

TURKUM-3

NIZAA

ESSO EXPLORATION AND PRODUCTION AUSTRALIA NO.

121 Pages +
9 Enclosures.

Drilled March - Mr 1925

PETROLEUM DIVISION
WELL COMPLETION REPORT

TURRUM-3 31 JUL 1987
INTERPRETED DATA
VOLUME 2

GIPPSLAND BASIN VICTORIA

ESSO AUSTRALIA LIMITED

TURRUM-3

WELL COMPLETION REPORT

VOLUME 2

(Interpretative Data)

CONTENTS

1. Geological and Geophysical Analysis

FIGURES

1. Stratigraphic Table

APPENDICES

- 1. Micropalaeontological Analysis
- 2. Palynological Analysis
- 3. Quantitative Log Analysis
- 4. Wireline Test Report
- 5. Geochemical Report
- 6. Synthetic Seismic Trace
- 7. Core Analysis

ENCLOSURES

1.	Geological Cross Section	(Dwg.	No.	2259/OP/8)
2.	Top of Latrobe Group Structure Map	(Dwg.	No.	2295/OP/7)
3.	Lower L. <u>balmei</u> Structure Map	(Dwg.	No.	2295/OP/5)
4.	L-1.4.2. Reservoir Structure Map	(Dwg.	No.	2295/OP/6)

5. Well Completion Log

6. D-Function Map P. asperopulus

2394L/1

GEOLOGICAL AND GEOPHYSICAL ANALYSIS

$\underline{PROGNOSIS}$ (KB = 21M ASL)

Formation/Horizon	Pre-drill Depth	Post-drill Depth
	(mSS)	(mSS)
SEASPRAY GROUP	61	60
LATROBE GROUP	1536.5	1550.0
a) Seismic Marker		
Lower <u>L</u> . <u>balmei</u>	2119.5	21,54.0
Top of L-1.4.2. Reservoir	2517.5	2564.5
T. longus	2698.0	2675.0

INTRODUCTION

The primary objective of the Turrum-3 well was to further delineate the L-1.4.2 oil and gas reservoir and overlying <u>L</u>. <u>balmei</u> hydrocarbons. A secondary objective was to test the Cretaceous section beneath the "L" reservoirs. The well successfully tested the L-1.4.2 reservoir intersecting 12.0m of net gas sand and 6.50m of net oil sand. A GOC was intersected at 2583mSS and an OWC was interpreted from RFT pressures at 2594mSS. The acquisition of RFT pressure data through the remaining "L" reservoirs enabled the delineation of a further 6 major reservoir systems and interpretation of the respective fluid contacts and column sizes. The Cretaceous section was not successfully tested due to mechanical problems. The well was plugged and abandoned as a successful extension well.

PREVIOUS DRILLING HISTORY

The fault bounded closure drilled by Turrum-3 had been intersected by three previous wells. These were Marlin A6 and A24 (deviated), and Turrum-2. All encountered hydrocarbons over the same 500m stratigraphic interval of the lower <u>L</u>. <u>balmei</u> palynological zone. All hydrocarbons intersected were gas except for a thin oil leg at the base of the zone. Marlin A24 had an additional oil accumulation above the L-1.4.2 but below the next major reservoir the L-1.3.

Prior to drilling Turrum-3 only limited pressure and contact data had been available in any of the reservoirs. This made the confident prediction of reservoir systems, fluid contacts and column sizes difficult.

STRUCTURE

At the level of the Turrum "L" reservoirs the Latrobe Group is extensively faulted by a series of NW-SE trending discontinuous down to the SW normal faults. These faults form a series of tilted fault blocks with the strata dipping to the NE in each block. Superimposed over this is a gentle middle Eocene flexuring with a fold axis trending in a NE-SW direction. The closure is provided to the NE by the tilting of the fault blocks, to the SW by sealing faults and to the SE and NW by the folding.

Turrum-3 was drilled on the SE flank of the closure. The top of the Latrobe Group and the Lower \underline{L} . \underline{balmei} seismic marker were penetrated 13.5m and 34.5m deep to prediction respectively. The top of the L-1.4.2 reservoir came in 47m low to prediction due to the error on the Lower \underline{L} . \underline{balmei} seismic marker and the isopach to the L-1.4.2 reservoir being 12.5m thicker than predicted. The result was to significantly reduce closure at the level of the "L" reservoirs in the SE of the field.

STRATIGRAPHY

Turrum-3 penetrated 1489.0m of Miocene Gippsland Limestone/Lakes Entrance Formation. The top of the Lakes Entrance Formation is tentatively placed at 1302mKB based on a change in log character. The base of the Lakes Entrance Formation is Early Miocene in age (Hl zone).

The top of the Latrobe group is interpreted at 1571mKB. The interval 1571mKB-1757mKB is of Early Eocene age (\underline{P} . asperopolus - \underline{L} . \underline{M} . diversus) and consists of thick channel sands, coals and shales. The sands are interpreted to have been deposited in a fluvial/estuarine environment. Support for this interpretation comes from the Core No.1 (1577-2586.3mKB). The shales and coals are interpreted to represent a coastal plain environment with a significant tidal influence.

The Late Paleocene interval (Upper \underline{L} . \underline{balmei}) 1771mKB-2055mKB consists of shales, coals and minor sands probably deposited in a coastal plain/tidal complex.

The Lower <u>L</u>. <u>balmei</u> sediments are shales, coals and thick channel sands similar to those of the Early Eocene. Sands, the base of which are at 2696mKB, 2611mKB, 2522mKB, 2353mKB and 2157mKB are interpreted to have been deposited in association with relative sea level falls and have broad lateral extent. All of these sands are interpreted to have been deposited in a fluvial/estuarine environment with the associated shales and coals representing a coastal plain/tidal environment. The very sandy section at the base of the Lower <u>L</u>. <u>balmei</u> is due to the amalgamation of facies of two relative sealevel falls.

The \underline{T} . \underline{longus} interval 2700-T.D. is represented by coals, shales and minor sands. No logs were obtained over the interval 2750-2995mKB. It is probable that these sediments were deposited in a coastal plain environment.

HYDROCARBONS

Turrum-3 encountered 82.25m of net gas sand and 9.0m of net oil sand. The majority of hydrocarbons occur in 7 separate accumulations.

L-1.4.2 Reservoir

This is the deepest "L" accumulation and the primary reservoir. The top of the reservoir is at 2586.0mKB. A total of 12.0m of net gas sand and 6.50m of net oil sand was intersected. Detailed delineation of net sand was made difficult due to cementation of the reservoir by dolomite-cement. This resulted in RFT pressure tests and wireline logs giving conflicting results ie. cemented intervals giving valid pressure tests (see log analyses). Core analysis indicates highly variable permeability in the cemented intervals.

A GOC was intersected at 2604.00mKB (2583mSS) which corresponds to that seen in Turrum-2. An OWC has been interpreted from RFT pressure data at 2615.00mKB (2594.00mSS). The OWC fell in a non-net section.

In Marlin A24 however oil is present below the interpreted OWC (see enclosure 1) The geological interpretation suggests the oil sand in A24 should be in communication with the L-1.4.2 reservoir intersected in Marlin A6, Turrum-2 and Turrum-3. It is probable that the TVD data for Marlin A24 is in error. A correction of -10m will bring Marlin A24 into line with the other wells.

Average porosities and water saturations are listed in Table 2.

A 1.0m oil accumulation occurs directly below the L-1.4.2 reservoir. RFT pressures indicate this is not in communication with the main accumulation. This accumulation probably has a significant stratigraphic trapping component and may have some updip potential.

"L" Reservoirs

Six other major accumulations were identified. The names, tops, nets, porosity, water saturations and contact data are summarised in Table 2.

All hydrocarbons encountered were gas except for a 2.5m oil leg in the L-1.1.1 reservoir. All contacts have been interpreted from RFT pressures, assuming no oil legs. The column size of the accumulations except the L-1.1.1 far exceed the mapped closure (See Wireline test Report). This may be due to the fault bounded closure not being valid at all levels of the "L" reservoirs i.e. some reservoirs may leak across the faults. Some support for this idea comes from the occurrence of gas at the L-1.3 legal in Marlin-4. If this is the case the areal extent of the gas reservoirs is yet to be determined. Another possible interpretation is that the faults seal at all levels and fluid contacts are present down dip to the SE and NW.

With either interpretation there is also the potential for down dip oil legs in the gas sands. This is made possible by the large column sizes interpreted from the RFT data. (See wireline test report).

Follow-up work will be required in the areas of mapping and correlation to further delineate the L-1.1.1 to L-1.3 reservoirs.

Cretaceous

Due to mechanical problems wireline logs were not run over the interval 2750-2995mKB. This interval approximates the Cretaceous section.

Mudlog shows indicate hydrocarbons were intersected from 2795-2817mKB, 2893-2904mKB and 2929-2934mKB. The shallower intersection is probably gas while shows over the lower intervals indicate liquid hydrocarbons.

Marlin "N-1" Reservoir

Residual hydrocarbons were seen in Core No.1 (1577-1586.3mKB) representing a swept zone through the Marlin N-1 sand. Shows ceased between 1582-1583mKB representing an original OWC.

i

TABLE 2

RESERVOIR	TOP OF E	RESERVOIR mSS	BASE OF mKB	RESERVOIR mSS	NET GAS A	/ NET OIL SAND	GWC (mSS)	GOC (mSS)	OWC (mSS)	AVERAGE POROSITY (%)	AVERAGE SW (%)	COMMENTS
L-1.1.1	2139.25	2118.25	2157.25	2136.25	11.25	2.75		2132.50	2142.50	21.1(G) 21.9(O)	40.1 (G) 65.1 (O)	GOC by Logs OWC by RFT
L-1.1.2	2178.75	2157.75	2202.75	2181.75	8.5	-	2251.00			18.5	19.0)
L-1.1.3	2298.50	2277.50	2332.00	2311.00	1.00	-	2387.00			12.8	25.7))
L-1.2.1	2340.00	2319.00	2352.50	2331.50	1.25	_	2410.00			14.8	19.4))GWC by RFT
L-1.2.3	2422.00	2401.00	2442.50	2421.50	15.50	_	2453.00	***************************************		13.9	21.4))
L-1.3	2489.75	2468.75	2521.75	2500.75	17.00	-	2594.00			17.4	11.3)
L-1.4.2	2586.00	2565.00	2611.00	2590.00	12.00	6.50		2583.00	2594.00		27.3 (G) 48.5 (O)	GWC by RFT OWC by RFT

GEOPHYSICAL DISCUSSION

The Marlin and Turrum structures have been mapped using the 3D Survey G82C 3D which covers the majority of the structure as well as the 2D seismic data G77A, G80A and G81A which extends over the western and south-western flank.

The G82C 3D survey comprises 186 lines shot perpendicular to the intra-Latrobe NW-SE fault pattern. The 3D grid has a line spacing of 75m with cross lines generated at a 20 CDP spacing (250m). The 2D seismic grid has an average spacing of 1 km.

Eight horizons were mapped predrill.

Top Latrobe (Gurnard) Base of Marlin Channel

P. asperopolus Seismic Marker

M. diversus Seismic Marker

Upper L. balmei Seismic Marker

Lower L. balmei Seismic Marker

Top L-1.4.2 Reservoir

T. longus Seismic Marker

The base of the Miocene high velocity channel, Intra Lower L. balmei, and T. lilliei Seismic Markers were also mapped in TWT.

An average TWT lag of 10 ms was established for the Top of Latrobe at the exploration wells, and was subtracted from all time horizons.

The horizons of interest were the Top of Latrobe, Lower L. balmei and L-1.4.2 reservoir.

Depth conversion to the Top of Latrobe was achieved using an average velocity map. The smoothed handpicked NMO velocities were multiplied by a conversion factor map generated from exploration and development well control.

The Top of Latrobe (Gurnard) was penetrated 13.5m deep to prediction. The pre-drill and post-drill average velocity values are almost identical. The error is due to the TWT pick lying slightly deeper on the section than interpreted. There is evidence of channelling at the Top of Latrobe at Turrum-3. This channelling is localised and introduces some uncertainty in the Top of Latrobe interpretation.

Below the Top of Latrobe depth maps were produced by isopaching. Interval velocities between the Top of Latrobe and each horizon were generated from the spacevels* output. Interval velocity conversion factor maps were produced from the available well control. The thickness of each interval was then summed to the depth at Top of Latrobe.

The Lower L. balmei seismic marker was intersected 34.5m deeper than predicted. The error was not in the TWT interpretation but in the interval velocity used to go to depth and was corrected by adjusting the interval velocity conversion factor map. With no other control on the SE margin of the structure, a much smaller conversion factor value had been used than was correct.

The L-1.4.2 reservoir lies between the Lower L. balmei and T. longus seismic markers. The Top of L-1.4.2 reservoir was determined by adding an isopach to the Lower L. balmei depth map. The isopach was generated using the Lower L. balmei/T. longus isopach as a guide and the control from three wells, T-2, MA6 and MA24. The isopach was 12.5m thicker than predicted, an error of 3%.

The summed effect of the isopach errors was such that the Top of L-1.4.2 reservoir was penetrated 47m low to prediction.

The T. longus seismic marker came in 23m shallower than predicted. The error was again due to an incorrect interval velocity value which was corrected via the conversion factor map.

* SPACEVELS is a GSI program that is primarily used for velocity modelling in 3D data volumes. From the model produced the various velocity fields required for 3D processing are computed. The model parameters output from SPACEVELS consist of horizon time, horizin depth, NMO velocities, RMS velocities, average velocities after migration and the interval velocities in each layer.

1

FIGURES

2

TURRUM-3 STRATIGRAPHIC TABLE

	7	1	Т		T	1	TOLL	1	
AGE (M.A.)	EPOCH	SERIES	FOR	RMATION DRIZON	PALYNOLOGICAL ZONATION SPORE-POLLEN	PLANK TONIC FORAMINIFERAL ZONATION	DRILL DEPTH (metres)	SUBSEA DEPTH (metres)	THICKNESS (metres)
A	S	EA ,	FLOC	DR	•	·	!		L
		IST.				AI/A2			
	PL	10.		ШОШ		A3			
5 -	\vdash	T		GIPPSLAND		A4			
		LATE	d d	PPS		BI			
10 -	1	2	GROUP	55		В2			
	ш		ΑΥ		T.be//us	С			
15 -	- EP	M	SEASPRAY	Z	7.001103	DI/D2	<u> </u>	- 1302	
	MIOCENE		SEA	LAKES ENTRANCE FORMATION		E/F			
20 -				LAK ITR/		G			248
-"		EARLY		_ <u>~</u>					
						HZ	1571	7 1550 7	
25 -					P. tuberculatus				
	NE	LATE			7 . Taber cararas	44 1 44			
30 -	OLIGOCENE	_							
	5 1	EARLY				JI			
35 -	0	EAI				J2			
	\vdash	ш			Upper N.asperus	<u>K</u>			/////
40 -]	LATE			Mid N.asperus				
1									
45 -	NE	E				ľ			
	OCENE	MIDDLE	///		Lower N.asperus		/////		
50 -	Ι <u>Ψ</u>								
						,			
55 -		EARLY		9	P. asperopolus Upper M. diversus		<157í </td <td>-1550-</td> <td></td>	-1550 -	
		EA	GROUP	ATE	Mid M.diversus Lower M.diversus				
60 –	R	LATE		L N	Upper L.balmei				
	PALEOCENE		LATROBE	UNDIFFERENTIATED					1425
	LEC	EARLY	4TR	DIFF	Lower L.balmei				
65 -	PA	EA	نـ	N N					ļ
	LAT	E			T.longus	-	-2996 —	2975	
70 -	CRE	т.		}	T 111112				
DFT.TUR					T./i//iei				

DWG. 2295/0P/4

APPENDIX 1

OF TURRUM-3, GIPPSLAND BASIN

by

M.J. HANNAH

Esso Australia Ltd.

July 1985

Palaeontology Report: 1985/23

D.G. FILE = TURRUM3

PALEO.CARDS MBR = TURR3F

1702L

INTRODUCTION
BIOSTRATIGRAPHY
DATA SHEET
DATA SUMMARY
RANGE CHART

INTRODUCTION

Seven sidewall core samples were examined from across the Latrobe Group/Seaspray Group boundary. The top of the Latrobe Group lies between sidewall cores at 1573.5m and 1567.4m and is marked by a change from fine grained micaceous sand to a marl.

No ages could be obtained from within the Latrobe Group. The deepest sample from the Lakes Entrance Formation is at 1567.4m which is Early Miocene, Zone H-l in age.

BIOSTRATIGRAPHY

(1) Zone H-1 - Early Miocene (1567.4m)

The presence of <u>Globigerina woodi connecta</u> without <u>Globigerinoides trilobus</u> in this sample assigns it to Zone H-1.

The fauna derived from this sample was of low diversity and very poorly preserved.

(2) Zone G - Early Miocene (1561.0m-1552.9m)

The appearance of <u>Globigerinoides trilobus</u> in the sample at 1561.Om marks the base of this zone. Preservation of fauna from this interval is quite good, although it deteriorates down hole. Diversity was moderate.

TABLE-1

INTERPRETATIVE DATA SUMMARY - TURRUM-3

DEPTH (M)	SWC NO.	PRESERVATION	PLANKTONIC DIVERSITY 	ZONE (conf. Rtg.) 	AGE
1552.9	69	Good	 Moderate	G (1)	 Early Miocene
 1557.0	 67	 Fair	 Moderate	G (1)	Early Miocene
 1561.0	 65	 Poor	 Moderate	G (1)	Early Miocene
 1565.0	 63	 Abyssmal	<u> </u>	?	 Indeterminate
 1567.4	 62	 Poor	Low	H-1 (2)	Early Miocene
1573.5	58	-	Barren	?	Indeterminate
 1571.5	 57 	-	 Barren 	?	Indeterminate

1702L/4

MICROPALEONTOLOGICAL DATA SHEET

The second secon

ва	s I	N: G	ippsland		**************************************		ELEVA	ATION: KB	: 21	GL:	-60	
WEL	L NA	ME: <u>T</u>	urrum-3				TOTAI	DEPTH:		2996.0		
			ΗIG	нЕ	ST D	ΑТ	A		WE		АТ	
,	G E	FORAM. ZONULES	Preferred		Alternate	D	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Wa Time
l l	J E	A ₁	Depth	Rtg	Depth	Rtg	Time	Depth	Rig	Бериг	, rug	771110
PLEIS- TOCENE		A ₂							 			ļ
显片		A ₃				_					 	
PLIO- CENE		A ₄				-						
F. E.		B ₁				 			<u> </u>			
	LATE	B ₂										
	I.A	C				 						
	ы	D ₁										
E E	L	D ₂				 						
ы	D D	E ₁										
0	H	E ₂			:	 						
н	21	F										
Σ	ΙΓΧ	G	1552.9	1				1561.0	1			
	EARLY	H ₁	1567.4	2								
 	f-1	H ₂				<u> </u>						
旦	E	Ĭ ₁										
CEN	I. A	I ₂										
OLIGOCENE		J 1										
5	EARLY	J ₂										
1.		K										
EOC-		Pre-K										
			of C - Mor		mala orrami					-		
COI	MMEN	10p	of G = Top	Sal	ilbte exam	neu.	•					****
												
										· · · · · · · · · · · · · · · · · · ·		
												
				·······				,				
		•			<u></u>							
					AP							
CO	VEIDE	NCE O:	SWC or (Core	- Complete a	ssemb	olage (verv	high confiden	ce).			
	ATIN	IG: 1:	SWC or 0	Core	- Almost com	plete	assemblag	e (high confid	ence)			
		2: 3:	SWC or (- Close to zor - Complete a			able to interpr confidence).	et (lo	w confidence)	•	
		4:	Cuttings		- Incomplete	assen	nblage, ne	xt to uninterpr	etable	or SWC with		
					depth suspic							
NO	ΓE:		is given a 3 c ald be entered									
		then no en	try should be 1	nade,	unless a rang	e of z	ones is give	en where the h				
		limit will	appear in one	zone :	and the lowest	possi	ble limit i	n another.				
10 × 10	ירי או	CODDED DY	M.J.	Han	nah			ኮልሞድ -	,TinT	Ly 1985		
		ECORDED BY:	171.0.	11011	.1011	· · · · · ·		DATE:				
DAT	A K	EVISED BY:						DATE:				

PE900493

This is an enclosure indicator page. The enclosure PE900493 is enclosed within the container PE902424 at this location in this document.

The enclosure PE900493 has the following characteristics:

ITEM_BARCODE = PE900493
CONTAINER_BARCODE = PE902424

NAME = Foraminifera Range Chart

BASIN = GIPPSLAND PERMIT = VIC/L3

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Planktonic Foraminifera Range Chart for

Turrum-3

REMARKS =

DATE_CREATED = 31/07/85

 $DATE_RECEIVED = 31/07/87$

 $W_NO = W899$

WELL_NAME = TURRUM-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 2

APPENDIX

PALYNOLOGICAL ANALYSIS OF TURRUM-3
GIPPSLAND BASIN, SOUTHEASTERN AUSTRALIA

by

Neil G. Marshall

Esso Australia Ltd.

Palaeontology Report 1985/25

July 19, 1985

1738L

CONTENTS

INTRODUCTION

SUMMARY TABLE

GEOLOGICAL COMMENTS

BIOSTRATIGRAPHY

TAXONOMIC CHANGES AND NEW TAXA IDENTIFIED

REFERENCES

PALYNOLOGICAL DATA SHEET (SUMMARY)

TABLE 1 : SUMMARY OF INTERPRETATIVE DATA

TABLE 2: SUMMARY OF ANOMALOUS AND UNUSUAL SPORE-POLLEN

AND DINOFLAGELLATE OCCURRENCES

TABLE 3: SUMMARY OF BASIC PALYNOLOGICAL AND LITHOLOGICAL DATA

INTRODUCTION

Sixty-four sidewall core and eight cutting samples were examined for palynomorphs from Turrum-3. Occurrences of spore-pollen and dinoflagellate species in each sample are recorded on the enclosed range chart. Tables 1 and 3 summarize interpretative and basic palynological data, and anomalous occurrences of spores-pollen and dinoflagellates are listed in Table 2.

SUMMARY TABLE

AGE		PALYNOLOGY ZONE	(in metres K R)
Early-Middle Miocene	Lakes Entrance Formation	T. bellus	1460
Miocene - Early Oligocene (?)	Lakes Entrance Formation	P. tuberculatus	1479.9 - 1567.4
		log break at 1571 m	
Early Eocene	Latrobe Group	P. asperopolus	1573.5
Early Eocene	Latrobe Group	Upper <u>M</u> . <u>diversus</u> Middle <u>M</u> . <u>diversus</u>	1576.5 1596-1642
Late Palencene	Latrobe Group	Lower <u>M</u> . <u>diversus</u> Upper <u>L</u> . <u>balmei</u>	1660.7 - 1736.9 1750.5 - 2034
Early-Late Paleocene	Latrobe Group	Lower <u>L. balmei</u>	2061 - 2647
Maastrichtian	Latrobe Group	Upper <u>T</u> . <u>longus</u>	2705 - 2850
	•	<pre>T. longus (undifferentiated)</pre>	2875 - 2995
		T.D.	2995m

GEOLOGICAL COMMENTS

- Palynological analyses confirm the zonal assignments given to the seismic markers used in the geophysical mapping of the Turrum structure. The recognition of the <u>Tricolpites longus</u> Zone in samples from the basal portion of Turrum-3 confirms that the well terminated in a shale-sandstone interval of Late Cretaceous age. Because of technical problems encountered while testing the basal portion of the well, only cutting samples were available from the Late Cretaceous sequence. All other samples analysed from Turrum-3 consisted of sidewall core samples.
- 2. Reasonably good correlation exists between the spore-pollen zones recognized in Turrum-3 and those identified in the better sampled wells within the Turrum-Marlin area: these being Turrum-1 and -2, and Marlin-4. There is generally insufficient sample control in other wells within the Turrum-Marlin area to make meaningful correlations of the spore-pollen zones with Turrum-3. More refined correlations using an integration of spore-pollen and dinoflagellate zones are presently being attempted.

The base of the Apteodinium homomorphum dinoflagellate Zone defines a readily identifiable marker within the Lygistepollenites balmei Zone in the Marlin-Turrum area, and is recognized in Turrum-2 and -3, and Marlin-1, -2 and -4. The lateral distribution of dinoflagellate zones older than the A. homomorphum Zone in these wells is assessed below.

a) <u>Eisenackia crassitabulata</u> Zone: recognized in Turrum-1 (6900-7116') and Turrum-2 (7520'), and Marlin-4 (6954-7310'), but not in Turrum-3. Based on correlation with other wells, this zone would be expected to occur in Turrum-3 between 2350-2500m. Its apparent absence may be due to either low yields of dinoflagellates in the material studied or non-sampling of the appropriate horizon.

- b) <u>Isabelidinium druqqii</u> Zone: recognized in Marlin-1 (8468') and Turrum-1 (8142'), but not in Turrum-2 and -3 and Marlin-4. The zonal species is often rare and has a sporadic distribution, and its absence may be due to non-sampling of the critical horizon.
- 3. Hannah (1985) has examined five samples from the basal portion of the Lakes Entrance Formation for foraminifera. The dates indicated by these fossils confirm those inferred from the spore-pollen and dinoflagellates.
- 4. Turrum-3 contains the first record in the offshore Gippsland Basin of Triporopollenites bellus, the marker species of T. bellus Zone. It occurs with the foraminiferal Zone C (Hannah, pers. comm.), which is stratigraphically younger than its first known occurrence onshore. This offshore occurrence is consistent with known range of species.

BIOSTRATIGRAPHY

The spore-pollen zones have been identified using the criteria proposed by Stover & Partridge (1973). The dinoflagellate zones are modifications on the scheme of Partridge (1976). Discussions of the dinoflagellate assemblages and their zonal assignments are given with the descriptions of their associated spore-pollen assemblages.

Tricolpites longus Zone (undifferentiated) 2875-2995 m.

The four cutting samples placed in the interval are characterized by the occurrence of <u>Gambierina rudata</u>, <u>G. edwardsii</u>, <u>Tetracolporites verrucosus</u>, and the zonal species <u>Tricolpites longus</u>. The samples lack the taxa used by Macphail (1983) to subdivide the zone into Upper and Lower <u>T. longus</u> zonules.

Upper Tricolpites longus Zone 2705-2850 m.

The four cutting samples assigned to the interval are characterized by the presence of <u>Gambierina rudata</u>, <u>G. edwardsii</u>, <u>Tetracolporites verrucosus</u>, <u>Tricolpites longus</u>, and <u>Stereisporites punctatus</u>. Following Macphail (1983), the association of <u>T. longus</u> with <u>S. punctatus</u> has been used to assign these samples to the upper zonule of the T. longus Zone.

Lower Lygistepollenites balmei Zone 2061-2647 m.

Palynomorph assemblages are usually fairly to poorly preserved and are frequently pyritized, and can be characterized by the consistent, and often frequent occurrence of Lygistepollenites balmei. The presence of Nothofagidites kaitangata, Tetracolporites verrucosus, Gambierina edwardsii,, G. rudata, and Australopollis obscurus, without taxa indicative of the Upper L.balmei Zone, is diagnostic of the Lower L.balmei Zone. Tricolpites waiparaensis occurs in a sample (2647 m) from the Lower L.balmei Zone and is not known to range above this interval in other wells from Gippsland.

Dinoflagellates also occur within this section and some distinctive taxa identified are: Glaphyrocysta retiintexta, Senegalinium dilwynense,

Deflandrea medcalfii/dartmooria, Hystrichosphaeridium sp., Palaeocystodinium sp., and species of the Palaeoperidinium bassensis ms. complex. Apectodinium homomorphum first appears in the upper part of the Lower L. balmei Zone

(2301 m) and this event defines the base of the A. homomorphum Zone. One specimen of Eisenackia circumtabulata was seen in the lowermost sample of the zone (2647 m). The only other records of this taxon in the Gippsland Basin are in Marlin-4 at 8250 ft and Pilotfish 1A at 2921 m, where it also occurs within the Lower L. balmei Zone. None of the dinoflagellates identified enabled the recognition of the Eisenackia crassitabalata or Trithyrodinium evittii Zones, which are often associated with the Lower L. balmei Zone in other wells from the Gippsland Basin.

Upper Lygistepollenites balmei Zone 1750.5-2034 m.

The base of the Upper <u>L</u>. <u>balmei</u> Zone was placed at the first occurrence of <u>Proteacidites annularis</u> at 1750.5 m. Some other first occurrences indicative of this subdivision are <u>Proteacidites latrobensis</u> at 1926 m, <u>Cyathidites gigantis</u> at 1888.9 m, and <u>Banksieacidites lunatus</u> ms. (previously referred to <u>B</u>. <u>elongatus</u>) at 1768.4 m. Consistent with this subdivision is the prominence of <u>L</u>. <u>balmei</u> and the occurrence of general <u>L</u>. <u>balmei</u> Zone indicators such as <u>Polycolpites langstonii</u>, <u>Latrobosporites crassus</u>, <u>Australopollis obscurus</u>, <u>Integricorpus antipodus</u>, <u>Nothofagidites kaitangata</u>, Haloragacidites harrisii, and <u>Verrucosisporites kopukuensis</u>.

Samples between 1768.4-2034 m usually contain low diversity dinoflagellate assemblages with the dominant elements being Apectodinium homomorphum and species of the Palaeoperidinium bassensis ms. complex. These are placed in the A. homomorphum Zone. The uppermost sample of the Upper L. balmei Zone at 1750.5 m is placed in the Apectodinium hyperacanthum dinoflagellate Zone, which is based on the occurrence of the zonal species and Kenleyia lophophora.

Lower Malvacipollis diversus Zone 1600.7-1736.9 m.

The base of the zone is defined by the first occurrences of Crassiretitriletes vanraadshoovenii and Spinizonocolpites prominatus. Other important taxa recorded in the interval are Malvacipollis diversus, M. Subtilis, Proteacidites grandis, P. incurvatus, Peromonolites vellosus, Intratriporopollenites notabilis, and Cupanieidites orthoteichus.

The basal sample (1736.9 m) of the zone is assigned to the <u>Apectodinium</u> <u>hyperacanthum</u> dinoflagellate Zone due to the occurrences of <u>Kenleyia</u> <u>lophophora</u> and the zonal species.

Middle <u>Malvacipollis</u> <u>diversus</u> Zone 1642-1596 mm.

Only one sample at 1642 m, could be confidently assigned to the Middle M. diversus Zone, based on the first occurrences of Proteacidites tuberculiformis, P. alveolatus, and P. leightonii. The occurrences of Myrtaceoipollenites australis, Proteacidites grandis, and Schizaea digitatoides are also indicative of this zone.

Dinoflagellates recorded at this level include <u>Deflandrea longispinosa</u> (the most common taxon), <u>D. medcalfii/dartmooria</u>, <u>Spinidinium</u> sp.,

Cordosphaeridium inodes, <u>Spiniferites</u> ramosus, and <u>Paralecaniella indentata</u>.

The four samples above this level at 1596, 1604.5, 1611.5, and 1623.4 m contain spore-pollen assemblages indicative of a general M. diversus Zone age, but lack the index species needed for a more precise zonal determination. These are assigned to the Middle M. diversus Zone on negative evidence. The lower three of these samples (1596, 1604.5, 1611.5 m) contain dinoflagellate assemblages that are similar to the one from the Middle M. diversus Zone at 1642 m.

Upper Malvacipollis diversus Zone 1576.5 m.

Characteristic species recorded from this level are Anacolosidites acutulus, Intratriporopollenites notabilis, Myrtaceoipollenites australis, Proteacidites annularis, P. grandis, P. latrobensis, P. leightonii, P. tuberculiformis, Triporopollenites helosus and T. scabratus. This assemblage is considered to span the Middle and Upper M. diversus Zone, and it lacks the index species Myrtaceidites tenuis and Proteacidites pachypolus which would enable the distinction of the upper subdivision. Identification of the Upper M. diversus Zone is based on the first occurrence of the dinoflagellate species Homotryblium tasmaniense. Since recognition of this spore-pollen zonule is based largely on dinoflagellate evidence, it is given a low confidence rating.

Homotryblium tasmaniense and Deflandrea longispinosa are the most common dinoflagellates in the assemblage.

Proteacidites asperopolus Zone 1573.5 m.

The zone is identified primarily by the first occurrence of the zonal species.

Other important taxa in the assemblage are <u>Cupanieidites orthoteichus</u>,

<u>Intratriporopollenites notabilis</u>, <u>Myrtaceidites tenuis</u>, <u>Proteacidites</u>

pachypolus and Santalumidites <u>cainozoicus</u>.

Dinoflagellates recorded from this level are <u>Deflandrea longispinosa</u>, Spinidinium sp., <u>Spiniferites ramosus</u>, and <u>Homotryblium tasmaniense</u>. Proteacidites tuherculatus Zone 1479.9-1567.4 m.

The zone is characterized by the occurrence of $\underline{\text{Cyatheacidites}}$ annulatus, Foventriletes $\underline{\text{crater}}$, and $\underline{\text{F.}}$ lacunosus.

The interval is dominated by dinoflagellates and some important species are

Nematosphaeropsis balcombiana, N. rhizoma ms., Protoellipsoidinium simplex

ms., Dinosphaera mammilatus ms., Batiacasphaera amplectus ms., Tuberculodinium vancompoae, and Cyclopsiella vieta.

Triporopollenites bellus Zone 1460 m.

Identification of the zone is based on the occurrence of $\underline{\mathsf{T}}$, bellus at this level. This is the first record of this species in the offshore Gippsland Basin. The sample contains a similar dinoflagellate assemblage to those recorded from the upper part of the <u>Proteacidites tuberculatus</u> Zone.

TAXONOMIC CHANGES AND NEW TAXA IDENTIFIED

- 1. Palaeoperidinium bassensis ms. complex: This complex consists of a morphologically similar group of species with a combination, Type A+I3P archeopyle. They have a thin periphragm with an indistinct sculpture, occasionally a thin endophragm occupying most of the cyst, and weak apical and antapical horns. They often occur in assemblages of low diversity within the L. balmei Zone.
- 2. On the Data Sheets and Tables 1 and 3, <u>Deflandrea medcalfii/dartmooria</u> is recorded as <u>D. medcalfii</u>.

REFERENCES

- HANNAH, M.J. 1985. Foraminiferal analysis of Turrum-3, Gippsland Basin.

 Esso Australia Ltd Palaeontological Report 1985/23.
- PARTRIDGE, A.D., 1976. The Geological Expression of Eustacy in the Early Tertiary of the Gippsland Basin. APEA. J. 16, 73-79.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc.
 Victoria, 85, 237-286.

PALYNOLOGY DATA SHEET

P A	s I N: Gippslan				EL	EVATION	: KB: _	+2lm	GL:	-60	m
WELL	NAME: Turrum-3	· · · · · · · · · · · · · · · · · · ·			TO	TAL DEP	TH:	2	2996m		
24	PALYNOLOGICAL	HIG	нЕ	ST D	ΑТ	A	LO	W E	ST DA	АТ 2	A
A G	ZONES	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time
	-Tpleistocenicus										
ы	M. lipsis										
E E	C. bifurcatus										
NEOGENE	T. bellus	1460	1				1460	1			
	P. tuberculatus	1479.9	2				1567.4	1			
	Upper N. asperus										
_	Mid N. asperus										
4	Lower N. asperus										
GEN	P. asperopolus	1573.5	0				1573.5	0			
PRINCENE	Upper M. diversus	1576.5	2				1576.5	2			
7. T.	Mid M. diversus	1596	2				1642	0			
-	Lower M. diversus	1660.7	2				1736.9	0			
	Upper L. balmei	1750.5	0				2034	2			
_	Lower L. balmei	2061	2				2647	0			
	Upper T. longus	2705	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2850	3			
sno	T. longus	2875	3				2995	3			
CRETACTOUS	T. lilliei										
RET	N. senectus										
S	T. apoxyexinus										
LATE	P. mawsonii										
1	A. distocarinatus										
	P. pannosus				\neg					$\neg \uparrow$	
ET.	C, paradoxa			-	\neg						
	C. striatus									•	
LARLY CRET.	C. hughesi				\dashv						
	F. wonthaggiensis										
	C. australiensis										· · · · · · · · · · · · · · · · · · ·
			<u>.</u>	l	<u>_</u>	Ц	·		<u>_</u>		
ОМ	MENTS: Apectodir	nium hamama	orphi	m Zone (2	301-	1768.4m); A. hype	ercan	thum Zone		
	(1750.5-1	L736.9m).									
	Material	studied fi	com t	he T. lon	gus	Zone co	nsisted of	8 c	utting sam	ples	5.
-	-								. •		
L.		ore, Excellen									
RA	TING: 1: SWC or C 2: SWC or C	ore, <u>Good Con</u> ore, <u>Poor Con</u>	nfiden fidenc	<u>ce, assembla</u>	ge wit	th zone spe	cies of spores	and po	ollen or micro	plank	ton.
	Cuttings,	Fair Confiden	ce, as	semblage with	h zone	species of	f either spores	and po	llen or micro	plank	ton,
	or both. 4: Cuttings.	No Confidenc	a nec	amblaga with	202	!:astia			! ! }		
NOTE							-		-		• • •
	If an entry is giventered, if possi	ible. If a sam	ple ca	ince rating, an innot be assign	ed to	one partic	oth with a bett cular zone, the	er coni en no e	ntry should be	snoul mad	d be e,
	unless a range o limit in another	f zones is give	n whe	re the highest	possib	le limit w	ill appear in o	one zon	e and the low	est p	ossible
		•		7.7							
ATA	RECORDED BY:	Neil G. Ma	rsha	<u> </u>	-	DA	TE: 2	7/19	985		
АТА	REVISED BY:					DA	ATE:		·····		

NO.	DEPTH (m)	SPORE-POLLEN ZONE	D I NOFLAGELLATE Zone	AGE	CONFIDENCE RATING	COMMENTS
WC 81	1460	T. bellus	i ndet	Early-Middle Miocene	1	T. bellus, C. annulatus, T. vancompose
WC 79	1479.9	P. tuberculatus	l ndet	Early Miocene-Oligoce	ne 2	F. lacunosus, N. rhlzoma
WC 78	1489.9	P. tuberculatus	Indet	Early Miocene-Oligoce	ne 0	C. annulatus, T. vancompose, D. mammilatus
						N. rhizoma, P. simplex
WC 76	1510	P. tuberculatus	l ndet	Early Miocene-Oligoce	ne 0	C. annulatus, T. vancompoae, N. rhizoma
						P. simplex
NC 75	1520	P. tuberculatus	i ndet	Early Miocene-Oligoce	ne 0	C. annulatus, N. rhizoma, P. simplex
VC 74	1530	P. tuberculatus	i ndet	Early Miocene-Oligoce	ne 0	C. annulatus, T. vancompoae, P. simplex
NC 73	1537.9	P. tuberculatus	i ndet	Early Miocene-Oligoce	ne 0	C. annulatus, T. vancompose, P. simplex
						N. rhizoma
NC 72	1545	P. tuberculatus	i ndet	Early Miocene-Oligoce	ne 0	N. rhizoma, D. mammilatus, P. simplex
NC 69	1552.9	P. tuberculatus	1 ndet	Early Miocene-Oligoce	ne 0	C. annulatus, N. rhizoma, P. simplex
IC 67	1557	P. tuberculatus	i ndet	Early Miocene-Oligoce	ne 0	C. annulatus, N. rhizoma, P. simplex
IC 66	1558.9	P. tuberculatus	i ndet	Early Miocene-Oligoce	ne 0	C. annulatus, P. simplex
NC 65	1561	P. tuberculatus	1 ndet	Early Miocene-Oligoce	ne 0	C. annulatus, N. rhizoma, P. simplex,
						D. mammilatus
NC 63	1565	P. tuberculatus	l ndet	Early Miocene-Oligoce	ne 0	C. annulatus, N. rhizoma, P. simplex
IC 62	1567.4	P. tuberculatus	i ndet	Early Miocene-Oligoce	ne 0	N. rhizoma, P. simplex
C 58	1573.5	P. asperopolus	i ndet	Early Middle Eocene	0	P. asperopolus, P. pachypolus, S. calnozol
38L						

SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	DINOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
SWC 57	1576.5	Upper M. diversus	i ndet	Early Eocene	2	P. tuberculiformis, A. acutullus, H. tasmaniense
SWC 55	1596	Middle M. diversus	-	Early Eocene	2	
SWC 54	1604.5	Middle M. diversus	î ndet	Early Eocene	2	P. grandis, M. diversus, D. dartmooria, D. longispinosa
SWC 53	1611.5	Middle M. diversus	i ndet	Early Eocene	2	P. grandis, M. diversus, A. hyperacamthum D. dartmooria
SWC 52	1623.5	Middle M. diversus	i ndet	Early Eocene	2	P. grandis, M. diversus, D. longispinosa
SWC 51	1642	Middle M. diversus	i ndet	Early Eocene	O	P. tuberculiformis, M. australis, P. alveolatus, D. longispinosa, D. dartmooria
SWC 50	1660.7	Lower M. diversus	i ndet	Early Eocene	2	C. orthoteichus, M. diversus, P. grandis T. ambiguus
SWC 49	1675.5	Lower M. diversus	-	Early Eocene	2	P. grandis, P. vellosus
SWC 48	1686	M. diversus	-	Early Eocene		P. grandis, P. annularis, P. latrobensis
SWC 47	1703.4	l ndet	-	-		P. grandis
SWC 46	1718.5	Lower M. diversus	-	Early Eocene	2	M. diversus
SWC 45	1736.9	Lower M. diversus	A. hyperacanthum	Early Eocene	0	M. diversus, C. vanraadshoovenii, C. orthoteichus, S. prominatus, A. hyperacanthum
SWC 44	1750.5	Upper <u>L. balmel</u>	A. hyperacanthum	Late Paleocene	0	L. balmei, M. diversus, P. annularis, A. homomorphum, A. hyperacanthum
SWC 43	1768.4	Upper L. balmel	A. homomorp hum	Late Paleocene	0	L. balmel, C. glgantis, M. diversus, P. annularis, A. homomorphum

SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	D I NOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
SWC 42	1777	Upper L. balmel	A. homomorp hum	Late Paleocene	ı	L. baimei, C. gigantis, A. homomorphum
SWC 41	1785	Upper L. balmei	-	Late Paleocene	2	L. balmei, G. edwardsii
SWC 40	1796.5	Upper <u>L. balmel</u>	A. homomorphum	Late Paleocene	2	L. balmei, M. subtilus, P. latrobensis,
SWC 39	1813	Upper <u>L. balmei</u>	A. homomorphum	Late Paleocene	0	A. homomorphum L. balmei, C. gigantis, P. langstonii,
SWC 38	1837	Upper L. balmei	A. homomorp hum	Late Paleocene	0	A. homomorphum L. balmel, C. glgantis, A. homomorphum
SWC 37	1868	Upper <u>L. balmei</u>	A. homomorp hum	Late Paleocene	2	L. balmei, V. kopukuensis, A. homomorphum
SWC 36	1888.9	Upper L. balmel	i ndet	Late Paleocene	0	L. balmei, C. gigantis, V. kopukuensis
SWC 35	1926	Upper <u>L. balmel</u>	A. homomorp hum	Late Paleocene	2	L. balmel, P. langstonii, P. latrobensis,
SWC 34	1963.5	Upper L. balmel	A. homomorp hum	Late Paleocene	2	A. homomorphum
SWC 33	1995	Upper L. balmei	A. homomorp hum	Late Paleocene	2	L. balmei, A. homomorphum
SWC 32	2034	Upper L. balmei	A. homomorp hum	Late Paleocene	2	L. balmei, P. langstonii, A. homomorphum L. balmei, P. langstonii, P. annularis,
GWC 31	2061	Lower L. balmel	1 ndet	Paleocene	2	A. homomorphum L. balmei, N. kaitangata
SWC 30	2090	Lower L. balmei	A. homomorp hum	Paleoce ne	2	L. baimei, N. kaitangata, G. rudata,
SWC 29	2127	Lower L. balmel	A. homomorp hum	Paleocene	ı	G. edwardsii, A. homomorphum L. baimei, N. kaitangata, A. homomorphum
SWC 28	2157	Lower L. balmei	A. homomorp hum	Paleocene	2	L. balmei, N. kaitangata, A. homomorphum

•						
SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	D I NOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
SWC 27	2158.4	Lower L. balmei	i ndet	Paleocene	1	L. balmei, N. kaitangata, G. rudata
SWC 26	2160.5	Lower L. balmel	A. homomorp hum	Paleocene	I	L. balmei, A. homomorphum
SWC 25	2162	Lower L. balmei	A. homomorp hum	Paleocene	1	L. balmel, A. homomorphum, E. kaltangata
SWC 24	2166	Lower L. balmei	A. homomorphum	Paleoce ne	ı	L. balmei, A. homomorphum
SWC 23	2194.9	Lower L. balmei	A. homomorp hum	Paleocene	ı	L. balmel, N. kaltangata, G. rudata,
SWC 22	2225.5	Lower L. balmel	i ndet	Paleocene	1	L. balmei, N. kaitangata, G. edwardsii
SWC 21	2261.9	Lower L. balmei	A. homomorp hum	Paleocene	1	L. balmei, N. kaitangata, A. homomorphum,
						D. dartmooria
SWC 20	2301	Lower L. balmel	A. homomorp hum	Paleoce ne	1	L. balmei, A. homomorphum
SWC 19	2323	Lower L. balmel	indet	Paleocene	1	L. balmei, G. rudata
SWC 18	23273	Lower L. balmel	i ndet	Paleocene	1	L. balmel.
SWC 16	2397	Lower L. balmei	i ndet	Paleocene	ı	L. balmei, N. kaitangata
SWC 15	2399	Lower L. balmei	-	Paleocene	1	L. balmei, G. rudata, T. marginatus
SWC 14	2444	Lower L. balmei	-	Paleocene	ı	L. balmei, A. obscurus
SWC 13	2485.9	Lower L. balmei	594	Paleocene	1	L. balmel, G. rudata
SWC II	2562.9	Lower L. balmel	Indet	Paleocene	1	L. balmei
SWC 10	2571.9	Lower L. balmei	-	Paleocene		G. edwardsii, H. harrisii
SWC 9	2576.9	Lower L. balmei	•	Paleocene	0	L. balmel, G. rudata
SWC 6	2604	I ndet	-	Paleocene	-	G. rudata, A. obscurus
SWC 5	2614	Lower L. balmel	indet	Paleocene	1	
JAC J	2017	LOWEL L. Dalkel	IMOI	1 01000018	i	L. balmei, S. dilwynense

SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	D I NOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
SWC 4	2647	Lower <u>L. balmel</u>	i ndet	Paleocene	0	L. balmel, G. edwardsil, G. rudata, T. verucosus, T. walparaensis,
						E. circumtabulata
CTS	2700-05	Upper T. longus	i ndet	Maastrichtian	3	G. rudata, T. longus
CTS	2755-60	Upper T. longus	i ndet	Maastrichtian	3	G. rudata, S. punctatus
CTS	2805-10	Upper T. longus	-	Maastrichtian	3	G. edwardsii, G. rudata, S. punctatus,
						T. lorgus
стѕ	2845-50	Upper T. longus	-	Maastrichtian	3	G. rudata, S. punctatus
CTS	2870-75	T. longus	1 ndet	Maastrichtian		G. rudata, T. verrucosus, T. longus
CTS	2975-80	i ndet	i ndet			G. rudata, G. edwardsii, T. verrucosus
стѕ	2985-90	T. longus	1 ndet			G. rudata, G. edwardsii, T. verrucosus
CTS	2990-95	T. longus	-	Maastrichtian		G. rudata, G. edwardsii, T. verrucosus,
						T. lorgus

TABLE 2

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN AND DINOFLAGELLATE TAXA

p. I of I

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 50	1660.7	Lower M. diversus	T. ambiguus	l specimen; not known consistently below Middle M. diversus Zone
SWC 49	1675.5	Lower M. diversus	T. scabratus	Occurs frequently; not known below Upper M. diversus Zone
SWC 49	1675.5	Lower M. diversus	H. tasmaniense	l specimen; not known below Middle M. diversus Zone
SWC 48	1686	M. diversus	L. balmei	Rare occurrence; not known consistently above Upper L. balmei Zone
SWC 44	1750.5	Upper <u>L. balmei</u>	M. diversus	Rare occurrence; not known consistently below M. diversus Zone
SWC 43	1768.4	Upper L. <u>balmel</u>	M. subtilis	Rare occurrence; not known consistently below M. diversus Zone
SWC 40	1796.5	Upper <u>L. balmei</u>	M. subtilis	Rare occurrence; not known consistently below M. diversus Zone
SWC 39	1813	Upper <u>L. balmei</u>	M. subtilis	Rare occurrence; not known consistently below M. diversus Zone
SWC 4	2647	Lower L. balmei	M. diversus	I specimen; not known consistently below M. diversus Zone

1738L

TABLE 3: SUMMARY OF BASIC PALYNOLOGICAL DATA

DIVERSITY -

S&P

low

medium

less than 10 10-30 greater than 30

p. 1 of 4

high

							D D	1-3 3-10	10
SAMPLE NO.	DEPTH (m)	YI SPORE-POLLEN	DINOS	DIVE SPORE-POLLEN	ERSITY DINOS	PRESERVATION	LITHOLOGY	PYRIZATION	COMMENTS
SWC 81	1460	Low	Medium	Low	Medium	Good	calc. sit.		
WC 79	1479.9	Low	High	Low	Medium	Good	calc. sit.		
WC 78	1489.9	Low	Med I um	Low	Med i um	Good	° calc. sh.		
WC 76	1510	Low	High	Low	Medium	Good	calc. sh.		
WC 75	1520	Low	Med i um	Low	Medium	Good	calc. sit.		
SWC 74	1530	Low	High	Low	Med i um	Good	calc. sh.		
SWC 73	1537.9	Low	High	Low	Medium	Good	calc. sh.		
SWC 72	1545	Low	Med i um	Low	Medium	Good	calc. sit.		
WC 69	1552.9	Low	High	Low	Medium	Good	calc. sit.		
SWC 67	1557	Low	High	Low	Med i um	Good	calc. sh.		
SWC 66	1558.9	Low	High	Low	Med i um	Good	calc. cl.st.		
SWC 65	1561	Low	High	Low	Med I um	Good	calc. sh.		
SWC 63	1565	Low	High	Low	Medium	Good	calc. sit.		
SWC 62	1567.4	Low	High	Low	Medium	Good	calc. sit		
SWC 58	1573.5	Med i um	Low	Med i um	Medium	Good	carb. sit		
SWC 57	1576.5	Med I um	Med i um	Med i um	Med I um	Good	dol. sh.		
WC 55	1596	Med i um	-	Med i um	-	Good	coal		
WC 54	1604.5	Med i um	Low	Med I um	Medium	Good	carb. sit.		
738L									

DIVERSITY -

S&P

low

medium

less than 10 10-30 greater than 30

high

p. 2 of 4

							D	1-3 3-10	10
SAMPLE NO.	DEPTH (m)	Y I SPORE-POLLEN	DINOS	DIVE SPORE-POLLEN	RSITY DINOS	PRESERVATION	LITHOLOGY	PYRIZATION	COMMENTS
SWC 53	1611.5	Med I um	Medium	Med 1 um	Med Fum	Good	carb. sh		
SWC 51	1642	High	Low	High	Med i um	Good	carb. sh.	Low	
SWC 50	1660.7	M ed i um	Low	Med I um	Low	Good	carb. sh.	Low	
SWC 49	1675.5	Med i um	Low	Med i um	Low	Good	carb. sh.		
SWC 48	1686	Low	-	Med i um	-	Good	sst.		
SWC 47	1703.4	Low	-	Low	-	Good	sst.		
SWC 46	1718.5	Low	-	Low	-	Good	sh.		
SWC 45	1736.9	Med i um	Low	Med I um	Med i um	Good	carb. sit.	Med i um	
SWC 44	1750.5	Med i um	Medium	Med i um	Med i um	Good	carb. sh.	Med i um	
SWC 43	1768.4	Low	Low	. Medium	Low	Good	carb. sh.		
SWC 42	1777	Med i um	Low	Med i um	Low	Good	carb. sh.	Med i um	
SWC 41	1785	High	-	Med i um	-	Good	coal		
SWC 40	1796.5	High	Low	Med i um	Low	Good	sit.		
SWC 39	1813	Med I um	Medium	Med i um	Low	Good	carb. sh.		
SWC 38	1837	Med I um	High	Med I um	Med i um	Good	carb. sh.	Med I um	
SWC 37	1868	Low	Low	Med i um	Low	Good	carb. sh		
SWC 36	1888.9	Low	Med I um	Med I um	Low	Falr	carb. sh	Med I um	
SWC 35	1926	Med i um	Low	Med I um	Low	Poor	carb. sh.	Med 1 um	Contaminated sample
1738L									

DIVERSITY -

SAP

p. 3 of 4

med i um

10-30

high

greater than 30

low

less than 10

D 1-3 3-10 10 SAMPLE DEPTH YIELD DIVERSITY **PRESERVATION LITHOLOGY PYRIZATION** COMMENTS NO. (m) SPORE-POLLEN DINOS SPORE-POLLEN DINOS SWC 34 1963.5 High Medium Med I um Low Fair carb. sh Med i um SWC 33 1995 High Medium Low Low Poor carb. sh Medium SWC 32 2034 High Low **Medium** Low Fair carb. sh Med i um SWC 31 2061 Medium Low Medium Low Fair carb. sh Medium SWC 30 2090 High Low Med I um Low Fair carb. sh. Med I um SWC 29 2127 Med I um High Medium Low Fair carb. sh. Med i um SWC 28 2157 Low Low Med i um Medium Fair sst. SWC 27 2158.4 Medium Low Med i um Low Fair sit. Med I um SWC 26 2158.4 Low Low Low Low Good dol. sst. SWC 25 2162 Low Low Med I um Medium Good dol. sst. SWC 24 2166 Low Low Med i um **Medium** Fair dol. sst. 2194.9 SWC 23 Medium Medium Medium Low Fair carb. sh. Med i um SWC 22 2225.5 Medium **Medium** Low Low Fair carb. slt. Med I um SWC 21 2261.9 Medium Med I um Medium **Medium** Fair carb. sh. Med i um SWC 20 2301 Low Low Low Low Fair dol. sst. SWC 19 2323 Low Low Medium Poor Low carb. sit. Medium SWC 18 2327.3 Low Low LOW Low Poor carb. sst. SWC 16 2397 Low Low Med I um Fair Low dol.sit. Low

1738L

TABLE 3: SUMMARY OF BASIC PALYNOLOGICAL DATA

DIVERSITY -

S&P

carb. slt.

carb. sit.

carb. sit.

carb. slt.

D

p. 4 of 4

medium

3-10

high

10

10-30 greater than 30

low

1-3

less than 10

DEPTH YIELD DIVERSITY **PRESERVATION** LITHOLOGY **PYRIZATION** COMMENTS SAMPLE DINOS SPORE-POLLEN DINOS NO. (m) SPORE-POLLEN SWC 15 2399 High Med i um Fair coal SWC 14 2444 Low Low Poor dol. sit. SWC 13 2485.9 Med i um Poor dol. sit. Low High SWC II 2562.9 Medium Low Low Low Falr carb. slt. Med i um SWC 10 2571.9 Low Low Fair coal SWC 9 2576.9 Low Medium Poor carb. slt. Med I um SWC 6 2604 Low Low Poor dol. sst. SWC 5 2614 Med I um **Medium Medium** Poor Low carb. sit. High SWC 4 Med i um 2647 Med i um Low **Medium** Poor dol. slt. High 2700-05 CTS Medium Low Med i um Low Fair carb. slt. CTS 2755-60 Low Low ? Low Poor carb. slt. CTS 2805-10 Medium Medium Fair carb. slt. CTS 2845-50 Low Low Poor carb. sit.

Fair

Fair

Poor

Fair

CTS 1738L

CTS

CTS

CTS

2870-75

2975-80

2985-90

2990-95

Low

Low

Med i um

Med i um

?

LOW

Low

Low

Low

? Low

? Low

? Low

PE900492

This is an enclosure indicator page. The enclosure PE900492 is enclosed within the container PE902424 at this location in this document.

The enclosure PE900492 has the following characteristics:

ITEM_BARCODE = PE900492
CONTAINER_BARCODE = PE902424

NAME = Palynological Range Chart

BASIN = GIPPSLAND PERMIT = VIC/L3

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Palynological Range Chart for Turrum-3

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 31/07/87

 $W_NO = W899$

WELL_NAME = TURRUM-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 3

PENDIX 3

TURRUM #3 QUANTITATIVE LOG ANALYSIS

Interval: 1570 - 2755m KB
Analyst : L.J. Finlayson
Date : August, 1986

TURRUM #3 QUANTITATIVE LOG ANALYSIS

Due to an EALOG software bug the Turrum #3 wireline logs have been re-analysed for effective porosity and water saturation over the interval 1570m to 2755m KB. Analysis was carried out using a reiterative technique which incorporates hydrocarbon correction to the porosity logs, density-neutron crossplot porosities, a Dual Water saturation relationship and convergence on a preselected grain density window by shale volume adjustment.

The results of this analysis differ from the previous analysis in gas zones where porosities are generally decreased and water saturations are therefore slightly lower.

Logs Used

LLD, LLS (DLTE), MSFL, RHOB (LDTC), CAL, GR, NPHI (CNTH).

The MSFL and neutron porosity logs were corrected for borehole and environmental effects. The borehole corrected MSFL was used with the LLD and LLS to derive Rt and invasion diameter logs.

Log Quality

Most of the logs appear to be of reasonable quality, however it is noted that the LLS appears to be reading too low in shale zones in comparison to the LLD and MSFL. NPHI appeared to be reading incorrectly over the interval 1575-1585m and therefore a linear shift of -0.06 was applied.

Analysis Parameters

a	1
m	2
N	2
Rmf @ 94.4° C (1850-3520m)	0.062 ohm.m
Grain Density - lower limit	2.65 gm/cc
Grain Density - upper limit	2.67 gm/cc
Mud Filtrate Density (RHOF)	1.00 gm/cc
Bottom Hole Temperature	94 . 4° C

Depth Interval	RHOBSH	<u>NPHISH</u>	RSH
(m)	(gm/cc)	(gm/cc)	(ohm-m)
1570 - 1700	2.40	0.33	8
1700 - 2100	2.50	0.36	6
2100 - 2555	2.55	0.30	15
2555 - 2755	2.58	0.24	25

Shale Volume

An initial estimate of VSH was calculated from density-neutron separation.

VSHND =
$$\frac{\text{NPHI} - \left(\frac{2.65 - \text{RHOB}}{1.65}\right)}{\text{NPHISH} - \left(\frac{2.65 - \text{RHOBSH}}{1.65}\right)} - 1$$

Total Porosities

Total porosity was initially calculated from a density-neutron logs using the following algorithms:

$$h = 2.71 - RHOB + NPHI (RHOF - 2.71)$$
 - 2

if h is greater than 0, then

apparent matrix density, RHOMa =
$$2.71 - h/2$$
 - 3

if h is less than O, then

Total porosity: PHIT =
$$\frac{RHOMa - RHOB}{RHOMa - RHOF}$$
 - 5

where RHOB = bulk density in gms/cc

NPHI = environ. corrected neutron porosity in limestone porosity units.

RHOF = fluid density (1.00 gms.cc)

Free Formation Water (Rw) and Bound Water (Rwb) Resistivities

Apparent water resistivity (Rwa) was derived as follows:

$$Rwa = Rt * PHIT^{m} (m = 2) - 6$$

Free formation water resistivity (Rw) was taken from the clean, water sand Rwa. Bound water resistivity (Rwb) was calculated from the input shale resistivity value (RSH) read directly from the Rt log.

Listed below are the selected Rw and Rwb values.

Depth Interval (m)	<u>Salinity</u> (ppm NaCl eq.)
1570 - 1585	9,000
1585 - 1675	6 , 500
1675 - 1720	8,500
1720 - 2175	15,000
2175 - 2650	30,000
2650 - 2755	35,000

Water Saturations

Water saturations were determined from the Dual Water model which uses the following relationship:

$$\frac{1}{Rt} = SwT^{n} * \left(\frac{PHIT^{m}}{aRw}\right) + SwT^{(n-1)} \left(\frac{Swb * PHIT^{m}}{a} \left(\frac{1}{Rwb} - \frac{1}{Rw}\right)\right) - 7$$

or

$$\frac{1}{Rxo} = SxoT^{n} * \left(\frac{PHIT^{m}}{aRmf}\right) + SxoT^{(n-1)} \left[\frac{Swb * PHIT^{m}}{a} \left(\frac{1}{Rwb} - \frac{1}{Rmf}\right)\right] - 8$$

where: SwT and SxoT are "total" water saturations

and Swb (bound water saturation) =
$$\frac{VSH * PHISH}{PHIT}$$
 - 9

į

where: PHISH = total porosity in shale derived from density-neutron crossplot.

Hydrocarbon Corrections

Hydrocarbon correction to the porosity logs utilised the following algorithms:

$$RHOB = RHOB(raw) + 1.07 \ PHIT (1-SxoT) [(1.11-0.15P)RHOF - 1.15RHOH] -10 \\ (Hydrocarbon corrected)$$

NPHI = NPHI(raw) + 1.3 PHIT (1-SxoT)
$$\frac{RHOF(1-P)-1.5RHOH + 0.2}{RHOF(1-P)}$$
 -11 (Hydrocarbon corrected)

Ρ where: = mud filtrate salinity in parts per unity

RHOF = mud filtrate density RHOH = hydrocarbon density (0.70 gm/cc for oil, 0.25 gm/cc

for gas)

The calculated "grain density" was derived by removing the shale component from the rock using the following algorithms:

$$\frac{\text{RHOBSC} = \frac{\text{RHOB (hydrocarbon corrected)} - \text{VSH * RHOBSH}}{1-\text{VSH}}$$

$$NPHISC = \frac{NPHI (hydrocarbon corrected) - VSH * NPHISH}{1-VSH}$$
 -13

The shale corrected density and neutron values were then entered into the cross-plot algorithms (equations 2, 3 and 4) to derive grain density (RHOG).

If calculated RHOG fell inside the specified grain density window, then PHIE and Swe were calculated as follows:

PHIE = PHIT - VSH * PHISH -14

Swe =
$$1 - \frac{PHIT}{PHIE}$$
 (1-SwT) -15

If the calculated RHOG fell outside the specified grain density window, VSH was adjusted appropriately and the process repeated.

Comments

Several hydrocarbon and water zones are interpreted from the wireline logs in Turrum #3. They are as follows:

1578.25 -	1581.50m	KB	Residual Oil	(3.25m	net	sand)
1582.00 -	1971.50m	KB	Water	(43.75m	net	sand)
2008.25 -	2023.00m	KB	Gas	(7.50m	net	sand)
2027.75 -	2031.00m	KB	Water?	(1.50m	net	sand)
2049.25 -	2059.50m	KB	Gas	(3.00m	net	sand)
2073.50 -	2074.25m	KB	Water?	(0.75m	net	sand)
2104.75 -	2153.00m	KB	Gas	(13.75m	net	sand)
2154.50 -	2157.00m	KB	Oil	(2.50m	net	sand)
2160.50 -	2166.75m	KB	Residual Oil?	(3.25m	net	sand)
2180.00 -	2596.25m	KB	Gas	(55.75m	net	sand)
2609.25 -	2609.50m	KB	Oil	(0.25m	net	sand)
2619.25 -	2620.25m	KB	Oil	(1.00m	net	sand)
2620.25 -	2695.25m	KB	Water	(57.50m	net	sand)

- 2. Several hydrocarbon zones are also identified in the low porosity interval 2597-2610.25m KB. This is a dolomitised sandstone interval and possibly contains fracture porosity. See Summary Table and Listing for details of these zones.
- 3. Hydrocarbon contacts are interpreted at the following depths:

```
G.O.C. @ 2153.0 - 2154.5m KB
G.O.C. @ 2604m KB (from RFT data)
O.W.C. @ 2615m KB (from RFT data)
O.W.C. @ 2620.5m KB
```

4. Hydrocarbons are confirmed by the following RFT recoveries:

```
RFT 7/52 @ 2156.5m, l.O L oil
RFT 4/45 @ 2551.5m, l.O L condensate
RFT 3/44 @ 2609.5m, 5.25 L oil
RFT 8/55 @ 2619.5m, 0.25 L oil
```

- 5. Turrum #3 was drilled to a total depth of 2996m KB however the interval. 2755m to T.D. was not logged by wireline logs due to drill pipe and bottom hole assembly being stuck in the borehole.
- 6. Attached is a Porosity vs. Depth Crossplot, a Porosity/Saturation Depth Plot and a listing of results.

32951/66-70

TURRUM #3

SUMMARY OF RESULTS

Interval Evaluated: 1570m to 2755m KB

Depth Interval (m KB)	Gross Thickness (m)	*Net Porous Thickness (m)	*Porosity Average	* Swe Average	Comments
1578.25 - 1581.50	3.25	3.25	0.214 <u>+</u> 0.04	0.804	Residual Oi
1582.00 - 1584.75	3.25	3.25	0.223 <u>+</u> 0.04	0.928	Water
1615.75 - 1618.50	2.75	2.00	0.203 <u>+</u> 0.05	1.000	Water
1625.75 - 1637.75	12.00	10.75	0.258 + 0.04	0.976	Water
1663.75 - 1664.75	1.00	1.00	0.201 + 0.03	1.000	Water
1688.00 - 1695.25	7.25	7.25	0.238 + 0.03	1.000	Water
1697.25 - 1699.50	2.25	2.25	0.216 + 0.02	0.997	Water
1702.50 - 1704.25	1.75	1.75	0.185 + 0.03	1.000	Water
1721.25 - 1727.75	6.50	6.00	0.162 + 0.04	0.951	Water
1731.50 - 1736.00	4.50	4.50	0.191 + 0.05	0.995	Water
1780.50 - 1781.50	1.00	1.00	0.165 + 0.03	1.000	Water
1809.00 - 1811.00	2.00	2.00	0.205 + 0.01	1.000	Water
1817.75 - 1819.00	1.25	1.00	0.159 + 0.02	1.000	Water
1970.75 - 1971.75	1.00	1.00	0.187 + 0.02	1.000	Water
2008.25 - 2009.25	1.00	1.00	0.211 + 0.03	0.335	Gas
2016.50 - 2023.00	6.50	6.50	0.210 + 0.02	0.465	Gas
2027.75 - 2028.50	0.75	0.75	0.122 + 0.01	0.889	Water?
2030.50 - 2031.00	0.50	0.50	0.153 + 0.01	0.846	Water?
2049.25 - 2050.75	1.50	1.50	0.148 + 0.02	0.441	Gas
2056.00 - 2056.50	0.50	0.50	0.133 + 0.02	0.665	Gas?
2058.50 - 2059.50	1.00	1.00	0.159 + 0.01	0.560	Gas?
2073.50 - 2074.25	0.75	0.75	0.124 + 0.01	0.928	Water?
2104.75 - 2106.50	1.75	1.75	0.146 <u>+</u> 0.02		Gas
2113.75 - 2114.25	0.50	0.50	0.170 + 0.01		Gas
2135.25 - 2136.00	0.75	0.75	0.191 <u>+</u> 0.01		Gas
2139.25 - 2142.75	3.50	3.50	0.200 ± 0.03		Gas
2144.50 - 2149.75	5.25	5.25	0.214 + 0.02		Gas
2151.00 - 2153.00	2.00	2.00	0.220 + 0.03		Gas
2154.50 - 2157.00	2.50	2.50	0.228 <u>+</u> 0.01		Oil
2160.50 - 2163.00	2.50	2.25	0.184 ± 0.03		Residual Oil
166.00 - 2166.75		0.75	0.161 + 0.02		Residual Oil
180.00 - 2181.50		1.50	0.148 + 0.03		Gas
183.75 - 2185.75		1.75	0.147 + 0.03		Gas
188.75 - 2190.25		1.50	0.163 + 0.03		Gas
199.75 - 2202.50		2.75	0.252 + 0.01		Gas
209.75 - 2211.75	2.00	1.50	0.147 + 0.02		Gas

Depth Interval	Gross Thickness	*Net Porous Thickness	*Porosity Average	* Swe Average	Comments	
	(m)	(m)				
2265.75 - 2267.00	1.25	0.75	0.148 <u>+</u> 0.04	0.367	Gas	
2302.00 - 2303.25	1.25	0.75	0.123 <u>+</u> 0.02	0.274	Gas	
2343.25 - 2344.50	1.25	1.25	0.148 <u>+</u> 0.02	0.194	Gas	
2391.25 - 2391.75	0.50	0.50	0.135 <u>+</u> 0.02	0.159	Gas	
2422.50 - 2424.25	1.75	1.75	0.164 <u>+</u> 0.02	0.157	Gas	
2426.25 - 2442.25	16.00	13.50	0.135 ± 0.02	0.222	Gas	
2474.50 - 2475.75	1.25	1.25	0.178 <u>+</u> 0.01	0.110	Gas	
2490.50 - 2493.50	3.00	2.50	0.143 ± 0.04	0.147	Gas	
2501.00 - 2508.00	7.00	7.00	0.205 ± 0.03	0.056	Gas	
2509.75 - 2513.00	3.25	3.25	0.168 <u>+</u> 0.04	0.157	Gas	
2517.25 - 2521.50	4.25	3.50	0.143 <u>+</u> 0.02	0.152	Gas	
2546.25 - 2547.75	1.50	0.75	0.116 <u>+</u> 0.01	0.205	Gas	
2549.50 - 2553.00	3. 50	3.25	0.129 <u>+</u> 0.02	0.234	Gas	
2586.00 - 2591.50	5.50	5.50	0.184 <u>+</u> 0.02	0.111	Gas	
2595.00 - 2596.25	1.25	1.25	0.138 <u>+</u> 0.02	0.079	Gas	
2597.00 - 2598.75	1.75	1.75	0.035 <u>+</u> 0.02	0.459	Gas**	
2600.50 - 2604.00	3.50	3.50	0.014 ± 0.01	0.660	Gas**	
2604.25 - 2609.00	4.75	4.75	0.043 ± 0.02	0.510	Oil**	
2609.25 - 2609.50	0.25	0.25	0.106 <u>+</u> 0.01	0.324	Oil	
2609.75 - 2610.25	0.50	0.50	0.062 <u>+</u> 0.03	0.556	Oil**	
2619.25 - 2620.25	1.00	1.00	0.170 <u>+</u> 0.02	0.714	Oil	
2620.50 - 2626.25	5.75	5.75	0.195 <u>+</u> 0.01	1.000	Water	
2628.75 - 2644.75	16.00	16.00	0.176 <u>+</u> 0.02	1.000	Water	
2652.50 - 2684.50	32.25	31.50	0.155 <u>+</u> 0.02	0.966	Water	
2689.50 - 2690.50	1.00	1.00	0.143 <u>+</u> 0.02	0.917	Water	
2692.00 - 2695.25	3.25	3.25	0.160 <u>+</u> 0.03	0.972	Water	

-

^{*} Net porosity Thickness, Porosity Average and Swe Average refer to zones with calculated porosities in excess of 10%.

^{**} Net Porosity Thickness, Porosity Average and Swe Average refer to all zones as this zone may be fractured and therefore the 10% net porosity cutoff does not apply.

PE603862

This is an enclosure indicator page. The enclosure PE603862 is enclosed within the container PE902424 at this location in this document.

The enclosure PE603862 has the following characteristics:

ITEM_BARCODE = PE603862
CONTAINER_BARCODE = PE902424

NAME = CPI Quantitative Log

BASIN = GIPPSLAND PERMIT = VIC/L3 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = CPI Quantitiative Log for Turrum-3

REMARKS =

DATE_CREATED = 31/08/86 DATE_RECEIVED = 31/07/87

 $W_NO = W899$

WELL_NAME = TURRUM-3

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 4

TURRUM-3 RFT RESULTS

SUMMARY

This report details the results of two suites of RFT's run in March/April 1985. Suite 1, run on March 29-31, 1985, investigated the interval 1575-2695 m KB, while Suite 2, run on April 15, 1985, re-tested the L-1.4.2 oil accumulation around 2620 m KB.

The objective of these tests was to investigate hydrocarbon shows seen in the logs and hence to delineate the Turrum L-1.4.2 oil reservoir and the overlying gas and oil reservoirs.

In general, comparison of the results of these tests with existing Turrum data confirms our current understanding of the Turrum field. Ten independent gas and gas/oil systems have been identified, seven of which have been intersected by previous wells. Figure 1 attached, shows the gas and oil systems identified using the RFT pressure data. The following is a brief summary of the hydrocarbon systems seen in the well logs and confirmed by RFT:-

1. L-1.1.1 (Gas/Oil)

A 2.75m net oil sand in the interval 2153.5m-2157.25m KB with an estimated oil column of 10m and an overlying gas cap of 10.75m net sand and 14m column.

2. <u>L-1.1.2</u>, <u>L-1.1.3</u>, <u>L-1.2.1</u>, <u>L-1.2.3</u>, <u>L-1.3</u> (Gas)

Five independant gas systems in the interval 2180m-2521.5m KB with net sands varying between 1.00m and 17.00m and estimated gas columns varying between 51.5m and 125.5m.

3. L-1.4.2 (Gas/Oil)

A 6.50m net oil sand in the interval 2604.25m-2611.0m KB with an estimated oil column of 11m and an overlying gas cap of 12.00m net sand and 19m column.

4. Accumulations A, B (Gas)

Two independent gas systems in the interval 2008.25m-2114.25m KB with net sands of 7.50m and 2.25m and estimated gas columns of 33m and 47m.

5. Accumulation C (Oil)

A 1.00m net oil sand in the interval 2619.25m-2620.25m KB with an oil column of lm.

Note that accumulations A, B and C have not be intersected by previous wells drilled into Turrum.

RESULTS AND DISCUSSION

The results of these tests are documented in the following attachments:

Table 1 Hydrocarbon Accumulations Confirmed by RFT

Table 2 RFT Pretests
Table 3 RFT Samples

Figure 1 Turrum-3 RFT Plot (Overview)

Figures 2-8 Turrum-3 RFT Plots (By Accumulation)

Notes

1. A water line of gradient 1.43 psi/m has been drawn throughout pretests 1/1, 1/2, 1/3 and 1/28. This water line applies from 2000m KB to the bottom of the log interval. Above 2000m KB the pretest points stagger progressively further to the left. No hydrocarbons were found in this upper section of the well. The original Gippsland aquifer gradient of 1.42 psi/m plots between 20 and 25 psi to the right of the 1.43 gradient in the lower section of the well. Above 2000m KB the drawdown relative to the original gradient increases from 40 psi at 1950m KB to 110 psi at 1550m KB.

į

- 2. Unless otherwise stated, all contacts quoted in this report are based on RFT pressure data and the water line in (1) above.
- 3. The gas gradients used in this report are based on an average gas density of 0.1921 gm/cc reported in the reservoir data book, corrected for P, T and Z using the 'PYLD' program.
- 4. This report assumes that there are no oil legs at the base of the gas—only columns intersected by this well.
- 5. KB to SS is -21m.

Suite 1

Suite 1 investigated the interval 1575.0-2695.0 m KB. In the 9 RFT runs made, 54 pretests were successful and 7 sampling runs were completed. Run 2 was aborted because of poor hole conditions and a wiper trip carried out prior to starting run 3.

The main results are illustrated in Figure 1. A discussion of these results follows:

1. L-1.1.1 (Gas/Oil) - Figure 2

This accumulation has a GOC at 2153.5 m KB and an OWC at 2163.5 m KB. The GOC is interpreted from logs. This, in turn, implies a gas column of 14.25m and an oil column of 10m. RFT 7/52 taken at 2156.5m KB, sampled one litre of oil from the 10.4 litre container.

The above quoted GOC and OWC are in some doubt as only one pretest was taken in each of the gas, oil and water zones at this depth. Using an oil gradient of 0.90 psi/m through pretest 1/29 gives the quoted OWC at 2163.5m KB. Log interpretation indicates water as high as 2160.3m KB. Given that pretest 1/29 is valid, it is concluded that the OWC for this oil leg is down-structure from the well location and that pretests 1/28 and 1/29 are not in direct communication. Should pretest 1/29 be invalid the OWC would then be inferred from the logs at between 2157.3 and 2160.0m KB and the oil column reduced to between 3.8m and 6.5m. The GOC is arbitrarily picked at 2153.5m KB (in the middle of a dolomite) from the logs given that gas is interpreted as low as 2153.0m KB and oil as high as 2154.2m KB. This interpretation is in conflict with pretest 1/30 in the gas. Assuming the log interpretation is correct, this puts pretest 1/30 1.5psi to the right of the gas line.

2. L-1.1.2 (Gas) - Figure 3

Pretests 1/25, 1/26 and 1/27 lie roughly on the same 0.28 psi/m gas gradient and are therefore reported as being in the same system with a single GWC at 2272 m KB. The well intersected 8.50m of net sand and the column is estimated at 93.25m.

The dolomitic sections seen in the logs appear to be contributing to the spread of pressure data and hence also to the difficulties in interpreting that data. The sands in which the above three pretests were taken could be independent resulting in three gas columns with separate GWC's.

3. L-1.1.3 (Gas) - Figure 4

Again, assuming pretests points 1/21 and 1/23 are part of the same system, a GWC is interpreted at 2408 m KB. The well intersected only 1.00m of net sand although the gas column is estimated at 109.5m.

Both tests 1/21 and 1/22 were taken in a siltstone and 1/22 has been neglected as tight. A gas gradient of 0.29 psi/m can be drawn through 1/21 and 1/23 hence the assumption of a single system. Four attempts were made to obtain a sample in the siltstone between 2319m and 2332m KB, but each of these attempts was unsuccessful because of the tight formation.

-

4. L-1.2.1 (Gas) - Figure 4

Using a gas gradient of 0.29 psi/m through pretests 1/19 and 1/20 gives a GWC at 2431.0m KB. The well intersected 1.25m of L-1.2.1 net sand and the gas column is estimated at 91.0m.

5. L-1.2.3 (Gas) - Figure 5

Pretests 1/15, 1/16 and 1/17 define a gas system with a GWC at 2474.0m KB; assuming a gradient of 0.30 psi/m. 15.50m of L-1.2.3 net sand was intersected with an estimated 51.5m gas column. Sample 5/46 at 2442.0m KB recovered 43.4cf of gas in the 10.4 litre chamber after the contents of the 22.7 litre chamber were lost while opening.

6. <u>L-1.3 (Gas)</u> - Figure 6

This gas system, identified by a 0.31 psi/m gas gradient through pretests 1/11, 1/12 and 1/13 has a GWC at 2615 m KB and a 125.25m gas column. 17m of L-1.3 net sand was intersected.

Pretests 1/8, 1/9 and 1/10 may be in gas sands which are in communication with this system but this conclusion cannot be confidently drawn because the pressure data from these pretests has been affected by the dolomitic sands with possible supercharging. These sands are protected above and below a series of coals further decreasing the possibility of communication. Sample 4/45, taken from the same sand as pretest 1/8, recovered 138.5 cf of gas and one litre of condensate. The 10.4 litre chamber was preserved for analysis of the gas.

7. <u>L-1.4.2 (Gas/Oil)</u> - Figure 7

The L-1.4.2 is the major Turrum oil reservoir. The RFT pressure data for this system indicates a GOC at 2604.0m KB and an OWC at 2615.0m KB. The well logs indicate a dolomitised section from 2597 to 2611m KB and a shale section from 2611 to 2619m KB and consequently provide no useful contact information. The GOC is in agreement with interpretation of previous Turrum wells. The L-1.4.2 OWC has not been positively logged in any of the wells drilled into Turrum. The predrill prediction of between 2617 and 2625m TVDKB was based on low proved oil and high proved water in the previous wells. The RFT interpreted OWC at 2615m TVDKB is 2m shallow of this range and $\underline{\text{may}}$ indicate an areal variation in OWC. Note that pretest 1/4 at 2621.5m $\overline{\text{TVDKB}}$ was taken in the small independent oil sand discussed in 10. below.

The well intersected 6.5m of net oil sand and 12m of net gas sand. The oil and gas columns are estimated at 1l and 18m respectively. Sample 3/44, taken at 2609.5m KB, recovered 5.25 litres of 38° API oil and 25.2cf of gas. The 3.7 litre chamber was preserved for analysis.

8. Accumulation A (Gas) - Figure 8

Pretests 34 and 35 are in net gas sands of 1.0 and 1.0m respectively. Assuming the two sands are in communication and conservatively drawing a gas gradient through the shallow pretest point (35) yields a GWC at 2041m KB.

9. Accumulation B (Gas) - Figure 2

Pretests 32 and 33 are in small net gas sands of 1.75 and 6.5m respectively. As for Accumulation A above the sands are assumed in communication and a gas gradient of 0.27 psi/m through 33 results in a GWC at 2150m KB.

10. Accumulation C (0il)

A 1.00m net oil sand is interpreted from log and sample information. The OWC is interpreted from logs at 2620.25 m KB with a lm oil column. RFT pressure data infers the presence of hydrocarbons but provides conflicting contact information. Pretest 1/4 is therefore ignored in the OWC interpretation.

Sample 8/55 at 2619.5m KB recovered a scum of oil in the 22.7 litre containers and 0.1 litres of oil in the 10.4 litre container. Sample 9/56 at 2619.8m KB recovered 21.4 and 9.4 litres of filtrate and scums of oil in the 22.7 and 10.4 litre containers respectively. Sample 9/56 was the only run of Suite 2, and was used to check the results of sample 8/55.

ł

Suite 2

Suite 2 was used to re-sample the possible oil column at 2619-2621 m KB following the confusing data obtained from sample 8/55 at 2619.6 m KB. The results of this re-sample are discussed in Suite 1 above under heading 10 - Accumulation C (0il).

TABLE 1

TURRUM-3

HYDROCARBON ACCUMULATIONS CONFIRMED BY RFT

Accumulation	Top of Accumulation (m KB)	Base of Accumulation (m KB)	GOC (m KB)	GWC (m KB)	OWC (m KB)	Column (m)	Net Sand (m)	Comments
							·	
L-l.l.l (a) Gas (b) Oil	2139 . 25 -	- 2157 . 25	2153.5 2153.5	<u>-</u>	- 2163.5	14.25 10.00	11.25 2.75	GOC by logs. OWC by RFT
L-1.1.2	2178.75	2202.75	-	2272.00	-	93.25	8.50)
L-1.1.3	2298.50	2332.00	-	2408.00	-	109.50	1.00)
L-1.2.1	2340.00	2353.50	-	2431.00	-	91.00	1.25) GWC by RFT
L-1.2.3	2422.00	2442.50	-	2474.00	-	51.50	15.50)
L-1.3	2489.75	2521.75	-	2615.00	_	125.25	17.00)
L-1.4.2 (a) Gas (b) Oil	2586 . 00 -	2611.00	2604.00 2604.00	<u>-</u>	- 2615.00	18.00 11.00	12.00 6.50	GWC by RFT OWC by RFT
A. Gas B. Gas C. Oil	2008.25 2104.75 2619.25	2023.00 2114.25 2620.25	- - -	2041.00 2150.00	- - 2620.25	32.75 45.25 1.00	7.50 2.25 1.00	GWC by RFT GWC by RFT OWC by logs

^{*}Accumulations A, B and C have not been correlated with units seen by previous wells.

(2477f)

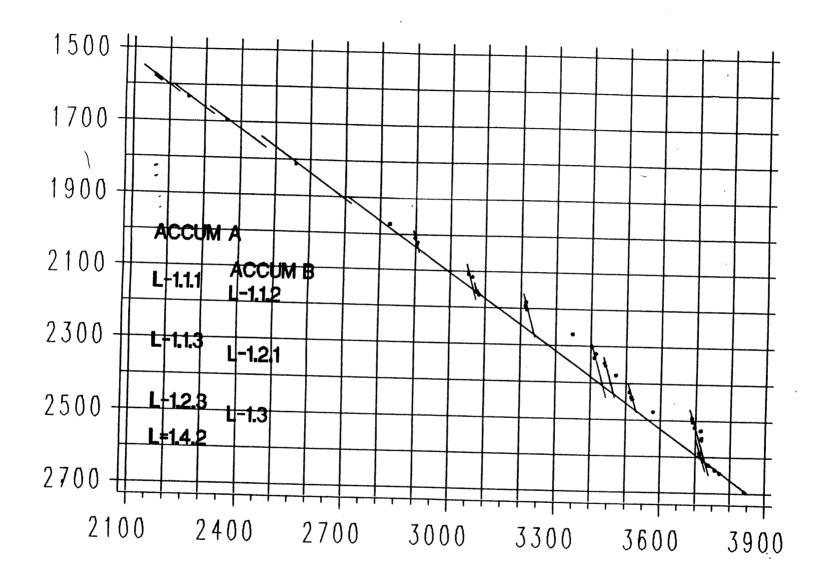
TABLE 2 TURRUM-3 RFT PRETEST RESULTS (KB 21 m Above Sea Level)

Suite 1, 29/3/85-31/3/85, 1575-2695 m KB

Run/Pretest	Depth (m KB)	Pressure HP (psig)	Comments		
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19	2695.2 2644.3 2635.0 2621.5 2609.5 2595.2 2587.7 2551.5 2547.5 2526.2 2518.0 2502.8 2491.5 2475.5 2442.0 2435.9 2423.2 2377.0 2350.4	3843.2 3770.9 3757.7 3740.4 3723.1 3714.4 3712.9 3719.4 3719.7 3716.3 3699.1 3699.1 3699.2 3579.7 3519.5 3517.0 3511.5 3472.1 3441.8	Supercharged Supercharged Supercharged		
1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/30 1/31 1/32 1/33 1/34 1/35 1/36 1/37 1/38 1/39 1/40 1/41 1/42	2343.9 2331.1 2320.0 2301.3 2266.8 2201.0 2189.9 2181.2 2162.5 2156.5 2156.5 2114.0 2105.0 2021.0 2008.4 1971.4 1810.0 1694.5 1631.0 1585.0 1582.5 1579.0 1575.5	3439.3 3410.5 3415.1 3403.2 3348.4 3218.9 3213.2 3216.0 3082.6 3077.8 3076.6 3064.5 3052.9 2907.4 2899.7 2828.4 2559.7 2362.5 2254.4 2176.0 2172.5 2167.9 2162.4	Tight, Valid Tight		
2/ 3/43	- 2606.5	- 3721.5	Aborted for Wiper Trip		
3/44	2609.5	3722.5	Sample		
4/45	2551.5	3721.5	Sample		
5/46	2442.0	3518.3	Sample		
6/47 6/48 6/49 6/50 6/51	2331.0 2330.7 2331.2 2319.5 1579.0	3406.1 3401.8 3435.3 3401.1 2164.9	Tight, Sample Attempted Tight, Sample Attempted Tight Tight, Sample Attempted Sample		
7/52	2156.5	3078.2	Sample		
8/53 8/54 8/55	2618.4 2604.3 2619.6	3729.9 3742.4	Tight Tight, Sample Attempted Sample, Supercharged?		
Suite 2					
9/56	2619.8	3738.8	Sample		

TABLE 3

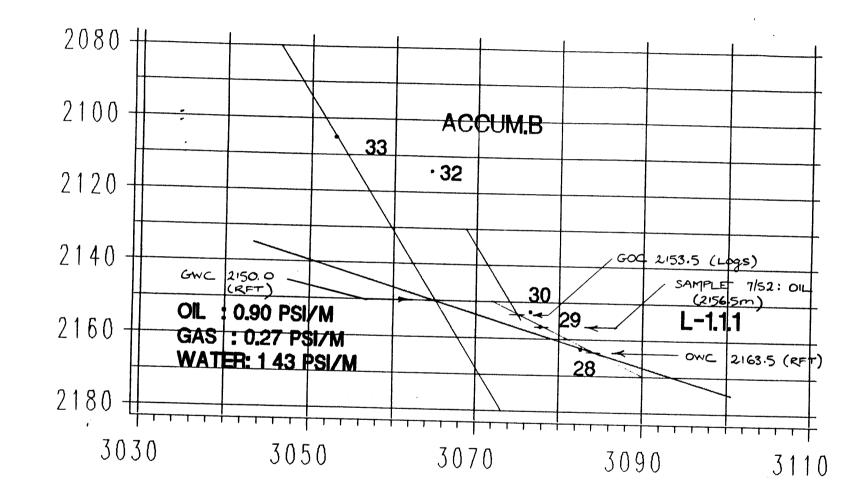
TURRUM-3 RFT SAMPLES


RFT Depth Temperature No. (m KB) (°C)		Chamber Choke Size Size (L) (mm)			Sample SI Pressure (psia)	Sample Surface Pressure (psig)	Sample Contents			_	
				Fill Time (min)			Gas (f† ³)	011 (L)	Water (L)	Cond.	Comments
Suite I, 29	/3/85 - 31/3/85 ,	1575-269	95 m KB								
3/44 2609.5	85.0	22.7	0.76	8	3737.2	1500	25.2	5.25	13.50	0	38° API @ 15°C. GOR 760 scf/STB
		3.8	0.76	2	3734.4	******	Sample	Preserve	-d -		RFS - AD III6
4/45 2551.5	86.1	22.7	0.76	7	3736.1	2150	138.5	0	3.20	1.0	Filtrate. Cond. 58.3° API @ 15°C
		10.4	0.76	3	3734.4	****	Sample	Preserve	-d -		RFS - AE 1222
5/46 2442.0	88.9	22.7	0.76	451	3533.0	1250	Lost ²	0	6.0	0.2	Filtrate. Cond. 51.0° API @ 15°C
		10.4	0.76	241	3529.6	1500	43.4	0	1.0	0.2	Filtrate. Cond. 54.6° API @ 15°C
6/51 1579.0	75.0	22.7	0.76	2	2179.6	1450	22.43	0	18.0	0	Filtrate
		10.4	0.76	3	2181.8	1004	1.44	0	9.25	0	Formation water
7/52 2156.5	87.2	22.7	0.76	10	3092.9	1400	14.5	0	19.4	Film	Filtrate
		10.4	0.76	4	3091.9	1600	18.4	1.0	6.0	0	45.3° API @ 15°C. GOR 2920 scf/STB
8/55 2619.6	105.6	22.7	0.76	6	3757.3	500	3.2 ⁵	Skum	21.25	0	Filtrate
		10.4	0.76	5	3753.3	400	1.3	0.1	9.4	0	38° API @ 15°C ⁶
Suite 2, 15	/4/85, 2619.8	m KB									
9/56 2619.8	91.0	22.7		6	3753.5	300	0.55	Skum	21.4	0	Filtrate
		10.4		3	3751.9	250	TR	Skum	9.4	0	Filtrate

Notes:

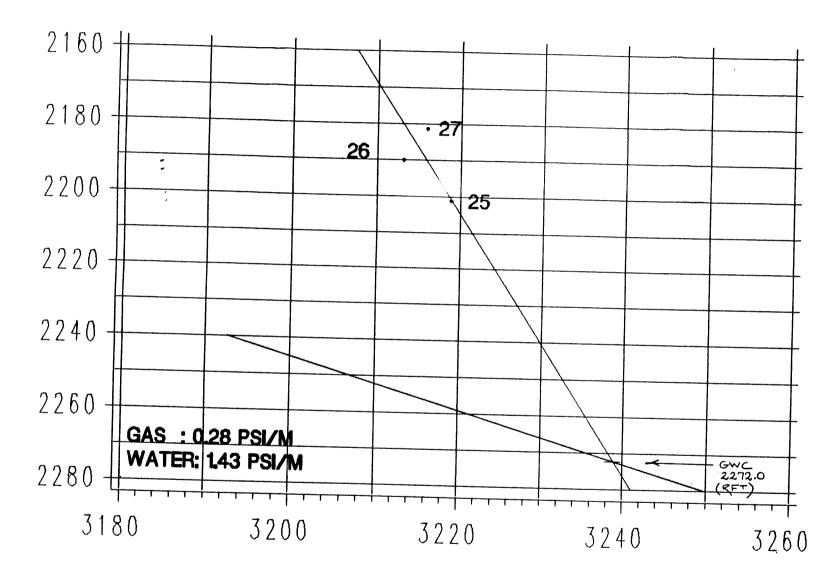
- Chamber not filled.
- 2. Gas lost to atmosphere during surface opening of chamber.
- 3. 22.7 L chamber was also opened at 2331.0, 2330.7 and 2319.5 m KB. The gas seen in this chamber probably came from the sampling attempt at 2319.5 m KB.
- 4. Surface sample pressure estimated to be 100 psi. Incorrect opening of valve resulted in gas volume being measured, but no sample taken.
- 5. 22.7 L chamber was also opened for five minutes at 2604.3 m KB. The pretest indicated a tight zone.
- 6. The measured gravity of 38° API is probably low. The gravity was measured two days after the sample was taken and the light ends would be largely lost from the sample in that time.

(2477f)


FIGURE 1: TURRUM-3 RFT SURVEY

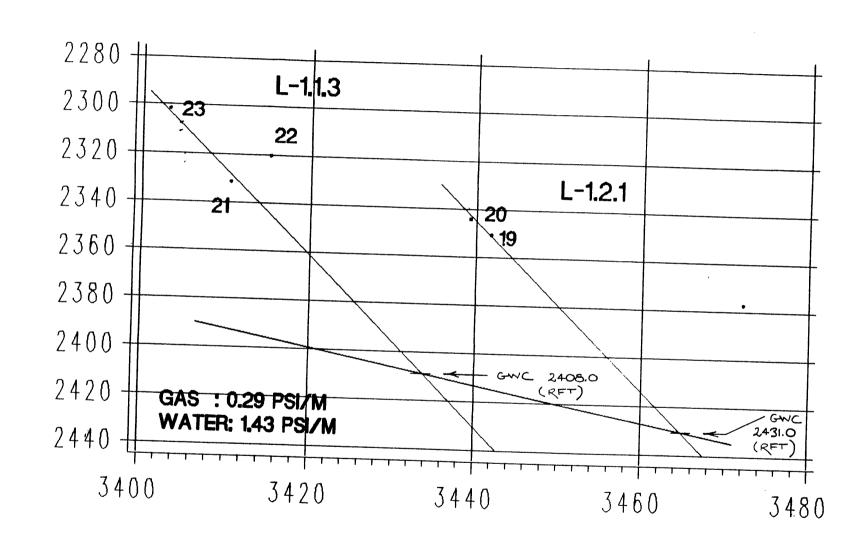
DEPTH (M TVDKB)

FIGURE 2: TURRUM-3 RFT SURVEY


RESERVOIR: L-1.1.1 & ACCUMALATION B

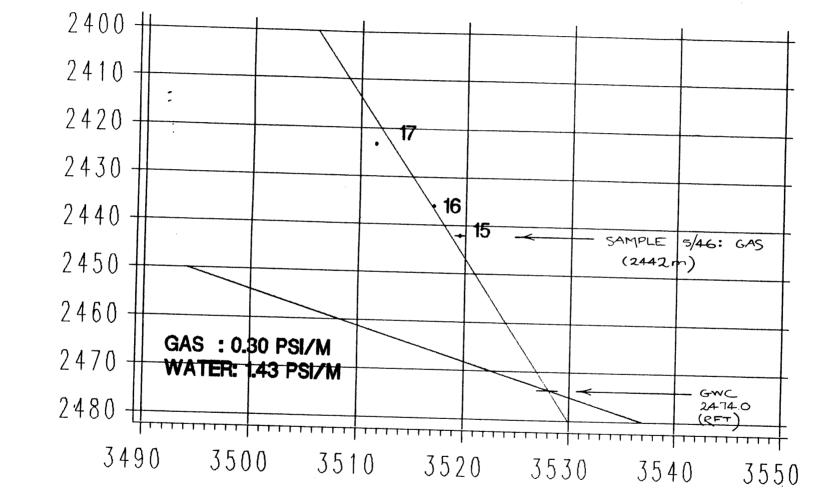
DEPTH (M TVDKB)

FIGURE 3: TURRUM-3 RFT SURVEY


RESERVOIR: L-1.1.2

DEPTH (M TVDKB)

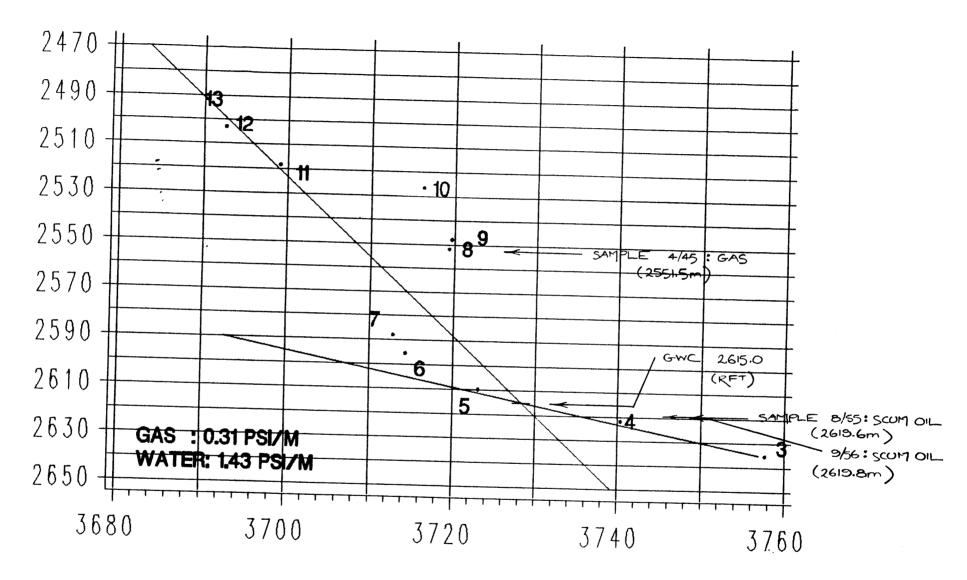
FIGURE 4: TURRUM-3 RFT SURVEY


RESERVOIR: L-1.1.3 & L-1.2.1

DEPTH (M TVDKB)

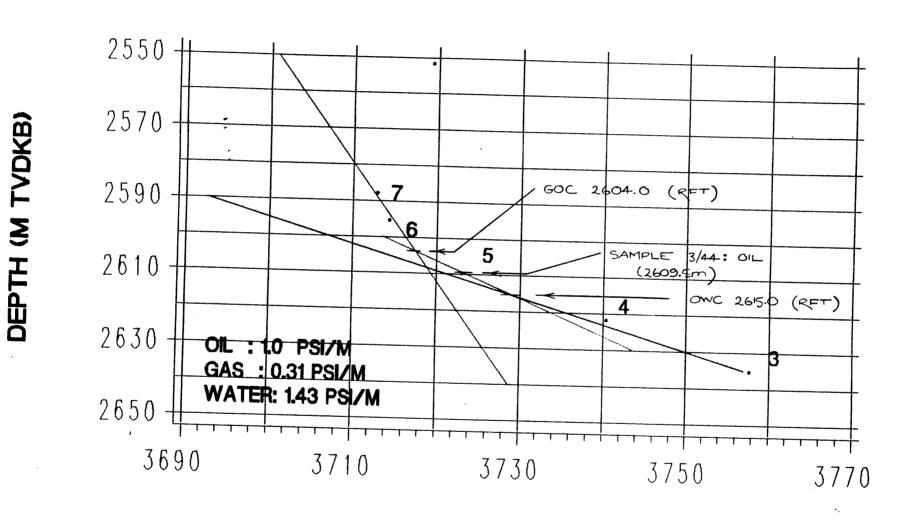
FIGURE 5: TURRUM-3 RFT SURVEY

RESERVOIR: L-1.2.3

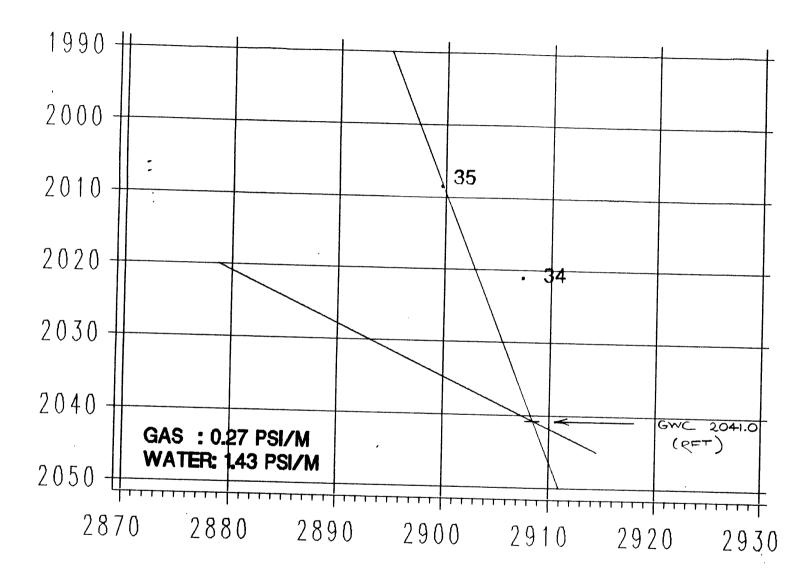

DEPTH (M TVDKB)

FORMATION PRESSURE (PSIG)

FIGURE 6: TURRUM-3 RFT SURVEY


RESERVOIR: L-1.3

DEPTH (M TVDKB)


FIGURE 7: TURRUM-3 RFT SURVEY

RESERVOIR: L-1.4.2

FIGURE 8: TURRUM-3 RFT SURVEY

RESERVOIR: ACCUMULATION A

DEPTH (M TVDKB)

APPENDIX 5

GEOCHEMICAL REPORT

TURRUM 3, GIPPSLAND

VICTORIA

by

T.R. BOSTWICK

Sample handling and Analyses by:

-	D.M. Hill D.M. Ford J. McCardle H. Schiller M.A. Sparke))))	ESSO AUSTRALIA LTD.
-	A.C. Cook)	UNIVERSITY OF WOLLONGONG

Esso Australia Ltd. Geochemical Report

March, 1986

2115L

CONTENTS

INTRODUCTION DISCUSSION OF RESULTS AND INTERPRETATION CONCLUSIONS

LIST OF TABLES

- 1 C_{1-4} Headspace Cuttings Gas Data
- 2) Total Organic Carbon Report
- 3a) Rock-Eval Pyrolysis Report yields
- 3b) Rock-Eval Pyrolysis Report ratios
- 4a) Kerogen Elemental Analysis Report
- 4b) Kerogen Elemental Atomic Ratios Report
- 5) Vitrinite Reflectance Report
- 6) Thermal Alteration Indicies.
- 7) Oil Gravities of Turrum-3 oils.

LIST OF FIGURES

- 1 a) C_{1-4} Headspace Cuttings Gas Log
- 1 b) % Wet (C_{2-4}) Gas Log
- 2) Total Organic Carbon Log
- 3) Rock-Eval Maturation and Organic Matter Type
- 4) Atomic H/C vs Atomic O/C Modified Van Krevelen Plot
- 5) Vitrinite Reflectance vs. Depth
- 6) Whole Oil Gas Chromatogram Turrum-3, RFT 3/44 2609.5 mKB
- 7) Whole Oil Gas Chromatogram Turrum-3, RFT 8/55 2619.6 mKB

APPENDIX

 Detailed Vitrinite Reflectance and Exinite Fluorescence Data - Report by A.C. Cook

TURRUM-3

INTRODUCTION

Canned cuttings and sidewall cores from the Turrum-3 well, Gippsland Basin, have been geochemically analyzed to determine the hydrocarbon source potential of the drilled section. Canned cuttings were collected at 15-metre intervals from 235 mKB to 2996 mKB (Total Depth). Alternate 15-metre cuttings samples were analyzed for $\rm C_{1-4}$ headspace cuttings gas. Selected sidewall cores were analyzed for total organic carbon (TOC), Rock-Eval pyrolysis yields, kerogen isolation and elemental analysis, and vitrinite reflectance.

Two hydrocarbon liquids recovered by RFT 3/44 at 2609.5 mKB and RFT 8/55 at 2619.6 mKB respectively were analyzed by 'whole oil' gas chromatography and for API gravities.

The results of these analyses are recorded in Figures 1 through 7 and Tables 1 through 6. Detailed vitrinite reflectance and eximite fluorescence data are recorded in Appendix 1.

<u>Discussion of Results and Interpretations</u>

Richness

Headspace cutting gas (C_{1-4}) yields are recorded in Table 1 and graphically displayed in Figure 1a. Gas yields are "poor" in the Gippsland Limestone and Lakes Entrance Formations and "good" in the Latrobe Group sediments reflecting the differing potentials within the sedimentary section to source hydrocarbons.

The good source potential of the Latrobe group sediments is also indicated by the high total organic carbon (TOC) measurements (Table 2, Figure 2) and the moderate to good pyrolysis S_2 yields (Table 3). Excellent S_2 yields (in excess of 10 mg/gm) were obtained from coals or very carbonaceous sediments with the Latrobe section.

Organic Matter Types

Wet gas (C_{2-4}) yields on average account for 30-40 percent of the total (C_{1-4}) gas in the Latrobe section (Figure 1b). If indigenous, the presence of these light hydrocarbon gases suggests that the section is oil and/or condensate-prone.

2115L:3

The Rock-Eval hydrogen indices (HI) indicate that most of the Latrobe sediments contain Type III, terrestrial organic matter (Figure 3). Traditionally, Type III kerogen is considered gas-prone, but some condensate and oil potential appears possible in the richer carbonaceous sediments of Early Eocene and Paleocene age.

The elemental analysis of selected kerogen samples isolated from sidewall cores are listed in Table 4a. Approximate hydrogen: carbon (H/C), oxygen: carbons (O/C), and nitrogen: carbon (N/C) atomic ratios for these analyses are given in Table 4b. These ratios are "approximate" since the oxygen value is calculated by difference and the naturally occurring sulphur percent, which may be up to a few percent, was not determined. The atomic ratios of H/C are plotted against atomic O/C ratios in the Van Krevelen type diagram in Figure 4. With the exception of two Paleocene samples all of the kerogens plot within the Type III, portion of the diagram. The two Paleocene kerogen samples (2399 mKB, 2323 mKB) which plot above the Type III envelope most likely contain a mixed Type III + Type II kerogen assemblage. Type III kerogens are equivalent to vitrinite or woody (essentially terrestrial) kerogen, while Type II kerogens consist of "marine" organic matter and exinitic macerals of sporinite (from spores), cutinite (from leaves) and resinite (from tree resins).

Most of the hydrogen-poor (H/C less than 0.80) kerogens encountered by the Turrum 3 well should yield predominantly gaseous hydrocarbons. The more hydrogen-rich (H/C greater than 0.85) kerogens may have some waxy oil/condensate potential.

Maturity

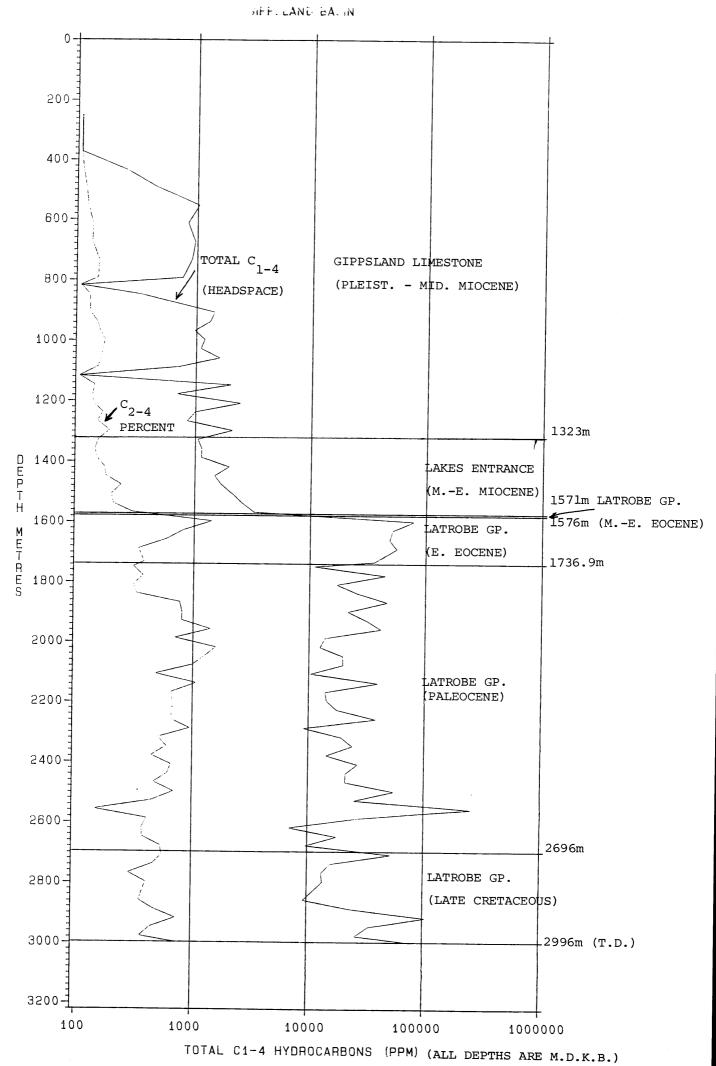
TMAX measurements (Table 3a) from Rock-Eval pyrolysis indicate that the section approaches early maturity (TMAX about 435°) in the 2399-2576.5 mKB interval. This is consistent with Thermal Alteration Indicies (TAI) of 2.0 - 2.1 encountered between 2399 mKB and 2705 mKB (Table 6). Below 2850 mKB the TAI measurements of 2.3 indicate full maturity.

The vitrinite reflectance data (Table 5) are plotted against depth in Figure 5. The trend indicated by the solid line through the three coal samples points to an early mature zone between 2350 mKB ($R_V^{\text{max}}=0.60$) and 2750 mKB ($R_V^{\text{max}}=0.75$), and full maturity below 2750 mKB. This is consistent with the TMAX and TAI determinations. Also shown in Figure 5 is a dashed best fit line through most of the data (from siltstones, claystones and shales) which suggests that at 2996 mKB (T.D., $R_V^{\text{max}}=0.63$) the section is still

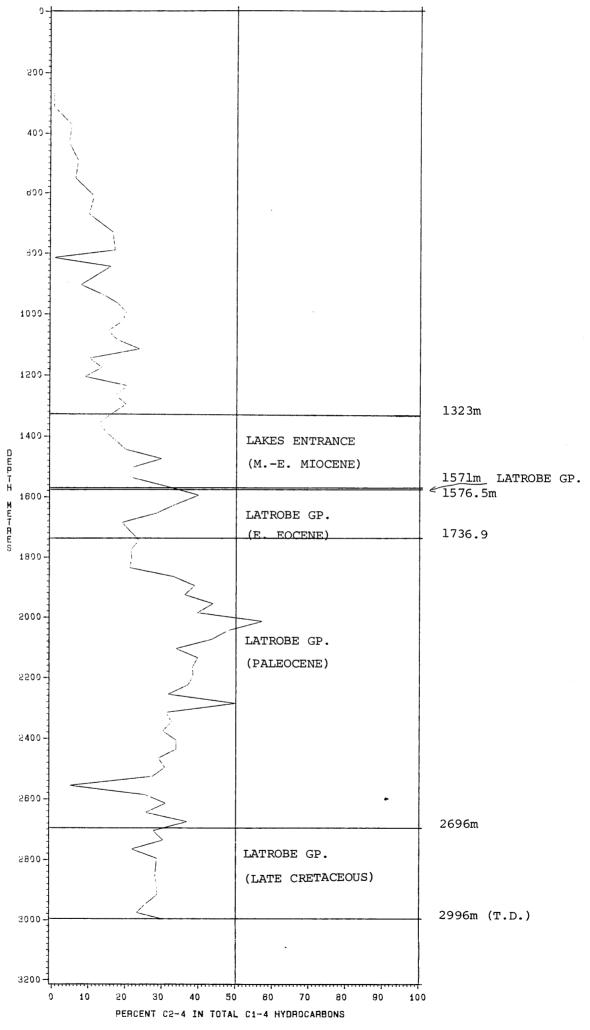
2115L:4

not fully mature. This less optimistic view of maturity is at odds with the other indications (TAI, TMAX) and may be a consequence of the observed lithology effect (at the same level of maturity the reflectance of vitrinite increases from sandstone to siltstone to shale to coal) on reflectance values. By convention, maturity is measured by the same vitrinite reflectance scale as used in coal petrology, therefore the maturity interpretation using the coal data is most likely quite reliable. The interpretation from the detrital vitrinites in the siltstones, claystones, and shales is at best a minimum maturity determination.

Thus, the section is rated as immature to 2350 mKB, early mature between 2350 mKB and 2750 mKB, and fully mature from 2750 mKB to T.D. at 2996 mKB.

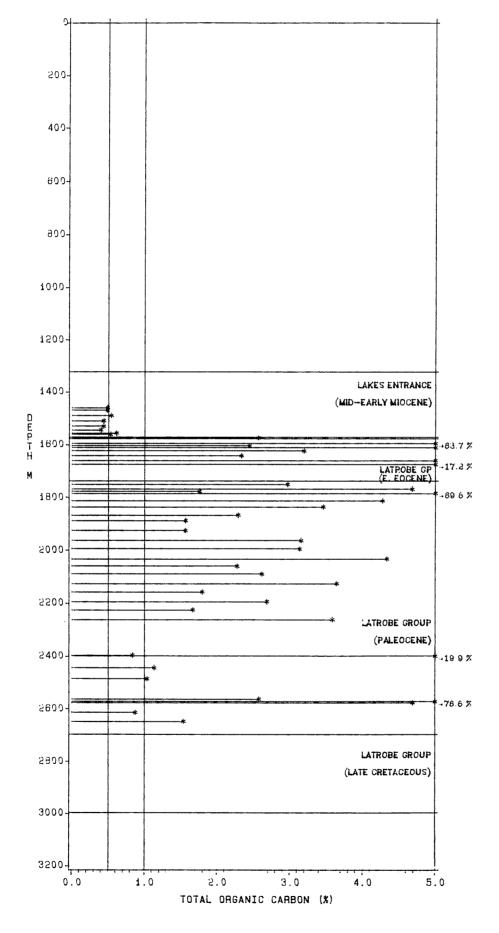

Hydrocarbons

Two liquid hydrocarbon samples recovered by RFT 3/44 at 2609.5 mKB and RFT 8/55 at 2619.6 mKB were analyzed by 'whole oil' gas chromatography and for API gravities. The liquids are waxy oils with API gravities of 38.9° and 37.8° respectively. The chromatograms of the oils are dominated by C_{15}^{+} paraffins with a relatively small gasoline-range component. This is similar to the patterns seen in other medium-gravity Gippsland oils. These hydrocarbons have been sourced from terrestrial (probably biodegraded) organic matter.


Conclusions

- 1. Latrobe Group sediments of Eocene, Paleocene, and Cretaceous age encountered by the Turrum-3 well have very good potential to source waxy oil, gas, and condensate when mature.
- 2. The section is immature to 2350 mKB, early mature between 2350 mKB and 2750 mKB, and fully mature from 2750 mKB to T.D. at 2996 mKB.
- 3. Medium gravity, paraffinic oils were recovered by RFT's 3/44 (2609.5 mKB) and 8/55 (2619 mKB). These hydrocarbons like other Gippsland oils have been sourced from terrestrial organic matter.

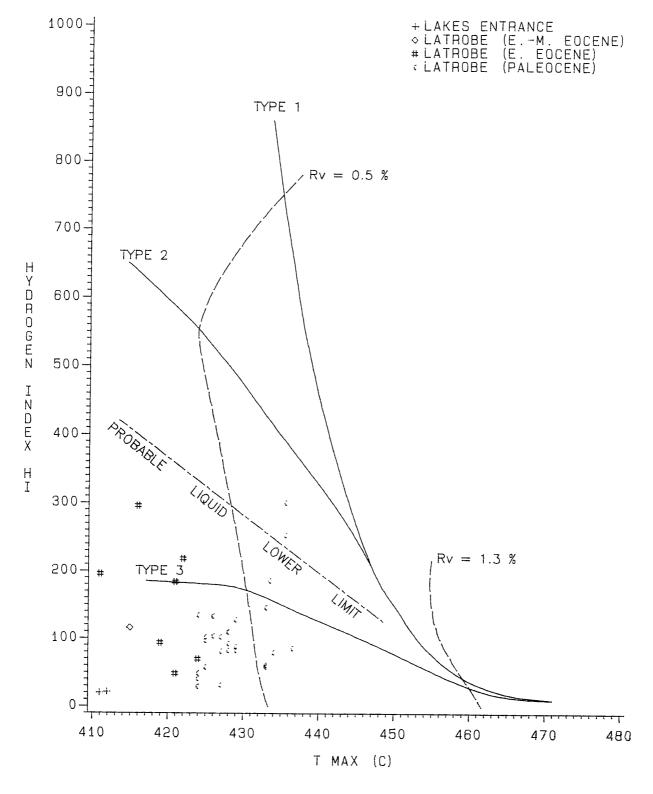
Concuttings GAS LOG TURRUM 3


GERGETTINGS GAS LC TURRUM 3 HEFELAND BALIN

(ALL DEPTHS ARE M.D.K.B.)

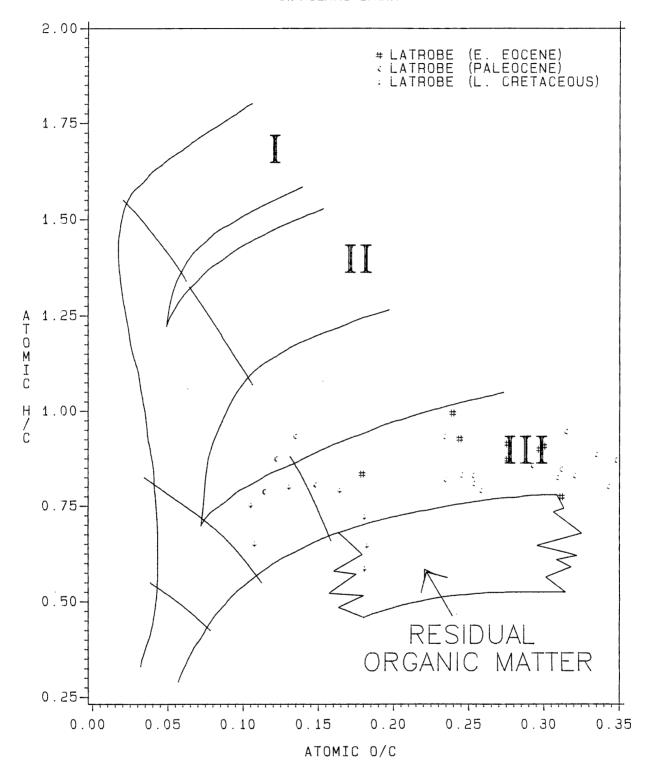
FIGURE 2

TOTAL ORGANIC CARBON TURRUM 3

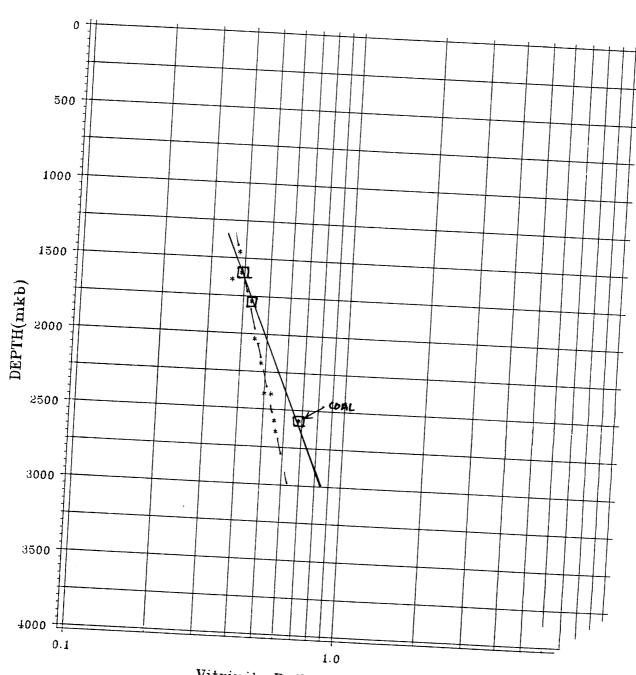


POCKEVAL MATURATION PLOT

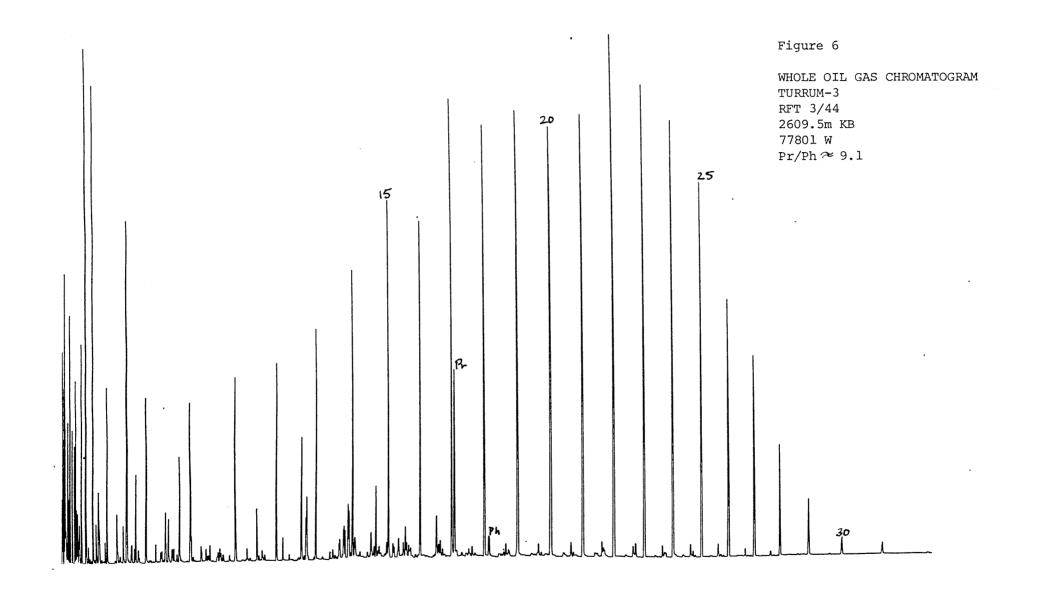
THE RESERVE HYDROGEN INDEX

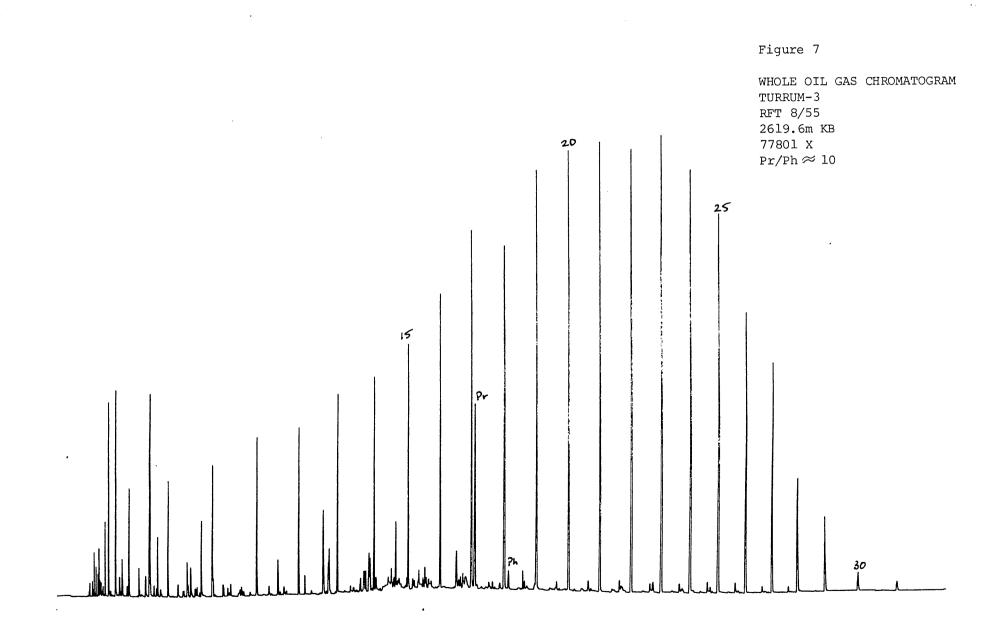

TURRUM 3

GIPPELAND BACIN



KEROGEN TYPE TURRUM 3


SIPPSLAND BALIN



VITRIVITE REFLECTANCE VS. DEPTH TURRUM 3 THE CANCERON

Vitrinite Reflectance, Rv \max %

APPENDIX

Detailed Vitrinite Reflectance and Exinite Fluorescence Data - Report by A.C. Cook

TURRUM NO. 3

KK No.	Esso No.	Depth m	R max	Range R max V %	N	Exinite fluorescence (Remarks)
x2049	77762 -N	1460 SWC81 R	0.38 1.23	0.27-0.48 1.00-1.46	7	Rare sporinite, yellow orange. (Calcareous siltstone. Dom rare, V>I>E. All macerals rare. Common foraminifer tests. Abundant pyrite.)
×2050	77761 -W	I 1596 SWC55	0.39	0.32-0.45	29	
x 2051	77761 -S	1642 SWC51	0.36	0.25-0.56	29	Sparse sporinite, yellow to orange, sparse cutinite, orange to dull orange, sparse resinite, dull yellow, rare suberinite, brown. (Siltstone. Dom common, V>I>E. Vitrinite common, inertinite and exinite sparse. Abundant pyrite.)
x2052	77761 -I	1785 SWC41	0.43	0.37-0.49	28	Abundant sporinite, yellow to orange, abundant cutinite, yellow to brown, abundant suberinite, brown, common resinite, dull yellow to orange, sparse fluorinite, green, sparse exsudatinite, orange. Weak green dead oil cut. (Coal, V>E>I. Clarite>vitrite>>fusite.)
x2053	77760 2	2034 SWC32	0.45	0.38-0.54	28	Sparse sporinite, yellow to orange, sparse cutinite, yellow to dull orange. (Silty claystone. Dom abundant, V>I>E. Vitrinite abundant, inertinite common, exinite sparse. Abundant pyrite.)
x2054	77760 -Q	2194.9 SWC23	0.48	0.38-0.61	28	Sparse sporinite, yellow to orange, sparse cutinite, orange. (Claystone. Dom abundant, V>E>I. Vitrinite abundant, exinite and inertinite sparse. Abundant pyrite.)
x 2055	77760 -K	2397 SWC16 R I	0.50	0.37-0.62 0.98-1.46	14	Sparse sporinite, orange, rare resinite, bright yellow. (Siltstone. Dom common, I>E>or=V. Inertinite common, exinite and vitrinite sparse.)
x2056	77760 -Ј	2399 SWC15	0.53	0.44-0.62	28	Abundant sporinite, yellow to orange, sparse cutinite, orange, rare suberinite, brown. (Claystone and shaly coal. Shaly coal is related to clarite, some of vitrinite is mineralized with chalcedony. Dom abundant, E>V>I. Eximite and vitrinite abundant, inertinite sparse. Sparse pyrite.)
x2057	77760 -E	2571.9 SWC	0.68	0.56-0.81	29	Abundant sporinite and cutinite, yellow to orange, abundant resinite, bright yellow to dull orange. (Coal. V>I>E. Duroclarite>clarite>vitrite>> fusite. Micrinite common to abundant. Vitrinite has brown fluorescence. Weak live and dead green oil cuts. Sparse pyrite.)
x2058	77760 -D	2576.9 SWC9	0.55	0.39-0.69	36	Sparse sporinite, orange, rare resinite, yellow, rare cutinite, orange to dull orange. (Siltstone. Dom common, V>I>E. Vitrinite and inertinite common, exinite sparse. Rare carbonate. Abundant pyrite.)
x 2059	77760 -A	26 47 SWC 4	0.56	0.46-0.69	25	Sparse sporinite, yellow to orange, sparse cutinite, yellow orange to dull orange. (Siltstone. Dom common, V>I>E. Vitrinite and inertinite common,
		R I	1.34	1.02-1.60	12	exinite sparse. Sparse carbonate. Abundant pyrite.)

TABLE 6
Thermal Alteration Indicies (TAI)

Basin - Gippsland Well - Turrum 3

77760J SWC 2399 2	2.0
77760F SWC 2562.9 2	2.1
77797A CTS 2705 2	2.1
77797D CTS 2850 2	2.3
77797F CTS 2980 2	.3
77797H CTS 2995 ?2	.3

C1-C4 HYDROCARBON ANALYSES REPORT A - HEADSPACE GAS

TO BASIN - CIPISEAND WILL - TORONS

UNS COURCE TRATION (MORUME GAS PER LITELION VOLUMES CUTTINGS)

GAS COMPOSITION (PERCENT)

SAMPLE (C.	oF210	MI THARE	CTHAUC OZ	PROPAGE 03	IBUTANE 104	MBHTAUF C4	WET C2-C4	TOTAL C1-C4	WET/TOTAL PERCENT	TOT M E	AL GAS P IB N		NB
777744 C T 777744 C T 777774 C T 777774 C T 777774 C T 777774 C T 7777777777	000,000,000,000,000,000,000,000,000,00	100166481405056 723940095557686740667615644966745940095597690895597756771568707055397095597755715687111602014466871502447	01474002090490809397809752761057217504107299444 257729 28549572 641859656228278726183151405 1 1 223531405310071 1 211 862834275 211 862834275	00024703710861857057565888860789776993117776005575658888607897769931177760055756588886078977693117575	0001235655057000067253342763253575322211093095 737442733427632354744803321111 278	0000001123204445701441751427437846819271543299229 111221 1 111211122323990007723 2978	01400123570173146057529123953655937035940910568 12 507730421199004416463904440143305921872 111732221 1 22141646390440143305921872 1173082975422 1173082975422 1173082975422	112167616106619743520599868108831777979502026 2402695 23167905799868108831777979502026 143967901111947028885672538320 11167 2 2 2 21111471223634268322 754867238320 754867242612	0008534488104505837815300259584969887473078203718 00446519665737984739380696247991009788827110785 0 1 11 1 11112 1 2111112233332122223333	10053559733076458555400535597965568110053559733307645855403759796556811002843043043720885540375979655681100284476388879999066218779897664	0.0000111110202334343432213333323333422211100000001131111230615878680442766545772783086344223644	00.100.213.11.100.213.	000002122208489709169557878908876603211110001

BASIN - GIPISLAND WELL - THRIVE 3

C1-C4 HYDROCARBON ANALYSES

REPURT A - HEADSPACE GAS

GAS CONCETTRATION (VOLUME GAS FER HILLION VOLUMES CUTTINGS)

GAS.COMPOSITION (PERCENT)

SAMPLE SO. DECTO METHAGE Or	FIHADE PROPADE C2 C3	IBUTANE NBUTADE WET 104 04 02-04		TOTAL TOTAL GAS WET GAS RCENT M E P IB NB E P IB NB
77800 S 1055.00 3447 77800 N 1055.00 5251 77800 N 2015.00 5204 77800 N 2045.00 10091 77800 N 2075.00 11137 77800 N 2105.00 23718 77800 C 2155.00 23718 77800 N 2255.00 2574 77800 N 2255.00 11172 77790 N 2255.00 4553 77790 N 2315.00 13076 77790 N 2315.00 13076 77790 N 2315.00 13075 77790 N 2315.00 13075 77790 N 2405.00 1308 77790 N 2405.00 133339 77798 N 2555.00 47537 77798 N 2705.00 10024 77798 N 2855.00 10095 77798 N 2855.00 10095 77798 N 2855.00 10095 77798 N 2855.00 10095 77798 N 2855.00 54211	10160	1052 1052 1053 1053 1054 1055 1015	91123230611333333333333333333333333333333	3. 76 56 24 15 3 49 38 7 7 4. 20 43 24 44 5 45 39 41 88 10 3. 42 44 5 45 39 41 88 10 12 4. 60 12 19 3 5 45 34 34 48 12

TOTAL DROANIC CARBON REPORT

HABIN - CIPPOLAND

SAMPLE NO	DEFITH AGE	FORMATION ******	AN TOC% AN TOC% AN T	OC% DESCRIPTION
HIKUHERDBYWWUTCHALLEUTEDCBAZYXWU@POKULHEEDBA	1460 00 MID-EARLY MIDCEN 1470 00 MID-EARLY MIDCEN 1489 90 MID-EARLY NIOCEN 1510 00 MID-EARLY NIOCEN 1530 00 MID-EARLY MIDCEN 1545 00 MID-EARLY MIDCEN 1557 00 MID-EARLY MIDCEN 1557 00 MID-EARLY MIDCEN 1557 00 MID-EARLY EDC 1567 00 MID-EARLY EDC 1578 00 EARLY EDCENE 1567 00 EARLY EDCCENE 1567 00 EARLY EDCCENE 1567 00 EARLY EDCCENE 1567 50 EARLY EDCCENE 1770 00 PALEDCENE 1777 00 PALEDCENE 1777 00 PALEDCENE 1777 00 PALEDCENE 1785 00 PALEDCENE 1785 00 PALEDCENE 1785 00 PALEDCENE 1888 90 PALEDCENE 1897 00 PALEDCENE 1898 90 PALEDCENE 1997 00 PALEDCENE 2034 00 PALEDCENE 2034 00 PALEDCENE 2037 00 PALEDCENE 2037 00 PALEDCENE 2057 00 PALEDCENE	E LAKES ENTRANCE LAKES ENTRANCE ENTRANC	AN TOCX AND TOCX AND TOCX AND TOCX AN TOCX AND TOC	LT-M GY SLTST, V CALC, QTZ LT GY SLTST, V CALC LT GY SH, CALC, QTZ LT GY-BRN SH, V CALC LT GY-BRN SH, V CALC LT GY-BRN SLTST, V CALC LT GY-BRN SLTST, V CALC LT GY SH, V CALC, QTZ M GY SLTST, CALC, QTZ M GY SLTST, CALC, CARB M-DK GY SLTST, CALC, CARB M-DK GY SH, SL CALC, CARB M-DK GY SH, SL CALC LT-M GY SH, SL CALC LT-M GY SH, SL CALC M-DK GY SH, V CARB, SL CALC M-DK GY SH, V CARB, CALC M-DK GY SH, V CARB, CALC M-DK GY SH, V CARB, CALC M-DK GY SH, CARB, CALC LAM LT-M GY SH, CARB, GTZ M-DK GY SH, CARB, GTZ M-DK GY SH, CARB DK GY-BLK SH, CALC DK GY SH, CARB, GTZ LT GY SLTST, CARB, GTZ LT GY SLTST, CARB, GTZ COAL M GY SLTST, CARB, GTZ

ESSO AUSTRALIA LTD.

ROCK FVAL ANALYSES

** BASIN - GIPPSLAND PEPGRT A - SULPHUR & PYROLYZABLE CARBON

SAMPLE NO. DEPTH	SAMPLE TYPE AGE	TMAX	51	S2	53	ΡΙ	\$2/\$3	PC	COMMENTS
77762 K 77762 R 77761 V 77761 W 77761 T 77761	TOCENE TOCENE	412	1947335405770086954096980447303 	296764647872025575898581041200254598054 391731913618521 1242331213 911239 8	1	0.87.2385506667.483468459.87.49.6109.21.30.6650.15.00.00.00.00.00.00.00.00.11.21.20.21.130.6650.15.00.00.00.00.00.00.00.00.00.00.00.00.00	88024500049773273550238431496003330002880 33214188363704212357568762728 34481	31190506055855116048753337444319554510326 00029152185251652100124223122120011288800 11 1 4 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	

PI=PRODUCTIVITY INDEX PC=PYROLYZABLE CARBON TC=TOTAL CARBON. HI=HYDROGEN INDEX . OI=OXYGEN INDEX

ESSO AUSTRALIA LTD.

ROCK EVAL. ANALYSES

	TURKUL	3		- TOTAL CARBON, H		CES	·	
SAMPLE NO	- DEPTH	SAMPLE TYPE	FORMATION	TC	HI	01	HI/OI	COMMENTS
77762 K 777762 R 777761 W 777761 W 777761 W 777761 T 777761 E 7777	9005055407554000000905000000049590000999900 971364132050875378863541078451794521647 4555566666756781388889990091592333445577614 11555666666717777888889990091592233445577614 1155556666666757777778888889990091592233445577614	######################################	EEEE RANCEE RANCEE RANCEE INTERPOLITIP RANCEE INTERPOLITIP RANCEE INTERPOLITIP RANCEE RANCE RANC	5655.64413.119.675.242.55.113.26.67.665.891.05.56.85 23.25.72419.43.211.33.42.23.121.3.91.26.85 6 11.26.47.68.5 11.26.47.68.5 11.26.47.68.5 11.26.47.68.5 11.26.47.68.5 11.26.47.68.5 11.26.47.68.5	591095145599126454406218053475 12709580086853559126454406218053475 1111118 31158591311 21 21 31158535591311	8873367834267116274585640621442250026530 7367834267116274585640621442250026530	.39 .40 3.61 13.63	

PI=PRODUCTIVITY INDEX PC=PYRULY.ZABLE CARBON TC=TOTAL CARBON HI=HYDROGEN INDEX . OI=OXYGEN INDEX

KEROGEN ELEMENTAL ANALYSIS REPORT

BASIM - GIPPSLAND MELL - TURNIL, 3

SAMPLE MG.	UFMTH.	JAMPLE TYPE	E	LEPENTAL	L % (AS	H FREE)		COMMENTS
			11%	C %	11%	\$%	0%	ASH%	
77761 Y 77761 X	1573.50	580 580	.81 .80	56.34 62.48	4.76	.00	38.16 31.59	.78 3.19	
77801 Û 77801 S	1577.12 1570.36	COK COK	1.10	67.03 68.62	5.08 5.24	.00	26.80	6.89 4.31	
77601 1 77761 v	1576.70 1694.50	Cnk Stil	.85 .5v	67.38 31.12	5.06 3.10	. 0 ñ	25.24 26.70 65.27	1.61	
77761 U 77761 T	1611.30	5₩0 3₩0	1.13	66.63 66.92	5.00 4.33	.00	25.24 27.80	5.36 3.38	
77761 G 77761 K	1042.00	აუნ აქმნ	• 99	59.67 59.68	4.26 4.27	.00 .00	35.09 35.05	6.61 15.55	HIGH ASH
77761 P	1675.50	არს წუნ	1.16	70.68 70.45	5.87 5.45	00	22.56	5.77 2.99	
77761 (1 77761 (1 77761 L	1716.50	ა™(. 5™()	1.54 1.81	75.25 65.54	5.24 5.17	-00	17.97 27.48	3.66 6.07	
77761 K 77761 J	1750.50 1760.40 1777.00	- 3MC - 5MC - 5MC	1.57 91 .75	65.97 66.25	4.95 4.59	• 00	27.51	12.55 .87	HIGH ASH
77761 u 77761 6	1796.50 1615.00	5%U 5%U 5%U	1.42	65.31 70.96	4.83 5.53	.00 .00	29.11	4.32	
77761 F 77761 E	1637.00	5 16 546 546	1.19	71.32 67.65 70.46	4.88 4.84 4.88	• 0 0 • 0 0	26.32	8.67 8.44	
77761 b 77761 C	1880.90 1920.90	รพีบ รพบ รพบ	1 03	69.47 70.34	4.80 4.91	.00 .00	23.72	7.46 11.33 11.12	HIGH ASH HIGH ASH
77761 6 77761 A	1963.50	SMC SML	1.22	70.27	4.64	.00	23.91	12.31	HIGH ASH
77760 Z 77760 Y	2034.00 2061.00	ริษัติ รพธ	1.12	70.39 65.09	4.75 4.35	.00 .00	23.74	8.07 4.68	
77760 X 77760 D	2127.00	SMC SMC	1.02	66.86 66.32	4.60 4.72	. 0 n	27.52	1.84	HIGH ASH
77760 u 77760 S	2150.40	5₩ Ĺ 5₩ Ĺ	1.02 .53 .56 1.35	71.85 75.08	4.64 5.87	.00 .00	28.42 22.95 17.70	12.21 28.98	HIĞH ASH HIGH ASH,SMALL SAMPLE
77760 D 77760 P 77760 D	2122.50 2225.50	51°C	1.32 1.24	71.66	5.34 4.70	.00	21.48	20.99 7.05	HIGH ASH
77760 H 77760 K	5261.90 5253.00 2661.90	SHC SHC	1.34	64.24 77.99 82.52	4.67 5.25	.00	29.75 15.34	7.70 3.34	
77760 J 77760 J	5309.00 5309.00	- らいし - っとし - いいし	1.47 1.34 1.69	78.48	5.22 6.11	.00	10.79	11.50	HIGH ASH
77760 ii 77760 E	5787.90 5787.60	5 % C 5 % C 5 % E	1.50	80.75 86.37 70.62	5.31 6.44 4.92	-00	12.24 11.69 23.11	6.07 21.55	HIGH ASH
77760 0 77760 A	2576.9n 2647.00	5 P C 5 P C	1.10	40.08 92.45	5.84 5.99	. U O . U O . O O	12.98	6.42 6.89 26.25	HIGH ASH
77797 Å 77797 B	2760.00	LTS	1.23	76.16 81.84	4.11	•00 •00	18.50 11.45	5.75 5.83	ווטא ייטנוי ייטנוי ייטנוי
77797 C	2010.00	ČTŠ	1.57	76.79	5.07	.00	16.80	6.15	

PAGE

09/01/86 Table 4a cont'd

ESSO AUSTRALIA LTD.

KEROGEN ELEMENTAL ANALYSIS REPORT

BASIN - GIPPSLAUD WELL - TUPKII 3

SATIPLE NO.	, vErTa	SAMPLE TYPE	F	LEUEUTA	L % (A	SH FREE)		COMMENTS	
			11%	C %	11%	S%	U%	ASH%		
77797 (2050.00	СТБ	1.46	85.28	4.47	.00	11.79	3.84		
77797 L		9 .,	1.45							
77797 F 77797 G	5900-00 5980-00			76.49 79.49			18.43			
77797 1				74-07						

 $\langle \cdot \rangle$

ESSO AUSTRALIA LTD.

KEROGEN ELEMENTAL ANALYSIS REPORT

PAST - CIPPSON

	·
SAUDLE NO. OFFICE CAUPLE TIPL AGE FORMAT	
	H/C D/C II/C
77761 Y 1570-50 5ML HAPLY FOCUME LATPOR 77501 0 1577-376 UNA FAPLY FORME LATPOR LATPOR 77501 0 1577-376 UNA FAPLY FORME LATPOR 77501 1 1570-70 5ML FAPLY FORME LATPOR 77501 1 1570-70 UNA FAPLY FORME LATPOR 77501 0 1011-30 SML FAPLY FORME LATPOR 77761 0 1011-30 SML FAPLY FORME LATPOR 77761 1 1625-30 SML FAPLY FORME LATPOR 77761 1 1625-30 SML FAPLY FORME LATPOR 77761 1 1635-30 SML FAPLY FORME LATROR 77761 1 1730-30 SML FAPLORER LATROR 77760 M 200-30 SML FAPLORER LATROR	CPUIP 1 00

ESSO AUSTRALIA LTD.

KEROGEN ELEMENTAL ANALYSIS REPORT

PASH - GIPPSCAP - TENNEY

SAUPEL MO. IT	r Tal	SAMPLE TYPL	AGE	FORMATION	ATONIC KATIUS	COMMENTS
		~~~~~~~~		~ ~ ~ ~ ~ ~ ~ ~ ~	H/C 0/C 11/C	
77707 i 207 77707 i 298 77707 i, 290	0.00 0.00 0.00 0.00	(175 (175 (175	LATE CPETACEOUS LATE CPETACEOUS LATE CPETACEOUS LATE CPETACEOUS LATE CPETACEOUS	LATROBE GROUP LATRORE GROUP LATRORE GROUP LATRORE GROUP LATRORE GROUP	65 .11 .02 .72 .18 .02 .59 .18 .02 .80 .13 .01 .64 .21 .02	

12 12 181 Table 5

## ESSO AUSTRALIA LTD.

## VITRINITE REFLECTANCE REPURT

TAMIN - GIPPSLAND

SAMPLE NO	DEPTH	AGE	FORMATION	AN MAX.	RO	FLUOR. COLOUR	NO. CNTS.	MACERAL TYPE
77766 H 77761 S 77761 S 77761 J 77760 C 77760 K 77760 J 77760 E 77760 D 77760 A	1096 00 1 1642 00 1 1785 00 1 2034 00 1 2194 90 1 2397 00 1 2397 90 1 2571 90 1 2576 90 1	MID-EARLY MIDGENE EARLY EOCENE PALEOCENE	LAKES ENTRANCE LATROBE GROUP	555555555555555555555555555555555555555	387635855655655655655655655655655655655655655	YEL OR YEL-BRN YEL-BRN YEL-BRN YEL-DULL OR YEL-OR YEL-OR-BRN YEL-DULL OR YEL-DULL OR YEL-DULL OR YEL-DULL OR	7 27 28 88 88 12 29 65	V>I>E, DOM RARE V>E>I, COAL V>I>E, DOM COMMON V>E>I, COAL V>I>E, DOM ABUNDANT V>E>I, DOM ABUNDANT I>E>OR=V, DOM COMMON E>V>I, DOM ABUNDANT V>I>E, COAL V>I>E, COAL V>I>E, DOM COMMON V>I>E, DOM COMMON V>I>E, DOM COMMON V>I>E, DOM COMMON

00/01/8; Table 7

#### ESSO AUSTRALIA LTD.

PAGE 1

OIL - APT GRAVITY, POUR POINT & SULPHUR %

Basin - GiPrschin

*************************		
27.60	FORMATION	API GRAVITY POUR PI.(OF) SULPHUR % COMMENTS
7760) 2 2603-30 F715 CCNC 7760) 2 2614-30 F715 CCNC	LVIYUPE UKUME FYLVUPE UKUME FYLVUPE UKUME	38.89 .00 .00 RFT 3/44 37.78 .00 .00 RFT 8/55

٤,

# APPENDIX 6

# SYNTHETIC SEISMIC TRACE PARAMETERS

Well : Turrum-3
TD : 2996m KB

KB : 21m Water Depth : 60m

Polarity : A positive acoustic impedence is represented as a

trough on the trace.

Pulse type : Zero phase second derivative, Gaussian Function.

Peak Frequency : 25 HZ
Sample Interval : 3M
Checkshot Corrected : Yes

Comments : Sonic Log 56.0 - 2695m KB

: Density Log 1515 - 2763m KB All logs filtered and edited.

#### PE902427

This is an enclosure indicator page. The enclosure PE902427 is enclosed within the container PE902424 at this location in this document.

The enclosure PE902427 has the following characteristics:

ITEM_BARCODE = PE902427
CONTAINER_BARCODE = PE902424

NAME = Synthetic seismic Trace

BASIN = GIPPSLAND
PERMIT = VIC/L3
TYPE = WELL

SUBTYPE = SYNTH_SEISMOGRAM

DESCRIPTION = Synthetic seismic Trace for Turrum-3

REMARKS =

DATE_CREATED = 4/02/86 DATE_RECEIVED = 31/07/87

 $W_NO = W899$ 

WELL_NAME = Turrum-3

CONTRACTOR = ESSO CLIENT_OP_CO = ESSO

(Inserted by DNRE - Vic Govt Mines Dept)

# APPENDIX 7

#### 1. INTRODUCTION

This part report gives porosity, permeability and density data for twenty-one core plugs received from Turrum-3, core 4.

#### 2. PROCEDURES

All core plugs and off-cuts were cleaned in a 3:1 mixture of chloroform and methanol, then stored at  $50\,^{\circ}\text{C}/50\%$  relative humidity. Air permeability and porosity by helium injection were measured at an ambient, confining pressure of 1,000 kPa and at a net overburden pressure of 4,580 psi (31,580 kPa).

The precision of permeability values greater than 10,000 md is likely to be less than for lower permeabilities since the differential pressure between the inlet and outlet faces of the core (on which the results depend) is extremely small.

Apparent grain densities were calculated in conjunction with porosity measurements. Absolute grain densities were measured by pycnometry of the ground off-cuts.

#### 3. RESULTS

Tables 1 to 4 give results of all determinations.

# AMDEL CORE ANALYSIS

Burrum 3 Core 4 - Ambient Presoure.

amet.	.Ε	PERMEABILIT	Y (md)	POROSITY (%)
	2618.	16	0.661	9.3
6	2618.			17.5
	2618.		Ō	20.4
7 1	2619.		O	18.6
	2619.		(_)	19.5
76	2619.		(_)	21.1
7.6	2619.			20.6
20	2619.	.94 273		and the second
$\bigcirc$ 1	2620.	. 23 218	(C)	15.8
834	2620.	. 50 20	4	16.9
36	2620	.73 99	3	21.6
G(3)	2620.	. 98 - 138	(C)	22.3
- 4 (")	2621.			20 Aug (E)
91	26.21.	. 34 224	.i)	22.7
90	2621.	. 55 79	(O	20.6
95	2621.	. 81 154	· ()	21.4
97	2621.	. 97 1908	} <b>્</b>	21.7
99	2622.			18.5
$1 \ominus 1$	2622.	.37 1608	30	22.9
103	2622.	.6I 798		22.3
105	2622		00	23.4

#### AMDEL COME ANALYSIS

Turrum 3 Core 4 - Ambient Pressure.

SAMI	PLE	BULK VOL	EULK Dry Dens		ABSOLUTE GN DENC
66	2618.16	24.25	2.47	Z. 7.Z	2.71
67	2618.44	23.96	2.21	2.68	#11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
70	2618.75	19.84	2.09	2 . 6 2	2.67
71	2619.05	23.61	2.17	2.67	2,59
74	2619.35	24.43	2.15	2.67	2.66
76	2619.54	24.07	2.11	2.67	1.55
78	2619.79	24.66	2.11	2.66	10 m 10 t.3
80	2619.94	24.50	2.07	2.66	21.654
81	2620.20	24.25		2.66	2.64
84	2620.53	24.04		2.57	# 1
86	2620.73	24.02	2.10	I 67	a L
88	2620.98	24.15	2.06	2.56	2.67
90	2621.14	24.05	2.05	2.67	
91	2621.34	24.18	2.06		21.63E
93	2621.55	24.12	2.12	2.67	2.65
95	2621.81	24.52	2.10	2.66	2.65
97	2621.97	20.05	2.08	1.66	2.66
99	2622.21	24.40	2.10	2.65	2.66
101	2622.37	24.42	2.05	2.66	2.65
103	2622.62	24.05	2.07	2.67	21,05
105	2622.85	24.38	2.05	2.68	2.50

## AMDEL CORE ANALYSIS

Turrum 3 Core 4 - J1580 kFa.

SAMPL	.EI	PERMEABILITY	Cmd +	FOFOSITA A
66	2618.	_		<b>5.</b> 0
67	2618.	44 857		10.7
70	2618.	75 1240		1. 7
71	2619.	05 3840		1
74	2619.	35 1480		1 77 4 (1)
76	2619.			1 7
78	2619.			17.1
80	2619.			19.1
31	2620.	23 399		13.0
54	2620.	.53 151		1 1 1 m
36	:620.			1.77
334	26.20.			
90	2621.			an ( ) a
91	2621.			20.5
93	2621.	.55 574		
95	2621.			15.4
97	2621.	and the second s		1 7 . 4
90	2622			16.0
TO1	2622.			(8.9
103	2622			18.3
(0.55	2622			19.0

# AMDEL CORE AMALYSIS

Turrum 3 Core 4 - 31580 kfa.

				APPARENT
SAF	IFLE	BULK VOL	DRY DENS	(DIA 17(1))
 66	2618.16	23.99	2.50	2.75
67	2618.44	23.71	en en en en	2.68
70	2618.75	19.53	die n de die	2.62
71	2619.05	23.25	2.21	2.67
74	2619.35	23.70	2.22	2.67
76	2619.54	20.13	$\sum_{\mathbf{x}_{\mathbf{x},\mathbf{x}}\in\mathbf{B}} \sum_{\mathbf{x}_{\mathbf{x},\mathbf{x}}} \sum_{\mathbf{x}_{\mathbf{x},\mathbf{x}}} \left( \hat{\mathbf{x}}_{\mathbf{x}}^{\mathbf{x}} \right)$	2.67
78	2619.79	23.62	2.21	2.66
80	2619.94	29.57	2.15	2.66
81	2620.23	23.47	2.31	2.66
84	2620.53	23.68		2.67
86	2620.73	23.24	2.17	2.67
F, C ₁	1620.98	23.48	2.13	2.66
90	2621.14	23.33	1.13	1.67
91	2621.34	23.50	2.12	2.65
95	2621.55	23.99	2.18	2.67
95	2621.81	23.60	20 u 1 7	2.66
97	2621.97	19.01	2.20	2.66
ଲ୍ଲ	2622.21	23.83	San an all said	1.58
101	2622.37	23.22	2.16	2.65
103	2622.62	20.01	2.17	0.67
105	2622.85	23.24	2.15	21.69

#### 1. INTRODUCTION

This part report gives fluid saturation, porosity, permeability and density data for nineteen core plugs received from Turrum-3, Core 1.

#### 2. PROCEDURES

### 2.1 Fluid Saturation (Uil and Water)

Using Dean-Stark apparatus, toluene (boiling point  $110\,^{\circ}\mathrm{C}$ ) vapour is condensed and continually dripped onto the core plug to extract both oil and water.

The water is collected in a calibrated receiver and after drying the extracted core plug, the oil present is determined as the difference between the core plug weight loss and the weight of accumulated water.

## 2.2 Porosity and Permeability

After drying the core plugs at  $100\,^{\circ}\text{C}$  to complete Dean-Stark results, all plugs were stored at  $50\,^{\circ}\text{C}/50\%$  relative humidity, prior to determination of air permeability and porosity by helium injection. These measurements were taken at a confining pressure of 1,000 kPa and at a net overburden pressure of 2,700 psi (18,616 kPa).

The precision of permeability values greater than 10,000 md is likely to be less than for lower permeabilities since the differential pressure between the inlet and outlet faces of the core (on which the results depend) is extremely small.

## 2.3 Densities

Apparent grain densities were calculated in conjunction with porosity measurements.

Absolute grain densities were determined by pycnometry of the ground off-cuts, which had been cleaned in a Soxhlet extractor using dichloromethane as the solvent.

## 3. RESULTS

Results for fluid saturations are given in Table 1. Two figures are given for water saturation as a % of pore space. As the core plugs were drilled using liquid nitrogen as the lubricant and then lead sleeved, possible condensation from the atmosphere makes precise determination of the amount of water held in the plug and steel screens difficult. One figure assumes that the steel screens hold no water, while the other assumes that the steel screens are filled with 0.6 cc of water. The actual water saturation lies within these limits.

Porosity, permeability and density results are given in Tables 2 to 5.

TABLE 1: TURRUM-3 CORE 1 FLUID SATURATIONS

Sample	Weight Loss on Extraction (g)	Volume of Water Collected (cc)	Weight of Oil Extracted (g)	Volume of Oil Extracted Δ (cc)	N.O.B.P. Pore Volume (Corrected for steel screens) (cc)	Oil Satn (% Pore Space)	Water Satn (% Pore Space) *	Water Satn (% Pore Space) †
3	1.409	1.40	0.009	0.01	2.41	0.4	58.1	N/A
11	1.031	0.80	0.231	0.27	5.07	5.3	15.8	3.9
13	1.497	1.30	0.197	0.23	3.62	6.4	35.9	19.3
15	1.334	1.20	0.134	0.16	3.18	5.0	37.7	18.9
17	1.411	1.40	0.011	0.01	3.12	0.3	44.9	25.6
19	2.589	2.40	0.189	0.22	4.81	4.6	49.9	37.4
22	1.350	1.25	0.100	0.12	3.05	3.9	41.0	21.3
23	2.392	2.20	0.192	0.23	2.72	8.5	80.9	58.8
26	1.148	1.00	0.148	0.17	4.42	3.9	22.6	9.1
28	1.677	1.62	0.057	0.07	5.01	1.4	32.3	20.4
30	3.526	3.50	0.026	0.03	4.90	0.6	71.4	59.2
32	3.839	3.70	0.139	0.16	4.90	3.3	75.5	63.3
33	3.601	3.60	0.001	0.00	4.35	<0.01	82.8	69.0
36	3.623	3.50	0.123	0.15	5.30	2.8	66.0	54.7
37	4.130	3.94	0.190	0.22	6.29	3.5	62.6	53.1
39	3.965	3.95	0.015	0.02	5.56	0.4	71.0	60.3
41	4.182	4.05	0.132	0.16	4.90	3.3	82.7	70.4
42	3.821	3.80	0.021	0.03	4.75	0.6	80.0	67.4
43	3.965	3.90	0.065	0.08	4.90	1.6	79.6	6/.4

 $[\]Delta$  Assumes an oil density of 0.85.

^{*} Assumes hold-up volume in steel screens is empty.

⁺ Assumes hold-up volume in steel screens is filled with 0.6 cc water.

Turrum 3 Core 1 - Ambient Pressure.

SAMP	LE FI	ERMEABILITY	(md) POROSITY	(%)
3	1578.42	17.	.5 19.4	
11	1579.50	284270	31.5	
	1579.75		26.2	
15	1580.14	3060	17.9	
17	1580.42	19740	21.3	
19	1580.73	16650	28.3	
22	1581.10	7530	24.4	
23	1581.30	173	20.2	
26	1581.88	14410	28.1	
28	1582.13	5980	29.2	
30	1582.39	3450	30.8	
32	1582.65	6340	31.3	
33	1582.84	1630	27.6	
36	1583.13	6270	32.1	
37	1583.33	7610	34.7	
39	1583.62	7290	33.5	
41	1583.87	1590	29.2	
42	1584.14	3340	27.7	
43	1584.31	2240	29.5	

Turrum 3 Core 1 - Ambient Pressure.

SA	MFLE	BULK VOL	BULK DRY DENS		ABSOLUTE GN DENS
3 11 13 15 17	1578.42 1579.50 1579.75 1580.14 1580.42 1580.73 1581.10 1581.30 1581.88 1582.13 1582.39 1582.65 1582.84 1583.13 1583.33	17.81 18.93 19.13 18.51 18.96 18.98 18.82 18.84 19.16 19.06 18.63 16.72	2.13 1.80 1.96 2.18 2.10 1.91 2.07 2.14 1.95 1.89 1.85 1.85 1.85	2.65 2.65 2.65 2.66 2.67 2.67 2.74 2.68 2.72 2.66 2.71 2.69 2.70 2.70	Sample not received 2.68 2.67 2.68 2.68 2.67 2.70 2.70 2.72 2.68 2.68 2.68 2.68 2.68
41 42 43	1584.14	19.26 18.98 19.24	1.96	2.71 2.71 2.69	

Turrum 3 Core 1 - 18600 kPa.

SAME		ERMEABILITY (m	nd) POROSITY	(%)
3				
1 1	1579.50	114140	97 14.4 28.1	
	1579.75		20.4	
15	1580.14	2740	17.3	
17	1580.42	3170	17.3	
19	1580.73	16650	26.1	
22	1581.10	4590	17.7	
23	1581.30	7.2	15.3	
26	1581.88	23160	24.3	
28	1582.13	2030	27.1	
30	1582.39	2200	27.5	
32	1582.65	2670	27.6	
33	1582.84	438	24.8	
36	1583.13	4220	28.7	
37	1583.33	5330	33.0	
39	1583.62	4940	30.7	
41	1583.87	1070	26.4	
42	1584.14	2260	25 <b>.</b> 7	
43	1584.31	1410	26.5	

Turrum 3 Core 1 - 18600 kFa.

SAMFLE	BULK VOL	DRY DENS	AFPARENT GN DENS
3 1578.42 11 1579.50 13 1579.75 15 1580.14 17 1580.42 19 1580.73 22 1581.10 23 1581.30 26 1581.88 28 1582.13 30 1582.65 33 1582.65 33 1582.84 36 1583.13 37 1583.33 39 1583.62 41 1583.87 42 1584.14 43 1584.31	18.03 17.74 18.38 18.05 18.41 17.27 17.76 18.20 18.51 17.79 17.77 17.56 18.44 19.07 18.12	2.27 1.89 2.11 2.20 2.21 1.97 2.25 2.27 2.06 1.94 1.96 1.95 2.03 1.90 1.81 1.89 1.99 2.01	2.65 2.65 2.65 2.66 2.67 2.67 2.74 2.68 2.72 2.66 2.71 2.69 2.70 2.70 2.70 2.71 2.71 2.71

## 1. INTRODUCTION

This final part report gives porosity, permeability and density data for seventeen core plugs from Turrum-3, cores 2, 3 and 5.

#### 2. PROCEDURE

All core plugs and off-cuts were cleaned in a 3:1 mixture of chloroform and methanol, then stored at  $50\,^\circ\text{C}/50\%$  relative humidity. Air permeability and porosity by helium injection were measured at an ambient, confining pressure of 1,000 kPa for cores 2 and 3 only and at net overburden pressures of 4,450 psi (31,280 kPa) for cores 2 and 3 and 5110 psi (35,200 kPa) for core 5.

Apparent grain densities were calculated in conjunction with porosity measurements. Absolute grain densities were measured by pycnometry of the ground off-cuts.

#### 3. RESULTS

Tables 1 to 10 give results of all determinations.

Turrum 3 Core 2 - Ambient.

SAM	PLE	PERMEA	ABILITY (md)	POROSITY (%)
45	2597 <b>.</b>	36	0.416	4.0
47	2597.	60	0.593	4.5
49	2597.	86	0.234	4.4
51	2598.	10	394	8.8
53	2598.	32	2.0	4.6

Turrum 3 Core 2 - Ambient.

SAMFLE	BULK VOL	BULK DRY DENS	APPARENT GN DENS	ABSOLUTE GN DENS
45 2597.36 47 2597.60 49 2597.86 51 2598.10 53 2598.32	24.22 24.89 21.25 24.34 24.37	2.60 2.57 2.58 2.46 2.58	2.71 2.70 2.70 2.70 2.70	2.71 2.70 2.71 2.70 2.70 2.70

TABLE 3

Turrum 3 Core 2 - 31280 kPa.

SAMPLE	PERMEABIL	TTV (mel)	FOROSITY (%)
JF71 11 L.L.		. d. 1	
45 2597	. 36	0.015	2.7
47 2597	.60	. 057	3.8
49 2597	.86	010	3.1
51 2598	.10	312	7 <b>.</b> 5
53 2598	. 32	0.088	3.1

TABLE 4

Turrum **3 Core** 2 - 31280 kFa.

SAMPLE	BULK YOL	BULK DRY DENS	APPARENT GN DENS
45 2597.36	23.88	2.64	2.71
47 2597.60	24.70	2.59	2.70
49 2597.86	20.95	2.62	2.70
51 2598.10	24.00	2.50	2.70
53 2598.32	23.98	2.62	2.70

Turrum 3 Core 3 - Ambient.

SAMPL	E PERME	ABILITY (md)	FOROSITY (%)	
54 1	2599 <b>.</b> 54	1.3	3.4	
56 7	2599.79	0.541	2.9	
57 :	2599.93	0.313	3.2	
60 1	2600.33	26.6	6.5	
61 3	2600.58	3.4	5.1	
64 1	2600.87	1 . 1.	4.7	

Turrum 3 Core 3 - Ambient.

SAMPLE	BULK VOL	BULK DRY DENS	APPARENT GN DENS	ABSOLUTE GN DENS
54 2599.54	17.39	2.62	2.71	2.73
56 2599.79	17.38	2.64	2.71	2.74
57 2599.93	16.74	2.63	2.72	2.70
<b>60</b> 2 <b>6</b> 00.33	16.97	2.54	2.72	2.74
61 2600.58	14.20	2.57	2.71	2.72
64 2600.87	16.28	2.57	2.69	2.75

Turrum 3 Core 3 - 31280 kFa.

SAMPLE	PERMEA	BILITY (md)	FOROSITY	(%)
54 2599 56 2599 57 2599 60 2600 61 2600 64 2600	.79 .93 .93	0.051 0.030 0.010 18.8 0.278 0.081	2.2 1.9 1.9 4.9 2.3	

Turrum 3 Core 3 - 31280 kPa.

**********				
Sé	MPLE	BULK VOL	BULK DRY DENS	AFFARENT GN DENS
54	2599.54	17.17	2.65	2.71
56	2599.79	17.20	2.66	2.71
57	2599.93	16.52	2.67	2.72
60	2600.33	16.67	2.58	2.72
€1	2600.58	13.80	2.65	2.71
64	2600.87	16.02	2.61	2.69

+388

# AMDEL CORE AMAL7813

Turrum 3 Core 5 - 33200 FFa.

SAMP	E	PERMEABILI	(bm) YT	POROSETY (%)
120	2914.	87	0.001	2.9
122	2915.	93	0.005	en e
124	2917.	05	0.001	- Tr
1.20	$\mathbb{Z}^{n}) \mathbb{Z} \oplus \mathbb{Q}_{ \mathfrak{a} }$	99	0.004	4.5
1.31	2911.	26	0.005	5.3
1.35	2923.	75	0.001	4.3

## APPDEL CORE ANALYSI

Turrum 3 Core 5 - 35200 kPa.

SAMPLE	BULK VOL	BULK DRY DENS	APPARENT GN DENS	ABSOLUTE GN DENE
120 2914.87	17.47	2.69	2.77	3.79
122 2915.93	16.32	2.62	2.77	1.110
124 2917.05	17.38	2.55	2.63	i e comini
130 2920.39	16.96	2.50	2.65	1,69
131 2921.26	16.66	2.54	2.69	2.47
135 2320,75	14.78	2.66	2.80	2.84

NOTE:

Both apparent and absolute grain densities were repeated for sample 122 (2915.93 m), the same values being obtained each time. Plug 122 is a light grey siltstone with less than 1% organic matter. The ground off-cut is dark grey, carbonaceous material. It appears that the off-cut sent does not match the plug received.

# ENCLOSURES

This is an enclosure indicator page. The enclosure PE902425 is enclosed within the container PE902424 at this location in this document.

The enclosure PE902425 has the following characteristics:

ITEM_BARCODE = PE902425
CONTAINER_BARCODE = PE902424

NAME = Geological Cross Section

BASIN = GIPPSLAND

PERMIT = VIC/L3 TYPE = WELL

SUBTYPE = CROSS_SECTION

DESCRIPTION = Geological Cross Section for Turrum-3

REMARKS =

DATE_CREATED = 31/08/84 DATE_RECEIVED = 4/10/84

 $W_NO = W899$ 

WELL_NAME = Turrum-3

CONTRACTOR = ESSO CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902426 is enclosed within the container PE902424 at this location in this document.

The enclosure PE902426 has the following characteristics:

ITEM_BARCODE = PE902426
CONTAINER_BARCODE = PE902424

NAME = Structure Map Top Latrobe

BASIN = GIPPSLAND PERMIT = VIC/L3

TYPE = SEISMIC

SUBTYPE = HRZN_CNTR_MAP

DESCRIPTION = Structure Map Top Latrobe for Turrum-3

REMARKS =

DATE_CREATED = 30/06/85 DATE_RECEIVED = 31/07/87

 $W_NO = W899$ 

WELL_NAME = Turrum-3

CONTRACTOR = ESSO CLIENT_OP_CO = ESSO

_ _

This is an enclosure indicator page. The enclosure PE902428 is enclosed within the container PE902424 at this location in this document.

The enclosure PE902428 has the following characteristics:

ITEM_BARCODE = PE902428
CONTAINER_BARCODE = PE902424

NAME = Structure Map Lower L.balmei

BASIN = GIPPSLAND PERMIT = VIC/L3 TYPE = SEISMIC

SUBTYPE = HRZN_CNTR_MAP

DESCRIPTION = Structure Map Lower L.balmei for

Turrum-3

REMARKS =

DATE_CREATED = 30/06/85 DATE_RECEIVED = 29/01/88

 $W_NO = W899$ 

WELL_NAME = Turrum-3
CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902429 is enclosed within the container PE902424 at this location in this document.

The enclosure PE902429 has the following characteristics:

ITEM_BARCODE = PE902429
CONTAINER_BARCODE = PE902424

NAME = Structure Map L1.4.2 Reservoir

BASIN = GIPPSLAND PERMIT = VIC/L3

TYPE = SEISMIC

SUBTYPE = HRZN_CNTR_MAP

DESCRIPTION = Structure Map L1.4.2 Reservoir for

Turrum-3

REMARKS =

 $DATE_CREATED = 30/06/85$ 

DATE_RECEIVED = 29/01/88

 $W_NO = W899$ 

WELL_NAME = Turrum-3

CONTRACTOR = ESSO

 $CLIENT_OP_CO = ESSO$ 

This is an enclosure indicator page. The enclosure PE902430 is enclosed within the container PE902424 at this location in this document.

The enclosure PE902430 has the following characteristics:

ITEM_BARCODE = PE902430
CONTAINER_BARCODE = PE902424

NAME = D-Function Map P asperopolus

BASIN = GIPPSLAND PERMIT = VIC/L3 TYPE = WELL

SUBTYPE = MAP

DESCRIPTION = DFunction Map P asperopolus for

Turrum-3

REMARKS =

DATE_CREATED = 30/11/84 DATE_RECEIVED = 31/07/87

 $W_NO = W899$ 

WELL_NAME = Turrum-3
CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE601183 is enclosed within the container PE902424 at this location in this document.

The enclosure PE601183 has the following characteristics:

ITEM_BARCODE = PE601183
CONTAINER_BARCODE = PE902424

NAME = Well Completion Log

BASIN = GIPPSLAND PERMIT = VIC/L3 TYPE = WELL

SUBTYPE = COMPLETION_LOG

DESCRIPTION = Well Completion Log for Turrum-3

REMARKS =

DATE_CREATED = 22/04/85 DATE_RECEIVED = 31/07/87

 $W_NO = W899$ 

WELL_NAME = Turrum-3 CONTRACTOR = ESSO

 $CLIENT_OP_CO = ESSO$