

W782 WIRRAH - 1 (HUDLOS REPORT) WILL ATTACHMENT TO WCR

OIL and GAS DIVISION

7 JUN 1983

WIRRAH NO.1

W782

ESSO AUSTRALIA LTD

IES WELL REPORT

PART 1 OF 2

CORE LABORATORIES AUSTRALIA (QLD.) LTD.

Petroleum Reservoir Engineering
AUSTRALIA

BRISBANE OFFICE: 1173 KINGSFORD SMITH DRIVE PINKENBA, Q. 4008. P.O. BOX 456 HAMILTON CENTRAL, Q. 4007 AUSTRALIA.

CABLE ADDRESS: CORELAB BRISBANE TELEX No.: COREBN AA42513 TELEPHONE: 260 1722 260 1723

21st January 1983

Esso Australia Ltd. Esso House 127, Kent Street Sydney New South Wales 2001

Attention: MR. K. KUTTAN

Dear Mr. Kuttan,

Please find enclosed five (5) copies plus the original well report for WIRRAH NO. 1. It has been bound in 2 sections.

If you have any enquiries concerning WIRRAH NO. 1, please do not hesitate to contact us.

Yours very truly, CORE LABORATORIES INTERNATIONAL LTD.

Toy Charles

for A. Dodson

Unit Supervisor

MM/ARC/GCM:pc

- (1) 1. INTRODUCTION
 - 2. CORE LABORATORIES EQUIPMENT
 - 3. CORE LABORATORIES MONITORING EQUIPMENT
 - 4. INTERMEDIATE EXTENDED SERVICE INTRODUCTION
 - 5. RIG INFORMATION SHEET
 - 6. WELL INFORMATION SHEET
 - 7. WELL HISTORY
 - 8. PROGRESS LOG
 - 9. BIT RECORD SHEETS
 - 10. MUD DATA SHEETS
 - 11. LITHOLOGICAL SUMMARY
 - 12. R.F.T. DATA SHEETS
 - 13. B.H.T. ESTIMATION
 - 14. PORE PRESSURE SUMMARY AND P.I.T./L.O.T. DATA
 - 15. OVERBURDEN GRADIENT CALCULATIONS AND PLOT
 - 16. CORE-O-GRAPHS
 - 17. SIDEWALL CORE GAS ANALYSES
 - 18. GAS COMPOSITION ANALYSES
 - 19. PRODUCTION WELL TEST DATA
- (2) COMPUTER DATA LISTINGS:- (a) BIT RECORD AND INITIALIZATION DATA
 - (b) HYDRAULIC ANALYSES
 - (c) DATA LIST A
 - (d) DATA LIST B
 - (e) DATA LIST C
 - (f) DATA LIST D
 - APPENDED PLOTS: (a) DRILL DATA PLOT
 - (b) GEOPLOT
 - (c) TEMPERATURE PLOT
 - (d) PRESSURE PLOT
 - (e) GRAPHOLOG

1. INTRODUCTION

WIRRAH NO. 1 was drilled by Esso Australia Ltd. in the Bass Strait, Australia.

Well co-ordinates were:

Latitude : 38° 11' 22.33" S Longitude : 147° 48' 57.12" E

The well was drilled by South Seas Drilling Company's semi-submersible rig 'Southern Cross', and monitored by Core Laboratories Intermediate Extended Service Field Laboratory 802.

WIRRAH NO. 1 was spudded on 15th September 1982 and reached a total depth of 3026 metres on 18th November 1982, a total drilling time of 65 days, including the first production test. The main objective of the well was to assess the Top Latrobe and Intra Latrobe hydrocarbon potential of the Wirrah structure. The well was production tested in the Lower Latrobe.

Elevations were:

Kelly bushings to mean sea level21mWater depth49mKelly bushings to mean sea bed70m

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of were as follows:

M.	Mowatt		Unit Supervisor
T.	Charles	•••••	Pressure Engineer
G.	Munn	•••••	Pressure Engineer
В.	Giftson	• • • • • • • • •	Logging Crew Chief
R.	Martin	• • • • • • • • •	Well Logger
В.	Paulet	•••••	Well Logger
P.	Denton	• • • • • • • • • •	Well Logger
T.	Green	• • • • • • • • • •	Sample Catcher
М.	Robinson	• • • • • • • • •	Sample Catcher
A.	Bock	• • • • • • • • •	Sample Catcher
Ε.	Karp	• • • • • • • • •	Sample Catcher

2. CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory $802\,$ monitoring equipment includes the following :

A. MUD LOGGING

- 1. T.H.M. total gas detector and recorder.
- 2. Hot Wire total gas detector and recorder.
- 3. F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- 4. Gas trap and support equipment fot the above.
- 5. Rate of Penetration, recorder and digital display.
- 6. Pit volume totalizer, recorder and digital display.
- 7. Digital depth counter.
- 8. Two integrated pump stroke counters, with digital display.
- 9. Ultra-violet fluoroscope.
- 10. Binocular microscope.

B. INTERMEDIATE EXTENDED SERVICE PACKAGE

- 1. Hewlett Packard 9825B desktop computer.
- 2. Hewlett Packard 9872B plotter.
- 3. Hewlett Packard 2631A printer.
- 4. Two Hewlett Packard 2621P visual display units, (one located in the client's office).
- 5. Hookload/weight-on-bit transducer and recorder.
- 6. Rotary speed tacho-generator and recorder.
- 7. Stand-pipe pump pressure transducer and recorder.
- 8. Mud flow out sensor and recorder.
- 9. Mud temperature sensors and recorders (in and out).
- 10. Mud conductivity sensors and recorders (in and out).
- 11. Rotary torque sensor and recorder.
- 12. Shale density apparatus.
- 13. Hydrogen sulphide gas detector.
- 14. Carbon dioxide gas detector.

3. CORE LABORATORIES MONITORING EQUIPMENT

DEPTH

Depth registered every 0.2 metres and rate of penetration calculated each metre (or every 0.2m while coring), ROP displayed on digital panel and chart.

WEIGHT ON BIT

A Tyco 0-1000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Rig Functions Panel, and displayed (with hookload) on a digital meter and recorder chart.

ROTARY SPEED

This is a DC generator for which 1 volt = 100 rpm, and which is belt-driven from the rotary drive shaft. The value is displayed on a digital meter and recorder chart.

PUMP PRESSURE

This is a Tyco 0-5000 psi transducer mounted on the stand-pipe manifold. The pressure is displayed on a digital panel meter and recorder chart.

PIT VOLUME

Six individual pits can be displayed on the meter. The pit volume total is calculated in the PVT panel and displayed on a digital meter. The sensors are vertical floats driving potentiometers accurate to +/1 barrel. Each sensor is equipped with a wave compensating device.
In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The Pulse Data Box can monitor one or two pumps individually or integrate the total number of strokes from both pumps. The pump rate per minute is displayed on a recorder chart.

ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on a digital panel meter and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, calibrated $0-100~{\rm deg}$. C. Temperature in and out is displayed on a digital panel meter and chart recorder.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor measures the current in a closed loop of solution coupling a pair of toroidal transformer coils. The conductivity in and out is displayed on analog and digital meters, and recorder chart.

All the sensors are 5 to 24V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab furnished and operated certain other items...

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Dry samples were washed, dried and boxed. Wet samples were washed, sacked and boxed. Geochemical samples were canned and boxed.

GAS

- 1.Flame Ionization Total Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.
 The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Hot Wire gas detector (Wheatstone Bridge type). A back-up system for total gas detection.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density column.

4. INTERMEDIATE EXTENDED SERVICE INTRODUCTION

The Core Laboratories Intermediate Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Laboratories I.E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories I.E.S. logs include the following :

I.E.S. PRESSURE LOG

Information plotted on this log includes fomation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is a conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, and formation breakdown tests.

CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected 'd' exponent, which is presented on a logarithmic scale. The 'd' exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter.

The modified 'dc' exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard 'd' exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the 'dc' to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for 'dc' is therefore:

Deviations from the normal 'dc's trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the 'dc's plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the 'dc's plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air dried shale samples in an accurately calibrated density solution.

An interpreted lithology column is also included on the log, as is a plot of mud density in, to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

I.E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected 'd' exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

I.E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the I.E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), is made using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 metres.

GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :-

- 1. Log. plot
- 2. Triangulation plot

Both plots are included in this report.

GRAPHOLOG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include fomation leak-off test data, and R.F.T. and well test data where appropriate.

5. RIG INFORMATION SHEET

COMPANY ESSU AUSTRALIA LTD.

COMP WELL	TITTODATI NO. 1
	WIRRAH NO. 1
OWNER	SOUTH SEAS DRILLING COMPANY
NAME AND NUMBER	SOUTHERN CROSS (NO 107)
TYPE	SEMI-SUBMERSIBLE , TWIN HULLED.
DERRICK, DRILL FLOOR & SUBSTRUCTURE	DERRICK: LEE C MOORE, 152° HIGH X 40° AT BASE. LOAD CAPACITY OF 1 000 000 16s
DRAWWORKS .	DILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS.
CROWN BLOCK	LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS.
TRAVELING BLOCK	OILWELL A 500
SWIVEL	OILWELL PC 425
ELEVATORS	BYRON JACKSON MODEL GG CAPACITY . 350 TON
KELLY & KELLY SPINNER	DRILLCO 54"x 50' HEX KELLY
ROTARY TABLE	OILWELL A 37 SINGLE ELECTRIC MOTOR
ROTARY SLIPS	VARCO DCS-L
MUD PUMPS	TWO DILWELL A 1700PT. RATED AT 1600HP
MUD SYSTEM	FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL TANK HAVING A CAPACITY OF 105 BBL. TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100 HP ELECTRIC MOTORS. DESANDER: 1 DEMCO 4 CONE 12" MODEL NO 124 DESILTER: 1 DEMCO 4"-16H 16 CONE DEGASSER: 1 SWACO MODEL NO 36
	I DOALE DOAKERD I 2 BRANDI DUAL UNII IANDEM - GHI DHAI HNIT
BLOW OUT PREVENTORS	SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT. THREE SHAFFER L.W.S. 182" - 10 000 psi TWO HYDRIL G.L. 182" - 5000 psi
BLOW OUT PREVENTORS WELL CONTROL EQUIP.	THREE SHAFFER L.W.S. 18½" - 10 000 psi TWO HYDRIL G.L. 18½" - 5000 psi FOUR VALV CON ACCUMULATORS. 2" - 10 0000
	THREE SHAFFER L.W.S. 18½" - 10 000 psi TWO HYDRIL G.L. 18½" - 5000 psi
WELL CONTROL EQUIP. TUBULAR DRILLING	THREE SHAFFER L.W.S. $18\frac{3}{4}$ " - 10 000 psi TWO HYDRIL G.L. $18\frac{3}{4}$ " - 5000 psi FOUR VALV CON ACCUMULATORS. CHOKES: 2 C.I.W. ABJ H2 2 1/16" - 10 000 psi, 1 SWACO SUPER CHOKE DC: $6\frac{1}{4}$ " x 2 13/16" (4" IF TJ) B" x 2 13/16" (6 5/8" H90 TJ) 9 $\frac{3}{4}$ " x 3" (7 5/8" H90 YJ) HWDP: 5" 501b/ft GRADE G ($6\frac{1}{2}$ " 00 $4\frac{1}{2}$ " IF TJ) DP: 5" $19\frac{1}{2}$ 1b/ft GRADE G&E (6 3/8" 0D $4\frac{1}{2}$ " IF TJ)
WELL CONTROL EQUIP, TUBULAR DRILLING EQUIPMENT	THREE SHAFFER L.W.S. 18½" - 10 000 psi TWO HYDRIL G.L. 18½" - 5000 psi FOUR VALV CON ACCUMULATORS. CHOKES: 2 C.I.W. ABJ H2 2 1/16" - 10 000 psi, 1 SWACO SUPER CHOKE DC: 6¼" x 2 13/16" (4" IF TJ) B" x 2 13/16" (6 5/8" H90 TJ) 9¾" x 3" (7 5/8" H90 YJ) HWDP: 5" 501b/ft GRADE G (6½" 00 4½" IF TJ) DP: 5" 19½1b/ft GRADE G&E(6 3/8" 00 4½" IF TJ) HALLIBURTON HT-400 UNIT MARTIN DECKER: MUD VOLUME TOTALIZER 6 CHANNEL DRILLING RECORDER 4 PRESSURE GAUGES
WELL CONTROL EQUIP, TUBULAR DRILLING EQUIPMENT CEMENTING UNIT	THREE SHAFFER L.W.S. 18½" - 10 000 psi TWO HYDRIL G.L. 18½" - 5000 psi FOUR VALV CON ACCUMULATORS. CHOKES: 2 C.I.W. ABJ H2 2 1/16" - 10 000 psi, 1 SWACO SUPER CHOKE OC: 6¼" x 2 13/16" (4" IF TJ) 8" x 2 13/16" (6 5/8" H90 TJ) 9¾" x 3" (7 5/8" H90 YJ) HWDP: 5" 501b/ft GRADE G (6½" 00 4½" IF TJ) OP: 5" 19½1b/ft GRADE G&E(6 3/8" 00 4½" IF TJ) HALLIBURTON HT-400 UNIT MARTIN DECKER: MUD VOLUME TOTALIZER 6 CHANNEL DRILLING RECORDER

RISER: REGAN FC-7 TELESCOPIC 21" ID. PLUS FLOW DIVERTOR.

CASING POWER TONGS: ECKEL 13 3/8"(20 000 ft 1bs),20" (35 000 ft 1bs)
CMT BULK TANKS: 3x1570cu ft.RISER TENSIONER: 6WESTERN GEAR, 50'STROKE, 80 0001bs.
MUD BULK TANKS: 3x1570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 1bs,40'STROKE

7520-485 (CL 1151)

6. WELL INFORMATION SHEET

						· · · · · · · · · · · · · · · · · · ·	WE	LL INFORM	ATIO	N SF	IEET				
		E:	SSO AUSTR	ΔΤ.ΤΔ Τ.ΤΊ	n										
		ANY	IRRAH NO.	1				Sheet	: No	1					
WELL	1														
NAME	WIRRAH	NO. 1													
OPERATOR	ESSO AU	STRALIA	LTD.												
PARTNERS	В.Н.Р.														
RIG	OWNER		SOUTH SE		LING C	OMPANY									
	NAME OR N	UMBER	SOUTHERN	CROSS											
	TYPE		SEMI-SUB			·									
LOCATION	LATITUDE (X)	38 ⁰ 11'	22.33" 5	5	LONGIT	UDE (Y)	147 ⁰ 48'		<u>2" E</u>					
	FIELD					AREA		BASS STRA	<u>IT</u>						
	COUNTY					STATE		<u> </u>							
	COUNTRY		AUSTRALIA												
	DESCRIPTIO		_					·							
DATUM POINTS	Ground Eleva						Ground Level								
	Mean Water D	epth	49 METRE				Water Level	21 METRE							
DATES	SPUD		15TH SEP			TOTAL	-1	18TH NOV							
HOLE SIZES	Depth From	Depth To	Bit Size !!		No.	of Reamers	Date From	Date To	Cas	20"	Logged				
	206	206 845	26 17½	1 2			15/9/82 16/9/82	15/9/82 18/9/82	12	-3/8 ¹¹	NO YES				
				12				15/10/82		5/8"					
	845	2797	124			-	1-/9/82				YES				
	2797	3026	8½	6	- 4	MILLS 12/11/82		18/11/82	2 NO	' +	YES				
	 	 													
															
		 					 		-						
DRILLING	Depth From	Depth To	Weights	l	Туре		<u> </u>	J		L					
FLUID	70	206		то 8.6	SEAW	ATER									
	206	845	8.6	то 9.4	SEAW	ATER GE	EL								
	845	3026		TO 11.2		ATER GE		***************************************							
	0.75	3020		то	DELLIN	CALLIAN OL									
			-	то	ļ		W								
				то											
				то											
				то											
WIRELINE	Depth From	Depth To	Hole Size!!	Date Ru	n Log	s Run									
LOGGING	799	206	17 1/2	18/9/82	2 BH	C-GR-CA	ΑT.								
	1770	830	 	26/9/82			-SP-CAL								
	1770	830	121/4	26/9/82		T-CNL-(************					
	_	-	121/4	27/9/82				3, 4, 5							
	_	-	121/4	28/9/82			, 7, 8, 9								
	2304	1710		4/10/82		T-CNL-C		1							
	2318	1700	121/4	4/10/82	2 DL	L-MSFL-	-GR								
	-	-	121/4	5/10/82	2 VE	LOCITY	SURVEY								
RISER,	Depth From	Depth To	OD "	ID "	Weight	Grade	Threads	Date Run	Cement	Stages	Excess				
CASING &	2	70		21.0			R I	S E R			-+				
	70	190		19.124	94	X-52	JV BOX	15/9/82	"N"	1	_				
	70	830		1		0K-55	BUTT	19/9/82	"N"	1					
	70	2788	9.625	8.681	47	и-80	BUTT	23-24/10/	32 "N"	2					
						ļ									
										<u> </u>					
i	1	1	1	1	ŀ	1	1		ı	1	1				

OMPANY_	ESS0	AUSTRALIA	LTD.
VELL	WIRR	AH NO. 1	

(SUPPLEMENTARY)

WELL INFORMATION SHEET

Sheet No. 2

WIRELINE LOGGING (continued)

WELL ___

Depth	Depth	Hole	Date	
from	to	size	run	Logs run
-		$12\frac{1}{4}$	6/10/82	RFT'S: 12, 13, 14, 15, 16
-		$12\frac{1}{4}$	7/10/82	RFT 17
2801	2254	$12\frac{1}{4}$	15/10/82	
2803	830	$12\frac{1}{4}$	15/10/82	
2804	2243	121	16/10/82	LDL-CNL-GR
		$12\frac{1}{4}$	16/10/82	HDT
		$12\frac{1}{4}$	16/10/82	RFT'S: 18, 19
		$12\frac{1}{4}$	17/10/82	RFT 20
	-	121	18/10/82	RFT'S: 21, 22, 23, 24
	-	121	18/10/82	CST'S: 1, 2
	_	121	19/10/82	CST 3
-		8.681	26/10/82 18/11/82	CBL-VDL-GR-CCL
3031	2788	8.5 8.5		
3031 3031	2788 2788	8.5	18/11/82 19/11/82	LDL-CNL-GR BHC-GR
3033	2788	8.5	19/11/82	DIPMETER
3033		8.5	20/11/82	RFT 25
		8.5	20/11/82	CST 1
		8.5	20/11/82	CST 2
	 	8.5	21/11/82	VELOCITY SURVEY
		1 3.5	21/11/02	VEROCITI BERVET
	 			
	<u> </u>	-		
				
	<u> </u>			
	<u> </u>			
	ļ	 		
		ļ		
		 		
 	ļ		ļ	
	ļ		 	
		 		
	 	 	 	
1	I	<u> 1</u>	1	

7. WELL HISTORY

WELL HISTORY

14th September 1982. Towed to the new location. Set anchors. Ballasted down the rig.

15th September 1982. Spudded in at 0645 hours, and drilled down to 206m with a $17\frac{1}{2}$ " bit (HTC OSC 3AJ, 3 x 20) and 26" hole opener. Cleaned out the hole and ran the 20" casing, setting the shoe with cement at 186m.

16th September 1982. POOH. Ran the stack and riser. RIH, pressure tested the casing and function tested the BOP stack. Bit 2 (HTC OSC 3AJ) was RIH. Cement was drilled from 186m to 206m and new hole was drilled to 272m.

17th September 1982. Drilled 17½" hole from 272m to 799m. Mud conditioned with occasional Hi-Vis pills. Drill breaks at 704m and 717m, these were flow-checked but proved negative. Ran carbide lag at 755m, result of carbide gave hole equivalent diameter of 17.6". Dropped spinning-chain into hole, at 770m, drilled on to T.D. at 799m.

18th September 1982. Circulated out, dropped a survey, pumped slug and P.O.O.H. Trip gas on circulation was zero. Made up junk-sub and R.I.H. Worked junk sub, circulated and P.O.O.H. Rigged up Schlumberger, ran I.S.F.-SONIC-G.R. log. Made up BHA, R.I.H., drilled 17½" hole from 799m to 845m. Circulated B.U. - no gas recorded. P.O.O.H. to shoe - no drag. R.I.H. - no fill, then P.O.O.H. to run 13-3/8" casing.

19th September 1982. P.O.O.H. to run 13-3/8" casing. Made up cement-head, pulled wear bushing. Ran 13-3/8" casing, R.I.H. with cement head, circulated B.U. (no gas) then cemented and displaced. Ran seal assembly and tested. Tested B.O.P., rams, and choke and kill lines. P.O.O.H. to set wear bushing. Made up BHA. Ran into hole, tagged cement at 767m. Tested casing to 1500 psi. Drilled plug and cement to 803m.

20th September 1982. Drilled cement and plug to shoe at 830m. Drilled ahead from 830-845m - no cement was encountered. Drilled to 851m, circulated B.U. commenced leak-off test, no leak-off (equiv 13.5ppg). Drilled 12¼" hole from 851m to -150m. Ran carbide at 1105m: carbide gave equivalent hole diameter of 13.2".

21st September 1982. Drilled ahead 12¼" hole from 1150m. The hole packed off at 1368m and 1444m. In both cases, the pipe was worked and circulation regained. Flow checks were carried out at 1207m, 1221m and 1487m; no flow was observed. A drilling break was encountered at 1484m with an increase in

ROP from 22-56m/hr. The break was circulated out and the maximum gas observed was 115 units (SANDSTONE). Drilled ahead to 1488m, circulated B/U and P.O.O.H. to cut Core No. 1. Dropped survey tool.

22nd September 1982. Recovered survey tool (survey: 14°). BCO was 5-4-I. Made up core barrel and R.I.H. Core No. 1 was cut from 1488.2m to 1500.6m. The maximum gas observed whilst coring was 23 units. P.O.O.H. and recovered 11.6m (93.5%). The core barrel was serviced and R.I.H. Core No. 2 was cut from 1500.6m to 1513.4m. The maximum gas observed whilst coring was 11.5 units. P.O.O.H. and recovered 9.8m (76.6%). R.I.H. with the core barrel again. Core No. 3 was cut from 1513.4m - 1527m. The maximum gas observed whilst coring was 9 units. P.O.O.H. to recover Core No. 3.

23rd September 1982. P.O.O.H. to recover Core No. 3. Recovered 2.5m (18.7%) The core barrel was stood in the derrick, a new BHA was made up and R.I.H., with NB No. 4. The circulation was broken and the rat hole reamed from 1488m to 1527m. Drilled 12½" hole from 1527m. A flow check was carried out at 1528m and no flow was observed. B/U was circulated at 1528m and the maximum gas observed was 48 units. Drilled ahead and a gas peak of 10-101-2 units was encountered at 1538m. A drill break occurred at 1571-1572m of 15-44m/hr. A flow check was carried out but no flow was observed. B/U was circulated and maximum gas was 1-28-1 units. Drilling was resumed for 1m and B/U circulated out; the gas observed was 0.3-20-0.2 units. P.O.O.H. for Core No. 4. The core barrel was made up and R.I.H. Circulated, dropped the ball and cut Core No. 4 from 1573.4m to 1585.6m. Maximum gas observed whilst coring was 2.6 units. P.O.O.H. to recover Core No. 4 (7.9m, 64.8%).

24th September 1982. R.I.H. for Core No. 5. Circulated B/U (1.0-2.6-1.0 units gas) cored from 1585.6m-1596.6m. P.O.O.H. and recovered core (2.6m 23.6%). Made up NB 5 (HTC J11) and R.I.H. The rat hole was reamed (maximum gas 15 units) new hole drilled to 1598m where a flow check was made (no flow) and B/U circulated (0.1-4-0.1 units gas). Drilling was resumed to 1607.2m where a flow check was made following a drilling break from 1606m with ROP's of 43 - 49m/hr. B/U was circulated (0.2-0.2-0.2 units gas). Drilling then continued to 1624m. The ROP's slowed down at 1612m to 2-5m/hr with a few faster metres which were related to lithological changes.

25th September 1982. Drilling continued to 1628m when it was decided to pull the bit after drilling on junk. (BCO was 8-2-I). Making up the new BHA, Bit No. 6 (HTC J22) was RIH and the junk sub worked for 15 minutes prior to drilling ahead. (TG was 4 units.) The well was flow checked at 1633.6m (no flow and B/U circulated at 1634m (maximum gas 0.2/1.2/0.2 units). Drilling ahead, gas peaks of 16/35.6/13.3 and 13.1/35.1/18.8 from coal were observed at 1658m and 1662m respectively. A drill break (39-78m/hr) at 1681m was flow checked (no flow) and circulating B/U, maximum gas was 2.0/3.5/2.1 units from coal. A break at 1707m (5-43m/hr) was flow checked (no flow) and B/U yielded maximum gas 0.4 units from a sandstone. Again at 1728m, a break of 3-33m/hr was flow checked (no flow) and B/U maximum gas was 0.4 units from a sandstone. Drilled ahead, midnight depth was 1761m.

26th September 1982. Drilling continued to 1770m where the bit was pulled to run Schlumberger logs. First a survey (2°) and a wiper trip were made. Schlumberger logs run were DLL-MSFL-GR. Then some RFT pretests were made in run No. 1.

<u>27th September 1982</u>. RFT's were continued with samples taken from RFT No. 2 (1595m), No. 3 (1575m), No. 4 (1613m), No. 5 (1584m) and No. 6 (1678m). Oil was recovered from runs 2, 3 and 5.

28th September 1982. RFT's continued with samples taken from No. 7 (1532m), No. 8 (1605m) and No. 9 (1529.5). Oil was recovered from run No. 7. The BOP's were then tested. NB 7 was RIH, the hole being tight at 1527m where the pipe was worked. The hole was reamed out from 1517m to 1531m.

29th September 1982. Reaming continued with a maximum gas (Trip Gas) of 35 units, 10% Co₂. New hole was drilled to 1782m where a flow check (negative) was made and B/U circulated, (gas 0.2 units), following a drill break at 1779m with ROP's of 19-50m/hr increasing from 4-6m/hr. Drilling continued, the sample circulated up having no show. At 1800m a flow check was made (no flow) and B/U were circulated following a drill break from 1799m where ROP's increased from 3m/hr to 23-27m/hr. The sample had no show (gas was 0.1 unit) and drilling resumed. At 1816m and 1860m flow checks were made (no flow) and B/U circulated. In both cases no show was observed with a minimal rise in gas (maximum 1.4 units) and drilling continued to 1880m.

30th September 1982. Drilling continued from 1880m to 2032m. The well was flow checked at 2032m (no flow) and B/U circulated (maximum gas 1.0/31/0.7 units). Drilled ahead to 2046m, B/U were again circulated after

a drilling break. (6.6-20m/hr) Maximum gas was 1.5/9/1.5 units and the well was flow checked (no flow).

1st October 1982. With the decision to cut a core, a survey was dropped and P.O.O.H. commenced. (Survey recovered was $2\frac{1}{4}^{\circ}$.) Made up the core barrel and R.I.H.; no fill was found. Circulating B/U (Trip Gas was 2.5 units), Core No. 6 was cut from 2046m to 2061.2m and recovered to yield 15.12m of 15.2 cut (99.5%). Maximum gas while coring was 1.2 units. Made up BHA and R.I.H. The rat hole was reamed from 2046m to 2056m (T.G. was 0.2/6.8/0.2 units).

2nd October 1982. Reamed to 2061m, then drilled ahead with a $12\frac{1}{4}$ " HTC J22 (Bit No. 8) to 2215m. Flow checks were conducted at 2080m and 2154m (both negative).

3rd October 1982. Drilled ahead from 2215m to 2310m; a flow check was conducted at 2266m but no flow was observed. Gas peaks were observed at 2226m (50 units), 2241m (35 units) and 2269m (17 units).

4th October 1982. A depth of 2321m, the original proposed T.D. for the well, was reached at 0300 hours, and after circulating for 15 minutes a survey was dropped and a wiper trip to the casing shoe conducted. Bottoms up were then circulated (maximum gas observed was 10.3 units). P.O.O.H. commenced after pumping a slug and flushing the riser (Survey $-3\frac{1}{4}^{\circ}$). Schlumberger ran the following logs:

DLL-MSFL-GR (2318-1700m)

LDL-CNL-GR (2304-1710m)

A velocity survey was then run.

5th October 1982. R.I.H. to 2315m and washed to 2321m. Bottoms up were then circulated (maximum gas was 7 units) and after pumping a slug and flushing the riser, P.O.O.H. Schlumberger ran RFT No. 10 (pretests).

6th October 1982. Schlumberger ran RFT's No. 11, No. 12, No. 13 with 6 gallon and 1 gallon segregator chambers and in all three cases the 1 gallon chamber was preserved with:

RFT No. 11 set at 2249m,

RFT No. 12 set at 2205m,

RFT No. 13 set at 2032m

RFT No. 14 was then run with 6 and 1 gallon chambers and set at 2280m. (Both chambers opened.) RFT No. 15 with 6 and $2\frac{3}{4}$ gallon chambers was set at 2046m (both chambers opened).

7th October 1982. Attempting to run RFT No. 16, Schlumberger were unable to reach desired depths and retrieving the tool a wiper trip was commenced. Stopped to break circulation at the casing shoe, R.I.H. and washed from 2317m to 2321m. Circulated B/U; trip gas was 10.1 units. P.O.O.H.; Schlumberger ran RFT No. 17, (No. 16 declared a misrun) with 6 and $2\frac{3}{4}$ gallon chambers and setting the tool at 2195.3m. Rigged down Schlumberger and the wear bushing was pulled. RIH and tested the BOP stack. RIH with Bit No. 9 (HTC J22).

8th October 1982. Washed from 2316m to 2321m, then drilled ahead to 2403m. Trip gas was 2.5 units and maximum gas observed for the interval was 0.9/3.6/0.2 units from a drilling break of 4-14m/hr at 2359m (sandstone). A flow check conducted at 2341.2m indicated no flow.

9th October 1982. Drilled 12¼" hole from 2403m to 2497m; maximum gas observed in the interval was 0.1/2.3/0.2 units from a sandstone at 2448m associated with a drilling break of 5.1-12.8m/hr. Other increases in ROP for the interval yielded no increase in gas above a background of 0.1-0.5 units and flow checks made at 2436m and 2447m indicated no flow.

10th October 1982. Drilled 324" hole from 2497m to 2585m; maximum gas was 0.6/3.8/0.5 units from a sandstone at 2577m (Drilling break 4-16m/hr). BG remained at 0.1-0.6 units. A flow check conducted at 2578m indicated no flow.

11th October 1982. Drilled 12¼" hole from 2583-2601m where B.U. were circulated and Bit No. 9 pulled having made 28m hole with 66.7 on bottom hours. Maximum gas was associated with a drilling break (15-31m/hr) and lithology change to predominantly loose quartz, coarse grained sandstone from a finer grained aggregate sandstone. Both types yielded a bright white fluoresence and strong instant crush cut. Flow checks were conducted at 2593m, 2587m and 2598m, all with no flow. NB No. 10 (HTC J22) was RIH to 2592m, washing/reaming to T.D. Drilling resumed to 2643m.

12th October 1982. Drilling continued at a slow rate with ROP's between 1.5-2.0m/hr (B.G. was 0.1 unit). Tight hole was encountered from 2655m to 2662m, high torque resulted necessitating the pipe to be worked on occasions. The slow drilling was attributed to the hard lithology, thought to be a volcanic sill.

13th October 1982. The hole was reamed from 2668-2671m due to tight hole. Drilling continued to 2676m where a survey was dropped and a bit

trip was made due to low ROP's. Bit No. 10 made 75m in 29.2 on bottom hours. B.G. had been 0.1-0.4 units with a maximum of 1.1 units. Swab gas of 1.7 units was detected from the reamed section at 2671m. Bit No. 11 (HTC J33) was RIH to the shoe. The rig was then shut down temporarily due to an industrial dispute. RIH to 2638m and the hole reamed to 2676m where drilling continued to 2684m at which point B/U were circulated following an ROP increase from 3-12m/hr. The samples indicated a return to sedimentary siltstones and sandstones. Continued drilling ahead to 2689m.

14th October 1982. Drilled ahead from 2689 to 2785m at ROP's between 3 and 10m/hr in an interbedded sandstone/siltstone sequence with occasional volcanics.

15th October 1982. Drilled ahead to 2797m where the bit was pulled due to slow ROP's and excessive torque after 28.28 hours on bottom, having made 121m. Circulated B/U, dropped a survey (2°) and P.O.O.H. The bit had lost 3 cones during drilling, probably due to drilling on junk (the previous bit had lost a lot of its buttons). Due to the proximity of the re-schduled T.D. of 2821m it was decided to T.D. at 2797m and log. Schlumberger ran the following logs:

MSFL-DLL-GR

LDT-CNL-GR

The hole was very washed out in the section 2635-2680m (the volcanic zone). Schlumberger recorded a T.D. of 2804m.

16th October 1982. Continued running Schlumberger logs:

LDT-CNL-GR

ISF-SONIC

HDT

RFT No. 18 (2633m),

RFT No. 19 (pretests).

17th October 1982. Ran a velocity survey prior to RIH for a wiper trip. Circulated and conditioned mud (0.1-3.5-0.1 units T.G.) and P.O.O.H. Schlumberger then ran RFT No. 20 (pretests).

18th October 1982. RFT's were continued with run numbers 21 (2604.5), 22 (2461.5m), 23 (2633m) and 24 (2461.5m). Due to the washed out nature of the hole there were many problems in finding good seats. Sidewall cores were then run.

19th October 1982. Made two more sidewall core runs. RIH and reamed to bottom from 2528m. Circulated out - maximum gas of 3.5 units (T.G.), B.G. was 0.1 units.

20th October 1982. Circulated out then made a wiper trip to the shoe. Ran in to T.D., and circulated again (0.1-0.4-0.2 units gas). P.O.O.H. to shoe, then had to wait on weather for the delivery of the casing.

21st October 1982. W.O.W. for casing to arrive. R.I.H. and circulated (gas was 0.1-0.6-0.1 units). P.O.O.H. to the shoe.

22nd - 23rd October 1982. W.O.W.

24th October 1982. Ran and cemented the 9-5/8" casing.

25th October 1982. Had difficulties testing the seal assembly. Ran the wear bushing, and R.I.H. after laying down the 8" and $9\frac{3}{4}$ " drill collars.

26th October 1982. Tagged cement at 2312m. Drilled out cement and plug. R.I.H. to 2748m, circulated then P.O.O.H. Ran one Schlumberger log: CBL-VDL-GR-CCL. Retrieved the wear bushing, made up the seal assembly, and tested the B.O.P.'s. Set the wear bushing, made up the circulating head, and reverse-circulating at 2742m.

27th October 1982. P.O.O.H., the Schlumberger ran a tool (tight hole was encountered at 2313m). R.I.H., and worked the casing craper at 2300 - 2328m. Reverse circulated, pumped a slug, and P.O.O.H. Schlumberger ran a tool again.

28th October 1982. Set a Baker Model "D" packer at 2603m. Ran and stung tubing into the packer. Spaced out and made up the sub-sea Christmas Tree and chick-sans.

29th October 1982. Perforated the casing from 2624 - 2633.5m. The well was opened for 2 hours (30 bbls of diesel flowed). The well was opened a further two times but had to be closed prematurely due to a ruptured burner, and unfavourable weather. There were no H2S or CO2 detected during the flow.

30th October 1982. Waited on weather and monitored the well pressure. Well was opened at 03:59 and 5 bbls of diesel burnt off. Shut in well briefly from 05:36 to 05:47 and again from 0630 to 0631 hours, burning off through the boomers when well was opened. Well shut in at 0733 hours. Sampling carried out as required by Esso production engineers. Well was opened at 0756 hours and shut in again at 0940 hours with flow to the Otis tanks while open. Opened again at 1139 hours with flow to Otis tanks the well

was shut in at 1225 hours to await Flopetrol heater, facilitating flow to the flare. Schlumberger P.O.O.H. with HP and Amerada gauge.

31st October 1982. Ran pressure survey and rigged down Schlumberger and Otis Ameradas. Rigged up and R.I.H. with Otis bottom hole sampler, took sample at 1900m (oil of 37.5° API at 60°F and pour-point 87°F) and P.O.O.H. Still waiting for Flopetrol heater to re-open well.

1st November 1982. Well shut in and still waiting on Flopetrol heater. R/U Schlumberger with HP and Amerada; reparied and tested Schlumberger lubricator; and ran a pressure test.

2nd November 1982. Opened well to separator from 0600 to 0715 hours. Then reopened well to burners at 0910 hours. Half hourly gas and fluid samples were caught until the well was shut in at 1141 hours. The well was opened to the burners for the final flow period from 1603 to 0533 hours on the 3rd November 1982. Sampling was carried out as required by Esso production engineers.

3rd November 1982. The well was shut in to end PWT No. 1 at 0533 hours, but burn off from the separator and Otis tanks continued until 0730 hours. No H2S had been observed during the test and CO2 concentration remained at 13-15% throughout the final flow period.

4th November 1982. Well shut in and monitored pressured buildup.

Schlumberger P.O.O.H. with H.P. and Ameradas - took 6 gradient readings on the way out. Killed the well by pumping 10 bbls water and 92 bbls of 9.7 ppg mud. The injection rate for the last 12 bbls was 1/3 BPM at 3500 psi. Observed well for flow, but the well was dead. Established circulation eventually (maximum gas detected was 0-120-8 units). Large quantities of wax appeared over the shakers while circulating.

5th November 1982. Pulled 39 joints of tubing out of the hole, laying down the sub-sea test tree. R.I.H. with drill-pipe. Circulated and conditioned the mud (Bottoms-up gas was 3 units). Stung into the packer, closed the annulars, and established an injection rate of 0.49 BPM at 3500 psi. Unstung, circulated and pulled the remainder of the tubing out of the hole. The hole did not take the correct amount of fluid (12 bbls less than expected Pulled the wear bushing. Tested the BOP stack, and the choke and kill lines. Ran the wear bushing, then made up the packer retrieving tool and BHA prior to R.I.H.

6th November 1982. R.I.H. Circulated and conditioned the mud. Stung into the packer and milled same. Slugged the pipe and P.O.O.H. R.I.H. to 2597m, where the packer was tagged, so the but had to be pulled, for another mill run. R.I.H.

7th November 1982. R.I.H. and milled on the packer after tagging it at 2597m. Pushed the packer down to the top of the cement, and milled on the packer, making one foot of cement as well. Pumped a slug, and P.O.O.H. R.I.H. with open-ended drill-pipe to 2640m. The first attempt at cementing the perforations was aborted. Reversed out, then pumped the second mix of cement. Pulled 4 stands, hung-off on the Upper Pipe Rams and then squeezed 14 bbls of mud into the hole. Opened the rams and P.O.O.H. R.I.H. with a bit and a junk-sub, tagging cement at 2606m. Drilled 5 metres of cement. Laid down 12 joints of drill-pipe.

8th November 1982. R.I.H. to 2611m and drilled cement to 2632m. Tested the cement squeeze job - O.K. R.I.H. to 2698m, washed fill down to 2717m, then worked the junk-sub. Drilled cement from 2717 - 2725m. Lost 1300 psi pump pressure, so P.O.O.H. looking for washout. The pressure drop turned out to be a missing jet. R.I.H. with a bit, and fished with a junk-basket. Drilled through the remaining cement, baffle, float collar and shoe. Cleaned out the $12\frac{1}{4}$ " hole to 2797m. Fished for junk. Pumped a slug and P.O.O.H. R.I.H. with a milling-tool.

9th November 1982. R.I.H. with a junk basket. Milled from 2797m to 2798m, pumped a slug, and P.O.O.H. One bit core was recovered. R.I.H. again, with a new junk basket and milled from 2798 - 2799m. Slugged the pipe, and P.O.O.H., recovering one core and part of a shank. R.I.H. with a 7" magnet inside a burn shoe.

10th November 1982. Fished for junk, pumped slug, and P.O.O.H. R.I.H. again with a junk-basket, and milled from 2799 - 2800m. A core sample, 0.52 metres in length, was recovered. Then R.I.H. with a flat bottom mill. Milled the junk and worked the junk basket. Hanging-off in the upper pipe rams, a P.I.T. was performed (16.5 ppg E.M.W. at 2800m).

11th November 1982. Pumped a slug, and P.O.O.H., retrieving small pieces of core and abundant metal shavings. R.I.H. and milled junk again. Pulled the pipe and recovered $2\frac{1}{2}$ lbs of metal pieces. Made another milling run, but did not recover any metal in the junk basket.

12th November 1982. R.I.H. with new bit no. 12 (HTC J7, $8\frac{1}{2}$ "), drilled 3 metres of new hole, and worked the junk subs. P.O.O.H. retrieving 5 lbs of metal (including bearings and teeth). R.I.H. with new bit no. 13 (HTC J7, $8\frac{1}{2}$ "), and repeated the operation, drilling 3 new metres of hole. Then a core was cut by Christensen from 2805 - 2807.8m, pulling out early due to fluctuating pump pressure.

13th November 1982. Recovered the core (8%), then R.I.H. with another new bit (HTC J33, $8\frac{1}{2}$ "). Reamed the rat-hole, then drilled ahead from 2807.8 - 2860m. The bit was pulled at 2860m due to very low ROP's. (Maximum gas detected was 5 units, and the background was 0-1 units).

14th November 1982. P.O.O.H. (the survey was a misrun). R.I.H. with new bit no. 15 (HTC J33, $8\frac{1}{2}$ "). No fill was encountered, but as a precaution the hole was reamed from 2859 - 2860m. Drilled from 2860 - 2914m (maximum gas was 27 units, and the background was 0-1 units). It was then decided to cut a core so "bottoms" were circulated up a survey was dropped (3°), a slug was pumped, and the bit pulled.

15th November 1982. R.I.H. with the core barrel, washing from 2893 - 2914m. Cut core no. 8 from 2914 - 2916m. Pressure increased and penetration ceased, so the barrel was pulled (only 4 pebbles were recovered). Tested the stack, then ran in the hole with bit no. 16 (HTC J44, $8\frac{1}{2}$ "), reaming the rathole, then drilling $8\frac{1}{2}$ " hole from 2916 - 2925m.

16th November 1982. Drilled from 2925m to 2964m, where a drilling break was flow-checked and circulated up. The gas rose to 560 units so the mud weight -as increased to 10.0 ppg. The gas dropped to less than 10 units. A "10-10-10" test was run (6-452-11 units), and the mud was further weighted up to 10.4 ppg. Another "10-10-10" test yielded 0.3-1.4-0.6 units, so the mud weight was raised to 10.6 ppg.

17th November 1982. Circulated and raised the mud weight to 10.7 ppg to counter the overpressure. P.O.O.H. to the shoe and ran back in. Circulated bottoms-up (maximum gas was 0.2 units), and decided to drill ahead as a result of the low gas readings. Drilled 8½" hole from 2964 to 2972m, and then pulled the bit due to low ROP's. No fill was detected as the new bit (No. 17, HTC-J44, 8½") was being run in the hole. Drilled from 2972 to 2992m (trip gas was 0.1-0.4-0.1 units). Flow-checked 2 drilling breaks (50 units gas from 2977m; and 310 units from 2985m) - no flow in both cases. AT 2984m, 12 units of gas were detected from a 3-minute shut-down, and 526 units of connection gas came from kelly-down at 2986m. Core Lab concluded that the pore pressure had risen to an estimated 10.5/10.6 ppg, so the mud was weighted up to 11.2 ppg.

18th November 1982. Worked pipe and circulated bottoms up with the 11.2 ppg mud (0.3-0.3-0.3 units gas - indicating no influx and hence it was safe to drill ahead). Drilled from 2992 - 3026m. Flow-checked at 3009, 3015, and 3024m (all 0.K.). A decision was made to P.O.O.H. to log, so "bottoms"

were circulated up (2 units gas), and a short wiper trip was performed (trip gas 0.2-28-0.6 units). P.O.O.H. (survey $3\frac{1}{4}^{\circ}$). Schlumberger ran the following logs:

DLL-MSFL-GR

19th November 1982. Continued running Schlumberger Logs:

LDL-CNL-GR, a

BHC-GR

A wiper trip was then made and bottoms up circulated with gas levels of 0.2-216-0.8 units, an earlier peak was detected of 230m which was probably caused by gas migration from a higher pressure sand. P.O.O.H. to the casing shoe and W.O.W. R.I.H. to 3026m and circulated bottoms up (0-2.8-0.6 units gas, again an early peak, of 5 units was dtected). Schlumberger then prepared to run RFT No. 25.

20th November 1982. Due to adverse hole conditions the only successful pretest from RFT No. 25 was 2973.8m and a sample was taken from this depth. The pore pressure calculated from this RFT gave an E.M.W. of 10.61 ppg. Two CST runs were then run prior to a Velocity Survey.

21st November 1982. Continued ru-ning Velocity Data Tests. Open-ended drill-pipe was then R.I.H. and bottoms up circulated (0-256-0.4 units gas). A cement was then pumped to set a plug at 3026m and fill the open hole. Fire stands were pulled and the pipe was cleaned by Reverse Circulation (max gas 0.2 units). P.O.O.H. to 2745m, where the second cement plug was set. Fire stands were P.O.O.H. and reverse circulation commenced with a maximum gas of 0.2 units. P.O.O.H. The B.O.P. stack was then tested. R.I.H. to dress the plug to 2750m.

22nd November 1982. Continued R.I.H. and tagged cement at 2743m. Cement was drilled to 2743m and bottoms up circulated (0-0.5-0 units gas). A pressure test of the casing and plug revealed a leak of 1 bb1 mud and 100 psi. Circulation proceeded to condition the mud to 9.7 ppg from 11.2 ppg with a maximum gas of 2.5 units. P.O.O.H. A RTTS tool was then run and set at 2730m and a pressure test of the casing and plug was successfully concluded indicating the previous leak to be at the perforations made for PWT No. 1. P.O.O.H.

23rd November 1982. Schlumberger ran the CCL/GR log and then two Baker model 'D' packers were set; one without a flapper at 2668m and one with a flapper at 2612m. The seal and test assembly was then R.I.H. on tubing. The tubing and seal assembly were then successfully pressure tested.

24th November 1982. The test christmas tree and B.O.P.'s were rigged up and tested. Schlumberger then R.I.H. and perforated at 13 shots per metre

between 2736 and 2725m. When Schlumberger were out of the tubing the hole was opened. No flow was observed.

25th November 1982. Schlumberger R.I.H. and made another set of perforations between 2736m and 2747m. Again there was no flow. Otis then R.I.H. and swabbed the test zone. The well was then shut-in and the pressure built-up to 20 psi. Due to this low pressure Schlumberger R.I.H. and perforated between 2702m and 2691m. The shut in pressure rose to 428 psi in 21 minutes before the choke (3-2/64") was opened and flow allowed to the Test Tanks. The flowing pressure was 11 psi. After 30 minutes the well was shut in for pressure build up.

26th November 1982. The pressure build up was observed and monitored reaching 1132 psi before stabilising at 735 psi after 11½ hours, when the well was opened on 32" choke. The flow pressure was 11 psi but dropped to 2 psi when the choke was opened further to 48/64" after one hour's flow. The flow pressure dropped again after 9 hours to 1 psi, then to 0 psi. 14½ hours after the well was opened the choke was shut in having displaced 14 barrels of diesel into the test tanks. Schlumberger R.I.H. with HP and Amerada tool.

27th November 1982. Schlumberger R.I.H. with HP and Amerada tools to monitor down hole pressures and temperatures. Pressure continued to build up to a maximum of 561 psi after $23\frac{1}{2}$ hours. Schlumberger then started to P.O.O.H. making gradient stops.

28th November 1982. Schlumberger continued making gradient stops and then P.O.O.H. Otis R.I.H. to take samples, set for 2450m. The samples were recovered, they were water with salinities of 24000 ppm. An injection rate was then established into the perforated formation of 500 psi in 2 minutes from 4500 psi. The well was then opened to the test tank but there was no flow. After some difficulty, overpull of 60,000 lbs was required, the tubing was pulled from the packers. The diesel and fluid in the tubing was then reverse circulated initially into the test tanks. After the first displacement flow was returned to the shakers, gas levels were 29-29-4 units. Circulation continued down the tubing, after the second displacement of the tubing, with gas levels of 0-5.5-2.6 units (C1 to C4 breakdown). The tubing was then P.O.O.H.

29th November 1982. Continued P.O.O.H. then R.I.H. with drill pipe and cement stinger to 2750m. Mud was circulated with a B.U. gas of 0.8-50-2 units to condition the mud. Cement slurry was then pumped to set a plug up to 2668m. Five stands were P.O.O.H. and mud was reverse circulated with gas levels of 1 unit, until the pipe volume had been displaced two times.

Circulation then continued down the drill pipe to condition the mud, with gas levels dropping to 0 unit. P.O.O.H.

30th November 1982. Continued to P.O.O.H. Pressure tested the cement. Schlumberger set a bridge plug at 2605m. A test on the plug failed. Attempted to pull the seal assembly unsuccessfully. Tested the casing to 3100 psi.

1st December 1982. Pulled the seal assembly with a back-out tool. Cut the casing at 224.84m (R.K.B.). Attempted to spear the casing, but failed. Cut the casing a second time (252.14m R.K.B.), and managed to spear the casing free (with 70K overpull).

2nd December 1982. Laid down the 9-5/8" casing and the tubing.

3rd December 1982. Set a cement retainer at 242m. R.I.H. wiyh stinger, and pressure tested the annulus. Set a balance plug on top of the retainer. Reversed out, then P.O.O.H. Perforated the 13-3/8" casing from 151 - 151.5m, and set a cement retainer at 141m.

4th December 1982. Squeezed 299 sacks of cement below the retainer, and dumped 87 sacks on top. Circulated hole and riser, with seawater. Tested the cement - 0.K. Washed the wellhead and laid down drill-pipe. Pulled the stack and riser. Deballasted the rig. Blew the well-head.

5th December 1982. Waited on work-boats. Handled the anchors. Waited on weather.

6th December 1982. Waited on weather. Handled the anchors. Began towing to the new location at 1900 hours.

8. PROGRESS LOG

PROGRESS LOG ESSO AUSTRALIA LTD

WIRRAH NO. 1

9. BIT RECORD SHEETS

В	T	R	E	C	O	R	ח

[77]	TATATA	7
VY	MM.	
	NUKIAA	i
NN	YAE	1

COMPANY ___ESSO AUSTRALIA LTD.

WELL WIRRAH NO. 1

Sheet No. ____1

s/No.	Bit No.	Make	Туре	IADC Code	Size	Jets	Depth In	Hole Made m	Drilling Time	On Bottom Hours	KTurns	Condition T B G	Remarks
294 SR	RR 1	HTC	26" HO +OSC 3AJ	- 111	26 17 1	28/28/28 20/20/20	70.0	136.0	6 3	4.05	19	2-4-I	OUT FOR 20" CSG.
KX 481	2	HTC	OSC 3AJ	111	17½	20/20/20	207.0	593.0	26	16.15	132	2-2-1	DRULLED CMT, PLUGGED JET.
KX 481	RR 2	HTC	OSC 3AJ	111	17½	20/20/20	799.0	46.0	5 1/4	4.06	34	2-2-I	OUT FOR 13-3/8" CSG.
291 KK	3	HTC	хза	114	121/4	18/18/18	845.0	643.2	41 ½	31.23	257	5-4-I	OUT FOR CORE NO. 1.
IW 5994	3	CHRIS	RC4	4	8 <u>1</u>	EQUIVALENT 15/15/14	1488.2	12.4	1	0.77	4	45%	OUT FOR CORE NO. 2.
1W 5994	3	CHRIS	RC4	4	8 <u>1</u>	EQUIVALENT 15/15/14	1500.6	12.8	1 3/4	1.24	7	50%	OUT FOR CORE NO. 3.
1W 5994	3	CHRIS	RC4	4	8 <u>1</u>	EQUIVALENT 15/15/14	1513.4	13.6	2	1.43	9	60%	RECOVER CORE NO. 3.
951UA	· 4	HTC	хза	114	121/4	18/18/18	1527.0	46.4	3 3/4	2.60	22	4-2-I	OUT FOR CORE NO. 4.
2W 6901	4	CHRIS	RC3	4	8 <u>1</u>	EQUIVALENT 15/15/14	1573.4	12.2	4 1	4.48	27	5%	OUT FOR CORE NO. 5.
2W 6901	4	CHRIS	RC 3	4	8 <u>1</u>	EQUIVALENT	1585.6		3	2.92	19	20%	RECOVER CORE NO. 5.
5X 456	5	HTC	J11	437	121/4	18/18/18	1596.6	31.8	9 <u>1</u>	7.37	28	8-2-I	DRILLED ON JUNK.
FR 646	6	HTC	J22	517	121/4	18/18/18	1628.4	142.0	17½	11.42	41	1-2-1/8	POOH TO LOG, BROKEN INSERTS.
796 NL	7	HTC	J22	517	12 1/4	18/18/18	1770.4	275.6	34 1	28.35	94	2-2-1	OUT FOR CORE NO. 6.
2W 6901	7	CHRIS	RC3	4	8 <u>1</u>	EQUIVALENT 15/15/14 •	2046.0	15.2	4 3	4.02	26	20%	RECOVER CORE NO. 6.
694 FL	8	HTC	J22	517	121/4	18/18/18	2061.2	259.8	49 3/4	43.41	129	1-2-I	POOH TO LOG.
690 FL	9	HTC	J22	517	121/4	18/18/18	2321.0	280.0	74 1	66.68	216	3-4-1/8	OUT DUE TO LOW R.O.P.'S.
801 NL	10	HTC	J22	517	121/4	18/18/18	2601.0	75.0	36 ½	29.22	103	8-2-1/8	LOW R.O.P.'S IN VOLCANIC PLUG
768 BL	11	HTC	J33	537	12 1/4	18/18/18	2676.0	121.0	35	28.28	97	8-8-	OUT @ T.D., 3 CONES LOST.
FD 737	12	HTC	J7	316	8 ½	12/12/12	2801.0	3.0	1 ½	0.54	2	7-2-I	OUT TO RETRIEVE JUNK MILLED TO 2801M.
FK 594	13	HTC	J7	316	8 <u>1</u>	12/12/12	2804.0	3.0	1 ½	0.46	1	3-2-1	OUT TO CUT CORE NO. 7.
81A 0647	RR13	CHRIS	C-20	4	$8\frac{15}{32}$	EQUIVALENT 13/13/13	2805.0	2.8	3	2.62	13	100%	OUT DUE TO FLUCTATING PUMP PRESSURE.
546 MS	14	HTC	J33	537	8 <u>1</u>	12/12/12	2807.8	52.2	13	11.73	40	4-4-1/8	OUT DUE TO LOW ROP'S.
541 MS	15	HTC	J33	537	8 <u>1</u> ,	12/12/12	2860.0	54.0	121/2	11.17	39	5-4-1/8	OUT AT CORE POINT.
81E 0636	15	CHRIS	C-20	4	8 <u>15</u> 32	EQUIVALENT 13/13/13	2914.0	2.0	2 <u>1</u>	1.89	9	90%	OUT DUE TO FLUCTUATING PUMP

7520-487 (CL 1153)

BI.	T	EC	0:	R	ח

		7
W	ИŇ	AD

COMPANY ___ESSO AUSTRALIA LTD.

WELL WIRRAH NO. 1

Sheet No. ___2

<u>S/NO.</u> MB 523 TL 381

Bit No.	Make	Туре	IADC Code	Size 11		Depth In	Hole Made	Drilling Time	On Bottom Hours		Condition T B G	Remarks
16	HTC	J44	617	8½	12/12/12	2916.0	56.0	$17\frac{1}{2}$	16.84	60	2-4-I	PULLED DUE TO LOW ROP'S.
17	HTC	J44	617	8 <u>1</u>	12/12/12	2972.0	54.0	121/4	10.43	36	2-2-I	PULLED AT T.D., TO RUN LOGS
												•
					•							

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.

WELL WIRRAH NO. 1

Sheet No. 1

s/Nos.	Bit No.	Make	туре	IADC Code	Size	Cost	Jets	Depth In	Depth Out	Hole Made m	Drilling Time	On Bottom Hours	Turns K	Average ROP	Average Cost/ m	Condition T B G
294 SR	RR 1	HTC	26" HO +OSC 3AJ	111	26 17 1	6350	28/28/28 20/20/20	70.0	206.0	136.0	6 3/4	4.05	19	33.6	257.68	2-4-I
KX 481	2	HTC	OSC 3AJ	111	$17\frac{1}{2}$	4442	20/20/20	206.0	799.0	593.0	26	16.15	132	36.7	156.42	2-2-I
KX 481	RR 2	HTC	OSC 3AJ	111	17½	4442	20/20/20	799.0	845.0	46.0	5 1	4.06	34	11.2	861.60	2-2-I
291 KK	3	HTC	хза	114	12½	2201	18/18/18	845.0	1488.2	632.2	41½	31.23	257	20.6	255.41	5-4-I
IN 5994	3	CHRIS	RC4	4	8 <u>1</u>	13000	EQUIVALENT	1488.2	1500.6	12.4	1	0.77	4	16.1	3190.37	45%
1W 5994	3	CHRIS	RC4	4	8 <u>1</u>	1 3000	EQUIVALENT	1500.6	1513.4	12.8	1 3	1.24	7	10.3	3254.03	50%
1W 5994	3	CHRIS	RC4	4	81/2	1 3000	FSYFYALENT	1513.4	1527.0	13.6	2	1.43	9		3124.77	60%
951 UA	4	HTC	X3A	114	121/4	2201	18/18/18	1527.0	1573.4	46.4	3 3/4	2.60	22	17.8	804.92	4-2-I
2W 6901	4	CHRIS	RC3	4	81/2	13000	EQUIVALENT 15/15/14	1573.4	1585.6	12.2	4 <u>1</u>	4.48	27	2.7	4668.53	5%
2W 6901	4	CHRIS	RC3	4	81/2	13000	EQUIVALENT 15/15/14	1585.6	1596.6	11.0	3	2.92	19	3.8	4546.88	20%
SX 456	5	HTC	J11	437	121/4	6788	18/18/18	1596.6	1628.4	31.8	9 <u>1</u>	7.37	28	4.3	2014.04	8-2-I
FR 646	6	HTC	J22	517	121/4	6788	18/18/18	1628.4	1770.4	142.0	171/4	11.42	41	12.4	587.32	1-2-1/8
796 NL	7	HTC	J22	517	121/4	6788	18/18/18	1770.4	2046.0	275.6	34 <u>1</u>	28.35	94	9.7	583.98	2-2-I
2W 6901	7	CHRIS	RC3	4	8 <u>1</u>	13000	EQUIVALENT 15/15/14	2046.0	2061.2	15.2	4 3	4.02	26	3.8	3905.17	20%
694 FL	8	HTC	J22	517	121/4	6788	18/18/18	2061.2	2321.0	259.8	49 3	43.41	129	6.0	887.67	1-2-I
690 FL	9	HTC	J22	517	121/4	6788	18/18/18	2321.0	2601.0	280.0	74 ½	66.68	216	4.2	1202.91	3-4-1/8
801 NL	10	HTC	J22	517	121/4	6788	18/18/18	2601.0	2676.0	75.0	36 ½	29.22	103	2.6	2298.40	8-2-1/8
768 BL	11	HTC	J33	537	12 1/4	6637	18/18/18	2676.0	2797.0	121.0	3 5	28.28	97	4.3	1385.14	8-8-
FD 737	12	HTC	J7	316	8 <u>1</u>	1260	12/12/12	2799.0	2802.0	3.0	1 ½	0.54	2	5.6	12936:0	7-2-I
FK 594	13	HTC	J7	316	81/2	1260	12/12/12	2802.0	2805.0	3.0	1 ½	0.46	1	6.5	12818.0	3-2-I
81A 0647	RR13	CHRIS	C-20	4	8 <u>15</u>	1 3000	13/13/13	2805.0	2807.8	2.8	3	2.61	13	1.1	21501.0	100%
546 MS	14	HTC	J33	537	8 <u>1</u>	3703	12/12/12	2807.8	2860.0	52.2	13	11.73	40	4.5	1761.05	4-4-1/8
541 MS	15	HTC	J33	537	81/2	3703	12/12/12	2860.0	2914.0	54.0	12½	11.17	39	4.8	1664.45	5-4-1/8
81E 0636	15	CHRIS	C-20	4	8 1 5	1 3000	EST SALENT	2914.0	2916.0	2.0	21/2	1.89	9	1.1	228945.0	90%

BIT RECORD

LAB

MB 523

TL 381

COMPANY_ESSO AUSTRALIA LTD.

WELL WIRRAH NO. 1

Sheet No.2

Condition T B G IADC Code Depth In Depth Out Hole Made Average ROP Cost/ Drilling On Bottom Jets Cost Type Size Bit No. Make Turns Time Hours 617 3.3 2056.28 2-4-1 16 HTC J44 3304 | 12/12/12 2916.0 2972.0 16.84 56 $17\frac{1}{2}$ 60 17 HTC J44 617 3304 12/12/12 2972.0 3026.0 121/4 10.43 5.2 1612.57 2-2-I 54

7520-486 (CL 1152)

10. MUD INFORMATION SHEETS

DEPTH Metres

MUD WEIGHT Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square feet

FILTRATE A.P.I. c.c.

CAKE THICKNESS . . . Thirty-seconds of an inch

SALINITY: Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . . Percentage .

LAB c	OMPANY ES	SSO AUSTRAI	LIA LTD.		MUD II	NFORMATIO	ON SHEE
	ELL W	RRAH NO.				Sho	eet No. <u>1</u>
DEPTH (m)	SPUD	272	799	806	845	813	1040
DATE	15/9/82	16/9/82	17/9/82	18/9/82	18/9/82	19/9/82	20/9/8
TIME		24:00	24:00	21:00	23:00	24:30	15:00
WEIGHT		8.6	9.2	9.3	9.4+	9.4	9.1
FUNNEL VISCOSITY	S	29	31	32	34	38	29
PV/YP	Е	2/8	4/17	4/17	5/18	6/29	5/18
N/K	A	.26/1.94	.25/4.38	.25/4.38	.28/3.92		
GEL: INITIAL/10 MIN	W	3/5	-	6/21	6/24	4/22	5/17
pH	A	8.5	8.5	9	9	12.2	9.6
FILTRATE: API/API HTHP		-	-		-	-	
CAKE	E	3	3	3	3	4	5
SALINITY	R		20K	20K	20K	20K	24K
SAND % Vol.		.25	.25	TR	TR	.25	TR
SOLIDS % Vol.		_	-	4	5	5	4
OIL		_	_	-	_	-	
							$12\frac{1}{4}$ "
						CASING	HOLE
DEРТН (m)	1145	1488	1512	1585	1622	CASING	•
DEPTH (m) DATE	1145 20/9/82	1488 21/9/82	1512 22/9/82	1585 23/9/82	1622 24/9/82		HOLE
DATE	20/9/82 23:30	21/9/82 23:00				1766	HOLE 1770
	20/9/82 23:30 9.2	21/9/82 23:00 9.8	22/9/82	23/9/82	24/9/82	1766 25/9/82	HOLE 1770 26/9/8
DATE TIME WEIGHT FUNNEL VISCOSITY	20/9/82 23:30 9.2 41	21/9/82 23:00 9.8 46	22/9/82 21:30 9.8 47	23/9/82 24:00 9.8 42	24/9/82 23:30	1766 25/9/82 0:30	HOLE 1770 26/9/8 23:15
DATE TIME WEIGHT FUNNEL VISCOSITY	20/9/82 23:30 9.2 41 4/16	21/9/82 23:00 9.8 46 5/19	22/9/82 21:30 9.8	23/9/82 24:00 9.8	24/9/82 23:30 9.7+	1766 25/9/82 0:30 9.8	1770 26/9/8 23:15 9.7+ 48
DATE TIME	20/9/82 23:30 9.2 41 4/16	21/9/82 23:00 9.8 46	22/9/82 21:30 9.8 47	23/9/82 24:00 9.8 42 7/15	24/9/82 23:30 9.7+ 50 10/11	1766 25/9/82 0:30 9.8 56 14/14	1770 26/9/8 23:15 9.7+ 48 9/9
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP	20/9/82 23:30 9.2 41 4/16	21/9/82 23:00 9.8 46 5/19	22/9/82 21:30 9.8 47 8/14	23/9/82 24:00 9.8 42 7/15	24/9/82 23:30 9.7+ 50 10/11 .56/.63	1766 25/9/82 0:30 9.8 56 14/14 .58/.73	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4
DATE FIME VEIGHT FUNNEL VISCOSITY PV/YP N/K	20/9/82 23:30 9.2 41 4/16 .26/3.88	21/9/82 23:00 9.8 46 5/19 .27/4.38	22/9/82 21:30 9.8 47 8/14 .45/1.35	23/9/82 24:00 9.8 42 7/15 .4/1.83	24/9/82 23:30 9.7+ 50 10/11	1766 25/9/82 0:30 9.8 56 14/14	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16 10.3	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13 11.9	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7
DATE FINE VEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN DH FILTRATE: API/API HTHP	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18 10.6	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26 11.2	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7 5.0/14.2	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7 4.6/14
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18 10.6 24	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26 11.2 8/17	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16 10.3 7.4/16.2	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15 11.1 5/15.4	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13 11.9 5.2/14.8	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7 5.0/14.2	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7 4.6/14
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN DH FILTRATE: API/API HTHP CAKE SALINITY 1	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18 10.6 24	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26 11.2 8/17 3	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16 10.3 7.4/16.2	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15 11.1 5/15.4 3 20K	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13 11.9 5.2/14.8 2	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7 5.0/14.2 2 16.5K	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7 4.6/14 2 16.0K
DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN DH FILTRATE: API/API HTHP	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18 10.6 24 4	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26 11.2 8/17 3 21K	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16 10.3 7.4/16.2 3 20K	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15 11.1 5/15.4	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13 11.9 5.2/14.8	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7 5.0/14.2 2 16.5K TR	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7 4.6/14 2 16.0K
DATE FIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN OH FILTRATE: API/API HTHP CAKE GALINITY GAND GOLIDS	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18 10.6 24 4 24K TR	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26 11.2 8/17 3 21K TR	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16 10.3 7.4/16.2 3 20K TR	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15 11.1 5/15.4 3 20K TR	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13 11.9 5.2/14.8 2 20K .25	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7 5.0/14.2 2 16.5K	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7 4.6/14 2 16.0K
DATE FIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN OH FILTRATE: API/API HTHP CAKE GALINITY SAND	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18 10.6 24 4 24K TR	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26 11.2 8/17 3 21K TR 8	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16 10.3 7.4/16.2 3 20K TR 10	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15 11.1 5/15.4 3 20K TR 10	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13 11.9 5.2/14.8 2 20K .25	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7 5.0/14.2 2 16.5K TR	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7 4.6/14 2 16.0K TR 10.5
DATE FIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN OH FILTRATE: API/API HTHP CAKE GALINITY GAND GOLIDS DIL	20/9/82 23:30 9.2 41 4/16 .26/3.88 5/18 10.6 24 4 24K TR	21/9/82 23:00 9.8 46 5/19 .27/4.38 11/26 11.2 8/17 3 21K TR 8	22/9/82 21:30 9.8 47 8/14 .45/1.35 7/16 10.3 7.4/16.2 3 20K TR 10	23/9/82 24:00 9.8 42 7/15 .4/1.83 4/15 11.1 5/15.4 3 20K TR 10	24/9/82 23:30 9.7+ 50 10/11 .56/.63 3/13 11.9 5.2/14.8 2 20K .25 10	1766 25/9/82 0:30 9.8 56 14/14 .58/.73 3/13 9.7 5.0/14.2 2 16.5K TR 11	1770 26/9/8 23:15 9.7+ 48 9/9 .58/.4 2/8 9.7 4.6/14 2 16.0K TR 10.5

MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY_ WIRRAH NO. 1 Sheet No. 2 WELL_ DEPTH 1770 2055 2210 2301 1770 1860 2034 DATE 2/10/82 27/9/82 28/9/82 29/9/82 30/9/82 1/10/82 <u>3/10/82</u> TIME 22:05 3:15 23:00 22:45 22:10 22:01 22:45 WEIGHT 9.8 9.8 9.7 9.8 9.7+ 9.7 9.6 +**FUNNEL VISCOSITY** 57 59 49 47 43 48 48 10/9 PV/YP 9/8 11/10 16/14 16/11 19/4 22/18 N/K 62/.64 .66/.55 .61/.37 .61/.48 .61/.42 .67/.41 .66/.58 **GEL: INITIAL/10 MIN** 2/8 2/9 3/7 5/20 6/24 4/9 2/8 4.6 11.4 10.0 11.4 10.9 10.4 9.5 FILTRATE: API/API HTHP 5.5/14.8 4.6/13.8 11.0/13.2 5.2/14.0 4.6/13.6 5.4/14.4 5.0/14.2 CAKE SALINITY K (ppm) 15.0 12200 15.5 12500 16.0 16.0 15.5 SAND % by Vol TR TR TR TRTR 0.25 TR SOLIDS % by Vol 10 11 9.5 9.5 9.5 9.5 10.5 OIL % by Vol TR TR TR <u>TR</u> TR 0 TR NITRATES (mg/1) 220 190 170 100 140 140 220 REMARKS: DRILLED 12 11 HOLE ---> CUT DRILLED 12 !" HOLE ← LOGGING -CORE 6 2574 2321 2321 2321 2321 2340 2486 DEPTH (m) DATE 4/10/82 5/10/82 6/10/82 7/10/82 8/10/82 9/10/82 10/10/82 TIME 22:00 21:30 08:00 09:00 17:00 07:15 21:30 WEIGHT 9.8 9.7 9.7+ 9.7+9.7 9.7 9.8+ FUNNEL VISCOSITY 53 62 47 50 56 69 71 25/19 .65/.77 23/18 .65/.75 15/11 .66/.43 19/15 .64/.63° 16/15 .60/.73 13/15 .55/.91 11/20 .44/2.02 PV/YP 6/20 8/22 GEL: INITIAL/10 MIN 6/29 9/33 3/17 6/22 5/22 10.5 Нq 10.3 10.5 10.2 10.1 10.7 10.16.2/14.8 5.8/15.0 FILTRATE: API/API HTHP 5/14.8 5.8/16.6 5.8/17.6 6.8/15.8 6.2/16.4 CAKE 12.2 12.2 13.0 14.5 SALINITY K (ppm) 12.2 12.5 12.2 TR SAND % by Vol TR TR TR TR TR TR SOLIDS % by Vol 10.5 10.5 9 9.5 10 9 9 TRTR TR TR TR TR TR 220 220 220 220 220 NITRATES (mg/1) 110 220 REMARKS: WIPER -LOGGING · ← DRILLED 12½" HOLE — TRIP; RFT'S

MUD INFORMATION SHEET

ESSO AUSTRALIA LTD. WIRRAH NO. 1 COMPANY_

Sheet No. 3

11/10/82 21:30 9.7 54 10/81	2670 12/10/82 21:30 9.7 53 12/20	2681 13/10/82 21:30 9.7 58	2752 14/10/82 13:30 9.7	2797 15/10/82 13:30 9.7	2797 16/10/82 21:30 9.7	2797 17/10/82 09:30
21:30 9.7 54 10/81	21:30 9.7 53	21:30 9.7 58	13:30 9.7	13:30	21:30	09:30
9.7 54 10/81	9.7 53	9.7 58	9.7			
54 10/81	53	58		9.7	9 7	
10/81					101	9.7
	12/20		51	45	46	55
044/1.80	,	13/19	13/16	12/16	14/15	15/17
CV74/1.00	0.46/1.83	0.49/1.49	0.53/1.04	0.51/1.04	0.57/0.84	0.55/1.01
8/19	8/18	8/20	8/20	6/18	4/12	8/20
10.5	10.3	10.6	10.4	10.5	10.3	10.1
6.2/15.4	5.2/14.6	5.2/14.8	5.0/15.0	5.0/14.8	5.0/14.6	5.2/15.2
2	2	2	2	2	2	2
15	16	18	19	20	18	19
TR	TR	TR	TR	TR	TR	TR
9	9	9	9	9	9	9
0	0	0	0	0	0	0
220	180	1 30	200	220	180	180
6	0.44/1.80 8/19 10.5 5.2/15.4 2 15 FR	0.44/1.80	0.44/1.80 0.46/1.83 0.49/1.49 18/19 8/18 8/20 10.5 10.3 10.6 5.2/15.4 5.2/14.6 5.2/14.8 2 2 2 15 16 18 TR TR 9 9 0 0	0.44/1.80 0.46/1.83 0.49/1.49 0.53/1.04 18/19 8/18 8/20 8/20 10.5 10.3 10.6 10.4 5.2/15.4 5.2/14.6 5.2/14.8 5.0/15.0 2 2 2 2 15 16 18 19 TR TR TR TR 9 9 9 9 0 0 0 0	0.44/1.80 0.46/1.83 0.49/1.49 0.53/1.04 0.51/1.04 0.8/19 8/18 8/20 8/20 6/18 10.5 10.3 10.6 10.4 10.5 5.2/15.4 5.2/14.6 5.2/14.8 5.0/15.0 5.0/14.8 2 2 2 2 2 15 16 18 19 20 TR TR TR TR 9 9 9 9 0 0 0 0	0.44/1.80 0.46/1.83 0.49/1.49 0.53/1.04 0.51/1.04 0.57/0.84 0.8/19 8/18 8/20 8/20 6/18 4/12 10.5 10.3 10.6 10.4 10.5 10.3 0.2/15.4 5.2/14.6 5.2/14.8 5.0/15.0 5.0/14.8 5.0/14.6 2 2 2 2 2 2 15 16 18 19 20 18 TR TR TR TR TR 9 9 9 9 9 0 0 0 0 0

REMARKS:

DRILLED 121" HOLE

T.D. FOR TESTING

LOGGING

DEPTH (m)	2797	2797	2797	2797	2797	2797	2797
DATE	18/10/82	19/10/82	20/10/82	21/10/82	22/10/82	23/10/82	24/10/82
TIME	23:00		11:30	13:30	24:00	10:15	04:00
WEIGHT	9.6	9.6+	9.7	9.7	9.6	9.7	9.7
FUNNEL VISCOSITY	41	45	48	43	45	46	43
PV/YP	12/14	14/17	16/18	14/11	14/12	15/12	14/12
N/K		0.54/1.09	0.56/1.06				0.62/0.54
GEL: INITIAL/10 MIN	2/8	4/15	4/15	3/8	4/9	3/9	4/9
рH	10.3	10.7	10.6	10.1	10.1	10.3	10.3
FILTRATE: API/API HTHP	5.0/14.8	5.4/15.2	5.6/15.4	5.6/15.6	5.6/15.6	5.1/15.2	6/15.8
CAKE	2	2	2	2	2	2	2
SALINITY K ppm	18	19	19	18.5	18	18	18
SAND % by vol	0	TR	TR	TR	TR	TR	TR
solids % by vol		9	9	9	9	9	9
OIL % by vol	0	0	0	0	0	0	0
,							
NITRATES (mg/1)	220	1 80	140	140	140	130	130

REMARKS:

RAN & CEMENTED

LOGGING

W. O. W.

9-5/8" CASING.

LAB

MUD INFORMATION SHEET

COMPANY ESSO AUSTRALIA LTD.

WELL WIRRAH NO. 1

Sheet No. 4

						<u> </u>	
DEPTH (m)	2797	2797	2797	2797	2797	2797	2797
DATE ·	25/10/82	26/10/82	27/10/82	28/10/82	29/10/82	30/10/82	31/10/82
TIME	23:00	23:20	12:30	23:00	21:00	23:00	23:00
WEIGHT	9.5	9.7	9.6	9.6	9.6	9.5	9.6
FUNNEL VISCOSITY	41	39	37	35	35	41	37
PV/YP	14/12	15/12	14/11	12/9	12/9	10/4	10/7
N/K	0.62/0.54	0.64/0.51	0.64/0.46	0.65/0.36	0.65/0.36	0.78/0.11	0.67/0.27
GEL: INITIAL/10 MIN	4/9	3/7	3/8	2/7	3/8	3/6	4/7
pH		9.8	10.3	10.3	10.3	10.1	11.5
FILTRATE: API/API HTHP		8.5/16.7	5.8/-	5.9/-	5.8/-	6/-	6.4/-
CAKE	2	2	2	2	2	2	3
SALINITY K ppm	18	18	18.5	19		19	18
SAND % by vol	TR						
SOLIDS % by vol	9	9	9	9	9	9	9
OIL % by vol	0	0	0	0	0	0	0
NITRATES (mg/1)	130	140	130	120	130	120	110
					·		

REMARKS:

LOGGED

CEMENTING

TESTED STACK PRODUCTION TESTING

2797	2797	2797	2797	2797	2797
82 2/11/82	3/11/82	4/11/82	5/11/82	6/11/82	7/11/82
23:00	24:00	16:30	20:00	07:00	23:00
9.6	9.7	9.5	9.6	9.5	9.5
52	42	38	40	45	38
15/17	13/11	6/9	7/11	9/14	7/12
.25 0.55/0.1	0.62/0.49	0.49/0.73	0.47/0.94	0.48/1.18	0.45/1.13
7/11	5/7	3/7	3/4	3/7	3/6
10.8	10.7	11.3	9.5	10.6	10.8
5.4/-	6.4/-	8.6/-	5.8/-	6.2/-	7.2/-
2	2	2	2	2	2
18	18	15	19	19	19
TR	TR	TR	TR	TR	TR
9	9	7	9	9	9
0	0	0	0	0	0
120	110	90	100	80	80
	82 2/11/82 23:00 9.6 52 15/17 7/11 10.8 5.4/- 2 18 TR 9	82	82 2/11/82 3/11/82 4/11/82 23:00 24:00 16:30 9.6 9.7 9.5 52 42 38 15/17 13/11 6/9 1.25 0.55/0.1 0.62/0.49 0.49/0.*73 7/11 5/7 3/7 10.8 10.7 11.3 5.4/- 6.4/- 8.6/- 2 2 2 18 18 18 15 TR TR TR 9 9 7 0 0 0 0	82 2/11/82 3/11/82 4/11/82 5/11/82 23:00 24:00 16:30 20:00 9.6 9.7 9.5 9.6 52 42 38 40 15/17 13/11 6/9 7/11 2.25 0.55/0.1 0.62/0.49 0.49/0.73 0.47/0.92 7/11 5/7 3/7 3/4 10.8 10.7 11.3 9.5 5.4/- 6.4/- 8.6/- 5.8/- 2 2 2 18 18 15 19 TR TR TR TR 9 9 7 9 0 0 0 0	82 2/11/82 3/11/82 4/11/82 5/11/82 6/11/82 23:00 24:00 16:30 20:00 07:00 9.6 9.7 9.5 9.6 9.5 52 42 38 40 45 15/17 13/11 6/9 7/11 9/14 25 0.55/0.1 0.62/0.49 0.49/0.73 0.47/0.94 0.48/1.18 7/11 5/7 3/7 3/4 3/7 10.8 10.7 11.3 9.5 10.6 5.4/- 6.4/- 8.6/- 5.8/- 6.2/- 2 2 2 2 18 18 15 19 19 TR TR TR TR 9 9 7 9 9 0 0 0 0 0

REMARKS:

PRODUCTION TESTING

RIGGED DOWN PWT EQUIPMENT AND PREPARED TO DRILL AHEAD. CEMENTED PERFORATIONS.

		· · · · · · · · · · · · · · · · · · ·					
					MUD IN	FORMATIC	N SHEET
LAB c	JIMPANY	SSO AUSTRA					5
W LUDIUU W	ELL <u>WI</u>	RRAH NO.	1			She	et No
DEPTH (m)		2800	2800	2800	2807	2710	2867
DATE		9/11/82	10/11/82	11/11/82		13/11/82	
TIME		03:00	23:00	09:00	22:00	10:00	09:00
WEIGHT	9.3	9.2	9.2	9.2	9.2	9.2	9.2
FUNNEL VISCOSITY	38	38	45	42	39	44	43
PV/YP	6/9	7/8	8/13	7/9	7/8	8/12	10/10
N/K		0.55/0.48				0.49/0.97	
GEL: INITIAL/10 MIN	3/8	3/6	4/8	3/6	3/6	4/9	6/13
рН	11.0	11.1	10.6	10.5	10.8	10.4	10.5
FILTRATE: API/API HTHP		8.4/-	8.0/-	7.8/-		6.0/17.2	6.0/15.4
CAKE	2	2	2	2	2	2	2
SALINITY K ppm	16	15	13	13	12	10	10
SAND % by vol		TR	TR	TR	TR	TR	TR
solids % by vol	T	7	7	7		8	8
OIL % by vol	. 0	0	0	0	0	0	0
NITRATES (mg/1)	40	40	30	10	TR	TR	200
	ļ						
	<u></u>		<u> </u>				
REMARKS:							
	DRILLED			P.I.T.	DRILLED		
	CEMENT	FISH	₽D.	FISHED	8111	DRILLED	81"
	OBIBRI	Tani	11 17	1 101111	HOLE	HOLE	- 2
					CUT	шода	
					CORE		
					NO. 7		
DEPTH (m)	2915	2964	2992	3026	3026	3026	2006
DATE	14717	4707					1 3017h
DATE	1 15/11/82	16/11/82	17/11/82				3026 21/11/82
TIME		16/11/82	17/11/82	18/11/82	19/11/82	20/11/82	21/11/82
TIME	06:00	23:00	23:00	18/11/82 21:00	19/11/82 15:00	20/11/82 23:00	21/11/82 23:00
WEIGHT	06:00 9.2	23:00 10.5	23:00	18/11/82 21:00 11.2	19/11/82 15:00 11.2	20/11/82 23:00 11.2	21/11/82 23:00 10.8
WEIGHT FUNNEL VISCOSITY	06:00 9.2 46	23:00 10.5 44	23:00 11.2 50	18/11/82 21:00 11.2 52	19/11/82 15:00 11.2 51	20/11/82 23:00 11.2 48	21/11/82 23:00 10.8 40
WEIGHT FUNNEL VISCOSITY PV/YP	06:00 9.2 46 10/13	23:00 10.5 44 15/15	23:00 11.2 50 19/16	18/11/82 21:00 11.2 52 17/15	19/11/82 15:00 11.2 51 17/15	20/11/82 23:00 11.2 48 17/15	21/11/82 23:00 10.8 40 13/11
WEIGHT FUNNEL VISCOSITY PV/YP N/K	06:00 9.2 46 10/13 052/0.90	23:00 10.5 44 15/15 0.58/0.78	23:00 11.2 50 19/16 0.63/0.71	18/11/82 21:00 11.2 52 17/15 0.60/0.79	19/11/82 15:00 11.2 51 17/15 0.61/0.69	20/11/82 23:00 11.2 48 17/15 061/0.69	21/11/82 23:00 10.8 40 13/11 0.62/0.49
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN	06:00 9.2 46 10/13 0.52/0.90 6/13	23:00 10.5 44 15/15 0.58/0.78 8/16	23:00 11.2 50 19/16 0.63/0.71 10/23	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP	06:00 9.2 46 10/13 052/0.90 6/13 10.6 5.6/15.0	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/-
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/-
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K PPM	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR 8	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol NITRATES (mg/1)	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR 8 0	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14 0	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13 0	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14 0	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol NITRATES (mg/1)	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR 8 0	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14 0 200 ENCOUNTER	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13 0	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25 13 0
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol NITRATES (mg/1)	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 1 TR 8 0 200 CUT CORE	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14 0	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13 0	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14 0	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25 13 0
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol NITRATES (mg/1)	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR 8 0	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14 0 200 ENCOUNTER	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13 0	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14 0	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25 13 0
WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN pH FILTRATE: API/API HTHP CAKE SALINITY K ppm SAND % by vol SOLIDS % by vol OIL % by vol NITRATES (mg/1)	06:00 9.2 46 10/13 0.52/0.90 6/13 10.6 5.6/15.0 2 11 TR 8 0 200 CUT CORE NO. 8	23:00 10.5 44 15/15 0.58/0.78 8/16 10.7 5.4/15.2 2 13 TR 14 0 200 ENCOUNTER	23:00 11.2 50 19/16 0.63/0.71 10/23 10.5 5.9/15.0 2 12 0.5 13 0 220 ED URED	18/11/82 21:00 11.2 52 17/15 0.60/0.79 11/23 10.7 5.6/15.0 2 12 0.5 14 0 220	19/11/82 15:00 11.2 51 17/15 0.61/0.69 13/22 10.6 5.6/15.0 2 12 0.5 14 0	20/11/82 23:00 11.2 48 17/15 0.61/0.69 10/19 10.5 5.6/15.2 2 12 0.25 14	21/11/82 23:00 10.8 40 13/11 0.62/0.49 6/9 10.8 7.8/- 3 12.5 0.25 13 0

MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY_ Sheet No. _6_ WELL. WIRRAH NO. 1 (m) 3026 3026 3026 3026 3026 3026 3026 DEPTH 22/11/82 23/11/82 26/11/82 27/11/82 28/11/82 DATE 24/11/82 25/11/82 23:00 23:00 23:30 24:00 22:00 01:00 00:30 TIME 9.6 9.7 9.7 9.7 9.7 9.8 9.7 WEIGHT 36 38 41 42 42 38 **FUNNEL VISCOSITY** 11/11 11/12 10/9 7/9 7/11 10/10 10/11 PV/YP 0.56/0.68 0.61/0.42 0.52/0.61 0.47/0.94 0.58/0.52 0.56/0.63 0.58/0.57 N/K **GEL: INITIAL/10 MIN** 6/13 6/12 4/10 5/11 5/12 6/13 6/13 рΗ 10.8 10.6 11.1 11.1 11.0 11.1 11.0 FILTRATE: API/API HTHP 8.2/-8.2/-7/-7/-7/-7.1/-7.21 -2 14 <u>2</u> 14 <u>2</u> 14 CAKE 14 14 14 14 K ppm SALINITY TR TR TR TR TR TR TR % by vol SAND 9 % by vol 9 9 q 9 9 9 SOLIDS 0 % by vol 0 0 ō 0 ō 0 OIL 220 200 210 200 210 220 210 NITRATES (mg/1) REMARKS: REVERSE TAGGED OUT AND AND CIRCULATE DRESSED PRODUCTION WELL TEST NO. 2 AND CEMENT TO CONDITION 2750M MUD DEPTH 3026 3026 3026 3026 (m) 29/11/82 30/11/82 DATE 1/12/82 2/12/82 TIME 23:00 00:30 24:00 23:30 9.7 9.7 9.7 WEIGHT 9.7 51 **FUNNEL VISCOSITY** 45 47 48 10/15 PV/YP 12/23 9/16 10/16 0.43/2.47 0.47/1.39 0.49/1:21 0.44/1.57 10/19 9/17 9/17 9/15GEL: INITIAL/10 MIN 12.0 12.3 12.2 12.1 5.5/-8.5/-8.5/-8.4/-FILTRATE: API/API HTHP 4 CAKE 12 12 K ppm 12 12 SALINITY TR TR SAND % by vol TR TR SOLIDS q 9 9 9 % by vol 0 0 % by vol 0 200 200 200 NITRATES (mg/1) 190 REMARKS: LAY DOWN PIPE AND **PLUG** RECOVER TUBING PERFORA- SEAL ASSEMBLY TIONS CIRCULATE AND CON-

DITION MUD 11, LITHOLOGICAL SUMMARY

LITHOLOGICAL SUMMARY

WIRRAH NO. 1 was drilled to evaluate the hydrocarbon potential of the Top Latrobe and Intra-Latrobe sandstones. The proposed T.D. was 2321m (KB), however, this was extended to 3026m (KB) to further evaluate the Lower Latrobe formation.

(NB: The formation tops are open to speculation and are based entirely on examination of cuttings. All depths from RKB).

Gippsland Limestone. The Gippsland Limestone consisted of a white to grey, calcarenite/calcilutite, very fine to medium grained, fossiliferous limestone. The fossils encountered were shell fragments, foraminifera, bryozoa, echinoids. These were more abundant higher up in the formation. Within this section, a sandstone bed was encountered between 760m-830m (KB). The sandstone was of predominantly fine-medium loose quartz grains, clear to very lt gy, subangular to subrounded, well sorted with a calcareous cement.

Lakes Entrance Formation. This formation consisted entirely of siltstone. This was light to medium grey, firm becoming occasionally soft, argillaceous, calcareous, bulky becoming sub fissile in part towards the lower part of the formation. Occasional foraminifera fossils were encountered at varying depths. Traces of glauconite and pyrite were also encountered.

Latrobe Formation. This formation consisted of siltstone interbedded predominantly with sandstones and to a lesser extent coal. The siltstone ranged in colour from a light brown-grey to dark brown in some beds, hardness ranged from soft to hard. In the upper formation, the siltstone is non calcareous and becomes progressively more calcareous in the lower levels but appears to grade into a non-calcareous, carbonaceous lithology close to T.D. Associated pyrite is found also. The sandstone is predominantly clear to buff-white, and occasionally brown; they range from between fine to medium grained and, in general, poorly sorted, to coarser, well sorted beds. In the upper levels dolomitic cement was found grading to'a siliceous cement in the deeper beds, and to a number of loose beds with little or no cement. Porosity varied from poor to good depending on cement and grain size. Fluorescence was encountered and ranged from poor to 80-100% fluorescence at 2570m. The coal encountered was a black vitreous blocky to firm texture with a conchoidal fracture. Between 2635m and 2680m there was a volcanic sill which was medium-light grey, very hard, massive and crystalline.

There were 6 cores cut and 24 RFT's run.

Gas levels were generally low but with frequent peaks associated with sandstone and coals. Heavies (C_1-C_6) were present throughout most of the Upper Latrobe to 2245m, below which there were fewer peaks, and heavies above C_2 were rarely seen.

From 2680 - 2740m, a sandstone/siltstone sequence was encountered. The sandstone was white, clear, medium to granule size, angular to well rounded, frequently dolomitic, and occasionally pyritic. The siltstone was grey to reddish brown, firm to soft, occasionally calcareous and pyritic. From 2740m the first indications of a conglomerate were encountered. The conglomerate was a mixture of sandstone, chert and basalt. The sandstone was clear, sub angular to sub rounded, fine to coarse grained. The chert was milky white to medium grey, very hard, with angular fragments. From 2850m a sandstone/siltstone interbedded sequence was re-encountered. The sandstone was of two types:

- a. clear, subangular, very fine to medium grained, occasionally argillaceous and
- b. loose angular to sub angular fine to very coarse grained. The siltstone was buff to grey/brown carbonaceous, moderately hard to friable. The conglomerate tended to fade out around 2850m.

12. R.F.T. DATA SHEETS

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 1

RUN No.: 2

	r	 1				<u> </u>	
CHAMBER No.	1	2.	1		CHA	MB. 1	CHAMB. 2
CHAMBER CAPACITY (GALL)	6	1		OIL PROPERTIES CONT.			
CHOKE SIZE (SQ.IN.)	0.03	0.03		ODOUR ODOUR	DI	ESEL	
SEAT No.	34	34	i	POUR POINT ()		-	
DEPTH (M) (from RKB)	1595 HH:MM:SS	1595		COMMENTS	GΔ	S CUT	
A RECORDING TIMES	4:41:00	HH:MM:SS	i	(c)WATER PROPERTIES		UUI.	L
TOOL SET	4:41:30			RESISTIVITY ()	a	0	a o
PRETEST OPEN	:00:30			Cl (frm. resis.)()			
TIME OPEN		4:52:30		Cl (frm. titrat)()			
CHAMBER OPEN	4:51:00			NO ₃ ()	 		
CHAMBER FULL	4:07:00			pH ³	 		
FILL TIME START BUILD UP	4:51:00		ı	OTHER TRACERS	 		
FINISH BUILD UP	1	4:57:00		()			
BUILD UP TIME	:01:00			DENSITY ()			
SEAL CHAMBER	4:51:00			FLUORESCENCE			
TOOL RETRACT	1.5	4:59:00		COLOUR			
TOTAL TIME		:18:00		COMMENTS	1		
B SAMPLE PRESSURES	<u> </u>	L					
IHP (psig)	2681.1	T T	l	(d)OTHER SAMPLE			
ISIP (psia)	2371.6	2247.74		PROPERTIES			
IFP (psia)	2225.2	2256.00	1				
FFP (psia)	2256.13			MUD PROPERTIES	·		
FSIP (psia)	2256.13	2256.23		TYPE	SW	V/GEL/P	OLYMER
FHP (psia)	2230.5	2681.00	1	RESISTIVITY (M)		33 @	
TEMP. CORR. ()	 	2001.00	1	C1 (frm.resis.)(PPM)		33K	
COMMENTS	-	 	┨	C1 (frm.titrat)(PPM)	 	16.5	16.5
C TEMPERATURE	_1	L	1	NO Drld/1st.circ() -	120	120
DEPTH TOOL REACHED()	1985	1985	1	pH pH	+	9.7	120
MAX. REC. TEMP. ()		148.5	1	OTHER TRACERS	1		
TIME CIRC. STOPPED	148.5	:05:15	1	()			
TIME CIRC. STOTIED	24 HRS.		1	DENSITY ()		9.8	9.8
D SAMPLE RECOVERY	24 nks.	1 24 HKS.	G	GENERAL COMMENTS	٠		
SURFACE PRESSURE(psig	600	T	 				
VOL. GAS (cuft		-	1	1 GALLON CHAMBER	WAS	PRESER	VED.
VOL. OIL (m1	23500		1	. Grandon Grand-			
VOL. WATER () -		1				
VOL. FILTRATE (<u> </u>		1				
VOL. CONDENSATE () -		1				
VOL. OTHER () -		1				
E SAMPLE PROPERTIES]				
(a) G c1 (ppm) 552960]				
A c2 (ppm) 45056		_				
) 15232						
c4 (ppm							
C c5 (ppm			_				
. 0 c6+ (ppm) 1134		_				
M CO ₂ (%) Tr		4	1			
P H ₂ S (ppm) 40		-	<u> </u>			
(b)OIL PROPERTIES			4				
DENSITY: HYDROMETER			4				
(API) REFRACTOMET	ER 34@60°	F	_				•
REFRACTIVE INDEX			_				
COLOUR	DK BN/		_				
FLUORESCENCE	BRT BLI	יו ליות ל	1				
G.O.R. (cu.ft, /m		O / WIT	┙				

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1

RUN No.: 3

CHAMBER No.	1.	2.			C	HAMB.	1	CHAMB.
CHAMBER CAPACITY			-	OTI PROPERMITEC COM				
CHOKE SIZE	0.03"	0.03"		OIL PROPERTIES CONT.				
SEAT No.	37	37		POUR POINT (°)	╁			
DEPTH (M) (from RKB)	1573	1575		COMMENTS				
RECORDING TIMES	HH:MM	HH:MM		(c)WATER PROPERTIES				
TOOL SET	9:40			RESISTIVITY ()	Т			
PRETEST OPEN TIME OPEN	9:40 0:02		İ	Cl (frm. resis.)($^{+}$			
CHAMBER OPEN		0.50		C1 (frm. titrat)(╢			
CHAMBER FULL	9:42	9:52		NO ₂ (╬			
FILL TIME	9:51	9:57	ļ	Hq Hq	4			
START BUILD UP	0:09 9:51	0:05 9:57		OTHER TRACERS	+-			
FINISH BUILD UP	9:52	9:58		(١			
BUILD UP TIME	0:01	0:01		DENSITY (针			
SEAL CHAMBER	9:51	9:57		FLUORESCENCE	十			
TOOL RETRACT	9:51	9:58	ĺ	COLOUR	+			· · · · · · · · · · · · · · · · · · ·
TOTAL TIME	 	0:18		COMMENTS	╁			<u> </u>
S SAMPLE PRESSURES		0:10						
IHP (psig)	2647.2			(d)OTHER SAMPLE	十			<u> </u>
ISIP (psia)	790.6	2177.1	1	PROPERTIES				
IFP (psia)	1633.6							
FFP (psia)	2230.7			MUD PROPERTIES				
FSIP (psia)		2647.0		TYPE	Т			
FHP ()				RESISTIVITY ()	10	.33 @	21	0
TEMP. CORR. ()	<u> </u>		1	C1 (frm.resis.)()	_	2K		
COMMENTS			1	C1 (frm.titrat)()		6.K		16.K
TEMPERATURE	- L	L		NO_Drld/1st.circ(~ +	20		120
DEPTH TOOL REACHED()	1592	1592	1	pH ³		7		
MAX.REC.TEMP.()	152.5	152	1	OTHER TRACERS	T	<u></u>		
TIME CIRC. STOPPED			1					
TIME SINCE CIRC.			1	DENSITY, ()	9	.8		9.8
SAMPLE RECOVERY			G	GENERAL COMMENTS		-		
SURFACE PRESSURE(psig	1300m		-	1				
VOL. GAS (cuft	50.8cfg			FROTHY OIL SETTLES	3			CHAMBEI
VOL. OIL (m1	23000		1	OUT TO DARK BROWN				PRESERV
VOL. WATER (5		1	WAXY OIL.				LVESEV
VOL. FILTRATE (5		1					
VOL. CONDENSATE (5		1					
VOL. OTHER ()		1					
SAMPLE PROPERTIES	<u></u>	······································	1					
(a) G c1 (ppm	752025		1					
A c2 (ppm			1					
S c3 (ppm			1					
c4 (ppm			1					
C c5 (ppm	·		1					
0 c6+ (ppm			1					
M CO ₂ (%	0.5		1					
P H ₂ S (ppm			L					<u>. </u>
(b)OIL PROPERTIES								
DENSITY: HYDROMETER			1					
() REFRACTOMET	ER 34060° F		1					
			1					
REFRACTIVE INDEX	i i							
REFRACTIVE INDEX	G1d Bn		1					
	R+R1WhT	rel						. •

R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1 PRESSURE GAUGE TYPE: HP RUN No.: 4 CHAMBER No. CHAMB. 1 1. CHAMB. 2 CHAMBER CAPACITY (GALL) 2 3 6 OIL PROPERTIES CONT. CHOKE SIZE (SQ.IN.) 0.03 0.03 ODOUR 44 SEAT No. 44 POUR POINT DEPTH (M) (from RKB) 1613.0 1613.0 COMMENTS RECORDING TIMES HH:MM HH:MM (c)WATER PROPERTIES TOOL SET 2:08 <u>1.75@</u>20°c 1.09@20°C RESISTIVITY (M) PRETEST OPEN 2:09 Cl (frm. resis.)(ppm) 6K 6K TIME OPEN Cl (frm. titrat)(ppm) 4.2K 4.2K CHAMBER OPEN 2:11 2:20 <u>w</u>3-(mg/1) 2:18 40 40 CHAMBER FULL 2:24 0:07 0:04 FILL TIME pН 8.4 7.5 OTHER TRACERS START BUILD UP 2:24 2:18 Ca 80 60 2:20 2:25 FINISH BUILD UP DENSITY BUILD UP TIME 0:01 0:01 2:20 FLUORESCENCE 2:26 SEAL CHAMBER Lt Brn Grn/Brn 2:27 COLOUR TOOL RETRACT 19:00 COMMENTS TOTAL TIME SAMPLE PRESSURES (d)OTHER SAMPLE IHP (psig) 2711.1 PROPERTIES ISIP (psia) 2280.9 1867.4 1991.0 IFP (psia) MUD PROPERTIES 1982.3 F FFP (psia) 2281.0 SW/LINO/POLY/DGN TYPE FSIP (psia) 2281.0 2280.9 0.33 @ 21°C FHP RESISTIVITY (m) psia 2710.5 C1 (frm.resis.)(ppm) 22K TEMP. CORR. COMMENTS C1 (frm.titrat)(ppm) | 16.5K NO Drld/1st.circ(mg/) 120 TEMPERATURE 97 DEPTH TOOL REACHED(m) pH 1638 1638 OTHER TRACERS MAX.REC.TEMP.(°C) 154.0 154.0 TIME CIRC. STOPPED DENSITY. (PPG) 9.8 TIME SINCE CIRC. SAMPLE RECOVERY GENERAL COMMENTS SURFACE PRESSURE (psig) 0 VOL. GAS VOL. OIL VOL. WATER 22200 (m1)9000 VOL. FILTRATE VOL. CONDENSATE VOL. OTHER E SAMPLE PROPERTIES (a) G c1 c2 S c3 c4 छ C **c**5 c6+ 0 M CO₂ P H₂S (b)OIL PROPERTIES DENSITY: HYDROMETER REFRACTOMETER REFRACTIVE INDEX COLOUR FLUORESCENCE G.O.R.

 ${\tt COMPANY} \; : \; {\tt ESSQ} \; \; {\tt AUSTRALIA} \quad {\tt WELL} \; : \qquad {\tt WIRRAH} \; \; {\tt NO.} \; \; 1$

RUN No.: 5

WANDD N.	- T	2.			GILAND 1	OTIANO 2
CHAMBER No. CHAMBER CAPACITY (GALL)	1. 6	$\frac{2}{2^{\frac{3}{7}}}$			CHAMB. 1	CHAMB. 2
	0.03	$\frac{2^{\frac{7}{4}}}{0.02}$		OIL PROPERTIES CONT.		
CHOKE SIZE (SQ.IN.)	47	49		ODOUR		
SEAT No.				POUR POINT (°C)	6.5	
DEPTH (M) (from RKB)	1584 HH:MM	1583.5 HH:MM		COMMENTS		
RECORDING TIMES				(c)WATER PROPERTIES		
TOOL SET	5:40	7:00		RESISTIVITY (m)	0.32@2100	0.30@21
PRETEST OPEN	5:44	7:01		C1 (frm. resis.)(ppm)	22K	23K
TIME OPEN	0:03	1:04		C1 (frm, titrat)(ppm)	14K	14K
CHAMBER OPEN	5:47	7:05		/ /1 \	40	186
CHAMBER FULL	6:47	7:35		$\frac{NO_3}{3}$ $\frac{(mg/1)}{3}$		8.4
FILL TIME	0:60	0:30		рН	8.2	0.4
START BUILD UP	6:47	7:35		OTHER TRACERS	170	160
FINISH BUILD UP		7:40		Ca ()	170	
BUILD UP TIME		5:05	1	DENSITY (ppg)	8.0	7.7
SEAL CHAMBER	6:47	7:35	1	FLUORESCENCE		
TOOL RETRACT	6:50	7:40	١	COLOUR		
TOTAL TIME			i	COMMENTS		
	<u> </u>		l			
	2662.3	2661.7	1	(d)OTHER SAMPLE		
IHP (psig)		2661.7	ł	PROPERTIES		
ISIP (psia)	2245.7 51.39	80.0	1	I ROI ERITES	ĺ	
IFP (psia)			F	MUD PROPERTIES	L	<u> </u>
FFP (psia)		5 2 7 7 7 7			SW/T TONO	/POLY/PGH
FSIP (psia)	2262.4		4	TYPE	0.33 @ 2	
FHP (psig)	2262.4	2661.8	1	RESISTIVITY (m)		1 (
TEMP. CORR. (o)			1	C1 (frm.resis.)(ppm)	22K	
COMMENTS			1	C1 (frm.titrat)(ppm)	16.5K	
C TEMPERATURE			j	NO ₃ Drld/1st.circ(mg/l		
DEPTH TOOL REACHED(m)	1602	1602]	рН	9.7	
MAX.REC.TEMP.(°C)	150.3	150.3		OTHER TRACERS		
TIME CIRC. STOPPED	1		1	()		
TIME SINCE CIRC.			1	DENSITY (ppg)	9.8	
D SAMPLE RECOVERY	_L		G	GENERAL COMMENTS	<u></u>	
SURFACE PRESSURE(psig	800	100	+-			
	4.9	0.3	-{			
		SCUM	1			
AOUS OID (III)	1 000	6500	┨			
VOL. WATER (m1	1400	6300	-			
VOL. FILTRATE (-		-{			
VOL. CONDENSATE (4			
VOL. OTHER (기	<u></u>	4	1		
E SAMPLE PROPERTIES			+			
(a) G c1 (ppm)						
A c2 (ppm)			_			
S c3 (ppm		134676	5			
c4 (ppm)			4			
C c5 (ppm		13094	_			
0 c6+ (ppm	835	1740				
M CO ₂ (%	0.5	1.1				
P H ₂ S (ppm	<u> </u>	60				
(b)OIL PROPERTIES						
DENSITY: HYDROMETER						
() REFRACTOMET	ER 41@60°	F 39@60°	F			
REFRACTIVE INDEX	1.4594					
COLOUR	TAN	GLDN B				
FLUORESCENCE	BLU/WH			י		
1 1 - 7	1298	DK1 MII	' -	-		
G.O.R. (.cu.ft. 3/m]	1230					

COMPANY : I				* WIRRAH NO. 1 SURE GAUGE TYPE: HP		LAB
CHAMBER No.	1.	2.			CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (GALL)	6	2 3/2				
CHOKE SIZE (SQ.IN.)		*		OIL PROPERTIES CONT.		
SEAT No.	- <u></u>	1670		ODOUR O		
DEPTH (m) (from RKB)	1678	1678		POUR POINT ()		
A RECORDING TIMES	HH:MM:SS		İ	(c)WATER PROPERTIES		
TOOL SET PRETEST OPEN	23:15:00 23:17:00		ĺ	RESISTIVITY (m)	.88@15°C	1.7@15°C
TIME OPEN	:02:00			Cl (frm. resis.)(ppm)		4K
CHAMBER OPEN	23:19:00		İ	C1 (frm. titrat)(PPm)	5000	4500
CHAMBER FULL	23:27:30		ł .	NO_3 $(mg/1)$		75
FILL TIME	:08:00			pH	7.2	7.2
START BUILD UP	23:27:30	23:33:30		OTHER TRACERS Ca++	160	120
FINISH BUILD UP	23:29:00			()	100	
BUILD UP TIME	:01:30			DENSITY ()		
SEAL CHAMBER	23:29:00	23:34:00		FLUORESCENCE		
TOOL RETRACT	ļ	23:35:30		COLOUR		
TOTAL TIME	<u> </u>	:20:30	1	COMMENTS		
B SAMPLE PRESSURES	Table	·	1	(d)OTHER SAMPLE		
IHP (psig) ISIP (psia)	2816.5 2372.2			PROPERTIES		
IFP (psia)	112.9	1785.1	1	I KOI EKIIES		
FFP (psia)	2372.1	2372.2	F	MUD PROPERTIES		
FSIP (psia)	2372.2	2372.3	<u> </u>	TYPE		
FHP (psig)		2816.5		RESISTIVITY (m)	0.33@21	C
TEMP. CORR. (O)			1	C1 (frm.resis.)(ppm)	22K	
COMMENTS				Cl (frm.titrat)(ppm)	16.5K	
C TEMPERATURE				NO3Drld/1st.circ(mg/)		
DEPTH TOOL REACHED(m)	1716	1716		pH	9.7	
MAX.REC.TEMP.(°C)	169	169	1	OTHER TRACERS		
TIME CIRC. STOPPED	05:15	05:15		()		
TIME SINCE CIRC.	<u> </u>		_	DENSITY (PPS)	<u> </u>	
D SAMPLE RECOVERY SURFACE PRESSURE(psig	V 400	350	G	GENERAL COMMENTS		
VOL. GAS (ft ³) 111cfg	0.5cfg	1			
VOL. OIL (ml	scum	_	1			
VOL. WATER (ml	21	91	1			
VOL. FILTRATE (m1			1			
VOL. CONDENSATE (m1)					
VOL. OTHER ()	<u> </u>	1			
E SAMPLE PROPERTIES	1 265/21	331776	-			
(a) G c1 (ppm A c2 (ppm	265421		1			
		8110 3584	┨			
c4 (ppm) <u>14336</u>) 3924	1402	1			
C C5 (ppm	982	928	1			
. 0 c6+ (ppm	186	557	1			
M CO ₂ (%	0.5		1			
P H ₂ S (ppm	60	1.5 160	1_			
(b)OIL PROPERTIES	· · · · · · · · · · · · · · · · · · ·		1			
DENSITY: HYDROMETER			1			
() REFRACTOMET	ER	ļ	4			
REFRACTIVE INDEX		<u> </u>	4			
COLOUR		-	-			
FLUORESCENCE	_	 	4			
G.O.R. ()						

R.F.T. DATA SHEET - SAMPLING DATA

CORE LABORATORIES

<u> </u>	CORE LABORATORIES	R.F.T.	DATA SIII	EE'I	- SAMPLING DATA		
					: WIRRAH NO. 1		LAB
	RUN No.: 7		PR.	ESS	SURE GAUGE TYPE: HP		
	MBER No.	1.	2.			CHAMB. 1	CHAMB. 2
	MBER CAPACITY (GALL)	66	2 3 0.03		OIL PROPERTIES CONT.		
	KE SIZE (SQ.IN.)	0.03 52	52		ODOUR CONTENTIES CONT.		
	TH (m) (from RKB)	1532	1532		POUR POINT ()		
فتنسب		HH:MM:SS			COMMENTS		
	TOOL SET	3:27:30			(c)WATER PROPERTIES		
	PRETEST OPEN	3:27:00			RESISTIVITY ()	.,	
	TIME OPEN	:03:00			C1 (frm. resis.)()		
	CHAMBER OPEN	3:40:00			C1 (frm. titrat)()		
	CHAMBER FULL FILL TIME	3:47:00 :07:00			NO ₃ ()		
	START BUILD UP	3:47:00			OTHER TRACERS		
	FINISH BUILD UP	3:50:00			()		
	BUILD UP TIME	:03:00			DENSITY ()		
	SEAL CHAMBER	3:50:00		1	FLUORESCENCE		-
1 1	TOOL RETRACT		3:57:00	•	COLOUR		
В	TOTAL TIME SAMPLE 'PRESSURES	<u> </u>	:30:00		COMMENTS		
۴	THP (psig)	2567.6			(d)OTHER SAMPLE		
	ISIP (psia)	2166.0			PROPERTIES		
	IFP (psia)	924.4	2133.12				<u> </u>
	FFP (psia)	2164.4	2165.1	F	MUD PROPERTIES		, , , , , , , , , , , , , , , , , , ,
	FSIP (psia) FHP (psia)	2165.2	2165.2		RESISTIVITY (m)	0.33 @ 2	100
	FHP (psig) TEMP. CORR. (0)		2575.6		C1 (frm.resis.)(ppm)	0.33 @ Z 22K	ı c
	COMMENTS				C1 (frm.titrat)(ppm)	16.5K	
C	TEMPERATURE		L	l	NO ₃ Drld/1st.circ(mg/1)	120	
	DEPTH TOOL REACHED(m)	1532	1532		рН	9.7	
	MAX.REC.TEMP.(°C)		156.5		OTHER TRACERS		
	TIME CIRC. STOPPED	5:15/26	/9		()	***************************************	
	TIME SINCE CIRC. SAMPLE RECOVERY	46:15 h	rs	G	DENSITY, (DDg)	9.8	
٦	SURFACE PRESSURE(psig)	1350	1	-	GENERAL COMMENTS		
	VOL. GAS (ft ³)	60.7cfg					PRESERVED SAMPLE.
	VOL. OIL (m1)	20					SAIT LE.
	VOL. WATER ()						
	VOL. FILTRATE ()						
	VOL. CONDENSATE () VOL. OTHER ()			1			
E	SAMPLE PROPERTIES	<u> </u>	<u> </u>	1			
=		309657		1			
		14500		1			
	S c3 (ppm)	5376					
		1686					
	C c5 (ppm)	600		1			
	O c6+ (ppm) M CO ₂ (%)	278	<u> </u>	-			
	P H ₂ S (ppm)	0.5 80		1			
	(b)OIL PROPERTIES			Γ			
-	DENSITY: HYDROMETER						
	() REFRACTOMETE	R 34@60°F	7				
	REFRACTIVE INDEX		<u> </u>	-			
	COLOUR FLUORESCENCE	Gld Brn	1	1			
	G.O.R. (cu.ft.3/ml	Brt Wh	<u> </u>	1			
<u></u>	(cu.ft./ml	1481565	1	<u></u>		***************************************	

CORE LABORATORIES	K.F.T.	DATA SIL	EEL	- SAMPLING DAT	A		
COMPANY : E				WIRRAH NO. 1	: HP		LAB
CHAMBER No.	1.	2.				CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (GALL)	6	2 3/4	_				
CHOKE SIZE				OIL PROPERTIES	CONT.		
SEAT No.	55	55		ODOUR	, 	<u></u>	
DEPTH (m) (from RKB)	1605	1605		POUR POINT	()		
A RECORDING TIMES	HH:MM:SS	HH:MM:SS	1	COMMENTS)man c	L	
TOOL SET	8:08:00		1	(c)WATER PROPER	KILES	0.0== -	<u>al. (== 0</u>
PRETEST OPEN	8:09:00			RESISTIVITY (<u>)</u>	10.95@200	C 1.65@17°C
TIME OPEN	1	- <u>-</u>	1	Cl (frm. resis.			4000
CHAMBER OPEN	8:11:00		1	C1 (frm. titrat			3000
CHAMBER FULL	8:17:30		1	<u>NO</u> 3	(ppm)	110	66
FILL TIME	06:30			рн		 	
START BUILD UP		8:23:30	1 1	OTHER TRACERS	, .		
FINISH BUILD UP		8:25:00	1 1	DEMOTOR*	```)	1	
BUILD UP TIME	01:30		7 .	DENSITY	<u> </u>	1	
SEAL CHAMBER	8:19:00		7 1	FLUORESCENCE			
TOOL RETRACT		8:26:00	- 1	COLOUR		-	
TOTAL TIME (hrs)		18:00	- 1	COMMENTS			
B SAMPLE PRESSURES			1			 	
IHP (psig)	2696.9		1	(d)OTHER SAMPL	E	[
ISIP (psia)	2269.3			PROPERTIES			
IFP (psia)	853.9	2171.72			·····		
FFP (psia)	2269.4	2269.3		MUD PROPERTIES			
FSIP (psia)	2269.4	2269.3		TYPE			
FHP ()			1	RESISTIVITY (0.33@210	c
TEMP. CORR. ()				C1 (frm.resis.		22K	
COMMENTS			1	C1 (frm.titrat)(ppm)		
C TEMPERATURE			1	NO ₃ Drld/1st.ci	rc()	
	1641	1641]	pH		<u> </u>	
MAX.REC.TEMP.(°C)	159.2	159.2	1	OTHER TRACERS			
TIME CIRC. STOPPED	5:15 hrs		1		()		
TIME SINCE CIRC.	51 hrs		1	DENSITY.	(1	
D SAMPLE RECOVERY			G	GENERAL COMMEN	ITS /		
SURFACE PRESSURE()	T	Ť				
VOL. GAS (<u>)</u>		1				
VOL. OIL ()		1				
VOL. WATER (1it.) 22	9	1				
VOL. FILTRATE ()		7				
VOL. CONDENSATE ()		1				
VOL. OTHER ()		1	1			
E SAMPLE PROPERTIES]	1			
(a) G c1 ()		1				
A c2 ()	N .		1				
S c3 ())		7				
c4 ()	1	_5	7				
c c5 (1 8	82	1				
0 c6+ ()		\$	1	}			
M CO ₂ ()	9 40	 	1	1			
P H ₂ S (1	1			
(b)OIL PROPERTIES	4	I	1	1			
DENSITY: HYDROMETER		7	1				
() REFRACTOMETE	ER	+	1				
REFRACTIVE INDEX		 	1				
COLOUR	_	1	1				
<u> </u>	_	 	1				
FLUORESCENCE		 	4				
G.O.R. ()						•••••••••••••••••••••••	

I

1

I

R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 1

RUN No.: 9

ONLY DD N	1.	2.	
CHAMBER No.	6	2 3/4	CHAMB. 1 CHAMB. 2
CHAMBER CAPACITY (gall)		0.02	OIL PROPERTIES CONT.
CHOKE SIZE (sq.in.)	0.03 58	58	ODOUR
SEAT No. DEPTH (m) (from RKB)	1529.5	1529.5	POUR POINT ()
TOTAL PROPERTY OF THE PARTY OF	HH: MM	HH:MM	COMMENTS
TOOL SET	11:47	1111,1121	(c)WATER PROPERTIES
PRETEST OPEN	11:51		RESISTIVITY (m) 1.5018°C
TIME OPEN	:02		Cl (frm. resis.)(ppm) 45K
CHAMBER OPEN	11:53	12:02	Cl (frm. titrat)(ppm) 5.5K
CHAMBER FULL	12:00	12:02	NO ₂ (mg/1) 88
FILL TIME	:07	:lsec	3
START BUILD UP	12:00	12:02	OMILED TO A CED C
FINISH BUILD UP	12:02	12:02	(Ca ⁺⁺) 170
BUILD UP TIME	:02	12.02	DENSITY ()
SEAL CHAMBER	12:01	12:09	FLUORESCENCE
TOOL RETRACT	12.01	12.05	COLOUR
TOTAL TIME	-		COMMENTS
B SAMPLE PRESSURES	.L		
THP (psig)	2571.5		(d)OTHER SAMPLE
ISIP (psia)	2166.0		PROPERTIES
IFP (psia)	2158.6	2164.2	
FFP (psia)	2165.5	2165.3	F MUD PROPERTIES
FSIP (psia)	2165.5	2165.3	TYPE SW/RGH/LIGNO/POLY
FHP (psig)		2570.9	RESISTIVITY (m) 0.33@21°C
TEMP. CORR. (o)			C1 (frm.resis.) ppm) .22K
COMMENTS			C1 (frm.titrat)(ppm) 16.5K
C TEMPERATURE			NO ₃ Drld/1st.circ(ng/1) 120
DEPTH TOOL REACHED(m)		1601.9	pH ³ 97
MAX. REC. TEMP. (OC)	156.5	156.5	OTHER TRACERS
TIME CIRC. STOPPED			DENSTTY (ppg) 9.8
TIME SINCE CIRC.			DENOTIT
D SAMPLE RECOVERY	, ,		G GENERAL COMMENTS
SURFACE PRESSURE 6 sig) 1500		4
VOL. GAS (ft ³) 119		4
VOL. OIL (ml)	 	1 1
VOL. WATER (ml) 430		4
VOL. FILTRATE ()	<u> </u>	4
VOL. CONDENSATE (m1) 100	 	
VOL. OTHER ()	<u> </u>	4
E SAMPLE PROPERTIES	1001776	PRESERVED	-
) 331776	1	-
	36045		- .
) 22400	OHAMBER	-
) 5606	- წ	-
) 680	- 	-
) 120	- 	-
) 30	- 	
(b)OIL PROPERTIES	1127		
DENSITY: HYDROMETER			7
() REFRACTOMET	PER		7
REFRACTIVE INDEX			7
COLOUR			
FLUORESCENCE			
G.O.R. ()			

CORE LABORATORIES

R.F.T. DATA SHEET - SAMPLING DATA

COMPANY : ESSO AUSTRALIA WELL :WIRRAH NO. 1

RUN No. : 11

CHAMBER No.	1.	2.			CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (gall)		0.02		OIL PROPERTIES CONT.		
CHOKE SIZE (sq.in.)	0.03 88	88		ODOLIB	AROMATIC	
SEAT No. DEPTH (m) (from RKB)		2249		POUR POINT (°C)	27.5	
TOTAL MENTING		HH:MM:S	Ь	COMMENTS		
TOOL SET	23:21:10			(c)WATER PROPERTIES		
PRETEST OPEN	23:21:30			RESISTIVITY ()		
TIME OPEN	:20		1	Cl (frm. resis.)()		
CHAMBER OPEN	1	23:34:3	b	C1 (frm. titrat)()		
CHAMBER FULL		23:36:5	1	NO ₃ ()		
FILL TIME	05:50			pH		
START BUILD UP	23:30:20	23:36:5	þ	OTHER TRACERS		
FINISH BUILD UP	23:32:20	23:37:3	Þ)	
BUILD UP TIME	02:00	:4	þ	DENSITY ()	
SEAL CHAMBER	23.33.00	23:38:3	b	FLUORESCENCE		
TOOL RETRACT	23.33.00	23:39:0		COLOUR		
TOTAL TIME	1		1	COMMENTS		
B SAMPLE PRESSURES	_ <u></u>		1			
THP (psig)	3816			(d)OTHER SAMPLE		
ISIP (psia)	3221	3219.9]	PROPERTIES		
IFP (psia)	3186	3207.8				<u> </u>
FFP (psia)	3175	3207.4	F	MUD PROPERTIES		
FSIP (psia)	3219.9	3219.7	T	TYPE	SW/GEL/PO	
FHP (psig)		3813.5]	RESISTIVITY (m)	0.41@17.3	3°C
TEMP. CORR. (O)				C1 (frm.resis.)(ppm)	19.5K	
COMMENTS]	C1 (frm.titrat)(ppm)	12.5K	
C TEMPERATURE				NO3Drld/1st.circ(mg/1		220 ′
DEPTH TOOL REACHED(m)	2252			pH	10.9	
MAX. REC. TEMP. (°C)	88.2			OTHER TRACERS		
TIME CIRC. STOPPED	9.00			()		
TIME SINCE CIRC.	14HRS20	MINS		DENSITY ()		
D SAMPLE RECOVERY			G	GENERAL COMMENTS		
SURFACE PRESSURE(psis	1600		_			
VOL. GAS (ft ³)60.1		4	1 GALLON CHAMBER I		
VOL. OIL (ml) 18000		4	RUN NO. 10 WAS PRI	ETESTS ONL	Υ.
VOL. WATER (m1	TR		_	1		
VOL. FILTRATE ()		4			
VOL. CONDENSATE (-		4			
VOL. OTHER (1		4			
E SAMPLE PROPERTIES	1 940440		4			
]) 849668) 51718	<u> </u>	+			
) 13629	-	\dashv			
) 3864	+	\dashv			
) 477		\dashv			
C c5 (ppm 0 c6+ (ppm			\dashv			
) 8	 	\dashv			
P H ₂ S (ppm		- 	\dashv			
(b)OIL PROPERTIES	<u> </u>	 	1			
DENSITY: HYDROMETER	39.7@2	7.5°C				
() REFRACTOMET			7			
REFRACTIVE INDEX						
COLOUR LQN PHAS	E DK. BRN					
FLUORESCENCE	MILKY	WH				
G.O.R. (ft /ml)	531		7			
(20 / 20 /	RT IT WH					

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1

RUN No.: 12

CHAMBER No.	1.	2.			CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (gall)	6	1				
CHOKE SIZE (sq.in.)	0.03 m	0.03		OIL PROPERTIES CONT.	. 7014 MTG	
SEAT No.	89	89		ODOUR POINT (°C)	AROMATIC 27.5	
DEPTH (m) (from RKB)	2205	2205			27.3	
A RECORDING TIMES	HH:MM:SS	HH:MM:SS		COMMENTS		
TOOL SET	4:01:40			(c)WATER PROPERTIES	0.37@260	70
PRETEST OPEN	4:02:00			RESISTIVITY (m)		1
TIME OPEN				Cl (frm. resis.)(ppm)		
CHAMBER OPEN	4:05:00	4:15:40	l	C1 (frm. titrat)(ppm)		
CHAMBER FULL	4:10:20	4:17:50		NO_3 $(mg/1)$	120	
FILL TIME	05:20	02:10		рН	7.8	
START BUILD UP	4:10:20	4:17:50	ł	OTHER TRACERS ++	180	
FINISH BUILD UP	4:14:30	4:20:10		(Ca)		
BUILD UP TIME	04:10	02:20	1	DENSITY (ppg)	8.9	
SEAL CHAMBER	4:14:40	4:20:40	1	FLUORESCENCE		
TOOL RETRACT		4:21:00	1	COLOUR		
TOTAL TIME			1	COMMENTS	MUD AND	
B SAMPLE PRESSURES			1		FILTRATI	
THP (psig)	3737		1	(d)OTHER SAMPLE		
ISIP (psia)	3153.4	3153	1	PROPERTIES		
IFP (psia)	3044	3115	1			
FFP (psia)	3041	3113	F	MUD PROPERTIES		
FSIP (psia)	3153	3152.9		TYPE	SW/GEL/	POLYMER
FHP (psig)		3735	1	RESISTIVITY (m)	0.41@17	.3°C
TEMP. CORR. (°)	 		1	C1 (frm.resis.)(ppm)	19.5K	
COMMENTS	1		1	C1 (frm.titrat)(ppm)	12.5K	
C TEMPERATURE	<u></u>		7	NO Drld/1st.circ(mg/1)	100	220
DEPTH TOOL REACHED(m)	2224	2224	1	На	10.9	
MAX.REC.TEMP.(°C)	191,2°F		1	OTHER TRACERS		
TIME CIRC. STOPPED	0900 hr	:b	1	()		
TIME SINCE CIRC.	19	 	1	DENSITY ()		
D SAMPLE RECOVERY			G	GENERAL COMMENTS		
SURFACE PRESSURE(psig) 1550					
VOL. GAS (ft ³	51	1	1	1 GALLON PRESERVE	D.	
VOL. OIL (ml) 13100		7			
VOL. WATER ()		7			
VOL. FILTRATE (5		7			
VOL. CONDENSATE ()		7			
VOL. OTHER-MUD (m1	3000					
E SAMPLE PROPERTIES						
(a) G c1 (ppm	863364					
A c2 (ppm]			
S c3 (ppm						
c4 (ppm	•		7			
C c5 (ppm	· · · · · · · · · · · · · · · · · · ·					
0 c6+ (ppm				1		
M CO ₂ (%) 0					
P H ₂ S (ppm	~]_			
(b)OIL PROPERTIES						
DENSITY: HYDROMETER						
() REFRACTOMET	ER 36.9@6	O ^φ F	7			
REFRACTIVE INDEX						
COLOUR LIQUII	DK BRN					
FLUODESCENCE	MILKY	WH	7			
G.O.R. (ft ³ /m1)	624		7			
7.5 /mr /						

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1									
		RUN No.	.: 1	13	PR	ESS	SURE GAUGE TYPE: HP		LAB
	MBER No.			1.	2.			CHAMB. 1	CHAMB. 2
	MBER CAPA			6	1		OIL PROPERTIES CONT.		
	KE SIZE		a11)	0.03	0.03		ODOUR CONT.	AROMATIC	
	T No. (s	g.in.)		98	98		POUR POINT (°C)	27.5	
	TH (m) (2032	2032		COMMENTS	21.5	
	RECORDING	; TIMES		H:MM:SS	HH: MM: 55		(c)WATER PROPERTIES	L	L
	TOOL SET	DEN		8:38:40 8:39:00			RESISTIVITY (m)	0.38@32.5	o _C
ŀ	TIME OPE			05:00	7,500		C1 (frm. resis.)(ppm)		-9
}	CHAMBER C			8:44:20	9:01:25		Cl (frm. titrat)(ppm)		
	CHAMBER E			8:51:20	9:03:50				
	FILL TIME			07:00	02:25		NO ₃ (mg/1)	7.7	
ŀ	START BU			8:51:20	9:05:50		OMITED TO A CED C		
}	FINISH BU			9:00:45	9:05:50		(Ca ⁺ †	180	
ŀ	BUILD UP			09:25			DENSITY ()		
Ì	SEAL CHAI			9:00:50	9:06:00		FLUORESCENCE		
ŀ	TOOL RET						COLOUR		
	TOTAL TI						COMMENTS		
В	SAMPLE P	RESSURES							
	IHP	(psig)	2450			(d)OTHER SAMPLE		
	ISIP	(psia		2887.5	2286.1		PROPERTIES		
	IFP	(psia		2235	2800	<u> </u>			<u></u>
	FFP	(psia		1877	2455	F	MUD PROPERTIES	GUI (ODT /D)	TYDED
	FSIP	<u> </u>		2286.1	2886.9		TYPE RESISTIVITY (m)	SW/GEL/PO 0.41@17.3	DLYMER NOC
	FHP	(psig	`				C1 (frm.resis.)(ppm)	19.5K	, .
	TEMP. CO		'			l		12.5K	
С	TEMPERAT				<u></u>	ł	NO Dr1d/1st.circ(mg/1)		
<u> </u>		OL REACHE	(m) (15	1		1	pH ³	220	
		TEMP.				1	OTHER TRACERS	 	
		C. STOPPE		<u> </u>		1	()		
	TIME SIN					1	DENSITY. ()	 	
D	SAMPLE R			<u> </u>	L	G	GENERAL COMMENTS		
	SURFACE	PRESSURE(psig	1200					
l	VOL. GAS			27.2]	1 GALLON CHAMBER	PRESERVED	
	VOL. OIL		(m1)	6500]			İ
	VOL. WAT		(m1)						
	VOL. FIL		(ml)	11000		1			
	VOL. CON		(ml)			4			
	VOL. OTH			<u>'</u>		4			
E		ROPERTIE		T	T	4			
	1''			779200	 	1			
	AS	c2 (c3 (45870 12210		\dashv			
1		c4 (2570	 	1			
	c	c5 ((ppm)		 	1			
	0	c6+ (` 	 		1			
İ	М	CO ₂	(_{ppm)} (%)	5		1			
	P		(ppm)			1			
		ROPERTIE	S						
	DENSITY:			37@60 ⁰ 1	7]			
	()	REFRAC		ΣR]			
	REFRACTI	VE INDEX							
	COLOUR	LIQUID	PHAS	E DK BRN					
	FLUORESC			MILKY V	NH .				
	G.O.R.	(ft ³ /	m1)	665		1			
-									

R.F.T. DATA SHEET - SAMPLING DATA

CORE LABORATORIES

COMPANY : E	SSO AUSTE			: WIRRAH NO. 1		LAB
CHAMBER No.	1.	2.			CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (gall)	6	1			ommib. I	CIMILID: 2
CHOKE SIZE (sq.in.)	0.03	0.03		OIL PROPERTIES CONT.		
SEAT No.	101	101		ODOUR		
DEPTH (m) (from RKB)	2280	2280		POUR POINT (°C)		
	HH:MM:SS	HH:MM:SS		COMMENTS		
TOOL SET	4:30:00			(c)WATER PROPERTIES	1 0	
PRETEST OPEN	14:30:00			RESISTIVITY (m)		0.38@18 ^o c
TIME OPEN				C1 (frm. resis.)(ppm)		18K
CHAMBER OPEN	·	14:52:00	1	Cl (frm. titrat)(ppm)		9200
CHAMBER FULL		14:54:00		NO ₃ (mg/1)		40
FILL TIME	05:40			рн	6.6	6.6
START BUILD UP	- 	14:54:00	1	OTHER TRACERS (Ca ⁺⁺)	120	140
FINISH BUILD UP		15:06:00			120	140
BUILD UP TIME	11:00		1	DENSITY ()		
SEAL CHAMBER	14:51:00	15:06:00		FLUORESCENCE		
TOOL RETRACT		15:07:00	1	COLOUR		
TOTAL TIME	<u> </u>	<u> </u>	ł	COMMENTS		
B SAMPLE PRESSURES	12050		1	(1) omupp CAAMI P		
IHP (psig)	3850		ł	(d)OTHER SAMPLE		
ISIP (psia)	3254.4	3238	ł	PROPERTIES		
IFP (psia)	2764	3131	 	140 PROPERTIES	<u> </u>	L
FFP (psia)	2684	3117	F	MUD PROPERTIES	CU/CEL /DO	TAMED
FSIP (psia)	3237	3239	1	TYPE	SW/GEL/PO 0.41@17.3	
FHP (psig)		3848	1	RESISTIVITY (m)	19.5K	
TEMP. CORR. ()				C1 (frm.resis.)(ppm)	12.5K	
COMMENTS	<u> </u>		-	C1 (frm.titrat)(ppm)		200
C TEMPERATURE	T	T 3331	4	NO ₃ Drld/1st.circ(mg/T)		
DEPTH TOOL REACHED(m)	2284	2284	-	pH ampropries	10.5	
MAX. REC. TEMP. (°C)	211.5		1	OTHER TRACERS		
TIME CIRC. STOPPED	900			()	<u> </u>	
TIME SINCE CIRC.	30 HRS		<u>_</u>	DENSITY ()	<u> </u>	
D SAMPLE RECOVERY	VI	T = = =	G	GENERAL COMMENTS		
SURFACE PRESSURE(psig		375	4			
	2.9	0.3	-			
VOL. OIL (ml		 	-			
VOL. WATER (ml VOL. FILTRATE (ml) 20500	3250	-	}		
VOL. CONDENSATE (m1	120300	3230	4			
VOL. OTHER ((-	┪			
E SAMPLE PROPERTIES	4		┥			
) 246675	280936	1			
) 43673	13648	1			
) 15264	3066	1			
	3434	537	1			
C c5 (ppm) 700	159	1			
0 c6+ (ppm		102	1			
1) 12		1			
P H ₂ S (ppm			7			
(b)OIL PROPERTIES						
DENSITY: HYDROMETER	1		7			
() REFRACTOMET	ER	- 	1			
REFRACTIVE INDEX			7			
COLOUR		-	7			
FLUORESCENCE		1	7			
G.O.R. (ft ³ /ml)			4			
(10/11)						

R.F.T. DATA SHEET - SAMPLING DATA

CORE LABORATORIES

CORE LABORATORIES

R.F.T. DATA SHEET - SAMPLING DATA

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 1

RUN No.: 15

CHAMBER No.	1.	2.			CHAMB. 1	CHAMB, 2
CHAMBER CAPACITY (gall)	6	$\frac{2\cdot}{2\frac{3}{4}}$				
CHAMBER CATACITI (gall) CHOKE SIZE (sq.in.)	0.03	0.03	(OIL PROPERTIES CONT.		
SEAT No.	103	103	C	ODOUR	DIESEL	DIESEL
DEPTH (m) (from RKB)	2046	2046	i	POUR POINT (°C)	25	24
A RECORDING TIMES	HH:MM:SS	HH:MM:SS		COMMENTS		
TOOL SET				(c)WATER PROPERTIES	2.0000	0.0000
PRETEST OPEN				RESISTIVITY (m)		0.34@29 ^o
TIME OPEN				Cl (frm. resis.)(ppm)	10K	11K
CHAMBER OPEN	19:39:00	19:57:00		Cl (frm. titrat)(ppm)		55
CHAMBER FULL		20:00:00	-	100_3 (mg/1)		7.7
FILL TIME	06:36			рН	7.7	/./
START BUILD UP	1	20:00:00		OTHER TRACERS ++	160	220
FINISH BUILD UP		20:08:00		(Ca)	100	220
BUILD UP TIME	09:00		l ⊦	DENSITY ()	<u> </u>	
SEAL CHAMBER	19:56:00	20:09:00	l ⊦	FLUORESCENCE		
TOOL RETRACT		20:14:00		COLOUR		
TOTAL TIME	17:00	18:00		COMMENTS		
B SAMPLE PRESSURES		1077		(1) OMIND CALMI E		
IHP (psig)	3467	3467		(d)OTHER SAMPLE		
ISIP (psia)	2906.8	0000		PROPERTIES		
IFP (psia)	2500	2030 1934		Ago properated	L	<u></u>
FFP (psia)	2800	2901	F	MUD PROPERTIES TYPE	SW/GEL/P	OLYMER
FSIP (psia)	3466	3466	1	RESISTIVITY (m)	0.4@17.3	
FHP (psig)	3400	3400	1	Cl (frm.resis.)(ppm)	19.5K	<u> </u>
TEMP. CORR. ()		 	-	C1 (frm.titrat)(PPm)	15.5K	
COMMENTS C TEMPERATURE		1	-	NO Drld/1st.circ(mg/1		220
C TEMPERATURE DEPTH TOOL REACHED(m)	2065	2065	1	pH ³	10.5	
MAX. REC. TEMP. (°C)		91.6	-	OTHER TRACERS	1:0:3	
TIME CIRC. STOPPED	91.6	91.0	1	()		
TIME SINCE CIRC.	-		1	DENSITY, ()		
D SAMPLE RECOVERY	<u> </u>		G	GENERAL COMMENTS	<u></u>	
SURFACE PRESSURE(psig	1 500	700	1			
VOL. GAS (ft ³) 5.4	8.6	1			
VOL. OIL (m1	2750	4750	1		,	
VOL. WATER (m1	17250	2750	7			
VOL. FILTRATE (m1)		7			
VOL. CONDENSATE (m1)		7			
VOL. OTHER ()]			
E SAMPLE PROPERTIES]			
(a) G c1 (ppm	382771	328090				
A c2 (ppm	20644	27525				
S c3 (ppm) 6543	13087	1			
c4 (ppm	2744	4460	_			
C c5 (ppm) 270	716				
0 c6+ (ppm) 27	627	_]			
M CO ₂ (%) 4	3	_			
P H ₂ S (ppm) o	0	-			
(b)OIL PROPERTIES	103.	130 (4			
DENSITY: HYDROMETER	37.1	38.6	4			
() REFRACTOMET	ER		4			
REFRACTIVE INDEX		1 1 /1	┧.,	<u>.</u>		
		k yel/bn	/Իր	K.		
FLUORESCENCE	milky		4			
$G_{\bullet}O_{\bullet}R_{\bullet}$ (ft /m1)	312	288				

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1

RUN No.: 17

CHAMBER No.	1.	2.			CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (gall)	6	2 3/4		TI PROPURMINE COM		
CHOKE SIZE (sq.in.)	0.03	0.03		OIL PROPERTIES CONT.		
SEAT No.	2105 2	2105 2		ODOUR POUR POINT ()		
DEPTH (m) (from RKB)	2195.3 HH:MM	2195.3 HH:MM		COMMENTS		
A RECORDING TIMES		пи:мм		(c)WATER PROPERTIES		
TOOL SET	14:25			RESISTIVITY (m)	0.42@61	0.42@61
PRETEST OPEN	14:26			Cl (frm. resis.)(ppm)		16K
TIME OPEN	14:31	15:00		C1 (frm. titrat)(ppm)		9K
CHAMBER OPEN				NO_2 $(mg/1)$		60
CHAMBER FULL	14:41	15:04	l	10 3 (ш <u>д</u> /17	7.7	7.7
FILL TIME	:10	:04		COLLAD WATER OF THE		
START BUILD UP	DID NOT		\	(Ca ⁺⁺)	80	140
FINISH BUILD UP	DID NOT	FINISH	!	DENSITY ()		1
BUILD UP TIME	1, 50	15.11		FLUORESCENCE		
SEAL CHAMBER	14:58	15:11		COLOUR		
TOOL RETRACT				COMMENTS		
TOTAL TIME	:33	:16	1	COPPE NES		
B SAMPLE PRESSURES	10711	0711	1	(d)OTHER SAMPLE		
THP (psig)	3711	3711	1 1	PROPERTIES		
ISIP (psia)	76	1100	1	I ROLLKIII		1
TFP (psia)	2092	2130	F	MUD PROPERTIES	J	
FFP (psia) FSIP (psia)	3147.6	3151.1	+	TYPE	SW/GEL/P	OLYMER
	3701	3701	1	RESISTIVITY (m)	0.41@17.	
FHP (psig) TEMP. CORR. ()	3701	1 3701	1 1	C1 (frm.resis.)(ppm)	79.5K	
COMMENTS		 	1 1	Cl (frm.titrat)(ppm)	15K	
C TEMPERATURE		<u></u>	1	NO Drld/1st.circ(mg/1		220
DEPTH TOOL REACHED(m)	2264	2264	1	pH	10.5	
MAX. REC. TEMP. (°C)	171.6	171.6	1	OTHER TRACERS		
TIME CIRC. STOPPED	7:30	7:30	1	()		
TIME SINCE CIRC.	5 HRS	5 HRS	-	DENSITY ()	-	
D SAMPLE RECOVERY		<u> </u>	G	GENERAL COMMENTS	<u></u>	
SURFACE PRESSURE(psig	11380	1400	 			
VOL. GAS (ft ³) 89	44.1	1			
) 100	55	1	RFT NO. 16 WAS A	MISRUN.	
VOL. WATER (ml	1	1	1		•	
VOL. FILTRATE (ml	2000	120	1			
VOL. CONDENSATE (m1	5 2000	120	1			
VOL. OTHER (3		1			
E SAMPLE PROPERTIES	<u></u>		7			
(a) G c1 (ppm) 382771	793883	٦			
A c2 (ppm	30966	57344	7			
S c3 (ppm) 11996	19630	7			
c4 (ppm) 4460	6174	7			
C c5 (ppm) 1751	1910	7			
· 0 c6+ (ppm) 655	750	7	<u> </u>		
M CO ₂ (%) 5	6]			
P H ₂ S (ppm) 0	T 0				
(b)OIL PROPERTIES			_			
DENSITY: HYDROMETER	47	47	_			
() REFRACTOMET	ER		_			
REFRACTIVE INDEX			_			
COLOUR	DK BN	DK BN	4			
FLUORESCENCE	MILKY		_			
G.O.R. (ft /m1)	141510	127489	1			

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 1

RUN No. : 18

ł

									l
	MBER No.	1	2.			CHAM	B. 1	CHAMB. 2	
	MBER CAPACITY (gall)	6		ļ	TO THE COMP				┨
	KE SIZE (sq.in.)	0.03	0.02		OIL PROPERTIES CONT.	Γ		1	1
	T No.	112	112		ODOUR POINT (°C)			 	1
	TH (m) (from RKB)	2633	2633			28			1
	RECORDING TIMES	HH:MM:SS		1	COMMENTS	<u></u>		L	┨
	TOOL SET	14:06:05			(c)WATER PROPERTIES	1 0 2	E 627	GOC 0.3@20	1 200
	PRETEST OPEN	14:06:40			RESISTIVITY (m)				43 6
1 L	TIME OPEN	:05:50			C1 (frm. resis.)(ppm)	•		24000	4
)	CHAMBER OPEN		14:28:30	1	C1 (frm. titrat)(ppm)		000	16000	4
1 -	CHAMBER FULL		14:31:00	4	NO_2 (mg/1)	10		20	_
	FILL TIME	:08:30		1	pH	6.4		6.4	
	START BUILD UP	14:19:00	14:31:00	1	OTHER TRACERS				
	FINISH BUILD UP	-	+	f	())			
			1	1	DENSITY ()]
	BUILD UP TIME	+ 27 20	17 27.16	4	FLUORESCENCE	-			7
	SEAL CHAMBER	14:27:30	14:37:10	4	COLOUR	+		1	7
	TOOL RETRACT			4	COMMENTS	+			7
I	TOTAL TIME			4	COMMENTS				
В	SAMPLE 'PRESSURES			1	CALOR D				\dashv
	IHP (psig)	4383.2		_	(d)OTHER SAMPLE				
1 -	ISIP (psia)	3790.1	3738	_	PROPERTIES				
	IFP (psia)		0 1490-26	<u> 590</u>					-
1	FFP (psia)	1160	2600	F	MUD PROPERTIES				_
1 1	FSIP (psia)	3739.40		T	TYPE	SW	/GEL/P	OLYMER	_
1 1	FHP (psig)	7,3,	4379.9	_	RESISTIVITY (m)	ي. وا	238@22	.7	_
	TEMP. CORR. (O)		+	7	C1 (frm.resis.)(ppm)				
1 }	COMMENTS		 	1	C1 (frm.titrat)(ppm)		200		
 	TEMPERATURE			┥	NO Drld/1st.circ mg/1				
C				-	pH3	10.			\neg
	DEPTH TOOL REACHED(m)		121 00	-	OTHER TRACERS	11	<u> </u>		\neg
1 1	MAX. REC. TEMP. (°C)	2153 ^o F	101.8°C	딕	OTHER PRODUCTION	32	.5		
'	TIME CIRC. STOPPED	0700		4					\dashv
	TIME SINCE CIRC.	17		一一	DENSITY (ppg)	9.	<u> </u>		-
D	SAMPLE RECOVERY			G	GENERAL COMMENTS				-
	SURFACE PRESSURE(psig	g) 480	310	_					l
1	VOL. GAS (ft ³) 2.9	0.5	_	WATER CUT: 0.193				
1	VOL. OIL (ml) SCUM							
1	VOL. WATER (m1)							
1	VOL. FILTRATE (m1) 19600	3400				-		
	VOL. CONDENSATE (mI	7							
	VOL. OTHER (
E	SAMPLE PROPERTIES								}
-	(a) G c1 (ppm) 66125	325380						
1	A c2 (ppm) 5425	49290						
1	S c3 (ppm		26780						
- 1	c4 (ppm	N	8480	7					
	C c5 (ppm		2490						
l	0 c6+ (ppm	- (_ , 	620	\dashv					1
1	М СО2 (%	1 3	5	\dashv					
l	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i></i>	TR	\dashv					
- 1	(b)OIL PROPERTIES	_/		一					
				\dashv					
	DENSITY: HYDROMETER		, <u>_</u>	\dashv					
	() REFRACTOMET	rER32@60	F	\dashv					- 1
	REFRACTIVE INDEX			_					
- 1	COLOUR	STRAW		_					
- 1	FLUORESCENCE 3	YELL G	ЮПр						
	G.O.R. (t /m1)								

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1 PRESSURE GAUGE TYPE: HP RUN No. : 21 1. 2. CHAMBER No. CHAMB. 1 CHAMB. 2 2 3/2 CHAMBER CAPACITY (gall) 6 OIL PROPERTIES CONT. CHOKE SIZE (sq.in.) ODOUR SEAT No. 163 163 DEPTH (m) (from RKB) POUR POINT 2604.5 2604.5 COMMENTS RECORDING TIMES HH:MM:SS HH:MM:SS (c)WATER PROPERTIES 2:24:00 TOOL SET 0.24@27 0.26@20 RESISTIVITY (m) 2:24:30 PRETEST OPEN 25K C1 (frm. resis.)(ppm) 25K 03:00 TIME OPEN C1 (frm. titrat)(ppm) 16K 16K 2:27:30 2:41:20 CHAMBER OPEN <u>w</u>3-50 180 (mg/1)2:44:10 CHAMBER FULL 2:32:10 7.9 6.6 pҤ 04:40 02:50 FILL TIME OTHER TRACERS 2:32:10 2:44:10 START BUILD UP TR SAND 2:38:50 FINISH BUILD UP 8.8 8.8 DENSITY (ppg) BUILD UP TIME 06:40 2:48:30 FLUORESCENCE SEAL CHAMBER LT BRN STRAW BRN 2:50:00 COLOUR TOOL RETRACT COMMENTS TOTAL TIME SAMPLE PRESSURES 4358 (d)OTHER SAMPLE (psig IHP 3723.1 3721 **PROPERTIES** (psia) ISIP 2930 3130 (psia) IFP 2820 3040 MUD PROPERTIES FFP (psia) (psia) SEAWATER GEL 3721 3719.2 TYPE **FSIP** 0.41@17.3°C RESISTIVITY (m) FHP (psig) 19500 C1 (frm.resis.)(ppm) TEMP. CORR. (o Cl (frm.titrat)(ppm) COMMENTS 12500 NO3Drld/1st.circ TEMPERATURE DEPTH TOOL REACHED(m) 2604.5 OTHER TRACERS MAX. REC. TEMP. (C) 205.3 TIME CIRC. STOPPED 0900 DENSITY. TIME SINCE CIRC. GENERAL COMMENTS G SAMPLE RECOVERY SURFACE PRESSURE(psig) 200 320 0.5 0.5 VOL. GAS (ft VOL. OIL (m1 VOL. WATER 9 (m1)20.5 VOL. FILTRATE (m1 VOL. CONDENSATE (ml VOL. OTHER SAMPLE PROPERTIES 180142 157624 (a) G c1 (ppm) c2 (ppm) 12235 17797 S с3 3920 4126 (ppm) c4 810 (ppm) 872 C c5 96 ppm 170 0 19 c6+ 19 ppm) CO2 M % H₂S (ppm) P (b)OIL PROPERTIES DENSITY: HYDROMETER REFRACTOMETER) REFRACTIVE INDEX COLOUR DIRTY MUDDY BROWN BRT YELL BRT YELL FLUORESCENCE $(ft^3/m1)$ G.O.R.

R.F.T. DATA SHEET - SAMPLING DATA

CORE LABORATORIES

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 1

RUN No. : 22 PRESSURE GAUGE TYPE: HP

						-2/ <u>-</u> 2/-
CHAMBER No.	1.	2.			CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (gall)	6	2 3/4	<u> </u>			
CHOKE SIZE (sq.in.)	0.03			OIL PROPERTIES CONT.	DDM TOTT	777
SEAT No.	164	167	} L.	ODOUR OOT	BRT YELL	BRT YELL
DEPTH (m) (from RKB)	2461.5	2461		POUR POINT (C)	FLOWN	FLOWN
	HH:MM:SS		! ⊢	COMMENTS		
TOOL SET	5:40:00			(c)WATER PROPERTIES	0.00000	0.05.0070
PRETEST OPEN	5:40:30	6:06:00		RESISTIVITY (m)		0.25 @279
TIME OPEN	5 (5 00	(10 00	, -	C1 (frm. resis.)(ppm)	22K	22K
CHAMBER OPEN	5:45:20	6:10:00		C1 (frm. titrat)(ppm)		17K 220
CHAMBER FULL	5:57:00		l	NO _{pH} 3 (mg/1)		8.7
FILL TIME	11:40	<u> </u>		OTHER TRACERS		0.7
START BUILD UP FINISH BUILD UP				()		
BUILD UP TIME			\mathbf{I}	DENSITY (ppg)	9 7	9.5
SEAL CHAMBER	5:58:45	6:11:30		FLUORESCENCE		
TOOL RETRACT	3.30.43	0.11.30	.i ⊩	COLOUR		
TOTAL TIME	-			COMMENTS		
B SAMPLE PRESSURES		J	1 1	00111111111		
THP (psig)	4124	4129	1	(d)OTHER SAMPLE		
ISIP (psia)	3514.6	3311.2	1	PROPERTIES		
IFP (psia)	130	2160	1			
FFP (psia)	113		F	MUD PROPERTIES		
FSIP (psia)	17	SF		TYPE		
FHP (psig)	3931		1 [RESISTIVITY (m)		
TEMP. CORR. ()	4128	4127	1 [C1 (frm.resis.)(ppm)		
COMMENTS		 	1	C1 (frm.titrat)(ppm)		
C TEMPERATURE			1 [NO3 Dr1d/1st.circ(mg/1)		
DEPTH TOOL REACHED(m)	2461.5		1 [pH		
MAX.REC.TEMP.(°C)	202.7		1 [OTHER TRACERS		
TIME CIRC. STOPPED	0.9		1	()		,
TIME SINCE CIRC.	21 HRS			DENSITY. ()		
D SAMPLE RECOVERY			G	GENERAL COMMENTS		
SURFACE PRESSURE(psig		100				
	0.17		1 1			
VOL. OIL (m1) TR	TR	1 1	APPARENT SEAL FA	AILURE ON	6 GAL
VOL. WATER (ml)(<u> </u>]	CHAMBER, HIGH O	VERPULL.	
VOL. FILTRATE (m1	}		-			
VOL. CONDENSATE (m1)		4			
VOL. OTHER- MUD (20.25	5.0	4			
E SAMPLE PROPERTIES	1 016170		-			
(a) G c1 (ppm	· · · · · · · · · · · · · · · · · · ·		-			
A c2 (ppm S c3 (ppm		 	-			
) 6190		-{			
) 1120	3	4			
			4			
0 <u>c6+</u> (ppm M CO ₂ (%) 19	 ♣	-			
P H ₂ S (ડ ੀ	-	┨			
(b)OIL PROPERTIES	<u> </u>	-L	1	I		
DENSITY: HYDROMETER			7			
() REFRACTOMET	ER		-			
REFRACTIVE INDEX		-	H			
COLOUR		- 	7			
FLUORESCENCE			7			
			-			
$G_{\bullet}O_{\bullet}R_{\bullet}$ (FT /m1)			1			

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1

RUN No.: 23 PRESSURE GAUGE TYPE: HP

						_
CHAMBER No.	1.	2.			CHAMB. 1	CHAMB. 2
CHAMBER CAPACITY (1t)	22.7	9.75		OIL PROPERTIES CONT.		
CHOKE SIZE (sq.in.)	0.03	160		ODOUR		
SEAT No.	169 2633	169 2633		POUR POINT (°C)	28	
DEPTH (m) (from RKB) A RECORDING TIMES	HH:MM:SS		S	COMMENTS		
TOOL SET	10:37:40			(c)WATER PROPERTIES		
PRETEST OPEN	10:38:00			RESISTIVITY (m)		0.34@2200
TIME OPEN	10.30.00			Cl (frm. resis.)(ppm)	20K	19.5K
CHAMBER OPEN	10:41:00	11:00:3	b	C1 (frm. titrat)(ppm)	13000	12000
CHAMBER FULL	10:47:25			NO ₂ (mg/1)		90
FILL TIME	06:25			pH ³	6.2	6.1
START BUILD UP	10.47.25	11:03:4		OTHER TRACERS		
FINISH BUILD UP	10.57.10	11:09:5	b	()		
BUILD UP TIME	09:45			DENSITY ()		
SEAL CHAMBER		11:09:3		FLUORESCENCE		
	10:37:10	11:11:0		COLOUR		
TOOL RETRACT		11:11:0	۲	COMMENTS		
TOTAL TIME				COPILENTS		
B SAMPLE PRESSURES	4408		1	(d)OTHER SAMPLE		
IHP (psig)	37845	3744	1	PROPERTIES		
ISIP (psia)		2170	1	PROPERTIES		
TFP (psia)	1810		F	MUD PROPERTIES	<u> </u>	<u> </u>
FFP (psia)	1730	2080	F-	TYPE	Γ	
FSIP (psia)	80	90	ł	RESISTIVITY (m)	0.41@17.3	3°C
FHP (psig)	3736	4410	1		19500	
TEMP. CORR. ('O')			-	C1 (frm.resis.)(ppm)	12500	
COMMENTS		<u> </u>	┨	C1 (frm.titrat)(ppm)	1	
C TEMPERATURE	10607	·	1	NO ₃ Drld/1st.circmg/1	220	
DEPTH TOOL REACHED(m)	2637		-	pH TOWNS TO A CORD C	 	
MAX. REC. TEMP. (C)	214		1	OTHER TRACERS		
TIME CIRC. STOPPED	12:17:10	D		()		
TIME SINCE CIRC.			<u> </u>	DENSITY ()	<u> </u>	
D SAMPLE RECOVERY		- /	G	GENERAL COMMENTS		
SURFACE PRESSURE(psig		400	4			
VOL. GAS (ft ³		1.1	1			
VOL. OIL (ml			4	1		
	SCUM	SCUM			•	
VOL. WATER (ml) SCUM) 20.1	SCUM 9.1				
VOL. WATER (ml VOL. FILTRATE (ml						
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml						
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES) 20.1	9.1				
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm) 20.1	247695				
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm) 20.1)))) 122440) 9316	9.1 247695 16407			•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm S c3 (ppm) 20.1))))) 122440) 9316) 3804	247695 16407 6512			•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm S c3 (ppm c4 (ppm) 20.1))))) 122440) 9316) 3804) 1071	9.1 247695 16407 6512 2260			•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C c3 (ppm c4 (ppm) 20.1)))))))))))))))))))	9.1 247695 16407 6512 2260 767			•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C3 (ppm c4 (ppm C c5 (ppm) 20.1))))))))))))) 9316) 3804) 1071) 313) 97	9.1 247695 16407 6512 2260 767 290				
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C4 (ppm C4 (ppm C5 (ppm C6+ (ppm M CO2 (%) 20.1))))))))))) 9316) 3804) 1071) 313) 97) 5	247695 16407 6512 2260 767 290	-			
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C c3 (ppm c4 (ppm c4 (ppm C c5 (ppm M CO2 (% P H ₂ S (ppm) 20.1))))))))))) 9316) 3804) 1071) 313) 97) 5	9.1 247695 16407 6512 2260 767 290			,	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C4 (ppm C4 (ppm C5 (ppm C4 (ppm C6+ (ppm M (C02 (% P H ₂ S (ppm (b)OIL PROPERTIES) 20.1))))))))))) 9316) 3804) 1071) 313) 97) 5	247695 16407 6512 2260 767 290				
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C4 (ppm C4 (ppm C5 (ppm C4 (ppm C6+ (ppm M CO2 (% P H2S (ppm (b)OIL PROPERTIES DENSITY: HYDROMETER) 20.1) 122440) 9316) 3804) 1071) 313) 97) 5	247695 16407 6512 2260 767 290			•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C4 (ppm C4 (ppm C5 (ppm C6+ (ppm M CO2 (% P H2S (ppm (b)OIL PROPERTIES DENSITY: HYDROMETER () REFRACTOMET) 20.1) 122440) 9316) 3804) 1071) 313) 97) 5	247695 16407 6512 2260 767 290			•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C4 (ppm C4 (ppm C5 (ppm C6+ (ppm M CO2 (% P H2S (ppm Cb)OIL PROPERTIES DENSITY: HYDROMETER () REFRACTOMET) 20.1) 122440) 9316) 3804) 1071) 313) 97) 5) TR	9.1 247695 16407 6512 2260 767 290 10 NONE		I RDN	•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C4 (ppm C4 (ppm C5 (ppm C6+ (ppm M CO2 (% P H2S (ppm (b)OIL PROPERTIES DENSITY: HYDROMETER REFRACTIVE INDEX COLOUR DK RD) 20.1) 122440) 9316) 3804) 1071) 313) 97) 5) TR	9.1 247695 16407 6512 2260 767 290 10 NONE		I BRN	•	
VOL. WATER (ml VOL. FILTRATE (ml VOL. CONDENSATE (ml VOL. OTHER (E SAMPLE PROPERTIES (a) G c1 (ppm A c2 (ppm C4 (ppm C4 (ppm C5 (ppm C6+ (ppm M CO2 (% P H2S (ppm (b)OIL PROPERTIES DENSITY: HYDROMETER () REFRACTIVE INDEX) 20.1) 122440) 9316) 3804) 1071) 313) 97) 5) TR	9.1 247695 16407 6512 2260 767 290 10 NONE		I BRN	•	

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 1

RUN No. : 24

CHAMBER No.	1.	2.	CHAMB. 1 CHAMB. 2
CHAMBER CAPACITY (gall)	6	2 3 4	LOTE PROPERTY DE COMP
CHOKE SIZE (sq:in.)	0.03	0.03	OIL PROPERTIES CONT.
SEAT No.	170		ODOUR
DEPTH (m) (from RKB)	2461.5		POUR POINT ()
A RECORDING TIMES	HH:MM:SS	HH:MM:S	COMMENTS
TOOL SET	13:56:40		(c)WATER PROPERTIES RESISTIVITY (m) 0.24@22°C 0.25@22°C
PRETEST OPEN	13:57:25		RESISTIVITY (m) 0.24@22°C 0.25@22°C 0.25@20°C 0.25~C 0.25@20°C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.25~C 0.2
TIME OPEN	:45		Or (True representation)
CHAMBER OPEN	14:00:20		Of (IIIII) CICIGO/(PP.
CHAMBER FULL	14:15:00		NO ₃ (mg/L) 130 200
FILL TIME	14:40:00		pH 6.6 8.3
START BUILD UP	14:15:00		OTHER TRACERS
FINISH BUILD UP			()
BUILD UP TIME			DENSITY (ppg) 9.1
SEAL CHAMBER			FLUORESCENCE
TOOL RETRACT			COLOUR
TOTAL TIME		 	COMMENTS
B SAMPLE PRESSURES			
THP (psig)	4121	1	(d)OTHER SAMPLE
ISIP (psia)	3513.4		PROPERTIES
	145-500		
TFP (psia)	3000	'	F MUD PROPERTIES
		 	TYPE
FSIP (psia)	3509	<u> </u>	RESISTIVITY (m) 0.41@17.3 C
FHP (psig)	3059.9		C1 (frm.resis.)(ppm) 19500
TEMP. CORR. (o)		ļ	C1 (frm.titrat)(ppm) 12500
COMMENTS	<u> </u>	<u> </u>	NO ₂ Dr1d/1st.circ(mg/1)200
C TEMPERATURE	<u></u>		
DEPTH TOOL REACHED(m)		ļ	pH ann ann ann ann ann ann ann ann ann an
MAX.REC.TEMP.(° F)	210		OTHER TRACERS
TIME CIRC. STOPPED	1200		
TIME SINCE CIRC.			DENSITY ()
D SAMPLE RECOVERY			G GENERAL COMMENTS
SURFACE PRESSURE(psig		220	
VOL. GAS (ft ³) 1.4	0.3]
VOL. OIL (ml) LT SCU	1 TR	SEAL FAILURE ON 23" CHAMBER
VOL. WATER (m1) 1960		@ SEAT 170 + 173, 2461.5 + 2461.
VOL. FILTRATE (ml	3		7
VOL. CONDENSATE (m1	5		
VOL. OTHER - MUD (3	923	7
E SAMPLE PROPERTIES	_1		7
(a) G c1 (ppm) 60798	382802	7
A c2 (ppm		30033	7
S c3 (ppm		13928	7
c4 (ppm		4987	1
C c5 (ppm		1478	-
		338	┥
0 c6+ (ppm M CO2 (%) 4	330	┥
P H ₂ S (ppm		NONE	-
(b)OIL PROPERTIES	/I NUNE	THOUR	
DENSITY: HYDROMETER		1	-
	rep		-
() REFRACTOME	LEK		_
REFRACTIVE INDEX	BROWN	_	-
COLOUR	BL/WH	_	_
FLUORESCENCE 3	Dr/wu		_
G.O.R. (ft /ml)			

COMPANY : ESSO AUSTRALIA ITINELL : WIRRAH NO. 1

RUN No. : 25

		·					
CHAMBER No.	1.	2.	.]		CHAI	MB. 1	CHAMB. 2
CHAMBER CAPACITY (gal)	6	1	 	and anaparated cover			
CHOKE SIZE (ins)	.030	.020	4	OIL PROPERTIES CONT.		·	ı
SEAT No.	184	184	-	ODOUR O N			
DEPTH (m) (from RKB)	2973.8	2973.8	-	POUR POINT () COMMENTS			
A RECORDING TIMES	HH:MM	HH:MM	-	(c)WATER PROPERTIES			L
TOOL SET		<u> </u>	-	RESISTIVITY (m)	0 2	70600π	0.41@68 ^o F
PRETEST OPEN			-	Cl (frm. resis.)(ppm	110.3	7603 F	17,000
TIME OPEN CHAMBER OPEN	01:50	91:44	-		_		1
CHAMBER FULL	NOT FIL		-	NO ₂ () 14,0) 150		12,000
FILL TIME	NOT FIL	TED	┪	pH (pH	7130		120
START BUILD UP		+	-	OTHER TRACERS			
FINISH BUILD UP	-	 	-	CTHER TRACERS	\mathbf{y}		
BUILD UP TIME	- -		-	DENSITY (pps	<u>(</u>) 8	7	8.2
SEAL CHAMBER	01:44	02:04	1	FLUORESCENCE	DUL		DULL
TOOL RETRACT	01:44 NOT FUL	4	1	COLOUR	- 100	III	БОПЕ
TOTAL TIME	02:10	:20	┨	COMMENTS	 	TD A DT	777 00 400
B SAMPLE PRESSURES	1 :33	<u> ; ∠U</u>	1	COLUMNIED	LTL.	TRATE	FILTRATE
IHP ()	5604	T	1	(d)OTHER SAMPLE	-		
ISIP ()	5360	 	┪	PROPERTIES			
IFP ()	-	1,60	1	I ROI ERIIES			
FFP ()	160	160 195	F	MUD PROPERTIES	L		
FSIP ()	100	195	╫	TYPE	7		
FHP ()	1	5651	┪	RESISTIVITY ()	_		
TEMP. CORR. ()		1	1	C1 (frm.resis.)()			
COMMENTS		<u> </u>	-	C1 (frm.titrat)()	12.0	000	
C TEMPERATURE			1	NO ₂ Dr1d/1st.circ()	220	
DEPTH TOOL REACHED()			1	pH		10.6	
MAX. REC. TEMP. (°C)	109	 	7	OTHER TRACERS			
TIME CIRC. STOPPED	13:45/1	9/11	1	()			
TIME SINCE CIRC.	1	1	1	DENSITY, (ppg)		11.2	
D SAMPLE RECOVERY		*********	G	GENERAL COMMENTS			
SURFACE PRESSURE() 0		T				
VOL. GAS ()						
VOL. OIL (
VOL. WATER (L) 2	0.9		STRAIN GAUGE SUSP	ECT		
VOL. FILTRATE ()			PORE PRESSURE 10.	61 nr	.~	
VOL. CONDENSATE ()		1	TOKE TRESSURE 10.	or bt	g	
VOL. OTHER ()	<u> </u>	1				
E SAMPLE PROPERTIES		· · · · · · · · · · · · · · · · · · ·	4				
(a) G c1 (2	 	4				
A c2 (?	ļ	4				
S c3 (?	ļ	4				
c4 (?	ļ	4				
G c5 (2	<u> </u>	4				
0 <u>c6+</u> (2		4				
M CO ₂ (?	<u> </u>	4				
P H ₂ S ((b)OIL PROPERTIES	<u>/</u>	I		<u> </u>	···		
			-				
1 - L	ED	 	-				
() REFRACTOMET	E14		4				
COLOUR		-	-				
		-	\dashv				
FLUORESCENCE			4				
G.O.R. ()							

PORE PRESSURE DATA SHEET

DATA FROM: RFT'S

COMPANY: ESSO AUSTRALIA LTD.

WELL : WIRRAH NO. 1

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT EMW (MSL)	PORE PRESSURE GRADIENT	
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)	
1757	1736	2481.1	8.38	1.429	
1740	1719	2457.2	8.38	1.429	
1717	1696	2425.1	8.38	1.430	
1710	1689	2415.6	8.38	1.430	
1689.5	1668.5	2390.5	8.40	1.433	
1683	1662	2379.4	8.39	1.432	
1678	1657	2372.5	8.39	1.432	
1671	1650	2363.6	8.40	1.432	
1649.5	1628.5	2333.9	8.40	1.433	
1635	1614	2317.3	.8.41	1.436	
1624.5	1603.5	2297.0	8.40	1.432	
1619	1598	2289.6	8.40	1.433	
1610	1589	2277.3	8.40	1.433	
1605	1584	2270.1	8.40	1.433	
1598	1577	2260.9	8,40	1.434	
1595	1574	2264.2	8.43	1.438	
1583.5	1562.5	2247.4	8.43	1.438	
1575	1554	2232.0	8.42	1.436	
1565	1544	2212.5	8.40	1.433	
1550	1529	2191.5	8.40	1.433	

PORE PRESSURE DATA SHEET

DATA FROM: RFT'S

COMPANY: ESSO AUSTRALIA LTD.

WELL WIRRAH NO. 1

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT EMW (MSL)	PORE PRESSURE GRADIENT	
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)	
1535	1514	2170.6	8.40	1.434	
1530	1509	2165.2	8.41	1.435	
1509	1488	2162.5	8.53*	1.455	
1491	1470	2158.5	8.61*	1.468	
1574	1553	2232.2	8.42	1.437	
1594	1573	2255.5	8.40	1.434	
1574	1553	2230.8	8.42	1.436	
1595	1574	2256.3	8.40	1.433	
1592	1571	2255.0	8.41	1.435	
1549.5	1528.5	2282.2	8.75*	1.493	
1575	1554	2231.1	8.42	1.436	
1595	1574	2256.3	8.40	1.433	
1575	1554	2230.7	8.41	1.435	
1575	1554	2230.6	8.41	1.435	
1613	1592	2281.0	8.40	1.433	
1613	1592	2280.9	8.40	1.433	
1584	1563	2262.4	8.48*	1.447	
1583.5	1562.5	2239.8	8.40	1,433	
1678 1647		2372.2	8.40	1.432	
1678	1657	2372.3	8.40	1.432	

^{*} INDICATES PROBABLE SUPERCHARGED FORMATIONS.

PORE PRESSURE DATA SHEET

DATA FROM: RFT'S

COMPANY: ESSO AUSTRALIA LTD.

WELL : WIRRAH NO. 1

DEPTH DEPTH (FROM MSL)		PORE PRESSURE	PORE PRESSURE GRADIENT EMW (MSL)	PORE PRESSURE GRADIENT	
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)	
1532	1511	2165.2	8.40	1.433	
1605	1584	2269.4	8.40	1.433	
1605	1584	2269.3	8.40	1.433	
1529.5	1508.5	2165.5	8.41	1.435	
1529.5	1508.5	2165.3	8.41	1.435	
2302	2281	3280.4	8.43	1.438	
2280	2259	3252.4	8.44	1.440	
2285	2264	3356.4	8.69*	1.482	
2258.5	2237.5	3356.0	8.79*	1.500	
2249	2228	3226	8.49	1.448	
2244	2223	3215.5	8.48	1.446	
2237	2216	3220.4	8.52	1.453	
2239	2218	3214.5	8.49	1.449	
2236	2215	3214.7	8.51	1.451	
2205	2184	3151.9	8.46	1.443	
2196	2175	3150.6	8.49	1.449	
2167	2146	3082.8	8.42	1.436	
<u>.</u> 2155	2134	3062.3	8.41	1.435	
2113	2092	3007.7	8.43	1.438	
2086	2065	2961.1	8.40	1.434	

^{*} INDICATES PROBABLE SUPERCHARGED FORMATIONS.

PORE PRESSURE DATA SHEET

DATA FROM: RFT'S

COMPANY: ESSO AUSTRALIA LTD.

WELL : WIRRAH NO. 1

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT EMW (MSL)	PORE PRESSURE GRADIENT	
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)	
2053.5	2032.5	2914.6	8.40	1.434	
2046.2	2025.2	2905.7	8.41	1.435	
2034.5	2013.5	2889.4	8.41	1.435	
2027.5	2006.5	2878.8	8.41	1.435	
2004	1983	2847.3	8.42	1.436	
1926	1905	2728.5	8.39	1.432	
2249 2228		3221.0	8.47	1.446	
2249	2228	3219.9	8.47	1.445	
2249	2228	3219.7	8.47	1.445	
2205	2184	3153.0	.8.46	1.444	
2205	2184	3152.9	8.46	1.444	
2032	2011	2886.1	8.41	1.435	
2032	2011	2886.9	8.42	1.437	
2280	2259	32 37	8.40	1.433	
2280	2259	3239	8.40	1.434	
2046	2025	2906.8	8.40	1.433	
2633	2612	3737.0	8.38	1.431	
2633	2612	3744.3	8.40	1.433	
2195.5	2174.3	3152.6	8.50	1.450	
2548	2527	3626.0	8.41	1.435	

PORE PRESSURE DATA SHEET

DATA FROM: RFT'S

COMPANY: ESSO AUSTRALIA LTD.

WELL : WIRRAH NO. 1

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT EMW (MSL)	PORE PRESSURE GRADIENT	
IN METERS	TOTAL VERTICAL DEPTH IN METERS	(PSIA)	(PPG)	(PSI/M)	
2633	2612	3790.1	8.51	1.451	
2693	2672	3902.6	8.56	1.461	
2604.5	2583.5	3721.2	8.44	1.440	
2557	2536	3637.6	8.41	1.434	
2624.5	2603.5	3767.6	8.48	1.447	
2478	2457	3556.0	8.46	1.444	
2446	2425	3494.6	8.45	1.441	
2402.5 2381.5		3425.4	8.43	1.438	
2314	2293	3298.9	8.43	1.439	
2301	2280	3281.5	,8.44	1.439	
2604.5	2583.5	3723.1	8.45	1.441	
2461.5	2440.5	3514.6	8.44	1.440	
2633	2612	3784.5	8.49	1.449	
2461.5	2440.5	3513.4	8.44	1.440	
2633	2612	3784.5	8.49	1.449	
2461.5	2440.5	3513.4	8.44	1.440	
2973.8	2952.8	5344	10.61	1.810	

13, B.H.T. ESTIMATION

CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT TO FIND B.H.T. AT 2804 metres

1/TIME ON A LINEAR SCALE AGAINST TEMPERATURE ON A LINEAR SCALE

ENTERED DATA:

TEMPERATURE	1/TIME	ET #	ATAC
97.7	0.108	1	
102.2	0.069	2	
104.4	0.054	3	
107.7	0.043	4	

COEFFICIENT & CONSTANT:

Y = M.X + C where M = -1.4452705E 02 and C = 1.1290010E 02

INTERPOLATED DATA:

1/TIME	TEMPERATURE
0.000	112.9

CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT TO FIND B, H.T. AT 3026 metres.

1/TIME ON A LINEAR SCALE AGAINST TEMPERATURE ON A LINEAR SCALE

ENTERED DATA:

DATA	SET	*	1/TIME	TEMPERATURE
		1	0.1538	107.2
		2	0.0976	107.7
		3	0.0714	112.7

COEFFICIENT & CONSTANT:

Y = M.X + c where M = -5.7575997E 01 and C = 1.1539518E 02

INTERPOLATED DATA:

1/TIME TEMPERATURE 0.0000 115.4

÷

14, PORE PRESSURE SUMMARY AND P.I.T./L.O.T. DATA

PORE PRESSURE SUMMARY

WIRRAH NO. I was drilled in the Gippsland Basin. The area has previously been found to be normally pressured and this premise was substantiated by continuous on-line monitoring of various pressure detection parameters by Core Laboratories Field Laboratory 802. The primary detection parameters are plotted on the "Drill Data Plot" (see plots at end of report). The d'c exponent is primarily a tool associated with shales and due to the absence of these in this well any pressure interpretation based on this data is rudimentary in this case.

The corrected drilling exponent (d'c) on the drill data plot has a scattered trend down to 400m. This is due to the unconsolidated nature of the limestone formation. From 400m to 830m a steadily increasing trend is seen, with still quite a wide degree of scattering, the lower values relating to the more unconsolidated formation and sandstone.

At 830m, a lateral shift is noted which corresponds to the change in hole size to 12¼" from 17½" following the setting of the 13-3/8" casing. The original T.D. for this casing was 799m, however due to the formation being sandstone which would have been a poor casing seat, so a revised T.D. of 845m was approved. Having run and set the 13.5 ppg EMW was conducted with no leak off. A leak off test was considered unnecessary in this well as abnormal pressures were not expected to arise.

From 830m to 1000m a fairly scattered increasing trend is noted; the formation here is a calcilutite, which being a fine grained detrital limestone gives the trend expected of slowly increasing formation hardness associated with rock compaction. Due to aerated mud problems the mud weight dropped off considerably at 890m to 8.1 ppg. No increase in mud gas was seen associated with this drop and consequently the formation at this depth must be normally pressured.

At 1000m a decreasing d'c trend is noted but this is thought to correspond to the gradational formation change from a calcilutite to a calcarenite. Calcarenite is a medium to coarse grained detrital limestone and as would be expected the coarser formation drilled more rapidly. This trend continued to 1480m despite the increase in mud weight at 1330m due to formational change to siltstone at 1320m.

A gradual increase in gas levels from 1370m is associated with increasing ROP's and the lithology becoming sandier. At 1385m the formation changes to the Latrobe Group. This is predominantly sandstone with interbeds of

siltstone and coal. This varied lithology is reflected in the d'c exponent trend which becomes scattered, although this plot is also affected by the numerous bit changes and cores cut during the top interval of this section. Despite this lack of continuity in these factors i.e. lithology and bit type, a predominantly increasing d'c trend manifests itself down to 2590m.

There is a decreasing trend apparent at 2590m to 2635m which is attributed to a sandstone unit. Following this is a volcanic section which proved to be very hard to drill hence the lateral shift from 2635m to 2680m.

Below the volcanic section, a normal trend can be seen down to 2962m, with a lateral shift below 2797m caused by a reduction in the mud weight from 9.7 ppg to 9.2 ppg.

However, at 2963m, a significant drill-off trend, plus the simultaneous appearance of connection gas and increase in background gas heralded the presence of overpressured formations. The first 2 metres of the overpressured zone (for which the ROP's were 13.2m/hr at 2963m, and 83.7m/hr at 2964m) were circulated up and 580 units of gas were detected. The gas did not return to background levels, so the mud was weighted up to 9.8 ppg. A short 10-10-10 test was then performed yielding 6-452-11 units of gas. Hence the mud weight was increased still further, to 10.4 ppg, which reduced the gas levels to less than 1 unit. At this point the pore pressure was assessed to be 9.8 ppg E.M.W. Short trip gas of 0.1-0.2-0.1 units from 2964m substantiated this assessment.

At 2977m, a second "drill-off" occurred, and it was immediately flow-checked. There was no flow but when the "flow-check" gas was circulated to surface, 242 units of gas were detected, so the mud weight was increased again, this time up to 10.7 ppg.

At 2983m, a 10-10-10 test was conducted, which produced 0.7-12.6-1.0 units of gas. A flow check of the drill-break at 2985m yielded 1-440-2 units of gas, and connection gas of 1-526-2 units was detected from kelly-down at 2986m. Due to the massive increase in connection gas over the background gas, pore pressure was estimated to be very close to the mud weight (10.7 ppg) from 2977m to 2992m. Pore pressure increased notably with depth. Core Lab estimated the formation pressure to be 10.5 ppg at 2983m, and 10.6 ppg at 2985m. As a result the mud was weighted up to 11.2 ppg at 2992m. A connection was simulated at this depth with the 11.2 ppg mud, and the circulated gas was 0.3-0.3-0.3 units.

Flow-check gas from a drill-break at 3024m was 0.3-2.0-0.2 units. With

connection gas detected from the Kelly-down at 3025m, the pore pressure was thought to be as high as 10.7-10.8 ppg E.M.W. between 3024m and T.D. (3026m).

Schlumberger's Repeat Formation Tests indicated pressures of 8.4 ppg down to 2200m, and 8.5 ppg dpwn as far as the overpressured zone. Only one R.F.T. yielded reliable information about formation pressures in the overpressured section unfortunately, and that gave a pore pressure of 10.6 ppg at 2973.8m, which is in close agreement with the Core Lab estimates given above.

Returning to the "Drill Data Plot", the overpressured zone (Sandstones) can be seen clearly just below 2960m, in three regards: firstly, in the "drill-off" trend, i.e. increasing ROP's with increasing depth, instead of decreasing ROP's; secondly, in the general increase in background gas; and thirdly, in the reversed trend of the d'c' exponents. (No shale density measurements were taken as there were no beds of true shale encountered. For this reason a wireline plot was not drawn.)

It is impossible to draw any reliable conclusions from the "Temperature Plot" regarding formation pressures, due to the frequent treatment of the mud system. The "Flowline" temperature end-to-end curve" in fact indicates a normal trend in the overpressured section, so no inferences from the curve concerning pore pressure can be made objectively. The thermal gradient obtained from the "End-to-End" curve was 4-14°C/100m (1.97°F/100 feet).

The "Pressure Plot" is the pressure conclusion log for the well, and as can be seen, it represents visually both the normally pressured section from surface down to 2962m, and the overpressured sands from 2963m down to T.D. (3026m). It was not possible to derive a true fracture gradient as no leakoff tests were performed. Two P.I.T.'s were made: firstly, 13.5 ppg E.M.W. just below the 13-3/8" casing shoe at 851m; and secondly, 16.5 ppg E.M.W. at 2800m, just below the 9-5/8" casing shoe. The fracture gradient shown on the "Pressure Plot" was derived using the above data and the U.S. Gulf Coast Basin Model, which was offset to match the local data. However, until abundant "leak-off" data are available for the Gippsland Basin, a true fracture gradient for the area cannot be drawn. Overburden gradient calculations and a plot of the gradient are included

in this report. The information obtained for this was procurred from Schlumberger's LDT logs.

15. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

OVERBURDEN GRADIENT CALCULATIONS

DEPTH metres

OVERBURDEN PRESSURE INCREMENT. .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/m

OVERBURDEN EQUIVALENT DENSITY. . Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONIC LOG FOR SECTIONS WHERE THE F.D.C. LOG IS NOT AVAILABLE.

OVERBURDEN GRADIENT CALCULATIONS

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INCR.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.
metres	metres	gm/cc	psi	psi	psi/ft	ppg
0	70	1.02	30.92	30.92	0.442	8.49
70	830	2.00	658.16	689.08	0.830	15.97
830	923	2.35	94.63	783.71	0.849	16.33
923	936	2.40	13.51	797.22	0.852	16.38
936	945	2.30	8.96	806.18	0.853	16.41
945	960	2.45 2.40	15.91	822.09	0.856 0.863	16.47
960 995	995 1013	2.45	36.37 19.10	858 - 47 877 - 56	0.866	16.59 16.66
1013	1040	2.40	28.06	905.62	0.871	16.00
1040	1052	2.35	12.21	917.83	0.872	16.78
1052	1206	2,40	160.04	1077.87	0.894	17.19
1206	1216	2.20	9,53	1087.39	0.894	17.20
1216	1233	2.30	16.93	1104.32	0.896	17.22
1233	1245	2.23	11.59	1115.91	0.896	17.24
1245	1291	2.32	46.21	1162.12	0.900	17.31
1291	1301	1.85	8.01	1170.13	0.899	17.30
1301	1317	2.20	15,24	1185.37	0.900	17.31
1317	1332	2.00	12.99	1198.36	0.900	17.30
1332	1357	1.90	20.57	1218.93	0.898	17.27
1357	1372	2.07	13.44	1232.37	0.898	17.27
1372	1386	1.85	11.21	1243.59	0.897 0.896	17.25 17.22
1386 1430	1430 1449	1.95	37.15 14.81	1280.74 1295.55	0.894	17.19
1449	1485	2.00	31.18	1326.72	0.893	17.18
1485	1491	2.30	5.98	1332.70	0.894	17.19
1491	1514	2.10	20.91	1353.61	0.894	17.19
1514	1565	2.20	48.58	1402.20	0.896	17.23
1565	1572	2,55	7.73	1409.93	0.897	17.25
1572	1582	1,95	8.44	1418.37	0.897	17.24
1582	1607	2.25	24.36	1442.73	0.898	17.26
1607	1626	2.20	18.10	1460.83	0.898	17.28
1626	1631	2.00	4.33	1465.16	0.898	17,28 17,29
1631	1651	2.25 1.45	19.49	1484.64 1496.57	0.899 0.896	17.23
1651 1670	1670 1686	2.25	11.93 15.59	1512.16	0.897	17.25
1686	1707	2.35	21.37	1533.53	0.898	17.28
1707	1725	2.07	16.13	1549.66	0.898	17.28
1725	1750	2.35	25,44	1575.10	0.900	17.31
1750	1775	2,30	24.90	1600.00	0.901	17.33
1775	1800	2.41	26.09	1626.08	0.903	17.37
1800	1825	2.36	25.55	1651.63	0.905	17.40
1825	1850	2.40	25.98	1677.61	0.907	17.44
1850	1875	2.25	24.36	1701.97	0.908	17.46
1875	1900	2.48	26.85	1728.81	0.910	17.50
1900	1925	2.31	25.01	1753.82	0.911	17.52
1925	1950	2,29	24.79	1778.61	0.912	17.54
1950 1975	1975 2000	2.35 2.24	25.44 24.25	1804.05 1828.29	0.913 0.914	17.57 17.58
2000	2025	2.33	25.22	1853.52	0.915	17.60
2025	2050	2.37	25.66	1879.17	0.917	17.63

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INCR.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.
metres	metres	gms/cc	psi	psi	psi/ft	ppg
2050 2075 2105 21150 2125 2225 2226 2226 2226 2234 23345 2438 2438	2005 21157 21157 2225 2225 2225 2225 2225 2	2.39 2.33 2.33 2.33 2.33 2.35 2.35 2.35 2.35	25.87 24.57 24.57 25.17 25.17 25.64 14.68 27.68 13.91 48.96 48.96 20.98 74.45	1905.04 1929.83 1954.41 1979.63 2004.74 2029.32 2054.97 2054.97 2082.91 2097.55 2104.37 2117.62 2133.53 2141.57 2179.76 2227.24 2236.20 2296.80 2392.00 2430.45	0.918 0.919 0.920 0.921 0.922 0.922 0.925 0.926 0.927 0.928 0.928 0.930 0.933 0.933 0.934 0.937	17.66 17.67 17.69 17.73 17.74 17.76 17.79 17.81 17.81 17.85 17.85 17.85 17.95 17.95 18.05 18.15 18.15
2575 2641 2750 2780 2865 2926 2960	2641 2750 2780 2865 2926 2940 3026	2.43 2.45 2.42 2.45 2.55 2.57 2.50	69.44 115.63 31.44 90.17 67.35 37.84 71.45	2499.89 2615.52 2646.96 2737.13 2804.48 2842.32 2913.77	0.947 0.951 0.952 0.955 0.958 0.960	18.20 18.29 18.31 18.37 18.43 18.47 18.52

. .

16. CORE-O-GRAPHS

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 12.4 m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH # 1

1

1488.2m. TO 1500.6m.

RECOVERED: 11.6m. (93.5%)

LATROBE GROUP

CHRISTENSEN RC4

6.75in. x 4.00in. x 19.66m.

MUD WT.: 9.8

	ROP	M/HR	LITH	٧	VOB		R	PM	ŀ	HRS	
	50	ı Ø		Ø		2Ø	5Ø	150	Ø		
1488	·	J	•••••		l						
1490		}									
1492								7			
1494											
1496		}									
1498											
1500	ż			•							

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 12.8m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH # 1

2

1500.6m. TO 1513.4m.

RECOVERED: 9.8m. (76.6%)

LATROBE GROUP

CHRISTENSEN RC4

6.75in. x 4.00in. x 19.66m.

MUD WT.: 9.8

latimer 81

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 13.6m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH # 1

3

1513.4m. TO 1527.0m.

RECOVERED: 2.5m. (18.7%)

LATROBE GROUP

CHRISTENSEN RC4

6.75in. x 4.00in. x 19.66m.

MUD WT.: 9.8

latimer'81

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 12.2m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE.

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH # 1

4

1573.4m. TO 1585.6m.

RECOVERED: 7.9m. (64.8%)

LATROBE GROUP

CHRISTENSEN RC4

6.75in. × 4.00in. × 19.66m.

MUD WT.: 9.8

	ROP	#/HR	LITH	WC)B	RP	M	HR	5
	5Ø			Ø	<u> 20</u>	5Ø	15Ø	Ø	
1574									
1576									
1578					•				
1580									
1582									
1584									
1586		}	/						/

latimer'81

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 11. Øm

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE.

BIT SIZE: 8.5Ø

ESSO AUSTRALIA LTD.

WIRRAH # 1

5

1585.6m. TO 1596.6m.

RECOVERED: 2.6m. (23.6%)

LATROBE GROUP

CHRISTENSEN RC3

6.75in. x 4.00in. x 19.66m.

MUD WT. : 9.8

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 15.2m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH # 1

6

2046. Øm. TO 2061. 2m.

RECOVERED: 15.1m. (99.5%)

LATROBE GROUP

CHRISTENSEN RC3

6.75in. x 4.00in. x 19.66m.

MUD WT. : 9.8

latimer 81

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 2.8 m.

FORMATION:

ESSO AUSTRALIA LTD.

WIRRAH No. 1

7

2805.0m. TO 2807.8m.

RECOVERED: Ø. 2m. (7.9%)

INTRA-LATROBE

BIT MAKE & TYPE:					CHRIS C-20						
COR	E BARR	EL	SIZE:		6.7	5in. ×	4. 2	10 in.	× 19	3. 61 ₁	11.
BIT	SIZE:	8.	47 **	·	MUD WT.: 9.2 ppg						
	ROP		M/HR	LITH		WOB			RPM		HRS
10	10		70		Ø	1	3Ø	5Ø	1	15Ø	0 1 3
2805				v	·						
			\					1			\
)								
				\							
				$ \setminus $							
2806			/								
				V							
											\
	·				<u>.</u> :						
2807											
7											\
1.											\
											\
				\)		(\		
									\		\
2808											
	<u> </u>				L	······································					

CLIENT:

WELL

CORE NO. :

INTERVAL CORED FROM

CUT: 2.0m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.47"

ESSO AUSTRALIA LTD.

WIRRAH No. 1

8

2914. Øm. TO 2916. Øm.

RECOVERED: Ø.Øm. (Ø.Ø%)

INTRA-LATROBE

CHRIS C-20

6.75in. × 4.00in. × 19.61m.

MUD WT.: 9.2 ppg.

	ROP	m/HR	LITH	W)B	RF	PM	HRS
4	10	l Ø		Ø	_] 32	5Ø	150	Ø 3
2914				\				
2915	·		NO RECOVERY					
2916								
2917								

17. SIDEWALL CORE GAS ANALYSES

CORE LAB	SIDEWALL	CORE	GAS	ANALYSIS	DATA SHEET	SHEET# 1 OF 2

COMPANY ESSO AUSTRALIA LTD. LOGGING SUITE NO. 4

WIRRAH NO. 1 WELL

NΩ	DEPTH	CI	C 2	C3	C4	C 5	C 6	COMMENTS
		PPM	PPM	PPM	PPM	PPM	PPM	
]	2800.0	330	108	48	23	11	7	
2	2788.0	112	28	26	23	13	10	
4	2778.5	112	42	61	56	26	10	
5	2760.5	128	82	129	97	43	. 19	
7	2731.0	112	122	242	140	54	19	
14	2677.0	4	7	23	31	20	10	
19	2634.2	1	7	48	47	28	17	
20	2633.0	141	132	258	1 309	932	841	
21	2625.0	66	156	490	1138	773	464	
24	2604.5	158	195	1057	2400	1637	928	
25	2598.0	106	83	413	873	773	464	
26	2593.5	208	181	180	810	1091	619	
29	2567.0	9	3	16	842	216	159	
31	2567.7	43909	6229	1444	374	132	154	
37	2478.0	5	10	3	3	6	10	•
38	2455.0	12	15	5	6	6	10	
41	2433.0	87	104	83	19	9	17	
42	2413.5	18	17	3	8	6	10	
44	2401.0	12	15	3	6	5	8	
56	2219.5	30	6	2	2	3	5	
61	2164.0	160	. 86	50	19	8	5	
64	2094.0	26	10	3	3	3	5	
69	2030.0	17	8	11	175	250	213	
70	2029.0	13	14	135	311	273	193	
71	2025.9	3	2	5	4	8	19	
73	2006.5	26	26	34	15	6	9	
77	1922.0	31	12	58	202	261	271	
81	1840.0	37	12	18	6	6	9	į.
87	1726.0	492	528	622	358	227	193	
88	1685.5	44	52	85	74	59	63	
89	1678.0	11	3	3	8	31	53	
.90	1671.0	68	222	1392	1371	727	386	
91	1652.8	109	139	36 1	498	295	96	
92	1627.0	70	111	154	218	113	58	
93	1612.0	26	3	3	8	5	10	

CORE LAB		SIDEWALL	CORE	GAS	ANALYSIS	DATA	SHEET	SHEET	± 2	OF	2
COMPANY	ESSO AUSTRALIA	LTD.		LOGG	ING SUITI	E NQ	4				
WELL	WIRRAH NO. 1										

NΩ	DEPTH	CI	C 2	C3	C4	C5	C 6	COMMENTS
		PPM	PPM	PPM	PPM	PPM	PPM	
94	1608.0	55	8	-	_	_	_	
98	1543.0	. 131	31	12	4			
99	1491.0	118	45	90	1 36	182	232	,
100	1488.0	13	7	13	1 36	227	164	•
101	1482.5	17	59	228	202	91	38	
102	1478.0	4	5	8	4			
103	2781.0	61	14	12	6	6	5	
104	2693.0	152	26	17	4	2	·	
105	2640.0	17	7	8	7	28	58	
106	2621.0	43	47	158	467	386	290	
107	2583.0	4	3	40	105	71	48	
110	2377.0	12	3	3	3	6	4	
111	1604.0	83	26	42	29	14	9	
								•
						,		
								
				···				
								
								

CORE LAB		SIDEWALL	CORE	GAS	ANALYSIS	DATA	SHEET	SHEET#_	1	
COMPANY	ESSO AUSTRALIA L	TD.		Loca	SING SHITE	. NO	5			

WELL WIRRAH NO. 1

N2	DEPTH	СI	C2	C3	C4	C5	C 6	COMMENTS
		PPM	PPM	PPM	PPM	PPM	PPM	
1	3032	129	9	2	2	_	-	
2	3030	35	12	2	2	-	-	
4	3026	123	5	2	TR	-	-	
5	3021.5	3002	56	55	TR	-	-	
7	3018	58	11	7	3	_	_	
8	3016.5	35	12	2	2	_	_	
10	3013.5	57	27	3	3	-	-	
11	3010	363	155	36	4	-	-	
13	3006	340	75	14	3	_	-	
31	2940	18	7	TR	_	-	-	
33	2922	TR	TR	_		-	-	
34	2917.5	2	TR		-	_	-	
35	2916.5	₹52	9	7	TR	· -	-	
39	2866.5	238	89	91	28	8	14	
40	2865	398	234	137	43	25	43	
44	2843	6	5	6	3	_	-	
46	2820	128	173	73	23	5	7	
47	2815	9	9	2	1		-	
48	2806.5	-	-	. –	3	4	7	LOOSE TRIP NO GAS
50	2800.5	123	37	5	3	_	-	
51.	2798.5	8	, 9	. 6	. 3	5	28	
184	3028.5	287	93	32	11	8	7	
185	3024	2251	187	91	86	68	65	
186	3020	52	8	2	3	TR	TR	
187	3015	52	9	6	TR	-	-	
188	3008.5	1255	299	82	17	12	7	
189	3007	105	28	13	3	8	-	
190	3004.5	1102	206	89	6	9	TR	
191	3001	610	187	146	253	238	217	
192	3000	93	49	59	34	17	29	
194	2944.5	94	28	27	58	158	196	
<u>. </u>								
		* ************************************						
							 	
 								
	······································				I	L	1	1

18, GAS COMPOSITION ANALYSIS

The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

LOG PLOT

The ratios of C1/C2, C1/C3, C1/C4, C1/C5, and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluated by the following criteria :

- Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65, gas. If the C1/C2 ratio is below about 2, or above about 65, the zone is probably non-productive.

The actual values of the gas/oil/water limits will vary from area to area.

- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- 5. The ratios may not be definitive for low permeability zones; however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT

The triangulation diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to C4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.

A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

CORE LAB. INTL. LTD. Clients ESSO AUSTRALIA LTD. Wells WIRRAH # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C5XCf Ø. Ø5 10 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1992

1C4 NO. DEPTH C1 C2 C3 1, 399 8 14 778 Ø. 135 Ø. Ø39 0.001 0.000 1 1577 1.078 Ø. 147 Ø. Ø39 CONCLUSION: PROBABLE OIL PRODUCING ZONE.

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WIRRAH # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct Ø. Ø5 10 DIL NON-PRODUCTIVE C1/C2 Allen, 1980 Ct=C1+C2+C3+nC4 %

C1/C5 1C4 C5 C6 X CS C3 nC4 NO. DEPTH C1 533 Ø. Ø67 0.009 0.009 0.003 0.002 1.856 9 24 89 Ø. 18Ø 1.600 1 1580 CONCLUSION: POSSIBLE HIGH GOR DIL ZONE.

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WIRRAH # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 10 NON-PRODUCTIVE Allen, 1982 Ct=C1+C2+C3+nC4 % C1/C4 C1/C5 C1/C3 CB X NO. DEPTH C1 C3 1C4 nC4 C5

Ø. Ø18

Ø. Ø59

1.001 CONCLUSION: DRY GAS ZONE 0.002

0.002

0.000

0.000

250

56

17

1.080

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WIRRAH # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct 10 DIL NON-PRODUCTIVE C1/C5 Ct=C1+C2+C3+nC4 % Allen, 1980 NO. DEPTH C1 C2 СЗ 1C4 nC4 **C**5 C8 % C1/C3 C1/C4 C1/C5

1.229

8

16

74

180

1 2026 1.028

Ø. 129

Ø. Ø65

0.007

0.007

0.006

0.005

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WIRRAH # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct ************ 10 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980 C1/C2 C1/C3 C1/C4 C1/C5 NO. DEPTH C1 CS C3 ±C4 nC4 C5 C8 X Ct

0.002

Ø. 4Ø9

CONCLUSION: DRY GAS ZONE

Ø. Ø25

Ø. Ø15

0.002

0.002

0.001

Ø. 451

16

27

102

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WIRRAH # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct 10 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980 NO. DEPTH C1 CS СЭ nC4 **C**5 C6 % C1/C4 C1/C5 1 2188 1.057 Ø. Ø89 0. 041 0. 005 Ø. ØØ5 0.004 0.000

1.193

12

28

88

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WIRRAH # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct Ø. Ø5 10 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980 NO. DEPTH C1 C2 СЭ 1C4 nC4 **C**5 C1/C4 C1/C5 C1/C3 C6 % 1 2226 2.030 Ø. 138 Ø. Ø57 0.016 Ø. Ø16 0.002 0.000 15 36 65 1068 2.240

Client: ESSO AUSTRALIA LTD. Well: WIRRAH # 1 CORE LAB. INTL. LTD. 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct Ø. 1Ø 10 DIL NON-PRODUCTIVE C6=C1+C2+C3+nC4 % Allen, 1982 NO. DEPTH C1 CS 1C4 **C**5 C6 % C1/C2 C1/C3 C1/C4 C1/C5 C3 nC4

0.000

0.000

1.195

1 2240

ø. 989

Ø. 141

Ø. Ø6Ø

Ø. ØØ5

Ø. ØØ5

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: WIRRAH NO. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct 10 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

C5

Ø. 4Ø9

C6 %

135.543 21

Ø, 232

C1/C3

C1/C4

171

C1/C5

3Ø8

NO. DEPTH

C1

128. Ø99

CS

5. 995

C3

3. Ø81

±C4

Ø. 368

nC4

Ø. 368

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: WIRRAH NO. 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct Ø. Ø5 10 DIL NON-PRODUCTIVE Allen, 1980 Ct=C1+C2+C3+nC4 % C1/C4 C1/C5 C1/C3 1C4 nC4 **C**5 C6 % Ct C1 C2 СЗ NO. DEPTH

Ø. 48Ø

Ø. 46Ø

Ø. 256

Ø. 127

85.388

10

31

2.385

7. 484

75. Ø8Ø

2885

283

GAS ANALYSES

1485m. This was plotted from gas just prior to Core No. 1 from a coarse to very coarse angular to sub-angular, well sorted sandstone.

1493m. This was plotted from gas lagged after a trip from Core No. 1.

1571m. The sandstone from which this gas show was plotted was quartsoze: a clear coarse-grained, sub-rounded-rounded, and well sorted with 20% bright yellow-white fluoresence and slow yellow streaming crush cut.

1577m and 1580m. These plots are from gas L.A.T. from Core No. 4. The lithology was coarse-grained, sub-round-rounded, well sorted sandstone with 20% bright yellow-white fluoresence, yellow cut and slow streaming crush cut.

1878m. The sandstone from which the gas came for this plot was clear-white, coarse-grained quartz, which was sub-angular to angular, loose and dolomitic in part. No fluoresence was seen.

2026m. The formation gas from which this analysis was made comprised of 70% sandstone and 30% siltstone. The sandstone was light brown, fine to medium grained with an argillaceous matrix: it exhibited a blue-white fluoresence with a streaming crush cut. The siltstone was light grey to dark brown and very carbonaceous.

2140m. The sandstone from which this gas analysis was made was white-grey, fine to medium grained, well sorted and moderately hard. It had 15% blue-white fluoresence and a moderate crush cut.

2199m. This formation comprised of 70% siltstone and 30% sandstone. The sandstone was white-light grey, fine grained, sub-angular to sub-rounded, well sorted with an argillaceous matrix. The siltstone was white to medium grey, and occasionally brown dark grey.

2226m. This plot was made from gas from a 70% siltstone, 30% sandstone formation. The sandstone was white-clear, medium to coarse grained occasionally fine grained, moderately well sorted with 5% blue white fluoresence and foot streaming cut. The siltstone was light brown and carbonaceous.

2240m. The gas peak used for this analyses was similar to the one at 2226m.

2964m. This plot was made from gas swabbed from a medium-grained sandstone. A productive dry gas zone is indicated with moderate permeability. 2985m. This plot was made from gas swabbed from a coarse-grained sandstone, and it represents a wet gas zone with moderate permeability. The low C_1/C_2 ratio would suggest quite a rich gas.

19. PRODUCTION TEST DATA

CORE LA	AB Y ESSO AUS	ייתו בדובקייי	RODUCTION	WELL TES	T DATA SH	EET		5	HEET#	
COMPAN WELL	WIRRAH N	10. 1	PW'	ræ 1 (INI	TIAL FLO	OW)				
	ATIONS 26 24 -						DATE _			
		₽ex								
TIME	SAMPLING	T	<u> </u>	<u> </u>		1		T		
	POINT	CI	C2	С3	C4	C5	C6	cos	H2S	
HH: MM		PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
	·	·								
11:39		WELL OPE	NE D							
12:00	CHOKE MANIFOLD	480050	59900	43430	14160	3670	500			30/10/
12:15	11	465050	74880	59155	25960	6610	1244			
12:25	·	WELL SHU	T IN							
					-	-			~~~	
				ļ						
		 		 						
<u> </u>		_				-	1			
								-	·	
						-				
									··	
						<u> </u>		-		
				<u> </u>		-		-		
						-		-		
·						!				
								-		
•										
,						1				
					·	1	 	1		
•										
								1		

	<u> </u>	<u> </u>	L	<u> </u>	1	1	<u> </u>	1		L

.

CORE LA	TROOD ATTOR	Pf TRALIA LTD	RODUCTION	WELL TES	ST DATA SHE	ET		S	SHEET#	2	
WELL	41	0. 1		т <u>≠</u> 1 (F	INAL FLOW	í)					
	RATIONS 2624						DATE _				
· • · · · · · · · · · · · · · · · · · ·		LING AS DI			RODUCTION	ENGINEE	ERS				
TIME	SAMPLING POINT	CI	C2	C3	C4	C5	C6	C02	1126	DATE	1
HH: MM	GAS								H2S	174.4-	1
06:06	DEFARATOR	PPM WELL OPE	PPM	PPM	PPM	PPM	PPM	%	PPM	-	4
06:30	CED AD ATIOD	680800		22240	(200	+	+	1-1	 	4	
06:30	SEPARATOR	WELL SHU	61568 Tr TN	23340	6269	1613	290	15.0		4	
09:10	-	WELL OPE	 	-	 	 	-	4	 	2/11/8	
	11	·		207/1		2000	 	1		2/11/0	ť
09:33 09:55	11	693440	78807 69956	30741	7455	2000	464	12:0]	
		-			9658	2645	696	145	_	GAS GR	
10:30	11	655616	88658	42696	10675	2581	522	15.0		= 0.88	
11:00 11:30	" "	655600 643008	66490 78807	29030 36434	8133 8641	2129	520	14.6		4	
11:30		WELL SHU		30434	-	1936	290	1 3.8		4	
PHTO U			f			 	-	+		₫.	
							-	+		4	
16:00		WELL OPE	NED (SEP	ARATOR BY	PASSED)		 	+-+	, , , , , , , , , , , , , , , , , , ,	1	
16:42		 		ROUGH SEP				+-+		1	
17:00	GAS SEPARATOR	567360	93583	54651	15250	4129	725	15,3		1	
17:30	II II	605184	73882	37572	9828	2452	406	15.0		∮ '	
18:00	11	605184	73882	37572	10844	2839	580	15.1		4 '	
18:30	11	630400	78807		11522	3097	696	14.3		4 '	
19:00	11	643008				-				4 '	
	11		76344	36434	9150	1936	232	12.4		4 '	1
20:00 21:00	11	655616 630400	83732 81270	39850 39850	11522	2968 2968	696 580	14.3	_	1 '	
	11							155] !	
22:00	-	655616	78807	40988	10844	2839	580	1 3.8	-		
23:00	11	643008	81270	42127	12539	3613	928	14.5	-		ĺ
24:00	11	655616	83732	43265	12200	3355	696	14.3	_	2/11/8	Þ
01:00	11	656019	83963	43609	12560	2998	696	14.5		3/11/8	ł
02:00	11	552916	93486	54701	15250	4129	725	14.8		1	ĺ
03:00	11	66754	7864	4096	2086	1096	396	14.6		GAS GR	l _{vt}
04:00	11	65495				-				1	1
05:00	11	30228	7880 3940	3624 2049	1084 1354	412 155	35 26	14.6		CHANCE AT 02:0 = 0.84	ļΟ
05:33		WELL SHUT						+		1	ĺ
	GAS SEPARATOR	40968	4196	3106	1896	289	36	15.2		1)	1
07:00	SEPARATOR							+		1 1	į.
1/:00	/ 	51260	5106	4906	1960	396	47	14.7		, 1	ı

CORE LA						********	ION	WELL TES	ST DA	TA SHEE	<u>.T</u>			9	SHEET#
COMPAN	Y ESSO	AUS	STRA J	LIA	LTD	•				•		DAT	_ 30 ()CT	OBER 1982
WELL	WIRRA	H N	10.	1	- 1	PWT	1	(INITIA	AL FĹ	OWS)		va.		-	
PERFOR/	ATIONS 262														
	SA	МЫ	LING	AS	DIRJ	ECTE	D B	Y ESSO P	?RODU	CTION	ENGI	NEERS			
RATHOL														TITR	IAT) PP
		NAT			DOM		27 h 100 172			•					77. /
CUSHION	FLUID:	TYP	E	DIE	SEL			RES.	~.m_			PH		-	
TIME	SAMPLING	T	TSHA	KE Q	UT.	APIE	A TEM	M DET	IPOUR	WATER	RES	Ci	NO3	TPH	T
	POINT	0	_	**				COLOUR							1
нн: мм		E	OIL	H20	SLO	='	• F		• F	JL-m	• F	PPM	PPM		COMMENTS
													I		30/10/82
03:59	WELL OP	ENE	<u> </u>										I		
04:30					-	39.74	-		74						OIL
05:00	11				-	41.26			72				I		OIL
06:00	CENTRIE	المراب				31.07	60		69						OIL
06:15		+	1		<u> </u>	<u></u>			<u> </u>	9.2	69	13	20	7	WATER
06:45	MANIFOL	<u> </u>				39.14	60	<u></u>	68						OIL
07:00				99,05	0.05	,				9.0	68	13	20	7	VATER
07:30	OLL/MAN H2O/CEN	Fru	ED_	99.05	0.05	40.24	60		66	8.0	68	11	TR	8_	OIL/WATER
08:00	SEPARAT									0.84		10	0	_	WATER
08:30	11	T			1					0.60	67	13	0	7	WATER
09:00	11	T								0.56	71	13	0	7	WATER
	NO SAMP	TES	RE($\frac{1}{111R}$	ξη/(AORE	TAT	ON STA	TORY		 ``			 	MITTALL
09:40	WELL SH	-	+	10	£2,	01	14.	OIA DIT	ייית אן			 	+		4
U9:40	WELL DIE	ŊΤ	LIN	 	 	<u> </u>	 '				<u> </u>	ļ		L.	
				<u> </u>	<u>'</u>										
					<u> </u>	'									
			'	'		[_'							T		1
	BOTTOM I	HOL	E S/	AMPL	E FI	ОМ	1900	М					1		1
14:00	SCHLUM. SAMPLER					37.46	-		87		 	-	+-	 	1,11,100
• • • • • • • • • • • • • • • • • • • •		1	 		1		00		10/	 					1/11/82
<u></u>	SAMPLE I	ro	м от	IS	CANK	<u> :</u>	<u></u> '		<u> </u> '		'		'		
18:00			<u> </u>	'		35.5	60		85						1/11/82
l'			[_'												
	OIL API	СН	ECK										1.		
06:30	MANIFOLI	1-				36.9	60		87			-	+	 	2/11/82
	PHAN	-				ٽ.	ات		1				+	-	2/11/02
		-			-			 	 /		 	 -			1
	 	H			-								+		1
	 					 			 					_	•
	 '	\square		1-1				 	igsquare		1			<u> </u>	1
	<u> </u>	Ц						<u> </u>		<u> </u>				'	
													7	1	
,									 	[+		1

ORE LA	<u>B.</u>				PROD	UCTIO	N N	ELL TES	T DAT	A SHEE	<u>T</u>		0 270	-	EE #				
	ESSO AUSTRALIA LTD. WIRRAH NO. 1 PWT# 1 (FINAL FLOW)												DATE 2_NOVEMBER 1982						
VELL								(FINAL	FLOW)						l			
PERFORA	TIONS 2624	<u> </u>	203	اد.دا	<u> </u>	LM F L	NO)												
	SAN	ſPL	ING	AS 1	DIRE	CTEI	BY	ESSO I	PRODU	CTION E	ENGIN	EERS	0. /3	- (TE) A		\pm			
ATHOLE			E SE												(T) P				
USHION	FLUID: 7	YP	E_DI	ESE	L.			RES.	~ m_			PH_							
	(31 (1	ITRA	r)			_PPA	A DEN				CI	NO3	שפ		\dashv			
IME	SAMPLING POINT		l	(E 0	UT	API B	TEM	COLOUR	POINT	& TEMP	RES	GI	NVS			1			
нн: мм	GAS SEPARATO	¥ O.	OIL	H20	SLOS	1	F		• F	л.−m	• _F	PPM	PPM		COMMENTS				
09:10	WELL OPE																		
09:45	FIRST WA	TE	R UP																
10:00	11									0,40	73	12	0	7		١			
10:30	11								-	0.34	77	12	20	7	OIL FROM				
10:42	11	_	92	7.7	0.3	37.1	60		89.6	0.38	74	10	20	7	MANIFOLD				
11:00	,,,	-	F F	1 =	mr.				+	0.48	74	12	TR	6,5					
11:30 11:41	WELL SHU	 -	55 IN	12	TR					0.40	1/4	12	17.57	10.3					
11:41	WELL SHO	-	IN	-	+-	-			-		+		1-	1					
		┢	-	├─	-	 			-		+		1-		1 .				
16:00	WELL OPE	NE.	T (S	EPAI	ЗАТО	R BY	PAS	SED)	+										
16:42	COMMENCE	-									1				1				
17:00	11	+	-	-	-	-			-	0.47	71	11	TR	7					
17:30		╁	+	╁╾	+	-	-		-	0.36	92	11	TR	7					
	11	╁	-	┿	-	-	-			0.33	85	12	TR	7					
18:00		╀	┼	-	-	h-,	-		86	0.34	86	11.5	TR	7	OIL FROM				
18:30	11	1	-	-	-	37.0	60		00				- 	7	FLOPETROL	HE			
19:00	" "	+	-	-	ļ	-				0.36	84 87	11.5	TR. TR	7.2	-				
20:00		4				ļ	 		_	0.35		12		+	4				
21:00	11	_			1_	-				0.38	80	12	20	7	-				
	NO MORE	FI	dID.	SAM	PLES	RE	UIF	ULD					_		2/11/82				
05:33	WELL SH	ur	N												3/11 /82				
		+	1	1	1	1													
		+	1	+	1	1	1												
	_	╁	+-	+	-	-	1		\dashv		+				7				
		+	+	+-	+-	+-	+	-		1	-	1		1					
 		+	+-	+-	+	+	+	1	_				1	1					
<u> </u>	_	+	╁	+-	+-	+	+-	 	_	1	1	1		1	7				
-		+	+	+	+-	+-	+-		_	1	1		1	十					
-		+	+-	+-	+-	-	+-	1			+		-	1					
		+	+		+-	-	+			-	+	-	-	+	1				
	_	+	+-	-	+	+-	+-	-			╫	-		十	-				
		4		-	- -		+			-		+	-	+	+				

•

DATA FOR PRODUCTION WELL TEST NO. 2

Perforations for this test were made between 2725 - 2736m on 24th November 1982. When no flow or pressure build-up resulted further perforations were made between 2736 - 2747m. Again no flow or pressure build-up was evident. Otis then R.I.H. and swabbed the test zone, but resulted in a pressure build-up of only 20 psi. More perforations were made between 2691m and 2702m.

Shut in pressure stabilised at 428 psi in 21 minutes.

Flow pressure on 32/64" choke was 11 psi for 30 minutes.

Shut in pressure reached 1132 psi.

Shut in pressure stabilised at 735 psi after 11½ hours.

Flow pressure on 32/64" choke was 11 psi.

Flow pressure on 48/64" choke was 2 psi.

Flow pressure dropped to 0 psi after 14½ hours.

Shut in pressure reached 561 psi after 23½ hours.

14 bbls of diesel were displaced out of the tubing.

Bottom hole samples were water.