


DEPT. NAT. RES & ENV PE906397



## <u>GIPPSLAND BASIN</u> <u>VIC-P17</u> <u>OMEO NO. 1</u> <u>FINAL TECHNICAL REPORT</u> (<u>DRILLING</u>)

| F3a Bis 2-78                                            |                                                 | WELI                                   | L DATA                                          | 18-19-19-19-19-19-19-19-19-19-19-19-19-19- | WELL: TARRA 1                                    |
|---------------------------------------------------------|-------------------------------------------------|----------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------------|
| 7) WELL NAME :                                          | TARRA NO. 1                                     |                                        | 2) ID EN T .: _                                 | TRA1                                       | L                                                |
| 3) GEOGRAPHICAL ARE                                     | A <u>BASS ST</u>                                | RAIT                                   | 4) GEOLOGIC                                     | AL BASIN                                   | GIPPSLAND                                        |
| 5) FIELD : WILDC                                        | AT                                              |                                        | 6) BLOCK                                        | VIĊ-P17                                    |                                                  |
| 7) PERMIT/HOLDERS :<br>VIC-P17                          | 8) PARTNERS :                                   |                                        | <u>.</u>                                        |                                            |                                                  |
| AAP & PARTNERS                                          | Nar<br>AUSTRALIAN<br>ALLIANCE RE<br>AGEX PTY. L | OCCIDENT<br>SOURCES                    | PTY_LTD_25                                      | CONSOLIDA                                  | Name %<br>TED PET. AUST. 12.5<br>ITAINE PET. 25  |
| 9) OPERATOR : AUST                                      | I<br>RALIAN AQUITAINE                           |                                        | 11) REFERE                                      |                                            |                                                  |
| PETRI                                                   | OLEUM PTY. LIMIT                                | <u>ED</u>                              | OMEO NO<br>EDINA N                              |                                            |                                                  |
| 10)INITIAL STATUS 12)                                   | LOCATION COORD                                  | INATES                                 | LUINA N                                         | 0. 1                                       |                                                  |
| Exploration X Lana<br>Development Swan<br>Other         | hore 101 Latitu                                 | <sub>de</sub> 3 <u>8<sup>0</sup>38</u> | <u>coordinates</u><br>'37.15" S<br>2'08.20" E   | reference merid                            | X(m)                                             |
| Other Dthe                                              |                                                 | ude <u> </u>                           |                                                 | Greenwich 🛛                                | Z(m)                                             |
| SITE                                                    | LAND                                            | 01                                     | FFSHORE                                         | SWAMP                                      | OTHER                                            |
| Distance RKB/REF.                                       |                                                 |                                        |                                                 |                                            |                                                  |
| Reference                                               | GROUND                                          | MUDLIN                                 | ZERO<br>HYDRO                                   |                                            |                                                  |
| 13) DRILLING OBJECTIN                                   | VES                                             |                                        |                                                 |                                            |                                                  |
| Objective n <sup>0</sup>                                | Formation                                       |                                        | Formation tops<br>vertical depth                | Departu                                    | re Direction                                     |
|                                                         | RZELECKI                                        |                                        | 2547m (RKE                                      | 3)                                         |                                                  |
| (ACCUMULATIONS BELC<br>HORIZON)                         | DW THE BLUE                                     |                                        |                                                 |                                            |                                                  |
| 14) WELL COURSE                                         | 15) WAS T                                       | HE OBJEC                               | TIVE REACHE                                     | D ?                                        |                                                  |
| Vertical Deviated                                       | OBJECTIVE                                       | yes                                    | по <b>ve</b>                                    | rmation tops                               | eparture Direction<br>3/4 <sup>0</sup>           |
|                                                         | OBJECTIVE                                       | 2                                      |                                                 |                                            |                                                  |
| Normal Sco                                              | OBJECTIVE                                       | 3 🗆                                    | □                                               |                                            |                                                  |
|                                                         |                                                 | 4                                      | <u> </u>                                        |                                            | · · · · · · · · · · · · · · · · · · ·            |
| 16) RESULTS Dil produc<br>Gas produ<br>Water prod       | uction                                          |                                        | but no reservoir<br>ion well                    | 🖻 Plug                                     | porarily plugged<br>ged and abandonned<br>pleted |
| 17) DATES (•)                                           |                                                 |                                        | 18) WELL E                                      |                                            |                                                  |
| BEGINNING                                               | END                                             |                                        | Total depth                                     | 2905m                                      | Versient death 2905n                             |
| Mell         1.3.83           Drilling :         4.3.83 | Drilling3.4.8<br>Well21.4.8                     |                                        | Drilled footage                                 | $\frac{2812m}{1.340^{\circ}}$              | Lost footage :                                   |
| TOTAL DURATION<br>Well                                  | L                                               | days<br>- days                         | 19) COSTS<br>Before drilling<br>During drilling | <u>118,496</u><br>7,941,104                | Direction                                        |
|                                                         |                                                 |                                        | After drilling<br>Total well                    | 8,059,600                                  |                                                  |

|                         | 2-78                                  | LOGISTICS                               | WELL: TAR                             | RA 1 |
|-------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|------|
|                         | AUSTRALIAN AOUT                       | TAINE PETROLEUM PTY. LTD.               |                                       |      |
| <b>A</b> rea management | · · · · · · · · · · · · · · · · · · · | , NORTH SYDNEY, N.S.W. 2060             | 0                                     |      |
| Located :               | P.O. BOX 725                          | • · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |      |
|                         |                                       |                                         |                                       |      |
| Land Base               | AQUITAINE WELSH                       | POOL SHORE BASE                         |                                       |      |
|                         | MIDLAND HIGHWAY                       |                                         |                                       |      |
| Located :               | WELSHPOOL. VIC.                       | 3966                                    |                                       |      |
|                         | P.O. BOX 27                           |                                         |                                       |      |
| • SERVICE CON           | PANIES                                |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |
| - Mud                   | BAROID                                | - Under water T.V.                      | ODECO                                 |      |
| - Mud logging           | GEOSERVIC                             | ES Testing                              | HALLIBURTON                           |      |
| . Production te         | FLOPETROL                             |                                         | CAMERON                               |      |
| . Fishing               | TRISTATE                              | <br>_ Depollution                       | AAP                                   |      |
| - Positioning           | DECCA SUR                             | VEY Air transportation                  | COMMERCIAL AVIA                       | TION |
| Electrical log          | •                                     |                                         | AOS                                   |      |
| - Meteo                 | MELBOURNE                             |                                         | "LADY JANE"                           |      |
| _ Diving                | OCEANEERI                             |                                         | "SEA SAPPHIRE"                        |      |
| -                       |                                       | HLUMBERGER                              | STAND BY-                             |      |
| . H.P. Pumping          | BAROID                                |                                         | LOMBARDO MARINE                       |      |
| - Bulking               | DARUID                                |                                         | :                                     | V II |
|                         | :                                     |                                         | "CHRISTMAS CREE                       | K    |
|                         |                                       |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |
|                         |                                       |                                         |                                       |      |

| F3b Bis :                                                   | 2-78                   |                       |                                                                           |                   | KUNMEN                                |      |                     |       | RCLL - LARR                   |
|-------------------------------------------------------------|------------------------|-----------------------|---------------------------------------------------------------------------|-------------------|---------------------------------------|------|---------------------|-------|-------------------------------|
| AREA -                                                      | L                      | AND                   |                                                                           |                   | SEA X                                 |      | SWAMP               |       | LAKE                          |
|                                                             | ALTITUDE               | 1                     | SEA L                                                                     | EVEL              |                                       | ,    | WATER DEPT          | н     | : <u>63m</u>                  |
| DISTANCE                                                    | FROM BASI              | E :                   | 107                                                                       | KM                |                                       | DIST | ANCE FROM           | SHORE | : <u>53m</u>                  |
| • RELIEF                                                    | Flat                   |                       | Slightly<br>undulate                                                      |                   | Undulate                              |      | Very<br>undulate    | . 🗆   |                               |
| • SEA<br>CONDITIONS                                         | Calm                   |                       | Medium                                                                    |                   | Strong                                | X    | Very<br>strong      |       |                               |
| POLLUTION     RISK                                          | Low                    |                       | Medium                                                                    | X                 | High                                  |      | Very<br>high        |       |                               |
| • WEATHER                                                   | Equatorial             |                       | Hot                                                                       |                   | Temperate                             |      | Cold                | X     | Arctic                        |
| • POPULATION<br>DENSITY                                     | Nil                    | <u>-χ</u>             | Lov                                                                       | •                 | Medium                                |      | High                |       | Very F<br>high L              |
|                                                             |                        |                       | ~                                                                         |                   |                                       |      |                     |       |                               |
|                                                             |                        |                       |                                                                           |                   |                                       |      |                     |       |                               |
|                                                             |                        |                       |                                                                           | MEA               | NS USEI                               | )    |                     |       |                               |
| • NAME OF THE                                               | E RIG (LAN             | (D) : _               |                                                                           | MEA               | NS USEI                               | )    |                     |       |                               |
| • <u>NAME OF THE</u><br>• <u>SUPPORT</u> •<br>• <u>TYPE</u> | E RIG (LAN<br>Land     | ( <u>q)</u><br>,<br>, | ور میں                                |                   | NS USEI                               |      | Drillship           |       | Semi-<br>submersible          |
| • SUPPORT •                                                 |                        | •                     | <ul> <li>Artifici<br/>island</li> <li>Non assiste<br/>Platform</li> </ul> |                   |                                       |      | Drillship<br>Tender |       | Semi-<br>submersible<br>Other |
| • SUPPORT •                                                 | Land<br>Swamp<br>barge |                       |                                                                           | ial               | _r<br>Jack-ur<br>Assisted<br>platform |      |                     |       | submersible L                 |
| • SUPPORT •<br>• TYPE                                       | Land<br>Swamp<br>barge |                       | Non assiste<br>Platform<br>OCEAN                                          | ial<br>d<br>DIGGE | Jack-ur<br>Assisted<br>platform       |      | Tender              |       | submersible C                 |
| • <u>SUPPORT</u> •<br>• <u>TYPE</u><br>• <u>SEA SUPP</u>    | Land<br>Swamp<br>barge |                       | Non assiste<br>Platform<br>OCEAN                                          | ial<br>d<br>DIGGE | Jock-ur<br>Assisted<br>platform       |      | Tender              |       | submersible E<br>Other [      |

| F3b' Bis 2-78          | MEANS                    | USED (cto            | i)              | WELL: TARRA 1                          |
|------------------------|--------------------------|----------------------|-----------------|----------------------------------------|
| DRILLING EQUIPMENT     | REMSCO_MODEL #           | 1500 E               | CONTRACTOR :    | ODECO                                  |
| RANGE • Light          | ] Medium 🗌               | Heavy X              | Super<br>Heavy  | Extra<br>Heavy                         |
| TRANSMISSION •         | Mechanical 🗍             | Electric X           | Hydraulic 🗌     |                                        |
| MAIN PUMPS .           | Number 2 EN              | MSCO D-1350 HP       | Total hydraulic | power .                                |
| RIG DESIGN •           | Normal design X          | Compact              | Portable        | Helirig                                |
|                        | Flexorig                 | Automatic<br>racking | Winterised 🗌    |                                        |
| B.O.P. STACK           | Dia                      | meter                |                 | API WP                                 |
| Number 1               | 18 3/4"                  | CAMERON "U"          | 10,000          | PSI                                    |
| Number 2               | 18 3/4"                  | HYDRIL               | 5,000           | PSI                                    |
| Number 3               |                          |                      |                 |                                        |
|                        |                          |                      |                 |                                        |
| WELL HEAD              | Manufacturer             | Туре                 | Diameter        | API WP                                 |
| Number 1               | CAMERON                  | TORQUE SET.          | 18 3/4"         | <u>10,000 PSI</u>                      |
| Number 2               |                          |                      |                 |                                        |
| Number 3               |                          |                      |                 |                                        |
| MUD LINE SUSPENSION:   | yes no                   | Manufa               | cturer :        |                                        |
| RISER                  | iber 1                   | Т                    | Numbe           | or 2                                   |
| Diameter : <u>50'x</u> | <u>22" ODx0.50"</u> WALL | Diamete              | • : <u></u>     |                                        |
| Connector : VETC       | 0 MR-6B                  | Connect              | or :            | ······································ |
| Buoyancy system :      | ne 🗶                     | yes 🔲 Buoyanc        | y system        | no yes                                 |

| yes | Buoya |
|-----|-------|
|     |       |

و بيبين منها منه بيبين بيبية محت مين منها الحدة الألب المرا ....

.

| F3C Bis 2-78  |                              | TECHNI   | CAL SECTION                   |                      | W                      | IELL : TARRA 1           |
|---------------|------------------------------|----------|-------------------------------|----------------------|------------------------|--------------------------|
| • OPEN HOLE S |                              |          |                               | • CASINGS •          |                        |                          |
| DIAMETER      | <b>TOTAL DEPTH</b><br>METRES | DIAMETER | COMPOSITE STRING<br>DIAMETERS | shoe depth<br>METRES | HANGER DEPTH<br>METRES | TOP CEMENT<br>IN ANNULUS |
| 26"           | 219                          | 20"      |                               | 211m                 | 91m                    | SEA BED                  |
|               |                              |          |                               |                      | TOP SEAL ASSMY.        |                          |
| 17½"          | 1010                         | 13 3/8"  |                               | 1002m                | 93.34m                 | 500 mtrs RKI             |
| 12¼"          | 2580                         | 9 5/8"   |                               | 2567m                | 92.34m                 | 2070RKB                  |
| 8½"           | 2905                         |          |                               |                      | ·                      |                          |
|               |                              |          |                               |                      |                        |                          |
| ·             |                              |          |                               |                      |                        |                          |
|               |                              |          |                               |                      |                        |                          |
|               |                              |          |                               |                      |                        |                          |
|               |                              | i        |                               |                      |                        |                          |

,

|  | State State Contract State Sta | e de la |  |  |  |  |  |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|

| F        | <b>3c'</b> Bi                    | s 2-7            | 8       |                  |                  |       | FOOT | AGE | (ME            | TERS | 0 R | FEE                | ΞŤ)   |         |        |      | WELL                   | :                                        | A |
|----------|----------------------------------|------------------|---------|------------------|------------------|-------|------|-----|----------------|------|-----|--------------------|-------|---------|--------|------|------------------------|------------------------------------------|---|
| Interval | Total<br>footage<br>the interval |                  | DRILLIN | 1G               |                  | CORIN | G    | τυ  | RBODRIL        | LING | 1   | DRILLIN<br>HOLE OF | G     | HOLEC   | PENING | AND  | ILLING<br>D/OR<br>MING | Abandonned<br>footage<br>in the interval |   |
| <u>-</u> | in the                           | Ø                | mor     | h                | Ø                | m or  | h    | Ø   | m or ft        | h    | Ø   | m or ft            | h     | m or ft | h      | m or | h                      | Abar<br>for<br>in the                    |   |
| 26"      | 126                              | 26               | 126     | 9 <sup>1</sup> 2 |                  |       |      |     |                |      |     |                    |       |         |        |      |                        |                                          |   |
| ]7½"     | 791                              | 17½              | 791     | 52               |                  |       | 1    |     |                |      |     |                    |       |         |        | 159  | 7.5                    |                                          |   |
| 12¼"     | 1570                             | 12¼"             | 1570    | 142.5            |                  |       |      |     |                |      |     |                    |       |         |        | 1013 | 21                     |                                          |   |
| 8½       | 325                              | 8 <sup>1</sup> 2 | 325     | 75               | 8 <sup>1</sup> 2 | 22    | 7.5  |     |                |      |     |                    |       |         |        | 73   | 4.5                    |                                          |   |
|          |                                  |                  |         |                  |                  |       |      |     |                |      |     |                    |       |         |        |      |                        |                                          |   |
|          |                                  |                  |         |                  |                  |       |      |     |                |      |     |                    |       |         |        |      |                        |                                          |   |
|          |                                  |                  |         |                  |                  |       |      |     |                |      |     |                    |       |         |        |      |                        |                                          |   |
|          |                                  |                  |         |                  |                  |       |      |     | l <sub>i</sub> |      |     |                    | ***** |         |        |      |                        |                                          | + |

.

| •         | 3 d Bi |             |              | CORE DA                                                 | ATA SUN   |      | PTH                |              | WELL : TARRA |
|-----------|--------|-------------|--------------|---------------------------------------------------------|-----------|------|--------------------|--------------|--------------|
| Core      |        | PTH<br>orm. | 07           | Formation                                               | Core      |      | orm.               | 30           | Formation    |
| Number    | from   | to          | Recovered    |                                                         | Number    | from | to                 | Recovered    |              |
| ]         | 2797   | 2804        | 21.4         | LITHIC SANDSTONE                                        | -         |      |                    |              |              |
| 2         | 2890   | 2905        | 91           | LITHIC SANDSTONE                                        |           |      |                    |              |              |
|           |        |             |              |                                                         |           |      |                    |              |              |
|           |        |             |              |                                                         |           |      |                    |              |              |
|           |        |             |              |                                                         |           |      |                    |              |              |
|           |        |             |              |                                                         |           |      |                    |              | · · ·        |
|           |        |             |              |                                                         |           |      |                    |              |              |
|           |        |             |              |                                                         |           |      |                    | -            |              |
|           |        |             |              |                                                         |           |      |                    |              |              |
|           |        |             |              | CLA                                                     | BS        |      |                    |              |              |
| Run<br>Nº |        | PTH<br>orm. | Number<br>of | Formation                                               | Run<br>Nº |      | P <b>TH</b><br>rm. | Number<br>of | Formation    |
| - M       | from   | to          | samples      |                                                         |           | from | to<br>,            | samples      |              |
| 1         | 2105   | 2568        | 30           | 100% REC SANDSTC<br>SHALE CLAYSTONE<br>97% REC SANDSTON |           |      |                    |              |              |
| 2         | 1134   | 2314        | 30           | SHALE/CLAYSTONE                                         |           |      |                    |              |              |
| ۲         | 1      | 0570        | 30           | 100% REC LITHIC<br>SANDSTONE CLAYST                     | ONE       |      |                    |              |              |
| 3         | 2880   | 2570        |              |                                                         |           |      | I                  |              |              |
| ·         | 2880   | 2570        |              | · · · · · · · · · · · · · · · · · · ·                   |           |      |                    |              |              |
| ·         | 2880   | 2570        |              |                                                         |           |      |                    |              |              |
| ·         | 2880   | 2570        |              |                                                         |           |      |                    |              |              |
| 3         | 2880   | 2570        |              |                                                         |           |      |                    |              |              |

| Test                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                      | Type of                                                                                                              | Tested                                                                                                                             | l interval                                                                                               | Suc            | ceful | Reasor<br>of failur |                                                                                                  |                                                                                         | -        |                                                    |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------|-------|---------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|----------------------------------------------------|----------------------------------------------|
| N° ·                                                                                                                                                                                                                                                                                                   | Da                                                                                                                                                                  | te                                                                                                                   | test ·                                                                                                               | from<br>ft or m.                                                                                                                   | to<br>ft or m.                                                                                           | Yes            | No    | _of tailut<br>(**)  | e                                                                                                | Observ                                                                                  | vations  |                                                    |                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                                    |                                                                                                          |                |       |                     |                                                                                                  |                                                                                         |          | -                                                  |                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                                    |                                                                                                          |                |       |                     |                                                                                                  |                                                                                         |          |                                                    |                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                                    |                                                                                                          | Ī              |       |                     |                                                                                                  |                                                                                         | <b>_</b> | ·                                                  |                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                                    |                                                                                                          |                |       |                     |                                                                                                  |                                                                                         |          |                                                    |                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                                    |                                                                                                          |                |       |                     |                                                                                                  |                                                                                         |          | р                                                  |                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                                    |                                                                                                          |                |       |                     | -                                                                                                | <u>→ 112</u>                                                                            |          |                                                    |                                              |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      |                                                                                                                                    |                                                                                                          |                |       |                     |                                                                                                  |                                                                                         |          |                                                    |                                              |
| - то                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                      |                                                                                                                      | full diameter                                                                                                                      |                                                                                                          |                |       |                     | Packer I                                                                                         |                                                                                         |          |                                                    |                                              |
| STO                                                                                                                                                                                                                                                                                                    | OHR -                                                                                                                                                               | <ul> <li>Straddl</li> <li>Straddl</li> </ul>                                                                         | le test op                                                                                                           | oen hole rat h                                                                                                                     |                                                                                                          |                |       | IN -                | Test inte                                                                                        | t opened<br>errupted                                                                    |          |                                                    |                                              |
| TC                                                                                                                                                                                                                                                                                                     | OHR<br>SG -<br>CSG -                                                                                                                                                | Straddl<br>Test c<br>Straddl                                                                                         | le test op<br>asing<br>le test ca                                                                                    | een hole rat h<br>using<br>val tester                                                                                              | ole                                                                                                      | 1.066          |       | XX -                | Other (t                                                                                         |                                                                                         | d)       |                                                    |                                              |
| TC<br>ST(<br>FIT                                                                                                                                                                                                                                                                                       | OHR<br>SG<br>CSG<br>T<br>-                                                                                                                                          | Straddi<br>Test c<br>Straddi<br>Format                                                                               | le test op<br>asing<br>le test ca<br>tion inter                                                                      | en hole rat h<br>using<br>val tester<br>ELE                                                                                        | ole<br>ECTRICAL                                                                                          |                | iING  | XX -                | Other (tr                                                                                        | errupted                                                                                |          | Scales                                             | 5                                            |
| TC<br>ST(                                                                                                                                                                                                                                                                                              | OHR<br>SG<br>CSG<br>T<br>-                                                                                                                                          | Straddl<br>Test c<br>Straddl                                                                                         | le test op<br>asing<br>le test ca<br>tion inter                                                                      | en hole rat h<br>using<br>val tester<br>ELE                                                                                        | ole                                                                                                      |                | ING   | XX -                | Other (tr                                                                                        | errupted<br>o be specifie                                                               |          |                                                    | 1                                            |
| TC<br>ST(<br>FIT                                                                                                                                                                                                                                                                                       | OHR -<br>SG -<br>CSG -<br>T -                                                                                                                                       | Straddi<br>Test c<br>Straddi<br>Format                                                                               | le test op<br>asing<br>le test ca<br>tion inter<br>te                                                                | en hole rat h<br>Ising<br>val tester<br>ELE<br>Natur                                                                               | ole<br>ECTRICAL                                                                                          | 0              | iING  | XX<br>SUMMAI        | Other (t<br>?Y<br>DEPTH                                                                          | errupted<br>o be specifie<br>  ft or m.                                                 |          |                                                    | 1/5                                          |
| TC<br>ST(<br>FI]                                                                                                                                                                                                                                                                                       | OHR -<br>SG -<br>CSG -<br>T -<br>rval                                                                                                                               | Straddl<br>Test c<br>Straddl<br>Format                                                                               | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83                                                        | en hole rat h<br>Ising<br>val tester<br>ELE<br>Natur                                                                               | ECTRICAL<br>re and Run N<br>/SLS/GR-SF                                                                   | 0              | ING   |                     | Other (t<br>?Y<br>DEPTH<br>from                                                                  | errupted<br>o be specifie<br>I ft or m.<br>to                                           |          | 1/200                                              | 1/5<br>X                                     |
| TC<br>ST(<br>FI1                                                                                                                                                                                                                                                                                       | 0HR -<br>SG -<br>CSG -<br>T -<br>rval<br>2"                                                                                                                         | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3                                                                 | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83<br>3.83                                                | val tester<br>No. 1 ISF<br>NO. 2 LDL                                                                                               | ECTRICAL<br>re and Run N<br>/SLS/GR-SF                                                                   | °<br>?/CAL     | ING   |                     | Other (t<br>RY<br>DEPTH<br>from<br>006.5                                                         | errupted<br>o be specifie<br>I ft or m.<br>to<br>211                                    |          | 1/200<br>X                                         | 1/5<br>X<br>X                                |
| TC<br>ST(<br>FI1<br>Intel<br>17 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                            | 0HR -<br>SG -<br>CSG -<br>T -<br>rval<br>2"<br>2"                                                                                                                   | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3                                                                 | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83<br>3.83<br>3.83                                        | val tester<br>No. 1 ISF<br>NO. 1 ISF<br>NO. 1 ISF                                                                                  | ECTRICAL<br>re and Run N<br>/SLS/GR-SF<br>/CAL/GR                                                        | °/CAL          | iING  |                     | Other (t<br>RY<br>DEPTH<br>from<br>006.5<br>009                                                  | errupted<br>o be specifie<br>I ft or m.<br>to<br>211<br>211                             |          | 1 200<br>X<br>X                                    | 1/50<br>X<br>X<br>X                          |
| TC<br>ST(<br>FI1<br>Inter<br>17 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                          | 0HR -<br>SG -<br>CSG -<br>T -<br>rval<br>2"<br>2"<br>2"<br>2"<br>4"                                                                                                 | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3<br>13.3<br>25.3                                                 | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83<br>3.83<br>3.83<br>3.83                                | val tester<br>No. 1 ISF<br>NO. 1 ISF<br>NO. 1 ISF                                                                                  | ECTRICAL<br>re and Run N<br>/SLS/GR-SF<br>/CAL/GR<br>/SLS/GR/SF<br>/CNL/GR/CA                            | °/CAL          | iING  |                     | Other (t)<br>RY<br>DEPTH<br>from<br>006.5<br>009                                                 | errupted<br>o be specifie                                                               |          | 1 200<br>X<br>X<br>X                               | 1/50<br>X<br>X<br>X                          |
| TC<br>ST(<br>FI1<br>Inter<br>17 <sup>1</sup> / <sub>2</sub><br>12 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                          | 0HR -<br>SG -<br>CSG -<br>T -<br>rvai<br>2"<br>2"<br>4"<br>4"<br>4"                                                                                                 | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3<br>13.3<br>25.3                                                 | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83                        | val tester<br>ELE<br>Natur<br>NO. 1 ISF<br>NO. 2 LDL<br>NO. 1 ISF<br>NO. 2 LDL<br>NO. 3 HDT                                        | ECTRICAL<br>re and Run N<br>/SLS/GR-SF<br>/CAL/GR<br>/SLS/GR/SF<br>/CNL/GR/CA                            | 2/CAL<br>2/CAL | iING  |                     | Other (t)<br>RY<br>DEPTH<br>from<br>006.5<br>009<br>2570<br>2570                                 | errupted<br>o be specifie<br>I ft or m.<br>211<br>211<br>1002<br>1002                   | 1/20     | 1 200<br>X<br>X<br>X<br>X                          | 1/5<br>X<br>X<br>X<br>X                      |
| TC<br>ST(<br>FI1<br>Inter<br>17 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub><br>12 <sup>1</sup> / <sub>4</sub><br>12 <sup>1</sup> / <sub>4</sub>                                                                                                                                      | 0HR -<br>SG -<br>CSG -<br>T -<br>rval<br>2"<br>2"<br>4"<br>4"<br>4"<br>2"<br>2"                                                                                     | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3<br>13.3<br>25.3<br>25.3<br>25.3                                 | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>3.8 | val tester<br>No. 1 ISF<br>NO. 2 LDL<br>NO. 2 LDL<br>NO. 2 LDL<br>NO. 3 HDT<br>NO. 1 ISF                                           | ole<br>ECTRICAL<br>re and Run N<br>/SLS/GR-SF<br>/CAL/GR<br>/SLS/GR/SF<br>/CNL/GR/CA                     | P/CAL<br>P/CAL | iING  |                     | Other (t)<br>RY<br>DEPTH<br>from<br>006.5<br>009<br>2570<br>2561                                 | errupted<br>o be specifie                                                               | 1/20     | 1 200<br>X<br>X<br>X<br>                           | 1/50<br>X<br>X<br>X<br>X                     |
| TC<br>STC<br>FI1<br>Intel<br>17 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub><br>12 <sup>1</sup> / <sub>4</sub><br>12 <sup>1</sup> / <sub>4</sub><br>12 <sup>1</sup> / <sub>4</sub><br>8 <sup>1</sup> / <sub>2</sub>                                                                   | OHR -<br>SG -<br>CSG -<br>T -<br>rval<br>2"<br>2"<br>2"<br>4"<br>4"<br>4"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"             | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3<br>13.3<br>25.3<br>25.3<br>25.3<br>3.4.                         | le test op<br>asing<br>le test ca<br>tion inter<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>8.83<br>8.83<br>8.8       | val tester<br>No. 1 ISF<br>NO. 2 LDL<br>NO. 2 LDL<br>NO. 2 LDL<br>NO. 3 HDT<br>NO. 1 ISF                                           | ECTRICAL<br>re and Run N <sup>1</sup><br>/SLS/GR-SF<br>/CAL/GR<br>/SLS/GR/CA<br>/SLS/GR/CA<br>/SLS/GR/CA | P/CAL<br>P/CAL | ing   |                     | Other (t)<br>RY<br>DEPTH<br>from<br>006.5<br>009<br>2570<br>2570<br>2561<br>2904                 | errupted<br>o be specifie<br>I ft or m.<br>211<br>211<br>1002<br>1002<br>1650<br>2566.6 | 1/20     | 1 200<br>X<br>X<br>X<br>X<br>X<br>X                | 1/50<br>X<br>X<br>X<br>X<br>X                |
| TC<br>STO<br>FIT<br>Inter<br>17 <sup>1</sup> / <sub>2</sub><br>12 <sup>1</sup> / <sub>4</sub><br>12 <sup>1</sup> / <sub>4</sub><br>8 <sup>1</sup> / <sub>2</sub><br>8 <sup>1</sup> / <sub>2</sub>                                                                                                      | OHR -<br>SG -<br>CSG -<br>T -<br>rvai<br>2"<br>2"<br>2"<br>4"<br>4"<br>4"<br>4"<br>4"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2" | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3<br>13.3<br>25.3<br>25.3<br>25.3<br>25.3<br>3.4.<br>3.4.         | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>8.83<br>8.8 | val tester<br>ELE<br>Natur<br>NO. 1 ISF<br>NO. 2 LDL<br>NO. 2 LDL<br>NO. 3 HDT<br>NO. 1 ISF<br>NO. 2 LDL<br>NO. 1 ISF<br>NO. 2 LDL | ECTRICAL<br>re and Run N<br>/SLS/GR-SF<br>/CAL/GR<br>/SLS/GR/CF<br>/CNL/GR/CF<br>/CNL/GR/CF              | P/CAL<br>P/CAL | iING  |                     | Other (t)<br>RY<br>DEPTH<br>from<br>006.5<br>009<br>2570<br>2570<br>2570<br>2561<br>2904<br>2904 | errupted<br>o be specifie                                                               | 1/20     | 1 200<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | 1/5/<br>X<br>X<br>X<br>X<br>X<br>X<br>X      |
| TC<br>STC<br>FIT<br>Inter<br>17 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub><br>12 <sup>1</sup> / <sub>4</sub><br>12 <sup>1</sup> / <sub>4</sub><br>12 <sup>1</sup> / <sub>4</sub><br>8 <sup>1</sup> / <sub>2</sub><br>8 <sup>1</sup> / <sub>2</sub><br>8 <sup>1</sup> / <sub>2</sub> | OHR -<br>SG -<br>CSG -<br>T -<br>rvai<br>2"<br>2"<br>2"<br>4"<br>4"<br>4"<br>4"<br>4"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2"<br>2" | Straddl<br>Test c<br>Straddl<br>Format<br>Da<br>12.3<br>13.3<br>25.3<br>25.3<br>25.3<br>25.3<br>3.4.<br>3.4.<br>3.4. | le test op<br>asing<br>le test ca<br>tion inter<br>te<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>3.83<br>8.83<br>8.8 | val tester<br>ELE<br>Natur<br>NO. 1 ISF<br>NO. 2 LDL<br>NO. 2 LDL<br>NO. 2 LDL<br>NO. 3 HDT<br>NO. 2 LDL<br>NO. 3 HDT<br>NO. 3 HDT | ECTRICAL<br>re and Run N<br>/SLS/GR-SF<br>/CAL/GR<br>/SLS/GR/CF<br>/CNL/GR/CF<br>/CNL/GR/CF              | P/CAL<br>P/CAL | iING  |                     | Other (t)<br>RY<br>DEPTH<br>from<br>006.5<br>009<br>2570<br>2570<br>2561<br>2904<br>2904<br>2904 | errupted<br>o be specifie                                                               | 1/20     | 1 200<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | 1/50<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |

-

| F3e' Bis 2-78                                                        | INTERRUPT            | IONSC       | F OP                                         | ERATIO      | N S                                                                                                             |         | W                           | ELL : TAR                             | .RA 1         |
|----------------------------------------------------------------------|----------------------|-------------|----------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|---------|-----------------------------|---------------------------------------|---------------|
| OPERATIONS IN PROGRESS                                               | REASONS              | STIC        | :KING<br>IING                                | 1           | , FLOWING<br>EATMENT                                                                                            | WAITING | DN WEATHER                  | WAITING                               | G·OTHER       |
|                                                                      | DURATION             | Number      | Duration<br>(h)                              | Number      | Duration<br>(h)                                                                                                 | Number  | Duration<br>(h)             | Number                                | Durati<br>(h) |
|                                                                      | Less than 24 h       |             | in e<br>Sales de la<br>Sales de la secondada |             | in the second |         |                             | 1                                     | 8             |
| Moving                                                               | From 1 to 5 days     |             |                                              |             |                                                                                                                 |         |                             | 1                                     | 310           |
| (D2-D3)                                                              | More than 5 days     |             |                                              |             |                                                                                                                 |         |                             |                                       |               |
|                                                                      | TOTAL                |             |                                              |             |                                                                                                                 |         |                             | · · · · · · · · · · · · · · · · · · · |               |
|                                                                      | Less than 24 h       | 1           | 1                                            |             |                                                                                                                 |         |                             |                                       |               |
| Drilling, casing<br>formation surveys                                | From 1 to 5 days     |             |                                              |             | 62                                                                                                              |         | _68.5                       | 2                                     | 4             |
| ( <b>A</b> 1- <b>A</b> 2- <b>A</b> 3- <b>A</b> 4)                    | More than 5 days     |             |                                              |             |                                                                                                                 |         |                             |                                       |               |
| ·                                                                    | TOTAL                |             |                                              |             |                                                                                                                 |         |                             |                                       |               |
|                                                                      | Less than 24 h       |             | · · ·                                        |             |                                                                                                                 | 1       | _21                         | *******                               |               |
| Completion                                                           | From 1 to 5 days     |             |                                              | L L         |                                                                                                                 |         |                             |                                       |               |
| (C3-C4)                                                              | More than 5 days     |             |                                              |             |                                                                                                                 |         |                             |                                       |               |
|                                                                      | TOTAL                |             | •                                            |             | · · · ·                                                                                                         |         |                             |                                       |               |
| τοτα                                                                 | L                    | 1           | <u> </u>                                     | <u>  _1</u> | 62                                                                                                              | 2       |                             | 4                                     | 322           |
|                                                                      | (                    | During movi |                                              |             |                                                                                                                 |         | : <u>319 HOU</u>            |                                       |               |
|                                                                      | ION OF INTERRUPTIONS |             | ng • Casing<br>Netion and pla                |             | surveys                                                                                                         | -       | : <u>4 HOU</u><br>AS LAST A | NCHOR MOV                             |               |
| NB: WAITING ON COMMONWEALTH AUTHOR<br>TO MOVE THE RIG DURING 13 DAYS | ITY AUTHORIZATION    |             | ·                                            |             | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                          |         | CARRIED A                   | S ABOVE I                             | <u>N</u>      |

|                                        | F3         | <b>e</b> Bis 2-78                                           | TI | ME   | DIST        | RIBU        | TION        |            |            | WELL | .: <u></u> | RA 1     |
|----------------------------------------|------------|-------------------------------------------------------------|----|------|-------------|-------------|-------------|------------|------------|------|------------|----------|
|                                        |            |                                                             |    |      | INT         | ERVALS      | i : Durat   | ion in ha  | ours       |      |            | D        |
|                                        |            | ● ITEMS ●                                                   |    | 26"  | <u>17½"</u> | <u>12¼"</u> | <u>81</u> " | <u>'C'</u> | <u>'D'</u> |      |            | d        |
|                                        | Dı         | Rigging up, transportation<br>and<br>tearing down           | 46 |      |             |             |             |            | 15.5       | 0    |            | 5<br>6   |
| MO VING                                | D2         | Waiting on weather                                          |    |      |             |             |             |            |            |      |            |          |
| -                                      | D3         | Waiting : other                                             | 8  |      |             |             |             |            | 210        |      |            | 2<br>3   |
| U<br>Z                                 | F۱         | New hole drilling                                           |    | 9.5  | 52          | 142.2       | 75          |            |            |      |            | 2        |
| - CASING                               | F2         | Drilling trips                                              |    | 5.5  | 5           | 43.5        | 18          |            |            |      |            | _        |
| DRILLING -                             | F3         | Miscellaneous drilling<br>operations                        |    |      | 4           | 22          | 5.5         |            |            |      |            |          |
| DR                                     | F4         | Casing and cementing                                        |    | 38.5 | 37          | 47          |             |            |            |      |            |          |
| EΥS                                    | Gı         | Coring                                                      |    |      |             |             | 7.5         |            |            |      |            |          |
| I SURVEYS                              | G2         | Coring trips and<br>miscellaneous                           |    |      |             |             | 22.5        |            |            |      |            | -        |
| RMATION                                | G3         | Testing and related operations                              |    | -    |             |             |             |            |            |      |            | _        |
| FOR                                    | G₄         | Electrical logging                                          |    |      | 17.5        | 24          | 26          |            |            |      |            | ц.<br>Ц. |
| OF<br>F&G                              | <b>A</b> 1 | Sticking - Fishing                                          |    |      |             | 1           |             |            |            |      |            | (        |
| INTERRUPTIONS OF<br>OPERATIONS UNDER F | <b>A</b> 2 | Losses and well flowing<br>mud treatment                    |    |      | 62          |             |             |            |            |      |            |          |
| ERRUP<br>TIONS                         | <b>A</b> 3 | Waiting on weather                                          |    |      | 7           | 68.5        |             |            |            |      |            |          |
| INT<br>OPER≜                           | <b>A</b> 4 | Waiting : other                                             |    |      | 1.5         |             | 2.5         |            |            |      |            | -        |
| 9                                      | Cı         | Completion - Formation<br>treatment and Production<br>tests |    |      |             |             |             |            |            |      |            |          |
| PLUGGING                               | C2         | Abandon                                                     |    |      |             |             | 65.5        |            |            |      |            |          |
| COMPLETION<br>PLUGGING                 | C₃         | Waiting on weather                                          |    |      |             |             | 21          |            |            |      |            | 2        |
| Ō                                      | C4         | Waiting : other                                             |    |      |             |             |             |            |            |      |            |          |
| DU R.                                  | ATIO       | N BY INTERVAL                                               | 54 | 53.5 | 186         | 348.5       | 157         | 86.5       | 325.       | 5    |            |          |

| F3f                                                                                   | Bis 2-78                            |                                                     | MUD SUM                                                                       | IARY               | BY IN                               | TERVAL                                                                                                                                                                                                                                                                                                  |                   | WELI          | <u>TARRA</u>          | 1              |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|--------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------------------|----------------|--|--|--|
| INTERVAL                                                                              | 26" PHASE                           |                                                     | Fr                                                                            | om                 | : _                                 | 91m (SE                                                                                                                                                                                                                                                                                                 | A BED)            | to :          | 219m                  |                |  |  |  |
| Mud type used                                                                         | d in this interv                    | al                                                  | :SEAWATER WITH HI VIS FLOCCULATED GEL SLUGS                                   |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |
| USEFUL D     CAS     Diameter : _     Hanger : _     Shoe     Casing :     Lenght : _ | INGS<br>20"<br>91m<br>211m<br>133 # | -Initial<br>-Added<br><sub>-</sub> Jetted<br>-Losse | ANCE OF VOLUN<br>on m3<br>volume :<br>volume :<br>volume :<br>s in formation: | 08<br>80<br>88<br> | (m or f<br>Footo<br>Avero<br>Intern | DRILLING<br>Drilled {from: 91m duration {from: 4 MAR<br>(m or ft) {to : 219m duration (date) {to : 4 MAR<br>to : 4 MAR<br>to : 1 DAY<br>Average (m or ft) : 128m in : 1 DAY<br>Average dllg rate 19.1m/hr drilling hours : 6.7 H<br>Internal casing vol.: Losses :<br>Pumping rate : 100 SPM - 20.7 BBL |                   |               |                       |                |  |  |  |
| • MUD CHA                                                                             |                                     |                                                     |                                                                               |                    |                                     |                                                                                                                                                                                                                                                                                                         | MPTIONS           | •             |                       |                |  |  |  |
| mi                                                                                    | ni maxi                             | average                                             | CHEMICALS                                                                     |                    | Qi<br>otal<br>or T                  | UANTITY<br>Kg/ft<br>or m<br>drilled                                                                                                                                                                                                                                                                     | Kg⁄m <sup>3</sup> | Unit<br>Price | COST<br>Total<br>Cost | 0 <sub>0</sub> |  |  |  |
|                                                                                       |                                     | <u>1.05</u>                                         | AQUAGEL                                                                       | 14.                | 971                                 | 117.0                                                                                                                                                                                                                                                                                                   | 52.0              | 14.00         | 4,620.00              | 87             |  |  |  |
|                                                                                       |                                     | 100                                                 | CAUSTIC                                                                       | 0.                 | 350                                 | 2.7                                                                                                                                                                                                                                                                                                     | 1.2               | 74.70         | 373.50                | 7.0            |  |  |  |
| P.V.<br>> Y.P.<br>- 0'<br>5 10'                                                       |                                     |                                                     | SODA ASH                                                                      | 0.                 | 320                                 | 2.5                                                                                                                                                                                                                                                                                                     | 1.1               | 13.88         | 111.04                | 2.0            |  |  |  |
| O 10'<br>AP1<br>▲ HP-HT<br>≪ Pressure<br>T°<br>Ph                                     |                                     |                                                     | LIME                                                                          | 0.                 | 750                                 | 5.8                                                                                                                                                                                                                                                                                                     | 2.6               | 6.75          | 202.50                | 4.0            |  |  |  |
| Pf<br>Pm<br>Ca <sup></sup> (g,'l)<br>SO4Ca                                            |                                     |                                                     |                                                                               |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |
| Cina<br>CaCl2                                                                         |                                     |                                                     |                                                                               |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |
| % oil<br>oil/water<br>ratio<br>% solids<br>Solids<br>density                          |                                     |                                                     |                                                                               |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |
| % Sand<br>T °C                                                                        |                                     |                                                     |                                                                               |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |
| <b>Depth-(ft)</b> (M)<br>FROM                                                         | Litholog                            | -                                                   |                                                                               |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |
| 91m                                                                                   | CORAL SAND                          |                                                     | TOTAL     16,391     5,307.04     100       Total cost of {     Interval :    |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |
| 219m                                                                                  | SILTSTONE                           |                                                     | Currency : <u>AUSTRALIAN DOLLARS</u> Conversion rate used :                   |                    |                                     |                                                                                                                                                                                                                                                                                                         |                   |               |                       |                |  |  |  |

|                                       |           | s 2-78         |                | MUD SUM                     |                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                       |          | L : <u>TARRA</u>                          |          |  |  |  |
|---------------------------------------|-----------|----------------|----------------|-----------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|----------|-------------------------------------------|----------|--|--|--|
| INTERVA                               | L         | 17½"           | HOLE           | Fr                          | om                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 219n                        | <u></u>                               | to :     | TUTUM                                     |          |  |  |  |
| Mud type                              | used i    | n this inte    | erval :        | SE/                         | AWATER                      | /GEL/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATIVE CL                    | _AYS/LIM                              | E        |                                           |          |  |  |  |
| • USEF                                | UL DA     | TA •           |                |                             | 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                       |          | ·                                         |          |  |  |  |
|                                       | CASIN     |                |                | BALANCE OF VOLUMES<br>on m3 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | DRILLING                              |          |                                           |          |  |  |  |
| - Diamete<br>- Hanger                 |           |                | Initial        | volume :<br>volume : _134   | <u></u><br>12m <sup>3</sup> | $\begin{array}{c} \textbf{Drilled} \\ (\textbf{m or ft}) \end{array} \begin{cases} \textbf{from}: \underline{-219m} \\ \textbf{to}: \underline{-1010m} \\ \textbf{(date)} \end{cases} \begin{array}{c} \textbf{from}: \underline{5} \\ \textbf{march} \\ \textbf{to}: \underline{11} \\ \underline{11} \\ \underline{MARCH} \\ \textbf{march} \end{cases} \\ \textbf{Footage (m or ft)}: \underline{-791m} \\ \textbf{in}: \underline{7} \\ \underline{DAYS} \\ \underline{0} \\ $ |                             |                                       |          |                                           |          |  |  |  |
| - Shoe :                              |           |                |                | volume :                    |                             | Foota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ge (m or ft)                | : <u>791</u>                          | <u>m</u> | in : $\frac{7 \text{ DA}}{36 \text{ HO}}$ |          |  |  |  |
|                                       |           | Blbs/ft        |                | s in formation              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge diig rate<br>al casing v |                                       | ≺        | ours : <u>36 HO</u><br>:                  |          |  |  |  |
| – Lenght                              | :         | <u>909.011</u> | Final          | volume : <u>13</u>          | 100                         | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>D</sup> umping rat     | e : <u>100</u>                        | SPM-20.  | 7 BBL/HR                                  |          |  |  |  |
| • MUD                                 | CHAR      |                |                |                             | <u> </u>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • CONSU                     |                                       | •        |                                           |          |  |  |  |
|                                       | mini      |                |                |                             | T o                         | QL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kg ft                       | 3                                     | Unit     | COST<br>Total                             | <b></b>  |  |  |  |
| tin flow                              | 1.0       | _              | _              | CHEMICALS                   |                             | or T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or m<br>drilled             | Kg′m <sup>3</sup>                     | Price    | Cost                                      | °0       |  |  |  |
| Goutflow<br>Tooutflow                 | 1.0       |                |                | BARITE                      | 14.                         | 972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.93                       | 11.2                                  | 8.00     | 2,641.00                                  | 12.0     |  |  |  |
| <u></u> ₹ M.V.                        | 26        | 40             | 35             |                             |                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00.05                       | 17.0                                  | 14 00    | 7 140 10                                  | 22 5     |  |  |  |
| .V.M. v.                              | <u></u>   | -              | -              | AQUAGEL                     | 23.                         | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.25                       | 17.2                                  | 14.00    | 7,140.10                                  | 52.5     |  |  |  |
| > <sub>Υ.Ρ.</sub>                     |           |                |                | CAUSTIC                     | 0.                          | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.71                        | 0.42                                  | 74.70    | 596.60                                    | 2.7      |  |  |  |
| ہ 0 <sup>.</sup><br>10 <sup>.</sup> و |           |                | -              | SODA ASH                    | 0.                          | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.71                        | 0.42                                  | 13.88    | 194.32                                    | 0.9      |  |  |  |
| API<br>⊐<br>≯ HP∎HT                   | NC        | <u>NC</u>      | <u>NC</u>      | LIME                        | 1.                          | 725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.18                        | 1.28                                  | 6.75     | 465.75                                    | 2.0      |  |  |  |
| L<br>MP-HT<br>APressure<br>T°         |           | -              |                | KWIK SEAL                   | 3.                          | 636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.59                        | 2.71                                  | 48.22    | 9,644.00                                  | 44.0     |  |  |  |
| Ph<br>Pf                              | 7.0       | 10.0           | 8.0            | MICA                        | 0.                          | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                         | 0.71                                  | 12.72    | 636.00                                    | 3.0      |  |  |  |
| Pm<br>Ca`(g l)                        |           | _              | -              | CAL<br>CHLORIDE             | 1.                          | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.71                        | 1.0                                   | 11.46    | 618.84                                    | 2.9      |  |  |  |
| 504Ca<br>Clna                         | 2100      | 0 21500        | 21250          | (THE RELAT                  | IVELY                       | HIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COST OF                     | THIS PH                               | SE WAS M | AINLY DUE                                 | то       |  |  |  |
| CaCl2                                 | 100       | 2000           | )              | LOST CIRCU<br>UPPER LIME    | JLATIO<br>ESTONE            | N PROE<br>/CALCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREOUS SE                   | COUNTERE<br>ECTIONS)                  | DWHILE   | DRILLING T                                | HE       |  |  |  |
| o water<br>o oil                      | <u>95</u> | _              |                |                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | l l l l l l l l l l l l l l l l l l l |          |                                           |          |  |  |  |
| il/water<br>ratio<br>solids           | 0         | -              | 2.5            |                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                       |          |                                           |          |  |  |  |
| Solids<br>density                     |           |                | -              |                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                       |          |                                           |          |  |  |  |
| 6 Sand<br>Γ°C                         |           |                |                |                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                       |          |                                           |          |  |  |  |
| Depth (                               | m)        | Litho          | logy           |                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                       |          |                                           |          |  |  |  |
| 219                                   |           | LIMESTO        | NE             | TOTAL                       | 46,89                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                       |          | 21,937.61                                 | 100      |  |  |  |
| 326                                   |           |                | CORAL FR       | AG                          |                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | A\$ 21,9                              | 37 61    | 1                                         | <u> </u> |  |  |  |
| 837                                   | ·         | CALCARE        | NITE           | Total cost                  | of Z                        | Interva<br>Drilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | A\$                                   | 27.70    |                                           |          |  |  |  |
| 1010                                  |           | LIMST./        |                | Currency                    | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | AUSTRAL                               | IAN DOLL | ARS                                       |          |  |  |  |
|                                       | ·         | LINJI./        | <u>ULAISIA</u> | Conversion                  | rate uso                    | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                           |                                       |          |                                           | <u> </u> |  |  |  |

| <b>F</b> 3t                                                                                                | Bis                                  | 2-78                                   |                                                      | MUD SUM                                                                                                                                                                                                                                                                                                                            | MARY B                                                                     | Y IN             | TERVAL                   |                                                                                      | WELI                                       | _ : TARRA                              | 1                                        |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|------------------------------------------|--|
| INTERVAL                                                                                                   |                                      | 12¼" H                                 | IOLE                                                 | Fr                                                                                                                                                                                                                                                                                                                                 | om                                                                         | : _              | 1010                     | M                                                                                    | to :                                       | 2581M                                  |                                          |  |
| Mud type u                                                                                                 | sed in t                             | this interv                            | al :                                                 |                                                                                                                                                                                                                                                                                                                                    | GEL/POL                                                                    | YMER             |                          |                                                                                      |                                            |                                        |                                          |  |
| <ul> <li>USEFUL</li> <li>Diameter</li> <li>Hanger</li> <li>Shoe</li> <li>Casing</li> <li>Lenght</li> </ul> | ASINGS<br>95/<br>94.<br>2567<br>4716 | 28"<br>3m<br>7m<br>5 FT                | BALA<br>- Initial<br>- Added<br>- Jetted<br>- Losses | ALANCE OF VOLUMES<br>on m3<br>tial volume : <u>176</u><br>led volume : <u>943</u><br>ted volume : <u>961</u><br>sees in formation: <u>10</u><br>al volume : <u>148</u><br>Drilled {from: <u>1010</u><br>(m or ft) {to : <u>2581</u><br>Footage (m or ft) : <u>1571</u><br>Average dllg rate <u>10.99</u><br>Internal casing vol. : |                                                                            |                  |                          | m: <u>1010</u><br>: <u>2581</u><br>: <u>1571</u><br>: <u>10.99M</u><br>ol.:<br>re :6 | Ndrilling h<br>Losses<br>0 SPM 19<br>12.47 | in : <u>12 D/</u><br>ours : <u>143</u> | <u>ARCH</u><br><u>ARCH</u><br><u>AYS</u> |  |
| • MUD C                                                                                                    | HARA                                 | CTERIST                                |                                                      |                                                                                                                                                                                                                                                                                                                                    | 1                                                                          |                  | CONSU                    | MPTIONS                                                                              | •                                          |                                        |                                          |  |
|                                                                                                            | mini                                 | · · · · · · · · · · · · · · · · · · ·  | average                                              | CHEMICALS                                                                                                                                                                                                                                                                                                                          | Tota<br>m <sup>3</sup> or                                                  |                  | Kg/ft<br>or m<br>drilled | Kg⁄m <sup>3</sup>                                                                    | Unit<br>Price                              | COST<br>Total<br>Cost                  | 0 <sub>0</sub>                           |  |
|                                                                                                            | .11<br>.12                           | $\frac{1.18}{1.18}$                    | $\frac{1.16}{1.16}$                                  | BARITE                                                                                                                                                                                                                                                                                                                             | 38.56                                                                      | 54               | 24.5                     | 34.4                                                                                 | 8.00                                       | 6,800.00                               | 18.6                                     |  |
| Viscosity<br>A . A . Y<br>A . A . W<br>A . A . W                                                           | 32                                   |                                        | <u>45</u><br><u>25</u>                               | GEL                                                                                                                                                                                                                                                                                                                                | 11.02                                                                      | 25               | 7.0                      | 9.8                                                                                  | 14.00                                      | 3,402.00                               | 9.3                                      |  |
| 1,1,                                                                                                       |                                      |                                        |                                                      | CAUSTIC                                                                                                                                                                                                                                                                                                                            | 4.55                                                                       | 0                | 2.9                      | 4.1                                                                                  | 74.70                                      | 4,855.00                               | 13.3                                     |  |
|                                                                                                            | <u>11</u><br><u>16</u>               | <u>13</u><br><u>19</u>                 | <u>    16    </u><br>26                              | SODA ASH                                                                                                                                                                                                                                                                                                                           | 1.32                                                                       | 20               | 0.8                      | 1.2                                                                                  | 13.88                                      | 458.14                                 | 1.2                                      |  |
| нР-нт                                                                                                      | .8                                   | <u>NC</u><br>2700                      | 2600                                                 | LIME                                                                                                                                                                                                                                                                                                                               | 0.25                                                                       | 0                | 0.2                      | 0.2                                                                                  | 6.75                                       | 67.50                                  | 0.1                                      |  |
|                                                                                                            | 900<br>39.7                          | 53                                     | <u> </u>                                             | CMC - LV                                                                                                                                                                                                                                                                                                                           | 1.75                                                                       | 0                | 1.1                      | 1.6                                                                                  | 45.85                                      | 3,209.50                               | 8.8                                      |  |
| Pf<br>Pm                                                                                                   | 8.0<br>0.1<br>0.5                    | <u>9.5</u><br><u>1.3</u><br><u>9.4</u> | <u>8.5</u><br>0.2<br>0.6                             | CMC - HV                                                                                                                                                                                                                                                                                                                           | 0.60                                                                       | 0                | 0.2                      | 0.5                                                                                  | 48.68                                      | 1,168.32                               | 3.2                                      |  |
| Ca <sup>-</sup> (g l)<br>SO4Ca                                                                             | 40                                   | 1000                                   | 100                                                  | DEXTRID                                                                                                                                                                                                                                                                                                                            | 3.40                                                                       | )5               | 2.2                      | 3.0                                                                                  | 51.60                                      | 7,740.00                               | 21.2                                     |  |
| Clna<br>CaCl2                                                                                              |                                      |                                        |                                                      | MONPAC                                                                                                                                                                                                                                                                                                                             | 0.05                                                                       | 50               | 0.0                      | 0.1                                                                                  | 106.06                                     | 212.12                                 | 0.5                                      |  |
|                                                                                                            | 95                                   |                                        |                                                      | SOLTEX                                                                                                                                                                                                                                                                                                                             | 1.36                                                                       | 52               | 0.9                      | 1.2                                                                                  | 78.50                                      | 4,710.00                               | 12.9                                     |  |
| oil/water                                                                                                  | 5                                    |                                        | 9                                                    | Q.BROXIN                                                                                                                                                                                                                                                                                                                           | 2.90                                                                       |                  | 1.8                      | 2.6                                                                                  | 29.50                                      | 3,422.00                               | 9.3                                      |  |
| Solids<br>density<br>% Sand                                                                                |                                      |                                        |                                                      | <u>CONDET</u><br>AL                                                                                                                                                                                                                                                                                                                | .20                                                                        | )5m <sup>3</sup> | 0.3                      | 0.2                                                                                  | 258.00                                     | 258.00                                 |                                          |  |
| т℃                                                                                                         | 10                                   | 55                                     |                                                      | STEARATE<br>SODA                                                                                                                                                                                                                                                                                                                   | 0.87                                                                       | 75               | 0.5                      | 0.8                                                                                  | 42.61                                      | 298.27                                 | 0.8                                      |  |
| Depth (ft)                                                                                                 |                                      | Litholo                                | gy                                                   | BICORBANATE                                                                                                                                                                                                                                                                                                                        | 0.20                                                                       | 00               | 0.1                      | 0.2                                                                                  | 16.98                                      | 84.90                                  |                                          |  |
| <u>1010-2293</u><br>2293-2581                                                                              |                                      |                                        |                                                      |                                                                                                                                                                                                                                                                                                                                    | TOTAL       36,686.25       100.1         Total cost of {       Interval : |                  |                          |                                                                                      |                                            |                                        |                                          |  |

| F3f                   | Bis 2                                                                  | 2-78                    |                    | MUD SUMMA                                                                                                      | ARY BY IN        | TERVAL                   |                   | WELL                                             | . TARRA 1                                                                                                  |                         |
|-----------------------|------------------------------------------------------------------------|-------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|
| INTERVAL :_           |                                                                        | 8½" PHA                 | SE                 |                                                                                                                | From             | 2581M                    | L                 | to :                                             | 2905M                                                                                                      |                         |
| Mud type use          | d in t                                                                 | his intervo             | al :               | SEAWATER                                                                                                       | /GEL/POLYM       | ER                       |                   |                                                  | <u> </u>                                                                                                   |                         |
| • USEFUL D            | ATA                                                                    | •                       |                    |                                                                                                                | 1                |                          |                   |                                                  |                                                                                                            |                         |
| Hanger :              | Diameter : Initial<br>Hanger : Added<br>Shoe : Jetted<br>Casing Losses |                         |                    |                                                                                                                | information : U  |                          |                   | — (date)<br><u>M</u><br>— drilling h<br>— losses | (from: <u>26 M</u><br>to : <u>2 A</u><br>in : <u>8 D</u><br>ours : <u>83.5</u><br>: <u>-</u><br>5.6 BBL/MI | PRIL<br>AYS<br>HRS<br>- |
|                       | A D A("                                                                | TERISTIC                | -5.                | متاسبة ومنتار المراجع والمراجع المراجع |                  | • CONSU                  | MPTIONS           | 6                                                |                                                                                                            |                         |
| • MUD CH              |                                                                        |                         |                    |                                                                                                                | -                | JANTITY                  |                   | Unit                                             | COST<br>Total                                                                                              |                         |
|                       | /1 00                                                                  | maxi                    | average            | CHEMICALS                                                                                                      | Jotal<br>n. or Y | Kg ft<br>or m<br>drilled | Kg m <sup>3</sup> | Price                                            | Cost                                                                                                       | 5.<br>7.                |
|                       | 11                                                                     | <u>1.10</u>             | 1.11               | BARITE                                                                                                         | 52.629           | 162.4                    | 184.8             | 8.00                                             | 9,280.00                                                                                                   | 40.                     |
|                       | <u>3</u><br>23                                                         | <u>55</u><br>27.5       | <u>48</u><br>25    | AQUAGEL                                                                                                        | 12.113           | 37.4                     | 42.5              | 14.00                                            | 3,738.00                                                                                                   | 16.                     |
|                       | 7<br>7                                                                 | 20 21                   | <u>19</u><br>14    | CAUSTIC                                                                                                        | 1.120            | 3.5                      | 3.9               | 74.70                                            | 1,195.2                                                                                                    | 5.                      |
| <u>s</u> 0.           | <u>4</u><br>11                                                         | <u>8</u><br>20          | <u>6</u><br>15     | SODA ASH                                                                                                       | 0.440            | 1.3                      | 1.54              | 13.88                                            | 152.68                                                                                                     | 0.                      |
| 4P:                   | 5.9                                                                    | <u> 19.6</u><br>        | 6.5                | BICARB                                                                                                         | 1.000            | 3.1                      | 3.5               | 16.98                                            | 424.5                                                                                                      | 1.                      |
| a<br>Tressiri         |                                                                        |                         |                    | DEXTRID                                                                                                        | 1.135            | 3.5                      | 3.9               | 51.60                                            | 2,580.0                                                                                                    | 11.                     |
| P 9                   | .5<br>.1                                                               | <u>   12    </u><br>0.8 | <u>10.5</u><br>0.4 | CMC LV                                                                                                         | 0.825            | 2.5                      | 2.9               | 45.85                                            | 1,513.05                                                                                                   | 6.                      |
| Pm <u>0</u>           | .6<br>60                                                               | <u>5.2</u><br>400       | $\frac{2.1}{320}$  | CMC HV                                                                                                         | 0.275            | 0.8                      | 0.9               | 48.68                                            | 535.48                                                                                                     | 2.                      |
| 10400                 | -<br>500                                                               | 25000                   | <br>1 <u>7500</u>  | MONPAC                                                                                                         | 0.225            | 0.7                      | 0.8               | 106.06                                           | 954.54                                                                                                     | 4                       |
| CaCl2 -               | -                                                                      | <br>                    |                    | PAC-R                                                                                                          | 0.200            | 0.6                      | 0.7               | 106.06                                           | 848.48                                                                                                     | 3 3                     |
| °¢ oil<br>oil 'water  |                                                                        |                         |                    | Q.BROXIN                                                                                                       | 0.050            | 0.1                      | 0.2               | 29.50                                            | 59.0                                                                                                       | 0                       |
| °o solids<br>Solids - | 5                                                                      | 8                       | 5                  | STARLOSE                                                                                                       | 0.227            | 0.7                      | 0.8               | 48.0                                             | 480.0                                                                                                      | 2                       |
|                       | ).25                                                                   | 0.75                    | 0.5                | SAPP                                                                                                           | 0.650            | 2.0                      | 2.3               | 15.0                                             | 390.0                                                                                                      | 1                       |
| Depth (ft)            |                                                                        | Lithol                  | ogy                | AC STEARA                                                                                                      |                  | 0.5                      | 0.7               | 42.61                                            | 639.1                                                                                                      |                         |
| 2600M                 |                                                                        | SANDSTON                | NE                 | САССТСКАС                                                                                                      | RIDE 0.725       | _                        |                   |                                                  | 23,122,3<br>23,122,                                                                                        | 42 1                    |
| 2800M                 |                                                                        | SANDSTON                | NE                 | _                                                                                                              | í Inter          | val :                    |                   |                                                  |                                                                                                            |                         |
| 2875M                 |                                                                        | CLAYST/S                | SNDST              | Total cost of Drilled meter A\$ 71.36                                                                          |                  |                          |                   |                                                  |                                                                                                            |                         |
| 2905                  |                                                                        | 11                      | 11                 | Currency<br>Conversion                                                                                         | :<br>n rate used | :                        |                   |                                                  |                                                                                                            |                         |
|                       |                                                                        |                         |                    |                                                                                                                |                  |                          |                   |                                                  |                                                                                                            |                         |

Imp. 4996 SNEA(P) - RGM 959.004.011

F3g Bis 2-78 DRILL STRING COMPOSITION AND DEVIATION SURVEYS WELL · TARRA 1 DRILLING . . SURVEYS . RUN NUMBER DRILL STRING Weight Flow Drilled depth Inclinction R.P.M. Number Direction Date on bit rate (m or ft) (°) (°) 26" BIT+1x95DC+1x26"STAB+2x95DC+X0VER+3x7 3/4DC+BS+3x 26" 1 00 7 3/4DC+XOVER+HWDP. 60/80 3200 1/5 1 4.3.83 219 175BIT+BS+2x95DC+175STAB+1x95DC+3x7 3/4DC+BS+6x7 3/4DC+ XO+FLEX JT+EO JAR+1 HWDP+HYDRIL SUB+HWDP. 5/10 100 3300 2 175" 17<sup>1</sup>/<sub>3</sub>BIT+BS+2x9<sup>1</sup>/<sub>3</sub>DC+17<sup>1</sup>/<sub>3</sub>STAB+1x9<sup>1</sup>/<sub>2</sub>DC+X0+3x7 3/4DC+2 BS+6x 60 2<sup>0</sup> 7 3/4DC+XO+FLEX JT+EQ JARS+1HWDP+HYDRIL SUB+8 HWDP. 3 17%" 5/10 100 3300 2 9.3.83 326 171BIT+BS+2x91DC+171STAB+1x91DC+X0+3x7 3/4DC+B/SUB+3x 7 374DC+B/SUB+3x7 3/4DC+B/SUB+X0+FLEX JT+EQ JARS+1xHWDP +HYDRIL SUB+8HWDP. 1<sup>1</sup>2<sup>0</sup> 3/4<sup>0</sup> 10.3.83 3 712 175" 4 20 130 3200 4 12.3.83 1010 IDEM ABOVE WITH 1713 STAB MOVED TO 10 MTRS ABOVE BIT FOR CONTROL 5 175" CONTROL HOLE FOR LOGS AND 13 3/8" CSG. TRIP ONLY 3200 BIT+BIT SUB+2x7 3/4DC+12<sup>1</sup>/<sub>2</sub>STAB+9x7 3/4DC+BUMPER SUB+6x 50 7 3/4DC+XO+FLEX JT+EO JARS+1HWDP+HYDRIL SUB+8 HWDP 3/28 100 1930 6 121/2" BIT+BIT SUB 3 PTS+XOVER+SHOCK SUB+1x7 3/4DC+STAB+2x7 3/4 DC+STAB+8x7 3/4DC+BUMPER SUB+6x7 3/4DC+XO+FLEX JT+1 HWDP + HYDRIL SUB + 8 HWDP.  $3^{1}_{4}^{0}$ 5 15.3.83 1334 7 121/2" 20 2100 110 16.3.83 6 2066 BIT+BIT\_SUB+NB\_REAMER 3 PTS+XOVER+SHOCK\_SUB+1x7 3/4DC+ STAB+2x7 3/4DC+STAB+8x7 3/4DC+2BUMPER\_SUBS+6x7 3/4DC+ XO+FLEX\_JT+1HWDP+HYDRIL\_SUB+8\_HWDP. 19.3.8320.3.83 25.3.83 2265 3/40 3/40 3/40 2 89 8 121/2" 22 115 1900 2580 BIT+BIT SUB+1x6<sup>1</sup>/<sub>2</sub>DC+STAB+1x6<sup>1</sup>/<sub>2</sub>DC+STAB+13x6<sup>1</sup>/<sub>2</sub>DC+BUMPER SUB+ 6x6<sup>1</sup>/<sub>5</sub>DC+FLEX JT+1 HWDP+HYDRIL SUB+8 HWDP. 5/12 30/50 1000 81/1 9 BIT+JUNK SUB+BIT SUB+1x6<sup>1</sup>/<sub>2</sub>DC+STAB+1x6<sup>1</sup>/<sub>2</sub>DC+13x6<sup>1</sup>/<sub>3</sub>DC+BUMPER 1 3/4<sup>0</sup> SUB+6x6<sup>1</sup>/<sub>5</sub>DC+FLEX JT+EO JARS+1xHWDP+HYDRIL SUB+8HWDP. 10 30.3.83 16 50 1000 2797 10 81," CORING BHA+CH+CORE BBL+5x63DC+2BUMPER SUBS+16x63DC+FLEX JT+E0 JARS+1 HWDP+HYDRIL SUB+8 HWDP. 8 81/1 90 850 11 .

|    | F <b>3g'</b> i | Bis 2-78               |         |         | WEL                       | L BORE CO            | WELL :             |                                        |            |                                            |   |            |  |
|----|----------------|------------------------|---------|---------|---------------------------|----------------------|--------------------|----------------------------------------|------------|--------------------------------------------|---|------------|--|
|    |                | • MEASUREN             | AENTS • |         |                           | • RESULTS •          |                    |                                        |            |                                            |   |            |  |
| N° | Y I Type I     | Inclination Geographic |         | DEPTHS  |                           | RELATIVE COORDINATES |                    |                                        | GEOGRAPHIC | Dog • Leg                                  |   |            |  |
|    | i y pe         | depth                  | (°)     | azimuth | Measured and<br>corrected | Vertical             | N <sub>8</sub> S . | E.W.                                   | Departure  | X                                          | Y | · Severity |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    | ······································ |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        | -       |         |                           |                      |                    |                                        |            | ·<br>· · · · · · · · · · · · · · · · · · · |   | -          |  |
|    |                |                        | · ·     |         |                           |                      | 4                  | ·//                                    | <br>       |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    | ¢                                      |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    | ······                                 |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      | Š.                 |                                        |            |                                            |   |            |  |
|    |                |                        | ·       |         |                           | ~                    |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           | 4                    |                    |                                        |            |                                            |   | , .        |  |
|    |                | · · ·                  |         |         |                           | <i>`\</i> //         |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    | ······································ |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        | <br>       |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         |         |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        |         | •       |                           |                      |                    |                                        |            |                                            |   |            |  |
|    |                |                        | 1       |         |                           |                      | •                  |                                        |            |                                            |   |            |  |

# F3 h Bis 2-78

#### COMPLETION STATUS

WELL: TARRA 1

1) COMPLETION (If carried out by the drilling rig)

### yes 🔲

X no

#### 2) - CASINGS, TUBINGS AND ANNULUS STATUS

| CASING<br>AND TUBING | SHOE  | HANGER | CASING<br>CUT    | CEMEN  | CEMENT TOPS ANNU |                            | US FLUIDS |  |  |
|----------------------|-------|--------|------------------|--------|------------------|----------------------------|-----------|--|--|
| DIAMETER             | DEPTH | DEPTH  | DEPTH<br>(event) | ØØ     | ID               | NATURE                     | SG        |  |  |
| 20"                  | 211m  | 91m    | 110m             | SEABED |                  | СМТ                        |           |  |  |
| 13 3/8"              | 1002m | 93.34m | 170m             | 500 m  |                  | SEA WATER GEL              | 1.08      |  |  |
| 9 5/8"               | 2567m | 92.34m | 230m             | 2070 m |                  | SEA WATER<br>GEL – POLYMER | 1.15      |  |  |
|                      |       |        |                  |        |                  |                            |           |  |  |
|                      |       | 4.     |                  | ,      |                  |                            | <b>\</b>  |  |  |

**Depths of perforations :** ۰. <u>م</u>ينز،

Tubing ancroring device and  $\mathsf{pocke}_{z} \overset{\mathsf{w}}{\underset{\mathsf{repth}}} \mathsf{epth}(s)$  :

#### 3) - CEMENT PLUGSAND BRIDGE PLUGS (CP and BP)

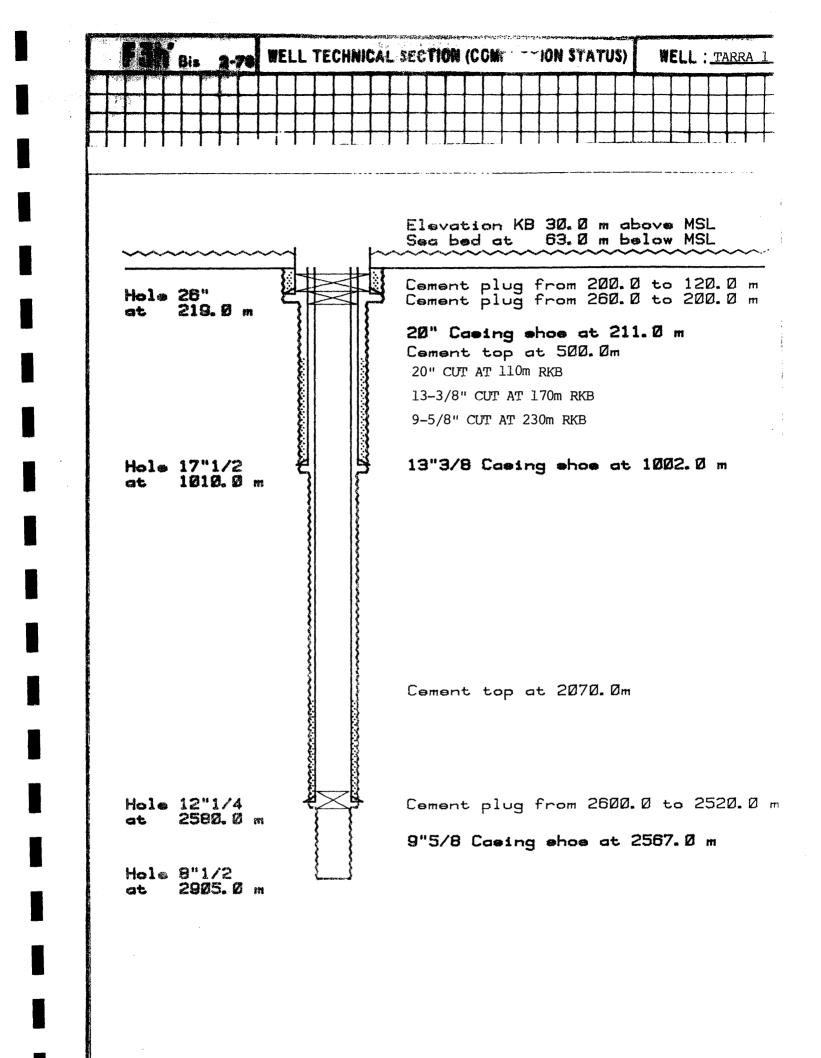
5

|     |                          | _                 | _  | _         |     |                   |   |          | _ |          | <br>     | <br>     | _ |          | <br>         |  |
|-----|--------------------------|-------------------|----|-----------|-----|-------------------|---|----------|---|----------|----------|----------|---|----------|--------------|--|
|     | ΓΡΕυς (CP)<br>ΓΡΈυς (aP) | _CP               |    | <u>CP</u> |     | CP                |   |          |   |          | <br>     | <br>     |   |          | <br><u> </u> |  |
| FRO | M (mor)                  | 260               | 00 | 260       | )   | 200               | ) |          |   |          |          |          |   |          |              |  |
| то  | (m or ft)                | 252               | 20 | 200       | )   | 120               | ) |          |   |          |          |          |   |          |              |  |
| TE  | ESTED                    | K]<br>yes         |    | U<br>yes  | No. | X<br>yes          |   | U<br>yes |   | U<br>yes | U<br>yes | U<br>yes |   | U<br>yes | U<br>yes     |  |
| BY  | PRESSURE<br>OR<br>WEIGHT | <u>100</u><br>PS1 |    |           |     | <u>100</u><br>PS1 |   |          |   |          | <br>     | <br>     |   |          | <br>         |  |

:\_\_\_\_

#### 4) - WELL HEAD

Imp. 4996 SNEA(P) RGM 959.004.011


Description of abandonned equipment

ALL EQUIPMENT REMOVED FROM SEABED

RELOCALIZATION DEVICE

| yes |  |
|-----|--|
| no  |  |

TYPE : X



tan francessan (

|                                                |                                        |                           |                     | ROCK BI                               | TS AND CO        | DRE BITS     | ,<br>,<br>,         |              |                                        |                  |
|------------------------------------------------|----------------------------------------|---------------------------|---------------------|---------------------------------------|------------------|--------------|---------------------|--------------|----------------------------------------|------------------|
| BIT                                            | ······································ | CON                       | E BITS              |                                       | D                | IAMOND B     |                     |              | BITS                                   | Total<br>by      |
| DIAMETER                                       | Tooth<br>tricone<br>bits               | Insert<br>tricone<br>bits | Removable<br>center | Bicone<br>bits                        | Drilling<br>bits | Core<br>bits | Removable<br>center | Drag<br>bits | Special<br>bits                        | intervo          |
| 26"                                            | 10                                     |                           |                     |                                       |                  |              |                     |              |                                        | 1                |
| 17½"                                           | 2                                      |                           |                     | ·                                     |                  |              |                     |              |                                        | 2                |
| 12¼"                                           | 5                                      | 2                         |                     |                                       |                  |              |                     | <del></del>  |                                        | 7                |
| 8½"                                            | 1                                      | 2                         |                     |                                       |                  | 2            |                     |              |                                        | 5                |
|                                                |                                        |                           |                     |                                       |                  |              |                     |              |                                        |                  |
|                                                |                                        |                           |                     |                                       |                  |              |                     |              |                                        |                  |
| L                                              | <u></u>                                | I                         | - <b>I</b>          |                                       | ·                |              | 4                   | то           | TAL                                    | _15              |
| ·····                                          |                                        |                           | C                   | CASINGS                               |                  |              |                     |              |                                        |                  |
| Diamete                                        | er                                     | Weight<br>(Ibs/Ft)        |                     | Thread                                | Gr               | ade          | Length<br>(Ft or r  | 11           | Observa                                | tions            |
| 20"                                            |                                        | 133                       | "CC'<br>CAME        | ' CONNECT<br>ERON                     | OR X5            | 6            | 120m                |              | ······································ |                  |
| 13 3/8                                         |                                        | 68                        | BUTT                | RESS                                  | К5               | 5            | 909m                |              | SHOE AT 1                              | 002M             |
| 9 5/8"                                         |                                        | 47                        | BUTT                | RESS                                  | N8               | 0            | 2484m               |              | SHOE AT 2                              | 567M             |
|                                                |                                        |                           |                     | • • • • • • • • • • • • • • • • • • • |                  | •            |                     |              |                                        | CAR <sup>1</sup> |
|                                                |                                        |                           |                     | ······                                |                  | <u> </u>     |                     |              |                                        |                  |
|                                                |                                        |                           |                     |                                       |                  | <u></u>      |                     |              | <del></del>                            |                  |
| <u>,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,</u> |                                        |                           |                     |                                       |                  |              |                     |              |                                        |                  |
|                                                |                                        |                           |                     | · · · · · · · · · · · · · · · · · · · |                  | #            |                     |              | <u> </u>                               |                  |
|                                                |                                        |                           |                     |                                       |                  |              |                     |              |                                        |                  |
|                                                |                                        |                           |                     |                                       |                  | •            |                     |              |                                        |                  |
|                                                |                                        |                           |                     |                                       |                  |              |                     |              |                                        |                  |
|                                                |                                        |                           |                     |                                       |                  |              |                     |              |                                        |                  |

## Bis 2-78 MAIN CONSUMPTIONS OF THE WELL

WELL: TARRA 1

|       | • CEMENTS • |              |                 |       |              |              |            |  |  |  |  |  |
|-------|-------------|--------------|-----------------|-------|--------------|--------------|------------|--|--|--|--|--|
| Class |             | QUANTITY (T) | ·               | Class | QUANTITY (T) |              |            |  |  |  |  |  |
| Class | Casing      | Well abandon | Plugging losses | Ç1035 | Casing       | Well abandon | Plugging 1 |  |  |  |  |  |
| G     | 135T        | 13T          | 46T             |       |              |              |            |  |  |  |  |  |
|       |             |              |                 |       |              |              |            |  |  |  |  |  |
|       |             |              |                 |       |              |              |            |  |  |  |  |  |

|                                                               | CHEM                                    |                     |                                      |
|---------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------------|
| CHEMICAL NAME                                                 | QUANTITIES ADDED<br>m <sup>3</sup> or T | CHEMICAL NAME       | QUANTITIES AD<br>m <sup>3</sup> or T |
| GEL                                                           | 61.25T                                  | CALCIUM CHLORIDE    | 2.08T                                |
| CAUSTIC                                                       | 6.58T                                   | CMC LV<br>CMC HV    | 2.58T<br>0.88T                       |
| SODA ASH                                                      | 2.64T                                   | STARLOSE<br>PAC-R   | 0.227T<br>0.200T                     |
| LIME                                                          | 2.73T                                   | DEXTRID             | 4.54T                                |
| BARITE                                                        | 154.94T                                 | MON PAC             | 0.275T                               |
| KWIK SEAL                                                     | 3.64T                                   | SOLTEX              | 1.36T                                |
| MICA                                                          | 0.95T                                   | Q.BROXIN            | 2.95T                                |
| CONDET                                                        | 0.205M <sup>3</sup>                     | AL STEARATE         | 1.06T                                |
| *15.2T USED TO PLUG LOSSE<br>33.57T DUMPED PRIOR RIG<br>ABOVE | ES<br>MO <b>Y</b> E                     | BICARBONATE<br>SAPP | 1.20T<br>0.650T                      |
| ABOVE                                                         |                                         | ANSFER LOSSES       |                                      |

|                               | WATER - DIESEL/OIL (not added in mud) |                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------|---------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| FRESH WATER (m <sup>3</sup> ) |                                       |                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
| DIESEL-OIL (m <sup>3</sup> )  | 300T                                  | -FOR THE RIG ONLY<br>CONSUMPTION OF THE 3 BOATS EXCLUDED |  |  |  |  |  |  |  |  |  |  |  |  |

WELL HEADS, HANGERS (Ø - API working pressure - Type)

- 1 x HOUSING 18 3/4" x 10,000 PSI CIW WITH PILE JOINT 18" x 24" x 30 FT LONG.

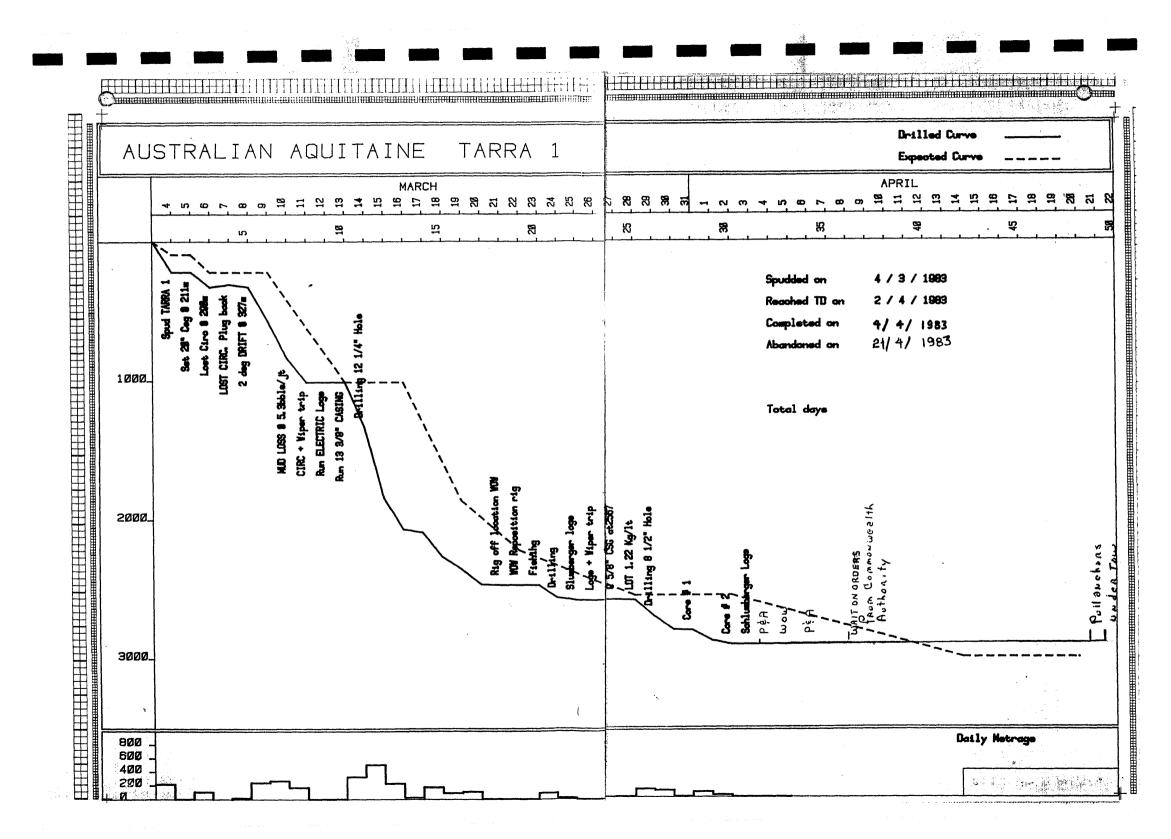
- 18 3/4" NOMINAL SEAT PROTECTOR CIW.

- 13 3/8" x 18 3/4" CASING HANGER + 13 3/8" x 18 3/4" SEAL ASSY. + 13 3/8" WEAR BUSHI

- 9 5/8"x18 3/4"CASING HANGER+1x9 5/8"x18 3/4"SEAL ASSY.+9 5/8"x8½" WEAR BUSHING CIW.

- 2 AX RING CIW

- 1 x TEMPORARY GUIDE BASE CIW (MODIFIED)


- 1 x PERMANENT GUIDE BASE CIW (MODIFIED)

| Core - Bits A\$ 11,839<br>Mud chemicals A\$ 100,883<br>Cements A\$ 60,609<br>Water A\$ 4,639<br>Water A\$ 1,010                                                                                          | _ Casing and miscellaneous <u>A\$ 490,78</u><br>_ Wellhead and miscellaneous <u>A\$ 86,16</u><br>- Bottom hole equipment <u>A\$ 2,74</u><br>- Surface equipment <u>A\$ 3,75</u><br>- Offshore or anchoring equipment <u>A\$ 1,77</u><br>- Anti-pollution products <u>A\$</u><br>- |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling bits       A\$ 62,787         Core - Bits       A\$ 11,839         Mud chemicals       A\$ 100,883         Cements       A\$ 60,609         Water       A\$ 4,639         TOTAL       A\$ 1,010 | _ Wellhead and miscellaneous <u>A\$ 86,16</u><br>- Bottom hole equipment <u>A\$ 2,74</u><br>- Surface equipment <u>A\$ 3,75</u><br>- Offshore or anchoring equipment <u>A\$ 1,77</u><br>- Anti-pollution products <u>A\$</u>                                                      |
| Core - Bits                                                                                                                                                                                              | - Bottom hole equipmentA\$ 2,74<br>- Surface equipmentA\$ 3,75<br>- Offshore or anchoring equipment A\$ 1,77<br>- Anti-pollution productsA\$                                                                                                                                      |
| Mud chemicals       A\$ 100,883         Cements       A\$ 60,609         Water       A\$ 4,639         TOTAL       :                                                                                     | - Surface equipment <u>A\$ 3,75</u><br>- Offshore or anchoring equipment <u>A\$ 1,77</u><br>- Anti-pollution products <u>A\$</u>                                                                                                                                                  |
| A\$       60,609         Water       A\$       4,639         TOTAL       A\$       1,010                                                                                                                 | - Offshore or anchoring equipment A\$ 1,77<br>- Anti-pollution products A\$                                                                                                                                                                                                       |
| Water <u>A\$ 4,639</u><br>TOTAL : <u>A\$ 1,010</u>                                                                                                                                                       | - Anti-pollution products A\$                                                                                                                                                                                                                                                     |
| Water <u>A\$ 4,639</u><br>TOTAL : <u>A\$ 1,010</u>                                                                                                                                                       | - Anti-pollution products A\$                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                          | ,622                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                          | ,622                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
| ENTAL AND SERVICES (Item 6)                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| Electrical loggingA\$ 497,282                                                                                                                                                                            | Mud logging <u>A\$59,043</u>                                                                                                                                                                                                                                                      |
| Cementing and pumping                                                                                                                                                                                    | - Mud services A\$ 13,958                                                                                                                                                                                                                                                         |
| Fishing A\$ 18,736                                                                                                                                                                                       | - Directional survey                                                                                                                                                                                                                                                              |
| Turbodrill A\$                                                                                                                                                                                           | - Tong service                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                          | _ Air drilling A\$                                                                                                                                                                                                                                                                |
| Subsea operations (diving)A\$ 143,941                                                                                                                                                                    | _ Other servicesA\$                                                                                                                                                                                                                                                               |
| Welding A\$                                                                                                                                                                                              | - Bottom hole equipment rental A\$ 28,724                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                          | _ Surface equipment rentalA\$                                                                                                                                                                                                                                                     |
| Velocity survey A\$ 12,600                                                                                                                                                                               | - Wellhead equipment rental A\$ 193                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                          | _ Anti-pollution equipment rental _A\$                                                                                                                                                                                                                                            |
| PositioningA\$48,073                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
| TOTAL:A\$ 956,612                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |

|       | <b>5j</b> Bis 2-78                                                | COS                                                        | TS BREAKDOWN    |                                                            | WELL: TARRA 1 |
|-------|-------------------------------------------------------------------|------------------------------------------------------------|-----------------|------------------------------------------------------------|---------------|
|       | OPERAT                                                            | TIONS                                                      | BEFORE DRILLING | DRILLING                                                   | AFTER DRILLI  |
| 1     | Operation preparat                                                | ion                                                        | 25,000          |                                                            | ·             |
| II    | Access and drillin<br>sea bottom surveys                          |                                                            | 29,046          | 9,601                                                      |               |
| III . | <b>Rig mobilization a</b><br>EX SINGAPORE/MOV<br>COAST - APPROTIC | n <b>d moving in</b> COSTS<br>/ING DOWN AUSTRALIA<br>DNED. | 64,450          | 1,047,754                                                  |               |
|       |                                                                   | SUB TOTAL                                                  | 118,496         | 1,057,355                                                  |               |
| IV    | Drilling Contractor                                               |                                                            |                 | 3,434,629                                                  |               |
| v     | Consumables                                                       |                                                            |                 | 1,010,622                                                  |               |
| VI    | Rental and service                                                | S                                                          |                 | 928,156                                                    |               |
| VII   | Operator supervisio                                               | on                                                         |                 | 192,352                                                    |               |
| VIII  | Transportation (air                                               | - land - sea)                                              |                 | 1,194,434                                                  |               |
| IX    | Insurances                                                        |                                                            |                 |                                                            |               |
| x     | Operating bases                                                   |                                                            |                 | 123,556                                                    |               |
|       |                                                                   | SUB TOTAL                                                  |                 | 6,883,749                                                  |               |
| XI    | Rig demobilization                                                | and moving out                                             |                 |                                                            |               |
| XII   | Finalization of ope                                               | rations                                                    |                 |                                                            |               |
|       | TOTAL                                                             |                                                            | ▲ 118,496       | в 7,941,104                                                |               |
| TOTA  | L COST OF WELL:                                                   | A + B + C                                                  |                 | 8,059,600                                                  | -             |
|       |                                                                   | orfeet): <u>2,812</u><br><u>B</u> <u>2,824</u>             |                 | (INC<br>tion (d): <u>38</u> MOV<br><u>3</u> : <u>212,0</u> |               |
|       |                                                                   | LIAN \$                                                    |                 |                                                            |               |

| MON TH:      | MARC  | CH        | WEL                 | L:               | TARRA     | 1              |           |      |          |           |               |
|--------------|-------|-----------|---------------------|------------------|-----------|----------------|-----------|------|----------|-----------|---------------|
| YEAR         |       | D         | AILY MOR            | NING OB          | ERVATIO   | NS             |           | U    | NIT MOTH | DNS       | 1 2           |
| 19 <u>83</u> | Wi    | nd        |                     | Waves            |           | Cı             | vrrent    | Roll | Pitch    | Heave     | Perature<br>• |
| DATE         | Speed | Direction | Height<br>(Ft or m) | Period<br>(sec.) | Direction | Speed<br>(Knt) | Direction | (*)  | (•)      | (Ft or m) |               |
| 1            | 20    | ESE       | . 1                 | 3                | SE        |                |           | 0.5  | 0.5      |           | 17            |
| 2            | 30    | ENE       | 2                   | 3                | E         |                |           | 0.5  | 0.6      |           | 20            |
| 3            | 25    | ESE       | 1.5                 | · 2              | SE        |                |           | 0.6  | 0.6      |           | 21            |
| 4            | 20    | E         | 3                   | 6                | E         |                |           | 0.4  | 0.4      | 0.5       | 24            |
| 5            | 2     | SW        |                     |                  |           |                |           | 0.1  | 0.1      | 0.2       | 20            |
| 6            | 17    | NNE       | 1.5                 | 6                | NE        |                |           | 0.3  | 0.3      | 0.3       | 23            |
| 7            | 2     | ESE       |                     |                  |           |                |           | 0.1  | 0.1      | 0.1       | 24            |
| 8            | 25    | NNE       | 1.5                 | 5                | NNE       |                |           | 0.3  | 0.3      | 0.3       | 23            |
| 9            | 60    | WSW       | 7                   | 7                | WSW       |                |           | 1.0  | 2.0      | 0.8       | 20.5          |
| 10           | 40    | ENE       | 5                   | 7                | E         |                |           | 0.6  | 1.0      | 1.0       | 19            |
| 11           | 25    | NE        | 5                   | 6                | E         |                |           | 0.6  | 1.0      | 1.0       | 21.5          |
| 12           | 20    | SW        | 2                   | 5                | SW        |                |           | 0.3  | 0.3      | 0.8       | 22.5          |
| 13           | 30    | WSW       | 3                   | 8                | SW        |                |           | 0.4  | 0.4      | 1.0       | 21            |
| 14           | 15    | W         | 2.5                 | 7                | SW        |                |           | 0.4  | 0.4      | 0.8       | 18            |
| 15           | 15    | E         | 1.5                 | 6                | SW        |                |           | 0.2  | 0.2      | 0.3       | 16            |
| 16           | 30    | Е         | 3.5                 | 6                | E         |                |           | 0.3  | 0.5      | 0.3       | 19            |
| 17           | 25    | E         | 3                   | 6                | E         |                |           | 0.3  | 0.5      | 0.4       | 19.5          |
| 18           | 20    | SW        |                     |                  |           |                |           | 0.1  | 0.1      | 0.2       | 20            |
| 19           | 5     | ESE       |                     |                  |           |                |           | 0.2  | 0.2      | 0.2       | 19            |
| 20           | 25    | Е         | 4                   | 5                | Е         |                |           | 0.4  | 1.2      | 0.6       | 19            |
| 21           | 35    | E         | 9                   | 5                | E         |                |           | 1.0  | 1.5      | 1.0       | 19            |
| 22           | 40    | E         | 14                  | 6                | E         |                |           | 1.5  | 2.0      | 2.0       | 21            |
| 23           | 45    | W         | 6                   | 7                | SW        |                |           | 0.8  | 1.0      | 1.2       | 21            |
| 24           | 35    | SW        | 6                   | 5                | SW        |                |           | 0.9  | 1.2      | 1.0       | 16.5          |
| 25           | 25    | WSW       | 2                   | 5                | SW        |                |           | 0.6  | 0.4      | 0.5       | 16.5          |
| 26           | 35    | WSW       | 5                   | 6                | SW        |                |           | 0.8  | 0.6      | 0.7       | ¥7            |
| 27           | 30    | WSW       | 4                   | 6                | SW        |                |           | 0.6  | 0.7      | 0.6       | 17            |
| 28           | 30    | WSW       | 4                   | 6                | SW        |                | <b> </b>  | 0.5  | 0.4      | 0.5       | 17.5          |
| 29           | 15    | WSW       | 3                   | 6                | SW        |                |           | 0.3  | 0.3      | 0.4       | 18            |
| 30           | 25    | SW        | 3                   | 6                | SW        |                |           | 0.3  | 0.3      | 0.4       | 19            |
| 31           | 18    | SW        | 3                   | 4                | SW        |                |           | 0.3  | 0.4      | 0.5       | 18            |

| F3       | <b>5 K</b> Bis | 2-78      |           | MONTH           | LY MET    | EOROL          | OGICAL    | SHEET |          | WEL       | L: <u>TARR</u>   | A 1                   |
|----------|----------------|-----------|-----------|-----------------|-----------|----------------|-----------|-------|----------|-----------|------------------|-----------------------|
| MON TH:  | APRI           |           | WELL      | .:              | TARRA 1   |                |           | -     |          |           |                  |                       |
| YEAR     |                | DA        | ILY MORI  | NING OBS        | ERVATIO   | NS             |           | U     | NIT MOTH | DNS       | 2<br>5           | ¥~                    |
| 19       | Wir            |           | Height    | Waves<br>Period |           | H              | rrent     | Roll  | Pitch    | Heave     | emperature<br>°C | Visibility<br>(miles) |
| DATE     | Speed          | Direction | (Ft or m) | (sec.)          | Direction | Speed<br>(Knt) | Direction | (*)   | (*)      | (Ft or m) |                  | >                     |
| 1        | 20             | SW        | 2.5       | 7               | SW        | ļ              |           | 0.2   | 0.3      | 0.4       | 16               |                       |
| 2        | 20             | SW        | 3         | 6               | SW        |                |           | 0.3   | 0.3      | 0.5       | 16               |                       |
| 3        | 10             | ENE       | 2         | VAR             | VAR       |                |           | 0.2   | 0.3      | 0.4       | 18               |                       |
| 4        | 35             | WNW       | 6         | 7               | SW        |                |           | 0.3   | 0.6      | 0.5       | 18               |                       |
| 5        | 60             | WNW       | 8         | 7               | W         |                |           | 1.0   | 1.8      | 1.0       | 15               |                       |
| 6        | 50             | W         | 8         | 5               | W         |                |           | 1.0   | 1.8      | 1.0       | 14               |                       |
| 7        | 6              | W         | 2         | 5               | SW        |                |           | 0.2   | 0.2      | NIL       | 15.5             |                       |
| 8        | 20             | NE        | 3.5       | 7               | E         |                |           | 0.2   | 0.4      |           | 17               |                       |
| 9        | 25             | ENE       | 3.5       | 8               | E         |                |           | 0.2   | 0.5      |           | 19.5             |                       |
| 10       | 35             | NE        | 3.5       | VARI            | ABLE      |                |           | 0.2   | 0.3      | 0.3       | 20.5             |                       |
| 11       | 30             | WSW       | 4.5       | 8               | WSW       |                |           | 0.4   | 0.8      |           | 20.5             |                       |
| 12       | 22             | WSW       | 4.5       | 6               | WSW       |                |           | 0.8   | 0.8      |           | 16               |                       |
| 13       | 22             | W         | 3         | 6               | SW        |                |           | 0.4   | 0.5      |           | 16.5             |                       |
| 14       | 35             | W         | 3.5       | 8               | SW        |                |           | 1.0   | 0.8      |           | 16.5             |                       |
| 15       | 25             | SSE       | 3.5       | 7               | SE        |                |           | 1.0   | 0.8      |           | 16               |                       |
| 16       | 25             | SSE       | 4         | 7               | SE        |                |           | 1.0   | 0.6      |           | 15               |                       |
| 17       | 20             | SSE       | 4.5       | 6               | SE        |                |           | 1.0   | 0.8      |           | 15               |                       |
| 18       | 18             | SSE       | 4.5       | 6               | SE        |                |           | 0.9   | 0.9      |           | 16               |                       |
| 19       | 19             | SSE       | 4.5       | 6               | SE        |                |           | 0.9   | 0.9      |           | 16               |                       |
| 20       | 15             | SW        | 1         | VARIA           |           |                |           | 0.9   | 0.9      |           | 15               |                       |
| 20       | 14             | SW        | 1         | VARIA           |           |                |           | 0.4   |          |           |                  |                       |
| 22       |                | JW        | -'        | VARIA           |           |                |           | 0.3   | 0.3      |           | 18               |                       |
| 23       |                |           |           |                 |           |                |           |       |          |           |                  | •                     |
| 24       |                |           |           |                 |           | · · · · ·      |           |       |          |           |                  |                       |
| 24       |                |           |           | -               |           |                |           |       |          |           |                  | -                     |
| 26       |                |           |           |                 |           |                |           |       |          |           |                  | <u></u>               |
|          |                |           |           |                 |           |                |           |       |          |           |                  |                       |
| 27<br>28 |                |           |           |                 |           |                |           | -     |          |           |                  |                       |
| 20       |                |           |           |                 |           |                |           |       |          |           |                  |                       |
|          |                |           |           |                 |           |                |           |       |          |           |                  |                       |
| 30       |                |           |           |                 |           |                |           |       |          |           |                  |                       |
| 31       |                |           |           |                 |           |                |           |       |          | 1         |                  |                       |



|                   |                                                                                              |                                                       | CASING                                         | AND C          | CEMEN                         | TING                                  | REPO          | DRT         |          |                          |           | <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5a Bis          |
|-------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------|-------------------------------|---------------------------------------|---------------|-------------|----------|--------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                   | WELL<br>ountry) ((                                                                           | RIG<br>Contractor)                                    | K Meight                                       | und 🔲<br>L. 🕅  | ∮ <sup>Casi</sup><br>Line     | ing 🔀<br>er 🗌                         |               | CASIN       | G SHOE   |                          | •         | er depth<br>liners)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OPERATI<br>DATE |
|                   | RRA 1                                                                                        | OCEAN<br>DIGGER<br>ODECO                              |                                                |                | 20                            |                                       | Verti         | sured depth | 2        | <u>11m</u><br><u>11m</u> | casin     | nging Ø<br>g depth :<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.3.83          |
| LL CONDITION      | Open hole di<br>Important car<br>Losses durin<br>Reamer runs<br>Previous cas<br>Bo, Ps on wo | ng drilling<br>(number)<br>sing : Diar<br>ell when re | l (levels, ex<br>1<br>neter NO<br>unning in (1 | NE<br>Fype - e | quipmen                       | t, test (                             | RecShc<br>Shc | amerat _    | VE SU    | D SPOTT<br>9             | ING<br>SG | HI VIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _m from the     |
| - WEI             | MUD CHARAC                                                                                   | JECTING                                               | S.G.                                           | W.L.           | P.V                           | • •                                   | r.¥.          | 600         | 300      |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                   | SLUR                                                                                         | R T                                                   | 1.03                                           |                |                               |                                       |               |             |          |                          | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | İ               |
|                   | ELEMENT                                                                                      | MFG,                                                  | ø                                              |                | t (lb/ft)                     | Threa                                 | d or          | Grade       | Specia   |                          |           | Lengtl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1               |
| 1 O F             | SHOE                                                                                         | type<br>FLOAT                                         | 20"``                                          |                | ckness                        | joint t                               | уре           |             | corrosio |                          |           | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of joi          |
| OSITION OF<br>ING | COLLAR                                                                                       | TRISTA<br>FLOAT                                       | E<br>20"                                       | SHOE<br>133 I  |                               | "CC"                                  |               | X56         | NO       | 177.                     | .8        | 12.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| COMPOS            | CASING                                                                                       | N.K.K.                                                |                                                | 133            | LB                            | :<br>'CC'                             |               | X56         | NO       | 177                      | .8        | 95.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8               |
| CASING            | PILE JT<br>Tripping joint                                                                    |                                                       | 24"x20"<br>DP + BUMF                           | PER SU         | В                             | "CC                                   |               |             | NO       |                          |           | 12.24<br>91.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| 2 - GENI          | Drift diameter<br>Maximum perm                                                               | in the thic                                           | kestjoint _                                    |                |                               | •                                     | •             |             |          | TOTAL                    | → [       | 211.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>10</u>       |
|                   | Theoretical wa                                                                               | RS                                                    |                                                |                | RATCHE                        |                                       |               | In air      |          | OTHER EQ                 | UIPM      | and the second division of the second divisio | 32T             |
| STRING            | MGF:<br>TYPE:<br>NUMBER:<br>DEPTH/RKB                                                        |                                                       |                                                |                | F:<br>PE:<br>MBER:_<br>PTH/RI |                                       |               |             | ······   | Description              | n • Lo    | cation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| CASING.S          |                                                                                              |                                                       | ······································         |                |                               |                                       |               |             |          | ·                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······          |
| OF                |                                                                                              |                                                       |                                                |                |                               | · · · · · · · · · · · · · · · · · · · |               | ······      |          |                          |           | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| EQUIPMENT         |                                                                                              |                                                       |                                                |                |                               |                                       |               |             |          |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| ш                 |                                                                                              |                                                       |                                                |                |                               | •                                     |               |             |          |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                   | 1                                                                                            |                                                       |                                                | 1              |                               |                                       |               |             | 1        |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |

| 4 - RUNNING CASING    | Making-up of j<br>Grease type u<br>Average torque<br>Filling frequen<br>Intermediate c<br>Total running<br>Troubles durin<br>Bottom hole ci<br>Reciprocating<br>M.D. indicatio<br>Observations a | sed for the to make<br>ncy<br>irculation<br>time (with<br>ng runnin<br>irculation<br>:<br>ns after<br>CSG | hreads :<br>e-up the join<br>n (duration -<br>th circulatio<br>gNEC<br>n : Duration<br>Duration<br>stop of botto<br>FREE_AFT | on<br>depth)W/<br>depth)W/<br>CESSARY_1<br>30M<br>50m hole cir<br>ER_180M | (L<br>/A<br>ASH DI<br>(O WA)<br>culatio<br>, REG | OWN CSG 5<br>OQave<br>SH DOWN C<br>Rate148<br>Rate<br>AN SLOPE | HR 12<br>Frage rate<br>SG FROM<br>0 LTS/M<br>INDICAT | 5m TO 1<br><u>N/A</u><br>125M TO<br>IN<br>OR 3/4 | 80m<br>0 180M<br>Pressure –<br>Amplitude<br>DEG WHEI | oints/h_<br>500 | ) PSI                               |             |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------|-------------------------------------|-------------|
|                       | Service cy<br>Mixing pump<br>Slurry injection y<br>Displacement pu<br>Nature or class<br>of cements                                                                                              | ) <u>OW_SCH</u><br>pump DOW<br>mp(s)_D                                                                    | LUM 2"x3'                                                                                                                    | 'x11" CEN                                                                 | \T.<br>1"_TR<br>3/4"                             | I En<br>I En<br>IRI. Pr<br>Water i                             | d of slurry<br>d of displa                           | making at<br>cement at<br>ased in ca<br>es used  | sing at                                              | 30<br>30        | 730<br>305<br>345<br>347<br>Tonnage |             |
| CEMENTING             | 1 "G"<br>2<br>3                                                                                                                                                                                  | 565                                                                                                       |                                                                                                                              | THIXOTRO                                                                  | OPIC                                             | RATED GEL<br>A + B COM<br>128 LBS                              | PONENTS                                              | ACL2                                             |                                                      |                 | 24<br>8.54                          | T<br>T<br>T |
| OR FIRST STAGE        |                                                                                                                                                                                                  | ERISTICS                                                                                                  | 0F<br>. 1<br>2<br>3                                                                                                          | s.G.<br>1.52<br>1.68                                                      | P.V.                                             |                                                                | 600                                                  | VISCOS<br>300                                    |                                                      | ADINGS V        | S R.P.M.                            |             |
| SINGLE STAGE          | SPA(<br>Slurry injectio                                                                                                                                                                          | CER PLUGS                                                                                                 | 2                                                                                                                            | LTS/MIN                                                                   |                                                  |                                                                | Displace                                             | ement rate                                       | 79                                                   | 5 LTS/I         | MIN                                 |             |
| 5 - 5                 | Displacement f<br>Pressure at the<br>Estimated loss<br>Casing string p<br>Residual press                                                                                                         | e beginni<br>es<br>pressurin                                                                              | ng of displa<br>? RETL<br>g up at                                                                                            | cement<br>JRNS_OBSI                                                       | 250<br>ERVED                                     | _at the end<br>WITH SUB<br>_ Result                            | 265<br>SEA TV                                        |                                                  | at the su                                            | rge             | 265                                 |             |
| - SETTING ON<br>SPOOL | M.D. indication<br>M.D. indication<br>Casing string s<br>Spool : MFG _<br>Suspension and                                                                                                         | n at the e<br>n after ce<br>set on sp<br>i seal typ                                                       | end of displa<br>ement betting<br>ool                                                                                        | g                                                                         | h<br>Non                                         | a, after the e<br>ninal dimens                                 | settin<br>and of disp<br>ions                        | g tension<br>placement                           | on spool                                             | <br>▶           |                                     | Ţ.          |
| 6 - S                 | Additional sea<br>Distance betwe<br>Cut casing                                                                                                                                                   | en the u                                                                                                  | pper part öf                                                                                                                 | the spool o                                                               | and R.I<br>above (                               | the spool                                                      | 18 3/4                                               | "WELL                                            | HEAD AT                                              | 91M             |                                     |             |
| - CONTROL             | Temperature we<br>Cementing log<br>Result of these                                                                                                                                               | t.                                                                                                        |                                                                                                                              |                                                                           |                                                  |                                                                | EMENT A                                              | Top cen<br>T SEA B                               | ent annul<br>ED                                      | us →[           | SEABE                               | Dr          |
| 7 - CO                | Test casing st<br>Packer depth :<br>Test result :                                                                                                                                                |                                                                                                           |                                                                                                                              |                                                                           |                                                  |                                                                |                                                      |                                                  |                                                      | C               |                                     |             |

|  |  |  | ' | - |
|--|--|--|---|---|
|  |  |  |   |   |

| 93M              |             |         | ance above the<br>the mud-line in |                           | 20"                 | Casing<br>diameter | <u> </u>                              | TRA NO                | Well site   |
|------------------|-------------|---------|-----------------------------------|---------------------------|---------------------|--------------------|---------------------------------------|-----------------------|-------------|
| Cumula<br>Iength | Unit length | Threads | Thickness<br>and grade            | Equipment<br>joint number | Cumulated<br>length | Unit length        | Threads                               | hickness<br>and grade | Equipment   |
|                  |             |         |                                   |                           | 91.00               | 91.0               | ELLHEAD                               | 18 3/4 W              | КВ ТО ТОР   |
|                  |             |         |                                   |                           | 103.80              | 12.80              |                                       | E F <b>C</b> JOI      |             |
|                  |             |         |                                   |                           | 115.71              | 11.91              |                                       | LB/FT X5              |             |
|                  |             |         |                                   |                           | 127.62              | 11.91              | 11                                    | н                     | 3 "         |
|                  |             |         |                                   |                           | 139.52              | 11.90              | 11                                    | 11                    | 4 "         |
|                  |             |         |                                   | <b>I</b>                  | 151.41              | 11.89              | 11                                    | 11                    | 5 "         |
|                  |             |         |                                   | <b></b>                   | 163.32              | 11.91              | 11                                    | п                     | 6 "         |
|                  |             |         |                                   | ļ                         | 175.21              | 11.89              | 11                                    | 11                    | 7 "         |
|                  |             |         |                                   | <b> </b>                  | 187.12              | 11.91              | 11                                    | 11                    | 8 "         |
|                  |             |         |                                   | ļļ.                       | 198.76              | 11.64              | 11                                    | u                     | 9 "         |
|                  |             |         |                                   |                           | 211.00              | 12.24              |                                       | LE JOINT              | <u>10 P</u> |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    | 1                                     |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   | <b> </b>                  |                     |                    | · · · · · · · · · · · · · · · · · · · |                       |             |
|                  |             |         |                                   |                           |                     |                    | i                                     |                       |             |
|                  |             |         |                                   | <b>}</b>                  |                     |                    | i                                     |                       |             |
|                  |             | ^       |                                   |                           | ·····               |                    |                                       |                       |             |
| <u> </u>         |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   | +                         |                     |                    |                                       |                       |             |
|                  |             |         |                                   | }                         |                     |                    | *                                     |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   | <b> </b> +-               |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    | 1                                     |                       |             |
|                  |             | +       | ¥.                                |                           |                     |                    |                                       |                       |             |
|                  |             | 1       |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       | ·           |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           | •                   |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   | •                         | , <u></u>           |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |
| <del></del>      |             |         |                                   |                           |                     |                    |                                       |                       |             |
|                  |             |         |                                   |                           |                     |                    |                                       |                       |             |

•

|                         | CASING AND CEMENTING REPORT       F5a Bis         WELL (contractor)       R Ground (contractor)       Cosing X       Casing X       CASING SHOE       Hanger depth (for liners)       OPERATION DATE         NRRA 1       OCEAN       DIGGER       93       13 3/8       Measured depth : 1002       or changing Ø       casing depth : 1002       or changing Ø       12.3.83         NRRA 1       ODECO       93       13 3/8       Measured depth : 1002       or changing Ø       casing depth : 12.3.83         Open hole diameter :       17½"       Depth (Vertical : |                                                       |                     |                |                          |                   |                |                 |                    |                         |                   |                       |             |                     |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|----------------|--------------------------|-------------------|----------------|-----------------|--------------------|-------------------------|-------------------|-----------------------|-------------|---------------------|
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | IK Meight           |                | Ψ                        |                   |                | CASIN           | IG SHOE            |                         |                   |                       | .n   -      |                     |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIGGER                                                | 93                  |                | <u>13</u>                | /8                | 1              |                 |                    | 02                      |                   |                       | ' I         | 2.3.83              |
|                         | Open hole<br>Important                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e diameter :<br>caving (locat                         | ]7½"<br>ion - avera | ige diar       | Depth<br>neter):         | Vertica<br>Measur | L<br>I:<br>æd: |                 | D                  | eviation                | Mini<br>Maxi      | : <u>314 。</u><br>2 。 | to          | 1010 r<br>326 r     |
|                         | Losses d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uring drilling                                        | (levels, ex         | ktent)_        | TOTAL<br>LOSSES          | LOSSES            |                | W /HRI.         |                    |                         |                   | D WITH                | PART        | IAL                 |
| CONDITION               | Previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | casing : Diam                                         |                     | 20"            |                          |                   | Re<br>Sho      | amerat<br>pe at |                    |                         |                   |                       |             | from the bi         |
| ELL                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACTERISTICS                                           | S.G.                | W.L.           | P.V                      | /.   `            | .v.            |                 | ·                  | IMETER                  | READ              | DINGS V               | R.P.M.      | ,<br>,              |
| 1 - W                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E INJECTING<br>.URRY                                  | 1.14                | NC             | 6                        |                   | 27             | 600             | 300                |                         |                   |                       |             |                     |
|                         | Observatior<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns                                                    |                     |                | <u>.</u>                 |                   |                |                 |                    |                         |                   |                       | ·           |                     |
|                         | ELEMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T MFG,<br>type                                        | ø                   |                | ht (lb/ft)<br>ickness    | Thread            |                | Grade           | Specia<br>corrosio | n > volu                | side<br>ume<br>/m | ł                     | ngth<br>m)  | Number<br>of joints |
| SITION OF<br>IG         | SHOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLOAT                                                 | 13 3/8              | 68 LI          | BS/FT                    | BUTT              |                | K55             |                    | 78.                     |                   | 0.                    | •           | X                   |
| OSITI                   | COLLAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 13 3/8              | 68 LI          |                          | BUTT              |                | K55             |                    | 78.                     | -                 |                       | .60         | ×                   |
| AL COMPOS               | CASINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1                                                 | 13 3/8<br>13 3/8    | 68 LI<br>TORQI | 3S/FT<br>JE SET          | BUTT              |                | K55             |                    | 78.                     | 08                | 906<br>0              | .32<br>.70  | 76                  |
| <b>GENERAL</b><br>CASIN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | int : HWDP                                            | 5"                  |                | BS/FT                    | 4½ I              | 1              |                 |                    | 4.                      |                   |                       | 20          | × 76                |
| 2 -                     | Maximum p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ter in the thick<br>emissible tens<br>I weight of the | ion `               |                |                          |                   |                | In air          |                    |                         | ·L ≻  <br>i       | 908.3                 | <u>32 m</u> | 76                  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IZERS                                                 |                     |                | CRATCHE<br>GF :<br>(PE : | RS                |                |                 |                    | DTHER E                 |                   |                       |             |                     |
| CASING STRING           | NUMBER:<br>DEPTH/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                     |                     | NI             | JMBER :_<br>EPTH/RI      |                   |                |                 | T                  | IW 13<br>ORQUE<br>OP 13 | SET               | SYSTE                 | 1 SCRE      |                     |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970<br>935<br>208                                     |                     |                |                          |                   |                |                 | (                  | TOP SE                  | AL A              | ISSY 9:               | 3.34M)      |                     |
| EQUIPMENT OF            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                     |                |                          |                   |                | •               |                    |                         |                   |                       |             | ·                   |
| 3 - EQUIP               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                     |                |                          |                   |                |                 |                    |                         |                   | <u></u>               | *           |                     |
| ~~                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                     |                |                          |                   |                |                 |                    |                         |                   |                       |             | ·                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                     |                |                          |                   |                | •               |                    |                         |                   |                       |             |                     |

| :                | Making-up of                                     |                       |                             | HERFORD                                            |            |              |                |                         |                       |                  | · <u>·····················</u> |              |
|------------------|--------------------------------------------------|-----------------------|-----------------------------|----------------------------------------------------|------------|--------------|----------------|-------------------------|-----------------------|------------------|--------------------------------|--------------|
|                  | Grease type u<br>Average torqu                   | sed for '             | threads :<br>               |                                                    |            | SEAL THR     |                |                         |                       |                  |                                |              |
|                  | Eilling freque                                   | nev                   |                             | EVI                                                | EKY 5 JU   | DINTS        | 11(1/11(       |                         |                       |                  |                                |              |
|                  | Intermediate c                                   | irculatio             | on (duration -              | depth)                                             | NONE       |              |                |                         |                       |                  |                                |              |
|                  | Total running<br>Troubles durin                  | time (wi              | ith circulatio              | ons)                                               | <u>8</u> h |              |                | 9.5                     |                       | joints/h_        |                                |              |
|                  | Bottom hole c<br>Reciprocating<br>M.D. indicatio | :                     | Duration.                   | NONE                                               |            | te           |                |                         | Pressure<br>Amplitude | 400              | ) PSI                          |              |
|                  | Observations                                     | :                     |                             |                                                    |            |              |                |                         |                       |                  |                                | ·            |
|                  | Service cy                                       | DOWELL                | SCHLUMBE                    | RGER                                               |            | Bec          | inning of      | slurry mok              | ina at                | 7H21             | (13.3                          | .83)         |
|                  | Mixing pump                                      | DOWE                  | LL SCHLUM                   | BERGER                                             |            | End          | -              | making at               | -                     | 8H2C             |                                |              |
|                  | Slurry injection<br>Displacement pu              |                       | DOWELL SC<br>RIG PUMP       | HLUMBERG                                           | ier        |              | •              | cement at<br>ased in ca |                       |                  |                                |              |
|                  | Nature or class                                  | Sacks or              | Cement weight               |                                                    |            | Water a      | nd additive    | es used                 | sing ar _             |                  | TONNAGE                        | S 115        |
|                  | of cements                                       | bulk                  | increase %                  |                                                    |            |              | ire : quanti   |                         |                       |                  |                                |              |
| +                | <sup>1</sup> "G"                                 | B                     | CALIPER                     | T                                                  |            |              | <u>115 + F</u> | RESH WA                 | VIER                  |                  | 21_1                           |              |
| ł                | <u> </u>                                         | B                     | FRESH WA                    | IER WIIF                                           | IOUT ADL   | DITIVES      |                | <u> </u>                |                       |                  | 2/_                            | ONS          |
| -                | з<br>                                            |                       |                             |                                                    | <br>       |              |                |                         |                       | <u> </u>         |                                |              |
|                  | CARACT                                           | ERISTICS              | 0F                          | S.G.                                               | P.V.       | <b>Y.V</b> . | 600            | VISCOS<br>300           | IMETER R              | EADINGS VS       | R.P.M.                         | T            |
|                  | 0,,,,,,0                                         | 211101100             | .1                          | 1.42                                               |            |              |                |                         |                       |                  | +                              | +            |
|                  | SL                                               | URRIES                | 2                           | 1.90                                               |            |              |                |                         |                       |                  |                                |              |
| $\left  \right $ |                                                  |                       | 3                           | $\searrow$                                         | $\searrow$ | $\searrow$   | $\searrow$     | $\sim$                  | $\searrow$            | $\rightarrow$    | $\sim$                         | $\leftarrow$ |
| ŀ                | SDV                                              | CER PLUG              | 1                           |                                                    |            |              |                |                         |                       |                  |                                | É            |
|                  |                                                  |                       | <sup>3</sup> 2<br>1) 1777   | LIT/MIN                                            |            |              | י י <b>ס</b>   | ]                       | 0.0                   | 0 ĹIT/MI         |                                | 1            |
|                  | Slurry injectio                                  | on rate               | 2) 1320                     | LIT/MIN                                            | l          |              | UISPIQCe       | ment rate               |                       |                  | <u>н</u>                       |              |
| $\left  \right $ | Displacement f                                   | luid nat              | ure MU                      | D .                                                |            |              | Pumped         | volume                  | 69                    | .5M <sup>3</sup> |                                |              |
|                  | Pressure at the                                  |                       |                             |                                                    |            |              |                |                         |                       |                  |                                |              |
|                  | Estimated loss                                   | es                    | 9.5M <sup>3</sup>           |                                                    |            |              |                |                         | _                     | -                |                                |              |
|                  | Casing string p<br>Residual press                | pressurin<br>ure (eve | ng up at<br>entual) after l | 2000 PS1<br>bleeding o                             | I<br>ff    | Result       | UK (HE         | LU 15 M                 | 11N)                  |                  |                                |              |
| $\frac{1}{1}$    | M.D. indication                                  | at the                | end of displa               | Cement                                             |            |              |                |                         |                       |                  |                                |              |
|                  | M.D. indication                                  | n after c             | ement betting               | g                                                  |            |              | setting        | g tension               | on spool              |                  |                                |              |
|                  | Casing string s<br>Spool : MFG _                 |                       |                             |                                                    |            |              |                |                         |                       |                  |                                |              |
|                  | Suspension and                                   |                       |                             |                                                    |            |              |                |                         |                       | •                |                                |              |
| 1                | Additional sea                                   | l (type -             | dimensions)                 |                                                    |            |              |                |                         |                       |                  |                                |              |
|                  | Distance betwee<br>Cut casing                    |                       |                             |                                                    |            |              |                |                         |                       |                  |                                |              |
| Í                | Temperature w                                    | ell loggi             | ng after                    |                                                    | h. 1       | setting      |                |                         |                       |                  |                                |              |
|                  | Cementing log<br>Result of these                 | after                 |                             |                                                    | h. 1       | setting      |                | Top cen                 | ent annu              | lus >            | 500                            |              |
|                  | Test casing st                                   | rino + B              | O.P.(blinda                 | nd nine ran                                        | ns) Tes    | tpressure    |                |                         | - <u></u>             | <b>Г</b>         | 2000                           |              |
|                  | Packer depth :                                   |                       |                             |                                                    |            |              |                |                         |                       |                  |                                |              |
|                  |                                                  |                       |                             |                                                    |            |              |                |                         |                       |                  |                                |              |
|                  | Test result :                                    |                       |                             | - <del>10 - 110 - 10 - 10 - 10 - 10 - 10 - 1</del> |            |              |                |                         |                       |                  |                                |              |

| Well sit                  | e TARRA                | 1       | Casing<br>diameter | 13 3/8              | RKB dis<br>or above       | tance above the<br>the mud-line in | e ground<br>n off-shore |             | Bis <b>2</b> -<br>93M |
|---------------------------|------------------------|---------|--------------------|---------------------|---------------------------|------------------------------------|-------------------------|-------------|-----------------------|
| Equipment<br>joint number | Thickness<br>and grade | Threads | Unit length        | Cumulated<br>length | Equipment<br>joint number | Thickness<br>and grade             | Threads                 | Unit length | Cumulate<br>length    |
| DISTANC                   | E ROTARY TAE           | LE TO   |                    |                     | 39                        |                                    |                         | 11.83       | 559.62                |
| TOP 18                    | 3/4 HOUSING            |         | 92.36              | 93.36               | 40                        |                                    |                         | 11.82       | 571.44                |
| DISTANC                   | TOP HOUSIN             | IG TO   |                    |                     | 41                        |                                    |                         | 11.88       | 583.32                |
| TOP HAN                   | <u>SER</u>             |         | 1.32               | 93.68               | 42                        |                                    |                         | 11.74       | 595.06                |
| HANGER                    | CIW                    |         | 0.70               | 94.38               | 43                        |                                    |                         | 11.92       | 606.98                |
| 1                         | 68LBS-K55-E            | UTT     | 12.00              | 106.38              | 44                        |                                    |                         | 11.75       | 618.73                |
| 2                         |                        |         | 12.01              | 118.39              | 45                        |                                    |                         | 11.55       | 630.28                |
| _3                        |                        |         | 12.07              | 130.46              | 46                        |                                    |                         | 11.96       | 642.24                |
| 4                         |                        |         | 11.84              | 142.30              | 47                        |                                    |                         | 11.88       | 654.12                |
| 5                         |                        |         | 11.90              | 154.20              | 48                        |                                    |                         | 11.99       | 666.11                |
| 6                         |                        |         | 12.03              | 166.23              | 49                        |                                    |                         | 12.00       | 678.11                |
| 7                         |                        |         | 11.88              | 178.11              | 50                        |                                    |                         | 12.06       | 690.17                |
| 8                         |                        |         | 11.93              | 190.04              | 51                        |                                    |                         | 11.91       | 702.08                |
| 9                         |                        | 1       | 12.03              | 202.07              | 52                        |                                    |                         | 12.07       | 714.15                |
| *10                       |                        | 1       | 12.05              | 214.12              | 53                        |                                    |                         | 12.07       | 726.22                |
| 11                        |                        |         | 12.05              | 226.17              | 54                        |                                    | .                       | 12.00       | 738.22                |
| 12                        |                        |         | 11.80              | 237.97              | 55                        |                                    | 1                       | 12.07       | 750.29                |
| 13                        |                        |         | 12,07              | 250.04              | 56                        |                                    |                         | 11.79       | 762.08                |
| 14                        |                        |         | 11.93              | 261.97              | 57                        |                                    |                         | 12.04       | 774.12                |
| 15                        |                        |         | 11.98              | 273.95              | 58                        |                                    |                         | 11.99       | 786.11                |
| 16                        |                        | •       | 12.07              | 286.02              | 59                        |                                    | 1.                      | 12.07       | 798.18                |
| 17                        |                        |         | 11.66              | 297.68              | 60                        |                                    |                         | 12.07       | 810.25                |
| 18                        |                        |         | 12.05              | 309.73              | 61                        |                                    |                         | 11.96       | 822.21                |
| 19                        |                        | · ·     | 11.94              | 321.67              | 62                        |                                    |                         | 11.90       | 834.11                |
| 20                        |                        |         | 11.93              | 333.60              | 63                        |                                    |                         | 11.76       | 845.87                |
| 21                        |                        |         | 11.85              | 345.45              | 64                        |                                    |                         | 11.94       | 857.81                |
| 22                        |                        |         | 12.05              | 357.50              | 65                        |                                    |                         | 12.07       | 869.88                |
| 23                        |                        |         | 11-83              | 369.33              | 66                        |                                    |                         | 12.01       | 881.89                |
| 24                        | -                      |         | 12.06              | 381.39              | 67                        |                                    |                         | 12.08       | 893.97                |
| 25 -                      |                        |         | 11,97              | 393.36              | 68                        |                                    |                         | 12.08       | 906.05                |
| 26                        |                        |         | 12.02              | 405.38              | 69                        | <i>h</i> .                         |                         | 11.91       | 917.96                |
| 27                        |                        |         | 12.06              | 417.44              | • 70                      | •                                  |                         | 11.66       | 929.62                |
| 28                        |                        |         | 11.82              | 429.26              | *71                       |                                    |                         | 11.65       | 941.27                |
| 29 ·                      |                        |         | 11.47              | 440.73              | 72                        |                                    |                         | 11.78       | 953.05                |
| 30                        |                        |         | 12.07              | 452.80              | 73                        |                                    |                         | 12.07       | 965.12                |
| 31                        |                        |         | 11.65              | 464.45              | *74                       |                                    |                         | 12.03       | 977.15                |
| 32                        |                        |         | 11.97              | 476.42              | FLOAT                     |                                    |                         | 0.60        | 977.75                |
| 33                        |                        |         | 11.99              | 488.41              | *75                       |                                    |                         | 11.90       | 989.65                |
| 34                        |                        | · · ·   | 11.74              | 500.15              | *76                       |                                    |                         | 11.65       | 1001.30               |
| 35                        |                        |         | 11.70              | 511.85              | SHOE                      |                                    |                         | 0.70        | 1002.00               |
| 36                        |                        |         | 11.92              | 523.77              |                           |                                    |                         |             |                       |
| 37                        |                        |         | 12.05              | 535.82              |                           |                                    |                         |             |                       |
| 38                        |                        |         | 11.97              | 547.79              |                           |                                    |                         |             |                       |

IMPORTANT: the detailed composition of the casing string should be given from top to bottom. For the upper joint the length under RKB will only be considered. So each cumulated length will be the RKB true measured depth of each corresponding joint.

- B.

4993 SNE

Ë

|                   | VELL                                                                                                                                                          | RIG                                                                       | R Grou                           |                             |                                          |                   | KEPU          | CASING     |                   |                                                   | Hanger de                                               |                              |                      | RATIO           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|-----------------------------|------------------------------------------|-------------------|---------------|------------|-------------------|---------------------------------------------------|---------------------------------------------------------|------------------------------|----------------------|-----------------|
|                   | ountry) ((                                                                                                                                                    | Contractor)                                                               | K Height<br>B M.                 | L. 🛛                        | Ψ<br>Line                                |                   |               |            | SHUE              |                                                   | (for liner                                              |                              |                      | ATE             |
|                   |                                                                                                                                                               | CEAN                                                                      |                                  | 20                          | 9 5/                                     | 8                 | Measu         | red depth  | 2567              |                                                   | or changin                                              | · /                          |                      |                 |
|                   |                                                                                                                                                               | IGGER<br>ODECO >                                                          | 94.                              | 30                          |                                          |                   | Vertic        | al depth : |                   |                                                   | casing dep                                              | ,                            | 27.3                 | .83             |
| AUS               |                                                                                                                                                               |                                                                           | <u> </u>                         |                             |                                          | Vertical          |               |            |                   | ( M                                               | ini : <u>1</u> 4                                        | I                            | to 13                | 34              |
|                   | Open hole di<br>Important ca                                                                                                                                  | ving (locat                                                               | ion - avera                      | ge diam                     | eter): `                                 | Measure           |               | 2580M      | Dev               |                                                   | axi : <u>31</u>                                         |                              | to 20                | 56              |
|                   | Losses durir                                                                                                                                                  | ng drilling                                                               | (levels, ex                      | (tent)                      | YUNE                                     |                   |               |            |                   | /07M                                              |                                                         |                              |                      |                 |
| _                 | Reamer runs                                                                                                                                                   | (number)                                                                  |                                  |                             |                                          |                   |               |            | 1002M             |                                                   |                                                         |                              | m from               | n the           |
| 01                | Previous cas<br>Bo, Ps on w                                                                                                                                   | sing : Diam                                                               | eter <u>13</u>                   | <u>&gt; 3/0</u><br>Type - 6 | auipmen                                  | t. test p         | Sho<br>pressu |            |                   | 4 SERIA                                           | L 10,00                                                 | 00                           |                      |                 |
| CONDITION         | Bo. P's on w<br>WELL                                                                                                                                          | HEAD HOU                                                                  | ISING CAN                        | <u>1ERON</u>                | - TORQI                                  | JE SET            | SYS           | TÉM        |                   |                                                   |                                                         |                              | . <u> </u>           |                 |
|                   |                                                                                                                                                               |                                                                           | <del>7</del> 1                   |                             |                                          | <del></del>       | <del></del>   |            | VISCOSI           | METER R                                           |                                                         | Vs.R.                        | P.M.                 |                 |
| /ELL              | MUD CHARAC<br>BEFORE IN                                                                                                                                       |                                                                           | s.g.                             | W.L.                        | P.V.                                     | ,   Y             | <b>.v.</b>    | 600        | 300               |                                                   | T                                                       | 1                            |                      |                 |
| × -               | SLUR                                                                                                                                                          |                                                                           | 1.16                             | <u>ог</u>                   | E                                        |                   | 6             |            |                   |                                                   |                                                         |                              |                      |                 |
| •                 |                                                                                                                                                               |                                                                           | 1.16                             | 25                          | 5                                        |                   |               | i          |                   |                                                   |                                                         |                              | İ                    |                 |
|                   | Observations                                                                                                                                                  |                                                                           |                                  |                             |                                          |                   | · ···· ····   |            |                   |                                                   |                                                         |                              |                      |                 |
|                   |                                                                                                                                                               |                                                                           |                                  |                             |                                          |                   |               |            |                   |                                                   |                                                         |                              |                      |                 |
|                   |                                                                                                                                                               |                                                                           |                                  |                             |                                          |                   |               |            |                   |                                                   |                                                         |                              |                      |                 |
|                   | ELEMENT                                                                                                                                                       | MFG,<br>type                                                              | ø                                |                             | nt (lb/ft)<br>ckness                     | Thread<br>joint t |               | Grade      | Special corrosior |                                                   | ne                                                      | Lenigth<br>(m)               |                      | Numb<br>of join |
| 10<br>10          |                                                                                                                                                               | FLOAT                                                                     | 9 5/8                            | 47 1                        | BS/FT                                    | BUT               |               | N80        |                   | 38.1                                              |                                                         | .60                          |                      | ×               |
| NO                | SHOE                                                                                                                                                          | FLOAT                                                                     |                                  | 17                          | DC /ET                                   | BUT               | <del>_</del>  | N80        |                   | 38.1                                              | 9 0                                                     | .50                          |                      |                 |
| COMPOSITION       | COLLAR                                                                                                                                                        | FLOAT                                                                     | 9 5/8                            | 47                          | LBS/FT                                   | 001               |               | 100        |                   |                                                   |                                                         |                              |                      |                 |
| STRI              | CASING                                                                                                                                                        | RII                                                                       | 9 5/8                            |                             | LBS/FT                                   | BUT               |               | N80        |                   | 38.1                                              | 1 - • • •                                               | 2.30                         |                      | 210             |
|                   | HANGER                                                                                                                                                        | CIW                                                                       | 9 5/8                            |                             | QUE SE                                   | BUT               |               |            | +                 |                                                   |                                                         | .70                          |                      |                 |
| GENERAL<br>CASING |                                                                                                                                                               |                                                                           |                                  | 501                         |                                          | A1.0 P            | -             |            | <b></b>           |                                                   |                                                         |                              |                      |                 |
| z                 | Tripping joint                                                                                                                                                | HWDP                                                                      | 5"                               | 50L                         | BS/FT                                    | 4½"Î              | <u>г</u>      |            | ł                 | 4.6                                               | ) <br>                                                  |                              | -                    | <u>×</u>        |
| ш                 | 1                                                                                                                                                             |                                                                           |                                  |                             |                                          |                   |               |            |                   |                                                   |                                                         | 78 76                        | <u>)</u> m. _        | 210             |
| •                 | Drift diameter                                                                                                                                                | r in the thic                                                             |                                  |                             | 16.5mm<br>23 10                          | DAN               |               |            | . <u></u>         | TOTAL                                             | > 2,4                                                   | /4.10                        |                      | .8T             |
|                   | Maximum per                                                                                                                                                   | r in the thic<br>nissible tens                                            | sion                             | 5                           | 23 10                                    |                   |               | In air     | 177               |                                                   |                                                         |                              | 150                  |                 |
| •                 | Maximum per<br>Theoretical w                                                                                                                                  | r in the thick<br>nissible tens<br>reight of the                          | sion                             | 5<br>ng :                   | 23 10-                                   |                   |               | In air     |                   |                                                   | i                                                       | l:                           | 150                  |                 |
| •                 | Maximum perm<br>Theoretical w<br><u>CENTRALIZ</u>                                                                                                             | r in the thic<br>nissible tensive<br>ight of the<br>ERS                   | sion                             | 5<br>ng :<br>SC             | 23 10                                    | RS                |               |            | o                 |                                                   | in mud                                                  | l:                           | 150                  |                 |
| -<br>Ci           | Maximum perm<br>Theoretical w<br>CENTRALIZ<br>MGF :                                                                                                           | r in the thick<br>nissible tensive<br>ight of the<br>ERS<br>ATHERFOR      | casing stri                      | 5<br>ng:<br>SC<br>M(<br>I   | :RATCHE<br>GF:<br>(PE:                   | <u>RS</u>         |               |            | 0                 | T<br>THER EQ<br>Description                       | in mud<br>UIPMENT<br>n = Locatio                        | l:                           |                      |                 |
| -<br>Ci           | Maximum perm<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE :<br>NUMBER :                                                                                     | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description                       | in mud<br>UIPMENT<br>n = Locatio<br>/8 SEAL             | I:                           | EMBLY                |                 |
| STRING            | Maximum perm<br>Theoretical w<br>CENTRALIZ<br>MGF :                                                                                                           | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | :RATCHE<br>GF:<br>(PE:                   | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description                       | in mud<br>UIPMENT<br>n • Location<br>/8 SEAL<br>QUE SYS | n)<br>ASSI                   | EMBL Y<br>SCREW      |                 |
| STRING            | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE : WE<br>NUMBER :<br>DEPTH/RKE<br>951<br>975                                                        | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |
| STRING            | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE :<br>NUMBER :<br>DEPTH/RKE<br>951<br>975<br>998                                                    | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |
| CASING.STRING     | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE : WE<br>NUMBER :<br>DEPTH/RKE<br>951<br>975<br>998<br>2435                                         | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |
| OF CASING STRING  | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE :<br>NUMBER :<br>DEPTH/RKE<br>951<br>975<br>998                                                    | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |
| OF CASING STRING  | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE :<br>DEPTH/RKE<br>951<br>975<br>998<br>2435<br>2459<br>2494<br>2506                                | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |
| OF CASING STRING  | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE :<br>NUMBER :<br>DEPTH/RKE<br>951<br>975<br>998<br>2435<br>2459<br>2494<br>2506<br>2530            | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |
| CASING.STRING     | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE : WE<br>NUMBER :<br>DEPTH/RKE<br>951<br>975<br>998<br>2435<br>2459<br>2494<br>2506<br>2530<br>2542 | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |
| OF CASING STRING  | Maximum pem<br>Theoretical w<br>CENTRALIZ<br>MGF :<br>TYPE :<br>NUMBER :<br>DEPTH/RKE<br>951<br>975<br>998<br>2435<br>2459<br>2494<br>2506<br>2530            | r in the thick<br>nissible tens<br>reight of the<br>ERS<br>ATHERFOR<br>11 | sion<br>casing stri<br>RD ST III | 5<br>ng :<br>MC<br>I<br>NL  | 23 10<br>RATCHE<br>GF:<br>(PE:<br>JMBER: | <u>RS</u>         |               |            |                   | T<br>THER EQ<br>Description<br>IW 9 5/<br>OW TORC | UIPMENT<br>- Location<br>/8 SEAL<br>QUE SYS<br>         | n)<br>ASSI<br>TEM S<br>ANGEI | EMBLY<br>SCREW<br>R. |                 |

|   |                                                                  | circulati              | on (duration                         | - depth)                 |                    |                        |            |                           | •                                    |                         |                      |                                       |
|---|------------------------------------------------------------------|------------------------|--------------------------------------|--------------------------|--------------------|------------------------|------------|---------------------------|--------------------------------------|-------------------------|----------------------|---------------------------------------|
|   | Total running<br>Troubles duri                                   | time (w<br>ng runni    | ith circulations                     | ons)                     | h                  |                        | _aver      | age rate                  |                                      | i                       | oints/h_             |                                       |
|   | Bottom hole o<br>Reciprocating<br>M.D. indicatio<br>Observations | ) :<br>ons after<br>;  | Duration<br>stop of bott             | <u>NONE</u><br>om hole c | irculatio          | Rate                   |            | · · ·                     | MIN                                  | Pressure –<br>Amplitude |                      |                                       |
|   | Service cy                                                       |                        | L SCHLUMBI                           |                          |                    |                        | Beg        | inning of                 | slurry mak                           | ing at                  | 17:1                 |                                       |
|   | Mixing pump<br>Slurry injection<br>Displacement p                | pump .]                | L SCHLUMBI<br>DOWELL SCI<br>RIG PUMP | <u>-RGER</u><br>HLUMBER( | GER                |                        | End        | of displa                 | making at<br>cement at<br>ased in ca |                         | 17:4<br>19:3<br>19:4 | 30                                    |
|   | Nature or class<br>of cements                                    | Sacks or<br>bulk       | Cement weight<br>increase %          |                          |                    | W                      |            | nd additive<br>re : quant |                                      |                         |                      | TONNA                                 |
| _ | 1 "G"                                                            | BULK                   | CALIPER                              |                          |                    |                        |            |                           |                                      |                         |                      | 141                                   |
| - | 2                                                                |                        |                                      | 0.02 G                   | /SK                | D109                   |            |                           |                                      |                         |                      | 27 GAL                                |
|   | 3                                                                |                        |                                      | 0.15 G/                  | /SK                | D80                    |            |                           |                                      |                         |                      | 138 G/                                |
|   | -<br>                                                            | TERISTICS              | 0.E                                  | S.G.                     | P.V.               | Y.                     | <b>v</b> . | 600                       | VISCO:<br>300                        | SIMETER RE              | ADINGS VS            | <u>R.P.M.</u>                         |
|   | CANAG                                                            | TENISTICS              | 1                                    |                          |                    |                        |            |                           | 500                                  |                         |                      |                                       |
|   | SI                                                               | LURRIES                | 2                                    |                          | +                  |                        |            |                           |                                      | 18.12                   |                      |                                       |
|   |                                                                  |                        | 3                                    | $\triangleright$         |                    |                        | <          | $>\!\!<$                  | $\geq$                               | $\sim$                  | > <                  | $\rightarrow$                         |
|   | SPA                                                              | CER PLUG               | s 1<br>2                             |                          |                    |                        |            | <b>_</b>                  | <b>_</b>                             | <b>`</b> `              |                      | Ţ                                     |
|   | Slurry injecti                                                   | on rate                |                                      | ·L                       |                    |                        |            | Displace                  | ment rate                            |                         |                      | _ <u></u>                             |
|   |                                                                  |                        |                                      |                          |                    |                        |            |                           |                                      |                         |                      |                                       |
| - | Displacement                                                     |                        |                                      |                          |                    |                        |            |                           |                                      |                         |                      | · · · · · · · · · · · · · · · · · · · |
|   | Pressure at the                                                  |                        |                                      |                          |                    |                        |            | •                         |                                      |                         |                      |                                       |
|   | Estimated loss<br>Casing string<br>Residual press                | ses<br>pressurir       | 9.3M <sup>2</sup>                    | 2500                     | PSI                | - Result               | ·          | PRESSU                    | RE DROP                              |                         | PSI                  |                                       |
|   | M.D. indicatio                                                   |                        | •                                    |                          |                    |                        |            |                           |                                      |                         | [7                   |                                       |
|   | M.D. indication Casing string                                    | set on sp              |                                      |                          | h                  | . after t              | he en      | d of disp                 | lacement                             | •                       | 1                    |                                       |
|   | Spool:MFG _<br>Suspension and                                    |                        |                                      |                          |                    |                        |            |                           |                                      |                         |                      |                                       |
| • | Additional sea<br>Distance betwo<br>Cut casing                   | l (type -<br>een the u | dimensions)<br>upper part of         | the spool                | and R.K<br>above t | (.B<br>he spoo         |            |                           |                                      |                         |                      |                                       |
| ( | Temperature w<br>Cementing log<br>Result of these                | ell loggi<br>after     |                                      |                          | h<br>h             | , setting<br>, setting | )          |                           | Top cen                              | nent annul              | us →[                | 2070                                  |
|   | Test casing st                                                   |                        | O.P.(blinda)                         |                          |                    | •                      |            | BOP T                     |                                      | YDRII 20                |                      | 4000                                  |

| Well sit                  | TARRA                  | 1       | Casing<br>diameter | 9-5/8               |                           | ance above th<br>the mud-line i                           |                | ,           | 94.30              |
|---------------------------|------------------------|---------|--------------------|---------------------|---------------------------|-----------------------------------------------------------|----------------|-------------|--------------------|
| Equipment<br>joint number | Thickness<br>and grade | Threads | Unit length        | Cumulated<br>length | Equipment<br>joint number | Thickness<br>and grade                                    | Threads        | Unit length | Cumulate<br>length |
| ROTARY T                  | ABLE TO TOP            | 9-5/8   | HANGER             | 94.30               | 42                        |                                                           |                | 11.80       | 587.68             |
| HANGER                    |                        |         | 0.70               | 95.00               | 43                        |                                                           |                | 11.85       | 599.53             |
|                           | 471b/ft N80            |         | 11.56              | 106.56              | 44                        |                                                           |                | 11.95       | 611.48             |
| 2                         | BUTTRESS               |         | 11.61              | 118.17              | 45                        |                                                           |                | 11.66       | 623.14             |
| 3                         |                        |         | 11.74              | 129.91              | 46                        |                                                           |                | 11.98       | 635.17             |
| 4                         |                        |         | 11.79              | 141.70              | 47                        |                                                           |                | 11.83       | 646.95             |
| 5                         |                        |         | 11.85              | 153.55              | 48                        |                                                           |                | T1.84       | 658.79             |
| 6                         |                        |         | 11.91              | 165.46              | 49                        |                                                           |                | 11.82       | 670.61             |
| 7                         |                        |         | 11.78              | 179.24              | 50                        | <b></b>                                                   |                | 11.74       | 682.35             |
| 8                         |                        |         | 11.85              | 189.09              | 51                        |                                                           |                | 11.71       | 694.06             |
| 9                         |                        |         | 11.81              | 200.90              | 52                        |                                                           |                | 11.91       | 705.97             |
| 10                        |                        |         | 11.32              | 212.22              | 53                        |                                                           |                | 11.84       | 717.81             |
| 11                        |                        |         | 11_51              | 223 73              | 54                        | + <u></u>                                                 |                | 11.76       | 729.57             |
| 12                        |                        |         | 11.71              | 235:44              | 55                        |                                                           |                | 11.84       | 741.41             |
| 13                        |                        |         | 12.05              | 247.49              | 56                        |                                                           |                | 11.69       | 753.10             |
| 14                        |                        |         | 11.67              | 259.16              | 57                        |                                                           |                | 11.89       | 764.99             |
| 15                        |                        |         | 11.70              | 270.86              | 58                        |                                                           |                | 11.60       | 776.59             |
| 16                        |                        |         | 11.75              | 282 61              | 59                        |                                                           |                | 11.81       | 788 40             |
| 17                        |                        |         | 11.75              | 294.36              | 60                        |                                                           |                | 11.42       | 799.82             |
| 18                        |                        |         | 10.80              | 305.16              | 61                        |                                                           | 1              | 11.87       | 811.69             |
| 19                        |                        |         | 11.77              | 316.93              | 62                        |                                                           |                | 11.50       | 823.19             |
| 20                        |                        |         | 11.63              | 328.56              | 63                        |                                                           | İ              |             | 1                  |
| 21                        |                        |         | 11.51              | 340.07              | T                         |                                                           |                | 11.70       | 834.89             |
| 1                         |                        | ······  |                    | 1                   | 64                        |                                                           | <u> </u>       | 11.58       | 846.47             |
| 22                        |                        |         | 11.91              | 351.98              | 65                        |                                                           |                | 11.73       | 858.20             |
| 23                        |                        |         | 11.95              | 363.93              | 66                        |                                                           | -              | 11.85       | 870.05             |
| 24                        |                        |         | 11.73              | 375.66              | 67                        |                                                           |                | 11.71       | 881.76             |
| 25                        |                        |         | 11.75              | 387.41              | 68                        |                                                           | <u> </u>       | 11.52       | 893.28             |
| 26                        |                        |         | 11.90              | 399.31              | <u>69</u>                 |                                                           |                | 11.58       | 904.86             |
| 27                        |                        |         | 11.86              | 411.17              | 70                        |                                                           |                | 11.51       | 916.37             |
| 28                        |                        |         | 11.82              | 422.99              | 71                        |                                                           |                | 11.59       | 977.96             |
| 29                        |                        |         | 11.72              | 434.71              | 72                        |                                                           | 1<br>T         | 11.86       | 939.82             |
| 30                        |                        |         | 11.83              | 446.54              | 73 *                      |                                                           |                | 11.87       | 951.65             |
| 31                        |                        |         | 11.95              | 458.49              | 74                        |                                                           |                | 11.82       | 963.5              |
| 32                        |                        |         | 11.73              | 470.22              | 75 *                      | tern ma felanta i rhapard e dana diga a genark dan yang t |                | 11.63       | 975.1              |
| 33                        |                        |         | 11_80              | 482_02              | 76                        |                                                           |                | 11.87       | 987.0              |
| 34                        |                        |         | 11.82              | 493.84              | 77 *                      |                                                           |                | 11.76       | 998.7              |
| 35                        |                        |         | 11.75              | 505.59              | 78                        |                                                           |                | 11.76       | 1010.5             |
| 36                        |                        |         | 11.79              | 517.38              | 79                        |                                                           | <b>└────</b> ┤ | 11.88       | 1022.4             |
|                           |                        |         | 11_82              | 529.20              | 80                        |                                                           |                | 11_67_      | 1034.0             |
| 38                        |                        |         | 11.47              | 540.67              | 81                        |                                                           |                | 11.75       | 1045.8             |
|                           |                        |         | 11.73              | 552.40              | 82                        |                                                           |                | 11.64       | 1057.4             |
| 40                        |                        |         | 11.77              | 564.17              | 83                        |                                                           |                | 11.62       | 1069.0             |
| 41                        |                        |         | 11.71              | 575.88              | 84                        |                                                           |                | 11.84       | 1080.9             |

IMPORTANT: the detailed composition of the casing string should be given from top to bottom. For the upper joint the length unc RKB will only be considered. So each cumulated length where the RKB true measured depth of each corresponding joint.

de la construir de la construir de la construir de la construir de la construir de la construir de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la construction de la co

đu

| Well sit                 | TARRA                  | 1       | Casing<br>diameter | 9-5/8               |                           | ance above th<br>the mud-line i |         | , 94          | .30              |
|--------------------------|------------------------|---------|--------------------|---------------------|---------------------------|---------------------------------|---------|---------------|------------------|
| Equipment<br>oint number | Thickness<br>and grade | Threads | Unit length        | Cumulated<br>length | Equipment<br>joint number | Thickness<br>and grade          | Threads | Unit length   | Cumula<br>length |
| 85                       | 471b/ft N80            |         | 11.83              | 1092.76             | 128                       |                                 |         | 11.84         | 1598.8           |
| 86                       | BUTTRESS               |         | 11.84              | 1104.60             | 129                       |                                 |         | 11.71         | 1610.5           |
| 87                       |                        |         | 11.68              | 1116.28             | 130                       |                                 |         | 11.80         | 1622.3           |
| 88                       |                        |         | 11.77              | 1128.05             | 131                       |                                 |         | 11.94         | 1634.3           |
| 89                       |                        |         | 11.75              | 1139.80             | 132                       |                                 |         | 11.98         | 1646.2           |
| 90                       |                        |         | 11.66              | 1151.46             | 133                       |                                 |         | 11.82         | 1658.            |
| 91                       |                        |         | 11.92              | 1163.38             | 134                       |                                 |         | 11.69         | 1669.            |
| 92                       |                        |         | 11.93              | 1175.31             | 135                       |                                 |         | 11.86         | 1681.0           |
| 93                       |                        |         | 11.61              | 1186.92             | 136                       |                                 |         | 12.06         | 1693.            |
| 94                       |                        |         | 12.06              | 1198.98             | 137                       |                                 |         | 11.72         | 1705.4           |
| 95                       |                        |         | 11.85              | 1210.83             | 138                       |                                 |         | 11.72         | 1717.            |
| 96                       |                        |         | 11.63              | 1222.46             | 139                       |                                 |         | 11.69         | 1728.            |
| 97                       |                        |         | 11.90              | 1234.36             | 140                       |                                 |         | 11.77         | 1740.            |
| 98                       |                        |         | 11.76              | 1246.12             | 141                       |                                 |         | 11.76         | 1752.            |
| 99                       |                        |         | 11.80              | 1257.92             | 142                       |                                 |         | 11.76         | 1764.            |
| 100                      |                        |         | 11.81              | 1269.73             | 143                       |                                 |         | 11.73         | 1775.            |
| 101                      |                        |         | 11.47              | 1281.20             | 144                       |                                 |         | 11.66         | 1787.            |
| 102                      |                        |         | 11.35              | 1292.55             | 145                       |                                 |         | 11.95         | 1799.            |
| 103                      |                        |         | 11.78              | 1304.33             | 146                       |                                 |         | 11.79         | 1811.            |
| 104                      |                        |         | 11.68              | 1316.01             | 147                       |                                 |         | 11.77         | 1823.0           |
| 105                      |                        |         | 11.93              | 1327.94             | 148                       |                                 |         | 11.88         | 1834.            |
| 106                      |                        |         | 11.68              | 1339.62             | 149                       |                                 |         | 11.92         | 1846.            |
| 107                      |                        |         | 11.91              | 1351.53             | 150                       |                                 |         | 11.55         | 1858             |
| 108                      |                        |         | 11.76              | 1363.29             | 151                       |                                 |         | 11.72         | 1 <u>87</u> 0.   |
| 109                      |                        |         | 11.79              | 1375.08             | 152                       |                                 |         | 11.82         | 1881.            |
| 110                      |                        |         | 11.68              | 1386.76             | 153                       |                                 |         | 11.72         | 1893.            |
| 111                      |                        |         | 11.83              | 1398.59             | 154                       |                                 |         | 11.83         | 1909.            |
| 112                      |                        |         | 11.83              | 1410.42             | 155                       |                                 |         | 11.78         | 1917.            |
| 113                      |                        |         | 11,48              | 1421.90             | 156                       |                                 |         | 11.79         | 1929.            |
| 114 -                    |                        |         | 11.69              | 1433.59             | 157                       |                                 |         | 11.80         | 1940.            |
| 115                      |                        |         | 11.73              | 1445.32             | 158                       |                                 |         | 11.56         | 1952.            |
| 116                      |                        |         | 11.80              | 1457.12             | 159                       |                                 |         | 11.80         | 1964.            |
| 117                      |                        |         | 11.92              | 1469.04             | 160                       |                                 |         | 11.69         | 1975.            |
| 118                      |                        |         | 11.79              | 1480.83             | 161                       |                                 |         | 11.70         | 1987.            |
| 119                      |                        |         | 11.80              | 1492.63             | 162                       |                                 |         | 11.82         | 1999.            |
| 120                      |                        |         | 11.62              | 1504.25             | 163                       |                                 |         | 11_89         | 2011.            |
| 121                      |                        |         | 11.97              | 1516.22             | 164                       |                                 |         | 11. <b>70</b> | 2023.            |
| 122                      |                        |         | 11.80              | 1528.02             | 165                       |                                 |         | 11.92         | 2034.            |
| 123                      |                        |         | 11.67              | 1539.67             | 166                       |                                 |         | 11.68         | 2046.0           |
| 124                      |                        |         | 11.78              | 1551.47             | 167                       |                                 |         | 11.43         | 2058.            |
| 125                      |                        |         | 11.80              | 1563.27             | 168                       |                                 | ]       | 11.74         | 2069.            |
| 126                      |                        |         | 11.99              | 1575.26             | 169                       |                                 |         | 11.91         | 2081.            |
| 127                      |                        |         | 11.75              | 1587.0 <b>T</b>     | 170                       |                                 |         | 11.85         | 2093.            |
|                          |                        |         |                    |                     | I                         |                                 |         |               |                  |

IMPORTANT: the detailed composition of the casing string should be given from top to bottom. For the upper joint the length und RKB will only be considered. So each cumula<sup>a</sup> length will be the RKB true measured depth of each corresponding joint.

activity and and and and

1mp 494

| Well sit                  | TARRA                  | 1       | Casing<br>diameter    | 9-5/8               | RKB dist<br>or above      | ance above the<br>the mud-line i                                                                              | e ground<br>n off-shore | 8           | 94     | <b>2 - 7</b>                                                                                                    |
|---------------------------|------------------------|---------|-----------------------|---------------------|---------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------|
| Equipment<br>joint number | Thickness<br>and grade | Threads | Unit length           | Cumulated<br>length | Equipment<br>joint number | Thickness<br>and grade                                                                                        | Threads                 | Unit        | length | Cumulater<br>length                                                                                             |
| 171                       | 471b/ft N80            |         | 11.84                 | 2105.37             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 172                       | BUTTRESS               |         | 11.88                 | 2117.25             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 173                       |                        |         | 11.89                 | 2129.14             | · · · · ·                 |                                                                                                               |                         |             |        | ra                                                                                                              |
| 174                       |                        |         | 11.89                 | 2141.03             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 175                       |                        |         | 11.54                 | 2152.57             |                           | ·                                                                                                             |                         |             |        |                                                                                                                 |
| 176                       |                        |         | 11.79                 | 2164.36             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 177                       |                        |         | · 11.77               | 2176.13             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 178                       |                        |         | 11.88                 | 2188.01             |                           |                                                                                                               |                         | · · · ·     |        |                                                                                                                 |
| 179                       |                        |         | 11.76                 | 2199.77             |                           |                                                                                                               | L                       |             |        |                                                                                                                 |
| 180                       |                        |         | 11.90                 | 2211.67             | ļļ                        | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 | ļ                       |             |        |                                                                                                                 |
| 181                       |                        |         | 11.90                 | 2223.57             |                           | ······                                                                                                        |                         |             |        | With Disgunstration of the International Association of the International Association of the International Asso |
| 182                       |                        |         | 11.91                 | 2235.48             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 183                       |                        |         | 11.80                 | 2247.28             |                           |                                                                                                               |                         |             |        | ,                                                                                                               |
| 184                       |                        |         | 11.99                 | 2259.27             | ļ                         |                                                                                                               |                         |             |        |                                                                                                                 |
| 185                       |                        |         | 11.96                 | 2271.23             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 186                       |                        |         | 11.87                 | 2283.10             | h                         |                                                                                                               |                         |             |        |                                                                                                                 |
| 187                       |                        |         | 11.95                 | 2295.05             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 188                       |                        |         | 11.90                 | 2306.95             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 189                       |                        |         | 11.65                 | 2318.60             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 190                       |                        |         | 11.83                 | 2330.43             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 191                       |                        |         | 11.83                 | 2342.26             |                           |                                                                                                               |                         | •           |        | ······                                                                                                          |
| 192                       |                        |         | 11.73                 | 2353.99             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 193                       |                        |         | 11.57                 | 2365.56             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 194                       |                        |         | 11.75                 | 2377.31             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 195                       |                        |         | 11.75                 | 2389.06             |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| 196                       |                        |         | 11.79                 | 2400.85             |                           |                                                                                                               |                         | <u></u>     |        | <u></u>                                                                                                         |
| <u>197</u>                |                        |         | 11.51                 | 2412.36             |                           |                                                                                                               |                         |             |        | ******                                                                                                          |
| <u>198</u>                |                        |         | 11.80                 | 2424.16             |                           |                                                                                                               |                         |             | +      | <u></u>                                                                                                         |
| 199 *                     |                        |         | 11.68                 | 2435.84             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 200 -                     |                        |         | 11.87                 | 2447.71             |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| 201 *                     |                        |         | 11.77                 | 2459.48             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| 202                       |                        |         | 11.74                 | 2471.22             |                           |                                                                                                               |                         |             | +      | <u></u>                                                                                                         |
| 203 *                     |                        |         | 11.71                 | 2482.93             |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| 204                       |                        |         | 11.57                 | 2494,50             |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| 205 *                     |                        |         | 11.95                 | 2506.45             | ┝                         |                                                                                                               |                         |             | +      |                                                                                                                 |
| 206                       |                        |         | 11.88                 | 2518.33             |                           |                                                                                                               |                         | <u></u>     |        |                                                                                                                 |
| 207 *                     |                        |         | <u>11.91</u><br>0.50  | 2530,24             |                           |                                                                                                               |                         | <del></del> |        |                                                                                                                 |
| TLOAT                     |                        |         |                       | 2530.74             |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| <u>208</u> *<br>209 *     |                        |         | <u>11.91</u><br>11.85 | 2542.65<br>2554.59  |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| T                         |                        |         |                       |                     |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| 210 *                     |                        |         | 11.90                 | 2566.40             |                           |                                                                                                               |                         |             | +      |                                                                                                                 |
| SHOE                      |                        |         | 0.60                  | 2567.00             |                           |                                                                                                               |                         |             |        |                                                                                                                 |
| *                         | INDICATED C            | ENTRALT | SER                   |                     |                           |                                                                                                               |                         |             |        |                                                                                                                 |

IMPURTANT: the detailed composition of the casing string should be given from top to bottom. For the upper joint the length und RKB will only be canaldered. So each sumulated length will be the RKB true measured depth of each corresponding joint.

elf aquitaine

## TIME DISTRIBUTION

F6 bis/12-80

| OPERA                                    | TOR                                     |                                | CΟι              | JNTRY                 |                    |            | WEL              | L                         |                       |           | RIG       |                | C0         | NTRA                  | CTOR             |                       | MON                   | TH/YE                       | EA  |
|------------------------------------------|-----------------------------------------|--------------------------------|------------------|-----------------------|--------------------|------------|------------------|---------------------------|-----------------------|-----------|-----------|----------------|------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------------|-----|
| <u>A.A.</u>                              | <b>)</b>                                |                                | AUS              | STRAL                 | IA                 | Ţ.         | ARRA             | 1                         |                       | EAN       | DIG       | GER            |            | ODEC                  | 20               |                       | MARCH                 | <u>1_83</u>                 | }   |
| Number of day from<br>start de dung<br>Y | ·.4                                     | <b>D</b> .<br>0 <b>N</b> 3     |                  | ;                     | F<br>t tañ         |            | ۰.,              | FORM                      | G<br>'A DON           | SURY      | VEYS      | IN<br>OPER)    | TERRI      | A<br>JPTION<br>S UNDE | I OF<br>ER For G | C                     | OMPLE                 | <b>C</b><br>TION A<br>GGING | ANI |
|                                          | D                                       | D <sub>2</sub>                 | D <sub>3</sub>   | F <sub>1</sub>        | F <sub>2</sub>     | F,         | F <sub>1</sub>   | G                         | <b>G</b> <sub>2</sub> | G3        | G₁        | Α,             | A 2        | A <sub>3</sub>        | A <sub>4</sub>   | <b>C</b> <sub>1</sub> | <b>C</b> <sub>2</sub> | <b>C</b> <sub>3</sub>       | T   |
| 1<br>2<br>3                              | 5.5<br>21.5<br>18.5                     |                                | 2.5              |                       |                    | MO         | VING,            | / ANCI                    | HORIN(                | G .       |           |                | • •        | •                     |                  |                       |                       |                             |     |
| · 1                                      | 0.5                                     |                                |                  | 9.5                   | 5.5                |            | 8.5              |                           |                       | 26"       | PHAS      | Е              | · · ·      | •                     | •••• ••• ••      |                       | +                     |                             |     |
| ° 3                                      | <u> </u>                                | 4.5                            |                  |                       |                    |            | 24<br>6          |                           |                       |           |           |                | 13.5       |                       | 4                |                       |                       |                             | -   |
| <sup>7</sup> 4                           |                                         |                                | -                |                       |                    |            |                  | <u>17<sup>1</sup>/2</u> ' | PHAS                  | SE        |           |                | 24<br>22,5 |                       | 1.5              |                       |                       |                             | -   |
| <sup>3</sup> 6                           |                                         | ar<br>ar                       |                  | 13.5<br>19.5          | 2                  | 1.5<br>2.5 | •<br>•<br>•      |                           |                       |           |           |                |            | . 7                   |                  |                       | ****                  |                             | -   |
| 8                                        | •                                       |                                |                  | 19.5                  | 2                  | 2.0        | -<br>-<br>-<br>- |                           |                       |           | 6.5       |                | • •        | • • • • •             |                  |                       | •                     |                             | -   |
| 9<br>10                                  |                                         |                                | :                |                       |                    |            | 13<br>24         |                           |                       |           | 11        |                | · .        |                       |                  |                       | •                     |                             |     |
| 11                                       | -<br>-<br>-                             |                                |                  |                       | 1.5                | 1.5        |                  |                           |                       | • • • • • |           |                |            |                       |                  |                       | •                     |                             |     |
| 12<br>13                                 |                                         |                                |                  | 20.5<br>15            | 3.5<br>0.5         | 8.5        | •                |                           | 12 <u>4</u> "         | PH/       | <u>SE</u> | -              |            | ·····                 |                  |                       | •                     |                             |     |
| 14<br>15                                 |                                         |                                |                  | 5.5<br>22             | 16                 | 2.5<br>2   | •                |                           |                       |           |           |                |            |                       | -                |                       |                       |                             |     |
| 16                                       |                                         |                                |                  | 15.5                  | 8                  | 0.5        | ;                |                           |                       |           | +         | • •            | •          | · · · · · · · ·       |                  |                       |                       |                             |     |
| 17<br>18                                 |                                         |                                |                  | 23<br>2 1             | .0.5               |            |                  |                           |                       |           |           | 1              |            | 11.5                  |                  |                       |                       |                             |     |
| 19<br>20                                 |                                         |                                |                  |                       |                    |            |                  |                           |                       | ĸ         |           |                |            | 24<br>24              |                  |                       |                       |                             |     |
| 21                                       |                                         |                                |                  | 13.5                  |                    | 1.5        |                  |                           |                       |           | *         |                |            | 9                     |                  |                       |                       |                             |     |
| 22<br>23                                 | · ·                                     |                                | ې<br>•           | 4.53                  | .5                 | 5.5<br>]   | L0.5             |                           | *                     |           | L0.5      | -              |            |                       |                  |                       |                       |                             |     |
| 24<br>25                                 |                                         |                                | ·                | 3.56                  | 5                  | 1.51       | 24               |                           |                       | <b>*</b>  |           |                |            |                       |                  |                       |                       |                             |     |
| 26                                       | • ·                                     | • •                            | 2                | 3.5                   |                    | 0.5        |                  | • •                       | 8 <u>1</u> "          | PH        | ASE       | ······         | +          |                       |                  |                       |                       |                             |     |
| 27<br>28                                 |                                         | n a n                          |                  | 23<br>(               | .5                 | 1<br>0.5   |                  | 2.5                       | 12                    |           |           |                |            |                       | 2.5              |                       |                       |                             |     |
| TOTAL                                    | 341.049.4984/arc/micra                  | Accession of the second second |                  |                       |                    | ****       |                  |                           |                       |           |           |                |            |                       |                  |                       |                       |                             |     |
| AE OF SIDE                               |                                         |                                |                  |                       |                    |            |                  | E M EO<br>A FISHI         | GGING<br>4G JOB       | T         |           | Causes         | ۱          |                       | job unso         |                       |                       |                             |     |
| 1.8.:1:Ada<br>• T<br>h                   | t an asteri<br>ime spent<br>ole is reac | on F1, F                       | C i fal<br>2, F3 | lowing d<br>for techn | a in g<br>ucaringi | - Cauks    | , anti th        | ne mitiai c               | lepth of t            | ne ola    |           | of<br>side-tra | ick 🖊      |                       | ital on Pl       | -                     |                       |                             |     |

2) Side-track drilling further to a change in the deploace: target is considered as a new hole, whose the name changes (add. G to the old one). A new form is open up from the first day of the side track.

ime 4807 A SNEA(P 959.004.007

| eľ       | faqu                                 | itaine                                                |                                        | anna a sun, sing ge di affit anna ge di aff | TI                              | ME C                                                                                 | IST                      | RIBU                          | JTIC                 | ON        |                |                        |                                       | F6                    | bis /          | 12-8                                    | 80       |
|----------|--------------------------------------|-------------------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------|-----------|----------------|------------------------|---------------------------------------|-----------------------|----------------|-----------------------------------------|----------|
| 0        | PERAT                                | OR                                                    | CO                                     | UNTRY                                       | ,                               | WEL                                                                                  | L                        |                               | RIG                  |           | CO             | NTRA                   | CTOR                                  | Τ                     | MON            | ГН/ҮЕ                                   | AR       |
|          | A.A.                                 | P                                                     | AUS                                    | TRALI                                       | A                               | TARRA                                                                                | 1                        | OCEAN                         | DIGG                 | ER        | <u> </u>       | ODECC                  | <u>)</u>                              | ╤╧╛                   | APRIL          | 83_                                     | -        |
| DAY      | Number of day from<br>start drifting |                                                       | <b>D</b><br>VING                       | 08                                          |                                 | e<br>Gasing                                                                          | C()81/1 <b>A</b>         | <b>G</b><br>TION SUP          | ₹VEYS                |           |                | A<br>JPTION<br>S UNDEI |                                       |                       | OMPLE          | C<br>FION AI<br>GGING                   | ND       |
|          | -from<br>19                          | D                                                     | D <sub>2</sub> D <sub>3</sub>          | F,                                          | F <sub>1</sub>                  | F <sub>4</sub> F <sub>4</sub>                                                        | G, (                     | G <sub>2</sub> G <sub>3</sub> | G₄                   | Α,        | Α <sub>2</sub> | A <sub>3</sub>         | <b>A</b> 4                            | <b>C</b> <sub>1</sub> | C <sub>2</sub> | <b>C</b> <sub>3</sub>                   | С        |
|          | 29<br>30<br>31                       |                                                       |                                        | 22<br>3                                     | 1<br>4                          | 1                                                                                    | 5 1(                     | ) <b>.</b> 5                  | .0 <b>.</b> 5<br>.24 |           | 8 <u>1</u> #   | PHASI                  |                                       |                       |                |                                         |          |
| •        | 1C                                   |                                                       | ABAND                                  | ON PH                                       | ASE                             | <u></u>                                                                              |                          |                               | 1.5                  |           |                | ••••••                 |                                       |                       | 22.5           |                                         |          |
|          | 2C<br>3C                             |                                                       | <u></u>                                |                                             |                                 |                                                                                      | n                        |                               | • •                  |           | •              | • • • •                | ∳<br>•<br>•                           |                       | 15<br>2        | 9<br>22                                 |          |
| 1        | 4C                                   |                                                       | 22                                     |                                             | <u></u>                         |                                                                                      | <u>.</u>                 |                               | <u>_L</u>            |           |                |                        | <u></u>                               |                       | 24             |                                         |          |
|          | 1D<br>2D                             | e.<br>1                                               | 24                                     |                                             |                                 |                                                                                      |                          |                               |                      |           | · · · ·        |                        | •                                     |                       | <u> </u>       |                                         |          |
|          | 3D                                   | н<br>                                                 | 24                                     |                                             |                                 |                                                                                      | 2<br>1                   |                               |                      |           |                | •                      | •                                     |                       |                |                                         |          |
|          | 4D                                   |                                                       | 24                                     |                                             |                                 |                                                                                      | -                        |                               |                      |           | • • • •        |                        | <b></b>                               | <b> </b>              |                |                                         | ļ        |
|          | 5D<br>6D                             |                                                       | 24<br>24                               |                                             |                                 |                                                                                      |                          | ABAND                         | DN                   |           |                |                        | <b></b>                               | +                     |                | ·                                       |          |
|          | 0D<br>7D                             |                                                       | 24                                     |                                             |                                 |                                                                                      | •                        |                               | •                    |           | •              |                        |                                       | 1                     |                |                                         |          |
|          | 8D                                   | • · ·                                                 | 24                                     |                                             |                                 |                                                                                      |                          |                               |                      |           |                |                        | •                                     |                       |                |                                         |          |
| · .<br>2 | 9D                                   |                                                       | 24                                     |                                             |                                 |                                                                                      |                          |                               |                      |           | -              | • • •                  | • • • • • • • • • •                   | ł                     |                | •                                       | ÷        |
|          | 10D                                  |                                                       | 24<br>24                               |                                             |                                 |                                                                                      |                          |                               |                      |           | •              |                        | * · · · · · · · · · · · · · · · · · · | <u>+</u>              |                | • · · · · · · · · · · · · · · · · · · · |          |
|          | 11D<br>12D                           |                                                       | 24                                     |                                             |                                 |                                                                                      |                          |                               |                      |           | • • • •        |                        | 4                                     | 1                     |                | •                                       |          |
|          | 13D                                  |                                                       | 24                                     |                                             |                                 |                                                                                      |                          |                               |                      |           |                | · ·                    | •                                     | <b>_</b>              |                |                                         | <u>+</u> |
|          | 14D                                  | 15.5                                                  |                                        |                                             |                                 |                                                                                      | ÷                        |                               |                      |           |                | •••                    | •                                     | +                     |                | •                                       | !<br>    |
|          |                                      |                                                       |                                        |                                             |                                 |                                                                                      |                          |                               |                      |           | •••            | • • • •                |                                       | +                     |                | <b></b>                                 |          |
|          |                                      |                                                       |                                        |                                             |                                 |                                                                                      | •                        |                               |                      |           |                |                        |                                       |                       | ;              |                                         |          |
| i<br>i   |                                      |                                                       |                                        |                                             |                                 |                                                                                      |                          |                               |                      |           |                |                        |                                       |                       |                |                                         |          |
| - 20<br> |                                      | · ·                                                   |                                        | ŝ                                           |                                 |                                                                                      |                          |                               | ····                 |           |                |                        | •                                     |                       |                |                                         |          |
| 28       |                                      | 2.11<br>1                                             |                                        | 4<br>4<br>1<br>1                            |                                 |                                                                                      |                          |                               |                      | +         |                |                        |                                       | +                     | -              |                                         | -        |
| 29       | · · · · ·                            | · · · ·                                               | ·                                      |                                             |                                 |                                                                                      |                          |                               |                      | 1         |                |                        |                                       |                       |                |                                         |          |
| 30<br>31 |                                      |                                                       |                                        |                                             |                                 | a njyana, maja na mata na ara ara                                                    |                          |                               |                      |           |                |                        | <br>                                  |                       |                |                                         |          |
| То       | TAL                                  |                                                       |                                        |                                             |                                 |                                                                                      |                          |                               |                      |           |                |                        |                                       |                       |                |                                         |          |
| TIME     | ter understandet bile                | an an ann an an an An An An                           | DRILLIN                                | l                                           |                                 | B                                                                                    | IME OF LU<br>Y A FISHI   |                               |                      | Cau<br>of | ses            |                        | g job ur<br>ental on                  |                       |                |                                         | ]<br>]   |
| N.B      | e<br>s<br>27 Si                      | Time speri<br>hole is rea<br>Time sper<br>ge-track di | ched.<br>ht on G4 fo<br>rilling furthe | F3 for te<br>r lugging<br>ar to a chá       | chnical<br>necessi<br>ange in t | nes<br>side tracks, unt<br>taded by a fish<br>the geological ta<br>av of the side ti | ing jeb<br>arget is cons |                               |                      |           | se the na      | Correc                 | tion of                               | drill-p               | ath            | <br>ne).                                | ]        |

imp 4807 A SNEA 959 004 001

•

|            |                                          |                                                                                               |                                           |                           |                                                 |                                                                                   |                                                                                              |                                                        |                                                                 |                                                  |                                |                                |                                                                                                |                                                                                                                                                           |                                     |                                                                               |                                                      |                                                                |                                                                                                                     |                                                          |                         |                                              |                                                                                                                  |                              |    |                                               |                                                                             |                                                        |                                                      |                         |                                    | <br>• f                                           |                                                                                                                                                   |                                    |
|------------|------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|----|-----------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| -1         |                                          | ļ—                                                                                            |                                           |                           | <b>I</b>                                        | -                                                                                 |                                                                                              |                                                        |                                                                 |                                                  |                                |                                | <b>-</b>                                                                                       |                                                                                                                                                           |                                     |                                                                               |                                                      |                                                                |                                                                                                                     |                                                          |                         |                                              |                                                                                                                  |                              |    |                                               |                                                                             |                                                        |                                                      |                         | <b>—</b>                           |                                                   |                                                                                                                                                   | T A.D.C                            |
| (T)        | <b>F7</b>                                |                                                                                               | - 11                                      | 78                        | 3                                               |                                                                                   | DRILLIN                                                                                      |                                                        |                                                                 |                                                  |                                | 1                              | DEDEODU                                                                                        |                                                                                                                                                           | В                                   | IT REC                                                                        | ORI                                                  |                                                                |                                                                                                                     |                                                          |                         |                                              |                                                                                                                  |                              | 1  | DULI                                          | BIT                                                                         |                                                        |                                                      | 5                       | <b></b>                            |                                                   |                                                                                                                                                   |                                    |
|            |                                          |                                                                                               | ╢                                         | Т                         |                                                 | <u> </u>                                                                          |                                                                                              |                                                        | N                                                               | ozzl                                             | e 5                            |                                | PERFORM                                                                                        |                                                                                                                                                           | ÷                                   |                                                                               |                                                      | PARA                                                           | Γ                                                                                                                   |                                                          | Ŧ                       | ML<br>B                                      |                                                                                                                  | િં                           | ╟─ | COND                                          |                                                                             |                                                        | TION                                                 | trippin                 |                                    |                                                   |                                                                                                                                                   |                                    |
| Kun number | Operation                                | Drive                                                                                         | Rit true                                  | adkı ild                  | Bit<br>Diamețer                                 | Manufacture                                                                       | Code<br>IADC                                                                                 | Serial<br>number                                       | 1<br>/ 32                                                       | 2<br>√ 32                                        | 3<br>/ 32                      | Operation<br>starting<br>depth | Footage<br>in this<br>operation                                                                | Drilling time<br>(hours)                                                                                                                                  | Drilling rate                       | Déviation                                                                     | Weight<br>on bit                                     | R.P.M.                                                         | Flow rate                                                                                                           | Pressure                                                 | Density<br>(mud weignt) | Plastic<br>Viscosity (                       | Solid cont<br>(%)                                                                                                | Water loss (cc)              | Т  | В                                             | G                                                                           | Ubservations<br>on grading                             | GEOLOGICAL<br>FORMATION                              | Reason for tripping     | Type of<br>turbodrill              | Turbodrill<br>diameter                            | Turbodrilled<br>footage                                                                                                                           | Total time<br>(hours)              |
| 1          | F                                        | R                                                                                             | 2                                         | т                         | 26"                                             | SMI                                                                               | DSJ                                                                                          | SA5248                                                 | 18                                                              | 18                                               | 18                             | 93                             | 126                                                                                            | 9½                                                                                                                                                        | 13.2                                | 0                                                                             | 1/5                                                  | 60/80                                                          | 3200                                                                                                                | 1750                                                     | SEA<br>PILL             | WATER                                        | + HI                                                                                                             | VIS                          | 1  | 1                                             | I                                                                           |                                                        | NO<br>RETURI                                         | ٩E                      |                                    |                                                   |                                                                                                                                                   |                                    |
|            | RA                                       | R                                                                                             |                                           | т                         | 17½                                             | HUG                                                                               | OSC3A                                                                                        | 2505R                                                  | 18                                                              | 18                                               | 18                             | 199                            | 20                                                                                             | ]1 <sub>2</sub>                                                                                                                                           | 13.3                                |                                                                               | 5/10                                                 | 100                                                            | 3300                                                                                                                | 2000                                                     |                         |                                              |                                                                                                                  |                              |    |                                               |                                                                             |                                                        |                                                      |                         |                                    |                                                   |                                                                                                                                                   |                                    |
|            | F                                        | R                                                                                             | 2                                         | т                         | 17½                                             | HUG                                                                               | OSC3A                                                                                        | 2505R                                                  | 18                                                              | 18                                               | 18                             | 219                            | 107                                                                                            | 4½                                                                                                                                                        | 23.8                                |                                                                               | 8                                                    | 100                                                            | 3300                                                                                                                | 2000                                                     | 1.08                    | 6                                            | 5                                                                                                                | NC                           | 1  | 1                                             | 1                                                                           |                                                        | CMT                                                  | E                       |                                    |                                                   |                                                                                                                                                   |                                    |
| 2F         | RA                                       | R                                                                                             | 2                                         | т                         | 17½                                             | HUG                                                                               | OSC3A                                                                                        | 2505R                                                  | 18                                                              | 18                                               | 18                             | 307                            | 159                                                                                            | 7½                                                                                                                                                        | 21.2                                |                                                                               | 5/10                                                 | <u>60</u><br>100                                               | 3300                                                                                                                | 1800                                                     | 1.08                    | 6                                            | 5                                                                                                                | NC                           |    | INC                                           |                                                                             |                                                        | CMT                                                  |                         |                                    |                                                   |                                                                                                                                                   |                                    |
| F          | F                                        | R                                                                                             | 2                                         | т                         | 17½                                             | HUG                                                                               | OSC3A                                                                                        | 2505R                                                  | 18                                                              | 18                                               | 18                             | 326                            | 618                                                                                            | 37½                                                                                                                                                       | 16.5                                | 2 <sup>0</sup>                                                                | 0/18                                                 | 120                                                            | 3200                                                                                                                | 2100                                                     | 1.11                    | 6                                            | 5                                                                                                                | NC                           | 3  | 6                                             | I                                                                           |                                                        | CMT                                                  | B-A                     |                                    |                                                   |                                                                                                                                                   |                                    |
| }          | F                                        | R                                                                                             | 2                                         | т                         | 17½                                             | HUG                                                                               | OSC3A                                                                                        | 302SP                                                  | 18                                                              | 18                                               | 18                             | 837                            | 173                                                                                            | 14½                                                                                                                                                       | 11.9                                | 120                                                                           | 20                                                   | 130                                                            | 3200                                                                                                                | 2300                                                     | 1.12                    | 6                                            | 5                                                                                                                | NC                           | 1  | 1                                             | I                                                                           |                                                        | СМ                                                   | E                       |                                    |                                                   |                                                                                                                                                   |                                    |
| 1          | RA                                       | F                                                                                             | 2                                         | т                         | 121/4                                           | SMI                                                                               | FDGH                                                                                         | XA6663                                                 | 13                                                              | 13                                               | 13                             | 976                            | 34                                                                                             | 2 <sup>1</sup> 2                                                                                                                                          | 13.6                                |                                                                               | 3/9                                                  | 50                                                             | 1980                                                                                                                | 1700                                                     | 1.13                    | 7                                            | 5                                                                                                                | NC                           |    | INC                                           |                                                                             |                                                        | CMT                                                  |                         |                                    |                                                   |                                                                                                                                                   |                                    |
| 4          | F                                        | F                                                                                             | 2                                         | т                         | 12¼                                             | SMI                                                                               | FDGH                                                                                         | XA6663                                                 | 13                                                              | 13                                               | 13                             | 1010                           | 324                                                                                            | 21                                                                                                                                                        | 15.4                                | 3/4 <sup>0</sup>                                                              | 28                                                   | 105                                                            | 1930                                                                                                                | 2260                                                     | 1.12                    | 5                                            | . 5                                                                                                              | 26                           | 6  | 7                                             | I                                                                           |                                                        | A                                                    | АВ                      |                                    |                                                   |                                                                                                                                                   |                                    |
| 5          | RA                                       | F                                                                                             | 2                                         | т                         | 124                                             | HUG                                                                               | ХЗА                                                                                          | SV736                                                  | 13                                                              | 13                                               | 13                             | 1505                           | 385                                                                                            | 2 <sup>1</sup> 2                                                                                                                                          | 154                                 |                                                                               | 0/8                                                  | 80<br>110                                                      | 2100                                                                                                                | 2600                                                     | 1.14                    | 15                                           | 7                                                                                                                | 14.2                         |    | INC                                           |                                                                             |                                                        | Α                                                    |                         |                                    |                                                   |                                                                                                                                                   |                                    |
| 5          | F                                        | F                                                                                             | 2                                         | т                         | 12¼                                             | HUG                                                                               | ХЗА                                                                                          | SV736                                                  | 13                                                              | 13                                               | 13                             | 1334                           | 732                                                                                            | 36½                                                                                                                                                       | 20.1                                |                                                                               | 20                                                   | 110                                                            | 2100                                                                                                                | 2600                                                     | 1.14                    | 15                                           | 7                                                                                                                | 14.2                         | 4  | 7                                             | 1/8                                                                         |                                                        | A                                                    | АВ                      |                                    | $\bot$                                            | <u> </u>                                                                                                                                          |                                    |
| 6          | RA                                       | F                                                                                             | 2                                         | т                         | 124                                             | REED                                                                              | HS51                                                                                         | NBH188                                                 | 13                                                              | 13                                               | 13                             | 1709                           | 357                                                                                            | ]½                                                                                                                                                        | 238                                 |                                                                               | 2/5                                                  |                                                                | 2100                                                                                                                | 2600                                                     | 1.17                    | 10                                           | 10                                                                                                               | 16.4                         |    | INC                                           |                                                                             |                                                        | A                                                    |                         |                                    | $\perp$                                           | ļ                                                                                                                                                 |                                    |
| 6          | F                                        | F                                                                                             | R                                         | т                         | 124                                             | REED                                                                              | HS51                                                                                         | NBH188                                                 | 13                                                              | 13                                               | 13                             | 2066                           | 10                                                                                             | 31 <sub>2</sub>                                                                                                                                           | 2.9                                 | 3 <sup>1</sup> / <sub>4</sub> 0                                               | $\frac{20}{30}$                                      | 50<br>110                                                      | 2100                                                                                                                | 2600                                                     | 1.17                    | 10                                           | 10                                                                                                               | 16.4                         | 1  | 1                                             | I                                                                           |                                                        | A                                                    |                         | BIT W<br>DRILL                     | JULD<br>IN C                                      | NOT<br>LAYSTO                                                                                                                                     | NE                                 |
| 7          | RA                                       |                                                                                               | R                                         | T                         | 12¼                                             | HUG                                                                               | ХЗА                                                                                          | KK316                                                  | 13                                                              | 13                                               | 13                             | 2039                           | 37                                                                                             | 1                                                                                                                                                         | 37                                  |                                                                               | 5/10                                                 | 100                                                            | 1900                                                                                                                | 2400                                                     | 1.17                    | 10                                           | 10                                                                                                               | 16.4                         |    | INC                                           |                                                                             |                                                        | А                                                    | $\square$               |                                    | $\perp$                                           | <u> </u>                                                                                                                                          | _                                  |
| 7          | F                                        | L I                                                                                           | R                                         | т                         | 12¼                                             | HUG                                                                               | ХЗА                                                                                          | KK316                                                  | 13                                                              | 13                                               | 13                             | 2076                           | 189                                                                                            | 24                                                                                                                                                        | 7.9                                 | 2 3/4 <sup>0</sup>                                                            | 22                                                   | 115                                                            | 1900                                                                                                                | 2450                                                     | 1.14                    | 14                                           | 10                                                                                                               | 7.6                          | 7  | 5                                             | I                                                                           |                                                        | AG                                                   | A                       | <b> </b>                           |                                                   | <b>_</b>                                                                                                                                          |                                    |
| 6          | R F                                      |                                                                                               | R                                         | Т                         | 12¼                                             | REED                                                                              | HS51                                                                                         | NBH188                                                 | 13                                                              | 13                                               | 13                             | 2265                           | 200                                                                                            | 38                                                                                                                                                        | 5.3                                 | 1 3/4 <sup>0</sup>                                                            | 25                                                   | 70                                                             | 1900                                                                                                                | 2600                                                     | 1.15                    | 15                                           | 9                                                                                                                | 6.6                          | 2  | 4                                             | 1 <sub>4</sub>                                                              |                                                        | G                                                    | AB                      | <b> </b>                           | <u> </u>                                          | <u> </u>                                                                                                                                          | <u> </u>                           |
| 8          | F                                        |                                                                                               | R                                         | Т                         | 12 <sup>1</sup> 4                               | REED                                                                              | HS51                                                                                         | NBH184                                                 | 13                                                              | 13                                               | 13                             | 2465                           | 6                                                                                              | 2                                                                                                                                                         | 3                                   |                                                                               | 25                                                   | 60                                                             | 1900                                                                                                                | 2600                                                     | 1.15                    | 15                                           | 9                                                                                                                | 6.6                          | 1  | 1                                             | I                                                                           |                                                        | GA                                                   | $\square$               | VEAT                               | ED DU<br>HER                                      | Е ТО В                                                                                                                                            | AD                                 |
| 9          | F                                        | -                                                                                             | R                                         | T                         | 12¼                                             | SMI                                                                               | FVH                                                                                          | XB0999                                                 | 13                                                              | 13                                               | 13                             | 2471                           | 109                                                                                            | 18                                                                                                                                                        | 6                                   | 1 3/4 <sup>0</sup>                                                            | 25                                                   | 110                                                            | 2100                                                                                                                | 2700                                                     | 1.15                    | 15                                           | 9                                                                                                                | 5.8                          | 8  | 7                                             | 1 <u>4</u>                                                                  |                                                        | AS                                                   | В                       | #                                  | -                                                 | <u> </u>                                                                                                                                          | <u> </u>                           |
| 10         | COND<br>RA                               |                                                                                               | R                                         | Т                         | 12 <sup>1</sup> 4                               | SMI                                                                               | FVH                                                                                          | XB0994                                                 | 13                                                              | 13                                               | 13                             |                                |                                                                                                |                                                                                                                                                           |                                     |                                                                               |                                                      | ļ                                                              | 2100                                                                                                                | 2700                                                     | 1.15                    | 16                                           | 9                                                                                                                | 6.6                          |    | NEW                                           |                                                                             |                                                        |                                                      | Ε                       | *COND<br>9 5/                      |                                                   |                                                                                                                                                   | FOR                                |
| 11         | RA                                       |                                                                                               | R                                         | Ţ                         | 81 <sub>2</sub>                                 | SMI                                                                               | SVH                                                                                          | CE4110                                                 | 14                                                              | 14                                               | 14                             | 2530                           | 50                                                                                             | 3 <sup>1</sup> 2                                                                                                                                          | 14.3                                |                                                                               | 5/12                                                 | 30/50                                                          | 1000                                                                                                                | 850                                                      | 1.15                    | 22                                           | 8                                                                                                                | 19.6                         |    | INC                                           |                                                                             |                                                        | СМТ                                                  | $\downarrow \downarrow$ |                                    |                                                   |                                                                                                                                                   |                                    |
| 11         | R                                        |                                                                                               | R                                         | т                         | 82                                              | SMI                                                                               | SVH                                                                                          | CE4110                                                 | L                                                               |                                                  | 14                             | 2580                           | 3                                                                                              | 3 <sup>1</sup> 2                                                                                                                                          | 0.86                                | ERVATION                                                                      | 16                                                   |                                                                | 1000                                                                                                                | 900                                                      | H                       | h                                            | <u> </u>                                                                                                         | 19.6                         | 4  | 1                                             | L                                                                           | BT                                                     |                                                      | A                       | FLOA                               | GLD D<br>T COL                                    | FILLIN<br>LAR                                                                                                                                     | G                                  |
|            | K -  <br>NA }-<br>P -  <br>E -  <br>PE - | Dritting<br>Coring<br>Redrittin<br>Reaming<br>Pilot hold<br>Pilot open<br>Simultan<br>opening | j and co<br>le drillin<br>ming<br>vaous p | ntret t<br>19<br>pilatinj | er coment)<br>trip<br>g and hole<br>h aperation | M - 1<br>SIT DESIG<br>T - T<br>8 - 1<br>M - 0<br>F - A<br>0 - 0<br>C - 0<br>A - F | furbline<br>lettom hole me<br>wrbine<br>Wi<br>Frisones frotk b<br>licones<br>Thier cone rock | ter other then<br>its)<br>bits<br>sed<br>symble center | The set<br>the man<br>HUR -<br>SMI -<br>REE -<br>SEC -<br>SMF - | Nugha<br>Smith<br>Read<br>Securi<br>SMF<br>Diama | isine the<br>r name<br>t<br>ty | first three letters •          | T2 - Teeth<br>T3 - Teeth<br>T4 - Teeth<br>T5 - Teeth<br>T6 - Teeth<br>T7 - Teeth<br>T8 - Teeth | CONDITION<br>hight 1/8 gene<br>hight 1/4 gene<br>hight 1/2 gene<br>hight 1/2 gene<br>hight 3/8 gene<br>hight 3/8 gene<br>hight 3/8 gene<br>hight all gene | Teeti<br>CT<br>ET<br>ST<br>SU<br>RG | h and cones<br>Chipped tests<br>Enoded tests<br>Broken tests<br>Bit belled up | er inserts<br>or inserts<br>uge tooth<br>psuge tooth | Beering<br>GL<br>SF<br>LC<br>or SP<br>Or<br>Sh bod<br>SL<br>PN | <ul> <li>Cone(s)</li> <li>Bearing</li> <li>Scal fail</li> <li>Lost cat</li> <li>Brakan</li> <li>journels</li> </ul> | iere<br>ne(s)<br>baaring pie<br>s - Pinched<br>nozzle(s) |                         | - Ch<br>- Se<br>- Se<br>- Ch<br>- Ch<br>- Ch | ey<br>mestone ol<br>wit er shale<br>welk<br>ind<br>ndstone<br>wert<br>wert<br>sanite<br>ongiomerat<br>ypsum - Ai | i dolomite<br>le<br>shydrite |    | be defi<br>drilled,<br>arder of<br>Ex. (<br>( | ned by the<br>with a c<br>reletive i<br>(1) Ap : :<br>(2) AS :<br>(3) Mct : | e codes<br>maximu<br>importar<br>Plast<br>Clay<br>Mari | ic clay<br>and sand<br>and solft lime<br>and tight d | entone                  | ns A<br>in S<br>C<br>D<br>E<br>Ex. | - Ponet<br>- Inere<br>- Hydr<br>- Bit d<br>- Rose | TRIPPING<br>tration dowing<br>total problem<br>railic problem<br>riti maximum<br>on other then<br>on other then<br>as the then<br>string modifics | i<br>hours allowed<br>bit problems |

)

|              |                               | Bis<br>DATA                                                | 2-7      | 78               |                                                                                                    |                                                            | 0                               |                                                                                |                                                                       | <del></del> |                                |                                                                                                                                                                                                                                                                   |                                                                                  | B                                            | IT R                                                                                                                                               | ECOR                                  | D.                                                     | •         |             |                            |                                                                                |                      |                 |             |                                                             |                                                      |            |                            |                     | T                                            | WEL                                                                                                   | L: TAR                   | RA 1       |
|--------------|-------------------------------|------------------------------------------------------------|----------|------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|-----------|-------------|----------------------------|--------------------------------------------------------------------------------|----------------------|-----------------|-------------|-------------------------------------------------------------|------------------------------------------------------|------------|----------------------------|---------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------|------------|
|              |                               |                                                            | ╢—       | T                |                                                                                                    | DRILLIN                                                    |                                 |                                                                                | ozzle                                                                 |             |                                | PERFORM                                                                                                                                                                                                                                                           |                                                                                  |                                              |                                                                                                                                                    |                                       | PARA                                                   | METE      | RS          |                            | М                                                                              |                      |                 |             | DULL                                                        |                                                      |            |                            | P                   |                                              | _                                                                                                     | ODRILLE                  |            |
| Run number   | Operation                     | Drive                                                      | Bit type | Diameter         | Manufacturer                                                                                       | Code<br>IADC                                               | Serial<br>number                | 1                                                                              |                                                                       | 3           | Operation<br>starting<br>depth | Footage<br>in this<br>operation                                                                                                                                                                                                                                   | Drilling time<br>(hours)                                                         | Drilling rate                                | Déviati                                                                                                                                            | Weight<br>on bit                      | R.P.M.                                                 | Flow rate | Pressure    | Density<br>(mud weignt)    | Plastic<br>Viscosity (cp)                                                      | solid content<br>(%) | Water loss (cc) | т           | В                                                           | G                                                    | on grading | GEOLOGICAL<br>FORMATION    | Reason for tripping | Type of<br>turbodrill                        | Turbodrill<br>diameter                                                                                | T                        | Total time |
| 2            | F                             | R                                                          | T_       | 8½               | SMI                                                                                                | F2                                                         | XA1552                          | 14                                                                             | 14                                                                    | 4           | 2583                           | 214                                                                                                                                                                                                                                                               | 46½                                                                              |                                              | 1 3/4                                                                                                                                              | <sup>2</sup> 18                       | 65                                                     | 1134      | 900         | 1.09                       |                                                                                |                      |                 | 2           | 4                                                           | T                                                    |            | GK                         | B                   |                                              |                                                                                                       | <u>н</u>                 | ╞          |
| ки           | K                             | R                                                          | Т        | 81 <sub>2</sub>  | CHRIS                                                                                              | RC3                                                        | 82B0932                         | WA<br>CO                                                                       | TER<br>JRSE                                                           |             | 2797                           | 7                                                                                                                                                                                                                                                                 | 2½                                                                               |                                              |                                                                                                                                                    | 7                                     | 75                                                     | 800       |             | 1.09                       | 19                                                                             |                      | 6.4             |             | USEI                                                        | -+-                                                  |            |                            |                     | 27 40                                        | DE 00                                                                                                 |                          | -          |
| 3            | RA                            | R                                                          | т        | 81 <sub>2</sub>  | SMI                                                                                                | F2                                                         | XA1558                          | 14                                                                             | 14 1                                                                  | 4           | 2781                           | 23                                                                                                                                                                                                                                                                | ]                                                                                | 23                                           |                                                                                                                                                    | 5/10                                  | 1                                                      | 1118      | 900         | 1.09                       |                                                                                |                      | 5.9             |             | INC                                                         | -+                                                   | +          | <u>u</u>                   | A                   | 21.4%                                        | RECO                                                                                                  | VERY                     | -          |
| 3            | F                             | R                                                          | Т        | 81 <sub>2</sub>  | SMI                                                                                                | F2                                                         | XA1558                          | 14                                                                             | 14 1                                                                  | 4           | 2804                           | 86                                                                                                                                                                                                                                                                | 25                                                                               |                                              | 1 3/4                                                                                                                                              | 20                                    | 65                                                     | 1118      |             | 1.09                       | 17                                                                             |                      | 6               |             |                                                             |                                                      |            |                            | ╞╢                  |                                              |                                                                                                       |                          | <u> </u>   |
| <            | К                             | R                                                          | т        | <u>15</u><br>832 | CHRIS                                                                                              | C22                                                        | 81E0937                         |                                                                                |                                                                       | 1           | 2890                           | 15                                                                                                                                                                                                                                                                | 5                                                                                |                                              |                                                                                                                                                    | 8                                     | 90                                                     | 985       | 700         |                            |                                                                                |                      | 6<br>6          | 2<br>75%    | 3 1<br>0K                                                   | 1/8                                                  |            | G<br>G                     | E                   | 91% RE                                       | COVE                                                                                                  | DV.                      |            |
| _            |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      | -               |             |                                                             | -+                                                   |            | u                          |                     | 91% Kt                                       | COVE                                                                                                  | RT                       |            |
| 4            |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             | -+                                                          | +                                                    |            |                            | $\parallel$         |                                              |                                                                                                       |                          |            |
| ŀ            |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             | -+                                                          | +                                                    |            |                            | -                   | -+                                           | $\rightarrow$                                                                                         |                          |            |
| $\downarrow$ |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                | ·                    |                 |             | -+                                                          | +                                                    |            |                            |                     |                                              | -+                                                                                                    |                          |            |
| ┦            |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             |                                                             |                                                      | +-         |                            |                     |                                              | -+                                                                                                    |                          |            |
| +            |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             |                                                             |                                                      | +          |                            | ╉                   |                                              | +                                                                                                     |                          |            |
| ╞            |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            | -+                                                                             |                      |                 |             |                                                             | +                                                    |            |                            | ╢                   |                                              | +                                                                                                     |                          |            |
|              |                               |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       | -           |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             |                                                             |                                                      |            |                            | ╢                   |                                              | -+                                                                                                    | +                        |            |
|              | -+                            |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             |                                                             |                                                      | $\uparrow$ |                            | +                   |                                              | -+                                                                                                    | +                        |            |
| -            | -+                            |                                                            |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             |                                                             |                                                      |            |                            | ╢                   |                                              | -+                                                                                                    |                          | <u> </u>   |
| ┝            |                               | $-\ $                                                      |          |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             |                                                             |                                                      |            |                            | ╢                   |                                              | +                                                                                                     |                          |            |
|              | -+                            | -                                                          | _        |                  |                                                                                                    |                                                            |                                 | _                                                                              | $\downarrow$                                                          |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             | -                          |                                                                                |                      |                 |             |                                                             |                                                      |            |                            |                     |                                              | +                                                                                                     |                          |            |
|              | $\dashv$                      | -                                                          | _        |                  |                                                                                                    |                                                            |                                 |                                                                                |                                                                       | -           |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 | $\uparrow$  | 1                                                           | 1                                                    | $\uparrow$ |                            | ╢                   | -+-                                          | +                                                                                                     |                          |            |
| <u> </u>     |                               | $- \parallel$                                              | +        |                  |                                                                                                    |                                                            |                                 | -                                                                              |                                                                       | ·           |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             | 1                                                           |                                                      |            | -+                         | ╢                   |                                              | +                                                                                                     | -+                       |            |
| PER          | ATION                         |                                                            |          |                  |                                                                                                    |                                                            | <u>·</u>                        |                                                                                |                                                                       |             |                                |                                                                                                                                                                                                                                                                   |                                                                                  |                                              |                                                                                                                                                    |                                       |                                                        |           |             |                            |                                                                                |                      |                 |             |                                                             | $\top$                                               |            | $\uparrow$                 | 1                   |                                              | +                                                                                                     | -+                       |            |
| * }<br>:     | - 19610 (<br>- Simul<br>opeci | g<br>Hing fform<br>hale drilli<br>opening<br>teneous<br>ng | piloting | r coment) M      | - Turbie<br>- Better<br>turbin<br>T DESIGN<br>- Tricon<br>- Bicone<br>- Other<br>- Mill<br>- Dieme | n hole meter<br>e<br>es (rock bits)<br>is<br>cone rock bit | ether then HU<br>RE<br>DE<br>DE | NUFACT<br>menufact<br>G Hu<br>I Sm<br>E Rec<br>C Sec<br>F SM<br>I Dia<br>R Chu | nstitute t<br>uror nom<br>hes<br>ith<br>id<br>urity<br>F<br>mond here |             | rne lemen of                   | <ul> <li>DULL BIT CON</li> <li>Taeth high</li> <li>Taeth high</li> <li>Taeth high</li> <li>Taeth high</li> <li>Taeth high</li> <li>Taeth high</li> <li>Taeth hight</li> <li>Taeth hight</li> <li>Taeth hight</li> <li>Taeth hight</li> <li>Taeth hight</li> </ul> | 1/8 gone<br>1/4 gone<br>3/8 gone<br>1/2 gone<br>5/8 gone<br>3/4 gone<br>7/8 gone | Teeth en<br>CT<br>ET<br>BT<br>BU<br>RG<br>WG | EVATION 1<br>Chipped testh<br>Eroded testh<br>Broken testh<br>Dit belied up<br>Reunded get<br>interts<br>Worn or lost g<br>leserts<br>Fixt crusted | r incorts<br>r incorts<br>po toeth or | Beerings<br>CL =<br>BF =<br>SF = 1<br>LC = 1<br>BP = 1 | GWYMBCE   | ring pint o | M<br>D<br>S<br>Q<br>V<br>X | - Cley<br>- Limeste<br>- Marl or<br>- Chelk<br>- Send<br>- Sendsto<br>- Quertz | shale<br>ne          | omite           | dril<br>ord | lefined by<br>led, with<br>Ir of releti<br>(1) Ap<br>(2) AS | r the code<br>a maxim<br>ve import<br>: Pla<br>: Cla |            | ost formati<br>Iros placed | ians<br>I in        | B — k<br>C — H<br>D - B<br>E — N<br>Ex. (1)D | Penetration<br>Increasing 9<br>Hydraulic p<br>Bit drill me:<br>Neeson othe<br>Drillstring n<br>Casing | n slowing down<br>torque | licusd     |

SNEA(P) RGM 969.004.015