 TRQE OFF (ft-lbs): BHA WT(k-lbs): 27 0.00 **BHA DESCRIPTION:** Bit, bit sub, 3 x 6 1/4" DC.10x 4 1/8" DC, 10x 4 1/8"RSK6 DC's.

MUD DATA - CHECK # MUD DAILY COST:\$ 0 MUD CUM COST:\$ 575 2.5 8.70 40 SOLIDS (% vol): MBT: 18.5 WEIGHT (ppg): VISCOCITY (cps): 98 PH: 85 **SAMPLE FROM:** F/L PV (cps): q H2O (% vol): YP (lbs / 100 ft2): 11 OIL (% vol): 0 CI · 1,050 TIME . 2400hr DEPTH (m): 178 GEL10S & 10m: 8 SAND (% vol): K+C*1000: tr TEMP (Deg C): 3RPM: FL (cc/30min): 22.0 HARD/CA: 120 6RPM: FILTER CAKE (/32"): 3

Casing	CSG OD		PHASE	CSG SH	OE MD	CS	G SHO	DE TVD
	7	.00			200			
	TYPE		NGTH (m)	CSG ID	WEIGH		GRD	THRD
Shoe jnt csg Fit cll. jnt csg			.4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	6.3		5.0	k55	8rnd

Bulk Stocks FUEL (MT): 0 BARITE (sx): DRILL WATER (MT): 0.0 500.0 POT WATER (MT): 0 GEL (ax): 120. 0.0 CEMENT (ax): HELI-FUEL (ltr): 0

DAILY DRILLING REPORT #

Report Date: 01.05.98

IRREWARRA 1

Summary of period 00:00 to 24:00 hrs:

Drill to csg point,circ & wiper trip. POH.L/out 6 1/4"DC,Rig & run 7"csg.

Planned Operations:

Cmt 7" csg,WOC. Cut & remove stub,install B/head& weld same, N/up BOP's&test same.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 01.05.98

PHSE	CLS	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
S1	PD	D	00:00	03:00	3.00	202	Continue drill 8 1/2" hole f/178m to 202m.csg point.
S1	PD	CIR	03:00	03:30	.50	202	Circ bttms up (carbide)for wiper trip.Hole in gauge.
S1	PD	WT	03:30	09:00	5.50	202	Wiper trip for csg.
S1	PD	CIR	09:00	09:30	.50	202	Circ bttms up, prior to POH f/7"csg.
S1	PD	то	09:30	14:30	5.00	202	POH to run 7"csg, L/out 6 1/4" DC's.
S1	PD	RU	14:30	15:00	.50	202	Rig to run 7"csg.
S1	PD	wo	15:00	19:00	4.00	202	Wait on float equipment.
S1	PD	RRC	19:00	23:00	4.00	202	Run 16jnts 26#/ft k55 8rnd LT&C csg.
S1	PD	CIC	23:00	24:00	1.00	202	Install circ swedge & circ 7"csg.

DAILY DRILLING REPORT

IRREWARRA 1

Report Date: 30.04.98

FROM: A.Baczkowski TO: Chris Way

8.50 DAILY COST \$: **Well Data** DEPTH (m RT): 178 HOLE SIZE ("): CUM COST \$: \$0: PROGRESS (m): 0.00 148 CSG OD ("): DRILL CO.: RILL CONTRACTING P/L AFE COST \$: **S**0 SHOE DEPTH(m RT): 0 DAYS FROM SPUD: 1.17 HTA 3000 RIG: AFE BASIS: 0.00 DAYS +/- CURVE: LEAK-OFF EMW(SG) IDFS MUD CO:

RT TO GL (m):

4.0 STATUS @ 0600 : Wiper trip to top of 6 1/4" DC's.

GL ABOVE MSL (m):

0.0 WEATHER: Clear sky ,cold & frosty.

Gas Data Trip Gas: 0.0 @ m.

BGG: 0.0 Max Gas: 0.0 @ m.

Formation Tops (this report only)

01 02 R IADC# Wear Bit Data for Bit # 1 SIZE ("): 8.50 NOZZLE MANUFACTURER: RE AVE WOB (k-lbs): 2 Calculated over the bit run 3 x 15 Drilled over the last 24 hrs HP11 120 AVE RPM: TYPE: X FOOTAGE (m): 148 CUM.FOOTAGE (m): 169 FLOW (gpm): 309 **BA1083** X SERIAL#: ON BOTTOM HRS: 17.5 CUM. ON BOT. HRS: 21.0 PUMP PRESS. (psi): 600 X IADC ROT. HRS: 10.0 CUM.IADC.HRS: 12.5 DEPTH IN (m RT): HSI (hp/sqi): ROP (m/hr) ROP (m/hr) 13.5 DEPTH OUT (m RT):

BHA #1 Length (m) :202.0 D.C. (1) ANN. VELOCITY (mpm): 69.56 D.C. (2) ANN VELOCITY (mpm): 0 41.79 TRQE MAX (ft-lbs): HRS ON JARS: STRING WT(k-lbs): 28 H.W.D.P. ANN VELOCITY (mpm): 41.79 PICK UP WT(k-lbs): 29 TRQE ON (ft-lbs): 0 WT BLW JAR(k-lbs): TRQE OFF (ft-lbs): 0 D.P. ANN VELOCITY mfpm): 0.00 SLK OFF WT(k-lbs): 28 BHA WT(k-lbs): Bit,bit sub,3 x 6 1/4" DC.10x 4 1/8" DC, 10x 4 1/8"RSK6 DC's. **BHA DESCRIPTION:**

MUD CUM COST:\$ 575 MUD DATA - CHECK # MUD DAILY COST:\$ 0 2.5 MBT: 18.5 40 SOLIDS (% vol): 8.70 VISCOCITY (cps): WEIGHT (ppg): PV (cps): 9 H2O (% vol): 98 PH: 8.5 SAMPLE FROM: F/L 1,050 YP (lbs / 100 ft2): 11 OIL (% vol): 0 CL: 2400hr TIME: K+C*1000: GEL10S & 10m: 8 DEPTH (m): 178 SAND (% vol): tr HARD/CA: FL (cc/30min): 22.0 120 3RPM · TEMP (Deg C): FILTER CAKE (/32"): 3 6RPM:

Casing CSG OD PHASE CSG SHOE MD CSG SHOE TVD

TYPE LENGTH CSG ID (Ibs/Ft) GRD THRD

(m) (") (Ibs/Ft)

 Bulk Stocks
 FUEL (MT):
 0

 DRILL WATER (MT):
 0.0
 BARITE (sx):
 0.0

 POT WATER (MT):
 0
 GEL (sx):
 0.

 HELI -FUEL (ltr):
 0.0
 CEMENT (sx):
 0

Survey (last 8 points only)							
MD (m RT)	TVD (m RT)	INCL DEG	AZ. (deg)	SECT (m)	N/S (m)	E/W (m)	
154.0	154.0	0.0					
300.0	300.0	1.0					
400.0	400.0	0.0					
Last Tool Type: totco							

DAILY DRILLING REPORT#

Report Date: 30.04.98

IRREWARRA 1

Summary of period 00:00 to 24:00 hrs:

Drilled 8 1/2" hole to 202m. Csg point. With rig repairs.

Planned Operations:

Complete wiper trip,circ bitms up,POH to run7"csg,Run& cmt 7"

csg.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 30.04.98

PHSE	CLS	OP	FROM	то	HRS	DEPTH	ACTIVITY DESCRIPTION
S1	PD	D	00:00	02:00	2.00	41	Continue drill 8 1/2" hole f/30 to 41m.
S1	TD	RR	02:00	04:00	2.00	41	Hydraulics to rotary and to hoist failing, repairing same.
S1	PD	D	04:00	06:00	- 2.00	65	Continue drill 8 1/2" hole f/41 to 65m.
S1	TD	RR	06:00	10:00	4.00	65	Repair fluid inlet valve to Power swivel.
S1	PD	D	10:00	21:00	11.00	154	Drill 8 1/2" hole f/65m to 154m.
S1	PD	s	21:00	21:30	.50	154	Run wireline survey @ 154m. Bl.
S1	PD	D	21:30	24:00	2.50	178	Continue drill 8 1/2" hole f/154m to 178m.

ANNOTATIONS FOR PERIOD	00:00 HRS TO 24:00 HRS ON 30.04.98
REMARK / OBSERVATION	SOLUTION / RECOMMENDATION
repair rig hydraulics, repair power sivel fluid packing.	

Report Date: 29.04.98

FROM: A.Baczkowski

Chris Way. TO:

8.50 DAILY COST \$: DEPTH (m RT): 30 **Well Data** HOLE SIZE ("): CUM COST \$: PROGRESS (m): 30 CSG OD ("): 0.00 \$0 DRILL CO.: RILL CONTRACTING P/L AFE COST \$: HTA 3000 DAYS FROM SPUD: 0.17 SHOE DEPTH(m RT): n RIG: AFE BASIS: 0.00 LEAK-OFF EMW(SG) MUD CO: IDES DAYS +/- CURVE: STATUS @ 0600 : Drill 8 1/2" hole @ 65m. 4.0 RT TO GL (m): 0.0 GL ABOVE MSL (m): WEATHER: Cloudy, cold, showers (heavy)

Formation Trip Gas: @ m. **Gas Data** Tops (this BGG : 0.0 Max Gas: @ m. .

FORMATION (RT) TOP(m) Newer Volcanics report only) 21 Heytesbury Group

02 R Bit Data for Bit # 1 IADC # Wear SIZE ("): 8.50 NOZZLE MANUFACTURER: RE AVE WOB (k-lbs): 3 x 15 Calculated over the bit run Drilled over the last 24 hrs 120 TYPE: HP11 AVE RPM: X CUM.FOOTAGE (m): FOOTAGE (m): 21 21 BA1083 FLOW (gpm): 236 X CUM. ON BOT. HRS: SERIAL#: ON BOTTOM HRS: 3.5 3.5 PUMP PRESS. (psi): 250 X 2.5 DEPTH IN (m RT): Q IADC ROT. HRS: 2.5 CUM.IADC.HRS: HSI (hp/sqi): X 8.4 ROP (m/hr) 84 ROP (m/hr) DEPTH OUT (m RT):

Length (m) :27.0 D.C. (1) ANN. VELOCITY (mpm): **BHA #1** 53.12 D.C. (2) ANN VELOCITY (mpm): 31.92 TRQE MAX (ft-lbs): HRS ON JARS: STRING WT(k-lbs): 9 TRQE ON (ft-lbs): H.W.D.P. ANN VELOCITY (mpm): 31.92 PICK UP WT(k-lbs): 9 WT BLW JAR(k-lbs): n D.P. ANN VELOCITY mfpm): 0.00 TRQE OFF (ft-lbs): BHA WT(k-lbs): SLK 0FF WT(k-lbs): Q **BHA DESCRIPTION:** Bit, bit sub, 3 x 6 1/4" DC.

MUD DATA - CHECK # MUD CUM COST:\$ 575 1 MUD DAILY COST:\$ 575 2.5 20.0 MRT . 8.70 44 SOLIDS (% vol): WEIGHT (ppg): VISCOCITY (cps): 98 PH: 9.0 10 H2O (% vol): **SAMPLE FROM:** F/L PV (cps): YP (lbs / 100 ft2): 18 OIL (% vol): 0 CL: 900 TIME: 2300hr DEPTH (m): 30 GEL10S & 10m: 9 16 SAND (% vol): K+C*1000: 25.0 40 HARD/CA: TEMP (Deg C): 3RPM: FL (cc/30min): 6RPM: FILTER CAKE (/32"):

Casing PHASE CSG SHOE MD CSG SHOE TVD CSG OD WEIGHT THRD TYPE LENGTH CSG ID GRD (lbs/Ft) (m) (7)

0 FUEL (MT): **Bulk Stocks** 0.0 BARITE (sx): 500.0 DRILL WATER (MT): POT WATER (MT): 0 GEL (sx): 120. 0.0 HELI-FUEL (ltr): CEMENT (sx): 0

Survey	(last 8	point	s only	<i>(</i>)		
MD (m RT)	TVD (m RT)	INCL DEG	AZ. (deg)	SECT (m)	N/S (m)	E/W (m)
154.0	154.0	0.0				
300.0	300.0	1.0				
400.0	400.0	0.0				

DAILY DRILLING REPORT

Report Date: 29.04.98

IRREWARRA 1

Summary of period 00:00 to 24:00 hrs:

Planned Operations:

Delete this line and enter a brief (240 chars max) summary of the last 24 hrs

Continue drill 8 1/2" hole to csg point. WLS.

ACTIVITY FOR PERIOD 00:00 HRS TO 24:00 HRS ON 29.04.98

PHSE	CLS	OP	FROM	ТО	HRS	DEPTH	ACTIVITY DESCRIPTION
S1	PD	D	20:30	24:00	3.50	30	Spud Irrewarra-1 2030hrs 29/4/98 Drill 8.5"hole F/9 to 30m

ANNOTATIONS FOR PERIOD	00:00 HRS TO 24:00 HRS ON 29.04.98
REMARK / OBSERVATION	SOLUTION / RECOMMENDATION
Spud Irrawarra # 1 @ 2030hrs 29th April 1998.	