

ESSO EXPLORATION AND PRODUCTION AUSTRALIA INC.

W840

WELL COMPLETION REPORT
WIRRAH-3
VOLUME II 29 NOV 1985
INTERPRETED DATA

OIL and GAS DIVISION

GIPPSLAND BASIN VICTORIA

ESSO AUSTRALIA LIMITED

Compiled by: G.F.BIRCH

1.

NOVEMBER, 1985

WIRRAH-3

WELL COMPLETION REPORT

VOLUME II

(Interpreted Data)

CONTENTS

1. Geological and Geophysical Interpretation.

FIGURES

1. Stratigraphic Table.

APPENDICES

- 1. Foraminiferal Analysis.
- 2. Palynological Analysis.
- 3. Quantitative Log Analysis.
- 4. Wireline Test Report.
- 5. Production Test Report.
- 6. Abnormal Pressure Study.
- 7. Geochemical Report.

ENCLOSURES

- 1. Structure Map Top of Latrobe Group Coarse Clastics (DWG 2173/OP/12)
- 2. Structure Map Middle M. diversus Marker (DWG 2173/OP/13)
- 3. Geological Cross-section (DWG 2228/OP/5)
- 4. Well Completion Log

GEOLOGICAL AND GEOPHYSICAL INTERPRETATION

INTRODUCTION

Wirrah-3 is located at shotpoint 2152 on seismic line G74A-1189. The well was drilled on a dome-shaped feature north of the Barracouta-Snapper structural trend, l.lkm south west of Wirrah-1 and 2.lkm south west of Wirrah-2.

The Wirrah prospect is segmented by faults and the hydrocarbon distribution in each fault block requires delineation. The main objective of Wirrah-3 was therefore to confirm and define the hydrocarbon accumulation in the south western part of the Wirrah structure.

PREVIOUS DRILLING

Wirrah-1, drilled crestal at the top of the Latrobe Group, intersected eight hydrocarbon zones within the Latrobe Group. Wirrah-2, located lkm north west of Wirrah-1, penetrated gas at the top of the Latrobe Group, but did not intersect the intra-Latrobe Group hydrocarbons observed at Wirrah-1. The lower intra-Latrobe hydrocarbons appear not to extend into the northern part of the Wirrah structure.

GEOLOGY

The interpretations given below summarize detailed investigations by specialist groups. For a comprehensive report on these studies refer to the "Enclosures" section of this Well Completion Report.

Stratigraphy

The section penetrated by Wirrah-3 is separated into two Groups, the Latrobe Group and the Seaspray Group.

The formation tops were intersected close to the predicted depths, as shown in the table presented below (all depths in this section are given mKB) -

GROUP/FORMATION/UNIT	<u>AGE</u>	PREDICTED DEPTH (mKB)	ACTUAL DEPTH (mKB)	ACTUAL DEPTH (mSS)
Seaspray Group				
Gippsland Limestone	Miocene-Recent	70	70	49
Lakes Entrance Fm.	Miocene	1310	1306	1285
Latrobe Group				
Unnamed Unit	Early Oligocene	-	1488.5	1467.5
Gurnard Fm.	Late Eocene	1484	1495	1474
Undifferentiated	Late Cretaceous/	1507	1509	1488
	Late Eocene			

Latrobe Group. 3257(TD) - 1488.5mKB. Late Cretaceous-Early Oligocene

The age range for the Latrobe Group sediments is \underline{N} . $\underline{senectus}(TD)$ to $\underline{Early}\ \underline{N}$. $\underline{asperus}$. Sediments from the top of \underline{T} . $\underline{lilliei}$ (approx. 2875m) to \underline{TD} (\underline{N} . $\underline{senectus}$) are dominated by conglomeratic sandstones. Core 10, recovered from a fairly shaly interval (3116.1 - 3116.0m), comprised interbedded siltstone and shale with sandstone lenses. The sandstone is flint-like, possibly due to silicification, bedding is irregular and clasts are present. Core 11, taken from a sandy section (3143.4 - 3145.0m), comprises a conglomerate of poorly sorted, quartzite pebbles in a well-cemented, fine to coarse sand, and a well indurated sandstone of fine to quartz grains. Although predominantly sandy over this interval, sediments exhibit poor porosity (less than 10% below 3000m). Intrusive volcanics are present between 3091 and 3106m.

The section top \underline{L} . balmei to top \underline{T} . lilliei is an alternating sandstone-shale lithology. The interval is characterised by repeated upward-fining units abruptly terminated by sandstone. Six cores (Nos. 3 - 8) recovered towards the bottom of this interval (2597 - 2709m) recovered predominantly well-sorted, medium to coarse quartz sand. Siliceous and dolomitic cement are common, whereas carbonaceous matter, pyrite, mica and coal fragments are also present. Interbedded siltstone and claystone comprise carbonaceous matter, mica and pyrite. Sedimentary structures e.g. starved ripples, parallel laminations, convoluted bedding, cross laminae, trough and planar cross stratification, reported in the core analysis would support a fluvial depositional environment for this interval as interpreted from the character

of the log response. The repeated upward-fining units are possibly stacked point bars and the overlying siltstones and shales are possibly crevasse splay, levee, or overbank material of the floodplain.

The sandstone units are typically 5 - 10m thick and the net-to-gross for this interval is approximately 0.60. Although cementation is common and pyrite, feldspar and mica are also present, porosities are reasonable, ranging from 11 to 25% and averaging about 18%. The fine overbank, abandoned channel and other floodplain sediments can attain 20m in thickness, however, because their lateral continuity is probably limited, the sealing quality of these units is doubtful.

Intrusive volcanics are interpreted between 2355 to 2452m. Some side wall cores from this interval are described as dolerite, but the exact nature of these rocks is unknown.

The section from top Upper L. balmei (2032m) to the top of the undifferentiated Latrobe Group (1509m) is characterized by thick, consistent sands, separated by shales of variable thickness (5 - 25m). The shales are commonly overlain by coals ranging from less than a metre to over 20m thick. Coal sequences are most prolific between Upper $\underline{\mathsf{M}}$. diversus and the end of the Lower M. diverus and from lowermost \underline{N} . asperus to the top of \underline{P} . asperopolus, whereas the majority of \underline{P} . asperopolus is devoid of coaliferous sediments. The sands in the upper portion of this interval contain pyrite and are frequently dolomitic, nevertheless porosities range between 21 and 26%. Sandstones in the lower section are mostly uncemented, but porosities decline to between 23% and 17% over this interval. Net sand over the whole section is approximately 60%. The common abrupt change from shales to sandstone ("box-car" pattern) suggests distributary channels have been cut into floodplain deposits. Repeated cycles of upward-fining sediment, overlying coal, terminated by clean sandstone may represent the development of point bars which are gradually overlain by finer grained floodbasin sediments. However, a repetitive and abrupt transition to clean sand may imply a periodic fall in base level. The shales in this section are fairly thick and may be sufficiently continuous to act as a seal for the thick high-quality, intermediate sands observed within this interval.

Gurnard Formation. 1495-1509m. Latest Late Eocene - earliest Early Ologocene.

The Gurnard Formation is a moderate to very calcareous siltstone containing pyrite. It is distinguished by its pelletal glauconite content which varies in concentration from abundant to rare.

Un-named Unit. 1488.5-1495m. Early Oligocene.

The Gunard Formation is conformably overlain by an un-named unit comprising dark brown to grey argillaceous, carbonate-rich silstone. This unit is identified on an Early Oligocene J-K planktonic foraminiferal assemblage. However, due to poor hole conditions, it was not recognised in either Wirrah-l, or Wirrah-2 wells.

Seaspray Group.

Gippsland Limestone and Lakes Entrance Formation - 70-1488.5m. Early Miocene - Recent.

The boundary between the Latrobe and Seaspray Groups is made on a separation of the deep and shallow penetration resistivity logs and a change in the character of the density log at 1488.5mKB. Differentiation of the Lakes Entrance and Gippsland Limestone is made primarily on changes in the density and neutron log character and on a caliper shift.

Lakes Entrance Formation sediments are typically olive-grey argillaceous marl, whereas the overlying Gippsland Limestone are packstones and frequently comprise fragments of bryozoan, foraminifera, echinoid spines etc.

GEOCHEMISTRY

Latrobe Group sediments have a very good potential to source gas plus oil. The top of organic maturity for producing significant hydrocarbons is approximately 2900 mKB.

The deep intra-Latrobe oils are intermediate API, high-wax, paraffinic crudes, probably derived from terrestrial organic matter. They are similar in composition to the intra-Latrobe oils discovered in Wirrah-1.

POTENTIAL RESERVOIRS, SEALS AND MIGRATION PATHWAYS

Porosity for discrete sand bodies are given in the Quantitative Log Analysis (Appendix 3) and on the Well Completion Log (Enclosure 4). Typically, porosity decreases from approximately 30% at 1000m to 10% at 3000m. Potential reservoirs at the top of Latrobe coarse clastics (1509m) have porosities in the order of 20% - 30% and interbedded sands within the coaliferous shaly Lower N. asperus (1600m) to top of Lower M. diversus (2025m) are generally about 22% - 28%. Sands in the alternating shale/sand section of the Upper L. balmei (2025m) to top T. lilliei (2875m) generally exhibit porosities of 12% - 20%, whereas the continuous sands below 2875m have porosities ranging from less than 10% to 15%.

The major regional seal is provided by the Gurnard Formation, the marls of the un-named Oligocene unit and the overlying Lakes Entrance Formation. Adequate seals are also provided by some of the thicker and more regionally extensive coals and shales within the Latrobe Group.

As the top of maturation (0.65%) lies below most of the hydrocarbon accumulations, emplacement must involve migration. Numerous deep-seated faults, with the potential of migrating hydrocarbons generated at depth, have been interpreted in the area (see Structure).

SALINITY

The limit of fresh-water flushing is approximately 2040mKB. Below this interval water-bearing sands have an apparent salinity of 30,000ppm NaCl equivalent and this value was used in all log calculations from 1500 - 2400mKB. Water-bearing sands between 2520 and 2538mKB have an apparent water salinity of 17,000ppm NaCl equivalent and this value is accepted for the interval 2440mKB to TD.

HYDROCARBON OCCURANCE

Wirrah-3 penetrated six hydrocarbon zones, one of which corresponds to a reservoir intersected at Wirrah-1. (Depths are in metres subsea to allow comparison with Wirrah-1 and -2.)

N. asperus Reservoirs (N150; N190 & N191)

Reservoir N150 at the Top of the Latrobe Group is intersected by Wirrah-l and -2 and is interpreted to be full to spill with gas and an associated thin oil leg. A GOC is present at -1510m and an OWC is at -1512.5m within a dolomitised sand in Wirrah-l. At Wirrah-2 the N150 has an OWC at -1514m, however no evidence of a contact at this depth can be found in Wirrah-3, and a contact at -1512.5 m has been accepted for this reservoir.

Two thin oil sands (N190 & N191) encountered in the Lower \underline{N} . asperus zone in Wirrah-1, do not appear to extend to Wirrah-3.

L. balmei Reservoirs (L420 & L430 & L490)

Two thin (less than 4m) oil accumulations in the Upper <u>L. balmei</u> are designated L420 and L430. The upper L420 sand over the interval -2000.75 to -2010.75m has oil as low as -2004.5m. An OWC can be defined at -2122.75m for the lower L430 sand over the interval -2118.75 to -2128.75m. Both these systems are therefore separate from the L440 and L450 zones in Wirrah-1. This implies that the faulting interpreted between the two wells is sealing.

In the Lower <u>L. balmei</u>, a 4m oil zone (L490) occurs from -2326.75m to -2330.5m with an associated spill point at -2356m. No equivalent zone was intersected in Wirrah-l.

T. longus and T. lilliei Reservoirs (five hydraulically seperate zones)

The main hydrocarbon zone is a series of stacked reservoirs occupying five different hydraulic systems from -2563.5 to about -2919m. Wirrah-l is thought to have intersected the equivalent zone at -2549m. The reservoirs are believed to occur at about the same stratigraphic level, but antithetic faults between Wirrah-l and -3 probably separate them. The RFT and production testing programs indicate that there are five fluid systems within the $\underline{\text{I}}$. longus in Wirrah-3, none of which has a clearly defined contact. The number of hydrocarbon systems is indicated by gas sands within the hydrocarbon column and by pretest pressures.

Cores cut in Wirrah-l and -3 and testing in Wirrah-3 show the conglomerate in the interval -2829 to -3229 m to contain hydrocarbons. However, due to a lack of permeability, these hydrocarbons probably cannot be produced. The log analysis appendix contains a detailed listing of all hydrocarbon zones.

STRUCTURE

The Wirrah structure is a faulted done. The feature is extensively faulted in an east-west orientation below the $\underline{\mathsf{M}}$. diversus, but only the major (late Eocene - Mid Miocene) inverted normal fault intersects the top of Latrobe. Because of inadequate seismic density and inferior data quality, the exact nature of the deeper faulting is poorly known. Future 3D seismic planned for this region will greatly improve the present interpretation.

The prospect is approximately 2.5 by 3m with a maximum closure at the top of the Latrobe of 55m (Enclosure 1) and closure increases to 110m at the top of the middle \underline{M} . diversus horizon. The stratigraphy below the \underline{M} . diversus is believed to be approximately conformable, but these horizons cannot be mapped seismically due to marked attenuation. Recognition of the fault pattern and delineation of the structure below the \underline{M} . diversus, is thus questionable. Nevertheless, a normal attached fault is interpreted to intersect Wirrah-1 whereas Wirrah-2 could have intersected a series of associated antithetic faults (Enclosure 3). Dolerite penetrated immediately above the conglomerates in Wirrah-1 may be associated with this faulting.

Current interpretation suggests that Wirrah-l and -3 penetrated separate fault blocks below M. diversus. In fact, present evidence indicates that antithetic faults may have set up four separate fault blocks and that these may cross-and dip-seal. Additional seismic and drilling will be required to verify this interpretation.

GEOPHYSICS

The mapping of the Wirrah structure was based on a 0.5km grid of G77A, G80A, G81A and G82B seismic. These data were available prior to the drilling of Wirrah-1, 2 and -3. The reflection data quality is fair to good down to and including the Middle \underline{M} . diversus seismic marker.

The top of the Latrobe Group "coarse clastics" in Wirrah-3 was penetrated at -1488m, 2m deep to prediction. This accurancy in prediction verifies the minor modification carried out with the time interpretation from the top of Latrobe Group to "coarse clastics" in the remapping of the structure after the drilling of Wirrah-2.

The Middle $\underline{\mathsf{M}}$. $\underline{\mathsf{diversus}}$ seismic marker structure map was produced by isopaching down from the revised top of "coarse clastics" map, using a constant interval velocity of 2900ms^{-1} derived from the Wirrah-1 and -2 velocity surveys. This marker has been correlated with the top of the Middle $\underline{\mathsf{M}}$. $\underline{\mathsf{diversus}}$ coal which was intersected at -1849m in Wirrah-3, again 2m deep to prediction.

The major oil accumulation in Wirrah-3 is found below the $\underline{\mathsf{M}}$. $\underline{\mathsf{diversus}}$ in a series of stacked reservoirs between -2536 and -2919m. At present none of these units has been successfully mapped. The main problem is the presence of strong reverberations within the deeper coal-prone Latrobe Group and the associated signal attenuation through this section.

1099L/1-8

FIGURES

WIRRAH-3 STRATIGRAPHIC TABLE

Г			T -					IADLI		
	AGE (M.A.)	EPOCH	SEBIEC	SENIES	FORMATION HORIZON	ZONATION	PLANKTONIC FORAMINIFERAL ZONATION	DRILL DEPTH (metres)	SUBSEA DEPTH (metres)	THICKNESS (metres)
	V	<u>S</u> ,	EA	FL	_00R			70	49	
		PLE	IST				AI/A2			
1.		PL	10.				A3			
	; +			۽ ا	3		A4			
			LATE	5	GIPPSLA LIMESTO	ND NE	ВІ			
10	1		Y		=		В2			1234
		پ	_	SEASPBAV		T	С			
15	1	MIOCENE	₩ □	SFA	2	T.be//us	DI/D2			
		0		1	LAKES		E/F	- 1306 +	- 1285 +	
20		2			ENTRANC FORMATION	E DN	G			182.5
			EARLY	b	77777			- 1488.5	- 1467.5	
							H H	1,400.5	1467.3	
25	T									
	1	Z L	LATE			P. tuberculatus	44			
30	ح ا	UL I GUCENE								
	2	5	ΙΓΥ				JI			
35	5 ا	5	EARLY				J2	1488.5	1467.5	
	-	+	ш	UN	NAMED UNIT	Upper N. asperus	K	1495	1467.5	6.5
40 -			LATE		FORMATION	Mid N.asperus	_	1509	1488	14
45 -	¥		JLE JLE			1				
	OCENE		MIDDLE			Lower N. asperus				
50 -	۳	- !	- 1	a B			,			
		L	_	GROUP	004885					
55 -	-	2	EARLY		COARSE CLASTICS	P. asperopolus Upper M. diversus				
		í	L A	OBE		Mid M. diversus Lower M. diversus				1748+
60 -	W	<u> </u>	ı l	LATROBE		Upper L.balmi				
JU -	ALEOCENE	-	LAIE							÷
•	LEC	> 7	E AML I			Lower L.balmi				
65 –	PA	1	L V		i					
	LA	ATE				T./ongus				
70 -		RET								
				1		T.lilli e i	1	. N 3257 T N	3236	

Appendix 1

APPENDIX 1

FORAMINIFERAL ANALYSIS, WIRRAH-3,
GIPPSLAND BASIN

by

J.P. REXILIUS

Esso Australia Ltd.

June, 1984

Palaeontological Report, 1984/17

INTERPRETATIVE DATA

INTRODUCTION

SUMMARY TABLE

GEOLOGICAL COMMENTS

DISCUSSION OF ZONES

REFERENCES

FORAMINIFERAL DATA SHEET

TABLE 1: INTERPRETATIVE DATA, WIRRAH-3

INTRODUCTION

Eighteen (18) sidewall core samples were processed for foraminiferal analysis in Wirrah-3 from 1375.4 to 1509.0m. Tables 1 and 2 provide a summary (Basic and Interpretative) of the palaeontological analysis in Wirrah-3. A summary of the biostratigraphic breakdown of the stratigraphic units in the well is given below.

AGE	UNIT	ZONE	DEPTH(mKB)				
Early Miocene	Lakes Entrance Formation	G	1375.4-1425.6				
log break	at 1430m (mid-Early Miocen	e disconform	ity)————				
Early Miocene Early Miocene	Lakes Entrance Formation	G H - 1	1435.7 - 1455.8 1465.4 - 1475.4				
log break at 1488.5m (30 Ma event)							
	Un—named carbonate unit (Early "Oligocene Wedge")		1491.5				
log break at 1495m							
latest Eocene - earliest Oligocene	Gurnard Formation Inc	K determinate	1495.3-1501.0 1503.0-1509.0				
-	Latrobe Group (no (coarse clastics)						

T.D. 3257mKB

GEOLOGICAL COMMENTS

The Gurnard Formation is assignable to the Middle N. asperus palynological Zone (Macphail, 1984). The top part of the unit (1495.3-1501.0m) contains planktonic foraminifera and is Zone K (early Zone K) in age. Sidewall core 123 at 1485.3m is out of sequence. The sample is a greensand (Gurnard Formation) which has been age-dated as Zone K (early K) and Middle N. asperus. The sample almost certainly was shot in the interval 1495-1510m and probably above 1501.0m.

The Gurnard Formation is conformably (?) overlain by the un-named carbonate unit (Early "Oligocene Wedge"). One sidewall core (SWC 122 at 1491.5m) intersected the unit. The sample contains a very rich, well preserved planktonic foraminiferal fauna and approximately 5% pelletal glauconite. On the basis of log character the base and top of the unit are estimated to be 1488.5 and 1495m. The "wedge" is Zone K (late Zone K) in age. The sample at 1491.5m is assignable to the Middle N. asperus palynological Zone (Macphail, 1984). There is evidence in Wirrah-3 that Zone K has the potential to be sub-divided into two zones (see Discussion of Zones). Further sections need to be examined to refine the planktonic foraminiferal zonation for the time interval Late Eocene-Early Oligocene in the Gippsland Basin.

The Early "Oligocene Wedge" is disconformably overlain by the Lakes Entrance Formation. The basal portion of the Lakes Entrance Formation has been age-dated as Zone H-l and contains reworked Zone K planktonic foraminifera. Reworking of older assemblages (generally Early Oligocene "Wedge" assemblages) during the Early Miocene (Zone H-l time) has been noted in most recently drilled Gippsland Basin Wells. The hiatus between the "wedge" and the overlying Lakes Entrance Formation spans most of the Oligocene (approximately 14 my). The disconformity at 1488.5m most probably equates with the mid-Oligocene disconformity (30 Ma event) of Vail et al. (1977). This event is seismically mapped as the "Top of Latrobe" over most of the Gippsland Basin.

There is a probable disconformity within the Lakes Entrance Formation at 1430m. A strong sonic/density log break is present at this depth in Wirrah-3. The break probably equates with a mid-Early Miocene disconformity which has now been recognized in a number of Gippsland Basin wells including Wrasse-1 (see Rexilius, 1984).

DISCUSSION OF ZONES

The Tertiary biostratigraphy in Wirrah-3 is based on the Gippsland Basin planktonic foraminiferal zonal scheme of Taylor (in prep.).

Indeterminate Interval : 1503.0-1509.0m

The interval is barren of planktonic foraminifera but has been assigned to the Middle N. asperus palynological Zone by Macphail (1984).

Zone K: 1491.5-1501.0m

A very rich Zone K assemblage occurs in the sidewall core sample at 1491.5m (un-named carbonate unit). The assemblage includes Globigerina angiporoides, G. brevis, G. euapertura, G. linaperta and Globorotalia gemma. The presence of Globigerina euapertura indicates a position high in Zone K. A more impoverished assemblage at 1493.3m (greensand facies - Gurnard Formation) comprising <u>Globigerina</u> <u>ampliapertura</u>, <u>G. angiporoides</u>, <u>G. linaperta</u> and Globorotalia gemma, is indicative of a position low in Zone K. Globigerina ampliapertura is considered by Taylor (in prep.) to represent the progenitor of G. euapertura. However he documents the evolutionary appearance of Globigerina euapertura later, at the base of Zone J-2, in the Gippsland Basin. Jenkins (1971) also records the entry of the species at the same level in New Zealand, that is, after the extinction of Globigerina linaperta (the defining event for the top of Zone K). The overlap in ranges of Globigerina euapertura and G. linaperta in several recently drilled wells in the Gippsland Basin may enable Zone K to be sub-divided into two zones, Zone K-1 and Zone K-2. Analysis of other sections in the Gippsland Basin is required to confirm the sub-division of Zone K. Zone K-2 is provisionally for now defined by the interval from the appearance of Globigerina brevis (and Globorotalia gemma based on recent data) to the entry of \underline{G} . \underline{e} uapertura. Zone K-1 is tentatively defined by the interval from the appearance of Globigerina euapertura to the extinction of \underline{G} . Linaperta. Zone K-2 is also characterized by the presence of Globigerina ampliapertura.

Because reworking of the condensed Gurnard Formation/un-named Early Oligocene carbonate is probable in the Gippsland Basin, care must be taken in establishing that assemblages are <u>in situ</u>. In Wirrah-3 there is good evidence that there are older (Zone K-2) and younger (Zone K-1) Zone K assemblages which are <u>in situ</u>. The richer assemblages in the un-named carbonate unit (1491.5m) contain a minimum amount of pelletal glauconite (Note - the greensand at 1493.3m is very rich in pelletal glauconite) and in addition contain abundant <u>Globigerina euapertura</u> with no record of its progenitor <u>G</u>. <u>ampliapertura</u>. Reworking of foraminiferal assemblages in the sample of the un-named carbonate unit at 1491.5 is totally lacking.

A very sparse Zone K planktonic foraminiferal assemblage comprising rare Globigerina linaperta and Globorotalia gemma was recorded in the sidewall core sample at 1501.0m. Other samples in the interval at 1497.4 and 1499.3m were barren of planktonic foraminifera.

Zone H-l: 1465.4m-1475.4m

A Zone H-l assemblage comprising the index species <u>Globigerina woodi connecta</u> with reworked latest Late Eocene-earliest Early Oligocene foraminifera (including <u>Globigerina angiporoides</u> and <u>G. linaperta</u>) occurs in the sidewall core sample at 1475.4m. A typical Zone H-l assemblage also occurs at 1465.4m but without a reworked component. Reworking of older faunal elements into the basal portion of Zone H-l has now been documented in numerous wells in the Gippsland Basin.

Zone G: 1375.4-1455.8m

The uphole appearance of <u>Globigerinoides</u> <u>trilobus</u> at 1455.8m defines the base of Zone G in Wirrah-3.

REFERENCES

- JENKINS, D.G., 1971. New Zealand Cenozoic planktonic foraminifera.

 New Zealand Geol. Surv. Palaeont. Bull., No. 42, 178p.
- MACPHAIL, M.K., 1984. Palynological analysis, Wirrah-3, Gippsland Basin.

 Esso Australia Ltd., Palaeontological Report 1984/19.
- REXILIUS, J.P., 1984. Foraminiferal analysis, Wrasse-1, Gippsland Basin.

 Esso Australia Ltd., Palaeontological Report 1984/15.
- TAYLOR, D.J., (in prep.). Observed Gippsland biostratigraphic sequences of planktonic foraminiferal assemblages.
- VAIL, P.R., MITCHUM, J.R. & THOMPSON, S., 1977. Seismic stratigraphy and global changes of sea level, Part 4: global cycles of relative changes of sea level. In: PAYTON, C.E. (editor), Seismic Stratigraphy Applications to Hydrocarbon Exploration. Am. Assoc. Pet. Geol., Mem. 26: 83-97.

MICROPALEONTOLOGICAL DATA SHEET

BAS			PSLAND			-	ELEV	/ATION: K	.В:	+21.0m GL:	49.	Om
WELL 1	NA	ME: WIR	RAH-3				TOTA	AL DEPTH:		3257m KB		
ı	1		HIC	J H F	EST D	АТ	. A	L	O W	EST D	АТ	A
AGI	E	FORAM. ZONULES	Preferred		Alternate		Two Way	· 14	T	Alternate	T	Two W
	+	A	Depth	Rtg	Depth	Rtg	Time	Depth	Rts	g Depth	Rtg	Time
PLEIS- TOCENE	-	A ₂		+'	-	-		#	+		<u> </u>	<u> </u>
	+	A ₃	 	+		-	<u> </u>	#	-		 '	
PLIO- CENE	ŀ	¹³ A ₄		+	1	<u> </u>	 	#	4			
CENE	ŀ	⁶ 4		+	<u> </u>	<u> </u>	ļ	<u> </u>				
Ę	E	B ₂		4		 	<u> </u> '				\perp	
4	LATE			\vdash			<u> </u>		4			
p	П			1				<u> </u>				i
E	₁₃ -	D ₁		1								
[17]		D ₂		4			 					
ر د	-	E ₁	 	1								
Ο <u>Σ</u>	Σ	E ₂		1	ļ		<u> </u>					·
Σ Χ	<u>,</u> +	F	 	4				<u> </u>				
EARLY	4 -	G ਸ	1375.4	0			/	1455.8	1_			-
	4	H ₁	1465.4	1				1475.4	1_			
É	_	H ₂										
ENE A T	- 1	11		-								- e:
	4	I ₂		4								
OLIGOCENE	i	J 1		4								
EA	4	^J ₂										
ENE	L		1491.5	0				1501.0	2			
<u> </u>	\perp	Pre-K										
OMMEI	ENT	'S: ewc 12	1105	~	· - e	_				 		
									nsan	d which was	s shc)t
		MT (*11**1**	tne Gurna	ird r	Formation ((149:	<u>5 - 151</u> (Om).				
								•				
							************	,				
										·		
ONFIDE		-	SWC or Co		Complete asse	-mbla	age (very h	aigh confidenc	1			
RATIN	1G:	: 1: 2:	SWC or Co	ore -	Almost comple	lete as	ssemblage	(high confide	ence).			
		2: 3:	SWC or Cor Cuttings	re -	Close to zonulo Complete asse	e cha mbla	nge but ab	ole to interpre	≥t (low	/ confidence).		
		4.	Cuttings	-	Incomplete ass	ssembl	lage, next	t to uninterpre	≥t a ble	or SWC with		
OTE:		TE am among ic		•	depth suspicion	n (ver	ry low conf	ifidence).				
J 1 L .		rating should	i de entered, i	II possi	fidence rating, lible. If a same	ible ca	annot be a	assigned to one	a narti	icular zana		
		then no chuy	y should be ma	ade, ur	iniess a range o	of zone	es is given	where the his	e parti igh e st	possible	•	
		ilmit wiri ah	pear in one zon	ne ano	d the lowest po	ssible	: limit in a	another.				
TA RE	FCC	ORDED BY:		• • •			_					
		ISED BY:	J.P. Re					DATE:	2/2	2/84	_	
****	2 V I	SED DI:	J.P. Re	xili	us			DATE:	14/6	/84		

TABLE 1
SUMMARY OF PALAEONTOLOGICAL ANALYSIS, WIRRAH-3, GIPPSLAND BASIN
INTERPRETATIVE DATA

NATURE OF SAMPLE	DEPTH (mKB)	PLANKTONIC FORAMINIFERAL YIELD	PRESERVATION	PLANKTONIC FORAMINIFERAL DIVERSITY	ZONE	AGE	COMMENTS
SWC 113	1509.0	Barren	_	-	_		_
SWC 114	1507.0	Barren	-	-	-	<u>-</u>	, ~
SWC 115	1505.0	Barren	-	-	-	_	Fish teeth
SWC 116	1503.0	Barren	-	-	_	_	_
SWC 117	1501.0	Very low	Poor	Very low	K	L. Eocene/E. Oligocene	_
SWC 118	1499.3	Barren	_	-	_	-	Fish teeth
SWC 119	1497.4	Barren	-	-	_	-	_
SWC 120	1495.3	Low	Moderate/Poor	Low	K	L. Eocene/E. Oligocene	-
SWC 122	1491.5	₋ High	Good	Moderate	K	Probably E. Oligocene	_
SWC 123 °	1485.3	Low	Good	Low	K	L. Eocene/L. Oligocene	Sidewall core out o
SWC 125	1475.4	High	Good	Moderate	H-1	Early Miocene	sequence. Contains reworked Zone K assemblages.
SWC 126	1465.4	High	Good	Moderate	H-l	Early Miocene	Fish teeth present.
SWC 127	1455.8	Moderate	Moderate	Moderate/High	G	Early Miocene	_
SWC 128	1445.4	High	Good	Moderate/High	G	Early Miocene	•••
SWC 129	1435.7	Moderate/High	Moderate	Moderate	G	Early Miocene	_
SWC 130	1425.6	High	Good	High	G	Early Miocene	_
SWC 131	1400.4	Moderate	Good	Moderate	G	Early Miocene	_
SWC 132	1375.4	High	Good	High	G	Early Miocene	Shell fragments, echinoid spines

BASIC DATA

TABLE 2: FORAMINIFERAL DATA, WIRRAH-3

RANGE CHART: TERTIARY PLANKTONIC FORAMINIFERA

TABLE 1
SUMMARY OF PALAECNTOLOGICAL ANALYSIS, WIRRAH-3, GIPPSLAND BASIN
BASIC DATA

NATURE OF SAMPLE	DEPTH (mKB)	PLANKTONIC FORAMINIFERAL YIELD	PRESERVATION	PLANKTONIC FORAMINIFERAL DIVERSITY
SWC 113	1509.0	Barren	_	_
SWC 114	1507.0	Barren	-	-
SWC 115	1505.0	Barren	-	-
SWC 116	1503.0	Barren	-	-
SWC 117	1501.0	Very low	Poor	Very low
SWC 118	1499.3	Barren	-	-
SWC 119	1497.4	Barren	-	-
SWC 120	1495.3	Low	Moderate/Poor	Low
SWC 122	1491.5	High	Good	Moderate
SWC 123	1485.3	Low	Good	Low
SWC 125	1475.4	High	Good	Moderate
SWC 126	1465.4	High	Good	Moderate
SWC 127	1455.8	Moderate	Moderate	Moderate/High
SWC 128	1445.4	High	Good .	Moderate/High
SWC 129	1435.7	Moderate/High	Moderate	Moderate
SWC 130	1425.6	High	Good	High
SWC 131	1400.4	Moderate	Good	Moderate
SWC 132	1375.4	High	Good	High

FOSSIL TYPE: PLANKTONIC FORAMINIFERA

WIRRAH-3 Gippsland Sheet No. ____ of ____ Well Name _ Basin 125 126 127 123 SAMPLE TYPE OR NO. * 1509.0 1507.0 1503.0 1501.0 1505.0 1499.3 1497.4 1475.4 1485.3 1465.4 1445.4 1435.7 1400.4 FOSSIL NAMES Globigerina linaperta R Globorotalia gemma Globigerina angiporoides Globigerina ampliapertura Globigerina euapertura Globigerina praebulloides Globigerina brevis Chiloquembelina cubensis Globigerina sp. l Globigerina woodi connecta Globorotalia opima nana Globorotalia opima opima Globigerina woodi woodi Globigerina continuosa Globorotalia bella Catapsydrax dissimilis Globigerinoides trilobus juvenile planktonics Globorotalia obesa Globoquadrina dehiscens s.s. Globoquadrina advena Globoquadrina dehiscens s.l.

APPENDIK 2

APPENDIX 2

APPENDIX 2

PALYNOLOGICAL ANALYSIS WIRRAH-3, GIPPSLAND BASIN

by

M.K. Macphail

Esso Australia Ltd Palaeontology Report 1984/19 July 1984

0927L

INTERPRETATIVE DATA

INTRODUCTION

SUMMARY TABLE

GEOLOGICAL COMMENTS

DISCUSSION OF AGE ZONES

TABLE-1 INTERPRETATIVE DATA

TABLE-2 ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE POLLEN
PALYNOLOGY DATA SHEET

INTRODUCTION

One hundred and sixteen (116) sidewall core, six (6) conventional core and six (6) cuttings samples were processed and examined for spore-pollen and dinoflagellates. Despite good sampling densities, recovery was only fair to poor with samples providing confident age determinations often separated by thick intervals of little or no yield. Palynological zones and lithological facies divisions from the base of the Lakes Entrance Formation to the total depth of the well are given below. The occurrence of spore-pollen and dinoflagellate species are tabulated in the accompanying range chart. Anomalous and unusual occurences of species are listed in Table 2.

AGE	UNIT/FACIES	ZONE	DEPTH(m)
Early Miocene	Lakes Entrance Fm		1475.4
	log break at 148		
Late Eocene	Unnamed marl	Middle N . asperus	1491.5
	log break at 149	5.0m	
Late Eocene	Gurnard Formation	Middle N. asperus	1495.3-1507.0
	log break at 151	0.0	
Middle Eocene		Early N. asperus	1520.1-1648.1
Early/Middle Eocene		P. asperopolus	1688.2-1804.0
Early Eocene		Upper M. diversus	1873.0
Early Eocene		Middle M. diversus	1881.0-1889.0
Early Eocene	Latrobe Group	Lower M. diversus	1925.1-1950.5
Palaeocene	Coarse Clastics	Upper <u>M. balmei</u>	2035.0-2366.0
Palaeocene		Lowe <u>L. balmei</u>	2397.6-2593.0
Maastrichtian		Upper <u>T</u> . <u>longus</u>	2600.0-2775.0
Late Cretaceous		Lower T. longus	2800.0-2875.0
Late Cretaceous		T. lilliei	2994.4-3159.2
Late Cretaceous		N. senectus	3219.3-3225.0

GEOLOGICAL COMMENTS

- 1. The Wirrah-3 well contains a continuous sequence of sediments from the Late Cretaceous \underline{N} . senectus Zone to the Late Eocene Middle \underline{N} . asperus Zone.
- 2. The <u>P. tuberculatus</u> Zone sample at 1475.4m contains Early Miocene foraminifera (Rexilius 1984), demonstrating erosion or a hiatus in deposition during the Oligocene. The surface represented by the log break at 1488.5m is likely to represent the 30 million year unconformity.
- 3. The unnamed marl, picked on lithological and log characteristics as occuring between 1488.5 and 1495m Rexilius (<u>ibid</u>) is likely to be Late Eocene, Middle N. <u>asperus</u> Zone in age. Because the unit is represented by one sidewall core sample only, this date must be considered provisional but maximum and minimum ages are Middle N. <u>asperus</u> and Upper N. <u>asperus</u> Zone respectively. It is noted that the equivalent facies in the Sea-Horse Field wells to the west are Eocene-Early Oligocene in age whilst the unit is absent in wells to the east of Wirrah-3, e.g. Whiting-1 (Rexilius unpubl. data). It is unclear whether the equivalent unit occurs in the Wirrah-1 and 2 wells.
- 4. The Gurnard Formation, picked on lithological and log characteristics as extending from 1495 to 1510m (Rexilius ibid) is wholly Middle N. asperus Zone in age. Sidewall core samples from the lower section of this unit (1503.0 to 1507.0m) contain largely terrestrially-derived palynofloras of high concentration and good diversity. All contain large-diameter palynomorphs from plant groups which are unlikely to have dispersed spore-pollen over long distances, e.g. Triorites magnificus. Palynofloras in sidewall core samples from the upper part of the unit (1495.3 to 1501.0m) are dominated by marine species of dinoflagellates. In these samples the terrestrially derived spore-pollen component mostly comprises types capable of being long-distance transported. A likely explanation is that the Gurnard Formation was deposited during a period of effectively rising sea level, resulting the wellsite becoming progressively more distant from the palaeoshoreline. The sandstone unit at the top of the Latrobe Group coarse clastics (1510.9-1520.lm) lacks dinoflagellates and may represent either shore-face or fluvio-deltaic facies. The former is considered more likely given that the highest coal occurs at 1523m. The timing and direction of change in the palaeo-environment suggests the surface at 1510.0m (the top of the Latrobe Group coarse clastics) represents the 40.5Ma type 1 unconformity recognised by Partridge et al. (unpubl. results).

- 5. Other samples within the Latrobe Group coarse clastics that contain dinoflagellates are: 1571.5m and 1648.lm (Lower N. asperus Zone), 1804.0m (P. asperopolus Zone), and 2152.lm (Upper L. balmei Zone). Concentrations are low to very low in all cases and the environments represented likely to be marginal marine rather than marine. This is consistent with data showing that the Wirrah-l and Wirrah-2 wells were unaffected by Palaeocene or Early Eocene marine transgressions.
- 5. The Middle M. diversus seismic marker occurs immediately below the lowest sample datable as Middle M. diversus Zone in age but almost certainly lies within a section of this age.
- 7. The well bottomed in sediments of N. senectus Zone age. Whilst this is consistent with its location on the downthrown side of the fault between Wirrah-l and Wirrah-l, it is noted that sediments of T. lilliei, T. longus and L. balmei Zone ages in Wirrah-3 occur at greater depth than would be anticipated from the predicted structural relationship between this well and Wirrah-2. A possible explanation is the presence of a negative listric fault in the Late Cretaceous/Palaeocene sediments between the wells.

BIOSTRATIGRAPHY

The zone boundaries have been established using criteria proposed by Stover and Evans (1973), Stover and Partridge (1973), and Partridge (1976) and subsequent proprietry revisions including Macphail (1983).

Nothofagidites senectus Zone, 3219.3 to 3225m:

Samples within this zone are dominated by <u>Proteacidites</u> and gymnosperms. An <u>N. senectus</u> Zone age is suggested on the basis of (i) an absence of <u>Gambierina</u> and (ii) relatively frequent occurrences of <u>Nothofagidites</u> and <u>Tricolpites</u> spp. Most of these are undescribed but species able to be recognized include <u>N. endurus</u> (3222.0m), <u>N. senectus</u> (3219m), <u>T. gillii</u> and <u>T. sabulosus sensulato</u> (3225.3m, 3222m). The last species includes two distinct forms informally named var "gillii"/var A and var "rudata"/var B depending on the absence or presence respectively of well developed thickenings (margines) partially surrounding the colpi. <u>Tricolpites sabulosus</u> (var. A.) most closely resembles T. sabulosus Dettman & Playford sensu stricto.

Tricolporites lilliei Zone, 2994.4 to 3159.2m:

The base of this zone is provisionally picked at 3159.2m, the first occurrence of a single poorly preserved pollen referrable to Gambierina rudata. The sample at 3132.8m contains numerous, well preserved specimens of this species in addition to other species which range no lower than the T. lilliei Zone, e.g. Tricolporites lilliei and Nothofagidites flemingii. Gambierina rudata, Tricolporites lilliei, Proteacidites amolosexinus, Tricolpites sabulosus (vars. A and B) and frequent Nothofagidites occur in samples assigned to this zone as do a number of typically early Cretaceous species, e.g. Foraminisporis asymmetricus, Cicatricosisporites spp., Kraeuselisporites spp. and, at 3107.9m, Pilosisporites notensis. The highest sample assigned to the T. lilliei Zone contains a diverse palynoflora including the first occurrences of species which become common in the T. longus Zone: Australopollis obscurus, Proteacidites otwayensis and Tricolpites wahooensis. The samples at 2934.0 and 2971.8m are no older than T. lilliei Zone in age.

Lower Tricolpites longus Zone, 2800.0 to 2875.0m:

Three samples are assigned to this zone. The lowermost contains the nominate species and is therefore by definition (Macphail, 1983) no older than Lower T. longus in age. The two higher samples at 2823.6 and 2800.0m contain frequent to common <u>Gambierina</u> with <u>Tricolporites lilliei</u> but lack species first appearing in the Upper T. longus Zone. Only in one sample (2823.6m) is <u>Nothofagidites</u> common (58% of count excluding <u>Proteacidites</u> and <u>Podocarpidites</u>). Percentages of <u>Gambierina rudata</u> and <u>Triporopollenites</u> sectilis in this sample are 27% and 5% respectively.

Upper Tricolpites longus Zone, 2600.0 to 2775.Om:

The base of this zone is defined by the first occurrence of Stereisporites punctatus at 2775.0m. Gambierina is abundant and Nothofagidites very rare in this sample. Otherwise palynofloras are diverse only towards the top, but the section contains the first occurrence of a number of important Late Cretaceous species: Proteacidites palisadus (2775.0m), P. clinei and P. wahooensis (2764.0m), P. reticuloconcavus, Ornamentifera sentosa and Tetracolporites verrucosus (2742.5m); Proteacidites protograndis and Stereisporites regium (2713.0m); Proteacidites gemmatus (2650.0m); Quadraplanus brossus (2625.0m); and Tetradopollis securus (2624.38m). The upper boundary of the zone is defined by the last appearance of Tricolpites longus, Tricolporites lilliei, Proteacidites otwayensis, P. palisadus and frequent Gambierina rudata at 2600.0m.

Lower Lygistepollenites balmei Zone, 2397.6 to 2593.0:

The section assigned to this zone comprises palynofloras dominated by Proteacidites and gymnosperms separated by intervals of poor or no recovery. The nominate species is relatively rare. The lower boundary is picked at 2593.0m, based on the first occurrence of Tetracolporites verrucosus and Stereisporites punctatus in an assemblage which lacks species ranging no higher than the Upper Tetracolporites verrucosus and is therefore no younger than Lower Left balmei Zone in age. The presence of multiple specimens of Schizocolpus marlinensis in this sample represents an important extension in the known range of this species. Tetracolporites verrucosus occurs throughout the Lower Left balmei Zone section and its last occurrence in a palynoflora lacking Verrucosisporites kopukuensis at 2397.6m, defines the upper boundary of the zone.

Upper Lygistepollenites balmei Zone, 2035.0 to 2366.0m: The lower boundary of the zone is defined by the first occurrence of Verrucosisporites kopukuensis at 2366.0m. Occurrences of this species, Australopollis obscurus, Gambierina rudata, common to abundant Lygistepollenites balmei and frequent Gleicheniidites circinidites are continuous throughout the Upper L. balmei Zone section. As is frequently the case in Gippsland wells, a number of species which are known to appear first in the Lower L. balmei Zone are first recorded in this zone, e.g. Haloragacidites harrisii at 2188.3m and Polycolpites langstonii at 2194.18m. Phyllocladidites verrucosus occurs at 2333.1, 2270.0 and 2188.30m, Proteacidites amolosexinus at 2288.0m, and Tetracolporites verrucosus and Malvacipollis diversus at 2096.4m. The upper boundary is provisionally placed at 2035.0m, the highest sample containing Verrucosisporites kopukuensis and relatively frequent Lygistepollenites balmei. The sample immediately above, at 2002.4m, lacks L. balmei, but contains a single specimen of Australopollis obscurus,. a species not known to range above the Upper L. balmei Zone.

Lower Malvacipollis diversus Zone, 1925.1 to 1950.5m

Two samples are assigned to this zone, both with low confidence. The lowermost, at 1950.5m contains frequent to common Proteacidites grandis in a poor diversity, Proteacidites—dominated assemblage. The uppermost, at 1925.1m, is more typically Lower M. diversus Zone in character, being

dominated by thick walled spores including $\underline{\text{Cyathidites}}$ $\underline{\text{splendens}}$ and $\underline{\text{Verrucosisporites}}$ kopukuensis.

Middle Malvacipollis diversus Zone, 1881.0 to 1889.0m.

The occurrence of <u>Proteacidites tuberculiformis</u> at 1889.Om demonstrates this sample is no older than Middle <u>M. diversus</u> Zone in age. This sample contains a number of other species which are rarely, or not previously, recorded below the Upper <u>M. diversus</u> Zone, e.g. <u>Proteacidites latrobensis</u>, <u>P. tuberculotumulatus</u>, <u>P. recavus</u> and <u>Gemmatricolporites</u> of <u>gestus</u>. Nevertheless, in the absence of <u>Myrtaceidites tenuis</u> and <u>Proteacidites pachypolus</u>, an Upper <u>M. diversus</u> Zone age cannot be demonstrated. The sporepollen assemblage in the second of the two samples assigned a Middle <u>M. diversus</u> Zone, being dominated by <u>Haloragacidites harrisii</u> with several to frequent occurrences of <u>Proteacidites tuberculiformis</u>, <u>P. xestoformis</u>, <u>Malvacipollis diversus</u>,

Upper Malvacipollis diversus Zone, 1873.Om:

Tricolporites adelaidensis and T. moultonii.

One sample only is assigned to this zone, based on the occurrence of Myrtaceidites tenuis in an assemblage with frequent Malvacipollis diversus and abundant Haloragacidites harrisii.

Proteacidites asperopolus Zone, 1688.2 to 1804.0m:

As with previous zones, the \underline{P} . asperopolus Zone comprises samples with good recovery separated by barren intervals. The lower boundary, at 1804.0m, is picked at the first occurrence of $\underline{Proteacidites}$ asperopolus. The simultaneous occurrence of this species with $\underline{Myrtaceidites}$ tenuis at 1715.2 demonstrates that this sample is \underline{P} . asperopolus Zone in age. The upper boundary is provisionally picked at 1688.2m, a coal palynoflora dominated by both $\underline{Nothofagidites}$ and $\underline{Proteacidites}$ and containing species which typically first appear within the \underline{P} . asperopolus Zone, e.g. $\underline{Proteacidites}$ rugulatus and $\underline{Proteacidites}$ trigonalis. $\underline{Proteacidites}$ asperopolus occurs in a sample containing negligible amounts of spore-pollen at 1662.2m indicating it is either \underline{P} . asperopolus or Lower \underline{N} . asperus Zone in age.

Lower Nothofagidites asperus Zone, 1520.1 to 1648.lm:

The lower boundary of this zone is provisionally placed at 1648.lm on the basis of (i) frequent Nothofagidites relative to Proteacidites and (ii) Proteacidites reflexus, a very rare species believed to first appear in the Lower N. asperus Zone. A more confident 'pick' is at 1596.4m, a sample containing species which first appear in this zone, Tricolporites delicatus, T. leuros, Proteacidites recavus and Nothofagidites falcatus, in a Nothofagidites—dominated assemblage. The Lower N. asperus Zone dinoflagellate indicator species Areosphaeridium diktyoplokus occurs at 1571.5m. The upper boundary is porovisionally picked at 1520.5. The occurrence of Verrucatosporites attinatus in this sample shows it is no older than upper Lower N. asperus Zone in age. Middle N. asperus Zone indicators are absent ex except for a caved specimen of Vozzhenikovia extensa.

Middle Nothofagidites asperus Zone 1491.5 to 1507.0m:

The lower boundary is placed at 1507.0m, the first occurrence of the Middle $\underline{\text{N.}}$ asperus Zone pollen indicator species $\underline{\text{Triorites}}$ magnificus (associated with frequent Vozzhenikovia extensa) is at 1507.0m.

The same association occurs at 1505.0m and 1503.0m. <u>Vozzhenikovia extensa</u> occurs upsection to 1495.3m. The upper boundary is provisionally picked at 1491.5m, a sample containing <u>Proteacidites rectomarginis</u>, a species which first appears in the Middle \underline{N} . <u>asperus Zone</u>, and <u>Proteacidites recavus</u> which typically is last recorded in this zone.

The occurrence of <u>Triorites magnifus</u> and <u>Rugulatisporites trophus</u> at 1485.3m demonstrates this sample is also Middle <u>N. asperus</u> Zone in age, a conclusion supported by the occurrence of Zone K (Eocene) foraminifera. Since this sample is a greensand separated from the Gurnard Formation by a glauconite-free carbonate, it is likely to be incorrectly labelled as to depth. (See also Rexilius, 1984).

Proteacidites tuberculatus Zone, 1475.4m:

The presence of $\underline{\text{Cyatheacidites}}$ annulatus at 1475.4m confirms a $\underline{\text{P}}$. $\underline{\text{tuberculatus}}$ Zone age for this sample.

REFERENCES

- MACPHAIL, M.K., 1983. A revision of the Maastrichtian <u>T. longus</u> Zone based on palynological data from the Hapuku-l and Pilotfish-lA wells, Gippsland Basin. <u>Esso Australia Ltd.</u>, <u>Palaeontological Report 1983/19.</u>
- PARTRIDGE, A.D., 1976. The geological expression of eustacy in the Early Tertiary of the Gippsland Basin. Apea (1976), 73-79.
- REXILIUS, J.P., 1984. Micropalaeontological analysis of Wirrah-3, Gippsland Basin, Victoria. Esso Australia Ltd., Palaeontological Report 1984/17.
- STOVER, L.E. & EVANS, P.R. 1973. Upper Cretaceous spore-pollen zonation, offshore Gippsland Basin, Australia. Spec. Publ. Geol. Soc. Aust., 4, 55-72.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. Proc.Roy.Soc.Vict., 85, 237-86.

PALYNOLOGY DATA SHEET

	ва	S I N:		EL	EVATION	: KB: _	+21.	Om GL:	-49	. Om			
•	WELL	NAME:	WIR	RAH-3			TO	TAL DEP	TH:				
	田	PAL	NOLOGICAL	ΗIG	н Е	ST D	АТ	A	LO	W E	ST D.	A T A	Ā
ì	A G	ZONES		Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way
		T. ple	istocenicus		-	-			<u> </u>		•	†	
	<u></u> ⊞	M. lip	sis										
	NEOGENE	C. bif	urcatus		1								
	NEO	T. bel	lus										
		P. tub	erculatus	1475.4	0				1475.0	0			
		Upper	N. asperus										
		Mid N.	asperus	1491.5	2	1495.3	1		1507.0	0			
	ы	Lower	N. asperus	1520.1	2	1553.6	1		1648.1	2	1596.4	1	
	PALEOGENE	P. asp	eropolus	1688.2	2	1715.2	0		1804.0	1			
	LEO	Upper	M. diversus	1873.0	1				1873.0	1			
	PA	Mid M .	diversus	1881.0	2				1889.0	2			
		Lower	M. diversus	1925.1	2				1950.5	2			
		Upper .	L. balmei	2035.0	1				2366.0	1			
	ł	Lower .	L. balmei	2397.6	1				2593.0	2	2558.5	1	
		T. long	gus	2600.0	0				2875.0	1			
	Sno	T. 1i1.	liei	2994.4	2				3159.2	2	3132.8	1	
	ACE	N. sen	ectus	3219.3	2				3225.0	3	3222.0	2	
i	CRETACEOUS	U. T. j	pachyexinus										
		L. T. j	pachyexinus										
	LATE	C. tri	plex										
		A. dis	tocarinatus										
	<u>.</u> :	C. para	adoxus										
	CRET	C. str	iatus			:							•
		F. asyı	mmetricus										
	EARLY	F. won	thaggiensis										
	E7	C. aus	traliensis										
		PRE-CRI	ETACEOUS										
	СОМ	MENTS:	Upper T. lo	ongus Zone	e 26	500.0 - 27	75.0ı	n; Lower	T. longu	s Zoi	ne 2800 -	- 287	75.Om.
			Please not	e that the	<u>T.</u>	longus Zo	ne a	s recogn	nized in p	re-19	983 wells		
			correspond	s approxim	natel	y to the	Uppe	r <u>T. lor</u>	ngus Zone.				
	CON	FIDENCE	O: SWC or C	Core, Excelle	nt Con	fidence, asser	nblage	with zone	species of sp	ores, p	ollen and mi	cropla	nkton.
	R.A	ATING:		•		nce, assembl	_	•	-	-		-	
,			3: Cuttings,			issemblage wi	-		-	-		_	
			or both. 4: Cuttings.	No Confiden	ce. as	semblage with	h non-	diagnostic	spores, poller	n and/	or microplant	kton.	
	NOT	E:	If an entry is gi			•							ld be
į			entered, if poss unless a range of limit in another	ible. If a san of zones is giv	nple o	annot be assig	gned t	o one parti	cular zone, th	en no	entry should	be ma	de,
į	DAT.	A RECORI	DED BY:	M.K. Ma	cpha	il		D	ATE:	8 Jur	ne 1984		
	חאת	A REVISE	ED BY:			-		Dž	ATE:				

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS WIRRAH-3 INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
								
SWC 125	1475.4	Good	V. low	Calcilut.	P.tuberculatus		0	C. annulata
SWC 123	1485.3	V. good	Low	Sh.,calc.	Indeterminate	-	-	Misplaced sample containing R.trophus &
								T.magnificus (Middle N.asperus Zone
								indicator species).
SWC 122	1491.5	V. good	Low	Sist.,calc.,	Indeterminate	-	-	Early Oligocene foram assemblage with
				glau.				reworked glauconite and Upper-Middle $\underline{ exttt{N}}.$
								asperus palynoflora.
SWC 120	1495.3	V. good	Fair	S.st., glau.	Middle <u>N.asperus</u>	Late Eocene	1	V. extensa.
SWC 119	1497.4	Good	Fair	Sh., glau.	Middle N.asperus	Late Eocene	2	S.punctatus, P.reticulatus.
SWC 118	1499.3	Good	Fair	Slst., glau.	Middle N.asperus	Late Eocene	1	V.extensa frequent, M.verrucosus.
SWC 117	1501.0	Good	V. low	Sist., glau.	Middle <u>N.asperus</u>	Late Eocene	1	V.extensa.
SWC 116	1503.0	Good	High	Slst., glau.	Middle N.asperus	Late Eocene	0	T.magnificus, R.trophus, P.recavus,
								V.extensa.
SWC 115	1505.0	Good	Fair	Slst., glau.	Middle N.asperus	Late Eocene	0	T.magnificus, frequent V.extensa.
SWC 114	1507.0	Good	Fair	SIst., glau.	Middle <u>N.asperus</u>	Late Eocene	0	T.magnificus, P.pachypolus,
								P.rectomarginis, V.extensa
SWC 113	1509.9	Negligible		Sist., glau.	Indeterminate	-	-	
SWC 112	1510.9	Barren		Ss.	Indeterminate	-	-	
SWC III	1512.9	Barren		Ss.	Indeterminate	-	-	
SWC 110	1515.0	V. low	V. low	Ss.	No younger than Midd	le N. asperus		B. elegansiformis.
SWC 109	1516.7	V. low	V. low	Ss.	Indeterminate	-	-	
SWC 108	1520.1	Fair	Fair	Ss.	Lower N. asperus	Middle Eocene	2	N.falcatus, V.attinatus.
SWC 107	1525.5	Good	Low	Sist., carb.	Lower N.asperus	Middle Eocene	2	N.falcatus.

TABLE 1 : SUMMARY OF PALYNOLOGICAL ANALYSIS WIRRAH-3 INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
					Profession (Pr. 18) (18) (18) (18) (18) (18) (18) (18)			
SWC 106	1531.5	V. low	V. low	Sh.	Lower N.asperus	Middle Eocene	2	N. falcatus.
SWC 105	1539.9	Barren		Ss.	Indeterminate	-	-	
SWC 104	1553.6	Low	Fair	Ss.	Lower N.asperus	Middle Eocene	1 *	T. leuros, P. vesicus, N. falcatus
SWC 103	1571.5	V. low	Low	Ss.	Lower N.asperus	Middle Eocene	I	T. leuros, N. falcatus, A. diktyoplokus
SWC 102	1596.4			Sist., carb.	Lower N.asperus	Middle Eocene	ŀ	T.leuros, T.delicatus, N.falcatus,
								P.pachypolus, P.recavus
SWC 101	1614.6	Negligible		Ss.	Indeterminate	-	-	
SWC 100	1648.1	Low	Low	Sist.	Lower N.asperus	Middle Eocene	2	P.reflexus, frequent Nothofagidites
SWC 99	1662.2	Negligible		Ss.	No younger than Lower	N. asperus		P.asperopolus
SWC 98	1688.2	Fair	Fair	Coal	P.asperopolus	Early Eocene	2	P.rugulatus, abundant Proteacidites
SWC 97	1715.2	Good	High	Sh.,carb.	P.asperopolus	Early Eocene	0	P.asperopolus, M.tenuis
SWC 96	1742.6	Barren		Sist.	Indeterminate	-	-	
SWC 95	1770.1	Negligible		Sh.	Indeterminate	-	-	
SWC 94	1787.0	Barren	-	Sist.	Indeterminate	-	-	
SWC 93	1804.0	Good	High	Sh.	P.asperopolus	Early Eocene	1	P.asperopolus, P.pachypolus
SWC 92								
SWC 91	1858.2	Barren		Sist.	Indeterminate	-	-	
SWC 90	1873.0	Fair	Low	Coal	Upper M.diversus	Early Eocene	1	M.diversus frequent, M.tenuis
SWC 89	1881.0	V. good	High	Sh., carb.	Middle M.diversus	Early Eocene	1	P.tuberculiformis, P.xestoformis,
								T.moultonii, T.adelaidensis
SWC 88	1889.0	Good	V. high	Sh.	Middle M.diverus	Early Eocene	1	P.tuberculiformis
SWC 87	1909.1	Negligible		Ss.	Indeterminate		-	
SWC	1925	Goo	w (m)		M.d.sus	Eagle	2	ore-manhate ynot
SWC 85	1950.5	Good	Low	Sh.	Lower M. diversus	Farly Focene	2	P grandie common T adelaidensis

TABLE 1 : SUMMARY OF PALYNOLOGICAL ANALYSIS WIRRAH-3

INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
					. 4 2 11. 4/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2			
SWC 84	1972.0	Barren		Sh.	Indeterminate	-	-	
SWC 83	2002.4	Low	V. Low	Sh.	Upper <u>L. balmei</u>	Paleocene	2	A.obscurus, abundant C.splendens
SWC 82	2035.0	Low	Fair	Sist.	Upper <u>L. balmei</u>	Paleocene	1	Frequent L.balmei & V.kopukeunsis
SWC 8I	2070.1	Good	Fair	Sist.	Upper <u>L. balmei</u>	Paleocene	1	L. balmei & Gleicheniidites common,
								V. kopukuensis
SWC 80	2096.4	Good	Fair	Sh., carb.	Upper <u>L. balmei</u>			
SWC 79	2128.0	Good	Fair	Sist.	Upper <u>L. balmei</u>	Paleocene	l	G rudata, V.kopukuensis
SWC 78	2152.1	V. Low	V. Low	Sh.	Upper L. balmei	Paleocene	1	L.balmei common, V.kopukuensis,
								A. homomorpha
Core 2	2188.3	Fair	High	Sh.	Upper L. balmei	Paleocene	1	G.rudata, V.kopukuensis, A.obscurus,
								N.endurus
Core 2	2194.18	V. good	High	Sh.	Upper L. balmei	Paleocene	-	as above
SWC 76	2255.5	Fair	Low	Sist.	Upper <u>L. balmei</u>	Paleocene	1	L.balmei & Gleicheniidites frequent, V
								kopukuensis
SWC 75	2270.0	Fair	Low	Sist.	L. balmei	Paleocene	-	L. balmei frequent
SWC 74	2288.0	V. good	Fair	Sh.	Upper <u>L. balmei</u>	Paleocene	2	Gleicheniidites frequent
SWC 73	2309.2	Negligible	-	Sist.	Indeterminate	-	-	
SWC 72	2333.1	Low	V. low	Sist.	L. balmei	Paleocene		L.balmei common, P.verrucosus
SWC 71	2358.0	Barren		Ss.	Indeterminate	-	-	
SWC 70	2366.0	Good	Fair	Sist.	Upper <u>L.</u> <u>balmei</u>	Paleocene	1	L.balmei common, V.kopukuensis
SWC 69	2375.4	Barren	-	Ss.	Indeterminate	-	-	
SWC 68	2392.6	V. low	Low	Ss.	Indeterminate	-	-	
SWC 67	2397.6	Good	Fair	Sist.	Lower L. balmei	Paleocene	-	L.balmei common, T.verrucosus,

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS WIRRAH-3

INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
SWC 66	2405.0	Barren		Volcanic	-		-	
SWC 64	2424.0	Low	Fair	Sist.	Lower L. balmei	Paleocene	I	L.balmei, T.verrucosus
SWC 62	2435.6	Barren		Sist.	Indeterminate	-	-	
Ctg	2460-65	Low	V. Low	-	Lower L. balmei	Paleocene	3	L.balmei, T.verrucosus
SWC 61	2449.9	Good	Low	Dol.	Indeterminate	-	-	M.diversus Zone palynoflora
SWC 58	2467.5	Low	Low	Sh.	Indeterminate	-	-	
SWC 57	2474.5	Barren		Ss.	Indeterminate	-	-	
Ctgs	2470-75	V. Low	V. Low		L. balmei	Paleocene	-	H.harrisii, A.obscurus
SWC 55	2484.7	Low	Low	Sh.	Lower L. balmei	Paleocene	2	L.balmei, abundant Proteacidites
SWC 54	2491.5	Barren	-	Ss.	Indeterminate	-	-	
SWC 53	2495.7	Barren	-	Ss.	Indeterminate	-	-	
SWC 52	2498.5	Good	Low	Sh.	Lower L. balmei	Paleocene	ŧ	L.balmei, T.verrucosus
SWC 51	2502.1	Fair	Low	Sist.	Lower L. balmei	Paleocene	2	L.balmei, reworked Early Cretaceous spp
Ctgs	2510-15	V. Low	V. Low		Lower L. balmei	Paleocene	3	H.harrisii, T.verrucosus
SWC 48	2512.6	Barren	-	Ss.	Indeterminate		-	
SWC 47	2517.0	Barren	-	Sist.	Indeterminate		-	
SWC 42	2539.2	V. Low	V. Low	Sist.	Lower L. balmei	Paleocene	1	L.balmei, T.verrucosus
SWC 39	2552.5	Fair	Fair	Sist.	Lower L. balmei	Paleocene	1	L.balmei, frequent T.verrucosus
SWC 38	2555.9	V. Low	Fair	Ss.	Lower L. <u>balmei</u>	Paleocene	2	Frequent T. verrucosus
SWC 37	2557.0	Barren	-	Ss.	Indeterminate	-	-	
SWC 36	2558.5	Fair	High	Sh.	Lower L. balmei	Paleocene	1	H.harrisii, L.balmei, T.verrucosus,
								N.endurus, T.gillii, G.rudata,
								T.confessus, A.obscurus

TABLE 1 : SUMMARY OF PALYNOLOGICAL ANALYSIS WIRRAH-3 INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
			*************************************		· · · · · · · · · · · · · · · · · · ·			
SWC 29	2582.1	Low	Fair	Sh.	Lower L. balmei	Paleocene	2	T.verrucosus, P.adenantholdes
SWC 27	2593.0	Good	Fair	Sh.	Lower L. balmei	Paleocene	2	L.balmei, T.verucosus
SWC 26	2600.0	Fair	High	Sh.	Upper T. longus	Maastrichtian	0	S.punctatus, T.longus, T.lilliei,
								frequent G.rudata, P.otwayensis,
								P.palisadus
Core	2600.15	Fair	Low	Sh.	Upper <u>T. longus</u>	Maastrichtian	1	P.reticuloconcavus, T.IIIIei, T.
								apoxyexinus
ore	2601.3	Fair	Low	Sh.	Upper <u>T. longus</u>	Maastrichtian	0	T.longus, S.punctatus
WC 25	2604	Low	High	Sh.	Upper <u>T. longus</u>	Maastrichtian	0	as above plus $\underline{G.rudata}$ (common), $\underline{T.}$
								waiparensis, P.reticuloconcavus,
								P.wahooensis
Core 7	2624.38	Good	High	Sh.	Upper T. longus	Maastrichtian	0	S.punctatus, T.verrucosus, T.longus,
								T. securus
SWC 24	2625.0	Fair	Fair	Sh.	Upper T. longus	Maastrichtian	0	T.longus, Q.brossus, S.punctatus,
								P.otwayensis
Core 7	2633.87	V. good	Low	Sh.	Upper T. longus	Maastrichtian	0	T.longus, S.punctatus, palynoflora
								dominated by <u>G.rudata</u> .
Core 5	2648.62	V. good	Fair	Sh.	Upper T. longus	Maastrichtian	0	T.longus; S.punctatus and G.rudata
								frequent
WC 23	2650.0	Good		Sist.	Upper T. longus	Maastrichtian	I	T. longus, S. Punctatus
ore 7	2678.38	Barren		Sh.	Indeterminate	-	-	
ore 7	2681.09	Negligible		Sh.	Indeterminate	-	-	
SWC 19	2713	Low	Fair	Sh.	T. longus	Maastrichtian		T.longus, G.rudata, S.regium. T.secti
SWC T8	2719.9	V. Low	Low	Sh.	T. longus	Maastrichtian		T.longus, G.rudata, P.otwayensis

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS WIRRAH-3

INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	CONTENTS
SWC 17	2722.1	Negligible		Sh.	Indeterminate	_	_	
SWC 16	2737.0	Negligible		Ss.	Indeterminate	-	_	G.rudata
SWC 15	2742.5	Good	Fair	Coal	Upper T. longus	Maastrichtian	1	abundant G.rudata; T.verrucoous;
								S.punctatus, P.reticuloconcavus,
								0. sentosa
SWC 14		Low	V. low	Sist.	T. longus	Maastrichtian	-	G.rudata frequent
SWC 10	2764.0	V. good	High	Sh.	Upper <u>T. longus</u>	Maastrichtian	0	G.rudata common, S.punctatus,
								P.cleinei, P.wahooensis, T.waiparensis
SWC 9		Fair	Low	Sh.	Upper <u>T. longus</u>	Maastrichtian	0	G.rudata abundant, S.punctatus
SWC 8	2789.0	V. Low	V. Low	Sist.	No older than <u>T. lillie</u>	Zone Zone	-	G. rudata
SWC 7		Fair	Low	Sist.	Lower T. longus	Late Cretaceous	2	G.rudata common, T.IIIIei
SWC 6	•	Low	Fair	Sh.	No older than <u>T.lilliei</u>	Zone		T.lilliei; abundant Nothofagidites
SWC 3	2875.0	Low	Low	Ss./Sh.	Lower T.longus	Late Cretaceous	1	T.longus, G.rudata
SWC I	2934.0	V. Low	V. Low		No older than <u>T.lilliei</u>	Zone	-	G.rudata
SWC 162		Barren		Conglom.	Indeterminate		-	
SWC 161	2971.8	Negligible		Sist.	No older than T.lilliei	Zone		N.flemingii, P.angulatus
SWC 160	2978.2	Negligible		Conglom.	Indeterminate			
SWC 159	2994.4	V. good	High	Sist.	T. <u>lilliei</u>	Late Cretaceous	2	N.flemingii, T.lilliei, T.waiparensis,
0110 150		_						T.sectilis
SWC 158		Barren		Conglom.	Indeterminate		-	
SWC 156	3026.4	V. Low	V. Low	Sist.	No older than T. IIIIIei	Zone	-	G.rudata, T.sabulosus
SWC 155	3039.0	V. Low	Low	Conglom.	Indeterminate		-	N. senectus, N. brachyspinulosus
SWC 151	3051_8	Negligible		Slst.	No older than Tilliei	Zene		G. rudata
3#U 131	3081.5	Barren		Conglom.	Indeterminate		-	

TABLE 1 : SUMMARY OF PALYNOLOGICAL ANALYSIS WIRRAH-3

INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
								
SWC 150	3088.0	Low	Low	Sist.	T. IIIIiei	Late Cretaceous	I	G.rudata frequent, T.IIIIei, T.sectilis
SWC 149	3088.6	Negligible		Sist.	Indeterminate			
SWC 147	3097.0	V. Low	V. Low	Sist.	T. lilliei	Late Cretaceous	2	G.rudata
SWC 145	3107.9	Fair	High	Sist.	T. IIIIiei	Late Cretaceous	1	G.rudata, T.lilliei, N.flemingii
SWC 143	3127.4	Barren		Sist.	Indeterminate		-	
SWC 142	3132.8	Fair	High	Sist.	T. IIIIiei	Late Cretaceous	1	T. IIIIIei, N. flemingii, freq. G. rudata
SWC 141	3141.0	Negligible		Conglom.	No older than N.senectu	<u>ıs</u> Zone	-	
SWC 140	3159.2	V. Low	Low	Sist.	No older than N.senectu	us Zone	-	
SWC 137	3219.3	Fair	Low	Sist.	N. senectus	Late Cretaceous	2	N. senectus
SWC 136	3222.0	Low	Fair	Ss.	N. senectus	Late Cretaceous	2	N.senectus, N.endurus. T.sabulosus
Ctgs	3225.30	Low	Low		N. senectus	Late Cretaceous	3	Nothofagidites spp., T.sabulosus
Ctgs	3230.35	Good	Low		Indeterminate	-	-	Caved Eocene taxa
SWC 134	3241.9	V. Low	Low	Sist.	Indeterminate	-	-	Long-ranging Cretaceous spores only
SWC 133	3242.5	Low	V. Low	?	N. senectus	Late Cretaceous	2	N.cf.endurus, T.cf.sabulosus

TABLE 2

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WIRRAH-3

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 127	1485.3	Middle <u>N.</u> asperus	Rugulatisporites trophus	Rare sp. (Gurnard Fm), with <u>Triorites magnificus</u>
SWC 119	1497.4	Upper-Middle N. asperus (2)	Stereisporites punctatus	Rare late appearance
SWC 118	1499.3	Middle N. asperus (1)	Myrtaceidites verrucosus	Rare sp.
SWC 116	1503.1	Middle N. asperus	M. eucalyptoides	Rare sp. in Eocene
SWC 116	11	11	Phyllocladidites paleogenicus	Rare sp.
SWC 114	1507.0	Middle N. asperus (0)	Proteacidites pachypolus	Last appearance. <u>T. magnificus</u> present
SWC 114	11	11	Dyphes colligerum	Rare dinoflagellate
SWC 114	11	II .	Wetzeliella cf tabulatum	First record
SWC 108	1520.1	Lower N. asperus (2)	Phyllocladidites paleogenicus	Rare sp.
SWC 108	11	11	Podosporites erugatus	Rare sp. in Eocene
SWC 108	"	Ħ	Haloragacidites verrucatoharrisii	Rare ms sp. (Machphail)
SWC 108	11	11	Verrucatosporites attinatus	Rare sp.
SWC 102	1596.4	Lower N. asperus (1)	Proteacidites callosus	Rare sp.
SWC 101	1614.6	Lower N. asperus (2)	Clavatipollenites glarius	Very rare sp.
SWC 100	1648.1	Lower N. asperus (2)	Proteacidites lapis	Not recorded above P. asperopolus Zone
SWC 100	11	ļi.	P. reflexus	Rare sp.
SWC 97	1715.2	P. asperopolus (0)	Nothofagidites	Common in assemblage
SWC 97	**	11	Tricolpites phillipsii f. durus	Rare var.
SWC 97	**	"	"Tricolpites reticulatus"	Rare sp. (Stover & Evans)
SWC 90	1873.0	Upper M. diversus (1)	Proteacidites recavus	Very rarely recorded below P. asperopolus Zone
SWC 89	1881.0	Middle M. diversus (1)	Foveotriletes balteus	Rare occurrence below Upper M. diversus Zone
SWC 88	1889.0	Middle M. diversus (2)	Proteacidites tuberculotumulatus	Very rare species, not usually found below
				Upper M. diversus Zone
SWC 88	**	n	Gemmatricolporites cf gestus	G. gestus ranges no lower than Lower N. asperus Zone

TABLE 2

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WIRRAH-3

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 88	1889.0	Middle M. diversus (2)	Proteacidites latrobensis	Not recorded below Upper M. diversus
SWC 88	11	Ħ	P. rugulatus	Not recorded below P. asperopolus Zone
SWC 88	11	n	Tricolporites circumlumenus	Rare ms sp. (Macphail)
SWC 88	11	Ħ	Tricolpites phillipsii f. durus	Rare var.
SWC 88	11	11	Proteacidites sp. nov.	Echinate, resembles P. parvus but much larger
SWC 83	2002.4	(Lower M. diversus)	Australopollis obscurus	Reworked (?) in sample dated as Lower M. diversus Zone
				on geological data
SWC 82	2035.0	Upper <u>L. balmei</u> (1)	Cupanieidites orthoteichus	Not previously recorded below M. diversus Zone
SWC 82	n	11	Tricolporites adelaidensis	Not previously recorded below Middle M. diversus Zone
SWC 80	2096.4	Upper <u>L. balmei</u> (I)	Tricolporites adelaidensis	As for SWC 82
SWC 80	11	11	Tetracolporites verrucosus	Rare occurrence with \underline{V} , kopukuensis
SWC 79	2128.0	Upper <u>L. balmei</u> ()	Tricolporites marginatus	Uncommon sp.
Core 2	2188.30	Upper <u>L. balmei</u> (I)	Phyllocladidides verrucosus	Rare above Lower L. balmei Zone
Core 2	18	11	Polycolpites langstonii	Var. with minute apiculae
Core 2	2194.18	Upper <u>L. balmei</u> (I)	Foveotriletes balteus	As for SWC 89
SWC 74	2288.0	Upper <u>L. balmei</u> (2)	Proteacidites amolosexinus	Late Cretaceous sp.
SWC 68	2392.6	Upper <u>L. balmei</u> (2)	Phyllocladidites reticulosaccatus	Rare sp.
SWC 64	2424.0	Lower L. balmei (I)	Proteacidites palisadus	Late Cretaceous sp.
SWC 64	11	11	Verrucosisporites cf kopukuensis	Ancestral form of \underline{V} . kopukuensis?
SWC 59	2467.5	Lower L. balmei (2)	Tricolpites marginatus	As for SWC 79
SWC 59	11	n	Proteacidites grandis	Caved specimen?
SWC 39	2552.5	Lower L. balmei (1)	P. grandis	Caved specimen?
SWC 36	2558.5	Lower L. balmei (I)	Gleicheniidites spp.	Not usually abundant in this zone
SWC 36	11	11	Schizaea digitatoides	Uncommon sp.
SWC 36	"	11	Verrucosisporites cf kopukuensis	As for SWC 64
SWC 29	2582.1	Lower L. balmei (i)	Schizocolpus marlinensis	Not previously recorded below Lower M. diversus.

Important record.

TABLE 2

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WIRRAH-3

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
Core	2600.15	Upper <u>T. longus</u> (1)	Tricolporites apoxyexinus	?Rare sp.
Core 7	2624.38	Upper <u>T</u> . <u>longus</u> (0)	Proteacidites protograndis	Ms sp. (Macphail)
SWC 19	2713.0	Upper T. longus (2)	Proteacidites protograndis	Ms sp. (Macphail)
SWC 15	2742.5	Upper T. longus (0)	Ornamentifera sentosa	V. rare sp.
SWC 6	2823.6	Lower T. longus (2)	Abundant Nothofagidites	58%, (<u>Gambierina</u> 27%)
SWC 3	2875.0	Lower T. longus (1)	Tricolpites vergillus	Rare ms sp. (Partridge)
SWC 159	2994.4	T. IIIIIei (I)	Aglaoreidia sp. nov.	Genus not previously recorded below Middle N.
				asperus Zone
WC 159	11	Ħ	Nothofagidites flemingii	Rare occurrence close to first appearance of sp.
WC 159	11	Ħ	Gephryapollenites wahooensis	Rare sp.
WC 159	"	11	Tricolpites confragosus	New ms sp. with Proteacidites conflagrous-style
				ornamentation
WC 150	3088.0	T.	Foveotriletes balteus	V. rare in Late Cretaceous
WC 142	3132.8	T. ()	Nothofagidites flemingii	As for SWC 159
WC 140	3159.2	N. senectus (?)	Basopollis otwayensis	
WC 136	3222.0	N. senectus (1)	Basopollis mutabilis	

PENDIX 3

APPENDIX 3

WIRRAH-3

QUANTITATIVE LOG ANALYSIS

Interval: 1500-3250m KB

Analyst : W.J. Mudge

Date : April, 1984

WIRRAH-3 QUANTITATIVE LOG ANALYSIS

Wirrah-3 wireline logs have been analysed for effective porosity and water saturation over the interval 1500-3250m KB. Analysis was carried out using a reiterative technique which incorporates hydrocarbon correction to the porosity logs, density-neutron crossplot porosities, a Dual Water saturation relationship, and convergence on a preselected grain density window by shale volume adjustment.

Logs Used and Log Quality

LLD, LLS, MSFL, Caliper, RHOB (LDTC and LDTA), NPHI (CNTH and CNTA).

Resistivity, gamma ray and neutron porosity logs were corrected for borehole and environmental effects.

The corrected resisitivity logs were then used to derive Rt and invasion diameter.

Coals and carbonaceous shales were edited for an output of:

$$VSH = 0$$
, $PHIE = 0$, and $Swe = 1$.

The LDTA-CNTA combination was used in preference to the LDTC-CNTH over the interval 2630-2768m KB. This is due to to the better match of log derived porosities from the LDTA-CNTA with data obtained from core analysis. For the remainder of the well the LDTC-CNTH is the only density-neutron combination available.

Analysis Parameters

Apparent shale density and shale neutron porosities were derived from crossplots while shale resistivities were read directly from the logs. A summary of analysis parameters is included in Table 1.

Shale Volume

An initial estimate of VSH was calculated from the density neutron separation:

$$VSH = \frac{\frac{2.65 - RHOB}{1.65}}{NPHISH - \frac{2.65 - RHOBSH}{1.65}} - 1$$

Total Porosities

Total porosity was initially calculated from a density-neutron logs using the following algorithms:

$$h = 2.71 - RHOB + NPHI (RHOF - 2.71)$$
 - 2

if h is greater than O, then

apparent matrix density, RHOMa =
$$2.71 - h/2$$
 - 3

if h is less than 0, then

Total porosity:
$$PHIT = \frac{RHOMa - RHOB}{RHOMa - RHOF}$$
 - 5

where RHOB = environ. corrected bulk density in gms/cc

NPHI = environ. corrected neutron porosity in limestone porosity units.

RHOF = fluid density (1.0 gms.cc)

Free Water Salinities

Apparent free water salinities were calculated using the following relationships:

$$Rw = Rt * PHIT^{m}$$

Salinity (ppm) =
$$\frac{300,000}{\text{Rw (Ti + 7)} - 1}$$
 1.05

where Ti = formation temperature in <math>OF.

Bound Water Resistivities (Rwb) and Saturation of Bound Water (Swb)

Rwb and Swb were calculated using the following relationships:

$$Rwb = \frac{RSH * PHISH^{m}}{a} - 8$$

where PHISH = total porosity in shale from density-neutron crossplots. RSH = Rt in shales.

$$Swb = \frac{VSH * PHISH}{PHTT} - 9$$

Water Saturations

Water saturations were determined from the Dual Water model using the following relationships:

$$\frac{1}{Rt} = SwT^{n} * \frac{PHIT^{m}}{aRw} + SwT^{(n-1)} \frac{Swb * PHIT^{m}}{a} \frac{1}{Rwb} - \frac{1}{Rw}$$

and

$$\frac{1}{\mathsf{Rxo}} = \mathsf{SxoT}^\mathsf{n} * \underbrace{\mathsf{PHIT}^\mathsf{m}}_{\mathsf{aRw}} + \mathsf{SxoT}^{\mathsf{(n-1)}} \underbrace{\mathsf{Swb} * \mathsf{PHIT}^\mathsf{m}}_{\mathsf{a}} \underbrace{1}_{\mathsf{Rwb}} - \underbrace{1}_{\mathsf{Rmf}}$$

= total saturation in the virgin formation where SwT

SxoT = total saturation in the invaded zone

Rmf = resistivity of mud filtrate

= saturation exponent

Hydrocarbon Corrections

Hydrocarbon corrections to the environmentally corrected density and neutron logs were made using the following relationships:

$$RHOBHC = RHOB + 1.07 PHIT (1-SxoT) [(1.11-0.15P) RHOF - 1.15 RHOH] -12$$

NPHIHC = NPHI + 1.3 PHIT (1-SxoT)
$$\frac{\text{RHOF (1-P)} - 1.5 \text{ RHOH + 0.2}}{\text{RHOF (1-P)}}$$
 -13

where RHOBHC

= hydrocarbon corrected RHOB
= hydrocarbon corrected NPHI NPHIHC

= hydrocarbon density (0.25 gms/cc for gas, 0.7 gms/cc for oil) RHOH

= mud filtrate salinity in parts per unity

Grain Density

Grain density (RHOG) was calculated from the hydrocarbon corrected density and neutron logs using the following relationships:

$$RHOBC = \frac{RHOBHC - VSH * RHOBSH}{1 - VSH}$$

$$NPHIC = \frac{PHINHC - VSH * NPHISH}{1 - VSH}$$
 -15

and equations 2, 3 and 4 are then used to compute RHOG.

The calculated grain density was then compared to the upper and low limits of the grain densities and if it fell within the limits, effective porosity (PHIE) and effective saturation (Swe) were calculated as follows:

Swe =
$$1 - \frac{PHIT}{PHIE}$$
 (1-SwT)

If the calculated grain density fell outside the limits, VSH was adjusted in appropriate increments or decrements, and PHIT, SwT, SxoT and RHOG recalculated.

All zones with VSH greater than 60%, Swe, was set to 1 and PHIE set to 0.

The results of the analysis are summarised in Table 2.

COMMENTS

1. Below the limit of fresh water flushing (approximately 2040m KB) water bearing sands have an apparent salinity of 30,000 ppm NaCl equivalent. This salinity was used in all hydrocarbon zones within the interval 1500-2440m KB.

Water bearing sands over the interval 2520-2538m KB yield apparent water salinities of 17,000 ppm NaCl equivalent. This salinity was used over the interval 2440-3250m KB.

Formation water recovered from production test #1 (2994-2883m KB) suggests water salinities at this depth are in the order of 4,000 ppm NaCl equivalent. An RFT sample taken at 2936.8m KB recovered 39.1 cu.ft. gas, .65 litre oil and 34.6 litres of filtrate/water. If a salinity of 4000 ppm NaCl equivalent is used in the log analysis over this interval, the entire interval will calculate out to be water wet. We believe an apparent salinity of 17,000 ppm NaCl equivalent is therefore more realistic.

- 2. A GOC is present at 1531m KB. An OWC is interpreted at 1533.50m KB, within a dolomitized sand. This corresponds to the OWC in Wirrah-1. Wirrah-2 had an OWC at 1535m KB, however no evidence supporting a contact at this depth can be found in Wirrah-3.
- 3. A sand over the interval 2021.75-2031.75m KB has oil as low as 2025.50m KB. An OWC can be defined in a sand over the interval 2139.75-2149.75m KB at 2143.75m. A sand over the interval 2347.75-2351.50m contains oil however no contact can be defined.
- 4. Core descriptions indicate a GOC could exist at 2622.50m KB. The log analysis has however assumed the entire sand over the interval 2610.75-2623.00m KB to be gas bearing.

- 5. Formation testing proved hydrocarbons as high as 2622.00m KB and as low as 2936.8m KB. We believe this proves the interval 2610.75m KB to 2936.8m KB to be hydrocarbon bearing, however producibility of these hydrocarbons varies with permiability. Hydrocarbons are also present in the interval 2583.00m KB to 2598.00m KB.
- 6. Log analysis indicates that apparent oil water contacts are present at 3834.5m KB and 2845.00m KB however these may not be true oil water contacts but rather an effect of conductive minerals such as pyrite.
- 7. The interval 2850-3250m KB consists predominantly of conglomerate. Cores cut in Wirrah-1 and Wirrah-3 and testing in Wirrah-3 prove the conglomerate does contain hydrocarbons however due to lack of permeability, these hydrocarbons cannot be produced. Sidewall cores recovered over this interval exhibit good shows and water saturations calculated over this interval are probably in the right order however the hydrocarbons present are not producible.
- A detailed comparison was made between log derived porosities and core 8. porosities and permeabilities over the interval 2590-2715m KB.

Compared were:

- 1. Effective porosity derived from the LDTC-CNTH
- 2. Effective porosity derived from the LDTA-CNTA3. Core porosities and permeabilities

Plots of the comparison are included in Enclosure 2.

The results indicate porosities derived from the LDTC-CNTH are pessimistic with respect to core analysis and if used will lead to gross under estimation of net sand. The porosities derived from the LDTA-CNTA however show reasonable agreement with core porosities.

A net cut off relationship of 10% porosity and 10 md permeability was derived from core data. If the 10% cut off is used with the LDTA-CNTA porosity net estimates agree very closely to net estimates from permeability data. The LDTC-CNTH porosity however shows poor agreement.

In the unflushed water bearing sands (2040-2450m) an apparent water salinity of 30,000 ppm NaCl equivalent is derived using the LDTC-CNTH porosity. The Apparent water salinity in Wirrah-l and Wirrah-2 for the equivalent interval was 22,000 ppm NaCl equivalent. This further suggests the porosity derived from the LDTC-CNTH is too low.

A relationship was derived between PHIE (LDTA-CNTA) and PHIE (LDTC-CNTH) in an attempt to normalise the LDTC-CNTH porosity. Normalisation involved adding 1.5 pu. to the LDTC-CNTH porosity. This was done over the entire well except where LDTA-CNTA porosities were available. LDTA-CNTA derived porosities were only available over the interval 2420-2769m KB.

9. Enclosure 3 contains comparisons of log derived porosities and core analysis porosities and permeabilities over the intervals 2126-2210m KB. 2800-2815m KB and 3140-3150m KB.

List of Tables and Enclosures

Table 1 Analysis Parameters. Summary of Results. Table 2

Enclosure 1 Log presentation of results. Enclosure 2 LDTA-CNTA, LTDC-CNTH comparison.

Enclosure 3 Core Analysis porosities vs. log derived porosities for cores 1, 2, 9 and 10.

Note: All core analysis porosities are at overburden conditions.

		TABLE 1	WIRRAH-3
Depth (m)	RHOBSH	NPHISH	RSH
1500 - 1875 1875 - 2002 2002 - 2112 2112 - 2135 2135 - 2450 2450 - 2582 2582 - 2875 2875 - 3250	2.55 2.55 2.55 2.55 2.58 2.60 2.60 2.63	.29 .29 .29 .29 .27 .27	25 15 10 15 15 20 30 30
Grain Grain Mud fi Bottom	: 108 ⁰ C Density - lower limit density - upper limit .ltrate density (RHOF) n Hole Temperature earbon density	2.69 gm/cc	

Apparent Free Water Salinities

Salinity [ppm (NaCl equiv.)]
30,000 2,600 3,000 1,800 2,600 2,100 1,800 1,100 900 1,100 1,000 9,000 15,000
30,000 15,000 30,000 17,000

TABLE 2 (a)

WIRRAH-3

Hydrocarbon Bearing Sands

Depth Interval (m KB)	Gross Thickness (m)	Net Thickness (m)	Porosity Average	<u>Swe</u> Average	Fluid Content
1510.75 - 1531.00*	20.25	17.50	.285 ⁺ .048	.223 ⁺ .066	Gas
1531.00 - 1533.50*	2.50	1.50	.242 <mark>+</mark> .014	.132 ⁺ .039	Oil
2021.75 - 2025.50*	3.75	1.50	.131 + .010	.595 ⁺ .178	Oil
2139.75 - 2143.75*	4.00	3.50	.177 ⁺ .030	.686 ⁺ .203	Oil
2347.75 - 2351.50*	3.75	2.25	.138 <mark>+</mark> .027	.488 <mark>+</mark> .146	Oil
2584.50 - 2590.25	5.75	1.00	.114+.010	.408 ⁺ .122	Oil
2610.75 - 2623.00	12.25	8.25	.142 + .030	.234 ⁺ .071	Gas
2627.00 - 2632.00	5.00	2.25	.119 ⁺ .020	.455 ⁺ .140	Oil
2635.00 - 2647.00	12.00	1.00	.116 + .011	.372 ⁺ .110	Oil
2654.00 - 2655.75	1.75	0.25	.101+.001	.780 ⁺ .230	Oil
2658.00 - 2658.50	0.50	-	-	-	Oil
2661.00 - 2662.50	1.50	0.50	.113+.010	.644 ⁺ .190	Oil
2664.25 - 2674.00	9.75	3. 75	.136 ⁺ .020	.336 ⁺ .100	Oil
2676.25 - 2678.50	2.25	0.50	.132 ⁺ .005	.449 ⁺ .130	Oil
2683.75 - 2694.75	11.00	6.50	.127 ⁺ .017	.282+.080	Oil
2698.25 - 2711.00	12.75	5 . 75	.145 ⁺ .030	.318+.100	Oil
2726.00 - 2738.50	12.50	9.75	.128 + .017	.364 ⁺ .110	Oil
2745.00 - 2749.00	4.00	2.25	.168 ⁺ .024	.206 ⁺ .060	Gas
2753.00 - 2763.00	10.00	4.75	.117 ⁺ .010	.359 ⁺ .110	Oil
2765.50 - 2768.25	2.75	1.75	.112 + .007	.486 ⁺ .150	Oil
2777.50 - 2787.00*	9.50	6.25	.145 ⁺ .027	.391+.121	Oil
2790.50 - 2793.00*	2.50	1.50	.130 ⁺ .021	.484 ⁺ .150	Oil
2804.00 - 2808.25*	4.25	3.25	.133 ⁺ .021	.379 ⁺ .110	Oil
2814.00 - 2820.50*	6.50	4.00	.125 ⁺ .017	.431 + .130	Oil
2828.00 - 2834.75*	6.75	1.75	.118 ⁺ .017	.353 ⁺ .110	Oil
2838.50 - 2845.50*	7.00	-	-	-	Oil
2849.50 - 2872.50*	23.00	10.75	.119 ⁺ .017	.445 ⁺ .130	Oil
2876.50 - 2954.00*	77.75	11.75	.129 ⁺ .022	.511+.150	Oil
2957.00 - 2971.50*	14.50	3.00	.115 ⁺ .012	.506 ⁺ .150	Oil
2972.50 - 2993.75*	21.25	4.00	.156 ⁺ .029	.400 ⁺ .120	Oil
2995.00 - 3025.75*	30.75	1.75	.125+.009	.495 * .148	Oil
3028.25 - 3051.00*	22.75	-	-	-	Oil
3052.50 - 3086.75*	34.25	-	-	-	Oil
3109.50 - 3115.00*	5.50	-	-	-	Oil
3117.25 - 3125.25*	8.00	-	-	-	Oil
3128.50 - 3131.50*	3.00	-	_	-	Oil
3133.50 - 3223.00*	89.50	-	-	-	Oil

^{*} Refers LDT-CNTH derived porosities. 16821/42

Water Bearing Sands

Depth Interval (m KB)	Gross Thickness (m)	Net Thickness (m)	Porosity Average	<u>Swe</u> Average
1533.50 - 1541.25	7 . 75	7.50	.256	. 972
1542.75 - 1573.00	30.25	29.75	.232	.975
1574.25 - 1588.75	14.50	14.25	.250	.977
1590.00 - 1592.50	2.50	2.25	.201	1.00
1600.25 - 1601.50	1.25	1.25	.238	0.892
1615.25 - 1630.00	14.75	13.25	.235	0.966
1630.75 - 1639.25	8.50	8.25	.247	0.984
1643.25 - 1647.75	4.50	4.50	.215	0.919
1650.50 - 1653.50	3.00	3.00	.278	0.983
1658.25 - 1675.75	17.50	15.25	.244	0.942
1706.25 - 1708.50	2.25	2.25	.244	0.989
1711.50 - 1712.75	1.25	1.00	. 244	1.000
1718.00 - 1721.25	3.25	3.25	.251	1.000
1724.75 - 1737.00	12.25	12.25	.253	0.999
1745.25 - 1753.25	8.00	8.00	.245	0.978
1778.00 - 1782.00	4.00	4.00	.261	1.000
1783.50 - 1786.25	2.75	2.50	.246	0.956
1789.25 - 1812.25	23.00	17.00	.235	1.000
1829.75 - 1834.75	5.00	5.00	.257	0.923
1838.25 - 1841.25	3.00	3.00	.259	0.963
1843.50 - 1852.75	9.25	3.25	.250	0.924
1859.50 - 1868.75	9.25	9.25	.252	1.000
1897.00 - 1900.00	3.00	3.00	.228	0.994
1901.25 - 1915.50	14.25	13.50	.222	1.000
1942.75 - 1946.75	4.00	4.00	.222	1.000
1959.50 - 1965.50	6.00	4.00	.194	1.000
1974.75 - 1983.00	8.25	7.75	.228	1.000
1997.25 - 1999.75	2.50	2.00	.176	1.000
2026.25 - 2031.75	5.50	5.25	.160	1.000
2048.50 - 2060.50	12.00	11.25	.188	0.974
2062.00 - 2065.75	3. 75	3.50	.175	0.999
2068.50 - 2069.50	1.00	1.00	. 254	1.000
2075.25 - 2081.75	6.50	6.50	.207	0.992
2090.25 - 2095.00	4.75	4.25	.195	0.996
2097.25 - 2103.00	5.75	4.75	.152	0.946
2104.50 - 2110.50	6.00	6.00	.222	0.993
2112.75 - 2126.00	13.25	11.75	.156	0.983
2129.75 - 2133.00	3. 25	2.25	.210	0.970
2143.75 - 2149.75	6.00	5.50	.190	0.970

Depth Interval (m KB)	Gross Thickness (m)	Net Thickness (m)	Porosity Average	<u>Swe</u> Average
2153.00 - 2157.75	4.75	3.00	.152	0.973
2166.50 - 2169.50	3.00	1.50	.132	0.903
2175.00 - 2178.25	3.25	2.50	.152	0.918
2185.00 - 2200.75	15.75	14.75	.185	0.898
2203.00 - 2204.50	1.50	1.50	.151	0.909
2220.75 - 2225.50	4.75	3. 75	.151	0.907
2227.50 - 2232.50	5.00	4.75	.173	0.945
2240.75 - 2245.75	5.00	4.75	.174	0.984
2271.25 - 2285.25	14.00	8.50	.119	0.962
2290.25 - 2330.75	40.50	31.75	.165	0.982
2334.75 - 2343.75	9.00	9.00	.199	1.000
2391.25 - 2396.50	5.25	5.00	.177	0.894
2478.25 - 2480.50	2.25	2.00	.164	1.000
2509.00 - 2511.25	2.25	1.50	.148	1.000
2520.50 - 2538.25	17.75	13.25	.155	0.950

APPENDIX 4

APPENDIX 4

WIRELINE TEST REPORT

The Wireline Test Report had not been finalised by the time the present Well Completion Report was compiled. The raw data sneets are included herewith and the final Wireline Report will be distributed on its completion.

1099L

WELL: Wirr		RFT SAI	MPLE TEST R	EPORT		
	ah-3					(66231
OBSERVER: FITT	all/Palmer	Ol to:	DATE: De	ecember 12,	1983 R	IIN - RE
SEAT NO.			ER 1 (22.7	litres)	CHAMBER 2 (3.8	litres
	348.7m 2/2		2/26		2/26	
A. RECORDING T.	740.711 Z/Z	20	2349.2m		2349.2m	
Tool Set	TIMITO	1001.70				
Pretest Oper	2	1221:30	1228:30			
Time Open	1	1224:25	1232:15			
Time ohell	_		5 : 00			
Chamber Oper	1		1237:15	51:45	1257:30	
Chamber Full	-		1237:45			
Fill Time			0:30			
Start Build-	·up		1237:45			
Finish Build	1-up		1242:45			
Build-Up Tim	e		5:00			
Seal Chamber	•		1242:45	56:50	1707.00	
Tool Retract		1227:25	TC-72.72	00.00	1307:00	
Total Time					1309:50	hrs
B. SAMPLE PRESS	URES		····			hr
IHP		7022 7	7001			
ISIP		3922.7	3921.1	psia	***	
Initial Flow	ing Dage	000	3599.9	psia	•••	
Final Flowing	rig riess.	200	3480.1	psia	3575	psia
Final Flowing	j Press.		3570	psia	3998	psia
Sampling Pres	ss. Kange			psia	23	•
			3599.9	psia	2.7	psia
FHP _	•	3924.8		psia		psia
Form. Press.	(Horner)		_	pora		
. TEMPERATURE					-	
Depth Tool Re	ached	2378.3	m			
Max. Rec. Tem	no.	200.5	oF		m	
Time Circ. St	opped		s 11 - 12 hrs		°C	
Time since Ci	rc.				hrs	
Form. Temp. (Horner)		hrs		hrs	
. SAMPLE RECOVE	RY	DLI	JGGED		-	
Surface Press	ure	1 50	JGGLD		PLUGGED	
Amt Gas						
Amt Oil						
Amt Water						
Amt Others						
• SAMPLE PROPER	TTCC					
as Composition	ITE2					
C1						
C2						
C3						
1C4/nC4						
C5						
C6+						
CO ₂ /H ₂ S						
1 Properties				Ł		
Colour				•		
Fluorescence						
GOR						
ter Properties						
Dacietivites						
Resistivity	,					
NaCl Equivalen	t					
Cl-titrated				•		
NO3						
Est. Water Type	е рН					
d Properties						
Resistivity		0.246	@ 19.9°C			
NaCl Equivalent	t	-	ニュノ・ノーし			
Cl - titrated/N		9,000 /2	50 -			
libration	T>	9,000 /2	on bbw			
Calibration Pre	200					
Calibration Ten	:0 0.	-				
Hawlatt Dati-	ή. 1 Ν-	-				
Hewlett Packard	1 INO.					
Mud Weight	•	9.7				
Calc. Hydrostat	ıc			_		
RFT Chokesize		1×0.02 j	in			
Remarks:	Schlumberg	er strain	Gauge used			
	TIĞ	HT/SUPERCH	ARGED		CLIDED ALL SEE	
		. 55. 21.01	·· · · · · · · · · · · · · · · · · · ·		SUPERCHARGED	•
						:

WELL: Wirrah-3	RFT SAMPLE TEST REPORT	
OBSERVER: Fittall/Palmer	DATE: December 12, 1983	(<i>66</i> 23f/4) RUN: RFT - 2
SEAT NO.	CHAMBER 1 () CHAMBER	R 2 ()
DEPTH	3/27 2349.1 m	
A. RECORDING TIMES		
Tool Set Pretest Open	1710:25	
_ Time Open	1711:25	
Chamber Open	13:05 30:15	
Chamber Full Fill Time		
Start Build-up		
Finish Build-up Build-Up Time		
Seal Chamber	28:45 31:00	
Tool Retract	32:05	
Total Time B. SAMPLE PRESSURES	- 21:40 mins	hr
IHP	3929.1	
ISIP	3601.8 psia	
Initial Flowing Press. Final Flowing Press.	95.0 psia 179.9 psia	
Sampling Press. Range	,	
FSIP FHP	3315.4 psia 3925.6	
Form. Press. (Horner)	J92J . 6	
C. TEMPERATURE		
Depth Tool Reached Max. Rec. Temp.		
■ Time Circ. Stopped		
Time since Circ. Form. Temp. (Horner)		
D. SAMPLE RECOVERY		
Surface Pressure		
Amt Gas Amt Oil		
Amt Water		
Amt Others SAMPLE PROPERTIES		
Gas Composition		
C1 C2		
C3		
1C4/nC4		
C5 C6+		
CO ₂ /H ₂ S		
Oil Properties Colour		
Fluorescence		
GOR		
Nater Properties Resistivity		
NaCl Equivalent		
Cl-titrated		
Est. Water Type pH		
Mud Properties		
Resistivity NaCl Equivalent	0.246 @°C 19.9°C	
Cl - titrated	19,000 / 250 ppm	
Calibration Proces	· FF	
Calibration Press. Calibration Temp.		
Hewlett Packard No.		
Mud Weight Calc. Hydrostatic		
RFT Chokesize	1 x .02 inch	
Remarks:	VERY TIGHT	

WELL: Wirrah-3	· RFT SAMPLE TEST	REPORT		(440704
OBSERVER: Fittall/Palm		December 12	1983	(6623f/ RUN: 3
SEAT NO.	CHAMBER 1 (22.	7 litres)	CHAMBER 2 (0.	4 litres
DEPTH	3/28		3/30	
A. RECORDING TIMES	2349.2		2349.0	
Tool Set	1734:10		18:00:00	
Pretest Open	1734:80		18:00:00	
Time Open			10.00.00	
Chamber Open	1735:55			
Chamber Full				
Fill Time Start Build-up				
Finish Build-up				
Build-Up Time				
Seal Chamber	1750:35			
Tool Retract	1755:00		18:02:20	
Total Time			10.02.20	
B. SAMPLE PRESSURES				
IHP ISIP	3925.6	psia	3921.1	psia
Initial Flowing Pres	3338.6	psia		, u
Final Flowing Press.	s. 136.8 778	psia		
Sampling Press. Rang	//o e	psia	973.6	psia
FSIP	2457.0	psia		
FHP	3922.2	psia	3923.4	psia
Form. Press. (Horner C. TEMPERATURE	<u> </u>	•		hora
Depth Tool Reached				**************************************
Max. Rec. Temp.				
Time Circ. Stopped				
Time since Circ.				
Form. Temp. (Horner)	-		_	
). SAMPLE RECOVERY Surface Pressure				
Amt Gas	380	psig		
Amt Oil	18. <i>6</i> 0 3.75	cu. ft.		
Amt Water	11.0	litre litre		
Amt Others		エエドエニ		
. SAMPLE PROPERTIES				
Cas Composition Cl	70			
C2	701,759	ppm		
C3	89,407 25,746	ppm		
1C4/nC4	25,746 5,054	ppm		
C5	2,025	ppm		
C6+	841	ppm ppm		
CO ₂ /H ₂ S	1.4% / 0	ppm		
il Properties Colour	37.5 API @	oC.		
Fluorescence	Dark Brown (wax	y)		
GOR	Cream Yellow			
ater Properties	Pour Point 26.0	°C		
esistivity -	0.208 @ 71°F	-		
NaCl Equivalent	31,500	ppm		
Cl-titrated NO3	17,500	ppm		
Est. Water Type pH	88 5 - 9 - 1	ppm		
d Properties	pH = 8.1			
Resistivity				
NaCl Equivalent				
Cl - titrated	19,000	ppm		
libration	NO_2 250, pH = 10.0			
Calibration Press.				
Calibration Temp. Hewlett Packard No.				
Mud Weight				
Calc. Hydrostatic				
RFT Chokesize	0.03 inch			
Remarks:	Tight - 6 gallon parti	ally		
	filled			

(6623f/6) WELL: Wirrah-3 RUN: 3 DATE: December 12, 1983 OBSERVER: Fittall/Palmer CHAMBER 2 (10.4 litres) CHAMBER 1 (22.1 litres) 3/32 SEAT NO. 3731 2142.0 2349.2 DEPTH RECORDING TIMES 18:04:00 Tool Set 18:04:15 18:29:30 Pretest Open Time Open 18:34:10 18:06:10 Chamber Open 18:41:05 Chamber Full Fill Time 18:41:05 Start Build-up 18:45:15 Finish Build-up Build-Up Time 18:45:15 1817:36 Seal Chamber 18:46:10 18:20 Tool Retract Total Time SAMPLE PRESSURES 18.20 mins hr 3562.4 3922.2 psia IHP psia psia 3029.9 2548.3 psia ISIP 2208.3 psia 270.3 psia Initial Flowing Press. 691.4 psia 1678.5 psia Final Flowing Press. 2208.3-1678.5 psia Sampling Press. Range 3036.6 2264.4 psia psia **FSIP** 3576.6 FHP psia Form. Press. (Horner) TEMPERATURE Depth Tool Reached 2349.2 m Max. Rec. Temp. Time Circ. Stopped Time since Circ. Form. Temp. (Horner)
SAMPLE RECOVERY 400 Surface Pressure psig 1.54 cu. ft. Amt Gas 0.20 litre Amt Oil 9.00 litre Amt Water Amt Others SAMPLE PROPERTIES Gas Composition 426,423 <u>C1</u> ppm 62,529 ppmC2 16,580 ppm C3 3,375 ppm 1C4/nC4 1,403 **C5** ppm 655 ppmC6+ 1.6%/0 ppm CO2/H2S 36.4 ºAPI @ ºC Oil Properties Medium brown (waxy) Colour Bright cream yellow Fluorescence GOR Water Properties 0.218 @ 71°F Resistivity 30,000 ppm NaCl Equivalent 20,000 Cl-titrated ppm ppm 100 NO3 ppm pH = 7.5Est. Water Type pH Mud Properties Resistivity NaCl Equivalent Cl - titrated 19,000 ppm NO_3 250 pH = 10.0 Calibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic RFT Chokesize 0.02 inches Tight Sampled Remarks:

_		in to contact that t	_ U \	
WEL			-	(6623f/7)
- OBS	ERVER: Fittall/Palmer	DATE: D CHAMBER 1 (22.7	ecember 12, 1983	
	SEAT NO.	4/33	litre) CHAN	1BER 2 ()
	DEPTH	2022.0		
Α.	RECORDING TIMES			
	Tool Set	22:54:10		0
	Pretest Open	22:55:55		
	Time Open	22.50.35		
	Chamber Open Chamber Full	22:59:15 23:12:59		
	Fill Time	27:12:79		
	Start Build-up			
	Finish Build-up			
	Build-Up Time			
	Seal Chamber			
	Tool Retract	23:13:07		
	Total Time			
В.	SAMPLE PRESSURES IHP	3380		
	ISIP	2876 . 1	psia	
	Initial Flowing Press.	88.3	psia	
	Final Flowing Press.	3372	poru	
	Sampling Press. Range			
	FSIP			
	FHP	3380.0		
C.	Form. Press. (Horner) TEMPERATURE			
<u> </u>	Depth Tool Reached			
	Max. Rec. Temp.			
	Time Circ. Stopped			
	Time since Circ.			•
_	Form. Temp. (Horner)	-		-
<u>D.</u>	SAMPLE RECOVERY Surface Pressure	See 4/35		
	Amt Gas			
_	Amt Oil			
	Amt Water			
	Amt Others			
<u>E.</u>	SAMPLE PROPERTIES			
Gas	Composition Cl			
	C2			
	C3	•		
	1C4/nC4			
	C5			
	C6+			
	CO ₂ /H ₂ S			
<u>U11</u>	Properties Colour			
	Fluorescence			
	GOR			
Wats	er Properties			
	Resistivity			
	NaCl Equivalent			
	Cl-titrated			
	NO ₃ Est. Water Type pH			
Mud	Properties			
	Resistivity			
	NaCl Equivalent			
.	Cl - titrated			
<u>Cali</u>	Dration Calibratian Date			
	Calibration Press. Calibration Temp.	•		
	Hewlett Packard No.	2120A-00876		
	Mud Weight	Z1ZUM-000/0		
	Calc. Hydrostatic			
	RFT Chokesize	1 x .02 inch		
	Remarks: Very s	low build up: Clos	e chamber re-ope	en at 2022.2m (1/34)

(6623f/8)WELL: Wirrah-3 RUN: 4 DATE: December 12, 1983 OBSERVER: Fittall/Palmer CHAMBER 1 (22.7 litres) CHAMBER 2 (4/34 SEAT NO. DEPTH 2022.2 RECORDING TIMES 23:15:45 Tool Set 23:15:45 Pretest Open Time Open 23:24:50 Chamber Open Chamber Full Fill Time Start Build-up Finish Build-up Build-Up Time 23:40:00 Seal Chamber Tool Retract 23: Total Time SAMPLE PRESSURES hr IHP 3080.5 psia ISIP 2869.9 Initial Flowing Press. 114.4 Final Flowing Press. Sampling Press. Range FSIP 3080.1 FHP Form. Press. (Horner) TEMPERATURE Depth Tool Reached Max. Rec. Temp. Time Circ. Stopped Time since Circ. Form. Temp. (Horner) SAMPLE RECOVERY Surface Pressure Amt Gas Amt Oil Amt Water Amt Others SAMPLE PROPERTIES Gas Composition <u>C1</u> C2 C3 1C4/nC4 **C**5 C6+ CO2/H2S Oil Properties Colour Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated N03 Est. Water Type pH Mud Properties Resistivity NaCl Equivalent Cl - titrated Calibration Calibration Press. Calibration Temp. Hewlett Packard No. 2120A-00876 Mud Weight Calc. Hydrostatic RFT Chokesize 1 x .02 inch Very slow filling sealed chamber, moved to 2023.7 (4/35). Remarks:

RFT	SAMPLE	TEST	REPORT

1.75-1	1 .	M* 1 - 7	<u>R</u>	FT SAMPLE TE	ST REPO	ORT				
WEL		Wirrah-3 Fittall/Pa	lmar/TR	DATE	. Dooo	mb	י אַר אַר אַר	1007		(6623f/
<u> </u>		1 ICCALL/1 &	ITHELY ON	CHAMBER 1 (2	22.7 li	tres	12-13,	1983 MBER 2	RU (10 4	
	SEAT N	0.		4/35		0100	., 0,11	4/35	(10.4	TILLES
	DEPTH	TUO TTUES		2023.7				2023.7		
<u>A.</u>	Tool S	ING TIMES		27.50.05						
	Pretes			23:50:05 23:50:05						
	Time 0			27.50.05						
	Chambe			23:53:01			00	:05:15		
	Chambe			00:01:15				oint un	deten	minable
	Fill T			01 -01 - 15						
		Build-up Build-up	Did no	01:01:15 t finish bui	lden		Did so	+	6	
		Jp Time	513 116	C LTHT2H DOT	.ruqo		DIG 110	t wait	IOT. DO	ırranb
	Seal C	namber		00:04:43			00	:22:05		
	Tool R						00	:23:50		
	Total	PRESSURES								
<u>B.</u>	IHP	PRESSURES		3380.3						
	ISIP			2872.3		osi Osi			•	
	Initia:	L Flowing P		97.1		osi		442.0)	psiq
		Flowing Pre		841			Fill poi			
	Sampli FSIP	ng Press. R		97.1 - 841		osi	5.	-		
	FHP		סדם נו	ot write for -	Dulla-	-up	nta vot	3380.5		.ld up
	Form. F	ress. (Hor	ner)					JJ00	,	
C.	TEMPERA									
		ool Reached	d	2023.7	n	1		2023.7	7	m
		ec. Temp. .rc. Stopped	4							
		ince Circ.	_							
		emp. (Horne	er)							
<u>D.</u>		RECOVERY								
	Amt Gas	Pressure		210	•	sig	5 L	640		psig
	Amt Oil		Thin	1.15 oil scum		:u. f .itre		4.3 4.5		cu. ft litre
	Amt Wat			21.5		itre		3.9		litre
	Amt Oth		-					- ••		11010
		PROPERTIES					•			
Gas	Composi Cl			323,094	5	·DM	<i>-</i> (26 001	•	
	C2			147,397		ibw Dw		34,901 97,712		ppm
	C3			73,098		pm		39,521		ppm ppm
	1C4/nC4			15,680		pm		25,033		ppm
	C5 C6			1,522		pm	•	3,027		ppm
		+ insufficer	nt sample	- -10		pm pm		-	۷ / O	ppm
Oil	Propert	ies	is sampte	- ºAPI @		pm C	37,149	ر.ر API @ 6	%/0 :0°F	ppm
:	Colour			k yellow bro	วพา			dark ye		brown
	Fluores	cence	Bright o	ream yellow	.=		Brig	ht crea	m yel	low
	GOR r Prope	rties	pour point	2200	S	CF/S	IB			
	Resisti		pour point 0.226 @ 67				USS	4 @ 66.	5 of	
	NaCl Eq	uivalent		30,000	p	pm	022		- 1	
	Cl-titr	ated		22,000		pm	1	9,000		ppm
	NO3 Fet Wa	tor Tuna =!!	1	120	p	pm		140		ppm
Mud	Propert	ter Type pH ies		pH = 7.4 pH = 103			F	H = 7.2		
	Resisti			246 @°C 19.9	oC .		024 <i>6</i> @	°C 19.	9°C	
		uivalent							-	
		trated/No 3	19	,000/250	· p	om	19,00	0/250		ppm
	bration Calibra	tion Proce								
		tion Press. tion Temp.								
		Packard No	. 21	20A-00876			2120A-	00876	•	
1	Mud Wei	ght		- · ·			-250/1-	20070		
(Calc. H	drostatic	_	00.						
	RFT Chol		1	x .02 inch						
		Reopened	6 001100	obamban						

SEAT NO. 5/38 DEPTH 2029.0	3 RUN	623f/10)
CHAMBER 1 (22.7 litres) CHAM SEAT NO. 5/38 DEPTH 2029.0	3 RUN	
SEAT NO. 5/38 DEPTH 2029.0	12 F W 2 / 12 O /	1: 5
DEPTH 2029.0	MBER 2 (10.4 5/38	litres)
A DECOUDING TIMES	2029.0	
A. RECORDING TIMES		
Tool Set 04:04:30 Pretest Open 04:04:30		
<u> </u>	:34:00	
	45:05	
Chamber Full	10:05	
Fill Time		
Start Build-up		
Finish Build-up Build-Up Time	·	
·	45:50	
Tool Retract - 04:	47:20	
Total Time		
B. SAMPLE PRESSURES IHP 3390.3 psia	***	
IHP 3390.3 psia ISIP 2879.1 psia		
Initial Flowing Press. 105.0 psia	217.4	psia
Final Flowing Press. 2746 psia	2529.7	psia
	7.4-2529.7	psia
FSIP psia FHP	2876.8	psia
Form. Press. (Horner)		
C. TEMPERATURE		
Depth Tool Reached 2029.1 m	2029.1	m
Max. Rec. Temp.		
Time Circ. Stopped Time since Circ.		
Form. Temp. (Horner)		
D. SAMPLE RECOVERY	· · · · · · · · · · · · · · · · · · ·	
Surface Pressure 260 psig	150	psig
Amt Gas 0.35 cu. ft.	0.35	cu. ft.
Amt Oil - litre Amt Water 21.25 litre	- 9 . 25	litre
Amt Others	9.23	litre
E. SAMPLE PROPERTIES		
Gas Composition		
	4,948	ppm
	24,802 7,994	ppm
-	2,833	ppm ppm
- C5	1,847	ppm ppm
C6+ 383 ppm	766	ppm
CO ₂ /H ₂ S 7.5%/- ppm	5.3%	ppm
Oil Properties Colour		
Fluorescence		
_ GOR		
Water Properties		_
Resistivity 0.235 @ 69°F	0.235 @ 699	
01 111	29,500 22,00	bbw .
NO ₃ 150 pH 7.4 ppm	120 pH 7.1	ppm
Est. Water Type pH Filtrate	120 p. 712	ppiii
Mud Properties		
Resistivity		
NaCl Equivalent Cl - titrated .		
Calibration		
Calibration Press.		
Calibration Temp.		•
Hewlett Packard No.		•
Mud Weight Calc. Hydrostatic		
RFT Chokesize 1 x .02 inch		
Remarks:		

RFT	SAMPLE	TEST	REPORT
-----	--------	-------------	--------

WELL A West 1 7	RFT SAMPLE TEST REPORT				
WELL: Wirrah-3 OBSERVER: JR	DATE: D	ecember 1	3, 1983 RI	(6623f/11) JN: 6	
SEAT NO.	CHAMBER 1 (22.7	litres)	CHAMBER 2 (10.4	litres)	
DEPTH	6/39 1600.7		6/39		
A. RECORDING TIMES	1000.7		1600.7		
Tool Set	07:23:15				
Pretest Open	07:23:15				
Time Open					
Chamber Open	07:31:30		07:46:30		
Chamber Full Fill Time	07:43:35		07:51:70		
Start Build-up	07.47.75				
Finish Build-up	07:43:35 07:45:50		07:53:20		
Build-Up Time	07.42.20		07:54:40		
Seal Chamber	07:46:03		07:55:10		
Tool Retract	0.1.0.03		07:56:50		
Total Time			07.50.50		
B. SAMPLE PRESSURES					
IHP	2676.3	psia			
ISIP	2472.6	psia			
Initial Flowing Press.	113.1	psia	2067.2	psia	
Final Flowing Press. Sampling Press. Range	1992.6	psia	2089.78	psia	
FSIP	113.1-1992.6	psia	2067.2-2089.78	,	
FHP		psia	2255.0	psia	
Form. Press. (Horner)			2676.2	psia	
C. TEMPERATURE					
Depth Tool Reached					
Max. Rec. Temp.					
Time Circ. Stopped Time since Circ.	·				
Form. Temp. (Horner)					
D. SAMPLE RECOVERY					
Surface Pressure	400	psig	0	psig	
Amt Gas	0.95	cu. ft.	0.43	cu. ft.	
Amt Oil	_	litre	_	litre	
Amt Water Amt Others	21.75	litre	9.6	litre	
E. SAMPLE PROPERTIES					
Gas Composition					
Cl	139,288	ppm	<i>3</i> 23,348	ppm	
C2	24,944	ppm	40,250	bbw	
C3	1,218	ppm	6,243	ppm Ppm	
1C4/nC4 C5	339	ppm	1,529	ppm	
C6+	138	ppm	923	ppm	
CO ₂ /H ₂ S	10 2.7/0	ppm	306	ppm	
Oil Properties	2.770	ppm	10.8/8	ppm	
Colour					
Fluorescence					
GOR					
Water Properties					
Resistivity					
NaCl Equivalent Cl-titrated	12 000				
NO ₃	12,000 60 pH = 7.5	ppm	10,000	ppm	
— T —	resh fmt water/filtr	ppm ppm	40 pH = 7.4	ppm	
<u>Mud Properties</u>	HOUCE/ITELL	.466	Fresh fmt water		
Resistivity					
NaCl Equivalent					
Cl - titrated ■Calibration					
Calibration Press.					
Calibration Temp.					
Hewlett Packard No.					
Mud Weight					
Calc. Hydrostatic					
RFT Chokesize					
Remarks:					

Wirrah-3 (6623f/12) DATE: December 24, 1983 OBSERVER: R. Neumann/L. Finlayson RUN: 8 CHAMBER 1 (22.7 litres) CHAMBER 2 (10.4 litres) SEAT NO. 8/65 **DEPTH** 2748.0 RECORDING TIMES (PM) 10:30:24 Tool Set Pretest Open 10:30:29 Time Open 4 mins 55 secs 3 mins 49 secs. Chamber Open Chamber Full 10:35:24 11:19:51 Not full 11:15:05 Not Full 11:48:19 Fill Time Start Build-up Finish Build-up Build-Up Time Seal Chamber 11:16:05 11:50:07 Tool Retract 11:55:00 45 mins 4 sec Total Time 38 mins 95 secs SAMPLE PRESSURES IHP 4575.52 psia ISIP 3953.93 3953.64 psia Initial Flowing Press. 802 psia 817 psi 1152 Final Flowing Press. psia 1952.82 psia Sampling Press. Range 352 psi 1134.82 psi **FSIP** 3954.26 psia psia FHP 4570.75 Form. Press. (Horner) TEMPERATURE Depth Tool Reached 2748.0 2748 Max. Rec. Temp. ٥F 193 203.9 oF Time Circ. Stopped 14.50 hrs 14.50 hrs 24/12 hrs Time since Circ. hrs Form. Temp. (Horner) SAMPLE RECOVERY Surface Pressure 680.0 1200 psig psig Amt Gas 17.6 cu. ft. 26.9 cu. ft. Amt Oil litre litre Amt Water 3.25 litre litre Amt Others Scum Condensate Condensate SAMPLE PROPERTIES Composition Cl 329728 329730 ppm ppmC2 23511 ppm 26459 ppm C3 8763 730 ppm ppm 1C4/nC4 3625 ppm 330 ppm C5 1089 ppm 120 ppmC6+ 969 23 ppm ppm CO2/H2S 13% 16% ppm ppm Oil Properties Colour Fluorescence GOR SCF/STB ater Properties Resistivity pH = 8οС оC pH = 7NaCl Equivalent Cl-titrated 22K ppm 22K ppm NO3 40 ml/m 70 ml/m ppm ppm Est. Water Type pH Mud Properties Resistivity pH = 10.5pH = 10.5 $N0_3 = 200$ 20,000NaCl Equivalent $N0_3 = 200$ ppm ppm Cl - titrated 10,000 ppm ppm alibration Calibration Press. Calibration Temp. Hewlett Packard No. 2120A 2120A Mud Weight 9.7 psia 9.7 psia Calc. Hydrostatic 0.03 RFT Chokesize 0.02 Remarks: 6 gallon chamber not full after 45 minutes open.

WELL: Wirrah-3 OBSERVER: O'Byrne/Fin	layson/Newmann DATE: 1		OF: 1007	(6623f/
		December 7 litre)	25, 1983	RUN: 9
SEAT NO.	9/67	, TICLE)	CHAMBER 2 (10	.9 litre
DEPTH 2371.0	2707			
A. RECORDING TIMES				
Tool Set AM	3:25:51			
Pretest Open	3:25:53		U:15:10	
Time Open	5 mins 18 secs	5	4 mins 33 secs.	
Chamber Open	3:31:11		4:19:43	•
Chamber Full	Not full 4:15:10			
Fill Time	1411 4.17.10		Not full 4:39:02	
Start Build-up				
Finish Build-up				
Build-Up Time				
Seal Chamber	4:15:10		4:31:02	
Tool Retract			,.,,	
Total Time	49 mins 19 secs		75 12	
B. SAMPLE PRESSURES	12 12 3CC3		35.46	
IHP	4570.04			
ISIP	4538.24	psia		
	3920.14	psia	3920.14	psia
Initial Flowing Pre	ss. 100	psia	157	psia
Final Flowing Press	• 1500	psia	166.26	•
Sampling Press. Rang	ge 1400	psia		psia
FSIP	didn't wait	•	11	psia
FHP	GIGHT WAIL	psia	3909.48	psia
Form. Press. (Horne:	m)		4533.13	psia
TEMPERATURE	L /			•
Depth Tool Reached	2731.0	m	2731	m
Max. Rec. Temp.	209	٥F	211	oF
Time Circ. Stopped	14.50 hrs 24/12	•	14.50 hrs 24/12	•
Time since Circ.		hrs	T4.70 HT2 74/TZ	hrs
Form. Temp. (Horner))	1117		hrs
. SAMPLE RECOVERY				
Surface Pressure	390			
Amt Gas		psig	100	psig
Amt Oil	0.6	cu. ft.		cu. ft
Amt Water	10cc waxy oil	litre	.25	litre
Amt Others	3 . 75	litre	0.75	litre
SAMPLE PROPERTIES				
. SAMPLE PROPERTIES				
as Composition				
Cl	52 , 756	ppm	240,215	nnm
C2	14,694	ppm		ppm
C3	339		35 , 266	ppm
1C4/nC4	141	ppm	15,022	ppm
C5		bbw	896	ppm
C6+	80	ppm	226	ppm
	tr	ppm	tr	ppm
CO ₂ /H ₂ S	4.3%/NIL	ppm	5.8%/NI	_ DDW _ LL
<u>ll Properties</u>	Too small	,oC	Too small	- hhiii
Colour	Brown		Brown	
Fluorescence	Bright yellow/white			• •
GOR	Too small		Bright yellow/wh	nite
ter Properties	TOO SHIGHT		954	
Resistivity				
MaCl Equivalent				
Cl-titrated	16,000	ppm	16,000	nnm
N03	•	L-L		ppm
Est. Water Type pH	pH = 8		40 54 - 7 5	ppm
d Properties	$NO_3 = pH =$		pH = 7.5	
Resistivity				
NaCl Equivalent	pH = 10.3		pH = 10.3	
Cl - titrated	$NO_3 = 100$	ppm	$NO_3 = 200$	ppm
or createn	20,000	ppm	20,000	ppm
libnobi			•	PP'''
libration				
Calibration Press.				
Calibration Temp.				
Hewlett Packard No.	2120A		01.001	
Mud Weight			2120A	
Calc. Hydrostatic	9.7		9.7	
RFT Chokesize	2 2 1			
. V. I. GUILKES (78)	0.03		0.02	
Remarks: Cham	ber not full when	Chamber		<u> </u>
Remarks: Cham		Chamber :	sealed 4:26:12 the 4:27:31 to check	en for

RFT SAMPLE TEST REPORT

	. 102	mach 7	RI I SAMELL ILDI IX		(6	623f/14)
WELL		rrah—3 umann/Finlayson	DATE: De	ecember 12		
UDSL	TATELLY INC	Uliani / Tillay 5011	CHAMBER 1 (22.7	litre)	CHAMBER 2 (10.4	litre)
	SEAT NO.	10/68				
		2707.8				
	RECORDING			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<u> </u>	Tool Set	1 11/100	9.26.55	(AM)		
	Pretest C	lnen	9.26.57		10.01.01	
	Time Oper	•		7 secs.	29 secs	·
	Chamber C		9.35.06		10.01.30	
	Chamber F		9.55.30		9 mins.	2 secs.
	Fill Time		20 mins 2		10.10.32	
	Start Bui		9.55.30		10.10.32	
	Finish Bu	•	10.00.55		10.15.03	
E .	Build-Up	· · · · · · · · · · · · · · · · · · ·	5 mins		4 mins 2	29 secs.
	Seal Cham		10.01.01		10.17.13	
	Tool Reti		-		10.17.13	
	Total Tim		34 min	S	16 mins	
	SAMPLE PF	ECCI IDEC				
В.	IHP	1230112	4498.4	psia		
	ISIP		3879.83	psia	3874.59	psia
		flowing Press.	250	psi	956	psia
		owing Press.	1580	psia	1489	psia
		Press. Range	1330	psia	533	psia
		rress. Namye	3574.59	psia	3875.8	psia
	FSIP		2214.22	рэда	4494.48	F
	FHP	ess. (Horner)				
~	TEMPERATU					<u></u>
C.			2707.8	m	2707.8	m
		ol Reached	210	oF	212	oF
	Max. Rec.		14.50 hrs 24/12		14.50 24/12	hrs
		Stopped	14.50 1113 24/12	hrs	1	hrs
	Time sind	_		1113		
	SAMPLE RE	mp. (Horner)				
D.	Surface F		960	psia	1130	psig
		ressure	5.82	cu. ft.		cu. ft
	Amt Gas		1.00	litre	2.00	litre
	Amt Oil		21.05	litre	6.00	litre
	Amt Wate		21.00	11116	0.00	11010
	Amt Othe:					
<u>E.</u>		ROPERTIES				
Gas	Composit	LON	204431	ppm	609996	ppm
	Cl		41144		47022	ppm
	C2		16691	ppm	10432	ppm ppm
	C3			ppm	192	ppm ppm
	1C4/nC4		2124	ppm	45	
	C5		1935	ppm	14	ppm
	C6+	•	736	ppm	8/NIL	ppm
	CO ₂ /H ₂ S		27/NIL	₀C bbw	O/NIL	ppm
<u> </u>	Properti	<u>es</u>	Description Manual	٠,	Brown wayy	
	Colour		Brown Waxy		Brown waxy	
	Fluoresc	ence			Bright yellow/white 636	
			072			
	GOR	. •	972		. 6,0	
Wat	er Proper		972		. 878	
Wat	er Proper Resistiv	ity	972		. 676	
Wat	er Proper Resistiv NaCl Equ	ity ivalent				
Wat	er Proper Resistiv NaCl Equ Cl-titra	ity ivalent	21,000	ppm	21,000	ppm
Wat	er Proper Resistiv NaCl Equ	ity ivalent	21,000 <i>6</i> 0	ppm ppm	21,000 40	ppm
	er Proper Resistiv NaCl Equ Cl-titra NO3 Est. Wat	ity ivalent ted er Type pH	21,000		21,000	
	er Proper Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti	ity ivalent ted er Type pH es	21,000 <i>6</i> 0		21,000 40	
	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv	ity ivalent ted er Type pH es ity	21,000 60 pH = 7.5		21,000 40 pH = 7.5	
	er Proper Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti	ity ivalent ted er Type pH es ity	$21,000$ 60 $pH = 7.5$ $NO_3 = 200$		21,000 40 pH = 7.5 NO ₃ = 200	
	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv	ity ivalent ted er Type pH <u>es</u> ity ivalent	21,000 60 pH = 7.5		21,000 40 pH = 7.5	
Mud	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv NaCl Equ	ity ivalent ted er Type pH <u>es</u> ity ivalent	$21,000$ 60 $pH = 7.5$ $NO_3 = 200$		21,000 40 pH = 7.5 NO ₃ = 200	
Mud	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv NaCl Equ Cl - tit	ity ivalent ted er Type pH <u>es</u> ity ivalent	$21,000$ 60 $pH = 7.5$ $NO_3 = 200$		21,000 40 pH = 7.5 NO ₃ = 200	
Mud	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv NaCl Equ Cl - tit ibration Calibrat	ity ivalent ted er Type pH es ity ivalent rated	$21,000$ 60 $pH = 7.5$ $N0_3 = 200$ $20,000$		$21,000$ 40 $pH = 7.5$ $N0_3 = 200$ $20,000$	
Mud	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv NaCl Equ Cl - tit ibration Calibrat Calibrat	ity ivalent ted er Type pH es ity ivalent rated ion Press.	$21,000$ 60 $pH = 7.5$ $NO_3 = 200$		21,000 40 pH = 7.5 NO ₃ = 200 20,000	
Mud	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv NaCl Equ Cl - tit ibration Calibrat Calibrat Hewlett	ity ivalent ted er Type pH es ity ivalent rated ion Press. ion Temp. Packard No.	$21,000$ 60 $pH = 7.5$ $N0_3 = 200$ $20,000$		$21,000$ 40 $pH = 7.5$ $N0_3 = 200$ $20,000$	
Mud	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv NaCl Equ Cl - tit ibration Calibrat Calibrat Hewlett Mud Weig	ity ivalent ted er Type pH es ity ivalent rated ion Press. ion Temp. Packard No.	21,000 60 pH = 7.5 NO ₃ = 200 20,000		21,000 40 pH = 7.5 NO ₃ = 200 20,000 2120 A 9.7	
Mud	Resistiv NaCl Equ Cl-titra NO3 Est. Wat Properti Resistiv NaCl Equ Cl - tit ibration Calibrat Calibrat Hewlett Mud Weig	ity ivalent ted er Type pH es ity ivalent rated ion Press. ion Temp. Packard No. pht	21,000 60 pH = 7.5 NO ₃ = 200 20,000		21,000 40 pH = 7.5 NO ₃ = 200 20,000	

OBSERVER SEAT DEPT A. RECO Tool	Wirrah-3 : Neumann/Finlaysor NO. 11/69	DATE: De CHAMBER 1 (22.7	cember 12 litres)	, 1983 RUN	6623f/15) N: 11
SEAT DEPT A. RECO Tool	NO. 11/69	CHAMBER 1 (22.7	litres)	CHAMBER 2 (10 A	· • · · · · · · · · · · · · · · · · · ·
A. RECO Tool				CHAMBER 2 (10.4	<u>litres)</u>
A. RECO Tool	11 0/07 5				
Tool	H 2687.5 RDING TIMES				
	Set PM	2.16.37			
PTPT	est Open	2.16.45			
	: Open	2 mins 15 s	ecs		
	ber Open	2.19.00		2.44.43	
	ber Full	2.22.00		2.53.57	
	Time	19 mins 53 s	ecs.	9 mins 14	
	t Build-up	2.41.53 2.44.43		2.53.57 2.57.57	
	sh Build—up .d—Up Time	2 mins 50 s	ecs.	2 min	
	. Chamber	2.44.43		2.57.57	
	Retract			2.59.52	
Tota	l Time	28 mins 5 sec	s.	15 mins S	9 secs
	PLE PRESSURES	1171 70			
IHP		4464.38	psia	3852.38	
ISIP		3854.88 214	psia psia	1834.5	psia
	ial Flowing Press.	2308	psia	1842.501	psia
	oling Press. Range	2000	psia	8	psia
FSIF		3852.38	psia	3851.07	psia
FHP				4462.03	psia
	n. Press. (Horner)	***************************************			
	PERATURE	2/07.5		2687.5	
	h Tool Reached	2687.5 211	oE W	211.5	oF m
	Rec. Temp. Circ. Stopped	14.50 hrs 24/12	· ·	14.50 24/12	hrs
	e since Circ.	14.50 113 24112	hrs	21120 21122	hrs
	n. Temp. (Horner)				
D. SAMF	PLE RECOVERY				
Surf	ace Pressure	1510	psig	1420	psig
Amt		23.8	litre	19 . 0 3	cu. ft.
Amt		4.0 15.75	litre litre	<i>5</i> 4	litre litre
	Water Others	15.75	TILLE	7	TITTE
	PLE PROPERTIES				
Gas Comp					
	Cl	659 , 456	ppm	296,755	ppm
	C2	33,328	ppm	20,577	ppm
	C3	6,676	bbw	4,173	ppm
1C4/		170	ppm	453 32	ppm
	C5 C6+	30 7	ppm ppm	23	ppm ppm
C02/		7%/	bbw bbw	5/2	ppm ppm
Oil Prop		35 °API @ 66	oC bb		6 °C
Colo		Olive brown waxy		Olive brown	
Fluo	prescence	Bright yellow/white	•	Bright yellow/	white
GOR		946		1007	
	roperties	11 33 70		~U . 77	
	istivity	pH = 11.70		pH = 7.3	
NaU C1_4	l Equivalent titrated	19,000	ppm	18,000	ppm
NO3		80	bbw bbw	60	bbw bb
	. Water Type pH		r-r		t- t
Mud Prop	perties				
Res	istivity	pH = 10.5		pH = 10.5	
	l Equivalent	$NO_3 = 200$		$NO_3 = 200$	
	- titrated	20,000	ppm	20,000	ppm
Calibrat					
	ibration Press. ibration Temp.				•
	lett Packard No.	2120A		2120A	
	Weight	9.7	ppg	9.7	ppg
	c. Hydrostatic		, , -		-
	Chokesize	0.03		0.02	
RFT	arks:	Checked seal			

KEI SAMPLE IESI KEPUKI

WEL OBS	1	KET SAMPLE TEST KEP		,	
000	L: Wirrah-3 ERVER: L. Finlayson	DATE: Dec	ember 12,		6623f/16
	LIVER: L. FIIII AYSUII	CHAMBER 1 (22.7 1		CHAMBER 2 (3.	V: 12
	SEAT NO.	12/70	TCTE2)	12/70	litres)
	DEPTH	2672.0 m		2672.0 m	
۹.	RECORDING TIMES	2072.0 [[]		2072.0	
••	Tool Set PM	7.34.10			
	Pretest Open	7.34.31			
	Time Open	2.23		_	
				7.54.00	
	Chamber Open	7.37.24		7.54.22	
	Chamber Full	7.52.30		7.54.44	
	Fill Time	15.06		3.22	
	Start Build-up	7.52.30		7.57.44	
	Finish Build—up	7.53.27		7.58.00	
	Build-Up Time	•53		.16	
	Seal Chamber	7.53.27		8.00.30	
	Tool Retract			8.01.52	
	Total Time			.27.42	
3.	SAMPLE PRESSURES		·····		
	IHP	4440.8	psia		
	ISIP	2839.7			
			psia	711.7	
	Initial Flowing Press.	1156.5	psia	2114.7	psia
	Final Flowing Press.	1934.3	psia	1951.2	psia
	Sampling Press. Range	777.8	psia	163.5	psia
	FSIP		psia	3835.4	psia
	FHP	-	•	4434.2	psia
	Form. Press. (Horner)	_			•
	TEMPERATURE				
	Depth Tool Reached	2672	m	2672.0	m
	Max. Rec. Temp.	213.5	oF	213.5	ᅊ
	Time Circ. Stopped	14.50 hrs 24/12	-	14.50 hrs 24/12	
	Time since Circ.	14.00 1115 24/12	hrs	14.50 nrs 24/12	hrs
			hrs		hrs
	Form. Temp. (Horner)				
	SAMPLE RECOVERY			·	
	Surface Pressure	280	psig	280	psig
	Amt Gas	1.7	cu. ft.	0.4	cu. ft
	Amt Oil		litre	·	litre
	Amt Water (filtrate)	21.0	litre	3. 5	litre
	Amt Others	<u>-</u>		_	
•	SAMPLE PROPERTIES				
as	Composition		····		······································
	Cl	105,512	ppm	171,458	ppm
	C2	13,959		14,694	
	C3	4,381	ppm		ppm
	1C4/nC4		ppm	3,171	ppm
		952 702	ppm	1,246	ppm
	C5	702	ppm	1,028	ppm
	C6+	100			
			ppm	200	ppm
	CO ₂ /H ₂ S	5 %/NIL	ppm ppm	200 8%/N/P	ppm
il					
il	CO ₂ /H ₂ S	5 %/NIL	ppm		ppm
il	CO ₂ /H ₂ S Properties Colour	5 %/NIL	ppm		ppm
)il	CO ₂ /H ₂ S Properties Colour Fluorescence	5 %/NIL	₀C bbw		ppm
	CO ₂ /H ₂ S <u>Properties</u> Colour Fluorescence GOR	5 %/NIL	ppm		ppm
	CO ₂ /H ₂ S Properties Colour Fluorescence GOR er Properties	5 %/NIL °API @	₀C bbw	8%/N/P	ppm
	CO ₂ /H ₂ S Properties Colour Fluorescence GOR er Properties Resistivity	5 %/NIL	₀C bbw		ppm
	CO ₂ /H ₂ S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent	5 %/NIL °API @ 8.1	ppm °C SCF/STB	8%/N/P 7 . 5	ppm
Vate	CO ₂ /H ₂ S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated	5 %/NIL °API @ 8.1 18,200	₀C bbw	8%/N/P 7.5 200	ppm
late	CO ₂ /H ₂ S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO ₃	5 %/NIL °API @ 8.1	ppm °C SCF/STB	8%/N/P 7 . 5	ppm ppm
late	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH	5 %/NIL °API @ 8.1 18,200	ppm °C SCF/STB	8%/N/P 7.5 200	ppm ppm
late	CO ₂ /H ₂ S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO ₃	5 %/NIL °API @ 8.1 18,200	ppm °C SCF/STB	8%/N/P 7.5 200	ppm ppm
late	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH	5 %/NIL °API @ 8.1 18,200 40	ppm °C SCF/STB	8%/N/P 7.5 200 40	ppm ppm
late	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity	5 %/NIL °API @ 8.1 18,200 40 pH = 10.5	ppm °C SCF/STB	8%/N/P 7.5 200 40 pH = 10.5	ppm ppm
/ate	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent C1-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent	5 %/NIL API @ 8.1 18,200 40 pH = 10.5 NO ₃ = 200	ppm °C SCF/STB ppm ppm	8%/N/P 7.5 200 40 pH = 10.5 NO ₃ = 200	ppm ppm ppm
/ate	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated	5 %/NIL °API @ 8.1 18,200 40 pH = 10.5	ppm °C SCF/STB	8%/N/P 7.5 200 40 pH = 10.5	ppm ppm
Vate	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated	5 %/NIL API @ 8.1 18,200 40 pH = 10.5 NO ₃ = 200	ppm °C SCF/STB ppm ppm	8%/N/P 7.5 200 40 pH = 10.5 NO ₃ = 200	ppm ppm ppm
Vate Mud	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated Loration Calibration Press.	5 %/NIL API @ 8.1 18,200 40 pH = 10.5 NO ₃ = 200	ppm °C SCF/STB ppm ppm	8%/N/P 7.5 200 40 pH = 10.5 NO ₃ = 200	ppm ppm ppm
Vate	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated Dration Calibration Press. Calibration Temp.	5 %/NIL •API @ 8.1 18,200 40 pH = 10.5 NO ₃ = 200 20,000	ppm °C SCF/STB ppm ppm	8%/N/P 7.5 200 40 pH = 10.5 NO ₃ = 200 20,000	ppm ppm ppm
Mate Mud Cali	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated Loration Calibration Press. Calibration Temp. Hewlett Packard No.	5 %/NIL •API @ 8.1 18,200 40 pH = 10.5 NO3 = 200 20,000	ppm °C SCF/STB ppm ppm	8%/N/P 7.5 200 40 pH = 10.5 NO ₃ = 200 20,000	ppm ppm ppm
Mate Mud Cali	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated Cl - titrated Cl - titrated Dration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight	5 %/NIL •API @ 8.1 18,200 40 pH = 10.5 NO ₃ = 200 20,000	ppm °C SCF/STB ppm ppm	8%/N/P 7.5 200 40 pH = 10.5 NO ₃ = 200 20,000	bbw bbw bbw bbw
/ate	CO2/H2S Properties Colour Fluorescence GOR Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated Loration Calibration Press. Calibration Temp. Hewlett Packard No.	5 %/NIL •API @ 8.1 18,200 40 pH = 10.5 NO3 = 200 20,000	ppm °C SCF/STB ppm ppm	8%/N/P 7.5 200 40 pH = 10.5 NO ₃ = 200 20,000	ppm ppm ppm

RFT SAMPLE TEST REPORT

		RFT SAMPLE TEST REPO	<u>R I </u>	,	
WELL		DATE: Dance	-h 26		6623f/17)
OBS	ERVER: L. Finlayson	DATE: Decemend CHAMBER 1 (22.7 lit	mber 26	CHAMBER 2 (10.4	1: 13
	CERT NO	13/72	resi	13/72	TTCTE2)
	SEAT NO. DEPTH	2672.0 m		2672.0 m	
A.	RECORDING TIMES	2072.0		2072.0 111	
A.	Tool Set	12.18.10		-	
	Pretest Open	12.18.30		· -	
	Time Open	2.15		-	
	Chamber Open	17.10.45		1.19.00	
	Chamber Full			1.33.00	
	Fill Time	-		14.00	
	Start Build-up	-		1.33.00	
	Finish Build—up	~		-	
	Build-Up Time	- 04 3 3 7 3 0		1.34.00	
	Seal Chamber	AM 1.17.10		1.36.00	
	Tool Retract	59.00 hrs.		1.17.30	hrs.
В.	Total Time SAMPLE PRESSURES	27.00 1113.			- 11100
<u>0.</u>	IHP	4433.7	psia		psia
	ISIP	3831.7	psia	_	psia
	Initial Flowing Press.	2025.9	psia	1068.9	psia
	Final Flowing Press.	2367.6	psia	3682.3	psia
	Sampling Press. Range	281.7	psia	2613.4	psia
	FSIP		psia	3835.8	psia
	FHP			4434.5	psia
	Form. Press. (Horner)				. <u></u>
C.	TEMPERATURE				
	Depth Tool Reached	221	oC w	224	oC w
	Max. Rec. Temp.	221 14.50 hrs 24/12	hrs	14.50 hrs 24/12	
	Time Circ. Stopped Time since Circ.	14.50 1115 24/12	hrs	14.70 1115 24/12	hrs
	Form. Temp. (Horner)	_	111.2		1113
D.	SAMPLE RECOVERY				
<u> </u>	Surface Pressure	190	psig	1000	psig
	Amt Gas	1.70	cu. ft		cu. ft.
	Amt Oil	0.10	litre	0.50	litre
	Amt Water		litre	8.0	litre
	Amt Others				
E.	SAMPLE PROPERTIES				
Gas	Composition	1.6406		74/01	
	C1 C2	16486 60122	ppm	3462 <u>1</u> 64655	ppm
	C3	1090	ppm	1335	ppm
	1C4/nC4	790	ppm ppm	996	ppm ppm
	C5	326	ppm ppm	526	
	C6+	96	PP		nnm
	-	70	mag	106	ppm ppm
	CO ₂ /H ₂ S	40/NIL	ppm ppm	106 70/NIL	ppm
Oil	CO ₂ /H ₂ S Properties		oC bbw bbw		
<u>0il</u>	Properties Colour	40/NIL °API @ Brown waxy	ppm	70/NIL Brown waxy	ppm ppm
<u>0il</u>	Properties Colour Fluorescence	40/NIL °API @ Brown waxy Bright yellow/white	ppm	70/NIL Brown waxy Bright yellow/wh.	ppm ppm
,	Properties Colour Fluorescence GOR	40/NIL °API @ Brown waxy	ppm	70/NIL Brown waxy	ppm ppm
,	Properties Colour Fluorescence GOR er Properties	40/NIL •API @ Brown waxy Bright yellow/white too small	ppm	70/NIL Brown waxy Bright yellow/wh 1590	ppm ppm
,	Properties Colour Fluorescence GOR er Properties Resistivity	40/NIL °API @ Brown waxy Bright yellow/white	ppm	70/NIL Brown waxy Bright yellow/wh.	ppm ppm
,	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent	40/NIL •API @ Brown waxy Bright yellow/white too small pH = 7.3	∘C bbш	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0	ppm ppm ite
,	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated	40/NIL	bbw °C	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0	ppm ppm ite ppm
,	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3	40/NIL •API @ Brown waxy Bright yellow/white too small pH = 7.3	∘C bbш	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0	ppm ppm ite
<u> vat</u>	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH	40/NIL	bbw °C	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0	ppm ppm ite ppm
<u> vat</u>	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties	40/NIL	bbw °C	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30	ppm ppm ite ppm
<u> vat</u>	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity	40/NIL	bbw °C	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5	ppm ppm ite ppm
<u> vat</u>	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent	40/NIL PAPI @ Brown waxy Bright yellow/white too small pH = 7.3 18k 40 Seawater Gel pH = 10.5 NO3 = 100	bbw bbw oC	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO3 = 100	ppm ppm ite ppm ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity	40/NIL	bbw °C	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5	ppm ppm ite ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press.	40/NIL	bbw bbw oC	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO3 = 100	ppm ppm ite ppm ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp.	40/NIL	bbw bbw oC	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO3 = 100 20,000	ppm ppm ite ppm ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No.	40/NIL	bbw bbw oC	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO ₃ = 100 20,000	ppm ppm ite ppm ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight	40/NIL PAPI @ Brown waxy Bright yellow/white too small pH = 7.3 18k 40 Seawater Gel pH = 10.5 NO3 = 100 20,000	bbw bbw oC	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO3 = 100 20,000	ppm ppm ite ppm ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic	40/NIL	bbw bbw bbw	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO ₃ = 100 20,000 2120A 9.7	ppm ppm ite ppm ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic RFT Chokesize	40/NIL API @ Brown waxy Bright yellow/white too small pH = 7.3 18k 40 Seawater Gel pH = 10.5 NO3 = 100 20,000 2120A 9.7 0.03	bbw bbw bbw	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO ₃ = 100 20,000	ppm ppm ite ppm ppm
wat Mud	Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic	40/NIL	bbw bbw bbw	70/NIL Brown waxy Bright yellow/wh. 1590 pH = 7.0 17k 30 pH = 10.5 NO ₃ = 100 20,000 2120A 9.7	ppm ppm ite ppm ppm

WELL .	RFT SAMPLE TE	ST REPORT	-	
WELL: Wirrah-3 OBSERVER: Finlayson/Neum			-	(6623f/
	CHAMBER 1 (2	22 7 litr	er 26, 1983	RUN: 14
SEAT NO.	14/77	-TP / TTCT	es) CHAMBER 2 (1 14/77	U.4 Litre
DEPTH	2644.7		2644 . 7	
A. RECORDING TIMES			2044.7	
Tool Set AM	6.12	.14	-	,
Pretest Open	6.12	.18	_	
Time Open		49 secs.		
Chamber Open Chamber Full	6.15		7.04	.00
Fill Time	Not fi	lled	Not fil:	
	-		_	
Start Build-up Finish Build-up	-		_	
Build-Up Time	-		-	
Seal Chamber			-	
Tool Retract	7.01	.00	7.22.	.00
Total Time	48		7.27.	00
B. SAMPLE PRESSURES	48 mins 46	secs.	38.46	
IHP	4707 70			
ISIP	4393.72	1	-	· · · · · · · · · · · · · · · · · · ·
Initial Flowing Press.	3805.07	psia	-	
Final Flowing Press.		psia	98.7	psia
Sampling Press. Range	603.9	psia	117.7	psia
FSIP	343.9	psia	19.0	psia
FHP	-	psia	3794.5	psia
Form. Press. (Horner)	-		4396.8	psia
C. TEMPERATURE				,
Depth Tool Reached	07// 7			
Max. Rec. Temp.	2744.7	m		m
Time Circ. Stopped	218	°F	220.5	٥F
Time since Circ.	14.50 hrs 24/12	hrs	14.50 hrs 24/	l2 hrs
Form. Temp. (Horner)		hrs		hrs
SAMPLE RECOVERY				
Surface Pressure	53.0			
Amt Gas	0.2	psig	15	psig
Amt Oil	0,2	cu. ft	• .25	litre
Amt Water	4.5	litre	-	litre
Amt Others		litre	3	litre
 SAMPLE PROPERTIES 			-	
as Composition				
Cl	325133	ppm	310696	
C2	41144	bbw		ppm
C3	6800		40691	ppm
1C4/nC4	230	ppm	5200	ppm
C5	60	ppm	160	ppm
C6+	44	ppm	30	ppm
CO ₂ /H ₂ S	16%/NIL	ppm ppm	12 14%/NIL	ppm
<u>ll Properties</u>	°API @	oC bbiii	, 14%/NIL	ppm
Colour	-	O		
Fluorescence	-		-	
GOR	-		-	
ter Properties			-	
Resistivity				
NaCl Equivalent				
Cl-titrated	17,000	ppm	17 000	
NO3	60	bbw bbw	17,000	ppm
Est. Water Type pH	pH = 8.5	PP''I	60 nH = 8 3	ppm
d Properties	F		pH = 8.3	
Resistivity	pH = 10.5		nH - 10 5	
NaCl Equivalent	$N0_3 = 200$		pH = 10.5 $NO_3 = 200$	
Cl - titrated	<i></i>	ppm	200 – ر	
<u>libration</u>		٠٠٠٠٠		ppm
Calibration Press.				
Calibration Temp.	•			
Hewlett Packard No.	2120A		2120A	
Mud Weight	9.7	ppg		
Calc. Hydrostatic	-••	443	4.7	ppg
DET OL 1	0.07			
RFT Chokesize	U . U3		ח חים	
	0.03 amber sealed & reo	nened	0.02 Chamber sealed and	

			RELISAMPLE LEST REPURT	
	WELL:	Wirrah-3		(6623f/19)
	OBSERVER:	Fittall/Neumann	DATE: December 2	26, 1983 RUN: 15
			CHAMBER 1 (22.7 litres)	CHAMBER 2 (10.4 litres)
	SEAT N	15/79		
==	DEPTH	2622.0		
	A. RECORD	ING TIMES		
	Tool S	Set	10.37.00	W-
	Pretes	st Open	AM 10.37.04	-
	Time C)pen	l min 32 secs.	-
	Chambe	r Open	10.31.36	11.08.20
	_			

A.					
	DEPTH 2622.0 RECORDING TIMES				
'``•		10.37.00	 		
	Tool Set				
ı	Pretest Open	AM 10.37.04		-	
_	Time Open	1 min 32 secs.		_	
	Chamber Open	10.31.36		11.08.20	
	Chamber Full			11.10.12	
	Fill Time	19 mins 44 secs	S.	5 mins 52 secs	•
	Start Build-up	10.38.20		11.13.42	
	Finish Build—up	11.03.01		didn't wait	
	Build-Up Time				
	Seal Chamber	11.03.01		11.13.43	
		11.00.01		11.15.08	
	Tool Retract	26.01 has			
	Total Time	26.01 hrs		10.48 h	rs.
В.	SAMPLE PRESSURES				
	IHP	4356.74	psia		
	ISIP	3777.63	psia	3771.09	
	Initial Flowing Press.	483	psi	3101.49	psia
	Final Flowing Press.	3477	psia	3048.21	psia
	Sampling Press. Range	_	psia	-	psia
	FSIP	3771.09	psia	<i>3</i> 770 . 65	psia
	FHP	wer	L ~	4357.34	psia
	Form. Press. (Horner)				polu
C.	TEMPERATURE				
<u> </u>	Depth Tool Reached	2622.0	m	2622.0	m
			() ()	219	٥ <u>۴</u>
	Max. Rec. Temp.	210			· ·
	Time Circ. Stopped	14.50 hrs 24/12	hrs	14.50 hrs 24/12	hrs
	Time since Circ.		hrs		hrs
	Form. Temp. (Horner)				
<u>D.</u>	SAMPLE RECOVERY				
	Surface Pressure	1950.0	psig	1900	psig
	Amt Gas	74	cu. ft.	51.3	litre
	Amt Oil	<u></u>	litre		litre
	Amt Water	11.2	litre	2.25	litre
	Amt Uthers	0.2 cond/emulsion		0.2 cond/emul:	sion
E.	Amt Others SAMPLE PROPERTIES	0.2 cond/emulsion		0.2 cond/emul	sion
E.	SAMPLE PROPERTIES	0.2 cond/emulsion		0.2 cond/emul	sion
E. Gas	SAMPLE PROPERTIES Composition		nom		
E. Gas	SAMPLE PROPERTIES Composition Cl	675942	ppm	651212	ppm
E. Gas	SAMPLE PROPERTIES Composition Cl C2	675942 33944	ppm	651212 63185	ppm ppm
E. Gas	SAMPLE PROPERTIES Composition Cl C2 C3	675942 33944 15856	ppm ppm	651212 63185 18360	ppm ppm
E. Gas	SAMPLE PROPERTIES Composition C1 C2 C3 1C4/nC4	675942 33944 15856 2412	bbw bbw bbw	651212 63185 18360 3398	bbw bbw bbw
E. Gas	SAMPLE PROPERTIES Composition C1 C2 C3 1C4/nC4 C5	675942 33944 15856 2412 410	bbw bbw bbw bbw	651212 63185 18360 3398 1698	bbw bbw bbw bbw
E. Gas	SAMPLE PROPERTIES Composition C1 C2 C3 1C4/nC4 C5 C6+	675942 33944 15856 2412 410 70	bbw bbw bbw	651212 63185 18360 3398 1698 200	bbw bbw bbw
	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S	675942 33944 15856 2412 410 70 95/0	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698	bbw bbw bbw bbw
	SAMPLE PROPERTIES Composition C1 C2 C3 1C4/nC4 C5 C6+	675942 33944 15856 2412 410 70	bbw bbw bbw bbw	651212 63185 18360 3398 1698 200	bbw bbw bbw bbw bbw
	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S	675942 33944 15856 2412 410 70 95/0	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200	bbw bbw bbw bbw bbw
	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour	675942 33944 15856 2412 410 70 95/0	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200	bbw bbw bbw bbw bbw
	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence	675942 33944 15856 2412 410 70 95/0	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200	bbw bbw bbw bbw bbw
<u>Oil</u>	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR	675942 33944 15856 2412 410 70 95/0	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200	bbw bbw bbw bbw bbw
<u>Oil</u>	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR er Properties	675942 33944 15856 2412 410 70 95/0 •API @	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0	bbw bbw bbw bbw bbw
<u>Oil</u>	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity	675942 33944 15856 2412 410 70 95/0	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200	bbw bbw bbw bbw bbw
<u>Oil</u>	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent	675942 33944 15856 2412 410 70 95/0 •API @	oC bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0	bbw bbw bbw bbw bbw
<u>Oil</u>	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated	675942 33944 15856 2412 410 70 95/0 •API @	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3	bbw bbw bbw bbw bbw bbw
<u>Oil</u>	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3	675942 33944 15856 2412 410 70 95/0 •API @	oC bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0	bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH	675942 33944 15856 2412 410 70 95/0 •API @	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties	675942 33944 15856 2412 410 70 95/0 •API @	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity	675942 33944 15856 2412 410 70 95/0 •API @ pH = 6.2 6000 20	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent	675942 33944 15856 2412 410 70 95/0 •API @	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity	675942 33944 15856 2412 410 70 95/0 •API @ pH = 6.2 6000 20	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated Cl-titrated Cl-titrated Cl-titrated Cl-titrated Cl-titrated Cl-titrated Cl-titrated Cl-titrated	675942 33944 15856 2412 410 70 95/0 •API @ pH = 6.2 6000 20	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated ibration	675942 33944 15856 2412 410 70 95/0 •API @ pH = 6.2 6000 20	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated ibration Calibration Press.	675942 33944 15856 2412 410 70 95/0 •API @ pH = 6.2 6000 20	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated ibration Calibration Press. Calibration Temp.	675942 33944 15856 2412 410 70 95/0 •API @ PH = 6.2 6000 20 pH = 10.5 NO ₃ = 200	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20 pH = 10.5 NO ₃ = 200	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR ET Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No.	675942 33944 15856 2412 410 70 95/0 API @ PH = 6.2 6000 20 pH = 10.5 NO3 = 200	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20 pH = 10.5 NO ₃ = 200	bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR Er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated Cl-titrated Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight	675942 33944 15856 2412 410 70 95/0 •API @ PH = 6.2 6000 20 pH = 10.5 NO ₃ = 200	bbw bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20 pH = 10.5 NO ₃ = 200	bbw bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR er Properties Resistivity NaCl Equivalent C1-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent C1-titrated iproperties C1 - titrated C2 - titrated C3 - titrated C3 - titrated C4 - titrated C5 - titrated C6 - titrated C7 - titrated C8 - titrated C9 - titrated C9 - titrated C1 - titrated C1 - titrated C1 - titrated C2 - titrated C3 - titrated C4 - titrated C5 - titrated C6 - titrated C7 - titrated C8 - titrated C9	675942 33944 15856 2412 410 70 95/0 API @ PH = 6.2 6000 20 pH = 10.5 NO3 = 200	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20 pH = 10.5 NO ₃ = 200	bbw bbw bbw bbw bbw
Oil Wat	SAMPLE PROPERTIES Composition Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties Colour Fluorescence GOR Er Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated Cl-titrated Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated ibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight	675942 33944 15856 2412 410 70 95/0 API @ PH = 6.2 6000 20 pH = 10.5 NO3 = 200	bbw bbw bbw bbw bbw	651212 63185 18360 3398 1698 200 121/0 pH = 6.3 16000 20 pH = 10.5 NO ₃ = 200	bbw bbw bbw bbw bbw

- 1

RET SAMPLE TEST REPORT

	L: Wirrah-3			17	12751
NASF	ERVER: Finlayson/Newman	DATE Deci	ombor 26	0) MIQ : 7001	623f/
ادرات	- THE AND THE WINDS	n DATE: Dece CHAMBER 1 (22.7 1	itre	1983 RUN CHAMBER 2 (10.4	
	SEAT NO.	CHAMOLK I (ZZ./ I	T LTE 1	CHAMBER Z (10.4	TTLLE
		0.607.0		0.6076	
		2627.2		2627.2	
Α.	RECORDING TIMES				
	Tool Set PM	3.16.04			•
	Pretest Open	3.16.08			
	Time Open	2 mins 28 se	ecs.	_	
	Chamber Open	3.		4.04.40	•
	Chamber Full	3.44.41		4.15.20	
	Fill Time	26.11			
				10.40	
	Start Build-up	3.44.41		4.15.0	
	Finish Build-up	4.02.50		4.23.20	
	Build-Up Time	18.09		8.00	
	Seal Chamber	4.0 .50		4.23.20	
	Tool Retract			4.29.00	
	Total Time	46.46		14.20	
ā.	SAMPLE PRESSURES			11,20	/
<u> </u>	THP	4369.80			
			psia	7701	
	ISIP	didn't wait	psia	3721	psia
	Initial Flowing Press.	150	psia	315.06	psia
	Final Flowing Press.	800	psia	566.00	psia
	Sampling Press. Range	650	psia	251.	psia
	FSIP	377		dn't wait 3651.61	
	FHP	- • •	L 010	= ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	سحد
	Form. Press.				
.	TEMPERATURE				
		0677			
	Depth Tool Reached	2637	m	2637	m
	Max. Rec. Temp.	216	o F	216	٥F
	Time Circ. Stopped	14.50 hrs 24/12	hrs	14.50 hrs 24/12	hrs
	Time since Circ.		hrs		hrs
	Form. Temp. (Horner)				-
٥.	SAMPLE RECOVERY				
	Surface Pressure	570	psig	290	psig
	Amt Gas	2.4	cu. ft.	0.3	litre
	Amt Oil	۷.4	litre	U.J	11 L1
		22.3		0.75	7
	Amt Water	22.3	litre	9.75	litr
	Amt Others				
	SAMPLE PROPERTIES				
ias	Composition				
	Cl	306647	ppm	310274	ppm
	C2	35104	ppm	24385	ppm
	C3	13314	bbw bbw	12184	
	1C4/nC4	2604		835	ppm
			ppm		ppm
	C5	1899	ppm .	771	ppm
	C6+	37	ppm		ppm
	CO ₂ /H ₂ S	1.4%/NIL	ppm	1/3%/NIL	
	Properties	°API @	,oC		
	Colour				
	Fluorescence				
	GOR		SCF/STB		
			JU / J I B		
	r Properties				
	Resistivity				
	NaCl Equivalent				
	Cl-titrated	ppm			
	NO ₃	60	ppm	40	ppm
	Est. Water Type pH		1 41.11	•	
	Properties				
	Resistivity	pH = 10.5		nH - 10 €	
				pH = 10.5	
	NaCl Equivalent	$N0_3 = 200$		$NO_3 = 200$	
	Cl - titrated	20,000	ppm	20,000	ppm
	bration				
	Calibration Press.				
	Calibration Temp.				
	Hewlett Packard No.	2120A		2120A	•
		9.7	222		
		7 /	ppg	9 . 7	ppg
	Mud Weight	7.	PPS		
	Mud Weight Calc. Hydrostatic RFT Chokesize	0.03	PPS	0.02	1.5

RFT S	SAMPLE	TEST	REPORT
-------	--------	------	--------

WELL: Wirrah-3	RFT SAMPLE TES	T REPORT		
OBSERVER: Finlayson/Neuma	ann DATE:	Docombon 0	7. 1007	(6623f/21
		December 2 2.7 litres)	7, 1985 CHAMBER	RUN: 17 2 (10.4 litres)
SEAT NO. 17/93A DEPTH 2569.0			OF IT IT IDEA	2 (10.4 IItres)
DEPTH 2569.0 A. RECORDING TIMES				
Tool Set AM	7.06			
Pretest Open	7.86 7.44			
_ Time Open	2 mins			
Chamber Open	7.47			
Chamber Full	Not full			
Fill Time ■ Start Build-up				
Finish Build-up	-			
Build-Up Time	-			•
Seal Chamber	8 . 07			
Tool Retract	8.04			
Total Time	20 mir	ns		
B. SAMPLE PRESSURES IHP		10		
ISIP	4254.79	psig		
Initial Flowing Press.	didn't wa	ait		
Final Flowing Press.	100	psig		
Sampling Press. Range	180 80	psig		
FSIP	didn't wa	psig		
FHP	4254.78	T.C		
Form. Press. (Horner)				
C. TEMPERATURE				
Depth Tool Reached Max. Rec. Temp.	2619	m		m
Time Circ. Stopped	186°F	oF.		°F
Time since Circ.	23.40 26/12	hrs		hrs
Form. Temp. (Horner)		hrs		hrs
 SAMPLE RECOVERY 				
Surface Pressure	18	psia		
Amt Gas	_	cu. ft.		
Amt Oil Amt Water/Filtrite	-	litre		
Amt Others	100 m	litre	•	
· SAMPLE PROPERTIES			-	
as Composition				
Cl		DDm		
C2	-	ppm ppm		
C3 1C4/nC4	-	ppm		
C5	-	ppm		
C6+		ppm		
C0 ₂ /H ₂ S	••••	ppm		
Oil Properties	°API@	₀C bbw		
Colour	711 12 (2)	<u>-</u> C		
Fluorescence				
GCR		SCF/STB		
Yeter Properties Hesistivity		. —		
NaCl Equivalent				
_ Cl-titrated				
NO3	<i>6</i> K 20	ppm		
■ Est. Water Type pH	pH = 9.0	ppm		
<u>Nud Properties</u>	٠٠٠ - ١٠٠			
Resistivity	pH = 9.8			
■ NaCl Equivalent Cl - titrated	$N0_3 = 160$			
LI - titrated Libration	16,000	ppm		
Calibration Press.				
Calibration Temp.				
Hewlett Packard No.	2120A			
Mud Weight	9.6			
Calc. Hydrostatic	-			
RFT Chokesize Remarks: Very	0.03			
very .	tight - given as	Not	opened	
	ree sample		,	

	S. 7 . K 1r. 11	4 . 4 . 4	
LL I	SAMPLE	1501	REPURI

	KET SAMPLE TEST R	ברטתו		
WELL: Wirrah-3 OBSERVER: Finlayson/Neumann	DATE: D	ecember 28) IO 7997	(6623f/22)
ODDLINVLIN. 1 THEAYSON NEUMANN	CHAMBER 1 (22.7	litres)	CHAMBER 2 (10.4	JN: 18
SEAT NO. 18/97	18/97		18/97	. 1101037
DEPTH	2645.0		2645.0	
A. RECORDING TIMES Tool Set AM	3.01.24			
Pretest Open	3.03.28			
Time Open	1.23		↔	
Chamber Open	3.10.31		4.11.08	
Chamber Full	Not fille	ed	4.23.00)
Fill Time		,	11.56	
Start Build-up Finish Build-up	_		didn't wa	·i+
Build-Up Time	-		- uran c wa	IIC
_ Seal Chamber	4.09.56		4.35.28	3
Tool Retract			4.19.16	
Total Time B. SAMPLE PRESSURES	l hr 32 s	secs.	28 mins 1	.6 secs
B. SAMPLE PRESSURES IHP	4393.35	psia	 	
ISIP	3808.19	psia		
Initial Flowing Press.	736.0	psia	242.00	psia
Final Flowing Press.	1600.61	psia	430.00	psia
Sampling Press. Range	1366.61	psia	198.00	psia
FSIP FHP		psia	4705 07	psia
Form. Press. (Horner)			4395.03	
C. TEMPERATURE		 		
Depth Tool Reached	2640.0	m		m
Max. Rec. Temp.	190	°F		°F
Time Circ. Stopped Time since Circ.	1700 hrs 27/12 10 hrs 10	hrs mins	10 hrs 1	hrs O mins
Form. Temp. (Horner)	10 1113 10	, IIITI 12	10 1113 1	0 1111112
D. SAMPLE RECOVERY				
Surface Pressure	200	psig	375	psig
Amt Gas Amt Oil	0.6	cu. ft. litre	0.3	cu. ft.
Amt Water	17	litre	- 1.5	litre litre
Amt Others				
E. SAMPLE PROPERTIES				
Gas Composition Cl	65 , 945	nnm	<i>(h</i> 071	
C2	7,347	ppm ppm	64,071 6,903	bbw bbw
C3	1,669	ppm	1,246	₽Pm PPm
1C4/nC4	56	ppm	36	ppm
C5	Trace	ppm	Trace	ppm
C6+ C0 ₂ /H ₂ S	2%/Nil	ppm	- 2%/Nil	ppm
Oil Properties	OAPI @	₀C bbw	2/6/ NII	ppm
Colour				
Fluorescence				
GOR				
Water Properties Resistivity	pH = 7.1		pH = 8.3	
NaCl Equivalent	ριι − /•± -		μπ - 0.7 -	
Cl-titrated	16,000	ppm	16,000	ppm
NO ₃	66	ppm	40	ppm
Est. Water Type pH Mud Properties				
Resistivity	pH = 9.8		pH = 9.8	
NaCl Equivalent	$NO_3 = 120$		$NO_3 = 120$	
Cl - titrated	16,000	ppm	16,000	ppm
Calibration Proces				
Calibration Press. Calibration Temp.	- -		-	
Hewlett Packard No.	21.9			
Mud Weight	9.6	ppg	9.6	ppg
Calc. Hydrostatic	-			.,
RFT Chokesize Remarks:	0.03		0.02	
Meliatk2.			Tool stuck 25 min taking sample.	ns. after
			carring pampite.	

RFT	SAMPL	E T	EST	REPORT
-----	-------	-----	-----	--------

		RFT SAMPLE TEST RE	PORT		
WEL		DATE: D-	b 00°		623f/23)
OBSI	ERVER: Finlay/Neumann	DATE: De CHAMBER 1 (22.7	cember 28, litres)	1983 RUN CHAMBER 2 (10.4	
	SEAT NO.	19/98	1101007	19/98	1101037
	DEPTH	2645.0		2645.0	
A.	RECORDING TIMES	0.00.54			
	Tool Set AM Pretest Open	8.08.54		<u>-</u>	
	Time Open	6.27		_	
	Chamber Open	15.37		9 .55	
	Chamber Full	915.00		940.00	
	Fill Time	59.23		17.05	
	Start Build-up Finish Build-up	9.15.00 didn't wait		9.40.00	
	Build-Up Time	- ardii c warc		-	
_	Seal Chamber	9.21.0		9.47.45	
	Tool Retract	~~		9.50.30	
	Total Time	1.12.26	hrs	27.35 hr	s.
B.	SAMPLE PRESSURES IHP	4398.14	psia		
	IŞIP	3807.43	psia psia	-	
	Initial Flowing Press.	78	psia	288	psia
	Final Flowing Press.	1300	psia	300	psia
	Sampling Press. Range	_	psia	17	psia
	FSIP FHP	-	psia	didn't wait 4393.23	psia
	Form. Press. (Horner)	-		+JJJ • £J	
C.	TEMPERATURE			······································	
_	Depth Tool Reached	2645.0	m	3644.0	m
	Max. Rec. Temp.	197	oF	197	oF
	Time Circ. Stopped Time since Circ.	1700 hrs 27/12	hrs hrs	1700 hrs 27/12	hrs hrs
•	Form. Temp. (Horner)		1112		1117.2
D.	SAMPLE RECOVERY				
	Surface Pressure	460	psig	500	psig
	Amt Gas	1.5	cu. ft.	2.5	cu. ft.
	Amt Oil Amt Water	21.5	litre litre	9.78	litre
	Amt Others	2.1. • <i>></i>	TTCTC	7.70	TTCTC
E.	SAMPLE PROPERTIES				
Gas	Composition	104 247			
_	C1 C2	184,647 9,184	ppm		
	C3	1,752	bbw bbw		
_	1C4/nC4	269	ppm		
	C5	30	ppm		
	C6+	- 00/ /NE 1	ppm		
Oil	CO ₂ /H ₂ S Properties	0.8%/Nil °API @	₀C bbw		
<u> </u>	Colour	/ ii ユ	J	·	
	Fluorescence				
	GOR				
Wate	er Properties Resistivity	pH = 6.7		n4 - 4 7	
	Resistivity NaCl Equivalent	pii - 0.7		pH = 6.7	
	Cl-titrated	16,000	ppm	17,000	ppm
	NO ₃	40	ppm	32	ppm
	Est. Water Type pH				
Mud	<u>Properties</u> Resistivity	pH = 9.8		nH - 0 0	
	NaCl Equivalent	$pn = 9.6$ $N0_3 = 120$		pH = 9.8 $NO_3 = 120$	
	Cl - titrated	16,000	ppm	16,000	ppm
Cal	<u>ibration</u>	•		•	
	Calibration Press.				
_	Calibration Temp. Hewlett Packard No.	2120A		2120A	
	Mud Weight	ppg		ppg	
	Calc. Hydrostatic			rr3	
	RFT Chokesize	0.03		0.02	
	Remarks:				
-					

RFT SAMPLE TEST REPURT

1.15	l. Wimmah 7	REI SAMPLE TEST KE	PURI		٠٠٠
WEL		DATE D	· b · 00°		623f/24)
<u> </u>	ERVER: L. Finlayson	DATE: Dec	cember 29,	1983 RUN	
	GEAT NO 00/00	CHAMBER 1 (22.7)	Litres)	CHAMBER 2 (10.4	litres)
	SEAT NO. 20/99	0757			
	DEPTH	2753.1		2753.1	
Α.	RECORDING TIMES				
	Tool Set	6.29.00		-	
!	Pretest Open	6.29.15		-	
	Time Open	0.15		-	
	Chamber Open	6.30.30		6.49.00	
	Chamber Full	5.44.45		6.56.00	
	Fill Time				
		14.15		7.00	
	Start Build-up	6.44.45		6.56.00	
	Finish Build-up	_			
	Build-Up Time	-		-	
	Seal Chamber	6. 47 . 30		6.50.00	
	Tool Retract	-		7.04.00	
	Total Time			0.35.00	hrs
B.	SAMPLE PRESSURES				
	IHP	4576.0	psia	······································	
	ISIP	3941.9		-	
			psia	2070 0	
	Initial Flowing Press.	102.8	psia	2030.2	psia
	Final Flowing Press.	2441.7	psia	2020.3	psia
	Sampling Press. Range	2338.9	psia	9.9	psia
	FSIP		psia	3933.4	psia
	FHP		•	4575.0	psia
	Form. Press. (Horner)			-	Poru
C.	TEMPERATURE				······································
<u> </u>	Depth Tool Reached	2753.1		2753.1	m
	Max. Rec. Temp.	と100・上	m oF	と122・土	oF m
	Mdx. Rec. Temp.				-
	Time Circ. Stopped		hrs		hrs
	Time since Circ.	65	hrs		hrs
	Form. Temp. (Horner)				
D.	SAMPLE RECOVERY				
	Surface Pressure	600	psia	1190	psia
	Amt Gas	2.0	cu. ft.	4.0	cu. ft.
		oil scum		2.0	
	Amt Oil		litre		litre
	Amt Water	22.0	litre	7 . 5	litre
	Amt Others				
E.	SAMPLE PROPERTIES				
Gas	Composition				
	Cl	253,890	ppm	260,485	ppm
	C2	24,245	ppm	26,817	ppm
	C3	2,235	ppm	6,676	
	1C4/nC4	962			ppm
	C5	574	ppm	1,242	ppm
			ppm.	393 30	bbw
	C6+	44	ppm	30	ppm
	CO ₂ /H ₂ S	0.3%/Nil	ppm	0.4%/Nil	ppm
Oil	Properties	°API @	°C		
	Colour	Dark Brown			
	Fluorescence	Bright yellow/whi	te		
	GOR		- -		
Wate	er Properties			•	
natt		5U 70		-U / 7	
	Resistivity	pH = 7.0		pH = 6.7	
	NaCl Equivalent				
	Cl-titrated	14,000	ppm	13,000	ppm
	N03	80	ppm	. 60	ppm
	Est. Water Type pH		• •		4- 1- · · ·
Mild	Properties	$NO_3 = pH =$			
- 100	Resistivity	Pi		•	
		•			
	NaCl Equivalent				
	Cl - titrated				
Cali	bration	pH = 10.1		pH = 10.1	
	Calibration Press.				
	Calibration Temp.				
	Hewlett Packard No.				
		0.4	nne	0.7	
	Mud Weight	9.6	ppg	9.6	ppg
	Calc. Hydrostatic				
	RFT Chokesize	0.03		0.02	
	Remarks:				

~1

	RFT SAMPLE TEST REF	PORT		
WELL: Wirrah-3 OBSERVER: L. Finlayson	DATE: D.		7.007	(6623f/25)
BOSERVER: E. FINIAYSON	DATE: Deca CHAMBER 1 (22.7 1	ember 29, itres)	1983 RI CHAMBER 2 (10.4	JN: 21
SEAT NO.	21/101	LCICO	21/101	+ IItres)
DEPTH A. RECORDING TIMES	2627.1		2627.1	
Tool Set	10.44.00	·		
Pretest Open	10.44.15		-	
Time Open	2.45		-	
Chamber Open Chamber Full	12.43.00		11.48.15	
Fill Time	Ξ		12.22.05 33.45	5
Start Build-up	-		12.22.00	1
Finish Build—up	-		_	,
Build-Up Time Seal Chamber	47 70		_	
Tool Retract	11.47.30		12.24.15	5
Total Time	_		•••	
B. SAMPLE PRESSURES				
IHP ISIP	4370.5	psia	-	psia
Initial Flowing Press.	3798.4 710.3	psia psia	- 185.3	psia
Final Flowing Press.	687 . 9	psia	1355.8	psia psia
Sampling Press. Range	22.4	psia	1167.5	psia
FSIP FHP	-	psia	_	psia
Form. Press. (Horner)	-		4370.8	psia
. TEMPERATURE				
Depth Tool Reached		m		m
Max. Rec. Temp. Time Circ. Stopped	200 .	oF	200	٥F
Time circ. Scopped		hrs hrs		hrs
Form. Temp. (Horner)		117.2		hrs
. SAMPLE RECOVERY				
Surface Pressure Amt Gas	80	psia	470	psia
Amt Oil	0.5 TR Oil Scum	cu. ft. litre		cu. ft.
Amt Water	18.5	litre	TR Oil Scum 9.75	litre
Amt Others	-		-	11010
 SAMPLE PROPERTIES as Composition 				
Cl	Sample Too Small	ppm	12,256	D D m
C2	- Simple Voc Small	ppm ppm	1041	ppm ppm
C3		ppm	202	ppm
1C4/nC4 C5		ppm	86 Tabas	ppm
C6+		ppm ppm	Trace	
CO ₂ /H ₂ S		ppm	0.32	
Oil Properties Colour	°API @	٥С		
Fluorescence				
GOR				
Water Properties				
≘esistivity NaCl Equivalent	pH = 8.7		pH = 8.7	
Cl-titrated	16,000	ppm	16,000	nn
NO3	70	bbw bbw	70	ppm ppm
Est. Water Type pH		• •		L- L
Mud Properties Resistivity	nH - 10 1 NO- 340			
NaCl Equivalent	$pH = 10.1 NO_3 = 140$			
Cl - titrated	5,000	ppm		
Calibration				
Calibration Press. Calibration Temp.				
Hewlett Packard No.	2120A		2120A	
Mud Weight	9.6	ppg	9.6	ppg
Calc. Hydrostatic	2 27	.		1-1-3
RFT Chokesize Remarks:	0.03	· /	0.02	

RFT SAMPLE TEST REPORT

	RFT SAMPLE TEST REPOR	RΤ		
/ELL: Wirrah-3				(6623f/2
BSERVER: L. Finlayson	DATE: Decem	ber 29, 1983	-	RUN: 22
	CHAMBER 1 (22.7 lit		BER 2 (10	.4 litres
SEAT NO.	22/103		2/103	
DEPTH	2627.3	2	627.3	
N. RECORDING TIMES				
Tool Set	3.34.00		-	
Pretest Open	3.39.15			
Time Open	_		_	
Chamber Open	3.40.45		4.41.	3 በ
Chamber Full	2.40.42		5.23.0	
	_			00
Fill Time	-		35.50	~~
Start Build-up	_		5.23.	UU
Finish Build-up	-		-	
Build-Up Time	-		-	
Seal Chamber	4.40.30		2.23.	30
Tool Retract			5.24.	30
Total Time				
. SAMPLE PRESSURES				
IHP	4357.9			
		psia	_	
ISIP	3795.2	psia		-
Initial Flowing Press.	73.0	psia	170.3	psia
Final Flowing Press.	<i>6</i> 37 . 4	psia	2717.4	psia
Sampling Press. Range	564.4	psia	2547.1	psia
FSIP		psia	_	psia
FHP	_		4369.4	L
Form. Press. (Horner)			1207 17	
. TEMPERATURE				
Depth Tool Reached	2627		0607	
		W	2627	m_
Max. Rec. Temp.	102	°F	209	٥F
Time Circ. Stopped		hrs		hrs
Time since Circ.		hrs		hrs
Form. Temp. (Horner)				
. SAMPLE RECOVERY				
Surface Pressure	800	psig	400	psig
Amt Gas	0.6	cu. ft.	0.5	cu. fi
Amt Oil	Slight Oil Scum	litre	_	litre
Amt Water	16.25	litre	9.5	litre
Amt Others	10.23	TICLE	7.5	TTCTE
. SAMPLE PROPERTIES			·	
as Composition	70/0/4	•••	77005	
C1	184846	• •	33025	ppm
C2	23959	ppm 3	36266	ppm
C3	354 <i>6</i>	ppm	6050	ppm
1C4/nC4	165	ppm	623	ppm
C5	TR	ppm	30	ppm
C6+	-		_	
CO ₂ /H ₂ S	0/ -	ppm	0.1%/-	- bbw
	°API @	ppm	0.1%/-	-
1 Properties	ALT @	°C		
Colour				
Fluorescence				
GOR		SCF/STB		
ater Properties				
Resistivity	pH = 74	da	1 = 6.9	
NaCl Equivalent	·	F		
Cl-titrated	16000	ppm]	L6000	ppm
NO3	66	bbw	50	
Est. Water Type pH	20	PPIII	<i></i>	ppm
ud Properties				
	рЫ — 10 1 МО—	140 -!!	סיא ני טני	7.40
Resistivity	pH = 10.1 N03 = 1	r40 bH =	10.1 NO ₃	= 140
NaCl Equivalent	14 000			
Cl - titrated	16,000	ppm 16	6,000	ppm
alibration				
Calibration Press.				
Calibration Temp.				
Hewlett Packard No.	2120A		2120A	
Mud Weight	ppg			
Calc. Hydrostatic	PP9		ppg	
RFT Chokesize	0 02		0.00	
IN I OHUKESIZE	0.02		0.02	
Remarks:	Good pretest			

0		1 of the second second second second		(66	23f/27)
WELL	: Wirrah-3 RVER: M. Fittall/M.J.	O'Byrne DATE: Janua	ry 1,		RFT-25
UBSE	RVER. M. I TCCattivitio.	CHAMBER 1 (22.7 lit	res)	CHAMBER 2 (10.4 I	itres)
	SEAT NO.	25/170		25/170 2785.5m	
-	DEPTH TIMES	2785.5m		2707.711	
A.	RECORDING TIMES Tool Set	3.45.00			
	Pretest Open	3.51.00			
	Time Open	6.00		4 14 70	
	Chamber Open	3.53.30		4.14.30 4.16.45	
	Chamber Full	4.07.00 14.30		2.15	
	Fill Time Start Build-up	4.07.00		4.16.45	
	Finish Build-up	4.13.00		4.26.15	
	Build-Up Time	6.00		9.30	
_	Seal Chamber	4.13.00		4.26.15 4.27.25	
1	Tool Retract	22.00 mins	:	12.45 mir	ns
B.	Total Time SAMPLE PRESSURES	ZZ,00 milit			
<u> </u>	IHP	4573.2	psia	_	
	ISIP	3988.2	psia	- 1281.09	psia
-	Initial Flowing Press.	145.2 3977.0	psia psia	1300.42	psia psia
	Final Flowing Press. Sampling Press. Range	3831 . 8	psia	119.33	psia
	FSIP	3977.2	psia	3975.36	psia
	FHP			4568.60	psia
	Form. Press. (Horner)				
C.	TEMPERATURE	2785.5	m		m
_	Depth Tool Reached Max. Rec. Temp.	215	oF		°F
	Time Circ. Stopped	0915 (2/1/84)	hrs		hrs
- (55)	Time since Circ.		hrs		hrs
-	Form. Temp. (Horner)				
D.	SAMPLE RECOVERY	1250	psig	1100	psig
	Surface Pressure Amt Gas	24.82	cfg	15.30	cfg
	Amt Oil	4.50	litre	4.50	litre
	Amt Water	12.40	litre	2.20	litre
	Amt Others				
<u>E.</u>	SAMPLE PROPERTIES				
Gas	Cl	228380	ppm	296570	ppm
_	C2	43084	ppm	51701 .	ppm
	C3	2957	ppm	3415 294	ppm
-	1C4/nC4	163 TR	ppm	TR	bbw bbw
	C5 C6+	· · · · · · · · · · · · · · · · · · ·	ppm ppm	- -	rr
	CO ₂ /H ₂ S	1.3%/4	ppm	1.4%/8	ppm
Oil	Properties	36.0 °API @ 60	٥F	35.4 °API 60	oF.
	Colour	Red brown, waxy	1.1	Red brown, wax Bright cream ye	
	Fluorescence	Bright cream yello 877/26.0 °C	AA	540/21°C	± ± U 11
_ Wat	GOR/Pour Point ter Properties	077720.0		2 107 2	
1	Resistivity	0.264 @ 73°F	•	0.251 @ 73°F	
	NaCl Equivalent	10000		12000	n.~~
_	Cl-titrated	12000 40	ppm	12000 45	ppm
	NO ₃ Est. Water Type pH	pH = 6.5	ppm	pH = 6.5	ppm
Mur	d Properties	$NO_3 = pH =$			
	Resistivity		86°F		
	NaCl Equivalent	14 000 /3 40			
- ^ ·	Cl - titrated	16,000/160 pp	n		
■ <u>Ca.</u>	libration Calibration Press.	•			
	Calibration Temp.				
	Hewlett Packard No.			•	
	Mud Weight	9.6	ppg		ppg
	Calc. Hydrostatic	0.02 inch			
_	RFT Chokesize Remarks:	O.OZ IICII			

,

RFT RUN NO.: 1, 2, 3

WELL: DATE: Wirrah-3

DATE: December 12, 1983
OBSERVERS: M. Fittall/P. Priest

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	>	FORMAT PRESSU		F	-IP	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	,
1/22	2147.3	2126.3	PT	HP	Y	psia	3586.8	9.77	3044.0	8.33	3587.9	9.77	Valid
		•		SCH	Y	psig	3571.0	9.73	3028.0	8.33	3570.0	9.73	Agiin
1/23	2144.5	2123.5	PT	HP	Υ	psia	3583.1	9.77	3040.1	8.33	308.0		Valid
-				SCH	Υ	psig	3566.0	9.72	3024.0	8.33	3566.0	9.72	valiu
1/24	2142.0	2121.0	PT	HP	Y	psia	3578.9	9.77	3037.5	8.38	3578.9	9.77	Valid
				SCH	Y	psig	3561.0	9.72	3021.0	8.33	3560.0	9.72	Agiin
2/25	2348.7	2327.7	SPT	HP	Υ'	psia	3922.7				3924.8		T. a.la.L.
	•		<u> </u>	SCH	Y	psig	3905.0		(270 FP)		3906.0		Tight
2/26	2349.2	2328.2	SPT	HP	Υ	psia	3921.7		3599.9	14 A			Supercharged. Opened chambers -
				SCH	Υ	psig	3907.0		3584.0				did not fill.
3/27	2349.1	2328.1	SPT	HP	Y	psia	3929.1		3601.8		3925.6		Tight
				SCH	Y	psig	3904.0		3583.0		3906.0		Tight
3/28	2349.2	2328.2	SPT	HP	Υ	psia	3925.6		3338.6		3922.2		Tight porticily
~~~				SCH	Y	psig	3905.5		3319.0			······································	Tight, partially filled 6 gallons.
1													

[.] Pressure Test = PT

3. Yes = YNo = N

4. PSIA = APSIG = G

Sample and Pressure Test = SPT
Gauges = SCH = Schlumberger Strain Gauge
= HP = Hewlett Packard

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

SERVICE COMPANY: Schlumberger RFT RUN NO.: 3, 4 WELL: DATE: Wirrah-3

December 13, 1983 M. Fittall/P. Priest OBSERVERS:

											ODSLIN	<u> </u>	ittail/i. Titest
SEAT NO.	NO.	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHP		FORMA PRESSI		Fh	p	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
3/29	2349.3	2328.3	SPT	HP	Υ.	psia	3922.2				3921.1		Seal failure
21 22	2247.2	2220.0	Ji i	SCH	Y	psig	3906.0			<del></del>			Seal Tallure
3/30	2349.0	2328.0	SPT	HP	Y	psia	3921.1				3923.4		Tight
	2242.0	2,20.0	3, 1	SCH	Υ	psig	3902.0		(800 FP)			Proceedings of the Annual Conference of the An	rigit
3/31	2349.2	2328.2	SPT	HP	Y	psia	3922.2		2548.3				Tight, opened 6 gallon chamber.
	22.17.2	2720.2	51 1	SCH	Y	psig	3904.0		(1760 FP)	·			Chamber.
3/32	2142.0	2121.0	SPT	HP	Y	psia	3562.4		3029.8		3576.6		Opened 2-3/4 gallon chamber.
2722	2142.0	2:21.0	5, 1	SCH	Υ	psig	3565.0		3028.5		3565.0		CHamber.
4/33	2022.0	2001.0	SPT	HP	Y	psia	3380.0		2876.1		3380.0		Tight - 6 gallon chamber not building
		2001.0	J. 1	SCH	Y	psig	3362.0		2858.5		3363.0	<del></del>	up.
4/34	2022.2	2001.2	SPT	HP	Y	psia	3080.5		2869.9		3080.1		Valid pre-test. Very slow. 6 gallon
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2022,2	2001.2	<b>3</b> , 1	SCH	Υ	psig	3365.0		2852.5				chamber build-up.
4/34A	2024.7			HP	Υ	psia			2873.5				Did not sample due to tightness.
472411	2024.7			SCH	Υ	psig			2860.0			V	to traininess.
4/35	2023.7	2002.7	SPT	HP	Y	psia	3380.3		2872.3				Valid pre-test.
chamber.		2002.1	5 ,	SCH	Υ	psig	3368.5		2869.5				Filled 6 gallon
		·····											

^{1.} Pressure Test = PT Sample and Pressure Test - SPT

KB = 21 m (Southern Cross)

Note. Schrumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge

^{3.} Yes = Y

PSIG = G

RFT RUN NO.: 10, 11, 12, 13, 14

WELL:

Wirrah-3

DATE:
OBSERVERS:

December 25, 1983 Finlayson/Neumann

TEST RESULT	)	FHF		FORMAT PRESSU		IHP	UNITS 4	TEMP 3 CORR.	GAUGE 2	REASON 1 FOR TEST	DEPTH	DEPTH	SEAT NO.
	ppg	psi	ppg	psi	ppg	psi					(m SS)	(m)	
Sample	9.8	4494.48	8.4	3879.83	9.7	4498.05	psia	Υ	HP	SPT	2686.8	2207.8	10/68
Janpie							psig	Υ	SCH				
Sample	9.7	4462.03	8.46	3854.88	9.7	4464.38	psia	Y	HP	SPT	2666.5	2687.5	11/69
Jampie							psig	Υ	SCH				
Sample	9.7	4434.2	8.5	3839.7	9.7	4440.8	psia	Υ	HP	SPT	2651.0	2672.0	12/70
Sampte			***************************************	editerrente de aditiva di State di III e di Adda e a Consenda e a anti-			psig	Ÿ	SCH	<b>Ŭ</b> ,	2001.0	20,2,0	12,70
Valid	9.7	4474.9	8.4	3859.6	9.7	4475.7	psia	Υ	HP	PT	2673 <b>.</b> 5	2694.5	13/71
Valid	9.7	4454.0	8.4	3820.0	9.7	4454.0	psig	Y	SCH	, ,			
Valid	9.7	4434.5	8.5	3831.7	9.7	4433.7	psia	Y	HP	SPT	2651.0	2672.0	13/72
Vallu							psig	Y	SCH				
Seal failure	9.7	4395.41			9.7	4395.83	psia	Y	HP	SPT	2623.5	2644.5	14/73
Sear ratture							psig	Υ	SCH	<b>S.</b> 1	2027.5		<b></b> , , ,
Tight	9.7	4395.5			9.7	4396.0	psia	Υ	HP	SPT	2623.5	2644.5	14/74
irdir		<del></del>		<del></del>		<del></del>	psig	Υ	SCH	<u> </u>			

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = Y  $N_0 = N$ 

4. PSIA = A PSIG = G KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

RFT RUN NO.: 14, 15, 16

WELL: DATE:

Wirrah-3

OBSERVERS:

December 26, 1983 Finlayson/Neumann

ty ooth ricaliani	2,12												
TEST RESULT	)	FH		FORMAT PRESSU		IHP	UNITS 4	TEMP 3 CORR.	GAUGE 2	REASON 1 FOR TEST	DEPTH	DEPTH	SEAT NO.
TEST NESSET	ppg	psi	ppg	psi	ppg	psi					(m SS)	(m)	
Tight	9.7	4395.24			9.7	4395.16	psia	Υ	HP	SPT	2624.0	2645.0	14/75
ignt							psig	Y	SCH				-
Tiabt	9.7	4393.76	8.5	3798.21	9.7	4393.61	psia	Y	HP	SPT	2623.5	2684.5	14/76
Tight	7						psig	Y	SCH				
C1-	9.7	4396.6	8.5	3805.07	9.7	4393.72	psia	Y	HP	SPT	2623.7	2644.7	14/77
Sample					10 The district on the same of		psig	Y	SCH				
Cool Coil	9.7	4357.26		Strate Market Strategic Andrews Strategy (1994)	9.7	4357.51	psia	Y	HP	SPT	2601.0	2622.0	15/78
Seal failure							psig	Y	SCH				-1
Comple	9.7	4357.39	8.5	3777.63	9.7	4356.74	psia	Υ	HP	SPT	2601.0	2622.0	15/79
Sample	<del></del>		<del></del>				psig	Υ	SCH				
C1 6-11	9.7	4252.89			9.7	4252.96	psia	Υ	HP	PT	2536.5	2557.5	16/80
Seal failure							psig	Y	SCH		_		
T:L	9.7	4255.10		****	9.7	4253.89	psia	Υ	HP	PT	2536.6	2551.6	16/81
Tight					****	**************************************	psig	Υ	SCH				

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = Y No = N

^{4.} PSIA = A PSIG = G

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 17, 18

WELL:

Wirrah-3

DATE:
OBSERVERS:

December 27, 1983 Finlayson/Neumann

SEAT DEPTH NO. (m)		DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMA PRESS		FH	Р	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	ILS! KESUL!
17/89	2569.1	2548.1	PT	HP	Y	psia	4253.41	9.7			4253.84	9.7	
·				SCH	Y	psig							Tight
17/90	2569.5	2548.5	SPT	HP	Υ	psia	4254.07	9.7		-	4255.93	9.7	-
***************************************			···	SCH	Y	psig							. Tight
17/91	2569.4	2548.9	SPT	HP	ŢΥ	psia	4253.64	9.7			4255.15	9.7	
				SCH	Υ	psig							Tight
17/92	2575.0	2355.0	SPT	HP	Y	psia	4263.72	9.7			4262.76	9.7	
				SCH	Y	psig							Seal failure
17/93	2573.5	2322.5	SPT	HP	Y	psia	4259.71	9.7			4261.50	9.7	
		**************************************		SCH	Y	psig							Seal failure
17/93A	2569.0	2548.0	SPT	HP	Υ	psia	4254.79	9.7			4254.78	9.7	Partial sample in 6
				SCH	Υ	psig				<del></del>		7-77	gallon chamber - tight.
18/94	2644.5	2623.5	SPT	HP	Υ	psia	4394.16	9.7			4394.20	9.7	
				SCH	Υ	psig				<del> </del>			Tight

^{1.} Pressure Test = PT
Sample and Pressure Test = SPT

3. Yes = Y No = N

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{4.} PSIA = A PSIG = G

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

DATE:

NTTTq11-7

OBSERVERS:

December 28, 1983 Finlayson/Neumann

TEST RESULT	Р	FHI		FORMAT PRESSU	****	IHP	UNITS 4	TEMP 3 CORR.	GAUGE 2	REASON 1 FOR TEST	DEPTH	DEPTH	SEAT NO.
1201 112021	ppg	psi	ppg	psi	ppg	psi					(m SS)	(m)	
T 2 mls 1.	9.7	4393.86			9.7	4393.85	psia	Υ	HP	SPT	2623.7	2644.7	18/95
Tight							psig	Υ	SCH			-	
Timbl	9.7	4393.38			9.7	4392.45	psia	Υ	HP	SPT	2623.6	2644.6	18/96
Tight		***************************************	****		<del></del>		psig	Υ	SCH				
C	9.7	4395.03	8.5	3808.19	9.7	4393.35	psia	Y	HP	SPT	2624.0	2645.0	18/97
Sample		7 - 7 - 5 - 7 - 4 - 4 - 7 - 7 - 4 - 4 - 4 - 4 - 4					psig	Υ	SCH				
C1-	9.7	4393.23	8.5	3807.43	9.7	4398.14	psia	Y	HP	SPT	2624.0	2645.0	19/98
Sample							psig	Y	SCH			·	
C 1 -	9.7	4575.0	8.4	3941.9	9.7	4576.03	psia	Y	HP	SPT	2732.1	2753.1	20/99
Sample				**************************************			psig	Υ	SCH				
V 24.	9.7	4370.7	8.5	3820.0	9.7	4369.4	psia	Y	HP	SPT	2606.0	2627.0	21/100
Valid				****			psig	Y	SCH			-	*
Samala.	9.7	4370.8	8.5	3748.4	9.7	4370.5	psia	Υ	HP	SPT	2606.1	2627.1	21/101
_ Sample	***************************************						psig	Υ	SCH				

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

2. Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

3. Yes = YNo = N

4. PSIA = APSIG = G KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 22, 23

WELL: DATE: OBSERVERS:

Wirrah-3

December 28, 1983 Finlayson/Neumann

CEAT	DEDTIL				<del></del>							<u>, , , , , , , , , , , , , , , , , , , </u>	raysun/Neumann
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	IP	FORMA PRESS	ATION SURF	FI	₽	TECT DECL!! T
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	TEST RESULT
22/102	2627.1	2606.1	SPT	HP	Υ	psia	4367.6	9.7	3796.1	8.5	4368.3	9.7	
		7.70		SCH	Y	psig							Valid - tight
22/103	2627.2	2606.2	SPT	HP	Υ	psia	4367.7	9.7	3795.2	8.5	4369.4	9.7	
				SCH	Υ	psig				***************************************	-		Valid — sample
23/104	2944.0	2923.0	PT	HP	Y	psia	4826.5	9.6					
-				SCH	Y	psig	4809.0						Seal failure
23/105	2943.5	2922.5	PT	HP	·Y	psia	4827.7	9.6					
				SCH	Υ	psig	4805.0	······································		<del></del>			Seal failure
23/106	2943.7	2922.7	PΤ	HP	Υ	psia	4830.2	9.6					
		***		SCH	Υ	psig	4807.0						Seal failure
23/107	2785.5	2764.5	PT	HP	Υ	psia	4540.5	<del></del>					
				SCH	Υ	psig	-						Seal failure
23/108	2785.3	2764.3	PT	HP	Υ	psia	4555.6	9.56	3976.1	8.38	4564.3		
		*****		SCH	Y	psig			3984.0	······································	4552.0		Valid

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = Y No = N

4. PSIA = APSIG = G KB = 21 m (Southern Cross)

* <u>Note:</u> Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

## RFT PRETEST PRESSURES

Schlumberger SERVICE COMPANY:

RFT RUN NO.: 1

WELL:

Wirrah-3

DATE:

December 12, 1983 M. Fittall/P. Priest

**OBSERVERS:** 

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3	UNITS 4	IH	)	FORMA' PRESSI		FH	P	TEST RESULT
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
1/1	2395.4	2374.4	PT	HP	Y	psia	4007.7	9.78	3402.1	8.34	4005.9	9.78	Valid
1/1	2000.4	2214.4		SCH	Υ	psig	3989.0	9.74	3387.0	8.34	3989.0	9.74	
1/2	2349.1	2328.1	PT	HР	Y	psia	3923.6	9.77	3616.8	9.05	3924.1	9.77	Tight
1/4	<b>ムノサフ・エ</b>	2720 · 3		SCH	Υ	psig	3910.0	9.73	3602.0	9.05	3909.0	9.73	Supercharged
1/3	2339.5	2318.5	PT	HP	Y	psia	3908.4	9.77	3317.1	8.33	3910.3	9.77	Valid
1/ )	4777.7	ZJ10.J	ΓI	SCH	Y	psig	3894.0		3302.0		3984.0		, 4774
1/4	2314.3	2293.3	PT	НP	Y	psia	3868.2	9.77	3280.4	8.33	3867.5	9.77	Valid
1/4	2714.7	2297.7	r	SCH	Υ	psig	3852.0		3267.0		3853.0		
1/5	2282.6	2261.6	PT	HP	Y	psia	3813.9	9.77	3238.1	8.33	3814.2	9.77	Valid
1/ /	2202.0	2201.0	1 1	SCH	Υ	psig	3800.0		3225.0		3800.0		
1/6	2274.2	2253.2	PT	HP	Y	psia	3800.7	9.77	3300.1	8.53	3799.4	9.77	Supercharged?
1/0	6614°6	£ £ 2 2 0 £	1 1	SCH	Υ	psig	3785.0		3287.0		3785.0		
1/7	2243.6	2222.6	PT	HP	Υ	psia	3747.8	9.77	3179.3	8.33	3747.6	9.77	Valid
	447.U	<i>4444</i> • 0	i i	SCH	Y	psig	3735.0	9.74	3169.0	8.34	3734.0	9.73	·

⁼ PT 1. Pressure Test Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = Y= N

^{4.} PSIA = APSIG = G

KB = 21 m (Southern Cross)

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 1

WELL:

Wirrah-3

DATE:

**OBSERVERS:** 

December 12, 1983 M. Fittall/P. Priest

											<del>*************************************</del>	<del></del>	
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	P	FORMA [*] PRESSU		FI	<del>l</del> b	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	1001 110001
1/8	2080.8	2059.8	PT	HP	Υ	psia	3476.5	9.77	2947.13	8.33	347.0	9.77	Valid
				SCH	Υ	psig	3468.0	9.75	2940.0	8.35	3469.0	9.75	· ·
1/9	2052.5	2031.5	PT	нP	Y	psia	3430.5	9.77	2908.5	8.33	3430.5	9.77	Valid
			•	SCH	Y	psig	3419.0	9.74	2899.0	8.35	3419.0	9.74	· ·
1/10	2030.8	2009.8	PT	HP	. <b>Y</b>	psia	3394.4	9.77	2877.7	8.33	3394.3	9.77	Valid
			• •	SCH	Y	psig	3385.0	9.75	2868.0	8.35	3385.0	9.75	Vallu
1/11	2028.1	2007.1	PT	НÞ	Y	psia	3390.8	9.78	2874.8	8.33	3390.2	9.78	Valid
	202012	200712		SCH	Y	psig	3382.0	9.75	2866.0	8.35	3382.0	9.75	· valiu
1/12	2023.7	2002.7	PT	HP	Y	psia	3383.6	9.78	2872.7	8.35			Valid
		200217	, ,	SCH	Y	psig	3372.0	9.74	2862.0	8.36	3372.0	9.74	Agiin
1/13	1810.5	1789.5	PΤ	HÞ	Y	psia	3028.3	9.78	2551.4	8.29			Valid
		2.27	, .	SCH	Y	psig	3019.0	9.75	2544.0	8.31	3020.0	9.75	AGTIO
1/14	1798.6	1777.6	PT	HP	Υ	psia	3009.0	9.78	2535.7	8.29	3009.3	9.78	Valid
			· ·	SCH	Y	psig	2998.0	9.75	2525.0	8.31	2997.0	9.74	AGTIO
						······································	*		· · · · · · · · · · · · · · · · · · ·		<del></del>		

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = 
$$'$$
 Y

PSIG = G

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

No = N4. PSIA = A

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 1

WELL:

Wirrah-3

DATE:

DATE: December 12, 1983

OBSERVERS: M. Fittall/P. Priest

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	<b>D</b>	FORMA PRESSI		FÌ	₽	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
1/15	1780.2	1759.2	PT	HP	Y	psia	2978.1	9.78	2509.7	8.29	2978.2	9 <b>.</b> 78	Valid
				SCH	Y	psig	2966.0	9.74	2500.0	8.31	2966.0	9.74	Valla
1/16	1600.7	1579.7	PT	HP	Y	psia	2679.3	9.79					Blockage in sampling
			, .	SCH	Y	psig	2667.0	er meller er eftere er seg flygge (fl. dyn meller er flygglis er eg er gyr		***********			line?
1/17	1600.7	1579.7	PT	HP	Y	psia			2255.3	8.29	2679.5	9.79	Valid
				SCH	Y	psig			2242.0	8.30	2663.0	9.73	AGTIO
1/18	1577.8	1556.8	PT	HP	Y	psia	2641.0	9.79	2220.4	8.29			Valid
				SCH	Y	psig	2627.0	9.74	2208.0	8.29	2626.0	9.73	Vallu
1/19	1535.0	1514.0	PT	HP	Y	psia	2569.6	9.79	2160.4	8.29	2569.7	9.79	Valid
			. ,	SCH	Y	psig	2555.0	9.73	2153.0	8.32	2555.0	9.73	Vallu
1/20	1532.2	1511.2	PT	HP	Y	psia	2564.9	9.79	2157.1	8.29	2564.9	9.79	Valid
				SCH	Y	psig	2549.0	9.73	2156.0	8.34	2549.0	9.73	VULLU
1/21	2278.5	2257.5	PT	HP	Y	psia	3804.5	9.77	3241.7	8.36	3804.7	9.77	Valid
,			, ,	SCH	Y	psig	3782.0	9.71	3221.0	8.34	3782.0	9.71	AGTIO

Pressure Test Sample and Pressure Test = SPT

KB = 21 m (Southern Cross)

* Note: Schlumberger gauge reading up to 1000 psi

Gauges - SCH - Schlumberger Strain Gauge = HP = Hewlett Packaro

^{3.} Yes = Y

RFT RUN NO.: 1, 2, 3

WELL:

4.

Wirrah-3

DATE:
OBSERVERS:

December 12, 1983 M. Fittall/P. Priest

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMAT PRESSU		Fh	P	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	,,
1/22	2147.3	2126.3	PT	HP	Y	psia	3586.8	9.77	3044.0	8.33	3587.9	9.77	Valid
300 / Ann Ann	Amada 17 00	2220.2		SCH	Υ	psig	3571.0	9.73	3028.0	8.33	3570.0	9.73	, arra
1/23	2144.5	2123.5	. PT	HP	Y	psia	3583.1	9.77	3040.1	8,33	308.0		Valid
	1100		., .	SCH	Y	psig	3566.0	9.72	3024.0	8.33	3566.0	9.72	, are
1/24	2142.0	2121.0	PT	HP	Y	psia	3578.9	9.77	3037.5	8.38	3578.9	9.77	Valid
1/24	2142.0	2121.0	• •	SCH	Υ	psig	3561.0	9.72	3021.0	8.33	3560.0	9.72	Yaliu
2/25	2348.7	2327.7	SPT	HР	Y	psia	3922.7				3924.8		Tight
2122	2,740.7	2221.1	SI I	SCH	Y	psig	3905.0		(270 FP)		3906.0		rigit
2/26	2349.2	2328.2	SPT	HP	Y	psia	3921.7		3599.9				Supercharged. Opened chambers -
2, 20	22-47-62	2520.2	<b>3.</b> 1	SCH	Υ	psig	3907.0		3584.0				did not fill.
3/27	2349.1	2328.1	SPT	ŀР	Y	psia	3929.1		3601.8		3925.6		Tight
2121	<b>レノコノ 6 エ</b>	2720.1	<b>5</b> 1 1	SCH	Y	psig	3904.0		3583.0		3906.0		1 <b>±</b> 911 <b>6</b>
3/28	2349.2	2328.2	SPT	HP	Y	psia	3925.6		3338.6		3922.2		Tight, partially
			<b>.</b>	SCH	Y	psig	3905.5		3319.0				filled 6 gallons.

^{1.} Pressure Test = PT
Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = Y

No = N4. PSIA = A

KB = 21 m (Southern Cross)

^{*} Note: Schlumberger gauge reading up to 1000 psi

RFT RUN NO.: 1

WELL:

Wirrah-3

DATE:

DATE: December 12, 1983

OBSERVERS: M. Fittall/P. Priest

100011/1 1 11030		0000111											
TEST RESULT	IP	Fh		FORMAT PRESSU	)	IH	UNITS 4	TEMP 3 CORR.	GAUGE 2	REASON 1 FOR TEST	DEPTH	DEPTH	SEAT NO.
TEOT NEOCE	ppg	psi	ppg	psi	ppg	psi					(m SS)	(m)	
	9.78	4005.9	8.34	3402.1	9.78	4007.7	psia	Y	HP	PT	2374.4	2395.4	1/1
Valid	9.74	3989.0	8.34	3387.0	9.74	3989.0	psig	Y	SCH				
Tight	9.77	3924.1	9.05	3616.8	9.77	3923.6	psia	Y	НP	. PT	2328.1	2349.1	1/2
Supercharged	9.73	3909.0	9.05	3602.0	9.73	3910.0	psig	Y	SCH				
Valid	9.77	3910.3	8.33	3317.1	9.77	3908.4	psia	Y	HP	PT	2318.5	2339.5	1/3
AGIIÜ		3984.0		3302.0		3894.0	psig	Y	SCH	, ,			
Valid	9.77	3867.5	8.33	3280.4	9.77	3868.2	psia	Y	HP	PT	2293.3	2314.3	1/4
AGIIU		3853.0	·····	3267.0		3852.0	psig	Y	SCH				
Valid	9.77	3814.2	8.33	3238.1	9.77	3813.9	psia	Y	HP	PT	2261.6	2282.6	1/5
AGIIU	**************************************	3800.0		3225.0		3800.0	psig	Y	SCH				
Superpharaed?	9.77	3799.4	8.53	3300.1	9.77	3800.7	psia	Υ	HP	Ρ ['] Τ	2253.2	2274.2	1/6
Supercharged?	***************************************	3785.0		3287.0		3785.0	psig	Υ	SCH				
Valid	9.77	3747.6	8.33	3179.3	9.77	3747.8	psia	Υ	HP	PΤ	2222.6	2243.6	1/7
AGTIO	9.73	3734.0	8.34	3169.0	9.74	3735.0	psig	Y	SCH				

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

PSIG = G

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = Y

No = N 4. PSIA = A

KB = 21 m (Southern Cross)

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 1

WELL:

Wirrah-3

DATE:

December 12, 1983 M. Fittall/P. Priest

OBSERVERS:

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	<b>5</b>	FORMAT PRESSU		FH	P	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	, 201 1120021
1/8	2080.8	2059.8	PT	HP	Y	psia	3476.5	9.77	2947.13	8.33	347.0	9.77	Valid
				SCH	Υ	psig	3468.0	9.75	2940.0	8.35	3469.0	9.75	Valiu
1/9	2052.5	2031.5	PT	HP	Y	psia .	3430.5	9.77	2908.5	8.33	3430.5	9.77	Valid
		70 M S		SCH	Y	psig	3419.0	9.74	2899.0	8.35	3419.0	9.74	AGTIO
1/10	2030.8	2009.8	PT	HP	Y	psia	3394.4	9.77	2877.7	8.33	3394.3	9.77	Valid
				SCH	Y	psig	3385.0	9.75	2868.0	8.35	3385.0	9.75	19770
1/11	2028.1	2007.1:	PT	HP	Y	psia	3390.8	9.78	2874.8	8.33	3390.2	9.78	Valid
				SCH	Y	psig	3382.0	9.75	2866.0	8.35	3382.0	9.75	AGTIO
1/12	2023.7	2002.7	PT	HP	Y	psia	3383.6	9.78	2872.7	8.35		,	Valid
				SCH	Y	psig	3372.0	9.74	2862.0	8.36	3372.0	9.74	AGIIO
1/13	1810.5	1789.5	PΤ	HP	Y	psia	3028.3	9.78	2551.4	8.29			Valid
				SCH	Y	psig	3019.0	9.75	2544.0	8.31	3020.0	9.75	Vallu
1/14	1798.6	1777.6	PT	HP	Y	psia	3009.0	9.78	2535.7	8.29	3009.3	9.78	Valid
				SCH	Υ	psig	2998.0	9.75	2525.0	8.31	2997.0	9.74	Vallo

^{1.} Pressure Test Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = Hewlett Packard

^{3.} Yes = YNo = N

^{4.} PSIA = APSIG = G

KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 1

WELL:

Wirrah-3

DATE: [

December 12, 1983 M. Fittall/P. Priest

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	þ	FORMA PRESS	TION URE	FI	-IP	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	. IEST NESULT
1/15	1780.2	1759.2	PT	HP	Y	psia	2978.1	9.78	2509.7	8.29	2978.2	9.78	V-3:1
····				SCH	Y	psig	2966.0	9.74	2500.0	8.31	2966.0	9.74	Valid
1/16	1600.7	1579.7	PT	HP	Υ	psia	2679.3	9.79				The state of the s	
				SCH	Y	psig	2667.0			<del></del>	<del></del>		Blockage in sampling line?
1/17	1600.7	1579.7	PT	HP	Υ	psia			2255.3	8.29	2679.5	9.79	
<del></del>				SCH	Υ	psig			2242.0	8.30	2663.0	9.73	Valid
1/18	1577.8	1556 <b>.</b> 8	PT	HP	Y	psia	2641.0	9.79	2220.4	8.29	***************************************		
				SCH	Y	psig	2627.0	9.74	2208.0	8.29	2626.0	9.73	Valid
1/19	1535.0	1514.0	PT	HP	Y	psia	2569.6	9.79	2160.4	8.29	2569.7	9.79	
·	·	***************************************		SCH	Y	psig	2555.0	9.73	2153.0	8.32	2555.0	9.73	Valid
1/20	1532.2	1511.2	PT	НP	Y	psia	2564.9	9.79	2157.1	8.29	2564.9	9.79	
				SCH	Y	psig	2549.0	9.73	2156.0	8.34	2549.0	9.73	Valid
1/21	2278.5	2257.5	ΡŢ	HP	Y	psia	3804.5	9.77	3241.7	8.36	3804.7	9.77	
				SCH	Y	psig	3782.0	9.71	3221.0	8.34	3782.0	9.71	Valid

Pressure Test = PT
 Sample and Pressure Test = SPT
 Gauges = SCH = Schlumberger Strain Gauge

KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi

^{3.} Yes = Y No = N

^{4.} PSIA = A

<u>RFT RUN NO.</u>: 1, 2, 3

WELL:

Wirrah-3

SEAT	DEPTH	DEDTI									DATE: OBSER	D	irrah-3 ecember 12, 1983 . Fittall/P. Priest	
NO.	(m)	DEPTH (m SS)	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	II-	P	FORMA PRESSI		FI	P		
		·					psi	ppg	psi	ppg	psi	ppg	_ TEST RESULT	7
1/22	2147.3	2126.3	PT	HP	Υ	psia	3586.8	9.77	3044.0	8.33	3587.9	9.77		
				SCH	Υ	psig	3571.0	9.73	3028.0	8.33	3570.0	9.73	- Valid	
1/23	2144.5	2123.5	PT	HP	Υ	psia	3583.1	9.77	3040.1	8.33	308.0			
***************************************				SCH	Y	psig	3566.0	9.72	3024.0	8.33	3566.0	9.72	- Valid	
1/24	2142.0	2121.0	PT	HP	Y	psia	3578.9	9.77	3037.5	8.38	3578.9	9.77		
				SCH	Υ	psig	3561.0	9.72	3021.0	8.33	3560.0	9.72	Valid	
2/25	2348.7	2327.7	SPT	HP	Υ.	psia	3922.7				3924.8	7.72		<del></del>
			•	SCH	Y	psig	3905.0		(270 FP)		3906.0	<del></del>	Tight	
2/26	2349.2	2328.2	SPT	HP	Y	psia	3921.7		3599.9		220.0			
				SCH	Υ	psig	3907.0		3584.0	······································			Supercharged. Opened chambers -	
3/27	2349.1	2328.1	SPT _	HP	Υ	psia	3929.1		3601.8		3925.6		did not fill.	<del></del>
				SCH	Y	psig	3904.0		3583.0		3906.0		Tight	
3/28	2349.2	2328.2	SPT	HP	Υ	psia	3925.6		3338.6		3922.2			
~				SCH	Υ	psig	3905.5		3319.0				Tight, partially filled 6 gallons.	

Pressure Test

3. Yes = YNo = N

4. PSIA = APSIG = G

Sample and Pressure Test = SPT
Gauges = SCH = Schlumberger Strain Gauge
= HP = Hewlett Packard

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

1. Pressure Test

SERVICE COMPANY: Schlumberger RFT RUN NO.: 3, 4 WELL: Wirrah-3 DATE: December 13, 1983 OBSERVERS: M. Fittall/P. Priest SEAT DEPTH **DEPTH** REASON 1 GAUGE 2 TEMP 3 UNITS 4 IHP FORMATION FHP NO. FOR TEST CORR. **PRESSURE** TEST RESULT (m) (m SS) psi ppg psi ppg psi ppg HP Υ 3922.2 psia 3921.1 3/29 2349.3 2328.3 SPT Seal failure SCH Υ 3906.0 psiq HP Υ psia 3921.1 3923.4 3/30 2349.0 2328.0 SPT Tight SCH 3902.0 psia (800 FP) HP Υ 3922.2 psia 2548.3 Tight, opened 6 gallon 3/31 2349.2 2328.2 SPT chamber. SCH Υ 3904.0 (1760 FP) psia HP Υ 3562.4 psia 3029.8 3576.6 Opened 2-3/4 gallon 3/32 2142.0 2121.0 SPT chamber. SCH Υ 3565.0 psig 3028.5 3565.0 HP Υ 3380.0 psia 2876.1 3380.0 Tight - 6 gallon 4/33 2022.0 2001.0 SPT chamber not building SCH Υ 3362.0 2858.5 psiq 3363.0 up. HP Υ 3080.5 psia 2869.9 3080.1 Valid pre-test. Very 4/34 2022.2 2001.2 SPT slow. 6 gallon SCH Υ psig 3365.0 2852.5 chamber build-up. HP Υ psia 2873.5 Did not sample due 2024.7 4/34A to tightness. SCH Υ psia 2860.0 HP Υ 3380.3 psia 2872.3 4/35 2023.7 2002.7 SPT Valid pre-test. SCH Υ 3368.5 psia 2869.5 chamber. Filled 6 gallon

2. Gauges = SCH = Schlumberger Strain Gauge 4. PSIA = A * Note: Schlumberger gau

3. Yes = Y

KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi

RFT RUN NO.: 5, 6

WELL: DATE: Wirrah-3

December 13, 1983

OBSERVERS: JR/P. Prie

			· · · · · · · · · · · · · · · · · · ·	···							UBSER	VERS: JR/	P. Priest
SEAT NO.	DEPTH (m)	DEPTH (m SS)	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	P	FORMA PRESS		FI	-lb	TEST RESULT
	(111)	(111 33)					psi	ppg	psi	ppg	psi	ppg	TEST NESOLT
5/36	2029.1	2008.1	SPT	HP	Y	psia	3391.3	9.77					Pre-test
				SCH	Y	psig	3374.0	9.72					seal failure.
5/37	2029.1	2008.1	SPT	HP	Υ	psia		**************************************			3390.6	9.77	Invalid pre-test.
-	*			SCH	Y	psig				<del></del>	3380.0	9.74	
5/38	2029.0	2008.0	SPT	HP	Υ	psia	3390.3	9.77	2879.1	8.38			Valid pre-test.
				SCH	Y	psig	3375.0	9.73	2863.0	8.34			Filled 6 gallon and 2-3/4 gallon chambers.
6/39	1600.7	1679.7	SPT	HP	Y	psia	2676.3	9.78	2472.6		2676.2		Valid pre-test.
		•		SCH	Y	psig	2664.0		2462.0		2667.0		Filled 6 gallon and 2–3/4 gallon chamber.

3. Yes = Y
$$No = N$$

KB = 21 m (Southern Cross)

* Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{4.} PSIA = A PSIG = G

RFT RUN NO.: 7

WELL:

Wirrah-3

December 24, 1983 O'Byrne/Finlayson/Neumann OBSERVERS:

													21101 - 21124 9 00111 1104114111
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMA* PRESSU		FH	P	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	1201 (12002)
7/40	2766.0	2745.0	PT	HP	Y	psia	4594.8	9.7		,	4597.65	9.7	T-S Ind.
				SCH	Y	psig	4572.0	9.7			4571.0	9.7	Tight
7/41	2767.0	2746.0	PT	HP	Υ	psia	4597.65	9.7			4599.35	9.7	Tight
				SCH	Y	psig	4571.0	9.7	the section of the se		4571.0	9.7	Tight
7/42	2766.5	2745.5	PT	HP	Y	psia	4594.41	9.7			4595.3	9.7	Soal failum
		27.12.2	• •	SCH	Y	psig	4570.0	9.7	T- 4 - 1 - 4	······································	4570.0	9.7	Seal failure
7/43	2759.3	2738.3	PT	HP	Y	psia	4581.07	9.7	3950.45	8.44	4581.7	9.7	Valid
				SCH	Y	psig	4559.0	9.7	3927.0	8.38	4558.0	9.7	Valid
7/44	2748.0	2727.0	PT	HP	Υ	psia	4561.23	9.7	3953.34	8.47	4561.34	9.7	Valid
		2,2,10		SCH	Υ	psig	4540.0	9.7	3932.0	8.43	4539.0	9.7	Valid
7/45	2730.2	2709.2	PT	HP	Y	psia	4531.57	9.7	3911.25	8.44	4532.63	9.7	Valid
			, .,	SCH	Υ	psig	4512.0	9.7	3891.0	8.40	4513.0	9.7	Valid
7/46	2710.5	2689.5	Ρ <b>T</b>	HP	Υ	psia	4497.6	9.7	3876.38	8.43	4497.38	9.7	Valid
*				SCH	Y	psig	4483.0	9.7	3865.0	8.40	4483.0	9.7	AGTIO
										<del></del>	······································		<del></del>

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = YNo = N

^{4.} PSIA = APSIG = G

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 7

WELL:

Wirrah-3

December 24, 1983 O'Byrne/Finlayson/Neumann **OBSERVERS:** 

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHP	)	FORMAT PRESSU		FH	<b>&gt;</b>	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
7/47	2707.8	2686.8	PT	HP	Y	psia	4493.51	9.7	3874.30	8.13	4493.57	9.7	Valid
,, 4,	2707.0	2000.0	, ,	SCH	Y	psig	4479.0	9.7	3862.0	8.10	4479.0	9.7	, 4223
7/48	2691.0	2670.0	PT	HP	Y	psia	4465.02	9.7	3854.06	8.44	4468.0	9.7	Supercharged
7740	20/1.0	2070.0		SCH	Y	psig	4452.0	9.7	3845.0	8.42	4455.0	9.7	Superdialged
7/49	2687.5	2666.5	PT	HP	Y	psia	4459.52	9.7	3848.2	8.44	4460.52	9.7	Valid
1147	2007.7	2000.7		SCH	Υ	psig	4451.0	9.7	3836.0	8.41	4449.0	9.7	Valla
7/50	2 <i>6</i> 72 <b>.</b> 0	2651.0	PT	HP	Y	psia	4432.96	9.7	3839.62	8.46	4436.1	9.7	Valid
77 50	2672.0		Г	SCH	Υ	psig	4429.0	9.7	3827.0	8.44	4428.0	9.7	Vallu
7/51	2644.5	2623.5	PT	HP	Υ	psia	4481.37	9.7	3800.39	8.47			Valid
11 21	2044.7	2027.7	I. I	SCH	Y	psig	4365.0	9.7	3405.0	7.6		***************************************	Valla
7/52	2630.5	2619.5	PT	HP	Y	psia	4365.3	9.7	3927.68	8.8	4366.46	9.7	Supercharged
11 22	2000.0	2017.7		SCH	Y	psig	4350.0	9.7	3906.0	8.7	4350.0	9.7	- Capazanazgaa
7/53	2627.2	2606.2	PT	HP	Y	psia	4361.77	9.7	3800.14	8.5	4362.89	9.7	Supercharged
1122		2000.2	1 1	SCH	Υ	psig	4345.0	9.7	3781.0	8.5	4344.0	9.7	2370201142904

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = YNo = N

^{4.} PSIA = APSIG = G

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

RFT RUN NO.: 7

WELL: DATE:

Wirrah-3

OBSERVERS: 0

December 24, 1983 O'Byrne/Finlayson/Neumann

													•
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMAT PRESSU		Fì	₽	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
7/54	2622.0	2601.0	PT	HP	Υ	psia	4354.1	9.7	3270.48	8.5	4353.38	9.7	_ Valid
				SCH	Υ	psig	4336.0	9.7	3753.0	8.4	4336.0	9.7	- Agrin
7/55	2617.0	2596.0	PT	HP	Υ.	psia	4346.42	9.7	3769.48	8.5	4346.21	9.7	_ Valid
				SCH	Y	psig	4328.0	9.7	3961.0	8.4	4327.0	9.7	- Agiid
7/56	2569.5	2548.5	PT	HP	Y	psia	4267.04	9.7	3684.95	8.5	4269.22	9.7	_ Valid
				SCH	. ү	psig	4253.0	9.7	3668.0	8.4	4251.0	9.7	_ valiu
7/57	2536.0	2325.0	PT	HP	Y	psia	4212.65	9.7	3596.83	8.3	4417.35	10.2	_ Valid
<del></del>		•		SCH	Y	psig	4189.0	9.7	3584.0	8.3	4197.0	9.7	_ AGIIO
7/58	2479.3	2458.3	PT	HP	Y	psia	4121.04	9.7	3519.05	8.4	4123.19	9.7	_ Valid
				SCH	Y	psig	4106.0	9.7	3500.0	8.3	4106.0	9.7	- AGTIO
7/59	2294.5	2373.5	PT	HP	Υ	psia	3984.88	9.7	3398.64	8.4	3985.20	9.7	Volid
				SCH	Υ	psig	3969.0	9.7	3387.0	8.3	3969.0	9.7	_ Valid
7/60	2339.0	2318.0	PT	HP	Υ	psia	3893.20	9.7	3393.20	8.4	3895.27	9.7	- Valid
				SCH	Y	psig	3879.0	9.7	3299.0	8.3	3877.0	9.7	- AGTIO

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = 
$$Y$$

KB = 21 m (Southern Cross)

* Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{4.} PSIA = A PSIG = G

RFT RUN NO.: 8, 9

WELL: DATE:

Wirrah-3

**OBSERVERS:** 

December 24, 1983 O'Byrne/Finlayson/Neumann

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	<b>&gt;</b>	FORMA [*] PRESSU		FHI	<b>-</b>	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
8/61	2755.5	2734.5	SPT	HP	Y	psia	4883.7	10.4		**********	4587.72	9.7	Tight
0,01	2,00.0	2124.2	<i>5</i> , 1	SCH	Y	psig							7 <b>1</b> 9110
8/62	2756.5	2735.5	SPT	HP	Y	psia	4887.72	10.4			4587.25	9.7	Tight
0, 02	2,70,7	2177.7		SCH	Y	psig							7 <b>19</b> 10
8/63	2753.5	2732.5	SPT	HP	Υ	psia	4584.02	9.7			4584.02	9.7	Seal failure
0,05	2,77,7	2102.0	<b>3</b> ·	SCH	· Y	psig							car lattore
8/64	2753.5	2757.5	SPT	HP	Y	psia	4583.86	9.7			4583.0	9.7	Tight
0,04			<b>3</b> .	SCH	Y	psig					4563.0	9.7	Tryffe
8/65	2748.0	2727.0	SPT	HP	Y	psia	4575.52	9.7	3953.93	8.5	4570.0	9.7	Sample
0,05	274010	2727.0	5, 1	SCH	Y	psig					<del>de a la collection de </del>		Janpie
9/66	2730.5	2769.5	SPT	HP	Y	psia	4540.08	9.7	3924.54	8.5	4539.66	9.7	Valid
			<u>.</u>	SCH	Y	psig							russu
9/67	2731.0	2710.0	SPT	HP	Y	psia	4538.24	9.7	3920.14	8.5	4533.73	9.7	Sample
			<b>J.</b> .	SCH	Y	psig							Jumpac

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = YNo = N

4. PSIA = APSIG = G KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

RFT RUN NO.: 10, 11, 12, 13, 14

WELL: DATE: Wirrah-3

OBSERVERS:

December 25, 1983 Finlayson/Neumann

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHP	IHP		FORMATION PRESSURE		<b>5</b>	TEST RESULT
	(m)	(m SS)	, 5,, , , = 5				psi	ppg	psi	ppg	psi	ppg	1201 1120021
10/68	2207.8	2686.8	SPT	HP	Y	psia	4498.05	9.7	3879.83	8.4	4494.48	9.8	Sample
10,00	2207.0	2000.0	J⊞ I	SCH	Υ	psig			· · · · · · · · · · · · · · · · · · ·	······································		······································	
11/69	2687.5	2666.5	SPT	HP	Y	psia	4464.38	9.7	3854.88	8.46	4462.03	9.7	Sample
11,00	2007.5	2000.5	<i>3</i> . 1	SCH	Y	psig				*			
12/70	2672.0	2651.0	SPT	HP	Υ	psia	4440.8	9.7	3839.7	8.5	4434.2	9.7	Sample
12//0	2072,0	2001.0	3.1	SCH	Y	psig							
13/71	2694.5	2673,5	PT	HP	Y	psia	4475.7	9.7	3859.6	8.4	4474.9	9.7	Valid
12//1	20/4.7	2017.7	1 1	SCH	Y	psig	4454.0	9.7	3820.0	8.4	4454.0	9.7	
13/72	2672.0	2651.0	SPT	HP	Y	psia	4433.7	9.7	3831.7	8.5	4434.5	9.7	Valid
17/12	2072.0	2001.0	51 1	SCH	Y	psig							Vallu
14/73	2644.5	2623.5	SPT	HP	Y	psia	4395.83	9.7			4395.41	9.7	Seal failure
エマノノン	2074.7	2027.7	<b>5</b> 1 1	SCH	Υ	psig							
14/74	2644.5	2623.5	SPT	HP	Y	psia	4396.0	9.7			4395.5	9.7	Tight
<u>_</u>	2077,7	2022,3	<b>J</b>	SCH	Y	psig				<del> </del>		-	119116

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = Y
$$No = N$$

KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi higher than IP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{4.} PSIA = A PSIG = G

RFT RUN NO.: 14, 15, 16

WELL:

Wirrah-3

DATE:

DATE: December 26, 1983
OBSERVERS: Finlayson/Neumann

ay sor ir recubiar ii r													~
TEST RESULT	FHP		FORMATION PRESSURE		IHP		UNITS 4	TEMP 3 CORR.	GAUGE 2	REASON 1 FOR TEST	DEPTH	DEPTH	SEAT NO.
	ppg	psi	ppg	psi	ppg	psi					(m SS)	(m)	
Tight	9.7	4395.24	·		9.7	4395.16	psia	Υ	HP	SPT	2624.0	2645.0	14/75
						**************************************	psig	Υ	SCH				
Tight	9.7	4393.76	8.5	3798.21	9.7	4393.61	psia	Υ	HP	SPT	2623.5	2684.5	14/76
					***************************************	***************************************	psig	Υ	SCH	-			
Sample	9.7	4396.6	8.5	3805.07	9.7	4393.72	psia	Y	HP	SPT	2623.7	2644.7	14/77
		·					psig	Y	SCH	<del>-</del>		-	
Seal failure	9.7	4357.26	<del></del>		9.7	4357.51	psia	Y	HP	SPT	2601.0	2622.0	15/78
							psig	Υ	SCH				
	9.7	4357.39	8.5	3777.63	9.7	4356.74	psia	Y	HP	SPT	2601.0	2622.0	15/79
Sample							psig	Y	SCH			-	
Seal failure	9.7	4252.89			9.7	4252.96	psia	Υ	HP	PT	2536.5	2557.5	16/80
				<del></del>		The Control of the Co	psig	Y	SCH				<del></del>
Tight	9.7	4255.10		· · · · · · · · · · · · · · · · · · ·	9.7	4253.89	psia	Υ	HP	PT	2536.6	2551.6	16/81
		······································	W		***************************************		psig	Υ	SCH				

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = Y $N_0 = N$ 

^{4.} PSIA = A PSIG = G

Note: Schlumberger gauge reading up to 1000 psi higher than  ${\rm HP}$  gauge at surface.

SERVICE COMPANY: Schlumberger. RFT RUN NO.: 16, 17

WELL: DATE:

Wirrah-3

December 26, 1983 Finlayson/Neumann OBSERVERS:

											ODOLITY		rizay 5017 (vedilarii 1
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST		TEMP 3 CORR.	UNITS 4	IHP	٥	FORMAT PRESSU		FHI	P	TEST RESULT
	(m)	(m SS)					psi	ppg		ppg	psi	ppg	
16/82	2557.5	2536.5	PT	HP	Y	psia	4254.36	9.7			4254.5	9.7	Seal failure
10,01		200.0		SCH	· Y	psig		. <del></del>				- All thing the , is a water below the , was , un	Sear latinie
16/83	2672.2	2606.2	SPT	HP	Y	psia	4369.80	9.7	3651.69	8.2		material and the control of the cont	Sample
10,00	2012.	2000 • 2		SCH	Υ	psig	innahli milli serina orden aktimusli evokena da klemissili seri		auction also also uncertain de Christill suffice discharbe		4349.0	9.7	adilhte
17/84	2583.3	2562.3	SPT	НP	Y	psia	4274.64	9.7		Anniel de State de S	4275.41	9.7	Seal failure
ala / / 🔾 = 1	2000.0	200492	Çi i	SCH	Υ	psig		***********					OCAT LATITUE
17/85	2583.2	2562.2	SPT	HP	Y	psia	4277.06	9.7			4277.06	9.7	Seal failure
11102			<b>C</b> , ,	SCH	Υ	psig	januarda Mondona directore a come antico come condens d					**************************************	Seat lattote
17/86	2583.2	2562.2	SPT	HP	Y	psia	4276.14	9.7			4276.48	9.7	Seal failure
				SCH	Y	psig						All the state of t	Jour Fullate
17/87	2583.3	2563.3	SPT	HP	Y	psia	4276.81	9.7			4276.6	9.7	Seal failure
do 7 7			<b>.</b>	SCH	Y	psig		Market Commission of the Commi	1400 m - 140			And the Control of th	Scar (arrore
17/88	2569.3	2548.3	SPT	HP	Y	psia	4250.97	9.7			4251.81	9.7	Tight
alla f r va · w	MP 47 12	2012	<b>C.</b> ,	SCH	Y	psig							1 ± 9/16
	<del></del>							-	, <del></del>	<del></del>			

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = YNo = N

KB = 21 m (Southern Cross)

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{4.} PSIA = APSIG = G

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

SERVICE COMPANY: Schlumberger

RFT RUN NO.: 17, 18

WELL: DATE:

Wirrah-3

OBSERVERS:

December 27, 1983 Finlayson/Neumann

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	)	FORMA PRESS		FH	Р	TËST RESULT		
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	ILDI MEDULI		
17/89	2569.1	2548.1	PT	HP	Y	psia	4253.41	9.7			4253.84	9.7			
				SCH	Y	psig			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Tight		
17/90	2569.5	2548.5	SPT	HP	Y	psia	4254.07	9.7			4255.93	9.7			
-				SCH	Y	psig		***************************************	T	<del></del>			Tight		
17/91	2569.4	2548.9	SPT	HP	Ÿ	psia	4253.64	9.7			4255.15	9.7			
· · · · · · · · · · · · · · · · · · ·				SCH	Υ	psig		<del></del>				·····	Tight		
17/92	2575.0	2355.0	SPT	HP	Υ	psia	4263.72	9.7			4262.76	9.7			
-				SCH	Y	psig		***************************************	*****				Seal failure		
17/93	2573.5	2322.5	SPT	HP	Y	psia	4259.71	9.7			4261.50	9.7			
				SCH	Υ	psig						<del>7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </del>	Seal failure		
17/93A	2569.0	2548.0	SPT	HP	Υ	psia	4254.79	9.7			4254.78	9.7	Partial sample in 6		
				SCH	Υ	psig		<del></del>		<del> </del>			gallon chamber – tight.		
18/94	2644.5	2623.5	SPT	HP	Υ	psia	4394.16	9.7			4394.20	9.7			
		2022.3	.044.5 2625.5	2622.5		SCH	Y	psig							Tight

Pressure Test = PT
Sample and Pressure Test = SPT

KB = 21 m (Southern Cross)

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{3.} Yes = Y No = N

^{4.} PSIA = A PSIG = G

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

SLRVICE COMPANY: Schlumberger

RFT RUN NO.: 18, 19, 20, 21

WELL: DATE:

OBSERVERS:

Wirrah-3

December 28, 1983 Finlayson/Neumann

SEAT NO.	DEPTH	DEPTH	REASON L FOR TEST	GAUGE 2	TEMP 3	UNITS 4	IHF	)	FORMA [*] PRESSI		FH	P	TEST RESULT
*****	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	TEST NESSET
18/95	2644.7	2623.7	SPT	HP	Y	psia	4393.85	9.7			4393.86	9.7	Tight
				SCH	Υ	psig							Tight
18/96	2644.6	2623.6	SPT	HP	Y	psia	4392.45	9.7			4393.38	9.7	Tight
				SCH	Υ	psig				,			Tight
18/97	2645.0	2624.0	SPT	HP	Υ	psia	4393.35	9.7	3808.19	8.5	4395.03	9.7	Comple
				SCH	Y	psig							Sample
19/98	2645.0	2624.0	SPT	HP	Υ	psia	4398.14	9.7	3807.43	8.5	4393.23	9.7	Comple
•				SCH	Y	psig					**************************************	-	Sample
20/99	2753.1	2732.1	SPT	HP	Υ	psia	4576.03	9.7	3941.9	8.4	4575.0	9.7	Sample
<del></del>	<del></del>			SCH	Υ	psig							Squihte
21/100	2627.0	2606.0	SPT	HP	Y	psia	4369.4	9.7	3820.0	8.5	4370.7	9.7	Volid
				SCH	Υ	psig				***************************************			Valid
21/101	2627.1	2606.1	SPT	HP	Y	psia	4370.5	9.7	3798.4	8.5	4370.8	9.7	Comple
	·			SCH	Y	psig							Sample

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = Y No = N

4. PSIA = A PSIG = G KB = 21 m (Southern Cross)

* Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

SERVICE COMPANY: Schlumberger

RFT RUN NO.: 22, 23

WELL: DATE:

Wirrah-3

OBSERVERS:

December 28, 1983 Finlayson/Neumann

TEST RESULT	p	FH		FORMAT PRESSU	•	IHF	UNITS 4	TEMP 3 CORR.	GAUGE 2	REASON 1 FOR TEST	DEPTH	DEPTH	SEAT NO.		
TEST NESDET	ppg	psi	ppg	psi	ppg	psi					(m SS)	(m)			
V 7.1	9.7	4368.3	8.5	3796.1	9.7	4367.6	psia	Y	HP	SPT	2606.1	2627.1	22/102		
Valid - tight					*****		psig	Υ	SCH						
V 7.1	9.7	4369.4	8.5	3795.2	9.7	4367.7	psia	Y	HP	SPT	2606.2	2627.2	22/103		
Valid — sample					***		psig	Y	SCH				-		
C 1 0 11			· · · · · · · · · · · · · · · · · · ·		9.6	4826.5	psia	Υ	HP	PT	2923.0	2944.0	23/104		
Seal failure						4809.0	psig	Υ	SCH						
					9.6	4827.7	psia	Υ	HP	PT	2922.5	2943.5	23/105		
Seal failure	The state of the s					4805.0	psig	Υ	SCH		•				
					9.6	4830.2	psia	Υ	HP	PT	2922.7	2943.7	23/106		
Seal failure			,			4807.0	psig	Υ	SCH						
						4540.5	psia	Υ	HP	PT	2764.5	2785.5	23/107		
Seal failure		***************************************					psig	Υ	SCH	, ,					
	<del></del>	4564.3	8.38	3976.1	9.56	4555.6	psia	Y	HP	PT	2764.3	2785.3	23/108		
Valid	<del></del>	4552.0	***************************************	3984.0			psig	Υ	SCH		2/64.3	2/64.5	85.3 2/64.3		

^{1.} Pressure Test

Sample and Pressure Test = SPT

3. Yes = Y

No = N

4. PSIA = APSIG = G KB = 21 m (Southern Cross)

^{2.} Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

^{*} Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

SERVICE COMPANY: Schlumberger

RFT RUN NO.: 23

WELL:

Wirrah-3

DATE:
OBSERVERS:

January 1, 1984 Fittall/O'Byrne

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMA PRESS		Fh	P	TEST RESULT
1101	(m)	(m SS)	7 3,7 123 1				psi	ppg	psi	ppg	psi	ppg	
23/109	2077 0	2916.0	PT	HP	Y	psia	4842.6			<del></del>			Seal failure
23/109	2937.0	2916.0	1.1	SCH	Υ	psig							
23/110	2937.0	2916.0	PT	HP	Υ	psia	4827.6	9.6			4835.7		Seal failure
~ > / TTO	2771.0	2710.0	, ,	SCH	Υ	psig							
23/111	2936.8	2915.8	PT	HP	Υ	psia	4822.1				4823.2		Seal failure
~ > / LLL	2770.0	2/1/•0	1 1	SCH	Υ	psig							
23/112	2937.2	2716.2	PT	HP	Υ	psia	4822.0				4822.4		Seal failure
421144	L//1.L	2110.2	1 1	SCH	Υ	psig							
23/113	2905,2	2884.2	PT	HP	Υ	psia	4760.7	9.6	(27)		4766.0		Tight
27/11/	2707.2	2004.2		SCH	Υ	psig							5 · - ·
23/114	2905 5	2884.5	PT	HP	Υ	psia	4769.5				4770.7		Seal failure
27/114	2707,7	2004.7	1 1	SCH	Y	psig							
23/115	3/115 2905.5 2884.5	PT	HP	Υ	psia	4768.9	9.6					Seal failure	
		2884.5	, ,	SCH	Y	psig							

^{1.} Pressure Test = PT
Sample and Pressure Test = SPT

KB = 21 m (Southern Cross)

^{2.} Gauges = SCH = Schlumberger Strain Gauge

^{3.} Yes = Y

 $N_0 = N$ 4. PSIA = A

SERVICE	COMPANY:	Schlumberger
		9

RFT RUN NO.: 23

WELL: DATE: Wirrah-3

OBSERVERS:

January 3, 1984 Fittall/O'Byrne

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMA PRESS		Fh	þ	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	,
23/116	2885.0	2864.0	PT	HP	Υ	psia	4726.0	9.53			4727.0		Seal failure
		200.00		SCH	Y	psig							oods (director)
23/117	2884.8	2863.8	PT	HP	Υ	psia	4726.1						Seal failure
		200710		SCH	Υ	psig							Sedi (diidie
23/118	2869.8	2848.8	PT	HP	Υ	psia	4700.2	9.5			4700.9		Seal failure
	2007.0	20-7010	• •	SCH	Y	psig							Scar (arrore
23/119	2859.5	2838.5	PT	HP	Y	psia	4680.8				4685.0		Seal failure
27, 22,	2037 (3	207017		SCH	Υ	psig							Sear variate
23/120	2859.4	2838.4	PT	HP	Y	psia	4681.7	9.55			4680.0		Seal failure
				SCH	Y	psig							Jedi / dildie
23/121	2850.5	2829.5	РТ	HP	Υ	psia	4671.0	9.55					Seal failure
	207017	2027 17	• •	SCH	Υ	psig						The second recommendation and arrival	Jear Farrure
23/122	2834.4	2813.4	PT	HP	Υ	psia	4640.2	9.6					Seal failure
				SCH	Υ	psig					,	<del></del>	Ocar larrate

^{1.} Pressure Test

3. Yes = Y

4. PSIA = A

= PT

KB = 21 m (Southern Cross)

No = N

Sample and Pressure Test = SPT 2. Gauges = SCH = Schlumberger Strain Gauge

.umberge <b>r</b>

RFT RUN NO.: 23

WELL: DATE: Wirrah-3

OBSERVERS:

January 3, 1984 Fittall/O'Byrne

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	Þ	FORMA PRESS		Fh	þ	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	, , , , , , , , , , , , , , , , , , , ,
23/123	2781.0	2760.0	PT	HP	Y	psia	4549.5	9.56			4555.7		Seal failure
				SCH	Υ	psig							Jear Fairare
23/124	2781.5	2760.5	PT	HP	Y	psia	4550.8	<del></del>	(8)		4556.6		Tight
				SCH	Y	psig							1 ± 9:10
23/125	2828.8	2807.8	PT	HP	Y	psia	4635.9	9,58			4 <i>6</i> 37 <b>.</b> 0		Seal failure
				SCH	Y	psig							Sear ratture
23/126	2829.5	2808.5	ΡT	HP	Y	psia	4638.9	9.58					Seal failure
				SCH	Y	psig							ocar latinie
23/127	2816.0	2795.0	ΡT	HP	Y	psia	4618.1	9.58			4620.2	· · · · · · · · · · · · · · · · · · ·	Seal failure
				SCH	Y	psig						MATERIA CONTRACTOR DE LA CONTRACTOR DE L	ocar larrore
23/128	2816.1	2795.1	PT	HP	Y	psia	4614.0	9.58			4614.9		Seal failure
-				SCH	Y	psig							Scar latinie
23/129	2804.8	2783.8	PT	HP	Y	psia	4597.1	9.58				**************************************	Seal failure
				SCH	Y	psig					***************************************		Sear larrate

^{1.} Pressure Test

= PT

3. Yes = Y

 $N_0 = N$ 

4. PSIA = A

KB = 21 m (Southern Cross)

Sample and Pressure Test = SPT 2. Gauges = SCH = Schlumberger Strain Gauge

SERVICE COMPANY:	Schlumberger	RFT RUN NO .:	23	WELL:	Wirrah-3
				DATE:	January 3, 1984
				OBSERVERS:	Fittall/O'Byrne

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMA PRESS		FI	₽	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
23/130	2748.0	2727.0	PΤ	HP	Y	psia	4494.1	9.58		delen algen gelen seger sein, er gelen sellen sellen segen ge			Seal failure
23, 230	2740.0	2/2/10		SCH	Y	psig							ocar range
23/131	2748.5	2727.5	. PT	HP	Y	psia	4495.9						Seal failure
20/101	2140.5	2121.0	. • •	SCH	Y	psig							Jean Pariore
23/132	2730 2	2709.2	PT	HP	Y	psia	4470.6	9.58			4469.5		Seal failúre
237 132	2750.2	2707.2	, ,	SCH	Y	psig							Jean Falluic
23/133	2792.2	2771.2	PT	HP	Y	psia	4580.5	9.58			4578.5		Seal failure
201100	2172.2	2//1.62	, ,	SCH	Υ	psig				,			Jear Fariate
23/134	2766.0	2745.0	ΡT	HP	Y	psia	4529.7	9.58					Seal failure
27/ 274	270010	2/4/200	, .	SCH	Y	psig				<del></del>			oddr Tarrero
23/135	2766.0	2745.0	PT	HP	Y	psia	4537.6	9.58			4536.4		Seal failure
27, 277	2700.0	2/4/10		SCH	Y	psig							ocar rarrere
23/136	2767.N	2746.0	PT	HP	Y	psia	4537.2	9.58			4536.0		NF 9
		2, ,010		SCH	Y	psig						e different mention de sentence anno de sentence de sentence de sentence de sentence de sentence de sentence d	

^{1.} Pressure Test = PT

Sample and Pressure Test = SPT

2. Gauges = SCH = Schlumberger Strain Gauge

^{3.} Yes = Y= N No

^{4.} PSIA = A

KB = 21 m (Southern Cross)

SERVICE COMPANY: Schlumberger RFT RUN NO.: 23, 24

WELL: DATE:

Wirrah-3

January 3, 1984 Fittall/O'Byrne

OBSERVERS:

SEAT	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3	UNITS 4	IHP	)	FORMAT PRESSU		FH	Р	TEST RESULT
NO.	(m)	(m SS)	FUR ILSI				psi	ppg	psi	ppg	psi	ppg	
	0574 0	0515.0	DT	HP	Y	psia	4158.5	9.59	3596.5	8.33	4158.3		Valid
23/137	2536.0	2515.0	PT	SCH	Y	psig	4150.0						
		0535.0	D.T.	HP	Y	psia	4171.9	9.5	3603.7	8.31	4172.3		Valid
24/138	2536.0	2515.0	PT	SCH	Y	psig	4147.0		3584.0		4150.0		
			D.T.	HP	Υ	psia	4172.3	9.62	3602.2	8.31	4172.6		Valid
24/139	2536.0	2515.0	PT	SCH	Υ	psig	4180.0		3583.0		4181.0		
				HP	Υ	psia	4167.8	9.6	3399.1	8.3	4169.1		Valid
24/140	2535.0	2514.0	PΤ	SCH	Y	psig	4152.0				4152.0		
				HP	Y	psia	4519.9	9.6l	3956.5	3.42	4514.3		Valid
24/141	2748.0	2727.0	PT	SCH	Y	psig	4402.0				4494.0		
		0745.0	DT	HP	Y	psia		9.58			4548.9		Tight
24/142	2766.0	2745.0	PT	SCH	Y	psig	4522.0						
			DT	HP	Y	psia	4537.9	9.6			4539.3		(NF 9
24/143	2766.0	2743.0	PT	SCH	Y	psig	4568.0				4519.0		

Pressure Test = PT
Sample and Pressure Test = SPT
Gauges = SCH = Schlumberger Strain Gauge 1. Pressure Test

KB = 21 m (Southern Cross)

^{3.} Yes = YNo = N

^{4.} PSIA = A

SERVICE COMPANY: Schlumberger

RFT RUN NO.: 24

WELL:

Wirrah-3

DATE: J
OBSERVERS: F

January 3, 1984 Fittall/O'Byrne

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	<b>o</b>	FORMA [*] PRESSU		FH	Р	TEST RESULT		
,,,,,	(m)	(m SS)	. 6.1. 726.				psi	ppg	psi	ppg	psi	ppg			
24/144		2745.2	PT	HP	Y	psia	4539.5	9.59			4542.6		Tight		
24/144		2147.2	L.	SCH	Y	psig	4518.0				4519.0				
24/145		2760.0	PT	HP	Y	psia	4570.0	9.61	3998.7	8.44	4567.1		Valid		
247 142		2760.0	. 1"1	SCH	Y	psig	4541.0		3973.0		4501.0				
24/146	2705 5	2764.5	PT	HP	Υ	psia	4581.2	9.6	3978.5	8,38	4570.0		Valid		
24/146	2782.2	2764.5	FI	SCH	Υ	psig	4551.0		3958.0		4549.0		, 4220		
04/147	2702.2	2792.2 2771.2	DT	HP	Y	psia	4584.4	9.6			4584.3		Seal failure		
24/14/	2172.2		1.2 PT	SCH	Υ	psig	4561.0				4561.0		Scal latitute		
24/149	2792.3	2771.3	PT	HP	Υ	psia	4580.3	9.61			4583.8		Seal failure		
24/140	2172.7	2//1.0	I ⁻ I	SCH	Υ	psig	4558.0				4561.0				
24/140	2792.4		0771 /	2771 /	ÞΤ	HP	Y	psia	4581.5	9.6			4577.6		Seal failure
24/147	4/74.4	2771.4	ГІ	SCH	Y	psig	4559.0				4560.0				
24/150	200/- 9	2783.8	ΡŤ	HP	Υ	psia	4599.3	9.6					Seal failure		
24/150	2004.0	2/02.0	r= 1	SCH	Υ	psig	4580.0				,				

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge

^{3.} Yes = Y No = N

^{4.} PSIA = A

SERVICE COMPANY:		Schlumbe	rger	RFT RUN NO.: 24						WELL: Wirrah-3 DATE: January 3, 1984 OBSERVERS: Fittall/O'Byrne			
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHF	)	FORMAT PRESSU		Fh	þ	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	, , , , , , , , , , , , , , , , , , , ,
24/151	2804.7	2783.8	ΡT	HP	Y	psia	4597.2	9.58			4601.4		Seal failure
				SCH	Y	psig					4519.0		
24/152	2816.0	2795.0	PT	HP	Y	psia	4632.6	9.58	(4129.0)				Leaking
		2773.0	. • •	SCH	Y	psig	4598.0				4598.0		Countries
24/153	24/153 2816.1	2795.1	PΤ	HP	Y	psia	4624.4	9.60	4126.2	8.60	4620.0		Valid/slow leak?
21/200	202012			SCH	Y	psig	4598.0		4106.0		4599.0		valla/Sion leak.
24/154	2828.8	2807.8	PT	HP	Υ	psia	4640.5	9.60	(91)		464.1	,	Tight
				SCH	Y	psig	4619.0				4618.0		, <u> </u>
24/155	2829.5	2808.5	PT	HP	Υ	psia	4644.3	9.60	4329.6	8.98			Valid/slow leak?
				SCH	Y	psig	4620.0		4308.0		4618.0		varia, sion ican.
24/156	2834.4	2813.4	ΡŤ	HP	Υ	psia	4646.8	9.58	4202.8	8.71	4646.2		Valid/slow leak?
24,20	2054,4	2017.4		SCH	Y	psig			4183.0		4626.0		railar sion fear.
24/157	2850.5	2829.5	PT	HP	Y	psia	4677.4	9.58			4678.0		Seal failure
	24/157 2850.5	2829.5		SCH	Y	psig					4651.0		:

^{1.} Pressure Test = PT
Sample and Pressure Test = SPT

^{2.} Gauges = SCH = Schlumberger Strain Gauge

^{3.} Yes = Y No = N

^{4.} PSIA = A

KB = 21 m (Southern Cross)

^{*} Note: Schlumberger gauge reading up to 1000 psi

SERVICE COMPANY:		Schlumber	rger			RFT RL	<u>JN NO.</u> : 24	ł			WELL: Wirrah-3 DATE: January 3, 1984 OBSERVERS: Fittall/O'Byrne			
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3	UNITS 4	IHF	)	FORMA PRESSI		Fŀ	₽	TEST RESULT	
NO.	(m)	(m SS)	TON TEST		00.44		psi	ppg	psi	ppg	psi	ppg		
24/158	2850.8	2829.8	PT	HP	Y	psia	4682.3	9.6	4397.8	9.0	4675.4		Slow leak?	
24/1/0	2000.0	2027.0	1 ,	SCH	Υ	psig	4648.0		4373.0		4651.0			
24/159	2859.5	2838.3	PT	HP	Y	psia	4690.8	9.58			4689.5		Seal failure	
24/133	2027.2	2000.0	1 ;	SCH	Y	psig	4664.0				4667.0			
24/160	24/160 2859.3	2838.3	FTD	HP	Υ	psia	4685.7	9.60			4686.7		Seal failure	
24/160	2027.7	2000.0	1 10	SCH	Υ	psig					4665.0			
24/161	2869.8	2848.8	WT	HP	Y	psia	4701.7	9.58			4706.1		Seal failure	
247 101	2007.0	2040.0	,,,,	SCH	Y	psig					4681.0			
24/162	2869.0	2848.0	WMFT	HP	Υ	psia	4701.7	9.63	(14)		4706.0		Tight	
24/102	2007.0	2040.0	111111 1	SCH	Υ	psig					4680.0			
24/163	2885.0	2864.0	FTD	HP	Υ	psia	4735.3	9.60			4735.9		Seal failure	
24/163	2007.0	2004.0	110	SCH	Y	psig	4679.0				4705.0			
24/164	2884.8	2863.8	WT	HP	Y	psia	4731.9	9.59					Seal failure	
24/164	2004.0	2007.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SCH	Y	psig	4704.0							

^{1.} Pressure Test

KB = 21 m (Southern Cross)

Sample and Pressure Test = SPT

Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packaru

^{3.} Yes = Y No = N

SERVICE COMPANY:	Schlumberger	RFT RUN NO.:	24, 25	WELL:	Wirrah-3
				DATE: OBSERVERS:	January 3, 1984 Fittall/O'Byrne

													<b>,</b>
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	Р	FORMA PRESS		Fì	P	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
24/165	2905.2	2884.2	DK	HP	Υ	psia	4774.5	9.6	(1894.0)		4773.9		Tight
				SCH	Y	psig	4738.0				4737.0		_ Tight
24/166	2937.0	2916.0		HP	Y	psia	4834.6	9.62			4832.4	***************************************	Soci fedition
***************************************				SCH	Υ	psig	4785.0				4782.0		. Seal failure
24/167	2936.7	2915.7	TTA	HP	Y	psia	4823.0	9.60				<del></del>	0 1 0 11
				SCH	Y	psig	4784.0						Seal failure
24/168	2944.0	2923.0	OLA	HP	Y	psia	4836.7	9.61	·		4833.2		
				SCH	Y	psig	4795.0				4797.0		. SFA
24/169	2944.5	2923.5	LFT	HP	Y	psia	4830.1	9.6			4828.7		Tight, then, seal failure
	· · · · · · · · · · · · · · · · · · ·			SCH	Y	psig	4797.0				4798.0		. darrore
25/170	2785.5	2764.0	SPT	HP	Υ	psia	4573.2	9,60	3988.2	8.37	4568.0		Opened 6 gallon chamber
				SCH	Υ	psig	4537.0						x 2-3/4 gallon chamber.
25/171	2816.0		PT	HP	Υ	psia	4624.0	9.59					Cool Coll
				SCH	Υ	psig	4595.0						Seal failure

^{1.} Pressure Test

KB = 21 m (Southern Cross)

Sample and Pressure Test = SPT

2. Gauges = SCH = Schlumberger Strain Gauge
= HP = Hewlett Packard

^{3.} Yes = YNo = N

^{4.} PSIA = A

SERVICE COMPANY: Schlumberger

RFT RUN NO.: 25, 26

WELL:

Wirrah-3

umann (26)		Fh		FORMA' PRESSI	HP	I	UNITS 4	TEMP 3 CORR.	GAUGE 2	REASON 1 FOR TEST	DEPTH (m SS)	DEPTH (m)	SEAT NO.	
TEST RESULT	ppg	psi	ppg	psi	ppg	psi					(111 33)	(111)		
			· · · · · · · · · · · · · · · · · · ·		9.6	4656.4	psia	Υ	HP	PT	•	2834.5	25/172	
Seal failure		4623.0				4624.0	psig	Υ	SCH				-	
		4721.2			9.6	4726.6	psia	Υ	HP	PT		2869.8	25/173	
Seal failure	Seal failur					4682.0	psig	Υ	SCH					
			-		9.7	4848.4	psia	Υ	HP	PT		2937.0	25/174	
Seal failure		4795.0	·				psig	Υ	SCH					
							psia	Y	HP	SPT	3242.4	26/175		
Seal failure		6804.0			12.3	6811.0	psig	Υ	SCH	SPT .		····		
		6804.0		<del></del>			psia	Υ	HP	SPT	243.0	3243.0	26/176	
Seal failure		6801.0			12.8	6804.0	psig	Y	SCH			-		
							psia	Υ	HP	SPT _		3241.0	26/177	
Seal failure		6873.0			12.2	6784.0	psig	· Y	SCH					
							psia	Υ	HP	SPT		3240.5	26/178	
Seal failure		6771.0		· · · · · · · · · · · · · · · · · · ·	12.2	6773.0	psig	Υ	SCH				i.	

Pressure Test Sample and Pressure Test - SPT
Gauges = Sch = Schiumberger Strain Gauge

KB = 21 m (Southern Cross)

Note. Seniemberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{3.} Yes = YPSIC = G

SERVICE COMPANY: Schlumberger RFT RUN NO.: 26, 27

Wirrah-3

January 18, 1984 R. Neumann

WELL: DATE: OBSERVERS:

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3	UNITS 4	IH	Р	FORMA PRESS		FH	Р	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
26/179	3241.5		SPT	HP	Υ	psia							Seal failure
20, 2, ,	72.12.0			SCH	Y	psig	6771.0	12.2			6765.0		
26/180	3771.2		SPT	HP	Y	psia							Seal failure
20/100				SCH	Y	psig	6570.0	12.2			6571.0	·	
26/181	3161 6		PT	HP	Υ	psia							Seal failure
26/181 3161	>101.0	• 0	F 1	SCH	Υ	psig	6555.0	12.1			6556.0		300a   Qaa0a0
26/182 3	3163.2	· SPT	· SPT	HP	Y	psia							Seal failure
201 102	/±U/•£		J. 1	SCH	Y	psig	6563.0	12.1			6562.0		
26/183	3170.2	na vilka karin prilita shire (17 vilka ya ishir karina)	SPT	HP	Y	psia							Seal failure
20/102	) I 1 O • L			SCH	Y	psig	6581.0	12.1			6577.0		
26/18/	3176.2	ikan ngangga kan ngantangan nagara nagaran ngan nagaran nagaran nagaran nagaran nagaran nagaran nagaran nagara	SPT	HP	Y	psia							Seal failure
20/ 104	)110°2		JI 1	SCH	Y	psig	6596.0	12.1			6594.0		
27/185	3242.4		SPT	HP	Υ	psia							Seal failure
	267697		J	SCH	Y	psig	6782.0	12.2			6782.0		

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

KB = 21 m (Southern Cross)

Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{2.} Gauges = SCH = Schlumberger Strain Gauge

^{3.} Yes = YNo = N

^{4.} PSIA = A

SERVICE COMPANY: Schlumberger

RFT RUN NO.: 26, 27

WELL:

Wirrah-3

January 18, 1984

OBSERVERS: R. Neumann

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3	UNITS 4	IH	P	FORMA PRESS		FH	Р	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
27/186	3241.0		SPT	HP	Y	psia							Seal failure
277100	7241.0		<b>3.</b> ,	SCH	Υ	psig	6775.0	12.2			6774.0		
27/187	3241 5		SPT	HP	Y	psia							Tight
2//10/	J241.J		<b>3.</b> 1	SCH	Υ	psig	6776.0	12.2			6777.0		
27/188	3241.8		PT	HP	Y	psia							Seal failure
277100	J241.0			SCH	Y	psig	6776.0	12.2			6774.0		
27/189	3241.2	•	SPT	HP	Y	psia							Seal failure
277107	J241 • 2		5/ 1	SCH	Y	psig	6770.0	12.2		,	6771.0		
27/190	3242.0		SPT	HP	Y	psia							Seal failure
277 170	<i>72-42</i> <b>(</b> 0		<b>3</b>	SCH	Y	psig	6773.0	12.2			6770.0		(tight)
27/191	3171.2		SPT	HP	Y	psia							Seal failure
211 121	7 ± 1 ± • €		5, ,	SCH	Y	psig	6570.0	12.1			6572.0		(tight)
27/193	3170.2		SPT	HP	Υ	psia							Seal failure
27/193 3170.2	).2	SPT	SCH	Y	psig	6568.0	12.1			6571.0			

^{1.} Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = YNo = N

4. PSIA = A

KB = 21 m (Southern Cross)

^{2.} Gauges = SCH = Schlumberger Strain Gauge

SERVICE COMPANY: Schlumberger RFT RUN NO.: 27

WELL: DATE: Wirrah-3

January 19, 1984 R. Neumann

OBSERVERS:

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3	UNITS 4	IH	Р	FORMA PRESS		FH	lb.	TEST RESULT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	
27/193	3161.6		SPT	HP	Y	psia							Seal failure
21127	720210		G	SCH	Y	psig	6547.0	12.1			6551.0		
27/19/	3176.2		SPT	HP	Y	psia							Seal failure
211174	2170.2		31 1	SCH	Υ	psig	6598.0	12.2			6598.0		
27/195	27/195 3176.5		SPT	HP	Υ	psia							Seal failure
L11 111	J		51 1	SCH	Y	psig	6599.0	12.2			6599.0		(tight)
27/196	3176.5	•	SPT	HP	Υ	psia							Seal failure
277270	22.012	SP	, SPT	SCH	Y	psig	6599.0	12.2			6600.0		(tight)
27/197	3163.2		SPT	HP	Y	psia							Seal failure
6-11 3-21	7107.2		<b>.</b> ,	SCH	Y	psig	6560.0	12.2			6560.0		(tight)
27/198	3172.2		SPT	HP	Y	psia							Seal failure
2//1/0	741C+C		J. 1	SCH	Y	psig	6592.0	12.2			6590.0		(tight)
27/199	3045.9		SPT	HP	Υ	psia							Seal failure
27/199	JU7J17		<b>3.</b> 1	SCH	Y	psig	6306.0	12.1			6312.0		

^{1.} Pressure Test Sample and Pressure Test = SPT

4. 
$$PSIA = A$$

^{2.} Gauges = SCH = Schlumberger Strain Gauge

^{3.} Yes = Y

No = N

KB = 21 m (Southern Cross)

(6904f)

SERVICE COMPANY:	Schlumberger	RFT RUN NO.:	27	WELL:	Wirrah-3
	•			DATE:	January 19, 1984
				OBSERVERS:	R. Neumann

						-					ODSER	AC1/2. 1/. 1/6	eumai ii i	
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	P	FORMA PRESS		F	HP	TEST RESULT	
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg		
27/200	3068.5		SPT	HP	Y	psia	·	***************************************					Seal failure	
				SCH	Y	psig	6322.0	12.1			6323.0		(tight)	
27/201 3	3046.4	6.4		SPT	HP	Y	psia							Seal failure
			SPT	SCH	Y	psig	6316.0	12.1			6318.0		Jeal Fallule	
27/202	7/202 3041.8		SPT	HP	Y	psia							Seal failure	
27/202 3		•	•	SCH	Y	psig	6305.0	12.1			6307.0		Jour Failure	
27/203	3046.5		SPT	HP	Y	psia				,			Seal failure	
			<u> </u>	SCH	Υ	psig	6314.0	12.1			6315.0		ocar larrate	

3. Yes = Y
$$No = N$$

KB = 21 m (Southern Cross)

* Note: Schlumberger gauge reading up to 1000 psi higher than HP gauge at surface.

^{1.} Pressure Test

Sample and Pressure Test = SPT

2. Gauges = SCH = Schlumberger Strain Gauge
= HP = Hewlett Packard

^{4.} PSIA = APSIG = G

# Appendix 5

## WIRRAH - 3

## CASED HOLE REPEAT FORMATION TEST (RFT) AND PRODUCTION TEST REPORT

S.T. Koh March 1984

#### WIRRAH-3

## CASED HOLE RFT AND PRODUCTION TEST REPORT

- A. Summary of Results
- B. Cased Hole RFT Numbers 1-8, 2645.0-2942.0 m MDKB
  - Background and Objectives
  - Results and Interpretation
- C. Production Test Program (seven tests and one re-test)
- C.1 Production Test Number 1, 2883.0-2894.0 m MDKB
  - Background and Objectives
  - Test Description and Results
  - Conclusions
- C.2 Production Test Number 1A, 2861.5-2872.5 and 2883.0-2894.0 m MDKB
  - Background and Objectives
  - Test Description and Results
  - Conclusions
- C.3 Production Test Number 2, 2813.0-2822.0 m MDKB
  - Background and Objectives
  - Test Description and Results
  - Conclusions
- C.4 Production Test Number 2A, 2779.5-2788.0 and 2813.0-2822.0 m MDKB
  - Summary
  - Background and Objectives
  - Test Description
  - → Discussion of Test Results
    - 1. Reservoir Pressure
    - 2. Radius of Investigation
    - Build-up Analysis
    - 4. Productivity Index
- C.5 Production Test Number 3, 2666.0-2675.0 m MDKB
  - Summary
  - Background and Objectives
  - Test Description
  - Discussion of Test Results
    - 1. Reservoir Pressure
    - 2. Radius of Investigation
    - 3. Build-up Analysis
    - 4. Productivity Index

- C.6 Production Test Number 3A, 2686.0-2695.5, 2702.0-2711.0 and 2666.0-2675.0 m MDKB
  - Summary
  - Background and Objectives
  - Test Description
  - Discussion of Test Results
    - 1. PLT Survey Results
    - 2. Reservoir Pressure
    - 3. Radius of Investigation
    - 4. Build-up Analysis
    - 5. Productivity Index
- C.7 Production Test Number 4, 2635.0-2646.0 m MDKB
  - Summary
  - Background and Objectives
  - Test Description and Results
  - Production Test Number 4 Repeat (4R)
    - Summary of Results and Objectives

#### D. Tables

- 1. Cased Hole RFT and Production Test Program Sequence
- 2. Summary of Wirrah No. 3 Well Cased Hole RFT Results
- 3. Summary of Wirrah No. 3 Well Production Test Results
- 4. Cased Hole RFT Pre-test Pressures
- 5. Cased Hole RFT Sample Test Report

#### E. Figures

- 1. Wirrah-3 Exploration Well Depth Versus Formation Pressure Plot from 2570-2950 m MDKB
- 2. Wirrah-3 Production Test No. 2A Horner Plot
- 3. Wirrah-3 Production Test No. 3 Horner Plot
- 4. Test 3 Computer simulation history match
- 5. Test 3 Computer simulation non-match case
- 6. Wirrah-3 Production Test No. 3A Multi-rate Build-up Analysis Plot
- 7. Wirrah-3 Production Test No. 4 Horner Plot

#### F. Appendix

- 1. Otis Service Well Test Report for Production Test Numbers 1, 1A, 2, 2A, 3, 3A, 4 and 4R.
- 2. Otis Services Electric Line Survey Reports for test Numbers 2, 2A, 3 and 3A.

#### WIRRAH-3 CASED HOLE RFT AND PRODUCTION TEST REPORT

#### A. SUMMARY OF RESULTS

Eight cased hole RFT sample runs and seven production tests with one retest were made in the Wirrah-3 exploration well over the period from January 20 to February 21, 1984. The objectives of this cased nole RFT and production test program were to investigate and test hydrocarbon sands indicated by mudlogs, open hole wireline logs and open hole RFT tests. Table 1 summarises the sequence of events of the cased hole RFT runs made relative to the production tests conducted in this program.

Of the eight cased hole RFT runs attempted, four were successful in recovering hydrocarbon, two runs resulted in no recovery due to plugged flowline, one run recovered mud due to communication with mud hydrostatic behind the casing through a previous perforation 4.1m higher and one run (at 2936.8m) resulted in seal failure due to the close proximity of the 9-5/8 inch casing shoe at 2943 m MDKB. Seven of the eight runs attempted were successful in providing formation pressures. The Hewlett-Packard (HP) gauge pressures were considered valid and were used in subsequent analyses. Results and details of the samples recovered from the cased hole RFT program are given in the Figure 1 and Table 2.

The seven production tests with one re-test were carried out over the period from January 29 to February 21, 1984. Test numbers 1, 1A and 2 did not produce formation fluids to surface and the tested intervals were concluded to be of very low productivity. Reverse circulation of the fluids in the test-string at the end of test numbers 1, 1A and 2 respectively, indicated no oil recovery with 23 barrels of water and filtrate from test number 1; 5 barrels of waxy oil with 18 barrels of water and filtrate from test number 1A and 22 barrels of waxy oil with 2.3 barrels of filtrate from test number 2. The remaining production tests (numbers 2A, 3, 3A, 4 and 4 repeat) flowed hydrocarbon to surface with flow periods ranging from 5.4 to 17.1 hours. Test numbers 2A, 3 and 3Aflowed waxy oil with no water cut at 441, 1277 and 2039 STB/D respectively. Test number 4 produced gas with no liquid hydrocarbon or water recovered at surface during the 6 hour flow period. However, during the re-test (test number 4 repeat), when the well was flowed for a further period of 5.4 hours, slugs of waxy oil with rates ranging from 121 to 338STB/D were produced with the gas. Results of the production tests indicated:

- O The oil zone evaluated in test 2A has limited reservoir volume within the Wirrah-3 fault block.
- O Lack of lateral continuity of permeable sands within the Wirrah-3 fault block as evidenced by pressure depletion during test 2A and the presence of parallel linear boundaries indicated in tests 3 and 3A.
- O Average permeabilities in the range of 0.3 to 45 md were obtained from the zones tested.
- The low permeabilities, flow boundaries and lack of Gippsland aquifer pressure drawdown indicate that there will be limited or non-existent aquifer support.
- The produced gas in test numbers 4 and 4 repeat, were considered not representative of the perforated interval 2635-2646 m MDKB. The oil produced in test number 4 repeat was probably representative of the zone perforated based on core shows.
- o The zones located below 2800 m MDKB (test numbers 1, 1A and 2) were demonstrated to be of very low productivity.

- Nitrogen and diesel fluids were successfully used for the first time in Bass Strait to underbalance the well in test numbers 1, 1A, 2, 2A, 3 and 4. The use of nitrogen to initiate flow eliminated the necessity of swabbing the well in test numbers 1, 1A and 2. Considerable rig time was saved and conclusive test results were obtained as a result of using nitrogen to underbalance the test string in the three tests.
- o The Otis downhole shut-in tool with the HP gauge were successfully used in test numbers 2A, 3 and 3A. The downhole shut-in tool used successfully minimised the effect of afterflow and other wellbore effects on pressure build-up during the final shut-in periods in the three tests.

A detailed summary of the production test results is given in Table 3.

## B. CASED HOLE RFT NUMBERS 1-8, 2645.0-2942.0 m MDKB

#### Background and Objectives

The cased hole RFT program commenced immediately after running the second series of open hole RFT's in the 8-l/2 inch open hole section from  $2960\,\text{m}$  MDKB to the final total depth at  $3257\,\text{m}$  MDKB. Prior to drilling the final  $297\,\text{m}$  of 8-l/2 inch hole section, wireline logs (including previous series of open hole RFT's) and a 9-5/8 inch casing string with the casing shoe at  $2943\,\text{m}$  MDKB were run. Results and interpretation of the Wirrah-3 open hole RFT programs are excluded from this report and have been separately documented and reported.

The cased hole RFT program was developed to complement the Wirrah-3 production test program. The main objective of the cased hole RFT program was to minimise the number of production tests by obtaining fluid recoveries using the Schlumberger cased hole RFT tool in intervals where hydrocarbon was interpreted to be present. To meet this objective, the eight cased hole RFT runs were made in sequence with the seven production tests. The sequence of cased hole RFT runs relative to the production tests conducted is shown in Table 1.

#### Results and Interpretation

The main results from the RFT program, which are illustrated in Figure 1 and Table 2 are:

- (a) The presence of a 1.75 m net oil zone with a log interpreted water saturation and porosity of 50.6 and 13.1 percent respectively in the interval 2936.25-2940.0 m MDKB, was confirmed with the recovery of 650 cc of waxy oil from 2936.8 m MDKB. As shown in Figure 1, water gradient lines above or below this interval could not be confirmed because of the lack of water seats and likely gradient changes within the overpressured zone. A segregated sample taken at this depth was later transferred to a shipping container and kept for PVT and compositional analysis.
- (b) The presence of a 5.0m of net oil with log interpreted water saturation and porosity of 55.7 and 12.3 percent respectively within the interval 2876.5-2933.5 m MDKB was confirmed with the recovery of 220 cc of waxy oil from 2884.8 m MDKB. Due to the lack of water seats and likely gradient changes within the overpressure zone, water gradient lines above or below this interval could not be confirmed.

- (c) The presence of a 1.25 m gross oil column with a log interpreted water saturation and porosity of 79.0 and 8.5 percent respectively in the interval 2833.5-2834.75 m MDKB was confirmed with the recovery of 90 cc of waxy oil from 2834.5 m MDKB. Again, no water gradient could be established above or below this interval in the overpressured zone.
- (d) The presence of a 1.0 m net gas and possibly oil bearing interval with a log interpreted water saturation and porosity of 35.3 and 11.6 percent respectively between the interval 2828.0-2833.5 m MDKB was confirmed with the recovery of 58.0 ft³ gas and scums of oil from 2828.6 m MDKB. No contacts could be established due to the limited vertical thickness of the interval as well as the lack of water seats in the overpressured intervals above and below.
- (e) Based on the cased hole RFT pressures, the interval below about 2800 m MDKB appeared to be progressively overpressured with formation pressures in excess of the original Gippsland Basin aquifer pressure gradient. The pressures in this interval are located to the right of the original Gippsland Basin aquifer gradient line in Figure 1.
- (f) The open and cased hole RFT program could not establish the existence of any water gradient because of no confirmed water seats and the likely gradient changes in the overpressure zone below 2800 m MDKB.
- (g) The hydrocarbon intervals confirmed by the cased hole RFT program appeared to be in each separate fluid systems.

In sample run numbers 1, 2, 3 and 7 where there was sufficient rat-hole sections to accommodate the full 22 m tool length (from the packer seat to the bottom of the tool), 45.6 litres (12 gallon) lower chambers and 10.5 litres (2-3/4 gallon) segregated chambers with their respective water cushions were used to increase the probability of success and maximise fluid recoveries. For the remainder of the cased hole RFT sample runs (numbers 4, 5, 6 and 8) where no water cushions were used because of limited rat-hole sections, a flow restricter was installed in the RFT tool flowline. On the basis of fluid recoveries, a 50 percent success rate was achieved when the flow restrictor was used with plugged flowline at the flow restricter being the sole factor contributing to failure. In the four sample runs where water cushions were used, failures in recovering formation fluids were due to poor cement behind casing resulting in a success rate of also 50 percent. Despite the overall 50 percent failure rate, significant cost savings were made by using the cased hole RFT when the alternative means of fluid recovery would be by production tests.

Formation pressures from the HP gauge were obtained in seven of the eight cased hole RFT runs attempted. These pressures are considered valid while the Schlumberger strain gauge pressures were considered invalid due to the 900 to 1000 psi shift from zero calibration which occurred during the first cased hole RFT attempted. The strain gauge was severely affected by shock waves associated with the firing of the shaped charge due to its close proximity to the packer seat. Detailed pressure data and sample fluid recoveries from the eight cased hole RFT's are given in Tables 4 and 5 respectively.

#### C. PRODUCTION TEST PROGRAM

### C.1 Production Test Number 1, 2883.0-2894.0 m MDKB

#### Background and Objectives

Prior to conducting production test number 1, cased hole RFT sample run number 3 with seat located at 2884.8m MDKB within the proposed test interval confirmed the presence of oil with the recovery of 220 cc of waxy oil. Open hole wireline logs indicated the presence of 57 m of gross hydrocarbon section from 2876.5-2933.5 m MDKB in a conglomeritic section with 5.0 m of possible net hydrocarbon sand with an interpreted average net porosity and water saturation of 12.3 and 55.7 percent respectively. Based on the results of this cased hole RFT, it was decided to production test the selected interval for reservoir description, productivity and pressure depletion.

#### Test Description and Results

The interval 2883.0-2894.0 m MDKB was perforated underbalanced with 53 barrels (1856.7 m) of diesel and 27 barrels of (945.9 m) nitrogen using the Schlumberger 2-1/8 inch Enerjet gun at 13 shots per metre. The wellhead pressure increased by 27 psi seven minutes after the well was perforated. The perforating gun was retrieved and the Schlumberger HP gauge in tandem with two Otis Amerada gauges were run to bottom with the HP gauge hung at 2885.0 m MDKB. After a shut-in period of 10.1 hours a wellhead pressure of 1471 psig and a bottomhole pressure of 4003.0 psia at 2885.0 m MDKB were measured. Relative to the cased hole RFT number 3 formation pressure of 4500.8 psia at 2884.8 m MDKB, the bottomhole pressure was lower by 497.8 psi but still increasing, indicating influx into the wellbore was continuing due to the compressibility of the nitrogen in the test string. Prior to flowing the well at 1740 hours, January 29, 1984, the wellhead pressure had increased by 151 psi over the corresponding shut-in period.

The well was opened for flow over a period of 16.7 hours without producing fluids to the surface. Wellhead pressure was bled to zero 30 minutes after the well was opened on 30/64 inch choke, and remained at zero throughout the remaining flow period. An estimated total influx of about 23 barrels of water and filtrate were recovered at the surface when the test string was reverse circulated at the end of the flow period. Reverse circulation of the wellbore fluids indicated no oil recovery. Average influx rate from the time the well was perforated to the end of the flow period (26.8 hours) was estimated to be 21 barrels per day. Based on the 21 STB/D influx rate, calculated average permeability and productivity index was 0.6 md and 0.019 STB/D/psi respectively. Analysis of water samples recovered at surface (chlorides: 2600-8000 ppm, nitrates: 0-20 ppm, resistivity: 1.53-0.38 ohms) during reverse circulation indicated formation water and filtrate were recovered. The rat-hole mud filtrate chlorides, nitrates and resistivity measurements were 18000 ppm, 80 ppm and 0.33 ohms respectivity.

#### Conclusion

Based on the oil recovered from cased hole RFT number 3 and water samples recovered from the production test, the perforated interval 2883.0-2894.0 m MDKB in the oil bearing - high water saturation conglomeritic section of the Wirrah-3 exploration well was concluded to be non-productive.

#### C.2 Production Test Number 1A, 2861.5-2872.5 and 2883.0-2894.0 m MDKB

#### Background and Objectives

Based on the conclusion that the perforated interval 2883.0-2894.0 m MDKB was non-productive, it was decided to production test the interval 2861.5-2872.5 m MDKB as an add-on perforation for reservoir description, productivity and pressure depletion. For the add-on zone open hole wireline logs indicated the presence of 23.0 m of gross hydrocarbon column from 2849.5-2872.5 m MDKB with 5.25 m of possible net hydrocarbon sand with an average net porosity and water saturation of 11.5 and 45 percent respectively.

#### Test Description and Results

The test string was displaced with 53 barrels (1856.7 m) of diesel and 27 barrels (945.9 m) of nitrogen. The add-on interval 2861.5-2872.5 m MDKB was perforated 300 psi underbalanced using the Schlumberger 2-1/8 inch Enerjet gun at 13 shots per metre. The wellhead pressure was observed to increase by 10 psi nine minutes after the add-on interval was perforated. The perforating gun was retrieved and the Schlumberger HP gauge in tandem with two Otis Amerada gauges were run in tandem to bottom with the HP gauge hung at 2865.0 m MDKB. After a shut-in period of 4.6 hours, a wellhead pressure of 1472 psig and a bottomhole pressure of 3858.0 psia at 2865.0 m MDKB were measured. At the time the well was open for flow the measured bottomhole pressure was increasing, indicating influx into the wellbore was still continuing due to the compressibility of the nitrogen in the test string. At the end of the 4.6 hour shut-in period, and prior to flowing the well, the wellhead pressure had increased by 182 psi.

The well was opened for flow at 1328 hours on January 31, 1984 for a period of 18.7 hours without producing fluids to the surface. Wellhead pressure was bled to zero 17 minutes after the well was opened on 20/64 inch choke increasing to 64/64 inch choke and remained at zero wellhead pressure throughout the remaining flow period. An estimated total influx of about 18 barrels of water and filtrate with 5.0 barrels of waxy oil were recovered at surface when the test string was reverse circulated. Measured gravity and pour point of the oil samples were 26  $^{\circ}$ API and 84  $^{\circ}$ F respectively. Average influx rate from the time the add-on interval was perforated to the end of the flow period (23.3 hours) was estimated to be 24 barrels per day. Based on the 24 STB/D influx rate calculated average permeability and productivity index was 0.2 md and 0.017 STB/D/psi respectively. Analysis of the water samples (chlorides: 4500-9000 ppm, nitrates: 0-15 ppm and resistivity: 0.689-0.404 ohms) recovered with the oil samples during reverse circulation indicated formation water and filtrate were recovered at surface. The rat hole mud filtrate chlorides, nitrates and resistivity measurements were 18000 ppm, 80 ppm and 0.33 ohms respectively.

#### Conclusion

Results from this production test indicated the intervals 2861.5-2872.5 and 2883.0-2894.0 m MDKB with a total of 10.25 m of possible net oil-sand were very low or non-productive.

#### C.3 Production Test Number 2, 2813.0-2822.0 m MDKB

#### Background and Objectives

Two cased hole RFT sample runs (numbers 6 and 7) located within the proposed test interval 2813.0-2822.0 m MDKB failed to confirm open hole wireline log interpretation indicating the presence of 10.75 m of gross oil column from 2804.0-2820.5 m MDKB with 5.25 m of possible net oil sand with an interpreted average net porosity and water saturation of 12.1 and 41 percent respectively. The decision was then made to production test the interval 2813.0-2822.0 m MDKB for fluid type, productivity, reservoir description and pressure depletion.

#### Test Description and Results

After displacing the test string with 51.5 barrels (1804 m) of diesel and 26.3 barrels (921 m) of nitrogen, the interval 2813.0-2822.0 m MDKB was perforated 300 psi underbalanced with the Schlumberger 2-1/8 inch Enerjet gun at 13 shots per metre. The wellhead pressure increased by 12 psi four minutes after the well was perforated. The perforating gun was retrieved and the Otis HP gauge in tandem with two Amerada gauges were run to bottom with the HP gauge hung at 2815 m MDKB. After a shut-in period of 16.1 hours, a wellhead pressure of 1295 psig and a bottomhole pressure of 3976.2 psia at 2815 m MDKB were measured. As measured bottomhole pressures were still increasing relative to the cased hole RFT pressure of 4087.1 psia at 2816.0 m MDKB, it was concluded influx into the wellbore was continuing because of the compressibility of the nitrogen in the test string. Prior to flowing the well at 0600 hours, February 5, 1984, the wellhead pressure had increased by 147 psi during the shut-in period.

The well was opened for flow over a period of 11.8 hours without producing fluids to surface. Wellhead pressure was bled to zero twelve minutes after the well was opened on 20/64 inch choke increasing to 64/64 inch and remained at zero throughout the remaining flow period. An estimated total influx of about 22 barrels of waxy oil with 2-3 barrels of filtrate were recovered at the surface when the test string was reverse circulated. Measured gravity and pour point of the oil samples were 31 °API and 86 °F respectively. Average influx rate from the time the interval was perforated to the end of the flow period (27.9 hours) was estimated to be 21 barrels per day. Based on the 21 STB/D influx rate calculated average permeability and productivity index was 1.2 md and 0.023 STB/D/psi respectively. Analysis of the water samples (chlorides: 5500 ppm. trace nitrates and resistivity: 0.467 ohms) recovered with the oil samples during reverse circulation indicated formation water and filtrate were recovered. The rat hole mud filtrate chlorides, nitrates and resistivity measurements were 18000 ppm, 40 ppm and 0.31 ohms respectively.

#### Conclusion

Results from the production test confirmed open hole wireline logs interpretation, the existence of an oil column in the interval from 2804.0-2830.5 m MDKB. The perforated interval from 2813.0-2822.0 m MDKB which included the 3.0 m of possible net oil sand was concluded to be very low or non-productive.

#### C.4 Production Test Number 2A, 2779.5-2788.0 and 2813.0-2822.0 m MDKB

#### Summary

Production test number 2A was carried out over the intervals 2779.5-2788.0 and 2813.0-2822.0 m MDKB on February 6-9, 1984. The well flowed waxy oil at an average rate of 441 STB/D through a 32/64 inch positive choke with FWHP and FWHT of 272 psig and 83°F respectively. Gravity of the produced oil was 34° API with a measured GOR of 867 SCF/STB and a pour point of 86°F. No water was produced to surface during the 17.1 hours of flow period. Measured productivity index for the well was 0.19 STB/D/psi with a corresponding flow efficiency of 1.29. A static bottomhole pressure of 3976.3 psia at 2767.4 m MDKB was measured prior to flowing the well for clean-up.

The use of the Otis downhole shut—in tool to close the well in for major build—up effectively reduced afterflow and other wellbore effects on the build—up to four minutes after shut—in. Horner plot analysis of the MTR build—up data gave an average formation permeability ranging from 3.4 md to 5.5 md assuming an effective contributing net sand thickness of 5.75m. The 4.5 md permeability estimated from McKinley analysis for the same MTR period and the average calculated permeability of 5.5 md based on the productivity index of 0.19 STB/D/psi measured during the test were in good agreement with the permeability range of 3.4–5.5 md obtained from the Horner build—up analysis.

Muskat plot analysis of the pressure build-up data gave an average reservoir pressure of 3920 psia at 2767.4 m MDKB. Relative to the initial reservoir pressure of 3976.3 psia at 2767.4 m MDKB, the two sands tested were drawndown by 56.3 psi in response to a cumulative oil production of 574.1 STB. From material balance calculations, the original OIP for the upper zone was estimated to be 434 kSTB and corresponds to an oil drainage area of 56 acres with an average radius of 880 ft. Total pore volume examined in the test was 1.1 MRB. Based on pressure depletion observed from declining FWHP and declining average reservoir pressure, the oil sands tested were concluded to be discontinuous, limited in volume and have limited or no aquifer support.

A detailed summary of the test results is given in the attached Table 3. Details of data gathered during test number 2A are included in the attached Otis Services Well Test Report and the Otis Electric Line Survey Report.

#### Background and Objectives

At the conclusion of test number 2, 22 barrels of waxy oil with zero watercut were recovered at surface from the perforated interval 2813.0-2822.0 m MDKB by reverse circulation. In order to increase well productivity, it was decided to perforate the interval 2779.5-2788.0 m MDKB as an add-on and production test the two oil zones concurrently for productivity, pressure depletion, barriers and fluid type. For the add-on interval to be perforated, open hole wireline logs indicated the presence of 9.5 m gross oil column from 2777.5-2787.0 m MDKB with 5.75 m of net oil column with an interpreted average net porosity and water saturation of 13.4 and 39.1 percent respectively. Open hole RFT sample run 25/170 located at 2785.5 m MDKB confirmed the existence of the oil column by recovering a total of 8 litres of 34° API waxy oil.

#### Test Description

The add-on interval 2779.5-2788.0 m MDKB was perforated 300 psi underbalanced with 51.5 barrels (1804 m) of diesel and 26.3 barrels (921 m) of nitrogen using the Schlumberger 2-1/8 inch Enerjet gun at 13 shots per metre. The perforating gun was then retrieved and the Schlumberger HP gauge in tandem with two Otis Amerada gauges were run to bottom and the HP gauge hung at 2781 m MDKB.

Prior to opening the well for clean-up flow, the measured static bottomhole pressure was 3976.3 psia at 2767.4 m MDKB. At 1020 hours on February 6, 1984, the well was open for flow and clean-up for 3.5 hours. Mud was flowed to surface approximately 1.5 hours after the well was opened. At 1352 hours on February 6, 1984, the well was shut-in for 20 minutes at the choke manifold to rig-down the Schlumberger HP and Otis Amerada pressure gauges prior to running downhole shut-in tool equipment. While preparations were being made to run the Otis selective locking mandrel, receptacle and Amerada gauges by wireline and because of the high pour point and waxy nature of the oil produced, the well was kept flowing for as long as possible between 1412 hours and 2105 hours on February 6, 1984 respectively. After shutting-in the well, the Otis DHSI tool with the HP gauge was run to bottom and hung at 2767.4 m MDKB on Otis electric line. The DHSI tool was then closed and successfully pressure tested from below prior to flowing the well for major flow.

The well was opened for 11 hours of continuous final flow period at 2329 hours on February 6, 1984, on 32/64 inch choke. At 0130 hours on February 7, 1984, the flow was directed to the test separator where the oil and gas rates were measured. During the 9 hours of separator flow period, measured oil rate declined from 733 STB/D to 381 STB/D. Average measured oil rate was 441 STB/D with an average GOR of 867 SCF/STB and an oil gravity of 34° API. Average separator operating pressure and temperature were 87 psig and 140°F respectively. Prior to closing the DHSI tool for final build-up at 1026 hours on February 7, 1984, separator oil and gas samples were taken for PVT and compositional analysis. Cumulative oil produced at the time of shut-in was 574.1 STB.

Total major build-up period was 46.6 hours during which time the pressure increased from 1637 psia to 3905.2 psia at 2764.4 m MDKB. Prior to concluding test number 2A at 0859 hours on February 8, 1984, three gradient stops were made at 2764.9 m, 2729.5 m and 2694.6 m MDKB which gave an average oil gradient of 1.03 psi/m (0.31 psi/ft).

#### Discussion of Test Results

#### 1. Reservoir Pressure

The static bottomhole pressure measured prior to flowing the well for clean—up was 3990.3 psia at run depth of 2781 m MDKB or 3976.3 psia at 2767.4 m MDKB (HP reference depth during final build—up) based on the measured average wellbore gradient of 1.03 psi/m. The RFT HP pressure from run 25/170 taken within the test interval and adjusted to the HP gauge run depth of 2781 m MDKB gave a reservoir pressure of 3983.6 psia which is considered to be in good agreement with the production test pressure. Relative to the measured static bottomhole pressure of 3990.3 psia, the RFT formation pressure was was lower by 6.7 psi and may have

been due to measurement differences such as the use of a different HP pressure gauge or other factors such as wellbore effects between the two pressure surveys. At the end of the test, the final bottomhole build-up pressure was measured to be 3905.2 psia at 2767.4 m MDKB. Muskat plot analysis of the pressure build-up data gave an estimated average reservoir pressure of 3920 psia at 2767.4 m MDKB indicating the reservoirs at the end of the test were drawndown by 56.3 psi. Based on the 56.3 psi drawdown observed at the end of the test and the small pressure drawdown of about 10 psi between measured initial reservoir pressure and the estimated original Gippsland Aquifer pressure, the reservoirs tested were believed to be either in poor or not in hydraulic communication with the Gippsland Aquifer.

## 2. Radius of Investigation

The average radius of investigation at the end of the final build-up period was 635 ft. Based on the pressure build-up performance shown in Figure 2, the closest possible boundary was estimated to be 119 ft from the wellbore. The use of the Otis downhole shut-in tool to shut-in the well effectively minimised the effect of afterflow and other wellbore effects on pressure build-up by restricting the ETR to less than four minutes after shut-in. This was equivalent to a radius of investigation at the beginning of the MTR of 24 ft.

Based on the apparent pressure depletion of 56.3 psi and from material balance calculations, an original OIP of 434 kSTB was estimated. This corresponds to an oil drainage area of 56 acres with an equivalent average radius of 880 ft from the wellbore. Total pore volume of 1.1M RB examined in the test indicated the sands tested were discontinuous and limited in volume.

### 3. Build-up Analysis

A Horner plot of the HP bottomhole build-up pressure data from test number 2A is shown in Figure 2.

The early time bottomhole pressure data were expected to be affected by wellbore effects during the first four minutes after the downhole tool was shut-in. As shown in Figure 2, the MTR region consisted of two straight line sections with slopes of 595 and 372 psi/cycle and took 36 minutes to build-up from 2050 psia to 2550 psia. During the LTR period, it took 12.9 hours to build-up from 2550 psia to 3750 psia with a slope of 1345 psi/cycle and a further 33 hours or to gradually build-up from 3750 psia to 3905.2 psia. The pressure build-up performance is complex and is analogous to the theoretical pressure build-up curve for a heterogeneous reservoir with multiple boundaries superimposed by the effect reservoir pressure depletion. Ratio of the second slope to the first slope in the middle-time region was 0.63indicating an improvement in reservoir porosity and permeability about 50 ft from the wellbore. At about 119 ft from the wellbore, the ratio of the third slope to the second slope was 3.62 indicating the presence of multiple boundaries such as sand discontinuities or faults. The levelling off in pressure build—up towards the end of the late-time region distinctively indicated the effects of reservoir

depletion. Obviously, conventional extrapolation to obtain a value for the extrapolated pressure cannot be carried out for this type of reservoir. The trial-and-error type of analysis by the Muscat plot of log ( $P-P_{WS}$ ) versus shut-in time was used to determine the average reservoir pressure.

Although the overall shape of the buildup resembled the type curve for a two layered reservoir, computer simulation indicated that this was not the case. Analysis of the MTR region build—up pressure data indicated the presence of two straight line sections shown in Figure 2. The reduction in slope from 595 psi/cycle during the early portion of the MTR to 372 psi/cycle during the later portion of the MTR, is indicative of the improvement in formation properties as reflected by the increase in calculated permeability from 3.4 md to 5.5 md assuming an effective contributing net sand thickness of 18.9 ft (5.75 m). This is in good agreement with the 4.5 md estimated from McKinley analysis using the MTR pressure data time match of between 5 and 70 minutes after shut-in and is also consistent with the calculated average permeability of  $5.5~\mathrm{md}$  based on the productivity index of  $0.19~\mathrm{md}$ STB/D/psi measured during the test. The average permeability thickness product calculated from the Horner plot MTR build-up data was 104 md-ft. A negative skin factor of 2.1 with a corresponding damage ratio of 0.77 was calculated, indicating near wellbore stimulation. McKinley analysis of the ETR pressure data indicated an equivalent near wellbore formation permeability of 9 md. The wellbore stimulation effect was probably due to the difference in near wellbore permeabilities between the two perforated zones and the near wellbore formation having a higher permeability—thickness product than the MTR permeability-thickness product as a result of perforating the less permeable lower zone at 13 shots per metre using the Schlumberger 2-1/8 inch Enerjet gun.

#### 4. Productivity Index

Based on the average reservoir pressure of 3920 psia, the productivity index measured during the test was 0.19 STB/D/psi. The measured PI was higher than the theoretical PI determined from the average MTR permeability of 4.5 md by 13 percent. This confirmed the negative skin calculated from the Horner build-up analysis method which indicated the well was stimulated by 29 percent with a flow efficiency of 1.29. Calculation steps for the theoretical PI of 0.17 STB/D/psi are shown below:

PI = 
$$\frac{0.00708 \text{ (k) (h)}}{\text{(B) (u) [ln (}\frac{\text{re}}{\text{rw}}\text{) - 0.5]}}$$
= 
$$\frac{0.00708 \text{ (4.5) (18.9)}}{\text{(1.54) (0.35) [ln (}\frac{635}{0.4}\text{) - 0.5]}} = 0.17 \text{ STB/D/psi}$$

#### C.5 Production Test Number 3, 2666.0-2675.0 m MDKB

#### Summary

Production test number 3 was carried out over the interval 2666.0-2675.0~m MDKB on February 12-15, 1984. The well flowed waxy oil at an average rate of 1277 STB/D through a 40/64 inch positive choke with FWHP and FWHT of 460~psig and  $111^oF$  respectively. Gravity of the produced oil was  $38^o~API$  with a measured GOR of 620~SCF/STB and a pour point of  $84^oF$ . No water was

produced to surface during the twelve hours of flow period. Measured productivity index for the well was 0.88 STB/D/psi with a corresponding flow efficiency of 1.10. A static bottomhole pressure of 3815.8 psia at 2658.3 m MDKB was measured prior to flowing the well for clean-up.

The use of the Otis downhole shut—in tool to close the well in for major build—up, effectively reduced afterflow and other wellbore effects on the build—up to less than one minute after shut—in. Horner plot analysis of the MTR build—up data gave an average formation permeability of 45.1 md assuming an effective contributing net sand thickness of 12.3 ft (3.75 m). The 69.7 md permeability estimated from McKinley analysis for the same MTR time match from one to ten minutes after shut—in and the calculated average permeability of 43 md based on the productivity index of 0.88 STB/D/psi measured during the test were in reasonable agreement with the permeability of 45.1 md obtained from the Horner build—up analysis.

The production test number 3 test results were successfully matched with a computer simulation model.

The computer results indicated that:

- 1. The reservoir has two parallel boundaries with linear flow dominating the late time region of the buildup.
- 2. The average formation permeability is between 42 to 50 md.
- 3. The minimum oil in place required to achieve a pressure match is approximately 170 KSTB, and
- 4. A pressure match could be achieved with or without hydraulic communication with the Gippsland aquifer.

A detailed summary of the test results is given in the attached Table 3. Details of data gathered during test number 3 are included in the attached Otis Services Well Test Report and the Otis Electric Line Survey Report.

#### Background and Objectives

Open hole wireline logs and RFTs indicated the presence of 46.75 m gross oil zone from 2664.25-27ll.0 m MDKB with 16.5 m of net oil sand with average net porosities and water saturations in the range of 12.7-14.5 percent and 28.2-44.9 percent respectively. Openhole RFT sample run numbers 10/68 at 2707.8 m MDKB, 11/69 at 2687.5 m MDKB and 13/72 at 2672.0 m MDKB respectively recovered 3 litres, 7 litres and 0.6 litres of waxy oil. Pretest pressures located within this interval gave an oil gradient of 0.31 psi/ft (1.02 psi/m) and indicated the four net sands within 2664.25-27ll.0 m MDKB were in the same hydraulic fluid system. Reservoir parameters for the four sand intervals are:

Interval (m MDKB)	Gross Thickness (m MDKB)	Net Thickness (m MDKB)	Average Porosity (%)	Average Water Saturation (%)
2664.25-2674.0	9 <b>.</b> 75	<b>3.</b> 75	13.6	<b>33.</b> 6
2676.25-2678.5	2.25	0.5	13.2	44.9
2683.75-2694.75	11.0	6.5	12.7	28.2
2698.25-2711.0	12.75	5.75	14.5	31.8

To evaluate the three major oil sands defined above by production tests, it was decided to initially conduct a production test (number 3) in the top and possibly poorest sand interval 2664.25-2674.0 m MDKB for reservoir depletion, productivity and barriers. The results and conclusions from this test were expected to complement the results obtained from the second production test (number 3A) when all three major sand intervals would be evaluated concurrently.

#### Test Description

Production test number 3 commenced when the interval 2666.0-2675.0 m MDKB was perforated 300 psi underbalanced with 49.5 barrels (1734 m) of diesel and 25.3 barrels (886 m) of nitrogen using the Schlumberger 2-1/8 inch Enerjet gun at 13 shots per metre. After retrieving the perforating gun, the Schlumberger HP gauge in tandem with two Otis Amerada gauges were run to bottom and the HP gauge hung at 2672 m MDKB. Prior to opening the well for clean-up flow, the measured static bottomhole pressure was 3829.8 psia at 2672 m MDKB.

At 0215 hours on February 13, 1984, the well was open for flow and clean-up for 4.3 hours. Mud and formation fluids were flowed to surface approximately 43 minutes after the well was opened. At 0631 hours on February 13, 1984, the well was shut-in for 4.5 hours to run the Otis selective locking mandrel, receptacle and Amerada gauges by 0.092 inch slick line. The Otis downhole shut-in tool with HP gauge was then run on electric line and the HP gauge hung at 2658.3 m MDKB. The DHSI tool was closed and successfully pressure tested from below prior to opening the well for major flow.

The well was opened for 12 hours of continuous final flow period at 1102 hours on February 13, 1984, on 32/64 inch positive choke increasing to 40/64 inch positive choke at 1135 hours. At 1230 hours on February 13, the flow was directed to the test separator where the oil and gas rates were measured. During the 10.5 hours of separator flow, measured oil rates decline from 1483 STB/D to 1181 STB/D resulting in an average measured rate of 1277 STB/D with an average GOR of 620 SCF/STB and an oil gravity of 38° API. Average separator operating pressure and temperature were 174 psig and 146°F respectively. Prior to closing the DHSI tool at 2301 hours on February 13, separator oil and gas samples were taken for PVT and compositional analysis. Cumulative oil produced at the time the well was shut-in was 845.4 STB.

Total major build-up period was 30.9 hours during which time pressure increased from 2156.9 psia to 3554.0 psia at 2658.3 m MDKB, as shown in Figure 3. Prior to concluding test number 3 at 0555 hours on February 15, two gradient stops were made at 2625.0 and 2554.0 m MDKB which gave an oil gradient of 1.02 psi/m (0.31 psi/ft).

#### Discussion of Test Results

#### 1. Reservoir Pressure

The static bottomhole pressure measured prior to flowing the well for clean-up was 3829.8 psia at run depth of 2672 m MDKB or 3815.8 psia at 2658.3 m MDKB (final build-up HP reference depth) based on the measured wellbore gradient of 1.02 psi/m. The open hole RFT (run 7/50) HP pressure taken within the test interval at 2672.0 m MDKB was 3834.6 psia. Relative to the RFT pressure of 3834.6 psia, the measured static pressure was lower by 4.8 psi and was not considered significant. At the end of the test, the final bottomhole build-up pressure was measured to be 3554.0 psia at 2658.3 m MDKB. Muskat plot analysis of the pressure build-up data gave an average reservoir pressure of 3600 psia at the end of the test, some 216 psi below initial pressure. However, the presence of parallel flow boundaries, as indicated by the form of the pressure buildup, indicates that this need not represent pressure depletion of the reservoir.

## 2. Radius of Investigation

The radius of investigation at the end of the major flow period was 894 ft. The use of the Otis downhole shut-in tool to shut-in the well effectively minimised the effect of afterflow and other wellbore effects on pressure build-up by restricting the ETR to less than one minute after shut-in. The radius of investigation at the beginning of the MTR was 33 ft from the wellbore.

## 3. <u>Build-up Analysis</u>

A Horner plot of the HP bottomhole build-up pressure data is shown in Figure 3.  $\dot{}$ 

The early time bottomhole pressures were expected to be affected by wellbore effects during the first minute after the DHSI tool was shut-in. As shown in Figure 3, the MTR region consisted of a single straight line section with a slope of 202 psi/cycle and took about 4.2 hours to build-up from 2725 psia to 3220 psia. During the LTR period, it took 26.7 hours to build-up from 3220 psia to 3554 psia with a slope 685 psi/cycle. The pressure build-up performance is analagous to the theoretical build-up curve for a heterogeneous reservoir with two parallel boundaries such as sand discontinuities, faults or due to changes in porosity and permeability.

Analysis of the MTR region build—up pressure data gave an average formation permeability of 45.1 md assuming an effective contributing net sand thickness of 12.3 ft (3.75 m). For the same MTR time match from one to ten minutes after shut—in, the McKinley plot analysis gave an average formation permeability of 69.7 md for the MTR region and 13.9 md for the ETR with a time match of 0.5 to one minute after shut—in. Based on the productivity index of 0.88 STB/D/psi measured during the test, the calculated permeability of 42 md was about 6 percent lower relative to the 45.1 md calculated from the Horner plot analysis. The average permeability thickness product calculated from the Horner plot MTR was 554.1 md—ft. A negative skin factor of 0.8 with a corresponding damage ratio of 0.91 was calculated, indicating slight near wellbore stimulation.

Computer simulation of the pressure data was successful using a model with two parallel boundaries and no aquifer support (i.e. a long but narrow rectangle). Successful matching was achieved over a range of reservoir permeabilities and areal dimensions. The quality of a typical match is illustrated in Figure 4. The successful models indicated that the average reservoir permeability was in the range 42 to 50md with these values corresponding to a distance between parallel boundaries of 350 to 225 ft (107 to 69m) respectively. Good matches could be obtained with an oil in place volume of 170 k STB or more corresponding to a modelled reservoir length of 1277m. A good match was not achieved, especially for later times, when the oil in place was reduced by 35% to 110 k STB (Figure 5).

#### 4. Productivity Index

Based on the average reservoir pressure of 3600 psia at the end of the test, the productivity index measured during the test was 0.88 STB/D/psi. The measured PI was lower than the theoretical PI determined from the MTR permeability of 45.1 by 12 percent. Calculation steps for the theoretical PI of 1.0 STB/D/psi are shown below:

$$PI' = \frac{0.00708 \text{ (k) (h)}}{\text{(B) (u) [ln (}\frac{r_{e}}{r_{w}}\text{) - 0.5]}}$$

$$= \frac{0.00708 \text{ (45.1) (12.3)}}{\text{(1.54) (0.35) [ln (}\frac{894}{0.4}\text{) - 0.5]}} = 1.0 \text{ STB/D/psi}$$

## C.6 Production Test Number 3A, 2666.0-2675.0, 2686.0-2695.5 and 2702.0-2711.0 m MDKB

#### Summary

Production test number 3A was carried out over the three intervals 2666.0-2675.0, 2686.0-2695.5 and 2702.0-2711.0 m MDKB on February 15-17, 1984. The well flowed waxy oil at an average rate of 2039 STB/D through a 40/64 inch positive choke with FWHP and FWHT of 693 psig and 121°F respectively. Gravity of the produced oil was 38° API with a measured GOR of 579 SCF/STB and a pour point of 82°F. No water was produced to surface during the 12 hours of flow period. Measured productivity index for the well was 2.14 STB/D/psi with a corresponding flow efficiency of 1.26.

The use of the Otis downhole shut—in tool to close the well in for major build—up effectively eliminated afterflow and other wellbore effects on the build—up. Multi—rate analysis of the MTR build—up data gave an average formation permeability of 18.1 md assuming an effective total contributing net sand thickness of 52.5 ft (16 m). The calculated average

permeability of 20.9 md based on the productivity index of 2.14 STB/D/psi measured during the test was higher by 15.5 percent relative to the average permeability of 18.1 md estimated from build-up data.

Based on the results from production test numbers 3 and 3A, and in conjunction with the results from the Schlumberger Production Logging Tool (PLT) survey conducted at the beginning of test number 3A, the performance of the two lower add—on sand intervals relative to the perforated top interval 2666.0—2675.0 m MDKB were evaluated. Relative flow contributions from each of the three zones during test number 3A final flow period were:

	Perforated Interval	Estima	ted Rate	Net Sand Interval	Average Permeability
Zone	(m MDKB)	(STB/D)	(Percent)	(ft)	(md)
				· <del></del>	
1	2666.0-2675.0	776	38.1	12.3	45.1
2	2686.0-2695.5	524	25.7	21.3	9.8
3	2702.0-2711.0	739	36.2	18.9	7.0
TOTAL		2039	100.0	52.5	

A detailed summary of the test results is given in Table 3. Details of data gathered during test number 3A are included in the attached Otis Services Well Test Report and the Otis Electric Line Survey Report.

## Background and Objectives

The main objective of test number 3A was to evaluate the three sand intervals 2664.25-2674.0, 2683.75-2694.75 and 2698.25-2711.0 m MDKB concurrently for average well productivity index, reservoir depletion and description. The results from this test, in conjunction with the test results obtained in test number 3 where the upper sand interval was evaluated, would then be used to determine the performance of the two lower sand intervals. In order to determine the relative flow rate contribution between the three zones tested, the Schlumberger production logging tool was run after the two add-on intervals were perforated.

### Test Description

Production test number 3A commenced when the two add-on intervals 2686.0-2695.5 and 2702.0-2711.0 m MDKB were perforated in sequence using the Schlumberger 2-1/8 inch Enerjet guns at 13 shots per metre immediately after conclusion of test number 3.

The two add-on intervals were perforated with an underbalance of about 200-300 psi by bleeding down the shut-in wellhead pressures immediately prior to perforating the intervals. The well was then opened on 24/64 inch choke for two hours of clean-up flow at 2009 hours on February 15, 1984. Five minutes after the well was opened, choke size was increased to 40/64 inch positive. The well was shut—in at 2215 hours on February 15 at the choke manifold for 2.9 hours to rig up and run the Schlumberger production logging tool (PLT) to bottom. At OllO hours on February 16, 1984, the well was open for flow at 40/64 inch choke for 1.75 hours of PLT survey from 2740 m MDKB to the tubing muleshoe depth at 2664 MDKB. Average flow rate measured by the PLT for the two lowest perforated intervals was 2374 STB/D (3656 RB/D). Total average flow rate for the three perforated intervals was not measured by the PLT because the distance between the top perforation and the muleshoe was 5.5 m. Minimum distance required to measure the total flow rate from the three intervals was about 20 m. After the PLT was retrieved, the Otis selective locking mandrel, receptacle and Amerada gauges were run by wireline and the Otis DHSI tool with HP gauge were run and hung at 2658.3 m MDKB by electric line. Total shut—in time from the time the well was shut—in to retrieve the PLT was 6.3 hours.

After pressure testing the DHSI tool from below, the well was opened at 0910 hours on February 16, 1984 for 12 hours of continuous final flow on 24/64 inch choke increasing to 40/64 inch positive choke at 0917 hours. At 0942 hours on February 16 the flow was directed to the test separator where the oil and gas rates were measured. During the 11.5 hours of separate flow, measured oil rate declined from 2141 STB/D to 1914 STB/D resulting in an average measured rate of 2039 STB/D with an average GOR of 579 SCF/STB, and an oil gravity of 38° API. Average separator operating pressure and temperature were 167 psig and 137°F respectively. Prior to closing the DHSI tool at 2109 hours on February 16, separator oil and gas samples were taken for PVT and compositional analysis. Total cumulative oil produced during test numbers 3 and 3A were 2221.8 STB of which about 62 percent or 1376.4 STB were produced during test number 3A.

Total major build-up period was 23.9 hours during which time bottomhole pressure increased from 2717.7 psia to 3642.4 psia at 2658.3 m MDKB. As shown in Figure 6, about 83 percent of the total build-up pressure of 924.7 psi occurred during the first 2.8 hours or 12 percent of total shut-in period. The remaining pressure build-up of 152.4 psi occurred during the last 21.1 hours of the shut-in period. Prior to concluding test number 3A at 2109 hours on February 17, 1984, two gradient stops were made at 2655.5 m MDKB and 2620.5 m MDKB which gave an average oil gradient of 0.99 psi/m (0.30 psi/ft).

## Discussion of Test Results

# 1. <u>Production Logging Tool Survey</u>

The Schlumberger PLT was successfully run from 2740 to 2664 m MDKB immediately after the two add-on intervals were perforated and the well opened for clean-up flow. Flowing bottomhole pressure, temperature, oil gravity and rate measurements over the two lowest perforated intervals were during the 1.8 hours of PLT flow period. During the flow period, average FWHP was 780 psig at 40/64 inch positive choke. Total average flow from the three perforated intervals could not be computed from PLT measurements because of insufficient logging distance available between the top perforation and tubing muleshoe. Details of results obtained from the PLT survey are as follows:

Flow Interval (m MDKB)	Average Flowing BHP (HP) (psia)	Average Flowing BHT (°F)	Average Flowing Oil Gravity (gm/cc)		Flow Oil ate (STB/D)
2702.0-2711.0 2686.0-2695.5 2666.0-2675.0	3700 3630 Not Measured	238.0 238.2 Not Measured	0.83 0.74 Not Measured	2138 1518 Not Meas	1388 986 ured

The PLT survey indicated the flow contribution from the middle perforated interval 2686.0-2695.5 m MDKB was 29 percent lower relative to the 2138 RB/D rate contribution from the lowest perforated interval 2702.0-2711.0 m MDKB. The PLT survey also indicated flow from the 9.5 m middle interval (2686.0-2695.5 m MDKB) was from the top 5 m of the perforated interval while flow from the lowest interval (2702.0-2711.0 m MDKB) was from the whole 9 m of perforated interval.

## 2. Reservoir pressure

Based on the initial reservoir pressure of 3815.8 psia at 2658.3 m MDKB measured during test number 3 and the average reservoir pressure of 3670 psia at 2658.3 m MDKB estimated from test number 3A build-up data, the average reservoir pressure for the three perforated zones immediately prior to opening the well for clean-up flow in test number 3A was estimated to be 3740 psia at 2658.3 m MDKB. Based on the maximum measured shut-in wellhead pressure of 1050 psig observed after the first add-on interval was perforated and assuming an oil gradient of 1.0 psi/m, the shut-in bottomhole pressure was estimated to be 3723.0 psia at 2658.3 m MDKB or within 0.5 percent of estimated bottomhole average pressure of 3740 psia.

At the end of the major build-up period, the final measured bottomhole build-up pressure was 3642.4 psia at 2658.3 m MDKB. Muskat plot analysis of the pressure build-up data gave an average reservoir pressure of 3670 psia at 2658.3 m MDKB, 145.8 psi below the original pressure. As discussed relative to test 3, this is not necessarily an indication of pressure depletion due to the presence of parallel flow boundaries.

### 3. Radius of Investigation

The radius of investigation at the end of the final build-up period was 788 ft. The use of the Otis DHSI tool to shut-in the well effectively eliminated the effect of afterflow and other wellbore effects on pressure build-up by restricting the ETR to less than 15 seconds after shut-in. The radius of investigation at the beginning of the MTR was calculated to be less than 10 ft from the wellbore.

Based on the apparent pressure depletion of 145.8 psi and from material balance calculations, the original OIP for the three zones perforated was estimated to be 685 kSTB. This corresponds to an oil drainage area of 28 acres with an equivalent average radius of 618 ft from the wellbore. Total pore volume of 1.52M RB examined in the test indicated the three sand intervals tested were discontinuous and limited in volume. Based on the original OIP of 170 kSTB calculated in test number 3 for the interval 2666.0-2675.0 m MDKB, an original OIP of 515 kSTB was estimated for the two add-on intervals perforated. The 515 kSTB original OIP volume for the intervals 2686.0-2695.5 and 2782.0-2711.0 m MDKB was equivalent to an average oil drainage area of 26.5 acres.

## 4. Build-up Analysis

A multi-rate analysis plot of the HP bottomhole build-up pressure data is shown in Figure 6.

The observed afterflow effects on build-up data was negligble relative to the estimated ETR period of less than two minutes calculated from the wellbore storage value of 0.00021 RB/psi. As shown in Figure 6, the MTR region consisted of a single straight line section with a slope of 188 psi/cycle and took about 23 minutes to build-up from 2910 psia to 3320 psia. Up to 98.4 percent of the total build-up time of 23.9 hours occurred after the MTR period. During the LTR period, it took 23.5 hours to build-up from 3320 psia to 3642.4 psia with a slope of 286 psi/cycle. The pressure build-up performance is analogous to the theoretical build-up curve for a heterogeneous reservoir with multiple boundaries such as sand discontinuities, faults and differing geological depositional units due to changes in porosity and permeability. Ratio of the late-time slope to the middle-time slope was 1.52 indicating either a reduction in reservoir porosity and permeability or the existence of boundaries such as sand discontinuities or faults about 272 ft from the wellbore. number 3, the late time region was dominated by linear flow due to parallel flow boundaries as evidenced by plotting the pressure data on a SQRT(T) plot.

Analysis of the MTR region build-up pressure data gave an average formation permeability of 18.1 md assuming an effective contributing total net sand thickness for the three intervals of 52.5 ft (16 m). The calculated average permeability of 20.9 md based on the productivity index of 2.14 STB/D/psi measured during the test was in good agreement with the permeability calculated from build-up data. Based on the permeabilities of 45.1 md with an effective net thickness of 12.3 ft (3.75 m) from test number 3 and 18.1 md with an effective net thickness of 52.5 ft, an average permeability of 9.8 md was estimated for the two add-on intervals with an average net thickness of 40.2 ft (12.25 m). The average permeability thickness product based on the MTR build-up analysis was 950.5 md-ft. A negative skin factor of 1.5 with a corresponding damage ratio of 0.80 was calculated; indicating near wellbore stimulation.

#### 5. Productivity Index

Based on the average reservoir pressure of 3670 psia, the average productivity index measured for the three intervals during the test was 2.14 STB/D/psi. The measured PI of 2.14 STB/D/psi was higher than the theoretical PI determined from the MTR permeability of 18.1 md by 21.6 percent. This confirmed the negative skin calculated from the multi-rate analysis method which indicated the well was stimulated by up to 26 percent with a flow efficiency of 1.26. Calculation steps for the theoretical PI of 1.76 STB/D/psi are shown below:

PI = 
$$\frac{0.00708 \text{ (k) (h)}}{\text{(B) (u) [ln (}\frac{r_{e}}{r_{w}}\text{)} - 0.5\text{]}}$$
  
=  $\frac{0.00708 \text{ (18.1) (52.5)}}{\text{(1.54) (0.35) [ln (}\frac{788}{0.4}\text{)} - 0.5\text{]}}$  = 1.76 STB/D/psi

## C.7 Production Test Number 4, 2635.0-2646.0 m MDKB

#### Summary

Production test number 4 was carried out over the interval 2635.0-2646.0 m MDKB on February 20-21, 1984. The well flowed dry gas at an average rate of 1971 kSCF/day through a 32/64 inch positive choke with FWHP and FWHT of 516 psig and 90°F respectively. Flowing bottom-hole pressure was 1061 psia. No water or liquid hydrocarbon was produced at the surface during the six hours of flow period. Calculated skin factor from the abbreviated pressure build-up data was 23.5 with a corresponding damage ratio of 4.5 indicating severe near wellbore damage. The produced gas was concluded to be not representative of the zone perforated and were suspected to have channelled behind the casing from the gas zone 2610.5-2623.0 m MDKB located 12 m above the perforated interval. The high near wellbore damage ratio of 4.5 measured in the test and the large amount of gas produced relative to the 1 m of net sand in this interval indicated a high probability of gas channelling. As a result of the effect of gas channelling, the formation permeability-thickness product based on build-up analysis and on measured productivity index may not be representative of the zone perforated. A bottomhole pressure of 3765 psia at 2640 m MDKB was measured prior to flowing the well.

At the end of the flow period, the well was shut-in at the surface choke manifold for 2.6 hours of abbreviated build-up. At the end of the build-up period, measured wellhead pressure was 2529 psig and bottomhole pressure was 3720.8 psia at 2640 m MDKB which gave a gradient of 0.45 psi/m (0.14 psi/ft) indicating the test string was essentially filled with gas. Extrapolation of the MTR slope in the abbreviated build-up data gave an extrapolated bottomhole pressure of 3769 psia at 2640 m MDKB indicating no pressure drawdown at the end of the test despite the high flowing bottomhole pressure drawdown of 2704 psi measured during the flow period.

A detailed summary of the test results is given in Table 3. Details of data gathered during test number 4 are included in the attached Otis Services Well Test Report.

#### Background and Objectives

Two RFT sample runs with seats located at at 2644.5 m MDKB (open hole run number 14/77) and 2645.0 m MDKB (cased hole RFT run number 8) failed to confirm open hole wireline log interpretation indicating the presence of 12 m of gross oil column from 2635-2647 m MDKB with up to 1.0 m of net oil column with an interpreted average net porosity and water saturation of 11.6 and 37.2 percent respectively. Because of the failure of the cased hole RFT to recover any formation fluids due to flowline plugging, the decision was made to production test the interval 2635-2646 m MDKB for fluid content.

#### Test Description and Results

Production test number 4 commenced when the interval 2635-2646 m MDKB was perforated 300 psi underbalanced with 49 barrels (1717 m) of diesel and 24.9 barrels (872 m) of nitrogen using the Schlumberger 2-1/8 inch Enerjet gun at 13 shots per metre. The perforating gun was retrieved and the Schlumberger HP gauge in tandem with two Utis Amerada gauges were run to bottom and the HP gauge hung at 2640 m MDKB. After approximately 4.2 hours of shut-in, the wellhead pressure and bottomhole pressure were measured to be 1324 psig and 3765 psia at 2640 m MDKB respectively.

At 2133 hours on February 20, 1984, the well was open for flow and clean up for up to six hours. After 32 minutes of flow, diesel was flowed to surface. Between 2245-2355 hours, on February 20, the well was shut-in and re-flowed numerous times to re-light the pilot flare and keep the produced gas burning due to unstable gas flow when attempts were made to increase the choke size. The flow was finally stabilised at 32/64 inch positive choke for up to 60 minutes prior to diverting the flow through the test separator at 0122 hours on February 21, for up to two hours. Measured FWHP and flowing bottomhole pressure stabilised at 516 psig and 1061 psia at 2640 m MDKB respectively. During the flow period, flowing bottomhole temperature decreased from 224.8°F to 206.9°F indicating severe gas expansion across the perforated interval with pressure drawdown of about 2704 psi. No liquid hydrocarbons were recovered at surface during the six hours of flow period and the well was shut-in for build-up immediately after two separator gas samples were taken for compositional analysis. Cumulative gas produced at the time of shut-in was 441 kSCF.

Total build-up period was 2.6 hours during which time the pressure increased from 1061 psia to 3720.8 psia at 2640 m MDKB. As shown in Figure 7, up to 99 percent of the total build-up pressures of 2660 psi occurred during the first 1.6 hours or 61 percent of total shut-in period. The remaining One hour of build-up period was regarded as the MTR period with a slope of 103 psi/cycle. Horner analysis of the MTR build-up data gave an average formation permeability of 17.4 md assuming an effective net sand contributing thickness of 3.3 ft. Average permeability based on the measured productivity index of 0.729 kSCF/D/psi was 4 md indicating severe near wellbore formation damage. Because of suspected gas channelling, the estimated permeabilities may not be representative of the perforated interval. Skin factor calculated from build-up data was 23.5 confirming the high formation damage with an estimated damage ratio of 4.5. The high near wellbore damage measured was probably due to restriction to flow behind casing from the gas zone 2610.5-2623.0 m MDKB located approximately 12 m above the top perforated interval. The produced gas was believed to be not representative of the interval perforated and were suspected to have channelled behind casing from the gas zone above. No measurable quantities of liquids were produced at surface throughout the separator flow period. At the end of the test, the test separator was found to contain waxy oil emulsion. The test separator was then flushed with diesel prior to repeating the production test. The test results failed to confirm open hole wireline and mud logs indicating the presence of an oil column within the interval perforated. It was then decided to repeat this test by re-flowing the well through the test separator at a higher choke size.

## Production Test No. 4R, 2635.0-2646.0 m MDKB

#### Summary of Results and Objectives

Production test number 4 repeat, successfully produced oil from the perforated interval. Slugs of waxy oil with rates ranging from 121-338 STB/D/psi were produced intermittently with 2.4 MSCF/D of gas. The produced gas was considered not representative of the zone perforated and was suspected, as in test number 4, to be from the gas zone located 12 m above the perforated interval. The slugs of oil produced during test number 4R were believed to be representative of the zone perforated. Results of test number 4R confirmed the presence of oil in the interval perforated and also indicated that the dry gas produced in the previous test were not representative of the interval perforated.

Due to gas channelling behind casing from the gas zone located 12 m above the perforated interval, test number 4R was concluded after oil was recovered at surface in the 5.4 hours of flow through the test separator. As the main objective of the repeat test was to confirm the presence of oil in the perforated interval, no bottomhole pressure gauges were run in the test.

A summary of the test results is given in Table 1. Details of data gathered during test 4R are included in the attached Otis Services Well Test Report.

# TABLE 1 . CASED HOLE RFT AND PRODUCTION TEST PROGRAM SEQUENCE

- 1. ORFT No. 1 @ 2936.8 m.
- 2. CRFT No. 2 @ 2942.0 m.
- 3. ORFT No. 3 @ 2884.8 m.
- 4. PT No. 1 interval, 2883.0-2894.0 m.
- 5. PT No. 1A intervals, 2861.5-2872.5 m and 2883.0-2894.0 m.
- 6. ORFT No. 4 @ 2834.5 m.
- 7. CRFT No. 5 @ 2828.6 m.
- 8. ORFT No. 6 @ 2816.0 m.
- 9. CRFT No. 7 @ 2820.1 m.
- 10. PT No. 2 interval, 2813.0-2822.0 m.
- 11. PT No. 2A intervals, 2779.5-2788.0 m and 2813.0-2822.0 m.
- 12. PT-No: 3 interval, 2666.0-2675.0 m.
- 13. PT No. 3A intervals, 2686.0-2695.5 m, 2702.0-2711.0 m and 2666.0-2675.0 m.
- 14. CRFT No. 8 @ 2645.0 m.
- 15. PT No. 4 interval, 2635.0-2646.0 m.
- 15. PT No. 4 repeat interval, 2635.0-2646.0 m.

SUMMARY OF WIRRAH NO. 3 WELL CASED HOLE RFT RESULTS

CRFT No.	Depth		mation	Reco	 overies
***************************************	(m MDKB)	Pressure (psia)	Temperature (°F)	Lower Chambers (45.6 litres)	Upper Chamber (10.5 litres)
1	2936.8	4787.8*	239	39.1 ft ³ gas, 650 cc waxy oil, 34.6 litres, water/ filtrate.	Preserved for analysis.
2	2942.0	<b></b>	-	Recorded mud hydrostatic behind casing. No recovery.	Recorded mud hydrostatic behind casing. No recovery.
3	2884.8	4500.8	236	10.5 ft ³ gas, 220 cc waxy oil, 40.75 litres water/filtrate.	0.6 ft ³ gas, 50 cc scum oil, 2.13 litres water/filtrate. Chamber not filled.
4	2834.5	4181.0	232	6.1 ft ³ gas, 90 cc waxy oil, 43.3 litres water/filtrate. (Flow restricter used).	Oft ³ gas, scum oil, 3.75 litres water/filtrate. (3.8 litre chamber used with flow restricter).
5	2828.6	4154.9	234	54.5 ft ³ gas, scum oil, 40.8 litres muddy filtrate. (Flow restricter used).	3.5 ft ³ gas, scum oil, 9.2 litres water/filtrate. (Flow restricter used).
6	2816.0	4087.1	236	No recovery due to plugged flowline. (Flow restricter used).	No recovery due to plugged flowline. (Flow restricter used).
7	2820.1	4074.0	237	Terminated sampling due to communication from mud hydrostatic behind casing. Recovered 6 litres mud.	Terminated sampling in lower chamber due to communication from mud hydrostatic behind casing.
8	2645.0	3806.6	202	No recovery due to plugged flowline. (Flow restricter used).	No recovery due to plugged flowline. (Flow restricter used).

- Notes: 1. Southern Cross KB = 21 m.

  - Southern cross RD = 21 m.
     Pressures marked with an asterisk, not stabilised due to slow build-up observed.
     Unless otherwise specified, all lower and upper chambers were run with water cushions. Where no water cushions are used, a flow restricter was used.

## SUMMARY OF WIRRAH NO. 3 WELL PRODUCTION TEST RESULTS

Test Number	1	1A		LL PRODUCTION				
Date (1984)	January 29-30		2	2A	3	3A	4	4R
Perforation Interval (m MDKB)	•	February 1		,	February 12-15	February 15-17	February 20-21	February 21
Production Fluid	2883,0-2894,0	and 2883.0-2894.0	2813.0-2822.0	2779.5-2788.0 and 2813.0-2822.0	2666.0-2675.0	2686.0-2695.5, 2702.0-2711.0 and 2666.0-2675.0	2635.0-2646.0	2635,0-2646,0
	Water and Filtrate	Oil and Water/ Filtrate	0il	Oil	Oil	0il	Gas	Gas/Oil
Flow Time (Hours)	16.7	18.7	11.8	17.1	14.5			4437011
Cumulative Oil Production (STB)	23 (Water/	5 (0il) and	22		16.3	12.0	6.0	5.4
0	Filtrate)	18 (Water/ Filtrate)	22	574.1	845.4	2221.8 (Incl. Test No. 3)	441 (kSCF)	570 (kSCF)/3
Average Oil Rate (STB/D)	21 (Total	24 (Total	21 (Total	441	1077			
(kSCF/D)	Influx)	Influx)	Influx)	441	1277	2039	0	121-338
Choke Size (64th)	30	-	<del>-</del>	-	-	-	1971	(Slugging) 2438
Oil Gravity (° API)	_	64	64	32	40	40	32	40
Pour Point (%)	-	26 84	31 86	34	38	38	-	35
Wax Content	High	High	High	86 High	84 High	82	-	95 84
Matercut (%)	100	78	Nil	Nil	High	High	-	High
GOR (SCF/STB)	Not Measured	Not Measured	Not Measured	<del></del>	Nil	Nil	Nil	Nil
Flowing WHP (psig)	0	0		867 @ 87 psig and 140°F	620 @ 174 psig and 146°F	579 @ 167 psig and 137°F	-	12949 @ 230 psig and 142°F
Initial Formation Pressure (psia)	4500.8 @		0	272	460	693	516	504
verage Reservoir Pressure (psia)	2884.8 m MD	2884.8 m MD	4087,1 @ 2816 m MD	3976.3 @ 2767.4 m MD	3815.8 <b>@</b> 2658.3 m MD	3815.8 @ 2658.3 m MD	3765 @ 2640 m MD	3765 @ 2640
laximum BHT (°F)	Not Measured	Not Measured	Not Measured	3920 @ 2767.4 m MD	3600 @ 2658.3 m MD	3670 @ 2658.3 m MD	3769 @ 2640	m MD Not Measured
	230 @ 2884.1 m MD	234 @ 2864.1 m MD	242 @ 2814.1 m MD	245 @ 2767 m MD	241 @ 2658 m MD	241 @ 2658	m MD 226 @ 2640	Not Measured
roductivity Index (Measured) (STB/D/psi) ermeability-Thickness (md-ft) ermeability (md)	5.2 (Est.)	0.017 (Est.) 6.0 (Est.)	0.023 (Est.) 14.2 (Est.)	0.19 65-104	0.88 554.1	m MD 2.14 950.5	m MD _ 57.1	Not Measured
kin/Damage Ratio	0.6 (Est.)	0.2 (Est.)	1.2 (Est.)	3.4-5.5	45.1	18.1	17.4	Not Measured
	Not Measured	Not Measured	Not Measured	-2.1/0.77	-0.8/0.91	-1.5/0.80		<del>-</del>
epth of Investigation (ft)	Not Measured	Not Measured	Not Measured	635	894	788	23.5/4.5	Not Measured
Oparent Depletion (psi)	Not Measured	Not Measured	Not Measured	56.3	(4)		293	Not Measured
OIP Volume (kSTB)	-	-	-	434	(4)	(4)	Nil	Not Measured
rea (Acres)	-	-	-	56		(4)	-	-
/erage Radius (ft)	-	_	_		(4)	(4)	-	-
ote: 1. All depths relative to KB			-	880	_	_		

^{2.} In test number 4, the well produced gas with no measurable liquid produced at surface. The produced gas was concluded to be not representative of the zone perforated and it was then decided to re-test (test number 4R) this zone by flowing the well at a higher rate through the test separator.

^{3.} Test number 4R flowed slugs of oil with gas at surface. The produced gas was still considered not representative of the perforated interval and 4. See discussion of these aspects in the report text.

CASED HOLE RET_PRETEST_PRESSURES

RET_RUN NO.: 1-7

SEKVICE	COM ANY:	<b>schlumbe</b>	rger	LASEU HI	E KEI Ph	RETEST PRES	UN NO.: 1	<b>-</b> 7			WELL: DATE: OBSERV	J	irrah-3 anuary 27, 1984 B/STK	
SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IH	p	FORMAT PRESSU		FH	IP	TEST RESULT	BHT
	(m)	(m SS)			-		psi	ppg	psi	ppg	psi	ppg		(呼)
1	2936.8	2915.8	Cased SPT	SCH	Y	G	6107.0	12.2	5730.0*	-	7010.0*	-	V	239.0
				HP	Υ	Α	6115.3	12.1	4787.8	11.5	6057.0	12.1	- '	277.0
2	2942.0	2921.0	Cased SPT		Y	G	-	-	-	-	-	_	Communication of _ hydrostatic behind	241.0
				HP	Y	Α	6116.6	12.2	-	-	6101.3	12.1	casing during sampling.	241.0
3	2884.8	2863.8	Cased SPT	SCH	Y	G*	5580.0	-	-	-	-	-	_ V	234.9
	· · · · · · · · · · · · · · · · · · ·			HP	Υ	Α	4604.7	9.3	4500.8	9.2	4588.0	9.3	_	224.7
4	2834.5	2813.5	Cased SPT	SCH	Y	G*	5498.0	-	-	-	-	-	_ V·	231.9
	,			HP	Υ	Α	4516.2	9.3	4181.0	8.7	4495.9	9.3	_ •	271.7
5	2828.6	2807.6	Cased SPT	SCH	Y	G	-	-	-	_	-	-	_	234.0
			- <del></del>	HP	Y	Α	4509.5	9.3	4154.9	8.6	4487.0	9.3	<b>-</b>	254.0
6	2816.0	2795.0	Cased SPT	SCH	Υ	G	-	-	-	-	-	-	V. Flow restricter plugged during	236.0
				HP	Υ	Α	4482.4	9.3	4087.1	8.5	4473.5	9.3	sampling.	270.0
7	2820.1	2799.1	Cased SPT	SCH	Y	G	-		-	-	-		V. Communication of hydrostatic behind	241.0
	***************************************			HP	Y	Α	4487.6	9.3	4074.0	8.5	4470.9	9.3	casing during sampling.	241.0
Samp	jes = SCH = HP	essure Tes	erger Strai	n Gauge				*		* <u>No</u>		mberger	Cross) gauge reading up to 1000 pe at surface.	osi

## CASED HOLE RFT PRETEST PRESSURES

ERVICE COMPANY: Schlumberger

RFT RUN NO.: 8

WELL:

Wirrah-3

DATE:

February 2, 1984 MF/STK

OBSERVERS: MF/STK

SEAT NO.	DEPTH	DEPTH	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	IHP		FORMA [*] PRESSU		F	HP	TEST RESULT	BHT
	(m)	(m SS)					psi	ppg	psi	ppg	psi	ppg	•	(°F)
8	2645.0	2624.0	Cased SPT.	SCH	Υ	G	4210.0	9.3	3818.0	8.5	4214.0	9.3	V. Plugging at restricter in flow-	202.0
				HP	Υ	Α	4213.2	9.3	3806.6	8.5	4200.4	9.3	line during sampling.	202.0

Pressure Test = PT Sample and Pressure Test = SPT

3. Yes = Y No = N KB = 21 m

Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

4. PSIA = A PSIG = G TABLE 5 - CASED HOLE RFT SAMPLE TEST REPORT

WELL:	Wirrah-3	TABLE 5 - U	ASED HULE RE	I SAMPLE IEST REI	PUR I
OBSERVER:	0'Byrne/Neumann	DATE:	Johnson 20	(6367f/31)	Diale 3
ODSLITTLIT.	O Dyline/Neumann	CHAMBER 1 (45	January 20,		RUN: 1
SEAT N	0 29/20/		4 IILIES/	CHAMBER 2 (10.4	4 litres)
	0. 28/204	28/204		28/204	
DEPTH	- NO - T 1000	2936.8	· · · · · · · · · · · · · · · · · · ·	2936.8	
	ING TIMES				
Tool S	et	2112	hrs	-	
Pretes	t Open	-		_	
Time Op		Fire Charge	2118 hrs	_	
Chambe		2137	hrs	2110	hno
Chambe:		2159	1112		hrs
Fill T				2215	hrs
		22	mins	5	mins
	Build-up	2159		2215	
	Build-up	-		-	
Build-l	Jp Time	_		_	
Seal Ch	namber	2208		2220	hrs
Tool Re	etract	-		2229	hrs
Total		_		77	mins
	PRESSURES				IIITHS
IHP	TILOSOILO	Z115 0Z			<del></del>
	,	6115.26	psia	-	
ISIP		4787.8	psia	-	
Initia	l Flowing Press.	2550.56	psia	3721.8	psia
Final f	Flowing Press.	3034.7	psia	3069.19	psia
	ng Press. Range	484.14	psia	652.61	psia
FSIP	3	4165.14	psia	4338.4	
FHP		4707.74	hora		psia
	Droce (Homes)	-		6057.0	psia
	Press. (Horner)	<del>-</del>		-	
C. TEMPERA					
	Tool Reached	2936.8	m	2936.8	m
Max. Re	ec. Temp.	237	٥F	239	oF
	rc. Stopped	0300 19/1	•	0300 19/1	hrs
Time si	nce Circ.	42.12	hrs	43.10	
			1112	47.10	hrs
	[emp. (Horner)	<del>-</del>			
	RECOVERY			· · · · · · · · · · · · · · · · · · ·	
	Pressure	1300	psig	-	
Amt Gas		39.1	cu. ft.	<b>-</b>	
Amt Oil	•	650	litre	_	
Amt Wat	er	34.6	litre	_	
Amt Oth	ners			_	
	PROPERTIES	*			
Gas Composi					
Cl		200770			
		280739	<b>bbw</b>	-	
C2		37703	ppm	-	
C3		7540	ppm	-	
1C4/nC4	<b>,</b>	1340	ppm	_	
C5	,	326	ppm	••	
C6	<b>;+</b>	15	ppm	-	
CO ₂ /H ₂ S		1%/10		_	
Oil Propert		25° °API @ 20	ppm ppm	-	
	103			-	
Colour		Dark Brown			
Fluores	cence	Bright Light Y	eTTOM		
GUR		9564	SCF/STB		
Water Prope	rties				
Resisti	vity	-			
	uivalent	_		-	
Cl-titr		16,500	nom	-	
	4.00 <b>u</b>		ppm	-	
NO ₃	<b>.</b>	30		-	
Est. Wa	ter Type pH	8.6		-	
Mud Propert		$NO_3 = 200 \text{ pH} =$	10.0		
Resisti	vity	•		-	
NaCl Eq	uivalent	-		-	
Cl - ti	trated	16,000		_	
Calibration	1				
	tion Press.	_		_	
	tion Temp.	-		-	
narrorg	Dooks and Ma	01.000 000=		01.000	
	Packard No.	2120A-00876		2120A-U0876	
Mud Wei		12.3	ppg	12.3	ppg
	ydrostatic	-	<del></del>	-	•
RFT Cho	kesize	0.02		0.02	
Remarks					<del></del>
RFT Gau		55097		2-3/4 gallon ch	namber
• ••••	3	JJ071			IGIIIDET
				preserved.	

TABLE 5 (Cont.) - CASED HULE RFT SAMPLE TEST REPURT

	TABLE 5 (Cont.	) - CASED HULE RFT SAMPLE	TEST REPURT	/ o
ELL:	Wirrah-3			( <i>636</i> 7f/32 RUN: 2
BSERVER:	O'Byrne/Neumann	DATE: January 21	., 1984	
		CHAMBER 1 (12 gall.)		(2-3/4 gall.)
SEAT NO		29/205	29/205	
DEPTH (	(m MDKB)	2942.0	2942.0	<del> </del>
RECORD	ING TIMES			
Tool Se	et	-	-	
Pretest		<b>-</b>	-	
Time Op		-	-	
Chambe		-	-	
Chambe:		<del>-</del>	-	
Fill T		-	-	
	Build-up	-	_	
	Build-up	-	_	
	Jp Time	_	-	
		<u>_</u>		
Seal C		_	_	
Tool R		· <del>-</del>	_	
Total		-		
	PRESSURES			
IHP		6116.6	-	
	prior to flow)	-	-	
	l Flowing Press.	-	-	
	Flowing Press.	-	-	
	ng Press. Range	-	-	
FSIP		-	-	
FHP		6101.3	-	
	Press. (Horner)	-		
C. TEMPER				
Denth	Tool Reached	-	-	
	ec. Temp.	-		
	irc. Stopped	-	-	
		_	-	
	ince Circ.	_	_	
	Temp. (Horner)			<del></del>
	RECOVERY	No December	No Reco	Verv
	e Pressure	No Recovery	110 11000	
Amt Ga		-		
Amt Oi		-	_	
Amt/Mu	ddy Filtrate	-	_	•
Amt Ot	hers (Whole Mud)	_		·
E. SAMPLE	PROPERTIES			· 
Gas Compos	ition			
C		-	-	•
C	2	-	-	•
	3	-	-	•
104/n0		<b>-</b>	-	•
	25 25		-	•
	26+	_	-	•
		-	-	•
CU ₂ /H ₂		_		-
Oil Prope:		<del>-</del>	•	-
Colou		<del>-</del>		-
	escence	-		_
GOR		-		
	<u>perties</u> (Whole Mud)		-	-
	tivity	-	•	_
	Equivalent		•	_
		_		_
	trated	-	•	_
	trated	-		-
Cl-ti NO ₃ /C	trated a	- - -		- -
Cl-ti NO ₃ /C Est.	trated a Water Type pH	- - -		••
Cl-ti NO ₃ /C Est. Mud Prope	trated a Water Type pH rties	- - -		- -
Cl-ti NO ₃ /C Est. Mud Prope Resis	trated a Water Type pH <u>rties</u> tivity	- - -	• • •	- - -
Cl-ti NO ₃ /C Est. Mud Prope Resis NaCl	trated a Water Type pH <u>rties</u> tivity Equivalent	- - - -	• • •	- - - -
Cl-ti NO3/C Est. Mud Prope Resis NaCl Cl -	trated a water Type pH rties tivity Equivalent titrated/No. 3	- - - -	• • •	- - - -
Cl-ti NO3/C Est. Mud Prope Resis NaCl Cl - Calibrati	trated a water Type pH rties tivity Equivalent titrated/No. 3	- - - - -	• • •	- - - -
Cl-ti NO ₃ /C Est. Mud Prope Resis NaCl Cl - Calibrati	trated a Water Type pH rties tivity Equivalent titrated/No. 3 on cration Press.	- - - - -	• • •	- - - -
Cl-ti NO3/C Est.  Mud Prope Resis NaCl Cl - Calibrati Calib Calib	trated a Water Type pH rties tivity Equivalent titrated/No. 3 on ration Press. ration Temp.		•	- - - - -
Cl-ti NO3/C Est. Mud Prope Resis NaCl Cl - Calibrati Calib Hewle	trated a water Type pH rties tivity Equivalent titrated/No. 3 on ration Press. ration Temp.	- - - - - - 2120A-00876	•	- - - - -
Cl-ti NO3/C Est.  Mud Prope Resis NaCl Cl - Calibrati Calib Hewle	trated a water Type pH rties tivity Equivalent titrated/No. 3 on ration Press. ration Temp. ett Packard No. eight	- - - - - - - - 2120A-00876 9.3 ppg		- - - -
Cl-ti NO3/C Est. Mud Prope Resis NaCl Cl - Calibrati Calib Hewle Mud W Calc.	trated a water Type pH rties tivity Equivalent titrated/No. 3 on oration Press. ration Temp. ett Packard No. eight Hydrostatic	9.3 ppg		- - - - - - -
Cl-ti NO3/C Est. Mud Prope Resis NaCl Cl - Calibrati Calib Hewle Mud W Calc.	trated a water Type pH rties tivity Equivalent titrated/No. 3 on ration Press. ration Temp. ett Packard No. eight Hydrostatic			- - - - - - - - -

TABLE 5 (Cont.) - CASED HOLE RFT SAMPLE TEST REPURT

WELI OBSI				TEST REPURT	
0001	ERVER: RN/S.T. Koh	DATE: J	anuary 2		6367f/3
	LIVER. MAY 3.11 NOT	CHAMBER 1 (45.6	anuary 2	7, 1984 CHAMBER 2 (10.5	RUN: 3
	SEAT NO.	30/206	TICLES	30/206	iltres
	DEPTH	2884.8			
Α.	RECORDING TIMES	2004.0	· <del>- · · · · · · · · · · · · · · · · · ·</del>	2884.8	
	Tool Set	U757	hrs		
	Pretest Open	0/5/	IIIZ	_	
	Time Open	0803/0808	bas	0070 (00 (1	
	Chamber Open		hrs	0839/0841	hrs
	Chamber Full	0808	hrs	0839/0841	hrs
		0829	hrs	Not filled	
	Fill Time	-		-	
	Start Build-up	0829	hrs	_	
	Finish Build-up	0833	hrs	-	
	Build—Up Time	-		-	
	Seal Chamber	0833	hrs	0854	hrs
	Tool Retract	-		0855	hrs
	Total Time	_		-	hr
	SAMPLE PRESSURES				114
	IHP	4604.7	psia	-	
	ISIP	4500.8			:_
	Initial Flowing Press.		psia	4316.6	psia
	THE TOWARING FIESS.	3500-3600	psia	150	psia
	Final Flowing Desira	7050	_ •	(Suspect Blocking)	
	Final Flowing Press.	3850	psia	280 (not filled)	) psia
	Sampling Press. Range	3500-3850	psia	-	
	FSIP	4316.6	psia	4348.1	psia
		(Not Stabilised)		(Not Stabilised)	•
	EHP	-		4588	psia
	Form. Press. (Horner)			-	•
•	TEMPERATURE				·····
	Depth Tool Reached	2885	m MDKB	2855	m MDKE
	Max. Rec. Temp.	236	٥F	236	of.
	Time Circ. Stopped	1815 26/1	hrs	1815 26/1	hrs
	Time since Circ.	13.5	hrs	13.5	hrs
	Form. Temp. (Horner)	-	111.5	17.7	1112
	SAMPLE RECOVERY		·		
	Surface Pressure	680	poia		
	Amt Gas		psig	2	psig
	Amt Dil (Waxy)	10.5	cu. ft.	0.6	cu. ft
		220	CC	50 (scum)	
	Amt Water Amt Others	40.75	litres	2.13	litres
	SAMPLE PROPERTIES			_	
	241/1 FF 1.1/0.F1/1.TF2				
9 6	Composition				
ıs ·	Composition	470400			
as_	Cl	439420	ppm	_	
ıs	C1 C2	7325	ppm ppm		
	C1 C2 C3	7325 3825			
	C1 C2 C3 1C4/nC4	7325	ppm	 - - -	
	C1 C2 C3 1C4/nC4 C5	7325 3825	bbw bbw bbw		
	C1 C2 C3 1C4/nC4	7325 3825	bbw bbw bbw bbw	- - - - -	
	C1 C2 C3 1C4/nC4 C5	7325 3825 140 - -	bbw bbw bbw bbw	- - - - -	
	C1 C2 C3 1C4/nC4 C5 C6+ C0 ₂ /H ₂ S	7325 3825 140 - - 15.5%/Nil	ppm ppm ppm ppm ppm		
.1,4	Cl C2 C3 1C4/nC4 C5 C6+ CO ₂ /H ₂ S Properties (210° API)	7325 3825 140 - - 15.5%/Nil 21 °API @ 15	bbw bbw bbw bbw	Dark Prove	
.1	Cl C2 C3 1C4/nC4 C5 C6+ CO ₂ /H ₂ S Properties (210° API) Colour	7325 3825 140 - - 15.5%/Nil 21 °API @ 15 Dark Brown	oC bbw bbw bbw bbw bbw	- - - - - - Dark Brown	
1 (	Cl C2 C3 1C4/nC4 C5 C6+ CO ₂ /H ₂ S Properties (210° API) Colour Fluorescence	7325 3825 140 - - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White	oC bbw bbw bbw bbw bbw	- - - - - - Dark Brown	
.1 (	Cl C2 C3 1C4/nC4 C5 C6+ CO ₂ /H ₂ S Properties (210° API) Colour Fluorescence GOR	7325 3825 140 - - 15.5%/Nil 21 °API @ 15 Dark Brown	oC bbw bbw bbw bbw bbw	- - - - - - Dark Brown	
 	Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Properties (210° API) Colour Fluorescence GOR r Properties	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590	ppm ppm ppm ppm ppm ppm °C		
.l (	Cl C2 C3 1C4/nC4 C5 C6+ C02/H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590 0.69 @ 72	ppm ppm ppm ppm ppm °C SCF/STB	0.696 @ 69	oF
.1 i	C1 C2 C3 1C4/nC4 C5 C6+ C0 ₂ /H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590 0.69 @ 72 8500	ppm ppm ppm ppm ppm ppm °C	0.696 <b>@</b> 69 8900	oF
.1   (   (   (   (   (   (   (   (   (	Cl C2 C3 1C4/nC4 C5 C6+ C02/H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590 0.69 @ 72 8500 3200	ppm ppm ppm ppm ppm °C SCF/STB	0.696 @ 69 8900 3350	
 	Cl C2 C3 1C4/nC4 C5 C6+ C0 ₂ /H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO ₃	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590 0.69 @ 72 8500 3200 Nil	ppm ppm ppm ppm ppm °C SCF/STB	0.696 <b>@</b> 69 8900	ppm
1	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590 0.69 @ 72 8500 3200	ppm ppm ppm ppm ppm °C SCF/STB	0.696 @ 69 8900 3350	ppm
1	Cl C2 C3 1C4/nC4 C5 C6+ C0 ₂ /H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO ₃	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590 0.69 @ 72 8500 3200 Nil	ppm ppm ppm ppm ppm °C SCF/STB	0.696 @ 69 8900 3350 Nil	ppm
l l l tte:	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590 0.69 @ 72 8500 3200 Nil	ppm ppm ppm ppm ppm °C SCF/STB	0.696 @ 69 8900 3350 Nil 7	ppm
ite:	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7	pbw bbw
ite:	Cl C2 C3 1C4/nC4 C5 C6+ C02/H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO ₃ Est. Water Type pH Properties Resistivity NaCl Equivalent	7325 3825 140 - 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700	ppm ppm
il i	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated/No. 3	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7	pbw bbw
ite:	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Doration	7325 3825 140 - 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700	ppm ppm
	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated Cl-titrated Cl-titrated Cl-titrated Coration Calibration Press.	7325 3825 140 - 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700	ppm ppm
	Cl C2 C3 1C4/nC4 C5 C6+ C0 ₂ /H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO ₃ Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press. Calibration Temp.	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700 18000	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700 18000	ppm ppm
il i	C1 C2 C3 1C4/nC4 C5 C6+ C02/H ₂ S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent C1-titrated NO ₃ Est. Water Type pH Properties Resistivity NaCl Equivalent C1 - titrated/No. 3 Dration Calibration Press. Calibration Temp. Hewlett Packard No.	7325 3825 140 - 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700 18000 - 876	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700 18000	ppm ppm
il	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700 18000  - 876 9.3	ppm ppm ppm ppm ppm °C SCF/STB °F ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700 18000	ppm ppm
ill ( inte:  int	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700 18000  - 876 9.3 4592	ppm ppm ppm ppm ppm ppm ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700 18000	ppm ppm
ilite:	Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Properties (210° API) Colour Fluorescence GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3 Est. Water Type pH Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic RFT Chokesize	7325 3825 140 - 15.5%/Nil 21 °API @ 15 Dark Brown Bright Milky White 7590  0.69 @ 72 8500 3200 Nil 7  0.365 @ °C 21.1 29700 18000  - 876 9.3	ppm ppm ppm ppm ppm ppm ppm ppm ppm	0.696 @ 69 8900 3350 Nil 7 0.365 @ °C 21.1 29700 18000	ppm ppm ppm

WELL:

(63671/34)

OBSERVER: AL/S.T. Koh		ebruary 2	, 1984	RUN: 4
		litres)	CHAMBER 2 (3.8	litres)
SEAT NO.	31/207		31/207	
DEPTH (m MDKB)	2834.5		2834.5	
A. RECORDING TIMES				
Tool Set	0730	hrs	-	
Pretest Open	-		-	
Time Open	0736	hrs	0846	hrs
Chamber Open Chamber Full	0736	hrs	0846	hrs
	0800	hrs	0848	_
Fill Time	24	mins	2	mins
Start Build-up	0800	hrs	0848	hrs
Finish Build—up Build—Up Time	0845	hrs	0917	hrs
Seal Chamber	-	<b>b</b>		
Tool Retract	0816	hrs	0852	hrs
Total Time	_		0917	hrs
B. SAMPLE PRESSURES				hr
IHP	4516.2		····	
ISIP (prior to flow)	4181	psia	4060 <b>.</b> 4	
Initial Flowing Press.	3000	psia psia		psia
Final Flowing Press.	2200		3100 3200	psia
Sampling Press. Range	2230-3000	psia	3200 3100, 3300	psia
FSIP	4060.4	psia	3100-3200	psia
1 311			4082.2	psia
FHP	(Not Stabilised)		(Not Stabilised)	
Form. Press. (Horner)	_		4495.9	psia
C. TEMPERATURE	<b>—</b>		-	
Depth Tool Reached	2836	m MDIZD	2077	- 140140
Max. Rec. Temp.	232	m MDKB °F	2836	m MDKB °F
Time Circ. Stopped	1145 1/2		232 1145 1/2	
Time since Circ.	20.5	hrs hrs	21.5	hrs
Form. Temp. (Horner)	20.7	1112	41.J	hrs
D. SAMPLE RECOVERY			<del>-</del>	
Surface Pressure	920	psig	690	psig
Amt Gas	6 1	CU ft	n	O11 FF
Amt Gas	6.1 90	cu. ft.	(soum)	cu. ft.
Amt Oil (Waxy)	90	CC	(scum)	CC
Amt Oil (Waxy) Amt Water				
Amt Oil (Waxy) Amt Water Amt Others	90	CC	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others E. SAMPLE PROPERTIES	90	CC	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others	90 43.3 —	cc litres	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others E. SAMPLE PROPERTIES Gas Composition Cl	90 43.3 - 58700	cc litres	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others E. SAMPLE PROPERTIES Gas Composition	90 43.3 - 58700 20690	cc litres ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition Cl C2	90 43.3 - 58700 20690 12120	ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3	90 43.3 - 58700 20690	ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl  C2  C3  1C4/nC4	90 43.3 - 58700 20690 12120 6530	ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl  C2  C3  1C4/nC4  C5	90 43.3 - 58700 20690 12120 6530 330 TR	ppm ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Ni1	ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ CO2/H ₂ S	90 43.3 - 58700 20690 12120 6530 330 TR	ppm ppm ppm ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ CO2/H2S Oil Properties (210° API)	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Ni1 23 °API @ 15.6	ppm ppm ppm ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Ni1 23 °API @ 15.6 Dark Brown	ppm ppm ppm ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment)	ppm ppm ppm ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White	ppm ppm ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White	ppm ppm ppm ppm ppm ppm ppm ppm	(scum)	CC
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777	ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75	cc litres
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76	ppm ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75	of ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/-	ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75 1 50.387 @ 75	cc litres
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca Est. Water Type pH	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000	ppm ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75 1 5000 16000	of ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type pH Mud Properties	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5	ppm ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75 1 5000 16000 10/Nil	of ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/-	ppm ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75 1 5000 16000 10/Nil	of ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity NaCl Equivalent	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F	ppm ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75	of ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type pH  Mud Properties  Resistivity NaCl Equivalent Cl - titrated/No. 3	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5	ppm ppm ppm ppm ppm ppm ppm ppm oC	(scum) 3.75 15500 16000 10/Nil 11.4	of ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type pH  Mud Properties  Resistivity NaCl Equivalent Cl - titrated/No. 3  Calibration	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F	ppm ppm ppm ppm ppm ppm oC SCF/STB	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity NaCl Equivalent C1 - titrated/No. 3  Calibration Calibration Press.	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F	ppm ppm ppm ppm ppm ppm oC SCF/STB	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity NaCl Equivalent C1 - titrated/No. 3  Calibration  Calibration Press. Calibration Temp.	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F - 18000	ppm ppm ppm ppm ppm ppm oC SCF/STB	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity NaCl Equivalent C1 - titrated/No. 3  Calibration Calibration Press. Calibration Temp. Hewlett Packard No.	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F - 18000	ppm ppm ppm ppm ppm ppm oC SCF/STB	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type pH Mud Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Calibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F - 18000	ppm ppm ppm ppm ppm ppm oC SCF/STB	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type pH Mud Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Calibration  Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F - 18000	ppm ppm ppm ppm ppm ppm ppm oC SCF/STB oF ppm ppm	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API) Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Calibration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic RFT Chokesize	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F - 18000 - 876 9.3 4512 0.03 (Flow rest.)	ppm ppm ppm ppm ppm ppm ppm oC SCF/STB oF ppm ppm ppm	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity NaCl Equivalent C1 - titrated/No. 3  Calibration  Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic RFT Chokesize Remarks  No v	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777  0.402 @ 76 14000 13000 Nil/- 10.5  0.357 @ 69 °F - 18000  - 876 9.3 4512 0.03 (Flow rest.) water cushion.	ppm ppm ppm ppm ppm ppm ppm oC SCF/STB oF ppm ppm ppm	(scum) 3.75	oF ppm ppm
Amt Oil (Waxy) Amt Water Amt Others  E. SAMPLE PROPERTIES  Gas Composition  Cl C2 C3 1C4/nC4 C5 C6+ C02/H2S Oil Properties (210° API)  Colour  Fluorescence GOR Water Properties Resistivity NaCl Equivalent C1-titrated NO3/Ca Est. Water Type pH  Mud Properties Resistivity NaCl Equivalent C1 - titrated/No. 3  Calibration  Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic RFT Chokesize Remarks  No v	90 43.3 - 58700 20690 12120 6530 330 TR 0.2%/Nil 23 °API @ 15.6 Dark Brown (inc. sediment) Bright Milky White 10,777 0.402 @ 76 14000 13000 Nil/- 10.5 0.357 @ 69 °F - 18000 - 876 9.3 4512 0.03 (Flow rest.)	ppm ppm ppm ppm ppm ppm ppm oC SCF/STB oF ppm ppm ppm	(scum) 3.75	oF ppm ppm

WELL:

(6367f/35)

0BS	ERVER: AL/S.T. Koh	DATE: Feb	ruary 2	. 1984	RUN: 5
		CHAMBER 1 (45.6 1	itres)	CHAMBER 2 (10.4	
	SEAT NO.	32/208		32/208	
	DEPTH (m MDKB)	2828 <b>.</b> 6		2828.6	
A.	RECORDING TIMES				
	Tool Set	1314	hrs	=	
	Pretest Open	-		_	
	Time Open	1320	hrs	1420	hrs
	Chamber Open	1320	hrs	1420	hrs
	Chamber Full	1400	hrs	1431	
	Fill Time	40	mins	-	
	Start Build-up	1400	hrs	1431	hrs
	Finish Build—up	1420	hrs	1449	hrs
	Build-Up Time	-		-	
	Seal Chamber	1415	hrs	1444	hrs
	Tool Retract	-		1449	hrs
	Total Time	-		-	hr
В.	SAMPLE PRESSURES	-	<del></del>		
	IHP	4509.5	psia	-	
	ISIP (prior to flow)	4154.9	psia	3829.6	psia
	Initial Flowing Press.	3435	psia	3400	psia
	Final Flowing Press.	1895-3600	psia	2497-3742	psia
	Sampling Press. Range	1895-3600	psia	3871.4	psia
	FSIP	3829.6 (not stab.)		2497-3742	psia
	FHP	_	<b>P</b>	4487	psia
	Form. Press. (Horner)	_			h
C.	TEMPERATURE	<del></del>	<del></del>		<del></del>
	Depth Tool Reached	2830	m MDKB	2830	m MDKB
	Max. Rec. Temp.	-		_	111 1110110
	Time Circ. Stopped	1145 1/2	hrs	1145 1/2	hrs
	Time since Circ.		1120		1113
	Form. Temp. (Horner)	_		_	
D.	SAMPLE RECOVERY			<del></del>	
	Surface Pressure	1550	psig	1300	psig
	Amt Gas	54.5	cu. ft.	•	cu. ft.
	Amt Oil (Waxy)	(scum)	cu. i c	(scum)	cu. it.
	Amt/Muddy Filtrate	40.8	litres	9.2	litres
	Amt Others	-	TTCTCS	7.2	110163
E.	SAMPLE PROPERTIES				
	Composition		<del></del>		
	Cl	317360	ppm	195300	nnm
	C2	11850	bbw bbw	18300	ppm
	C3	7320	bbw	4040	ppm
	1C4/nC4	2650		1880	ppm
	C5	1110	ppm	1270	ppm
	C6+	160	ppm	1070	ppm
	CO ₂ /H ₂ S	3.2%/Nil	ppm	2.8%/Nil	ppm
Oi l	Properties	J. 2/0/ NII	bbw	2.0%/ NII	ppm
011	Colour	<u> </u>		Ξ	
	Fluorescence	<u>_</u>		_	
	GOR	_		<b>-</b>	
Wate	er Properties/muddy filt.	_		-	
1,400	Resistivity	0 <b>.311 @</b> 76	oF.	0.322 @ 74	٥F
			•		
	NaCl Equivalent Cl-titrated	20000	ppm	19000	ppm
		11000	bbw	12000	ppm
	NO ₃ /Ca	Nil		Trace	
	Est. Water Type pH	8.3		7.4	
<b>ل</b> م. بار	Proportios	Brown Colour		Brown Colour	
MUU	Properties Resistivity	0.357.60.00		0.757 @ 40.05	
	Resistivity	0.357 @ 69 °F		0.357 @ 69 °F	
	NaCl Equivalent	1 9000		1,000	m
Co 1 4	Cl - titrated/No. 3 Dration	18000	ppm	18000	ppm
<u>rari</u>	Calibration Press.				
	Calibration Town	-		-	
	Calibration Temp. Hewlett Packard No.	977		- 07/	
	Mud Weight	876	222	876 9.7	222
		9.3	ppg	9.3	ppg
	Calc. Hydrostatic RFT Chokesize	4502.7	psia	4502.7	psia
		0.03		0.03	
	· · ·	water cushion. Flow		No water cushion.	
	res	tricter used.		Flow restricter use	:u.

TABLE 5 (Cont.) - CASED HOLE RFT SAMPLE TEST REPORT

שכנ	_: Wirrah=3 ERVER: AL/S.T. Koh	ממ	E. E.b.	2 1004	(6367f/3
וכטנ	ERVER: AL/S.I. KUII	DAT	E: February (45.6 litres	2, 1984	RUN:
	SEAT NO.	33/209	(45.6 IICIES	33/209	(10.4 litres
	DEPTH (m MDKB)	2816.0		2816 <b>.</b> 0	
	RECORDING TIMES	2010.0		2010.0	
<u> </u>	Tool Set	1849	hrs		
	Pretest Open	1042	1113	_	
	Time Open	1855	hrs	_	
	Chamber Open	1855	hrs		
	Chamber Full	1000	111.2	-	
	Fill Time	<u>-</u>		-	
	Start Build-up	-		-	
	Finish Build-up	_		-	
	Build-Up Time	-		-	
	Seal Chamber	-		-	
	Tool Retract	-		-	
	Total Time	-		-	
	TOTAL TIME	-		-	
	SAMPLE PRESSURES				
	THP	4482.	4 psia		····
	ISIP (prior to flow)	4087.		_	
	Initial Flowing Press	3. <del>-</del>	_ psia	_	
	Final Flowing Press.				
	Sampling Press. Range	· -		-	
	FSIP	- -		-	
	FHP	4473.	5		
	Form. Press. (Horner)		-	-	
,	TEMPERATURE		<del></del>	<del></del>	
	Depth Tool Reached	2830	m MDk	(B 2830	m MDKE
	Max. Rec. Temp.		111 1-101	236	iii HUNL
	Time Circ. Stopped	1145	1/2 hrs	1145	1/2 hrs
	Time since Circ.		-, - , ,,20	±±-7	1/2 /115
	Form. Temp. (Horner)	_		_	
	SAMPLE RECOVERY			<del></del>	
	Surface Pressure		<del></del>		<del></del>
	Amt Gas	_		_	
	Amt Oil (Waxy)	-		_	
	Amt/Muddy Filtrate	_		_	
	Amt Others	_		_	
	SAMPLE PROPERTIES			<del>*</del>	
	Composition				
	Cl	Tool Blocked		Tool Blocked	
	C2	No Recovery		No Recovery	
	C3	-		-	
	1C4/nC4	-		_	
	C5	-		-	
	C6+	-		_	
(	CO ₂ /H ₂ S	-		-	
	Properties	_		-	
	Colour	-		-	
	Fluorescence	-			
(	GOR	-		-	
(		=		-	
te:	GOR	-		-	
te:	GOR r Properties Resistivity	- -		-	
te:	GOR r Properties	- - -		- - -	
te:	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca	- - - -		- - -	
te:	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca	- - - - -		- - - -	
te:           	GOR r <u>Properties</u> Resistivity NaCl Equivalent Cl-titrated	-		- - - -	
te:	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type	- - - - - 0.357 @ 69 9	o <b>F</b>	- - - - - - 1,357 @ 69	o <del>L</del>
te:	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type	0.357 @ 69 9	PF	- - - - - 0.357 @ 69	°F
te:	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NOz/Ca Est. Water Type Properties Resistivity NaCl Equivalent	-		-	
te:                   	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3	0.357 @ 69 ° 18000	PF ppm	- - - - - 0.357 @ 69 - 18000	°F ppm
te te ! ! d ! f ! lit	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Doration	-		-	
te:	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press.	-		-	
te:   te: 	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press. Calibration Temp.	18000		18000	
   te:   (   (   (   (   (   (	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press. Calibration Temp. Hewlett Packard No.	18000 - - 876	ppm	- 18000 - - 876	ppm
te:  I te	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight	18000 - 876 9.3	ppm s ppg	18000 - 876 9•	ppm 3 ppg
te:     te:   ()   ()   ()   ()   ()	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Pration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic	18000 - 876 9.3 4483	ppm ppg psia	18000 - 876 9. 4483	ppm 3 ppg psia
te:   te: 	GOR r Properties Resistivity NaCl Equivalent Cl-titrated NO3/Ca Est. Water Type Properties Resistivity NaCl Equivalent Cl - titrated/No. 3 Dration Calibration Press. Calibration Temp. Hewlett Packard No. Mud Weight Calc. Hydrostatic RFT Chokesize	18000 - 876 9.3	ppm ppg psia	18000 - 876 9•	ppm 3 ppg psia 03

## TABLE 5 (Cont.) - CASED HOLE RFT SAMPLE TEST REPORT

Wirrah-3 (6367f/37) AL/S.T. Koh OBSERVER: DATE: <u>January</u> 21, 1984 RUN: CHAMBER 1 (12 gall.) CHAMBER 2 (2-3/4 gall.) SEAT NO. 34/210 34/210 DEPTH (m MDKB) 2820.1 2820.1 RECORDING TIMES Tool Set 001344 hrs/min/sec Pretest Open 001936 hrs/min/sec Time Open Chamber Open Chamber Full Fill Time Start Build-up Finish Build-up Build-Up Time Seal Chamber Tool Retract Total Time B. SAMPLE PRESSURES IHP 4487.6 psia ISIP (prior to flow) 4074.0 psia Initial Flowing Press. 4211-4280 psia Final Flowing Press. Sampling Press. Range **FSIP** FHP 4470.9 Form. Press. (Horner) TEMPERATURE Depth Tool Reached 2830 m MDKB Max. Rec. Temp. 237 Time Circ. Stopped 1145 1/2 hrs Time since Circ. Form. Temp. (Horner) SAMPLE RECOVERY Surface Pressure O Amt Gas Nil Amt Oil Nil Amt/Muddy Filtrate Nil Amt Others (Whole Mud) 60 SAMPLE PROPERTIES Gas Composition Cl C2 **C3** 1C4/nC4 **C5** C6+ CO2/H2S Oil Properties Colour Fluorescence GOR Water Properties (Whole Mud) Resistivity 0.43 @ 66 °F NaCl Equivalent -Cl-titrated 15000 NO₃/Ca Nil Est. Water Type pH 10.8 Mud Properties Resistivity 0.357 @ 69 °F NaCl Equivalent Cl - titrated/No. 3 18000 ppm Calibration Calibration Press. Calibration Temp. Hewlett Packard No. 876 Mud Weight 9.3 ppg Calc. Hydrostatic 4483.3 4483.3 psia psia RFT Chokesize 0.02 0.02 Communication from hydrostatic Remarks column from behind casing.

TABLE 5 (Cont.) - CASED HOLE RFT SAMPLE TEST REPORT

WEL	L: Wirrah-3	nt.) - CASED HOLE	RFI ŞAMPLE IE	ST REPURT	(6367f/38)				
	ERVER: MF/S.T. Koh	DATE:	February 19,	1984	RUN: 8				
		CHAMBER 1 (45	litres)	CHAMBER 2 (	litres)				
	SEAT NO.	35/211		_					
A.	DEPTH (m MDKB) RECORDING TIMES	2645	<del></del>	<del></del>					
<u>~.</u>	Tool Set	1615	hno						
	Pretest Open	1017	hrs	<b>-</b>					
	Time Open	•••	hrs	_					
	Chamber Open	1633/1638	hrs	_					
	Chamber Full	1643/1651	hrs						
		(Suspect Plugo							
	Fill Time	-	, 3.	-					
	Start Build-up	1643/1651	hrs	-					
	Finish Build—up	-		-					
	Build-Up Time	-		-					
	Seal Chamber	1707	hrs	_					
	Tool Retract	1712	hrs	-					
0	Total Time								
В.	SAMPLE PRESSURES	/O17 O							
	ISIP (prior to flow)	4213.2	psia	-					
	Initial Flowing Press.	3806 <b>.</b> 6 2870 <b>–</b> 3750	psia Dsia	-					
	Final Flowing Press.	2670 <b>-</b> 3730 3799	psia psia	<b>-</b>					
	Sampling Press. Range	3750 <b>–</b> 3799		<del>-</del>					
	FSIP	3807 <b>.</b> 0	psia	<b>-</b>					
	FHP	4200.4	psia	_					
	Form. Press. (Horner)	-	poza	_					
C.	TEMPERATURE	······································	· · · · · · · · · · · · · · · · · · ·						
	Depth Tool Reached	2646.5	m MDKB	<del></del>	<del>"T 1 = " </del>				
	Max. Rec. Temp.	-		-					
	Time Circ. Stopped	-		-					
	Time since Circ.	-		-					
	Form. Temp. (Horner)	_		-					
D.	SAMPLE RECOVERY								
	Surface Pressure	0	0.4						
	Amt Gas Amt Oil	0.1	cu. ft.	-					
	Amt/Muddy Filtrate	0		-					
	Amt Others (Whole Mud)	0 0		_					
Ē.	SAMPLE PROPERTIES				<del></del>				
Gas	Composition								
	Cl	-		_					
	C2			-					
	C3	-		-					
	1C4/nC4	-		-					
	C5	-		-					
	C6+	-		-					
043	CO ₂ /H ₂ S	-		-					
011	Properties	-							
	Colour Fluorescence	-		-					
	GOR	_		-					
Wate	er Properties (Whole Muc	<u> </u>		-					
	Resistivity	=, =		_					
	NaCl Equivalent	-		-					
	Cl-titrated	-		-					
	NO ₃ /Ca	•		_					
	Est. Water Type	_		-					
Mud	<u>Properties</u>								
	Resistivity	-		-					
	NaCl Equivalent	-		-					
	Cl - titrated/No. 3	12000	ppm	-					
<u>cali</u>	bration								
	Calibration Press.	-		-					
	Calibration Temp.	-		-					
	Hewlett Packard No. Mud Weight	876	nna	-					
	Calc. Hydrostatic	9 <b>.</b> 3 4211	ppg	-					
	RFT Chokesize	4411	psia	-	•				
		n 2 x 6 gal. with	flow restrict	er					
	Su	spect plugging at	restricter in	}					
flowline. Maximum tool length run.									

OIL and GAS DIVISIO

FIGURE 4: WIRRAH-3 W.C.R. VOL 2

29 NUV 1985 WIRRAH - 3 TEST 3 COMPUTER SIMULATION - GOOD MATCH (PERMEABILITY 46.2md WIDTH 312.5 ft LENGTH 4188 ft)



A. PRESSURE VS TIME (--- ACTUAL --- SIMULATION)



B. HORNER PLOT ( --- SIMULATION)

OIL and GAS DIVISION

FIGURE 5: WIRRAHI-3 W.C.R. VOL 2

29 NOV 1985

WIRRAH - 3 TEST 3 COMPUTER SIMULATION - REDUCED OIP (PERMEABILITY 46.2md WIDTH 312.5ft LENGTH 2722ft)



A. PRESSURE VS TIME (--- ACTUAL --- SIMULATION)



B. HORNER PLOT (-ACTUAL--- SIMULATION)



This is an enclosure indicator page.

The enclosure PE905531 is enclosed within the container PE902506 at this location in this document.

The enclosure PE905531 has the following characteristics:

ITEM_BARCODE = PE905531
CONTAINER_BARCODE = PE902506

NAME = Well Depth vs Formation Pressure Plot

BASIN = GIPPSLAND PERMIT = VIC/L2 TYPE = WELL

SUBTYPE = DIAGRAM

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 29/11/85$ 

 $W_NO = W840$ 

WELL_NAME = WIRRAH-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE905533 is enclosed within the container PE902506 at this location in this document.

The enclosure PE905533 has the following characteristics:

ITEM_BARCODE = PE905533 CONTAINER_BARCODE = PE902506

NAME = Horner Plot

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Wirrah-3 Horner Plot, test 3, Fig 3

from WCR vol 2

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 29/11/85

 $W_NO = W840$ 

WELL_NAME = WIRRAH-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE905532 is enclosed within the container PE902506 at this location in this document.

The enclosure PE905532 has the following characteristics:

ITEM_BARCODE = PE905532
CONTAINER_BARCODE = PE902506

NAME = Horner Analysis Plot

BASIN = GIPPSLAND PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Wirrah-3 Horner Analysis Plot, test 2A,

Fig 2 from WCR vol 2

REMARKS =

DATE_CREATED = 7/02/84 DATE_RECEIVED = 29/11/85

 $W_NO = W840$ 

WELL_NAME = WIRRAH-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE905534 is enclosed within the container PE902506 at this location in this document.

The enclosure PE905534 has the following characteristics:

ITEM_BARCODE = PE905534
CONTAINER_BARCODE = PE902506

NAME = Multi Rate Analysis Plot

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Wirrah-3 Multi Rate Analysis Plot, PT

3A, Fig 6 from WCR vol 2

REMARKS =

DATE_CREATED = 17/02/84

DATE_RECEIVED = 29/11/85

 $W_NO = W840$ 

WELL_NAME = WIRRAH-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

# Appendix 6

#### APPENDIX 0

#### WIRRAH-3

#### ABNORMAL PRESSURE STUDY

#### (I) CONCLUSION

Comparison and correlation of various drilling parameters, RFT results and electric logs data, suggests the onset of abnormally pressured formation at around 2800mKB (2779mSS).

#### (II) METHODS

a) In order to calculate the pore pressure of the Latrobe Group, a <u>Wireline Log Pore Pressure Plot</u> was produced. The transit time readings from the Sonic (BHC) log, the bulk shale density readings from density (LDTC) log and the conductivity values converted from DLL resistivity logs were plotted on 2-cycle logarithmic graph paper versus depth (graph 1). All depth readings are from Density logs (Table 1).

The plots indicate that the sediments appear to be normally compacted to about 2696mKB, where there is an abrupt decrease in both the velocity and the shale density values indicating the possible presence of abnormal pressure. The transit time increases from 230 usec/m to 270 usec/m (at 2723mKB and at 2837mKB respectively), while the shale density values decrease from 2.65 gm/cc to 2.47 gm/cc (at 268lmKB and 294lmKB respectively). An increase in both shale density and in interval velocity in the lower part of the well, should be considered as a lithological effect rather than a compaction effect. It should be noted that the low slope of the shale density curve between 2850mKB to 2910mKB maybe due to wash-out effect at the measured points, which results in low density values of the shale in that inteval.

(b) The "Drill Data Plot" shows a number of parameters such as ROP, mud gas, 'd'c exponent and mud weight, all related to lithology. In the case of Wirrah-3, the ROP, temperature, and 'd'c exponent plots show normal trend down to the total depth of the well (at 3257mKB) T.D. The rate of penetration (ROP) shows a negative drill-off or "Dulling" trend from 2990mKB to total depth (plots 1 and 2). Below 3000mKB trip gas levels are high despite the elevation of mud weight from 9.6ppg to 12.2ppg. These parameters confirm the presence (plot 3) of abnormal pressure.

The pore <u>pressure plot</u>, shows a shift in trend at 3040mKB. The calculated pore pressure increases to 9.0ppg below 3041mKB, to 10ppg below 3138mKB and reaches 11.9ppg at 3211mKB. From 3220mKB the calculated pore pressure decreases to 11.7ppg and remains at that level to T.D. This calculated trend indicates the presence of abnormal pressure below 3000m depth.

- (c) The RFT data plot shows a shift in the normal trend of formation pressure at 2800mKB (2779mSS), where the formation pressure increases from 3975psi (mud weight equivalent 8.4ppg) to 4800psi (M.W. eq. 9.6ppg) at 2930mKB (2909mSS) (Plot 4). If the formation pressure plot is normalised (Plot 5) a 45 psi deviation from normal trend is obvious from 2600mKB to 2800mKB, where the formation pressure increases, possibly indicating the onset of abnormal pressure.
- (d) The failure of the Core Laboratories drill data plots to accurately pinpoint the top of abnormal pressure (shown from 2700mKB to 2800mKB by both the electric log Pore Pressure Plot and the RFT pressure plot) may be attributed to the fluctuation of drilling parameters (mud weight, weight on bit, mud circulation density). The plots probably only detected the presence of abnormal pressure when the differential between mud weight and the higher pore pressures became overwhelming (Plots 1, 2, 3 and 3a).

TABLE #1

Depth	Corductivity + 1,000	Shale Density	Sonic	Depth	Shale Dersity	Soric
1509.0 1553.5 1597.5 1649.0 1717.0 1743.0 1776.0 1804.0 1858.0 1887.0 1930.0 1959.0 1988.0 2013.0 2096.0 2127.0 2152.0 2152.0 2182.0 2216.0 2250.0 2333.0 2369.5 2419.0 2468.0 2502.0	+ 1,000  1277 1117 1050 1043 1033 1025 1041 1031 1055 1100 1055 1143 1100 1100 1083 1058 1066 1071 1058 1058 1058 1058 1058 1058 1058 105	2.77 2.23 2.50 2.36 2.49 2.57 2.52 2.45 2.47 2.52 2.53 2.57 2.42 2.53 2.59 2.60 2.60 2.60 2.60 2.62 2.55 2.55 2.55 2.55 2.55 2.55 2.55	280 310 290 320 285 270 250 280 270 295 260 275 270 275 270 275 250 240 240 250 250 250 250 250 250 250 250 240 250 250 250 250 250 240 250 250 240 250 250 240 250 250 250 250 250 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 275 270 270 270 270 270 270 270 270 270 270	Depth 2994.5 3052.0 3088.0	2.63 2.68 2.71	230 220 220
2540.0 2605.0	1043 1033	2.65 2.60	225 250			
2633.0 2681.0 2763.5	1040 1034 1020	2.60 2.65 2.60	250 240 250			
2789.5 2837.0 2875.0	1011 1030 1020	2.58 2.57 2.54	250 270 250			
2908.5 2941.0	1020 1028	2.49 2.47	260 250			

02371/32









| 70 m TO 3227m | 10 m TO 17 JAN 1984 | 10 m TO 18 m TO 17 JAN 1984 | 10 m TO 18 m TO FLOWLINE TEMPERATURE *C + ADDING CHEMICALS // MATER - IN F FLUSHING RICER - - OUT 7 2 20 40 60 80 MSL FLOWLINE TEMPERATURE END TO END CB1 CB2 NB6 CB9 NB12 NBIS NBIS CNBIS CNBIS CNBIS CNBIS

# PRESSURE LAB PLOT

EXTENDED SERVICE PACKAGE - ESP

ESSO AUSTRALIA LIC WIRRAM NO 3 SIPPSLAMD BASIM BASS STRAIT AUSTRALIA 38"1: 49 40 S

70m °C 3257m 27 NOV 1983 TO 17 JAN 1984 CHARLES. MOWATT PAULET 2007 SEAWATER-OPTIL, SOLIDS 70 1400 m SEAWATER GEL 1400 m TO











WELL: WIRRAH-3



NORMALISED PRESSURE DEPTH PLOT

PLOT 5.

#### PE905535

This is an enclosure indicator page. The enclosure PE905535 is enclosed within the container PE902506 at this location in this document.

The enclosure PE905535 has the following characteristics:

ITEM_BARCODE = PE905535
CONTAINER_BARCODE = PE902506

NAME = Pressure Depth- Plot

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL SUBTYPE = DIAGRAM

DESCRIPTION = Wirrah-3 Pressure/Depth Plot from WCR

vol 2

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 29/11/85$ 

 $W_NO = W840$ 

WELL_NAME = WIRRAH-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

# APPENDIX 7

## APPENDIX 7

## GEOCHEMICAL REPORT

## WIRRAH-3 WELL, GIPPSLAND BASIN

## VICTORIA

by

J.K. EMMETT

Sample handling and Analyses by:

<ul> <li>D.M. Hill</li> <li>D.M. Ford</li> <li>D.E. Bishop</li> <li>H. Schiller</li> <li>J. McCardle</li> <li>Exxon Production Research Comp</li> <li>Geochem Laboratories</li> </ul>	) ) ESSO AUSTRALIA LTD ) )
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------

Esso Australia Ltd. Geochemical Report

November 1984

### CONTENTS

### INTRODUCTION

## DISCUSSION OF RESULTS

## CONCLUSIONS

## LIST OF TABLES

- 1)  $C_{1-4}$  Headspace Cuttings Gas Data 2) Total Organic Carbon Report
- Vitrinite Reflectance Report
- 4) Rock-Eval Pyrolysis Results
- 5) 6) Kerogen Elemental Analysis Report
- Kerogen Elemental Atomic Ratios Report
- 7) C₁₅₊ Liquid Chromatography Results 8) Wirrah-3 Oils Liquid Chromatography Data 9) API Gravities of Wirrah-3 Oils

## LIST OF FIGURES

1)	(a)	C ₁₋₄	Headsp	ace Cut	ting	s Ga	s L	.og				
2)	Vitr	∌ WE: inite	Peflec	) Gas L tance v	.uy 'e D	enth						
3)	Rock-	-Fval	Matura	ition an	o. D	uani	r M	atter	Type			
4)	Atom	ic H/0	C vs. A	tomic O	/C -	Mod	ifi	ed Van	Krev	elen Plot		
5)				ts of K								
				t Satur						2180.71 -	2180.73m	(KB)
6) 7)	-11 ·		11	11	11			" "	,	2653.76 -		
8)	11		11	11	11			11	,		2807.lm	
9)	11		11	11	11			11	,		3116.6m	
10)	Whole	e Oil	Chroma	togram,	Wir:	rah—:	3,	RFT-4/	35,		2023.7m	(KB)
11)	11	11		,		11	,	RFT-3/	28,		2349.2m	(KB)
12)	11	11		,		11	,	Produc	tion	Test No.4,	2635-264	6m (KB)
13)	11	11		,		11		RFT-10			2707.8m	
14)	11	11		11 ,		11	,	RFT-9,			2731.Om	(KB)
15)	11	11		11 ,		11	,	RFT-25	/170,		2785.5m	(KB)
16)	11	11		" ,		11	,	CRFT-4	/4,		2834.5m	(KB)
17)	11	11		"		11	,	Produc	tion	Test No.1A,	2861-287	2.5m (KB)
									an	d	2883-289	4m (KB)
18)	11	11		,		11	,	RFT <b>-</b> 28,	/204,		2936.8m	(KB)
19)	C ₁₅₊	Satur	ate Ch	romatog:	ram,	Wir	rah	-3 Oil	, RFT	<b>-</b> 4/35,	2023.7m	(KB)
20)	11		11		11			11		Production	Test No.	4,
											2635-264	6m(KB)
20)	11		11		11			11	",	Production	Test No.	lA,
								2861.	5-287	2.5m (KB) ar	nd 288 <b>3-</b> 2	894m (KB)
21)	11		11		11			11	π,	RFT28/204,	2936.8m	(KB)

## APPENDIX

Detailed Vitrinite Reflectance and Exinite Flourescence Data - Report by A.C. Cook.

#### WIRRAH-3

#### INTRODUCTION

Samples of wet canned cuttings, sidewall cores and conventional cores collected during drilling of the Wirrah-3 well, Gippsland Basin, were subjected to various geochemical analyses. Canned cuttings composited over 15-metre intervals were collected from 210m (KB) down to Total Depth (T.D.) at 3255m (KB). Light hydrocarbon ( $C_{1-4}$ ) headspace gases were determined on alternate 15-metre intervals from 1365m (KB) to T.D. Other samples were selected for more detailed analyses such as Total Organic Carbon (T.O.C.), Rock-Eval pyrolysis, kerogen isolation and elemental analysis, and  $C_{15+}$  liquid and gas chromatography. Vitrinite reflectance measurements were performed by A.C. Cook of Wollongong.

A number of oil samples were analysed for API gravity, "whole oil" gas chromatography,  $\mathrm{C}_{15+}$  liquid and gas chromatography, and carbon isotopes were determined on the saturate and aromatic fractions.

#### DISCUSSION OF RESULTS

The detailed headspace  $C_{1-4}$  cuttings gas data are presented in Table 1. These data are more conveniently represented in well-log form in Figures 1(a) and 1(b). Total cuttings gas is moderately rich in the Lakes Entrance Formation sediments, although methane is the most predominant component. This indicates a fair hydrocarbon source potential, for dry gas only at present maturity levels. Cuttings gas values for the Latrobe Group sediments are generally rich with wet gas percentages usually between 15-25%. The Latrobe Group sediments are rated as having a good hydrocarbon source potential.

Total Organic Carbon (T.O.C.) values (Table 2) for the Lakes Entrance Formation (av. T.O.C. = 0.52%) and the Gurnard Formation (av. T.O.C. = 0.95%) are poor and fair respectively, whereas the undifferentiated Latrobe Group sediments which are rich in T.O.C. (av. T.O.C. = 2.15%). These data again indicate a very good hydrocarbon source potential for the Latrobe Group.

Vitrinite reflectance ( $\bar{R}_V$  max) data are presented in Table 3 and  $R_V$ -max values have been plotted with depth in Figure 2. Using the straight line maturation profile plotted in Figure 2, the top of organic maturity (taken to be  $\bar{R}_V$  max = 0.65%) is at approximately 2900m (KB). Detailed vitrinite reflectance and exinite fluorescence data are presented in Appendix-1.

Rock-Eval pyrolysis results are listed in Table 4. Figure 3 is a maturation and organic matter type plot of Hydrogen Index (HI) vs  $T_{\rm max}$  ( $^{\rm O}{\rm C}$ ) on which fields delineating the basic kerogen types and the oil generation window (indicated by equivalent vitrinite reflectance curves) are shown. Figure 3 indicates that the major organic matter types in the Latrobe Group sediments composed of predominantly Type III, terrestrially derived material, however there also exists a significant amount of more oil-prone Type II (i.e. exinite-rich) detritus.  $T_{\rm max}$  values indicate that the top of organic maturity (i.e.  $T_{\rm max}$  of 435-440°c) occurs in the vicinity of about 2750m (KB), which is less than the depth predicted by vitrinite reflectance data.

Table 5 lists elemental analyses of selected kerogen concentrates isolated from Latrobe Group sidewall cores. Approximate Hydrogen:Carbon (H/C), Oxygen:Carbon (O/C) and Nitrogen:Carbon (N/C) atomic ratios are given in Table 6. These ratios are 'approximate' since the oxygen % is calculated by difference, and the naturally occurring organic sulphur content (which may be up to a few percent) was not determined. Figure 4 is a modified Van Krevelen Plot of atomic H/C vs atomic O/C ratio, again showing fields defining the basic kerogen types. Comparison of Figure 4 with Figure 5, a similar diagram showing the principal products of kerogen evolution, basically confirms the Rock-Eval pyrolysis results, again indicating a good gas plus oil source potential for the Latrobe Group sediments.

The  $C_{15+}$  liquid chromatography results for selected conventional core samples (all samples from the Latrobe Group) are listed in Table 7. Total extract values are very rich and generally composed of 50% or more hydrocarbon material which is indicative of significant oil source potential. The corresponding  $C_{15+}$  chromatograms are shown in Figures 6-9 and are typical of predominantly terrestrial organic detritus as indicated by remnant odd over even predominance present, to varying degree, in the high molecular weight  $(C_{23+})$  waxy n-alkane region. High pristane (peak 'a') to phytane (peak 'b')

ratios also indicate deposition in an oxic environment. Indications from the chromatograms of the degree of maturation are slightly confused by the relatively mature saturate distribution from 2653.76 - 2653.77m (KB) Fig. 7, compared to the samples from 2807.lm (KB) Fig. 8, and 3116.6m (KB) Fig. 9, which are regarded as being early mature and mature respectively. It is possible that the sample at 2653.76 - 2653.77m (KB) is oil stained. As will be exemplified later (Figures 10-18), several deep intra-Labtrobe oil shows were present in the Wirrah-3 well. Based on the saturate chromatograms the top of organic maturity for significant hydrocarbon generation, is in the vicinity of 2800m.

Figures 10-18 are representative whole oil chromatograms of various intra-Latrobe oil zones encountered in Wirrah-3 . Oil Samples at 2023.7m (KB), 2635-2646m (KB), 2861.5-2872.5m (KB) and 2936.8m (KB) were fractionated by liquid chromatography and the results, together with saturate and aromatic fraction carbon isotopic compositions, are presented in Table 8. The corresponding  $C_{15+}$  saturate chromatograms are shown in Figures 19-22. The Wirrah-3 oils have fairly similar hydrocarbon distributions with API gravities ranging from 31.0 to 40.8 degrees (Table 9). They are high wax, paraffinic-based crudes, all of which show some remnant odd/even carbon preference in the high molecular weight n-alkanes. Clearly, they are sourced from predominantly terrestrial organic matter. The Wirrah-3 oils are very similar to the deep intra-Latrobe Group oils discovered in Wirrah-1.

#### CONCLUSIONS

- 1) The top of organic maturity for significant hydrocarbon generation in Wirrah-3 is at approximately 2900m (KB).
- 2) The Latrobe Group sediments have a very good gas plus oil source potential.
- 3) The deep intra-Latrobe oil shows encountered are intermediate API, high wax paraffinic crudes derived from terrestrial organic matter and are similar to the deep intra-Latrobe Group oils discovered in Wirrah-1.

## C1-C4 HYDROCARBON ANALYSES

SASIN	-	GIPPSLAND WIRPAH 3					HEADSPACE											
			GAS CON	CENTRATIO	N (VOLUME	GAS PER	MILLION V	DLUMES CUT	TINGS)	G.	AS CUI	MPOS	ITION	(PER	ENT)			
SAMPLE	-	DEPTH .	METHATIE C1	ETHANE C2	PRUPANE C3	IBUTANE IC4	NBUTANE C4	WET C2-C4	TOTAL C1-C4	WET/TOTAL PERCENT	14	TOTA	ALpGA	S: IB N	: 3 E	WEŢ	GAS -	NB 
72891 (		00000000000000000000000000000000000000	93103600748690345325614517303324988064313007548 254578 28803856111792649724862383475079696 607348 44532 4723904 2330558025 90681680 849702 888808 43321 2232 21 111224 4 1234 633118	76370607033693894288990813422909405584089024304 930364 71520288157666572386637327076541593770 39033 1 08881 352033332426017270786441593770 39033 1 08881 3520333325686441593770 535525 1 1 2 42 50111	755428023444922069913441148992901441183290 977287 718809 235968834652451578238558140542290 977287 22636511222 11 790658140542753290 977287 12632 1 71632	177628704849690024408514967918235970943565016575 2 5211121 1121 312 14 153 1 1 3 19 23157 2 5211111 1 21 312 14 153 1 1 3 1 23157	1168757052312545930616322131379892173882849064008 11545 6880355336847254739098758361774666 98108 1122 413 24 242 1 1 3 166 98176	24 53 73 73 73 73 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	777308408085949605875051879621254434580128039869 9577670 5884539487066706670384927408913753667033 477780 447155 39204520601044703492740891375367033 477780 74431 3353121 212333514 1 43 46621 1 43 46621	85501307064943207526887348119670735102435027824 477919013044571600371535508828202005053304066466 676997 05015976603820184421687030930579519 79437 14 350221230223331223513123211221221221	868868887787789 888888877887789 8888888888	11044 11211 1259 1251 11587	433594336748622043	0111401111000123111100011130121110011112	613510010404589097919324444826045939209160009413	26 35 35 38 0	55890422	44697405211159977212236439582442137687735042547

21/11/84

JASIN -

GIPPSLAND WIRPAH 3 TABLE 1 (CONT'D)

# FSSO AUSTRALIA LTD.

PAGE

C1-C4 HYDROCARBON ANALYSES

REPORT A - HEADSPACE GAS

GAS CONCENTRATION (VOLUME GAS PER MILLION VOLUMES CUTTINGS)

GAS COMPOSITION (PERCENT)

SAMPLE NO. DEPTH METHANE ETHANE PROPANE IBUTANE NBUTANE C1 C2 C3 IC4 C4 (	WET TOTAL WET/TUTAL TOTAL GAS WET GAS C2-C4 C1-C4 PERCENT M E P IB NB E P IB NB
72894 0 2895.00 1225 213 119 45 49 72894 S 2925.00 1317 227 77 26 27 77 26 27 77 26 27 77 2894 U 2955.00 9400 788 115 23 17 12894 W 2985.00 1509 144 43 36 6 6 6 7 2895 A 3045.00 901 67 35 16 15 25 72895 C 3075.00 5372 194 81 25 27 72895 C 3075.00 5372 194 81 25 72895 C 3135.00 2640 170 45 14 13 12895 G 3135.00 2640 170 45 14 13 12895 K 3195.00 2640 170 45 14 13 12895 K 3195.00 1331 239 68 16 16 12895 W 3255.00 1331 239 68 16 16 12895 W 3255.00 1331 239 68 33	426       1651       25.80       74.13.7.3.3.50.28.11.12.12.13.7.3.3.50.28.11.12.12.14.5.22.11.65.22.7.16.12.12.12.12.12.12.12.12.12.12.12.12.12.

#### TABLE 2

## TOTAL ORGANIC CARBON REPORT

MIZAL GTPPSLAUD

IASIN -	GIPPSLAUD WIRRAU 3												
SAMPLE NO	** ****	*	Gr. k *	FORMATI			Af]	TOC%	AN TOC%		T/C03	DESCRIPTION *****	
72890 C 72890 B 72889 Z 72889 B	1435.70 1455.80	MIOCENE-C MIOCENE-C MIOCENE-C	OLTGOCEDE	LAKES EL LAKES EL LAKES EL LAKES EL	NTPANCE NTRANCE		1 1 1	.33 .25 .43 1.07		1 1 1 1	45.07 45.16 45.05 16.22	GRN\GY.SLTY.CAL GRN\GY SLTY CAL GRH\GY.SLTY CAL DK.OL.GY.SLTST;	.CILULITE .CILULITE
	DEPTH: 13	306.00 10	1495.00 MÉ	TRES, <=		AVERAGE	TOC:		% EXCLUDING	VAL	UES GREA	TER THAN 10.00	% <===
72889 T 72889 D 72889 N	1509.00	CARLY OL	IGLATE EDC IGLATE EDC IGLATE EDC	LATRUBE	GPOUP-GURN GPOUP-GURN	ARD FM.					17.73 5.19 51.86	UL.GY.SLTY SH;S GRN.GY.SLTST;GL GRN.GY.SLTST;GL	AUC, V. PYR
		195.00 10	1509.00 HE	TRES, <=:	== ] ===>	AVERAGE	TUC :	.95	% EXCLUDING	VAL	UES GREA	TER THAN 10.00	% <===
GCAXTOLGFHDBZXMJFYSHIHGVFCVTHDBZXA888888888888888888888888888888888888	19000000000000000000000000000000000000	TEOCETTE - LANAMANA ANAMANA ANAMANAM	TITE COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	LAATTRREBEELLLLLAATTRROOPS CAAATTRREBEELLLLLAATTRROOPS CAAATTRREBEELLLLLAATTRROOPS CAAATTRREBEELLLLLAATTRROOPS CAAATTRREBEELLLLAATTRROOPS CAAATTRREBEELLLLLAATTRROOPS CAAATTRREBEELLLLLAATTRROOPS CAAATTRREBEELLLLLAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRROOPS CAAATTRO	90000000000000000000000000000000000000		111111111111111111111111111111111111111	3170241612409277268072755624990 3170241612409277268072755624990 3132 292 5 5 5 5 11 4 23156		111111111111111111111111111111111111111	05137947853 9928185439674 1796 8 051379143 22246520970674 1796 8 1233411223 42341111314222 2221 1	OL. GY. SANDY SLT OL. GY. SANDY SLT OL. GY. SANDY SLT V. CARB. SH. + SLT MED. GREY SILITY MED. GREY SILITY MED. GREY SILITY MED. GREY SILITY MED. GREY SILITY MED. GREY SILITY MED. GY. SLTY SHIP MD. GY. SLTY SHIP MED. DK. GY. SLTY SHIP OL. GY. SLTY SHIP MED. DK. GY. SLTY SHIP MED. GY. S	ST:ORG SP ST LAYERS ST LAYERS ST LAYERS SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SH

TABLE 2 (CONT'D)

## TOTAL ORGANIC CARBON REPORT

BASID - GIPPSLADD WELL - WIRSAU 3

SAMPLE NO. ******	DEPTH AGE ******	FORMATION ******	AII TOC% AN TOC% ******* *******	AN T/C03	DESCRIPTION ********
72885 0 72885 0 72895 0 72896 7 72896 7 72896 7 72896 P 72896 P 72896 K 72896 F	2875.00 EUCEME-LATE 2934.00 EUCEME-LATE 2971.80 EUCEME-LATE 2994.40 EUCEME-LATE 3026.40 EUCEME-LATE 3051.80 EUCEME-LATE 3058.00 EUCEME-LATE 3097.00 EUCEME-LATE 3116.00 FOCEME-LATE 3116.00 EUCEME-LATE 3132.80 EUCEME-LATE 3132.00 EUCEME-LATE 3222.00 EUCEME-LATE 3241.90 EUCEME-LATE	CRET. LATROBE GROUP	1 2.84 1 2.98 1 1.68 1 1.53 1 2.06 1 1.23 1 2.07 1 1.23 1 2.38 1 2.38 1 2.73 1 2.73 1 2.73 1 2.73	1 5.084 1 24.52 1 42.75 1 22.75 1 24.00 1 3.00 1 5.625 1 4.04	65%MD.DK.GY.SLTST;CARB. CARB.MED.GY.SLTST;25%SST DK GY SLTST UL/GY SLTY CLYST M-DK GY CARB SLTST M-DK GY CARB SLTST M-DK GY CARB SLTST M-DK GY CARB SLTST LT OL/GY CARB SLTST DK GY CARB SLTY SH UL GY CLAYSTONE, COALY M-DK GY CARB SLTST DK GY SH,V CARB,W SLTST M GY SLTY CLYST
===> 06	PTH : 1509.00 TU 3	241.90 METRES. <=== I ===>	AVERAGE TOC : 2.15 % EXCLUDING	VALUES GREA	ATER THAN 10.00 % <===

## VITRINITE REFLECTANCE REPORT

ASIN - GIPPSLAND ELL - WIRRAH 3

SAMPLE NO.	DEPTH	AGE	FORMATION	AN MAX. RO FLUOR. COLOUR NO.CNTS. MACER	AL TYPE
72888 728888 728888 728888 728888 728885 728885 728895 728990 728990 728990 728990 728990 728990 728990	1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 1876.40 187	COCENE-LATE	CRET. LATROBE GROUP	48 GRN-YEL-OR 27 V>E>I 53 YEL+OR 27 V>E>I 53 YEL+OR 26 V>E>I 55 OR-OULL OR 4 I>E>V 55 OR-DULL OR 4 I>E>V 56 OR-DULL OR 4 I>E>V 56 OR-WEAK BRN 27 I>V>E 56 OR-WEAK BRN 27 I>V>E 57 YEL-OR 25 I>E>V 58 YEL-OR 25 I>E>V 59 OR-WEAK BRN 29 V>E>V 59 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 51 YEL-OR 25 I>E>V 52 YEL-OR-BRN 29 V>E>V 53 OR-WEAK BRN 29 V>E>V 54 OR-WEAK BRN 29 V>E>V 55 OR-WEAK BRN 29 V>E>V 56 OR-WEAK BRN 29 V>E>V 57 OR-WEAK BRN 29 V>E>V 58 OR-WEAK BRN 29 V>E>V 59 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 51 YEL-OR-BRN 29 V>E>V 52 OR-WEAK BRN 29 V>E>V 53 OR-WEAK BRN 29 V>E>V 54 OR-WEAK BRN 29 V>E>V 55 OR-WEAK BRN 29 V>E>V 56 OR-WEAK BRN 29 V>E>V 57 OR-WEAK BRN 29 V>E>V 58 OR-WEAK BRN 29 V>E>V 59 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 51 OR-WEAK BRN 29 V>E>V 52 OR-WEAK BRN 29 V>E>V 53 OR-WEAK BRN 29 V>E>V 54 OR-WEAK BRN 29 V>E>V 55 OR-WEAK BRN 29 V>E>V 56 OR-WEAK BRN 29 V>E>V 57 OR-WEAK BRN 29 V>E>V 58 OR-WEAK BRN 29 V>E>V 59 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 51 OR-WEAK BRN 29 V>E>V 52 OR-WEAK BRN 29 V>E>V 53 OR-WEAK BRN 29 V>E>V 54 OR-WEAK BRN 29 V>E>V 55 OR-WEAK BRN 29 V>E>V 56 OR-WEAK BRN 29 V>E>V 57 OR-WEAK BRN 29 V>E>V 58 OR-WEAK BRN 29 V>E>V 59 OR-WEAK BRN 29 V>E>V 50 OR-WEAK BRN 29 V>E>V 51 OR-WEAK BRN 29 V>E>V 52 OR-WEAK BRN 29 V>E>V 52 OR-WEAK BRN 29 V>E>V 53 OR-WEAK BRN 29 V>E>V 54 OR-WEAK BRN 29 V>E>V 55 OR-WEAK BRN 29 V>E>V 56 OR-WEAK BRN 29 V>E>V 57 OR-WEAK BRN 29 V>E>V 58 OR-WEAK BRN 2	COAL COAL COAL COAL COAL COAL COM ABUNDANT COM ABUNDANT COAL+DOM ABUND'T COM ABUNDANT COM ABUNDANT COM ABUNDANT COM ABUNDANT COM ABUNDANT COAL+DOM COMMON

## ROCK EVAL ANALYSES

3ASIN - GIPPSLAND REPORT A - SULPHUR & PYROLYZABLE CARBON VELL - WIRRAH 3

SAMPLE 110.	DEPTH	SAMPLE TYPE	AGE	TMAX	S 1	\$2	53	PΙ	\$2/\$3	PC	COMMENTS
77777777777777777777777777777777777777	12005415005190090060084 6788599558682450949355414 885995586580450949355414 1111222235566667777887979	39.39.39.39.39.39.39.39.39.39.39.39.39.3	MIDCENE - LATE CORRETT	8927630613149367757093375489082180193 1110012112332222233424444444444444444444	016692168813704942117718949578354434024403670 1 016523770494211771894957835443402403670 1 016523770494211771894957835411003670	278739740122159914359225995 11748553914359225995 2865 3 1 588235995 1 588235995 1 588235995 1 588235995 1 588235995 1 588235995	600363252433849145359160359208371480702 56539503444544642664233337359208371480702	11342471116672785746404651301172436074166 11334230101860456447213134323322504217 1134323322504217	717737450 7117337450 7117337450 7117337450 7117337450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 711737450 71	1	

PRODUCTIVITY INDEX PC=PYRULYZABLE CARBON TC=TOTAL CARBON HI=HYDROGEN INDEX OI=OXYGEN INDEX

TABLE 4 (CONT'D)

## ROCK EVAL ANALYSES

BASIN - GIPPSLAND WELL - WIRRAN 3 REPURT B - TOTAL CARBON, H/O INDICES

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
SAMPLE NO.	DEPTH	SAMPLE TYPE	FORMATION	TC	нІ	01	H1/01	COMMENTS	*
WTONGCAXTOLGEDBXSMIHGCVTRQQSQZXTRPQMKGF 2888888888888888888888888888888888888	340054120054150051900900600844800908209 57779198549906458682450949354146187762921 890036410659558682450949354146187762921 111111111111222355666777788999900001113522	00000000000000000000000000000000000000	LAKES ENTRANCE LATRUBE GROUP-GURNARD FM LATRUBE GROUP-GURNARD FM LATRUBE GROUP	741037024161209707275249048844673033139 111 3132 292 5 211 231622111221 4122	9454524041845529999734442222139871464789990 353380949633204853484090988512349309664 22131 1 3	282295787953503295139125226546635468411 54642421511217324231121122 1123 3113	75173887935737250316513538789645794078129 1.131.6420 411.131.844.25538964078129 1.131.844.255240.1331.72561.	T C. S1 52 S3 PC* Hydrogen Index Oxygen Index PI Tmax	<pre>= Total organic carbon, wt. \$ = Free hydrocarbons, mg HC/g of rock = Residual hydrocarbon potential</pre>

PI=PRODUCTIVITY INDEX

PC=PYROLYZABLE CARBON TC=TOTAL CARBON

HI=HYDROGEN INDEX

OI=OXYGEN INDEX

KEROGEN ELFMENTAL ANALYSIS REPORT

3ASIN - GIPPSLAND VELL - WIRRAH 3

SAMPLE NO.	DEPTH	SAMPLE TYPE	E	LEMENTAL	% (AS	H FREE)		COMMENTS
			N %		Н%				***
72889 S 72889 D 72889 H 72869 G 72889 F	1499.30 1503.00 1525.50 1531.50	SWC SWC SWC SWC SWC	1.86 2.89 .63 .65 .97	70.27 65.95 68.31 62.23	5.06 5.74 5.15 4.80 5.16	.00	22.82 25.65 25.31 31.96	4.72 12.56 6.52 6.49	HIGH ASH
72889 E 72889 C 72889 A 72888 X	1553.60 1569.40 1648.10 1715.20	SWC SWC SWC SWC	.80 .88 1.09	66.61 65.90 65.13 68.36	5.15 5.06 4.88 5.57	.00 .00 .00	27.44 28.16 28.90	8.08 12.00 8.25 10.83 10.26	HIGH ASH
72888 T 72888 P 72888 O 72888 L 72888 G	149.500 155.500 155.500 155.500 155.531.500 155.531.500 156.400 171.500 188.500.500 188.500.500 188.500.500 188.500.500 188.500.500 188.500.500 188.500.500 188.500.500 188.5000 189.50	SWC	1.09 .91 .93 .75 .88 .86	71.39 76.10 73.69 74.74 74.91	5.60 7.63 5.85 7.23 5.80	000	22.07 15.53 19.58 17.18 18.20	10.02 10.91 10.43 7.30 13.89 1.70	HIGH ASH HIGH ASH HIGH ASH
72885 C 72885 D 72885 E 72888 C 72888 B 72887 X	2188.30 2194.18 2203.25 2270.00 2288.00 2366.00	COR COP COP SWC SWC SWC SWC SWC	1.8869 8809 88055 1.8869 1.756 1.7564	825.6610369094154634017471111059366 825.665581.679777777777878888888888888888888888888	54557575754655555454545	00 00 00 00 00 00 00 00 00 00	24.9493959 148.6083957 146.608357 146.76	6.66 4.99 3.31 4.50	HIGH ASH
72885 I 728866 I 728865 J 72886 H 72885 L	24.60 97	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.3899059349291131635698 1.38971922735573565479316 1.35735698	79.34 59.61 81.92 81.99 81.99 81.99 81.99 81.99 81.89	245527754275106505729314 83757668227520575002729 845554554645444444444354		251674605738800549395957083358240361060983201 25187885259784488765462845342312421323283012 232332222221111211111111111111111111	10203193380859515543139 10304645373404192120 10415858222223373404192129	HIGH ASH

TABLE 5 (CONT'D)

KEROGEN FLEMENTAL ANALYSIS REPORT

BASIN - GIPPSLAND BELL - WIRRAH 3

SAMPLE NO.	DEPTH	SAMPLE TYPE	=== EI	LEMENTAL	. % (ASI	FREE)		COMMENTS
			NΧ	С%	Hχ	S%	0%	ASH%	
72885 Z 72885 Y 72885 V 72885 U 72885 T 72885 S	2742.50 2744.60 2764.00 2775.00 2789.00	SWC SWC SWC SWC	1.01 1.03 1.25 1.26 1.47	79.56 82.46 80.61 83.55 81.08	5.62 4.62 5.82 4.83 4.90	.00	13.82 11.89 12.32 10.36 12.54	2.51 5.86 5.60 7.86 9.04	
72885 R 72885 Q 72885 P 72885 O 72895 S	2800.00 2823.60 2875.00 2900.00 2934.00 2971.80	SWC SWC SWC SWC SWC SWC	1.092882990 1.1092882990	82.83 80.58 83.89 80.52 82.34 78.48	5.70 6.50 4.82 5.59 4.71 4.78	.00 .00 .00	10.43 11.96 10.06 13.07 11.67	9.78 13.99 5.00 3.27 2.99 1.40	HIGH ASH
72895 Q 72890 Z 72890 X	2994.40 3026.40 3051.80	SWC SWC SWC	1.29 1.19 1.40	77.01 74.51 84.48	5.52 4.69 4.46	.00	16.19 19.61 9.66	12.97 1.15 4.07	HIGH ASH
72890 T 72890 S 72890 R	3088.00 3088.60 3097.00	SWC SWC SWC	1.40 1.49 1.63 1.66	82.08 77.97 82.10	5.27 3.83	.00	11.15 16.57 11.15	12.31 .17 5.69	HIGH ASH
72890 M 72890 K 72890 H 72890 G 72895 Y 72895 Z	3132.80 3159.20 3219.30 3222.00 3225.00 3235.00	SWC SWC SWC SWC SWC SWC	1.67 1.07 1.44 1.43 1.09 1.50	81.49 53.58 83.72 82.63 80.59 77.62	5.08 5.50 3.11 4.67 4.18 4.18	00 00 00 00 00 00	11.34 42.24 10.17 11.41 14.15 16.53	14.37 24.52 8.10 7.37 7.11 3.46	HIGH ASH HIGH ASH

KEROGEN ELFMENTAL ANALYSIS REPORT

ASIN - GIPPSLAND BELL - WIRPAH 3

SAMPLE NO.	DEPTH	SAMPLE TYPE	AGE	FORMATION	IMOTA	C RATIO)S	COMMENTS
					H/C	0/6	N/C	a,
72889 S 72889 Q 72889 H 72889 G 72889 F 72889 E	1499.30 1503.00 1525.50 1531.50	SWC SWC SWC	EARLY OLIGLATE EOC EARLY OLIGLATE EOC EOCENE-LATE CRET. EOCENE-LATE CRET.	LATROBE GROUP-GURNARD FM LATROBE GROUP-GURNARD FM LATROBE GROUP LATROBE GROUP	.86 1.00 1.01	.24 .29 .28	.02 .04 .01	HIGH ASH
72889 E 72889 C 72889 A 72888 X	1553.60 1569.40 1648.10	SWC SWC	EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET.	LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP	.87 .93 .90	•32 •31 •33	01 01 01	HIGH ASH
72888 T 72888 P 72888 D 72888 L 72888 G 72888 G	1804.00 1881.00 1889.00 1950.50 2096.40	5 W C 5 W C 5 W C 5 W C 5 W C	EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET.	LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP	1.20 .95 1.16	• 23 • 25 • 27 • 18	01 01 01 01 01	HIGH ASH HIGH ASH HIGH ASH
ECAXTPOLGA6CDECBXVUR 722888888888888887722888888888877722888888	2170.12 2180.66 21884.38 22193.25 2270.00 2288.00 2392.66	COR COR COR COR SWC SWC SWC SWC	EOCENE-LATE CRET.	LATROBE GROUP	.85 1.86 .81 .87 .984 .94 .64	.26 .18 .18 .18 .153 .16 .12	01 01 01 01 01 01 01 01	HIGH ASH
7008 7008 7008 7008 8008 8008 8008 8008	00000000000000000000000000000000000000	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	CRETT. CRETT. CREET.	LATROBE GROUP GROUP LATROBE GROUP GROUP LATROBE GROUP LATR		145342202411222222001 11153422024112222222001		HIGH ASH

TABLE 6 (CONT'D)

KEROGEN ELFMENTAL ANALYSIS REPORT

ASIN - GIPPSLAND BLL - WIRRAN 3

SAMPLE NO.	DEPTH	SAMPLE TYPE	AGE	FORMATTON	ATOM	IC RATIO	S	COMMENTS
				***	H/C	0/0	N/C	
72885 Z 72885 Y 72885 V 72885 T 72885 S 72885 S 72885 P 72885 P 728895 S 72895 Z	27444.600 27744.000 2775.000 2775.000 2789.000 28875.000 28875.000 28875.000 28971.800 29971.800 29971.800 29971.800 29971.800	00000000000000000000000000000000000000	EOCENE-LATE CRET.	LATROBE GROUP	86867893379393663794107627 8686789686787675787666666666666666666666	.13 .11 .10 .10 .10 .11 .10 .11 .11 .11 .11	01 01 01 01 01 01 01 01	HIGH ASH HIGH ASH
72890 X 72890 T 72890 S 72890 R	3051.80 3088.00 3088.60 3097.00	SNC SNC SWC SWC	EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET.	LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP	.63 .77 .59	.09 .10 .16	01 20 20 50	HIGH ASH
72890 M 72890 K 72890 H 72890 G 72895 Y 72895 Z	3132.80 3139.20 3219.30 3225.00 3225.00	5WC 5WC 5WC 5WC 5WC 5WC	EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET.	LATROBE GROUP	.81 .70 .67 .66 .62	.10 .59 .09 .10	02 02 01 01 01	HIGH ASH HIGH ASH

C15+ EXTRACT ANALYSES

BASIN UFLL		GIPPSLAND WIRPAH 3			REPORT A - E	XTRACT DAT	A (PPI	1)	ين چين دين کي دين کي دين دي دي دي دي دي		no any gao and the say took say	جن سن جن جي رين			
SAMPLE	110.	OEPTH	TYPE	AU	AGE	TOTAL EXTRACT	•	ORUCARBON ARONS.	TOTAL H/CARBS	ASPH.	FLUTED	NON-HYDRU NON-ELT NSO	CARBONS TOTAL NSO		TOTAL NON/HC:
72895 72895 72895 72895 72895	 U V	2180.72 2653.77 2807.10 3116.60	COR	- 2222 -	EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET. EOCENE-LATE CRET.	9019. 1380. 1630. 1408.	468. 259. 157. 330.	2570. 502. 463. 364.	3038. 761. 620. 694.	3318. 251. 620. 529.	1247. 213. 191. 166.	155.	2662. 368. 390. 185.	0. 0. 0.	5980. 619. 1010. 714.

ASIN	 GIPPSLAND	REPORT B - FXTRACTS % UF TOTAL	
IT 1 1	 ia TDD A H - X		

SAMPLE NO.		FORMATION	*HYDROC SAT. %	ARBONS*	*- NDN- NSO. %	ASPH.%	SULPH% *	SAT/AR		HC/NHC	*	
72895 U 72895 V 72895 W 72895 X	2180.72 2653.77 2807.10	LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP	5.2 18.8 9.6 23.4	28.5 36.4 28.4 25.9	29.5 26.7 23.9 13.1	36.8 18.2 38.0 37.6	.0 * .0 * .0 *	.5 .3 .9	* * *	1.2 .6 1.0	*	IMMATURE, TERRESTRIAL MATURE, TERRESTRIAL IMMATURE, TERRESTRIAL MATURE, TERRESTRIAL

TABLE 8

LIQUID CHROMATOGRAPHY FOR WIRRAH-3 OILS

SAMPLE NO.	DEPTH m (KB)	% SATURATES	% AROMATICS	* NSO	% ASPHALTENES
72957 - B	2023.7	78.6	8.5	11.9	1.0
72957 - D	2635-2646	73.7	9.4	9.4	7.5
72957 - L	2861.5-2872.5				
	and 2883-2894	74.1	18.7	6.5	0.8
72957 - K	2936.8	65	24.2	9.7	0.7

CARBON ISOTOPIC COMPOSITION FOR WIRRAH-3 OILS

SAMPLE NO.	DEPTH	δ ¹³ C	0/00	vs PDB
	m (KB)	SATURATES		AROMATICS
72957 - B	2023.7	- 27 . 33		-25.04
72957 - D	2635-2640	- 27 . 70		- 25.47
72957 - L	2861.5-2872.5			
	and 2883-2894	-27.11		-24.78
72957 - K	2936.8	- 27,39		-25.40

API GRAVITIES OF WIRRAH-3 OILS

SAMPLE	DEPTH m(KB)	O API
RFT 4/35	2023.7	38.2
RFT 3/28	2349.2	39.7
Production Test No. 4	2635-2646	40.8
RFT-10	2707.8	34.7
RFT-9	2731.0	36.9
RFT-25/170	2785.5	35.4
CRFT-4/4	2834.5	35.1
Production Test 1A	2861.5-2872.5 & 2883-2894	36.8
RFT 28/204	2936.8	31.0

C₁₋₄ CUTTINGS GAS LOG . WIRRAH 3

C₁₋₄ CUTTINGS GAS LOG WIRRAH 3 GIPPSLAND BASIN

VITRINITE REFLECTANCE vs. DEPTH

WIRRAH 3

VITRINITE REFLECTANCE, RV MAX %

ROCKEVAL MATURATION PLOT

Theas in HYDROGEN INDEX
WIRRAH 3

KEROGEN TYPE WIRRAH 3

RESIDUAL ORGANIC MATTER (NO POTENTIAL FOR OIL OR GAS)

C₁₅₊ Paraffin-Naphthene Hydrocarbon GeoChem Sample No. E593-001 Exxon Identification No. 72895-U

C₁₅₊ Paraffin-Naphthene Hydrocarbon GeoChem Sample No. E593-002 Exxon Identification No. 72895-V

FIGURE 7: Wirrah-3, 2653.76 - 2653.77m (KB), Rock Extract (Convential Core), - Latrobe Group

FIGURE 8: Wirrah-3, Core, 2807.lm (KB), Rock Extract - Latrobe Group

FIGURE 9: Wirrah-3, 3116.6m (KB), Rock Extract (Conventional Core)
- Latrobe Group

FIGURE 10
WHOLE OIL CHROMATOGRAM
WIRRAH-3 OIL
RFT-4/35
2023.7m (KB)

FIGURE 11
WHOLE OIL CHROMATOGRAM
WIRRAH-3 OIL
RFT-3/28
2349.2m (KB)

FIGURE 20 WIRRAH-3 OIL 72957-D 2635-2646 m SATURATE CHROMATOGRAM

FIGURE 21
WIRRAH-3 OIL
72957-L
2861.5-2872.5 & 2883-2894m
SATURATE CHROMATOGRAM

APPENDIX-1

Detailed Vitrinite Reflectance and Exinite

Fluorescence Data - Report by A.C. Cook

WIRRAH NO. 3

KK No.	Esso No.	Depth m	R max	Range R max	N	Exinite fluorescence (Remarks)
19741	72888 - Y	1688 _• 2 SWC	0.39	0.32-0.45	26	Abundant liptodetrinite, greenish yellow and dull yellow, abundant suberinite, dull orange, common sporinite, greenish yellow and dull yellow, common resinite, greenish yellow, sparse cutinite, yellow, rare to sparse fluorinite, green. (Coal, vitrite>clarite>duroclarite, V>E>1. Weak green oil cuts common.)
19742	72888 -Q	1873 SWC	0.48	0.33-0.55	27	Abundant ilptodetrinite, yellow to orange, abundant suberinite, dull orange, common sporinite, yellow, common fluorinite/resinite, greenish yellow and yellow, sparse cutinite, yellow. (Coal, vitrite>clarite>Duroclarite, V>E>l. Rare sclerotinite in duroclarite. Abundant carbonate in clasts.)
19743	72888 -G	2096.4 SWC	0.53	0.43-0.64	27	Common to abundant sporinite, yellow to orange, common to abundant cutinite, orange, common liptodetrinite, yellow to orange, rare to sparse resinite, bright yellow. (Siltstone. D.o.m. abundant, V>E>I. Vitrinite and exinite abundant, Inertinite sparse. Common pyrite.)
19744	72888 - B	2288 SWC	0.57	0.52-0.64	26	Abundant sporinite, cutinite and ilptodetrinite yellow to orange, sparse resinite, greenish yellow, sparse suberinite, dull orange, abundant vitrinite, weak brown. (Shaly coal with minor siltstone and coal. Coal abundant, vitrite>clarite, V>E. D.o.m. abundant, V>E>1. Vitrinite and exinite abundant, inertinite sparse to common. Common pyrite.)
19745	72887. - N	24 <i>5</i> 9.5 SWC	0.55	0.44-0.68	4	Sparse sporinite and liptodetrinite, orange to duil orange, rare to sparse cutinite, orange to duil orange, rare telalginite, orange. (Siltstone. D.o.m. sparse, i>E>V. inertinite and exinite sparse, vitrinite rare. Rare pyrite.)
19746	72886 !	2604 SWC	0.63	0.49-0.75	4	Sparse sporinite and liptodetrinite, orange to duil orange. (Shaly coal and siltstone. D.o.m. abundant, I>E>V. Inertinite abundant, exinite sparse to common, vitrinite rare. Sparse pyrite.)
19747	7885 - Z	2742.5 SWC	0.64	0.51-0.74	27	Abundant sporinite and liptodetrinite, orange to dull orange, common cutinite, yellow to dull orange, sparse resisnite, orange, sparse suberinite, dull orange, abundant vitrinite, weak brown. (Shaly coal and coal. Coal abudant, vitrite> clarite>durociarite>inertite, V>E>I. D.o.m. abundant, V>E>I. Vitrinite, exinite and inertinite abundant. Sparse pyrite.)

WIRRAH NO. 3

KK No.	Esso No.	Depth m	R max	Range R max	N	Exinite fluorescence (Remarks)
19748	72885 - Q	2875 SWC	0,63	0,52-0,80	27	Common to abundant sporinite, orange to dull orange, common cutinite and liptodetrinite, orange to dull orange, abundant vitrinite, weak brown. (Shaly coal and siltstone. D.o.m. abundant, INXE. All three maceral groups abundant. Vitrinite commonly resinous. Sparse pyrite.)
20118	72895 -S	2971.8 SWC	0.48	0.37-0.62	25	Sparse sporinite aand liptodetrinite, bright yellow and yellow, sparse vitinite, greenish yellow and yellow to orange, rare to sparse suberinite, dull orange, common vitrinite, weak brown. (Slitstone and slity sandstone. D.o.m. abundant, INDE. inertinite abundant, vitrinite common to abundant and exinite common. Abundant pyrite.)
20119	72890 - R	3 088 SWC	0.51	0.42-0.63	25	Common sporinite and sparse liptodetrinite, yellow to orange, sparse vitrinite, orange to dull orange, rare telalginite, bright orange. (Siltstone. D.o.m. abundant, I>E>V. inertinite abundant, exinite common to abundant, and vitrinite common. Sparse pyrite.)
20120	72890 - R	3097 SWC	0. 52	0.42-0.65	25	Sparse sporinite, orange, rare to sparse cutinite, orange to dull orange, rare telalginite, yellow. (Sandstone and siltstone. D.o.m. abundant, I>V>E. Inertinite abundant, vitrinite common and eximite sparse. Common iron oxides and sparse pyrite.)
20121	72890 -0	3116 SWC	0.68	0.57-0.77	29	Common sporinite, yellow and orange to dull orange, sparse cutinite, orange to dull orange, suberinite sparse in coal, weak brown, rare fluorinite, green. (Siltstone, sandstone and coal. Coal abundant, vitrite>>clarite, V>>E. D.o.m. abundant, V>E>I. Vitrinite abundant, exinite common to abundant and inertinite sparse. Rare pyrite.)
20122	72890 -G	3222 SWC	0.72	0.61-0.89	28	Sparse sporinite, yellow orange to dull orange, rare to sparse cutinite, orange to dull orange, suberinite sparse in coal, dull orange to weak brown. (Sandstone, siltstone and coal. Coal abundant, inertite>vitrite>clarite, I>V>E. D.o.m. abundant, I>V>E. inertinite and vitrinite abundant, exinite sparse to common. Rare pyrite.)
20123	72890 - F	3241.9 SWC	0.73	0,57-0.89	-26	Rare to sparse sporinite, duli orange. (Calcareous or sideritic siltstone. D.o.m. common, i>V=or>E. inertinite common, vitrinite and exinite rare to sparse. Sparse pyrite and iron oxides.)

ENCLOSURES

This is an enclosure indicator page. The enclosure PE902507 is enclosed within the container PE902506 at this location in this document.

The enclosure PE902507 has the following characteristics:

ITEM_BARCODE = PE902507
CONTAINER_BARCODE = PE902506

NAME = Structure Map - Top of Latrobe Group

Coarse Clastics

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = HRZN_CNTR_MAP

 ${\tt DESCRIPTION} \, = \, {\tt Structure} \, \, {\tt Map} \, - \, {\tt Top} \, \, {\tt of} \, \, {\tt Latrobe} \, \, {\tt Group}$

Coarse Clastics (enclosure from WCR

vol.2) for Wirrah-3

REMARKS =

DATE_CREATED = 28/02/84

DATE_RECEIVED = 29/11/85

 $W_NO = W840$

WELL_NAME = Wirrah-3

CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO EXPLORATION AND PRODUCTION

This is an enclosure indicator page. The enclosure PE902508 is enclosed within the container PE902506 at this location in this document.

The enclosure PE902508 has the following characteristics:

ITEM_BARCODE = PE902508
CONTAINER_BARCODE = PE902506

NAME = Structure Map - Middle M diversus

marker

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = HRZN_CNTR_MAP

DESCRIPTION = Structure Map - Middle M diversus

marker (enclosure from WCR vol.2) for

Wirrah-3

REMARKS =

DATE_CREATED = 28/02/84

DATE_RECEIVED = 29/11/85

 $W_NO = W840$

WELL_NAME = Wirrah-3

CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO EXPLORATION AND PRODUCTION

This is an enclosure indicator page.

The enclosure PE902509 is enclosed within the container PE902506 at this location in this document.

The enclosure PE902509 has the following characteristics:

ITEM_BARCODE = PE902509
CONTAINER_BARCODE = PE902506

NAME = Geological Cross Section A-A

BASIN = GIPPSLAND PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = CROSS_SECTION

DESCRIPTION = Geological Cross Section A-A (enclosure

from WCR vol.2) for Wirrah-3

REMARKS =

 $DATE_CREATED = 28/02/84$

DATE_RECEIVED = 29/11/85

 $W_NO = W840$

WELL_NAME = Wirrah-3

CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO EXPLORATION AND PRODUCTION

This is an enclosure indicator page.

The enclosure PE601242 is enclosed within the container PE902506 at this location in this document.

The enclosure PE601242 has the following characteristics:

ITEM_BARCODE = PE601242
CONTAINER_BARCODE = PE902506

NAME = Well Completion Log

BASIN = GIPPSLAND PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = COMPLETION_LOG

DESCRIPTION = Well Completion Log (enclosure from WCR

vol.2) for Wirrah-3

REMARKS =

DATE_CREATED = 27/02/84 DATE_RECEIVED = 29/11/85

 $W_NO = W840$

WELL_NAME = Wirrah-3
CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO EXPLORATION AND PRODUCTION